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Synopsis

I. INTRODUCTION

Plasma is a quasi-neutral ionized medium consisting of, in general, charged and neutral

particles, that exhibits collective behavior due to Coulomb forces. Each particle in plasma

feels all the other particles, but mainly the collective fields. Collisionless plasmas, by

definition, are characterized by charged particles undergoing several small angle Coulomb

collisions leading to a rare large angle collision. Rarity of such large angle collisions renders

these plasmas “collisionless” and such plasmas are well described by kinetic models in the

limit of weak particle-particle correlations. Collision-less plasmas are often found in natural

conditions such as space plasmas as well as in laboratory conditions such as Tokamaks, for

example.

In a warm quasi neutral plasma, when a bunch of electrons are displaced from their

mean (equilibrium) position, the resulting electrostatic interaction, causes electrons to

oscillate about their equilibrium position, thus, sustaining a steady plasma oscillations

in the electric field with a characteristic electron plasma frequency. In 1946, Landau [1]

discovered that in the limit of small amplitude perturbations in a warm collisionless plasma,

these plasma oscillations can be exponentially damped, due to interaction with particles

streaming with velocities close to the wave phase speed vφ. For warm unmagnetized

uniform plasmas, the damping/growth rate of wave is generally proportional to the slope

of the equilibrium particle velocity distribution at wave phase velocity of the distribution.

Therefore, for monotonically falling equilibrium velocity distribution functions (such as the

usual Maxwellian, for example), plasma waves are damped exponentially in time. However,

when the amplitude of the perturbation is increased, the process of particle trapping in

the wave potential well can inhibit Landau damping, by flattening the velocity distribution

near the wave phase speed due to contributions from the non-linear or finite amplitude

effects on the propagation of plasma waves, as was analyzed first by O’Neil [2].



In collisionless plasmas, the trapped particles oscillate in the trough of the wave ap-

proximately with the time period, τr = 2π/
√
α, where α is the amplitude of density

perturbation. The plasma wave thus formed is dissipated by Landau damping (LD) before

particles are trapped i.e., unless γLτr < 1, where γL is the linear Landau damping rate.

Hence, when the amplitude of electric field is large enough to overcome LD, particles may

get trapped in electric field pockets, which in turn flattens the distribution locally near

the phase velocity of the wave, thus rendering the Landau damping ineffective as LD is

proportional to | ∂f/∂v |vφ . This wave-particle interaction leads to formation of coherent

structures in phase-space. A well known class of such coherent phase space structures

are Bernstein-Greene-Kruskal (BGK) structures. These are exact stationary solutions for

electrostatic, collisionless plasmas described by the Vlasov-Poisson model [3]. These BGK

modes are in general, spatially inhomogeneous and therefore exhibit a finite amplitude

self-consistent electric potential and field structures. These structures have continued to

attract attention as they may represent the final saturated state of instabilities which

are stabilized by particle trapping in the potential well formed by the finite amplitude waves.

The seminal work of BGK[3] opened a new window which described ways to construct a

large class of nonlinear states. Since then, there has been an enormous body of work that

speculates about which of these states might occur in nature,[4, 5, 6] in experiments,[7, 8,

9] and in numerical simulations,[10] in a variety of situations. In the past, in a series of

papers, [11]-[12] nonlinear solutions and nonlinear dispersion relation have been obtained to

describe a large class of coherent phase space structures such as electron-ion holes, cnoidal

holes, double layers and more. The stability of these structures has also been of great

interest[10, 13].

Scope of this Thesis is focused on the study of phase space dynamics of a collisionless

plasma starting from a homogeneous Maxwellian distribution, for example electrostatic

plasma waves and BGK modes or Phase Space Vortices (PSV), using an external electric

field drive which is currently a subject of great interest in both interplanetary environments



and for laboratory plasma systems. Several investigations aim to understand the features of

the dynamics at ion scales and electron scales in space plasmas by analyzing both spacecraft

data [14, 15, 16] as well as numerical results from kinetic or phase space simulations [17,

18, 19, 20, 21, 22, 23]. For example, quasiregular packets of Langmuir waves (LAN) are

frequently observed in the solar wind and magnetospheric plasmas [24, 25, 26]. The high

frequency regions of the energy spectra, obtained by analyzing solar-wind measurements

from the Helios spacecraft are dominated by longitudinal electrostatic modes, identified

as ion-acoustic (IA) waves [27, 28, 29]. Recent observations and studies [30, 31, 32, 33,

34] point out that besides these LAN and IA branches, in agreement with spacecraft and

solar-wind observations, two other novel branches of electrostatic waves exists. These waves

have been dubbed as electron acoustic waves (EAW) and ion-bulk (IBk) waves [19, 35],

as their phase velocities are nearly constant and are comparable to the electron thermal

velocity (vthe) and ion thermal (vthi) velocity, respectively. Generally, these electrostatic

modes at finite amplitude lead to nonlinear BGK mode with charged particles trapped

in the wave troughs. As described earlier, because of the trapped particles, the charged

particle distribution becomes effectively flat at the wave phase velocity which in turn

minimize Landau damping (LD) as it is proportional to | ∂f/∂v |vφ .

A natural way to achieve a PSV or BGK state (both are used interchangeably throughout)

is to increase the amplitude of initial density perturbation “α′′ decribed earlier, without

directly perturbing the distribution in velocity space. The amplitude should be large

enough to trap particle and to overcome Landau damping[2, 10]. More recently, external

drives with time dependent frequency ω(t) or chirp, have been used to obtain BGK modes

in bounded systems[36, 37, 38, 39, 40, 41]. For example, in a pure electron plasma confined

in a Penning-Malmberg trap, it was shown that phase space holes can be created by

choosing the frequency chirp window to be around axial electron bounce frequency[36, 37,

38]. Similarly, a downward frequency sweeping has been performed in a pure ion plasma

experiment where extreme modification of initial distribution has been observed (for eg.

splitting of an initial Maxwellian distribution into two counterpropagating distributions)[42].



The above said studies were performed for the bounded systems. However, in many cases,

such as fusion experiments, solar wind and magnetospheric plasmas etc, various plasma

modes and various frequency bursts has been seen over the spatial and temporal scales.

Associated nonlinear wave-particle interactions can generate significantly enhance the levels

of energetic particle transport which can happen both along and across the magnetic field

lines[43]. In such cases, along the magnetic field lines in a Tokamak or for periodically

bounded systems, the presence of energetic heavy ions and the associated wave-particle

interaction (like formation and dynamics of coherent structures) are known to play an

important role in the transfer of energy from the external drive the bulk plasma. For

unbounded or periodic system, the study of PSVs generated from an external drive has

not been addressed in the past.

As discussed earlier, in the limit of zero correlations and weak collisions, plasmas in

the electrostatic limit, are well described in their electrostatic limit by Vlasov-Poisson

system of equations. We begin our investigation by studying the excitation of electrostatic

plasma waves in a 1D unbounded Vlasov-Poisson system modelled using Periodic Boundary

Conditions (PBC)[21]. The plasma is subjected to an infinitesimal external drive. As is

well known[30, 33, 42, 44], both abrupt as well as adiabatic (or continuously changing)

external drive of constant frequency, say ω = ω0, wavenumber k and linear amplitude (i.e.

infinitesimal) are expected to generate plasma modes over a range of frequencies along

with its harmonics. The following questions have been addressed in the Thesis: what

would happen in an unbounded plasma modelled using PBC, if a Maxwellian, homogeneous

plasma is driven externally with a drive frequency ω = ω0. Furthermore, what would

happen if external drive frequency ω(t) is chirped up/down (frequency sweeping) in time

interval ∆t, say from ω1 to ω2. How does the frequency sweeping affect the formation

and dynamics of phase space vortices, particle trapping and generation of untrapped non-

Maxwellian component. It has been found that the frequency chirping allow “continuous”

flattening in the velocity space leading to large coherent structures in phase space with

embedded holes and clumps resulting in Phase Space Vortices (PSV) with multiple extrema

and phase velocities. The drive increases both kinetic energy and potential energy of the



system. Meaning both untrapped and trapped particle fraction is seen to increase, leading

to flattening of the distribution function. As the external drive is switched off, the above

said large coherent phase space structure is found to attain a steady state leading to large

amplitude steady multiple extrema PSV [P. Trivedi and R. Ganesh, Physics of Plasmas 23,

062112 (2016)].

The above said studies were for the initial velocity distributions which were Maxwellian.

As is well known, for systems with short range interactions, the energy of the system is

extensive. Thus the “canonical” distribution is a “Maxwellian” and may be obtained by ex-

tremizing Boltzmann-Gibbs-Shannon (BGS) entropy subject to energy constraint. However,

for a variety of interesting physical problems such as thermodynamics of self graviatating

systems with long range interactions, energy is non-extensive [45, 46]. Recently, there have

been several attempts to define a BGS-like entropy for nonextensive systems. For example,

Tsalli’s definition [47] of q-nonextensive entropy where “q′′ is the strength of nonextensivity

and the corresponding “canonical” distribution function has been derived using nonextensive

statistical mechanics framework. This formalism has found many applications in systems

with the non-Maxwellian particle distribution functions observed in space and laboratory.

These include the solar wind and the long-range interacting systems containing plentiful

superthermal particles[48, 49], the peculiar velocity distributions of galaxy clusters[50], and

the solar neutrino problem[51]. The q distribution lend themselves to applications in vast

number of problems in areas of ion acoustic waves, electron acoustic solitons and other

areas of plasmas[52, 53, 54, 49, 55]. On the theoretical front, a comprehensive discussion

of plasma oscillations, Landau damping and dispersion relation for electrostatic waves,

which can be found and solved for an equilibrium distribution function, in a collisionless

thermal plasma has been provided based on q-statistics[56]. The dispersion relation is

found to fit experimental data better than a Maxwellian. This formalism has also been

extended to study non-linear Landau damping and formation of Bernstein-Greene-Kruskal

structures for plasmas with q-nonextensive velocity distributions[57, 58]. In this Thesis,

a numerical study has been performed to study the formation and dynamics of phase

space vortices as the effect of the frequency chirp on the q-nonextensive distribution as ini-



tial distribution function [P. Trivedi and R. Ganesh, Physics of Plasmas 24, 032107 (2017)].

The role of ions on the phase space dynamics of electrons is a related and important

question. The above said electrostatic waves have been studied either in the background of

immobile ions resulting in a “thumb curve” dispersion (for LAN and EAW waves) with

kinetic electrons or in the frame of Boltzmann electrons resulting in a “teardrop” curve

(for IA and IBk waves)[17, 19, 34] with kinetic ions. Thus, the electron scale physics and

ion scale physics have been separately studied and applied whereas the actual physical

picture would emerge only when both ion and electron scale dynamics are included self

consistently and simultaneously in a model or symmetric framework where both high

frequency (“thumb curve”) and low frequency (“teardrop”) solutions can be obtained

simultaneously. From this symmetrical framework, both electron scale dispersion (“thumb

curve”-LAN and EAW ) and ion scale dispersion (“teardrop”-IA and IBk) can be obtained

in appropriate limits of where each of them again consists of a high frequency branch

(LAN/IA) and a low frequency branch(EAW/IBk). Therefore, an attempt has been made

by means of numerical simulations, considering both kinetic electrons and kinetic ions on

the same physics footing, wherein the Vlasov equations are integrated for both electron and

ion species without any approximations in length scale or time scales. First, the weakly

driven fully nonlinear Vlasov-Poisson (VP) equations has been solved which facilitates

weak flattening of distribution function or weak trapping. The eigenvalue values (ωr) thus

obtained for various wavenumbers are compared with frequencies obtained from solving

the linearized eigenvalue equations considering weak trapping which allows us to neglect

the contribution from the imaginary part of the dielectric function. The numerical results

obtained show that both electron and ion waves can be excited simultaneously in phase

space. In appropriate limits, it is shown that the “thumb” and “teardrop” curves are

different parts of a general symmetric dispersion relation and are recovered in appropriate

limits of that dispersion relation [P. Trivedi and R. Ganesh, Physics of Plasmas 25, 112102

(2018), P. Trivedi and R. Ganesh, Manuscript under preparation (2019)].



Moreover, in systems governed by kinetic processes, limit of low collisionality (or nearly

collisonless regimes) is not the same as the limit of zero collisionality. This is mainly

because, kinetic processes in a plasma is determined by the details of the particle distribu-

tion function in velocity space and on the nature of subtle trapping-detrapping processes.

For example a slight departure from a Maxwellian can produce significant modifications

in the dispersion of electrostatic waves. Since particle collisions work to restore thermal

equilibrium, it is clear that their effect can eventually change the features of the kinetic

dynamics of a plasma, even in situations where collisionality can be considered very weak.

In these conditions, kinetic processes and collisionality are in competition between each

other: while the first works to produce deformations of the particle distribution function

away from a Maxwellian, the latter tends to restore the Maxwellian configuration. The

evolution of the plasma is, therefore, a result of nontrivial combination of these two effects.

Therefore, an attempt has been made by means of numerical simulations, to study effect

of weak collisionality on the electrostatic driven phase space vortices. In the Thesis, two

types of collision operators has been used: (1) Boltzmann collision operator, where the

colliding particles can be treated as isolated pairs and, (2) Fokker-Planck (FP) collision

type operator, where many weak collisions lead to particle diffusion in velocity space.

Depending on the collision models used, it is shown that the giant PSVs smoothen out,

yet retain large excess density fractions [P. Trivedi and R. Ganesh, Manuscript under

preparation (2019)].

In this Thesis, by performing analytical calculations and computer experiment, we present

investigations of a variety of electrostatic modes driven phase space vortices starting with

a homogeneous plasma in periodic boundary conditions. A more systematic chapter-wise

presentation of driven phase space vortices is presented below.

II. Contents Of Thesis

Chapter 2: One Dimensional Vlasov-Poisson System - The Numerical Scheme



In this Chapter, the details of the development and upgradation of numerical techniques

used to simulate driven homogeneous plasma . For purpose of suitable code, an Eulerian

approach is applied with a 1D Vlasov-Poisson (VP) numerical solver that simulates 1D

collisionless dynamics of plasmas and can self-consistently solve both the Vlasov and

Poisson equations and advances the solution in time[58]. The well known “time-splitting”

method[59] which rests on splitting the Vlasov solver into separate spatial and velocity

space updates and has the advantage that each of these updates can then be treated as

simple advections at constant speed. In order to solver these advection equtaions the

third-order-accurate, positivity and monotonicity preserving “piecewise parabolic method”

(PPM) [60] has been applied to simulate the evolution of phase space distributions of

both electrons and ions governed by the 1D Vlasov equations. In this Chapter, all the

basic components of the numerical solver have been explained. In addition to these, a

number of additions made in the solver. All phenomena considered in this Thesis have been

studied by upgrading an inhouse 1D electrostatic Vlasov-Poisson Solver VPPM-1.0 code

to VPPM-2.0 with various additions/modifications such as (1) Inclusion of external drive,

(2) Study of Vlasov-Yukawa (VY) system - Kinetic Ions and Boltzmann Electrons, (3)

Inclusion of Ion dynamics- facilitates the study of both Kinetic Ions and Kinetic Electrons,

(4) Inclusion of Collisions which are modeled through one dimensional operators of the

Bhatnagar-Gross-Krook (BGK)/Zakharov-Karpman (ZK) operator type etc, which will be

described in detail in this Chapter [21, 22, 23, 61, 62].

Chapter 3: Driven Phase Space Vortices (PSV) In the background of Immobile

Ions

In this Chapter, excitation of electrostatic modes and formation of steady state phase space

coherent structures or phase space vortices (PSV), sometimes also called Bernstein-Greene-

Kruskal (BGK) modes, is investigated in a collisionless, unbounded, one-dimensional

plasma, modelled using Periodic Boundary Conditions (PBC). Using a high resolution



one-dimensional Vlasov-Poisson solver (VPPM 2.0), the excitation of Electron Acoustic

wave (EAW) along with Langmuir wave (LAN) and formation of giant PSV is addressed

numerically. An EAW wave is heavily Landau damped within the linear theory as its wave

phase velocity is comparable to the electron thermal velocity.

However, it has been shown that this nonlinear EAW wave can be successfully excited

when a relatively low amplitude external electric field driver is applied for a sufficiently long

time (i.e. several trapping periods). This drive excites both EAWs as well as LAN along with

some harmonics and create particle trapping (BGK/PSV) in both regions, which survives

at a nearly constant amplitude long after the drive is turned off. Also, for an infinitesimal

external drive amplitude and wavenumber k, the existence of a window of chirped external

drive frequency is demonstrated which leads to formation of giant PSV. The linear, small

amplitude, external drive, when chirped, is shown to couple effectively to the plasma and

increase both streaming of “untrapped” and “trapped” particle fraction. The steady state

attained after the external drive is turned off is shown to lead to a giant PSV with multiple

extrema and phase velocities, with excess density fraction, defined as the deviation from the

Maxwellian background. It is shown that the process depends on the chirp time duration ∆t

and chirp frequency range in ω. Novel features such as “shark”-like structures and transient

“honeycomb”-like structures in phase space are discussed. Both undamped electrostatic

modes (EAW and LAN) and steady state giant PSV, with multiple extrema due to em-

bedded holes and clumps, are shown to survive long after the external drive is turned off[21].

Chapter 4: A q-Nonextensive Statistics Approach for Driven Phase Space Vor-

tices

In this Chapter, the evolution of driven phase space vortices in an unmagnetized plasmas

is numerically investigated in the context of the q-nonextensive statistics proposed by

Tsallis[47]. For an infinitesimal amplitude of external drive, the effects of chirp driven

dynamics has been investigated that leads to the formation of giant phase space vortices



(PSV) for both Maxwellian (q = 1) and non-Maxwellian (q , 1) plasmas. For non-

Maxwellian plasmas, the formation of giant PSV with multiple extrema and phase velocities

is shown to be dependent on the strength of “q” i.e. the chirp dynamics and trapping

phenomenon is shown to be strongly affected by the deviations from the Maxwellian

distribution. Novel features such as “shark"-like and transient “honeycomb"-like structures

in phase space are also discussed for q-nonextensive velocity distributions [P. Trivedi and

R. Ganesh, Physics of Plasmas 24, 032107 (2017)].

Chapter 5: Formation and Dynamics of Electrostatic Phase space Vortices:

The Role of Kinetic Ions

In the previous Chapters, ions have been assumed to be immobile. However, ion motion

may significantly change the evolution of high and low frequency motions which in turn

may affect the trapping and formation of PSVs. In the first part of this Chapter, we bring

out several interesting features of ion modes (Ion Acoustic waves (IA), Ion Bulk waves

(IBk)) and driven phase space structures, in Maxwellian plasma, analyzed by means of

kinetic Eulerian simulations, composed of kinetic warm ions and Boltzmannian electrons.

The details of which will be presented.

Moreover, while understanding the phase space dynamics of a collisionless plasma, one

usually deals with the various time scales, from electron to ion response times. The

novel branches of electrostatic waves [Langmuir waves (LAN), Electron Acoustic waves

(EAW), Ion Acoustic waves (IA), Ion Bulk waves (IBk)] have been studied either in the

background of immobile ions with kinetic electrons or in the frame of Boltzmann electrons

with kinetic ions. However, the actual physical picture would emerge only when both ion

and electron scale dynamics are included self consistently and simultaneously in a model

or framework. Hence, inn the second part of this Chapter, a unified picture of electrostatic

waves, considering both kinetic electrons and kinetic ions on the same physics footing,

has been presented, wherein the Vlasov equations are integrated for both electron and

ion species without any approximations in length scales or time scales [P. Trivedi and

R. Ganesh, Physics of Plasmas 25, 112102 (2018)]. It has been demonstrated that the

hitherto separate normal mode branches of electrons and ions are in fact “continuously”



connected branches and can be excited simultaneously in phase space for a range of electron

to ion temperature ratios and mass ratios, the details of which will be presented.

Chapter 6: Eulerian Simulations of Collisional Effects on Driven Electrostatic

Phase Space Vortices

In the major part of this Thesis, the plasma is considered to be collisionless. However,

from the kinetic point of view, the range of low collisionality can be significantly different

from that of null collisionality. This is mainly due to the fact that the kinetic dynamics of

a plasma is determined by the details of the particle velocity distribution function where a

slight departures from a Maxwellian can produce significant modifications in the dispersion

relation of electrostatic waves and particle collisions work to restore thermal equilibrium.

The effect of such collisions can eventually change completely the features of the kinetic

dynamics of a plasma, even in situations where collisionality can be considered weak.

Nearly collisionless regimes are important to a number of physical processes, including

runaway electrons in magnetically confined fusion plasmas, magnetic reconnection in weakly

collisional regime, low density edge in a tokamak plasma, solar plasma near sunspots, and

non-neutral plasmas etc. For such kind of plasma phenomena, kinetic dynamics along the

magnetic field lines can only be explained if a collision term is added to the model described

here. In this Chapter, the inclusion of collisional effects in Eulerian time-splitting algorithm

has been done to the study the effect of weakly dissipative/collisional effects on driven

electrostatic phase space vortices (PSV). Collisions are modeled through one dimensional

operators of the Bhatnagar- Gross-Krook (BGK)/Fokker-Plank type[61, 62, 63]. The accu-

racy of the numerical code is discussed by comparing the numerical results to the analytical

predictions obtained in some limiting cases to evaluate the effects of collisions on linearly

stable (Landau damping) distributions and in the dissipation of Bernstein-Greene-Kruskal

waves. Particular attention is devoted to the study of collisional effects on the formation and

dynamics of driven PSVs which have been studies previously for an unbounded collisionless

plasma with both Maxwellian and non-Maxwellian distributions [P. Trivedi and R. Ganesh,

Physics of Plasmas 23, 062112 (2016), P. Trivedi and R. Ganesh, Physics of Plasmas 24,



032107 (2017)]. In this Chapter, using VPPM-2.0 solver with inclusion of collisional models,

we bring out several interesting features of driven phase space structures in the presence of

weakly collisional environment, in Maxwellian plasma, the details of which will be presented.

Chapter 7: Conclusion and Future Work

In this Chapter, we summarize our results and discuss future possibilities for extending

the present work in various limits.
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Introduction

This Thesis addresses the study of electrostatic modes and phase space

vortices in an unbounded, unmagnetized, homogeneous, one dimensional Vlasov-

Poisson plasma in the presence of static and mobile kinetic ions background.

Studies include both collisionless and collisional regimes. In this Chapter, I

provide introduction, review earlier work and motivation for my study.

I. INTRODUCTION

Plasma is a quasi-neutral ionized medium consisting of, in general, charged and neutral

particles, that exhibits collective behavior due to Coulomb forces. Each particle in plasma

feels all the other particles, but mainly the collective fields. Collisionless plasmas, by

definition, are characterized by charged particles undergoing several small angle Coulomb

collisions leading to a rare large angle collision. Rarity of such large angle collisions renders

these plasmas “collisionless” and such plasmas are well described by kinetic models in the

limit of weak particle-particle correlations. Collisionless plasmas are often found in natural

conditions such as space plasmas as well as in laboratory conditions such as Tokamaks, for

example.

In a warm quasi neutral plasma, when a bunch of electrons are displaced from their mean
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CHAPTER 1. INTRODUCTION

(equilibrium) position, the resulting electrostatic interaction, causes electrons to oscillate

about their equilibrium position, thus, sustaining steady plasma oscillations due to the

restoring electric field with a characteristic electron plasma frequency. In 1946, Landau [1]

discovered that in the limit of small amplitude perturbations in a warm collisionless plasma,

these plasma oscillations can be exponentially damped, due to interaction with particles

streaming with velocities close to the wave phase speed vφ. For warm unmagnetized

uniform plasmas, the damping/growth rate of wave is generally proportional to the slope

of the equilibrium particle velocity distribution at wave phase velocity of the distribution.

Therefore, for monotonically falling equilibrium velocity distribution functions (such as the

usual Maxwellian, for example), plasma waves are damped exponentially in time. However,

when the amplitude of the perturbation is increased, the process of particle trapping in

the wave potential well can inhibit Landau damping, by flattening the velocity distribution

near the wave phase speed due to contributions from the non-linear or finite amplitude

effects on the propagation of plasma waves, as was analyzed first by O’Neil [2].

In collisionless plasmas, the trapped particles oscillate in the trough of the wave ap-

proximately with the time period, τr = 2π/
√
α, where α is the amplitude of density

perturbation. The plasma wave thus formed is dissipated by Landau damping (LD) before

particles are trapped i.e., unless γLτr < 1, where γL is the linear Landau damping rate.

Hence, when the amplitude of electric field is large enough to overcome LD, particles may

get trapped in electric field pockets, which in turn flattens the distribution locally near

the phase velocity of the wave, thus rendering the Landau damping ineffective as LD is

proportional to | ∂f/∂v |vφ . This wave-particle interaction leads to formation of coherent

structures in phase-space. A well known class of such coherent phase space structures

are Bernstein-Greene-Kruskal (BGK) structures. These are exact stationary solutions for

electrostatic, collisionless plasmas described by the Vlasov-Poisson model [3]. These BGK

modes are in general, spatially inhomogeneous and therefore exhibit a finite amplitude

self-consistent electric potential and field structures. These structures have continued to

attract attention as they may represent the final saturated state of instabilities which are

stabilized by particle trapping in the potential well formed by the finite amplitude waves.

Plasmas support a great variety of nonlinear coherent structures which include phase
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space vortices, double layers, solitary waves, solitons, shocks etc [64]. Such nonlinear

coherent structures, which are observed in both laboratory and space plasmas, involve

both nonlinearities and dispersion with collisionless and collisional dissipation [65]. In

order to investigate the formation and dynamics of these nonlinear structures, both fluid

and kinetic models are frequently used. While fluid models provide macroscopic plasma

behavior, a kinetic model provides the microscopic aspects of plasma behavior including

the wave-particle interactions. In kinetic treatment, these nonlinear coherent structures

are generally referred to as BGK modes. These BGK modes have also been referred to by

a variety of related terms: coherent waves, time domain structures, phase space structures,

phase space vortices, solitary structures, Debye scale structures, electron holes, ion holes,

localized potential structures etc. For simplicity, I will refer to all these structures by the

name “phase space vortices” or PSVs in my Thesis.

The existence of the these phase space vortices have been demonstrated in both laboratory

experiments, space plasmas, numerical simulation and by satellites in the Earth’s ionosphere

and magnetosphere. In laboratory plasmas, the formation and dynamics of solitary phase

space vortices as well as accelerated periodic phase space vortices have been observed [66,

67, 68, 69, 70, 71, 72]. In non-neutral plasma experiments, using Penning-Malmberg traps,

the trapped-particle modes have also been shown which are associated with anomalous

transport across the external magnetic field [73]. Numerous satellites and spacecraft

missions have reported and documented the characteristic signature of solitary PSVs in the

form of pulses of the parallel component of electric field to the geomagnetic field direction.

Such characteristic electric field signal signatures, observed in spacecraft and satellites

data, which is parallel to the magnetic field, clearly results from the rapid propagation

past the spacecraft of a localized structure having positive or negative potential along the

magnetic field line [74, 75, 76, 77, 78]. In fusion experiments, energetic particle driven

Alfvenic instabilities are often observed which exhibit a variety of nonlinear scenarios from

a steady-state saturated mode amplitude evolution to a bursting one. The latter type is

often associated with significant fast particle losses and the frequency shift or chirping

patterns which can be attributed to the formation of long-living PSVs (also known as holes

and clumps). These nonlinear studies are essential for understanding the global energetic
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particles transport, particle redistribution and losses [79, 40, 80]. Therefore, the study of

such wave-particle interactions leading to PSVs is an important class of laboratory plasmas,

fusion plasmas as well as space plasmas.

The seminal work of BGK[3] opened a new window which described ways to construct a

large class of above said nonlinear states. Since then, there has been an enormous body

of work that speculates about which of these states might occur in nature,[4, 5, 6] in

experiments,[7, 8, 9] and in numerical simulations,[10] in a variety of situations. In the

past, in a series of papers, [11]-[12] nonlinear solutions and nonlinear dispersion relation

(NDR) have been obtained to describe a large class of coherent phase space structures

such as electron-ion holes, cnoidal holes, double layers and more. The stability of these

structures has also been of great interest[10, 13].

Several investigations aim to understand the features of the dynamics at ion scales and

electron scales in space plasmas by analyzing both spacecraft data [14, 15, 16] as well

as numerical results from kinetic or phase space simulations [17, 18, 19, 20, 21, 22, 23].

For example, quasiregular packets of Langmuir waves (LAN) are frequently observed in

the solar wind and magnetospheric plasmas [24, 25, 26]. The high frequency regions

of the energy spectra, obtained by analyzing solar-wind measurements from the Helios

spacecraft are dominated by longitudinal electrostatic modes, identified as ion-acoustic

(IA) waves [27, 28, 29]. Recent observations and studies [30, 31, 32, 33, 34] point out

that besides these LAN and IA branches, in agreement with spacecraft and solar-wind

observations, two other novel branches of electrostatic waves exists. These waves have

been dubbed as electron acoustic waves (EAW) and ion-bulk (IBk) waves, as their phase

velocities are nearly constant and are comparable to the electron thermal velocity (vthe)

and ion thermal (vthi) velocity, respectively. Generally, these electrostatic modes at finite

amplitude lead to nonlinear BGK mode with charged particles trapped in the wave troughs.

As described earlier, because of the trapped particles, the charged particle distribution

becomes effectively flat at the wave phase velocity which in turn minimize Landau damping

(LD) as it is proportional to | ∂f/∂v |vφ .
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1.1 Motivation

Energetic particles produced in fusion experiments, solar wind and magneto spheric plasmas

etc can excite various modes and leads to various frequency bursts over the spatial and

temporal scales. Associated nonlinear wave-particle interactions can generate significantly

enhanced levels of energetic particle transport which can happen both along and across

the magnetic field lines. For example, increased energetic particle transport by Alfven

eigenmodes has been correlated with a fast frequency oscillation (chirping) with a sub-

millisecond period that has been observed in many experiments [43]. The high frequency

regions of the energy spectra, obtained by analyzing solar-wind measurements from the

Helios spacecraft, are dominated by quasiregular packets of Langmuir waves (LAN) and a

longitudinal electrostatic modes, identified as ion-acoustic (IA) waves [24]. In such cases,

the presence of energetic heavy ions are known to play an important role in the transfer

of energy from the external drive to the bulk plasma. In Tokamaks, source of energetic

particles typically are fusion-born alpha particles, neutral beam injected for heating and

current drive kinetic component created from Radio-Frequency heating and current drive

which are governed by collision-less dynamics. Similarly, for Astroplasmas (for eg Sun’s

atmosphere), a pre-existing collision-less plasma is often driven by external sources which

tend to relax and create non-Maxwellian structures.

Several investigations aim to understand the features of dynamics of wave-particles interac-

tion such as excitation of electrostatic modes and phase space structures, at ion scales and

electron scales in space plasmas by analyzing both spacecraft data, solar wind observations

and numerical results from kinetic or phase space simulations [39, 40, 17, 36]. Ideal way to

model these kinetic processes is develop a 3D-3V Vlasov Maxwell solver with particle (and

energy) sources and sinks. A next simplest model would be to use 1D-1V Vlasov-Poisson

model along the magnetic field and fluid model across the magnetic field with sources

and sinks-a hybrid model coupled through Maxwell equations. A simplest approach is

to model the unbounded or periodic direction (eg. along the B-field in Tokamaks and in

Astroplasmas) using a 1D-1V Vlasov-Poisson model where an external electric field is used
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to produce kinetic species. In this work, it is shown that even this simple approach, but

with both electrons and ions treated as kinetic species, in the presence of an external drive

in an unbounded plasma yields crucial insights.

A natural way to study wave-particle interaction which leads to a PSV or BGK state

(both are used interchangeably throughout) is to increase the amplitude of initial density

perturbation without directly perturbing the distribution in velocity space. The amplitude

should be large enough to trap particle and to overcome Landau damping[2, 10]. More

recently, external drives with time dependent frequency ω(t) or chirp, have been used to

obtain BGK modes in bounded systems [36, 37, 38, 39, 40, 41]. For example, in a pure

electron plasma confined in a Penning-Malmberg trap, it was shown that phase space holes

can be created by choosing the frequency chirp window to be around axial electron bounce

frequency [36, 37, 38]. Similarly, a downward frequency sweeping has been performed in a

pure ion plasma experiment where extreme modification of initial distribution has been

observed (for eg. splitting of an initial Maxwellian distribution into two counterpropagating

distributions)[42].

The above said studies were performed for the bounded systems. However, in many cases,

such as fusion experiments, solar wind and magnetospheric plasmas etc, various plasma

modes and various frequency bursts has been seen over the spatial and temporal scales.

Associated nonlinear wave-particle interactions can generate significantly enhanced the

levels of energetic particle transport which can happen both along and across the magnetic

field lines[43]. In such cases, along the magnetic field lines in a Tokamak or for periodically

bounded systems, the presence of energetic heavy ions and the associated wave-particle

interaction (like formation and dynamics of coherent structures) are known to play an

important role in the transfer of energy from the external drive the bulk plasma. For

unbounded or periodic systems, a detailed study of formation and saturation of PSVs in a

1D Vlasov plasma has not been addressed in the past. In general the following questions

have been attempted:-

• How an external drive of constant frequency, ω0 , wavenumber k, and an infinitesimal

amplitude, excites electrostatic plasma modes over a range of frequencies along with

6



CHAPTER 1. INTRODUCTION

harmonics in a Maxwellian, homogeneous plasma with Periodic Boundary Conditions

(basically unbounded)?

• What would happen if a plasma subjected to a Periodic Boundary Conditions

(basically unbounded), and an external drive with time dependent frequency ω(t)

(or chirp) is applied for a short time interval ∆t?

• What would be the plasma response to the external chirp with different chirp rates

and in different frequencies regimes?

• What would be the effect of chirp dynamics on the non- Maxwellian systems or

plasmas with non-extensive velocity distributions?

• What would happen to excitation of electrostatic modes and phase space dynamics,

when the ion motion is considered? For long drawn chirps or when chirp rate is

reduced, would the ion dynamics become relevant?

• What would happen to phase space vortices when weak dissipative effects/collisions

are included?

In this Thesis, by performing numerical experiment with a 1D1V Vlasov-Poisson solver, I

present details and results from investigations of a variety of electrostatic modes and driven

phase space vortices starting in an unmagnetized homogeneous plasma Periodic Boundary

Conditions (basically unbounded). A more systematic Chapter-wise presentation of driven

phase space vortices is presented below.

1.2 Thesis organization

The Chapters of this thesis are organized in the following fashion:-

7
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Chapter 2 : One Dimensional Vlasov-Poisson Sys-

tem - The Numerical Scheme

In this Chapter, the details of the development and upgradation of numerical techniques

used to simulate driven homogeneous plasma . For purpose of suitable code, an Eulerian

approach is applied with a 1D Vlasov-Poisson (VP) numerical solver that simulates 1D

collisionless dynamics of plasmas and can self-consistently solve both the Vlasov and

Poisson equations and advances the solution in time [58]. The well known “time-splitting”

method [59] which rests on splitting the Vlasov solver into separate spatial advection

at constant speed and velocity advection at constant space updates. In order to solve

these advection equtaions, the third-order-accurate, positivity and monotonicity preserving

“piecewise parabolic method” (PPM) [60] has been applied to simulate the evolution of

phase space distributions of both electrons and ions governed by the 1D Vlasov equations.

All the basic components of the numerical solver have been explained. In addition to

these, a number of important modifications have been made in the solver. All phenomena

considered in this Thesis have been studied by upgrading an in-house developed 1D

electrostatic Vlasov-Poisson Solver VPPM-1.0 code to VPPM-version 2.0 with various

additions and important modifications such as (1) Inclusion of external drive, (2) Inclusion

of Vlasov-Yukawa (VY) system - Kinetic Ions and Boltzmann Electrons, (3) Inclusion

of Ion dynamics- facilitates the study of both Kinetic Ions and Kinetic Electrons, (4)

Inclusion of Collisions which are modeled through one dimensional operators of the type

Bhatnagar-Gross-Krook (Krook)/Zakharov-Karpman (ZK) operator etc, which will be

described in detail in this Chapter[21, 22, 23, 61, 62].

8
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Chapter 3: Driven Phase Space Vortices (PSV) In

the background of Immobile Ions

In this Chapter, excitation of electrostatic modes and formation of steady state phase space

coherent structures or phase space vortices (PSV), sometimes also called Bernstein-Greene-

Kruskal (BGK) modes, is investigated in a collisionless, unbounded, one-dimensional

plasma, modelled using Periodic Boundary Conditions (PBC). Using a high resolution

one-dimensional Vlasov-Poisson solver (VPPM 2.0), the excitation of Electron Acoustic

wave (EAW) along with Langmuir wave (LAN) and formation of giant PSVs are addressed

numerically. An EAW wave is heavily Landau damped within the linear theory as its

wave phase velocity is comparable to the electron thermal velocity vthe. However, it has

been shown that this nonlinear EAW wave can be successfully excited when a relatively

low amplitude external electric field driver is applied for a sufficiently long time (i.e.

several trapping periods). This drive excites both EAWs as well as LAN along with some

harmonics and create particle trapping (BGK/PSV) in both regions, which survives at a

nearly constant amplitude long after the drive is turned off. In order to drive the systems

as well as to identify the resulting modes, for a chosen k, the value of ω0 is obtained with

the help of dispersion relation. This dispersion relation is obtained by assuming weak

flattening of the distribution followed by neglecting the imaginary part of the dielectric

function in the background of immobile ions resulting in a “Thumb curve” dispersion [for

Langmuir (LAN) and Electron Acoustic (EAW) waves] with kinetic electrons.

Also, for an infinitesimal external drive amplitude and wavenumber k, the existence of a

window of chirped external drive frequency is demonstrated which leads to formation of

giant PSV. A linear, small amplitude, external drive, when chirped, is shown to couple

effectively to the plasma and increase both streaming of “untrapped” and “trapped” particle

fraction. The steady state attained after the external drive is turned off is shown to lead

to a giant PSV with multiple extrema and phase velocities, with excess density fraction,

defined as the normalized deviation from the Maxwellian background. It is shown that

the process depends on the chirp time duration ∆t and chirp frequency range in ω. Novel

9



CHAPTER 1. INTRODUCTION

features such as “shark”-like structures and transient “honeycomb”-like structures in phase

space are discussed. Both undamped electrostatic modes (EAW and LAN) and steady

state giant PSV, with multiple extrema due to embedded holes and clumps, are shown to

survive long after the external drive is turned off [P. Trivedi and R. Ganesh, Physics of

Plasmas 23, 062112 (2016)].

Chapter 4: Driven phase space vortices in plasmas

with nonextensive velocity distribution

The evolution of chirp-driven electrostatic waves in unmagnetized plasmas is numerically

investigated by using a one-dimensional (1D) Vlasov-poisson solver with periodic boundary

conditions. Initial velocity distribution of the 1D plasma is assumed to be governed by

nonextensive q distribution. For an infinitesimal amplitude of external drive, the effects of

chirp driven dynamics are investigated that leads to the formation of giant phase space

vortices (PSV) for non-Maxwellian (q , 1) plasmas and these results are compared with the

results obtained in Chapter 3 earlier (for Maxwellian (q = 1) plasmas). For non-Maxwellian

plasmas, the formation of giant PSV with multiple extrema and phase velocities is shown

to be dependent on the strength of “q”. Novel features such as “shark”-like and transient

“honeycomb”-like structures in phase space are discussed for non-Maxwellian plasmas [P.

Trivedi and R. Ganesh, Physics of Plasmas 24, 032107 (2017)].

Chapter 5: Formation and Dynamics of Electro-

static Phase space Vortices: The Role of Kinetic

Ions

In this Chapter, the role of ions on the phase space dynamics has been studied using

two different models:- (1) Boltzmann electrons and kinetic ions usingVlasov-Yukawa (VY)

10
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model, and (2) Kinetic Ions and Kinetic Electrons (KIKE) model. In the previous Chapters,

electrostatic waves have been studied in the background of immobile ions resulting in a

“Thumb curve” dispersion [for Langmuir (LAN) and Electron Acoustic (EAW) waves] with

kinetic electrons. In this Chapter, the role and effect of ions on the phase space dynamics,

has been studied in two parts:-

(1) In the first part, the study electrostatic waves has been attempted at ion scale, with

Boltzmann electrons treating ions as kinetic species, with a newly developed Vlasov-Yukawa

(VY) solver. This model results in a “Teardrop” dispersion curve [for Ion Acoustic (IA) and

Ion Bulk (IBk) waves]. Using 1D1V VY solver Landau damping and electrostatic waves at

ion scales (IA and IBk waves) have been studied. Also, formation and dynamics of chirp

driven phase space vortices at ion scales have been studied for different temperature ratios.

(2) In the second part, the electron scale physics and ion scale physics have been studied

by including both ion and electron scale dynamics self consistently and simultaneously

in a model using symmetric framework. With this model both high frequency and low

frequency solutions can be obtained simultaneously which consists of a high frequency

branch (LAN/IA) and a low frequency branch(EAW/IBk). Therefore, an attempt has

been made by means of numerical simulations, considering kinetic electrons and kinetic

ions both on the same physics footing, wherein the Vlasov equations are integrated for

both electron and ion species without any approximations in length scale or time scales.

The numerical results obtained show that both electron and ion waves can be excited

simultaneously in phase space. In appropriate limits, it is shown that the “Thumb” and

“Teardrop” curves are different parts of a general symmetric dispersion relation and are

recovered in appropriate limits of that dispersion relation. Also, formation and dynamics

of chirp driven electron phase space vortices have been studied for different mass ratios

and for long drawn chirps, relevance of ion dynamics using both VY and KIKE models is

addressed.

11
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Chapter 6 : Eulerian Simulations of Collisional Ef-

fects on Electrostatic Phase Space Vortices

In this Chapter, the effect of collisions on electrostatic phase space vortices formed in a

collisionless process is analyzed by means of Eulerian simulation for two different collision

models. In the absence of collisions, PSVs exhibits as the formation of a plateau, due to

trapping of resonant particles in the resonant region of the particle velocity distribution

function,thus preventing Landau damping. In the presence of collisions, this plateau is

smoothed out since collisions drive the velocity distribution towards Maxwellian irrespective

of how weak the collisions are as long as they are non-zero. In these conditions, kinetic

processes and collisionality would be in competition and the evolution of the plasma would,

therefore, be a result of nontrivial combination of these two effects. Therefore, an attempt

has been made by means of numerical simulations, to study effect of weak collisionality

on the electrostatic driven phase space vortices with two types of collision operators: (1)

Boltzmann collision operator, where the colliding particles can be treated as isolated pairs

and, (2) Fokker-Planck (FP) collision type operator in one dimension, where many weak

collisions lead to particle diffusion in velocity space. It is shown that depending on the

collision models used, the nature of smoothing in velocity space of giant PSVs results in

different structures. However, irrespective of the collision model used, substantial excess

density fractions are retained.

Chapter 7: Conclusion and future work

In this Chapter, I discuss all the major findings, unresolved issues and elaborate future

possibilities for extending the present work in various limits.
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2
One Dimensional Vlasov-Poisson System - The

Numerical Scheme

2.1 Introduction

Due to the nature of the plasma which is an ensemble of charged particles, electromag-

netic effects in many instances dominate the plasma dynamics. Therefore, it is vital to

include an appropriate description, not only of external fields, but also of the fields that

are self-consistently generated by the plasma particles under consideration. The most

fundamental and classical model for a plasma to a good approximation is therefore the

Vlasov equation which describes a collisionless, correlationless plasmas. Vlasov equation

is exploited for numerous problems in plasma kinetic theory; it describes the evolution

of a single particle phase space density function f(x, v, t) under the influence of electric

and magnetic fields in the absence of any collision and correlations. If coupled to an

appropriate field model of interest such as the the Poisson equation, the so called Vlasov-

Poisson equations result. In some physical situations, further simplified models can be

derived from the Vlasov-Poisson system. Even so, only a few very problems can actually

be solved analytically in VP system. For this reason, numerical simulations of Vlasov
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Poisson equation have become an important tool for the understanding of plasma dynamics.

Popular numerical approaches in solving the Vlasov-Poisson (VP) system can be classified

as three types: Eulerian, Lagrangian and Semi Lagrangian (SL)[81]. The Lagrangian

type particle methods, evolve the solution by following the nonlinear trajectories of large

number of macroparticles in phase space, while the Eulerian approach evolves the state

variable according to the Partial Differential Equation (PDE) on a fixed numerical grid

in phase space. The SL approach is a mixed approach of Lagrangian and Eulerian in the

sense that it has a fixed numerical grid; however, over each time step, the state variable is

evolved by propagating information along nonlinear characteristics. Both Eulerian and

the SL approaches can be designed to be of very high order accuracy, an advantage when

compared with the Lagrangian approach. In the present studies, we have used the Eulerian

approach for solving the VP system.

In this work, an Eulerian approach based to 1D Vlasov-Poisson (VP) numerical solver

that simulates 1D collisionless dynamics of plasmas and can self-consistently solve both

the Vlasov and Poisson equations and advance the solution in time is used. The well

known “time-splitting” method [59] which is second order in time (∆t) and the third

order accurate “piecewise parabolic method” (PPM) [60] are applied to simulate the

evolution of phase space distributions of both electrons and ions governed by the 1D Vlasov

equations using the numerical method as presented in Sec.?? of this Chapter. All the basic

components of the numerical solver have been explained. In addition to these, a number of

additions/modifications made in the solver, have been briefly described in Sec.?? of this

Chapter.
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2.2 1D Electrostatic Vlasov-Poisson Solver- VPPM

Solver

Phenomena considered in this Thesis have been studied by upgrading an already existing 1D

electrostatic Vlasov-Poisson Solver code with Piecewise Parabolic Method (VPPM-1.0) de-

veloped at IPR [58]. I have upgraded the existing code with various additions/modifications

[VPPM-2.0] such as (1) Inclusion of an external drive, (2) Inclusion of Vlasov-Yukawa

(VY) system - Kinetic Ions and Boltzmann Electrons, (3) Inclusion of Ion dynamics, which

facilitates the study of both Kinetic Ions and Kinetic Electrons, (4) Inclusion of Collisions

which are modeled through one-dimensional operators of the Bhatnagar-Gross-Krook

(Krook)/Zakharov-Karpman (ZK) operator type etc, which will be described in detail in

the subsequent Sections.

2.2.1 Vlasov-Poisson System

The most fundamental description of a correlationless, collisionless plasma is derived from

the kinetic properties of the constituent particles. The result is the so called Vlasov

equation as given by,

∂fj
∂t

+−→vj .
∂fj
∂−→x

+ qj
mj

(−→E +−→v ×−→B ). ∂fj
∂−→vj

= 0 (2.1)

where fj(x, v, t) is the phase space density distribution function of j − th species, qj , mj

and vj are the charge, mass and velocity of the j− th species, respectively. Here, −→E and −→B

are the total electric and total magnetic field, respectively obtained from Maxwell equation.

Along the −→B -field (−→v × −→B = 0) or in absence of −→B -field (B = 0), Eqn.?? results into

an one dimensional (1D) Vlasov equation. In simple Cartesian coordinates, it further

simplifies to:-
∂fj
∂t

+ vj
∂fj
∂x

+ qj
mj

E
∂fj
∂vj

= 0 (2.2)
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where electric field is obtained from charge densities, which in turn is to be determined

from fj(x, v, t), by solving Poisson’s equation:-

∂E

∂x
= e

ε0

(∫
fidvi −

∫
fedve

)
(2.3)

where fe(x, v, t) and fi(x, v, t) are the electron and ion distribution function respectively.

Here, E is the self consistent electric field. Both Eqns.?? and ?? make up 1D Vlasov-Poisson

(VP) system.

Considering the motion of the electrons only and by treating the ions as a stationary,

uniform background, these equations can be written as follows:-

∂f

∂t
+ v

∂f

∂x
− E∂f

∂v
= 0 (2.4)

∂E

∂x
= 1−

∫
fdv (2.5)

where time has been normalized to the electron plasma frequency ωpe =
√
n0e2/ε0me,

space has been normalized to the electron Debye length λDe =
√
ε0KTe/n0e2, velocity has

been normalized by the initial equilibrium thermal velocity vthe = λDeωpe =
√
KTe/me.

With these choices, f gets normalized by n0/vthe and E by mevthe/eλDe where e is the

electron charge. In this model, the ions form a stationary neutralizing background of

number density n0 with numerical value 1 in the Poisson equation. (Please note that, in

my published work [21, 22], the electric field E is normalized by −mevthe/eλDe, which

makes Eqn.?? and Eqn.?? as ∂f/∂t+ v∂f/∂x+ E∂f/∂v = 0 and ∂E/∂x =
∫
fdv − 1.)

I set the simulation domain in phase spaceD(x, v) = [0, Lmax]×[−vjmax, vjmax] [see Fig.??],

Lmax is the system size and vjmax is chosen sufficiently large so that velocity distribution

functions approaches zero as |vj | approaches vjmax. The phase space is discretized with Nx

grid points in the spatial domain and Nv in velocity domain such that there is sufficient

resolution in both x and vj grids. Phase Space and Time Discretization for this model is

represented in Fig.?? for the following parameters:-
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• xi = (i− 1)∆x, i = 1, Nx and vk = k∆v, k = −Nv, Nv

• ∆x = Lmax/Nx and ∆v = 2vmax/Nv

• tn = n∆t, n = 0, nstep and ∆t → CFL Condition (See Subsec.??)

Figure 2.1: Phase space discretization

In order to solve 1D Vlasov-Poisson (Eqns.?? and ??), we have used the Time Step-

ping/Splitting Method suggested by Cheng and Knorr [59] coupled with the third order

accurate Piecewise Parabolic Method (PPM) advection scheme [60] proposed by Colella

and Woodward, the details of which will be given in the following subsections.

2.2.2 Time-Stepping/Splitting Method

It is well known that the Vlasov equation adequately describes the nonlinear evolution of

collisionless plasmas. In kinetic simulations of plasma, the Strang splitting, first proposed

by Cheng and Knorr [59], in which the Vlasov equation is integrated in the original phase

space by splitting the convective and acceleration terms in such a way that the overall

scheme is second-order accurate in ∆t, has been successfully applied by several authors

[82, 63, 10]. The advantage of performing such a splitting is that it decouples the Vlasov

equation into lower dimensional equations of spatial advection and velocity ac/deceleration

advection, which are linear and are much easier to evolve numerically. In the present work,

we have adopted this time splitting method to reduce the VP Eqs.[??-??] into first order
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advection equations.

In order to solve VP Eqs.[??-??], the time-stepping method for one time step ∆t is given

as following:

1. Spatial Advection:- solve ∂f/∂t+v∂f/∂x = 0 for ∆t/2, for a given v in the x-domain

for a given f(x, v, t = 0). This result is f(x, v,∆t/2). [Fig.??(a)]

2. Using this f(x, v,∆t/2), solve the Poisson equation to obtain self consistent electric

field E(x,∆t) at ∆t.

3. Velocity Advection:- solve ∂f/∂t− E∂f/∂v = 0 for ∆t [Fig.??(b)], where E(x,∆t)

is obtained in the previous step.

4. Spatial Advection:- solve ∂f/∂t + v∂f/∂x = 0 for ∆t/2 , for a given v in the

x-domain.[Fig.??(a)]

(a) (b)

Figure 2.2: Cartoon diagram of Time-Steping method:-(a) Spatial Advection at fixed
velocity (b) Velocity Advection at fixed spatial value

Thus, the solution of the system is reduced to two 1D advection equations and a Poisson

equation. This method formally incurs an error of the order Ô[(∆t)3]. Further, this

splitting method requires a reliable advection solver and a Poisson solver, which will be

described in the next subsection.
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2.2.3 Piecewise Parabolic Method- PPM Advection Solver

The above described split-Eulerian technique rests on splitting the Vlasov solver into

separate spatial and velocity space updates and has the advantage that each of these

updates can then be treated as simple advections at constant “speed”. Since the ground-

breaking, original work [59], most attention on fixed-grid Vlasov solvers have concentrated

on improving the accuracy of the advection solvers. Previously examples include use

of MacCormack’s method and other conservative schemes [83, 82]. One of the common

problems with all the Vlasov solvers is that the Vlasov solutions often involve a fine-scale

filamentation which increases in time. Also, there is no guarantee, except for first-order

schemes, that the numerical solution has not introduced regions of negative distribution

function i.e. f < 0. Moreover, some additional averaging is required with higher oder

schemes as they have a tendency to produce Gibbs overshoot [81].

Previously, Arber and Vann [81] have performed a comparison of various advection solvers

to determine the best fixed grid Eulerian advection scheme for Vlasov problems. Attention

was mainly focused on studying the importance of positivity, order, and monotonicity in

the advection steps by comparing a variety of advection solvers with different properties, for

example, Flux Balance Method (FB), Van Leer-Limited Scheme (VL), Piecewise Parabolic

Method (PPM), Flux-Corrected Transport (FCT), High-Order Compact Finite Difference

(Compact). It was found that for fixed Eulerian grid based solvers, PPM advection scheme

[60], is successful in treating fine scales, automatically maintains positivity and monotonic-

ity, and requires no additional smoothing. Therefore, I choose PPM advection method as

my advection solver. The PPM advection method is formally third-order accurate away

from the extrema and first-order accurate at the extrema [81]. Also, the monotonicity

limiters of the PPM method ensure that the positivity of the distribution function is

maintained.

The Piecewise Parabolic Method (PPM) scheme, developed by Colella and Woodward,
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uses Parabolae as basic interpolation functions in a zone which allows for a more accurate

representation of smooth spatial gradients, as well as a steeper representation of captured

discontinuities, particularly contact discontinuities. For completion, the algorithm of the

PPM scheme has been described below as given by Colella and Woodward[60]. I will

describe the PPM scheme given in their paper [60] as follows:- Let us consider a general

linear advection equation,
∂a

∂t
+ u

∂a

∂ξ
= 0 (2.6)

where a = a(ξ, t) is the function being advected and u = u(ξ, t) is the constant velocity

by which the function a is advected, and ξ, u are the generalized coordinates. The initial

value for the problem is set as a(ξ, 0) = a0(ξ). In simplest steps, PPM scheme algorithm is

as follows:-

Initial zone average a(ξ, tn)→Interpolation Step→Monotonicity + Discontinuity check→Integration

Step→next zone average a(ξ, tn+1).

1. Initial Zone Average:- The average value of the discretized function anj (where n is the

timestep and j is the position step) is defined as the zone average of the underlying

function a(ξ, tn), over the cell:

anj = 1
M ξj

∫ ξj+1/2

ξj−1/2

a(ξ, tn)dξ (2.7)

where M ξj = ξj+1/2 − ξj−1/2 represents cell size and ξj+1/2, ξj−1/2 are cell edges.

2. Interpolation Step :- The PPM scheme uses an interpolation which is piecewise

continuous, with a given by a parabolic profile in each zone:

a(ξ) = anj + x(M aL,j + (1− x)a6,j) (2.8)

• where x = (ξ − ξj−1/2)/M ξj

• ξj+1/2 6 ξ 6 ξj−1/2

• a6,j = 6(anj − 0.5(aR,j + aL,j))

• M aj = aR,j − aL,j
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a

  j−1 j+1 ξ

a
j+1/2

jξ ξ
j−1/2 j+1/2

(a)
ξ

a

(b)

Figure 2.3: (a) Interpolation step:- The initial data (taken from [60]) are given
as values of the variable “a” averaged over the four zones shown. These averaged
values are represented by dashed lines. From this data values of the variable a are
interpolated at zone edges, using cubic curves which have the prescribed average
values in the four zones nearest the edge. The interpolation parabolae within the
zones, which are shown as solid lines, connect these edge values and give back the
initial data when averaged over the zones. (b) Integration step :- New averages of
the variable “a” within the zones are obtained by integrating over the interpolated
initial distribution shifted to the right by u∆t. This shifted distribution is shown
by the dashed lines, and the new zone averages are shown by the solid lines. The
scheme is third-order accurate in general; in the limit of very small time steps, for
equally spaced zones, it is fourth-order accurate [60].

• aR,j = a(ξj+1/2,tn) and aL,j = a(ξj−1/2, t
n)

• aR,aL → values of a at the cell edges).

3. Monotonicity check:- Once the interpolated cell-edge values are defined, one applies

a monotonicity condition. Now, if anj were the extremum, then the values of aR,j and

aL,j are reset to the value of anj . If a(ξ) achieved an extremum somewhere in the

cell, then depending on where the extremum is close to, then one of the cell-edges is

is reset in such a way, so that the derivative at that cell edge is zero. This procedure

maintains monotonicity of “a”.

4. Discontinuity check:- Additionally, the values of aR,j and aL,j are reset depending

on whether a discontinuity is detected. The discontinuity is detected as per assigned

or expected tolerance, and this modifies the cell-edge function values to preserve the

discontinuity during advection.

5. Integration Step:- the solution is just advection along the characteristics of the
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problem, given by:

an+1
j = 1

M ξj

∫ ξj+1/2

ξj−1/2

a(ξ − u×∆t)dξ (2.9)

6. Now that we have all the required parameters, we advect the function.

As described earlier, the PPM advection solver is third-order accurate away from the

extrema and first order accurate at the extrema. However, for a given discontinuity, PPM

method is relatively poor method in energy and enstropy conservation in comparison to

other methods (like spectral methods) but it is much stable, smoother and attains accurate

solution even when the grid spacing is coarse [84]. Note that PPM advection solver is ex-

plicit in nature and hence has to obey the Courant-Frederichs-Lewy(CFL) condition [81, 85]:

k =| u∆t
∆ξ |≤ 1 (2.10)

The PPM advection solver has been thoroughly benchmarked in a previous work [58].

2.2.4 Poisson Equation Solver-Fourier Transform (FFT) Method

As described in Sec.??, the Poisson equation is given by,

∂E(x, t)
∂x

= ρ(x, t) (2.11)

On taking Fourier Transform of above equation,

ikẼ(k, t) = ρ̃(k, t) (2.12)

where k is the wave vector which represents conjugate variable of x. The transform of the

original variable into k-space is represented by ∼. Therefore:

Ẽ(k, t) = − iρ̃(k, t)
k

(2.13)
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E(x) is simply obtained by performing an inverse Fourier transform:

E(x, t) = FT−1
(
− iρ̃(k, t)

k

)
(2.14)

where FT−1 represents the inverse Fourier transform. In VPPM solver, FFTW [86] is

applied for performing the Fourier transforms which reduces the number of operations

and makes this method more viable as compared to conventional integrators for Ordinary

Differential Equations (ODEs). Depending on the model, ρ(x, t) =
∫
fidvi −

∫
fedve or

ρ(x, t) = 1−
∫
fedve etc.

2.2.5 Integrator And Choice of Time Step (CFL Condition)

In order to perform the integration
∫
fdv , conventional trapezoidal rule [87] has been

used,

Area = L

N

(
f0 + fn

2 +
n−1∑
i=1

fi

)
(2.15)

Here, function f is assumed to be discretized over equally spaced n points with periodic

boundary conditions (PBC) such that fn + 1 = f1. Also, L/N represents the stepsize. The

theoretical error is ( L3

12N2 )max(f ′′)[58].

For the numerical solutions of the explicit time dependent partial differential equations,

one has to focus on two important factors:- stability and convergence. The PPM advection

solver is also explicit in nature that calculate the state of a system at a later time from the

state of the system at the current time. Hence, to maintain stability and convergence, it

has to obey the Courant-Frederichs-Lewy (CFL) condition[81, 85] i.e. the physical domain

of dependence must be contained in the numerical domain of dependence:

∣∣∣∣v∆t
∆x

∣∣∣∣ ≤ 1 (2.16)

where ∆t and ∆x are the stepsizes in t and x. In simple words, the choice of the time step

or mesh size cannot be independent. Thus, one has to choose the timestep such that the
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maximum CFL number during the advancement of one timestep, does not violate Eqn.??.

Therefore, we choose ∆t such that:

∆t = min

( ∆x
vmax

,
∆v

max | E |

)
(2.17)

where max | E | is the maximum absolute value of the electric field, vmax is the value of

maximum velocity on the velocity grid and ∆x, ∆v are the step sizes on the x and v grid,

respectively.

Now, we explain the assembly of the VPPM solver and introduce the additions/modifications

made in the solver briefly.

2.2.6 Assembly of VPPM -Version 1.0 Solver

After setting up all the initial conditions, such as initial phase space distribution function

f0 = f(x, v, t = 0), the grid-sizes Nx and Nv, time-step ∆t etc, the Cheng-Knorr time-

stepping method [59] is applied on Eqns.??-?? and perform the following process for one

time step ∆t:

• x-advection for ∆t/2:- Solve ∂f/∂t + v∂f/∂x = 0 using PPM routine for half

time-step ∆t/2 in x-domain, for various constant values of v.

• FFT routine:-Apply Poisson routine to get the self consistent electric field E.

• v-advection for ∆t:- Solve ∂f/∂t−E∂f/∂v = 0 using PPM routine for a full time-

step ∆t in v-domain, for various constant values of E obtained from the previous

FFT routine step.

• x-advection for ∆t/2:- Solve ∂f/∂t+ v∂f/∂x = 0 using PPM routine for another

half time-step ∆t/2 in x-domain, for various constant values of v.

The above said solver was developed, tested, benchmarked and published in [58]. I have

dubbed this solver as VPPM-1.0. In the following, I describe further generalization of

VPPM-1.0 leading to VPPM-2.0 which is a part of the Thesis.
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2.3 Development of the VPPM-2.0 solver

In the current upgraded version of VPPM solver i.e. VPPM-2.0, several physics terms

have been added to simulate driven phenomena, for example, chirp driven phase space

vortices in Maxwellian (Chapter 3) and Non-Maxwellian (Chapter 4) plasmas as well as to

simulate the ion dynamics (Chapter 5) and to study collisional physics (Chapter 6). The

details of these modifications and additional diagnostics; are listed below:-

2.3.1 External Drive

In the previous version of VPPM solver [VPPM-1.0], only the self consistent electric field Es

was present which was obtained from Poisson solver. In the upgraded version [VPPM-2.0],

an external electric field has been added such that the VP equations defined as

∂f

∂t
+ v

∂f

∂x
− ET

∂f

∂v
= 0 (2.18)

∂Es
∂x

= ρ(x, t) = 1−
∫
fdv (2.19)

where ET = Es +Eext is the total electric field, where Es(x, t) is the self consistent electric

field and Eext is the external driver electric field, defined as:

Eext = E0sin(kx± ωt) (2.20)

where E0 is the amplitude of external drive. Here, k represents the perturbation wave

number in the simulation box and ω represents the driver frequency. As before here

also, time has been normalized to the electron plasma frequency ωpe, space has been

normalized to the Debye length λDe, velocity has been normalized by the initial equilibrium

thermal velocity vthe = λDeωpe. With these choices, f gets normalized by n0/vthe and E

by mevthe/eλDe where e is the electron charge.

On addition of this driven term, the time stepping/splitting method modifies as follows:-
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• x-advection:- Solve ∂f/∂t+ v∂f/∂x = 0 for ∆t/2, for a given v in the x-domain.

• FFT routine:-Using the f (obtained from previous step) solve the Poisson equation

to obtain self consistent electric field Es(x).

• v-advection:- Solve ∂f/∂t− ET∂f/∂v = 0 for ∆t, for the ET = Es + Eext where

Es is obtained in the previous step and Eext is applied externally.

• x-advection:- Solve ∂f/∂t+ v∂f/∂x = 0 for ∆t/2, for a given v in the x-domain.

The driver frequency of the external electric field Eext can be constant or time dependent,

the details of which is presented later in the Thesis.

2.3.2 Vlasov-Yukawa Solver (VY):- Kinetic Ions and Boltz-

mann Electrons

The role of ions on the phase space dynamics of electrons is clearly related and important

question. The above described Solver have been applied to study the dynamics of kinetic

electrons in the background of immobile ions. In order to study of the kinetic dynamics of

collisionless plasmas at short wavelengths (ion scales) which is a subject of active interest

in the field of space plasma physics and other astrophysical plasmas, ion scale dynamics

needs to be included. Among the several versions for the Vlasov-Poisson system, in this

work, one of our interest lies in the self-consistent Vlasov-Yukawa system(VY) which

consists of the Vlasov equation coupled with the Yukawa equation for the evolution of

interaction potential. The Yukawa system is a short-range correction of the Poisson equation,

which is sometimes called the screened Poisson equation in plasma physics. Necessary

modifications are made in the VPPM solver to treat kinetic warm ions and Boltzmann

electrons, analyzed by means of kinetic Eulerian simulations including a numerical Vlasov-

Yukawa (VY) solver which treats kinetic ions in the presence of Boltzmann electrons

[ne = n0 exp(eφ/KTe) = n0(1 + eφ/KTe)] is given by,

∂f

∂t
+ v

∂f

∂x
+ ET

∂f

∂v
= 0, (2.21)
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∂Es
∂x

= −∂
2φ

∂x2 = ni − ne (2.22)

Here, f is the ion distribution, ne = (1 + TRφ) is the normalized Boltzmann electron

distribution and TR = Ti/Te is the ion to electron temperature ratio. and ET = Es + Eext

is the total electric field, where Es(x, t) is the self consistent electric field and Eext is the

external driver electric field defined as:

Eext = E0sin(kx± ωt) (2.23)

where E0 is the amplitude of external drive. Here, k represents the perturbation wave

number in the simulation box and ω represents the driver frequency. Therefore,

− ∂2φ

∂x2 + Ti
Te
φ =

∫
fdv − 1. (2.24)

Here, all the quantities are normalized in terms of ion parameters i.e. where time has been

normalized to the ion plasma frequency ωpi =
√
n0e2/ε0mi, space has been normalized

to the ion Debye length λDi =
√
ε0KTi/n0e2, velocity has been normalized by the initial

equilibrium ion thermal velocity vthi = λDiωpi. With these choices, f gets normalized by

n0/vthi and E is given by by −∂φ/∂x. In this model, only ion equations are solved using

time-splitting method and effect of Boltzmann electrons considered in the screened Poisson

equation. The details will be presented in the later part of the Thesis.

2.3.3 Inclusion of Ion Dynamics:- Kinetic Ions and Kinetic

Electrons (KIKE)

In order to study the effect the ion dynamics, modifications have been made in the VPPM

solver [VPPM-2.0] such that it can treat both kinetic electrons and kinetic ions on the

same physics footing or symmetrically in terms of kinetics. This version of VPPM-2.0 is

dubbed here as KIKE (Kinetic Ions and Kinetic Electrons) model.
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To incorporate ion dynamics, the VP system can be described as followings:-

∂fe
∂t

+ ve
∂fe
∂x
− ET

∂fe
∂ve

= 0 (2.25)

∂fi
∂t

+ vi
∂fi
∂x

+ 1
µ
ET

∂fi
∂vi

= 0 (2.26)

∂Es
∂x

=
∫
fidvi −

∫
fedve (2.27)

where fe(x, v, t) and fi(x, v, t) are the distribution functions of electrons and ions, respec-

tively, µ is the mass ratio of ions to electrons i.e. µ = Mi/me and ET = Es +Eext is the

total electric field. All the quantities are normalized in terms of electron parameters.

To solve both electron and ion Vlasov equations, the time-splitting method will be applied

as follows:-

• Solve ∂fe/∂t+ ve∂fe/∂x = 0 and ∂fi/∂t+ vi∂fi/∂x = 0 for ∆t/2, for a given v in

the x-domain.

• Using this fe and fi solve the Poisson equation to obtain self consistent electric field

Es(x).

• Solve ∂fe/∂t − ET∂fe/∂ve = 0 and ∂fi/∂t + (1/µ)ET∂fi/∂vi = 0 for ∆t, where

ET = Es + Eext, Es is obtained in the previous step and Eext is applied externally.

• Again, solve ∂fe/∂t+ ve∂fe/∂x = 0 and ∂fi/∂t+ vi∂fi/∂x = 0 for ∆t/2, for a given

v in the x-domain.

2.3.4 Inclusion of Collisions

In most part of this Thesis, the plasma is considered to be collisionless. Many aspects of

relatively dense but hot plasmas, such as those present in magnetic confinement fusion

devices, can be analyzed using the Vlasov equation. However, there are certain plasma

phenomena that can only be explained if a collision term is added to the VP model (such as
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nearly collisionless regimes like, runaway electrons in magnetically confined fusion plasmas,

magnetic reconnection in weakly collisional regime, low density edge in a tokamak plasma,

solar plasma near sunspots, and non-neutral plasmas etc.) as will be described here.

Therefore, a collision term has to be added to the Vlasov equation. The result is usually

called the Boltzmann equation. The basic equations considered here can be written in the

following dimensionless form:

∂f

∂t
+ v

∂f

∂x
− ET

∂f

∂v
= ∂f

∂t

∣∣∣∣
collision

= C(f) (2.28)

where C(f) is a generic collision operator. For this model, time evolution of the distribution

function is approximated by using a splitting scheme for collisional Eulerian codes [63] that

decomposes the evolution of f in three different steps. To summarize this splitting scheme,

for a single time step ∆t:

• ∆t/2 transport step → ∂tf + v∂xf − E∂vf = 0 [Note that this step includes further

time-splitting].

• ∆t collisional step → ∂tf = C(f).

• ∆t/2 transport step → ∂tf + v∂xf − E∂vf = 0.

Each transport step is in turn composed by three substeps, a first half-step advection in

physical space followed by a full-step advection in velocity space and then by an additional

half-step advection in physical space, according to the time splitting scheme first proposed

by Cheng and Knorr in 1976. The Poisson equation for the electrostatic potential is solved

after the first spatial advection step. Being ∆t′ = ∆t/2, the time step for the transport

advance, a single transport step for ∆t′ can be summarized as follows:

• ∆t′/2 x-advection → ∂tf + v∂xf = 0

• Poisson routine Es → ET = Es + Eext(if any)

• ∆t′ v-advection → ∂tf − ET∂vf = 0.
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• ∆t′/2 x-advection → ∂tf + v∂xf = 0.

Both x-advection and v-advection have been performed numerically using PPM advection

scheme. In Thesis, we have considered two different 1D collisional operators:-

• Bhatnagar-Gross-Krook (Krook) operator [61]:- C = −ν(f − feq)

• Zakharov-Karpman (ZK) operator [62]:- C = ν∂/∂v(∂f/∂v + vf)

where ν is the collision frequency, feq is the local equilibrium value for the distribution of

particles. Here, a systematic study has been presented with these two different collision

models:- (1) Boltzmann collision operator or Bhatnagar-Gross-Krook (Krook) operator,

where the colliding particles can be treated as isolated pairs and (2) Zakharov-Karpman

(ZK) operator (a Fokker-Planck collision term in 1D[88]), where many weak collisions lead

to particle diffusion in velocity space. The details of these operators will be presented in

the later part of the Thesis.

2.4 Benchmarking of VPPM-2.0 Solver

In this Section, we benchmark the Vlasov-Poisson solver VPPM-2.0 with the Landau

damping results previously obtained from VPPM-1.0 [58].

2.4.1 Benchmark of KIKE code

Benchmarking of KIKE code is done with VPPM-1.0 by assuming plasma to be consists of

kinetic electrons and immobile ions (µ/TR = 1010) and an extensive comparison is carried

out between simulation and theoretical results. For a collisionless plasma, where damping

by collisions is negligible, when plasma is perturbed with an initial density perturbation

(Eext = 0), by initializing the following distribution function:-

f(x, v, t = 0) = (1 + α0cos(x))f0(v) (2.29)
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where f0(v) = 1/
√

(2π)exp(−v2/2) is the initial Maxwellian velocity distribution function

and α0 is the strength of perturbation such that the oscillating period of the trapped particles

in the trough of the plasma wave is approximately for the time period, τr = 2π/√α0, after

which time the linear solution breaks down and nonlinear phenomena become prominent.

The plasma wave is dissipated by Landau damping before particles are trapped, unless

γLτr < 1, where γL is the linear Landau damping rate.[81]

With an initial amplitude, which is as small as near the linear region i.e. for γLτr > 1, it

leads to an exponential damping or linear Landau damping. For example, in Fig.[??], with

simulation parameters:- α0 = 0.01, k = 0.4, the numerically observed plasma frequency

is ωobsr = 1.282 and the linear landau damping rate is γ = −0.0661 which are in close

agreement with analytical values ωr = 1.285 and γ = −0.0661, respectively[89]. In Fig. ??,

the total energy of the system is plotted, which is defined as: TE(t) = KE(t) + PE(t),

where kinetic energy is computed as KE(t) = (1/2)
∫ ∫

v2f(x, v, t)dxdv and potential

energy computed as PE(t) = (1/2)
∫
E2(x, t)dx. In Fig. ??(d), the relative total energy

δW = TE(t)− TE(0), the relative kinetic energy δK = KE(t)−KE(0) and the relative

potential energy δP = PE(t) − PE(0) are plotted. One can see that the total energy

remains conserved in time. As the amplitude of perturbation becomes larger, contribution

(a) (b)

Figure 2.4: Linear Landau Damping (LLD) for k = 0.4, α0 = 0.01 (a) Logarithmic
plot of time evolution of amplitude of the first fundamental harmonic of the electric
field log|E1| - LLD rate. (b) The numerically observed plasma frequency ωobsr for
LLD.

from the nonlinear terms become more significant and the behavior deviates from uniform

exponential damping. This causes interaction of particles with the electric field to form
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Figure 2.5: Linear Landau Damping (LLD) for k = 0.4, α0 = 0.01. Plots for (a)
Kinetic Energy (KE), (b) Potential Energy (PE) and (c) Plots for relative total
energy, relative kinetic energy and relative potential energy.
pockets of trapped particles in the phase-space, due to trapping nonlinearity, leading to

coherent structures in phase-space known as Bernstein-Greene-Kruskal (BGK) structures[3].

In Landau damping, the electrons with velocity vφ ' ωr/k, resonates with the plasma wave

field and energy exchange takes place between resonant particles and wave. This results in

the flattening of the distribution function. For example, for k = 0.4, the analytic value of

ωr is 1.285; hence vφ = ωr/k = 3.21. As we can see in Fig.??, when plasma is perturbed

with a nonlinear amplitude of perturbation α0 = 0.05, the velocity distribution function

gets flattened near 3.21 and a corresponding phase space vortex is found at vφ = 3.21.

This implies that there is a prominent potential well formed, and particles get trapped and

detrapped to sustain the steady-state potential well, which can also be seen in Fig.??(c),

where the time evolution of amplitude of the first fundamental harmonic of the electric

field Ek=1, denoted by E1, is plotted. Since only one Fourier mode has been perturbed

here, the fundamental harmonic E1 would represent how this mode evolves with time [10,

58]. However, these initial density excitation with homogeneous Maxwellian plasma leads
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(a) (b)

(c)

Figure 2.6: Linear Landau Damping (LLD) for k = 0.4, α0 = 0.01. Plots of difference
between data obtained from VPPM-1.0 and VPPM-2.0 solver for (a) Total Energy
(TE), (b) Kinetic Energy (KE), (c) Potential Energy (PE)

to Langmuir waves only.In Figs. ??(a), ??(b) and ??(c), the total energy (TE). the kinetic

energy (KE) and the potential energy (PE) of the system are plotted, respectively. In

Fig.??(d), the total relative energy δW = W (t)−W (0), the total relative kinetic energy

δK = K(t)−K(0) and the total relative potential energy δP = P (t)− P (0) are plotted.

One can see that the total energy remains conserved upto third decimal. These results can

be interpreted as benchmarking of VPPM-2.0-KIKE solver.

2.4.2 Benchmarking of VPPM-2.0 Solver - External Drive

Version

Benchmarking of External drive version is done for both cases: (1) where ion species is

not included in the code such that Vlasov equation is solved only for electrons [same as

VPPM-1.0] and (2) KIKE model with µ/TR = 1010, such that the plasma is assumed to be
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Figure 2.7: Non-linear Landau Damping - BGK modes for k = 0.4, α0 = 0.05 (a)
Plot of velocity distribution function f̂(v) in log scale. A small flattening can be
seen at v = 3.21. (b) Phase space plot of f(x, v) at t = 2000 with phase space vortex
at v = 3.21. (c) Plot for the amplitude of the first harmonic of the electric field E1
with time. (d) The numerically observed frequency ωobsr ∼ 1.28 obtained at the end
of simulation.

consists of kinetic electrons in the background of immobile ions. By assuming Eext = 0,

which makes ET = Es. The results exactly matches (1) with VPPM-1.0 for the first case

and (2) with KIKE model results as shown above in Subsection.?? for the second case.

2.4.3 Benchmark of Vlasov-Yukawa (VY) code

Benchmarking of Vlasov-Yukawa (VY) code, where plasma is assumed to be consists of

kinetic ions in the background of Boltzmann electrons, is presented from Chapter 5 where

an extensive comparison is carried out between simulation and theoretical results.
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Figure 2.8: Non-linear Landau Damping (LLD) for k = 0.4, α0 = 0.05. Plots for
(a) Total Energy (TE), (b) Kinetic Energy (KE), (c) Potential Energy (PE) and (d)
Plots for relative total energy, relative kinetic energy and relative potential energy.

2.4.4 Benchmark of Collisional Solver

In this Section, we have benchmarked the collision time-step model with the usual time-step

algorithm. Here, we have referred the VPPM 2.0 solver with single time-stepping as “old

scheme” and VPPM-2.0-Collisional version of code, where time-stepping is done twice,

with collision frequency ν = 0 as “new scheme”. For the purpose of the benchmark, we use

previously obtained linear Landau damping and nonlinear Landau damping results. In the

Fig.??, log|E1| for linear Landau damping case has been plotted for parameters: k = 0.4,

α0 = 0.01. The results obtained with “old scheme” as well as “new scheme” matches with

each other. In Fig. ??(a), the time evolution of space averaged velocity distribution is

plotted, which is given by

f̂(v, t) =
∫ L

0 f(x, v, t)dx∫ vmax
−vmax

∫ L
0 f(x, v, t)dxdv

(2.30)
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Figure 2.9: Linear Landau Damping (LLD) for k = 0.4, α0 = 0.01 and collision
frequency ν = 0. Fit of a straight line through the maxima of log|E1|, obtained
with both “old scheme” and “new scheme”. (b) Plots of comparison of relative
total energy obtained with both “old scheme” and “new scheme” i.e. ∆TEc =
TEnewscheme − TEoldscheme.
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Figure 2.10: Non-Linear Landau Damping - BGK modes for k = 0.4, α0 = 0.05 and
collision frequency ν = 0. (a) Plot of space averaged velocity distribution function
f̂(v) in log scale, obtained with both “old scheme” and “new scheme”. A small
flattening can be seen at v = 3.21.

As one can observe the space averaged velocity distribution at later time exactly matches

for both “old scheme” as well as “new scheme”. In Fig.??(b), the difference of total energy

TE obtained by “new scheme” and “old scheme” is shown as ∆TEc = δTEnewscheme −

δTEoldscheme. The difference between the two schemes is in the 10−5 order, which indicates

the order of accuracy in the results obtained by “new scheme”. Furthermore, phase

space plots of f(x, v, t = 2000) have been shown on Fig.??, where one can observe the

corresponding phase space vortex found at vφ = 3.21 for both schemes. The position of

the vortex in x-space is different due to difference in the time-splitting techniques used

in both schemes as in “new scheme” or collision solver each time-step includes further
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time-splitting. However, it does not affect the important results and the basic features

of the results. These results can be interpreted as benchmarking of collisional version of

VPPM 2.0 solver.
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Figure 2.11: Non-Linear Landau Damping [10, 58] - BGK modes for k = 0.4,
α0 = 0.05 and collision frequency ν = 0. Phase space plot of f(x, v) at t = 2000 with
phase space vortex at v = 3.21obtained with both (a) “old scheme” and (b) “new
scheme”.

In the following Chapters, formation and dynamics of coherent structures or phase space

vortices by applying different models and by means of Eulerian simulation will be described.
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3
Electrostatic Modes and Driven Phase Space

Vortices (PSV) In the background of Immo-

bile Ions

In this Chapter, excitation of electrostatic modes and formation of steady

state phase space coherent structures or phase space vortices (PSV), some-

times also called Bernstein-Greene-Kruskal (BGK) modes, is investigated in

a collisionless, unbounded, one-dimensional plasma, modelled using Periodic

Boundary Conditions (PBC). Using a high resolution one-dimensional Vlasov-

Poisson solver (VPPM 2.0), the excitation of Electron Acoustic wave (EAW)

along with Langmuir wave (LAN) and formation of giant PSV is addressed

numerically. An EAW wave is heavily Landau damped within the linear theory

because its wave phase velocity is comparable to the electron thermal velocity.

However, it has been shown that the nonlinear EAW wave can be successfully

excited when a relatively low amplitude external electric field driver is applied

for a sufficiently long time (i.e. several trapping periods). This process excites

both EAWs as well as LAN along with some harmonics and create particle
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trapping (BGK/PSV) in both phase regions, which survives at a nearly constant

amplitude long after the drive is turned off. Also, for an infinitesimal external

drive amplitude and given wavenumber k, the existence of a window of chirped

external drive frequency is demonstrated which leads to formation of giant

PSV. The linear, small amplitude, external drive, when chirped, is shown to

couple effectively to the plasma and increase both streaming of “untrapped” and

“trapped” particle fraction. The steady state attained long after the external

drive is turned off is shown to lead to a giant PSV with multiple extrema

and phase velocities, with excess density fraction, defined as the normalized

deviation from the Maxwellian background. It is shown that the process depends

on the chirp time duration ∆t and chirp frequency range in ω. The excess

density fraction ∆n/n0, which contains both trapped and untrapped particle

contribution, is also seen to scale with ∆t, only inhibited by the gradient of the

distribution in velocity space. Novel features such as “shark”-like structures

and transient “honeycomb”-like structures in phase space are discussed. Both

undamped electrostatic modes (EAW and LAN) and steady state giant PSV,

with multiple extrema due to embedded holes and clumps, are shown to survive

long after the external drive is turned off [P. Trivedi and R. Ganesh, Physics

of Plasmas 23, 062112 (2016)].

3.1 Introduction

In 1946, Landau[1] discovered that electrostatic plasma waves of vanishing amplitude

excited as small amplitude perturbations in a collisionless uniform, Maxwellian, electro-

static plasma can be exponentially damped, due to their interaction with plasma particles

that stream with velocities close to the wave phase speed vφ of the wave. For example,

Langmuir waves (LAN). Landau’s treatment was rigorous, but strictly linear, meaning,

the amplitude of the initial perturbation is assumed to be infinitesimal. As the amplitude

of perturbation becomes finite, contributions from the non-linear effects become signif-
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icant which inhibit the uniform exponential damping, as was analyzed by O’Neil. [2],

by flattening the velocity distribution near the wave phase velocity vφ. Consequently,

certain nonlinear electrostatic oscillations, which tends to flatten the distribution locally

due to particle trapping [30], can survive Landau damping and exist at even low ampli-

tude, even when their phase velocities are comparable to the electron thermal velocity

(vthe). One such nonlinear electrostatic wave structure is known as Electron Acoustic

Waves (EAW) as the dispersion relation is of the form ω/k = 1.31vthe [35], where ω is

the angular frequency of the wave, k the wavenumber, and vthe the electron thermal

velocity of the plasma. The EAWs are the nonlinear waves that involve only the elec-

trons; in the background of immobile ions. However, within linear theory, these waves are

heavily Landau damped because the wave phase velocity of EAWs is comparable to the vthe.

As described earlier, in collisionless plasmas, when the amplitude of electric field is

increased, particles may get trapped in electric field pockets, which in turn flattens the

distribution, thus rendering the Landau damping ineffective. This leads to formation

of coherent structures in phase-space. A well known class of such coherent phase space

structures are Bernstein-Greene-Kruskal (BGK) structures. These are exact stationary

solutions for electrostatic, collisionless plasmas described by the Vlasov-Poisson model

[3]. An undamped EAW is also a weakly nonlinear BGK mode with small populations of

electrons trapped in the wave troughs. The distribution of electron velocities is effectively

flat at the wave phase velocity because of the trapped electrons and this turns off Landau

damping. In general, BGK modes are spatially inhomogeneous and therefore exhibit a

finite self-consistent electric potential and field structures. These structures have continued

to attract attention as they may represent the final saturated state of instabilities which

are stabilized by particle trapping in the potential well formed by the finite amplitude waves.

The BGK paper[3] opened a new window which described ways to construct a large class

of nonlinear states. Since then, there has been an enormous body of work that speculates

about which of these states might occur in nature [4, 5, 6], in experiments [7, 8, 9], and in

41



CHAPTER 3. ELECTROSTATIC MODES AND DRIVEN PHASE SPACE
VORTICES (PSV) IN THE BACKGROUND OF IMMOBILE IONS

numerical simulations [10], in a variety of situations. In a series of papers, starting from

1972, H. Schamel and colloborators [11, 90, 91, 13, 92, 93, 94, 65, 95, 96, 12] have obtained

nonlinear solutions and nonlinear dispersion relation to steady state Vlasov-Poisson equa-

tion. In their work, Sagdeev pseudo potential method is used to describe accurately a large

class of coherent phase space structures such as electron-ion holes, double layers and more.

Their procedure describes parameters estimating trapped particle fraction for a steady

state coherent phase space structure with a single extrema. The stability of these structures

is also of great interest[13, 10, 44]. The applicability of Sagdeev pseudo potential method

to multiextrema phase space structures, such as the studies in the Thesis is questionable [21].

As described earlier, a natural way to achieve a BGK state is to increase the amplitude

of initial density perturbation without directly perturbing the distribution in velocity

space. The amplitude should be large enough to overcome Landau damping [2, 10]. These

waves can be excited even at low amplitude by tailoring the particle velocity distribution

or driving the plasma externally. These external drives can excite both LAN waves as

well as EAW waves [35]. More recently, external drives with time dependent frequency

ω(t) or chirp, have been used to obtain BGK modes in bounded systems [36, 37, 38,

39, 40, 41]. For example, in a pure electron plasma confined in a Penning-Malmberg

trap, it was shown that phase space holes can be created by choosing the frequency chirp

window to be around axial electron bounce frequency [36, 37, 38]. Similarly a down-

ward frequency sweeping has been performed in a pure ion plasma experiment where

extreme modification of initial distribution has been observed (for eg. splitting of an

initial Maxwellian distribution into two counter-propagating distributions) [42]. Possibility

of obtaining BGK modes or PSVs, if the plasma is unbounded as in astroplasmas or in

the axial direction in a Tokamak, is an interesting open question. Interestingly such a

paradigm may help understand alpha particle dynamics in Tokamaks as well as formation

of the non-Maxwellian structures along the magnetic field lines in the astrophysical plasmas.

In the present work, a 1D unbounded Vlasov-Poisson system has been modeled using
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Periodic Boundary Conditions (PBC). The plasma is subjected to an infinitesimal external

drive. As is well known,[Schamel2000, 30, 33, 42] both abrupt as well as adiabatic

external drive of constant frequency, say ω = ω0, wavenumber k and linear amplitude

(i.e. infinitesimal) are expected to generate plasma modes over a range of frequencies

along with its harmonics [as shown later]. In this work, the following questions have

been addressed: what would happen in an unbounded plasma modeled using PBC, if the

external drive frequency ω(t) is chirped down in time interval ∆t, say from ωhigh to ωlow.

It has been found out that this frequency chirping allow “continuous” flattening in the

velocity space leading to large coherent structures in phase space with embedded holes and

clumps resulting in Phase Space Vortices (PSV) with multiple extrema and phase velocities.

The drive increases both kinetic energy and potential energy of the system. Meaning

both untrapped and trapped particle fraction is seen to increase, leading to flattening

of the distribution function. As the external drive is switched off, the above said large

coherent phase space structure is found to attain a steady state leading to large amplitude

steady PSV. This process of PSV formation also depends on the frequency regime in which

chirp is given, which leads to one giant PSV structures to multiple PSVs. In general, the

formation of PSV is found to strongly dependent on chirp frequency range and chirp time

interval ∆t. As described earlier, unlike single extrema PSVs, I believe that the multiple ex-

trema PSVs are not describable well by Pseudo Potential method of Schamel and co-workers.

The rest of the Chapter is organized as follows: I proceed to describe the numerical

scheme in Sec. 2.2. Simulations with different cases have been discussed in Sec. 2.3. In

the Subsec.1.3.1, the formation of small “seed” flattenings have been shown on applying

a constant frequency external drive to a PBC 1D VP plasma, which excites both LAN

mode as well as EAW mode. In Subsec.1.3.2, it has been shown that a small amplitude

downward chirp amplifies the trapping from LAN to EAW region and at the same time

creates streaming of untrapped particles which in turn creates a large flattening in velocity

distribution resulting in giant PSV with multiple extrema due to embedded holes and clumps

(Subsec.1.3.2.1). These structures I call as multiple phase space vortices (Subsec.1.3.2.2).

In Subsec.1.3.2.3, I study the evolution of “untrapped” and “trapped” particle dynamics
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with different chirp intervals. In Subsec.1.4 discussion has been presented and phase space

holes in Vlasov-Poisson system followed by our conclusions in Sec.2.5.

3.2 Governing Equations & Simulation Setup

A 1D unmagnetized, collisionless electrostatic plasma, in the framework of kinetic theory,

is described by one dimensional Vlasov-Poisson (VP) model equations, viz:

∂f

∂t
+ v

∂f

∂x
− ET

∂f

∂v
= 0 (3.1)

∂Es
∂x

= 1−
∫
fdv (3.2)

where f(x, v, t) is the electron distribution function and ET = Es+Eext is the total electric

field, where Es(x, t) is the self consistent electric field obtained by Eqn.1.2 and Eext is the

external drive electric field defined as:

Eext = E0sin(kx± ωt) (3.3)

where E0 is the amplitude of external drive. Here, k represents the wave number in the

simulation box and ω represents the drive frequency. In these above equations, time is

scaled to electron plasma frequency (ω−1
pe ), where ωpe =

√
n0e2/meε0, length is scaled to

electron Debye length λDe =
√
KTeε0/n0e2 and velocities to vthe = λDeωpe =

√
KTe/me,

electron thermal velocity. With these choices, f gets normalized to n0/vthe and E to

mevthe/eλDe . In this model, the ions form a stationary neutralizing background of number

density n0 with numerical value 1 in the Poisson equation [Eq.(1.2)]. (Please note that, in

my published work [21], the electric field E is normalized by −mevthe/eλDe, which makes

Eqn.1.1 and Eqn.1.2 as ∂f/∂t+ v∂f/∂x+ ET∂f/∂v = 0 and ∂Es/∂x =
∫
fdv − 1.)

The simulation domain has been set in phase space D = [0, Lmax]× [−vemax, vemax], where
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Lmax = 2π/k is the system size for wavenumber k such that the longest wavelength fits

into the simulation box. and vmax is chosen sufficiently large so that electron velocity

distribution function approaches zero as |v| approaches vmax. I apply periodic boundary

conditions (PBC) along boundaries for both spatial and velocity domains.

3.2.1 Plasma Dispersion Relation
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Figure 3.1: Dispersion curves or “Thumb” curves for the electrostatic waves (LAN,
EAW) in k − ω plane, obtained by assuming zero damping:- (a) The “Thumb” curve
represents the solutions or the roots of Eq.(1.4). (b) The same “thumb” curve plotted
in the k−vφ plane. (c) The gradient of the real part of the complex plasma dispersion
function −1

2Z
′(v) is plotted for real arguments for immobile ions.

Using the above normalizations, the Fourier transformation of linearized form of Eqs.

(1.1)-(1.2) leads to the usual linear dispersion relation[16]:-

1 +
∑
j

Kj(k, ω) = 0 (3.4)

where Kj(k, ω) = −k2
j /2k2Z ′(ξj) is the susceptibility of the jth(= e) species, ξj =
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ω/
√

2kvj and Zj(ξj) represents the real part of the complex plasma dispersion func-

tion for real arguments[44]. Here, I consider the initial distribution to be Maxwellian,

f0(v) = exp(−v2/2)/
√

(2π). By assuming a weak flattening (or trapped region) of vanish-

ing velocity width i.e. (∂f/∂v)|vφ' 0, which allows us to neglect the contribution from the

imaginary part of the dielectric function (For an alternative description as described by

Schamel and coworkers [44], See Appendix A), the solution to the real part of the wave

frequency ω as a function of the wave number k, obtained numerically from Eq.(1.4) is

shown in Fig.(1.1). Typically in the k − ω diagram, at high frequencies (fixed/immobile

ions), one obtains the “thumb” curve that represents Langmuir waves (upper branch of

thumb) and EAWs (lower branch of thumb)[17]. At values of the wave number for which

the effects of charge separation are no longer negligible, both electron branches (LAN

and EAW) coalesce [Fig.1.1(a)]. In the bottom plot Fig.1.1(b), the same thumb curve is

displayed in the k − vφ plane.

In Eqn.(1.4), the term −1
2Z
′(v) can be interpreted as a gradient of the real part of the

complex plasma dispersion function for real arguments. A plot of the function −1
2Z
′(v)

for kinetic electrons and immobile ions is displayed in Figs.(1.1(c)), where it divides the

phase velocity regions and reveals different branches of the dispersion relation. In the

limit of immobile ions, the function −1
2Z
′(v) represents electron contribution, where all

the negative values of this function represents the real solutions for electrostatic waves. It

has one zero transition (at v = 1.307) and one minimum (at v = 2.13) which results in

two separated regions for the phase velocity[96]:-(i) v ≤ 2.13 (EAW), (ii) v ≥ 2.13 (LAN)).

The function is positive for v < 1.307 and negative for other values of v and and vanishes

at infinity. From these plots in Fig.1.4, it is evident that there are mainly two undamped

roots and no undamped roots exist beyond a critical value of the wavenumber k. Moreover,

this thumb curve also represents that each point in the k − ω plane along the thumb curve

corresponds to a different particle velocity distribution function. This so-called “thumb”

dispersion curve is obtained by assuming the small wavenumber k and retaining only the

principle part in the velocity integral of the Landau dispersion relation.[1]
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3.3 Simulation

In this Section, I systematically present the numerical results of driven Vlasov-Poisson

system using VPPM-2.0 solver. I have considered in detail two different physical phenomena:

(a) when plasma is driven with a constant frequency drive, (b) the second concerns the

response of the plasma when a time dependent external drive is used.

3.3.1 Driven Electrostatic Modes :- Constant Frequency Drive

Within linear theory, the electron acoustic waves (EAWs) are heavily damped as their

wave phase velocities are close to electron thermal velocity (vthe). In the past, the EAW

has been studied in the context of two temperature plasmas, such as those in fusion

devices and in the auroral ionosphere [97, 98], where it has often been found that the

electrons consist of two distinct groups, one hot and one cold. In the usual acoustic mode

dynamics for EAW waves, when plasma constitutes of two different electron components,

bulk hot component and less dense (or thinner) cold component with the neutralizing

immobile ion background. In such case, the restoring force of the cold electrons comes

from the pressure of the hot component, whereas the effective inertia is provided by the

cold component. However, for a single temperature electron species plasma, an undamped

EAW is a nonlinear BGK mode where electrons trapped in the wave troughs which makes

the electron velocity distribution effectively flat at the wave phase velocity, consequently

turns off Landau damping. With a Maxwellian plasma, there are no trapped particles.

But if the plasma is driven externally, it can form trapping distribution dynamically as

the wave evolves. For an external electric field E = E0sin(kx− ωt), the trapping time to

form the trapped particle fraction is approximately τr = 2π/
√
kE0 (in my normalization).

However, the EAWs can be excited by a small amplitude driver if the driver is applied

resonantly over few trapping periods τr. The driver continuously replenishes the energy

removed by Landau damping. Therefore, the trapped particle distribution survives and the

undamped EAWs are eventually produced. the excitation of trapped particle structures
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can also be understand by single resonance dynamics, as described in AppendixB.

w=constant

Constant

Frequency

Drive

0 t2

Eext

t1Time

Figure 3.2: A cartoon figure of (Eext, t) showing frequency turn on-off of external
drive. Constant frequency drive is applied for (0 ≤ t ≤ t1).

In order to excite undamped EAWs, I initialize simulation with a collisionless plasma

having a homogeneous density distribution in space and an initial Maxwellian velocity

distribution:

fM = exp(−v2/2)/
√

2π (3.5)

which is driven with an external drive of amplitude E0, [Eq.(2.4)] , wave number k and

frequency ω chosen to be consistent with the ω values obtained from “thumb curve”.[17,

35, 99, 33, 42] The drive is applied for time 0 ≤ t ≤ t1 [See Fig.(1.8)], where t1 ' few τr,

where τr = 2π/
√
kE0).

It is important to note that the amplitude of external drive, E0, is chosen to be small enough

such that when an initial value problem is performed, the trapping time τr = 2π/
√
kE0

is much larger than the Landau damping time γ−1
L ensuring Landau damping. [58] For

example, consider plasma is driven with parameters:- k = 0.4, E0 = α0/k = 0.01/0.4 =

0.025, ωEAWd = 0.6241 (obtained from “thumb” curve), for time period ∆td = 1000. Here

α0, is the amplitude perturbation appled in the initial value problems. Then the system is

allowed to relax for another several ω−1
pe i.e. until t = 2000. In Fig.1.3, the space averaged

normalized velocity distribution function is plotted, which is given by

f̂e(v, t) =
∫ L
0 fe(x, v, t)dx∫ vmax

−vmax
∫ L
0 fe(x, v, t)dxdv

(3.6)
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Figure 3.3: (a) Plot of electron velocity distribution function f̂e(v) at different times.
Two small “seed” flattening can be seen at vEAWφ ' 1.572 and vLANφ ' 3.162. (b)
Contour plot of log10f(x, v) at t=2000 indicating both EAW and LAN regions.

As can be seen in Fig.1.3, this “weakly nonlinear drive” creates a velocity space distri-

bution with two small “seed” flattening, one in nonlinear EAW region and another in

LAN region. The corresponding trapping structures can be seen in the phase space plot

of f(x, v) at t = 2000 [see Fig.1.3(b)]. Both small “seed” flattening are seen both at

vEAWφ ' 1.572 and vLANφ ' 3.162. These values are slightly different from the values

obtained via “thumb” curve ( vEAWφ ' 1.56 and vLANφ ' 3.14) due to trapping region

of small but finite velocity width. In Fig.1.4(a) and Fig.1.4(c), evolution of excess den-

sity fraction δn(x, t)/n0 =
∫
f(x, v, t)dv −

∫
f0(v)dv is plotted with time and with space.

The total energy of the system is defined as: W (t) = K(t) + P (t), where kinetic en-

ergy is computed as K(t) = (1/2)
∫ ∫

v2f(x, v, t)dxdv and potential energy computed as

P (t) = (1/2)
∫
E2(x, t)dx. The In Fig.1.4(b), the total relative energy δW = W (t)−W (0),

the total relative kinetic energy δK = K(t)−K(0) and the total relative potential energy

δP = P (t)− P (0) are plotted. It is clear that as the drive is kept on, the relative kinetic
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Figure 3.4: (a) Plot of time evolution of excess density faction δn(x, t)/n0 =∫
f(x, v, t)dv −

∫
f0(v)dv at x = L/2. (b) Plot of relative energy with time,

when plasma is driven with a constant frequency for ∆t = 1000 for the fol-
lowing parameters:- k = 0.4, ωd = 0.6241.(c) Plot of evolution of electric field
E(x,t) with x at different times. (d) Plot of evolution of excess density fraction
δn(x, t)/n0 =

∫
f(x, v, t)dv−

∫
f0(v)dv with x at different times. The vertical line in

Fig. (a) and (b) represents the time at which drive is turned off.

energy of the system increases which reflects the increase in untrapped particle populations.

The relative potential energy of the system first increases the attains a certain value during

the drive. As the drive is turned off, relative kinetic energy decreases a little and relative

potential energy increasese which reflects the increase in trapped particle populations.

However, one trapping period (τr = 2π/
√
kE0) as the duration of external constant

frequency drive is enough to excite the EAW waves, which depends upon the parameters k

and E0. In Fig.1.5, for k = 0.4, two cases have been shown:- (1) for E0 = 0.01, τr ' 99.34

and (2) for E0 = 0.025, τr ' 62.831. For both cases, plasma is driven for one trapping

period i.e. ∆td = 1τr. This weakly nonlinear drive excites EAWs for both cases where the
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trapping width increases with increasing amplitude of E0.

As is well known, the external electric field Eext (defined in Eq.(2.4)), may be turned on

v

-2 -1 0 1 2

lo
g
1
0
f̂
e
(v
,
t
)

-1.5

-1

-0.5

t=0

t=100, E
0
=0.01

t=65, E
0
=0.025

1.2 1.4 1.6 1.8

-1.2

-1

-0.8

Figure 3.5: Plot of electron velocity distribution function f̂e(v) indicating flattening
in EAW region for two different values of E0 = 0.01 and E0 = 0.025 after one τr for
each case, respectively.

and turned off either adiabatically (i.e. Eadiabatic = Eext[1 + (t− τ)n/∆τn]−1) (See Fig.1.7)

[17] or abruptly (i.e Eabrupt = Eext) in time. In Fig.1.7, the same experiment has been done

to excite EAWs for different adiabatic profiles. For Eadiabatic = Eext[1 + (t− τ)n/∆τn]−1, a

comparison has been shown [Fig.1.7(a)] for the adiabatic profile g(t) with n = 10, 20, 50, 1000.

As the value of n increases, the profile becomes more steeper. Both methods would excite

Langmuir waves (LAN) as well as weakly nonlinear electron acoustic waves (EAW) along

with other harmonics[99]. In Fig.(1.6), I present a benchmark result demonstrating the

correctness of our numerical methods used here, when E(t) is swept from zero to E0

in a very short time. The abrupt drive is same as given in Eq.(2.4) for δtd = 1000

and the adiabatic drive is given by Eadiabatic = Eext[1 + (t− τ)n/∆τn]−1 where I choose

τ = 1000,∆τ = 700 and n = 20[33]. For k = 0.4, the circle indicates the LAN plasma

frequency for our parameters where the other peaks indicate weakly nonlinear EAW. As

can be expected, for an adiabatic drive, the amplitudes of excited modes are lower than

that of the abrupt drive but the frequencies coincide.

Here, the plasma is driven in EAW region for one trapping period τr for different values

of n. As can be seen in Fig.1.7(b), for all the values of n, the flattening of electron velocity

distribution indicates the trapping and excitation EAWs which persists at a nearly constant

amplitude long after the drive is turned off. Profiles with the higher values of n also
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Figure 3.6: Frequency spectrum of perturbed electric field after switching off the
constant frequency drive given in EAW region (both adiabatic and abrupt drive)
obtained by Fourier transform of electric field during off time i.e. time t1 < t < t2.
The abrupt drive is same as given in Eq.(2.4) and the adiabatic drive is given by
Eadiabatic = Eext[1 + (t − τ)n/∆τn]−1 [17] where I choose τ = 1000,∆τ = 700 and
n = 20.[33] For k = 0.4, the circle indicates the LAN plasma frequency for our
parameters where the other peaks indicate weakly nonlinear EAW and its harmonics.

produce the similar results and are equivalents to abrupt drive cases. In the present work,

the external drive is always turned on abruptly.
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Figure 3.7: Excitation of EAW by driving the homogeneous Maxwellian plasma
for nearly one trapping period τr (a) Different Adiabatic profile for which plasma
is driven with Eadiabatic = Eextg(t) where g(t) = [1 + (t − τ)n/∆τn]−1 [17]. Here,
I choose τ = 150,∆τ = 70 for different n values indicating different profiles from
adiabatic to nearly abrupt. (b) Plot of electron velocity distribution function f̂e(v)
indicating flattening in EAW region for corresponding adiabatic profiles. Profiles
with the higher values of n also produce the similar results and are equivalents to
abrupt drive cases. In the present work, the external drive is always turned on
abruptly.
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3.3.2 Chrip Driven Phase Space Vortices

In the previous Section 1.3.1, the excitation of electrostatic plasma waves (both LAN

and EAWs along with harmonics) in the background of immobile ions is shown for a 1D

periodic (unbounded) system. These excited waves creates particle trapping in the resonant

regions, also known as undamped Bernstein-Greene-Kruskal (BGK) modes or Phase Space

Vortices (PSVs). One can create large amplitude, transient kinetic structures in plasmas,

but more often than not, these structures are frequently unstable and short lived and do

not necessarily form a long lasting BGK/PSVs. Here, I report that the long lasting, large

amplitude PSVs can be excited by an external, oscillating, chirped frequency drive. I start

with a stable, Maxwellian Plasma with homogeneous density in space. The idea is to apply

a very low amplitude external drive with a downward shifting frequency (or “chirp”) for a

qualitative short period of time. This process creates localized, growing coherent phase

space structures in phase space which are shown to attain a steady state leading to large

amplitude PSVs.

Chirp With downward 

          frequency

ω=α t+ βω2

ω1

ω( t)

0 tTime
t1

Figure 3.8: A cartoon figure of (ω, t) showing frequency turn on-off of external drive.
A downward chirp ω = αt+ β is applied for (0 ≤ t ≤ t1).
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3.3.2.1 Chirp Driven Giant PSVs

Consider a Maxwellian homogeneous plasma driven by an external downward frequency

chirp (ω = αt+ β) which is applied to the plasma right at t = 0 for time duration ∆td till

t = t1 from ωhigh (or ω2) to ωlow (or ω1). The parameters for simulations are:- k = 0.4,

E0 = 0.025, ∆td = 200, ωhigh = 2, ωlow = 1. The chirp parameter are α = −5× 10−3 and

β = 2. In order for the transients to relax the system is evolved till t2 = 2000.
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Figure 3.9: Plots of (a) Electron velocity distribution function f̂e(v) at different
times in log scale, and (b) Relative energy δE with time, when plasma is driven with
a downward frequency chirp from ωhigh = 2 to ωlow = 1 for ∆td = 200 after which
the drive is turned off.

(a) (b)

Figure 3.10: Phase space plot of f(x, v) at t=2000, when plasma is driven with a
downward frequency chirp for δtd = 200. The large PSV structure contains peaked
spikes and holes embedded in it along with a “shark”-like structure, i.e., a bunch of
particles moving together within the giant phase space vortices.
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Figure 1.9(a) shows the resultant spatially averaged velocity distribution at different

time intervals with an increasing plateau region. In the constant frequency drive case [ See

Fig.1.3], in spite of the extended time of drive, the flattening is limited to the small regions

in velocity space. However, when the drive frequency is chirped from high frequency to low

frequency, the initial flattening is seen to grow into a giant stationary region in velocity

space and grows till the drive is on. As the chirp is turned off at ∆t = 200, the distribution

shows a weak relaxation leading to a steady configuration with a giant flat region.

The total energy of the system is defined as: W (t) = K(t) + P (t), where kinetic en-

ergy is computed as K(t) = (1/2)
∫ ∫

v2f(x, v, t)dxdv and potential energy computed as

P (t) = (1/2)
∫
E2(x, t)dx. The In Fig. 1.9(b), the total relative energy δW = W (t)−W (0),

the total relative kinetic energy δK = K(t)−K(0) and the total relative potential energy

δP = P (t)− P (0) are plotted. It is clear that as the chirp frequency is swept downwards,

both relative kinetic energy and relative potential energy of the system increases which

reflects the increase in untrapped and trapped particle populations, respectively.

The iso-contour of the electron phase-space distribution f(x, v, t) at final time (t = 2000)

is shown in Fig.(1.10), where a steady state vortex structure is created by a combination

of both untrapped and trapped particle dynamics during chirp. This phase space structure

exhibits several interesting features, like the large hole/ PSV structure contains peaked

spikes and holes embed- ded in it along with a “shark”-like structure, i.e., a bunch of

particles moving together within the giant phase space vortices. Also, apart from a large

electron hole at one phase velocity (vφ = 2.569), a second hole structure at higher phase

velocity (vφ = 3.691) is seen. A large region of “separatrices” are seen to be squashed

between these two giant hole structures. Furthermore, these hole structures in turn contain

peaked spikes or clumps and holes embedded in the larger electron hole surrounded by

large region of separatrix as described earlier. This is an example of steady state multiple

extrema PSV. Thus, the numerical results predicts that even though the amplitude of drive

is much below the “linear limit”, it causes increased particle trapping and simultaneous

increase in kinetic energy which in turn facilitates the formation of giant PSV in an

unbounded (periodic) system with enormous structural complexity in phase space which is
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preserved till the end of the simulation [Fig.1.10].

The time evolution of excess density fraction δn/n0, as defined in Eq.(2.12), at x = L/2,

is shown in Fig.(1.11(a)). The excess density fraction δn(x, t)/n0 may be defined as:

δn(x, t)/n0 =
∫
f(x, v, t)dv −

∫
f0(v)dv (3.7)

In response to the small amplitude chirp, excess particle density increases linearly in time

till the drive is on. The growth of excess density fraction is arrested when the drive is

turned off. Then the system relaxes and saturates to attain a certain value of excess density

fraction i.e. δn/n0 ' 16− 17% and remains the same till the end of simulation.

The entropy of the system is given by:

S(t) = −
∫ L

0

∫ +vmax

−vmax
f(x, v, t)logf(x, v, t)dvdx (3.8)

It is plotted as relative entropy [See Fig.(1.11(b))], defined as Srel = (S(t)− S(0))/S(0)

with time. Strictly speaking, for a collisionless plasma dS/dt = 0. However, because of

the numerical scheme, entropy does increase with time (which is a measure of finite grid

size effects in simulation) and then saturates [100].The numerical entropy is a measure of

the information “lost” from the simulation. As is well known, the evolving distribution

function exhibits filamentation which generates a small-scale structure in phase-space. The

numerical entropy saturates when the small-scale structures generated are dissipated when

this filamentation reaches the grid size, rendering a numerical steady-state. Here, the

relative entropy is seen to grow initially but saturates as soon as the drive is turned off.

The numerical experiments have been tested for different phase space grid resolutions also.

The growth in the entropy is found to be slower for the higher resolution case, although

eventually all different resolution cases saturate at nearly the same level. Results are found

to be invariable to grid sizes beyond certain resolutions. All the grid sizes for numerical

results in the Thesis have been carefully chosen. After the grid size study, the resolution

has been chosen without compromising the quality or quantity of the results. Here, the
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relative entropy is seen to grow when the drive is on but saturates as soon as the drive is

turned off. Also, the simulation is extended till t = 2000 in order to confirm the formation

of a steady-state solution.

It is important to note that this novel nonlinear phase space structure with rich internal
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Figure 3.11: Plots for the case where plasma is driven with a downward frequency
chirp for δtd = 200 for k = 0.4:- (a) Plot of excess density fraction (defined in
Eq.2.12) evolution at x = L/2 with time. (b) Plot of excess density fraction (defined
in Eq.2.12) evolution with x at different time. (c) Plot of relative entropy Srel with
time. The vertical line represents time at which drive is turned off. (d) Plot of
electric field E(x, t) with x at different times. The vertical line represents time at
which drive is turned off.

structures is a steady state solution [See Fig.(1.10)]. In Fig.1.12, the response of the plasma

is shown for different values of wavenumber k = 0.3, 0.4, 0.5. Considering the “thumb”

curve analysis [Fig.1.12(a)], the plasma is driven from LAN region to EAW region for

all three values of k [as shown in Table 1.1]. As can be seen, for lower values of k, the

frequency range from LAN to EAW regime is broader which makes it possible for the chirp

drive to excite both electrostatic modes along with their harmonics. As a result, all the
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adjacent excitations/resonances overlap which leads to giant phase space structures.

Table 3.1: Chirp Parameters for k.
k ωhigh ωlow

0.3 1.2 0.4
0.4 1.5 0.5
0.5 1.4 0.8
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Figure 3.12: Plots of (a) “Thumb” curve indicating chirp frequency ranges used for
different k values, and (b) Electron velocity distribution function f̂e(v) for different
k values in log scale, when plasma is driven with a downward frequency chirp for
chirp interval ∆td = 200 from LAN to EAW region [see Table1.1].

3.3.2.2 Transient Honeycomb Structures

The above numerical experiment has also been used to analyze the response of the plasma to

the downward chirp in the smaller frequency regime and to study the process of formation

and growth of the PSVs in the distribution function. It has been found that downward

chirp in smaller frequency regime leads to formation of multiple phase space vortices, all

58



CHAPTER 3. ELECTROSTATIC MODES AND DRIVEN PHASE SPACE
VORTICES (PSV) IN THE BACKGROUND OF IMMOBILE IONS

appearing at different regions of phase space, which gives a “honeycomb”-like transient

structure of the distribution function. Here, I report the results of the excitation of the

plasma with a drive amplitude of E0 = 0.025, with frequency swept from ωhigh = 0.8 to

ωlow = 0.4 with a sweep rate of α = −2× 10−3 for ∆td = 250.

As the ω(t) of the drive chirps down from ωhigh to ωlow with a single mode number, the

entire sub-harmonic region of phase space is seen to be driven strongly which results in

an interacting, finite amplitude phase-space structures during the drive phase. The phase

space portrait of the plasma as shown in Fig. 1.13 provides a convincing visualization

of the effect of the downward chirp on the process of formation and development of the

multiple PSV in the subharmonic region. In the first part of the driving process, only the

large density fluctuations are visible but at later times, the smaller PSV become more

prominent. The growth of the density fluctuations is arrested when the drive is switched off

but the phase space structures created by the drive persists till the end of the simulation.

These excitations at various phase velocities gives the distribution a “honeycomb” like

appearance.

In the past,[37, 38] with chirped frequency drive, a study of axial 1D dynamics of a bounded

system (Malmberg-Penning trap) confining pure electrons has been reported. In this work,

the external drive with high spatial harmonic content (k− spectrum) is used to search

and lock the axially bouncing electrons. These phase-locked electrons at higher phase

velocity are chirp-dragged (“bucket”) to lower velocity region of the distribution function

resulting in multiple non-overlapping phase space holes or “honey-comb-like” structures

in phase space. In their work, these structures are reported to overlap or interact only

at large amplitude of chirp drive. However, our work, I have shown that these transient

multi-extrema phase structures in sub-harmonic region or “honeycomb”-like structures

thus created are seen to continuously interact, long after the linear drive is switched off,

with smaller structures slowly “merging”, as it can be expected in a 2D inverse cascade

process leading to a quasi-steady phase space structures.
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Figure 3.13: Phase-space portrait of the electron distribution f(x, v), when plasma
is driven in subharmonic region from ωhigh=0.8 to ωlow = 0.4 for ∆td = 250. Contour
plots (a) t = 250, when drive is turned off, and (b) at t = 2000, at the end of
simulation. These portraits show dynamic activity in subharmonic region leading to
transient multi-extrema phase structures in sub-harmonic region or “honeycomb”-like
structures. (c) Plot of excess density fraction evolution with x at different time. (d)
Plot of electric field E(x, t) with x at different times.

3.3.2.3 Response of the system to the different chirp intervals

In this Section, the plasma is driven with the same drive amplitude E0 = 0.025 and the

drive frequency is swept within the same range (from ω = 2 to ω = 1) as in the earlier

Section, but for different chirp time intervals (∆t = 50, 100, 150, 200, 250, 300, 350, 400).

The results are shown in Fig.1.14(a), where the width of the flattened regime is shown

to increase with chirp time interval. The longer is the chirp time (i.e. ∆t), larger the

flattening in velocity distribution. Fig.1.14(b) shows that the system attains a steady state

and the relative entropy does not change throughout the simulation long after the drive is

turned off. With increase in chirp interval, the structure grows in amplitude but beyond a
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certain chirp interval, the amplitude saturates as ∂<f>
∂v attains very large negative value.

The phase space portrait of the system at the end of the simulation is shown in Fig.(1.15),
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Figure 3.14: (a) Plot of velocity distribution function f̂e(v), when external downward
chirp is given from the start (t = 0) for different time intervals. (b) Plot of relative
entropy Srel with time when external downward chirp is given from the start (t = 0)
for different time intervals. The vertical lines represent time t at which chirp is
turned off.

for different chirp intervals. In Fig.[1.15(a),1.15(c),1.15(e)], a giant PSV structure embedded

with holes and clumps can be seen clearly. The size of these steady state PSV structures

increases with chirp interval. In the figure, besides the large PSV structure, the presence

of a second structure create a significant excess density trapping which is seen last till

the end of simulation even in the absence of drive. The increase in the size of the second

phase space structure can be seen clearly with increase in chirp interval, where it attains

maximum growth after ∆t = 200. These structures are seen to persist till the end of

simulation. It is important to note that the multiple extrema PSV are formed soon after
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the chirp is turned off (typically t ∼ 800) and remain so, without any further coalescence,

for the entire length of the simulation (t ∼ 2000).

The response of the system in terms of maximum potential well depth and maximum

relative density fraction, obtained after switching of the drive, as a function of chirp interval

has been shown in Figs. 1.16(a) and 1.16(b) respectively.

3.4 Discussion

I have studied numerically a simple, novel and efficient way to obtain giant Phase Space

Vortices (PSV) in a 1D unbounded Vlasov plasma modelled using periodic boundary

conditions. A very low amplitude external drive with frequency chirping is found to drive

giant structures in phase space at steady state. In the first part, 1D simulations have been

performed to excite LAN mode which represents the damping and trapping phenomenon

of plasma for initial density perturbation problems as well as work as benchmark of our

solver. Then, by assuming an initially homogeneous Maxwellian distributional, plasma is

driven with constant frequency ω0. This drive creates two “seeds” flattening, one at weakly

nonlinear EAW frequency and other is at LAN frequency. Both EAW and LAN are excited

with this constant frequency drive which are seen to persist long after the weakly nonlinear

drive is turned off.

In the second part, it has been demonstrated that large steady state PSV structures can

be excited when the drive frequency is swept from the start (t = 0) for a short time period

∆td from ωhigh to ωlow.

It was found that when a low amplitude external drive with (ω, k) is turned on for longer

than several trapping periods, this drive resonantly couples to particles around ω/k in

phase space leading to linear and weakly nonlinear form of natural modes of the system,

for eg. EAW. The modes do not grow any further and the linear and weakly nonlinear

dispersions can be obtained. This exercise leads to “thumb” dispersion curve.
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Figure 3.15: Phase space plots of f(x, v) at t = 2000 when external downward chirp
is given from the start for different time intervals. (a) Plot of f(x, v) at time t = 2000
for chirp interval ∆t = 50. (b) Cross-section of f(x, v) at time t = 2000 for chirp
interval ∆t = 50. (c) Plot of f(x, v) at time t = 2000 for chirp interval ∆t = 250.
(d) Cross-section of f(x, v) at time t = 2000 for chirp interval ∆t = 250. (e) Plot of
f(x, v) at time t = 2000 for chirp interval ∆t = 400. (f) Cross-section of f(x, v) at
time t = 2000 for chirp interval ∆t = 400.
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Figure 3.16: Plots of (a) φmax, and (b) the percentage of excess density δnmax/n0 of
the saturated PSV states at t = 2000 after turning off the drive with different chirp
intervals ∆td.

Instead of keeping ω a constant, if ω = ω(t) is swept in time or chirped, then groups

of particles in the distribution f(v) resonantly couple to ω(t)/k0 leading to several “near-

resonant” coupling through the whole range of velocity distribution. As the chirp rate

is slowed, the sum of the half widths of the adjacent resonances becomes greater than

the distance between the centers of the resonances i. e. the adjacent resonances starts to

overlap. Resonance overlap leads to mixing between the two adjacent resonant regions and

can lead to overlapped resonant regions with multiple features in it (“shark” like PSVs).

Keeping other parameters fixed, the response of the plasma on applying different chirp

rates reveals that the longer the frequency is swept (i.e. slower the chirp rate), the greater

is the region of flattening in velocity space. The growth of these coherent phase space

structures are arrested beyond a certain chirp interval as ∂<f>
∂v attains large negative

value. In general, the chirp driven phase space structures repeated here are seen to possess

multiple extremas of f(x, v) embedded within the giant hole structure. Moreover, more

than one giant hole structures are squashed together amongst separatrix like structures,

each of these structures moving at a different phase velocities. The complexity of these

structures are seen to increase with ∆t.

As described in the Introduction, Schamel and coworkers, [11, 90, 91, 13, 92, 93, 94,

65, 95, 96, 12] construct the phase space holes or vortices, by applying Sagdeev Pseudo-

potential method to Vlasov-Poisson system of equation. Given a phase velocity vφ of a

64



CHAPTER 3. ELECTROSTATIC MODES AND DRIVEN PHASE SPACE
VORTICES (PSV) IN THE BACKGROUND OF IMMOBILE IONS

single nonlinear phase space structure, mode number k0 and the amplitude of the nonlinear

potential well Ψ, Schamel and co-workers provide a clear prescription via a nonlinear

dispersion relation (NDR), to calculate trapped fraction for a single phase space structure

with phase velocity vφ. For a nonlinear phase structure which exists as a steady state

solution with more than one extrema embedded with holes and clumps, each of these

extrema travel at its own vφ. Moreover these extrema of φ(x), namely Ψ, would be same for

all the structures. Thus in our understanding, while it is possible to apply Pseudo potential

theory of phase space holes to steady state nonlinear coherent phase space solution with

one vφ and one Ψ for a given k0 corresponding to a single extrema, it is unclear as to how

this methodology[11, 90, 91, 13, 92, 93, 94, 65, 95, 96, 12] is to be applied to the multiple

extrema steady state coherent structures found here.

In the past, with chirped frequency drive, BGK like structures have been studied for

bounded system,[36, 37, 38] for example, a pure electron plasma is confined in Penning-

Malmberg trap. The extended frequency of drive is applied in such a way that it resonates

with a group of axially bouncing electrons. Then the drive frequency is swept down-

wards such that the bounce-resonant particles remain phase locked to the drive which

creates a hole in the electron phase space distribution. Electron population with certain

axial bounce frequency is “phase-locked” using an external frequency chirp drive with

certain amplitude. The drive contains high spatial harmonics (k− spectrum) and the

frequency chirp is used to “search and lock” the axially bouncing electrons. The chirp

range is so chosen that ωhigh > ωbounce
k1

> ωlow where k1 is the lowest and prominent mode

number. The phase-locked electrons at higher phase velocity and low density (or popula-

tion) are chirp-dragged to lower velocity (but higher density) region of the distribution

function forming a “phase space hole”. This trap-drag-drop idea is akin to a “bucket”.

Higher k−harmonics are shown to create non-overlapping phase space holes of different

depths at velocities lower than ωbounce
k1

. Thus simultaneous presence of multiple k values

(k−harmonics) and dynamics of bounce-electron results in “honey-comb-like” structures in

phase space. However, these structures do not overlap or interact until the amplitude of

the chirp drive is increased to nonlinear levels akin to the well known Chirikov-like condition.

65



CHAPTER 3. ELECTROSTATIC MODES AND DRIVEN PHASE SPACE
VORTICES (PSV) IN THE BACKGROUND OF IMMOBILE IONS

In my work, I study essentially an unbounded 1D plasma modeled using periodic boundary

conditions with ions forming a stationary neutralizing background. Thus in the undisturbed

plasma there are no trapped electrons. Trapped particles arises only due to the chirp-driven

nonlinear phase space vortices. For the entire study, I consider a single k−mode, the lowest

possible k−mode (k = 2π
L , L−is the system size) and have investigated the effect of chirped

frequency drive with infinitesimal or “linear-like” amplitude E0 (meaning, at this amplitude,

when I perform a standard initial value problem, the mode simply Landau damps linearly).

When plasma is driven in high frequency range (from LAN to EAW), the phase of the

drive resonates with particle velocity and consequently increases both the kinetic energy

and potential energy of the system in that high frequency region. This process creates

deep potential well leading trapping as well as streaming of untrapped particles. As the

drive is turned off, the system is seen to relax to a phase space vortices but with multiple

extrema “shark” like structures squashed between ergodic regions of separatrices. However,

for the frequency regime smaller than electron plasma frequency, as ω(t) of the drive

chirps down from ωhigh to ωlow with a single mode number k, the entire sub-harmonic

region of phase space is shown to be driven strongly even for “linear-like” drive amplitudes.

This results in strongly interacting, finite amplitude phase-space structures during the

drive phase. These transient multi-extrema phase structures in sub-harmonic region or

“honey-comb-like structures” thus created are seen to continously interact, long after the

linear drive is switched off, with smaller structures slowly “merging”, as it can be expected

in a 2D inverse cascade process leading to a quasi-steady phase space structures.

3.5 Summary and Conclusions

• The aim of my work presented in this Chapter, is to find, by numerically solving the

driven VP system self-consistently, long after the small amplitude drive is switched

off, whether or not the VP system supports steady Coherent Phase Space Structures,

in a 1D periodically bounded problem. The strength of our numerical method is that
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it strictly conserves physical quantities such as the total energy and total number,

positivity of the distribution, while at the same time, has very little numerical

dissipation. Thus the solutions are very accurate.

• I have studied the excitation of undamped electrostatic modes (LAN and EAW) and

formation of giant multiple extrema PSV structures in a homogeneous unbounded

plasma modelled using periodic boundary conditions. Application of an external

linear drive with a constant frequency and slowly down-chirped frequency (i.e. from

ωhigh to ωlow such that ωhigh < ω < ωlow) is shown to create both electrostaic smodes

with their harmonics and a giant flat region in velocity distribution function indicating

formation of multiple extrema PSV structure, respectively. These structures are seen

to sustain for very long times after the extended drive is switched off.

• Choice of the amplitude for our external drive E0 is such that, if an initial value VP

problem is performed with the very same amplitude value E0 of external drive, the

Landau damping time would be much smaller than the conventional trapping time

and hence the perturbation would be fully damped.

• The driven dynamics of this Chapter can be divided into the following parts : First

part simply present the temporal response of the VP system to an small amplitude

external drive which has a sharp temporal rise - It is expected that the plasma would

be subjected to a range of frequencies : from the weakly nonlinear slow electron

acoustic frequency to the warm plasma frequency and harmonics. This should be

observable irrespective of whether the external drive is switched on adiabatically or

abruptly. Fig.(1.6) shows this response of plasma E(ω) Vs ω for adiabatic and abrupt

switch on of external drive. This response of the plasma as yet another stringent

test for the numerical correctness of our numerical method.

The second part contains the results of constant frequency external drive turned on

abruptly with drive frequency ω chosen to be consistent with the ω values obtained

from “thumb curve”. Our results show for the constant frequency drive in EAW region

(or near EAW region), the plasma responds by generating a slow weakly nonlinear
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Electron Acoustic Wave (EAW) and a weakly nonlinear Langmuir structure (LAN)

at higher phase velocity along with some harmonics as shown in Fig.(1.3). Now when

chirp is introduced from LAN to EAW region, novel multiple extrema (“shark”-like

structures) steady state phase space structure or in short a multiple extrema BGK

mode or PSVs which more clearly exhibits enormous details and complexity of clumps

and holes embedded inside a large electron hole with large secondary coherent struc-

tures separated from the primary structure by a large region of separatrices (Fig.1.10).

In the third part, I perform the chirp experiment for various chirp intervals. Our

results clearly shows existence of giant PSVs of increasing size and complexity with

increasing chirp interval. As the chirp becomes slower, the amount of trappped

and untrapped particle increases nearly linearly, only bounded by the slope of the

distribution. This creates a large flattening in velocity distribution resulting in giant

PSV with multiple extrema due to embedded holes and clumps. These large PSV

structures, once formed, are seen to persist, without any further coalescence, for the

entire length of the simulation (t ∼ 2000). We also find that the multiple extrema

phase space vortex structure is formed soon after the chirp is turned off (typically

t ∼ 800) and remain so, without any further coalescence, for the entire length of the

simulation. The same is also reflected in out relative entropy data. Thus, I believe

that the multiple extrema structures to be a true steady state numerical solution of

1D Vlasov-Poisson system.

The above said studies were for the initial velocity distributions which were Maxwellian.

For systems with short range interactions, the energy of the system is extensive. However,

for a variety of interesting physical problems such as thermodynamics of self gravitating

systems with long range interactions, energy is non-extensive.[45, 46] For such systems, in

the nonextensive statistical mechanics framework, non-extensive distributions are needed,

for example, q-nonextensive distributions where q is the strength of nonextensivity. This

formalism has found many applications in systems with the non-Maxwellian particle

distribution functions observed in space and laboratory. These include the solar wind
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and the long-range interacting systems containing plentiful superthermal particles[48,

49], the peculiar velocity distributions of galaxy clusters[50], and the solar neutrino

problem[51]. This formalism has also been extended to study non-linear Landau damping

and formation of Bernstein-Greene-Kruskal structures for plasmas with q-nonextensive

velocity distributions[57, 58]. In the next Chapter, a numerical study has been performed

to study the formation and dynamics of phase space vortices as the effect of the frequency

chirp on the q-nonextensive distribution as initial distribution function [P. Trivedi and R.

Ganesh, Physics of Plasmas 24, 032107 (2017)].
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4
Driven phase space vortices in plasmas with

nonextensive velocity distribution

The evolution of chirp-driven electrostatic waves in unmagnetized plasmas

is numerically investigated by using a one-dimensional (1D) Vlasov-Poisson

solver with periodic boundary conditions. Initial velocity distribution of the 1D

plasma is assumed to be governed by Tsalli’s [47] nonextensive q distribution.

For an infinitesimal amplitude of external drive,investigate the effects of chirp

driven dynamics that leads to the formation of giant phase space vortices

(PSV) for non-Maxwellian (q , 1) plasmas and compare the results with the

results obtained in Chapter 3 earlier for Maxwellian plasmas i.e for q = 1.

For q non-Maxwellian plasmas, the formation of giant PSV with multiple

extrema and phase velocities is shown to be dependent on the strength of non-

extensivity parameter“q”. Novel features such as “shark”-like and transient

“honeycomb”-like structures in phase space are also discussed.
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4.1 Introduction

For over a century, the equilibrium of statistical systems has been studied based on the

Boltzmann-Gibbs-Shannon entropy (BGS)[101],

SBGS = kB
∑
i

pilnpi (4.1)

where kB is the Boltzmann constant and pi denotes the probability of the i− th microscopic

configuration. For a given composite system A+B, constituted by two independent sub-

systems A and B, the probability of system A+B in i+ j state is, pA+B
i+j = pAi .p

B
j , where

i is the microstate of system A and j is the microstate of system B. For such case, The

BGS entropy satisfies the additivity of entropy of the system, i.e. SA+B
BGS = SABGS + SBBGS ,

which shows that the entropy is an extensive quantity.

As is well known, for systems with short range interactions, the energy of the system

is extensive. Thus the “canonical” distribution is a “Maxwellian” and may be obtained

by extremizing Boltzmann-Gibbs-Shannon (BGS) entropy subject to energy constraint.

However, for a variety of interesting physical problems such as thermodynamics of self

gravitating systems with long range interactions, energy is non-extensive [45, 46]. Recently,

there have been several attempts to define a BGS like entropy for nonextensive systems.

For example, Tsalli’s definition [47] of q-nonextensive entropy where q is the strength of

nonextensivity and the corresponding “canonical” distribution function has been derived

using nonextensive statistical mechanics framework. This formalism has found many

applications in systems with the non-Maxwellian particle distribution functions observed in

space and laboratory. These include the solar wind and the long-range interacting systems

containing plentiful superthermal particles [48, 49], the peculiar velocity distributions of

galaxy clusters [50], and the solar neutrino problem [51]. The q distribution lend them-

selves to applications in vast number of problems in areas of ion acoustic waves, electron

acoustic solitons and other areas of plasmas [52, 53, 54, 49, 55]. On the theoretical front, a
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comprehensive discussion of plasma oscillations, Landau damping and dispersion relation

for electrostatic waves, which can be found and solved for an equilibrium distribution

function, in a collisionless thermal plasma has been provided based on q-statistics [56].

The dispersion relation is found to fit experimental data better than a Maxwellian. This

formalism has also been extended to study non-linear Landau damping and formation of

Bernstein-Greene-Kruskal structures for plasmas with q-nonextensive velocity distributions

[57, 58].

In the previous Chapter, an external drive with time dependent frequency ω(t) or chirp

was successfully applied to obtain multiple extrema phase space vortices (PSV) in an

infinite plasma modeled using periodic boundary conditions (PBC) along with “shark”-like

structures in phase space [21]. Starting form a uniform plasma with a Maxwellian velocity

distribution, the plasma is subjected to a linear, small amplitude, external drive of constant

frequency ω0 which was properly chosen so that a small population of particles are resonant.

Then, the external drive frequency ω(t) was chirped down slowly in time interval ∆t from

ωhigh to ωlow such that ωhigh < ω0 < ωlow which was shown to couple effectively to the

plasma and increase both streaming of “untrapped” and “trapped” particle fraction. The

steady state attained after the external drive was turned off, was shown to lead to a giant

PSV with multiple extremas with embedded holes and clumps or “shark”-like modes. It

was also shown that the excess density fraction, which define as a deviation from initial

Maxwellian contains both trapped and untrapped particles, which was found to increase

with chirp duration ∆t. This downward sweeping is shown to create multiple extrema

phase space vortices with a giant flat region in velocity distribution function [21].

The above said studies were for the initial velocity distributions which were Maxwellian.

The purpose of the present Chapter is to study numerically the effect of the downward

frequency chirp on the q-nonextensive distribution as initial distribution function. For

this purpose, a one dimensional (1D) Vlasov-Poisson solver has been used. Starting with

a q nonextensive equilibrium distribution, I study the plasma behavior as a function of
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different values of the non-extensivity parameter q, and compare the numerical results

with Maxwellian case. I find that the chirp dynamics and trapping phenomenon is strongly

affected by the deviations from the Maxwellian distribution. The process of PSV formation

and the amount of both trapped and untrapped particle fraction is shown to be dependent

on the strength “q” of nonextensivity along with some novel features of PSV such as

“shark”-like and transient “honeycomb”-like structures.

4.2 Mathematical Model And Numerical Scheme

In an unmagnetized, collisionless plasma, in the framework of kinetic theory, the propagation

of electrostatic waves can be described by a normalized one dimensional Vlasov-Poisson

system, which is given by
∂f

∂t
+ v

∂f

∂x
− ET

∂f

∂v
= 0 (4.2)

∂Es
∂x

= 1−
∫
fdv (4.3)

where f(x, v, t) is the electron distribution function and ET = Es+Eext is the total electric

field, where Es(x, t) is the self consistent electric field and Eext is the external driver electric

field defined as:

Eext = E0sin(kx± ωt) (4.4)

where E0 is the amplitude of external drive. Here, k represents the perturbation wave

number in the simulation box and ω represents the driver frequency.

As described earlier in the Chapter 2, in solving the equations (2.2) and (A.6), time

has been normalized to the electron plasma frequency ωpe, space has been normalized to

the Debye length λDe, velocity has been normalized by the initial equilibrium thermal

velocity vthe = λDeωpe. With these choices, f gets normalized by n0/vthe and E by

mevthe/eλDe where e is the electron charge. In this model, the ions form a stationary

neutralizing background of number density n0 with numerical value 1 in the Poisson equation

[Eq.(A.6)]. Please note that, in my published work [22], the electric field E is normalized

by −mevthe/eλDe, which makes Eqn.?? and Eqn.?? as ∂f/∂t + v∂f/∂x + E∂f/∂v = 0
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and ∂E/∂x =
∫
fdv − 1.

In the previous Chapter [21], the above described model has predicted important features

of the chirp-driven process in case of Maxwellian plasmas. In order to study the effects of

chirp-driven process and frequency sweep on the non-Maxwellian plasmas, I consider an

initial distribution function to be a Tsalli’s distribution with non-extensivity parameter q,

which is given as follows[56],

fq0(v) = Cq[1− (q − 1)v
2

2 ]1/(q−1) (4.5)

where fq0 is the initial q-nonextensive velocity distribution function. Here, q is the strength

of nonextensivity and Cq is the normalization constant given by

Cq =



Γ( 1
1−q )

Γ( 1
1− q −

1
2)

√
1− q
2π , For -1<q<1.

1 + q

2

Γ( 1
q−1 + 1

2)

Γ( 1
q − 1)

√
q − 1
2π , For q>1.

(4.6)

where Γ(m) represents the standard Gamma function. For q = 1, this distribution reduces

to the Maxwellian with C1 = 1/
√

2π. I present results mainly for three specific values

of non-extensivity parameter q, namely q = 0.95, 1, 1.05. The corresponding profiles of

velocity distributions are displayed in Fig. (2.1), where the logarithmic plot of initial

spatially averaged distribution function in velocity space is shown. For q < 1, the tail(s)

of the distribution is(are) extended as compared to a Maxwellian function which implies

that there are more particles with the velocities faster than the thermal speed vth and high

energy (i.e. E = mv2/2 for non relativistic particles) states are more probable than in

the extensive case. While, for q > 1, the function becomes narrower than a Maxwellian

one which shows there is large fraction of particles with velocities that are slower than the

thermal speed vth. Therefore, for q > 1, high energy states are less probable than in the

extensive case and the function exhibits a velocity cutoff on the maximum value allowed

for the velocity of the particles, namely | vcutoff |=
√

2/(q − 1), beyond which no energy

states exist.[56]
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We set the simulation domain in phase space D = [0, Lmax] × [−vemax, vemax], where
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Figure 4.1: Logarithmic plot of the initial spatially averaged velocity distributions,
for three different values (q < 1, q = 1, q > 1) of the nonextensive index q.

Lmax = 2π/k is the system size and vmax is chosen sufficiently large so that electron

velocity distribution function approaches zero as |v| approaches vmax. The grid spacing

is given by ∆x = L/Nx and ∆v = 2vmax/Nv, where Nx and Nv are grid points in spatial

space and velocity space respectively. Here, for the value of k = 0.4,Iset gridsize Nx = 512

and Nv = 8000 in such a manner that there is sufficient resolution in both x and v for all

values of nonextensive parameter “q” considered.

4.3 Simulation Results

To begin with,Iinitialize simulations with a collisionless plasma with homogeneous density

distribution in space having the following velocity distribution function:

fq0(v) =


exp(−v2/2)/

√
2π, For q=1.

Cq[1− (q − 1)v2

2 ]1/(q−1), For q,1.
(4.7)

which is driven by an external drive Eext of amplitude E0 with a downward frequency chirp

ω = αt+ β from t = 0 to t = t1 with appropriately chosen chirp coefficients (α, β) [see Fig.

(2.2)]. By doing so, the total electric field ET (ET = Eext + Es) acting on the particles

produces a plateau in the resonant region. In this way, the energy of both trapped and

untrapped particles increases till the chirp is on followed by complete energy conservation
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once the chirp is turned off, untill the end of simulation. In order to check the correctness

of numerical method, a constant frequency drive has also been applied for multiple values

of q, namely q = 0.95, 1, 1.05. This linear drive excites weakly slow electron acoustic waves

(EAW) and Langmuir waves (LAN) along with other harmonics for all above values of q

including q = 1 as previously shown results.[21]

Chirp With downward 

          frequency

ω=α t+ βω2

ω1

ω( t)

0 tTime
t1

Figure 4.2: A cartoon figure of (ω, t) showing frequency turn on-off of external drive.
Downward chirp is applied for (0 ≤ t ≤ t1). Here, α, β are constant coefficients.

4.3.1 Case q=1

In the following, I have considered a simulation for q = 1 case, which is the normalized

Maxwellian. This case has been reported in the previous Chapter in great detail [21].

Here I will summarize the relevant results along with some detail regarding the initial

conditions for later comparison. The homogeneous plasma is subjected to an external drive

of amplitude E0 = 0.025 right at t = 0 for time duration ∆t = 250 from ω = 1 to ω = 0.5

for a full time step. The chirp parameters are α = −2 × 10−3 and β = 1. It was found

that this downward frequency chirping allows “continuous” flattening in the velocity space

leading to large coherent structures in phase space with multiple extrema with “shark” like

features in phase space.

Fig.(2.3) shows the resultant spatially averaged velocity distribution showing growth of

plateau region with time. The velocity distribution function is given by

f̂(v, t) =
∫ L

0 f(x, v, t)dx∫ vmax
−vmax

∫ L
0 f(x, v, t)dxdv

(4.8)
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It can be clearly seen, as the drive frequency is chirped downwards, the size of the “flat

region” is seen to grow into a giant stationary region till the drive is on. After turning off

the chirp, the transient structures relax and eventually a nonlinear steady state structure

is established which is seen to last till the end of simulation.
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t=0,Chirp on

t=50,Chirp on

t=100,Chirp on

t=250,Chirp off

t=500,Chirp off

t=1000,Chirp off

t=2000,Chirp off

Figure 4.3: Plot of evolution of spatially averaged velocity distribution f̂(v) when
external downward chirp is given from the start for ∆t = 250.

The iso-contour of the electron phase-space distribution f(x, v) at final time (t = 2000) is

shown in Fig. (2.4). As one can observe, there is a significant density of trapped particles

and those of surrounding untrapped particles forming a large electron hole at v = 2.53

and at higher phase velocity v = 4.39. At t = 0, when chirp is applied, a phase space

“dip” forms at v = 2.5 with a small amount of particle trapped in it and as the frequency

decreases, the “dip” grows in size with addition of more and more new particles in it till

the drive is on and. Furthermore, the larger hole structure contains peaked spikes and

holes embedded in it along with a “shark”-like structure i.e. a bunch of particles moving

together within the giant phase space vortices.

The numerical entropy S(t) of the system, for q = 1, is computed by

S(t) = −
∫ L

0

∫ +vmax

−vmax
f(x, v, t)logf(x, v, t)dvdx (4.9)

It is plotted as relative entropy [See Fig. 2.5(a)], defined as Srel = (S(t) − S(0))/S(0)

with time. At first, entropy increases with time due to finite gridsize effects and then

saturates soon after turning off the chirp and remains stable throughout the simulation
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(a) (b)

Figure 4.4: Plot of f(x, v, t) at t=2000 when external downward chirp is applied
from the start for a period ∆t = 250 in the range [0 ≤ v ≤ 4.3]. (a) Zoomed plot of
f(x, v, t) at time t = 2000. (b) Cross-section of f(x, v) at time t = 2000.
which confirms the formation of stationary structures (here PSVs).

The total energy of the system is defined as : W (t) = K(t) + P (t), where K(t) =

(1/2)
∫ ∫

v2f(x, v, t)dxdv is the kinetic energy and P (t) = (1/2)
∫
E2(x, t)dx is the poten-

tial energy. The actual total energy, at any given, is the half of W (t). It is clear from

the Fig. 2.5(b) that, when drive is swept downwards, both kinetic energy [In Fig. as

δK = K(t)−K(0)] and potential energy [In Fig. as δP = P (t)− P (0)] increases which

reflects the increase in untrapped and trapped particle populations respectively.

To summarize q = 1 results, it has been observed that an external linear drive with a
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Figure 4.5: Plots of relative entropy Srel and energy with time. The vertical lines
represent times at which drive is turned on and turned off.

slowly down-chirped frequency creates a giant flat region in velocity distribution function

indicating the increased amount of both trapped and surrounding untrapped particle

population. In phase space, it can be seen as a giant phase space vortices with multiple
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extrema squashed between ergodic regions of separatrices.

Now that I have recollected the results for q = 1 distribution leading to multiple extrema

PSVs, I wish to study the long-time fate of similar downward chirp on q , 1 distributions.

For this purpose, two sets of different q values have been taken to perform the comprehensive

study.

4.3.2 Case q<1

As shown in Fig. (2.1), for q < 1 case, the initial distribution function exhibits a lower

peak and a longer tail as compared to Maxwellian. For non-Maxwellian q-distributed

plasmas, Lima et al[56], derived analytic formulas for the undamped a generalized Langmuir

dispersion relation,

ω2 = 1 + 3k2
( 2

3q − 1

)
(4.10)

which depends on the non-extensivity index q. Here, it is worth noting that in the limit

q → 1, the dispersion relation based on the Maxwellian distribution is recovered [102].

The following parameters are used. Runs are presented for 0.85 ≤ q < 1 varied in steps

of 0.05 andIchoose vmax = 12.5, Nv = 8000 and Nx = 512 by keeping rest of the initial

conditions same as case [2.3.1]. Simulations have been performed to see the evolution of

PSV’s for different q values. As one can observe from the Eq. (2.10), for any q-distribution

taken in this set, the phase velocity vφ = ω/k lies well within the range, far “inside” from

vmax. In Fig. (2.6), the change in giant flat region in spatially averaged distribution can

be seen easily. At q = 0.95, the chirp seems to be more effective in creating two large

phase space vortices well separated by separatrix [See Fig. 2.7(a) and 2.7(b)]. But as I

go down in q values, this second structure at higher phase velocity vanishes and remains

only a single large structure with peaked spikes and holes within it. With the same initial

conditions as for q = 1, the following chirp ranges have been used for different q values:-
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Table 4.1: Chirp ranges for q ≤ 1.
q Cq ωhigh ωlow

0.85 0.3760 1 0.5
0.90 0.3838 1 0.5
0.95 0.3914 1 0.5
1.00 0.3989 1 0.5
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t=2000,q=0.95

t=2000,q=1

Figure 4.6: Plot of evolution of spatially averaged velocity distribution f̂(v), when
external downward chirp is given from the start for ∆t = 250, at t = 2000 comparing
cases with 0.85 ≤ q ≤ 1.

(a) (b)

Figure 4.7: Plot of f(x, v, t) at t=2000 when external downward chirp is applied from
the start for a period ∆t = 250 in the range [0 ≤ v ≤ 5.1] for q = 0.95. (a) Zoomed
plot of f(x, v, t) at time t = 2000. (b) Cross-section of f(x, v) at time t = 2000.

Now, for this case, entropy S(t) is defined as[47]

Sq(t) = −
∫ L

0

∫ +vmax

−vmax
f(x, v, t)

(1− f(x, v, t)q−1

q − 1

)
dvdx (4.11)

which reduces to Eq.(2.9) for the limit q = 1. As can be seen from Fig. (2.8), because of

the numerical scheme, entropy does increase with time and then saturates. Also, one can

notice that with increasing q values, relative entropy seems to grow and then stabilize after

turning off the chirp.Iextend the simulation till t = 2000 in order to confirm the formation
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of steady state solution.

Furthermore, in terms of different chirp rates, the simulation with q = 0.95, has been
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0
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q=0.85

q=0.90

q=0.95

Figure 4.8: Plot of relative entropy Srel with time when external downward chirp
is given from the start for ∆t = 250 comparing cases with 0.85 ≤ q ≤ 0.95. The
vertical line represents time t at which chirp is turned off.

studied for ∆t = 50, 150, 250. Similar to the previous study of Maxwellian plasma[21], as

the chirp becomes slower, the amount of trapped and surrounding untrapped particles

increases nearly linearly. This creates a a giant PSV at first and as the chirp rate decreases,

a second coherent structure forms at higher phase velocity [as it is shown in Fig. 2.7(a)].

4.3.3 Case q>1

It is clear from the velocity distribution function Eq.(2.7) that for q > 1, the distribution

exhibits higher peak and a shorter tail as compared to Maxwellian and a velocity cutoff at

vcutoff =
√

2/(q − 1), beyond which the function becomes unphysical. Also, for q > 1.2,

the phase velocity vφ > vcutoff , therefore I do not consider cases for q ≥ 1.2.

Again, similar to case q < 1, simulations are performed for 1 < q ≤ 1.10 varied in steps of

0.025 and I choose vmax = vcutoff by keeping the grid size and rest of the initial conditions

except chirp range. Now, in this case, the periodic boundary conditions (PBC) on the

velocity domain may affect the simulation if the resonant region is close to the boundaries.

Therefore, only those cases have been considered for which the resonant region and chirp

range are sufficiently far away from the boundaries. Hence, to accommodate both chirp

range and vmax, cases with q = 1.05, 1.075, 1.10 have been considered. With the same
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initial conditions as for q = 1, the following chirp ranges have been used for different q

values:-

In Fig.(2.9), a semi-log plot for the velocity distribution f̂(v) shows the difference in

Table 4.2: Chirp ranges for q ≥ 1.
q Cq ωhigh ωlow

1.000 0.3989 1 0.5
1.050 0.4064 1 0.5
1.075 0.4100 0.9 0.4
1.100 0.4137 0.8 0.4
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Figure 4.9: Plot of evolution of spatially averaged velocity distribution f̂(v), when
external downward chirp is given from the start for ∆t = 250, at t = 2000 comparing
cases with 1 ≤ q ≤ 1.10.

behavior of resonant flattening for different q cases. Because of the change in chirp range

and with increasing q values, the particle trapping decreases. As the q values increases,

this chirp affects the modes present at lower velocities more.

For the cases 1.05 ≤ q ≤ 1.10, the relative entropy curves are plotted in Fig. (2.10). Similar

to the previous cases, entropy increases due to the measure of finite gridsize effects in

simulation and then it saturates after turning off the chirp. In terms of nonextensivity

parameter, the saturation value of relative entropy decreases with increasing value of q.

The phase space portrait of the system for q = 1.05 at the end of the simulation is shown

in Fig.2.11(a) and 2.11(b). Similar to the previous results, one can see the particle trapped

in a large PSV which contains peaked spikes and holes embedded in it along with a small

“shark”-like structure.
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Figure 4.10: Plot of relative entropy Srel with time when external downward chirp is
given from the start for ∆t = 250 comparing cases with 1 ≤ q ≤ 1.10. The vertical
line represents time t at which chirp is turned off.
However, for higher q-values, one can increase the value of k so as to make the value

of vφ = ω/k lie within the bulk of the distribution function. For this purpose,Iperturb

with a higher value of k = 0.7, initialized with q = 1.15, by keeping rest of the conditions

same as in q = 1 case. For k = 0.7, phase velocity vφ ∼ 1.6854 and vcutoff ∼ 3.6515. On

sweeping downwards,Ihave found the phase space vortices and a flattened region in velocity

distribution which is smaller in comparison to previous cases with same initial conditions

and k = 0.4. Thus trapping decreases with increase in k values and chirp dynamics becomes

less effective in terms of q-values for higher values of k in this case.

4.3.4 Transient Honeycomb Structures

The above numerical experiment has also been used to analyze the response of the plasma

to the downward chip in the smaller frequency regime and to study the process of for-

mation and growth of the holes in the distribution function. It has been found that this

downward chirp in smaller frequency regime leads to formation of multiple phase space

vortices, all appearing at different regions of phase space, which gives a “honeycomb”-like

transient structure of the distribution function. Here,Ireport the results of the excita-

tion of the plasma with a drive amplitude of E0 = 0.025, with frequency swept from

ωhigh = 0.8 to ωlow = 0.4 with a sweep rate of α = −16 × 10−3 for different q values,

namely q = 0.90, 1, 1.10.

As the ω(t) of the drive chirps down from ωhigh to ωlow with a single mode number, the
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(a) (b)

Figure 4.11: Plot of f(x, v, t) at t=2000 when external downward chirp is applied
from the start for a period ∆t = 250 in the range [0 ≤ v ≤ 4.1] for q = 1.05. (a)
Zoomed plot of f(x, v, t) at time t = 2000. (b) Cross-section of f(x, v) at time
t = 2000.

entire sub-harmonic region of phase space is seen to be driven strongly which results in

an interacting, finite amplitude phase-space structures during the drive phase. The phase

space portrait of the plasma as shown in Fig. 2.12 provides a convincing visualization

of the effect of the downward chirp on the process of formation and development of the

multiple PSV in the subharmonic region. In the first part of the driving process, only

the large density fluctuations are visible but at later times, the smaller PSV become

more prominent. The growth of the density fluctuations is arrested when the drive is

switched off but the phase space structures created by the drive persists till the end of the

simulation. These excitations at various phase velocities gives the distribution a “honey-

comb” like appearance. These transient multi-extrema phase structures in sub-harmonic

region or “honeycomb-like structures” thus created are seen to continuously interact, long

after the linear drive is switched off, with smaller structures slowly “merging”, as it can

be expected in a 2D inverse cascade process leading to a quasi-steady phase space structures.

In the past,[37, 38] with chirped frequency drive, a study of axial 1D dynamics of a

bounded system (Malmberg-Penning trap) confining pure electrons has been reported. In

this work, the external drive with high spatial harmonic content (k− spectrum) is used to

search and lock the axially bouncing electrons. These phase-locked electrons at higher phase

velocity are chirp-dragged (“bucket”) to lower velocity region of the distribution function
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Figure 4.12: Phase-space portrait of the electron distribution f(x, v) for q = 1.10,
starting from t = 250 (when the drive is turned off) to t = 2000. These portraits
show dynamic activity in subharmonic region at different instances after the drive
is switched off. These kind of interesting features are seen for all the values of q
studied.
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resulting in multiple non-overlapping phase space holes or “honey-comb-like” structures in

phase space. However, in this work, these structures are reported to overlap or interact

only at large amplitude of chirp drive.

In the present chapter,Ihave investigated the effect of chirped frequency drive with

infinitesimal amplitude on an unbounded plasma with single k−mode for both Maxwellian

and non-Maxwellian plasmas. In Fig. 2.13,Ihave shown the effect of the downward chirp

on the process of the excitation of multiple PSV and the formation of “honeycomb” like

structures for different q values. As one can observe, the number of these multiple PSV is

more for q > 1 than the cases with q = 1 and q < 1.

4.4 Discussion

Let us compare the results obtained from the runs corresponding to 0.85 ≤ q ≤ 1.10, for

which phase space vortices are formed on applying a low amplitude external downward

chirp. In order to do so, the response of the system in terms of relative kinetic energy (δK)

and relative potential energy (δP ) for different entropy index q has been plotted in Fig.

2.14(a). As one can observe, the overall energy (i.e. δK + δP ) of particles increases with q

values for q ≤ 1 and then it decreases for q > 1. The maximum trapping is reflected from

the potential well depth which is highest for Maxwellian plasma i.e. q = 1. As the giant

flattening in velocity distribution indicates the increment in both trapped and surrounding

untrapped particle population. Here Fig. 2.14(a) shows the effect of chirp on the kinetic

energy of untrapped regions which is maximum for q = 0.95 case explaining the large

seperatrix between the two giant PSVs in Fig. (2.7).

Similarly, the response of the system in terms of maximum potential well depth and

maximum excess density fraction, defined as:

δn(x, t)/n0 =
(∫

f(x, v, t)dv −
∫
f0(v)dv∫

f0(v)dv

)
(4.12)

which was obtained after switching off the drive, as a function of entropy-index q has been

shown in Fig.2.14(b). Again, it can be clearly seen that φmax is maximum for q = 1 case

87



CHAPTER 4. DRIVEN PHASE SPACE VORTICES IN PLASMAS WITH
NONEXTENSIVE VELOCITY DISTRIBUTION

(a) (b)

(c) (d)

(e) (f)

Figure 4.13: Plot of f(x, v) for chirp interval ∆t = 250 when external downward
chirp is given from ωhigh = 0.8 to ωlow = 0.4 for q = 0.90, 1, 1.10 respectively. [(a),
(b)] Plots of f(x, v, t) for q = 0.90 at time t = 250 and t = 2000 respectively. [(c),
(d)] Plots of f(x, v, t) for q = 1 at time t = 250 and t = 2000 respectively. [(e), (f)]
Plots of f(x, v, t) for q = 1.10 at time t = 250 and t = 2000 respectively.
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Figure 4.14: (a)Plot of δK and δP at t=2000 when external downward chirp is
applied from the start for a period ∆t = 250 in the range [0.85 ≤ q ≤ 1.10]. (b) Plot
of δnmax/n0 and φmax of the saturated states after turning off the drive at t = 250
for q values in range [0.85 ≤ q ≤ 1.10].
which shows the maximum trapping for Maxwellian plasma and the excess density fraction

is also maximum for q = 1.

4.5 Summary and Conclusions

For a non Maxwellian plasma described by q-distribution,Ihave studied numerically a simple

and efficient way to obtain phase space vortices in a 1D unbounded Vlasov plasma, modeled

using periodic boundary conditions.I have numerically addressed the nonlinear evolution of

Maxwellian and q-nonextensive Maxwellian plasma when perturbed with an external drive,

of very low amplitude, which is slowly chirped downwards. From our numerical results,I

conclude that the chirp dynamics and trapping phenomenon is strongly affected by the

deviations from the Maxwellian distribution. In other words, the trapping efficiency is

related to the region around wave phase velocity or the velocity derivative of the initial

distribution function near the resonance region.

It is found that, for values of the entropy-index less than unity, trapping decreases

with decrease in q values. On the contrary, for large value of q, trapping decreases with

increase in q values. This implies the trapping efficiency for a given set of parameters

is maximum for Maxwellian plasma. As q increases beyond unity, the phase velocity
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comes closer to the velocity cutoff for the distribution which makes an upper limit for q

below which I find PSVs. For increasing values of k,I observe that trapping fraction reduces.

We have shown, using high-resolution Vlasov-Poisson solver for long-times up to t =

2000ω−1
p that the formation of phase space vortices seem to depend on the nonextensive

parameter q and chirp rate. Study of excitation of giant phase space vortices which contains

peaked spikes and holes embedded in it along with a “shark”-like structure and excitation

of multiple PSV forming a “honeycomb”-like transient feature is novel.

Moreover, In these Chapter and the earlier Chapter 3, ions have been assumed to be

immobile. However, ion motion may significantly change the evolution of high and low

frequency motions which in turn may affect the trapping and formation of PSVs. In the next

Chapter, I will present several interesting features of ion modes and driven electron and

ion phase space structures, in Maxwellian plasma, analyzed by means of kinetic Eulerian

simulations, composed of (a) kinetic warm ions and Boltzmann electrons and (b)kinetic

warm ions and Kinetic electrons . The details of which will be presented.
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5
Formation and Dynamics of Electrostatic Phase

space Vortices: Kinetic Ions

In this Chapter, the role of ions on the phase space dynamics has been

studied using two different models:- (1) Boltzmann electrons and kinetic ions

using Vlasov-Yukawa (VY) model, and (2) Kinetic Ions and Kinetic Electrons

(KIKE) model. In the previous Chapters, electrostatic waves have been studied

in the background of kinetic electrons and immobile ions resulting in a “Thumb

curve” dispersion [for Langmuir (LAN) and Electron Acoustic (EAW) waves].

In this Chapter, the role and effect of ions on the phase space dynamics, has

been studied in two parts:-

(1) In the first part, the study electrostatic waves in ion scale with Boltzmann

electrons treating ions as kinetic species has been attempted with a newly

developed Vlasov-Yukawa (VY) solver. This model results in a “Teardrop”

dispersion curve [for Ion Acoustic (IA) and Ion Bulk (IBk) waves]. Using

1D1V VY solver, Landau damping and electrostatic waves at ion scales (IA and

IBk waves) have been studied. Also, formation and dynamics of chirp driven

phase space vortices at ion scales have been studied for different temperature
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ratios.

(2) In the second part, the electron scale physics and ion scale physics have

been studied by including both ion and electron scale dynamics self consistently

and simultaneously in a model using symmetric framework. With this model, it

is shown that both high frequency and low frequency solutions can be obtained

simultaneously which consists of a high frequency branch (LAN/IA) and a low

frequency branch(EAW/IBk). The numerical results obtained show that both

electron and ion waves can indeed be excited simultaneously in phase space

without any approximation in length scale or time scale. In appropriate limits,

it is shown that the “Thumb” and “Teardrop” curves are recovered from a

general symmetric dispersion relation [P. Trivedi and R. Ganesh, Physics of

Plasmas 25, 112102 (2018)].

5.1 Introduction

As discussed in the earlier Chapters, the study of phase space dynamics of a collisionless

plasma is currently a subject of extensive efforts both for the case of interplanetary envi-

ronments and for laboratory plasma systems. Several investigations aim to understand the

features of the dynamics at ion scales and electron scales in space plasmas by analyzing

both spacecraft data [14, 15, 16] as well as numerical results from kinetic (or phase space

simulations) [17, 18, 19, 20, 21, 22]. For example, in space craft data, one usually deals

with modes, covering practically the entire frequency range from electron to ion response

times. For example, quasiregular packets of Langmuir waves (LAN) are frequently observed

in the solar wind and magnetospheric plasmas [24, 25, 26]. The high frequency regions

of the energy spectra, obtained by analyzing solar-wind measurements from the Helios

spacecraft are dominated by longitudinal electrostatic modes, identified as ion-acoustic

(IA) waves [27, 28, 29]. Recent observations and studies [30, 44, 31, 32, 33, 34] point out

that besides these LAN and IA branches, in agreement with spacecraft and solar-wind

observations, two other novel branches of electrostatic waves exists. These waves have

92



CHAPTER 5. FORMATION AND DYNAMICS OF ELECTROSTATIC PHASE
SPACE VORTICES: KINETIC IONS

been dubbed as electron acoustic waves (EAW) and ion-bulk (IBk) waves, as their phase

velocities are nearly constant and are comparable to the electron thermal velocity (vthe)

and ion thermal (vthi) velocity, respectively. These waves have been studied either in

the background of immobile ions resulting in a “thumb curve” dispersion (for LAN and

EAW waves) with kinetic electrons or in the frame of Boltzmann electrons resulting in a

“teardrop” curve (for IA and IBk waves)[17, 19, 34] with kinetic ions. Thus, the electron

scale physics and ion scale physics have been separately studied and applied whereas more

consistent physical picture would emerge only when both ion and electron scale dynamics

are included self consistently and simultaneously in a model or symmetric framework where

both high frequency (“thumb curve”) and low frequency (“teardrop”) branches can be

obtained simultaneously. From this symmetrical framework, both electron scale dispersion

(“thumb curve”-LAN and EAW ) and ion scale dispersion (“teardrop”-IA and IBk) can be

obtained in appropriate limits of where each of them again consists of a high frequency

branch (LAN/IA) and a low frequency branch(EAW/IBk).

In the present work, an attempt has been made by means of numerical simulations, to

study the role and effect of ions on the phase space dynamics in two parts:-

In the first part, considering kinetic ions and Boltzmann electrons, wherein the Vlasov

equations are integrated for ion species with no approximations in length scale or time

scales in terms of ion parameters. This is performed by solving Vlasov-Yukawa (VY)

equations which consists of the Vlasov equation coupled with the a short-range correction

of the Poisson equation (Yukawa equation or screened Poisson equation). The weakly

driven Vlasov-Yukawa (VY) equations has been solved which facilitates weak flattening of

distribution function or weak trapping. The numerical results leads to a “Teardrop” curve

for Ion Acoustic (IA) and Ion Bulk (IBk) waves. Using 1D1V Vlasov-Yukawa solver which

treats kinetic ions and Boltzmann electrons, Landau damping of electrostatic waves at ion

scales (IA and IBk waves) has been studied. Also, formation and dynamics of chirp driven

phase space vortices at ion scales has been studied for different temperature ratios in this

Thesis.
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In the second part, considering both kinetic electrons and kinetic ions on the same

physics footing, the Vlasov equations are integrated for both electron and ion species

without any approximations in length scale or time scales. First, the weakly driven fully

nonlinear Vlasov-Poisson (VP) equations has been solved which facilitates weak flattening

of distribution function or weak trapping. To identify the electrostatic modes (LAN, EAW,

IA, IBk), the ωr is need to be calculated. The eigenvalue values thus obtained for various

wavenumbers are compared with frequencies obtained from solving the linearized eigenvalue

equations considering weak trapping which allows us to neglect the contribution from

the imaginary part of the dielectric function. The numerical results obtained show that

both electron and ion waves can be excited simultaneously in phase space. In appropriate

limits, it is shown that the “thumb” and “teardrop” curves are different parts of a general

symmetric dispersion relation and are recovered in appropriate limits of that dispersion

relation.

Using a one dimensional (1D), two component Vlasov-Poisson system which treats both

electrons and ions symmetrically in terms of kinetics, I report, perhaps for the first time,

the the following major findings:- (i) continuous connectivity of electron (or “Thumb

curve”)[17] and ion (or the “Teardrop curve”)[34] branches using a general symmetric

dispersion relation. The hitherto separately studied “Thumb curve” and the “Teardrop

curve” show a “symmetry” in the dispersion curve as each of them consists of a high

frequency branch and a low frequency branch. The entire physical picture on the same

scale is presented using a general symmetric dispersion curve which again consists of a

high frequency part (“Thumb curve”-LAN, EAW) and a low frequency part(“Teardrop

curve”-IA, IBk), (ii) all four branches (LAN, EAW, IA, IBk)[17, 19, 34] have been recovered

both via obtaining a general symmetric dispersion relation from solving weakly driven

fully nonlinear VP equations which facilitates weak trapping as well as by performing a

numerical simulation where plasma is driven with an infinitesimal external electric field.

(iii) for realistic mass ratios, simultaneous excitation of all the normal modes:-LAN, EAW,

IA, IBk.

The rest of the Chapter is divided into two main sections: (1) In the first Section [Sec.??],
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the formation and dynamics of electrostatic waves at ion scale has been studied in the

background of Boltzmannn electrons and kinetic ions using Vlasov-Yukawa (VY) model,

and (2) In the second Section [Sec.??], considering both kinetic electrons and kinetic ions

on the same physics footing, the Vlasov equations are integrated for both electron and ion

species without any approximations in length scale or time scales:- Kinetic Ions & Kinetic

electrons (KIKE) model. Each of these sections is organized as follows: the numerical

scheme of VY model is described in Subsec. ?? and the numerical scheme of KIKE model

is described in Subsec.??. Simulations using VY model with different cases have been

discussed Subsec.?? and simulations using KIKE model with different cases have been

discussed Subsec.??. In Sec.2.5 summary and conclusions have been presented.

5.2 Vlasov-Yukawa Plasmas (VY):- Kinetic Ions

and Boltzmann Electrons

In this Section, the numerical simulations are performed considering kinetic ions and

Boltzmann electrons, wherein the Vlasov equations are integrated for ions and electron

contribution comes only through the temperature ratio of ions to electrons.

5.2.1 Governing Equations & Wave Dispersion Relation for

VY Plasmas

The self-consistent Vlasov-Yukawa system(VY) which consists of the Vlasov equation

coupled with the Yukawa equation. The Yukawa equation is obtained from the Poisson

equation by making the assumption that the electrons are Boltzmann and sometimes called

the screened Poisson equation. As described in Chapter 2, necessary modifications are made

in the VPPM solver to treat kinetic warm ions and Boltzmann electrons, analyzed by means

of kinetic Eulerian simulations. A numerical Vlasov-Yukawa (VY) solver which treats ki-

netic ions in the presence of Boltzmann electrons [ne = n0 exp(eφ/KTe) = n0(1+eφ/KTe)]

95



CHAPTER 5. FORMATION AND DYNAMICS OF ELECTROSTATIC PHASE
SPACE VORTICES: KINETIC IONS

is given by,

∂f

∂t
+ v

∂f

∂x
+ ET

∂f

∂v
= 0, (5.1)

∂Es
∂x

= −∂
2φ

∂x2 = ni − ne (5.2)

Here, f is the ion distribution, ni =
∫
fdv, ne = (1 + TRφ) is the normalized Boltzmann

electron distribution, TR = Ti/Te is the ion to electron temperature ratio and ET = Es+Eext

is the total electric field, where Es(x, t) is the self consistent electric field and Eext is the

external driver electric field defined as:

Eext = E0sin(kx± ωt) (5.3)

where E0 is the amplitude of external drive. Here, k represents the perturbation wave

number in the simulation box and ω represents the driver frequency. In this Vlasov-

Yukawa model, the electron response is taken to be the standard Boltzmann response as

ne = n0 exp(eφ/KT ) which in terms of ion normalization becomes ne = exp(φTR). In this

Chapter, all the parameters have been chosen such a way that φTR << 1 throughout the

simulation period. Therefore, the relationship between the electron density and the electro-

static potential becomes linear ne = (1 + φTR). For the parameters chosen, numerically

solving the Poisson equation with exp(φTR) was thus not necessary and hence, was not

used. Therefore, Poisson eqn.?? becomes

− ∂2φ

∂x2 + Ti
Te
φ =

∫
fdv − 1. (5.4)

Here, all the quantities are normalized in terms of ion parameters. In this model, only

ion equations are solved using time-splitting method and effect of Boltzmann electrons

considered in the screened Poisson equation. The simulation domain in phase space

D(x, v) = [0, Lmax] × [−vimax, vimax], Lmax = 2π/k is the system size and vimax is chosen
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sufficiently large so that velocity distribution functions approaches zero as |vi| approaches

vimax. In all these simulations, the mode with the largest wavelength that fits in the

numerical domain is excited at t = 0, in order to prevent the sideband frequency generation

in the system. The phase space is discretized with Nx = 1024 grid points in the spatial

domain and Nv = 4000 in velocity domain. Using the above normalizations, the Fourier
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−
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(v
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Figure 5.1: Dispersion curves or “Teardrop” curves for the electrostatic waves (IA,
IBk) in k − ω plane, obtained by assuming zero damping as a function of TR [Fig.
(a)], (ii) Teardrop curve for TR = 0.1 [Fig. (b)]. Also, the gradient of the real part
of the complex plasma dispersion function −1

2Z
′(v) is plotted for real arguments in

Fig.(c) TR = 0.1.

transformation of linearized form of Eqs. (??)-(??) leads to the dispersion relation[16]:-

1 +
∑
j

Kj(k, ω) = 0 (5.5)

where Kj(k, ω) = −k2
j /2k2Z ′(ξj) is the susceptibility of the jth(= i, e) species, ξj =

ω/
√

2kvj and Zj(ξj) represents the real part of the complex plasma dispersion func-
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tion for real arguments[44]. Here, we consider the initial distribution to be Maxwellian,

f0(v) = exp(−v2/2)/
√

(2π). By assuming a weak flattening (or trapped region) of vanish-

ing velocity width i.e. (∂f/∂v)|vφ' 0 (which allows us to neglect the contribution from

the imaginary part of the dielectric function), the solution to the real part of the wave

frequency ω as a function of the wave number k, obtained numerically from Eq.(??) is

shown in Fig.(??). Typically in the k−ω diagram, at low frequencies (Boltzmann electrons

and kinetic ions), one obtains the “teardrop” curve that represents Ion Acoustic (IA) (upper

branch of teardrop) and IBk (lower branch of teardrop)[17]. At values of the wave number

for which the effects of charge separation are no longer negligible, both ion branches (IA

and IBk) coalesce [see fig.??(a)]. As the ion to electron temperature ratio TR decreases,

the “teardrop” becomes a “thumbcurve” for ions. Finally, when TR > 0.3 the VY solution

disappear.

In the bottom plot Fig.??(b), the same “teardrop” dispersion is plotted for TR = 0.1.

In Eqn.(??), the term −1
2Z
′(v) can be interpreted as a gradient of the real part of the

complex plasma dispersion function for real arguments. A plot of the function −1
2Z
′(v) for

Kinetic ions and Boltzmann electrons for TR = 0.1 is displayed in Figs.(??(c)), where it

divides the phase velocity regions and reveals different branches of the dispersion relation.

In the limit of Boltzmann electrons, the function −1
2Z
′(v) represents ion contribution,

where it has two zero transitions (at v = 1.45 and at v = 3.723) and one minimum

(at v = 2.125) which results in two separated regions for the physical phase velocity:-(i)

1.45 ≤ v ≤ 2.125 (IBk), (ii) 2.125 ≤ v ≤ 3.723 (IA)). The function is positive for v < 1.45

and v > 3.723.

5.2.2 Simulation I

In this Section, we systematically present the numerical results of the VY plasmas where

kinetic ions in the background of Boltzmann electrons are considered. In order to study the

low frequency (ion dominated) electrostatic waves, the numerical results are presented for
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the following three cases:- where plasma is subjected to (i) an initial density perturbation

i.e. Landau damping at ion scales, (ii) a constant frequency external drive which concerns

the excitation of electrostatic modes at ion scales (IA and IBk) by applying a constant

frequency external drive and (iii) a time dependent external drive or chirp at ion scales in

the background of Boltzmann electrons.

5.2.2.1 Ion Landau Damping

In the following, to study the Landau damping at ion scales, the oscillations are excited by

initializing a single Fourier mode k with the following initial ion distribution:

fi(x, vi, t = 0) = 1√
2π

[1 + αcos(kx)]exp(−v
2
i

2 ) (5.6)

where α is the amplitude of initial ion density perturbation. Here, electron follows the

normalized Boltzmann [ne = (1 + TRφ)] distribution and TR = Ti/Te is the ion to electron

temperature ratio. In the following simulation case, numerical experiments have been

performed for vimax = 8 and different k, α and TR values.

When the plasma is perturbed with an initial amplitude, it leads to formation of ion acoustic

wave which is exponentially damped or Landau damped. The ion acoustic frequency is

given by ωr = k
√
γe/TR + γi, in ion normalization.

In Fig.??(a), comparison of time evolution of the electric field for various values of

wavenumber k is shown which indicated that the Landau damping increases with increase in

k and ωr also increases with increase in k, as expected [Fig.??(b)]. In Fig.(??), comparison

of time evolution of the electric field for various values of initial amplitude of perturbation

α and TR has been shown. The time evolution of electric field for various values of TR

indicates that the Landau damping increases with increase in TR.
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Figure 5.2: (a) Comparison of time evolution of the electric field for various values
of wavenumber k, and (b) the corresponding ωr − k plot of theoretical and observed
values for various values of wavenumber k.

5.2.2.2 Driven Ion Electrostatic Modes :- Constant Frequency Drive

Within linear theory, the Ion Bulk (IBK) waves are heavily damped as their wave phase

velocities is close to ion thermal velocity (vthi), respectively. However, this wave is also

a nonlinear BGK mode where ions trapped in the wave troughs which makes the ion

velocity distribution effectively flat at the wave phase velocity, and turns off Landau

damping. Initially there is no trapped particle distribution exist. But if the plasma is

driven externally, it can form trapping distribution dynamically as the wave evolves. For

an external electric field E = E0sin(kx − ωt), the trapping period to form the trapped
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Figure 5.3: Comparison of time evolution of the electric field (a) for various values
of TR, (b) The corresponding ωr − k plot of theoretical and observed values for
various values of TR on log scale and (c) for various values of initial amplitude of
perturbation α.

particle distribution is approximately τ = 2π/
√
kE0 (in this normalization). Thus, the

IBks can be excited by a small amplitude driver if the driver is applied resonantly over

few trapping periods. The driver continuously replenishes the energy removed by Landau

damping. Therefore, the trapped particle distribution survives and the IBks are eventually

produced.

In order to excite both electrostatic modes at ion scales (IA, IBk), the following numerical

simulation is performed: at t = 0, ions are considered to be Maxwellian velocity distri-

butions [fi = (1
√

2π)exp(−v2
i /2)] homogeneous density and electrons have a Boltzmann

distribution. The external electric field applied to induce weak trapping has the form
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Eext = E0sin(kx ± ωt). The external driver electric field is applied directly to the ions

in the Vlasov equation. The longest wavelength is driven that fits into the simulation

box. The trapping time τr for ions is τr = 2π/
√
kE0. Moreover, the external drive of

amplitude E0 = 0.025 is switched on at t = 0 for a period ∆t [see Fig.??(a)], where

τr ≤ ∆t ≤ 5τr and then let the system to relax for atleast another few ω−1
pi by switching

off the external drive. After the drive has been turned off, the plasma response is analyzed.

the simulation has been performed for the following parameters:- k = 0.2 (τr = 88.85),

temperature ratio TR = 0.1, 0.01, 10−7, vmax = 8, ∆t = 100 [see Fig.??(b)]. I

w=constant

Constant
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t1Time
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(b)

Figure 5.4: (a) A cartoon figure of (Eext, t) showing frequency turn on-off of external
drive. Constant frequency drive is applied for (0 ≤ t ≤ t1). (b) Dispersion curves or
“Teardrop” curves for the electrostatic waves (IA, IBk) in k − ω plane, obtained by
assuming zero damping as a function of TR.

simulate the excitation of the modes with k − ω values obtained from the studies shown in

Fig.(??(b)). In order to characterize the plasma response, three cases have been considered

with TR = 0.1, 0.01, 10−7. First, let us consider the plasma with TR = 0.1 case. When

plasma is driven externally with ω = ωd = 0.3043 (in IBk region) during 0 ≤ t ≤ 100, where

ωd is considered from k−ω curve for wavenumber k = 0.2, it produces both “Ion Acoustic”

and “Ion Bulk” structures in ion distribution at v ' 1.545 and v ' 3.295 respectively

[Figs.(??(a)) and (??(b))]. These values are slightly different from the values obtained

via the dispersion relation shown in Fig.(??(b)) for IA and IBk waves (vIAφ ' 3.3 and

vLANφ ' 1.5215) due to the fact that the trapping region created in the simulations by

the external driver is of small but finite velocity width. Fourier analysis, for this case, in

Fig (??(b)) reveals that after the drive has been turned off, the electric signal is shown to
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Figure 5.5: Plots of space averaged ion velocity distributions for:- Fig.(a) TR = 0.1,
Fig.(c) TR = 0.01, Fig.(e) TR = 0.1 and (b) FFT plots of electric field, when plasma
is driven for k = 0.2 with ωd = ωIBk:- Fig.(b) TR = 0.1, Fig.(d) TR = 0.01, Fig.(f)
TR = 0.1.
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(a)

(b)

(c)

Figure 5.6: Ion phase space plots fi(x, v, t = 2000) on log scale, when plasma is
driven for k = 0.2 with ωd = ωIBk:- Fig.(a) TR = 0.1, Fig.(b) TR = 0.01, Fig.(c)
TR = 10−7.
be composed of both IA and IBk modes and their harmonics. However, when plasma is

drive for TR = 0.01 with ωd = 0.2751 (in IBk region) and TR = 10−7 with ωd = 0.2722 (in

IBk region), it creates a large amount of trapping in IA region but no significant trapping

in the IBk region. These is also indicated in fft plots of electic signal in Figs.??(c) to
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Figure 5.7: (a) Plot of excess density fraction δn/n0(x, t) with x at time t = 100
when the drive is turned off. (b) Plot of excess density fraction δn/n0(x, t) with x
at time t = 2000 i.e. at the end of simulation, (c) Plot of time evolution of excess
density fraction δn/n0(x, t) at x = L/2 and (d) relative total energy, when plasma is
driven for k = 0.2 with ωd = ωIBk for TR = 0.1, TR = 0.01, TR = 10−7.

??(f). In Fig.(??(a), ??(b), ??(c)), the snapshots of phase space distribution of ions have

been shown corresponding to the above cases. These evidences suggest that the weak

external driver has successfully created the trapped particle regions or weak flattening of

distribution function simultaneously in IA and IBk regions for TR = 0.1. However, for

TR = 0.01 and TR = 10−7, the weak external drive creates significant trapping in IA region

only.

In Fig.??(a), the time evolution of excess density fraction δn/n0, as defined by δn(x, t)/n0 =∫
fi(x, v, t)dv −

∫
f0i(v)dv, at x = L/2, has been shown, where maximum δn/n0 gained

by TR = 0.1 case and minimum is gained by TR = 10−7 case. The total energy of the

system is defined as: W (t) = K(t) + P (t), where kinetic energy is computed as K(t) =

(1/2)
∫ ∫

v2fi(x, v, t)dxdv and potential energy computed as P (t) = (1/2)
∫
E2(x, t)dx. In
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Figure 5.8: Plots of relative kinetic energy and relative potential energy , when
plasma is driven for time period ∆t = 100.Parameters used are:- k = 0.2 with
ωd = ωIBk for TR = 0.1, TR = 0.01, TR = 10−7.

Fig. ??(b), (a) the total relative energy δW = W (t)−W (0), (b) the total relative kinetic

energy δK = K(t)−K(0) and (c) the total relative potential energy δP = P (t)−P (0) are

plotted. It is clear that during the external drive is on, both relative kinetic energy and

relative potential energy of the system increases which reflects the increase in untrapped

and trapped particle populations, respectively. The growth of these relative energies is

arrested when the drive is turned off. Then the system relaxes and saturates to attain a

certain value of δW , δK, δP and remains almost the same till the end of the simulation.
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Figure 5.9: (a) A cartoon figure of (Eext, t) showing frequency turn on-off of external
drive. Downward frequency chirp is applied for (0 ≤ t ≤ t1). (b) Dispersion curves
or “Teardrop” curves for the electrostatic waves (IA, IBk) in k − ω plane, obtained
by assuming zero damping as a function of TR.
However, the maximum growth and the saturated values attained by these relative energies

are shown to be dependent on TR. The maximum saturated relative total energy δW is

gained by TR = 0.1 case whereas minimum value is gained by TR = 0.01.

5.2.2.3 Chirp Driven Ion Phase Space Vortices

In the following, we consider an initial Maxwellian homogeneous plasma which is driven by

an external drive Eext of amplitude E0 with a downward frequency chirp ω = α0t+β0 from

t = 0 to t = t1 with appropriately chosen chirp coefficients (α0, β0) for different temperature

ratios TR = 0.1, 0.01, 10−7. By doing so, the total electric field ET (ET = Eext +Es) acting

on the particles produces trapping in the resonant region. In this way, the energy of both

trapped and untrapped particles increases, till the chirp is on, followed by complete energy

conservation once the chirp is turned off, till the end of simulation.

In Fig.(??), the homogeneous plasma is subjected to an external drive of amplitude

E0 = 0.025 right at t = 0 for time duration ∆t = 250 from ωhigh = 0.5 to ωlow = 0.1 for dif-

ferent values of TR, namely, TR = 0.1, 0.01, 10−7. The chirp parameters are α0 = −1.6×10−3

and β0 = 0.5.

In order to characterize the plasma response, we have considered three cases with

TR = 0.1, 0.01, 10−7. In all three cases, plasma is externally driven with a downward chirp
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Figure 5.10: Plots of space averaged ion velocity distributions for:- Fig.(a) TR = 0.1,
Fig.(c) TR = 0.01, Fig.(e) TR = 0.1 and Ion phase space (fi(x, v, t = 2000)) plots
on log scale, when plasma is driven for time duration ∆t = 250 from ωhigh = 0.5 to
ωlow = 0.1 and for k = 0.2:- Fig.(b) TR = 0.1, Fig.(d) TR = 0.01, Fig.(f) TR = 10−7.

in the IBk region. First, let us consider the plasma with TR = 0.1 case. In Fig.??(a), the

time evolution of space averaged ion velocity distribution is shown for TR = 0.1, where

plasma is is subjected to an external drive of amplitude E0 = 0.025 for time duration

∆t = 250 from ωhigh = 0.5 to ωlow = 0.1. This chirp affects the plasma from IA to IBk

region which in turn creates multiple PSVs in between IA to IBk region. This can also

be seen in the corresponding phase space plot of fi(x, v, t = 2000), as shown in Fig.??(b).

108



CHAPTER 5. FORMATION AND DYNAMICS OF ELECTROSTATIC PHASE
SPACE VORTICES: KINETIC IONS

x

0 10 20 30

δ
n
(x
,
t
)/
n
0

-0.05

0

0.05

t=0

t=250, T
R

=0.1

t=250, T
R

=0.01

t=250, T
R

=10
-7

(a)
x

0 10 20 30

δ
n
(x
,
t
)/
n
0

-0.02

-0.01

0

0.01

0.02
t=0

t=2000, T
R

=0.1

t=2000, T
R

=0.01

t=2000, T
R

=10
-7

(b)

t

0 500 1000 1500 2000

δ
n
(x

=
L
/
2,
t
)/
n
0

-0.1

-0.05

0

0.05

0.1

T
R

=0.1

T
R

=0.01

T
R

=10
-7

(c)
t

0 500 1000 1500 2000

lo
g
(S

r
e
l
)

-40

-30

-20

-10

0

T
R
=0.1

T
R
=0.01

T
R
=10

-7

(d)

Figure 5.11: (a) Plot of space evolution of excess density fraction δn/n0 at t = 250
(when the chirp is turned off) for TR = 0.1, TR = 0.01, TR = 10−7. (b) Plot of space
evolution of excess density fraction δn/n0 at t = 2000 for TR = 0.1, TR = 0.01,
TR = 10−7. (c) Plot of time evolution of excess density fraction δn/n0 at x = L/2.
(d) relative entropy, when plasma is driven time duration ∆t = 250 from ωhigh = 0.5
to ωlow = 0.1 and for k = 0.2 for TR = 0.1, TR = 0.01, TR = 10−7.
As the ion to electron temperature ratio TR decreases, the “teardrop” curve becomes

broader and the distance between IA branch and IBk branch increases. For such cases, this

downward chirp excites the IA region more than the IBk region, which created giant PSV

in the IA region [see Fig.??(c) and Fig.??(d)]. For very small value of TR, for example

TR = 10−7, contribution from electrons become negligible, in that case only IA region gets

excited while applying the external chirp [see Fig.??(e) and Fig.??(f)].

5.3 Kinetic Ions and Kinetic Electrons (KIKE)

In this Section, an attempt has been made by means of numerical simulations, considering

both kinetic electrons and kinetic ions on the same physics footing, wherein the Vlasov

109



CHAPTER 5. FORMATION AND DYNAMICS OF ELECTROSTATIC PHASE
SPACE VORTICES: KINETIC IONS

t

0 500 1000 1500 2000

δ
W

0

0.5

1

1.5
T

R
=0.1

T
R
=0.01

T
R
=10

-7

(a)

t

0 500 1000 1500 2000

δ
K

0

0.5

1

1.5

T
R
=0.1

T
R
=0.01

T
R
=10

-7

(b)
t

0 500 1000 1500 2000

δ
P

0

0.05

0.1

0.15

T
R
=0.01

T
R
=10

-7

T
R
=0.1

(c)

Figure 5.12: Plot of (a) relative total energy, (b) relative kinetic energy and (c)
relative potential energy, when plasma is driven time duration ∆t = 250 from
ωhigh = 0.5 to ωlow = 0.1 and for k = 0.2 for TR = 0.1, TR = 0.01, TR = 10−7.

equations are integrated for both electron and ion species without any approximations

in length scale or time scales. First, the weakly driven fully nonlinear Vlasov-Poisson

(VP)equations has been solved which facilitates weak flattening of distribution function

or weak trapping. To identify the modes, the ωr is need to be calculated. The eigenvalue

values thus obtained for various wavenumbers are compared with frequencies obtained from

solving the linearized eigenvalue equations considering weak trapping which allows us to

neglect the contribution from the imaginary part of the dielectric function. My numerical

results show that both electron and ion waves can be excited simultaneously in phase space.

In appropriate limits, it is shown that the “thumb” and “teardrop” curves are different

parts of a general symmetric dispersion relation and are recovered in appropriate limits of

that dispersion relation.
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Figure 5.13: Dispersion curves or “Thumb-Teardrop” curves for the electrostatic
waves (LAN, EAW, IA, IBk) in k − ω plane, obtained by assuming zero damping:-
(i) as a function of µ for TR = 1 [Fig. (a)], (ii) as a function of µ and TR [Fig. (b)].
These curves represent the solutions or the roots of Eq.(??). Also, the gradient of
the real part of the complex plasma dispersion function −1

2Z
′(v) is plotted for real

arguments in Figs.(c) and (d) for immobile ions, µ = 20 and µ = 1836.
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Figure 5.14: Comparison of time evolution of the electric field (a) for various values
of initial amplitude of perturbation µ, and (b) for various values of initial amplitude
of perturbation α.
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Figure 5.15: Comparison of time evolution of the electric field (a) for various values
of ion to electron temperature ratio TR, and (b) for various values of wavenumber k.
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Figure 5.16: Plot the maximum value of the electric energy ε =
∫
E2dx as a function

of µ for α = 0.05 in the time interval [1500,2000].

5.3.1 Governing Equations & Wave Dispersion Relation for

KIKE Plasmas

A 1D unmagnetized, collisionless electrostatic plasma, in the framework of kinetic theory

considering both kinetic electrons and kinetic ions, is described by one dimensional Vlasov-
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Poisson (VP) model equations, viz:

∂fe
∂t

+ ve
∂fe
∂x
− ET

∂fe
∂ve

= 0 (5.7)

∂fi
∂t

+ vi
∂fi
∂x

+ 1
µ
ET

∂fi
∂vi

= 0 (5.8)

∂E

∂x
= −∂

2φ

∂x2 =
∫
fidvi −

∫
fedve (5.9)

where fe(x, v, t) and fi(x, v, t) are the distribution functions of electrons and ions, respec-

tively, µ is the mass ratio of ions to electrons i.e. µ = Mi/Me, φ is the electrostatic potential,

ET = Es +Eext is the total electric field, where Es = −∂φ/∂x is the self consistent electric

field and Eext is the external driver electric field defined as:

Eext = E0sin(kx± ωt) (5.10)

where E0 is the amplitude of external drive. Here, k represents the perturbation wave

number in the simulation box and ω represents the driver frequency.

In the above equations [Eqs.(??)-(A.6)], time is scaled to ω−1
pe , length is scaled to electron

Debye length λDe and velocities to vthe = λDeωpe, electron thermal velocity. Using these

normalizations, the Fourier transformation of linearized form of Eqs. (??)-(A.6) leads to

the usual linear dispersion relation[16]:-

1 +
∑
j

Kj(k, ω, µ, TR) = 0 (5.11)

where Kj(k, ω, µ, TR) = −k2
j /2k2Z ′(ξj , µ, TR) is the susceptibility of the jth(= i, e) species,

TR(= Ti/Te) is the temperature ratio, ξj = ω/
√

2kvj and Zj(ξj , µ, TR) represents the real

part of the complex plasma dispersion function for real arguments[44]. By assuming a

weak flattening (or trapped region) of vanishing velocity width i.e. (∂f/∂v)|vφ' 0 (which

allows us to neglect the contribution from the imaginary part of the dielectric function),

the solution to the real part of the wave frequency ω as a function of the wave number k,

obtained numerically from Eq. (??) is shown in Fig.(??) for various values of µ and TR.
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Typically in the k − ω diagram, at high frequencies (fixed ions), one obtains only the

“thumb” curve that represents Langmuir waves (upper branch of thumb) and EAWs (lower

branch of thumb)[17], where as in the low-frequency regime (Boltzmann electrons), one

obtains only the “teardrop” curve that represents IA waves (upper branch of teardrop)

and IBk waves (lower branch of teardrop)[19]. Perhaps for the first time, we have shown

a unified “thumb-teardrop” diagram in Fig[(??(a)], which includes kinetic response from

both electron and ion branches simultaneously. For small values of µ, the electron and ion

parts of the solution are not separately visible from each other and the “thumb” curve

represents contributions of both electrons and ions. As the value of µ is increased, the

curve begins to break into two different set of solutions where “thumb” shape represents

the electron contribution (LAN and EAW waves) and the “teardrop” shape represents

the ion contribution (IA and IBk waves). Depending on the value of TR and k, at values

of the wave number for which the effects of charge separation are no longer negligible,

both electron branches (LAN and EAW) and both ion branches (IA and IBK) coalesce

[Fig.??(b)]. Moreover, as µ/TR →∞, the “teardrop” curve becomes more and more narrow

in ω and flattens onto the k-axis, after which ω/k → 0 in the teardrop and only “thumb”

curve of electrons survives. Also, as the ion to electron temperature ratio TR decreases,

“teardrop” curve enlarges until eventually the IA branch is replaced by the ion Langmuir

waves (ILWs) beyond which “teardrop” continuously changes into a “thumb” curve for ions.

In Eqn.(??), the term −1
2Z
′(v) can be interpreted as a gradient of the real part of the

complex plasma dispersion function for real arguments. A plot of the function −1
2Z
′(v) for

different values of µ is displayed in Figs.(??(c)) and (??(d)), where it divides the phase

velocity regions and reveals different branches of the dispersion relation. In the limit

of immobile ions (see Fig.??(c)), the function −1
2Z
′(v) represents electron contribution

only. Therefore, it has one zero transition (at v = 1.307) and one minimum (at v = 2.13)

which results in two separated regions for the phase velocity [96]. However, when both

electron and ion contributions are considered such that both “thumb” and “teardrop”

are well separated, for example for µ = 20 case [see Fig.(??(c))], the function −1
2Z
′(v)

represents four separated regions for the phase velocity:-(i) 0.3662 ≤ v ≤ 0.4932 (IBk), (ii)
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0.4932 ≤ v ≤ 0.8302 (IA), (iii) 0.10109 ≤ v ≤ 2.052 (EAW) and (iv) v ≥ 2.052 (LAN). The

function is positive for v < 0.3662 and 0.8302 < v < 1.0109 else negative for other values of

v and and vanishes at infinity. Similarly, for µ = 1836, the function −1
2Z
′(v) again divides

phase velocity into four different regions to present both ion and electrons contributions.

This demonstrate the simultaneous existence of all four branches.

To further corroborate the results from the solution of the dispersion relation wherein

weak local flattening of the distribution function or weak trapping was assumed (i.e. by

neglecting the imaginary part of the dielectric function), the numerical simulations are

performed with a well benchmarked VPPM 2.0 solver that uses Eulerian algorithm to solve

the VP Eqs.(??)-(A.6) in one dimensional phase space (x, v) and advances the solution in

time [21, 22, 58]. The simulation domain in phase space is D = [0, Lmax]× [−vjmax, vjmax],

where j = e (for electron) and j = i (for ions), Lmax = 2π/k is the system size and

vjmax is chosen sufficiently large so that electron and ion velocity distribution functions

approaches zero as |vj | approaches vjmax. The phase space is discretized with Nx = 512

grid points in the spatial domain, where periodic boundary conditions are imposed, and

Nve ∈ [3000, 10000], Nvi = 4000 in velocity domain such that there is sufficient resolution

in both x and vj grids for all values of µ and TR considered.

5.3.2 Simulation II

In this Section, I systematically present the numerical results of the two species case where

both kinetic electrons and kinetic ions are considered on the same physics footing. In order

to study the effect of ion motion on the evolution of high frequency (electron dominated)

and the low frequency (ion dominated) electrostatic waves, the numerical results are

presented for the following three cases:- where plasma is subjected to (i) an initial density

perturbation i.e. the effect of ion motion on the Landau damping, (ii) a constant frequency

external drive which concerns the excitation of all four normal electrostatic modes by

applying a constant frequency external drive and (iii) a time dependent external drive or
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chirp in the presence of kinetic ions in the collisionless plasma.

5.3.2.1 Effect of Ion Motion On Landau Damping of Electrons Langmuir

waves (LAN)

In the following, to study the effects of ion dynamics on linear and non-linear Landau

damping of LAN, the oscillations are excited by initializing a single Fourier mode k with

the following initial electron distribution:

fe(x, ve, t = 0) = 1√
2π

[1 + αcos(kx)]exp(−v
2
e

2 ) (5.12)

where α is the amplitude of initial electron density perturbation. Ions are initially uniform

in the x-space and follow the Maxwellian distribution in the velocity space fi(x, vi, t =

0) = (
√

2π)−1(
√
µ/TR)exp(−v2

i µ/2TR). In the following simulation case, we have kept a

fixed wave number k = 0.4, vemax = 6 and TR = 1, unless it is specified otherwise.

When the plasma is perturbed with an initial amplitude, which is as small as near the linear

region, and ions are considered to be immobile i.e. µ/TR →∞, it leads to an exponential

damping or linear Landau damping. However, in presence of ion motion, the linear Landau

damping develops at the beginning but then the electric field evolution starts to deviate

from the linear Landau damping and soon, the Landau damping almost disappears. Instead,

the electric field evolution appears to decay slowly with comparatively large oscillating

periodic structure which should be associated with ion motion [see Fig.(??)]

.When the ion mass is equal to the electron mass (i.e. µ = 1), the damping exist only

for a few cycles with reduced damping rate because of quick excitation of ion density

perturbation. Afterwards, the system evolution is mainly dominated by energy exchange

between electrons and ions via electric fields. As the ion mass increases, their motion stop

the linear Landau damping at some time and the large oscillating structures excited due

to ion motion dominates the system evolution at the later stage. In Fig.(??), comparison

of time evolution of the electric field for various values of initial amplitude of perturbation

α and µ has been shown. The time evolution of electric field for various values of α
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(a)

(b)

Figure 5.17: (a) Plots of space averaged electron and ion velocity distribution, (b)
Contour plot of electron phase space distribution for µ = 1, where plasma is driven
for k = 0.4 with ωd = 0.05712.

indicates the beginning of linear Landau damping at the start but then due to the effect

of motion of comparatively massive ions the electric field evolution appears to decay

slowly with comparatively large oscillating periodic structures at later stage. These large

oscillating structures are again composed of smaller oscillations which indicates the decay

of electric field due to both electron and ion motion simultaneously. The amplitude of

these oscillations at later times is found to be increasing with increases in amplitude of

perturbation.

Moreover, with the increase in the ion mass, the influence of ion motion on the linear

Landau damping occurs later with larger oscillation periods accordingly [see Figs.??]. The

frequency of the second large oscillation is found to be near the ion acoustic frequency. In

the present normalization, the ion acoustic frequency is given by ωIAr = k
√
γe + γiTR/µ,

where both γe = γi = 3 , corresponding to one-dimensional motion. Form this formula, for

a given TR and µ, ωIAr ∝ k and for a given k and µ, ωIAr ∝
√
TR. Therefore, in order to
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(a) (b)

(c) (d)

(e) (f)

Figure 5.18: (i) Time Evolution of space averaged electron velocity distribution
for µ = 20. The plasma is driven during 0 ≤ t < t1 for k = 0.4 in different
regions:- (a) EAW (ωd = 0.5363) for t1 = 300, (c) IA (ωd = 0.275) for t1 = 1000,
(e) IBk (ωd = 0.1545) for t1 = 1000. (ii) Phase space plots of electron distribution
fe(x, v, t = 3000) [(b) EAW and LAN] and ion distribution fe(x, v, t = 3000) [(d) IA
and (f) IBk].
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Figure 5.19: Fourier transform of electric field performed for different time windows,
where plasma is driven during 0 ≤ t ≤ 1000 with ωd = 0.1545 (IBk region) for
µ = 20.
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Figure 5.20: Time evolution of density fluctuation [∆n(x, t) = n(x, t) − n0(x, t0)]
at x = L/2 [Figs.(a), (c)] and Fourier analysis of electric field [Figs.(b), (d)], after
the driver is turned off for µ = 1836 . The plasma is driven in IBk region during
0 ≤ t < 2τr for the following sets of parameters:- (i) k = 0.4, ωd = 0.0127 [Figs. (a),
(b)], (ii) k = 1, ωd = 0.0321 [Figs. (c), (d)]. The vertical line represents the time at
which driver is turned off.

confirm that the second large oscillation is ion acoustic, the initial density perturbation

numerical experiment is performed with two sets of parameters: (i) α = 0.001, µ = 1836,

k = 0.4, TR = 1, 0.1 and (ii) α = 0.001, µ = 1836, k = 0.4, 0.5, TR = 1. The corresponding
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electric field plots are shown in Fig.??, where the large oscillation frequency increases with

increase in k and decreases with
√
TR. Thus, small amplitude perturbation excites both

Langmuir oscillations and IA oscillations in a KIKE plasma.

When the initial density perturbation is large enough in the quasi-nonlinear regime, the

behavior deviates from uniform exponential damping and trapping occurs. When the ion

mass is comparable to the electron mass, both electron and ion contribute in the trapping

dynamics but as the ion mass increases, the influence of ion motion becomes weak and

the system is mainly determined by the electron dynamics. In Fig.(??), to characterize

the plasma response for the nonlinear amplitude of perturbation α = 0.05, the maximum

value of the electric energy ε = (1/2)
∫
E2dx is plotted in the time interval [1500,2000] as

a function of µ. For smaller values of µ, the ε value is high which shows contribution of

both electrons and ions in trapping . However as the value of µ increases, the ion influence

becomes weak and trapping decreases till the trapping dynamics mainly dominated by

electrons, thus value of ε attains a saturated value.

5.3.2.2 Driven Electron-Ion Electrostatic Modes :- Constant Frequency

Drive

Within linear theory, the Electron acoustic waves (EAWs) and Ion bulk (IBK) waves are

heavily damped as their wave phase velocities is close to electron thermal velocity (vthe)

and ion thermal velocity (vthi), respectively. However, these waves also a nonlinear BGK

mode where electrons (or ions) trapped in the wave troughs which makes the electron (or

ion) velocity distribution effectively flat at the wave phase velocity, and turns off Landau

damping. Initially there is no trapped particle distribution exist. But if the plasma is

driven externally, it can form trapping distribution dynamically as the wave evolves. For an

external electric field E = E0sin(kx−ωt), the trapping period to form the trapped particle

distribution is approximately τ = 2π/
√
kE0 for electrons and for ions τ ir = 2π√µ/

√
kE0

(in this normalization). Thus, the EAWs and IBks can be excited by a small amplitude

driver if the driver is applied resonantly over few trapping periods. The driver continuously
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replenishes the energy removed by Landau damping. Therefore, the trapped particle

distribution survives and the EAW/IBks are eventually produced.

In order to excite all four electrostatic modes (LAN, EAW, IA, IBk), the follow-

(a) (b)

(c) (d)

(e) (f)

Figure 5.21: Phase space plots of fe(x, v, t = 2000) for chirp interval ∆t = 250 when
external downward chirp is given from ωhigh = 1 to ωlow = 0.5 for (a) µ = 1, (b)
µ = 3 (c) µ = 5 (d) µ = 50 (e) µ = 1836 (f) µ/TR →∞.

ing numerical simulation has been performed: at t = 0, both electrons and ions are

considered to be Maxwellian velocity distributions [fe = (1
√

2π)exp(−v2
e/2) and fi =

(1
√

2π)(
√
µ/TR)exp(−v2

i µ/2TR)] and homogeneous density. The external electric field
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(a) (b)

(c) (d)

Figure 5.22: Phase space plots of fe(x, v, t = 2000) for chirp interval ∆t = 250 when
external downward chirp is given from ωhigh = 0.8 to ωlow = 0.4 for (a)µ = 1 (b)
mu = 5 (c) mu = 20 (d) µ/TR →∞.

applied to induce weak trapping has the form Eext = E0sin(kx± ωt). The external driver

electric field is applied directly to the electrons and ions in the Vlasov equation. The

longest wavelength is driven that fits into the simulation box. It is important to note that

the amplitude of external drive, E0, is chosen to be small enough that when an initial

value problem is performed with this value of E0, the trapping time τ jr (for electrons

τ er = 2π/
√
kE0 and for ions τ ir = 2π√µ/

√
kE0 ) is much larger than the Landau damping

time τLD = γ−1
L . Moreover, the external drive of amplitude E0 = 0.025 is switched on at

t = 0 for a period ∆t, where τ jr ≤ ∆t ≤ 5τ jr and then we let the system to relax for atleast

another t = 2000 or t ∼ 32τ er by switching off the external drive. After the drive has been

turned off, the plasma response is analyzed. The temperature ratio is fixed TR = 1, unless

it is specified otherwise.

I simulate the excitation of the modes with k−ω values obtained from the studies shown

in Fig.(??(a)). In order to characterize the plasma response, I have considered three cases
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with µ = 1, µ = 20 and µ = 1836. First, let us consider the plasma with µ = 1 case, for

which the space averaged velocity distribution of electrons and ions are always the same

due to their identical masses and equal and opposite charges [Fig.(??)]. In case of immobile

ion (µ/TR →∞), an infinitesimal density perturbation leads to linear Landau damping

and as the amplitude of perturbation becomes larger, LAN mode sets in and the weak

trapping ensues of resonant particles in the wave troughs. Moreover, when the plasma

is driven with an infinitesimal amplitude external drive in the background of immobile

ions , it drives a well known “acoustic” mode, also known as “EAW”, besides the well

known “LAN” mode in electron distribution. However, when ion motion is considered,

for example µ = 1, for an infinitesimal density perturbation, the ion motion significantly

suppresses the linear Landau damping and the system evolution is mainly dominated by

energy exchange between electrons and ions via electric fields [103]. For electron-positron

plasma i.e. µ = 1, when plasma is driven externally with ω = ωd = 0.5172 (in EAW region)

during 0 ≤ t ≤ 300, where ωd is considered from k − ω curve for wavenumber k = 0.4, it

produces both “acoustic” and “Langmuir” structures in electron as well as ion distribution

at v ' 1.419 and v ' 4.0275 respectively [Figs.(??(a)) and (??(b))]. These values are

slightly different from the values obtained via the dispersion relation shown in Fig.(??(a))

for “acoustic ” and “Langmuir” waves (vEAWφ ' 1.42 and vLANφ ' 4.0287) due to the fact

that the trapping region created in the simulations by the external driver is of small but

finite velocity width.

In Fig.(??), the k-ω dispersion curve indicates that as we move towards larger values of

µ, the single k-ω thumb curve begins to break into two parts. For µ = 20, at which both

thumb and teardrop are well separated [Fig.(??)], four simultaneous roots for k = 0.4

(EAW, LAN, IA, IBk) are obtained using nonlinear VPPM solver. In Fig.(??), we show the

time evolution of the space averaged velocity distribution for µ = 20 where plasma is driven

in three different regions:- (i) EAW, (ii) IA and (iii) IBk, with (k − ω) values obtained

from dispersion predictions [Fig.??(a). When the plasma is driven in the EAW region with

ωd = 0.5363, it creates two observable flattenings in the electron velocity distribution, one

of which is EAW (at v ' 1.295) and the other one is LAN (at v ' 3.164) [Fig.(??(a))].

Similarly, when plasma is driven in IA region with ωd = 0.275, as shown in Fig.(??(c)), it
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also creates two observable flattenings in the velocity distribution, one of which is IA (at

v ' 0.675) and the other one is LAN (at v ' 3.2975). Also, when driven in IBk region

with ωd = 0.1545 results in two trapping regions, one of which is IBk (at v ' 0.375) and

the other one is LAN (at v ' 3.25) [Fig.(??(e))]. These values are also slightly different

from the values obtained via the dispersion relation shown in Fig.?? for EAW, LAN, IA

and IBk waves (vEAWφ ' 1.3407, vLANφ ' 3.3075, vIAφ ' 0.6875 and vIBkφ ' 0.38675) due to

the trapping region of small but finite velocity width.

In Fig.(??(c), ??(d), ??(f)), we have shown the snapshots of phase space distribution of

electrons and ions corresponding to the above cases. These evidences suggest that the weak

external driver has successfully created the trapped particle regions or weak flattening of

distribution function simultaneously for all four branches. Fourier analysis, for case (iii),

in Fig (??) reveals that after the drive has been turned off, the electric signal is shown to

be composed of all four modes and their harmonics.

For higher values of µ, the system evolution is mainly determined by the electron dynamics

at small wavenumbers. However, as shown in Fig.(??(b)), at slightly higher wavenumbers,

the dispersion relation predicts solutions for ion branches only and no solutions for electron

branches. For example, with more realistic values of µ, say µ = 1836, one gets four

roots for k = 0.4 (EAW, LAN, IA, IBk) and two roots for k = 1 (IA and IBK) from

analytical estimate. In Fig.(??(a)) and Fig.(??(c)), we show the time evolution of the

density fluctuation, defined as ∆n(x, t) = n(x, t) − n0(x, t0) where n(x, t) =
∫
fdv. In

Fig.(??(a)) and Fig.(??(c)), the density fluctuation vs time is shown at x = L/2 for k = 0.4

(with ωd = 0.0127) and k = 1 (with ωd = 0.00321), where the plasma is driven in IBk

region. For this massratio, plasma is simulated for 7000/
√

1836 ' 163 ion plasma periods

for k = 0.4 and 5000/
√

1836 ' 117 ion plasma periods for k = 1. As it is clear from these

plots, electron dynamics is present along with ion dynamics for k = 0.4, during and after

the driving process, whereas for k = 1, ion dynamics dominates. After the driver has been

turned off, the electric field oscillates at an almost constant amplitude. Fourier analysis

[Figs. (??(b)), (??(d))] reveals that for k = 0.4, both electron (LAN) and ion (IBk) modes

are generated whereas for k = 1, only ion mode is present.
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In this work:- (i) a general symmetric dispersion relation which shows a continuous

connectivity of electron (or “Thumb curve”) and ion (or the “Teardrop curve”) branches is

shown, (ii) Demonstration of the simultaneous excitation of all four normal mode branches

(LAN, EAW, IA and IBk waves) of a two species Vlasov plasma in a symmetric framework,

both via dispersion solution as well as by applying a small amplitude external electric

field that creates a weak population of trapped particles resulting in weak flattening of the

distribution function.

5.3.2.3 Chrip Driven Phase Space Electron Vortices- Role of Ion motion

In the following, I have considered an initial Maxwellian homogeneous electron plasma

and an initial Maxwellian homogeneous ion plasma which is driven by an external drive

Eext of amplitude E0 with a downward frequency chirp ω = αt+ β from t = 0 to t = t1

with appropriately chosen chirp coefficients (α, β). By doing so, the total electric field ET

(ET = Eext + Es) acting on the particles produces trapping in the resonant region. In

this way, the energy of both trapped and untrapped particles increases, till the chirp is

on, followed by complete energy conservation once the chirp is turned off, till the end of

simulation.

In Fig.(??), the homogeneous plasma is subjected to an external drive of amplitude

E0 = 0.025 right at t = 0 for time duration ∆t = 250 from ωhigh = 2 to ωlow = 1 in high

frequency regime for different values of µ, namely, µ = 1, 3, 5, 50, 1836 and µ/TR →∞. The

chirp parameters are α = −4× 10−3 and β = 2. In the limit of immobile ions (µ/TR →∞),

this downward frequency chirping leads to large coherent structures in phase space with

multiple extrema with “shark” like features in phase space. As described earlier, the

constant frequency linear drive excites electron acoustic waves and Langmuir waves along

with other harmonics. Now, when the downward chirp is applied instead of the linear

drive, it excites the whole resonant region from LAN to EAW along with its harmonics in

a very short time period. Therefore, all these excited modes overlap to form giant phase

space vortices (PSVs). However, when the ion motion is considered, the thumb shape of

dispersion curve gets wider as the value of µ decreases. Therefore, chirp efficiency decrease
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and at smaller value of µ, only two main modes i.e. LAN and EAW gets excited.

Also, in the smaller frequency regime near EAW branch, the downward chirp leads to the

formation of multiple phase space vortices, all appearing at different regions of phase space,

which gives a “honeycomb”-like transient structure of the distribution function. As shown

in Fig. (??), the plasma is excited with the same drive amplitude E0 = 0.025 and frequency

is swept ωhigh = 0.8 to ωlow = 0.4 with a sweep rate of α = −1.6 × 10−3 for different µ

values, namely, µ = 1, 5, 20 and µ/TR →∞. In the limit of immobile ions (µ/TR →∞),

this downward frequency chirping excites the entire sub-harmonic region of phase space,

which results in multiple non-overlapping phase space holes or “honeycomb”-like structures

in phase space. However, when the ion motion is considered, trapping efficiency decreases

at smaller value of µ.

5.4 Summary and Conclusions

In the first part of this Chapter, the study of electrostatic waves in ion scale has been

performed in the frame of Boltzmann electrons with kinetic ions using Vlasov-Yukawa

(VY) solver. This model results in a “teardrop” curve (for IA and IBk waves). Using 1D1V

VY solver Landau damping and electrostatic waves at ion scales (IA and IBk waves) have

been studied. Also, formation and dynamics of chirp driven phase space vortices at ion

scales have been studied for different temperature ratios.

Using a one dimensional (1D), two component Vlasov-Poisson system which treats both

electrons and ions symmetrically in terms of kinetics, the the following major findings are

reported:- (i) continuous connectivity of electron (or “Thumb curve”)[17] and ion (or the

“Teardrop curve”)[34] branches with a general symmetric dispersion relation. The hitherto

separately studied “Thumb curve” and the “Teardrop curve” show a “symmetry” in the

dispersion curve as each of them consists of a high frequency branch and a low frequency

branch. We present the whole physical picture on the same scale using a general symmetric

dispersion curve which again consists of a high frequency part (“Thumb curve”-LAN,
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EAW) and a low frequency part(“Teardrop curve”-IA, IBk), (ii) when plasma is subjected

to small amplitude initial density perturbation, it excites both Langmuir oscillations as

well as IA oscillations in a KIKE plasma, (iii) all four branches (LAN, EAW, IA, IBk)[17,

19, 34] have been recovered both via performing a numerical simulation where plasma is

driven with an infinitesimal external electric field and from obtaining a general symmetric

dispersion relation from solving weakly driven fully nonlinear VP equations which facilitates

weak trapping. (vi) for realistic mass ratios, simultaneous excitation of all the normal

modes:-LAN, EAW, IA, IBk. (v) the formation and dynamics of chirp driven PSVs are

found to be dependent on µ values.

Furthermore, the results presented in this and the earlier Chapters are for the collisionless

plasmas. However, in systems governed by kinetic processes, nearly collisionless limits are

not the same as the limit of zero collisionality. Since particle collisions work to restore

thermal equilibrium, it is clear that their effect can eventually change the features of the

kinetic dynamics of a plasma, even in situations where collisionality can be considered very

weak. The evolution of the plasma is a result of nontrivial combination of kinetic processes

and collisionality. Therefore, in the next Chapter, an attempt has been made by means

of numerical simulations, to study effect of weak collisionality on the electrostatic driven

phase space vortices. The details of which will be presented in the Chapter 6.
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6
Eulerian Simulations of Collisional Effects on

Electrostatic Phase Space Vortices

In this Chapter, the effect of collisions on electrostatic phase space vortices

formed in a collisionless process is analyzed by means of Eulerian simulation

for two different collision models. As seen in earlier Chapters, in the absence

of collisions, phase space vortices manifests as the formation of a plateau in the

resonant region of the particle velocity distribution function, due to trapping of

resonant particles. In the presence of collisions, over long time this plateau is

smoothed out since collisions drive the velocity distribution towards Maxwellian

irrespective of how weak the collisions are as long as they are non-zero. In

these conditions, kinetic processes and collisionality would be in competition

and the evolution of the plasma would, therefore, be a result of nontrivial

combination of these two effects. Therefore, an attempt has been made by

means of numerical simulations, to study effect of weak collisionality on the

electrostatic driven phase space vortices with two types of collision operators:

(1) Boltzmann collision operator, where the colliding particles can be treated

as isolated pairs and, (2) Fokker-Planck (FP) collision type operator in one
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dimension, where many weak collisions lead to particle diffusion in velocity

space. It is shown that depending on the collision models used, the nature

of smoothing in velocity space of giant PSVs results in different structures.

However, irrespective of the collision model used, substantial excess density

fractions are retained.

6.1 Introduction

The understanding of collision dynamics in plasmas is a very fascinating and important

concept and it has been the subject of a relevance for both laboratory plasmas as well as

astrophysical plasmas. Various authors have approached the study of collisional effects in

plasmas, by modeling particle interactions through different collision operators, with differ-

ent physical features and mathematical structures [1, 88, 61, 62, 104]. For example, highly

collisional plasmas, collision operators involving a few low-order moments are found to be

enough to derive transport equations [105, 106, 107, 108]. However, plasmas with low colli-

sionality (or nearly collisionless) require calculation of high-order moments [109, 110, 111].

In order to calculate the effect of collisional dynamics on plasmas, several different model

operators and numerical methods have been developed and applied [112, 113, 114, 115, 116].

While studying plasma dynamics, collisions are usually considered either dominant,

so as to maintain the velocity distribution function near Maxwellian (fluid model), or

negligible (Vlasov model). For physical systems, such as the solar wind, that exhibit a

weak but non-negligible collisionality, both kinetic and collisional approaches are necessary

to understand the phase space dynamics and phase space structures formed. In systems

governed by kinetic processes, limit of low collisionality (or nearly collisonless regimes) is

not the same as the limit of zero collisionality. This is mainly because, kinetic processes

in a plasma are determined by the details of the particle distribution function in velocity

space and on the nature of subtle trapping-detrapping processes. For example, a slight

departure from a Maxwellian may not produce any significant change in the real frequency
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but can produce significant modifications in the growth/damping of electrostatic waves.

Since particle collisions work to restore thermal equilibrium, it is clear that their effect

can eventually change the features of the kinetic dynamics of a plasma, even in situations

where collisionality may be regarded very weak. Nearly collisionless regimes are important

to a number of physical processes, including runaway electrons in magnetically confined

fusion plasmas, magnetic reconnection in weakly collisional regime, low density edge in a

tokamak plasma, solar plasma near sunspots, and non-neutral plasmas etc [117, 118, 119,

120]. For such kind of plasma phenomena, kinetic dynamics along the magnetic field lines

can only be explained if a collision model is added to the model described here. In these

conditions, kinetic processes and collisionality are in competition between each other: while

the first process works to produce deformations of the particle distribution function away

from a Maxwellian, the latter tends to restore the Maxwellian configuration. The evolution

and phase space structure of the plasma is, therefore, a result of nontrivial combination of

these two effects.

In the past, many attempts have been made to deal with the dynamics due to collision

processes, for eg., a spectral method has been proposed for the numerical evaluation of the

Landau collision integral, based on the use of Fast Fourier Transform (FFT) routines which

significantly reduce the computational weight with respect to finite difference schemes

[63]. The inclusion of collisional effects in the splitting scheme has been performed using

Bhatnagar-Gross-Krook (Krook) operator to study the damping of electrostatic waves in

the linear limit [61]. In order to reduce computational weight of the numerical approxima-

tion to the Landau integral, collisional operators have been simplified by decreasing their

dimensionality in velocity space to study Coulomb collision effects [62, 121]. Recently, a

detailed numerical study of the simplified operators has been performed through a 1D-1V

Eulerian simulations to study the collisional effects on electrostatic plasma waves [122,

123].

In the present work, an attempt has been made by means of Eulerian phase spacenumerical

131



CHAPTER 6. EULERIAN SIMULATIONS OF COLLISIONAL EFFECTS ON
ELECTROSTATIC PHASE SPACE VORTICES

simulations, to study effect of weak collisionality on the linear Landau damping, non-linear

Landau damping and driven electrostatic driven phase space vortices. In this Thesis, two

types of collision operators have been used to study the same physical phenomenon and

results have been compared. The collision operators are:- (1) Boltzmann collision operator,

where the colliding particles can be treated as isolated pairs and (2) Fokker-Planck (FP)

collision type operator in one dimension, where many weak small angle-like collisions lead

to particle diffusion in velocity space.

In this Chapter, the inclusion of collisional effects in Eulerian time-splitting algorithm

has been performed to the study the effect of weakly dissipative/collisional effects on driven

electrostatic phase space vortices (PSV). Collisions are modeled through one dimensional

operators of the Bhatnagar-Gross-Krook (Krook)/Fokker-Plank or Zakharov-Karpman

(ZK) type [61, 62, 63]. The accuracy of the numerical code is discussed by comparing the

numerical results to the analytical predictions obtained in some limiting cases to evaluate

the effects of collisions on linearly stable (Landau damping) distributions and in the dissi-

pation of Bernstein-Greene-Kruskal modes. Particular attention is devoted to the study of

collisional effects on the formation and dynamics of driven PSVs which have been studied

in previous Chapters, for an unbounded collisionless plasma with both Maxwellian and

non-Maxwellian distributions [P. Trivedi and R. Ganesh, Physics of Plasmas 23, 062112

(2016), P. Trivedi and R. Ganesh, Physics of Plasmas 24, 032107 (2017)]. Depending on

the collision models used, it is shown that the giant PSVs smoothen out, yet retain overall

large excess density fractions. In this Chapter, using VPPM-2.0 solver which includes

collisional models, I bring out several interesting features of driven phase space structures

in the presence of weakly collisional environment, starting from a Maxwellian plasma, the

details of which will be presented below.

The rest of the Chapter is organized as follows: I proceed to describe the numerical

scheme in Sec. 2.2. Simulations with different cases have been discussed in Sec. 2.3. In the

Subsec.??, the effects of collisions on linear Landau damping has been elucidated using both
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Krook and ZK operators. In Subsec.??, the collisional effects on Bernstein-Greene-Kruskal

waves or phase space vortices (PSV) has been reported. In Subsec.??, the effect of collisions

on the driven PSVs with multiple extrema due to embedded holes and clumps , or multiple

phase space vortices has been presented using both Krook and ZK operator. In Sec.2.5

summary and conclusions have been presented.

6.2 Collision Model And Numerical Scheme

In the framework of kinetic theory, the propagation of 1D electrostatic plasma waves in

the absence of collisions can be described by the 1D-1V Vlasov-Poisson equations. In the

present case, I analyze in detail the properties of teo different one-dimensional collisional

operators and their effects on the propagation of plasma waves and electrostatic phase space

vortices, by means of Eulerian kinetic simulations, which has been achieved by including in

the right hand side of the Vlasov equation, different collision operators. In our analysis,

only electron-electron collisions are taken into account.

The basic equations considered here can be written in the following dimensionless form:

∂f

∂t
+ v

∂f

∂x
− ET

∂f

∂v
= ∂f

∂t

∣∣∣∣
collision

= C(f) (6.1)

∂Es
∂x

= 1−
∫
fdv (6.2)

where C(f) is a generic collisional operator and ET = Es + Eext is the total electric field,

where Es(x, t) is the self consistent electric field and Eext is the external driver electric

field defined as:

Eext = E0sin(kx± ωt) (6.3)

where constant E0 is the amplitude of external drive. Here, k represents the perturbation

wave number in the simulation box and ω represents the driver frequency. Also, time has

been normalized to the electron plasma frequency ωpe, space has been normalized to the

electron Debye length λDe, velocity has been normalized by the initial equilibrium electron

thermal velocity vthe = λDeωpe. With these choices, electron distribution f gets normalized
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by n0/vthe and E by mevthe/eλDe where e is the electron charge. In this model, the ions

form a stationary neutralizing background of number density n0 with numerical value 1 in

the Poisson equation.

In this Thesis, I have considered two different 1D collisional operators:-

1. Bhatnagar-Gross-Krook (Krook) operator [61]:- C = −ν(f − feq)

2. Zakharov-Karpman (ZK) operator [62]:- C = ν∂/∂v(∂f/∂v + vf)

where ν is the collision frequency, feq is the local equilibrium profile for the distribu-

tion of particles. The first operator is Bhatnagar-Gross-Krook (Krook) operator (also

known as Krook model), is the simplest collisional operator. If a plasma is close to the

isotropic thermal equilibrium, i.e. , close to the local equilibrium value feq (or Maxwellian

f0 = 1/
√

(2π)exp(−v2/2)) , the effects of binary collisions can be modeled by means of

Krook operator. The model is useful because of its simplicity and for weakly ionized

plasmas ( where charge-neutral collisions are dominant), it is a good approximation, but it

assumes identical relaxation times for all the moments (density, momentum, energy etc)

which may not be necessarily true in all situations, hence is restrictive. In the past, Krook

operator has been used to introduce the method to compute the transport coefficients (as

plasma conductivities etc) [124].

The second operator under consideration is the linear Zakharov-Karpman (ZK) opera-

tor[62], whose form is equivalent to that discussed by Lenard and Bernstein [88] to study

the linear evolution of plasma oscillations in presence of small-angle collisions. It has been

obtained by linearizing the original Landau integral in the resonant region and assuming

distribution functions are close to Maxwellian. This collision term is a simplified form

of the Fokker-Planck (FP) collision operator and neglects the velocity dependence of the

collision frequency, but respects important properties of the FP operator:- (a) the property

of conserving the number of electrons, (b) the property of representing diffusion in velocity

space, and (c) the property of yielding the steady state solution as Maxwellian in absence
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of spatial anisotropies and forces. In the ZK model, collision frequency is considered low,

in the sense that trapped particles bounce many times in the wave trough, before being

detrapped due to a ZK collision. Both Krook and ZK operators used here do not conserve

either momentum or energy. However, the Krook operator does conserve the number of

particles. There are other operators with better conservation properties such as Gaussian

BGK model, ESBGK model, the BGK model with velocity dependent collision frequency,

Dougherty collisional operator etc [125, 126]. However, in order to perform a qualitative

comparison study using simplistic collision operators, both Krook and ZK operators have

been used here. Quantitatively, there will be indeed some differences between the results

obtained using other operators than the results obtained from Krook and ZK operators.

However, I believe that there will be no difference qualitatively.

For the collision models considered here, time evolution of the distribution function is

approximated by using a splitting scheme for collisional Eulerian codes [63] that decomposes

the evolution of f in three different steps. To summarize this splitting scheme, for a time

step ∆t:

(1). ∆t/2 transport step → ∂tf + v∂xf + E∂vf = 0.

(2). ∆t collisional step → ∂tf = C(f).

(3). ∆t/2 transport step → ∂tf + v∂xf + E∂vf = 0.

Each transport step is in turn composed of advance, a single transport step ∆t′ can be

summarized as follows:

a). ∆t′/2 x-advection → ∂tf + v∂xf = 0

b). Poisson routine Es → ET = Es + Eext(if any)

c). ∆t′ v-advection → ∂tf + ET∂vf = 0.

d). ∆t′/2 x-advection → ∂tf + v∂xf = 0.

Both x-advection and v-advection have been performed numerically using PPM advection

scheme [58].

We set the simulation domain in phase space D(x, v) = [0, Lmax]× [−vjmax, vjmax], Lmax =

2π/k is the system size and vjmax is chosen sufficiently large so that velocity distribution

functions approaches zero as |vj | approaches vjmax. In all these simulations, the mode with

the largest wavelength that fits in the numerical domain is excited at t = 0, in order to
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prevent the sideband frequency generation in the system. The phase space is discretized

with Nx = 512 grid points in the spatial domain and Nv = 5000 in velocity domain such

that there is sufficient resolution in both x and vj grids.

6.3 Simulation Results

In this Section, I systematically present the numerical results of our collisional Eulerian

code using two different collisional operators for various values of collision frequencies. I

have considered in detail three different physical phenomena: (a) the first is collisional

effects on linear Landau damping, (b) the second concerns the collisional damping of PSV

excited by large amplitude initial density perturbation, and (c) the third concerns the

study of chirp driven PSVs in the weakly collisional plasma.

6.3.1 Linear Landau Damping: Effect of Collisions

As predicted by Landau in 1946, in the absence of collisions electrostatic waves are damped

exponentially in time for small amplitude of initial density perturbations. In order to study

the effects of collisions on linear Landau damping, two different collisional operators:- (a)

Krook operator and (b) ZK operator have been used.

In this set of simulations, the initial distribution function is considered a Maxwellian in

velocity space, over which a perturbation in physical space with amplitude α and wave

number k is superposed,

f0(x, v, , t = 0) = (1 + αcos(x))f0(v) (6.4)

where f0(v) = 1/
√

(2π)exp(−v2/2) is the initial Maxwellian velocity distribution function.

Here, the plasma is perturbed with a small amplitude initial density perturbation for two

different collisional operators:-

(1) In the first set [Table ??], Krook operator is used with the following set of parameters:-
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(2) In the second set of simulations [Table ??], ZK operator is used for the following

Table 6.1: Krook operator for LLD simulations
k α ν

0.4 1× 10−2 0, 1× 10−5, 1× 10−3, 1× 10−2, 1× 10−1

0.5 5× 10−3 0, 1× 10−2, 5× 10−2, 1× 10−1

parameters:-

In Fig.??, logarithmic of time evolution of amplitude of the first fundamental harmonic

Table 6.2: ZK operator for LLD simulations
k α ν

0.4 1× 10−2 0, 1× 10−4, 1× 10−5, 1× 10−6

of the electric field Ek=1, denoted by E1, is plotted (or linear Landau damping rate γ)

for k = 0.4 and k = 0.5 for various values of collision frequency ν for Krook operator.

As the collision frequency increases, the damping of the plasma wave also increases. The

corresponding values have been shown in Table ?? and ??. In Fig.??, γ is plotted for

k = 0.4 and k = 0.5 for various values of collision frequency ν for ZK operator. In ZK

opertaor does not affect the linear Landau damping rate γ (See Table??) in the linear

regime (i.e. before τbounce = 2π/
√
α = 62.831, after which the linear solution breaks down

and nonlinear phenomena become prominent). The effect of collisional frequency with ZK

operator comes into play in the non-linear regime where plasma wave damps faster with

increase in collision frequency. Moreover, for small collision frequency (for eg. ν = 10−5),

the ZK operator is much more effective than Krook operator at long time evolution.

Table 6.3: Krook operator for k = 0.4
ν ωr γ

0.00 1.285 -0.06612
0.00001 1.285 -0.06612
0.001 1.285 -0.06724
0.01 1.285 -0.07639
0.1 1.285 -0.16603

Table 6.4: Krook operator for k = 0.5
ν ωr γ

0.00 1.415 -0.15339
0.00001 1.415 -0.15339

0.01 1.415 -0.1634
0.05 1.415 -0.20331
0.1 1.415 -0.25215
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Figure 6.1: Linear Landau Damping (LLD)- Plots of logarithmic of first fundamental
harmonic log|E1| with time, when collisions are applied through Krook operator:-
(a) k = 0.4, α0 = 0.01 (b) k = 0.5, α0 = 0.005.

6.3.2 Non-Linear Landau Damping:- Role of Collisions

As described earlier, in collisionless plasmas, when the amplitude of perturbation becomes

larger, contribution from the nonlinear terms become more significant and the behavior

deviates from uniform exponential damping. This causes trapping nonlinearity which

leads to form coherent structures in phase-space[10]. Electrons with velocity vφ ' ωr/k,

resonate with the plasma wave field and energy exchange takes place between resonant

particles and wave. This results in the flattening of the distribution function around

vφ ' ωr/k. For eg., k = 0.4, when plasma is perturbed with a nonlinear amplitude of

perturbation α0 = 0.05, the velocity distribution function gets flattened near 3.21 and

a corresponding phase space vortex is found at vφ = 3.21. This implies that there is a

prominent potential well formed due to trapped particle effects. However, when the plasma
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Figure 6.2: Linear Landau Damping (LLD)- Plots of log|E1| with time for k = 0.4,
α0 = 0.01 and ν = 10−5, (a) when collisions are applied through ZK operator, (b)
Comparison between Krook and ZK operators.
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Figure 6.3: Collsional damping of PSVs, when collisions are applied through Krook
operator and turned on at t = 1000 for k = 0.4, α = 0.05 and ν = 0.01: (a) Plot of
evolution of spatially averaged electron velocity distribution f̂e(v), and (b) Plot of
excess density fraction δn/n0 evolution at x = L/2 with time. The vertical black
line indicated the time at which collisions are turned on i.e. at t = 1000.

is not fully collisionless, the possibility of sustainability of such potential well with trapped
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Table 6.5: ZK operator for k = 0.4
ν ωr γ

0.00 1.285 -0.06612
10−6 1.285 -0.06612
10−5 1.285 -0.06612
10−4 1.285 -0.06612

particles, depends on the competition between nonlinear trapping oscillations, which try to

make the velocity distribution flat around the phase velocity of the structure and collisions

tends to restore the Maxwellian velocity distribution.

In the following set of simulations, the initial distribution function is considered a
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Figure 6.4: Collisional damping of PSVs, when collisions are applied through both
Krook and ZK operators for k = 0.4, α = 0.05 and ν = 10−5 and the collisions are
turned on at t = 1000: (a) Plot of evolution of spatially averaged velocity distribution
f̂(v), and (b) Plot of excess density fraction evolution at x = L/2 with time.

Maxwellian in velocity space, over which a perturbation in physical space with ampli-

tude α = 0.05 and wave number k = 0.4 is superposed, given by:- f0(x, v, , t = 0) =

(1 + αcos(x))f0(v), where f0(v)1/
√

(2π)exp(−v2/2). This simulation is divided into two
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Figure 6.5: Phase space plot of f(x, v) at t = 5000, where an initial density perturba-
tion of non-linear amplitude (α = 0.05, k = 0.4) is applied at t = 0 and the collisions
are turned on at t = 1000 for following cases:- (a)ν = 0, (b)ν = 10−5, Krook operator
and (c) ν = 10−5, ZK operator

v

-5 0 5

lo
g
1
0
f̂
e
(v
,
t
)

-6

-4

-2

0

t=0, collisions on

t=100, collisions on

t=200, collisions on

t=300, collisions on

t=400, collisions on

t=500, collisions on

t=1000, collisions on

2.6 3 3.4 3.8

-3.5

-3

-2.5

-2

(a)
t

0 200 400 600 800 1000

δ
n
(x

=
L
/
2,
t
)/
n
0

0

0.05

0.1
ν=0

ν=10
-2

, Krook

0 50 100 150 200

0.03

0.05

0.07

Collisions are on

throughout the

simulations

(b)

Figure 6.6: Collsional damping of PSVs, when collisions are turned on from the
start (i.e. at t = 0 onwards) and kept on throughout the simulation. Collisions are
applied through Krook operator for k = 0.4, α = 0.05 and ν = 0.01: (a) Plot of
evolution of spatially averaged electron velocity distribution f̂e(v), and (b) Plot of
excess density fraction δn/n0 evolution at x = L/2 with time.
steps. As a first step, an initial density perturbation is given of a non-linear amplitude

in the absence of collisions, in order to form the plateau in the resonant region of the
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Figure 6.7: Collisional damping of PSVs, when collisions are applied from the start
(i.e. at t = 0 onwards) and kept on throughout the simulation. Collisions are applied
using both Krook and ZK operators for k = 0.4, α = 0.05 and ν = 10−5: (a) Plot
of evolution of spatially averaged velocity distribution f̂(v), and (b) Plot of excess
density δn/n0 fraction evolution at x = L/2 with time.

electron distribution function, turn off Landau damping, and finally excite the phase space

vortices. Once the PSV structure is formed and the electric field “rings” at a nearly

constant amplitude in time [10], I dub this “ring” as “Manfredi ringing”. As a second

step, collisions are turned on and the collisional damping of the amplitude of the PSV is

observed, created through the initial density perturbation through collisionless nonlinear

process.

In the simulations presented in this Section, collisions are included using two operators,

namely: (a) Krook (ν = 0.01, 10−5) operator, and (b) ZK (10−5) operator. In the first case,

an initial density perturbation is applied to excite phase space vortices in the resonant

region and let the plasma evolve till t = 1000. Then collisions are turned by applying the
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one of the collision operators. Here, two different cases has been considered:- (i) for ν = 0.01

with Krook operator, and (ii) for ν = 10−5 with both Krook and ZK operators. In Fig.??,

the time evolution of space averaged velocity distribution function and the time evolution

of excess density fraction δn/n0, (as defined by δn(x, t)/n0 =
∫
f(x, v, t)dv −

∫
f0(v)dv),

at x = L/2, have been shown where the Krook operator is applied with collision frequency

ν = 0.01. In response to the initial non-linear amplitude perturbation, excess particle

density starts with a maximum value. Then the system relaxes and saturates to attain a

certain value of excess density fraction and remains almost the same due to formation of

PSV. This can also be seen as formation of plateau in the velocity distribution function.

Once the PSV is formed, as soon as the collisions are turned on at t = 1000, the width of

plateau and the excess density fraction decrease and the typical vortex structure, signature

of the trapping of particles in the wave potential well gradually vanishes due to detrapping

of trapped particles and the velocity distribution becomes Maxwellian at t = 1500. In

other words, the nonlinear plasma mode disappear for t > 1500.

In Fig.??, I report the simulations for smaller collision frequency i.e. ν = 10−5 applied
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Figure 6.8: Collisional damping of Chirp driven giant PSVs, when plasma is driven
with a downward frequency chirp for ∆td = 250 and collisions are applied through
Krook and turned on at t = 2000 for k = 0.4,and ν = 0.01: (a) Plot of evolution of
spatially averaged velocity distribution f̂(v), and (b) Plot of excess density fraction
evolution at x = L/2 with time.

using two different operators: Krook and ZK. The time evolution of space averaged dis-

tribution, in Fig.??(a), shows that when the collisions are turned on at t = 1000, with

collision frequency ν = 10−5, the ZK operator is more effective than Krook operator. The
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Figure 6.9: Collisional damping of Chirp driven giant PSVs, when plasma is driven
with a downward frequency chirp for ∆td = 250 and collisions are applied from the
start (i.e. at t = 0 onwards) and kept on throughout the simulation. Collisions are
applied through Krook for k = 0.4,and ν = 0.01: (a) Plot of evolution of spatially
averaged velocity distribution f̂(v), and (b) Plot of excess density fraction evolution
at x = L/2 with time.

“plateau” region remains same for both without collisions (ν = 0) and with Krook collisions

of frequency ν = 10−5. However, for ZK operator, collisional effects are strongly visible

which causes the detrapping of all trapped particles and velocity distribution function

tends towards the Maxwellian.

In Fig.??, the phase-space contour plots of f(x, v, t) have been shown that were captured

at t = 5000 in the trapped region around the wave phase velocity for different cases:- (a)

ν = 0, (b) ν = 10−5, Krook operator, and (c) ν = 10−5, ZK operator . At t = 1000,

collisions are turned on in the simulation and they start playing a crucial role in the time

evolution of the system. For Krook operator, such low collisional frequency does not affect

the trapped particle distribution and the PSV. However, for ZK operator, collisional effects

are strongly visible in phase space, even though the value of the collision frequency is very

small. At t = 5000 the phase space structure, totally disappear due to a collisional phase

mixing and the separatrix between trapped region and free region is no more visible in

the long time limit, meaning that particles, that were trapped in the wave trough, are

detrapped by the effect of diffusion in velocity. In the second case, the collisions are

present from the initial time (i.e. t = 0 onwards) while an initial density perturbation is

applied to excite phase space vortices in the resonant region and let the plasma evolve in
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Figure 6.10: Collisional damping of Chirp driven giant PSVs, when plasma is driven
with a downward frequency chirp for ∆td = 250 and collisions are applied through
Krook and turned on at t = 2000 for k = 0.4,and ν = 10−5: (a) Plot of evolution of
spatially averaged velocity distribution f̂(v), and (b) Plot of excess density fraction
evolution at x = L/2 with time.

the presence of collisions. Here, two different cases has been considered:- (i) for ν = 0.01

with Krook operator, and (ii) for ν = 10−5 with both Krook and ZK operators. In Fig.??,

the time evolution of space averaged velocity distribution function and the time evolution

of excess density fraction δn/n0, (as defined by δn(x, t)/n0 =
∫
f(x, v, t)dv −

∫
f0(v)dv),

at x = L/2, have been shown where the Krook operator is applied with collision frequency

ν = 0.01 from the initial time. In response to the initial non-linear amplitude perturbation,

excess particle density starts with a maximum value. However, in the presence of collisions

the excess density fraction decrease rapidly and the plasma wave disappears completely

for t > 300. In fig.??, the same numerical experiment is done for both Krook and ZK

operator, with collision frequency ν = 10−5, is shown. In this case results are similar to

what shown in Fig.?? where the ZK operator is more effective than Krook operator. The

“plateau” region forms for both cases, without collisions (ν = 0) and with Krook collisions

of frequency ν = 10−5. However, for ZK operator, collisional effects are strongly visible
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(a)

(b)

(c)

Figure 6.11: Phase space plot of f(x, v) at t = 5000, where the plasma is driven
with a downward frequency chirp for ∆td = 250 to excite chirp driven giant PSVs for
k = 0.4, and the collisions are turned on at t = 2000 for following cases:- (a)ν = 0,
(b)ν = 10−5, Krook operator and (c) ν = 10−5, ZK operator

which causes the plasma wave to disappear completely and velocity distribution function

tends towards the Maxwellian.
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6.3.3 Collisional Effects On Chirp Driven PSVs

In this Section, the effect of collisions on the driven phase space vortices has been studied

using Krook and ZK operators. As described earlier in Chapter[3], when a homogeneous

Maxwellian plasma is driven with an time dependent external drive or chirp of an infinitesi-

mal amplitude, it leads to steady state giant PSV, with multiple extrema due to embedded

holes and clumps. These PSVs were shown to survive long after the external drive was

turned off. In the present set, simulations are again divided into two steps. As a first step,

the plasma is driven with a small amplitude external drive of time dependent frequency

(or chirp) in the absence of collisions, in order to form the giant driven multiextrema

phase space vortices. Once the PSVs are formed, the driver is turned off and the plasma

is evolved further for several ω−1
pe times such that the electric field “rings” at a nearly

constant amplitude in time. As a second step, I turn on collisions and observe the effects

of collisions on these PSVs, previously created through the driving (or chirp) process.

In the simulations presented in this Section as before, collisions are modeled using two

operators, namely: (a) Krook (ν = 0.01, 10−5) operator and (b) ZK (10−5) operator. As

before, two different cases has been considered here:- (i) for ν = 0.01 with Krook operator,

and (ii) for ν = 10−5 with both Krook and ZK operators.

For the first case, starting with a Maxwellian homogeneous plasma, driven by an external

downward frequency chirp which is applied to the plasma right at t = 0 for time duration

∆td till t = t1 from ωhigh/ω2 to ωlow/ω1. The parameters for simulations are:- k = 0.4,

E0 = 0.025, ∆td = 250, ωhigh = 2, ωlow = 1. The chirp parameter are α = −4 × 10−3

and β = 2. In order for the transients to relax the system is evolved till t2 = 2000. The

steady state phase space vortex structure thus created is a combination of both untrapped

and trapped particle dynamics during chirp. This phase space structure exhibits several

interesting features, such as, large hole/ PSV structure contains peaked spikes and holes

embedded in it along with a “shark”-like structure, i.e., a bunch of particles moving together

within the giant phase space vortices. At t = 2000, collisions are turned on using Krook

operator with collision frequency ν = 0.01 and plasma is evolved till t = 3000. In Fig.??,

the time evolution of space averaged velocity distribution function and the time evolution
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Figure 6.12: Plots of relative energy (a) δW , (b) δK, (c) δP with time, when plasma
is driven with a downward frequency chirp from ωhigh = 2 to ωlow = 1 for δtd = 250
and collisions are turned on at t = 2000 for the following cases: (i)ν = 0, (ii)ν = 10−5,
Krook operator and (iii) ν = 10−5, ZK operator

of excess density at x = L/2 have been shown where the Krook operator is applied with

collision frequency ν = 0.01. In response to the small amplitude chirp, excess particle

density increases linearly in time till the drive is on. The growth of excess density fraction

is arrested when the drive is turned off. Then the system relaxes and saturates to attain a
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Figure 6.13: Plot of relative entropy Srel with time, where plasma is driven with a
downward frequency chirp from ωhigh = 2 to ωlow = 1 for ∆td = 250 and collisions
are turned on at t = 2000 for the following cases: (i)ν = 0, (ii)ν = 10−5, Krook
operator and (iii) ν = 10−5, ZK operator

certain value of excess density fraction and remains almost the same till the collisions are

absent. The time at which collisions are turned on in the simulation is indicated in the

figure by a vertical line. Once the PSVs are formed and the steady state is obtained, the

collisions are turned on at t = 2000, the width of plateau and the excess density fraction

decrease and the typical vortex structure, signature of the trapping of particles in the wave

potential well gradually vanishes due to detrapping of trapped particles and the velocity

distribution becomes Maxwellian at t = 3000. The nonlinear plasma structure and the

trapping disappears at t = 3000.

The same numerical experiment (ν = 0.01, Krook operator) as above is performed for

the case where collisions are present from the initial time (at t = 0 onwards-) till the end

of the simulation (t = 3000). The initial homogeneous Maxwellian plasma is driven by

an external downward frequency chirp for time duration ∆td with the same simulation

parameters:- k = 0.4, E0 = 0.025, ∆td = 250, ωhigh = 2, ωlow = 1. The chirp parameter are

α = −4× 10−3 and β = 2. In Fig.??, the comparison of time evolution of space averaged

velocity distribution and comparison of time evolution of excess density at x = L/2 has

been shown for ν = 0.01, Krook operator, where collisions are present from the initial

time. As one can observe, during the external drive time (0 ≤ t ≤ 250), the collisions

dominates over drive, which leads to very strong effect on the formation of chirp driven
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PSVs. After the drive is turned off, the growth of excess density fraction is arrested for

where the maximum value of δn/n0 attained by collisional case is much less than the ν = 0

case. After the drive is turned off, the collisionless system relaxes and saturates to attain

a certain steady state. However, for the collisional case (ν = 0.01), the excess density

fraction decrease rapidly and the signature of the trapping of particles in the wave potential

well vanishes due to detrapping of trapped particles and the velocity distribution becomes

Maxwellian. The nonlinear plasma structure and the trapping disappears completely.

In the second case, collisions are applied for smaller collision frequency ν = 10−5. In

Fig.??, the effect of collisions on the time evolution of space averaged velocity distribution

function is displayed for ν = 10−5. In comparison to ν = 0 case, when low frequency

collisions are applied through Krook operator, such small collision frequency ν = 10−5 have

very little effect on the excess density fraction and small velocity scale details. However,

with ZK operator, with time collisions smooth out small velocity scale distortions, yet

retain large excess density fractions. It can be clearly seen in the phase space plots of

f(x, v, t) (Fig.??), where the steady state structure survives long time after the drive is

off for ν = 0 (here, at t = 5000). For Krook operator with collision frequency ν = 10−5,

small velocity scale distortions can still be seen at t = 5000. However, for ZK operator

with collision frequency ν = 10−5, small velocity scale distortions smooth out completely,

yet the separatrix between trapped region and free region is clearly visible which means

large amount of particles are still trapped in the wave trough unaffected by the the effect

of diffusion in velocity space.

The total energy of the system is defined as: W (t) = K(t) + P (t), where kinetic

energy is computed as K(t) = (1/2)
∫ ∫

v2f(x, v, t)dxdv and potential energy computed as

P (t) = (1/2)
∫
E2(x, t)dx. In Fig. ??, (a) the total relative energy δW = W (t)−W (0), (b)

the total relative kinetic energy δK = K(t)−K(0) and (c) the total relative potential energy

δP = P (t)− P (0) are plotted. It is clear that as the chirp frequency is swept downwards,

both relative kinetic energy and relative potential energy of the system increases which

reflects the increase in untrapped and trapped particle populations, respectively. The

growth of these relative energies is arrested when the drive is turned off. Then the system
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Figure 6.14: Plot of excess density fraction evolution at x = L/2 with time. The
plasma is driven with a downward frequency chirp for ∆td = 250 to excite chirp
driven giant PSVs for k = 0.4, and the collisions are on from the start (t = 0) till the
end of the simulation (t = 5000) for following cases:- (a)ν = 0, (b)ν = 10−5, Krook
operator and (c) ν = 10−5, ZK operator

relaxes and saturates to attain a certain value of δW , δK, δP and remains almost the

same till the collisions are absent i.e. till t = 2000. At t = 2000, collisions are turned

on, indicated in the figure by a vertical line, all three values of δW , δK and δP start

decreasing. As can be seen in Fig. ??, (a) δW , δK and δP decrease faster for ZK operator

than the Krook operator, (b) difference in decrement of δK for both the operators is much

larger than the difference in decrement of δP . The decrease in δK indicates the decrease in

the energy of untrapped region surrounding the PSVs and causes to smooth out the small

velocity scale distortions. However, there is not so much difference in δP which indicates

the presence of the large amount of trapping fraction.

The entropy of the system is given by:

S(t) = −
∫ L

0

∫ +vmax

−vmax
f(x, v, t)logf(x, v, t)dvdx (6.5)

It is plotted as relative entropy [See Fig.(??), defined as Srel = (S(t)− S(0))/S(0) with

time. For a collisionless plasma dS/dt = 0. However, because of the numerical scheme,

entropy does increase with time (which is a measure of finite phase space grid size effects

in simulation) and then saturates. Here, the entropy is seen to grow when the drive is

on but saturates as soon as the drive is turned off. Also, the simulation is extended till

t = 2000 in order to confirm the formation of a steady-state solution. At t = 2000, when
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Figure 6.15: Phase space plot of f(x, v) at t = 5000, where the plasma is driven
with a downward frequency chirp for ∆td = 250 to excite chirp driven giant PSVs
for k = 0.4, and the collisions are on from the start (t = 0) till the end of the
simulation (t = 5000) for following cases:- (a)ν = 0, (b)ν = 10−5, Krook operator
and (c) ν = 10−5, ZK operator

the collisions are turned on, the relative entropy is seen to grow again due to inclusion of

weak collisions.
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Figure 6.16: Plots of relative energy (a) δW , (b) δK, (c) δP with time, when
plasma is driven with a downward frequency chirp from ωhigh = 2 to ωlow = 1 for
δtd = 250 and the collisions are on from the start (t = 0) till the end of the simulation
(t = 5000), for the following cases: (i)ν = 0, (ii)ν = 10−5, Krook operator and (iii)
ν = 10−5, ZK operator

For the third case, collisions are present from the initial time (at t = 0 onwards-) till the
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Figure 6.17: Phase space plot of f(x, v) at t = 5000, where the plasma is driven with
a downward frequency chirp for ∆td = 250 to excite chirp driven “honeycomb”-like
PSVs for k = 0.4, and the collisions are turned on at t = 2000 for following cases:-
(a) ν = 0, (b)ν = 10−5, Krook operator and (c) ν = 10−5, ZK operator.

end of the simulation (t = 5000). The initial homogeneous Maxwellian plasma is driven

by an external downward frequency chirp for time duration ∆td with the same simulation

parameters:- k = 0.4, E0 = 0.025, ∆td = 250, ωhigh = 2, ωlow = 1. The chirp parameter

are α = −4 × 10−3 and β = 2. In Fig.??, the comparison of time evolution of excess

density at x = L/2 has been shown for following cases:- (a) ν = 0, (b)ν = 10−5, Krook

operator and (c) ν = 10−5, ZK operator. During the external drive time (0 ≤ t ≤ 250),

the drive dominates over collisions, which leads to very little effect on the formation of

steady state PSVs. After the drive is turned off, the growth of excess density fraction is

arrested for all the cases, after which collisions start to play a crucial role in the saturation

of the transients and the PSVs formed. Then, the system relaxes and saturates to attain

a certain steady state which is different for all three cases. With both Krook and ZK

operators, collisions smooth out small velocity scale distortions, yet retain large excess

density fractions. However, unlike the second case [see Fig. ??(b)], where collisions were
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turned on after the steady state is achieved, these operators affects the total density fraction

in reverse way, where with Krook operator, maximum trapped fraction is observed to

be achieved and the collision less case with the minimum excess density fraction. In our

understanding, it happens due to presence of collisions during the PSV saturation time,

just after the drive is tuned off.

In Fig.??, the phase space plots of f(x, v, t) are shown, where the steady state structure

survives long time after the drive is off for all the ν cases (here, at t = 5000). For Krook

operator, small velocity scale distortions can still be seen at t = 5000 and for ZK operator,

small velocity scale distortions smooth out completely, yet the separatrix between trapped

region and free region is clearly visible which means large amount of particles are still

trapped in the wave trough unaffected by the the effect of diffusion in velocity space. How-

ever, trapped fractions for both Krook and ZK operators are greater than the collisionless

(ν = 0) case.

These can also be observed in the Fig.??, where (a) the total relative energy δW , (b)

the total relative kinetic energy δK and (c) the total relative potential energy δP are

plotted. As the chirp frequency is swept downwards, both relative kinetic energy δK and

relative potential energy δP of the system increases which reflects the increase in untrapped

and trapped particle populations, respectively. The growth of these relative energies is

arrested when the drive is turned off. The vertical line represents the time when the drive

is turned off. The maximum growth attained in all three ν cases is different due to presence

of collisions during the drive time. Then the system relaxes and saturates to attain a

certain value of δW , δK, δP . As can be seen in Fig. ??, (a) δW , δK and δP decrease

faster for ZK operator than the Krook operator, (b) Saturation values of δW and δK are

maximum for ν = 0 and minimum for ZK operator. However, unlike the second case [see

Fig.??(c)] saturation value of δP is maximum for Krook operator and minimum for ν = 0

collisionless case. The difference in δK indicates the decrease in the energy of untrapped

region surrounding the PSVs and causes to smooth out the small velocity scale distortions

and difference in δP indicates the presence of the large amount of trapping fraction.
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6.3.4 Transient Honeycomb Structures

In this Subsection, the response of the plasma is presented to the downward chip in the

smaller frequency regime in the weakly collisional medium. It has been found that in an

collisionless case (ν = 0) the downward chirp in smaller frequency regime leads to formation

of multiple phase space vortices, all appearing at different regions of phase space, which

gives a “honeycomb”-like transient structure of the distribution function. Here, I report

the results of the excitation of the plasma with a drive amplitude of E0 = 0.025, with

frequency swept from ωhigh = 0.8 to ωlow = 0.4 with a sweep rate of α = −1.6× 10−3.

As the ω(t) of the drive chirps down from ωhigh to ωlow with a single mode number, the

entire sub-harmonic region of phase space is seen to be driven strongly which results in

an interacting, finite amplitude phase-space structures during the drive phase. The phase

space portrait of the plasma as shown in Fig. ??(a) provides a convincing visualization that

the phase space structures or “honeycomb” like appearance created by the drive persists till

the end of the simulation i.e. t = 5000. In other two cases, weak collisions are considered,

where collisions are turned on at t = 2000. It has been find out that for collision frequency

ν = 10−5, Krook operator does not affect the “honeycomb” like appearance (Fig. ??(b)).

However, with ZK operator, the particle trajectories start diffusing in velocity and the

multiple phase space vortices, created during the driving process, totally disappear due to

a collisional phase mixing, meaning that particles, that were trapped in the wave trough,

are detrapped by the effect of diffusion in velocity (Fig. ??(c)).

6.4 Summary and Conclusions

In this Chapter, study the effect of collisions on the electrostatic phase space vortices is

analyzed by means of Eulerian simulation with two different collision models. Here, a

systematic study has been presented with two different collision models:- (1) Boltzmann

156



CHAPTER 6. EULERIAN SIMULATIONS OF COLLISIONAL EFFECTS ON
ELECTROSTATIC PHASE SPACE VORTICES

collision operator or Bhatnagar-Gross-Krook (Krook) operator, where the colliding particles

can be treated as isolated pairs and, (2) Zakharov-Karpman (ZK) operator, where many

weak collisions lead to particle diffusion in velocity space. The entire study is divided into

three main components:- In the first part, the effect of collisions on linear Landau damping

has been studied with both collisional operators. As can be expected, with increase in

the collision frequency, damping of plasma wave also increases for both Krook and ZK

operator cases. For very small collision frequency, such as ν = 10−5, both operators do

not contribute to any change in the damping rate in the linear regime. However, for long

time simulation, ZK operator is much more effective than Krook operator in the non-linear

regime even for such small collision frequency.

In the second part, the collisional damping of Bernstein-Greene-Kruskal modes or PSV

has been studied where at first step, a PSV is excited by applying an initial density

perturbation of non-linear amplitude. Once the PSV structure is formed and the electric

field “rings” at a nearly constant amplitude in time, the collisions are turned on, as a

second step. It was found that for ν = 0.01 with Krook operator, the width of plateau

and the excess density fraction start decreasing as soon as the collisions are turned on

and the typical phase space vortex structure, signature of the trapping of particles in

the wave potential well gradually vanishes due to detrapping of trapped particles and

the velocity distribution becomes Maxwellian within next 500ω−1
pe . However, for smaller

collision frequency ( ν = 10−5), simulation with Krook operator indicates that, such

low collisional frequency does not affect the trapped particle distribution but with ZK

operator, phase space structure, totally disappear due to a collisional phase mixing and

the separatrix between trapped region and free region is no more visible. Next, both of

the above runs for an initial density perturbation of non-linear amplitude with ν = 0.01

and ν = 10−5 are given where collisions are turned on from the initial time (i.e. at t = 0

onwards) and kept on throughout the simulation. For ν = 0.01 case, it is found that in

response to the initial non-linear amplitude perturbation, excess particle density starts

with a maximum value. However, due to the presence of collisions from the start the excess

density fraction decrease rapidly and the plasma wave disappears completely for t > 300.
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The same numerical experiment is done for both Krook and ZK operator, with collision

frequency ν = 10−5, where the ZK operator is more effective than Krook operator. The

“plateau” region forms for both cases, without collisions (ν = 0) and with Krook collisions

of frequency ν = 10−5. However, for ZK operator, collisional effects are strongly visible

which causes the plasma wave to disappear completely and velocity distribution function

tends towards the Maxwellian.

The last part of this Chapter concerns the study of chirp driven PSVs in the weakly colli-

sional plasma. First, a homogeneous Maxwellian plasma is driven with an time dependent

external drive or chirp of an infinitesimal amplitude, which leads to steady state giant PSV,

with multiple extrema due to embedded holes and clumps/ multiple phase space vortices

(“honeycomb”-like appearance, depends on the frequency range of chirp). These PSVs are

shown to survive long after the external drive is turned off (i.e. till t = 5000). Once the

PSVs are formed, the driver is turned off and the plasma is evolved for further several

ω−1
pe times and then, collisions are turned on as a second step. It has been found that for

ν = 0.01 with Krook operator, the width of plateau and the excess density fraction decrease

as soon as the collisions are turned on. The PSV, signature of the trapping of particles,

gradually vanishes due to detrapping of trapped particles and the velocity distribution

becomes Maxwellian at t = 3000. For smaller collision frequency ( ν = 10−5), three results

have been found:-

(1) In case of giant PSVs, with Krook operator, small velocity scale distortions can still be

seen at the end of long time simulation along with large scale seperatrix. However, with

ZK operator, small velocity scale distortions smooth out completely, yet the separatrix

between trapped region and free region is clearly visible which means large amount of

particles are still trapped in the wave trough unaffected by the the effect of diffusion in

velocity space.

(2) In case of transient honeycomb structures, Krook operator does not affect the “honey-

comb” like appearance even at the late times of simulation. However, with ZK operator,

the particle trajectories start diffusing in velocity and the multiple phase space vortices,

created during the driving process, totally disappear due to a collisional phase mixing,
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meaning that particles, that were trapped in the wave trough, are detrapped by the effect

of diffusion in velocity.

(3) The order of saturation values (increasing or decreasing) of excess density fraction

δn(x, t)/n0 for all three cases [(a) ν = 0, (b)ν = 10−5, Krook operator and (c) ν = 10−5,

ZK operator], depends upon whether (i) collisions are turned on after the steady state

is attained or, (ii) collisions are present since the initial time (t = 0). In the first case,

saturation value of δn(x, t)/n0 is maximum for collisionless case (ν = 0) and minimum for

ZK operator where as in the secons case, saturation value of δn(x, t)/n0 is maximum for

Krook operator and minimum for collisionless case (ν = 0). In the first case, collisions are

turned on when the steady state is already attained whereas in the later case, are present

since the initial time, thus also affect the saturation process of PSVs.
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7
Conclusions & Future Work

In this Chapter, important results obtained in various Chapters of this

Thesis are summarized. Also, possible extensions of the present work in various

directions is discussed.

7.1 Highlights

Highlights of this Thesis work is categorized below as two major parts, viz Computational

Aspects and Plasma Physics Aspects respectively.

As has been discussed several times in the Thesis, nonlinear wave-particle interaction

associated with several laboratory as well as astroplasmas, for example energetic particles

produced in fusion experiments, solar wind and magneto spheric plasmas etc. This

phenomenon can excite various modes and leads to various frequency bursts over the spatial

and temporal scales which results into formation of phase space vortices (PSVs). Several

investigations aim to understand the features of dynamics of wave-particles interaction such

as excitation of electrostatic modes and phase space structures, at ion scales and electron

scales in space plasmas by analyzing both spacecraft data, solar wind observations and

numerical results from kinetic or phase space simulations. In the present Thesis, an attempt
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has been made to investigate of a variety of electrostatic modes and driven phase space

vortices starting in an unmagnetized homogeneous plasma Periodic Boundary Conditions

(basically unbounded), by performing numerical experiment with a 1D1V Vlasov-Poisson

solver. I present major highlights of the Thesis as follows:-

7.1.1 Computational Aspects

Phenomena considered in this Thesis have been studied by upgrading the already existing

1D electrostatic Vlasov-Poisson Solver code with Piecewise Parabolic Method (VPPM-

version 1.0) with various additions and important modifications [VPPM-version 2.0] such

as:-

• Inclusion of an external drive.

• Inclusion of Vlasov-Yukawa (VY) system - Kinetic Ions and Boltzmann Electrons.

• Inclusion of Ion dynamics, which facilitates the study of both Kinetic Ions and

Kinetic Electrons.

• Inclusion of Collisions which are modeled through one-dimensional operators of the

type Bhatnagar-Gross-Krook (Krook)/Zakharov-Karpman (ZK).

7.1.2 Vlasov-Poisson Plasma Aspects

The Thesis work begins with the brief overview of the numerical scheme used for solving

Vlasov-Poisson plasmas. Chapter 2 presents the phase space Eulerian approach for a 1D

Vlasov-Poisson (VP) numerical solver that simulates 1D collisionless dynamics of plasmas

and can self-consistently solve both the Vlasov and Poisson equations as well as advance the

solution in time. The well known “time-splitting” method[59] coupled with the “piecewise

parabolic method” (PPM)[60] advection scheme are applied to simulate the evolution of

phase space distributions of both electrons and ions. All phenomena considered in this

Thesis have been studied by upgrading the already existing 1D electrostatic Vlasov-Poisson
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Solver code with Piecewise Parabolic Method (VPPM-version 1.0) developed at IPR [58].

This version the code has been upgraded to VPPM-version 2.0 or VPPM-2.0 by including

various additions and important modifications such as (1) Inclusion of external drive, (2)

Inclusion of Vlasov-Yukawa (VY) solver - Kinetic Ions and Boltzmannian Electrons, (3)

Inclusion of Ion dynamics- facilitates the study of both Kinetic Ions and Kinetic Electrons,

(4) Inclusion of Collisions which are modeled through one dimensional operators of the

Bhatnagar-Gross-Krook (BGK)/Zakharov-Karpman (ZK) operator type etc. The bench-

marking of the upgraded code with various modification has been presented in Chapter 2

and the following Chapters, wherever required.

In Chapter 3, I have studied numerically, a simple, novel and efficient way to obtain giant

Phase Space Vortices (PSV) with multiple extrema in a 1D, unbounded Vlasov plasma

modelled using periodic boundary conditions. A very low amplitude external drive with

frequency chirping is found to drive giant structures in phase space at steady state. In

the first part of chapter 3, 1D simulations have been performed to excite LAN mode

which represents the damping and trapping phenomenon of plasma for initial density

perturbation problems as well as work as benchmark of our solver. Then, by assuming an

initially homogeneous Maxwellian distributional, plasma is driven with constant frequency

ω0 external drive. This drive creates two “seeds” flattening, one at weakly nonlinear EAW

frequency and other is at LAN frequency. Both EAW and LAN are excited with this

constant frequency drive which are seen to persist long after the weakly nonlinear drive

is turned off. In the second part, it has been demonstrated that large steady state PSV

structures can be excited when the drive frequency is swept from the start (t = 0) for a

short time period ∆td from ωhigh to ωlow. Keeping other parameters fixed, the response

of the plasma on applying different chirp rates reveals that the longer the frequency

is swept (i.e. slower the chirp rate), the greater is the region of flattening in velocity

space. The growth of these coherent phase space structures are arrested beyond a certain

chirp interval as ∂<f>
∂v attains large negative value. In general, the chirp driven phase

space structures found are seen to possess multiple extremas of f(x, v) embedded within

the giant hole structure. Moreover, more than one giant hole structures are squashed
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together amongst separatrix like structures, each of these structures moving at a different

phase velocities. The complexity of these structures are seen to increase with ∆t. As

the drive is turned off, the system is seen to relax to a phase space vortices but with

multiple extrema “shark” like structures squashed between ergodic regions of separatrices.

However, for small frequency regime, the external downward chirp with a single mode

number k drives the entire sub-harmonic region of phase space driven strongly even for

“linear-like” drive amplitudes. This results in strongly interacting transient multi-extrema

phase structures in sub-harmonic region or “honey-comb-like structures”. Long after the

linear drive is switched off, some of the smaller structures slowly “merging”, as it can

be expected in a 2D inverse cascade process leading to a quasi-steady phase space structures.

The above said studies were for the initial velocity distributions which were Maxwellian.

In Chapter 4, for a non Maxwellian plasma described by q-distribution, the nonlinear

evolution of Maxwellian and q-nonextensive Maxwellian plasma has been addressed when

perturbed with an external drive, of very low amplitude, which is slowly chirped downwards

in frequency. From the numerical results, it is concluded that the chirp dynamics and trap-

ping phenomenon is strongly affected by the deviations from the Maxwellian distribution.

In other words, the trapping efficiency is related to the region around wave phase velocity

or the velocity derivative of the initial distribution function near the resonance region. It

is found that, for values of the entropy-index q less than unity, trapping decreases with

decrease in q values. On the contrary, for large value of q, trapping decreases with increase

in q values. This implies the trapping efficiency for a given set of parameters is maximum for

Maxwellian plasma. As q increases beyond unity, the phase velocity comes closer to the ve-

locity cutoff for the distribution which makes an upper limit for q below which we find PSVs.

Further, I have extended the studies to observe the role of ions on the phase space

dynamics. The above said electrostatic waves have been studied in the background of

immobile ions resulting in a “thumb curve” dispersion (for LAN and EAW waves) with

kinetic electrons. In Chapter 5, the role and effect of ions on the phase space dynamics,
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has been studied in two parts:-

(1) In the first part of Chapter 5, to study electrostatic waves on ion scale in the frame

of Boltzmann electrons with kinetic ions has been done with Vlasov-Yukawa (VY) solver.

This model results in a “teardrop” curve (for IA and IBk waves). Using 1D1V VY solver

Landau damping and electrostatic waves at ion scales (IA and IBk waves) have been

studied. It was found that the weak external driver of constant frequency ω0 = ωIBk

successfully creates the trapped particle regions or weak flattening of distribution function

simultaneously in IA and IBk regions for TR = 0.1. However, for TR = 0.01 and TR = 10−7,

the weak external drive creates significant trapping in IA region only. Also, formation

and dynamics of chirp driven phase space vortices at ion scales have been studied for

different temperature ratios, namely TR = 0.1, 0.01, 10−7. In all three cases, plasma is

externally driven with a downward chirp in the IBk region. For TR = 0.1 case, the chirp

affects the plasma from IA to IBk region which in turn creates multiple PSVs in between

IA to IBk region. As the ion to electron temperature ratio TR decreases, the “teardrop”

curve becomes broader and the distance between IA branch and IBk branch increases. For

such cases, the downward chirp excites the IA region more than the IBk region, which

created giant PSV in the IA region. For very small value of TR, for example TR = 10−7,

contribution from electrons become negligible, in that case only IA region gets excited

while applying the external chirp.

(2) In the second part of Chapter 5, the electron scale physics and ion scale physics

have been studied by including both ion and electron scale dynamics self consistently

and simultaneously in a model or symmetric framework. With this model both high

frequency and low frequency solutions can be obtained simultaneously which consists of

a high frequency branch (LAN/IA) and a low frequency branch(EAW/IBk). Therefore,

an attempt has been made by means of numerical simulations, considering both kinetic

electrons and kinetic ions on the same physics footing, wherein the Vlasov equations are

integrated for both electron and ion species without any approximations in length scale

or time scales. First the linearized eigenvalue equations have been solved considering

weak trapping which allows us to neglect the contribution from the imaginary part of

the dielectric function. The eigenvalue values thus obtained for various wavenumber are
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compared with frequencies obtained from solving weakly driven fully nonlinear Vlasov-

Poisson (VP) equations which facilitates weak flattening of distribution function or weak

trapping. The numerical results obtained show that both electron and ion waves can be

excited simultaneously in phase space. In appropriate limits, it is shown that the “thumb”

and “teardrop” curves are different parts of a general symmetric dispersion relation and

are recovered in appropriate limits of that dispersion relation.

In systems governed by kinetic processes, limit of low collisionality is not the same as the

limit of zero collisionality. In such conditions, kinetic processes and collisionality are in

competition between each other: while the first process works to produce deformations

of the particle distribution function away from a Maxwellian, the latter tends to restore

the Maxwellian configuration. The evolution of the plasma is, therefore, a result of com-

plex combination of these two effects. In Chapter 6, study the effect of collisions on the

electrostatic phase space vortices is analyzed by means of Eulerian simulation with two

different collisional models, for the collisional damping of nonlinear plasma structures.

Here, a systematic study has been presented with two different collision models:- (1) Boltz-

mann collision operator or Bhatnagar-Gross-Krook (BGK) operator, where the colliding

particles can be treated as isolated pairs and, (2) simplified Fokker-Plank operator i.e.

Zakharov-Karpman (ZK) operator, where many weak collisions lead to particle diffusion in

velocity space. The entire study is divided into three main components:- (i) In the first part,

the effect of collisions on linear Landau damping has been studied with both collisional

operators. As can be expected, with increase in the collision frequency, damping of plasma

wave also increases in both BGK and ZK operator cases. For very small collision frequency,

such as ν = 10−5, none of the operators contribute to any change in the damping rate in

the linear regime. However, for long time simulation, in the non-linear regime even for

such small collision frequency, ZK operator is much more effective in affecting the phase

space vortices than BGK operator.

(ii) In the second part, the collisional damping of Bernstein-Greene-Kruskal waves or

PSV has been studied where at first step, a PSV is excited by applying an initial density
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perturbation of non-linear amplitude. Once the PSV structure is formed, the collisions

are turned on, as a second step. It was found that for ν = 0.01 with BGK operator, the

typical phase space vortex structure, signature of the trapping of particles in the wave

potential well gradually vanishes due to detrapping of trapped particles and the velocity

distribution becomes Maxwellian within next 500ω−1
pe . However, for smaller collision fre-

quency ( ν = 10−5), simulation with BGK operator indicates that, such low collisional

frequency does not affect the trapped particle distribution but with ZK operator, multiple

extrema phase space structure, totally disappear due to a collisional phase mixing and the

separatrix between trapped region and free region is no more visible.

(iii) The third part of this Chapter concerns the study of chirp driven PSVs in the

weakly collisional plasma. Here, a homogeneous Maxwellian plasma is driven with an time

dependent external drive or chirp of an infinitesimal amplitude, which leads to steady state

giant PSV, with multiple extrema due to embedded holes and clumps/ multiple phase

space vortices (“honeycomb”-like appearance, depends on the frequency range of chirp).

Once the PSVs are formed, the driver is turned off and the plasma is evolved for further

several ω−1
pe times and then, collisions are turned on as a second step. It has been found

that for ν = 0.01 with BGK operator, the PSV, signature of the trapping of particles,

gradually vanishes due to detrapping of trapped particles and the velocity distribution

becomes Maxwellian at t = 3000. For smaller collision frequency ( ν = 10−5), three results

have been found:-

(1) In case of giant PSVs, with BGK operator, small velocity scale distortions can still be

seen at the end of long time simulation along with large scale seperatrix. However, with

ZK operator, small velocity scale distortions smooth out completely, yet the separatrix

between trapped region and free region is clearly visible which means large amount of

particles are still trapped in the wave trough unaffected by the the effect of diffusion in

velocity space.

(2) In case of transient honeycomb structures, BGK operator does not affect the “honeycomb”

like appearance even at the late times of simulation. However, with ZK operator, the

particle trajectories start diffusing in velocity and the multiple phase space vortices, created
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during the driving process, totally disappear due to a collisional phase mixing, meaning

that particles, that were trapped in the wave trough, are detrapped by the effect of diffusion

in velocity.

(3) The order of saturation values (increasing or decreasing) of excess density fraction

δn(x, t)/n0 for all three cases [(a) ν = 0, (b)ν = 10−5, BGK operator and (c) ν = 10−5,

ZK operator], depends upon whether (i) collisions are turned on after the steady state

is attained or, (ii) collisions are present since the initial time (t = 0). In the first case,

saturation value of δn(x, t)/n0 is maximum for collisionless case (ν = 0) and minimum for

ZK operator where as in the second case, saturation value of δn(x, t)/n0 is maximum for

BGK operator and minimum for collisionless case (ν = 0). In the first case, collisions are

turned on when the steady state is already attained whereas in the later case, are present

since the initial time, thus also affect the saturation process of PSVs.

7.2 Future Scope

In this Thesis, a formation and dynamics of 1D electrostatic phase space vortices has

been studied, at electron as well as ion scale and in collisionless plasmas as well as in

the collisional environment, using in-house developed and upgraded 1D1V Vlasov-Poisson

solver (VPPM 2.0). This Thesis points out to several interesting directions for future work.

These avenues of future research are enlisted under following categories.

7.2.1 Numerical Experiments On Vlasov Plasmas

• For various laboratory and naturally occurring plasmas, great interest lies in plasma

dynamics in the background of non-uniformity or for inhomogeneous plasmas which

can be used to compare different theoretical approaches to the problem. The

collective oscillations of such non-magnetized, inhomogeneous plasmas (the Tonks-

Dattner resonances) possess many properties that allow a precise comparison between

experiment and theory [127]. In the present Thesis, the study of phase space vortices
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has been performed in the background of unmagnetized, unbounded (or periodically

bounded), homogeneous plasma. It would be interesting to study the formation and

dynamics of such PSVs in the inhomogeneous background of ions.

• In the Thesis, the study of chirp dynamics is performed for the unmagnetized plasmas

(or along the magnetic field direction). It would be very interesting to understand

the effect of such chirp (which is applied along the magnetic field direction) in the

radial direction or perpendicular direction to the magnetic field. Also, to understand

the response of plasma when the chirp is applied across the magnetic field which

usually occurs in fusion plasmas [39]. Therefore, it would be very useful to extend

the code in other dimensions to include across magnetic field dynamics such as

1D2V/2D2V/3D3V electrostatic and electromagnetic models.

• In the past, the instabilities which are driven by the fast-ion population have

been extensively studied in toroidal devices [128]. The nonlinear dynamics of

these instabilities is essential to predict the amplitude and subsequent fast-ion

transport associated with alpha particles driven instabilities which are found in the

International Thermonuclear Engineering Reactor (ITER) and other burning plasmas.

The frequencies of these fast ion driven instabilities often results in frequency shifting

or chirp bursts. The relaxation oscillations associated with chirping bursts are also

observed in the presnce of small but finite collisional regimes. Therefore, the fate

of driven PSVs resulting from such chirp bursts on ion scales in the presence of

collisions would be an interesting problem. Therefore, in order to understand the

effect of collisions on short scale, ions are also need to be included.

• In fusion plasmas, a turbulent plasma self-organizes to a global profile in which

different sources like the heat source, the momentum source, the particle source, and

the profile of background plasma in the presence of collisions (or sink) interact to

sustain a global self-organized feedback loop. Within this loop, one can only control

the sources and sinks if the confinement geometry is known. In order to enhance

the predictability of such systems, the simulation with source and sink terms are

desirable, where the balance conditions of particle and fluxes are need to be satisfied

169



CHAPTER 7. CONCLUSIONS & FUTURE WORK

[129, 130]. To study such kind of problems, various computational boundaries and

simultaneous source-sink terms need to be added.

• In ignition/fusion experiments, the kinetic dynamics of low-frequency waves in

multiple ion species plasma plays an essential role in inertial confinement fusion

(ICF). For example, the significant energy transfer to IAWs leads to production

a non-Maxwellian distribution, which may further reduce Landau damping in the

multi-ion species plasmas [131]. For such physics problems, inclusion of multiple

ion species is required which further needs parallelization of VPPM-2.0 by using an

OPEN-MP parallelization nested within an MPI parallelization. Alternatively the

codes may be parallelized on a GPU platform.

• In the present collisional model, both Krook and ZK operators are used which

do not conserve either momentum or energy. However, the Krook operator does

conserve the number of particles. There are other operators with better conservation

properties like the Gaussian BGK model, ESBGK model, the BGK model with

velocity dependent collision frequency, Dougherty collisional operator etc [125, 126].

In order to perform a qualitative comparison study using simplistic collision operators,

conventional Krook and ZK operators have been used here. Quantitatively, there

will be indeed some differences between the results obtained using other operators

than the results obtained from Krook and ZK operators. However, I believe that

there will be no difference qualitatively. To ascertain the effect of momentum and

energy conserving collisions on the PSVs, it would be meaningful and beneficial to

generalize the present models (Krook and ZK) so that they conserve both momentum

and energy. This would be an interesting future work.

• In the present solver, to solve the advection equation a third order accurate PPM

method has been used. In order to improve the accuracy of VPPM-2.0 and its future

upgraded versions, more accurate and compatible to the different physics problems,

advection methods are needed. Therefore, better (perhaps numerically expensive)

advection schemes namely 6th order PPM Scheme [132], Discontinuous Galerkin

(DG) method [104] may be looked into in the future.
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• A theoretical understanding for chirp driven PSVs has not been attempted in this

Thesis work. However, as shown in Appendix-B, a 1D free electron gas when confined

in a periodic 1D well and subject to chirping clearly indicates a “trap-drag-drop”

picture in phase space, which suggests that both untrapped and trapped electrons

gain energy. In future, it will be interesting to include self-consistent electric field

and generalize the model indicated in Appendix-B.
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A
Plasma Dispersion Relation:- Kinetic Electrons

and Immobile Ions

In this Appendix, I describe two methods, as I understand them, to study undamped,

small amplitude, single harmonic, electrostatic waves in a 1D Vlasov-Poisson plasma, both

giving rise to the same plasma dispersion relation in the harmonic limit, namely the real

part of the complex dispersion relation with real argument ωr. The first method is due

to Schamel and co-workers which is based on pseudo-potential method [44, 96, 12]. In

this method, they started from exact solutions of the time-independent electron Vlasov

equation by using a Maxwellian based distribution which constitutes of two parts: one

represents the untrapped particles and second represents the trapped fraction of particles.

The second method is due to Landau [1], which I have followed in this Thesis, is based on

the perturbation theory where plasma dispersion relation for real arguments is obtained

by assuming local flattening of distributions and setting the imaginary part of complex

dielectric function to zero. Both of these methods lead to the same dispersion relation in

the harmonic limit. In the following, I will outline the major steps to see this point.
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A.1 Pseudo Potential Method

For a stationary, 1D, electrostatic waves, which are traveling with wave speed v0 in a

collisionless, unperturbed, thermal plasma. The electron motion in phase space is governed

by the Vlasov equation, which reads in the frame moving with v0 , i.e., in the wave frame,

v
∂f

∂x
+ Φ′∂f

∂v
= 0 (A.1)

where normalized quantities have been used, based on the density, and the temperature of

the unperturbed plasma in the background of immobile ions. An appropriate solution is

given by the following Ansatz:[96]

Figure A.1: The distribution function as a function of the velocity. The trapped range
is denoted by III, and the range II (I)refers to untrapped resonant (nonresonant)
particles.

f(x, v) =


(1+k2

0Ψ/2)√
2π

exp[−1
2(
√

2ε+ v0)2], For v2 ≥ 2Φ.

(1+k2
0Ψ/2)√
2π

exp[−1
2v

2
0 − βε], For v2 ≤ 2Φ.

(A.2)

Where ε = v2/2− Φ(x) is the energy of a single particle, Φ(x) the electrostatic potential,

and v0 the not yet known phase velocity of the expected structure. The first part in Eq.A.2

represents the free or untrapped electrons and the second part represents the trapped

electrons, where f(x, v) is continuous but its velocity derivative jumps at the seperatrix and
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∂f0/∂v is singular at ε = 0. Here, it is assumed that 0 ≤ Φ(x) ≤ Ψ, where Ψ represents the

amplitude of the perturbation. Thus, the unperturbed plasma state given by Ψ = 0 which

is represented by a shifted Maxwellian i.e. fM (v) = 1√
2π exp[−1

2(v + v0)2]. The amount

of trapped particles is controlled by β parameter. A dip in the distribution function in

the trapped particle region in phase space, ε < 0, is thereby provided by negativeβ. The

f(x, v) divides phase space in three regions for the electrons:

1. A free non-resonant region |v|> R.

2. A free resonant region
√

2Φ ≤ |v|≤ R.

3. A free non-resonant region |v|≤
√

2Φ.

where R separates free electrons that are in resonance with the wave from those that are not.

Here, it is assumed that R ≈
√
ε << 1, where ε is O(Ψ). By considering ξ = σ|v2− 2Φ(x)|,

where σ = sg(v) the sign the sign of velocity, different expansions are appropriate for the

above three regions:

1. In the trapped region (tr):- (0 ≤ |v|≤
√

2Φ, |ξ|, |v|= O(
√
ε))

ft(ξ) = ft(0) + ξf ′t(0) + 1
2ξ

2f ′′t (0) +O(ξ3)

⇒ ft(ξ) = ft(0) + 1
2(2Φ− v2)f ′′t (0) +O(ξ3)

due to symmetry of ft in v space f ′t(0) vanishes.

2. In the free resonant region (frr):- (
√

2Φ ≤ |v|< R ≈
√
ε); |ξ|, |v|= O(

√
ε))

f0(ξ) = f0(0) + ξf ′0(0) + 1
2ξ

2f ′′0 (0) +O(ξ3)

⇒ f0(ξ) = f0(0) + σ(v2 − 2Φ)1/2f ′0(0) + 1
2(v2 − 2Φ)f ′′0 (0) +O(ξ3)

3. In the free non resonant region (fnr):- (|v|> R ∝
√
ε, |ξ|, |v|≥ O(1)

hence 2Φ
v2 = O(ε) & ξ = v − Φ/v +O(ε2))

f0(ξ) = f0(v)− Φ 1
v
∂f0(v)
∂v + Φ2

2

(
1
v
∂
∂v

)2
f0(v) +O(Φ3)
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For small amplitudes,Ψ << 1, the electron density can be obtained by a Taylor expansion

of Eq.A.2 first (as it is done above), followed by the velocity integration, given by,

ne(Φ) =
∫
fe(x, v)dv =

∫
f.n.r.

f0(ξ)dv +
∫
f.r.r.

f0(ξ)dv +
∫
t.r.
ft(ξ)dv (A.3)

which will end up in the following expression:-

ne(Φ) = 1 + k2
0Ψ
2 − 1

2Z
′
r(
v0√

2
)Φ− 4

3b(β, v0)Φ3/2 + .. (A.4)

where 1
2Z
′
r( v0√

2) is defined by 1
2Z
′
r( v0√

2) := P
∫ 1
v
∂fM (v)
∂v dv, where P stands for principal

value, and Zr represents the real part of the complex plasma dispersion function for real

arguments. In general, Z(ξ) = 1√
ξ

∫∞
−∞

e−t2

t−ξ dt is the Hilbert transform of a Gaussian which

is related to Dawson’s integral and Z ′(ξ) = 1√
ξ

∫∞
−∞

e−t2

(t−ξ)2dt. The trapping effects are

incorporated in b(β, v0) which is defined by

b(β, v0) = 1√
π

(1− β − v2
0) exp(−v

2
0
2 ) (A.5)

In order to get a self-consistent solution, the Poisson equation in the immobile ion limit

becomes,

Φ′′(x) =
∫
fdv − 1 = ne − 1 = −V ′(Φ) (A.6)

where V (Φ) is the pseudo-potential (often called Sagdeev potential).

After substitution of Eq.A.4 into Eq.A.6 and a subsequent Φ-integration we get V (Φ) and

from V (Φ = Ψ)=0,

k2
0 −

1
2Z
′
r(
v0√

2
)− 16

15bΨ
1/2 = 0, or (A.7)

k2
0 −

1
2Z
′
r(
v0√

2
) = B (A.8)

This Eqn.A.8 is called the nonlinear dispersion relation since it determines v0 in terms of

B = 16
15bΨ

1/2 and k0. In case of harmonic limit which corresponds to monochromatic case

i.e. B = 0, Eq.A.8 becomes,

k2
0 −

1
2Z
′
r(
v0√

2
) = 0 (A.9)
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Here, B can become zero in two cases:-(i) in infinitively small amplitude limit i.e. Ψ→ 0+

and (ii) when b = 1√
π

(1−β− v2
0) exp(−v2

0
2 ) = 0⇒ β = 1− v2

0, which indicates the presence

of a depressed trapped particle region. In the pseudo potential method, the latter case

(b = 0) is considered. For B = 0 the phase velocity of the harmonic waves lies in the range

1.307 < v0 < 2.13, from which the trapped particle parameter β can be deduced, which is

negative for B = 0 case, yielding a depressed trapped particle region and an altogether

well behaved distribution. Note that B can become zero without taking the infinitesimal

amplitude limit Ψ→ 0+.

v

0 1 2 3 4

−
1
/
2Z

′ (
v
)

-0.5

0

0.5

1

EAW LAN

(v
0
=1.307)

(x
min

,y
min

)=(2.13,-0.2848)

Figure A.2: The gradient of the real part of the complex plasma dispersion function
−1

2Z
′(v) is plotted for real arguments for immobile ions.

k
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ω
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ω= (1+3k
2

)

Figure A.3: Dispersion curves or “Thumb” curves for the electrostatic waves (LAN,
EAW) in k − ω plane, obtained by both Pseudo potenntial method as well as by
assuming zero damping.

177



APPENDIX A. PLASMA DISPERSION RELATION:- KINETIC ELECTRONS
AND IMMOBILE IONS

A.2 Landau Method

In the Landau’s linear perturbation method, for an unmagnetized, uniform plasma with a

distribution f0(v) and the perturbation in f(x, v, t) by f1(x, v, t) is denoted by,

f(x, v, t) = f0(v) + f1(x, v, t) (A.10)

The first order Vlasov equation for electrons in the background of immobile ions is given

by,
∂f1
∂t

+ v
∂f1
∂x
− e

m
E1
∂f0
∂v

= 0 (A.11)

Considering the perturbation waves are plane waves in one dimension is given by,

f1 ∝ ei(kx−ωt) (A.12)

Then Eqn.A.11 becomes

f1 = ieEx
m

∂f0/∂vx
ω − kvx

(A.13)

Poisson equation gives

ε0
∂E

∂x
= ε0ikEx = −en1 = −e

∫
f1dv (A.14)

→ n1 =
∫
f1dv = ieEx

m

∫ ∞
−∞

∂f0/∂vx
vx − (ω/k)dv (A.15)

Since, one dimensional problem is considered here, therefore, in order to avoid any confusion,

I drop the subscript x. By putting Eqn.A.15 into Eqn.A.14, I will get,

1 =
ω2
p

k2

∫ ∞
−∞

∂f0/∂v

v − (ω/k)dv (A.16)

1 =
ω2
p

k2

[
P

∫ ∞
−∞

∂f0/∂v

v − (ω/k)dv + iπ
∂f0
∂v
|v=ω/k

]
(A.17)
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Let the equilibrium distribution f0 be one dimensional Maxwellian:

f0 = n0

vth
√

2π
e

(− v2
2v2
th

)
, vth =

√
KT/m (A.18)

Introducing the dummy variable s = v/
√

2vth, it can be written as:

n1 =
∫
f1dv = −ieEn0

kv2
thm
√

2π

∫ ∞
−∞

(d/ds)(e−s2)
s− ξ

ds (A.19)

where ξ = ω/
√

2kvth. Now, by defining the plasma dispersion function Z(ξ):

Z(ξ) = 1√
2π

∫ ∞
−∞

e−s
2

s− ξ
ds Im(ξ) > 0 (A.20)

In order to express n1 in terms of Z(ξ), the derivative Z(ξ) is taken of with respect to ξ:

Z ′(ξ) = 1√
2π

∫ ∞
−∞

e−s
2

(s− ξ)2ds (A.21)

Integration by parts yields

Z(ξ) = 1√
2π

[−e−s2

s− ξ

]∞
−∞

+ 1√
2π

∫ ∞
−∞

e−s
2

s− ξ
ds (A.22)

The first term vanishes as it must for any well-behaved distribution function. This allows

us to write density as:

n1 = −ieEn0
kmv2

th

Z ′(ξ) (A.23)

Here, Z(ξ) constitutes both real and imaginary parts. Assuming a weak flattening (or

trapped region) of the vanishing velocity width, i.e. ∂f0
∂v |v=ω/k' 0, which allows us to

neglect the contribution from the imaginary part. Therefore, Eqn.A.16 becomes,

k2 =
ω2
p

2v2
the

Z ′r(ξ) (A.24)

In electron normalized units (i.e. ω/ωp, kλD, v/vth, Eqn.A.24) becomes,

k2 − 1
2Z
′
r(ξ) = 0 (A.25)
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which is exactly same as Eqn.A.9, which is obtained by Pseudo potential method in the

harmonic limit.

In Fig.A.2, a plot of the function −1
2Z
′
r(v) with v for kinetic electrons and immobile ions

is displayed. The negative values of −1
2Z
′
r(v) represents the real physical solutions. The

term −1
2Z
′(v) can be interpreted as a gradient of the real part of the complex plasma

dispersion function for real arguments. In the limit of immobile ions, the function −1
2Z
′(v)

represents electron contribution, where all the negative values of this function represents

the real solutions for electrostatic waves and it divides the phase velocity regions and reveals

different branches of the dispersion relation. It has one zero transition (at v = 1.307)

and one minimum (at v = 2.13) which results in two separated regions for the phase

velocity[96]:-(i) v ≤ 2.13 (EAW), (ii) v ≥ 2.13 (LAN). The function is positive for v < 1.307

and negative for other values of v and and vanishes at infinity. In Fig.A.3, the ωr, k curve

is displayed for the Eqn.A.9, which is also known as “Thumb-curve”. The upper branch of

the “thumb curve” is the well known Langmuir branch and the lower branch of the “thumb

curve” is electron acoustic branch.

From these two plots, it is evident that there are mainly two undamped roots and no

undamped roots exist beyond a critical value of the wavenumber k. Moreover, this thumb

curve also represents that each point in the k−ω plane along the thumb curve corresponds

to a different particle velocity distribution function. This so-called “thumb” dispersion

curve is obtained by assuming the small wavenumber k and retaining only the principle

part in the velocity integral of the Landau dispersion relation in my Thesis.[1]
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B
Electron Gas Model

In this Appendix, the dynamics of passage and capture into resonance of a distribution of

particles driven by a chirped frequency perturbation is discussed for an electron gas in a

periodically bounded plasma by excluding self-consistency. This model is inspired from the

electron gas model for bounded case reported in Friedland et.al. [37]. As is well known, a

pure electron plasma confined by a strong external B-field and an electron-ion plasma with

immobile ions are nearly isomorphic [133] as far as electron dynamics is concerned.

Let me consider a 1D electron gas along the direction of B-field and subject the same to

an external electric field. In [37], the electron gas was bounded along B-field and were

bouncing between the end-caps. Here, in my case, I am considering the direction along the

B-field to be periodic. Except for self-consistent electric field, this model is near-identical

to the problem I have addressed in Chapter 3. In the following, I shall continue to use the

terminology of pure electron plasma, as I am generalizing the work in [37] from bounded

potential to periodic confining potential, suitable for my work.

The electron dynamics for a pure electron plasma in this model is considered to be

one-dimensional (1D) and driven by a one-dimensional potential
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φd = φ0(z)cos[ψd(t)] (B.1)

where the driving frequency ωd(t) = dψd/dt = ω0 − αt is linearly down chirped in time,

with the chirp rate α. Assuming external trapping potential of length L and initially

normalized Maxwellian distribution, defined as f0 = exp(−v2/2v2
th)/

√
(2πvth). The goal

is to study the evolution of the electron distribution in phase space due to the chirped

frequency drive, neglecting the self-electric field in this case. It is assumed that the driving

amplitude is small i.e. [(e/m)φ0]1/2 << vth.

The electron dynamics in 1D problem are governed by the following Hamiltonian:-

H(p, z, t) = p2

2m − eφ0(z)cos[ψd(t)], 0 ≤ z ≤ L (B.2)

Transformation (p, z) → (I, θ) cannonical action-angle variable such that :- p = πI/L,

z = LΘ/π for 0 ≤ Θ < π and z = L(2π − θ)/π for π ≤ θ < 2π where Θ = mod(θ, 2π).

The transformed Hamiltonian becomes:-

H = 1
2µI

2 − cos[ψd(t)]
∞∑
n=1

[ancos(nθ) + bnsin(nθ)] (B.3)

where we have expanded eφ0(z) in Fourier series. The frequency chirp rate α is assumed

to be small enough that, near a given time τ , the dynamics can be viewed as a weak

perturbation of a similar system in which the drive frequency assumes the constant value

ωd(τ). Then the single resonance approximation can be considered, as long as the adjacent

resonances do not overlap. For Single resonance approximation:- interaction of the electrons

with the nth component of the drive. Hamiltonian for nth component of drive:-

H = 1
2µI

2 − cos[ψd(t)][ancos(nθ) + bnsin(nθ)] (B.4)

H = 1
2µI

2 −An[cos(nθ + ψd) + cos(nθ − ψd)]−Bn[sin(nθ + ψd) + sin(nθ − ψd)] (B.5)

Now, by introducing dimensionless units as following normalization:

• t→ Ωtht, I → I/Ith, ωd → ωd/Ωth,
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• An → An/(mv2
th), Bn → Bn/(mv2

th), α→ α/Ω2
th,

• where Ω = πvth/L and Ith = mLvth/pi. Here, µ scales out after these transformation.

The Hamiltonian yields the following evolution equation:-

∂I

∂t
= −∂H

∂θ
(B.6)

− ∂H

∂θ
= nAn[sin(nθ + ψd) + sin(nθ − ψd)] + nBn[cos(nθ + ψd) + cos(nθ − ψd)] (B.7)

∂θ

∂t
= ∂H

∂I
= I (B.8)

Let Φ = nθ − ψd = nθ − ωdt, where ωd = ω0 − αt = dψd/dt

d2Φ
dt2

= −n2An[sin(nθ+ψd)+sin(nθ−ψd)]+n2Bn(cos(nθ+ψd)+cos(nθ−ψd))+α (B.9)

Now, nθ + ωdt = Φ + 2ωdt = Φ + 2ω0t− 2αt2, which leads to

dΦ
dt

= nI − ωd = nI − ω0 + αt (B.10)

d2Φ
dt2

= n
dI

t
+ α (B.11)

d2Φ
dt2

+n2An[sin(Φ+2ω0t−2αt2)+sin(Φ)]−n2Bn(cos(Φ+2ω0t−2αt2)+ cos(Φ))−α = 0

(B.12)
d2Φ
dt2

+ dVeff
dΦ = 0 (B.13)

This is an autonomous dynamical problem, describing the motion of a quasi particle in an

effective, time independent, tilted potential.

Veff = −n2An[cos(Φ+2ω0t−2αt2)+ cos(Φ)]−n2Bn(sin(Φ+2ω0t−2αt2)+sin(Φ))−αΦ

(B.14)

For Phase space, consider Φ = x → dΦ/dt = v

dv

dt
= d2Φ

dt2
(B.15)
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dv

dt

dΦ
dt

= 1
v

(−n2An[sin(Φ+2ω0t−2αt2)+sin(Φ)]+n2Bn(cos(Φ+2ω0t−2αt2)+cos(Φ))+α)

(B.16)

Now, from Eqn.B.16,

∫
vdv =

∫
(−n2An[sin(Φ+2ω0t−2αt2)+sin(Φ)]+n2Bn(cos(Φ+2ω0t−2αt2)+cos(Φ))+α)dΦ

(B.17)

v2 = 2[n2An(cos(Φ+2ωdt)+cos(Φ))+n2Bn(sin(Φ+2ωdt)+sin(Φ))+2αΦ+2C] (B.18)

where C is a integration constant. At t = 0, Eqn.B.18 becomes,

v2 = 2[2n2Ancos(Φ) + 2n2Bnsin(Φ) + 2αΦ + 2C] (B.19)

Let n2An = n2Bn = Vn, then

v2 = 4[Vncos(Φ) + Vnsin(Φ) + αΦ + C] (B.20)

Figure B.1: The effective potential Veff and the corresponding trajectories in
(dΦ/dt,Φ) space indicating potential wells and trapped trajectories in phase space
exist in this case.
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In Fig.B.1, the effective potential (Veff ) and the corresponding phase space trajectories

are shown. The phase space diagram indicates that even for a small amplitude perturbation

(An = Bn = 0.001) with chirp rate α = 10−3, the effective potential has potential wells

which divide the phase space into trapped and untrapped regions. The chirp dynamics can

be considered to be made up of several single resonance cases where during the drive period,

it creates trapped and untrapped regions by increasing both Kinetic energy and potential

energy of the system for ωDτ . This study has been attempted to introduce the simplistic

case for the chirp dynamics via single resonance method without self-consistency. Depending

on the range of frequency chirp, I believe that this model, when self consistent electric field

is included, will help understand the formation of multiple PSVs (“honeycomb”). Similarly

when resonances overlap, the same model should render multiextrema PSVs (“shark”). In

order to understand the phase dynamics in the presence of external chirp and self consistent

electric field, more work needs to be performed.
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