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SynopsisThe thesis 
ontains some theoreti
al studies on the low temperature diele
tri
properties of in
ipient ferroele
tri
s su
h as SrTiO3, KTaO3, EuTiO3 et
. in thevi
inity a of a quantum phase transition. Studies are motivated by experimental�ndings on the low temperature diele
tri
 behavior of these in
ipient ferroele
tri
sor quantum paraele
tri
s under various external perturbations. These materialsare perovskites and are known to remain paraele
tri
 down to any experimentallya

essible low temperature. In these materials the q = 0 opti
 mode whi
h 
onsistsof Ti or Ta motion along a [100℄ axis against oxygen o
tahedra be
omes nearlyunstable as temperature approa
hes to zero. As su
h the instability of this softopti
 mode would lead to a ferroele
tri
 transition as o

urs in other stru
turallysimilar materials like BaTiO3. However, be
ause of neighborhood of the instabil-ity, these materials end up in a state of in
ipient ferroele
tri
, 
hara
terized by avery high, temperature independent stati
 diele
tri
 
onstant (O(104) for SrTiO3)and no spontaneous polarization at low temperature (< 10K for SrTiO3). It isapparent that the low temperature diele
tri
 behavior of these systems are domi-nated by soft transverse opti
 mode �u
tuations near q = 0. Sin
e the zone 
entermode has is nearly vanishing frequen
y at low temperature, a theoreti
al under-standing of the diele
tri
 behavior of these materials needs a proper a

ount ofquantum �u
tuations near an instability point and its e�e
t on the �nite tem-perature diele
tri
 properties. We work with simple models in ea
h 
ase of purequantum paraele
tri
s, its 
oupling with anti-ferromagneti
 �u
tuations, strain anddisorder. Then we develop a self-
onsistent mean-�eld approximation and s
alingarguments, to explain some experimental �ndings and make various predi
tionsabout these materials.In the �rst 
hapter some generi
 feature of a quantum phase transition whi
hare relevant for these materials are introdu
ed. In the se
ond 
hapter we explorethe possible 
onsequen
es of quantum �u
tuations in the low temperature diele
tri
behavior of these materials. To do that a semi-phenomenologi
al Landau-Ginzburgtheory is used. We restri
t ourselves to a one 
omponent model to make ouranalysis simpler. Moreover anisotropy indu
ed by the dipolar intera
tion in thetransverse opti
 modes is negle
ted with suitable justi�
ations. Within a mean �elddes
ription with some self-
onsisten
y 
ondition, we are able to des
ribe the e�e
tsvii



of quantum �u
tuations in the low temperature diele
tri
 behavior of pure SrTiO3,a well-known quantum paraele
tri
 material. The same analysis is extended topredi
t its diele
tri
 behavior when it is tuned to a quantum 
riti
al point. Apredi
tion about the 1/T 2 behavior in 
ontrast to the usual Curie-Weiss behavioris made.A re
ent spe
tros
opi
 experiment reports that SrTiO3 shows phase separa-tion near its quantum 
riti
al point. This Raman s
attering experiment at lowtemperature reports simultaneous responses from both the paraele
tri
 and theferroele
tri
 phase near a quantum 
riti
al point in O18 doped SrTiO16
3 . The in-tensity of the s
attered light from the ferroele
tri
 phase is reported to be very weakand be
omes weaker as one moves away from the quantum 
riti
al point. The 
o-existen
e of a quantum paraele
tri
 phase with a quantum ferroele
tri
 phase inO18-ex
hanged SrTiO3 provides strong eviden
e for a �rst order phase transition.Moreover owing to the low intensity of the s
attered light from ferroele
tri
 phase,the nature of the transition 
an be 
alled a weak �rst order where many featuresof a 
ontinuous transition remain unaltered. This experiment is performed at zeroele
tri
 �eld, 
onstant pressure and there is no report of ele
tro-magneti
 
ouplingin this materials. Thus one 
an attribute the �rst order nature of the quantumparaele
tri
 to a ferroele
tri
 phase transition to the 
oupling between the 
riti
almode with non-
riti
al strain �u
tuations. Motivated by this experiment, we makean attempt to dis
uss the e�e
ts of the strain �u
tuations in a quantum 
riti
alparaele
tri
 in the third 
hapter. In our theory strain �u
tuations are integratedout resulting to a long range intera
tion among paraele
tri
 �u
tuations. In a puremean �eld s
enario, a weak �rst order transition o

urs when the e�e
tive quarti

oupling of the paraele
tri
 a
tion is negative and 
lose to zero. In this 
ase one
an add a higher order term with positive 
oe�
ient in the paraele
tri
 a
tion andmake some mean �eld predi
tion about the transition. We emphasis that in su
ha 
ase one should 
onsider �u
tuation e�e
ts in the quarti
 
oupling, namely fourpoint verti
es and show that �u
tuation e�e
ts 
an stabilize the system withoutinvoking higher order terms. The 
ru
ial role played by long range intera
tion me-diated by the strain �u
tuations in this pro
ess is also explained. A self 
onsistentparquet approximation is used to take 
are of leading order �u
tuation e�e
ts.The experimental observation that the presen
e of the �nite temperature restoresthe se
ond-order nature of the transition near a quantum phase transition is alsoviii




aptured in this theory.In the fourth 
hapter we fo
us on an in
ipient ferroele
tri
 EuTiO3 where ferro-ele
tri
 �u
tuations are 
oupled to anti-ferromagneti
 �u
tuations. We 
onsider a
ase where this material is tuned to ferroele
tri
 or anti-ferroele
tri
 quantum 
rit-i
al points by some non-thermal parameter. We write an a
tion where paraele
tri
�u
tuations are 
oupled to anti-ferromagneti
 �u
tuations in a bipartite latti
eand and in presen
e of non-zero magneti
 �eld. The a
tion is used to dis
uss thestati
 diele
tri
 behavior of this system both in presen
e and absen
e of uniformmagneti
 �eld. Again a self-
onsistent mean �eld approa
h and s
aling argumentsare invoked. A new power law behavior of the stati
 diele
tri
 
onstant, namelya T− 3
2 variation, in presen
e of small non-zero magneti
 �eld is predi
ted. It is in
ontrast of the 1/T 2 behavior of the quantum 
riti
al paraele
tri
 and has alreadygot attentions of the experimental 
ommunity.Finally we look for the e�e
ts of quen
hed disorder in quantum 
riti
al para-ele
tri
s using a repli
a formalism in the �fth 
hapter. Here the 
oupling between arandom Tc type disorder with energy density is 
onsidered. Near quantum 
riti
al-ity in these systems, a bare power 
ounting s
heme predi
ts su
h disorder e�e
ts tobe marginally relevant. A 
lassi
al repli
a formalism with broken repli
a symme-try at the ve
tor level predi
ts inhomogeneous solutions in these system. Gaussian�u
tuations around su
h solutions in 
ase of a 
lassi
al phase transition were stud-ied earlier. In their stati
 limit the 
orrelator of the Gaussian �u
tuations due tosu
h inhomogeneous solutions are found to independent of their sizes and a singleinstability was predi
ted. We 
onsider the tunneling of su
h solutions in the quan-tum limit and 
onsider a quantum phase transition in terms of the instability ofGaussian �u
tuations around them. A broad power law distribution of the quan-tum 
riti
al points is predi
ted. Its 
onsequen
es of the stati
 diele
tri
 behaviorat �nite temperature is also emphasized.In 
on
lusion, in this work the e�e
ts of quantum �u
tuations on �nite tem-perature properties of some diele
tri
 materials are studied. Possible power lawbehavior of stati
 diele
tri
 
onstant at �nite temperature in various materialsat various external 
onditions are predi
ted using a minimal model in ea
h 
ase.Moreover emergent new physi
s near a pure quantum 
riti
al point due to the
oupling with strain �u
tuations and magneti
 �u
tuations in di�erent materialsis dis
ussed. The e�e
ts of disorder indu
ed inhomogeneity along with their dy-ix



nami
s at low temperature are addressed, o

urren
e of a mixed phase, a broadpower law distribution of instability points and its 
onsequen
e on the temper-ature dependen
e of the stati
 diele
tri
 
onstant is predi
ted. A 
onta
t withexperimental s
enario is made whenever possible.
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1Introdu
tion
The basi
 motivation of modern 
ondensed matter physi
s is to explore new physi
sthat emerges out of 
omplexity in a 
olle
tion of large number (∼ Avogadronumber∼ 1023) of intera
ting non-relativisti
 parti
les. The �fundamental Hamil-tonian� in a 
ondensed matter system is usually known. It 
onsists of a 
olle
tionof atoms intera
ting via 
oulomb intera
tion. But when a system with su
h a largenumber of parti
les is exposed to thermal �u
tuations or enters in a quantum do-main or both and when the system parameters are tuned to 
ertain values, manynovel features 
an emerge. Formation of 
rystal stru
ture, super�uity, super
on-du
tivity are few examples of su
h novel phenomena. Su
h emergent behavior maynot be adiabati
ally 
onne
ted to the phases that appear in either side of thosespe
ial points in a parameter spa
e[1, 2℄. It is di�
ult to 
apture su
h novel be-havior in a standard perturbation theory and one needs a new me
hanism, su
has spontaneous symmetry breaking for phase transition[3℄ and new 
al
ulationals
heme, su
h as renormalization group[4℄ s
heme for 
riti
al phenomena to explainsu
h behavior. Su
h a s
enario is observed when the system undergoes a transitionbetween two phases at zero temperature as a result of 
hanges in some non-thermalparameter and is dubbed as quantum phase transition[5℄. At a 
ertain value of anon-thermal tuning parameter where a quantum phase transition of a 
ontinuouskind o

urs is 
alled a quantum 
riti
al point. At a quantum 
riti
al point systemproperties even at �nite temperature, are governed mainly by quantum 
riti
al �u
-tuations. Finite temperature properties near a quantum 
riti
al point shows novelpower law behaviors whi
h are beyond the realm of any zero temperature limit ofa 
lassi
al theory. Su
h an emergent s
enario drew lot of attentions in the past1



Chapter 1. Introdu
tionand has been experimentally observed in 
ase of itinerant magnets, He3, et
.[6℄.As a result of experimental �ndings, most of the earlier works in this area weredire
ted mostly toward quantum phase transition either in quantum spin systemsor in metalli
 magnets. Though 
lassi
al phase transitions in insulating diele
tri
materials are well studied, there has not been any study in 
ontext of quantumphase transition. In this thesis we emphasis that the e�e
t of quantum �u
tuations
an as well be observed in 
ase of 
ertain insulating diele
tri
 materials, namelyquantum paraele
tri
s su
h as SrTiO3, KTaO3 et
. In these materials a quantumphase transition o

urs as a result of isotopi
 substitution and it involves softeningof an opti
al mode. Thus a quantum generalization of the soft mode pi
ture ofphase transition in 
lassi
al ferroele
tri
s is realized in these materials. A theoryof quantum phase transition in these materials 
an be des
ribed by a 
ontinuummodel whi
h in
ludes transverse opti
al modes near zone 
enter as the most rel-evant degrees of freedom. It shares some similarity with the e�e
tive theory ofspin �u
tuations in metals. At the te
hni
al level the e�e
tive theory for quantumparaele
tri
 to ferroele
tri
 transition is similar to a undamped Bosoni
 version ofthe e�e
tive theory of quantum paramagnet-ferromagneti
 transition in a metalli
magnet. Theoreti
ally these systems are mu
h simpler than their magneti
 
oun-terparts to deal with, and moreover many features are experimentally observable.Thus these systems 
an be
ome good playgrounds for studying some general as-pe
ts of quantum phase transitions su
h as �nite temperature properties, disordere�e
ts et
.Before going into the details of the issues related to the quantum phase tran-sition in the above mentioned materials, a brief ex
ursion through these 
on
eptswould set a ba
kground for the present study. More detail dis
ussions on some ofthe 
on
epts if needed, will be presented in the 
orresponding 
hapter.1.1 Quantum phase transitionQuantum phase transition is a phase transition indu
ed by quantum �u
tuations atzero temperature. Unlike the 
lassi
al phase transition where the tuning parameteris temperature, one looks for a quantum phase transition by tuning a non-thermalparameter su
h as hydrostati
 pressure, impurity 
on
entrations, et
. Whereas a2



Chapter 1. Introdu
tion
lassi
al phase transition 
orresponds to non-analyti
ity in the free energy as afun
tion of temperature, a quantum phase transition involves non-analyti
ity inthe ground state energy as a fun
tion of some non-thermal external parameter. In astri
t sense, a quantum phase transition is de�ned only at zero temperature. How-ever it a�e
ts �nite temperature properties of a systems over a �nite temperaturerange. Though the temperature range over whi
h quantum 
riti
al �u
tuationsdominate is spe
i�
 to the system, the emergent behavior at a quantum 
riti
alpoint is universal. The �nite temperature properties depend on system dimension,order parameter dimension and symmetry, range of intera
tion and the dynami
s
aling exponent. The 
on
ept of dynami
 s
aling exponent will be introdu
ed inthe next se
tion. Consequen
es of being in the vi
inity of a quantum phase transi-tion has been observed in many systems like itinerant magnets, He4, ferroele
tri
set
. and are argued in other systems like high Tc super
ondu
tors. Before goinginto the detail of issues of a quantum phase transition relevant to the system westudy, we now brie�y introdu
e a path integral formulation of quantum statisti
alme
hani
s.1.1.1 Quantum Statisti
al Me
hani
sTo 
al
ulate any physi
al properties of a statisti
al system in equilibrium we needto know its Partition fun
tion. In a statisti
al system quantum �u
tuations be
omeimportant when its temperature is mu
h lower than its 
hara
teristi
 energy s
ale.In a quantum domain many system 
an be des
ribed by a Hamiltonian in operatorform as Ĥ = T̂ + V̂ . Where T̂ and V̂ are the kineti
 and potential energiesrespe
tively in the operator form. With this Hamiltonian, its partition fun
tion ata �nite temperature 
an be written as,
Z = Tr exp(−βĤ). (1.1)Here β is the inverse temperature. If we des
ribe the state of system in terms of a
omplete set of eigen states {|φi >} of some operator φ̂, with 
orresponding eigenvalues ({φi}), then the partition fun
tion in the path integral formalism[7℄ 
an be

3
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tionre-written as,
Z =

∫

dφa < φa| exp(−βĤ)|φa > . (1.2)On the other hand in quantum me
hani
s, the transition amplitude for a systemin returning to its initial state φa after a time t is given by,
< φa| exp(−itĤ)|φa >=

∫ φ(x, t)=±φa(x)

φ(x, 0)=φa(x)

dφei
∫ t
0 dt

∫
dxL(φ, ∂φ

∂t
). (1.3)Here L is the Lagrangian of the system. The boundary 
onditions are periodi
 forBosons and anti-periodi
 for Fermions. It is now quite evident that one 
an writethe expression for the partition fun
tion (eqn. (1.2)) using the expression for quan-tum me
hani
al transition amplitude (eqn. (1.3)) through an Wi
k rotation of thetime axis to the imaginary dire
tion. This leads to the following 
orresponden
e,

β =
1

T
≡ it. (1.4)At T = 0, i.e., at β = ∞ system a
quires a 
omplete �extra dimension�. Abovemathemati
al 
orresponden
e has interesting 
onsequen
es. Firstly an equilibriumquantum statisti
al system in d-dimension is mapped on-to a d + 1-dimensional
lassi
al statisti
al system. Se
ondly the information about the dynami
s of a
lassi
al system enters into the des
ription of the 
orresponding quantum system.Given the knowledge of dynami
s of the system, quantum-
lassi
al mapping is ex-tremely helpful in 
al
ulating quantum �u
tuations in a systemati
 manner. Whenthe intera
tion part 
ontains terms beyond quadrati
 form, an exa
t 
al
ulation ofa quantum partition fun
tion (eqn. (1.2)) is not possible. One needs to use somesystemati
 and 
ontrolled trun
ation s
heme.1.1.2 Quantum 
riti
al pointQuantum phase transition follows a similar 
lassi�
ation as thermal phase transi-tion. A point in parameter spa
e where a 
ontinuous phase transition o

urs atzero temperature is 
alled a quantum 
riti
al point. Near this point the systemis des
ribable by a vanishing 
hara
teristi
 energy s
ale or a diverging 
orrelation4
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hemati
 phase diagram for a quantum phase transition. r is a non-thermal parameter.length whi
h be
omes the only relevant length s
ale near this point. As a result,at or near the quantum 
riti
al point various physi
al quantities follow power lawsand su
h behavior 
an be explained by s
aling arguments similar to that of the
lassi
al phase transitions[8, 9℄.Dynami
 s
aling at T = 0: In general, an a
tion in the path integral rep-resentation of a partition fun
tion 
an have terms with di�erent powers of timederivative and spa
e derivative of the �eld 
on�gurations. Thus in general, thes
aling behavior of the 
hara
teristi
 time s
ale (τ) and the 
orrelation length (ξ)be
omes anisotropi
 near a quantum 
riti
al point. Near a quantum 
riti
al pointa new quantity, namely dynami
 s
aling exponent z needs to be introdu
ed. Dy-nami
 s
aling exponent 
hara
terizes the s
aling behavior of the 
hara
teristi
 times
ale (τ) with the 
orrelation length (ξ) and is de�ned as
τ ∼ ξz, (1.5)with z positive1 but not ne
essarily = 1. Su
h anisotropi
 s
aling is used in othersystems also. In 
ase of dynami
 
riti
al phenomena where one studies the dy-nami
s of a system near a 
riti
al point, one needs to 
onsider su
h anisotropi
spa
e-time s
aling to �nd out s
aling behavior of various time dependent quantitiesnear a 
riti
al point[10℄. Similar situation also arises in 
ase of a Lifsitz transition.In that 
ase one 
onsiders 
riti
al phenomena in an anisotropi
 system and the
riti
al properties depends on anisotropi
 s
aling in the di�erent dire
tions[11℄.Introdu
tion of a dynami
 s
aling exponent has many 
onsequen
es. A system in

d−spatial dimension and near a quantum phase transition 
an be thought of as a1Negative z would mean smaller relaxation time for larger size system whi
h is unphysi
al. 5
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tion
lassi
al system of dimension d+ z. The upper 
riti
al dimension2 of the quantumsystem is redu
ed by z, �u
tuation e�e
ts be
omes less relevant and the theorybe
omes more mean �eld like. However in a 
riti
al system whether it is 
lassi
alor quantum, �u
tuation 
orre
tions are always important and a naive perturba-tion theory 
an not have the 
orre
t answers. One needs to go beyond that andneeds to invoke ideas like s
aling hypothesis, various self-
onsistent s
heme et
. Inthe s
aling hypothesis that holds in 
ase of a se
ond order phase transition, anyphysi
al quantity near a quantum 
riti
al point 
an be written in a s
aled form asfollows,
O(k, ω, T = 0) = ξνF(kξ, ωξz, 0). (1.6)where O is some physi
al quantity, observed at a momenta k and frequen
y ω.The 
orrelation length ξ is the only important length s
ale in this hypothesis. Fis the s
aling fun
tion and ν is the s
aling exponent. It is to be noted that thoughthe s
aling exponent is universal, the s
aling fun
tion is not. Predi
tions basedon su
h s
aling hypothesis 
an be established by various theoreti
al s
hemes likeself-
onsistent mean �eld theory, renormalization group theory et
.Finite size s
aling at T 6= 0: Sin
e in a stri
t sense, a quantum 
riti
alpoint is de�ned only at zero temperature, it is not experimentally observable.However, a quantum 
riti
al point has its e�e
ts at �nite T also. At a low butnon-zero temperature, any physi
al quantity of a quantum 
riti
al system shouldobey power law behavior in temperature and su
h behavior 
an be obtained usingthe previous s
aled form as shown in equation (1.6). At a non-zero temperature,a quantum 
riti
al system behaves like a �nite size system of size T−1 in the �timedire
tion�. In this 
ase the 
orrelation length 
an not diverge but 
an be extendedup-to a size T−z. Thus we 
an put ξ = T−z in the expression eqn. (1.6) and thusin the limit T → 0,

O(ω = 0, k = 0, T ) = T−zνF(0, 0, 1). (1.7)2Upper 
riti
al dimension is de�ned as the 
riti
al value of the spa
e dimension above whi
h�u
tuation e�e
ts does not play any major role and a mean �eld theory gives su�
iently 
orre
tresult.
6
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tionAbove expression is the most experimentally relevant feature of a quantum 
riti
alpoint and is experimentally observed in many systems like itinerant magnets, He4,ferroele
tri
s et
. The 
ase of quantum 
riti
ality in ferroele
tri
s will be dis
ussedin the next 
hapter where these power laws will be derived in a self-
onsistent mean�eld s
heme.1.1.3 First order quantum phase transitionLike 
lassi
al phase transitions, a quantum phase transition 
an be
ome �rst orderbe
ause of the 
oupling to other degrees of freedom, disorder et
. A �rst orderquantum phase transition 
an be observed through dis
ontinuity of the order pa-rameter at the transition point. A system undergoing a �rst order transition,evolves from its parent phase to resulting phase through a metastable state. Inthe intermediate phase a system shows 
oexisten
e of both the parent phase andthe �nal phase. Classi
 example of a phase 
oexisten
e is the water-vapor phasetransition and 
an be dete
ted by some light s
attering experiment. Thus in somesense a phase 
oexisten
e is also a signature of a �rst order transition. Many fea-tures of a �rst order transition 
an be des
ribed in Landau mean �eld des
ription.In this 
ase the free energy density for an one 
omponent system 
an be writtenas a variational form as,
f(φ, r, {λi}) = rφ2 + λ3φ

3 + λ4φ
4 + λ5φ

5 + λ6φ
6 + .... (1.8)Here φ is the expe
tation value of some �eld 
on�guration whose �u
tuations arenegle
ted 
ompletely. Su
h an approximation works well when the system is aboveits upper 
riti
al dimension and/or when order parameter dimensionality is veryhigh. If one has the privilege to do so, the free energy density is di
tated only bythe symmetry of the system. The above expression is a small φ expansion of thevariational form and the a
tual free energy 
an be found by minimizing the aboveexpression with respe
t to φ followed by a substitution of the 
orresponding valueof φ in the expression for variational ansatz. If the transformation whi
h 
hanges

φ to −φ is a symmetry of the system, then terms with odd powers of φ are notallowed and one 
an trun
ate the free energy density at the lowest ith order term
7
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tionwith positive λi. In 
ase of positive λ4, the Landau free energy density looks like
f(φ, r, λ4) = rφ2 + λ4φ

4. (1.9)Above free energy density shows a 
ontinuous phase transition at r = 0. For r < 0,order parameter is non-zero and is given by √ −r
2λ4

whi
h smoothly goes to zero atthe phase transition point.On the other hand if it turns out that λ4 < 0, one needs to trun
ate Landaufree energy density at some higher power of φ with a positive 
oe�
ient. Let us
onsider the simplest possible 
ase when λ6 > 0. In this 
ase the Landau freeenergy density looks like ,
f(φ, r, λ4, λ6) = rφ2 + λ4φ

4 + λ6φ
6. (1.10)In this 
ase a non-zero value of the order parameter 
orresponding to a metastable

(φ)f

φFigure 1.2: Typi
al Landau free energy pro�le for a �rst order transition. Eqn.(1.8) 
orresponds to su
h free energy pro�le when 0 6= λ3 < 0.minima of the Landau free energy pro�le develops at some positive value of r. Atthe phase transition point i.e. r = 0 order parameter has a dis
ontinuity in itsnon-zero value ∼√−λ4
λ6

whi
h 
orresponds to a �rst order transition.However using Landau theory for a �rst order transition has many limitations.Firstly the Lanadu expansion is appropriate for small values of order parameter.Thus it 
an not in
orporate the 
ase of strong �rst order transition where theorder parameter exhibits a large dis
ontinuity at the phase transition point. On8
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tionthe other hand for weak �rst order transition, i.e. in the limit λ4 → 0 one needsto 
onsider the �u
tuation 
orre
tions in the e�e
tive 
oupling 
onstant for thequarti
 term whi
h is also missing in a traditional Landau expansion. The later
ase will be 
onsidered here and will be dis
ussed in detail in this thesis in 
ontextof weak �rst order transition in ferroele
tri
s.1.1.4 E�e
ts of disorderIntrodu
tion of disorder makes a system inhomogeneous. Coupling 
onstants ina disordered system varies from point to point. As a result system be
omes a
olle
tion of ordered and non-ordered regimes. Thus one is interested in averagebehavior of various physi
al properties with a meaningful averaging s
heme. If ina parti
ular s
heme, the mean of the averaged physi
al quantities are greater thantheir varian
es, we 
an say that the averaging s
heme is meaningful. In su
h asituation, a single large system is su�
ient to represent the whole ensemble and is
alled self-averaging. At a pure 
riti
al point randomness is 
lassi�ed as relevant ifit leads to a 
hange in the 
riti
al behavior (i.e., the 
riti
al exponents) of the puresystem. Su
h systems are non self-averaging with respe
t to a pure 
riti
al points
enario. The relevan
y of disorder for a pure 
riti
al point 
an be estimated usinga �eld theoreti
al language as follows. Let us 
onsider a disordered parameter δr(x)of quen
hed type (no dynami
s) whi
h has a Gaussian distribution with varian
e
g, 
ouples to some �eld variable O(x, τ) with s
aling dimension η0 as

∫

ddxdτδr(x)O(x, τ). (1.11)Integration of the Gaussian disorder will generate a term
g2
∫

ddxdτ1dτ2O(x, τ1)O(x, τ2). (1.12)The above term will generate the e�e
tive disorder e�e
t in a disordered system.Now if we use a dimensional analysis to look for the relevan
y of the above termnear a 
riti
al point, we see that at the zeroth order perturbation theory the
oupling 
onstant g2 has the s
aling dimension d + 2z − 2η0. Thus near a 
riti
alpoint where low energy and long wave length �u
tuations are most dominant, the9



Chapter 1. Introdu
tion
oupling 
onstant g2 be
omes relevant if
d+ 2z − 2η0 > 0. (1.13)This is the 
riteria for relevan
y of 
ertain kind of disorder in a quantum phasetransition. When disorder 
ouples to energy density whose s
aling dimension of theasso
iated 
oupling 
onstant is 1/ν, and so the dimension of the energy operatoris η0 = d + z − 1/ν. Thus the 
riterion for its relevan
e be
omes above relationbe
omes

ν <
2

d+ z
. (1.14)In literature this relation is known as Harris 
riteria[5℄. Above 
riterion is derivedon the basis of a dimensional analysis whi
h negle
ts the e�e
ts of the intera
tionand the e�e
ts of spatial inhomogeneity as well. However it sets a 
riterion for thebreakdown of a pure 
riti
al behavior. When 
ertain kind of disorder is found to berelevant, one needs to 
onsider the spatial inhomogeneity whi
h is not in
luded ina theory of 
riti
al phenomena in a pure system. Su
h a 
onsideration needs somete
hnique beyond standard perturbation theory. Ve
tor breaking of the repli
asymmetry is su
h a 
andidate and is used to analyze the e�e
ts of disorder inferroele
tri
s near a quantum phase transition in this thesis.1.2 Quantum paraele
tri
sIn the previous se
tion we have introdu
ed some basi
 ideas regarding the quantumstatisti
al me
hani
s and the quantum phase transitions. Now we introdu
e somediele
tri
 materials where those theoreti
al 
on
epts 
an be experimentally ob-served. Insulating materials su
h as SrTiO3 and KTaO3 are ABO3 type perovskitesand have interesting diele
tri
 behavior. They are known to remain paraele
tri
down to any experimentally a

essible low temperature. However, the q = 0 opti
mode whi
h 
onsists of Ti or Ta motion along a diagonal of the 
ubi
 perovskiteunit 
ell against oxygen o
tahedra be
omes very nearly unstable as temperatureapproa
hes to zero. Perfe
t softening of this opti
 mode would lead to a ferro-ele
tri
 transition as o

urs in other stru
turally similar materials like BaTiO3.Thus at low temperature (< 10K for SrTiO3), these materials end up in a state10



Chapter 1. Introdu
tion

Figure 1.3: An unit 
ell of a ABO3 type perovskite stru
ture. Filled bla
k 
ir
lesare A-atom at the 
orners, 
ir
le �lled with dashed line is the B-atom at the 
enterand Oxygen atoms are shown with un-�lled 
ir
les.of in
ipient ferroele
tri
s, 
hara
terized by a very high, temperature independentstati
 diele
tri
 
onstant (O(104) for SrTiO3) and no spontaneous polarization.Diele
tri
 properties of these materials are being studied sin
e long ago and theyare widely known as quantum paraele
tri
s in the literature[16℄. The 
orrespon-den
e between the high stati
 diele
tri
 sus
eptibility and the softening of an opti
mode is also 
on�rmed by the neutron s
attering experiments[17, 18℄. Thus it isevident that the quantum paraele
tri
 systems are of displa
ive type and the di-ele
tri
 behavior of these systems are dominated by a nearly soft q = 0 transverseopti
 mode �u
tuations. A theoreti
al understanding of the diele
tri
 behavior ofthese materials needs a proper a

ount of not only thermal �u
tuations but alsoquantum �u
tuations arising from the opti
 modes near zone 
enter. The la
k ofphysi
al 
ontent of earlier theoreti
al works on this material, parti
ularly regard-ing its vi
inity to a quantum phase transition is one of the motivations for re
entstudies on this materials. In an earlier attempt to explain the diele
tri
 behav-ior of su
h systems, Barrett [19℄ proposed a semi-phenomenologi
al theory, whi
hessentially re
asts the Curie-Weiss formula with a repla
ement of temperature Tthere, by average energy, thereby the inverse of diele
tri
 sus
eptibility 
ould bewritten as, χ−1 ∝ T1 coth(T1/T ) − Tc, where Tc is 
lassi
ally 
al
ulated 
riti
altemperature and T1 is a quantum s
ale ∼ (h̄/mass). This theory, in the hightemperature limit, reprodu
es the Curie Weiss law. To mat
h experimental datain SrTiO3 the Barretts' formula has been found inadequate as one single 
onstantquantum s
ale T1 
an not tra
e the full 
urve. The formula has sin
e been modi�ed11
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Figure 1.4: Temperature-dependent phonon modes in SrTiO3 measured by ShiraneG and Yamada Y, Phys. Rev. 177, 858 (1969). The 111oK transition is 
aused bythe soft mode at the zone boundary. Soft mode near the origin is due to in
ipientferroele
tri
ity.in various ways, for example, by introdu
ing an extra exponent [20℄, that is, bywriting χ−1 as (T1 coth(T1/T )− Tc)
−ν , and by making T1 temperature dependentwith an extra s
ale [21℄, to take 
are of various �anomalies�, for example the onenear 40K. There has been a proposal of attributing this extra energy s
ale to thestru
tural transition whi
h o

urs at 110K [22℄. These proposals either follow anorder parameter expansion similar to the Landau expansion or some modi�
ationsthereof, hen
e they do not introdu
e any new mi
ros
opi
 des
ription. Moreoverthese attempts 
onsiders �u
tuations arising from q = 0 mode only and misses afa
t that the 
hara
teristi
 energy s
ale in this systems are very low, i.e. these sys-tems are near a quantum phase transition. We assume that the would be quantumphase transition from a paraele
tri
 phase to a ferroele
tri
 phase in this materialsto a 
ontinuous transition and will show that analysis based on su
h a view point
an 
apture many features of the diele
tri
 behavior of these system whi
h wereuntou
hed by the previous theories.We analyze the �u
tuation e�e
ts in su
h systems within a self 
onsistent mean�eld approximation. The theory involves a lowest order perturbation expansion of12
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Figure 1.5: Stati
 diele
tri
 
onstants ǫ110 and ǫ110 of the monodomain SrTiO3samples. Inset: 103/ǫ vs T . Referen
e[16℄.a 
ontinuum theory with a momentum 
ut-o� and self 
onsistent 
onditions[23℄.Results depend on the 
hoi
e of the 
ut-o� and we have shown that a 
hoi
eof temperature dependent 
ut-o� at/near a quantum 
riti
al point 
an lead to anovel T−2 behavior of the stati
 diele
tri
 sus
eptibility whi
h is argued by s
alinganalysis[24℄ and also veri�ed by re
ent experiment[25℄. Motivated by the su

essof the assumption of nearness of these materials to a quantum 
riti
al point wedis
uss the e�e
ts of strain 
oupling, magneto-ele
tri
 
oupling and the quen
heddisorder in these materials. Ea
h 
ase will be analyzed by a minimal a
tion andsuitable mean-�eld s
heme. Analysis are mostly analyti
 and are motivated to
apture the basi
 physi
s rather than exa
t mat
hing with the experimental data.Moreover due the universality of the behavior near a quantum 
riti
al point manyof these analysis will also be useful for analyzing the quantum 
riti
al behavior ofa large 
lass of Bosoni
 systems with undamped dynami
s.The thesis is organized in the following manner. In this 
hapter, basi
 
on
eptsrelated to quantum phase transitions, phase transitions in ferroele
tri
s and someexperimental fa
ts about some in
ipient ferroele
tri
s su
h as SrTiO3 and KTaO3are introdu
ed. In the next 
hapter we will explore the possibility of quantum
riti
al phenomena and its 
onsequen
es in these materials. Attempts are made13
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tionto analyze low temperature behavior of these system with the assumption of itsnearness to a quantum 
riti
al point. It is followed by a theory of weak �rst or-der quantum phase transition observed in SrTiO3 whi
h is assumed to be a resultof the strain 
oupling. Analysis is based on a self-
onsistent s
heme for vertex
orre
tions at non-zero polarization. Predi
tions are made on the dis
ontinuityin the non-zero polarization both at zero and non-zero temperature and are ina

ord with experiments. Chapter four is an a

ount of diele
tri
 behavior of anin
ipient ferroele
tri
 EuTiO3 where ferroele
tri
 �u
tuations are 
oupled to anti-ferromagneti
 �u
tuations. Invoking a self-
onsistent s
heme similar to the �rst
hapter in presen
e of magneto-ele
tri
 
oupling and external magneti
 �eld, pre-di
tions are made about new power law behavior of the stati
 diele
tri
 behaviorat �nite temperature. Predi
tions are new and worth further experimental inves-tigations. Next 
hapter is an a

ount of the e�e
ts of disorder in quantum 
riti
alparaele
tri
s. Dis
ussions are based on semi-phenomenologi
al Ginzburg-Landautheory with self-
onsistent mean �eld analysis. In this 
ase a repli
a formalism isinvoked to take a

ount of �u
tuations from lo
ally ordered regimes. A predi
tionbroad power law distribution of the instability points and its 
onsequen
es on thetemperature dependen
e of the stati
 diele
tri
 behavior are made.

14



2Quantum 
riti
ality in ferroele
tri
s
2.1 Introdu
tionIn this 
hapter we dis
uss the low temperature diele
tri
 properties of quantumparaele
tri
s like SrTiO3 as a result of their vi
inity to a transition from a para-ele
tri
 phase to a ferroele
tri
 phase at zero temperature or a ferroele
tri
 quan-tum phase transition. These materials are introdu
ed in the previous 
hapter. Aferroele
tri
 transition in these materials 
an be indu
ed by tuning non-thermalparameters su
h as doping 
on
entration by isotopi
 substitution, whi
h to a goodapproximation 
an be assumed as of 
ontinuous type1. Thus a theory of the lowtemperature diele
tri
 behavior of su
h systems needs proper a

ount of the �u
-tuations near a quantum 
riti
al point. As a matter of fa
t, ferroele
tri
 transitionin materials like SrTiO3 involves softening of a transverse opti
 mode. This kindof phase transition also o

urs in 
ase of 
lassi
al ferroele
tri
 phase transitionin BaTiO3 and is 
alled displa
ive transition. Unlike the 
ase of order-disordertransition where a lo
al moment is always present, in this 
ase the moment for-mation and their ordering take pla
e simultaneously. Phase transitions in su
hsystem 
an not be des
ribed by an Ising Hamiltonian, whi
h is usually invokedfor a system going through order-disorder transition. Diele
tri
 behavior of thesesystems are governed by 
olle
tive os
illations of 
oupled dipoles and the phasetransition is des
ribed by softening of the 
orresponding opti
al mode due to ther-1Experimental results suggest that the 
ase of SrTiO3 is of weak �rst order type[37℄. Manyof the dis
ussions in 
ontext of a quantum 
riti
al point also hold in 
ase of an weak �rst ordertransition and will be dis
ussed in the next 
hapter. 15



Chapter 2. Quantum 
riti
ality in ferroele
tri
smal �u
tuations[13, 14℄. Due to the importan
e of both the 
olle
tive behavioras well as the quantum �u
tuations, in these 
ases a proper quantum generaliza-tions of the 
lassi
al soft mode 
on
ept is needed to des
ribe various aspe
ts oflow temperature behavior. Moreover as a system approa
hes a quantum 
riti
alpoint the intera
tions between the zone-
enter 
riti
al mode and other modes nearit be
omes in
reasingly important whi
h also need proper 
onsiderations.2.2 Mean Field AnalysisThe low temperature physi
s of these systems is dominated by �u
tuations oftransition metal ions from their equilibrium position (
enter of the unit 
ell) inthe ba
kground of other ions. The a
tion for su
h intera
ting ions is modeled interms of lo
al displa
ements of the �u
tuating transition metal ions with a nearestneighbor harmoni
 intera
tion[28℄,
A =

∑

l

{

φ̇2
l

2
+

1

2
ω2
0φ

2
l +

1

4
λφ4

l

}

− 1

2

∑

ll′

vφlφl′. (2.1)Here φl displa
ement of the transition metal ions in the l-th unit 
ell and φ̇l isthe time derivative of φl. For simpli
ity we 
onsider φl to be one 
omponent.The 
onstants λ and v are assumed to be positive and mass taken as unity. For
|v| << |ω2

0| and ω2
0 ≪ 0, the above a
tion des
ribes two lo
al minima with anearest neighbor 
oupling v. In that 
ase it mimi
s a two state Ising system withGaussian �u
tuations around one of the lo
al minima. When |v| ∼ |ω2

0|, there is apossibility of large tunneling between these minima. In this regime the system hasto be des
ribed in terms of its 
olle
tive behavior. Su
h system is 
alled displa
ivesystem and the limit |v| → |ω2
0| is 
alled Displa
ive limit. In momentum spa
e,

A =
∑

q

1

2
φ̇2
q+

1

2

∑

q

(ω2
0 − vδ

∑

i=x,y,z

cos qia)φqφ−q+
1

4
λ
∑

q1,q2,q3

φq1φq2φq3φ−q1−q2−q3(2.2)Here δ is the 
oordination number and a is the latti
e spa
ing. In Fourier spa
e
pq(ω) = u̇q(ω) = −ıωφq(ω) 
ontributes a ω2φq(ω)φ−q(ω) in the kineti
 energyterm. We de
ouple the quarti
 term whi
h 
reates intera
tions among the harmoni
16



Chapter 2. Quantum 
riti
ality in ferroele
tri
sor free phonons in a quasi harmoni
 approximation as follows,
∑

l

φ4
l ≈ 6N(σ + 〈φ〉2)

∑

q1

φq1φ−q1 (2.3)where < .... > denotes a thermal averaging and σ is de�ned as
σ =

∑

q

〈Tφq(0)φ−q(0
+)〉. (2.4)Finally the a
tion for quasi-harmoni
 phonons 
an be written as,

A =
1

2

∑

q

(ω2
q − ω2)φqφ−q (2.5)where ωq is the renormalized value of the os
illator frequen
y and for isotropi

ase, is given as

ω2
q = ω2

0 − vδ cos qa+ 3λσ ≃ ω2
0 − v + vδa2q2 + 3λσ, (2.6)for small q. Su
h a trun
ation to the lowest order 
ontribution from spatial vari-ations is quite justi�ed for a near 
riti
al system where only low energy and longwavelength �u
tuations are important. We are interested in the paraele
tri
 phaseof the system, that is, where < φ >= 0. Sin
e the system is at low temperatureand the diele
tri
 
onstant has an enhan
ed value, < φ2 > need not vanish, how-ever. The purpose of present work is to present a self 
onsistent 
al
ulation of

< φ2 > in 
lassi
al as well as in the quantum regime. In the previous 
hapter wehave dis
ussed how a quantum statisti
al system 
an be mapped onto a dynami
almodel. All one need is to 
onsider the dynami
s in the imaginary time. The fre-quen
ies 
orresponding to the imaginary time in Fourier spa
e is 
alled Matsubarafrequen
ies (ωn). Owing to the di�erent statisti
s of the Bosons and the Fermions,
ωn = 2nπT and (2n + 1)πT for these two 
ase respe
tively where n is an integerand T is the temperature of the system[29℄. The sus
eptibility, whi
h is relatedto < φ2 >, is essentially the phonon propagator 
orresponding to the a
tion forquasi-harmoni
 phonons (eqn. (2.5)) and 
an be written in Matsubara frequen
y

17



Chapter 2. Quantum 
riti
ality in ferroele
tri
sas
χ(q, n) = − 1

(ıωn)2 − ω2
q

, ωn = 2nπT. (2.7)Above propagator depends of < φ2 > or σ and the dependen
e is in
luded in theexpression for ωq in equation(2.6). Using the de�nition of sigma (eqn. (2.4)) wehave a self 
onsistent equation,
σ =

∑

q

〈Tφq(0)φ−q(0
+)〉 = 1

β

∑

q,n

χqne
ıωm0+

=
1

β

∑

q,n

1

ω2
n + ω2

q

=
∑

q

1

2ωq
coth

( ωq
2T

)

. (2.8)The solution of this equation will determine σ at zero temperature as well as itstemperature dependen
e at �nite temperature. Above equation in its asymptoti
forms redu
es to,
σ =







∑

q
T
ω2
q
∼
∫ Λ

0
dq q2 T

ω2
0−v+vδq2+3λσ

(T >> ωΛ)
∑

q
1
ωq

∼
∫ Λ

0
dq q2 1√

ω2
0−v+vδq2+3λσ

(T << ωΛ).
(2.9)The integrals 
an be performed analyti
ally and are 
ut-o� (Λ) dependent. Weneed to impose su
h 
ut-o� to avoid ultraviolet divergen
es in the integrals. How-ever in 
ondensed matter system there is always a natural ultraviolet 
ut-o� whi
hdetermines the maximum momentum s
ale up-to whi
h a 
ontinuum des
ription isvalid. For any �u
tuations in a ordinary periodi
 solid inverse latti
e spa
ing is anexample of su
h a ultraviolet 
ut-o�. In 
ase a system is far away from quantum
riti
ality, one 
an divide a high temperature (T >> ωΛ) and a low temperature

(T << ωΛ) regime using su
h a ultraviolet 
ut-o�. However in 
ase of a quan-tum 
riti
al system, we see that (�g. (2.2)) su
h a demar
ation is also governedby temperature itself. Thus for 
al
ulating leading order temperature dependent
ontribution from the �u
tuation integral to the diele
tri
 sus
eptibility, we usea high temperature expansion as above with a temperature dependent 
ut-o� inthis thesis. Before we go into details of the temperature dependen
e of stati
 di-ele
tri
 sus
eptibility, we need to de�ne some dimensionless parameters su
h as,
∆ = (ω2

0 − v)/ω2
0, σc = (ω2

0 − v)/3λ, η = h̄/(2ω0σc) and h̄ is taken as unity for therest of the dis
ussions. The parameter ∆ des
ribes the e�e
tive sti�ness for 
olle
-18



Chapter 2. Quantum 
riti
ality in ferroele
tri
stive modes at harmoni
 level. The strength of 
oupling between various modes near
q = 0 is determined by σ−1

c while the parameter η tells us about the vi
inity to thequantum limit in the system. Introdu
ing normalized temperature x = T/mω2
0σcand using the previously de�ned parameters, we rearrange the equation (2.6) asfollows

ω2
q

ω2
0

=
vδa2q2

mω2
0

+∆(
σ

σc
+ 1) (2.10)where

σ

σc
=
∑

q

ηω0

ωq
coth

(

ηωq
ω0x

)

. (2.11)A self-
onsistent solution of these equations will determine the inverse diele
tri
sus
eptibility whi
h using eqn. (2.7) and (2.10) 
an be written as,
χ(0, 0)−1 ∝ ∆(

σ

σc
+ 1). (2.12)A numeri
al 
al
ulation of the self-
onsistent equations (2.10, 2.11) is presented in
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Figure 2.1: Numeri
al solution shows saturation in Stati
 sus
eptibility (in unitsof 104) vs Temperature 
urve. This 
urve is in good agreement with Muller'sexperiment in low temperature side, with vδa2

ω2
0

= 1,∆ = 0.0025, η = 1/∆, qmax =

0.1 and at the end χ and T are res
aled with 0.4/∆ and 30∆ respe
tively. Thelower 
urve is the non-self 
onsistent �t with the same parameters as the upperone but with res
aling of χ and T by 9.75 and 100 respe
tively. 19



Chapter 2. Quantum 
riti
ality in ferroele
tri
sthe �gure 2.1. From the numeri
al 
al
ulation we learn that the high value of stati
diele
tri
 sus
eptibility of SrTiO3 is �tted with the dimensionless parameter ∆ =

0.003, whi
h is indeed a small number. This gives us another justi�
ation to treatthis system to be near a quantum 
riti
al point. The stati
 diele
tri
 sus
eptibilitydata of SrTiO3 remind us of the behavior of itinerant Fermioni
 systems nearquantum phase transition point and �u
tuation regime around that. There the(staggered) magneti
 sus
eptibility diverges for (anti-)ferromagneti
 transition asthe 
oupling 
onstant 
rosses a 
riti
al value[30℄. The 
ase of SrTiO3 is similar tothat of liquid Helium-3 [31℄, where the magneti
 sus
eptibility gets enhan
ed, aslarge as ten times, depending upon pressure, from its free Fermioni
 value.
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Figure 2.2: S
hemati
 diagram showing how the momentum 
ut-o� be
omes tem-perature dependent at a quantum 
riti
al point. At very high temperature (T3)the momentum 
ut-o� is always temperature independent. At lower temperaturea temperature dependent momentum 
ut-o� demar
ates between the high tem-perature and the low temperature regime. Only in the 
ase of a quantum 
riti
albran
h, where the energy gap for q = 0 mode vanishes has a momentum 
ut-o�
∼ T .A system far above its quantum 
riti
al point has non-zero energy gap(∆) for20



Chapter 2. Quantum 
riti
ality in ferroele
tri
s
q = 0 mode. For low enough temperature i.e. T << ∆, quantum �u
tuationsdominate the low temperature physi
s. In this 
ase the momentum 
ut-o� in theintegral (eqn. (2.9)) is temperature independent as shown by T1 in �gure 2.2 andso is σ. At a higher temperature as shown by T2 in the same �gure, there is a
rossover from a quantum domain to 
lassi
al one at a 
ut-o� determined by theenergy gap of the q = 0 mode. Again the 
ut-o� is weakly temperature dependent
(Λ ∼ (T − ∆)1/2) and equation (2.9) tells that σ ∼ T in the leading order. Themode 
oupling would give 
orre
tions higher order in temperature, and Tc wouldbe proportional to ∆. On the other hand as ∆ be
ome smaller and η be
omeslarger, the system move towards the quantum 
riti
ality. When ∆ or Tc be
omesidenti
ally zero we have quantum 
riti
al point. At this point the zero temperaturestati
 diele
tri
 sus
eptibility diverges and be
ause of quantum 
riti
al �u
tuationsit shows novel power law behavior at low but �nite temperature. Interestingly the
∆ = 0 or ω2

0 = v limit is the displa
ive limit, well known in the stru
tural transitionliterature. Owing to the vanishing ∆, the momentum 
ut-o� (Λ) in the integral(2.9) be
omes strongly temperature dependent at quantum 
riti
al point and thedispersion relation (2.6) tells that Λ ∼ T . A non-self-
onsistent estimate with
(Λ ∼ T ), whi
h negle
ts 3λσ in the right hand side of the equation (2.9) tells that
σ and hen
e the inverse of the stati
 diele
tri
 
onstant follows a T 2 behavior at any�nite temperature up-to the Debye temperature. Though the Debye energy s
aleis system spe
i�
, the exponent is same for other systems with same dispersionrelation. Su
h estimate is essentially an out
ome of the lowest order perturbationtheory whi
h gives quite 
orre
t result when the system is far away from thequantum 
riti
al point i.e. |(ω2

0 − v)/3λσ| << 1. At quantum 
riti
al point, anestimation of the self-
onsistent 
orre
tion by putting σ ∼ λT 2 in the right handside of the equation (2.9) is found also ∼ T 2. Thus self-
onsisten
y 
ondition inthis 
ase 
hanges the 
oe�
ient of T 2 only. Thus as far as the basi
 physi
s is
on
erned, a non-self 
onsistent predi
tion is su�
ient for this material. Howeverto �t an experimental data self-
onsistent 
al
ulation be
omes important.
21



Chapter 2. Quantum 
riti
ality in ferroele
tri
s2.3 Phase diagram and Hydrostati
 Pressure atQCPBased on the previous dis
ussions, we now fo
us on a possible phase diagram forthe diele
tri
 systems near a quantum phase transition. If we fo
us on the phasediagram these materials near the ferroele
tri
 quantum 
riti
al point where thepower law behavior of the diele
tri
 
onstant et
 is valid. In our estimate T 2 is theleading order 
orre
tion to the paraele
tri
 gap near the quantum 
riti
al point. Amore sophisti
ated 
al
ulation 
an lead to a slight deviation from T 2 
orre
tionsbut the basi
 physi
s will remain the same. In the regime ∆ ≤ 0 self 
onsisten
y
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Figure 2.3: S
hemati
 phase diagram of a typi
al quantum paraele
tri
 system.in �u
tuation breaks down, system seeks ordering and hen
e an expansion aboutthe non-zero < u > is required. A similar analysis in this regime will also leadto a T 2 
orre
tions. As a result the transition temperature Tc determined by thesolution of the equation ∆+ λT 2, namely the gap equation, ∼ |∆| 12 . On the otherhand, in ∆ ≥ 0 regime the system 
an not have any ordering and its behaviorhas to des
ribed by self 
onsistent �u
tuations as done in the previous se
tion.There is a 
hara
teristi
 temperature (
rossover temperature in modern parlan
e[5℄) T ∗ ∼ ∆
1
2 whi
h demar
ates the boundary between the low temperature gappedquantum paraele
tri
 behavior and the 
lassi
al behavior. In 
ase of SrTiO3, theplateau in the sus
eptibility vs temperature 
urve is the signature of gapped quan-22
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riti
ality in ferroele
tri
stum paraele
tri
 behavior. There is no transition in this system. But there is a
rossover from low temperature quantum to high temperature 
lassi
al behaviorat the 
rossover temperature T ∗ (∼ 10K ). This is exa
tly the temperature whereplateau ends and the sus
eptibility 
urve stars following a Curie behavior. One
an now hope to rea
h at ∆ = 0 through tuning some parameters like pressure,impurity et
. The width of this plateau regime vanishes at this point and the sys-tem be
omes quantum 
riti
al. At this point thermodynami
s will be des
ribed bypower laws in temperature (e. g. χ(0, 0)−1 ∼ T−2) and the system will show somenon trivial dynami
s. The later is beyond the s
ope of the present work. It is quiteevident here as the 
ontrolling fa
tor v/mω2
0 strongly depends upon stru
tural as-pe
ts and hen
e this quantum-ness in SrTiO3 
an be properly understood throughsome intrinsi
 me
hanism whi
h give rise to su
h large tunneling. The importan
eof the vi
inity to a quantum 
riti
al point in determining the low temperatureproperties of a quantum paraele
tri
 shows the limitation of the Barrett's analysisand its variants. Clearly it 
an not 
apture the 
onsequen
es of the quantum 
riti-
al �u
tuations. That formula is essentially attempted at mimi
king the quantum�u
tuations in a single mode theory, whi
h would fail near the quantum 
riti
alpoint as many modes and their 
oupling would dominate the behavior of systemthere. This ne
essitates a self-
onsistent 
al
ulation for quantum paraele
tri
s nearits quantum 
riti
al point.A possibility of exploring the physi
s near su
h quantum 
riti
al point is throughappli
ation of hydrostati
 pressure. Su
h a te
hnique is already used in 
ase of fer-roele
tri
s and quantum paraele
tri
s long ago [32℄ and more re
ently [33℄ in dif-ferent 
ontexts. We found that those experimental results 
an be dis
ussed moreinterestingly as is done in the 
ontext of itinerant magneti
 system[34℄. Appli-
ation of hydrostati
 pressure will 
ouple to opti
al mode via its 
oupling to thea
ousti
 mode. In this 
ase the starting a
tion takes the form

A =
1

2

∫

dq

[

p2q +

(

ω2
0 − vδ

∑

i=x,y,z

cos qia

)

uqu−q

]

+
λ

4

∫

Π4
i=1(dqiuqi)δ(

∑

i

qi)

+g

∫

dk dq ǫ(k) uquk−q +
K

2

∫

dqǫ2(q)− pǫ(0). (2.13)Here last three terms are results of appli
ations of pressure, in lowest possible23



Chapter 2. Quantum 
riti
ality in ferroele
tri
sorder. The parameter �g� 
ouples strain �elds to unit 
ell displa
ement related toopti
 mode and �K� is the for
e 
onstant for harmoni
 a
ousti
 phonons, and thelast term shows the 
oupling of the hydrostati
 pressure �p� to the stati
 strainwith some unit strength. Now if the pressure is strong enough ǫ has a minima at
ǫ = ǫ(0) and is given by

ǫ(0) = p/K. (2.14)substituting the above relation in equation (2.13) and negle
ting the strain �u
tu-ations, we get an e�e
tive a
tion
A =

∫

dq

[

1

2
p2q +

1

2

(

ω2
0 + gp− vδ

∑

i=x,y,z

cos qia

)

φqφ−q

]

+
1

4
λ

∫

Πidqiφq1φq2φq3φ−q1−q2−q3. (2.15)Again we write a self 
onsistent equation for paraele
tri
 �u
tuations as,
σ =

∫

ddq
1

ωq
coth

(ωq
T

)

. (2.16)Here the renormalized value of the opti
al mode frequen
ies are given as
ω2(q) = 3∆λ(1 + p/p0) + vδq2a2/2 + 3λRσ and p0 =

3K∆λ

g
. (2.17)Up to this point result is just a renormalization of the fa
tor ∆ as ∆(1 + p/p0)and it be
omes an experimentally 
ontrollable parameter. And the behavior ofsus
eptibility at di�erent values of ∆ is shown in the �gure 2.4. It is visible inthis �gure that as ∆ de
reases, the saturated value of the stati
 diele
tri
 
onstantin
reases, the 
urve be
omes a straight line down to zero temperature, signaling apower law variation over the whole temperature range. In this proposal we assumestrain �u
tuations to be negligible. However strain �u
tuations 
an generate longrange intera
tions among the harmoni
 paraele
tri
 �u
tuations, i.e. a quarti
term with a 
oupling 
onstant ∼ g2/K. And in 
ertain situation this 
oupling
onstant 
an be
ome negative and its magnitude 
an be
ome 
omparable to λ. Inthat 
ase it is quite possible that the transition will be �rst order and su
h s
enariois dis
ussed in the next 
hapter. However in real situation one 
an try to indu
e the24
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Figure 2.4: Temperature variation of Sus
eptibility at di�erent values of ∆ andthe log-log plot of the same.e�e
t of negative pressure required in these systems to a
hieve a quantum 
riti
alpoint through some homogeneous e�e
ts of non-polar impurity. But in either 
asenature of the transition 
an be modi�ed be
ause of strain 
oupling or disorderrespe
tively.2.4 Dis
ussionWe have shown that a mean �eld theory for quantum paraele
tri
 �u
tuationswithin a quasi harmoni
 approximation reprodu
es the low temperature behaviorof the stati
 diele
tri
 sus
eptibility of a quantum paraele
tri
. The qualitativebehavior of sus
eptibility is reprodu
ed as well as a new insight gained into thequantum 
riti
al behavior of su
h systems. A mismat
h in theory and experimentfor the stati
 diele
tri
 
onstant at high temperature 
an be attributed to the ef-fe
t of stru
tural transition whi
h o

urs at higher temperature (i.e. at 110 Kin SrTiO3), su
h dis
repan
y is irrelevant for the present dis
ussion whi
h refersmainly to the low temperature regime. The short range model studied here is jus-ti�ed sin
e only transverse opti
al modes are involved in the quantum paraele
tri
�u
tuations. In presen
e of a long range dipolar intera
tion longitudinal mode be-
omes sti� and only transverse modes 
an get soft. The dipolar intera
tion indu
esa 
ertain amount of anisotropy to the transverse modes whi
h 
an 
ertainly 
hange25



Chapter 2. Quantum 
riti
ality in ferroele
tri
sthe 
riti
al behavior, however, only with a fairly large value of dipolar 
ontributionto anisotropy in the quadrati
 term [26℄. Usually su
h anisotropy parameters arepi
ked up from ab-initio band stru
ture 
al
ulations. We are not aware of su
hab-initio band stru
ture results for anisotropy parameters in 
ase of SrTiO3 orKTaO3. However, the band stru
ture 
al
ulations support our 
hoi
e of parameterfor the e�e
tive sti�ness. Compared to BaTiO3 it is about twenty times smaller(Table V in ref [36℄) for SrTiO3, whi
h makes it more near the quantum domain.On the other hand the latti
e indu
ed anisotropy in the quarti
 term is of thesame order of magnitude and it would not play a key role in distinguishing thelow temperature behavior in these systems. We leave dis
ussions on anisotropydependen
e for the future work and sti
k to an isotropi
 short range model. Itis also 
lear that there is no need to introdu
e �anomalous� regime as proposedearlier. That proposal might be due to the insisten
e on 
omparing experimentalresults with Barrett's formula and its extensions. The experimental behavior iswell a

ounted for in the quantum region and at high temperature the sus
epti-bility smoothly 
rosses over to the 
lassi
al behavior. The stru
tural aspe
ts andanisotropy e�e
ts are not attempted here.
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3Weak �rst order transition in quantumparaele
tri
s
3.1 Introdu
tionPrevious 
hapter sets up a basi
 theoreti
al ground for dis
ussing the low temper-ature diele
tri
 properties of quantum paraele
tri
s along with some predi
tionsabout their quantum 
riti
al behavior. With this ba
kground we fo
us on under-standing the detailed experimental observations on various quantum paraele
tri
s.In this 
ontext a re
ent spe
tros
opi
 experiment reports some interesting behav-ior of quantum 
riti
al SrTiO3. This experiment[37℄ indi
ates that SrTiO3, one ofthe member in the quantum paraele
tri
 family, shows phase separation near itsquantum 
riti
al point. This Raman s
attering experiment at low temperature re-ports simultaneous responses from both the paraele
tri
 and the ferroele
tri
 phasenear a quantum 
riti
al point in O18 doped SrTiO16

3 . The intensity of the s
at-tered light from the ferroele
tri
 phase is reported to be very weak and be
omesweaker as one moves away from the quantum 
riti
al point. The 
oexisten
e ofa quantum paraele
tri
 phase with a ferroele
tri
 phase in O18-ex
hanged SrTiO3provides strong eviden
e for a �rst order phase transition. Moreover owing to thelow intensity of the s
attered light from ferroele
tri
 phase, the nature of the tran-sition 
an be 
alled a weak �rst order type where many features of a 
ontinuoustransition remain unaltered. This experiment is performed at zero ele
tri
 �eld,at a 
onstant pressure and there is no report of ele
tro-magneti
 
oupling in thismaterials. Thus one 
an safely attribute this �rst order nature of the quantum27
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tri
sparaele
tri
 to a ferroele
tri
 phase transition to the 
oupling between the 
riti
almode with non-
riti
al strain �u
tuations. Su
h a 
oupling is quite 
ommon in
lassi
al ferroele
tri
s and has been studied both theoreti
ally as well as exper-imentally in earlier literature. Earlier experiments show that the appli
ation ofhydrostati
 pressure moves these systems away from 
riti
ality and the possibilityof phase transition is suppressed. One needs to apply, what is termed as, a nega-tive pressure to indu
e phase transition in these materials. One way to simulatenegative pressure is to put non-polar impurities whi
h 
reate lo
al pressure de�-
ien
ies. In this 
ontext, experimentally [38℄ one �nds Tc ∼ (n − nc)
1
2 (where nis the average impurity 
on
entration and nc is the 
riti
al value, typi
ally 33%)whi
h mat
hes well with the theoreti
al estimated[23℄ transition temperature forpressure indu
ed transition. In this 
ase, the mean �eld Tc ∼ (p+ pc)

1
2 (where p ishydrostati
 pressure and pc is the 
riti
al value). The exponent 1

2
is obtained whenthermal �u
tuations are treated at the Gaussian level. The similarity between ef-fe
ts of pressure and the impurity in the transition temperature 
an be attributedto the high density of impurity 
on
entrations in these 
ases. Here the disordere�e
ts seem to be small and a non-polar impurity essentially indu
es an internalpressure. This motivates us to develop a des
ription, suitable for the propertiesof the pressure indu
ed phase transition, whi
h 
an be used to understand theo

urren
e of the phase separation mentioned above in the ferroele
tri
 transitionnear the ferroele
tri
 quantum 
riti
al point. In this 
hapter we look for a weak�rst order transition s
enario where 
orrelation length is large enough to adopt a
ontinuum model. We therefore, start with an e�e
tive one 
omponent model withshort range intera
tion without dipolar anisotropy and try to explore the results oforder parameter �u
tuations with an e�e
tive long range intera
tions among them,mediated by strain �u
tuations. We look for the �u
tuation e�e
ts in four pointverti
es. To retain the leading �u
tuation e�e
ts in the vertex fun
tion along withtheir dependen
ies on the non-zero polarization, we 
al
ulate the free energy usinga set of renormalization group equations. This �u
tuation renormalized free energyis used to explore the possibility of a �rst order transition at zero temperature aswell as at a �nite temperature.
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Chapter 3. Weak �rst order transition in quantum paraele
tri
s3.2 Summary of the mean �eld analysisWe assume that a �u
tuating strain �eld ǫij(τ) ∼ (∇iuj(τ) +∇jui(τ)) 
ouples toa bi-linear form of the opti
al modes �u
tuations as gǫij(τ)φi(τ)φj(τ). Here ui(τ)represents the displa
ement due to a
ousti
 mode �u
tuations at i-th site in realspa
e and g is the opto-elasti
 
oupling. We 
onsider the Gaussian �u
tuations ofthe strain �elds and 
onsider the system to be at a 
onstant pressure. Integratingout the strain �u
tuations 
ompletely, we get an e�e
tive long range intera
tionsamong the opti
al mode �u
tuations of the form vφ2
iφ

2
j in real spa
e. Here v ∝ g2and depends on various elasti
 
onstants depending on whi
h it 
an be eithernegative or positive. A naive quantum generalization of su
h intera
tion would leadto a term like vφ2

i (τ)φ
2
j(τ), where τ is time. Su
h a term indi
ates �eld variables attwo di�erent position intera
t at same point with same intera
tion strength. This
learly violates 
ausality and we need to introdu
e non-lo
ality in time in su
hintera
tion. Thus we the resulting intera
tion to be vφ2

i (τi)φ
2
j(τj) whi
h is found to
onsistent with the quantum-
lassi
al mapping of our strain 
oupled system. Sin
ewe 
onsider a weak �rst order transition a-priori, we assume v to be negative andleave the detailed dis
ussions on its dependen
e on various elasti
 
onstants. In aFourier spa
e our e�e
tive a
tion des
ribes only polarization �u
tuations transverseto the momentum ve
tor with strain indu
ed long range intera
tions among themand takes the following form,

A =
1

β

∑

q

1

2
(ω2

n + r + cq2)φqφ−q +
1

4!β

∑

q1,q2,q3

uφq1φq2φq3φ−q1−q2−q3

+
vL−d

4!β

∑

q1,q2

φq1φ−q1φq2φ−q2. (3.1)Here φqi = φ(qi, ωni
) des
ribes the Fourier transform of lo
al transverse polariza-tion, q is the �eld momentum, ωn = 2πn/β is the Matsubara frequen
y for Bosoni
ex
itations, r and u are the 
oupling 
onstants for quadrati
 and the anisotropi
short range quarti
 intera
tions respe
tively. The parameter v is the 
oupling 
on-stant for isotropi
 long range part of the quarti
 
oupling indu
ed by strain and

Ld is the system volume in d-spatial dimension. Hydrostati
 pressure, as well asthe non-polar impurity, 
ouples to the opti
al mode via strain. It shifts the bare29



Chapter 3. Weak �rst order transition in quantum paraele
tri
squadrati
 and quarti
 
oupling r0 by r = r0(1+p/p0), where p is the homogeneouspressure and p0 is a 
onstant. Strain �u
tuations indu
e a long range attra
tiveintera
tion between the dipoles and is denoted by the e�e
tive quarti
 
oupling v.We fo
us on a weak �rst order transition near a quantum 
riti
al point where φa
quires a non-zero value. Thus in a mean �eld approximation near su
h a transi-tion point φ 
an be de
omposed into two parts, P the stati
 mean �eld part and
ψ(q, ω), the �u
tuating part as follows,

φq = Pδ(q, ω) + ψ(q, ω) (3.2)It is assumed that < ψ(q, ω) >= 0. In this approximation our starting a
tion (3.1)
an be rewritten as
A =

r

2
P 2 +

(u+ v)

4!
P 4 +

1

2β

∑

q

(ω2
n + r + cq2 + (u/2 + v/6)P 2)ψqψ−q

+P
u

3!β

∑

q1,q2

ψq1ψq2ψ−q1−q2 +
u

4!

∑

q1,q2,q3

ψq1ψq2ψq3ψ−q1−q2−q3

+
vL−d

4!β

∑

q1,q2

ψq1ψ−q1ψq2ψ−q2. (3.3)Here we use the notation ψqi = ψ(qi, ωni
). It is to be noted that the term P 2ψqψ−qhas a 
oe�
ient 3u + v whi
h 
an remain positive even when u + v < 0 and ithas important 
onsequen
es whi
h will be dis
ussed later. Te
hni
ally the longrange part of the a
tion with vertex v 
ontributes to su
h term two possible wayswhereas the short range part with vertex u 
ontributes in six (C4

2) possible waysand the di�eren
e lies in their range of intera
tions. With this a
tion we 
an studythe thermodynami
s of the system by 
onstru
ting a free energy whi
h is de�nedas the logarithm of a fun
tional integral over A(ψ, P ), i.e.
F = − 1

β
log

(
∫

Dψe−A(ψ,P )

)

. (3.4)The value of P is to be determined by minimizing the free energy F . Stability of athermodynami
 system requires the free energy to be positive. In a Landau theory,whi
h negle
ts �u
tuations 
ompletely, stability 
riteria requires the 
oe�
ient ofthe quarti
 term, i.e. (u+ v) to be positive. In that 
ase, for r > 0, the free energy30



Chapter 3. Weak �rst order transition in quantum paraele
tri
swill be minimized for P = 0 resulting in a se
ond order transition. On the otherhand for (u + v) < 0 stability 
riteria in a mean �eld theory requires a higherorder term with positive 
oe�
ient whi
h results a �rst order transition with anon-zero P ∼ |u + v|. We 
onsider a limiting situation where |u + v| ≈ 0 whi
h
orresponds to a weak �rst order transition. In this regime a proper a

ount ofthe �u
tuation 
orre
tions should be taken and it will be shown that �u
tuation
orre
tions alone 
an stabilize the system without invoking a higher order term inthe starting a
tion. We will dis
uss the e�e
ts of �u
tuations in four point verti
esnear a weak �rst order transition in the next se
tion.3.3 Flu
tuation 
orre
tions to the free energy atzero temperatureIn the previous se
tion we dis
ussed importan
e of the 
oe�
ients of quarti
 termto determine the nature of phase transition. In a �eld theory des
ription these
oe�
ients are 
alled vertex fun
tions. Under 
ertain 
ir
umstan
es they 
an getheavily renormalized by order parameter �u
tuations and an weak �rst order tran-sition is su
h an event. In this 
ase there is a 
ompetition between order parameter�u
tuations and a non-zero value of order parameter to stabilize a thermodynami
system. To quantify the e�e
ts of the 
ompetition between the order parameter�u
tuations and a non-zero value of order parameter we 
al
ulate the �u
tuationre-normalized four point vertex fun
tions. Then a �u
tuation renormalized free en-ergy is 
onstru
ted using them. We use renormalization group equations for fourpoint verti
es obtained in the lowest order perturbation theory. Su
h equationswere derived earlier by Gadeker and Ramakrishnan[39, 40℄ in a parquet approxi-mation. It is assumed that near a weak �rst order transition, a system a
quires asmall but non zero polarization P , the polarization �u
tuation near su
h a phasetransition be
omes gapped, with the gap being proportional to P 2. Thus near su
ha phase transition the free opti
al phonon propagator whi
h is the inverse of the
oe�
ient of the quadrati
 term of the �u
tuating part in the mean �eld a
tion(eqn. (3.3)), is given by,
G−1(q, ωn) = r + cq2 + ω2

n + (u/2 + v/6)P 2. (3.5)31



Chapter 3. Weak �rst order transition in quantum paraele
tri
sIn a paraele
tri
 phase with u + v > 0, P = 0. A bare theory predi
ts that at
= + +

= +

(b)

(a)

Figure 3.1: Parquet diagrams for the �u
tuation 
orre
tions to the short intera
tionvertex u (a) and the long range vertex v(b) are shown at the lowest order. Herethe 
urly line 
orresponds to the long range vertex and the solid line 
orrespondsto the propagator given by the equation (3.5).
T = 0, the stati
 sus
eptibility χ(0, 0) ∼ G(0, 0) ∼ 1/r. Thus r = 0 is a pointof instability in the paraele
tri
 phase, and when there is no dis
ontinuity in theorder parameter (u+v > 0) at that point, it 
an be identi�ed as a quantum 
riti
alpoint. In the vi
inity of the 
riti
al point, 
orrelation length be
omes large, leadingto dominan
e of the order parameter �u
tuations. Moreover when |u + v| ≈ 0,�u
tuation 
orre
tions to the four point verti
es be
ome important. We will tryto dis
uss the e�e
ts of �u
tuations in the vi
inity of the limit |u + v| → 0, indeveloping spontaneous non-zero value of the order parameter near the transitionpoint. Sin
e in the 
ase of a week �rst order transition, initially 
orrelation lengthgrows signi�
antly, the bare verti
es get strongly re-normalized. Now using thebare propagator for the order parameter �u
tuation (eqn. (3.5)) we �nd that theleading order 
ontribution from the se
ond diagram of the �gure 3.1(a) to therenormalization vertex fun
tion with a momentum 
uto� Λ is given as,

δu = −u2
∑

n

∫ Λ

0

ddqG2(q, ωn). (3.6)At zero temperature the frequen
y summation be
omes an integral and in this
ase, the 
ombination of the frequen
y sum and the d-dimensional integral 
an be
32



Chapter 3. Weak �rst order transition in quantum paraele
tri
srepla
ed by a d+ 1 dimensional integral. Hen
e in three dimension,
δu ∼ −u2

∫ Λ

0

d3+1qG2(q) which

∼ −u2K4 log
Λ

(r + (u/2 + v/6)P 2)
1
2

. (3.7)Here K4 is a 
onstant whi
h is related to the surfa
e area of a 4-dimensional sphereof unit radius. Surfa
e area of a d-dimensional hyper-sphere is given by,
Kd =

(

2d−1π
d
2Γ(d/2)

)−1

. (3.8)
Kd =

1
8π2 and 1

2π2 in d=4 and d=3 respe
tively. The 
orre
tion to four point vertex
δu has a logarithmi
 divergen
e as r → 0 and P → 0. We de�ne the diverginglogarithmi
 part as a new 
ut-o� variable

x = log
Λ

(r + (u/2 + v/6)P 2)
1
2

. (3.9)We de�ne the re-normalized proper four point verti
es Γ4 and ∆4, with their barevalues given as,
Γ0
4 = u and ∆0

4 = v. (3.10)Considering the lowest order 
orre
tions, we get the following renormalizationgroup equations in terms of the 
ut-o� variable x,
dΓ4

dx
= −3

2
Kd+1Γ

2
4(x), (3.11)

d∆4

dx
= −Kd+1Γ4(x)∆4(x)−

1

6
Kd+1∆

2
4(x). (3.12)The above equations 
an also be obtained in a parquet re-summation s
heme bysumming leading order diagrams up-to in�nite order as shown in �gure 3.1. How-ever the solutions of these equations 
an be written as,

Γ4 =
Γ0
4

1 + 3
2
Kd+1Γ0

4x
,

∆4 =
3Γ4∆

0
4

∆0
4 + (3Γ0

4 −∆0
4)(1 +

3
2
Kd+1Γ0

4x)
−1/3

. (3.13)33



Chapter 3. Weak �rst order transition in quantum paraele
tri
sIn this derivation the 
ontributions from the third order term, i.e. from Pψψψis negle
ted. In a perturbative theory, this term 
ontribute nothing at the �rstorder. It 
ontributions to the higher order. But those 
orre
tions are less divergent
ompared to the 
ontributions 
oming from quarti
 terms. It is to be noted thatthe 
ut-o� variable x 
ontains Γ4 and ∆4. Thus the set of equations (3.13) de�nes
oupled equations for Γ4 and ∆4. They need to be solved self-
onsistently to �ndout their dependen
ies on r and P . From Γ4 and∆4 thus obtained, we 
an 
al
ulatethe �u
tuation re-normalized free energy using the relation,
∂4F

∂P 4
= Γ4 +∆4. (3.14)We need to integrate (with proper boundary 
onditions) the above equation fourtimes with respe
t to P to get an expression for the free energy. Integrating theequation (3.14) on
e, we get

∂3F

∂P 3
=

∫ P

0

(Γ4 +∆4)dP
′

= P (Γ4 +∆4) +

∫ P

0

P ′ ∂

∂P ′ (Γ4 +∆4)dP
′ + c(r). (3.15)Here c(r) is a 
onstant independent of P and 
an be equated to zero using thesymmetry 
onstraint ∂3F/∂P 3|0 = 0. The se
ond term in the right hand side ofthe above equation takes 
are of the P dependen
e of Γ4 and ∆4. To make our
al
ulations simpler, we will negle
t that term at this stage. Before doing so, wemake an estimate of the 
orresponding error. The integral reads as,

∫ P

0

2Kd+1(3Γ4 +∆4)
3P ′2dP ′

6r + [(3Γ4 +∆4)− Kd+1

6
(3Γ4 +∆4)2]P ′2

. (3.16)Here Kd+1 =
1

8π2 in d = 3. In order to make our lowest order perturbation theoryvalid, we 
hoose (3Γ4 + ∆4) ∼ O(10). Thus Kd+1(3Γ4 + ∆4) ∼ O(10−1). The
ontribution from the P -dependen
e of Γ4 and ∆4 to the integral(3.16) be
omes,
Kd+1

3
(3Γ4 +∆4)

3

∫ P

0

P ′2dP ′

6r + (3Γ4 +∆4)P ′2

≈ Kd+1

3
(3Γ4 +∆4)

2P ≈ 10−2(3Γ4 +∆4)P. (3.17)34
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tri
sWe see that, the P -dependen
e of Γ4 and ∆4 
ontributes two order of magnitudeless 
ompared to the other terms in the free energy. Thus we negle
t the P depen-den
e of Γ4 and ∆4 at this stage in 
al
ulating F . Integrating two more times, weget,
∂F

∂P
= rP +

1

3!
(Γ4 +∆4)P

3. (3.18)To obtain a form of F suitable to des
ribe the �rst order transition we need toretain the P dependen
e of Γ4 and ∆4 at this stage and thus,
F =

∫ P

0

(rP ′ +
1

3!
(Γ4 +∆4)P

′3)dP ′

=
1

2
rP 2 +

(Γ4(P ) + ∆4(P ))

4!
P 4

− 1

4!

∫ P

0

P ′4 d

dP ′ (Γ4(P
′) + ∆4(P

′))dP ′. (3.19)To evaluate the above integral, we make the following substitution(using eqn.(3.9))
P 2 =

Λe−x − r
Γ4

2
+ ∆4

6

. (3.20)Contribution from the integral part in the previous equation is given by
− 1

4!

∫ log Λ

r+(
Γ4
2 +

∆4
6 )P2

log(Λ/r)

(

Λe−x − r

(Γ4

2
+ ∆4

6
)

)2

× d

dx
(Γ4(x) + ∆4(x))dx

=
Kd+1

4

∫ log Λ

r+(
Γ4
2 +

∆4
6 )P2

log(Λ/r)

(Λ2e−2x − 2rΛe−x + r2)dx

=
Kd+1

4

(

r

2
(Γ4 +∆4)P

2 − 1

2

(

Γ4

2
+

∆4

6

)2
)

P 4

+r2 log
r

r + (Γ4

2
+ ∆4

6
)P 2

). (3.21)Thus we get the following expression for the free energy at zero temperature
F =

Kd+1

4
r2 log

6r

6r + (3Γ4 +∆4)P 2
+

1

2
rP 2

(

1 +
Kd+1

2

(

Γ4

2
+

∆4

6

))

+P 4

(

Γ4 +∆4

4!
− Kd+1

8

(

Γ4

2
+

∆4

6

)2
)

. (3.22)35
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tri
swhere Γ4 and ∆4 are P -dependent and are to be determined from the set of equa-tions (3.11,3.12). We noti
e that only the following 
ombinations of Γ4 and ∆4appear in all the 
al
ulations,
γ1 = 3Γ4 +∆4, γ2 = Γ4 +∆4. (3.23)Here the bare value of γ2 (γ02)is the 
oe�
ient for the quarti
 term in mean �eldapproximation. On the other hand non-zero polarization enters into the �u
tuationpropagator with a 
oupling 
onstant γ1. In 
ase of γ02 < 0, a mean �eld pi
turerequires an additional |P |6 term with positive 
oe�
ient for the stability of thesystem. However a �u
tuation 
orre
ted s
enario 
an ensure stability withoutsu
h a term, provided γ1 > 0. With the above de�nitions, the set of equations(3.13) be
omes a single self-
onsistent equation for γ1

γ1 =
3Γ0

4

1 + 3
2
Kd+1Γ0

4x

(

1 +
∆0

4

∆0
4 + (3Γ0

4 −∆0
4)(1 +

3
2
Kd+1Γ0

4x)

)

. (3.24)Here x 
ontains γ1 only. Solving the above equation, γ2 
an be found from (eqn.3.12)
dγ2
dx

= −Kd+1

6
γ21 . (3.25)Below γ2 = 0, phase transition in this system will be �rst order. We are interestedin the phase transition near γ2 = 0, where �u
tuation e�e
ts in four point verti
esare important. If we limit ourselves to the region |∆4| < 3Γ4, the leading orderbehavior of γ1 is same as that of Γ4 and is given by

γ1 ≈ 3Γ0
4

1 + 3
2
Kd+1Γ

0
4x

=
3Γ0

4

1 + 3
2
Kd+1Γ0

4 log
6Λ√

6r+γ1P 2

. (3.26)Assuming the bare value Γ0
4 ∼ O(10), so that Γ0

4

4!
< 1 whi
h validates perturbationtheory, gives 6Γ0

4 ∼ O(102). If we de�ne a parameter a = 3
4
Kd+1Γ

0
4, then withinthe validity regime of perturbation theory a ∼ O(10−1). Thus for an wide rangeof γ1 e. g. γ1 ∼ O(1) − O(102), we �nd |a log γ1| < |3Γ

0
4

γ1
|. For small r, γ1 and γ2

36
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tri
s
an be estimated as
γ1 ∼

3Γ0
4

1− a log(γ1P 2)
≈ 3Γ0

4

1− 2a logP
. (3.27)This is essentially a non-self-
onsistent solution for γ1. Variation of γ1 at zerotemperature is shown in �gure 3.2. From the �gure it is visible that, at P = 0be
ause of the quantum 
riti
al �u
tuations there is a strong redu
tion of γ1 fromits bare value and a non-zero P restores it to its bare value. A non-zero polarizationhas similar e�e
ts on the γ2 whi
h leads to a �rst order transition.From the equation (3.25), we get,

γ2 = γ02 + (−9(Γ0
4)

2 +
γ1
3
) (3.28)

= γ02 −
9(Γ0

4)
2Kd+1

6a

(

1− 1

1− 2a logP

) (3.29)where γ02 is the bare value of γ2. Sin
e the 
orre
tions due to self-
onsisten
y
∼ log γ1, the above estimate breaks down near P ∼ exp(1/2a). Ex
ept in thatregime, the non-self-
onsistent result is expe
ted to give good result.
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Figure 3.2: Asymptoti
 evolutions of γ1 with P at T = 0. Parameter values are
hosen as 3Γ0
4 = 10 and a = 0.1 in an arbitrary s
ale.Free energy at zero temperature: Using the asymptoti
 behavior of thefour point verti
es (eqn. (3.27)) and using equation (3.22) de�ning γ̃02 as γ02 −

9(Γ0
4)

2Kd+1

6a
, we 
an write the following asymptoti
 expression for the free energy at37
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tri
szero temperature
F =

Kd+1

4
r2 log

6r

6r + P 2 3Γ0
4

1−2a logP

+
1

2
rP 2

(

1 +
Kd+1

12

6Γ0
4

1− 2a logP

)

+
P 4

4!

(

(

γ̃02 +
Kd+1

6a

(

9(Γ0
4)

2

1− 2a logP

))

− 4!Kd+1

36× 8

(

3Γ0
4

1− 2a logP

)2
)

.(3.30)Here the �rst term ∼ O(r2), hen
e negligible 
ompared to the other terms inthe vi
inity of a quantum 
riti
al point(r → 0). The se
ond term is a standardquadrati
 term with �u
tuation 
orre
tions. The third term, des
ribes the appro-priate physi
s of the problem. The 
oe�
ient of the quarti
 term 
ontains threeterms. First one is a 
onstant and 
an take either positive or negative but smallvalues. Now there is a 
ompetition between the se
ond and the third term. These
ond term tries to make the free energy positive while the third term tries to makeit negative. However unless γ02 is a su�
iently large negative number, 
oe�
ientof the quarti
 term is positive in the parameter regime of our interest.To have a phase transition, the following equation must be satis�ed,
∂F

∂P
= rP +

1

3!
(Γ4 +∆4)P

3 = 0 (3.31)For positive r ≈ 0, the above equation 
an be satis�ed only if Γ4 +∆4 is negative.Corresponding value of the P is given as,
P0 = exp

(

1

2a
+

9Kd+1(Γ
0
4)

2

12aγ̃02

)

= exp
1

2a
(1 + µ) (3.32)with µ =

9Kd+1(Γ
0
4)

2

6γ02
. Sin
e |µ| >> 1, the parameter γ̃02 > 0 
orresponds to thevery large values of P0. Sin
e the s
heme presented here, is valid for small P , weex
lude this possibility in this dis
ussion. On the other hand, γ̃02 < 0 
orrespondsto the �nite value of P0 and there is a possibility of a �rst order transition at

r = r0 > 0. As r ∼ P 2, r0 ∼ exp 1
a
(1 + µ). This is in sharp 
ontrast to the mean-�eld predi
tion. In the later 
ase a dis
ontinuity in the order parameter is predi
tedto be ∼ γ02 = |u + v|, while su
h dis
ontinuity has a non-analyti
 dependen
e on

γ02 in a �u
tuation indu
ed and order parameter limited transition in our theory.If we 
onsider the Gaussian thermal �u
tuations near the instability point and38
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tri
snegle
t the temperature dependen
ies of the verti
es, then the thermal 
orre
tionsto r and P 2 ∼ T 2 and P 2
0 should vanish above a temperature T ∼ exp 1

2a
(1 + µ).However the �u
tuation 
ut-o� for the renormalized verti
es and hen
e the formof �u
tuation re-normalized free energy should get 
hanged at �nite temperature.In the next se
tion we will dis
uss the �nite temperature 
ase in detail.3.4 Flu
tuation 
orre
tions to the free energy at�nite temperature

+=Figure 3.3: Diagrammati
 representation of gap renormalization up-to one loop.Here we 
onsider the system to be at a low but non-zero temperature as wellas near a mean �eld quantum 
riti
al point with a zero temperature negative gap(i. e. r = −r0, r0 ≥ 0). Near r0 = 0, �u
tuation 
orre
tions at �nite temperatureto it leads to
r(T ) = −r0 +K3

(u

2
+
v

6

)

T 2. (3.33)Here the thermal �u
tuations are 
onsidered up-to the Gaussian level as done inthe 
hapter 2. Above expression for r(T ) without any 
orre
tion to four pointverti
es predi
ts a se
ond order transition with a transition temperature Tc ∼ √
r0for u + v > 0. Again we will look at the 
orre
tion to the four point verti
es inthe limit |u + v| → 0 but at non-zero temperature. Using the same pro
edure asused for the zero temperature 
ase, we now dedu
e the parquet equations for thefour point verti
es and hen
e the free energy at �nite temperature. At non-zerotemperature, �u
tuation 
orre
tions to the four point verti
es takes the form

δu ∼ −u2T
∫ Λ

0

d3qG2(q, ωn = 0)

∼ −u2K3
T

(r(T ) + (u/2 + v/6)P 2)
1
2

, (3.34)39
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tri
sin three dimension. Near the 
riti
al point, r(T ) ∼ r +K3(u/2 + v/6)T 2. Thus at�nite temperature, we 
an de�ne �nite temperature �u
tuation 
ut-o� as
xT =

T

(r + (u/2 + v/6)(P 2 +K3T 2))
1
2

. (3.35)In this 
ase, �u
tuation 
orre
tions to the free energy in terms of γ1 and γ2 (equa-tion 3.19) be
omes,
Ifluc = − 1

4!

∫ xT (P )

xT (0)

(

T 2/x2 − r

γ1/6
−K3T

2

)2
dγ2(x)

dx
dx

=
1

4
[T [(r +

γ1
6
K3T

2)
3
2 − (r +

γ1
6
(P 2 +K3T

2))
3
2 ]

+r2[(r +
γ1
6
K3T

2)−
1
2 − (r +

γ1
6
(P 2 +K3T

2))−
1
2 ]

+T 4γ22 [(r +
γ1
6
K3T

2)−
1
2 − (r +

γ1
6
(P 2 +K3T

2))−
1
2 ]

−Tr[(r + γ1
6
K3T

2)
1
2 − (r +

γ1
6
(P 2 +K3T

2))
1
2 ]

+2rT 2γ2[(r +
γ1
6
K3T

2)−
1
2 − (r +

γ1
6
(P 2 +K3T

2))−
1
2 ]

+T 4γ2[(r +
γ1
6
K3T

2)−
1
2 − (r +

γ1
6
(P 2 +K3T

2))−
1
2 ]]. (3.36)Here xT (P ) = T

(r+
γ1
6
(P 2+K3T 2))

1
2
is used as polarization dependent �u
tuation 
ut-o� at non-zero temperature. In performing the above integral, xT -dependen
e of

Γ4 and ∆4 are negle
ted as that would lead to sub leading 
orre
tions. For thesystems near r → 0 limit, retaining only the terms lowest order in T and r, thefree energy 
an be trun
ated as
F =

1

2
rP 2 + P 4

(

Γ4 +∆4

4!

)

+
T

4
[

(

r +K3(
Γ4

2
+

∆4

6
)T 2

)
3
2

−
(

r + (
Γ4

2
+

∆4

6
)(P 2 +K3T

2)

)
3
2

]. (3.37)For small r and T , the third term is of the O(T 4), hen
e is negligible. Thus thefree energy in the leading order 
an be further trun
ated as
F =

r

2
P 2 + P 4

(

Γ4 +∆4

4!

)

− T

4

(

Γ4

2
+

∆4

6

)
3
2

P 3. (3.38)40



Chapter 3. Weak �rst order transition in quantum paraele
tri
sIn the above equation P ≡ |~P | and the 
ubi
 term whi
h is a result of small Pexpansion, does not violate the symmetry of the problem. A �nite temperatureversion of the equation (3.27), i.e. the asymptoti
 form of the self 
onsistentequation for γ1, one of the important 
ombinations of the four point verti
es reads,
γ1 =

6Γ0
4

1− 6aT
(γ1(P 2+K3T 2))1/2

. (3.39)Non-zero solution of the above equation tells
γ1 =

18a2T 2 +K3Γ
0
4T

2 + Γ0
4P

2

P 2 +K3T 2
± 6aT

√

9a2T 2 + Γ0
4P

2 + Γ0
4K3T 2

P 2 +K3T 2
. (3.40)In deriving the equations at �nite temperature we have limited ourselves in thelow temperature region i.e. a2T 4 is negle
ted 
ompared to K3T

2. Moreover γ1should be strongly suppressed due to 
riti
al �u
tuations at zero P and should gotowards its bare value with in
reasing P . Hen
e the part is remaining,
γ1 ≈ Γ0

4 −
6a
√

Γ0
4T√

P 2 +K3T 2
. (3.41)Asymptoti
 evolution of γ1 with P for two di�erent temperature is shown in �gure3.4. In this �gure we �nd that qualitative nature of the 
urve is similar to thatof the zero temperature 
ase ex
ept that at P = 0, redu
tion of γ1 at a �nitetemperature is lower than that of it at a zero temperature. Sin
e at a �nitetemperature the quantum 
riti
al �u
tuations are suppressed, this is an expe
tedresult.However from equation (3.28) we get

γ2 = γ02 +

(

2Γ0
4

3
+

2a
√

Γ0
4T√

P 2 +K3T 2

)

. (3.42)Free energy at �nite temperature: Again using the asymptoti
 behavior ofthe four point verti
es (3.41) and using equation (3.38), we 
an write the following
41
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Figure 3.4: Asymptoti
 evolution of γ1 with P at T 6= 0. Two 
urves are drawn attwo di�erent temperatures with Γ0
4 = 10/3, a = 0.1 and Kd = 0.1.asymptoti
 expression for the free energy at non zero temperature

F =
r(T )

2
P 2 +

P 4

4!

(

γ02 +

(

2Γ0
4

3
+

2a
√

Γ0
4T√

P 2 +K3T 2

))

−T
4
P 3

(

Γ0
4

6
− a

√

Γ0
4T√

P 2 +K3T 2

)
3
2

. (3.43)Gap renormalization up-to one loop(�gure 3.3) at �nite temperature near r = 0,tells,
r(T ) = −r0 +K3

(

Γ0
4

6
− a

√

Γ0
4T√

P 2 +K3T 2

)

T 2. (3.44)Negle
ting the term of O(T−3) in the 
oe�
ient of P 2, the expression for freeenergy be
omes
F =

1

2

(

−r0 +
K3Γ

0
4

6
T 2

)

P 2

+
1

4!
P 4

(

γ02 +

(

2Γ0
4

3
+

2a
√

Γ0
4T√

P 2 +K3T 2

))

−Γ0
4

T

4
P 3

(

1

6
− 3aT

2
√

Γ0
4(P

2 +K3T 2)

)

. (3.45)42



Chapter 3. Weak �rst order transition in quantum paraele
tri
sIn the limit P 2 >> K3T
2, it takes the form1

F =
1

2

(

−r0 +
K3Γ

0
4

6
T 2 +

3aT 2
√

Γ0
4

2

)

P 2

− T

24
P 3

(

Γ0
4 −

a

2

√

Γ0
4

)

+

(

2Γ0
4

3
+ γ02
4!

)

P 4. (3.46)Above equation tells that, the solution of the equation ∂F/∂P = 0 will result anonzero value of P0 ∼ T0, even if γ02 > 0. Here T0 is the se
ond order transitiontemperature for the mean �eld theory. Sin
e near quantum 
riti
al point, T0 ∼
√
r0, P0 is also ∼ √

r0. If we 
ompare this results with that of the zero temperature
ase, we see that in the �nite temperature 
ase, the dis
ontinuity in the orderparameter near the transition point ∼ √
r0 while it is independent of r0 in thezero temperature 
ase. Sin
e r0 is the smallest s
ale(near mean �eld quantum
riti
al point, r0 → 0) in this system, �rst order transition as a result of the orderparameter �u
tuations at �nite temperature near the mean �eld quantum 
riti
alpoint is weaker than that of the zero temperature 
ase. This result is 
onsistentwith some experimental fa
t as reported in [37℄ and established the importan
e ofthe quantum 
riti
al �u
tuations in this regards.3.5 Dis
ussionsO

urren
e of �rst order transition due to 
oupling between the order parameter�u
tuations and soft modes is a well studied problem in many 
lassi
al systems[42,43, 44, 45℄ and re
ently studied in 
ontext of quantum phase transitions in ele
-troni
 systems[46℄. To 
apture the basi
 physi
s near a weak �rst order transitions,one needs to study the e�e
ts of �u
tuations on the proper four point verti
es. Bareperturbation 
al
ulations in this system show vertex 
orre
tions to be logarithmi-
ally singular at zero temperature and with zero polarization in three dimensionsdue to quantum 
riti
al �u
tuations. To in
lude the e�e
ts of the singular 
ontri-butions, we use the lowest order renormalization group equations to derive a set1This assumption does not 
ontradi
t K3T

2 
ontribution to the gap renormalization. Su
h
ontribution appeared with the assumption that the lowest non-zero Matsubara frequen
y, i.e.
2πT >

√

γ1

6
P . This assumption holds good even if P 2 >> K3T

2. 43



Chapter 3. Weak �rst order transition in quantum paraele
tri
sof re
ursion relations for four point verti
es. Moreover to stabilize the system anon-zero polarization is assumed. Here the re-normalized verti
es 
ru
ially dependon the non-zero polarization. Using these relations, the expressions for the free en-ergy both at zero temperature and at �nite temperature are derived. The relevantquantities like transition temperature and the dis
ontinuity in the order parameterat the transition point turn out to be small but �nite. We mainly 
on
entrate onthe phenomena near a quantum 
riti
al point predi
ted by a mean �eld theory.We found stronger possibility of �rst order transitions at T = 0 than at any �nitetemperature transition near quantum 
riti
al point whi
h is in a

ord with re
entexperimental �nding. From our analysis it is 
lear that this fa
t 
an be attributedto the 
riti
al �u
tuations near a quantum 
riti
al point. It is found that a �nitepolarization is required to suppress the e�e
ts of the 
riti
al �u
tuations. Sin
e thee�e
ts of quantum 
riti
al �u
tuations get redu
ed at a �nite temperature, a lowervalue is su�
ient to stabilize the system. Thus the phenomena observed in theexperiment[37℄ is 
learly a 
onsequen
e of the quantum 
riti
al �u
tuations. Apartfrom that, unlike the standard renormalization group approa
h, whi
h 
onsiders�rst order transition as just the inability of the system to rea
h an unstable �xedpoint, the present approa
h makes qualitative predi
tions about the magnitudeof the dis
ontinuity in order-parameter near the transition point. Similar phe-nomena o

urs in low Tc itinerant magnets be
ause of the 
oupling between orderparameter and other soft modes[47℄. The e�e
ts of �u
tuations in the dis
ontinu-ity in order-parameter has been estimated earlier using di�erent theoreti
al set up,namely loop 
orre
tions to the free energy, hen
e an non-analyti
 Landau expan-sion. In those works the o

urren
e of �rst order transition at low temperature isfound to be more sus
eptible to the e�e
ts of generi
 s
ale invarian
e than their
lassi
al 
ounterparts. We have 
onsidered the 
onstant pressure 
ase only, wherestrain �u
tuations are 
ompletely integrated out. One 
an also 
onsider a situationwhere system volume is 
onstant[48℄ and a proper quantum generalization of su
h
ase should 
ertainly be addressed.
44



4Quantum 
riti
ality in magneti
 quantumparaele
tri
s
4.1 Introdu
tionIn this 
hapter we fo
us on some novel behavior of EuTiO3 at low temperature.This material 
an 
ertainly be 
onsidered as a good addition in the list of quan-tum paraele
tri
 materials exhibiting ma
ros
opi
 quantum phenomena in ferro-ele
tri
s and multiferroi
s. As far as the stru
ture and the gross features of thestati
 diele
tri
 behavior are 
on
erned, this material is similar to other quantumparaele
tri
s with perovskite stru
ture, like SrTiO3, KTaO3, et
. In the studyof quantum 
riti
ality in ferroele
tri
s, EuTiO3 
ertainly adds a new dimension.This material 
ontains Eu ions with spin 7/2, and undergoes anti-ferromagneti
order at TN ∼ 5.3K[49℄. As one lowers the temperature a sharp de
rease in thestati
 diele
tri
 sus
eptibility is observed below the Neel temperature. Moreoverpresen
e of an external magneti
 �eld redu
es the suppression of the diele
tri

onstant by Neel order. At a 
riti
al value of the external magneti
 �eld ∼ 1Tesla,whi
h suppresses the e�e
ts of the Neel order 
ompletely, the stati
 diele
tri
 
on-stant of this material attains a quantum paraele
tri
 behavior, with ǫ0 ∼ O(102)at zero temperature[50℄. The diele
tri
 sus
eptibility starts getting saturated at a
rossover temperature (de�ned in 
hapter 2 and ref. [23℄) ∼ 30K. An experimen-tally observed diele
tri
 behavior of this material is shown in �gure 4.1. Thus itis almost evident that the magneti
 order 
ouples to the polarization �u
tuationsin this material. In previous theoreti
al attempts, a mean �eld theory with su
h45



Chapter 4. Quantum 
riti
ality in magneti
 quantum paraele
tri
sa s
enario[51, 52℄ was found quite su

essful in des
ribing many aspe
ts of thediele
tri
 properties of this system. Like other quantum paraele
tri
s, ele
tri
 po-larization in this material is due to the variations of Ti-O bond-lengths from theirequilibrium values. However the 
olle
tive behavior of su
h intera
ting stret
hedbonds does not lead to a ferroele
tri
 state even at zero temperature. Let us nowanalyze the above experimental �ndings in 
ontext of quantum phase transition inferroele
tri
s as dis
ussed in our se
ond 
hapter. In that line of thought, we seethat EuTiO3 has a mu
h lower value of stati
 diele
tri
 
onstant at low tempera-ture than other quantum paraele
tri
s and thus it is far away from a ferroele
tri
quantum 
riti
al point than them. However this material 
an be tuned to a fer-roele
tri
 quantum 
riti
al point by 
hanging some non-thermal parameter, su
has repla
ement of a 
ertain amount of O16 by O18. On the other hand its Neeltemperature is low enough to 
onsider it as near a anti-ferro magneti
 quantum
riti
al point. Thus it is quite sensible to spe
ulate that this material 
an be a goodplay ground for observing an interplay of two di�erent kind of 
riti
al �u
tuationsat low temperature.In this 
hapter we 
onsider a non-thermal parameter tuned EuTiO3 near both

Figure 4.1: Variation of the stati
 diele
tri
 
onstant with temperature in EuTiO3as found in the experiment at di�erent values of the uniform external magneti
�eld. 46



Chapter 4. Quantum 
riti
ality in magneti
 quantum paraele
tri
sferroele
tri
 and anti-ferromagneti
 quantum 
riti
al points. The ferroele
tri
 subsystem is 
onsidered as displa
ive type, i.e. 
orresponding order parameter (~φ)�u
tuations are represented by the �u
tuations in two transverse opti
 bran
hes.Ferroele
tri
 transition in this 
ase is due to the softening of the opti
 phonons atthe zone 
enter. The e�e
ts of dipolar intera
tion is 
onsidered as the sti�ening oflongitudinal bran
h, and thus longitudinal �u
tuations are not taken into a

ount.Magneti
 se
tor, i.e. the 
olle
tion of intera
ting Eu spins (~S) in a 
ubi
 perovskiteenvironment and in absen
e of external magneti
 �eld, is represented by Heisenberganti-ferromagneti
 order parameter (~m) whi
h is a ve
tor spin with three 
ompo-nents with short range intera
tions. In presen
e of an external magneti
 �eld aferromagneti
 
omponent will grow and will 
ompete with the anti-ferromagneti

omponent to restore the quantum paraele
tri
 behavior. Following the previoustheoreti
al works[51, 52℄, we 
onsider a 
oupling of the form −w
2
|~φ|2|~S|2 with 
ou-pling 
onstant w > 0, between them and fo
us on the dependen
ies of the stati
diele
tri
 sus
eptibility on temperature and external magneti
 �eld below TN . Inearlier works whi
h was dire
ted towards explaining experimental �ndings in thismaterial, the e�e
ts of magneto-ele
tri
 
oupling on the thermodynami
 behav-ior of this material has been des
ribed at o�-
riti
al regime without 
onsideringquantum �u
tuations. No attention has been paid to the possible quantum 
riti
albehavior of this system. We will try to explore the stati
 diele
tri
 behavior in thismaterial near both the anti-ferromagneti
 quantum 
riti
al point and ferroele
tri
quantum 
riti
al point regime. A s
heme for systemati
 analysis of quantum �u
-tuations in this regime is proposed and the possibility of realizing su
h a limit inexperiments will be dis
ussed in the following se
tions.4.2 Mean �eld theoryWe 
onsider this material in the vi
inity of both anti-ferromagneti
 and ferroele
-tri
 quantum 
riti
al points. In this regime both the magneti
 �u
tuations and theparaele
tri
 �u
tuations 
an be des
ribed by a 
ontinuum theory. To study its di-ele
tri
 properties in this regime, a Landau-Ginsburg-Wilson a
tion for a magneti
quantum paraele
tri
 system, in terms of the sub-latti
e magnetization ~m and the

47



Chapter 4. Quantum 
riti
ality in magneti
 quantum paraele
tri
sele
tri
 polarization ~φ (soft mode 
oordinates) 
an be written in the following form,
A =

∫

ddx

∫ β

0

dτ [
re
2
(~φ · ~φ) + (∂τ ~φ)

2 +
ce
2
(∇ · ~φ)2 + u

2
(~φ2)2

+
rm
2
(~m · ~m) + (∂τ ~m− i~h× ~m)2 +

cm
2
(∇ · ~m)2 +

v

2
(~m2)2

−w
2
|~φ|2|~m|2]. (4.1)Here τ is the imaginary time, β is the inverse temperature, and ~h is the appliedexternal uniform magneti
 �eld. Above a
tion 
ontains a diele
tri
 part whi
his identi
al to one used in our study of quantum 
riti
ality in ferroele
tri
s inthe 
hapter 2. The magneti
 part of the a
tion is derived with the 
onsidera-tion of small ferro-magneti
 
omponent whi
h 
an be integrated out, as well asthe bipartite stru
ture of the EuTiO3 latti
e that supports a Neel order belowthe transition point. The detailed derivation of the anti-ferro magneti
 part isgiven in referen
e [5℄. In three dimension topologi
al terms asso
iated with quan-tum anti-ferromagneti
 �u
tuations are not important and hen
e negle
ted. The
oupling between the staggered-magnetization and the uniform magneti
 �eld hassome important 
onsequen
es and hen
e its origin deserves some 
omments. Ata mi
ros
opi
 level, an uniform magneti
 �eld 
ouples only to the uniform 
om-ponent of a Heisenberg spin. If we invoke a 
ontinuum des
ription and integrateout the uniform 
omponent with a 
onstraint of vanishing s
alar produ
t betweenthe uniform and the staggered 
omponents, su
h term results. Here re and rm arethe non-thermal parameters whi
h 
an be tuned to zero to have ferroele
tri
 andanti-ferromagneti
 instabilities respe
tively. The 
oupling 
onstants of the quarti
terms are positive, i. e. u, v > 0, to ensure the stability of the system. Sin
e ina quantum pi
ture, stati
s and dynami
s are 
oupled, an applied magneti
 �eldindu
ed pre
ession of the magneti
 ve
tors also play an important role in the studyof phase transitions in quantum magnets. Now we start our dis
ussions with thefollowing mean �eld approximations.
~m(~q, ω) = m0ẑδ(~q)δ(ω) + ~m

′

(~q, ω),

< ~m
′

> = 0, < ~φ >= 0 (4.2)
48



Chapter 4. Quantum 
riti
ality in magneti
 quantum paraele
tri
sHere ~m(~q, ω) is the Fourier transform of ~m(~x, τ). The above approximations, alongwith the quasi-harmoni
 de
oupling of the quarti
 terms as done in 
hapter 2, leadto the following mean �eld a
tion,
AMF =

rm
2
m2

0 +
v

2
m4

0

+

∫

ddq
1

β

∑

n

[(
re
2
+ ω2

n +
ceq

2

2
+
u

2
λe)(~φ · ~φ) + (ωn~m

′ − i~h× ~m
′

)2

+(
cmq

2

2
+
rm
2

+
v

2
(2m2

0 + λm))(~m
′ · ~m′

)

−w
2
(m2

0 + ~m
′ · ~m′

)~φ · ~φ]. (4.3)In the above expression we use the following notations,
~X · ~X = ~A(~q, ωn) · ~A(−~q, ωn),

λ(e,m) =

∫

ddq
1

β

∑

n

χ(e,m)(~q, ωn),

χe(~q, ωn) = < ~φ(~q, ωn) · ~φ(−~q, ωn) >,
χm(~q, ωn) = < ~m

′

(~q, ωn) · ~m
′

(−~q, ωn) > . (4.4)Zero magneti
 �eld (h = 0): In a zero external magneti
 �eld, there is no ferro-magneti
 
omponent and there is a 
ompetition between paraele
tri
 �u
tuationsand anti-ferromagneti
 �u
tuations. The self 
onsistent equations for polarizationand magneti
 �u
tuations are,
χe(~q, ωn) = < ~φ(~q, ωn) · ~φ(−~q, ωn) >

=
1

re
2
+ ceq2

2
+ ω2

n − w
2
(m2

0 + λm) +
u
2
λe
, (4.5)and

χm(~q, ωn) = < ~m
′

(~q, ωn) · ~m
′

(−~q, ωn) >

=
1

rm
2
+ cmq2

2
+ ω2

n − w
2
λe +

v
2
(2m2

0 + λm)
(4.6)respe
tively. The above two equations should be supplemented by the followingexpression for the magneti
 free energy (within one loop 
orre
tion) to determine49
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riti
ality in magneti
 quantum paraele
tri
s
m0 in the magneti
ally ordered phase,

fm =
rm
2
(~m0)

2 +
v

2
|~m0|4 −

1

2
Tr log(χm(~q, ωn)). (4.7)We need to know m0, λe, andλm as a fun
tion of the temperature at various valuesof the system parameters, using equations (4.5-4.7). The extremization of fm withrespe
t to m0 gives,

rmm0 + 2vm3
0 + vm0

∫

ddq
1

β

∑

n

χm(~q, ωn) = 0. (4.8)Non-zero solution of m0 reads as,
m2

0 =
−rm − vλm

2v
. (4.9)Here we emphasize that at the 
riti
al value of the magneti
 �eld, where themagneto-ele
tri
 
oupling is believed to be very small, the stati
 diele
tri
 
on-stant for EuTiO3 rea
hes a value O(102). Thus a

ording to the 
lassi�
ations ofvarious quantum paraele
tri
s the ferroele
tri
 subsystem falls into the 
ategoryof the gaped quantum paraele
tri
s, and is mu
h more away from the ferroele
tri
quantum 
riti
al point than SrTiO3. Su
h a diele
tri
 state is 
hara
terized bya 
rossover temperature T ∗ ∼ √

re as explained in 
hapter 2. For pure EuTiO3,we see that the ferroele
tri
 
rossover temperature T ∗ is mu
h higher than TN ,the Neel temperature. Low TN implies that, the system is in the vi
inity of anti-ferromagneti
 quantum 
riti
al point. Owing to the large T ∗, λe the �u
tuation
orre
tions to the ferroele
tri
 gap is temperature independent. Thus the temper-ature dependen
e in the stati
 diele
tri
 
onstant at low temperature 
omes onlyfrom the magneti
 �u
tuations through magneto-ele
tri
 
oupling. We 
onsiderthe temperature dependen
e of λm near as well as away from the magneti
 
rit-i
al point. Near a anti-ferro magneti
 quantum 
riti
al point momentum 
ut-o�be
omes temperature dependent. Sin
e in this material the dispersion relation foranti-ferromagneti
 �u
tuations is similar to that of the ferroele
tri
 one the mo-mentum 
ut-o� at the 
riti
al point also ∼ T . Thus within a non-self 
onsistent
50



Chapter 4. Quantum 
riti
ality in magneti
 quantum paraele
tri
sestimate we get,
λm ∼







T
∫ T/

√
cm

0
q2dq
cmq2

= c
− 3

2
m T 2 ∼ T 2 near AFM-QCP

T
∫ Λ

0
q2dq
rm

= TΛ3

rm
∼ T away from QCP .

(4.10)Due to the magneto-ele
tri
 
oupling in this material, the above temperature de-penden
e of λm enters into the stati
 diele
tri
 
onstant and results in the followingtemperature dependen
e of inverse stati
 diele
tri
 
onstant
χ−1
e (0, 0) ∼







r̃e − wc
− 3

2
m T 2 (nearAFM−QCP)

r̃e − wΛ3

rm
T (largeTN).

(4.11)Here r̃e is the re-normalized value of re whi
h in
ludes the temperature independent
ontribution from paraele
tri
 �u
tuations. Thus we see that, diele
tri
 measure-ments 
an be 
onsidered as an indire
t thermodynami
 probe for magneti
 systemsin a magneti
 quantum paraele
tri
s. It is to be noted that unlike the similar dis-
ussions in our se
ond 
hapter, we do not equate cm to unity here. We will see inthe subsequent dis
ussions that along with quarti
 
ouplings and magneto-ele
tri

ouplings, cm/ce will be an important parameter to determine the dominan
e be-tween the magneti
 �u
tuations and the paraele
tri
 �u
tuations to 
ontribute tothe stati
 diele
tri
 sus
eptibility of this material in 
ertain appropriate 
ir
um-stan
es. In next subse
tion we will 
onsider 
hange in the diele
tri
 behavior inthis system in 
ase of �eld indu
ed transition in the magneti
 subsystem.Non-zero magneti
 �eld (h 6= 0): Non-zero h modi�es anti-ferromagneti
order, develops a ferromagneti
 order along the dire
tion of the �eld and the re-sulting magneti
 
on�guration be
omes 
anted[5℄. Firstly it is apparent from ourstarting a
tion (eqn.(4.1)) that in 
ase of a non zero h along the z-dire
tion, anti-ferromagneti
 gap in the transverse plane (with respe
t to the �eld) 
hanges to,
rm ∼ rm(0)− h2. (4.12)Where rm(0) < 0 is the value of rm at zero magneti
 �eld. Thus h redu
es thegap in the transverse dire
tions. In the regime rm < 0 and |rm| > h2, m0 is still
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riti
ality in magneti
 quantum paraele
tri
snon-zero and it in
reases with in
reasing h in the following manner,
m0 ∼ (h2 − rm(0))

1
2 ∼ (h− h0)

1
2 , (4.13)where h0 =

√

rm(0). But the ferromagneti
 order along the dire
tion along the�eld grows more rapidly with applied magneti
 �eld as follows,
mfm = −∂F

∂h
∼ h(h2 − rm(0))

v
. (4.14)A s
hemati
 phase diagram for �eld indu
ed transition in the magneti
 subsystemis shown in �gure (4.2). In our 
ase rm(0) is negative and we 
onsider the ex-ternal magneti
 �eld indu
ed modi�
ation of the anti-ferromagneti
 -ground stateto a 
anted state with partial ferromagneti
 order and its e�e
t on the stati
 di-ele
tri
 sus
eptibility. An experimentally observed fa
t is that the in
rease in anti-ferromagneti
 
omponent results in the suppression of diele
tri
 
onstant while theroll of the uniform 
omponent is just opposite to it. If we assume both the 
om-ponents 
ouple to the polarization in the same fashion, we 
an make an estimateof the 
riti
al value of the magneti
 �eld (hc) whi
h exa
tly nulli�es the e�e
ts ofmagneti
 order on the stati
 diele
tri
 
onstant, in the following way. Using eqn.(4.13) and (4.14) we get,

(h2c − rm(0)) =
1

c
× h2c(h

2
c − rm(0))

2

⇒ hc =
rm(0)±

√

r2m(0) + 4c

2
. (4.15)Where c is a non-universal 
onstant and so is hc. Thus at rm(0) = 0 i. e. atanti-ferromagneti
 quantum 
riti
al point, hc ∼ √

c. Apart from this, externalmagneti
 �eld has one more e�e
t on quantum 
riti
ality. In 
ase of �eld indu
edtransition, the �nite temperature behavior near quantum 
riti
al point will alsobe di�erent. If we look ba
k the a
tion(4.1), we see that the magneti
 �eld addsa new dynami
 term ∼ −i~h × ~m
′ · ∂τ ~m′ whi
h is linear in ωn. Thus the dynami
exponent z = 2 and the temperature dependent momentum 
ut-o� for magneti
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Canted stateh

r

Quantum paramagnetNeel order

0 m (0)Figure 4.2: Figure shows the s
hemati
 phase diagram for a �eld indu
ed transitionin insulating Heisenberg anti-ferromagnet at zero temperature. At h = 0, r ≤ 0indi
ates a Neel order and h 6= 0, r < 0 region represents Canted state with bothferromagneti
 and anti-ferromagneti
 order[5℄.ex
itations Λ ∼
√

T
hcm

in this 
ase. For small h, i. e. when mfm << m0,
λm ∼ T

∫

√
T/hcm

0

q2dq

cmq2
= c

− 3
2

m h−
1
2T 3/2. (4.16)Thus one would expe
t a T 3/2 
ontribution, from the magneti
 subsystem to theinverse stati
 diele
tri
 sus
eptibility at low temperature near anti-ferromagneti
quantum 
riti
al point and

χ−1
e (0, 0) ∼ r̃e − wλm = r̃e − wc

− 3
2

m h−
1
2T 3/2. (4.17)Here we assume that the applied �eld is small enough to indu
e a meta-ele
tri
transition.Near ferroele
tri
 quantum 
riti
al point: So far, we have 
onsidered thediele
tri
 subsystem as a spe
tator with a temperature independent diele
tri
 sus-
eptibility at low temperature. However, one 
an make T ∗ 
loser or smaller than

TN through doping. A generi
 possibility is repla
ing O16 by O18 in EuTiO3, asis done in 
ase of SrTiO3[53℄. Su
h a doping 
an 
reate a redu
ed 
rossover tem-perature T̃ ∗(x) ∼ (1 − x)
1
2T ∗, (where x is the impurity 
on
entration) and movethe system towards ferroele
tri
 quantum 
riti
al point without a�e
ting the mag-53
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tri
sneti
 subsystem. At �nite temperature near ferroele
tri
 quantum 
riti
al point,dipolar 
ontribution to the inverse stati
 diele
tri
 
onstant is ∼ uc
− 3

2
e T 2 whi
hwill 
ompete with negative 
ontribution (∼ −T ν , ν = (1, 2, 3/2)), 
oming fromthe 
oupling with magneti
 subsystem. If we assume that these two quantum 
rit-i
al point do not a�e
t ea
h other, then 
onsidering the leading order temperaturedependen
e to the stati
 diele
tri
 sus
eptibility, we 
an write,

χ−1
e = α + γeT

2 − γνT
ν . (4.18)Where α, γe, γν with γe, γν > 0 are 
onstant whi
h varies from system to systemand γe and γν are proportional to uc− 3

2
e and w respe
tively and γν for di�erentvalues of ν is given as follows

γν ∼



















w Λ3

rm
for ν = 1

wc
− 3

2
m h−

1
2 for ν = 3/2

wc
− 3

2
m for ν = 2.

(4.19)Among all these values, ex
ept γ3/2 other γνs are �xed by system parameters and
an not be 
ontrolled externally. Sin
e γ3/2 depends on the external magneti
�eld, the temperature s
ale up-to whi
h a T 3/2 behavior of the diele
tri
 sus
ep-tibility should be observed is also depends on it and 
an be tuned externally inan experimental situation. However for ν = 1 or 3/2, the temperature dependen
eof stati
 diele
tri
 sus
eptibility at low temperature will be dominated by anti-ferromagneti
 quantum 
riti
al point with (1/T ν in
rease) and there will be amaxima at a temperature Tmax = ( 2γe
νγν

)
1

ν−2 as shown in �gure 4.3. For ν = 2,there will be a 
ompetition between anti-ferromagneti
 quantum 
riti
al point andferroele
tri
 quantum 
riti
al point and depending on the values of γ2/γe an anti-ferromagneti
 quantum 
riti
al point dominated behavior with 1/T 2 in
rease or aferroele
tri
 quantum 
riti
al point dominated behavior with 1/T 2 de
rease 
an befound in the stati
 diele
tri
 
onstant as shown in the �gure 4.4.
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 quantum paraele
tri
s4.3 Dis
ussionIn this work we presented a mean �eld theory to dis
uss the temperature andthe magneti
 �eld dependen
e of the stati
 diele
tri
 sus
eptibility of a magneti
quantum paraele
tri
 at low temperature. In this material anti-ferromagneti
 �u
-tuations are 
oupled to the polarization �u
tuations and their interplay 
an leadto many interesting thermodynami
 
onsequen
es when some non-thermal 
ontrolparameters of both �u
tuations are tuned to near 
riti
al values. We fo
us on thebehavior of the system in the vi
inity of two su
h quantum 
riti
al points both inabsen
e and in presen
e of an external magneti
 �eld. Based on s
aling argumentnear quantum 
riti
al points, we predi
t that there is a possibility that the lowtemperature suppression of the stati
 diele
tri
 sus
eptibility due to magneti
 order
an be 
ompensated by polarization �u
tuations and the stati
 diele
tri
 sus
epti-bility would take a 1/T 2 form as predi
ted for quantum 
riti
al ferroele
tri
s[23℄.On the other hand be
ause of magneto-ele
tri
 
oupling there is a possibility ofnew power law behavior of the stati
 diele
tri
 sus
eptibility in presen
e of an ex-ternal magneti
 �eld and is predi
ted to be 1/T 3/2 in this 
ase. At present, up-toour knowledge, there is no report on experimental investigations on the simultane-ous e�e
ts of two su
h quantum 
riti
al points. Hen
e �tting some experimentaldata through the numeri
al solutions of self-
onsistent equations is not tried here.Rather possible new features in this multi-ferroi
 material near various quantum
riti
al points are explored. Moreover this system, in many aspe
ts shares sim-ilarity with the systems where anti-ferromagneti
 order parameter is 
oupled tosuper
ondu
tivity[54℄. Thus apart from being important in their own rights, fur-ther studies in this material 
an be bene�
ial to other systems and of-
ourse the�eld of quantum 
riti
al phenomena in solids in general.
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5Disorder in quantum paraele
tri
s
5.1 Introdu
tionIn this 
hapter we fo
us on the e�e
ts of disorder in quantum 
riti
al paraele
tri
s.In previous 
hapters we developed a theoreti
al set-up for su
h materials whi
hshares many similarities with systems like itinerant magnets and other strongly
orrelated systems near a quantum phase transition. However all those dis
us-sions were devoted to pure systems where e�e
ts due to disorder were 
ompletelynegle
ted. It is quite justi�ed to spe
ulate that like other systems with whi
h aquantum 
riti
al paraele
tri
 shares many similarities, 
an show many disorderindu
ed novel features whi
h are beyond the realm of theory of pure systems. Wefollow the re
ent progress in the understanding of quantum phase transitions instrongly 
orrelated systems with disorder[55, 56, 58, 47℄ and make an attempt todevelop a theory of disordered quantum 
riti
al paraele
tri
s. We restri
ts thedis
ussions to the 
ase of quen
hed disorder of random Tc type, i.e. the disorderparameter 
ouples to the energy density and is frozen in time. Relevan
y of a par-ti
ular type of disorder 
an be tasted using Harris 
riteria whi
h was introdu
edin the �rst 
hapter. This 
riteria tells us that the kind of disorder we 
onsiderhere 
an destroy a quantum 
riti
al point of a pure system if ν < 2

d+z
. Here ν, d,and z are the 
orrelation length exponent, dimensionality of the system and thedynami
 s
aling exponent respe
tively. In 
ase of a paraele
tri
 near a quantum
riti
al point, d = 3 and z = 1 and a mean �eld theory predi
ts ν = 1/2. Thus a
-
ording to the Harris 
riteria this parti
ular type of disorder is marginally relevantfor this system and 
an not be negle
ted. This ne
essitates a theoreti
al des
rip-57



Chapter 5. Disorder in quantum paraele
tri
stion beyond a standard mean �eld theory. In general, a small amount of quen
hedimpurity and asso
iated disorder, 
an 
reate lo
ally ordered regions(droplets) evenabove the transition point of the 
orresponding pure system. Near a phase transi-tion, large size droplets be
ome more probable and their slow dynami
s be
omesan important fa
tor to determine the nature of quantum phase transition in thedisordered system. Experiments on various disordered paraele
tri
s also supportthe o

urren
e of lo
ally ordered regime and glassy behavior. Most of the disor-dered quantum paraele
tri
s show relaxor behavior whi
h is often des
ribed as a
lassi
al glassy behavior of a dipolar system[62, 63℄. With these motivations wefo
us on the e�e
ts of disorder in quantum 
riti
al behavior of 
ertain ferroele
tri
sin this 
hapter. Su
h issues were addressed in 
ase of 
lassi
al 
riti
al behaviorearlier[64℄ and some attempts to make a quantum generalization of it in 
ontextof itinerant magnets have been proposed in the re
ent past[56, 57, 58, 47℄. We usesome of the earlier results and develop a new mean �eld des
ription of the possiblelow temperature behavior of a disordered quantum 
riti
al paraele
tri
.5.2 Mean �eld TheoryFollowing our earlier dis
ussions on quantum paraele
tri
s without disorder, westart with a one 
omponent Landau-Ginzburg-Wilson quadrati
 a
tion.
Apure =

1

2β

∑

n,q

(ω2
n + q2 + r)|φ(ωn,q)|2 +

u

4!

∫

dx

∫ β

0

dτφ4(x, τ). (5.1)The parameter r determines the gap in polarization �u
tuations in absen
e of theintera
tion and r = 0 is the mean �eld quantum 
riti
al point of the pure system.Disorder is introdu
ed into the problem as a random variation of the non-thermaltuning parameter r in real spa
e and the disorder 
ontribution to the above a
tionis given by,
Adis = −1

2

∫

dx

∫ β

0

dτδr(x)φ2(x, τ). (5.2)A Gaussian probability distribution of δr(x) with varian
e g is assumed to be
P (δr(x)) ∝ exp{− 1

4g

∫

dxδr2(x)}, (5.3)58
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tri
sso that δr(x) = 0 and δr(x)δr(y) = gδd(x − y). For a single realization ofdisorder 
on�guration, the partition fun
tion, hen
e the thermodynami
 properties
an be 
al
ulated using the total a
tion Apure + Adis. It is also apparent that to
onsider the e�e
ts of disorder we need to do a proper averaging either at thelevel of partition fun
tion or at the level of free energy. Now the question is whi
hone will lead to the 
orre
t physi
al behavior? In order to obtain the physi
alfree energy (self averaging) we need to average the free energy or the logarithmof the partition fun
tion over all possible disorder 
on�gurations. To 
al
ulate thedisorder averaged free energy, we use the identity log x = limn−→0
xn−1
n

and writethe average free energy in terms of nth power of the partition fun
tion as
F = − 1

β
(Zn − 1)/n, (5.4)taking n −→ 0 at the end of the 
al
ulation. We 
hange the status of the one
omponent �eld φ to a n-
omponent one by introdu
ing repli
as of the order pa-rameter φa with repli
a index a = 1, ...., n. This pro
ess along with a disorderaveraging help us in writing Zn as a fun
tional integral in terms of repli
a �eldsand the resulting a
tion to leading order be
omes,

A =
1

2β

∑

m,q,a,b

(ω2
m + q2 + r)|φa(ωm,q)|2δab +

u

4!

∫

dx

∫ β

0

dτφ4
a(x, τ)δab

− g

4

∫

dx

∫ β

0

dτ

∫ β

0

dτ
′

φ2
a(x, τ)φ

2
b(x, τ

′

). (5.5)Here a, b are the repli
a indi
es whi
h take positive integer values up-to someinteger n and the last term is a intera
tions between �elds with di�erent repli
aindi
es is a 
onsequen
e of the disorder averaging. It is to be noted that thisintera
tion is between the �elds is non-lo
al in time. This is due to the quen
hednature of the disorder and has important 
onsequen
es in 
ase of a quantum phasetransition and is absent in 
lassi
al phase transition where dynami
s of the systemplay no role. Now we use the a
tion (5.5) to study the diele
tri
 behavior of thisdisordered system. To begin with, �rst we 
onsider a repli
a symmetri
 
ase. Wede�ne repli
a symmetri
 solution as repli
a independent �eld 
on�gurations, i.e.
φa(x, τ) = φ(x, τ) for all a (5.6)59
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tri
sand their repli
a diagonal two point 
orrelation fun
tions, i.e.
χab = χaaδab = χ0δab for all a, b. (5.7)We 
onsider a paraele
tri
 phase i.e. the thermodynami
 average of the dipolar �eld

< φ >= 0 and make a self-
onsistent quasi-harmoni
 approximation to de
ouplethe quarti
 term as done in the 
hapter 2. In this s
heme a quarti
 term su
has ∫ dxdτφ4(x, τ) is de
omposed as λ0 ∫ dxdτφ2(x, τ). Where λ0 =
∫

dx
′

dτ ′ <

φ2(x
′

, τ ′) >. Thus sus
eptibility of the disordered paraele
tri
 
an be written as,
χ0(ωm,q) =

1

(ω2
m + q2 + r + λ0)

. (5.8)In the above equation λ0 des
ribes the �u
tuation 
orre
tions to ferroele
tri
 gapand is de�ned by the following self-
onsistent equation
λ0 =

∑

m,q

(uχ0(ωm, q)− gχ0(0, q))

= u

∫

d3q
1

Ωq
coth βΩq − g

∫

d3q
1

Ω2
q

. (5.9)Here the �u
tuation renormalized natural frequen
y Ωq is dependent on λ0 and isde�ned as,
Ω2
q = q2 + r + λ0. (5.10)It is to be noted that the se
ond term in the equation(5.9) is a zero frequen
y
ontribution. The reason is that we 
onsider quen
hed disorder whi
h has nodynami
s and thus strongly 
orrelated in time. However above two equations 
anbe obtained by integrating δr(x) without introdu
ing repli
a tri
k and need tobe solved self-
onsistently. It is 
lear form the expression for λ0 that the se
ondintegral in the equation (5.9) gives a shift in gap and depending on its strength
ontrols quantum �u
tuations. In this s
heme the solution of the equation r −

g
∫

d3qΩ−2
q = 0 for r gives the quantum 
riti
al point. Experimentally one isinterested in low but �nite temperature behavior of a system at that point andexpe
ts power law dependen
ies in temperature for various physi
al quantities.We have seen in our previous dis
ussions in 
hapter 2 that the stati
 diele
tri
sus
eptibility ∼ T−2 at a ferrolele
tri
 quantum 
riti
al point. 60
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tri
sAn analysis with a repli
a symmetri
 ansatz is not 
apable of in
luding spatialinhomogeneity 
reated by disorder and thus the e�e
ts of disorder 
onsidered hereare identi
al to the e�e
ts of hydrostati
 pressure. However in a doped quantumparaele
tri
 we �nd the so 
alled relaxor behavior whi
h 
an not be 
aptured in atheory without 
onsidering the existen
e of ma
ros
opi
 number of lo
al minima
on�gurations. Next question is why su
h lo
al 
on�gurations o

ur and how toin
lude them in a 
onsistent theory. In a simple minded pi
ture one 
an argue theexisten
e of su
h lo
al 
on�gurations as follows. Sin
e δr(x) is a random variable,there are 
ertain regions in the sample where r− δr(x) < 0. Those regions be
omeferroele
tri
 even above r = 0, the mean �eld quantum 
riti
al point of the puresystem. Those ferroele
tri
 islands have non-zero polarization ∼
√

|δr(x)− r| andare often dubbed as droplet. Sin
e su
h solutions have �nite spatial extension,one must 
onsider a large number (exponential in its volume) su
h solutions to getappre
iable e�e
ts in the thermodynami
 limit. Ideally �nding su
h a huge numberof lo
al solutions, doing a sum over their 
ontributions to the free energy followedby a disorder averaging will 
omplete the task. Clearly it is an impossible. Analternate way to in
lude the e�e
ts of spatial inhomogeneity 
reated by disorderis to use repli
a tri
k with repli
a symmetry broken at the ve
tor level[64℄. Bythe word `ve
tor' we mean that φa is the ath 
omponent of a n-
omponent �eld inthe `repli
a spa
e' and its symmetry breaking means di�erent 
omponents assumedi�erent values. In this s
heme the �eld 
on�gurations are assumed as
φa(x, τ) = φk(x, τ) + ψ(x, τ) for a = 1, .., k

φa(x, τ) = ψ(x, τ) for a = k + 1, ....., n. (5.11)Without loss of generality, we assume the 
orrelation fun
tions to be blo
k-diagonal,i.e.,
χab(x, τ) = χ1(x, τ) + χ2(x, τ)δab for a, b = 1, .., k

= χ2(x, τ)δab for a = k + 1, ....., n. (5.12)Here k ≥ 1 is an integer that determines the degree of the symmetry breakingpro
ess. In prin
iple one should break repli
a symmetry and hen
e should 
hose kin all possible ways. If we use the ansatz (5.11) and write an equation of motion61
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Figure 5.1: A sket
h of an inverted double well potential.
orresponding to the a
tion (5.5). It lead to a non-linear S
hrödinger equation fora parti
le in an inverted double well potential as follows
−∇2φk(x) + rφk(x)− (gk − u)φ3

k(x) = 0. (5.13)A sket
h of an inverted double well is given in the �gure 5.1. We should keepin mind that this repli
ated a
tion is not the a
tual free energy whi
h 
an beobtained only after taking the limit n → 0. In repli
a formalism the solution ofthe equation (5.13) 
orresponding to the maxima are the physi
al minima. Hen
ea solution 
orresponding to the minima of the inverted double-well potential isopted. It is to be noted that the existen
e of a lo
al solution depends on thedisorder strength g and our 
hoi
e of k. One has to 
onsider all possible 
hoi
eof k among n repli
as and has to make sure that a summation over 
ontributionsfrom all possible 
hoi
es of k survives at the limit of n → 0. A repli
a symmetri
ansatz 
orresponds to k = n whi
h 
an be 
hosen in a single way and have avanishing 
ontribution in the limit n → 0. All those details are not relevant forfurther dis
ussions. For more detailed dis
ussions we refer to [64, 65℄. However ina 
lassi
al treatment for gk > u, φk 
orresponds to lo
alized solution whi
h 
an bewritten in a s
aled form for isotropi
 
ase as,
φ(x) =

√

r

(gk − u)
ψ(

√
rx). (5.14)
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tri
sSo that ψ(z) obeys a s
ale independent equation
−∇2

zψ(z) + ψ(z)− ψ3(z) = 0. (5.15)The proper boundary 
onditions are ψ(0) = 
onstant and ψ(±∞) = 0. Equation(5.15) has exponential de
aying solutions for x ≫ √
r and is smooth for x < √

r.The size of the droplet R is determined by the dipolar 
orrelation length and R ∼
1√
r
. At very low temperature the dynami
s of the droplets be
ome important. Ina simplest approximation spatial and the time dependent parts of the polarization�eld 
an be de
oupled 
ompletely.

φ(x, τ) = φk(x)T (τ). (5.16)This 
hoi
e assumes that the droplet tunnels as a whole. Substitution of equation(5.16) in the repli
ated a
tion (5.5) followed by a summation of all possible 
hoi
esof k among n repli
as (whi
h 
an be done in Cn
k ways) in the limit n→ 0 leads to

Z[T ] ≈
∫

DT (τ) e−r
2−d/2E2F [T ]/u. (5.17)Where the dynami
al part of the a
tion is given as[66℄,

F [T ] =
1

β

∫ β

0

dτ

{

M

2

(

dT
dτ

)2

+
T 2(τ)

2
− 1

4β
T 2(τ)

∫ β

0

dτ ′T 2(τ ′)

}

.(5.18)This is 
learly the dynami
al part of the a
tion for undamped Bosoni
 system.The 
oe�
ient M in equation [5.18℄ is given as,
M =

E1

E2
r−1. (5.19)The parameter M 
an be asso
iated with the mass of a quantum parti
le in adouble well potential. It is an undamped tunneling problem where the tunnelingsplitting between two 
on�gurations X = ±1 is given by,

rL ≈ 2e−r0/r (5.20)
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Chapter 5. Disorder in quantum paraele
tri
swith r0 ∼ E1/E2 a 
onstant, where EN =
∫

dzφ(z)2N . If we 
onsider Gaussian�u
tuations around the droplet solutions, an e�e
tive a
tion for those �u
tuations
ψ(x, τ) 
an be written as,

S[ψ] = 1

2β

∑

m,q,a,b

((ω2
m + q2)δab +Mab)ψaψb. (5.21)The presen
e of droplets and its tunneling introdu
es a �gap-matrix� {Mab} whi
h
ontains k × k blo
k with elements,

Mab = r(1− gk − 3u

gk − u
λL)δab −

2gkr

gk − u
λL (5.22)and diagonal elements for the remaining n− k repli
as

Mab = r(1− gk

gk − u
λL)δab. (5.23)Here λL en
odes the 
ontributions from the lo
alized solutions along with theirdynami
s and is given as

λL =
∑

ω

∫

dz < ψ(z)T (ω)ψ(z)T (ω) >

=

∫

dzψ2(z)
∑

ω

< T (ω)T (ω) >

∼ 1

ω−
at T = 0 (5.24)Here ω± = 2 ± rL. It is to be noted that the ve
tor breaking of repli
a symmetrynot only introdu
es inhomogeneous solutions but also glassy e�e
ts through o�-diagonal elements in the gap-matrix. Putting λL = 0 identi
ally, we get ba
k thebehavior of a pure system. However in this s
heme, inverse repli
a 
orrelators fordisordered paraele
tri
 is given by

χ−1
ab (ωm,q) = ((ω2

m + q2)δab +Mab). (5.25)We look for repli
a diagonal 
orrelations in equations (5.22) and (5.23). Diagonal-64



Chapter 5. Disorder in quantum paraele
tri
sization of the gap-matrix are given as,
M̂aa =



















r(1− gk−3u
gk−u λL), a = 1, ..k − 1,

r(1− 3gk−3u
gk−u λL), a = k,

r(1− gk
gk−uλL), a = k + 1, .., n

(5.26)Using equation(5.26) and (5.24) we �nd the values of r at whi
h zero temperaturediagonal sus
eptibility (∼ 1
M̂aa

) diverges. The instability points depends on thedisorder strength and the value of k and is given as,
rc =



















−r0/ log(1−A (gk−3u)
(gk−u) ), a = 1, .., k

−r0/ log(1−A (3gk−3u)
(gk−u) ), a = k

−r0/ log(1−A gk
(gk−u)), a = k + 1, .., n

. (5.27)and is k dependent. Here A is a system dependent parameter. For a simple minded

 0.9

 0.94

 0.98

 1.02

 1  2  3  4

r

g

Paraelectric phase

Ordered phase

Mixed

k=1
k=2
k=4

Figure 5.2: Phase diagram at zero temperature in g − r plane for two parti
ularvalues of k with u taken as unity. It is 
lear that the phase diagram a
quires aregion of mixed phase for any non-zero disorder strength.analysis, let us 
onsider the a = k + 1, .., n elements only. For | Agk
(gk−u) | << 1, rc s
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tri
s
an be written in the following form
rc(k) = r

′

0

(gk − u)

gk

= B − C

k
(B = r

′

0, C =
r
′

0u

g
). (5.28)Apart from the physi
al parameters like disorder strength, anharmoni
 strengthet
., rc depends of the 
hoi
e of k. For ea
h 
hoi
e of k, we get a 
urve in the

g − r plane whi
h separates an ordered phase from a paraele
tri
 phase. Whensu
h 
urves are plotted for more than one value of k, the region surrounded bythe upper most and the lower most 
urves represents a region of mixed phase asshown in �gure 5.2. In this regime a disordered system is 
hara
terized by a set of
lusters of ordered phase, o�-
riti
al para phase and 
riti
al-para phase. Sin
e the
hoi
e of k is random, depending on its distribution at the limit n → 0, we 
anestimate a distribution, hen
e width of rc. In a repli
ated a
tion with n repli
as, k
an be 
hosen in Cn
k ways. Thus we 
an de�ne a normalized distribution of P(k)as follows
P(k) =

Cn
k

∑n
k=1C

n
k

=
1

2n − 1

Γ(n)

Γ(k)Γ(n− k)
. (5.29)Sin
e the gamma fun
tion with negative argument is in�nity, the limit of k 
anbe extended to in�nity. In the limit n → 0, using the asymptoti
 form of gammafun
tions, P(k) 
an be approximated as[64℄

P(k) ≈ 1

log 2

(−1)k−1

k
≈ 1

log 2

cosπ cos πk

k
. (5.30)Negative values of P(k) for some values of k may turn out to be 
ounter intuitiveto the usual notion of a distribution fun
tion. But su
h distributions are allowedin repli
a s
heme. There are several possible broken repli
a symmetri
 
ases, ea
h
hara
terized by the number k whi
h follows a distribution P(k). For a �xeddisorder strength δ, ea
h k results a di�erent instability point rc. In stead of k, ifwe 
hara
terize various possible broken repli
a symmetri
 
ases by rc, a distributionof rc 
an be estimated as

P(rc) = P(k)|∆k
∆rc

| ∼ 1

B − rc
× cos(πk). (5.31)66



Chapter 5. Disorder in quantum paraele
tri
sThis is a broad power-law distribution of rc around a system dependent parameter
B with a 
osine fa
tor. The probability distribution 
an be assumed to be smootharound k = any positive integer, ex
luding zero. The expansion around k = 0is ex
luded as it 
orresponds to small u/g limit where the a
tion (5.5) be
omesunstable even in a repli
a symmetri
 ansatz. In that limit the system will undergoa �rst order transition in a repli
a symmetri
 analysis, the stability of the systemneeds a φ6 term in the a
tion (5.5) whi
h will lead to more 
ompli
ated lo
alizedsolutions in a broken repli
a symmetry pi
ture. However we fo
us on those u/gvalues where the above possibilities are not present and the distribution fun
tionis smooth. It is to be noted that the power law nature of P(rc) arises be
ause ofthe dynami
s of the lo
ally ordered regimes and also depends on the distributionof k used. Negle
ting 
osine fa
tor within some range of rc say (B + R,B − R),average sus
eptibility of the disordered quantum paraele
tri
 
an be estimated as,

χ(r, T ) ∼
∫ B+R

B−R
drc

1

B − rc
× 1

r − rc + T 2

=
1

r −B + T 2
log

r −B −R + T 2

r −B +R + T 2
. (5.32)It is evident that in
lusion of �u
tuations due to lo
ally ordered regime introdu
ea parameter R ∼ O(u/g) and 
hanges the usual quantum 
riti
al behavior of aparaele
tri
. In the limit r → B the temperature dependen
e of the stati
 diele
tri

onstant of a disordered quantum paraele
tri
 
an be predi
ted as,

χ(r, T ) ∼







constant, T << R

1/T 4, T >> R.
(5.33)This is a deviation from the standard quantum 
riti
al behavior whi
h predi
ts

χ(T ) ∼ T−2 in a mean �eld theory. In an in�nite disorder limit, i.e. for u/g →
0, R → 0 and χ(T ) shows a power law behavior (∼ 1/T 4 ) with non-universalexponent. Su
h situation is often dubbed as quantum Gri�ths phenomena in thequantum phase transition literature.
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Chapter 5. Disorder in quantum paraele
tri
s5.3 Dis
ussionsIn this 
hapter, the low temperature diele
tri
 behavior of a quantum paraele
tri
in presen
e of quen
hed disorder is addressed. A suitable a
tion for these mate-rials, with random Tc type disorder have been studied using a repli
a tri
k. Thee�e
ts of disorder indu
ed lo
ally ordered regimes and their tunneling in the lowtemperature are 
aptured in this formalism. We derive an expression for the distri-bution of instability points for a �xed value of disorder strength and demonstratethe possibility of a mixed phase at non-zero disorder strength. This analysis pre-di
ts a broad power law distribution around a system dependent parameter with a
osine 
orre
tion for the instability points. Using the distribution it is possible toshow analyti
ally how the temperature dependen
e of stati
 diele
tri
 sus
eptibil-ity of a disordered quantum 
riti
al paraele
tri
 deviates from its pure 
ounterpart.Our analysis is a 
ompletely new attempt in 
ontext of the e�e
ts of disorder inferroele
tri
s near a quantum 
riti
al point. In a qualitative manner it predi
ts
ertain new features su
h as o

urren
e of a phase with mixture of 
riti
al andnon-
riti
al regimes with a distributions of transition points whi
h are missing inearlier works in similar issues in 
ontext of itinerant magnets. Moreover the wholeanalysis is interesting in 
ontext of the use of repli
a tri
k to in
orporate disorderindu
ed inhomogeneities or lo
ally ordered regime in the studies of quantum phasetransition and may turn out to be useful in explaining 
ertain experimental resultson disordered ferroele
tri
s near a quantum 
riti
al point.
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6Summary
This thesis 
ontains some theoreti
al studies on the various �u
tuation e�e
ts onthe low temperature diele
tri
 properties of 
ertain in
ipient ferroele
tri
s in thevi
inity a of a quantum phase transition. Studies are base on some experimental�ndings on the low temperature diele
tri
 behavior of some in
ipient ferroele
tri
ssu
h as SrTiO3, KTaO3, EuTiO3 et
. under various external perturbations. Wehave studied a minimal model in ea
h 
ase of pure quantum paraele
tri
s, its
oupling with anti-ferromagneti
 �u
tuations, strain and disorder. Studies basedon self-
onsistent mean-�eld approximations and s
aling arguments, are 
apable ofexplaining many experimental �ndings and making various interesting predi
tionsabout the diele
tri
 behavior of these materials. These systems are of displa
ivetype i.e. phase transition in these systems is asso
iated with a softening of atransverse opti
 mode. More mi
ros
opi
 s
enario 
ould be, a set of dipoles sittingat the 
enter of ea
h unit 
ells of these perovskite materials are intera
ting vialong range dipolar intera
tions. As a result of the long range nature of the dipolarintera
tion the �u
tuations along the longitudinal dire
tion with respe
t to thewave ve
tor are gaped out and the transverse mode �u
tuations be
ome the mostrelevant to des
ribe the low temperature diele
tri
 properties of these materials.To explore the possible 
onsequen
es of a quantum �u
tuations in the low tem-perature diele
tri
 behavior of these materials a semi-phenomenologi
al Landau-Ginzburg theory is used. We restri
t ourselves to an one 
omponent model to makeour analysis simpler. Moreover anisotropy indu
ed by the dipolar intera
tion inthe transverse opti
 modes is negle
ted and a justi�
ation for the same is given in
hapter 2. With this minimal model we are able to des
ribe the e�e
ts of quantum69



Chapter 6. Summary�u
tuations in 
ase of pure SrTiO3, a prototype quantum paraele
tri
 material.The same analysis is extended to predi
t its diele
tri
 behavior when it is tunedto a quantum 
riti
al point. A predi
tion about the 1/T 2 behavior in 
ontrast tothe usual Curie-Weiss behavior is made and veri�ed by a re
ent experiment[25℄. As
hemati
 phase diagram is proposed to to 
lassify various diele
tri
 materials ina quantum phase transition point of view.Our �rst 
hapter was devoted to set up a basi
 theoreti
al ground for dis
ussinglow temperature properties of quantum paraele
tri
s along with some predi
tionsabout the quantum 
riti
al behavior of them. With this ba
kground we fo
us onunderstanding more detail experimental observations on various quantum para-ele
tri
s. In this 
ontext some interesting behavior of quantum 
riti
al SrTiO3is revealed in a re
ent spe
tros
opi
 experiment whi
h signals a weak �rst ordernature of the quantum phase transition in SrTiO3. We assume su
h a behavior is aresult of the 
oupling of the paraele
tri
 �u
tuations to strain �u
tuations. Strain�u
tuations are integrated out and it results a long range intera
tion among para-ele
tri
 �u
tuations. In a pure mean �eld s
enario, a weak �rst order transitiono

urs when the e�e
tive quarti
 
oupling of the paraele
tri
 a
tion is negative and
lose to zero. In this 
ase one 
an add a higher order term with positive 
oe�
ientin the paraele
tri
 a
tion and make some mean �eld predi
tion about the transi-tion. We emphasis that in su
h a 
ase one should 
onsider �u
tuation e�e
ts in thequarti
 
oupling, namely four point verti
es and show that �u
tuation e�e
ts 
anstabilize the system without invoking higher order terms. The 
ru
ial role playedby long range intera
tion mediated by the strain �u
tuations in this pro
ess is alsoexplained. A self 
onsistent parquet approximation is used to take 
are of leadingorder �u
tuation e�e
ts. The fa
t that the presen
e of the �nite temperature re-stores the se
ond-order nature of the transition near a quantum phase transitionis also 
aptured in this theory.Next, we extend our theory to an in
ipient ferroele
tri
 EuTiO3 where ferro-ele
tri
 �u
tuations are 
oupled to anti-ferromagneti
 �u
tuations. We write ana
tion where paraele
tri
 �u
tuations are 
oupled to anti-ferromagneti
 �u
tua-tions in a bipartite latti
e and and in presen
e of non-zero magneti
 �eld. We
onsider the 
ase of 
oupled quantum 
riti
ality and its e�e
t on the diele
tri
 be-havior of this system. A new power law behavior of the stati
 diele
tri
 
onstant,namely T− 3
2 variation, in presen
e of small non-zero magneti
 �eld is predi
ted. It70



Chapter 6. Summaryis in 
ontrast of the 1/T 2 behavior of the quantum 
riti
al paraele
tri
 and alreadygot attentions of the experimental 
ommunity[67℄.Next se
tion is an a

ount of the e�e
ts of quen
hed disorder in quantum 
riti
alparaele
tri
s using a repli
a formalism. In this 
ase the 
oupling between random
Tc type disorder with energy density is 
onsidered. Near quantum 
riti
ality inthese systems, a bare power 
ounting s
heme predi
ts su
h disorder e�e
ts to bemarginally relevant. However a 
lassi
al repli
a formalism with broken repli
asymmetry at the ve
tor level predi
ts inhomogeneous solutions in these system.Gaussian �u
tuations around su
h solutions in 
ase of 
lassi
al phase transitionswere studied earlier. In their stati
 limit the renormalization of the 
oe�
ientof the Gaussian �u
tuations due to su
h inhomogeneous solutions are found toindependent of their sizes and a single instability was predi
ted. We 
onsider thetunneling of su
h solutions in the quantum limit and 
onsider a quantum phasetransition in terms of the instability of Gaussian �u
tuations around them. A broadpower law distribution of the quantum 
riti
al points is predi
ted. Its 
onsequen
esof the stati
 diele
tri
 behavior at �nite temperature is also emphasized.In 
on
lusion, in this work the physi
s of ferroele
tri
s is put in a broad per-spe
tive. The e�e
ts of quantum 
riti
al points on �nite temperature propertiesof 
ertain diele
tri
 systems are studied. Possible exponents of the power law be-havior of stati
 diele
tri
 
onstant at �nite temperature are predi
ted. The e�e
tsof disorder indu
ed inhomogeneity and their dynami
s at low temperature is de-s
ribed in a repli
a formalism. Some results are in a

ord with experiments. Manyaspe
ts of these works are quite general in 
ontext of quantum phase transitionsand deserve further experimental and theoreti
al studies.
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