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Synopsis

Quantum chromodynamics predicts that at extreme conditions of baryon density and

/or temperature there should be a deconfinement of quarks and gluons, and hadrons

should undergo a phase transition to quark-gluon plasma (QGP). In the hot Big-

Bang model of the universe, at very early stages, when the age of the universe was

10−5 sec and the temperature was 1012 K, the universe consisted of a hot plasma of

elementary particles e.g. quarks, gluons, etc. There is mounting evidence that ultra-

relativistic collision of two heavy nuclei results in the production of an extremely

dense, thermalized, system of quarks and gluons, just like the above stage of the

universe.

These experiments make it possible to explore the interesting phases and phase

transitions of QCD. There are two important phase transitions associated with QCD.

One is associated with chiral symmetry breaking and the other is the confinement-

deconfinement (C-D) transition. Chiral symmetry is a very important symmetry of

QCD which arises in the vanishing mass limit of certain quark flavors, in particular

the u and the d (for two-flavor chiral symmetry). This leads to decoupling of the left

and the right handed components of the massless quarks leading to SU(2)L×SU(2)R

global symmetry for the QCD Lagrangian. However, low energy hadronic spectrum

does not exhibit parity doubling of hadronic spectrum as one would have expected

from this chiral symmetry. This is only possible if the vacuum of QCD does not

respect chiral symmetry. In view of the fact that hadronic spectrum does exhibit

multiplet structure of SU(2) isospin (again, for the two flavor case), one is led to

the conclusion that the chiral symmetry SU(2)L × SU(2)R is spontaneously broken

to its diagonal subgroup SU(2)isospin. The three Goldstone bosons expected from

this are regarded to be the three pions. However, pions are not massless; they have

nonzero masses arising from nonzero masses of quarks. Thus chiral symmetry is also

explicitly broken. A simple phenomenological model which implements the idea of

chiral symmetry breaking is the linear sigma model with the Lagrangian

L =
1

2
[(∂µσ)2 + (∂µπ)2]− V (σ, π) +Hσ, (0.1)

with the potential V (σ, π) describing the self-interaction of the scalars and is given
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by

V (σ, π) =
µ2

2
(σ2 + π2)2 +

λ

24
(σ2 + π2)4. (0.2)

The Hσ term makes the vacuum manifold non-degenerate giving rise to a non-zero

mass for pions.

The other phase transition in QCD, namely the confinement-deconfinement transi-

tion, is associated with the liberation of color degrees of freedom (from being confined

inside hadrons), at high temperature/baryon density. The order parameter for the

C-D transition is taken to be the thermal expectation value of the Polyakov loop.

The Polyakov loop is defined as

L(x) =
1

N
Tr

[
Pexp

(
ig

∫ β

0

A0(~x, τ)dτ

)]
.

Its thermal expectation value is related to the free energy of a static test quark

by

〈L(~x)〉 = e−β∆F .

The two phases of QCD are distinguished as follows:

Confining Phase:- Quarks are confined. Thus, for an isolated static test quark

one expects, ∆F →∞⇒ 〈L(x)〉 = 0.

Deconfining Phase:- The color degrees of freedom are liberated, so isolated test

quarks can exist. This means, ∆F is finite ⇒ 〈L(x)〉 6= 0.

For the dynamics of the order parameter l(x) which is the expectation value of

the Polyakov loop, we use the following effective Lagrangian density [1]

L =
N

g2
|∂il|2T 2 − V (l), (0.3)

where

V (l) =
(
−b2|l|2 + b3(l3 + (l∗)3) + |l|4

)
b4T

4. (0.4)

l has the value zero at low temperatures and the potential has only one minimum at

l = 0. For T > Tc, l(x) has a non-zero vacuum expectation value l0. (V (l) has three

degenerate Z(3) vacua. However, we are not interested in this Z(3) structure; hence

we only focus on one vacuum at real l = l0).
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Earlier it used to be believed that the quark-hadron transition is of first order

even at low chemical potential (as in the early universe). This led to a very important

proposal by Witten [2] about the possibility of formation of quark nuggets due to the

concentration of quarks by moving phase boundaries at the quark-hadron transition.

Should quark-hadron transition be first order, the dynamics of first order transition

necessarily has important implications for heavy-ion collisions [3]. However, lattice

results show that the quark-hadron transition is not first order; rather, it is a cross-

over for low chemical potential. Thus, the earlier results associated with a first order

QCD transition, potentially important as they were, became irrelevant.

One notes here that as regards the dynamics of phase transition, the most im-

portant difference between a first order transition and a cross-over (or a continuous

transition) is the presence of an interface for the first order transition case which

separates the two phases. The transition for a first order case is completed by nu-

cleation of bubbles which expand. The moving bubble walls (phase boundaries) lead

to physical phenomena, such as non-trivial scattering of quarks, local heating, etc.,

which are qualitatively different from the case of cross-over or a continuous transition.

It turns out that the presence of moving interfaces is more generic, and not neces-

sarily restricted to the case of first order transitions. Such situations routinely arise in

the study of so called reaction-diffusion equations [4,5]. In this thesis we demonstrate

such solutions for chiral phase transition and confinement-deconfinement (C-D) tran-

sition in QCD even when the underlying transition is a cross-over or a continuous

transition. The only difference between the field equations in relativistic field theory

case and the reaction-diffusion case is the absence of a second order time derivative in

the latter case. The correspondence between the two cases can be established in the

presence of a strong dissipation term leading to a dominant first order time derivative

term. We also show that the required boundary conditions for the existence of such

slowly moving propagating fronts naturally arise in relativistic heavy-ion collision

experiments (RHICE).

For discussing reaction-diffusion equations, we start with the diffusion equation,

∂c

∂t
= D∇2 c. (0.5)
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This has 1-d solution,

c (x, t) =
c0

2 (πD t)1/2
e−x

2 /4D t. (0.6)

It is known that this has no traveling wave solution. The reaction-diffusion equation

is written as follows,

∂ c

∂ t
= f +∇ · (D∇ c ), (0.7)

where f is the reaction term denoting interaction of the variable c. Remarkably, this

equation has traveling wave solutions.

QCD transitions in RHICE are cross-over transitions. So there is no phase bound-

ary in such transitions as in a first order phase transition. We show that moving

interfaces arise here due to correspondence with the reaction-diffusion equations with

appropriate boundary conditions. The field equation for the case of spontaneous

chiral-symmetry-breaking transition for the two flavor case O(4) field φ = (σ, ~π) as

the chiral order parameter is

φ̈−52φ+ ηφ̇ = −4λφ3 +m(T )2φ+H,

m(T )2 =
m2
σ

2
(1− T 2

T 2
c

). (0.8)

Here, φ is taken along the σ direction.

For establishing direct correspondence with a reaction-diffusion equation, we first

use the approximations that H=0, and η is large and time independent, so that we

can neglect the φ̈ term. We rescale the variables as, x → m(T )x, τ → m(T )2

η
τ , and

φ→ 2
√
λ

m(T )
φ.

With this, the field equations simplify to,

φ̇ = 52φ− φ3 + φ. (0.9)

This equation in one dimension with 52φ = d2φ/dx2, is exactly the same as the

reaction-diffusion equation known as the Newell-Whitehead equation. The analytical

solution with boundary conditions φ = 0 and 1 at x→ ±∞ is,

φ(z) = [1 + exp(z/
√

2)]−1, (0.10)
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where z = x− vτ . v is the velocity of the front = 3/
√

2.

For the chiral symmetry breaking transition in relativistic heavy-ion collisions, the

boundary conditions are: (1) At the center, T > Tc =⇒ the chiral field takes chirally

(approximately) symmetric value.

(2) At large r, T < Tc =⇒ the chiral field takes symmetry broken value. We take the

same initial field-profile even when the temperature at the center becomes T0 < Tc.

Once T0 is reached, we take T0 to be constant over the range of the profile of φ.

With these boundary conditions the analytical solution is,

φ(z) = ξ[1 + exp(
m(T )√

2
(x− vτ))]−1, (0.11)

where ξ = m(T )

2
√
λ

is the VEV of φ (for H = 0) and v = 3m(T )

η
√

2
.

Next, we consider the confinement-deconfinement transition during early thermal-

ization stage. For RHICE, at very early stages, Bjorken scaling with longitudinally

expanding plasma is a very good approximation. The dissipation term is very strong

during the early stages. We study the C-D transition using the expectation value of

the Polyakov loop order parameter.

The Lagrangian density is as given in Eqn(3),(4). We take real l and neglect the

second order time derivative (for large dissipation case).

The variables are scaled as, x → gT
√

b4
2N
x, and τ → b4g2T 2

2ηN
τ . The field equation

for real l(x), written as φ(x), is,

φ̇ = 52φ+ φ(b2 + b3φ− φ2). (0.12)

This is the same as another reaction-diffusion equation known as the Fitzhugh-

Nagumo equation which is used in population genetics.

We have numerically solved the field equations for both cases, namely chiral phase

transition and C-D transition, with realistic time dependence of dissipation as well

as temperature. We have shown that propagating fronts exist in both cases which

dramatically change the dynamics of phase transition, almost making it like a first

order transition [6].

In the second work we revisit the issue of formation of so called disoriented chiral

condensate (DCC) [7]. DCC corresponds to formation of an extended region, where

the chiral field is misaligned from the true vacuum. This possibility was investigated
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extensively some time ago and it was proposed that DCC may form in large mul-

tiplicity hadronic collisions or in heavy-ion collisions [8–11]. A large DCC domain

would lead to spectacular signatures such as coherent emission of pions which can

be detected [9] as anomalous fluctuations in the ratio R of neutral pions to all pions.

However, even after extensive experimental search for DCC, no clear signals were

found for its formation. Alhough it was generally agreed that in heavy-ion collisions,

chiral-symmetry-breaking transition will necessarily lead to formation of many DCC

domains, the expected size of such DCC domains was too small, and their numbers

too large in any given event, that standard DCC signals were washed out. Indeed,

from this perspective, heavy-ion collisions were not ideally suited for the detection of

DCC. With a large volume system undergoing chiral-symmetry-breaking transition,

multiple DCC domains necessarily result, and a clean signal of coherent pion emis-

sion becomes very unlikely. In comparison, a pp collision, involving a small volume

system, could, in principle, lead to a single DCC domain.

Next, we reconsider the issue of DCC formation in the context of (very) large

multiplicity pp collisions at LHC energies. Some of the earliest suggestions for DCC

formation were actually made in the context of high multiplicity hadronic collisions.

One would expect that a pp collision, with a small volume system, could lead to a sin-

gle DCC domain with a relatively cleaner signals of coherent pion emission. However,

at previously attained energies, it was never clear whether the necessary condition for

DCC formation, namely, an intermediate stage of chiral-symmetry-restoration, was

ever achieved. Further, even if chiral symmetry was restored, the resulting DCC do-

mains would have been too small, of the order of a few fm3, in view of rapid roll-down

of the chiral field to the true vacuum. This will lead to only few pions from which a

clear signal, say of neutral to charged particle ratio, would be hard to detect.

The conditions for chiral symmetry restoration seem much more favorable for the

very high multiplicity pp collisions at LHC energy. Indeed there are strong indications

that several signals which have been attributed to a thermalized medium undergoing

hydrodynamic expansion in heavy-ion collisions, may be present in such high energy

pp collisions [12]. It is entirely possible that the energy density/temperature of such

a medium may cross the chiral transition temperature. This will take care of the
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requirement of an intermediate stage of chiral symmetry restoration for DCC forma-

tion. We show in this paper that the problem of rapid roll down of the chiral field

to true vacuum is alleviated due to a rapid three dimensional expansion of the sys-

tem which makes reaction-diffusion equation applicable for governing the dynamics

of the chiral field for this system (with appropriate boundary conditions which, as we

show, naturally arise in these events). The expanding system leads to a DCC domain

which stretches and becomes larger due to expansion, without the chiral field signif-

icantly rolling down (due to specific properties of the solutions of reaction-diffusion

equations). Eventually one gets a large DCC domain the subsequent decay of which

should lead to coherent pion emission.

To conclude, we have used the techniques of reaction-diffusion equations to show

the existence of well defined traveling front solutions, which are very similar to the

phase boundaries for a first order transition case, even though the relevant QCD

transitions here are of second order, or a cross-over. During the time when dissipation

dominates, we see that the transition proceeds by a slow-moving front, and may take

several fm time to complete, leading to a long lasting mixed phase stage. This should

have a bearing on calculations of various signals of QGP for RHICE, e.g. production of

thermal photons and di-leptons, J/ψ suppression, quark scattering (possibly leading

to baryon rich clusters) and especially elliptic flow which develops mostly during the

early stages. We have also considered the possibility of formation of disoriented chiral

condensates (DCC) in high multiplicity pp collisions at LHC energy. We show that

the interior of such a rapidly expanding system is likely to lead to the formation of

a single large domain of DCC which has been a subject of intensive search in earlier

experiments. We argue that large multiplicity pp collisions naturally give rise to the

required boundary conditions for the existence of slowly propagating front solutions

of reaction-diffusion equation with the resulting dynamics of the chiral field leading

to the formation of a large DCC domain.
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Chapter 1

Introduction

1.1 The Microcosmos

The quest for the ultimate building blocks of nature can be traced back to the ancient
notion of the five elements - earth, water, air, fire, and ether - that were supposed to be
the basic constituents of the world about us. Several hundred centuries later, thanks
to the efforts of the chemists, came the notion of the chemical elements - molecules
and atoms -and finally, with physics taking over, of the particles within the atoms,
and even within the nucleus. The motivation behind the long and arduous journey has
been the hope that should one be able to identify one day the truly elementary players
- hopefully of only a few distinct types - and learn the rules they play by, physics can
perhaps be reduced to a straightforward but possibly very difficult exercise.

We have not arrived at the end of our search and perhaps we never will. Much
has been learnt but one suspects that much more remains to be learnt; every stride
forward makes us realize, much to our dismay and delight, that there is an expanding
frontier of ignorance, and there is universal agreement that the grand pattern still
very definitely eludes us. In a lighter vein, this has kept physicists from going out
of business! Our experience so far has been what is thought to be elementary today
has, mostly, yielded substructure on further probings at higher energies. Thus, the
underlying motivation for constructing increasingly more elaborate accelerating ma-
chines is to probe the subnuclear domain using very short wavelength, high-energy
incident particles. At the present level of energies available and the resolution accru-
ing therefrom, the smallest units of matter seem to be the leptons and the quarks,
both of which are spin half fermions. The leptons come in six varieties and can be
listed as

Leptons : (νe, e
−), (νµ, µ

−), and (ντ , τ
−).

Since all particles have their antiparticles, so, including the antiparticles of the
above list, we have a total of twelve leptons. Now, coming to the quarks, we have six
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different types or flavors of them. They are : up (u), down (d), charm (c), strange
(s), top (t), and bottom (b). We can list them as

Quarks : (u, d), (c, s), and (t, b).

Each of the six different quark flavors, in turn, comes in three ’colors’, and, as
with the leptons, counting the antiparticles, we have a total of (6×3×2) = 36 quarks.
The 12 leptons and the 36 quarks, give us a grand total of 48 matter particles, which,
therefore, constitute the fundamental matter spectrum of the Standard Model of
particle physics.

Now, if we aim at a complete understanding of nature, it is important that we not
only know what its fundamental constituents are, but also the forces which operate
among them. Otherwise, we would never understand what holds the quarks together,
or what binds the electrons to the nucleus to form an atom, or, on a more mundane
level, why our planet earth remains enslaved to the sun in a tireless annual motion
round it through ages. Within limitations of our current knowledge, there are just
four basic forces known to physics. They are, in order of increasing strength, - 1)
gravitational, 2) weak, 3) electromagnetic, and 4) strong. Quantum theory suggests
that all these forces are mediated by the exchange of a particle or field mediator.
The graviton is the mediator of the gravitational force, the electromagnetic force is
mediated by the photon, the strong force by the gluons and there are eight varieties
of them, and the weak force by the intermediate vector bosons W± and Z0. All field
mediators are bosons and while the graviton, the photon and the gluons are all mass-
less, spontaneous symmetry breaking lends masses to the carriers of the weak force
with the Higgs boson playing a crucial role in the process. The Higgs particle has
proven to be stubbornly elusive for long but recent runs of the LHC at CERN have
thankfully, one hopes, confirmed the existence of a Higgs-like boson. The Standard
model thus has twelve force carriers : the eight gluons, the W±, the Z0, and the
photon. Together with the graviton, which we have not mentioned above because
gravity, important though it is, falls outside the scope of the Standard model, we
have a total of thirteen force carriers. Fortunately for us, the photon, the graviton,
the Z0, and the gluons are all their own antiparticles, whereas W+ is the antiparticle
of W− and vice-versa. The 48 matter particles, the 13 force mediators and the elusive
Higgs, therefore, comprise the microcosmos of nature [1].

In this thesis we shall be mainly concerned with phenomena in which quarks and
gluons will be the major players. This being so, we next proceed to talk about the
players and the games they play in a little more detail.

1.2 QCD : an overview

The strongly interacting particles, collectively called hadrons, are made up of
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quarks, antiquarks, and gluons.These, then, are the fundamental particles relevant to
QCD. As already mentioned quarks are spin half fermions characterized by six flavor
degrees of freedom ( u, c, t, d, s, b ). The first three have charge +2

3
e and the remaining

have −1
3
e. Quarks typically have two types of masses :

i) the current quark mass which is the mass of a quark in the absence of confine-
ment and is about 2, 5 MeV for u, d quarks respectively and 173 GeV for a t quark.
This is the mass that enters in the QCD Lagrangian.

ii) the constituent quark mass which is the effective mass of a quark confined
in a hadron and is reflective of the zero-point energy of the quark in the confining
potential. The constituent mass contribution for quarks is of the order of 330 MeV
for u, d quarks. The concept of constituent quark mass is, however, superfluous for a
t quark because till date one does not know of any hadron involving the t quark.

Quarks also have an internal quantum number called color. The color charge
was first postulated to explain the existence of the 4++ state with spin +3

2
. The

state is symmetric in quark flavor and spin indices; so is the space part of the wave
function (L=0). Thus, without the existence of an additional quantum number,
this fermionic wave function would be totally symmetric, a possibility disallowed
for fermions by the Pauli principle. Hence an additional degree of freedom, called
color, was introduced to distinguish the otherwise identical quarks : each quark flavor
carries three different color charges, red, green, and blue. The color wave function is
completely antisymmetric and all known hadrons are color singlets. Thus, the color
quantum number is hidden - a fact known as color confinement which is consistent
with the non-existence of a free quark (i.e. a color triplet state ) or such systems as
(qq), (q̄qq) etc. Quarks appear in nature only in combination as hadrons which in
turn can be classified into :

i) Mesons : These are (qq̄) systems with integral spins (i.e. bosons).
ii) Baryons : They are (qqq) systems with half integer spins (i.e. fermions).

One of course has to consider the antiparticles of the above two groups too. Since
all quarks carry baryon number +1

3
and antiquarks carry baryon number −1

3
, so

baryons have integer baryon number while mesons have baryon number zero.

In the light of the above facts any theory purporting to describe the interaction
of quarks must have the following features :

1. The interaction should result from the color charges of quarks just as electro-
magnetic interactions arise from electric charges. As in QED, here too it is postulated
that quarks interact among themselves through the exchange of a gluon much as the
photon mediates electromagnetic interaction. Further, taking clue from the success of
QED, one demands that the theory be a gauge theory respecting local gauge invari-
ance. This in turn requires that the gluons, which are the field quanta of the gauge
field, be massless. Color confinement should then emerge as a natural consequence
of the theory.

2. Insights derived from deep-inelastic scattering experiments involving leptons
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and nucleons show that quarks are almost free inside hadrons and this is amply borne
out by the success of Bjorken scaling [2] and the parton model [3]. We, therefore,
need a theory with a running coupling constant αs(q

2) as a function of the amount
of momentum transfer q2. It goes to zero for large q2 leading to asymptotic freedom
and becomes large for small q2. In four dimensions only a non-Abelian gauge theory
of Yang-Mills type has this kind of behavior.

The theory which meets the above two requirements and describes the interaction
of quarks arising from the exchange of gluons is called quantum chromodynamics
(QCD). The internal symmetry group is the SU(3)c group with the quarks trans-
forming under the 3-dimensional fundamental representation of the group. Since the
SU(3)c group has eight generators, we need eight gauge fields Aaµ, a = 1, .....8. So
we have 8 gluons, all massless, corresponding to these 8 gauge fields and they trans-
form under the adjoint representation of SU(3)c. In sharp contrast to QED, the
gluons themselves carry color charge ; so, unlike photons, they couple not only to
quarks but to other gluons as well which makes QCD much more complicated than
QED but also much richer. This is also the hallmark of any non-Abelian gauge theory.

Let us now turn to some mathematical detail of the theory. We begin with the
QCD Lagrangian

L = −1

4
Ga
αβG

αβ
a +

∑
α

ψ̄α (iγµDµ −mα)ψα, (1.1)

where α = u, d, c, s, t, b is the flavor index for quarks, and Dµ, the covariant derivative,
is given by

Dµ = ∂µ − igTaAaµ, (1.2)

where Ta are the generators of SU(3) in the fundamental representation. They satisfy
the Lie algebra of SU(3)

[T a, T b] = ifabcT c (1.3)

where fabc are the antisymmetric structure constants.
Gαβ is the gluonic field strength tensor, which is related to the commutator of covari-
ant derivative as [

Dα, Dβ

]
= igGαβ ≡ igTaG

a
αβ , (1.4)

where
Ga
αβ = ∂αA

a
β − ∂βAaα + gfabcAbαA

c
β . (1.5)

Under SU(3) rotations U , the fields transform as

ψ → ψ′ = Uψ, (1.6)

and
TaA

a
µ → TaA

a ′
µ = UTaA

a
µU
−1 − i

(
∂µU

)
U−1. (1.7)
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It is worth mentioning in this context that the QCD Lagrangian contains gluonic
self-interaction terms like

g∂νA
a
µf

abcAµbAνc and g2fabcfalmAbµA
c
νA

µlAνm.

Physically, gluons carry color charge, so they can interact with both quarks and
gluons with the exchange of other gluons. This feature is also brought out by three
point and four point vertices for gauge bosons in the corresponding Feynman dia-
grams. This can be seen rather directly if one constructs the Noether charge for the
gluon field. Such self interacting gauge fields are a signature of all gauge theories with
a non-Abelian gauge group. This stands in contradistinction to gauge theories with
an Abelian gauge group such as QED, with U(1) gauge group, the gauge bosons (i.e.
photons) of which carry no charge and hence cannot self-couple.

Fortunately for us QCD is a renormalizable theory. A necessary consequence
of renormalizability is that various parameters studied in the theory (like coupling
constant, mass, etc) appear to vary on differing length or energy scales. To see how
this works for the strong coupling constant, we note that αs is

αs
(
Q2
)

=
4π

(11− 2nf/3) ln (Q2/Λ2)
, (1.8)

where Λ is the QCD scale fixed by various scattering processes and is currently
believed to range from 100 MeV to 300 MeV, and nf is the number of flavors. Since
nf = 6, the coupling constant decreases with increasing momentum transfer Q2. So at
very large energy scales corresponding to very high momentum transfer the coupling
constant becomes vanishingly small rendering the theory asymptotically free. This is
the domain of asymptotic freedom of QCD [4]; asymptotic freedom allows us to treat
quarks and gluons as essentially free at very high energies, leading to Bjorken scaling,
and permits us to use perturbative QCD in this regime. On the other hand, at low
energies or large distance scales the coupling constant is large making the interaction
among quarks and gluons strong and a perturbative treatment, based on an expansion
in powers of αs, is untenable. This, therefore, calls for a non-perturbative treatment.

Thus, if we have a collection of quarks and gluons at a temperature much higher
than several hundred MeV, then they will interact among themselves with momen-
tum transfer much higher than Λ, which has a typical value, as revealed by scattering
experiments, of about 200 MeV. Asymptotic freedom will then ensure that αs be
small such that the quarks and gluons are no more constrained to remain confined
to regions typically of the size of a hadron (∼ 1 fm) and behave, instead, like a
weakly interacting, almost ideal gas-like, system of quarks and gluons - the so-called
quark-gluon plasma (QGP). Another possibility is that if we have baryonic matter
compressed to very high densities such as that believed to exist in the cores of neutron
stars, the hadrons almost overlap and the separation between the constituent quarks
and gluons typically becomes of the order of 1 fm or (200MeV )−1 making, as before,
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αs very small, making it possible for matter to exist, once again, in a QGP-like state.
However, should temperatures be not very high, many body quantum effects are likely
to play a dominant role and it is speculated that under such conditions matter could
even exist in such exotic states as the color superconductor or the color superfluid.

1.3 QCD at finite temperature

A systematic study of QGP as a weakly interacting system of quarks and gluons
at high temperatures demands a statistical description of quantum fields. In this
section we first make a digression to say a few words about the basic formalism of
finite temperature field theory and then come back to a very specific discussion of a
system of fermions (quarks) and bosons (gluons) at a finite temperature.

1.3.1 The Partition Function

It is well known from statistical mechanics that the partition function

Z = Tr e−βH where β =
1

T

=

∫
dφa 〈φa | e−βH | φa〉, (1.9)

with Tr denoting the trace or the sum over the expectation values in any com-
plete basis, encapsulates all possible information about the thermal properties of a
system in equilibrium. Now, in path integral formalism the expression for transition
amplitude is

〈φ1 | e−iH(t1−t2) | φ2〉 ' 〈φ( ~x1, t1) | φ( ~x2, t2)〉

= N

∫
DφeiS (1.10)

where N is a normalization constant, φ, the basic quantum field variable, and S is
the action.

S[φ] =

∫ t1

t2

dt

∫
d3xL (1.11)

where L is the Lagrangian density. The path integral is performed over paths satis-
fying

φ( ~x1, t1) = φ1, and φ( ~x2, t2) = φ2, (1.12)

with φ1, φ2 as the fixed end points which do not come under the scope of the inte-
gration operation.
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A comparison of equations (9) and (10) show that with the identification of t1− t2
with −iβ, Z can be cast in the form of a path integral.Thus

Z(β) = Tr e−βH =

∫
dφ1 〈φ1 | e−βH | φ1〉

= N

∫
Dφe−SE (1.13)

where SE is the Euclidean action (t→ i t),

SE =

∫ β

0

dτ

∫
d3xLE. (1.14)

The following points are in order in this context. First, since we are interested in
evaluating a trace, we require that in the path integral the integration be performed
only over those field variables which satisfy periodic boundary conditions

φ(~x, β) = φ(~x, 0). (1.15)

Second, as Tr e−βH involves a sum over states, here the end points too need to be
integrated over.
Now, thermal Green’s function, defined by

G(x, y; τ, 0) = Z−1 Tr (e−βH T [φ(x, τ)φ(y, 0)]) (1.16)

where T is the imaginary time ordering operator, provides information on the bound-
ary conditions on the field variables. For bosons we have

T [φ(τ1)φ(τ2)] = φ(τ1)φ(τ2) θ(τ1 − τ2) + φ(τ2)φ(τ1) θ(τ2 − τ1), (1.17)

whereas for fermions, in view of their anticommuting properties, we have

T [ψ(τ1)ψ(τ2)] = ψ(τ1)ψ(τ2) θ(τ1 − τ2)− ψ(τ2)ψ(τ1) θ(τ2 − τ1). (1.18)

It follows from the above that for bosons

G(x, y; τ, 0) = G(x, y; τ, β) and

φ(y, 0) = φ(y, β), (1.19)

and for fermions

G(x, y; τ, 0) = −G(x, y; τ, β) and

ψ(x, 0) = −ψ(x, β). (1.20)

This implies that in the path integral representation of the partition function, the
integration over the field variables is restricted only to those fields which, for the
bosons, are periodic in imaginary time with a period β and, for the fermions, are
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antiperiodic in imaginary time with a period β.

We have given, in bare outline, the way to construct the partition function for a
QCD system [6]. Armed with the partition function we can, in principle, evaluate
all thermodynamic variables of relevance. However, as a next exercise, we choose an
alternative route to evaluate expressions for pressure and energy density of a rela-
tivistic system of weakly interacting fermions [7]. To begin with, we consider quarks
first.

1.3.2 Quarks :

The Fermi-Dirac distribution gives us the number of quarks in a volume V, tem-
perature T , and with momentum between p and p+ dp as

dNq = gq V
4πp2dp

(2π)3

1

1 + e(p−µq)/T
, (1.21)

where µq is the quark Fermi energy or chemical potential, and gq = NcNsNf is the
number of independent degrees of freedom of quarks or quark degeneracy. When the
number density of quarks is the same as that of antiquarks, µq = 0. Hence the energy
of massless quarks (E ' p) is given by

Eq =
gqV

2π2

∫ ∞
0

p3 dp

1 + ep/T
. (1.22)

The above integration can be performed by invoking the Γ function and the Riemann
zeta function. This yields

Eq =
7

8
gq V

π2

30
T 4. (1.23)

It is known from statistical mechanics that for massless fermions and bosons the
pressure P is related to the energy density ρ = E/V as

P =
1

3
ρ . (1.24)

Thus, the pressure due to quarks is

Pq =
7

8
gq
π2

90
T 4, (1.25)

and that due to antiquarks is given by the same expression with gq replaced by gq̄.
Hence the total pressure exerted by quarks and antiquarks present in the system is

Pq + Pq̄ =
7

8
( gq + gq̄)

π2

90
T 4. (1.26)
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And the number density of quarks and antiquarks is

nq = nq̄ =
gq

2π2

∫ ∞
0

p2 dp

1 + ep/T

=
gq

2π2
T 3 3

2
ζ(3) , (1.27)

where ζ(3) = 1.20206.

1.3.3 Gluons :

We now repeat the above procedure for a weakly interacting system of gluons
occupying a volume V and at temperature T . The energy of the system is

Eg =
ggV

2π2

∫ ∞
0

p3 dp

{
1

ep/T − 1

}
, (1.28)

where the bracketed term is the Bose-Einstein distribution for bosons and gq is the
gluon degeneracy,

gg = (number of different gluons, 8)× (number of polarizations, 2) = 16. (1.29)

On integrating the above the way it was done in the case of quarks, we get

Eg = gg V
π2

30
T 4. (1.30)

Again, using P = 1
3
ρ, we get the pressure for the gluon gas as

Pg = gg
π2

90
T 4. (1.31)

We notice that the expressions for Eg and Pg are exactly the same as those for quarks
save for the absence of the factor 7

8
.

The number density of gluons is

ng =
gg

2π2

∫ ∞
0

p2 dp

ep/T − 1

=
gg

2π2
T 3 Γ(3) ζ(3) = 1.20206

gg
π2
T 3. (1.32)

We are finally in a position to write down the net energy density of a system of quarks
and gluons at temperature T :

ρQGP = ρqq̄ + ρg

=

[
7

8
(gq + gq̄) + gg

]
π2

30
T 4

gq = gq̄ = NC NS NF = 3× 2× 6. (1.33)
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Here NC , NS, and NF are the number of color, spin, and flavor states of quarks
and gg = 16, so

ρQGP =

(
7

8
× 72 + 16

)
π2

30
T 4 (1.34)

The implicit assumption in all this is that the temperature of the system is such that
all the quark flavors can be treated as being massless, an assumption valid only for
T � mtop ' 170GeV.

To develop a feel for the situation let us calculate ρQGP at the expected transition
temperature of T = 200 MeV. At this temperature we can take only u and d quarks
to be approximately massless so that

gq+q̄ = 2× 3× 2× 2 = 24, (1.35)

where NC , NS, NF , q, and q̄ all correspond to u and d quarks only. Hence

ρQGP =

(
7

8
× 24 + 16

)
π2

30
T 4

=
37π2

30
T 4. (1.36)

Further, for T = 200 MeV and using 1 fm = (200 MeV)−1, we get ρQGP ' 37
3

(200 MeV)4 '
2.5 GeV/fm3. We conclude, therefore, that should we be able to create a dense sys-
tem of partons (quarks and gluons) with an energy density greater than the above
estimate and, if we can further make a case for thermal equilibrium for such a system,
then we can claim with a certain degree of confidence that a state of QGP will be
achieved. Such a scenario is expected to be realized in relativistic heavy-ion collision
experiments where the nuclei impacting at ultra high energies create a soup of quarks,
antiquarks and gluons with a central energy density most likely to be well above 3
GeV/fm3.

1.4 Quark Confinement

As we have already mentioned, a huge body of experimental work seems to indicate
that quarks and gluons do not exist free in nature and there is confinement of quarks
and gluons in a hadron so that only color singlets can be produced and observed.This
fact that no naturally occurring particles carry color is known as color confinement.
In particular, quarks are packaged in colorless packages of two (mesons) and three
(baryons). Self-coupling of gluons allows the possibility of the existence of colorless
bound states of gluons, known as glueballs, although none has been detected so far
yet. If QCD is to claim itself as the correct theory of quarks and gluons it must
contain the explanation for quark confinement. Although the notion finds support
from hadron spectroscopy and lattice QCD results, no rigorous theoretical basis for
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quark confinement is available. The problem springs from the fact that color confine-
ment involves the long-range behavior of quark-quark interaction and this is precisely
the regime in which perturbative QCD fails. It is surmised that the force operating
between quarks has a Coulomb-like part and a confining part, which increases with
distance and makes it impossible to isolate quarks. The confining part owes its origin
to multi gluon exchange between quarks. This, however, is a conjecture only begging
for a conclusive proof.

1.4.1 The MIT Bag Model

A phenomenological model which incorporates both asymptotic freedom and color
confinement is the MIT bag model [8], which is one among many different versions of
the Bag model. In this model a colorless hadron exists as a spherical bag of radius R,
where R is less than 1 fm to ensure smallness of the coupling constant, and colored
quarks and gluons stay confined in this bag as almost free entities. Thus the bag
incorporates the physics of confinement while the freedom of the constituents inside
reflect the spirit of asymptotic freedom. The quarks are treated as massless particles
inside the bag and and are infinitely massive outside, in tune with the coupling con-
stant becoming large at large distances. The kinetic energy of the quarks gives rise
to an internal pressure trying to inflate the bag which is counteracted by an external
bag pressure B trying to achieve the very opposite i.e. deflate the bag. A balance
of these two pressures serves to stabilize the hadron. The phenomenological quantity
B is introduced to take into account the non-perturbative color confining effects of
QCD. The model can accommodate glueballs too by allowing gluonic fields confined
inside the bag.

With such a simple model for a hadron we next try to estimate the bag pressure
by considering massless free fermions trapped inside a spherical cavity of radius R.
The Dirac equation for a free massless fermion in the cavity is

γ.p ψ = 0. (1.37)

We recall that the Dirac representation of the γ matrices are

γ0 =

 I 0

0 −I

 (1.38)

and

γi =

 0 σi

−σi 0

 , (1.39)

Where I is a 2 × 2 unit matrix and σi are the Pauli matrices. We express the four
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component wave function ψ for the massless fermions as

ψ =

 ψ+

ψ−

 , (1.40)

where ψ+ and ψ− are two dimensional Dirac spinors. Plugging the above into eq. (37)
we get  p0 −~σ.~p

+~σ.~p −p0

 ψ+

ψ−

 = 0 (1.41)

On solving the above equation one gets the ground state solution as

ψ(~r, t) =

 ψ+(~r, t)

ψ−(~r, t)

 =

 Ae−ip0t j0 (p0r)χ+

Ae−ip0t (~σ.~r) j1 (p0r)χ+


where j0 & j1 are spherical Bessel functions, χ± are Dirac spinors, and A is a nor-
malization constant.

Now, for quarks to remain confined to the bag , the normal component of the
vector current jµ = ψ̄γµψ must vanish at the surface or, equivalently, the scalar
density ψ̄ ψ vanishes at the bag surface at R. This leads to

j0(p0R) = j1(p0R) (1.42)

This has a solution

p0R = 2.04 or, p0 =
2.04

R
. (1.43)

It is easy to show from the uncertainty principle that the kinetic energy of a quark
inside a bag is inversely proportional to the radius of the bag. The total energy of a
system of N quarks confined to a bag of radius R is

E =
2.04N

R
+

4

3
πR3B, (1.44)

where the last term originates from the bag pressure. By minimizing the total energy
we get the equilibrium radius as

B
1
4 =

(
2.04N

4π

) 1
4 1

R
. (1.45)

If we take 0.8 fm to be the confinement radius for a baryon, then we get the following
estimate for B

B
1
4 = 206MeV. (1.46)

The value of B
1
4 is, however, model-specific and ranges from 145 MeV to 235 MeV.

For a more detailed treatment see [9].
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1.4.2 Transition to the QGP state in the Bag Model

The physics of the bag model, simply put, is - the bag holds only as long as the pres-
sure within equals the inward bag pressure and, in the event that the pressure inside
exceeds the inward bag pressure, the bag yields, setting free the heretofore confined
quarks and gluons. We then have a new phase of matter containing quarks and gluons
and the liberated quarks and gluons soon reach a state of thermal equilibrium. The
phase is known as the deconfined phase of partonic mater or the Quark-Gluon Plasma.

The factor crucial to the creation of a QGP phase is a large inner pressure ex-
ceeding the bag pressure which can come about in two ways :

1. When the temperature of the system is high, as what happened in the early
universe.

2. when the baryon density is high, as in the cores of neutron stars.
Let us now explore the two possibilities.

1.4.3 Quark Gluon Plasma at High Temperature

We recall that the total pressure of a quark-gluon system at temperature T and zero
baryon density is

P = gtotal
π2

90
T 4

gtotal =

[
7

8
(gq + gq̄) + gg

]
. (1.47)

By considering only u and d quarks we have calculated gtotal to be 37. Hence

P =
37π2

90
T 4. (1.48)

We equate it to the bag pressure B to estimate the critical temperature for transition
to QGP state

37π2

90
T 4
c = B

⇒ Tc =

[
90B

37π2

] 1
4

(1.49)

With the value of B
1
4 = 206 MeV as estimated in the previous section, we get

Tc ∼ 144 MeV . Current estimates of Tc obtained from lattice calculations puts it at
about 154 MeV [14].

1.4.4 Quark Gluon Plasma at High Baryon Density

We now examine the possibility of a deconfining pressure developing inside a bag even
at T = 0 due to high baryon density. Pressure in such a situation arises from the
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Fermi momentum of quarks and because of high baryon number density we can safely
ignore the effect of antiquarks and gluons. The number of states in a volume V and
within a momentum interval dp about p is

gq V

(2π)3
4πp2dp. (1.50)

Since because of Pauli’s exclusion principle no more than one quark can populate
each state, the total number of quarks, up to the quark Fermi momentum µq (i.e. the
chemical potential) is

Nq =
gq V

(2π)3

∫ µq

0

4πp2dp

=
gq V

6π2
µ3
q. (1.51)

The number density of quarks, therefore, is

nq =
gq

6π2
µ3
q. (1.52)

The energy of the quark gas in a volume V is

Eq =
gq V

(2π)3

∫ µq

0

4πp3dp

=
gq V

8π2
µ4
q. (1.53)

Therefore the energy density is

ρq =
gq

8π2
µ4
q. (1.54)

Again, from the relation between the pressure and the energy density, we have

Pq =
1

3
ρ =

gq
24π2

µ4
q. (1.55)

Quark matter inside the bag will undergo a transition to the QGP state for a critical
value of µq ' µc when Pq = B. Thus

Pq = B =
gq

24π2
µ4
c , (1.56)

leading to

µc =

[
24 π2B

gq

] 1
4

. (1.57)

Substituting this in equation (52), we get a critical number density of quarks as

ncriticalq = 4
( gq

24π2

) 1
4
B

3
4 . (1.58)
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The corresponding critical baryon density is

ncriticalB =
4

3

( gq
24 π2

) 1
4
B

3
4 . (1.59)

Considering only the flavors u and d, gq = 3× 2× 2 = 12 for 3 colors, 2 spins and 2
flavors.
Using B

1
4 = 206 MeV we get µc = 434 MeV and the corresponding critical baryon

number density is nc = 0.72/fm3. In contrast, the nucleon number density in nor-
mal nuclear matter in equilibrium is nB = 0.16/fm3. So the critical baryon density
is about 5 times the normal nuclear matter density. When the density of baryons
exceeds the critical density, the pressure due to the degenerate quark matter inside
the bag gets the better of the baryon bag pressure leading to a new deconfined QGP
state. And, for a system at finite temperature and having a finite chemical potential,
the critical values for temperature and baryon chemical potential will lie somewhere
in between the values for the two extreme cases we have discussed.

The QCD phase diagram encapsulates our current understanding of different
phases of QCD matter. The QCD phase diagram as a function of temperature (T )
and baryon chemical potential µB is shown in Fig.1.1 [10]. The diagram furnishes
information on different phases of QCD and associated phase transitions. The qual-
itative aspects of this phase diagram is best studied if one divides the diagram into
three different regions.

A lot of results are available from lattice simulation for the region with zero
chemical potential and high temperatures. Lattice calculations based on realistic
values of quark masses predict that there are no genuine phase transitions for µB = 0.
This rules out the existence of any phase boundary in this direction. Calculations
point toward a crossover from the hadronic phase to the quark-gluon plasma phase
for realistic u, d and s quark masses [11,12]. The crossover temperature is likely to be
in the range 150− 200 MeV . Such temperatures prevailed in the early universe and
experiments like RHIC and LHC have targeted this region to explore phase transitions
for very small µB.

Now moving along the µB direction at zero temperature we are confronted with
a rich possibility of phase structures. First to make appearance is nuclear matter
for µB ∼ 940MeV , separated from the hadronic gas by a first order transition line.
Continuing beyond up to larger values of µB one expects to find neutron superflu-
idity, as within neutron star cores, where neutrons condense to form a superfluid.
At still higher values of µB high density QGP is expected to form. Several exotic
phase are possible too, like - color superconductor, resulting from the condensation
of quark Cooper pairs (as in normal superconductors where we have electron-electron
Cooper pairs). Properties of such phases are not very well-understood. For a review
see ref. [13]. Other exotic phases proposed are [10] the Color Flavor Locked (CFL)
phase and the crystalline color superconductor phase. The core of neutron star is
likely to contain all these phases. The proposed experiment on compressed baryonic
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Figure 1.1: QCD phase diagram (see ref. [10]).

matter (CBM) at FAIR is expected to throw some light on this high µB region of QCD.

For finite T and finite µB there are very few lattice calculations available. In this
region effective field theory models predict first order phase transition. Combining
this with lattice results which predict a crossover for small µB, we conclude that the
first order transition line should end with T = Tc and µB = µc at which the phase
transition is second order. This point is the critical point in the phase diagram. Sev-
eral experiments aim to explore this critical point.

The QCD phase diagram is a treasuretrove of many open questions begging for
an answer. Several experiments are going on and several more are planned to find
answers to these questions.

With that we come to the end of our brief introduction to QCD. The rest of the
thesis is organized as follows:

Chapter 2 discusses some of the concepts which bear upon our own work, like
- QCD phase transitions, DCC formation, a general discussion of phase transitions
highlighting some of its key concepts, and concludes with a short note on heavy ion
collisions and QGP signatures.

Chapter 3 continues in the spirit of its predecessor and introduces another key
ingredient of our work - the reaction diffusion equation. The equation is developed
in the backdrop of the diffusion equation. We mention some popular incarnations of
it and show how travelling wave solutions arise in the asymptotic limit.
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Chapters 4 and 5 describe our own work. In chapter 4 we show how some spe-
cific versions of the reaction-diffusion equation, with appropriate boundary condi-
tions, govern the dynamics of the order parameter for both chiral symmetry breaking
transition and confinement-deconfinement transition, with dissipative dynamics, in
heavy-ion collisions. We show that the transitions are completed by a propagating
interface.

In Chapter 5 we discuss the possibility of DCC formation in high multiplicity pp
collisions at LHC energy by applying the reaction-diffusion equation to the dynamics
of the chiral field after the symmetry breaking transition. We argue that a single large
domain of DCC is a possibility within the interior of a rapidly expanding quark-gluon
plasma.

In Chapter 6 we summarize our results.
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Chapter 2

QCD Phase Transitions

The purpose of this chapter is to discuss QCD phase transitions. Our first topic of
discussion will be confinement-deconfinement transition (section 2.1) and we shall
follow it up in section 2.2 with a discussion of chiral transition. This will lead us
to DCC in section 2.3. Finally, in sections 2.4 and 2.5 we shall have a few words
to say about first and second order transitions and relativistic heavy-ion collisions,
pertinent, as they are, to our work embodied in chapters four and five.

2.1 Confinement Deconfinement Phase Transition

In this section we follow [1] to construct the order parameter for the phase transition
and then write the effective potential for the order parameter. We shall work with
pure QCD with no dynamical quarks in the picture.

2.1.1 Polyakov Loop Order Parameter

Consider SU(N) gauge theory at finite temperature without dynamical quarks. Let
|sG〉 denote the states of the system. The partition function of the system is

Z = e−βF=
∑
sG

〈sG|e−βH |sG〉. (2.1)

As we know, the phases of a nonabelian gauge theory (with the possibility of a
confining phase) can be characterized by the free energy of a static configuration of
quarks and antiquarks. We introduce operators, ψ†a( ~x0, t) and ψa( ~x0, t) which create
and annihilate static quarks with color a at position ~x0, and time t, along with their
charge conjugates for antiquarks. These operator fields satisfy the anticommutation
relations

{ψa( ~x1, t), ψ
†
b( ~x2, t)} = δabδ

3( ~x1 − ~x2). (2.2)
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Conjugates enjoy a similar relation and all other equal-time anticommutators vanish.
Now, the Dirac equation in Euclidean space gives the (Euclidean) time evolution

of the wave function. Thus(
−i∂0δ

ab − gAab0 ( ~x0, τ)
)
ψb( ~x0, τ) = 0, (2.3)

where A0 = Ai0λi, with λi being the Gell-Mann matrices. This gives the solution as

ψa( ~x0, β) = P

[
exp

(
ig

∫ τ=β

0

dτA0( ~x0, τ)

)]
ab

ψb( ~x0, 0), (2.4)

where P denotes path ordering forward in time.
Now in order to determine whether the system is in confined or deconfined phase,

we probe the system with an infinitely heavy test quark, placed at the position ~x0.
To eliminate the possibility of any back reaction of the test quark on the system the
probe is kept static which is possible only if the test quark is infinitely heavy.The
presence of the test quark alters the state of the system to |s〉 = ψ†a( ~x0, 0)|sG〉. Hence
the partition function is

Zq = e−βF ( ~x0) =
1

N

∑
s

〈s|e−βH |s〉,

=
1

N

∑
sG

〈sG|
∑
a

ψa( ~x0, 0)e−βHψ†a( ~x0, 0)|sG〉,
(2.5)

where N is the number of colors. It is three for QCD. Thus the sum over a is on all
the possible color states. Here the sum is over all states |sG〉 with no quarks, that is,
over states of pure glue theory. Now time translation in Euclidean space is generated
by e−βH in much the same way as the operator e−iHt generates time translation in
Minkowski time. Thus, in Euclidean space, for any operator O,

eβHO(t)e−βH = O(t+ β), (2.6)

which implies

eβHψa( ~x0, 0)e−βH = ψa( ~x0, β), (2.7)

⇒ Zq =
1

N

∑
sG

〈sG|
∑
a

e−βHψa( ~x0, β)ψ†a( ~x0, 0)|sG〉. (2.8)

The time evolved field in Eq.(2.4) and the initial field are related by an overall
phase which is the non-abelian analogue of Bohm-Aharonov phase and is called the
Wilson line. It is, however, a loop in the Euclidean space due to the periodicity in
time direction. The trace of this quantity over all color degree of freedom is known
as Polyakov Loop. It is defined as

L(~x) =
1

N
Tr

{
P

[
exp

(
ig

∫ τ=β

0

dτA0( ~x0, τ)

)]}
. (2.9)

21



Using eq. (2.4) and eq. (2.9) in eq. (2.8) we get

Zq =
∑
sG

〈sG|e−βHL(~x)|sG〉. (2.10)

If we divide the above equation by the partition function of the pure glue system,
we get the change in the free energy of the system due to the introduction of the
infinitely heavy quark

Zq
Z
≡ e−β∆F = 〈L(~x)〉. (2.11)

Since our test quark is static and infinitely massive it does not make much sense to
talk about its free energy. However, with a quark and an antiquark pair at positions
~x and ~y respectively, one can show that the free energy of the system is a function of
the distance between the pair. Thus

〈L†(~y)L(~x)〉 ∝ e−βFqq̄ . (2.12)

• For confining phase, the free energy required to separate a quark- antiquark
pair is infinite. That means Fqq̄ → ∞ as the separation between the pair
increases. Also, for a very large distance between the pair one expects their
Polyakov loops to be uncorrelated. Thus 〈L†(~y)L(~x)〉 −→ 〈L†(~y)〉〈L(~x)〉 =
|〈L(~x)〉|2. Then Eq.(2.12) becomes

|〈L(~x)〉|2 ∝ e−βFqq̄ . (2.13)

Hence 〈L(x)〉 = 0 in the confining phase.

• For deconfined phase, Fqq̄ is finite, hence 〈L(x)〉 is finite. One can normalize
〈L(x)〉 to unity.

Thus the Polyakov loop can serve as an order parameter to distinguish the confined
phase from the deconfined phase. It vanishes in the confined phase and becomes unity
in the deconfined phase at high temperature.

2.1.2 Effective potential for Order Parameter

In this section we make the following notational changes - we suppress the arrow on
~x and denote the thermal expectation of the Polyakov loop by the symbol l(x). We
work with the effective Lagrangian of the Polyakov loop as proposed by Pisarski [2,3]

L =
N

g2
|∂µl|2T 2 − V (l), (2.14)

where
V (l) =

(
−b2|l|2 + b3(l3 + (l∗)3) + |l|4

)
b4T

4. (2.15)
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l being dimensionless, the factor T 4 determines the dimensions of the poten-
tial. In mean field theory, b4 is taken as constant and b2 varies with tempera-
ture. For b3 6= 0, the Lagrangian has Z(3) symmetry. The parameters are fit-
ted in ref. [4–6] such that that the effective potential reproduces the thermody-
namics of pure SU(3) gauge theory on lattice [7, 8]. The coefficients are b2 =
(1− 1.11/x) (1 + 0.265/x)2 (1 + 0.300/x)3 − 0.478, (with x = T/Tc and Tc ∼ 182
MeV), b3 = 2.0 and b4 = 0.6061 × 47.5/16. With these values, l (x) −→ y =
b3/2 + 1

2
×
√
b2

3 + 4b2 (T =∞) as T −→ ∞. Various quantities are then rescaled
such that l (x) −→ 1 as T −→∞. The scalings are

l (x)→ l (x)

y
, b2 →

b2

y2
, b3 →

b3

y
, b4 → b4y

4. (2.16)

l has the value zero at low temperatures and the potential has only one minimum.
For T > Tc, l(x) picks up a nonvanishing vacuum expectation value l0, and the cubic
piece above spawns three degenerate vacua, known as Z(3) vacua. The structure of
these Z(3) vacua has been discussed in the literature. Our work will not refer to this
Z(3) structure, hence we shall not discuss this here.

2.2 Chiral Symmetry Breaking

Apart from the SU(3) color gauge symmetry, which is exact, QCD possesses two
approximate global symmetries - namely, isospin symmetry, and chiral symmetry,
with associated transition known as chiral phase transition [9]. While the isospin
flavor symmetry played a decisive role in the early days of QCD and was instrumental
in the genesis of the quark model, the chiral symmetry is a very important symmetry
of QCD which arises in the vanishing mass limit of certain quark flavors, in particular
the u and the d quarks whose masses are small compared to the QCD scale, leading
to decoupling of the left and the right handed components of the massless quarks.

To appreciate the realization of chiral symmetry breaking in QCD and the conse-
quent appearance of pions as Goldstone bosons, let us start with the QCD Lagrangian

L =

Nf∑
f=1

q̄f ( iγµDµ −mf ) qf −
1

4
Tr Fµν F

µν . (2.17)

Here mf is the mass of a quark flavor qf and Nf denotes the number of quark flavors.
The Lagrangian is invariant under the symmetry transformations of the color gauge
groupSU(3)c. Additionally, the Lagrangian exhibits a global chiral symmetry in the
massless limit of quarks. We consider only u and d quarks, the two typically light
quark flavors. Further, we make a split of the quark fields in terms of their left and
right-handed components

qL,R =
1

2
(1± γ5) q. (2.18)

23



Using the above and ignoring the kinetic energy term of the gauge field which is not
relevant to our discussion, we write the Lagrangian as

L =
∑
q=u,d

q̄L ( iγµDµ )qL + q̄R ( iγµDµ )qR +m (q̄LqR + q̄RqL). (2.19)

Here, for simplicity of calculation, we have taken the same mass m for both quarks.
It is immediately apparent from the above equation that the two components of the
quark field mix only through the mass term and in the massless limit the components
completely decouple. This makes the Lagrangian invariant under SU(2)L × SU(2)R
global symmetry transformations. Should the ground state (full quantum vacuum)
respect the same symmetry one would expect degenerate multiplets of particles cor-
responding to the irreducible representations of the group SU(2)L × SU(2)R. For
instance, triplet pseudo-scalar mesons (pions) should be accompanied by their par-
ity partners. But pions do not have such parity partners in nature. But we do
see the multiplet structure of SU(2) isospin in nature. Thus the vacuum of QCD
must be invariant under SU(2) isospin global symmetry. Therefore in QCD the
SU(2)L × SU(2)R chiral symmetry is spontaneously broken to the SU(2) isospin
subgroup with the generation of Goldstone bosons as pions. However, pions are not
massless; they have nonzero masses arising from nonzero masses of quarks. Thus
chiral symmetry is also explicitly broken.

A simple phenomenological model which implements the idea of chiral symmetry
breaking is the linear sigma model [10] originally constructed to study chiral symmetry
in pion-nucleon system. The model, simple as it is, nevertheless embodies many
crucial features of low-energy QCD. Here the Lagrangian is constructed out of the
iso-triplet of pion π = (π1, π2, π3) fields and an iso-scalar σ field. The Lagrangian in
terms of these fields, in the chiral limit with zero quark masses, is [11]

L =
1

2
[(∂µσ)2 + (∂µπ)2]− V (σ, π), (2.20)

with the potential V (σ, π) describing the self-interaction of the scalars and is given
by

V (σ, π) =
µ2

2
(σ2 + π2)2 +

λ

24
(σ2 + π2)4. (2.21)

When the mass term µ2 is negative the minima of the potential is given by

σ2 + π2 = −6µ2

λ
. (2.22)

This set of minima define the vacuum manifold M which is a 3-sphere S3 in the
four dimensional field space. Each point on the 3-sphere is invariant under O(3),
which is locally isomorphic to SU(2) rotations. Thus (2.20) describes a theory in
which symmetry is spontaneously broken from O(4) to O(3). Now, to determine the
particle spectrum of the theory one has to choose a vacuum state and rewrite the
fields in terms of fluctuations around it. Let our convenient choice of ground state be

< σ >= v = −6µ2

λ
, π = 0. (2.23)
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Expanding the sigma field around the minimum as σ = v+ζ, the Lagrangian becomes

L =
1

2
[(∂µσ)2 + (∂µπ)2] + µ2ζ2 − λv

6
ζ(ζ2 + π2)− λ

24
(ζ2 + π2)2. (2.24)

It is now patently clear from the Lagrangian that spontaneous symmetry breaking
leads to the appearance of three massless ( the number of broken generators being
three ) pions and the radial excitation corresponding to the sigma field is massive.

To sum up, chiral symmetry is a symmetry of QCD only in the limit of zero quark
masses. Current quark masses, however, are not zero. But, compared to hadronic
scales, the two lightest quarks have negligible masses so that chiral symmetry may
well be regarded as an approximate symmetry of QCD. Since chiral symmetry is only
approximate, the pions get a finite but small mass, compared to other hadrons, in
the broken phase.

2.3 Disoriented Chiral Condensate

Formation of disoriented chiral condensates (DCC) in laboratory experiments was
intensively investigated some time ago. DCC refers to the formation of a chiral
condensate in an extended domain, such that the direction of the condensate is mis-
aligned from the true vacuum direction. It is expected that as the chiral field relaxes
to the true vacuum in such a domain, it will lead to coherent emission of pions. A
motivation for the formation of such domains came from Centauro events in cosmic
ray collisions [12]. It was suggested in ref. [13] that the anomalous fluctuations in
neutral to charged pion ratio observed in the Centauro (and anti-Centauro) events in
cosmic ray collisions, could be due to the formation of a large region of DCC. This
was termed as the Baked Alaska model in ref. [13]. The formation of DCC was ex-
tensively investigated in high multiplicity hadronic collisions as well as in heavy-ion
collisions [13–16].

A natural framework for the discussion of the formation of DCC is the linear
sigma model as this provides a simple way to model chiral symmetry restoration at
high temperatures. The formation of DCC naturally happens as the temperature
drops down through the critical temperature, and the chiral field picks up random
directions in the vacuum manifold in different regions in the physical space. We work
within the framework of linear sigma model with the Lagrangian density given by
(here we will use notations as in ref. [17, 18]),

L =
1

2
∂µΦ∂

µΦ− V (Φ, T ), (2.25)

where the finite temperature effective potential V (Φ, T ) at one loop order is given
by [17],

V =
m2
σ

4

(
T 2

T 2
c

− 1

)
|Φ|2 + λ|Φ|4 −Hσ. (2.26)
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Here the chiral field Φ is an O(4) vector with components Φ = (~π, σ), and T is the
temperature. We have included an explicit symmetry breaking term with coefficient
H which leads to non-zero mass for pions. The values of the different parameters
are taken as mσ = 600 MeV, λ ' 4.5, H = (120 MeV)3 and Tc ' 200 MeV, (see,
ref. [18]).

  

Figure 2.1: Effective potential for the chiral field Φ. P denotes the true vacuum

on the (approximately degenerate) vacuum manifold while ∗ marks the value of the

chiral field inside a DCC domain which is disoriented from the true vacuum direction.

In the chiral limit, spontaneous breaking of chiral symmetry (for T < Tc) implies
that the vacuum corresponds to some specific point on the vacuum manifold S3, with
all points on S3 being equally likely. This is not the situation in the presence of
explicit symmetry breaking, as there is a unique vacuum state as shown in Fig.2.1.
However, one may expect that this preference for the true vacuum may be insignificant
during very early stages in a rapidly cooled system, due to small pion mass. Thus,
as the temperature drops below Tc, one expects that the chiral field will assume
some arbitrarily chosen value in the (approximately degenerate) vacuum manifold
within a correlation size domain. If this value differs from the true vacuum direction
(as marked by ∗ in Fig.2.1) then this domain will correspond to a DCC which will
subsequently decay by emission of coherent pions as the chiral field rolls down to the
true vacuum. This essentially summarizes the conventional picture of the formation
of a DCC domain.

2.4 Phase Transitions

The phenomenon of phase transition is quite commonplace in everyday life, the
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most familiar examples being melting of ice, boiling of water, etc. And, to cite
a few examples from the laboratory, one can mention the transition from para to
feromagnetic state below the Curie temperature, λ- transition of liquid He4 from
normal to superfluid phase, and transition from isotropic to nematic phase below the
critical temperature in liquid crystal.

The phase of a system in equilibrium is characterized by the intrinsic parameters
of the system such as temperature, volume, chemical potential etc. A diagram drawn
using appropriately chosen parameters of a system give us what is known as a phase
diagram. As long as a system is in a given phase in equilibrium, these parameters
are analytic over the relevant part of the phase diagram. Non-analyticity of one or
more of these parameters over a particular region indicates the presence of a phase
boundary separating two different phases. A system always tries to minimize its free
energy and this sometimes drives a system to pass over to a new phase across the
phase boundary, leading to phase transition.

Often phase transitions are accompanied by a change in the symmetry proper-
ties of the system. The best example of this is theories with spontaneous symmetry
breaking. In such theories the lowest energy state or ground state does not share the
original symmetry of the free energy and becomes degenerate after the phase transi-
tion. While the system enjoyed a unique ground state in the symmetric phase, it now
has to choose spontaneously from among the many degenerate ground states available
to it and once a choice is made the system no more remains invariant to the symmetry
transformations pertaining to its original unique ground state. The symmetry of the
system is therefore said to be broken spontaneously during the symmetry breaking
transition. Such ’ordering’ phenomenon (or, spontaneous symmetry breaking) occurs
in a large class of systems. The symmetric phase of a system is the disordered phase
and the symmetry breaking transition makes it more ordered. But it needs to be
emphasized that ’ordering’ is not a necessary requirement for all transitions. For
example, liquid-vapor transition does not involve any symmetry breaking or ordering
since both phases are isotropic.

A useful thermodynamic variable to characterize different phases is the order pa-
rameter (OP) which is typically zero in the disordered phase enjoying higher symmetry
and is nonzero in the ordered phase having lower symmetry. The values of the order
parameter field which minimize the free energy in a particular phase constitute the
order parameter space. In the context of quantum field theories (e.g. in the Standard
model) the OP field is the Higgs field and the OP space is the vacuum manifold.

The nature of the variation of OP as a function of an appropriate controlling pa-
rameter like temperature defines the order of the phase transition. The transition is
first order if the OP changes discontinuously with the control parameter; otherwise it
is second order. A first order transition occurs by nucleation of bubbles. Local fluc-
tuations of the OP field drive certain regions of one phase to the other phase because
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of lower free energy of the latter. These are the bubbles which expand or collapse de-
pending on their size and they expand if the size happens to be bigger than a critical
size which can be calculated for a given system. Subcritical bubbles simply collapse.
The bubbles expand, meet, and coalesce until the entire old phase gets converted to
the new phase. Such moving interfaces of bubble walls lead to interesting physical
effects; for example, Witten has shown that in the quark-hadron transition in the
early universe, moving bubble walls can lead to concentration of baryon number and
can lead to formation of quark nuggets. A classic example of first order transition is
the liquid-vapour transition where density serves as order parameter. An example of
second order transition is para to feromagnetic transition where magnetization (M) is
the order parameter. In contrast to the above examples, there exists no fundamental
order parameter for a transition like confinement-deconfinement transition in QCD,
though the Polyakov loop, which captures the basic physics of the transition, can be
a good order parameter.

2.5 Relativistic Heavy Ion Collisions

The aim of the relativistic heavy ion collision experiments is to create and study the
properties of the QGP phase. In these experiments heavy nuclei like gold or lead are
accelerated to ultra relativistic energies and are then collided. The centre of mass
energies are of the order of a few hundred GeVs (or, as in LHC, in the order of
TeV) per nucleon. At such high energies the quarks and gluons inside the nucleons
of the colliding nuclei are essentially free due to asymptotic freedom and so they
pass through each other, as if transparent. The coupling is, however, not exactly
zero, and this leads to secondary particle production. The quark-gluon system in the
central region of the two receding nuclei has a large energy density. These partons
interact among themselves, redistribute their energy, and soon enough the system
of partons reaches local thermal equilibrium. The subsequent evolution of the QGP
state is described well by hydrodynamics. As the system expands it cools and when
the temperature falls below the quark-hadron transition temperature, it hadronizes.
Once the confinement phase transition is completed, the system consists entirely of
hadrons. The hadron gas expands and while it does so rescattering among hadrons
takes place, thus constantly changing the chemical composition of the system. When
these inelastic scatterings become ineffective, the system undergoes chemical freeze-
out. Finally comes a stage when the hadron gas gets diluted to the extent that the
mean free path becomes larger than the system size thereby bringing a stop to all
rescattering processes. This is the final freeze out stage; once this stage is reached the
momentum distribution also does not change and the hadrons free-stream to reach
the detectors. Experimentalists detect these final stage hadrons among a host of other
particles such as direct photons, leptons etc.
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Given the fact that what is finally observed is the hadron spectrum, the main chal-
lenge confronting experimentalists is to look for definite signatures of QGP formation
in the collision process. There are a number of indicators of QGP formation; here we
briefly discuss some of the important ones. One of the signals of QGP formation is
the abnormal suppression of J/ψ, a cc̄ bound state. The lifetime of the state exceeds
that of the QGP; so it outlives the QGP to decay into dilepton pairs which leave the
plasma without scattering and are detected in experiments. Since cc̄ interacts with
other nucleons present inside the nucleus a normal suppression is expected anyway.
This expected suppression is studied in proton proton collisions and extrapolated to
nucleus-nucleus collisions. However in a QGP background the force holding a cc̄ pair
is weakened because of Debye screening of color charges present in the plasma which
causes cc̄ bound states to melt away leading to suppression of J/ψ production. Simi-
lar suppression is expected of other heavy flavor quarkonium states, e.g. bb̄ states, as
well as excited states of the quarkonia.

Another signature of QGP formation is the production of dileptons and photons
through the Drell-Yan process and their subsequent detection. The lepton interac-
tion cross-section in QGP is electromagnetic and is much smaller than the strong
cross-section. So the leptons produced do not further interact with the QGP and
reach the detectors. Now, the rate of production and the momentum distribution of
the produced l+l− depend on the momentum distribution of quarks and antiquarks
present in the plasma which again depends on the thermodynamic condition of the
plasma. Therefore, these pairs carry information about the thermodynamic condition
prevailing at the time of their birth and can help us infer whether the QGP state was
achieved. Likewise, photons are also produced via

q + q̄ → γ + g. (2.27)

qq̄ → γγ has a smaller cross section compared to qq̄ → γg by a factor (αe

αs
). The

photons, like the dileptons, do not further interact with the QGP and are therefore
detected yielding more information about their birthplace.

The detection of elliptic flow, assessed by comparing the azimuthal distribution of
the PT spectra of particles with different masses, is another very useful signal which
has yielded a wealth of information about the state of matter achieved at RHIC [19].
For non-central collisions the QGP formed has an initial spatial anisotropy; as a result
an anisotropic pressure gradient develops which results in an anisotropic expansion of
the plasma through hydrodynamic flow, which depends crucially on the equation of
state relating pressure to energy density. The spatial anisotropy thus gets translated
into momentum anisotropy; detection and analysis of this momentum anisotropy
affords us a peek into the equation of state of the plasma. If thermalization is delayed,
there would be a reduced spatial deformation and the elliptic flow would come out
smaller. Recent flow results from RHIC experiment at BNL indicate the formation of
a strongly coupled QGP (sQGP), with a strong non-perturbative interaction, negating
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earlier expectation of formation of a weakly interacting quark-gluon gas.
There are other important probes for the detection of QGP in heavy-ion collisions,

e.g. strangeness enhancement, jet quenching etc. None of the signals has provided a
clear, conclusive evidence for the formation of QGP in these experiments. However,
all these diverse measurements taken together lend firm support to our belief that
indeed QGP is formed in relativistic heavy-ion collisions, thereby providing access
to the yet uncharted domain of a new state of matter, and providing glimpses into
the very high density/temperature matter which is believed to have existed in the
universe during the first few microseconds of its birth.
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Chapter 3

Reaction-Diffusion Equations

Our discussion so far has been on QCD in general, with emphasis on concepts such
as the running coupling constant, color confinement, asymptotic freedom, prediction
of QGP phase of QCD (Chapter 1), and QCD phase transitions (Chapter 2). In
this chapter we take a break from QCD physics to talk about a particular class of
equations of robust scope, known as the reaction-diffusion equations. This, as we
shall see in the following two chapters, has a direct bearing on our work and will
help put it in some perspective. We begin in section 3.1 by introducing the diffusion
equation following two approaches which give complimentary insights into the nature
of the equation. We follow it in the next section (3.2) with a discussion on the central
theme of the chapter- the reaction-diffusion (RD) equations. Finally, we give, by way
of an example and prototype, the asymptotic solution of one of the simplest types of
RD equations.

3.1 The Diffusion Equation : A Mass Balance Ap-

proach

We consider for simplicity only a one-component system although the extension to
multicomponent systems is straightforward. The treatment that follows can be found
in any standard text on statistical mechanics, for example [1], to name just one. Let
ρm(~r, t) be the local mass density of the system at position ~r at time t and let ~u(~r, t)
be the velocity of the mass. The total mass in an arbitrary fixed volume V with
surface S within our fluid is

M =

∫
V

ρm(~r, t) dV. (3.1)

The rate of change of mass in V is

dM

dt
=

∫
V

∂ρm
∂t

dV. (3.2)
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where V is fixed in space. Now, it follows from the conservation of mass that the rate
of change of mass in V must be the same as the rate at which mass flows through the
surface S. Since the local flow rate of mass is ρm ~u, therefore

dM

dt
= −

∫
S

ρm ~u · ~n dS, (3.3)

where ~n is a unit outward normal (local) to S. Using Gauss’s divergence theorem to
transform the above surface integral into a volume integral, we have

dM

dt
= −

∫
V

∇ · (ρm ~u) dV. (3.4)

From equations (2) and (4) we have∫
V

[
∂ρm
∂t

+ ∇ · (ρm ~u)

]
dV = 0. (3.5)

Since V is arbitrary, we must have

∂ρm
∂t

+ ∇ · (ρm ~u) = 0. (3.6)

This is the well known equation of continuity for mass. By using the vector identity

∇ · (a ~u) = a∇ · ~u+ ~u · ∇a , (3.7)

we can rewrite the above in the form

Dρm
Dt

+ ρm∇ · ~u = 0, (3.8)

where the derivative
D

Dt
=

∂

∂t
+ ~u · ∇, (3.9)

occurs frequently in continuum mechanics and is known as the hydrodynamic deriva-
tive, or the substantial derivative, or the Stokes’ operator.

We now apply equation (3.6) to a special case where we assume that the rate of
flow of mass is proportional to the gradient of the density. This is known as Fick’s
law of diffusion, an empirical law valid when the gradient of the density is small. Put
mathematically, the law simply states

ρm ~u = −D grad ρm, (3.10)

Where D is known as the diffusion constant, not to be confused with the operator D
introduced above. Substituting this into the equation of continuity we arrive at the
diffusion equation

∂ρm
∂t

= D∇ · (∇ ρm) = D∇2 ρm. (3.11)
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True to its name, the diffusion equation is generally applied to the diffusion of one
species through some medium and with this very specific use in mind it is usually
cast in the form

∂c

∂t
= D∇2 c, (3.12)

where c is the concentration of the diffusing species. The solution to this equation
depends upon the initial distribution of concentration and the geometry of the bound-
ary confining the system. The solution is, therefore, case-specific. However, it turns
out that solution for any geometry and initial conditions can be built up out of a fun-
damental solution that applies to diffusion in an infinite medium (i.e. no boundaries)
with the diffusing substance initially concentrated at the origin. This solution is thus
the Green’s function of the diffusion equation.

To develop a feel for such solutions we consider the simple situation of isotropic
diffusion in three dimensions in spherical polar coordinates. The diffusion equation,
to repeat, is

∂c

∂t
= D∇2 c, (3.13)

and the initial condition is
c(~r, 0) = c0 δ(~r), (3.14)

where δ(~r) is the 3-d Delta function centred at the origin.
We define a three-dimensional Fourier transform of c(~r, t) in the following way

Ĉ(~k, t) = (2 π)− 3/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ei
~k·~r c(~r, t) d3~r, (3.15)

the inverse of which is

c(~r, t) = (2π)− 3/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−i
~k·~r Ĉ(~k, t) d3~k. (3.16)

Hence

grad c(~r, t) = − i

(2 π) 3/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

~k e−i
~k·~r Ĉ(~k, t) d3~k, (3.17)

and

div grad c(~r, t) = ∇2c(~r, t)

= − 1

(2 π) 3/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

k2 e−i
~k·~r Ĉ(~k, t) d3~k

. (3.18)

Thus if we take the Fourier transform of (3.13), we get

∂Ĉ(~k, t)

∂t
= −Dk2 Ĉ(~k, t) , (3.19)

with the initial condition

Ĉ(~k, 0) = (2 π)− 3/2 c0 = Ĉ0. (3.20)

35



The solution to (3.19) is
Ĉ(~k, t) = Ĉ0 e

−Dk2 t. (3.21)

Taking inverse of (3.21) we get

c(~r, t) = (2π)− 3/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−i
~k·~r Ĉ(~k, t) d3~k,

= c0 (2 π)−3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−i
~k·~r e−Dk2 t d3~k,

=
c0

8 (πD t)3/2
e− r

2 /4D t. (3.22)

This is the well-known solution to the diffusion equation and shows that the diffus-
ing material, initially concentrated at the origin, spreads out in time such that the
Gaussian profile of concentration, initially sharply peaked at the origin, flattens with
time. As a check one can verify that∫ ∞

0

c(r, t) 4π r2 dr = c0. (3.23)

Finally, the solution to the one-dimensional diffusion equation can be shown to be

c (x, t) =
c0

2 (πD t)1/2
e−x

2 /4D t. (3.24)

We shall refer to this in the next section.

3.2 The Diffusion Equation : A statistical Ap-

proach

In our derivation of the diffusion equation we adopted a macroscopic approach in
that we did not concern ourselves with the dynamics of the diffusion process ; the
individual behaviour of the diffusing particles was completely ignored. In the present
section we continue to maintain our indifference to the individual and focus instead
on their collective behaviour from a probabilistic point of view. We show that such
an approach [2], though different in spirit from the previous one, nevertheless lands
us, quite remarkably, with the same equation .

In an assemblage of particles such as a concentration of cells, chemicals, elemen-
tary particles,...etc, each particle moves about randomly and spread out as a result
of such individual motion. However, if such random, uncorrelated movement, results
in some gross regular motion of the group we can think of it as a diffusion process.
Of course there can be interaction among the particles and the environment can bias
the mass movement but for the time being we neglect such effects.
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To start with we consider a simple one-dimensional random walk process. Consider
a particle moving randomly backward and forward along the x axis in steps of 4x,
each taken in a fixed time 4 t. We want the probability p(m, n) that a particle
reaches a point m space steps to the right (that is, to x = m4x) after n time-steps
(that is, after a time n4 t). Suppose that this is achieved by taking a steps to the
right and b steps to the left. Then

m = a− b, a+ b = n ⇒ a =
n+m

2
, b = n− a. (3.25)

The number of possible paths is

Cn
a =

n!

a! (n− a) !
=

n!

a! b!
. (3.26)

The total number of possible n-steps being 2n, the probability p(m, n) is

p(m, n) =
1

2n
n!

a! (n− a) !
, (3.27)

with n+m even. We notice that

n∑
m=−n

p(m, n) = 1 , (3.28)

being the sum of all probabilities, and p(m, n) is the binomial distribution. If we now
allow both m and n to be large and use Stirling’s formula

n! ∼ ( 2π n )1/2 nn e−n, n � 1 (3.29)

in (3.27), we get the normal or Gaussian probability distribution. Now set

m4x = x, n4 t = t, (3.30)

where x and t are continuous space and time variables. Further, let m → ∞, n →
∞, 4x → 0, 4 t → 0, keeping x and t finite. Then the appropriate dependent
variable is ; u = p / (24x); 2u4x is the probability that the particle is in the
interval (x, x+ 4x) at time t. So (3.27) becomes

p ( x
4x ,

t
4 t )

(24x)
∼

{
4 t

2π t (4x )2

}1/2

exp

{
−x

2

2 t

4 t

(4x )2

}
. (3.31)

Also, assume

lim
4x→0,4 t→0

(4x)2

24 t
= D 6= 0. (3.32)

Hence

u (x, t ) = lim
4x→0,4 t→0

p ( x
4x ,

t
4 t )

(24x)
=

(
1

4πD t

)1/2

e−x
2 /(4D t), (3.33)
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whereD is the diffusion coefficient or diffusivity of the particles. The above expression
gives us the probability that a particle released at x = 0 at t = 0 reaches x in time t.
At time (t −4 t) the particle was at (x −4x) or (x +4x). With α and β as the
probabilities for the particle to move to the right or left respectively, we have

p(x, t ) = α p (x−4x, t−4 t ) + β p (x+4x, t−4 t ), α + β = 1. (3.34)

For an unbiased random walk α = β = 1/2. A Taylor series expansion of the right
hand side of the above expression gives us

∂ p

∂ t
=

[
(4x)2

24 t

]
∂2 p

∂ x2
+

(
4 t

2

)
∂2 p

∂ t2
+ ....... (3.35)

If again we let 4x→ 0, 4 t → 0 and define D as before we get

∂p

∂t
= D

∂2 p

∂ x2
. (3.36)

If the total number of particles released beQ, then the particle concentration c(x, t ) =
Qp(x, t ) and we recover from the last equation the one-dimensional diffusion equa-
tion.

3.3 Reaction-Diffusion Equations

Having obtained some insight into how the diffusion equation can arise in realistic
situations, we are now in a position to comment on some limitations of the equation,
while, of course, not denying the equation of its obvious usefulness. An order of
magnitude estimate of the typical time to convey information in the form of a changed
concentration over a distance L is O (L2/D ). Such an estimate can be made from the
solution itself (3.24), dimensional arguments, or similarity solutions. It is oftentimes
found that the order of time so obtained is excessively long, contrary to reality,
for many processes in real-life situations. The inescapable conclusion is diffusion is
unlikely to be the only vehicle for disseminating information over significant distances.
In contrast we shall show presently that if reaction kinetics and diffusion are coupled,
travelling waves of concentration can exist and and can affect concentration in a way
much faster than diffusion-driven processes governed by the diffusion equation alone.
Now, the diffusion equation is one of a class of equations known as linear parabolic
equations the theory of which show that there are no physically realistic travelling
wave solutions. To appreciate this point, assume, for instance, a travelling wave
solution of the form

u(x, t ) = u(x− ct ) = u( z ), z = x− c t. (3.37)

Note that we are denoting concentration by u, rather than c, to reserve c to denote
wave speed. The diffusion equation becomes

D
d2u

dz2
+ c

du

dz
= 0 ⇒ u(z) = A+B e−c z/D, (3.38)
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where A, B are integration constants. Now, since u has to be bounded for all z, B
must be zero, otherwise the exponential part of the solution blows up as z → −∞.
Therefore, u(z) = A, a constant, is not a wave solution. In sharp contrast we shall
see that reaction-diffusion equations can accommodate travelling wave solutions, de-
pending on the nature of interaction / reaction.

We now give a formal derivation of reaction-diffusion equations [2]. To that end,
we consider diffusion in three dimensions. Consider an arbitrary volume V in a
medium bounded by the surface S. Conservation principles require that the rate of
change of matter content in V is equal to the rate at which matter flows out of or
into V through S plus the rate of creation/destruction of matter in V . Thus

∂

∂ t

∫
V

c( ~x, t ) dv = −
∫
S

~J · d~s+

∫
V

f dv, (3.39)

where ~J is the flux of material and f , which in the most general situation can be
a function of c, ~x, and t, represents the source / sink of material. Applying the
divergence theorem to the surface integral and assuming c ( ~x, t ) to be continuous,
the above equation becomes∫

V

[
∂ c

∂ t
+∇ · ~J − f ( c, ~x, t )

]
dv = 0. (3.40)

Since the above relation is true for any volume V the integrand must be zero and so
we get the conservation equation for c as

∂ c

∂ t
+∇ · ~J = f ( c, ~x, t ). (3.41)

This equation is universal in that it holds for a general flux transport ~J , whatever be
the process.

If the process under study is diffusion then we have the following three dimensional
generalization of Fick’s law

~J = −D∇ c, (3.42)

and (3.41) becomes
∂ c

∂ t
= f +∇ · (D∇ c ), (3.43)

where D may be a function of ~x and c and f a function of c, ~x, and t. This, then, is
the reaction-diffusion equation we set out to derive.

The above equation may be further generalized to systems consisting of several
interacting species or chemicals or particles. To handle such multi-component systems
we introduce a vector ui (~x, t), i = 1, · · · ,m of concentrations or densities, each
characterized by its own diffusion coefficient Di and interacting according to the
vector source term ~f . The reaction-diffusion equation (3.43)then generalizes to

∂ ~u

∂ t
= ~f +∇ · (D∇ ~u ) (3.44)
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where D is a matrix of diffusivities and if cross diffusivities are small then this matrix
is essentially a diagonal matrix. Our purpose is in fact quite well served by equa-
tions with D diagonal and ~f a function only of u. We note that ∇~u is a tensor so
∇ · (D∇ ~u ) is a vector.

There exists in the literature a rich variety of reaction-diffusion equations, each
with its respective area(s) of applicability. However we mention here only three of
them - the first one because of its pedagogical importance, among others, and the
other two because of their relevance to our work. They are [3] :
• The Fisher-Kolmogoroff equation or logistic equation

Ut = Uxx + u (1− u) (3.45)

which serves as a deterministic model for the spread of an advantageous gene in a
population.

• The Newell- Whitehead equation or amplitude equation

Ut = Uxx + u (1− u2) (3.46)

which arises in the study of thermal convection of a fluid heated from below.

• The Nagumo equation or bistable equation

Ut = Uxx + u (1− u) (u− a) with 0 < a < 1, (3.47)

which arises as one of a set of equations modeling the transmission of electrical pulses
in a nerve axon.

3.4 Fisher-Kolmogoroff Equation and Propagating

Wave Solutions

The Fisher-Kolmogoroff equation

∂u

∂t
= k u (1− u) +D

∂2 u

∂ x2
, (3.48)

where k and D are positive parameters is one of the simplest nonlinear reaction-
diffusion equations and serves as a prototype equation admitting travelling wavefront
solutions. To investigate the existence and form of travelling wave solutions, it is
advantageous to rescale equation (3.48) by introducing [2]

t∗ = k t, x∗ = x

(
k

D

)1/2

, (3.49)
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and omitting the asterisks for simplicity, (3.48) becomes

∂u

∂t
= u (1− u) +

∂2u

∂x2
. (3.50)

In a spatially homogeneous situation the steady state corresponds to u = 0 and
u = 1 which are respectively unstable and stable. Hence we look for travelling wave
solutions for which 0 ≤ u ≤ 1, negative u being devoid of any physical meaning.

Any travelling wave takes the following form

u (x, t) = U(z), z = x− c t, (3.51)

where c is the speed of the wave. Since (3.48) is invariant under x going to −x, c
may be positive or negative. We take c ≥ 0. On substituting (3.51) into (3.50), U(z)
satisfies

U ′′ + c U ′ + U (1− U) = 0, (3.52)

where prime denotes differentiation with respect to z. Our task is to find the value or
values of the eigenvalue c such that a non-negative solution of (3.52) exists for which

lim
z→∞

U(z) = 0, lim
z→−∞

U(z) = 1. (3.53)

Fisher found that (3.52) admits an infinite number of travelling wave solutions with
wave speeds

c ≥ cmin = 2, (3.54)

and in terms of the original variables

c ≥ cmin = 2 (k D)1/2. (3.55)

3.5 Asymptotic Travelling Wave Solution to the

Fisher-Kolmogoroff Equation

We have seen that there exists travelling wavefront solutions U(z) for equation
(3.50) which satisfy (3.52) with U(−∞) = 1 and U(∞) = 0, for all wavespeeds
c ≥ 2. Although no analytical solution for general c has been found, the equations
do have a small parameter, namely, ε = 1

c2
≤ 0.25, which suggests we look for

asymptotic solutions for 0 < ε � 1. Since the wave solutions are invariant under
a shift in the origin of the coordinate system (i.e. the equation remains unchanged
if z → z + constant), let us take U = 1/2 to be at z = 0. We now use a standard
singular perturbation technique [2,4]. To that end, we introduce a change of variable
in the vicinity of the front in a way that we can express the solution as a Taylor
expansion in the small parameter ε. Under the transformation

U(z) = g(ξ), ξ =
z

c
= ε1/2 z, (3.56)
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equation (3.52) becomes

ε
d2g

dξ2
+
dg

dξ
+ g (1− g) = 0, (3.57)

and the boundary conditions on U become

g(−∞) = 1, g(∞) = 0, 0 < ε ≤ 1

c2
min

= 0.25, (3.58)

with the additional requirement g(0) = 1/2.
We now look for solutions of (3.57) as a perturbation series in ε. Let

g (ξ; ε) = g0 (ξ) + ε g1 (ξ) + · · · . (3.59)

The boundary conditions at ±∞ and our choice that U(0) = 1/2, which requires
that g(0; ε) = 1/2 for all ε, gives us the following conditions

g0(−∞) = 1, g0(∞) = 0, g0(0) =
1

2
, (3.60)

and
gi(±∞) = 0, gi(∞) = 0, for i = 1, 2, · · · . (3.61)

Substituting equation (3.59) into (3.57) and equating powers of ε we get

O(1) :
dg0

dξ
= −g0 (1− g0) ⇒ g0(ξ) =

1

1 + εξ
, (3.62)

and

O(ε) :
dg1

dξ
+ g1 (1− 2 g0) = −d

2g0

dξ2
, (3.63)

and likewise for higher orders in ε The constant of integration in the g0-equation
was so chosen that g0(0) = 1/2 is satisfied. Using equation (3.62), equation (3.63)
becomes

dg1

dξ
−
(
g′′0
g′0

)
g1 = − g′′0 , (3.64)

which on integration and using the conditions (62) and (63) gives

g1 = −g′0 ln [4 | g′0 |] = εξ
1

(1 + εξ)2
ln

[
4 εξ

(1 + εξ)2

]
. (3.65)

Re-introducing U and z we have

U(z; ε) = (1 + ez/c)−1 +
1

c2
(1 + ez/c)−2 ln

[
4 ez/c

(1 + ez/c)2

]
+O

(
1

c4

)
, c ≥ cmin = 2.

(3.66)
Comparison with numerical solutions reveal that the above solution is least accurate
for c = 2.
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We have so far tried to give a flavour of reaction-diffusion equations as a class of
extremely robust equations with a wide applicability. Having laid the groundwork,
we are now in a position to show how specific types of reaction-diffusion equations
can be profitably applied to QGP scenarios. That will be the subject of our next two
chapters.

43



Bibliography

[1] Donald A. McQuarrie, Statistical Mechanics, (Harper and Row), 1976.

[2] J.D.Murray, Mathematical Biology, I : An Introduction, Third Edition,
(Springer), 2002; J.D.Murray, Lectures on Nonlinear-Differential-Equation Mod-
els in Biology, (Clarendon Press), 1977.

[3] B.H.Gilding and R.Kersner, Travelling Waves in Nonlinear Diffusion Convection
Reaction, (Springer Basel AG, Switzerland), 2004.

[4] B.Bradshaw-Hajek, Reaction-diffusion Equations for Population Genetics,
(Ph.D. thesis, School of Mathematics and Applied Statistics, University of Wol-
longong), 2004, (http://ro.uow.edu.au/thesis/201).

44



Chapter 4

Reaction-Diffusion Equation for

Quark-Hadron Transition in

Heavy-Ion Collisions

Our objective so far has been to present the concepts and tools we make use of in our
work. That being done, we are finally in a position to present our own work. This
section aims to put our work in a perspective. In sections 4.1 and 4.2 we apply a
particular type of reaction-diffusion equation to chiral symmetry breaking transition
and show that the transition is completed by a propagating interface. Sections 4.3
and 4.4 continue in the same spirit and present similar results obtained by apply-
ing another type of reaction diffusion equation to confinement deconfinement phase
transition. In section 4.5 we discuss certain implications of our results for the chiral
transition and C-D transition. The final section summarizes our results; it also talks
about the implication of these results for heavy-ion collisions and the early universe.

The dynamics of the quark hadron transition is one of the most important issues
in relativistic heavy-ion collisions, as well as in the universe. Earlier it used to be
believed that the quark-hadron transition is first order even at low chemical potential
(as in the early universe). This led to a very important proposal by Witten [1] about
the possibility of the formation of quark nuggets due to the concentration of quarks by
moving phase boundaries at the quark-hadron transition. The dynamics of first order
transition also had important implications for heavy-ion collisions [2]. Subsequently,
lattice results showed that the quark-hadron transition is not first order; rather, it
is most likely a cross-over for low chemical potential. This cross-over is believed to
govern the dynamics of transitions in relativistic heavy-ion collisions at high energies.
(Although for lower energies, transitions may become first order when the baryonic
chemical potential is sufficiently large.)

For the dynamics of the phase transition, the most important difference between
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a first-order transition and a cross-over (or a continuous transition) is the presence
of a phase boundary for the former case which separates the two phases. The transi-
tion for a first order case is completed by nucleation of bubbles which expand. The
moving bubble walls (phase boundaries) lead to physical phenomena, such as non-
trivial scattering of quarks, local heating, specific types of fluctuations, etc., which
are qualitatively different from the case of a cross-over or a continuous transition.

It turns out that the presence of moving interfaces is more generic, and not neces-
sarily restricted to the case of first order transitions. Such situations routinely arise
in the study of so called reaction-diffusion equations [3, 4], typically studied in the
context of biological systems, e.g. population genetics, and chemical systems. A
typical solution of such equations, with appropriate boundary conditions, consists of
a traveling front with well defined profile, quite like the profile of the interface in a
first order transition case. The importance of these traveling fronts in the context
of high energy physics has been recognized relatively recently in several works [5].
In the present work we demonstrate such solutions for chiral phase transition and
confinement-deconfinement (C-D) transition in QCD even when the underlying tran-
sition is a cross-over or a continuous transition. The only difference between the field
equations in relativistic field theory case and the reaction-diffusion case is the absence
of second order time derivatives in the latter case. Thus,the correspondence between
the two cases is easily established in the presence of a strong dissipation term, leading
to a dominant first order time derivative term. Further, we show that the required
boundary conditions for the existence of such a traveling front naturally arise in the
context of relativistic heavy-ion collision experiments (RHICE). For the case of the
universe also it may happen in special situations as we will discuss below.

We would like to clarify that the propagating front we consider here is like a phase
boundary (as in a first-order transition), and has nothing to do with hydrodynamic
flow. So, the front will still move, converting one phase (say, a chirally symmet-
ric phase) to the other phase (chiral-symmetry-broken phase) even if the plasma is
completely static. However, the QGP produced in RHICE undergoes hydrodynamic
expansion for which one can use either Bjorken’s boost-invariant scaling model for
longitudinal expansion, or a three-dimensional expansion expected to be applicable
at the late stages of plasma evolution. These are incorporated simply by using ap-

propriate metrics for the field equations and they lead to a term of the form φ̇
τ

where
the time derivative is with respect to the proper time τ . It remains to be explored
how this new type of phase transition dynamics can be incorporated in studies of full
relativistic hydrodynamical evolution of the plasma.

We will see that the timescale for the phase conversion by the propagation of the
front can easily be of order of several fm. Such a large timescale for a propagating
front will be hard to accommodate even for a chiral-symmetry-breaking transition at
late stages, and there is clearly no room for such timescales for the initial confinement-
deconfinement transition (e.g. it would be in direct conflict with elliptic-flow data).
Thus the main lesson from our results will be that at least some part of the transition
dynamics is likely to be controlled by such propagating fronts, which are just like

46



first-order interfaces. Observational constraints then have to be used to constrain the
period of such types of dynamics and then discuss how some other faster processes of
phase conversion should take over. We will briefly discuss such alternate processes of
phase conversion, e.g. incorporating short-wavelength fluctuations in section III.A.

There is a wide veracity of reaction-diffusion equations, see, e.g. ref. [3, 4]. We
discuss specific equations which can be identified with the field equations for the chiral
transition and the C-D transition in QCD in strong dissipation limit. Subsequently,
we discuss different situations in the context of RHICE, with realistic dissipation,
and show that propagating front solutions of these equations still persist, making the
dynamics of the relevant transitions effectively like a first-order phase transition.

4.1 Reaction-Diffusion Equation for Chiral Tran-

sition

From the form of these reaction-diffusion equations it will be clear that such traveling-
front solutions will exist when the underlying potential allows for a non-zero order
parameter in the vacuum state, along with a local maximum of the potential [3,4]. The
corresponding values of the order parameter provide the required boundary conditions
for the propagating-front solution. First we consider the case of a spontaneous chiral-
symmetry-breaking transition for the two-flavor case with the chiral order parameter
being the O(4) field φ = (σ, ~π). We consider the situation in the context of RHICE,
and study the transition from a chiral symmetry (approximately) restored phase to
the chiral-symmetry-broken phase when the partonic system hadronizes during the
evolution of a QGP. For the plasma evolution at this stage, we consider longitudinal
expansion as well as spherical expansion (which may be more appropriate for late
stages of hadronization). The field equations are [6]:

φ̈−52φ+ ηφ̇ = −4λφ3 +m(T )2φ+H,

m(T )2 =
m2
σ

2
(1− T 2

T 2
c

). (4.1)

Here, φ is taken along the σ direction. T is the temperature and time derivatives
are with respect to the proper time τ . We have characterized the dissipation term
here in terms of η, which is not a constant for an expanding plasma. For the Bjorken
one-dimensional scaling case η = 1/τ , while for the spherical expansion η = 3/τ .
We again mention that we are only using field equations in the background of an
expanding plasma where expansion is incorporated by using time-dependent back-
ground metric. It will be interesting to study this phase transition dynamics in full
relativistic hydrodynamical evolution of the plasma. The values of different param-
eters are taken [6], λ = 4.5,mσ = 600 MeV, and Tc = 200 MeV. The coefficient of
the explicit symmetry breaking term H = (120MeV )3. In the chiral limit there is a
second-order phase transition with the critical temperature Tc. In view of the explicit
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symmetry-breaking term we take T = 150 MeV which allows for the presence of the
central maximum in the effective potential.

To establish exact correspondence with the reaction-diffusion equation, we first
neglect explicit breaking of chiral symmetry (i.e. H = 0 in Eq.(4.1)). Let us also
consider the extreme dissipative case of large value of η which is time independent,
and neglect the φ̈ term. For the resulting equation, we rescale the variables as follows:
x→ m(T )x, τ → m(T )2

η
τ , and φ→ 2

√
λ

m(T )
φ. The resulting equation is,

φ̇ = 52φ− φ3 + φ. (4.2)

This equation, in one dimension with 52φ = d2φ/dx2, is exactly the same as the
reaction-diffusion equation known as the Newell-Whitehead equation [3,4]. The term
d2φ/dx2 is the diffusion term while the other term on the right hand side of Eq.(4.2)
is the so called reaction term (representing the reaction of members of biological
species for biological systems). We will briefly recall the analytical traveling front
solutions for the Newell-Whitehead equation for the present case. Subsequently we
will study the solutions numerically which will help us in obtaining traveling-front
solutions while retaining the φ̈ (and with η being time dependent as for the expanding
plasma).

4.2 Propagating-Front Solutions for Chiral Tran-

sition

4.2.1 Analytical Solution

Non-trivial traveling front solutions for the Newell-Whitehead equation arise when
suitable boundary conditions are imposed; namely, φ = 0 and 1 at x → ±∞. The
analytical solution with these boundary conditions has the form

φ(z) = [1 + exp(z/
√

2)]−1, (4.3)

where z = x− vτ . v is the velocity of the front [4] and has the value v = 3/
√

2 for
this solution. The reaction-diffusion equations typically have several solutions, each
with different propagation speeds [4]. For example, Eq.(4.2) also has a static solution
of the form tanh(z). Such a solution can have very important implications for RHICE
as well as for cosmology. We will later briefly comment on it. For now we continue
with the above analytical solution (Eq.(4.3)). In Fig.4.1a we show the propagation
of this front. For this we have solved Eq.(4.2) by using the leapfrog algorithm of
second-order accuracy. We have also added the second-order time derivative for the
numerical solution of Eq.(4.2) for numerical stability and also for comparison with
solutions of the full Eq.(4.1). The requirement of dissipation-dominated dynamics is
fulfilled by keeping the η coefficient of φ̇ term large, with constant η = 10 fm−1. This
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introduces a simple scaling of velocity by a factor 1/η. The solid curve in Fig.4.1a
shows the initial profile of the analytical solution in Eq.(4.3). Plots at subsequent
times show the propagation of the front. The velocity of the front is numerically
obtained directly by determining the velocity of the front (specifically a particular
point on the front, say φ = 0.5φmax). We find v = 0.21 for η = 10 fm−1, in complete
agreement with the scaled velocity v = 1

η
3√
2
.

For the case of chiral-symmetry-breaking transitions in relativistic heavy-ion col-
lisions, the boundary conditions required for the solution of Eq.(4.2) naturally arise
due to radial profile of the energy density of the plasma. The center of plasma repre-
sents the highest temperature Tcntr which smoothly decreases to values less than the
chiral transition temperature Tc in the outer regions of the plasma. Thus, at any time
when Tcntr > Tc, the chiral field will take a chirally (approximately) symmetric value
(which will be zero when H = 0) at the center r = 0 and will take a symmetry-broken
value at large distances. We take such an initial profile, and evolve it when Tcntr also
reduces to a temperature T0 below Tc. For simplicity, we assume T0 to be uniform
over the range of the profile of φ with φ in the center of the plasma having a value
φ0 (corresponding to the central maximum of the potential at T = T0). φ in outer
regions of the plasma will take the vacuum expectation value ξ for T = T0. With
such boundary conditions, the analytical solution in Eq.(4.3), written in terms of the
original (unscaled) field and of the parameters of Eq.(4.1), takes the form,

φ(z) = ξ[1 + exp(
m(T )√

2
(x− vτ))]−1, (4.4)

where ξ = m(T )

2
√
λ

is the vacuum expectation value of φ (for H = 0) and the velocity

becomes v = 3m(T )

η
√

2
. Interestingly, the profile of this analytical solution is similar to

the Woods-Saxon form. From the energy density profile expected for colliding heavy
nuclei, a Woods-Saxon-type profile for the field is rather natural.

It turns out that the form of the traveling front, and its evolution, is essentially
unaffected even if we use a nonzero value of H in Eq.(4.1). Thus, we calculate the
numerical profile of the front using a nonzero value of H = (120MeV )3. This changes
the boundary conditions for φ(z). For parameter choice in Eq.(4.1), the vacuum
expectation value of φ is found to be ξ = 75.18 MeV while the central maximum of
the potential is shifted to φ = φ0 = -25.93 MeV. The above analytical solution in
Eq.(4.4), suitably modified for these changed boundary conditions, becomes,

φ(z) = −(ξ − φ0)

A0

[1 + exp(
m(T )(|z| −R0)√

2
)]−1 + ξ, (4.5)

where the normalization factor A0 = [1+exp(−m(T )R0√
2

]−1. Here we use |z| in order
to have a symmetric front on both sides of the plasma for the present one-dimensional
(1D) case. R0 represents the width of the central part of the plasma.

We come back now to the issue of the time-scale of phase conversion as briefly
discussed at the end of the introduction. The expression of the velocity of the front v ∼
m(T )
η

for the extreme-dissipation-dominated case (η →∞) implies that the timescale
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of phase conversion diverges in the large-volume limit, which is clearly unphysical.
Even though one does not expect the dissipation-dominated dynamics to last for long
(due to the 1/τ dependence of the dissipation term), one also must consider quantum
and thermal fluctuations along with the motion of the front so that phase conversion
can be achieved in a finite time even in large-volume limit. To have competing
timescales, relevant fluctuations will necessarily be localized, possibly bubble like. In
fact, even our assumption of uniformly varying profile of the order-parameter field
has to be supplemented with presence of fluctuating modes of the field with shorter
wavelengths on top of such a front. It is entirely possible that, for such a fluctuating
front, incorporating short-wavelength modes, new faster timescales may emerge where
the fluctuation parts may grow rapidly. All such issues need to be explored further
and we intend to follow up this work with such investigations. However, in this first
exploratory, study, we only focus on the slow-moving propagating front, which is just
like a first-order interface, when there is no metastable vacua. Our results should
then be taken in the spirit that the the dynamics of phase conversion may have much
more richness, partly involving features of a first-order transition by the motion of
interfaces even when there is no metastable vacua.

4.2.2 Numerical Solution

We calculate numerical solutions for the full Eq.(4.1), retaining the φ̈ term. To
correspond to the analytical solution, we first consider a large, constant, value of
η = (1/0.14)fm−1 in Eq.(4.1) (even though chiral transition occurs late at τ ' 4 to
5 fm), and a uniform fixed T = 150 MeV. Note that this does not represent realistic
QGP evolution in RHICE. We first study equations with constant (and uniform) T
only to show exact correspondence with traditional reaction-diffusion equations. We
will see that the resulting propagating front is exactly the same as that discussed in
the literature for reaction-diffusion equations. Subsequently we relax this assumption
of constant T and study the proper time-dependence of T for expanding QGP. We
still retain the assumption of uniform temperature for studying front propagation
because with spatially varying T the effective potential also has to vary spatially and
correspondence with reaction-diffusion equation becomes remote. We consider the 1D
case as suitable for the Newell-Whitehead equation. This will be applicable when the
size of the traveling front is large, so a planar approximation can be used. Fig.4.1b
gives the numerical profiles of the front φ(z) at different times (with initial time taken
as 4 fm). The front starts at a distance of about 10 fm from the center and moves
inwards converting the central region to the chiral-symmetry-broken phase. Note
that, as T0 everywhere has a value corresponding to the symmetry-broken phase, one
would have expected a rapid roll down of the field to φ = ξ everywhere on a time
of the order of 1 fm. In complete contrast to this, we see that phase conversion
here happens slowly, by the motion of well defined interface, just as for the case of
a first-order phase transition. As for Fig.4.1a, we obtain v here also directly from
the traveling front. We find v ranging from 0.41 to 0.35, in close agreement with the
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expected value v = 3m(T )

η
√

2
(= 0.42). By finding propagating solutions for different

values of η we have verified (for both cases, Fig.4.1a, and Fig.4.1b) that the velocity
of the front exactly scales as 1/η.
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Figure 4.1: (a) Plots of the numerical solution for the traveling front of Eq.4.2 (as

discussed in the text) at different times. Note that the form of propagating front

solution of equation (4.3) corresponds to the profile of the front on the left part

(negative z) in (a), with the origin selected at the midpoint of the left profile. (b)

shows the numerical solution for the profile in Eq.(4.5) with nonzero H.

The propagating-front solutions we obtain are very robust and are almost inde-
pendent of the initial profile of the front. To show this, we show the evolution of a
profile consisting of linear segments (with correct boundary conditions) in Fig.4.2a.
We see that this also develops into a well-defined propagating front as shown in
Fig.4.1. Next, we consider realistic values of the time dependent η = 1/τ so that the
second time-derivative term becomes important, with the initial value of τ = τ0 = 4.0
fm, as appropriate for the chiral transition. We also take T (τ) = T0(τ0/τ)1/3 in
accordance with Bjorken’s scaling solution for the longitudinally expanding plasma.
Fig.4.2b shows the traveling front solution for this case at different values of proper
time τ . The only minor difference with the plots in Fig.4.1 is seen at somewhat
later stages, with a little rise at the boundary of the front. The central value of φ
changes in accordance with time-dependent T . It is clear that, with the presence of
this front structure, for most of the results for first-order transition, such as nontrivial
quark scattering, well defined phase-separated regions, fluctuations etc. will become
applicable.

For Bjorken’s 1D longitudinally expanding plasma, one should consider transverse
motion of the front. Neglecting transverse expansion of the plasma, one should use
Eq.(4.1) with cylindrical coordinates, or spherical expansion for the late stages of
plasma evolution. Eq. (4.1) for these cases becomes

φ̈− d2φ

dr2
− d− 1

r

dφ

dr
+ ηφ̇ = −4λφ3 +m(T )2φ+H, (4.6)
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Figure 4.2: (a) Initial profile consisting of linear segments also rapidly evolves into

a well-defined propagating front as in (a). (b) Solutions of Eq.(4.1), with realistic

values of time-dependent η and time-dependent T .

where d = 2 for Bjorken’s 1D longitudinal expansion, and d = 3 for spherical
expansion. We have obtained front solutions for both these cases here for the chiral-
symmetry case as well as later for the Z(3) case of C-D transition. The resulting
solutions are very similar to those obtained for 1D case (as in Figs.4.1,4.2). Hence we
do not show those plots.

4.3 Reaction-Diffusion Equation for Confinement-

Deconfinement Transition

We now consider the case of confinement-deconfinement transition during the early
thermalization stage. For RHICE, for very early stages, Bjorken scaling with longitu-
dinally expanding plasma is a very good approximation. The dissipation term is very
strong during the very early stages which helps in making a direct correspondence
with reaction-diffusion equations. Because the traveling-wave solutions exist in the
symmetry-broken phase we consider the case of the initial confinement-deconfinement
transition using the Polyakov-loop order parameter with center symmetry Z(3) spon-
taneously broken in the high-temperature QGP phase. This early stage actually
represents a nonequilibrium stage, with the system thermalizing to a maximum tem-
perature T0 in a timescale τ0. The thermalization timescale τ0 can be as short as about
0.14 fm (at LHC). Elliptic flow measurements indicate an upper bound of about 1 fm
for τ0. For the dynamics of the order parameter l(x) which is the expectation value
of the Polyakov loop, we use the following effective Lagrangian density [7].

L =
N

g2
|∂µl|2T 2 − V (l), (4.7)
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Where the effective potential V (l) for the Polyakov loop, in case of pure gauge
theory, is given as

V (l) = (
−b2

2
|l|2 − b3

6
(l3 + (l∗)3) +

1

4
(|l|2)2)b4T

4. (4.8)

At low temperature where l = 0, the potential has only one minimum. As tem-
perature becomes higher than Tc the Polyakov loop develops a nonvanishing vacuum
expectation value l0, and the l3 + l∗3 term above leads to Z(3)-generated vacua.
Now in the deconfined phase, for a small range of temperature above Tc, the l = 0
extremum becomes the local minimum (false vacuum) and a potential barrier exist
between the local minimum and the global minimum (true vacuum) of the potential.
Because we are interested in showing the existence of traveling front solutions in the
absence of any first-order transition, we consider the value of the temperature T to
be sufficiently large so that there is no such barrier present. For the parameter values
we use, this requires T > 280 MeV, and we take T = 500 MeV. The values of various
coefficients in Eq.(4.8) are the same as used in our previous works [8, 9] (including
discussions about the explicit symmetry-breaking strength b1) and we do not repeat
that discussion here. (With those values of parameters, the transition temperature is
taken to be Tc = 182 MeV.)

For simplicity we neglect the effect of dynamical quarks which lead to explicit
breaking of Z(3) symmetry, and hence a linear term in l in V (l) above [9]. This can
be taken care of in a similar manner as for the explicit symmetry-breaking term H
for the chiral symmetry case in Eq.(4.1). Similarly, because our interest is not in
the Z(3) structure of the vacuum, we take l to be real. We again first neglect the
second-order time derivative (for the large-dissipation case). The variables are scaled

as x → gT
√

b4
2N
x, and τ → b4g2T 2

2ηN
τ . With that, the field equation for (real) l(x)

can be written as follows (for the sake of uniformity, we denote l(x) as φ(x) in the
following):

φ̇ = 52φ+ φ(b2 + b3φ− φ2). (4.9)

The final equation in this case is again a reaction-diffusion equation known as the
Fitzhugh-Nagumo equation which is used in population genetics [3,4]. Thus we again
expect well defined traveling wave solutions for appropriate boundary conditions.

4.4 Propagating Front Solutions for Confinement-

Deconfinement Transition

The required boundary conditions for the propagating front solution for Eq.(4.9)
again naturally arise in RHICE, during early stages. As the system thermalizes, one
expects first the center of the plasma to reach a temperature T > Tc where Tc is the
C-D transition temperature. The temperature in (somewhat) outer regions remains
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below Tc initially. This leads to a profile of l(x) where l = 0 in the outer regions
while l = 1 at the center of the plasma. Subsequently, even these regions, somewhat
away from the center, also achieve T > Tc. With these boundary conditions, we
solve equations for l(x) with a uniform temperature T with an initial value = 500
MeV. Eq.(4.9) above was derived in the large-dissipation limit to identify it with
the Fitzhugh-Nagumo equation which guarantees the existence of a traveling wave
solution for l(x). With that assurance, we solve the full field equations for l(x) (i.e.
for φ(x)) including the second time-derivative term. The dissipation term is naturally
large initially in this case due to the 1/τ factor with τ0 being very small. Again, to
show direct correspondence with reaction-diffusion equation, we take a very large,
fixed value of η = 1/τ ′0 with τ ′0 = 0.01 fm, and keep a fixed temperature value of
T = T0 = 500 MeV.

Plots in Fig.4.3a show the well-defined traveling wave solution at different values
of τ starting from the initial time which is taken as τ0 = 0.14 fm. The initial profile
is taken to have a similar form as in Fig.4.1, suitably modified for the boundary
conditions appropriate for the present case. We next consider realistic value of time
dependent η = 1/τ with initial value of τ = τ0 = 0.14 fm, and take T (τ) = T0(τ0/τ)1/3

as appropriate for the Bjorken 1D scaling solution. The resulting evolution of φ(z)
is shown in Fig.4.3b. Although φ shows some oscillations, it still shows a reasonably
well defined propagating front. It is possible that η may not decrease as fast as 1/τ
due to presence of other sources of dissipation. In that case the resulting solution will
be closer to that in Fig.4.3a.

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

φ
(z

)(
M

e
V

)

z(fm) 

(a)

τ=0.14 fm

τ=0.96 fm

τ=1.71 fm
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

φ
(z

)(
M

e
V

)

z(fm) 

(b)

τ=0.14 fm

τ=0.36 fm

τ=0.44 fm

τ=0.66 fm

Figure 4.3: (a) Traveling wave solution for the Polyakov loop order parameter at

different times for very large dissipation case with constant η = 1/(0.01fm). (b)

Solution for realistic η = 1/τ and with time dependent T .
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4.5 Relation Between Chiral Transition and De-

confinement Transition

We now address an important issue regarding the difference in the behavior of order-
parameter evolutions for the chiral symmetry case and for the Polyakov loop for
the C-D transition case. Note that we discussed the traveling wave solution for the
chiral-symmetry case during late stages of the evolution, even though the presence of
the large-dissipation case was harder to justify for such late stages (1/τ factor being
relatively smaller). Similarly, for the early thermalization stage, we only discussed
the case of the C-D transition with the Polyakov loop, and did not discuss the chiral-
symmetry case. The reason is that the traveling-front solutions via the reaction-
diffusion equation approach arise only when the effective potential has a specific
shape; for example, that corresponding to spontaneous symmetry breaking. Thus,
spontaneous breaking of Z(3) symmetry during early thermalization leads to well-
defined traveling front for the Polyakov loop. But during this stage, chiral symmetry
is restored. There is absolutely no possibility of finding any traveling-wave solution
for the symmetry-restored effective potential for the chiral field φ (as one can simply
check analytically as well as numerically). Similarly, while a traveling front exists for
the chiral field during the chiral-symmetry-breaking transition during late stages of
the plasma, there is no such solution for the Polyakov-loop order parameter at that
stage because the Z(3) symmetry actually gets restored. This raises serious concerns
about the conventional idea that the two transitions, namely the chiral transition and
the C-D transition, are somehow related (or, are the same). In our calculations we
clearly find regions separated by the traveling front of one order parameter whereas no
such phase separation is expected from the other order parameter. Thus, we conclude
that our results support the claims of several groups that the chiral transition and
the C-D transition are indeed separate and independent transitions. In fact, our
results provide clearly-phase-separated regions (by the traveling front) which are, e.g.
chirally symmetric but in a confined phase, or in a chiral-symmetry-broken phase
but in the deconfined phase. However, we caution that all these conclusions neglect
the presence of fluctuations. As we discuss above, short-wavelength fluctuations are
expected to lead to a new shorter time scale. It is possible that such a mixed dynamics,
with fluctuations as well as a propagating front, may make the dynamics of the two
transitions much more similar, although it looks unlikely that the two dynamics will
become exactly the same. That will be possible only if the effects of the propagating
front is completely negligible compared to fluctuations.

4.6 Conclusions

We conclude by emphasizing that the techniques of the reaction-diffusion equation
have been used here to show the existence of well-defined traveling-front solutions,
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which are very similar to phase boundaries for a first-order transition case, even
though the relevant QCD transitions here are of second order, or a cross-over. This
allows the very exciting possibility of using earlier results that are valid for a first-
order-transition case, such as the formation of strangelets, baryon concentration, fluc-
tuations etc. for RHICE. During the time when dissipation dominates, we see that
the transition proceeds by a slow moving front, and may take several fm time to
complete, leading to a long-lasting mixed-phase stage. This will affect calculations
of various signals of QGP for RHICE, e.g. the production of thermal photons and
dileptons, J/ψ suppression, and especially elliptic flow which develops mostly during
the early stages. As we mentioned above, the reaction-diffusion equations have other
solutions also with different propagation speeds. For example, Eq.(4.2) also has a
static solution of the form tanh(z). If the initial density profile in RHICE leads to
such a profile of φ(z) the transition will become stagnant.

We again emphasize that one must consider quantum and thermal fluctuations
along with the motion of the front so that phase conversion can be achieved in a
finite time even in the large-volume limit. Relevant fluctuations will be short wave-
length modes, possibly bubble like. Even the uniformly varying profile of the order-
parameter field should incorporate fluctuating modes of the field with shorter wave-
lengths on top of such a front. It is entirely possible that for such a fluctuating front,
incorporating short-wavelength modes, new faster timescales may emerge where the
fluctuation parts may grow rapidly. We hope to investigate these issues in the future.
Even with these concerns, it is clear that the possibility of a well-defined front govern-
ing at least partly the transition dynamics, will bring new richness to the transition
dynamics in heavy-ion collisions. This will have important implications for RHICE.
It is clearly of great importance to see if these results can be applied to the case of
the early universe (for example, solutions with different speeds, especially the one
with zero speed). The required initial boundary condition of φ = 0, 1 for x → ±∞
looks difficult to justify for the universe (due to absence of a temperature profile,
as for RHICE). However, one should remember that there are always density (and
hence temperature) fluctuations present in the universe (most likely of inflationary
origin). Alhough these are very tiny (one part in 105), if we consider these fluctuations
when the temperature of the Universe is very close to the transition temperature Tc
then there can easily be regions of space where the symmetry is restored, while other
neighboring regions will have a symmetry-broken phase.

This will lead to the required boundary conditions for the traveling wavefronts
as discussed here. A small magnitude of temperature fluctuations will imply a small
difference in the magnitude of Φ at the two boundary points, subsequently leading
to small effects (like scattering of quarks). However,the typical wavelength of these
fluctuations will be comparable to the Hubble size, naturally leading to wavefront
propagation over such large scales. Thus, even with small quark scattering, etc., one
may be able to get a large concentration of baryons via Witten’s mechanism of nugget
formation.

One caveat in this scenario is that chiral symmetry (as well as Z(3) symmetry) are
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also explicitly broken. This makes the above-mentioned scenario difficult to imple-
ment for the quark-hadron transition when temperature fluctuations have very small
magnitude. There may be other possibilities for the quark-hadron transition which
we intend to explore in future work. However, such a mechanism will certainly ap-
ply to the electroweak phase transition where there is no explicit symmetry breaking
involved. There also, one will get traveling front solutions arising from inflationary
fluctuations irrespective of the order or of the strength of the phase transition. It
will be interesting to investigate how such front solutions can affect the physics of
post-electroweak transition physics, in particular sphaleron mediated baryogenesis,
etc.
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Chapter 5

Possibility of DCC Formation in

pp Collisions at LHC Energy via

Reaction-Diffusion Equation

In the preceding chapter we saw how the application of reaction-diffusion equations
to QCD phase transitions opens a new window on the dynamics of phase transitions.
This chapter explores the possibility of DCC formation in pp collisions at LHC energy
via reaction-diffusion equation. To that end, we first give a brief motivation behind
our work. Sec. 5.1 reviews the basic physics of reaction diffusion equations where
we discuss that the dynamics of chiral order parameter for chiral symmetry breaking
transition with dissipative dynamics is governed by one such equation, specifically,
the Newell-Whitehead equation [1]. Sec.5.2 discusses the basic physics of our model
and Sec.5.3 presents results for the DCC formation. Conclusions are presented in
section 5.4.

Some years ago there was a lot of interest in exploring the very interesting possibil-
ity that extended regions, where the chiral field is misaligned from the true vacuum,
may form in large multiplicity hadronic collisions or in heavy-ion collisions [2–5].
Such a region was called a disoriented chiral condensate (DCC). A large DCC do-
main would lead to spectacular signatures such as coherent emission of pions which
can be detected [3] as anomalous fluctuations in the ratio R of neutral pions to all
pions. Original motivation for DCC came from Centauro events in cosmic ray ex-
periments [3, 6]. However, even after intensive experimental searches for DCC, no
clear signals for its formation were found. Alhough it was generally agreed that in
heavy-ion collisions, chiral symmetry breaking transition will necessarily lead to for-
mation of many DCC domains, the expected size of such DCC domains was too small,
and their numbers were too large in any given event, that standard DCC signals were
washed out. Indeed, from this perspective, heavy-ion collisions were not ideally suited
for the detection of DCC. With a large volume system undergoing chiral symmetry
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breaking transition, multiple DCC domains necessarily result, and a clean signal of
coherent pion emissions becomes very unlikely. In comparison, a pp collision, with a
small volume system, could, in principle, lead to a single DCC domain.

We revisit the issue of formation of DCC, this time in the context of (very) large
multiplicity pp collisions at LHC energies. Some of the earliest suggestions for DCC
formation were actually made in the context of high multiplicity hadronic collisions.
One would expect that a pp collision, with a small volume system, could lead to a sin-
gle DCC domain with a relatively cleaner signal of coherent pion emission. However,
at previously attained energies, it was never clear whether the necessary condition for
DCC formation, namely intermediate stage of chiral symmetry restoration, was ever
achieved. Further, even if chiral symmetry was restored, the resulting DCC domains
would have been too small of the order of a few fm3, in view of rapid roll down of the
chiral field to the true vacuum. This will lead to only few pions from which a clear
signal, say of neutral to charged particle ratio, would be hard to detect.

The conditions of chiral symmetry restoration seem much more favorable for the
very high multiplicity pp collisions at LHC energy. Indeed there are strong indica-
tions that several signals, such as flow, formation of ridge, etc. which have been
attributed to a thermalized medium undergoing hydrodynamic expansion in heavy-
ion collisions, may be present in such high energy pp collisions [7]. It is entirely
possible that the energy density/temperature of such a medium may cross the chiral
transition temperature. This will take care of the requirement of intermediate stage
of chiral symmetry restoration for DCC formation. We show in this paper that the
problem of rapid roll down of the chiral field to true vacuum is alleviated due to rapid
three dimensional expansion of the system which makes reaction-diffusion equation
applicable for governing the dynamics of chiral field for this system (with appropriate
boundary conditions which, as we will show, naturally arise in these events). The
expanding system leads to a DCC domain which stretches and becomes larger due to
expansion, without the chiral field significantly rolling down (due to specific proper-
ties of the solutions of reaction-diffusion equations). Eventually one gets a large DCC
domain whose subsequent decay should lead to coherent pion emission.

We will not attempt to give any arguments in the favor of chiral symmetry restora-
tion in these high multiplicity pp events at LHC, and just refer the reader to the liter-
ature where evidence for the possibility of a thermalized medium in such collisions has
been discussed [7]. We will only focus on the evolution of chiral field in such a system.
Starting from a chirally symmetry phase (after some very early stage of rapid ther-
malization of partons produced in a central pp collision), a rapid three-dimensional
expansion will quickly set in. This is due to the small size of the system resulting
from pp collision, compared to heavy-ion collisions where the longitudinal expansion
phase lasts for a significant time. The resulting rapid cooling of the system will lead
to chiral symmetry breaking with the chiral field achieving some value in the vacuum
manifold. With the explicit symmetry breaking term for the chiral effective potential
being small, any value in the vacuum manifold will be (roughly) equally likely, leading
to formation of a domain where chiral field is likely to be initially misaligned from
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the true vacuum. This will be a DCC domain. Standard estimates for such a domain
(from earlier investigations) lead to a typical size of coherence length of order 1 fm.
The field will also roll down to the true vacuum rapidly in time of order few fm. It is
very hard to detect such a DCC domain as this will lead to a very small number of
coherent pions.

This is where the role of a reaction-diffusion equation becomes important. Reaction-
diffusion equations [8–10], are usually studied for biological systems, e.g. population
genetics, and chemical systems. Interestingly, a typical solution of such equations,
with appropriate boundary conditions, consists of a traveling front with a well-defined
profile, quite like the profile of the interface in a first order transition case [8–10]. This
happens even when the underlying transition is a continuous transition or a crossover.
In a previous work we have demonstrated that such propagating front solutions,
separating the two QCD phases, exist for chiral phase transition and confinement-
deconfinement (C-D) transition in QCD even when the underlying transition is a
cross-over or a continuous transition [1]. We utilize the fact that the only difference
between the field equations in relativistic field theory case and the reaction-diffusion
case is the absence of a second order time derivative in the latter case. Thus, cor-
respondence between the two cases is easily established in the presence of a strong
dissipation term leading to a dominant first order time derivative term. Such a dissi-
pative term arises due to plasma expansion in the form of the Hubble term. Further,
we had argued that the required boundary conditions for the existence of such a trav-
eling front naturally arise in the context of relativistic heavy-ion collision experiments
(RHICE).

We extend that analysis [1] to the case of high multiplicity pp collisions at LHC
energy. As we are interested in the formation of DCC, we focus here on the chiral
transition. We argue that here also the appropriate boundary conditions which are
suitable for the existence of propagating front solutions arise naturally. One impor-
tant difference between the analysis in [1] and the present case is that previously
we considered propagating front solutions separating chirally symmetric phase from
the chiral symmetry broken phase. Here, in view of our focus on DCC formation,
we consider the situation when the (approximate) chiral symmetry is spontaneously
broken after an early stage of chiral symmetry restoration. We then consider the
interior of the system to be such that the chiral field is disoriented there from the
true vacuum, while it lies in the true vacuum outside. This constitutes the initial
profile of the chiral field which gives the appropriate boundary conditions for the
existence of propagating front solutions for the reaction-diffusion equation. We study
the evolution of this profile as the system undergoes rapid 3D expansion. The other
requirement for the applicability of the reaction-diffusion approximation to this case
is the presence of strong dissipation. This is automatically satisfied due to a dissipa-
tion term (the Hubble term) arising from 3D spherical expansion (as well as due to
coupling of the chiral field with other field modes).

We show that the propagating front solution delays the roll down of the chiral
field in the interior of the region towards the true vacuum. At the same time rapid
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expansion stretches the interior to a size of several fm radius before the field signifi-
cantly rolls down towards the true vacuum. The resulting system constitutes a large,
single, DCC domain which should lead to a relatively clear signal of coherent pion
emission (e.g. in terms of the distribution of neutral to charged pion ratio).

We mention that in this work we have ignored the effects of thermal fluctuations.
Such fluctuations are important and they will lead to some variations in the chiral
field within a domain. However, in our model DCC formation results after chiral
symmetry breakdown when the system undergoes a rapid 3D expansion, hence rapid
cooling. Thus, presumably, thermal fluctuations will remain under control. The
main point is that a large DCC domain is formed starting from a single small domain
which stretches by rapid expansion and the only role thermal fluctuations can play is
to fluctuate the field of this single DCC domain around the average disoriented value.
These considerations have to be augmented with considerations of the quantum decay
of the DCC domain into pions which will put a final limit on the growth of DCC
domains in our model.

The chapter is organized in the following manner. Sec. 5.1 reviews the basic
physics of reaction diffusion equations where we discuss that the dynamics of chiral
order parameter for chiral symmetry breaking transition with dissipative dynamics
is governed by one such equation, specifically, the Newell-Whitehead equation [1].
Sec.5.2 discusses the basic physics of our model and Sec.5.3 presents results for the
DCC formation. Conclusion are presented in section 5.4.

5.1 Reaction-Diffusion Equation for Chiral Tran-

sition

There is a wide veracity of reaction-diffusion equations, see, e.g. ref. [8, 9]. We
discussed earlier [1] specific equations which can be identified with the field equations
for the chiral transition and the C-D transition in QCD in strong dissipation limit,
leading to slowly moving propagating front solutions. We then showed that in different
situations in relativistic heavy-ion collisions, with realistic dissipation, propagating
front solutions of these equations still persist, making the dynamics of the relevant
transitions effectively like a first order phase transition. Here, we will recall the case
of chiral transition from ref. [1] and adopt it for the situation for the evolution of the
field inside a DCC domain.

As we mentioned in the introduction, we will consider the case of high multiplicity
pp collisions at LHC energy, assuming that the resulting partonic system undergoes a
rapid 3D expansion. We take the field equations for the chiral field (from Eq.(2.25))
to be,

φ̈−52φ+ ηφ̇ = −4λφ3 +m(T )2φ+H,
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m2(T ) =
m2
σ

2
(1− T 2

T 2
c

). (5.1)

Here Φ is taken to be along the σ direction only which we represent by φ. This
is for the sake of establishing a correspondence with the reaction-diffusion equation.
Later, when we consider the case of DCC, we will consider other components of the
chiral field Φ as well. In the above equation, the time derivatives are w.r.t the proper
time τ . The dissipation term η is not a constant for expanding plasma. For the
early stages in a heavy-ion collisions one normally takes Bjorken 1D scaling solution
case with η = 1/τ , which eventually turns into a 3D spherical expansion for which
η = 3/τ . For the present case of pp collision, due to small system size, one expects
3D expansion to be applicable from very early stages (after a time of order 1 fm).
Hence, later on when we discuss the case of DCC, we will take η = 3/τ .

Exact correspondence of the above equation with the reaction-diffusion equation
was established in ref. [1] by neglecting the explicit breaking of chiral symmetry (i.e.
H = 0 in Eq.(5.1)) and by considering the extreme dissipative case of a large, constant,
value of η so that one could neglect the φ̈ term. With rescaling of the variables as,
x→ m(T )x, τ → m(T )2

η
τ , and φ→ 2

√
λ

m(T )
φ, the resulting equation is found to be,

φ̇ = 52φ− φ3 + φ. (5.2)

This equation, in one dimension with 52φ = d2φ/dx2, is exactly the same as the
reaction-diffusion equation known as the Newell-Whitehead equation [8, 9]. In that
context, the term d2φ/dx2 is identified as the diffusion term while the other term on
the right hand side of Eq.(5.2) is the so called reaction term (representing reaction of
the members of a biological species for biological systems). Non-trivial traveling front
solutions for the Newell-Whitehead equation arise with suitable boundary conditions,
namely φ = 0 and 1 at x → ±∞. The analytical solution with these boundary
conditions has the form,

φ(z) = [1 + exp(z/
√

2)]−1 (5.3)

where z = x − vτ . v is the velocity of the front [9] and has the value v = 3/
√

2
for this solution.

One can see from the general form of these reaction-diffusion equations, that such
traveling front solutions will exist when the underlying potential allows for a nonzero
order parameter in the vacuum state, along with a local maximum of the poten-
tial [8, 9]. The corresponding values of the order parameter provide the required
boundary conditions for the propagating front solution. In ref. [1] we were interested
in the dynamics of chiral-symmetry-breaking transition, hence we considered the two
boundary values of the chiral field to be the true vacuum value and the one corre-
sponding to the central maximum of the potential, respectively. For the case with
a non-zero value of H as in Eq.(5.1), the value of the chiral field at one boundary
was taken to be the (true) vacuum expectation value φ = ξ while the other bound-
ary field value corresponded to the shifted central maximum of the potential φ = φ0
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(see, Fig.2.1). The propagating front solution in Eq.(5.3), suitably modified for these
changed boundary conditions is [1],

φ(z) = −(ξ − φ0)

A0

[1 + exp(
m(T )(|z| −R0)√

2
)]−1 + ξ, (5.4)

where the normalization factor A0 = [1 + exp(−m(T )R0√
2

]−1. Here, we have restored

the original, unscaled, variable z. |z| was used in order to have a symmetric front on
both sides of the plasma for the 1D case with R0 representing the width of the central
part of the plasma. For the 3D case, |z| is replaced by the radial coordinate r. (Also,
for the present case of pp collisions, we will multiply m(T ) by 3 to represent a sharper
variation of φ initially. Note, this will be just a suitable choice of initial profile and
a proper solution of a propagating front will result quickly when the initial profile is
evolved by the field equations.)

In ref. [1] we calculated numerical solutions for the full Eq.(5.1), retaining the
φ̈ term. Correspondence with the analytical solution was achieved by considering a
large, constant, value of η which resulted in propagating fronts of the same form as
discussed in the literature for reaction-diffusion equations. Subsequently we relaxed
this assumption of constant T and studied proper time dependence of T and η for
expanding QGP (still retaining the assumption of uniform temperature for studying
front propagation as with a spatially varying T the effective potential also has to
vary spatially and correspondence with the reaction-diffusion equation becomes more
complicated). We showed that the propagating front solution still exists with little
modifications.

5.2 DCC Formation via the Reaction-Diffusion Equa-

tion

In the present work we are considering the situation of the evolution of the disoriented
chiral field after chiral symmetry breaking transition. We recall the picture of DCC
from Chapter 2 where we discussed that a DCC corresponds to a physical region in
the interior of which the chiral field is disoriented from the true vacuum. Thus the
two boundary conditions for the propagating front solution have to be appropriately
modified. The basic picture of DCC formation in this case will be taken as follows. In
a high multiplicity pp collision, we will assume that a thermalized medium is created
and that temperature/energy density of this medium reaches a sufficiently large value
so that the (approximate) chiral symmetry is restored during very early stages. Due
to the very small size of the initial system, it undergoes a 3D spherical expansion
after a very short time of order 1-2 fm. This leads to a rapid cooling of the system
and the chiral symmetry is spontaneously broken. This is the starting point of our
calculation, with the initial profile of the chiral field in the interior of the system
assuming some arbitrarily chosen value on the (approximately degenerate) vacuum
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manifold. We will consider the case of maximal disorientation when the field in the
center of the parton system takes the value at the saddle point opposite to the true
vacuum on the vacuum manifold. Outside the system the chiral field was always in
the true vacuum and we assume that it continues to have values close to the same
value in somewhat interior regions as well (where the temperature could be taken
to develop a similar value as the central temperature). This sets the two boundary
conditions for the initial profile of the chiral field and we study whether an initial
profile with such boundary conditions can lead to a propagating front solution. (We
mention that for the sake of numerical integration of the differential equation, we need
to fix the boundary conditions at r = 0 and for large r. However, the initial profile
taken has a plateau for small r; hence the field is allowed to roll down freely in the
region away from r = 0. Indeed, such a profile with the same boundary conditions
shows rapid roll down for the symmetry restored potential where one does not expect
any propagating solution. Also, for one dimensional case, we consider the chiral field
to have a symmetric profile about x = 0 and the boundary conditions are only fixed
for large |x| with the x = 0 point free to evolve via the differential equation. Exactly
same results of propagating front solution are still obtained on both sides of x = 0.)

The profile of the chiral field in between the two boundary values (as discussed
above) is taken to lie on the vacuum manifold and we choose this profile, for simplicity,
to remain in the σ−π3 plane. In such a DCC domain, the decay of the field will lead
to emission only of neutral pions. If we had chosen the field to remain in any plane
of (π1, π2, σ), it would lead to emission only of charged pions. For a more general
possibility, appropriate distribution of neutral and charged pions will be obtained.

Note that it is not immediately obvious that such boundary conditions should lead
to a propagating front solution. For reaction-diffusion equations, the corresponding
boundary condition is set for a local maximum of the potential, and not for a saddle
point. However, it appears that the importance of the maximum of the potential is in
delaying the roll-down of the field from that point due to vanishing field derivative.
In that situation, a saddle point will also satisfy this requirement and a propagating
front solution should result. As we will see, this intuition seems correct and we do find
propagating solutions with this new type of boundary conditions. We have checked
that if the field at that boundary is taken even close to the saddle point (say, within
10-20 %), slowly propagating front still results and our results remain essentially
unaffected.

For the present case of 3-dimensional expansion, with spherical symmetry, will
use the field equations in spherical polar coordinates,

Φ̈i −
d2Φi

dr2
− 2

r

dΦi

dr
+ (

3

τ
+ η′(T ))Φ̇i = −4λ|Φ|2Φi +m(T )2Φi +Hδi4, (5.5)

where Φi denote components of the O(4) vector Φ. For this 3-dimensional expan-
sion case, the temperature is taken to vary with proper time as,

T (τ) = T0
τ0

τ
. (5.6)
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The initial value of the temperature for field evolution is taken to be T = T0 = 150
MeV, at proper time τ = τ0 = 2 fm. This stage corresponds to chiral symmetry
broken phase. The system is assumed to have reached a value larger than the critical
temperature at an earlier stage which allows for the chiral field to become disoriented
after the transition. Here, we have introduced a new dissipation parameter η′(T ),
in addition to the Hubble damping coefficient 3/τ [11, 12]. η′ represents dissipation
due to coupling to the heat bath, or due to other field modes (which could be fields
other than the chiral field, or even high frequency modes of the chiral field itself).
The value of this dissipation parameter has been discussed in the literature (see, e.g.
ref. [11,12] and references therein). We mention that inclusion of η′ is not essential in
our model of DCC formation as Hubble damping itself can be very large at sufficiently
early times. However, from general considerations, one will always expect such an
additional damping, and it certainly helps for getting a slow moving propagating front
leading to a large DCC domain. We first take η′ ∝ T 2 with the initial value of η′ =
10 fm −1 at τ = τ0. Subsequently, we will also consider the case with a constant, time
independent, η′ = 20 fm−1 and 40 fm−1. We consider these larger dissipation cases to
allow for the possibility of the chiral field coupling to other field modes, and to show
that larger dissipation can lead to much larger increase in DCC domain size in this
model.

5.3 Results

We now present the results of field evolution via Eq.(5.5). The initial profile of the
chiral field, at τ = τ0 = 2 fm, is shown in Fig.5.1a. The solid curve shows the profile
of the σ field which interpolates between the true vacuum value σ = 75.18 MeV and
the saddle point opposite to the true vacuum where σ = −49.25 MeV (with ~π = 0
at both these boundaries). The interpolating profile of σ is taken in accordance with
Eq.(5.4) (for the 3-dimensional case with radial coordinate r as discussed there), with
φ0 and ξ suitably replaced by the boundary conditions for the present case. Further,
since the chiral field is taken to lie everywhere on the (approximately degenerate)
vacuum manifold, hence the ~π field also varies in between the two boundary points,
as shown by the dashed curve for π3 in Fig.5.1a . This is fundamentally different from
the case of chiral transition considered in our previous work where the pion field was
taken to be zero all along the profile of σ which interpolated between the true vacuum
and the central maximum of the potential. We again mention that the choice of the
chiral field to lie entirely in the σ − π3 plane is just an example. Such a DCC will
decay by emitting neutral pions. One could take a more general variation, in which
case an appropriate distribution of neutral and charged pions will result.

We have taken the radius of the system to be about 2.5 fm assuming that the
initial dense parton system in the pp collision would have undergone some expansion
by the time this stage is achieved at τ0 = 2 fm. This initial profile is evolved using
Eq.(5.5). Note that Eq.(5.5) is written in comoving coordinates. As the system is
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undergoing a 3D scale invariant expansion, the physical distances have to be obtained
by multiplying with the appropriate scale factor. For this purpose we have taken the
velocity of the plasma at a comoving distance r to be proportional to r, with some
maximum velocity at the boundary of the region (which we take as a sample value to
be 0.9). Plots at subsequent stages are shown in Figs.5.1b-d with the x axis denoting
the physical distance. This is where we see the importance of the front solution of the
reaction-diffusion equation. Normally one would have expected that the field from
the saddle point will roll down towards the true vacuum in a time scale of a couple
of fm within the whole system of size of 2-3 fm. However, the front solution delays
this roll down dramatically. The field retains its value close to the saddle point in a
significant region for a long duration of time (due to slow motion of the front).

During this period, the rapid expansion of the plasma stretches the whole system,
thereby stretching the region where the chiral field is close to the saddle point, hence
disoriented. This leads to a DCC domain which is expanding and getting bigger
without the chiral field in the interior rolling down towards the true vacuum. This is
shown in Fig.5.1b (for the σ field) and Fig.5.1c (for π3). Note that the stretching of
a DCC domain costs energy and this should be properly accounted for by calculating
the back reaction of DCC stretching on the expanding plasma. However, for ultra
relativistic pp collisions the expanding parton system will have very large kinetic
energy, and the effects of back reaction of stretching of a DCC domain will not be
significant for the time scales considered here. Fig.5.1b shows the σ field profile
(dashed curve) at τ = 4 fm clearly showing that the DCC domain (the region where
the field is significantly disoriented from the true vacuum) has almost doubled in size.
This means multiplication in the number of coherent pions by a factor of 8 (compared
to the number expected from the DCC domain of initial parton system size) when
the DCC eventually decays. Fig.5.1d shows the situation at τ ' 7.2 fm when the
chiral field has significantly rolled down towards the true vacuum. One can say that
the decay of the DCC domain has set in by this stage. Eventually the DCC domain
decays with the chiral field rolling down to the true vacuum.

We now consider case of larger dissipation with constant η′. Figs.5.2 a,b show the
stages corresponding to the stages in Fig.5.1 b,c,d for the case with constant η′ = 20
fm−1. Figs.5.2 c,d show similar stages for constant η′ = 40 fm−1. We note significant
increase in the stretching of DCC domains. In fact by τ = 7.2 fm the fields have still
not started significantly deviating from the disoriented value. We do not show plots
for large τ because, as mentioned above, the decay of a DCC domain by thermal
fluctuations as well as quantum effects will limit the growth of DCC domain. It is
not clear if such large and (quasi) constant values of η′ can be realistic. However, its
significant effect on the formation of large DCC domains may be taken as a strong
motivation for finding arguments/situations where such strong dissipation may be
justified/applicable.

We showed in ref. [1] that the propagating front solutions we obtain are very
robust and almost independent of the initial profile of the front taken. Thus our
results obtained here are not very sensitive to the exact initial profile of the chiral
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(c) (d)

(b)(a)

Figure 5.1: (a) The initial profile of the chiral field. Solid (red) curve shows the

profile of the σ field which interpolates between the true vacuum value σ = 75.18

MeV and the saddle point opposite to the true vacuum where σ = −49.25 MeV.

Corresponding variation of π3, ensuring that the field (approximately) lies on the

vacuum manifold, is shown by the dashed (black) curve. (b) Dashed (black) curve

shows the profile of the σ field after the system has undergone expansion up to τ = 4

fm. For comparison, solid (red) curve shows the initial σ profile. Stretching of the

plasma leading to expansion of the DCC domain is clearly seen. (c) Corresponding

profile of π3 field at τ = 4 fm is shown by the dashed (black curve), while the solid

(red) curve shows the initial π3 profile. (d) This shows the stage at τ ' 7.2 fm when

the decay of the DCC domain has set in with the chiral field significantly moving

away from the initial disoriented value. Solid (red) and dashed (black) curves show,

respectively, σ and π3 field profiles.
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(d)
(c)

(b)
(a)

Figure 5.2: (a) and (b) show the profiles of the chiral field at the same stages as

in Fig.5.1 b,c and Fig.2d (starting with the same initial profiles as in Fig.5.1a). η′

is taken as constant for this case with the value 20 fm−1. Comparison with Fig.5.1

shows that the DCC domain stretches to a much larger size in this case. (c) and (d)

show similar stages as in (a) and (b), but now with even larger η′ = 40 fm−1. We see

a much larger DCC domain resulting here.
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field taken. A different profile would still lead to similar qualitative features of the
evolution of the parton system and hence a DCC domain.

5.4 Conclusions

We conclude by pointing out the important features of our analysis. We focus on
high multiplicity pp collisions at LHC energy as potentially important for possible
formation of single DCC domains. This is in contrast to heavy-ion collisions where
necessarily one gets multiple DCC domains where a clean signature of coherent pions
becomes difficult to detect. The problem of small size for pp collision (hence small
DCC domain) is circumvented by showing the existence of slowly moving fronts gov-
erned by reaction-diffusion equation. This delays the roll down of the disoriented
chiral field to the true vacuum significantly, while the system undergoes a rapid three
dimensional expansion. This leads to stretching of the initial DCC domain to a size
of several fm which can lead to relatively clean signals of coherent pion emission.

The specific assumptions made in our model, such as the value of the dissipation
constant, initial profile, etc. are not expected to significantly change the main aspects
of our results. In view of our previous results in ref. [1], the existence of slowly moving
propagating front results under varied conditions and with widely different initial
profiles. This is in complete contrast to the usual expectation that the field should
rapidly roll down to the true vacuum. Thus, high multiplicity pp collisions at LHC
energy may be an ideal place to look for the long-sought signatures of disoriented
chiral condensates. The considerations presented here are about classical evolution
of the chiral field in an expanding domain. As we mentioned above, considerations of
thermal fluctuations and quantum decay of the DCC domain into pions will put the
final constraint on the growth of DCC domains in our model.
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Chapter 6

Summary

Here we summarize the work presented in this thesis. We have applied the techniques
of reaction diffusion equations to study various aspects of the dynamics of QCD
transitions. The most important aspect of this approach originates from the existence
of well defined propagating front solutions of reaction-diffusion equations which are
very similar to phase boundaries in a first order transitions, even when the underlying
transition is not a first order transition.

We first presented a brief review of QCD and the physics of QGP in Chapter 1,
and then discussed different aspects of QCD phase transitions in Chapter 2, specifi-
cally, the chiral transition and the confinement-deconfinement (C-D) transition. We
discussed the effective Lagrangians for these transitions. For the chiral transition we
used the linear sigma model written in terms of the order parameter field Φ, which
is an O(4) vector. We provided a brief discussion of the physical picture of DCC
formation. For the C-D transition, we used the effective Lagrangian for the thermal
expectation value of the Polyakov loop which acts as an order parameter for the C-D
transition. We then addressed the issue of the dynamics of transition for both these
cases and briefly discussed the formation of QGP in relativistic heavy-ion collisions.

Earlier it used to be believed that the quark-hadron transition is of first order even
at low chemical potential (as in the early universe). This had important implications
as with quarks scattering from the expanding interfaces, separating the QGP phase
from the hadronic phase, quark nuggets could form in the early universe which could
serve as a candidate for dark matter of the universe. The dynamics of first order
transition also had important implications for heavy-ion collisions. However, with
lattice results showing the quark-hadron transition to be a cross-over, such possibili-
ties became unrealistic, at least for the case of the universe and for ultra-relativistic
heavy-ion collisions.

In view of the importance of interfaces for such important physical effects associ-
ated with a first order transition, we considered the possible role of reaction-diffusion
equations for QCD transitions. This is because well formed, propagating interfaces
routinely arise in the context of reaction-diffusion equations even when the underlying
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transition is a continuous transition or a cross-over. We provided a brief review of
reaction-diffusion equations in Chapter 3.

Chapter 4 and 5 present our research work. In Chapter 4 we demonstrated the
existence of propagating front solutions for chiral phase transition and confinement-
deconfinement (C-D) transition in QCD even when the underlying transition is a
cross-over or a continuous transition. We utilized the fact that the only difference
between the field equations in relativistic field theory case and the reaction-diffusion
case is the absence of a second order time derivative in the latter case. The corre-
spondence between the two cases was, thus, established in the presence of a strong
dissipation term leading to a dominant first order time derivative term. We also
showed that the required boundary conditions for the existence of such slowly mov-
ing propagating fronts naturally arise in relativistic heavy-ion collision experiments
(RHICE).

In Chapter 5 we considered an important application of the reaction-diffusion-
equation-governed dynamics of QCD transition. We investigated the issue of forma-
tion of disoriented chiral condensate (DCC). DCC corresponds to formation of an
extended region, where the chiral field is misaligned from the true vacuum. This
possibility was investigated extensively some time ago and it was proposed that DCC
may form in large multiplicity hadronic collisions or in heavy-ion collisions. A large
DCC domain would lead to spectacular signatures such as coherent emission of pions
which can be detected as anomalous fluctuations in the ratio of neutral pions to all
pions. However, even after extensive experimental search for DCC, no clear signals
were found for its formation. Although it was generally agreed that in heavy-ion
collisions, chiral-symmetry-breaking transition will necessarily lead to formation of
many DCC domains, the expected size of such DCC domains was too small, and
their numbers too large in any given event, that standard DCC signals were washed
out. Indeed, from this perspective, heavy-ion collisions were not ideally suited for the
detection of DCC. With a large volume system undergoing chiral symmetry breaking
transition, multiple DCC domains necessarily result, and a clean signal of coherent
pion emissions becomes very unlikely. In comparison, a pp collision, with a small
volume system, could, in principle, lead to a single DCC domain.

We considered the issue of DCC formation in the context of (very) large multi-
plicity pp collisions at LHC energies. The conditions of chiral symmetry restoration
seem favorable for the very high multiplicity pp collisions at LHC energy. We showed
that the problem of rapid roll down of the chiral field to true vacuum is avoided due
to a rapid three dimensional expansion of the system which makes reaction-diffusion
equation applicable for governing the dynamics of the chiral field for this system
(with appropriate boundary conditions which, as we will show, naturally arise in
these events). The expanding system leads to a DCC domain which stretches and
becomes larger due to expansion, without the chiral field significantly rolling down
(due to specific properties of the solutions of reaction-diffusion equation). Eventually
one gets a large DCC domain the subsequent decay of which should lead to coherent
pion emission.
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In conclusion, we have used the techniques of reaction-diffusion equations to show
the existence of well defined traveling front solutions, which are very similar to phase
boundaries for a first order transition case, even though the relevant QCD transitions
here are of second order, or a cross-over. This will have important effects, especially
on various signals of QGP. We considered one particular important implication of
such fronts showing that it may lead to the possibility of formation of disoriented
chiral condensates (DCC) in high multiplicity pp collisions at LHC energy.
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