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Synopsis

The thesis contains some theoretical studies on the low temperature dielectric
properties of incipient ferroelectrics such as SrTiO3, KTaO3, EuTiO3 etc. in the
vicinity a of a quantum phase transition. Studies are motivated by experimental
findings on the low temperature dielectric behavior of these incipient ferroelectrics
or quantum paraelectrics under various external perturbations. These materials
are perovskites and are known to remain paraelectric down to any experimentally
accessible low temperature. In these materials the ¢ = 0 optic mode which consists
of Ti or Ta motion along a [100] axis against oxygen octahedra becomes nearly
unstable as temperature approaches to zero. As such the instability of this soft
optic mode would lead to a ferroelectric transition as occurs in other structurally
similar materials like BaTiO3. However, because of neighborhood of the instabil-
ity, these materials end up in a state of incipient ferroelectric, characterized by a
very high, temperature independent static dielectric constant (O(10*) for SrTiO3)
and no spontaneous polarization at low temperature (< 10K for SrTiO3). It is
apparent that the low temperature dielectric behavior of these systems are domi-
nated by soft transverse optic mode fluctuations near ¢ = 0. Since the zone center
mode has is nearly vanishing frequency at low temperature, a theoretical under-
standing of the dielectric behavior of these materials needs a proper account of
quantum fluctuations near an instability point and its effect on the finite tem-
perature dielectric properties. We work with simple models in each case of pure
quantum paraelectrics, its coupling with anti-ferromagnetic fluctuations, strain and
disorder. Then we develop a self-consistent mean-field approximation and scaling
arguments, to explain some experimental findings and make various predictions
about these materials.

In the first chapter some generic feature of a quantum phase transition which
are relevant for these materials are introduced. In the second chapter we explore
the possible consequences of quantum fluctuations in the low temperature dielectric
behavior of these materials. To do that a semi-phenomenological Landau-Ginzburg
theory is used. We restrict ourselves to a one component model to make our
analysis simpler. Moreover anisotropy induced by the dipolar interaction in the
transverse optic modes is neglected with suitable justifications. Within a mean field

description with some self-consistency condition, we are able to describe the effects
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of quantum fluctuations in the low temperature dielectric behavior of pure Sr'TiOs3,
a well-known quantum paraelectric material. The same analysis is extended to
predict its dielectric behavior when it is tuned to a quantum critical point. A
prediction about the 1/72 behavior in contrast to the usual Curie-Weiss behavior
is made.

A recent spectroscopic experiment reports that SrTiO3 shows phase separa-
tion near its quantum critical point. This Raman scattering experiment at low
temperature reports simultaneous responses from both the paraelectric and the
ferroelectric phase near a quantum critical point in O doped SrTiO°. The in-
tensity of the scattered light from the ferroelectric phase is reported to be very weak
and becomes weaker as one moves away from the quantum critical point. The co-
existence of a quantum paraelectric phase with a quantum ferroelectric phase in
O'8-exchanged SrTiO3 provides strong evidence for a first order phase transition.
Moreover owing to the low intensity of the scattered light from ferroelectric phase,
the nature of the transition can be called a weak first order where many features
of a continuous transition remain unaltered. This experiment is performed at zero
electric field, constant pressure and there is no report of electro-magnetic coupling
in this materials. Thus one can attribute the first order nature of the quantum
paraelectric to a ferroelectric phase transition to the coupling between the critical
mode with non-critical strain fluctuations. Motivated by this experiment, we make
an attempt to discuss the effects of the strain fluctuations in a quantum critical
paraelectric in the third chapter. In our theory strain fluctuations are integrated
out resulting to a long range interaction among paraelectric fluctuations. In a pure
mean field scenario, a weak first order transition occurs when the effective quartic
coupling of the paraelectric action is negative and close to zero. In this case one
can add a higher order term with positive coefficient in the paraelectric action and
make some mean field prediction about the transition. We emphasis that in such
a case one should consider fluctuation effects in the quartic coupling, namely four
point vertices and show that fluctuation effects can stabilize the system without
invoking higher order terms. The crucial role played by long range interaction me-
diated by the strain fluctuations in this process is also explained. A self consistent
parquet approximation is used to take care of leading order fluctuation effects.
The experimental observation that the presence of the finite temperature restores

the second-order nature of the transition near a quantum phase transition is also
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captured in this theory.

In the fourth chapter we focus on an incipient ferroelectric EuTiO3 where ferro-
electric fluctuations are coupled to anti-ferromagnetic fluctuations. We consider a
case where this material is tuned to ferroelectric or anti-ferroelectric quantum crit-
ical points by some non-thermal parameter. We write an action where paraelectric
fluctuations are coupled to anti-ferromagnetic fluctuations in a bipartite lattice
and and in presence of non-zero magnetic field. The action is used to discuss the
static dielectric behavior of this system both in presence and absence of uniform
magnetic field. Again a self-consistent mean field approach and scaling arguments
are invoked. A new power law behavior of the static dielectric constant, namely
a T3 variation, in presence of small non-zero magnetic field is predicted. It is in
contrast of the 1/72 behavior of the quantum critical paraelectric and has already
got attentions of the experimental community.

Finally we look for the effects of quenched disorder in quantum critical para-
electrics using a replica formalism in the fifth chapter. Here the coupling between a
random 7, type disorder with energy density is considered. Near quantum critical-
ity in these systems, a bare power counting scheme predicts such disorder effects to
be marginally relevant. A classical replica formalism with broken replica symme-
try at the vector level predicts inhomogeneous solutions in these system. Gaussian
fluctuations around such solutions in case of a classical phase transition were stud-
ied earlier. In their static limit the correlator of the Gaussian fluctuations due to
such inhomogeneous solutions are found to independent of their sizes and a single
instability was predicted. We consider the tunneling of such solutions in the quan-
tum limit and consider a quantum phase transition in terms of the instability of
Gaussian fluctuations around them. A broad power law distribution of the quan-
tum critical points is predicted. Its consequences of the static dielectric behavior
at finite temperature is also emphasized.

In conclusion, in this work the effects of quantum fluctuations on finite tem-
perature properties of some dielectric materials are studied. Possible power law
behavior of static dielectric constant at finite temperature in various materials
at various external conditions are predicted using a minimal model in each case.
Moreover emergent new physics near a pure quantum critical point due to the
coupling with strain fluctuations and magnetic fluctuations in different materials

is discussed. The effects of disorder induced inhomogeneity along with their dy-
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namics at low temperature are addressed, occurrence of a mixed phase, a broad
power law distribution of instability points and its consequence on the temper-
ature dependence of the static dielectric constant is predicted. A contact with

experimental scenario is made whenever possible.
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Introduction

The basic motivation of modern condensed matter physics is to explore new physics
that emerges out of complexity in a collection of large number (~ Avogadro
number~ 10%3) of interacting non-relativistic particles. The “fundamental Hamil-
tonian” in a condensed matter system is usually known. It consists of a collection
of atoms interacting via coulomb interaction. But when a system with such a large
number of particles is exposed to thermal fluctuations or enters in a quantum do-
main or both and when the system parameters are tuned to certain values, many
novel features can emerge. Formation of crystal structure, superfluity, supercon-
ductivity are few examples of such novel phenomena. Such emergent behavior may
not be adiabatically connected to the phases that appear in either side of those
special points in a parameter space[l, 2|. Tt is difficult to capture such novel be-
havior in a standard perturbation theory and one needs a new mechanism, such
as spontaneous symmetry breaking for phase transition[3] and new calculational
scheme, such as renormalization group[4] scheme for critical phenomena to explain
such behavior. Such a scenario is observed when the system undergoes a transition
between two phases at zero temperature as a result of changes in some non-thermal
parameter and is dubbed as quantum phase transition[5|. At a certain value of a
non-thermal tuning parameter where a quantum phase transition of a continuous
kind occurs is called a quantum critical point. At a quantum critical point system
properties even at finite temperature, are governed mainly by quantum critical fluc-
tuations. Finite temperature properties near a quantum critical point shows novel
power law behaviors which are beyond the realm of any zero temperature limit of

a classical theory. Such an emergent scenario drew lot of attentions in the past
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and has been experimentally observed in case of itinerant magnets, He?, etc.[6].
As a result of experimental findings, most of the earlier works in this area were
directed mostly toward quantum phase transition either in quantum spin systems
or in metallic magnets. Though classical phase transitions in insulating dielectric
materials are well studied, there has not been any study in context of quantum
phase transition. In this thesis we emphasis that the effect of quantum fluctuations
can as well be observed in case of certain insulating dielectric materials, namely
quantum paraelectrics such as Sr'TiO3, KTaOg3 etc. In these materials a quantum
phase transition occurs as a result of isotopic substitution and it involves softening
of an optical mode. Thus a quantum generalization of the soft mode picture of
phase transition in classical ferroelectrics is realized in these materials. A theory
of quantum phase transition in these materials can be described by a continuum
model which includes transverse optical modes near zone center as the most rel-
evant degrees of freedom. It shares some similarity with the effective theory of
spin fluctuations in metals. At the technical level the effective theory for quantum
paraelectric to ferroelectric transition is similar to a undamped Bosonic version of
the effective theory of quantum paramagnet-ferromagnetic transition in a metallic
magnet. Theoretically these systems are much simpler than their magnetic coun-
terparts to deal with, and moreover many features are experimentally observable.
Thus these systems can become good playgrounds for studying some general as-
pects of quantum phase transitions such as finite temperature properties, disorder
effects etc.

Before going into the details of the issues related to the quantum phase tran-
sition in the above mentioned materials, a brief excursion through these concepts
would set a background for the present study. More detail discussions on some of

the concepts if needed, will be presented in the corresponding chapter.

1.1 Quantum phase transition

Quantum phase transition is a phase transition induced by quantum fluctuations at
zero temperature. Unlike the classical phase transition where the tuning parameter
is temperature, one looks for a quantum phase transition by tuning a non-thermal

parameter such as hydrostatic pressure, impurity concentrations, etc. Whereas a
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classical phase transition corresponds to non-analyticity in the free energy as a
function of temperature, a quantum phase transition involves non-analyticity in
the ground state energy as a function of some non-thermal external parameter. In a
strict sense, a quantum phase transition is defined only at zero temperature. How-
ever it affects finite temperature properties of a systems over a finite temperature
range. Though the temperature range over which quantum critical fluctuations
dominate is specific to the system, the emergent behavior at a quantum critical
point is universal. The finite temperature properties depend on system dimension,
order parameter dimension and symmetry, range of interaction and the dynamic
scaling exponent. The concept of dynamic scaling exponent will be introduced in
the next section. Consequences of being in the vicinity of a quantum phase transi-
tion has been observed in many systems like itinerant magnets, He?*, ferroelectrics
etc. and are argued in other systems like high T, superconductors. Before going
into the detail of issues of a quantum phase transition relevant to the system we
study, we now briefly introduce a path integral formulation of quantum statistical

mechanics.

1.1.1 Quantum Statistical Mechanics

To calculate any physical properties of a statistical system in equilibrium we need
to know its Partition function. In a statistical system quantum fluctuations become
important when its temperature is much lower than its characteristic energy scale.
In a quantum domain many system can be described by a Hamiltonian in operator
form as H = T + V. Where T and V are the kinetic and potential energies
respectively in the operator form. With this Hamiltonian, its partition function at

a finite temperature can be written as,
Z = Trexp(—GH). (1.1)

Here [ is the inverse temperature. If we describe the state of system in terms of a
complete set of eigen states {|¢; >} of some operator ¢, with corresponding eigen

values ({¢;}), then the partition function in the path integral formalism|7] can be
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re-written as,

Z = /d% < ol exp(—FH)|¢dg > . (1.2)

On the other hand in quantum mechanics, the transition amplitude for a system
in returning to its initial state ¢, after a time ¢ is given by,
R oz, t)=%¢a(x) o 06
< ¢o| exp(—itH)| ¢y >= / de’ Jo @ J dwL(5)). (1.3)
¢(z,0)=da(x)

Here L is the Lagrangian of the system. The boundary conditions are periodic for
Bosons and anti-periodic for Fermions. It is now quite evident that one can write
the expression for the partition function (eqn. (1.2)) using the expression for quan-
tum mechanical transition amplitude (eqn. (1.3)) through an Wick rotation of the

time axis to the imaginary direction. This leads to the following correspondence,
B=—=1t. (1.4)

At T =0, i.e., at § = oo system acquires a complete “extra dimension”. Above
mathematical correspondence has interesting consequences. Firstly an equilibrium
quantum statistical system in d-dimension is mapped on-to a d + 1-dimensional
classical statistical system. Secondly the information about the dynamics of a
classical system enters into the description of the corresponding quantum system.
Given the knowledge of dynamics of the system, quantum-classical mapping is ex-
tremely helpful in calculating quantum fluctuations in a systematic manner. When
the interaction part contains terms beyond quadratic form, an exact calculation of
a quantum partition function (eqn. (1.2)) is not possible. One needs to use some

systematic and controlled truncation scheme.

1.1.2 Quantum critical point

Quantum phase transition follows a similar classification as thermal phase transi-
tion. A point in parameter space where a continuous phase transition occurs at
zero temperature is called a quantum critical point. Near this point the system

is describable by a vanishing characteristic energy scale or a diverging correlation
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Figure 1.1: Schematic phase diagram for a quantum phase transition. r is a non-
thermal parameter.

length which becomes the only relevant length scale near this point. As a result,
at or near the quantum critical point various physical quantities follow power laws
and such behavior can be explained by scaling arguments similar to that of the
classical phase transitions|8, 9.

Dynamic scaling at 7" = 0: In general, an action in the path integral rep-
resentation of a partition function can have terms with different powers of time
derivative and space derivative of the field configurations. Thus in general, the
scaling behavior of the characteristic time scale (7) and the correlation length (&)
becomes anisotropic near a quantum critical point. Near a quantum critical point
a new quantity, namely dynamic scaling exponent z needs to be introduced. Dy-
namic scaling exponent characterizes the scaling behavior of the characteristic time

scale (1) with the correlation length (£) and is defined as
T~ &7 (1.5)

with z positive! but not necessarily = 1. Such anisotropic scaling is used in other
systems also. In case of dynamic critical phenomena where one studies the dy-
namics of a system near a critical point, one needs to consider such anisotropic
space-time scaling to find out scaling behavior of various time dependent quantities
near a critical point[10]|. Similar situation also arises in case of a Lifsitz transition.
In that case one considers critical phenomena in an anisotropic system and the
critical properties depends on anisotropic scaling in the different directions|11].
Introduction of a dynamic scaling exponent has many consequences. A system in

d—spatial dimension and near a quantum phase transition can be thought of as a

!Negative z would mean smaller relaxation time for larger size system which is unphysical.
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classical system of dimension d + z. The upper critical dimension? of the quantum
system is reduced by z, fluctuation effects becomes less relevant and the theory
becomes more mean field like. However in a critical system whether it is classical
or quantum, fluctuation corrections are always important and a naive perturba-
tion theory can not have the correct answers. One needs to go beyond that and
needs to invoke ideas like scaling hypothesis, various self-consistent scheme etc. In
the scaling hypothesis that holds in case of a second order phase transition, any
physical quantity near a quantum critical point can be written in a scaled form as

follows,
Ok, w, T =0) = &"F(k,we,0). (1.6)

where O is some physical quantity, observed at a momenta k£ and frequency w.
The correlation length £ is the only important length scale in this hypothesis. F
is the scaling function and v is the scaling exponent. It is to be noted that though
the scaling exponent is universal, the scaling function is not. Predictions based
on such scaling hypothesis can be established by various theoretical schemes like
self-consistent mean field theory, renormalization group theory etc.

Finite size scaling at 7" # 0: Since in a strict sense, a quantum critical
point is defined only at zero temperature, it is not experimentally observable.
However, a quantum critical point has its effects at finite 7" also. At a low but
non-zero temperature, any physical quantity of a quantum critical system should
obey power law behavior in temperature and such behavior can be obtained using
the previous scaled form as shown in equation (1.6). At a non-zero temperature,
a quantum critical system behaves like a finite size system of size 7! in the “time
direction”. In this case the correlation length can not diverge but can be extended
up-to a size T~%. Thus we can put £ = T~7 in the expression eqn. (1.6) and thus
in the limit T" — 0,

Ow=0k=0,T) = T *F(0,0,1). (1.7)

2Upper critical dimension is defined as the critical value of the space dimension above which
fluctuation effects does not play any major role and a mean field theory gives sufficiently correct
result.
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Above expression is the most experimentally relevant feature of a quantum critical
point and is experimentally observed in many systems like itinerant magnets, Hey,
ferroelectrics etc. The case of quantum criticality in ferroelectrics will be discussed
in the next chapter where these power laws will be derived in a self-consistent mean

field scheme.

1.1.3 First order quantum phase transition

Like classical phase transitions, a quantum phase transition can become first order
because of the coupling to other degrees of freedom, disorder etc. A first order
quantum phase transition can be observed through discontinuity of the order pa-
rameter at the transition point. A system undergoing a first order transition,
evolves from its parent phase to resulting phase through a metastable state. In
the intermediate phase a system shows coexistence of both the parent phase and
the final phase. Classic example of a phase coexistence is the water-vapor phase
transition and can be detected by some light scattering experiment. Thus in some
sense a phase coexistence is also a signature of a first order transition. Many fea-
tures of a first order transition can be described in Landau mean field description.
In this case the free energy density for an one component system can be written

as a variational form as,
(@7, AND}) = rd? 4+ X300 + Md* + X5 + Ng® + ... (1.8)

Here ¢ is the expectation value of some field configuration whose fluctuations are
neglected completely. Such an approximation works well when the system is above
its upper critical dimension and/or when order parameter dimensionality is very
high. If one has the privilege to do so, the free energy density is dictated only by
the symmetry of the system. The above expression is a small ¢ expansion of the
variational form and the actual free energy can be found by minimizing the above
expression with respect to ¢ followed by a substitution of the corresponding value
of ¢ in the expression for variational ansatz. If the transformation which changes
¢ to —¢ is a symmetry of the system, then terms with odd powers of ¢ are not

allowed and one can truncate the free energy density at the lowest i** order term
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with positive \;. In case of positive \4, the Landau free energy density looks like

f(p, 7, Ag) = 1% + \yop*. (1.9)

Above free energy density shows a continuous phase transition at » = 0. For r < 0,
order parameter is non-zero and is given by /5= which smoothly goes to zero at
the phase transition point.

On the other hand if it turns out that \y < 0, one needs to truncate Landau
free energy density at some higher power of ¢ with a positive coefficient. Let us
consider the simplest possible case when g > 0. In this case the Landau free

energy density looks like ,
F(9,7, M0, X6) = 70° + Aadp" + A60°. (1.10)

In this case a non-zero value of the order parameter corresponding to a metastable

f(9)

¢

Figure 1.2: Typical Landau free energy profile for a first order transition. Eqn.
(1.8) corresponds to such free energy profile when 0 # A3 < 0.

minima of the Landau free energy profile develops at some positive value of r. At
the phase transition point i.e. r = 0 order parameter has a discontinuity in its
non-zero value ~ _/\—’;4 which corresponds to a first order transition.

However using Landau theory for a first order transition has many limitations.
Firstly the Lanadu expansion is appropriate for small values of order parameter.
Thus it can not incorporate the case of strong first order transition where the

order parameter exhibits a large discontinuity at the phase transition point. On
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the other hand for weak first order transition, i.e. in the limit Ay — 0 one needs
to consider the fluctuation corrections in the effective coupling constant for the
quartic term which is also missing in a traditional Landau expansion. The later
case will be considered here and will be discussed in detail in this thesis in context

of weak first order transition in ferroelectrics.

1.1.4 Effects of disorder

Introduction of disorder makes a system inhomogeneous. Coupling constants in
a disordered system varies from point to point. As a result system becomes a
collection of ordered and non-ordered regimes. Thus one is interested in average
behavior of various physical properties with a meaningful averaging scheme. If in
a particular scheme, the mean of the averaged physical quantities are greater than
their variances, we can say that the averaging scheme is meaningful. In such a
situation, a single large system is sufficient to represent the whole ensemble and is
called self-averaging. At a pure critical point randomness is classified as relevant if
it leads to a change in the critical behavior (i.e., the critical exponents) of the pure
system. Such systems are non self-averaging with respect to a pure critical point
scenario. The relevancy of disorder for a pure critical point can be estimated using
a field theoretical language as follows. Let us consider a disordered parameter r(x)
of quenched type (no dynamics) which has a Gaussian distribution with variance

g, couples to some field variable O(z, 7) with scaling dimension 7, as
/ddIdT5T<l’)O(I,T). (1.11)
Integration of the Gaussian disorder will generate a term
gz/ddxdﬁdﬁ(’)(x, 71)O(x, T2). (1.12)

The above term will generate the effective disorder effect in a disordered system.
Now if we use a dimensional analysis to look for the relevancy of the above term
near a critical point, we see that at the zeroth order perturbation theory the
coupling constant g* has the scaling dimension d + 2z — 2ny. Thus near a critical

point where low energy and long wave length fluctuations are most dominant, the



Chapter 1. Introduction

coupling constant ¢g? becomes relevant if
d+ 2z —2ny > 0. (1.13)

This is the criteria for relevancy of certain kind of disorder in a quantum phase
transition. When disorder couples to energy density whose scaling dimension of the
associated coupling constant is 1/v, and so the dimension of the energy operator
is 79 = d + z — 1/v. Thus the criterion for its relevance becomes above relation

becomes 5

v < )
d+ z

(1.14)

In literature this relation is known as Harris criteria[5]. Above criterion is derived
on the basis of a dimensional analysis which neglects the effects of the interaction
and the effects of spatial inhomogeneity as well. However it sets a criterion for the
breakdown of a pure critical behavior. When certain kind of disorder is found to be
relevant, one needs to consider the spatial inhomogeneity which is not included in
a theory of critical phenomena in a pure system. Such a consideration needs some
technique beyond standard perturbation theory. Vector breaking of the replica
symmetry is such a candidate and is used to analyze the effects of disorder in

ferroelectrics near a quantum phase transition in this thesis.

1.2 Quantum paraelectrics

In the previous section we have introduced some basic ideas regarding the quantum
statistical mechanics and the quantum phase transitions. Now we introduce some
dielectric materials where those theoretical concepts can be experimentally ob-
served. Insulating materials such as SrTiO3 and KTaO3 are ABOj type perovskites
and have interesting dielectric behavior. They are known to remain paraelectric
down to any experimentally accessible low temperature. However, the ¢ = 0 optic
mode which consists of Ti or Ta motion along a diagonal of the cubic perovskite
unit cell against oxygen octahedra becomes very nearly unstable as temperature
approaches to zero. Perfect softening of this optic mode would lead to a ferro-
electric transition as occurs in other structurally similar materials like BaTiOs.

Thus at low temperature (< 10K for SrTiOj), these materials end up in a state

10
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Figure 1.3: An unit cell of a ABO3 type perovskite structure. Filled black circles
are A-atom at the corners, circle filled with dashed line is the B-atom at the center
and Oxygen atoms are shown with un-filled circles.

of incipient ferroelectrics, characterized by a very high, temperature independent
static dielectric constant (O(10*) for SrTiO3) and no spontaneous polarization.
Dielectric properties of these materials are being studied since long ago and they
are widely known as quantum paraelectrics in the literature[16]. The correspon-
dence between the high static dielectric susceptibility and the softening of an optic
mode is also confirmed by the neutron scattering experiments[17, 18|. Thus it is
evident that the quantum paraelectric systems are of displacive type and the di-
electric behavior of these systems are dominated by a nearly soft ¢ = 0 transverse
optic mode fluctuations. A theoretical understanding of the dielectric behavior of
these materials needs a proper account of not only thermal fluctuations but also
quantum fluctuations arising from the optic modes near zone center. The lack of
physical content of earlier theoretical works on this material, particularly regard-
ing its vicinity to a quantum phase transition is one of the motivations for recent
studies on this materials. In an earlier attempt to explain the dielectric behav-
ior of such systems, Barrett [19] proposed a semi-phenomenological theory, which
essentially recasts the Curie-Weiss formula with a replacement of temperature T’
there, by average energy, thereby the inverse of dielectric susceptibility could be
written as, x ™! oc 1) coth(T,/T) — T,, where T, is classically calculated critical
temperature and 7} is a quantum scale ~ (h/mass). This theory, in the high
temperature limit, reproduces the Curie Weiss law. To match experimental data
in Sr'Ti03 the Barretts’ formula has been found inadequate as one single constant

quantum scale T can not trace the full curve. The formula has since been modified

11
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Figure 1.4: Temperature-dependent phonon modes in Sr'TiO3 measured by Shirane
G and Yamada Y, Phys. Rev. 177, 858 (1969). The 111°K transition is caused by
the soft mode at the zone boundary. Soft mode near the origin is due to incipient
ferroelectricity.

in various ways, for example, by introducing an extra exponent [20], that is, by
writing x 1 as (T} coth(Ty/T) — T.)™, and by making T} temperature dependent
with an extra scale [21], to take care of various “anomalies”, for example the one
near 40K. There has been a proposal of attributing this extra energy scale to the
structural transition which occurs at 110K [22|. These proposals either follow an
order parameter expansion similar to the Landau expansion or some modifications
thereof, hence they do not introduce any new microscopic description. Moreover
these attempts considers fluctuations arising from ¢ = 0 mode only and misses a
fact that the characteristic energy scale in this systems are very low, i.e. these sys-
tems are near a quantum phase transition. We assume that the would be quantum
phase transition from a paraelectric phase to a ferroelectric phase in this materials
to a continuous transition and will show that analysis based on such a view point
can capture many features of the dielectric behavior of these system which were
untouched by the previous theories.

We analyze the fluctuation effects in such systems within a self consistent mean

field approximation. The theory involves a lowest order perturbation expansion of
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Figure 1.5: Static dielectric constants €19 and €110 of the monodomain SrTiOs
samples. Inset: 10%/evsT. Reference|[16].

a continuum theory with a momentum cut-off and self consistent conditions|23].
Results depend on the choice of the cut-off and we have shown that a choice
of temperature dependent cut-off at/near a quantum critical point can lead to a
novel 72 behavior of the static dielectric susceptibility which is argued by scaling
analysis|24] and also verified by recent experiment[25]. Motivated by the success
of the assumption of nearness of these materials to a quantum critical point we
discuss the effects of strain coupling, magneto-electric coupling and the quenched
disorder in these materials. Each case will be analyzed by a minimal action and
suitable mean-field scheme. Analysis are mostly analytic and are motivated to
capture the basic physics rather than exact matching with the experimental data.
Moreover due the universality of the behavior near a quantum critical point many
of these analysis will also be useful for analyzing the quantum critical behavior of
a large class of Bosonic systems with undamped dynamics.

The thesis is organized in the following manner. In this chapter, basic concepts
related to quantum phase transitions, phase transitions in ferroelectrics and some
experimental facts about some incipient ferroelectrics such as SrTiO3 and KTaOs3
are introduced. In the next chapter we will explore the possibility of quantum

critical phenomena and its consequences in these materials. Attempts are made
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to analyze low temperature behavior of these system with the assumption of its
nearness to a quantum critical point. It is followed by a theory of weak first or-
der quantum phase transition observed in SrTiO3 which is assumed to be a result
of the strain coupling. Analysis is based on a self-consistent scheme for vertex
corrections at non-zero polarization. Predictions are made on the discontinuity
in the non-zero polarization both at zero and non-zero temperature and are in
accord with experiments. Chapter four is an account of dielectric behavior of an
incipient ferroelectric EuTiO3z where ferroelectric fluctuations are coupled to anti-
ferromagnetic fluctuations. Invoking a self-consistent scheme similar to the first
chapter in presence of magneto-electric coupling and external magnetic field, pre-
dictions are made about new power law behavior of the static dielectric behavior
at finite temperature. Predictions are new and worth further experimental inves-
tigations. Next chapter is an account of the effects of disorder in quantum critical
paraelectrics. Discussions are based on semi-phenomenological Ginzburg-Landau
theory with self-consistent mean field analysis. In this case a replica formalism is
invoked to take account of fluctuations from locally ordered regimes. A prediction
broad power law distribution of the instability points and its consequences on the

temperature dependence of the static dielectric behavior are made.

14



Quantum criticality in ferroelectrics

2.1 Introduction

In this chapter we discuss the low temperature dielectric properties of quantum
paraelectrics like Sr'TiO3 as a result of their vicinity to a transition from a para-
electric phase to a ferroelectric phase at zero temperature or a ferroelectric quan-
tum phase transition. These materials are introduced in the previous chapter. A
ferroelectric transition in these materials can be induced by tuning non-thermal
parameters such as doping concentration by isotopic substitution, which to a good
approximation can be assumed as of continuous type!. Thus a theory of the low
temperature dielectric behavior of such systems needs proper account of the fluc-
tuations near a quantum critical point. As a matter of fact, ferroelectric transition
in materials like Sr'TiO3 involves softening of a transverse optic mode. This kind
of phase transition also occurs in case of classical ferroelectric phase transition
in BaTiO3 and is called displacive transition. Unlike the case of order-disorder
transition where a local moment is always present, in this case the moment for-
mation and their ordering take place simultaneously. Phase transitions in such
system can not be described by an Ising Hamiltonian, which is usually invoked
for a system going through order-disorder transition. Dielectric behavior of these
systems are governed by collective oscillations of coupled dipoles and the phase

transition is described by softening of the corresponding optical mode due to ther-

Experimental results suggest that the case of SrTiOj is of weak first order type[37]. Many
of the discussions in context of a quantum critical point also hold in case of an weak first order
transition and will be discussed in the next chapter.
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Chapter 2. Quantum criticality in ferroelectrics

mal fluctuations[13, 14]. Due to the importance of both the collective behavior
as well as the quantum fluctuations, in these cases a proper quantum generaliza-
tions of the classical soft mode concept is needed to describe various aspects of
low temperature behavior. Moreover as a system approaches a quantum critical
point the interactions between the zone-center critical mode and other modes near

it becomes increasingly important which also need proper considerations.

2.2 Mean Field Analysis

The low temperature physics of these systems is dominated by fluctuations of
transition metal ions from their equilibrium position (center of the unit cell) in
the background of other ions. The action for such interacting ions is modeled in
terms of local displacements of the fluctuating transition metal ions with a nearest

neighbor harmonic interaction|28|,

3 o1 1 1
1

1y

Here ¢; displacement of the transition metal ions in the 1-th unit cell and g251 is
the time derivative of ¢;. For simplicity we consider ¢; to be one component.
The constants A and v are assumed to be positive and mass taken as unity. For
lv] << |wi| and w? < 0, the above action describes two local minima with a
nearest neighbor coupling v. In that case it mimics a two state Ising system with
Gaussian fluctuations around one of the local minima. When |v| ~ |w?|, there is a
possibility of large tunneling between these minima. In this regime the system has
to be described in terms of its collective behavior. Such system is called displacive

system and the limit |v] — |w?2| is called Displacive limit. In momentum space,

1. 1 1
A= Z EQ% + 2 Z(WS —vd ‘ Z €08 ¢;a)PqP—q + ZA Z Py Par Pas P—a1—as—as
q q 1=T,Y,% q1,92,93

(2.2)
Here 0 is the coordination number and a is the lattice spacing. In Fourier space
Pq(w) = tg(w) = —wdq(w) contributes a w?¢q(w)p_q(w) in the kinetic energy

term. We decouple the quartic term which creates interactions among the harmonic
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or free phonons in a quasi harmonic approximation as follows,
Z ¢ = 6N(o + (9)%) Z Pqy P—au (2.3)
1 q1

where < .... > denotes a thermal averaging and o is defined as

7= (Tq(0)p_q(07)). (2.4)

q
Finally the action for quasi-harmonic phonons can be written as,

A= 236 ~ )b (2.5)

qa

where w, is the renormalized value of the oscillator frequency and for isotropic
case, is given as
2

wy = wj — v cos qa + 3o ~ wi — v + véa’q® + 3)o, (2.6)

for small q. Such a truncation to the lowest order contribution from spatial vari-
ations is quite justified for a near critical system where only low energy and long
wavelength fluctuations are important. We are interested in the paraelectric phase
of the system, that is, where < ¢ >= 0. Since the system is at low temperature
and the dielectric constant has an enhanced value, < ¢? > need not vanish, how-
ever. The purpose of present work is to present a self consistent calculation of
< ¢* > in classical as well as in the quantum regime. In the previous chapter we
have discussed how a quantum statistical system can be mapped onto a dynamical
model. All one need is to consider the dynamics in the imaginary time. The fre-
quencies corresponding to the imaginary time in Fourier space is called Matsubara,
frequencies (w,). Owing to the different statistics of the Bosons and the Fermions,
wp, = 2nmT and (2n 4 1)7T for these two case respectively where n is an integer
and T is the temperature of the system|29]. The susceptibility, which is related
to < ¢? >, is essentially the phonon propagator corresponding to the action for

quasi-harmonic phonons (eqn. (2.5)) and can be written in Matsubara frequency
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as

x(q,n) = 1 ! wy, = 2n7T. (2.7)

Wwy)? — w2’

Above propagator depends of < ¢? > or ¢ and the dependence is included in the
expression for w, in equation(2.6). Using the definition of sigma (eqn. (2.4)) we

have a self consistent equation,
1 W
7 = DATOa(0)-a(07)) = 5 D xane """
q,n
1 1 1 w
A N th(—q). 2.8
ﬁzw2+w2 zq:zwqco °T (2:8)

The solution of this equation will determine o at zero temperature as well as its
temperature dependence at finite temperature. Above equation in its asymptotic

forms reduces to,

A T
Yaz~ o 44 C o (T >>w)
o — q w? 0 2 —v+v3g2+3\ (2.9)

1 (A 2 1
Zq Wq fo dq q \/w%—v+v<5q2+3>\a <T << wA>.

The integrals can be performed analytically and are cut-off (A) dependent. We
need to impose such cut-off to avoid ultraviolet divergences in the integrals. How-
ever in condensed matter system there is always a natural ultraviolet cut-off which
determines the maximum momentum scale up-to which a continuum description is
valid. For any fluctuations in a ordinary periodic solid inverse lattice spacing is an
example of such a ultraviolet cut-off. In case a system is far away from quantum
criticality, one can divide a high temperature (7' >> w,) and a low temperature
(T" << wy) regime using such a ultraviolet cut-off. However in case of a quan-
tum critical system, we see that (fig. (2.2)) such a demarcation is also governed
by temperature itself. Thus for calculating leading order temperature dependent
contribution from the fluctuation integral to the dielectric susceptibility, we use
a high temperature expansion as above with a temperature dependent cut-off in
this thesis. Before we go into details of the temperature dependence of static di-
electric susceptibility, we need to define some dimensionless parameters such as,
A= (Wi —v)/w}, 0. = (Wi —v)/3\, n=h/(2weo.) and h is taken as unity for the

rest of the discussions. The parameter A describes the effective stiffness for collec-
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tive modes at harmonic level. The strength of coupling between various modes near
q = 0 is determined by o ! while the parameter 7 tells us about the vicinity to the
quantum limit in the system. Introducing normalized temperature x = T'//mwio,
and using the previously defined parameters, we rearrange the equation (2.6) as

follows

w2 5 2 2
R BN CAREY (2.10)
wg  mw? o.
where
7 _ a) 9.11
-2 corh (224 2.11)

A self-consistent solution of these equations will determine the inverse dielectric

susceptibility which using eqn. (2.7) and (2.10) can be written as,

’10<A(£+1

Oc

x(0,0) (2.12)

A numerical calculation of the self-consistent equations (2.10, 2.11) is presented in
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Figure 2.1: Numerical solution shows saturation in Static susceptibility (in units
of 10%) vs Temperature curve. This curve is in good agreement with Muller’s
experiment in low temperature side, with ”5a =1,A =0.0025n = 1/A, oz =
0.1 and at the end y and T are rescaled W1th 0.4/A and 30A respectively. The
lower curve is the non-self consistent fit with the same parameters as the upper
one but with rescaling of y and 7" by 9.75 and 100 respectively.
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the figure 2.1. From the numerical calculation we learn that the high value of static
dielectric susceptibility of SrTiOs5 is fitted with the dimensionless parameter A =
0.003, which is indeed a small number. This gives us another justification to treat
this system to be near a quantum critical point. The static dielectric susceptibility
data of SrTiOs remind us of the behavior of itinerant Fermionic systems near
quantum phase transition point and fluctuation regime around that. There the
(staggered) magnetic susceptibility diverges for (anti-)ferromagnetic transition as
the coupling constant crosses a critical value[30]. The case of SrTiOs3 is similar to
that of liquid Helium-3 [31], where the magnetic susceptibility gets enhanced, as

large as ten times, depending upon pressure, from its free Fermionic value.

T3 >>w

L= T |

Wy Optic modeg above

Itical point

T - .
1T To<<w |
Optic modeés at i
guantum cgical point I
T T, >>W LTy <<w |

Figure 2.2: Schematic diagram showing how the momentum cut-off becomes tem-
perature dependent at a quantum critical point. At very high temperature (73)
the momentum cut-off is always temperature independent. At lower temperature
a temperature dependent momentum cut-off demarcates between the high tem-
perature and the low temperature regime. Only in the case of a quantum critical
branch, where the energy gap for ¢ = 0 mode vanishes has a momentum cut-off
~T.

A system far above its quantum critical point has non-zero energy gap(A) for
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g = 0 mode. For low enough temperature i.e. T << A, quantum fluctuations
dominate the low temperature physics. In this case the momentum cut-off in the
integral (eqn. (2.9)) is temperature independent as shown by 7} in figure 2.2 and
so is 0. At a higher temperature as shown by 75 in the same figure, there is a
crossover from a quantum domain to classical one at a cut-off determined by the
energy gap of the ¢ = 0 mode. Again the cut-off is weakly temperature dependent
(A ~ (T — A)?) and equation (2.9) tells that ¢ ~ T in the leading order. The
mode coupling would give corrections higher order in temperature, and 7, would
be proportional to A. On the other hand as A become smaller and 7 becomes
larger, the system move towards the quantum criticality. When A or T, becomes
identically zero we have quantum critical point. At this point the zero temperature
static dielectric susceptibility diverges and because of quantum critical fluctuations
it shows novel power law behavior at low but finite temperature. Interestingly the
A = 0 or w? = v limit is the displacive limit, well known in the structural transition
literature. Owing to the vanishing A, the momentum cut-off (A) in the integral
(2.9) becomes strongly temperature dependent at quantum critical point and the
dispersion relation (2.6) tells that A ~ T. A non-self-consistent estimate with
(A ~ T), which neglects 3\o in the right hand side of the equation (2.9) tells that
o and hence the inverse of the static dielectric constant follows a 72 behavior at any
finite temperature up-to the Debye temperature. Though the Debye energy scale
is system specific, the exponent is same for other systems with same dispersion
relation. Such estimate is essentially an outcome of the lowest order perturbation
theory which gives quite correct result when the system is far away from the
quantum critical point i.e. |[(w2 —v)/3\g| << 1. At quantum critical point, an
estimation of the self-consistent correction by putting o ~ A\T? in the right hand
side of the equation (2.9) is found also ~ T?. Thus self-consistency condition in
this case changes the coefficient of 7?2 only. Thus as far as the basic physics is
concerned, a non-self consistent prediction is sufficient for this material. However

to fit an experimental data self-consistent calculation becomes important.
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2.3 Phase diagram and Hydrostatic Pressure at
QCP

Based on the previous discussions, we now focus on a possible phase diagram for
the dielectric systems near a quantum phase transition. If we focus on the phase
diagram these materials near the ferroelectric quantum critical point where the
power law behavior of the dielectric constant etc is valid. In our estimate 7 is the
leading order correction to the paraelectric gap near the quantum critical point. A
more sophisticated calculation can lead to a slight deviation from T corrections

but the basic physics will remain the same. In the regime A < 0 self consistency
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Figure 2.3: Schematic phase diagram of a typical quantum paraelectric system.

in fluctuation breaks down, system seeks ordering and hence an expansion about
the non-zero < u > is required. A similar analysis in this regime will also lead
to a T? corrections. As a result the transition temperature 7. determined by the
solution of the equation A + \72, namely the gap equation, ~ |A|%. On the other
hand, in A > 0 regime the system can not have any ordering and its behavior
has to described by self consistent fluctuations as done in the previous section.
There is a characteristic temperature (crossover temperature in modern parlance
[5]) T* ~ A% which demarcates the boundary between the low temperature gapped
quantum paraelectric behavior and the classical behavior. In case of SrTiOs, the

plateau in the susceptibility vs temperature curve is the signature of gapped quan-
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tum paraelectric behavior. There is no transition in this system. But there is a
crossover from low temperature quantum to high temperature classical behavior
at the crossover temperature 7% (~ 10K ). This is exactly the temperature where
plateau ends and the susceptibility curve stars following a Curie behavior. One
can now hope to reach at A = 0 through tuning some parameters like pressure,
impurity etc. The width of this plateau regime vanishes at this point and the sys-
tem becomes quantum critical. At this point thermodynamics will be described by
power laws in temperature (e. g. x(0,0)™! ~ T72) and the system will show some
non trivial dynamics. The later is beyond the scope of the present work. It is quite
evident here as the controlling factor v/mw? strongly depends upon structural as-
pects and hence this quantum-ness in SrTiO3 can be properly understood through
some intrinsic mechanism which give rise to such large tunneling. The importance
of the vicinity to a quantum critical point in determining the low temperature
properties of a quantum paraelectric shows the limitation of the Barrett’s analysis
and its variants. Clearly it can not capture the consequences of the quantum criti-
cal fluctuations. That formula is essentially attempted at mimicking the quantum
fluctuations in a single mode theory, which would fail near the quantum critical
point as many modes and their coupling would dominate the behavior of system
there. This necessitates a self-consistent calculation for quantum paraelectrics near
its quantum critical point.

A possibility of exploring the physics near such quantum critical point is through
application of hydrostatic pressure. Such a technique is already used in case of fer-
roelectrics and quantum paraelectrics long ago [32] and more recently [33] in dif-
ferent contexts. We found that those experimental results can be discussed more
interestingly as is done in the context of itinerant magnetic system|34]. Appli-
cation of hydrostatic pressure will couple to optical mode via its coupling to the

acoustic mode. In this case the starting action takes the form

1
A = §/dq p2+ (w%—w Z cosqm) Ugl—g

1=T,Y,2
K
+g/d/<: dq €(k) ugup—q + 5 /dqe2(q) — pe(0). (2.13)

+%/H?=1(d%‘“%)5(z )

1

Here last three terms are results of applications of pressure, in lowest possible
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order. The parameter “¢” couples strain fields to unit cell displacement related to

optic mode and “K” is the force constant for harmonic acoustic phonons, and the
last term shows the coupling of the hydrostatic pressure “p” to the static strain
with some unit strength. Now if the pressure is strong enough ¢ has a minima at
e = ¢(0) and is given by

€(0) =p/K. (2.14)

substituting the above relation in equation (2.13) and neglecting the strain fluctu-

ations, we get an effective action

1 1
A = /dq Epg + 5 (wg + gp — vo Z cos qia> ngquS_q]

1=T,Y,2
1
+ ZA/Hidqi(bmgb%(b%gbmQ2(I3' (2'15)

Again we write a self consistent equation for paraelectric fluctuations as,

o= /aldqi coth (%) : (2.16)

Wq
Here the renormalized value of the optical mode frequencies are given as

KA\
w?(q) = 3AN(1 + p/po) + vdq*a® /2 + 3Ago and py = BT (2.17)

Up to this point result is just a renormalization of the factor A as A(1 + p/po)
and it becomes an experimentally controllable parameter. And the behavior of
susceptibility at different values of A is shown in the figure 2.4. It is visible in
this figure that as A decreases, the saturated value of the static dielectric constant
increases, the curve becomes a straight line down to zero temperature, signaling a
power law variation over the whole temperature range. In this proposal we assume
strain fluctuations to be negligible. However strain fluctuations can generate long
range interactions among the harmonic paraelectric fluctuations, i.e. a quartic
term with a coupling constant ~ ¢*/K. And in certain situation this coupling
constant can become negative and its magnitude can become comparable to A. In
that case it is quite possible that the transition will be first order and such scenario

is discussed in the next chapter. However in real situation one can try to induce the

24



Chapter 2. Quantum criticality in ferroelectrics

L L L
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Figure 2.4: Temperature variation of Susceptibility at different values of A and
the log-log plot of the same.

effect of negative pressure required in these systems to achieve a quantum critical
point through some homogeneous effects of non-polar impurity. But in either case
nature of the transition can be modified because of strain coupling or disorder

respectively.

2.4 Discussion

We have shown that a mean field theory for quantum paraelectric fluctuations
within a quasi harmonic approximation reproduces the low temperature behavior
of the static dielectric susceptibility of a quantum paraelectric. The qualitative
behavior of susceptibility is reproduced as well as a new insight gained into the
quantum critical behavior of such systems. A mismatch in theory and experiment
for the static dielectric constant at high temperature can be attributed to the ef-
fect of structural transition which occurs at higher temperature (i.e. at 110 K
in SrTiOj), such discrepancy is irrelevant for the present discussion which refers
mainly to the low temperature regime. The short range model studied here is jus-
tified since only transverse optical modes are involved in the quantum paraelectric
fluctuations. In presence of a long range dipolar interaction longitudinal mode be-
comes stiff and only transverse modes can get soft. The dipolar interaction induces

a certain amount of anisotropy to the transverse modes which can certainly change
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the critical behavior, however, only with a fairly large value of dipolar contribution
to anisotropy in the quadratic term [26]. Usually such anisotropy parameters are
picked up from ab-initio band structure calculations. We are not aware of such
ab-initio band structure results for anisotropy parameters in case of SrTiOj3 or
KTaOs3. However, the band structure calculations support our choice of parameter
for the effective stiffness. Compared to BaTiOj it is about twenty times smaller
(Table V in ref [36]) for SrTiO3, which makes it more near the quantum domain.
On the other hand the lattice induced anisotropy in the quartic term is of the
same order of magnitude and it would not play a key role in distinguishing the
low temperature behavior in these systems. We leave discussions on anisotropy
dependence for the future work and stick to an isotropic short range model. It
is also clear that there is no need to introduce “anomalous” regime as proposed
earlier. That proposal might be due to the insistence on comparing experimental
results with Barrett’s formula and its extensions. The experimental behavior is
well accounted for in the quantum region and at high temperature the suscepti-
bility smoothly crosses over to the classical behavior. The structural aspects and

anisotropy effects are not attempted here.
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Weak first order transition in quantum

paraelectrics

3.1 Introduction

Previous chapter sets up a basic theoretical ground for discussing the low temper-
ature dielectric properties of quantum paraelectrics along with some predictions
about their quantum critical behavior. With this background we focus on under-
standing the detailed experimental observations on various quantum paraelectrics.
In this context a recent spectroscopic experiment reports some interesting behav-
ior of quantum critical Sr'TiO3. This experiment[37] indicates that SrTiO3, one of
the member in the quantum paraelectric family, shows phase separation near its
quantum critical point. This Raman scattering experiment at low temperature re-
ports simultaneous responses from both the paraelectric and the ferroelectric phase
near a quantum critical point in O'® doped SrTiO. The intensity of the scat-
tered light from the ferroelectric phase is reported to be very weak and becomes
weaker as one moves away from the quantum critical point. The coexistence of
a quantum paraelectric phase with a ferroelectric phase in O'®-exchanged SrTiOs
provides strong evidence for a first order phase transition. Moreover owing to the
low intensity of the scattered light from ferroelectric phase, the nature of the tran-
sition can be called a weak first order type where many features of a continuous
transition remain unaltered. This experiment is performed at zero electric field,
at a constant pressure and there is no report of electro-magnetic coupling in this

materials. Thus one can safely attribute this first order nature of the quantum
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Chapter 3. Weak first order transition in quantum paraelectrics

paraelectric to a ferroelectric phase transition to the coupling between the critical
mode with non-critical strain fluctuations. Such a coupling is quite common in
classical ferroelectrics and has been studied both theoretically as well as exper-
imentally in earlier literature. Earlier experiments show that the application of
hydrostatic pressure moves these systems away from criticality and the possibility
of phase transition is suppressed. One needs to apply, what is termed as, a nega-
tive pressure to induce phase transition in these materials. One way to simulate
negative pressure is to put non-polar impurities which create local pressure defi-
ciencies. In this context, experimentally [38] one finds T, ~ (n — n.)2 (where n
is the average impurity concentration and n, is the critical value, typically 33%)
which matches well with the theoretical estimated[23] transition temperature for
pressure induced transition. In this case, the mean field T, ~ (p+p.)2 (where p is
hydrostatic pressure and p,. is the critical value). The exponent % is obtained when
thermal fluctuations are treated at the Gaussian level. The similarity between ef-
fects of pressure and the impurity in the transition temperature can be attributed
to the high density of impurity concentrations in these cases. Here the disorder
effects seem to be small and a non-polar impurity essentially induces an internal
pressure. This motivates us to develop a description, suitable for the properties
of the pressure induced phase transition, which can be used to understand the
occurrence of the phase separation mentioned above in the ferroelectric transition
near the ferroelectric quantum critical point. In this chapter we look for a weak
first order transition scenario where correlation length is large enough to adopt a
continuum model. We therefore, start with an effective one component model with
short range interaction without dipolar anisotropy and try to explore the results of
order parameter fluctuations with an effective long range interactions among them,
mediated by strain fluctuations. We look for the fluctuation effects in four point
vertices. To retain the leading fluctuation effects in the vertex function along with
their dependencies on the non-zero polarization, we calculate the free energy using
a set of renormalization group equations. This fluctuation renormalized free energy
is used to explore the possibility of a first order transition at zero temperature as

well as at a finite temperature.
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3.2 Summary of the mean field analysis

We assume that a fluctuating strain field €;;(7) ~ (V,u;(7) + V;u;(7)) couples to
a bi-linear form of the optical modes fluctuations as ge;;(7)¢;(7)¢,(7). Here u;(7)
represents the displacement due to acoustic mode fluctuations at i-th site in real
space and g is the opto-elastic coupling. We consider the Gaussian fluctuations of
the strain fields and consider the system to be at a constant pressure. Integrating
out the strain fluctuations completely, we get an effective long range interactions
among the optical mode fluctuations of the form vqﬁ?(b? in real space. Here v o g?
and depends on various elastic constants depending on which it can be either
negative or positive. A naive quantum generalization of such interaction would lead
to a term like v¢7(7)¢?(7), where 7 is time. Such a term indicates field variables at
two different position interact at same point with same interaction strength. This
clearly violates causality and we need to introduce non-locality in time in such
interaction. Thus we the resulting interaction to be v¢7(7;)¢5(7;) which is found to
consistent with the quantum-classical mapping of our strain coupled system. Since
we consider a weak first order transition a-priori, we assume v to be negative and
leave the detailed discussions on its dependence on various elastic constants. In a
Fourier space our effective action describes only polarization fluctuations transverse
to the momentum vector with strain induced long range interactions among them

and takes the following form,

A = % ; %(W?L +7r+ Cq2)¢q¢fq + ﬁ Z U, Par Pas P12~ as

" q1,q2,q3

vL™¢
_'_W Z ¢CI1¢*(11¢(12¢*CI2' (31)

q1,92

Here ¢,, = ¢(q;,w,,) describes the Fourier transform of local transverse polariza-
tion, q is the field momentum, w,, = 27n/f is the Matsubara frequency for Bosonic
excitations, » and u are the coupling constants for quadratic and the anisotropic
short range quartic interactions respectively. The parameter v is the coupling con-
stant for isotropic long range part of the quartic coupling induced by strain and
L% is the system volume in d-spatial dimension. Hydrostatic pressure, as well as

the non-polar impurity, couples to the optical mode via strain. It shifts the bare
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quadratic and quartic coupling ro by 7 = ro(1+p/po), where p is the homogeneous
pressure and pg is a constant. Strain fluctuations induce a long range attractive
interaction between the dipoles and is denoted by the effective quartic coupling v.
We focus on a weak first order transition near a quantum critical point where ¢
acquires a non-zero value. Thus in a mean field approximation near such a transi-
tion point ¢ can be decomposed into two parts, P the static mean field part and

1(q,w), the fluctuating part as follows,

It is assumed that < 1(q,w) >= 0. In this approximation our starting action (3.1)

can be rewritten as

(u+ o)
4]

o 4 i 2 2 2
A =SP4 P +25;(wn+r+cq + (/2 +v/6) P )p_,

u u
+Pﬁ Z wthwtmw—ln—tm + I Z wQ1w¢12¢q3¢—q1—q2—Q3

q1,92 " q1,92,93
vl
55 2 Ve t-aet-n. (3.3)
q1,492

Here we use the notation ¢, = 1(q;,w,,). It is to be noted that the term P?i 1),
has a coefficient 3u + v which can remain positive even when u 4+ v < 0 and it
has important consequences which will be discussed later. Technically the long
range part of the action with vertex v contributes to such term two possible ways
whereas the short range part with vertex u contributes in six (C3) possible ways
and the difference lies in their range of interactions. With this action we can study
the thermodynamics of the system by constructing a free energy which is defined

as the logarithm of a functional integral over A(v, P), i.e.

F = —% log (/ Dz/;eA(w’P)) . (3.4)

The value of P is to be determined by minimizing the free energy F. Stability of a
thermodynamic system requires the free energy to be positive. In a Landau theory,
which neglects fluctuations completely, stability criteria requires the coefficient of

the quartic term, i.e. (u+wv) to be positive. In that case, for r > 0, the free energy
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will be minimized for P = 0 resulting in a second order transition. On the other
hand for (u 4+ v) < 0 stability criteria in a mean field theory requires a higher
order term with positive coefficient which results a first order transition with a
non-zero P ~ |u + v|. We consider a limiting situation where |u + v| &~ 0 which
corresponds to a weak first order transition. In this regime a proper account of
the fluctuation corrections should be taken and it will be shown that fluctuation
corrections alone can stabilize the system without invoking a higher order term in
the starting action. We will discuss the effects of fluctuations in four point vertices

near a weak first order transition in the next section.

3.3 Fluctuation corrections to the free energy at

zero temperature

In the previous section we discussed importance of the coefficients of quartic term
to determine the nature of phase transition. In a field theory description these
coefficients are called vertex functions. Under certain circumstances they can get
heavily renormalized by order parameter fluctuations and an weak first order tran-
sition is such an event. In this case there is a competition between order parameter
fluctuations and a non-zero value of order parameter to stabilize a thermodynamic
system. To quantify the effects of the competition between the order parameter
fluctuations and a non-zero value of order parameter we calculate the fluctuation
re-normalized four point vertex functions. Then a fluctuation renormalized free en-
ergy is constructed using them. We use renormalization group equations for four
point vertices obtained in the lowest order perturbation theory. Such equations
were derived earlier by Gadeker and Ramakrishnan[39, 40] in a parquet approzi-
mation. It is assumed that near a weak first order transition, a system acquires a
small but non zero polarization P, the polarization fluctuation near such a phase
transition becomes gapped, with the gap being proportional to P2. Thus near such
a phase transition the free optical phonon propagator which is the inverse of the
coefficient of the quadratic term of the fluctuating part in the mean field action

(eqn. (3.3)), is given by,

G Hqwy) =7 +cq® + w2+ (u/2 +v/6)P>. (3.5)
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In a paraelectric phase with u +v > 0, P = 0. A bare theory predicts that at

X > oo

O

Figure 3.1: Parquet diagrams for the fluctuation corrections to the short interaction
vertex u (a) and the long range vertex v(b) are shown at the lowest order. Here
the curly line corresponds to the long range vertex and the solid line corresponds
to the propagator given by the equation (3.5).

T = 0, the static susceptibility x(0,0) ~ G(0,0) ~ 1/r. Thus r = 0 is a point
of instability in the paraelectric phase, and when there is no discontinuity in the
order parameter (u+v > 0) at that point, it can be identified as a quantum critical
point. In the vicinity of the critical point, correlation length becomes large, leading
to dominance of the order parameter fluctuations. Moreover when |u + v| &~ 0,
fluctuation corrections to the four point vertices become important. We will try
to discuss the effects of fluctuations in the vicinity of the limit |u + v| — 0, in
developing spontaneous non-zero value of the order parameter near the transition
point. Since in the case of a week first order transition, initially correlation length
grows significantly, the bare vertices get strongly re-normalized. Now using the
bare propagator for the order parameter fluctuation (eqn. (3.5)) we find that the
leading order contribution from the second diagram of the figure 3.1(a) to the

renormalization vertex function with a momentum cutoff A is given as,
A
du= —u? Z/ d?qG?(q, wy). (3.6)
0
n

At zero temperature the frequency summation becomes an integral and in this

case, the combination of the frequency sum and the d-dimensional integral can be
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replaced by a d + 1 dimensional integral. Hence in three dimension,

A

ou ~ —u2/ d**'qG*(q) which
0

A

. (3.7)
(r + (u/2 +v/6)P2)3

~ —u’K,log

Here K is a constant which is related to the surface area of a 4-dimensional sphere

of unit radius. Surface area of a d-dimensional hyper-sphere is given by,
—1
Ky = <2d*17r%r(d/2)> . (3.8)

Ky = 8% and # in d=4 and d=3 respectively. The correction to four point vertex
du has a logarithmic divergence as r — 0 and P — 0. We define the diverging

logarithmic part as a new cut-off variable

A
(r+ (u/2+ v/6)P?)}

x = log (3.9)
We define the re-normalized proper four point vertices I'y and Ay, with their bare

values given as,
I') = uand A} = v, (3.10)

Considering the lowest order corrections, we get the following renormalization

group equations in terms of the cut-off variable x,

dr 3

= pKeTie) 31
dA 1

d—:U4 = —Kgla(z)As(z) - éKd+1A421($)- (3.12)

The above equations can also be obtained in a parquet re-summation scheme by
summing leading order diagrams up-to infinite order as shown in figure 3.1. How-

ever the solutions of these equations can be written as,

Iy
1+ %Kd+1r91x’
3T, AY

B = : 3.13
YT AT (B0 AN (1t BRg [2) (3.13)

ry =
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In this derivation the contributions from the third order term, i.e. from P
is neglected. In a perturbative theory, this term contribute nothing at the first
order. It contributions to the higher order. But those corrections are less divergent
compared to the contributions coming from quartic terms. It is to be noted that
the cut-off variable = contains I'y and A,. Thus the set of equations (3.13) defines
coupled equations for I'y and A4. They need to be solved self-consistently to find
out their dependencies on r and P. From I'y and A, thus obtained, we can calculate
the fluctuation re-normalized free energy using the relation,
NF

We need to integrate (with proper boundary conditions) the above equation four
times with respect to P to get an expression for the free energy. Integrating the

equation (3.14) once, we get

OPF

P
S T4+ Ay)dP’
op3 /0 (Fit &)

= P[4+ Ay + /P P’ 0 (Cy + Ag)dP' + c(r). (3.15)

oP’
Here ¢(r) is a constant independent of P and can be equated to zero using the
symmetry constraint 9°F/0P3|y = 0. The second term in the right hand side of
the above equation takes care of the P dependence of I'y and A4. To make our
calculations simpler, we will neglect that term at this stage. Before doing so, we

make an estimate of the corresponding error. The integral reads as,

/P 2K 41 (3T + Ay P2dP! (3.16)
o 67+ [(

8T+ Ag) — B30, 4+ A2 P2

Here K41 = # in d = 3. In order to make our lowest order perturbation theory
valid, we choose (3[4 + Ay) ~ O(10). Thus Kg4.1(3T4 + Ay) ~ O(1071). The
contribution from the P-dependence of T'y and A, to the integral(3.16) becomes,

P P/2dP/
3Ty + Ay)?
(BT 4)/0 6r + (304 + Ay) P2

(3T + Ay)?P ~ 1072(3Ty + Ay) P. (3.17)

K

K
3

Q
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We see that, the P-dependence of I'y and A4 contributes two order of magnitude
less compared to the other terms in the free energy. Thus we neglect the P depen-
dence of 'y and A, at this stage in calculating F'. Integrating two more times, we
get,

gg::TPk§#F4+AAQFﬁ. (3.18)
To obtain a form of F' suitable to describe the first order transition we need to

retain the P dependence of I'y and A4 at this stage and thus,

P
1
F = / (TP, + 5(1—‘4 + A4)Pl3)dP,
0 .

1 (Ca(P) + Au(P))

_ L op2 4
= 2rP + i P
1 F 14 d / / /
T i P dP’(P4(P )+ Ay(P))dP'. (3.19)

To evaluate the above integral, we make the following substitution(using eqn.

(3.9)) -
pro Bt (3.20)

Ty | Ag
> %

Contribution from the integral part in the previous equation is given by

1 log

A 2
Y y d (T
1 S LDy (2) + Ag(2))dz
4! Jrog(a Q%+%J du

o A
_ Kan / R (2 g 4 )
4 Jog(a/r)

Kd+1 r 9 1 I‘4 A4 ? 4
= Dy +ApPP—= (2 +=2) | P
4 (2(4+ ! 2(2%6

.
+ (5 + 24P

+r?log
,

Thus we get the following expression for the free energy at zero temperature

K 1 K T A
F = d+1 r2 log br + —rP? (1 + drl (—4 + —4))

4 or + (3F4 + A4)P2 2 2 2 6
r,+A, K I, A\°
+#(4Z4— ?(§+€)>. (3.22)

). (3.21)
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where I'y and A4 are P-dependent and are to be determined from the set of equa-
tions (3.11,3.12). We notice that only the following combinations of 'y and A4

appear in all the calculations,
Y1 = 3P4 + A4, Yo = P4 + A4. (323)

Here the bare value of v (79)is the coefficient for the quartic term in mean field
approximation. On the other hand non-zero polarization enters into the fluctuation
propagator with a coupling constant 7;. In case of 49 < 0, a mean field picture
requires an additional |P|% term with positive coefficient for the stability of the
system. However a fluctuation corrected scenario can ensure stability without
such a term, provided ~; > 0. With the above definitions, the set of equations

(3.13) becomes a single self-consistent equation for ~;

_ 3% (1+ Al ) (3.24)
T IR IR T A+ (3T — AN (14 2Ky T0) )~

Here x contains ~; only. Solving the above equation, v, can be found from (eqn.
3.12)
dva _ _Kan o
dx 6 -

Below v, = 0, phase transition in this system will be first order. We are interested

(3.25)

in the phase transition near v, = 0, where fluctuation effects in four point vertices
are important. If we limit ourselves to the region |A4| < 3Ty, the leading order

behavior of ~; is same as that of I'y and is given by

379 B 379
1+ %KdJrngx 1+ %Kd+1rg lOg

Gh___-
V/6r+m P?
Assuming the bare value I'} ~ O(10), so that 2—% < 1 which validates perturbation
theory, gives 6I' ~ O(10?). If we define a parameter a = 2K,41I"}, then within

the validity regime of perturbation theory a ~ O(1071). Thus for an wide range

of 1 e. g 11~ O(1) — O(10%), we find |alogy| < |3,YL12| For small 7, 7 and 7,
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can be estimated as

31" 31"

~ R~ : 3.27
1 —alog(y1P?) 1—2alogP (3:27)

T

This is essentially a non-self-consistent solution for ~;. Variation of ~; at zero
temperature is shown in figure 3.2. From the figure it is visible that, at P = 0
because of the quantum critical fluctuations there is a strong reduction of v, from
its bare value and a non-zero P restores it to its bare value. A non-zero polarization
has similar effects on the v, which leads to a first order transition.

From the equation (3.25), we get,

T

B o= R (9w D (3.25)
9(T9)2Kyyq 1
0 4 +
— _ l— 2
T2 6a 1 —2alog P (3:29)

where ~9 is the bare value of . Since the corrections due to self-consistency
~ log~i, the above estimate breaks down near P ~ exp(1/2a). Except in that

regime, the non-self-consistent result is expected to give good result.

10

Y1
~
»

. . . .
0 0.2 0.4 0.6 08 1
P

Figure 3.2: Asymptotic evolutions of 7 with P at T = 0. Parameter values are
chosen as 3T} = 10 and @ = 0.1 in an arbitrary scale.

Free energy at zero temperature: Using the asymptotic behavior of the

four point vertices (eqn. (3.27)) and using equation (3.22) defining 79 as 9 —
9(T})*Kai

6., we can write the following asymptotic expression for the free energy at
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zero temperature

K 6 1 K 619
F o= =l " 5P (H 17 T=2al P)
6r + p? 172a1§>gP T calos

Pt K, 9(I9)>2 4K, 319 ?

T ((&% Gd; (1 — éaigp)) 36 >C<l+§ (1 — QailogP) 93'30)
Here the first term ~ O(r?), hence negligible compared to the other terms in
the vicinity of a quantum critical point(r — 0). The second term is a standard
quadratic term with fluctuation corrections. The third term, describes the appro-
priate physics of the problem. The coefficient of the quartic term contains three
terms. First one is a constant and can take either positive or negative but small
values. Now there is a competition between the second and the third term. The
second term tries to make the free energy positive while the third term tries to make
it negative. However unless 19 is a sufficiently large negative number, coefficient
of the quartic term is positive in the parameter regime of our interest.

To have a phase transition, the following equation must be satisfied,

OF 1 ,

For positive r =~ 0, the above equation can be satisfied only if I'y + A, is negative.

Corresponding value of the P is given as,

1 9K41(T9)2
Py=exp|—+ ﬂm‘o
2a 12a7;

1
= — (1 3.32
) = (140 (3.32)
9K 411(I9)?
673
very large values of F,. Since the scheme presented here, is valid for small P, we

with p = Since |u| >> 1, the parameter 7§ > 0 corresponds to the
exclude this possibility in this discussion. On the other hand, 9 < 0 corresponds
to the finite value of Py and there is a possibility of a first order transition at
r=r9>0. As 7~ P? 1y ~exp= (14 p). This is in sharp contrast to the mean-
field prediction. In the later case a discontinuity in the order parameter is predicted
to be ~ +9 = |u + v|, while such discontinuity has a non-analytic dependence on
79 in a fluctuation induced and order parameter limited transition in our theory.

If we consider the Gaussian thermal fluctuations near the instability point and
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neglect the temperature dependencies of the vertices, then the thermal corrections
to r and P? ~ T? and P} should vanish above a temperature T ~ exp 5- (1 4 ).
However the fluctuation cut-off for the renormalized vertices and hence the form
of fluctuation re-normalized free energy should get changed at finite temperature.

In the next section we will discuss the finite temperature case in detail.

3.4 Fluctuation corrections to the free energy at

finite temperature

_ O

Figure 3.3: Diagrammatic representation of gap renormalization up-to one loop.

Here we consider the system to be at a low but non-zero temperature as well
as near a mean field quantum critical point with a zero temperature negative gap(
i. e. r = —rg, ro > 0). Near ry = 0, fluctuation corrections at finite temperature
to it leads to

P(T) = —ro+ Ky (5 + 2 ) T, (3.33)

2 6

Here the thermal fluctuations are considered up-to the Gaussian level as done in
the chapter 2. Above expression for r(7") without any correction to four point
vertices predicts a second order transition with a transition temperature 7, ~ /rqg
for u + v > 0. Again we will look at the correction to the four point vertices in
the limit |u 4+ v| — 0 but at non-zero temperature. Using the same procedure as
used for the zero temperature case, we now deduce the parquet equations for the
four point vertices and hence the free energy at finite temperature. At non-zero

temperature, fluctuation corrections to the four point vertices takes the form

ou ~ —u*T /OA d*qG*(q, w, = 0)
T
(r(T) 4 (u/2 +v/6)P?)z

~ —u’Ks : (3.34)
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in three dimension. Near the critical point, r(T) ~ r + K3(u/2 +v/6)T?. Thus at

finite temperature, we can define finite temperature fluctuation cut-off as

T
(r+ (u/2+ 0/6)(P* + K5T2)

(3.35)

T =

In this case, fluctuation corrections to the free energy in terms of 7, and 2 (equa-

tion 3.19) becomes,

1 xp(P) T2 /22 — 2 d
[P — (_ﬁz_z_Kﬂg> ()
4! z7(0) ’}/1/6 dx
1 M 9\ 3 M, o 21\ 3
= ITlr+ T )2 — (r+ E(P + K3T?))?]
2+ LT — (o P BT
ST + KT — (4 (P 4 KaT?)) 3

6 6
~Trllr+ BT}~ 4+ (P4 KT

12T (r + LT 8 — (r + (P2 4 KoT2)) 73]

6 6
Ty (r + %KgTQ)_% —(r+ %(PQ +KT%) 73] (3.36)
Here zp(P) = L r is used as polarization dependent fluctuation cut-

(PP RST)
off at non-zero temperature. In performing the above integral, z;-dependence of

'y and A4 are neglected as that would lead to sub leading corrections. For the
systems near r — 0 limit, retaining only the terms lowest order in 7" and r, the

free energy can be truncated as

3

1 Ty+A\ T I, A 2
F = —rpP>4pP* (=2 — Ky(— + =317
S ( 1 )+4[(r+ 3(2+6)

— ('r’ + (% + %)(P2 + K3T2)> 5]. (3.37)

For small 7 and T, the third term is of the O(T*), hence is negligible. Thus the

free energy in the leading order can be further truncated as

3
T P4+A4 T F4 A4 2
F=-pP>+p* - (=+=) P 3.38
SR ( I ) 1 (2 % (3.38)
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In the above equation P = |P| and the cubic term which is a result of small P

expansion, does not violate the symmetry of the problem. A finite temperature

version of the equation (3.27), i.e. the asymptotic form of the self consistent

equation for ~q, one of the important combinations of the four point vertices reads,
619

= - . (3.39)
T (P KT 2

Non-zero solution of the above equation tells

_ 18a’T? 4+ KyINT? + TOP? | 6aT\/9a*T? + TP + T'QK5T? (3.40)
o= P2 4 K,T? P2 + KT o

In deriving the equations at finite temperature we have limited ourselves in the
low temperature region i.e. a?7* is neglected compared to K3T?. Moreover v,
should be strongly suppressed due to critical fluctuations at zero P and should go

towards its bare value with increasing P. Hence the part is remaining,

6a+/T9T "
NS et (3.41)

Asymptotic evolution of v with P for two different temperature is shown in figure

’)/1%1—‘91—

3.4. In this figure we find that qualitative nature of the curve is similar to that
of the zero temperature case except that at P = 0, reduction of +; at a finite
temperature is lower than that of it at a zero temperature. Since at a finite
temperature the quantum critical fluctuations are suppressed, this is an expected
result.

However from equation (3.28) we get

0 24 /TOT
72278+< L4+ = ) (3.42)

3 P2+ K317

Free energy at finite temperature: Again using the asymptotic behavior of

the four point vertices (3.41) and using equation (3.38), we can write the following
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P

Figure 3.4: Asymptotic evolution of ~; with P at T' # 0. Two curves are drawn at
two different temperatures with I'} = 10/3, a = 0.1 and K, = 0.1.

asymptotic expression for the free energy at non zero temperature

Fo_ T<T)P2+i4 0 2F2Jr 2a+/T9T
- 4\ 72 3 VPt Ksl?

3
T 9 /TY ’
—p3 (_4 — i) ) (3.43)

4 6 /P2t K312
Gap renormalization up-to one loop(figure 3.3) at finite temperature near r = 0,

tells,
9 a+/TOT
r(T) = —rg+ Ks | =2 — —Y -4~ | 72 3.44
(T) = —ro 3<6 WMSTQ) (3.44)

Neglecting the term of O(T73) in the coefficient of P?, the expression for free

energy becomes

F =

1 K0\
“ (- ) P
2( Tt g

+1P4 0y QFQ+ 2a+/T9T
4! 2 3 VP2 + K172

T (1 3aT
o= ps |- a . (3.45)
6 2\/TY(P? + K3T?)
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In the limit P? >> K372, it takes the form!

1 KT 72,/T9
F o= §<—r0+ e , 30 4>P2

6 2

219 0
T Z-4
P (rg -2 Fg) + (%) P (3.46)

Above equation tells that, the solution of the equation 0F /0P = 0 will result a
nonzero value of Py ~ Ty, even if 49 > 0. Here Ty is the second order transition
temperature for the mean field theory. Since near quantum critical point, Ty ~
V1o, Py is also ~ /1g. If we compare this results with that of the zero temperature
case, we see that in the finite temperature case, the discontinuity in the order
parameter near the transition point ~ /o while it is independent of ry in the
zero temperature case. Since ry is the smallest scale(near mean field quantum
critical point, rg — 0) in this system, first order transition as a result of the order
parameter fluctuations at finite temperature near the mean field quantum critical
point is weaker than that of the zero temperature case. This result is consistent
with some experimental fact as reported in [37] and established the importance of

the quantum critical fluctuations in this regards.

3.5 Discussions

Occurrence of first order transition due to coupling between the order parameter
fluctuations and soft modes is a well studied problem in many classical systems[42,
43, 44, 45] and recently studied in context of quantum phase transitions in elec-
tronic systems|46]. To capture the basic physics near a weak first order transitions,
one needs to study the effects of fluctuations on the proper four point vertices. Bare
perturbation calculations in this system show vertex corrections to be logarithmi-
cally singular at zero temperature and with zero polarization in three dimensions
due to quantum critical fluctuations. To include the effects of the singular contri-

butions, we use the lowest order renormalization group equations to derive a set

!This assumption does not contradict K372 contribution to the gap renormalization. Such
contribution appeared with the assumption that the lowest non-zero Matsubara frequency, i.e.
2nT > /A P. This assumption holds good even if P? >> K3T?.
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of recursion relations for four point vertices. Moreover to stabilize the system a
non-zero polarization is assumed. Here the re-normalized vertices crucially depend
on the non-zero polarization. Using these relations, the expressions for the free en-
ergy both at zero temperature and at finite temperature are derived. The relevant
quantities like transition temperature and the discontinuity in the order parameter
at the transition point turn out to be small but finite. We mainly concentrate on
the phenomena near a quantum critical point predicted by a mean field theory.
We found stronger possibility of first order transitions at 7" = 0 than at any finite
temperature transition near quantum critical point which is in accord with recent
experimental finding. From our analysis it is clear that this fact can be attributed
to the critical fluctuations near a quantum critical point. It is found that a finite
polarization is required to suppress the effects of the critical fluctuations. Since the
effects of quantum critical fluctuations get reduced at a finite temperature, a lower
value is sufficient to stabilize the system. Thus the phenomena observed in the
experiment|37] is clearly a consequence of the quantum critical fluctuations. Apart
from that, unlike the standard renormalization group approach, which considers
first order transition as just the inability of the system to reach an unstable fixed
point, the present approach makes qualitative predictions about the magnitude
of the discontinuity in order-parameter near the transition point. Similar phe-
nomena occurs in low 7, itinerant magnets because of the coupling between order
parameter and other soft modes[47]. The effects of fluctuations in the discontinu-
ity in order-parameter has been estimated earlier using different theoretical set up,
namely loop corrections to the free energy, hence an non-analytic Landau expan-
sion. In those works the occurrence of first order transition at low temperature is
found to be more susceptible to the effects of generic scale invariance than their
classical counterparts. We have considered the constant pressure case only, where
strain fluctuations are completely integrated out. One can also consider a situation
where system volume is constant|[48] and a proper quantum generalization of such

case should certainly be addressed.
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Quantum criticality in magnetic quantum

paraelectrics

4.1 Introduction

In this chapter we focus on some novel behavior of EuTiO3 at low temperature.
This material can certainly be considered as a good addition in the list of quan-
tum paraelectric materials exhibiting macroscopic quantum phenomena in ferro-
electrics and multiferroics. As far as the structure and the gross features of the
static dielectric behavior are concerned, this material is similar to other quantum
paraelectrics with perovskite structure, like SrTiO3z, KTaOs, etc. In the study
of quantum criticality in ferroelectrics, EuTiO3 certainly adds a new dimension.
This material contains Eu ions with spin 7/2, and undergoes anti-ferromagnetic
order at Ty ~ 5.3K[49]. As one lowers the temperature a sharp decrease in the
static dielectric susceptibility is observed below the Neel temperature. Moreover
presence of an external magnetic field reduces the suppression of the dielectric
constant by Neel order. At a critical value of the external magnetic field ~ 1Tesla,
which suppresses the effects of the Neel order completely, the static dielectric con-
stant of this material attains a quantum paraelectric behavior, with ey ~ O(10?)
at zero temperature[50]. The dielectric susceptibility starts getting saturated at a
crossover temperature (defined in chapter 2 and ref. [23]) ~ 30K. An experimen-
tally observed dielectric behavior of this material is shown in figure 4.1. Thus it
is almost evident that the magnetic order couples to the polarization fluctuations

in this material. In previous theoretical attempts, a mean field theory with such
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Chapter 4. Quantum criticality in magnetic quantum paraelectrics

a scenariol51, 52| was found quite successful in describing many aspects of the
dielectric properties of this system. Like other quantum paraelectrics, electric po-
larization in this material is due to the variations of Ti-O bond-lengths from their
equilibrium values. However the collective behavior of such interacting stretched
bonds does not lead to a ferroelectric state even at zero temperature. Let us now
analyze the above experimental findings in context of quantum phase transition in
ferroelectrics as discussed in our second chapter. In that line of thought, we see
that EuTiO3 has a much lower value of static dielectric constant at low tempera-
ture than other quantum paraelectrics and thus it is far away from a ferroelectric
quantum critical point than them. However this material can be tuned to a fer-
roelectric quantum critical point by changing some non-thermal parameter, such
as replacement of a certain amount of O by O!®. On the other hand its Neel
temperature is low enough to consider it as near a anti-ferro magnetic quantum
critical point. Thus it is quite sensible to speculate that this material can be a good
play ground for observing an interplay of two different kind of critical fluctuations
at low temperature.

In this chapter we consider a non-thermal parameter tuned EuTiO3 near both

420

410

400

e(H)/e(0)

3
Magnetjc field (T)

390

Figure 4.1: Variation of the static dielectric constant with temperature in EuTiOg
as found in the experiment at different values of the uniform external magnetic

field.
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ferroelectric and anti-ferromagnetic quantum critical points. The ferroelectric sub
system is considered as displacive type, i.e. corresponding order parameter (gz;)
fluctuations are represented by the fluctuations in two transverse optic branches.
Ferroelectric transition in this case is due to the softening of the optic phonons at
the zone center. The effects of dipolar interaction is considered as the stiffening of
longitudinal branch, and thus longitudinal fluctuations are not taken into account.
Magnetic sector, i.e. the collection of interacting Eu spins (5) in a cubic perovskite
environment and in absence of external magnetic field, is represented by Heisenberg
anti-ferromagnetic order parameter (1m) which is a vector spin with three compo-
nents with short range interactions. In presence of an external magnetic field a
ferromagnetic component will grow and will compete with the anti-ferromagnetic
component to restore the quantum paraelectric behavior. Following the previous
theoretical works[51, 52|, we consider a coupling of the form —%|q§|2|§|2 with cou-
pling constant w > 0, between them and focus on the dependencies of the static
dielectric susceptibility on temperature and external magnetic field below T. In
earlier works which was directed towards explaining experimental findings in this
material, the effects of magneto-electric coupling on the thermodynamic behav-
ior of this material has been described at off-critical regime without considering
quantum fluctuations. No attention has been paid to the possible quantum critical
behavior of this system. We will try to explore the static dielectric behavior in this
material near both the anti-ferromagnetic quantum critical point and ferroelectric
quantum critical point regime. A scheme for systematic analysis of quantum fluc-
tuations in this regime is proposed and the possibility of realizing such a limit in

experiments will be discussed in the following sections.

4.2 Mean field theory

We consider this material in the vicinity of both anti-ferromagnetic and ferroelec-
tric quantum critical points. In this regime both the magnetic fluctuations and the
paraelectric fluctuations can be described by a continuum theory. To study its di-
electric properties in this regime, a Landau-Ginsburg-Wilson action for a magnetic

quantum paraelectric system, in terms of the sub-lattice magnetization m and the
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electric polarization gi; (soft mode coordinates) can be written in the following form,

A = /ddx 0 Ar[5(6- 6) + (9:0)" + SV - ) + 5 (87’
0 ) (O — i ¢ ) TV )+ L ()
— S |8P1mP) (4.1)

Here 7 is the imaginary time, (8 is the inverse temperature, and h is the applied
external uniform magnetic field. Above action contains a dielectric part which
is identical to one used in our study of quantum criticality in ferroelectrics in
the chapter 2. The magnetic part of the action is derived with the considera-
tion of small ferro-magnetic component which can be integrated out, as well as
the bipartite structure of the EuTiOj lattice that supports a Neel order below
the transition point. The detailed derivation of the anti-ferro magnetic part is
given in reference [5]. In three dimension topological terms associated with quan-
tum anti-ferromagnetic fluctuations are not important and hence neglected. The
coupling between the staggered-magnetization and the uniform magnetic field has
some important consequences and hence its origin deserves some comments. At
a microscopic level, an uniform magnetic field couples only to the uniform com-
ponent of a Heisenberg spin. If we invoke a continuum description and integrate
out the uniform component with a constraint of vanishing scalar product between
the uniform and the staggered components, such term results. Here r. and r,, are
the non-thermal parameters which can be tuned to zero to have ferroelectric and
anti-ferromagnetic instabilities respectively. The coupling constants of the quartic
terms are positive, i. e. u, v > 0, to ensure the stability of the system. Since in
a quantum picture, statics and dynamics are coupled, an applied magnetic field
induced precession of the magnetic vectors also play an important role in the study
of phase transitions in quantum magnets. Now we start our discussions with the

following mean field approximations.

(G w) = mezd(q)d(w) +m (7, w),
<m > =0, <¢>=0 (4.2)

3
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Here m(q, w) is the Fourier transform of m(Z, 7). The above approximations, along
with the quasi-harmonic decoupling of the quartic terms as done in chapter 2, lead

to the following mean field action,

T v
AMF = 7m3+§mé
1 Te ceq2 U S o
# [ @0y I e G 506 e il
Cm 2 T'm v 7 7
+( d + = —(2mE + A\))(m -y )
2 2 2
w 7 AN
Yo )3 ). (43
In the above expression we use the following notations,
XX = AGwn) - A(~q wn),
1 b
)‘(e,m) = /ddQBZX(e,m)(%wn)v
Xe(Qown) = < _)(q_; Wn) _)(_Cja Wy) >,
Xn(@own) = <1 (Gwn) 11 (=G wn) > . (4.4)

Zero magnetic field (h = 0): In a zero external magnetic field, there is no ferro-
magnetic component and there is a competition between paraelectric fluctuations
and anti-ferromagnetic fluctuations. The self consistent equations for polarization

and magnetic fluctuations are,

Xe<(jvwn> = <¢<(Tawn) <__:wn>>
1
= — ST —, (4.5)
5+ S wp — G (Mg + Am) + 5 A
and
Xm(cjawn) = <ml(€ﬁwn) ml( @Wn)>
1
- m cmq? 2 w v 2 (4'6)
w4 w2 — P+ 5(2mg + )

respectively. The above two equations should be supplemented by the following

expression for the magnetic free energy (within one loop correction) to determine
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mg in the magnetically ordered phase,

S v, 1 .
fu = BH0) + Sliol = ST 10g(xn (7, 00)): (4.7)

We need to know mg, Ao, and \,, as a function of the temperature at various values
of the system parameters, using equations (4.5-4.7). The extremization of f,, with

respect to mq gives,
3 a1 -
TmMmo + 20mg +vmg | d qB E X (@, wy) = 0. (4.8)

Non-zero solution of mg reads as,

m2 = ““T“m (4.9)
Here we emphasize that at the critical value of the magnetic field, where the
magneto-electric coupling is believed to be very small, the static dielectric con-
stant for EuTiO3 reaches a value O(10?). Thus according to the classifications of
various quantum paraelectrics the ferroelectric subsystem falls into the category
of the gaped quantum paraelectrics, and is much more away from the ferroelectric
quantum critical point than SrTiOs. Such a dielectric state is characterized by
a crossover temperature T* ~ /r. as explained in chapter 2. For pure EuTiOs3,
we see that the ferroelectric crossover temperature 7% is much higher than Ty,
the Neel temperature. Low Ty implies that, the system is in the vicinity of anti-
ferromagnetic quantum critical point. Owing to the large 7™, A\, the fluctuation
corrections to the ferroelectric gap is temperature independent. Thus the temper-
ature dependence in the static dielectric constant at low temperature comes only
from the magnetic fluctuations through magneto-electric coupling. We consider
the temperature dependence of \,, near as well as away from the magnetic crit-
ical point. Near a anti-ferro magnetic quantum critical point momentum cut-off
becomes temperature dependent. Since in this material the dispersion relation for
anti-ferromagnetic fluctuations is similar to that of the ferroelectric one the mo-

mentum cut-off at the critical point also ~ T. Thus within a non-self consistent
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estimate we get,

TfT/@ q d% _ Cm2 T? ~T? near AFM-QCP

L (4.10)
T, iq =L T away from QCP .

Due to the magneto-electric coupling in this material, the above temperature de-
pendence of \,, enters into the static dielectric constant and results in the following

temperature dependence of inverse static dielectric constant

3
7o — wem T? (near AFM — QCP
21(0,0) ~ ) ( QCP) (4.11)
Te — %T (large Tiy).

Here r, is the re-normalized value of r. which includes the temperature independent
contribution from paraelectric fluctuations. Thus we see that, dielectric measure-
ments can be considered as an indirect thermodynamic probe for magnetic systems
in a magnetic quantum paraelectrics. It is to be noted that unlike the similar dis-
cussions in our second chapter, we do not equate c,, to unity here. We will see in
the subsequent discussions that along with quartic couplings and magneto-electric
couplings, ¢,,/c. will be an important parameter to determine the dominance be-
tween the magnetic fluctuations and the paraelectric fluctuations to contribute to
the static dielectric susceptibility of this material in certain appropriate circum-
stances. In next subsection we will consider change in the dielectric behavior in
this system in case of field induced transition in the magnetic subsystem.
Non-zero magnetic field (h # 0): Non-zero h modifies anti-ferromagnetic
order, develops a ferromagnetic order along the direction of the field and the re-
sulting magnetic configuration becomes canted[5]. Firstly it is apparent from our
starting action (eqn.(4.1)) that in case of a non zero h along the z-direction, anti-

ferromagnetic gap in the transverse plane (with respect to the field) changes to,
T ~ T (0) — h2. (4.12)

Where r,,(0) < 0 is the value of 7, at zero magnetic field. Thus h reduces the

gap in the transverse directions. In the regime r,, < 0 and |r,,| > h?, mq is still
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non-zero and it increases with increasing A in the following manner,

N

mo ~ (h2 = 7,(0))2 ~ (h — ho)?, (4.13)
where hg = \/7,,(0). But the ferromagnetic order along the direction along the
field grows more rapidly with applied magnetic field as follows,

OF  h(h* —1r,,(0))

o= B T 4.14
my oh v ( )

A schematic phase diagram for field induced transition in the magnetic subsystem
is shown in figure (4.2). In our case 7,(0) is negative and we consider the ex-
ternal magnetic field induced modification of the anti-ferromagnetic -ground state
to a canted state with partial ferromagnetic order and its effect on the static di-
electric susceptibility. An experimentally observed fact is that the increase in anti-
ferromagnetic component results in the suppression of dielectric constant while the
roll of the uniform component is just opposite to it. If we assume both the com-
ponents couple to the polarization in the same fashion, we can make an estimate
of the critical value of the magnetic field (h.) which exactly nullifies the effects of
magnetic order on the static dielectric constant, in the following way. Using eqn.
(4.13) and (4.14) we get,
(B2 = rn0) = X BB~ (0

rm(0) £ /r2,(0) + 4c

= h, =
2

(4.15)

Where ¢ is a non-universal constant and so is h.. Thus at 7,(0) = 01i. e. at
anti-ferromagnetic quantum critical point, h. ~ +/c. Apart from this, external
magnetic field has one more effect on quantum criticality. In case of field induced
transition, the finite temperature behavior near quantum critical point will also
be different. If we look back the action(4.1), we see that the magnetic field adds
a new dynamic term ~ —ih x m - 9.m which is linear in w,. Thus the dynamic

exponent z = 2 and the temperature dependent momentum cut-off for magnetic
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Figure 4.2: Figure shows the schematic phase diagram for a field induced transition
in insulating Heisenberg anti-ferromagnet at zero temperature. At h =0, r < 0
indicates a Neel order and h # 0, r < 0 region represents Canted state with both
ferromagnetic and anti-ferromagnetic order|5].

excitations A ~ ,/% in this case. For small £, i. e. when my,, << mq,

A~ T / Sty
0

em? h™ T2 (4.16)
em@® ' '

Thus one would expect a 7%?2 contribution, from the magnetic subsystem to the
inverse static dielectric susceptibility at low temperature near anti-ferromagnetic

quantum critical point and
_3
X2 10,0) ~ 7 — WAy, = 7o — wem2h ™2 T2, (4.17)

Here we assume that the applied field is small enough to induce a meta-electric
transition.

Near ferroelectric quantum critical point: So far, we have considered the
dielectric subsystem as a spectator with a temperature independent dielectric sus-
ceptibility at low temperature. However, one can make 7™ closer or smaller than
Ty through doping. A generic possibility is replacing O® by O in EuTiOs, as
is done in case of SrTiO3[53|. Such a doping can create a reduced crossover tem-
perature T*(z) ~ (1 — 2)2T*, (where z is the impurity concentration) and move

the system towards ferroelectric quantum critical point without affecting the mag-
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netic subsystem. At finite temperature near ferroelectric quantum critical point,
dipolar contribution to the inverse static dielectric constant is ~ uce %TQ which
will compete with negative contribution (~ —7%, v = (1, 2, 3/2)), coming from
the coupling with magnetic subsystem. If we assume that these two quantum crit-
ical point do not affect each other, then considering the leading order temperature

dependence to the static dielectric susceptibility, we can write,
ol =a T -, T (4.18)

Where «, 7., v, with v, 7, > 0 are constant which varies from system to system

2

and 7, and ~, are proportional to uce 2 and w respectively and -y, for different

values of v is given as follows

3
wl forv =1
Tm

_3
Yo ~ S wem?hE for v =3/2 (4.19)

[S1[o%

wep? for v = 2.

Among all these values, except 73/, other v,s are fixed by system parameters and
can not be controlled externally. Since 73/; depends on the external magnetic
field, the temperature scale up-to which a 72 behavior of the dielectric suscep-
tibility should be observed is also depends on it and can be tuned externally in
an experimental situation. However for v = 10or3/2, the temperature dependence
of static dielectric susceptibility at low temperature will be dominated by anti-
ferromagnetic quantum critical point with (1/7" increase) and there will be a
maxima at a temperature T},,, = (%)ﬁ as shown in figure 4.3. For v = 2,
there will be a competition between anti-ferromagnetic quantum critical point and
ferroelectric quantum critical point and depending on the values of 7, /7, an anti-
ferromagnetic quantum critical point dominated behavior with 1/7? increase or a
ferroelectric quantum critical point dominated behavior with 1/7? decrease can be

found in the static dielectric constant as shown in the figure 4.4.
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Figure 4.3: Figure shows the temperature dependence of static dielectric suscepti-
bility near both the anti-ferromagnetic and ferroelectric quantum critical point for
various values of the parameter b = %” Here v = 3/2, anda = 0.01 and ¢y and T’
are plotted in arbitrary scale.

140

130

120

& 110

100 = T

90

80

0 0.01 0.02 0.03 0.04 0.05
T

Figure 4.4: Figure shows the temperature dependence of static dielectric suscepti-
bility near both the anti-ferromagnetic and ferroelectric quantum critical point for
various values of the parameter b = % Here a = 0.001 and ¢y and T are plotted
in arbitrary scale.
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4.3 Discussion

In this work we presented a mean field theory to discuss the temperature and
the magnetic field dependence of the static dielectric susceptibility of a magnetic
quantum paraelectric at low temperature. In this material anti-ferromagnetic fluc-
tuations are coupled to the polarization fluctuations and their interplay can lead
to many interesting thermodynamic consequences when some non-thermal control
parameters of both fluctuations are tuned to near critical values. We focus on the
behavior of the system in the vicinity of two such quantum critical points both in
absence and in presence of an external magnetic field. Based on scaling argument
near quantum critical points, we predict that there is a possibility that the low
temperature suppression of the static dielectric susceptibility due to magnetic order
can be compensated by polarization fluctuations and the static dielectric suscepti-
bility would take a 1/7? form as predicted for quantum critical ferroelectrics|23).
On the other hand because of magneto-electric coupling there is a possibility of
new power law behavior of the static dielectric susceptibility in presence of an ex-
ternal magnetic field and is predicted to be 1/7%/2 in this case. At present, up-to
our knowledge, there is no report on experimental investigations on the simultane-
ous effects of two such quantum critical points. Hence fitting some experimental
data through the numerical solutions of self-consistent equations is not tried here.
Rather possible new features in this multi-ferroic material near various quantum
critical points are explored. Moreover this system, in many aspects shares sim-
ilarity with the systems where anti-ferromagnetic order parameter is coupled to
superconductivity[54|. Thus apart from being important in their own rights, fur-
ther studies in this material can be beneficial to other systems and of-course the

field of quantum critical phenomena in solids in general.
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5.1 Introduction

In this chapter we focus on the effects of disorder in quantum critical paraelectrics.
In previous chapters we developed a theoretical set-up for such materials which
shares many similarities with systems like itinerant magnets and other strongly
correlated systems near a quantum phase transition. However all those discus-
sions were devoted to pure systems where effects due to disorder were completely
neglected. It is quite justified to speculate that like other systems with which a
quantum critical paraelectric shares many similarities, can show many disorder
induced novel features which are beyond the realm of theory of pure systems. We
follow the recent progress in the understanding of quantum phase transitions in
strongly correlated systems with disorder[55, 56, 58, 47| and make an attempt to
develop a theory of disordered quantum critical paraelectrics. We restricts the
discussions to the case of quenched disorder of random T, type, i.e. the disorder
parameter couples to the energy density and is frozen in time. Relevancy of a par-
ticular type of disorder can be tasted using Harris criteria which was introduced
in the first chapter. This criteria tells us that the kind of disorder we consider
here can destroy a quantum critical point of a pure system if v < ﬁzz. Here v, d,
and z are the correlation length exponent, dimensionality of the system and the
dynamic scaling exponent respectively. In case of a paraelectric near a quantum
critical point, d = 3 and z = 1 and a mean field theory predicts v = 1/2. Thus ac-
cording to the Harris criteria this particular type of disorder is marginally relevant

for this system and can not be neglected. This necessitates a theoretical descrip-
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tion beyond a standard mean field theory. In general, a small amount of quenched
impurity and associated disorder, can create locally ordered regions(droplets) even
above the transition point of the corresponding pure system. Near a phase transi-
tion, large size droplets become more probable and their slow dynamics becomes
an important factor to determine the nature of quantum phase transition in the
disordered system. Experiments on various disordered paraelectrics also support
the occurrence of locally ordered regime and glassy behavior. Most of the disor-
dered quantum paraelectrics show relaxor behavior which is often described as a
classical glassy behavior of a dipolar system[62, 63]. With these motivations we
focus on the effects of disorder in quantum critical behavior of certain ferroelectrics
in this chapter. Such issues were addressed in case of classical critical behavior
earlier|64] and some attempts to make a quantum generalization of it in context
of itinerant magnets have been proposed in the recent past|56, 57, 58, 47]. We use
some of the earlier results and develop a new mean field description of the possible

low temperature behavior of a disordered quantum critical paraelectric.

5.2 Mean field Theory

Following our earlier discussions on quantum paraelectrics without disorder, we

start with a one component Landau-Ginzburg-Wilson quadratic action.
Apure = iZ(w2+<12+7“)|¢>(w q)l2+g/d></ﬁd7¢4(x 7). (5.1)
pure 25 — n n) Al 0 5 . .

The parameter r determines the gap in polarization fluctuations in absence of the
interaction and r = 0 is the mean field quantum critical point of the pure system.
Disorder is introduced into the problem as a random variation of the non-thermal
tuning parameter 7 in real space and the disorder contribution to the above action

is given by,
Adis = ——/dx/ drér(x)e*(x, 7). (5.2)

A Gaussian probability distribution of dr(x) with variance g is assumed to be

P(5r(x)) o exp{—% / ix512(x)). (5.3)
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so that or(x) = 0 and 6r(x)or(y) = gd%(x — y). For a single realization of
disorder configuration, the partition function, hence the thermodynamic properties
can be calculated using the total action A,,.. + Ags. It is also apparent that to
consider the effects of disorder we need to do a proper averaging either at the
level of partition function or at the level of free energy. Now the question is which
one will lead to the correct physical behavior? In order to obtain the physical
free energy (self averaging) we need to average the free energy or the logarithm
of the partition function over all possible disorder configurations. To calculate the
disorder averaged free energy, we use the identity logz = lim,, g % and write

the average free energy in terms of n'® power of the partition function as
F=——(Zn-1)/n, (5.4)

taking n — 0 at the end of the calculation. We change the status of the one
component field ¢ to a n-component one by introducing replicas of the order pa-
rameter ¢, with replica index a = 1,....,n. This process along with a disorder
averaging help us in writing Z" as a functional integral in terms of replica fields

and the resulting action to leading order becomes,

1 2 2 2 u ’ 4
-A - % Z (wm+q +"ﬂ)|¢a("¢}rmq)| 5ab+a/dx/0 dT¢a(XaT)5ab

m7q7a/7b
p 8 s ,
— Z/dx/ dT/ dr ¢2(x, 7))z (%, 7 ). (5.5)
0 0

Here a,b are the replica indices which take positive integer values up-to some
integer n and the last term is a interactions between fields with different replica
indices is a consequence of the disorder averaging. It is to be noted that this
interaction is between the fields is non-local in time. This is due to the quenched
nature of the disorder and has important consequences in case of a quantum phase
transition and is absent in classical phase transition where dynamics of the system
play no role. Now we use the action (5.5) to study the dielectric behavior of this
disordered system. To begin with, first we consider a replica symmetric case. We

define replica symmetric solution as replica independent field configurations, i.e.
¢o(x,7) = ¢(x,7) forall a (5.6)

59



Chapter 5. Disorder in quantum paraelectrics

and their replica diagonal two point correlation functions, i.e.
Xab = XaaOab = Xo0ap foralla, b. (5.7)

We consider a paraelectric phase i.e. the thermodynamic average of the dipolar field
< ¢ >= 0 and make a self-consistent quasi-harmonic approximation to decouple
the quartic term as done in the chapter 2. In this scheme a quartic term such
as [ drdr¢*(z,7) is decomposed as Ao [ dwvdr¢?(z, 7). Where )y = [dz'dr’ <

? (:c', 7') >. Thus susceptibility of the disordered paraelectric can be written as,

1
W2, + @ +r+ )

Xo(Wm, Q) = ( (5.8)
In the above equation \g describes the fluctuation corrections to ferroelectric gap

and is defined by the following self-consistent equation

X o= Y (uxo(wn, q) — 9x0(0,9))

m7q

1 1
u | d®q— coth Q) —g/d3q—. (5.9)
/ Q, e Qg

Here the fluctuation renormalized natural frequency (2, is dependent on Ay and is
defined as,

Q2 =q"+7+ X (5.10)

It is to be noted that the second term in the equation(5.9) is a zero frequency
contribution. The reason is that we consider quenched disorder which has no
dynamics and thus strongly correlated in time. However above two equations can
be obtained by integrating dr(x) without introducing replica trick and need to
be solved self-consistently. It is clear form the expression for )y that the second
integral in the equation (5.9) gives a shift in gap and depending on its strength
controls quantum fluctuations. In this scheme the solution of the equation r —
g [ d*¢Q;* = 0 for r gives the quantum critical point. Experimentally one is
interested in low but finite temperature behavior of a system at that point and
expects power law dependencies in temperature for various physical quantities.
We have seen in our previous discussions in chapter 2 that the static dielectric

susceptibility ~ T2 at a ferrolelectric quantum critical point.
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An analysis with a replica symmetric ansatz is not capable of including spatial
inhomogeneity created by disorder and thus the effects of disorder considered here
are identical to the effects of hydrostatic pressure. However in a doped quantum
paraelectric we find the so called relaxor behavior which can not be captured in a
theory without considering the existence of macroscopic number of local minima,
configurations. Next question is why such local configurations occur and how to
include them in a consistent theory. In a simple minded picture one can argue the
existence of such local configurations as follows. Since dr(z) is a random variable,
there are certain regions in the sample where r — dr(z) < 0. Those regions become
ferroelectric even above r = 0, the mean field quantum critical point of the pure
system. Those ferroelectric islands have non-zero polarization ~ /|07 (z) — r| and
are often dubbed as droplet. Since such solutions have finite spatial extension,
one must consider a large number (exponential in its volume) such solutions to get
appreciable effects in the thermodynamic limit. Ideally finding such a huge number
of local solutions, doing a sum over their contributions to the free energy followed
by a disorder averaging will complete the task. Clearly it is an impossible. An
alternate way to include the effects of spatial inhomogeneity created by disorder
is to use replica trick with replica symmetry broken at the vector level[64]. By
the word ‘vector’ we mean that ¢, is the a” component of a n-component field in
the ‘replica space’ and its symmetry breaking means different components assume

different values. In this scheme the field configurations are assumed as

ba(x,7) = oOp(x,7)+(x,T)fora=1,..,k
bo(x,7) = Y(x,7)fora=k+1,....n (5.11)

Without loss of generality, we assume the correlation functions to be block-diagonal,

ie.,

Xab(Xa 7—) = Xl(Xa 7—) + XQ(X7 T)éab fora,b=1,. k
= xo(x,7)0mpfora=k+1,.....n. (5.12)

Here k£ > 1 is an integer that determines the degree of the symmetry breaking
process. In principle one should break replica symmetry and hence should chose k

in all possible ways. If we use the ansatz (5.11) and write an equation of motion
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Figure 5.1: A sketch of an inverted double well potential.

corresponding to the action (5.5). It lead to a non-linear Schrédinger equation for

a particle in an inverted double well potential as follows
~V20r(x) + rdp(x) — (gk — u)$i(x) = 0. (5.13)

A sketch of an inverted double well is given in the figure 5.1. We should keep
in mind that this replicated action is not the actual free energy which can be
obtained only after taking the limit n — 0. In replica formalism the solution of
the equation (5.13) corresponding to the maxima are the physical minima. Hence
a solution corresponding to the minima of the inverted double-well potential is
opted. It is to be noted that the existence of a local solution depends on the
disorder strength g and our choice of k. One has to consider all possible choice
of k among n replicas and has to make sure that a summation over contributions
from all possible choices of k£ survives at the limit of n — 0. A replica symmetric
ansatz corresponds to & = n which can be chosen in a single way and have a
vanishing contribution in the limit n — 0. All those details are not relevant for
further discussions. For more detailed discussions we refer to [64, 65]. However in
a classical treatment for gk > u, ¢ corresponds to localized solution which can be
written in a scaled form for isotropic case as,
r

600 = | [ = V) (5.14)
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So that 1(z) obeys a scale independent equation
—VIU(2) +1(2) — ¥*(2) = 0. (5.15)

The proper boundary conditions are ¢(0) = constant and ¢(+o0) = 0. Equation
(5.15) has exponential decaying solutions for x > /r and is smooth for x < /r.
The size of the droplet R is determined by the dipolar correlation length and R ~
%. At very low temperature the dynamics of the droplets become important. In
a simplest approximation spatial and the time dependent parts of the polarization

field can be decoupled completely.

o(x,7) = op(x)T (7). (5.16)

This choice assumes that the droplet tunnels as a whole. Substitution of equation
(5.16) in the replicated action (5.5) followed by a summation of all possible choices

of k among n replicas (which can be done in C}" ways) in the limit n — 0 leads to
Z[T) ~ / DT (r) e VP EFIT)/u, (5.17)
Where the dynamical part of the action is given as|66],

= 3 [ $(E) T o e}

This is clearly the dynamical part of the action for undamped Bosonic system.

The coefficient M in equation [5.18] is given as,
M = —r . (5.19)

The parameter M can be associated with the mass of a quantum particle in a
double well potential. It is an undamped tunneling problem where the tunneling

splitting between two configurations X = +1 is given by,

rp A 207" (5.20)
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with ro ~ Ei/E5 a constant, where Exy = [dz¢(z)*. If we consider Gaussian
fluctuations around the droplet solutions, an effective action for those fluctuations

Y(z, ) can be written as,

S| = % ST (@2 + @)us + Mas)aths (5.21)

m7q7a7b

The presence of droplets and its tunneling introduces a “gap-matrix” { M} which

contains k£ x k block with elements,

k — 3u 2gkr
J )\L>5ab - J

ab — 1—
Map =1 gk —u gk —u

AL (5.22)

and diagonal elements for the remaining n — k replicas

gk
— 1_
Mab—’l“( gk‘

AL)0ab- (5.23)

—Uu

Here A\p encodes the contributions from the localized solutions along with their

dynamics and is given as
vo= Y / dz < ¥() T (@) ()T (w) >

= /dzwz(z) Z <T(W)T(w) >

N i at T =0 (5.24)
Here wy = 2 £ 7. It is to be noted that the vector breaking of replica symmetry
not only introduces inhomogeneous solutions but also glassy effects through off-
diagonal elements in the gap-matrix. Putting A, = 0 identically, we get back the
behavior of a pure system. However in this scheme, inverse replica correlators for

disordered paraelectric is given by
Xa (@Wm» @) = ((wp, + A*)0ap + Map)- (5.25)

We look for replica diagonal correlations in equations (5.22) and (5.23). Diagonal-
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ization of the gap-matrix are given as,

r(l—2=3uN) a=1,.k—1,

gk—u
My, = T(l _ Bg: iuAL)’ a=k, (5.26)
r(1— e u)\L) a=k+1, .,n

Using equation(5.26) and (5.24) we find the values of r at which zero temperature
diagonal susceptibility (~ ML) diverges. The instability points depends on the

disorder strength and the value of k£ and is given as,

—ro/ log(1 — Alk=u ) a=1,..,k

(gk—u)
re = —ro/log(1 — ABL) g — & : (5.27)
—ro/ log(1 A(glfku ), a=k+1,.,n

and is k dependent. Here A is a system dependent parameter. For a simple minded

1.02 [ R g
Paraelectric phase

098 | /

Ordered phase
0.94 r E

0.9

1 2 3 4
9

Figure 5.2: Phase diagram at zero temperature in g — r plane for two particular
values of k£ with u taken as unity. It is clear that the phase diagram acquires a
region of mixed phase for any non-zero disorder strength.

analysis, let us consider the a = k + 1, .., n elements only. For |(A9k | << 1,7¢s

65



Chapter 5. Disorder in quantum paraelectrics

can be written in the following form

gk —u
TC<]€) = TO( gk, )
C / rou
- B-— - (B=r,, C= %). (5.28)

Apart from the physical parameters like disorder strength, anharmonic strength
etc., r. depends of the choice of k. For each choice of k, we get a curve in the
g — r plane which separates an ordered phase from a paraelectric phase. When
such curves are plotted for more than one value of k, the region surrounded by
the upper most and the lower most curves represents a region of mixed phase as
shown in figure 5.2. In this regime a disordered system is characterized by a set of
clusters of ordered phase, off-critical para phase and critical-para phase. Since the
choice of k is random, depending on its distribution at the limit n — 0, we can
estimate a distribution, hence width of r.. In a replicated action with n replicas, k
can be chosen in C}' ways. Thus we can define a normalized distribution of P(k)

as follows
Cy 1 ['(n)

TS Cr 21Tk (n—k)

Since the gamma function with negative argument is infinity, the limit of k can

Pk) (5.29)

be extended to infinity. In the limit n — 0, using the asymptotic form of gamma

functions, P(k) can be approximated as|64|

1 (=)' 1 cosmcosk
Tlog2 k  log?2 k

P(k) (5.30)
Negative values of P (k) for some values of & may turn out to be counter intuitive
to the usual notion of a distribution function. But such distributions are allowed
in replica scheme. There are several possible broken replica symmetric cases, each
characterized by the number £ which follows a distribution P(k). For a fixed
disorder strength d, each k results a different instability point r.. In stead of k, if
we characterize various possible broken replica symmetric cases by 7., a distribution

of r. can be estimated as

Ak

Plr) = PRI 5

| ~

B x cos(mk). (5.31)
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This is a broad power-law distribution of r. around a system dependent parameter
B with a cosine factor. The probability distribution can be assumed to be smooth
around £ = any positive integer, excluding zero. The expansion around k = 0
is excluded as it corresponds to small u/g limit where the action (5.5) becomes
unstable even in a replica symmetric ansatz. In that limit the system will undergo
a first order transition in a replica symmetric analysis, the stability of the system
needs a ¢% term in the action (5.5) which will lead to more complicated localized
solutions in a broken replica symmetry picture. However we focus on those u/g
values where the above possibilities are not present and the distribution function
is smooth. It is to be noted that the power law nature of P(r.) arises because of
the dynamics of the locally ordered regimes and also depends on the distribution
of k used. Neglecting cosine factor within some range of r. say (B + R, B — R),

average susceptibility of the disordered quantum paraelectric can be estimated as,

B+R 1 1
T) ~ dr, X
x(r,T) /BR " B—r. r—r.+T?

1 r—B—R+1T?

1 :
r—B+4+1T? 0gr—B+R+T2

(5.32)

It is evident that inclusion of fluctuations due to locally ordered regime introduce
a parameter R ~ O(u/g) and changes the usual quantum critical behavior of a
paraelectric. In the limit » — B the temperature dependence of the static dielectric

constant of a disordered quantum paraelectric can be predicted as,

constant, T' << R
X0 T) ~ (5.33)
1/T* T >> R.

This is a deviation from the standard quantum critical behavior which predicts
X(T) ~ T72 in a mean field theory. In an infinite disorder limit, i.e. for u/g —
0, R — 0 and x(7T) shows a power law behavior (~ 1/7% ) with non-universal
exponent. Such situation is often dubbed as quantum Griffiths phenomena in the

quantum phase transition literature.
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5.3 Discussions

In this chapter, the low temperature dielectric behavior of a quantum paraelectric
in presence of quenched disorder is addressed. A suitable action for these mate-
rials, with random T. type disorder have been studied using a replica trick. The
effects of disorder induced locally ordered regimes and their tunneling in the low
temperature are captured in this formalism. We derive an expression for the distri-
bution of instability points for a fixed value of disorder strength and demonstrate
the possibility of a mixed phase at non-zero disorder strength. This analysis pre-
dicts a broad power law distribution around a system dependent parameter with a
cosine correction for the instability points. Using the distribution it is possible to
show analytically how the temperature dependence of static dielectric susceptibil-
ity of a disordered quantum critical paraelectric deviates from its pure counterpart.
Our analysis is a completely new attempt in context of the effects of disorder in
ferroelectrics near a quantum critical point. In a qualitative manner it predicts
certain new features such as occurrence of a phase with mixture of critical and
non-critical regimes with a distributions of transition points which are missing in
earlier works in similar issues in context of itinerant magnets. Moreover the whole
analysis is interesting in context of the use of replica trick to incorporate disorder
induced inhomogeneities or locally ordered regime in the studies of quantum phase
transition and may turn out to be useful in explaining certain experimental results

on disordered ferroelectrics near a quantum critical point.

68



Summary

This thesis contains some theoretical studies on the various fluctuation effects on
the low temperature dielectric properties of certain incipient ferroelectrics in the
vicinity a of a quantum phase transition. Studies are base on some experimental
findings on the low temperature dielectric behavior of some incipient ferroelectrics
such as SrTiO3, KTaO3, EuTiO3 etc. under various external perturbations. We
have studied a minimal model in each case of pure quantum paraelectrics, its
coupling with anti-ferromagnetic fluctuations, strain and disorder. Studies based
on self-consistent mean-field approximations and scaling arguments, are capable of
explaining many experimental findings and making various interesting predictions
about the dielectric behavior of these materials. These systems are of displacive
type i.e. phase transition in these systems is associated with a softening of a
transverse optic mode. More microscopic scenario could be, a set of dipoles sitting
at the center of each unit cells of these perovskite materials are interacting via
long range dipolar interactions. As a result of the long range nature of the dipolar
interaction the fluctuations along the longitudinal direction with respect to the
wave vector are gaped out and the transverse mode fluctuations become the most
relevant to describe the low temperature dielectric properties of these materials.
To explore the possible consequences of a quantum fluctuations in the low tem-
perature dielectric behavior of these materials a semi-phenomenological Landau-
Ginzburg theory is used. We restrict ourselves to an one component model to make
our analysis simpler. Moreover anisotropy induced by the dipolar interaction in
the transverse optic modes is neglected and a justification for the same is given in

chapter 2. With this minimal model we are able to describe the effects of quantum
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fluctuations in case of pure SrTiOs, a prototype quantum paraelectric material.
The same analysis is extended to predict its dielectric behavior when it is tuned
to a quantum critical point. A prediction about the 1/7? behavior in contrast to
the usual Curie-Weiss behavior is made and verified by a recent experiment|25]. A
schematic phase diagram is proposed to to classify various dielectric materials in
a quantum phase transition point of view.

Our first chapter was devoted to set up a basic theoretical ground for discussing
low temperature properties of quantum paraelectrics along with some predictions
about the quantum critical behavior of them. With this background we focus on
understanding more detail experimental observations on various quantum para-
electrics. In this context some interesting behavior of quantum critical SrTiO3
is revealed in a recent spectroscopic experiment which signals a weak first order
nature of the quantum phase transition in SrTiO3. We assume such a behavior is a
result of the coupling of the paraelectric fluctuations to strain fluctuations. Strain
fluctuations are integrated out and it results a long range interaction among para-
electric fluctuations. In a pure mean field scenario, a weak first order transition
occurs when the effective quartic coupling of the paraelectric action is negative and
close to zero. In this case one can add a higher order term with positive coefficient
in the paraelectric action and make some mean field prediction about the transi-
tion. We emphasis that in such a case one should consider fluctuation effects in the
quartic coupling, namely four point vertices and show that fluctuation effects can
stabilize the system without invoking higher order terms. The crucial role played
by long range interaction mediated by the strain fluctuations in this process is also
explained. A self consistent parquet approximation is used to take care of leading
order fluctuation effects. The fact that the presence of the finite temperature re-
stores the second-order nature of the transition near a quantum phase transition
is also captured in this theory.

Next, we extend our theory to an incipient ferroelectric EuTiO3z where ferro-
electric fluctuations are coupled to anti-ferromagnetic fluctuations. We write an
action where paraelectric fluctuations are coupled to anti-ferromagnetic fluctua-
tions in a bipartite lattice and and in presence of non-zero magnetic field. We
consider the case of coupled quantum criticality and its effect on the dielectric be-
havior of this system. A new power law behavior of the static dielectric constant,

namely T3 variation, in presence of small non-zero magnetic field is predicted. It
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is in contrast of the 1/7% behavior of the quantum critical paraelectric and already
got attentions of the experimental community[67].

Next section is an account of the effects of quenched disorder in quantum critical
paraelectrics using a replica formalism. In this case the coupling between random
T, type disorder with energy density is considered. Near quantum criticality in
these systems, a bare power counting scheme predicts such disorder effects to be
marginally relevant. However a classical replica formalism with broken replica
symmetry at the vector level predicts inhomogeneous solutions in these system.
Gaussian fluctuations around such solutions in case of classical phase transitions
were studied earlier. In their static limit the renormalization of the coefficient
of the Gaussian fluctuations due to such inhomogeneous solutions are found to
independent of their sizes and a single instability was predicted. We consider the
tunneling of such solutions in the quantum limit and consider a quantum phase
transition in terms of the instability of Gaussian fluctuations around them. A broad
power law distribution of the quantum critical points is predicted. Its consequences
of the static dielectric behavior at finite temperature is also emphasized.

In conclusion, in this work the physics of ferroelectrics is put in a broad per-
spective. The effects of quantum critical points on finite temperature properties
of certain dielectric systems are studied. Possible exponents of the power law be-
havior of static dielectric constant at finite temperature are predicted. The effects
of disorder induced inhomogeneity and their dynamics at low temperature is de-
scribed in a replica formalism. Some results are in accord with experiments. Many
aspects of these works are quite general in context of quantum phase transitions

and deserve further experimental and theoretical studies.
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