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Synopsis
Superstring theory is urrently onsidered to be one of the most promising andidates forunifying the di�erent partiles and their interations in nature. This is due to the fatthat it provides a desription of gauge and gravitational interations in a uni�ed frame-work onsistently at the quantum level. If String theory is indeed realized in nature, it'sertain low energy limit should reprodue the Standard Model (SM), a uni�ed model ofstrong and eletroweak interations, whih has been so suessful in desribing the parti-le world. As it is well known, the superstring theories are onsistent in ten dimensionalspaetime, and usually have a high degree of supersymmetry. In the proess of desrib-ing models reduing at low energies to four dimensions with less or no supersymmetry,there is an enormous arbitrariness in the hoie of the bakground on�guration. To re-produe four-dimensional physis at low energies, one needs to ompatify the theory ona six-dimensional manifold. This leads to the existene of large number of unobservedneutral massless salar partiles (moduli �elds). Geometrially the vauum expetationvalues of these moduli �elds parametrize, among other things, the size and shape of theompati�ation manifolds. These values are also related to the parameters like gaugeoupling onstants or masses of the e�etive four dimensional theory. By not being ableto provide these expetation values via minimization of some e�etive potential, stringmodels generally lose the preditive power. One of the main fous of present day researhis to generate, in various ways, potentials for these moduli �elds, minima of whih ouldgive masses to these �elds. This goes by the name of 'moduli stabilization'.The searh for realisti string vaua is one of the most ambitious tasks in Super-string theory, and thus essentially overs the branh known as String Phenomenology.A phenomenologially viable string ompati�ation should ontain three hiral fermiongenerations, the Standard Model gauge group or some extension of it e.g. GUT mod-els and broken spae-time supersymmetry. In addition to this basi struture, it shouldreprodue the exat gauge and Yukawa ouplings. Moreover, it should satisfy a set of on-ditions in order to produe a onsistent anomaly free theory. Further, all the modulis areneeded to be stabilized. There have been a lot of e�ort devoted along this diretion in pastyears. Consequently there exists a good number of string onstrutions like heteroti stringompati�ation on Calabi-Yau threefolds, M-theory ompati�ations on G2-holonomyspaes, interseting D-brane models, ompati�ation with non-trivial �uxes et. aimingto reprodue the physis of the Standard Model at low energies.In the present thesis, we disuss a simple framework of toroidal ompati�ation oftype I string theory with magnetized D-branes ( D-branes with worldvolume �uxes alongompati�ed tori), that o�ers an interesting self-onsistent set up for string phenomenol-iv



Synopsisogy. In suh models, the gauge bosons and the hiral fermions ome from the open stringsetor. In partiular, the gauge bosons appear due to strings attahed to staks of D-branesand hiral matter arises from the strings strething between di�erent staks of D-branes.Gravity, as usual, originates from the losed string setor. The �uxes that are turned on,an be used to build phenomenologial models with an exat hiral fermion spetrum andgauge group, where some/all the moduli are stabilized and spaetime supersymmetry isbroken.We begin with a disussion of ompati�ation of type I strings on a torus with ad-ditional bakground gauge �ux on the D9-branes and review the neessary onstraintsneeded for onstruting semi-realisti models in suh a framework. Swithing on onstantinternal magneti �elds has important onsequenes in type I string ompati�ations tofour-dimensions [1,2℄. Suh magneti �uxes are desribed by exat onformal �eld theoriesand they give a spin dependent shift (for states whih are harged under the orrespondinggauge transformation) in the masses leading to a spetrum desribed by various Landauenergy levels. This leads to hiral massless spetra in four spae-time dimensions. More-over, when the magneti �eld is turned on along the ompat diretions, it has to satisfyDira quantization onditions. Fluxes, in general, break supersymmetry. However, in somespeial ases, a part of the supersymmetry an be preserved provided �uxes satisfy ertainonstraints. These onstraints, in turn, an be used for stabilizing the losed string modulibeause they orrespond to stable minima of the salar potential. However, in order tostabilize all 36 losed string geometri moduli of the torus T 6, one needs to inlude both`diagonal' and `oblique' �uxes [5,6℄. These methods an also be employed for the openstring moduli stabilization in any spei� model. We also study the tadpole anellationonditions whih are required for onsisteny of type I string vaua. Sine a ruial step ina three generation model building is the introdution of a Neveu Shwarz - Neveu Shwarz
B-�eld bakground, the e�et of non-zero B on the hirality and tadpoles is summarizedfollowing [3,4℄.We then arry out the omputations of Yukawa ouplings in suh magnetized braneonstrutions and �nd the lose form expressions for them. In suh a framework, theomputation of the Yukawa ouplings amounts to evaluating overlap integrals of threewavefuntions (ontributing to the interation) along internal diretions. To perform thetask, knowledge of the fermion (salar) wavefuntions on toroidally ompati�ed spaes(in the presene of �uxes) is required. However, tehnial di�ulties arise in dealing withthe expliit form of the fermion wavefuntions on tori in the presene of magneti �uxes.Partiularly, the presene of `oblique' �uxes adds extra omplexity to the problem.We summarize the results for the fermion (salar) wave funtions and the Yukawav



Synopsisinteration for fatorized tori and `diagonal' �uxes [7℄. In this ase, the fermion wavefun-tions are given by Jaobi Theta funtions. The Yukawas are obtained by performing theoverlap integrals of these wavefuntions and using ertain identity [8℄ satis�ed by Jaobitheta funtions. We present a proof of the identity. We then generalize the results towrite down the expression for the Yukawa interation when oblique �uxes are present [10℄.In order to perform this task, fermion (salar) wavefuntions on toroidally ompati�edspaes are presented for general �uxes. These are parametrized by Hermitian matrieswith eigenvalues of arbitrary signatures. The wavefuntions, so obtained, are given bygeneral Riemann Theta funtions with matrix valued modular parameter. We also giveexpliit mappings among fermion wavefuntions, of di�erent internal hiralities on thetori, whih interhange the role of the �ux omponents with the omplex struture of thetorus. By evaluating the overlap integral of the wave funtions, the expressions for Yukawaouplings among hiral multiplets, arising from an arbitrary set of branes are obtained.This essentially leads us to onstrut ertain mathematial identities for general Riemanntheta funtions. We generalize the theta identity for Riemann theta funtions and presenta proof of this. We then use this new mathematial relation for writing down the expres-sion for the Yukawa interation when oblique �uxes onsistent with supersymmetry and`Riemann ondition' requirements are present. In order to relax the later, the results arefurther generalized to inlude the wavefuntions of the other internal hiralities, in orderto aommodate general �uxes onsistent with supersymmetry restritions.Finally, we present a minimal example of a supersymmetri grand uni�ed model ina toroidal ompati�ation of type I string theory with magnetized D9-branes [9℄. Weobtain general solutions for �uxes along magnetizedD9-branes yielding the hiral spetrumand gauge group of a three generation SU(5) GUT model, with no extra hiral matternor U(1) fators. The gauge symmetry is just SU(5) and the gauge non-singlet hiralspetrum ontains only three families of quarks and leptons transforming in the 10 + 5̄representations. Brane staks with oblique �uxes play a entral role in this onstrution, inorder to stabilize all lose string moduli, in a manner restriting the hiral matter ontentto preisely that of SU(5) GUT. Another interesting feature of this model is that it is freefrom any hiral exotis that often appear in suh brane onstrutions. The �ux solutionsalso satisfy the RR tadpole anellation onditions resulting the model to be onsistent.However, the model ontains extra non-hiral matter that is expeted to beome massiveat a high sale, lose to that of SU(5) breaking. Finally, we present a brief analysis ofthe superpotential and D-terms for the model in order to show the mass generation forseveral non-hiral fermion multiplets in a supersymmetri ground state [10℄. Using theresults for Yukawa ouplings, we show that a ground state allowing masses for the abovevi
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1Introdution
1.1 An OverviewGeneral theory of relativity and the Standard Model (SM) of partile physis perhaps arethe two greatest disoveries in physis during the last entury. However, their domainsof appliability remained largely disjoint. While general theory of relativity was found todominate at large distanes (for instane, desribing the motion of a planet), SM desribedinterations at small length sales. But, surely, there are situations where these two foresbeome equally ruial. Universe at a very early time, behaviour near the horizon of anot-so-large blak hole provide suh situations. In these ases, gravitational fore beomesstrong even at small distanes and, therefore, there is a need to onsider gravitationalinteration along with the other three interations of the Standard Model.Preeding disussion, therefore, suggests that the Standard Model alone is not enoughin desribing our universe at high energies. There are other reasons to believe that thismodel indeed is not omplete. SM ontains nineteen free parameters whih are �xed, aposteriori, by experimental data. Furthermore, it su�ers from well known hierarhy andnaturalness problems. A orret desription of the observed masses and mixing of quarksand leptons require very di�erent values for the Yukawa oupling onstants for di�erentgenerations. Although many approahes have been put forward to desribe the hierarhialstruture of Yukawa ouplings between the Higgs �eld and the SM fermions, it is perhapsfair to say that we do not have, at the moment, a ompelling theory for quark and leptonmasses. On the other hand, naturalness tehnially refers to the neessity of �ne-tuningthe tree level parameters to aommodate for experimentally aeptable values given thesize of the perturbative quantum orretions.These lead us to believe that there is a more fundamental theory whih inorporatesgravity along with SM in a uni�ed framework and, in turn, �xes all the arbitrariness of the
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Chapter 1. IntrodutionSM. Among all the possibilities that have so far been put forward, supersymmetri stringtheory or superstring theory, surely, is the most promising one. Instead of point partiles,here, fundamental objets are the strings and partiles appear as di�erent vibrationalmodes of the string. Strings with open and losed ends onstitute two di�erent setorsknown as open and losed string setors respetively. While losed strings have, in it'sspetrum, a mass-less spin two partile known as graviton [1℄, the open strings arrygauge harges at it's end points. Therefore, strings provide a possibility to unify gaugeand gravitational interations in a natural way. The sale of this uni�ation is ditated bythe inverse of the size of a string. This sale is, however, muh higher than the aessibleenergies in present day aelerators and hene, strings remained un-observable. At thesame time, sine via aelerators, the orretness of the SM have been tested to a veryhigh auray, string theory must reprodue just the SM at low energies. In spite of severalattempts, getting just the SM from string theory has so far remained an illusive task.Consisteny requires superstrings to live in ten spae-time dimensions with spae-timesupersymmetry. As we will disuss in the later setions, onsisteny also requires �vedi�erent kinds of superstrings in ten dimensions. The onnetion to our four dimensionalobservational world is made via ompati�ation of six spae dimensions. Unfortunately,it turns out that, there are several onsistent ompati�ation shemes whih produedi�erent e�etive �eld theories in four dimensions at low energy sale. Even if strings at tendimensions do not have any free parameter, arbitrariness in ompati�ation introduesmany undetermined parameters in the low energy theory. Among them, for example,are the sizes and shapes of the ompat manifold. In four dimensional theories, theseparameters appear as the vauum expetation values (vev) of the salars. These areommonly known as the moduli �elds. Continuous deformations in size and shape of theompat manifold show up as ontinuous hanges in the vevs of these moduli. This, inturn, means that these salars are not aompanied by any potentials. One of the mainfous of present day researh is to �nd ways to remove these �at diretions of the moduliby generating their masses. Unless these moduli �elds are de-oupled at a sale higherthan the presently aessible sale, relating string theory to SM remains a di�ult task.In spite of this vexing problem, exiting progress, however, has been made in ahievingpartial stabilization of these moduli. This will be disussed in details in the later setions.The present thesis serves as an attempt to onstrut low energy string models by par-tially stabilizing the moduli and onstruting an extension of the SM. A ruial ingredientin our model building will be the Dirihlet branes or the D-branes in short. D-branes,disovered in [2, 3℄, are the solitoni on�gurations in sting theory on whih open stringan end. As we will see, magnetized D-branes ontain several phenomenologially appeal-2



Chapter 1. Introdutioning general features suggesting that they may o�er an interesting self-onsistent set up toonstrut semi-realisti models.Any phenomenologially viable string ompati�ation should ontain three hiral gen-erations, the SM gauge group or some extension of it and broken spae-time supersym-metry. In addition it should reprodue the exat gauge and Yukawa ouplings. It mustsatisfy a set of onditions in order to produe a onsistent anomaly free theory. Moreover,all the moduli �elds are needed to be stabilized. In this thesis, we start with type I stringtheory (one out of �ve onsistent string theories in 10 dimensions) ompati�ed on a sixdimensional torus T 6. In type I string theory, there exists two known ways of ahievinghirality in the e�etive lower dimensional theory. Either, one an ompatify on urvedspaes, in partiular on orbifolds, leading to supersymmetri and non-supersymmetri hi-ral models in four dimensions. Or, one an obtain hiral spetra by introduing D-braneswith magneti �ux [4℄. We follow the later approah and disuss the toroidal ompati-�ation of type I string theory with additional bakground gauge �ux on the D9-branes.A D9-brane is a soliton in type I theory with 9 + 1 world-volume diretions �lling upthe whole spae time. We review the neessary onstraints required for onstruting phe-nomenologial models in suh a framework. For arbitrary magneti �elds, supersymmetryis spontaneously broken. However, a part of the supersymmetry an be preserved provided�uxes satisfy ertain onstraints. These onstraints, in turn, an be used for stabilizingthe losed string moduli. However, in order to stabilize all losed string geometri moduliof the torus T 6, one needs to inlude both diagonal and oblique �uxes.The main aim of the thesis is to build phenomenologial models, with an exat hiralfermion spetrum and gauge group, where some/all the moduli are stabilized and spae-time supersymmetry is broken, in the framework desribed above. Moreover, we arry outthe omputations of Yukawa ouplings in suh magnetized brane onstrutions and �ndthe lose form expressions for them. In suh a framework, the omputation of the Yukawaouplings amounts to evaluating overlap integrals of three wavefuntions (ontributing tothe interation) along internal diretions. In the ourse of this work, we expliitly solvefor the fermion (salar) wavefuntions on toroidally ompati�ed spaes in the preseneof general �uxes. The wavefuntions, so obtained, are given by general Riemann Thetafuntions with matrix valued modular parameter. By evaluating the overlap integralsof these wave funtions, the expressions for Yukawa ouplings among hiral multipletsare obtained [5℄. This essentially leads us to onstrut ertain mathematial identitiesfor general Riemann theta funtions. We generalize the existing theta identity, satis�edby Jaobi theta funtions, for Riemann theta funtions and present a proof of this. Wethen use these new mathematial relations to write down the expressions for the Yukawa3



Chapter 1. Introdutioninterations. In speial ases, our results reprodue the results obtained in [6℄ for fatorizedtori and `diagonal' �uxes.Finally, we present an example of a three generation SU(5) supersymmetri granduni�ed (GUT) model in simple toroidal ompati�ations of type I string theory withmagnetized D9 branes in [7℄. The gauge group is just SU(5) and the hiral gauge non-singlet spetrum onsists of three families with the quantum numbers of quarks and lep-tons, transforming in the 10+ 5̄ representations of SU(5). The �uxes also satisfy the RRtadpole anellation onditions yielding a onsistent model. Brane staks with oblique�uxes play a entral role in this onstrution, in order to stabilize all lose string moduli,in a manner restriting the hiral matter ontent to preisely that of SU(5) GUT. Anotherinteresting feature of this model is that it is free from any hiral exotis that often appearin suh brane onstrutions. However, the model ontains extra non-hiral matter that isexpeted to beome massive at a high sale, lose to that of SU(5) breaking. Using theresults for Yukawa ouplings, we show the mass generation for several non-hiral fermionmultiplets in a supersymmetri ground state whih further �ne tunes the SU(5) GUTmodel[5℄.Before we go on to present our results in the later hapters, in the next setion of thishapter, we give a brief historial survey on the searh of the SM or Grand Uni�ed Theory(GUT) models in the ontext of string theory. The aim of this survey is to motivateour work, as well as giving an aount of all the e�orts that have made in the branh ofSuperstring Phenomenology. We will use elements and notations that are already standardin string theory literature, and are ommon in the basi texts [8, 9, 10, 11, 12, 13℄. Werefer the reader to these texts for the details and ompleteness on the basi aspets of thetheory.1.2 The Searh for the Standard ModelThe First String Revolution took plae around 1984, when Green and Shwarz disovereda new mehanism to formulate onsistent superstring theories in ten dimensions [14℄. Untilthen, two suh onsistent theories had been onstruted, namely type IIA and type IIBsuperstring theories. Both involved losed strings only, and the e�etive �eld theoriesderived from the low energy spetrum amounted to the two di�erent N = 2 Supergravity(SUGRA) theories in ten dimensions, named in the same manner. Both of these e�etivetheories are free of inonsistenies suh as hiral, mixed and gravitational anomalies. Onthe ontrary, the superstring theory known as type I, whih involved both open and losedstrings, seemed to have suh quantum anomalies. With the disovery of the Green-Shwarz4



Chapter 1. Introdutionmehanism, however, it was possible to show that if type I theory was endowed witha Yang-Mills theory with gauge group SO(32), then the anomalies ould fatorize andbe aneled, �nally obtaining a onsistent theory. This was followed by the subsequentonstrution of the heteroti superstring theory in ten dimensions, [15, 16, 17℄. These twotheories involve a 10D SUGRA N = 1 e�etive theory and are endowed with gauge groupswhih are, respetively, SO(32) and E8 × E8.The �rst attempts to build realisti string models were based on E8 × E8 heterotistring ompati�ations. A phenomenologially viable ompati�ation requires obtainingan e�etive theory in four dimensions with a hiral spetrum and a gauge group ontaining
SU(3) × SU(2) × U(1). Sine gravity was also to be a part of the low energy spetrum,the string sale was �xed at the order of the Plank sale, and the hierarhy problem wasavoided by imposing loalN = 1 supersymmetry (SUSY). As it was shown in [18, 19℄, suhonditions required the six extra dimensions to ful�ll some onstraints, namely it should bea ompat Riemannian manifold with SU(3) holonomy group. Suh manifolds are knownas Calabi-Yau threefolds, or CY3 [20, 21, 22℄. An expliit model with three generationsbased on heteroti superstring ompati�ation is presented in [23, 24℄. Although E8×E8heteroti ompati�ations on Calabi-Yau manifolds have provided rather realisti models,it is di�ult to perform omputations in suh manifolds where, in most ases, not eventhe metri is known. An interesting lass of spaes where omputations are muh moretratable is given by the toroidal orbifolds [25, 26℄. Sine the geometry is simpler than thatof a CY and the metri is �at outside the singularities, omputations an be easily arriedout, and quantities of physial interest are thus more easily omputable. Subsequently,exat heteroti string solutions on six dimensional orbifold spaes were onstruted [27,28, 29℄. This was followed by a series of onstrutions, suh as the Gepner models [30℄,the free-fermion models [31, 32℄ or heteroti string-derived �ipped SU(5) models [33℄.The Seond Superstring Revolution took plae around 1995, and it mainly onernedthe non-perturbative aspets of string theory. Until then, string theory was understoodas �ve di�erent superstring theories, apparently independent, known as type I, type II (Aand B) and the two heteroti theories. However, in the ontext of this seond revolution,it was learnt that they were all related to eah other by a web of string dualities. Theduality establishes a one-to-one orrespondene between parameters and �elds de�ning onetheory (ompati�ation radii, oupling onstants, et.) and the same set of quantitiesde�ning its dual. Duality involves strong-weak oupling exhange either in sigma- modelor in spae-time. The string duality web revealed that these �ve string theories were notisolated independent theories, but atually limiting ases of a deeper, more fundamentaltheory, named M-theory, whose preise nature has not yet been unraveled [34, 35℄. Suh5



Chapter 1. Introdutiontheory would be formulated in eleven spae time dimensions, and its basi dynamialobjets would be membranes rather than strings. These membranes naturally appear assolitoni objets of D = 11 SUGRA, whih would be another limiting ase of M-theory.The other �ve limiting ases, i.e., the �ve superstring theories, would then be obtainedfrom ompatifying the eleventh dimension in a very small length. Figure 1.1 shows anshemati representation of the situation.
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Figure 1.1: Situation of string theory after the seond superstring revolution. Thepreviously disonneted �ve superstring theories are nothing but spei� (limiting) pointsin the parameter spae of a more fundamental theory: M-theory.In the formulation of these new string dualities, non-perturbative objets of the theorysuh as the so-alled D-branes played a prime role. D-branes naturally emerge whileonsidering a toroidal ompati�ation of type I theory and performing a T-duality onone of the ompat dimensions [2, 3℄. Generially, a Dp-brane is a BPS solitoni objet ofspatial dimension p where the open strings loalize their ends. Type IIA theory ontainsDp-branes with p even, whereas, for type IIB, p must be odd. The lowest exitation modesof the open strings gives rise to massless gauge �elds and their fermioni superpartners.The supersymmetri e�etive theory arising from the worldvolume of a D-brane is endowedwith a U(1) gauge group. And a stak of N D-branes of the same kind on top of eahother have U(N) gauge symmetry. Moreover, the e�etive �eld theory is de�ned on the
p+1 dimensional D-brane worldwolume, and the �elds on it are on�ned to propagate onsuh worldvolume. D-branes being solitoni in nature, are massive within the perturbativestring theory. Their mass sales as 1

gs
where gs is the string oupling onstant. 6



Chapter 1. IntrodutionThe properties of these D-branes make them promising andidates for string modelbuilding and indeed, new semi-realisti models based on type I and type II theoriesstarted appearing. Atually, the �rst onsistent ompati�ations of type I theory onorbifold spaes were realized long time ago in [36, 37℄, obtaining D = 6 supersymmetrie�etive theories. In addition, suh type I orbifolds were related to type II orientifold om-pati�ations [38, 39, 40, 41℄. Roughly, an orientifold is a generalization of the orbifold,where an element Ω for hanging string orientation is inluded. Suh D = 6 onstru-tions were redisovered in the modern language of D-branes in [42, 43, 44℄. Suh lassof ompati�ations was then generalized to orbifolds and orientifolds of type I and typeII theories on six ompat dimensions, yielding N = 1 hiral theories in four dimensions[45, 46, 47, 48, 49, 50, 51, 52℄. At the same time, suh ompati�ations were related withtheir heteroti duals. Some semi-realisti models were ahieved in this partiular ontext[53, 54, 55℄. A review of the phenomenology assoiated to these onstrutions an be foundin [56℄.D-brane onstrutions not only allowed to re-derive the previous ahievements of het-eroti ompati�ation, but its properties as extended objets gave new possibilities intosemi-realisti model-building, allowing to onsider non-supersymmetri models. In het-eroti models, both gauge and gravitational interations have the same origin, as masslessmodes of the losed heteroti string. So they orrespond to �elds that propagate throughthe whole target spae and they are uni�ed at the string sale Ms. In order to reproduetwo energy sales whih di�er by several orders of magnitude, suh as the Plank andthe Eletroweak sale, one needs to introdue in general new parameters or a new saleand the preditive power is essentially lost. On the otherhand, in D-brane onstrutionsthe gauge and gravitational interations have di�erent origin. The latter are desribedby losed strings, while the former emerge as exitations of open strings with end pointson�ned on Dp-branes with (p < 9). The gauge theory is on�ned to the p+1 dimensionsof the D-brane worldvolume, whereas gravitation, arising from the losed string setor,will propagate on the full ten-dimensional target spae or bulk of the theory. As it wasshown in [57, 58, 59, 60, 61℄, from this simple observation, we an obtain a di�erene ofsales between gauge and gravitational interations. In partiular, we an obtain realistiompati�ations where the string sale Ms should not neessarily be of the order of thePlank sale, but as low at the TeV region or at some intermediate sale [62, 63, 64℄. Inthis way, we an onsider non-supersymmetri models free from the sale hierarhy prob-lem. Non-supersymmetri orientifold ompati�ations were �rst onstruted in [65, 66℄,whereas the semi-realisti models and the phenomenology assoiated to them were pro-vided in [67, 68℄. 7



Chapter 1. IntrodutionThe theoretial development in these new lass of onstrutions, where D-branes playeda entral role, allowed to take one step further in semirealisti model building. So far, thequest for the SM had been based on onsidering a family of onsistent ompati�ations ina ertain superstring theory (as e.g., CY3 heteroti ompati�ations) and exploring theparameter or moduli spae of suh family (Euler harateristi, Wilson lines, et.) lookingfor a low energy theory whih resembled as muh as possible to the SM. In [69℄, a newstrategy for �nding the SM in a string-based model was proposed. Sine the gauge groupand hiral matter ontent of the SM may arise as an e�etive theory from a set of Dp-branes, and the physis of this e�etive theory is not very sensitive to the rest of the detailsof the ompati�ation, one may oneive the onstrution of a realisti model in two steps.First, we onsider a onsistent D-brane on�guration with the low-energy spetrum of theSM. Seond, we omplete the onstrution by adding all the extra elements neessary toyield a fully-�edged ompati�ation, inluding four-dimensional gravity. This, so-alledbottom-up philosophy, enables us to �nd the simplest semi-realisti models. In suh models,the SM was obtained from a bunh of D3-branes �lling four-dimensional Minkowski spaetime and loalized at an orbifold singularity in the ompat spae. Consisteny onditionsknown as tadpole onditions imposed the presene of additional D-branes, namely D7-branes.The bottom-up philosophy has indeed produed a whole set of D-brane models whosesemi-realisti e�etive theories ontain either the SM gauge group, or some extension of it.After it was realized that hiral fermions appear on the intersetion of two D-branes [70℄,model building involving on�gurations of D-branes at angles or interseting D-braneswere intensively studied. Generially, these on�gurations yield a non-supersymmetrihiral low-energy spetrum. Eah stak of N D-branes will be endowed with a U(N)gauge theory, so that the onstrution of the SM gauge group or some extension of itbasially redues to onsider the appropriate set of D-brane staks. The hiral matter�elds appear at their intersetion, transforming in the bi fundamental representations.The number of zero modes i.e. the generation number is given by the intersetion numberin the ompat six-dimensional spae. These lass of models, baptized as IntersetingBrane Worlds presents an interesting hierarhy on the di�erent setors of the e�etivetheory. The gravity setor propagates on the whole target spae i.e. on the four non-ompat dimensions and on the six ompat dimensions. The gauge setor, on the otherhand, remains on�ned to the D-brane worldvolume, whih �lls the four non-ompatdimensions and a submanifold of the ompat spae. Chiral matter is loalized at D-branes intersetions so, generially, they �ll the non-ompat dimensions and stuk ata point in the ompat spae. This natural hierarhy allows one to implement the low8



Chapter 1. Introdutionstring sale senario disussed above, as well as to onsider non-supersymmetri models.Interseting brane worlds provide a senario to address some well known phenomenologialproblems and features of SM physis, by translating them to a more geometrial language.The spei� examples for this type of models are disussed in the ontext of type IIAstrings, see for example [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83℄.The interseting D-brane models are related by T-duality to the magnetized D-branemodels. In the language of T-duality, the interseting angle of two D-branes in the type IIAside is interpreted as the magneti �ux inside two internal dimensions in the type IIBpiture. Roughly, two T-dual theories yield the same physis: same interations, sameoperators, same Hilbert spae. It implies a one-to-one orrespondene between two theo-ries. On one side of the T-dual piture we have D-branes with magneti �uxes, whereason the other side we have D-branes at angles. The T-dual models i.e. the magnetizedD-brane models also have been investigated. In partiular, it was observed in [4℄ thatturning on a non-vanishing magneti �eld in a simple toroidal ompati�ation of type Istring theory implies both hiral spetra and supersymmetry breaking. Some theoretialaspets, as well as semi-realisti onstrutions have been analyzed in this framework in[6, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94℄. Non-supersymmetri toroidal ompati�ationsof type I string theory with both onstant bakground Neveu Shwarz - Neveu Shwarz(NSNS) two-form �ux and non-trivial magneti �ux on the various D9-branes are dis-ussed in [90, 94℄. The solutions to the anellation of the RR tadpoles display variousphenomenologially attrative features: supersymmetry breaking, hiral fermions and theopportunity to redue the rank of the gauge group. The non-vanishing B-�ux admitsfour-dimensional models with three generations of hiral fermions in standard model likegauge groups. We refer to [95, 96℄ for more details on type I onstrutions.In reent years a renewal of the loal model building has been developing, for instane,F-theory model buildings [97, 98℄. F-theory models naturally inlude exeptional gaugegroups beyond the type IIB D-branes. Sine the �avor strutures are di�erent from thatof D-branes models, there are a lot of developments in phenomenologial studies.Although the general features get us quite lose to obtain a realisti D-brane onstru-tion, in any string model one always �nd large number of unobserved light neutral salarpartiles (moduli �elds), extra hiral fermions and U(1) gauge groups in the low energyspetrum. Geometrially, the vauum expetation values of the so alled moduli �eldsparametrize the size and shape of the ompati�ation manifold or positions of D-branes.These values are also related to the parameters like gauge oupling onstants or massesof the e�etive four dimensional theory. Without uniquely determining these expetationvalues by means of minimizing an e�etive potential, whih ould then also indue mass9



Chapter 1. Introdutionterms for the moduli, string models are not preditive. This led to an intensive study onthe problem of moduli stabilization to disover a ontrollable mehanism whih generatesa potential for the moduli �elds. Suh stabilizations employ various supergravity [99, 100℄,non-perturbative [101℄ and string theory [102, 103, 104℄ tehniques to generate potentialsfor the moduli �elds.The superstring spetrum in ten dimensions ontains various anti-symmetri tensor�elds, the so alled p-form �elds Cp. It has been realized that by allowing the orresponding�eld strengths, shematially Fp+1 = dCp to take non-trivial expetation values along theinternal spae, one an �x the vevs of the moduli �elds and therefore provide the possibilityfor hoosing a ground state as a loal isolated minimum of the salar potential of the theory.Moreover, when the �uxes are turned on along the ompat diretions, they have to satisfyDira quantization onditions and hene take disrete values. By a suitable hoie of NS-NS and Ramond - Ramond (R-R) 3-form �uxes, one an �nd N = 1 supersymmetri vauawhere all omplex struture moduli, as well as the dilaton, are �xed [100℄. A disadvantageof this method is that there is no exat string desription of suh �uxes and thus theanalysis is restrited to the lowest order in α′ expansion, desribed by the e�etive �eldtheory. Moreover, generalization of the stabilization mehanism to Kähler lass modulirequires introdution of non-perturbative e�ets whih are again treated in the low-energysupergravity approximation [101℄.An alternative mehanism of moduli stabilization based on open string onstant mag-neti bakgrounds that have an exat desription in string theory [4, 105℄ is presentedin [102, 103℄. In fat, magneti �uxes an be turned on in any 2-yle of the internalompati�ation manifold. In the simplest ase, magneti bakgrounds on (1,1)-yles�x the Kähler lass moduli [106, 107℄, while bakgrounds on holomorphi (2,0)-yles �xthe omplex struture moduli. In the generi Calabi-Yau ase, this method an stabilizemainly the Kähler moduli [102, 106, 107℄ and is thus omplementary to 3-form losedstring �uxes that stabilize the omplex struture and the dilaton [100℄. On the otherhand, it an also be used in simple toroidal ompati�ations, stabilizing all the geometrimoduli in a supersymmetri vauum using only magnetized D9-branes. This has an exatperturbative string desription [4, 105℄. RR tadpole anellation requires some hargedsalar �elds from the branes to aquire non-vanishing vauum expetation values, break-ing partly the gauge symmetry in order to preserve supersymmetry [103℄. Alternatively,one an break supersymmetry by D-terms and �x the dilaton at weak string oupling, bygoing �slightly" o�-ritiality and thus generating a tree-level bulk dilaton potential [108℄.One of the main ingredients for this approah of moduli stabilization is the inlusion of`oblique' �uxes given by mutually non-ommuting matries, in order to �x all o�-diagonal10



Chapter 1. Introdutionomponents of the metri. This mehanism an be ombined with the presene of losedtype IIB string 3-form �uxes, allowing to �x the dilaton and the omplex struture of moregeneral ompati�ation manifolds.However, despite enormous e�orts, very few examples are known so far of a ompletestabilization of losed string moduli in any spei� model, while the known ones are tooonstrained to aommodate interesting models from physial perspetive. Hene, therehave been very few attempts to onstrut a onrete model of partile physis even withpartially stabilized moduli. Nevertheless, in view of the importane of the task at hand,we revisit the type I string onstrutions with moduli stabilizations [102, 103, 104℄, toexplore the possibility of inorporating partile physis models, suh as the SM or GUTmodels based on grand uni�ed groups, in suh a framework.In the quest for obtaining a realisti string-based model, generi properties of thelow-energy e�etive Lagrangian suh as D = 4 hirality and unitary gauge groups areof fundamental importane. One these have been found in a partiular setup of stringtheory, there are still many other issues to fae in order to reprodue some realisti physisat low energies. In partiular, even if one manages to obtain a massless spetrum quitelose to the SM (or some extension of it), one is eventually faed with the problem ofomputing some �ner data de�ning a Quantum Field Theory. These data may tell us howlose are we of reproduing the SM whih, as we know, is not a group of hiral fermionswith appropriate quantum numbers, but an intriate theory with lots of well-measuredparameters. One should know the Yukawa ouplings in any string model.Close form expressions for Yukawa ouplings have been written down for Type IIAmodels with interseting branes [81, 109℄. In this ase, one has to perform a sum overstring worldsheet instanton ontributions to obtain the �nal expression of Yukawa ou-plings, a pure stringy (non-�eld theoretial) omputation. These results have been furthergeneralized to inlude Eulidean D2 brane instanton ontributions to the Yukawa ou-plings [110, 111, 112, 113, 114, 115, 116, 117, 118℄, generating up quark and right handedneutrino masses through a Higgs mehanism, in a partiular lass of models. On the otherhand, in the T-dual piture, the alulations of the Yukawa ouplings are purely �eld the-oretial. Yukawa interations an be alulated by overlap integrals over internal spaeswith three wavefuntions as the following forms
Y =

∫

dy6ψi(y)ψj(y)φ(y) (1.1)where ψi,j(y) orrespond to the internal wavefuntions of hiral matter �elds and φ(y) isthe internal wavefuntions of Higgs salar �elds. The expliit alulations of the overlap11



Chapter 1. Introdutionintegrals an tell us the form of the Yukawa ouplings. It is found that two di�erentapproahes of stringy and �eld theory alulations lead to the onsistent results of theYukawa ouplings after proper transformation of moduli parameters [6℄. A limitation onthe exerise performed in these papers omes from the fatorized struture of the tori,whih arises from the orientations of the brane wrappings that are lassi�ed by angles inthree di�erent T 2 planes or �uxes that are diagonal along three T 2's. These results requiregeneralizations further to obtain the interations involving branes with oblique �uxes, inview of the importane of suh �uxes for obtaining phenomenologially viable models.In this thesis, we disuss a simple framework of toroidal string models with magnetizedbranes, that o�ers an interesting self-onsistent set up for string phenomenology. We willsee, in the following hapters, how one an address the issues of moduli stabilization (�xingthe geometri parameters of the ompati�ation), building alulable partile physismodels (gauge group, hiral fermions, family tripliation, anomaly anellation et.) andomputations of the Yukawa ouplings in suh a framework.With this brief introdution, in the next setion, we disuss the struture of the thesis.1.3 Plan of the thesisIn hapter 2, we brie�y review the string onstrution using magnetized branes. We disussthe ompati�ation of type I strings on a torus with additional bakground gauge �uxon the D9-branes and summarize the neessary onstraints needed for onstruting semi-realisti models in suh a framework. We reall the main properties of the six-dimensionaltoroidal ompati�ation and its moduli spae. We onsider the open string propagationin the presene of onstant internal magneti �elds [4℄ and summarize the onditions forunbroken supersymmetry. We analyze the onditions for the unbroken supersymmetryin the presene of a stak of magnetized D9-branes and disuss the losed string modulistabilization. We also study the tadpole anellation onditions whih are required foronsisteny of type I string vaua. Then we disuss the low-energy spetrum of the e�etivetheory within this ompati�ation sheme. Here we pay speial attention to the masslessopen string of the theory, where unitary gauge groups and hiral fermions harged underthem arise. Sine a ruial step in a three generation model building is the introdutionof a NS-NS B-�eld bakground (without whih only even generation models an be built),the e�ets of non-zero B on the hirality and the tadpoles is summarized.The next hapter is dediated to obtain lose form expressions for Yukawa ouplings insuh magnetized brane onstrutions. We �rst review the known results on the Jaobi thetaidentity given in [119℄ and present a proof of its validity. We also give an expression for the12



Chapter 1. IntrodutionYukawa interation for fatorized tori and `diagonal' �uxes using the theta identity [6℄. Wethen generalize the results to writing down expressions for the Yukawa interations whenoblique �uxes are present. In order to perform this task, fermion (salar) wavefuntions ontoroidally ompati�ed spaes are presented for general �uxes, parametrized by Hermitianmatries with eigenvalues of arbitrary signatures. We also give expliit mappings amongfermion wavefuntions, of di�erent internal hiralities on the tori, whih interhange therole of the �ux omponents with the omplex struture of the torus. By evaluating theoverlap integral of the wavefuntions, we give the expressions for Yukawa ouplings amonghiral multiplets arising from an arbitrary set of branes (or their orientifold images). Themethod is based on onstruting ertain mathematial identities for general Riemann thetafuntions with matrix valued modular parameter.After developing this theoretial framework, we present a spei� model in the hapter4. We onstrut a minimal example of a supersymmetri grand uni�ed model in a toroidalompati�ation of type I string theory with magnetized D9-branes. We obtain generalsolutions for �uxes along magnetized D9-branes yielding the hiral spetrum and gaugegroup of a three generation SU(5) GUTmodel, with no extra hiral matter nor U(1) fators.The gauge symmetry is just SU(5) and the gauge non-singlet hiral spetrum ontains onlythree families of quarks and leptons transforming in the 10+ 5̄ representations. Moreover,all geometri moduli are stabilized in terms of the bakground internal magneti �uxeswhih are of �oblique" type (mutually non-ommuting). The �ux solutions also satisfythe RR tadpole anellation onditions yielding a onsistent model. Finally, we present abrief analysis of the superpotential and D-terms for the model in order to show the massgeneration for several non-hiral fermion multiplets in a supersymmetri ground state.We end this thesis with a onlusion. In the appendix, we ollet all the tehnialdetails required for the main text.
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2Magneti Flux in Toroidal Type ICompati�ation
2.1 IntrodutionIn this hapter we introdue the basi lass of objets upon the whole thesis is based: D-branes with magneti �uxes or magnetized branes. We study some of their salient features,whih motivate their role as building bloks of semirealisti string-based onstrutions.As it is disussed in the previous hapter, string theory is known to possess a largenumber of vaua whih ontain the basi struture of grand uni�ed theories and in parti-ular of the Standard Model. However, the presene of moduli �elds with �at diretions hasremained one of the major stumbling bloks in making further progress. Consequently,losed string moduli stabilization has been intensively studied during the last years forits impliation towards a omprehensive understanding of the superstring vaua[99, 101℄,as well as due to its signi�ane in deriving de�nite low energy preditions for partilemodels from string theory. Suh stabilizations employ various supergravity[99, 100℄, non-perturbative[101℄ and string theory[102, 103, 104℄ tehniques to generate potentials forthe moduli �elds. However, very few examples are known so far of a omplete stabiliza-tion of all losed string moduli in any spei� model. The known models with stabilizedmoduli are too onstrained to aommodate interesting models from physial point ofview. Hene, there have been very few attempts to onstrut a onrete model of partilephysis even with partially stabilized moduli. With the above motivation, we revisit thetype I string onstrutions[95, 96℄ and moduli stabilizations[102, 103, 104℄, to explore thepossibility of inorporating partile physis models, suh as the Standard Model or GUTmodels based on grand uni�ed groups.A new alulable method of moduli stabilization was reently proposed, using onstant

14



Chapter 2. Magneti Flux in Toroidal Type I Compati�ationinternal magneti �elds in four-dimensional (4d) type I string ompati�ations[102, 103℄.In the generi Calabi-Yau ase, this method an stabilize mainly the Kähler moduli [102,106℄ and is thus omplementary to 3-form losed string �uxes that stabilize the omplexstruture and the dilaton [100℄. On the other hand, it an also be used in simple toroidalompati�ations, stabilizing all geometri moduli in a supersymmetri vauum using onlymagnetized D9-branes that have an exat perturbative string desription [4, 105℄. RRtadpole anellation requires then some harged salar �elds from the branes to aquirenon-vanishing vauum expetation values (VEVs), breaking partly the gauge symmetry inorder to preserve supersymmetry [103℄. Alternatively, one an break supersymmetry byD-terms and �x the dilaton at weak string oupling, by going �slightly" o�-ritiality andthus generating a tree-level bulk dilaton potential [108℄.There are two main ingredients for this approah of moduli stabilization [102, 103℄:(1) A set of nine magnetized D9-branes is needed to stabilize all 36 moduli of the torus
T 6 by the supersymmetry onditions [89, 120℄. Moreover, at least six of them must haveoblique �uxes given by mutually non-ommuting matries, in order to �x all o�-diagonalomponents of the metri. On the other hand, all nine U(1) brane fators beome massiveby absorbing the RR partners of the Kähler lass moduli [89℄. (2) Some extra branes areneeded to satisfy the RR tadpole anellation onditions, with non-trivial harged salarVEVs turned on, in order to maintain supersymmetry.However, as already pointed out in [103℄, our moduli stabilization sheme is restritedto losed string moduli spae that may be enlarged if one takes into aount open string�elds1. Unfortunately, their e�ets annot be taken into aount exatly at the string level,as the geometri toroidal losed string moduli. Moreover, they have N = 1 superpotentialleading to non-trivial F-�atness onditions, besides the D-terms arising from the magneti�elds. A reent analysis shows that a generalization of the stabilization mehanism may bepossible in the quadrati approximation and, for reasonable onditions on the spetrum,open string `reombination' �elds an also be �xed [121℄. In the present work, we apply thefollowing algorithm for moduli stabilization in toroidal type I ompati�ations: (1) Allgeometri moduli are �rst �xed using a minimal set of (nine in the present ase) magnetizedbranes, in the absene of harged salar VEVs. This has the advantage of being exat in
α′ (world-sheet) perturbation theory, but does not satisfy tadpole anellation. (2) Thelatter is ahieved by adding extra magnetized branes on whih some harged salars arefored to aquire non-vanishing VEVs in order to anel the indued Fayet-Iliopoulos1Many open string moduli are harged and their VEVs break loal and global symmetries. For instanethey play the role of ordinary higgses either for GUT or Standard Model breaking. These VEVs ould bedriven from soft supersymmetry breaking terms. The issue is related to supersymmetry breaking, howeverin the present thesis we are interested in N = 1 supersymmetri vauum. 15



Chapter 2. Magneti Flux in Toroidal Type I Compati�ationterms. Sine the inlusion of harged �elds in the D-terms is not known exatly, theirVEVs an be determined only perturbatively in α′, when their values are small omparedto the string sale. As a result, any `bak-reation' of the harged salar VEVs, omingfrom this perturbative brane ation, is expeted to be small on the losed string moduli,and therefore not of any signi�ant phenomenologial onsequene.We apply the above method to onstrut phenomenologially interesting models. Inthis hapter, we brie�y desribe the onstrution based on D-branes with magneti �uxesin type I string theory, or equivalently type IIB with orientifold O9-planes and magne-tized D9-branes, in a T 6 ompati�ation. The rest of the hapter is strutured as follows.We start with summarizing the main properties of the six dimensional toroidal ompat-i�ation and its moduli spae in Setion 2.2. In Setion 2.3, we onsider open stringpropagation in the presene of onstant internal magneti �elds. Further, we disuss thegeneral setup with the magnetized branes, inluding the gauge �uxes that an be turnedon, in a onsistent manner. In Setion 2.4, we write down the onditions that guarantee theexistene of one unbroken supersymmetry preserved by staks magnetized D9-branes. Wethen disuss the stabilization of omplex struture and kähler lass moduli using suh on-ditions. We study the tadpole anellation onditions whih are required for onsistenyof type I string vaua in the presene of internal magneti �elds in Setion 2.5. Further,in Setion 2.6, we disuss the low energy spetrum, in partiular fermion degeneraies,of the e�etive theory in this ompati�ation. Sine a ruial step in a three generationmodel building is the introdution of a NS-NS B-�eld bakground without whih onlyeven generation models an be built, the e�et of non-zero B on the hirality and tadpolesis summarized in Setion 2.7.2.2 Torus ompati�ation : Parametrization of T 6 andModuli spaeConsider a six-dimensional torus T 6 having six oordinates xi, yi with i = 1, 2, 3 andperiodiity normalized to unity xi = xi + 1, yi = yi + 1 [102℄. We hoose the orientation
∫

T 6

dx1 ∧ dy1 ∧ dx
2 ∧ dy2 ∧ dx

3 ∧ dy3 = 1 (2.1)
16



Chapter 2. Magneti Flux in Toroidal Type I Compati�ationand de�ne the basis of the ohomology H3(T 6,Z)

α0 = dx1 ∧ dx2 ∧ dx3

αij =
1

2
ǫilmdx

l ∧ dxm ∧ dyj (2.2)
βij = −

1

2
ǫilmdyl ∧ dym ∧ dxj

β0 = dy1 ∧ dy2 ∧ dy3,forming a sympleti struture on T 6:
∫

T 6

αa ∧ β
b = −δba , for a, b = 1, · · · , h3/2 , (2.3)with h3 = 20, the dimension of the ohomology H3(T 6,Z).The 36 moduli of T 6 orrespond to 21 independent deformations of the internal metriand 15 deformations of the two-index antisymmetri tensor C2 from the RR losed stringsetor. They form nine omplex parameters of Kähler lass and nine of omplex struture.Indeed, the geometri moduli of T 6 deompose in a omplex struture variation whih isparametrized by the matrix Ωij entering in the de�nition of the omplex oordinates

zi = xi + Ωijyj , (2.4)and in the Kähler variation of the mixed part of the metri desribed by the real (1, 1)-form
J = iδgij̄dz

i ∧ dz̄j . (2.5)Choosing the basis eij̄ of the ohomology H1,1 to be of the form
eij̄ = idzi ∧ dz̄j , (2.6)the Kähler form an be parametrized as
J = Jij̄e

ij̄ . (2.7)The dimension of the spae of omplex struture moduli is given by the dimension ofthe ohomology H2,1 on the torus T 6, h2,1 = 9. The elements Jij̄ satisfy the realityondition J†
ij̄
= Jjῑ, implying that J depends on nine real parameters. They an be usedto parametrize the spae of Kähler deformations whose dimension is given by the dimensionof the ohomology H1,1 on the torus T 6, h1,1 = 9. The Kähler form is omplexi�ed with17



Chapter 2. Magneti Flux in Toroidal Type I Compati�ationthe orresponding RR two-form deformation.2.3 Magnetized D9-branes: Fluxes and WindingsLet's onsider a stak of N oinident D9-branes, giving rise to a U(N) N = 4 supersym-metri gauge theory. We pik up a U(1) subgroup in the Cartan subalgebra of U(N) withgauge potential A, and turn on a onstant magneti �eld. Thus, the orresponding �eldstrength Fαβ is onstant and Aα = 1
2
Fαβu

β, where uβ stands for all six oordinates of T 6,
xi and yi. This onstant magneti bakground ouples to the boundary of the open stringon the brane by quadrati terms in the world-sheet ation Sws [105℄. The orrespondingonformal �eld theory an therefore be solved exatly:

Sws = −
1

4πα′

∫

Σ

dtdσ
(

∂λX
µ∂λXµ − iψ̄µρλ∂λψµ

)

−

∫

dtqLFαβ

(

Xα∂tX
β −

i

2
ψ̄αρ0ψβ

)

σ=0

(2.8)
−

∫

dtqRFαβ

(

Xα∂tX
β −

i

2
ψ̄αρ0ψβ

)

σ=πwhere α′ is the Regge slope, ψµ are the real Majorana fermioni superpartners of theoordinates Xµ and ρλ with λ = 0, 1 are the two-dimensional gamma-matries. Theindies α, β run over the magnetized dimensions α, β = 4, · · · , 9, whereas the indies
µ, ν run over all ten-dimensional spaetime oordinates µ, ν = 0, · · · , 9. The ouplingsof the left and right endpoints of the open string to the bakground are given by theorresponding harges qL and qR.The �eld Fαβ orresponds to a non trivial U(1) gauge bundle over the torus T 6 withtransition funtion around the yles uα:

Aα

∣

∣

uβ+1
=
(

Aα − ie−iqθ∂αe
iqθ
)

∣

∣

∣

∣

uβ

, θ = Fαβu
β (2.9)with q = qL + qR. Imposing the phase over eah yle uα to be single-valued leads to theusual Dira quantization ondition

q · Fαβ = 2πmαβ, ∀α, β = 4, . . . , 9 , (2.10)where mαβ are integers orresponding to the �rst Chern lass of the U(1) gauge bundle.Let us now be more spei� and assume the presene of K staks of Na magnetized
D9-branes, a = 1, . . . , K. Eah stak is assoiated with a orresponding U(Na) gauge18



Chapter 2. Magneti Flux in Toroidal Type I Compati�ationsymmetry. We hoose K linear ombinations of the generators of U(Na) whih lie in theCartan subalgebra and denote their abelian gauge potentials by Aa; for simpliity, weidentify them with U(1)a. Their �eld strengths are assumed to take onstant values onthe torus T 6. Thus there is a set of K U(1) gauge potentials Aa with onstant bakground�eld strengths
Aa

α =
1

2
F a
αβX

β where a = 1, . . . , K . (2.11)The staks of D9-branes are haraterized by three independent sets of data: (a) theirmultipliities Na, (b) winding matries W Î, a
I and () 1st Chern numbers ma

ÎĴ
of the U(1)bakground on their world-volume Σa, a = 1, . . . , K. And I, Î run over the target spaeand world-volume indies, respetively. These parameters are desribed below:(a) Multipliities: The �rst quantity Na desribes the rank of the the unitary gaugegroup U(Na) on eah D9 stak.(b) Winding Matries: The seond set of parameters W Î , a

I is the overing of the world-volume of eah stak of D9-branes on the ambient spae. In other words, they givethe winding of the branes around the di�erent yles of the internal spae. They areharaterized by the wrapping numbers of the branes around the di�erent 1-yles of thetorus2, whih are enoded in the overing matries W Î , a
I de�ned as

W Î
J =

∂ξ Î

∂XJ
for Î , J = 0, . . . , 9 , (2.12)where the oordinates on the world-volume are denoted by ξ Î , while the oordinates ofthe spae-time M10 are XI . Sine spae-time is assumed to be a diret produt of afour-dimensional Minkowski manifold with a six-dimensional torus, the overing matrix isof the form:

W Î, a
J =

(

δµ̂µ 0

0 W α̂ ,a
α

)

for µ, µ̂ = 0, . . . , 3 and α, α̂ = 1, . . . , 6 , (2.13)with the upper blok orresponding to the overing of Σa
4 on the four-dimensional spae-time M4. Sine these are assumed to be idential, the assoiated overing map W µ̂

µ isthe identity, W µ̂
µ = δµ̂µ . The entries of the lower blok, on the other hand, desribe thewrapping numbers of the D9-branes around the di�erent 1-yles of the torus T 6 whihare therefore restrited to be integers W α̂

α ∈ Z, ∀ α, α̂ = 1, . . . , 6 [104℄. The K D9 staksare then ten-dimensional objets whih �ll the four-dimensional spae-time and over the2There is no wrap fator here beause the �uxes are magneti (at the disk level) with an exat CFTdesription, in ontrast to the losed string �uxes. 19



Chapter 2. Magneti Flux in Toroidal Type I Compati�ationinternal torus T 6. Thus there are K di�erent overings T a
6 of the torus T 6 desribed bythe K overing maps W α̂, a

α , for a = 1, . . . , K.For simpliity, in the examples we onsider in this thesis, the winding matrix W α̂
α inthe internal diretions is also hosen to be a six-dimensional diagonal matrix, implyingan embedding suh that the six ompat D9 world-volume oordinates are identi�ed withthose of the internal target spae T 6, up to a winding multipliity fator na

α, for a branestak-a:
na
α ≡ W α̂,a

α . (2.14)We will also use the notation
n̂a
1 ≡ na

1n
a
2, n̂a

2 ≡ na
3n

a
4, n̂a

3 ≡ na
5n

a
6, (no sum on a) (2.15)to de�ne the diagonal wrapping of the D9's on the three orthogonal T 2's inside T 6, givenby:

xi ≡ Xα, α = 1, 3, 5 ; yi ≡ Xα, α = 2, 4, 6 , (2.16)with periodiities: xi = xi + 1, yi ≡ yi + 1:
T6 =⊗3

i=1T
2
i , (2.17)and oordinates of the orthogonal 2-tori (T 2

i ) being (xi, yi) for i = 1, 2, 3.For further simpli�ation, in our example, we will hoose for all staks trivial windings:
na
α ≡W α̂,a

α = 1, for α = 1, .., 6. (2.18)However in this setion, in order to desribe the formalism, we keep still general windingmatries W α̂,a
α .() First Chern numbers: The parametersma

ÎĴ
of the brane data given above are the 1stChern numbers of the U(1) ⊂ U(Na) bakground on the world-volume of the D9-branes.For eah stak U(Na) = U(1)a × SU(Na), the U(1)a has a onstant �eld strength on theovering of the internal spae. These are subjet to the Dira quantization ondition whihimplies that all internal magneti �uxes F a

α̂β̂
, on the world-volume of eah stak of D9-branes, are integrally quantized. The Dira quantization ondition applies independentlyto the K �uxes F a

α̂β̂
.Expliitly, the world-volume �uxes F a

α̂β̂
and the orresponding target spae indued20



Chapter 2. Magneti Flux in Toroidal Type I Compati�ation�uxes paαβ are quantized as














F a
α̂β̂

= ma
α̂β̂

∈ Z ∀ α̂, β̂ = 1, . . . , 6

∀a = 1, . . . , K .

paαβ = (W−1)α̂, aα (W−1)β̂, aβ ma
α̂β̂

∈ Q, ∀α, β = 1, . . . , 6

(2.19)When �uxes are turned on only along three fatorized T 2's of eq. (2.17), as will be thease for some of our brane staks, we make use of the following onvenient notation:
m̂a

1 ≡ ma
12 ≡ ma

x1y1 , m̂a
2 ≡ ma

34 ≡ ma
x2y2 , m̂a

3 ≡ ma
56 ≡ ma

x3y3 . (2.20)The magnetizedD9-branes ouple only to the U(1) �ux assoiated with the gauge �eldsloated on their own world-volume. In other words, the harges of the endpoints qR and qLof the open strings strethed between the i-th and the j-thD9-brane an be written as qL ≡

qi and qR ≡ −qj , while the Cartan generator h is given by h = diag(h1 11N1, . . . , hN 11NK
),with 11Na

being the Na × Na identity matrix. In addition, in type I string theory, thenumber of magnetized D9-branes must be doubled. Sine the orientifold projetion O isde�ned by the world-sheet parity, it maps the �eld strength Fa = dAa of the U(1)a gaugepotential Aa to its opposite, O : Fa → −Fa. Therefore, the magnetized D9-branes are notan invariant on�guration and for eah stak a mirror stak must be added with opposite�ux on its world-volume 3.A general gauge �ux, on T 6 with oordinates XI ≡ (xi, yi), i = 1, 2, 3, has the form:
F ≡ pIJdX

I ∧ dXJ

= pxixjdxi ∧ dxj + pyiyjdy
i ∧ dyj + pxiyjdx

i ∧ dyj + pyixjdyi ∧ dxj . (2.21)Then using the de�nition of a general omplex struture matrix Ω as de�ned in eq.(2.4) :
dzi = dxi + Ωi

jdy
j, dz̄i = dxi + Ω̄i

jdy
j,we obtain:

F = Fzizjdz
i ∧ dzj + Fziz̄j (idz

i ∧ dz̄j) + Fz̄iz̄jdz̄
i ∧ dz̄j . (2.22)Choosing the basis eij̄ of the ohomology H1,1 to be of the form eij̄ = idzi ∧ dz̄j , we get:

F(2,0) = Fzizj = (Ω̄− Ω)−1T
(

Ω̄TpxxΩ̄− Ω̄T pxy + pTxyΩ̄ + pyy
)

(Ω̄− Ω)−1 (2.23)3There are no O5 planes in our model. However every magneti �ux reates also 5-brane harges thatare anelled among various staks of magnetized D9-branes. 21



Chapter 2. Magneti Flux in Toroidal Type I Compati�ationand
F(1,1) = Fziz̄j = (−i)(Ω̄− Ω)−1T

(

Ω̄TpxxΩ− Ω̄Tpxy + pTxyΩ+ pyy
)

(Ω̄− Ω)−1. (2.24)where the matries (paxixj ), (paxiyj ) and (payiyj ) are the quantized �eld strengths in targetspae, given in eq. (2.19). For our hoie (2.18), they oinide with the Chern numbers
ma along the orresponding yles. The �eld strengths F a

(2,0) and F a
(1,1) are 3× 3 matriesthat orrespond to the upper half of the matrix Fa:

Fa ≡ −(2π)2iα′

(

F a
(2,0) F a

(1,1)

−F a†
(1,1) F a∗

(2,0)

)

, (2.25)whih is the total �eld strength in the ohomology basis eij̄ = idzi∧dz̄j . In addition, Fz̄iz̄jis omplex onjugate to Fzizj and Fz̄izj = −Fzj z̄i.In this thesis, we onsider the �uxes for whih a four dimensional supersymmetritheory an be reovered. As it will be disussed in the following setions, supersymmetrydemands all �uxes to be of (1, 1) form whih gives us the ondition:
(

Ω̄T pxxΩ̄− Ω̄T pxy + pTxyΩ̄ + pyy
)

= 0, (2.26)or equivalently:
(

ΩT pxxΩ− ΩT pxy + pTxyΩ + pyy
)

= 0. (2.27)Eqs. (2.26) and (2.27) together give two real matrix equations. These equations an thenbe used to eliminate some of the variables and write the �nal (1, 1) form in terms of ertainindependent variables only.Using eq. (2.27), eq. (2.24) redues to the following form,
Fziz̄j = −i (pxxΩ− pxy) (Ω̄− Ω)−1 . (2.28)On the other hand, use of eq. (2.26) in eq. (2.24) gives,

Fziz̄j = −i(Ω̄− Ω)−1T
(

−Ω̄T pxx − pTxy
)

. (2.29)We also notie that the (1, 1) form Fziz̄j given in eq. (2.24) satis�es the hermitiityproperty: Fziz̄j = F †
ziz̄j . To expliitly see that, we use eqs. (2.28), (2.29).

F †
ziz̄j =

[(

−i (pxxΩ− pxy) (Ω̄− Ω)−1
)∗]T

= −i(Ω̄ − Ω)−1T
(

−Ω̄T pxx − pTxy
)

= Fziz̄j (2.30)22



Chapter 2. Magneti Flux in Toroidal Type I Compati�ationThere are some speial ases, however, in whih eqs. (2.26) and (2.27) simplify furtherand the resulting Fziz̄j an be written more ompatly. One suh ase arises when pxx and
pyy omponents are turned o�. In suh a situation F(2,0) = 0 ondition (2.27), redues to:

ΩTpxy = pTxyΩ. (2.31)Thus far, we have onentrated on the spatial omponents of the gauge �uxes, butignored the gauge indies. In the magnetized D-brane onstrution, gauge quantum num-bers arise from the Chan-Paton fators assoiated with the end points of the open stringsfor a given stak of branes. The simplest possibility is to onsider �uxes with gauge indiesgiven by an n× n identity matrix for a stak of D-branes:
F = mIn, (2.32)with m an arbitrary integer giving the 1st Chern number. All spatial indies of the gauge�ux above have been suppressed, whih are given as in eq. (2.21) by the omponents :

pxiyj , pxixj , pyiyj . Atually, eq. (2.32) orresponds to the situation when all the wrappingnumbers are trivial: nxi

= nyi = 1 as disussed in eq.(2.18). F , then represents a stakof n magnetized D-branes with a U(1)n gauge �ux. The �rst Chern number for eahof the U(1) �uxes is equal to m. Moreover, D-brane wrapping numbers on the internaldiretions, are all unity, given by a diagonal embedding of the brane in target spae andwinding around eah 1-yle one. In most of the thesis, we will onsider �uxes of theabove type.For multiple staks of ni branes with respetive 1st Chern numbers mi, the �ux matrixis of blok diagonal form:
F =

















m1In1

m2In2

.

.

mnp
Inp

















(2.33)
and orresponds to gauge �uxes in the diagonal U(1)'s of U(n1)×U(n2)×· · · gauge group.Gauge �uxes on branes with higher wrapping numbers an also be given a gaugetheoreti interpretation. The method is based on a representation of the magnetizedbrane onstrutions [6℄ in terms of �uxes along internal diretions in a ompati�ed gaugetheory. In this piture, the e�et of windings of branes around T 6 is simulated by the23



Chapter 2. Magneti Flux in Toroidal Type I Compati�ationrank of the gauge group. In partiular, due to the Dira quantization ondition on �uxes,a U(n) �ux on, say T 2:
F =

m

n
In, (2.34)with In being the n-dimensional identity matrix, and (n,m) relatively prime, represents asingle brane wound n times around T 2 with �ux quantumm and resulting gauge symmetrybeing only U(1). On the other hand, ifm is an integer multiple of n suh thatm = pn, theneah of the entries in the identity matrix represents a well de�ned U(1) �ux of quantum

p and the gauge symmetry is U(n), given by a stak of n suh magnetized branes, asdesribed in the last paragraph. It turns out that expliit realization of �uxes with (n,m)relatively prime, needs gauge on�gurations with non-abelian Wilson lines.In the next setion, we write down the supersymmetry onditions for magnetized D9-branes in the ontext of type I toroidal ompati�ations and disuss the stabilization ofomplex struture and Kähler lass moduli using suh onditions.2.4 Supersymmetry Conditions and Moduli Stabiliza-tionThe presene of onstant internal magneti �elds breaks supersymmetry by shifting themasses of the four dimensional salars and fermions [4℄. A single magnetized D9-brane intype I string theory is not generially supersymmetri. Indeed, the orientifold projetionimplies the presene of mirror branes. Twisted salars from the Neveu-Shwarz setor ofopen string strethed between a brane and its image are generially massive, while somehiral spinors from the Ramond setor remain massless. In other words, the D9-branedoes not preserve the same supersymmetry as the orientifold projetion. However, forsuitable hoie of the �uxes and moduli, a four-dimensional supersymmetri theory an bereovered [89℄. In this setion, we summarize the onditions under whih a supersymmetrivauum an exist.Written in the omplex basis (eq. (2.4)) where the �eld strength F splits in purely(anti-) holomorphi (F(0,2)), F(2,0) and mixed F(1,1) parts, the ondition for N = 1 super-symmetry in four dimensions an be written as [102, 103℄:
(iJ + F)3 = eiθ

√

|g6 + F|
V6
√

|g6|
(2.35)

F(2,0) = 0 , (2.36)where V6 is the volume form of T 6 and g6 is its metri. Eq. (2.35) an be rewritten in the24



Chapter 2. Magneti Flux in Toroidal Type I Compati�ationform:
tan θ (J ∧ J ∧ F − F ∧ F ∧ F) = J ∧ J ∧ J − J ∧ F ∧ F , (2.37)where the wedge produt AN is de�ned with an impliit normalization fator 1/N !. Notethat only the (1, 1)-part of F ontributes in this formula. Formally, (2.37) an be alsowritten as

Im
(

e−iθΦ
)

= 0 , (2.38)with
Φ = (iJ + F) ∧ (iJ + F) ∧ (iJ + F) . (2.39)The onstant phase θ selets whih supersymmetry the magnetized D9-brane preserves.In the ase of type I string theory, the superharges preserved by the magneti bakground�eld is onsistent with the presene of the orientifold plane O9 for the hoie of θ = −π

2
.Similarly, for a given on�guration of K staks of magnetized branes, one may askwhether the di�erent staks forming the brane on�guration preserve some ommon su-persymmetries. All θa's, for a = 1, . . . , K, have to be the same in order to preserve thesame supersymmetry. We then have θa = −π

2
∀ a. The supersymmetry onditions foreah stak then read[102, 103℄:

F a
(2,0) = 0;

Fa ∧ Fa ∧ Fa = Fa ∧ J ∧ J ;

detWa (J ∧ J ∧ J − Fa ∧ Fa ∧ J) > 0 , (2.40)for eah a = 1, . . . , K.The �rst set of onditions of eq. (2.40) states that the purely holomorphi �ux vanishes.For given �ux quanta and winding numbers, this matrix equation restrits the omplexstruture Ω. Using eq. (2.23), the supersymmetry onditions for eah stak an �rst beseen as a restrition on the parameters of the omplex struture matrix elements Ω:
F a
(2,0) = 0 →

(

ΩTpxxΩ− ΩTpxy + pTxyΩ+ pyy
)

= 0 , (2.41)giving rise to at most six omplex equations for eah brane stak a.The seond set of onditions of eq. (2.40) gives rise to a real equation and restrits theKähler moduli. This an be understood as a D-�atness ondition. In the four-dimensionale�etive ation, the magneti �uxes give rise to topologial ouplings for the di�erentaxions of the ompati�ed �eld theory. These arise from the dimensional redution of theWess Zumino ation. In addition to the topologial oupling, the N = 1 supersymmetri25



Chapter 2. Magneti Flux in Toroidal Type I Compati�ationation yields a Fayet-Iliopoulos (FI) term of the form:
ξa
g2a

=
1

(4π2α′)3

∫

T 6

(

Fa ∧ Fa ∧ Fa − Fa ∧ J ∧ J
)

. (2.42)The D-�atness ondition in the absene of harged salars requires then that < Da >=

ξa = 0, whih is equivalent to the seond equation of eq. (2.40). Finally, the last inequalityin eq. (2.40) may also be understood from a four-dimensional viewpoint as the positivityof the U(1)a gauge oupling g2a, sine its expression in terms of the �uxes and moduli reads
1

g2a
=

1

(4π2α′)3

∫

T 6

(

J ∧ J ∧ J − Fa ∧ Fa ∧ J
)

. (2.43)The above supersymmetry onditions, get modi�ed in the presene of VEVs for salarsharged under the U(1) gauge groups of the branes. The D-�atness ondition, in the lowenergy �eld theory approximation, then reads:
Da = −

(

∑

φ

qφa |φ|
2Gφ +M2

s ξa

)

= 0 , (2.44)where Ms = α′−1/2 is the string sale4, and the sum is extended over all salars φ hargedunder the a-th U(1)a with harge qφa and metri Gφ. Suh salars arise in the ompati-�ation of magnetized D9-branes in type I string theory, for instane from the NS setorof open strings strethed between the a-th brane and its image a⋆, or between the stak-aand another stak-b or its image b∗. When one of these salars aquire a non-vanishingVEV 〈|φ|〉2 = v2φ, the alibration ondition of eq. (2.40) is modi�ed to:
qav

2
a

∫

T 6

(

J ∧ J ∧ J −Fa ∧ Fa ∧ J
)

= −
M2

s

Gφ

∫

T 6

(

Fa ∧ Fa ∧ Fa −Fa ∧ J ∧ J
)(2.45)

detW a (J ∧ J ∧ J −Fa ∧ Fa ∧ J) > 0 , ∀a = 1, . . . , K . (2.46)Note that our omputation is valid for small values of va (in string units), sine the inlusionof the harged salars in the D-term is in priniple valid perturbatively.Atually, the �elds appearing in (2.44) are not anonially normalized sine the metri
Gφ appears expliitly also in their kineti terms. Thus, the physial VEV is vφ√Gφ.However, to estimate the validity of the perturbative approah, it is more appropriateto keep vφ instead of vφ√Gφ. The reason is that the next to leading orretion to theD-term involves a quarti term of the type |φ|4, proportional to a new oe�ient K, and4When mass sales are absent, string units are impliit throughout the thesis. 26



Chapter 2. Magneti Flux in Toroidal Type I Compati�ationthe ondition of validity of perturbation theory is Kv2φ/Gφ << 1. A rough estimate is thenobtained by approximating K ∼ Gφ, whih gives our ondition.The metri Gφ of the salars living on the brane has been omputed expliitly for thease of diagonal �uxes[122℄. In this speial ase, the �uxes are denoted by three angles θai ,(i = 1, 2, 3).5 Then suppressing index-a, we have:
tanπθi =

pxiyi

Ji
≡

(F(1,1))ziz̄i

Ji
, (2.47)and

G = eγE(θ1+θ2+θ3) ×

√

Γ(θ1)Γ(θ2)Γ(θ3)

Γ(1− θ1)Γ(1− θ2)Γ(1− θ3)
, (2.48)with γE being the Euler onstant6.The above results will be applied in Setion 4.4 to �nd out the FI parameters andharged salar VEVs along three of the twelve brane staks: U1, A and B. The other ninestaks, U5, O1, . . . , O8, stabilizing all the geometri moduli, will satisfy the alibrationondition ξa = 0 in the absene of open string salar VEVs. Moreover, the RR moduli thatappear in the same hiral multiplets as the geometri Kähler moduli, beome Goldstonemodes whih get absorbed by the U(1) gauge bosons [102℄ orresponding to eah of theD-terms that stabilize the relevant geometri moduli.2.5 TadpolesIn this setion, we disuss the the onsisteny onditions that a magnetized D-brane on-�guration must satisfy. Suh restritions play a ruial role when onstruting a onsistente�etive �eld theory. Neessary onditions for a onsistent onstrution involvingK staksof Na magneti D9-branes on a ompat orientifold ompati�ation follow from the RRtadpole anellations. These aount for the absene of UV divergenes in the one loopamplitude and ensure, via a generalized Green-Shwarz mehanism, the anellation ofgauge anomalies in the assoiated four dimensional �eld theories.In toroidal ompati�ations of type I string theory, the magnetized D9-branes indue5-brane harges as well, while the 3-brane and 7-brane harges automatially vanish due tothe presene of mirror branes with opposite �ux. For general magneti �uxes, RR tadpole5See examples in Appendix A for the preise map between pxiyi and (F(1,1))ziz̄i .6The T 6 metri is diagonal in our ase a posteriori, sine the moduli are �xed in this way. To leadingorder in α′ (orresponding to keep the matter salar VEVs small) the matter metri is diagonal but itselements have a non-trivial (torus) moduli dependene due to the magneti �uxes, that we alulatedexpliitly using the relations given in equation (2.47) and (2.48). 27



Chapter 2. Magneti Flux in Toroidal Type I Compati�ationonditions an be written in terms of the Chern numbers and winding matrix [103, 104℄as:
16 =

K
∑

a=1

Na detWa ≡
K
∑

a=1

Q9, a, (2.49)
0 =

K
∑

a=1

Na detWa Q
a, αβ ≡

K
∑

a=1

Q5, a
αβ , ∀α, β = 1, . . . , 6 (2.50)where

Qa, αβ = ǫαβδγστ paδγp
a
στ .The l.h.s. of eq. (2.49) arises from the ontribution of the O9-plane. On the other hand, intoroidal ompati�ations there are no O5-planes and thus the l.h.s. of eq. (2.50) vanishes.For our hoie of windings (2.18), W î

i = 1, the D9 tadpole ontribution from a givenstak-a of branes is simply equal to the number of branes, Na. The D5 tadpole expressionalso takes a simple form for the �uxes satisfying the F a
(2,0) = 0 ondition (2.40). The �uxesare then represented by three-dimensional Hermitian matries (F a

(1,1)) whih appeared ineq. (2.25) and the D5 tadpoles Q5, a
ij̄

are the Cofators of the ij̄ matrix elements (F a
(1,1))ij̄.Fluxes and tadpoles in suh a form are given in Appendix A.2.6 SpetrumAnalyzing the low energy spetrum of a string based model is the �rst step towardsbuilding a semirealisti D = 4 ompati�ation from a superstring theory. In partiular,in order to build a semirealisti model important issues as hirality, family tripliationand realisti gauge group must be possible to ahieve. In this setion, we will study thefour dimensional low energy spetrum that we get in a magnetized D-brane onstrutionsinvolving K staks of Na magneti D9-branes.As a D9-brane with F 6= 0 is not invariant under orientifold projetion, but maps to thebrane of opposite �ux, there is no orientifold projetion in its open string spetrum. Theresulting gauge group on a stak of N suh branes is therefore U(N) instead of SO(N) or

Sp(N). For the on�guration involving K staks of Na magnetized D9-branes, the gaugesetor of the spetrum follows from the open string states orresponding to strings startingand ending on the same brane stak. The gauge symmetry group is given by a produt ofunitary groups ⊗aU(Na), upon identi�ation of the assoiated open strings attahed on agiven stak with the ones attahed on the mirror (under the orientifold transformation)stak. In addition to these vetor bosons, the massless spetrum ontains adjoint salars28



Chapter 2. Magneti Flux in Toroidal Type I Compati�ationand fermions forming N = 4, D = 4 supermultiplets.In the matter setor, the massless spetrum is obtained from the following open stringstates[75, 89, 93℄:1. Open strings strethed between the a-th and b-th stak give rise to hiral spinors inthe bi fundamental representation (Na, N̄b) of U(Na)×U(Nb). Their multipliity Iabis given by [104℄:
Iab =

detWadetWb

(2π)3

∫

T 6

(

qaF
a
(1,1) + qbF

b
(1,1)

)3
, (2.51)where F a

(1,1) (given in eqs. (2.24) and (2.25)) is the pullbak of the integrally quan-tized world-volume �ux ma
α̂β̂

on the target torus in the omplex basis (eq. 2.4), and
qa is the orresponding U(1)a harge; in our ase qa = +1 (−1) for the fundamental(anti-fundamental representation). The transformation under the gauge group andtheir multipliities are thus determined in terms of the data (Na,W

Î , a
I , mÎ Ĵ).For fatorized toroidal ompati�ations (T 2)3 (eq. 2.17) with only diagonal �uxes

pxiyi (i = 1, 2, 3), the multipliities of hiral fermions, arising from strings startingfrom stak a and ending at b or vie verse, take the simple form (using notations ofeqs. (2.15) and (2.20)):
(Na, N b) : Iab =

∏

i

(m̂a
i n̂

b
i − n̂a

i m̂
b
i),

(Na, Nb) : Iab∗ =
∏

i

(m̂a
i n̂

b
i + n̂a

i m̂
b
i) . (2.52)where i is the label of the i-th two-tori T 2

i , and the integers m̂a
i , n̂

a
i enter in themultipliity expressions through the magneti �eld as in eq. (2.19).In the model that we onstrut, however, we need staks with �uxes whih ontainboth diagonal and oblique �ux omponents, for the purpose of omplete Kähler andomplex struture moduli stabilization.2. Open strings strethed between the a-th brane and its mirror a⋆ give rise to masslessmodes assoiated to Iaa⋆ hiral fermions. These transform either in the antisymmetrior symmetri representation of U(Na). For fatorized toroidal ompati�ations

(T 2)3, the multipliities of hiral fermions are given by;
Antisymmetric :

1

2

(

∏

i

2m̂a
i

)(

∏

j

n̂a
j + 1

)

, 29



Chapter 2. Magneti Flux in Toroidal Type I Compati�ation
Symmetric :

1

2

(

∏

i

2m̂a
i

)(

∏

j

n̂a
j − 1

)

. (2.53)In generi on�gurations, where supersymmetry is broken by the magneti �uxes, thesalar partners of the massless hiral spinors in twisted open string setors (i.e. from non-trivial brane intersetions) are massive (or tahyoni). Moreover, when a hiral index Iabvanishes, the orresponding intersetion of staks a and b is non-hiral. The multipliityof the non-hiral spetrum is then determined by extrating the vanishing fator andalulating the orresponding hiral index in higher dimensions. This analysis is doneexpliitly in setion 4.2.7, one expliit semi-realisti examples are onstruted.2.7 Constant NS-NS B-�eld bakgroundIn toroidal models with vanishing B-�eld, the net generation number of hiral fermions isin general even[94℄. Thus, it is neessary to turn on a onstant B-�eld bakground in orderto obtain a Standard Model like spetrum with three generations. Due to the world-sheetparity projetion O, the NS-NS two-index �eld Bαβ is projeted out from the physialspetrum and onstrained to take the disrete values 0 or 1/2 (in string units) along a2-yle (αβ) of T 6 [91, 92℄.For branes at angles, Bαβ = 1/2 hanges the number of intersetion points of the twobranes. For the ase of magnetized D9-branes, if B is turned on only along the threediagonal 2-tori:
Bxiyi ≡ bi =

1

2
, i = 1, 2, 3, (2.54)the e�et is aounted for by introduing an e�etive world-volume magneti �ux quantum,de�ned by ˜̂m

a

j = m̂a
j +

1
2
n̂a
j , while the �rst Chern numbers along all other 2-yles remainunhanged (and integral). Thus, the modi�ation an be summarized by

(m̂a
j , n̂

a
j ) for bj = 0 → (m̂a

j +
1

2
n̂a
j , n̂

a
j ) ≡ ( ˜̂m

a

j , n̂
a
j ) , for bj =

1

2
, (2.55)along the partiular 2-yles where the NS-NS B-�eld is turned on. This transformationalso takes into aount the hanges in the fermion degeneraies given in eqs. (2.52) and(2.53) (as well as in (2.59), (2.60) below), due to the presene of a non-zero B:

(Na, N b) : Iab =
∏

i

( ˜̂ma
i n̂

b
i − n̂a

i
˜̂mb

i),

30



Chapter 2. Magneti Flux in Toroidal Type I Compati�ation
(Na, Nb) : Iab∗ =

∏

i

( ˜̂ma
i n̂

b
i + n̂a

i
˜̂mb

i) , (2.56)
Antisymmetric : IAaa∗ =

1

2

(

∏

i

2 ˜̂ma
i

)(

∏

j

n̂a
j + 1

)

, (2.57)
Symmetric : ISaa∗ =

1

2

(

∏

i

2 ˜̂ma
i

)(

∏

j

n̂a
j − 1

)

. (2.58)In addition, similar modi�ations take plae in the tadpole anellation onditions, as well.Note that for non trivial B, if n̂a
i is odd ˜̂ma

i is half-integer, while if n̂a
i is even ˜̂ma

i must beinteger.When restriting to the trivial windings of eq. (2.18) that we use in onstruting expliitsemirealisti examples, n̂a
i = 1, the degeneray formula (2.51) simpli�es to:
(Na, N b) : Iab = det

(

F̃ a
(1,1) − F̃ b

(1,1)

)

, (2.59)
(Na, Nb) : Iab∗ = det

(

F̃ a
(1,1) + F̃ b

(1,1)

)

, (2.60)where F̃ = F +B and we have assumed the anonial volume normalization (2.1) on T 6.Similarly, the multipliity of hiral antisymmetri representations is given by:
Antisymmetric : IAaa∗ =

∏

i

(

2 ˜̂ma
i

)

, (2.61)while there are no states in symmetri representations. Finally, the tadpole anellationonditions (2.49) and (2.50) beome:
K
∑

a=1

Na = 16 ;
K
∑

a=1

Na Co(F̃
a
(1,1))ij̄ = 0 ∀ i, j = 1, . . . , 3 . (2.62)
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3Fermion Wavefuntions in Magnetizedbranes:Theta identities and Yukawa ouplings
3.1 IntrodutionOne of the most outstanding puzzles of the Standard Model (SM) of partile physis is thestruture of the Yukawa ouplings between the Higgs �eld and the SM fermions. A orretdesription of the observed masses and mixing of quarks and leptons require very di�erentvalues for the Yukawa oupling onstants for the di�erent generations. In the ontextof semirealisti model building from string theory, one should look for the possibility ofomputing Yukawa ouplings in terms of the extra-dimensional geography. Starting froma (D+4)-dimensional �eld theory and ompatifying D dimensions one may get masslessmodes with fatorized wavefuntions χ(x)× ψ(y), with x, y denoting Minkowski and ex-tra dimensions respetively. Gauge boson omponents Ai in extra dimensions give rise tosalars at low energies and Yukawa ouplings are thus expeted to appear upon ompat-i�ation from the higher dimensional gauge vertex interation AMΨΓMΨ. The Yukawaoupling onstants are then omputed from overlap integrals over the extra dimensions.The aim of this hapter is to address the issue of omputating Yukawa ouplings, in theontext of magnetized D-brane models. We onsider, as our starting point, ten dimensionalsuper-Yang-Mills (SYM) theory as the best motivated extra dimensional �eld theory, sineit appears in the low-energy limit of Type I, Type IIB and heteroti string theories. Weompatify D=10 N = 1 SYM on a 6-torus T 6 and, in order to obtain hiral fermions,we add onstant magneti �ux through the torus. We solve Dira and Laplae equationsto �nd out the expliit form of wavefuntions in extra dimensions. The Yukawa ouplings32



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsare obtained by performing the overlap integrals of these wavefuntions.Close form expressions for Yukawa ouplings have been written down for string on-strutions involving branes at angles [81, 109℄ or those with magnetized branes [4, 6, 89,90, 93, 96, 102, 103, 104, 107, 123, 124, 125, 126, 127℄. In the IIA piture, the inter-ation is desribed by the worldsheet instanton ontributions from the sum of areas ofvarious triangles that are formed by three D6 branes interseting at three verties, form-ing a triangle. This is due to the fat that the intersetion of branes relevant for Yukawainterations are those whih are point-like giving hiral multiplets. Line or surfae likeintersetions, on the other hand, would give rise to interations of non-hiral matter. Inthese disussions, the orientation of the branes themselves are parameterized by threeangles in the three orthogonal 2-planes, inside T 6. These results have been further gen-eralized to inlude Eulidean D2 brane instanton ontributions to the Yukawa ouplings[110, 111, 112, 113, 114, 115, 116, 117, 118℄, generating up quark and right handed neutrinomasses through a Higgs mehanism, in a partiular lass of models. A limitation on theexerise performed in these papers omes from the fatorized struture of the tori, whiharises from the orientations of the brane wrappings that are lassi�ed by angles in threedi�erent T 2 planes, rather than their general orientations in the internal six dimensionalspae parameterized for instane by the SU(3) angles in supersymmetri situations.Similar results for perturbative Yukawa ouplings have also been obtained in the mag-netized brane piture, based on their gauge theoreti representation [6℄. In this ase, theinterations are given by the overlap integral of three wavefuntions (ontributing to theinteration) along internal diretions. The wavefuntions orrespond, in the ordinary �eldtheory ontext, to those belonging to two fermions and a salar, and are given by Jaobitheta funtions, when �uxes are turned on along three diagonal 2-tori. The relationshipbetween the Yukawa interations in the magnetized brane onstrutions and those involv-ing D6 branes, have also been established using T-duality rules. However, these exeriseshave one again been of limited sope due to the fat that expliit expressions are writtendown only for magnetized branes with �uxes that are diagonal along three T 2's.Tehnially, the wavefuntions of hiral �elds partiipating in Yukawa interations arede�ned in terms of Jaobi theta funtions, with a modular parameter identi�ed as aprodut of the omplex struture of the T 2, with the �ux that is turned on along it. TheYukawa interations are therefore omputed for the ase when the six dimensional internalspae is of a fatorized form:
T 2 × T 2 × T 2 ∈ T 6. (3.1)As advoated in [7, 102, 103, 104℄, one, in general, needs to inlude both `diagonal' and`oblique' �uxes for appliations to model building with moduli stabilization. Therefore it33



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsis imperative that we generalize previous results further and obtain interations involvingbranes with oblique �uxes. As stated, in the language of D6 branes suh generalizationswould amount to intersetions of branes with orientations given by SU(3) rotation angles,resulting to N = 1 supersymmetry in D = 4 with hiral matter. In view of the importaneof suh �uxes in obtaining realisti partile physis models with stabilized moduli, and todesribe the interations among the hiral �elds, we shall study the expliit onstrutionof fermion (and salar) wavefuntions on ompat toroidal spaes with arbitrary onstant�uxes.Sattered results on fermion wavefuntions in presene of onstant gauge �uxes, on toriof arbitrary dimensions, exist already in the literature [6, 128℄. However, they are of limiteduse for our purpose. First, any wavefuntion obtained through a diagonalization proessof the gauge �uxes [128℄, is not in general suitable for obtaining an overlap integral ofwavefuntions. This is beause the �ux matries need not ommute along di�erent staksof branes that partiipate in the interation through the hiral multiplets, arising from thestrings that join these branes and therefore they are not simultaneously diagonalizable.In [6℄, a set of wavefuntions was given for onstant gauge �uxes. However, one again,expliit results are valid only for those �uxes whih satisfy a set of `Riemann onditions',inluding a positivity riterion on the �ux matries. As the analysis in this hapter willlarify, the positivity restritions on the �uxes is due to the fat that the given wavefuntionin [6℄ orresponds to a spei� omponent of the 2n dimensional Dira spinor for a 2n-dimensional torus T 2n. We will show that this restrition is relaxed, if one onsiderswavefuntions of various hiralities, suh that all possible �ux matries are allowed, thoughin our ase we restrit to only those �uxes that are onsistent with the requirements ofspae-time supersymmetry .In fat, we give expliit solutions for the wavefuntions for arbitrary �uxes, that are wellde�ned globally on the toroidal spae. We also give expliit mappings among the wave-funtions of di�erent hiralities, satisfying di�erent onsisteny riterion. These mappingsare shown to relate wavefuntions orresponding to di�erent �uxes and omplex struturesof the tori. We further reon�rm that our wavefuntions, as well as mappings are indeedorret, by showing that equations of motion also map into eah other for the fermionwavefuntions just desribed, orresponding to di�erent internal hiralities.Apart from the lak of enough knowledge about the fermion wavefuntions, the limi-tations on available information about the Yukawa ouplings for general gauge �uxes alsoarose from the tehnialities in dealing with general Riemann theta funtions that areused for de�ning the wavefuntions on toroidal spaes. Internal wavefuntions of hiralfermions partiipating in the interation are given by a general Riemann theta funtion34



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingswhose modular parameter argument is determined in terms of the omplex struture of T 6as well as the `oblique' �uxes that we turn on. Hene, the limitations on available resultsfor Yukawa interations in the literature, arise due to the intriaies involved in evaluat-ing the overlap integrals of the trilinear produt of general Riemann theta funtions overthe six dimensional internal spae. In partiular, even for positive hirality wavefuntionsalong the internal T 6 given in [6℄, one �nds that theta identities [119℄ need to be furthergeneralized, in order to ompute the Yukawa interations with oblique �uxes. The taskgoes beyond the identity given in [119℄, sine one needs to evaluate the overlap integral ofthree wavefuntions, all having di�erent modular parameter matries as arguments, dueto the presene of di�erent �uxes along the three brane staks involved in generating theYukawa oupling.In this hapter, �rst, we generalize the identities used in [6℄ (available from mathemat-ial literature [119℄) for the known positive hirality wavefuntions to those with generalRiemann theta funtions representing the fermion wavefuntions. This gives an expliitanswer for the Yukawa interation in a lose form and generalizes the results of [6, 81℄. Inpartiular, we generalize the result further for the positive hirality wavefuntion, whengeneral (hermitian) �uxes with all nine parameters rather than the six omponents, on-sidered before, are turned on.Furthermore, as already stated earlier, we give expliit onstrutions of the other T 6spinor wavefuntions, as well. In these ases too, we obtain the seletion rules amonghiral multiplets giving nonzero Yukawa ouplings. Now, however, the �nal answer is leftas a real �nite integration of a theta funtion, over three toroidal oordinate variables.This integration an be evaluated numerially for any given example.The hapter is organized as follows. In the next setion we brie�y disuss the originof Yukawa ouplings in extra dimensional theories. We motivate the study of magnetizedompati�ation in order to ahieve D = 4 hiral models from extra dimensions. We de-sribe the general strategy that we follow to ompute three-point funtions in suh models[6℄. In Setion 3.3, we give the hiral fermion wavefuntions in the presene of onstant�uxes. In Setion 3.4, we review the known results on the Jaobi theta identity given in[119℄ and present a proof of its validity. We also give an expression for the Yukawa inter-ation for fatorized tori and `diagonal' �uxes using the theta identity. In Setion 3.5, weonstrut a similar identity, but now for the general Riemann theta funtion. We then usethis new mathematial relation for writing down the expression for the Yukawa interationwhen oblique �uxes are present and satisfy the `Riemann onditions' of [6℄. Results arefurther generalized to inlude the most general �ux matries onsistent with supersym-metry and `Riemann ondition' requirements. In order to relax the later, in Setion 3.6,35



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingswe present the generalizations to inlude the wavefuntions of the other internal hirali-ties, in order to aommodate general �uxes onsistent with supersymmetry restritions.Conlusions are presented in Setion 3.7.3.2 Ten Dimensional N = 1 Super Yang-Mills ompat-i�ation with magneti �uxesLet us onsider N = 1 supersymmetri Yang-Mills theory in ten dimensions. Its La-grangian density is given by
LSYM = −

1

4g2
Tr
{

FMNFMN

}

+
i

2g2
Tr
{

λ̄ΓMDMλ
} (3.2)where M,N = 0, . . . , 9. Here, λ denotes gaugino �eld, g is the Yang-Mills ouplingonstant in D = 10, and ΓM is the gamma matrix for ten dimensions. The gauge group�eld strength FMN and ovariant derivative DM are given by

FMN = ∂MAN − ∂NAM − i[AM , AN ] (3.3)
DMλ = ∂Mλ− i[AM , λ] (3.4)where AM is the ten-dimensional vetor �eld.In order to obtain a D = 4 theory at low energies, we should onsider the abovetheory ompati�ed on a six-dimensional ompat manifold M6, so that we reover four-dimensional physis at energies below the ompati�ation saleMc. Here we onsider thetorus T 6 as the extra dimensional ompat spae. The ten-dimensional �elds AM and λare deomposed as
λ(Xµ, xm) =

∑

n

χn(X
µ)⊗ ψn(x

m) (3.5)
AM (Xµ, xm) =

∑

n

ϕn,M(Xµ)⊗ φn,M(xm) (3.6)where Xµ, µ = 0, . . . , 3 and xm, m = 4, . . . , 9 stand for the non-ompat and internaldimensions, respetively. The internal wavefuntions ψn, φn,M an be hosen to be eigen-states of the orresponding internal wave operator
iD/6ψn = 0 (3.7)

∆6φn,M = M2
n,Mφn,M (3.8)36



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsBy introduing non-trivial expetation values for the gauge �eld AM , one an ob-tain hiral fermions in four dimension. Indeed, sine we are only interested in preservingPoinaré invariane in the four non-ompat dimensions, we are entitled to onsider non-vanishing v.e.v.'s 〈Am(x)〉, m = 4, . . . , 9. A non-trivial gauge �eld modi�es the Diraoperator and hene the omputation of the Dira index, and may introdue a hiral asym-metry that allows for a hiral massless spetrum. We hene �nd that ompati�ationswith non-trivial gauge �elds 〈Am(x)〉, or equivalently, magnetized M6 ompati�ationswith 〈Fmn〉 6= 0, provide a natural way of ahieving D = 4 hiral theories with reduedgauge group.In addition, the introdution of a magneti �eld in the ompati�ation may not onlylead to hiral matter but also to repliation of hiral fermions, sine the Dira equationfor the internal fermioni wavefuntion D/6ψ = 0 may yield several independent degen-erate solutions, labeled by ψj(x). In order to get anonial kineti terms, these internalwavefuntions must satisfy
∫

M6

d6y ψj(x)
†ψk(x) = δjk (3.9)the same ondition applying to bosoni wavefuntions.Finally, given the internal wavefuntions ψj , φk orresponding to the D = 4 hiralfermions and lightest salars, it is possible to ompute the Yukawa ouplings betweenthem, as an overlap between three wavefuntions. Indeed, the fermioni part of the D = 10SYM ation (3.2) ontains a term of the form A · λ · λ, whih upon dimensional redutionyields the Yukawa oupling

Yijk =

∫

M

ψa†
i Γm ψb

j φ
c
k,m fabc (3.10)where fabc are the struture onstants of the higher dimensional gauge group.3.3 Toroidal WavefuntionsWe �rst present the onstrution of hiral fermion wavefuntions on tori and give theirrepresentation in terms of theta funtions. For de�niteness we �rst disuss the ase of4-tori, though T 6 hiral multiplet struture an be analyzed in a similar manner. To beexpliit, for the moment we restrit ourselves to the anonial omplex struture: Ω = iI2and Ω = iI3 for T 4 and T 6 respetively, where Id represents a d-dimensional identitymatrix. The general omplex struture is restored while writing the wavefuntions as wellas interation verties. 37



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsTo obtain the Dira wavefuntions in T 4, we start by writing four Dira Gammamatries (in a omplex basis) :
Γz1 = σz × σ3 =













0 2

0 0

0 −2

0 0













, Γz2 = I × σz =













2 0

0 2

0 0

0 0













, (3.11)where the information about the omplex struture in the above expression is hidden inthe fat that we have used the de�nitions: zi = xi + iyi in writing these Dira matries.Similarly,
Γz̄1 = σz̄ × σ3 =













0 0

2 0

0 0

−2 0













, Γz̄2 = I × σz̄ =













0 0

0 0

2 0

0 2













. (3.12)They satisfy the anti-ommutation relations:
{Γzi,Γzj} = 0, {Γz̄i,Γz̄j} = 0, {Γzi,Γz̄j} = 4δij (3.13)with i, j = 1, 2. In the above basis Γ5 takes the form:

Γ5 =













1

−1

−1

1













(3.14)with 4-omponent Dira wavefuntions having the form:
Ψ =













Ψ1
+

Ψ2
−

Ψ1
−

Ψ2
+













. (3.15)In suh a deomposition of Ψ, Dira equations for fermions in the adjoint representationare of the form:
∂̄1Ψ

1
+ + ∂2Ψ

2
+ + [Az̄1 ,Ψ

1
+] + [Az2 , ψ

2
+] = 0, 38



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplings
∂̄2Ψ

1
+ − ∂1Ψ

2
+ + [Az̄2 ,Ψ

1
+]− [Az1 ,Ψ

2
+] = 0,

∂1Ψ
2
− + ∂2Ψ

1
− + [Az1 ,Ψ

2
−] + [Az2 ,Ψ

1
−] = 0,

∂̄2Ψ
2
− − ∂̄1Ψ

1
− + [Az̄2 ,Ψ

2
−]− [Az̄1 ,Ψ

1
−] = 0. (3.16)In a generi model, hiral fermions arise either from the string starting at a branestak-a and ending at another brane stak-b (or its image b∗) or from strings startingat a brane stak a and ending at its image a∗. We already showed the orrespondenebetween a stak of magnetized branes and �ux quanta in supersymmetri gauge theory,in eq. (2.34). The orrespondene is easily generalized when several staks of branes arepresent. Expliitly, in a onstrution with P number of staks of branes, with number ofbranes being ni for the i'th stak, the �ux (for a given target spae omponent (ij̄) ) takesa form:

Fij̄ =

















F 1In1

F 2In2

.

.

F npInp
,

















(3.17)
with Ini

being the ni-dimensional identity matrix and we have hidden the ij̄ indies inthe RHS of eq. (3.17) in onstants F i that are all integrally quantized, as given earlierexpliitly in eqs. (2.32) and (2.33). The orresponding gauge potentials will also thenhave a blok diagonal struture:
Ai =













A1
i In1

A2
i In2

.

. A
np

i Inp













. (3.18)Now, in order to understand the wavefuntions assoiated with hiral fermion bifun-damentals, in suh a representation of the brane staks, we onsider the �ux matrix Fij̄in eq. (3.17) and gauge potential in eq. (3.18) with only two bloks (P = 2). The hiralfermion bilinears between stak-a and stak-b are then represented by:
Ψab =

(

Cna
χab

Cnb

)

, (3.19)
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingswith Cna
, Cnb

being onstant matries of dimensions na and nb respetively 7. We aneasily derive the equation satis�ed by the various Dira omponents, as given in eq. (3.15),for χab suh that Ψab satis�es the Dira equation (3.16). We obtain:
∂̄1χ

1
+ + ∂2χ

2
+ + (A1 − A2)z̄1χ

1
+ + (A1 − A2)z2χ

2
+ = 0,

∂̄2χ
1
+ − ∂1χ

2
+ + (A1 −A2)z̄2χ

1
+ − (A1 − A2)z1χ

2
+ = 0,

∂1χ
2
− + ∂2χ

1
− + (A1 − A2)z1χ

2
− + (A1 − A2)z2χ

1
− = 0,

∂̄2χ
2
− − ∂̄1χ

1
− + (A1 −A2)z̄2χ

2
− − (A1 − A2)z̄1χ

1
− = 0, (3.20)with subsript a, b being dropped from χab to make the expressions simpler. We will,however, restore the indies at a later stage while evaluating the overlap of three suhwave funtions from di�erent intersetions. In partiular, for the hiral omponents, χ1

+equations redue to:
∂̄1χ

1
+ + (A1 − A2)z̄1χ

1
+ = 0,

∂̄2χ
1
+ + (A1 − A2)z̄2χ

1
+ = 0. (3.21)The generalization of eq. (3.21) to the T 6 ase is straightforward and an be writtenas:

D̄iχ
ab
+ ≡ ∂̄iχ

ab
+ + (A1 − A2)z̄iχ

ab
+ = 0, (i = 1, 2, 3). (3.22)Eq. (3.22) mathes with the results obtained in [6℄ for Ω = iI3, with the identi�ation:

(A1 − A2)z̄i ≡
π

2

(

[N.(z̃+ ζ̃)].(ImΩ)−1
)

i
, (3.23)with ~ζ being the omplex onstants representing the Wilson lines and N is the di�ereneof �uxes between the two staks a and b, having onstant �uxes F 1 and F 2, giving thefermion bilinears in the representation (n1, n̄2).Suh a solution for eq. (3.22) and (3.23) is given in [6℄ for arbitrary omplex struture

Ω by the basis elements:
ψ
~j,N(~z,Ω) = N · e{iπ[N.~z].(N.ImΩ)−1Im[N.~z]} · ϑ

[

~j

0

]

(N.~z,N.Ω), (3.24)7The onstant matries orrespond to gaugino wavefuntion. The N = 1 gauginos are massless as longas supersymmetry remains unbroken. The other gauginos oming from the N = 4, that aquire high salemasses, and deouples from the massless spetrum, whih we are interested in.
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingswith general de�nition of Riemann theta funtion:
ϑ

[

~a
~b

]

(~ν|Ω) =
∑

~m∈Zn

eπ(~m+~a).Ω.(~m+~a)e2πi(~m+~a).(~ν+~b). (3.25)Moreover, the matrix N should satisfy the following onditions in order to have wellde�ned bifundamental wavefuntions. These are the so-alled Riemann onditions [6℄ andare written as:
Nīj ∈ Z ,

(N.ImΩ)T = N.ImΩ ,

N.ImΩ > 0. (3.26)The �rst ondition in eq. (3.26) is the integrality of the elements of N, that we disusslater on, in the absene of any non-abelian Wilson lines [6℄, following from the Diraquantization of �uxes. To understand the last ondition of eq. (3.26), one rewrites the
(1, 1) form Fziz̄j , for the ase when pxx = pyy = 0. Indeed using eq. (2.31), one obtains:

Fziz̄j = −ipxy(Ω− Ω̄)−1, (3.27)whih mathes with the expression for H in eq. (4.73) of [6℄ upon the identi�ation
NT = pxy and H = 1

2
NT .ImΩ−1. Also using (2.31), it follows that:

(NΩ)T = (NΩ). (3.28)The positivity requirement on H then arises from the ondition that the solutions of theDira equation, orresponding to hiral wavefuntions, be normalizable.Again, N satis�es the onstraints given in eqs. (3.26) as well as:
~j.N ∈ Zn, (3.29)implying that ~j.N is an n-dimensional vetor with integer entries. Also, the normalizationfator N in eq. (3.24) is given by:

N = (2n| detN|. det(ImΩ))
1
4
(

V ol(T 2n)
)− 1

2 . (3.30)
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsThen wavefuntions satisfy the orthonormality relations:
∫

T 2n

(ψ
~j,N)∗ψ

~k,N = δ~j,~k. (3.31)These results are useful in determining the interation terms in Setion 3.5. However,to have well-de�ned wavefuntions, N's must satisfy the Riemann onditions given in eq.(3.26).The wavefuntions of the hiral fermion bifundamentals, with both abelian and non-abelian Wilson lines, involved in Yukawa omputations, are given in [6℄ for the ase ofthe fatorized tori, eq. (3.1), and diagonal �uxes. For oblique �uxes, we postpone thedisussion of non-abelian Wilson lines and rational �uxes to the last setion of the hapterand for the moment we onsider the ase of integral �uxes only. This restrition, never-theless, allows for a rih struture of phenomenologial value, sine semi-realisti modelswith three generations of hiral fermions and stabilized moduli an be built even in theontext of suh integral �uxes, by turning on NS-NS antisymmetri tensor bakground.For example, a three generation SU(5) GUT with stabilized moduli given in [7℄ was on-struted with all winding numbers, n = 1, for di�erent staks of branes. Also, the preseneof a half-integral NS-NS antisymmetri tensor does not modify any of our results, sine allthe relevant hiral fermion wavefuntions depend on the di�erene of �uxes along pairs ofbrane staks whih is always integral.3.4 Yukawa omputation on fatorized tori3.4.1 WavefuntionA detail disussion of the hiral fermion wavefuntions in the presene of onstant gauge�uxes is presented in the previous setion for general tori and �uxes. In the ase offatorized tori, eq. (3.1), the six dimensional hiral/anti-hiral wavefuntions are writtenas a produt of wavefuntions on T 2. To show this expliitly, we present the ase of T 4as an example, with T 6 ase working out in a similar fashion. More preisely, onsideringthat on two T 2's, fermion wavefuntions
ψ(1) =

(

ψ
(1)
+

ψ
(1)
−

)

, ψ(2) =

(

ψ
(2)
+

ψ
(2)
−

)

, (3.32)
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingswith their internal U(n1)×U(n2) struture being represented in a manner as in eq. (3.19),satisfy the equations:
∂̄1ψ

(1)
+ + (A1 − A2)z̄1ψ

(1)
+ = 0,

∂1ψ
(1)
− + (A1 − A2)z1ψ

(1)
− = 0,

∂̄2ψ
(2)
+ + (A1 − A2)z̄2ψ

(2)
+ = 0,

∂2ψ
(2)
− + (A1 − A2)z2ψ

(2)
− = 0. (3.33)

T 4 fermion wavefuntions are then onstruted through a diret produt of ψ1 and ψ2 (inthe notations of Setion 3.3):












Ψ1
+

Ψ2
−

Ψ1
−

Ψ2
+













≡

(

ψ
(1)
+

ψ
(1)
−

)

⊗

(

ψ
(2)
+

ψ
(2)
−

)

. (3.34)In partiular,
Ψ1

+ ≡ ψ
(1)
+ ⊗ ψ

(2)
+ (3.35)satis�es preisely the equations (3.21) for hiral fermions on T 4. We an further extendthese results to show that T 6 hiral wavefuntions an also be written as a produt of thehiral wavefuntions on three T 2's in the deomposition (3.1).Yukawa interation on T 6 is then also given by an expression whih is a diret produtof the interation terms for the three T 2's. Wavefuntions for the hiral fermions on a T 2(with oordinates x, y) are expressed in terms of the basis wavefuntions ψj,N [6℄:

ψj,N(τ, z) = N · eiπNzIm z/Im τ · ϑ

[

j
N

0

]

(Nz,Nτ), j = 0, . . . , N − 1 , (3.36)with N denoting the di�erene of the U(na) and U(nb) magneti gauge �uxes, turned onalong the Cartan generators, representing staks of na and nb branes respetively and givesthe degeneray of the hiral fermions:
N = ma −mb ≡ Iab, (3.37)with ma and mb being the 1st Chern number of �uxes along staks a and b, with unitwindings.Using suh a basis, the hiral and anti-hiral (left and right handed fermions) basis43



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingswavefuntions:
ψj =

(

ψj
+

ψj
−

)

, (3.38)are given by:
ψj
+ = ψj,N(τ, z + ζ), (ψj

+)
∗ = ψ−j,−N(τ̄ , z̄ + ζ̄),

ψj
− = ψj,N(τ̄ , z̄ + ζ̄), (ψj

−)
∗ = ψ−j,−N(τ, z + ζ), (3.39)and satisfy the equations:

Dψj
+ = 0, D†(ψj

+)
∗ = 0,

D†ψj
− = 0, D(ψj

−)
∗ = 0Expanding as in 3.33 and by substituting the orresponding gauge potentials,

(A1)z̄1 =
πma

2Imτ
(z + ζ), (A2)z̄1 =

πmb

2Imτ
(z + ζ),

(A1)z1 =
−πma

2Imτ
(z̄ + ζ̄), (A2)z1 =

−πmb

2Imτ
(z̄ + ζ̄).one gets,

(

∂̄ +
πN

2Imτ
(z + ζ)

)

ψj
+ = 0,

(

∂ −
πN

2Imτ
(z̄ + ζ̄)

)

(ψj
+)

∗ = 0,
(

∂ −
πN

2Imτ
(z̄ + ζ̄)

)

ψj
− = 0,

(

∂̄ +
πN

2Imτ
(z + ζ)

)

(ψj
−)

∗ = 0, (3.40)with ζ representing the Wilson lines. In the following we set the Wilson lines ζ = 0.Furthermore, expressions of the hiral and anti-hiral solutions, as given in eqs. (3.39)and (3.36), are well de�ned provided N > 0 for the wavefuntions ψj
+ and N < 0 for thewavefuntions ψj

−. In these ases, for ψj
+ and ψj

− to be properly normalized:
∫

T 2

dzdz̄ ψj
±(ψ

k
±)

∗ = δjk, (3.41)
44



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsan additional fator
Nj =

(

2Imτ |N |

A2

)
1
4 (3.42)needs to be introdued, with A being the area of the T 2.In fat, the basis funtions (3.36) are also eigenfuntions of the Laplaian. We elaborateon this point more in Setion 3.6.4 and now proeed to make use of these fermion andboson basis funtions to determine the Yukawa interation in the ase of fatorized toriand `diagonal' �uxes.3.4.2 Interation for fatorized toriWe now summarize the basi results of [6℄ regarding the omputations of Yukawa intera-tions. As disussed in Setion 3.2, suh four dimensional interation terms were obtainedthrough a dimensional redution of the D = 10, N = 1 super-Yang-Mills theory to fourdimensions in the presene of onstant magneti �uxes. The Yukawa oupling is given by

Yijk =

∫

M

ψa†
i Γmψb

jφ
c
k,mfabc, (3.43)where M is the internal spae on whih the gauge theory has been ompati�ed and ψand φ are the internal zero mode �utuations of the gaugino and Yang-Mills �elds with

fabc being the struture onstants of the higher dimensional gauge group. For the torusompati�ation that we are disussing, the internal wavefuntions are fatorized intothose depending on the oordinates of three T 2's. In turn, these involve the evaluation ofterms of the type:
∫

T 2

dzdz̄T r{ψ+.[φ−, ψ+]} and

∫

T 2

dzdz̄T r{ψ−.[φ+, ψ−]}, (3.44)with φ± being the wavefuntions of the bosoni �utuations of the ten dimensional gauge�elds with heliity ±1 along the partiular T 2 diretion. Similarly ψ± denotes the spinor�utuations with heliities ±1
2
. Therefore, In the fatorized ase of eq. (3.1), the fullinteration term is omputed as a produt of three suh integrals. To evaluate theseintegrals, one uses the wavefuntions (3.32) and basis funtions as given in eq. (3.36).In the language of string onstrution with magnetized branes, N ≡ Iab orrespondsto the intersetion number for the string starting at a stak a and ending on another one

b. The Yukawa interation then reads:
Yijk = gσabc

∫

T 2

dzdz̄ ψi,Iab(τ, z).ψj,Ica(τ, z).(ψk,Icb(τ, z))∗ (3.45)45



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingswith Ibc < 0, orresponding to the fat that when the intersetion numbers Iab and Icaare positive, then Ibc has to be negative, sine Iab + Ibc + Ica = 0. A similar expressionexists for Ibc > 0 as well. To evaluate this integral, one uses an identity, satis�ed by thetheta funtions appearing in the de�nition of the basis funtions (3.36). The aim of thisrelation is to establish a onnetion between the wavefuntions with intersetion numbers
N1 and N2 for bifundamental states in brane intersetions ab and ca with the one in theintersetion bc with N3 = N1 +N2. However, in view of the further generalization to theoblique �ux ase, we establish this identity expliitly in the next subsetion and generalizeit further in Setion 3.5.3.4.3 Jaobi theta funtion identitiesWe now expliitly prove the following theta funtion identity[119℄ used in [6℄ for omputingthe Yukawa ouplings:
ϑ

[

r
N1

0

]

(z1, τN1) · ϑ

[

s
N2

0

]

(z2, τN2) =
∑

m∈ZN1+N2

ϑ

[

r+s+N1m
N1+N2

0

]

(z1 + z2, τ(N1 +N2))

×ϑ

[

N2r−N1s+N1N2m
N1N2(N1+N2)

0

]

(z1N2 − z2N1, τN1N2(N1 +N2)), (3.46)where ϑ is the Jaobi theta-funtion:
ϑ

[

a

b

]

(ν, τ) =
∑

l∈Z

eπi(a+l)2τ e2πi(a+l)(ν+b). (3.47)To proeed with the proof of the above identity, we write its LHS expliitly as:
ϑ

[

r
N1

0

]

(z1, τN1) · ϑ

[

s
N2

0

]

(z2, τN2) =
∑

l1∈Z

∑

l2∈Z

e
πi( r

N1
+l1)2τN1 e

2πi( r
N1

+l1)z1

· e
πi( s

N2
+l2)2τN2 e

2πi( s
N2

+l2)z2 . (3.48)Similarly the RHS of the identity (3.46 ) an be written as:
∑

m∈ZN1+N2

ϑ

[

r+s+N1m
N1+N2

0

]

(z1 + z2, τ(N1 +N2))

×ϑ

[

N2r−N1s+N1N2m
N1N2(N1+N2)

0

]

(z1N2 − z2N1, τN1N2(N1 +N2))
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplings
=

∑

m∈ZN1+N2

∑

l3∈Z

∑

l4∈Z

e
πi(

r+s+N1m
N1+N2

+l3)2τ(N1+N2) e
2πi(

r+s+N1m
N1+N2

+l3)(z1+z2)

×e
πi(

N2r−N1s+N1N2m
N1N2(N1+N2)

+l4)2τN1N2(N1+N2) e
2πi(

N2r−N1s+N1N2m
N1N2(N1+N2)

+l4)(z1N2−z2N1). (3.49)Now, to math the z1, z2 terms in both sides of eq. (3.46), we �rst note the identity:
(

r + s

N1 +N2

)

(z1 + z2)+

(

N2r −N1s

N1N2(N1 +N2)

)

(z1N2 − z2N1) =

(

r

N1

z1 +
s

N2

z2

)

, (3.50)and �nd oe�ients p1, p2, q1, q2 suh that,
(p1l1 + p2l2) (z1 + z2) + (q1l1 + q2l2) (z1N2 − z2N1) = (l1z1 + l2z2) . (3.51)Eq. (3.51) leads to the following values for p1, p2, q1, q2 :

p1 =
N1

N1 +N2
, p2 =

N2

N1 +N2
,

q1 =
1

N1 +N2
, q2 =

−1

N1 +N2
. (3.52)Then the two terms, ontaining z1, z2, in the RHS of eq. (3.48) an be rewritten as:

e
2πi( r

N1
+l1)z1 e

2πi( s
N2

+l2)z2 = e
2πi( r+s

N1+N2
+

N1l1
N1+N2

+
N2l2

N1+N2
)(z1+z2) e

2πi(
N2r−N1s

N1N2(N1+N2)
+

l1−l2
N1+N2

)(z1N2−z2N1).(3.53)Similarly, oe�ients p, q satisfying identity:
p

[

r + s

N1 +N2
+

N1l1
N1 +N2

+
N2l2

N1 +N2

]2

+ q

[

N2r −N1s

N1N2(N1 +N2)
+

l1 − l2
N1 +N2

]2

= (3.54)
[

r

N1
+ l1

]2

N1 +

[

s

N2
+ l2

]2

N2,are given as:
p = N1 +N2, q = N1N2(N1 +N2). (3.55)Using eqs. (3.50), (3.51), (3.53) and (3.55), the RHS of eq. (3.48) (appearing in the LHSof eq. (3.46) ) an be re-written :

∑

l1∈Z

∑

l2∈Z

e
πi( r

N1
+l1)2τN1 e

2πi( r
N1

+l1)z1 · e
πi( s

N2
+l2)2τN2 e

2πi( s
N2

+l2)z2 =
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∑

l1∈Z

∑

l2∈Z

e
πi( r+s

N1+N2
+

N1l1
N1+N2

+
N2l2

N1+N2
)2τ(N1+N2) e

2πi( r+s
N1+N2

+
N1l1

N1+N2
+

N2l2
N1+N2

)(z1+z2)·

e
πi(

N2r−N1s
N1N2(N1+N2)

+
l1−l2

N1+N2
)2τN1N2(N1+N2) e

2πi(
N2r−N1s

N1N2(N1+N2)
+

l1−l2
N1+N2

)(z1N2−z2N1). (3.56)Proving the identity, eq. (3.46), now amounts to showing that the RHS of eq. (3.49)mathes preisely with that of eq. (3.56) with m in eq. (3.49) taking value as m =

0, 1, ......., (N1 +N2 − 1). We note:1. When l1 = l2 in eq. (3.56), the terms in the RHS are idential to those in the RHSof eq. (3.49), with m = 0, l4 = 0, if we identify l2 with l3.When l1 = l2 + 1, the terms in eq. (3.56) exatly math with those in eq. (3.49)obtained for the values m = 1, l4 = 0 with the identi�ation of l2 with l3.This goes on up to l1 = l2 + (N1 + N2 − 1) whih orresponds to the ase for
l3(= l2), m = (N1 +N2 − 1) and l4 = 0.2. The terms obtained in eq. (3.56) for l1 = l2+(N1+N2) orresponds to m = 0, l4 = 1and l2 +N1 identi�ed with l3 in eq. (3.49).When l1 = l2 + (N1 + N2) + 1 the terms orrespond to the ase m = 1, l4 = 1 and
l2 +N1 identi�ed with l3 in eq. (3.49).This goes on till l1 = l2 + (N1 + N2) + (N1 + N2 − 1) when they orrespond to
m = (N1 +N2 − 1), l4 = 1 and l2 +N1 identi�ed with l3 in eq. (3.49).3. Similarly the terms for l1 = l2+2(N1+N2) orrespond to the terms for m = 0, l4 = 2and l3 = (l2 + 2N1) . And so on....We have therefore shown a one-to-one orrespondene between the terms in the RHSof eqs. (3.49) and (3.56). The identity eq. (3.46 ) has thus been proved expliitly.3.4.4 Appliation to Yukawa omputation for fatorized toriWe now make use of the above Jaobi theta identity as well as of the expliit forms of thefermion and salar wavefuntions, de�ned in terms of the basis funtions in eq. (3.36) towrite the expression for the Yukawa interation term. More preisely, in order to evaluatethe Yukawa oupling given in eq. (3.45), one uses the theta identity of eq. (3.46) and thebasis funtion in eq. (3.36) and proeeds by writing down:

ψi,Iab(τ, z).ψj,Ica(τ, z) =

(

2Imτ

A2

)
1
2

(IabIca)
1
4 eiπ(N1+N2)zIm z/Im τ×

×ϑ

[

i
N1

0

]

(N1z,N1τ) · ϑ

[

j
N2

0

]

(N2z,N2τ), i = 0, . . . , N1 − 1, j = 0, . . . , N2 − 1. 48



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplings(3.57)where we have also made use of the normalization fator, N given in eq. (3.42), andidenti�ed for a T 2 ompati�ation:
N1 = Iab, N2 = Ica, (3.58)with
Iab = ma −mb, etc. (3.59)giving
N3 = (N1 +N2) = Icb. (3.60)Now, using the theta identity (3.46), eq. (3.57) an be rewritten in the form:

ψi,Iab(τ, z).ψj,Ica(τ, z) =

(

2Imτ

A2

) 1
4
(

IabIca
Icb

) 1
4 ∑

m∈ZIcb

ψi+j+Iabm,Icb(τ, z)×

×ϑ

[

Icai−Iabj+IabIcam
IabIcaIcb

0

]

(0, τIabIcaIcb). (3.61)The Yukawa interation (3.45), is then evaluated using the orthogonality property of thewavefuntions given in eq. (3.41) and reads 8:
Yijk = σabcg

(

2Imτ

A2

)
1
4
(

IabIca
Icb

)
1
4 ∑

m∈ZIcb

δk,i+j+Iabm · ϑ

[

Icai−Iabj+IabIcam
IabIcaIcb

0

]

(0, τIabIcaIcb).(3.62)After imposing the Kroneker delta onstraint, we obtain:
Yijk = σabcg

(

2Imτ

A2

)
1
4
(

IabIca
Icb

)
1
4

ϑ

[

−
(

j
Ica

+ k
Ibc

)

/Iab

0

]

(0, τIabIcaIcb). (3.63)The �nal answer an be expressed as :
Yijk = σabcg

(

2Imτ

A2

)
1
4
(

IabIca
Icb

)
1
4

ϑ

[

δijk

0

]

(0, τ |IabIbcIca|), (3.64)8In eq. (3.62), the omputed Yukawa oupling is evaluated from the expression of Yukawa interationgiven in eq. (3.45) whih is a triple overlap of basis wavefuntions given in eq. (3.36). These basisfuntions not only represent zero modes of the Dira operator but also eigenfuntions of the Laplaian.This is expliitly shown in Ref. [6℄ for the positive hirality wavefuntion and in Setion (3.6.4) for thenegative hirality wavefuntion. 49



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingswith
δijk =

i

Iab
+

j

Ica
+

k

Ibc
. (3.65)The result an be easily extended to the ase of fatorized T 6 (3.1) and the interation isthen written in terms of the produts of theta funtions of the type appearing in eq. (3.64).We refer the reader to [6℄ for the details and now go on to the generalization when �uxesof both oblique and diagonal forms are present. Suh magneti �uxes do not respet thefatorization and hene involve the wavefuntions written in terms of the general Riemanntheta funtions.3.5 General tori and `oblique' �uxesLet us now onsider the more general ase where the 2n-dimensional torus is not nees-sarily fatorizable. A generi �at 2n-dimensional torus, T 2n ≃ Cn/Λ, inherits a omplexstruture from the overing spae Cn. Its geometry an hene be desribed in terms of aKähler metri and omplex struture as

ds2 = hµν̄dz
µdz̄ν̄

dzµ = dxµ + Ωµ
νdy

ν
(3.66)where xµ, yµ ∈ (0, 1), µ = 1, . . . , n, parametrize the 2n vetors of the lattie Λ. Thenatural generalization of the Jaobi theta funtion (3.47) to this higher-dimensional toriis known as Riemann ϑ-funtions, as de�ned in eq. (3.25):

ϑ

[

~a
~b

]

(~ν|Ω) =
∑

~l∈Zn

eiπ(
~l+~a).Ω.(~l+~a)e2πi(

~l+~a).(~ν+~b). (3.67)As already elaborated upon earlier, in our ase, although the geometry itself may besuh that T 6 is fatorizable as in eq. (3.1), the �uxes turned on, may violate in general thefatorizable struture of the tori. Indeed, the general wavefuntions for bifundamentalsgiven in terms of basis funtions (3.24):
ψ
~j,N(~z,Ω) = N · e{iπ[N.~z].(N.ImΩ)−1Im[N.~z]} · ϑ

[

~j

0

]

(N.~z|N.Ω),

= N · eiπ[N·~z]·(ImΩ)−1·Im ~z · ϑ

[

~j

0

]

(N · ~z |N · Ω) , (3.68)with N's being the intersetion matries, depend on suh �uxes expliitly in terms of its50



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsmodular parameter argument: NΩ; this breaks in general the fatorized struture, evenif the omplex struture Ω is diagonal. The expliit form of the normalization fator Nappearing in eq. (3.68) is given eq. (3.30). One needs to obtain an overlap integralof three basis funtions of the type (3.68), in order to generalize the results of Yukawaomputations given in eqs. (3.45), (3.61) - (3.64).3.5.1 Riemann theta funtion identityWe now generalize eq. (3.46) to the ase of general Riemann theta funtions given in eq.(3.67). Expliitly, we onsider the LHS of our identity to be given by an expression:
ϑ

[

~j1

0

]

(~z1|N1 · Ω) · ϑ

[

~j2

0

]

(~z2|N2 · Ω) (3.69)where Ω is an n×n omplex matrix andN1,N2 are n×n integer-valued symmetri matriessatisfying the onstraints (3.26). These onstraints, in turn, follow from the onvergeneof theta series expansion, as well as from the holomorphiity of �uxes: for instane, eq.(2.31) when pxx and pyy omponents of �uxes are zero, with xi, yi, (i = 1, 2, 3) denoting theoordinates of three T 2's in the deomposition (3.1) and (3.66). Generalization to the asewhen pxx and pyy �ux omponents are also present is disussed later on in subsetion 3.5.7,and is relevant for evaluating the Yukawa ouplings in models with moduli stabilization,suh as the one of [7℄.Initially, we also restrit ourselves to the ase when Ω = τIn with In being a n ×

n identity matrix, implying that the geometri struture is fatorized as in eq. (3.1).However, in Setion 3.5.6, we generalize the results further to the ase when Ω is anarbitrary matrix satisfying the F(2,0) = 0 supersymmetry ondition, as given in eqs. (2.26)and (2.27). Then, using the de�nition of Riemann ϑ-funtions (3.67), the expression ineq. (3.69) an be expanded as:
ϑ

[

~j1

0

]

(~z1|N1τ) · ϑ

[

~j2

0

]

(~z2|N2τ) =
∑

~l1,~l2∈Zn

eπi(
~j1+~l1)·N1τ ·(~j1+~l1)e2πi(

~j1+~l1)· ~z1·

eπi(
~j2+~l2)·N2τ ·(~j2+~l2)e2πi(

~j2+~l2)· ~z2 . (3.70)Now, by de�ning 2n-dimensional vetors:
(~j+~l) = ( ~j1 + ~l1

~j2 + ~l2

)

, ~z = ( ~z1

~z2

)

, (3.71)51



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsand the 2n× 2n dimensional matrix:Q =

(

N1τ 0

0 N2τ

)

, (3.72)eq. (3.70) an be re-written as:
ϑ

[

~j1

0

]

(~z1|N1τ) · ϑ

[

~j2

0

]

(~z2|N2τ) =
∑

~l∈Z2n

eπi(
~j+~l)T ·Q·(~j+~l)e2πi(~j+~l)T ·~z. (3.73)Our aim in ombining the terms into 2n dimensional vetors and matries is to gen-eralize the proedure outlined in [119℄ to our situation, namely when two theta funtionsappearing in the LHS of the identity (that we propose below) arry independent modularparameter matries N1τ and N2τ , whih generally may not ommute. Note that the re-sults of [119℄ are insu�ient to give suh an identity as they involve theta funtions whosemodular parameter matries are proportional to eah other and therefore ommute. Inorder to proeed, we note that using a transformation matrix:

T =

(

1 1

αN1
−1 −αN2

−1

)

, (3.74)
T T =

(

1 N1
−1αT

1 −N2
−1αT

)

, (3.75)and
T−1 = (N1

−1 +N2
−1)−1

(

N2
−1 α−1

N1
−1 −α−1

)

, (3.76)with α being an arbitrary matrix (to be determined below) and N1,N2 being real sym-metri matries, due to the ondition (3.26) (for Ω = τIn), one obtains:Q′ ≡ T ·Q · T T =

(

(N1 +N2)τ 0

0 α(N1
−1 +N2

−1)ταT

)

. (3.77)In the following we also make use of the identities:
(N1

−1 +N2
−1) = N1

−1(N1 +N2)N2
−1 = N2

−1(N1 +N2)N1
−1 (3.78)and

(N1
−1 +N2

−1)−1 = N1(N1 +N2)
−1N2 = N2(N1 +N2)

−1N1 (3.79)52



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsin simplifying ertain expressions.The transformation matrix T de�ned above is used to transform the produt of thetafuntions in the LHS of eq. (3.73), in terms of a �nite sum over another produt of theta's,now with modular parameter matries: (N1+N2)τ and α(N1
−1 +N2

−1)ταT . Expliitly,we an write the terms appearing in the exponents in the RHS of eq. (3.73) as:
(~j+~l)T ·Q · (~j +~l) = (~j+~l)T · (T−1T ) ·Q · (T T (T−1)T ) · (~j+~l) (3.80)

(~j+~l)T · ~z = (~j+~l)T (T−1T ) · ~z. (3.81)Then using:
T · ~z =

(

~z1 + ~z2

αN1
−1 ~z1 − αN2

−1 ~z2

)

, (3.82)
(~j+~l)TT−1 =

(

(~j1 + ~l1)(N1
−1 +N−1

2 )−1N−1
2 + (~j2 + ~l2)(N

−1
1 +N−1

2 )−1N−1
1

((~j1 + ~l1)− (~j2 + ~l2))(N
−1
1 +N−1

2 )−1α−1

)T

,(3.83)and
(T−1)T (~j+~l) = ( N−1

2 (N−1
1 +N−1

2 )−1(~j1 + ~l1) +N−1
1 (N−1

1 +N−1
2 )−1(~j2 + ~l2)

(α−1)T (N−1
1 +N−1

2 )−1[(~j1 + ~l1)− (~j2 + ~l2)]

) (3.84)we an re-write eq. (3.70) as,
ϑ

[

~j1

0

]

(~z1|N1τ) · ϑ

[

~j2

0

]

(~z2|N2τ) =

∑

~l1,~l2∈Zn

eπi[{((
~j1+~l1)N1+(~j2+~l2)N2)(N1+N2)−1}·(N1+N2)τ ·{(N1+N2)−1(N1(~j1+~l1)+N2(~j2+~l2))}]

×e2πi{[((
~j1+~l1)N1+(~j2+~l2)N2)(N1+N2)−1]·[z̃1+z̃2]} ×

eπi{[((
~j1−~j2)+(~l1−~l2))N1(N1+N2)−1N2α−1]·[α(N1

−1(N1+N2)N2
−1)ταT ]·[(α−1)TN2(N1+N2)−1N1((~j1−~j2)+(~l1−~l2))]}

×e2πi{[((
~j1−~j2)+(~l1−~l2))N1(N1+N2)−1N2α−1]·[αN−1

1 ~z1−αN−1
2 ~z2]}. (3.85)Now, to reexpress the above series expansion in terms of a sum over theta funtionswith modular parameter matries: N1 + N2 and α(N1

−1 +N2
−1)αT , we rearrange theseries in eq. (3.85) in terms of new summation variables ~l3, ~l4, ~m, whose values and rangeswill be assigned later. In the ourse of going from eq. (3.85) to (3.87) below, however, one53



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsneeds to make sure that suh rede�ned variables are integers. This requirement onstrainsthe matrix α whose `minimal' solution will be taken to be
α = (detN1 detN2)I. (3.86)We will later on disuss also the possibility of hoosing other forms of α and show thatsuh hoies lead to the yliity of the superpotential oe�ients, as in eqs. (3.64), (3.65).Using eq. (3.86), the RHS of eq. (3.85) takes the form:

∑

~l3,~l4∈Zn

∑

~m

eπi[(
~j1N1+~j2N2+~mN1)(N1+N2)−1+~l3]·(N1+N2)τ ·[(N1+N2)−1(N1 ~j1+N2 ~j2+N1 ~m)+~l3]

·e2πi[(
~j1N1+~j2N2+~mN1)(N1+N2)−1+~l3]·[ ~z1+ ~z2] ×

e
πi[(~j1−~j2+~m)

N1(N1+N2)
−1N2

detN1 detN2
+~l4]·[(detN1 detN2)2N

−1
1 (N1+N2)N

−1
2 ]τ ·[

N2(N1+N2)
−1N1

detN1 detN2
(~j1−~j2+~m)+~l4]

·e2πi[(
~j1−~j2+~m)

N1(N1+N2)
−1N2

detN1 detN2
+~l4]·detN1 detN2[N

−1
1 ~z1−N

−1
2 ~z2] . (3.87)This series an now be reexpressed in terms of a �nite sum over produt of generalizedtheta funtions given in eq. (3.67), leading to a generalization of the identity (3.46) to:

ϑ

[

~j1

0

]

(~z1|N1τ) · ϑ

[

~j2

0

]

(~z2|N2τ) =

∑

~m

ϑ

[

(~j1N1 + ~j2N2 + ~m.N1)(N1 +N2)
−1

0

]

(~z1 + ~z2|(N1 +N2)τ)×

ϑ

[

[(~j1 − ~j2) + ~m]N1(N1+N2)−1N2

detN1 detN2

0

]

((detN1 detN2)(N1
−1~z1 −N2

−1 ~z2)|(detN1 detN2)
2(N1

−1(N1 +N2)N2
−1)τ),(3.88)where ~m =

∑

imi~ei are all vetors generated by the basis vetors ~ei:
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etc., (3.89)
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsand lied within the unit-ell de�ned by the new basis vetors:
~e′ = ~e(detN1 detN2)(N1

−1(N1 +N2)N2
−1). (3.90)The above identity already assumes the form Ω = τIn for the omplex struture of

T 2n. As mentioned already, in subsetion 3.5.6 below, we make further generalization toinlude arbitrary omplex struture Ω as well. Also, note that, due to the identities (3.78)and (3.79), the theta funtions appearing in the RHS of eq. (3.88) satisfy the onstraint(3.29) with respet to their own arguments.3.5.2 Proof of the identityWe now show the equality of the series expansions (3.85) and (3.87) to establish theidentity eq. (3.88). We also show that matrix α needs to be hosen as in eq. (3.86) forshowing the equality of eqs. (3.85) and (3.87) for the ase when detN1 and detN2 arerelatively prime. In other ases α an be hosen as the least ommon multiple of detN1and detN2. Here we assume them to be relatively prime, while the remaining ases anbe worked out in a similar fashion.We now follow an exerise similar to the one in Setion 3.4.3, to show that series ineqs. (3.85) and (3.87) preisely math with ~m restrited to be an integer, provided α isgiven by eq. (3.86).1. When ~l1 = ~l2 in eq. (3.85), we have:
(~l1N1 + ~l2N2)(N1 +N2)

−1 = ~l2 (3.91)and
(~l1 − ~l2)N1(N1 +N2)

−1N2α
−1 = 0 (3.92)These terms are exatly same if we onsider the series given in eq. (3.87) for thevalues ~l3(≡ ~l2), ~l4 = 0 and ~m = 0, irrespetive of the hoie for the matrix α.2. In order to see the restrition on the matrix α, one needs to understand how thenonzero integers ~l4 6= 0 in eq. (3.87) are generated from the terms in eq. (3.85). Inother words, one needs to make sure that

(~l1 − ~l2)N1(N1 +N2)
−1N2α

−1 ≡ ~l4 (3.93)
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsis an integer. This in turn is possible only if ~l1 is of the form:
~l1 = ~l2 + ~l4αN

−1
2 (N1 +N2)N

−1
1 . (3.94)However, sine ~l4, N1, N2, take integral values, the RHS in eq. (3.94) is an integeronly if α(N−1

1 +N−1
2 ) is an integer. In other words, for detN1 and detN2 relativelyprime, α needs to be of the form:

α = (detN1 detN2)P. (3.95)with P being an arbitrary invertible integer matrix. `Minimal' hoie also demands
detP = 1, otherwise ~l4 will not span over all integers. Then, sine P is invertible, itis �xed to be the identity matrix. We have therefore established the restrition on αas in eq. (3.86). At the same time, we have also proved that the series in eqs. (3.85)and (3.87) preisely math for ~m = 0 provided ~l2 + detN1 detN2

~l4N
−1
2 is identi�edwith ~l3 in eq.(3.87). Note that (detN1 detN2)N

−1
2 is also integer valued and ensuresthat suh an identi�ation with ~l3 holds.3. On the other hand, When ~l1 = ~l2 + ~m in eq. (3.85), we end up with terms like:

(~l1N1 + ~l2N2)(N1 +N2)
−1 = ~l2 + ~m.N1(N1 +N2)

−1 (3.96)and
(~l1 − ~l2)

N1(N1 +N2)
−1N2

detN1 detN2

= ~m
N1(N1 +N2)

−1N2

detN1 detN2

(3.97)These terms an also be obtained in the series (3.87), for the following values of thevariables: ~l3(≡ ~l2), ~l4 = 0, ~m arbitrary. However, as seen above in eqs. (3.93), (3.94),the sum over ~m is �nite due to the fat that
~l1 − ~l2 = ~m = ~L detN1 detN2N

−1
2 (N1 +N2)N

−1
1 , (3.98)for ~L arbitrary integers, ontributes to the values of ~l4 in the RHS of eq. (3.87) byan amount ~L, while setting ~m to zero, ~l3 is identi�ed with ~l2 + detN1 detN2

~LN−1
2 .In other words, we have shown that the sum over ~m in (3.87) is over all integrallyde�ned vetors in the unit ell generated by the basis elements:

~e′ = ~e detN1 detN2N
−1
2 (N1 +N2)N

−1
1 (3.99)with ~e being the elements of the anonial basis (3.89). 56



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsWe have therefore proved that identity eq. (3.88) holds by expliitly showing a one toone orrespondene between the series in eqs. (3.85) and (3.87).3.5.3 Yukawa expressions for oblique �uxesWe now use the wavefuntions given in eqs. (3.68) and (3.67), to obtain the expression ofYukawa interations when oblique �uxes, spei�ed by intersetion matries
N1 = Fa − Fb, N2 = Fc − Fa, N3 = Fc − Fb. (3.100)are turned on along branes a, b and c. N1, N2 and N3 are all real symmetri matries(in the absene of omponents pxx, pyy) and in addition the omplex struture matrix ishosen to be proportional to the identity: τIn, with τ omplex. We then have:

ψ
~i,N1(~z,Ω = τIn) · ψ

~j,N2(~z,Ω = τIn) =
(

2
n
2

) (

V ol(T 2n)
)−1 (

| detN1|.| detN2|(Imτ)
6
)

1
4

×eiπN3.~zIm ~z/Im τϑ

[

~i

0

]

(N1 · ~z|N1 · τ) · ϑ

[

~j

0

]

(N2 · ~z|N2 · τ). (3.101)Using the Riemann theta identity derived earlier in eq. (3.88), eq. (3.101) an be rewrittenas:
ψ
~i,N1(~z) · ψ

~j,N2(~z) =
∑

~m

(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1|.| detN2|(Imτ)3)

| detN3|

]
1
4

×

ψ(~iN1+~jN2+~mN1).N3
−1,N3(~z) · ϑ

[

[(~i−~j) + ~m] N1N3
−1N2

detN1 detN2

0

]

(0|(detN1 detN2)
2(N1

−1N3N2
−1)τ). (3.102)Note that the integrality ondition (3.29) is maintained by ψ(~iN1+~jN2+~mN1)N3

−1,N3(~z)appearing in the RHS of the above equation, sine the expression
[

(~iN1 +~jN2 + ~mN1)N3
−1
]

·N3 (3.103)is always an integer. On the other hand, the sum ~m in eq. (3.102) is over the integersinside the ell generated by the lattie vetors in eq. (3.99) and total number of them isgiven by the volume of this ompat spae. The size of the ell, i.e., its volume matheswith those in eq. (3.60) and (3.61) for the T 2 ase whih is just the number, N3 = Icb ineq. (3.60), of hiral states for brane intersetion bc. However, the situation is di�erent for
T 2n, n > 1. This beomes lear by observing that the size of the ell given in eq. (3.99)57



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsis bigger than the number of states (~k) in the intersetion N3 between the branes b and
c by a fator det(detN1 detN2N

−1
2 N−1

1 ). This fator, on the other hand, for T 2 is unity.We therefore notie that the sum ~m is over many more terms than the atual number ofstates (~k) in the intersetion N3 between the branes b and c.The extra fator of terms appearing in eq. (3.102) an be explained by notiing that thesum over terms in eqs. (3.102) and (3.104) is over the states ψ(~iN1+~jN2+~mN1).N3
−1,N3(~z) thatare inside the ell in eq. (3.99) and ontribute to the Yukawa oupling by the orthogonalityrelation eq. (3.31). As any state (with more details given in the subsetion-3.5.4) ~k,satisfying integrality onditions suh as (3.29) is de�ned only upto the integer lattieshifts, one therefore has appearane of the same states inside the volume of lattie (3.99),multiple times. In other words, for any given state, in the RHS of eqs. (3.102), all thoseinteger vetor (~m) shifts also ontribute to the sum whih satisfy the integrality onditionfor ~mN1N3

−1 inside the ell (3.99). Expliit solution of this ondition is presented lateron in setion 3.5.4 in eq. (3.110).Then, as in the T 2 ase, orthonormality of wavefuntions (3.31), implies that theYukawa oupling, whose expliit form is given in setion 3.5.4, an be `formally' writtenin a form :
Yijk = gσabc

(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1|.| detN2|(Imτ)3)

| detN3|

]
1
4

×
∑

~m∈{~e′}

δ~k,N3
−1(N1

~i+N2
~j+N1 ~m)

×ϑ

[

[(~i−~j) + ~m] N1N3
−1N2

detN1 detN2

0

]

(0|(detN1 detN2)
2(N1

−1N3N2
−1)τ), (3.104)where by the summation index ~m ∈ {~e′}, one means to sum over all integer points insidethe lattie generated by ~e′1,

~e′2 · · · ~e
′
n in eq. (3.99) and the Kroneker delta is to identify allthe states ~k upto integer shifts.The above expression redues in the ase of T 2 �ux ompati�ation to eq. (3.63), sinethe Kroneker delta onstraint has a unique solution in suh a situation. To ompare thetwo expressions, note that the indies i, j, k in the fatorized ase are saled with respetto the one of general tori, by the fators 1

N1
, 1
N2

and 1
N3
, respetively. Then, the Kronekerdelta onstraint in eq. (3.104) preisely mathes with the one in eq. (3.62). In the ase ofgeneral tori, however, the onstraint implies that the interation terms involve the stateswhih satisfy the equation

N3
~k = (N1

~i+N2
~j +N1~m) (3.105)among the vetors N1

~i, N2
~j, N3

~k for ~m integers inside the unit ell given in eq. (3.90)58



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsand orresponding states ~k are only de�ned upto integer lattie shifts. We now �nd allsuh solutions of the lattie shifts in the next subsetion and present the expliit answerfor the Yukawa oupling for general tori.3.5.4 Explit Yukawa oupling expressionsIn this subsetion we now present the set of terms that ontribute to eqs. (3.102) and(3.104). In order to larify the situation we analyze the orrespondene between the hiralmultiplet families of states suh as the ones appearing in eq. (3.103) and the �uxes alongthe branes. Our disussion is restrited to N being real symmetri matries, due to theimposition of the Riemann onditions (3.26) for the speial omplex struture Ω = τInunder disussion.For a given pair of brane-staks with intersetion matrix N, the ondition eq. (3.29)that a state î needs to satisfy is N.̂i = integer. The solution of this ondition is: î = N−1~e,with ~e being the integer basis vetors in an n-dimensional spae as given in eq. (3.89).The states are therefore generated by the set of n vetors: îi = ~eiN
−1, with subsript

i = 1, 2 · · ·n and are det(N) in number, namely those whih are inside the ell generatedby ~ei's. Here and in following we also keep in mind that all the hiral multiplet states thatwe are disussing, are de�ned only upto the shift by integer lattie vetors ~ei's.To give an example: for n = 2 (orresponding to T 4), with
N =

(

α γ

γ β

)

, (3.106)we have the basis vetors for generating the states:
î1 =

1

(αβ − γ2)

(

β

−γ

)

, î2 =
1

(αβ − γ2)

(

−γ

α

)

. (3.107)To obtain the degeneray ount, we note that for the above example we have:
~e1 = α~i1 + γ~i2,

~e2 = γ~i1 + β~i2. (3.108)The number of independent states inside the ell with lattie vetors ~e1 and ~e2 is then thedeterminant of the above transformation whih is detN. A generi state appearing in eq.
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplings(3.105) then has a form:
~i = m1

~i1 +m2
~i2, ~j = n1

~j1 + n2
~j2, ~k = p1 ~k1 + p2 ~k2. (3.109)with ~ji, ~ki de�ned in a similar way as in eq. (3.107) with respet to the orrespondingintersetion matries. Also, integers mi, ni, pi label the states of a hiral family in a givenbrane stak.We now go on to give expliit solution for the vetor ~m that ontribute to the sumof terms in Yukawa oupling expressions (3.102) and (3.104), namely those inside the ellde�ned in eq. (3.99). The size of the ell, namely the number of states that it ontainsis equal to det(detN1 detN2N

−1
2 (N1 + N2)N

−1
1 ), as stated earlier. In a situation with

2× 2 matries, for example, it is detN1detN2detN3. For illustration purposes we restritourselves to the disussion with 2 × 2 matries. However, all the results we write beloware valid for other situations as well.Now, restriting to this 2× 2 ase for the simpliity of disussion, we write all possiblesolutions for ~m that provide integer solutions for ~mN1N3
−1, as appearing in the de�nitionof states in eqs. (3.102), (3.103), and show that they are detN1detN2 in number. So thatthe degeneray of the state mathes with detN1detN2detN3 given in the last paragraph.To ompare, note that for a diagonal �ux situation, as in setion-3.4, we have m = n3 asa single solution of an analogous ondition mn1n

−1
3 = integer, orresponding to the statedegeneray whih is n3.The integer solutions for ~mN1N3

−1 are:
~m = ~pdetN1N3N1

−1 + ~̃pdetN2N3N2
−1, (3.110)where ~p is all integer vetors within a ell generated by ~edetN2N2

−1 and ~̃p is all inte-ger vetors within a ell generated by ~edetN1N1
−1. It is easy to see that ~m satis�es

~mN1N3
−1 = integer (by making use of N1 = N3 −N2). Together, for every solution ofthe �rst term in ~m we have detN1 solution for the seond term and this goes on for detN2number of terms from the �rst term. So that total degeneray of suh ~m is detN1detN2,as stated earlier.About the states: ~m given in eq. (3.110) de�nes a periodi set, in the same way as forthe T 2 ase m = n3 de�nes the periodi set of states in the RHS of eqs. (3.61) and (3.62).There the states are expliitly given as k = (0), (n1/n3), (2n1/n3), · · · [(n3 − 1)n1/n3] witha periodiity n3 for this series. Various states inside the ell (3.99) an also be found usingeq. (3.105) and making use of the ondition: N1 = N3 −N2 as: (also the fat that any60



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsstate is de�ned upto integer vetors). The states are:
~k = ~pdetN1N3

−1 + ~̃pdetN2N3
−1 etc. (3.111)and the state degeneray is detN1detN2detN3.The Yukawa oupling an now be written in an expliit form given by a sum of

detN1detN2 number of terms, whih an be read o� from eq. (3.102) diretly, with
~m replaed by

~̃m+ ~pdetN1N3N1
−1 + ~̃pdetN2N3N2

−1 (3.112)and now suh ~̃m are the unique solutions of eq. (3.105) where all other solutions de�nedupto the shifts in ~̃m by ~pdetN1N3N
−1
1 + ~̃pdetN2N3N

−1
2 have been identi�ed.Eq. (3.104) now reads as:

Yijk = gσabc
(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1|.| detN2|(Imτ)3)

| detN3|

]
1
4

×
∑

~p,~̃p

×ϑ

[

[{(~i−~j) + (~kN3 −~iN1 −~jN2)N1
−1} N1N3

−1N2

detN1 detN2
+ (~p N2

detN2
+ ~̃p N1

detN1
)]

0

]

(0|(detN1 detN2)
2(N1

−1N3N2
−1τ), (3.113)or equivalently:

Yijk = gσabc
(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1|.| detN2|(Imτ)3)

| detN3|

]
1
4

×
∑

~p,~̃p

×ϑ

[

[(−~j + ~k) N2

detN1 detN2
+ (~p N2

detN2
+ ~̃p N1

detN1
)]

0

]

(0|(detN1 detN2)
2(N1

−1N3N2
−1τ). (3.114)Note that the sum over ~m is now broken into sum over ~p and ~̃p. We end this disussionby reminding ourselves one again that ~p runs over all the states inside the ell generatedby ~e1detN2N2

−1 and ~e2detN2N2
−1. Similarly ~̃p runs over all the states inside the ellgenerated by ~e1detN1N1

−1 and ~e2detN1N1
−1.We now present two expliit examples, one for the oblique situation and the other forthe ommuting diagonal �uxes. We show that our answer for the diagonal �ux is identialto the one for the diagonal yukawa oupling expression given in [6℄ for T 2n. In fat thisholds for any set of �uxes with N1, N2, N3 diagonal. On the other hand, we also showthat the set of terms given above in eqs. (3.113) and (3.114) an also be summed up in anumber of ases, for the oblique ases as well. 61



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsExample : Oblique �uxFor the oblique ase, by taking two nonommuting matries:
N1 =

(

2 1

1 2

)

, N2 =

(

1

2

)

, (3.115)we have:
(detN1)N1

−1 =

(

2 −1

−1 2

)

, (detN2)N2
−1 =

(

2

1

)

. (3.116)The set of integer points inside the ell generated by ~e1detN2N2
−1 = (2, 0) and ~e2detN2N2

−1 =

(0, 1), are: (0, 0) and (1, 0), as det(detN2N2
−1) = 2. The set of integer points inside theell generated by ~e1detN1N1

−1 = (2,−1) and ~e2detN1N1
−1 = (−1, 2), are : (0, 0), (1, 0)and (0, 1), as det(detN1N1

−1) = 3.9Now, to illustrate our method, we onentrate on �nding a partiular Yukawa intera-tion among states: ~i = ~j = ~k = (0, 0). This partiular Yukawa now has the form, makinguse of Eq. (3.113) as:
Y000 = gσ000

(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1|.| detN2|(Imτ)3)

| detN3|

]
1
4

×
∑

~p,~̃p

ϑ

[

[(~p N2

detN2
+ ~̃p N1

detN1
)]

0

]

(0|(detN1 detN2)
2(N1

−1N3N2
−1τ)),To see what terms in ~p and ~̃p dependent arguements appear in the sum, we write downall the possibilities that arise from the ombinations:

(~p
N2

detN2

+ ~̃p
N1

detN1

) = ~p

(

1
2

1

)

+ ~̃p
1

3

(

2 1

1 2

) (3.117)with ~p = (0, 0), (1, 0) and ~̃p = (0, 0), (0, 1), (1, 0). All the six possibilities then imply that9Another example with mixed eigenvalues for the matrix N1 an be onstruted by exhanging the o�-diagonal and diagonal entries in eq. (3.115) for N1. Suh an example will be relevant for the situtationdisussed in later setions where intersetion matries with both positive and negative eigenvalues aredisussed.
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsin Theta funtion we get the following expliit sum:
(

ϑ

[

[(0, 0)]

0

]

+ ϑ

[

[(1
2
, 0)]

0

]

+ ϑ

[

[(2
3
, 1
3
)]

0

]

+ ϑ

[

[(1
3
, 2
3
)]

0

]

+ ϑ

[

[(1
6
, 1
3
)]

0

]

+

ϑ

[

[(5
6
, 2
3
)]

0

])

(0|(detN1 detN2)
2(N1

−1N3N2
−1τ)) (3.118)where a ommon modular parameter arguement of the all the six Theta terms have beenwritten outside of the braket for saving spae. The integer sums of the six terms overinteger ~l are of the forms:

∑

~l

e[
~l+(q1,q2)](detN1 detN2)2(N1

−1N3N2
−1τ)[~l+(q1,q2)] (3.119)with ~l + (q1, q2) given expliitly as:

~l + (0, 0), ~l + (
1

2
, 0), ~l + (

2

3
,
1

3
), ~l + (

1

3
,
2

3
), ~l + (

1

6
,
1

3
), ~l + (

5

6
,
2

3
), (3.120)for the six terms in eq. (3.118). It an also be seen that we an write them as:

(

l1

l2

)

+

(

m
2
+ 2n

3
n
3

)

≡

(

l1

l2

)

+
1

6

(

3 4

0 2

)(

m

n

) (3.121)with m = 0, 1 and n = 0, 1, 2. Now, using the inverse of the matrix
P =

1

6

(

3 4

0 2

)

, (3.122)appearing in eq. (3.121):
P−1 =

(

2 −4

0 3

)

, (3.123)we an write eq. (3.121) as:
1

6

(

3 4

0 2

)[(

2l1 − 4l2

3l2

)

+

(

m

n

)] (3.124)with m = 0, 1 and n = 0, 1, 2.It an now be seen that as l1, l2 vary over all integers, and m = 0, 1 and n = 0, 1, 2,63



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsthen the ombination of terms in the big square braket in eq. (3.124) also span over ALLintegers. As a result we are able to take the fator of matrix P out by summing over allthe six terms, while reduing the six terms in eq.(3.118) to one. The net result is then thearguement of theta funtion modi�es by the fator:
(detN1 detN2)

2(N1
−1N3N2

−1τ) → P T (detN1 detN2)
2(N1

−1N3N2
−1τ)P (3.125)and �nal answer for Yukawa oupling is:

Y000 = gσ000
(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1|.| detN2|(Imτ)3)

| detN3|

]
1
4

×

ϑ

[

0

0

]

(0|P T (detN1 detN2)
2(N1

−1N3N2
−1τ)P ).We an similarly take are of other nonzero values~i,~j,~k et. as well, but details are beingleft.Example : Diagonal FluxWe take another example, now with diagonal �uxes :

N1 =

(

2

3

)

, N2 =

(

5

2

)

. (3.126)Then:
(detN1)N1

−1 =

(

3

2

)

, (detN2)N2
−1 =

(

2

5

)

. (3.127)Set of integer points inside the ell generated by ~e1detN2N2
−1 = (2, 0) and ~e2detN2N2

−1 =

(0, 5), are: (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), as det(detN2N2
−1) =

10. On the other hand, set of integer points inside the ell generated by ~e1detN1N1
−1 =

(3, 0) and ~e2detN1N1
−1 = (0, 2), are: (0, 0), (1, 0) (0, 1), (1, 1), (2, 0), (2, 1), as det(detN1N1

−1) =

6. We now have:
~l + (~p

N2

detN2

+ ~̃p
N1

detN1

) = ~l + ~p

(

1
2

1
5

)

+ ~̃p

(

1
3

1
2

)

, (3.128)
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingswhih an also be written as:
~l + (~p

N2

detN2

+ ~̃p
N1

detN1

) =

(

l1

l2

)

+

(

1
2

1
5

)(

p1

p2

)

+

(

1
3

1
2

)(

p̃1

p̃2

)

, (3.129)with p1 = 0, 1, p2 = 0, 1, 2, 3, 4, p̃1 = 0, 1, 2, p̃2 = 0, 1.By taking a fator of N1N2

detN1detN2
out, the above equation an also be rewritten as:

N1N2

detN1detN2

[~l + (~p
N2

detN2

+ ~̃p
N1

detN1

)] =

(

1
6

1
10

)[(

6l1

10l2

)

+

(

3p1

2p2

)

+

(

2p̃1

5p̃2

)](3.130)with p1 = 0, 1, p2 = 0, 1, 2, 3, 4, p̃1 = 0, 1, 2, p̃2 = 0, 1. It an again be heked expliitlythat it leads to ALL integer variables inside the square braket. The net result of summingover di�erent terms in the diagonal ase therefore is the appearane of the matrix outsidethe square braket: N1N2

detN1detN2
. When multiplying the modular parameter arguement asappearing in eq. (3.113), from both left and the right, this preisely reprodues a modi�edmodular parameter whih mathes with the known diagonal �ux solultion for Yukawaoupling in [6℄. This holds for the diagonal �ux in general, not restrited to the exampleabove.3.5.5 arbitrary-αThe results, obtained so far in this setion, are derived for a partiular hoie of α givenin the eq. (3.86). However, all the results an be re-derived for arbitrary α, appearing ineq. (3.74) et.. For the fatorized ase, we saw in that the Yukawa oupling expression(3.63) an be reast into a symmetri form in eq. (3.64) (apart from the prefator),where the arguments of the Jaobi theta funtions are invariant under a yli hange:

a→ b→ c. This is due to the yli property of the superpotential oe�ients obtained bya third derivative of the superpotential Wijk. The prefator does not obey in general thissymmetry, sine it depends on the wave funtion normalizations (Kähler metri). Here,we show a similar yli property in the non-fatorized ase, given above in the Yukawaoupling expression (3.114), by making di�erent hoies of the matrix α in eq. (3.86). Notethat di�erent hoies of this matrix provide equivalent expressions for the wavefuntions,and in turn Yukawa ouplings, sine they are related though a hange of variables insidethe theta sum. The α matrix an be hosen appropriately so that the rede�ned variablesin eqs. (3.94) and (3.98) are well de�ned integers. Below we present a few examples withdi�erent hoies of α, to demonstrate the yliity mentioned above. 65



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsEq. (3.87), for arbitrary α, an be written as:
∑

~l3,~l4∈Zn

∑

~m

( eπi[(
~j1N1+~j2N2+~mN1)(N1+N2)−1+~l3]·(N1+N2)τ ·[(N1+N2)−1(N1

~j1+N2
~j2+N1 ~m)+~l3]

×e2πi[(
~j1N1+~j2N2+~mN1)(N1+N2)−1+~l3]·[ ~z1+ ~z2] )

× ( eπi[(
~j1−~j2+~m)N1(N1+N2)−1N2α−1+~l4]·[αN

−1
1 (N1+N2)N

−1
2 τ ]αT ·[(α−1)TN2(N1+N2)−1N1(~j1−~j2+~m)+~l4]

×e2πi[(
~j1−~j2+~m)N1(N1+N2)−1N2α−1+~l4]·[αN

−1
1 ~z1−N−1

2 ~z2] ) , (3.131)provided ~l4, de�ned in eq. (3.93), is an integer vetor, and so is ~m given in eq. (3.98). Inaddition the unit-ell, within whih ~m lie, is now de�ned by the basis vetors :
~e′ = ~eα(N1

−1(N1 +N2)N2
−1). (3.132)Moreover, eq. (3.88) takes the form:

ϑ

[

~j1

0

]

(~z1|N1τ) · ϑ

[

~j2

0

]

(~z2|N2τ) =

∑

~m

ϑ

[

(~j1N1 + ~j2N2 + ~m.N1)(N1 +N2)
−1

0

]

(~z1 + ~z2|(N1 +N2)τ)

×ϑ

[

[(~j1 − ~j2) + ~m]N1(N1 +N2)
−1N2α

−1

0

]

(

α(N1
−1 ~z1 −N2

−1~z2)|α(N1
−1(N1 +N2)N2

−1τ)αT
)

. (3.133)It is then easy to see, all equations from (3.101) to (3.104) go through for arbitrary α,giving the following expression for the Yukawa ouplings:
Yijk = gσabc

(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1|.| detN2|(Imτ)3)

| detN3|

]
1
4

×
∑

~m

ϑ

[

(−~j + ~k)N2α
−1 + ~mN1N3

−1N2α
−1

0

]

(0|α(N1
−1N3N2

−1τ)αT ). (3.134)where the sum ~m is now over all the integer solutions of ~mN1N3
−1 in the ell given in eq.(3.132). Expliit ontributions to this sum, of ourse, will depend on the exat form of α.In subsetion 3.5.4, we have presented the ase of α = detN1detN2.We now study how the above expression (3.134) redues for another hoie of α, suhas:

α = N3
−1N1(detN2. detN3). (3.135)66



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsNote, for this hoie of α, that the degeneray of states in the ell given in eq. (3.132) is
det(detN3detN2N2

−1). As a result, for the ase of 2 × 2 matries for example, one nowexpets the sum over ~m to run over detN2detN3 values. Expliit solutions are now givenas:
~m = ~pdetN2N3N2

−1 + ~̃pdetN3, (3.136)where ~p is all integer vetors within a ell generated by ~edetN3N3
−1 and ~̃p is all integervetors within a ell generated by ~edetN2N2

−1. It is again easy to see that ~m satis�es
~mN1N3

−1 = integer (by making use of N1 = N3 −N2).The harateristi of the ϑ-funtion in eq. (3.134), beomes:
(−~j + ~k)N2α

−1 = (−~kN1 +~iN1 + ~mN1)
N1

−1N3

(detN2. detN3)

=
(−~k +~i)N3

(detN2. detN3)
, (3.137)where in the �rst equality we have made use of eq. (3.105). Also we have,

α(N1
−1N3N2

−1τ)αT = (N3
−1N1)(N1

−1N3N2
−1)(N1N3

−1)τ(detN2. detN3)
2

= (N2
−1N1N3

−1τ)(detN2. detN3)
2. (3.138)The Yukawa ouplings then read (following the exerise performed in subsetion 3.5.4):

Yijk = gσabc
(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1|.| detN2|(Imτ)3)

| detN3|

]
1
4

×

∑

~p,~̃p

ϑ

[

(−~k +~i) N3

detN2 detN3
+ (~p N3

detN3
+ ~̃p N2

detN2
)

0

]

(0|(detN2 detN3)
2(N2

−1N1N3
−1)τ),(3.139)where the summation over indies ~p and ~̃p is explained earlier after eq. (3.136). We analso expliitly obtain the sums, as done for various examples in the last subsetion.Now, a omparison of eqs. (3.114) and (3.139) shows a symmetry between the ϑ-funtion harateristis in these ases, inluding the summation variables ~p and ~̃p. It isobvious that the replaement ~i → ~j,~j → ~k,~k →~i and N1 → N2,N2 → N3,N3 → N1 ineq. (3.114) results eq. (3.139). We have thus established that just as in the fatorized ase,for oblique �uxes too, one an show the yliity property of the Yukawa superpotentialoe�ients, as naively expeted.
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplings3.5.6 General omplex strutureIn the previous subsetions 3.5.1 - 3.5.3, we have on�ned ourselves to the omplex stru-ture matrix Ω = τIn for a 2n dimensional torus. This implies the restrition to orthogonaltori, a solution whih is already used in many phenomenologially interesting models.However, the results are easily generalized to omplex struture with arbitrary Ω. Morepreisely, to write down an identity generalizing eq. (3.88) one starts with the produtexpression given in eq. (3.69) and resales N1, N2 in eqs. (3.72) - (3.90) to N1Ω/τ ,
N2Ω/τ . At the same time, the matrix α in eq. (3.86) is also resaled :

α → α̃ = detN1 detN2Ω/τ =
αΩ

τ
. (3.140)Moreover, one needs to take into aount that in relations suh as (3.75) earlier, we havemade use of the property NT = N, whih is true for the omplex struture of the form:

τIn. Replaements: Nτ → NΩ are, however, to be done in the original expression.Expliitly, under the hanges mentioned, the transformation matrix T in eq. (3.74)remains unhanged, while its transposition in eq. (3.75) is now written as:
T T =

(

1 N1
−1TαT

1 −N2
−1TαT

)

. (3.141)Also, (3.76) is unhanged, whereas Q′ in eq. (3.77) goes over toQ′ ≡ T ·Q · T T =

(

(N1 +N2)Ω 0

0 α(N1
−1 +N2

−1)ΩTαT

)

, (3.142)where we have made use of the fat that both (N1 +N2)Ω and (N1
−1 + N2

−1)ΩT aresymmetri matries, due to the ondition (2.31), with N de�ned as NT = paxy − pbxy. Thenexpressions (3.82) and (3.83) remain unhanged, while (3.84) is modi�ed to:
(T−1)T(~j+~l)=(N−1

2
T
(N−1

1
T
+N−1

2
T
)−1(~j1 + ~l1) +N−1

1
T
(N−1

1
T
+N−1

2
T
)−1(~j2 + ~l2)

(α−1)T (N−1
1

T
+N−1

2
T
)−1[(~j1 + ~l1)− (~j2 + ~l2)]

)(3.143)
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsThe identity (3.88) then takes the form:
ϑ

[

~j1

0

]

(~z1|N1Ω) · ϑ

[

~j2

0

]

(~z2|N2Ω) = (3.144)
∑

~m

ϑ

[

(~j1N1 + ~j2N2 + ~m.N1)(N1 +N2)
−1

0

]

(~z1 + ~z2|(N1 +N2)Ω)×

ϑ

[

[(~j1 − ~j2) + ~m]N1(N1+N2)−1N2

detN1 detN2

0

]

((detN1 detN2)(N1
−1 ~z1 −N2

−1 ~z2)|(detN1 detN2)
2(N1

−1(N1 +N2)N2
−1ΩT )),leading to the expression for the Yukawa interation:

Yijk = σabcg
(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1|.| detN2|| detΩ|)

| detN3|

]
1
4

×
∑

~p,~̃p

ϑ

[

(−~j + ~k) N2

detN1 detN2
+ (~p N2

detN2
+ ~̃p N1

detN1
)

0

]

(0|(detN1 detN2)
2(N1

−1N3N2
−1ΩT )).(3.145)We leave the rest of the details, whih an be worked out easily.3.5.7 Hermitian intersetion matriesIn subsetions 3.5.1, 3.5.2, 3.5.3, we have assumed that intersetion matries N1,N2 et.are real symmetri. As explained, this restrition originates from the ase when �uxes pxx,

pyy are zero and the intersetion matrix N is represented by the real matrix pxy, whih issymmetri whenever the omplex struture is of the anonial form: Ω = iId. Moreover,the Yukawa oupling expression was generalized niely in the last subsetion to the aseof arbitrary omplex struture, as well.In this subsetion we disuss the ase when �uxes pxx and pyy are also present, inaddition to those of the type pxy and pyx. Furthermore, all these �uxes are onstrainedby the onditions (2.26) and (2.27) giving a resulting (1, 1) - form �ux whih an berepresented by the Hermitian matrix (2.28), (2.29). We expliitly present the ase of
Ω = iId solution (Id : d-dimensional Identity matrix), whih is partiularly simple, sinein this ase due to onstraints (D.1), the Hermitian �ux has the simple �nal form of eq.(D.2). The generalization to arbitrary omplex struture Ω an also be done, but is leftas an exerise.Wavefuntions on T 6, as given in eq. (3.68), satisfy the following �eld equations (3.22)69



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsand (3.23):
∂̄iχ

ab
+ + (A1 −A2)z̄iχ

ab
+ = 0, (i = 1, 2, 3). (3.146)We now show that the solution for the above equation, together with proper periodiityrequirements on T 6, is given by the basis elements:

ψ
~j,N(~z) = N~j · f(z, z̄) · Θ̂(z, z̄)

= N~j · e
iπ[(NR−iNI)·~z]·Im~z · ϑ

[

~j

0

]

(NR · ~z |NR · iI3) (3.147)where NR is a real, symmetri matrix.The wavefuntion given in eq. (3.147) satis�es the Dira equations (3.146) for thefollowing gauge potentials.
(A1 − A2)z̄j =

(π

2

)

zi(NR − iNI)ij̄, (3.148)whih exatly mathes with eq. (3.23) for the omplex struture Ω = iI3. The intersetionmatrix is therefore given by :
N = NR − iNI, (3.149)where we identify,

NR = paxy − pbxy, NI = paxx − pbxx. (3.150)The wavefuntion desribed in eq. (3.147) an be re-written in terms of the real oordinates
~x and ~y as well as matries NR, NI. By a slight abuse of notation, below, only for thissubsetion, we use NR = pxy, NI = pxx, by setting pb's to zero in eq. (3.150) andsuppressing the supersript a in pa. Suh a notational hange, helps to make omparisonof the transformation rules we derive for the wavefuntion written above in eq. (3.147)with general transition funtions, onsistent with the gauge transformations along the
2n non-ontratible yles of T n, given in [6℄. These transition funtions are written inequations (4.40), (4.41) of [6℄ for the �elds that transform in fundamental representationrather than as bifundamentals. Hene, the notation hanges above are meant to make theexpressions onsistent with the ones of [6℄.
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsThe wavefuntion (3.147), in the real oordinates ~x and ~y, then reads:
ψ
~j,N(~z) = N~j · e

iπ[(xi·p
xiyj

·yj)+i(−xi·p
xixj

·yj+yi·p
xiyj

·yj)]

·
∑

li∈Zn

eiπ(i)[(li+ji)·pxiyj ·(lj+jj)]e2iπ[(li+ji)·pxiyj ·(x
j+iyj)]. (3.151)This expression in terms of real oordinates is useful in omparing the transformationproperties of the wavefuntion over T 6 with the one in [6℄. The transformation properties,as derived from eq. (3.147), are given by,

ψ
~j,N(~z + ~n) = eiπ([N·~n]·Im~z) · ψ

~j,N(~z),

ψ
~j,N(~z + i~n) = e−iπ([Nt·~n]·Re~z) · ψ~j,N(~z),

(3.152)provided that
• (NR)ij̄ ≡ pxiyj ∈ Z, i.e NR is integrally quantized,
• ~j satis�es ~j ·NR ∈ Zn.We therefore notie that the integer quantization is imposed only on the symmetri part

NR of the intersetion matrix from the periodiity of the wavefuntion as well. However,Dira quantization already imposes both pxy and pxx to be integral for unit windings, asdisussed in Setion 2.3.Using eq. (3.151), the expressions (3.152) an be re-written in terms of real oordinatesas:
ψ
~j,N(~x+ ~n + i~y) = eiπ[ni(pxiyj−ip

xixj
)yj ] · ψ

~j,N(~x+ i~y), (3.153)
ψ
~j,N(~x+ i[~y + ~n]) = e−iπ[ni(pxjyi−ip

xjxi
)xj ] · ψ

~j,N(~x+ i~y). (3.154)In order to see that eqs. (3.153) and (3.154) are the proper transformation properties of thefermion wavefuntion over T 6, let us ompare them with the the transition funtions eq.(4.41) of [6℄ given for a fundamental representation in six real oordinatesXI , I = 1, · · · , 6,as used in our eq. (2.21) as well. After hanging variables �rst to the oordinates xi, yi,
i = 1, 2, 3 and then making oordinate transformation to zi, iz̄i, as desribed in Setion2.3, the general transition funtion is given by,

χ(xi, yi) = eiπ[(mi+ini).Fij̄(y
j+ixj)+(imi+ni).Fīj(x

j+iyj)]. (3.155)71



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsIn orrespondene to the transformation along the 1-yles, the integer parameters on xiand yi are denoted as mi and ni respetively. One then has two ases:Case -I : When ni = 0, i.e ~x −→ (~x+ ~m), eq. (3.155) redues to
χ(xi, yi) = eiπ{[mi.Fij̄ .y

j−mi.Fīj .y
j ]+i[mi.Fij̄ .x

j+mi.Fīj .x
j ]},

= e2iπ(mi.Fij̄ .y
j), (3.156)where we used the hermitiity property of F . Using the expression (D.2 ) in eq. (3.156),we reover the transformation given in eq. ( 3.153).Case -II : When mi = 0 i.e ~y −→ (~y + ~n), eq. (3.155) takes the form,

χ(xi, yi) = eiπ{[−niFij̄x
j+niFījx

j ]+i[niFij̄y
j+niFījy

j ]},

= e−2iπ[ni.Fij̄ .x
j]. (3.157)Again, using eq. (D.2 ) in eq. (3.157), we reprodue the transformation (3.154).It an also be easily seen that the basis wavefuntions given in eqs. (3.147) and (3.151)satisfy the orthonormality ondition

∫

T 2n

(ψ
~k,N)†ψ

~j,N = δ~j,~k , (3.158)by �xing the normalization onstant to
N~j = (2n|detNR|)

1/4 ·Vol(T 2n)−1/2, ∀j . (3.159)We have therefore on�rmed that the wavefuntion written in (3.147) is not only a solutionof the �eld equation, but also has the orret periodiity properties on the torus underthe gauge transformation. Now, regarding the Yukawa interation, sine only NR, whihis real symmetri matrix, appears in the Θ̂(z, z̄) part of the wavefuntion (3.147), allthe theta funtion identities desribed in Setions 3.5.1, 3.5.2 hold for this new Θ̂(z, z̄).Similarly, as in the expression (3.114), the Yukawa oupling Yijk now has the followingform,
Yijk = gσabc

(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1
R|.| detN

2
R|)

| detN3
R|

]
1
4

×
∑

~p,~̃p

ϑ

[

(−~j + ~k)
N2

R

detN1
R

detN2
R

+ (~p
N2

R

detN2
R

+ ~̃p
N1

R

detN1
R

)

0

]

(0|(detN1
R detN2

R)
2(N1

R

−1
N3

RN
2
R

−1
)τ)(3.160)72



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingswith ~p running over all the states inside the ell generated by ~e1detN
2
RN

2
R

−1 and
~e2detN

2
RN

2
R

−1. Similarly ~̃p runs over all the states inside the ell generated by ~e1detN1
RN

1
R

−1and ~e2detN
1
RN

1
R

−1.3.5.8 Constraints on the results in setion-3.5 and further gener-alizationTo summarize, in this setion we have given a lose form expression for the Yukawa ou-plings in the magnetized brane onstrutions, when in general both oblique and diagonal�uxes are present along the branes. However, the results of this setion are somewhatrestritive, sine the basis wavefuntions used for the omputations are well de�ned onlywhen the intersetion matries satisfy a positivity ondition given in eq. (3.26) for arbi-trary omplex struture Ω. A similar positivity riterion, for the ase when pxixj and pyiyjare nonzero, an be written using the wavefuntion (3.147), as well; it implies simply thepositivity of NR.On the other hand, in realisti string model building, one may need intersetion ma-tries that are not neessarily positive de�nite. The simplest examples orrespond simplyto diagonal intersetion matries, having some positive and some negative elements alongthe diagonal. In suh a fatorized torus ase, there is a unique presription, to de�nethe basis funtions orresponding to the negative elements in the intersetion matrix, asgiven in [6℄, onsisting of taking omplex onjugates of the wavefuntions for the positiveelements. Suh a presription also works, in the ase of oblique + diagonal �uxes, whensome intersetion matries are `negative-de�nite' rather than being positive de�nite. Onean then take a omplete omplex onjugation over all the oordinates, in order to obtaina well de�ned wavefuntion.Suh a proess, however, does not work when oblique �uxes are present and intersetionmatries have mixed eigenvalues. Note that a diagonal �ux of the type Fziz̄i preserves its
(1, 1)-form struture, under the interhange : zi → z̄i, required by supersymmetry. Thisis, however, no longer true when oblique �uxes are present, sine o� diagonal elements ofa (1, 1)-form �ux, say Fz1z̄2 , does not remain of the (1, 1) form when omplex onjugationis taken only along z1 or z2.In order to ure the problem, one needs to onstrut new basis funtions. We presentthe results of our investigation in the next setion, where we �rst restrit to the ase of a
T 4 ompati�ation, for simpliity. The ompliations arising from the oblique nature ofthe �uxes are manifest in the T 4 example as well, though it is possible to generalize theresult to the full T 6, whih is disussed in Setion 3.6.8. 73



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplings3.6 Negative-hirality fermion wavefuntionAs already mentioned, the basis wavefuntions given in eq. (3.68), used for deriving theYukawa oupling expression in eq. (3.145), are onstrained by the Riemann onditions(3.26), whih imply in partiular the positive-de�niteness of the matrix NImΩ.Now, �rst restriting to T 4, we will show that the basis funtion (3.68) orrespondsto the positive hirality spinor on T 4. On the other hand, to aommodate intersetionmatries, having two eigenvalues of opposite signature, one needs to �nd out the basisfuntion orresponding to negative hirality spinor. The need to use suh basis funtions,for intersetion matries with mixed eigenvalues, an be easily seen in the ase when the
T 4 fatorizes into T 2 × T 2 and one turns on only non-oblique (diagonal) �uxes. In thisase, the intersetion matrix has one positive diagonal element along the �rst T 2 and onenegative diagonal element along the seond one. Good basis funtions are then produtsof two T 2 wavefuntions of opposite hiralities[6℄, and the total wavefuntion on T 4 is ofnegative hirality.Our task therefore amounts to searhing for the basis funtions orresponding to neg-ative hirality spinors on T 4 with oblique �uxes. Searh for fermion wavefuntions in thepresene of arbitrary �uxes (in general oblique) has been pursued in [128℄. However, theresulting wavefuntions are presented in terms of diagonalized oordinates and eigenvaluesof �uxes. Any suh solution is however unsuitable for the Yukawa omputation, both forthe purpose of extrating the seletion rules of the type given in eq. (3.105), as well asin atual evaluation, sine the diagonalized oordinates beome `stak dependent' and in-herent nonlinearities involved in the diagonalization proess appear in the wavefuntions,prohibiting the derivation of Yukawa ouplings in a onrete form.In this setion, we are able to write both the positive and negative hirality basisfuntions in a `uni�ed' fashion, by showing that all basis funtions have a form similar tothe one given in eq. (3.68). However, the omplex struture Ω appearing in eq. (3.68) fora positive hirality wavefuntion needs to be replaed by an `e�etive' modular parametermatrix Ω̃ = Ω̂Ω, in order to aommodate the negative hirality wavefuntions, where Ω̂is given in terms of the elements of the intersetion matries (as expliitly obtained later).We also show that our results redue to the ones in [6℄ for the ase of diagonal �uxes.First, in the next subsetion we present new basis funtions, relevant for the situationwhen the intersetion matries are neither positive nor negative de�nite. In a later subse-tion, we show how the negative hirality spinor basis funtions an be identi�ed with thepositive hirality ones given in eq. (3.68), with an e�etive modular parameter, de�ned interms of the �uxes. We verify this fat by mapping the wavefuntions into eah other, as74



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingswell as, by showing expliitly that the relevant �eld equations transform into eah otherthrough suh a mapping. As a result, we are able to absorb the ompliations assoiated inthe diagonalization proess of the modular parameter matrix, and the �nal wavefuntionone again has an idential form as given in eq. (3.68), however, with a �ux dependentmodular parameter argument.3.6.1 Constrution of the wavefuntionIn this subsetion, as mentioned earlier, we disuss the ase of 4-tori, though T 6 generaliza-tion an be analyzed in a similar manner. We �rst also restrit ourselves to the situationwith anonial omplex struture: Ω = iI2 and Ω = iI3 for T 4 and T 6 respetively, where
Id represents the d-dimensional identity matrix. The generalization to arbitrary Ω is givenin subsetions 3.6.6 - 3.6.8. Now, in oder to avoid the restrition to the positivity ondi-tion (3.26), we present an expliit solution of a wavefuntion of negative hirality satisfyingboth the equations of motion, as well as the periodiity requirements on T 4.Going bak to the positive hirality wavefuntions, note that the two equations forthe omponent χ1

+ in eq. (3.21) (derived from the original Dira equation (3.16)) an besimultaneously solved, sine when ating on χ1
+ with two ovariant derivatives, we have:

[D1̄, D2̄] ∼ F ab
1̄2̄ and the RHS is zero, sine all the (0, 2) omponents of the gauge �uxes arezero in order to maintain supersymmetry. The supersript ab in this relation implies thatwe need to take the di�erene of �uxes in brane staks a and b due to the ombination

Aa − Ab that appears in eq. (3.21) for the bifundamental wavefuntion. Same is true forthe two χ2
+ equations, sine (2, 0) omponents of the �uxes are zero as well. On the otherhand, the relevant equations for the negative hirality spinors are:

D1χ
2
− +D2χ

1
− = 0, (3.161)and

D̄2χ
2
− − D̄1χ

1
− = 0. (3.162)When only one of the two omponents χ1,2

− is exited at a time, χ1,2
− satisfy: D̄1χ

1
− =

D2χ
1
− = 0 or D1χ

2
− = D̄2χ

2
− = 0. But none of these sets of equations an be onsistentlysolved when oblique �uxes are present, sine [D1, D̄2] ∼ F12̄ 6= 0.The two negative hirality omponents χ1,2

− therefore need to be mixed up in order toobtain a solution of the relevant Dira equations, when oblique �uxes are present. In otherwords, we need to simultaneously exite both χ1,2
− . Then, taking

χ1
− = αψ, χ2

− = βψ, (3.163)75



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsequations (3.6.1) and (3.162) beome:
(βD̄2 − αD̄1)ψ = 0, (3.164)and
(βD1 + αD2)ψ = 0. (3.165)In order for these two equations to have simultaneous solution, one obtains the ondition:

−αβF ab
11̄ − α2F ab

21̄ + β2F ab
12̄ + αβF ab

22̄ = 0, (3.166)where F ab
ij̄ ≡ Nij̄ is again the di�erene of �uxes in brane staks a and b and Nij̄ is thesame hermitian intersetion matrix, eq. (3.149), used in writing the positive hiralitywavefuntion and Yukawa ouplings in eq. (3.68), and other parts of Setion 3.5. When

pxixj = 0, and Ω = iI3, N redues to the real symmetri matrix.Fortunately, equation (3.166) has arbitrary solutions of the type:
F ab ≡ N ≡ N̂11̄

(

1 −q

−q q2

)

+ Ñ22̄

(

q2 q

q 1

)

, (3.167)with q = β
α
and N̂11̄, Ñ22̄ being arbitrary integers whose notation will beome lear later(see eq. (3.186) below). The RHS of the above relation is a general parameterization of a

2× 2 symmetri matrix, sine the two terms an be written as
F ab ≡ N ≡ N̂11̄

(

1

−q

)

(

1 −q
)

+ Ñ22̄

(

q

1

)

(

q 1
)

. (3.168)After having shown the possible existene of the solution of the type (3.163), we pro-eed to �nd the expliit form of the wavefuntion ψ by applying the allowed orthogonaltransformations on the wavefuntion of the negative hirality fermion on a T 4 whih isfatorized into T 2× T 2. To obtain the expliit form of this orthogonal transformation, westart by writing the oordinate T 4 oordinate, XM = zi, z̄i (i = 1, 2), in the spinor basis.We note, for the hoie of Dira Gamma matries (in a real basis) given in eqs. (3.11),(3.12) that
ΓMXM =













z̄1 z̄2

z1 z̄2

z2 −z̄1

z2 −z̄1













, (3.169)
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingswith zi = xi + iyi and z̄i = xi − iyi, (i = 1, 2), whih fatorizes into 2× 2 bloks providingthe basis on whih SU(2)'s in the Lorentz group : SU(2)L × SU(2)R ∼ SO(1, 3) at. Weget xi in the spinor basis in the form of a 2× 2 matrix:
Xαα̇ =

(

z̄1 z̄2

−z2 z1

)

. (3.170)Now to understand the transformation properties of the fermions on T 4, we onsiderthe following transformations on Xαα̇:
(

eiθ1 0

0 e−iθ1

)(

z̄1 z̄2

−z2 z1

)(

e−iθ2 0

0 eiθ2

)

=

(

ei(θ1−θ2)z̄1 ei(θ1+θ2)z̄2

−e−i(θ1+θ2)z2 e−i(θ1−θ2)z1

) (3.171)We learn from eq. (3.171) that when T 4 fatorizes into T 2 × T 2, the transformationsof the positive and negative hirality fermions on the two T 2's an be read o� from thetransformation rules of z1 and z2 given above10. Indeed, the transformation rules for thefermions ψ(i)
± on the two T 2's, denoted by indies i = 1, 2 are:

ψ
(1)
+ −→ e−i

(θ1−θ2)
2 ψ

(1)
+ ; ψ

(1)
− −→ ei

(θ1−θ2)
2 ψ

(1)
− ,

ψ
(2)
+ −→ e−i

(θ1+θ2)

2 ψ
(2)
+ ; ψ

(2)
− −→ ei

(θ1+θ2)

2 ψ
(2)
− . (3.172)In this ase, as desribed in the setion 3.4.1, the T 4 fermion wavefuntions an bewritten as a diret produt of the ones on two T 2's as in eq. (3.34). We obtain thetransformation of T 4 wavefuntions (eq. (3.34)):

Ψ1
+ −→ e−iθ1Ψ1

+, Ψ2
+ −→ eiθ1Ψ2

+,

Ψ1
− −→ eiθ2Ψ1

−, Ψ2
− −→ e−iθ2Ψ2

−. (3.173)It follows that a left transformation (θ1 6= 0, θ2 = 0) ats independently on (left handed)positive hirality wavefuntions, and a right transformation (θ1 = 0, θ2 6= 0) ats onthe negative-hirality (right handed) wavefuntions. Now, onsider the following omplextransformation on vetors in spinor basis:10The equation number (3.171) is matrix multipliation de�ning the transformations on Xαα̇. Theequation number (3.172) gives the transformation rules for the fermions ψ(i)
± on the two T 2's, whih areread o� from the transformation rules of z1 and z2 given in equation (3.171).
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(

z̄1 z̄2

z2 −z1

)

−→

(

a b

c d

)(

z̄1 z̄2

z2 −z1

)(

e f

g h

) (3.174)Case-I: For e = h = 1, f = g = 0, c = −b, a = d, i.e a left transformation results in thefollowing orthogonal oordinate transformation,
z1 −→ az1 + bz̄2; z2 −→ az2 − bz̄1. (3.175)Case-II: Similarly, for a = d = 1, c = b = 0, h = e, f = −g, i.e a right transformationleads to
z1 −→ ez1 − fz2; z2 −→ ez2 + fz1. (3.176)In order to maintain the holomorphiity of the gauge �uxes, one therefore needs tomake use of the later transformation, in order to generate a general wavefuntion, startingwith the one whih orresponds to the diagonal (non-oblique) �ux. In addition, we needto maintain the integrality of the �uxes, as we make suh orthogonal transformations.However, in our ase, we do not make use of any spei� form of the transformation andrather use the above analysis as a guide for writing down a general solution. We thenverify the equations of motion diretly, in order to on�rm that the solution we proposeis indeed the orret one.3.6.2 New wavefuntionWe now use the transformation (3.176) to obtain the wavefuntion assoiated with thenegative hirality fermion bifundamentals, starting with a wavefuntion assoiated with anegative hirality spinor for a diagonal �ux. In the notations of eq. (3.15), it orrespondsto exiting only the negative hirality omponent

(

Ψ2
−

Ψ1
−

)

=

(

ψ

0

)

. (3.177)
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsWe ignore the expliit form of ψ, exept to note that after the transformation (3.176), onegenerates
(

ψ

0

)

−→

(

Ψ2
−

Ψ1
−

)

=

(

βψ

αψ

)

, (3.178)while (Ψ1
+, Ψ2

+) remain zero. In the gauge setor, suh wavefuntions are parameterizedin the bifundamental representations by:
Ψab =

(

Cna
χab

Cnb

)

, (3.179)as also given in eq. (3.19). For negative hirality omponents, the equations to be satis�edby the various omponents are: (see eq. (3.20))
∂1χ

2
− + ∂2χ

1
− + (A1 − A2)z1χ

2
− + (A1 − A2)z2χ

1
− = 0,

∂̄2χ
2
− − ∂̄1χ

1
− + (A1 −A2)z̄2χ

2
− − (A1 − A2)z̄1χ

1
− = 0. (3.180)We now show that the solution to eqs. (3.180), together with proper periodiity re-quirements on T 4, is given by the basis elements:

ψ
~j,N̂,Ñ = N · f(z, z̄) · Θ̂(z, z̄) (3.181)where,

f(z, z̄) = eiπ[(N̂ij̄ziImzj)−(Ñīj z̄iImz̄j)] , (3.182)
Θ̂(z, z̄) =

∑

m1,m2∈Zn

eπi(i)[(mi+ji)Mij̄(mj+jj)]e2πi[(mi+ji)N̂ij̄zje2πi(mi+ji)Ñījz̄j , (3.183)with
Mij̄ = N̂ij̄ − Ñīj (3.184)where both N̂, Ñ are real, symmetri matries, given earlier in eq. (3.167), and so also is

M (Mij̄ = Mjī). We retain, however, both types of indies: i and j̄ to inorporate realas well as omplex omponents of the (1, 1)-form �uxes Fij̄ . Also, an extra fator of i inthe exponent of Θ̂(z, z̄) orresponds to the fat that we are working with the anonialomplex struture : Ω = iI2 for the present example of the fermion wavefunton on T 4. 79



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsThe wavefuntion (3.181) satis�es the Dira equations (3.180) for the following gaugepotentials:
(A1 − A2)z̄1 = (N̂11̄ + Ñ11̄)z1 + (N̂12̄ + Ñ12̄)z2

(A1 −A2)z̄2 = (N̂12̄ + Ñ12̄)z1 + (N̂22̄ + Ñ22̄)z2. (3.185)The intersetion matrix N is therefore given by:
N = N̂+ Ñ, (3.186)as appearing previously in eqs. (3.166), (3.167). Also, we have imposed the followingonstraints, in order to retain the holomorphiity of gauge potentials:

α

β
=

−N̂11̄

N̂12̄

=
−N̂12̄

N̂22̄

=
Ñ12̄

Ñ11̄

=
Ñ22̄

Ñ12̄

=
1

q
. (3.187)Note that the ratios of the matrix elements of N̂ and Ñ are idential to those given in eq.(3.167). We have therefore expliitly shown that the solution given in eqs. (3.181) - (3.183)satis�es the equations of motion. The transformation properties of this wavefuntion(3.181) along the four 1-yles of T 4, are given by:

ψ
~j,N̂,Ñ(~z + ~n) = eiπ([N̂·~n]·Im~z−[Ñ·~n]·Im ~̄z) · ψ~j,N̂,Ñ(~z),

ψ
~j,N̂,Ñ(~z + i~n) = e−iπ([N̂·~n]·Re~z+[Ñ·~n]·Re~̄z) · ψ

~j,N̂,Ñ(~z),
(3.188)provided that

• Nīj ≡ (N̂+ Ñ)ij̄ ∈ Z, i.e (N̂+ Ñ) is integrally quantized,
• ~j satis�es: ~j · (N̂+ Ñ) ∈ Zn.We therefore notie that the integer quantization is imposed only on the intersetion matrix

N given in eq. (3.186) and does not neessarily hold for the matrix M in eq. (3.184).Expliitly, we have:
N = N̂+ Ñ = N̂11̄

(

1 −q

−q q2

)

+ Ñ22̄

(

q2 q

q 1

)

,

M = N̂− Ñ = N̂11̄

(

1 −q

−q q2

)

− Ñ22̄

(

q2 q

q 1

)

, (3.189)where the �rst eq. in (3.189) is idential to the solutions in eq. (3.167). 80



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsNote that the wavefuntion given in eqs. (3.181), (3.182) and (3.183) is now wellde�ned, as the series expansion in eq. (3.183) is now onvergent. To show this, we notethe following relation:
detN = − detM = N̂11̄Ñ22̄(1 + q2)2. (3.190)As a result, in the ase when detN is negative ( when N has two eigenvalues of oppositesignatures), detM > 0. So, the series (3.183) is now onvergent when the two eigenvaluesare of positive signature, sine it is the quadrati part, in the summation index in thetaseries, that dominates in the exponent of this expansion. An overall omplex onjugationwill be required, for the ase when two eigenvalues are negative rather than positive.3.6.3 NormalizationNow that we have found a basis of wavefuntions, lassi�ed by the index ji in the exponentin (3.183), we proeed to show its orthonormality. The wavefuntions desribed in eqs.(3.181), (3.182), (3.183) an be re-written in terms of the real oordinates ~x and ~y asfollows:

ψ
~j,N,M = N~j · e

iπ[~x·N·~y+i~y·M·~y]
∑

~m∈Zn

eπi(i)[(~m+~j)·M·(~m+~j)]e2πi[(~m+~j)·N·~x+i(~m+~j)·M·~y]. (3.191)Then the following orthonormality onditions are satis�ed:
∫

T 4

(ψ
~k,N,M)∗ψ

~j,N,M = δ~j,~k. (3.192)To verify the orthogonality relation and obtain the normalization fator, we note that, interms of the wavefuntions (3.191) we have:
(ψ

~k,N,M)∗ψ
~j,N,M = N~k · e

−iπ[~x·N·~y−i~y·M·~y]
∑

~l∈Zn

eπi(i)[(
~l+~k)·M·(~l+~k)] · e−2πi[(~l+~k)·N·~x−i(~l+~k)·M·~y]

N~j · e
iπ[~x·N·~y+i~y·M·~y]

∑

~m∈Zn

eπi(i)[(~m+~j)·M·(~m+~j)] · e2πi[(~m+~j)·N·~x+i(~m+~j)·M·~y]

= N~jN~k · e
−2π(~y·M·~y)

∑

~m,~l∈Zn

eπi(i)[(~m+~j)·M·(~m+~j)] · eπi(i)[(
~l+~k)·M·(~l+~k)]

e2πi[(~m+~j)−(~l+~k)]·N·~x · e2πi(i)[(~m+~j)+(~l+~k)]·M·~y. (3.193)The integration over ~x in eq. (3.192) imposes the ondition ~j = ~k and equality on the sum-mation indies ~m = ~l. In partiular, the ondition ~j = ~k gives our orthogonality ondition81



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplings(3.192). One an now obtain the normalization fator by performing the integration:
∫ 1

0

d2~y

[

e−2π~y·M·~y
∑

~m∈Zn

e−2π(~m+~j)·M·(~m+~j) · e−4π(~m+~j)·M·~y

]

=

∫ 1

0

d2 (~y)

[

∑

~m∈Zn

e−2π((~m+~j)+~y)·M·((~m+~j)+~y)

]

. (3.194)One an integrate over ~y, using
∫ 1

0

d2~y

[

∑

~m∈Zn

e−2π((~m+~j)+~y)·M·((~m+~j)+~y)

]

=
∑

~m∈Zn

∫ 1

0

d2~y
[

e−2π[(~m+~j)+~y]·M·((~m+~j)+~y)
]

=

∫ ∞

−∞

d2~y′
[

e−2π~y′·M·~y′
] (3.195)The integration (3.195) �xes then the normalization onstant to

N~j = (2|detM|)1/4 · Vol(T 4)−1/2, ∀j. (3.196)3.6.4 Eigenfuntions of the Laplae equationThe wavefuntions (3.181) not only represent zero modes of the Dira operator, but arealso eigenfuntions of the Laplaian. In order to see this, we start with omputing theDira operator in four dimensions. In our notations:
Γµ∂µ =













∂̄1 ∂̄2

∂1 ∂̄2

∂2 −∂̄1

∂2 −∂1













, (3.197)

82



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingswhih leads to
(D/)2 =













D̄1D1 + D̄2D2

D1D̄1 + D̄2D2

D2D̄2 + D̄1D1

D1D̄1 +D2D̄2













= ∆+













F11̄ + F22̄

−F11̄ + F22̄

F11̄ − F22̄

−(F11̄ + F22̄)













. (3.198)The Dira equation D/Ψ = 0, with Ψ given in eq. (3.34), implies that suh basis funtionsare also eigenfuntions of the Laplaian ∆. The question whether massless salars exist,depends on whether some ombination of �uxes appearing in eq. (3.198) vanish11. Ofourse, their existene is guaranteed in the supersymmetri ase.3.6.5 Mapping of basis funtions from positive to negative hiral-ityWe now show that the basis for the negative hirality wavefuntion, given in eqs. (3.181),(3.182), (3.183) an in fat be obtained by a mapping from the basis of the positive hiralitywavefuntion given in eq. (3.68). We also present the mapping between the orresponding�eld equations. Our mapping redues to the ones in [6℄ for the ase of fatorized tori.More preisely, we show that our negative hirality wavefuntion, given in eqs. (3.181),(3.182), (3.183), as well as (3.191) (for a trivial modular parameter matrix : Ω = iI2) isidential to the positive hirality wavefuntion (3.68) for a `nontrivial' (�ux dependent)modular parameter matrix Ω = iΩ̂. Expliitly, Ω̂ is given in terms of the ratios (q) of�ux omponents. This result gives a `uni�ed' piture of all the relevant basis funtions.Later on, in Setion 3.6.7, we show that a similar mapping holds for nontrivial omplexstruture on T 4, by examining the equations of motion.Let us write down expliitly the wavefuntion (3.68) for omplex struture with arbi-11The ondition F11̄ = −F22̄ implies massless salar and supersymmetry in T 4. The other two salarsbeome tahyoni.
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingstrary Ω (= iΩ̂).
ψ
~j,N′

(~z,Ω) = N · eiπ[(~x+iΩ̂~y).N′Ω̂−1.Ω̂~y] ·
∑

~m∈Zn

eiπ[(~m+~j).iN′Ω̂.(~m+~j)]e2iπ[(~m+~j)(N′~x+iN′Ω̂.~y)]

∼ eiπ[~x.N
′.~y+iΩ̂~y.N′.~y] ·

∑

~m∈Zn

eiπ[(~m+~j).iN′Ω̂.(~m+~j)]e2iπ[(~m+~j)(N′~x+iN′Ω̂.~y)], (3.199)where N is hanged to N′ to show a distintion between the two wavefuntions for thepurpose of de�ning the mapping as given below. Next onsider the negative hiralitywavefuntion (3.191), written in terms of real oordinates ~x and ~y,
ψ
~j,N,M ∼ eiπ[~x·N·~y+i~y·M·~y]

∑

~m∈Zn

eπi(i)[(~m+~j)·M·(~m+~j)]e2πi[(~m+~j)·N·~x+i(~m+~j)·M·~y]. (3.200)It is now easy to hek that the above equations (3.199) and (3.200) preisely math withthe following identi�ation :
N = N̂+ Ñ = N′,

M = N̂− Ñ = N′Ω̂ ⇒ Ω̂ = N−1M, (3.201)with Ω = iΩ̂, and Ω̂ is a real matrix. For the N and M, de�ned in eq. (3.189), N−1 and
Ω̂ are given by;

N−1 =
1

(1 + q2)2

[

1

N̂11̄

(

1 −q

−q q2

)

+
1

Ñ22̄

(

q2 q

q 1

)]

, (3.202)
Ω̂ =

1

(1 + q2)

(

1− q2 −2q

−2q q2 − 1

)

= (Ω̂)−1. (3.203)We have therefore shown expliitly that the positive hirality basis wavefuntion (3.68),known earlier in the literature, an be mapped to the negative hirality wavefuntionsthat we have onstruted in eqs. (3.181)-(3.183), (3.191). Suh a map also on�rms thevalidity of our onstrution for the negative hirality basis funtions, presented using basipriniples, suh as equations of motion as well as periodiity requirement. In fat, in thenext subsetion, the same mapping is also obtained through omparison of the relevantequations of motion, whih further on�rms our results for the onstrution of the basisfuntions. Note that for q = 0 or q → ∞, orresponding to the ase when both matries
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplings
N and M in eq. (3.189) are diagonal, we have:

Ω̂ =

(

1 0

0 −1

)

, or Ω̂ =

(

−1 0

0 1

)

, (3.204)respetively. As a result, one reprodues the known mapping of the wavefuntions betweenpositive and negative hirality spinors in the ase when T 4 is fatorized into T 2 × T 2 [6℄.3.6.6 Mapping the equations of motionIn order to derive a similar mapping of the equations of motion, we show below that theovariant derivative operators appearing in eqs. (3.22) for the positive hirality wavefun-tion, with a nontrivial omplex struture (iΩ̂), are equivalent to the derivative operatorsappearing in eqs. (3.164), (3.165) for the negative hirality wavefuntion (with omplexstruture Ω = iI2). The mapping of orresponding gauge potentials an also be shownin the same manner, sine they have similar dependene on the omplex struture asthe derivative operator. Note that the omplex struture appears in the wavefuntionsas modular parameter matries. We therefore reon�rm the mapping between the twowavefuntions by omparing the equations of motion as well.We now examine the Dira equations for both ases. For the �rst one, with arbitrary
Ω(= iΩ̂), we have

~z = ~x+ iΩ̂~y ; ~̄z = ~x− iΩ̂~y ⇒ ~x =
~z + ~̄z

2
; ~y = (Ω̂)−1

(

~z − ~̄z

2i

)

,whih implies
∂

∂zi
=

1

2

(

∂

∂xi
− i(Ω̂)−1

ji

∂

∂yj

)

,

∂

∂z̄i
=

1

2

(

∂

∂xi
+ i(Ω̂)−1

ji

∂

∂yj

)

. (3.205)Then, the Dira equation for the positive hirality wavefuntion is:
D̄z̄iψ

~j,N′

(~z,Ω) ≡
1

2

(

Dxi + i(Ω̂)−1
ji Dyj

)

ψ
~j,N′

(~z,Ω) = 0, i, j = 1, 2. (3.206)On the other hand, for the negative hirality solution (3.180), with omplex struture
Ω = iI2, the relevant derivative operators are:

(βD1 + αD2)ψ
~j,N,M = 0;

(

βD̄2 − αD̄1

)

ψ
~j,N,M = 0. (3.207)85



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsThese equations, using the de�nitions zi = xi + iyi, z̄i = xi − iyi, i.e. substituting
Di =

1

2

(

Dxi − iDyi
)

,

D̄i =
1

2

(

Dxi + iDyi
)

. i = 1, 2an be rewritten as:
{

β

2
(Dx1 − iDy1) +

α

2
(Dx2 − iDy2)

}

ψ
~j,N,M = 0,

{

β

2
(Dx2 + iDy2)−

α

2
(Dx1 + iDy1)

}

ψ
~j,N,M = 0.These two equations upon simpli�ation leads to,

1

2

{

Dx1 + i

(

α2 − β2

α2 + β2
Dy1 −

2αβ

α2 + β2
Dy2

)}

ψ
~j,N,M = 0,

1

2

{

Dx2 + i

(

−2αβ

α2 + β2
Dy1 +

β2 − α2

α2 + β2
Dy2

)}

ψ
~j,N,M = 0. (3.208)Now using β

α
= q from eq. (3.187) and omparing the equations (3.206) and (3.208), one�nds that they preisely math for the following omplex struture:

(Ω̂)−1 =
1

(1 + q2)

(

1− q2 −2q

−2q q2 − 1

)

, (3.209)whih is exatly the same as eq. (3.203). Thus, the wavefuntions as well as the Diraequations for both ases math exatly. This mapping an be generalized further, as givenin subsetion 3.6.8 below.3.6.7 Mapping for arbitrary omplex struture ΩIn this subsetion, we generalize the mapping between the equations of motion assoiatedwith the positive and negative hirality wavefuntion to the ase of T 4 ompati�ationwith arbitrary omplex struture Ω. Now, the negative hirality basis funtions satisfy:
1

2

{

Dx1 + i(Ω)−1
i1

(

α2 − β2

α2 + β2
Dyi

)

− i(Ω)−1
i2

(

2αβ

α2 + β2
Dyi

)}

ψ
~j,N,M = 0

1

2

{

Dx2 + i(Ω)−1
i1

(

−2αβ

α2 + β2
Dyi

)

+ i(Ω)−1
i2

(

β2 − α2

α2 + β2
Dyi

)}

ψ
~j,N,M = 0 , (3.210)

86



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingswhih an be identi�ed with the equations satis�ed by the positive hirality wavefuntionwith Ω̃ = Ω̂Ω, as an be seen through the deomposition:
∂

∂zi
=

1

2

(

∂

∂xi
− i(Ω̃)−1

ji

∂

∂yj

)

,

∂

∂z̄i
=

1

2

(

∂

∂xi
+ i(Ω̃)−1

ji

∂

∂yj

)

. (3.211)Thus, eq. (3.68) with Ω̃ = Ω̂Ω, with Ω̂ given in eq. (3.209), provides the negative hiralitysolution for arbitrary omplex struture Ω, where both `oblique' and diagonal �uxes areturned on.3.6.8 Generalization for the T 6- aseIn this subsetion, we generalize the results obtained so far for negative hirality fermionson T 4 to the more general T 6 ase. We only onsider the wavefuntions that are wellde�ned with two positive and one negative eigenvalues of the 3× 3 Hermitian intersetionmatries, sine these will omplete the list of well de�ned wavefuntions, one omplexonjugations are taken into aount. For the ase of T 6, the relevant equations, obtainedby generalization of eqs. (3.164) and (3.165) to be examined, are:
(αD̄1 − βiD̄i)ψ = 0, (3.212)and
(αDi + βiD1)ψ = 0. (3.213)Note that in these equations and below, the indies i, j = 1, 2 (used for the T 4 with wave-funtions of positive hirality). In order for the above two equations to have simultaneoussolution, one obtains the ondition :

α2F ab
i1̄ + αβiF

ab
11̄ − αβjF

ab
ij̄ − βiβjF

ab
1j̄ = 0, (3.214)where F ab ≡ N is the di�erene of �uxes in brane staks a and b. The general solution ofthis equation is of the following type:

F ab ≡ N ≡ N̂

(

1 −(~q)T

−~q ~q(~q)T

)

+

(

(~q)T Ñ~q ~qT Ñ

Ñ~q Ñ

)

, (3.215)
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingswhere Ñ is a 2× 2 matrix and N̂ is a number. Also, ~q is the two-dimensional (2d) vetorde�ned as:
~q =

(

q1

q2

) (3.216)with qi = βi

α
.Now, after showing the possible existene of the solution by de�ning F ab in (3.215),for the negative hirality wavefuntion on T 6, we proeed to present a mapping betweenthe equations of motion for negative hirality and positive hirality wavefuntions on T 6.As desribed before in setion 3.6.6. Here also we show that the ovariant derivativeoperators appearing in eqs. (3.22), for the positive hirality wavefuntion, with a nontrivialomplex struture are equivalent to the derivative operators appearing in eqs. (3.212),(3.213) for the negative hirality wavefuntion (with omplex struture Ω = iI3) and theorresponding gauge potentials map in the same manner.For the positive hirality ase, with arbitrary Ω(= iΩ̂) and eqs. (3.205), (3.205), theDira equation reads:

D̄z̄µψ
~j,N′

(~z,Ω) ≡
1

2

(

Dxµ + i(Ω̂)−1
νµDyν

)

ψ
~j,N′

(~z,Ω) = 0, µ, ν = 1, 2, 3 . (3.217)On the other hand, for the negative hirality solution, with omplex struture Ω = iI3,the relevant derivative operators, given in eqs. (3.212), (3.213), take the form:
1

2

{(

α2δij + βiβj
)

Dxj − i (2αβi)Dy1 + i
(

βiβj − α2δij
)

Dyj
}

ψ
~j,N,M = 0,

1

2

{(

β2
i + α2

)

Dx1 + i
(

α2 − β2
i

)

Dy1 − i (2βiα)Dyi
}

ψ
~j,N,M = 0. (3.218)Now, de�ning new 2× 2 matries,

Aij =
(

α2δij + βiβj
)

, Bij =
(

βiβj − α2δij
)

,and
Pi = (2αβi), (3.219)
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingseqs. (3.218) an be re-written as:
1

2

{

Dxi − i
(

A−1P
)

i
Dy1 + i

(

A−1B
)

ij
Dyj

}

ψ
~j,N,M = 0

1

2

{

Dx1 + i

(

α2 − β2
i

β2
i + α2

)

Dy1 − i

(

2αβi
β2
i + α2

)

Dyi

}

ψ
~j,N,M = 0 . (3.220)A omparison of equations (3.217) and (3.220) implies that they preisely math for thefollowing omplex struture:

(Ω̂)−1
11 =

(

α2 − β2
i

β2
i + α2

)

, (Ω̂)−1
1i =

(

−A−1P
)

i
,

(Ω̂)−1
i1 = −

(

2αβi
β2
i + α2

)

, (Ω̂)−1
ij =

(

A−1B
)

ij
. (3.221)This expression for the omplex struture generalizes the one derived earlier in eq. (3.203)for the T 4 ase. The results are also easily generalizable to arbitrary omplex struture Ωfollowing the disussions in subsetion 3.6.7 for the speial ase of T 4 (see eq. (3.211)).3.6.9 Computation of Yukawa ouplingsNow that we have derived both the fermioni and bosoni internal wavefuntions andexpressed them as an orthonormal basis, we ompute the Yukawa ouplings using thebasis wavefuntions (3.191). We also point out how the results derived below redue tothe ones in setion 3.5.Starting with basis funtions desribed in eq. (3.191), for the ase of the anonialomplex struture Ω = iI2 (in the T 4 ase), we have:

ψ
~i,N1,M1(~z) · ψ

~j,N2,M2,(~z) = N~i · N~j · e
iπ[~x·(N1+N2)·~y+i~y·(M1+M2)·~y] (3.222)

·
∑

~l1,~l2∈Zn

eπi(i)[(
~l1+~i)·M1·(~l1+~i)+(~l2+~j)·M2·(~l2+~j)]

· e2πi[(
~l1+~i)·N1+(~l2+~j)·N2]·~xe2πi(i)[(

~l1+~i)·M1+(~l2+~j)·M2]·~yThis expression an be re-written as:
ψ
~i,N1,M1(~z) · ψ

~j,N2M2,(~z) = N~i · N~j · e
iπ[~x·(N1+N2)·~y+i~y·(M1+M2)·~y] (3.223)

·
∑

~l1,~l2∈Zn

eπi(i)(
~lT ·Q̂·~l)e2πi(~lT ·Q·~X).e2πi(i)(

~lT ·Q̂·~Y) ,
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingswhere we de�ned the 4d-vetors:
~l = ( ~i+ ~l1

~j + ~l2

)

, ~X =

(

~x

~x

)

, ~Y =

(

~y

~y

)

, (3.224)and the 4d-matries:Q =

(

N1 0

0 N2

)

, Q̂ =

(

M1 0

0 M2

)

. (3.225)Using the transformation matrix T , de�ned in eq. (3.74), and eqs. (3.75)-(3.79), weexpliitly write the terms appearing in the exponents in the RHS of eq. (3.223) as:
(~l)T · Q̂ · (~l) = (~l)T · (T−1T ) · Q̂ · (T T (T−1)T ) · (~l),

(~lT ·Q · ~X) =~lT · (T−1T ) ·Q · (T T (T−1)T ) · ~X,
(~lT · Q̂ · ~Y) =~lT · (T−1T ) · Q̂ · (T T (T−1)T ) · ~Y. (3.226)Then using:Q′ ≡ T ·Q · T T =

(

(N1 +N2) 0

0 α(N1
−1 +N2

−1)αT

)

, (3.227)Q̂′
≡ T · Q̂ · T T =

(

(M1 +M2) (M1N1
−1 −M2N2

−1)αT

α(N1
−1M1 −N2

−1M2) α(N1
−1M1N1

−1 +N2
−1M2N2

−1)αT

)

,

(~l)TT−1 =

(

(~i+ ~l1)(N1
−1 +N−1

2 )−1N−1
2 + (~j + ~l2)(N

−1
1 +N−1

2 )−1N−1
1

[

(~i+ ~l1)− (~j + ~l2)
]

(N−1
1 +N−1

2 )−1α−1

)T

, (3.228)and
(T−1)T (~l) = ( N−1

2 (N−1
1 +N−1

2 )−1(~i+ ~l1) +N−1
1 (N−1

1 +N−1
2 )−1(~j + ~l2)

(α−1)T (N−1
1 +N−1

2 )−1[(~i+ ~l1)− (~j + ~l2)]

)

, (3.229)
(T−1)T (~X) =

(

~x

0

)

; (T−1)T (~Y) =

(

~y

0

)

, (3.230)
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingswe an re-write eq. (3.223) as
ψ
~i,N1,M1(~z) · ψ

~j,N2M2,(~z) = N~i · N~j · e
iπ[~x·(N1+N2)·~y+i~y·(M1+M2)·~y] × (3.231)

∑

~l1,~l2∈Zn

eπi(i)({[(
~l1+~i)N1+(~l2+~j)N2](N1+N2)−1}·(M1+M2)·{(N1+N2)−1(N1(~i+~l1)+N2(~j+~l2))}) ×

e2πi{[(
~l1+~i)·N1+(~l2+~j)·N2](N1+N2)−1}·(N1+N2)~x · e2πi(i){[(

~l1+~i)·N1+(~l2+~j)·N2](N1+N2)−1}·(M1+M2)~y ×

e2πi(i){[(
~i+~l1)−(~j+~l2)](N

−1
1 +N

−1
2 )−1α−1}·α(N1

−1M1−N2
−1M2)·~y ×

eπi(i)({[(
~l1+~i)N1+(~l2+~j)N2](N1+N2)−1}·(M1N1

−1−M2N2
−1)αT {(α−1)TN2(N1+N2)−1N1[(~i−~j)+(~l1−~l2)}) ×

eπi(i){[((
~i−~j)+(~l1−~l2))N1(N1+N2)−1N2α−1]·[α(N1

−1M1−N2
−1M2)](N1+N2)−1(N1(~i+~l1)+N2(~j+~l2))} ×

eπi(i){[((
~i−~j)+(~l1−~l2))N1(N1+N2)−1N2α−1][α(N1

−1M1N1
−1+N2

−1M2N2
−1)αT ][(α−1)TN2(N1+N2)−1N1[(~i−~j)+(~l1−~l2)]}Now, in a similar exerise as the one performed earlier in setions 3.5.2, 3.5.3, 3.5.4, werearrange the series in eq. (3.231) in terms of new summation variables ~l3, ~l4, ~m, whose val-ues and ranges are assigned as in these setions.12 With the value of α = (detN1 detN2)I,de�ned in eq. (3.86), eq. (3.231) takes the form:

ψ
~i,N1,M1(~z) · ψ

~j,N2M2,(~z) = N~i · N~j · e
iπ[~x·(N1+N2)·~y+i~y·(M1+M2)·~y] (3.232)

∑

~l3,~l4∈Zn

∑

~m

eπi(i)[(
~iN1+~jN2+~mN1)(N1+N2)−1+~l3]·(M1+M2)·[(N1+N2)−1(N1~i+N2~j+N1 ~m)+~l3] ×

e2πi[(
~iN1+~jN2+~mN1)(N1+N2)−1+~l3]·(N1+N2)~x · e2πi(i)[(

~iN1+~jN2+~mN1)(N1+N2)−1+~l3]·(M1+M2)~y ×

e
2πi(i)[(~i−~j+~m)

N1(N1+N2)
−1N2

detN1 detN2
+~l4]·[(detN1 detN2)(N1

−1M1−N2
−1M2)]·~y ×

e
πi(i)[(~iN1+~jN2+~mN1)(N1+N2)−1+~l3]·[(detN1 detN2)(M1N1

−1−M2N2
−1)]·[

N2(N1+N2)
−1N1

detN1 detN2
(~i−~j+~m)+~l4] ×

e
πi(i)[(~i−~j+~m)

N1(N1+N2)
−1N2

detN1 detN2
+~l4]·[(detN1 detN2)(N1

−1M1−N2
−1M2)]·[(N1+N2)−1(N1

~i+N2
~j+N1 ~m)+~l3] ×

e
πi(i)[(~i−~j+~m)

N1(N1+N2)
−1N2

detN1 detN2
+~l4][(detN1 detN2)2(N1

−1M1N1
−1+N2

−1M2N2
−1)][

N2(N1+N2)
−1N1

detN1 detN2
(~i−~j+~m)+~l4]Using from eq.(3.191):

(ψ
~k,N3,M3)∗ = N~k · e

−iπ[~x·N3·~y−i~y·M3·~y]

×
∑

~l′3∈Z
n

eπi(i)[(
~l′3+

~k)·M3·(~l′3+
~k)] · e−2πi[(~l′3+

~k)·N3·~x−i(~l′3+
~k)·M3·~y], (3.233)we an then proeed to alulate the Yukawa oupling:

Yijk = σabcg

∫

T 4

dzidz̄i · ψ
~i,N1,M1 · ψ

~j,N2M2 · (ψ
~k,N3,M3)∗ (i = 1, 2) . (3.234)12For details see setions 3.5.1, 3.5.2, 3.5.3, 3.5.4. 91



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsConsider �rst the integration over ~x:
∫

d2~x eiπ{~x·[(N1+N2)−N3]·~y}
∑

~l3,~l4,~l′3∈Z
n

∑

~m

e2πi[(
~iN1+~jN2+~mN1)(N1+N2)−1+~l3]·(N1+N2)~xe−2πi(~l′3+

~k)·N3·~x(3.235)whih implies, using (N1 +N2) = N3 , the following onditions:
• equality of the summation indies ~l3 = ~l′3,
• the relation (~iN1 +~jN2 + ~mN1)(N3)

−1 = ~k .Note that (N1+N2) = N3 is a valid ondition in a triple intersetion sine Iab+ Ibc = Iac,with omplex onjugation taking are of the fat that Iac = −Ica, whih hanges the signsofN3 andM3. Also, as in setion 3.5.3, 3.5.4, for any given solution of the above onstraintequation for ~i,~j,~k, ~m, other solutions inside the ell of eq. (3.99) that are shifted by ~m'ssatisfying ~mN1N3
−1 : integer are also allowed. In view of this, as in eq. (3.112), we breakthe sum over ~m into two parts, one orresponding to ~̃m, whih is a given spei� solutionof eq. (3.105) and the other ones as given by sum over integer variables ~p and ~̃p whoseranges are as de�ned in eq. (3.110).Imposing the onstraints from the ~x integration, we obtain:

Yijk = σabcg · N~i · N~j · N~k (3.236)
∫

d2~y{e−π[~y·(M1+M2+M3)·~y]
∑

~l3,~l4∈Zn

∑

~p,~̃p

eπi(i)[
~k+~l3]·(M1+M2)·[~k+~l3] ×

e
πi(i)[~k+~l3]·[(detN1 detN2)(M1N1

−1−M2N2
−1)]·[

N2(N1+N2)
−1N1

detN1 detN2
(~i−~j+ ~̃m)+~l4] ×

e
πi(i)[(~i−~j+ ~̃m)

N1(N1+N2)
−1N2

detN1 detN2
+~l4]·[(detN1 detN2)(N1

−1M1−N2
−1M2)]·[~k+~l3] ×

e
πi(i)[(~i−~j+ ~̃m)

N1(N1+N2)
−1N2

detN1 detN2
+~l4][(detN1 detN2)2(N1

−1M1N1
−1+N2

−1M2N2
−1)][

N2(N1+N2)
−1N1

detN1 detN2
(~i−~j+~m)+~l4]

×eπi(i)[
~k+~l3]·(M1+M2)·~y · e

πi(i)[(~i−~j+~m)
N1(N1+N2)

−1N2
detN1 detN2

+~l4]·[(detN1 detN2)(M1N1
−1−M2N2

−1)]·~y
},where the range of the sum over ~p, ~̃p is as used in eq. (3.110) in setion 3.5.3.
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsThe above expression for the Yukawa interation an be written as following:
Yijk = σabcg · (2

3)
1
4 (| detM1|.| detM2|.| detM3|)

1
4

(

V ol(T 4)
)− 3

2

∫

d2~y{e−π[~y·(M1+M2+M3)·~y]
∑

~l3,~l4∈Zn

∑

~p,~̃p

eπi(i)[
~K+~L]·Q̂′·[~K+~L]e2πi(i)[

~K+~L]· ~Y′

= σabcg · (2
3)

1
4 (|detM1|.|detM2|.|detM3|)

1
4

(

V ol(T 4)
)− 3

2 ×

∑

~p,~̃p

∫

d2~y{e−π[~y·(M1+M2+M3)·~y] · ϑ

[

~K

0

]

( ~Y′|iQ̂′)} (3.237)where we de�ned new 4d-vetors:
~L =

(

~l3
~l4

)

, ~K =

(

~k

[(~i−~j + ~̃m)][N1(N1+N2)−1N2

detN1 detN2
]

)

, (3.238)
~Y′ =

(

(M1 +M2)~y

[(detN1 detN2)(M1N1
−1 −M2N2

−1)] · ~y

) (3.239)and the 4d-matrix:Q̂′
=

(

(M1 +M2) (detN1 detN2)(M1N1
−1 −M2N2

−1)

(detN1 detN2)(N1
−1M1 −N2

−1M2) (detN1 detN2)
2(N1

−1M1N1
−1 +N2

−1M2N2
−1)

)(3.240)with ~k appearing in eq. (3.238) restrited by the Kroneker delta relation written above,as following from the x integration, in eq. (3.235) and the range of the sum over ~p, ~̃p is asused in eq. (3.110) in setion 3.5.3, we skip the details regarding them.In fat, the form of the result (3.237) is valid for all basis funtions, whether or-responding to positive or negative hirality wavefuntions, sine the negative hiralitywavefuntion (3.191), written for the omplex struture Ω = iI2 and used in obtaining the�nal answer for Yukawa oupling in eq. (3.237), redues to the one for positive hiralitywavefuntion for the same omplex struture when M is set to N (see eq. (3.68) for thegeneral form of the positive hirality wavefuntion). For suh a hoie: Mi = Ni, Q̂′ hasa fatorized blok form and the vetor ~Y′ in eq. (3.239) now has a form:
~Y′ =

(

(N1 +N2)~y

0

)

. (3.241)
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Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsThe theta funtion in eq. (3.237) then fatorizes and the �nal answer redues to the formgiven in eqs. (3.104), (3.114) for the hoie τ = i orresponding to the omplex strutureof our hoie in the negative hirality wavefuntion (3.181).The Yukawa oupling expression (3.237) an be further generalized to other situations.First, although the above analysis was very spei� to the ase of T 4 due to our hoieof wavefuntion in eq. (3.191), the generlization to the T 6 is staightforward. Mappingbetween matries N and M is idential and follows from the de�nition of Ω̂ in subsetion3.6.8. The �nal answer is idential to the one given in eq. (3.237).Further generalization to the situation of arbitrary omplex struture should also bepossible, using the wavefuntions that emerge due to the mappings obtained in subsetion(3.6.7) and saling proedure presented in setion (3.5.6) for the positive hirality wave-funtions. One, however, also needs to examine the symmetry property of the matries
NΩ̂Ω et., appearing in the de�nition of the wavefuntion. We leave further details forfuture work.3.7 Disussions and ConlusionsIn this onluding setion, we �rst omment on the ase of magnetized branes with higherwinding numbers. The form of the wrapping matries [104℄ for D9 branes on T 6 wasdisussed in [7, 103℄. They are real 6×6 matries giving the embedding of the brane alongspatial internal diretions. The situation where worldvolume oordinates are identi�edwith the spatial oordinates orresponds to W being diagonal. Then, for example, for aanonial omplex struture Ω = iI3, the spatial omponents of the �ux matries are of theform given in eqs. (D.3), (D.4), (D.5). Taking into aount the gauge indies, one obtainsa blok diagonal matrix struture for the �uxes, that redues in the ase of fatorized torito the form:

F =





ma
i

na
i
INa

mb
i

nb
i

INb



 , (3.242)with a and b representing the brane-staks and i denotes the i'th T 2. Also ma,b
i are the�rst Chern numbers, as given in eqs. (D.3) and (D.4), whereas na,b

i are the produt of thewinding numbers along various 1-yles of (T 2)
3
∈ T 6. Also, Na and N b are the numberof branes in staks a and b respetively and the above expression has a straightforwardgeneralization when many suh brane staks are involved.In [6℄, a gauge theoreti piture of the magneti �uxes along brane staks with higherwinding numbers (> 1) was given. For instane, onsider the simplest hoie Na = N b =94



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplings
1. In this ase, the on�guration of the brane staks a and b with one D-brane eah,having wrapping numbers na, nb and 1st Chern numbers ma, mb, is given by a �ux matrixassoiated with a U(na+nb) gauge group with �ux having the internal (gauge) omponents:

F =





ma
i

na
i
Ina

i

mb
i

nb
i

Inb
i



 , (3.243)along the i'th T 2 and ma
i , n

a
i et. are relatively prime.Given the U(na + nb) �ux in eq. (3.243), the fermion wavefuntions assoiated withbifundamentals were onstruted in [6℄. The new feature is that, to have proper periodiityproperty for these fermion wavefuntions, non-abelian Wilson lines need to be turnedon. In turn, these non-abelian Wilson lines mix up na

i × nb
i omponents and the set ofperiodiity onstraints only allows the bifundamentals belonging to the representations ofthe gauge group: U(P a

i )×U(P
b
i ), with P a

i = g.c.d.(ma
i , n

a
i ). In our example above we have

P a
i = P b

i = 1.The ase of oblique �uxes brings in extra omplexities in the analysis due to thepresene of six independent 1-yles along whih non-abelian Wilson line ations needto be �xed. Given the ation of these Wilson lines, one an then proeed to obtain thewavefuntions as well as the Yukawa ouplings. However, unlike the fatorized situation in[6℄, one �nds that the ation of non-abelian Wilson lines on the wavefuntion, is dependenton the partiular model, or more preisely, on the details of the oblique �uxes that areturned on. Further analysis along this line is, though umbersome, possible.To summarize, in this work, we have been able to expliitly generalize the Yukawaoupling expressions to the situation when the worldvolume �uxes, that are responsiblefor moduli stabilization, hiral mass generation, supersymmetry breaking to N = 1 et.,do not respet the fatorization of T 6 into (T 2)
3. For the fatorized tori, the mappingsof the Yukawa ouplings, superpotentials and Kähler potential between the type IIB andIIA expressions was disussed in [6℄. In the IIA ase, the results are obtained through a`diagonal' wrapping of the D6 branes in three T 2's.It will also be interesting to map our IIB expressions, given in this hapter to theIIA side and �nd the orresponding interseting brane piture. Due to the presene ofmagneti �uxes, obtaining the Type IIA piture by simply applying T-duality is not trivial.When �uxes are turned on along the three diagonal 2-tori, the orresponding T-dualpiture is given by interseting D6-branes, the angle of intersetion being related to themagneti �ux turned along that tori. However, when there are 'oblique' �uxes present, theorresponding interseting brane piture is not very illustrative. As stated earlier, suh a95



Chapter 3. Fermion Wavefuntions in Magnetized branes:Theta identities and Yukawa ouplingsIIA onstrution will require putting the branes along general SU(3) rotation angles andthen obtain the area of the triangles orresponding to the intersetions of three branesgiving hiral multiplets.Finally, it will be interesting to explore the generalization of our results to higher-point funtions (omputing ouplings of higher dimensional e�etive operators) [129℄ andmake expliit omparisons of our results with those in [124, 125℄, where the situationwith diagonal intersetion matries Ni, but non-fatorized omplex struture, is addressedthrough a omputation of twist �eld orrelations. However, one then needs to examinethe e�et of supersymmetry onditions (2.26) and (2.27) to see if the interation indeedremains nontrivial in a supersymmetri set up.
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4Supersymmetri SU(5) GUT modelwith Stabilized Moduli:
4.1 IntrodutionIn this hapter, we apply the framework desribed in the previous hapters, as well asthe theoretial results derived in them, to onstrut semi-realsti models. In partiular,we disuss the onstrution of a three generation SU(5) supersymmetri grand uni�ed(GUT) model in simple toroidal ompati�ations of type I string theory with magnetized
D9 branes. The �nal gauge group is just SU(5) and the hiral gauge non-singlet spetrumonsists of three families with the quantum numbers of quarks and leptons, transformingin the 10 + 5̄ representations of SU(5). Brane staks with oblique �uxes play a entralrole in this onstrution, in order to stabilize all lose string moduli. Moreover, the modelis free from any hiral exotis that often appear in suh brane onstrutions.In the minimal ase, three staks of branes are needed to embed loally the StandardModel (SM) gauge group and the quantum numbers of quarks and leptons in their inter-setions [123℄. They give rise to the gauge group U(3)×U(2)×U(1), with the hyperhargebeing a linear ombination of the three U(1)'s. Three di�erent models an then be ob-tained, one of whih orresponds to an SU(5) Grand Uni�ed Theory (GUT) when U(3)and U(2) are oinident. Here, we fous preisely on this U(5)×U(1) model employing twomagnetized D9-brane staks. Open strings strethed in the intersetion of U(5) with itsorientifold image give rise to 3 hiral generations in the antisymmetri representation 10of SU(5), while the intersetion of U(5) with the orientifold image of U(1) gives 3 hiralstates transforming as 5̄. Finally, the intersetion of U(5) with the U(1) is non hiral,giving rise to Higgs pairs 5 + 5̄.In order to obtain an odd number (3) of fermion generations, a NS-NS 2-form B-
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Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:�eld bakground[91, 92℄ must be turned on [94℄. This requires the generalization of theminimal set of branes with oblique magneti �uxes that generate only diagonal 5-branetadpoles on the three orthogonal tori of T 6 =
∏3

i=1 T
2
i . We �nd indeed a set of eightsuh �oblique" branes whih ombined with U(5) an �x all geometri moduli by thesupersymmetry onditions. The metri is �xed in a diagonal form, depending on six radiigiven in terms of the magneti �uxes. At the same time, all nine orresponding U(1)'sbeome massive yielding an SU(5) × U(1) gauge symmetry. This U(1) fator annot bemade supersymmetri without the presene of harged salar VEVs. Moreover, two extrabranes are needed for RR tadpole anellation, whih also require non-vanishing VEVs tobe made supersymmetri. As a result, all extra U(1)'s are broken and the only leftovergauge symmetry is an SU(5) GUT. Furthermore, the intersetions of the U(5) stak withany additional brane used for moduli stabilization are non-hiral, yielding the three familiesof quarks and leptons in the 10+5̄ representations as the only hiral spetrum of the model(gauge non-singlet).To elaborate further, the model is desribed by twelve staks of branes, namely U5, U1,

O1 . . . , O8, A, and B. The SU(5) gauge group arises from the open string states of stak-
U5 ontaining �ve magnetized branes. The remaining eleven staks ontain only a singlemagnetized brane. Also, the stak-U5 ontaining the GUT gauge setor, ontributes to theGUT partile spetrum through open string states whih either start and end on itself13or on the stak-U1, having only a single brane and therefore ontributing an extra U(1).For this reason we will also refer to these staks as U5 and U1 staks.The matter setor of the SU(5) GUT is spei�ed by 3 generations of fermions in thegroup representations 5̄ and 10 of SU(5), both of left-handed heliity. In the magnetizedbranes onstrution, the 10 dimensional (antisymmetri) representation of left-handedfermions:
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(4.1)
arises from the doubly harged open string states starting on the stak-U5 and ending atits orientifold image: U∗

5 and vie verse. They transform as 10(2,0) of SU(5)×U(1)×U(1),where the �rst U(1) refers to stak-U5 and the seond one to stak-U1, while the subsriptdenotes the orresponding U(1) harges. The 5̄ of SU(5) ontaining left-handed hiral13For simpliity, we do not distinguish a brane stak with its orientifold image, unless is expliitly stated.98



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:fermions, or alternatively the 5 with right-handed fermions:
5 ≡
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(4.2)
are identi�ed as states of open strings starting from stak-U5 (with �ve magnetized branes)and ending on stak-U∗

1 (i.e. the orientifold image of stak-U1) and vie verse. Themagneti �uxes along the various branes are onstrained by the fat that the hiral fermionspetrum, mentioned above, of the SU(5) GUT should arise from these two setors only.The appearane of this form is disussed in later Subsetion (4.2.1).Our aim, in this hapter, is to give a supersymmetri onstrution whih inorporatesthe above features of SU(5) GUT while stabilizing all the Kähler and omplex stru-ture moduli. More preisely, for �uxes to be supersymmetri, one demands that theirholomorphi (2, 0) part vanishes. This ondition then leads to omplex struture mod-uli stabilization[102℄. In our ase we show that, for the �uxes we turn on, the omplexstruture Ω of T 6 is �xed to
Ω = i 113, (4.3)with 113 being the 3× 3 identity matrix.In this hapter, we make use of the onventions given in hapter 2, for the parametriza-tion of the torus T 6, as well as for the general de�nitions of the Kähler and omplex stru-ture moduli. In partiular, the oordinates of three fatorized tori: (T 2)3 ∈ T 6 are givenby xi, yi i = 1, 2, 3 with a volume normalization:

∫

dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ dx3 ∧ dy3 = 1. (4.4)For Kähler moduli stabilization, we make use of the mehanism based on the magne-tized D-branes supersymmetry onditions as disussed in [102, 103, 120℄. Physially thisorresponds to the requirement of vanishing of the potential whih is generated for themoduli �elds from the Fayet-Iliopoulos (FI) D-terms assoiated with the various branes.Even in this simpli�ed senario, the mammothness of the exerise is realized by noting thatevery magneti �ux that is introdued along any brane also indues harges orrespondingto lower dimensional branes, giving rise to new tadpoles that need to be aneled. In par-tiular, for the type I string that we are disussing, there are indued D5 tadpoles from99



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:�uxes along the magnetized D9 branes. These �uxes, in turn, are fored to be non-zeronot only in order to satisfy the ondition of zero net hirality among the U5 and the extrabrane staks (exept with the U1), but in order to implement the mehanism of omplexstruture and Kähler moduli stabilization, as well. Spei�ally, for stabilizing the non-diagonal omponents of the metri, one is fored to introdue `oblique' �uxes along the
D9-branes, thus generating `oblique' D5-brane tadpoles, and all these need to be aneled.However, as mentioned earlier, we are able to �nd eight brane staks O1, . . . , O8, withdi�erent oblique �uxes, suh that the ombined net indued D5-brane harge lies onlyalong the three diagonal diretions [xi, yi]. The holomorphiity onditions of �uxes, namelythe vanishing of �eld strengths with purely holomorphi indies, for these brane staksstabilizes the omplex struture moduli to the value (4.3). These �uxes also introdueD-term potential for the Kähler moduli. One the omplex struture is �xed as in (4.3),the �uxes in the nine staks U5, O1, . . . , O8 generate potential in suh a a way that all thenine Kähler moduli, Jij̄, (i, j = 1, 2, 3) are ompletely �xed by the D-�atness onditions,imposing the vanishing of the FI terms. The residual diagonal tadpoles of the branes inthe staks U5, U1, O1, . . . , O8 are then aneled by introduing the last two brane staks
A and B. D-�atness onditions for the brane staks U1, A and B are also satis�ed,provided some VEVs of harged salars living on these branes are turned on to anelthe orresponding FI parameters. Magnetized D-branes provide exat CFT (onformal�eld theory) onstrution of the GUT model. However, in the presene of the these non-vanishing salar VEVs, exat CFT desription is lost. The validity of the approximationthen requires these VEVs to be smaller than unity in string units, a ondition whih ismet in our ase. We expliitly determine the harged salar VEVs and verify that they alltake values va << 1. Our model therefore orresponds to the Higgsing of a magnetized
D9-brane model to be made supersymmetri through the VEVs of ertain harged salar�elds on the intersetions of the branes U1, A and B.At this point we would like to point out that, our strategy is to start with a suitableansatz for both the omplex struture (4.3) and Kähler moduli leading to diagonal internalmetri. Using this ansatz, we then determine �uxes along the branes satisfying all theonstraints we elaborated upon earlier. We then use the �ux solutions, to show expliitlythat the moduli are indeed ompletely �xed, onsistent with our ansatz.The hapter is organized as follows. In Setion 4.2, we obtain general solutions for�uxes along magnetized D9-branes satisfying the neessary onstraints, as desribed inhapter 2, for building the model. Moduli stabilization is disussed in Setion 4.3. InSetion 4.4, the VEVs of harged salars on the staks U1, A and B are determined. InSetion 4.5, we brie�y present an analysis of the superpotential and D-terms for the model100



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:in order to show how masses for several non-hiral fermion multiplets an be generated,without evaluating expliitly the superpotential oe�ients. This hapter ends with adisussion, Setion 4.6, of our results. In Appendix A, the �uxes along branes are writtenexpliitly for the staks O1, . . . , O8 and the assoiated D5-brane tadpoles are given. Theabsene of hiral fermions is also shown from these setors. In Appendix B, omplexstruture stabilization is shown expliitly using the �uxes given in Appendix A. Finally,the Kähler moduli stabilization is shown in Appendix C.4.2 Construting a three generation SU(5) GUT modelIn this setion, we �rst present in subsetion 4.2.1 the brane staks U5 and U1, on whihthe SU(5) GUT, with three generations of hiral fermions, lives. Then, in subsetion 4.2.2,we write down the onditions whih any extra staks, alled Oa have to satisfy, so thatthere are no net SU(5) non-singlet hiral fermions orresponding to open strings of thetype: U5 −Oa and U5 − O∗
a. In other words:

IU5Oa
+ IU5O∗

a
= 0. (4.5)In addition, we also write down, in subsetion 4.2.3, the ondition that suh staks aremutually supersymmetri with the stak U5, without turning on any harged salar VEVson these branes. The solution of these onditions giving eight branes O1, ..., O8 is presentedin subsetions 4.2.4 and 4.2.5. They are all supersymmetri, stabilize all Kähler moduli(together with stak-U5) and anel all tadpoles along the oblique diretions, xixj , xiyj,

yiyj for i 6= j. Finally in subsetion 4.2.6, two more staks A and B are found whih anelthe overall D9 and D5-brane tadpoles (together with the U1 stak).As stated earlier, our strategy to �nd solutions for branes and �uxes is to �rst assumea anonial omplex struture and Kähler moduli whih have non-zero omponents onlyalong the three fatorized orthogonal 2-tori. In other words, we look for solutions whereKähler moduli are eventually stabilized suh that
Jij̄ = 0, i 6= j, (i, j = 1, 2, 3). (4.6)By assuming the omplex struture and Kähler moduli as in eqs. (4.3) and (4.6), we then�nd �uxes needed to be turned on in order to anel tadpoles. These �uxes are also usedin the stabilization equations, in setion 4.3 and Appendies B and C, to show that moduliare indeed ompletely �xed in a way that the six-torus metri beomes diagonal. 101



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:4.2.1 SU(5) GUT brane staksWe now present the two brane staks U5 and U1 whih give the partile spetrum of SU(5)GUT. For this purpose, we onsider diagonally magnetized D9-branes on a fatorized six-dimensional internal torus (2.17), in the presene of a NS-NS B-�eld turned on aordingto eq. (2.54). The staks of D9-branes have multipliitiesNU5 = 5 and NU1 = 1, so that an
SU(5) gauge group an be aommodated on the �rst one. Next, we impose a onstrainton the windings n̂U5

i (de�ned in eq.(2.15)) of this stak by demanding that hiral fermionmultipliities in the symmetri representation of SU(5) is zero. Then from eqs. (2.58), weobtain the onstraint:
∏

j

n̂U5
j = 1. (4.7)We solve eq. (4.7) by making the hoie (2.18): nU5

α ≡ W α̂,U5
α = 1 for the stak U5. Thisalso implies n̂U5

i = 1 for i = 1, 2, 3. Moreover, sine from (2.49) the total D9-brane hargehas to be sixteen and higher winding numbers give larger ontributions to the D9 tadpole,the windings in all staks will be restrited14 to na
i = 1 so that a maximum number of branestaks an be aommodated (with Q9 = 16), in view of ful�lling the task of stabilization.Indeed, the stak U5 already saturates �ve units of D9 harge while stabilizing only asingle Kähler modulus. One more unit of D9 harge is saturated by the U1 stak, respon-sible for produing the hiral fermions in the representation 5̄ of SU(5) at its intersetionwith U5. Moreover, it annot be made supersymmetri in the absene of harged salarVEVs, as we will see below. Thus, stabilization of the eight remaining Kähler moduli,apart from the one stabilized by the U5 stak, needs eight additional branes O1, . . . , O8,ontributing at least that many units of D9 harge (when windings are all one). Theseleave only two units of D9 harge yet to be saturated, whih are also required to anelany D5-brane tadpoles generated by the ten staks, U5, U1 and O1, . . . , O8. We �nd thatthis is ahieved by two staks A and B, also of windings one, so that the total D9 hargeis Q9 = 16 and all D5 tadpoles vanish Q5

αβ = 0.Now, after having imposed the ondition that symmetri doubly harged representationof SU(5) is absent, we �nd solutions for the �rst Chern numbers and �uxes, so that thedegeneray of hiral fermions in the antisymmetri representation (10) of SU(5) is equalto three. These multipliities are given in eqs. (2.57), (2.61), and when applied to thestak U5 give the onstraint:
(2m̂U5

1 + 1)(2m̂U5
2 + 1)(2m̂U5

3 + 1) = 3, (4.8)14detW is restrited to be positive de�nite in order to avoid the presene of anti-branes. 102



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:with a solution:
m̂U5

1 = −2, m̂U5
2 = −1, m̂U5

3 = 0. (4.9)The orresponding �ux omponents are:
pU5

x1y1 = −
3

2
, pU5

x2y2 = −
1

2
, pU5

x3y3 =
1

2
, (4.10)assoiated to the total (target spae) �ux matrix

F̃U5

(1,1) =







−3
2

−1
2

1
2






. (4.11)At this level, the hoie of signs is arbitrary and is taken for onveniene.Next, we solve the ondition for the presene of three generations of hiral fermionstransforming in 5̄ of SU(5). These ome from singly harged open string states startingfrom the U5 stak and ending on the U1 stak or its image. In other words, we use theondition:

IU5U1 + IU5U∗

1
= −3. (4.12)To solve this ondition for diagonal �uxes, one an use the formulae (2.56), or alternativelyeqs. (2.59) and (2.60). In the presene of the NS-NS Bαβ-�eld of our hoie (2.54), andusing the �uxes along the U5 stak (4.10) or (4.11), the formulae take a form:

(NU5 , NU1) : IU5U1 = (−
3

2
− FU1

1 )(−
1

2
− FU1

2 )(
1

2
− FU1

3 ) , (4.13)
(NU5 , NU1) : IU5U∗

1
= (−

3

2
+ F 1

U1
)(−

1

2
+ FU1

2 )(
1

2
+ FU1

3 ) , (4.14)where we have used the notation F a
i ≡ (F̃ a

(1,1))īi for a given stak-a. We will also demandthat all omponents FU1
1 , FU1

2 , FU1
3 are half-integers, due to the shift in 1st Chern numbers

m̂U1
i by half a unit, in the presene of a non-zero NS-NS B-�eld along the three T 2's (2.17).We then get a solution of eq. (4.12):

IU5U1 = 0, IU5U∗

1
= −3, (4.15)for �ux omponents on the stak U1:

FU1
1 = −

3

2
, FU1

2 =
3

2
, FU1

3 =
1

2
. (4.16)103



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:
Stak no. No. of Windings Chern no. Fluxesa branes: Na (n̂a

1, n̂
a
2, n̂

a
3) ( m̂a

1, m̂
a
2, m̂

a
3 ) [

(m̂a
1+n̂a

1/2)

n̂a
1

,
(m̂a

2+n̂a
2/2)

n̂a
2

,
(m̂a

3+n̂a
3/2)

n̂a
3

]Stak-U5 5 (1, 1, 1) (−2,−1, 0) [-3
2
, -1

2
, 1

2
℄Stak-U1 1 (1, 1, 1) (−2, 1, 0) [−3

2
, 3
2
, 1
2
]Table 4.1: Basi branes for the SU(5) modelOne an ask whether solutions other than (4.16) are possible for the U1 stak. Forinstane, instead of the hoie (0,−3) of eq. (4.15) for the intersetions U5−U1 and U5−U∗

1subjet to the ondition (4.12), one ould try (−3, 0) or in general (n,−n− 3), for n anyinteger. Note that n (for n > 0) or −n−3 (for n < −3) is the number of eletroweak Higgspairs ontained in 5 + 5̄ of SU(5). Thus, the ases (−1,−2) and (−2,−1) were exludedbeause of the absene of higgses, but other ases suh as n = 1 or n = −4 (ontainingone Higgs pair) are worth to explore. We leave these as exerises for the future.The present results, inluding the quanta (m̂i, n̂i) for both U5 and U1 staks, are sum-marized in Table 4.1.Moreover, the (hiral) massless spetrum under the resulting gauge group U(5)×U(1) issummarized in Table 4.2. The intersetion of U5 with U1 is non-hiral sine IU5U1 vanishes.The orresponding non-hiral massless spetrum shown in the table onsists of four pairsof 5 + 5̄ and will be disussed in setion 4.2.7.4.2.2 Non-hiral staksSo far, we have obtained the gauge and matter hiral spetrum of the SU(5) GUT usingtwo staks of magnetized branes 15. However, in order to omplete the model and stabilizeall moduli, one needs to add additional staks of magnetized branes. This has to be done ina manner suh that the supersymmetries of all the brane staks are mutually ompatible.To this end, we �rst examine whether the �rst two staks U5 and U1 an have mutually15The gauge setor of the SU(5) arises from the open string states starting and ending on the stak-U5.104



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:
SU(5)× U(1)2 number
(10; 2, 0) 3

(5; 1, 1) −3

(5;−1, 1) 4− 4Table 4.2: Massless spetrumompatible supersymmetry in a way suitable for moduli stabilization. The Kähler modulistabilization onditions are written in eqs. (2.40) and (2.45), orresponding to the aseswhere harged salar VEVs are respetively zero or non-zero.Sine the VEV of any harged salar on the U5 stak is required to be zero, in orderto preserve the gauge symmetry, the supersymmetry onditions for the U5 stak read:
3

8
−

1

2
(J1J2 − 3J2J3 − J1J3) = 0, (4.17)

J1J2J3 −
1

4
(−J1 − 3J2 + 3J3) > 0, (4.18)where we have used the fat that all windings are equal to unity and that eventually theKähler moduli are stabilized aording to our ansatz (4.6), suh that Jij̄ = 0 for i 6= j,and we have also de�ned
Jīi ≡ Ji. (4.19)For the U1 stak on the other hand, one has the option of turning on a harged salarVEV without breaking SU(5) gauge invariane. However, sine all windings are equal tounity, there are no harged states under U(1) whih are SU(5) singlets. Indeed, thereis no antisymmetri representation for U(1), while symmetri representations are absentbeause of our winding hoie. The only harged states then ome from the intersetionof U1 with U5 (or its image). Thus, the supersymmetry ondition for the U1 stak followsfrom eq. (2.40), with the �uxes given in eq. (4.16) and Table 4.1:

−
9

8
−

1

2
(J1J2 − 3J2J3 + 3J1J3) = 0, (4.20)105



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:
J1J2J3 −

1

4
(3J1 − 3J2 − 9J3) > 0. (4.21)Subtrating eq. (4.20) from eq. (4.17) one obtains: J1J3 = −3

4
whih is learly not allowed.We then onlude that the U1 stak is not suitable for losed string moduli stabilizationwithout harged salar VEVs from its intersetion with other brane staks (besides U5).We therefore need eight new U(1) staks for stabilizing all the nine geometri Kählermoduli, in the absene of open string VEVs.In order to �nd suh new staks, one needs to impose the ondition that any hiralfermions, other than those disussed in setion 4.2.1, are SU(5) singlets and thus belongto the `hidden setor', satisfying:

IU5a + IU5a∗ = 0, for a = 1, .., 8 . (4.22)We then introdue eight new staks O1, . . . , O8, whih arry in general both oblique anddiagonal �uxes in order to stabilize eight of the geometri Kähler moduli, using the su-persymmetry onstraints (2.40). The remaining one is stabilized by the stak U5. Morepreisely, to determine the brane staks O1, . . . , O8, we start with our ansatz for both Käh-ler and omplex struture moduli, and use them to �nd out the allowed �uxes, onsistentwith zero net hirality and supersymmetry. Later on, we use the resulting �uxes to showthe omplete stabilization of moduli, and thus prove the validity of our ansatz.In general, along a stak-a, the �uxes an be denoted by 3× 3 Hermitian matries,
F a
(1,1) =







f1 a b

a∗ f2 c

b∗ c∗ f3






, (4.23)with fi's being real numbers, and we have suppressed the supersript `a' on the ma-trix omponents in the rhs of eq. (4.23). The relationships between the matrix elements

(F a
(1,1))ij̄ and the �ux omponents paxixj , paxiyj , payiyj are:

fi = pxiyi , a = px1y2 + ipx1x2 , b = px1y3 + ipx1x3 , c = px2y3 + ipx2x3 . (4.24)The subsript (1, 1) will also sometimes be suppressed for notational simpliity. We nowsolve the non-hirality ondition (4.22) that a general �ux of the type (4.23) must satisfy:
IU5a + IU5a∗ = det(FU5 − F a) + det(FU5 + F a) = 0 . (4.25)
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Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:The general solution for the �ux (4.23) is:
3

4
+ (f1f2 − 3f2f3 − f1f3) + (3cc∗ − aa∗ + bb∗) = 0. (4.26)All additional staks, inluding O1, . . . , O8, are required to satisfy this ondition.4.2.3 Supersymmetry onstraintWe now impose an additional requirement on the �uxes along the staks O1, . . . , O8, thattogether with the stak U5 they should satisfy the supersymmetry onditions (2.40), inthe absene of harged salar VEVs. Using F a of eq. (4.23), the supersymmetry equationsanalogous to (4.17) and (4.18) for a stak Oa read:

(f1f2f3 − cc∗f1 − bb∗f2 − aa∗f3 + a∗bc∗ + ab∗c)

−(J1J2f3 + J2J3f1 + J1J3f2) = 0, (4.27)
J1J2J3 − [J1(f2f3 − cc∗) + J2(f3f1 − bb∗) + J3(f1f2 − aa∗)] > 0. (4.28)Next, we obtain two sets of �uxes of the form (4.23) whih satisfy eqs. (4.26) and(4.27). The two sets, O1, . . . , O4 and O5, . . . , O8, are haraterized by the diagonal entriesin the matrix F a (4.23), whih will be the same for the branes of eah set. The motivationbehind suh hoies is ditated by the fat that one the o� diagonal omponents of Jij̄are �xed to zero, these two sets of �uxes along the diagonal, together with the �ux of U5stak, determine the three diagonal elements Ji (4.19), ompletely.4.2.4 Solution for the staks O1, . . . , O4In order to �nd a onstraint on the �ux omponents f1, f2, f3 and a, b, c arising out of therequirement that equations (4.17) and (4.27) should be satis�ed simultaneously, we startwith a partiular one-parameter solution of eq. (4.17):

J1 =
3

4ǫ2
, J2 =

1

2ǫ
+

1

2
, J3 =

1

2ǫ
−

1

2
(4.29)
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Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:for arbitrary parameter ǫ ∈ (0, 1).16 Then, by inserting (4.29) into eq. (4.27), one obtainsthe relation:
3

4ǫ3
(
f2 + f3

2
) +

1

4ǫ2
[
3

2
(f3 − f2) + f1]

= (f1f2f3 − cc∗f1 − bb∗f2 − aa∗f3 + a∗bc∗ + ab∗c) +
f1
4
. (4.30)In solving eqs. (4.26) and (4.30), satisfying also the positivity ondition (4.28), we haveto keep in mind that fi's take half-integer values due to the NS-NS B-�eld bakground(2.54). On the other hand the parameters a, b, c must be integers, sine the windings areall one and there is no B-�eld turned on along any o�-diagonal 2-yle. Our approah isthen to �rst look for a solution of eq. (4.26) and then examine whether suh a solutiongives an ǫ from eq. (4.30) suh that all the Ji's in eq. (4.29) are positive. In addition,both positivity onditions (4.18) and (4.28) have to be satis�ed.To solve eq. (4.26), we impose the relation f2 = −f3. The two equations (4.26) and(4.30) are then redued to

3

4
+ 2f1f2 + 3f 2

2 + 3cc∗ + bb∗ − aa∗ = 0, (4.31)and
1

4ǫ2
(−3f2 + f1) = −f1f

2
2 − cc∗f1 − bb∗f2 + aa∗f2 + a∗bc∗ + ab∗c+

f1
4
. (4.32)A solution of eq. (4.31) with purely real �ux omponents is found to be:

f1 =
5

2
, f2 =

1

2
, f3 = −

1

2
, a = 4 , b = 3 , c = 1 . (4.33)Moreover, we notie from eqs. (4.31), (4.32) and the identity:

a∗bc∗ + ab∗c = 2a1(b1c1 + b2c2) + 2a2(b2c1 − b1c2) , (4.34)with a = a1 + ia2, b = b1 + ib2, c = c1 + ic2, that other solutions an be found simplyby replaing some of the real omponents of a, b, c by imaginary ones modulo signs, aslong as the values of the produts aa∗, bb∗, cc∗, as well as that of (a∗bc∗ + ab∗c) remainunhanged. We make use of suh hoies for aneling o�-diagonal D5-brane tadpoles16One an also write down a full two-parameter solution of eq. (4.17), however we prefer to use twodi�erent one-parameter families with appropriate parametrization for onveniene in model building. Theseond one-parameter solution will be used in setion 4.2.5. Equation (4.40) represents the seond one-parameter solution. 108



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:whih for a general �ux matrix (4.23) read (using eq. (2.50)):
Q5,a

11̄
= (f2f3 − cc∗) , Q5,a

22̄
= (f3f1 − bb∗) , Q5,a

33̄
= (f1f2 − aa∗) ,

Q5,a
12̄

= (b∗c− a∗f3) , Q5,a
23̄

= (b∗a− c∗f1) , Q5,a
31̄

= (ac− bf2) . (4.35)Here we have used the omplex oordinates zi, z̄i and the assumption that omplex stru-ture is eventually stabilized as in eq. (4.3).The result of our analysis above, giving �uxes for the brane staks O1, . . . , O4, (inlud-ing the solution (4.33)) is presented in Appendix A, in eqs. (A.2), (A.7), (A.12), (A.17).In this Appendix, we also show that the net hiral fermion ontribution from the inter-setion of eah of the four staks O1, . . . , O4 with U5 (and its image) is zero, as shown ineqs. (A.3), (A.8), (A.13), (A.18). Oblique tadpoles Q5
12̄, Q5

23̄, Q5
31̄ are given in eqs. (A.4),(A.9), (A.14), (A.19) and their anellations among these branes is also apparent. Thisleaves only diagonal D5 tadpoles, given in eqs. (A.5), (A.10), (A.15), (A.20). The �uxesin real basis are given in eqs. (A.6), (A.11), (A.16), (A.21). In Table 4.3, we summarizeall Chern numbers and windings for the staks O1, . . . , O4, as well as those for the staks

O5, . . . , O8 appearing in the next subsetion.From eqs. (4.27) and (4.32), the staks O1, . . . , O4 satisfy the supersymmetry ondition:
195

8
−

1

2
[−J1J2 + 5J2J3 + J1J3] = 0, (4.36)for ǫ = 1

10
in eq. (4.29). The positivity ondition (4.28) for all of them has the following�nal form:

J1J2J3 +
5

4
J1 +

41

4
J2 +

59

4
J3 > 0, (4.37)whih is obviously satis�ed for the solution (4.29) with ǫ = 1

10
. Also, the hiral fermiondegeneraies on the intersetions U5 − Oa and U5 −O∗

a are equal to
IU5Oa

= −23 , IU5O∗

a
= 23 , a = 1, . . . , 4 , (4.38)giving vanishing net hirality for all of them individually. The non-trivial tadpole ontri-butions from the four staks are:

Q9 = 4 , Q5
x1y1 = −5 , Q5

x2y2 = −41 , Q5
x3y3 = −59 . (4.39)

109



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:
Stak No. of Windings Diag. Chern no. Diagonal Obliquebranes: (nOa

x1 , n
Oa

x2 , n
Oa

x3 ) (mOa

x1y1 , m
Oa

x2y2 , m
Oa

x3y3) �uxes Chern no.
NOa

(nOa

y1 , n
Oa

y2 , n
Oa

y3 ) [fa
1 , f

a
2 , f

a
3 ]

O1 1 (1, 1, 1) (2,0,-1) [5
2
,1
2
,-1

2
℄ mO1

x1y2 = mO1

x2y1 = 4

(1, 1, 1) mO1

x1y3 = mO1

x3y1 = 3

mO1

x2y3 = mO1

x3y2 = 1

O2 1 (1, 1, 1) (2,0,-1) [5
2
,1
2
,-1

2
℄ mO2

x1y2 = mO2

x2y1 = 4

(1, 1, 1) mO2

x1y3 = mO2

x3y1 = −3

mO2

x2y3 = mO2

x3y2 = −1

O3 1 (1, 1, 1) (2,0,-1) [5
2
,1
2
,-1

2
℄ mO3

x1y2 = mO3

x2y1 = −4

(1, 1, 1) mO3

x3x1 = mO3

y3y1 = 3

mO3

x2x3 = mO3

y2y3 = 1

O4 1 (1, 1, 1) (2,0,-1) [5
2
,1
2
,-1

2
℄ mO4

x1y2 = mO4

x2y1 = −4

(1, 1, 1) mO4

x3x1 = mO4

y3y1 = −3

mO4

x2x3 = mO4

y2y3 = −1

O5 1 (1, 1, 1) (-13,0,0) [−25
2

,1
2
,1
2
℄ mO5

x1x2 = mO5

y1y2 = −2

(1, 1, 1) mO5

x3x1 = mO5

y3y1 = 1

mO5

x2y3 = mO5

x3y2 = 1

O6 1 (1, 1, 1) (-13,0,0) [−25
2

,1
2
,1
2
℄ mO6

x1x2 = mO6

y1y2 = −2

(1, 1, 1) mO6

x3x1 = mO6

y3y1 = −1

mO6

x2y3 = mO6

x3y2 = −1

O7 1 (1, 1, 1) (-13,0,0) [−25
2

,1
2
,1
2
℄ mO7

x1x2 = mO7

y1y2 = 2

(1, 1, 1) mO7

x1y3 = mO7

x3y1 = −1

mO7

x2x3 = mO7

y2y3 = 1

O8 1 (1, 1, 1) (-13,0,0) [−25
2

,1
2
,1
2
℄ mO8

x1x2 = mO8

y1y2 = 2

(1, 1, 1) mO8

x1y3 = mO8

x3y1 = 1

mO8

x2x3 = mO8

y2y3 = −1Table 4.3: Chern numbers and windings of the oblique staks O1, . . . , O8
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Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:4.2.5 Additional staks: O5, . . . , O8In the last subsetion we found four staks O1, . . . , O4 with oblique �uxes but diagonal5-brane harges. Clearly, in order to stabilize all the Kähler moduli, we need at least fouradditional staks with oblique �uxes. The searh for suh branes is simpli�ed by observingthat the supersymmetry ondition (4.17) for the stak U5 has another one parameter familyof solutions, independent of (4.29), whih solves also the ondition (4.36) for the staks
O1, . . . , O4:

J1 =
300α

4α2 − 99
, J2 = α , J3 =

99

4α
, with α2 >

99

4
. (4.40)By inserting expressions (4.40) into the general supersymmetry ondition (4.27), andfollowing steps similar to those of the last subsetion, we �nd the set of staks O5, . . . , O8given in Appendix A, with �uxes as in eqs. (A.22), (A.27), (A.32), (A.37). One of thesesolutions has �ux omponents:

f1 = −
25

2
, f2 =

1

2
, f3 =

1

2
, a = −2i , b = −i , c = 1 , (4.41)while the others an be obtained by trivial hanges of the o�-diagonal elements, as for thestaks O1, . . . , O4 disussed in the previous subsetion. Oblique D5 tadpoles are writtenin eqs. (A.24), (A.29), (A.34), (A.39) and the diagonal ones in eqs. (A.25), (A.30), (A.35),(A.40). The net SU(5) non-singlet fermion hirality for these staks is also zero, as shownin eqs. (A.23), (A.28), (A.33), (A.38). One again, all o�-diagonalD5 tadpoles of the type

Q5
12̄, Q5

23̄ and Q5
31̄ anel among the ontributions of the four brane staks. In Table 4.3,we summarize the Chern numbers and windings of the staks O5, . . . , O8, as well.The four staks O5, . . . , O8 satisfy the supersymmetry ondition:

87

8
−

1

2
[J1J2 − 25J2J3 + J1J3] = 0, (4.42)for
α2 =

99

4
×

1431

1131
, (4.43)onsistently with the inequality (4.40). For this value of α, the positivity onditions (4.18)and (4.21) for the U5 and U1 staks are also satis�ed by Ji's of the form (4.40). On theother hand, using the �ux omponents (4.23) from Table 4.3, the positivity ondition forthe four new staks takes the following form:

J1J2J3 +
3

4
J1 +

29

4
J2 +

41

4
J3 > 0, (4.44)111



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:Stak no. No. of Windings Chern no. Fluxesa branes: Na (n̂a
1, n̂

a
2, n̂

a
3) ( m̂a

1, m̂
a
2, m̂

a
3 ) [

(m̂a
1+n̂a

1/2)

n̂a
1

,
(m̂a

2+n̂a
2/2)

n̂a
2

,
(m̂a

3+n̂a
3/2)

n̂a
3

]Stak-A 1 (1, 1, 1) (147, 0, 0) [295
2
, 1

2
, 1

2
℄Stak-B 1 (1, 1, 1) (1, 16, 0) [3

2
, 33

2
, 1
2
]Table 4.4: A and B branesand is again obviously satis�ed, as is the positivity ondition (4.37) for staks O1, . . . , O4.The �nal unaneled tadpoles from these staks are:

Q9 = 4 , Q5
x1y1 = −3 , Q5

x2y2 = −29 , Q5
x3y3 = −41 , (4.45)while the hiral fermion degeneray from the intersetions U5 − Oa and U5 − O∗

a is givenby:
IU5Oa

= −14 , IU5O∗

a
= 14 , a = 5, . . . , 8 . (4.46)4.2.6 Tadpole anellationWe now ollet the tadpole ontribution from di�erent staks to �nd out how the total RRharges anel in our model by adding two extra staks of single branes, A and B. Thetadpole ontributions from staks O1, . . . , O4 with oblique �uxes, are given in eq. (4.39),while those from staks O5, . . . O8 are given in eq. (4.45). In addition, the staks U5 and

U1 together ontribute:
Q9 = 6 , Q5

x1y1 = −
1

2
, Q5

x2y2 = −
9

2
, Q5

x3y3 =
3

2
, (4.47)where we used the �ux omponents (4.10) and (4.16). These tadpoles are then saturatedby the brane staks A and B of Table 4.4.Their ontributions to the tadpoles are:

Q9 = 2 , Q5
x1y1 =

34

4
, Q5

x2y2 =
298

4
, Q5

x3y3 =
394

4
, (4.48)
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Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:whih preisely anel the ontributions from eqs. (4.39), (4.45) and (4.47). Moreover,hiral fermion multipliities from the intersetions of staks A and B with U5 vanish, aswell:
IU5A = IU5A∗ = IU5B = IU5B∗ = 0 . (4.49)We have thus obtained �uxes for the twelve staks, saturating both D9 and D5 tad-poles. However, for supersymmetry, we have only disussed the onditions for nine ofthe twelve brane staks, namely U5 and O1, . . . , O8. The status of supersymmetry for thebrane staks U1, A and B will be studied later, in setion 4.4.Before losing this setion, we also examine brie�y whether it would be possible tomanage tadpole anellation without adding the extra staks A and B, within the ontextof our onstrution spei�ed by the hoie (4.15) of intersetion numbers. Note that thenine staks U5 and O1, . . . , O8 were the minimal ones needed for Kähler moduli stabi-lization, sine the use of the U1 brane for this purpose was ruled out, as we disussed insetion 4.2.2. The U1 stak on the other hand is needed to get the right SU(5) partilespetrum. Thus, in order to avoid the use of staks A and B, one needs to examine whetherthere are solutions, other than the one found in eq. (4.16), for �uxes along the stak-U1suh that tadpole anellations are possible, while a salar VEV harged under this U(1)may have to be turned on in order to maintain supersymmetry. In suh a situation, oneneeds a winding number three (detW = 3) for the stak U1 to saturate the D9 tadpole.Moreover, all oblique �uxes along the U1 stak have to vanish, otherwise they would giverise to unaneled tadpoles in oblique diretions. Then, by writing the tadpole ontribu-tions of three diagonal �uxes fi satisfying the onstraint (4.15), it an be easily seen thatone is not able to anel the ombined tadpoles from staks U5 and O1, . . . , O8. Suh apossibility is therefore ruled out. Of ourse, one ould try to �nd a solution that satis�esthe onstraint (4.15) but not neessarily (4.12), as we disussed already in setion 4.2.1.Alternatively, one an possibly attempt to manage with just two staks U1 and A, by usingwinding number two in one of them. These are straight-forward exerises whih an beexamined easily.4.2.7 Non-hiral spetrumThe degeneraies of non-hiral states oming from intersetions of the stak U5 with Oaand O∗

a are already given in eqs. (4.38) and (4.46), leading to 4× (23 + 14) = 148 pairs of
(5+ 5̄) representations of SU(5). They follow from the degeneray formulae (2.56), whenthe net numbers of left- and right-handed fermions are equal. In our ase, this is insuredsine IU5Oa

= −IU5O∗

a
. However, non-hiral partile spetrum also follows from eqs. (2.56),113



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:(2.57) and (2.58), when any of Iab, Iab∗ , IAaa∗ and ISaa∗ are zero, as explained at the end ofsetion 2.6. This ours beause for instane∏i(
˜̂ma

i n̂
b
i ± n̂

a
i
˜̂mb
i) vanishes along one or moreof the 2-tori, T 2

j . Similarly for IAaa∗ or ISaa∗ , this ours beause of the vanishing of �uxesalong one or more of the T 2's. Given the �uxes in stak U5, whih are non-zero along allthree T 2's, non-hiral states an ome only from various intersetions of the U5 stak withother branes.For example, the intersetion numbers between staks U5 and U1 are given in eq. (4.15).One sees that IU5U1 is zero as ( ˜̂mU5
i n̂

U1
i − n̂U5

i
˜̂mU1
i ) vanishes along T 2

1 and T 2
3 . However, inthis ase there exists a non-zero intersetion number in d = 8 dimensions orrespondingto the T 2

2 ompati�ation of the d = 10 theory, given by:
IU5U1|T 2

1 ,T
2
3
= ( ˜̂mU5

2 n̂
U1
2 − n̂U5

2
˜̂mU1

2 ) = −2, (4.50)with the subsripts T 2
1 , T

2
3 of IU5U1 | standing for those tori along whih the intersetionnumber vanishes. This implies two negative hirality (right-handed) fermions in d = 8,in the fundamental representation of SU(5). Under further ompati�ation along T 2

1and T 2
3 , we get four Dira spinors in d = 4, or equivalently four pairs of (5 + 5̄) Weylfermions, shown already in the massless spetrum of Table 4.2. They give rise to fourpairs of eletroweak higgses, having non-vanishing tree-level Yukawa ouplings with thedown-type quarks and leptons, as it an be easily seen.A similar analysis for the remaining staks A and B gives hiral spetra in d = 6 withdegeneraies:

IU5A|T 2
3
= ( ˜̂mU5

1 n̂
A
1 − n̂U5

1
˜̂mA

1 )× ( ˜̂mU5
2 n̂

A
2 − n̂U5

2
˜̂mA

2 ) = 149 , (4.51)and
IU5A∗|T 2

2
= ( ˜̂mU5

1 n̂
A
1 + n̂U5

1
˜̂mA

1 )× ( ˜̂mU5
2 n̂

A
2 + n̂U5

2
˜̂mA
2 ) = 146 . (4.52)They give rise to 149 + 146 = 295 pairs of (5+ 5̄). Similarly, we obtain for the stak B:

IU5B|T 2
3
= ( ˜̂mU5

1 n̂
B
1 − n̂U5

1
˜̂mB

1 )× ( ˜̂mU5
2 n̂

B
2 − n̂U5

2
˜̂mB

2 ) = 51 , (4.53)and
IU5B∗|T 2

1
= ( ˜̂mU5

2 n̂
B
2 + n̂U5

2
˜̂mB

2 )× ( ˜̂mU5
3 n̂

B
3 + n̂U5

3
˜̂mB
3 ) = 16 , (4.54)leading to 51 + 16 = 67 pairs of (5 + 5̄). All these non hiral states beome massive bydisplaing appropriately the branes A and B in diretions along the tori T 2

3 , T 2
2 and T 2

3 ,
T 2
1 , respetively. 114



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:In addition to the states above, there are several SU(5) singlets oming from theintersetions among the branes O1, . . . , O8, U1, A and B. Sine they do not play anypartiular role in physis onerning our analysis, we do not disuss them expliitly here.However, suh salars from the non-hiral intersetions among U1, A and B will be usedin setion 4.4 for supersymmetrizing these staks, by anelling the orresponding non-zero FI parameters upon turning on non-trivial VEVs for these �elds. The orrespondingnon-hiral spetrum will be therefore disussed below, in setion 4.4.4.3 Moduli stabilizationEarlier, we have found �uxes along the nine brane staks U5, O1, . . . , O8, given in Ta-bles 4.1, 4.2, 4.3, 4.4 and in Appendix A, onsistent with our ansatz (4.3) for the omplexstruture and (4.6) for the geometri Kähler moduli. We now prove our ansatz by showingthat both Ω and J are uniquely �xed to the values (4.3), (4.6) and (4.40), (4.43). To showthis, we make use of the full supersymmetry onditions for the U5 stak as well as for thestaks O1, . . . , O8.For the omplex struture moduli stabilization, we make use of the F a
(2,0) ondition(2.41) implying that purely holomorphi omponents of �uxes vanish. Then, by insertingthe �ux omponents pxixj , pxiyj pyiyj , as given in Table 4.1 and Table 4.3, as well asin Appendix A, along the U5 and O1, .., O8 staks, we obtain a set of onditions on theomplex struture matrix Ω, given expliitly in Appendix B in eqs. (B.1) - (B.47). Theseequations imply the �nal answer (4.3). The details an be found in Appendix B.For Kähler moduli stabilization, we make use of the D-�atness ondition in staks U5,

O1, . . . O8 whih amounts to using the last two equations in (2.40). Expliit stabilization ofthe geometri Kähler moduli to the diagonal form, Jij̄ = 0, (i 6= j) is given in eqs. (C.2) -(C.26) of Appendix C. For the stabilization of the diagonal omponents, the relevantequations are: (4.17), (4.18), (4.36), (4.37), (4.42), (4.44). The �nal solution for thestabilized moduli is given in eqs. (4.40) and (4.43). The numerial values of Ji's an alsobe approximated as:
J1 ∼ 63.96 , J2 ∼ 5.59 , J3 ∼ 4.42 . (4.55)4.4 Supersymmetry of staks U1, A and BWe now disuss the supersymmetry of the remaining staks U1, A and B by making useof the D-�atness onditions (2.44), (2.45) and (2.46). From these equations, suppressing115



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:the supersript a, we obtain the FI parameters ξ as:
ξ =

F 3
(1,1) − J2F(1,1)

J3 − JF 2
(1,1)

, (4.56)where we have made use of eq. (2.25) and the anonial volume normalization (4.4). Then,using the values of the magneti �uxes in staks U1, A and B from Tables 4.1 and 4.4, theexpliit form of the FI parameters in terms of the moduli Ji (that are already ompletely�xed to the values (4.55)) is given by:
ξU1 =

−9
8
− 1

2
(J1J2 − 3J2J3 + 3J1J3)

J1J2J3 −
1
4
(3J1 − 3J2 − 9J3)

, (4.57)
ξA =

295
8

− 1
2
(J1J2 + 295J2J3 + J1J3)

J1J2J3 −
1
4
(J1 + 295J2 + 295J3)

, (4.58)
ξB =

33
8
− 1

2
(J1J2 + 3J2J3 + 33J1J3)

J1J2J3 −
1
4
(33J1 + 3J2 + 99J3)

, (4.59)leading to the numerial values:
ξU1 ∼ −0.366 , ξA ∼ −4.753 , ξB ∼ −5.173 . (4.60)On the other hand, the harged salar VEVs vφ entering in the modi�ed D-�atnessonditions (2.44) and (2.45) are related to the modi�ed FI parameters ξa/Ga, as it anbe easily seen from the expressions (2.42) and (2.43), that are also relevant for the per-turbativity riterion: vφ << 1 in string units. Their knowledge needs determination ofthe matter �eld metri Ga on the branes U1, A and B. For this purpose, we make use ofeq. (2.48) with the angles θi de�ned in eq. (2.47). One �nds the following values for themetri G in the three staks 17:
GU1 ∼ 2.815 , GA ∼ 50.45 , GB ∼ 94.551 , (4.61)that lead to the modi�ed FI parameters:

ξU1

GU1
∼ −0.130 ,

ξA

GA
∼ −0.094 ,

ξB

GB
∼ −0.057 . (4.62)17The matter metri Gφ is diagonal to the leading order in α′ but its elements have a non-trivial (torus)moduli dependene due to the magneti �uxes, that we alulated expliitly and the values are given inequation number (4.61). 116



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:Note that the positivity onditions (2.46), giving positive gauge ouplings through eq. (2.43)for the staks U1, A and B, hold as well. These expressions appear also in the FI param-eters ξa as the denominators in the rhs of eqs. (4.57) - (4.59).The last part of the exerise is to anel the FI parameters (4.62) with VEVs of spei�harged salars living on the branes U1, A andB, in order to satisfy the D-�atness ondition(2.44). For this we �rst ompute the hiral fermion multipliities on their intersetions:
IU1A = (FU1 − FA)3 = 0 , IU1B = (FU1 − FB)3 = 0 , IAB = (FA − FB)3 = 0 . (4.63)Sine they all vanish, there are equal numbers of hiral and anti-hiral �elds in eah ofthese intersetions. In order to determine separately their multipliities, we follow themethod used in setion 4.2.7 and ompute:

IU1A|T 2
3
= −149 , IU1B|T 2

3
= 45 , IAB|T 2

3
= −2336 . (4.64)These orrespond to hiral fermion multipliities in six dimensions generating upon om-pati�ation to D = 4 pairs of left- and right-handed fermions. We also have:

IU1A∗ = (FU1 + FA)3 = 292 , IU1B∗ = (FU1 + FB)3 = 0

IAB∗ = (FA + FB)3 = 149× 17 , (4.65)whih gives zero net hirality for the U1 − B∗ intersetion. Computing
IU1B∗ |T 2

1
= 18 , (4.66)one then �nds 18 pairs of left- and right-handed fermions in D = 4 from this intersetion.As a result, we have the following non-hiral �elds, where the supersript refers tothe two staks between whih the open string is strethed and the subsript denotes theharges under the respetive U(1)'s : (φU1A

+− , φU1A
−+ ), (φU1B

+− , φU1B
−+ ), (φAB

+−, φAB
−+), (φU1B∗

++ ,
φU1B∗

−− ), with �elds in the brakets having multipliities 149, 45, 2336 and 18, respetively.Restriting only to possible VEVs for these �elds, eq. (2.44) takes the following form for
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Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:the staks U1, A and B:
ξU1

GU1
+ |φU1A

+− |2 − |φU1A
−+ |2 + |φU1B

+− |2 − |φU1B
−+ |2 + |φU1B∗

++ |2 − |φU1B∗

−− |2 = 0 , (4.67)
ξA

GA
+ |φU1A

−+ |2 − |φU1A
+− |2 + |φAB

+−|
2 − |φAB

−+|
2 = 0 , (4.68)

ξB

GB
+ |φU1B

−+ |2 − |φU1B
+− |2 + |φAB

−+|
2 − |φAB

+−|
2 + |φU1B∗

++ |2 − |φU1B∗

−− |2 = 0 . (4.69)These equations an also be written as:
ξU1

GU1
+ (vU1)2 = 0 ⇒ (vU1)2 = −

ξU1

GU1
, (4.70)

ξA

GA
+ (vA)2 = 0 ⇒ (vA)2 = −

ξA

GA
, (4.71)

ξB

GB
+ (vB)2 = 0 ⇒ (vB)2 = −

ξB

GB
, (4.72)following the notation of eq. (2.45), where we de�ned:

(vU1)2 = |φU1A
+− |2 − |φU1A

−+ |2 + |φU1B
+− |2 − |φU1B

−+ |2 + |φU1B∗

++ |2 − |φU1B∗

−− |2

≡ (vU1A)2 + (vU1B)2 + (vU1B∗

)2 , (4.73)
(vA)2 = |φU1A

−+ |2 − |φU1A
+− |2 + |φAB

+−|
2 − |φAB

−+|
2

≡ −(vU1A)2 + (vAB)2 , (4.74)
(vB)2 = |φU1B

−+ |2 − |φU1B
+− |2 + |φAB

−+|
2 − |φAB

+−|
2 + |φU1B∗

++ |2 − |φU1B∗

−− |2

≡ −(vU1B)2 − (vAB)2 + (vU1B∗

)2 , (4.75)with for instane (vAB)2 = |φAB
+−|

2 − |φAB
−+|

2 and similarly for the others.Sine we have three equations and four unknowns, we hoose to obtain a speial solutionby setting (vU1B)2 = 0. Equations (4.73) - (4.75) then give:
(vU1A)2 + (vU1B∗

)2 = −
ξU1

GU1
∼ 0.130 , (4.76)

−(vU1A)2 + (vAB)2 = −
ξA

GA
∼ 0.094 , (4.77)

−(vAB)2 + (vU1B∗

)2 = −
ξB

GB
∼ 0.057 , (4.78)118



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:that an be solved to obtain:
(vU1A)2 = −0.011 , (vU1B∗

)2 = 0.141 , (vAB)2 = 0.084 . (4.79)Realling from eqs. (4.73) - (4.75) that
(vU1A)2 = |φU1A

+− |2 − |φU1A
−+ |2 , (vU1B∗

)2 = |φU1B∗

++ |2 − |φU1B∗

−− |2 ,

(vAB)2 = |φAB
+−|

2 − |φAB
−+|

2 , (4.80)and omparing with the results of eq. (4.79) (taking into aount the di�erent signs), VEVsfor the �elds φU1A
−+ , φU1B∗

++ and φAB
+− are swithed on. Moreover, as required by the validityof the approximation, the values of the harged salar VEVs satisfy the ondition va << 1in string units.4.5 Mass generation for non-hiral fermionsIn this setion, we brie�y disuss one of the appliations of the results derived in hapter3, for giving mass to the non-hiral gauge non-singlet states of the magnetized branemodel disussed in previous setions. We have onstruted a three generation SU(5)supersymmetri grand uni�ed (GUT) model in simple toroidal ompati�ations of typeI string theory with magnetized D9 branes. The �nal gauge group is just SU(5) and thehiral gauge non-singlet spetrum onsists of three families with the quantum numbers ofquarks and leptons, transforming in the 10 + 5̄ representations of SU(5). Brane stakswith oblique �uxes played a entral role in this onstrution, in order to stabilize all losestring moduli, in a manner restriting the hiral matter ontent to preisely that of SU(5)GUT. Another interesting feature of this model is that it is free from any hiral exotisthat often appear in suh brane onstrutions. However, the model ontains extra non-hiral matter that is expeted to beome massive at a high sale, lose to that of SU(5)breaking.The results obtained in hapter 3 an be used for examining the issue of the massgeneration for these non-hiral multiplets in a supersymmetri ground state. The aim isto analyze the D and F term onditions, and show that a ground state allowing massesfor the above matter multiplets is possible. The exerise will further �ne tune our SU(5)GUT model to the ones used in onventional grand uni�ation.Although, we will not be evaluating any of the Yukawa ouplings expliitly, whihusing our results is in priniple possible to do, the aim of the exerise below is to showthat indeed one an give masses to non-hiral matter. Our proedure involves the analysis119



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:of both the F and D-term supersymmetry onditions. As disussed in setion 4.4 ertainharged salar vauum expetation values (VEVs) were turned on in order to restoresupersymmetry in some of the �hidden" branes setor. These harged salar VEVs gave anontrivial solution to the D-term onditions, but left the F-terms identially zero in thevauum. In the following, on the other hand, our aim is to �nd out the possibility for alarge number of salars in various hiral multiples to aquire expetation values. For this,we need to examine both the F and D onditions, as already mentioned.As we disussed in the previous setions, the model is desribed by twelve staks ofbranes, namely U5, U1, O1 . . . , O8, A, and B. The magneti �uxes are hosen to generatethe required spetrum, to stabilize all the geometri moduli and to satisfy the RR-tadpoleonditions as well. The �uxes for all the staks are summarized in Appendix A. The �uxesfor staks U5, U1, A, B are purely diagonal whereas staks O1 . . . , O8 arry in generalboth oblique and diagonal �uxes. All 36 losed string moduli are �xed in a N = 1supersymmetri vauum, apart from the dilaton, in a way that the T 6-torus metri beomesdiagonal with the six internal radii given in terms of the integrally quantized magneti�uxes.Moreover, from our disussion in setion 4.2, the two brane staks U5 and U1 givethe partile spetrum of SU(5) GUT. We solve the ondition IU5U1 + IU5U∗

1
= −3 for thepresene of three generations of hiral fermions transforming in 5̄ of SU(5) and ontinuewith the solution IU5U1 = 0, IU5U∗

1
= −3. The intersetion of U5 with U1 is non-hiral sine

IU5U1 vanishes. The orresponding non-hiral massless spetrum onsists of four pairs of
5 + 5̄, whih we would like to give mass. Obviously, we would like to keep massless atleast one pair of eletroweak higgses but this requires a detailed phenomenologial analysisthat goes beyond the sope of this work. Here, we would like only to show how to use theresults obtained in hapter 3 in order to give masses to unwanted non hiral states thatoften appear in magnetized brane onstrutions.So, we have the following non-hiral �elds where the supersript refers to the twostaks between whih the open string is strethed and the subsript denotes the hargesunder the respetive U(1)'s :(φU5U1

+− ,φU5U1
−+ , 4), with numbers in the brakets denoting theorresponding multipliities. Similarly, the intersetions of the U5 stak with the two extrabranes A,B and their images are non-hiral, giving rise to the extra 5+5̄ pairs: (φU5A

+− ,φU5A
−+ ,

149), (φU5A∗

++ ,φU5A∗

−− , 146), (φU5B
+− ,φU5B

−+ , 51), (φU5B∗

++ ,φU5B∗

−− , 16). A ommon feature of all thesestates is that they arise in non-hiral intersetions, where the two brane staks involvedhave diagonal �uxes and are parallel in one of the three tori. It is then straightforwardto give masses by moving, say, the U5 stak away from the others along these tori. In thelanguage of D9 branes, this amounts to turn on orresponding open string Wilson lines. 120



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:On the other hand, analysis of the partile spetrum on the intersetions of the stak
U5 with the oblique branes Oa and O∗

a , satisfying the ondition IU5a + IU5a∗ = 0, for a =

1, .., 8 , leads to 4× (23+ 14) = 148 pairs of (5+ 5̄) representations of SU(5) ( eqs. (4.38)and (4.46)):
IU5Oa

= −23 , IU5O∗

a
= 23 , a = 1, . . . , 4 ,

IU5Oa
= −14 , IU5O∗

a
= 14 , a = 5, . . . , 8 .We then have the following hiral multiplets, (φU5Oa

−+ , 23), (φU5O∗

a
++ , 23), (φU5Ob

−+ , 14), (φU5O∗

b
++ ,

14) (a = 1, . . . , 4, b = 5, . . . , 8). In order to examine the mass generation for these �elds,one needs to write down the superpotential terms involving the above hiral multiplets, aswell as those oming from the brane staks O1, · · · , O8 and their orientifold images. Thelist of the later, involving purely oblique staks, is given in Appendix A.Now, using the results in Appendix A in eqs. (A.45) and (A.46), one an analyze theassoiated superpotential and D-terms and look for supersymmetri minima. The relevantsuperpotential reads:
W =

∑

ijk

W ijk
O1

(φO1U5
+− )i (φ

U5O∗

3
++ )j (φ

O∗

3O1

−− )k +
∑

ijk

W ijk
O2

(φO2U5
+− )i (φ

U5O∗

4
++ )j (φ

O∗

4O2

−− )k

+
∑

ijk

W ijk
O3

(φO3U5
+− )i (φ

U5O∗

8
++ )j (φ

O∗

8O3

−− )k +
∑

ijk

W ijk
O4

(φO4U5
+− )i (φ

U5O∗

7
++ )j (φ

O∗

7O4

−− )k

+
∑

ijk

W ijk
O5

(φO5U5
+− )i (φ

U5O∗

6
++ )j (φ

O∗

6O5

−− )k +
∑

ijk

W ijk
O7

(φO7U5
+− )i (φ

U5O∗

8
++ )j (φ

O∗

8O7

−− )k (4.81)where the sum over i, j, k runs over the ��avor" indies. The ouplings W ijk
Oi

, given in eq.(4.81), an be read o� from our results in the previous setions. In addition to the omplexstruture, these also depend on the �rst Chern numbers of the branes in eah triangle.The F-�atness onditions 〈Fi〉 = 〈Dφi
W 〉 = 0 (at zero superpotential, W = 0), implythat for eah �triangle� at least two �elds must have a zero VEV in order to form a su-persymmetri vauum [121℄. In this theory, there exists indeed a supersymmetri vauumwhere six harged �elds remain unonstrained by the F-�atness onditions. Let's hoosethem to be (φ

O∗

3O1

−− ), (φO∗

4O2

−− ), (φO∗

8O3

−− ), (φO∗

7O4

−− ), (φO∗

6O5

−− ), (φO∗

8O7

−− ) (they are neutral underthe U(1) of the U(5)). The remaining �elds appearing in the superpotential aquire a massfrom the F-term potential only if these unonstrained salars possess a non-vanishing VEV.
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Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:Indeed, their masses read:
M2

φu5o1
∼M2

φu5o
∗

3

∼ 〈|φo∗3o1
|2〉 , M2

φu5o2
∼M2

φu5o
∗

4

∼ 〈|φo∗4o2
|2〉 ,

M2
φu5o

′

7

∼M2
φu5o

∗

8

∼ 〈|φo∗8o
′

7
|2〉 , M2

φu5o4
∼M2

φu5o
∗

7

∼ 〈|φo∗7o4
|2〉 ,

M2
φu5o5

∼M2
φu5o

∗

6

∼ 〈|φo∗6o5
|2〉 ,

(4.82)where φu5o′7
denotes linear ombinations of φu5o7 with φu5o3 and φo∗8o

′

7
denotes linear om-binations of φo∗8o7

with φo∗8o3
. Thus, the leftover massless states from the intersetion of

U5 with the oblique branes are 60 pairs of 5 + 5̄: φu5o∗a for a = 1, 2, 5 of positive hi-rality together with the negative hirality states φu5oa for a = 6, 7, as well as 23 linearombinations of φu5o3 with φu5o7 , and 14 φu5o4 .However, swithing on non-zero VEVs for these �elds, modi�es the existing D-termonditions for the staks of branes O1, ....O8. As it is desribed in setion 4.4, the staks
U5, O1 . . . O8 satisfy the supersymmetry onditions in the absene of harged salar VEVs,but VEVs for the �elds φU1A

−+ , φU1B∗

++ and φAB
+− are swithed on, for the same supersymmetryto be preserved by the staks U1, A and B. The D-terms for eah U(1) fator of the eightbranes O1, .....O8 read

DO1 = −|φO1O∗

3 |2 , DO2 = −|φO2O∗

4 |2

DO3 = −|φO1O∗

3 |2 − |φO3O∗

8 |2 , DO4 = −|φO2O∗

4 |2 − |φO4O∗

7 |2

DO5 = −|φO5O∗

6 |2 , DO6 = −|φO5O∗

6 |2

DO7 = −|φO4O∗

7 |2 − |φO7O∗

8 |2 , DO8 = −|φO3O∗

8 |2 − |φO7O∗

8 |2

(4.83)We an regain the supersymmetry onditionsDa = 0, ∀a = 1, . . . , 8 with ξa(F a, J) = 0,by swithing on VEVs for the following �elds: (φO1O∗

5
++ ), (φO2O∗

7
++ ), (φO3O∗

7
++ ), (φO3O∗

4
++ ), (φO4O∗

8
++ ),

(φ
O6O∗

8
++ ), provided these �elds do not modify the superpotential (4.81). The modi�edD-terms read:

DO1 = −|φO1O∗

3 |2 + |φO1O∗

5 |2

DO2 = −|φO2O∗

4 |2 + |φO2O∗

7 |2

DO3 = −|φO1O∗

3 |2 − |φO3O∗

8 |2 + |φO3O∗

4 |2 + |φO3O∗

7 |2

DO4 = −|φO2O∗

4 |2 − |φO4O∗

7 |2 + |φO3O∗

4 |2 + |φO4O∗

8 |2

DO5 = −|φO5O∗

6 |2 + |φO1O∗

5 |2

DO6 = −|φO5O∗

6 |2 + |φO6O∗

8 |2

DO7 = −|φO4O∗

7 |2 − |φO7O∗

8 |2 + |φO2O∗

7 |2 + |φO3O∗

7 |2

DO8 = −|φO3O∗

8 |2 − |φO7O∗

8 |2 + |φO6O∗

8 |2 + |φO4O∗

8 |2 (4.84)122



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:The supersymmetry onditions Da = 0, ∀a = 1, . . . , 8 with ξa(F a, J) = 0 an be simulta-neously satis�ed if and only if the VEVs for all these �elds appearing in the expressions(4.84), have the same value, say v2. Moreover we an restrit v << 1 in string units, asrequired by the validity of the approximation for inlusion of harged salar �elds in theD-term.We have therefore shown the mass generation for a large set of non-hiral �elds as givenin eq. (4.82). It is possible, that remaining ones an also be made massive by inorporatingnon perturbative instanton ontributions to the superpotential. We also do not give anysuperpotential ouplings, in terms of �uxes, as given expliitly in hapter 3.4.6 DisussionIn this hapter, we have onstruted a three generation SU(5) supersymmetri GUT insimple toroidal ompati�ations of type I string theory with magnetized D9-branes. All36 losed string moduli are �xed in a N = 1 supersymmetri vauum, apart from thedilaton, in a way that the T 6-torus metri beomes diagonal with the six internal radiigiven in terms of the integrally quantized magneti �uxes. Supersymmetry requirementand RR tadpole anellation onditions impose some of the harged open string salars(but SU(5) singlets) to aquire non-vanishing VEVs, breaking part of the U(1) fators.The rest beome massive by absorbing the RR salars whih are part of the Kähler modulisupermultiplets. Thus, the �nal gauge group is just SU(5) and the hiral gauge non-singletspetrum onsists of three families with the quantum numbers of quarks and leptons,transforming in the 10+ 5̄ representations of SU(5). It is of ourse desirable to study thephysis of this model in detail and perhaps to onstrut other more `realisti' variations,using the same framework whih has an exat string desription.As disussed in the last setion, giving a mass to the non-hiral gauge non-singlet stateswith the quantum numbers of higgses transforming in pairs of 5+5̄ representations, keepingmassless only one pair needed to break the eletroweak symmetry is one of the obviousquestions to be examined. Breaking the SU(5) GUT symmetry down to the StandardModel is another important issue to be studied. This an be in priniple realized at thestring level separating the U(5) stak into U(3) × U(2) by parallel brane displaement.However, one would like to realize at the same time the so-alled doublet-triplet splittingfor the Higgs 5 + 5̄ pair, i.e. giving mass to the unwanted triplets whih an mediatefast proton deay and invalidate gauge oupling uni�ation, while keeping the doubletsmassless. One possibility would be to deform the model by introduing angles, in realizingthe SU(5) breaking. 123



Chapter 4. Supersymmetri SU(5) GUT model with Stabilized Moduli:A general defet of the present onstrution is the absene of up-type Yukawa ouplings.The reent developments in writing the instanton indued superpotential terms are alsoenouraging, for the purpose of examining the up-quark mass generations in a GUT setting[81, 130, 131℄. In this ontext, it has been shown that the magnetized branes too an giverise to interesting superpotentials through the lift of fermion zero modes when �uxes areturned on.Supersymmetry breaking is of ourse an important issue in model building. Thoughgenerally, for magnetized branes, one enounters instabilities in suh a situation, it shouldbe however possible to obtain non-supersymmetri magnetized brane onstrutions for arih variety of �uxes aompanied by orientifold planes whih an possibly projet outtahyons that may be generated during the proess of supersymmetry breaking. In orderto study the supersymmatry breaking in the SU(5)model, an attrative diretion would beto start with a supersymmetry breaking vauum in the absene of harged salar VEVs forthe extra branes needed to satisfy the RR tadpole anellation, U(1)×U(1)A×U(1)B. This`hidden setor' ould then mediate supersymmetry breaking, whih is mainly of D-type,to the Standard Model via gauge interations. Gauginos an then aquire Dira masses atone loop without breaking the R-symmetry, due to the extended supersymmetri natureof the gauge setor [132℄.
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5Summary
String theory provides us an exiting avenue for researh. It brings together di�erent as-pets of our world in a very natural and ompelling manner. To mention a few, it providesus with a ultraviolet �nite theory of gravity, allows us to understand the holographi na-ture of the gravitational interations and uni�es all the four fundamental fores in nature.Supersymmetry appears as a onsisteny requirement of this theory. It is our hope thatthis theory will, in the future, exhibit a mehanism produing the SU(3)× SU(2)×U(1)gauge group, the exat partile ontent of our world with broken supersymmetry at lowsale. As we have disussed in the beginning of this thesis, enormous e�orts have gone inthis diretion with partial suess. This thesis an perhaps be onsidered as a small stepin this diretion. We have presented a detailed study of building some phenomenologialmodels, with an exat hiral fermion spetrum and gauge group, where some/all mod-uli are stabilized and spae-time supersymmetry is partially broken. This is done withina simple framework of toroidal ompati�ation of type I string theory with magnetizedD-branes. In the next few paragraphs we provide a summary of the wrk done in the thesis.In hapter 2, we have brie�y disussed the ompati�ation of type I strings on a toruswith additional bakground gauge �ux on the D9-branes and summarize the neessary on-straints needed for onstruting semi-realisti models in suh a framework. We reviewedthe main properties of the six-dimensional toroidal ompati�ation and its moduli spae.We onsidered the open string propagation in the presene of onstant internal magneti�elds and summarized the onditions for unbroken supersymmetry. We have disussedthe losed string moduli stabilization by analyzing the onditions for the unbroken super-symmetry in the presene of staks of magnetized D9-branes. In order to stabilize all 36losed string geometri moduli of the torus T 6, one needs to inlude both diagonal andoblique �uxes. We have also studied the tadpole anellation onditions whih are re-quired for onsisteny of type I string vaua. Then we disussed the low-energy spetrumof the e�etive theory within this ompati�ation sheme. Sine a ruial step in a three125



Chapter 5. Summarygeneration model building is the introdution of a NS-NS B-�eld bakground, the e�etsof non-zero B on the hirality and the tadpoles is summarized.In hapter 3, we have obtained the lose form expressions for Yukawa ouplings insuh magnetized brane onstrutions. We summarized the results for the fermion (salar)wave funtions and the Yukawa interation for fatorized tori and diagonal �uxes. Inthis ase, the fermion wavefuntions are given by Jaobi Theta funtions. The Yukawasare obtained by performing the overlap integrals of these wavefuntions and using ertainidentity satis�ed by Jaobi theta funtions. We have presented a proof of the identity. Wethen generalized the results to write down the expression for the Yukawa interation whenoblique �uxes are present. In order to perform this task, fermion (salar) wavefuntionson toroidally ompati�ed spaes are presented for general �uxes. The wavefuntions, soobtained, are given by general Riemann Theta funtions with matrix valued modular pa-rameter. We have also given expliit mappings among fermion wavefuntions, of di�erentinternal hiralities on the tori, whih interhange the role of the �ux omponents withthe omplex struture of the torus. By evaluating the overlap integral of the wave fun-tions, the expressions for Yukawa ouplings among hiral multiplets are obtained. Thisessentially leads us to onstrut ertain mathematial identities for general Riemann thetafuntions. We generalized the theta identity for Riemann theta funtions and presented aproof of this. We then used this new mathematial relation for writing down the expres-sion for the Yukawa interation when oblique �uxes onsistent with supersymmetry and`Riemann ondition' requirements are present. In order to relax the later, the results arefurther generalized to inlude the wavefuntions of the other internal hiralities, in orderto aommodate general �uxes onsistent with supersymmetry restritions.Finally, in hapter 4, we have presented a minimal example of a supersymmetri granduni�ed model in a toroidal ompati�ation of type I string theory with magnetized D9-branes. We obtain general solutions for �uxes along magnetized D9-branes yielding thehiral spetrum and gauge group of a three generation SU(5) GUT model, with no extrahiral matter nor U(1) fators. The gauge symmetry is just SU(5) and the gauge non-singlet hiral spetrum ontains only three families of quarks and leptons transformingin the 10 + 5̄ representations. Moreover, all geometri moduli are stabilized in termsof the bakground internal magneti �uxes. Another interesting feature of this modelis that it is free from any hiral exotis that often appear in suh brane onstrutions.The �ux solutions also satisfy the RR tadpole anellation onditions resulting the modelto be onsistent. However, the model ontains extra non-hiral matter that is expetedto beome massive at a high sale, lose to that of SU(5) breaking. We presented abrief analysis of the superpotential and D-terms for the model in order to show the mass126



Chapter 5. Summarygeneration for several non-hiral fermion multiplets in a supersymmetri ground state.Using the results for Yukawa ouplings, we showed that a ground state allowing massesfor the above matter multiplets is possible. This exerise further �ne tunes our SU(5)GUT model to the ones used in onventional grand uni�ation.Thus, the framework of toroidal string ompati�ation, with magnetized branes, o�ersa possible self-onsistent setup for string phenomenology, in whih one an build simplealulable models of partile physis with stabilized moduli and implement low energysupersymmetry breaking that an be studied diretly at the string level.So, �nally where are we? It is evidently true that, in spite of remarkable progress,we still lak a omplete understanding of string theory. It is yet to produe SU(3) ×
SU(2) × U(1) gauge group, the exat partile ontent of our world and a mehanism tobreak supersymmetry at low energy sale. However, we believe that pursuane will surelybring in suess and onlude with an enouraging remark by Ashoke Sen, �I think wehave an extremely strong andidate for the basi onstituents of matter and this theoryneeds to be explored muh more than it has been so far."18

18As appeared in http://parsareport.blogspot.om/2006/12/i-annot-talk-about-others-but-i-am-as.html. 127



AFluxes for the staks U5, U1 ,A, B,
O1, . . . , O8

In this Appendix, we write all the �uxes in the omplex oordinate basis (z, z̄) with
z = x+ iy. Then, for the windings and 1st Chern numbers of Table 4.1, we obtain:

FU5

(1,1) = −
i

2

(

dz1 dz2 dz3

)







−3
2

−1
2

1
2













dz̄1

dz̄2

dz̄3






. (A.1)Below, we sometimes suppress the subsript (1, 1) to keep the expressions simpler. The�uxes of the 8 staks O1, . . . , O8 an also be written in the same oordinate basis:

FO1

(1,1) = −
i

2

(

dz1 dz2 dz3

)







5
2

4 3

4 1
2

1

3 1 −1
2













dz̄1

dz̄2

dz̄3






. (A.2)From eq. (A.2) we get

|FU5 + FO1| = 23 , |FU5 − FO1| = −23 , |FO1| =
195

8
, (A.3)where we have used the notation |FU5 + FO1| ≡ det(FU5 + FO1) et. The oblique D5tadpoles are:

QO1

12̄
= 3 + 2 , QO1

23̄
= 12−

5

2
, QO1

31̄
= 4−

3

2
, (A.4)
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Appendix A. Fluxes for the staks U5, U1 ,A, B, O1, . . . , O8while the diagonal ones are:
QO1

11̄
= −

5

4
, QO1

22̄
= −

41

4
, QO1

33̄
= −

59

4
. (A.5)In real oordinates, the �uxes are:

pO1

x1y1 =
5

2
, pO1

x2y2 = −pO1

x3y3 =
1

2
, pO1

x1y2 = px2y1 = 4,

pO1

x1y3 = pO1

x3y1 = 3, pO1

x2y3 = pO1

x3y2 = 1. (A.6)The 1st Chern numbers given in Table 4.4 an then be read diretly from the valuesof �uxes given above. We now give similar data for the staks O2, . . . , O8:
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, (A.7)leading to:

|FU5 + FO2| = 23 , |FU5 − FO2| = −23 , |FO2| =
195

8
. (A.8)The oblique tadpoles are:

QO2

12̄
= 3 + 2 , QO2

23̄
= −12 +

5

2
, QO2

31̄
= −4 +

3

2
, (A.9)while the diagonal tadpoles are:

QO2

11̄
= −

5

4
, QO2

22̄
= −

41

4
, QO2

33̄
= −

59

4
. (A.10)The �uxes in the real basis are:

pO2

x1y1 =
5

2
, pO2

x2y2 = −pO2

x3y3 =
1

2
, pO2

x1y2 = pO2

x2y1 = 4,

pO2

x1y3 = pO2

x3y1 = −3, pO2

x2y3 = pO2

x3y2 = −1. (A.11)
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(1,1) = −
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Appendix A. Fluxes for the staks U5, U1 ,A, B, O1, . . . , O8leading to
|FU5 + FO3| = 23 , |FU5 − FO3| = −23 , |FO3| =

195

8
. (A.13)The oblique tadpoles are:

QO3

12̄
= −3 − 2 , QO3

23̄
= −12i+

5i

2
, QO3

31̄
= −4i+

3i

2
, (A.14)and the diagonal ones are:

QO3

11̄
= −

5

4
, QO3

22̄
= −

41

4
, QO3

33̄
= −

59

4
. (A.15)The �uxes in the real basis are:

pO3

x1y1 =
5

2
, pO3

x2y2 = −pO3

x3y3 =
1

2
, pO3

x1y2 = pO3

x2y1 = −4,

pO3

x3x1 = pO3

y3y1 = 3, pO3

x2x3 = pO3

y2y3 = 1. (A.16)
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, (A.17)leading to

|FU5 + FO4| = 23 , |FU5 − FO4| = −23 , |FO4| =
195

8
. (A.18)The oblique tadpoles are:

QO4

12̄
= −3 − 2 , QO4

23̄
= 12i−

5i

2
, QO4

31̄
= 4i−

3i

2
, (A.19)and the diagonal tadpoles are:

QO4

11̄
= −

5

4
, QO4

22̄
= −

41

4
, QO4

33̄
= −

59

4
. (A.20)The �uxes in the real basis are:

pO4

x1y1 =
5

2
, pO4

x2y2 = −pO4

x3y3 =
1

2
, pO4

x1y2 = pO4

x2y1 =−4,

pO4

x3x1 = pO4

y3y1 =−3, pO4

x2x3 = pO4

y2y3 =−1. (A.21)130



Appendix A. Fluxes for the staks U5, U1 ,A, B, O1, . . . , O8The staks O1, . . . , O4, given above, satisfy the supersymmetry onditions (4.36). Wenow give the set of four staks, O5, . . . , O8, whih satisfy the supersymmetry ondition(4.42) for the values of Ji given in eqs. (4.40), (4.43):
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; (A.22)

|FU5 + FO5| = 14 , |FU5 − FO5| = −14 , |FO5| =
87

8
; (A.23)

QO5

12̄
= i− i , QO5

23̄
= 2 +

25

2
, QO5

31̄
= −2i+

i

2
, (A.24)

QO5

11̄
= −

3

4
, QO5

22̄
= −

29

4
, QO5

33̄
= −

41

4
; (A.25)

pO5

x1y1 = −
25

2
, pO5

x2y2 = pO5

x3y3 =
1

2
, pO5

x1x2 = pO5

y1y2 = −2,

pO5

x3x1 = pO5

y3y1 = 1, pO5

x2y3 = pO5

x3y2 = 1. (A.26)
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; (A.27)

|FU5 + FO6| = 14 , |FU5 − FO6| = −14 , |FO6| =
87

8
; (A.28)

QO6

12̄
= i− i , QO6

23̄
= −2−

25

2
, QO6

31̄
= 2i−

i

2
, (A.29)
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= −

3

4
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22̄
= −

29

4
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33̄
= −

41

4
; (A.30)
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Appendix A. Fluxes for the staks U5, U1 ,A, B, O1, . . . , O8

pO6

x1y1 =−
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2
, pO6

x2y2 = pO6

x3y3 =
1

2
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x1x2 = pO6

y1y2 =−2,

pO6

x3x1 = pO6

y3y1 =−1, pO6

x2y3 = pO6

x3y2 =−1. (A.31)
FO7

(1,1) = −
i

2

(

dz1 dz2 dz3

)







−25
2

2i −1

−2i 1
2

i

−1 −i 1
2













dz̄1

dz̄2

dz̄3






; (A.32)

|FU5 + FO7| = 14 , |FU5 − FO7| = −14 , |FO7| =
87

8
; (A.33)

QO7

12̄
= −i+ i , QO7

23̄
= −2i−

25i

2
, QO7

31̄
= −2 +
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2
, (A.34)

QO7
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= −
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4
; (A.35)
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y2y3 =1. (A.36)
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; (A.37)

|FU5 + FO8| = 14 , |FU5 − FO8| = −14 , |FO8| =
87

8
; (A.38)
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Appendix A. Fluxes for the staks U5, U1 ,A, B, O1, . . . , O8
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, (A.43)
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. (A.44)Using the above �uxes, one an �nd out the hiral multiplets in the model. This has beendone for the brane intersetions involving staks - U5, U1. A omputation of the hiralfermion multipliities on the intersetions Oi − Oj and Oi − O∗

j ,for i, j = 1, . . . 8, impliesthe existene of following �elds in the non-hiral spetrum of the model. They are:(φO1O2
+− , φO1O2

−+ , 40), (φO1O3
+− , φO1O3

−+ , 84), (φO1O4
+− , φO1O4

−+ , 84), (φO1O5
+− , 20), (φO1O6

+− , φO1O6
−+ ,

49), (φO1O7
+− , 6), (φO1O8

+− , 14), (φO2O3
+− , φO2O3

−+ , 84), (φO2O4
+− , φO2O4

−+ , 84), (φO2O5
+− , φO2O5

−+ , 49),(φO2O6
+− , 20), (φO2O7

+− , 14 ), (φO2O8
+− , 6), (φO3O4

+− , φO3O4
−+ , 40), (φO3O5

+− , 14), (φO3O6
+− , 6), (φO3O7

+− ,
20), (φO3O8

+− , φO3O8
−+ , 49), (φO4O5

+− , 6), (φO4O6
+− , 14), (φO4O7

+− , φO4O7
−+ , 49), (φO4O8

+− , 20), (φO5O6
+− ,

φO5O6
−+ , 8), (φO5O7

+− , φO5O7
−+ , 20), (φO5O8

+− , φO5O8
−+ , 20), (φO6O7

+− , φO6O7
−+ , 20), (φO6O8

+− , φO6O8
−+ , 20),(φO7O8

+− , φO7O8
−+ , 8), (φO1O∗

2
++ , 59), (φO1O∗

3
−− , 33), (φO1O∗

4
−− , 33), (φO1O∗

5
++ , 86), (φO1O∗

6
−− , 10), (φO1O∗

7
++ ,

24), (φO1O∗

8
++ , 52), (φO2O∗

3
−− , 33), (φO2O∗

4
−− , 33), (φO2O∗

5
−− , 10), (φO2O∗

6
++ , 86), (φO2O∗

7
++ , 52), (φO2O∗

8
++ ,

24), (φO3O∗

4
++ , 59), (φO3O∗

5
++ , 52), (φO3O∗

6
++ , 24), (φO3O∗

7
++ , 86), (φO3O∗

8
−− , 10), (φO4O∗

5
++ , 24), (φO4O∗

6
++ ,

52), (φO4O∗

7
−− , 10), (φO4O∗

8
++ , 86), (φO5O∗

6
−− , 41), (φO5O∗

7
++ , 23), (φO5O∗

8
++ , 23), (φO6O∗

7
++ , 23), (φO6O∗

8
++ ,

23), (φO7O∗

8
−− , 41). (A.45)As a result of a similar analysis for the remaining staks A and B, we have also thefollowing �elds:(φU5A

+− , φU5A
−+ , 149), (φU5A∗

++ , φU5A∗

−− , 146), (φU5B
+− , φU5B

−+ , 51), (φU5B∗

++ , φU5B∗

−− , 16), (φU1A
+− , φU1A

−+ ,133



Appendix A. Fluxes for the staks U5, U1 ,A, B, O1, . . . , O8

149), (φU1B
+− , φU1B

−+ , 45), (φAB
+−, φAB

−+, 2336), (φU1B∗

++ , φU1B∗

−− , 18), (φU1A∗

+− , 292), (φAB∗

+− , 149).(A.46)
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BComplex struture moduli stabilization
For eah stak of magnetized D9-branes, we have three omplex onditions for the moduliof the omplex struture derived from eq. (2.41).From stak-O1 :

4Ω11 +
1

2
Ω21 + Ω31 =

5

2
Ω12 + 4Ω22 + 3Ω32, (B.1)

3Ω11 + Ω21 −
1

2
Ω31 =

5

2
Ω13 + 4Ω23 + 3Ω33, (B.2)

3Ω12 + Ω22 −
1

2
Ω32 = 4Ω13 +

1

2
Ω23 + Ω33. (B.3)From stak-O2 :

4Ω11 +
1

2
Ω21 − Ω31 =

5

212
+ 4Ω22 − 3Ω32, (B.4)

−3Ω11 − Ω21 −
1

2
Ω31 =

5

2
Ω13 + 4Ω23 − 3Ω33, (B.5)

−3Ω12 − Ω22 −
1

2
Ω32 = 4Ω13 +

1

2
Ω23 − Ω33. (B.6)From stak-O3 :

−3Ω11Ω32 + Ω21Ω32 + 3Ω31Ω12 − Ω31Ω22 + 4Ω11 −
1

2
Ω21 +

5

2
Ω12 − 4Ω22 = 0,(B.7)

−3Ω11Ω33 + Ω21Ω33 + 3Ω13Ω31 − Ω31Ω23 +
1

2
Ω31 +

5

2
Ω13 − 4Ω23 − 3 = 0, (B.8)

−3Ω12Ω33 + Ω22Ω33 + 3Ω13Ω32 − Ω23Ω32 +
1

2
Ω32 − 4Ω13 +

1

2
Ω23 + 1 = 0. (B.9)
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Appendix B. Complex struture moduli stabilizationFrom stak-O4 :
3Ω11Ω32 − Ω21Ω32 − 3Ω31Ω12 + Ω31Ω22 + 4Ω11 −

1

2
Ω21 +

5

2
Ω12 − 4Ω22 = 0, (B.10)

3Ω11Ω33 − Ω21Ω33 − 3Ω13Ω31 + Ω31Ω23 +
1

2
Ω31 +

5

2
Ω13 − 4Ω23 + 3 = 0, (B.11)

3Ω12Ω33 − Ω22Ω33 − 3Ω13Ω32 + Ω23Ω32 +
1

2
Ω32 − 4Ω13 +

1

2
Ω23 − 1 = 0. (B.12)From stak-O5 :

−2Ω11Ω22 − Ω11Ω32 + 2Ω21Ω12 + Ω31Ω12 −
1

2
Ω21 − Ω31 −

25

2
Ω12 − 2 = 0, (B.13)

−2Ω11Ω23 − Ω11Ω33 + 2Ω21Ω13 + Ω31Ω13 − Ω21 −
1

2
Ω31 −

25

2
Ω13 − 1 = 0, (B.14)

−2Ω12Ω23 − Ω12Ω33 + 2Ω22Ω13 + Ω32Ω13 − Ω22 −
1

2
Ω32 +

1

2
Ω23 + Ω33 = 0. (B.15)From stak-O6 :

−2Ω11Ω22 + Ω11Ω32 + 2Ω21Ω12 − Ω31Ω12 −
1

2
Ω21 + Ω31 −

25

2
Ω12 − 2 = 0, (B.16)

−2Ω11Ω23 + Ω11Ω33 + 2Ω21Ω13 − Ω31Ω13 + Ω21 −
1

2
Ω31 −

25

2
Ω13 + 1 = 0, (B.17)

−2Ω12Ω23 + Ω12Ω33 + 2Ω22Ω13 − Ω32Ω13 + Ω22 −
1

2
Ω32 +

1

2
Ω23 − Ω33 = 0. (B.18)From stak-O7 :

2Ω11Ω22 − 2Ω21Ω12 + Ω21Ω32 − Ω22Ω31 −
1

2
Ω21 −

25

2
Ω12 − Ω32 + 2 = 0, (B.19)

2Ω11Ω23 − 2Ω21Ω13 + Ω21Ω33 − Ω23Ω31 + Ω11 −
1

2
Ω31 −

25

2
Ω13 − Ω33 = 0, (B.20)

2Ω12Ω23 − 2Ω22Ω13 + Ω22Ω33 − Ω23Ω32 + Ω12 −
1

2
Ω32 +

1

2
Ω23 + 1 = 0. (B.21)From stak-O8 :

2Ω11Ω22 − 2Ω21Ω12 − Ω21Ω32 + Ω22Ω31 −
1

2
Ω21 −

25

2
Ω12 + Ω32 + 2 = 0, (B.22)

2Ω11Ω23 − 2Ω21Ω13 − Ω21Ω33 + Ω23Ω31 − Ω11 −
1

2
Ω31 −

25

2
Ω13 + Ω33 = 0, (B.23)

2Ω12Ω23 − 2Ω22Ω13 − Ω22Ω33 + Ω23Ω32 − Ω12 −
1

2
Ω32 +

1

2
Ω23 − 1 = 0. (B.24)136



Appendix B. Complex struture moduli stabilizationNow, from stak-O1 and stak-O2 one obtains from eqs. (B.1) and (B.4):
Ω31 = 3Ω32 , (B.25)and

4Ω11 +
1

2
Ω21 =

5

2
Ω12 + 4Ω22 ; (B.26)from eqs. (B.2) and (B.5):

3Ω11 + Ω21 = 3Ω33 , (B.27)and
−
1

2
Ω31 =

5

2
Ω13 + 4Ω23 ; (B.28)and from eqs. (B.3) and (B.6):

3Ω12 + Ω22 = Ω33 , (B.29)and
−
1

2
Ω32 = 4Ω13 +

1

2
Ω23 ; (B.30)Similarly, from stak-O3 and stak-O4 one has, by adding eqs. (B.7) and (B.10):

4Ω11 −
1

2
Ω21 +

5

2
Ω12 − 4Ω22 = 0 ; (B.31)by adding eqs. (B.8) and (B.11):

1

2
Ω31 +

5

2
Ω13 − 4Ω23 = 0 ; (B.32)and by adding eqs. (B.9) and (B.12):

1

2
Ω32 − 4Ω13 +

1

2
Ω23 = 0. (B.33)Use of eqs. (B.30) and (B.33) gives:

Ω13 = 0 , (B.34)and
Ω32 + Ω23 = 0 . (B.35)Moreover, one has from eqs. (B.34) and (B.32):
Ω31 = 8Ω23 ; (B.36)137



Appendix B. Complex struture moduli stabilizationfrom eqs. (B.36) and (B.25):
3Ω32 = 8Ω23 ; (B.37)from eqs. (B.37) and (B.35):
Ω32 = Ω23 = 0 ; (B.38)and from eqs. (B.38) and (B.36):

Ω31 = 0 . (B.39)Similarly, use of eqs. (B.26) and (B.31) implies:
Ω21 = 5Ω12 , (B.40)and
Ω11 = Ω22 ; (B.41)while use of eq. (B.41) in eqs. (B.27) and (B.29) gives:

3Ω11 + Ω21 − 3Ω33 = 0 , (B.42)and
3Ω11 + 9Ω12 − 3Ω33 = 0 . (B.43)Eqs. (B.42) and (B.43) give:

Ω21 = 9Ω12 , (B.44)whih omparing with eq. (B.40) implies:
Ω21 = Ω12 = 0 . (B.45)Using the result of eq. (B.45) into eq. (B.42) then gives (using also eq. (B.41)),

Ω11 = Ω22 = Ω33 ≡ Ω . (B.46)The value of Ω is �nally determined from any of the bilinear equations, suh as eq. (B.8)or (B.9):
Ω = i . (B.47)
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CKähler lass moduli stabilization
For the stabilization of Kähler lass, let us denote for de�niteness the volume of the 4-ylesassoiated to J ∧ J as

(J ∧ J)ij̄ = Vij̄ , (C.1)where the indies i, j̄ orrespond to the (1, 1)-yle perpendiular to the given 4-yle. Inthe above notation, the supersymmetry onditions on the Kähler moduli for the variousstaks read as follows :From stak-O1 using eq. (A.2):
195

8
−

[

5

2
V11̄ +

1

2
V22̄ −

1

2
V33̄ + 4V12̄ + 4V21̄ + 3V13̄ + 3V31̄ + V23̄ + V32̄

]

= 0, (C.2)from stak-O2 using eq. (A.7):
195

8
−

[

5

2
V11̄ +

1

2
V22̄ −

1

2
V33̄ + 4V12̄ + 4V21̄ − 3V13̄ − 3V31̄ − V23̄ − V32̄

]

= 0, (C.3)from stak-O3 using eq. (A.12):
195

8
−

[

5

2
V11̄ +

1

2
V22̄ −

1

2
V33̄ − 4V12̄ − 4V21̄ − 3iV13̄ + 3iV31̄ + iV23̄ − iV32̄

]

= 0, (C.4)from stak-O4 using eq. (A.17):
195

8
−

[

5

2
V11̄ +

1

2
V22̄ −

1

2
V33̄ − 4V12̄ − 4V21̄ + 3iV13̄ − 3iV31̄ − iV23̄ + iV32̄

]

= 0, (C.5)from stak-O5 using eq. (A.22):
87

8
−

[

−25

2
V11̄ +

1

2
V22̄ +

1

2
V33̄ − 2iV12̄ + 2iV21̄ − iV13̄ + iV31̄ + V23̄ + V32̄

]

= 0, (C.6)139



Appendix C. Kähler lass moduli stabilizationfrom stak-O6 using eq. (A.27):
87

8
−

[

−25

2
V11̄ +

1

2
V22̄ +

1

2
V33̄ − 2iV12̄ + 2iV21̄ + iV13̄ − iV31̄ − V23̄ − V32̄

]

= 0, (C.7)from stak-O7 using eq. (A.32):
87

8
−

[

−25

2
V11̄ +

1

2
V22̄ +

1

2
V33̄ + 2iV12̄ − 2iV21̄ − V13̄ − V31̄ + iV23̄ − iV32̄

]

= 0, (C.8)from stak-O8 using eq. (A.37):
87

8
−

[

−25

2
V11̄ +

1

2
V22̄ +

1

2
V33̄ + 2iV12̄ − 2iV21̄ + V13̄ + V31̄ − iV23̄ + iV32̄

]

= 0. (C.9)Now, from staks-O1 and O2, eqs. (C.2) and (C.3) give:
3 (V13̄ + V31̄) + (V23̄ + V32̄) = 0; (C.10)from staks-O3 and O4, eqs. (C.4) and (C.5) give:

−3i (V13̄ − V31̄) + i (V23̄ − V32̄) = 0; (C.11)from staks-O5 and O6, eqs. (C.6) and (C.7) give:
−i (V13̄ − V31̄) + (V23̄ + V32̄) = 0; (C.12)and from staks-O7 and O8, eqs. (C.8) and (C.9) give:
− (V13̄ + V31̄) + i (V23̄ − V32̄) = 0. (C.13)Eq. (C.13) implies
i (V23̄ − V32̄) = (V13̄ + V31̄) , (C.14)whih leads from eq. (C.10)

3i (V23̄ − V32̄) + (V23̄ + V32̄) = 0 . (C.15)Similarly, eq.(C.12) implies
i (V13̄ − V31̄) = (V23̄ + V32̄) , (C.16)140



Appendix C. Kähler lass moduli stabilizationwhih leads from eq. (C.11)
−3 (V23̄ + V32̄) + i (V23̄ − V32̄) = 0 . (C.17)Now eqs. (C.15) and (C.17) an be solved to give

V23̄ + V32̄ = 0, (C.18)and
V23̄ − V32̄ = 0, (C.19)implying
V23̄ = V32̄ = 0. (C.20)Then one has from eq. (C.10)
V13̄ + V31̄ = 0, (C.21)and from eq. (C.11)
V13̄ − V31̄ = 0, (C.22)implying
V13̄ = V31̄ = 0. (C.23)Using the obtained values, eqs. (C.2) - (C.4) give
V12̄ + V21̄ = 0, (C.24)while eqs. (C.8) - eq. (C.6) give
V12̄ − V21̄ = 0, (C.25)implying
V12̄ = V21̄ = 0. (C.26)
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DMore information on �uxes
In general, the (1, 1) form �ux Fziz̄j given by a hermitian matrix in eq. (2.24) is onstrainedby two equations (2.26) and (2.27) whih mix the matrix omponents pxx, pyy and pxy forgeneral Ω. However, for a anonial omplex struture, orresponding to orthogonal tori,the onstraints simplify and are written in the matrix form:

pxx = pyy, pTxy = pxy. (D.1)Fluxes of suh types have been used in [7℄ for onstruting an SU(5) GUT with stabilizedmoduli and in Setion 4.5 we apply the Yukawa ouplings omputation results to showthe mass generation for extra non-hiral states in the model of [7℄. In this ase, the (1, 1)form �ux Fziz̄j , for (Ω = iI3), redues to:
Fziz̄j =

1

2
(pxy − ipxx) (D.2)Expliitly, the hermitian �ux matrix F in eq. (3.17) is given as:

F =







px1y1 px1y2 + ipx1x2 px1y3 + ipx3x1

px1y2 − ipx1x2 px2y2 px2y3 + ipx2x3

px3y1 − ipx3x1 px2y3 − ipx2x3 px3y3






. (D.3)For magnetized branes in [103, 7℄, we used the quantization rule for p's:

pxiyj =
mxiyj

nxinyj
, pxixj =

mxixj

nxinxj , pxiyj =
mxiyj

nyinyj
, (D.4)where mxiyj , mxixj , myiyj are the �rst Chern numbers along the orresponding 2-ylesand nxi, nyi et. are the wrapping numbers along the 1-yles xi, yi. However, for themodel [7℄, we have used only integral �uxes orresponding to nxi

= nyi = 1. 142



Appendix D. More information on �uxesAn additional modi�ation omes when nonzero NS-NS B-�eld bakground is turnedon along some 2-yle. In this ase, the �rst Chern number along the partiular 2-yle(for nxi

= nyi = 1) is shifted by:
mxiyj → m̃xiyj = mxiyj +

1

2
, etc. (D.5)In the model that we disussed in [7℄, we turn on nonzero NS-NS B-�eld, (B = 1

2
),along the 2-yles diagonally in the three T 2's. Resulting �uxes are then half-integral.However, as already mentioned earlier, in writing the wavefuntions of hiral fermions χabin bifundamentals, the relevant quantities are the di�erene of �uxes in the two staks,or the two diagonal bloks in the gauge theory piture. In addition to the D-branes, anorientifold model also ontains image D-branes with �uxes of opposite signature than theones present in the original brane. In suh ases, the orresponding wavefuntions χab∗will obey similar equations as that of χab, but with the addition of the gauge potentials

Aa + Ab rather than their di�erene as in eq. (3.22). The relevant matrix N whih willnow be the addition of �uxes in the two staks, rather than their di�erene, will one againbe integral.We also learnt from the seond equation in (3.26) that (N.ImΩ) is a symmetri matrix.However, as explained in eqs. (2.24) in the general situation and in (D.2) for Ω = iI3, �uxesare in general hermitian when omponents of all types: pxx, pyy and pxy are present.
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