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SynopsisThe thesis ontains some theoretial studies on the low temperature dieletriproperties of inipient ferroeletris suh as SrTiO3, KTaO3, EuTiO3 et. in theviinity a of a quantum phase transition. Studies are motivated by experimental�ndings on the low temperature dieletri behavior of these inipient ferroeletrisor quantum paraeletris under various external perturbations. These materialsare perovskites and are known to remain paraeletri down to any experimentallyaessible low temperature. In these materials the q = 0 opti mode whih onsistsof Ti or Ta motion along a [100℄ axis against oxygen otahedra beomes nearlyunstable as temperature approahes to zero. As suh the instability of this softopti mode would lead to a ferroeletri transition as ours in other struturallysimilar materials like BaTiO3. However, beause of neighborhood of the instabil-ity, these materials end up in a state of inipient ferroeletri, haraterized by avery high, temperature independent stati dieletri onstant (O(104) for SrTiO3)and no spontaneous polarization at low temperature (< 10K for SrTiO3). It isapparent that the low temperature dieletri behavior of these systems are domi-nated by soft transverse opti mode �utuations near q = 0. Sine the zone entermode has is nearly vanishing frequeny at low temperature, a theoretial under-standing of the dieletri behavior of these materials needs a proper aount ofquantum �utuations near an instability point and its e�et on the �nite tem-perature dieletri properties. We work with simple models in eah ase of purequantum paraeletris, its oupling with anti-ferromagneti �utuations, strain anddisorder. Then we develop a self-onsistent mean-�eld approximation and salingarguments, to explain some experimental �ndings and make various preditionsabout these materials.In the �rst hapter some generi feature of a quantum phase transition whihare relevant for these materials are introdued. In the seond hapter we explorethe possible onsequenes of quantum �utuations in the low temperature dieletribehavior of these materials. To do that a semi-phenomenologial Landau-Ginzburgtheory is used. We restrit ourselves to a one omponent model to make ouranalysis simpler. Moreover anisotropy indued by the dipolar interation in thetransverse opti modes is negleted with suitable justi�ations. Within a mean �elddesription with some self-onsisteny ondition, we are able to desribe the e�etsvii



of quantum �utuations in the low temperature dieletri behavior of pure SrTiO3,a well-known quantum paraeletri material. The same analysis is extended topredit its dieletri behavior when it is tuned to a quantum ritial point. Apredition about the 1/T 2 behavior in ontrast to the usual Curie-Weiss behavioris made.A reent spetrosopi experiment reports that SrTiO3 shows phase separa-tion near its quantum ritial point. This Raman sattering experiment at lowtemperature reports simultaneous responses from both the paraeletri and theferroeletri phase near a quantum ritial point in O18 doped SrTiO16
3 . The in-tensity of the sattered light from the ferroeletri phase is reported to be very weakand beomes weaker as one moves away from the quantum ritial point. The o-existene of a quantum paraeletri phase with a quantum ferroeletri phase inO18-exhanged SrTiO3 provides strong evidene for a �rst order phase transition.Moreover owing to the low intensity of the sattered light from ferroeletri phase,the nature of the transition an be alled a weak �rst order where many featuresof a ontinuous transition remain unaltered. This experiment is performed at zeroeletri �eld, onstant pressure and there is no report of eletro-magneti ouplingin this materials. Thus one an attribute the �rst order nature of the quantumparaeletri to a ferroeletri phase transition to the oupling between the ritialmode with non-ritial strain �utuations. Motivated by this experiment, we makean attempt to disuss the e�ets of the strain �utuations in a quantum ritialparaeletri in the third hapter. In our theory strain �utuations are integratedout resulting to a long range interation among paraeletri �utuations. In a puremean �eld senario, a weak �rst order transition ours when the e�etive quartioupling of the paraeletri ation is negative and lose to zero. In this ase onean add a higher order term with positive oe�ient in the paraeletri ation andmake some mean �eld predition about the transition. We emphasis that in suha ase one should onsider �utuation e�ets in the quarti oupling, namely fourpoint verties and show that �utuation e�ets an stabilize the system withoutinvoking higher order terms. The ruial role played by long range interation me-diated by the strain �utuations in this proess is also explained. A self onsistentparquet approximation is used to take are of leading order �utuation e�ets.The experimental observation that the presene of the �nite temperature restoresthe seond-order nature of the transition near a quantum phase transition is alsoviii



aptured in this theory.In the fourth hapter we fous on an inipient ferroeletri EuTiO3 where ferro-eletri �utuations are oupled to anti-ferromagneti �utuations. We onsider aase where this material is tuned to ferroeletri or anti-ferroeletri quantum rit-ial points by some non-thermal parameter. We write an ation where paraeletri�utuations are oupled to anti-ferromagneti �utuations in a bipartite lattieand and in presene of non-zero magneti �eld. The ation is used to disuss thestati dieletri behavior of this system both in presene and absene of uniformmagneti �eld. Again a self-onsistent mean �eld approah and saling argumentsare invoked. A new power law behavior of the stati dieletri onstant, namelya T− 3
2 variation, in presene of small non-zero magneti �eld is predited. It is inontrast of the 1/T 2 behavior of the quantum ritial paraeletri and has alreadygot attentions of the experimental ommunity.Finally we look for the e�ets of quenhed disorder in quantum ritial para-eletris using a replia formalism in the �fth hapter. Here the oupling between arandom Tc type disorder with energy density is onsidered. Near quantum ritial-ity in these systems, a bare power ounting sheme predits suh disorder e�ets tobe marginally relevant. A lassial replia formalism with broken replia symme-try at the vetor level predits inhomogeneous solutions in these system. Gaussian�utuations around suh solutions in ase of a lassial phase transition were stud-ied earlier. In their stati limit the orrelator of the Gaussian �utuations due tosuh inhomogeneous solutions are found to independent of their sizes and a singleinstability was predited. We onsider the tunneling of suh solutions in the quan-tum limit and onsider a quantum phase transition in terms of the instability ofGaussian �utuations around them. A broad power law distribution of the quan-tum ritial points is predited. Its onsequenes of the stati dieletri behaviorat �nite temperature is also emphasized.In onlusion, in this work the e�ets of quantum �utuations on �nite tem-perature properties of some dieletri materials are studied. Possible power lawbehavior of stati dieletri onstant at �nite temperature in various materialsat various external onditions are predited using a minimal model in eah ase.Moreover emergent new physis near a pure quantum ritial point due to theoupling with strain �utuations and magneti �utuations in di�erent materialsis disussed. The e�ets of disorder indued inhomogeneity along with their dy-ix



namis at low temperature are addressed, ourrene of a mixed phase, a broadpower law distribution of instability points and its onsequene on the temper-ature dependene of the stati dieletri onstant is predited. A ontat withexperimental senario is made whenever possible.
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1Introdution
The basi motivation of modern ondensed matter physis is to explore new physisthat emerges out of omplexity in a olletion of large number (∼ Avogadronumber∼ 1023) of interating non-relativisti partiles. The �fundamental Hamil-tonian� in a ondensed matter system is usually known. It onsists of a olletionof atoms interating via oulomb interation. But when a system with suh a largenumber of partiles is exposed to thermal �utuations or enters in a quantum do-main or both and when the system parameters are tuned to ertain values, manynovel features an emerge. Formation of rystal struture, super�uity, superon-dutivity are few examples of suh novel phenomena. Suh emergent behavior maynot be adiabatially onneted to the phases that appear in either side of thosespeial points in a parameter spae[1, 2℄. It is di�ult to apture suh novel be-havior in a standard perturbation theory and one needs a new mehanism, suhas spontaneous symmetry breaking for phase transition[3℄ and new alulationalsheme, suh as renormalization group[4℄ sheme for ritial phenomena to explainsuh behavior. Suh a senario is observed when the system undergoes a transitionbetween two phases at zero temperature as a result of hanges in some non-thermalparameter and is dubbed as quantum phase transition[5℄. At a ertain value of anon-thermal tuning parameter where a quantum phase transition of a ontinuouskind ours is alled a quantum ritial point. At a quantum ritial point systemproperties even at �nite temperature, are governed mainly by quantum ritial �u-tuations. Finite temperature properties near a quantum ritial point shows novelpower law behaviors whih are beyond the realm of any zero temperature limit ofa lassial theory. Suh an emergent senario drew lot of attentions in the past1



Chapter 1. Introdutionand has been experimentally observed in ase of itinerant magnets, He3, et.[6℄.As a result of experimental �ndings, most of the earlier works in this area weredireted mostly toward quantum phase transition either in quantum spin systemsor in metalli magnets. Though lassial phase transitions in insulating dieletrimaterials are well studied, there has not been any study in ontext of quantumphase transition. In this thesis we emphasis that the e�et of quantum �utuationsan as well be observed in ase of ertain insulating dieletri materials, namelyquantum paraeletris suh as SrTiO3, KTaO3 et. In these materials a quantumphase transition ours as a result of isotopi substitution and it involves softeningof an optial mode. Thus a quantum generalization of the soft mode piture ofphase transition in lassial ferroeletris is realized in these materials. A theoryof quantum phase transition in these materials an be desribed by a ontinuummodel whih inludes transverse optial modes near zone enter as the most rel-evant degrees of freedom. It shares some similarity with the e�etive theory ofspin �utuations in metals. At the tehnial level the e�etive theory for quantumparaeletri to ferroeletri transition is similar to a undamped Bosoni version ofthe e�etive theory of quantum paramagnet-ferromagneti transition in a metallimagnet. Theoretially these systems are muh simpler than their magneti oun-terparts to deal with, and moreover many features are experimentally observable.Thus these systems an beome good playgrounds for studying some general as-pets of quantum phase transitions suh as �nite temperature properties, disordere�ets et.Before going into the details of the issues related to the quantum phase tran-sition in the above mentioned materials, a brief exursion through these oneptswould set a bakground for the present study. More detail disussions on some ofthe onepts if needed, will be presented in the orresponding hapter.1.1 Quantum phase transitionQuantum phase transition is a phase transition indued by quantum �utuations atzero temperature. Unlike the lassial phase transition where the tuning parameteris temperature, one looks for a quantum phase transition by tuning a non-thermalparameter suh as hydrostati pressure, impurity onentrations, et. Whereas a2



Chapter 1. Introdutionlassial phase transition orresponds to non-analytiity in the free energy as afuntion of temperature, a quantum phase transition involves non-analytiity inthe ground state energy as a funtion of some non-thermal external parameter. In astrit sense, a quantum phase transition is de�ned only at zero temperature. How-ever it a�ets �nite temperature properties of a systems over a �nite temperaturerange. Though the temperature range over whih quantum ritial �utuationsdominate is spei� to the system, the emergent behavior at a quantum ritialpoint is universal. The �nite temperature properties depend on system dimension,order parameter dimension and symmetry, range of interation and the dynamisaling exponent. The onept of dynami saling exponent will be introdued inthe next setion. Consequenes of being in the viinity of a quantum phase transi-tion has been observed in many systems like itinerant magnets, He4, ferroeletriset. and are argued in other systems like high Tc superondutors. Before goinginto the detail of issues of a quantum phase transition relevant to the system westudy, we now brie�y introdue a path integral formulation of quantum statistialmehanis.1.1.1 Quantum Statistial MehanisTo alulate any physial properties of a statistial system in equilibrium we needto know its Partition funtion. In a statistial system quantum �utuations beomeimportant when its temperature is muh lower than its harateristi energy sale.In a quantum domain many system an be desribed by a Hamiltonian in operatorform as Ĥ = T̂ + V̂ . Where T̂ and V̂ are the kineti and potential energiesrespetively in the operator form. With this Hamiltonian, its partition funtion ata �nite temperature an be written as,
Z = Tr exp(−βĤ). (1.1)Here β is the inverse temperature. If we desribe the state of system in terms of aomplete set of eigen states {|φi >} of some operator φ̂, with orresponding eigenvalues ({φi}), then the partition funtion in the path integral formalism[7℄ an be

3



Chapter 1. Introdutionre-written as,
Z =

∫

dφa < φa| exp(−βĤ)|φa > . (1.2)On the other hand in quantum mehanis, the transition amplitude for a systemin returning to its initial state φa after a time t is given by,
< φa| exp(−itĤ)|φa >=

∫ φ(x, t)=±φa(x)

φ(x, 0)=φa(x)

dφei
∫ t
0 dt

∫
dxL(φ, ∂φ

∂t
). (1.3)Here L is the Lagrangian of the system. The boundary onditions are periodi forBosons and anti-periodi for Fermions. It is now quite evident that one an writethe expression for the partition funtion (eqn. (1.2)) using the expression for quan-tum mehanial transition amplitude (eqn. (1.3)) through an Wik rotation of thetime axis to the imaginary diretion. This leads to the following orrespondene,

β =
1

T
≡ it. (1.4)At T = 0, i.e., at β = ∞ system aquires a omplete �extra dimension�. Abovemathematial orrespondene has interesting onsequenes. Firstly an equilibriumquantum statistial system in d-dimension is mapped on-to a d + 1-dimensionallassial statistial system. Seondly the information about the dynamis of alassial system enters into the desription of the orresponding quantum system.Given the knowledge of dynamis of the system, quantum-lassial mapping is ex-tremely helpful in alulating quantum �utuations in a systemati manner. Whenthe interation part ontains terms beyond quadrati form, an exat alulation ofa quantum partition funtion (eqn. (1.2)) is not possible. One needs to use somesystemati and ontrolled trunation sheme.1.1.2 Quantum ritial pointQuantum phase transition follows a similar lassi�ation as thermal phase transi-tion. A point in parameter spae where a ontinuous phase transition ours atzero temperature is alled a quantum ritial point. Near this point the systemis desribable by a vanishing harateristi energy sale or a diverging orrelation4



Chapter 1. Introdution
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Ordered StateFigure 1.1: Shemati phase diagram for a quantum phase transition. r is a non-thermal parameter.length whih beomes the only relevant length sale near this point. As a result,at or near the quantum ritial point various physial quantities follow power lawsand suh behavior an be explained by saling arguments similar to that of thelassial phase transitions[8, 9℄.Dynami saling at T = 0: In general, an ation in the path integral rep-resentation of a partition funtion an have terms with di�erent powers of timederivative and spae derivative of the �eld on�gurations. Thus in general, thesaling behavior of the harateristi time sale (τ) and the orrelation length (ξ)beomes anisotropi near a quantum ritial point. Near a quantum ritial pointa new quantity, namely dynami saling exponent z needs to be introdued. Dy-nami saling exponent haraterizes the saling behavior of the harateristi timesale (τ) with the orrelation length (ξ) and is de�ned as
τ ∼ ξz, (1.5)with z positive1 but not neessarily = 1. Suh anisotropi saling is used in othersystems also. In ase of dynami ritial phenomena where one studies the dy-namis of a system near a ritial point, one needs to onsider suh anisotropispae-time saling to �nd out saling behavior of various time dependent quantitiesnear a ritial point[10℄. Similar situation also arises in ase of a Lifsitz transition.In that ase one onsiders ritial phenomena in an anisotropi system and theritial properties depends on anisotropi saling in the di�erent diretions[11℄.Introdution of a dynami saling exponent has many onsequenes. A system in

d−spatial dimension and near a quantum phase transition an be thought of as a1Negative z would mean smaller relaxation time for larger size system whih is unphysial. 5



Chapter 1. Introdutionlassial system of dimension d+ z. The upper ritial dimension2 of the quantumsystem is redued by z, �utuation e�ets beomes less relevant and the theorybeomes more mean �eld like. However in a ritial system whether it is lassialor quantum, �utuation orretions are always important and a naive perturba-tion theory an not have the orret answers. One needs to go beyond that andneeds to invoke ideas like saling hypothesis, various self-onsistent sheme et. Inthe saling hypothesis that holds in ase of a seond order phase transition, anyphysial quantity near a quantum ritial point an be written in a saled form asfollows,
O(k, ω, T = 0) = ξνF(kξ, ωξz, 0). (1.6)where O is some physial quantity, observed at a momenta k and frequeny ω.The orrelation length ξ is the only important length sale in this hypothesis. Fis the saling funtion and ν is the saling exponent. It is to be noted that thoughthe saling exponent is universal, the saling funtion is not. Preditions basedon suh saling hypothesis an be established by various theoretial shemes likeself-onsistent mean �eld theory, renormalization group theory et.Finite size saling at T 6= 0: Sine in a strit sense, a quantum ritialpoint is de�ned only at zero temperature, it is not experimentally observable.However, a quantum ritial point has its e�ets at �nite T also. At a low butnon-zero temperature, any physial quantity of a quantum ritial system shouldobey power law behavior in temperature and suh behavior an be obtained usingthe previous saled form as shown in equation (1.6). At a non-zero temperature,a quantum ritial system behaves like a �nite size system of size T−1 in the �timediretion�. In this ase the orrelation length an not diverge but an be extendedup-to a size T−z. Thus we an put ξ = T−z in the expression eqn. (1.6) and thusin the limit T → 0,

O(ω = 0, k = 0, T ) = T−zνF(0, 0, 1). (1.7)2Upper ritial dimension is de�ned as the ritial value of the spae dimension above whih�utuation e�ets does not play any major role and a mean �eld theory gives su�iently orretresult.
6



Chapter 1. IntrodutionAbove expression is the most experimentally relevant feature of a quantum ritialpoint and is experimentally observed in many systems like itinerant magnets, He4,ferroeletris et. The ase of quantum ritiality in ferroeletris will be disussedin the next hapter where these power laws will be derived in a self-onsistent mean�eld sheme.1.1.3 First order quantum phase transitionLike lassial phase transitions, a quantum phase transition an beome �rst orderbeause of the oupling to other degrees of freedom, disorder et. A �rst orderquantum phase transition an be observed through disontinuity of the order pa-rameter at the transition point. A system undergoing a �rst order transition,evolves from its parent phase to resulting phase through a metastable state. Inthe intermediate phase a system shows oexistene of both the parent phase andthe �nal phase. Classi example of a phase oexistene is the water-vapor phasetransition and an be deteted by some light sattering experiment. Thus in somesense a phase oexistene is also a signature of a �rst order transition. Many fea-tures of a �rst order transition an be desribed in Landau mean �eld desription.In this ase the free energy density for an one omponent system an be writtenas a variational form as,
f(φ, r, {λi}) = rφ2 + λ3φ

3 + λ4φ
4 + λ5φ

5 + λ6φ
6 + .... (1.8)Here φ is the expetation value of some �eld on�guration whose �utuations arenegleted ompletely. Suh an approximation works well when the system is aboveits upper ritial dimension and/or when order parameter dimensionality is veryhigh. If one has the privilege to do so, the free energy density is ditated only bythe symmetry of the system. The above expression is a small φ expansion of thevariational form and the atual free energy an be found by minimizing the aboveexpression with respet to φ followed by a substitution of the orresponding valueof φ in the expression for variational ansatz. If the transformation whih hanges

φ to −φ is a symmetry of the system, then terms with odd powers of φ are notallowed and one an trunate the free energy density at the lowest ith order term
7



Chapter 1. Introdutionwith positive λi. In ase of positive λ4, the Landau free energy density looks like
f(φ, r, λ4) = rφ2 + λ4φ

4. (1.9)Above free energy density shows a ontinuous phase transition at r = 0. For r < 0,order parameter is non-zero and is given by √ −r
2λ4

whih smoothly goes to zero atthe phase transition point.On the other hand if it turns out that λ4 < 0, one needs to trunate Landaufree energy density at some higher power of φ with a positive oe�ient. Let usonsider the simplest possible ase when λ6 > 0. In this ase the Landau freeenergy density looks like ,
f(φ, r, λ4, λ6) = rφ2 + λ4φ

4 + λ6φ
6. (1.10)In this ase a non-zero value of the order parameter orresponding to a metastable

(φ)f

φFigure 1.2: Typial Landau free energy pro�le for a �rst order transition. Eqn.(1.8) orresponds to suh free energy pro�le when 0 6= λ3 < 0.minima of the Landau free energy pro�le develops at some positive value of r. Atthe phase transition point i.e. r = 0 order parameter has a disontinuity in itsnon-zero value ∼√−λ4
λ6

whih orresponds to a �rst order transition.However using Landau theory for a �rst order transition has many limitations.Firstly the Lanadu expansion is appropriate for small values of order parameter.Thus it an not inorporate the ase of strong �rst order transition where theorder parameter exhibits a large disontinuity at the phase transition point. On8



Chapter 1. Introdutionthe other hand for weak �rst order transition, i.e. in the limit λ4 → 0 one needsto onsider the �utuation orretions in the e�etive oupling onstant for thequarti term whih is also missing in a traditional Landau expansion. The laterase will be onsidered here and will be disussed in detail in this thesis in ontextof weak �rst order transition in ferroeletris.1.1.4 E�ets of disorderIntrodution of disorder makes a system inhomogeneous. Coupling onstants ina disordered system varies from point to point. As a result system beomes aolletion of ordered and non-ordered regimes. Thus one is interested in averagebehavior of various physial properties with a meaningful averaging sheme. If ina partiular sheme, the mean of the averaged physial quantities are greater thantheir varianes, we an say that the averaging sheme is meaningful. In suh asituation, a single large system is su�ient to represent the whole ensemble and isalled self-averaging. At a pure ritial point randomness is lassi�ed as relevant ifit leads to a hange in the ritial behavior (i.e., the ritial exponents) of the puresystem. Suh systems are non self-averaging with respet to a pure ritial pointsenario. The relevany of disorder for a pure ritial point an be estimated usinga �eld theoretial language as follows. Let us onsider a disordered parameter δr(x)of quenhed type (no dynamis) whih has a Gaussian distribution with variane
g, ouples to some �eld variable O(x, τ) with saling dimension η0 as

∫

ddxdτδr(x)O(x, τ). (1.11)Integration of the Gaussian disorder will generate a term
g2
∫

ddxdτ1dτ2O(x, τ1)O(x, τ2). (1.12)The above term will generate the e�etive disorder e�et in a disordered system.Now if we use a dimensional analysis to look for the relevany of the above termnear a ritial point, we see that at the zeroth order perturbation theory theoupling onstant g2 has the saling dimension d + 2z − 2η0. Thus near a ritialpoint where low energy and long wave length �utuations are most dominant, the9



Chapter 1. Introdutionoupling onstant g2 beomes relevant if
d+ 2z − 2η0 > 0. (1.13)This is the riteria for relevany of ertain kind of disorder in a quantum phasetransition. When disorder ouples to energy density whose saling dimension of theassoiated oupling onstant is 1/ν, and so the dimension of the energy operatoris η0 = d + z − 1/ν. Thus the riterion for its relevane beomes above relationbeomes

ν <
2

d+ z
. (1.14)In literature this relation is known as Harris riteria[5℄. Above riterion is derivedon the basis of a dimensional analysis whih neglets the e�ets of the interationand the e�ets of spatial inhomogeneity as well. However it sets a riterion for thebreakdown of a pure ritial behavior. When ertain kind of disorder is found to berelevant, one needs to onsider the spatial inhomogeneity whih is not inluded ina theory of ritial phenomena in a pure system. Suh a onsideration needs sometehnique beyond standard perturbation theory. Vetor breaking of the repliasymmetry is suh a andidate and is used to analyze the e�ets of disorder inferroeletris near a quantum phase transition in this thesis.1.2 Quantum paraeletrisIn the previous setion we have introdued some basi ideas regarding the quantumstatistial mehanis and the quantum phase transitions. Now we introdue somedieletri materials where those theoretial onepts an be experimentally ob-served. Insulating materials suh as SrTiO3 and KTaO3 are ABO3 type perovskitesand have interesting dieletri behavior. They are known to remain paraeletridown to any experimentally aessible low temperature. However, the q = 0 optimode whih onsists of Ti or Ta motion along a diagonal of the ubi perovskiteunit ell against oxygen otahedra beomes very nearly unstable as temperatureapproahes to zero. Perfet softening of this opti mode would lead to a ferro-eletri transition as ours in other struturally similar materials like BaTiO3.Thus at low temperature (< 10K for SrTiO3), these materials end up in a state10



Chapter 1. Introdution

Figure 1.3: An unit ell of a ABO3 type perovskite struture. Filled blak irlesare A-atom at the orners, irle �lled with dashed line is the B-atom at the enterand Oxygen atoms are shown with un-�lled irles.of inipient ferroeletris, haraterized by a very high, temperature independentstati dieletri onstant (O(104) for SrTiO3) and no spontaneous polarization.Dieletri properties of these materials are being studied sine long ago and theyare widely known as quantum paraeletris in the literature[16℄. The orrespon-dene between the high stati dieletri suseptibility and the softening of an optimode is also on�rmed by the neutron sattering experiments[17, 18℄. Thus it isevident that the quantum paraeletri systems are of displaive type and the di-eletri behavior of these systems are dominated by a nearly soft q = 0 transverseopti mode �utuations. A theoretial understanding of the dieletri behavior ofthese materials needs a proper aount of not only thermal �utuations but alsoquantum �utuations arising from the opti modes near zone enter. The lak ofphysial ontent of earlier theoretial works on this material, partiularly regard-ing its viinity to a quantum phase transition is one of the motivations for reentstudies on this materials. In an earlier attempt to explain the dieletri behav-ior of suh systems, Barrett [19℄ proposed a semi-phenomenologial theory, whihessentially reasts the Curie-Weiss formula with a replaement of temperature Tthere, by average energy, thereby the inverse of dieletri suseptibility ould bewritten as, χ−1 ∝ T1 coth(T1/T ) − Tc, where Tc is lassially alulated ritialtemperature and T1 is a quantum sale ∼ (h̄/mass). This theory, in the hightemperature limit, reprodues the Curie Weiss law. To math experimental datain SrTiO3 the Barretts' formula has been found inadequate as one single onstantquantum sale T1 an not trae the full urve. The formula has sine been modi�ed11



Chapter 1. Introdution

Figure 1.4: Temperature-dependent phonon modes in SrTiO3 measured by ShiraneG and Yamada Y, Phys. Rev. 177, 858 (1969). The 111oK transition is aused bythe soft mode at the zone boundary. Soft mode near the origin is due to inipientferroeletriity.in various ways, for example, by introduing an extra exponent [20℄, that is, bywriting χ−1 as (T1 coth(T1/T )− Tc)
−ν , and by making T1 temperature dependentwith an extra sale [21℄, to take are of various �anomalies�, for example the onenear 40K. There has been a proposal of attributing this extra energy sale to thestrutural transition whih ours at 110K [22℄. These proposals either follow anorder parameter expansion similar to the Landau expansion or some modi�ationsthereof, hene they do not introdue any new mirosopi desription. Moreoverthese attempts onsiders �utuations arising from q = 0 mode only and misses afat that the harateristi energy sale in this systems are very low, i.e. these sys-tems are near a quantum phase transition. We assume that the would be quantumphase transition from a paraeletri phase to a ferroeletri phase in this materialsto a ontinuous transition and will show that analysis based on suh a view pointan apture many features of the dieletri behavior of these system whih wereuntouhed by the previous theories.We analyze the �utuation e�ets in suh systems within a self onsistent mean�eld approximation. The theory involves a lowest order perturbation expansion of12



Chapter 1. Introdution

Figure 1.5: Stati dieletri onstants ǫ110 and ǫ110 of the monodomain SrTiO3samples. Inset: 103/ǫ vs T . Referene[16℄.a ontinuum theory with a momentum ut-o� and self onsistent onditions[23℄.Results depend on the hoie of the ut-o� and we have shown that a hoieof temperature dependent ut-o� at/near a quantum ritial point an lead to anovel T−2 behavior of the stati dieletri suseptibility whih is argued by salinganalysis[24℄ and also veri�ed by reent experiment[25℄. Motivated by the suessof the assumption of nearness of these materials to a quantum ritial point wedisuss the e�ets of strain oupling, magneto-eletri oupling and the quenheddisorder in these materials. Eah ase will be analyzed by a minimal ation andsuitable mean-�eld sheme. Analysis are mostly analyti and are motivated toapture the basi physis rather than exat mathing with the experimental data.Moreover due the universality of the behavior near a quantum ritial point manyof these analysis will also be useful for analyzing the quantum ritial behavior ofa large lass of Bosoni systems with undamped dynamis.The thesis is organized in the following manner. In this hapter, basi oneptsrelated to quantum phase transitions, phase transitions in ferroeletris and someexperimental fats about some inipient ferroeletris suh as SrTiO3 and KTaO3are introdued. In the next hapter we will explore the possibility of quantumritial phenomena and its onsequenes in these materials. Attempts are made13



Chapter 1. Introdutionto analyze low temperature behavior of these system with the assumption of itsnearness to a quantum ritial point. It is followed by a theory of weak �rst or-der quantum phase transition observed in SrTiO3 whih is assumed to be a resultof the strain oupling. Analysis is based on a self-onsistent sheme for vertexorretions at non-zero polarization. Preditions are made on the disontinuityin the non-zero polarization both at zero and non-zero temperature and are inaord with experiments. Chapter four is an aount of dieletri behavior of aninipient ferroeletri EuTiO3 where ferroeletri �utuations are oupled to anti-ferromagneti �utuations. Invoking a self-onsistent sheme similar to the �rsthapter in presene of magneto-eletri oupling and external magneti �eld, pre-ditions are made about new power law behavior of the stati dieletri behaviorat �nite temperature. Preditions are new and worth further experimental inves-tigations. Next hapter is an aount of the e�ets of disorder in quantum ritialparaeletris. Disussions are based on semi-phenomenologial Ginzburg-Landautheory with self-onsistent mean �eld analysis. In this ase a replia formalism isinvoked to take aount of �utuations from loally ordered regimes. A preditionbroad power law distribution of the instability points and its onsequenes on thetemperature dependene of the stati dieletri behavior are made.

14



2Quantum ritiality in ferroeletris
2.1 IntrodutionIn this hapter we disuss the low temperature dieletri properties of quantumparaeletris like SrTiO3 as a result of their viinity to a transition from a para-eletri phase to a ferroeletri phase at zero temperature or a ferroeletri quan-tum phase transition. These materials are introdued in the previous hapter. Aferroeletri transition in these materials an be indued by tuning non-thermalparameters suh as doping onentration by isotopi substitution, whih to a goodapproximation an be assumed as of ontinuous type1. Thus a theory of the lowtemperature dieletri behavior of suh systems needs proper aount of the �u-tuations near a quantum ritial point. As a matter of fat, ferroeletri transitionin materials like SrTiO3 involves softening of a transverse opti mode. This kindof phase transition also ours in ase of lassial ferroeletri phase transitionin BaTiO3 and is alled displaive transition. Unlike the ase of order-disordertransition where a loal moment is always present, in this ase the moment for-mation and their ordering take plae simultaneously. Phase transitions in suhsystem an not be desribed by an Ising Hamiltonian, whih is usually invokedfor a system going through order-disorder transition. Dieletri behavior of thesesystems are governed by olletive osillations of oupled dipoles and the phasetransition is desribed by softening of the orresponding optial mode due to ther-1Experimental results suggest that the ase of SrTiO3 is of weak �rst order type[37℄. Manyof the disussions in ontext of a quantum ritial point also hold in ase of an weak �rst ordertransition and will be disussed in the next hapter. 15



Chapter 2. Quantum ritiality in ferroeletrismal �utuations[13, 14℄. Due to the importane of both the olletive behavioras well as the quantum �utuations, in these ases a proper quantum generaliza-tions of the lassial soft mode onept is needed to desribe various aspets oflow temperature behavior. Moreover as a system approahes a quantum ritialpoint the interations between the zone-enter ritial mode and other modes nearit beomes inreasingly important whih also need proper onsiderations.2.2 Mean Field AnalysisThe low temperature physis of these systems is dominated by �utuations oftransition metal ions from their equilibrium position (enter of the unit ell) inthe bakground of other ions. The ation for suh interating ions is modeled interms of loal displaements of the �utuating transition metal ions with a nearestneighbor harmoni interation[28℄,
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Chapter 2. Quantum ritiality in ferroeletrisor free phonons in a quasi harmoni approximation as follows,
∑
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φq1φ−q1 (2.3)where < .... > denotes a thermal averaging and σ is de�ned as
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+)〉. (2.4)Finally the ation for quasi-harmoni phonons an be written as,
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q − ω2)φqφ−q (2.5)where ωq is the renormalized value of the osillator frequeny and for isotropiase, is given as

ω2
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0 − vδ cos qa+ 3λσ ≃ ω2
0 − v + vδa2q2 + 3λσ, (2.6)for small q. Suh a trunation to the lowest order ontribution from spatial vari-ations is quite justi�ed for a near ritial system where only low energy and longwavelength �utuations are important. We are interested in the paraeletri phaseof the system, that is, where < φ >= 0. Sine the system is at low temperatureand the dieletri onstant has an enhaned value, < φ2 > need not vanish, how-ever. The purpose of present work is to present a self onsistent alulation of

< φ2 > in lassial as well as in the quantum regime. In the previous hapter wehave disussed how a quantum statistial system an be mapped onto a dynamialmodel. All one need is to onsider the dynamis in the imaginary time. The fre-quenies orresponding to the imaginary time in Fourier spae is alled Matsubarafrequenies (ωn). Owing to the di�erent statistis of the Bosons and the Fermions,
ωn = 2nπT and (2n + 1)πT for these two ase respetively where n is an integerand T is the temperature of the system[29℄. The suseptibility, whih is relatedto < φ2 >, is essentially the phonon propagator orresponding to the ation forquasi-harmoni phonons (eqn. (2.5)) and an be written in Matsubara frequeny
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Chapter 2. Quantum ritiality in ferroeletrisas
χ(q, n) = − 1

(ıωn)2 − ω2
q

, ωn = 2nπT. (2.7)Above propagator depends of < φ2 > or σ and the dependene is inluded in theexpression for ωq in equation(2.6). Using the de�nition of sigma (eqn. (2.4)) wehave a self onsistent equation,
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(2.9)The integrals an be performed analytially and are ut-o� (Λ) dependent. Weneed to impose suh ut-o� to avoid ultraviolet divergenes in the integrals. How-ever in ondensed matter system there is always a natural ultraviolet ut-o� whihdetermines the maximum momentum sale up-to whih a ontinuum desription isvalid. For any �utuations in a ordinary periodi solid inverse lattie spaing is anexample of suh a ultraviolet ut-o�. In ase a system is far away from quantumritiality, one an divide a high temperature (T >> ωΛ) and a low temperature

(T << ωΛ) regime using suh a ultraviolet ut-o�. However in ase of a quan-tum ritial system, we see that (�g. (2.2)) suh a demaration is also governedby temperature itself. Thus for alulating leading order temperature dependentontribution from the �utuation integral to the dieletri suseptibility, we usea high temperature expansion as above with a temperature dependent ut-o� inthis thesis. Before we go into details of the temperature dependene of stati di-eletri suseptibility, we need to de�ne some dimensionless parameters suh as,
∆ = (ω2

0 − v)/ω2
0, σc = (ω2

0 − v)/3λ, η = h̄/(2ω0σc) and h̄ is taken as unity for therest of the disussions. The parameter ∆ desribes the e�etive sti�ness for olle-18



Chapter 2. Quantum ritiality in ferroeletristive modes at harmoni level. The strength of oupling between various modes near
q = 0 is determined by σ−1

c while the parameter η tells us about the viinity to thequantum limit in the system. Introduing normalized temperature x = T/mω2
0σcand using the previously de�ned parameters, we rearrange the equation (2.6) asfollows
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. (2.11)A self-onsistent solution of these equations will determine the inverse dieletrisuseptibility whih using eqn. (2.7) and (2.10) an be written as,
χ(0, 0)−1 ∝ ∆(

σ

σc
+ 1). (2.12)A numerial alulation of the self-onsistent equations (2.10, 2.11) is presented in
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Chapter 2. Quantum ritiality in ferroeletristhe �gure 2.1. From the numerial alulation we learn that the high value of statidieletri suseptibility of SrTiO3 is �tted with the dimensionless parameter ∆ =

0.003, whih is indeed a small number. This gives us another justi�ation to treatthis system to be near a quantum ritial point. The stati dieletri suseptibilitydata of SrTiO3 remind us of the behavior of itinerant Fermioni systems nearquantum phase transition point and �utuation regime around that. There the(staggered) magneti suseptibility diverges for (anti-)ferromagneti transition asthe oupling onstant rosses a ritial value[30℄. The ase of SrTiO3 is similar tothat of liquid Helium-3 [31℄, where the magneti suseptibility gets enhaned, aslarge as ten times, depending upon pressure, from its free Fermioni value.
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Chapter 2. Quantum ritiality in ferroeletris
q = 0 mode. For low enough temperature i.e. T << ∆, quantum �utuationsdominate the low temperature physis. In this ase the momentum ut-o� in theintegral (eqn. (2.9)) is temperature independent as shown by T1 in �gure 2.2 andso is σ. At a higher temperature as shown by T2 in the same �gure, there is arossover from a quantum domain to lassial one at a ut-o� determined by theenergy gap of the q = 0 mode. Again the ut-o� is weakly temperature dependent
(Λ ∼ (T − ∆)1/2) and equation (2.9) tells that σ ∼ T in the leading order. Themode oupling would give orretions higher order in temperature, and Tc wouldbe proportional to ∆. On the other hand as ∆ beome smaller and η beomeslarger, the system move towards the quantum ritiality. When ∆ or Tc beomesidentially zero we have quantum ritial point. At this point the zero temperaturestati dieletri suseptibility diverges and beause of quantum ritial �utuationsit shows novel power law behavior at low but �nite temperature. Interestingly the
∆ = 0 or ω2

0 = v limit is the displaive limit, well known in the strutural transitionliterature. Owing to the vanishing ∆, the momentum ut-o� (Λ) in the integral(2.9) beomes strongly temperature dependent at quantum ritial point and thedispersion relation (2.6) tells that Λ ∼ T . A non-self-onsistent estimate with
(Λ ∼ T ), whih neglets 3λσ in the right hand side of the equation (2.9) tells that
σ and hene the inverse of the stati dieletri onstant follows a T 2 behavior at any�nite temperature up-to the Debye temperature. Though the Debye energy saleis system spei�, the exponent is same for other systems with same dispersionrelation. Suh estimate is essentially an outome of the lowest order perturbationtheory whih gives quite orret result when the system is far away from thequantum ritial point i.e. |(ω2

0 − v)/3λσ| << 1. At quantum ritial point, anestimation of the self-onsistent orretion by putting σ ∼ λT 2 in the right handside of the equation (2.9) is found also ∼ T 2. Thus self-onsisteny ondition inthis ase hanges the oe�ient of T 2 only. Thus as far as the basi physis isonerned, a non-self onsistent predition is su�ient for this material. Howeverto �t an experimental data self-onsistent alulation beomes important.
21



Chapter 2. Quantum ritiality in ferroeletris2.3 Phase diagram and Hydrostati Pressure atQCPBased on the previous disussions, we now fous on a possible phase diagram forthe dieletri systems near a quantum phase transition. If we fous on the phasediagram these materials near the ferroeletri quantum ritial point where thepower law behavior of the dieletri onstant et is valid. In our estimate T 2 is theleading order orretion to the paraeletri gap near the quantum ritial point. Amore sophistiated alulation an lead to a slight deviation from T 2 orretionsbut the basi physis will remain the same. In the regime ∆ ≤ 0 self onsisteny
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Figure 2.3: Shemati phase diagram of a typial quantum paraeletri system.in �utuation breaks down, system seeks ordering and hene an expansion aboutthe non-zero < u > is required. A similar analysis in this regime will also leadto a T 2 orretions. As a result the transition temperature Tc determined by thesolution of the equation ∆+ λT 2, namely the gap equation, ∼ |∆| 12 . On the otherhand, in ∆ ≥ 0 regime the system an not have any ordering and its behaviorhas to desribed by self onsistent �utuations as done in the previous setion.There is a harateristi temperature (rossover temperature in modern parlane[5℄) T ∗ ∼ ∆
1
2 whih demarates the boundary between the low temperature gappedquantum paraeletri behavior and the lassial behavior. In ase of SrTiO3, theplateau in the suseptibility vs temperature urve is the signature of gapped quan-22



Chapter 2. Quantum ritiality in ferroeletristum paraeletri behavior. There is no transition in this system. But there is arossover from low temperature quantum to high temperature lassial behaviorat the rossover temperature T ∗ (∼ 10K ). This is exatly the temperature whereplateau ends and the suseptibility urve stars following a Curie behavior. Onean now hope to reah at ∆ = 0 through tuning some parameters like pressure,impurity et. The width of this plateau regime vanishes at this point and the sys-tem beomes quantum ritial. At this point thermodynamis will be desribed bypower laws in temperature (e. g. χ(0, 0)−1 ∼ T−2) and the system will show somenon trivial dynamis. The later is beyond the sope of the present work. It is quiteevident here as the ontrolling fator v/mω2
0 strongly depends upon strutural as-pets and hene this quantum-ness in SrTiO3 an be properly understood throughsome intrinsi mehanism whih give rise to suh large tunneling. The importaneof the viinity to a quantum ritial point in determining the low temperatureproperties of a quantum paraeletri shows the limitation of the Barrett's analysisand its variants. Clearly it an not apture the onsequenes of the quantum riti-al �utuations. That formula is essentially attempted at mimiking the quantum�utuations in a single mode theory, whih would fail near the quantum ritialpoint as many modes and their oupling would dominate the behavior of systemthere. This neessitates a self-onsistent alulation for quantum paraeletris nearits quantum ritial point.A possibility of exploring the physis near suh quantum ritial point is throughappliation of hydrostati pressure. Suh a tehnique is already used in ase of fer-roeletris and quantum paraeletris long ago [32℄ and more reently [33℄ in dif-ferent ontexts. We found that those experimental results an be disussed moreinterestingly as is done in the ontext of itinerant magneti system[34℄. Appli-ation of hydrostati pressure will ouple to optial mode via its oupling to theaousti mode. In this ase the starting ation takes the form

A =
1

2

∫

dq

[

p2q +

(

ω2
0 − vδ

∑

i=x,y,z

cos qia

)

uqu−q

]

+
λ

4

∫

Π4
i=1(dqiuqi)δ(

∑

i

qi)

+g

∫

dk dq ǫ(k) uquk−q +
K

2

∫

dqǫ2(q)− pǫ(0). (2.13)Here last three terms are results of appliations of pressure, in lowest possible23



Chapter 2. Quantum ritiality in ferroeletrisorder. The parameter �g� ouples strain �elds to unit ell displaement related toopti mode and �K� is the fore onstant for harmoni aousti phonons, and thelast term shows the oupling of the hydrostati pressure �p� to the stati strainwith some unit strength. Now if the pressure is strong enough ǫ has a minima at
ǫ = ǫ(0) and is given by

ǫ(0) = p/K. (2.14)substituting the above relation in equation (2.13) and negleting the strain �utu-ations, we get an e�etive ation
A =

∫

dq

[

1

2
p2q +

1

2

(

ω2
0 + gp− vδ

∑

i=x,y,z

cos qia

)

φqφ−q

]

+
1

4
λ

∫

Πidqiφq1φq2φq3φ−q1−q2−q3. (2.15)Again we write a self onsistent equation for paraeletri �utuations as,
σ =

∫

ddq
1

ωq
coth

(ωq
T

)

. (2.16)Here the renormalized value of the optial mode frequenies are given as
ω2(q) = 3∆λ(1 + p/p0) + vδq2a2/2 + 3λRσ and p0 =

3K∆λ

g
. (2.17)Up to this point result is just a renormalization of the fator ∆ as ∆(1 + p/p0)and it beomes an experimentally ontrollable parameter. And the behavior ofsuseptibility at di�erent values of ∆ is shown in the �gure 2.4. It is visible inthis �gure that as ∆ dereases, the saturated value of the stati dieletri onstantinreases, the urve beomes a straight line down to zero temperature, signaling apower law variation over the whole temperature range. In this proposal we assumestrain �utuations to be negligible. However strain �utuations an generate longrange interations among the harmoni paraeletri �utuations, i.e. a quartiterm with a oupling onstant ∼ g2/K. And in ertain situation this ouplingonstant an beome negative and its magnitude an beome omparable to λ. Inthat ase it is quite possible that the transition will be �rst order and suh senariois disussed in the next hapter. However in real situation one an try to indue the24



Chapter 2. Quantum ritiality in ferroeletris
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Figure 2.4: Temperature variation of Suseptibility at di�erent values of ∆ andthe log-log plot of the same.e�et of negative pressure required in these systems to ahieve a quantum ritialpoint through some homogeneous e�ets of non-polar impurity. But in either asenature of the transition an be modi�ed beause of strain oupling or disorderrespetively.2.4 DisussionWe have shown that a mean �eld theory for quantum paraeletri �utuationswithin a quasi harmoni approximation reprodues the low temperature behaviorof the stati dieletri suseptibility of a quantum paraeletri. The qualitativebehavior of suseptibility is reprodued as well as a new insight gained into thequantum ritial behavior of suh systems. A mismath in theory and experimentfor the stati dieletri onstant at high temperature an be attributed to the ef-fet of strutural transition whih ours at higher temperature (i.e. at 110 Kin SrTiO3), suh disrepany is irrelevant for the present disussion whih refersmainly to the low temperature regime. The short range model studied here is jus-ti�ed sine only transverse optial modes are involved in the quantum paraeletri�utuations. In presene of a long range dipolar interation longitudinal mode be-omes sti� and only transverse modes an get soft. The dipolar interation induesa ertain amount of anisotropy to the transverse modes whih an ertainly hange25



Chapter 2. Quantum ritiality in ferroeletristhe ritial behavior, however, only with a fairly large value of dipolar ontributionto anisotropy in the quadrati term [26℄. Usually suh anisotropy parameters arepiked up from ab-initio band struture alulations. We are not aware of suhab-initio band struture results for anisotropy parameters in ase of SrTiO3 orKTaO3. However, the band struture alulations support our hoie of parameterfor the e�etive sti�ness. Compared to BaTiO3 it is about twenty times smaller(Table V in ref [36℄) for SrTiO3, whih makes it more near the quantum domain.On the other hand the lattie indued anisotropy in the quarti term is of thesame order of magnitude and it would not play a key role in distinguishing thelow temperature behavior in these systems. We leave disussions on anisotropydependene for the future work and stik to an isotropi short range model. Itis also lear that there is no need to introdue �anomalous� regime as proposedearlier. That proposal might be due to the insistene on omparing experimentalresults with Barrett's formula and its extensions. The experimental behavior iswell aounted for in the quantum region and at high temperature the susepti-bility smoothly rosses over to the lassial behavior. The strutural aspets andanisotropy e�ets are not attempted here.
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3Weak �rst order transition in quantumparaeletris
3.1 IntrodutionPrevious hapter sets up a basi theoretial ground for disussing the low temper-ature dieletri properties of quantum paraeletris along with some preditionsabout their quantum ritial behavior. With this bakground we fous on under-standing the detailed experimental observations on various quantum paraeletris.In this ontext a reent spetrosopi experiment reports some interesting behav-ior of quantum ritial SrTiO3. This experiment[37℄ indiates that SrTiO3, one ofthe member in the quantum paraeletri family, shows phase separation near itsquantum ritial point. This Raman sattering experiment at low temperature re-ports simultaneous responses from both the paraeletri and the ferroeletri phasenear a quantum ritial point in O18 doped SrTiO16

3 . The intensity of the sat-tered light from the ferroeletri phase is reported to be very weak and beomesweaker as one moves away from the quantum ritial point. The oexistene ofa quantum paraeletri phase with a ferroeletri phase in O18-exhanged SrTiO3provides strong evidene for a �rst order phase transition. Moreover owing to thelow intensity of the sattered light from ferroeletri phase, the nature of the tran-sition an be alled a weak �rst order type where many features of a ontinuoustransition remain unaltered. This experiment is performed at zero eletri �eld,at a onstant pressure and there is no report of eletro-magneti oupling in thismaterials. Thus one an safely attribute this �rst order nature of the quantum27



Chapter 3. Weak �rst order transition in quantum paraeletrisparaeletri to a ferroeletri phase transition to the oupling between the ritialmode with non-ritial strain �utuations. Suh a oupling is quite ommon inlassial ferroeletris and has been studied both theoretially as well as exper-imentally in earlier literature. Earlier experiments show that the appliation ofhydrostati pressure moves these systems away from ritiality and the possibilityof phase transition is suppressed. One needs to apply, what is termed as, a nega-tive pressure to indue phase transition in these materials. One way to simulatenegative pressure is to put non-polar impurities whih reate loal pressure de�-ienies. In this ontext, experimentally [38℄ one �nds Tc ∼ (n − nc)
1
2 (where nis the average impurity onentration and nc is the ritial value, typially 33%)whih mathes well with the theoretial estimated[23℄ transition temperature forpressure indued transition. In this ase, the mean �eld Tc ∼ (p+ pc)

1
2 (where p ishydrostati pressure and pc is the ritial value). The exponent 1

2
is obtained whenthermal �utuations are treated at the Gaussian level. The similarity between ef-fets of pressure and the impurity in the transition temperature an be attributedto the high density of impurity onentrations in these ases. Here the disordere�ets seem to be small and a non-polar impurity essentially indues an internalpressure. This motivates us to develop a desription, suitable for the propertiesof the pressure indued phase transition, whih an be used to understand theourrene of the phase separation mentioned above in the ferroeletri transitionnear the ferroeletri quantum ritial point. In this hapter we look for a weak�rst order transition senario where orrelation length is large enough to adopt aontinuum model. We therefore, start with an e�etive one omponent model withshort range interation without dipolar anisotropy and try to explore the results oforder parameter �utuations with an e�etive long range interations among them,mediated by strain �utuations. We look for the �utuation e�ets in four pointverties. To retain the leading �utuation e�ets in the vertex funtion along withtheir dependenies on the non-zero polarization, we alulate the free energy usinga set of renormalization group equations. This �utuation renormalized free energyis used to explore the possibility of a �rst order transition at zero temperature aswell as at a �nite temperature.
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Chapter 3. Weak �rst order transition in quantum paraeletris3.2 Summary of the mean �eld analysisWe assume that a �utuating strain �eld ǫij(τ) ∼ (∇iuj(τ) +∇jui(τ)) ouples toa bi-linear form of the optial modes �utuations as gǫij(τ)φi(τ)φj(τ). Here ui(τ)represents the displaement due to aousti mode �utuations at i-th site in realspae and g is the opto-elasti oupling. We onsider the Gaussian �utuations ofthe strain �elds and onsider the system to be at a onstant pressure. Integratingout the strain �utuations ompletely, we get an e�etive long range interationsamong the optial mode �utuations of the form vφ2
iφ

2
j in real spae. Here v ∝ g2and depends on various elasti onstants depending on whih it an be eithernegative or positive. A naive quantum generalization of suh interation would leadto a term like vφ2

i (τ)φ
2
j(τ), where τ is time. Suh a term indiates �eld variables attwo di�erent position interat at same point with same interation strength. Thislearly violates ausality and we need to introdue non-loality in time in suhinteration. Thus we the resulting interation to be vφ2

i (τi)φ
2
j(τj) whih is found toonsistent with the quantum-lassial mapping of our strain oupled system. Sinewe onsider a weak �rst order transition a-priori, we assume v to be negative andleave the detailed disussions on its dependene on various elasti onstants. In aFourier spae our e�etive ation desribes only polarization �utuations transverseto the momentum vetor with strain indued long range interations among themand takes the following form,

A =
1

β

∑

q

1

2
(ω2

n + r + cq2)φqφ−q +
1

4!β

∑

q1,q2,q3

uφq1φq2φq3φ−q1−q2−q3

+
vL−d

4!β

∑

q1,q2

φq1φ−q1φq2φ−q2. (3.1)Here φqi = φ(qi, ωni
) desribes the Fourier transform of loal transverse polariza-tion, q is the �eld momentum, ωn = 2πn/β is the Matsubara frequeny for Bosoniexitations, r and u are the oupling onstants for quadrati and the anisotropishort range quarti interations respetively. The parameter v is the oupling on-stant for isotropi long range part of the quarti oupling indued by strain and

Ld is the system volume in d-spatial dimension. Hydrostati pressure, as well asthe non-polar impurity, ouples to the optial mode via strain. It shifts the bare29



Chapter 3. Weak �rst order transition in quantum paraeletrisquadrati and quarti oupling r0 by r = r0(1+p/p0), where p is the homogeneouspressure and p0 is a onstant. Strain �utuations indue a long range attrativeinteration between the dipoles and is denoted by the e�etive quarti oupling v.We fous on a weak �rst order transition near a quantum ritial point where φaquires a non-zero value. Thus in a mean �eld approximation near suh a transi-tion point φ an be deomposed into two parts, P the stati mean �eld part and
ψ(q, ω), the �utuating part as follows,

φq = Pδ(q, ω) + ψ(q, ω) (3.2)It is assumed that < ψ(q, ω) >= 0. In this approximation our starting ation (3.1)an be rewritten as
A =

r

2
P 2 +

(u+ v)

4!
P 4 +

1

2β

∑

q

(ω2
n + r + cq2 + (u/2 + v/6)P 2)ψqψ−q

+P
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3!β
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ψq1ψq2ψ−q1−q2 +
u

4!

∑

q1,q2,q3

ψq1ψq2ψq3ψ−q1−q2−q3

+
vL−d

4!β

∑

q1,q2

ψq1ψ−q1ψq2ψ−q2. (3.3)Here we use the notation ψqi = ψ(qi, ωni
). It is to be noted that the term P 2ψqψ−qhas a oe�ient 3u + v whih an remain positive even when u + v < 0 and ithas important onsequenes whih will be disussed later. Tehnially the longrange part of the ation with vertex v ontributes to suh term two possible wayswhereas the short range part with vertex u ontributes in six (C4

2) possible waysand the di�erene lies in their range of interations. With this ation we an studythe thermodynamis of the system by onstruting a free energy whih is de�nedas the logarithm of a funtional integral over A(ψ, P ), i.e.
F = − 1

β
log

(
∫

Dψe−A(ψ,P )

)

. (3.4)The value of P is to be determined by minimizing the free energy F . Stability of athermodynami system requires the free energy to be positive. In a Landau theory,whih neglets �utuations ompletely, stability riteria requires the oe�ient ofthe quarti term, i.e. (u+ v) to be positive. In that ase, for r > 0, the free energy30



Chapter 3. Weak �rst order transition in quantum paraeletriswill be minimized for P = 0 resulting in a seond order transition. On the otherhand for (u + v) < 0 stability riteria in a mean �eld theory requires a higherorder term with positive oe�ient whih results a �rst order transition with anon-zero P ∼ |u + v|. We onsider a limiting situation where |u + v| ≈ 0 whihorresponds to a weak �rst order transition. In this regime a proper aount ofthe �utuation orretions should be taken and it will be shown that �utuationorretions alone an stabilize the system without invoking a higher order term inthe starting ation. We will disuss the e�ets of �utuations in four point vertiesnear a weak �rst order transition in the next setion.3.3 Flutuation orretions to the free energy atzero temperatureIn the previous setion we disussed importane of the oe�ients of quarti termto determine the nature of phase transition. In a �eld theory desription theseoe�ients are alled vertex funtions. Under ertain irumstanes they an getheavily renormalized by order parameter �utuations and an weak �rst order tran-sition is suh an event. In this ase there is a ompetition between order parameter�utuations and a non-zero value of order parameter to stabilize a thermodynamisystem. To quantify the e�ets of the ompetition between the order parameter�utuations and a non-zero value of order parameter we alulate the �utuationre-normalized four point vertex funtions. Then a �utuation renormalized free en-ergy is onstruted using them. We use renormalization group equations for fourpoint verties obtained in the lowest order perturbation theory. Suh equationswere derived earlier by Gadeker and Ramakrishnan[39, 40℄ in a parquet approxi-mation. It is assumed that near a weak �rst order transition, a system aquires asmall but non zero polarization P , the polarization �utuation near suh a phasetransition beomes gapped, with the gap being proportional to P 2. Thus near suha phase transition the free optial phonon propagator whih is the inverse of theoe�ient of the quadrati term of the �utuating part in the mean �eld ation(eqn. (3.3)), is given by,
G−1(q, ωn) = r + cq2 + ω2

n + (u/2 + v/6)P 2. (3.5)31



Chapter 3. Weak �rst order transition in quantum paraeletrisIn a paraeletri phase with u + v > 0, P = 0. A bare theory predits that at
= + +

= +

(b)

(a)

Figure 3.1: Parquet diagrams for the �utuation orretions to the short interationvertex u (a) and the long range vertex v(b) are shown at the lowest order. Herethe urly line orresponds to the long range vertex and the solid line orrespondsto the propagator given by the equation (3.5).
T = 0, the stati suseptibility χ(0, 0) ∼ G(0, 0) ∼ 1/r. Thus r = 0 is a pointof instability in the paraeletri phase, and when there is no disontinuity in theorder parameter (u+v > 0) at that point, it an be identi�ed as a quantum ritialpoint. In the viinity of the ritial point, orrelation length beomes large, leadingto dominane of the order parameter �utuations. Moreover when |u + v| ≈ 0,�utuation orretions to the four point verties beome important. We will tryto disuss the e�ets of �utuations in the viinity of the limit |u + v| → 0, indeveloping spontaneous non-zero value of the order parameter near the transitionpoint. Sine in the ase of a week �rst order transition, initially orrelation lengthgrows signi�antly, the bare verties get strongly re-normalized. Now using thebare propagator for the order parameter �utuation (eqn. (3.5)) we �nd that theleading order ontribution from the seond diagram of the �gure 3.1(a) to therenormalization vertex funtion with a momentum uto� Λ is given as,

δu = −u2
∑

n

∫ Λ

0

ddqG2(q, ωn). (3.6)At zero temperature the frequeny summation beomes an integral and in thisase, the ombination of the frequeny sum and the d-dimensional integral an be
32



Chapter 3. Weak �rst order transition in quantum paraeletrisreplaed by a d+ 1 dimensional integral. Hene in three dimension,
δu ∼ −u2

∫ Λ

0

d3+1qG2(q) which

∼ −u2K4 log
Λ

(r + (u/2 + v/6)P 2)
1
2

. (3.7)Here K4 is a onstant whih is related to the surfae area of a 4-dimensional sphereof unit radius. Surfae area of a d-dimensional hyper-sphere is given by,
Kd =

(

2d−1π
d
2Γ(d/2)

)−1

. (3.8)
Kd =

1
8π2 and 1

2π2 in d=4 and d=3 respetively. The orretion to four point vertex
δu has a logarithmi divergene as r → 0 and P → 0. We de�ne the diverginglogarithmi part as a new ut-o� variable

x = log
Λ

(r + (u/2 + v/6)P 2)
1
2

. (3.9)We de�ne the re-normalized proper four point verties Γ4 and ∆4, with their barevalues given as,
Γ0
4 = u and ∆0

4 = v. (3.10)Considering the lowest order orretions, we get the following renormalizationgroup equations in terms of the ut-o� variable x,
dΓ4

dx
= −3

2
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2
4(x), (3.11)

d∆4

dx
= −Kd+1Γ4(x)∆4(x)−

1

6
Kd+1∆

2
4(x). (3.12)The above equations an also be obtained in a parquet re-summation sheme bysumming leading order diagrams up-to in�nite order as shown in �gure 3.1. How-ever the solutions of these equations an be written as,
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Chapter 3. Weak �rst order transition in quantum paraeletrisIn this derivation the ontributions from the third order term, i.e. from Pψψψis negleted. In a perturbative theory, this term ontribute nothing at the �rstorder. It ontributions to the higher order. But those orretions are less divergentompared to the ontributions oming from quarti terms. It is to be noted thatthe ut-o� variable x ontains Γ4 and ∆4. Thus the set of equations (3.13) de�nesoupled equations for Γ4 and ∆4. They need to be solved self-onsistently to �ndout their dependenies on r and P . From Γ4 and∆4 thus obtained, we an alulatethe �utuation re-normalized free energy using the relation,
∂4F

∂P 4
= Γ4 +∆4. (3.14)We need to integrate (with proper boundary onditions) the above equation fourtimes with respet to P to get an expression for the free energy. Integrating theequation (3.14) one, we get

∂3F

∂P 3
=

∫ P

0

(Γ4 +∆4)dP
′

= P (Γ4 +∆4) +

∫ P

0

P ′ ∂

∂P ′ (Γ4 +∆4)dP
′ + c(r). (3.15)Here c(r) is a onstant independent of P and an be equated to zero using thesymmetry onstraint ∂3F/∂P 3|0 = 0. The seond term in the right hand side ofthe above equation takes are of the P dependene of Γ4 and ∆4. To make ouralulations simpler, we will neglet that term at this stage. Before doing so, wemake an estimate of the orresponding error. The integral reads as,

∫ P
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2Kd+1(3Γ4 +∆4)
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6r + [(3Γ4 +∆4)− Kd+1

6
(3Γ4 +∆4)2]P ′2

. (3.16)Here Kd+1 =
1

8π2 in d = 3. In order to make our lowest order perturbation theoryvalid, we hoose (3Γ4 + ∆4) ∼ O(10). Thus Kd+1(3Γ4 + ∆4) ∼ O(10−1). Theontribution from the P -dependene of Γ4 and ∆4 to the integral(3.16) beomes,
Kd+1

3
(3Γ4 +∆4)

3

∫ P

0

P ′2dP ′

6r + (3Γ4 +∆4)P ′2

≈ Kd+1

3
(3Γ4 +∆4)

2P ≈ 10−2(3Γ4 +∆4)P. (3.17)34



Chapter 3. Weak �rst order transition in quantum paraeletrisWe see that, the P -dependene of Γ4 and ∆4 ontributes two order of magnitudeless ompared to the other terms in the free energy. Thus we neglet the P depen-dene of Γ4 and ∆4 at this stage in alulating F . Integrating two more times, weget,
∂F

∂P
= rP +

1

3!
(Γ4 +∆4)P

3. (3.18)To obtain a form of F suitable to desribe the �rst order transition we need toretain the P dependene of Γ4 and ∆4 at this stage and thus,
F =

∫ P

0

(rP ′ +
1

3!
(Γ4 +∆4)P

′3)dP ′

=
1

2
rP 2 +

(Γ4(P ) + ∆4(P ))

4!
P 4

− 1

4!

∫ P

0

P ′4 d

dP ′ (Γ4(P
′) + ∆4(P

′))dP ′. (3.19)To evaluate the above integral, we make the following substitution(using eqn.(3.9))
P 2 =

Λe−x − r
Γ4

2
+ ∆4

6

. (3.20)Contribution from the integral part in the previous equation is given by
− 1

4!

∫ log Λ

r+(
Γ4
2 +

∆4
6 )P2

log(Λ/r)

(

Λe−x − r

(Γ4

2
+ ∆4

6
)

)2

× d

dx
(Γ4(x) + ∆4(x))dx

=
Kd+1

4

∫ log Λ

r+(
Γ4
2 +

∆4
6 )P2

log(Λ/r)

(Λ2e−2x − 2rΛe−x + r2)dx

=
Kd+1

4

(

r

2
(Γ4 +∆4)P

2 − 1

2

(

Γ4

2
+

∆4

6

)2
)

P 4

+r2 log
r

r + (Γ4

2
+ ∆4

6
)P 2

). (3.21)Thus we get the following expression for the free energy at zero temperature
F =

Kd+1

4
r2 log

6r

6r + (3Γ4 +∆4)P 2
+

1

2
rP 2

(

1 +
Kd+1

2

(

Γ4

2
+

∆4

6

))

+P 4

(

Γ4 +∆4

4!
− Kd+1

8

(

Γ4

2
+

∆4

6

)2
)

. (3.22)35



Chapter 3. Weak �rst order transition in quantum paraeletriswhere Γ4 and ∆4 are P -dependent and are to be determined from the set of equa-tions (3.11,3.12). We notie that only the following ombinations of Γ4 and ∆4appear in all the alulations,
γ1 = 3Γ4 +∆4, γ2 = Γ4 +∆4. (3.23)Here the bare value of γ2 (γ02)is the oe�ient for the quarti term in mean �eldapproximation. On the other hand non-zero polarization enters into the �utuationpropagator with a oupling onstant γ1. In ase of γ02 < 0, a mean �eld piturerequires an additional |P |6 term with positive oe�ient for the stability of thesystem. However a �utuation orreted senario an ensure stability withoutsuh a term, provided γ1 > 0. With the above de�nitions, the set of equations(3.13) beomes a single self-onsistent equation for γ1

γ1 =
3Γ0

4

1 + 3
2
Kd+1Γ0

4x

(

1 +
∆0

4

∆0
4 + (3Γ0

4 −∆0
4)(1 +

3
2
Kd+1Γ0

4x)

)

. (3.24)Here x ontains γ1 only. Solving the above equation, γ2 an be found from (eqn.3.12)
dγ2
dx

= −Kd+1

6
γ21 . (3.25)Below γ2 = 0, phase transition in this system will be �rst order. We are interestedin the phase transition near γ2 = 0, where �utuation e�ets in four point vertiesare important. If we limit ourselves to the region |∆4| < 3Γ4, the leading orderbehavior of γ1 is same as that of Γ4 and is given by

γ1 ≈ 3Γ0
4

1 + 3
2
Kd+1Γ

0
4x

=
3Γ0

4

1 + 3
2
Kd+1Γ0

4 log
6Λ√

6r+γ1P 2

. (3.26)Assuming the bare value Γ0
4 ∼ O(10), so that Γ0

4

4!
< 1 whih validates perturbationtheory, gives 6Γ0

4 ∼ O(102). If we de�ne a parameter a = 3
4
Kd+1Γ

0
4, then withinthe validity regime of perturbation theory a ∼ O(10−1). Thus for an wide rangeof γ1 e. g. γ1 ∼ O(1) − O(102), we �nd |a log γ1| < |3Γ

0
4

γ1
|. For small r, γ1 and γ2

36



Chapter 3. Weak �rst order transition in quantum paraeletrisan be estimated as
γ1 ∼

3Γ0
4

1− a log(γ1P 2)
≈ 3Γ0

4

1− 2a logP
. (3.27)This is essentially a non-self-onsistent solution for γ1. Variation of γ1 at zerotemperature is shown in �gure 3.2. From the �gure it is visible that, at P = 0beause of the quantum ritial �utuations there is a strong redution of γ1 fromits bare value and a non-zero P restores it to its bare value. A non-zero polarizationhas similar e�ets on the γ2 whih leads to a �rst order transition.From the equation (3.25), we get,

γ2 = γ02 + (−9(Γ0
4)

2 +
γ1
3
) (3.28)

= γ02 −
9(Γ0

4)
2Kd+1

6a

(

1− 1

1− 2a logP

) (3.29)where γ02 is the bare value of γ2. Sine the orretions due to self-onsisteny
∼ log γ1, the above estimate breaks down near P ∼ exp(1/2a). Exept in thatregime, the non-self-onsistent result is expeted to give good result.
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Figure 3.2: Asymptoti evolutions of γ1 with P at T = 0. Parameter values arehosen as 3Γ0
4 = 10 and a = 0.1 in an arbitrary sale.Free energy at zero temperature: Using the asymptoti behavior of thefour point verties (eqn. (3.27)) and using equation (3.22) de�ning γ̃02 as γ02 −

9(Γ0
4)

2Kd+1

6a
, we an write the following asymptoti expression for the free energy at37



Chapter 3. Weak �rst order transition in quantum paraeletriszero temperature
F =

Kd+1

4
r2 log

6r

6r + P 2 3Γ0
4

1−2a logP

+
1

2
rP 2

(

1 +
Kd+1

12

6Γ0
4

1− 2a logP

)

+
P 4

4!

(

(

γ̃02 +
Kd+1

6a

(

9(Γ0
4)

2

1− 2a logP

))

− 4!Kd+1

36× 8

(

3Γ0
4

1− 2a logP

)2
)

.(3.30)Here the �rst term ∼ O(r2), hene negligible ompared to the other terms inthe viinity of a quantum ritial point(r → 0). The seond term is a standardquadrati term with �utuation orretions. The third term, desribes the appro-priate physis of the problem. The oe�ient of the quarti term ontains threeterms. First one is a onstant and an take either positive or negative but smallvalues. Now there is a ompetition between the seond and the third term. Theseond term tries to make the free energy positive while the third term tries to makeit negative. However unless γ02 is a su�iently large negative number, oe�ientof the quarti term is positive in the parameter regime of our interest.To have a phase transition, the following equation must be satis�ed,
∂F

∂P
= rP +

1

3!
(Γ4 +∆4)P

3 = 0 (3.31)For positive r ≈ 0, the above equation an be satis�ed only if Γ4 +∆4 is negative.Corresponding value of the P is given as,
P0 = exp

(

1

2a
+

9Kd+1(Γ
0
4)

2

12aγ̃02

)

= exp
1

2a
(1 + µ) (3.32)with µ =

9Kd+1(Γ
0
4)

2

6γ02
. Sine |µ| >> 1, the parameter γ̃02 > 0 orresponds to thevery large values of P0. Sine the sheme presented here, is valid for small P , weexlude this possibility in this disussion. On the other hand, γ̃02 < 0 orrespondsto the �nite value of P0 and there is a possibility of a �rst order transition at

r = r0 > 0. As r ∼ P 2, r0 ∼ exp 1
a
(1 + µ). This is in sharp ontrast to the mean-�eld predition. In the later ase a disontinuity in the order parameter is preditedto be ∼ γ02 = |u + v|, while suh disontinuity has a non-analyti dependene on

γ02 in a �utuation indued and order parameter limited transition in our theory.If we onsider the Gaussian thermal �utuations near the instability point and38



Chapter 3. Weak �rst order transition in quantum paraeletrisneglet the temperature dependenies of the verties, then the thermal orretionsto r and P 2 ∼ T 2 and P 2
0 should vanish above a temperature T ∼ exp 1

2a
(1 + µ).However the �utuation ut-o� for the renormalized verties and hene the formof �utuation re-normalized free energy should get hanged at �nite temperature.In the next setion we will disuss the �nite temperature ase in detail.3.4 Flutuation orretions to the free energy at�nite temperature

+=Figure 3.3: Diagrammati representation of gap renormalization up-to one loop.Here we onsider the system to be at a low but non-zero temperature as wellas near a mean �eld quantum ritial point with a zero temperature negative gap(i. e. r = −r0, r0 ≥ 0). Near r0 = 0, �utuation orretions at �nite temperatureto it leads to
r(T ) = −r0 +K3

(u

2
+
v

6

)

T 2. (3.33)Here the thermal �utuations are onsidered up-to the Gaussian level as done inthe hapter 2. Above expression for r(T ) without any orretion to four pointverties predits a seond order transition with a transition temperature Tc ∼ √
r0for u + v > 0. Again we will look at the orretion to the four point verties inthe limit |u + v| → 0 but at non-zero temperature. Using the same proedure asused for the zero temperature ase, we now dedue the parquet equations for thefour point verties and hene the free energy at �nite temperature. At non-zerotemperature, �utuation orretions to the four point verties takes the form

δu ∼ −u2T
∫ Λ

0

d3qG2(q, ωn = 0)

∼ −u2K3
T

(r(T ) + (u/2 + v/6)P 2)
1
2

, (3.34)39



Chapter 3. Weak �rst order transition in quantum paraeletrisin three dimension. Near the ritial point, r(T ) ∼ r +K3(u/2 + v/6)T 2. Thus at�nite temperature, we an de�ne �nite temperature �utuation ut-o� as
xT =

T

(r + (u/2 + v/6)(P 2 +K3T 2))
1
2

. (3.35)In this ase, �utuation orretions to the free energy in terms of γ1 and γ2 (equa-tion 3.19) beomes,
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2 ]]. (3.36)Here xT (P ) = T

(r+
γ1
6
(P 2+K3T 2))

1
2
is used as polarization dependent �utuation ut-o� at non-zero temperature. In performing the above integral, xT -dependene of

Γ4 and ∆4 are negleted as that would lead to sub leading orretions. For thesystems near r → 0 limit, retaining only the terms lowest order in T and r, thefree energy an be trunated as
F =
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rP 2 + P 4
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6
)(P 2 +K3T
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3
2

]. (3.37)For small r and T , the third term is of the O(T 4), hene is negligible. Thus thefree energy in the leading order an be further trunated as
F =
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P 2 + P 4
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Γ4 +∆4

4!
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4
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Γ4
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6

)
3
2

P 3. (3.38)40



Chapter 3. Weak �rst order transition in quantum paraeletrisIn the above equation P ≡ |~P | and the ubi term whih is a result of small Pexpansion, does not violate the symmetry of the problem. A �nite temperatureversion of the equation (3.27), i.e. the asymptoti form of the self onsistentequation for γ1, one of the important ombinations of the four point verties reads,
γ1 =

6Γ0
4

1− 6aT
(γ1(P 2+K3T 2))1/2

. (3.39)Non-zero solution of the above equation tells
γ1 =

18a2T 2 +K3Γ
0
4T

2 + Γ0
4P

2

P 2 +K3T 2
± 6aT

√

9a2T 2 + Γ0
4P

2 + Γ0
4K3T 2

P 2 +K3T 2
. (3.40)In deriving the equations at �nite temperature we have limited ourselves in thelow temperature region i.e. a2T 4 is negleted ompared to K3T

2. Moreover γ1should be strongly suppressed due to ritial �utuations at zero P and should gotowards its bare value with inreasing P . Hene the part is remaining,
γ1 ≈ Γ0

4 −
6a
√

Γ0
4T√

P 2 +K3T 2
. (3.41)Asymptoti evolution of γ1 with P for two di�erent temperature is shown in �gure3.4. In this �gure we �nd that qualitative nature of the urve is similar to thatof the zero temperature ase exept that at P = 0, redution of γ1 at a �nitetemperature is lower than that of it at a zero temperature. Sine at a �nitetemperature the quantum ritial �utuations are suppressed, this is an expetedresult.However from equation (3.28) we get

γ2 = γ02 +
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2Γ0
4

3
+

2a
√

Γ0
4T√

P 2 +K3T 2

)

. (3.42)Free energy at �nite temperature: Again using the asymptoti behavior ofthe four point verties (3.41) and using equation (3.38), we an write the following
41



Chapter 3. Weak �rst order transition in quantum paraeletris

-8

-6

-4

-2

 0

 2

 4

 0  1  2  3  4  5

γ 1

P

T=1
T=2

Figure 3.4: Asymptoti evolution of γ1 with P at T 6= 0. Two urves are drawn attwo di�erent temperatures with Γ0
4 = 10/3, a = 0.1 and Kd = 0.1.asymptoti expression for the free energy at non zero temperature
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. (3.43)Gap renormalization up-to one loop(�gure 3.3) at �nite temperature near r = 0,tells,
r(T ) = −r0 +K3
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T 2. (3.44)Negleting the term of O(T−3) in the oe�ient of P 2, the expression for freeenergy beomes
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Chapter 3. Weak �rst order transition in quantum paraeletrisIn the limit P 2 >> K3T
2, it takes the form1
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3aT 2
√
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(
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√
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+
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2Γ0
4

3
+ γ02
4!

)

P 4. (3.46)Above equation tells that, the solution of the equation ∂F/∂P = 0 will result anonzero value of P0 ∼ T0, even if γ02 > 0. Here T0 is the seond order transitiontemperature for the mean �eld theory. Sine near quantum ritial point, T0 ∼
√
r0, P0 is also ∼ √

r0. If we ompare this results with that of the zero temperaturease, we see that in the �nite temperature ase, the disontinuity in the orderparameter near the transition point ∼ √
r0 while it is independent of r0 in thezero temperature ase. Sine r0 is the smallest sale(near mean �eld quantumritial point, r0 → 0) in this system, �rst order transition as a result of the orderparameter �utuations at �nite temperature near the mean �eld quantum ritialpoint is weaker than that of the zero temperature ase. This result is onsistentwith some experimental fat as reported in [37℄ and established the importane ofthe quantum ritial �utuations in this regards.3.5 DisussionsOurrene of �rst order transition due to oupling between the order parameter�utuations and soft modes is a well studied problem in many lassial systems[42,43, 44, 45℄ and reently studied in ontext of quantum phase transitions in ele-troni systems[46℄. To apture the basi physis near a weak �rst order transitions,one needs to study the e�ets of �utuations on the proper four point verties. Bareperturbation alulations in this system show vertex orretions to be logarithmi-ally singular at zero temperature and with zero polarization in three dimensionsdue to quantum ritial �utuations. To inlude the e�ets of the singular ontri-butions, we use the lowest order renormalization group equations to derive a set1This assumption does not ontradit K3T

2 ontribution to the gap renormalization. Suhontribution appeared with the assumption that the lowest non-zero Matsubara frequeny, i.e.
2πT >

√

γ1

6
P . This assumption holds good even if P 2 >> K3T

2. 43



Chapter 3. Weak �rst order transition in quantum paraeletrisof reursion relations for four point verties. Moreover to stabilize the system anon-zero polarization is assumed. Here the re-normalized verties ruially dependon the non-zero polarization. Using these relations, the expressions for the free en-ergy both at zero temperature and at �nite temperature are derived. The relevantquantities like transition temperature and the disontinuity in the order parameterat the transition point turn out to be small but �nite. We mainly onentrate onthe phenomena near a quantum ritial point predited by a mean �eld theory.We found stronger possibility of �rst order transitions at T = 0 than at any �nitetemperature transition near quantum ritial point whih is in aord with reentexperimental �nding. From our analysis it is lear that this fat an be attributedto the ritial �utuations near a quantum ritial point. It is found that a �nitepolarization is required to suppress the e�ets of the ritial �utuations. Sine thee�ets of quantum ritial �utuations get redued at a �nite temperature, a lowervalue is su�ient to stabilize the system. Thus the phenomena observed in theexperiment[37℄ is learly a onsequene of the quantum ritial �utuations. Apartfrom that, unlike the standard renormalization group approah, whih onsiders�rst order transition as just the inability of the system to reah an unstable �xedpoint, the present approah makes qualitative preditions about the magnitudeof the disontinuity in order-parameter near the transition point. Similar phe-nomena ours in low Tc itinerant magnets beause of the oupling between orderparameter and other soft modes[47℄. The e�ets of �utuations in the disontinu-ity in order-parameter has been estimated earlier using di�erent theoretial set up,namely loop orretions to the free energy, hene an non-analyti Landau expan-sion. In those works the ourrene of �rst order transition at low temperature isfound to be more suseptible to the e�ets of generi sale invariane than theirlassial ounterparts. We have onsidered the onstant pressure ase only, wherestrain �utuations are ompletely integrated out. One an also onsider a situationwhere system volume is onstant[48℄ and a proper quantum generalization of suhase should ertainly be addressed.
44



4Quantum ritiality in magneti quantumparaeletris
4.1 IntrodutionIn this hapter we fous on some novel behavior of EuTiO3 at low temperature.This material an ertainly be onsidered as a good addition in the list of quan-tum paraeletri materials exhibiting marosopi quantum phenomena in ferro-eletris and multiferrois. As far as the struture and the gross features of thestati dieletri behavior are onerned, this material is similar to other quantumparaeletris with perovskite struture, like SrTiO3, KTaO3, et. In the studyof quantum ritiality in ferroeletris, EuTiO3 ertainly adds a new dimension.This material ontains Eu ions with spin 7/2, and undergoes anti-ferromagnetiorder at TN ∼ 5.3K[49℄. As one lowers the temperature a sharp derease in thestati dieletri suseptibility is observed below the Neel temperature. Moreoverpresene of an external magneti �eld redues the suppression of the dieletrionstant by Neel order. At a ritial value of the external magneti �eld ∼ 1Tesla,whih suppresses the e�ets of the Neel order ompletely, the stati dieletri on-stant of this material attains a quantum paraeletri behavior, with ǫ0 ∼ O(102)at zero temperature[50℄. The dieletri suseptibility starts getting saturated at arossover temperature (de�ned in hapter 2 and ref. [23℄) ∼ 30K. An experimen-tally observed dieletri behavior of this material is shown in �gure 4.1. Thus itis almost evident that the magneti order ouples to the polarization �utuationsin this material. In previous theoretial attempts, a mean �eld theory with suh45



Chapter 4. Quantum ritiality in magneti quantum paraeletrisa senario[51, 52℄ was found quite suessful in desribing many aspets of thedieletri properties of this system. Like other quantum paraeletris, eletri po-larization in this material is due to the variations of Ti-O bond-lengths from theirequilibrium values. However the olletive behavior of suh interating strethedbonds does not lead to a ferroeletri state even at zero temperature. Let us nowanalyze the above experimental �ndings in ontext of quantum phase transition inferroeletris as disussed in our seond hapter. In that line of thought, we seethat EuTiO3 has a muh lower value of stati dieletri onstant at low tempera-ture than other quantum paraeletris and thus it is far away from a ferroeletriquantum ritial point than them. However this material an be tuned to a fer-roeletri quantum ritial point by hanging some non-thermal parameter, suhas replaement of a ertain amount of O16 by O18. On the other hand its Neeltemperature is low enough to onsider it as near a anti-ferro magneti quantumritial point. Thus it is quite sensible to speulate that this material an be a goodplay ground for observing an interplay of two di�erent kind of ritial �utuationsat low temperature.In this hapter we onsider a non-thermal parameter tuned EuTiO3 near both

Figure 4.1: Variation of the stati dieletri onstant with temperature in EuTiO3as found in the experiment at di�erent values of the uniform external magneti�eld. 46



Chapter 4. Quantum ritiality in magneti quantum paraeletrisferroeletri and anti-ferromagneti quantum ritial points. The ferroeletri subsystem is onsidered as displaive type, i.e. orresponding order parameter (~φ)�utuations are represented by the �utuations in two transverse opti branhes.Ferroeletri transition in this ase is due to the softening of the opti phonons atthe zone enter. The e�ets of dipolar interation is onsidered as the sti�ening oflongitudinal branh, and thus longitudinal �utuations are not taken into aount.Magneti setor, i.e. the olletion of interating Eu spins (~S) in a ubi perovskiteenvironment and in absene of external magneti �eld, is represented by Heisenberganti-ferromagneti order parameter (~m) whih is a vetor spin with three ompo-nents with short range interations. In presene of an external magneti �eld aferromagneti omponent will grow and will ompete with the anti-ferromagnetiomponent to restore the quantum paraeletri behavior. Following the previoustheoretial works[51, 52℄, we onsider a oupling of the form −w
2
|~φ|2|~S|2 with ou-pling onstant w > 0, between them and fous on the dependenies of the statidieletri suseptibility on temperature and external magneti �eld below TN . Inearlier works whih was direted towards explaining experimental �ndings in thismaterial, the e�ets of magneto-eletri oupling on the thermodynami behav-ior of this material has been desribed at o�-ritial regime without onsideringquantum �utuations. No attention has been paid to the possible quantum ritialbehavior of this system. We will try to explore the stati dieletri behavior in thismaterial near both the anti-ferromagneti quantum ritial point and ferroeletriquantum ritial point regime. A sheme for systemati analysis of quantum �u-tuations in this regime is proposed and the possibility of realizing suh a limit inexperiments will be disussed in the following setions.4.2 Mean �eld theoryWe onsider this material in the viinity of both anti-ferromagneti and ferroele-tri quantum ritial points. In this regime both the magneti �utuations and theparaeletri �utuations an be desribed by a ontinuum theory. To study its di-eletri properties in this regime, a Landau-Ginsburg-Wilson ation for a magnetiquantum paraeletri system, in terms of the sub-lattie magnetization ~m and the

47



Chapter 4. Quantum ritiality in magneti quantum paraeletriseletri polarization ~φ (soft mode oordinates) an be written in the following form,
A =

∫

ddx

∫ β

0

dτ [
re
2
(~φ · ~φ) + (∂τ ~φ)

2 +
ce
2
(∇ · ~φ)2 + u

2
(~φ2)2

+
rm
2
(~m · ~m) + (∂τ ~m− i~h× ~m)2 +

cm
2
(∇ · ~m)2 +

v

2
(~m2)2

−w
2
|~φ|2|~m|2]. (4.1)Here τ is the imaginary time, β is the inverse temperature, and ~h is the appliedexternal uniform magneti �eld. Above ation ontains a dieletri part whihis idential to one used in our study of quantum ritiality in ferroeletris inthe hapter 2. The magneti part of the ation is derived with the onsidera-tion of small ferro-magneti omponent whih an be integrated out, as well asthe bipartite struture of the EuTiO3 lattie that supports a Neel order belowthe transition point. The detailed derivation of the anti-ferro magneti part isgiven in referene [5℄. In three dimension topologial terms assoiated with quan-tum anti-ferromagneti �utuations are not important and hene negleted. Theoupling between the staggered-magnetization and the uniform magneti �eld hassome important onsequenes and hene its origin deserves some omments. Ata mirosopi level, an uniform magneti �eld ouples only to the uniform om-ponent of a Heisenberg spin. If we invoke a ontinuum desription and integrateout the uniform omponent with a onstraint of vanishing salar produt betweenthe uniform and the staggered omponents, suh term results. Here re and rm arethe non-thermal parameters whih an be tuned to zero to have ferroeletri andanti-ferromagneti instabilities respetively. The oupling onstants of the quartiterms are positive, i. e. u, v > 0, to ensure the stability of the system. Sine ina quantum piture, statis and dynamis are oupled, an applied magneti �eldindued preession of the magneti vetors also play an important role in the studyof phase transitions in quantum magnets. Now we start our disussions with thefollowing mean �eld approximations.
~m(~q, ω) = m0ẑδ(~q)δ(ω) + ~m

′

(~q, ω),

< ~m
′

> = 0, < ~φ >= 0 (4.2)
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Chapter 4. Quantum ritiality in magneti quantum paraeletrisHere ~m(~q, ω) is the Fourier transform of ~m(~x, τ). The above approximations, alongwith the quasi-harmoni deoupling of the quarti terms as done in hapter 2, leadto the following mean �eld ation,
AMF =

rm
2
m2

0 +
v

2
m4

0

+

∫

ddq
1

β

∑

n

[(
re
2
+ ω2

n +
ceq

2

2
+
u

2
λe)(~φ · ~φ) + (ωn~m

′ − i~h× ~m
′

)2

+(
cmq

2

2
+
rm
2

+
v

2
(2m2

0 + λm))(~m
′ · ~m′

)

−w
2
(m2

0 + ~m
′ · ~m′

)~φ · ~φ]. (4.3)In the above expression we use the following notations,
~X · ~X = ~A(~q, ωn) · ~A(−~q, ωn),

λ(e,m) =

∫

ddq
1

β

∑

n

χ(e,m)(~q, ωn),

χe(~q, ωn) = < ~φ(~q, ωn) · ~φ(−~q, ωn) >,
χm(~q, ωn) = < ~m

′

(~q, ωn) · ~m
′

(−~q, ωn) > . (4.4)Zero magneti �eld (h = 0): In a zero external magneti �eld, there is no ferro-magneti omponent and there is a ompetition between paraeletri �utuationsand anti-ferromagneti �utuations. The self onsistent equations for polarizationand magneti �utuations are,
χe(~q, ωn) = < ~φ(~q, ωn) · ~φ(−~q, ωn) >

=
1

re
2
+ ceq2

2
+ ω2

n − w
2
(m2

0 + λm) +
u
2
λe
, (4.5)and

χm(~q, ωn) = < ~m
′

(~q, ωn) · ~m
′

(−~q, ωn) >

=
1

rm
2
+ cmq2

2
+ ω2

n − w
2
λe +

v
2
(2m2

0 + λm)
(4.6)respetively. The above two equations should be supplemented by the followingexpression for the magneti free energy (within one loop orretion) to determine49



Chapter 4. Quantum ritiality in magneti quantum paraeletris
m0 in the magnetially ordered phase,

fm =
rm
2
(~m0)

2 +
v

2
|~m0|4 −

1

2
Tr log(χm(~q, ωn)). (4.7)We need to know m0, λe, andλm as a funtion of the temperature at various valuesof the system parameters, using equations (4.5-4.7). The extremization of fm withrespet to m0 gives,

rmm0 + 2vm3
0 + vm0

∫

ddq
1

β

∑

n

χm(~q, ωn) = 0. (4.8)Non-zero solution of m0 reads as,
m2

0 =
−rm − vλm

2v
. (4.9)Here we emphasize that at the ritial value of the magneti �eld, where themagneto-eletri oupling is believed to be very small, the stati dieletri on-stant for EuTiO3 reahes a value O(102). Thus aording to the lassi�ations ofvarious quantum paraeletris the ferroeletri subsystem falls into the ategoryof the gaped quantum paraeletris, and is muh more away from the ferroeletriquantum ritial point than SrTiO3. Suh a dieletri state is haraterized bya rossover temperature T ∗ ∼ √

re as explained in hapter 2. For pure EuTiO3,we see that the ferroeletri rossover temperature T ∗ is muh higher than TN ,the Neel temperature. Low TN implies that, the system is in the viinity of anti-ferromagneti quantum ritial point. Owing to the large T ∗, λe the �utuationorretions to the ferroeletri gap is temperature independent. Thus the temper-ature dependene in the stati dieletri onstant at low temperature omes onlyfrom the magneti �utuations through magneto-eletri oupling. We onsiderthe temperature dependene of λm near as well as away from the magneti rit-ial point. Near a anti-ferro magneti quantum ritial point momentum ut-o�beomes temperature dependent. Sine in this material the dispersion relation foranti-ferromagneti �utuations is similar to that of the ferroeletri one the mo-mentum ut-o� at the ritial point also ∼ T . Thus within a non-self onsistent
50



Chapter 4. Quantum ritiality in magneti quantum paraeletrisestimate we get,
λm ∼







T
∫ T/

√
cm

0
q2dq
cmq2

= c
− 3

2
m T 2 ∼ T 2 near AFM-QCP

T
∫ Λ

0
q2dq
rm

= TΛ3

rm
∼ T away from QCP .

(4.10)Due to the magneto-eletri oupling in this material, the above temperature de-pendene of λm enters into the stati dieletri onstant and results in the followingtemperature dependene of inverse stati dieletri onstant
χ−1
e (0, 0) ∼







r̃e − wc
− 3

2
m T 2 (nearAFM−QCP)

r̃e − wΛ3

rm
T (largeTN).

(4.11)Here r̃e is the re-normalized value of re whih inludes the temperature independentontribution from paraeletri �utuations. Thus we see that, dieletri measure-ments an be onsidered as an indiret thermodynami probe for magneti systemsin a magneti quantum paraeletris. It is to be noted that unlike the similar dis-ussions in our seond hapter, we do not equate cm to unity here. We will see inthe subsequent disussions that along with quarti ouplings and magneto-eletriouplings, cm/ce will be an important parameter to determine the dominane be-tween the magneti �utuations and the paraeletri �utuations to ontribute tothe stati dieletri suseptibility of this material in ertain appropriate irum-stanes. In next subsetion we will onsider hange in the dieletri behavior inthis system in ase of �eld indued transition in the magneti subsystem.Non-zero magneti �eld (h 6= 0): Non-zero h modi�es anti-ferromagnetiorder, develops a ferromagneti order along the diretion of the �eld and the re-sulting magneti on�guration beomes anted[5℄. Firstly it is apparent from ourstarting ation (eqn.(4.1)) that in ase of a non zero h along the z-diretion, anti-ferromagneti gap in the transverse plane (with respet to the �eld) hanges to,
rm ∼ rm(0)− h2. (4.12)Where rm(0) < 0 is the value of rm at zero magneti �eld. Thus h redues thegap in the transverse diretions. In the regime rm < 0 and |rm| > h2, m0 is still
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Chapter 4. Quantum ritiality in magneti quantum paraeletrisnon-zero and it inreases with inreasing h in the following manner,
m0 ∼ (h2 − rm(0))

1
2 ∼ (h− h0)

1
2 , (4.13)where h0 =

√

rm(0). But the ferromagneti order along the diretion along the�eld grows more rapidly with applied magneti �eld as follows,
mfm = −∂F

∂h
∼ h(h2 − rm(0))

v
. (4.14)A shemati phase diagram for �eld indued transition in the magneti subsystemis shown in �gure (4.2). In our ase rm(0) is negative and we onsider the ex-ternal magneti �eld indued modi�ation of the anti-ferromagneti -ground stateto a anted state with partial ferromagneti order and its e�et on the stati di-eletri suseptibility. An experimentally observed fat is that the inrease in anti-ferromagneti omponent results in the suppression of dieletri onstant while theroll of the uniform omponent is just opposite to it. If we assume both the om-ponents ouple to the polarization in the same fashion, we an make an estimateof the ritial value of the magneti �eld (hc) whih exatly nulli�es the e�ets ofmagneti order on the stati dieletri onstant, in the following way. Using eqn.(4.13) and (4.14) we get,

(h2c − rm(0)) =
1

c
× h2c(h

2
c − rm(0))

2

⇒ hc =
rm(0)±

√

r2m(0) + 4c

2
. (4.15)Where c is a non-universal onstant and so is hc. Thus at rm(0) = 0 i. e. atanti-ferromagneti quantum ritial point, hc ∼ √

c. Apart from this, externalmagneti �eld has one more e�et on quantum ritiality. In ase of �eld induedtransition, the �nite temperature behavior near quantum ritial point will alsobe di�erent. If we look bak the ation(4.1), we see that the magneti �eld addsa new dynami term ∼ −i~h × ~m
′ · ∂τ ~m′ whih is linear in ωn. Thus the dynamiexponent z = 2 and the temperature dependent momentum ut-o� for magneti

52



Chapter 4. Quantum ritiality in magneti quantum paraeletris
Canted stateh

r

Quantum paramagnetNeel order

0 m (0)Figure 4.2: Figure shows the shemati phase diagram for a �eld indued transitionin insulating Heisenberg anti-ferromagnet at zero temperature. At h = 0, r ≤ 0indiates a Neel order and h 6= 0, r < 0 region represents Canted state with bothferromagneti and anti-ferromagneti order[5℄.exitations Λ ∼
√

T
hcm

in this ase. For small h, i. e. when mfm << m0,
λm ∼ T

∫

√
T/hcm

0

q2dq

cmq2
= c

− 3
2

m h−
1
2T 3/2. (4.16)Thus one would expet a T 3/2 ontribution, from the magneti subsystem to theinverse stati dieletri suseptibility at low temperature near anti-ferromagnetiquantum ritial point and

χ−1
e (0, 0) ∼ r̃e − wλm = r̃e − wc

− 3
2

m h−
1
2T 3/2. (4.17)Here we assume that the applied �eld is small enough to indue a meta-eletritransition.Near ferroeletri quantum ritial point: So far, we have onsidered thedieletri subsystem as a spetator with a temperature independent dieletri sus-eptibility at low temperature. However, one an make T ∗ loser or smaller than

TN through doping. A generi possibility is replaing O16 by O18 in EuTiO3, asis done in ase of SrTiO3[53℄. Suh a doping an reate a redued rossover tem-perature T̃ ∗(x) ∼ (1 − x)
1
2T ∗, (where x is the impurity onentration) and movethe system towards ferroeletri quantum ritial point without a�eting the mag-53



Chapter 4. Quantum ritiality in magneti quantum paraeletrisneti subsystem. At �nite temperature near ferroeletri quantum ritial point,dipolar ontribution to the inverse stati dieletri onstant is ∼ uc
− 3

2
e T 2 whihwill ompete with negative ontribution (∼ −T ν , ν = (1, 2, 3/2)), oming fromthe oupling with magneti subsystem. If we assume that these two quantum rit-ial point do not a�et eah other, then onsidering the leading order temperaturedependene to the stati dieletri suseptibility, we an write,

χ−1
e = α + γeT

2 − γνT
ν . (4.18)Where α, γe, γν with γe, γν > 0 are onstant whih varies from system to systemand γe and γν are proportional to uc− 3

2
e and w respetively and γν for di�erentvalues of ν is given as follows

γν ∼



















w Λ3

rm
for ν = 1

wc
− 3

2
m h−

1
2 for ν = 3/2

wc
− 3

2
m for ν = 2.

(4.19)Among all these values, exept γ3/2 other γνs are �xed by system parameters andan not be ontrolled externally. Sine γ3/2 depends on the external magneti�eld, the temperature sale up-to whih a T 3/2 behavior of the dieletri susep-tibility should be observed is also depends on it and an be tuned externally inan experimental situation. However for ν = 1 or 3/2, the temperature dependeneof stati dieletri suseptibility at low temperature will be dominated by anti-ferromagneti quantum ritial point with (1/T ν inrease) and there will be amaxima at a temperature Tmax = ( 2γe
νγν

)
1

ν−2 as shown in �gure 4.3. For ν = 2,there will be a ompetition between anti-ferromagneti quantum ritial point andferroeletri quantum ritial point and depending on the values of γ2/γe an anti-ferromagneti quantum ritial point dominated behavior with 1/T 2 inrease or aferroeletri quantum ritial point dominated behavior with 1/T 2 derease an befound in the stati dieletri onstant as shown in the �gure 4.4.
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Chapter 4. Quantum ritiality in magneti quantum paraeletris
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Chapter 4. Quantum ritiality in magneti quantum paraeletris4.3 DisussionIn this work we presented a mean �eld theory to disuss the temperature andthe magneti �eld dependene of the stati dieletri suseptibility of a magnetiquantum paraeletri at low temperature. In this material anti-ferromagneti �u-tuations are oupled to the polarization �utuations and their interplay an leadto many interesting thermodynami onsequenes when some non-thermal ontrolparameters of both �utuations are tuned to near ritial values. We fous on thebehavior of the system in the viinity of two suh quantum ritial points both inabsene and in presene of an external magneti �eld. Based on saling argumentnear quantum ritial points, we predit that there is a possibility that the lowtemperature suppression of the stati dieletri suseptibility due to magneti orderan be ompensated by polarization �utuations and the stati dieletri susepti-bility would take a 1/T 2 form as predited for quantum ritial ferroeletris[23℄.On the other hand beause of magneto-eletri oupling there is a possibility ofnew power law behavior of the stati dieletri suseptibility in presene of an ex-ternal magneti �eld and is predited to be 1/T 3/2 in this ase. At present, up-toour knowledge, there is no report on experimental investigations on the simultane-ous e�ets of two suh quantum ritial points. Hene �tting some experimentaldata through the numerial solutions of self-onsistent equations is not tried here.Rather possible new features in this multi-ferroi material near various quantumritial points are explored. Moreover this system, in many aspets shares sim-ilarity with the systems where anti-ferromagneti order parameter is oupled tosuperondutivity[54℄. Thus apart from being important in their own rights, fur-ther studies in this material an be bene�ial to other systems and of-ourse the�eld of quantum ritial phenomena in solids in general.
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5Disorder in quantum paraeletris
5.1 IntrodutionIn this hapter we fous on the e�ets of disorder in quantum ritial paraeletris.In previous hapters we developed a theoretial set-up for suh materials whihshares many similarities with systems like itinerant magnets and other stronglyorrelated systems near a quantum phase transition. However all those disus-sions were devoted to pure systems where e�ets due to disorder were ompletelynegleted. It is quite justi�ed to speulate that like other systems with whih aquantum ritial paraeletri shares many similarities, an show many disorderindued novel features whih are beyond the realm of theory of pure systems. Wefollow the reent progress in the understanding of quantum phase transitions instrongly orrelated systems with disorder[55, 56, 58, 47℄ and make an attempt todevelop a theory of disordered quantum ritial paraeletris. We restrits thedisussions to the ase of quenhed disorder of random Tc type, i.e. the disorderparameter ouples to the energy density and is frozen in time. Relevany of a par-tiular type of disorder an be tasted using Harris riteria whih was introduedin the �rst hapter. This riteria tells us that the kind of disorder we onsiderhere an destroy a quantum ritial point of a pure system if ν < 2

d+z
. Here ν, d,and z are the orrelation length exponent, dimensionality of the system and thedynami saling exponent respetively. In ase of a paraeletri near a quantumritial point, d = 3 and z = 1 and a mean �eld theory predits ν = 1/2. Thus a-ording to the Harris riteria this partiular type of disorder is marginally relevantfor this system and an not be negleted. This neessitates a theoretial desrip-57



Chapter 5. Disorder in quantum paraeletristion beyond a standard mean �eld theory. In general, a small amount of quenhedimpurity and assoiated disorder, an reate loally ordered regions(droplets) evenabove the transition point of the orresponding pure system. Near a phase transi-tion, large size droplets beome more probable and their slow dynamis beomesan important fator to determine the nature of quantum phase transition in thedisordered system. Experiments on various disordered paraeletris also supportthe ourrene of loally ordered regime and glassy behavior. Most of the disor-dered quantum paraeletris show relaxor behavior whih is often desribed as alassial glassy behavior of a dipolar system[62, 63℄. With these motivations wefous on the e�ets of disorder in quantum ritial behavior of ertain ferroeletrisin this hapter. Suh issues were addressed in ase of lassial ritial behaviorearlier[64℄ and some attempts to make a quantum generalization of it in ontextof itinerant magnets have been proposed in the reent past[56, 57, 58, 47℄. We usesome of the earlier results and develop a new mean �eld desription of the possiblelow temperature behavior of a disordered quantum ritial paraeletri.5.2 Mean �eld TheoryFollowing our earlier disussions on quantum paraeletris without disorder, westart with a one omponent Landau-Ginzburg-Wilson quadrati ation.
Apure =

1

2β

∑

n,q

(ω2
n + q2 + r)|φ(ωn,q)|2 +

u

4!

∫

dx

∫ β

0

dτφ4(x, τ). (5.1)The parameter r determines the gap in polarization �utuations in absene of theinteration and r = 0 is the mean �eld quantum ritial point of the pure system.Disorder is introdued into the problem as a random variation of the non-thermaltuning parameter r in real spae and the disorder ontribution to the above ationis given by,
Adis = −1

2

∫

dx

∫ β

0

dτδr(x)φ2(x, τ). (5.2)A Gaussian probability distribution of δr(x) with variane g is assumed to be
P (δr(x)) ∝ exp{− 1

4g

∫

dxδr2(x)}, (5.3)58



Chapter 5. Disorder in quantum paraeletrisso that δr(x) = 0 and δr(x)δr(y) = gδd(x − y). For a single realization ofdisorder on�guration, the partition funtion, hene the thermodynami propertiesan be alulated using the total ation Apure + Adis. It is also apparent that toonsider the e�ets of disorder we need to do a proper averaging either at thelevel of partition funtion or at the level of free energy. Now the question is whihone will lead to the orret physial behavior? In order to obtain the physialfree energy (self averaging) we need to average the free energy or the logarithmof the partition funtion over all possible disorder on�gurations. To alulate thedisorder averaged free energy, we use the identity log x = limn−→0
xn−1
n

and writethe average free energy in terms of nth power of the partition funtion as
F = − 1

β
(Zn − 1)/n, (5.4)taking n −→ 0 at the end of the alulation. We hange the status of the oneomponent �eld φ to a n-omponent one by introduing replias of the order pa-rameter φa with replia index a = 1, ...., n. This proess along with a disorderaveraging help us in writing Zn as a funtional integral in terms of replia �eldsand the resulting ation to leading order beomes,

A =
1

2β

∑

m,q,a,b

(ω2
m + q2 + r)|φa(ωm,q)|2δab +

u

4!

∫

dx

∫ β

0

dτφ4
a(x, τ)δab

− g

4

∫

dx

∫ β

0

dτ

∫ β

0

dτ
′

φ2
a(x, τ)φ

2
b(x, τ

′

). (5.5)Here a, b are the replia indies whih take positive integer values up-to someinteger n and the last term is a interations between �elds with di�erent repliaindies is a onsequene of the disorder averaging. It is to be noted that thisinteration is between the �elds is non-loal in time. This is due to the quenhednature of the disorder and has important onsequenes in ase of a quantum phasetransition and is absent in lassial phase transition where dynamis of the systemplay no role. Now we use the ation (5.5) to study the dieletri behavior of thisdisordered system. To begin with, �rst we onsider a replia symmetri ase. Wede�ne replia symmetri solution as replia independent �eld on�gurations, i.e.
φa(x, τ) = φ(x, τ) for all a (5.6)59



Chapter 5. Disorder in quantum paraeletrisand their replia diagonal two point orrelation funtions, i.e.
χab = χaaδab = χ0δab for all a, b. (5.7)We onsider a paraeletri phase i.e. the thermodynami average of the dipolar �eld

< φ >= 0 and make a self-onsistent quasi-harmoni approximation to deouplethe quarti term as done in the hapter 2. In this sheme a quarti term suhas ∫ dxdτφ4(x, τ) is deomposed as λ0 ∫ dxdτφ2(x, τ). Where λ0 =
∫

dx
′

dτ ′ <

φ2(x
′

, τ ′) >. Thus suseptibility of the disordered paraeletri an be written as,
χ0(ωm,q) =

1

(ω2
m + q2 + r + λ0)

. (5.8)In the above equation λ0 desribes the �utuation orretions to ferroeletri gapand is de�ned by the following self-onsistent equation
λ0 =

∑

m,q

(uχ0(ωm, q)− gχ0(0, q))

= u

∫

d3q
1

Ωq
coth βΩq − g

∫

d3q
1

Ω2
q

. (5.9)Here the �utuation renormalized natural frequeny Ωq is dependent on λ0 and isde�ned as,
Ω2
q = q2 + r + λ0. (5.10)It is to be noted that the seond term in the equation(5.9) is a zero frequenyontribution. The reason is that we onsider quenhed disorder whih has nodynamis and thus strongly orrelated in time. However above two equations anbe obtained by integrating δr(x) without introduing replia trik and need tobe solved self-onsistently. It is lear form the expression for λ0 that the seondintegral in the equation (5.9) gives a shift in gap and depending on its strengthontrols quantum �utuations. In this sheme the solution of the equation r −

g
∫

d3qΩ−2
q = 0 for r gives the quantum ritial point. Experimentally one isinterested in low but �nite temperature behavior of a system at that point andexpets power law dependenies in temperature for various physial quantities.We have seen in our previous disussions in hapter 2 that the stati dieletrisuseptibility ∼ T−2 at a ferroleletri quantum ritial point. 60



Chapter 5. Disorder in quantum paraeletrisAn analysis with a replia symmetri ansatz is not apable of inluding spatialinhomogeneity reated by disorder and thus the e�ets of disorder onsidered hereare idential to the e�ets of hydrostati pressure. However in a doped quantumparaeletri we �nd the so alled relaxor behavior whih an not be aptured in atheory without onsidering the existene of marosopi number of loal minimaon�gurations. Next question is why suh loal on�gurations our and how toinlude them in a onsistent theory. In a simple minded piture one an argue theexistene of suh loal on�gurations as follows. Sine δr(x) is a random variable,there are ertain regions in the sample where r− δr(x) < 0. Those regions beomeferroeletri even above r = 0, the mean �eld quantum ritial point of the puresystem. Those ferroeletri islands have non-zero polarization ∼
√

|δr(x)− r| andare often dubbed as droplet. Sine suh solutions have �nite spatial extension,one must onsider a large number (exponential in its volume) suh solutions to getappreiable e�ets in the thermodynami limit. Ideally �nding suh a huge numberof loal solutions, doing a sum over their ontributions to the free energy followedby a disorder averaging will omplete the task. Clearly it is an impossible. Analternate way to inlude the e�ets of spatial inhomogeneity reated by disorderis to use replia trik with replia symmetry broken at the vetor level[64℄. Bythe word `vetor' we mean that φa is the ath omponent of a n-omponent �eld inthe `replia spae' and its symmetry breaking means di�erent omponents assumedi�erent values. In this sheme the �eld on�gurations are assumed as
φa(x, τ) = φk(x, τ) + ψ(x, τ) for a = 1, .., k

φa(x, τ) = ψ(x, τ) for a = k + 1, ....., n. (5.11)Without loss of generality, we assume the orrelation funtions to be blok-diagonal,i.e.,
χab(x, τ) = χ1(x, τ) + χ2(x, τ)δab for a, b = 1, .., k

= χ2(x, τ)δab for a = k + 1, ....., n. (5.12)Here k ≥ 1 is an integer that determines the degree of the symmetry breakingproess. In priniple one should break replia symmetry and hene should hose kin all possible ways. If we use the ansatz (5.11) and write an equation of motion61



Chapter 5. Disorder in quantum paraeletris
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Figure 5.1: A sketh of an inverted double well potential.orresponding to the ation (5.5). It lead to a non-linear Shrödinger equation fora partile in an inverted double well potential as follows
−∇2φk(x) + rφk(x)− (gk − u)φ3

k(x) = 0. (5.13)A sketh of an inverted double well is given in the �gure 5.1. We should keepin mind that this repliated ation is not the atual free energy whih an beobtained only after taking the limit n → 0. In replia formalism the solution ofthe equation (5.13) orresponding to the maxima are the physial minima. Henea solution orresponding to the minima of the inverted double-well potential isopted. It is to be noted that the existene of a loal solution depends on thedisorder strength g and our hoie of k. One has to onsider all possible hoieof k among n replias and has to make sure that a summation over ontributionsfrom all possible hoies of k survives at the limit of n → 0. A replia symmetriansatz orresponds to k = n whih an be hosen in a single way and have avanishing ontribution in the limit n → 0. All those details are not relevant forfurther disussions. For more detailed disussions we refer to [64, 65℄. However ina lassial treatment for gk > u, φk orresponds to loalized solution whih an bewritten in a saled form for isotropi ase as,
φ(x) =

√

r

(gk − u)
ψ(

√
rx). (5.14)
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Chapter 5. Disorder in quantum paraeletrisSo that ψ(z) obeys a sale independent equation
−∇2

zψ(z) + ψ(z)− ψ3(z) = 0. (5.15)The proper boundary onditions are ψ(0) = onstant and ψ(±∞) = 0. Equation(5.15) has exponential deaying solutions for x ≫ √
r and is smooth for x < √

r.The size of the droplet R is determined by the dipolar orrelation length and R ∼
1√
r
. At very low temperature the dynamis of the droplets beome important. Ina simplest approximation spatial and the time dependent parts of the polarization�eld an be deoupled ompletely.

φ(x, τ) = φk(x)T (τ). (5.16)This hoie assumes that the droplet tunnels as a whole. Substitution of equation(5.16) in the repliated ation (5.5) followed by a summation of all possible hoiesof k among n replias (whih an be done in Cn
k ways) in the limit n→ 0 leads to

Z[T ] ≈
∫

DT (τ) e−r
2−d/2E2F [T ]/u. (5.17)Where the dynamial part of the ation is given as[66℄,

F [T ] =
1

β

∫ β

0

dτ

{

M

2

(

dT
dτ

)2

+
T 2(τ)

2
− 1

4β
T 2(τ)

∫ β

0

dτ ′T 2(τ ′)

}

.(5.18)This is learly the dynamial part of the ation for undamped Bosoni system.The oe�ient M in equation [5.18℄ is given as,
M =

E1

E2
r−1. (5.19)The parameter M an be assoiated with the mass of a quantum partile in adouble well potential. It is an undamped tunneling problem where the tunnelingsplitting between two on�gurations X = ±1 is given by,

rL ≈ 2e−r0/r (5.20)
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Chapter 5. Disorder in quantum paraeletriswith r0 ∼ E1/E2 a onstant, where EN =
∫

dzφ(z)2N . If we onsider Gaussian�utuations around the droplet solutions, an e�etive ation for those �utuations
ψ(x, τ) an be written as,

S[ψ] = 1

2β

∑

m,q,a,b

((ω2
m + q2)δab +Mab)ψaψb. (5.21)The presene of droplets and its tunneling introdues a �gap-matrix� {Mab} whihontains k × k blok with elements,

Mab = r(1− gk − 3u

gk − u
λL)δab −

2gkr

gk − u
λL (5.22)and diagonal elements for the remaining n− k replias

Mab = r(1− gk

gk − u
λL)δab. (5.23)Here λL enodes the ontributions from the loalized solutions along with theirdynamis and is given as

λL =
∑

ω

∫

dz < ψ(z)T (ω)ψ(z)T (ω) >

=

∫

dzψ2(z)
∑

ω

< T (ω)T (ω) >

∼ 1

ω−
at T = 0 (5.24)Here ω± = 2 ± rL. It is to be noted that the vetor breaking of replia symmetrynot only introdues inhomogeneous solutions but also glassy e�ets through o�-diagonal elements in the gap-matrix. Putting λL = 0 identially, we get bak thebehavior of a pure system. However in this sheme, inverse replia orrelators fordisordered paraeletri is given by

χ−1
ab (ωm,q) = ((ω2

m + q2)δab +Mab). (5.25)We look for replia diagonal orrelations in equations (5.22) and (5.23). Diagonal-64



Chapter 5. Disorder in quantum paraeletrisization of the gap-matrix are given as,
M̂aa =



















r(1− gk−3u
gk−u λL), a = 1, ..k − 1,

r(1− 3gk−3u
gk−u λL), a = k,

r(1− gk
gk−uλL), a = k + 1, .., n

(5.26)Using equation(5.26) and (5.24) we �nd the values of r at whih zero temperaturediagonal suseptibility (∼ 1
M̂aa

) diverges. The instability points depends on thedisorder strength and the value of k and is given as,
rc =



















−r0/ log(1−A (gk−3u)
(gk−u) ), a = 1, .., k

−r0/ log(1−A (3gk−3u)
(gk−u) ), a = k

−r0/ log(1−A gk
(gk−u)), a = k + 1, .., n

. (5.27)and is k dependent. Here A is a system dependent parameter. For a simple minded
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Figure 5.2: Phase diagram at zero temperature in g − r plane for two partiularvalues of k with u taken as unity. It is lear that the phase diagram aquires aregion of mixed phase for any non-zero disorder strength.analysis, let us onsider the a = k + 1, .., n elements only. For | Agk
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Chapter 5. Disorder in quantum paraeletrisan be written in the following form
rc(k) = r

′

0

(gk − u)

gk

= B − C

k
(B = r

′

0, C =
r
′

0u

g
). (5.28)Apart from the physial parameters like disorder strength, anharmoni strengthet., rc depends of the hoie of k. For eah hoie of k, we get a urve in the

g − r plane whih separates an ordered phase from a paraeletri phase. Whensuh urves are plotted for more than one value of k, the region surrounded bythe upper most and the lower most urves represents a region of mixed phase asshown in �gure 5.2. In this regime a disordered system is haraterized by a set oflusters of ordered phase, o�-ritial para phase and ritial-para phase. Sine thehoie of k is random, depending on its distribution at the limit n → 0, we anestimate a distribution, hene width of rc. In a repliated ation with n replias, kan be hosen in Cn
k ways. Thus we an de�ne a normalized distribution of P(k)as follows
P(k) =

Cn
k

∑n
k=1C

n
k

=
1

2n − 1

Γ(n)

Γ(k)Γ(n− k)
. (5.29)Sine the gamma funtion with negative argument is in�nity, the limit of k anbe extended to in�nity. In the limit n → 0, using the asymptoti form of gammafuntions, P(k) an be approximated as[64℄

P(k) ≈ 1

log 2

(−1)k−1

k
≈ 1

log 2

cosπ cos πk

k
. (5.30)Negative values of P(k) for some values of k may turn out to be ounter intuitiveto the usual notion of a distribution funtion. But suh distributions are allowedin replia sheme. There are several possible broken replia symmetri ases, eahharaterized by the number k whih follows a distribution P(k). For a �xeddisorder strength δ, eah k results a di�erent instability point rc. In stead of k, ifwe haraterize various possible broken replia symmetri ases by rc, a distributionof rc an be estimated as

P(rc) = P(k)|∆k
∆rc

| ∼ 1

B − rc
× cos(πk). (5.31)66



Chapter 5. Disorder in quantum paraeletrisThis is a broad power-law distribution of rc around a system dependent parameter
B with a osine fator. The probability distribution an be assumed to be smootharound k = any positive integer, exluding zero. The expansion around k = 0is exluded as it orresponds to small u/g limit where the ation (5.5) beomesunstable even in a replia symmetri ansatz. In that limit the system will undergoa �rst order transition in a replia symmetri analysis, the stability of the systemneeds a φ6 term in the ation (5.5) whih will lead to more ompliated loalizedsolutions in a broken replia symmetry piture. However we fous on those u/gvalues where the above possibilities are not present and the distribution funtionis smooth. It is to be noted that the power law nature of P(rc) arises beause ofthe dynamis of the loally ordered regimes and also depends on the distributionof k used. Negleting osine fator within some range of rc say (B + R,B − R),average suseptibility of the disordered quantum paraeletri an be estimated as,

χ(r, T ) ∼
∫ B+R

B−R
drc

1

B − rc
× 1

r − rc + T 2

=
1

r −B + T 2
log

r −B −R + T 2

r −B +R + T 2
. (5.32)It is evident that inlusion of �utuations due to loally ordered regime introduea parameter R ∼ O(u/g) and hanges the usual quantum ritial behavior of aparaeletri. In the limit r → B the temperature dependene of the stati dieletrionstant of a disordered quantum paraeletri an be predited as,

χ(r, T ) ∼







constant, T << R

1/T 4, T >> R.
(5.33)This is a deviation from the standard quantum ritial behavior whih predits

χ(T ) ∼ T−2 in a mean �eld theory. In an in�nite disorder limit, i.e. for u/g →
0, R → 0 and χ(T ) shows a power law behavior (∼ 1/T 4 ) with non-universalexponent. Suh situation is often dubbed as quantum Gri�ths phenomena in thequantum phase transition literature.
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Chapter 5. Disorder in quantum paraeletris5.3 DisussionsIn this hapter, the low temperature dieletri behavior of a quantum paraeletriin presene of quenhed disorder is addressed. A suitable ation for these mate-rials, with random Tc type disorder have been studied using a replia trik. Thee�ets of disorder indued loally ordered regimes and their tunneling in the lowtemperature are aptured in this formalism. We derive an expression for the distri-bution of instability points for a �xed value of disorder strength and demonstratethe possibility of a mixed phase at non-zero disorder strength. This analysis pre-dits a broad power law distribution around a system dependent parameter with aosine orretion for the instability points. Using the distribution it is possible toshow analytially how the temperature dependene of stati dieletri suseptibil-ity of a disordered quantum ritial paraeletri deviates from its pure ounterpart.Our analysis is a ompletely new attempt in ontext of the e�ets of disorder inferroeletris near a quantum ritial point. In a qualitative manner it preditsertain new features suh as ourrene of a phase with mixture of ritial andnon-ritial regimes with a distributions of transition points whih are missing inearlier works in similar issues in ontext of itinerant magnets. Moreover the wholeanalysis is interesting in ontext of the use of replia trik to inorporate disorderindued inhomogeneities or loally ordered regime in the studies of quantum phasetransition and may turn out to be useful in explaining ertain experimental resultson disordered ferroeletris near a quantum ritial point.
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6Summary
This thesis ontains some theoretial studies on the various �utuation e�ets onthe low temperature dieletri properties of ertain inipient ferroeletris in theviinity a of a quantum phase transition. Studies are base on some experimental�ndings on the low temperature dieletri behavior of some inipient ferroeletrissuh as SrTiO3, KTaO3, EuTiO3 et. under various external perturbations. Wehave studied a minimal model in eah ase of pure quantum paraeletris, itsoupling with anti-ferromagneti �utuations, strain and disorder. Studies basedon self-onsistent mean-�eld approximations and saling arguments, are apable ofexplaining many experimental �ndings and making various interesting preditionsabout the dieletri behavior of these materials. These systems are of displaivetype i.e. phase transition in these systems is assoiated with a softening of atransverse opti mode. More mirosopi senario ould be, a set of dipoles sittingat the enter of eah unit ells of these perovskite materials are interating vialong range dipolar interations. As a result of the long range nature of the dipolarinteration the �utuations along the longitudinal diretion with respet to thewave vetor are gaped out and the transverse mode �utuations beome the mostrelevant to desribe the low temperature dieletri properties of these materials.To explore the possible onsequenes of a quantum �utuations in the low tem-perature dieletri behavior of these materials a semi-phenomenologial Landau-Ginzburg theory is used. We restrit ourselves to an one omponent model to makeour analysis simpler. Moreover anisotropy indued by the dipolar interation inthe transverse opti modes is negleted and a justi�ation for the same is given inhapter 2. With this minimal model we are able to desribe the e�ets of quantum69



Chapter 6. Summary�utuations in ase of pure SrTiO3, a prototype quantum paraeletri material.The same analysis is extended to predit its dieletri behavior when it is tunedto a quantum ritial point. A predition about the 1/T 2 behavior in ontrast tothe usual Curie-Weiss behavior is made and veri�ed by a reent experiment[25℄. Ashemati phase diagram is proposed to to lassify various dieletri materials ina quantum phase transition point of view.Our �rst hapter was devoted to set up a basi theoretial ground for disussinglow temperature properties of quantum paraeletris along with some preditionsabout the quantum ritial behavior of them. With this bakground we fous onunderstanding more detail experimental observations on various quantum para-eletris. In this ontext some interesting behavior of quantum ritial SrTiO3is revealed in a reent spetrosopi experiment whih signals a weak �rst ordernature of the quantum phase transition in SrTiO3. We assume suh a behavior is aresult of the oupling of the paraeletri �utuations to strain �utuations. Strain�utuations are integrated out and it results a long range interation among para-eletri �utuations. In a pure mean �eld senario, a weak �rst order transitionours when the e�etive quarti oupling of the paraeletri ation is negative andlose to zero. In this ase one an add a higher order term with positive oe�ientin the paraeletri ation and make some mean �eld predition about the transi-tion. We emphasis that in suh a ase one should onsider �utuation e�ets in thequarti oupling, namely four point verties and show that �utuation e�ets anstabilize the system without invoking higher order terms. The ruial role playedby long range interation mediated by the strain �utuations in this proess is alsoexplained. A self onsistent parquet approximation is used to take are of leadingorder �utuation e�ets. The fat that the presene of the �nite temperature re-stores the seond-order nature of the transition near a quantum phase transitionis also aptured in this theory.Next, we extend our theory to an inipient ferroeletri EuTiO3 where ferro-eletri �utuations are oupled to anti-ferromagneti �utuations. We write anation where paraeletri �utuations are oupled to anti-ferromagneti �utua-tions in a bipartite lattie and and in presene of non-zero magneti �eld. Weonsider the ase of oupled quantum ritiality and its e�et on the dieletri be-havior of this system. A new power law behavior of the stati dieletri onstant,namely T− 3
2 variation, in presene of small non-zero magneti �eld is predited. It70



Chapter 6. Summaryis in ontrast of the 1/T 2 behavior of the quantum ritial paraeletri and alreadygot attentions of the experimental ommunity[67℄.Next setion is an aount of the e�ets of quenhed disorder in quantum ritialparaeletris using a replia formalism. In this ase the oupling between random
Tc type disorder with energy density is onsidered. Near quantum ritiality inthese systems, a bare power ounting sheme predits suh disorder e�ets to bemarginally relevant. However a lassial replia formalism with broken repliasymmetry at the vetor level predits inhomogeneous solutions in these system.Gaussian �utuations around suh solutions in ase of lassial phase transitionswere studied earlier. In their stati limit the renormalization of the oe�ientof the Gaussian �utuations due to suh inhomogeneous solutions are found toindependent of their sizes and a single instability was predited. We onsider thetunneling of suh solutions in the quantum limit and onsider a quantum phasetransition in terms of the instability of Gaussian �utuations around them. A broadpower law distribution of the quantum ritial points is predited. Its onsequenesof the stati dieletri behavior at �nite temperature is also emphasized.In onlusion, in this work the physis of ferroeletris is put in a broad per-spetive. The e�ets of quantum ritial points on �nite temperature propertiesof ertain dieletri systems are studied. Possible exponents of the power law be-havior of stati dieletri onstant at �nite temperature are predited. The e�etsof disorder indued inhomogeneity and their dynamis at low temperature is de-sribed in a replia formalism. Some results are in aord with experiments. Manyaspets of these works are quite general in ontext of quantum phase transitionsand deserve further experimental and theoretial studies.
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