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SYNOPSIS

Dusty plasma is a four-component plasma consists of electrons, ions, neutrals

and embedded solid (dust) particles. These solid particles could be conductor, di-

electric or made of ice particulates. In vast amount of natural [1] (star forming

regions, interstellar clouds, Zodiacal light, planetary rings, Comet tails, Earth’s

ionosphere) and laboratory [2] (fusion devices [3], rocket exhaust, thin film depo-

sition, production of solar cell by nanometer size dust, direct current (DC) and

radio frequency (RF) discharges) scenario macroscopic solid particles (dust parti-

cles) are inadvertently present in plasma. Therefore, the study on dusty plasmas

help to understand the various types of natural and laboratory phenomena. Of-

ten these have important implications for industrial applications viz. thin film

deposition[4, 5] in which presence of dust deteriorate/destroy the quality of the

chips and production of solar cell by nanometer size dust[6]. These macroscopic

particles are much heavier than ions and their typical mass ranges from 10−18 -

10−12 Kg. The lighter mobile electron species strike the dust particles and sticks

on their surface. In this fashion the solid particles acquire high negative charge.

The total charge on the dust particles increases with the size/radius (rd) of the

particles. The typical size of the solid particles ranges from nanometer to microm-

eter for which accordingly the net acquired charge on them ranges from -100e to

-10, 000e, where e is elementary charge. Shielding to these charged dust particles

are provided by background electrons and ions. When the condition a > λD >> rd

is satisfied for such a medium, then the medium behaves like an ordinary plasma

with isolated dust particles, termed as “dust in plasma”. Here, a is average in-

ter particle distance between dust grains, and λD is the Debye length of ambient

plasma. On the other hand, if λD > a >> rd, then the medium is referred as “dusty

plasma”. In the later case, dust particles participate in the collective phenomena.

The inclusion of dust to the plasma increases the complexity of the medium as new

physical processes get introduced, viz. effects associated with dissipation, plasma

recombination on the particle surface and variation of particle charge as a func-

tion of time. Often these phenomena concerning dusty plasma involve the energy

influx in the medium making it a non-Hamiltonian system [7]. Thus presence of

dust component in plasma introduces a rich class of collective phenomena in the

medium and it is often referred to as a “complex plasma”.

The time scale associated with the dynamics of dust species (for micron size

particles) are 10 to 100’s of milliseconds (1 - 100 Hz). Therefore, they can be

tracked by bare eyes and can easily be diagnosed (eg. by CCD camera) in the



experiments, which is impractical to do the atoms and molecules of the liquids

and solids. Due to longer time and length scales (100’s of micrometer) strongly

coupled dusty plasmas offer a model system to study generic phenomena such as

self-organization, transport, phase transitions, waves, structures and instabilities

at individual particle level which is of relevance in regular liquids, charged colloids,

polymers, electrolytes and condensed matter system[7].

The properties of the dusty plasma medium can be characterized by two di-

mensionless parameters Γ = Q2/4πε0akbTd (known as the coupling parameter)

and κ = a/λD (known as the screening parameter). Here Td and a are the dust

temperature and the Wigner-Seitz (WS) radius, respectively. For 2-D and 3-D

systems, Wigner-Seitz (WS) radius is (n2dπ)−1/2 and (3/4πn3d)
1/3, respectively.

Due to high charge on the dust grains (≈ −10, 000e), the dusty plasmas can be

easily found in the strongly coupled state (i.e. their electrostatic average potential

energy can be made comparable to or higher than the average kinetic energy of

particles easily and does not require extreme conditions of temperature and/or

density). Such a plasma can, therefore, have traits of a gas, a liquid and a solid

depending upon where medium lies in the (Γ, κ) plane [8]. For a given κ, dusty

plasma imbricate to crystalline state when the coupling parameter Γ > Γc, where

Γc is the critical value for crystallization. At intermediate value of Γ (1 < Γ < Γc)

the system behaves like a complex fluid with both fluid and solid like traits. Fluid

nature of complex fluid gives viscosity and solid nature provides the elasticity in

the medium. Hence, both longitudinal and transverse wave modes can be excited

in strongly coupled dusty plasmas. Different phases (phase transitions) in typical

dusty plasma experiments are achieved by either varying RF power or by changing

neutral gas pressure [9]. Increasing RF power leads to increase in the ion density,

resulting decrement in the Debye length (or increment in κ) occurs so that the

dust crystal melts down. On the other hand, increasing neutral gas pressure leads

to a decrease in the dust temperature which results increment in the coupling pa-

rameter Γ and liquid phase converts into crystalline phase. In addition to dusty

plasmas many other system viz. Inertial confinement fusion (ICF) plasmas, col-

loidal suspensions, ultracold-neutral plasmas, and warm dense matter also show

strong coupling behavior and phase transitions. Dusty plasma offers a model sys-

tem to study the strong correlations related phenomena which is difficult to study

in previously mentioned systems [10]. Strongly coupled dusty plasma also provides

a direct analogy to liquid and solid phase of matter. Here, individual particle level

dynamics of these phase can also be traced.

Collective phenomena have great prominence in the dynamics and evolution



of complex plasma. Therefore, studies on collective dynamics in dusty plasma

have been carried out [2, 11–13]. In this thesis, we have studied the characteristic

properties of the KdV soliton and multisoliton using molecular dynamics (MD)

simulations. We have also studied soliton collisions (head-on and overtaking) and

associated phase shift. Comparison of simulation finding with experimental obser-

vations has also provided.

The spiral waves are ubiquitous and can be found in a wide range of natural and

laboratory scenario [14–25]. We have looked into the possibility of exciting such

structures in the context of the dusty plasma medium in both weak and strong

coupling limits. We have employed both MD and fluid simulations for the depic-

tion of the dusty plasma medium. In the MD simulations, dust are considered

as point particles and they interact electrostatically with each other via Yukawa

pair potential. The Yukawa interaction mimics the screening due to the presence

of free electrons and ions between dust species. For fluid simulations, we have

considered dusty plasma as a visco-elastic fluid using Generalized Hydrodynamic

model (GHD) [26, 27] equations. In the GHD model, strong coupling is incor-

porated through the non-local visco-elastic operator. The non-local visco-elastic

operator contains the memory effects and the short range order that develops in

the system with increased correlation. In strong coupling regime dust fluid retain

the memory of its past configurations. The memory function has often been mod-

eled as exponentially decaying in time i.e as exp(−t/τm) [28, 29]. Here, τm is a

time constant representing the relaxation time. A finite τm represents the time for

which the fluid retains the memory of its past configurations arising due to elastic

behavior of strongly coupled dusty plasma.

The thesis comprises of six chapters. A brief summary of the content of these

chapters is provided below.

• Chapter - I: In chapter 1, we provide an introduction to the field of dusty

plasma medium. The various model depictions for the medium have been

discussed and a summary of earlier works in the context of observing collec-

tive structures in this medium has also been provided.

• Chapter - II: In chapter 2, the details of simulation techniques (molecular

dynamics and computational fluid dynamics) has been discussed. We also

describe the various diagnostic tool that have been employed to extract

the physics from the simulation data to investigate physical phenomena

responsible for the collective structures. Benchmarking of the code with

well known features of the dusty plasma medium such as dispersion relation,



radial distribution function (RDF), diffusion and velocity auto-correlation

function (VACF), and phase space distribution etc., are also shown in this

chapter.

• Chapter - III: In chapter 3, we have studied the KdV solitons in com-

plex plasmas using Molecular-dynamics simulations. Solitons are robust and

stable non-linear localized structures which have been observed in myriad dif-

ferent contexts such as optical fibers [30, 31], semiconductors [32], oceanog-

raphy [33], and plasmas [34–36]. In our MD simulations studies, we have

applied electric field perturbations of the experimental situation [37–39] to

excite the solitonic structures. The collective response of the dust particles

to such an applied electric field impulse gives an excitation of a perturbed

dust density pulse (compression) propagating in one direction along with a

train of negative perturbed rarefactive density oscillations in the opposite

direction. We have also shown that by increasing the strength of electric

field impulse, the amplitude of the solitonic structure increases and above a

threshold, it split in the form of multiple solitons. Further, we have shown

that by increasing the coupling parameter of the medium, the amplitude of

the solitonic structures increases while their width decreases. We have also

found that with an increase in the neutral drag on the dust particles the

amplitude of the solitonic structures decreases and its width increases. We

have carried out collisional interaction of these solitonic structures in many

different configurations. As expected, we find that phase shift is more in

overtaking collision compared to head-on collisions. Furthermore, we have

observed that the phase shifts in the collisional interaction decreases with

the increasing amplitude of the colliding solitonic structures. Though this

is contrary to some experimental observation [38], our observations can be

understood from physical arguments.

• Chapter - IV: In Chapter 4, we have studied a novel non-linear two

dimensional structure in dusty plasma using fluid simulations. This is es-

sentially the observation of spiral wave excitation in dusty plasma medium.

Spiral waves are ubiquitous structures found in a wide range of natural

and laboratory scenario. In this chapter, the spatiotemporal development

of spiral waves in the context of weak and strong coupling limits has been

shown. While the weakly coupled medium has been represented by a simple

charged fluid description, for strong coupling, a generalized hydrodynamic



visco-elastic fluid [26] description has been employed. The medium has

been driven by an external force in the form of a rotating electric field. It is

shown that when the amplitude of force is small, the density perturbations

in the medium are also small. In this case, the excitations do not develop

as a spiral wave. Only when the amplitude of force is high so as to drive

the density perturbations to nonlinear amplitudes does the spiral density

wave formation occurs. We have found that the number of rings in the

spiral at a given time is proportional to the number of rotations made by

the external forcing. Thus, if frequency of the driver is high then number

of rings is also high. The radial propagation speed of the spiral is equal

to the acoustic speed of the medium. The interplay between the acoustic

speed of medium and frequency of forcing decides the spiral structure. With

increasing shear viscosity (η) the source of vorticity diffuses out. On the

other hand in visco-elastic fluids, an additional traverse shear wave (TSW)

generated from the forcing region. Thus, in our studies the expansion of

this wave increases with an increase in the strong coupling (the ratio of η

and τm) of the medium because its velocity is equal to (
√
η/τm).

• Chapter - V: In chapter 5, the excitation of spiral waves in the context

of driven two-dimensional dusty plasma (Yukawa system) has been demon-

strated at particle level using molecular-dynamics (MD) simulations. The

interaction amidst dust particles is modeled by the Yukawa potential to

take account of the shielding of dust charges by the lighter electron and ion

species. The spatiotemporal evolution of these spiral waves has been charac-

terized as a function of the frequency and amplitude of the driving force and

dust neutral collisions. The radial propagation of the spiral waves is gov-

erned by the dust lattice speed and the rotation gets decided by the forcing

period. The interplay between the two decides the spiral wave structure. For

distinctly clear spiral to form a proper combination of the two is essential.

The parametric dependence is consistent with the continuum study carried

out in Chapter 4 wherein the dusty plasma was considered as a visco-elastic

fluid.

Further, we have shown that there are additional features which emerge

when the discrete particle effects are taken into account using MD simu-

lations. For instance, when the amplitude of forcing is high the particles

at the center get heated by acquiring random thermal velocity. This in



turn effects the spacing of subsequent rings and collective spiral structure.

Furthermore, a large amplitude forcing throws the particle out of the

external forcing regime. The restoring force to bring the particles back

at the center would, however, depends on the interparticle interaction.

When κ is chosen high, the shielding range is small and this restoring

effect reduces. Thus for high amplitude and high κ the central region

where external forcing has been chosen to be finite becomes devoid of

particles. The spiral then fails to form adequately. Another interesting

feature that has been observed when the dust medium is in two-dimensional

hexagonal crystalline symmetry (triangular lattice) state. In this case,

for high values of κ (for which the interparticle potential gets very weak)

only a few neighboring particles participate in the interactions. The

spiral waveform in such cases has a hexagonal front. This can be un-

derstood by realizing that for a hexagonal lattice the nearest neighbors

separation along different directions are different. Therefore, there is an

anisotropy in the radial propagation speed along lattice axis and lattice

diagonal directions and which leads to the formation of hexagonal waveform.

• Chapter - VI: In Chapter 6, summary and conclusion of the thesis along

with future directions has been provided.

This thesis comprises series of studies on the collective structures in the two-

dimensional strongly coupled dusty plasma using both hydrodynamic and

particle simulations approach. These studies contribute significantly to the

field of dusty (complex) plasma and also to the multidisciplinary fields of

physics.
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1
Introduction

1.1 Introduction

In general, matter can exist in any of the solid, liquid or gaseous phase. Heating

or providing energy by other means to the gaseous atoms decompose them into

electrons and ions (a fraction or whole depending on the amount of energy supplied)

leading to a quasi-neutral ionized gas of charged particles. This quasi-neutral

gas is called the plasma state of matter. Approximately 99 % observable matter

(excluding the dark matter) of the universe is in the plasma state. Plasma show

various type of single particle and collective response to the externally applied

electric and magnetic fields. It can be used in various type of applications such

as etching in microelectronics, plasma spraying (coating), metal cutting, designing

energy storage devices, medical science, agriculture, producing fusion energy, and

also in particle acceleration etc.
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Chapter 1. Introduction

In the vast amount of natural and laboratory scenario dust is inadvertently

present in plasma. For instance, star forming regions, interstellar clouds, Zodiacal

light, planetary rings (Fig. 1.1), Comet tails (Fig. 1.2), Earth’s ionosphere are

some of the examples of natural [6] scenario and fusion devices [7], rocket exhaust,

thin film deposition, production of the solar cell by nanometer size dust, direct

current (DC) and radio frequency (RF) discharges are few examples from labora-

tory [8] scenario. These solid particles become negatively charged (can also become

positively charged depends upon the plasma environment) due to the high mobility

of electrons and becomes an extra component of the plasma medium. This extra

component adds new types of individual particle and collective response in the

plasma medium. Therefore, the study on dusty plasma helps to understand the

various types of natural and laboratory phenomena. Often these have important

implications for industrial applications viz. thin film deposition [9, 10] in which

presence of dust deteriorate/destroy the quality of the chips and production of

solar cell by nanometer size dust [11].

This thesis is devoted to the studies of collective structures in the dusty plas-

mas. The collective structures hold great prominence in the dusty plasma medium.

The rest part of this chapter is organized as follows. Section 1.2 provides the basic

concepts and characteristics of dusty plasmas. Section 1.3 presents the various

models used to study dusty plasmas with outlining their advantages and disadvan-

tages. In section 1.4, review of earlier works carried out on collective structures in

dusty plasmas are provided and motivation for this thesis is also presented. Last

section 1.5 contains the outline of the thesis.

4



Chapter 1. Introduction

Figure 1.1: Spokes in the Saturn’s ring. These spokes are the radial fingers
of charged dust particles that is levitated by the Saturn’s strong magnetic field
(Credit: NASA/JPL-Caltech/Space Science Institute).

Figure 1.2: Comet Hale-Bopp featuring two distinct tails, a dust tail of white color
and an ion tail of blue color (Credit: Tiverton and Mid Devon Astronomy Society).
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Chapter 1. Introduction

1.2 Introduction to complex plasma or dusty plasma

1.2.1 Dusty plasma

Dusty plasma is a four-component plasma consists of electrons, ions, neutrals and

embedded solid (dust) particles. These solid particles could be conductor, dielectric

or made of ice particulates [8]. They are much heavier than ions and their typical

mass ranges from 10−18 - 10−12 Kg. Due to light mass, electrons acquire high

thermal velocity and they stick to the surface of dust particles. In this fashion,

solid particles acquire charge and become an extra super-heavy component of the

plasma. The charge on the dust particles increases with the size of the particles i.e.

with radius (rd) of the particles. The typical size of the solid particles ranges from

nanometer to micrometer accordingly charge on them ranges from 100e to 10, 000e,

where e is elementary charge. Shielding to these dust particles are provided by the

background electrons and ions. The Debye length of the shielding is given by the

following formula:

λD =

(
Z2
i ni

ε0kBTi
+

e2ne
ε0kBTe

)− 1
2

(1.1)

Where Zi, ni, and Ti are the charge, density, and temperature of the plasma ions,

and e, ne, and Te are charge, density, and temperature of the plasma electrons. If

a > λD >> rd, then medium is called “dust in plasma”. Here, a is average inter

particle distance between dust grains. On the other hand, If λD > a >> rd, then

medium is called “dusty plasma”. In the later case, dust particles participate in the

collective phenomena. The inclusion of dust to the plasma increases the complexity

of the medium by introducing new physical processes viz. effects associated with

dissipation, plasma recombination on the particle surface and variation of particle
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charge as a function of time. So the medium is called complex plasma. These

new physical processes change the energy influx in the medium. Therefore, com-

plex plasmas are the non-Hamiltonian system [12]. Presence of dust component in

plasma adds a rich class of collective phenomena viz. dust acoustic wave (DAW),

dust lattice wave (DLW), transverse shear wave (TSW), Mach cones, vortex, soli-

tons, and shocks in the medium. The dynamical time scale associated with these

phenomena (for micron size particles) varies between 1 - 100 Hz. Therefore they

can be seen from bare eyes and can easily be diagnosed (eg. by CCD camera) in ex-

periments. Due to long time and length scales strongly coupled dusty plasmas offer

a model system to study generic phenomenon such as self-organization, transport,

phase transitions, waves, structures and instabilities at individual particle level

which is of relevance in regular liquids, charged colloids, polymers, electrolytes

and condensed matter system [12].

1.2.2 Strong coupling

The thermodynamics of the dusty plasma can be characterized by two dimen-

sionless parameters Γ = Q2/4πε0akbTd (known as the coupling parameter) and

κ = a/λD (known as the screening parameter). Here Td and a are the dust tem-

perature and the Wigner-Seitz (WS) radius, respectively. For 2-D and 3-D systems,

Wigner-Seitz (WS) radius is (n2dπ)−1/2 and (3/4πn3d)
1/3, respectively. Here n2d

and n3d are the dust density for the 2-D and 3-D systems, respectively. Due to

high charges on the dust grains (≈ −10, 000e), the dusty plasmas can be easily

found in the strongly coupled state (i.e. their electrostatic average potential energy

can be made comparable to or higher than the average kinetic energy of particles

easily and does not require extreme conditions of temperature and/or density).

7
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Such a plasma can, therefore, have traits of a gas, a fluid and a solid depending

upon where medium lies in the (Γ, κ) plane. (Γ, κ) plane for 2-D and 3-D Yukawa

systems are shown by Hartman et al. [1] and Hamaguchi et al. [2], respectively.

The phase diagram is also shown here in Fig. 1.3 and, Fig. 1.4, respectively. For a

given κ, dusty plasma imbricate to crystalline state when the coupling parameter

Γ > Γc, where Γc is the critical value for crystallization. At intermediate value of Γ

(1 < Γ < Γc) the system behaves like a complex fluid with both fluid and solid like

traits. Fluid nature of dusty plasma gives viscosity and solid nature provides the

elasticity in the medium. Hence, both longitudinal and transverse wave modes can

be excited in strongly coupled dusty plasmas. Different phases (phase transitions)

in typical dusty plasma experiments are achieved by either varying RF power or

by changing neutral gas pressure [13]. Increasing RF power leads to an increase

in the ion density, resulting decrement in Debye length (or increment in κ) occurs

so that the dust crystal melts down. On the other hand, increasing neutral gas

pressure leads to a decrease in the dust temperature which results increment in Γ

and hence liquid phase converts into crystalline phase. Strong coupling behavior,

crystallization, and phase transitions in dusty plasma are shown experimentally

by Chu et al. [5] and Thomas et al. [14]. Phase transitions by means of shock

melting have also been studied in the dusty plasma experiment [15]. In addition

to dusty plasmas many other systems viz. Inertial confinement fusion (ICF) plas-

mas, colloidal suspensions, ultracold-neutral plasmas, and warm dense matter also

show strong coupling behavior and phase transitions. Dusty plasma offers a model

system to study the strong correlations related phenomenon which is difficult to

study in the previously mentioned system. So the study carried out in this thesis

would also be relevant to these systems as well.
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Figure 1.3: (Γ, κ) plane for 2-d Yukawa systems. Figure credit: Hartman et al.,
Phys. Rev. E. 72, 026409 (2005) [1]

Strongly coupled plasmas are also known as non-ideal plasmas because Γ > 1

automatically sets ndλ3dust < 1, which can be seen as:

Γ = Q2/4πε0akbTd ∝ 1/(ndλ
3
dust)

1/3 (1.2)

Where λdust =
√
Q2nd/ε0kBTd, Td and Q are dust temperature and charge on

each dust particle, respectively. Unlike the ideal plasmas (ndλ3dust > 1), non-ideal

plasmas are dominated by collective behavior and strong interaction with less

probability of finding dust particles in the sphere of volume λ3dust.
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Figure 1.4: (Γ, κ) plane for 3-d Yukawa systems. Figure credit: Hamaguchi et al.,
Phys. Rev. E. 56, 4671 (1997) [2]

1.3 Models to study dusty plasmas

In the literature, various models are used to study the dusty plasma characteristics.

Among different models, here I am going to briefly discuss some simple models with

outlining their advantage and disadvantage.

1.3.1 Generalized Hydrodynamic (GHD) model

Kaw and Sen introduced the Generalized Hydrodynamic model to study the strongly

coupled dusty plasmas [16, 17]. In GHD model, dusty plasma is considered as a

visco-elastic fluid which has both solid and fluid like traits. Fluid like nature of

dusty plasma gives the viscosity and solid like nature provides elasticity in the

medium. Due to elasticity dust fluid retains the memory of its past configurations.
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The memory function has been modeled as exponentially decaying in time. It

should be noted that GHD momentum equation reduces to the usual momentum

equation for a charged viscous fluid in the limit when the dust has no memory.

A finite memory represents the time for which the fluid retains the memory of its

past configurations arising due to elastic behavior of the strongly coupled dusty

plasma. GHD model have successfully explained DAW dispersion relation in both

weak and strong coupling (phase velocity reversal in strong coupling) limits, pre-

dicts new mode called TSW, and explain various nonlinear structures viz. solitons

and shocks, found in dusty plasma experiments. GHD model work well below crys-

talline Γ and in large wave vector (k) limit. Recently Murillo et al. have added

some corrections in the GHD model by beginning with the exact equations of the

Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy [18].

1.3.2 Quasi-localized charge approximation (QLCA)

Kalman and Golden gave QLCA approach for the analysis of the dielectric response

function and collective mode dispersion for various strongly coupled Coulomb sys-

tems [19–21]. In the QLCA model, dust particles are considered as quasi-localized

charged particles trapped in the polarizable background. The location of dust

charge sites are random (but strongly correlated) and they momentary oscillate

around the local minima of the fluctuating potential. On a longer time scale, these

site positions also change and a continuous rearrangement (by diffusion) of particle

location configuration takes place. QLCA successfully explain the longitudinal and

transverse mode dispersion relation of strongly coupled dusty plasma medium in

the short wave vector (k) limit [22,23]. This model is only valid when the coupling

parameter Γ > 1.
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1.3.3 Particle-in-cell (PIC) simulations

In the PIC simulation method, dust, electron, and ion all species are considered as

kinetic particles in the medium. Due to a large number of disparate mass particles

in the medium, huge computation resources are required. In order to deal with this

issue concept of super-particles are used in this simulation. Each super-particle

contains large number of real particles and the dynamics of each super-particle

is governed by Newton’s law. The whole system is divided into the number of

grids and on each grid charge density and current is being calculated. As the

system evolves dust species charge and current density gets changed on each grid.

This charge and current density variation goes into Newton’s equation through the

Maxwell equations and accordingly force on each particle gets modified. In this

fashion dusty plasma medium evolve with time. By PIC simulation, we can study

the dynamics of all the complex plasma species (electron, ion, and dust) but its

working is limited within the weakly coupled regime. In the literature, various

studies viz. charging of dust particle [24,25], wake structures in steaming complex

plasmas [26], and envelope solitary wave [27], dust acoustic instability [28], and

ion-dust streaming instability [29] in the dusty plasma medium have been carried

out by this simulation technique.

1.3.4 Molecular-dynamics simulation

In molecular-dynamic (MD) simulations, dust medium is considered as particles

and they interact electrostatically via the Yukawa form of the interaction potential.

The Yukawa interaction mimics the screening due to the presence of free electrons

and ions between dust particle. The dynamics of particles is given by the first
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principle i.e. from Newton’s law. MD simulation is a very popular tool to study

the dusty plasmas. Using MD simulation people have studied normal modes,

viscosity, phase transitions, diffusion, Mach cones, and nonlinear structures in

the dusty plasmas. The disadvantage of MD simulation is that it requires huge

computation and computation cost increases as square the number of particles.

In addition to the number of particles computation problem, a huge difference in

the response time scales of electron, ions, and dust make the study of all complex

plasma species at a time in the MD simulation is not possible. Therefore, in these

cases the MD simulations simply follow the dust dynamics interacting via screened

Coulomb potential. The lighter electron and ion particles are assumed to provide

instantaneous screening.

1.3.5 Vlasov approach

Rosenberg studied dust ion-acoustic and dust-acoustic instability analytically us-

ing Vlasov approach that was excited due to the weak electron and/or ion drifts

[30]. By the Vlasov approach, all three components (electron, ion, and negatively

charged dust) of the dusty plasma can be taken in the simulations. For the dynam-

ics of medium, Vlasov equation for each species is evolved. The Electric potential

of the medium is obtained by Poisson’s equation. For the dynamics of plasma

species electric potential coupled with the Vlasov equation. Using this simulation

technique, Jenab et al. studied dust-ion acoustic wave and its Landau damp-

ing [31]. Recently Golden et al. have shown that the Vlasov approach for Yukawa

interaction (dusty plasmas) is only tenable above a critical coupling parameter [32]

and below which there can be no real solution to the collective modes dispersion

relation.
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1.4 Review of earlier work on collective structures

in the dusty plasmas and the motivation

The dusty plasma constituents interact with each other electrostatically, therefore,

various types of collective structures (both linear and nonlinear) can be excited by

external perturbations in the form of electric fields or laser radiation pressure or

self-excited by, viz., ion drag force, thermal fluctuations, and instabilities. Dusty

plasma is a dispersive medium, the presence of nonlinearity in the normal mode

perturbation leads to the formation of localized structures such as solitons and

shocks. Due to the balance of dispersion and nonlinearity in the solitons, they

can travel a long distance in the medium without altering their shape and size. In

the literature, a considerable amount of studies carried out theoretically and ex-

perimentally on the collective structures viz. solitons, shocks, vortices (monopole,

dipole and tripolar), and Mach cones in complex plasmas are present.

Rao et al. [33] motivated by the importance of dust particles in the planetary

rings and cometary tails carried out a theoretical study of its collective modes.

They name this collective mode dust acoustic wave (DAW). They have also studied

the weakly nonlinear form of DAW and derived Korteweg-de Vries (KdV) equation

using momentum, continuity, and Poission’s equation of the dust fluid. Further,

they have shown that the solution of KdV equation can propagate as solitons with

either negative or positive electrostatic potential. After Rao et al.’s study, dusty

plasma has achieved a huge attention of researchers. The first laboratory obser-

vation of DAW was reported by Barkan et al. [34]. They also compared their

experimental results with the theories. Frank Melandso studied the linear and

nonlinear waves in the dust crystal by using lattice vibrations, a prominent feature
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in solid state physics [35]. Melandso has called dust lattice wave (DLW) to the

linear acoustic mode of the crystal. Later Farokhi et al. improved the results of

Melandso et al. by considering the interaction with all grains (long range) rather

than only a few nearest neighbor as Melandso et al. had taken [36]. Samsonov et

al. [37] have studied dissipative longitudinal solitons in the experiments and found

agreement with theoretical studies of Rao et al. and Melandso et al. Anisotropic

plasma crystal compressional and shear solitons were reported analytically by Zh-

danov et al. in the long-wavelength approximation [38]. They had also shown that

the compressional solitons are always supersonic and weakly anisotropic but the

shear solitons have strong anisotropy and can be both subsonic and supersonic,

depending on the direction of propagation in the medium. Dark and bright dust-

ion acoustic solitary waves (DIASWs) have been studied theoretically by Popel

and Yu [39]. Popel et al. have also reported dissipative DISWs which occurs

when the plasma absorption and ion scattering on dust particles were taken [40].

Experimental study on DISWs was carried out by Nakamura et al. [41]. Mamun

and Shukla extended the dust-ion acoustic solitary study for the two and three

dimensions and derived modified KdV equation for the cylindrical and spherical

DIASWs [42]. They have found that the properties of nonplanar cylindrical or

spherical DIASWs are different from the planar one-dimensional DIASWs. Head-

on collision and associated phase shift of dust-acoustic solitary waves were studied

both in weak and strong coupling regime theoretically by Ju-Kui Xue [43] and

Jaiswal et al. [44], respectively. Sheridan et al. have studied solitary waves exper-

imentally in the two-dimensional dusty plasmas [45]. They have excited solitary

waves by pushing dust particles in a rectangular region using 18 W green laser.

They have observed compressive solitary wave propagating in the forward direc-
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tion and oscillating shock in the backward direction. The oscillating shock in the

backward direction is in contrast to the theoretical finding of Avinash et al [46],

in which they have shown a stable refractive soliton. Experimental study of low-

frequency DASWs have been carried out by Bandyopadhyay et al. [47]; that was

excited by a voltage pulse and DASWs head-on collision studied by Sharma et

al. [48]. In the head-on collision study of solitary waves, Sharma et al. found that

the phase shift during the collision increases with an increase in the amplitudes

of colliding waves. Veeresha et al. have studied the effect of strong coupling on

the nonlinear low-frequency waves in the dusty plasmas using GHD model [49].

In this study, they have also discussed the modulational stability of dust acoustic

waves. Effect of polarization force (due to the presence of background (electron

and ion) density inhomogeneity) on dust acoustic solitary waves was discussed by

Bandyopadhyay et al [50]. Sanat et al. have observed cusp-like sharply peaked

dust acoustic solitons in the one-dimensional fluid simulation of the dusty plasma

medium [51]. Nonlinear waves studies such as precursor solitons, shocks in the

flowing complex plasma was carried out by Surabhi et al [52, 53]. Linear [54, 55]

and nonlinear [56] dust density waves which get self excited due to the ion drift

relative to the dust particle have also been studied theoretically as well as experi-

mentally. Envelope solitary waves of the dust particles have been studied by Zhang

et al. using particle-in-cell (PIC) simulation method [27]. They have found that

there is no phase shift after the head-on collision between two envelope solitary

waves, unlike KdV solitary waves head on collision. Further, they have extended

simulations and carried out study on the head-on collision and overtaking collision

between an envelope solitary wave and a KdV solitary wave. It is observed that

there are phase shifts of the KdV solitary wave in both head-on collision and the
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overtaking collision, while no phase shift occurs for the envelop solitary wave in

any case [57].

Analytical studies on dust acoustic shocks were carried out by Melandso and

Shukla and the mechanism of shock wave formation was balancing between the

nonlinear wave breaking and the dissipation of wave energy due to the variation

of dust particle charges [58]. Further Popel et al. have also studied shock waves

formation due to dissipation associated with the dust charge variation (due to

the charging of dust grains) [59]. Dust-acoustic monotonic/oscillatory shocks in a

strongly coupled dusty plasmas which occur due to strong correlations among dust

grains were studied by Shukla et al. using GHD model and they derived KdV-

Burgers equation [60]. Later it was observed in the experiment by Sharma et al.

[61]. Large amplitude non-dispersive dust acoustic shock waves in the dusty plasma

were studied by Eliasson and Shukla [62,63]. Shock with various properties was also

studies in many experiments [15,64–67]. V-shaped shocks produced by supersonic

particle motion in the two-dimensional dusty plasma was studied by Samsonov

et al. [68]. Linear and nonlinear dust drift waves in the the inhomogeneous and

magnetized dusty plasmas was investigated by Shukla et al. [69]. They were also

derived the nonlinear mode coupling equations. Vortices in both the unmagnetized

and magnetized dusty plasmas theoretically as well as experimentally have been

studied [70–79]. Dharodi et al. have studied coherent vortices in the strongly

coupled dusty plasmas using fluid simulations and also compared their finding

with the MD simulation [80].

Havnes et al. first proposed in his study that Mach cone structures can be

generated in planetary dust rings by boulders moving through the dust [81]. They

also showed that the Mach cone opening angle is dependent on the boulder velocity
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and the local dust acoustic velocity. Later Samsonov et al. studied Mach cones in

the dusty plasma experiment and MD simulations [82]. In this experiment, Mach

cones were excited by charged micro-spheres moving in the second incomplete dust

layer that had a velocity faster than the lattice sound speed. Further, Melzer et

al. had excited Mach cones in the dust crystal mono-layer using laser radiation

pressure. The experimental results were also compared with the MD simulation

[83]. Mach cone shocks have also been studied in the dusty plasma experiments

[68]. Shear-wave Mach cones excited by the radiation pressure force in the two-

dimensional dusty plasma crystal have also been observed experimentally [84].

Studies on collective structures in the micro-gravity condition have also been

carried out by the many research groups. The advantage of the microgravity study

is that 3-D dusty plasma studies can be carried out. Another advantage of the

micro-gravity condition complex plasma system is that it has little free energy

for parametric instabilities to occur. The first experiment on acoustic waves in

complex (dusty) plasmas under microgravity conditions conducted with the PKE-

Nefedov laboratory on the International Space Station (ISS) was reported by Khra-

pak et al. [85]. Shock waves in the micro-gravity condition in the PKE-Nefedov

laboratory were excited by a sudden gas pulse [65]. Externally excited breathing

mode and nonlinear waves in the PK-3 Plus set-up on board the International

Space Station (ISS) were studied experimentally by Schwabe et al. [86]. Exter-

nally excited planar dust acoustic shock waves in the DC gas discharge chamber of

Plasma Kristall-4 (PK4) were studied by Usachev et al. [87]. In this experiment,

due to the facility of the polarity-switching DC discharge mode, dust particle elec-

trostatic pressure have determined. The Hugoniot adiabat for the dust subsystem

has also derived.
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In this thesis, we focus on the study of collective structure (phenomena) using

fluid and MD simulations. In particular, we have looked at the KdV soliton and

multisoliton formation and their interaction using MD simulations. We have also

studied the excitation and dynamics of spiral waves (structures) by both fluid and

MD treatment.

1.5 Structure of the Thesis

There are six chapters in my thesis. In chapter 2, the details of simulation tech-

niques (molecular dynamics and computational fluid dynamics) has been discussed.

We also describe the various diagnostic tool that have been employed to extract the

various physical quantities of interest from the simulation data. Benchmarking of

the code with well known features of the dusty plasma medium such as dispersion

relation, radial distribution function (RDF), diffusion coefficient and velocity auto-

correlation function (VACF), and phase space distribution etc., are also shown in

this chapter.

Chapter - III: In chapter 3, we have studied the KdV solitons in complex

plasmas using molecular dynamics simulations. Solitons are robust and stable

non-linear localized structures which have been observed in myriad different con-

texts such as optical fibers [88, 89], semiconductors [90], oceanography [91], and

plasmas [92–94]. In our MD simulations studies, we have applied electric field

perturbations of the experimental situation [45,47,48] to excite the solitonic struc-

tures. The collective response of the dust particles to such an applied electric

field impulse gives an excitation of a compressible dust density pulse. This den-

sity structure propagates in one direction along with a train of negative perturbed
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rarefactive density oscillations in the opposite direction. We have also shown that

by increasing the strength of electric field impulse, the amplitude of the solitonic

structure increases and above a certain threshold, it splits to multiple solitons.

Further, we have shown that by increasing the coupling parameter of the medium,

the amplitude of the solitonic structures increases while their width decreases. We

have carried out collisional interaction of these solitonic structures in many differ-

ent configurations. As expected we find that the phase shift is more in overtaking

collision compared to head-on collisions. Furthermore, we have observed that the

phase shifts in the collisional interaction decrease with the increasing amplitude

of the colliding solitonic structures. Though this is contrary to some experimental

observation [48], our observations can be understood from the physical arguments.

Chapter - IV: In Chapter 4, we have studied a novel non-linear two-dimensional

structure in dusty plasma using fluid simulations. This is essentially the observa-

tion of spiral wave excitation in dusty plasma medium. Spiral waves are ubiquitous

structures found in a wide range of natural and laboratory scenario. In this chap-

ter, the spatiotemporal development of spiral waves in the context of weak and

strong coupling limits has been shown. While the weakly coupled medium has

been represented by a simple charged fluid description, for strong coupling, a gen-

eralized hydrodynamic visco-elastic fluid [16] description has been employed. The

medium has been driven by an external force in the form of a rotating electric field

which is applied in a small circular region. It is shown that when the amplitude

of force is small, the density perturbations in the medium are also small. In this

case, the excitations do not develop as a spiral wave. Only when the amplitude of

force is high so as to drive the density perturbations to nonlinear amplitudes does

the spiral density wave formation occurs. We have found that the number of rings
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in the spiral pattern at a given time is proportional to the number of rotations

made by the external forcing. Thus, if the frequency of the driver is high then the

number of rings is also high. The radial propagation speed of the spiral is equal

to the acoustic speed of the medium. The interplay between the acoustic speed

of medium and frequency of forcing decides the spiral structure. In the charged

compressible dust fluid, with increasing shear viscosity η the source of vorticity

diffuses out. On the other hand in visco-elastic fluids, an additional traverse shear

wave (TSW) generated from the forcing region. Thus, in our studies the expansion

of this wave increases with an increase in the strong coupling (the ratio of η and

τm) of the medium because its velocity is equal to
√
η/τm.

Chapter - V: In chapter 5, the excitation of spiral waves in the context of

driven two-dimensional dusty plasma (Yukawa system) has been demonstrated at

particle level using molecular-dynamics (MD) simulations. The interaction amidst

dust particles is modeled by the Yukawa potential to take account of the shielding of

dust charges by the lighter electron and ion species. The spatiotemporal evolution

of these spiral waves has been characterized as a function of the frequency and

amplitude of the driving force and dust neutral collisions. The radial propagation

of the spiral waves is governed by the dust lattice speed and the rotation gets

decided by the forcing period. The interplay between the two decides the spiral

wave structure. For distinctly clear spiral to form a proper combination of the two

is essential. The parametric dependence is consistent with the continuum study

carried out in Chapter 4 wherein the dusty plasma was considered as a visco-elastic

fluid.

Further, we have shown that there are additional features which emerge when
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the discrete particle effects are taken into account using MD simulations. For in-

stance, when the amplitude of force is high the particles at the center get heated by

acquiring random thermal velocity. This, in turn, affects the spacing of subsequent

rings and collective spiral structure. Furthermore, a large amplitude forcing throws

the particle out of the external forcing regime. The restoring force to bring the

particles back to the center would, however, depends on the interparticle interac-

tion. When κ is chosen high, the shielding range is small and this restoring effect

reduces. Thus for high amplitude and high κ the central region where external

forcing has been chosen to be finite becomes devoid of particles. The spiral then

fails to form adequately. Another interesting feature that has been observed when

the dust medium is in two-dimensional hexagonal crystalline state. In this case,

for high values of κ (for which the interparticle potential gets very weak) only a

few neighboring particles participate in the interactions. The spiral waveform in

such cases has a hexagonal front. This can be understood by realizing that for a

hexagonal symmetry (triangular lattice) crystal, the nearest neighbors separation

along different directions are different. Therefore, there is an anisotropy in the ra-

dial propagation speed along lattice axis and lattice diagonal directions and which

leads to the formation of a hexagonal waveform.

Chapter - VI: In Chapter 6, the summary and conclusion of the thesis along

with future directions has been provided.

This thesis comprises a series of studies on the collective structures in the two-

dimensional strongly coupled dusty plasma using both hydrodynamic and particle

simulations approach. These studies contribute significantly to the field of dusty

(complex) plasma and also to the multidisciplinary fields of science.
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2
Molecular dynamics and computational

fluid dynamics

The objective of this chapter is to introduce the simulation techniques used for

the studying of collective structures in the two-dimensional dusty plasmas. We have

used both molecular dynamics and fluid simulations for the study of linear and non-

linear structures. This chapter is organized as follows. Section 2.1 provides the

basics for molecular dynamics (MD) simulation of dusty plasma. In this section,

we have also benchmarked the MD code (LAMMPS [95]) with well known features

of the dusty plasma. In section 2.2, the details of visco-elastic fluid simulation of

dusty plasmas are provided.
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2.1 Molecular dynamics simulations of dusty plas-

mas

Dusty plasma is essentially made of discrete charged particles viz. electrons, ions

and micron or sub-micron size dust particles. Molecular dynamics simulations offer

the possibility of simulating discrete particles which interact with each other via

a specified potential. This is the first principle model and it track the dynamics

of each individual particle unlike PIC and fluid simulations that track the aver-

aged behavior. We have used open source classic code LAMMPS [95] for the MD

simulations.

2.1.1 Interaction potential for MD simulations of dusty plas-

mas:

Dust particles are much heavier than electron and ion species (≈ 1013− 1014 times

heavier than the ions) and hence, on dust response time scale electrons and ions

are assumed to follow the Boltzmann distribution. Therefore, the electrostatic

interaction potential between dust particles becomes Yukawa (shielded Coulomb)

and has the following form:

U(r) =
Q2

4πε0r
exp(− r

λD
),

Here, Q is the charge on a typical dust particle, r (= ri − rj) is the separation

between two dust (i-th and j-th) particles and λD is the Debye length of background

plasma. In this thesis, Yukawa interaction potential is taken among dust particles

for the MD simulations.
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2.1.2 Trajectory evolution:

The motion of the i-th particle is governed by the Newton’s second law:

mdr̈i = −
∑

j

∇Uij,

fi =
∑

j

Q2

4πε0

(
1

rλD
exp(− r

λD
) +

1

r2
exp(− r

λD
)

)

=
∑

j

(Uij/λD + Uij/r)

The force on the i-th particle depends upon the position of other particles

at that time. Velocity-Verlet algorithm has been used to integrate the equation

motion. The first step in the Velocity-Verlet integration is to evolve positions of

the particles:

r(t+ ∆t) = r(t) + v(t)∆t+ [f(t)/2m](∆t)2

From these positions force f(t+∆t) on each particle can calculated. In the second

step of integration velocities of the particles have been evolved using the following

equation,

v(t+ ∆t) = v(t) + [(f(t+ ∆t) + f(t))/2m]∆t

This algorithm can be derived from the Taylor expansion of phase space variables

about time t. The advantage of Velocity-Verlet integration is that both position

and velocity are defined explicitly on the same instant of time. The choice of in-

tegration time step (∆t) is important in dusty plasma and is taken such that the

generic phenomena occurs at dust response time scale can be easily resolved. En-

ergy conservation during equilibrium simulation should also be taken into account
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in deciding ∆t. If the chosen ∆t is too large then particles traverse large distance

in each step. This results a jump in the potential energy (or in the total energy).

Therefore, in the simulation, we have taken ∆t = 0.0036ω−1pd which satisfies both

the criteria. Dust particle trajectories with varying coupling parameter Γ is shown

in Figs. 2.1, 2.2, 2.3, 2.4. From the Figs, it is clear that at low Γ particle trajec-

tories are diffusive but trajectories becomes localized at higher Γ. The diffusion

coefficient shows the random mobility of the particles in the medium. We have

calculated the diffusion coefficient D of the dust particles from the mean square

displacement (MSD) as follows:

MSD =

〈
∆~r(t)2

〉
=

1

N

N∑

i=1

(
~ri(t+ t0)− ~ri(t0)

)2
(2.1)

Diffusion coefficient D and MSD are related through the following equation:

MSD =

〈
∆~r(t)2

〉
= 4Dt+ C1 (2.2)

From the above equation, diffusion coefficient D can be obtained from the slope

of MSD vs t plot. Here C1 is a constant and N is the number of particles in the

simulation. Diffusion coefficient D of dust particles with varying Γ has been shown

in Fig. 2.5. The velocity auto-correlation (VACF) shows the decay in the particle

motion along the MD trajectory which is given by:

V ACF =

〈
~v(t+ t0).~v(t0)

〉
=

1

N

N∑

i=1

~vi(t+ t0).~vi(t0) (2.3)

Velocity-autocorrelation function (VACF) of dust particles with varying Γ has been

shown in Fig. 2.6. The radial distribution function g(r), shows how particles are
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radially distributed around a given reference particle. Mathematically

g(r) =
V

N2

N∑

i=1

N∑

j(6=i)=1

[~r − (~rj − ~ri)] (2.4)

Here V is the volume/area of the simulation box. Computationally, the g(r) is

calculated in the form of histogram count by binning distance between all particle

pairs from 0.0 to the maximum force cutoff and then it is normalized by the count

if atoms were uniformly distributed like an ideal gas. RDF of dust medium with

varying coupling parameter Γ has been shown in Fig. 2.7.
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Figure 2.1: Particle trajectories for Γ = 1 and κ = 0.5. Trajectories are shown for
a time interval ωpdt = 2.86. From the figure it is clear that particle trajectories are
diffusive due to the weak coupling.
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Figure 2.2: Particle trajectories for Γ = 10 and κ = 0.5. Trajectories are shown
for a time interval ωpdt = 2.86.
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Figure 2.3: Particle trajectories for Γ = 50 and κ = 0.5. Trajectories are shown
for a time interval ωpdt = 2.86.
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Figure 2.4: Particle trajectories for Γ = 200 and κ = 0.5. Trajectories are shown for
a time interval ωpdt = 2.86. In this case particle trajectories are localized because
average value of inter-particle electrostatic potential energy is much higher than
average thermal energy of particles.

2.1.3 Addition of neutral force on the dust grains due to the

background gas:

To include the effect of background neutral gas on dust micro - particles, we have

added two additional force in the simulation. First is the neutral drag force due

to the relative velocity ~v between the dust grains and neutral particles. It is given

by [95–97]:

~Ff = −mdν~v,

Where md and ν are the mass of the dust particles and damping coefficient, re-

spectively. The other force is random kicks experienced by the dust grains due to
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Figure 2.5: Mean square displacement (MSD) with varying Γ. Particles motion is
ballistic at initial time with a slope of 2 but it becomes diffusive with a slope of
1 on later time. From the figure it is clear that motion is diffusive for Γ = 1, 50,
100, and 200 but non-diffusive for Γ = 10. [3]

collisions with neutral atoms. It is given by:

Fr ∝
√
kBTnmdν

dt
,

The direction and magnitude both of Fr are randomized [98]. Here dt and Tn are

the time step of simulation and background neutral gas temperature, respectively.

Both Ff and Fr together behave like a heat bath for the dust particles. The

simulation including the effect of background neutral gas is runs by the Langevin

MD dynamics and the motion of the i-th particle with mass md is given by the

following equation:

mdr̈i = −
∑

j

∇Uij + Ff + Fr (2.5)
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Figure 2.6: Velocity auto-correlation function (VACF) of the strongly coupled
dusty plasmas. From the oscillations it is clear that velocities are less correlated
in the weak coupled regime.

2.1.4 Details of a typical MD simulation:

The first task to start a MD simulation is to prepare a thermodynamically equi-

librated system for desired Γ value. For this, the initial configuration of particle

positions are chosen to be random and velocities are chosen to follow Gaussian dis-

tribution corresponding to temperature Td. After initialization, we have achieved

equilibrium temperature by generating positions and velocities from canonical en-

semble using Nose-Hoover thermostat. After sufficient dust plasma period canoni-

cal run, we have disconnected the thermostat and run the system microcanonically

in time. To test the equilibration of the system we check kinetic energy (KE), po-

tential energy (PE), temperature (Td), total energy (TE) fluctuation, and velocity

distribution at different leading times. This is shown in Figs. 2.8, 2.9, 2.10, 2.11,

2.12, and 2.13, respectively. In these Figs., normalization parameter U0 is equal to
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Figure 2.7: Radial distribution function (RDF) with varying Γ. Shielding param-
eter κ for all the Γ’s are 0.5. With increasing Γ, peaks appear in g(r) which shows
that now medium have not homogeneous distribution of particles. Splitting of sec-
ond peak (peak lies just after sharp peak) at Γ = 200 shows that medium obtains
crystalline phase and inter-particle distance is different along different directions.

Q2/4πε0a. In the simulation, these quantities are calculated as follows:

KE =
m

2

N∑

i=1

~vi
2 (2.6)

Td =
1

2NkB

N∑

i=1

~vi
2 (2.7)

PE =
N∑

i=1

N∑

j(6=i)=1

Uij =
N∑

i=1

N∑

j( 6=i)=1

Q2

4πε0(ri − rj)
exp(−ri − rj

λD
) (2.8)

TE = KE + PE (2.9)

We consider the system to be in an equilibrium condition when the fluctuation in

these quantities (δA/A) becomes very smaller e.g. fluctuation in total energy is
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10−3 % (Fig. 2.11) and velocity distribution becomes Maxwellian then we consider

the system is in an equilibrium condition. Fluctuation in the system also depends

upon the number of particles N and varies as 1/
√
N . Therefore, in order to re-

duce the statistical fluctuations in the thermodynamic quantities, we have taken

sufficient number of particles in the simulations. After achieving equilibrium, we
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Figure 2.8: Evolution of the kinetic energy (KE) of the system during the equili-
bration of the 2D medium.

have applied perturbations/drive on the medium to excite the linear/nonlinear

structures in the dusty plasmas. The coupling parameter of the dust medium is

varied by changing the temperature (Td) of the medium. For the low Γ values the

temperature (Td) of the system becomes higher than that for higher Γ values.

2.1.5 Diagnostic tools to extract Physics from the MD data:

In the MD simulation, the data obtained is the position and velocity of the in-

dividual entities or particles. Using “Matlab” we have extracted various physical
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Figure 2.9: Evolution of the potential energy (PE) of the system during the equi-
libration of the 2D medium.
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Figure 2.10: Evolution of the temperature (Td) of the system during the equilibra-
tion of the 2D medium.

quantities of interest from these MD data to investigate physical phenomena re-

sponsible for the collective structures. In our case, we are interested in 1D and
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Figure 2.11: Evolution of the total energy (TE) of the system during the equili-
bration of the 2D medium.
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Figure 2.12: Equilibrium x-component velocity distribution f(vx) of the particles.

2D density and we evaluate it by counting the number of particles on the defined

spatial grid. To find out rotation in the system, we have calculated the vorticity
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Figure 2.13: Equilibrium y-component velocity distribution f(vy) of the particles.

and enstrophy of the two-dimensional system. The enstrophy of the medium is

calculated as:

Ω =

∫
| ~∇× ~v |2 dxdy,

=

∫
| (∂vy/∂x)− (∂vx/∂y) |2 dxdy (2.10)

Here, vx and vy are the fluidized velocities calculated at each grid point.

To find out characteristics modes in dusty plasma medium, we have plotted

both dust acoustic wave and transverse shear wave dispersion relation from the

naturally excited particle oscillations (phonons). These particle oscillations are

excited by thermal or electrostatic fluctuations in the plasma. The dust acoustic

and transverse shear spectrum are calculated from the longitudinal and transverse
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current-correlation, respectively as follows:

λ(k, t) = k
∑

j

vjx exp(ιkxj) (2.11)

τ(k, t) = k
∑

j

vjy exp(ιkxj) (2.12)

Here k = 2πn/Lx is the wave vector which is chosen along X-axis. Where n (=

1, 2, 3, 4......) and Lx are the integer number and simulation system length along

the X-direction, respectively. We have calculated the longitudinal L(k, ω) and

transverse T (k, ω) current fluctuation spectra by taking the Fourier transform of

λ(k, t) and τ(k, t), respectively as follows:

L(k, ω) =| F (λ(k, t)) |2 (2.13)

T (k, ω) =| F (τ(k, t)) |2 (2.14)

The collective modes are the peaks in the spectra of L(k, ω) and T (k, ω) that

represents the maximum energy of the wave mode. The plot of this peak value

vs wave vector (k) gives the dispersion relation of the longitudinal and transverse

wave mode in medium as shown in Fig. 2.14 and Fig. 2.15, respectively.
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Figure 2.14: Dispersion relation for DLW in the two-dimensional dusty (Yukawa)
plasmas. Γ and κ value of the medium for this plot is 100 and 0.5, respectively. At
higher ka, ∂ω/∂ka is < 0 means phase reversal occurs due to the strong coupling
nature of the medium.
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Figure 2.15: Dispersion relation for TSW in the two-dimensional dusty (Yukawa)
plasmas. Γ and κ value of the medium for this plot is 100 and 0.5, respectively.
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2.2 Fluid simulation of dusty plasma

In this section, we describe the 2-D fluid simulation techniques used for the study

of excitation and dynamics of spiral waves in dusty plasmas. For the intermedi-

ate values of Γ (1<Γ<170), dusty plasma medium behaves like visco-elastic fluid

which has often been depicted by the Generalized Hydrodynamic (GHD) model de-

scription. The equations depicting the evolution of the visco-elastic dusty plasma

medium are represented by the coupled set of equations of GHD and the continuity

equation for velocity and density evolution:

[
1 + τm(

∂

∂t
+ ~v · ∇)

]
×

[(
∂~v

∂t
+ ~v · ∇~v

)
+
∇P
nd
−∇φ− Frot

]
= η∇2~v (2.15)

∂nd
∂t

+∇ · (nd~v) = 0 (2.16)

Where we have chosen the external force to be operative in a central circular patch

with radii r0 of the simulation box. Thus

Frot = A sin(ωf t)x̂+ A cos(ωf t)ŷ; r < r0

Frot = 0; otherwise (2.17)

Where, A and ωf = 2π/Tf are amplitude and angular frequency of force, respec-

tively [99–101]. The magnitude of the force is constant but its direction rotates

in time. Also, P here represents the dust pressure (for which equation of state is

used) and φ represents the scalar potential. The scalar potential is determined by
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the Poisson’s equation:

∇2φ = nd + µe exp(σeφ)− µi exp(−φ) (2.18)

with parameters σe = Ti/Te, µe = ne0/Zdnd0 and µi = ni0/Zdnd0, where Ti and Te

are the ion and electron temperature, ni0, ne0 and nd0 are the equilibrium density

of ion, electron and dust fluid, respectively and Zd is the negative charge on each

dust particle. In unperturbed equilibrium situation dusty plasma medium satisfy

the quasineutrality condition ni0 = Zdnd0 + ne0. Here, we have considered the

Boltzmann distribution for electrons and ions on dust response time scale so as to

have:

ne = µe exp(σeφ); ni = µi exp(−φ), (2.19)

In the GHD model Eq. (2.15) strong coupling is incorporated through the non-local

visco-elastic operator. Non-local visco-elastic operator contains the memory effects

and the short range order that develops in the system with increased correlation.

In strong coupling regime dust fluid retain the memory of its past configurations.

The memory function has often been modeled as exponentially decaying in time

i.e as exp(−t/τm) [49,102]. Here, τm is a time constant representing the relaxation

time. It should be noted that Eq. (2.15) reduces to the momentum equation for

a viscous compressible fluid in the limit when τm → 0, for which η represents the

viscosity. A finite τm represents the time for which the fluid retains memory of its

past configurations arising due to elastic behavior resulting from strong coupling

features. Thus, if one is looking for a phenomena with time scales for which the

condition τm d
dt
<< 1, is satisfied the dust fluid would exhibit essentially a behavior

of normal viscous fluid. However, at faster time scales for which τm d
dt
> 1, the dust
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fluid retains its memory and characteristic new elastic response can be observed.

The variables v, φ and ns (s = e, i, d) are the dust fluid velocity, potential, and

number density of the charged species (electrons, ions, and dust), respectively.

The normalized number densities are n̄d = nd/nd0, n̄i = ni/ni0, n̄e = ne/ne0. Time

and length are normalized by ω−1pd and λD (= kBTi/4πZdnd0e
2)

1
2 . The normalized

scalar potential is φ̄ = Zdeφ/kBTi. The pressure is determined using equation of

state P = µdγdndkBTd. Here µd = 1
Td

∂P
∂nd
|Td is compressibility parameter and γd

is adiabatic index. The parameters µd, τm, and η are supposed to be empirically

related to each other [16,103,104].

A flux-corrected transport scheme proposed by Boris et al., [105] has been used

to evolve Eqs. (2.15,2.16). Since the scheme numerically solves the continuity

form of equations with source and sink terms, we split Eq. (2.15) as two separate

equations of the following form:

[
1 + τm(

∂

∂t
+ ~v · ∇)

]
~ψ = η∇2~v

(
∂

∂t
+ ~v · ∇

)
~v + α

∇nd
nd
−∇φ− Frot = ~ψ (2.20)

Where, α = µdγdTd/TiZd represents the square of sound speed of the medium.

The basic principle of this scheme is based on the generalization of two-step Lax-

Wendroff method [106]. As the simulation system modeled in x-y plane, therefore,

the above equations 2.16 and 2.20 have following form in Cartesian geometries x-y

as,
∂nd
∂t

+ nd
∂vx
∂x

+ vx
∂nd
∂x

+ nd
∂vy
∂y

+ vy
∂nd
∂y

= 0 (2.21)

∂ψx
∂t

+ vdx
∂ψx
∂x

+ vdy
∂ψx
∂y

=
η

τm

∂2vdx
∂x2

+
η

τm

∂2vdx
∂y2

− ψx
τm

(2.22)
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∂ψy
∂t

+ vdy
∂ψy
∂y

+ vdx
∂ψy
∂x

=
η

τm

∂2vdy
∂x2

+
η

τm

∂2vdx
∂y2

− ψy
τm

(2.23)

∂vdx
∂t

+ vdx
∂vdx
∂x

+ vdy
∂vdx
∂y

= − α

nd

∂nd
∂x

+
∂φ

∂x
+ ψx + Frotx̂ (2.24)

∂vy
∂t

+ vy
∂vy
∂y

+ vx
∂vy
∂x

= − α

nd

∂nd
∂y

+
∂φ

∂y
+ ψy + Frotŷ (2.25)

The right-hand sides of the above equations are separated into two parts, the x-

direction, and the y-direction terms. Putting equations in this fashion separate

the x-derivatives and the y-derivatives in the divergence and gradient terms into

parts that is used sequentially by a general one-dimensional continuity equation

solver in the LCPFCT package of subroutines. LCPFCT is an open source fluid

code base on flux corrected transport scheme [105]. This subroutine solves the

2-D fluid equations by splitting the time steps in the x and y directions. Keeping

this methodology in mind, we first solve the integration along x-direction and

then, subsequently, along y-direction in the same time interval t to t+∆t. The

numerical technique of integration using time-step splitting is discussed in detail

in reference [105]. This technique can also be used for other geometries viz. three-

dimensional, spherical, and cylindrical. We have chosen the simulation time step

small enough to avoid the significant change in the cell-averaged values during

the time steps t to t+∆t. This approach is second-order accurate as long as the

time step is small and changed slowly, but there is still a bias that gets built is

dependent on which direction, (x or y), is integrated first. For removal of this bias,

the results from two calculations for each time step can be averaged. The averaged

value is computationally expensive but has better value.

In the simulations, we have employed periodic boundary conditions (PBC)

along x and y directions. The spatial resolution (grid size) ∆x or ∆y has been
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chosen in such a way that the Debye length (λD) is adequately resolved in both

the directions. The temporal resolution i.e. time step (∆t) is then calculated

from Courant-Friedrichs-Lewy (CFL) condition ∆t = Cn(∆)/umax, where umax

and Cn are the maximum fluid velocity and CFL number [105]. Here ∆ is the

minimum value between ∆x and ∆y. We have taken Cn = 0.2 in the simulations.

In our study, the maximum fluid velocity umax depends upon the amplitude of the

forcing. Therefore, in our simulations, the value of ∆t has been varied according

to change in the umax for a good temporal resolution and stability. The numerical

observations have also repeated by changing the grid size ∆x or ∆y, and Cn. The

results of the simulation have been recorded at each time step in terms of nd, ψx,

ψy, vx, vy, and φ.

To solve non-linear Poisson’s equation 2.18, we have used the Newton-Raphson

method. First of all, we have decomposed Poisson’s equation (two-dimensional)

into the following form using finite difference scheme:

C0φi+1,j + C0φi−1,j + C1φi,j+1 + C1φi,j−1 − C2φi,j

= ndi,j + µe exp(σeφi,j)− µi exp(−φi,j) (2.26)

Here, C0 = 1/(∆x)2, C1 = 1/(∆y)2, and C2 = 2[(∆x)2 + (∆y)2]/[(∆x)2(∆y)2] are

the constants. Index (i, j) in the Eq. 2.26 are running from 1 to N (number of grids)

along X and Y directions, respectively. Periodic boundary conditions are employed

in the simulations, therefore φ1,1 = φN+1,1; φ1,1 = φ1,N+1; φ1,N+1 = φN+1,N+1; and

φN+1,1 = φN+1,N+1.

The Eqs. 2.26 are like the system of equations

Aφi,j = F0 + F1(φi,j) + F2(φi,j) (2.27)
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The first term on the right-hand side is a constant vector, second and third terms

are the nonlinear terms. We can also write above equation as follows:

G(φi,j) = Aφi,j − F = 0 (2.28)

Here vector F = F0 + F1(φi,j) + F2(φi,j). From here, we can get the new function

by Newton-Raphson root finding method as:

φnewi,j = φoldi,j −
G(φoldi,j )

G′(φoldi,j )
(2.29)

Where G′(φoldi,j ) =
∂G(φi,j)

∂φi,j
is the Jacobian matrix. Further, we have applied two step

numerical technique to obtain the second term of the above equation as follows:

G′ψ = G (2.30)

The advantage of two step numerical technique is that it avoids the inverse calcu-

lation of matrix G′(φoldi,j ). From above equation, we have calculated ψ using the

linear solver. The final solution of Eq. 2.29 is obtained as

φnewi,j = φoldi,j − ψ (2.31)

The iterations of the linear solution ψ is being continue until it obtains a given

predefined tolerance i.e. ||ψ|| < tolerance value.
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3
Korteweg-de Vries (KdV) solitons in

molecular dynamics simulations of a

dusty plasma medium

The objective of this chapter is to study the KdV solitons in the strongly coupled

dusty plasma using MD simulations. We have applied an experiment like electric

field perturbations [45, 47, 48] on the dust particles to excite solitons in the simu-

lation ∗. The collective response of the dust particles to such an applied electric

field impulse gives an excitation of a perturbed density pulse (compression) propa-

gating in one direction along with a train of negative perturbed rarefactive density

oscillations in the opposite direction. The head-on and overtaking collision and

associated phase shift have also been studied. We have also shown that by increas-

ing the strength of electric field impulse, the amplitude of the solitonic structure

∗Sandeep Kumar, Sanat Kumar Tiwari, and Amita Das, Physics of Plasmas 24, 033711
(2017)
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increases and above a fixed strength, it splits in the form of multiple solitons. Fur-

ther, we have studied the effect of strong coupling of the medium and neutral drag

on the solitonic structures.

3.1 Introduction

Solitons are robust and stable localized nonlinear structures observed in variety

of natural and laboratory scenario including optical fibers [88,89], semiconductors

[90], oceanography [91], plasmas [92–94, 107], laser plasma interaction [108–110]

etc. [111–113]. Mathematically, solitons are solution of non-linear equations such

as Korteweg-de Vries (KdV) equation, Klein-Gordan equation and Schrodinger

equation etc. [57,114]. In plasmas both electrostatic [43, 51,71,115–117] and elec-

tromagnetic solitary waves [110,118] are observed. The robust and stable existence

of solitons can be utilized for communication as well as transport of energy [119].

Observing solitons in ordinary electron-ion plasmas in general would require so-

phisticated diagnostics. However, experimental observations of solitonic structures

in the context of dusty plasma can be carried out with relative ease. This is be-

cause the temporal and spatial length scale of excitations typically lie within the

perceptible grasp of human senses [120].

The dusty plasma contains highly charged (mostly negative) and heavy (1013−

1014 times heavier than the ions) dust grains along with electron and ion species.

The inclusion of heavy dust species makes such a plasma exhibits a rich class of

collective phenomena occurring at longer time scales. There have been several

experimental studies reported excitation of dust acoustic soliton [37, 45, 47, 48],

their collisional interaction and the associated phase shift [48,121]. More recently

the excitation of multiple solitons have also been reported by Boruah et al. [122].
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In this work we show that all these aspects can be very well depicted by treating

the dust species in the plasma as particles interacting via Yukawa potential which

mimics the screening due to the electron and ions species and has the following

form [123]:

U(r) =
Q2

4πε0r
exp(− r

λD
) (3.1)

Here Q = −Zde is the charge on a typical dust particle, r is the separation between

two dust particles, λD is the Debye length of background plasma. Typical one

component plasma (OCP) is characterized by two dimensionless parameters Γ =

Q2

4πε0akbTd
and κ = a

λD
. Here Td and a are the dust temperature and the Wigner-Seitz

radius respectively.

The present simulation studies employ the electric field perturbations of the

experimental situations [47, 48] to excite the solitonic structures. We study the

effect of the amplitude of the electric field and the width corresponding to the

region where it is applied on the characteristics of the excited coherent structure.

It has been observed that increasing the amplitude of the electric field paves the

way for the formation of multiple solitons in the medium as observed recently

by Boruah et al. [122]. It should be noted that by considering the response of

the dust particles to the imposed electric field one makes a specific choice of the

sign of the dust charge. The response of the dust species (with specified sign of

the charge) to the applied electric field breaks the left and right symmetry, as a

result of which one observes a positive train of solitons in one direction, whereas

in the other direction rarefactive density oscillations are observed as per the KdV

prescription. Our results are also in line with the experimental observations of

KdV solitons by Sheridan et al. [45] where authors reported a stable solitary pulse

in leading direction and a dispersive wave moving in the backward direction. This
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is in contrast to an earlier simulation study by Tiwari et al. [4], where arbitrary

Gaussian density perturbation splits in two solitons moving in opposite directions.

This difference in observation can be understood as in the case of Tiwari et al. [4]

there was nothing in the excitation to break the left and right symmetry.

This chapter is organized as follows. Section 3.2 provides details of simulation.

Section 3.3 explains the excitation of solitonic structures and reports on various

features which confirm them as KdV solitons. In section 3.4, we discuss the colli-

sional interaction amidst solitons. Section 3.5 shows the details of the excitation

of multi-solitons, effect of the coupling parameter and neutral drag. Section 3.6

contains the summary.

3.2 Description of MD simulations

Molecular Dynamics (MD) simulations have been carried out for a two-dimensional

system of point dust particles interacting with each other through the Yukawa

form of interaction potential. A two dimensional box (with periodic boundaries) is

created with Lx = 20a and Ly = 1000a along X and Y directions respectively. Here

a = (πn2D)−
1
2 and n2D is the dust density [124] in two dimensions. Parameters

[99] chosen for the present set of simulations are as follows: the dust grain mass

m = 6.99 × 10−13 Kg, charge on dust Q = 11940e (e is an electronic charge)

and a = 0.418 × 10−3 m. Shielding parameter κ = a
λD

is chosen to be 0.5 for all

simulations leading to plasma Debye length to be λD = 8.36× 10−4 m. For these

parameters, E0 = Q
4πε0a2

= 98.39 V
m

and equilibrium density (nd0) = 1.821 × 106

m−2. The cut-off for particle interaction potential in the simulation here has

been chosen to be at 20a. Characteristic dust plasma frequency of the particles

ωpd =
√

Q2

2πε0ma3
' 35.84 s−1, which corresponds to the dust plasma period to be
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0.175 s. We have chosen simulation time step as 0.0072ω−1pd so that phenomena

occurring at dust plasma frequency can be easily resolved. In this chapter, distance,

density, time and electric field are normalized by a, nd0, ω−1pd and E0 respectively.

The first task is to prepare an equilibrated system. For this, the initial config-

uration of particle positions is chosen to be random and velocities were chosen to

follow Gaussian distribution corresponding to the temperature Td. Furthermore,

we achieved equilibrium temperature by generating positions and velocities from

canonical (NVT) ensemble using Nose-Hoover [125, 126] thermostat. To test the

equilibration of system, we checked temperature fluctuation and velocity distribu-

tion at different leading times. After about an NVT run for 2867ω−1pd time, we

disconnected the canonical thermostat and ran a simulation for microcanonical

(NVE) ensemble for about 1433ω−1pd time. After NVE run temperature becomes

steady and equal to Td. Now system is in equilibrium and ready for further explo-

rations. For most of our studies we have chosen the value of Γ = 100 and κ = 0.5.

We have, however, also studied cases with different choice of Γ.

3.3 Excitation of solitons and dispersive waves

We have applied an electric field perturbation along −ŷ direction in a narrow

rectangular region (to mimic a wire) as shown in Fig. 3.1, mathematically −Eδ(t−

t0)ŷ at time t0, where δ is Dirac’s delta function. The pulse duration of the

electric field perturbation is 0.0716 ω−1pd . This electric field results in an electrostatic

force FE = QEŷ on the dust particles. The direction of force is along +ŷ as we

choose the dust charge to be −Q negative. The evolution shows an excitation

of a solitary wave propagating in +ŷ direction and a damped dispersive wave in

the −ŷ direction. The time evolution of density (nd) is shown in Fig. 3.2. These
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observations are consistent with the property of the solitons permitted by the KdV

equation which is given by the equation:

∂nd
∂t

+ Cnd
∂nd
∂y

+D
∂3nd
∂3y

= 0 (3.2)

Where C and D depend upon density, temperature and mass of particles in the

medium [47, 48]. Second and third term in equation (2) give the nonlinearity and

dispersion in the medium respectively. H. Segur [127] and P. G. Drazin [114]

have shown that in addition to soliton solutions which is obtained from the bal-

ance of nonlinearity and dispersion, negative amplitude dispersive waves solutions

propagating in opposite direction with a slower velocity are also permitted. The

dispersive waves is the solution of initial-value problem for linearised KdV equa-

tion:
∂nd
∂t

+D
∂3nd
∂3y

= 0

The amplitude of such dispersive wave have been shown to decays with time as

A0×(3t)−
1
3 . Where A0 is the initial amplitude. Comparison of decaying amplitude

of the dispersive wave observed numerically has been provided with the analytic

expressions of A0×(3t)−
1
3 in Fig. 3.3. It can be seen that there is a close agreement

between the two plots.

The above observations of propagating solitons in one direction and dispersive

wave in other are in contrast to earlier studies carried out by Tiwari et al. [4], where

two oppositely propagating solitonic structures were observed when an arbitrary

initial Gaussian density perturbation was evolved. This has been reproduced here

by us in Fig. 3.4. In the case of an initial Gaussian perturbation in density,

there is no way to distinguish between the forward and reverse directions. On the
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other hand when one considers the response of dust particles with specified charge

to an applied electric field the left and right directional symmetry gets broken

up. Another well known property of KdV soliton is that the parameter AL2 is
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Figure 3.1: Schematic representation of the two-dimensional simulation system
used for the KdV soliton study. Here, width "d" represents the region on which
electric field perturbation is applied for the KdV excitation.

constant [47,128]. Where A is amplitude and L is full-width at half the maximum

amplitude (FWHM) of soliton structure. In Table - 3.1 we list some parameters

associated with the numerically observed solitonic structures. This include the

normalized Electric field amplitude, the Mach number, the normalized value of the

soliton width L
a
, the normalized density amplitude A = δn

nd0
and AL2 in various

columns. The Mach number is the ratio of soliton velocity to the dust acoustic

speed, i.e., M = v
Cs
. The dust acoustic wave speed (Cs) of medium at Γ = 100

and κ = 0.5 is equal to 1.94 × 10−2 m
s
. The soliton velocity is calculated from

the slope of the plot of the soliton trajectory with respect to time. From table

- 3.1, we find that with increasing amplitude (A) the width (L) of solitary wave
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Figure 3.2: Time evolution of a solitary pulse (moving +ŷ direction) and a disper-
sive mode (moving −ŷ direction) excited through the electric field perturbation
(E = 25.40) in the medium.
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Figure 3.3: Comparison of theoretical and simulation results of amplitude ( δn
nd0

)
damping for rarefactive dispersive wave.

decreases as expected. From the table, it is also clear that soliton parameter AL2

remains fairly constant for solitons with different Mach numbers (M). This can

be understood from the fact that even though the percentage variation in the data

between the minimum and maximum value of L2 is about 27%, in A about 21%;
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Figure 3.4: Time evolution of a Gaussian form of density perturbation in the
medium. The Gaussian pulse splits in two A (+ŷ) and B (−ŷ) oppositely propa-
gating symmetric pulses due to the left and right symmetry in the medium [4].

Table 3.1: Soliton Parameter with varying amplitude of perturbation (E). Param-
eters are taken at the time 55.91ω−1pd .

E
E0

M L
a

A ( δn
nd0

) AL2

20.32 1.15 9.5 0.307 27.70

22.86 1.16 9.0 0.324 26.24

25.40 1.18 8.5 0.346 24.99

28.96 1.20 8.5 0.365 26.37

30.49 1.22 8.1 0.393 25.78

the variation in AL2 is limited to 7% only. This can be attributed to be well within

the inaccuracy in estimation.
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3.4 Interaction between solitons

We also report on the collisional interaction characteristics of the numerically

evolved structures which show clear solitonic behaviour.

3.4.1 Head-on collision of same amplitude solitons:

By applying suitable electric field perturbations at different locations we create

two counter propagating solitons of same amplitude. Time evolution of these

structures are shown in Fig. 3.5. The structures collide and cross each other

with no change in their shape and size. We also observe that during the time

they overlap while colliding the resultant amplitude (0.589) of solitary wave is less

than the sum of the individual soliton amplitudes (0.318 + 0.318 = 0.636). The

trajectories of the two solitons with initial amplitudes of perturbation E = 25.40

and E0 = 12.70 are shown in Fig. 3.6 and Fig. 3.7 respectively. Since the

solitons are of equal amplitude the structures remain static for some time when

they overlap. Time difference (δt) between the two points (intersection of incoming

and outgoing trajectories) is termed as phase shift and it is about 4.3ω−1pd and

8.6ω−1pd for the two cases as shown in Fig. 3.6 and Fig. 3.7 respectively. The

phase shift clearly decreases with increase in the amplitude of the solitons. This

particular result is in contrast to the experimental findings of Sharma et al. [48].

The reason for this difference is not clear at the moment. However, intuitively one

would expect the collision between higher amplitude solitons to have smaller phase

shifts as they move with greater speeds. Conclusion similar to ours on phase shift

has been theoretically inferred in some previous studies [128,129].
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Figure 3.5: Collision of two same amplitude counter propagating solitons. Oppo-
sitely moving solitons (A and B) were excited with same amplitude electric field
(E = 25.40) in +ŷ and −ŷ directions respectively.
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Figure 3.6: Phase shift during same amplitude soliton collision. An initial electric
field to excite them is E = 25.40.

3.4.2 Head-on collision of different amplitude solitons:

We have also considered the case of head on collision amidst two counter propagat-

ing solitonic structures with unequal amplitude. Again the two structures emerge
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Figure 3.7: Phase shift during same amplitude soliton collision. An initial electric
field to excite them is E = 12.70.

unchanged after suffering collision as shown in Fig. 3.8. From the plot of Fig.

3.9, which shows the trajectories of the two solitons, it can be observed that after

the collision the low amplitude soliton in this case gets dragged in the direction

opposite to its own propagation, by the high amplitude structure for a while. This

is in confirmation with the analytical results obtained by Surabhi et al. [44]. This

time phase shift is about 5.7ω−1pd which is shown in Fig. 3.9. Thereafter the two

structures get separated and move in their respective directions. In this case too

the resultant amplitude (0.436) of the structure during collision is less than the

sum of the individual amplitudes (0.308 + 0.185 = 0.493) of the solitons.
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Figure 3.8: Head-on collision of different amplitude solitons A (E = 25.40) and B
(E = 15.24) moving in opposite direction.
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3.4.3 Overtaking collision amidst different amplitude soli-

tons:

In this case we excite two solitons propagating in the same directions. The smaller

amplitude soliton with slower phase velocity is placed ahead of the high amplitude

soliton which is moving faster. After some time the faster soliton catches up with

the slower soliton ahead of it and collides with it. This has been shown in Fig.

3.10. We have found that phase shift in the overtaking collision is larger than

head-on collision.
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Figure 3.10: Density evolution for overtaking collision of A (E = 25.40) and B
(E = 15.24) amplitude solitons.
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3.5 Excitation of Multi-solitons, effect of the cou-

pling parameter and neutral drag:

When we increase either the amplitude (E) or the spatial width (d) of the electric

field impulse, the solitary pulse excited in the forward +ŷ direction breaks up into

more than one solitons. In Fig. 3.11 it is shown that for a fixed value of d = 10, as

the amplitude of electric field perturbation is increased, multiple solitons appear.

Similarly when the electric field amplitude is fixed and the width d is increased,

multiple solitons get formed as shown in Fig. 3.12. Each of these multiple struc-

tures propagate along the same direction. They arrange themselves in the order

of decreasing amplitude A (increasing width L). Interestingly the crests of each

of the structures lie close to a straight line. These multiple solitons are termed

as multi-solitons. In one of the recent experiments done by Boruah et al. [122]

of dusty plasmas the multi-soliton formation has been clearly demonstrated by

increasing the electric field impulse. The MD simulations with Yukawa interaction

thus seems to be a good depiction of the properties of the dusty plasma medium.

It should be noted that the formation of multiple solitons had been theoretically

predicted by Zabusky et al. in the context of electron-ion plasma [92].

We have also investigated the role of coupling parameter on the formation of these

soliton structures. We observe that with increasing coupling parameter Γ of the

dust medium, amplitude (magnitude) of each soliton increases and consequently

the width decreases as shown in Fig. 3.13. Further, we have also investigated the

role of neutral drag ν on the formation of these soliton structures. We observe

that with increasing neutral drag ν on the dust particles, amplitude (magnitude)

of each soliton decreases and consequently the width increases as shown in Fig.
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Figure 3.11: Formation of multi-soliton due to the increase in electric field strength
(E). Density of medium for all E is taken at time 263.78ω−1pd . In all three cases
perturbation width (d) is 10.
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3.6 Summary

We have carried out the MD simulations for dusty plasma medium, treating the

medium as collection of dust particles interacting with Yukawa interaction. We

study the response of the dust medium to an imposed electric field impulse and

provide clear evidence of the formation of KdV solitons. These evidences are in

terms of following features: (a) a creation of positive density pulse propagating in

one direction along with a train of negative perturbed density oscillations in the

opposite direction (b) relative constancy of AL2 (here A is the amplitude and L is

the full width at half maxima of the structure) (c) the structures are shown to be

remain intact after undergoing collisional interaction amidst them. Interestingly,

the results (a) and (b) are supported by an experimental observation of dusty

plasma made by Sheridan et al. [45].

We have also demonstrated that by increasing the strength of electric field

impulse the amplitude of the solitonic structure increases and after a point it

starts to splits in the form of multiple solitons. This is in agreement with recent

experiments which have reported the formation of multiple solitons [122]. This

suggests that the depiction of the dusty plasma medium in terms of a simple

model of a collection of dust particle interaction via Yukawa potential is fairly

good. Another observation made in the present study is related to studying the

role of coupling parameter on the formation of solitonic structures. We have shown

that by increasing the coupling parameter of the medium the amplitude of the

solitonic structures increases while its width decreases. We have also shown that

with an increase in the neutral drag on the dust particles the amplitude of the

solitonic structures decreases and its width increases.
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Furthermore, we have observed that the phase shifts in the collisional inter-

action seems to decrease with the increasing amplitude of the colliding solitonic

structures. In one recent experimental observations [48] as well as in some other

literature [44] contrary to this has been reported. We feel that our observations ap-

pears consistent with intuition, as one would expect the interaction time between

two rapidly moving solitons (which have higher amplitude) to be smaller compared

to slowly moving low amplitude solitons. We, therefore, feel that a relook of this

issue in experiments as well as theoretical analysis is necessary.
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4
Spiral wave (structure) in driven dusty

plasmas: Fluid (continuum) simulations

The objective in this chapter is to investigate the excitation and dynamics of

spiral waves (structures) in the dusty plasmas using fluid simulations∗. These

spiral waves have been driven by a rotating forcing. In the fluid simulations, dusty

plasma considered as a visco-elastic fluid. Characteristics of spiral waves with

varying strength and frequency of rotating force and sound speed of the medium

have also been studied. The visco-elastic simulation results have also been compared

with the viscous (that have no elasticity) dust fluid results.

4.1 Introduction

Rotating spiral waves are ubiquitous structures found in a wide range of natural

and laboratory scenario. For instance, Belousov-Zabotinsky (BZ) reaction (Fig.

∗Sandeep Kumar, Bhavesh Patel, and Amita Das, Physics of Plasmas 25, 043701 (2018)
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4.1) [130], excitable reaction-diffusion media [131,132], liquid crystals [133], cardiac

tissue (Fig. 4.2) [134,135], rotating fluids [136], spiral galaxy (Fig. 4.3) [137,138],

Saturn ring (Fig. 4.4), coupled oscillators [139,140], etc. [141–144], all demonstrate

the existence of spiral waves. The self organization of excitations in the form of

spiral wave patterns continues to remain an intriguing topic. It has often been

interpreted on the basis of an interplay between propagator and controller fields in

the excitable medium. The spiral wave tip can rigidly rotate or meander depending

upon control parameters of the medium. A vast amount of literature is present

in which people claim that meandering occurs via a Hopf bifurcation [131, 145].

Mathematically, FitzHugh-Nagumo (FHN) model has been widely employed for

the spatiotemporal development of spiral waves in excitable media [146–149]. For

incompressible fluid system, the thermal spiral wave pattern has been observed

resulting from temperature gradient excitations [136]. In this chapter, we show

that a compressible fluid system can also be forced to form spiral wave density

patterns. These waves are shown to propagate in a spiral pattern even after the

forcing is switched off.

For definiteness, we consider dusty plasma medium for our study. A dusty

plasma is mixture of highly charged (mostly negative) and heavy (1013 − 1014

times heavier than the ions) dust grains along with electron and ion species. A

typical dust particle of micron size has approximately -104e charges. At slow

dust time scales the inertialess response of electrons and ions are considered which

essentially follow a Boltzmann distribution. The inclusion of heavy dust species

makes such a plasma exhibit a rich class of collective phenomena. Depending

on the value of its coupling parameter it can have both fluid like viscous as well

as solid like elastic traits wherein it preserves memory of its past configurations
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Figure 4.1: Patterns in the Belousov-Zhabotinsky (BZ) reaction image. Image
credit: Michael C. Rogers and Stephen Morris, University of Toronto.

for some amount of time. This has led to the adoption of visco - elastic fluid

depiction in terms of Generalized Hydrodynamic (GHD) fluid model [16,17]. The

dusty plasma medium has been shown to exhibit a variety of normal modes such

as the longitudinal acoustic [150–155] and transverse shear waves [80, 156–158].

In the nonlinear regime the dusty plasma medium can excite self-sustained non-

linear propagating waves that can form solitons [159, 160], shocks [53, 61, 161],

and vortices [70–72, 162, 163] etc. Experimental studies by externally driving the

medium by energetic particles and or external rotating electric fields (REF) have

also been considered [99,164–166]. In this work, we numerically study the response

of the dusty plasma medium in the presence of external forcing by a rotating electric

field using the generalized hydrodynamic model. Both weak (wherein the equations

reduce to simple charged fluid description) and strong coupling regimes have been

investigated in detail.

This chapter has been organized as follows. In section 4.2 we report the ob-
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Figure 4.2: Rotating spiral waves of electrical activity on a heart surface. Image
credit: A. V. Holden, Nature 392, 20 (1998)

servation of the excitation of spiral density waves in the presence of forcing. The

salient features of spiral density wave with respect to various parameters of the

medium and forcing characteristics are discussed in detail in various subsections.

Section 4.3 provides the summary and conclusion on the study.
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Figure 4.3: Spiral galaxy NGC 6814 is captured by NASA/ESA Hubble Space
Telescope. Image credit: ESA/Hubble and NASA

Figure 4.4: Recently NASA’s Cassini spacecraft shows this figure which is taken
from the Saturn’s ring and concluded that it is a spiral density wave structure in
the Saturn’s ring. Image credit: NASA/JPL-Caltech/Space Science Institute
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Figure 4.5: Schematic representation of the circularly rotating force (Frot). Here,
Frot = A sin(ωf t)x̂+A cos(ωf t)ŷ which is only acting within the circular region on
each grid point. The Absolute value of the Frot is constant but direction rotating
clockwise with leading time. The solid large arrow depicts the direction of Frot and
small dotted arrows direction of rotation. This force creates perturbation in the
density (~∇nd) and potential (~∇φ) of the medium.
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Figure 4.6: Schematic representation of the circularly rotating force (Frot) at dif-
ferent times. The direction of REF shown in the subplots of this Fig. is obtained
by putting t = 0, Tf/4, Tf/2, Tf , respectively in Eq. 2.17.
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4.2 Numerical observations

We carry out numerical simulation studies for the coupled set of Eqs. (2.15,2.16)

along with Poisson equation (2.18) in a 2-D x − y plane. The simulation details

are present in section 2.2 of Chapter 2. The boundary condition are chosen to be

periodic. The box dimension have been chosen as Lx = 16, Ly = 16. The dust fluid

is chosen to have a zero velocity and homogeneous density distribution initially.

A rotating electric field (REF) forcing is applied in a small circular domain at the

center of x− y plane with a radii r0 = 0.5. The schematic of REF is shown in Fig.

4.5 and Fig. 4.6. Both cases, where forcing continues to be present throughout

the simulation and/or is switched off after a certain duration has been considered

in our studies.

4.2.1 Weak coupling: Fluid regime

In the weak coupling case, the dust momentum equation satisfies the evolution

equation of a normal charged fluid. The form of the equation can be recovered by

choosing τm = 0 in Eq. (2.15). The evolution of vorticity in the compressible fluid

regime (i.e. when τm = 0) can be obtained by taking the curl of Eq. (2.15) along

with the continuity equation Eq. (2.16). Using the vector identity of

~v · ∇~v = ∇(v2/2)− ~v × (∇× ~v)

71



Chapter 4. Spiral wave (structure) in driven dusty plasmas: Fluid (continuum)
simulations

and assuming that the pressure is simply a function of density through equation

of state we have vorticity equation:

∂~Ω

∂t
− ~∇× (~v × ~Ω) = ∇× ~Frot + η∇2~Ω (4.1)

Here, ~Ω = ∇× ~v is the vorticity. In the two-dimension (2D)

~∇× (~v × ~Ω) = −Ω(~∇ · ~v)− (~v · ~∇)Ω

From continuity equation:

(~∇ · ~v) = − 1

nd

(
∂ ~nd
∂t

+ ~v · ∇nd
)

Using above two equations into Eq. 4.1 it becomes

∂~Ω

∂t
+ (~v · ~∇)Ω =

Ω

nd

(
∂nd
∂t

+ ~v · ∇nd
)

+∇× ~Frot + η∇2~Ω

Dividing both side of this equation by nd it implies

∂

∂t

(
~Ω

nd

)
= ~v ·

(
Ω

n2
d

∇nd −
∇Ω

nd

)
+

1

nd

(
∇× ~Frot + η∇2~Ω

)

On rearrangement of terms it becomes

∂

∂t

(
~Ω

nd

)
+ ~v · ∇

(
~Ω

nd

)
=

1

nd

(
∇× ~Frot + η∇2~Ω

)
(4.2)
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From Eq. (4.2) in the absence of forcing and viscosity, the field ~Ω/nd is convected

by the fluid. Integrating over space it can be shown that

d

dt

∫ ( ~Ω

nd

)
dxdy =

∫ ( ~Ω

nd

)
∇ · ~v dxdy (4.3)

We denote the left and right hand side of Eq. (4.3) by I1 and I2, respectively.

We have shown the evolution of I1 and I2 with time in Fig. 4.7. Both I1 and I2

are initially zero as the medium is unperturbed in the beginning. The forcing is

responsible for the generation of vorticity and density perturbations. The vertical

line shows the time at which the forcing is stopped. It can be seen that for η = 0,

once the forcing is stopped there is a close agreement between I1 and I2 as expected.

It is, however interesting to observe the behavior of density perturbations in the

2-D plane, the snapshot of which has been shown at various time in Fig. 4.8. It

shows a clear development of a spiral wave (density compression and rarefaction)

with time. In this case the forcing is present throughout the simulation duration,

however, it is applied only within a spatial region of r < r0 = 0.5. The observed

spiral wave, however, is extended beyond this spatial domain. Thus the spiral wave

pattern are an intrinsic response of the medium in the presence of such a forcing.

The number of spiral rings at the various snapshots match with the number of

forcing periods covered in that duration. For instance, the normalized forcing

frequency ωf = 10 correspond to a time period of Tf = 2π/ωf = 0.628. Thus

for the four subplots, we have t/Tf = 0.605, 1.24, 2.91, 3.78, which corresponds

approximately to the number of rings that one observes in the subplots for this

figure. In Fig. 4.9 where we show the variation of the 2-D density plots with

respect to the forcing frequency. From this figure too it is pretty evident from

all the subplots except the first one that the spiral rings denote the number of
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Figure 4.7: Time evolution of I1 and I2 (Eq. 4.3) for compressible HD fluids with
different values of η. Simulation parameters for this plot are A = 10, α = 5 and
ωf = 10. Here, applied force switched off after ωpdt = 0.55 time. In the plot I1 and
I2 for different η are represented by different line styles. There is perfect matching
of I1 and I2 (dash and solid line, respectively) for the value of η = 0.

forcing periods covered in a given duration for which the plot has been shown. In

the first subplot of this figure the forcing frequency seems to be very high for the

natural response of the medium to keep pace. The natural response of the medium

is typically the acoustic waves. It should be noted that the typical radial extent

of the structure for all the cases remains approximately the same as the acoustic

speed in all the four cases of this figure is same. Since the rotation frequency is

fast, the radial expansion is unable to keep pace with it and the spiral rings get

smeared up to be distinguished clearly for the case of ωf = 15. For the other cases,

the number of rings are in agreement with the law mentioned above.

It appears that the radial expansion of the structure is typically governed by
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Figure 4.8: Time evolution of the density for HD fluid. Here, Frot applied for whole
duration of simulation. For simulation, we have taken A = 10, ωf = 10, α = 5
and η = 0.1. Small circle in the figure represent the region where REF applied.
Color bar in the figure represents the density of the medium: equal to 1.00 shows
equilibrium density, greater than 1.0 is density compression, and less than 1.0 is
density rarefaction. The Density evolution of the medium show the formation of
spiral wave.

the acoustic speed of the medium and the number of spiral rings by the forcing

frequency. In fact for this case the value of α has been chosen as α = 5. This

typically corresponds to the acoustic speed (small corrections due to nonlinearity

might exist at higher amplitudes) of 2.23. This reasonable explains the radial

expansion for ωf = 10 wherein the disturbance typically has propagated along +x̂

direction from r0 = 8.5 to r = 12.4 in a time duration of t = 1.6. The plot in Fig.

4.10 shows variations with α also suggests that the radial expansion in our system

is essentially governed by the value of α. Another feature to note from Fig. 4.9 and

Fig. 4.10 is that for a proper unbroken spiral to form an appropriate combination
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Figure 4.9: Spiral wave for different frequency of forcing. In this case rotating
external forcing applied for whole duration of simulation. Simulation parameters
for this plot are A = 10, η = 0.1, and α = 5. Density for all subplots are taken at
time ωpdt = 1.60. First subplot elucidate that when driver frequency is high then
radial velocity cannot pace with it resulting spiral becomes smeared out.

of α and forcing frequency ωf is required. This is because the radial expansion has

to keep pace with the rotation. We have also observed the behavior of the spiral

with respect to the amplitude A of forcing. This has been shown in the plot of

Fig. 4.11. With increasing amplitude, the density perturbations are stronger as

the amplitude of density perturbations also increase. On the other hand in the

presence of viscosity the density perturbations and ~Ω/nd die away as is shown in

Figs. (4.12,4.13) and the spiral waves get damped as expected. Fig. 4.13 also

elucidate that the source of spiral vorticity (small circular forcing region) diffused

with the increase in the viscosity of the medium which is also in agreement with

the Eq. (4.2).
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Figure 4.10: Dynamics of spiral wave for different value of sound velocity of medium
(
√
α). Simulation parameters for this plot are A = 10, ωf = 10, and η = 0.1. In

this case rotating external forcing applied for whole duration of simulation. Density
for all subplots are taken at time ωpdt = 1.84. Here by increasing α inner part of
spiral wave breakup avoided. For higher value of α, radial expansion is larger than
azimuthal expansion.

4.2.2 Strong coupling: GHD regime

We now present the evolution of the complete set of GHD fluid equations for the

dusty plasma medium. Again the initial configuration of homogeneous plasma

density with zero velocity in 2-D x− y plane is chosen. The dust fluid is subjected

to time dependent forcing within a central circular spatial domain of the 2-D

simulation box. In this case by taking the curl of the two coupled equations 2.20.

we obtain (
1 + τm

∂

∂t

)
~∇× ~ψ + τm~∇×

(
(~v · ~∇)~ψ

)
= η∇2~Ω (4.4)
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Figure 4.11: Spiral wave with varying amplitude of forcing. In this case rotating
external forcing applied for whole duration of simulation. Simulation parameters
are ωf = 10, α = 5 and η = 0.1. Density plots for all amplitudes are taken at time
ωpdt = 1.97.

Vector identity:

(~v · ~∇)~ψ = (~∇ψ) · ~v − ~v × (~∇× ~ψ) (4.5)

On using this vector identity in Eq. 4.4, it becomes

(
1 + τm

∂

∂t

)
~ξ + τm~∇× (~v × ~ξ) + τm~∇× (~∇ψ · ~v) = η∇2~Ω
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Figure 4.12: Density plot of spiral wave for different values of η in HD fluid.
Simulation parameters in this plot are A = 10, α = 5 and ωf = 10. Density plots
for all values of η are taken at time ωpdt = 2.45.

Here ~ξ is ~∇× ~ψ. Upon using continuity equation and two-dimensionality condition

in above equation it gives

∂

∂t

(
~ξ

nd

)
+ ~v · ∇

(
ξ

nd

)
=

− 1

τm

(
ξ

nd

)
+

1

nd
∇× (∇ψ · ~v) +

η

ndτm
∇2~Ω (4.6)

Where

~ξ

nd
=

1

nd
~∇× ~ψ =

∂

∂t

(
~Ω

nd

)
+ ~v · ∇

(
~Ω

nd

)
− 1

nd
~∇× ~Fext
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Figure 4.13: Ω/nd (vorticity) of the HD fluid medium for different values of η.
Simulation parameters in this plot are A = 10, α = 5 and ωf = 10. Vorticity plots
for all values of η are taken at time ωpdt = 2.45. From the figure it is clear that
diffusion of source of vorticity increases with increase in the coefficient of viscosity
of the medium.

Integrating over space one obtains:

d

dt

∫ ( ~ξ

nd

)
dxdy =

∫
(∇ · ~v)

~ξ

nd
dxdy −

∫
1

τm

(
~ξ

nd

)
dxdy

+

∫
1

nd
∇× (∇ψ · ~v) dxdy +

∫
η

ndτm
∇2~Ω dxdy (4.7)

It should be noted that when τm → 0, we recover the viscous charged fluid (no

memory) vorticity equation 4.3. In the absence of forcing while the fluid satisfies

the first order differential equation and shows damping, here on the other hand,

there is a possibility of the vorticity to recur.

The snapshots of dust density evolution for the visco-elastic fluid are shown at
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Figure 4.14: Time evolution of the density for strongly coupled visco-elastic fluid.
Here Frot applied for whole duration of simulation. For simulation, We have taken
A = 10, ωf = 10, α = 5, η = 5 and τm = 20. Small circle in the figure represent
the region where REF applied.

various times in Fig. 4.14. For this case, the amplitude of the forcing A = 10, the

forcing frequency ωf = 10, η = 5, τm = 20 and α = 5 has been chosen. It should

be noted that the periodicity of the forcing function being 10 (in units of ωpd) the

forcing function has completed several rotations at the time snapshot at which the

four subplots of the Fig. 4.14 have been shown. The number of turns of the spiral

rings in these snapshots are equal to the number of rotations of the forcing function

here also similar to the weakly coupled case. However, even though the value of

η = 5 is very high the spiral wave survives in this case when τm is finite. This is

because η in the presence of finite τm plays the role of elasticity of the medium.

This is unlike the role of pure damping in the weakly coupled case.
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Figure 4.15: Spiral wave for different frequency of forcing. In this case too rotating
external forcing applied for whole duration of simulation. Simulation parameters
in this plot are A = 10, α = 5, η = 5 and τm = 20. Density for all subplots are
taken at time ωpdt = 1.55. At higher ωf (first subplot), angular velocity is not in
pace with the radial velocity resulting spiral becomes smeared and broken out.

The behavior of the structure as a function of forcing frequency, α (representing

the square of acoustic speed), amplitude (A) and strong coupling (η/τm) are shown

in Figs. 4.15, 4.16, 4.17 and (4.18, 4.19, 4.20), respectively. It is clear from Fig.

4.15 that the number of rings gets decided by the forcing frequency. In this case

too if the forcing frequency is very high the radial expansion of the medium is

unable to keep pace with it and so in the ωf = 15 cases the rings get destabilized

and broken up to be distinguished clearly. When the frequency is low the radial

width of the spiral arms are broad. This can be understood by realizing that the

density perturbations in this case are forced at low frequency. The acoustic waves

which can resonate at such low frequency would have longer wavelengths. It can be

82



Chapter 4. Spiral wave (structure) in driven dusty plasmas: Fluid (continuum)
simulations

Figure 4.16: characteristic of spiral wave with varying sound velocity of the visco-
elastic medium (

√
α). Simulation parameters in this plot are A = 10, ωf = 10,

η = 5 and τm = 20. In this case rotating external forcing applied for whole
duration of simulation. Density for all subplots are taken at time ωpdt = 2.13.
Here by increasing α inner part of spiral wave breakup avoided. For higher value
of α, radial velocity is larger than angular velocity.

observed that good spirals are not clearly formed when the radial speed determined

by α is small (Fig. 4.16 top subplots). A certain combination of α and forcing

frequency determines a good spiral wave structure and its propagation with time.

At a low amplitude A of force, one can observe that the spiral structure does not

form as the perturbed density is too weak (Fig. 4.17 for A = 0.1). When the value

is increased to A = 10, it can be observed that a good spiral wave structure gets

formed. However, when the amplitude is increased further the density perturbation

is high and the acoustic density perturbations would be nonlinear. This is visible
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Figure 4.17: Spiral wave behavior in GHD fluid with varying amplitude of forcing.
In this case rotating external forcing applied for whole duration of simulation.
Simulation parameters are ωf = 10, α = 5, η = 5 and τm = 20. Density plots for
all amplitudes are taken at time ωpdt = 1.76.

from the bottom subplots of Fig. 4.17, where one can observe the formation of

defects in the spiral structure.

We have also observed the behavior of the spiral wave with respect to strong

coupling of the medium. This has been shown in the plot of Figs. 4.18, 4.19

and 4.20. From the Figs. 4.19 and 4.20, it is clear that with increasing strongly

coupling (ratio of η and τm) the source of spiral vorticity (small circular forcing

region) expanding. This expansion is an additional traverse shear wave (TSW) in

the medium which generated from the central forcing region. The expansion of

this wave increases (Fig. 4.19) with an increase in the strong coupling (the ratio

of η and τm) of the medium because its velocity is equal to (
√
η/τm).
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Figure 4.18: Density plot of spiral wave with increasing strong coupling. Simulation
parameters in this plot are A = 10, α = 5 and ωf = 10. In this case too external
REF applied for the whole duration of simulation. Density plots for all ratio of η
and τm are taken at time ωpdt = 2.8068.

Figure 4.19: Ω/nd (vorticity) of the GHD fluid medium with increasing ratio of
η and τm. Simulation parameters in this plot are A = 10, α = 5 and ωf = 10.
Vorticity plots for all ratio of η and τm are taken at time ωpdt = 2.8068. From the
figure it is clear that expansion of source of vorticity increases with increase in the
ratio of η and τm.
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4.3 Summary and conclusion

We have carried out the GHD visco-elastic fluid simulations for a driven dusty

plasma medium. We study the response of the dust medium to an imposed rotating

electric field in a small localized region and observed the formation of spiral waves.

These spiral waves are observed to propagate radially outwards much beyond the

spatial extent of the forcing. When forcing is weak and the density perturbations

are in linear regime then we observe planar acoustic excitations. Only in nonlinear

density perturbations does one observe spiral structure formation. Spiral wave

has both angular as well as radial velocity. We have identified that the radial

expansion velocity corresponds to the sound speed. The number of rings in the

spiral correspond to the number of rotations of the forcing field at any given time.

If the radial velocity is too fast then the rings are broad. However, when the forcing

frequency is fast and the radial velocity is slow the spiral rings are sharp. When

the radial velocity is too slow and is unable to keep pace with the forcing frequency

the spiral structure gets destabilized and smeared out. For a proper clear spiral to

form an appropriate combination of sound speed and forcing frequency is required.

We have found that the source of spiral vorticity expanding with an increase in the

strong coupling of the medium which elucidates the presence of additional TSW

in the medium. We have observed only two armed (one of compression and other

of rarefaction) spiral waves unlike Li et al. [136] multi-armed spiral waves.

Spiral wave formation are ubiquitously present in many natural phenomena

in excitable media which requires a certain time duration to regain after a wave

passes through it. In this case, the dust density perturbations created by the forcing

requires the response of the dust before it can be again perturbed by the forcing.
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Figure 4.20: Ω/nd (vorticity) of the visco - elastic fluid for the same ratio of η and
τm. Simulation parameters for this plot are A = 10, α = 5 and ωf = 10. Vorticity
plots for all ratio of η and τm are taken at time ωpdt = 2.8068. Small circle in the
figure represent the region where REF applied. From the figure it is clear that
expansion of source of vorticity depends only upon the ratio of η and τm, not upon
the individual values.

The exciter and controller fields are believed to be important in the excitation of

spiral waves. Here forcing induces vorticity as well density perturbations which

together propagate like a spiral wave pattern.
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5
Spiral waves in strongly coupled Yukawa

Systems: A molecular dynamics study

In chapter 4, we have studied spiral waves (structures) using fluid (continuum)

simulation but it misses out on the kinetic particulate nature of the dust species.

The objective of this chapter is to investigate the spiral wave in a dusty plasma

medium by taking discrete particle effects into consideration∗. Molecular-dynamics

simulations have been used for this purpose. In the crystalline state of dusty

plasma, the spiral wavefront becomes hexagonal in shape which is understood by

the difference in the phase velocity in directions associated with the crystal lattice

(viz., lattice axis and lattice diagonal).

∗Sandeep Kumar, and Amita Das, Physical Review E 97, 063202 (2018)
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5.1 Introduction

Spiral wave formation is typically believed to arise as an interplay of propagator and

controller fields in any excitable medium [167–169]. An excitable medium by defi-

nition is a nonlinear dynamical medium permitting wave propagation by means of

local coupling between its constituents. However, the medium takes a certain time

before a next wave can be excited through it. There are many examples of excitable

media. For instance, oscillating chemical reactions such as Belousov-Zabotinsky

(BZ) reaction [130,170] behave in this fashion. The pathological conditions in brain

and heart activities have also been modeled as excitable medium [144,171]. There

are many types of waves which can be observed in any excitable medium. For

example, in one-dimension fronts and solitons, in 2-D curvature and spiral waves,

and in 3-D scroll waves can be observed [167]. Mathematically, FitzHugh-Nagumo

(FHN) model has been widely used to describe the spatiotemporal development

of spiral waves in excitable media [146–149]. In the literature, spiral waves have

also been reported for many others systems such as liquid crystals [133], spiral

galaxy [137,138], coupled oscillators [139,140] and spread of disease in epidemiol-

ogy [143]. Recently, thermal spiral wave excitation in incompressible fluid system

has been demonstrated by Li et al. [172].

Propagation of spiral density waves under the influence of external force have

been recently demonstrated in the fluid simulation of compressible dusty plasma

medium [173]. The dusty plasma is essentially made up of discrete charged dust

particles which are of macroscopic size compared to the lighter electron and ion

species present in the medium. Dusty plasma offers a model system to study generic

phenomena such as self-organization and transport at the particle level which is
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also of great importance for excitable media. The use of fluid model misses out on

the kinetic particulate nature of the dust species. The Molecular Dynamics (MD)

simulations, however, offer the possibility of investigating this. The aim of this

chapter is to seek the excitation and dynamics of the spiral wave in a dusty plasma

medium by taking discrete particle effects into consideration.

A dusty plasma is a mixture of highly charged (mostly negative) and heavy

(1013−1014 times heavier than the ions) dust grains along with the lighter electron

and positive ion species. A typical dust particle of micron size has approximately

-10, 000e electronic charge. Dusty plasma can be very well depicted by a collection

of point particles which interact via Yukawa potential (which mimics the screening

due to the presence of free electrons and ions between dust species) having the

following form [123]:

U(r) =
Q2

4πε0r
exp(− r

λD
),

Here, Q is the charge on a typical dust particle, r is the separation between two dust

particles and λD is the Debye length of background plasma. The Yukawa system

can be characterized in terms of two dimensionless parameters Γ = Q2/4πε0akBTd

(known as the coupling parameter) and κ = a/λD (known as the screening pa-

rameter). Here Td and a are the dust temperature and the Wigner-Seitz radius,

respectively. Yukawa interparticle interaction also occurs in many other systems

such as charged colloids [174, 175], electrolytes [176, 177] and strongly coupled e-i

plasmas [178, 179]. So the studies carried out in this work would also suitably

depict these systems.

Due to high charges on the dust grains, the dusty plasmas can be easily found in

the strongly coupled state (i.e. their average electrostatic potential energy can be
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made comparable to or higher than the average kinetic energy of particles rather

easily and does not require extreme conditions of temperature and/or density).

Such a plasma can, therefore, have traits of a fluid or a solid depending upon

where medium lies in the (Γ, κ) plane [1]. For a given κ, dusty plasma imbricate

to crystalline state when coupling parameter Γ > Γc, where Γc is the critical

value for crystallization. At intermediate value of Γ (1 < Γ < Γc) the system

behaves like a complex fluid with both fluid and solid like traits. Hence, both

longitudinal and transverse wave modes can be excited in dusty plasmas. Waves

in dusty plasmas are either excited by external perturbations in the form of electric

fields, or self excited by viz. ion drag force, thermal fluctuations, and instabilities.

High amplitude perturbations in dusty plasma medium can lead to non-linear

propagating waves that can form solitons [159,180], shocks [161], and vortices [73,

74]. We have also studied shocks in the dusty plasma by moving a projectile in the

medium and that it is part of someone else thesis [181]. There are some experiments

where the medium is driven by rotating electric field (REF) [166, 182]. The REF

in these experiments was operated over the entire domain of the system. In the

present simulation studies, we show that by employing a rotating electric field

only over a small circular patch in the system, spiral waves propagating radially

outwards can get excited.

This chapter is organized as follows. Section 5.2 provides details of MD simula-

tion. Section 5.3 provides numerical observations. Section 5.4 contains conclusion.

5.2 Simulation details

The simulation system modeled here is a two-dimensional square box of point dust

particles interacting electrostatically with each other through the Yukawa form
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of interaction potential. A monolayer with 28647 grains (with periodic boundary

conditions) is created in a simulation box with Lx = Ly = 300a (−150a to 150a)

along X and Y directions. Here, a = (1/
√
πnd) is the Wigner-Seitz radius in

two-dimension and nd corresponds to dust density for the monolayer. We have

assumed [99] the dust grain mass md = 6.99×10−13 Kg, charge Q = −11940e (e is

elementary charge) and a = 4.18 × 10−4 m. We have also considered all particles

to have equal mass and charge. The screening parameter κ is chosen to be 0.5

which sets the plasma Debye length in the simulation as λD = 8.36× 10−4 m. The

typical inter-dust unscreened electric field, E0 = Q/4πε0a
2 = 98.39 V/m. The

equilibrium density (nd0) of 2-D dust layer is 1.821× 106 m−2. The characteristic

frequency of the particles ωpd = (Q2/2πε0ma
3)1/2 ' 35.84 s−1, which corresponds

to the dust plasma period (td) to be 0.175 sec. We have chosen simulation time

step as 0.0036 ω−1pd so that phenomena occurring at dust response time scale can be

easily resolved. Results in this chapter are presented in normalized units, for which

distance, time, and electric field are normalized by a, ω−1pd , and E0, respectively.

Thermodynamical equilibrium state for a given Γ is achieved by generating po-

sitions and velocities from canonical ensemble using Nose-Hoover [125,126] thermo-

stat. After about an canonical run for 1433 ω−1pd time, we disconnected the canonical

thermostat and ran a simulation for about 716 ω−1pd time micro-canonically to test

the energy conservation. After micro-canonical run the dust monolayer achieves

thermodynamical equilibrium with the desired value of Γ.

The dust particles are then evolved in the presence of their Yukawa interactions

and the external force due to the rotating electric field. The effect of background

neutral gas on dust micro - particles has also been studied in some simulations. For

this, we have added two additional forces in the simulation. First is the neutral drag
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force due to the relative velocity ~v between the dust grains and neutral particles

and is given by [95–97]:

~Ff = −mdν~v,

Where md is the mass of the dust particles and ν is the damping coefficient. The

other force is random kicks suffered by dust grains by collisions with neutral atoms.

This is given by:

Fr ∝
√
kBTnmdν

dt
,

Where, dt and Tn are the time step of simulation and background neutral gas tem-

perature, respectively. The simulation including the effect of background neutral

gas is run by Langevin MD dynamics and the motion of the ith particle with mass

md is governed by the following equation:

mdr̈i = −
∑

j

∇Uij + Ff + Fr + Frot (5.1)

Here, Frot = QErot is the force due to the REF of the form Erot = A cos(ωf t)x̂ +

A sin(ωf t)ŷ. Where, A is the amplitude of REF and ωf = 2π/Tf . It should be

noted that Frot is only acting on those particles who lies within the circular patch

as shown in schematic representation of Fig. 5.1. For most of our simulations,

unless otherwise stated, we have used the value of Γ = 100, κ = 0.5 and ν = 0.

However, in some cases to investigate the dependence on these parameters we have

also varied these values as per the requirement. In the simulation, Γ and κ are

varied by varying Td and λD, respectively. The characteristics dust lattice wave
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(DLW) velocity (Cs) of the medium at Γ = 100, κ = 0.5 and ν = 0 is 1.94× 10−2

m/s. [159]

5.3 Numerical Observations

We have applied a rotating electric field on a small circular region at the center

of the two-dimensional simulation box to excite the spiral waves. In the present

simulation, we have chosen the radius of circular region r0 = 15a. A rotating

electric field E(t) is generated by choosing the following time dependence for the

two components, viz., Ex(t) = A cos(ωf t + ψ) and Ey(t) = A sin(ωf t) along X

and Y axis, respectively. Here, ωf = 2π/Tf so that Tf is the period of rotation.

Their superposition E = (Ex, Ey) gives rise to a polarized electric field rotating in

two-dimensions. The type of polarization depends upon the phase difference (∆φ)

among Ex and Ey. For linear polarization ∆φ = 0 or π, circular polarization ∆φ =

π/2 or 3π/2 and elliptical polarization ∆φ = π/4 or 3π/4. In the present studies,

the case of circular polarization has been employed. Schematic representation of

REF is shown in Fig. 5.1. This electric field results in an electrostatic force FE =

QE on the dust particles which creates spatial perturbation in dust density (~∇nd).

The forcing also imparts kinetic energy to the particles, which can randomize and

create temperature gradients (~∇Td) in the medium. The applied REF has been

kept on for the entire duration of simulation.

The evolution of the medium is shown in Fig. 5.2. Particle snapshots clearly

show the excitation of the collective mode of spiral waveform which is rotating as

well as radially expanding. The handedness of the spiral motion depends upon

the type of polarization (left or right circular) of the driver field. This spiral

wave is manifestation of the forcing on the dust particles by the REF which is
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Figure 5.1: Schematic representation of the circularly rotating electric field. Here,
REF is only acting within the circular region on each dust particle. The Absolute
value of the REF is constant but direction rotating anti-clockwise with leading
time. The solid large arrow depicts the direction of REF and small dotted arrows
direction of rotation.

operative over the central circular region shown in the Fig. 5.2 by thick line.

The number of rings in the spiral structure at a given time is proportional to

the number of periods taken by the REF in that duration. In Fig. 5.2 number

of rings according to number of periods from four plots (a), (b), (c), and (d) are

17.92/26.88 = 0.67, 35.84/26.88 = 1.33, 53.76/26.88 = 2.0 and 71.68/26.88 = 2.67,

respectively as expected. We have calculated the radial velocity of the spiral wave

from the propagation of the density peak radially outward (for instance the X-axis

is specifically chosen here) with respect to time. The density data as a function of

x are obtained by calculating the density of particles within spatial grids along X

axis. Radial velocity for A = 0.203, ωpdTf = 26.88, Γ = 100, κ = 0.5 and ν = 0
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Figure 5.2: Time evolution of the medium for REF of amplitude A = 0.203,
ωpdTf = 26.88, Γ = 100, and κ = 0.5. Particle snapshots taken at time (a)
ωpdt = 17.92, (b) ωpdt = 35.84, (c) ωpdt = 53.76, and (d) ωpdt = 71.68 are clearly
showing the formation of spiral wave. Circle at the center represents the region of
forcing.

is 1.97 × 10−2 m/s which is very close to the DLW velocity (Cs = 1.94 × 10−2

m/s) [159].

The number of spiral generated at a given time is a function of the frequency of

the REF. With increasing frequency of REF the number of spiral rings increases as

shown in Fig. 5.3 and Fig. 5.4. However, since the radial expansion is govern by the

acoustic propagation speed therefore the radial separation between two consecutive

density peaks reduces with increasing frequency. At very high frequency (plot (a)

of Fig. 5.3), the spiral density compression and rarefaction is not very clear. In this

case the radial expansion is unable to keep pace to distinctly identify the individual

density peaks. When the amplitude of the driving force is increased, the density
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Figure 5.3: Spiral waves for different value of driver frequency (a) ωpdTf = 12.54,
(b) ωpdTf = 16.12, (c) ωpdTf = 26.88, and (d) ωpdTf = 35.84 at A = 0.203,
Γ = 100, and κ = 0.5. Snapshot of particles for all frequencies are taken at time
ωpdt = 71.68.

perturbation (δn = nd− nd0) in the spiral are of higher amplitude and spiral rings

are broader. This is evident from the plot of Fig. 5.5. Furthermore, one can

observe that with increasing amplitude of the force the particles in central region

acquire higher velocities which gets randomized. The consecutive rings, therefore,

have varying radial speed of propagation and the spiral structure therefore does

not form clearly. Therefore, in forming a good spiral structure the amplitude of

driving force also plays a crucial role.

We have also applied frictional damping on the dust particles due to the pres-

ence of neutral particles in the dusty plasma medium. We have found that the

spiral wave gets damped in the presence of frictional damping ~Ff. The damping
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Figure 5.4: One-dimensional density of the medium for the different frequencies
of driver at A = 0.203, Γ = 100, and κ = 0.5. Density plot for all frequencies are
taken at time ωpdt = 71.68. From the plot it is clear that with decrease in the
frequency of external driver, density compression, rarefaction and distance between
two consecutive rings increases.

rate increases with increase in the damping coefficient ν as shown in Fig. 5.6.

We have also studied the effect of Γ and κ on the formation and evolution of

spiral waves. When the value of coupling parameter Γ of the medium is increased

one observes that spiral rings become more distinctly clear (Fig. 5.7). This can

be understood from the fact that in weakly coupled case particle trajectories are

diffusive, but it becomes localized in strongly coupled case. Another observation is

that the coupling parameter Γ has a negligible influence on the radial propagation

speed of the spiral wave. The screening parameter κ, however, has a strong effect.

The radial propagation velocity decreases with increase in the value of κ. The role

of Γ and κ parameters are illustrated in the plots (a), (b), (c), and (d) of Fig. 5.7

and Fig. 5.8, respectively. The dependency of the radial velocity of spiral on Γ

and κ is also in accordance with the findings of Khrapak et al. [183] and Kalman et
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Figure 5.5: Characteristics of spiral waves with varying amplitude of REF (a)
A = 0.101, (b) A = 0.203, (c) A = 0.406, and (d) A = 1.27. Coupling parameter,
screening parameter, and time period of REF for all amplitudes are Γ = 100,
κ = 0.5, and ωpdTf = 26.88, respectively. Snapshot of particles for all amplitudes
are taken at time ωpdt = 50.17. From the figure, it is clear that an undistorted (tip)
spiral wave can be excited when the amplitude of REF is smaller than inter-dust
unscreened electric field (E0).

al. [23], that have been obtained for the sound velocity of strongly coupled Yukawa

liquids. Kalman et al. suggested approximate expression for the sound velocity of

the Yukawa liquids valid for κ < 2.5 is as following:

Cs = ωpda
√

(1/κ2 + f(κ)), (5.2)

Where

f(κ) = −0.0799− 0.0046κ2 + 0.0016κ4.
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Figure 5.6: Effect of neutral damping (a) ν/ωpd = 0.0, (b) ν/ωpd = 0.014, (c)
ν/ωpd = 0.0279, and (d) ν/ωpd = 0.0558 on the spiral wave are shown here. For all
the plots, A = 0.203, ωpdTf = 26.88, Γ = 100, and κ = 0.5. Snapshot of particles
for all damping parameters are taken at time ωpdt = 71.68.

The radial propagation speed decreases with increasing κ. So that for a given κ,

there is a critical frequency of REF above which the disturbance gets smeared out

instead of forming distinctly clear spiral rings (shown in plot (d) of Fig. 5.8). It is

thus clear that to form a proper unbroken spiral wave pattern, we require a proper

combination of ωf and κ so that radial and angular velocities can appropriately

compliment each other.

The increasing value of κ essentially implies that the interparticle shielding gets

stronger and hence the individual dust particle interactions reduces. Due to the

reduction in interparticle interaction, when the REF throws the particle out of the

radial patch of forcing, the particles are unable to return back to their original
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Figure 5.7: Characteristics of spiral wave with varying coupling parameter (a)
Γ = 10, (b) Γ = 50, (c) Γ = 100, and (d) Γ = 800. Strength of REF, period of
REF, and screening parameter for all the Γ are A = 0.203, ωpdTf = 26.88, and
κ = 0.5, respectively. Snapshot of particles for all Γ are taken at time ωpdt = 71.68.

location. Thus the particle density in the forcing region reduces. This is evident

from Fig. 5.8 where one can easily notice (see the white patches in plot (c) and

(d)) the reduction in particle number density in the central forcing region. As a

result of this reduction in the number density the subsequent rings of the spiral do

not form clearly for high values of κ.

We have also investigated the possibility of exciting spiral wave when the dust

medium is initially in crystalline phase. For this purpose, we have chosen the

case of Γ = 2000 for our studies. When the value of κ is small (plot (a) of Fig.

5.9), we observe the regular formation of spiral wave. However, as κ is increased

one observes the spiral excitations to have a hexagonal wave front (plot (b), (c),
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Figure 5.8: Dynamics of spiral waves for different values of screening parameter (a)
κ = 0.25, (b) κ = 0.50, (c) κ = 1.0, and (d) κ = 2.0. Amplitude of driver, period
of driver, and coupling parameter for all the plots are A = 0.203, ωpdTf = 26.88,
and Γ = 100, respectively. Snapshot of particles for all the κ are taken at time
ωpdt = 71.68.

and (d) of Fig. 5.9). This observation can be understood by realizing that the

original dust crystal lattice has hexagonal symmetry. When the value of κ is

increased interactions amidst particles gets confined to a few nearest neighbors. In

the hexagonal configuration as shown in the schematic of Fig. 5.10, the nearest

neighbor distances along the lattice axis are smaller compared to those at lattice

diagonal. The asymmetry in the interparticle distance in crystalline phase also

influences the radial distribution function (RDF), which shows additional peaks in

the distribution, as shown in Fig. 5.11. Furthermore, from Eq. 5.2, it is clear that

the radial propagation speed depend on the κ (ratio of interparticle separation to

Debye length). Thus, the spiral disturbance propagates faster along lattice axis
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Figure 5.9: Effect of screening parameter (a) κ = 0.5, (b) κ = 1.0, (c) κ = 1.5,
and (d) κ = 2.0 on the spiral structure when dust medium is in crystalline state.
Amplitude of driver, period of driver, and coupling parameter for all the plots are
A = 0.203, ωpdTf = 26.88, and Γ = 2000, respectively. Snapshot of particles for
all κ are taken at time ωpdt = 53.76.

(in this direction particles are aligned closer) and is slow along lattice diagonal.
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Figure 5.10: Schematic representation of interparticle distance asymmetry when
dusty plasma is in crystalline phase. This is the equilibrium snapshot of particles
for Γ = 2000 and κ = 1.5. Solid and dotted arrows depict the lattice axial and
diagonal directions, respectively in the crystal. Asymmetry in the dust crystal
spacing have also shown experimentally by J. H. Chu and Lin I [5].
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Figure 5.11: Radial distribution function (RDF) for three Γ = 100, 400, 2000 are
shown here. Screening parameter (κ) for all Γ are 1.5. At Γ = 2000, appearance
of one more peak near the second peak (peak comes just after sharp first peak)
confirms the anisotropy in the interparticle distance of hexagonal crystal.
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5.4 Conclusion

We have carried out the MD simulations for dusty plasma medium in the presence

of forcing due to an external rotating electric field. We observe the formation

of spiral waves. This ascertains that the dusty plasma behaves like an excitable

medium. The radial propagation is governed by the dust acoustic speed and the

rotation gets decided by the forcing period. The interplay between the two decides

the spiral wave structure. For distinctly clear spiral to form a proper combination

of the two is essential. In case the radial propagation is too slow the rings diffuse

amongst each other and the spiral structure is not so distinctive. The parametric

dependence is consistent with the continuum study carried out by Kumar et al.

[173] wherein the dusty plasma was considered as a visco-elastic fluid.

Further, we have shown that there are additional features which emerge when

the discrete particle effects are taken into account using MD simulations. For

instance, when the amplitude of forcing is high the particles at the center get

heated by acquiring random thermal velocity. This in turn effects the spacing of

subsequent rings. Furthermore, a large amplitude forcing throws the particle out of

the external forcing regime. The restoring force to bring the particles back at the

center would, however, depends on the interparticle interaction. When κ is chosen

high the shielding range is small and this restoring effects reduces. Thus for high

amplitude and high κ the central region where external forcing has been chosen to

be finite becomes devoid of particles. The spiral then fails to form adequately.

Another interesting feature that has been observed when the dust medium is

in 2-D hexagonal crystalline state. In this case for high values of κ (for which the

interparticle potential gets very weak) only a few neighboring particles participate
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in interactions. The spiral waveform in such cases has a hexagonal front. This

can be understood by realizing that for a hexagonal lattice the nearest neighbors

separation along different directions varies as has been illustrated by the schematic

of Fig. 5.10. Thus, there is an anisotropy in the medium and the radial propagation

speed to be dependent on the strength of nearest neighbor interaction.
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Figure 5.12: Schematic representation of the suggested experimental system. Rect-
angular black regions on circumference of the circle represents the two prongs of
the fork and arrows depicts the direction of electric field. Plots (a), (b), (c), and (d)
shows the spatial location of the fork at time 0.0, Tf/4, Tf/2 and Tf , respectively.
where, Tf is the time period of rotation of the fork.

It is our firm belief that spiral waves as observed in our simulation could also

be observed in experiments related to systems like dusty plasmas, e-i plasmas,

colloids, and condensed matter. There have been recent dusty plasma experiments

where rotating electric fields of the kind used in this chapter has been applied
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over the entire system [166, 182]. However, to have the force in a limited region

of the experiment, as desired for the spiral wave excitations can turn out to be

quite challenging. We feel that one possible solution could be to insert a probe

which bifurcates as a tuning fork at its other end. A potential difference can then

be applied between the two prongs of the fork. The rest of the structure can be

insulated. This fork can then be rotated mechanically in time. This will produce

a electric field over a rectangular strip which spans a circular region with time and

serving as REF as shown in Fig 5.12. For numerical ease, we had chosen a fixed

circular patch region where the REF was finite all throughout time. However, we

feel that the experimentalists will be in a better position to improvise and come

up with an appropriate solution for this particular requirement.
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6
Conclusion and future scope

6.1 Salient features of this thesis

In this thesis, we have carried out detailed simulation studies on linear and non-

linear collective structures in a two-dimensional strongly coupled dusty plasmas.

The collective structures provide an important insights into the dynamics and evo-

lution of dusty plasmas. Due to longer response time (10 to 100’s of milliseconds)

and length (100’s of micrometer) scales strongly coupled dusty (complex) plas-

mas provide a model system to study generic phenomena such as self-organization,

transport, phase transitions, waves, structures and instabilities at the individual

particle level. These phenomena are also common in the multidisciplinary field of

science.

In this thesis, for the study of collective structures, we have carried out both
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fluid (continuum) and MD (kinetic) simulations. In the fluid simulation, we have

considered dusty plasma as a visco-elastic fluid which is governed/modeled by the

phenomenological Generalized-Hydrodynamics (GHD) model [16]. Visco-elastic

fluid can have both fluid-like viscous as well as solid-like elastic traits, wherein

it preserves the memory of its past configurations for some time. This memory

develops in the dusty plasma with increased correlation among dust grains. Use

of fluid model missed out the particle behavior of the medium. To take care of

kinetic behavior of particles, we have carried out MD simulations. In the MD

simulation, Yukawa inter-particle electrostatic interaction has been taken among

dust species which mimics screening due to the presence of free electrons and ions

among dust particles. Collective structures investigated in this thesis yield in the

medium due to the presence of interaction among dust particles. In particular, the

investigation is focused on the KdV soliton and multisoliton formation and their

interaction. We have also investigated the excitation and dynamics of spiral waves

(structures). These collective structure studies have relevance in the multidisci-

plinary field of science viz. ultracold plasmas, warm dense matter, regular liquids,

charged colloids, polymers, electrolytes, condensed matter, and biological systems.

These studies have been described in the various chapters of the thesis. Here in

the subsequent section, we summarize important observations made in this thesis

and also the future scope of this thesis.

In chapter 3, we have studied the KdV solitons in complex plasmas using

molecular-dynamics simulations. we have applied an electric field perturbation of

the experimental situation [45, 47, 48] to excite the solitonic structures. The col-

lective response of the dust particles to such an applied electric field impulse gives
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an excitation of a compressible dust density pulse. This density structure propa-

gates in one direction along with a train of negative perturbed rarefactive density

oscillations (dispersive wave) in the opposite direction. We have also shown that

by increasing the strength of electric field impulse, the amplitude of the solitonic

structure increases and above a threshold, it split in the form of multiple solitons.

Further, We have shown that by increasing the coupling parameter of the medium,

the amplitude of the solitonic structures increases while their width decreases. We

have also shown that with an increase in the neutral drag on the dust particles the

amplitude of the solitonic structures decreases and its width decreases. We have

carried out collisional interaction of these solitonic structures in many different

configurations. As expected we have found that the phase shift is more in overtak-

ing collision compared to head-on collision. Furthermore, it is observed that the

phase shifts in the collisional interaction decrease with the increasing amplitude of

the colliding solitonic structures.

In Chapter 4, We have studied a novel non-linear two-dimensional structure in

dusty plasma using fluid simulations. This is essentially the observation of spiral

wave excitation in dusty plasma medium. Spiral waves are ubiquitous structures

found in a wide range of natural and laboratory scenario. In this chapter, the

spatiotemporal development of spiral waves in the context of weak and strong

coupling limits has been shown. While the weakly coupled medium has been rep-

resented by a simple charged fluid description, for strong coupling, a generalized

hydrodynamic visco-elastic fluid [16] description has been employed. The medium

has been driven by an external force in the form of a rotating electric field which

is applied in a small circular region. It is shown that when the amplitude of force

111



Chapter 6. Conclusion and future scope

is small, the density perturbations in the medium are also small. In this case, the

excitations do not develop as a spiral wave. Only when the amplitude of force is

high so as to drive the density perturbations to nonlinear amplitudes does the spi-

ral density wave formation occurs. We have found that the number of rings in the

spiral pattern at a given time is proportional to the number of rotations made by

the external forcing. Thus, if frequency of the driver is high then number of rings

is also high. The radial propagation speed of the spiral is equal to the acoustic

speed of the medium. The interplay between the acoustic speed of medium and

frequency of forcing decides the spiral structure. In the simple charged dust fluid

(that has no memory), with increasing shear viscosity η the source of vorticity

diffuses out. On the other hand in visco-elastic fluids, an additional traverse shear

wave (TSW) generated from the forcing region. Thus, in our studies the expansion

of this wave increases with an increase in the strong coupling (the ratio of η and

τm) of the medium because its velocity is equal to
√
η/τm.

In chapter 5, the excitation of spiral waves in the context of driven two-

dimensional dusty plasma (Yukawa system) has been demonstrated at the particle

level using molecular-dynamics (MD) simulations. The spatiotemporal evolution

of these spiral waves has been characterized as a function of the frequency and

amplitude of the driving force and dust neutral collisions. The radial propagation

of the spiral waves is governed by the dust lattice speed and the rotation gets

decided by the forcing period. The interplay between the two decides the spiral

wave structure. In order to obtain a distinctly clear spiral, a proper combination

of the two is essential. The parametric dependence is consistent with the contin-
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uum study carried out in Chapter 4 wherein the dusty plasma has considered as a

visco-elastic fluid.

Further, we have shown that there are additional features which emerge when

the discrete particle effects are taken into account using MD simulations. For in-

stance, when the amplitude of force is high the particles at the center get heated

by acquiring random thermal velocity. This, in turn, affects the spacing of subse-

quent rings and collective spiral structure. Furthermore, a large amplitude forcing

throws the particle out of the external forcing regime. The restoring force to bring

the particles back at the center would, however, depends on the interparticle inter-

action. When κ is chosen high the shielding range is small and this restoring effect

reduced. Thus, for high amplitude and high κ the central region where external

forcing has been chosen to be finite becomes devoid of particles. The spiral then

fails to form adequately. Another interesting feature that has been observed when

the dust medium is in two-dimensional hexagonal crystalline state. In this case

for high values of κ (for which the interparticle potential gets very weak) only a

few neighboring particles participate in the interactions. The spiral waveform in

such cases has a hexagonal front. This can be understood by realizing that for a

hexagonal symmetric crystal (triangular lattice) the nearest neighbors separation

along different directions are different. Therefore, there is an anisotropy in the

radial propagation speed along the lattice axis and lattice diagonal direction and

which leads to the formation of a hexagonal waveform.

6.2 Future scope

In the following, we provide some future possible studies that can be carried out

from the extension of this thesis work:
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• The possibility of reflection of the KdV soliton in the head-on collision can be

studied. The ion flow on the propagation of KdV soliton can also be studied

in the future.

• Analytical modeling of the spiral wave structure needs to be carried out.

• Investigation and study of coherent structures in three dimensions needs to

be investigated.

• The presence of ion flow in dusty plasma medium is important in the experi-

ments. Therefore, inclusion of the effect of ion drag in the simulations might

change the collective structures and lead to much closer to experimental sit-

uations. One can perform such studies using molecular-dynamics (MD) or

particle-in-cell (PIC) simulations.

• Experimental investigations of dusty plasmas in the presence of magnetic

field are carried out in a number of laboratories [184–188]. In some cases the

strength of magnetic field is chosen to be of the order 2.5 Tesla to magnetize

the dusty plasma medium. Keeping this in view it would be of interest to

pursue simulation and analytical studies in the context of magnetized dusty

plasma medium.
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