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Synopsis
I. INTRODUCTION

Plasma is a quasi-neutral ionized medium consisting of, in general, charged and neutral
particles, that exhibits collective behavior due to Coulomb forces. Each particle in plasma
feels all the other particles, but mainly the collective fields. Collisionless plasmas, by
definition, are characterized by charged particles undergoing several small angle Coulomb
collisions leading to a rare large angle collision. Rarity of such large angle collisions renders
these plasmas “collisionless” and such plasmas are well described by kinetic models in the
limit of weak particle-particle correlations. Collision-less plasmas are often found in natural
conditions such as space plasmas as well as in laboratory conditions such as Tokamaks, for

example.

In a warm quasi neutral plasma, when a bunch of electrons are displaced from their
mean (equilibrium) position, the resulting electrostatic interaction, causes electrons to
oscillate about their equilibrium position, thus, sustaining a steady plasma oscillations
in the electric field with a characteristic electron plasma frequency. In 1946, Landau [1]
discovered that in the limit of small amplitude perturbations in a warm collisionless plasma,
these plasma oscillations can be exponentially damped, due to interaction with particles
streaming with velocities close to the wave phase speed vy. For warm unmagnetized
uniform plasmas, the damping/growth rate of wave is generally proportional to the slope
of the equilibrium particle velocity distribution at wave phase velocity of the distribution.
Therefore, for monotonically falling equilibrium velocity distribution functions (such as the
usual Maxwellian, for example), plasma waves are damped exponentially in time. However,
when the amplitude of the perturbation is increased, the process of particle trapping in
the wave potential well can inhibit Landau damping, by flattening the velocity distribution
near the wave phase speed due to contributions from the non-linear or finite amplitude

effects on the propagation of plasma waves, as was analyzed first by O’Neil [2].



In collisionless plasmas, the trapped particles oscillate in the trough of the wave ap-
proximately with the time period, 7, = 27/+/a, where « is the amplitude of density
perturbation. The plasma wave thus formed is dissipated by Landau damping (LD) before
particles are trapped i.e., unless 777 < 1, where ~, is the linear Landau damping rate.
Hence, when the amplitude of electric field is large enough to overcome LD, particles may
get trapped in electric field pockets, which in turn flattens the distribution locally near
the phase velocity of the wave, thus rendering the Landau damping ineffective as LD is
proportional to | 9f/0v |,,. This wave-particle interaction leads to formation of coherent
structures in phase-space. A well known class of such coherent phase space structures
are Bernstein-Greene-Kruskal (BGK) structures. These are exact stationary solutions for
electrostatic, collisionless plasmas described by the Vlasov-Poisson model [3]. These BGK
modes are in general, spatially inhomogeneous and therefore exhibit a finite amplitude
self-consistent electric potential and field structures. These structures have continued to
attract attention as they may represent the final saturated state of instabilities which

are stabilized by particle trapping in the potential well formed by the finite amplitude waves.

The seminal work of BGK[3] opened a new window which described ways to construct a
large class of nonlinear states. Since then, there has been an enormous body of work that
speculates about which of these states might occur in nature,[4, 5, 6] in experiments,|[7, 8,
9] and in numerical simulations,[10] in a variety of situations. In the past, in a series of
papers, [11]-[12] nonlinear solutions and nonlinear dispersion relation have been obtained to
describe a large class of coherent phase space structures such as electron-ion holes, cnoidal
holes, double layers and more. The stability of these structures has also been of great

interest[10, 13].

Scope of this Thesis is focused on the study of phase space dynamics of a collisionless
plasma starting from a homogeneous Maxwellian distribution, for example electrostatic
plasma waves and BGK modes or Phase Space Vortices (PSV), using an external electric

field drive which is currently a subject of great interest in both interplanetary environments



and for laboratory plasma systems. Several investigations aim to understand the features of
the dynamics at ion scales and electron scales in space plasmas by analyzing both spacecraft
data [14, 15, 16] as well as numerical results from kinetic or phase space simulations [17,
18, 19, 20, 21, 22, 23]. For example, quasiregular packets of Langmuir waves (LAN) are
frequently observed in the solar wind and magnetospheric plasmas [24, 25, 26]. The high
frequency regions of the energy spectra, obtained by analyzing solar-wind measurements
from the Helios spacecraft are dominated by longitudinal electrostatic modes, identified
as ion-acoustic (IA) waves [27, 28, 29]. Recent observations and studies [30, 31, 32, 33,
34] point out that besides these LAN and TA branches, in agreement with spacecraft and
solar-wind observations, two other novel branches of electrostatic waves exists. These waves
have been dubbed as electron acoustic waves (EAW) and ion-bulk (IBk) waves [19, 35],
as their phase velocities are nearly constant and are comparable to the electron thermal
velocity (vgne) and ion thermal (vy,;) velocity, respectively. Generally, these electrostatic
modes at finite amplitude lead to nonlinear BGK mode with charged particles trapped
in the wave troughs. As described earlier, because of the trapped particles, the charged
particle distribution becomes effectively flat at the wave phase velocity which in turn

minimize Landau damping (LD) as it is proportional to [ df/0v |y,

A natural way to achieve a PSV or BGK state (both are used interchangeably throughout)
is to increase the amplitude of initial density perturbation “o’” decribed earlier, without
directly perturbing the distribution in velocity space. The amplitude should be large
enough to trap particle and to overcome Landau damping[2, 10]. More recently, external
drives with time dependent frequency w(t) or chirp, have been used to obtain BGK modes
in bounded systems[36, 37, 38, 39, 40, 41]. For example, in a pure electron plasma confined
in a Penning-Malmberg trap, it was shown that phase space holes can be created by
choosing the frequency chirp window to be around axial electron bounce frequency|36, 37,
38]. Similarly, a downward frequency sweeping has been performed in a pure ion plasma
experiment where extreme modification of initial distribution has been observed (for eg.

splitting of an initial Maxwellian distribution into two counterpropagating distributions)[42].



The above said studies were performed for the bounded systems. However, in many cases,
such as fusion experiments, solar wind and magnetospheric plasmas etc, various plasma
modes and various frequency bursts has been seen over the spatial and temporal scales.
Associated nonlinear wave-particle interactions can generate significantly enhance the levels
of energetic particle transport which can happen both along and across the magnetic field
lines[43]. In such cases, along the magnetic field lines in a Tokamak or for periodically
bounded systems, the presence of energetic heavy ions and the associated wave-particle
interaction (like formation and dynamics of coherent structures) are known to play an
important role in the transfer of energy from the external drive the bulk plasma. For
unbounded or periodic system, the study of PSVs generated from an external drive has

not been addressed in the past.

As discussed earlier, in the limit of zero correlations and weak collisions, plasmas in
the electrostatic limit, are well described in their electrostatic limit by Vlasov-Poisson
system of equations. We begin our investigation by studying the excitation of electrostatic
plasma waves in a 1D unbounded Vlasov-Poisson system modelled using Periodic Boundary
Conditions (PBC)[21]. The plasma is subjected to an infinitesimal external drive. As is
well known[30, 33, 42, 44], both abrupt as well as adiabatic (or continuously changing)
external drive of constant frequency, say w = wp, wavenumber k and linear amplitude (i.e.
infinitesimal) are expected to generate plasma modes over a range of frequencies along
with its harmonics. The following questions have been addressed in the Thesis: what
would happen in an unbounded plasma modelled using PBC, if a Maxwellian, homogeneous
plasma is driven externally with a drive frequency w = wy. Furthermore, what would
happen if external drive frequency w(t) is chirped up/down (frequency sweeping) in time
interval At, say from w; to we. How does the frequency sweeping affect the formation
and dynamics of phase space vortices, particle trapping and generation of untrapped non-
Maxwellian component. It has been found that the frequency chirping allow “continuous”
flattening in the velocity space leading to large coherent structures in phase space with

embedded holes and clumps resulting in Phase Space Vortices (PSV) with multiple extrema

and phase velocities. The drive increases both kinetic energy and potential energy of the



system. Meaning both untrapped and trapped particle fraction is seen to increase, leading
to flattening of the distribution function. As the external drive is switched off, the above
said large coherent phase space structure is found to attain a steady state leading to large
amplitude steady multiple extrema PSV [P. Trivedi and R. Ganesh, Physics of Plasmas 23,

062112 (2016)].

The above said studies were for the initial velocity distributions which were Maxwellian.
As is well known, for systems with short range interactions, the energy of the system is
extensive. Thus the “canonical” distribution is a “Maxwellian” and may be obtained by ex-
tremizing Boltzmann-Gibbs-Shannon (BGS) entropy subject to energy constraint. However,
for a variety of interesting physical problems such as thermodynamics of self graviatating
systems with long range interactions, energy is non-extensive [45, 46]. Recently, there have
been several attempts to define a BGS-like entropy for nonextensive systems. For example,
Tsalli’s definition [47] of q-nonextensive entropy where “q” is the strength of nonextensivity
and the corresponding “canonical” distribution function has been derived using nonextensive
statistical mechanics framework. This formalism has found many applications in systems
with the non-Maxwellian particle distribution functions observed in space and laboratory.
These include the solar wind and the long-range interacting systems containing plentiful
superthermal particles[48, 49], the peculiar velocity distributions of galaxy clusters[50], and
the solar neutrino problem[51]. The ¢ distribution lend themselves to applications in vast
number of problems in areas of ion acoustic waves, electron acoustic solitons and other
areas of plasmas[52, 53, 54, 49, 55]. On the theoretical front, a comprehensive discussion
of plasma oscillations, Landau damping and dispersion relation for electrostatic waves,
which can be found and solved for an equilibrium distribution function, in a collisionless
thermal plasma has been provided based on g-statistics[56]. The dispersion relation is
found to fit experimental data better than a Maxwellian. This formalism has also been
extended to study non-linear Landau damping and formation of Bernstein-Greene-Kruskal
structures for plasmas with g-nonextensive velocity distributions[57, 58]. In this Thesis,
a numerical study has been performed to study the formation and dynamics of phase

space vortices as the effect of the frequency chirp on the g-nonextensive distribution as ini-



tial distribution function [P. Trivedi and R. Ganesh, Physics of Plasmas 24, 032107 (2017)).

The role of ions on the phase space dynamics of electrons is a related and important
question. The above said electrostatic waves have been studied either in the background of
immobile ions resulting in a “thumb curve” dispersion (for LAN and EAW waves) with
kinetic electrons or in the frame of Boltzmann electrons resulting in a “teardrop” curve
(for IA and IBk waves)[17, 19, 34] with kinetic ions. Thus, the electron scale physics and
ion scale physics have been separately studied and applied whereas the actual physical
picture would emerge only when both ion and electron scale dynamics are included self
consistently and simultaneously in a model or symmetric framework where both high
frequency (“thumb curve”) and low frequency (“teardrop”) solutions can be obtained
simultaneously. From this symmetrical framework, both electron scale dispersion ( “thumb
curve”-LAN and EAW) and ion scale dispersion (“teardrop”IA and IBk) can be obtained
in appropriate limits of where each of them again consists of a high frequency branch
(LAN/IA) and a low frequency branch(EAW /IBk). Therefore, an attempt has been made
by means of numerical simulations, considering both kinetic electrons and kinetic ions on
the same physics footing, wherein the Vlasov equations are integrated for both electron and
ion species without any approximations in length scale or time scales. First, the weakly
driven fully nonlinear Vlasov-Poisson (VP) equations has been solved which facilitates
weak flattening of distribution function or weak trapping. The eigenvalue values (w;) thus
obtained for various wavenumbers are compared with frequencies obtained from solving
the linearized eigenvalue equations considering weak trapping which allows us to neglect
the contribution from the imaginary part of the dielectric function. The numerical results
obtained show that both electron and ion waves can be excited simultaneously in phase
space. In appropriate limits, it is shown that the “thumb” and “teardrop” curves are
different parts of a general symmetric dispersion relation and are recovered in appropriate
limits of that dispersion relation [P. Trivedi and R. Ganesh, Physics of Plasmas 25, 112102

(2018), P. Trivedi and R. Ganesh, Manuscript under preparation (2019)].



Moreover, in systems governed by kinetic processes, limit of low collisionality (or nearly
collisonless regimes) is not the same as the limit of zero collisionality. This is mainly
because, kinetic processes in a plasma is determined by the details of the particle distribu-
tion function in velocity space and on the nature of subtle trapping-detrapping processes.
For example a slight departure from a Maxwellian can produce significant modifications
in the dispersion of electrostatic waves. Since particle collisions work to restore thermal
equilibrium, it is clear that their effect can eventually change the features of the kinetic
dynamics of a plasma, even in situations where collisionality can be considered very weak.
In these conditions, kinetic processes and collisionality are in competition between each
other: while the first works to produce deformations of the particle distribution function
away from a Maxwellian, the latter tends to restore the Maxwellian configuration. The
evolution of the plasma is, therefore, a result of nontrivial combination of these two effects.
Therefore, an attempt has been made by means of numerical simulations, to study effect
of weak collisionality on the electrostatic driven phase space vortices. In the Thesis, two
types of collision operators has been used: (1) Boltzmann collision operator, where the
colliding particles can be treated as isolated pairs and, (2) Fokker-Planck (FP) collision
type operator, where many weak collisions lead to particle diffusion in velocity space.
Depending on the collision models used, it is shown that the giant PSVs smoothen out,
yet retain large excess density fractions [P. Trivedi and R. Ganesh, Manuscript under

preparation (2019)].

In this Thesis, by performing analytical calculations and computer experiment, we present
investigations of a variety of electrostatic modes driven phase space vortices starting with
a homogeneous plasma in periodic boundary conditions. A more systematic chapter-wise

presentation of driven phase space vortices is presented below.

II. Contents Of Thesis

Chapter 2: One Dimensional Vlasov-Poisson System - The Numerical Scheme



In this Chapter, the details of the development and upgradation of numerical techniques
used to simulate driven homogeneous plasma . For purpose of suitable code, an Eulerian
approach is applied with a 1D Vlasov-Poisson (VP) numerical solver that simulates 1D
collisionless dynamics of plasmas and can self-consistently solve both the Vlasov and
Poisson equations and advances the solution in time[58]. The well known “time-splitting”
method[59] which rests on splitting the Vlasov solver into separate spatial and velocity
space updates and has the advantage that each of these updates can then be treated as
simple advections at constant speed. In order to solver these advection equtaions the
third-order-accurate, positivity and monotonicity preserving “piecewise parabolic method”
(PPM) [60] has been applied to simulate the evolution of phase space distributions of
both electrons and ions governed by the 1D Vlasov equations. In this Chapter, all the
basic components of the numerical solver have been explained. In addition to these, a
number of additions made in the solver. All phenomena considered in this Thesis have been
studied by upgrading an inhouse 1D electrostatic Vlasov-Poisson Solver VPPM-1.0 code
to VPPM-2.0 with various additions/modifications such as (1) Inclusion of external drive,
(2) Study of Vlasov-Yukawa (VY) system - Kinetic Ions and Boltzmann Electrons, (3)
Inclusion of Ion dynamics- facilitates the study of both Kinetic Ions and Kinetic Electrons,
(4) Inclusion of Collisions which are modeled through one dimensional operators of the
Bhatnagar-Gross-Krook (BGK)/Zakharov-Karpman (ZK) operator type etc, which will be

described in detail in this Chapter [21, 22, 23, 61, 62].

Chapter 3: Driven Phase Space Vortices (PSV) In the background of Immobile

Tons

In this Chapter, excitation of electrostatic modes and formation of steady state phase space
coherent structures or phase space vortices (PSV), sometimes also called Bernstein-Greene-
Kruskal (BGK) modes, is investigated in a collisionless, unbounded, one-dimensional

plasma, modelled using Periodic Boundary Conditions (PBC). Using a high resolution



one-dimensional Vlasov-Poisson solver (VPPM 2.0), the excitation of Electron Acoustic
wave (EAW) along with Langmuir wave (LAN) and formation of giant PSV is addressed
numerically. An EAW wave is heavily Landau damped within the linear theory as its wave

phase velocity is comparable to the electron thermal velocity.

However, it has been shown that this nonlinear EAW wave can be successfully excited
when a relatively low amplitude external electric field driver is applied for a sufficiently long
time (i.e. several trapping periods). This drive excites both EAWs as well as LAN along with
some harmonics and create particle trapping (BGK/PSV) in both regions, which survives
at a nearly constant amplitude long after the drive is turned off. Also, for an infinitesimal
external drive amplitude and wavenumber k, the existence of a window of chirped external
drive frequency is demonstrated which leads to formation of giant PSV. The linear, small
amplitude, external drive, when chirped, is shown to couple effectively to the plasma and
increase both streaming of “untrapped” and “trapped” particle fraction. The steady state
attained after the external drive is turned off is shown to lead to a giant PSV with multiple
extrema and phase velocities, with excess density fraction, defined as the deviation from the
Maxwellian background. It is shown that the process depends on the chirp time duration At
and chirp frequency range in w. Novel features such as “shark”-like structures and transient
“honeycomb”-like structures in phase space are discussed. Both undamped electrostatic
modes (EAW and LAN) and steady state giant PSV, with multiple extrema due to em-

bedded holes and clumps, are shown to survive long after the external drive is turned off[21].

Chapter 4: A ¢-Nonextensive Statistics Approach for Driven Phase Space Vor-

tices

In this Chapter, the evolution of driven phase space vortices in an unmagnetized plasmas
is numerically investigated in the context of the g-nonextensive statistics proposed by
Tsallis[47]. For an infinitesimal amplitude of external drive, the effects of chirp driven

dynamics has been investigated that leads to the formation of giant phase space vortices



(PSV) for both Maxwellian (¢ = 1) and non-Maxwellian (¢ # 1) plasmas. For non-
Maxwellian plasmas, the formation of giant PSV with multiple extrema and phase velocities
is shown to be dependent on the strength of “q¢” i.e. the chirp dynamics and trapping
phenomenon is shown to be strongly affected by the deviations from the Maxwellian
distribution. Novel features such as “shark'-like and transient “honeycomb'-like structures
in phase space are also discussed for g-nonextensive velocity distributions [P. Trivedi and

R. Ganesh, Physics of Plasmas 24, 032107 (2017)].

Chapter 5: Formation and Dynamics of Electrostatic Phase space Vortices:
The Role of Kinetic Ions

In the previous Chapters, ions have been assumed to be immobile. However, ion motion
may significantly change the evolution of high and low frequency motions which in turn
may affect the trapping and formation of PSVs. In the first part of this Chapter, we bring
out several interesting features of ion modes (Ion Acoustic waves (IA), Ion Bulk waves
(IBk)) and driven phase space structures, in Maxwellian plasma, analyzed by means of
kinetic Eulerian simulations, composed of kinetic warm ions and Boltzmannian electrons.
The details of which will be presented.

Moreover, while understanding the phase space dynamics of a collisionless plasma, one
usually deals with the various time scales, from electron to ion response times. The
novel branches of electrostatic waves [Langmuir waves (LAN), Electron Acoustic waves
(EAW), Ion Acoustic waves (IA), Ion Bulk waves (IBk)] have been studied either in the
background of immobile ions with kinetic electrons or in the frame of Boltzmann electrons
with kinetic ions. However, the actual physical picture would emerge only when both ion
and electron scale dynamics are included self consistently and simultaneously in a model
or framework. Hence, inn the second part of this Chapter, a unified picture of electrostatic
waves, considering both kinetic electrons and kinetic ions on the same physics footing,
has been presented, wherein the Vlasov equations are integrated for both electron and
ion species without any approximations in length scales or time scales [P. Trivedi and
R. Ganesh, Physics of Plasmas 25, 112102 (2018)]. It has been demonstrated that the

hitherto separate normal mode branches of electrons and ions are in fact “continuously”



connected branches and can be excited simultaneously in phase space for a range of electron

to ion temperature ratios and mass ratios, the details of which will be presented.

Chapter 6: Eulerian Simulations of Collisional Effects on Driven Electrostatic

Phase Space Vortices

In the major part of this Thesis, the plasma is considered to be collisionless. However,
from the kinetic point of view, the range of low collisionality can be significantly different
from that of null collisionality. This is mainly due to the fact that the kinetic dynamics of
a plasma is determined by the details of the particle velocity distribution function where a
slight departures from a Maxwellian can produce significant modifications in the dispersion
relation of electrostatic waves and particle collisions work to restore thermal equilibrium.
The effect of such collisions can eventually change completely the features of the kinetic
dynamics of a plasma, even in situations where collisionality can be considered weak.
Nearly collisionless regimes are important to a number of physical processes, including
runaway electrons in magnetically confined fusion plasmas, magnetic reconnection in weakly
collisional regime, low density edge in a tokamak plasma, solar plasma near sunspots, and
non-neutral plasmas etc. For such kind of plasma phenomena, kinetic dynamics along the
magnetic field lines can only be explained if a collision term is added to the model described
here. In this Chapter, the inclusion of collisional effects in Eulerian time-splitting algorithm
has been done to the study the effect of weakly dissipative/collisional effects on driven
electrostatic phase space vortices (PSV). Collisions are modeled through one dimensional
operators of the Bhatnagar- Gross-Krook (BGK)/Fokker-Plank type[61, 62, 63]. The accu-
racy of the numerical code is discussed by comparing the numerical results to the analytical
predictions obtained in some limiting cases to evaluate the effects of collisions on linearly
stable (Landau damping) distributions and in the dissipation of Bernstein-Greene-Kruskal
waves. Particular attention is devoted to the study of collisional effects on the formation and
dynamics of driven PSVs which have been studies previously for an unbounded collisionless
plasma with both Maxwellian and non-Maxwellian distributions [P. Trivedi and R. Ganesh,

Physics of Plasmas 23, 062112 (2016), P. Trivedi and R. Ganesh, Physics of Plasmas 2/,



032107 (2017)]. In this Chapter, using VPPM-2.0 solver with inclusion of collisional models,
we bring out several interesting features of driven phase space structures in the presence of

weakly collisional environment, in Maxwellian plasma, the details of which will be presented.

Chapter 7: Conclusion and Future Work

In this Chapter, we summarize our results and discuss future possibilities for extending

the present work in various limits.
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CHAPTER

Introduction

This Thesis addresses the study of electrostatic modes and phase space
vortices in an unbounded, unmagnetized, homogeneous, one dimensional Viasov-
Poisson plasma in the presence of static and mobile kinetic ions background.
Studies include both collisionless and collisional regimes. In this Chapter, I

provide introduction, review earlier work and motivation for my study.

I. INTRODUCTION

Plasma is a quasi-neutral ionized medium consisting of, in general, charged and neutral
particles, that exhibits collective behavior due to Coulomb forces. Each particle in plasma
feels all the other particles, but mainly the collective fields. Collisionless plasmas, by
definition, are characterized by charged particles undergoing several small angle Coulomb
collisions leading to a rare large angle collision. Rarity of such large angle collisions renders
these plasmas “collisionless” and such plasmas are well described by kinetic models in the
limit of weak particle-particle correlations. Collisionless plasmas are often found in natural
conditions such as space plasmas as well as in laboratory conditions such as Tokamaks, for
example.

In a warm quasi neutral plasma, when a bunch of electrons are displaced from their mean
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(equilibrium) position, the resulting electrostatic interaction, causes electrons to oscillate
about their equilibrium position, thus, sustaining steady plasma oscillations due to the
restoring electric field with a characteristic electron plasma frequency. In 1946, Landau [1]
discovered that in the limit of small amplitude perturbations in a warm collisionless plasma,
these plasma oscillations can be exponentially damped, due to interaction with particles
streaming with velocities close to the wave phase speed vy. For warm unmagnetized
uniform plasmas, the damping/growth rate of wave is generally proportional to the slope
of the equilibrium particle velocity distribution at wave phase velocity of the distribution.
Therefore, for monotonically falling equilibrium velocity distribution functions (such as the
usual Maxwellian, for example), plasma waves are damped exponentially in time. However,
when the amplitude of the perturbation is increased, the process of particle trapping in
the wave potential well can inhibit Landau damping, by flattening the velocity distribution
near the wave phase speed due to contributions from the non-linear or finite amplitude
effects on the propagation of plasma waves, as was analyzed first by O’Neil [2].

In collisionless plasmas, the trapped particles oscillate in the trough of the wave ap-
proximately with the time period, 7 = 27/+/a, where « is the amplitude of density
perturbation. The plasma wave thus formed is dissipated by Landau damping (LD) before
particles are trapped i.e., unless v; 7. < 1, where ~, is the linear Landau damping rate.
Hence, when the amplitude of electric field is large enough to overcome LD, particles may
get trapped in electric field pockets, which in turn flattens the distribution locally near
the phase velocity of the wave, thus rendering the Landau damping ineffective as LD is
proportional to | 9f/0v |,,. This wave-particle interaction leads to formation of coherent
structures in phase-space. A well known class of such coherent phase space structures
are Bernstein-Greene-Kruskal (BGK) structures. These are exact stationary solutions for
electrostatic, collisionless plasmas described by the Vlasov-Poisson model [3]. These BGK
modes are in general, spatially inhomogeneous and therefore exhibit a finite amplitude
self-consistent electric potential and field structures. These structures have continued to
attract attention as they may represent the final saturated state of instabilities which are
stabilized by particle trapping in the potential well formed by the finite amplitude waves.

Plasmas support a great variety of nonlinear coherent structures which include phase
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space vortices, double layers, solitary waves, solitons, shocks etc [64]. Such nonlinear
coherent structures, which are observed in both laboratory and space plasmas, involve
both nonlinearities and dispersion with collisionless and collisional dissipation [65]. In
order to investigate the formation and dynamics of these nonlinear structures, both fluid
and kinetic models are frequently used. While fluid models provide macroscopic plasma
behavior, a kinetic model provides the microscopic aspects of plasma behavior including
the wave-particle interactions. In kinetic treatment, these nonlinear coherent structures
are generally referred to as BGK modes. These BGK modes have also been referred to by
a variety of related terms: coherent waves, time domain structures, phase space structures,
phase space vortices, solitary structures, Debye scale structures, electron holes, ion holes,
localized potential structures etc. For simplicity, I will refer to all these structures by the
name “phase space vortices” or PSVs in my Thesis.

The existence of the these phase space vortices have been demonstrated in both laboratory
experiments, space plasmas, numerical simulation and by satellites in the Earth’s ionosphere
and magnetosphere. In laboratory plasmas, the formation and dynamics of solitary phase
space vortices as well as accelerated periodic phase space vortices have been observed [66,
67, 68, 69, 70, 71, 72]. In non-neutral plasma experiments, using Penning-Malmberg traps,
the trapped-particle modes have also been shown which are associated with anomalous
transport across the external magnetic field [73]. Numerous satellites and spacecraft
missions have reported and documented the characteristic signature of solitary PSVs in the
form of pulses of the parallel component of electric field to the geomagnetic field direction.
Such characteristic electric field signal signatures, observed in spacecraft and satellites
data, which is parallel to the magnetic field, clearly results from the rapid propagation
past the spacecraft of a localized structure having positive or negative potential along the
magnetic field line [74, 75, 76, 77, 78]. In fusion experiments, energetic particle driven
Alfvenic instabilities are often observed which exhibit a variety of nonlinear scenarios from
a steady-state saturated mode amplitude evolution to a bursting one. The latter type is
often associated with significant fast particle losses and the frequency shift or chirping
patterns which can be attributed to the formation of long-living PSVs (also known as holes

and clumps). These nonlinear studies are essential for understanding the global energetic
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particles transport, particle redistribution and losses [79, 40, 80]. Therefore, the study of
such wave-particle interactions leading to PSVs is an important class of laboratory plasmas,
fusion plasmas as well as space plasmas.

The seminal work of BGK[3] opened a new window which described ways to construct a
large class of above said nonlinear states. Since then, there has been an enormous body
of work that speculates about which of these states might occur in nature,[4, 5, 6] in
experiments,[7, 8, 9] and in numerical simulations,[10] in a variety of situations. In the
past, in a series of papers, [11]-[12] nonlinear solutions and nonlinear dispersion relation
(NDR) have been obtained to describe a large class of coherent phase space structures
such as electron-ion holes, cnoidal holes, double layers and more. The stability of these
structures has also been of great interest[10, 13].

Several investigations aim to understand the features of the dynamics at ion scales and
electron scales in space plasmas by analyzing both spacecraft data [14, 15, 16] as well
as numerical results from kinetic or phase space simulations [17, 18, 19, 20, 21, 22, 23].
For example, quasiregular packets of Langmuir waves (LAN) are frequently observed in
the solar wind and magnetospheric plasmas [24, 25, 26]. The high frequency regions
of the energy spectra, obtained by analyzing solar-wind measurements from the Helios
spacecraft are dominated by longitudinal electrostatic modes, identified as ion-acoustic
(TA) waves [27, 28, 29]. Recent observations and studies [30, 31, 32, 33, 34] point out
that besides these LAN and IA branches, in agreement with spacecraft and solar-wind
observations, two other novel branches of electrostatic waves exists. These waves have
been dubbed as electron acoustic waves (EAW) and ion-bulk (IBk) waves, as their phase
velocities are nearly constant and are comparable to the electron thermal velocity (vipe)
and ion thermal (vy,;) velocity, respectively. Generally, these electrostatic modes at finite
amplitude lead to nonlinear BGK mode with charged particles trapped in the wave troughs.
As described earlier, because of the trapped particles, the charged particle distribution
becomes effectively flat at the wave phase velocity which in turn minimize Landau damping

(LD) as it is proportional to | 9f /0 |y,
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1.1 Motivation

Energetic particles produced in fusion experiments, solar wind and magneto spheric plasmas
etc can excite various modes and leads to various frequency bursts over the spatial and
temporal scales. Associated nonlinear wave-particle interactions can generate significantly
enhanced levels of energetic particle transport which can happen both along and across
the magnetic field lines. For example, increased energetic particle transport by Alfven
eigenmodes has been correlated with a fast frequency oscillation (chirping) with a sub-
millisecond period that has been observed in many experiments [43]. The high frequency
regions of the energy spectra, obtained by analyzing solar-wind measurements from the
Helios spacecraft, are dominated by quasiregular packets of Langmuir waves (LAN) and a
longitudinal electrostatic modes, identified as ion-acoustic (IA) waves [24]. In such cases,
the presence of energetic heavy ions are known to play an important role in the transfer
of energy from the external drive to the bulk plasma. In Tokamaks, source of energetic
particles typically are fusion-born alpha particles, neutral beam injected for heating and
current drive kinetic component created from Radio-Frequency heating and current drive
which are governed by collision-less dynamics. Similarly, for Astroplasmas (for eg Sun’s
atmosphere), a pre-existing collision-less plasma is often driven by external sources which
tend to relax and create non-Maxwellian structures.

Several investigations aim to understand the features of dynamics of wave-particles interac-
tion such as excitation of electrostatic modes and phase space structures, at ion scales and
electron scales in space plasmas by analyzing both spacecraft data, solar wind observations
and numerical results from kinetic or phase space simulations [39, 40, 17, 36]. Ideal way to
model these kinetic processes is develop a 3D-3V Vlasov Maxwell solver with particle (and
energy) sources and sinks. A next simplest model would be to use 1D-1V Vlasov-Poisson
model along the magnetic field and fluid model across the magnetic field with sources
and sinks-a hybrid model coupled through Maxwell equations. A simplest approach is
to model the unbounded or periodic direction (eg. along the B-field in Tokamaks and in

Astroplasmas) using a 1D-1V Vlasov-Poisson model where an external electric field is used
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to produce kinetic species. In this work, it is shown that even this simple approach, but
with both electrons and ions treated as kinetic species, in the presence of an external drive
in an unbounded plasma yields crucial insights.

A natural way to study wave-particle interaction which leads to a PSV or BGK state
(both are used interchangeably throughout) is to increase the amplitude of initial density
perturbation without directly perturbing the distribution in velocity space. The amplitude
should be large enough to trap particle and to overcome Landau damping[2, 10]. More
recently, external drives with time dependent frequency w(t) or chirp, have been used to
obtain BGK modes in bounded systems [36, 37, 38, 39, 40, 41]. For example, in a pure
electron plasma confined in a Penning-Malmberg trap, it was shown that phase space holes
can be created by choosing the frequency chirp window to be around axial electron bounce
frequency [36, 37, 38]. Similarly, a downward frequency sweeping has been performed in a
pure ion plasma experiment where extreme modification of initial distribution has been
observed (for eg. splitting of an initial Maxwellian distribution into two counterpropagating
distributions)[42].

The above said studies were performed for the bounded systems. However, in many cases,
such as fusion experiments, solar wind and magnetospheric plasmas etc, various plasma
modes and various frequency bursts has been seen over the spatial and temporal scales.
Associated nonlinear wave-particle interactions can generate significantly enhanced the
levels of energetic particle transport which can happen both along and across the magnetic
field lines[43]. In such cases, along the magnetic field lines in a Tokamak or for periodically
bounded systems, the presence of energetic heavy ions and the associated wave-particle
interaction (like formation and dynamics of coherent structures) are known to play an
important role in the transfer of energy from the external drive the bulk plasma. For
unbounded or periodic systems, a detailed study of formation and saturation of PSVs in a
1D Vlasov plasma has not been addressed in the past. In general the following questions

have been attempted:-

e How an external drive of constant frequency, wy , wavenumber &, and an infinitesimal

amplitude, excites electrostatic plasma modes over a range of frequencies along with
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harmonics in a Maxwellian, homogeneous plasma with Periodic Boundary Conditions

(basically unbounded)?

e What would happen if a plasma subjected to a Periodic Boundary Conditions
(basically unbounded), and an external drive with time dependent frequency w(t)

(or chirp) is applied for a short time interval At?

e What would be the plasma response to the external chirp with different chirp rates

and in different frequencies regimes?

e What would be the effect of chirp dynamics on the non- Maxwellian systems or

plasmas with non-extensive velocity distributions?

e What would happen to excitation of electrostatic modes and phase space dynamics,
when the ion motion is considered? For long drawn chirps or when chirp rate is

reduced, would the ion dynamics become relevant?

e What would happen to phase space vortices when weak dissipative effects/collisions

are included?

In this Thesis, by performing numerical experiment with a 1D1V Vlasov-Poisson solver, 1
present details and results from investigations of a variety of electrostatic modes and driven
phase space vortices starting in an unmagnetized homogeneous plasma Periodic Boundary
Conditions (basically unbounded). A more systematic Chapter-wise presentation of driven

phase space vortices is presented below.

1.2 Thesis organization

The Chapters of this thesis are organized in the following fashion:-
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Chapter 2 : One Dimensional Vlasov-Poisson Sys-

tem - The Numerical Scheme

In this Chapter, the details of the development and upgradation of numerical techniques
used to simulate driven homogeneous plasma . For purpose of suitable code, an Eulerian
approach is applied with a 1D Vlasov-Poisson (VP) numerical solver that simulates 1D
collisionless dynamics of plasmas and can self-consistently solve both the Vlasov and
Poisson equations and advances the solution in time [58]. The well known “time-splitting”
method [59] which rests on splitting the Vlasov solver into separate spatial advection
at constant speed and velocity advection at constant space updates. In order to solve
these advection equtaions, the third-order-accurate, positivity and monotonicity preserving
“piecewise parabolic method” (PPM) [60] has been applied to simulate the evolution of
phase space distributions of both electrons and ions governed by the 1D Vlasov equations.
All the basic components of the numerical solver have been explained. In addition to
these, a number of important modifications have been made in the solver. All phenomena
considered in this Thesis have been studied by upgrading an in-house developed 1D
electrostatic Vlasov-Poisson Solver VPPM-1.0 code to VPPM-version 2.0 with various
additions and important modifications such as (1) Inclusion of external drive, (2) Inclusion
of Vlasov-Yukawa (VY) system - Kinetic Ions and Boltzmann Electrons, (3) Inclusion
of Ton dynamics- facilitates the study of both Kinetic Ions and Kinetic Electrons, (4)
Inclusion of Collisions which are modeled through one dimensional operators of the type
Bhatnagar-Gross-Krook (Krook)/Zakharov-Karpman (ZK) operator etc, which will be

described in detail in this Chapter[21, 22, 23, 61, 62].
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Chapter 3: Driven Phase Space Vortices (PSV) In

the background of Immobile Ions

In this Chapter, excitation of electrostatic modes and formation of steady state phase space
coherent structures or phase space vortices (PSV), sometimes also called Bernstein-Greene-
Kruskal (BGK) modes, is investigated in a collisionless, unbounded, one-dimensional
plasma, modelled using Periodic Boundary Conditions (PBC). Using a high resolution
one-dimensional Vlasov-Poisson solver (VPPM 2.0), the excitation of Electron Acoustic
wave (EAW) along with Langmuir wave (LAN) and formation of giant PSVs are addressed
numerically. An EAW wave is heavily Landau damped within the linear theory as its
wave phase velocity is comparable to the electron thermal velocity vy,. However, it has
been shown that this nonlinear EAW wave can be successfully excited when a relatively
low amplitude external electric field driver is applied for a sufficiently long time (i.e.
several trapping periods). This drive excites both EAWs as well as LAN along with some
harmonics and create particle trapping (BGK/PSV) in both regions, which survives at a
nearly constant amplitude long after the drive is turned off. In order to drive the systems
as well as to identify the resulting modes, for a chosen k, the value of wy is obtained with
the help of dispersion relation. This dispersion relation is obtained by assuming weak
flattening of the distribution followed by neglecting the imaginary part of the dielectric
function in the background of immobile ions resulting in a “Thumb curve” dispersion [for
Langmuir (LAN) and Electron Acoustic (EAW) waves| with kinetic electrons.

Also, for an infinitesimal external drive amplitude and wavenumber k, the existence of a
window of chirped external drive frequency is demonstrated which leads to formation of
giant PSV. A linear, small amplitude, external drive, when chirped, is shown to couple
effectively to the plasma and increase both streaming of “untrapped” and “trapped” particle
fraction. The steady state attained after the external drive is turned off is shown to lead
to a giant PSV with multiple extrema and phase velocities, with excess density fraction,
defined as the normalized deviation from the Maxwellian background. It is shown that

the process depends on the chirp time duration At and chirp frequency range in w. Novel
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features such as “shark”-like structures and transient “honeycomb”-like structures in phase
space are discussed. Both undamped electrostatic modes (EAW and LAN) and steady
state giant PSV, with multiple extrema due to embedded holes and clumps, are shown to
survive long after the external drive is turned off [P. Trivedi and R. Ganesh, Physics of

Plasmas 23, 062112 (2016)].

Chapter 4: Driven phase space vortices in plasmas

with nonextensive velocity distribution

The evolution of chirp-driven electrostatic waves in unmagnetized plasmas is numerically
investigated by using a one-dimensional (1D) Vlasov-poisson solver with periodic boundary
conditions. Initial velocity distribution of the 1D plasma is assumed to be governed by
nonextensive ¢ distribution. For an infinitesimal amplitude of external drive, the effects of
chirp driven dynamics are investigated that leads to the formation of giant phase space
vortices (PSV) for non-Maxwellian (¢ # 1) plasmas and these results are compared with the
results obtained in Chapter 3 earlier (for Maxwellian (¢ = 1) plasmas). For non-Maxwellian
plasmas, the formation of giant PSV with multiple extrema and phase velocities is shown
to be dependent on the strength of “q”. Novel features such as “shark”-like and transient
“honeycomb”-like structures in phase space are discussed for non-Maxwellian plasmas [P.

Trivedi and R. Ganesh, Physics of Plasmas 24, 032107 (2017)].

Chapter 5: Formation and Dynamics of Electro-
static Phase space Vortices: The Role of Kinetic

Ions

In this Chapter, the role of ions on the phase space dynamics has been studied using

two different models:- (1) Boltzmann electrons and kinetic ions using Viasov- Yukawa (VY)
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model, and (2) Kinetic Ions and Kinetic Electrons (KIKFE) model. In the previous Chapters,
electrostatic waves have been studied in the background of immobile ions resulting in a
“Thumb curve” dispersion [for Langmuir (LAN) and Electron Acoustic (EAW) waves| with
kinetic electrons. In this Chapter, the role and effect of ions on the phase space dynamics,
has been studied in two parts:-

(1) In the first part, the study electrostatic waves has been attempted at ion scale, with
Boltzmann electrons treating ions as kinetic species, with a newly developed Vlasov-Yukawa
(VY) solver. This model results in a “Teardrop” dispersion curve [for Ion Acoustic (IA) and
Ion Bulk (IBk) waves|. Using 1D1V VY solver Landau damping and electrostatic waves at
ion scales (IA and IBk waves) have been studied. Also, formation and dynamics of chirp
driven phase space vortices at ion scales have been studied for different temperature ratios.
(2) In the second part, the electron scale physics and ion scale physics have been studied
by including both ion and electron scale dynamics self consistently and simultaneously
in a model using symmetric framework. With this model both high frequency and low
frequency solutions can be obtained simultaneously which consists of a high frequency
branch (LAN/IA) and a low frequency branch(EAW /IBk). Therefore, an attempt has
been made by means of numerical simulations, considering kinetic electrons and kinetic
ions both on the same physics footing, wherein the Vlasov equations are integrated for
both electron and ion species without any approximations in length scale or time scales.
The numerical results obtained show that both electron and ion waves can be excited
simultaneously in phase space. In appropriate limits, it is shown that the “Thumb” and
“Teardrop” curves are different parts of a general symmetric dispersion relation and are
recovered in appropriate limits of that dispersion relation. Also, formation and dynamics
of chirp driven electron phase space vortices have been studied for different mass ratios
and for long drawn chirps, relevance of ion dynamics using both VY and KIKE models is

addressed.
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Chapter 6 : Eulerian Simulations of Collisional Ef-

fects on Electrostatic Phase Space Vortices

In this Chapter, the effect of collisions on electrostatic phase space vortices formed in a
collisionless process is analyzed by means of Eulerian simulation for two different collision
models. In the absence of collisions, PSVs exhibits as the formation of a plateau, due to
trapping of resonant particles in the resonant region of the particle velocity distribution
function,thus preventing Landau damping. In the presence of collisions, this plateau is
smoothed out since collisions drive the velocity distribution towards Maxwellian irrespective
of how weak the collisions are as long as they are non-zero. In these conditions, kinetic
processes and collisionality would be in competition and the evolution of the plasma would,
therefore, be a result of nontrivial combination of these two effects. Therefore, an attempt
has been made by means of numerical simulations, to study effect of weak collisionality
on the electrostatic driven phase space vortices with two types of collision operators: (1)
Boltzmann collision operator, where the colliding particles can be treated as isolated pairs
and, (2) Fokker-Planck (FP) collision type operator in one dimension, where many weak
collisions lead to particle diffusion in velocity space. It is shown that depending on the
collision models used, the nature of smoothing in velocity space of giant PSVs results in
different structures. However, irrespective of the collision model used, substantial excess

density fractions are retained.

Chapter 7: Conclusion and future work

In this Chapter, I discuss all the major findings, unresolved issues and elaborate future

possibilities for extending the present work in various limits.
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CHAPTER

One Dimensional Vlasov-Poisson System - The

Numerical Scheme

2.1 Introduction

Due to the nature of the plasma which is an ensemble of charged particles, electromag-
netic effects in many instances dominate the plasma dynamics. Therefore, it is vital to
include an appropriate description, not only of external fields, but also of the fields that
are self-consistently generated by the plasma particles under consideration. The most
fundamental and classical model for a plasma to a good approximation is therefore the
Vlasov equation which describes a collisionless, correlationless plasmas. Vlasov equation
is exploited for numerous problems in plasma kinetic theory; it describes the evolution
of a single particle phase space density function f(z,v,t) under the influence of electric
and magnetic fields in the absence of any collision and correlations. If coupled to an
appropriate field model of interest such as the the Poisson equation, the so called Vlasov-
Poisson equations result. In some physical situations, further simplified models can be
derived from the Vlasov-Poisson system. Even so, only a few very problems can actually

be solved analytically in VP system. For this reason, numerical simulations of Vlasov
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Poisson equation have become an important tool for the understanding of plasma dynamics.

Popular numerical approaches in solving the Vlasov-Poisson (VP) system can be classified
as three types: Eulerian, Lagrangian and Semi Lagrangian (SL)[81]. The Lagrangian
type particle methods, evolve the solution by following the nonlinear trajectories of large
number of macroparticles in phase space, while the Eulerian approach evolves the state
variable according to the Partial Differential Equation (PDE) on a fixed numerical grid
in phase space. The SL approach is a mixed approach of Lagrangian and Eulerian in the
sense that it has a fixed numerical grid; however, over each time step, the state variable is
evolved by propagating information along nonlinear characteristics. Both Eulerian and
the SL approaches can be designed to be of very high order accuracy, an advantage when
compared with the Lagrangian approach. In the present studies, we have used the Eulerian

approach for solving the VP system.

In this work, an Eulerian approach based to 1D Vlasov-Poisson (VP) numerical solver
that simulates 1D collisionless dynamics of plasmas and can self-consistently solve both
the Vlasov and Poisson equations and advance the solution in time is used. The well
known “time-splitting” method [59] which is second order in time (At) and the third
order accurate “piecewise parabolic method” (PPM) [60] are applied to simulate the
evolution of phase space distributions of both electrons and ions governed by the 1D Vlasov
equations using the numerical method as presented in Sec.?? of this Chapter. All the basic
components of the numerical solver have been explained. In addition to these, a number of
additions/modifications made in the solver, have been briefly described in Sec.?? of this

Chapter.
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2.2 1D Electrostatic Vlasov-Poisson Solver- VPPM

Solver

Phenomena considered in this Thesis have been studied by upgrading an already existing 1D
electrostatic Vlasov-Poisson Solver code with Piecewise Parabolic Method (VPPM-1.0) de-
veloped at IPR [58]. I have upgraded the existing code with various additions/modifications
[VPPM-2.0] such as (1) Inclusion of an external drive, (2) Inclusion of Vlasov-Yukawa
(VY) system - Kinetic Ions and Boltzmann Electrons, (3) Inclusion of Ion dynamics, which
facilitates the study of both Kinetic Ions and Kinetic Electrons, (4) Inclusion of Collisions
which are modeled through one-dimensional operators of the Bhatnagar-Gross-Krook
(Krook)/Zakharov-Karpman (ZK) operator type etc, which will be described in detail in

the subsequent Sections.

2.2.1 Vlasov-Poisson System

The most fundamental description of a correlationless, collisionless plasma is derived from
the kinetic properties of the constituent particles. The result is the so called Vlasov

equation as given by,

£+v_}.8%+:jj(ﬁ+7x§)-yi—}i:0 (2.1)

where fj(x,v,t) is the phase space density distribution function of j — th species, ¢;, m;
and v; are the charge, mass and velocity of the j —th species, respectively. Here, E and ?
are the total electric and total magnetic field, respectively obtained from Maxwell equation.
Along the B-field (U x B = 0) or in absence of B-field (B = 0), Eqn.?? results into
an one dimensional (1D) Vlasov equation. In simple Cartesian coordinates, it further
simplifies to:-

O 4,00 4 4 g0 _ (2.2)

ot vi oxr  m; 07113 N
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where electric field is obtained from charge densities, which in turn is to be determined

from f;(x,v,t), by solving Poisson’s equation:-

Zf . :()(/fidvi—/fedve> (2.3)

where fe(z,v,t) and f;(z,v,t) are the electron and ion distribution function respectively.
Here, F is the self consistent electric field. Both Eqns.?? and 77 make up 1D Vlasov-Poisson
(VP) system.

Considering the motion of the electrons only and by treating the ions as a stationary,

uniform background, these equations can be written as follows:-

of  of of _
OF

where time has been normalized to the electron plasma frequency wy. = Vnoe?/egme,
space has been normalized to the electron Debye length Ap. = \/eo KT, /noe2, velocity has
been normalized by the initial equilibrium thermal velocity vipe = Apewpe = \/W .
With these choices, f gets normalized by ng/vine and E by mevipe/eApe where e is the
electron charge. In this model, the ions form a stationary neutralizing background of
number density ny with numerical value 1 in the Poisson equation. (Please note that, in
my published work [21, 22|, the electric field E is normalized by —mcvipe/eApe, which
makes Eqn.?? and Eqn.?? as 0f /0t +v0f/0x + EOf/0v =0 and OE/0x = [ fdv —1.)

see Fig.?7?],

I set the simulation domain in phase space D(z,v) = [0, Linaz] X [~V 00s V0w |

max’

Linaz is the system size and v, . is chosen sufficiently large so that velocity distribution

functions approaches zero as |v/| approaches v/, ,,. The phase space is discretized with N,
grid points in the spatial domain and N, in velocity domain such that there is sufficient
resolution in both x and v? grids. Phase Space and Time Discretization for this model is

represented in Fig.?? for the following parameters:-
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o v;=(i—1)Azx,i=1,N, and vy = kAv, k = —N,, N,
o Az = Lyau/Ny and Av = 20,45/ Ny

o t, =nAt, n = 0,ngep and At — CFL Condition (See Subsec.??)

Figure 2.1: Phase space discretization

In order to solve 1D Vlasov-Poisson (Eqns.?? and ?7), we have used the Time Step-
ping/Splitting Method suggested by Cheng and Knorr [59] coupled with the third order
accurate Piecewise Parabolic Method (PPM) advection scheme [60] proposed by Colella

and Woodward, the details of which will be given in the following subsections.

2.2.2 Time-Stepping/Splitting Method

It is well known that the Vlasov equation adequately describes the nonlinear evolution of
collisionless plasmas. In kinetic simulations of plasma, the Strang splitting, first proposed
by Cheng and Knorr [59], in which the Vlasov equation is integrated in the original phase
space by splitting the convective and acceleration terms in such a way that the overall
scheme is second-order accurate in At, has been successfully applied by several authors
[82, 63, 10]. The advantage of performing such a splitting is that it decouples the Vlasov
equation into lower dimensional equations of spatial advection and velocity ac/deceleration
advection, which are linear and are much easier to evolve numerically. In the present work,

we have adopted this time splitting method to reduce the VP Eqgs.[??-77] into first order
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advection equations.
In order to solve VP Eqgs.[??-77], the time-stepping method for one time step At is given

as following;:

1. Spatial Advection:- solve df/dt+v0f/0x = 0 for At/2, for a given v in the z-domain

for a given f(x,v,t =0). This result is f(z,v, At/2). [Fig.??(a)]

2. Using this f(x,v, At/2), solve the Poisson equation to obtain self consistent electric

field E(x, At) at At.

3. Velocity Advection:- solve 0f /0t — EQf/0v = 0 for At [Fig.??(b)], where E(z, At)

is obtained in the previous step.

4. Spatial Advection:- solve 0f/0t + vOf/0x = 0 for At/2 , for a given v in the

z-domain.[Fig.?77?(a)]

u" -\---H'"-l
& Caleulate E Calculate E
” ™ Caleulate E Calculate E
i
"
"
T caleulate E ¥ Caleulate E I
(a) (b)

Figure 2.2: Cartoon diagram of Time-Steping method:-(a) Spatial Advection at fixed
velocity (b) Velocity Advection at fixed spatial value

Thus, the solution of the system is reduced to two 1D advection equations and a Poisson
equation. This method formally incurs an error of the order O[(At)?]. Further, this
splitting method requires a reliable advection solver and a Poisson solver, which will be

described in the next subsection.

18



CHAPTER 2. ONE DIMENSIONAL VLASOV-POISSON SYSTEM - THE
NUMERICAL SCHEME

2.2.3 Piecewise Parabolic Method- PPM Advection Solver

The above described split-Eulerian technique rests on splitting the Vlasov solver into
separate spatial and velocity space updates and has the advantage that each of these
updates can then be treated as simple advections at constant “speed”. Since the ground-
breaking, original work [59], most attention on fixed-grid Vlasov solvers have concentrated
on improving the accuracy of the advection solvers. Previously examples include use
of MacCormack’s method and other conservative schemes [83; 82]. One of the common
problems with all the Vlasov solvers is that the Vlasov solutions often involve a fine-scale
filamentation which increases in time. Also, there is no guarantee, except for first-order
schemes, that the numerical solution has not introduced regions of negative distribution
function i.e. f < 0. Moreover, some additional averaging is required with higher oder

schemes as they have a tendency to produce Gibbs overshoot [81].

Previously, Arber and Vann [81] have performed a comparison of various advection solvers
to determine the best fixed grid Eulerian advection scheme for Vlasov problems. Attention
was mainly focused on studying the importance of positivity, order, and monotonicity in
the advection steps by comparing a variety of advection solvers with different properties, for
example, Flux Balance Method (FB), Van Leer-Limited Scheme (VL), Piecewise Parabolic
Method (PPM), Flux-Corrected Transport (FCT), High-Order Compact Finite Difference
(Compact). It was found that for fixed Eulerian grid based solvers, PPM advection scheme
[60], is successful in treating fine scales, automatically maintains positivity and monotonic-
ity, and requires no additional smoothing. Therefore, I choose PPM advection method as
my advection solver. The PPM advection method is formally third-order accurate away
from the extrema and first-order accurate at the extrema [81]. Also, the monotonicity
limiters of the PPM method ensure that the positivity of the distribution function is

maintained.

The Piecewise Parabolic Method (PPM) scheme, developed by Colella and Woodward,
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uses Parabolae as basic interpolation functions in a zone which allows for a more accurate
representation of smooth spatial gradients, as well as a steeper representation of captured
discontinuities, particularly contact discontinuities. For completion, the algorithm of the
PPM scheme has been described below as given by Colella and Woodward[60]. T will
describe the PPM scheme given in their paper [60] as follows:- Let us consider a general
linear advection equation,

—+u—==0 (2.6)

where a = a(&,t) is the function being advected and u = u(&,t) is the constant velocity

by which the function a is advected, and &, u are the generalized coordinates. The initial

value for the problem is set as a(§,0) = ap(§). In simplest steps, PPM scheme algorithm is

as follows:-

Initial zone average a(&, t") —Interpolation Step — Monotonicity + Discontinuity check—Integration
Step—mext zone average a(&,t"+1).

n

1. Initial Zone Average:- The average value of the discretized function a

(where n is the
timestep and j is the position step) is defined as the zone average of the underlying

function a(§,t"), over the cell:

= L /5””2 a(€, ") de (2.7)

7 A é‘j §i—1/2
where A & = & 1172 — §;_1/2 represents cell size and §;,1/2, {;_1/2 are cell edges.

2. Interpolation Step :- The PPM scheme uses an interpolation which is piecewise

continuous, with a given by a parabolic profile in each zone:

a(§) = aj + (s ap; + (1 — x)ag ;) (2.8)

where = (§ — §_12)/8 &

Eir12 <E<Ej1)2

agj = 6(a} —0.5(ar; +ar;))

® Aaj=aRj —aL;j
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Figure 2.3: (a) Interpolation step:- The initial data (taken from [60]) are given
as values of the variable “a” averaged over the four zones shown. These averaged
values are represented by dashed lines. From this data values of the variable a are
interpolated at zone edges, using cubic curves which have the prescribed average
values in the four zones nearest the edge. The interpolation parabolae within the
zones, which are shown as solid lines, connect these edge values and give back the
initial data when averaged over the zones. (b) Integration step :- New averages of
the variable “a” within the zones are obtained by integrating over the interpolated
initial distribution shifted to the right by uAt. This shifted distribution is shown
by the dashed lines, and the new zone averages are shown by the solid lines. The
scheme is third-order accurate in general; in the limit of very small time steps, for
equally spaced zones, it is fourth-order accurate [60].

e ap; = a(§jr1/24m) and ar j = a(§5_1/2,1")

e ap,ar — values of a at the cell edges).

3. Monotonicity check:- Once the interpolated cell-edge values are defined, one applies
a monotonicity condition. Now, if a’ were the extremum, then the values of ap,; and
ar,; are reset to the value of a} . If a(§) achieved an extremum somewhere in the
cell, then depending on where the extremum is close to, then one of the cell-edges is
is reset in such a way, so that the derivative at that cell edge is zero. This procedure

maintains monotonicity of “a”.

4. Discontinuity check:- Additionally, the values of ar ; and ar, ; are reset depending
on whether a discontinuity is detected. The discontinuity is detected as per assigned
or expected tolerance, and this modifies the cell-edge function values to preserve the

discontinuity during advection.

5. Integration Step:- the solution is just advection along the characteristics of the

21



CHAPTER 2. ONE DIMENSIONAL VLASOV-POISSON SYSTEM - THE
NUMERICAL SCHEME

problem, given by:

1 §j+1/2
ot = L / a(€ —u x At)de (2.9)
/ A gj §i—1/2

6. Now that we have all the required parameters, we advect the function.

As described earlier, the PPM advection solver is third-order accurate away from the
extrema and first order accurate at the extrema. However, for a given discontinuity, PPM
method is relatively poor method in energy and enstropy conservation in comparison to
other methods (like spectral methods) but it is much stable, smoother and attains accurate
solution even when the grid spacing is coarse [84]. Note that PPM advection solver is ex-

plicit in nature and hence has to obey the Courant-Frederichs-Lewy(CFL) condition [81, 85]:

k=] — |<1 (2.10)

The PPM advection solver has been thoroughly benchmarked in a previous work [58].

2.2.4 Poisson Equation Solver-Fourier Transform (FFT) Method

As described in Sec.??, the Poisson equation is given by,

OFE(x,t)

o p(z,t) (2.11)

On taking Fourier Transform of above equation,
ikE(k,t) = p(k,t) (2.12)

where k is the wave vector which represents conjugate variable of x. The transform of the

original variable into k-space is represented by ~. Therefore:

ip(k, 1
k

E(k,t) = — (2.13)
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E(x) is simply obtained by performing an inverse Fourier transform:

E(z,t)=FT! ( - W:t)) (2.14)

where FT~! represents the inverse Fourier transform. In VPPM solver, FFTW [86] is
applied for performing the Fourier transforms which reduces the number of operations
and makes this method more viable as compared to conventional integrators for Ordinary

Differential Equations (ODEs). Depending on the model, p(z,t) = [ fidv; — [ fedve or

plz,t) =1— [ fedv etc.

2.2.5 Integrator And Choice of Time Step (CFL Condition)

In order to perform the integration | fdv , conventional trapezoidal rule [87] has been

used,

n—1
Area = L <f0 T/ + Z f@> (2.15)
=1

N 2

Here, function f is assumed to be discretized over equally spaced n points with periodic
boundary conditions (PBC) such that f,, +1 = fi. Also, L /N represents the stepsize. The

. . 3
theoretical error is (12LN2

Jymaz(f")[58].

For the numerical solutions of the explicit time dependent partial differential equations,
one has to focus on two important factors:- stability and convergence. The PPM advection
solver is also explicit in nature that calculate the state of a system at a later time from the
state of the system at the current time. Hence, to maintain stability and convergence, it
has to obey the Courant-Frederichs-Lewy (CFL) condition[81, 85] i.e. the physical domain

of dependence must be contained in the numerical domain of dependence:

vAt

=<1 2.1
AL (2.16)

where At and Ax are the stepsizes in ¢ and z. In simple words, the choice of the time step

or mesh size cannot be independent. Thus, one has to choose the timestep such that the
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maximum CFL number during the advancement of one timestep, does not violate Eqn.?7.

Therefore, we choose At such that:

(2.17)

At = mm( Az Av )

Vmaz max | E |
where max | E | is the maximum absolute value of the electric field, vp,qy is the value of
maximum velocity on the velocity grid and Ax, Av are the step sizes on the x and v grid,
respectively.

Now, we explain the assembly of the VPPM solver and introduce the additions/modifications

made in the solver briefly.

2.2.6 Assembly of VPPM -Version 1.0 Solver

After setting up all the initial conditions, such as initial phase space distribution function
fo = f(z,v,t = 0), the grid-sizes N, and N,, time-step At etc, the Cheng-Knorr time-
stepping method [59] is applied on Eqns.??-?? and perform the following process for one

time step At:

e z-advection for At/2:- Solve 0f/0t + vdf/0xr = 0 using PPM routine for half

time-step At/2 in z-domain, for various constant values of v.
e FFT routine:-Apply Poisson routine to get the self consistent electric field E.

e v-advection for At:- Solve 0f /0t — EQf/0v = 0 using PPM routine for a full time-
step At in v-domain, for various constant values of E obtained from the previous

FFT routine step.

e z-advection for At/2:- Solve 0f /0t + vOf/O0x = 0 using PPM routine for another

half time-step At/2 in z-domain, for various constant values of v.

The above said solver was developed, tested, benchmarked and published in [58]. I have
dubbed this solver as VPPM-1.0. In the following, I describe further generalization of

VPPM-1.0 leading to VPPM-2.0 which is a part of the Thesis.
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2.3 Development of the VPPM-2.0 solver

In the current upgraded version of VPPM solver i.e. VPPM-2.0, several physics terms
have been added to simulate driven phenomena, for example, chirp driven phase space
vortices in Maxwellian (Chapter 3) and Non-Maxwellian (Chapter 4) plasmas as well as to
simulate the ion dynamics (Chapter 5) and to study collisional physics (Chapter 6). The

details of these modifications and additional diagnostics; are listed below:-

2.3.1 External Drive

In the previous version of VPPM solver [VPPM-1.0], only the self consistent electric field E
was present which was obtained from Poisson solver. In the upgraded version [VPPM-2.0],

an external electric field has been added such that the VP equations defined as

o1 | 0f pof _

5 Fvg — Bras =0 (2.18)
oF, -
= plat) =1 /fdv (2.19)

where Ep = Eg + E.yy is the total electric field, where E(z,t) is the self consistent electric

field and F,,; is the external driver electric field, defined as:

E.yt = Epsin(kx + wt) (2.20)

where Ej is the amplitude of external drive. Here, k represents the perturbation wave
number in the simulation box and w represents the driver frequency. As before here
also, time has been normalized to the electron plasma frequency wpe, space has been
normalized to the Debye length Ap, velocity has been normalized by the initial equilibrium
thermal velocity vipe = Apewpe. With these choices, f gets normalized by ng/vie and E
by mevine/eApe where e is the electron charge.

On addition of this driven term, the time stepping/splitting method modifies as follows:-
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e r-advection:- Solve 0f /0t +v0f/0x = 0 for At/2, for a given v in the z-domain.

e FFT routine:-Using the f (obtained from previous step) solve the Poisson equation

to obtain self consistent electric field Fq(x).

e v-advection:- Solve df /0t — Epdf/0v = 0 for At, for the Ep = Eg + E¢y where

F; is obtained in the previous step and Fe;; is applied externally.

e z-advection:- Solve df /0t +vdf/0x = 0 for At/2, for a given v in the z-domain.

The driver frequency of the external electric field E.,; can be constant or time dependent,

the details of which is presented later in the Thesis.

2.3.2 Vlasov-Yukawa Solver (VY):- Kinetic Ions and Boltz-

mann Electrons

The role of ions on the phase space dynamics of electrons is clearly related and important
question. The above described Solver have been applied to study the dynamics of kinetic
electrons in the background of immobile ions. In order to study of the kinetic dynamics of
collisionless plasmas at short wavelengths (ion scales) which is a subject of active interest
in the field of space plasma physics and other astrophysical plasmas, ion scale dynamics
needs to be included. Among the several versions for the Vlasov-Poisson system, in this
work, one of our interest lies in the self-consistent Vlasov-Yukawa system(VY) which
consists of the Vlasov equation coupled with the Yukawa equation for the evolution of
interaction potential. The Yukawa system is a short-range correction of the Poisson equation,
which is sometimes called the screened Poisson equation in plasma physics. Necessary
modifications are made in the VPPM solver to treat kinetic warm ions and Boltzmann
electrons, analyzed by means of kinetic Eulerian simulations including a numerical Vlasov-
Yukawa (VY) solver which treats kinetic ions in the presence of Boltzmann electrons

[ne = noexp(e¢/KT.) =no(l + ed/K1T.)] is given by,

of , of  p 9f _
5 +v8x +ET81) =0, (2.21)
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0B, 0%

Here, f is the ion distribution, n, = (1 4+ Tr¢) is the normalized Boltzmann electron
distribution and Tr = T; /T, is the ion to electron temperature ratio. and Er = Es + Eeyt
is the total electric field, where Fg(z,t) is the self consistent electric field and Fe,; is the

external driver electric field defined as:

Eeyr = Eysin(kx £ wt) (2.23)

where FEj is the amplitude of external drive. Here, k represents the perturbation wave

number in the simulation box and w represents the driver frequency. Therefore,

¢ T,
_8x2+Te¢:/fdv_L (2.24)

Here, all the quantities are normalized in terms of ion parameters i.e. where time has been
normalized to the ion plasma frequency wy; = V/noe?/egm;, space has been normalized
to the ion Debye length Ap; = /eo K T;/noe?, velocity has been normalized by the initial
equilibrium ion thermal velocity v = Apiwp;. With these choices, f gets normalized by
no/ven; and E is given by by —9d¢/dz. In this model, only ion equations are solved using
time-splitting method and effect of Boltzmann electrons considered in the screened Poisson

equation. The details will be presented in the later part of the Thesis.

2.3.3 Inclusion of Ion Dynamics:- Kinetic Ions and Kinetic

Electrons (KIKE)

In order to study the effect the ion dynamics, modifications have been made in the VPPM
solver [VPPM-2.0] such that it can treat both kinetic electrons and kinetic ions on the
same physics footing or symmetrically in terms of kinetics. This version of VPPM-2.0 is

dubbed here as KIKE (Kinetic Ions and Kinetic Electrons) model.
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To incorporate ion dynamics, the VP system can be described as followings:-

Ofe | O, Ofe

ot + Ve 9 T@ve =0 (2.25)
ofi , Ofi /1. 0fi
9+ Uige T Brg, =0 (2.26)
OE;

or :/fidvi_/fedve (2.27)

where fe(x,v,t) and f;(z,v,t) are the distribution functions of electrons and ions, respec-
tively, u is the mass ratio of ions to electrons i.e. u = M;/m, and Ep = Es + E¢y; is the
total electric field. All the quantities are normalized in terms of electron parameters.

To solve both electron and ion Vlasov equations, the time-splitting method will be applied

as follows:-

e Solve df./0t + vedfe./Ox = 0 and Of; /Ot + v;0f; /0x = 0 for At/2, for a given v in

the z-domain.

e Using this f. and f; solve the Poisson equation to obtain self consistent electric field

Es(x).

e Solve 0f./0t — Epdfe/0ve = 0 and Of; /0t + (1/p)Epdf;/0v; = 0 for At, where

FEr = Es + FEey, Es is obtained in the previous step and E.,; is applied externally.

e Again, solve df./0t +v.0f./0x = 0 and Of; /0t + v;0f;/0x = 0 for At/2, for a given

v in the z-domain.

2.3.4 Inclusion of Collisions

In most part of this Thesis, the plasma is considered to be collisionless. Many aspects of
relatively dense but hot plasmas, such as those present in magnetic confinement fusion
devices, can be analyzed using the Vlasov equation. However, there are certain plasma

phenomena that can only be explained if a collision term is added to the VP model (such as
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nearly collisionless regimes like, runaway electrons in magnetically confined fusion plasmas,
magnetic reconnection in weakly collisional regime, low density edge in a tokamak plasma,
solar plasma near sunspots, and non-neutral plasmas etc.) as will be described here.
Therefore, a collision term has to be added to the Vlasov equation. The result is usually
called the Boltzmann equation. The basic equations considered here can be written in the

following dimensionless form:

o | of o _of

= = 2.2
ot Ox g v ot collision C(f) ( 8)

where C(f) is a generic collision operator. For this model, time evolution of the distribution
function is approximated by using a splitting scheme for collisional Eulerian codes [63] that
decomposes the evolution of f in three different steps. To summarize this splitting scheme,

for a single time step At:

e At/2 transport step — Opf + v0,f — EO,f = 0 [Note that this step includes further

time-splitting].
e At collisional step — 0.f = C(f).

e At/2 transport step — Oy f + v, f — EOyf = 0.

Each transport step is in turn composed by three substeps, a first half-step advection in
physical space followed by a full-step advection in velocity space and then by an additional
half-step advection in physical space, according to the time splitting scheme first proposed
by Cheng and Knorr in 1976. The Poisson equation for the electrostatic potential is solved
after the first spatial advection step. Being At = At/2, the time step for the transport

advance, a single transport step for At’ can be summarized as follows:

o At'/2 z-advection — Opf + v0,f =0
e Poisson routine Es — Ep = Eg + FEeu(if any)
e At v-advection — O, f — E70,f = 0.
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o At'/2 z-advection — O;f + vd,f = 0.

Both z-advection and v-advection have been performed numerically using PPM advection

scheme. In Thesis, we have considered two different 1D collisional operators:-

e Bhatnagar-Gross-Krook (Krook) operator [61]:- C = —v(f — feq)

o Zakharov-Karpman (ZK) operator [62]:- C = vd/0v(df/0v + vf)

where v is the collision frequency, fe, is the local equilibrium value for the distribution of
particles. Here, a systematic study has been presented with these two different collision
models:- (1) Boltzmann collision operator or Bhatnagar-Gross-Krook (Krook) operator,
where the colliding particles can be treated as isolated pairs and (2) Zakharov-Karpman
(ZK) operator (a Fokker-Planck collision term in 1D[88]), where many weak collisions lead
to particle diffusion in velocity space. The details of these operators will be presented in

the later part of the Thesis.

2.4 Benchmarking of VPPM-2.0 Solver

In this Section, we benchmark the Vlasov-Poisson solver VPPM-2.0 with the Landau

damping results previously obtained from VPPM-1.0 [58].

2.4.1 Benchmark of KIKE code

Benchmarking of KIKE code is done with VPPM-1.0 by assuming plasma to be consists of
kinetic electrons and immobile ions (u/Tr = 1019) and an extensive comparison is carried
out between simulation and theoretical results. For a collisionless plasma, where damping
by collisions is negligible, when plasma is perturbed with an initial density perturbation

(Eext = 0), by initializing the following distribution function:-

f(z,v,t =0) = (1+ agcos(x)) fo(v) (2.29)
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where fo(v) = 1/+/(27)exp(—v?/2) is the initial Maxwellian velocity distribution function

and ay is the strength of perturbation such that the oscillating period of the trapped particles

in the trough of the plasma wave is approximately for the time period, 7, = 27/ \/ag, after

which time the linear solution breaks down and nonlinear phenomena become prominent.

The plasma wave is dissipated by Landau damping before particles are trapped, unless

vr7r < 1, where 7, is the linear Landau damping rate.[81]

With an initial amplitude, which is as small as near the linear region i.e. for yp7. > 1, it

leads to an exponential damping or linear Landau damping. For example, in Fig.[??], with

simulation parameters:- ag = 0.01, £ = 0.4, the numerically observed plasma frequency

is w?* = 1.282 and the linear landau damping rate is ¥ = —0.0661 which are in close

agreement with analytical values w, = 1.285 and v = —0.0661, respectively[89]. In Fig. ??,

the total energy of the system is plotted, which is defined as: TE(t) = KE(t) + PE(t),

where kinetic energy is computed as KE(t) = (1/2) [ [v?f(x,v,t)dzdv and potential

energy computed as PE(t) = (1/2) [ E%(z,t)dz. In Fig. ?7(d), the relative total energy

0W =TE(t) — TE(0), the relative kinetic energy 6K = KFE(t) — KE(0) and the relative

potential energy 0P = PE(t) — PE(0) are plotted. One can see that the total energy

remains conserved in time.  As the amplitude of perturbation becomes larger, contribution

2 xIO_s

15|
3 i

A,
| —  simulation damping rate =-0.0661 | 451

~  Theoretical damping rate =-0.0661
= 0
% 10 20 30 40 50 o s 10 15 20 25
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Figure 2.4: Linear Landau Damping (LLD) for & = 0.4, oy = 0.01 (a) Logarithmic
plot of time evolution of amplitude of the first fundamental harmonic of the electric

field log|E'1| - LLD rate. (b) The numerically observed plasma frequency w
LLD.
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r
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from the nonlinear terms become more significant and the behavior deviates from uniform

exponential damping. This causes interaction of particles with the electric field to form
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Figure 2.5: Linear Landau Damping (LLD) for k£ = 0.4, ag = 0.01. Plots for (a)
Kinetic Energy (KE), (b) Potential Energy (PE) and (c) Plots for relative total
energy, relative kinetic energy and relative potential energy.

pockets of trapped particles in the phase-space, due to trapping nonlinearity, leading to
coherent structures in phase-space known as Bernstein-Greene-Kruskal (BGK) structures|3].
In Landau damping, the electrons with velocity vy ~ w,/k, resonates with the plasma wave
field and energy exchange takes place between resonant particles and wave. This results in
the flattening of the distribution function. For example, for k& = 0.4, the analytic value of
w, is 1.285; hence vy = w,/k = 3.21. As we can see in Fig.??, when plasma is perturbed
with a nonlinear amplitude of perturbation ag = 0.05, the velocity distribution function
gets flattened near 3.21 and a corresponding phase space vortex is found at vy = 3.21.
This implies that there is a prominent potential well formed, and particles get trapped and
detrapped to sustain the steady-state potential well, which can also be seen in Fig.??(c),
where the time evolution of amplitude of the first fundamental harmonic of the electric
field Fy—1, denoted by E1, is plotted. Since only one Fourier mode has been perturbed
here, the fundamental harmonic E1 would represent how this mode evolves with time [10,

58]. However, these initial density excitation with homogeneous Maxwellian plasma leads

32



KEvppa — KERikE

CHAPTER 2. ONE DIMENSIONAL VLASOV-POISSON SYSTEM - THE
NUMERICAL SCHEME

15715 xlO-lo . . . . w10~ .
. . 4
1.571t =
&2
1.5705} ]
S0
=
1.57} & -2f
1.5695 -4 : : s :
0 0 10 20 30 40 50

10 20 30 40 50

Figure 2.6: Linear Landau Damping (LLD) for £ = 0.4, opy = 0.01. Plots of difference
between data obtained from VPPM-1.0 and VPPM-2.0 solver for (a) Total Energy
(TE), (b) Kinetic Energy (KE), (c¢) Potential Energy (PE)

to Langmuir waves only.In Figs. ?7?(a), ??(b) and ??(c), the total energy (TE). the kinetic
energy (KE) and the potential energy (PE) of the system are plotted, respectively. In
Fig.?7?(d), the total relative energy 6W = W (t) — W (0), the total relative kinetic energy
0K = K(t) — K(0) and the total relative potential energy 6 P = P(t) — P(0) are plotted.
One can see that the total energy remains conserved upto third decimal. These results can

be interpreted as benchmarking of VPPM-2.0-KIKE solver.

2.4.2 Benchmarking of VPPM-2.0 Solver - External Drive

Version

Benchmarking of External drive version is done for both cases: (1) where ion species is
not included in the code such that Vlasov equation is solved only for electrons [same as

VPPM-1.0] and (2) KIKE model with 11/Tg = 101°, such that the plasma is assumed to be
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Figure 2.7: Non-linear Landau Damping - BGK modes for k£ = 0.4, oy = 0.05 (a)

~

Plot of velocity distribution function f(v) in log scale. A small flattening can be
seen at v = 3.21. (b) Phase space plot of f(x,v) at t = 2000 with phase space vortex
at v = 3.21. (c) Plot for the amplitude of the first harmonic of the electric field E1
with time. (d) The numerically observed frequency we® ~ 1.28 obtained at the end
of simulation.

consists of kinetic electrons in the background of immobile ions. By assuming E.,; = 0,
which makes Er = F;. The results exactly matches (1) with VPPM-1.0 for the first case

and (2) with KIKE model results as shown above in Subsection.?? for the second case.

2.4.3 Benchmark of Vlasov-Yukawa (VY) code

Benchmarking of Vlasov-Yukawa (VY) code, where plasma is assumed to be consists of
kinetic ions in the background of Boltzmann electrons, is presented from Chapter 5 where

an extensive comparison is carried out between simulation and theoretical results.
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Figure 2.8: Non-linear Landau Damping (LLD) for £ = 0.4, ap = 0.05. Plots for
(a) Total Energy (TE), (b) Kinetic Energy (KE), (¢) Potential Energy (PE) and (d)
Plots for relative total energy, relative kinetic energy and relative potential energy.

2.4.4 Benchmark of Collisional Solver

In this Section, we have benchmarked the collision time-step model with the usual time-step
algorithm. Here, we have referred the VPPM 2.0 solver with single time-stepping as “old
scheme” and VPPM-2.0-Collisional version of code, where time-stepping is done twice,
with collision frequency v = 0 as “new scheme”. For the purpose of the benchmark, we use
previously obtained linear Landau damping and nonlinear Landau damping results. In the
Fig.??, log|F1| for linear Landau damping case has been plotted for parameters: k£ = 0.4,
ag = 0.01. The results obtained with “old scheme” as well as “new scheme” matches with
each other. In Fig. ?7(a), the time evolution of space averaged velocity distribution is

plotted, which is given by

Jo (v, t)da (2.30)
[Vmaz fOLf(a;,v,t)da;dv ‘

—Umax

f(’l),t) =
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(a) (b)

Figure 2.9: Linear Landau Damping (LLD) for & = 0.4, ap = 0.01 and collision
frequency v = 0. Fit of a straight line through the maxima of log|E}|, obtained
with both “old scheme” and “new scheme”. (b) Plots of comparison of relative
total energy obtained with both “old scheme” and “new scheme” i.e. ATE, =

TEnewscheme - TEoldscheme~

—t=0
—t=2000, old scheme
—t=2000, new scheme

Figure 2.10: Non-Linear Landau Damping - BGK modes for k = 0.4, oy = 0.05 and
collision frequency v = 0. (a) Plot of space averaged velocity distribution function
f(v) in log scale, obtained with both “old scheme” and “new scheme”. A small
flattening can be seen at v = 3.21.

As one can observe the space averaged velocity distribution at later time exactly matches
for both “old scheme” as well as “new scheme”. In Fig.??(b), the difference of total energy
TE obtained by “new scheme” and “old scheme” is shown as ATE. = 0T E,cwscheme —
0T E jgscheme- The difference between the two schemes is in the 1075 order, which indicates
the order of accuracy in the results obtained by “new scheme”. Furthermore, phase
space plots of f(z,v,t = 2000) have been shown on Fig.??, where one can observe the
corresponding phase space vortex found at vy = 3.21 for both schemes. The position of
the vortex in z-space is different due to difference in the time-splitting techniques used

in both schemes as in “new scheme” or collision solver each time-step includes further
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time-splitting. However, it does not affect the important results and the basic features

of the results. These results can be interpreted as benchmarking of collisional version of

VPPM 2.0 solver.

0.011
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Figure 2.11: Non-Linear Landau Damping [10, 58] - BGK modes for k& = 0.4,
ap = 0.05 and collision frequency v = 0. Phase space plot of f(x,v) at t = 2000 with
phase space vortex at v = 3.21obtained with both (a) “old scheme” and (b) “new
scheme”.

In the following Chapters, formation and dynamics of coherent structures or phase space

vortices by applying different models and by means of Eulerian simulation will be described.
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CHAPTER

Electrostatic Modes and Driven Phase Space
Vortices (PSV) In the background of Immo-

bile lons

In this Chapter, excitation of electrostatic modes and formation of steady
state phase space coherent structures or phase space vortices (PSV), some-
times also called Bernstein-Greene-Kruskal (BGK) modes, is investigated in
a collisionless, unbounded, one-dimensional plasma, modelled using Periodic
Boundary Conditions (PBC). Using a high resolution one-dimensional Viasov-
Poisson solver (VPPM 2.0), the excitation of Electron Acoustic wave (EAW)
along with Langmuir wave (LAN) and formation of giant PSV is addressed
numerically. An EAW wave is heavily Landau damped within the linear theory
because its wave phase velocity is comparable to the electron thermal velocity.
However, it has been shown that the nonlinear EAW wave can be successfully
excited when a relatively low amplitude external electric field driver is applied
for a sufficiently long time (i.e. several trapping periods). This process excites

both EAWs as well as LAN along with some harmonics and create particle
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trapping (BGK/PSV) in both phase regions, which survives at a nearly constant
amplitude long after the drive is turned off. Also, for an infinitesimal external
drive amplitude and given wavenumber k, the existence of a window of chirped
external drive frequency is demonstrated which leads to formation of giant
PSV. The linear, small amplitude, external drive, when chirped, is shown to
couple effectively to the plasma and increase both streaming of “untrapped” and
“trapped” particle fraction. The steady state attained long after the external
drive is turned off is shown to lead to a giant PSV with multiple extrema
and phase velocities, with excess density fraction, defined as the normalized
deviation from the Mazwellian background. It is shown that the process depends
on the chirp time duration At and chirp frequency range in w. The excess
density fraction An/ng, which contains both trapped and untrapped particle
contribution, is also seen to scale with At, only inhibited by the gradient of the
distribution in velocity space. Nowvel features such as “shark”-like structures
and transient “honeycomb”-like structures in phase space are discussed. Both
undamped electrostatic modes (EAW and LAN) and steady state giant PSV,
with multiple extrema due to embedded holes and clumps, are shown to survive
long after the external drive is turned off [P. Trivedi and R. Ganesh, Physics

of Plasmas 23, 062112 (2016)].

3.1 Introduction

In 1946, Landau[l] discovered that electrostatic plasma waves of vanishing amplitude
excited as small amplitude perturbations in a collisionless uniform, Maxwellian, electro-
static plasma can be exponentially damped, due to their interaction with plasma particles
that stream with velocities close to the wave phase speed vy of the wave. For example,
Langmuir waves (LAN). Landau’s treatment was rigorous, but strictly linear, meaning,
the amplitude of the initial perturbation is assumed to be infinitesimal. As the amplitude

of perturbation becomes finite, contributions from the non-linear effects become signif-
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icant which inhibit the uniform exponential damping, as was analyzed by O’Neil. [2],
by flattening the velocity distribution near the wave phase velocity vgs. Consequently,
certain nonlinear electrostatic oscillations, which tends to flatten the distribution locally
due to particle trapping [30], can survive Landau damping and exist at even low ampli-
tude, even when their phase velocities are comparable to the electron thermal velocity
(vthe). One such nonlinear electrostatic wave structure is known as Electron Acoustic
Waves (EAW) as the dispersion relation is of the form w/k = 1.31vy, [35], where w is
the angular frequency of the wave, k£ the wavenumber, and vy, the electron thermal
velocity of the plasma. The EAWs are the nonlinear waves that involve only the elec-
trons; in the background of immobile ions. However, within linear theory, these waves are

heavily Landau damped because the wave phase velocity of EAWs is comparable to the vgpe.

As described earlier, in collisionless plasmas, when the amplitude of electric field is
increased, particles may get trapped in electric field pockets, which in turn flattens the
distribution, thus rendering the Landau damping ineffective. This leads to formation
of coherent structures in phase-space. A well known class of such coherent phase space
structures are Bernstein-Greene-Kruskal (BGK) structures. These are exact stationary
solutions for electrostatic, collisionless plasmas described by the Vlasov-Poisson model
[3]. An undamped EAW is also a weakly nonlinear BGK mode with small populations of
electrons trapped in the wave troughs. The distribution of electron velocities is effectively
flat at the wave phase velocity because of the trapped electrons and this turns off Landau
damping. In general, BGK modes are spatially inhomogeneous and therefore exhibit a
finite self-consistent electric potential and field structures. These structures have continued
to attract attention as they may represent the final saturated state of instabilities which

are stabilized by particle trapping in the potential well formed by the finite amplitude waves.

The BGK paper|[3] opened a new window which described ways to construct a large class
of nonlinear states. Since then, there has been an enormous body of work that speculates

about which of these states might occur in nature [4, 5, 6], in experiments [7, 8, 9], and in
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numerical simulations [10], in a variety of situations. In a series of papers, starting from
1972, H. Schamel and colloborators [11, 90, 91, 13, 92, 93, 94, 65, 95, 96, 12] have obtained
nonlinear solutions and nonlinear dispersion relation to steady state Vlasov-Poisson equa-
tion. In their work, Sagdeev pseudo potential method is used to describe accurately a large
class of coherent phase space structures such as electron-ion holes, double layers and more.
Their procedure describes parameters estimating trapped particle fraction for a steady
state coherent phase space structure with a single extrema. The stability of these structures
is also of great interest[13, 10, 44]. The applicability of Sagdeev pseudo potential method

to multiextrema phase space structures, such as the studies in the Thesis is questionable [21].

As described earlier, a natural way to achieve a BGK state is to increase the amplitude
of initial density perturbation without directly perturbing the distribution in velocity
space. The amplitude should be large enough to overcome Landau damping [2, 10]. These
waves can be excited even at low amplitude by tailoring the particle velocity distribution
or driving the plasma externally. These external drives can excite both LAN waves as
well as EAW waves [35]. More recently, external drives with time dependent frequency
w(t) or chirp, have been used to obtain BGK modes in bounded systems [36, 37, 38,
39, 40, 41]. For example, in a pure electron plasma confined in a Penning-Malmberg
trap, it was shown that phase space holes can be created by choosing the frequency chirp
window to be around axial electron bounce frequency [36, 37, 38]. Similarly a down-
ward frequency sweeping has been performed in a pure ion plasma experiment where
extreme modification of initial distribution has been observed (for eg. splitting of an
initial Maxwellian distribution into two counter-propagating distributions) [42]. Possibility
of obtaining BGK modes or PSVs, if the plasma is unbounded as in astroplasmas or in
the axial direction in a Tokamak, is an interesting open question. Interestingly such a
paradigm may help understand alpha particle dynamics in Tokamaks as well as formation

of the non-Maxwellian structures along the magnetic field lines in the astrophysical plasmas.

In the present work, a 1D unbounded Vlasov-Poisson system has been modeled using
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Periodic Boundary Conditions (PBC). The plasma is subjected to an infinitesimal external
drive. As is well known,[Schamel2000, 30, 33, 42] both abrupt as well as adiabatic
external drive of constant frequency, say w = wg, wavenumber k and linear amplitude
(i.e. infinitesimal) are expected to generate plasma modes over a range of frequencies
along with its harmonics [as shown later]. In this work, the following questions have
been addressed: what would happen in an unbounded plasma modeled using PBC, if the
external drive frequency w(t) is chirped down in time interval At, say from wpign t0 Wigw-
It has been found out that this frequency chirping allow “continuous” flattening in the
velocity space leading to large coherent structures in phase space with embedded holes and
clumps resulting in Phase Space Vortices (PSV) with multiple extrema and phase velocities.
The drive increases both kinetic energy and potential energy of the system. Meaning
both untrapped and trapped particle fraction is seen to increase, leading to flattening
of the distribution function. As the external drive is switched off, the above said large
coherent phase space structure is found to attain a steady state leading to large amplitude
steady PSV. This process of PSV formation also depends on the frequency regime in which
chirp is given, which leads to one giant PSV structures to multiple PSVs. In general, the
formation of PSV is found to strongly dependent on chirp frequency range and chirp time
interval At. As described earlier, unlike single extrema PSVs, I believe that the multiple ex-

trema PSVs are not describable well by Pseudo Potential method of Schamel and co-workers.

The rest of the Chapter is organized as follows: I proceed to describe the numerical
scheme in Sec. 2.2. Simulations with different cases have been discussed in Sec. 2.3. In
the Subsec.1.3.1, the formation of small “seed” flattenings have been shown on applying
a constant frequency external drive to a PBC 1D VP plasma, which excites both LAN
mode as well as EAW mode. In Subsec.1.3.2, it has been shown that a small amplitude
downward chirp amplifies the trapping from LAN to EAW region and at the same time
creates streaming of untrapped particles which in turn creates a large flattening in velocity
distribution resulting in giant PSV with multiple extrema due to embedded holes and clumps
(Subsec.1.3.2.1). These structures I call as multiple phase space vortices (Subsec.1.3.2.2).

In Subsec.1.3.2.3, I study the evolution of “untrapped” and “trapped” particle dynamics
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with different chirp intervals. In Subsec.1.4 discussion has been presented and phase space

holes in Vlasov-Poisson system followed by our conclusions in Sec.2.5.

3.2 Governing Equations & Simulation Setup

A 1D unmagnetized, collisionless electrostatic plasma, in the framework of kinetic theory,

is described by one dimensional Vlasov-Poisson (VP) model equations, viz:

o8 | o of
ot "o P15, =0 (3:-1)
OB,
B 1— [ fdv (3.2)

where f(x,v,t) is the electron distribution function and Ep = Es+ E.y is the total electric
field, where Fg(z,t) is the self consistent electric field obtained by Eqn.1.2 and FE.,; is the

external drive electric field defined as:
Eeyt = Epsin(kx £ wt) (3.3)

where Fj is the amplitude of external drive. Here, k represents the wave number in the
simulation box and w represents the drive frequency. In these above equations, time is
scaled to electron plasma frequency (w;el), where wye = \/nge?/meeo, length is scaled to
electron Debye length Ap, = \/W and velocities to vipe = Apewpe = \/m,
electron thermal velocity. With these choices, f gets normalized to ng/vi. and E to
MeVthe/€ADe - In this model, the ions form a stationary neutralizing background of number
density ng with numerical value 1 in the Poisson equation [Eq.(1.2)]. (Please note that, in
my published work [21], the electric field E' is normalized by —mevipe/eApe, which makes
Eqn.1.1 and Eqn.1.2 as 0f /0t +v0f/0x + Erdf/0v = 0 and 0E,/0x = [ fdv —1.)

The simulation domain has been set in phase space D = [0, Liaz] X [—05, 425 Viraz], Where
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Lz = 27/k is the system size for wavenumber k such that the longest wavelength fits
into the simulation box. and v,,.. is chosen sufficiently large so that electron velocity
distribution function approaches zero as |v| approaches vy,q,. I apply periodic boundary

conditions (PBC) along boundaries for both spatial and velocity domains.

3.2.1 Plasma Dispersion Relation

1.5 : . :
LAN =
w=v(1+3k ?) T
1
3 -
05 L "”‘—C—" -
. —"_—
EAW
0 w=1.31k
0 0.1 0.2 0.3 0.4 0.5 0.6
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Figure 3.1: Dispersion curves or “Thumb” curves for the electrostatic waves (LAN,
EAW) in k — w plane, obtained by assuming zero damping:- (a) The “Thumb” curve
represents the solutions or the roots of Eq.(1.4). (b) The same “thumb” curve plotted
in the £ —wv, plane. (c¢) The gradient of the real part of the complex plasma dispersion
function —3Z7'(v) is plotted for real arguments for immobile ions.

Using the above normalizations, the Fourier transformation of linearized form of Egs.

(1.1)-(1.2) leads to the usual linear dispersion relation[16]:-

1+ZKj(k,w) =0 (3.4)

where Kj(k,w) = —k]2-/2k2Z/(§j) is the susceptibility of the j(= e) species, ¢ =
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w/ \/Ekvj and Z;(&;) represents the real part of the complex plasma dispersion func-
tion for real arguments[44]. Here, I consider the initial distribution to be Maxwellian,
fo(v) = exp(—v?/2)/ \/(27). By assuming a weak flattening (or trapped region) of vanish-
ing velocity width i.e. (9f/0v)lv,~ 0, which allows us to neglect the contribution from the
imaginary part of the dielectric function (For an alternative description as described by
Schamel and coworkers [44], See Appendix A), the solution to the real part of the wave
frequency w as a function of the wave number k, obtained numerically from Eq.(1.4) is
shown in Fig.(1.1). Typically in the k — w diagram, at high frequencies (fixed /immobile
ions), one obtains the “thumb” curve that represents Langmuir waves (upper branch of
thumb) and EAWs (lower branch of thumb)[17]. At values of the wave number for which
the effects of charge separation are no longer negligible, both electron branches (LAN
and EAW) coalesce [Fig.1.1(a)]. In the bottom plot Fig.1.1(b), the same thumb curve is
displayed in the k& — vy plane.

In Eqn.(1.4), the term —1Z’(v) can be interpreted as a gradient of the real part of the
complex plasma dispersion function for real arguments. A plot of the function —%Z’ (v)
for kinetic electrons and immobile ions is displayed in Figs.(1.1(c)), where it divides the
phase velocity regions and reveals different branches of the dispersion relation. In the
limit of immobile ions, the function —%Z’ (v) represents electron contribution, where all
the negative values of this function represents the real solutions for electrostatic waves. It
has one zero transition (at v = 1.307) and one minimum (at v = 2.13) which results in
two separated regions for the phase velocity[96]:-(i) v < 2.13 (EAW), (ii) v > 2.13 (LAN)).
The function is positive for v < 1.307 and negative for other values of v and and vanishes
at infinity. From these plots in Fig.1.4, it is evident that there are mainly two undamped
roots and no undamped roots exist beyond a critical value of the wavenumber k. Moreover,
this thumb curve also represents that each point in the k¥ — w plane along the thumb curve
corresponds to a different particle velocity distribution function. This so-called “thumb”
dispersion curve is obtained by assuming the small wavenumber k and retaining only the

principle part in the velocity integral of the Landau dispersion relation.[1]
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3.3 Simulation

In this Section, I systematically present the numerical results of driven Vlasov-Poisson
system using VPPM-2.0 solver. I have considered in detail two different physical phenomena:
(a) when plasma is driven with a constant frequency drive, (b) the second concerns the

response of the plasma when a time dependent external drive is used.

3.3.1 Driven Electrostatic Modes :- Constant Frequency Drive

Within linear theory, the electron acoustic waves (EAWSs) are heavily damped as their
wave phase velocities are close to electron thermal velocity (vghe). In the past, the EAW
has been studied in the context of two temperature plasmas, such as those in fusion
devices and in the auroral ionosphere [97, 98], where it has often been found that the
electrons consist of two distinct groups, one hot and one cold. In the usual acoustic mode
dynamics for EAW waves, when plasma constitutes of two different electron components,
bulk hot component and less dense (or thinner) cold component with the neutralizing
immobile ion background. In such case, the restoring force of the cold electrons comes
from the pressure of the hot component, whereas the effective inertia is provided by the
cold component. However, for a single temperature electron species plasma, an undamped
EAW is a nonlinear BGK mode where electrons trapped in the wave troughs which makes
the electron velocity distribution effectively flat at the wave phase velocity, consequently
turns off Landau damping. With a Maxwellian plasma, there are no trapped particles.
But if the plasma is driven externally, it can form trapping distribution dynamically as
the wave evolves. For an external electric field E = Eysin(kx — wt), the trapping time to
form the trapped particle fraction is approximately 7, = 27/ v/kEy (in my normalization).
However, the EAWSs can be excited by a small amplitude driver if the driver is applied
resonantly over few trapping periods 7,.. The driver continuously replenishes the energy
removed by Landau damping. Therefore, the trapped particle distribution survives and the

undamped EAWs are eventually produced. the excitation of trapped particle structures
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can also be understand by single resonance dynamics, as described in AppendixB.

w=constant

ext

0 Timet1 €2

Figure 3.2: A cartoon figure of (FE..,t) showing frequency turn on-off of external
drive. Constant frequency drive is applied for (0 <t < ¢;).

In order to excite undamped EAWS, I initialize simulation with a collisionless plasma
having a homogeneous density distribution in space and an initial Maxwellian velocity
distribution:

far = exp(—v?/2)/ V2 (3.5)

which is driven with an external drive of amplitude Ey, [Eq.(2.4)], wave number k and
frequency w chosen to be consistent with the w values obtained from “thumb curve”.[17,
35, 99, 33, 42] The drive is applied for time 0 < ¢ < t; [See Fig.(1.8)], where t; ~ few 7,
where 7. = 27/ VkEjp).

It is important to note that the amplitude of external drive, Ey, is chosen to be small enough
such that when an initial value problem is performed, the trapping time 7, = 27/ /kFEy
is much larger than the Landau damping time 721 ensuring Landau damping. [58] For
example, consider plasma is driven with parameters:- k = 0.4, Ey = ap/k = 0.01/0.4 =
0.025, wEAW = 0.6241 (obtained from “thumb” curve), for time period Aty = 1000. Here
ag, is the amplitude perturbation appled in the initial value problems. Then the system is
allowed to relax for another several w;el i.e. until ¢ = 2000. In Fig.1.3, the space averaged

normalized velocity distribution function is plotted, which is given by

n _ f()L fe(l‘,l},t)dl'
fe(v,t) = [mae [E (a0, t)dado (3.6)
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Figure 3.3: (a) Plot of electron velocity distribution function f.(v) at different times.
Two small “seed” flattening can be seen at v 4" ~ 1.572 and v;*" ~ 3.162. (b)
Contour plot of logl0f(x,v) at t=2000 indicating both EAW and LAN regions.

¢

As can be seen in Fig.1.3, this “weakly nonlinear drive” creates a velocity space distri-
bution with two small “seed” flattening, one in nonlinear EAW region and another in
LAN region. The corresponding trapping structures can be seen in the phase space plot
of f(xz,v) at t = 2000 [see Fig.1.3(b)]. Both small “seed” flattening are seen both at
U(EAW ~ 1.572 and vQLSAN ~ 3.162. These values are slightly different from the values
obtained via “thumb” curve ( vaW ~ 1.56 and véAN ~ 3.14) due to trapping region
of small but finite velocity width. In Fig.1.4(a) and Fig.1.4(c), evolution of excess den-
sity fraction dn(z,t)/ng = [ f(z,v,t)dv — [ fo(v)dv is plotted with time and with space.
The total energy of the system is defined as: W(t) = K(t) + P(t), where kinetic en-
ergy is computed as K (t) = (1/2) [ [v?f(x,v,t)dzdv and potential energy computed as
P(t) = (1/2) [ E?(x,t)dx. The In Fig.1.4(b), the total relative energy §W = W (t) — W (0),
the total relative kinetic energy 0 K = K (t) — K(0) and the total relative potential energy

P = P(t) — P(0) are plotted. It is clear that as the drive is kept on, the relative kinetic
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Figure 3.4: (a) Plot of time evolution of excess density faction on(z,t)/ny =
[ flx,v,t)dv — [ fo(v)dv at * = L/2. (b) Plot of relative energy with time,
when plasma is driven with a constant frequency for At = 1000 for the fol-
lowing parameters:- k = 0.4, wy = 0.6241.(c) Plot of evolution of electric field
E(x,t) with = at different times. (d) Plot of evolution of excess density fraction
n(z,t)/ng = [ f(x,v,t)dv — [ fo(v)dv with x at different times. The vertical line in
Fig. (a) and (b) represents the time at which drive is turned off.

energy of the system increases which reflects the increase in untrapped particle populations.
The relative potential energy of the system first increases the attains a certain value during
the drive. As the drive is turned off, relative kinetic energy decreases a little and relative

potential energy increasese which reflects the increase in trapped particle populations.

However, one trapping period (7, = 27/+v/kEp) as the duration of external constant
frequency drive is enough to excite the EAW waves, which depends upon the parameters k
and Ey. In Fig.1.5, for k = 0.4, two cases have been shown:- (1) for Fy = 0.01, 7, ~ 99.34
and (2) for Ey = 0.025, 7 ~ 62.831. For both cases, plasma is driven for one trapping

period i.e. Aty = 17.. This weakly nonlinear drive excites EAWs for both cases where the
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trapping width increases with increasing amplitude of Fjy.

As is well known, the external electric field Ez¢ (defined in Eq.(2.4)), may be turned on

-0.8
05t . '
+ 2
S: 1214 16 1.8
= - —t=0 T
S —t=100, E ,=0.01
< =65, E _=0.025
15 | 0 ]
-2 -1 0 1 2

Figure 3.5: Plot of electron velocity distribution function ﬁ(v) indicating flattening
in EAW region for two different values of Fy = 0.01 and Ey = 0.025 after one 7, for
each case, respectively.

and turned off either adiabatically (i.e. Fugiapatic = Fext[1+ (¢ —7)" /A7) (See Fig.1.7)
[17] or abruptly (i.e Eabrupt = Fezt) in time. In Fig.1.7, the same experiment has been done
to excite EAWs for different adiabatic profiles. For Eygiapatic = Fext[1 + (t —7)"/AT"]7L, a
comparison has been shown [Fig.1.7(a)] for the adiabatic profile g(¢) with n = 10, 20, 50, 1000.
As the value of n increases, the profile becomes more steeper. Both methods would excite
Langmuir waves (LAN) as well as weakly nonlinear electron acoustic waves (EAW) along
with other harmonics[99]. In Fig.(1.6), I present a benchmark result demonstrating the
correctness of our numerical methods used here, when E(t) is swept from zero to Ej
in a very short time. The abrupt drive is same as given in Eq.(2.4) for §t; = 1000
and the adiabatic drive is given by E,giabatic = Fext[1 + (t — 7)"/AT"]~! where I choose
7 = 1000, AT = 700 and n = 20[33]. For k = 0.4, the circle indicates the LAN plasma
frequency for our parameters where the other peaks indicate weakly nonlinear EAW. As
can be expected, for an adiabatic drive, the amplitudes of excited modes are lower than
that of the abrupt drive but the frequencies coincide.

Here, the plasma is driven in EAW region for one trapping period 7, for different values
of n. As can be seen in Fig.1.7(b), for all the values of n, the flattening of electron velocity
distribution indicates the trapping and excitation EAWs which persists at a nearly constant

amplitude long after the drive is turned off. Profiles with the higher values of n also

o1



g(t) =1+ ((t—7)/Am)™)

CHAPTER 3. ELECTROSTATIC MODES AND DRIVEN PHASE SPACE
VORTICES (PSV) IN THE BACKGROUND OF IMMOBILE IONS

-4

9 X 10
=—Abrupt drive
15 - Adiabatic drive
351
=
0.5 -
0' A .
0 1 2 3 4

w

Figure 3.6: Frequency spectrum of perturbed electric field after switching off the
constant frequency drive given in EAW region (both adiabatic and abrupt drive)
obtained by Fourier transform of electric field during off time i.e. time ¢; <t < t5.
The abrupt drive is same as given in Eq.(2.4) and the adiabatic drive is given by
FEogiabatic = Eext[1 + (t — 7)"/A7™]71 [17] where I choose 7 = 1000, A7 = 700 and
n = 20.[33] For k = 0.4, the circle indicates the LAN plasma frequency for our
parameters where the other peaks indicate weakly nonlinear EAW and its harmonics.

produce the similar results and are equivalents to abrupt drive cases. In the present work,

the external drive is always turned on abruptly.
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Figure 3.7: Excitation of EAW by driving the homogeneous Maxwellian plasma
for nearly one trapping period 7, (a) Different Adiabatic profile for which plasma
is driven with E,giapatic = Fertg(t) where g(t) = [1 + (t — 7)"/A7"]7! [17]. Here,
I choose 7 = 150, AT = 70 for different n values indicating different profiles from
adiabatic to nearly abrupt. (b) Plot of electron velocity distribution function f.(v)
indicating flattening in EAW region for corresponding adiabatic profiles. Profiles
with the higher values of n also produce the similar results and are equivalents to
abrupt drive cases. In the present work, the external drive is always turned on
abruptly.
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3.3.2 Chrip Driven Phase Space Vortices

In the previous Section 1.3.1, the excitation of electrostatic plasma waves (both LAN
and EAWs along with harmonics) in the background of immobile ions is shown for a 1D
periodic (unbounded) system. These excited waves creates particle trapping in the resonant
regions, also known as undamped Bernstein-Greene-Kruskal (BGK) modes or Phase Space
Vortices (PSVs). One can create large amplitude, transient kinetic structures in plasmas,
but more often than not, these structures are frequently unstable and short lived and do
not necessarily form a long lasting BGK/PSVs. Here, I report that the long lasting, large
amplitude PSVs can be excited by an external, oscillating, chirped frequency drive. I start
with a stable, Maxwellian Plasma with homogeneous density in space. The idea is to apply
a very low amplitude external drive with a downward shifting frequency (or “chirp”) for a
qualitative short period of time. This process creates localized, growing coherent phase
space structures in phase space which are shown to attain a steady state leading to large

amplitude PSVs.

2 0=0, t+ 3
(1) Chirp With downward
f
ol requency
t Time t

Figure 3.8: A cartoon figure of (w,t) showing frequency turn on-off of external drive.
A downward chirp w = at + 3 is applied for (0 <t < t;).
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3.3.2.1 Chirp Driven Giant PSVs

Consider a Maxwellian homogeneous plasma driven by an external downward frequency
chirp (w = at + ) which is applied to the plasma right at ¢ = 0 for time duration Aty till
t = t1 from wpign (Or w2) tO Wiy (0r wi). The parameters for simulations are:- £ = 0.4,
Ey = 0.025, Atg = 200, wpigh = 2, Wiow = 1. The chirp parameter are a = —5 x 1073 and

B = 2. In order for the transients to relax the system is evolved till to = 2000.

lngﬁ(% t)

0 500 1000 1500 2000
v t

(a) (b)

Figure 3.9: Plots of (a) Electron velocity distribution function f.(v) at different
times in log scale, and (b) Relative energy 0 £ with time, when plasma is driven with
a downward frequency chirp from wpign = 2 to wie, = 1 for Aty = 200 after which
the drive is turned off.
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Figure 3.10: Phase space plot of f(x,v) at t=2000, when plasma is driven with a
downward frequency chirp for dt; = 200. The large PSV structure contains peaked
spikes and holes embedded in it along with a “shark”-like structure, i.e., a bunch of
particles moving together within the giant phase space vortices.
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Figure 1.9(a) shows the resultant spatially averaged velocity distribution at different
time intervals with an increasing plateau region. In the constant frequency drive case | See
Fig.1.3], in spite of the extended time of drive, the flattening is limited to the small regions
in velocity space. However, when the drive frequency is chirped from high frequency to low
frequency, the initial flattening is seen to grow into a giant stationary region in velocity
space and grows till the drive is on. As the chirp is turned off at At = 200, the distribution
shows a weak relaxation leading to a steady configuration with a giant flat region.

The total energy of the system is defined as: W(t) = K(t) + P(t), where kinetic en-
ergy is computed as K (t) = (1/2) [ [v?f(x,v,t)dzdv and potential energy computed as
P(t) = (1/2) [ E?(x,t)dx. The In Fig. 1.9(b), the total relative energy W = W (t) — W (0),
the total relative kinetic energy K = K (t) — K(0) and the total relative potential energy
0P = P(t) — P(0) are plotted. It is clear that as the chirp frequency is swept downwards,
both relative kinetic energy and relative potential energy of the system increases which

reflects the increase in untrapped and trapped particle populations, respectively.

The iso-contour of the electron phase-space distribution f(x,v,t) at final time (¢ = 2000)
is shown in Fig.(1.10), where a steady state vortex structure is created by a combination
of both untrapped and trapped particle dynamics during chirp. This phase space structure
exhibits several interesting features, like the large hole/ PSV structure contains peaked
spikes and holes embed- ded in it along with a “shark”-like structure, i.e., a bunch of
particles moving together within the giant phase space vortices. Also, apart from a large
electron hole at one phase velocity (vy = 2.569), a second hole structure at higher phase
velocity (vy = 3.691) is seen. A large region of “separatrices” are seen to be squashed
between these two giant hole structures. Furthermore, these hole structures in turn contain
peaked spikes or clumps and holes embedded in the larger electron hole surrounded by
large region of separatrix as described earlier. This is an example of steady state multiple
extrema PSV. Thus, the numerical results predicts that even though the amplitude of drive
is much below the “linear limit”, it causes increased particle trapping and simultaneous
increase in kinetic energy which in turn facilitates the formation of giant PSV in an

unbounded (periodic) system with enormous structural complexity in phase space which is
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preserved till the end of the simulation [Fig.1.10].

The time evolution of excess density fraction dn/ng, as defined in Eq.(2.12), at © = L/2,

is shown in Fig.(1.11(a)). The excess density fraction dn(z,t)/ng may be defined as:

5n(x,t)/n0:/f(az,v,t)dvf/fo(v)dv (3.7)

In response to the small amplitude chirp, excess particle density increases linearly in time
till the drive is on. The growth of excess density fraction is arrested when the drive is
turned off. Then the system relaxes and saturates to attain a certain value of excess density

fraction i.e. dn/ng ~ 16 — 17% and remains the same till the end of simulation.

The entropy of the system is given by:

S(t) =— /OL /Jrvmw flx,v,t)logf(x,v,t)dvdx (3.8)

VUmazx

It is plotted as relative entropy [See Fig.(1.11(b))], defined as S, = (S(t) — S(0))/S(0)
with time. Strictly speaking, for a collisionless plasma dS/dt = 0. However, because of
the numerical scheme, entropy does increase with time (which is a measure of finite grid
size effects in simulation) and then saturates [100].The numerical entropy is a measure of
the information “lost” from the simulation. As is well known, the evolving distribution
function exhibits filamentation which generates a small-scale structure in phase-space. The
numerical entropy saturates when the small-scale structures generated are dissipated when
this filamentation reaches the grid size, rendering a numerical steady-state. Here, the
relative entropy is seen to grow initially but saturates as soon as the drive is turned off.
The numerical experiments have been tested for different phase space grid resolutions also.
The growth in the entropy is found to be slower for the higher resolution case, although
eventually all different resolution cases saturate at nearly the same level. Results are found
to be invariable to grid sizes beyond certain resolutions. All the grid sizes for numerical
results in the Thesis have been carefully chosen. After the grid size study, the resolution

has been chosen without compromising the quality or quantity of the results. Here, the
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relative entropy is seen to grow when the drive is on but saturates as soon as the drive is

turned off. Also, the simulation is extended till ¢ = 2000 in order to confirm the formation

of a steady-state solution.

It is important to note that this novel nonlinear phase space structure with rich internal
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Figure 3.11: Plots for the case where plasma is driven with a downward frequency
chirp for dt; = 200 for k = 0.4:- (a) Plot of excess density fraction (defined in
Eq.2.12) evolution at x = L/2 with time. (b) Plot of excess density fraction (defined
in Eq.2.12) evolution with x at different time. (c¢) Plot of relative entropy S, with
time. The vertical line represents time at which drive is turned off. (d) Plot of
electric field FE(z,t) with z at different times. The vertical line represents time at

which drive is turned off.

structures is a steady state solution [See Fig.(1.10)]. In Fig.1.12, the response of the plasma

is shown for different values of wavenumber k£ = 0.3,0.4,0.5. Considering the “thumb”

curve analysis [Fig.1.12(a)], the plasma is driven from LAN region to EAW region for

all three values of k [as shown in Table 1.1]. As can be seen, for lower values of k, the

frequency range from LAN to EAW regime is broader which makes it possible for the chirp

drive to excite both electrostatic modes along with their harmonics. As a result, all the
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adjacent excitations/resonances overlap which leads to giant phase space structures.

Table 3.1: Chirp Parameters for k.

k Whigh Wlow
0.3 1.2 0.4
0.4 1.5 0.5
0.5 1.4 0.8
1.5
o1
3
Y05t
0 1
0 0.2 0.4 0.6
k)\De

==t=0, k=0.3

==t=2000, k=0.3
==t=2000, k=0.4
—t=2000, k=0.5

lOgl()f/';(’U, t)

(b)

Figure 3.12: Plots of (a) “Thumb” curve indicating chirp frequency ranges used for
different % values, and (b) Electron velocity distribution function f.(v) for different

k values in log scale, when plasma is driven with a downward frequency chirp for
chirp interval At; = 200 from LAN to EAW region [see Tablel.1].

3.3.2.2 Transient Honeycomb Structures

The above numerical experiment has also been used to analyze the response of the plasma to
the downward chirp in the smaller frequency regime and to study the process of formation
and growth of the PSVs in the distribution function. It has been found that downward

chirp in smaller frequency regime leads to formation of multiple phase space vortices, all
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appearing at different regions of phase space, which gives a “honeycomb”-like transient
structure of the distribution function. Here, I report the results of the excitation of the
plasma with a drive amplitude of Ey = 0.025, with frequency swept from wp;qn = 0.8 to
Wiow = 0.4 with a sweep rate of & = —2 x 1073 for At = 250.

As the w(t) of the drive chirps down from wpigh to wWigy With a single mode number, the
entire sub-harmonic region of phase space is seen to be driven strongly which results in
an interacting, finite amplitude phase-space structures during the drive phase. The phase
space portrait of the plasma as shown in Fig. 1.13 provides a convincing visualization
of the effect of the downward chirp on the process of formation and development of the
multiple PSV in the subharmonic region. In the first part of the driving process, only the
large density fluctuations are visible but at later times, the smaller PSV become more
prominent. The growth of the density fluctuations is arrested when the drive is switched off
but the phase space structures created by the drive persists till the end of the simulation.
These excitations at various phase velocities gives the distribution a “honeycomb” like
appearance.

In the past,[37, 38] with chirped frequency drive, a study of axial 1D dynamics of a bounded
system (Malmberg-Penning trap) confining pure electrons has been reported. In this work,
the external drive with high spatial harmonic content (k— spectrum) is used to search
and lock the axially bouncing electrons. These phase-locked electrons at higher phase
velocity are chirp-dragged (“bucket”) to lower velocity region of the distribution function
resulting in multiple non-overlapping phase space holes or “honey-comb-like” structures
in phase space. In their work, these structures are reported to overlap or interact only
at large amplitude of chirp drive. However, our work, I have shown that these transient
multi-extrema phase structures in sub-harmonic region or “honeycomb”-like structures
thus created are seen to continuously interact, long after the linear drive is switched off,
with smaller structures slowly “merging”, as it can be expected in a 2D inverse cascade

process leading to a quasi-steady phase space structures.
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Figure 3.13: Phase-space portrait of the electron distribution f(z,v), when plasma
is driven in subharmonic region from wyign—o.s to wlow = 0.4 for At; = 250. Contour
plots (a) t = 250, when drive is turned off, and (b) at ¢ = 2000, at the end of
simulation. These portraits show dynamic activity in subharmonic region leading to
transient multi-extrema phase structures in sub-harmonic region or “honeycomb”-like
structures. (c) Plot of excess density fraction evolution with = at different time. (d)
Plot of electric field E(x,t) with x at different times.

3.3.2.3 Response of the system to the different chirp intervals

In this Section, the plasma is driven with the same drive amplitude Ey = 0.025 and the
drive frequency is swept within the same range (from w = 2 to w = 1) as in the earlier
Section, but for different chirp time intervals (At = 50,100, 150, 200, 250, 300, 350, 400).
The results are shown in Fig.1.14(a), where the width of the flattened regime is shown
to increase with chirp time interval. The longer is the chirp time (i.e. At), larger the
flattening in velocity distribution. Fig.1.14(b) shows that the system attains a steady state
and the relative entropy does not change throughout the simulation long after the drive is

turned off. With increase in chirp interval, the structure grows in amplitude but beyond a
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certain chirp interval, the amplitude saturates as 835 Z attains very large negative value.

The phase space portrait of the system at the end of the simulation is shown in Fig.(1.15),

0
-1+
—~ -2 r m—t— ()
had —A t =50, t=2000
237 At =100, t-2000
(2 4L A't =150, t=2000
g . A\ t =200, t=2000
S A't =250, 1=2000
~ 6L A\ 1,=300, 1=2000
A t,=350, t=2000
Ty A\ 1,=400, t=2000
6 4 2 0 2 4 6
v
(a)
’f
-1 — chirp off at t=50
T — chirp off at t=100
= :
2 H — chirp off at t=150
-1 : — chirp off at t=200
H — chirp off at t=250
2 : chirp off at t=300
i --- chirp off at t=350
] o chirp off at t=400
-2
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Figure 3.14: (a) Plot of velocity distribution function f.(v), when external downward
chirp is given from the start (¢t = 0) for different time intervals. (b) Plot of relative
entropy S, with time when external downward chirp is given from the start (¢ = 0)
for different time intervals. The vertical lines represent time ¢t at which chirp is
turned off.

for different chirp intervals. In Fig.[1.15(a),1.15(c),1.15(e)], a giant PSV structure embedded
with holes and clumps can be seen clearly. The size of these steady state PSV structures
increases with chirp interval. In the figure, besides the large PSV structure, the presence
of a second structure create a significant excess density trapping which is seen last till
the end of simulation even in the absence of drive. The increase in the size of the second
phase space structure can be seen clearly with increase in chirp interval, where it attains
maximum growth after At = 200. These structures are seen to persist till the end of

simulation. It is important to note that the multiple extrema PSV are formed soon after

61



CHAPTER 3. ELECTROSTATIC MODES AND DRIVEN PHASE SPACE
VORTICES (PSV) IN THE BACKGROUND OF IMMOBILE IONS

the chirp is turned off (typically ¢t ~ 800) and remain so, without any further coalescence,
for the entire length of the simulation (¢ ~ 2000).

The response of the system in terms of maximum potential well depth and maximum
relative density fraction, obtained after switching of the drive, as a function of chirp interval

has been shown in Figs. 1.16(a) and 1.16(b) respectively.

3.4 Discussion

I have studied numerically a simple, novel and efficient way to obtain giant Phase Space
Vortices (PSV) in a 1D unbounded Vlasov plasma modelled using periodic boundary
conditions. A very low amplitude external drive with frequency chirping is found to drive
giant structures in phase space at steady state. In the first part, 1D simulations have been
performed to excite LAN mode which represents the damping and trapping phenomenon
of plasma for initial density perturbation problems as well as work as benchmark of our
solver. Then, by assuming an initially homogeneous Maxwellian distributional, plasma is
driven with constant frequency wp. This drive creates two “seeds” flattening, one at weakly
nonlinear EAW frequency and other is at LAN frequency. Both EAW and LAN are excited
with this constant frequency drive which are seen to persist long after the weakly nonlinear
drive is turned off.

In the second part, it has been demonstrated that large steady state PSV structures can
be excited when the drive frequency is swept from the start (¢ = 0) for a short time period
Aty from wpgn to wlow.

It was found that when a low amplitude external drive with (w, k) is turned on for longer
than several trapping periods, this drive resonantly couples to particles around w/k in
phase space leading to linear and weakly nonlinear form of natural modes of the system,
for eg. EAW. The modes do not grow any further and the linear and weakly nonlinear

dispersions can be obtained. This exercise leads to “thumb” dispersion curve.
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Figure 3.15: Phase space plots of f(z,v) at t = 2000 when external downward chirp
is given from the start for different time intervals. (a) Plot of f(z,v) at time ¢ = 2000
for chirp interval At = 50. (b) Cross-section of f(x,v) at time ¢t = 2000 for chirp
interval At = 50. (c) Plot of f(z,v) at time ¢ = 2000 for chirp interval At = 250.
(d) Cross-section of f(z,v) at time ¢t = 2000 for chirp interval At = 250. (e) Plot of
f(z,v) at time ¢ = 2000 for chirp interval At = 400. (f) Cross-section of f(x,v) at
time ¢t = 2000 for chirp interval At = 400.
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Figure 3.16: Plots of (a) ¢maz, and (b) the percentage of excess density 07,4, /10 of
the saturated PSV states at t = 2000 after turning off the drive with different chirp
intervals Atg.

Instead of keeping w a constant, if w = w(t) is swept in time or chirped, then groups
of particles in the distribution f(v) resonantly couple to w(t)/ko leading to several “near-
resonant” coupling through the whole range of velocity distribution. As the chirp rate
is slowed, the sum of the half widths of the adjacent resonances becomes greater than
the distance between the centers of the resonances i. e. the adjacent resonances starts to
overlap. Resonance overlap leads to mixing between the two adjacent resonant regions and

can lead to overlapped resonant regions with multiple features in it (“shark” like PSVs).

Keeping other parameters fixed, the response of the plasma on applying different chirp
rates reveals that the longer the frequency is swept (i.e. slower the chirp rate), the greater

is the region of flattening in velocity space. The growth of these coherent phase space

o< f>
ov

structures are arrested beyond a certain chirp interval as attains large negative
value. In general, the chirp driven phase space structures repeated here are seen to possess
multiple extremas of f(z,v) embedded within the giant hole structure. Moreover, more
than one giant hole structures are squashed together amongst separatrix like structures,

each of these structures moving at a different phase velocities. The complexity of these

structures are seen to increase with At.

As described in the Introduction, Schamel and coworkers, [11, 90, 91, 13, 92, 93, 94,
65, 95, 96, 12] construct the phase space holes or vortices, by applying Sagdeev Pseudo-

potential method to Vlasov-Poisson system of equation. Given a phase velocity vy of a
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single nonlinear phase space structure, mode number kg and the amplitude of the nonlinear
potential well ¥, Schamel and co-workers provide a clear prescription via a nonlinear
dispersion relation (NDR), to calculate trapped fraction for a single phase space structure
with phase velocity vg. For a nonlinear phase structure which exists as a steady state
solution with more than one extrema embedded with holes and clumps, each of these
extrema travel at its own v,. Moreover these extrema of ¢(z), namely ¥, would be same for
all the structures. Thus in our understanding, while it is possible to apply Pseudo potential
theory of phase space holes to steady state nonlinear coherent phase space solution with
one vy and one W for a given kg corresponding to a single extrema, it is unclear as to how
this methodology[11, 90, 91, 13, 92, 93, 94, 65, 95, 96, 12] is to be applied to the multiple

extrema steady state coherent structures found here.

In the past, with chirped frequency drive, BGK like structures have been studied for
bounded system,[36, 37, 38] for example, a pure electron plasma is confined in Penning-
Malmberg trap. The extended frequency of drive is applied in such a way that it resonates
with a group of axially bouncing electrons. Then the drive frequency is swept down-
wards such that the bounce-resonant particles remain phase locked to the drive which
creates a hole in the electron phase space distribution. Electron population with certain
axial bounce frequency is “phase-locked” using an external frequency chirp drive with
certain amplitude. The drive contains high spatial harmonics (k— spectrum) and the

frequency chirp is used to “search and lock” the axially bouncing electrons. The chirp

range is so chosen that wp;gn > “’b‘}:lme > Wiow Where kp is the lowest and prominent mode
number. The phase-locked electrons at higher phase velocity and low density (or popula-
tion) are chirp-dragged to lower velocity (but higher density) region of the distribution
function forming a “phase space hole”. This trap-drag-drop idea is akin to a “bucket”.
Higher k—harmonics are shown to create non-overlapping phase space holes of different
depths at velocities lower than "”’%{we Thus simultaneous presence of multiple k values
(k—harmonics) and dynamics of bounce-electron results in “honey-comb-like” structures in
phase space. However, these structures do not overlap or interact until the amplitude of

the chirp drive is increased to nonlinear levels akin to the well known Chirikov-like condition.
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In my work, I study essentially an unbounded 1D plasma modeled using periodic boundary
conditions with ions forming a stationary neutralizing background. Thus in the undisturbed
plasma there are no trapped electrons. Trapped particles arises only due to the chirp-driven
nonlinear phase space vortices. For the entire study, I consider a single k—mode, the lowest
possible k—mode (k = %’T, L—is the system size) and have investigated the effect of chirped
frequency drive with infinitesimal or “linear-like” amplitude Ey (meaning, at this amplitude,
when I perform a standard initial value problem, the mode simply Landau damps linearly).
When plasma is driven in high frequency range (from LAN to EAW), the phase of the
drive resonates with particle velocity and consequently increases both the kinetic energy
and potential energy of the system in that high frequency region. This process creates
deep potential well leading trapping as well as streaming of untrapped particles. As the
drive is turned off, the system is seen to relax to a phase space vortices but with multiple
extrema “shark” like structures squashed between ergodic regions of separatrices. However,
for the frequency regime smaller than electron plasma frequency, as w(t) of the drive
chirps down from wp;gn t0 Wiy With a single mode number k, the entire sub-harmonic
region of phase space is shown to be driven strongly even for “linear-like” drive amplitudes.
This results in strongly interacting, finite amplitude phase-space structures during the
drive phase. These transient multi-extrema phase structures in sub-harmonic region or
“honey-comb-like structures” thus created are seen to continously interact, long after the
linear drive is switched off, with smaller structures slowly “merging”; as it can be expected

in a 2D inverse cascade process leading to a quasi-steady phase space structures.

3.5 Summary and Conclusions

e The aim of my work presented in this Chapter, is to find, by numerically solving the
driven VP system self-consistently, long after the small amplitude drive is switched
off, whether or not the VP system supports steady Coherent Phase Space Structures,

in a 1D periodically bounded problem. The strength of our numerical method is that
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it strictly conserves physical quantities such as the total energy and total number,
positivity of the distribution, while at the same time, has very little numerical

dissipation. Thus the solutions are very accurate.

I have studied the excitation of undamped electrostatic modes (LAN and EAW) and
formation of giant multiple extrema PSV structures in a homogeneous unbounded
plasma modelled using periodic boundary conditions. Application of an external
linear drive with a constant frequency and slowly down-chirped frequency (i.e. from
Whigh tO Wiew such that wpign < w < wieyw) is shown to create both electrostaic smodes
with their harmonics and a giant flat region in velocity distribution function indicating
formation of multiple extrema PSV structure, respectively. These structures are seen

to sustain for very long times after the extended drive is switched off.

Choice of the amplitude for our external drive Ej is such that, if an initial value VP
problem is performed with the very same amplitude value Ey of external drive, the
Landau damping time would be much smaller than the conventional trapping time

and hence the perturbation would be fully damped.

The driven dynamics of this Chapter can be divided into the following parts : First
part simply present the temporal response of the VP system to an small amplitude
external drive which has a sharp temporal rise - It is expected that the plasma would
be subjected to a range of frequencies : from the weakly nonlinear slow electron
acoustic frequency to the warm plasma frequency and harmonics. This should be
observable irrespective of whether the external drive is switched on adiabatically or
abruptly. Fig.(1.6) shows this response of plasma F(w) Vs w for adiabatic and abrupt
switch on of external drive. This response of the plasma as yet another stringent

test for the numerical correctness of our numerical method.

The second part contains the results of constant frequency external drive turned on
abruptly with drive frequency w chosen to be consistent with the w values obtained
from “thumb curve”. Our results show for the constant frequency drive in EAW region

(or near EAW region), the plasma responds by generating a slow weakly nonlinear
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Electron Acoustic Wave (EAW) and a weakly nonlinear Langmuir structure (LAN)
at higher phase velocity along with some harmonics as shown in Fig.(1.3). Now when
chirp is introduced from LAN to EAW region, novel multiple extrema (“shark”-like
structures) steady state phase space structure or in short a multiple extrema BGK
mode or PSVs which more clearly exhibits enormous details and complexity of clumps
and holes embedded inside a large electron hole with large secondary coherent struc-

tures separated from the primary structure by a large region of separatrices (Fig.1.10).

In the third part, I perform the chirp experiment for various chirp intervals. Our
results clearly shows existence of giant PSVs of increasing size and complexity with
increasing chirp interval. As the chirp becomes slower, the amount of trappped
and untrapped particle increases nearly linearly, only bounded by the slope of the
distribution. This creates a large flattening in velocity distribution resulting in giant
PSV with multiple extrema due to embedded holes and clumps. These large PSV
structures, once formed, are seen to persist, without any further coalescence, for the
entire length of the simulation (¢ ~ 2000). We also find that the multiple extrema
phase space vortex structure is formed soon after the chirp is turned off (typically
t ~ 800) and remain so, without any further coalescence, for the entire length of the
simulation. The same is also reflected in out relative entropy data. Thus, I believe
that the multiple extrema structures to be a true steady state numerical solution of

1D Vlasov-Poisson system.

The above said studies were for the initial velocity distributions which were Maxwellian.

For systems with short range interactions, the energy of the system is extensive. However,

for a variety of interesting physical problems such as thermodynamics of self gravitating

systems with long range interactions, energy is non-extensive.[45, 46] For such systems, in

the nonextensive statistical mechanics framework, non-extensive distributions are needed,

for example, g-nonextensive distributions where g is the strength of nonextensivity. This

formalism has found many applications in systems with the non-Maxwellian particle

distribution functions observed in space and laboratory. These include the solar wind
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and the long-range interacting systems containing plentiful superthermal particles[48,
49], the peculiar velocity distributions of galaxy clusters[50], and the solar neutrino
problem[51]. This formalism has also been extended to study non-linear Landau damping
and formation of Bernstein-Greene-Kruskal structures for plasmas with ¢g-nonextensive
velocity distributions[57, 58]. In the next Chapter, a numerical study has been performed
to study the formation and dynamics of phase space vortices as the effect of the frequency
chirp on the g-nonextensive distribution as initial distribution function [P. Trivedi and R.

Ganesh, Physics of Plasmas 24, 032107 (2017)].
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CHAPTER

Driven phase space vortices in plasmas with

nonextensive velocity distribution

The evolution of chirp-driven electrostatic waves in unmagnetized plasmas
is numerically investigated by using a one-dimensional (1D) Viasov-Poisson
solver with periodic boundary conditions. Initial velocity distribution of the 1D
plasma is assumed to be governed by Tsalli’s [47] nonextensive q distribution.
For an infinitesimal amplitude of external drive,investigate the effects of chirp
driven dynamics that leads to the formation of giant phase space vortices
(PSV) for non-Maxwellian (q # 1) plasmas and compare the results with the
results obtained in Chapter 3 earlier for Mazwellian plasmas i.e for ¢ = 1.
For q non-Mazwellian plasmas, the formation of giant PSV with multiple
extrema and phase velocities is shown to be dependent on the strength of non-

« »

extensivity parameter®q”. Novel features such as “shark”-like and transient

“honeycomb ’-like structures in phase space are also discussed.
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4.1 Introduction

For over a century, the equilibrium of statistical systems has been studied based on the

Boltzmann-Gibbs-Shannon entropy (BGS)[101],

Spas =k Y _ pilnp; (4.1)

where kp is the Boltzmann constant and p; denotes the probability of the ¢ —th microscopic

configuration. For a given composite system A + B, constituted by two independent sub-

A+B

systems A and B, the probability of system A 4 B in i + j state is, p; = p{‘.pf , where

1 is the microstate of system A and j is the microstate of system B. For such case, The
BGS entropy satisfies the additivity of entropy of the system, i.e. Ség? = SgGs + SE.q,

which shows that the entropy is an extensive quantity.

As is well known, for systems with short range interactions, the energy of the system
is extensive. Thus the “canonical” distribution is a “Maxwellian” and may be obtained
by extremizing Boltzmann-Gibbs-Shannon (BGS) entropy subject to energy constraint.
However, for a variety of interesting physical problems such as thermodynamics of self
gravitating systems with long range interactions, energy is non-extensive [45, 46]. Recently,
there have been several attempts to define a BGS like entropy for nonextensive systems.
For example, Tsalli’s definition [47] of ¢g-nonextensive entropy where ¢ is the strength of
nonextensivity and the corresponding “canonical” distribution function has been derived
using nonextensive statistical mechanics framework. This formalism has found many
applications in systems with the non-Maxwellian particle distribution functions observed in
space and laboratory. These include the solar wind and the long-range interacting systems
containing plentiful superthermal particles [48, 49], the peculiar velocity distributions of
galaxy clusters [50], and the solar neutrino problem [51]. The ¢ distribution lend them-
selves to applications in vast number of problems in areas of ion acoustic waves, electron

acoustic solitons and other areas of plasmas [52, 53, 54, 49, 55]. On the theoretical front, a
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comprehensive discussion of plasma oscillations, Landau damping and dispersion relation
for electrostatic waves, which can be found and solved for an equilibrium distribution
function, in a collisionless thermal plasma has been provided based on g-statistics [56].
The dispersion relation is found to fit experimental data better than a Maxwellian. This
formalism has also been extended to study non-linear Landau damping and formation of
Bernstein-Greene-Kruskal structures for plasmas with g-nonextensive velocity distributions

57, 58].

In the previous Chapter, an external drive with time dependent frequency w(t) or chirp
was successfully applied to obtain multiple extrema phase space vortices (PSV) in an
infinite plasma modeled using periodic boundary conditions (PBC) along with “shark”-like
structures in phase space [21]. Starting form a uniform plasma with a Maxwellian velocity
distribution, the plasma is subjected to a linear, small amplitude, external drive of constant
frequency wg which was properly chosen so that a small population of particles are resonant.
Then, the external drive frequency w(t) was chirped down slowly in time interval At from
Whigh 10 Wiy such that wpign < wo < wieyw Which was shown to couple effectively to the
plasma and increase both streaming of “untrapped” and “trapped” particle fraction. The
steady state attained after the external drive was turned off, was shown to lead to a giant
PSV with multiple extremas with embedded holes and clumps or “shark”-like modes. It
was also shown that the excess density fraction, which define as a deviation from initial
Maxwellian contains both trapped and untrapped particles, which was found to increase
with chirp duration At. This downward sweeping is shown to create multiple extrema

phase space vortices with a giant flat region in velocity distribution function [21].

The above said studies were for the initial velocity distributions which were Maxwellian.
The purpose of the present Chapter is to study numerically the effect of the downward
frequency chirp on the ¢g-nonextensive distribution as initial distribution function. For
this purpose, a one dimensional (1D) Vlasov-Poisson solver has been used. Starting with

a ¢ nonextensive equilibrium distribution, I study the plasma behavior as a function of
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different values of the non-extensivity parameter ¢, and compare the numerical results
with Maxwellian case. I find that the chirp dynamics and trapping phenomenon is strongly
affected by the deviations from the Maxwellian distribution. The process of PSV formation
and the amount of both trapped and untrapped particle fraction is shown to be dependent
on the strength “g” of nonextensivity along with some novel features of PSV such as

“shark”-like and transient “honeycomb”-like structures.

4.2 Mathematical Model And Numerical Scheme

In an unmagnetized, collisionless plasma, in the framework of kinetic theory, the propagation
of electrostatic waves can be described by a normalized one dimensional Vlasov-Poisson

system, which is given by

of , of of _

§+U%*ET%—O (4'2)
OB
B 1— [ fdv (4.3)

where f(x,v,t) is the electron distribution function and Ep = Es+ Fe,y is the total electric
field, where Es(z,t) is the self consistent electric field and E.,; is the external driver electric
field defined as:

Eeyt = Epsin(kx + wt) (4.4)

where Ej is the amplitude of external drive. Here, k represents the perturbation wave
number in the simulation box and w represents the driver frequency.

As described earlier in the Chapter 2, in solving the equations (2.2) and (A.6), time
has been normalized to the electron plasma frequency wy., space has been normalized to
the Debye length Ap., velocity has been normalized by the initial equilibrium thermal
velocity vine = Apewpe. With these choices, f gets normalized by ng/vie and E by
MeUthe /€ADe Where e is the electron charge. In this model, the ions form a stationary
neutralizing background of number density ng with numerical value 1 in the Poisson equation
[Eq.(A.6)]. Please note that, in my published work [22], the electric field E is normalized

by —meVhe/€ADe, which makes Eqn.?? and Eqn.?? as 0f /0t + v0f/0x + EOf/dv = 0
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and OFE/0z = [ fdv — 1.

In the previous Chapter [21], the above described model has predicted important features
of the chirp-driven process in case of Maxwellian plasmas. In order to study the effects of
chirp-driven process and frequency sweep on the non-Maxwellian plasmas, I consider an
initial distribution function to be a Tsalli’s distribution with non-extensivity parameter g,

which is given as follows[56],

1)2
EMW=CM1—@—1ﬁﬂ”W“ (4.5)

where fyo is the initial g-nonextensive velocity distribution function. Here, g is the strength

of nonextensivity and C, is the normalization constant given by

1
Filq) T 1—q’ For -1<q<«1.
2w

C (1_q 2)1 (4.6)
g = .

1+qr(qi1+2) q—l F -1

5 o T : 5 or >1.

qg—1

where I'(m) represents the standard Gamma function. For ¢ = 1, this distribution reduces
to the Maxwellian with C; = 1/+/27. I present results mainly for three specific values
of non-extensivity parameter ¢, namely ¢ = 0.95,1,1.05. The corresponding profiles of
velocity distributions are displayed in Fig. (2.1), where the logarithmic plot of initial
spatially averaged distribution function in velocity space is shown. For ¢ < 1, the tail(s)
of the distribution is(are) extended as compared to a Maxwellian function which implies
that there are more particles with the velocities faster than the thermal speed v;;, and high
energy (i.e. E = mwv?/2 for non relativistic particles) states are more probable than in
the extensive case. While, for ¢ > 1, the function becomes narrower than a Maxwellian
one which shows there is large fraction of particles with velocities that are slower than the
thermal speed vy,. Therefore, for ¢ > 1, high energy states are less probable than in the
extensive case and the function exhibits a velocity cutoff on the maximum value allowed
for the velocity of the particles, namely | veutoff |= v/2/(¢ — 1), beyond which no energy

states exist.[50]
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We set the simulation domain in phase space D = [0, Lyaz] X [0S 00: Voae), Where

N

iy AN
/] W\
7/ W\ N

=8 -6 -4 -2 0 2 4 6 8

Figure 4.1: Logarithmic plot of the initial spatially averaged velocity distributions,
for three different values (¢ < 1,¢g = 1,¢q > 1) of the nonextensive index q.

Lipar = 27/k is the system size and vy, is chosen sufficiently large so that electron
velocity distribution function approaches zero as |v| approaches vy,q,. The grid spacing
is given by Ax = L/N, and Av = 20,45/ Ny, where N, and N, are grid points in spatial
space and velocity space respectively. Here, for the value of k = 0.4,Iset gridsize N, = 512
and NN, = 8000 in such a manner that there is sufficient resolution in both x and v for all

values of nonextensive parameter “q” considered.

4.3 Simulation Results

To begin with,linitialize simulations with a collisionless plasma with homogeneous density

distribution in space having the following velocity distribution function:

exp(—v2/2)/ V2, For q=1.
Folw) = p(—v"/2)/ q wn

Cyll = (¢ — 1)Z]HY@D For q#1.

which is driven by an external drive F,; of amplitude Ey with a downward frequency chirp
w=at+ B from t =0 to t = t; with appropriately chosen chirp coefficients («, 3) [see Fig.
(2.2)]. By doing so, the total electric field Er (Er = FEeyt + Es) acting on the particles
produces a plateau in the resonant region. In this way, the energy of both trapped and

untrapped particles increases till the chirp is on followed by complete energy conservation
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once the chirp is turned off, untill the end of simulation. In order to check the correctness
of numerical method, a constant frequency drive has also been applied for multiple values
of ¢, namely ¢ = 0.95,1,1.05. This linear drive excites weakly slow electron acoustic waves
(EAW) and Langmuir waves (LAN) along with other harmonics for all above values of g

including ¢ = 1 as previously shown results.[21]

2
Chirp With downward

) frequency

Time t

Figure 4.2: A cartoon figure of (w,t) showing frequency turn on-off of external drive.
Downward chirp is applied for (0 <t < t;). Here, a, 3 are constant coefficients.

4.3.1 Case q=1

In the following, I have considered a simulation for ¢ = 1 case, which is the normalized
Maxwellian. This case has been reported in the previous Chapter in great detail [21].
Here I will summarize the relevant results along with some detail regarding the initial
conditions for later comparison. The homogeneous plasma is subjected to an external drive
of amplitude Ey = 0.025 right at ¢ = 0 for time duration At = 250 from w =1 to w = 0.5
for a full time step. The chirp parameters are o = —2 x 1073 and 8 = 1. It was found
that this downward frequency chirping allows “continuous” flattening in the velocity space
leading to large coherent structures in phase space with multiple extrema with “shark” like

features in phase space.

Fig.(2.3) shows the resultant spatially averaged velocity distribution showing growth of

plateau region with time. The velocity distribution function is given by

Jo f,v,t)da
[Vmaz fOLf(a;,v,t)da;dv

—Umax

f(’l),t) =
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It can be clearly seen, as the drive frequency is chirped downwards, the size of the “flat
region” is seen to grow into a giant stationary region till the drive is on. After turning off
the chirp, the transient structures relax and eventually a nonlinear steady state structure

is established which is seen to last till the end of simulation.

P R
t=0,Chirp on |
t=50,Chirp on \\ \

t=100,Chirp on

—4 t=250,Chirp off
i 4 t=500,Chirp off \
/ t=1000,Chirp off \

y t=2000,Chirp off

i ;] =2 0 2 4 6
v

Figure 4.3: Plot of evolution of spatially averaged velocity distribution f(v) when
external downward chirp is given from the start for At = 250.

The iso-contour of the electron phase-space distribution f(x,v) at final time (¢t = 2000) is
shown in Fig. (2.4). As one can observe, there is a significant density of trapped particles
and those of surrounding untrapped particles forming a large electron hole at v = 2.53
and at higher phase velocity v = 4.39. At ¢ = 0, when chirp is applied, a phase space
“dip” forms at v = 2.5 with a small amount of particle trapped in it and as the frequency
decreases, the “dip” grows in size with addition of more and more new particles in it till
the drive is on and. Furthermore, the larger hole structure contains peaked spikes and
holes embedded in it along with a “shark”-like structure i.e. a bunch of particles moving
together within the giant phase space vortices.

The numerical entropy S(¢) of the system, for ¢ = 1, is computed by

L r+vmaz
S(t) = —/0 / f(z,v,t)logf(z,v,t)dvdx (4.9)

VUmazx

It is plotted as relative entropy [See Fig. 2.5(a)], defined as S,¢; = (S(t) — S(0))/S(0)
with time. At first, entropy increases with time due to finite gridsize effects and then

saturates soon after turning off the chirp and remains stable throughout the simulation
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Figure 4.4: Plot of f(x,v,t) at t=2000 when external downward chirp is applied
from the start for a period At = 250 in the range [0 < v < 4.3]. (a) Zoomed plot of
f(z,v,t) at time ¢t = 2000. (b) Cross-section of f(z,v) at time ¢t = 2000.

which confirms the formation of stationary structures (here PSVs).

The total energy of the system is defined as : W(t) = K(t) + P(t), where K(t) =
(1/2) [ [v?f(z,v,t)dzdv is the kinetic energy and P(t) = (1/2) [ E*(x,t)dz is the poten-
tial energy. The actual total energy, at any given, is the half of W (¢). It is clear from
the Fig. 2.5(b) that, when drive is swept downwards, both kinetic energy [In Fig. as
0K = K(t) — K(0)] and potential energy [In Fig. as 6P = P(t) — P(0)] increases which
reflects the increase in untrapped and trapped particle populations respectively.

To summarize ¢ = 1 results, it has been observed that an external linear drive with a

For At=250 at ¢t =2000

— at t=250,Chirp off 0 500 1000 1500 2000

500 1000 1500 2000 t
time ¢

(a) (b)

Figure 4.5: Plots of relative entropy S, and energy with time. The vertical lines
represent times at which drive is turned on and turned off.

slowly down-chirped frequency creates a giant flat region in velocity distribution function
indicating the increased amount of both trapped and surrounding untrapped particle

population. In phase space, it can be seen as a giant phase space vortices with multiple

79



CHAPTER 4. DRIVEN PHASE SPACE VORTICES IN PLASMAS WITH
NONEXTENSIVE VELOCITY DISTRIBUTION

extrema squashed between ergodic regions of separatrices.

Now that I have recollected the results for ¢ = 1 distribution leading to multiple extrema
PSVs, I wish to study the long-time fate of similar downward chirp on ¢ # 1 distributions.
For this purpose, two sets of different ¢ values have been taken to perform the comprehensive

study.

4.3.2 Case <1

As shown in Fig. (2.1), for ¢ < 1 case, the initial distribution function exhibits a lower
peak and a longer tail as compared to Maxwellian. For non-Maxwellian g-distributed
plasmas, Lima et al[56], derived analytic formulas for the undamped a generalized Langmuir

dispersion relation,

2
2 2
=1 ko ——— 4.1
w +3 <3q—1) (4.10)

which depends on the non-extensivity index g. Here, it is worth noting that in the limit
g — 1, the dispersion relation based on the Maxwellian distribution is recovered [102].

The following parameters are used. Runs are presented for 0.85 < ¢ < 1 varied in steps
of 0.05 andIchoose Vg, = 12.5, N, = 8000 and N, = 512 by keeping rest of the initial
conditions same as case [2.3.1]. Simulations have been performed to see the evolution of
PSV’s for different ¢ values. As one can observe from the Eq. (2.10), for any ¢-distribution
taken in this set, the phase velocity vy = w/k lies well within the range, far “inside” from
Umaz- In Fig. (2.6), the change in giant flat region in spatially averaged distribution can
be seen easily. At ¢ = 0.95, the chirp seems to be more effective in creating two large
phase space vortices well separated by separatrix [See Fig. 2.7(a) and 2.7(b)]. But as I
go down in g values, this second structure at higher phase velocity vanishes and remains
only a single large structure with peaked spikes and holes within it. With the same initial

conditions as for ¢ = 1, the following chirp ranges have been used for different ¢ values:-
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Table 4.1: Chirp ranges for ¢ < 1.

q C’q Whigh Wiow
0.85 0.3760 1 0.5
0.90 0.3838 1 0.5
0.95 0.3914 1 0.5
1.00 0.3989 1 0.5

/'\
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/ / — t=2000,q=0.85 \ \\
_ — t=2000,g=0.90

— t=2000,g=0.95 \
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Figure 4.6: Plot of evolution of spatially averaged velocity distribution f(v), when
external downward chirp is given from the start for At = 250, at t = 2000 comparing
cases with 0.85 < ¢ < 1.
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Figure 4.7: Plot of f(z,v,t) at t=2000 when external downward chirp is applied from
the start for a period At = 250 in the range [0 < v < 5.1] for ¢ = 0.95. (a) Zoomed
plot of f(x,v,t) at time ¢t = 2000. (b) Cross-section of f(z,v) at time ¢t = 2000.

Now, for this case, entropy S(t) is defined as[47]

Sq(t) = — /OL /+vmaz f(x,v,t)(l — f(x’v’t)q_1>dvdm (4.11)

Umaz q— 1

which reduces to Eq.(2.9) for the limit ¢ = 1. As can be seen from Fig. (2.8), because of
the numerical scheme, entropy does increase with time and then saturates. Also, one can
notice that with increasing ¢ values, relative entropy seems to grow and then stabilize after

turning off the chirp.lextend the simulation till £ = 2000 in order to confirm the formation
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of steady state solution.

Furthermore, in terms of different chirp rates, the simulation with ¢ = 0.95, has been

| A—

-2 — =0.85
— q=0.90
— =095
—23 500 1000 1500 2000
time ¢

Figure 4.8: Plot of relative entropy S, with time when external downward chirp
is given from the start for At = 250 comparing cases with 0.85 < ¢ < 0.95. The
vertical line represents time t at which chirp is turned off.

studied for At = 50,150, 250. Similar to the previous study of Maxwellian plasmal[21], as
the chirp becomes slower, the amount of trapped and surrounding untrapped particles
increases nearly linearly. This creates a a giant PSV at first and as the chirp rate decreases,

a second coherent structure forms at higher phase velocity [as it is shown in Fig. 2.7(a)].

4.3.3 Case q>1

It is clear from the velocity distribution function Eq.(2.7) that for ¢ > 1, the distribution
exhibits higher peak and a shorter tail as compared to Maxwellian and a velocity cutoff at
Veutof f = v/2/(q — 1), beyond which the function becomes unphysical. Also, for ¢ > 1.2,
the phase velocity vg > Veutoff, therefore I do not consider cases for ¢ > 1.2.

Again, similar to case ¢ < 1, simulations are performed for 1 < ¢ < 1.10 varied in steps of
0.025 and I choose vz = Veutorf by keeping the grid size and rest of the initial conditions
except chirp range. Now, in this case, the periodic boundary conditions (PBC) on the
velocity domain may affect the simulation if the resonant region is close to the boundaries.
Therefore, only those cases have been considered for which the resonant region and chirp
range are sufficiently far away from the boundaries. Hence, to accommodate both chirp

range and V., cases with ¢ = 1.05,1.075,1.10 have been considered. With the same
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initial conditions as for ¢ = 1, the following chirp ranges have been used for different ¢

values:-

~

In Fig.(2.9), a semi-log plot for the velocity distribution f(v) shows the difference in

Table 4.2: Chirp ranges for ¢ > 1.

q Cq whigh Wlow
1.000 0.3989 1 0.5
1.050 0.4064 1 0.5
1.075 0.4100 0.9 0.4
1.100 0.4137 0.8 0.4
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Figure 4.9: Plot of evolution of spatially averaged velocity distribution f(v), when
external downward chirp is given from the start for At = 250, at t = 2000 comparing
cases with 1 < ¢ < 1.10.

behavior of resonant flattening for different ¢ cases. Because of the change in chirp range
and with increasing ¢ values, the particle trapping decreases. As the ¢ values increases,
this chirp affects the modes present at lower velocities more.
For the cases 1.05 < ¢ < 1.10, the relative entropy curves are plotted in Fig. (2.10). Similar
to the previous cases, entropy increases due to the measure of finite gridsize effects in
simulation and then it saturates after turning off the chirp. In terms of nonextensivity
parameter, the saturation value of relative entropy decreases with increasing value of q.
The phase space portrait of the system for ¢ = 1.05 at the end of the simulation is shown
in Fig.2.11(a) and 2.11(b). Similar to the previous results, one can see the particle trapped
in a large PSV which contains peaked spikes and holes embedded in it along with a small

“shark”-like structure.
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. e

— =1.075
— g=1.10

23 500 1000 1500 2000
time t

Figure 4.10: Plot of relative entropy S,.; with time when external downward chirp is
given from the start for At = 250 comparing cases with 1 < ¢ < 1.10. The vertical
line represents time ¢ at which chirp is turned off.

However, for higher g-values, one can increase the value of k so as to make the value
of vy = w/k lie within the bulk of the distribution function. For this purpose,Iperturb
with a higher value of k = 0.7, initialized with ¢ = 1.15, by keeping rest of the conditions
same as in ¢ = 1 case. For k = 0.7, phase velocity vs ~ 1.6854 and veysorf ~ 3.6515. On
sweeping downwards,lhave found the phase space vortices and a flattened region in velocity
distribution which is smaller in comparison to previous cases with same initial conditions
and k = 0.4. Thus trapping decreases with increase in k values and chirp dynamics becomes

less effective in terms of g-values for higher values of k£ in this case.

4.3.4 Transient Honeycomb Structures

The above numerical experiment has also been used to analyze the response of the plasma
to the downward chip in the smaller frequency regime and to study the process of for-
mation and growth of the holes in the distribution function. It has been found that this
downward chirp in smaller frequency regime leads to formation of multiple phase space
vortices, all appearing at different regions of phase space, which gives a “honeycomb”-like
transient structure of the distribution function. Here,Ireport the results of the excita-
tion of the plasma with a drive amplitude of Ey = 0.025, with frequency swept from
Whigh = 0.8 to Wiy = 0.4 with a sweep rate of a = —16 X 1073 for different ¢ values,
namely ¢ = 0.90, 1, 1.10.

As the w(t) of the drive chirps down from wp;gn t0 Wi With a single mode number, the

84



CHAPTER 4. DRIVEN PHASE SPACE VORTICES IN PLASMAS WITH
NONEXTENSIVE VELOCITY DISTRIBUTION

Figure 4.11: Plot of f(z,v,t) at t=2000 when external downward chirp is applied
from the start for a period At = 250 in the range [0 < v < 4.1] for ¢ = 1.05. (a)
Zoomed plot of f(z,v,t) at time ¢t = 2000. (b) Cross-section of f(z,v) at time
t = 2000.

entire sub-harmonic region of phase space is seen to be driven strongly which results in
an interacting, finite amplitude phase-space structures during the drive phase. The phase
space portrait of the plasma as shown in Fig. 2.12 provides a convincing visualization
of the effect of the downward chirp on the process of formation and development of the
multiple PSV in the subharmonic region. In the first part of the driving process, only
the large density fluctuations are visible but at later times, the smaller PSV become
more prominent. The growth of the density fluctuations is arrested when the drive is
switched off but the phase space structures created by the drive persists till the end of the
simulation. These excitations at various phase velocities gives the distribution a “honey-
comb” like appearance. These transient multi-extrema phase structures in sub-harmonic
region or “honeycomb-like structures” thus created are seen to continuously interact, long
after the linear drive is switched off, with smaller structures slowly “merging”, as it can

be expected in a 2D inverse cascade process leading to a quasi-steady phase space structures.

In the past,[37, 38] with chirped frequency drive, a study of axial 1D dynamics of a
bounded system (Malmberg-Penning trap) confining pure electrons has been reported. In
this work, the external drive with high spatial harmonic content (k— spectrum) is used to
search and lock the axially bouncing electrons. These phase-locked electrons at higher phase

velocity are chirp-dragged (“bucket”) to lower velocity region of the distribution function
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Figure 4.12: Phase-space portrait of the electron distribution f(z,v) for ¢ = 1.10,
starting from ¢ = 250 (when the drive is turned off) to ¢ = 2000. These portraits
show dynamic activity in subharmonic region at different instances after the drive
is switched off. These kind of interesting features are seen for all the values of ¢
studied.
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resulting in multiple non-overlapping phase space holes or “honey-comb-like” structures in
phase space. However, in this work, these structures are reported to overlap or interact
only at large amplitude of chirp drive.

In the present chapter,Ihave investigated the effect of chirped frequency drive with
infinitesimal amplitude on an unbounded plasma with single k—mode for both Maxwellian
and non-Maxwellian plasmas. In Fig. 2.13,IThave shown the effect of the downward chirp
on the process of the excitation of multiple PSV and the formation of “honeycomb” like
structures for different ¢ values. As one can observe, the number of these multiple PSV is

more for ¢ > 1 than the cases with ¢ =1 and ¢ < 1.

4.4 Discussion

Let us compare the results obtained from the runs corresponding to 0.85 < ¢ < 1.10, for
which phase space vortices are formed on applying a low amplitude external downward
chirp. In order to do so, the response of the system in terms of relative kinetic energy (§K)
and relative potential energy (§P) for different entropy index ¢ has been plotted in Fig.
2.14(a). As one can observe, the overall energy (i.e. 6K + dP) of particles increases with ¢
values for ¢ < 1 and then it decreases for ¢ > 1. The maximum trapping is reflected from
the potential well depth which is highest for Maxwellian plasma i.e. ¢ = 1. As the giant
flattening in velocity distribution indicates the increment in both trapped and surrounding
untrapped particle population. Here Fig. 2.14(a) shows the effect of chirp on the kinetic
energy of untrapped regions which is maximum for ¢ = 0.95 case explaining the large
seperatrix between the two giant PSVs in Fig. (2.7).

Similarly, the response of the system in terms of maximum potential well depth and

maximum excess density fraction, defined as:

J [z, v, t)dv — ffo(v)dv> (4.12)

n(x,t)/ng = ( T o)

which was obtained after switching off the drive, as a function of entropy-index ¢ has been

shown in Fig.2.14(b). Again, it can be clearly seen that ¢y, is maximum for ¢ = 1 case
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Figure 4.13: Plot of f(x,v) for chirp interval At = 250 when external downward
chirp is given from wp;gn, = 0.8 t0 Wi, = 0.4 for ¢ = 0.90, 1, 1.10 respectively. [(a),
(b)] Plots of f(z,v,t) for ¢ = 0.90 at time ¢t = 250 and ¢ = 2000 respectively. [(c),
(d)] Plots of f(z,v,t) for ¢ = 1 at time ¢ = 250 and ¢ = 2000 respectively. [(e), (f)]
Plots of f(x,v,t) for ¢ = 1.10 at time ¢ = 250 and ¢ = 2000 respectively.
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Figure 4.14: (a)Plot of 0K and 0P at t=2000 when external downward chirp is
applied from the start for a period At = 250 in the range [0.85 < ¢ < 1.10]. (b) Plot
of npaz /Mo and @pe, of the saturated states after turning off the drive at ¢ = 250
for g values in range [0.85 < ¢ < 1.10].

which shows the maximum trapping for Maxwellian plasma and the excess density fraction

is also maximum for ¢ = 1.

4.5 Summary and Conclusions

For a non Maxwellian plasma described by ¢-distribution,Ihave studied numerically a simple
and efficient way to obtain phase space vortices in a 1D unbounded Vlasov plasma, modeled
using periodic boundary conditions.I have numerically addressed the nonlinear evolution of
Maxwellian and g-nonextensive Maxwellian plasma when perturbed with an external drive,
of very low amplitude, which is slowly chirped downwards. From our numerical results,I
conclude that the chirp dynamics and trapping phenomenon is strongly affected by the
deviations from the Maxwellian distribution. In other words, the trapping efficiency is
related to the region around wave phase velocity or the velocity derivative of the initial

distribution function near the resonance region.

It is found that, for values of the entropy-index less than unity, trapping decreases
with decrease in ¢ values. On the contrary, for large value of g, trapping decreases with
increase in ¢ values. This implies the trapping efficiency for a given set of parameters

is maximum for Maxwellian plasma. As ¢ increases beyond unity, the phase velocity
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comes closer to the velocity cutoff for the distribution which makes an upper limit for ¢

below which I find PSVs. For increasing values of k,I observe that trapping fraction reduces.

We have shown, using high-resolution Vlasov-Poisson solver for long-times up to t =
2000w, I that the formation of phase space vortices seem to depend on the nonextensive
parameter g and chirp rate. Study of excitation of giant phase space vortices which contains
peaked spikes and holes embedded in it along with a “shark”-like structure and excitation

of multiple PSV forming a “honeycomb”-like transient feature is novel.

Moreover, In these Chapter and the earlier Chapter 3, ions have been assumed to be
immobile. However, ion motion may significantly change the evolution of high and low
frequency motions which in turn may affect the trapping and formation of PSVs. In the next
Chapter, I will present several interesting features of ion modes and driven electron and
ion phase space structures, in Maxwellian plasma, analyzed by means of kinetic Eulerian
simulations, composed of (a) kinetic warm ions and Boltzmann electrons and (b)kinetic

warm ions and Kinetic electrons . The details of which will be presented.
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CHAPTER

Formation and Dynamics of Electrostatic Phase

space Vortices: Kinetic lons

In this Chapter, the role of ions on the phase space dynamics has been
studied using two different models:- (1) Boltzmann electrons and kinetic ions
using Vlasov-Yukawa (VY) model, and (2) Kinetic Ions and Kinetic Electrons
(KIKE) model. In the previous Chapters, electrostatic waves have been studied
in the background of kinetic electrons and immobile ions resulting in a “Thumb
curve” dispersion [for Langmuir (LAN) and Electron Acoustic (EAW) waves].
In this Chapter, the role and effect of ions on the phase space dynamics, has
been studied in two parts:-

(1) In the first part, the study electrostatic waves in ion scale with Boltzmann
electrons treating ions as kinetic species has been attempted with a newly
developed Viasov-Yukawa (VY) solver. This model results in a “Teardrop”
dispersion curve [for Ton Acoustic (IA) and Ion Bulk (IBk) waves]. Using
1D1V VY solver, Landau damping and electrostatic waves at ion scales (IA and

IBE waves) have been studied. Also, formation and dynamics of chirp driven

phase space vortices at ion scales have been studied for different temperature
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rati0s.

(2) In the second part, the electron scale physics and ion scale physics have
been studied by including both ion and electron scale dynamics self consistently
and simultaneously in a model using symmetric framework. With this model, it
1s shown that both high frequency and low frequency solutions can be obtained
simultaneously which consists of a high frequency branch (LAN/IA) and a low
frequency branch(EAW/IBk). The numerical results obtained show that both
electron and ton waves can indeed be excited simultaneously in phase space
without any approximation in length scale or time scale. In appropriate limits,
it is shown that the “Thumb” and “Teardrop” curves are recovered from a
general symmetric dispersion relation [P. Trivedi and R. Ganesh, Physics of

Plasmas 25, 112102 (2018)].

5.1 Introduction

As discussed in the earlier Chapters, the study of phase space dynamics of a collisionless
plasma is currently a subject of extensive efforts both for the case of interplanetary envi-
ronments and for laboratory plasma systems. Several investigations aim to understand the
features of the dynamics at ion scales and electron scales in space plasmas by analyzing
both spacecraft data [14, 15, 16] as well as numerical results from kinetic (or phase space
simulations) [17, 18, 19, 20, 21, 22]. For example, in space craft data, one usually deals
with modes, covering practically the entire frequency range from electron to ion response
times. For example, quasiregular packets of Langmuir waves (LAN) are frequently observed
in the solar wind and magnetospheric plasmas [24, 25, 26]. The high frequency regions
of the energy spectra, obtained by analyzing solar-wind measurements from the Helios
spacecraft are dominated by longitudinal electrostatic modes, identified as ion-acoustic
(IA) waves [27, 28, 29]. Recent observations and studies [30, 44, 31, 32, 33, 34] point out
that besides these LAN and TA branches, in agreement with spacecraft and solar-wind

observations, two other novel branches of electrostatic waves exists. These waves have
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been dubbed as electron acoustic waves (EAW) and ion-bulk (IBk) waves, as their phase
velocities are nearly constant and are comparable to the electron thermal velocity (vipe)
and ion thermal (vy,;) velocity, respectively. These waves have been studied either in
the background of immobile ions resulting in a “thumb curve” dispersion (for LAN and
EAW waves) with kinetic electrons or in the frame of Boltzmann electrons resulting in a
“teardrop” curve (for TA and IBk waves)[17, 19, 34] with kinetic ions. Thus, the electron
scale physics and ion scale physics have been separately studied and applied whereas more
consistent physical picture would emerge only when both ion and electron scale dynamics
are included self consistently and simultaneously in a model or symmetric framework where
both high frequency (“thumb curve”) and low frequency (“teardrop”) branches can be
obtained simultaneously. From this symmetrical framework, both electron scale dispersion
(“thumb curve”LAN and EAW) and ion scale dispersion (“teardrop”-IA and IBk) can be
obtained in appropriate limits of where each of them again consists of a high frequency

branch (LAN/IA) and a low frequency branch(EAW /IBk).

In the present work, an attempt has been made by means of numerical simulations, to
study the role and effect of ions on the phase space dynamics in two parts:-
In the first part, considering kinetic ions and Boltzmann electrons, wherein the Vlasov
equations are integrated for ion species with no approximations in length scale or time
scales in terms of ion parameters. This is performed by solving Vlasov-Yukawa (VY)
equations which consists of the Vlasov equation coupled with the a short-range correction
of the Poisson equation (Yukawa equation or screened Poisson equation). The weakly
driven Vlasov-Yukawa (VY) equations has been solved which facilitates weak flattening of
distribution function or weak trapping. The numerical results leads to a “Teardrop” curve
for Ton Acoustic (IA) and Ion Bulk (IBk) waves. Using 1D1V Vlasov-Yukawa solver which
treats kinetic ions and Boltzmann electrons, Landau damping of electrostatic waves at ion
scales (IA and IBk waves) has been studied. Also, formation and dynamics of chirp driven
phase space vortices at ion scales has been studied for different temperature ratios in this

Thesis.
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In the second part, considering both kinetic electrons and kinetic ions on the same
physics footing, the Vlasov equations are integrated for both electron and ion species
without any approximations in length scale or time scales. First, the weakly driven fully
nonlinear Vlasov-Poisson (VP) equations has been solved which facilitates weak flattening
of distribution function or weak trapping. To identify the electrostatic modes (LAN, EAW,
IA, IBKk), the w, is need to be calculated. The eigenvalue values thus obtained for various
wavenumbers are compared with frequencies obtained from solving the linearized eigenvalue
equations considering weak trapping which allows us to neglect the contribution from
the imaginary part of the dielectric function. The numerical results obtained show that
both electron and ion waves can be excited simultaneously in phase space. In appropriate
limits, it is shown that the “thumb” and “teardrop” curves are different parts of a general
symmetric dispersion relation and are recovered in appropriate limits of that dispersion
relation.

Using a one dimensional (1D), two component Vlasov-Poisson system which treats both
electrons and ions symmetrically in terms of kinetics, I report, perhaps for the first time,
the the following major findings:- (i) continuous connectivity of electron (or “Thumb
curve”)[17] and ion (or the “Teardrop curve”)[34] branches using a general symmetric
dispersion relation. The hitherto separately studied “Thumb curve” and the “Teardrop
curve” show a “symmetry” in the dispersion curve as each of them consists of a high
frequency branch and a low frequency branch. The entire physical picture on the same
scale is presented using a general symmetric dispersion curve which again consists of a
high frequency part (“Thumb curve”-LAN, EAW) and a low frequency part(“Teardrop
curve”-IA, IBk), (ii) all four branches (LAN, EAW, TA, IBk)[17, 19, 34] have been recovered
both via obtaining a general symmetric dispersion relation from solving weakly driven
fully nonlinear VP equations which facilitates weak trapping as well as by performing a
numerical simulation where plasma is driven with an infinitesimal external electric field.
(iii) for realistic mass ratios, simultaneous excitation of all the normal modes:-LAN, EAW,

IA, IBk.

The rest of the Chapter is divided into two main sections: (1) In the first Section [Sec.??],
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the formation and dynamics of electrostatic waves at ion scale has been studied in the
background of Boltzmannn electrons and kinetic ions using Viasov- Yukawa (VY) model,
and (2) In the second Section [Sec.??], considering both kinetic electrons and kinetic ions
on the same physics footing, the Vlasov equations are integrated for both electron and ion
species without any approximations in length scale or time scales:- Kinetic Ions € Kinetic
electrons (KIKE) model. Each of these sections is organized as follows: the numerical
scheme of VY model is described in Subsec. 77 and the numerical scheme of KIKE model
is described in Subsec.??. Simulations using VY model with different cases have been
discussed Subsec.?? and simulations using KIKE model with different cases have been

discussed Subsec.??. In Sec.2.5 summary and conclusions have been presented.

5.2 Vlasov-Yukawa Plasmas (VY):- Kinetic Ions

and Boltzmann Electrons

In this Section, the numerical simulations are performed considering kinetic ions and
Boltzmann electrons, wherein the Vlasov equations are integrated for ions and electron

contribution comes only through the temperature ratio of ions to electrons.

5.2.1 Governing Equations & Wave Dispersion Relation for

VY Plasmas

The self-consistent Vlasov-Yukawa system(VY) which consists of the Vlasov equation
coupled with the Yukawa equation. The Yukawa equation is obtained from the Poisson
equation by making the assumption that the electrons are Boltzmann and sometimes called
the screened Poisson equation. As described in Chapter 2, necessary modifications are made
in the VPPM solver to treat kinetic warm ions and Boltzmann electrons, analyzed by means
of kinetic Eulerian simulations. A numerical Vlasov-Yukawa (VY) solver which treats ki-

netic ions in the presence of Boltzmann electrons [n. = ngexp(e¢/KT,) = no(1+ed/KT.)]
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is given by,

af =~ of of

5 T Vag +E8U 0, (5.1)
OF, 0%¢

dr o2 i e (5:2)

Here, f is the ion distribution, n; = [ fdv, ne = (1 + Tr¢) is the normalized Boltzmann
electron distribution, T = T; /T, is the ion to electron temperature ratio and Ep = Es+ Eeyy
is the total electric field, where E;(z,t) is the self consistent electric field and E;; is the

external driver electric field defined as:
Eeyt = Epsin(kx £ wt) (5.3)

where Ej is the amplitude of external drive. Here, k represents the perturbation wave
number in the simulation box and w represents the driver frequency. In this Vlasov-
Yukawa model, the electron response is taken to be the standard Boltzmann response as
ne = ngexp(e¢/KT) which in terms of ion normalization becomes n, = exp(¢Tr). In this
Chapter, all the parameters have been chosen such a way that ¢Tr << 1 throughout the
simulation period. Therefore, the relationship between the electron density and the electro-
static potential becomes linear n. = (1 + ¢Tgr). For the parameters chosen, numerically
solving the Poisson equation with exp(¢Tr) was thus not necessary and hence, was not
used. Therefore, Poisson eqn.?? becomes

2
gf+ Zig— /ﬂi—l (5.4)

Here, all the quantities are normalized in terms of ion parameters. In this model, only
ion equations are solved using time-splitting method and effect of Boltzmann electrons
considered in the screened Poisson equation. The simulation domain in phase space

D(z,v) = [0, Linaz] X [=0% 00y Voran)s Limaz = 27/k is the system size and v¢,,, is chosen

max’ “maxr axr
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sufficiently large so that velocity distribution functions approaches zero as |v?| approaches
v .- In all these simulations, the mode with the largest wavelength that fits in the
numerical domain is excited at ¢ = 0, in order to prevent the sideband frequency generation
in the system. The phase space is discretized with N, = 1024 grid points in the spatial

domain and N, = 4000 in velocity domain. Using the above normalizations, the Fourier
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Figure 5.1: Dispersion curves or “Teardrop” curves for the electrostatic waves (IA,
IBk) in k — w plane, obtained by assuming zero damping as a function of Ty [Fig.
(a)], (ii) Teardrop curve for T = 0.1 [Fig. (b)]. Also, the gradient of the real part
of the complex plasma dispersion function —%Z’ (v) is plotted for real arguments in
Fig.(c) Tr = 0.1.

transformation of linearized form of Eqgs. (77)-(??) leads to the dispersion relation[16]:-

1+> Kj(k,w) =0 (5.5)

where Kj;(k,w) = —k:?-/?kQZ’(éj) is the susceptibility of the j*(= i,e) species, & =

w/ ﬁkvj and Z;(&;) represents the real part of the complex plasma dispersion func-
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tion for real arguments[44]. Here, we consider the initial distribution to be Maxwellian,
fo(v) = exp(—v?/2)/ \/(2m). By assuming a weak flattening (or trapped region) of vanish-
ing velocity width i.e. (0f/0v)|y,~ 0 (which allows us to neglect the contribution from
the imaginary part of the dielectric function), the solution to the real part of the wave
frequency w as a function of the wave number k, obtained numerically from Eq.(??) is
shown in Fig.(??). Typically in the k —w diagram, at low frequencies (Boltzmann electrons
and kinetic ions), one obtains the “teardrop” curve that represents Ion Acoustic (IA) (upper
branch of teardrop) and IBk (lower branch of teardrop)[17]. At values of the wave number
for which the effects of charge separation are no longer negligible, both ion branches (IA
and IBk) coalesce [see fig.?7(a)]. As the ion to electron temperature ratio T decreases,
the “teardrop” becomes a “thumbcurve” for ions. Finally, when T > 0.3 the VY solution
disappear.

In the bottom plot Fig.??(b), the same “teardrop” dispersion is plotted for T = 0.1.

In Eqn.(??), the term —3Z'(v) can be interpreted as a gradient of the real part of the
complex plasma dispersion function for real arguments. A plot of the function —%Z’ (v) for
Kinetic ions and Boltzmann electrons for T = 0.1 is displayed in Figs.(??(c)), where it
divides the phase velocity regions and reveals different branches of the dispersion relation.
In the limit of Boltzmann electrons, the function —3Z’(v) represents ion contribution,
where it has two zero transitions (at v = 1.45 and at v = 3.723) and one minimum
(at v = 2.125) which results in two separated regions for the physical phase velocity:-(i)
1.45 <wv < 2.125 (IBk), (ii) 2.125 < v < 3.723 (IA)). The function is positive for v < 1.45

and v > 3.723.

5.2.2 Simulation I

In this Section, we systematically present the numerical results of the VY plasmas where
kinetic ions in the background of Boltzmann electrons are considered. In order to study the

low frequency (ion dominated) electrostatic waves, the numerical results are presented for
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the following three cases:- where plasma is subjected to (i) an initial density perturbation
i.e. Landau damping at ion scales, (ii) a constant frequency external drive which concerns
the excitation of electrostatic modes at ion scales (IA and IBk) by applying a constant
frequency external drive and (iii) a time dependent external drive or chirp at ion scales in

the background of Boltzmann electrons.

5.2.2.1 Ion Landau Damping

In the following, to study the Landau damping at ion scales, the oscillations are excited by
initializing a single Fourier mode k with the following initial ion distribution:

v
2

fi(z,vi,t =0) = L[1 + acos(kzx)]exp(—

NeTs ) (5.6)

where « is the amplitude of initial ion density perturbation. Here, electron follows the
normalized Boltzmann [n. = (1 + Tr¢)] distribution and T = T; /T is the ion to electron
temperature ratio. In the following simulation case, numerical experiments have been

%

rae = 8 and different £k, o and Tx values.

performed for v
When the plasma is perturbed with an initial amplitude, it leads to formation of ion acoustic

wave which is exponentially damped or Landau damped. The ion acoustic frequency is

given by w, = k \/ve/Tr + 7, in ion normalization.

In Fig.??(a), comparison of time evolution of the electric field for various values of
wavenumber & is shown which indicated that the Landau damping increases with increase in
k and w, also increases with increase in k, as expected [Fig.??(b)]. In Fig.(??), comparison
of time evolution of the electric field for various values of initial amplitude of perturbation
a and Tk has been shown. The time evolution of electric field for various values of T

indicates that the Landau damping increases with increase in T'g.
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Figure 5.2: (a) Comparison of time evolution of the electric field for various values
of wavenumber k, and (b) the corresponding w, — k plot of theoretical and observed
values for various values of wavenumber &.

5.2.2.2 Driven Ion Electrostatic Modes :- Constant Frequency Drive

Within linear theory, the Ion Bulk (IBK) waves are heavily damped as their wave phase
velocities is close to ion thermal velocity (vsn;), respectively. However, this wave is also
a nonlinear BGK mode where ions trapped in the wave troughs which makes the ion
velocity distribution effectively flat at the wave phase velocity, and turns off Landau
damping. Initially there is no trapped particle distribution exist. But if the plasma is
driven externally, it can form trapping distribution dynamically as the wave evolves. For

an external electric field £ = Eysin(kz — wt), the trapping period to form the trapped
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Figure 5.3: Comparison of time evolution of the electric field (a) for various values
of Tk, (b) The corresponding w, — k plot of theoretical and observed values for
various values of Tk on log scale and (c) for various values of initial amplitude of
perturbation a.

particle distribution is approximately 7 = 27/+/kEy (in this normalization). Thus, the
IBks can be excited by a small amplitude driver if the driver is applied resonantly over
few trapping periods. The driver continuously replenishes the energy removed by Landau
damping. Therefore, the trapped particle distribution survives and the IBks are eventually

produced.

In order to excite both electrostatic modes at ion scales (IA, IBk), the following numerical
simulation is performed: at ¢ = 0, ions are considered to be Maxwellian velocity distri-
butions [f; = (1v/27)exp(—v?/2)] homogeneous density and electrons have a Boltzmann

distribution. The external electric field applied to induce weak trapping has the form
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Eeyt = Epsin(kx £ wt). The external driver electric field is applied directly to the ions
in the Vlasov equation. The longest wavelength is driven that fits into the simulation
box. The trapping time 7, for ions is 7. = 27/ v/kFEg. Moreover, the external drive of
amplitude Ey = 0.025 is switched on at ¢ = 0 for a period At [see Fig.??(a)], where
T < At < 57, and then let the system to relax for atleast another few w;l-l by switching
off the external drive. After the drive has been turned off, the plasma response is analyzed.
the simulation has been performed for the following parameters:- kK = 0.2 (7, = 88.85),

temperature ratio Tg = 0.1,0.01,1077, vee = 8, At = 100 [see Fig.??(b)]. I

w=constant

Eexl

0 Time!!
(a) (b)

Figure 5.4: (a) A cartoon figure of (E..,t) showing frequency turn on-off of external
drive. Constant frequency drive is applied for (0 < ¢ < t;). (b) Dispersion curves or
“Teardrop” curves for the electrostatic waves (IA, IBk) in k£ — w plane, obtained by
assuming zero damping as a function of Tkg.

simulate the excitation of the modes with k — w values obtained from the studies shown in
Fig.(??(b)). In order to characterize the plasma response, three cases have been considered
with T = 0.1,0.01,1077. First, let us consider the plasma with T = 0.1 case. When
plasma is driven externally with w = wy = 0.3043 (in IBk region) during 0 < ¢ < 100, where
wq is considered from k — w curve for wavenumber k& = 0.2, it produces both “Ion Acoustic”
and “Ton Bulk” structures in ion distribution at v ~ 1.545 and v ~ 3.295 respectively
[Figs.(??(a)) and (??(b))]. These values are slightly different from the values obtained
via the dispersion relation shown in Fig.(??(b)) for IA and IBk waves (véA ~ 3.3 and
véAN ~ 1.5215) due to the fact that the trapping region created in the simulations by

the external driver is of small but finite velocity width. Fourier analysis, for this case, in

Fig (7?(b)) reveals that after the drive has been turned off, the electric signal is shown to
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Figure 5.5: Plots of space averaged ion velocity distributions for:- Fig.(a) T = 0.1,
Fig.(c) Tr = 0.01, Fig.(e) T = 0.1 and (b) FFT plots of electric field, when plasma
is driven for k = 0.2 with wy = w!P*:- Fig.(b) Tr = 0.1, Fig.(d) Tr = 0.01, Fig.(f)
Tr=0.1.
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Figure 5.6: Ton phase space plots f;(x,v,t = 2000) on log scale, when plasma is
driven for k = 0.2 with wy = w!P*:- Fig.(a) Tr = 0.1, Fig.(b) T = 0.01, Fig.(c)
Tgr = 1077,

be composed of both ITA and IBk modes and their harmonics. However, when plasma is
drive for T = 0.01 with wg = 0.2751 (in IBk region) and Tp = 10~7 with wy = 0.2722 (in
IBk region), it creates a large amount of trapping in IA region but no significant trapping

in the IBk region. These is also indicated in fft plots of electic signal in Figs.??(c) to

104



on(x = L/2,t)/ng

CHAPTER 5. FORMATION AND DYNAMICS OF ELECTROSTATIC PHASE
SPACE VORTICES: KINETIC IONS

0.04 ; - - 0.02
0.02 S
E 0
0 -
/ I \H/ —t=0
—=0 R S —1=2000, T 0.1
0.02 ¢ e o0 1 1=2000, T _=0.01
=100, T =0.01 -0.02 —1=2000, T .=0. i
—t=100, T =10 7 —1t=2000, T _=10"
-0.04 - o - s .
0 10 20 30 0 10 20 30
€ x
(a) (b)
0.06 0.8
0.04 0.6
0.02
= 04} —T=0.1
0 ~© —T.=0.01
-0.02 + 0.2 —T =10 71
-0.04 . : . 0 . L ,
0 500 1000 1500 2000 0 500 1000 1500 2000
t t
(c) (d)

Figure 5.7:  (a) Plot of excess density fraction dn/ng(x,t) with x at time ¢t = 100
when the drive is turned off. (b) Plot of excess density fraction dn/ng(z,t) with x
at time ¢ = 2000 i.e. at the end of simulation, (c) Plot of time evolution of excess
density fraction én/ng(x,t) at + = L/2 and (d) relative total energy, when plasma is
driven for k = 0.2 with wy = w!B* for T = 0.1, Tp = 0.01, T = 107 7.

??7(f). In Fig.(??(a), 7?(b), ??(c)), the snapshots of phase space distribution of ions have
been shown corresponding to the above cases. These evidences suggest that the weak
external driver has successfully created the trapped particle regions or weak flattening of

distribution function simultaneously in TA and IBk regions for Tz = 0.1. However, for

Tr = 0.01 and Tr = 1077, the weak external drive creates significant trapping in IA region

only.

In Fig.??(a), the time evolution of excess density fraction dn/ng, as defined by dn(z,t)/ng =
[ fi(z,v,t)dv — [ foi(v)dv, at * = L/2, has been shown, where maximum dn/ng gained
by Tr = 0.1 case and minimum is gained by Tr = 10~7 case. The total energy of the
system is defined as: W (t) = K(t) + P(t), where kinetic energy is computed as K(t) =

(1/2) [ [v%fi(x,v,t)dzdv and potential energy computed as P(t) = (1/2) [ E?(z,t)dz. In
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Figure 5.8: Plots of relative kinetic energy and relative potential energy , when
plasma is driven for time period At = 100.Parameters used are:- £k = 0.2 with

wg = w!BF for T = 0.1, T = 0.01, Tp = 107".
Fig. ??(b), (a) the total relative energy 0W = W (t) —

energy 0K = K (t)

— K(0) and (c) the total relative potential energy 6P = P(t)

W(0), (b) the total relative kinetic

— P(0) are

plotted. It is clear that during the external drive is on, both relative kinetic energy and

relative potential energy of the system increases which reflects the increase in untrapped

and trapped particle populations, respectively. The growth of these relative energies is

arrested when the drive is turned off. Then the system relaxes and saturates to attain a

certain value of 6W, K, § P and remains almost the same till the end of the simulation.
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Figure 5.9: (a) A cartoon figure of (E,.,t) showing frequency turn on-off of external
drive. Downward frequency chirp is applied for (0 <t < t;). (b) Dispersion curves
or “Teardrop” curves for the electrostatic waves (IA, IBk) in & — w plane, obtained
by assuming zero damping as a function of Tk.

However, the maximum growth and the saturated values attained by these relative energies
are shown to be dependent on Tg. The maximum saturated relative total energy 6W is

gained by Tk = 0.1 case whereas minimum value is gained by Tr = 0.01.

5.2.2.3 Chirp Driven Ion Phase Space Vortices

In the following, we consider an initial Maxwellian homogeneous plasma which is driven by
an external drive E.,; of amplitude Ey with a downward frequency chirp w = agt + By from
t =0 to t = t; with appropriately chosen chirp coefficients (g, Bp) for different temperature
ratios T = 0.1,0.01,10~7. By doing so, the total electric field Er (Er = Eeut + Es) acting
on the particles produces trapping in the resonant region. In this way, the energy of both
trapped and untrapped particles increases, till the chirp is on, followed by complete energy
conservation once the chirp is turned off, till the end of simulation.

In Fig.(??), the homogeneous plasma is subjected to an external drive of amplitude
Ey = 0.025 right at ¢t = 0 for time duration At = 250 from wpigp, = 0.5 t0 Wiey = 0.1 for dif-
ferent values of T, namely, Tr = 0.1,0.01,10~7. The chirp parameters are ag = —1.6x1073

and ﬁo =0.5.

In order to characterize the plasma response, we have considered three cases with

Tr =0.1,0.01,107". In all three cases, plasma is externally driven with a downward chirp
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Figure 5.10: Plots of space averaged ion velocity distributions for:- Fig.(a) Tg = 0.1,
Fig.(c) Tr = 0.01, Fig.(e) Tg = 0.1 and Ion phase space (f;(z,v,t = 2000)) plots
on log scale, when plasma is driven for time duration At = 250 from wpig, = 0.5 to
Wiow = 0.1 and for k = 0.2:- Fig.(b) Tr = 0.1, Fig.(d) T = 0.01, Fig.(f) T = 1077.
in the IBk region. First, let us consider the plasma with T = 0.1 case. In Fig.??(a), the
time evolution of space averaged ion velocity distribution is shown for T = 0.1, where
plasma is is subjected to an external drive of amplitude Fy = 0.025 for time duration
At = 250 from wpign, = 0.5 to wipy = 0.1. This chirp affects the plasma from IA to IBk

region which in turn creates multiple PSVs in between TA to IBk region. This can also

be seen in the corresponding phase space plot of f;(x,v,t = 2000), as shown in Fig.??(b).
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Figure 5.11: (a) Plot of space evolution of excess density fraction dn/n0 at t = 250
(when the chirp is turned off) for T = 0.1, Tg = 0.01, Tr = 10~". (b) Plot of space
evolution of excess density fraction on/n0 at t = 2000 for T = 0.1, T = 0.01,
Tr = 107", (c) Plot of time evolution of excess density fraction dn/n0 at x = L/2.
(d) relative entropy, when plasma is driven time duration At = 250 from wp;g, = 0.5
t0 Wiow = 0.1 and for k = 0.2 for T = 0.1, Tr = 0.01, T = 107".

As the ion to electron temperature ratio Tr decreases, the “teardrop” curve becomes
broader and the distance between IA branch and IBk branch increases. For such cases, this
downward chirp excites the IA region more than the IBk region, which created giant PSV
in the IA region [see Fig.??(c) and Fig.??(d)]. For very small value of Tg, for example
Tr = 1077, contribution from electrons become negligible, in that case only IA region gets

excited while applying the external chirp [see Fig.??(e) and Fig.??(f)].

5.3 Kinetic Ions and Kinetic Electrons (KIKE)

In this Section, an attempt has been made by means of numerical simulations, considering

both kinetic electrons and kinetic ions on the same physics footing, wherein the Vlasov
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Figure 5.12: Plot of (a) relative total energy, (b) relative kinetic energy and (c)
relative potential energy, when plasma is driven time duration At = 250 from
Whigh = 0.5 0 Wi, = 0.1 and for k = 0.2 for Tp = 0.1, Tr = 0.01, Tp = 1077,

equations are integrated for both electron and ion species without any approximations
in length scale or time scales. First, the weakly driven fully nonlinear Vlasov-Poisson
(VP)equations has been solved which facilitates weak flattening of distribution function
or weak trapping. To identify the modes, the w, is need to be calculated. The eigenvalue
values thus obtained for various wavenumbers are compared with frequencies obtained from
solving the linearized eigenvalue equations considering weak trapping which allows us to
neglect the contribution from the imaginary part of the dielectric function. My numerical
results show that both electron and ion waves can be excited simultaneously in phase space.
In appropriate limits, it is shown that the “thumb” and “teardrop” curves are different
parts of a general symmetric dispersion relation and are recovered in appropriate limits of

that dispersion relation.
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Figure 5.13: Dispersion curves or “Thumb-Teardrop” curves for the electrostatic
waves (LAN, EAW| IA, IBk) in k£ — w plane, obtained by assuming zero damping;:-
(i) as a function of u for T = 1 [Fig. (a)], (ii) as a function of p and Ty [Fig. (b)].
These curves represent the solutions or the roots of Eq.(??). Also, the gradient of
the real part of the complex plasma dispersion function —%Z’ (v) is plotted for real
arguments in Figs.(c) and (d) for immobile ions, ¢ = 20 and p = 1836.
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Figure 5.14: Comparison of time evolution of the electric field (a) for various values
of initial amplitude of perturbation y, and (b) for various values of initial amplitude
of perturbation «.
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Figure 5.15: Comparison of time evolution of the electric field (a) for various values
of ion to electron temperature ratio Tx, and (b) for various values of wavenumber k.
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Figure 5.16: Plot the maximum value of the electric energy ¢ = [ E%dx as a function
of u for a = 0.05 in the time interval [1500,2000].

5.3.1 Governing Equations & Wave Dispersion Relation for

KIKE Plasmas

A12D unmagnetized, collisionless electrostatic plasma, in the framework of kinetic theory

considering both kinetic electrons and kinetic ions, is described by one dimensional Vlasov-
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Poisson (VP) model equations, viz:

Ofe Ofe _ 0f _

o T oy, =Y (57)
of  of 1 0f
4 Ta% ~ 0 (5.8)
0B 0%
= / fidv; — / fudv. (5.9)

where fo(x,v,t) and f;(z,v,t) are the distribution functions of electrons and ions, respec-
tively, u is the mass ratio of ions to electrons i.e. u = M;/M,, ¢ is the electrostatic potential,
Er = Eg + E¢yy is the total electric field, where Eg = —0¢/0x is the self consistent electric

field and E.;; is the external driver electric field defined as:
E.yt = Epsin(kx + wt) (5.10)

where Ej is the amplitude of external drive. Here, k represents the perturbation wave
number in the simulation box and w represents the driver frequency.

In the above equations [Egs.(??)-(A.6)], time is scaled to w " , length is scaled to electron

pe )
Debye length Ap. and velocities to vipe = Apewpe, electron thermal velocity. Using these
normalizations, the Fourier transformation of linearized form of Eqgs. (??)-(A.6) leads to

the usual linear dispersion relation[16]:-

1+ Kjk,w, p,Tr) =0 (5.11)

J
where Kj(k,w, p, Tg) = —ka/QkQZ’(fj, w, Tr) is the susceptibility of the j*(= i, e) species,
Tr(=T;/T.) is the temperature ratio, &; = w/ v/2kv; and Z;(§;, u, Tr) represents the real
part of the complex plasma dispersion function for real arguments[44]. By assuming a

weak flattening (or trapped region) of vanishing velocity width i.e. (0f/0v)|y,~ 0 (which

|v¢
allows us to neglect the contribution from the imaginary part of the dielectric function),
the solution to the real part of the wave frequency w as a function of the wave number k,

obtained numerically from Eq. (??) is shown in Fig.(??) for various values of y and Tg.
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Typically in the k — w diagram, at high frequencies (fixed ions), one obtains only the
“thumb” curve that represents Langmuir waves (upper branch of thumb) and EAWs (lower
branch of thumb)[17], where as in the low-frequency regime (Boltzmann electrons), one
obtains only the “teardrop” curve that represents IA waves (upper branch of teardrop)
and IBk waves (lower branch of teardrop)[19]. Perhaps for the first time, we have shown
a unified “thumb-teardrop” diagram in Fig[(??(a)], which includes kinetic response from
both electron and ion branches simultaneously. For small values of u, the electron and ion
parts of the solution are not separately visible from each other and the “thumb” curve
represents contributions of both electrons and ions. As the value of pu is increased, the
curve begins to break into two different set of solutions where “thumb” shape represents
the electron contribution (LAN and EAW waves) and the “teardrop” shape represents
the ion contribution (IA and IBk waves). Depending on the value of Ty and k, at values
of the wave number for which the effects of charge separation are no longer negligible,
both electron branches (LAN and EAW) and both ion branches (IA and IBK) coalesce
[Fig.??(b)]. Moreover, as p1/Tr — 00, the “teardrop” curve becomes more and more narrow
in w and flattens onto the k-axis, after which w/k — 0 in the teardrop and only “thumb”
curve of electrons survives. Also, as the ion to electron temperature ratio Tr decreases,
“teardrop” curve enlarges until eventually the IA branch is replaced by the ion Langmuir

waves (ILWs) beyond which “teardrop” continuously changes into a “thumb” curve for ions.

In Eqn.(??), the term —1Z’(v) can be interpreted as a gradient of the real part of the
complex plasma dispersion function for real arguments. A plot of the function —%Z’ (v) for
different values of p is displayed in Figs.(??(c)) and (??(d)), where it divides the phase
velocity regions and reveals different branches of the dispersion relation. In the limit
of immobile ions (see Fig.??(c)), the function —3Z’(v) represents electron contribution
only. Therefore, it has one zero transition (at v = 1.307) and one minimum (at v = 2.13)
which results in two separated regions for the phase velocity [96]. However, when both
electron and ion contributions are considered such that both “thumb” and “teardrop”
are well separated, for example for y = 20 case [see Fig.(??(c))], the function —3Z’(v)

represents four separated regions for the phase velocity:-(i) 0.3662 < v < 0.4932 (IBk), (ii)
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0.4932 < v < 0.8302 (TA), (iii) 0.10109 < v < 2.052 (EAW) and (iv) v > 2.052 (LAN). The

function is positive for v < 0.3662 and 0.8302 < v < 1.0109 else negative for other values of
v and and vanishes at infinity. Similarly, for 4 = 1836, the function —1Z’(v) again divides
phase velocity into four different regions to present both ion and electrons contributions.

This demonstrate the simultaneous existence of all four branches.

To further corroborate the results from the solution of the dispersion relation wherein
weak local flattening of the distribution function or weak trapping was assumed (i.e. by
neglecting the imaginary part of the dielectric function), the numerical simulations are
performed with a well benchmarked VPPM 2.0 solver that uses Eulerian algorithm to solve
the VP Eqgs.(??)-(A.6) in one dimensional phase space (x, v) and advances the solution in
time [21, 22, 58]. The simulation domain in phase space is D = [0, Limaz] X [0 00> V2w

where j = e (for electron) and j = i (for ions), Lye, = 27/k is the system size and

v). .. is chosen sufficiently large so that electron and ion velocity distribution functions
approaches zero as |v/| approaches v,,,. The phase space is discretized with N, = 512

grid points in the spatial domain, where periodic boundary conditions are imposed, and
Nye € [3000,10000], N,; = 4000 in velocity domain such that there is sufficient resolution

in both x and v; grids for all values of p and T considered.

5.3.2 Simulation II

In this Section, I systematically present the numerical results of the two species case where
both kinetic electrons and kinetic ions are considered on the same physics footing. In order
to study the effect of ion motion on the evolution of high frequency (electron dominated)
and the low frequency (ion dominated) electrostatic waves, the numerical results are
presented for the following three cases:- where plasma is subjected to (i) an initial density
perturbation i.e. the effect of ion motion on the Landau damping, (ii) a constant frequency
external drive which concerns the excitation of all four normal electrostatic modes by

applying a constant frequency external drive and (iii) a time dependent external drive or
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chirp in the presence of kinetic ions in the collisionless plasma.

5.3.2.1 Effect of Ion Motion On Landau Damping of Electrons Langmuir
waves (LAN)

In the following, to study the effects of ion dynamics on linear and non-linear Landau
damping of LAN, the oscillations are excited by initializing a single Fourier mode k with

the following initial electron distribution:

o ‘m@w

fe(z,ve,t =0) = [1 4 acos(kx)|exp(——=) (5.12)

e
)

where « is the amplitude of initial electron density perturbation. Ions are initially uniform
in the z-space and follow the Maxwellian distribution in the velocity space f;(z,v;,t =

0) = (v2r)~Y(/1u/Tr)exp(—v2u/2TR). In the following simulation case, we have kept a

e

var = 0 and Tr = 1, unless it is specified otherwise.

fixed wave number k = 0.4, v
When the plasma is perturbed with an initial amplitude, which is as small as near the linear
region, and ions are considered to be immobile i.e. p/Tr — oo, it leads to an exponential
damping or linear Landau damping. However, in presence of ion motion, the linear Landau
damping develops at the beginning but then the electric field evolution starts to deviate
from the linear Landau damping and soon, the Landau damping almost disappears. Instead,
the electric field evolution appears to decay slowly with comparatively large oscillating
periodic structure which should be associated with ion motion [see Fig.(??)]

.When the ion mass is equal to the electron mass (i.e. p = 1), the damping exist only
for a few cycles with reduced damping rate because of quick excitation of ion density
perturbation. Afterwards, the system evolution is mainly dominated by energy exchange
between electrons and ions via electric fields. As the ion mass increases, their motion stop
the linear Landau damping at some time and the large oscillating structures excited due
to ion motion dominates the system evolution at the later stage. In Fig.(??), comparison

of time evolution of the electric field for various values of initial amplitude of perturbation

« and p has been shown. The time evolution of electric field for various values of «
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Figure 5.17: (a) Plots of space averaged electron and ion velocity distribution, (b)
Contour plot of electron phase space distribution for ;o = 1, where plasma is driven
for k = 0.4 with wy = 0.05712.

indicates the beginning of linear Landau damping at the start but then due to the effect
of motion of comparatively massive ions the electric field evolution appears to decay
slowly with comparatively large oscillating periodic structures at later stage. These large
oscillating structures are again composed of smaller oscillations which indicates the decay
of electric field due to both electron and ion motion simultaneously. The amplitude of
these oscillations at later times is found to be increasing with increases in amplitude of
perturbation.

Moreover, with the increase in the ion mass, the influence of ion motion on the linear
Landau damping occurs later with larger oscillation periods accordingly [see Figs.??]. The
frequency of the second large oscillation is found to be near the ion acoustic frequency. In
the present normalization, the ion acoustic frequency is given by w,I,A =k/Ye +vTr/1,
where both v, = v; = 3, corresponding to one-dimensional motion. Form this formula, for

a given Tr and pu, w,I,A x k and for a given k and p, w{A o +/Tg. Therefore, in order to
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Figure 5.18: (i) Time Evolution of space averaged electron velocity distribution
for 4 = 20. The plasma is driven during 0 < ¢t < t; for £ = 0.4 in different
regions:- (a) EAW (w; = 0.5363) for ¢; = 300, (c) IA (wq = 0.275) for t; = 1000,
(e) IBk (wq = 0.1545) for ¢, = 1000. (ii) Phase space plots of electron distribution
fe(z,v,t =3000) [(b) EAW and LAN] and ion distribution f.(x,v,t = 3000) [(d) IA
and (f) IBK].
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Figure 5.19: Fourier transform of electric field performed for different time windows,
where plasma is driven during 0 < ¢ < 1000 with wy = 0.1545 (IBk region) for
w = 20.
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Figure 5.20: Time evolution of density fluctuation [An(z,t) = n(x,t) — no(z,to)]
at © = L/2 [Figs.(a), (c¢)] and Fourier analysis of electric field [Figs.(b), (d)], after
the driver is turned off for 4 = 1836 . The plasma is driven in IBk region during
0 <t < 27, for the following sets of parameters:- (i) k = 0.4, wy = 0.0127 [Figs. (a),
(b)], (ii) k£ =1, wg = 0.0321 [Figs. (c), (d)]. The vertical line represents the time at
which driver is turned off.

confirm that the second large oscillation is ion acoustic, the initial density perturbation
numerical experiment is performed with two sets of parameters: (i) « = 0.001, u = 1836,

k=04, Tr =1,0.1 and (ii) o = 0.001, p = 1836, k = 0.4,0.5, T = 1. The corresponding
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electric field plots are shown in Fig.??, where the large oscillation frequency increases with
increase in k and decreases with /1Tk. Thus, small amplitude perturbation excites both

Langmuir oscillations and TA oscillations in a KIKE plasma.

When the initial density perturbation is large enough in the quasi-nonlinear regime, the
behavior deviates from uniform exponential damping and trapping occurs. When the ion
mass is comparable to the electron mass, both electron and ion contribute in the trapping
dynamics but as the ion mass increases, the influence of ion motion becomes weak and
the system is mainly determined by the electron dynamics. In Fig.(??), to characterize
the plasma response for the nonlinear amplitude of perturbation o = 0.05, the maximum
value of the electric energy € = (1/2) [ E?dx is plotted in the time interval [1500,2000] as
a function of u. For smaller values of u, the € value is high which shows contribution of
both electrons and ions in trapping . However as the value of p increases, the ion influence
becomes weak and trapping decreases till the trapping dynamics mainly dominated by

electrons, thus value of € attains a saturated value.

5.3.2.2 Driven Electron-Ion Electrostatic Modes :- Constant Frequency

Drive

Within linear theory, the Electron acoustic waves (EAWs) and Ion bulk (IBK) waves are
heavily damped as their wave phase velocities is close to electron thermal velocity (vene)
and ion thermal velocity (vsp;), respectively. However, these waves also a nonlinear BGK
mode where electrons (or ions) trapped in the wave troughs which makes the electron (or
ion) velocity distribution effectively flat at the wave phase velocity, and turns off Landau
damping. Initially there is no trapped particle distribution exist. But if the plasma is
driven externally, it can form trapping distribution dynamically as the wave evolves. For an
external electric field E = Eysin(kxz —wt), the trapping period to form the trapped particle
distribution is approximately T = 2/ /kE; for electrons and for ions 7 = 27 \/i/ VkEg
(in this normalization). Thus, the EAWs and IBks can be excited by a small amplitude

driver if the driver is applied resonantly over few trapping periods. The driver continuously
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replenishes the energy removed by Landau damping. Therefore, the trapped particle

distribution survives and the EAW /IBks are eventually produced.

In order to excite all four electrostatic modes (LAN, EAW, TA, IBk), the follow-

Figure 5.21: Phase space plots of f.(x,v,t = 2000) for chirp interval At = 250 when
external downward chirp is given from wpign = 1 t0 Wi, = 0.5 for (a) p =1, (b)
p=3(c)pu="5(d) pu=">50 (e) u=1836 (f) u/Tr — cc.

ing numerical simulation has been performed: at ¢ = 0, both electrons and ions are
considered to be Maxwellian velocity distributions [f. = (1v/27)exp(—v?/2) and f; =

(1v27)(\/11/TR)exp(—v?1/2TR)] and homogeneous density. The external electric field
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Figure 5.22: Phase space plots of f.(x,v,t = 2000) for chirp interval At = 250 when
external downward chirp is given from wpign = 0.8 t0 wipy = 0.4 for (a)u =1 (b)
mu =5 (¢) mu =20 (d) u/Tr — oc.

applied to induce weak trapping has the form E.;; = Egsin(kz £ wt). The external driver
electric field is applied directly to the electrons and ions in the Vlasov equation. The
longest wavelength is driven that fits into the simulation box. It is important to note that
the amplitude of external drive, Ey, is chosen to be small enough that when an initial
value problem is performed with this value of Ey, the trapping time 77 (for electrons
7¢ = 27/ /kEq and for ions 7¢ = 27 Vit/ VEEy ) is much larger than the Landau damping
time 71,p = ’yzl. Moreover, the external drive of amplitude Ey = 0.025 is switched on at
t = 0 for a period At, where 7§ < At < 57/ and then we let the system to relax for atleast
another ¢ = 2000 or t ~ 3277 by switching off the external drive. After the drive has been
turned off, the plasma response is analyzed. The temperature ratio is fixed T = 1, unless

it is specified otherwise.

I simulate the excitation of the modes with k — w values obtained from the studies shown

in Fig.(??(a)). In order to characterize the plasma response, I have considered three cases
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with p =1, p = 20 and p = 1836. First, let us consider the plasma with y =1 case, for
which the space averaged velocity distribution of electrons and ions are always the same
due to their identical masses and equal and opposite charges [Fig.(??)]. In case of immobile
ion (u/Tr — 00), an infinitesimal density perturbation leads to linear Landau damping
and as the amplitude of perturbation becomes larger, LAN mode sets in and the weak
trapping ensues of resonant particles in the wave troughs. Moreover, when the plasma
is driven with an infinitesimal amplitude external drive in the background of immobile
ions , it drives a well known “acoustic” mode, also known as “EAW”, besides the well
known “LAN” mode in electron distribution. However, when ion motion is considered,
for example o = 1, for an infinitesimal density perturbation, the ion motion significantly
suppresses the linear Landau damping and the system evolution is mainly dominated by
energy exchange between electrons and ions via electric fields [103]. For electron-positron
plasma i.e. ;= 1, when plasma is driven externally with w = wy = 0.5172 (in EAW region)
during 0 <t < 300, where wy is considered from k — w curve for wavenumber k£ = 0.4, it
produces both “acoustic” and “Langmuir” structures in electron as well as ion distribution
at v ~ 1.419 and v ~ 4.0275 respectively [Figs.(??(a)) and (??(b))]. These values are
slightly different from the values obtained via the dispersion relation shown in Fig.(?7?(a))
for “acoustic ” and “Langmuir” waves (ngW ~ 1.42 and UQ%AN o~ 4.0287) due to the fact
that the trapping region created in the simulations by the external driver is of small but
finite velocity width.

In Fig.(??), the k-w dispersion curve indicates that as we move towards larger values of
1, the single k-w thumb curve begins to break into two parts. For y = 20, at which both
thumb and teardrop are well separated [Fig.(??)], four simultaneous roots for £k = 0.4
(EAW, LAN, IA, IBk) are obtained using nonlinear VPPM solver. In Fig.(??), we show the
time evolution of the space averaged velocity distribution for y = 20 where plasma is driven
in three different regions:- (i) EAW, (ii) IA and (iii) IBk, with (k — w) values obtained
from dispersion predictions [Fig.??(a). When the plasma is driven in the EAW region with
wgq = 0.5363, it creates two observable flattenings in the electron velocity distribution, one
of which is EAW (at v ~ 1.295) and the other one is LAN (at v ~ 3.164) [Fig.(??(a))].

Similarly, when plasma is driven in IA region with wy = 0.275, as shown in Fig.(?7(c)), it
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also creates two observable flattenings in the velocity distribution, one of which is TA (at
v =~ 0.675) and the other one is LAN (at v o~ 3.2975). Also, when driven in IBk region
with wg = 0.1545 results in two trapping regions, one of which is IBk (at v ~ 0.375) and
the other one is LAN (at v ~ 3.25) [Fig.(??(e))]. These values are also slightly different
from the values obtained via the dispersion relation shown in Fig.?? for EAW, LAN, TA
and IBk waves (vF4W ~1.3407, v}AN ~ 3.3075, vj* ~ 0.6875 and v}P* ~ 0.38675) due to

the trapping region of small but finite velocity width.

In Fig.(??(c), 72(d), ??(f)), we have shown the snapshots of phase space distribution of
electrons and ions corresponding to the above cases. These evidences suggest that the weak
external driver has successfully created the trapped particle regions or weak flattening of
distribution function simultaneously for all four branches. Fourier analysis, for case (iii),
in Fig (77?) reveals that after the drive has been turned off, the electric signal is shown to
be composed of all four modes and their harmonics.

For higher values of 1, the system evolution is mainly determined by the electron dynamics
at small wavenumbers. However, as shown in Fig.(??(b)), at slightly higher wavenumbers,
the dispersion relation predicts solutions for ion branches only and no solutions for electron
branches. For example, with more realistic values of u, say pu = 1836, one gets four
roots for k = 0.4 (EAW, LAN, TA, IBk) and two roots for £ = 1 (IA and IBK) from
analytical estimate. In Fig.(??(a)) and Fig.(??(c)), we show the time evolution of the
density fluctuation, defined as An(z,t) = n(x,t) — no(z,t9) where n(z,t) = [ fdv. In
Fig.(??(a)) and Fig.(??(c)), the density fluctuation vs time is shown at = L/2 for k = 0.4
(with wg = 0.0127) and k& = 1 (with wg = 0.00321), where the plasma is driven in IBk
region. For this massratio, plasma is simulated for 7000/ V1836 ~ 163 ion plasma periods
for k = 0.4 and 5000/ v/1836 ~ 117 ion plasma periods for k = 1. As it is clear from these
plots, electron dynamics is present along with ion dynamics for £ = 0.4, during and after
the driving process, whereas for £ = 1, ion dynamics dominates. After the driver has been
turned off, the electric field oscillates at an almost constant amplitude. Fourier analysis
[Figs. (??(b)), (??(d))] reveals that for £ = 0.4, both electron (LAN) and ion (IBk) modes

are generated whereas for £k = 1, only ion mode is present.

124



CHAPTER 5. FORMATION AND DYNAMICS OF ELECTROSTATIC PHASE
SPACE VORTICES: KINETIC IONS

In this work:- (i) a general symmetric dispersion relation which shows a continuous
connectivity of electron (or “Thumb curve”) and ion (or the “Teardrop curve”) branches is
shown, (ii) Demonstration of the simultaneous excitation of all four normal mode branches
(LAN, EAW, TA and IBk waves) of a two species Vlasov plasma in a symmetric framework,
both via dispersion solution as well as by applying a small amplitude external electric
field that creates a weak population of trapped particles resulting in weak flattening of the

distribution function.

5.3.2.3 Chrip Driven Phase Space Electron Vortices- Role of Ion motion

In the following, I have considered an initial Maxwellian homogeneous electron plasma
and an initial Maxwellian homogeneous ion plasma which is driven by an external drive
Feyr of amplitude Ey with a downward frequency chirp w = at + § fromt =0tot =t
with appropriately chosen chirp coefficients («, #). By doing so, the total electric field Er
(Er = Eeut + E5) acting on the particles produces trapping in the resonant region. In
this way, the energy of both trapped and untrapped particles increases, till the chirp is
on, followed by complete energy conservation once the chirp is turned off, till the end of
simulation.

In Fig.(??), the homogeneous plasma is subjected to an external drive of amplitude
Ep = 0.025 right at ¢t = 0 for time duration At = 250 from wp;gp = 2 t0 wjpy = 1 in high
frequency regime for different values of u, namely, = 1,3, 5,50, 1836 and p/Tr — co. The
chirp parameters are o = —4 x 1073 and 3 = 2. In the limit of immobile ions (u/Tr — 00),
this downward frequency chirping leads to large coherent structures in phase space with
multiple extrema with “shark” like features in phase space. As described earlier, the
constant frequency linear drive excites electron acoustic waves and Langmuir waves along
with other harmonics. Now, when the downward chirp is applied instead of the linear
drive, it excites the whole resonant region from LAN to EAW along with its harmonics in
a very short time period. Therefore, all these excited modes overlap to form giant phase
space vortices (PSVs). However, when the ion motion is considered, the thumb shape of

dispersion curve gets wider as the value of y decreases. Therefore, chirp efficiency decrease
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and at smaller value of u, only two main modes i.e. LAN and EAW gets excited.

Also, in the smaller frequency regime near EAW branch, the downward chirp leads to the
formation of multiple phase space vortices, all appearing at different regions of phase space,
which gives a “honeycomb”-like transient structure of the distribution function. As shown
in Fig. (77?), the plasma is excited with the same drive amplitude Ey = 0.025 and frequency
is swept whigh = 0.8 to Wi = 0.4 with a sweep rate of o = —1.6 x 103 for different u
values, namely, p = 1,5,20 and p/Tr — oo. In the limit of immobile ions (u/Tr — o0),
this downward frequency chirping excites the entire sub-harmonic region of phase space,
which results in multiple non-overlapping phase space holes or “honeycomb”-like structures
in phase space. However, when the ion motion is considered, trapping efficiency decreases

at smaller value of u.

5.4 Summary and Conclusions

In the first part of this Chapter, the study of electrostatic waves in ion scale has been
performed in the frame of Boltzmann electrons with kinetic ions using Vlasov-Yukawa
(VY) solver. This model results in a “teardrop” curve (for IA and IBk waves). Using 1D1V
VY solver Landau damping and electrostatic waves at ion scales (IA and IBk waves) have
been studied. Also, formation and dynamics of chirp driven phase space vortices at ion
scales have been studied for different temperature ratios.

Using a one dimensional (1D), two component Vlasov-Poisson system which treats both
electrons and ions symmetrically in terms of kinetics, the the following major findings are
reported:- (i) continuous connectivity of electron (or “Thumb curve”)[17] and ion (or the
“Teardrop curve”)[34] branches with a general symmetric dispersion relation. The hitherto
separately studied “Thumb curve” and the “Teardrop curve” show a “symmetry” in the
dispersion curve as each of them consists of a high frequency branch and a low frequency
branch. We present the whole physical picture on the same scale using a general symmetric

dispersion curve which again consists of a high frequency part (“Thumb curve”-LAN,
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EAW) and a low frequency part(“Teardrop curve”-IA, IBk), (ii) when plasma is subjected
to small amplitude initial density perturbation, it excites both Langmuir oscillations as
well as TA oscillations in a KIKE plasma, (iii) all four branches (LAN, EAW, TA| IBk)[17,
19, 34] have been recovered both via performing a numerical simulation where plasma is
driven with an infinitesimal external electric field and from obtaining a general symmetric
dispersion relation from solving weakly driven fully nonlinear VP equations which facilitates
weak trapping. (vi) for realistic mass ratios, simultaneous excitation of all the normal
modes:-LAN, EAW, TA, IBk. (v) the formation and dynamics of chirp driven PSVs are

found to be dependent on u values.

Furthermore, the results presented in this and the earlier Chapters are for the collisionless
plasmas. However, in systems governed by kinetic processes, nearly collisionless limits are
not the same as the limit of zero collisionality. Since particle collisions work to restore
thermal equilibrium, it is clear that their effect can eventually change the features of the
kinetic dynamics of a plasma, even in situations where collisionality can be considered very
weak. The evolution of the plasma is a result of nontrivial combination of kinetic processes
and collisionality. Therefore, in the next Chapter, an attempt has been made by means
of numerical simulations, to study effect of weak collisionality on the electrostatic driven

phase space vortices. The details of which will be presented in the Chapter 6.
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CHAPTER

Eulerian Simulations of Collisional Effects on

Electrostatic Phase Space Vortices

In this Chapter, the effect of collisions on electrostatic phase space vortices
formed in a collisionless process is analyzed by means of Eulerian simulation
for two different collision models. As seen in earlier Chapters, in the absence
of collisions, phase space vortices manifests as the formation of a plateau in the
resonant region of the particle velocity distribution function, due to trapping of
resonant particles. In the presence of collisions, over long time this plateau is
smoothed out since collisions drive the velocity distribution towards Mazwellian
irrespective of how weak the collisions are as long as they are non-zero. In
these conditions, kinetic processes and collisionality would be in competition
and the evolution of the plasma would, therefore, be a result of nontrivial
combination of these two effects. Therefore, an attempt has been made by
means of numerical simulations, to study effect of weak collisionality on the
electrostatic driven phase space vortices with two types of collision operators:
(1) Boltzmann collision operator, where the colliding particles can be treated

as isolated pairs and, (2) Fokker-Planck (FP) collision type operator in one

129



CHAPTER 6. EULERIAN SIMULATIONS OF COLLISIONAL EFFECTS ON
ELECTROSTATIC PHASE SPACE VORTICES

dimension, where many weak collisions lead to particle diffusion in wvelocity
space. It is shown that depending on the collision models used, the nature
of smoothing in velocity space of giant PSVs results in different structures.
However, irrespective of the collision model used, substantial excess density

fractions are retained.

6.1 Introduction

The understanding of collision dynamics in plasmas is a very fascinating and important
concept and it has been the subject of a relevance for both laboratory plasmas as well as
astrophysical plasmas. Various authors have approached the study of collisional effects in
plasmas, by modeling particle interactions through different collision operators, with differ-
ent physical features and mathematical structures [1, 88, 61, 62, 104]. For example, highly
collisional plasmas, collision operators involving a few low-order moments are found to be
enough to derive transport equations [105, 106, 107, 108]. However, plasmas with low colli-
sionality (or nearly collisionless) require calculation of high-order moments [109, 110, 111].
In order to calculate the effect of collisional dynamics on plasmas, several different model

operators and numerical methods have been developed and applied [112, 113, 114, 115, 116].

While studying plasma dynamics, collisions are usually considered either dominant,
so as to maintain the velocity distribution function near Maxwellian (fluid model), or
negligible (Vlasov model). For physical systems, such as the solar wind, that exhibit a
weak but non-negligible collisionality, both kinetic and collisional approaches are necessary
to understand the phase space dynamics and phase space structures formed. In systems
governed by kinetic processes, limit of low collisionality (or nearly collisonless regimes) is
not the same as the limit of zero collisionality. This is mainly because, kinetic processes
in a plasma are determined by the details of the particle distribution function in velocity
space and on the nature of subtle trapping-detrapping processes. For example, a slight

departure from a Maxwellian may not produce any significant change in the real frequency
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but can produce significant modifications in the growth/damping of electrostatic waves.
Since particle collisions work to restore thermal equilibrium, it is clear that their effect
can eventually change the features of the kinetic dynamics of a plasma, even in situations
where collisionality may be regarded very weak. Nearly collisionless regimes are important
to a number of physical processes, including runaway electrons in magnetically confined
fusion plasmas, magnetic reconnection in weakly collisional regime, low density edge in a
tokamak plasma, solar plasma near sunspots, and non-neutral plasmas etc [117, 118, 119,
120]. For such kind of plasma phenomena, kinetic dynamics along the magnetic field lines
can only be explained if a collision model is added to the model described here. In these
conditions, kinetic processes and collisionality are in competition between each other: while
the first process works to produce deformations of the particle distribution function away
from a Maxwellian, the latter tends to restore the Maxwellian configuration. The evolution
and phase space structure of the plasma is, therefore, a result of nontrivial combination of

these two effects.

In the past, many attempts have been made to deal with the dynamics due to collision
processes, for eg., a spectral method has been proposed for the numerical evaluation of the
Landau collision integral, based on the use of Fast Fourier Transform (FFT) routines which
significantly reduce the computational weight with respect to finite difference schemes
[63]. The inclusion of collisional effects in the splitting scheme has been performed using
Bhatnagar-Gross-Krook (Krook) operator to study the damping of electrostatic waves in
the linear limit [61]. In order to reduce computational weight of the numerical approxima-
tion to the Landau integral, collisional operators have been simplified by decreasing their
dimensionality in velocity space to study Coulomb collision effects [62, 121]. Recently, a
detailed numerical study of the simplified operators has been performed through a 1D-1V
Eulerian simulations to study the collisional effects on electrostatic plasma waves [122,

123].

In the present work, an attempt has been made by means of Eulerian phase spacenumerical
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simulations, to study effect of weak collisionality on the linear Landau damping, non-linear
Landau damping and driven electrostatic driven phase space vortices. In this Thesis, two
types of collision operators have been used to study the same physical phenomenon and
results have been compared. The collision operators are:- (1) Boltzmann collision operator,
where the colliding particles can be treated as isolated pairs and (2) Fokker-Planck (FP)
collision type operator in one dimension, where many weak small angle-like collisions lead

to particle diffusion in velocity space.

In this Chapter, the inclusion of collisional effects in Eulerian time-splitting algorithm
has been performed to the study the effect of weakly dissipative/collisional effects on driven
electrostatic phase space vortices (PSV). Collisions are modeled through one dimensional
operators of the Bhatnagar-Gross-Krook (Krook)/Fokker-Plank or Zakharov-Karpman
(ZK) type [61, 62, 63]. The accuracy of the numerical code is discussed by comparing the
numerical results to the analytical predictions obtained in some limiting cases to evaluate
the effects of collisions on linearly stable (Landau damping) distributions and in the dissi-
pation of Bernstein-Greene-Kruskal modes. Particular attention is devoted to the study of
collisional effects on the formation and dynamics of driven PSVs which have been studied
in previous Chapters, for an unbounded collisionless plasma with both Maxwellian and
non-Maxwellian distributions [P. Trivedi and R. Ganesh, Physics of Plasmas 23, 062112
(2016), P. Trivedi and R. Ganesh, Physics of Plasmas 24, 032107 (2017)]. Depending on
the collision models used, it is shown that the giant PSVs smoothen out, yet retain overall
large excess density fractions. In this Chapter, using VPPM-2.0 solver which includes
collisional models, I bring out several interesting features of driven phase space structures
in the presence of weakly collisional environment, starting from a Maxwellian plasma, the

details of which will be presented below.

The rest of the Chapter is organized as follows: I proceed to describe the numerical
scheme in Sec. 2.2. Simulations with different cases have been discussed in Sec. 2.3. In the

Subsec.??, the effects of collisions on linear Landau damping has been elucidated using both
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Krook and ZK operators. In Subsec.??, the collisional effects on Bernstein-Greene-Kruskal
waves or phase space vortices (PSV) has been reported. In Subsec.??, the effect of collisions
on the driven PSVs with multiple extrema due to embedded holes and clumps , or multiple
phase space vortices has been presented using both Krook and ZK operator. In Sec.2.5

summary and conclusions have been presented.

6.2 Collision Model And Numerical Scheme

In the framework of kinetic theory, the propagation of 1D electrostatic plasma waves in
the absence of collisions can be described by the 1D-1V Vlasov-Poisson equations. In the
present case, I analyze in detail the properties of teo different one-dimensional collisional
operators and their effects on the propagation of plasma waves and electrostatic phase space
vortices, by means of Eulerian kinetic simulations, which has been achieved by including in
the right hand side of the Vlasov equation, different collision operators. In our analysis,
only electron-electron collisions are taken into account.

The basic equations considered here can be written in the following dimensionless form:

of  of of _of _

E * U% - ET% B E collision B C(f) (61)
0B,
- /fdv (6.2)

where C(f) is a generic collisional operator and Ep = Eg + Eey is the total electric field,
where Fg(z,t) is the self consistent electric field and E.,; is the external driver electric
field defined as:

Eext = Epsin(kz + wt) (6.3)

where constant Ej is the amplitude of external drive. Here, k represents the perturbation
wave number in the simulation box and w represents the driver frequency. Also, time has
been normalized to the electron plasma frequency wy., space has been normalized to the
electron Debye length \p., velocity has been normalized by the initial equilibrium electron

thermal velocity vipe = Apewpe. With these choices, electron distribution f gets normalized
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by ng/vine and E by mevine/eApe where e is the electron charge. In this model, the ions
form a stationary neutralizing background of number density ng with numerical value 1 in

the Poisson equation.

In this Thesis, I have considered two different 1D collisional operators:-

1. Bhatnagar-Gross-Krook (Krook) operator [61]:- C' = —v(f — feq)

2. Zakharov-Karpman (ZK) operator [62]:- C = vd/0v(0f/0v + vf)

where v is the collision frequency, f., is the local equilibrium profile for the distribu-
tion of particles. The first operator is Bhatnagar-Gross-Krook (Krook) operator (also
known as Krook model), is the simplest collisional operator. If a plasma is close to the
isotropic thermal equilibrium, i.e. , close to the local equilibrium value fe, (or Maxwellian
fo =1//(2m)exp(—v?/2)) , the effects of binary collisions can be modeled by means of
Krook operator. The model is useful because of its simplicity and for weakly ionized
plasmas ( where charge-neutral collisions are dominant), it is a good approximation, but it
assumes identical relaxation times for all the moments (density, momentum, energy etc)
which may not be necessarily true in all situations, hence is restrictive. In the past, Krook
operator has been used to introduce the method to compute the transport coefficients (as

plasma conductivities etc) [124].

The second operator under consideration is the linear Zakharov-Karpman (ZK) opera-
tor[62], whose form is equivalent to that discussed by Lenard and Bernstein [88] to study
the linear evolution of plasma oscillations in presence of small-angle collisions. It has been
obtained by linearizing the original Landau integral in the resonant region and assuming
distribution functions are close to Maxwellian. This collision term is a simplified form
of the Fokker-Planck (FP) collision operator and neglects the velocity dependence of the
collision frequency, but respects important properties of the FP operator:- (a) the property
of conserving the number of electrons, (b) the property of representing diffusion in velocity

space, and (c) the property of yielding the steady state solution as Maxwellian in absence
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of spatial anisotropies and forces. In the ZK model, collision frequency is considered low,
in the sense that trapped particles bounce many times in the wave trough, before being
detrapped due to a ZK collision. Both Krook and ZK operators used here do not conserve
either momentum or energy. However, the Krook operator does conserve the number of
particles. There are other operators with better conservation properties such as Gaussian
BGK model, ESBGK model, the BGK model with velocity dependent collision frequency,
Dougherty collisional operator etc [125, 126]. However, in order to perform a qualitative
comparison study using simplistic collision operators, both Krook and ZK operators have
been used here. Quantitatively, there will be indeed some differences between the results
obtained using other operators than the results obtained from Krook and ZK operators.
However, I believe that there will be no difference qualitatively.

For the collision models considered here, time evolution of the distribution function is
approximated by using a splitting scheme for collisional Eulerian codes [63] that decomposes
the evolution of f in three different steps. To summarize this splitting scheme, for a time
step At:

(1). At/2 transport step — 0:f +v0,f + E0,f = 0.

(2). At collisional step — 0, f = C(f).

(3). At/2 transport step — Opf +v0,f + Edyf = 0.

Each transport step is in turn composed of advance, a single transport step At’ can be
summarized as follows:

a). At'/2 z-advection — Oy f +v0,f =0

b). Poisson routine Es — Ep = Eg + Eex(if any)
c). At' v-advection — O.f + E7d,f = 0.
d). At'/2 x-advection — Oy f + v, f = 0.
Both z-advection and v-advection have been performed numerically using PPM advection
scheme [58].

We set the simulation domain in phase space D(z,v) = [0, Limaz] X [~ 0% 00 V) 0z], Limaz =
27 /k is the system size and v/, is chosen sufficiently large so that velocity distribution
functions approaches zero as |v’| approaches v, .. In all these simulations, the mode with

the largest wavelength that fits in the numerical domain is excited at ¢ = 0, in order to
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prevent the sideband frequency generation in the system. The phase space is discretized
with N; = 512 grid points in the spatial domain and N, = 5000 in velocity domain such

that there is sufficient resolution in both z and v/ grids.

6.3 Simulation Results

In this Section, I systematically present the numerical results of our collisional Eulerian
code using two different collisional operators for various values of collision frequencies. 1
have considered in detail three different physical phenomena: (a) the first is collisional
effects on linear Landau damping, (b) the second concerns the collisional damping of PSV
excited by large amplitude initial density perturbation, and (c¢) the third concerns the

study of chirp driven PSVs in the weakly collisional plasma.

6.3.1 Linear Landau Damping: Effect of Collisions

As predicted by Landau in 1946, in the absence of collisions electrostatic waves are damped
exponentially in time for small amplitude of initial density perturbations. In order to study
the effects of collisions on linear Landau damping, two different collisional operators:- (a)
Krook operator and (b) ZK operator have been used.

In this set of simulations, the initial distribution function is considered a Maxwellian in
velocity space, over which a perturbation in physical space with amplitude a and wave

number k is superposed,

fo(z,v,,t =0) = (1+ acos(x)) fo(v) (6.4)

where fo(v) = 1/+/(27)exp(—v?/2) is the initial Maxwellian velocity distribution function.
Here, the plasma is perturbed with a small amplitude initial density perturbation for two
different collisional operators:-

(1) In the first set [Table ??], Krook operator is used with the following set of parameters:-
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(2) In the second set of simulations [Table ??], ZK operator is used for the following

Table 6.1: Krook operator for LLD simulations

k Q v
0.4 1 x 1072 0,1 x1075,1x1073,1x1072,1 x 107*
0.5 5x 1073 0,1 x1072,5x1072,1 x 1071
parameters:-

In Fig.?7?, logarithmic of time evolution of amplitude of the first fundamental harmonic

Table 6.2: ZK operator for LLD simulations
k « v

0.4 1x 1072 0,1x 10741 x 1075,1 x 106

of the electric field Ej—1, denoted by E1, is plotted (or linear Landau damping rate )
for k = 0.4 and k£ = 0.5 for various values of collision frequency v for Krook operator.
As the collision frequency increases, the damping of the plasma wave also increases. The
corresponding values have been shown in Table ?? and ??. In Fig.??, ~ is plotted for
k = 0.4 and k = 0.5 for various values of collision frequency v for ZK operator. In ZK
opertaor does not affect the linear Landau damping rate v (See Table??) in the linear
regime (i.e. before Tpounce = 27/ /oo = 62.831, after which the linear solution breaks down
and nonlinear phenomena become prominent). The effect of collisional frequency with ZK
operator comes into play in the non-linear regime where plasma wave damps faster with
increase in collision frequency. Moreover, for small collision frequency (for eg. v = 107°),

the ZK operator is much more effective than Krook operator at long time evolution.

Table 6.3: Krook operator for k = 0.4 Table 6.4: Krook operator for k = 0.5

v Wr gl 4 W gl
0.00 1.285 -0.06612  0.00 1.415 -0.15339
0.00001 1.285 -0.06612 0.00001 1.415 -0.15339
0.001 1.285 -0.06724  0.01 1.415 -0.1634
0.01 1.285 -0.07639  0.05 1.415 -0.20331
0.1 1.285 -0.16603 0.1 1.415 -0.25215
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Figure 6.1: Linear Landau Damping (LLD)- Plots of logarithmic of first fundamental
harmonic log|E'1| with time, when collisions are applied through Krook operator:-
(a) k=0.4, ap =0.01 (b) k= 0.5, oy = 0.005.

6.3.2 Non-Linear Landau Damping:- Role of Collisions

As described earlier, in collisionless plasmas, when the amplitude of perturbation becomes
larger, contribution from the nonlinear terms become more significant and the behavior
deviates from uniform exponential damping. This causes trapping nonlinearity which
leads to form coherent structures in phase-space[10]. Electrons with velocity vy ~ w;/k,
resonate with the plasma wave field and energy exchange takes place between resonant
particles and wave. This results in the flattening of the distribution function around
vy ~ wyp/k. For eg., k = 0.4, when plasma is perturbed with a nonlinear amplitude of
perturbation ag = 0.05, the velocity distribution function gets flattened near 3.21 and
a corresponding phase space vortex is found at vg = 3.21. This implies that there is a

prominent potential well formed due to trapped particle effects. However, when the plasma
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Figure 6.2: Linear Landau Damping (LLD)- Plots of log|E'1| with time for k = 0.4,
ap = 0.01 and v = 1072, (a) when collisions are applied through ZK operator, (b)
Comparison between Krook and ZK operators.
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Figure 6.3: Collsional damping of PSVs, when collisions are applied through Krook
operator and turned on at ¢t = 1000 for £ = 0.4, = 0.05 and v = 0.01: (a) Plot of
evolution of spatially averaged electron velocity distribution ﬁ(v), and (b) Plot of
excess density fraction dn/ngy evolution at x = L/2 with time. The vertical black
line indicated the time at which collisions are turned on i.e. at ¢ = 1000.

is not fully collisionless, the possibility of sustainability of such potential well with trapped
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Table 6.5: ZK operator for k = 0.4

v Wy Y

0.00 1.285 -0.06612
1076 1.285 -0.06612
107° 1.285 -0.06612
1074 1.285 -0.06612

particles, depends on the competition between nonlinear trapping oscillations, which try to
make the velocity distribution flat around the phase velocity of the structure and collisions
tends to restore the Maxwellian velocity distribution.

In the following set of simulations, the initial distribution function is considered a
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Figure 6.4: Collisional damping of PSVs, when collisions are applied through both
Krook and ZK operators for k = 0.4, & = 0.05 and v = 10~° and the collisions are
turned on at ¢ = 1000: (a) Plot of evolution of spatially averaged velocity distribution
f(v), and (b) Plot of excess density fraction evolution at z = L/2 with time.

Maxwellian in velocity space, over which a perturbation in physical space with ampli-
tude @ = 0.05 and wave number k = 0.4 is superposed, given by:- fo(z,v,,t = 0) =

(1 + acos(z)) fo(v), where fo(v)1//(2m)exp(—v?/2). This simulation is divided into two
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Figure 6.5: Phase space plot of f(x,v) at t = 5000, where an initial density perturba-
tion of non-linear amplitude (o = 0.05, k = 0.4) is applied at ¢ = 0 and the collisions
are turned on at ¢ = 1000 for following cases:- (a)v = 0, (b)rv = 1075, Krook operator
and (c) v = 107", ZK operator
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Figure 6.6:
start (i.e. at ¢ = 0 onwards) and kept on throughout the simulation. Collisions are
applied through Krook operator for £ = 0.4, a = 0.05 and v = 0.01: (a) Plot of
evolution of spatially averaged electron velocity distribution f.(v), and (b) Plot of
excess density fraction on/ng evolution at z = L/2 with time.

Collsional damping of PSVs, when collisions are turned on from the

steps. As a first step, an initial density perturbation is given of a non-linear amplitude

in the absence of collisions, in order to form the plateau in the resonant region of the
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Figure 6.7: Collisional damping of PSVs, when collisions are applied from the start
(i.e. at t = 0 onwards) and kept on throughout the simulation. Collisions are applied
using both Krook and ZK operators for k = 0.4, a = 0.05 and v = 107°: (a) Plot

o~

of evolution of spatially averaged velocity distribution f(v), and (b) Plot of excess
density én/ng fraction evolution at x = L/2 with time.

electron distribution function, turn off Landau damping, and finally excite the phase space
vortices. Once the PSV structure is formed and the electric field “rings” at a nearly
constant amplitude in time [10], I dub this “ring” as “Manfredi ringing”. As a second
step, collisions are turned on and the collisional damping of the amplitude of the PSV is
observed, created through the initial density perturbation through collisionless nonlinear

process.

In the simulations presented in this Section, collisions are included using two operators,
namely: (a) Krook (v = 0.01,107%) operator, and (b) ZK (107°) operator. In the first case,
an initial density perturbation is applied to excite phase space vortices in the resonant

region and let the plasma evolve till ¢ = 1000. Then collisions are turned by applying the
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one of the collision operators. Here, two different cases has been considered:- (i) for v = 0.01
with Krook operator, and (ii) for » = 1075 with both Krook and ZK operators. In Fig.??,
the time evolution of space averaged velocity distribution function and the time evolution
of excess density fraction dn/ng, (as defined by on(x,t)/ng = [ f(z,v,t)dv — [ fo(v)dv),
at © = L/2, have been shown where the Krook operator is applied with collision frequency
v = 0.01. In response to the initial non-linear amplitude perturbation, excess particle
density starts with a maximum value. Then the system relaxes and saturates to attain a
certain value of excess density fraction and remains almost the same due to formation of
PSV. This can also be seen as formation of plateau in the velocity distribution function.
Once the PSV is formed, as soon as the collisions are turned on at ¢ = 1000, the width of
plateau and the excess density fraction decrease and the typical vortex structure, signature
of the trapping of particles in the wave potential well gradually vanishes due to detrapping
of trapped particles and the velocity distribution becomes Maxwellian at ¢ = 1500. In
other words, the nonlinear plasma mode disappear for ¢ > 1500.

In Fig.??, I report the simulations for smaller collision frequency i.e. v = 107> applied

Collisions Off Collisions On

04t
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——1=2000, Collisions On
——1=2200, Collisions On
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——1=2600, Collisions On

t=2800, Collisions On
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Figure 6.8: Collisional damping of Chirp driven giant PSVs, when plasma is driven
with a downward frequency chirp for At; = 250 and collisions are applied through
Krook and turned on at ¢t = 2000 for & = 0.4,and v = 0.01: (a) Plot of evolution of

~

spatially averaged velocity distribution f(v), and (b) Plot of excess density fraction
evolution at x = L/2 with time.

using two different operators: Krook and ZK. The time evolution of space averaged dis-
tribution, in Fig.??(a), shows that when the collisions are turned on at ¢ = 1000, with

collision frequency v = 107°, the ZK operator is more effective than Krook operator. The
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Figure 6.9: Collisional damping of Chirp driven giant PSVs, when plasma is driven
with a downward frequency chirp for At; = 250 and collisions are applied from the
start (i.e. at ¢ = 0 onwards) and kept on throughout the simulation. Collisions are
applied through Krook for £ = 0.4,and v = 0.01: (a) Plot of evolution of spatially

-~

averaged velocity distribution f(v), and (b) Plot of excess density fraction evolution
at x = L/2 with time.

“plateau” region remains same for both without collisions (v = 0) and with Krook collisions
of frequency v = 10~°. However, for ZK operator, collisional effects are strongly visible
which causes the detrapping of all trapped particles and velocity distribution function

tends towards the Maxwellian.

In Fig.??, the phase-space contour plots of f(z,v,t) have been shown that were captured
at t = 5000 in the trapped region around the wave phase velocity for different cases:- (a)
v =0, (b) v = 107°, Krook operator, and (c) v = 107°, ZK operator . At t = 1000,
collisions are turned on in the simulation and they start playing a crucial role in the time
evolution of the system. For Krook operator, such low collisional frequency does not affect
the trapped particle distribution and the PSV. However, for ZK operator, collisional effects
are strongly visible in phase space, even though the value of the collision frequency is very
small. At ¢ = 5000 the phase space structure, totally disappear due to a collisional phase
mixing and the separatrix between trapped region and free region is no more visible in
the long time limit, meaning that particles, that were trapped in the wave trough, are
detrapped by the effect of diffusion in velocity. In the second case, the collisions are
present from the initial time (i.e. ¢t = 0 onwards) while an initial density perturbation is

applied to excite phase space vortices in the resonant region and let the plasma evolve in
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Figure 6.10: Collisional damping of Chirp driven giant PSVs, when plasma is driven
with a downward frequency chirp for At; = 250 and collisions are applied through
Krook and turned on at ¢ = 2000 for £ = 0.4,and v = 107°: (a) Plot of evolution of

~

spatially averaged velocity distribution f(v), and (b) Plot of excess density fraction
evolution at x = L/2 with time.

the presence of collisions. Here, two different cases has been considered:- (i) for v = 0.01
with Krook operator, and (ii) for » = 10~5 with both Krook and ZK operators. In Fig.??,
the time evolution of space averaged velocity distribution function and the time evolution
of excess density fraction dn/ng, (as defined by on(x,t)/ng = [ f(z,v,t)dv — [ fo(v)dv),
at © = L/2, have been shown where the Krook operator is applied with collision frequency
v = 0.01 from the initial time. In response to the initial non-linear amplitude perturbation,
excess particle density starts with a maximum value. However, in the presence of collisions
the excess density fraction decrease rapidly and the plasma wave disappears completely
for t > 300. In fig.??, the same numerical experiment is done for both Krook and ZK
operator, with collision frequency v = 107°, is shown. In this case results are similar to
what shown in Fig.?? where the ZK operator is more effective than Krook operator. The
“plateau” region forms for both cases, without collisions (v = 0) and with Krook collisions

of frequency v = 10~°. However, for ZK operator, collisional effects are strongly visible
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Figure 6.11: Phase space plot of f(x,v) at ¢t = 5000, where the plasma is driven
with a downward frequency chirp for At; = 250 to excite chirp driven giant PSVs for
k = 0.4, and the collisions are turned on at ¢t = 2000 for following cases:- (a)v = 0,
(b)v = 1075, Krook operator and (c) v = 107, ZK operator

which causes the plasma wave to disappear completely and velocity distribution function

tends towards the Maxwellian.
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6.3.3 Collisional Effects On Chirp Driven PSVs

In this Section, the effect of collisions on the driven phase space vortices has been studied
using Krook and ZK operators. As described earlier in Chapter[3], when a homogeneous
Maxwellian plasma is driven with an time dependent external drive or chirp of an infinitesi-
mal amplitude, it leads to steady state giant PSV, with multiple extrema due to embedded
holes and clumps. These PSVs were shown to survive long after the external drive was
turned off. In the present set, simulations are again divided into two steps. As a first step,
the plasma is driven with a small amplitude external drive of time dependent frequency
(or chirp) in the absence of collisions, in order to form the giant driven multiextrema
phase space vortices. Once the PSVs are formed, the driver is turned off and the plasma
is evolved further for several wp_el times such that the electric field “rings” at a nearly
constant amplitude in time. As a second step, I turn on collisions and observe the effects
of collisions on these PSVs, previously created through the driving (or chirp) process.

In the simulations presented in this Section as before, collisions are modeled using two
operators, namely: (a) Krook (v = 0.01,107°) operator and (b) ZK (107°) operator. As
before, two different cases has been considered here:- (i) for v = 0.01 with Krook operator,
and (ii) for v = 107° with both Krook and ZK operators.

For the first case, starting with a Maxwellian homogeneous plasma, driven by an external
downward frequency chirp which is applied to the plasma right at ¢ = 0 for time duration
Atg till t = t; from wpign/w2 to Wigw/w1. The parameters for simulations are:- k = 0.4,
Ey = 0.025, Aty = 250, whigh = 2, wiow = 1. The chirp parameter are o = —4 x 1073
and 8 = 2. In order for the transients to relax the system is evolved till ¢t = 2000. The
steady state phase space vortex structure thus created is a combination of both untrapped
and trapped particle dynamics during chirp. This phase space structure exhibits several
interesting features, such as, large hole/ PSV structure contains peaked spikes and holes
embedded in it along with a “shark”-like structure, i.e., a bunch of particles moving together
within the giant phase space vortices. At ¢ = 2000, collisions are turned on using Krook
operator with collision frequency v = 0.01 and plasma is evolved till ¢ = 3000. In Fig.??,

the time evolution of space averaged velocity distribution function and the time evolution
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Figure 6.12: Plots of relative energy (a) 0W, (b) 0K, (c) 6 P with time, when plasma
is driven with a downward frequency chirp from wp;g, = 2 to wiey, = 1 for ¢4 = 250
and collisions are turned on at ¢ = 2000 for the following cases: (i)v = 0, (ii)v = 107°,
Krook operator and (iii) v = 107°, ZK operator

of excess density at x = L/2 have been shown where the Krook operator is applied with
collision frequency v = 0.01. In response to the small amplitude chirp, excess particle
density increases linearly in time till the drive is on. The growth of excess density fraction

is arrested when the drive is turned off. Then the system relaxes and saturates to attain a
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Figure 6.13: Plot of relative entropy S, with time, where plasma is driven with a
downward frequency chirp from wp;gn = 2 to wje, = 1 for Aty = 250 and collisions
are turned on at ¢ = 2000 for the following cases: (i)v = 0, (ii)v = 107°, Krook
operator and (iii) v = 107°, ZK operator

certain value of excess density fraction and remains almost the same till the collisions are
absent. The time at which collisions are turned on in the simulation is indicated in the
figure by a vertical line. Once the PSVs are formed and the steady state is obtained, the
collisions are turned on at ¢ = 2000, the width of plateau and the excess density fraction
decrease and the typical vortex structure, signature of the trapping of particles in the wave
potential well gradually vanishes due to detrapping of trapped particles and the velocity
distribution becomes Maxwellian at ¢ = 3000. The nonlinear plasma structure and the

trapping disappears at ¢ = 3000.

The same numerical experiment (v = 0.01, Krook operator) as above is performed for
the case where collisions are present from the initial time (at ¢ = 0 onwards-) till the end
of the simulation (¢ = 3000). The initial homogeneous Maxwellian plasma is driven by
an external downward frequency chirp for time duration Aty with the same simulation
parameters:- k = 0.4, By = 0.025, Aty = 250, wpigh = 2, Wiow = 1. The chirp parameter are
a=—4x10"3 and 8 = 2. In Fig.??, the comparison of time evolution of space averaged
velocity distribution and comparison of time evolution of excess density at x = L/2 has
been shown for ¥ = 0.01, Krook operator, where collisions are present from the initial
time. As one can observe, during the external drive time (0 < ¢ < 250), the collisions

dominates over drive, which leads to very strong effect on the formation of chirp driven
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PSVs. After the drive is turned off, the growth of excess density fraction is arrested for
where the maximum value of dn/ng attained by collisional case is much less than the v =0
case. After the drive is turned off, the collisionless system relaxes and saturates to attain
a certain steady state. However, for the collisional case (v = 0.01), the excess density
fraction decrease rapidly and the signature of the trapping of particles in the wave potential
well vanishes due to detrapping of trapped particles and the velocity distribution becomes

Maxwellian. The nonlinear plasma structure and the trapping disappears completely.

In the second case, collisions are applied for smaller collision frequency v = 107>, In
Fig.?7?, the effect of collisions on the time evolution of space averaged velocity distribution
function is displayed for v = 107®. In comparison to ¥ = 0 case, when low frequency
collisions are applied through Krook operator, such small collision frequency v = 107> have
very little effect on the excess density fraction and small velocity scale details. However,
with ZK operator, with time collisions smooth out small velocity scale distortions, yet
retain large excess density fractions. It can be clearly seen in the phase space plots of
f(z,v,t) (Fig.??), where the steady state structure survives long time after the drive is
off for v = 0 (here, at t = 5000). For Krook operator with collision frequency v = 1072,
small velocity scale distortions can still be seen at ¢ = 5000. However, for ZK operator
with collision frequency v = 1075, small velocity scale distortions smooth out completely,
yet the separatrix between trapped region and free region is clearly visible which means
large amount of particles are still trapped in the wave trough unaffected by the the effect
of diffusion in velocity space.

The total energy of the system is defined as: W (t) = K(t) + P(t), where kinetic
energy is computed as K (t) = (1/2) [ [v%f(x,v,t)dzdv and potential energy computed as
P(t) = (1/2) [ E?(x,t)dx. In Fig. 77, (a) the total relative energy §W = W (t) — W(0), (b)
the total relative kinetic energy 0 K = K (t)— K (0) and (c) the total relative potential energy
0P = P(t) — P(0) are plotted. It is clear that as the chirp frequency is swept downwards,
both relative kinetic energy and relative potential energy of the system increases which
reflects the increase in untrapped and trapped particle populations, respectively. The

growth of these relative energies is arrested when the drive is turned off. Then the system
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Figure 6.14: Plot of excess density fraction evolution at x = L/2 with time. The
plasma is driven with a downward frequency chirp for At; = 250 to excite chirp
driven giant PSVs for k£ = 0.4, and the collisions are on from the start (¢ = 0) till the
end of the simulation (¢ = 5000) for following cases:- (a)v = 0, (b)r = 107°, Krook
operator and (c) v = 107°, ZK operator

relaxes and saturates to attain a certain value of W, dK, P and remains almost the
same till the collisions are absent i.e. till ¢ = 2000. At ¢ = 2000, collisions are turned
on, indicated in the figure by a vertical line, all three values of §W, § K and §P start
decreasing. As can be seen in Fig. 7?7, (a) 6W, §K and JP decrease faster for ZK operator
than the Krook operator, (b) difference in decrement of 0 K for both the operators is much
larger than the difference in decrement of § P. The decrease in d K indicates the decrease in
the energy of untrapped region surrounding the PSVs and causes to smooth out the small
velocity scale distortions. However, there is not so much difference in 6 P which indicates
the presence of the large amount of trapping fraction.

The entropy of the system is given by:

S(t) =— /OL /Mmam f(z,v,t)logf(z,v,t)dvdx (6.5)

—VUmax

It is plotted as relative entropy [See Fig.(??), defined as S, = (S(t) — S(0))/S(0) with
time. For a collisionless plasma dS/dt = 0. However, because of the numerical scheme,
entropy does increase with time (which is a measure of finite phase space grid size effects
in simulation) and then saturates. Here, the entropy is seen to grow when the drive is
on but saturates as soon as the drive is turned off. Also, the simulation is extended till

t = 2000 in order to confirm the formation of a steady-state solution. At ¢ = 2000, when
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Figure 6.15: Phase space plot of f(x,v) at ¢t = 5000, where the plasma is driven
with a downward frequency chirp for Aty = 250 to excite chirp driven giant PSVs
for k = 0.4, and the collisions are on from the start (¢ = 0) till the end of the
simulation (¢ = 5000) for following cases:- (a)v = 0, (b)r = 1075, Krook operator
and (c) v =107%, ZK operator

the collisions are turned on, the relative entropy is seen to grow again due to inclusion of

weak collisions.
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Figure 6.16:  Plots of relative energy (a) dW, (b) 0K, (c) dP with time, when
plasma is driven with a downward frequency chirp from wpgn = 2 to wipw = 1 for
dtq = 250 and the collisions are on from the start (¢ = 0) till the end of the simulation

(t = 5000), for the following cases: (i)v = 0, (ii)v = 107°, Krook operator and (iii)
v = 107%, ZK operator

For the third case, collisions are present from the initial time (at ¢ = 0 onwards-) till the

153



CHAPTER 6. EULERIAN SIMULATIONS OF COLLISIONAL EFFECTS ON
ELECTROSTATIC PHASE SPACE VORTICES

Figure 6.17: Phase space plot of f(x,v) at ¢ = 5000, where the plasma is driven with
a downward frequency chirp for At; = 250 to excite chirp driven “honeycomb”-like
PSVs for k = 0.4, and the collisions are turned on at ¢ = 2000 for following cases:-
(a) v =0, (b)r = 1075, Krook operator and (c) v = 1075, ZK operator.

end of the simulation (¢ = 5000). The initial homogeneous Maxwellian plasma is driven
by an external downward freque