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SYNOPSIS

Due to the increasing cost of non-renewable energy and its ultimate depletion, and

ever increasing demand of energy from both developed and developing countries, every

future alternative energy source needs to be comprehensively investigated. The main

source of energy in the solar system is the Sun, and it is powered by nuclear fusion.

Nuclear fusion is a process in which two light nuclei combine to form a heavier nu-

cleus with a net release in energy. In order to do so, the nuclei should overcome the

Coulomb barrier, which is achieved by increasing temperatures to nearly 10 keV. The

Sun is able to confine particles due to a massive gravitational field, but that is not pos-

sible on earth. Therefore, various schemes have been devised starting from magnetic

mirrors, and currently the most successful scheme, which uses magnetic fields to con-

fine plasma is called the tokamak. The word tokamak is a Russian acronym, "toroidal-

naya kameras magnitnymi katushkami", meaning toroidal chamber with magnetic coils,

and is a literal description of the device. The principal magnetic field in a tokamak is

in the toroidal direction, around the full length of the torus. This alone, however, is

insufficient to contain the plasma, whose positively and negatively charged particles, al-

though following magnetic field lines, would drift vertically in opposite directions due

to the non-uniform magnetic field. Hence a poloidal magnetic field is required to prevent

particle motion resulting in this effect . The combination of these two magnetic fields

produces helical nested magnetic flux surfaces around the full domain of the torus. This

magnetic configuration confines the plasma away from the walls of a vacuum vessel

which is the boundary of the tokamak device. The amount of twist the magnetic field

experiences in this way at a given radius, r, is measured by the safety factor, or winding

number q(r). The toroidal field is created by the use of an external current in poloidal

coils, while the poloidal field, which is typically weaker by an order of magnitude ex-
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cept in some spherical tokamaks like MAST, is produced by an internal toroidal current

in the plasma. Tokamak performance is affected by various instabilities, particularly

Macro-instabilities which affect stability and Micro-instabilities which affect transport.

Here, we have studied a particular class of Macro-instabilities, which are current driven

resistive instabilities, such as the tearing and kink instabilities, which play a role in sta-

bility and disruptions. We have investigated the effect of flows, which have a beneficial

effect on these instabilities, hence are of great importance experimentally. The summary

of salient works carried out under this thesis work has been elaborated below.

CUTIE code

An approach to better understand plasma turbulence and anomalous transport in-

volves global simulations for a two fluid plasma and Maxwell’s equations. Global sim-

ulations take into account length scales all the way up to the device size, and a two fluid

theory accounts for the different physics of the ion and electron species by treating them

as separate interacting fluids. CUTIE (CUlham Transporter of Ions and Electrons) is a

plasma fluid initial value code which provides such simulations. CUTIE is a nonlinear,

global, electromagnetic, quasi neutral (ne ≈ ni), two fluid, turbulent large eddy simula-

tion code, which allows interaction between plasma property profiles and electromag-

netic turbulence. Details of the code are primarily available in [44] amongst others. The

CUTIE model is solved for the so-called mesoscale, defined to be an intermediatescale

between the device size and the ion gyroradius, incorporating approximations for the

underlying classical and neoclassical transport effects. Thus ions feel their neoclassical

conductivities (due to transport effects arising from toroidal geometry) and electrons

the bootstrap current (a plasma current produced by tokamak plasmas) and neoclassical

resistivities. CUTIE is based on a periodic cylinder model of the tokamak geometry in
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which the magnetic flux surfaces are concentric circles, and which is an appropriate ap-

proximation for large aspect ratio devices in which the aspect ratio, R/a, is significantly

greater than unity, or equivalently the inverse aspect ratio is small, i.e. a/R « 1. The low

β Shafranov shift is adopted. Single fluid studies of (2,1) modes: Equilibrium flows

can influence the stability of tearing modes through a variety of physical effects arising

from the dynamical characteristics of the plasma as well as the confinement geometry.

To understand and assess systematically the roles played by these effects, we have car-

ried out a series of numerical and analytic studies on the stability of the (2,1) tearing

mode, using a number of model systems that progressively incorporate various effects

of changes in geometry and more detailed physics. We begin with a simple reduced

MHD description of the plasma in a cylindrical geometry and present a series of nu-

merical computation results carried out with the code CUTIE . The cases include purely

axial sheared flows, purely poloidal sheared flows and helical flows that are a combina-

tion of the axial and poloidal flows leading to different flow helicities. Then, we present

CUTIE simulations using a two fluid model and discuss the differences observed from

the single fluid simulations. It contains a discussion of a new and powerful technique

(called the “resolvent method”) for obtaining the full eigen-spectrum that is applicable

to non-self-adjoint problems. The growth rate and real frequencies obtained through

the use of this method confirm and further validate our results from the CUTIE code.

After that, we examine the equilibrium modifications arising in a toroidal geometry due

to the presence of toroidal flows and their impact on the stability of the (2,1) mode. To

summarize, we have carried out extensive numerical studies to examine the influence of

equilibrium sheared flows on the stability of a tearing mode. Our cylindrical geometry

investigations, using a RMHD version of the code CUTIE, show that in the linear regime

pure axial sheared flows have a destabilizing influence while pure sheared poloidal flows
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tend to stabilize the mode. These effects are independent of the sign of the flows. How-

ever for a helical flow the sign of the helicity matters with positive helicity providing a

stabilizing influence. In the nonlinear regime the independence from the sign of the flow

no longer exists (even for purely axial or poloidal flows) and is an important finding of

our investigations. The inclusion of two fluid effects provides a further stabilizing effect

on the mode presumably due to self consistent excitation of poloidal flows.

This work has been published as : “Modelling and analytic studies of sheared flow

effects on tearing modes”, Debasis Chandra, Anantanarayanan Thyagaraja, Abhijit Sen,

Christopher J. Ham, Tim C. Hender, Robert James Hastie, John William Connor, Pred-

himan Krishan Kaw and Jervis Mendonca, Nuclear Fusion 55, 053016 (2015)

Single fluid studies of (1,1) mode

The m=1, n=1 internal kink instability is of great importance in tokamaks and has

beeen extensively studied in the past by several authors. The (1,1) mode arises within

the q=1 rational surface (where q is the safety factor), when the q at the axis is smaller

than 1. It can trigger sawtooth oscillations which can influence plasma quality and

confinement . It is well known that flows are a common occurence in a tokamak, which

can be generated intrinsically,or induced externally e.g. by unbalanced NBI injection.

Experiments on NSTX have shown a significant increase of sawtooth period that is

attributed to a fast rotation of the plasma. Experimental studies on sawteeth phenomena

in presence of NBI in JET, have further shown that there is an asymmetry in sawtooth

period depending on the direction of the NBI. The sawtooth period increases with an

increase in co-NBI power, and decreases with an increase in counter-NBI power. Thus,

these experiments have shown that flow can have a stabilising or destabilising effect

on the kink mode depending on the direction of flow. However, there still does not
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exist a full understanding of the effect of flows on the m=1,n=1 kink instability. It may

be noted that most of the past flow studies have been done in the low viscosity regime.

However, viscosity can be high in tokamak operations, particularly due to enhancements

from turbulent effects and could therefore significantly influence the effect of flow shear

on the internal kink mode. Thus, viscosity is an important contributing factor and can

change the nature of the effect of flows significantly. Here, we have addressed this issue

and investigated the stability of the (1,1) mode in the presence of sheared flows over a

range of viscosity regimes. We indeed find that the high viscosity results are often very

different from the low viscosity results. In our study, we have systematically examined

the effects of several kinds of sheared flows on the (1,1) mode, namely axial, poloidal

and combinations of both kinds of flows in the linear as well as nonlinear regimes. Our

principal findings are as follows. To begin with, we have done the linear scaling studies

of the m=1,n=1 mode in the absence of flow. Here, the variation of linear growth rates

have been studied for different S and Pr values. The obtained scalings are in agreement

with past analytic theory results in the no flow case. With the application of sheared

axial flows, a significant change in the scaling of the growth rates is observed. However,

in the presence of poloidal flow, there is no such change in scaling as compared to the

no flow case. In our linear studies we have noticed that axial flows destabilise the mode

in the low viscosity regime, but it stabilises in the high viscosity regime as compared

to the no flow case. On the other hand, poloidal flow always tends to stabilise the

linear growth rate. For pure axial and poloidal flows, the results do not change if we

change the direction of the flow. This symmetry is broken for helical flows where the

time evolution of the modes show a significant dependence on the helicity of the flows

even in the linear regime. In the nonlinear regime, there is mostly a reduction of the

nonlinear saturation level of the (1,1) mode for both sheared axial and poloidal flows
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in the high viscosity regime, while in the low viscosity regime, the poloidal and axial

flows are destabilising in nature. Helical flows show a strong stabilisation for positive

helicity and in most cases, weak stabilisation for negative helicity in the high viscosity

regime. In the low viscosity regime, this symmetry breaking of helical flow results gets

significantly diminished.

These have been published in a paper entitled : Visco-resistive MHD study of in-

ternal kink(m=1) modes, J. Mendonca et al, Physics of Plasmas, 25, 022504 (2018)

Two fluid study of (1,1) mode

We have continued our studies in the two fluid regime. The two fluid version of

CUTIE solves 5 equations, thus two additional equations, one for electron continuity,

and one for parallel momentum. In the linear regime, we have studied how the growth

rate as well as diamagnetic flow frequency of the modes changes due to fluid effects for

a range of viscosity and resistivity values. We have also found diamagnetic drift stabil-

isation of the (1,1) mode in the two fluid case, that is, we have seen the growth rate of

the (1,1) mode reduces with an increase in density gradient. In the nonlinear case, we

will investigate the evolution of the mode with an imposed axial flow.This manuscript

is to be submitted to Nuclear Fusion as “Simulation of the internal kink mode in visco-

resistive regimes”.

Organisation

The Thesis is organised as follows. The chapter 1 contains an introduction to Toka-

maks and Fusion Energy. We talk about the MHD model of Tokamaks and Instabilities.

We also cover previous investigations of the subject. In chapter 2, we proceed to lay out

the FKR analysis of Resistive modes. We talk about tearing modes and Kink modes.
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In chapter 3, we discuss the motivation for the simulation of Resistive modes and the

CUTIE code, its description and implementation. In chapter 4, we talk about flow stud-

ies of (2,1) tearing modes, linear and nonlinear aspects therein. We have used both

single and 2fluid models here in our study. In chapter 5, we investigate (1,1) kink mode

in a single fluid model. We examine the effect of flows in linear and nonlinear regimes.

In chapter 6, we investigate the (1,1) kink mode using a two fluid model and the effects

of flows thereon. Finally, we summarise our findings in chapter 7.
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1
Introduction

Nuclear Fusion is a process by which two light nuclei combine to form a heavier nucleus
with the release of energy. It is being actively pursued as an alternative source of energy
from the past few decades due to its enormous potential for fulfilling society’s energy
needs. Life on Earth is already powered by fusion energy, which it receives from the
Sun. However, it is not possible for us on Earth to exactly imitate the Sun in a laboratory
or a power plant. This is because we do not have the luxury of a large gravitational field
which can confine nuclei in order that fusion is possible, as positively charged nuclei
repel. Therefore we need an alternative mechanism to confine the nuclei in such a
manner that fusion takes place. This is made clear in the following, where we detail
the factors the fusion reaction and the fusion yield would depend on, summarised in
the Lawson criterion, which gives us a quantitative criterion for reaction to become
self-sustaining. One of the most popular approaches for achieving controlled fusion
is magnetic fusion, wherein we employ magnetic fields to confine particles. In this
approach, the tokamak is the most successful prototype for a future fusion power plant.
Here the particles are confined in a toroidal geometry using a toroidal magnetic field.
Though there is no end loss of particles and energy, but there are losses due to several
plasma instabilities which occur in the presence of free energy in the system such as
current gradients, field gradients, density gradients, temperature gradients etc. In this
thesis, we study the physics of plasmas in a tokamak, in particular plasma instabilities
in the MHD regime, and the effect of flow on them.
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Tokamaks and Fusion Energy, its importance and scope

Nuclear Fusion, as has been mentioned, is the process of combination of light nuclei to
produce heavier nuclei with a net output of energy. This process naturally goes on in
the cores of stars like the Sun, where gravity helps to confine particles. In the Sun, the
dominant process is the combination of two deuterium nuclei as shown in equation 1.1,
that is the sun follows a D-D process primarily. The reactions are as follows:

2
1H + 2

1H→ 3
2He+ 1

0n+ 3.27MeV (1.1)

2
1H + 2

1H→ 3
1H + 1

1H + 4.03MeV (1.2)

2
1H + 3

1H→ 4
2He+ 1

0n+ 17.59MeV (1.3)

2
1H + 3

2H→ 4
2H + 1

1H + 18.30MeV (1.4)

This gives the overall reaction as follows:

62
1H + 3

1H + 3
2He→ 24

2He+ 3
2He+ 3

1H + 21
1He+ 21

0n+ 43.19MeV (1.5)

There are many mechanisms by which the overall reaction is achieved. However,
this cycle is not useful to us in the laboratory as its cross section is too low. The D-T
reaction cycle is the most promising reaction in terms of economic viability [1]. We
have a large availability of deuterium from the oceans and tritium can be obtained from
lithium which is also plentiful, by treatment with neutrons.

Achieving a successful fusion reaction however is more complicated than this. Two
nuclei will always repel each other strongly as they are both positively charged. One
needs to increase the energy so that reaction rate increases to the extent that it is feasible
for our purposes, and confine them so that enough nuclei can collide with each other,
which is very difficult at such energies. We also require a sufficient density of the gas.
Since the temperatures involved are very high∼ 10keV and can destroy any material we
have, confinement of this fusion reaction and controlling it is not a trivial task. These
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factors are captured in the famous Lawson Criterion[1] which tells us about what param-
eters we require to achieve ignition, which means a condition where the heat generated
by the fusion reactions maintains the temperature of the fusion reaction despite all the
heat losses due to various mechanisms. The Lawson criterion states that, once a critical
ignition temperature for nuclear fusion has been achieved, it must be maintained at that
temperature for a long enough confinement time at a high enough ion density to obtain
a net yield of energy. In numbers, nT τE ≥ 3×1021keV s/m3 for a D-T reaction.

At fusion relevant temperatures, the D and T gases form a plasma, where nuclei and
electrons separate. In order to carry out the reaction on earth, we need a method to keep
the gas from touching the walls of any material conductor we use to confine the fusion
reactants. For this purpose, we use magnetic fields, and various devices over the years
have used magnetic fields in a variety of ways to confine plasma. The most successful
of these is called the tokamak. It is an acronym from a Russian name “toroidalnaya
kameras magnitnymi katushkami”, meaning toroidal chamber with magnetic coils, and
is a literal description of the device. We will speak more about the tokamak in what
follows.

We have mentioned that magnetic fields are used to confine a plasma. It is because
the trajectory of charged particles can be modified by a magnetic field as is well known
in electrodynamics. Various types of magnetic fields may be used for the purpose, how-
ever in every case it is not possible to confine the particles perfectly. Different types of
magnetic field configurations like a screw pinch, stellarators, and tokamaks have been
used. Linear devices have large end losses and closed devices like a tokamak have drifts.
There are also the issues of instabilities of a plasma, which is the focus of this thesis.
Tokamaks are relatively the best among devices which use magnetic fields to confine
plasma, and internationally a lot of research effort in the field of controlled magnetic
fusion research is devoted to using tokamaks.

Tokamaks essentially are a torus, with two magnetic fields, one toroidal and one
poloidal. The toroidal field if used alone cannot confine the plasma. This is because the
plasma contains positive and negative particles which will drift in opposite directions.
There is an E×B drift thus created due to the resulting electric field. A poloidal field
in combination with a toroidal field can prevent this from happening. It creates a helical
field, consisting of nested magnetic flux surfaces. These can be measured by the safety
factor q(r) or the rotational transform ι , its inverse. It is important during the operation
of a tokamak to ensure we have achieved adequate temperatures and densities for as
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long as it is possible so that we can obtain as much fusion energy as possible. Our guide
in this matter is the aforementioned Lawson Criterion which gives us the condition for
ignition. There are many ways in which both heat and density is lost continuously
during the operation as well impurities both present prior to the operation and generated
during the operation reduce the efficiency of the tokamak. These problems have to be
overcome in order to produce fusion in a commercially viable manner. According to our
present understanding, we believe that anomalous transport and plasma turbulence may
be limiting confinement time in tokamaks. There are several MHD instabilities present
in the system which are responsible for enhancement of energy and particle transport in
a tokamak. For example, we have the edge localised modes(ELMs) which occur near
the edge in the high confinement plasma due to strong pressure gradients. Then we have
the tearing modes in the core arising due to current gradient which forms a magnetic
island inside the plasma. Similarly, we have the sawteeth near the center of the plasma
which are thermal instabilities associated with internal kink modes. To achieve the high
confinement and temperature as required for fusion, it is very much necessary to control
these instabilities. Much effort has been put by the fusion community to understand how
to control these MHD instabilities and achieve high confinement plasma.

Despite these issues, tokamak research has made great advances over the years both
experimentally to achieve higher fusion parameters and theoretically to understand the
key dynamics of these instabilities and how to control them. Now we have a better
understanding of tokamak experiments due to lots of theoretical efforts analytically as
well as by doing numerical simulation though it is far from complete. On the other
hand, there are instances such as bootstrap current, caused due to the potential differ-
ence between trapped and passing particles, which was predicted theoretically [2] and
then confirmed experimentally later[3]. All these encouraging results have motivated
the international community to build the ITER tokamak, in an international collabora-
tion which seeks to build a working tokamak reactor in France, with an aim to achieve
ignition. It will be the biggest tokamak constructed in the world so far.

Literature Survey and Resistive modes in a Tokamak

Many efforts have been made in the past to better understand resistive modes in a Toka-
mak. We will here try to trace the development of the subject and mention some of the
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most important works in this and related areas. The importance of flows and its ability
to alter the characteristics of resistive modes in a tokamak is brought out.

In our study of tokamak plasmas, our primary focus has been on instabilities in it.
An instability is a perturbation which has a positive growth rate, and it draws upon a free
energy source for its growth. There are various types of instabilities present in a tokamak
depending on the kind of model we use to study it. One of the most common and simple
models used to study the tokamak is the MHD(magnetohydrodynamic model), which
treats the tokamak plasma as a charged single fluid interacting with magnetic fields.
Due to its simplicity it is not able to give answers to some puzzling questions about the
tokamak plasma, however it is a very powerful model, and has led to powerful insights
into the working and behaviour of the tokamak plasma. An excellent introduction to the
ideal MHD model applied to tokamak plasmas can be found in the book by Freidberg[4].
Here, we briefly introduce MHD theory in the following. The equations constituting the
MHD model are described in the following.

MHD model

• Continuity equation

∂ρ

∂ t
+∇ · (ρv) = 0 (1.6)

• Momentum equation

ρ

(
∂

∂ t
+v ·∇

)
v =

J×B
c
−∇p (1.7)

• Ampere’s law

∂B
∂ t

=−c∇×E (1.8)

• Faraday’s law

E+
v×B

c
= 0 (1.9)

• Ideal Ohm’s law
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∇ ·B = 0 (1.10)

• Divergence constraint

d
dt

(
p

ργ

)
= 0 (1.11)

In these equations 1.6-1.11, we have used the following definitions:

B is the magnetic field; v is the plasma velocity; J is the current density; E is the
electric field; ρ , is the mass density; p is the plasma pressure; γ , is the ratio of specific
heats Cp/Cv and t is time.

A tokamak plasma generally has two competing forces, pressure expanding out-
wards and an inward force due to the plasma current. The plasma is at equilibrium
when these two forces balance each other. This condition is expressed mathematically
as ~∇p = ~j×~B, where “B” is the magnetic field and ‘p’ is the pressure.This condition
leads to the Grad-Shafranov equation. It is a differential equation for the poloidal flux
function. Various instabilities can affect this equilibrium and it is obtained from the
force balance equation, ~∇p = ~j×~B, where “B” is the magnetic field (divergence-free)
and µ0~j = ~∇×~B. It is given as follows:

∆
∗
ψ =−µ0R2 d p

dψ
− 1

2
dF2

dψ
(1.12)

Here, µ0 is the magnetic permeability, p(ψ) is the pressure, F(ψ) = RBφ .

The magnetic field and current are, respectively, given by the equations:

~B =
1
R

∇ψ× êφ +
F
R

êφ (1.13)

µ0~J =
1
R

dF
dψ

∇ψ× êφ −
1
R

∆
∗
ψ êφ (1.14)

and the elliptic operator ∆∗ is given by,

∆
∗
ψ ≡ R2~∇ ·

(
1

R2
~∇ψ

)
= R

∂

∂R

(
1
R

∂ψ

∂R

)
+

∂ 2ψ

∂Z2 (1.15)

We have chosen here to focus on kink and tearing modes. These are current driven
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instabilities and are strongly affected by the presence or absence of resistivity. Indeed,
tearing modes cannot exist in the absence of resistivity. We will describe kink modes,
tearing modes and the effect of flows in some detail in the following. We also assume
a cylindrical geometry as our studies are carried out in a cylindrical geometry with
periodic boundary conditions.

Flows are an important and unavoidable part of tokamak operation. Flows can be
both intrinsically generated within the plasma or externally manipulated. As such, flows
can substantially affect plasma equilibrium and stability. The introduction of flows
makes MHD equations much harder to solve. Pioneering work in this area has been
carried out by Zehrfeld et al[5], who had given an analytic solution due to presence
of flow of flux surfaces and their shift. Another seminal work has been carried out by
Maschke and Perring[6]. They have found exact solutions for a model with a toroidal
flow. They demonstrated a method to incorporate toroidal flow in the Grad Shafranov
equation. In this connection, they have shown an outward shift of the constant pressure
surface from the magnetic flux surface caused by toroidal rotation or flow. The paper
also contains a calculation of outward shifts of the magnetic axis, and pressure due to
incorporating toroidal flow into the system. A few studies are noteworthy and we men-
tion them below in this context. There is an analytical theory developed by Betti et
al[7] which has demonstrated that radial discontinuities develop at the transonic surface
during the transition from subsonic to supersonic velocity of the equilibrium poloidal ve-
locity profile in comparison to the poloidal sound speed. This work has been validated
by the simulation work of Guazzotto et al[8], where they have used the FLOW code, and
observed a development of pedestal structures which are characterised by radial discon-
tinuities. A derivation of a generalised form of the Grad-Shafranov equations which
include both toroidal and poloidal flows has been done by Hameiri[9]. Throumoulopou-
los have found several classes of analytic equilibria of a toroidal axisymmetric plasma
when it has a toroidal mass flow in the case of isothermal and isentropic magnetic sur-
faces for various pressure and current density profiles[10].

Flows therefore have been shown to have significant effect on plasma equilibrium.
They also have a strong effect on MHD instabilities which has been the focus of this the-
sis. There exists a large body of literature where these studies have been documented.
There were pioneering studies done by Hofmann[11], in which an analysis of resistive
tearing modes in plane sheet pinch in the presence of a shear bulk plasma flow. The prin-
cipal results of this study were a dispersion relation where there is a growth rate scaling
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of S−1/2, and that the region of instability depends on fluid kinetic energy or magnetic
field energy where positive or negative stabilisation are likely effects of the flow. The
paper of Chen and Morrison[12] is a comprehensive study of the effect of equilibrium
velocity shear using the boundary layer approach for constant-ψ and nonconstant-ψ lin-
ear tearing modes in the inner resistive region and outer ideal region. They have a num-
ber of significant results. One is that ∆′ depends strongly on sheared flow in the outer
region. In the inner region linear growth rate scaling changes for nonconstant-ψ but
remains same for constant-ψ . Also, flow shear is stabilising if it is larger than magnetic
field shear. Kleva and Guzdar have studied the stabilization of sawteeth in tokamaks
with toroidal flows[13]. They find that as the toroidal flow velocity approaches sound
speed, then n=1 resistive tearing mode gets completely stabilized. We can also mention
the work of Wahlberg et al[14] and Chapman et al[15] in this context who have studied
the stabilisation of the internal kink mode. In this context, it is ought to be mentioned
that viscosity can play a very important role to modify the stability of the modes partic-
ularly in the presence of flows. The viscosity can be high in tokamak operations due to
turbulence etc. which has been reported in tokamak experiments[16]. There are several
other studies [17–19] which show that the stability results in the low viscosity regime
can be altered significantly in the high viscosity regime.

Thus, in this thesis we have done the systematic studies of MHD resistive instabil-
ities in the presence of flow for a wide viscosity range both in the linear and nonlinear
regime.

Layout of the thesis

The Thesis is organised as follows. In Chapter 1, we proceed to lay out the FKR[20]
analysis of Resistive modes. The paper of Furth, Killeen, Rosenbluth, abbreviated as
FKR[20] is a seminal work in the field of tokamak instabilities, and was the first to
identify modes such as the tearing mode. Resistive modes occur frequently in a tokamak,
and play an important role in disruptions. The resistive modes we have dealt with are
the tearing mode and the kink mode. The tearing mode, or more precisely the classical
tearing mode which we exclusively deal with, arises at the mode rational surfaces, and
plays an important role in disruptions. The origin of this mode, and its importance for
the tokamak are discussed. This mode can also couple with other modes like the kink
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mode, and we could have cascades. Our studies can also be useful for neoclassical
tearing modes as the classical tearing mode creates seed islands which can give rise
to neoclassical tearing modes. After this, we will discuss the kink mode. It occurs at
the m=1 rational surface when the q value at the centre dips below 1. It is of great
importance as it is linked to triggering sawtooth oscillations. We will discuss the origin
and the importance of the kink mode in this chapter. In Chapter 2, we discuss the
motivation for the simulation of Resistive modes and the existing literature. In the next
Chapter 3 the CUTIE code, its description and implementation. The CUTIE code has
been implemented in IPR for the study of resistive modes. It is written in fortran and
incorporates a variety of numerical techniques for efficient solution of single and two
fluid equations for the tokamak. We discuss some technical aspects, its numerical and
physics capabilities. It is very flexible in terms of the parameters we can use such as
specifying profiles, and can be used for a range of simulation studies. It has been very
successful in the past in predicting phenomena in a tokamak. In Chapter 4, we talk
about flow studies of (2,1) tearing modes, linear and nonlinear aspects therein. We
have used both single and 2fluid models here in our study. Various new results have
been presented in this chapter. We have seen that axial flows destabilise the mode,
whereas the poloidal flows stabilise the tearing mode in the linear regime. There is also
a symmetry breaking effect observed in the nonlinear regime. We have examined the
effect of helical flows on the mode which further confirm these conclusions. We have
also done a comparison of the stability of a mode in both single and two fluid regimes
and found that mode is more stable in the single fluid regime as compared to the two
fluid regime. Comparisons have been done with the NEAR code, which is a toroidal
code where there are additional stabilising effects. In Chapter 5, we investigate (1,1)
kink mode in a single fluid model. We examine the effect of flows in linear and nonlinear
regimes. Here, we have extended previous studies on the tearing mode and have found
that the kink mode behaves a little differently in the presence of viscosity and flow. We
notice that the effect of axial flow depends strongly on the viscosity regime. We notice
symmetry breaking in a similar manner as was noticed in the case of the tearing mode
but it is stronger. We also see the poloidal flow can be nonlinearly destabilising, which is
an unexpected conclusion. In Chapter 6, we investigate the (1,1) kink mode using a two
fluid model and the effects of flows thereon. We have found considerable differences
from the single fluid results in the two fluid regime. We find that poloidal flow can
be destabilising both linearly and nonlinearly. We have studied the diamagnetic drift
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frequency ω∗ with viscosity and found a variation in its behaviour in different viscosity
regimes. Finally, we summarise our findings in Chapter 7.
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2
Resistive Modes in a Tokamak

In this chapter, we will describe the FKR[20] analysis, which stands for Furth, Killeen
and Rosenbluth, the authors of the cited paper, of resistive MHD modes, particularly
the tearing modes where resistive MHD modes are those which occur in a plasma when
there is a finite resistivity present. This enables magnetic field lines to move within the
plasma. In this chapter, we would like to explain resistive MHD modes further, which
are the subject of study in this thesis.

Kink modes

The kink mode is a transverse displacement of a plasma column’s cross section from
its centre of mass. It is driven by radial current gradients and occurs if the Kruskal-
Shafranov limit [1] is exceeded, that is the safety factor, q = rBt

RBp
< 1, where r =minor

radius, R =major radius,Bt =axial magnetic field and Bp =poloidal magnetic field. It
is quite dangerous for a plasma, and it is sought to be avoided by keeping q > 1 at all
points in the tokamak so that there is no rational surface for the m = 1, n = 1 internal
kink mode present inside the plasma. However, within the core region, q < 1 is typically
the case due to the profile of the safety factor present. The presence of resistivity allows
magnetic field lines to move, allowing magnetic reconnection to occur. We have studied
m = 1,n = 1 visco-resistive internal kink modes in this thesis. These are suspected to
be initiating sawtooth oscillations and lot of work has been devoted in the past to study
this connection[21–25]. The mode can also couple to other MHD modes like the (2,1)
mode, and a lot of work has been performed on this[26–28]. Work in this area began
with Kadomtsev’s theory[22], according to which complete resistive reconnection takes
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Chapter 2. Resistive Modes in a Tokamak

place in the core which leads to a loss of temperature confinement. This theory could
not however completely explain experiments due to various reasons, among which it
is not understood why experimentally how complete core reconnection is prevented.
Simulation work has been done to understand the connection of the internal kink mode
and sawtooth oscillations[29, 30]. However, it has not been proven clearly as to what
is the role of the internal kink mode on sawtooth oscillations. There are older review
papers[31, 32] which have presented an overview of the understanding we have regard-
ing the relationship of the internal kink mode and sawtooth oscillations and their effect
on tokamak oscillations. To attempt a complete understanding of the dynamics of the
internal kink mode, we would require a full three dimensional toroidal simulation which
includes nonlinear coupling between various helical modes and kinetic corrections. This
is beyond the scope of our efforts and we have attempted to understand both in a single
and two fluid model, what is the effect of flows and viscosity on the internal kink mode,
with possible extensions to sawtooth oscillations in the future.

Tearing modes

In our thesis we have worked on classical tearing modes ignoring neoclassical effects.
These are driven by gradients of current in a plasma, which is their source of free en-
ergy. They grow on the mode rational surfaces, i.e., where the magnetic field has made
a integer number of poloidal and toroidal turns. There occurs a resonance between the
helicity of this perturbed mode and the equilibrium magnetic field. These modes are
characterised by a parameter ∆′ which measures the discontinuity in the magnetic field
across the mode rational surface. There is a rearrangement of magnetic field topol-
ogy here which is possible if resistivity is non zero. This can lead to the formation of
magnetic islands, which alter transport in a tokamak and can lead to disruptions if they
become big enough. It is possible to avoid these modes by ensuring that ∆′ is negative.
Since we do not deal with neoclassical tearing modes, in which case this is not generally
true, this condition is adequate for our purposes.

In the following, we will describe briefly the FKR[20] analysis, of resistive MHD
modes, particularly the tearing modes where resistive MHD modes are those which
occur in a plasma when there is a finite resistivity present, whose presence enables
magnetic field lines to move within the plasma. They have made their calculations in a

12
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slab geometry. It will serve as a springboard for further investigations of the kink and
tearing modes, which are the subject matter of this thesis. Generally resistivity damps
out perturbations in plasmas, however it can actually be destabilising factor in certain
situations. As we have indicated, the presence of resistivity enables magnetic field lines
to change their topology to form a configuration of lower energy. This process can lead
to a destabilisation of the plasma. It is also to be emphasised that resistive MHD modes
are quite fast growing, and they play a role in disruptions and sawteeth phenomena. This
could be possibly be due to the fact that resistive diffusion of plasma across the magnetic
field occurs on a scale length in space, which is lesser than the size of the plasma, and
could still release large amounts of energy relatively. The diffusion itself occurs quickly
as it has a short distance to traverse. We have summarised the following expressions
related to MHD stability as given in Fitzpatrick[33].

Let the equilibrium magnetic field be,

B0 = B0y(x)ŷ (2.1)

assuming symmetry about origin and assuming no equilibrium flow.

The MHD equations we have are,

E+v0×B = ηJ0

ρ0
∂v0
∂ t

=−∇p+J0×B

Perturbing and linearising these equations, and solving them enables us to derive a
dispersion relation

Here, (redefining symbols for our convenience), ρ0 is the equilibrium plasma den-
sity, B the perturbed magnetic field, V the perturbed plasma velocity, and p the perturbed
plasma pressure.

Let us suppose all perturbed quantities vary as,

A(x,y,z, t) = A(x)exp(iky+ γt) (2.2)

Here γ is the growth rate of the tearing mode.

We define the Alfven time-scale,

13
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τA =
a

VA
(2.3)

where VA = B0√
µ0ρ0

is the Alfven velocity, and the resistive diffusion time-scale,

τR =
µ0a2

η
(2.4)

We additionally define the Lundquist number,

S =
τR

τA
(2.5)

Let ψ = Bx
B0
,φ =

ikVy
γ
,x = x

a ,F =
B0y
B0

,F ′ ≡ dF
dx ,γ = γτA,k = ka.

We assume the tearing instability grows on a hybrid time-scale which is much less
than τR but much greater than τA. We must solve the outer equations which are ideal
MHD equations and

τH =
τA

kaF ′(0)
(2.6)

τH is known as the hydromagnetic time scale. We have to match the two solutions
at the boundary, there being a discontinuity given by,

∆
′ =

[
1
ψ

dψ

dx

]x=0+

x=0−
(2.7)

An unstable tearing mode would be characterised by Q > 0, where, Q = γτ
2/3
H τ

1/3
R

We shall further assume that,

Q� 1 (2.8)

This is termed as the constant ψ approximation. The growth rate of the tearing mode
is given by,

γ =

[
Γ(1

4)

2πΓ(3
4)

] 4
5
(∆′)

4
5

τ
2
5
Hτ

3
5
R

(2.9)

or,
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γτA =

[
Γ(1

4)

2πΓ(3
4)

] 4
5
(∆′)

4
5 kaF ′(0)

S
3
5

(2.10)

Thus we see that , γτA scales as S−3/5 and ∆′4/5 in a slab geometry.

Militello[34] has provided corrections for the aforementioned dispersion relation,
viz the relation between growth rate and delta prime. The dispersion relation then gets
modified for moderate values of the electrical resistivity and of the tearing stability pa-
rameter, ∆′. The measure of resistivity is via the inverse of the Lundquist number which
is the ratio of alfvenic time scale to the diffusive time scale.

The relation obtained above 2.10, in terms of the unnormalised growth rate, γ and η

can be rewritten as

γ = ∆
′−4/5

α
−4/5
1 k−2/10

η
−3/5 (2.11)

Where, α1 = 2.1 and k is the perturbation mode number normalised to a macroscopic
length.

Also, 2.11 can be written in terms of ∆′

∆
′ = α1k1/2

γ
5/4

η
−3/4 (2.12)

The above relation 2.11 is modified for high η and in a cylindrical geometry, ob-
tained by Militello[34] and is the following,

γ =
(∆′+α1Fδ )η

α1δ
(2.13)

,

also,

∆
′ = α1γδ/η +α1Fδ (2.14)

where,

α1 = 2.1,γ = growth rate,δ =

(
γη

k2
c

) 1
4
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F = [(aA/2)+a2log(δ )−a2(α2 +π)/α1 +b]

and,

a =

(
−m

rs

dJeq

dr

/
n
R

q′eq

qeq

)
(2.15)

,

b =

[
a
(

q′′eqn
2qeqR

)
− d

dr

(
m
r

dJeq

dr

)]/
n
R

q′eq

qeq

)
(2.16)

The above relation 2.13 extends the result obtained in slab geometry to a cylindrical
geometry, and is important in the case of low S, or high η . We have obtained this
behaviour in our results shown in the subsequent chapters.
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3
CUTIE code and its implementation

In this chapter, we will describe the CUTIE code[35, 36], its background and its im-
plementation in IPR. To begin with, CUTIE stands for Culham Transporter of Ions and
Electrons. It was conceived as plasma fluid initial value code, and has the following
attributes. It is nonlinear, global, electromagnetic, quasi neutral i.e, ne ≈ ni, and very
importantly has been used for profile turbulence interaction studies in the past.

In our description, we would like to clarify the geometry and scale in which we
solve our equations, before proceeding to a description of the fundamental equations
of CUTIE. This will be followed by a description of the implementation of CUTIE in
IPR for our studies. The geometry we employ in CUTIE is a periodic cylinder geometry.
This is topologically equivalent to a torus but without the curvature. In the code, the cur-
vature effect is taken care of by introducing the toroidal coupling effect externally[37].
However, in the case of a single mode study, such coupling is not necessary. In this
geometry, magnetic flux surfaces are concentric cylinders. This geometry is used as an
approximation for large aspect ratio tokamaks, i.e., the aspect ratio, R/a� 1, where R
is the major radius of the tokamak and a is the minor radius of the tokamak. We solve
our equations on the “mesoscale”, which is defined as an intermediate scale between
the device size and the ion gyroradius. We incorporate approximations for the underly-
ing transport effects. Kinetic effects have been neglected, except for some classical and
neoclassical transport coefficients[38]. We operate on scales much larger than the ion
gyroradius therefore the fluid approximation is valid in our studies.

In our studies, we treat plasma fields in the following manner. We split the fields into
mean and fluctuating fields, denoted by the subscript 0 and δ respectively. The mean
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quantities are averaged over each flux surface as shown

n0 (r; t) =
1

4π2

2π∫
0

2π∫
0

n(r,θ ,ζ ; t)dθdζ (3.1)

and the total quantities are shown below

n(r,θ ,ζ ; t) = n0 (r, t)+δn(r,θ ,ζ ; t) (3.2)

The mean quantities have a spatial dependence only on r, and evolve slowly with
time. The fluctuating quantities on the other hand vary over all spatial coordinates and
evolve much faster with time. These fields interact with each other in a self-consistent
manner.

We evolve the following fields evolved in the CUTIE code, the magnetic field, B,
electrostatic potential, φ ,and additionally in the two fluid case, density, n, plasma flow
velocity, v, and the ion and electron temperatures, Ti and Te respectively. We have
assumed that plasma flow velocity is well represented by the ion’s velocity, vi, as ions
are much heavier than electrons. The current density is given by,

J = ne(vi−ve) (3.3)

We have split the magnetic field as,

B = ∇ψ×btor +Btorbtor (3.4)

in terms of a scalar magnetic potential ψ and toroidal direction vector btor. Due to
the fact that mean fields only have a radial variation, we only have a mean poloidal field
generated by this potential. The toroidal component is unaffected.

It can be mentioned here that CUTIE equations contain a lot of physics in them-
selves, in particular tearing modes, kink modes, ballooning modes, drift Alfvén among
others. We will here restrict our attention to the kink and tearing modes. We have
adapted the full CUTIE model to our studies. In this process we have neglected some
physics present in the full model, for instance curvature, and the evolution of tempera-
ture in the system, which is held constant.
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CUTIE model

We here present the governing equations of CUTIE [36]. Additionally, we note that
these are non-relativistic equations. The equations are as follows:

• Ampère’s law,

∇×B =
4π

c
J (3.5)

Here, B = ∇ψ × bt +B0bt where bt the unit vector in the toroidal direction, ψ

is the magnetic potential and B0 the mean toroidal magnetic field strength. The
current density is defined as J = ne(vi−ve) for singly charged ions, where vi and
ve are the ions and electron fluid velocities respectively.

• Continuity equation for particles,

∂n
∂ t

+∇ · (nv) = Sp (3.6)

where density, n = ne ≈ ni, plasma fluid velocity v = mivi+meve
mi+me

≈ vi and the exter-
nal particle source is Sp.

• The momentum equation is as follows,

min
dv
dt

=−∇p+
1
c

j×B+Feff (3.7)

where p = pi + pe = n(Te +Ti) is the total pressure, and Feff is the effective force
on the plasma.

• Energy equations for ion and electron species,

3
2

d pi,e

dt
+ p{i,e}∇ ·ve,i =−∇ ·qi,e +Pi,e (3.8)

where qi,e are the respective heat flux vectors.

• Ohm’s law
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E+
1
c

ve×B =− 1
en

∇pe +Re (3.9)

where Re is the electron-ion friction force. The plasma fields B,E,v, n and pi,e are
written as the sum of a flux surface averaged mean[35].

Fluctuating equations of Full CUTIE model

As described in the introduction, we use Fourier analysis to split the equations into
‘mean’ and ‘fluctuating’ components, where the mean parts are the (0,0) components in
the fourier sum. Although in principle, the mean and fluctuating quantities need not be
different in their relative size, in practice the fluctuating components are smaller than
the mean quantities. In this section, we describe the full nonlinear fluctuating equations
for the sake of completeness, they have been discussed in detail in earlier literature of
CUTIE[35, 38]. Our numerical investigations have been carried out in the framework of
a two fluid model in a periodic cylinder geometry (ρ,θ ,z),(ρ being the radial coordinate,
θ being the azimuthal coordinate, and z being the axial coordinate) defined in terms of
the minor radius, a, and the major radius, R0. Using normalised coordinates, we set
ρ = r/a, r being the radial distance, namely 0 6 ρ 6 1;0 6 θ ,ζ 6 2π;ζ = z/R0. The
model utilises CGS electrostatic units. The equations in our model are as follows:

W̃ = ρ
2
s ∇ ·

(
n0 (ρ)

n0 (0)
∇⊥φ̃

)
(3.10)

∂W̃
∂ t

+v0 ·∇W̃ + vA∇‖ρ
2
s ∇

2
⊥ψ̃ =

vAρs
1
r

∂ψ̃

∂θ

4πρs

cB0
j
′
0 + vthρs

1
r

∂
(
ψ̃,ρ2

s ∇2
⊥ψ̃
)

∂ (r,θ)
+

vthρs

[
1
r

∂
(
W̃,φ̃

)
∂ (r,θ)

+

(
n0 (0)Ti0

n0T ∗

)
1
r

∂
(
W̃,ñ

)
∂ (r,θ)

]
−

2vthρs

R0

[
cosθ

r
∂ p̃
∂θ

+ sinθ
∂ p̃
∂ r

]
+

ρ2
s W

′
0

r
∂ φ̃

∂θ
+ν∇

2
⊥W̃ (3.11)
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∂ψ̃

∂ t
+ve0 ·∇ψ̃ + vA∇‖φ̃ = vA

(
n0 (0)Te0

n0T ∗

)
∇‖n

∗+

vthρs

r

[
1
r

∂
(
ψ̃,φ̃

)
∂ (r,θ)

+

(
n0 (0)Te0

n0T ∗

)
1
r

∂ (ψ̃,ñ)
∂ (r,θ)

]
+

c2η

4π
∇

2
⊥ψ̃ (3.12)

∂ ñ
∂ t

+ue0 ·∇ñ+ vA∇‖ρ
2
s ∇

2
⊥ψ̃ =

vrhos
1
r

∂ψ̃

∂θ

4πρs

cB0
j
′
0 + vthρs

1
r

∂
(
ψ̃,ρ2

s ∇2
⊥ψ̃
)

∂ (r,θ)
+

vthρs
1
r

∂
(
ñ,φ̃
)

∂ (r,θ)
+

vthρs

(
n
′
0

N∗

)
1
r

∂ φ̃

∂θ
− 2vthρs

R0

[
cosθ

r
∂ p̃
∂θ

+ sinθ
∂ p̃
∂ r

]
−

vth∇‖ξ̃ +D∇
2
⊥n∗ (3.13)

∂ ξ̃

∂ t
+u0 ·∇ξ̃ + vth

(
Te0 +Ti0

T ∗

)
∇‖n

∗ =(
n0(r)v

′
‖0

n0(0)

)
ρs

1
r

∂ φ̃

∂θ
+ vthρs

1
r

∂

(
ξ̃ ,φ̃
)

∂ (r,θ)
−

vthρsβ
1/2

(
p
′
0

P∗

)
1
r

∂ψ̃

∂θ
− vthρsβ

1/2 1
r

∂
(

p̃,φ̃
)

∂ (r,θ)
−

vth

( n0

N∗

)
∇‖ (λ

∗
i +λ

∗
e )+χ∇

2
⊥ξ
∗ (3.14)

Equation[3.10] is the Poisson relation for our system. Equation[3.11] is the vortic-
ity equation, where W̃ is the perturbed vorticity. Equation[3.12] describes the evolu-
tion of the perturbed poloidal flux function ψ̃ . Equation [3.13] describes density evo-
lution and equation [3.14] describes the evolution of parallel momentum. Here, u0 =

−cEr0
B eθ +b0v‖0 is the equilibrium ’MHD’ flow, and ue0 =−cEr0

B eθ +b0
(
v‖0− j‖0/en0

)
is the corresponding electron flow. The ion flow alone is given by v0 = u0+

c
en0B

∂ pio
∂ r eθ ,
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and ve0 =−
[

cEr0
B + c

en0B
∂ pe0
∂ r

]
eθ is the total electron poloidal flow composed of the elec-

tron E×B equilibrium flow and the electron diamagnetic flow. The resistivity η and
viscosity ν are specified quantities and are held constant during our calculations. Addi-
tionally, ρs =

vth
ωci

, where, v2
th = (T0i +T0e)/mi, ωci = (eB0/mic), with T0i,T0e being ion

and electron temperatures respectively. mi is the ion mass, e is the elementary charge.
Φ0(r),Ψ0(r) denote the mean electrostatic and magnetostatic potentials respectively.

Also, we have used fixed boundary conditions, along with a conducting boundary.

This comes from
δE
B0

=−∇φ̃ − 1
c

∂ φ̃

∂ t
eζ

where, E is the electric field, φ is the electrostatic potential, and B0 'B0zeζ +B0θ (ρ)eθ

is the equilibrium field. The fluctuating electric field, δE, is related to φ̃ [this has dimen-
sions of length]. We use, ε = a/R0, the inverse aspect ratio, v0 =V0z (ρ)eζ +aρΩ(ρ)eθ .
The equilibrium axial and poloidal, sub-Alfvénic sheared flows are: Mz =V0z/vA is the
Axial Mach number; Mθ (ρ)= ρ Ω (1−ρ)2 is the poloidal Mach number; τA = a/vA the
Alfvén time; τη = (4πa2/c2η) the resistive time; τν = (a2/ν) the viscous time. We will
use in the following the Lundquist Number, S =

τη

τA
, and the Prandtl Number, Pr = τη

τν
.

We use an equilibrium electron density profile of the form ne = n0eexp{−α ∗ ρ2}.
α = dn

dr , the electron density gradient of the plasma.

The velocity perturbations are non-dimensionalised relative to the Alfven speed,
vA = B0

(4πmin0)
1/2 . The magnetic field perturbations are normalised by the equilibrium

axial magnetic field B0z. The fluctuations of magnetic field and velocity are incom-
pressible in the (r−θ) plane.

Together, these equations constitute the four field model we use and we solve them
using the CUTIE (CUlham Transporter of Ions and Electrons) code [35, 39], a non-
linear, global, electromagnetic, quasi-neutral, two fluid initial value code. It has been
used earlier for studies of kink modes, tearing modes, ELMs, L to H transitions, internal
transport barriers and other problems [35, 36, 39–41].

Reduced visco-resistive MHD equations(RMHD model)

In this section, we describe the RMHD model, a reduced description we have employed
to study the kink and tearing modes. It is derived from the full model described in the
previous section. They are given as follows: The periodic cylinder geometry is defined
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in terms of a, the minor radius and R0 the major radius. We set, ρ = r/a and we use
the non-dimensional coordinates, 0 6 ρ 6 1;0 6 θ ,ζ 6 2π;ζ = z/R0. The fluctuating
electric field, δE, is related to the fluctuating potentials ψ̃φ̃ (these have dimensions
of length in Gaussian CGS units which are used throughout this paper) according to,
δE
B0

= −∇φ̃ − 1
c

∂ φ̃

∂ t eζ , where, B0 ' B0z is the equilibrium field. Furthermore, we have
the following expressions (obtained from the definitions of the various quantities and
∇z ≡ eζ ) relating these potential perturbations to the (non-dimensional) velocity and
magnetic and field perturbations:

−
(

c
vA

)
∇φ̃ × eζ = ṽ∗ = v∗rer + v∗θ eθ =

(
c
vA

)[
−1

r
∂ φ̃

∂θ
,
∂ φ̃

∂ r

]
(3.15)

∇ψ̃× eζ =
B̃
B0

=
B̃r

B0
er +

B̃θ

B0
eθ =

[
1
r

∂ψ̃

∂θ
,
∂ψ̃

∂ r

]
(3.16)

Thus, we velocity perturbations are non-dimensionalized relative to the Alfven speed,
va = B0

(4πmin0)
1/2 . The magnetic field perturbations are typical of ’shear-Alfven’ pertur-

bations and are normalized by the equilibrium axial/toroidal field[NB:B0z ' B0 in the
present model]. The fluctuations of the magnetic field and velocity are incompressible
in the ′r−θ ′- plane. The corresponding ’mean’ quantities are assumed constant in time
and are denoted by, Φ0(r),Ψ0(r).

The reduced visco-resistive magnetohydrodynamic(RMHD) equations are then writ-
ten (in CGS units for intuitive clarity) as

∂W̃
∂ t

+v0 ·∇W̃ + vA∇‖ρ
2
s ∇

2
⊥ψ̃ = vAρs

1
r

∂ψ̃

∂θ

4πρs

cB0
j′0 +

vthρs

r

{
ψ̃,ρ2

s ∇
2
⊥ψ̃
}

+
vthρs

r

{
W̃ , φ̃

}
+

ρ2
s W ′0
r

∂ φ̃

∂θ
+ν∇

2
⊥W̃ (3.17)

∂ψ̃

∂ t
+ve0 ·∇ψ̃ + vA∇‖φ̃ =

vthρs

r

{
ψ̃, φ̃

}
+

c2η

4π
∇

2
⊥ψ̃ (3.18)
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where, W̃ = ρ2
s ∇ ·

(
n0

n0(0)
∇⊥φ̃

)
. Here, {F,G} ≡ ∂ (F,G)

∂ (r,θ) , for any pair of functions,

F, G. Note that, ∇2
⊥ = 1

r
∂

∂ r

(
r ∂

∂ r

)
+ 1

r2
∂ 2

∂θ 2 and n0 is mean density. The resistivity η

and the viscosity ν are specified quantities, held constant during the calculations. Note
that, ρS =

vth
ωci

;v2
th = (T0i +T0e)/mi;ωci = (eB0/mic). We repeat from the earlier section,

that, here, u0 = −cEr0
B eθ +b0v‖0 is the equilibrium ’MHD’ flow, and ue0 = −cEr0

B eθ +

b0
(
v‖0− j‖0/en0

)
is the corresponding electron flow. The ion flow alone is given by

v0 = u0+
c

en0B
∂ pio
∂ r eθ , and ve0 =−

[
cEr0

B + c
en0B

∂ pe0
∂ r

]
eθ is the total electron poloidal flow

composed of the electron E×B equilibrium flow and the electron diamagnetic flow.

Two fluid model used for simulations

In this section, we describe the two fluid model used by us for our two fluid simulations.
It is a subset of the full CUTIE model stated earlier.

W̃ = ρ
2
s ∇ ·

(
n0 (ρ)

n0 (0)
∇⊥φ̃

)
(3.19)

∂W̃
∂ t

+v0 ·∇W̃ + vA∇‖ρ
2
s ∇

2
⊥ψ̃ =

vAρs
1
r

∂ψ̃

∂θ

4πρs

cB0
j
′
0 + vthρs

1
r

∂
(
ψ̃,ρ2

s ∇2
⊥ψ̃
)

∂ (r,θ)
+

vthρs

[
1
r

∂
(
W̃,φ̃

)
∂ (r,θ)

+

(
n0 (0)
2n0

)
1
r

∂
(
W̃,ñ

)
∂ (r,θ)

]
−

ρ2
s W

′
0
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Equation[3.19] is the Poisson relation for our system. Equation[3.20] is the vortic-
ity equation, where W̃ is the perturbed vorticity. Equation[3.21] describes the evolu-
tion of the perturbed poloidal flux function ψ̃ . Equation [3.22] describes density evo-
lution and equation [3.23] describes the evolution of parallel momentum. Here, u0 =

−cEr0
B eθ +b0v‖0 is the equilibrium ‘MHD’ flow, and ue0 =−cEr0

B eθ +b0
(
v‖0− j‖0/en0

)
is the corresponding electron flow. The ion flow alone is given by v0 = u0+

c
en0BT ∂nio

∂ r eθ ,

here due to quasi-neutrality ni0 ∼ ne0 and ve0 =−
[

cEr0
B + c

en0BT ∂ne0
∂ r

]
eθ is the total elec-

tron poloidal flow composed of the electron E×B equilibrium flow and the electron
diamagnetic flow. Also, we have N∗ = ne (0, t), T ∗ = Te (0, t)+ Ti (0, t), ξ̃ = N∗VT H .
The resistivity η and viscosity ν are specified quantities and are held constant dur-
ing our calculations. In particular, we use the self-consistent formulation whereby
η(r)æ0z(r)≡ E0z ≡

Vloop
2πR0

, where the specified q profile and B0 are used to get j0z initial
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profile. After this, we hold the profile and the value of η(0) fixed throughout both linear
and nonlinear calculations. We also have, Dres =

c2η(r)
4π

,ν ≡ Dvisc ≡ Pr.Dres, therefore,

Pr ≡ Dvisc

Dres
(3.24)

is the Prandtl number, which we have introduced earlier. We can therefore we see
that kinematic viscosity ν and η share the same radial profile and are invariant in time.

This comes from
δE
B0

=−∇φ̃ − 1
c

∂ φ̃

∂ t
eζ

where, E is the electric field, φ is the electrostatic potential, and B0 'B0zeζ +B0θ (ρ)eθ

is the equilibrium field. The fluctuating electric field, δE, is related to φ̃ [this has dimen-
sions of length]. We use, ε = a/R0, the inverse aspect ratio, v0 =V0z (ρ)eζ +aρΩ(ρ)eθ .
For clarity, we restate that, here, u0 = −cEr0

B eθ +b0v‖0 is the equilibrium ’MHD’ flow,
and ue0 = −cEr0

B eθ + b0
(
v‖0− j‖0/en0

)
is the corresponding electron flow. The ion

flow alone is given by v0 = u0 +
c

en0B
∂ pio
∂ r eθ , and ve0 = −

[
cEr0

B + c
en0B

∂ pe0
∂ r

]
eθ is the

total electron poloidal flow composed of the electron E×B equilibrium flow and the
electron diamagnetic flow.

The magnetic field perturbations are normalised by the equilibrium axial magnetic
field B0z. The fluctuations of magnetic field and velocity are incompressible in the (r−
θ) plane. The temperatures are measured in energy units, i.e, electron volts. Also, we
have used fixed boundary conditions, along with a conducting boundary, which means
that all the variables are zero at ρ = 1. Additionally, regularity considerations mean that
at ρ = 0, the fluctuations approach zero, and we have set the plasma edge at ρ = 0.95.
We have used the Fourier representation for the purpose of periodicity of the angular
coordinates.

Together, these equations constitute the four field model we use and we solve them
using the CUTIE (CUlham Transporter of Ions and Electrons) code [35, 39], a non-
linear, global, electromagnetic, quasi-neutral, two fluid initial value code. It has been
used earlier for studies of kink modes, tearing modes, ELMs, L to H transitions, internal
transport barriers and other problems [35, 36, 39–41].
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Method of solution

The CUTIE code has two versions, as follows,

• Evolutionary code: In this version, the physical quantities in the equation are
evolved with time. Both linear and nonlinear calculations are carried out in this
version.

• Resolvent code: In this version, we solve for the eigenvalue of the equations. By
its nature, it is a linear code.

The two versions of the code solve the same linear equations, and thus agree for
linear calculations. The slight difference as mentioned is due to the approach we employ
in solving the equations, as nonlinear time dependent calculations can only be done by
evolving our equations with time.

In the evolutionary code, we use the TDMA(Tri diagonal matrix)[35] method to
solve the equations. This method involves reformulating the coefficient matrix of the
equation in the form of a tridiagonal, and solving for the quantities thus involved by
using the procedure of gaussian elimination to arrive at the final answer. In the case of
the resolvent code[39], we look for the response of the quantity 1/(A−λ I) where the
original equation is of the form Ax = λx.

CUTIE implementation

The CUTIE code as used for our studies has undergone development according to our
needs. CUTIE code was originally an initial value code, evolving in time. A linear
eigenvalue solver version of CUTIE has been developed[39] and it is termed as the
resolvent code. In the linear regime, when we can ignore the nonlinear terms, it is full
agreement with the initial value code, as only the method of solution is different, with
the physics kept the same. In addition, it is also able to give us a number of other
eigenvalues, which we could not see in the initial value code, as it only picks up the
fastest growing eigenmode. Therefore, the resolvent code is useful both as a check on
the linear results we obtain from the initial value code, and also revealing to us the
eigenspectrum of a particular mode. The CUTIE code is of two types in our usage, one
is a Reduced MHD code, which uses single fluid equations only, and the other which
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uses the full nonlinear CUTIE equations. There are corresponding resolvent versions
of the CUTIE code, namely a single fluid and two fluid code. However, an important
difference is that the resolvent is essentially a linear code, and also it is able to reveal the
eigenspectrum of a mode, which the evolutionary version does not, as it evolves only
the fastest growing modes.

In our implementation, I have noticed that CUTIE is a code which is highly cus-
tomisable in terms of the parameters it employs. We have changed some of the default
for the running CUTIE, CUTIE gives us the ability to change a large number of param-
eters like density profile, resistivity profile etc. We have first studied the tearing mode
using the CUTIE code. Subsequently, we were able to study other other modes like the
kink mode using the CUTIE code.
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4
Studies of (2,1) Tearing modes

The work described in this chapter has been published in the paper [39]. We describe in
detail our studied on the effect of flow on the (2,1) tearing modes in a tokamak.

Introduction

Neoclassical tearing modes (NTMs) pose a serious threat to the operation of long pulse
tokamak devices like ITER as they can severely degrade plasma confinement and thus
prevent the achievement of high values of β (where β is the ratio of plasma pressure
to magnetic field pressure). A great deal of theoretical and experimental effort is being
devoted to exploring various means of controlling this instability either directly by use
of localized radio frequency current drive/heating or indirectly by preventing the occur-
rence of seed magnetic islands that can act as triggers for NTMs. Recent experimental
observations from some tokamaks indicate that equilibrium sheared-toroidal flows have
a beneficial influence on NTMs. More specifically, an increase in the equilibrium flow
[with shear] leads to an increase of the NTM excitation threshold and also decreases the
size of the saturated island [42, 43]. A sound theoretical understanding of these experi-
mental observations is still lacking and a proper identification of the underlying physical
mechanisms would greatly facilitate development of additional strategies for the control
of NTMs. Our present work is motivated by such a consideration.

Equilibrium flows can influence the stability of tearing modes through a variety of
physical effects arising from the dynamical characteristics of the plasma as well as the
confinement geometry, as studied extensively in the past [12, 44]. To understand and
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assess systematically the roles played by these effects, we have carried out a series of
numerical and analytic studies on the stability of the (2,1) tearing mode, using a number
of model systems that progressively incorporate various effects of changes in geometry
and more detailed physics. We begin, in section 4.5, with a simple reduced MHD de-
scription of the plasma in a cylindrical geometry and present a series of numerical com-
putation results carried out with the code CUTIE [45]. The cases include purely axial
sheared flows, purely poloidal sheared flows and helical flows that are a combination of
the axial and poloidal flows leading to different flow helicities. In section 4.6, we present
CUTIE simulations using a two fluid model and discuss the differences observed from
the single fluid simulations. Section 4.3 contains a discussion of a new and powerful
technique (called the “resolvent method”) for obtaining the full eigen-spectrum that is
applicable to non-self-adjoint problems. The growth rate and real frequencies obtained
through the use of this method confirm and further validate our results from the CUTIE
code. In section 4.7 we examine the equilibrium modifications arising in a toroidal ge-
ometry due to the presence of toroidal flows and their impact on the stability of the
(2,1) mode. The numerical results were obtained using the codes NEAR (stability) and
TOQ (equilibrium) [46–48] and the stabilizing influence of the flow induced shift in the
current profile is analytically estimated from an approximate calculation of the ∆′ pa-
rameter and the saturated island size W . A brief summary of our results and a discussion
on future directions of research are provided in section 4.8.

Model equations

We repeat the details of the model equations for convenience.They have been used in our
study are described in several publications [45–48]. In the following, the periodic cylin-
der geometry is defined in terms of a, the minor radius and R0 the major radius. We set,
ρ = r/a and we use the non-dimensional coordinates, 06 ρ 6 1;06 θ ,ζ 6 2π;ζ = z/R0.
The fluctuating electric field, δE, is related to the fluctuating potentials ψ̃φ̃ (these have
dimensions of length in Gaussian CGS units which are used throughout this thesis) ac-
cording to, δE

B0
=−∇φ̃ − 1

c
∂ φ̃

∂ t eζ , where, B0 ' B0z is the equilibrium field. Furthermore,
we have the following expressions (obtained from the definitions of the various quanti-
ties and ∇z≡ eζ ) relating these potential perturbations to the (non-dimensional) velocity
and magnetic and field perturbations:
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−
(

c
vA

)
∇φ̃ × eζ = ṽ∗ = v∗rer + v∗θ eθ =

(
c
vA

){
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∂θ
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∂ r
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(4.2)

Here, {F,G} ≡ ∂ (F,G)
∂ (r,θ) , for any pair of functions, F, G. Thus, the velocity pertur-

bations are non-dimensionalized relative to the Alfven speed, va = B0

(4πmin0)
1/2 . The

magnetic field perturbations are typical of ’shear-Alfven’ perturbations and are normal-
ized by the equilibrium axial/toroidal field[NB:B0z ' B0 in the present model]. The
fluctuations of the magnetic field and velocity are incompressible in the ′r−θ ′- plane.
The corresponding ’mean’ quantities are assumed constant in time and are denoted by,
Φ0(r),Ψ0(r).

The reduced visco-resistive magnetohydrodynamic(RMHD) equations are then writ-
ten (in CGS units for intuitive clarity) as

∂W̃
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∂ψ̃

∂ t
+ve0 ·∇ψ̃ + vA∇‖φ̃ =

vthρs
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ψ̃, φ̃

}
+

c2η

4π
∇

2
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where, W̃ = ρ2
s ∇ ·

(
n0

n0(0)
∇⊥φ̃

)
. Note that, ∇2

⊥ = 1
r

∂

∂ r

(
r ∂

∂ r

)
+ 1

r2
∂ 2

∂θ 2 and n0 is mean
density. The resistivity η and the viscosity ν are specified quantities, held constant
during the calculations. Note that, ρS =

vth
ωci

;v2
th = (T0i +T0e)/mi;ωci = (eB0/mic).
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Resolvent methods

Here we have used the ‘resolvent method’ of calculating the full eigen-spectrum, ap-
plicable to non-self-adjoint problems and have used it in conjunction with an initial
value approach [49]. In this method, one essentially solves [using a suitably modified
resolvent code derived from CUTIE] the inhomogeneous differential equations for the
amplitudes of fluctuating quantities varying like eΓt f̂ (r,m,n) for an assumed complex
frequency Γ = γ + iωr. This amounts to calculating the Green’s function for the system
as a function of the complex variable Γ. The poles of this solution are sought in the
complex Γ−plane. The poles in the upper half plane correspond to unstable modes with
real frequency given by ωr and growth rate, γ , whereas those in the lower half plane
correspond similarly to stable modes.
Let us consider the eigenvalues and eigenvectors of a matrix A which satisfy the follow-
ing equation,

(A−λ I)x = 0 (4.5)

where I is the n×n identity matrix. In case of resolvent method, we solve the following
system for the vector x∗,

(A−λ
∗I)x∗ = g (4.6)

where λ ∗ is the initial guess for the eigen value and g is some nonzero vector of same
dimension of vector x∗. Then the solution of the equation (4.6) is achieved using
TDMA for given values of λ ∗ and g. Now solving it for a range of λ ∗, we can write a

D(λ ∗) =
n
∑

i=1

1
x∗i (λ

∗) . As λ ∗ approaches the true eigenvalue λ then left hand side of the

equation (4.6) will approach zero, so one or more elements of the solution vector x∗ will
tend to blow up. So D(λ ∗) = 0 for λ ∗ = λ , eigenvalue of the system.
The method has been tested systematically in single and two fluid versions. The growth
rates match the ones obtained with the "evolutionary method" perfectly. The two-fluid
application of the method shows that the real frequency matches correctly with the elec-
tron drift frequency, ω∗e =

Te
eB0

(m
r )[

1
ne

dne
dr ];ne ∼ e−k∗(r/a)2

. Further details and many ex-
amples of this method can be found in the PhD thesis of J. Douglas [50]. The resolvent
technique is very much more efficient in obtaining the eigenvalues and the eigenfunc-
tions than the evolutionary method and gives accurate eigenfunctions for any given dis-
cretization.
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Benchmarking of CUTIE in visco-resistive regime

The simulations have been carried out in a reduced version of the CUTIE (CUlham
Transporter of Ions and Electrons) code. CUTIE is a nonlinear, global, electromag-
netic, quasi neutral, two fluid initial value code that has been sucessfully used in the
past to gain insight into a number of experimental phenomena in tokamaks, such as the
formation of internal transport barriers, L to H transitions, formation of ELMs, saw-
teeth oscillations etc. However, a comprehensive linear benchmarking (some results
are documented in [[45] ,[50]] of tearing mode simulations using the CUTIE code for
wide ranges of resistivity and viscosity are incomplete. Such benchmarking is impor-
tant becuase there are different existing theories of tearing modes that predict distinct
behaviour of the modes for different viscous and resistive regimes. The benchmarking
results are presented in the figures Fig. 4.1, Fig. 4.2, Fig. 4.3 and Fig. 4.4.
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Figure 4.1: Linear growth rate vs Lundquist number of the (2,1) mode in low viscosity regime
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Figure 4.2: Linear growth rate vs stability index of the (2,1) mode in low viscosity regime
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Figure 4.3: Linear growth rate vs Prandtl number of the (2,1) mode

34



Chapter 4. Studies of (2,1) Tearing modes

-2e-05

-1e-05

 0

 1e-05

 2e-05

 3e-05

 4e-05

 1e+06  1e+07  1e+08  1e+09

γ
τ
A

S

CUTIE results

S** -3/5

 S** -5/6

Figure 4.4: Linear growth rate vs Lundquist number of the (2,1) mode in higher viscosity
regime

Visco-resistive MHD in a cylindrical geometry

In this section we present simulation results carried out with a simple reduced MHD
model in a periodic cylindrical geometry to study the stability of the (2,1) tearing mode
in the presence of equilibrium flows. To separate the two fluid effects from basic MHD
effects our initial simulations have been done by using a subset of the original CUTIE
model equations that represent a reduced MHD model. The equilibrium flow profile
for the axial flow is chosen to be of the form V0z/VA = MA tanh[λ (x− xs)] where xs is
the location of the mode resonant surface, VA = B0

(µ0mine)1/2 is the Alfven velocity, MA

is the toroidal Mach number indicating the strength of the flow and the parameter λ

is a measure of the flow shear. The poloidal flow profile is taken to be of the form
V0θ/VA = Mθ x(1 + kx) where Mθ is the poloidal Mach number and k measures the
shear in the flow. For all our linear and nonlinear runs we have taken a q profile of the
form q = q0[1+(x/x0)

2λ1]1/λ1 with q0 = 1.5504, x0 = 0.598552 and λ1 = 1.208. Other
parameters that are held constant for all the runs are the Lundquist number S = 106 and
the Prandtl number Pr = (S/Re) = 1, where Re = aVA/ν is the Reynolds number, ν

being the kinematic viscosity. We also assume a large aspect ratio (R = 1m,a = 0.1m)
configuration that is appropriate for the periodic cylinder model and further assume flat
profiles for the resistivity (η) and the kinematic viscosity (ν).
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Effects of sheared axial flow

First we have studied scaling laws in presence of sheared axial flow. Fig. 4.5 show the
linear growth rate changes with S−1/3 scaling in presence of sheared axial flow. This
is consistent with our analytical arguments given in section 4.5.3. Fig. 4.6 shows the
scaling fo the growth rate with Prandtl number in presence of flow. At low Prandtl
number the growth rate becomes independent of viscosity since the latter is negligibly
small.
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Figure 4.5: Linear growth rate vs Lundquist number S of the (2,1) mode in the presence of
sheared axial flow for Mz = 0.05 and Mθ = 0

Our numerical results for the linear growth rates in the presence and absence of a
pure axial sheared flow are shown in Fig. 4.7 for MA = 0.05 and λ =±10. Evidently the
axial flow has a destabilizing influence on the tearing mode. The dotted curve shows the
value of the linear growth rate for non-zero flow rates; the solid curve shows the growth
rate in the reference zero-flow case. The value of the growth rate remains the same for
positive or negative values of MA [for fixed λ ]. These results are consistent with the
theoretical findings of Gimblett et al [51].

The nonlinear evolution of the mode with and without imposed axial flow is shown
in Figure 4.8. The same destabilizing trend of the axial sheared flow is seen to extend to
nonlinear regimes. However, unlike the linear case, the saturated final state depends on
the sign of flow shear. The saturation level of the (2,1) magnetic island is higher for a
positive sheared axial flow than that of a negative sheared axial flow and both are higher
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Figure 4.6: Linear growth rate versus Prandtl number Pr of the (2,1) mode in the presence of
sheared axial flow for Mz = 0.05 and Mθ = 0

Figure 4.7: Linear growth rate (asymptotic value) vs time of the (2,1) mode in the presence of
sheared axial flow.

37



Chapter 4. Studies of (2,1) Tearing modes

Figure 4.8: Nonlinear evolution of the (2,1) mode in the presence of sheared axial flow.

than the no flow reference case. Such dependence of nonlinear saturation level with the
sign of sheared flow may be related to the fact that the nonlinear generation of poloidal
flow component makes the flow helical. In section 4.5.3, it is shown that tearing mode
stability depends on flow helicity sign, relative to the field helicity.

Effects of sheared poloidal flow

A purely poloidal sheared flow exerts a stabilizing influence on the (2,1) tearing mode.
Figs. show the results of the variation of the growth rate, Re(γτA) and the real mode fre-
quency, Im(γτA) as functions of ΩτA obtained using the resolvent method. Fig. clearly
shows that the real mode frequency is linearly proportional to Mθ from Doppler shift
considerations. The growth rate is clearly seen to be decreasing starting with Mθ = 0.

Numerical results from CUTIE simulations are shown in Fig. 4.9, Fig. 4.10, and Fig.
4.11. The plot shows the nonlinear evolution of the mode for Mθ = 0.005(the dotted and
dashed curves) and for Mθ = 0(the solid curve). In the linear regime the slopes of the
dotted and dashed curves are smaller than the solid curve indicating stabilizing effects of
the flow. Furthermore, the curves for positive shear(dotted) and negative shear(dashed)
initially overlap displaying symmetry of the linear growth with respect to the sign of
the flow. In the nonlinear regime however, the sign of the shear is important with the
positive shear flow showing a higher saturation level than the negative shear. Both these
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Figure 4.9: Linear growth rate versus Mθ of the (2,1) tearing mode in the presence of sheared
poloidal flow at S = 106 and Pr = 1 for Mz = 0
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Figure 4.10: Mode frequency versus Mθ of the (2,1) tearing mode in the presence of sheared
poloidal flow at S = 106 and Pr = 1 for Mz = 0

levels are lower than the no flow case saturation level.
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Figure 4.11: Nonlinear evolution of the (2,1) tearing mode in the presence of sheared poloidal
flow.

Effects of helical flow

We have next considered a combination of the axial and poloidal flows leading to flows
with different flow helicities (the equilibrium magnetic fields are kept fixed) and studied
their influence on the (2,1) tearing mode. Figure 4.12 shows the linear growth rate of
the mode for different combinations of the axial and poloidal flows with MA = 0.05 and
Mθ = 0.005. We find that keeping the direction of the poloidal flow fixed if we change
the sign of the axial flow then the linear growth rate of the mode either increases or
decreases with respect to that of the no poloidal flow case. However if we change the
sign of both the axial and the poloidal flow simultaneously then the linear growth rate
remains unchanged. Thus, the sign of shear in the helical flow matters for the linear
stability of the tearing mode. The nonlinear evolution of the mode as shown in Fig. 4.13
shows a similar behaviour as regards the dependence of the stability on the sign of the
helical flow shear. However the nonlinear saturation level shows a further fine splitting
in that it depends on the individual signs of the axial and poloidal flow for a given helical
flow. We have also used Gaussian axial flow profiles (i.e. V0z = MzvA exp(−Cρ2) to
study profile effects and the results are qualitatively the same.
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Figure 4.12: Linear growth rate versus time of the (2,1) tearing mode in the presence of helical
flow for Mz = 0.05 and Mθ = 0.005

Figure 4.13: Nonlinear growth rate versus time of the (2,1) tearing mode in the presence of
helical flow for Mz = 0.05 and Mθ = 0.005
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We can understand these results from the symmetry of the linearized versions of
equations (4.3) and (4.4) of as follows,
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To understand the symmetry of the equations relative to flow, we have examined the
conjugate equation by putting γ → γ∗, W̃ → W̃ ∗, φ̃ → φ̃∗, ψ̃ → ψ̃∗ and i→ −i. As
ψ can always be chosen to be real because outer solutions are always real and inner
solution need to be matched with it, so we can write ψ̃∗ = ψ̃ which leads to φ̃∗ = −φ̃

and W̃ ∗ =−W̃ . After substituting these relations the conjugate equations can be written
as,
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2
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Now, if we change the sign of v0z and Ω simultaneously or change the sign of either of
them but keeping the other one to zero then the conjugate equations (4.9) and (4.10) can
be mapped exactly to the original equations (4.7) and (4.8) except that γ → γ∗ so real
part of them i.e. growth rate will remain same but imaginary part i.e. rotation frequency
will change the sign. However if we change the sign for only one of them keeping other
one with same sign but finite eg. v0z→−v0z, Ω→Ω then no such mapping is feasible,
so γ and γ∗ will be different.
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Two fluid visco-resistive model

We have repeated some of the simulations reported in the previous section with the full
set of model equations in the CUTIE code in order to assess the impact of two fluid
effects on the stability of the tearing modes in the presence of sheared flows. In addition
to the equations (4.3) and (4.4) used in RMHD calculations, here we have used the
following linear equations,

∂ ñ
∂ t

+ue0 ·∇ñ+ vA∇‖ρ
2
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2
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We have also added the vA

(
n0(0)Te0

n0(Te0(0)+Ti0(0))

)
∇‖ñ term in Ohm’s law. Regarding the

simulation results, Fig. 4.14 show a comparison of the linear stability results of the
mode for the single and two fluid models in the presence of an axial flow. As can be
seen two fluid effects tend to have a stabilizing influence on the tearing mode. In the
absence of flow, the linear mode is more stable in a two fluid model as compared to a
single fluid model. In the presence of sheared axial flows a negative sheared flow is more
destabilizing while a positive sheared flow is more stabilizing compared to the single
fluid results discussed in 4.5.1. This is similar to the results one obtains in the presence
of helical flows as discussed in section 4.5.3 and may have its origin in the excitation
of self consistent poloidal flows due to two fluid effects. A closer investigation of the
physical mechanism underlying the stabilization effects arising in a two fluid model is
currently in progress and will be reported elsewhere. We have also used Gaussian axial
flow profile for the same study but the nature of results do change significantly in these
cases with the change in axial flow profile. Figure 4.15 shows how the linear growth
rate of the modes change with the Gaussian axial flows.
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Visco-resistive MHD in a toroidal geometry

To complement the cylindrical studies mentioned above, we have simultaneously car-
ried out systematic studies on the tearing mode stability in a toroidal geometry using
the code NEAR [46]. This code solves the generalized reduced MHD equations and
incorporates visco-resistive effects as well as toroidal mode coupling, flow induced cen-
trifugal effects and neoclassical contributions. The equilibrium configurations for its
stability runs are generated by a Grad-Shafranov solver (TOQ) incorporating toroidal
flows in the equilibrium. In contrast to the cylindrical results, our simulations on NEAR
for a toroidal flow show stabilizing effects on the evolution of a single (2,1) tearing
mode both in the linear stage as well as in the nonlinear saturated state as shown in Fig.
4.16. This stabilizing influence is seen to persist even when flow term contributions
in NEAR are switched off. The stabilizing influence therefore appears to come from
equilibrium modifications brought about by toroidal flow. To test this idea we gener-
ated several equilibria from TOQ using different magnitudes of the toroidal flow while
keeping the total current constant. As is well known the presence of a toroidal flow mod-
ifies the pressure profile due to centripetal force effects. TOQ uses the Mashke-Perrin
expression for the pressure given by, p0 = pn f (ψ0)exp[ΓM2

s (ψ0)(R̂2− R̂2
axis)/2] where

pn f is the pressure profile in the absence of flow, Ms is the normalized Mach number, Γ

is the adiabatic constant, R̂ = R/R0 and R̂axis = Raxis/R0.
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Figure 4.14: Linear growth rate v/s time in presence of sheared axial flow using the two fluid
model
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Figure 4.15: Linear growth rate v/s axial flow (at r=0) with a Gaussian flow profile using the
two fluid model
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In addition to keeping the current constant we have also kept pn f the same while
generating equilibria for various values of Ms. We find that flow introduces changes in
the profiles of the current density, pressure and the safety factor q by inducing a sort of
‘Shafranov’ like shift. This is shown in Fig. 4.16, Fig. 4.17, Fig. 4.18 and Fig. 4.19 in
terms of the flow induced modifications in the q profile. It should be noted that this effect
is purely due to magnitude of the flow (proportional to M2

s ) and flow shear does not play
a role here. To assess the influence of this shift on the stability of the tearing mode
we have calculated the stability index ∆′ for various flow modified q profiles obtained
from the code TOQ. These analytic estimates are obtained by using the q profiles in a
cylindrical Newcomb equation. As shown in Fig. 4.18 the value of ∆′ decreases with
increasing toroidal flow indicating the stabilizing influence of the ‘Shafranov’ like shift.
To understand the decrease in nonlinear saturation level with flow we have also carried
out an approximate estimate of the island width by using the nonlinear definition of the
stability index as given Carreras et al[52] and Thyagaraja [53]. The basic idea is to
define ∆′ across the width of the island instead of across the infinitesimal tearing layer.
Accordingly the nonlinear stability index is now given by the expression,

∆
′(W ) =

1
ψ2,1(rs)

(
dψ2,1

dr
|r+ −

dψ2,1

dr
|r−
)

(4.13)

where r± = rs±W/2, rs is the mode resonant surface and W is the width of the island.
Using this approximate formula we have calculated the island width for the different
flow modified equilibrium q profiles and the results are displayed in Fig. 4.17. For
comparison we have also given the island widths obtained directly from the nonlinear
simulations on NEAR. It is seen that both curves show a similar trend, namely a stabiliz-
ing influence of the toroidal flow leading to a decrease in the island size with increasing
flow. The quantitative difference between the two curves can be attributed to the ad-
ditional stabilizing influences inherent in NEAR from mode coupling and other effects
and the errors arising from the approximate nature of expression (4.13).

Summary and Discussions

To summarize, we have carried out extensive numerical studies to examine the influence
of equilibrium sheared flows on the stability of a (2,1) tearing mode. Our cylindrical
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geometry investigations, using a RMHD version of the code CUTIE, show that in the
linear regime pure axial sheared flows have a destabilizing influence while pure sheared
poloidal flows tend to stabilize the mode. These effects are independent of the sign
of the flows. However for a helical flow the sign of the helicity matters with positive
helicity providing a stabilizing influence. In the nonlinear regime the independence
from the sign of the flow no longer exists (even for purely axial or poloidal flows) and
is an important finding of our investigations. The inclusion of two fluid effects provides
a further stabilizing effect on the mode presumably due to self consistent excitation
of poloidal flows. Our toroidal geometry stability studies have identified a stabilizing
influence of toroidal flows that is not dependent on the flow shear but is purely due to
the modification in the q profile arising from centripetal force induced shift in the flux
surfaces. To gain further understanding of the physical mechanism responsible for the

Table 4.1: Effect of sheared axial flows on ∆′ in presence of positive poloidal flow

MA -0.05 -0.03 0 +0.03 +0.05
∆′a -1.998 -0.680 2.216 2.304 2.464

symmetry breaking phenomena observed in CUTIE simulations, we have calculated the
stability index ∆′ in cylindrical geometry using the generalized Newcomb equation in
presence of helical flow. The method of calculations are similar to that given in Ref
[54]. The table 4.1 shows that how ∆′ changes when direction of sheared axial flow
changes without any change in the sign of poloidal flows. Here the profile of the axial
flow has been taken as Gaussian, V0z = MAe−x2

. So these results are in agreement to our
single fluid CUTIE simulation results showing symmetry breakingin presence of helical
flows. We have noticed in case of earlier study [54] the stability index is very sensitive to
nature of poloidal flow. In case of two fluid CUTIE runs, the self generated diamagnetic
poloidal flow changes significantly depending on the axial flow profile which is not
the case for single fluid runs. So it is possible that two fluid stability results are very
sensitive to the nature of axial flow profiles unlike single fluid results. In future, We like
to incorporate additional physics features in our future CUTIE simulations by evolving
the electron and temperature equations and by retaining parallel transport.
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VRMHD studies of (1,1) mode

Introduction

The m = 1,n = 1 internal kink instability is of great importance in tokamaks and has
beeen extensively studied in the past by several authors, notably[21–25]. The (1,1) mode
arises within the q=1 rational surface (where q is the safety factor), when the q at the
axis is smaller than 1. It can trigger sawtooth oscillations which can influence plasma
quality and confinement[21, 22]. Monticello et. al. [25] have given an overview of the
research on the (1,1) mode and its importance, particularly in the context of research on
the sawtooth oscillations.

It is well known that flows are a common occurence in a tokamak, which can be gen-
erated intrinsically[55] or induced externally e.g. by unbalanced NBI injection [56, 57].
Experiments on NSTX have shown a significant increase of sawtooth period that is
attributed to a fast rotation of the plasma[56, 57]. Experimental studies on sawteeth
phenomena in presence of NBI in JET [58, 59], MAST [15], and TEXTOR [60] have
further shown that there is an asymmetry in sawtooth period depending on the direction
of the NBI. The sawtooth period increases with an increase in co-NBI power, and de-
creases with an increase in counter-NBI power. Thus, these experiments have shown
that flow can have a stabilising or destabilising effect on the kink mode depending on
the direction of flow.

However, there still does not exist a full understanding of the effect of flows on the
m = 1,n = 1 kink instability. A number of past studies have addressed this question. In
one of the earliest such studies carried out in a slab geometry, Ofman et. al.[12] have
shown that small flow shear has a stabilising influence on the m = 1 resistive mode.
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Numerical studies by Kleva and Guzdar[13] show that toroidal sheared flow close to
the sound speed can completely stabilise the (1,1) mode. Shumlak et al.[61] have also
found a similar stabilising effect due to a sheared axial flow on the (1,1) mode in a
cylindrical Z-pinch. On the other hand, Gatto et. al. [62] have found sheared axial flows
to have a destabilising effect on the m = 1 mode in a reverse field pinch configuration.
Naitou et al. [63] have studied the effect of poloidal flow on the kink mode in kinetic
and two fluid regimes, and noted a stabilisation of the kink mode that can possibly be
related to sawtooth stabilisation. Studies by Mikhailovskii et. al.[64], Wahlberg et.
al.[14] and Waelbrock[65] show that toroidal and poloidal rotations are a stabilising
factor for the internal kink mode. Chapman et. al.[15] have explained the asymmetry in
sawtooth period in terms of the relative direction of the plasma flow with respect to the
diamagnetic drift. They postulated that the toroidal component of the diamagnetic drift
adds to the toroidal rotation for co-current flow but it reduces the toroidal rotation for
counter current flow. Therefore, there are conflicting results in the literature regarding
the nature of stabilisation due to flows depending on the parameter regime of the studies.
Recent analytic calculations by Brunetti et. al.[66] have found that small flow shear has
a destabilising effect on the (1,1) mode, but a large flow shear can stabilise it.

It may be noted that most of the past flow studies have been done in the low vis-
cosity regime. However, viscosity can be high in tokamak operations, particularly due
to enhancements from turbulent effects and could therefore significantly influence the
effect of flow shear on the internal kink mode. For example, Maget et. al.[17], Wang et.
al.[18], Tala et. al.[16] and Takeda et. al.[19] have shown that Magnetic Prandtl number
in advanced tokamak scenarios can be as high as 100, and stability results in the high
viscosity regime can be significantly different from results of the low viscosity regime.
Chen et. al.[44] and Ofman et. al.[67] have given detailed analytical calculations as
to how viscosity can modify shear flow effects for constant-ψ and nonconstant-ψ for
the resistive tearing mode instability. Wang et. al.[18] have also reported from their
simulation studies of (2,1) tearing modes in the presence of flows, which showed a
destabilisation at lower viscosity and stabilisation at higher viscosity. They predict that
this is due to the distortion of magnetic island structures at higher viscosity as reported
by Ren et. al.[68] and La Haye et. al.[69].

Thus, viscosity is an important contributing factor and can change the nature of the
effect of flows significantly. In this chapter we have addressed this issue and investigated
the stability of the (1,1) mode in the presence of sheared flows over a range of viscosity
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regimes. We indeed find that the high viscosity results are often very different from the
low viscosity results. In our study, we have systematically examined the effects of sev-
eral kinds of sheared flows on the (1,1) mode, namely axial, poloidal and combinations
of both kinds of flows in the linear as well as nonlinear regimes.Various non-dimensional
parameters are used to characterise our results, such as S (the Lundquist number, which
measures resistivity), Pr (Prandtl Number, which measures viscosity), M (Alfvén Mach
number) and λ (a measure of the equilibrium flow shear). These linear and nonlinear
studies on the (1,1) mode were obtained using the CUTIE code [35].

Our principal findings are as follows. To begin with, we have done the linear scaling
studies of the m = 1,n = 1 mode in the absence of flow. Here, the variation of linear
growth rates have been studied for different S and Pr values. The obtained scalings
are in agreement with past analytic theory results in the no flow case[70]. With the
application of sheared axial flows, a significant change in the scaling of the growth rates
is observed. However, in the presence of poloidal flow, there is no such change in scaling
as compared to the no flow case. In our linear studies we have noticed that axial flows
destabilise the mode in the low viscosity regime, but it stabilises in the high viscosity
regime as compared to the no flow case. On the other hand, poloidal flow always tends
to stabilise the linear growth rate. For pure axial and poloidal flows, the results do not
change if we change the direction of the flow. This symmetry is broken for helical flows
where the time evolution of the modes show a significant dependence on the helicity of
the flows even in the linear regime. In the nonlinear regime, there is mostly a reduction
of the nonlinear saturation level of the (1,1) mode for both sheared axial and poloidal
flows in the high viscosity regime, while in the low viscosity regime, the poloidal and
axial flows are destabilising in nature. Helical flows show a strong stabilisation for
positive helicity and in most cases, weak stabilisation for negative helicity in the high
viscosity regime. In the low viscosity regime, this symmetry breaking of helical flow
results gets significantly diminished.

This chapter is organised in the following manner. We have In section 5.2, we have
studied the (1,1) mode in the linear regime. Here, we have described studies of the
growth rate scaling in the absence of flow, and compared our results with analytical
results from the literature. Then we have repeated these studies in the presence of flow.
We have done these studies both in the low and high viscosity regimes. In section 5.3
we have studied the (1,1) mode in the nonlinear regime in the absence of flow as well as
in presence of axial, poloidal and helical flows. Section 5.4 provides a brief summary
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and a discussion of the results.

Linear Results

In this section we describe the results of our linear studies carried out for a q profile of
the following form:

q(ρ) = q0

(
1+
(

ρ

ρ0

)2Λ
) 1

Λ

(5.1)

with the safety factor, q(ρ) = ερB0z
B0θ (ρ)

, q0 = 0.9, Λ = 1, ρ0 = 0.6a, a = radius of the
cylinder.

Fig. 5.1 shows the q profile used in the simulations and the q=1 surface.
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Figure 5.1: q profile

Scaling with S and Pr

At first, we have studied the scaling of the growth rate of the (1,1) mode with S(Lundquist
number) and Pr(Prandtl Number). For most of our simulations we have used a flat η pro-
file but we get similar results when we use a self-consistent η such that E0z =η j0z;E0z =
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V/(2πR0), where V is the constant loop-voltage. In Fig. 5.2, we have plotted the nor-
malised growth rate γτA with S, at a fixed Pr of 0.1. We have found a scaling of the
variation of γτA with S to be of the form S−1/3 . These results are similar to those
obtained by Porcelli[70] for the resistive internal kink mode. At low S, we notice a de-
viation from the scaling that can be attributed to local asymmetries of the equilibrium
current density[34].
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Figure 5.2: Linear Resistivity scaling without flow for the m=1, n=1 mode at Pr = 0.1

In Fig. 5.3, we observe a Pr−1/3 scaling of γτA as we vary Pr by keeping S fixed.
This scaling agrees with that reported earlier by Porcelli[70]. However, as we increase
the viscosity further, the growth rate scaling changes to Pr−5/6, which is a new result
that has not been reported earlier. It shows that high viscosity can strongly influence
the linear growth rate of the modes. These results can be qualitatively understood by a
standard dominant balance analysis of the dynamical equations of the mode in the inner
layer. From the set of model equations given below one can obtain the following set of
linear inner layer equations 5.5:
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where,

W̃ = ρ
2
s ∇ ·

(
n0 (ρ)

n0 (0)
∇⊥φ̃

)
Equation[5.2] is the vorticity equation, where W̃ is the perturbed vorticity. Equa-

tion[5.3] describes the evolution of the perturbed poloidal flux function ψ̃ . The resistiv-
ity η and viscosity ν are specified quantities and are held constant during our calcula-
tions. Additionally, ρs =

vth
ωci

, where, v2
th = (T0i +T0e)/mi, ωci = (eB0/mic), with T0i,T0e

being ion and electron temperatures respectively. mi is the ion mass, e is the elemen-
tary charge. Φ0(r),Ψ0(r) denote the mean electrostatic and magnetostatic potentials
respectively.

(γ + iv′0,resx)
d2φ

dx2 + i
q′res
qres

x
d2ψ

dx2 = ν
d4φ

dx4 (5.4)

(γ + iv′0,resx)ψ + i
q′res
qres

xφ = η
d2ψ

dx2 (5.5)

where all quantities are suitably made non-dimensional and where ν , η are non-dimensional
viscous and resistive diffusivities respectively. v′0,res and q′res are the derivatives of the
flow terms and q profile respectively at the resonant surface and γ is the normalized
growth rate. In the absence of flow and in the regime where both the viscous and resis-
tive contributions are important, the term proportional to ν with the highest derivative
dominates over the term proportional to γ in (5.4), while in (5.5) all terms contribute
equally. Using the dominant balance argument one then gets,

γ ∼ η
2/3

ν
−1/3 ∼ η

2/3
η
−1/3 ν−1/3

η−1/3 ∼ Pr−1/3
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(η here is held constant)

and the layer width goes as
x∼ η

1/6
ν

1/6

This agrees with the numerical scaling obtained in Fig. 3 for moderate values of Pr and
is also in accordance with the scaling discussed by Porcelli [70]. For higher values of
viscosity, when viscous effects dominate over resistive contributions, the term on the
R.H.S. of (5.5) may be ignored in the dominant balance calculation. In this limit the
layer width also has a very weak dependence on viscosity and can be nearly taken to
be a constant. The balance arguments then lead to γν ∼ x4 and hence γ ∼ ν−1. This
scaling is close to the γ ∼ Pr−5/6 obtained from our numerical solutions. Such a scaling
has also been alluded to by Porcelli [70] for the so-called visco-ideal limit. The growth
rate becomes nearly constant in the low Pr regime, as we would expect the plasma to be
nearly inviscid. We next consider the effect of flows on the linear growth rates.
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Figure 5.3: Linear Viscosity scaling without flow for the m=1, n=1 mode at S = 106
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Axial Flow

We next present scaling results in the presence of a sheared axial flow. We have used an
axial flow profile of the form:

V0z

vA
= Mz tanh[λ (ρ−ρres)] (5.6)

where, V0z is the equilibrium axial flow, Mz is the axial Mach number, λ is the shear
parameter and ρres is the location of the mode resonant surface. The flow profile is
shown in Fig. 5.4
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Figure 5.4: Axial flow profile(tanh profile)

This profile has the property that it has zero flow and non-zero shear at the resonant
surface and hence is a useful profile to study the effect of shear on the mode. It has been
used in the past to understand the effect of flow shear on tearing modes[39, 67]. For our
linear scaling studies we have taken several different values Mz = 0.05 that are within
a physically reasonable range of values for experimental observations. In general, the
presence of an axial sheared flow has a destabilizing influence on the m = 1 resistive
kink mode, as has been noted before [51] and is due to the additional ideal free energy
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arising from the nature of the flow profile. A principal consequence of this is an increase
in the growth rate of the kink mode compared to the no flow case. This is clearly seen
in Fig. 5.5 where we have marked the values of the growth rate for the no flow case
and for several different finite values of the axial flow (and correspondingly different
velocity shears) in a single plot. It is also seen that there is a near independence of the
growth rate on S for higher values of S. This can be physically understood as follows:
as the resistivity decreases (S increases) the growth rate of the classical resistive kink
mode decreases and the growth is dominated by the ideal driving term of the flow shear.
This term is independent of S and hence at higher values of S the growth rate becomes
independent of S. In Fig. (5.5) we thus see how an increase in Mz progressively changes
the S−1/3 scaling in the “no-flow” case to one independent of S.

	3x10-4

	5x10-4
	6x10-4
	7x10-4
	8x10-4
	9x10-4
	1x10-3

	2x10-3

	1x105 	1x106 	1x107 	1x108

γτ
A

S

Growth	rate	scaling	for	different	axial	flows

Mz=0.01
Mz=0.025
Mz=0.05
Mz=0

S**(-1/3)

Figure 5.5: Linear Resistivity scaling with axial flow for the m=1, n=1 mode at Pr = 0.1
with Mz = (0.0,0.01,0.025,0.05)

We have similarly observed a change in the viscosity scaling due to the presence of
axial flow and this is shown in Fig. 5.6. As we go from Pr = 1 to Pr = 10, the scaling
of the linear growth rate gradually changes from Pr−1/5 to Pr−3/5 and beyond Pr = 10,
the growth rate becomes negative. If we compare it with the no flow case, there the
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scaling goes as Pr−1/3 up to Pr = 10, beyond which it changes to Pr−5/6. Thus in the
presence of an axial flow, the stabilising influence of viscosity is enhanced and can lead
to complete stabilisation of the m = 1 visco-resistive mode at high Pr numbers.
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Figure 5.6: Linear Viscosity scaling with axial flow for the m=1, n=1 mode at S = 106,
Mz = 0.05

Poloidal flow

For our poloidal flow studies, we have used the following flow profile,

V0θ

vA
= Mθ (ρ) (5.7)

where,
Mθ (ρ) = ΩτA ρ (1+ kρ)

Here, V0θ is the equilibrium poloidal flow, and Ω is the poloidal angular frequency
and k measures the shear in the flow.

The profile is plotted in Fig. 5.7
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Figure 5.7: Poloidal flow profile

We have obtained the growth rates for several different values of Mθ and the results
are plotted in Fig. ( 5.8). In contrast to the sheared axial flow the sheared poloidal flow
has a stabilizing influence on the resistive kink mode so that it decreases the value of
the growth rate. This stabilizing influence is independent of S and hence the net effect
is a shift in the value of the growth rate without a change in the scaling dependence on S

which remains the same as the no-flow case, namely γτA ∝ S−1/3. As seen in Fig. (5.8)
as the poloidal Mach number is increased from zero, the scaling curve shifts downwards
without changing shape. For very low values of Mθ , the curve almost coincides with the
no-flow case, as expected.

In Fig. 5.9 we have displayed the scaling of the growth rate with viscosity for a fixed
value of the resistivity. We find that the scaling is similar to the no flow case, namely
γτA ∝ Pr−1/3 at a lower viscosity and γτA ∝ Pr−5/6 at a higher viscosity.
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Figure 5.8: Linear Resistivity scaling with poloidal flow for the m=1,n=1 mode at Pr =
0.1, Mθ = (0.0,0.0018,0.009,0.018)
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Figure 5.9: Linear Viscosity scaling with poloidal flow for the m=1,n=1 mode at S =
106, Mθ = 0.009
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Effect of flows in different viscosity regimes

We begin by showing the effect of various kinds of flows and frequencies on the (1,1)
mode. In the following, we see the effect of axial flow on the growth rate and frequency
of the (1,1) mode in Fig. 5.10 and in Fig. 5.11 respectively. The symmetry of the growth
rate curves as a function of the sign of flow is expected from our previous study of the
RMHD equations.
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Figure 5.10: Growth rate vs Axial Mach Number

In the next figures, we describe the behaviour of the poloidal flow curves in the
presence of flow. In Fig.5.12 we describe the variation of growth rate with poloidal
flow. We observe a similar symmetry as in the case of axial flow. In the next Fig. 5.13
we describe the corresponding variation of frequency with flow. We notice it is a linear
relationship.

After this, we describe the variation of the growth rates and frequencies in the pres-
ence of helical flow. In Fig. 5.14, we describe the growth rate of the (1,1) mode in the
presence of helical flows. We see that the symmetry of the curves observed in the case
of axial flows is broken in the presence of helical flow. In the next Fig. 5.15, we see that
the frequency curve in the helical flow case is parallel to that in the axial flow case, and
in fact the difference is equal to the amount of poloidal flow in the system.
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Figure 5.11: Frequency vs Axial Mach Number

	0

	0.0002

	0.0004

	0.0006

	0.0008

	0.001

	0.0012

	0.0014

-0.006 -0.004 -0.002 	0 	0.002 	0.004 	0.006

γτ
A

Mθ

RMHD	Growth	Rate	vs	Poloidal	Flow

Pr=1
Pr=10
Pr=30
Pr=60
Pr=80

Pr=100

Figure 5.12: Growth rate vs Poloidal Mach Number

In Fig. 5.16, we compare the linear growth rate changes of the m = 1,n = 1 mode
with axial and poloidal flows as we go from low to high viscosity. We note that the
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Figure 5.13: Frequency vs Poloidal Mach Number
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Figure 5.14: Growth rate vs Helical Mach Number

nature of stabilisation for axial flows changes as we increase the viscosity. While axial
flows destabilise the mode at low viscosity, they stabilise it at higher viscosities. On the
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Figure 5.15: Frequency vs Helical Mach Number

other hand, we find the poloidal flow to be always stabilising in contrast to the no-flow
case.

In Fig. 5.17, we have shown how the linear growth rate of the m = 1,n = 1 mode
changes as we go from low to high axial flow shear, a

Va

dv0z
dr , for different viscosity

regimes. We see that for a fixed Pr, the nature of stabilisation of flow does not change
with the amount of flow shear. However, the nature of stabilisation changes depending
on the viscosity regime irrespective of the amount of flow shear.
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Figure 5.16: Effect of viscosity on the linear growth rate of the m=1, n=1 mode with
and without axial flow at S = 106
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Nonlinear Results

Next we report on our nonlinear results for the (1,1) mode in the absence and presence
of flows. We have continued with the same parameters and related profiles that we have
used for the linear runs. Here, we have a slight difference in the method of calculation as
compared to the linear case. We set up an equilibrium from the given initial parameters
and in every iteration we solve both the mean, i.e., (0,0) Fourier components and the
perturbed components. As a result, the equilibrium evolves with time, while in the
linear case, the equilibrium was held fixed.

Axial flow

In this section, we describe the nonlinear evolution of (1,1) modes in the presence of
axial flows. Here, two different flow profiles are employed to elucidate the dependence
of the results on the profile. At first, to understand the effect of flow shear we have used
a tanh flow profile. The form of the tanh profile has been described in section 5.2.1.1,
but here we have used Mz = 0.01

Next, we use a Gaussian flow profile which is more realistic from an experimental
point of view. This profile has the form (illustrated in Fig. 5.18) :

V0z/VA = Mze−ρ2
(5.8)

where, ρres is the location of the mode resonant surface and Mz = 0.05.

The Figs. 5.19 and 5.20 illustrate the time evolution of ˜|ψ|max with a tanh flow profile
for Pr = 100 and Pr = 30 respectively. For the high viscosity case, we notice a strong
stabilisation of the (1,1) mode in the presence of axial flow both in the linear growth rate
as well as in the nonlinear saturation level. However, for the low viscosity case, there is
a slight increase of nonlinear saturation level of the modes in the presence of axial flow.
Similar to the linear runs, the nonlinear evolution runs also show the destabilising trend
of the mode for lower viscosity and a stabilising influence for higher viscosity compared
to the no flow case.
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Figure 5.18: Axial flow profile(Gaussian profile)
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Figure 5.19: ˜|ψ|max evolution with axial flow with tanh profile, Mz = 0.01, Pr = 100
and S = 106.
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Figure 5.20: ˜|ψ|max evolution with axial flow with tanh profile, Mz = 0.01, Pr = 30 and
S = 106.

Figs. 5.21 and 5.22 show the nonlinear evolution of the mode with a Gaussian flow
profile for Pr = 100 and Pr = 30 respectively. In this case, the nature of the effects is
qualitatively similar to that of the tanh flow case. However, the changes in the growth
rates compared to the no flow case are smaller even if the amount of flow is higher in
this case. We have seen that even if the linear evolution does not depend on the sign
of the flow, the nonlinear saturation levels of ˜|ψ|max are different for different signs of
flows except for the Pr = 100 tanh flow profile case(cf. Fig. 5.19), where the difference
is very small.

Poloidal Flow

In Fig. 5.23, we display the effects of poloidal flow upon the nonlinear evolution of
the amplitude of the (1,1) mode. Here, we notice that the poloidal flow stabilises the
mode, and the final saturation levels are nearly equal for such small amounts of flow.
For higher values of Mθ the saturation levels do differ significantly as a function of the
direction of flow.
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Figure 5.21: ˜|ψ|max evolution with axial flow with gaussian profile, Mz = 0.05, Pr = 100
and S = 106.

We have repeated this study with a Pr = 30 in Fig. 5.24, and we notice here that
the nonlinear saturated levels show a different behaviour from that at a higher Pr, in that
poloidal flow now slightly destabilises the mode. The implication of this effect is clearly
reflected for helical flows which we will discuss next.

Helical Flow

In this subsection we discuss the combined effect of axial and poloidal flows on the
stability of the (1,1) mode. We have considered all four sign combinations of the axial
and poloidal flows to understand the effect of flow helicity on the evolution of the mode.
In Fig. 5.25, we show the effect of a sheared axial flow with a tanh profile combined
with a sheared poloidal flow for Pr = 100. Here we can have two types of flow helicity
depending on the signs of the axial flow and the poloidal flow. We find that although
both the flow helicity cases impart a stabilising effect compared to the no flow case, the
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Figure 5.22: ˜|ψ|max evolution with axial flow with gaussian profile, Mz = 0.05, Pr = 30
and S = 106

0.2

0.4

0.6

0.8

1.0

1.2

1.4

	1 	2 	3 	4 	5 	6 	7

|ψ
| m

ax
(x
	1
04
)

time(ms)

Poloidal	Flow	when	Pr=100

no	flow
Mθ=0.0018

Mθ=-0.0018

Figure 5.23: ˜|ψ|max evolution with poloidal flow, Mθ = 0.0018 Pr = 100 and S = 106.

degree of stabilisation is very different for different flow helicities. For example, having
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Figure 5.24: ˜|ψ|max evolution with poloidal flow, Mθ = 0.0018, Pr = 30 and S = 106.

kept the poloidal flow sign to be positive but changing the direction of the axial flow from
positive to negative, both the linear growth rates and the nonlinear saturation levels have
increased significantly to a much higher value. Thus, we find an asymmetry in the nature
of the stabilisation of the (1,1) mode in the presence of helical flows that depends on the
type of flow helicity. The change in the degree of stabilization for different helicities
arises from the relationship between the flow direction and the direction of the magnetic
field which essentially changes the relative sign between q′res (the magnetic shear) and
v′0,res (the flow shear) near the mode resonant surface [69].

We have carried out a similar study at a lower viscosity of Pr = 30 as shown in Fig.
5.26. Here, the nonlinear saturation levels in all flow cases are slightly higher compared
to the no flow case. Also, the symmetry breaking for two different flow helicities are
so small both in the linear and nonlinear regime that it cannot be distinguished from the
figure, but can be distinguished from numerical values of the linear growth rates and
nonlinear saturation levels. In fact, the symmetry breaking effect begins to manifest
itself in the linear stage itself as can be clearly seen in the difference of the slopes of the
time evolution of |ψ |max for the two helicities of the flow. A comparison of Figs. (5.25)
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Figure 5.25: ˜|ψ|max evolution with helical flow using tanh profile, Mz = 0.01, Mθ =
0.0018, Pr = 100 and S = 106.

and (5.26) also raises the interesting question whether there occurs a “bifurcation” of
the saturated states at some value of the Prandtl number between 30 and 100. To check
this interesting question we have numerically determined the linear growth rates for
a number of different magnitudes of the helical flow and plotted their values for two
different helicities in Fig. (5.27). As can be clearly seen there is a continuous transition
in the behaviour as a function of Pr that is indicative of an absence of any bifurcation
phenomenon.

In Fig. 5.28 and Fig. 5.29, we have shown the effect of a sheared axial flow with
a Gaussian profile combined with a sheared poloidal flow for Pr = 100 and Pr = 30
respectively. Here, we notice that the effects are very similar to the tanh flow case,
but the changes in the linear growth rates and nonlinear saturation levels are relatively
smaller.
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Figure 5.26: ˜|ψ|max evolution with helical flow using tanh profile, Mz = 0.01, Mθ =
0.0018, Pr = 30 and S = 106.
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Figure 5.28: ˜|ψ|max evolution with Helical flow using gaussian profile, Mz = 0.05,Mθ =
0.0018, Pr = 100 and S = 106.

On comparison of the helical flow results obtained here with those using pure axial
and poloidal flows, as discussed in the previous sections, there is no symmetry breaking
in the linear growth rates of the (1,1) mode if we change the direction of the flow.
However, there is a difference in the nonlinear saturation levels even for those cases
where we use a pure axial or poloidal flow. This is due to the self-generation of nonlinear
helical terms even if we start with pure flows, as discussed in Chandra et. al. [39].
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Figure 5.29: ˜|ψ|max evolution with helical flow using gaussian profile, Mz = 0.05,Mθ =
0.0018, Pr = 30 and S = 106.

Summary and Discussion

To summarise, we have carried out linear and nonlinear studies of the (1,1) resistive
internal kink mode using a V-RMHD version of the CUTIE code, in a cylindrical ge-
ometry with periodic boundary conditions. We have studied the effect of equilibrium
sheared flows on the (1,1) mode and the role of viscosity in modifying the effect of
flows. Viscosity can be significantly enhanced due to turbulence in tokamaks and it is
expected that the Prandtl number can be as high as 100 [17, 19] in advanced scenarios
for JET and ITER.

Our results can be summarised as follows. In the linear regime our scaling studies
in the absence of flow agree with analytical results in the literature[70]. The presence
of poloidal flow does not change the linear scaling results but axial flows do bring about
a significant change. We further find that the effect of viscosity on the growth rate of
the mode can be significantly altered by the presence of flows. Helical flows exhibit a
strong symmetry breaking with respect to the direction of the flow at high Pr but such
an effect weakens at low Pr. In the nonlinear regime, for axial flows the saturation level
of the mode decreases at a higher viscosity compared to the case of no flow but slightly
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increases at lower viscosity. Similar results are found for the poloidal flow case. In the
case of helical flows at high viscosity, there is a significant change in the nonlinear sat-
uration level depending on the flow helicity. Such an asymmetry effect is much weaker
in the low viscosity case. It might be worth mentioning that similar asymmetric effects
in the sawteeth time period have been observed in tokamak experiments with a change
in the direction of the equilibrium flow induced by neutral beam injections[15, 58–60].
Our results can prove useful in developing appropriate theoretical models for sawteeth
behaviour in the presence of sheared flows and high viscosity.
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6
Two fluid studies of (1,1) mode

Introduction

In an advanced tokamak with high temperature plasma, sawtooth is a frequently ob-
served phenomena. As core temperature increases, resistivity goes down which results
in a higher current density in the core region. Simultaneously, the safety factor, q be-
comes less than one which triggers m = 1, n = 1 internal kink modes. As sawtooth
has the capability to degrade the confinement of the plasma, so it is very important to
understand its dynamics and how to control it. To do that, first we need to understand
the m = 1, n = 1 mode, as it is closely associated with sawtooth, so it has been exten-
sively studied in the past to understand its physics. Plasma rotation also is very common
in a tokamak which gets generated either internally or gets induced externally, such
as by NBI injection. It is also well known that plasma rotation can modify sawtooth
dynamics[36, 39, 41, 47, 71]. There are several experiments such as NSTX [56, 57],
JET [58, 59], MAST [15], TEXTOR[60] etc. which indicate there is a relation between
sawtooth behaviour with the change of plasma rotation in a tokamak. Those experi-
ments indicate that the flow, particularly the direction of the flow can either increase
or decrease the sawtooth period, that is the stability of the kink mode can change de-
pending on the direction of the flow. There are several past studies which have focused
on the stability of the m = 1,n = 1 mode in the presence of flow. such as Guzdar et
al[13] who have shown that toroidal sheared flow which is close to the acoustic speed
in plasma can completely stabilise the (1,1) mode. In the work of Shumlak et al.[61], a
stabilising effect due to a sheared axial flow on the (1,1) mode in a cylindrical Z-pinch
has been found. Most of the past studies found stabilising effects of flow on the (1,1)
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mode, but there are a few studies such as Gatto et al[62] and Brunetti et al [66], Crombe
et al[72] which found that flow shear can have destabilising effect. Chapman et al[15]
have suggested that sawteeth period asymmetry is related to the plasma flow direction
with respect to the diamagnetic drift. In our earlier study, using a single fluid model we
have observed that there is a similar symmetry breaking in the presence of helical flows.
However, those single fluid studies do not include the diamagnetic flows which require
a two fluid model. Diamagnetic flows can alter the dynamics of the mode, particularly
in the presence of flows, for example, it can change the stability of the modes as well as
change the mode rotation frequency of the system.
There has thus been intense research on two fluid models in the study of tokamak in-
stabilities, particularly of the tearing and kink instabilities [73–77]. One of the earliest
works in this topic has been by Thyagaraja et al[78], in which they have elucidated the
necessary and sufficient conditions required for the existence of a nonlinearly saturated
m = 1 tearing mode in tokamaks. In the paper of Barkov et al[73], they have studied the
drift-kink instabilities using two fluid simulations and compared their accuracy to that
of PIC methods and find good agreement. Zakharov et al[74] have studied the internal
kink mode in the context of tokamaks. They study a scenario with a finite β and find
that they have good agreement with kinetic studies. A validation study done using the
NIMROD code has been carried out by Akcay et al[77]. Though we have several inter-
esting results on the effect of flows on the dynamics of the m = 1,n = 1 internal kink
modes with flows using a single fluid model, but those results can get modified in the
two fluid regime. These motivate the extension of our earlier single fluid study[41] to a
two fluid regime to understand the dynamics of the internal kink mode more deeply.

In this work, we have addressed this issue and investigated the stability of the (1,1)
mode in the presence of sheared flows over a range of viscosity regimes using the
CUTIE[35] code in the two fluid regime. Here we have taken a wide range of vis-
cosity as it can be high in tokamak operations, possibly due to turbulent effects and
could therefore modify the effect of flow shear on the stability of the internal kink mode
[19, 41, 79] as observed earlier. There is a diamagnetic drift present in the two fluid
regime, between the ion and electron fluid whose velocity is denoted by vd and fre-
quency is denoted by ω∗. In the two fluid model, the diamagnetic drift is proportional
to the electron density gradient which is depending on α in our model where we have
used a density profile of the form n = n0exp(−α

r2

a2 ), where n stands for density and r is
the radial coordinate.
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We have begun with linear studies which we have carried out using the Resolvent
method, a method of finding eigenvalues, explained in the paper[39]. We have observed
the modification of growth rate and the rotation frequency of the m= 1,n= 1 with differ-
ent diamagnetic flow frequencies over a range of viscosities. Then we have applied pure
axial, pure poloidal and helical flows, and studied the same for different combinations
of flow magnitudes and directions. In all cases we have seen symmetry breaking with
a reversal of flow direction. This symmetry breaking happens either in the presence of
diamagnetic flow or by including parallel dynamics or both. However, these dynamics
are significantly modified depending upon the viscosity regime. Then we have extended
our work in the nonlinear regime and observed a nonlinear saturation level also getting
similarly modified with diamagnetic flows, imposed flows, as well as viscosity. Both
the linear and nonlinear results are very different as compared to similar studies in the
RMHD regime [41]. We also notice that the poloidal flow is destabilising nonlinearly
and linearly in some cases.

This paper is organised in the following manner. In section 6.2, we have described
the two fluid model of plasma in a cylindrical geometry. In section 6.3, we have studied
the effect of diamagnetic flows (1,1) mode in the linear regime without any imposed
flows initially. After that, we have studied the behaviour of the mode with different
types of flows We have done these studies both in the low and high viscosity regimes.
In section 6.4 we have studied the (1,1) mode in the nonlinear regime in the absence of
flow as well as in presence of axial, poloidal and helical flows. Section 6.5 provides a
brief summary and a discussion of the results.

Model

We have previously published our investigations using a single-fluid incompressible ver-
sion of the CUTIE code [41]. In the present version, our numerical investigations have
been carried out in the framework of a two fluid model, containing a continuity equation
for electron density and parallel momentum equation. We use a periodic cylinder ge-
ometry (ρ,θ ,z),(ρ being the radial coordinate, θ being the azimuthal coordinate, and z

being the axial coordinate) defined in terms of the minor radius, a, and the major radius,
R0 as follows: we set ρ = r/a, r being the radial distance, 0 6 ρ 6 1;0 6 θ ,ζ 6 2π

;ζ = z/R0, is analogous to the toroidal angle. This model thus includes drift effects of
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two fluid theory, containing density and parallel momentum effects in addition to the
single fluid model. We utilise CGS electrostatic units. We have neglected curvature ef-
fects as we are using a large aspect ratio, and as in our previous work, toroidal coupling
between different (m,n) modes is allowed. We use a constant, uniform axial magnetic
field, while the poloidal component of the magnetic field is determined as we evolve the
equations. We prescribe and hold fixed imposed equilibrium flows and density profiles.
Also, plasma β is assumed to be low and other code parameters are chosen to be con-
sistent with this assumption. A significant difference is that we allow the current profile
to evolve in the nonlinear evolution. The equations in our model are as follows[36, 38]:

∂n
∂ t

+∇ · (nv) = Sp (6.1)

min
dv
dt

=−∇p+
j×B

c
+Fe f f (6.2)

3
2

d pi,e

dt
+ pi,e∇ ·vi,e =−∇ ·qi,e +Pi,e (6.3)

E+
ve×B

c
=−∇pe

en
+Re (6.4)

∇×B =
4πj

c
(6.5)

∇×E =
∂B
∂ t

(6.6)

It must be mentioned that the form of the source terms has been described in earlier
papers[36, 38]. We use a reduced model for our present purposes We note here that
Te = Ti = T0. We will introduce the dependent variables here, namely φ , the electro-
static potential, ψ , poloidal flux function, ne, quasi-neutral electron number density, v‖,
parallel velocity. These are functions of r, θ , z, t, or in the reduced form ρ , θ , ζ and t as
introduced above. We can write these by splitting the equilibrium and fluctuation parts,
or in other words by Fourier analysing them and keeping the (0,0) component separate.
In other words,

F (ρ,θ ,ζ , t) = F0 (ρ, t)+ f̃ (ρ,θ ,ζ , t) (6.7)
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Here,

F0 (ρ, t) =
2π∫
0

dθ

2π

2π∫
0

dζ

2π
F (ρ,θ ,ζ , t) (6.8)

and

f̃ (ρ,θ ,ζ , t) = ∑
m

∑
n

f̂m,n (ρ, t)ei(mθ+nζ ) (6.9)

We also introduce the fundamental equilibrium quantities of the model: the ax-
ial magnetic field, Btor = Bζ = B0(uniform and constant),the safety factor, q(ρ) =

ρ

(
a

R0

)
B0

B0θ (ρ)
, equilibrium quasi-neutral electron density n0 (ρ). They have the follow-

ing profiles:

q(ρ) = q0

[
1+
(

ρ

ρ0

)Λ
]1/Λ

(6.10)

Fig. 6.1 shows the q profile used in the simulations and the q=1 surface.
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Figure 6.1: q profile

n0 (ρ) = n0 (0)e−αρ2
(6.11)
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The values used for these parameters are as follows: q0 = 0.9, Λ = 1, ρ0 = 0.6,
T0 = 275eV, B0 = 2× 104, Ip = 29.4KA The α is proportional to the density gradient,
and we vary it from α = 0, which is the single fluid case, to α = 1.5.

We will now write the equations for the fluctuating quantities. We keep in mind that
the following variables are to be evolved:

• The fluctuating quantities, ñ, φ̃ ,ψ̃ , ṽ‖, W̃ . Here, W̃ is the linearised ‘potential
vorticity’. The mean flows are held fixed, namely vz0 and vθ0.

• The mean poloidal field B0(r, t) in the nonlinear case.

It is convenient to define the following time-scales which are relevant to our work:
Alfvén time, Resistive time, Viscous diffusion time, as follows. τA = a/vA is the Alfvén
time; τη = (4πa2/c2η) the resistive diffusion time; τν = (a2/ν) the viscous diffusion
time. We will use in the following the Lundquist Number, S =

τη

τA
, and the Prandtl

Number, Pr = τη

τν
. The velocity perturbations are non-dimensionalised relative to the

Alfven speed, vA = B0

(4πmin0)
1/2 , and thermal velocity, VT H =

(
Te(0,t)+Ti(0,t)

mi

)1/2
. Addi-

tionally, ρs =
vth
ωci

, where, v2
th = (T0i +T0e)/mi, ωci = (eB0/mic), with T0i,T0e being ion

and electron temperatures respectively. mi is the ion mass, e is the elementary charge.
Φ0(r),Ψ0(r) denote the mean electrostatic and magnetostatic potentials respectively.
The equilibrium axial and poloidal, sub-Alfvénic sheared flows are: Mz =V0z/vA is the
Axial Mach number; Mθ (ρ) = ρ

aΩ(ρ)
vA

is the poloidal Mach number.
These equations are rewritten in terms of the variables:

W̃ = ρ
2
s ∇ ·

(
n0 (ρ)

n0 (0)
∇⊥φ̃

)
(6.12)

∂W̃
∂ t

+v0 ·∇W̃ + vA∇‖ρ
2
s ∇

2
⊥ψ̃ =

vAρs
1
r

∂ψ̃

∂θ

4πρs

cB0
j
′
0 + vthρs

1
r

∂
(
ψ̃,ρ2

s ∇2
⊥ψ̃
)

∂ (r,θ)
+

vthρs

[
1
r

∂
(
W̃,φ̃

)
∂ (r,θ)

+

(
n0 (0)
2n0

)
1
r

∂
(
W̃,ñ

)
∂ (r,θ)

]
−

ρ2
s W

′
0

r
∂ φ̃

∂θ
+ν∇

2
⊥W̃ (6.13)
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∂ψ̃

∂ t
+ve0 ·∇ψ̃ + vA∇‖φ̃ = vA

(
n0 (0)Te0

n0T ∗

)
∇‖n

∗+

vthρs

r

[
1
r

∂
(
ψ̃,φ̃

)
∂ (r,θ)

+

(
n0 (0)
2n0

)
1
r

∂ (ψ̃,ñ)
∂ (r,θ)

]
+

c2η

4π
∇

2
⊥ψ̃ (6.14)

∂ ñ
∂ t

+ue0 ·∇ñ+ vA∇‖ρ
2
s ∇

2
⊥ψ̃ =

vρs
1
r

∂ψ̃

∂θ

4πρs

cB0
j
′
0 + vthρs

1
r

∂
(
ψ̃,ρ2

s ∇2
⊥ψ̃
)

∂ (r,θ)
+

vthρs
1
r

∂
(
ñ,φ̃
)

∂ (r,θ)
+

vthρs

(
n
′
0

N∗

)
1
r

∂ φ̃

∂θ
−

vth∇‖ξ̃ +D∇
2
⊥n∗ (6.15)

∂ ξ̃

∂ t
+u0 ·∇ξ̃ + vth∇‖ñ =(

n0(r)v
′
‖0

n0(0)

)
ρs

1
r

∂ φ̃

∂θ
+ vthρs

1
r

∂

(
ξ̃ ,φ̃
)

∂ (r,θ)
−

vthρsβ
1/2

(
p
′
0

P∗

)
1
r

∂ψ̃

∂θ
− vthρsβ

1/2 1
r

∂
(

p̃,φ̃
)

∂ (r,θ)
−

vth

( n0

N∗

)
+χ∇

2
⊥ξ̃ (6.16)

Equation[6.12] is the Poisson relation for our system. Equation[6.13] is the vortic-
ity equation, where W̃ is the perturbed vorticity. Equation[6.14] describes the evolu-
tion of the perturbed poloidal flux function ψ̃ . Equation [6.15] describes density evo-
lution and equation [6.16] describes the evolution of parallel momentum. Here, u0 =

−cEr0
B eθ +b0v‖0 is the equilibrium ‘MHD’ flow, and ue0 =−cEr0

B eθ +b0
(
v‖0− j‖0/en0

)
is the corresponding electron flow. The ion flow alone is given by v0 = u0+

c
en0BT ∂nio

∂ r eθ ,
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here due to quasi-neutrality ni0 ∼ ne0 and ve0 =−
[

cEr0
B + c

en0BT ∂ne0
∂ r

]
eθ is the total elec-

tron poloidal flow composed of the electron E×B equilibrium flow and the electron
diamagnetic flow. Also, we have N∗ = ne (0, t), T ∗ = Te (0, t)+ Ti (0, t), ξ̃ = N∗VT H .
The resistivity η and viscosity ν are specified quantities and are held constant dur-
ing our calculations. In particular, we use the self-consistent formulation whereby
η(r)æ0z(r)≡ E0z ≡

Vloop
2πR0

, where the specified q profile and B0 are used to get j0z initial
profile. After this, we hold the profile and the value of η(0) fixed throughout both linear
and nonlinear calculations. We also have, Dres =

c2η(r)
4π

,ν ≡ Dvisc ≡ Pr.Dres, therefore,

Pr ≡ Dvisc

Dres
(6.17)

is the Prandtl number, which we have introduced earlier. We can therefore we see
that kinematic viscosity ν and η share the same radial profile and are invariant in time.

This comes from
δE
B0

=−∇φ̃ − 1
c

∂ φ̃

∂ t
eζ

where, E is the electric field, φ is the electrostatic potential, and B0 'B0zeζ +B0θ (ρ)eθ

is the equilibrium field. The fluctuating electric field, δE, is related to φ̃ [this has dimen-
sions of length]. We use, ε = a/R0, the inverse aspect ratio, v0 =V0z (ρ)eζ +aρΩ(ρ)eθ .

The magnetic field perturbations are normalised by the equilibrium axial magnetic
field B0z. The fluctuations of magnetic field and velocity are incompressible in the (r−
θ) plane. The temperatures are measured in energy units, i.e, electron volts. Also, we
have used fixed boundary conditions, along with a conducting boundary, which means
that all the variables are zero at ρ = 1. Additionally, regularity considerations mean that
at ρ = 0, the fluctuations approach zero, and we have set the plasma edge at ρ = 0.95.
We have used the Fourier representation for the purpose of periodicity of the angular
coordinates.

Together, these equations constitute the four field model we use and we solve them
using the CUTIE (CUlham Transporter of Ions and Electrons) code [35, 39], a non-
linear, global, electromagnetic, quasi-neutral, two fluid initial value code. It has been
used earlier for studies of kink modes, tearing modes, ELMs, L to H transitions, internal
transport barriers and other problems [35, 36, 39–41].

We briefly describe the numerical details of our investigations. We have used a spa-
tial resolution of 1801 radial grid points, 9 poloidal, 5 toroidal Fourier modes for the
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linear runs made with the resolvent code[39], a version of CUTIE which is an eigen-
value solver, and is equivalent to the evolutionary version, and helps to find additional
eigenvalues, as the evolution version only finds the fastest growing mode. In the nonlin-
ear case, we reduce the radial grid to 101 points, due to limited computational resources.
In the nonlinear cases, the error in growth rate thus introduced is not significant as we
are more concerned with nonlinear saturated energy levels, a high accuracy in growth
rate to many decimal places does not yield any additional information given the approx-
imations in our model.

Results of linear simulations

No flow simulations

We have carried studies without imposed flow,which means that in these runs we have
no imposed flows, i.e., v0θ ≡ v0ζ ≡ 0, in particular, we have studied the variation of
mode frequency as a function of Pr, and have compared it against the calculated ω∗
frequency for a given density gradient. We have calculated the ω∗ frequency using the
following formula:

ω∗=− cT
eB0

[
1
ne

]
dne

dr

[m
r

]
(rad/s) (6.18)

Here, T = 275eV , B = 2× 104gauss, e = 4.8× 10−10 stat.coul, c = 3× 1010 cm/s
cT
eB = 1.37×106cm2/s, 1

ne

dne
dr =−2α

(
r/a2). Substituting these values, we obtain,

ω ∗ τA = 1.255×α×10−3 (6.19)

We note the values of the following parameters used in our runs: vA = 2.18× 108

cm/s, β = 1.6%,τA = 4.58×10−8,τη = 4.58×10−2 and τν = Pr× τη , the value of Pr

is specified where used. In the following Fig. 6.2 we have showed a typical profile for
Dres, and since Dvisc = Pr×Dres, thus it has the same profile because Pr is constant in
our model.

The eigenvalue version of CUTIE, called Resolvent-CUTIE was used to compute
these linear results[39].
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Figure 6.2: Dres profile

Our results are plotted as follows in Fig. [6.3] and Fig .[6.4].
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Figure 6.3: Growth rate variation with Pr without flow

In figure [6.3], we notice that the growth rate reduces smoothly with Prandtl number,
Pr, as expected that higher viscosity reduces the growth rate. We observe that in the high
Pr regime, the relative growth rates of the modes change as compared to those at a lower
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Pr, that is the growth rate of modes with a higher α is slightly higher than that of those
with a lower α .
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Figure 6.4: Frequency variation with Pr without flow

In figure [6.4] we see that the frequency of the mode approaches the ω∗ frequency
as we increase Pr asymptotically. An increase in viscosity is correlated with an increase
the mode frequency. There is a similar finding over a smaller range of Pr in the paper of
Porcelli et al[80]. Also, the frequency increases until it reaches the ω∗ frequency. This
suggests a complicated relationship between Pr and mode frequency, that the viscosity
not only stabilises the mode but also has a reactive component that increases frequency.
We also note that the growth rate is almost independent of α once Pr exceeds 15, and
for Pr > 1 the viscous diffusion layer becomes larger than the resistive layer.

Simulations with imposed flow

Axial Flows

We have used an imposed axial flow profile of the form

V0z/VA = Mztanh(ρ−ρs) (6.20)
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where, V0z is the imposed axial flow velocity, VA is the Alfvén velocity, Mz is the axial
Mach Number, ρ = r

a , is the normalised radial coordinate r being the radial coordinate
and a being the minor radius, and ρs = ρ when r = rs is the resonant radius. In this
section and henceforth we refer to the q = 1 resonant radius as ρq=1.

The following Fig. 6.5 is a typical profile for V0z,
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Figure 6.5: Imposed axial flow profile

This profile is chosen to have the property of zero flow at the resonant surface, so
we can study the effect of shear alone at the resonant surface on the mode. We state the
values of ω∗(α)τA as a function of α as given in Eqn. 6.19 for convenience:

Table 6.1: Value of ω∗(α)τA

α ω∗(α)τA ×10−4

0.5 6.275
1.0 12.25
1.5 18.82

We have studied the reduced growth rate and frequency variation of the internal kink
mode in two ways. We have studied the variation of reduced growth rate for different
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α values, in Fig. 6.6. In the Fig. 6.6, we observe that the growth curves exhibit a very
interesting behaviour, in that, for a pure RMHD case, we obtain symmetry of the re-
duced growth rate curve about Mz = 0, that is changing the sign of Mz does not change
the reduced growth rate, but here we see a distinct asymmetry. This is due to the con-
tributions of the parallel momentum and electron continuity equations. We have done a
study by eliminating the parallel momentum equations, and setting α = 0; in this case,
we recover RMHD behaviour.

In a similar manner, in Fig. 6.7, which shows the corresponding variation of real fre-
quency with Mz for different values of α , we observe a similar asymmetry of frequency
about Mz = 0. This can be attributed to ω∗-related contributions to the frequency of the
mode, apart from the rotation caused by the axial flow. However, here all the curves are
approximately parallel to each other, unlike in the growth rate case.

In Fig. 6.8 we plot mode reduced growth rate as a function of the axial flow Mach
number, M0z, for a given ω∗(α = 1.5) = 1.8825×10−3 for different Pr values, at a fixed
α . In the Fig. 6.8, the ω ∗ τA is fixed and corresponds to α = 1.5. It is seen that the
curves are qualitatively different for Pr = 15 and higher, and upon further investigation,
we have found that the behaviour seen for Pr = 1 continues upto Pr = 8, and after that
the curve changes its shape. This suggests a transition in the behaviour of the mode with
respect to the viscosity(i.e. Pr alone is changed) when imposed flows exist.

In Fig. 6.9, we plot the real frequencies corresponding to the growth rates shown in
Fig. 6.8. It is clearly seen that, as before, Pr = 1 frequency variation with Mz is different
from those for Pr = 15. It is also seen that the real frequencies increase with Pr.

In summary, we see a very strong asymmetry in the reduced growth rates as a func-
tion of the sign of Mz.This is because a self consistent poloidal flow is generated by the
diamagnetic drift. The frequencies show a similar profile as a function of Mz, which is
unlike what we observe for the reduced growth rates. This is probably due to the fact
that the ω∗ is independent of the axial flow and depends only on the density gradient in
the linear regime. We then have the case of varying Pr for a fixed, finite density gradi-
ent. In this case, we observe that while low Pr increases the reduced growth rate, high Pr
reduces it, consistent with our observations in the RMHD case. The shape of the curves
for the Pr = 1 case surprisingly is very different than for the other Pr’s, which seems to
indicate a threshold in Prandtl number after which the behaviour of the mode changes.
The frequency also shows similar trends, and it seems to be the case that frequency and
viscosity are not directly proportional, contrary to the expectation that viscosity being
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dissipative in nature should gradually reduce the frequency, but in fact increases it up to
a certain limit.
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Figure 6.6: Reduced growth rate vs Axial Flow(Axial Mach Number) for different density
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Poloidal flow

We have used the following purely poloidal imposed flow profile,

V0θ

vA
= Mθ (ρ) (6.21)

where the poloidal Mach number,

Mθ (ρ) = ρ
aΩ(ρ)

vA
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and
Ω(ρ) =

(
1−ρ

2)2

Here, V0θ is the equilibrium poloidal flow, and Ω(ρ) is the poloidal angular fre-
quency at ρ = r/a. The following Fig. 6.10 is a typical flow profile:

In Fig. 6.11, we have plotted mode reduced growth rate vs poloidal flow for different
density gradients at a fixed Pr. In the Fig. 6.11, we see that poloidal flow is stabilising
the mode with increasing Mθ

(
ρq=1

)
and decreases it in the negative direction. This is

consistent with our finding that there is a positive ω∗τA present in the system, thus it adds
when the flow is positive, stabilising the mode, and cancels when the flow is negative,
so the mode gets destabilised. We see further evidence of this in the α = 0 curve which
is symmetric when the sign of Mθ

(
ρq=1

)
is changed.

Our hypothesis is further strengthened by observing Fig. 6.12 where we see that
the frequencies vary linearly with Mθ

(
ρq=1

)
, and the curves for different ω∗τA, i.e., α

values are parallel to each other.
In Fig. 6.13, where we have plotted reduced growth rates vs Mθ

(
ρq=1

)
for different

Pr at a fixed α . We notice that the trend for Pr = 1 in Fig. 6.13 is qualitatively dif-
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Figure 6.10: Imposed poloidal flow profile

ferent from the other curves, but not substantially so. In the case of the corresponding
frequency curve in Fig. 6.14, we notice similarly that the Pr = 1 curve is parallel from
the other curves, which are almost overlapping. This is also consistent with our Fig. 6.4,
where the frequency actually rises with Pr.

In conclusion, we notice that the reduced growth rates are symmetric in the case
of α = 0 as function of the sign of Mθ , which is consistent from what we see in the
RMHD case. After we introduce a finite α , we see curves which are broadly parallel,
indicating a fixed ω∗ in the system. Importantly, therefore, unlike in the axial flow case,
the system is symmetric as a function of poloidal flow. The frequencies confirm this,
being linear functions of Mθ

(
ρq=1

)
and are parallel for different values of α . When we

vary Pr for a fixed α , the curves display broadly the same shape, indicating that Pr does
not affect poloidal flow in an asymmetric fashion as it did in the case of axial flow. The
frequencies in this case show an expected increase in frequency with Pr as we observed
in the benchmarking section.

Helical Flow

In this section we discuss helical flow results. Helical flows are a combined effect of
axial and poloidal flows. We have used a fixed poloidal flow of Mθ

(
ρq=1

)
, without loss

of generality as our results are similar when we change the sign of the poloidal flow.
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The two fluid has an intrinsic poloidal flow present, and its behaviour is at variance from
helical flow V-RMHD results. In the V-RMHD case [41], we have an asymmetry in the
effect of the helical flows. The present case is considerably more complicated as it there
are both imposed axial and poloidal flows, in addition to the intrinsic poloidal flows. In
Fig. 6.15, we observe the variation of mode reduced growth rate with increasing axial
flow while keeping poloidal flow constant, for different density gradients at a fixed Pr,
the difference between the reduced growth rates trends is significant. The trends show
a similarity to the axial flow case, but the big difference is that for α = 0, the curve
nearly coincides with α = 0.5, for Mz negative, showing the strong influence of poloidal
flow in modifying the behaviour of the mode here. The other curves are parallel to each
other, instead of coinciding as in the case of pure axial flow. The frequency curves in
Fig. 6.16 show a similar trend to the corresponding pure axial flow case, 6.7, however,
the frequency curves have a greater distance between them, showing that the poloidal
flow has increased mode frequencies, and contributed to symmetry breaking.

In Fig. 6.17 we present the variation of reduced growth rate with Pr. We observe a
similarity with the corresponding axial flow case Fig. 6.8, with the addition of poloidal
flow only changing the relative distance between the curves. This indicates that the axial
flow dominates the dynamics in the case of using combined imposed flows. However,
the effect of poloidal flows is also noticeable, despite being minor.

A similar situation is noticed in the case of Fig. 6.18, which is very similar to 6.9,
showing that the axial flow dominates the dynamics of the system. The frequency curves
are very similar, and the addition of imposed poloidal flow has only seemed to slightly
widen the distance between the curves.

In conclusion, we have discussed the effects of imposing an axial and poloidal flow
simultaneously on the (1,1) kink mode. We see that overall, axial flow dominates the
dynamics, but poloidal flow has a smaller but noticeable effect. The figures are very
similar to those obtained with a pure axial flow in the system.
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Nonlinear Studies

We present results of our nonlinear simulations in this Section. The nonlinear results
here differ from the nonlinear results we obtained in our V-RMHD case[41]. It is worth
mentioning here that the nonlinear results differ from the linear in a non trivial sense,
which is to say, due to the coupling of the equations, it is not possible to isolate the
effect of the individual nonlinear terms. There is an interaction of the nonlinear terms,
which cannot be captured by an asymptotic analysis, and a full solution yields results
qualitatively different from what an asymptotic analysis would yield. Therefore a nu-
merical solution of the equations is the only way we can understand the true dynamics
of this system. There is a discussion about these issues in Thyagaraja et al[35]. Profile-
fluctuation interactions as described are the strength of the CUTIE code, and enables
us to understand the long term evolution of the visco-resistive modes better. Further,
in our system nonlinear mode coupling is allowed but we have held the profiles of the
equilibrium flows constant during the evolution. We describe below the variation of the
energy levels at saturation as a function of Pr. We observe that at low Pr, the general
trend is that the saturated energy level increases with α , and also as a function of Pr. At
a high Pr, here Pr > 15, we see that the saturated energy levels fall with increasing α .
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The nonlinear runs presented in this section were all carried out with a α = 1.5, thus
the ω∗τA(α) = 1.8825× 1× 10−3 . In Fig. 6.20, we observe the nonlinear evolution
of |ψ|, for the case with imposed axial flow with a fixed Mach number but opposite
directions in comparison with the no flow case for Pr = 15. We notice that positive axial
flow leads to a higher initial rise of magnetic fluctuation amplitude as compared to the
no flow case, followed by certain oscillations leading to a higher saturation amplitude.
The situation is reversed with a negative axial flow, leading to a lower saturation level
than the no flow case.
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Figure 6.20: Nonlinear Axial Flow results for Pr=15
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Figure 6.21: Nonlinear Axial Flow results for Pr=60

In the Fig. 6.21, we examine the case when we change the Pr to 60. As opposed to
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Pr = 15, at the higher viscosity, positive flow hardly differs form the no imposed axial
flow case, whereas the saturated amplitude is significantly lower than the no flow case.
However, the saturated amplitudes in Fig. 6.21 are higher than the corresponding in Fig.
6.20, consistent with Fig. 6.19. If we compare these results with our previous results
with V-RMHD, we see that in the V-RMHD case, at low viscosity, axial flow cases had
higher linear growth rates and saturated amplitudes than the no flow case. However, the
high viscosity case, there at Pr = 100, look similar to the high viscosity case here at
Pr = 60.
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In the next figure, Fig. 6.22 we observe the nonlinear evolution of |ψ|, for the
case with imposed poloidal flow with a fixed Mach number, Mθ

(
ρq=1

)
= 1×10−3 but

opposite directions in comparison with the no flow case for Pr = 15, we examine the
cases with an imposed poloidal flow. Here, the negative imposed poloidal flow case
shows destabilisation, that is the saturated amplitude and linear growth rate is higher
than the no flow case. It is the opposite for case with imposed positive poloidal flow,
the saturated amplitudes and linear growth rates are lower than the no flow case but to a
lesser extent.

For the Pr = 60 case, in Fig 6.23 we observe that the positive flow exhibits similar
behaviour as in Fig. 6.22 but the negative flow has also shown stabilisation, that is a
smaller saturated amplitude than the no flow case, but very slightly, as compared to the
larger stabilisation shown in the positive flow case.
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Figure 6.22: Nonlinear Poloidal Flow results for Pr=15
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Figure 6.23: Nonlinear Poloidal Flow results for Pr=60

105



Chapter 6. Two fluid studies of (1,1) mode

Finally, we turn to the cases with combined imposed flows. In Fig. 6.24, where we
observe the nonlinear evolution of |ψ|, with helical flows, that is, we use the positive
and negative combinations of a fixed axial Mach number Mz = 0.01 and poloidal Mach
number Mθ

(
ρq=1

)
= 1× 10−3. This results in four case, as there are two cases each

of axial and poloidal flow. An examination of the Fig. 6.24 shows us that it exhibits
features of both the nonlinear axial flow Fig. 6.20 and Fig. 6.22 for the same Pr. We
notice an asymmetry having runs with two helicities destabilised, that is, with higher
saturated amplitudes, and two cases more stable than the no flow case. As in Fig. 6.22,
the cases with Mθ

(
ρq=1

)
positive are stabilised and vice versa. Negative axial flow

is stabilising and positive axial flow destabilises if we fix the poloidal flow. This is
similar qualitatively to what we had seen in Fig. 6.20. This also indicates that the
intrinsic poloidal flow and imposed poloidal flow have the same effects on the mode
and it is the overall poloidal flow, the sum of both which affects the linear and nonlinear
characteristics of the mode. In the V-RMHD, we had obtained a destabilisation in all
cases of imposed helical flow, unlike the present case which is more complicated.

The behaviour of the mode in the presence of helical flow in Fig. 6.25 similarly
exhibits the features of Fig. 6.21 and Fig. 6.23. Here, for positive poloidal flow, positive
axial flow is destabilising but for negative poloidal flow, negative axial flow is destabil-
ising. Conversely, for a fixed negative axial flow, positive poloidal flow is stabilising
while for a fixed positive axial flow, positive poloidal flow is destabilising. In compari-
son to the Pr = 15 case, we see that case with positive axial and negative poloidal flow
which had the highest saturated amplitude, now comes at third place, while the others
remain at the same relative position. In comparison to V-RMHD, we see a similarity
in that the most stable case is the one with axial and poloidal flows negative, but the
important difference is that in V-RMHD, all the cases had a lower saturated amplitude
than the no flow case.
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Figure 6.24: Nonlinear Helical Flow results for Pr=15
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Summary and Discussion

In summary, we have done linear and nonlinear studies of the m = 1,n = 1 mode in
a two fluid regime using the CUTIE code. In the absence of any imposed flow, we
have observed significant diamagnetic stabilisation in the growth rate of the m = 1,n = 1
mode but the effect diminishes as we increase the viscosity. In low viscosity, the mode
rotation frequencies are smaller compared to the respective diamagnetic flow frequen-
cies but they approach the diamagnetic flow frequency asymptotically as we increase
the viscosity. In the work of Porcelli et. al.[80], they have observed an increase of fre-
quency with viscosity for a low viscosity case. The nonlinear saturation levels of the
modes also increase with higher viscosity values, however its behaviour with change in
diamagnetic flow is different for the low viscosity and high viscosity regime. At low
viscosity it increases slightly with diamagnetic flow but decreases for high viscosity. In
case of imposed axial flow, there is asymmetry with respect to the direction of the axial
flow, for all cases, including zero diamagnetic flow. This is because parallel dynamics
also introduce an asymmetry in the linear growth rate other than diamagnetic flow. Un-
like axial flow, in the case of poloidal flow, there’s a symmetry in the growth rate for
the zero diamagnetic flow case. However, after the introduction of diamagnetic flow, the
growth rates are not symmetric with respect to changing the direction of the imposed
poloidal flow. In one direction it is destabilising and in the other direction it is stabilis-
ing the mode. This is very different from the single fluid result that the poloidal flow is
always stabilising and agrees with recent experimental observations in JET[72] which
shows that the poloidal flow destablises the internal kink mode.
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7
Conclusion and future scope

We have summarised our findings and enumerate the likely areas of investigation to be
carried out arising out of our studies in this chapter. We discuss the importance of these
results in expanding our knowledge of the physics of MHD modes in the tokamak such
as kink and tearing modes. We also attempt to identify lines of investigation for future
work, and the improvement in techniques that encompasses.

Summary and conclusions

In this thesis we have studied MHD instabilities, particularly the tearing and kink in-
stabilities in the presence of flow. We have also devoted our attention to the effect of
viscosity in modifying the effect of flow. The thesis has thus investigated these mat-
ters in detail, extending our understanding of the role played by equilibrium flows in
the growth of these instabilities in a tokamak plasma. We have also provided exam-
ples of experimental results from tokamaks like JET, MAST, NSTX which observe the
type of phenomena we have dealt with in our simulations. In particular, the relative
direction of flows applied to a tokamak plasma which we observe in our simulations
is not well understood, for example, change of the neoclassical tearing mode stability
as well as change of sawtooth period with the change in direction of NBI as observed
in several experiments was not well understood based on simple RMHD model equa-
tions [58, 59, 81]. Also, most of the analytical and simulation studies in this area are
in low viscosity regimes, however viscosity can be very high in tokamaks due to the
presence of turbulence etc. as seen in several studies [16, 79]. So, in this thesis we have
tried to address these issues by performing simulations of resistive MHD modes using
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V-RMHD, two fluid equations for a wide range of viscosity regimes. After providing a
background to the subject in the first three chapters, our results have been presented in
chapters 4,5,6. In the following, we summarise the contents of the chapters.

In chapter 4, we have presented our results on the effect of flows on the m= 2, n= 1
tearing mode. We have examined the (2,1) tearing mode in various situations, single
fluid, two fluid and finally in a toroidal geometry. Throughout, we have studied the effect
of flow on the mode, particularly how shear and flow direction affect the evolution of
the mode. To begin with, we used a cylindrical visco-resistive magnetohydrodynamic V-
RMHD model to study the (2,1) mode in the linear regime. We found that while sheared
axial flows destabilise the mode, sheared poloidal flows are stabilising in nature. We also
observed that the effects of both flows are independent of the direction of flow. We then
proceeded to study the effect of helical flows on the (2,1) mode. We found that the sign
of the shear in the flow is significant here, unlike the previous cases. We further notice
that this type of symmetry breaking is also noticed in the nonlinear regime where we see
that the island saturation level depends on the sign of the flow. After this, we proceeded
to a two fluid study. We found that the linear mode is more stable in this regime as
compared to the V-RMHD regime. However, it is found that when we introduce sheared
axial flows, a negative sheared flow destabilises the mode and a positive flow stabilises
it, as compared to the corresponding result in the V-RMHD regime. The next study
was done in a toroidal geometry using the NEAR code. Here it is found that unlike
the cylindrical model, the equivalent of axial flows, that is, toroidal flows are always
stabilising. This is attributed to a ’Shafranov’ like shift induced by the flow in the
profiles of the equilibrium current that brings about a stabilising change in ∆′ and the
saturated island size.

In chapter 5, we have studied the effect of sheared equilibrium flows on the m = 1,
n = 1 resistive internal kink mode. We have used a V-RMHD model in a cylindrical
geometry throughout in the CUTIE code for our investigations. We find that scaling
dependence of the mode growth rate in the Lundquist number changes significantly in
the presence of axial flows as compared to the no flow case. On the other hand, when we
repeat this study in the presence of poloidal flows, we observe no corresponding change.
We further observe that viscosity strongly modifies the effect of flows on the (1,1) mode.
This is true both in the linear and nonlinear regime. Axial flows are found to increase
the linear growth rate for low viscosity values, but on increasing viscosity they decrease
linear growth rate of the mode. The poloidal flow on the contrary, tends to reduce
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the growth rate in all viscosity regimes. We also observe that in the presence of high
viscosity, there is a strong symmetry breaking in the behaviour of linear growth rates,
as well as in the nonlinear saturation levels of the modes as function of the helicities of
the flows. We find a flow induced stabilisation for the axial, poloidal and majority of
the helical flow cases, of the nonlinear saturation level in the high viscosity regime and
a destabilisation in the presence of low viscosity.

We have extended these V-RMHD studies to the two fluid regime in chapter 6. We
began with studies in the absence of imposed flow. We obtain significant diamagnetic
destablisation in the growth rate of the m = 1, n = 1 mode, but the effect decreases
as increase the viscosity in the system. In the low viscosity regime, we find that the
mode rotation frequencies are smaller in comparison to the respective diamagnetic flow
frequencies but they approach the diamagnetic flow frequencies as viscosity is increased.
We observe similar behaviour qualitatively by performing a dimension analysis of the
two fluid equations which agrees well with our numerical results. The paper of Porcelli
et al[80] have presented a result in which they observe an increase in frequency with
viscosity for low values of viscosity. We also observe that nonlinear saturation levels
of the modes also increase when we increase viscosity values. The behaviour of the
nonlinear saturation levels with a change in diamagnetic flow is different in the low
viscosity regime as compared to the high viscosity regime. In the low viscosity regime,
the saturation levels increase slightly with diamagnetic flow in the system, whereas a
decrease in the saturation level is observed in the high viscosity regime. When we apply
an imposed axial flow, we find an asymmetry with respect to the direction of the flow,
including in the case of no diamagnetic flow. This is due to the role of the parallel
momentum which introduces an asymmetry in the linear growth rate, in addition to
the effects of the diamagnetic flow. In contrast, in the poloidal flow case, we find a
symmetry in the growth rate when the diamagnetic flow is zero. This symmetry does
not persist in the case with a finite diamagnetic flow. In the low viscosity regime, the
positive shear poloidal flow is stabilising while the negative flow is destablising, while in
the high viscosity regime, positive shear flow is still stabilising but the negative sheared
poloidal flow is linearly destabilising and nonlinearly slightly more stable than the no
flow case, but less stable than the positive flow case.
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Outlook for future work

In this thesis, we have examined several interesting results which pertain to the effect
of flows on the tearing and kink instabilities. We have also noted the effect of viscosity
in modifying the effects of flows. Our results indicate that flows have a significant in-
fluence on the linear growth and the nonlinear saturation levels of the kink and tearing
instabilities. These results are of relevance to experiments, and we have cited instances
where behaviour which qualitatively indicates results of a similar nature as ours in toka-
maks like JET. In particular, flow helicity, shear and the viscosity regime in which these
flows are applied have a significant influence on the dynamics of MHD instabilities and
thus on the tokamak plasma itself. In addition, flows are important in other situations in
tokamak operations, for example to control resistive wall modes. We therefore believe
that these studies can be extended to explain tokamak experiments in a more detailed
and accurate fashion. In the following, future lines of investigation are outlined, along
with possible refinements of our studies.

1. We begin by describing the limitations of our present model and possible exten-
sions to study the physics of MHD instabilities more deeply. In our model we
used a cylindrical geometry, and as such it is a crude approximation to a toroidal
geometry used in tokamaks. Also, we did not allow the evolution of density and
temperature. This would introduce a lot of interesting physics and make our model
more realistic. Also, if we allow the evolution of density and temperature in the
simulation, this would introduce a lot of interesting physics and we can investigate
its effect on our present results.

2. Following from the above, one line of investigation we wish to pursue is to ex-
tend these results to allow coupling of different modes that are naturally present
in a toroidal geometry. In a toroidal geometry, classical tearing modes excite
NTMs and CUTIE needs to be extended to be able to carry out these studies. The
presence of neoclassical effects and bootstrap current not only makes the physics
considerably richer, but closer to the experimental situation. Toroidal geometry
enables coupling and stabilisation of MHD modes, and we anticipate our results
will be modified in this scenario. It also enables us to study phenomena like the
Shafranov shift, which is absent in our present model
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3. Another possible extension is to introduce heating into the code. By doing so,
we can have sawteeth in our system. Sawteeth are a common occurrence in most
tokamaks, and are not well understood despite decades of intense research. As we
use a visco-resistive model, we believe we can get valuable insights into sawteeth
behaviour by extending our studies to incorporate it, and examine its effects on the
plasma, other modes it triggers, overall transport etc. Sawteeth are also thought to
trigger NTMs. Therefore an extension of the code to incorporate these effects can
shed light on the physics underlying these phenomena.

The above are some possible lines of investigations and avenues for refining our
present work, which we believe can produce interesting results. The area of MHD insta-
bilities and more broadly of disruption physics, particularly in the presence of flows in
tokamaks is an area of active research, and we wish to continue contributing to expand-
ing our understanding of it.
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