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Synopsis
Superstring theory is 
urrently 
onsidered to be one of the most promising 
andidates forunifying the di�erent parti
les and their intera
tions in nature. This is due to the fa
tthat it provides a des
ription of gauge and gravitational intera
tions in a uni�ed frame-work 
onsistently at the quantum level. If String theory is indeed realized in nature, it's
ertain low energy limit should reprodu
e the Standard Model (SM), a uni�ed model ofstrong and ele
troweak intera
tions, whi
h has been so su

essful in des
ribing the parti-
le world. As it is well known, the superstring theories are 
onsistent in ten dimensionalspa
etime, and usually have a high degree of supersymmetry. In the pro
ess of des
rib-ing models redu
ing at low energies to four dimensions with less or no supersymmetry,there is an enormous arbitrariness in the 
hoi
e of the ba
kground 
on�guration. To re-produ
e four-dimensional physi
s at low energies, one needs to 
ompa
tify the theory ona six-dimensional manifold. This leads to the existen
e of large number of unobservedneutral massless s
alar parti
les (moduli �elds). Geometri
ally the va
uum expe
tationvalues of these moduli �elds parametrize, among other things, the size and shape of the
ompa
ti�
ation manifolds. These values are also related to the parameters like gauge
oupling 
onstants or masses of the e�e
tive four dimensional theory. By not being ableto provide these expe
tation values via minimization of some e�e
tive potential, stringmodels generally lose the predi
tive power. One of the main fo
us of present day resear
his to generate, in various ways, potentials for these moduli �elds, minima of whi
h 
ouldgive masses to these �elds. This goes by the name of 'moduli stabilization'.The sear
h for realisti
 string va
ua is one of the most ambitious tasks in Super-string theory, and thus essentially 
overs the bran
h known as String Phenomenology.A phenomenologi
ally viable string 
ompa
ti�
ation should 
ontain three 
hiral fermiongenerations, the Standard Model gauge group or some extension of it e.g. GUT mod-els and broken spa
e-time supersymmetry. In addition to this basi
 stru
ture, it shouldreprodu
e the exa
t gauge and Yukawa 
ouplings. Moreover, it should satisfy a set of 
on-ditions in order to produ
e a 
onsistent anomaly free theory. Further, all the modulis areneeded to be stabilized. There have been a lot of e�ort devoted along this dire
tion in pastyears. Consequently there exists a good number of string 
onstru
tions like heteroti
 string
ompa
ti�
ation on Calabi-Yau threefolds, M-theory 
ompa
ti�
ations on G2-holonomyspa
es, interse
ting D-brane models, 
ompa
ti�
ation with non-trivial �uxes et
. aimingto reprodu
e the physi
s of the Standard Model at low energies.In the present thesis, we dis
uss a simple framework of toroidal 
ompa
ti�
ation oftype I string theory with magnetized D-branes ( D-branes with worldvolume �uxes along
ompa
ti�ed tori), that o�ers an interesting self-
onsistent set up for string phenomenol-iv



Synopsisogy. In su
h models, the gauge bosons and the 
hiral fermions 
ome from the open stringse
tor. In parti
ular, the gauge bosons appear due to strings atta
hed to sta
ks of D-branesand 
hiral matter arises from the strings stret
hing between di�erent sta
ks of D-branes.Gravity, as usual, originates from the 
losed string se
tor. The �uxes that are turned on,
an be used to build phenomenologi
al models with an exa
t 
hiral fermion spe
trum andgauge group, where some/all the moduli are stabilized and spa
etime supersymmetry isbroken.We begin with a dis
ussion of 
ompa
ti�
ation of type I strings on a torus with ad-ditional ba
kground gauge �ux on the D9-branes and review the ne
essary 
onstraintsneeded for 
onstru
ting semi-realisti
 models in su
h a framework. Swit
hing on 
onstantinternal magneti
 �elds has important 
onsequen
es in type I string 
ompa
ti�
ations tofour-dimensions [1,2℄. Su
h magneti
 �uxes are des
ribed by exa
t 
onformal �eld theoriesand they give a spin dependent shift (for states whi
h are 
harged under the 
orrespondinggauge transformation) in the masses leading to a spe
trum des
ribed by various Landauenergy levels. This leads to 
hiral massless spe
tra in four spa
e-time dimensions. More-over, when the magneti
 �eld is turned on along the 
ompa
t dire
tions, it has to satisfyDira
 quantization 
onditions. Fluxes, in general, break supersymmetry. However, in somespe
ial 
ases, a part of the supersymmetry 
an be preserved provided �uxes satisfy 
ertain
onstraints. These 
onstraints, in turn, 
an be used for stabilizing the 
losed string modulibe
ause they 
orrespond to stable minima of the s
alar potential. However, in order tostabilize all 36 
losed string geometri
 moduli of the torus T 6, one needs to in
lude both`diagonal' and `oblique' �uxes [5,6℄. These methods 
an also be employed for the openstring moduli stabilization in any spe
i�
 model. We also study the tadpole 
an
ellation
onditions whi
h are required for 
onsisten
y of type I string va
ua. Sin
e a 
ru
ial step ina three generation model building is the introdu
tion of a Neveu S
hwarz - Neveu S
hwarz
B-�eld ba
kground, the e�e
t of non-zero B on the 
hirality and tadpoles is summarizedfollowing [3,4℄.We then 
arry out the 
omputations of Yukawa 
ouplings in su
h magnetized brane
onstru
tions and �nd the 
lose form expressions for them. In su
h a framework, the
omputation of the Yukawa 
ouplings amounts to evaluating overlap integrals of threewavefun
tions (
ontributing to the intera
tion) along internal dire
tions. To perform thetask, knowledge of the fermion (s
alar) wavefun
tions on toroidally 
ompa
ti�ed spa
es(in the presen
e of �uxes) is required. However, te
hni
al di�
ulties arise in dealing withthe expli
it form of the fermion wavefun
tions on tori in the presen
e of magneti
 �uxes.Parti
ularly, the presen
e of `oblique' �uxes adds extra 
omplexity to the problem.We summarize the results for the fermion (s
alar) wave fun
tions and the Yukawav



Synopsisintera
tion for fa
torized tori and `diagonal' �uxes [7℄. In this 
ase, the fermion wavefun
-tions are given by Ja
obi Theta fun
tions. The Yukawas are obtained by performing theoverlap integrals of these wavefun
tions and using 
ertain identity [8℄ satis�ed by Ja
obitheta fun
tions. We present a proof of the identity. We then generalize the results towrite down the expression for the Yukawa intera
tion when oblique �uxes are present [10℄.In order to perform this task, fermion (s
alar) wavefun
tions on toroidally 
ompa
ti�edspa
es are presented for general �uxes. These are parametrized by Hermitian matri
eswith eigenvalues of arbitrary signatures. The wavefun
tions, so obtained, are given bygeneral Riemann Theta fun
tions with matrix valued modular parameter. We also giveexpli
it mappings among fermion wavefun
tions, of di�erent internal 
hiralities on thetori, whi
h inter
hange the role of the �ux 
omponents with the 
omplex stru
ture of thetorus. By evaluating the overlap integral of the wave fun
tions, the expressions for Yukawa
ouplings among 
hiral multiplets, arising from an arbitrary set of branes are obtained.This essentially leads us to 
onstru
t 
ertain mathemati
al identities for general Riemanntheta fun
tions. We generalize the theta identity for Riemann theta fun
tions and presenta proof of this. We then use this new mathemati
al relation for writing down the expres-sion for the Yukawa intera
tion when oblique �uxes 
onsistent with supersymmetry and`Riemann 
ondition' requirements are present. In order to relax the later, the results arefurther generalized to in
lude the wavefun
tions of the other internal 
hiralities, in orderto a

ommodate general �uxes 
onsistent with supersymmetry restri
tions.Finally, we present a minimal example of a supersymmetri
 grand uni�ed model ina toroidal 
ompa
ti�
ation of type I string theory with magnetized D9-branes [9℄. Weobtain general solutions for �uxes along magnetizedD9-branes yielding the 
hiral spe
trumand gauge group of a three generation SU(5) GUT model, with no extra 
hiral matternor U(1) fa
tors. The gauge symmetry is just SU(5) and the gauge non-singlet 
hiralspe
trum 
ontains only three families of quarks and leptons transforming in the 10 + 5̄representations. Brane sta
ks with oblique �uxes play a 
entral role in this 
onstru
tion, inorder to stabilize all 
lose string moduli, in a manner restri
ting the 
hiral matter 
ontentto pre
isely that of SU(5) GUT. Another interesting feature of this model is that it is freefrom any 
hiral exoti
s that often appear in su
h brane 
onstru
tions. The �ux solutionsalso satisfy the RR tadpole 
an
ellation 
onditions resulting the model to be 
onsistent.However, the model 
ontains extra non-
hiral matter that is expe
ted to be
ome massiveat a high s
ale, 
lose to that of SU(5) breaking. Finally, we present a brief analysis ofthe superpotential and D-terms for the model in order to show the mass generation forseveral non-
hiral fermion multiplets in a supersymmetri
 ground state [10℄. Using theresults for Yukawa 
ouplings, we show that a ground state allowing masses for the abovevi



Synopsismatter multiplets is possible. This exer
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1Introdu
tion
1.1 An OverviewGeneral theory of relativity and the Standard Model (SM) of parti
le physi
s perhaps arethe two greatest dis
overies in physi
s during the last 
entury. However, their domainsof appli
ability remained largely disjoint. While general theory of relativity was found todominate at large distan
es (for instan
e, des
ribing the motion of a planet), SM des
ribedintera
tions at small length s
ales. But, surely, there are situations where these two for
esbe
ome equally 
ru
ial. Universe at a very early time, behaviour near the horizon of anot-so-large bla
k hole provide su
h situations. In these 
ases, gravitational for
e be
omesstrong even at small distan
es and, therefore, there is a need to 
onsider gravitationalintera
tion along with the other three intera
tions of the Standard Model.Pre
eding dis
ussion, therefore, suggests that the Standard Model alone is not enoughin des
ribing our universe at high energies. There are other reasons to believe that thismodel indeed is not 
omplete. SM 
ontains nineteen free parameters whi
h are �xed, aposteriori, by experimental data. Furthermore, it su�ers from well known hierar
hy andnaturalness problems. A 
orre
t des
ription of the observed masses and mixing of quarksand leptons require very di�erent values for the Yukawa 
oupling 
onstants for di�erentgenerations. Although many approa
hes have been put forward to des
ribe the hierar
hi
alstru
ture of Yukawa 
ouplings between the Higgs �eld and the SM fermions, it is perhapsfair to say that we do not have, at the moment, a 
ompelling theory for quark and leptonmasses. On the other hand, naturalness te
hni
ally refers to the ne
essity of �ne-tuningthe tree level parameters to a

ommodate for experimentally a

eptable values given thesize of the perturbative quantum 
orre
tions.These lead us to believe that there is a more fundamental theory whi
h in
orporatesgravity along with SM in a uni�ed framework and, in turn, �xes all the arbitrariness of the

1



Chapter 1. Introdu
tionSM. Among all the possibilities that have so far been put forward, supersymmetri
 stringtheory or superstring theory, surely, is the most promising one. Instead of point parti
les,here, fundamental obje
ts are the strings and parti
les appear as di�erent vibrationalmodes of the string. Strings with open and 
losed ends 
onstitute two di�erent se
torsknown as open and 
losed string se
tors respe
tively. While 
losed strings have, in it'sspe
trum, a mass-less spin two parti
le known as graviton [1℄, the open strings 
arrygauge 
harges at it's end points. Therefore, strings provide a possibility to unify gaugeand gravitational intera
tions in a natural way. The s
ale of this uni�
ation is di
tated bythe inverse of the size of a string. This s
ale is, however, mu
h higher than the a

essibleenergies in present day a

elerators and hen
e, strings remained un-observable. At thesame time, sin
e via a

elerators, the 
orre
tness of the SM have been tested to a veryhigh a

ura
y, string theory must reprodu
e just the SM at low energies. In spite of severalattempts, getting just the SM from string theory has so far remained an illusive task.Consisten
y requires superstrings to live in ten spa
e-time dimensions with spa
e-timesupersymmetry. As we will dis
uss in the later se
tions, 
onsisten
y also requires �vedi�erent kinds of superstrings in ten dimensions. The 
onne
tion to our four dimensionalobservational world is made via 
ompa
ti�
ation of six spa
e dimensions. Unfortunately,it turns out that, there are several 
onsistent 
ompa
ti�
ation s
hemes whi
h produ
edi�erent e�e
tive �eld theories in four dimensions at low energy s
ale. Even if strings at tendimensions do not have any free parameter, arbitrariness in 
ompa
ti�
ation introdu
esmany undetermined parameters in the low energy theory. Among them, for example,are the sizes and shapes of the 
ompa
t manifold. In four dimensional theories, theseparameters appear as the va
uum expe
tation values (vev) of the s
alars. These are
ommonly known as the moduli �elds. Continuous deformations in size and shape of the
ompa
t manifold show up as 
ontinuous 
hanges in the vevs of these moduli. This, inturn, means that these s
alars are not a

ompanied by any potentials. One of the mainfo
us of present day resear
h is to �nd ways to remove these �at dire
tions of the moduliby generating their masses. Unless these moduli �elds are de-
oupled at a s
ale higherthan the presently a

essible s
ale, relating string theory to SM remains a di�
ult task.In spite of this vexing problem, ex
iting progress, however, has been made in a
hievingpartial stabilization of these moduli. This will be dis
ussed in details in the later se
tions.The present thesis serves as an attempt to 
onstru
t low energy string models by par-tially stabilizing the moduli and 
onstru
ting an extension of the SM. A 
ru
ial ingredientin our model building will be the Diri
hlet branes or the D-branes in short. D-branes,dis
overed in [2, 3℄, are the solitoni
 
on�gurations in sting theory on whi
h open string
an end. As we will see, magnetized D-branes 
ontain several phenomenologi
ally appeal-2



Chapter 1. Introdu
tioning general features suggesting that they may o�er an interesting self-
onsistent set up to
onstru
t semi-realisti
 models.Any phenomenologi
ally viable string 
ompa
ti�
ation should 
ontain three 
hiral gen-erations, the SM gauge group or some extension of it and broken spa
e-time supersym-metry. In addition it should reprodu
e the exa
t gauge and Yukawa 
ouplings. It mustsatisfy a set of 
onditions in order to produ
e a 
onsistent anomaly free theory. Moreover,all the moduli �elds are needed to be stabilized. In this thesis, we start with type I stringtheory (one out of �ve 
onsistent string theories in 10 dimensions) 
ompa
ti�ed on a sixdimensional torus T 6. In type I string theory, there exists two known ways of a
hieving
hirality in the e�e
tive lower dimensional theory. Either, one 
an 
ompa
tify on 
urvedspa
es, in parti
ular on orbifolds, leading to supersymmetri
 and non-supersymmetri
 
hi-ral models in four dimensions. Or, one 
an obtain 
hiral spe
tra by introdu
ing D-braneswith magneti
 �ux [4℄. We follow the later approa
h and dis
uss the toroidal 
ompa
ti-�
ation of type I string theory with additional ba
kground gauge �ux on the D9-branes.A D9-brane is a soliton in type I theory with 9 + 1 world-volume dire
tions �lling upthe whole spa
e time. We review the ne
essary 
onstraints required for 
onstru
ting phe-nomenologi
al models in su
h a framework. For arbitrary magneti
 �elds, supersymmetryis spontaneously broken. However, a part of the supersymmetry 
an be preserved provided�uxes satisfy 
ertain 
onstraints. These 
onstraints, in turn, 
an be used for stabilizingthe 
losed string moduli. However, in order to stabilize all 
losed string geometri
 moduliof the torus T 6, one needs to in
lude both diagonal and oblique �uxes.The main aim of the thesis is to build phenomenologi
al models, with an exa
t 
hiralfermion spe
trum and gauge group, where some/all the moduli are stabilized and spa
e-time supersymmetry is broken, in the framework des
ribed above. Moreover, we 
arry outthe 
omputations of Yukawa 
ouplings in su
h magnetized brane 
onstru
tions and �ndthe 
lose form expressions for them. In su
h a framework, the 
omputation of the Yukawa
ouplings amounts to evaluating overlap integrals of three wavefun
tions (
ontributing tothe intera
tion) along internal dire
tions. In the 
ourse of this work, we expli
itly solvefor the fermion (s
alar) wavefun
tions on toroidally 
ompa
ti�ed spa
es in the presen
eof general �uxes. The wavefun
tions, so obtained, are given by general Riemann Thetafun
tions with matrix valued modular parameter. By evaluating the overlap integralsof these wave fun
tions, the expressions for Yukawa 
ouplings among 
hiral multipletsare obtained [5℄. This essentially leads us to 
onstru
t 
ertain mathemati
al identitiesfor general Riemann theta fun
tions. We generalize the existing theta identity, satis�edby Ja
obi theta fun
tions, for Riemann theta fun
tions and present a proof of this. Wethen use these new mathemati
al relations to write down the expressions for the Yukawa3
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tionintera
tions. In spe
ial 
ases, our results reprodu
e the results obtained in [6℄ for fa
torizedtori and `diagonal' �uxes.Finally, we present an example of a three generation SU(5) supersymmetri
 granduni�ed (GUT) model in simple toroidal 
ompa
ti�
ations of type I string theory withmagnetized D9 branes in [7℄. The gauge group is just SU(5) and the 
hiral gauge non-singlet spe
trum 
onsists of three families with the quantum numbers of quarks and lep-tons, transforming in the 10+ 5̄ representations of SU(5). The �uxes also satisfy the RRtadpole 
an
ellation 
onditions yielding a 
onsistent model. Brane sta
ks with oblique�uxes play a 
entral role in this 
onstru
tion, in order to stabilize all 
lose string moduli,in a manner restri
ting the 
hiral matter 
ontent to pre
isely that of SU(5) GUT. Anotherinteresting feature of this model is that it is free from any 
hiral exoti
s that often appearin su
h brane 
onstru
tions. However, the model 
ontains extra non-
hiral matter that isexpe
ted to be
ome massive at a high s
ale, 
lose to that of SU(5) breaking. Using theresults for Yukawa 
ouplings, we show the mass generation for several non-
hiral fermionmultiplets in a supersymmetri
 ground state whi
h further �ne tunes the SU(5) GUTmodel[5℄.Before we go on to present our results in the later 
hapters, in the next se
tion of this
hapter, we give a brief histori
al survey on the sear
h of the SM or Grand Uni�ed Theory(GUT) models in the 
ontext of string theory. The aim of this survey is to motivateour work, as well as giving an a

ount of all the e�orts that have made in the bran
h ofSuperstring Phenomenology. We will use elements and notations that are already standardin string theory literature, and are 
ommon in the basi
 texts [8, 9, 10, 11, 12, 13℄. Werefer the reader to these texts for the details and 
ompleteness on the basi
 aspe
ts of thetheory.1.2 The Sear
h for the Standard ModelThe First String Revolution took pla
e around 1984, when Green and S
hwarz dis
overeda new me
hanism to formulate 
onsistent superstring theories in ten dimensions [14℄. Untilthen, two su
h 
onsistent theories had been 
onstru
ted, namely type IIA and type IIBsuperstring theories. Both involved 
losed strings only, and the e�e
tive �eld theoriesderived from the low energy spe
trum amounted to the two di�erent N = 2 Supergravity(SUGRA) theories in ten dimensions, named in the same manner. Both of these e�e
tivetheories are free of in
onsisten
ies su
h as 
hiral, mixed and gravitational anomalies. Onthe 
ontrary, the superstring theory known as type I, whi
h involved both open and 
losedstrings, seemed to have su
h quantum anomalies. With the dis
overy of the Green-S
hwarz4
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tionme
hanism, however, it was possible to show that if type I theory was endowed witha Yang-Mills theory with gauge group SO(32), then the anomalies 
ould fa
torize andbe 
an
eled, �nally obtaining a 
onsistent theory. This was followed by the subsequent
onstru
tion of the heteroti
 superstring theory in ten dimensions, [15, 16, 17℄. These twotheories involve a 10D SUGRA N = 1 e�e
tive theory and are endowed with gauge groupswhi
h are, respe
tively, SO(32) and E8 × E8.The �rst attempts to build realisti
 string models were based on E8 × E8 heteroti
string 
ompa
ti�
ations. A phenomenologi
ally viable 
ompa
ti�
ation requires obtainingan e�e
tive theory in four dimensions with a 
hiral spe
trum and a gauge group 
ontaining
SU(3) × SU(2) × U(1). Sin
e gravity was also to be a part of the low energy spe
trum,the string s
ale was �xed at the order of the Plan
k s
ale, and the hierar
hy problem wasavoided by imposing lo
alN = 1 supersymmetry (SUSY). As it was shown in [18, 19℄, su
h
onditions required the six extra dimensions to ful�ll some 
onstraints, namely it should bea 
ompa
t Riemannian manifold with SU(3) holonomy group. Su
h manifolds are knownas Calabi-Yau threefolds, or CY3 [20, 21, 22℄. An expli
it model with three generationsbased on heteroti
 superstring 
ompa
ti�
ation is presented in [23, 24℄. Although E8×E8heteroti
 
ompa
ti�
ations on Calabi-Yau manifolds have provided rather realisti
 models,it is di�
ult to perform 
omputations in su
h manifolds where, in most 
ases, not eventhe metri
 is known. An interesting 
lass of spa
es where 
omputations are mu
h moretra
table is given by the toroidal orbifolds [25, 26℄. Sin
e the geometry is simpler than thatof a CY and the metri
 is �at outside the singularities, 
omputations 
an be easily 
arriedout, and quantities of physi
al interest are thus more easily 
omputable. Subsequently,exa
t heteroti
 string solutions on six dimensional orbifold spa
es were 
onstru
ted [27,28, 29℄. This was followed by a series of 
onstru
tions, su
h as the Gepner models [30℄,the free-fermion models [31, 32℄ or heteroti
 string-derived �ipped SU(5) models [33℄.The Se
ond Superstring Revolution took pla
e around 1995, and it mainly 
on
ernedthe non-perturbative aspe
ts of string theory. Until then, string theory was understoodas �ve di�erent superstring theories, apparently independent, known as type I, type II (Aand B) and the two heteroti
 theories. However, in the 
ontext of this se
ond revolution,it was learnt that they were all related to ea
h other by a web of string dualities. Theduality establishes a one-to-one 
orresponden
e between parameters and �elds de�ning onetheory (
ompa
ti�
ation radii, 
oupling 
onstants, et
.) and the same set of quantitiesde�ning its dual. Duality involves strong-weak 
oupling ex
hange either in sigma- modelor in spa
e-time. The string duality web revealed that these �ve string theories were notisolated independent theories, but a
tually limiting 
ases of a deeper, more fundamentaltheory, named M-theory, whose pre
ise nature has not yet been unraveled [34, 35℄. Su
h5



Chapter 1. Introdu
tiontheory would be formulated in eleven spa
e time dimensions, and its basi
 dynami
alobje
ts would be membranes rather than strings. These membranes naturally appear assolitoni
 obje
ts of D = 11 SUGRA, whi
h would be another limiting 
ase of M-theory.The other �ve limiting 
ases, i.e., the �ve superstring theories, would then be obtainedfrom 
ompa
tifying the eleventh dimension in a very small length. Figure 1.1 shows ans
hemati
 representation of the situation.
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Figure 1.1: Situation of string theory after the se
ond superstring revolution. Thepreviously dis
onne
ted �ve superstring theories are nothing but spe
i�
 (limiting) pointsin the parameter spa
e of a more fundamental theory: M-theory.In the formulation of these new string dualities, non-perturbative obje
ts of the theorysu
h as the so-
alled D-branes played a prime role. D-branes naturally emerge while
onsidering a toroidal 
ompa
ti�
ation of type I theory and performing a T-duality onone of the 
ompa
t dimensions [2, 3℄. Generi
ally, a Dp-brane is a BPS solitoni
 obje
t ofspatial dimension p where the open strings lo
alize their ends. Type IIA theory 
ontainsDp-branes with p even, whereas, for type IIB, p must be odd. The lowest ex
itation modesof the open strings gives rise to massless gauge �elds and their fermioni
 superpartners.The supersymmetri
 e�e
tive theory arising from the worldvolume of a D-brane is endowedwith a U(1) gauge group. And a sta
k of N D-branes of the same kind on top of ea
hother have U(N) gauge symmetry. Moreover, the e�e
tive �eld theory is de�ned on the
p+1 dimensional D-brane worldwolume, and the �elds on it are 
on�ned to propagate onsu
h worldvolume. D-branes being solitoni
 in nature, are massive within the perturbativestring theory. Their mass s
ales as 1

gs
where gs is the string 
oupling 
onstant. 6



Chapter 1. Introdu
tionThe properties of these D-branes make them promising 
andidates for string modelbuilding and indeed, new semi-realisti
 models based on type I and type II theoriesstarted appearing. A
tually, the �rst 
onsistent 
ompa
ti�
ations of type I theory onorbifold spa
es were realized long time ago in [36, 37℄, obtaining D = 6 supersymmetri
e�e
tive theories. In addition, su
h type I orbifolds were related to type II orientifold 
om-pa
ti�
ations [38, 39, 40, 41℄. Roughly, an orientifold is a generalization of the orbifold,where an element Ω for 
hanging string orientation is in
luded. Su
h D = 6 
onstru
-tions were redis
overed in the modern language of D-branes in [42, 43, 44℄. Su
h 
lassof 
ompa
ti�
ations was then generalized to orbifolds and orientifolds of type I and typeII theories on six 
ompa
t dimensions, yielding N = 1 
hiral theories in four dimensions[45, 46, 47, 48, 49, 50, 51, 52℄. At the same time, su
h 
ompa
ti�
ations were related withtheir heteroti
 duals. Some semi-realisti
 models were a
hieved in this parti
ular 
ontext[53, 54, 55℄. A review of the phenomenology asso
iated to these 
onstru
tions 
an be foundin [56℄.D-brane 
onstru
tions not only allowed to re-derive the previous a
hievements of het-eroti
 
ompa
ti�
ation, but its properties as extended obje
ts gave new possibilities intosemi-realisti
 model-building, allowing to 
onsider non-supersymmetri
 models. In het-eroti
 models, both gauge and gravitational intera
tions have the same origin, as masslessmodes of the 
losed heteroti
 string. So they 
orrespond to �elds that propagate throughthe whole target spa
e and they are uni�ed at the string s
ale Ms. In order to reprodu
etwo energy s
ales whi
h di�er by several orders of magnitude, su
h as the Plan
k andthe Ele
troweak s
ale, one needs to introdu
e in general new parameters or a new s
aleand the predi
tive power is essentially lost. On the otherhand, in D-brane 
onstru
tionsthe gauge and gravitational intera
tions have di�erent origin. The latter are des
ribedby 
losed strings, while the former emerge as ex
itations of open strings with end points
on�ned on Dp-branes with (p < 9). The gauge theory is 
on�ned to the p+1 dimensionsof the D-brane worldvolume, whereas gravitation, arising from the 
losed string se
tor,will propagate on the full ten-dimensional target spa
e or bulk of the theory. As it wasshown in [57, 58, 59, 60, 61℄, from this simple observation, we 
an obtain a di�eren
e ofs
ales between gauge and gravitational intera
tions. In parti
ular, we 
an obtain realisti

ompa
ti�
ations where the string s
ale Ms should not ne
essarily be of the order of thePlan
k s
ale, but as low at the TeV region or at some intermediate s
ale [62, 63, 64℄. Inthis way, we 
an 
onsider non-supersymmetri
 models free from the s
ale hierar
hy prob-lem. Non-supersymmetri
 orientifold 
ompa
ti�
ations were �rst 
onstru
ted in [65, 66℄,whereas the semi-realisti
 models and the phenomenology asso
iated to them were pro-vided in [67, 68℄. 7



Chapter 1. Introdu
tionThe theoreti
al development in these new 
lass of 
onstru
tions, where D-branes playeda 
entral role, allowed to take one step further in semirealisti
 model building. So far, thequest for the SM had been based on 
onsidering a family of 
onsistent 
ompa
ti�
ations ina 
ertain superstring theory (as e.g., CY3 heteroti
 
ompa
ti�
ations) and exploring theparameter or moduli spa
e of su
h family (Euler 
hara
teristi
, Wilson lines, et
.) lookingfor a low energy theory whi
h resembled as mu
h as possible to the SM. In [69℄, a newstrategy for �nding the SM in a string-based model was proposed. Sin
e the gauge groupand 
hiral matter 
ontent of the SM may arise as an e�e
tive theory from a set of Dp-branes, and the physi
s of this e�e
tive theory is not very sensitive to the rest of the detailsof the 
ompa
ti�
ation, one may 
on
eive the 
onstru
tion of a realisti
 model in two steps.First, we 
onsider a 
onsistent D-brane 
on�guration with the low-energy spe
trum of theSM. Se
ond, we 
omplete the 
onstru
tion by adding all the extra elements ne
essary toyield a fully-�edged 
ompa
ti�
ation, in
luding four-dimensional gravity. This, so-
alledbottom-up philosophy, enables us to �nd the simplest semi-realisti
 models. In su
h models,the SM was obtained from a bun
h of D3-branes �lling four-dimensional Minkowski spa
etime and lo
alized at an orbifold singularity in the 
ompa
t spa
e. Consisten
y 
onditionsknown as tadpole 
onditions imposed the presen
e of additional D-branes, namely D7-branes.The bottom-up philosophy has indeed produ
ed a whole set of D-brane models whosesemi-realisti
 e�e
tive theories 
ontain either the SM gauge group, or some extension of it.After it was realized that 
hiral fermions appear on the interse
tion of two D-branes [70℄,model building involving 
on�gurations of D-branes at angles or interse
ting D-braneswere intensively studied. Generi
ally, these 
on�gurations yield a non-supersymmetri

hiral low-energy spe
trum. Ea
h sta
k of N D-branes will be endowed with a U(N)gauge theory, so that the 
onstru
tion of the SM gauge group or some extension of itbasi
ally redu
es to 
onsider the appropriate set of D-brane sta
ks. The 
hiral matter�elds appear at their interse
tion, transforming in the bi fundamental representations.The number of zero modes i.e. the generation number is given by the interse
tion numberin the 
ompa
t six-dimensional spa
e. These 
lass of models, baptized as Interse
tingBrane Worlds presents an interesting hierar
hy on the di�erent se
tors of the e�e
tivetheory. The gravity se
tor propagates on the whole target spa
e i.e. on the four non-
ompa
t dimensions and on the six 
ompa
t dimensions. The gauge se
tor, on the otherhand, remains 
on�ned to the D-brane worldvolume, whi
h �lls the four non-
ompa
tdimensions and a submanifold of the 
ompa
t spa
e. Chiral matter is lo
alized at D-branes interse
tions so, generi
ally, they �ll the non-
ompa
t dimensions and stu
k ata point in the 
ompa
t spa
e. This natural hierar
hy allows one to implement the low8
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tionstring s
ale s
enario dis
ussed above, as well as to 
onsider non-supersymmetri
 models.Interse
ting brane worlds provide a s
enario to address some well known phenomenologi
alproblems and features of SM physi
s, by translating them to a more geometri
al language.The spe
i�
 examples for this type of models are dis
ussed in the 
ontext of type IIAstrings, see for example [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83℄.The interse
ting D-brane models are related by T-duality to the magnetized D-branemodels. In the language of T-duality, the interse
ting angle of two D-branes in the type IIAside is interpreted as the magneti
 �ux inside two internal dimensions in the type IIBpi
ture. Roughly, two T-dual theories yield the same physi
s: same intera
tions, sameoperators, same Hilbert spa
e. It implies a one-to-one 
orresponden
e between two theo-ries. On one side of the T-dual pi
ture we have D-branes with magneti
 �uxes, whereason the other side we have D-branes at angles. The T-dual models i.e. the magnetizedD-brane models also have been investigated. In parti
ular, it was observed in [4℄ thatturning on a non-vanishing magneti
 �eld in a simple toroidal 
ompa
ti�
ation of type Istring theory implies both 
hiral spe
tra and supersymmetry breaking. Some theoreti
alaspe
ts, as well as semi-realisti
 
onstru
tions have been analyzed in this framework in[6, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94℄. Non-supersymmetri
 toroidal 
ompa
ti�
ationsof type I string theory with both 
onstant ba
kground Neveu S
hwarz - Neveu S
hwarz(NSNS) two-form �ux and non-trivial magneti
 �ux on the various D9-branes are dis-
ussed in [90, 94℄. The solutions to the 
an
ellation of the RR tadpoles display variousphenomenologi
ally attra
tive features: supersymmetry breaking, 
hiral fermions and theopportunity to redu
e the rank of the gauge group. The non-vanishing B-�ux admitsfour-dimensional models with three generations of 
hiral fermions in standard model likegauge groups. We refer to [95, 96℄ for more details on type I 
onstru
tions.In re
ent years a renewal of the lo
al model building has been developing, for instan
e,F-theory model buildings [97, 98℄. F-theory models naturally in
lude ex
eptional gaugegroups beyond the type IIB D-branes. Sin
e the �avor stru
tures are di�erent from thatof D-branes models, there are a lot of developments in phenomenologi
al studies.Although the general features get us quite 
lose to obtain a realisti
 D-brane 
onstru
-tion, in any string model one always �nd large number of unobserved light neutral s
alarparti
les (moduli �elds), extra 
hiral fermions and U(1) gauge groups in the low energyspe
trum. Geometri
ally, the va
uum expe
tation values of the so 
alled moduli �eldsparametrize the size and shape of the 
ompa
ti�
ation manifold or positions of D-branes.These values are also related to the parameters like gauge 
oupling 
onstants or massesof the e�e
tive four dimensional theory. Without uniquely determining these expe
tationvalues by means of minimizing an e�e
tive potential, whi
h 
ould then also indu
e mass9



Chapter 1. Introdu
tionterms for the moduli, string models are not predi
tive. This led to an intensive study onthe problem of moduli stabilization to dis
over a 
ontrollable me
hanism whi
h generatesa potential for the moduli �elds. Su
h stabilizations employ various supergravity [99, 100℄,non-perturbative [101℄ and string theory [102, 103, 104℄ te
hniques to generate potentialsfor the moduli �elds.The superstring spe
trum in ten dimensions 
ontains various anti-symmetri
 tensor�elds, the so 
alled p-form �elds Cp. It has been realized that by allowing the 
orresponding�eld strengths, s
hemati
ally Fp+1 = dCp to take non-trivial expe
tation values along theinternal spa
e, one 
an �x the vevs of the moduli �elds and therefore provide the possibilityfor 
hoosing a ground state as a lo
al isolated minimum of the s
alar potential of the theory.Moreover, when the �uxes are turned on along the 
ompa
t dire
tions, they have to satisfyDira
 quantization 
onditions and hen
e take dis
rete values. By a suitable 
hoi
e of NS-NS and Ramond - Ramond (R-R) 3-form �uxes, one 
an �nd N = 1 supersymmetri
 va
uawhere all 
omplex stru
ture moduli, as well as the dilaton, are �xed [100℄. A disadvantageof this method is that there is no exa
t string des
ription of su
h �uxes and thus theanalysis is restri
ted to the lowest order in α′ expansion, des
ribed by the e�e
tive �eldtheory. Moreover, generalization of the stabilization me
hanism to Kähler 
lass modulirequires introdu
tion of non-perturbative e�e
ts whi
h are again treated in the low-energysupergravity approximation [101℄.An alternative me
hanism of moduli stabilization based on open string 
onstant mag-neti
 ba
kgrounds that have an exa
t des
ription in string theory [4, 105℄ is presentedin [102, 103℄. In fa
t, magneti
 �uxes 
an be turned on in any 2-
y
le of the internal
ompa
ti�
ation manifold. In the simplest 
ase, magneti
 ba
kgrounds on (1,1)-
y
les�x the Kähler 
lass moduli [106, 107℄, while ba
kgrounds on holomorphi
 (2,0)-
y
les �xthe 
omplex stru
ture moduli. In the generi
 Calabi-Yau 
ase, this method 
an stabilizemainly the Kähler moduli [102, 106, 107℄ and is thus 
omplementary to 3-form 
losedstring �uxes that stabilize the 
omplex stru
ture and the dilaton [100℄. On the otherhand, it 
an also be used in simple toroidal 
ompa
ti�
ations, stabilizing all the geometri
moduli in a supersymmetri
 va
uum using only magnetized D9-branes. This has an exa
tperturbative string des
ription [4, 105℄. RR tadpole 
an
ellation requires some 
hargeds
alar �elds from the branes to a
quire non-vanishing va
uum expe
tation values, break-ing partly the gauge symmetry in order to preserve supersymmetry [103℄. Alternatively,one 
an break supersymmetry by D-terms and �x the dilaton at weak string 
oupling, bygoing �slightly" o�-
riti
ality and thus generating a tree-level bulk dilaton potential [108℄.One of the main ingredients for this approa
h of moduli stabilization is the in
lusion of`oblique' �uxes given by mutually non-
ommuting matri
es, in order to �x all o�-diagonal10
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tion
omponents of the metri
. This me
hanism 
an be 
ombined with the presen
e of 
losedtype IIB string 3-form �uxes, allowing to �x the dilaton and the 
omplex stru
ture of moregeneral 
ompa
ti�
ation manifolds.However, despite enormous e�orts, very few examples are known so far of a 
ompletestabilization of 
losed string moduli in any spe
i�
 model, while the known ones are too
onstrained to a

ommodate interesting models from physi
al perspe
tive. Hen
e, therehave been very few attempts to 
onstru
t a 
on
rete model of parti
le physi
s even withpartially stabilized moduli. Nevertheless, in view of the importan
e of the task at hand,we revisit the type I string 
onstru
tions with moduli stabilizations [102, 103, 104℄, toexplore the possibility of in
orporating parti
le physi
s models, su
h as the SM or GUTmodels based on grand uni�ed groups, in su
h a framework.In the quest for obtaining a realisti
 string-based model, generi
 properties of thelow-energy e�e
tive Lagrangian su
h as D = 4 
hirality and unitary gauge groups areof fundamental importan
e. On
e these have been found in a parti
ular setup of stringtheory, there are still many other issues to fa
e in order to reprodu
e some realisti
 physi
sat low energies. In parti
ular, even if one manages to obtain a massless spe
trum quite
lose to the SM (or some extension of it), one is eventually fa
ed with the problem of
omputing some �ner data de�ning a Quantum Field Theory. These data may tell us how
lose are we of reprodu
ing the SM whi
h, as we know, is not a group of 
hiral fermionswith appropriate quantum numbers, but an intri
ate theory with lots of well-measuredparameters. One should know the Yukawa 
ouplings in any string model.Close form expressions for Yukawa 
ouplings have been written down for Type IIAmodels with interse
ting branes [81, 109℄. In this 
ase, one has to perform a sum overstring worldsheet instanton 
ontributions to obtain the �nal expression of Yukawa 
ou-plings, a pure stringy (non-�eld theoreti
al) 
omputation. These results have been furthergeneralized to in
lude Eu
lidean D2 brane instanton 
ontributions to the Yukawa 
ou-plings [110, 111, 112, 113, 114, 115, 116, 117, 118℄, generating up quark and right handedneutrino masses through a Higgs me
hanism, in a parti
ular 
lass of models. On the otherhand, in the T-dual pi
ture, the 
al
ulations of the Yukawa 
ouplings are purely �eld the-oreti
al. Yukawa intera
tions 
an be 
al
ulated by overlap integrals over internal spa
eswith three wavefun
tions as the following forms
Y =

∫

dy6ψi(y)ψj(y)φ(y) (1.1)where ψi,j(y) 
orrespond to the internal wavefun
tions of 
hiral matter �elds and φ(y) isthe internal wavefun
tions of Higgs s
alar �elds. The expli
it 
al
ulations of the overlap11
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tionintegrals 
an tell us the form of the Yukawa 
ouplings. It is found that two di�erentapproa
hes of stringy and �eld theory 
al
ulations lead to the 
onsistent results of theYukawa 
ouplings after proper transformation of moduli parameters [6℄. A limitation onthe exer
ise performed in these papers 
omes from the fa
torized stru
ture of the tori,whi
h arises from the orientations of the brane wrappings that are 
lassi�ed by angles inthree di�erent T 2 planes or �uxes that are diagonal along three T 2's. These results requiregeneralizations further to obtain the intera
tions involving branes with oblique �uxes, inview of the importan
e of su
h �uxes for obtaining phenomenologi
ally viable models.In this thesis, we dis
uss a simple framework of toroidal string models with magnetizedbranes, that o�ers an interesting self-
onsistent set up for string phenomenology. We willsee, in the following 
hapters, how one 
an address the issues of moduli stabilization (�xingthe geometri
 parameters of the 
ompa
ti�
ation), building 
al
ulable parti
le physi
smodels (gauge group, 
hiral fermions, family tripli
ation, anomaly 
an
ellation et
.) and
omputations of the Yukawa 
ouplings in su
h a framework.With this brief introdu
tion, in the next se
tion, we dis
uss the stru
ture of the thesis.1.3 Plan of the thesisIn 
hapter 2, we brie�y review the string 
onstru
tion using magnetized branes. We dis
ussthe 
ompa
ti�
ation of type I strings on a torus with additional ba
kground gauge �uxon the D9-branes and summarize the ne
essary 
onstraints needed for 
onstru
ting semi-realisti
 models in su
h a framework. We re
all the main properties of the six-dimensionaltoroidal 
ompa
ti�
ation and its moduli spa
e. We 
onsider the open string propagationin the presen
e of 
onstant internal magneti
 �elds [4℄ and summarize the 
onditions forunbroken supersymmetry. We analyze the 
onditions for the unbroken supersymmetryin the presen
e of a sta
k of magnetized D9-branes and dis
uss the 
losed string modulistabilization. We also study the tadpole 
an
ellation 
onditions whi
h are required for
onsisten
y of type I string va
ua. Then we dis
uss the low-energy spe
trum of the e�e
tivetheory within this 
ompa
ti�
ation s
heme. Here we pay spe
ial attention to the masslessopen string of the theory, where unitary gauge groups and 
hiral fermions 
harged underthem arise. Sin
e a 
ru
ial step in a three generation model building is the introdu
tionof a NS-NS B-�eld ba
kground (without whi
h only even generation models 
an be built),the e�e
ts of non-zero B on the 
hirality and the tadpoles is summarized.The next 
hapter is dedi
ated to obtain 
lose form expressions for Yukawa 
ouplings insu
h magnetized brane 
onstru
tions. We �rst review the known results on the Ja
obi thetaidentity given in [119℄ and present a proof of its validity. We also give an expression for the12
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tionYukawa intera
tion for fa
torized tori and `diagonal' �uxes using the theta identity [6℄. Wethen generalize the results to writing down expressions for the Yukawa intera
tions whenoblique �uxes are present. In order to perform this task, fermion (s
alar) wavefun
tions ontoroidally 
ompa
ti�ed spa
es are presented for general �uxes, parametrized by Hermitianmatri
es with eigenvalues of arbitrary signatures. We also give expli
it mappings amongfermion wavefun
tions, of di�erent internal 
hiralities on the tori, whi
h inter
hange therole of the �ux 
omponents with the 
omplex stru
ture of the torus. By evaluating theoverlap integral of the wavefun
tions, we give the expressions for Yukawa 
ouplings among
hiral multiplets arising from an arbitrary set of branes (or their orientifold images). Themethod is based on 
onstru
ting 
ertain mathemati
al identities for general Riemann thetafun
tions with matrix valued modular parameter.After developing this theoreti
al framework, we present a spe
i�
 model in the 
hapter4. We 
onstru
t a minimal example of a supersymmetri
 grand uni�ed model in a toroidal
ompa
ti�
ation of type I string theory with magnetized D9-branes. We obtain generalsolutions for �uxes along magnetized D9-branes yielding the 
hiral spe
trum and gaugegroup of a three generation SU(5) GUTmodel, with no extra 
hiral matter nor U(1) fa
tors.The gauge symmetry is just SU(5) and the gauge non-singlet 
hiral spe
trum 
ontains onlythree families of quarks and leptons transforming in the 10+ 5̄ representations. Moreover,all geometri
 moduli are stabilized in terms of the ba
kground internal magneti
 �uxeswhi
h are of �oblique" type (mutually non-
ommuting). The �ux solutions also satisfythe RR tadpole 
an
ellation 
onditions yielding a 
onsistent model. Finally, we present abrief analysis of the superpotential and D-terms for the model in order to show the massgeneration for several non-
hiral fermion multiplets in a supersymmetri
 ground state.We end this thesis with a 
on
lusion. In the appendix, we 
olle
t all the te
hni
aldetails required for the main text.

13



2Magneti
 Flux in Toroidal Type ICompa
ti�
ation
2.1 Introdu
tionIn this 
hapter we introdu
e the basi
 
lass of obje
ts upon the whole thesis is based: D-branes with magneti
 �uxes or magnetized branes. We study some of their salient features,whi
h motivate their role as building blo
ks of semirealisti
 string-based 
onstru
tions.As it is dis
ussed in the previous 
hapter, string theory is known to possess a largenumber of va
ua whi
h 
ontain the basi
 stru
ture of grand uni�ed theories and in parti
-ular of the Standard Model. However, the presen
e of moduli �elds with �at dire
tions hasremained one of the major stumbling blo
ks in making further progress. Consequently,
losed string moduli stabilization has been intensively studied during the last years forits impli
ation towards a 
omprehensive understanding of the superstring va
ua[99, 101℄,as well as due to its signi�
an
e in deriving de�nite low energy predi
tions for parti
lemodels from string theory. Su
h stabilizations employ various supergravity[99, 100℄, non-perturbative[101℄ and string theory[102, 103, 104℄ te
hniques to generate potentials forthe moduli �elds. However, very few examples are known so far of a 
omplete stabiliza-tion of all 
losed string moduli in any spe
i�
 model. The known models with stabilizedmoduli are too 
onstrained to a

ommodate interesting models from physi
al point ofview. Hen
e, there have been very few attempts to 
onstru
t a 
on
rete model of parti
lephysi
s even with partially stabilized moduli. With the above motivation, we revisit thetype I string 
onstru
tions[95, 96℄ and moduli stabilizations[102, 103, 104℄, to explore thepossibility of in
orporating parti
le physi
s models, su
h as the Standard Model or GUTmodels based on grand uni�ed groups.A new 
al
ulable method of moduli stabilization was re
ently proposed, using 
onstant

14



Chapter 2. Magneti
 Flux in Toroidal Type I Compa
ti�
ationinternal magneti
 �elds in four-dimensional (4d) type I string 
ompa
ti�
ations[102, 103℄.In the generi
 Calabi-Yau 
ase, this method 
an stabilize mainly the Kähler moduli [102,106℄ and is thus 
omplementary to 3-form 
losed string �uxes that stabilize the 
omplexstru
ture and the dilaton [100℄. On the other hand, it 
an also be used in simple toroidal
ompa
ti�
ations, stabilizing all geometri
 moduli in a supersymmetri
 va
uum using onlymagnetized D9-branes that have an exa
t perturbative string des
ription [4, 105℄. RRtadpole 
an
ellation requires then some 
harged s
alar �elds from the branes to a
quirenon-vanishing va
uum expe
tation values (VEVs), breaking partly the gauge symmetry inorder to preserve supersymmetry [103℄. Alternatively, one 
an break supersymmetry byD-terms and �x the dilaton at weak string 
oupling, by going �slightly" o�-
riti
ality andthus generating a tree-level bulk dilaton potential [108℄.There are two main ingredients for this approa
h of moduli stabilization [102, 103℄:(1) A set of nine magnetized D9-branes is needed to stabilize all 36 moduli of the torus
T 6 by the supersymmetry 
onditions [89, 120℄. Moreover, at least six of them must haveoblique �uxes given by mutually non-
ommuting matri
es, in order to �x all o�-diagonal
omponents of the metri
. On the other hand, all nine U(1) brane fa
tors be
ome massiveby absorbing the RR partners of the Kähler 
lass moduli [89℄. (2) Some extra branes areneeded to satisfy the RR tadpole 
an
ellation 
onditions, with non-trivial 
harged s
alarVEVs turned on, in order to maintain supersymmetry.However, as already pointed out in [103℄, our moduli stabilization s
heme is restri
tedto 
losed string moduli spa
e that may be enlarged if one takes into a

ount open string�elds1. Unfortunately, their e�e
ts 
annot be taken into a

ount exa
tly at the string level,as the geometri
 toroidal 
losed string moduli. Moreover, they have N = 1 superpotentialleading to non-trivial F-�atness 
onditions, besides the D-terms arising from the magneti
�elds. A re
ent analysis shows that a generalization of the stabilization me
hanism may bepossible in the quadrati
 approximation and, for reasonable 
onditions on the spe
trum,open string `re
ombination' �elds 
an also be �xed [121℄. In the present work, we apply thefollowing algorithm for moduli stabilization in toroidal type I 
ompa
ti�
ations: (1) Allgeometri
 moduli are �rst �xed using a minimal set of (nine in the present 
ase) magnetizedbranes, in the absen
e of 
harged s
alar VEVs. This has the advantage of being exa
t in
α′ (world-sheet) perturbation theory, but does not satisfy tadpole 
an
ellation. (2) Thelatter is a
hieved by adding extra magnetized branes on whi
h some 
harged s
alars arefor
ed to a
quire non-vanishing VEVs in order to 
an
el the indu
ed Fayet-Iliopoulos1Many open string moduli are 
harged and their VEVs break lo
al and global symmetries. For instan
ethey play the role of ordinary higgses either for GUT or Standard Model breaking. These VEVs 
ould bedriven from soft supersymmetry breaking terms. The issue is related to supersymmetry breaking, howeverin the present thesis we are interested in N = 1 supersymmetri
 va
uum. 15



Chapter 2. Magneti
 Flux in Toroidal Type I Compa
ti�
ationterms. Sin
e the in
lusion of 
harged �elds in the D-terms is not known exa
tly, theirVEVs 
an be determined only perturbatively in α′, when their values are small 
omparedto the string s
ale. As a result, any `ba
k-rea
tion' of the 
harged s
alar VEVs, 
omingfrom this perturbative brane a
tion, is expe
ted to be small on the 
losed string moduli,and therefore not of any signi�
ant phenomenologi
al 
onsequen
e.We apply the above method to 
onstru
t phenomenologi
ally interesting models. Inthis 
hapter, we brie�y des
ribe the 
onstru
tion based on D-branes with magneti
 �uxesin type I string theory, or equivalently type IIB with orientifold O9-planes and magne-tized D9-branes, in a T 6 
ompa
ti�
ation. The rest of the 
hapter is stru
tured as follows.We start with summarizing the main properties of the six dimensional toroidal 
ompa
t-i�
ation and its moduli spa
e in Se
tion 2.2. In Se
tion 2.3, we 
onsider open stringpropagation in the presen
e of 
onstant internal magneti
 �elds. Further, we dis
uss thegeneral setup with the magnetized branes, in
luding the gauge �uxes that 
an be turnedon, in a 
onsistent manner. In Se
tion 2.4, we write down the 
onditions that guarantee theexisten
e of one unbroken supersymmetry preserved by sta
ks magnetized D9-branes. Wethen dis
uss the stabilization of 
omplex stru
ture and kähler 
lass moduli using su
h 
on-ditions. We study the tadpole 
an
ellation 
onditions whi
h are required for 
onsisten
yof type I string va
ua in the presen
e of internal magneti
 �elds in Se
tion 2.5. Further,in Se
tion 2.6, we dis
uss the low energy spe
trum, in parti
ular fermion degenera
ies,of the e�e
tive theory in this 
ompa
ti�
ation. Sin
e a 
ru
ial step in a three generationmodel building is the introdu
tion of a NS-NS B-�eld ba
kground without whi
h onlyeven generation models 
an be built, the e�e
t of non-zero B on the 
hirality and tadpolesis summarized in Se
tion 2.7.2.2 Torus 
ompa
ti�
ation : Parametrization of T 6 andModuli spa
eConsider a six-dimensional torus T 6 having six 
oordinates xi, yi with i = 1, 2, 3 andperiodi
ity normalized to unity xi = xi + 1, yi = yi + 1 [102℄. We 
hoose the orientation
∫

T 6

dx1 ∧ dy1 ∧ dx
2 ∧ dy2 ∧ dx

3 ∧ dy3 = 1 (2.1)
16



Chapter 2. Magneti
 Flux in Toroidal Type I Compa
ti�
ationand de�ne the basis of the 
ohomology H3(T 6,Z)

α0 = dx1 ∧ dx2 ∧ dx3

αij =
1

2
ǫilmdx

l ∧ dxm ∧ dyj (2.2)
βij = −

1

2
ǫilmdyl ∧ dym ∧ dxj

β0 = dy1 ∧ dy2 ∧ dy3,forming a symple
ti
 stru
ture on T 6:
∫

T 6

αa ∧ β
b = −δba , for a, b = 1, · · · , h3/2 , (2.3)with h3 = 20, the dimension of the 
ohomology H3(T 6,Z).The 36 moduli of T 6 
orrespond to 21 independent deformations of the internal metri
and 15 deformations of the two-index antisymmetri
 tensor C2 from the RR 
losed stringse
tor. They form nine 
omplex parameters of Kähler 
lass and nine of 
omplex stru
ture.Indeed, the geometri
 moduli of T 6 de
ompose in a 
omplex stru
ture variation whi
h isparametrized by the matrix Ωij entering in the de�nition of the 
omplex 
oordinates

zi = xi + Ωijyj , (2.4)and in the Kähler variation of the mixed part of the metri
 des
ribed by the real (1, 1)-form
J = iδgij̄dz

i ∧ dz̄j . (2.5)Choosing the basis eij̄ of the 
ohomology H1,1 to be of the form
eij̄ = idzi ∧ dz̄j , (2.6)the Kähler form 
an be parametrized as
J = Jij̄e

ij̄ . (2.7)The dimension of the spa
e of 
omplex stru
ture moduli is given by the dimension ofthe 
ohomology H2,1 on the torus T 6, h2,1 = 9. The elements Jij̄ satisfy the reality
ondition J†
ij̄
= Jjῑ, implying that J depends on nine real parameters. They 
an be usedto parametrize the spa
e of Kähler deformations whose dimension is given by the dimensionof the 
ohomology H1,1 on the torus T 6, h1,1 = 9. The Kähler form is 
omplexi�ed with17



Chapter 2. Magneti
 Flux in Toroidal Type I Compa
ti�
ationthe 
orresponding RR two-form deformation.2.3 Magnetized D9-branes: Fluxes and WindingsLet's 
onsider a sta
k of N 
oin
ident D9-branes, giving rise to a U(N) N = 4 supersym-metri
 gauge theory. We pi
k up a U(1) subgroup in the Cartan subalgebra of U(N) withgauge potential A, and turn on a 
onstant magneti
 �eld. Thus, the 
orresponding �eldstrength Fαβ is 
onstant and Aα = 1
2
Fαβu

β, where uβ stands for all six 
oordinates of T 6,
xi and yi. This 
onstant magneti
 ba
kground 
ouples to the boundary of the open stringon the brane by quadrati
 terms in the world-sheet a
tion Sws [105℄. The 
orresponding
onformal �eld theory 
an therefore be solved exa
tly:

Sws = −
1

4πα′

∫

Σ

dtdσ
(

∂λX
µ∂λXµ − iψ̄µρλ∂λψµ

)

−

∫

dtqLFαβ

(

Xα∂tX
β −

i

2
ψ̄αρ0ψβ

)

σ=0

(2.8)
−

∫

dtqRFαβ

(

Xα∂tX
β −

i

2
ψ̄αρ0ψβ

)

σ=πwhere α′ is the Regge slope, ψµ are the real Majorana fermioni
 superpartners of the
oordinates Xµ and ρλ with λ = 0, 1 are the two-dimensional gamma-matri
es. Theindi
es α, β run over the magnetized dimensions α, β = 4, · · · , 9, whereas the indi
es
µ, ν run over all ten-dimensional spa
etime 
oordinates µ, ν = 0, · · · , 9. The 
ouplingsof the left and right endpoints of the open string to the ba
kground are given by the
orresponding 
harges qL and qR.The �eld Fαβ 
orresponds to a non trivial U(1) gauge bundle over the torus T 6 withtransition fun
tion around the 
y
les uα:

Aα

∣

∣

uβ+1
=
(

Aα − ie−iqθ∂αe
iqθ
)

∣

∣

∣

∣

uβ

, θ = Fαβu
β (2.9)with q = qL + qR. Imposing the phase over ea
h 
y
le uα to be single-valued leads to theusual Dira
 quantization 
ondition

q · Fαβ = 2πmαβ, ∀α, β = 4, . . . , 9 , (2.10)where mαβ are integers 
orresponding to the �rst Chern 
lass of the U(1) gauge bundle.Let us now be more spe
i�
 and assume the presen
e of K sta
ks of Na magnetized
D9-branes, a = 1, . . . , K. Ea
h sta
k is asso
iated with a 
orresponding U(Na) gauge18
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 Flux in Toroidal Type I Compa
ti�
ationsymmetry. We 
hoose K linear 
ombinations of the generators of U(Na) whi
h lie in theCartan subalgebra and denote their abelian gauge potentials by Aa; for simpli
ity, weidentify them with U(1)a. Their �eld strengths are assumed to take 
onstant values onthe torus T 6. Thus there is a set of K U(1) gauge potentials Aa with 
onstant ba
kground�eld strengths
Aa

α =
1

2
F a
αβX

β where a = 1, . . . , K . (2.11)The sta
ks of D9-branes are 
hara
terized by three independent sets of data: (a) theirmultipli
ities Na, (b) winding matri
es W Î, a
I and (
) 1st Chern numbers ma

ÎĴ
of the U(1)ba
kground on their world-volume Σa, a = 1, . . . , K. And I, Î run over the target spa
eand world-volume indi
es, respe
tively. These parameters are des
ribed below:(a) Multipli
ities: The �rst quantity Na des
ribes the rank of the the unitary gaugegroup U(Na) on ea
h D9 sta
k.(b) Winding Matri
es: The se
ond set of parameters W Î , a

I is the 
overing of the world-volume of ea
h sta
k of D9-branes on the ambient spa
e. In other words, they givethe winding of the branes around the di�erent 
y
les of the internal spa
e. They are
hara
terized by the wrapping numbers of the branes around the di�erent 1-
y
les of thetorus2, whi
h are en
oded in the 
overing matri
es W Î , a
I de�ned as

W Î
J =

∂ξ Î

∂XJ
for Î , J = 0, . . . , 9 , (2.12)where the 
oordinates on the world-volume are denoted by ξ Î , while the 
oordinates ofthe spa
e-time M10 are XI . Sin
e spa
e-time is assumed to be a dire
t produ
t of afour-dimensional Minkowski manifold with a six-dimensional torus, the 
overing matrix isof the form:

W Î, a
J =

(

δµ̂µ 0

0 W α̂ ,a
α

)

for µ, µ̂ = 0, . . . , 3 and α, α̂ = 1, . . . , 6 , (2.13)with the upper blo
k 
orresponding to the 
overing of Σa
4 on the four-dimensional spa
e-time M4. Sin
e these are assumed to be identi
al, the asso
iated 
overing map W µ̂

µ isthe identity, W µ̂
µ = δµ̂µ . The entries of the lower blo
k, on the other hand, des
ribe thewrapping numbers of the D9-branes around the di�erent 1-
y
les of the torus T 6 whi
hare therefore restri
ted to be integers W α̂

α ∈ Z, ∀ α, α̂ = 1, . . . , 6 [104℄. The K D9 sta
ksare then ten-dimensional obje
ts whi
h �ll the four-dimensional spa
e-time and 
over the2There is no wrap fa
tor here be
ause the �uxes are magneti
 (at the disk level) with an exa
t CFTdes
ription, in 
ontrast to the 
losed string �uxes. 19
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ti�
ationinternal torus T 6. Thus there are K di�erent 
overings T a
6 of the torus T 6 des
ribed bythe K 
overing maps W α̂, a

α , for a = 1, . . . , K.For simpli
ity, in the examples we 
onsider in this thesis, the winding matrix W α̂
α inthe internal dire
tions is also 
hosen to be a six-dimensional diagonal matrix, implyingan embedding su
h that the six 
ompa
t D9 world-volume 
oordinates are identi�ed withthose of the internal target spa
e T 6, up to a winding multipli
ity fa
tor na

α, for a branesta
k-a:
na
α ≡ W α̂,a

α . (2.14)We will also use the notation
n̂a
1 ≡ na

1n
a
2, n̂a

2 ≡ na
3n

a
4, n̂a

3 ≡ na
5n

a
6, (no sum on a) (2.15)to de�ne the diagonal wrapping of the D9's on the three orthogonal T 2's inside T 6, givenby:

xi ≡ Xα, α = 1, 3, 5 ; yi ≡ Xα, α = 2, 4, 6 , (2.16)with periodi
ities: xi = xi + 1, yi ≡ yi + 1:
T6 =⊗3

i=1T
2
i , (2.17)and 
oordinates of the orthogonal 2-tori (T 2

i ) being (xi, yi) for i = 1, 2, 3.For further simpli�
ation, in our example, we will 
hoose for all sta
ks trivial windings:
na
α ≡W α̂,a

α = 1, for α = 1, .., 6. (2.18)However in this se
tion, in order to des
ribe the formalism, we keep still general windingmatri
es W α̂,a
α .(
) First Chern numbers: The parametersma

ÎĴ
of the brane data given above are the 1stChern numbers of the U(1) ⊂ U(Na) ba
kground on the world-volume of the D9-branes.For ea
h sta
k U(Na) = U(1)a × SU(Na), the U(1)a has a 
onstant �eld strength on the
overing of the internal spa
e. These are subje
t to the Dira
 quantization 
ondition whi
himplies that all internal magneti
 �uxes F a

α̂β̂
, on the world-volume of ea
h sta
k of D9-branes, are integrally quantized. The Dira
 quantization 
ondition applies independentlyto the K �uxes F a

α̂β̂
.Expli
itly, the world-volume �uxes F a

α̂β̂
and the 
orresponding target spa
e indu
ed20
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ti�
ation�uxes paαβ are quantized as














F a
α̂β̂

= ma
α̂β̂

∈ Z ∀ α̂, β̂ = 1, . . . , 6

∀a = 1, . . . , K .

paαβ = (W−1)α̂, aα (W−1)β̂, aβ ma
α̂β̂

∈ Q, ∀α, β = 1, . . . , 6

(2.19)When �uxes are turned on only along three fa
torized T 2's of eq. (2.17), as will be the
ase for some of our brane sta
ks, we make use of the following 
onvenient notation:
m̂a

1 ≡ ma
12 ≡ ma

x1y1 , m̂a
2 ≡ ma

34 ≡ ma
x2y2 , m̂a

3 ≡ ma
56 ≡ ma

x3y3 . (2.20)The magnetizedD9-branes 
ouple only to the U(1) �ux asso
iated with the gauge �eldslo
ated on their own world-volume. In other words, the 
harges of the endpoints qR and qLof the open strings stret
hed between the i-th and the j-thD9-brane 
an be written as qL ≡

qi and qR ≡ −qj , while the Cartan generator h is given by h = diag(h1 11N1, . . . , hN 11NK
),with 11Na

being the Na × Na identity matrix. In addition, in type I string theory, thenumber of magnetized D9-branes must be doubled. Sin
e the orientifold proje
tion O isde�ned by the world-sheet parity, it maps the �eld strength Fa = dAa of the U(1)a gaugepotential Aa to its opposite, O : Fa → −Fa. Therefore, the magnetized D9-branes are notan invariant 
on�guration and for ea
h sta
k a mirror sta
k must be added with opposite�ux on its world-volume 3.A general gauge �ux, on T 6 with 
oordinates XI ≡ (xi, yi), i = 1, 2, 3, has the form:
F ≡ pIJdX

I ∧ dXJ

= pxixjdxi ∧ dxj + pyiyjdy
i ∧ dyj + pxiyjdx

i ∧ dyj + pyixjdyi ∧ dxj . (2.21)Then using the de�nition of a general 
omplex stru
ture matrix Ω as de�ned in eq.(2.4) :
dzi = dxi + Ωi

jdy
j, dz̄i = dxi + Ω̄i

jdy
j,we obtain:

F = Fzizjdz
i ∧ dzj + Fziz̄j (idz

i ∧ dz̄j) + Fz̄iz̄jdz̄
i ∧ dz̄j . (2.22)Choosing the basis eij̄ of the 
ohomology H1,1 to be of the form eij̄ = idzi ∧ dz̄j , we get:

F(2,0) = Fzizj = (Ω̄− Ω)−1T
(

Ω̄TpxxΩ̄− Ω̄T pxy + pTxyΩ̄ + pyy
)

(Ω̄− Ω)−1 (2.23)3There are no O5 planes in our model. However every magneti
 �ux 
reates also 5-brane 
harges thatare 
an
elled among various sta
ks of magnetized D9-branes. 21
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ti�
ationand
F(1,1) = Fziz̄j = (−i)(Ω̄− Ω)−1T

(

Ω̄TpxxΩ− Ω̄Tpxy + pTxyΩ+ pyy
)

(Ω̄− Ω)−1. (2.24)where the matri
es (paxixj ), (paxiyj ) and (payiyj ) are the quantized �eld strengths in targetspa
e, given in eq. (2.19). For our 
hoi
e (2.18), they 
oin
ide with the Chern numbers
ma along the 
orresponding 
y
les. The �eld strengths F a

(2,0) and F a
(1,1) are 3× 3 matri
esthat 
orrespond to the upper half of the matrix Fa:

Fa ≡ −(2π)2iα′

(

F a
(2,0) F a

(1,1)

−F a†
(1,1) F a∗

(2,0)

)

, (2.25)whi
h is the total �eld strength in the 
ohomology basis eij̄ = idzi∧dz̄j . In addition, Fz̄iz̄jis 
omplex 
onjugate to Fzizj and Fz̄izj = −Fzj z̄i.In this thesis, we 
onsider the �uxes for whi
h a four dimensional supersymmetri
theory 
an be re
overed. As it will be dis
ussed in the following se
tions, supersymmetrydemands all �uxes to be of (1, 1) form whi
h gives us the 
ondition:
(

Ω̄T pxxΩ̄− Ω̄T pxy + pTxyΩ̄ + pyy
)

= 0, (2.26)or equivalently:
(

ΩT pxxΩ− ΩT pxy + pTxyΩ + pyy
)

= 0. (2.27)Eqs. (2.26) and (2.27) together give two real matrix equations. These equations 
an thenbe used to eliminate some of the variables and write the �nal (1, 1) form in terms of 
ertainindependent variables only.Using eq. (2.27), eq. (2.24) redu
es to the following form,
Fziz̄j = −i (pxxΩ− pxy) (Ω̄− Ω)−1 . (2.28)On the other hand, use of eq. (2.26) in eq. (2.24) gives,

Fziz̄j = −i(Ω̄− Ω)−1T
(

−Ω̄T pxx − pTxy
)

. (2.29)We also noti
e that the (1, 1) form Fziz̄j given in eq. (2.24) satis�es the hermiti
ityproperty: Fziz̄j = F †
ziz̄j . To expli
itly see that, we use eqs. (2.28), (2.29).

F †
ziz̄j =

[(

−i (pxxΩ− pxy) (Ω̄− Ω)−1
)∗]T

= −i(Ω̄ − Ω)−1T
(

−Ω̄T pxx − pTxy
)

= Fziz̄j (2.30)22
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 Flux in Toroidal Type I Compa
ti�
ationThere are some spe
ial 
ases, however, in whi
h eqs. (2.26) and (2.27) simplify furtherand the resulting Fziz̄j 
an be written more 
ompa
tly. One su
h 
ase arises when pxx and
pyy 
omponents are turned o�. In su
h a situation F(2,0) = 0 
ondition (2.27), redu
es to:

ΩTpxy = pTxyΩ. (2.31)Thus far, we have 
on
entrated on the spatial 
omponents of the gauge �uxes, butignored the gauge indi
es. In the magnetized D-brane 
onstru
tion, gauge quantum num-bers arise from the Chan-Paton fa
tors asso
iated with the end points of the open stringsfor a given sta
k of branes. The simplest possibility is to 
onsider �uxes with gauge indi
esgiven by an n× n identity matrix for a sta
k of D-branes:
F = mIn, (2.32)with m an arbitrary integer giving the 1st Chern number. All spatial indi
es of the gauge�ux above have been suppressed, whi
h are given as in eq. (2.21) by the 
omponents :

pxiyj , pxixj , pyiyj . A
tually, eq. (2.32) 
orresponds to the situation when all the wrappingnumbers are trivial: nxi

= nyi = 1 as dis
ussed in eq.(2.18). F , then represents a sta
kof n magnetized D-branes with a U(1)n gauge �ux. The �rst Chern number for ea
hof the U(1) �uxes is equal to m. Moreover, D-brane wrapping numbers on the internaldire
tions, are all unity, given by a diagonal embedding of the brane in target spa
e andwinding around ea
h 1-
y
le on
e. In most of the thesis, we will 
onsider �uxes of theabove type.For multiple sta
ks of ni branes with respe
tive 1st Chern numbers mi, the �ux matrixis of blo
k diagonal form:
F =

















m1In1

m2In2

.

.

mnp
Inp

















(2.33)
and 
orresponds to gauge �uxes in the diagonal U(1)'s of U(n1)×U(n2)×· · · gauge group.Gauge �uxes on branes with higher wrapping numbers 
an also be given a gaugetheoreti
 interpretation. The method is based on a representation of the magnetizedbrane 
onstru
tions [6℄ in terms of �uxes along internal dire
tions in a 
ompa
ti�ed gaugetheory. In this pi
ture, the e�e
t of windings of branes around T 6 is simulated by the23
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ti�
ationrank of the gauge group. In parti
ular, due to the Dira
 quantization 
ondition on �uxes,a U(n) �ux on, say T 2:
F =

m

n
In, (2.34)with In being the n-dimensional identity matrix, and (n,m) relatively prime, represents asingle brane wound n times around T 2 with �ux quantumm and resulting gauge symmetrybeing only U(1). On the other hand, ifm is an integer multiple of n su
h thatm = pn, thenea
h of the entries in the identity matrix represents a well de�ned U(1) �ux of quantum

p and the gauge symmetry is U(n), given by a sta
k of n su
h magnetized branes, asdes
ribed in the last paragraph. It turns out that expli
it realization of �uxes with (n,m)relatively prime, needs gauge 
on�gurations with non-abelian Wilson lines.In the next se
tion, we write down the supersymmetry 
onditions for magnetized D9-branes in the 
ontext of type I toroidal 
ompa
ti�
ations and dis
uss the stabilization of
omplex stru
ture and Kähler 
lass moduli using su
h 
onditions.2.4 Supersymmetry Conditions and Moduli Stabiliza-tionThe presen
e of 
onstant internal magneti
 �elds breaks supersymmetry by shifting themasses of the four dimensional s
alars and fermions [4℄. A single magnetized D9-brane intype I string theory is not generi
ally supersymmetri
. Indeed, the orientifold proje
tionimplies the presen
e of mirror branes. Twisted s
alars from the Neveu-S
hwarz se
tor ofopen string stret
hed between a brane and its image are generi
ally massive, while some
hiral spinors from the Ramond se
tor remain massless. In other words, the D9-branedoes not preserve the same supersymmetry as the orientifold proje
tion. However, forsuitable 
hoi
e of the �uxes and moduli, a four-dimensional supersymmetri
 theory 
an bere
overed [89℄. In this se
tion, we summarize the 
onditions under whi
h a supersymmetri
va
uum 
an exist.Written in the 
omplex basis (eq. (2.4)) where the �eld strength F splits in purely(anti-) holomorphi
 (F(0,2)), F(2,0) and mixed F(1,1) parts, the 
ondition for N = 1 super-symmetry in four dimensions 
an be written as [102, 103℄:
(iJ + F)3 = eiθ

√

|g6 + F|
V6
√

|g6|
(2.35)

F(2,0) = 0 , (2.36)where V6 is the volume form of T 6 and g6 is its metri
. Eq. (2.35) 
an be rewritten in the24
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ti�
ationform:
tan θ (J ∧ J ∧ F − F ∧ F ∧ F) = J ∧ J ∧ J − J ∧ F ∧ F , (2.37)where the wedge produ
t AN is de�ned with an impli
it normalization fa
tor 1/N !. Notethat only the (1, 1)-part of F 
ontributes in this formula. Formally, (2.37) 
an be alsowritten as

Im
(

e−iθΦ
)

= 0 , (2.38)with
Φ = (iJ + F) ∧ (iJ + F) ∧ (iJ + F) . (2.39)The 
onstant phase θ sele
ts whi
h supersymmetry the magnetized D9-brane preserves.In the 
ase of type I string theory, the super
harges preserved by the magneti
 ba
kground�eld is 
onsistent with the presen
e of the orientifold plane O9 for the 
hoi
e of θ = −π

2
.Similarly, for a given 
on�guration of K sta
ks of magnetized branes, one may askwhether the di�erent sta
ks forming the brane 
on�guration preserve some 
ommon su-persymmetries. All θa's, for a = 1, . . . , K, have to be the same in order to preserve thesame supersymmetry. We then have θa = −π

2
∀ a. The supersymmetry 
onditions forea
h sta
k then read[102, 103℄:

F a
(2,0) = 0;

Fa ∧ Fa ∧ Fa = Fa ∧ J ∧ J ;

detWa (J ∧ J ∧ J − Fa ∧ Fa ∧ J) > 0 , (2.40)for ea
h a = 1, . . . , K.The �rst set of 
onditions of eq. (2.40) states that the purely holomorphi
 �ux vanishes.For given �ux quanta and winding numbers, this matrix equation restri
ts the 
omplexstru
ture Ω. Using eq. (2.23), the supersymmetry 
onditions for ea
h sta
k 
an �rst beseen as a restri
tion on the parameters of the 
omplex stru
ture matrix elements Ω:
F a
(2,0) = 0 →

(

ΩTpxxΩ− ΩTpxy + pTxyΩ+ pyy
)

= 0 , (2.41)giving rise to at most six 
omplex equations for ea
h brane sta
k a.The se
ond set of 
onditions of eq. (2.40) gives rise to a real equation and restri
ts theKähler moduli. This 
an be understood as a D-�atness 
ondition. In the four-dimensionale�e
tive a
tion, the magneti
 �uxes give rise to topologi
al 
ouplings for the di�erentaxions of the 
ompa
ti�ed �eld theory. These arise from the dimensional redu
tion of theWess Zumino a
tion. In addition to the topologi
al 
oupling, the N = 1 supersymmetri
25
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ti�
ationa
tion yields a Fayet-Iliopoulos (FI) term of the form:
ξa
g2a

=
1

(4π2α′)3

∫

T 6

(

Fa ∧ Fa ∧ Fa − Fa ∧ J ∧ J
)

. (2.42)The D-�atness 
ondition in the absen
e of 
harged s
alars requires then that < Da >=

ξa = 0, whi
h is equivalent to the se
ond equation of eq. (2.40). Finally, the last inequalityin eq. (2.40) may also be understood from a four-dimensional viewpoint as the positivityof the U(1)a gauge 
oupling g2a, sin
e its expression in terms of the �uxes and moduli reads
1

g2a
=

1

(4π2α′)3

∫

T 6

(

J ∧ J ∧ J − Fa ∧ Fa ∧ J
)

. (2.43)The above supersymmetry 
onditions, get modi�ed in the presen
e of VEVs for s
alars
harged under the U(1) gauge groups of the branes. The D-�atness 
ondition, in the lowenergy �eld theory approximation, then reads:
Da = −

(

∑

φ

qφa |φ|
2Gφ +M2

s ξa

)

= 0 , (2.44)where Ms = α′−1/2 is the string s
ale4, and the sum is extended over all s
alars φ 
hargedunder the a-th U(1)a with 
harge qφa and metri
 Gφ. Su
h s
alars arise in the 
ompa
ti-�
ation of magnetized D9-branes in type I string theory, for instan
e from the NS se
torof open strings stret
hed between the a-th brane and its image a⋆, or between the sta
k-aand another sta
k-b or its image b∗. When one of these s
alars a
quire a non-vanishingVEV 〈|φ|〉2 = v2φ, the 
alibration 
ondition of eq. (2.40) is modi�ed to:
qav

2
a

∫

T 6

(

J ∧ J ∧ J −Fa ∧ Fa ∧ J
)

= −
M2

s

Gφ

∫

T 6

(

Fa ∧ Fa ∧ Fa −Fa ∧ J ∧ J
)(2.45)

detW a (J ∧ J ∧ J −Fa ∧ Fa ∧ J) > 0 , ∀a = 1, . . . , K . (2.46)Note that our 
omputation is valid for small values of va (in string units), sin
e the in
lusionof the 
harged s
alars in the D-term is in prin
iple valid perturbatively.A
tually, the �elds appearing in (2.44) are not 
anoni
ally normalized sin
e the metri

Gφ appears expli
itly also in their kineti
 terms. Thus, the physi
al VEV is vφ√Gφ.However, to estimate the validity of the perturbative approa
h, it is more appropriateto keep vφ instead of vφ√Gφ. The reason is that the next to leading 
orre
tion to theD-term involves a quarti
 term of the type |φ|4, proportional to a new 
oe�
ient K, and4When mass s
ales are absent, string units are impli
it throughout the thesis. 26
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 Flux in Toroidal Type I Compa
ti�
ationthe 
ondition of validity of perturbation theory is Kv2φ/Gφ << 1. A rough estimate is thenobtained by approximating K ∼ Gφ, whi
h gives our 
ondition.The metri
 Gφ of the s
alars living on the brane has been 
omputed expli
itly for the
ase of diagonal �uxes[122℄. In this spe
ial 
ase, the �uxes are denoted by three angles θai ,(i = 1, 2, 3).5 Then suppressing index-a, we have:
tanπθi =

pxiyi

Ji
≡

(F(1,1))ziz̄i

Ji
, (2.47)and

G = eγE(θ1+θ2+θ3) ×

√

Γ(θ1)Γ(θ2)Γ(θ3)

Γ(1− θ1)Γ(1− θ2)Γ(1− θ3)
, (2.48)with γE being the Euler 
onstant6.The above results will be applied in Se
tion 4.4 to �nd out the FI parameters and
harged s
alar VEVs along three of the twelve brane sta
ks: U1, A and B. The other ninesta
ks, U5, O1, . . . , O8, stabilizing all the geometri
 moduli, will satisfy the 
alibration
ondition ξa = 0 in the absen
e of open string s
alar VEVs. Moreover, the RR moduli thatappear in the same 
hiral multiplets as the geometri
 Kähler moduli, be
ome Goldstonemodes whi
h get absorbed by the U(1) gauge bosons [102℄ 
orresponding to ea
h of theD-terms that stabilize the relevant geometri
 moduli.2.5 TadpolesIn this se
tion, we dis
uss the the 
onsisten
y 
onditions that a magnetized D-brane 
on-�guration must satisfy. Su
h restri
tions play a 
ru
ial role when 
onstru
ting a 
onsistente�e
tive �eld theory. Ne
essary 
onditions for a 
onsistent 
onstru
tion involvingK sta
ksof Na magneti
 D9-branes on a 
ompa
t orientifold 
ompa
ti�
ation follow from the RRtadpole 
an
ellations. These a

ount for the absen
e of UV divergen
es in the one loopamplitude and ensure, via a generalized Green-S
hwarz me
hanism, the 
an
ellation ofgauge anomalies in the asso
iated four dimensional �eld theories.In toroidal 
ompa
ti�
ations of type I string theory, the magnetized D9-branes indu
e5-brane 
harges as well, while the 3-brane and 7-brane 
harges automati
ally vanish due tothe presen
e of mirror branes with opposite �ux. For general magneti
 �uxes, RR tadpole5See examples in Appendix A for the pre
ise map between pxiyi and (F(1,1))ziz̄i .6The T 6 metri
 is diagonal in our 
ase a posteriori, sin
e the moduli are �xed in this way. To leadingorder in α′ (
orresponding to keep the matter s
alar VEVs small) the matter metri
 is diagonal but itselements have a non-trivial (torus) moduli dependen
e due to the magneti
 �uxes, that we 
al
ulatedexpli
itly using the relations given in equation (2.47) and (2.48). 27
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ation
onditions 
an be written in terms of the Chern numbers and winding matrix [103, 104℄as:
16 =

K
∑

a=1

Na detWa ≡
K
∑

a=1

Q9, a, (2.49)
0 =

K
∑

a=1

Na detWa Q
a, αβ ≡

K
∑

a=1

Q5, a
αβ , ∀α, β = 1, . . . , 6 (2.50)where

Qa, αβ = ǫαβδγστ paδγp
a
στ .The l.h.s. of eq. (2.49) arises from the 
ontribution of the O9-plane. On the other hand, intoroidal 
ompa
ti�
ations there are no O5-planes and thus the l.h.s. of eq. (2.50) vanishes.For our 
hoi
e of windings (2.18), W î

i = 1, the D9 tadpole 
ontribution from a givensta
k-a of branes is simply equal to the number of branes, Na. The D5 tadpole expressionalso takes a simple form for the �uxes satisfying the F a
(2,0) = 0 
ondition (2.40). The �uxesare then represented by three-dimensional Hermitian matri
es (F a

(1,1)) whi
h appeared ineq. (2.25) and the D5 tadpoles Q5, a
ij̄

are the Cofa
tors of the ij̄ matrix elements (F a
(1,1))ij̄.Fluxes and tadpoles in su
h a form are given in Appendix A.2.6 Spe
trumAnalyzing the low energy spe
trum of a string based model is the �rst step towardsbuilding a semirealisti
 D = 4 
ompa
ti�
ation from a superstring theory. In parti
ular,in order to build a semirealisti
 model important issues as 
hirality, family tripli
ationand realisti
 gauge group must be possible to a
hieve. In this se
tion, we will study thefour dimensional low energy spe
trum that we get in a magnetized D-brane 
onstru
tionsinvolving K sta
ks of Na magneti
 D9-branes.As a D9-brane with F 6= 0 is not invariant under orientifold proje
tion, but maps to thebrane of opposite �ux, there is no orientifold proje
tion in its open string spe
trum. Theresulting gauge group on a sta
k of N su
h branes is therefore U(N) instead of SO(N) or

Sp(N). For the 
on�guration involving K sta
ks of Na magnetized D9-branes, the gaugese
tor of the spe
trum follows from the open string states 
orresponding to strings startingand ending on the same brane sta
k. The gauge symmetry group is given by a produ
t ofunitary groups ⊗aU(Na), upon identi�
ation of the asso
iated open strings atta
hed on agiven sta
k with the ones atta
hed on the mirror (under the orientifold transformation)sta
k. In addition to these ve
tor bosons, the massless spe
trum 
ontains adjoint s
alars28
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 Flux in Toroidal Type I Compa
ti�
ationand fermions forming N = 4, D = 4 supermultiplets.In the matter se
tor, the massless spe
trum is obtained from the following open stringstates[75, 89, 93℄:1. Open strings stret
hed between the a-th and b-th sta
k give rise to 
hiral spinors inthe bi fundamental representation (Na, N̄b) of U(Na)×U(Nb). Their multipli
ity Iabis given by [104℄:
Iab =

detWadetWb

(2π)3

∫

T 6

(

qaF
a
(1,1) + qbF

b
(1,1)

)3
, (2.51)where F a

(1,1) (given in eqs. (2.24) and (2.25)) is the pullba
k of the integrally quan-tized world-volume �ux ma
α̂β̂

on the target torus in the 
omplex basis (eq. 2.4), and
qa is the 
orresponding U(1)a 
harge; in our 
ase qa = +1 (−1) for the fundamental(anti-fundamental representation). The transformation under the gauge group andtheir multipli
ities are thus determined in terms of the data (Na,W

Î , a
I , mÎ Ĵ).For fa
torized toroidal 
ompa
ti�
ations (T 2)3 (eq. 2.17) with only diagonal �uxes

pxiyi (i = 1, 2, 3), the multipli
ities of 
hiral fermions, arising from strings startingfrom sta
k a and ending at b or vi
e verse, take the simple form (using notations ofeqs. (2.15) and (2.20)):
(Na, N b) : Iab =

∏

i

(m̂a
i n̂

b
i − n̂a

i m̂
b
i),

(Na, Nb) : Iab∗ =
∏

i

(m̂a
i n̂

b
i + n̂a

i m̂
b
i) . (2.52)where i is the label of the i-th two-tori T 2

i , and the integers m̂a
i , n̂

a
i enter in themultipli
ity expressions through the magneti
 �eld as in eq. (2.19).In the model that we 
onstru
t, however, we need sta
ks with �uxes whi
h 
ontainboth diagonal and oblique �ux 
omponents, for the purpose of 
omplete Kähler and
omplex stru
ture moduli stabilization.2. Open strings stret
hed between the a-th brane and its mirror a⋆ give rise to masslessmodes asso
iated to Iaa⋆ 
hiral fermions. These transform either in the antisymmetri
or symmetri
 representation of U(Na). For fa
torized toroidal 
ompa
ti�
ations

(T 2)3, the multipli
ities of 
hiral fermions are given by;
Antisymmetric :

1

2

(

∏

i

2m̂a
i

)(

∏

j

n̂a
j + 1

)

, 29
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Symmetric :

1

2

(

∏

i

2m̂a
i

)(

∏

j

n̂a
j − 1

)

. (2.53)In generi
 
on�gurations, where supersymmetry is broken by the magneti
 �uxes, thes
alar partners of the massless 
hiral spinors in twisted open string se
tors (i.e. from non-trivial brane interse
tions) are massive (or ta
hyoni
). Moreover, when a 
hiral index Iabvanishes, the 
orresponding interse
tion of sta
ks a and b is non-
hiral. The multipli
ityof the non-
hiral spe
trum is then determined by extra
ting the vanishing fa
tor and
al
ulating the 
orresponding 
hiral index in higher dimensions. This analysis is doneexpli
itly in se
tion 4.2.7, on
e expli
it semi-realisti
 examples are 
onstru
ted.2.7 Constant NS-NS B-�eld ba
kgroundIn toroidal models with vanishing B-�eld, the net generation number of 
hiral fermions isin general even[94℄. Thus, it is ne
essary to turn on a 
onstant B-�eld ba
kground in orderto obtain a Standard Model like spe
trum with three generations. Due to the world-sheetparity proje
tion O, the NS-NS two-index �eld Bαβ is proje
ted out from the physi
alspe
trum and 
onstrained to take the dis
rete values 0 or 1/2 (in string units) along a2-
y
le (αβ) of T 6 [91, 92℄.For branes at angles, Bαβ = 1/2 
hanges the number of interse
tion points of the twobranes. For the 
ase of magnetized D9-branes, if B is turned on only along the threediagonal 2-tori:
Bxiyi ≡ bi =

1

2
, i = 1, 2, 3, (2.54)the e�e
t is a

ounted for by introdu
ing an e�e
tive world-volume magneti
 �ux quantum,de�ned by ˜̂m

a

j = m̂a
j +

1
2
n̂a
j , while the �rst Chern numbers along all other 2-
y
les remainun
hanged (and integral). Thus, the modi�
ation 
an be summarized by

(m̂a
j , n̂

a
j ) for bj = 0 → (m̂a

j +
1

2
n̂a
j , n̂

a
j ) ≡ ( ˜̂m

a

j , n̂
a
j ) , for bj =

1

2
, (2.55)along the parti
ular 2-
y
les where the NS-NS B-�eld is turned on. This transformationalso takes into a

ount the 
hanges in the fermion degenera
ies given in eqs. (2.52) and(2.53) (as well as in (2.59), (2.60) below), due to the presen
e of a non-zero B:

(Na, N b) : Iab =
∏

i

( ˜̂ma
i n̂

b
i − n̂a

i
˜̂mb

i),
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(Na, Nb) : Iab∗ =

∏

i

( ˜̂ma
i n̂

b
i + n̂a

i
˜̂mb

i) , (2.56)
Antisymmetric : IAaa∗ =

1

2

(

∏

i

2 ˜̂ma
i

)(

∏

j

n̂a
j + 1

)

, (2.57)
Symmetric : ISaa∗ =

1

2

(

∏

i

2 ˜̂ma
i

)(

∏

j

n̂a
j − 1

)

. (2.58)In addition, similar modi�
ations take pla
e in the tadpole 
an
ellation 
onditions, as well.Note that for non trivial B, if n̂a
i is odd ˜̂ma

i is half-integer, while if n̂a
i is even ˜̂ma

i must beinteger.When restri
ting to the trivial windings of eq. (2.18) that we use in 
onstru
ting expli
itsemirealisti
 examples, n̂a
i = 1, the degenera
y formula (2.51) simpli�es to:
(Na, N b) : Iab = det

(

F̃ a
(1,1) − F̃ b

(1,1)

)

, (2.59)
(Na, Nb) : Iab∗ = det

(

F̃ a
(1,1) + F̃ b

(1,1)

)

, (2.60)where F̃ = F +B and we have assumed the 
anoni
al volume normalization (2.1) on T 6.Similarly, the multipli
ity of 
hiral antisymmetri
 representations is given by:
Antisymmetric : IAaa∗ =

∏

i

(

2 ˜̂ma
i

)

, (2.61)while there are no states in symmetri
 representations. Finally, the tadpole 
an
ellation
onditions (2.49) and (2.50) be
ome:
K
∑

a=1

Na = 16 ;
K
∑

a=1

Na Co(F̃
a
(1,1))ij̄ = 0 ∀ i, j = 1, . . . , 3 . (2.62)
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3Fermion Wavefun
tions in Magnetizedbranes:Theta identities and Yukawa 
ouplings
3.1 Introdu
tionOne of the most outstanding puzzles of the Standard Model (SM) of parti
le physi
s is thestru
ture of the Yukawa 
ouplings between the Higgs �eld and the SM fermions. A 
orre
tdes
ription of the observed masses and mixing of quarks and leptons require very di�erentvalues for the Yukawa 
oupling 
onstants for the di�erent generations. In the 
ontextof semirealisti
 model building from string theory, one should look for the possibility of
omputing Yukawa 
ouplings in terms of the extra-dimensional geography. Starting froma (D+4)-dimensional �eld theory and 
ompa
tifying D dimensions one may get masslessmodes with fa
torized wavefun
tions χ(x)× ψ(y), with x, y denoting Minkowski and ex-tra dimensions respe
tively. Gauge boson 
omponents Ai in extra dimensions give rise tos
alars at low energies and Yukawa 
ouplings are thus expe
ted to appear upon 
ompa
t-i�
ation from the higher dimensional gauge vertex intera
tion AMΨΓMΨ. The Yukawa
oupling 
onstants are then 
omputed from overlap integrals over the extra dimensions.The aim of this 
hapter is to address the issue of 
omputating Yukawa 
ouplings, in the
ontext of magnetized D-brane models. We 
onsider, as our starting point, ten dimensionalsuper-Yang-Mills (SYM) theory as the best motivated extra dimensional �eld theory, sin
eit appears in the low-energy limit of Type I, Type IIB and heteroti
 string theories. We
ompa
tify D=10 N = 1 SYM on a 6-torus T 6 and, in order to obtain 
hiral fermions,we add 
onstant magneti
 �ux through the torus. We solve Dira
 and Lapla
e equationsto �nd out the expli
it form of wavefun
tions in extra dimensions. The Yukawa 
ouplings32



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsare obtained by performing the overlap integrals of these wavefun
tions.Close form expressions for Yukawa 
ouplings have been written down for string 
on-stru
tions involving branes at angles [81, 109℄ or those with magnetized branes [4, 6, 89,90, 93, 96, 102, 103, 104, 107, 123, 124, 125, 126, 127℄. In the IIA pi
ture, the inter-a
tion is des
ribed by the worldsheet instanton 
ontributions from the sum of areas ofvarious triangles that are formed by three D6 branes interse
ting at three verti
es, form-ing a triangle. This is due to the fa
t that the interse
tion of branes relevant for Yukawaintera
tions are those whi
h are point-like giving 
hiral multiplets. Line or surfa
e likeinterse
tions, on the other hand, would give rise to intera
tions of non-
hiral matter. Inthese dis
ussions, the orientation of the branes themselves are parameterized by threeangles in the three orthogonal 2-planes, inside T 6. These results have been further gen-eralized to in
lude Eu
lidean D2 brane instanton 
ontributions to the Yukawa 
ouplings[110, 111, 112, 113, 114, 115, 116, 117, 118℄, generating up quark and right handed neutrinomasses through a Higgs me
hanism, in a parti
ular 
lass of models. A limitation on theexer
ise performed in these papers 
omes from the fa
torized stru
ture of the tori, whi
harises from the orientations of the brane wrappings that are 
lassi�ed by angles in threedi�erent T 2 planes, rather than their general orientations in the internal six dimensionalspa
e parameterized for instan
e by the SU(3) angles in supersymmetri
 situations.Similar results for perturbative Yukawa 
ouplings have also been obtained in the mag-netized brane pi
ture, based on their gauge theoreti
 representation [6℄. In this 
ase, theintera
tions are given by the overlap integral of three wavefun
tions (
ontributing to theintera
tion) along internal dire
tions. The wavefun
tions 
orrespond, in the ordinary �eldtheory 
ontext, to those belonging to two fermions and a s
alar, and are given by Ja
obitheta fun
tions, when �uxes are turned on along three diagonal 2-tori. The relationshipbetween the Yukawa intera
tions in the magnetized brane 
onstru
tions and those involv-ing D6 branes, have also been established using T-duality rules. However, these exer
iseshave on
e again been of limited s
ope due to the fa
t that expli
it expressions are writtendown only for magnetized branes with �uxes that are diagonal along three T 2's.Te
hni
ally, the wavefun
tions of 
hiral �elds parti
ipating in Yukawa intera
tions arede�ned in terms of Ja
obi theta fun
tions, with a modular parameter identi�ed as aprodu
t of the 
omplex stru
ture of the T 2, with the �ux that is turned on along it. TheYukawa intera
tions are therefore 
omputed for the 
ase when the six dimensional internalspa
e is of a fa
torized form:
T 2 × T 2 × T 2 ∈ T 6. (3.1)As advo
ated in [7, 102, 103, 104℄, one, in general, needs to in
lude both `diagonal' and`oblique' �uxes for appli
ations to model building with moduli stabilization. Therefore it33



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsis imperative that we generalize previous results further and obtain intera
tions involvingbranes with oblique �uxes. As stated, in the language of D6 branes su
h generalizationswould amount to interse
tions of branes with orientations given by SU(3) rotation angles,resulting to N = 1 supersymmetry in D = 4 with 
hiral matter. In view of the importan
eof su
h �uxes in obtaining realisti
 parti
le physi
s models with stabilized moduli, and todes
ribe the intera
tions among the 
hiral �elds, we shall study the expli
it 
onstru
tionof fermion (and s
alar) wavefun
tions on 
ompa
t toroidal spa
es with arbitrary 
onstant�uxes.S
attered results on fermion wavefun
tions in presen
e of 
onstant gauge �uxes, on toriof arbitrary dimensions, exist already in the literature [6, 128℄. However, they are of limiteduse for our purpose. First, any wavefun
tion obtained through a diagonalization pro
essof the gauge �uxes [128℄, is not in general suitable for obtaining an overlap integral ofwavefun
tions. This is be
ause the �ux matri
es need not 
ommute along di�erent sta
ksof branes that parti
ipate in the intera
tion through the 
hiral multiplets, arising from thestrings that join these branes and therefore they are not simultaneously diagonalizable.In [6℄, a set of wavefun
tions was given for 
onstant gauge �uxes. However, on
e again,expli
it results are valid only for those �uxes whi
h satisfy a set of `Riemann 
onditions',in
luding a positivity 
riterion on the �ux matri
es. As the analysis in this 
hapter will
larify, the positivity restri
tions on the �uxes is due to the fa
t that the given wavefun
tionin [6℄ 
orresponds to a spe
i�
 
omponent of the 2n dimensional Dira
 spinor for a 2n-dimensional torus T 2n. We will show that this restri
tion is relaxed, if one 
onsiderswavefun
tions of various 
hiralities, su
h that all possible �ux matri
es are allowed, thoughin our 
ase we restri
t to only those �uxes that are 
onsistent with the requirements ofspa
e-time supersymmetry .In fa
t, we give expli
it solutions for the wavefun
tions for arbitrary �uxes, that are wellde�ned globally on the toroidal spa
e. We also give expli
it mappings among the wave-fun
tions of di�erent 
hiralities, satisfying di�erent 
onsisten
y 
riterion. These mappingsare shown to relate wavefun
tions 
orresponding to di�erent �uxes and 
omplex stru
turesof the tori. We further re
on�rm that our wavefun
tions, as well as mappings are indeed
orre
t, by showing that equations of motion also map into ea
h other for the fermionwavefun
tions just des
ribed, 
orresponding to di�erent internal 
hiralities.Apart from the la
k of enough knowledge about the fermion wavefun
tions, the limi-tations on available information about the Yukawa 
ouplings for general gauge �uxes alsoarose from the te
hni
alities in dealing with general Riemann theta fun
tions that areused for de�ning the wavefun
tions on toroidal spa
es. Internal wavefun
tions of 
hiralfermions parti
ipating in the intera
tion are given by a general Riemann theta fun
tion34



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingswhose modular parameter argument is determined in terms of the 
omplex stru
ture of T 6as well as the `oblique' �uxes that we turn on. Hen
e, the limitations on available resultsfor Yukawa intera
tions in the literature, arise due to the intri
a
ies involved in evaluat-ing the overlap integrals of the trilinear produ
t of general Riemann theta fun
tions overthe six dimensional internal spa
e. In parti
ular, even for positive 
hirality wavefun
tionsalong the internal T 6 given in [6℄, one �nds that theta identities [119℄ need to be furthergeneralized, in order to 
ompute the Yukawa intera
tions with oblique �uxes. The taskgoes beyond the identity given in [119℄, sin
e one needs to evaluate the overlap integral ofthree wavefun
tions, all having di�erent modular parameter matri
es as arguments, dueto the presen
e of di�erent �uxes along the three brane sta
ks involved in generating theYukawa 
oupling.In this 
hapter, �rst, we generalize the identities used in [6℄ (available from mathemat-i
al literature [119℄) for the known positive 
hirality wavefun
tions to those with generalRiemann theta fun
tions representing the fermion wavefun
tions. This gives an expli
itanswer for the Yukawa intera
tion in a 
lose form and generalizes the results of [6, 81℄. Inparti
ular, we generalize the result further for the positive 
hirality wavefun
tion, whengeneral (hermitian) �uxes with all nine parameters rather than the six 
omponents, 
on-sidered before, are turned on.Furthermore, as already stated earlier, we give expli
it 
onstru
tions of the other T 6spinor wavefun
tions, as well. In these 
ases too, we obtain the sele
tion rules among
hiral multiplets giving nonzero Yukawa 
ouplings. Now, however, the �nal answer is leftas a real �nite integration of a theta fun
tion, over three toroidal 
oordinate variables.This integration 
an be evaluated numeri
ally for any given example.The 
hapter is organized as follows. In the next se
tion we brie�y dis
uss the originof Yukawa 
ouplings in extra dimensional theories. We motivate the study of magnetized
ompa
ti�
ation in order to a
hieve D = 4 
hiral models from extra dimensions. We de-s
ribe the general strategy that we follow to 
ompute three-point fun
tions in su
h models[6℄. In Se
tion 3.3, we give the 
hiral fermion wavefun
tions in the presen
e of 
onstant�uxes. In Se
tion 3.4, we review the known results on the Ja
obi theta identity given in[119℄ and present a proof of its validity. We also give an expression for the Yukawa inter-a
tion for fa
torized tori and `diagonal' �uxes using the theta identity. In Se
tion 3.5, we
onstru
t a similar identity, but now for the general Riemann theta fun
tion. We then usethis new mathemati
al relation for writing down the expression for the Yukawa intera
tionwhen oblique �uxes are present and satisfy the `Riemann 
onditions' of [6℄. Results arefurther generalized to in
lude the most general �ux matri
es 
onsistent with supersym-metry and `Riemann 
ondition' requirements. In order to relax the later, in Se
tion 3.6,35



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingswe present the generalizations to in
lude the wavefun
tions of the other internal 
hirali-ties, in order to a

ommodate general �uxes 
onsistent with supersymmetry restri
tions.Con
lusions are presented in Se
tion 3.7.3.2 Ten Dimensional N = 1 Super Yang-Mills 
ompa
t-i�
ation with magneti
 �uxesLet us 
onsider N = 1 supersymmetri
 Yang-Mills theory in ten dimensions. Its La-grangian density is given by
LSYM = −

1

4g2
Tr
{

FMNFMN

}

+
i

2g2
Tr
{

λ̄ΓMDMλ
} (3.2)where M,N = 0, . . . , 9. Here, λ denotes gaugino �eld, g is the Yang-Mills 
oupling
onstant in D = 10, and ΓM is the gamma matrix for ten dimensions. The gauge group�eld strength FMN and 
ovariant derivative DM are given by

FMN = ∂MAN − ∂NAM − i[AM , AN ] (3.3)
DMλ = ∂Mλ− i[AM , λ] (3.4)where AM is the ten-dimensional ve
tor �eld.In order to obtain a D = 4 theory at low energies, we should 
onsider the abovetheory 
ompa
ti�ed on a six-dimensional 
ompa
t manifold M6, so that we re
over four-dimensional physi
s at energies below the 
ompa
ti�
ation s
aleMc. Here we 
onsider thetorus T 6 as the extra dimensional 
ompa
t spa
e. The ten-dimensional �elds AM and λare de
omposed as
λ(Xµ, xm) =

∑

n

χn(X
µ)⊗ ψn(x

m) (3.5)
AM (Xµ, xm) =

∑

n

ϕn,M(Xµ)⊗ φn,M(xm) (3.6)where Xµ, µ = 0, . . . , 3 and xm, m = 4, . . . , 9 stand for the non-
ompa
t and internaldimensions, respe
tively. The internal wavefun
tions ψn, φn,M 
an be 
hosen to be eigen-states of the 
orresponding internal wave operator
iD/6ψn = 0 (3.7)

∆6φn,M = M2
n,Mφn,M (3.8)36



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsBy introdu
ing non-trivial expe
tation values for the gauge �eld AM , one 
an ob-tain 
hiral fermions in four dimension. Indeed, sin
e we are only interested in preservingPoin
aré invarian
e in the four non-
ompa
t dimensions, we are entitled to 
onsider non-vanishing v.e.v.'s 〈Am(x)〉, m = 4, . . . , 9. A non-trivial gauge �eld modi�es the Dira
operator and hen
e the 
omputation of the Dira
 index, and may introdu
e a 
hiral asym-metry that allows for a 
hiral massless spe
trum. We hen
e �nd that 
ompa
ti�
ationswith non-trivial gauge �elds 〈Am(x)〉, or equivalently, magnetized M6 
ompa
ti�
ationswith 〈Fmn〉 6= 0, provide a natural way of a
hieving D = 4 
hiral theories with redu
edgauge group.In addition, the introdu
tion of a magneti
 �eld in the 
ompa
ti�
ation may not onlylead to 
hiral matter but also to repli
ation of 
hiral fermions, sin
e the Dira
 equationfor the internal fermioni
 wavefun
tion D/6ψ = 0 may yield several independent degen-erate solutions, labeled by ψj(x). In order to get 
anoni
al kineti
 terms, these internalwavefun
tions must satisfy
∫

M6

d6y ψj(x)
†ψk(x) = δjk (3.9)the same 
ondition applying to bosoni
 wavefun
tions.Finally, given the internal wavefun
tions ψj , φk 
orresponding to the D = 4 
hiralfermions and lightest s
alars, it is possible to 
ompute the Yukawa 
ouplings betweenthem, as an overlap between three wavefun
tions. Indeed, the fermioni
 part of the D = 10SYM a
tion (3.2) 
ontains a term of the form A · λ · λ, whi
h upon dimensional redu
tionyields the Yukawa 
oupling

Yijk =

∫

M

ψa†
i Γm ψb

j φ
c
k,m fabc (3.10)where fabc are the stru
ture 
onstants of the higher dimensional gauge group.3.3 Toroidal Wavefun
tionsWe �rst present the 
onstru
tion of 
hiral fermion wavefun
tions on tori and give theirrepresentation in terms of theta fun
tions. For de�niteness we �rst dis
uss the 
ase of4-tori, though T 6 
hiral multiplet stru
ture 
an be analyzed in a similar manner. To beexpli
it, for the moment we restri
t ourselves to the 
anoni
al 
omplex stru
ture: Ω = iI2and Ω = iI3 for T 4 and T 6 respe
tively, where Id represents a d-dimensional identitymatrix. The general 
omplex stru
ture is restored while writing the wavefun
tions as wellas intera
tion verti
es. 37



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsTo obtain the Dira
 wavefun
tions in T 4, we start by writing four Dira
 Gammamatri
es (in a 
omplex basis) :
Γz1 = σz × σ3 =













0 2

0 0

0 −2

0 0













, Γz2 = I × σz =













2 0

0 2

0 0

0 0













, (3.11)where the information about the 
omplex stru
ture in the above expression is hidden inthe fa
t that we have used the de�nitions: zi = xi + iyi in writing these Dira
 matri
es.Similarly,
Γz̄1 = σz̄ × σ3 =













0 0

2 0

0 0

−2 0













, Γz̄2 = I × σz̄ =













0 0

0 0

2 0

0 2













. (3.12)They satisfy the anti-
ommutation relations:
{Γzi,Γzj} = 0, {Γz̄i,Γz̄j} = 0, {Γzi,Γz̄j} = 4δij (3.13)with i, j = 1, 2. In the above basis Γ5 takes the form:

Γ5 =













1

−1

−1

1













(3.14)with 4-
omponent Dira
 wavefun
tions having the form:
Ψ =













Ψ1
+

Ψ2
−

Ψ1
−

Ψ2
+













. (3.15)In su
h a de
omposition of Ψ, Dira
 equations for fermions in the adjoint representationare of the form:
∂̄1Ψ

1
+ + ∂2Ψ

2
+ + [Az̄1 ,Ψ

1
+] + [Az2 , ψ

2
+] = 0, 38
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∂̄2Ψ

1
+ − ∂1Ψ

2
+ + [Az̄2 ,Ψ

1
+]− [Az1 ,Ψ

2
+] = 0,

∂1Ψ
2
− + ∂2Ψ

1
− + [Az1 ,Ψ

2
−] + [Az2 ,Ψ

1
−] = 0,

∂̄2Ψ
2
− − ∂̄1Ψ

1
− + [Az̄2 ,Ψ

2
−]− [Az̄1 ,Ψ

1
−] = 0. (3.16)In a generi
 model, 
hiral fermions arise either from the string starting at a branesta
k-a and ending at another brane sta
k-b (or its image b∗) or from strings startingat a brane sta
k a and ending at its image a∗. We already showed the 
orresponden
ebetween a sta
k of magnetized branes and �ux quanta in supersymmetri
 gauge theory,in eq. (2.34). The 
orresponden
e is easily generalized when several sta
ks of branes arepresent. Expli
itly, in a 
onstru
tion with P number of sta
ks of branes, with number ofbranes being ni for the i'th sta
k, the �ux (for a given target spa
e 
omponent (ij̄) ) takesa form:

Fij̄ =

















F 1In1

F 2In2

.

.

F npInp
,

















(3.17)
with Ini

being the ni-dimensional identity matrix and we have hidden the ij̄ indi
es inthe RHS of eq. (3.17) in 
onstants F i that are all integrally quantized, as given earlierexpli
itly in eqs. (2.32) and (2.33). The 
orresponding gauge potentials will also thenhave a blo
k diagonal stru
ture:
Ai =













A1
i In1

A2
i In2

.

. A
np

i Inp













. (3.18)Now, in order to understand the wavefun
tions asso
iated with 
hiral fermion bifun-damentals, in su
h a representation of the brane sta
ks, we 
onsider the �ux matrix Fij̄in eq. (3.17) and gauge potential in eq. (3.18) with only two blo
ks (P = 2). The 
hiralfermion bilinears between sta
k-a and sta
k-b are then represented by:
Ψab =

(

Cna
χab

Cnb

)

, (3.19)
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Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingswith Cna
, Cnb

being 
onstant matri
es of dimensions na and nb respe
tively 7. We 
aneasily derive the equation satis�ed by the various Dira
 
omponents, as given in eq. (3.15),for χab su
h that Ψab satis�es the Dira
 equation (3.16). We obtain:
∂̄1χ

1
+ + ∂2χ

2
+ + (A1 − A2)z̄1χ

1
+ + (A1 − A2)z2χ

2
+ = 0,

∂̄2χ
1
+ − ∂1χ

2
+ + (A1 −A2)z̄2χ

1
+ − (A1 − A2)z1χ

2
+ = 0,

∂1χ
2
− + ∂2χ

1
− + (A1 − A2)z1χ

2
− + (A1 − A2)z2χ

1
− = 0,

∂̄2χ
2
− − ∂̄1χ

1
− + (A1 −A2)z̄2χ

2
− − (A1 − A2)z̄1χ

1
− = 0, (3.20)with subs
ript a, b being dropped from χab to make the expressions simpler. We will,however, restore the indi
es at a later stage while evaluating the overlap of three su
hwave fun
tions from di�erent interse
tions. In parti
ular, for the 
hiral 
omponents, χ1

+equations redu
e to:
∂̄1χ

1
+ + (A1 − A2)z̄1χ

1
+ = 0,

∂̄2χ
1
+ + (A1 − A2)z̄2χ

1
+ = 0. (3.21)The generalization of eq. (3.21) to the T 6 
ase is straightforward and 
an be writtenas:

D̄iχ
ab
+ ≡ ∂̄iχ

ab
+ + (A1 − A2)z̄iχ

ab
+ = 0, (i = 1, 2, 3). (3.22)Eq. (3.22) mat
hes with the results obtained in [6℄ for Ω = iI3, with the identi�
ation:

(A1 − A2)z̄i ≡
π

2

(

[N.(z̃+ ζ̃)].(ImΩ)−1
)

i
, (3.23)with ~ζ being the 
omplex 
onstants representing the Wilson lines and N is the di�eren
eof �uxes between the two sta
ks a and b, having 
onstant �uxes F 1 and F 2, giving thefermion bilinears in the representation (n1, n̄2).Su
h a solution for eq. (3.22) and (3.23) is given in [6℄ for arbitrary 
omplex stru
ture

Ω by the basis elements:
ψ
~j,N(~z,Ω) = N · e{iπ[N.~z].(N.ImΩ)−1Im[N.~z]} · ϑ

[

~j

0

]

(N.~z,N.Ω), (3.24)7The 
onstant matri
es 
orrespond to gaugino wavefun
tion. The N = 1 gauginos are massless as longas supersymmetry remains unbroken. The other gauginos 
oming from the N = 4, that a
quire high s
alemasses, and de
ouples from the massless spe
trum, whi
h we are interested in.
40



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingswith general de�nition of Riemann theta fun
tion:
ϑ

[

~a
~b

]

(~ν|Ω) =
∑

~m∈Zn

eπ(~m+~a).Ω.(~m+~a)e2πi(~m+~a).(~ν+~b). (3.25)Moreover, the matrix N should satisfy the following 
onditions in order to have wellde�ned bifundamental wavefun
tions. These are the so-
alled Riemann 
onditions [6℄ andare written as:
Nīj ∈ Z ,

(N.ImΩ)T = N.ImΩ ,

N.ImΩ > 0. (3.26)The �rst 
ondition in eq. (3.26) is the integrality of the elements of N, that we dis
usslater on, in the absen
e of any non-abelian Wilson lines [6℄, following from the Dira
quantization of �uxes. To understand the last 
ondition of eq. (3.26), one rewrites the
(1, 1) form Fziz̄j , for the 
ase when pxx = pyy = 0. Indeed using eq. (2.31), one obtains:

Fziz̄j = −ipxy(Ω− Ω̄)−1, (3.27)whi
h mat
hes with the expression for H in eq. (4.73) of [6℄ upon the identi�
ation
NT = pxy and H = 1

2
NT .ImΩ−1. Also using (2.31), it follows that:

(NΩ)T = (NΩ). (3.28)The positivity requirement on H then arises from the 
ondition that the solutions of theDira
 equation, 
orresponding to 
hiral wavefuntions, be normalizable.Again, N satis�es the 
onstraints given in eqs. (3.26) as well as:
~j.N ∈ Zn, (3.29)implying that ~j.N is an n-dimensional ve
tor with integer entries. Also, the normalizationfa
tor N in eq. (3.24) is given by:

N = (2n| detN|. det(ImΩ))
1
4
(

V ol(T 2n)
)− 1

2 . (3.30)
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Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsThen wavefun
tions satisfy the orthonormality relations:
∫

T 2n

(ψ
~j,N)∗ψ

~k,N = δ~j,~k. (3.31)These results are useful in determining the intera
tion terms in Se
tion 3.5. However,to have well-de�ned wavefun
tions, N's must satisfy the Riemann 
onditions given in eq.(3.26).The wavefun
tions of the 
hiral fermion bifundamentals, with both abelian and non-abelian Wilson lines, involved in Yukawa 
omputations, are given in [6℄ for the 
ase ofthe fa
torized tori, eq. (3.1), and diagonal �uxes. For oblique �uxes, we postpone thedis
ussion of non-abelian Wilson lines and rational �uxes to the last se
tion of the 
hapterand for the moment we 
onsider the 
ase of integral �uxes only. This restri
tion, never-theless, allows for a ri
h stru
ture of phenomenologi
al value, sin
e semi-realisti
 modelswith three generations of 
hiral fermions and stabilized moduli 
an be built even in the
ontext of su
h integral �uxes, by turning on NS-NS antisymmetri
 tensor ba
kground.For example, a three generation SU(5) GUT with stabilized moduli given in [7℄ was 
on-stru
ted with all winding numbers, n = 1, for di�erent sta
ks of branes. Also, the presen
eof a half-integral NS-NS antisymmetri
 tensor does not modify any of our results, sin
e allthe relevant 
hiral fermion wavefun
tions depend on the di�eren
e of �uxes along pairs ofbrane sta
ks whi
h is always integral.3.4 Yukawa 
omputation on fa
torized tori3.4.1 Wavefun
tionA detail dis
ussion of the 
hiral fermion wavefun
tions in the presen
e of 
onstant gauge�uxes is presented in the previous se
tion for general tori and �uxes. In the 
ase offa
torized tori, eq. (3.1), the six dimensional 
hiral/anti-
hiral wavefun
tions are writtenas a produ
t of wavefun
tions on T 2. To show this expli
itly, we present the 
ase of T 4as an example, with T 6 
ase working out in a similar fashion. More pre
isely, 
onsideringthat on two T 2's, fermion wavefun
tions
ψ(1) =

(

ψ
(1)
+

ψ
(1)
−

)

, ψ(2) =

(

ψ
(2)
+

ψ
(2)
−

)

, (3.32)
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Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingswith their internal U(n1)×U(n2) stru
ture being represented in a manner as in eq. (3.19),satisfy the equations:
∂̄1ψ

(1)
+ + (A1 − A2)z̄1ψ

(1)
+ = 0,

∂1ψ
(1)
− + (A1 − A2)z1ψ

(1)
− = 0,

∂̄2ψ
(2)
+ + (A1 − A2)z̄2ψ

(2)
+ = 0,

∂2ψ
(2)
− + (A1 − A2)z2ψ

(2)
− = 0. (3.33)

T 4 fermion wavefun
tions are then 
onstru
ted through a dire
t produ
t of ψ1 and ψ2 (inthe notations of Se
tion 3.3):












Ψ1
+

Ψ2
−

Ψ1
−

Ψ2
+













≡

(

ψ
(1)
+

ψ
(1)
−

)

⊗

(

ψ
(2)
+

ψ
(2)
−

)

. (3.34)In parti
ular,
Ψ1

+ ≡ ψ
(1)
+ ⊗ ψ

(2)
+ (3.35)satis�es pre
isely the equations (3.21) for 
hiral fermions on T 4. We 
an further extendthese results to show that T 6 
hiral wavefun
tions 
an also be written as a produ
t of the
hiral wavefun
tions on three T 2's in the de
omposition (3.1).Yukawa intera
tion on T 6 is then also given by an expression whi
h is a dire
t produ
tof the intera
tion terms for the three T 2's. Wavefun
tions for the 
hiral fermions on a T 2(with 
oordinates x, y) are expressed in terms of the basis wavefun
tions ψj,N [6℄:

ψj,N(τ, z) = N · eiπNzIm z/Im τ · ϑ

[

j
N

0

]

(Nz,Nτ), j = 0, . . . , N − 1 , (3.36)with N denoting the di�eren
e of the U(na) and U(nb) magneti
 gauge �uxes, turned onalong the Cartan generators, representing sta
ks of na and nb branes respe
tively and givesthe degenera
y of the 
hiral fermions:
N = ma −mb ≡ Iab, (3.37)with ma and mb being the 1st Chern number of �uxes along sta
ks a and b, with unitwindings.Using su
h a basis, the 
hiral and anti-
hiral (left and right handed fermions) basis43



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingswavefun
tions:
ψj =

(

ψj
+

ψj
−

)

, (3.38)are given by:
ψj
+ = ψj,N(τ, z + ζ), (ψj

+)
∗ = ψ−j,−N(τ̄ , z̄ + ζ̄),

ψj
− = ψj,N(τ̄ , z̄ + ζ̄), (ψj

−)
∗ = ψ−j,−N(τ, z + ζ), (3.39)and satisfy the equations:

Dψj
+ = 0, D†(ψj

+)
∗ = 0,

D†ψj
− = 0, D(ψj

−)
∗ = 0Expanding as in 3.33 and by substituting the 
orresponding gauge potentials,

(A1)z̄1 =
πma

2Imτ
(z + ζ), (A2)z̄1 =

πmb

2Imτ
(z + ζ),

(A1)z1 =
−πma

2Imτ
(z̄ + ζ̄), (A2)z1 =

−πmb

2Imτ
(z̄ + ζ̄).one gets,

(

∂̄ +
πN

2Imτ
(z + ζ)

)

ψj
+ = 0,

(

∂ −
πN

2Imτ
(z̄ + ζ̄)

)

(ψj
+)

∗ = 0,
(

∂ −
πN

2Imτ
(z̄ + ζ̄)

)

ψj
− = 0,

(

∂̄ +
πN

2Imτ
(z + ζ)

)

(ψj
−)

∗ = 0, (3.40)with ζ representing the Wilson lines. In the following we set the Wilson lines ζ = 0.Furthermore, expressions of the 
hiral and anti-
hiral solutions, as given in eqs. (3.39)and (3.36), are well de�ned provided N > 0 for the wavefun
tions ψj
+ and N < 0 for thewavefun
tions ψj

−. In these 
ases, for ψj
+ and ψj

− to be properly normalized:
∫

T 2

dzdz̄ ψj
±(ψ

k
±)

∗ = δjk, (3.41)
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Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsan additional fa
tor
Nj =

(

2Imτ |N |

A2

)
1
4 (3.42)needs to be introdu
ed, with A being the area of the T 2.In fa
t, the basis fun
tions (3.36) are also eigenfun
tions of the Lapla
ian. We elaborateon this point more in Se
tion 3.6.4 and now pro
eed to make use of these fermion andboson basis fun
tions to determine the Yukawa intera
tion in the 
ase of fa
torized toriand `diagonal' �uxes.3.4.2 Intera
tion for fa
torized toriWe now summarize the basi
 results of [6℄ regarding the 
omputations of Yukawa intera
-tions. As dis
ussed in Se
tion 3.2, su
h four dimensional intera
tion terms were obtainedthrough a dimensional redu
tion of the D = 10, N = 1 super-Yang-Mills theory to fourdimensions in the presen
e of 
onstant magneti
 �uxes. The Yukawa 
oupling is given by

Yijk =

∫

M

ψa†
i Γmψb

jφ
c
k,mfabc, (3.43)where M is the internal spa
e on whi
h the gauge theory has been 
ompa
ti�ed and ψand φ are the internal zero mode �u
tuations of the gaugino and Yang-Mills �elds with

fabc being the stru
ture 
onstants of the higher dimensional gauge group. For the torus
ompa
ti�
ation that we are dis
ussing, the internal wavefun
tions are fa
torized intothose depending on the 
oordinates of three T 2's. In turn, these involve the evaluation ofterms of the type:
∫

T 2

dzdz̄T r{ψ+.[φ−, ψ+]} and

∫

T 2

dzdz̄T r{ψ−.[φ+, ψ−]}, (3.44)with φ± being the wavefun
tions of the bosoni
 �u
tuations of the ten dimensional gauge�elds with heli
ity ±1 along the parti
ular T 2 dire
tion. Similarly ψ± denotes the spinor�u
tuations with heli
ities ±1
2
. Therefore, In the fa
torized 
ase of eq. (3.1), the fullintera
tion term is 
omputed as a produ
t of three su
h integrals. To evaluate theseintegrals, one uses the wavefun
tions (3.32) and basis fun
tions as given in eq. (3.36).In the language of string 
onstru
tion with magnetized branes, N ≡ Iab 
orrespondsto the interse
tion number for the string starting at a sta
k a and ending on another one

b. The Yukawa intera
tion then reads:
Yijk = gσabc

∫

T 2

dzdz̄ ψi,Iab(τ, z).ψj,Ica(τ, z).(ψk,Icb(τ, z))∗ (3.45)45



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingswith Ibc < 0, 
orresponding to the fa
t that when the interse
tion numbers Iab and Icaare positive, then Ibc has to be negative, sin
e Iab + Ibc + Ica = 0. A similar expressionexists for Ibc > 0 as well. To evaluate this integral, one uses an identity, satis�ed by thetheta fun
tions appearing in the de�nition of the basis fun
tions (3.36). The aim of thisrelation is to establish a 
onne
tion between the wavefun
tions with interse
tion numbers
N1 and N2 for bifundamental states in brane interse
tions ab and ca with the one in theinterse
tion bc with N3 = N1 +N2. However, in view of the further generalization to theoblique �ux 
ase, we establish this identity expli
itly in the next subse
tion and generalizeit further in Se
tion 3.5.3.4.3 Ja
obi theta fun
tion identitiesWe now expli
itly prove the following theta fun
tion identity[119℄ used in [6℄ for 
omputingthe Yukawa 
ouplings:
ϑ

[

r
N1

0

]

(z1, τN1) · ϑ

[

s
N2

0

]

(z2, τN2) =
∑

m∈ZN1+N2

ϑ

[

r+s+N1m
N1+N2

0

]

(z1 + z2, τ(N1 +N2))

×ϑ

[

N2r−N1s+N1N2m
N1N2(N1+N2)

0

]

(z1N2 − z2N1, τN1N2(N1 +N2)), (3.46)where ϑ is the Ja
obi theta-fun
tion:
ϑ

[

a

b

]

(ν, τ) =
∑

l∈Z

eπi(a+l)2τ e2πi(a+l)(ν+b). (3.47)To pro
eed with the proof of the above identity, we write its LHS expli
itly as:
ϑ

[

r
N1

0

]

(z1, τN1) · ϑ

[

s
N2

0

]

(z2, τN2) =
∑

l1∈Z

∑

l2∈Z

e
πi( r

N1
+l1)2τN1 e

2πi( r
N1

+l1)z1

· e
πi( s

N2
+l2)2τN2 e

2πi( s
N2

+l2)z2 . (3.48)Similarly the RHS of the identity (3.46 ) 
an be written as:
∑

m∈ZN1+N2

ϑ

[

r+s+N1m
N1+N2

0

]

(z1 + z2, τ(N1 +N2))

×ϑ

[

N2r−N1s+N1N2m
N1N2(N1+N2)

0

]

(z1N2 − z2N1, τN1N2(N1 +N2))
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tions in Magnetized branes:Theta identities and Yukawa 
ouplings
=

∑

m∈ZN1+N2

∑

l3∈Z

∑

l4∈Z

e
πi(

r+s+N1m
N1+N2

+l3)2τ(N1+N2) e
2πi(

r+s+N1m
N1+N2

+l3)(z1+z2)

×e
πi(

N2r−N1s+N1N2m
N1N2(N1+N2)

+l4)2τN1N2(N1+N2) e
2πi(

N2r−N1s+N1N2m
N1N2(N1+N2)

+l4)(z1N2−z2N1). (3.49)Now, to mat
h the z1, z2 terms in both sides of eq. (3.46), we �rst note the identity:
(

r + s

N1 +N2

)

(z1 + z2)+

(

N2r −N1s

N1N2(N1 +N2)

)

(z1N2 − z2N1) =

(

r

N1

z1 +
s

N2

z2

)

, (3.50)and �nd 
oe�
ients p1, p2, q1, q2 su
h that,
(p1l1 + p2l2) (z1 + z2) + (q1l1 + q2l2) (z1N2 − z2N1) = (l1z1 + l2z2) . (3.51)Eq. (3.51) leads to the following values for p1, p2, q1, q2 :

p1 =
N1

N1 +N2
, p2 =

N2

N1 +N2
,

q1 =
1

N1 +N2
, q2 =

−1

N1 +N2
. (3.52)Then the two terms, 
ontaining z1, z2, in the RHS of eq. (3.48) 
an be rewritten as:

e
2πi( r

N1
+l1)z1 e

2πi( s
N2

+l2)z2 = e
2πi( r+s

N1+N2
+

N1l1
N1+N2

+
N2l2

N1+N2
)(z1+z2) e

2πi(
N2r−N1s

N1N2(N1+N2)
+

l1−l2
N1+N2

)(z1N2−z2N1).(3.53)Similarly, 
oe�
ients p, q satisfying identity:
p

[

r + s

N1 +N2
+

N1l1
N1 +N2

+
N2l2

N1 +N2

]2

+ q

[

N2r −N1s

N1N2(N1 +N2)
+

l1 − l2
N1 +N2

]2

= (3.54)
[

r

N1
+ l1

]2

N1 +

[

s

N2
+ l2

]2

N2,are given as:
p = N1 +N2, q = N1N2(N1 +N2). (3.55)Using eqs. (3.50), (3.51), (3.53) and (3.55), the RHS of eq. (3.48) (appearing in the LHSof eq. (3.46) ) 
an be re-written :

∑

l1∈Z

∑

l2∈Z

e
πi( r

N1
+l1)2τN1 e

2πi( r
N1

+l1)z1 · e
πi( s

N2
+l2)2τN2 e

2πi( s
N2

+l2)z2 =
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∑

l1∈Z

∑

l2∈Z

e
πi( r+s

N1+N2
+

N1l1
N1+N2

+
N2l2

N1+N2
)2τ(N1+N2) e

2πi( r+s
N1+N2

+
N1l1

N1+N2
+

N2l2
N1+N2

)(z1+z2)·

e
πi(

N2r−N1s
N1N2(N1+N2)

+
l1−l2

N1+N2
)2τN1N2(N1+N2) e

2πi(
N2r−N1s

N1N2(N1+N2)
+

l1−l2
N1+N2

)(z1N2−z2N1). (3.56)Proving the identity, eq. (3.46), now amounts to showing that the RHS of eq. (3.49)mat
hes pre
isely with that of eq. (3.56) with m in eq. (3.49) taking value as m =

0, 1, ......., (N1 +N2 − 1). We note:1. When l1 = l2 in eq. (3.56), the terms in the RHS are identi
al to those in the RHSof eq. (3.49), with m = 0, l4 = 0, if we identify l2 with l3.When l1 = l2 + 1, the terms in eq. (3.56) exa
tly mat
h with those in eq. (3.49)obtained for the values m = 1, l4 = 0 with the identi�
ation of l2 with l3.This goes on up to l1 = l2 + (N1 + N2 − 1) whi
h 
orresponds to the 
ase for
l3(= l2), m = (N1 +N2 − 1) and l4 = 0.2. The terms obtained in eq. (3.56) for l1 = l2+(N1+N2) 
orresponds to m = 0, l4 = 1and l2 +N1 identi�ed with l3 in eq. (3.49).When l1 = l2 + (N1 + N2) + 1 the terms 
orrespond to the 
ase m = 1, l4 = 1 and
l2 +N1 identi�ed with l3 in eq. (3.49).This goes on till l1 = l2 + (N1 + N2) + (N1 + N2 − 1) when they 
orrespond to
m = (N1 +N2 − 1), l4 = 1 and l2 +N1 identi�ed with l3 in eq. (3.49).3. Similarly the terms for l1 = l2+2(N1+N2) 
orrespond to the terms for m = 0, l4 = 2and l3 = (l2 + 2N1) . And so on....We have therefore shown a one-to-one 
orresponden
e between the terms in the RHSof eqs. (3.49) and (3.56). The identity eq. (3.46 ) has thus been proved expli
itly.3.4.4 Appli
ation to Yukawa 
omputation for fa
torized toriWe now make use of the above Ja
obi theta identity as well as of the expli
it forms of thefermion and s
alar wavefun
tions, de�ned in terms of the basis fun
tions in eq. (3.36) towrite the expression for the Yukawa intera
tion term. More pre
isely, in order to evaluatethe Yukawa 
oupling given in eq. (3.45), one uses the theta identity of eq. (3.46) and thebasis fun
tion in eq. (3.36) and pro
eeds by writing down:

ψi,Iab(τ, z).ψj,Ica(τ, z) =

(

2Imτ

A2

)
1
2

(IabIca)
1
4 eiπ(N1+N2)zIm z/Im τ×

×ϑ

[

i
N1

0

]

(N1z,N1τ) · ϑ

[

j
N2

0

]

(N2z,N2τ), i = 0, . . . , N1 − 1, j = 0, . . . , N2 − 1. 48
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tions in Magnetized branes:Theta identities and Yukawa 
ouplings(3.57)where we have also made use of the normalization fa
tor, N given in eq. (3.42), andidenti�ed for a T 2 
ompa
ti�
ation:
N1 = Iab, N2 = Ica, (3.58)with
Iab = ma −mb, etc. (3.59)giving
N3 = (N1 +N2) = Icb. (3.60)Now, using the theta identity (3.46), eq. (3.57) 
an be rewritten in the form:

ψi,Iab(τ, z).ψj,Ica(τ, z) =

(

2Imτ

A2

) 1
4
(

IabIca
Icb

) 1
4 ∑

m∈ZIcb

ψi+j+Iabm,Icb(τ, z)×

×ϑ

[

Icai−Iabj+IabIcam
IabIcaIcb

0

]

(0, τIabIcaIcb). (3.61)The Yukawa intera
tion (3.45), is then evaluated using the orthogonality property of thewavefun
tions given in eq. (3.41) and reads 8:
Yijk = σabcg

(

2Imτ

A2

)
1
4
(

IabIca
Icb

)
1
4 ∑

m∈ZIcb

δk,i+j+Iabm · ϑ

[

Icai−Iabj+IabIcam
IabIcaIcb

0

]

(0, τIabIcaIcb).(3.62)After imposing the Krone
ker delta 
onstraint, we obtain:
Yijk = σabcg

(

2Imτ

A2

)
1
4
(

IabIca
Icb

)
1
4

ϑ

[

−
(

j
Ica

+ k
Ibc

)

/Iab

0

]

(0, τIabIcaIcb). (3.63)The �nal answer 
an be expressed as :
Yijk = σabcg

(

2Imτ

A2

)
1
4
(

IabIca
Icb

)
1
4

ϑ

[

δijk

0

]

(0, τ |IabIbcIca|), (3.64)8In eq. (3.62), the 
omputed Yukawa 
oupling is evaluated from the expression of Yukawa intera
tiongiven in eq. (3.45) whi
h is a triple overlap of basis wavefun
tions given in eq. (3.36). These basisfun
tions not only represent zero modes of the Dira
 operator but also eigenfun
tions of the Lapla
ian.This is expli
itly shown in Ref. [6℄ for the positive 
hirality wavefun
tion and in Se
tion (3.6.4) for thenegative 
hirality wavefun
tion. 49
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tions in Magnetized branes:Theta identities and Yukawa 
ouplingswith
δijk =

i

Iab
+

j

Ica
+

k

Ibc
. (3.65)The result 
an be easily extended to the 
ase of fa
torized T 6 (3.1) and the intera
tion isthen written in terms of the produ
ts of theta fun
tions of the type appearing in eq. (3.64).We refer the reader to [6℄ for the details and now go on to the generalization when �uxesof both oblique and diagonal forms are present. Su
h magneti
 �uxes do not respe
t thefa
torization and hen
e involve the wavefun
tions written in terms of the general Riemanntheta fun
tions.3.5 General tori and `oblique' �uxesLet us now 
onsider the more general 
ase where the 2n-dimensional torus is not ne
es-sarily fa
torizable. A generi
 �at 2n-dimensional torus, T 2n ≃ Cn/Λ, inherits a 
omplexstru
ture from the 
overing spa
e Cn. Its geometry 
an hen
e be des
ribed in terms of aKähler metri
 and 
omplex stru
ture as

ds2 = hµν̄dz
µdz̄ν̄

dzµ = dxµ + Ωµ
νdy

ν
(3.66)where xµ, yµ ∈ (0, 1), µ = 1, . . . , n, parametrize the 2n ve
tors of the latti
e Λ. Thenatural generalization of the Ja
obi theta fun
tion (3.47) to this higher-dimensional toriis known as Riemann ϑ-fun
tions, as de�ned in eq. (3.25):

ϑ

[

~a
~b

]

(~ν|Ω) =
∑

~l∈Zn

eiπ(
~l+~a).Ω.(~l+~a)e2πi(

~l+~a).(~ν+~b). (3.67)As already elaborated upon earlier, in our 
ase, although the geometry itself may besu
h that T 6 is fa
torizable as in eq. (3.1), the �uxes turned on, may violate in general thefa
torizable stru
ture of the tori. Indeed, the general wavefun
tions for bifundamentalsgiven in terms of basis fun
tions (3.24):
ψ
~j,N(~z,Ω) = N · e{iπ[N.~z].(N.ImΩ)−1Im[N.~z]} · ϑ

[

~j

0

]

(N.~z|N.Ω),

= N · eiπ[N·~z]·(ImΩ)−1·Im ~z · ϑ

[

~j

0

]

(N · ~z |N · Ω) , (3.68)with N's being the interse
tion matri
es, depend on su
h �uxes expli
itly in terms of its50



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsmodular parameter argument: NΩ; this breaks in general the fa
torized stru
ture, evenif the 
omplex stru
ture Ω is diagonal. The expli
it form of the normalization fa
tor Nappearing in eq. (3.68) is given eq. (3.30). One needs to obtain an overlap integralof three basis fun
tions of the type (3.68), in order to generalize the results of Yukawa
omputations given in eqs. (3.45), (3.61) - (3.64).3.5.1 Riemann theta fun
tion identityWe now generalize eq. (3.46) to the 
ase of general Riemann theta fun
tions given in eq.(3.67). Expli
itly, we 
onsider the LHS of our identity to be given by an expression:
ϑ

[

~j1

0

]

(~z1|N1 · Ω) · ϑ

[

~j2

0

]

(~z2|N2 · Ω) (3.69)where Ω is an n×n 
omplex matrix andN1,N2 are n×n integer-valued symmetri
 matri
essatisfying the 
onstraints (3.26). These 
onstraints, in turn, follow from the 
onvergen
eof theta series expansion, as well as from the holomorphi
ity of �uxes: for instan
e, eq.(2.31) when pxx and pyy 
omponents of �uxes are zero, with xi, yi, (i = 1, 2, 3) denoting the
oordinates of three T 2's in the de
omposition (3.1) and (3.66). Generalization to the 
asewhen pxx and pyy �ux 
omponents are also present is dis
ussed later on in subse
tion 3.5.7,and is relevant for evaluating the Yukawa 
ouplings in models with moduli stabilization,su
h as the one of [7℄.Initially, we also restri
t ourselves to the 
ase when Ω = τIn with In being a n ×

n identity matrix, implying that the geometri
 stru
ture is fa
torized as in eq. (3.1).However, in Se
tion 3.5.6, we generalize the results further to the 
ase when Ω is anarbitrary matrix satisfying the F(2,0) = 0 supersymmetry 
ondition, as given in eqs. (2.26)and (2.27). Then, using the de�nition of Riemann ϑ-fun
tions (3.67), the expression ineq. (3.69) 
an be expanded as:
ϑ

[

~j1

0

]

(~z1|N1τ) · ϑ

[

~j2

0

]

(~z2|N2τ) =
∑

~l1,~l2∈Zn

eπi(
~j1+~l1)·N1τ ·(~j1+~l1)e2πi(

~j1+~l1)· ~z1·

eπi(
~j2+~l2)·N2τ ·(~j2+~l2)e2πi(

~j2+~l2)· ~z2 . (3.70)Now, by de�ning 2n-dimensional ve
tors:
(~j+~l) = ( ~j1 + ~l1

~j2 + ~l2

)

, ~z = ( ~z1

~z2

)

, (3.71)51



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsand the 2n× 2n dimensional matrix:Q =

(

N1τ 0

0 N2τ

)

, (3.72)eq. (3.70) 
an be re-written as:
ϑ

[

~j1

0

]

(~z1|N1τ) · ϑ

[

~j2

0

]

(~z2|N2τ) =
∑

~l∈Z2n

eπi(
~j+~l)T ·Q·(~j+~l)e2πi(~j+~l)T ·~z. (3.73)Our aim in 
ombining the terms into 2n dimensional ve
tors and matri
es is to gen-eralize the pro
edure outlined in [119℄ to our situation, namely when two theta fun
tionsappearing in the LHS of the identity (that we propose below) 
arry independent modularparameter matri
es N1τ and N2τ , whi
h generally may not 
ommute. Note that the re-sults of [119℄ are insu�
ient to give su
h an identity as they involve theta fun
tions whosemodular parameter matri
es are proportional to ea
h other and therefore 
ommute. Inorder to pro
eed, we note that using a transformation matrix:

T =

(

1 1

αN1
−1 −αN2

−1

)

, (3.74)
T T =

(

1 N1
−1αT

1 −N2
−1αT

)

, (3.75)and
T−1 = (N1

−1 +N2
−1)−1

(

N2
−1 α−1

N1
−1 −α−1

)

, (3.76)with α being an arbitrary matrix (to be determined below) and N1,N2 being real sym-metri
 matri
es, due to the 
ondition (3.26) (for Ω = τIn), one obtains:Q′ ≡ T ·Q · T T =

(

(N1 +N2)τ 0

0 α(N1
−1 +N2

−1)ταT

)

. (3.77)In the following we also make use of the identities:
(N1

−1 +N2
−1) = N1

−1(N1 +N2)N2
−1 = N2

−1(N1 +N2)N1
−1 (3.78)and

(N1
−1 +N2

−1)−1 = N1(N1 +N2)
−1N2 = N2(N1 +N2)

−1N1 (3.79)52



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsin simplifying 
ertain expressions.The transformation matrix T de�ned above is used to transform the produ
t of thetafun
tions in the LHS of eq. (3.73), in terms of a �nite sum over another produ
t of theta's,now with modular parameter matri
es: (N1+N2)τ and α(N1
−1 +N2

−1)ταT . Expli
itly,we 
an write the terms appearing in the exponents in the RHS of eq. (3.73) as:
(~j+~l)T ·Q · (~j +~l) = (~j+~l)T · (T−1T ) ·Q · (T T (T−1)T ) · (~j+~l) (3.80)

(~j+~l)T · ~z = (~j+~l)T (T−1T ) · ~z. (3.81)Then using:
T · ~z =

(

~z1 + ~z2

αN1
−1 ~z1 − αN2

−1 ~z2

)

, (3.82)
(~j+~l)TT−1 =

(

(~j1 + ~l1)(N1
−1 +N−1

2 )−1N−1
2 + (~j2 + ~l2)(N

−1
1 +N−1

2 )−1N−1
1

((~j1 + ~l1)− (~j2 + ~l2))(N
−1
1 +N−1

2 )−1α−1

)T

,(3.83)and
(T−1)T (~j+~l) = ( N−1

2 (N−1
1 +N−1

2 )−1(~j1 + ~l1) +N−1
1 (N−1

1 +N−1
2 )−1(~j2 + ~l2)

(α−1)T (N−1
1 +N−1

2 )−1[(~j1 + ~l1)− (~j2 + ~l2)]

) (3.84)we 
an re-write eq. (3.70) as,
ϑ

[

~j1

0

]

(~z1|N1τ) · ϑ

[

~j2

0

]

(~z2|N2τ) =

∑

~l1,~l2∈Zn

eπi[{((
~j1+~l1)N1+(~j2+~l2)N2)(N1+N2)−1}·(N1+N2)τ ·{(N1+N2)−1(N1(~j1+~l1)+N2(~j2+~l2))}]

×e2πi{[((
~j1+~l1)N1+(~j2+~l2)N2)(N1+N2)−1]·[z̃1+z̃2]} ×

eπi{[((
~j1−~j2)+(~l1−~l2))N1(N1+N2)−1N2α−1]·[α(N1

−1(N1+N2)N2
−1)ταT ]·[(α−1)TN2(N1+N2)−1N1((~j1−~j2)+(~l1−~l2))]}

×e2πi{[((
~j1−~j2)+(~l1−~l2))N1(N1+N2)−1N2α−1]·[αN−1

1 ~z1−αN−1
2 ~z2]}. (3.85)Now, to reexpress the above series expansion in terms of a sum over theta fun
tionswith modular parameter matri
es: N1 + N2 and α(N1

−1 +N2
−1)αT , we rearrange theseries in eq. (3.85) in terms of new summation variables ~l3, ~l4, ~m, whose values and rangeswill be assigned later. In the 
ourse of going from eq. (3.85) to (3.87) below, however, one53



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsneeds to make sure that su
h rede�ned variables are integers. This requirement 
onstrainsthe matrix α whose `minimal' solution will be taken to be
α = (detN1 detN2)I. (3.86)We will later on dis
uss also the possibility of 
hoosing other forms of α and show thatsu
h 
hoi
es lead to the 
y
li
ity of the superpotential 
oe�
ients, as in eqs. (3.64), (3.65).Using eq. (3.86), the RHS of eq. (3.85) takes the form:

∑

~l3,~l4∈Zn

∑

~m

eπi[(
~j1N1+~j2N2+~mN1)(N1+N2)−1+~l3]·(N1+N2)τ ·[(N1+N2)−1(N1 ~j1+N2 ~j2+N1 ~m)+~l3]

·e2πi[(
~j1N1+~j2N2+~mN1)(N1+N2)−1+~l3]·[ ~z1+ ~z2] ×

e
πi[(~j1−~j2+~m)

N1(N1+N2)
−1N2

detN1 detN2
+~l4]·[(detN1 detN2)2N

−1
1 (N1+N2)N

−1
2 ]τ ·[

N2(N1+N2)
−1N1

detN1 detN2
(~j1−~j2+~m)+~l4]

·e2πi[(
~j1−~j2+~m)

N1(N1+N2)
−1N2

detN1 detN2
+~l4]·detN1 detN2[N

−1
1 ~z1−N

−1
2 ~z2] . (3.87)This series 
an now be reexpressed in terms of a �nite sum over produ
t of generalizedtheta fun
tions given in eq. (3.67), leading to a generalization of the identity (3.46) to:

ϑ

[

~j1

0

]

(~z1|N1τ) · ϑ

[

~j2

0

]

(~z2|N2τ) =

∑

~m

ϑ

[

(~j1N1 + ~j2N2 + ~m.N1)(N1 +N2)
−1

0

]

(~z1 + ~z2|(N1 +N2)τ)×

ϑ

[

[(~j1 − ~j2) + ~m]N1(N1+N2)−1N2

detN1 detN2

0

]

((detN1 detN2)(N1
−1~z1 −N2

−1 ~z2)|(detN1 detN2)
2(N1

−1(N1 +N2)N2
−1)τ),(3.88)where ~m =

∑

imi~ei are all ve
tors generated by the basis ve
tors ~ei:
















1

0

.

.

0

















,

















0

1

.

.

0

















etc., (3.89)
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Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsand lied within the unit-
ell de�ned by the new basis ve
tors:
~e′ = ~e(detN1 detN2)(N1

−1(N1 +N2)N2
−1). (3.90)The above identity already assumes the form Ω = τIn for the 
omplex stru
ture of

T 2n. As mentioned already, in subse
tion 3.5.6 below, we make further generalization toin
lude arbitrary 
omplex stru
ture Ω as well. Also, note that, due to the identities (3.78)and (3.79), the theta fun
tions appearing in the RHS of eq. (3.88) satisfy the 
onstraint(3.29) with respe
t to their own arguments.3.5.2 Proof of the identityWe now show the equality of the series expansions (3.85) and (3.87) to establish theidentity eq. (3.88). We also show that matrix α needs to be 
hosen as in eq. (3.86) forshowing the equality of eqs. (3.85) and (3.87) for the 
ase when detN1 and detN2 arerelatively prime. In other 
ases α 
an be 
hosen as the least 
ommon multiple of detN1and detN2. Here we assume them to be relatively prime, while the remaining 
ases 
anbe worked out in a similar fashion.We now follow an exer
ise similar to the one in Se
tion 3.4.3, to show that series ineqs. (3.85) and (3.87) pre
isely mat
h with ~m restri
ted to be an integer, provided α isgiven by eq. (3.86).1. When ~l1 = ~l2 in eq. (3.85), we have:
(~l1N1 + ~l2N2)(N1 +N2)

−1 = ~l2 (3.91)and
(~l1 − ~l2)N1(N1 +N2)

−1N2α
−1 = 0 (3.92)These terms are exa
tly same if we 
onsider the series given in eq. (3.87) for thevalues ~l3(≡ ~l2), ~l4 = 0 and ~m = 0, irrespe
tive of the 
hoi
e for the matrix α.2. In order to see the restri
tion on the matrix α, one needs to understand how thenonzero integers ~l4 6= 0 in eq. (3.87) are generated from the terms in eq. (3.85). Inother words, one needs to make sure that

(~l1 − ~l2)N1(N1 +N2)
−1N2α

−1 ≡ ~l4 (3.93)
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Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsis an integer. This in turn is possible only if ~l1 is of the form:
~l1 = ~l2 + ~l4αN

−1
2 (N1 +N2)N

−1
1 . (3.94)However, sin
e ~l4, N1, N2, take integral values, the RHS in eq. (3.94) is an integeronly if α(N−1

1 +N−1
2 ) is an integer. In other words, for detN1 and detN2 relativelyprime, α needs to be of the form:

α = (detN1 detN2)P. (3.95)with P being an arbitrary invertible integer matrix. `Minimal' 
hoi
e also demands
detP = 1, otherwise ~l4 will not span over all integers. Then, sin
e P is invertible, itis �xed to be the identity matrix. We have therefore established the restri
tion on αas in eq. (3.86). At the same time, we have also proved that the series in eqs. (3.85)and (3.87) pre
isely mat
h for ~m = 0 provided ~l2 + detN1 detN2

~l4N
−1
2 is identi�edwith ~l3 in eq.(3.87). Note that (detN1 detN2)N

−1
2 is also integer valued and ensuresthat su
h an identi�
ation with ~l3 holds.3. On the other hand, When ~l1 = ~l2 + ~m in eq. (3.85), we end up with terms like:

(~l1N1 + ~l2N2)(N1 +N2)
−1 = ~l2 + ~m.N1(N1 +N2)

−1 (3.96)and
(~l1 − ~l2)

N1(N1 +N2)
−1N2

detN1 detN2

= ~m
N1(N1 +N2)

−1N2

detN1 detN2

(3.97)These terms 
an also be obtained in the series (3.87), for the following values of thevariables: ~l3(≡ ~l2), ~l4 = 0, ~m arbitrary. However, as seen above in eqs. (3.93), (3.94),the sum over ~m is �nite due to the fa
t that
~l1 − ~l2 = ~m = ~L detN1 detN2N

−1
2 (N1 +N2)N

−1
1 , (3.98)for ~L arbitrary integers, 
ontributes to the values of ~l4 in the RHS of eq. (3.87) byan amount ~L, while setting ~m to zero, ~l3 is identi�ed with ~l2 + detN1 detN2

~LN−1
2 .In other words, we have shown that the sum over ~m in (3.87) is over all integrallyde�ned ve
tors in the unit 
ell generated by the basis elements:

~e′ = ~e detN1 detN2N
−1
2 (N1 +N2)N

−1
1 (3.99)with ~e being the elements of the 
anoni
al basis (3.89). 56



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsWe have therefore proved that identity eq. (3.88) holds by expli
itly showing a one toone 
orresponden
e between the series in eqs. (3.85) and (3.87).3.5.3 Yukawa expressions for oblique �uxesWe now use the wavefun
tions given in eqs. (3.68) and (3.67), to obtain the expression ofYukawa intera
tions when oblique �uxes, spe
i�ed by interse
tion matri
es
N1 = Fa − Fb, N2 = Fc − Fa, N3 = Fc − Fb. (3.100)are turned on along branes a, b and c. N1, N2 and N3 are all real symmetri
 matri
es(in the absen
e of 
omponents pxx, pyy) and in addition the 
omplex stru
ture matrix is
hosen to be proportional to the identity: τIn, with τ 
omplex. We then have:

ψ
~i,N1(~z,Ω = τIn) · ψ

~j,N2(~z,Ω = τIn) =
(

2
n
2

) (

V ol(T 2n)
)−1 (

| detN1|.| detN2|(Imτ)
6
)

1
4

×eiπN3.~zIm ~z/Im τϑ

[

~i

0

]

(N1 · ~z|N1 · τ) · ϑ

[

~j

0

]

(N2 · ~z|N2 · τ). (3.101)Using the Riemann theta identity derived earlier in eq. (3.88), eq. (3.101) 
an be rewrittenas:
ψ
~i,N1(~z) · ψ

~j,N2(~z) =
∑

~m

(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1|.| detN2|(Imτ)3)

| detN3|

]
1
4

×

ψ(~iN1+~jN2+~mN1).N3
−1,N3(~z) · ϑ

[

[(~i−~j) + ~m] N1N3
−1N2

detN1 detN2

0

]

(0|(detN1 detN2)
2(N1

−1N3N2
−1)τ). (3.102)Note that the integrality 
ondition (3.29) is maintained by ψ(~iN1+~jN2+~mN1)N3

−1,N3(~z)appearing in the RHS of the above equation, sin
e the expression
[

(~iN1 +~jN2 + ~mN1)N3
−1
]

·N3 (3.103)is always an integer. On the other hand, the sum ~m in eq. (3.102) is over the integersinside the 
ell generated by the latti
e ve
tors in eq. (3.99) and total number of them isgiven by the volume of this 
ompa
t spa
e. The size of the 
ell, i.e., its volume mat
heswith those in eq. (3.60) and (3.61) for the T 2 
ase whi
h is just the number, N3 = Icb ineq. (3.60), of 
hiral states for brane interse
tion bc. However, the situation is di�erent for
T 2n, n > 1. This be
omes 
lear by observing that the size of the 
ell given in eq. (3.99)57



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsis bigger than the number of states (~k) in the interse
tion N3 between the branes b and
c by a fa
tor det(detN1 detN2N

−1
2 N−1

1 ). This fa
tor, on the other hand, for T 2 is unity.We therefore noti
e that the sum ~m is over many more terms than the a
tual number ofstates (~k) in the interse
tion N3 between the branes b and c.The extra fa
tor of terms appearing in eq. (3.102) 
an be explained by noti
ing that thesum over terms in eqs. (3.102) and (3.104) is over the states ψ(~iN1+~jN2+~mN1).N3
−1,N3(~z) thatare inside the 
ell in eq. (3.99) and 
ontribute to the Yukawa 
oupling by the orthogonalityrelation eq. (3.31). As any state (with more details given in the subse
tion-3.5.4) ~k,satisfying integrality 
onditions su
h as (3.29) is de�ned only upto the integer latti
eshifts, one therefore has appearan
e of the same states inside the volume of latti
e (3.99),multiple times. In other words, for any given state, in the RHS of eqs. (3.102), all thoseinteger ve
tor (~m) shifts also 
ontribute to the sum whi
h satisfy the integrality 
onditionfor ~mN1N3

−1 inside the 
ell (3.99). Expli
it solution of this 
ondition is presented lateron in se
tion 3.5.4 in eq. (3.110).Then, as in the T 2 
ase, orthonormality of wavefun
tions (3.31), implies that theYukawa 
oupling, whose expli
it form is given in se
tion 3.5.4, 
an be `formally' writtenin a form :
Yijk = gσabc

(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1|.| detN2|(Imτ)3)

| detN3|

]
1
4

×
∑

~m∈{~e′}

δ~k,N3
−1(N1

~i+N2
~j+N1 ~m)

×ϑ

[

[(~i−~j) + ~m] N1N3
−1N2

detN1 detN2

0

]

(0|(detN1 detN2)
2(N1

−1N3N2
−1)τ), (3.104)where by the summation index ~m ∈ {~e′}, one means to sum over all integer points insidethe latti
e generated by ~e′1,

~e′2 · · · ~e
′
n in eq. (3.99) and the Krone
ker delta is to identify allthe states ~k upto integer shifts.The above expression redu
es in the 
ase of T 2 �ux 
ompa
ti�
ation to eq. (3.63), sin
ethe Krone
ker delta 
onstraint has a unique solution in su
h a situation. To 
ompare thetwo expressions, note that the indi
es i, j, k in the fa
torized 
ase are s
aled with respe
tto the one of general tori, by the fa
tors 1

N1
, 1
N2

and 1
N3
, respe
tively. Then, the Krone
kerdelta 
onstraint in eq. (3.104) pre
isely mat
hes with the one in eq. (3.62). In the 
ase ofgeneral tori, however, the 
onstraint implies that the intera
tion terms involve the stateswhi
h satisfy the equation

N3
~k = (N1

~i+N2
~j +N1~m) (3.105)among the ve
tors N1

~i, N2
~j, N3

~k for ~m integers inside the unit 
ell given in eq. (3.90)58



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsand 
orresponding states ~k are only de�ned upto integer latti
e shifts. We now �nd allsu
h solutions of the latti
e shifts in the next subse
tion and present the expli
it answerfor the Yukawa 
oupling for general tori.3.5.4 Expli
t Yukawa 
oupling expressionsIn this subse
tion we now present the set of terms that 
ontribute to eqs. (3.102) and(3.104). In order to 
larify the situation we analyze the 
orresponden
e between the 
hiralmultiplet families of states su
h as the ones appearing in eq. (3.103) and the �uxes alongthe branes. Our dis
ussion is restri
ted to N being real symmetri
 matri
es, due to theimposition of the Riemann 
onditions (3.26) for the spe
ial 
omplex stru
ture Ω = τInunder dis
ussion.For a given pair of brane-sta
ks with interse
tion matrix N, the 
ondition eq. (3.29)that a state î needs to satisfy is N.̂i = integer. The solution of this 
ondition is: î = N−1~e,with ~e being the integer basis ve
tors in an n-dimensional spa
e as given in eq. (3.89).The states are therefore generated by the set of n ve
tors: îi = ~eiN
−1, with subs
ript

i = 1, 2 · · ·n and are det(N) in number, namely those whi
h are inside the 
ell generatedby ~ei's. Here and in following we also keep in mind that all the 
hiral multiplet states thatwe are dis
ussing, are de�ned only upto the shift by integer latti
e ve
tors ~ei's.To give an example: for n = 2 (
orresponding to T 4), with
N =

(

α γ

γ β

)

, (3.106)we have the basis ve
tors for generating the states:
î1 =

1

(αβ − γ2)

(

β

−γ

)

, î2 =
1

(αβ − γ2)

(

−γ

α

)

. (3.107)To obtain the degenera
y 
ount, we note that for the above example we have:
~e1 = α~i1 + γ~i2,

~e2 = γ~i1 + β~i2. (3.108)The number of independent states inside the 
ell with latti
e ve
tors ~e1 and ~e2 is then thedeterminant of the above transformation whi
h is detN. A generi
 state appearing in eq.
59



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplings(3.105) then has a form:
~i = m1

~i1 +m2
~i2, ~j = n1

~j1 + n2
~j2, ~k = p1 ~k1 + p2 ~k2. (3.109)with ~ji, ~ki de�ned in a similar way as in eq. (3.107) with respe
t to the 
orrespondinginterse
tion matri
es. Also, integers mi, ni, pi label the states of a 
hiral family in a givenbrane sta
k.We now go on to give expli
it solution for the ve
tor ~m that 
ontribute to the sumof terms in Yukawa 
oupling expressions (3.102) and (3.104), namely those inside the 
ellde�ned in eq. (3.99). The size of the 
ell, namely the number of states that it 
ontainsis equal to det(detN1 detN2N

−1
2 (N1 + N2)N

−1
1 ), as stated earlier. In a situation with

2× 2 matri
es, for example, it is detN1detN2detN3. For illustration purposes we restri
tourselves to the dis
ussion with 2 × 2 matri
es. However, all the results we write beloware valid for other situations as well.Now, restri
ting to this 2× 2 
ase for the simpli
ity of dis
ussion, we write all possiblesolutions for ~m that provide integer solutions for ~mN1N3
−1, as appearing in the de�nitionof states in eqs. (3.102), (3.103), and show that they are detN1detN2 in number. So thatthe degenera
y of the state mat
hes with detN1detN2detN3 given in the last paragraph.To 
ompare, note that for a diagonal �ux situation, as in se
tion-3.4, we have m = n3 asa single solution of an analogous 
ondition mn1n

−1
3 = integer, 
orresponding to the statedegenera
y whi
h is n3.The integer solutions for ~mN1N3

−1 are:
~m = ~pdetN1N3N1

−1 + ~̃pdetN2N3N2
−1, (3.110)where ~p is all integer ve
tors within a 
ell generated by ~edetN2N2

−1 and ~̃p is all inte-ger ve
tors within a 
ell generated by ~edetN1N1
−1. It is easy to see that ~m satis�es

~mN1N3
−1 = integer (by making use of N1 = N3 −N2). Together, for every solution ofthe �rst term in ~m we have detN1 solution for the se
ond term and this goes on for detN2number of terms from the �rst term. So that total degenera
y of su
h ~m is detN1detN2,as stated earlier.About the states: ~m given in eq. (3.110) de�nes a periodi
 set, in the same way as forthe T 2 
ase m = n3 de�nes the periodi
 set of states in the RHS of eqs. (3.61) and (3.62).There the states are expli
itly given as k = (0), (n1/n3), (2n1/n3), · · · [(n3 − 1)n1/n3] witha periodi
ity n3 for this series. Various states inside the 
ell (3.99) 
an also be found usingeq. (3.105) and making use of the 
ondition: N1 = N3 −N2 as: (also the fa
t that any60



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsstate is de�ned upto integer ve
tors). The states are:
~k = ~pdetN1N3

−1 + ~̃pdetN2N3
−1 etc. (3.111)and the state degenera
y is detN1detN2detN3.The Yukawa 
oupling 
an now be written in an expli
it form given by a sum of

detN1detN2 number of terms, whi
h 
an be read o� from eq. (3.102) dire
tly, with
~m repla
ed by

~̃m+ ~pdetN1N3N1
−1 + ~̃pdetN2N3N2

−1 (3.112)and now su
h ~̃m are the unique solutions of eq. (3.105) where all other solutions de�nedupto the shifts in ~̃m by ~pdetN1N3N
−1
1 + ~̃pdetN2N3N

−1
2 have been identi�ed.Eq. (3.104) now reads as:

Yijk = gσabc
(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1|.| detN2|(Imτ)3)

| detN3|

]
1
4

×
∑

~p,~̃p

×ϑ

[

[{(~i−~j) + (~kN3 −~iN1 −~jN2)N1
−1} N1N3

−1N2

detN1 detN2
+ (~p N2

detN2
+ ~̃p N1

detN1
)]

0

]

(0|(detN1 detN2)
2(N1

−1N3N2
−1τ), (3.113)or equivalently:

Yijk = gσabc
(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1|.| detN2|(Imτ)3)

| detN3|

]
1
4

×
∑

~p,~̃p

×ϑ

[

[(−~j + ~k) N2

detN1 detN2
+ (~p N2

detN2
+ ~̃p N1

detN1
)]

0

]

(0|(detN1 detN2)
2(N1

−1N3N2
−1τ). (3.114)Note that the sum over ~m is now broken into sum over ~p and ~̃p. We end this dis
ussionby reminding ourselves on
e again that ~p runs over all the states inside the 
ell generatedby ~e1detN2N2

−1 and ~e2detN2N2
−1. Similarly ~̃p runs over all the states inside the 
ellgenerated by ~e1detN1N1

−1 and ~e2detN1N1
−1.We now present two expli
it examples, one for the oblique situation and the other forthe 
ommuting diagonal �uxes. We show that our answer for the diagonal �ux is identi
alto the one for the diagonal yukawa 
oupling expression given in [6℄ for T 2n. In fa
t thisholds for any set of �uxes with N1, N2, N3 diagonal. On the other hand, we also showthat the set of terms given above in eqs. (3.113) and (3.114) 
an also be summed up in anumber of 
ases, for the oblique 
ases as well. 61



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsExample : Oblique �uxFor the oblique 
ase, by taking two non
ommuting matri
es:
N1 =

(

2 1

1 2

)

, N2 =

(

1

2

)

, (3.115)we have:
(detN1)N1

−1 =

(

2 −1

−1 2

)

, (detN2)N2
−1 =

(

2

1

)

. (3.116)The set of integer points inside the 
ell generated by ~e1detN2N2
−1 = (2, 0) and ~e2detN2N2

−1 =

(0, 1), are: (0, 0) and (1, 0), as det(detN2N2
−1) = 2. The set of integer points inside the
ell generated by ~e1detN1N1

−1 = (2,−1) and ~e2detN1N1
−1 = (−1, 2), are : (0, 0), (1, 0)and (0, 1), as det(detN1N1

−1) = 3.9Now, to illustrate our method, we 
on
entrate on �nding a parti
ular Yukawa intera
-tion among states: ~i = ~j = ~k = (0, 0). This parti
ular Yukawa now has the form, makinguse of Eq. (3.113) as:
Y000 = gσ000

(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1|.| detN2|(Imτ)3)

| detN3|

]
1
4

×
∑

~p,~̃p

ϑ

[

[(~p N2

detN2
+ ~̃p N1

detN1
)]

0

]

(0|(detN1 detN2)
2(N1

−1N3N2
−1τ)),To see what terms in ~p and ~̃p dependent arguements appear in the sum, we write downall the possibilities that arise from the 
ombinations:

(~p
N2

detN2

+ ~̃p
N1

detN1

) = ~p

(

1
2

1

)

+ ~̃p
1

3

(

2 1

1 2

) (3.117)with ~p = (0, 0), (1, 0) and ~̃p = (0, 0), (0, 1), (1, 0). All the six possibilities then imply that9Another example with mixed eigenvalues for the matrix N1 
an be 
onstru
ted by ex
hanging the o�-diagonal and diagonal entries in eq. (3.115) for N1. Su
h an example will be relevant for the situtationdis
ussed in later se
tions where interse
tion matri
es with both positive and negative eigenvalues aredis
ussed.
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Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsin Theta fun
tion we get the following expli
it sum:
(

ϑ

[

[(0, 0)]

0

]

+ ϑ

[

[(1
2
, 0)]

0

]

+ ϑ

[

[(2
3
, 1
3
)]

0

]

+ ϑ

[

[(1
3
, 2
3
)]

0

]

+ ϑ

[

[(1
6
, 1
3
)]

0

]

+

ϑ

[

[(5
6
, 2
3
)]

0

])

(0|(detN1 detN2)
2(N1

−1N3N2
−1τ)) (3.118)where a 
ommon modular parameter arguement of the all the six Theta terms have beenwritten outside of the bra
ket for saving spa
e. The integer sums of the six terms overinteger ~l are of the forms:

∑

~l

e[
~l+(q1,q2)](detN1 detN2)2(N1

−1N3N2
−1τ)[~l+(q1,q2)] (3.119)with ~l + (q1, q2) given expli
itly as:

~l + (0, 0), ~l + (
1

2
, 0), ~l + (

2

3
,
1

3
), ~l + (

1

3
,
2

3
), ~l + (

1

6
,
1

3
), ~l + (

5

6
,
2

3
), (3.120)for the six terms in eq. (3.118). It 
an also be seen that we 
an write them as:

(

l1

l2

)

+

(

m
2
+ 2n

3
n
3

)

≡

(

l1

l2

)

+
1

6

(

3 4

0 2

)(

m

n

) (3.121)with m = 0, 1 and n = 0, 1, 2. Now, using the inverse of the matrix
P =

1

6

(

3 4

0 2

)

, (3.122)appearing in eq. (3.121):
P−1 =

(

2 −4

0 3

)

, (3.123)we 
an write eq. (3.121) as:
1

6

(

3 4

0 2

)[(

2l1 − 4l2

3l2

)

+

(

m

n

)] (3.124)with m = 0, 1 and n = 0, 1, 2.It 
an now be seen that as l1, l2 vary over all integers, and m = 0, 1 and n = 0, 1, 2,63



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsthen the 
ombination of terms in the big square bra
ket in eq. (3.124) also span over ALLintegers. As a result we are able to take the fa
tor of matrix P out by summing over allthe six terms, while redu
ing the six terms in eq.(3.118) to one. The net result is then thearguement of theta fun
tion modi�es by the fa
tor:
(detN1 detN2)

2(N1
−1N3N2

−1τ) → P T (detN1 detN2)
2(N1

−1N3N2
−1τ)P (3.125)and �nal answer for Yukawa 
oupling is:

Y000 = gσ000
(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1|.| detN2|(Imτ)3)

| detN3|

]
1
4

×

ϑ

[

0

0

]

(0|P T (detN1 detN2)
2(N1

−1N3N2
−1τ)P ).We 
an similarly take 
are of other nonzero values~i,~j,~k et
. as well, but details are beingleft.Example : Diagonal FluxWe take another example, now with diagonal �uxes :

N1 =

(

2

3

)

, N2 =

(

5

2

)

. (3.126)Then:
(detN1)N1

−1 =

(

3

2

)

, (detN2)N2
−1 =

(

2

5

)

. (3.127)Set of integer points inside the 
ell generated by ~e1detN2N2
−1 = (2, 0) and ~e2detN2N2

−1 =

(0, 5), are: (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), as det(detN2N2
−1) =

10. On the other hand, set of integer points inside the 
ell generated by ~e1detN1N1
−1 =

(3, 0) and ~e2detN1N1
−1 = (0, 2), are: (0, 0), (1, 0) (0, 1), (1, 1), (2, 0), (2, 1), as det(detN1N1

−1) =

6. We now have:
~l + (~p

N2

detN2

+ ~̃p
N1

detN1

) = ~l + ~p

(

1
2

1
5

)

+ ~̃p

(

1
3

1
2

)

, (3.128)
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Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingswhi
h 
an also be written as:
~l + (~p

N2

detN2

+ ~̃p
N1

detN1

) =

(

l1

l2

)

+

(

1
2

1
5

)(

p1

p2

)

+

(

1
3

1
2

)(

p̃1

p̃2

)

, (3.129)with p1 = 0, 1, p2 = 0, 1, 2, 3, 4, p̃1 = 0, 1, 2, p̃2 = 0, 1.By taking a fa
tor of N1N2

detN1detN2
out, the above equation 
an also be rewritten as:

N1N2

detN1detN2

[~l + (~p
N2

detN2

+ ~̃p
N1

detN1

)] =

(

1
6

1
10

)[(

6l1

10l2

)

+

(

3p1

2p2

)

+

(

2p̃1

5p̃2

)](3.130)with p1 = 0, 1, p2 = 0, 1, 2, 3, 4, p̃1 = 0, 1, 2, p̃2 = 0, 1. It 
an again be 
he
ked expli
itlythat it leads to ALL integer variables inside the square bra
ket. The net result of summingover di�erent terms in the diagonal 
ase therefore is the appearan
e of the matrix outsidethe square bra
ket: N1N2

detN1detN2
. When multiplying the modular parameter arguement asappearing in eq. (3.113), from both left and the right, this pre
isely reprodu
es a modi�edmodular parameter whi
h mat
hes with the known diagonal �ux solultion for Yukawa
oupling in [6℄. This holds for the diagonal �ux in general, not restri
ted to the exampleabove.3.5.5 arbitrary-αThe results, obtained so far in this se
tion, are derived for a parti
ular 
hoi
e of α givenin the eq. (3.86). However, all the results 
an be re-derived for arbitrary α, appearing ineq. (3.74) et
.. For the fa
torized 
ase, we saw in that the Yukawa 
oupling expression(3.63) 
an be re
ast into a symmetri
 form in eq. (3.64) (apart from the prefa
tor),where the arguments of the Ja
obi theta fun
tions are invariant under a 
y
li
 
hange:

a→ b→ c. This is due to the 
y
li
 property of the superpotential 
oe�
ients obtained bya third derivative of the superpotential Wijk. The prefa
tor does not obey in general thissymmetry, sin
e it depends on the wave fun
tion normalizations (Kähler metri
). Here,we show a similar 
y
li
 property in the non-fa
torized 
ase, given above in the Yukawa
oupling expression (3.114), by making di�erent 
hoi
es of the matrix α in eq. (3.86). Notethat di�erent 
hoi
es of this matrix provide equivalent expressions for the wavefun
tions,and in turn Yukawa 
ouplings, sin
e they are related though a 
hange of variables insidethe theta sum. The α matrix 
an be 
hosen appropriately so that the rede�ned variablesin eqs. (3.94) and (3.98) are well de�ned integers. Below we present a few examples withdi�erent 
hoi
es of α, to demonstrate the 
y
li
ity mentioned above. 65



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsEq. (3.87), for arbitrary α, 
an be written as:
∑

~l3,~l4∈Zn

∑

~m

( eπi[(
~j1N1+~j2N2+~mN1)(N1+N2)−1+~l3]·(N1+N2)τ ·[(N1+N2)−1(N1

~j1+N2
~j2+N1 ~m)+~l3]

×e2πi[(
~j1N1+~j2N2+~mN1)(N1+N2)−1+~l3]·[ ~z1+ ~z2] )

× ( eπi[(
~j1−~j2+~m)N1(N1+N2)−1N2α−1+~l4]·[αN

−1
1 (N1+N2)N

−1
2 τ ]αT ·[(α−1)TN2(N1+N2)−1N1(~j1−~j2+~m)+~l4]

×e2πi[(
~j1−~j2+~m)N1(N1+N2)−1N2α−1+~l4]·[αN

−1
1 ~z1−N−1

2 ~z2] ) , (3.131)provided ~l4, de�ned in eq. (3.93), is an integer ve
tor, and so is ~m given in eq. (3.98). Inaddition the unit-
ell, within whi
h ~m lie, is now de�ned by the basis ve
tors :
~e′ = ~eα(N1

−1(N1 +N2)N2
−1). (3.132)Moreover, eq. (3.88) takes the form:

ϑ

[

~j1

0

]

(~z1|N1τ) · ϑ

[

~j2

0

]

(~z2|N2τ) =

∑

~m

ϑ

[

(~j1N1 + ~j2N2 + ~m.N1)(N1 +N2)
−1

0

]

(~z1 + ~z2|(N1 +N2)τ)

×ϑ

[

[(~j1 − ~j2) + ~m]N1(N1 +N2)
−1N2α

−1

0

]

(

α(N1
−1 ~z1 −N2

−1~z2)|α(N1
−1(N1 +N2)N2

−1τ)αT
)

. (3.133)It is then easy to see, all equations from (3.101) to (3.104) go through for arbitrary α,giving the following expression for the Yukawa 
ouplings:
Yijk = gσabc

(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1|.| detN2|(Imτ)3)

| detN3|

]
1
4

×
∑

~m

ϑ

[

(−~j + ~k)N2α
−1 + ~mN1N3

−1N2α
−1

0

]

(0|α(N1
−1N3N2

−1τ)αT ). (3.134)where the sum ~m is now over all the integer solutions of ~mN1N3
−1 in the 
ell given in eq.(3.132). Expli
it 
ontributions to this sum, of 
ourse, will depend on the exa
t form of α.In subse
tion 3.5.4, we have presented the 
ase of α = detN1detN2.We now study how the above expression (3.134) redu
es for another 
hoi
e of α, su
has:

α = N3
−1N1(detN2. detN3). (3.135)66
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tions in Magnetized branes:Theta identities and Yukawa 
ouplingsNote, for this 
hoi
e of α, that the degenera
y of states in the 
ell given in eq. (3.132) is
det(detN3detN2N2

−1). As a result, for the 
ase of 2 × 2 matri
es for example, one nowexpe
ts the sum over ~m to run over detN2detN3 values. Expli
it solutions are now givenas:
~m = ~pdetN2N3N2

−1 + ~̃pdetN3, (3.136)where ~p is all integer ve
tors within a 
ell generated by ~edetN3N3
−1 and ~̃p is all integerve
tors within a 
ell generated by ~edetN2N2

−1. It is again easy to see that ~m satis�es
~mN1N3

−1 = integer (by making use of N1 = N3 −N2).The 
hara
teristi
 of the ϑ-fun
tion in eq. (3.134), be
omes:
(−~j + ~k)N2α

−1 = (−~kN1 +~iN1 + ~mN1)
N1

−1N3

(detN2. detN3)

=
(−~k +~i)N3

(detN2. detN3)
, (3.137)where in the �rst equality we have made use of eq. (3.105). Also we have,

α(N1
−1N3N2

−1τ)αT = (N3
−1N1)(N1

−1N3N2
−1)(N1N3

−1)τ(detN2. detN3)
2

= (N2
−1N1N3

−1τ)(detN2. detN3)
2. (3.138)The Yukawa 
ouplings then read (following the exer
ise performed in subse
tion 3.5.4):

Yijk = gσabc
(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1|.| detN2|(Imτ)3)

| detN3|

]
1
4

×

∑

~p,~̃p

ϑ

[

(−~k +~i) N3

detN2 detN3
+ (~p N3

detN3
+ ~̃p N2

detN2
)

0

]

(0|(detN2 detN3)
2(N2

−1N1N3
−1)τ),(3.139)where the summation over indi
es ~p and ~̃p is explained earlier after eq. (3.136). We 
analso expli
itly obtain the sums, as done for various examples in the last subse
tion.Now, a 
omparison of eqs. (3.114) and (3.139) shows a symmetry between the ϑ-fun
tion 
hara
teristi
s in these 
ases, in
luding the summation variables ~p and ~̃p. It isobvious that the repla
ement ~i → ~j,~j → ~k,~k →~i and N1 → N2,N2 → N3,N3 → N1 ineq. (3.114) results eq. (3.139). We have thus established that just as in the fa
torized 
ase,for oblique �uxes too, one 
an show the 
y
li
ity property of the Yukawa superpotential
oe�
ients, as naively expe
ted.
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Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplings3.5.6 General 
omplex stru
tureIn the previous subse
tions 3.5.1 - 3.5.3, we have 
on�ned ourselves to the 
omplex stru
-ture matrix Ω = τIn for a 2n dimensional torus. This implies the restri
tion to orthogonaltori, a solution whi
h is already used in many phenomenologi
ally interesting models.However, the results are easily generalized to 
omplex stru
ture with arbitrary Ω. Morepre
isely, to write down an identity generalizing eq. (3.88) one starts with the produ
texpression given in eq. (3.69) and res
ales N1, N2 in eqs. (3.72) - (3.90) to N1Ω/τ ,
N2Ω/τ . At the same time, the matrix α in eq. (3.86) is also res
aled :

α → α̃ = detN1 detN2Ω/τ =
αΩ

τ
. (3.140)Moreover, one needs to take into a

ount that in relations su
h as (3.75) earlier, we havemade use of the property NT = N, whi
h is true for the 
omplex stru
ture of the form:

τIn. Repla
ements: Nτ → NΩ are, however, to be done in the original expression.Expli
itly, under the 
hanges mentioned, the transformation matrix T in eq. (3.74)remains un
hanged, while its transposition in eq. (3.75) is now written as:
T T =

(

1 N1
−1TαT

1 −N2
−1TαT

)

. (3.141)Also, (3.76) is un
hanged, whereas Q′ in eq. (3.77) goes over toQ′ ≡ T ·Q · T T =

(

(N1 +N2)Ω 0

0 α(N1
−1 +N2

−1)ΩTαT

)

, (3.142)where we have made use of the fa
t that both (N1 +N2)Ω and (N1
−1 + N2

−1)ΩT aresymmetri
 matri
es, due to the 
ondition (2.31), with N de�ned as NT = paxy − pbxy. Thenexpressions (3.82) and (3.83) remain un
hanged, while (3.84) is modi�ed to:
(T−1)T(~j+~l)=(N−1

2
T
(N−1

1
T
+N−1

2
T
)−1(~j1 + ~l1) +N−1

1
T
(N−1

1
T
+N−1

2
T
)−1(~j2 + ~l2)

(α−1)T (N−1
1

T
+N−1

2
T
)−1[(~j1 + ~l1)− (~j2 + ~l2)]

)(3.143)

68



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsThe identity (3.88) then takes the form:
ϑ

[

~j1

0

]

(~z1|N1Ω) · ϑ

[

~j2

0

]

(~z2|N2Ω) = (3.144)
∑

~m

ϑ

[

(~j1N1 + ~j2N2 + ~m.N1)(N1 +N2)
−1

0

]

(~z1 + ~z2|(N1 +N2)Ω)×

ϑ

[

[(~j1 − ~j2) + ~m]N1(N1+N2)−1N2

detN1 detN2

0

]

((detN1 detN2)(N1
−1 ~z1 −N2

−1 ~z2)|(detN1 detN2)
2(N1

−1(N1 +N2)N2
−1ΩT )),leading to the expression for the Yukawa intera
tion:

Yijk = σabcg
(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1|.| detN2|| detΩ|)

| detN3|

]
1
4

×
∑

~p,~̃p

ϑ

[

(−~j + ~k) N2

detN1 detN2
+ (~p N2

detN2
+ ~̃p N1

detN1
)

0

]

(0|(detN1 detN2)
2(N1

−1N3N2
−1ΩT )).(3.145)We leave the rest of the details, whi
h 
an be worked out easily.3.5.7 Hermitian interse
tion matri
esIn subse
tions 3.5.1, 3.5.2, 3.5.3, we have assumed that interse
tion matri
es N1,N2 et
.are real symmetri
. As explained, this restri
tion originates from the 
ase when �uxes pxx,

pyy are zero and the interse
tion matrix N is represented by the real matrix pxy, whi
h issymmetri
 whenever the 
omplex stru
ture is of the 
anoni
al form: Ω = iId. Moreover,the Yukawa 
oupling expression was generalized ni
ely in the last subse
tion to the 
aseof arbitrary 
omplex stru
ture, as well.In this subse
tion we dis
uss the 
ase when �uxes pxx and pyy are also present, inaddition to those of the type pxy and pyx. Furthermore, all these �uxes are 
onstrainedby the 
onditions (2.26) and (2.27) giving a resulting (1, 1) - form �ux whi
h 
an berepresented by the Hermitian matrix (2.28), (2.29). We expli
itly present the 
ase of
Ω = iId solution (Id : d-dimensional Identity matrix), whi
h is parti
ularly simple, sin
ein this 
ase due to 
onstraints (D.1), the Hermitian �ux has the simple �nal form of eq.(D.2). The generalization to arbitrary 
omplex stru
ture Ω 
an also be done, but is leftas an exer
ise.Wavefun
tions on T 6, as given in eq. (3.68), satisfy the following �eld equations (3.22)69



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsand (3.23):
∂̄iχ

ab
+ + (A1 −A2)z̄iχ

ab
+ = 0, (i = 1, 2, 3). (3.146)We now show that the solution for the above equation, together with proper periodi
ityrequirements on T 6, is given by the basis elements:

ψ
~j,N(~z) = N~j · f(z, z̄) · Θ̂(z, z̄)

= N~j · e
iπ[(NR−iNI)·~z]·Im~z · ϑ

[

~j

0

]

(NR · ~z |NR · iI3) (3.147)where NR is a real, symmetri
 matrix.The wavefun
tion given in eq. (3.147) satis�es the Dira
 equations (3.146) for thefollowing gauge potentials.
(A1 − A2)z̄j =

(π

2

)

zi(NR − iNI)ij̄, (3.148)whi
h exa
tly mat
hes with eq. (3.23) for the 
omplex stru
ture Ω = iI3. The interse
tionmatrix is therefore given by :
N = NR − iNI, (3.149)where we identify,

NR = paxy − pbxy, NI = paxx − pbxx. (3.150)The wavefun
tion des
ribed in eq. (3.147) 
an be re-written in terms of the real 
oordinates
~x and ~y as well as matri
es NR, NI. By a slight abuse of notation, below, only for thissubse
tion, we use NR = pxy, NI = pxx, by setting pb's to zero in eq. (3.150) andsuppressing the supers
ript a in pa. Su
h a notational 
hange, helps to make 
omparisonof the transformation rules we derive for the wavefun
tion written above in eq. (3.147)with general transition fun
tions, 
onsistent with the gauge transformations along the
2n non-
ontra
tible 
y
les of T n, given in [6℄. These transition fun
tions are written inequations (4.40), (4.41) of [6℄ for the �elds that transform in fundamental representationrather than as bifundamentals. Hen
e, the notation 
hanges above are meant to make theexpressions 
onsistent with the ones of [6℄.
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Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsThe wavefun
tion (3.147), in the real 
oordinates ~x and ~y, then reads:
ψ
~j,N(~z) = N~j · e

iπ[(xi·p
xiyj

·yj)+i(−xi·p
xixj

·yj+yi·p
xiyj

·yj)]

·
∑

li∈Zn

eiπ(i)[(li+ji)·pxiyj ·(lj+jj)]e2iπ[(li+ji)·pxiyj ·(x
j+iyj)]. (3.151)This expression in terms of real 
oordinates is useful in 
omparing the transformationproperties of the wavefun
tion over T 6 with the one in [6℄. The transformation properties,as derived from eq. (3.147), are given by,

ψ
~j,N(~z + ~n) = eiπ([N·~n]·Im~z) · ψ

~j,N(~z),

ψ
~j,N(~z + i~n) = e−iπ([Nt·~n]·Re~z) · ψ~j,N(~z),

(3.152)provided that
• (NR)ij̄ ≡ pxiyj ∈ Z, i.e NR is integrally quantized,
• ~j satis�es ~j ·NR ∈ Zn.We therefore noti
e that the integer quantization is imposed only on the symmetri
 part

NR of the interse
tion matrix from the periodi
ity of the wavefun
tion as well. However,Dira
 quantization already imposes both pxy and pxx to be integral for unit windings, asdis
ussed in Se
tion 2.3.Using eq. (3.151), the expressions (3.152) 
an be re-written in terms of real 
oordinatesas:
ψ
~j,N(~x+ ~n + i~y) = eiπ[ni(pxiyj−ip

xixj
)yj ] · ψ

~j,N(~x+ i~y), (3.153)
ψ
~j,N(~x+ i[~y + ~n]) = e−iπ[ni(pxjyi−ip

xjxi
)xj ] · ψ

~j,N(~x+ i~y). (3.154)In order to see that eqs. (3.153) and (3.154) are the proper transformation properties of thefermion wavefun
tion over T 6, let us 
ompare them with the the transition fun
tions eq.(4.41) of [6℄ given for a fundamental representation in six real 
oordinatesXI , I = 1, · · · , 6,as used in our eq. (2.21) as well. After 
hanging variables �rst to the 
oordinates xi, yi,
i = 1, 2, 3 and then making 
oordinate transformation to zi, iz̄i, as des
ribed in Se
tion2.3, the general transition fun
tion is given by,

χ(xi, yi) = eiπ[(mi+ini).Fij̄(y
j+ixj)+(imi+ni).Fīj(x

j+iyj)]. (3.155)71



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsIn 
orresponden
e to the transformation along the 1-
y
les, the integer parameters on xiand yi are denoted as mi and ni respe
tively. One then has two 
ases:Case -I : When ni = 0, i.e ~x −→ (~x+ ~m), eq. (3.155) redu
es to
χ(xi, yi) = eiπ{[mi.Fij̄ .y

j−mi.Fīj .y
j ]+i[mi.Fij̄ .x

j+mi.Fīj .x
j ]},

= e2iπ(mi.Fij̄ .y
j), (3.156)where we used the hermiti
ity property of F . Using the expression (D.2 ) in eq. (3.156),we re
over the transformation given in eq. ( 3.153).Case -II : When mi = 0 i.e ~y −→ (~y + ~n), eq. (3.155) takes the form,

χ(xi, yi) = eiπ{[−niFij̄x
j+niFījx

j ]+i[niFij̄y
j+niFījy

j ]},

= e−2iπ[ni.Fij̄ .x
j]. (3.157)Again, using eq. (D.2 ) in eq. (3.157), we reprodu
e the transformation (3.154).It 
an also be easily seen that the basis wavefun
tions given in eqs. (3.147) and (3.151)satisfy the orthonormality 
ondition

∫

T 2n

(ψ
~k,N)†ψ

~j,N = δ~j,~k , (3.158)by �xing the normalization 
onstant to
N~j = (2n|detNR|)

1/4 ·Vol(T 2n)−1/2, ∀j . (3.159)We have therefore 
on�rmed that the wavefun
tion written in (3.147) is not only a solutionof the �eld equation, but also has the 
orre
t periodi
ity properties on the torus underthe gauge transformation. Now, regarding the Yukawa intera
tion, sin
e only NR, whi
his real symmetri
 matrix, appears in the Θ̂(z, z̄) part of the wavefun
tion (3.147), allthe theta fun
tion identities des
ribed in Se
tions 3.5.1, 3.5.2 hold for this new Θ̂(z, z̄).Similarly, as in the expression (3.114), the Yukawa 
oupling Yijk now has the followingform,
Yijk = gσabc

(

2
n
2

)
1
2
(

V ol(T 2n)
)− 1

2

[

(| detN1
R|.| detN

2
R|)

| detN3
R|

]
1
4

×
∑

~p,~̃p

ϑ

[

(−~j + ~k)
N2

R

detN1
R

detN2
R

+ (~p
N2

R

detN2
R

+ ~̃p
N1

R

detN1
R

)

0

]

(0|(detN1
R detN2

R)
2(N1

R

−1
N3

RN
2
R

−1
)τ)(3.160)72



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingswith ~p running over all the states inside the 
ell generated by ~e1detN
2
RN

2
R

−1 and
~e2detN

2
RN

2
R

−1. Similarly ~̃p runs over all the states inside the 
ell generated by ~e1detN1
RN

1
R

−1and ~e2detN
1
RN

1
R

−1.3.5.8 Constraints on the results in se
tion-3.5 and further gener-alizationTo summarize, in this se
tion we have given a 
lose form expression for the Yukawa 
ou-plings in the magnetized brane 
onstru
tions, when in general both oblique and diagonal�uxes are present along the branes. However, the results of this se
tion are somewhatrestri
tive, sin
e the basis wavefun
tions used for the 
omputations are well de�ned onlywhen the interse
tion matri
es satisfy a positivity 
ondition given in eq. (3.26) for arbi-trary 
omplex stru
ture Ω. A similar positivity 
riterion, for the 
ase when pxixj and pyiyjare nonzero, 
an be written using the wavefun
tion (3.147), as well; it implies simply thepositivity of NR.On the other hand, in realisti
 string model building, one may need interse
tion ma-tri
es that are not ne
essarily positive de�nite. The simplest examples 
orrespond simplyto diagonal interse
tion matri
es, having some positive and some negative elements alongthe diagonal. In su
h a fa
torized torus 
ase, there is a unique pres
ription, to de�nethe basis fun
tions 
orresponding to the negative elements in the interse
tion matrix, asgiven in [6℄, 
onsisting of taking 
omplex 
onjugates of the wavefun
tions for the positiveelements. Su
h a pres
ription also works, in the 
ase of oblique + diagonal �uxes, whensome interse
tion matri
es are `negative-de�nite' rather than being positive de�nite. One
an then take a 
omplete 
omplex 
onjugation over all the 
oordinates, in order to obtaina well de�ned wavefun
tion.Su
h a pro
ess, however, does not work when oblique �uxes are present and interse
tionmatri
es have mixed eigenvalues. Note that a diagonal �ux of the type Fziz̄i preserves its
(1, 1)-form stru
ture, under the inter
hange : zi → z̄i, required by supersymmetry. Thisis, however, no longer true when oblique �uxes are present, sin
e o� diagonal elements ofa (1, 1)-form �ux, say Fz1z̄2 , does not remain of the (1, 1) form when 
omplex 
onjugationis taken only along z1 or z2.In order to 
ure the problem, one needs to 
onstru
t new basis fun
tions. We presentthe results of our investigation in the next se
tion, where we �rst restri
t to the 
ase of a
T 4 
ompa
ti�
ation, for simpli
ity. The 
ompli
ations arising from the oblique nature ofthe �uxes are manifest in the T 4 example as well, though it is possible to generalize theresult to the full T 6, whi
h is dis
ussed in Se
tion 3.6.8. 73
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tions in Magnetized branes:Theta identities and Yukawa 
ouplings3.6 Negative-
hirality fermion wavefun
tionAs already mentioned, the basis wavefun
tions given in eq. (3.68), used for deriving theYukawa 
oupling expression in eq. (3.145), are 
onstrained by the Riemann 
onditions(3.26), whi
h imply in parti
ular the positive-de�niteness of the matrix NImΩ.Now, �rst restri
ting to T 4, we will show that the basis fun
tion (3.68) 
orrespondsto the positive 
hirality spinor on T 4. On the other hand, to a

ommodate interse
tionmatri
es, having two eigenvalues of opposite signature, one needs to �nd out the basisfun
tion 
orresponding to negative 
hirality spinor. The need to use su
h basis fun
tions,for interse
tion matri
es with mixed eigenvalues, 
an be easily seen in the 
ase when the
T 4 fa
torizes into T 2 × T 2 and one turns on only non-oblique (diagonal) �uxes. In this
ase, the interse
tion matrix has one positive diagonal element along the �rst T 2 and onenegative diagonal element along the se
ond one. Good basis fun
tions are then produ
tsof two T 2 wavefun
tions of opposite 
hiralities[6℄, and the total wavefun
tion on T 4 is ofnegative 
hirality.Our task therefore amounts to sear
hing for the basis fun
tions 
orresponding to neg-ative 
hirality spinors on T 4 with oblique �uxes. Sear
h for fermion wavefun
tions in thepresen
e of arbitrary �uxes (in general oblique) has been pursued in [128℄. However, theresulting wavefun
tions are presented in terms of diagonalized 
oordinates and eigenvaluesof �uxes. Any su
h solution is however unsuitable for the Yukawa 
omputation, both forthe purpose of extra
ting the sele
tion rules of the type given in eq. (3.105), as well asin a
tual evaluation, sin
e the diagonalized 
oordinates be
ome `sta
k dependent' and in-herent nonlinearities involved in the diagonalization pro
ess appear in the wavefun
tions,prohibiting the derivation of Yukawa 
ouplings in a 
on
rete form.In this se
tion, we are able to write both the positive and negative 
hirality basisfun
tions in a `uni�ed' fashion, by showing that all basis fun
tions have a form similar tothe one given in eq. (3.68). However, the 
omplex stru
ture Ω appearing in eq. (3.68) fora positive 
hirality wavefun
tion needs to be repla
ed by an `e�e
tive' modular parametermatrix Ω̃ = Ω̂Ω, in order to a

ommodate the negative 
hirality wavefun
tions, where Ω̂is given in terms of the elements of the interse
tion matri
es (as expli
itly obtained later).We also show that our results redu
e to the ones in [6℄ for the 
ase of diagonal �uxes.First, in the next subse
tion we present new basis fun
tions, relevant for the situationwhen the interse
tion matri
es are neither positive nor negative de�nite. In a later subse
-tion, we show how the negative 
hirality spinor basis fun
tions 
an be identi�ed with thepositive 
hirality ones given in eq. (3.68), with an e�e
tive modular parameter, de�ned interms of the �uxes. We verify this fa
t by mapping the wavefun
tions into ea
h other, as74
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tions in Magnetized branes:Theta identities and Yukawa 
ouplingswell as, by showing expli
itly that the relevant �eld equations transform into ea
h otherthrough su
h a mapping. As a result, we are able to absorb the 
ompli
ations asso
iated inthe diagonalization pro
ess of the modular parameter matrix, and the �nal wavefun
tionon
e again has an identi
al form as given in eq. (3.68), however, with a �ux dependentmodular parameter argument.3.6.1 Constru
tion of the wavefun
tionIn this subse
tion, as mentioned earlier, we dis
uss the 
ase of 4-tori, though T 6 generaliza-tion 
an be analyzed in a similar manner. We �rst also restri
t ourselves to the situationwith 
anoni
al 
omplex stru
ture: Ω = iI2 and Ω = iI3 for T 4 and T 6 respe
tively, where
Id represents the d-dimensional identity matrix. The generalization to arbitrary Ω is givenin subse
tions 3.6.6 - 3.6.8. Now, in oder to avoid the restri
tion to the positivity 
ondi-tion (3.26), we present an expli
it solution of a wavefun
tion of negative 
hirality satisfyingboth the equations of motion, as well as the periodi
ity requirements on T 4.Going ba
k to the positive 
hirality wavefun
tions, note that the two equations forthe 
omponent χ1

+ in eq. (3.21) (derived from the original Dira
 equation (3.16)) 
an besimultaneously solved, sin
e when a
ting on χ1
+ with two 
ovariant derivatives, we have:

[D1̄, D2̄] ∼ F ab
1̄2̄ and the RHS is zero, sin
e all the (0, 2) 
omponents of the gauge �uxes arezero in order to maintain supersymmetry. The supers
ript ab in this relation implies thatwe need to take the di�eren
e of �uxes in brane sta
ks a and b due to the 
ombination

Aa − Ab that appears in eq. (3.21) for the bifundamental wavefun
tion. Same is true forthe two χ2
+ equations, sin
e (2, 0) 
omponents of the �uxes are zero as well. On the otherhand, the relevant equations for the negative 
hirality spinors are:

D1χ
2
− +D2χ

1
− = 0, (3.161)and

D̄2χ
2
− − D̄1χ

1
− = 0. (3.162)When only one of the two 
omponents χ1,2

− is ex
ited at a time, χ1,2
− satisfy: D̄1χ

1
− =

D2χ
1
− = 0 or D1χ

2
− = D̄2χ

2
− = 0. But none of these sets of equations 
an be 
onsistentlysolved when oblique �uxes are present, sin
e [D1, D̄2] ∼ F12̄ 6= 0.The two negative 
hirality 
omponents χ1,2

− therefore need to be mixed up in order toobtain a solution of the relevant Dira
 equations, when oblique �uxes are present. In otherwords, we need to simultaneously ex
ite both χ1,2
− . Then, taking

χ1
− = αψ, χ2

− = βψ, (3.163)75



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsequations (3.6.1) and (3.162) be
ome:
(βD̄2 − αD̄1)ψ = 0, (3.164)and
(βD1 + αD2)ψ = 0. (3.165)In order for these two equations to have simultaneous solution, one obtains the 
ondition:

−αβF ab
11̄ − α2F ab

21̄ + β2F ab
12̄ + αβF ab

22̄ = 0, (3.166)where F ab
ij̄ ≡ Nij̄ is again the di�eren
e of �uxes in brane sta
ks a and b and Nij̄ is thesame hermitian interse
tion matrix, eq. (3.149), used in writing the positive 
hiralitywavefun
tion and Yukawa 
ouplings in eq. (3.68), and other parts of Se
tion 3.5. When

pxixj = 0, and Ω = iI3, N redu
es to the real symmetri
 matrix.Fortunately, equation (3.166) has arbitrary solutions of the type:
F ab ≡ N ≡ N̂11̄

(

1 −q

−q q2

)

+ Ñ22̄

(

q2 q

q 1

)

, (3.167)with q = β
α
and N̂11̄, Ñ22̄ being arbitrary integers whose notation will be
ome 
lear later(see eq. (3.186) below). The RHS of the above relation is a general parameterization of a

2× 2 symmetri
 matrix, sin
e the two terms 
an be written as
F ab ≡ N ≡ N̂11̄

(

1

−q

)

(

1 −q
)

+ Ñ22̄

(

q

1

)

(

q 1
)

. (3.168)After having shown the possible existen
e of the solution of the type (3.163), we pro-
eed to �nd the expli
it form of the wavefun
tion ψ by applying the allowed orthogonaltransformations on the wavefun
tion of the negative 
hirality fermion on a T 4 whi
h isfa
torized into T 2× T 2. To obtain the expli
it form of this orthogonal transformation, westart by writing the 
oordinate T 4 
oordinate, XM = zi, z̄i (i = 1, 2), in the spinor basis.We note, for the 
hoi
e of Dira
 Gamma matri
es (in a real basis) given in eqs. (3.11),(3.12) that
ΓMXM =













z̄1 z̄2

z1 z̄2

z2 −z̄1

z2 −z̄1













, (3.169)
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tions in Magnetized branes:Theta identities and Yukawa 
ouplingswith zi = xi + iyi and z̄i = xi − iyi, (i = 1, 2), whi
h fa
torizes into 2× 2 blo
ks providingthe basis on whi
h SU(2)'s in the Lorentz group : SU(2)L × SU(2)R ∼ SO(1, 3) a
t. Weget xi in the spinor basis in the form of a 2× 2 matrix:
Xαα̇ =

(

z̄1 z̄2

−z2 z1

)

. (3.170)Now to understand the transformation properties of the fermions on T 4, we 
onsiderthe following transformations on Xαα̇:
(

eiθ1 0

0 e−iθ1

)(

z̄1 z̄2

−z2 z1

)(

e−iθ2 0

0 eiθ2

)

=

(

ei(θ1−θ2)z̄1 ei(θ1+θ2)z̄2

−e−i(θ1+θ2)z2 e−i(θ1−θ2)z1

) (3.171)We learn from eq. (3.171) that when T 4 fa
torizes into T 2 × T 2, the transformationsof the positive and negative 
hirality fermions on the two T 2's 
an be read o� from thetransformation rules of z1 and z2 given above10. Indeed, the transformation rules for thefermions ψ(i)
± on the two T 2's, denoted by indi
es i = 1, 2 are:

ψ
(1)
+ −→ e−i

(θ1−θ2)
2 ψ

(1)
+ ; ψ

(1)
− −→ ei

(θ1−θ2)
2 ψ

(1)
− ,

ψ
(2)
+ −→ e−i

(θ1+θ2)

2 ψ
(2)
+ ; ψ

(2)
− −→ ei

(θ1+θ2)

2 ψ
(2)
− . (3.172)In this 
ase, as des
ribed in the se
tion 3.4.1, the T 4 fermion wavefun
tions 
an bewritten as a dire
t produ
t of the ones on two T 2's as in eq. (3.34). We obtain thetransformation of T 4 wavefun
tions (eq. (3.34)):

Ψ1
+ −→ e−iθ1Ψ1

+, Ψ2
+ −→ eiθ1Ψ2

+,

Ψ1
− −→ eiθ2Ψ1

−, Ψ2
− −→ e−iθ2Ψ2

−. (3.173)It follows that a left transformation (θ1 6= 0, θ2 = 0) a
ts independently on (left handed)positive 
hirality wavefun
tions, and a right transformation (θ1 = 0, θ2 6= 0) a
ts onthe negative-
hirality (right handed) wavefun
tions. Now, 
onsider the following 
omplextransformation on ve
tors in spinor basis:10The equation number (3.171) is matrix multipli
ation de�ning the transformations on Xαα̇. Theequation number (3.172) gives the transformation rules for the fermions ψ(i)
± on the two T 2's, whi
h areread o� from the transformation rules of z1 and z2 given in equation (3.171).

77



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplings
(

z̄1 z̄2

z2 −z1

)

−→

(

a b

c d

)(

z̄1 z̄2

z2 −z1

)(

e f

g h

) (3.174)Case-I: For e = h = 1, f = g = 0, c = −b, a = d, i.e a left transformation results in thefollowing orthogonal 
oordinate transformation,
z1 −→ az1 + bz̄2; z2 −→ az2 − bz̄1. (3.175)Case-II: Similarly, for a = d = 1, c = b = 0, h = e, f = −g, i.e a right transformationleads to
z1 −→ ez1 − fz2; z2 −→ ez2 + fz1. (3.176)In order to maintain the holomorphi
ity of the gauge �uxes, one therefore needs tomake use of the later transformation, in order to generate a general wavefun
tion, startingwith the one whi
h 
orresponds to the diagonal (non-oblique) �ux. In addition, we needto maintain the integrality of the �uxes, as we make su
h orthogonal transformations.However, in our 
ase, we do not make use of any spe
i�
 form of the transformation andrather use the above analysis as a guide for writing down a general solution. We thenverify the equations of motion dire
tly, in order to 
on�rm that the solution we proposeis indeed the 
orre
t one.3.6.2 New wavefun
tionWe now use the transformation (3.176) to obtain the wavefun
tion asso
iated with thenegative 
hirality fermion bifundamentals, starting with a wavefun
tion asso
iated with anegative 
hirality spinor for a diagonal �ux. In the notations of eq. (3.15), it 
orrespondsto ex
iting only the negative 
hirality 
omponent

(

Ψ2
−

Ψ1
−

)

=

(

ψ

0

)

. (3.177)
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tions in Magnetized branes:Theta identities and Yukawa 
ouplingsWe ignore the expli
it form of ψ, ex
ept to note that after the transformation (3.176), onegenerates
(

ψ

0

)

−→

(

Ψ2
−

Ψ1
−

)

=

(

βψ

αψ

)

, (3.178)while (Ψ1
+, Ψ2

+) remain zero. In the gauge se
tor, su
h wavefun
tions are parameterizedin the bifundamental representations by:
Ψab =

(

Cna
χab

Cnb

)

, (3.179)as also given in eq. (3.19). For negative 
hirality 
omponents, the equations to be satis�edby the various 
omponents are: (see eq. (3.20))
∂1χ

2
− + ∂2χ

1
− + (A1 − A2)z1χ

2
− + (A1 − A2)z2χ

1
− = 0,

∂̄2χ
2
− − ∂̄1χ

1
− + (A1 −A2)z̄2χ

2
− − (A1 − A2)z̄1χ

1
− = 0. (3.180)We now show that the solution to eqs. (3.180), together with proper periodi
ity re-quirements on T 4, is given by the basis elements:

ψ
~j,N̂,Ñ = N · f(z, z̄) · Θ̂(z, z̄) (3.181)where,

f(z, z̄) = eiπ[(N̂ij̄ziImzj)−(Ñīj z̄iImz̄j)] , (3.182)
Θ̂(z, z̄) =

∑

m1,m2∈Zn

eπi(i)[(mi+ji)Mij̄(mj+jj)]e2πi[(mi+ji)N̂ij̄zje2πi(mi+ji)Ñījz̄j , (3.183)with
Mij̄ = N̂ij̄ − Ñīj (3.184)where both N̂, Ñ are real, symmetri
 matri
es, given earlier in eq. (3.167), and so also is

M (Mij̄ = Mjī). We retain, however, both types of indi
es: i and j̄ to in
orporate realas well as 
omplex 
omponents of the (1, 1)-form �uxes Fij̄ . Also, an extra fa
tor of i inthe exponent of Θ̂(z, z̄) 
orresponds to the fa
t that we are working with the 
anoni
al
omplex stru
ture : Ω = iI2 for the present example of the fermion wavefun
ton on T 4. 79



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsThe wavefun
tion (3.181) satis�es the Dira
 equations (3.180) for the following gaugepotentials:
(A1 − A2)z̄1 = (N̂11̄ + Ñ11̄)z1 + (N̂12̄ + Ñ12̄)z2

(A1 −A2)z̄2 = (N̂12̄ + Ñ12̄)z1 + (N̂22̄ + Ñ22̄)z2. (3.185)The interse
tion matrix N is therefore given by:
N = N̂+ Ñ, (3.186)as appearing previously in eqs. (3.166), (3.167). Also, we have imposed the following
onstraints, in order to retain the holomorphi
ity of gauge potentials:

α

β
=

−N̂11̄

N̂12̄

=
−N̂12̄

N̂22̄

=
Ñ12̄

Ñ11̄

=
Ñ22̄

Ñ12̄

=
1

q
. (3.187)Note that the ratios of the matrix elements of N̂ and Ñ are identi
al to those given in eq.(3.167). We have therefore expli
itly shown that the solution given in eqs. (3.181) - (3.183)satis�es the equations of motion. The transformation properties of this wavefun
tion(3.181) along the four 1-
y
les of T 4, are given by:

ψ
~j,N̂,Ñ(~z + ~n) = eiπ([N̂·~n]·Im~z−[Ñ·~n]·Im ~̄z) · ψ~j,N̂,Ñ(~z),

ψ
~j,N̂,Ñ(~z + i~n) = e−iπ([N̂·~n]·Re~z+[Ñ·~n]·Re~̄z) · ψ

~j,N̂,Ñ(~z),
(3.188)provided that

• Nīj ≡ (N̂+ Ñ)ij̄ ∈ Z, i.e (N̂+ Ñ) is integrally quantized,
• ~j satis�es: ~j · (N̂+ Ñ) ∈ Zn.We therefore noti
e that the integer quantization is imposed only on the interse
tion matrix

N given in eq. (3.186) and does not ne
essarily hold for the matrix M in eq. (3.184).Expli
itly, we have:
N = N̂+ Ñ = N̂11̄

(

1 −q

−q q2

)

+ Ñ22̄

(

q2 q

q 1

)

,

M = N̂− Ñ = N̂11̄

(

1 −q

−q q2

)

− Ñ22̄

(

q2 q

q 1

)

, (3.189)where the �rst eq. in (3.189) is identi
al to the solutions in eq. (3.167). 80



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsNote that the wavefun
tion given in eqs. (3.181), (3.182) and (3.183) is now wellde�ned, as the series expansion in eq. (3.183) is now 
onvergent. To show this, we notethe following relation:
detN = − detM = N̂11̄Ñ22̄(1 + q2)2. (3.190)As a result, in the 
ase when detN is negative ( when N has two eigenvalues of oppositesignatures), detM > 0. So, the series (3.183) is now 
onvergent when the two eigenvaluesare of positive signature, sin
e it is the quadrati
 part, in the summation index in thetaseries, that dominates in the exponent of this expansion. An overall 
omplex 
onjugationwill be required, for the 
ase when two eigenvalues are negative rather than positive.3.6.3 NormalizationNow that we have found a basis of wavefun
tions, 
lassi�ed by the index ji in the exponentin (3.183), we pro
eed to show its orthonormality. The wavefun
tions des
ribed in eqs.(3.181), (3.182), (3.183) 
an be re-written in terms of the real 
oordinates ~x and ~y asfollows:

ψ
~j,N,M = N~j · e

iπ[~x·N·~y+i~y·M·~y]
∑

~m∈Zn

eπi(i)[(~m+~j)·M·(~m+~j)]e2πi[(~m+~j)·N·~x+i(~m+~j)·M·~y]. (3.191)Then the following orthonormality 
onditions are satis�ed:
∫

T 4

(ψ
~k,N,M)∗ψ

~j,N,M = δ~j,~k. (3.192)To verify the orthogonality relation and obtain the normalization fa
tor, we note that, interms of the wavefun
tions (3.191) we have:
(ψ

~k,N,M)∗ψ
~j,N,M = N~k · e

−iπ[~x·N·~y−i~y·M·~y]
∑

~l∈Zn

eπi(i)[(
~l+~k)·M·(~l+~k)] · e−2πi[(~l+~k)·N·~x−i(~l+~k)·M·~y]

N~j · e
iπ[~x·N·~y+i~y·M·~y]

∑

~m∈Zn

eπi(i)[(~m+~j)·M·(~m+~j)] · e2πi[(~m+~j)·N·~x+i(~m+~j)·M·~y]

= N~jN~k · e
−2π(~y·M·~y)

∑

~m,~l∈Zn

eπi(i)[(~m+~j)·M·(~m+~j)] · eπi(i)[(
~l+~k)·M·(~l+~k)]

e2πi[(~m+~j)−(~l+~k)]·N·~x · e2πi(i)[(~m+~j)+(~l+~k)]·M·~y. (3.193)The integration over ~x in eq. (3.192) imposes the 
ondition ~j = ~k and equality on the sum-mation indi
es ~m = ~l. In parti
ular, the 
ondition ~j = ~k gives our orthogonality 
ondition81



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplings(3.192). One 
an now obtain the normalization fa
tor by performing the integration:
∫ 1

0

d2~y

[

e−2π~y·M·~y
∑

~m∈Zn

e−2π(~m+~j)·M·(~m+~j) · e−4π(~m+~j)·M·~y

]

=

∫ 1

0

d2 (~y)

[

∑

~m∈Zn

e−2π((~m+~j)+~y)·M·((~m+~j)+~y)

]

. (3.194)One 
an integrate over ~y, using
∫ 1

0

d2~y

[

∑

~m∈Zn

e−2π((~m+~j)+~y)·M·((~m+~j)+~y)

]

=
∑

~m∈Zn

∫ 1

0

d2~y
[

e−2π[(~m+~j)+~y]·M·((~m+~j)+~y)
]

=

∫ ∞

−∞

d2~y′
[

e−2π~y′·M·~y′
] (3.195)The integration (3.195) �xes then the normalization 
onstant to

N~j = (2|detM|)1/4 · Vol(T 4)−1/2, ∀j. (3.196)3.6.4 Eigenfun
tions of the Lapla
e equationThe wavefun
tions (3.181) not only represent zero modes of the Dira
 operator, but arealso eigenfun
tions of the Lapla
ian. In order to see this, we start with 
omputing theDira
 operator in four dimensions. In our notations:
Γµ∂µ =













∂̄1 ∂̄2

∂1 ∂̄2

∂2 −∂̄1

∂2 −∂1













, (3.197)
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tions in Magnetized branes:Theta identities and Yukawa 
ouplingswhi
h leads to
(D/)2 =













D̄1D1 + D̄2D2

D1D̄1 + D̄2D2

D2D̄2 + D̄1D1

D1D̄1 +D2D̄2













= ∆+













F11̄ + F22̄

−F11̄ + F22̄

F11̄ − F22̄

−(F11̄ + F22̄)













. (3.198)The Dira
 equation D/Ψ = 0, with Ψ given in eq. (3.34), implies that su
h basis fun
tionsare also eigenfun
tions of the Lapla
ian ∆. The question whether massless s
alars exist,depends on whether some 
ombination of �uxes appearing in eq. (3.198) vanish11. Of
ourse, their existen
e is guaranteed in the supersymmetri
 
ase.3.6.5 Mapping of basis fun
tions from positive to negative 
hiral-ityWe now show that the basis for the negative 
hirality wavefun
tion, given in eqs. (3.181),(3.182), (3.183) 
an in fa
t be obtained by a mapping from the basis of the positive 
hiralitywavefun
tion given in eq. (3.68). We also present the mapping between the 
orresponding�eld equations. Our mapping redu
es to the ones in [6℄ for the 
ase of fa
torized tori.More pre
isely, we show that our negative 
hirality wavefun
tion, given in eqs. (3.181),(3.182), (3.183), as well as (3.191) (for a trivial modular parameter matrix : Ω = iI2) isidenti
al to the positive 
hirality wavefun
tion (3.68) for a `nontrivial' (�ux dependent)modular parameter matrix Ω = iΩ̂. Expli
itly, Ω̂ is given in terms of the ratios (q) of�ux 
omponents. This result gives a `uni�ed' pi
ture of all the relevant basis fun
tions.Later on, in Se
tion 3.6.7, we show that a similar mapping holds for nontrivial 
omplexstru
ture on T 4, by examining the equations of motion.Let us write down expli
itly the wavefun
tion (3.68) for 
omplex stru
ture with arbi-11The 
ondition F11̄ = −F22̄ implies massless s
alar and supersymmetry in T 4. The other two s
alarsbe
ome ta
hyoni
.
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Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingstrary Ω (= iΩ̂).
ψ
~j,N′

(~z,Ω) = N · eiπ[(~x+iΩ̂~y).N′Ω̂−1.Ω̂~y] ·
∑

~m∈Zn

eiπ[(~m+~j).iN′Ω̂.(~m+~j)]e2iπ[(~m+~j)(N′~x+iN′Ω̂.~y)]

∼ eiπ[~x.N
′.~y+iΩ̂~y.N′.~y] ·

∑

~m∈Zn

eiπ[(~m+~j).iN′Ω̂.(~m+~j)]e2iπ[(~m+~j)(N′~x+iN′Ω̂.~y)], (3.199)where N is 
hanged to N′ to show a distin
tion between the two wavefun
tions for thepurpose of de�ning the mapping as given below. Next 
onsider the negative 
hiralitywavefun
tion (3.191), written in terms of real 
oordinates ~x and ~y,
ψ
~j,N,M ∼ eiπ[~x·N·~y+i~y·M·~y]

∑

~m∈Zn

eπi(i)[(~m+~j)·M·(~m+~j)]e2πi[(~m+~j)·N·~x+i(~m+~j)·M·~y]. (3.200)It is now easy to 
he
k that the above equations (3.199) and (3.200) pre
isely mat
h withthe following identi�
ation :
N = N̂+ Ñ = N′,

M = N̂− Ñ = N′Ω̂ ⇒ Ω̂ = N−1M, (3.201)with Ω = iΩ̂, and Ω̂ is a real matrix. For the N and M, de�ned in eq. (3.189), N−1 and
Ω̂ are given by;

N−1 =
1

(1 + q2)2

[

1

N̂11̄

(

1 −q

−q q2

)

+
1

Ñ22̄

(

q2 q

q 1

)]

, (3.202)
Ω̂ =

1

(1 + q2)

(

1− q2 −2q

−2q q2 − 1

)

= (Ω̂)−1. (3.203)We have therefore shown expli
itly that the positive 
hirality basis wavefun
tion (3.68),known earlier in the literature, 
an be mapped to the negative 
hirality wavefun
tionsthat we have 
onstru
ted in eqs. (3.181)-(3.183), (3.191). Su
h a map also 
on�rms thevalidity of our 
onstru
tion for the negative 
hirality basis fun
tions, presented using basi
prin
iples, su
h as equations of motion as well as periodi
ity requirement. In fa
t, in thenext subse
tion, the same mapping is also obtained through 
omparison of the relevantequations of motion, whi
h further 
on�rms our results for the 
onstru
tion of the basisfun
tions. Note that for q = 0 or q → ∞, 
orresponding to the 
ase when both matri
es
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tions in Magnetized branes:Theta identities and Yukawa 
ouplings
N and M in eq. (3.189) are diagonal, we have:

Ω̂ =

(

1 0

0 −1

)

, or Ω̂ =

(

−1 0

0 1

)

, (3.204)respe
tively. As a result, one reprodu
es the known mapping of the wavefun
tions betweenpositive and negative 
hirality spinors in the 
ase when T 4 is fa
torized into T 2 × T 2 [6℄.3.6.6 Mapping the equations of motionIn order to derive a similar mapping of the equations of motion, we show below that the
ovariant derivative operators appearing in eqs. (3.22) for the positive 
hirality wavefun
-tion, with a nontrivial 
omplex stru
ture (iΩ̂), are equivalent to the derivative operatorsappearing in eqs. (3.164), (3.165) for the negative 
hirality wavefun
tion (with 
omplexstru
ture Ω = iI2). The mapping of 
orresponding gauge potentials 
an also be shownin the same manner, sin
e they have similar dependen
e on the 
omplex stru
ture asthe derivative operator. Note that the 
omplex stru
ture appears in the wavefun
tionsas modular parameter matri
es. We therefore re
on�rm the mapping between the twowavefun
tions by 
omparing the equations of motion as well.We now examine the Dira
 equations for both 
ases. For the �rst one, with arbitrary
Ω(= iΩ̂), we have

~z = ~x+ iΩ̂~y ; ~̄z = ~x− iΩ̂~y ⇒ ~x =
~z + ~̄z

2
; ~y = (Ω̂)−1

(

~z − ~̄z

2i

)

,whi
h implies
∂

∂zi
=

1

2

(

∂

∂xi
− i(Ω̂)−1

ji

∂

∂yj

)

,

∂

∂z̄i
=

1

2

(

∂

∂xi
+ i(Ω̂)−1

ji

∂

∂yj

)

. (3.205)Then, the Dira
 equation for the positive 
hirality wavefun
tion is:
D̄z̄iψ

~j,N′

(~z,Ω) ≡
1

2

(

Dxi + i(Ω̂)−1
ji Dyj

)

ψ
~j,N′

(~z,Ω) = 0, i, j = 1, 2. (3.206)On the other hand, for the negative 
hirality solution (3.180), with 
omplex stru
ture
Ω = iI2, the relevant derivative operators are:

(βD1 + αD2)ψ
~j,N,M = 0;

(

βD̄2 − αD̄1

)

ψ
~j,N,M = 0. (3.207)85



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsThese equations, using the de�nitions zi = xi + iyi, z̄i = xi − iyi, i.e. substituting
Di =

1

2

(

Dxi − iDyi
)

,

D̄i =
1

2

(

Dxi + iDyi
)

. i = 1, 2
an be rewritten as:
{

β

2
(Dx1 − iDy1) +

α

2
(Dx2 − iDy2)

}

ψ
~j,N,M = 0,

{

β

2
(Dx2 + iDy2)−

α

2
(Dx1 + iDy1)

}

ψ
~j,N,M = 0.These two equations upon simpli�
ation leads to,

1

2

{

Dx1 + i

(

α2 − β2

α2 + β2
Dy1 −

2αβ

α2 + β2
Dy2

)}

ψ
~j,N,M = 0,

1

2

{

Dx2 + i

(

−2αβ

α2 + β2
Dy1 +

β2 − α2

α2 + β2
Dy2

)}

ψ
~j,N,M = 0. (3.208)Now using β

α
= q from eq. (3.187) and 
omparing the equations (3.206) and (3.208), one�nds that they pre
isely mat
h for the following 
omplex stru
ture:

(Ω̂)−1 =
1

(1 + q2)

(

1− q2 −2q

−2q q2 − 1

)

, (3.209)whi
h is exa
tly the same as eq. (3.203). Thus, the wavefun
tions as well as the Dira
equations for both 
ases mat
h exa
tly. This mapping 
an be generalized further, as givenin subse
tion 3.6.8 below.3.6.7 Mapping for arbitrary 
omplex stru
ture ΩIn this subse
tion, we generalize the mapping between the equations of motion asso
iatedwith the positive and negative 
hirality wavefun
tion to the 
ase of T 4 
ompa
ti�
ationwith arbitrary 
omplex stru
ture Ω. Now, the negative 
hirality basis fun
tions satisfy:
1

2

{

Dx1 + i(Ω)−1
i1

(

α2 − β2

α2 + β2
Dyi

)

− i(Ω)−1
i2

(

2αβ

α2 + β2
Dyi

)}

ψ
~j,N,M = 0

1

2

{

Dx2 + i(Ω)−1
i1

(

−2αβ

α2 + β2
Dyi

)

+ i(Ω)−1
i2

(

β2 − α2

α2 + β2
Dyi

)}

ψ
~j,N,M = 0 , (3.210)
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Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingswhi
h 
an be identi�ed with the equations satis�ed by the positive 
hirality wavefun
tionwith Ω̃ = Ω̂Ω, as 
an be seen through the de
omposition:
∂

∂zi
=

1

2

(

∂

∂xi
− i(Ω̃)−1

ji

∂

∂yj

)

,

∂

∂z̄i
=

1

2

(

∂

∂xi
+ i(Ω̃)−1

ji

∂

∂yj

)

. (3.211)Thus, eq. (3.68) with Ω̃ = Ω̂Ω, with Ω̂ given in eq. (3.209), provides the negative 
hiralitysolution for arbitrary 
omplex stru
ture Ω, where both `oblique' and diagonal �uxes areturned on.3.6.8 Generalization for the T 6- 
aseIn this subse
tion, we generalize the results obtained so far for negative 
hirality fermionson T 4 to the more general T 6 
ase. We only 
onsider the wavefun
tions that are wellde�ned with two positive and one negative eigenvalues of the 3× 3 Hermitian interse
tionmatri
es, sin
e these will 
omplete the list of well de�ned wavefun
tions, on
e 
omplex
onjugations are taken into a

ount. For the 
ase of T 6, the relevant equations, obtainedby generalization of eqs. (3.164) and (3.165) to be examined, are:
(αD̄1 − βiD̄i)ψ = 0, (3.212)and
(αDi + βiD1)ψ = 0. (3.213)Note that in these equations and below, the indi
es i, j = 1, 2 (used for the T 4 with wave-fun
tions of positive 
hirality). In order for the above two equations to have simultaneoussolution, one obtains the 
ondition :

α2F ab
i1̄ + αβiF

ab
11̄ − αβjF

ab
ij̄ − βiβjF

ab
1j̄ = 0, (3.214)where F ab ≡ N is the di�eren
e of �uxes in brane sta
ks a and b. The general solution ofthis equation is of the following type:

F ab ≡ N ≡ N̂

(

1 −(~q)T

−~q ~q(~q)T

)

+

(

(~q)T Ñ~q ~qT Ñ

Ñ~q Ñ

)

, (3.215)
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Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingswhere Ñ is a 2× 2 matrix and N̂ is a number. Also, ~q is the two-dimensional (2d) ve
torde�ned as:
~q =

(

q1

q2

) (3.216)with qi = βi

α
.Now, after showing the possible existen
e of the solution by de�ning F ab in (3.215),for the negative 
hirality wavefun
tion on T 6, we pro
eed to present a mapping betweenthe equations of motion for negative 
hirality and positive 
hirality wavefun
tions on T 6.As des
ribed before in se
tion 3.6.6. Here also we show that the 
ovariant derivativeoperators appearing in eqs. (3.22), for the positive 
hirality wavefun
tion, with a nontrivial
omplex stru
ture are equivalent to the derivative operators appearing in eqs. (3.212),(3.213) for the negative 
hirality wavefun
tion (with 
omplex stru
ture Ω = iI3) and the
orresponding gauge potentials map in the same manner.For the positive 
hirality 
ase, with arbitrary Ω(= iΩ̂) and eqs. (3.205), (3.205), theDira
 equation reads:

D̄z̄µψ
~j,N′

(~z,Ω) ≡
1

2

(

Dxµ + i(Ω̂)−1
νµDyν

)

ψ
~j,N′

(~z,Ω) = 0, µ, ν = 1, 2, 3 . (3.217)On the other hand, for the negative 
hirality solution, with 
omplex stru
ture Ω = iI3,the relevant derivative operators, given in eqs. (3.212), (3.213), take the form:
1

2

{(

α2δij + βiβj
)

Dxj − i (2αβi)Dy1 + i
(

βiβj − α2δij
)

Dyj
}

ψ
~j,N,M = 0,

1

2

{(

β2
i + α2

)

Dx1 + i
(

α2 − β2
i

)

Dy1 − i (2βiα)Dyi
}

ψ
~j,N,M = 0. (3.218)Now, de�ning new 2× 2 matri
es,

Aij =
(

α2δij + βiβj
)

, Bij =
(

βiβj − α2δij
)

,and
Pi = (2αβi), (3.219)
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Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingseqs. (3.218) 
an be re-written as:
1

2

{

Dxi − i
(

A−1P
)

i
Dy1 + i

(

A−1B
)

ij
Dyj

}

ψ
~j,N,M = 0

1

2

{

Dx1 + i

(

α2 − β2
i

β2
i + α2

)

Dy1 − i

(

2αβi
β2
i + α2

)

Dyi

}

ψ
~j,N,M = 0 . (3.220)A 
omparison of equations (3.217) and (3.220) implies that they pre
isely mat
h for thefollowing 
omplex stru
ture:

(Ω̂)−1
11 =

(

α2 − β2
i

β2
i + α2

)

, (Ω̂)−1
1i =

(

−A−1P
)

i
,

(Ω̂)−1
i1 = −

(

2αβi
β2
i + α2

)

, (Ω̂)−1
ij =

(

A−1B
)

ij
. (3.221)This expression for the 
omplex stru
ture generalizes the one derived earlier in eq. (3.203)for the T 4 
ase. The results are also easily generalizable to arbitrary 
omplex stru
ture Ωfollowing the dis
ussions in subse
tion 3.6.7 for the spe
ial 
ase of T 4 (see eq. (3.211)).3.6.9 Computation of Yukawa 
ouplingsNow that we have derived both the fermioni
 and bosoni
 internal wavefun
tions andexpressed them as an orthonormal basis, we 
ompute the Yukawa 
ouplings using thebasis wavefun
tions (3.191). We also point out how the results derived below redu
e tothe ones in se
tion 3.5.Starting with basis fun
tions des
ribed in eq. (3.191), for the 
ase of the 
anoni
al
omplex stru
ture Ω = iI2 (in the T 4 
ase), we have:

ψ
~i,N1,M1(~z) · ψ

~j,N2,M2,(~z) = N~i · N~j · e
iπ[~x·(N1+N2)·~y+i~y·(M1+M2)·~y] (3.222)

·
∑

~l1,~l2∈Zn

eπi(i)[(
~l1+~i)·M1·(~l1+~i)+(~l2+~j)·M2·(~l2+~j)]

· e2πi[(
~l1+~i)·N1+(~l2+~j)·N2]·~xe2πi(i)[(

~l1+~i)·M1+(~l2+~j)·M2]·~yThis expression 
an be re-written as:
ψ
~i,N1,M1(~z) · ψ

~j,N2M2,(~z) = N~i · N~j · e
iπ[~x·(N1+N2)·~y+i~y·(M1+M2)·~y] (3.223)

·
∑

~l1,~l2∈Zn

eπi(i)(
~lT ·Q̂·~l)e2πi(~lT ·Q·~X).e2πi(i)(

~lT ·Q̂·~Y) ,
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Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingswhere we de�ned the 4d-ve
tors:
~l = ( ~i+ ~l1

~j + ~l2

)

, ~X =

(

~x

~x

)

, ~Y =

(

~y

~y

)

, (3.224)and the 4d-matri
es:Q =

(

N1 0

0 N2

)

, Q̂ =

(

M1 0

0 M2

)

. (3.225)Using the transformation matrix T , de�ned in eq. (3.74), and eqs. (3.75)-(3.79), weexpli
itly write the terms appearing in the exponents in the RHS of eq. (3.223) as:
(~l)T · Q̂ · (~l) = (~l)T · (T−1T ) · Q̂ · (T T (T−1)T ) · (~l),

(~lT ·Q · ~X) =~lT · (T−1T ) ·Q · (T T (T−1)T ) · ~X,
(~lT · Q̂ · ~Y) =~lT · (T−1T ) · Q̂ · (T T (T−1)T ) · ~Y. (3.226)Then using:Q′ ≡ T ·Q · T T =

(

(N1 +N2) 0

0 α(N1
−1 +N2

−1)αT

)

, (3.227)Q̂′
≡ T · Q̂ · T T =

(

(M1 +M2) (M1N1
−1 −M2N2

−1)αT

α(N1
−1M1 −N2

−1M2) α(N1
−1M1N1

−1 +N2
−1M2N2

−1)αT

)

,

(~l)TT−1 =

(

(~i+ ~l1)(N1
−1 +N−1

2 )−1N−1
2 + (~j + ~l2)(N

−1
1 +N−1

2 )−1N−1
1

[

(~i+ ~l1)− (~j + ~l2)
]

(N−1
1 +N−1

2 )−1α−1

)T

, (3.228)and
(T−1)T (~l) = ( N−1

2 (N−1
1 +N−1

2 )−1(~i+ ~l1) +N−1
1 (N−1

1 +N−1
2 )−1(~j + ~l2)

(α−1)T (N−1
1 +N−1

2 )−1[(~i+ ~l1)− (~j + ~l2)]

)

, (3.229)
(T−1)T (~X) =

(

~x

0

)

; (T−1)T (~Y) =

(

~y

0

)

, (3.230)
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Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingswe 
an re-write eq. (3.223) as
ψ
~i,N1,M1(~z) · ψ

~j,N2M2,(~z) = N~i · N~j · e
iπ[~x·(N1+N2)·~y+i~y·(M1+M2)·~y] × (3.231)

∑

~l1,~l2∈Zn

eπi(i)({[(
~l1+~i)N1+(~l2+~j)N2](N1+N2)−1}·(M1+M2)·{(N1+N2)−1(N1(~i+~l1)+N2(~j+~l2))}) ×

e2πi{[(
~l1+~i)·N1+(~l2+~j)·N2](N1+N2)−1}·(N1+N2)~x · e2πi(i){[(

~l1+~i)·N1+(~l2+~j)·N2](N1+N2)−1}·(M1+M2)~y ×

e2πi(i){[(
~i+~l1)−(~j+~l2)](N

−1
1 +N

−1
2 )−1α−1}·α(N1

−1M1−N2
−1M2)·~y ×

eπi(i)({[(
~l1+~i)N1+(~l2+~j)N2](N1+N2)−1}·(M1N1

−1−M2N2
−1)αT {(α−1)TN2(N1+N2)−1N1[(~i−~j)+(~l1−~l2)}) ×

eπi(i){[((
~i−~j)+(~l1−~l2))N1(N1+N2)−1N2α−1]·[α(N1

−1M1−N2
−1M2)](N1+N2)−1(N1(~i+~l1)+N2(~j+~l2))} ×

eπi(i){[((
~i−~j)+(~l1−~l2))N1(N1+N2)−1N2α−1][α(N1

−1M1N1
−1+N2

−1M2N2
−1)αT ][(α−1)TN2(N1+N2)−1N1[(~i−~j)+(~l1−~l2)]}Now, in a similar exer
ise as the one performed earlier in se
tions 3.5.2, 3.5.3, 3.5.4, werearrange the series in eq. (3.231) in terms of new summation variables ~l3, ~l4, ~m, whose val-ues and ranges are assigned as in these se
tions.12 With the value of α = (detN1 detN2)I,de�ned in eq. (3.86), eq. (3.231) takes the form:

ψ
~i,N1,M1(~z) · ψ

~j,N2M2,(~z) = N~i · N~j · e
iπ[~x·(N1+N2)·~y+i~y·(M1+M2)·~y] (3.232)

∑

~l3,~l4∈Zn

∑

~m

eπi(i)[(
~iN1+~jN2+~mN1)(N1+N2)−1+~l3]·(M1+M2)·[(N1+N2)−1(N1~i+N2~j+N1 ~m)+~l3] ×

e2πi[(
~iN1+~jN2+~mN1)(N1+N2)−1+~l3]·(N1+N2)~x · e2πi(i)[(

~iN1+~jN2+~mN1)(N1+N2)−1+~l3]·(M1+M2)~y ×

e
2πi(i)[(~i−~j+~m)

N1(N1+N2)
−1N2

detN1 detN2
+~l4]·[(detN1 detN2)(N1

−1M1−N2
−1M2)]·~y ×

e
πi(i)[(~iN1+~jN2+~mN1)(N1+N2)−1+~l3]·[(detN1 detN2)(M1N1

−1−M2N2
−1)]·[

N2(N1+N2)
−1N1

detN1 detN2
(~i−~j+~m)+~l4] ×

e
πi(i)[(~i−~j+~m)

N1(N1+N2)
−1N2

detN1 detN2
+~l4]·[(detN1 detN2)(N1

−1M1−N2
−1M2)]·[(N1+N2)−1(N1

~i+N2
~j+N1 ~m)+~l3] ×

e
πi(i)[(~i−~j+~m)

N1(N1+N2)
−1N2

detN1 detN2
+~l4][(detN1 detN2)2(N1

−1M1N1
−1+N2

−1M2N2
−1)][

N2(N1+N2)
−1N1

detN1 detN2
(~i−~j+~m)+~l4]Using from eq.(3.191):

(ψ
~k,N3,M3)∗ = N~k · e

−iπ[~x·N3·~y−i~y·M3·~y]

×
∑

~l′3∈Z
n

eπi(i)[(
~l′3+

~k)·M3·(~l′3+
~k)] · e−2πi[(~l′3+

~k)·N3·~x−i(~l′3+
~k)·M3·~y], (3.233)we 
an then pro
eed to 
al
ulate the Yukawa 
oupling:

Yijk = σabcg

∫

T 4

dzidz̄i · ψ
~i,N1,M1 · ψ

~j,N2M2 · (ψ
~k,N3,M3)∗ (i = 1, 2) . (3.234)12For details see se
tions 3.5.1, 3.5.2, 3.5.3, 3.5.4. 91



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsConsider �rst the integration over ~x:
∫

d2~x eiπ{~x·[(N1+N2)−N3]·~y}
∑

~l3,~l4,~l′3∈Z
n

∑

~m

e2πi[(
~iN1+~jN2+~mN1)(N1+N2)−1+~l3]·(N1+N2)~xe−2πi(~l′3+

~k)·N3·~x(3.235)whi
h implies, using (N1 +N2) = N3 , the following 
onditions:
• equality of the summation indi
es ~l3 = ~l′3,
• the relation (~iN1 +~jN2 + ~mN1)(N3)

−1 = ~k .Note that (N1+N2) = N3 is a valid 
ondition in a triple interse
tion sin
e Iab+ Ibc = Iac,with 
omplex 
onjugation taking 
are of the fa
t that Iac = −Ica, whi
h 
hanges the signsofN3 andM3. Also, as in se
tion 3.5.3, 3.5.4, for any given solution of the above 
onstraintequation for ~i,~j,~k, ~m, other solutions inside the 
ell of eq. (3.99) that are shifted by ~m'ssatisfying ~mN1N3
−1 : integer are also allowed. In view of this, as in eq. (3.112), we breakthe sum over ~m into two parts, one 
orresponding to ~̃m, whi
h is a given spe
i�
 solutionof eq. (3.105) and the other ones as given by sum over integer variables ~p and ~̃p whoseranges are as de�ned in eq. (3.110).Imposing the 
onstraints from the ~x integration, we obtain:

Yijk = σabcg · N~i · N~j · N~k (3.236)
∫

d2~y{e−π[~y·(M1+M2+M3)·~y]
∑

~l3,~l4∈Zn

∑

~p,~̃p

eπi(i)[
~k+~l3]·(M1+M2)·[~k+~l3] ×

e
πi(i)[~k+~l3]·[(detN1 detN2)(M1N1

−1−M2N2
−1)]·[

N2(N1+N2)
−1N1

detN1 detN2
(~i−~j+ ~̃m)+~l4] ×

e
πi(i)[(~i−~j+ ~̃m)

N1(N1+N2)
−1N2

detN1 detN2
+~l4]·[(detN1 detN2)(N1

−1M1−N2
−1M2)]·[~k+~l3] ×

e
πi(i)[(~i−~j+ ~̃m)

N1(N1+N2)
−1N2

detN1 detN2
+~l4][(detN1 detN2)2(N1

−1M1N1
−1+N2

−1M2N2
−1)][

N2(N1+N2)
−1N1

detN1 detN2
(~i−~j+~m)+~l4]

×eπi(i)[
~k+~l3]·(M1+M2)·~y · e

πi(i)[(~i−~j+~m)
N1(N1+N2)

−1N2
detN1 detN2

+~l4]·[(detN1 detN2)(M1N1
−1−M2N2

−1)]·~y
},where the range of the sum over ~p, ~̃p is as used in eq. (3.110) in se
tion 3.5.3.
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Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsThe above expression for the Yukawa intera
tion 
an be written as following:
Yijk = σabcg · (2

3)
1
4 (| detM1|.| detM2|.| detM3|)

1
4

(

V ol(T 4)
)− 3

2

∫

d2~y{e−π[~y·(M1+M2+M3)·~y]
∑

~l3,~l4∈Zn

∑

~p,~̃p

eπi(i)[
~K+~L]·Q̂′·[~K+~L]e2πi(i)[

~K+~L]· ~Y′

= σabcg · (2
3)

1
4 (|detM1|.|detM2|.|detM3|)

1
4

(

V ol(T 4)
)− 3

2 ×

∑

~p,~̃p

∫

d2~y{e−π[~y·(M1+M2+M3)·~y] · ϑ

[

~K

0

]

( ~Y′|iQ̂′)} (3.237)where we de�ned new 4d-ve
tors:
~L =

(

~l3
~l4

)

, ~K =

(

~k

[(~i−~j + ~̃m)][N1(N1+N2)−1N2

detN1 detN2
]

)

, (3.238)
~Y′ =

(

(M1 +M2)~y

[(detN1 detN2)(M1N1
−1 −M2N2

−1)] · ~y

) (3.239)and the 4d-matrix:Q̂′
=

(

(M1 +M2) (detN1 detN2)(M1N1
−1 −M2N2

−1)

(detN1 detN2)(N1
−1M1 −N2

−1M2) (detN1 detN2)
2(N1

−1M1N1
−1 +N2

−1M2N2
−1)

)(3.240)with ~k appearing in eq. (3.238) restri
ted by the Krone
ker delta relation written above,as following from the x integration, in eq. (3.235) and the range of the sum over ~p, ~̃p is asused in eq. (3.110) in se
tion 3.5.3, we skip the details regarding them.In fa
t, the form of the result (3.237) is valid for all basis fun
tions, whether 
or-responding to positive or negative 
hirality wavefun
tions, sin
e the negative 
hiralitywavefun
tion (3.191), written for the 
omplex stru
ture Ω = iI2 and used in obtaining the�nal answer for Yukawa 
oupling in eq. (3.237), redu
es to the one for positive 
hiralitywavefun
tion for the same 
omplex stru
ture when M is set to N (see eq. (3.68) for thegeneral form of the positive 
hirality wavefun
tion). For su
h a 
hoi
e: Mi = Ni, Q̂′ hasa fa
torized blo
k form and the ve
tor ~Y′ in eq. (3.239) now has a form:
~Y′ =

(

(N1 +N2)~y

0

)

. (3.241)
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Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsThe theta fun
tion in eq. (3.237) then fa
torizes and the �nal answer redu
es to the formgiven in eqs. (3.104), (3.114) for the 
hoi
e τ = i 
orresponding to the 
omplex stru
tureof our 
hoi
e in the negative 
hirality wavefun
tion (3.181).The Yukawa 
oupling expression (3.237) 
an be further generalized to other situations.First, although the above analysis was very spe
i�
 to the 
ase of T 4 due to our 
hoi
eof wavefun
tion in eq. (3.191), the generlization to the T 6 is staightforward. Mappingbetween matri
es N and M is identi
al and follows from the de�nition of Ω̂ in subse
tion3.6.8. The �nal answer is identi
al to the one given in eq. (3.237).Further generalization to the situation of arbitrary 
omplex stru
ture should also bepossible, using the wavefun
tions that emerge due to the mappings obtained in subse
tion(3.6.7) and s
aling pro
edure presented in se
tion (3.5.6) for the positive 
hirality wave-fun
tions. One, however, also needs to examine the symmetry property of the matri
es
NΩ̂Ω et
., appearing in the de�nition of the wavefun
tion. We leave further details forfuture work.3.7 Dis
ussions and Con
lusionsIn this 
on
luding se
tion, we �rst 
omment on the 
ase of magnetized branes with higherwinding numbers. The form of the wrapping matri
es [104℄ for D9 branes on T 6 wasdis
ussed in [7, 103℄. They are real 6×6 matri
es giving the embedding of the brane alongspatial internal dire
tions. The situation where worldvolume 
oordinates are identi�edwith the spatial 
oordinates 
orresponds to W being diagonal. Then, for example, for a
anoni
al 
omplex stru
ture Ω = iI3, the spatial 
omponents of the �ux matri
es are of theform given in eqs. (D.3), (D.4), (D.5). Taking into a

ount the gauge indi
es, one obtainsa blo
k diagonal matrix stru
ture for the �uxes, that redu
es in the 
ase of fa
torized torito the form:

F =





ma
i

na
i
INa

mb
i

nb
i

INb



 , (3.242)with a and b representing the brane-sta
ks and i denotes the i'th T 2. Also ma,b
i are the�rst Chern numbers, as given in eqs. (D.3) and (D.4), whereas na,b

i are the produ
t of thewinding numbers along various 1-
y
les of (T 2)
3
∈ T 6. Also, Na and N b are the numberof branes in sta
ks a and b respe
tively and the above expression has a straightforwardgeneralization when many su
h brane sta
ks are involved.In [6℄, a gauge theoreti
 pi
ture of the magneti
 �uxes along brane sta
ks with higherwinding numbers (> 1) was given. For instan
e, 
onsider the simplest 
hoi
e Na = N b =94



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplings
1. In this 
ase, the 
on�guration of the brane sta
ks a and b with one D-brane ea
h,having wrapping numbers na, nb and 1st Chern numbers ma, mb, is given by a �ux matrixasso
iated with a U(na+nb) gauge group with �ux having the internal (gauge) 
omponents:

F =





ma
i

na
i
Ina

i

mb
i

nb
i

Inb
i



 , (3.243)along the i'th T 2 and ma
i , n

a
i et
. are relatively prime.Given the U(na + nb) �ux in eq. (3.243), the fermion wavefun
tions asso
iated withbifundamentals were 
onstru
ted in [6℄. The new feature is that, to have proper periodi
ityproperty for these fermion wavefun
tions, non-abelian Wilson lines need to be turnedon. In turn, these non-abelian Wilson lines mix up na

i × nb
i 
omponents and the set ofperiodi
ity 
onstraints only allows the bifundamentals belonging to the representations ofthe gauge group: U(P a

i )×U(P
b
i ), with P a

i = g.c.d.(ma
i , n

a
i ). In our example above we have

P a
i = P b

i = 1.The 
ase of oblique �uxes brings in extra 
omplexities in the analysis due to thepresen
e of six independent 1-
y
les along whi
h non-abelian Wilson line a
tions needto be �xed. Given the a
tion of these Wilson lines, one 
an then pro
eed to obtain thewavefun
tions as well as the Yukawa 
ouplings. However, unlike the fa
torized situation in[6℄, one �nds that the a
tion of non-abelian Wilson lines on the wavefun
tion, is dependenton the parti
ular model, or more pre
isely, on the details of the oblique �uxes that areturned on. Further analysis along this line is, though 
umbersome, possible.To summarize, in this work, we have been able to expli
itly generalize the Yukawa
oupling expressions to the situation when the worldvolume �uxes, that are responsiblefor moduli stabilization, 
hiral mass generation, supersymmetry breaking to N = 1 et
.,do not respe
t the fa
torization of T 6 into (T 2)
3. For the fa
torized tori, the mappingsof the Yukawa 
ouplings, superpotentials and Kähler potential between the type IIB andIIA expressions was dis
ussed in [6℄. In the IIA 
ase, the results are obtained through a`diagonal' wrapping of the D6 branes in three T 2's.It will also be interesting to map our IIB expressions, given in this 
hapter to theIIA side and �nd the 
orresponding interse
ting brane pi
ture. Due to the presen
e ofmagneti
 �uxes, obtaining the Type IIA pi
ture by simply applying T-duality is not trivial.When �uxes are turned on along the three diagonal 2-tori, the 
orresponding T-dualpi
ture is given by interse
ting D6-branes, the angle of interse
tion being related to themagneti
 �ux turned along that tori. However, when there are 'oblique' �uxes present, the
orresponding interse
ting brane pi
ture is not very illustrative. As stated earlier, su
h a95



Chapter 3. Fermion Wavefun
tions in Magnetized branes:Theta identities and Yukawa 
ouplingsIIA 
onstru
tion will require putting the branes along general SU(3) rotation angles andthen obtain the area of the triangles 
orresponding to the interse
tions of three branesgiving 
hiral multiplets.Finally, it will be interesting to explore the generalization of our results to higher-point fun
tions (
omputing 
ouplings of higher dimensional e�e
tive operators) [129℄ andmake expli
it 
omparisons of our results with those in [124, 125℄, where the situationwith diagonal interse
tion matri
es Ni, but non-fa
torized 
omplex stru
ture, is addressedthrough a 
omputation of twist �eld 
orrelations. However, one then needs to examinethe e�e
t of supersymmetry 
onditions (2.26) and (2.27) to see if the intera
tion indeedremains nontrivial in a supersymmetri
 set up.
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4Supersymmetri
 SU(5) GUT modelwith Stabilized Moduli:
4.1 Introdu
tionIn this 
hapter, we apply the framework des
ribed in the previous 
hapters, as well asthe theoreti
al results derived in them, to 
onstru
t semi-realsti
 models. In parti
ular,we dis
uss the 
onstru
tion of a three generation SU(5) supersymmetri
 grand uni�ed(GUT) model in simple toroidal 
ompa
ti�
ations of type I string theory with magnetized
D9 branes. The �nal gauge group is just SU(5) and the 
hiral gauge non-singlet spe
trum
onsists of three families with the quantum numbers of quarks and leptons, transformingin the 10 + 5̄ representations of SU(5). Brane sta
ks with oblique �uxes play a 
entralrole in this 
onstru
tion, in order to stabilize all 
lose string moduli. Moreover, the modelis free from any 
hiral exoti
s that often appear in su
h brane 
onstru
tions.In the minimal 
ase, three sta
ks of branes are needed to embed lo
ally the StandardModel (SM) gauge group and the quantum numbers of quarks and leptons in their inter-se
tions [123℄. They give rise to the gauge group U(3)×U(2)×U(1), with the hyper
hargebeing a linear 
ombination of the three U(1)'s. Three di�erent models 
an then be ob-tained, one of whi
h 
orresponds to an SU(5) Grand Uni�ed Theory (GUT) when U(3)and U(2) are 
oin
ident. Here, we fo
us pre
isely on this U(5)×U(1) model employing twomagnetized D9-brane sta
ks. Open strings stret
hed in the interse
tion of U(5) with itsorientifold image give rise to 3 
hiral generations in the antisymmetri
 representation 10of SU(5), while the interse
tion of U(5) with the orientifold image of U(1) gives 3 
hiralstates transforming as 5̄. Finally, the interse
tion of U(5) with the U(1) is non 
hiral,giving rise to Higgs pairs 5 + 5̄.In order to obtain an odd number (3) of fermion generations, a NS-NS 2-form B-
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Chapter 4. Supersymmetri
 SU(5) GUT model with Stabilized Moduli:�eld ba
kground[91, 92℄ must be turned on [94℄. This requires the generalization of theminimal set of branes with oblique magneti
 �uxes that generate only diagonal 5-branetadpoles on the three orthogonal tori of T 6 =
∏3

i=1 T
2
i . We �nd indeed a set of eightsu
h �oblique" branes whi
h 
ombined with U(5) 
an �x all geometri
 moduli by thesupersymmetry 
onditions. The metri
 is �xed in a diagonal form, depending on six radiigiven in terms of the magneti
 �uxes. At the same time, all nine 
orresponding U(1)'sbe
ome massive yielding an SU(5) × U(1) gauge symmetry. This U(1) fa
tor 
annot bemade supersymmetri
 without the presen
e of 
harged s
alar VEVs. Moreover, two extrabranes are needed for RR tadpole 
an
ellation, whi
h also require non-vanishing VEVs tobe made supersymmetri
. As a result, all extra U(1)'s are broken and the only leftovergauge symmetry is an SU(5) GUT. Furthermore, the interse
tions of the U(5) sta
k withany additional brane used for moduli stabilization are non-
hiral, yielding the three familiesof quarks and leptons in the 10+5̄ representations as the only 
hiral spe
trum of the model(gauge non-singlet).To elaborate further, the model is des
ribed by twelve sta
ks of branes, namely U5, U1,

O1 . . . , O8, A, and B. The SU(5) gauge group arises from the open string states of sta
k-
U5 
ontaining �ve magnetized branes. The remaining eleven sta
ks 
ontain only a singlemagnetized brane. Also, the sta
k-U5 
ontaining the GUT gauge se
tor, 
ontributes to theGUT parti
le spe
trum through open string states whi
h either start and end on itself13or on the sta
k-U1, having only a single brane and therefore 
ontributing an extra U(1).For this reason we will also refer to these sta
ks as U5 and U1 sta
ks.The matter se
tor of the SU(5) GUT is spe
i�ed by 3 generations of fermions in thegroup representations 5̄ and 10 of SU(5), both of left-handed heli
ity. In the magnetizedbranes 
onstru
tion, the 10 dimensional (antisymmetri
) representation of left-handedfermions:

10 ≡

















0 uc3 uc2 u1 d1

0 uc1 u2 d2

0 u3 d3

0 e+

0

















L

(4.1)
arises from the doubly 
harged open string states starting on the sta
k-U5 and ending atits orientifold image: U∗

5 and vi
e verse. They transform as 10(2,0) of SU(5)×U(1)×U(1),where the �rst U(1) refers to sta
k-U5 and the se
ond one to sta
k-U1, while the subs
riptdenotes the 
orresponding U(1) 
harges. The 5̄ of SU(5) 
ontaining left-handed 
hiral13For simpli
ity, we do not distinguish a brane sta
k with its orientifold image, unless is expli
itly stated.98



Chapter 4. Supersymmetri
 SU(5) GUT model with Stabilized Moduli:fermions, or alternatively the 5 with right-handed fermions:
5 ≡

















d1

d2

d3

e+

νc

















R

(4.2)
are identi�ed as states of open strings starting from sta
k-U5 (with �ve magnetized branes)and ending on sta
k-U∗

1 (i.e. the orientifold image of sta
k-U1) and vi
e verse. Themagneti
 �uxes along the various branes are 
onstrained by the fa
t that the 
hiral fermionspe
trum, mentioned above, of the SU(5) GUT should arise from these two se
tors only.The appearan
e of this form is dis
ussed in later Subse
tion (4.2.1).Our aim, in this 
hapter, is to give a supersymmetri
 
onstru
tion whi
h in
orporatesthe above features of SU(5) GUT while stabilizing all the Kähler and 
omplex stru
-ture moduli. More pre
isely, for �uxes to be supersymmetri
, one demands that theirholomorphi
 (2, 0) part vanishes. This 
ondition then leads to 
omplex stru
ture mod-uli stabilization[102℄. In our 
ase we show that, for the �uxes we turn on, the 
omplexstru
ture Ω of T 6 is �xed to
Ω = i 113, (4.3)with 113 being the 3× 3 identity matrix.In this 
hapter, we make use of the 
onventions given in 
hapter 2, for the parametriza-tion of the torus T 6, as well as for the general de�nitions of the Kähler and 
omplex stru
-ture moduli. In parti
ular, the 
oordinates of three fa
torized tori: (T 2)3 ∈ T 6 are givenby xi, yi i = 1, 2, 3 with a volume normalization:

∫

dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ dx3 ∧ dy3 = 1. (4.4)For Kähler moduli stabilization, we make use of the me
hanism based on the magne-tized D-branes supersymmetry 
onditions as dis
ussed in [102, 103, 120℄. Physi
ally this
orresponds to the requirement of vanishing of the potential whi
h is generated for themoduli �elds from the Fayet-Iliopoulos (FI) D-terms asso
iated with the various branes.Even in this simpli�ed s
enario, the mammothness of the exer
ise is realized by noting thatevery magneti
 �ux that is introdu
ed along any brane also indu
es 
harges 
orrespondingto lower dimensional branes, giving rise to new tadpoles that need to be 
an
eled. In par-ti
ular, for the type I string that we are dis
ussing, there are indu
ed D5 tadpoles from99



Chapter 4. Supersymmetri
 SU(5) GUT model with Stabilized Moduli:�uxes along the magnetized D9 branes. These �uxes, in turn, are for
ed to be non-zeronot only in order to satisfy the 
ondition of zero net 
hirality among the U5 and the extrabrane sta
ks (ex
ept with the U1), but in order to implement the me
hanism of 
omplexstru
ture and Kähler moduli stabilization, as well. Spe
i�
ally, for stabilizing the non-diagonal 
omponents of the metri
, one is for
ed to introdu
e `oblique' �uxes along the
D9-branes, thus generating `oblique' D5-brane tadpoles, and all these need to be 
an
eled.However, as mentioned earlier, we are able to �nd eight brane sta
ks O1, . . . , O8, withdi�erent oblique �uxes, su
h that the 
ombined net indu
ed D5-brane 
harge lies onlyalong the three diagonal dire
tions [xi, yi]. The holomorphi
ity 
onditions of �uxes, namelythe vanishing of �eld strengths with purely holomorphi
 indi
es, for these brane sta
ksstabilizes the 
omplex stru
ture moduli to the value (4.3). These �uxes also introdu
eD-term potential for the Kähler moduli. On
e the 
omplex stru
ture is �xed as in (4.3),the �uxes in the nine sta
ks U5, O1, . . . , O8 generate potential in su
h a a way that all thenine Kähler moduli, Jij̄, (i, j = 1, 2, 3) are 
ompletely �xed by the D-�atness 
onditions,imposing the vanishing of the FI terms. The residual diagonal tadpoles of the branes inthe sta
ks U5, U1, O1, . . . , O8 are then 
an
eled by introdu
ing the last two brane sta
ks
A and B. D-�atness 
onditions for the brane sta
ks U1, A and B are also satis�ed,provided some VEVs of 
harged s
alars living on these branes are turned on to 
an
elthe 
orresponding FI parameters. Magnetized D-branes provide exa
t CFT (
onformal�eld theory) 
onstru
tion of the GUT model. However, in the presen
e of the these non-vanishing s
alar VEVs, exa
t CFT des
ription is lost. The validity of the approximationthen requires these VEVs to be smaller than unity in string units, a 
ondition whi
h ismet in our 
ase. We expli
itly determine the 
harged s
alar VEVs and verify that they alltake values va << 1. Our model therefore 
orresponds to the Higgsing of a magnetized
D9-brane model to be made supersymmetri
 through the VEVs of 
ertain 
harged s
alar�elds on the interse
tions of the branes U1, A and B.At this point we would like to point out that, our strategy is to start with a suitableansatz for both the 
omplex stru
ture (4.3) and Kähler moduli leading to diagonal internalmetri
. Using this ansatz, we then determine �uxes along the branes satisfying all the
onstraints we elaborated upon earlier. We then use the �ux solutions, to show expli
itlythat the moduli are indeed 
ompletely �xed, 
onsistent with our ansatz.The 
hapter is organized as follows. In Se
tion 4.2, we obtain general solutions for�uxes along magnetized D9-branes satisfying the ne
essary 
onstraints, as des
ribed in
hapter 2, for building the model. Moduli stabilization is dis
ussed in Se
tion 4.3. InSe
tion 4.4, the VEVs of 
harged s
alars on the sta
ks U1, A and B are determined. InSe
tion 4.5, we brie�y present an analysis of the superpotential and D-terms for the model100



Chapter 4. Supersymmetri
 SU(5) GUT model with Stabilized Moduli:in order to show how masses for several non-
hiral fermion multiplets 
an be generated,without evaluating expli
itly the superpotential 
oe�
ients. This 
hapter ends with adis
ussion, Se
tion 4.6, of our results. In Appendix A, the �uxes along branes are writtenexpli
itly for the sta
ks O1, . . . , O8 and the asso
iated D5-brane tadpoles are given. Theabsen
e of 
hiral fermions is also shown from these se
tors. In Appendix B, 
omplexstru
ture stabilization is shown expli
itly using the �uxes given in Appendix A. Finally,the Kähler moduli stabilization is shown in Appendix C.4.2 Constru
ting a three generation SU(5) GUT modelIn this se
tion, we �rst present in subse
tion 4.2.1 the brane sta
ks U5 and U1, on whi
hthe SU(5) GUT, with three generations of 
hiral fermions, lives. Then, in subse
tion 4.2.2,we write down the 
onditions whi
h any extra sta
ks, 
alled Oa have to satisfy, so thatthere are no net SU(5) non-singlet 
hiral fermions 
orresponding to open strings of thetype: U5 −Oa and U5 − O∗
a. In other words:

IU5Oa
+ IU5O∗

a
= 0. (4.5)In addition, we also write down, in subse
tion 4.2.3, the 
ondition that su
h sta
ks aremutually supersymmetri
 with the sta
k U5, without turning on any 
harged s
alar VEVson these branes. The solution of these 
onditions giving eight branes O1, ..., O8 is presentedin subse
tions 4.2.4 and 4.2.5. They are all supersymmetri
, stabilize all Kähler moduli(together with sta
k-U5) and 
an
el all tadpoles along the oblique dire
tions, xixj , xiyj,

yiyj for i 6= j. Finally in subse
tion 4.2.6, two more sta
ks A and B are found whi
h 
an
elthe overall D9 and D5-brane tadpoles (together with the U1 sta
k).As stated earlier, our strategy to �nd solutions for branes and �uxes is to �rst assumea 
anoni
al 
omplex stru
ture and Kähler moduli whi
h have non-zero 
omponents onlyalong the three fa
torized orthogonal 2-tori. In other words, we look for solutions whereKähler moduli are eventually stabilized su
h that
Jij̄ = 0, i 6= j, (i, j = 1, 2, 3). (4.6)By assuming the 
omplex stru
ture and Kähler moduli as in eqs. (4.3) and (4.6), we then�nd �uxes needed to be turned on in order to 
an
el tadpoles. These �uxes are also usedin the stabilization equations, in se
tion 4.3 and Appendi
es B and C, to show that moduliare indeed 
ompletely �xed in a way that the six-torus metri
 be
omes diagonal. 101



Chapter 4. Supersymmetri
 SU(5) GUT model with Stabilized Moduli:4.2.1 SU(5) GUT brane sta
ksWe now present the two brane sta
ks U5 and U1 whi
h give the parti
le spe
trum of SU(5)GUT. For this purpose, we 
onsider diagonally magnetized D9-branes on a fa
torized six-dimensional internal torus (2.17), in the presen
e of a NS-NS B-�eld turned on a

ordingto eq. (2.54). The sta
ks of D9-branes have multipli
itiesNU5 = 5 and NU1 = 1, so that an
SU(5) gauge group 
an be a

ommodated on the �rst one. Next, we impose a 
onstrainton the windings n̂U5

i (de�ned in eq.(2.15)) of this sta
k by demanding that 
hiral fermionmultipli
ities in the symmetri
 representation of SU(5) is zero. Then from eqs. (2.58), weobtain the 
onstraint:
∏

j

n̂U5
j = 1. (4.7)We solve eq. (4.7) by making the 
hoi
e (2.18): nU5

α ≡ W α̂,U5
α = 1 for the sta
k U5. Thisalso implies n̂U5

i = 1 for i = 1, 2, 3. Moreover, sin
e from (2.49) the total D9-brane 
hargehas to be sixteen and higher winding numbers give larger 
ontributions to the D9 tadpole,the windings in all sta
ks will be restri
ted14 to na
i = 1 so that a maximum number of branesta
ks 
an be a

ommodated (with Q9 = 16), in view of ful�lling the task of stabilization.Indeed, the sta
k U5 already saturates �ve units of D9 
harge while stabilizing only asingle Kähler modulus. One more unit of D9 
harge is saturated by the U1 sta
k, respon-sible for produ
ing the 
hiral fermions in the representation 5̄ of SU(5) at its interse
tionwith U5. Moreover, it 
annot be made supersymmetri
 in the absen
e of 
harged s
alarVEVs, as we will see below. Thus, stabilization of the eight remaining Kähler moduli,apart from the one stabilized by the U5 sta
k, needs eight additional branes O1, . . . , O8,
ontributing at least that many units of D9 
harge (when windings are all one). Theseleave only two units of D9 
harge yet to be saturated, whi
h are also required to 
an
elany D5-brane tadpoles generated by the ten sta
ks, U5, U1 and O1, . . . , O8. We �nd thatthis is a
hieved by two sta
ks A and B, also of windings one, so that the total D9 
hargeis Q9 = 16 and all D5 tadpoles vanish Q5

αβ = 0.Now, after having imposed the 
ondition that symmetri
 doubly 
harged representationof SU(5) is absent, we �nd solutions for the �rst Chern numbers and �uxes, so that thedegenera
y of 
hiral fermions in the antisymmetri
 representation (10) of SU(5) is equalto three. These multipli
ities are given in eqs. (2.57), (2.61), and when applied to thesta
k U5 give the 
onstraint:
(2m̂U5

1 + 1)(2m̂U5
2 + 1)(2m̂U5

3 + 1) = 3, (4.8)14detW is restri
ted to be positive de�nite in order to avoid the presen
e of anti-branes. 102



Chapter 4. Supersymmetri
 SU(5) GUT model with Stabilized Moduli:with a solution:
m̂U5

1 = −2, m̂U5
2 = −1, m̂U5

3 = 0. (4.9)The 
orresponding �ux 
omponents are:
pU5

x1y1 = −
3

2
, pU5

x2y2 = −
1

2
, pU5

x3y3 =
1

2
, (4.10)asso
iated to the total (target spa
e) �ux matrix

F̃U5

(1,1) =







−3
2

−1
2

1
2






. (4.11)At this level, the 
hoi
e of signs is arbitrary and is taken for 
onvenien
e.Next, we solve the 
ondition for the presen
e of three generations of 
hiral fermionstransforming in 5̄ of SU(5). These 
ome from singly 
harged open string states startingfrom the U5 sta
k and ending on the U1 sta
k or its image. In other words, we use the
ondition:

IU5U1 + IU5U∗

1
= −3. (4.12)To solve this 
ondition for diagonal �uxes, one 
an use the formulae (2.56), or alternativelyeqs. (2.59) and (2.60). In the presen
e of the NS-NS Bαβ-�eld of our 
hoi
e (2.54), andusing the �uxes along the U5 sta
k (4.10) or (4.11), the formulae take a form:

(NU5 , NU1) : IU5U1 = (−
3

2
− FU1

1 )(−
1

2
− FU1

2 )(
1

2
− FU1

3 ) , (4.13)
(NU5 , NU1) : IU5U∗

1
= (−

3

2
+ F 1

U1
)(−

1

2
+ FU1

2 )(
1

2
+ FU1

3 ) , (4.14)where we have used the notation F a
i ≡ (F̃ a

(1,1))īi for a given sta
k-a. We will also demandthat all 
omponents FU1
1 , FU1

2 , FU1
3 are half-integers, due to the shift in 1st Chern numbers

m̂U1
i by half a unit, in the presen
e of a non-zero NS-NS B-�eld along the three T 2's (2.17).We then get a solution of eq. (4.12):

IU5U1 = 0, IU5U∗

1
= −3, (4.15)for �ux 
omponents on the sta
k U1:

FU1
1 = −

3

2
, FU1

2 =
3

2
, FU1

3 =
1

2
. (4.16)103



Chapter 4. Supersymmetri
 SU(5) GUT model with Stabilized Moduli:
Sta
k no. No. of Windings Chern no. Fluxesa branes: Na (n̂a

1, n̂
a
2, n̂

a
3) ( m̂a

1, m̂
a
2, m̂

a
3 ) [

(m̂a
1+n̂a

1/2)

n̂a
1

,
(m̂a

2+n̂a
2/2)

n̂a
2

,
(m̂a

3+n̂a
3/2)

n̂a
3

]Sta
k-U5 5 (1, 1, 1) (−2,−1, 0) [-3
2
, -1

2
, 1

2
℄Sta
k-U1 1 (1, 1, 1) (−2, 1, 0) [−3

2
, 3
2
, 1
2
]Table 4.1: Basi
 branes for the SU(5) modelOne 
an ask whether solutions other than (4.16) are possible for the U1 sta
k. Forinstan
e, instead of the 
hoi
e (0,−3) of eq. (4.15) for the interse
tions U5−U1 and U5−U∗

1subje
t to the 
ondition (4.12), one 
ould try (−3, 0) or in general (n,−n− 3), for n anyinteger. Note that n (for n > 0) or −n−3 (for n < −3) is the number of ele
troweak Higgspairs 
ontained in 5 + 5̄ of SU(5). Thus, the 
ases (−1,−2) and (−2,−1) were ex
ludedbe
ause of the absen
e of higgses, but other 
ases su
h as n = 1 or n = −4 (
ontainingone Higgs pair) are worth to explore. We leave these as exer
ises for the future.The present results, in
luding the quanta (m̂i, n̂i) for both U5 and U1 sta
ks, are sum-marized in Table 4.1.Moreover, the (
hiral) massless spe
trum under the resulting gauge group U(5)×U(1) issummarized in Table 4.2. The interse
tion of U5 with U1 is non-
hiral sin
e IU5U1 vanishes.The 
orresponding non-
hiral massless spe
trum shown in the table 
onsists of four pairsof 5 + 5̄ and will be dis
ussed in se
tion 4.2.7.4.2.2 Non-
hiral sta
ksSo far, we have obtained the gauge and matter 
hiral spe
trum of the SU(5) GUT usingtwo sta
ks of magnetized branes 15. However, in order to 
omplete the model and stabilizeall moduli, one needs to add additional sta
ks of magnetized branes. This has to be done ina manner su
h that the supersymmetries of all the brane sta
ks are mutually 
ompatible.To this end, we �rst examine whether the �rst two sta
ks U5 and U1 
an have mutually15The gauge se
tor of the SU(5) arises from the open string states starting and ending on the sta
k-U5.104



Chapter 4. Supersymmetri
 SU(5) GUT model with Stabilized Moduli:
SU(5)× U(1)2 number
(10; 2, 0) 3

(5; 1, 1) −3

(5;−1, 1) 4− 4Table 4.2: Massless spe
trum
ompatible supersymmetry in a way suitable for moduli stabilization. The Kähler modulistabilization 
onditions are written in eqs. (2.40) and (2.45), 
orresponding to the 
aseswhere 
harged s
alar VEVs are respe
tively zero or non-zero.Sin
e the VEV of any 
harged s
alar on the U5 sta
k is required to be zero, in orderto preserve the gauge symmetry, the supersymmetry 
onditions for the U5 sta
k read:
3

8
−

1

2
(J1J2 − 3J2J3 − J1J3) = 0, (4.17)

J1J2J3 −
1

4
(−J1 − 3J2 + 3J3) > 0, (4.18)where we have used the fa
t that all windings are equal to unity and that eventually theKähler moduli are stabilized a

ording to our ansatz (4.6), su
h that Jij̄ = 0 for i 6= j,and we have also de�ned
Jīi ≡ Ji. (4.19)For the U1 sta
k on the other hand, one has the option of turning on a 
harged s
alarVEV without breaking SU(5) gauge invarian
e. However, sin
e all windings are equal tounity, there are no 
harged states under U(1) whi
h are SU(5) singlets. Indeed, thereis no antisymmetri
 representation for U(1), while symmetri
 representations are absentbe
ause of our winding 
hoi
e. The only 
harged states then 
ome from the interse
tionof U1 with U5 (or its image). Thus, the supersymmetry 
ondition for the U1 sta
k followsfrom eq. (2.40), with the �uxes given in eq. (4.16) and Table 4.1:

−
9

8
−

1

2
(J1J2 − 3J2J3 + 3J1J3) = 0, (4.20)105



Chapter 4. Supersymmetri
 SU(5) GUT model with Stabilized Moduli:
J1J2J3 −

1

4
(3J1 − 3J2 − 9J3) > 0. (4.21)Subtra
ting eq. (4.20) from eq. (4.17) one obtains: J1J3 = −3

4
whi
h is 
learly not allowed.We then 
on
lude that the U1 sta
k is not suitable for 
losed string moduli stabilizationwithout 
harged s
alar VEVs from its interse
tion with other brane sta
ks (besides U5).We therefore need eight new U(1) sta
ks for stabilizing all the nine geometri
 Kählermoduli, in the absen
e of open string VEVs.In order to �nd su
h new sta
ks, one needs to impose the 
ondition that any 
hiralfermions, other than those dis
ussed in se
tion 4.2.1, are SU(5) singlets and thus belongto the `hidden se
tor', satisfying:

IU5a + IU5a∗ = 0, for a = 1, .., 8 . (4.22)We then introdu
e eight new sta
ks O1, . . . , O8, whi
h 
arry in general both oblique anddiagonal �uxes in order to stabilize eight of the geometri
 Kähler moduli, using the su-persymmetry 
onstraints (2.40). The remaining one is stabilized by the sta
k U5. Morepre
isely, to determine the brane sta
ks O1, . . . , O8, we start with our ansatz for both Käh-ler and 
omplex stru
ture moduli, and use them to �nd out the allowed �uxes, 
onsistentwith zero net 
hirality and supersymmetry. Later on, we use the resulting �uxes to showthe 
omplete stabilization of moduli, and thus prove the validity of our ansatz.In general, along a sta
k-a, the �uxes 
an be denoted by 3× 3 Hermitian matri
es,
F a
(1,1) =







f1 a b

a∗ f2 c

b∗ c∗ f3






, (4.23)with fi's being real numbers, and we have suppressed the supers
ript `a' on the ma-trix 
omponents in the rhs of eq. (4.23). The relationships between the matrix elements

(F a
(1,1))ij̄ and the �ux 
omponents paxixj , paxiyj , payiyj are:

fi = pxiyi , a = px1y2 + ipx1x2 , b = px1y3 + ipx1x3 , c = px2y3 + ipx2x3 . (4.24)The subs
ript (1, 1) will also sometimes be suppressed for notational simpli
ity. We nowsolve the non-
hirality 
ondition (4.22) that a general �ux of the type (4.23) must satisfy:
IU5a + IU5a∗ = det(FU5 − F a) + det(FU5 + F a) = 0 . (4.25)
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 SU(5) GUT model with Stabilized Moduli:The general solution for the �ux (4.23) is:
3

4
+ (f1f2 − 3f2f3 − f1f3) + (3cc∗ − aa∗ + bb∗) = 0. (4.26)All additional sta
ks, in
luding O1, . . . , O8, are required to satisfy this 
ondition.4.2.3 Supersymmetry 
onstraintWe now impose an additional requirement on the �uxes along the sta
ks O1, . . . , O8, thattogether with the sta
k U5 they should satisfy the supersymmetry 
onditions (2.40), inthe absen
e of 
harged s
alar VEVs. Using F a of eq. (4.23), the supersymmetry equationsanalogous to (4.17) and (4.18) for a sta
k Oa read:

(f1f2f3 − cc∗f1 − bb∗f2 − aa∗f3 + a∗bc∗ + ab∗c)

−(J1J2f3 + J2J3f1 + J1J3f2) = 0, (4.27)
J1J2J3 − [J1(f2f3 − cc∗) + J2(f3f1 − bb∗) + J3(f1f2 − aa∗)] > 0. (4.28)Next, we obtain two sets of �uxes of the form (4.23) whi
h satisfy eqs. (4.26) and(4.27). The two sets, O1, . . . , O4 and O5, . . . , O8, are 
hara
terized by the diagonal entriesin the matrix F a (4.23), whi
h will be the same for the branes of ea
h set. The motivationbehind su
h 
hoi
es is di
tated by the fa
t that on
e the o� diagonal 
omponents of Jij̄are �xed to zero, these two sets of �uxes along the diagonal, together with the �ux of U5sta
k, determine the three diagonal elements Ji (4.19), 
ompletely.4.2.4 Solution for the sta
ks O1, . . . , O4In order to �nd a 
onstraint on the �ux 
omponents f1, f2, f3 and a, b, c arising out of therequirement that equations (4.17) and (4.27) should be satis�ed simultaneously, we startwith a parti
ular one-parameter solution of eq. (4.17):

J1 =
3

4ǫ2
, J2 =

1

2ǫ
+

1

2
, J3 =

1

2ǫ
−

1

2
(4.29)
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 SU(5) GUT model with Stabilized Moduli:for arbitrary parameter ǫ ∈ (0, 1).16 Then, by inserting (4.29) into eq. (4.27), one obtainsthe relation:
3

4ǫ3
(
f2 + f3

2
) +

1

4ǫ2
[
3

2
(f3 − f2) + f1]

= (f1f2f3 − cc∗f1 − bb∗f2 − aa∗f3 + a∗bc∗ + ab∗c) +
f1
4
. (4.30)In solving eqs. (4.26) and (4.30), satisfying also the positivity 
ondition (4.28), we haveto keep in mind that fi's take half-integer values due to the NS-NS B-�eld ba
kground(2.54). On the other hand the parameters a, b, c must be integers, sin
e the windings areall one and there is no B-�eld turned on along any o�-diagonal 2-
y
le. Our approa
h isthen to �rst look for a solution of eq. (4.26) and then examine whether su
h a solutiongives an ǫ from eq. (4.30) su
h that all the Ji's in eq. (4.29) are positive. In addition,both positivity 
onditions (4.18) and (4.28) have to be satis�ed.To solve eq. (4.26), we impose the relation f2 = −f3. The two equations (4.26) and(4.30) are then redu
ed to

3

4
+ 2f1f2 + 3f 2

2 + 3cc∗ + bb∗ − aa∗ = 0, (4.31)and
1

4ǫ2
(−3f2 + f1) = −f1f

2
2 − cc∗f1 − bb∗f2 + aa∗f2 + a∗bc∗ + ab∗c+

f1
4
. (4.32)A solution of eq. (4.31) with purely real �ux 
omponents is found to be:

f1 =
5

2
, f2 =

1

2
, f3 = −

1

2
, a = 4 , b = 3 , c = 1 . (4.33)Moreover, we noti
e from eqs. (4.31), (4.32) and the identity:

a∗bc∗ + ab∗c = 2a1(b1c1 + b2c2) + 2a2(b2c1 − b1c2) , (4.34)with a = a1 + ia2, b = b1 + ib2, c = c1 + ic2, that other solutions 
an be found simplyby repla
ing some of the real 
omponents of a, b, c by imaginary ones modulo signs, aslong as the values of the produ
ts aa∗, bb∗, cc∗, as well as that of (a∗bc∗ + ab∗c) remainun
hanged. We make use of su
h 
hoi
es for 
an
eling o�-diagonal D5-brane tadpoles16One 
an also write down a full two-parameter solution of eq. (4.17), however we prefer to use twodi�erent one-parameter families with appropriate parametrization for 
onvenien
e in model building. These
ond one-parameter solution will be used in se
tion 4.2.5. Equation (4.40) represents the se
ond one-parameter solution. 108



Chapter 4. Supersymmetri
 SU(5) GUT model with Stabilized Moduli:whi
h for a general �ux matrix (4.23) read (using eq. (2.50)):
Q5,a

11̄
= (f2f3 − cc∗) , Q5,a

22̄
= (f3f1 − bb∗) , Q5,a

33̄
= (f1f2 − aa∗) ,

Q5,a
12̄

= (b∗c− a∗f3) , Q5,a
23̄

= (b∗a− c∗f1) , Q5,a
31̄

= (ac− bf2) . (4.35)Here we have used the 
omplex 
oordinates zi, z̄i and the assumption that 
omplex stru
-ture is eventually stabilized as in eq. (4.3).The result of our analysis above, giving �uxes for the brane sta
ks O1, . . . , O4, (in
lud-ing the solution (4.33)) is presented in Appendix A, in eqs. (A.2), (A.7), (A.12), (A.17).In this Appendix, we also show that the net 
hiral fermion 
ontribution from the inter-se
tion of ea
h of the four sta
ks O1, . . . , O4 with U5 (and its image) is zero, as shown ineqs. (A.3), (A.8), (A.13), (A.18). Oblique tadpoles Q5
12̄, Q5

23̄, Q5
31̄ are given in eqs. (A.4),(A.9), (A.14), (A.19) and their 
an
ellations among these branes is also apparent. Thisleaves only diagonal D5 tadpoles, given in eqs. (A.5), (A.10), (A.15), (A.20). The �uxesin real basis are given in eqs. (A.6), (A.11), (A.16), (A.21). In Table 4.3, we summarizeall Chern numbers and windings for the sta
ks O1, . . . , O4, as well as those for the sta
ks

O5, . . . , O8 appearing in the next subse
tion.From eqs. (4.27) and (4.32), the sta
ks O1, . . . , O4 satisfy the supersymmetry 
ondition:
195

8
−

1

2
[−J1J2 + 5J2J3 + J1J3] = 0, (4.36)for ǫ = 1

10
in eq. (4.29). The positivity 
ondition (4.28) for all of them has the following�nal form:

J1J2J3 +
5

4
J1 +

41

4
J2 +

59

4
J3 > 0, (4.37)whi
h is obviously satis�ed for the solution (4.29) with ǫ = 1

10
. Also, the 
hiral fermiondegenera
ies on the interse
tions U5 − Oa and U5 −O∗

a are equal to
IU5Oa

= −23 , IU5O∗

a
= 23 , a = 1, . . . , 4 , (4.38)giving vanishing net 
hirality for all of them individually. The non-trivial tadpole 
ontri-butions from the four sta
ks are:

Q9 = 4 , Q5
x1y1 = −5 , Q5

x2y2 = −41 , Q5
x3y3 = −59 . (4.39)
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 SU(5) GUT model with Stabilized Moduli:
Sta
k No. of Windings Diag. Chern no. Diagonal Obliquebranes: (nOa

x1 , n
Oa

x2 , n
Oa

x3 ) (mOa

x1y1 , m
Oa

x2y2 , m
Oa

x3y3) �uxes Chern no.
NOa

(nOa

y1 , n
Oa

y2 , n
Oa

y3 ) [fa
1 , f

a
2 , f

a
3 ]

O1 1 (1, 1, 1) (2,0,-1) [5
2
,1
2
,-1

2
℄ mO1

x1y2 = mO1

x2y1 = 4

(1, 1, 1) mO1

x1y3 = mO1

x3y1 = 3

mO1

x2y3 = mO1

x3y2 = 1

O2 1 (1, 1, 1) (2,0,-1) [5
2
,1
2
,-1

2
℄ mO2

x1y2 = mO2

x2y1 = 4

(1, 1, 1) mO2

x1y3 = mO2

x3y1 = −3

mO2

x2y3 = mO2

x3y2 = −1

O3 1 (1, 1, 1) (2,0,-1) [5
2
,1
2
,-1

2
℄ mO3

x1y2 = mO3

x2y1 = −4

(1, 1, 1) mO3

x3x1 = mO3

y3y1 = 3

mO3

x2x3 = mO3

y2y3 = 1

O4 1 (1, 1, 1) (2,0,-1) [5
2
,1
2
,-1

2
℄ mO4

x1y2 = mO4

x2y1 = −4

(1, 1, 1) mO4

x3x1 = mO4

y3y1 = −3

mO4

x2x3 = mO4

y2y3 = −1

O5 1 (1, 1, 1) (-13,0,0) [−25
2

,1
2
,1
2
℄ mO5

x1x2 = mO5

y1y2 = −2

(1, 1, 1) mO5

x3x1 = mO5

y3y1 = 1

mO5

x2y3 = mO5

x3y2 = 1

O6 1 (1, 1, 1) (-13,0,0) [−25
2

,1
2
,1
2
℄ mO6

x1x2 = mO6

y1y2 = −2

(1, 1, 1) mO6

x3x1 = mO6

y3y1 = −1

mO6

x2y3 = mO6

x3y2 = −1

O7 1 (1, 1, 1) (-13,0,0) [−25
2

,1
2
,1
2
℄ mO7

x1x2 = mO7

y1y2 = 2

(1, 1, 1) mO7

x1y3 = mO7

x3y1 = −1

mO7

x2x3 = mO7

y2y3 = 1

O8 1 (1, 1, 1) (-13,0,0) [−25
2

,1
2
,1
2
℄ mO8

x1x2 = mO8

y1y2 = 2

(1, 1, 1) mO8

x1y3 = mO8

x3y1 = 1

mO8

x2x3 = mO8

y2y3 = −1Table 4.3: Chern numbers and windings of the oblique sta
ks O1, . . . , O8
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 SU(5) GUT model with Stabilized Moduli:4.2.5 Additional sta
ks: O5, . . . , O8In the last subse
tion we found four sta
ks O1, . . . , O4 with oblique �uxes but diagonal5-brane 
harges. Clearly, in order to stabilize all the Kähler moduli, we need at least fouradditional sta
ks with oblique �uxes. The sear
h for su
h branes is simpli�ed by observingthat the supersymmetry 
ondition (4.17) for the sta
k U5 has another one parameter familyof solutions, independent of (4.29), whi
h solves also the 
ondition (4.36) for the sta
ks
O1, . . . , O4:

J1 =
300α

4α2 − 99
, J2 = α , J3 =

99

4α
, with α2 >

99

4
. (4.40)By inserting expressions (4.40) into the general supersymmetry 
ondition (4.27), andfollowing steps similar to those of the last subse
tion, we �nd the set of sta
ks O5, . . . , O8given in Appendix A, with �uxes as in eqs. (A.22), (A.27), (A.32), (A.37). One of thesesolutions has �ux 
omponents:

f1 = −
25

2
, f2 =

1

2
, f3 =

1

2
, a = −2i , b = −i , c = 1 , (4.41)while the others 
an be obtained by trivial 
hanges of the o�-diagonal elements, as for thesta
ks O1, . . . , O4 dis
ussed in the previous subse
tion. Oblique D5 tadpoles are writtenin eqs. (A.24), (A.29), (A.34), (A.39) and the diagonal ones in eqs. (A.25), (A.30), (A.35),(A.40). The net SU(5) non-singlet fermion 
hirality for these sta
ks is also zero, as shownin eqs. (A.23), (A.28), (A.33), (A.38). On
e again, all o�-diagonalD5 tadpoles of the type

Q5
12̄, Q5

23̄ and Q5
31̄ 
an
el among the 
ontributions of the four brane sta
ks. In Table 4.3,we summarize the Chern numbers and windings of the sta
ks O5, . . . , O8, as well.The four sta
ks O5, . . . , O8 satisfy the supersymmetry 
ondition:

87

8
−

1

2
[J1J2 − 25J2J3 + J1J3] = 0, (4.42)for
α2 =

99

4
×

1431

1131
, (4.43)
onsistently with the inequality (4.40). For this value of α, the positivity 
onditions (4.18)and (4.21) for the U5 and U1 sta
ks are also satis�ed by Ji's of the form (4.40). On theother hand, using the �ux 
omponents (4.23) from Table 4.3, the positivity 
ondition forthe four new sta
ks takes the following form:

J1J2J3 +
3

4
J1 +

29

4
J2 +

41

4
J3 > 0, (4.44)111
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 SU(5) GUT model with Stabilized Moduli:Sta
k no. No. of Windings Chern no. Fluxesa branes: Na (n̂a
1, n̂

a
2, n̂

a
3) ( m̂a

1, m̂
a
2, m̂

a
3 ) [

(m̂a
1+n̂a

1/2)

n̂a
1

,
(m̂a

2+n̂a
2/2)

n̂a
2

,
(m̂a

3+n̂a
3/2)

n̂a
3

]Sta
k-A 1 (1, 1, 1) (147, 0, 0) [295
2
, 1

2
, 1

2
℄Sta
k-B 1 (1, 1, 1) (1, 16, 0) [3

2
, 33

2
, 1
2
]Table 4.4: A and B branesand is again obviously satis�ed, as is the positivity 
ondition (4.37) for sta
ks O1, . . . , O4.The �nal un
an
eled tadpoles from these sta
ks are:

Q9 = 4 , Q5
x1y1 = −3 , Q5

x2y2 = −29 , Q5
x3y3 = −41 , (4.45)while the 
hiral fermion degenera
y from the interse
tions U5 − Oa and U5 − O∗

a is givenby:
IU5Oa

= −14 , IU5O∗

a
= 14 , a = 5, . . . , 8 . (4.46)4.2.6 Tadpole 
an
ellationWe now 
olle
t the tadpole 
ontribution from di�erent sta
ks to �nd out how the total RR
harges 
an
el in our model by adding two extra sta
ks of single branes, A and B. Thetadpole 
ontributions from sta
ks O1, . . . , O4 with oblique �uxes, are given in eq. (4.39),while those from sta
ks O5, . . . O8 are given in eq. (4.45). In addition, the sta
ks U5 and

U1 together 
ontribute:
Q9 = 6 , Q5

x1y1 = −
1

2
, Q5

x2y2 = −
9

2
, Q5

x3y3 =
3

2
, (4.47)where we used the �ux 
omponents (4.10) and (4.16). These tadpoles are then saturatedby the brane sta
ks A and B of Table 4.4.Their 
ontributions to the tadpoles are:

Q9 = 2 , Q5
x1y1 =

34

4
, Q5

x2y2 =
298

4
, Q5

x3y3 =
394

4
, (4.48)
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Chapter 4. Supersymmetri
 SU(5) GUT model with Stabilized Moduli:whi
h pre
isely 
an
el the 
ontributions from eqs. (4.39), (4.45) and (4.47). Moreover,
hiral fermion multipli
ities from the interse
tions of sta
ks A and B with U5 vanish, aswell:
IU5A = IU5A∗ = IU5B = IU5B∗ = 0 . (4.49)We have thus obtained �uxes for the twelve sta
ks, saturating both D9 and D5 tad-poles. However, for supersymmetry, we have only dis
ussed the 
onditions for nine ofthe twelve brane sta
ks, namely U5 and O1, . . . , O8. The status of supersymmetry for thebrane sta
ks U1, A and B will be studied later, in se
tion 4.4.Before 
losing this se
tion, we also examine brie�y whether it would be possible tomanage tadpole 
an
ellation without adding the extra sta
ks A and B, within the 
ontextof our 
onstru
tion spe
i�ed by the 
hoi
e (4.15) of interse
tion numbers. Note that thenine sta
ks U5 and O1, . . . , O8 were the minimal ones needed for Kähler moduli stabi-lization, sin
e the use of the U1 brane for this purpose was ruled out, as we dis
ussed inse
tion 4.2.2. The U1 sta
k on the other hand is needed to get the right SU(5) parti
lespe
trum. Thus, in order to avoid the use of sta
ks A and B, one needs to examine whetherthere are solutions, other than the one found in eq. (4.16), for �uxes along the sta
k-U1su
h that tadpole 
an
ellations are possible, while a s
alar VEV 
harged under this U(1)may have to be turned on in order to maintain supersymmetry. In su
h a situation, oneneeds a winding number three (detW = 3) for the sta
k U1 to saturate the D9 tadpole.Moreover, all oblique �uxes along the U1 sta
k have to vanish, otherwise they would giverise to un
an
eled tadpoles in oblique dire
tions. Then, by writing the tadpole 
ontribu-tions of three diagonal �uxes fi satisfying the 
onstraint (4.15), it 
an be easily seen thatone is not able to 
an
el the 
ombined tadpoles from sta
ks U5 and O1, . . . , O8. Su
h apossibility is therefore ruled out. Of 
ourse, one 
ould try to �nd a solution that satis�esthe 
onstraint (4.15) but not ne
essarily (4.12), as we dis
ussed already in se
tion 4.2.1.Alternatively, one 
an possibly attempt to manage with just two sta
ks U1 and A, by usingwinding number two in one of them. These are straight-forward exer
ises whi
h 
an beexamined easily.4.2.7 Non-
hiral spe
trumThe degenera
ies of non-
hiral states 
oming from interse
tions of the sta
k U5 with Oaand O∗

a are already given in eqs. (4.38) and (4.46), leading to 4× (23 + 14) = 148 pairs of
(5+ 5̄) representations of SU(5). They follow from the degenera
y formulae (2.56), whenthe net numbers of left- and right-handed fermions are equal. In our 
ase, this is insuredsin
e IU5Oa

= −IU5O∗

a
. However, non-
hiral parti
le spe
trum also follows from eqs. (2.56),113
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 SU(5) GUT model with Stabilized Moduli:(2.57) and (2.58), when any of Iab, Iab∗ , IAaa∗ and ISaa∗ are zero, as explained at the end ofse
tion 2.6. This o

urs be
ause for instan
e∏i(
˜̂ma

i n̂
b
i ± n̂

a
i
˜̂mb
i) vanishes along one or moreof the 2-tori, T 2

j . Similarly for IAaa∗ or ISaa∗ , this o

urs be
ause of the vanishing of �uxesalong one or more of the T 2's. Given the �uxes in sta
k U5, whi
h are non-zero along allthree T 2's, non-
hiral states 
an 
ome only from various interse
tions of the U5 sta
k withother branes.For example, the interse
tion numbers between sta
ks U5 and U1 are given in eq. (4.15).One sees that IU5U1 is zero as ( ˜̂mU5
i n̂

U1
i − n̂U5

i
˜̂mU1
i ) vanishes along T 2

1 and T 2
3 . However, inthis 
ase there exists a non-zero interse
tion number in d = 8 dimensions 
orrespondingto the T 2

2 
ompa
ti�
ation of the d = 10 theory, given by:
IU5U1|T 2

1 ,T
2
3
= ( ˜̂mU5

2 n̂
U1
2 − n̂U5

2
˜̂mU1

2 ) = −2, (4.50)with the subs
ripts T 2
1 , T

2
3 of IU5U1 | standing for those tori along whi
h the interse
tionnumber vanishes. This implies two negative 
hirality (right-handed) fermions in d = 8,in the fundamental representation of SU(5). Under further 
ompa
ti�
ation along T 2

1and T 2
3 , we get four Dira
 spinors in d = 4, or equivalently four pairs of (5 + 5̄) Weylfermions, shown already in the massless spe
trum of Table 4.2. They give rise to fourpairs of ele
troweak higgses, having non-vanishing tree-level Yukawa 
ouplings with thedown-type quarks and leptons, as it 
an be easily seen.A similar analysis for the remaining sta
ks A and B gives 
hiral spe
tra in d = 6 withdegenera
ies:

IU5A|T 2
3
= ( ˜̂mU5

1 n̂
A
1 − n̂U5

1
˜̂mA

1 )× ( ˜̂mU5
2 n̂

A
2 − n̂U5

2
˜̂mA

2 ) = 149 , (4.51)and
IU5A∗|T 2

2
= ( ˜̂mU5

1 n̂
A
1 + n̂U5

1
˜̂mA

1 )× ( ˜̂mU5
2 n̂

A
2 + n̂U5

2
˜̂mA
2 ) = 146 . (4.52)They give rise to 149 + 146 = 295 pairs of (5+ 5̄). Similarly, we obtain for the sta
k B:

IU5B|T 2
3
= ( ˜̂mU5

1 n̂
B
1 − n̂U5

1
˜̂mB

1 )× ( ˜̂mU5
2 n̂

B
2 − n̂U5

2
˜̂mB

2 ) = 51 , (4.53)and
IU5B∗|T 2

1
= ( ˜̂mU5

2 n̂
B
2 + n̂U5

2
˜̂mB

2 )× ( ˜̂mU5
3 n̂

B
3 + n̂U5

3
˜̂mB
3 ) = 16 , (4.54)leading to 51 + 16 = 67 pairs of (5 + 5̄). All these non 
hiral states be
ome massive bydispla
ing appropriately the branes A and B in dire
tions along the tori T 2

3 , T 2
2 and T 2

3 ,
T 2
1 , respe
tively. 114
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 SU(5) GUT model with Stabilized Moduli:In addition to the states above, there are several SU(5) singlets 
oming from theinterse
tions among the branes O1, . . . , O8, U1, A and B. Sin
e they do not play anyparti
ular role in physi
s 
on
erning our analysis, we do not dis
uss them expli
itly here.However, su
h s
alars from the non-
hiral interse
tions among U1, A and B will be usedin se
tion 4.4 for supersymmetrizing these sta
ks, by 
an
elling the 
orresponding non-zero FI parameters upon turning on non-trivial VEVs for these �elds. The 
orrespondingnon-
hiral spe
trum will be therefore dis
ussed below, in se
tion 4.4.4.3 Moduli stabilizationEarlier, we have found �uxes along the nine brane sta
ks U5, O1, . . . , O8, given in Ta-bles 4.1, 4.2, 4.3, 4.4 and in Appendix A, 
onsistent with our ansatz (4.3) for the 
omplexstru
ture and (4.6) for the geometri
 Kähler moduli. We now prove our ansatz by showingthat both Ω and J are uniquely �xed to the values (4.3), (4.6) and (4.40), (4.43). To showthis, we make use of the full supersymmetry 
onditions for the U5 sta
k as well as for thesta
ks O1, . . . , O8.For the 
omplex stru
ture moduli stabilization, we make use of the F a
(2,0) 
ondition(2.41) implying that purely holomorphi
 
omponents of �uxes vanish. Then, by insertingthe �ux 
omponents pxixj , pxiyj pyiyj , as given in Table 4.1 and Table 4.3, as well asin Appendix A, along the U5 and O1, .., O8 sta
ks, we obtain a set of 
onditions on the
omplex stru
ture matrix Ω, given expli
itly in Appendix B in eqs. (B.1) - (B.47). Theseequations imply the �nal answer (4.3). The details 
an be found in Appendix B.For Kähler moduli stabilization, we make use of the D-�atness 
ondition in sta
ks U5,

O1, . . . O8 whi
h amounts to using the last two equations in (2.40). Expli
it stabilization ofthe geometri
 Kähler moduli to the diagonal form, Jij̄ = 0, (i 6= j) is given in eqs. (C.2) -(C.26) of Appendix C. For the stabilization of the diagonal 
omponents, the relevantequations are: (4.17), (4.18), (4.36), (4.37), (4.42), (4.44). The �nal solution for thestabilized moduli is given in eqs. (4.40) and (4.43). The numeri
al values of Ji's 
an alsobe approximated as:
J1 ∼ 63.96 , J2 ∼ 5.59 , J3 ∼ 4.42 . (4.55)4.4 Supersymmetry of sta
ks U1, A and BWe now dis
uss the supersymmetry of the remaining sta
ks U1, A and B by making useof the D-�atness 
onditions (2.44), (2.45) and (2.46). From these equations, suppressing115
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 SU(5) GUT model with Stabilized Moduli:the supers
ript a, we obtain the FI parameters ξ as:
ξ =

F 3
(1,1) − J2F(1,1)

J3 − JF 2
(1,1)

, (4.56)where we have made use of eq. (2.25) and the 
anoni
al volume normalization (4.4). Then,using the values of the magneti
 �uxes in sta
ks U1, A and B from Tables 4.1 and 4.4, theexpli
it form of the FI parameters in terms of the moduli Ji (that are already 
ompletely�xed to the values (4.55)) is given by:
ξU1 =

−9
8
− 1

2
(J1J2 − 3J2J3 + 3J1J3)

J1J2J3 −
1
4
(3J1 − 3J2 − 9J3)

, (4.57)
ξA =

295
8

− 1
2
(J1J2 + 295J2J3 + J1J3)

J1J2J3 −
1
4
(J1 + 295J2 + 295J3)

, (4.58)
ξB =

33
8
− 1

2
(J1J2 + 3J2J3 + 33J1J3)

J1J2J3 −
1
4
(33J1 + 3J2 + 99J3)

, (4.59)leading to the numeri
al values:
ξU1 ∼ −0.366 , ξA ∼ −4.753 , ξB ∼ −5.173 . (4.60)On the other hand, the 
harged s
alar VEVs vφ entering in the modi�ed D-�atness
onditions (2.44) and (2.45) are related to the modi�ed FI parameters ξa/Ga, as it 
anbe easily seen from the expressions (2.42) and (2.43), that are also relevant for the per-turbativity 
riterion: vφ << 1 in string units. Their knowledge needs determination ofthe matter �eld metri
 Ga on the branes U1, A and B. For this purpose, we make use ofeq. (2.48) with the angles θi de�ned in eq. (2.47). One �nds the following values for themetri
 G in the three sta
ks 17:
GU1 ∼ 2.815 , GA ∼ 50.45 , GB ∼ 94.551 , (4.61)that lead to the modi�ed FI parameters:

ξU1

GU1
∼ −0.130 ,

ξA

GA
∼ −0.094 ,

ξB

GB
∼ −0.057 . (4.62)17The matter metri
 Gφ is diagonal to the leading order in α′ but its elements have a non-trivial (torus)moduli dependen
e due to the magneti
 �uxes, that we 
al
ulated expli
itly and the values are given inequation number (4.61). 116
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 SU(5) GUT model with Stabilized Moduli:Note that the positivity 
onditions (2.46), giving positive gauge 
ouplings through eq. (2.43)for the sta
ks U1, A and B, hold as well. These expressions appear also in the FI param-eters ξa as the denominators in the rhs of eqs. (4.57) - (4.59).The last part of the exer
ise is to 
an
el the FI parameters (4.62) with VEVs of spe
i�

harged s
alars living on the branes U1, A andB, in order to satisfy the D-�atness 
ondition(2.44). For this we �rst 
ompute the 
hiral fermion multipli
ities on their interse
tions:
IU1A = (FU1 − FA)3 = 0 , IU1B = (FU1 − FB)3 = 0 , IAB = (FA − FB)3 = 0 . (4.63)Sin
e they all vanish, there are equal numbers of 
hiral and anti-
hiral �elds in ea
h ofthese interse
tions. In order to determine separately their multipli
ities, we follow themethod used in se
tion 4.2.7 and 
ompute:

IU1A|T 2
3
= −149 , IU1B|T 2

3
= 45 , IAB|T 2

3
= −2336 . (4.64)These 
orrespond to 
hiral fermion multipli
ities in six dimensions generating upon 
om-pa
ti�
ation to D = 4 pairs of left- and right-handed fermions. We also have:

IU1A∗ = (FU1 + FA)3 = 292 , IU1B∗ = (FU1 + FB)3 = 0

IAB∗ = (FA + FB)3 = 149× 17 , (4.65)whi
h gives zero net 
hirality for the U1 − B∗ interse
tion. Computing
IU1B∗ |T 2

1
= 18 , (4.66)one then �nds 18 pairs of left- and right-handed fermions in D = 4 from this interse
tion.As a result, we have the following non-
hiral �elds, where the supers
ript refers tothe two sta
ks between whi
h the open string is stret
hed and the subs
ript denotes the
harges under the respe
tive U(1)'s : (φU1A

+− , φU1A
−+ ), (φU1B

+− , φU1B
−+ ), (φAB

+−, φAB
−+), (φU1B∗

++ ,
φU1B∗

−− ), with �elds in the bra
kets having multipli
ities 149, 45, 2336 and 18, respe
tively.Restri
ting only to possible VEVs for these �elds, eq. (2.44) takes the following form for
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 SU(5) GUT model with Stabilized Moduli:the sta
ks U1, A and B:
ξU1

GU1
+ |φU1A

+− |2 − |φU1A
−+ |2 + |φU1B

+− |2 − |φU1B
−+ |2 + |φU1B∗

++ |2 − |φU1B∗

−− |2 = 0 , (4.67)
ξA

GA
+ |φU1A

−+ |2 − |φU1A
+− |2 + |φAB

+−|
2 − |φAB

−+|
2 = 0 , (4.68)

ξB

GB
+ |φU1B

−+ |2 − |φU1B
+− |2 + |φAB

−+|
2 − |φAB

+−|
2 + |φU1B∗

++ |2 − |φU1B∗

−− |2 = 0 . (4.69)These equations 
an also be written as:
ξU1

GU1
+ (vU1)2 = 0 ⇒ (vU1)2 = −

ξU1

GU1
, (4.70)

ξA

GA
+ (vA)2 = 0 ⇒ (vA)2 = −

ξA

GA
, (4.71)

ξB

GB
+ (vB)2 = 0 ⇒ (vB)2 = −

ξB

GB
, (4.72)following the notation of eq. (2.45), where we de�ned:

(vU1)2 = |φU1A
+− |2 − |φU1A

−+ |2 + |φU1B
+− |2 − |φU1B

−+ |2 + |φU1B∗

++ |2 − |φU1B∗

−− |2

≡ (vU1A)2 + (vU1B)2 + (vU1B∗

)2 , (4.73)
(vA)2 = |φU1A

−+ |2 − |φU1A
+− |2 + |φAB

+−|
2 − |φAB

−+|
2

≡ −(vU1A)2 + (vAB)2 , (4.74)
(vB)2 = |φU1B

−+ |2 − |φU1B
+− |2 + |φAB

−+|
2 − |φAB

+−|
2 + |φU1B∗

++ |2 − |φU1B∗

−− |2

≡ −(vU1B)2 − (vAB)2 + (vU1B∗

)2 , (4.75)with for instan
e (vAB)2 = |φAB
+−|

2 − |φAB
−+|

2 and similarly for the others.Sin
e we have three equations and four unknowns, we 
hoose to obtain a spe
ial solutionby setting (vU1B)2 = 0. Equations (4.73) - (4.75) then give:
(vU1A)2 + (vU1B∗

)2 = −
ξU1

GU1
∼ 0.130 , (4.76)

−(vU1A)2 + (vAB)2 = −
ξA

GA
∼ 0.094 , (4.77)

−(vAB)2 + (vU1B∗

)2 = −
ξB

GB
∼ 0.057 , (4.78)118
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 SU(5) GUT model with Stabilized Moduli:that 
an be solved to obtain:
(vU1A)2 = −0.011 , (vU1B∗

)2 = 0.141 , (vAB)2 = 0.084 . (4.79)Re
alling from eqs. (4.73) - (4.75) that
(vU1A)2 = |φU1A

+− |2 − |φU1A
−+ |2 , (vU1B∗

)2 = |φU1B∗

++ |2 − |φU1B∗

−− |2 ,

(vAB)2 = |φAB
+−|

2 − |φAB
−+|

2 , (4.80)and 
omparing with the results of eq. (4.79) (taking into a

ount the di�erent signs), VEVsfor the �elds φU1A
−+ , φU1B∗

++ and φAB
+− are swit
hed on. Moreover, as required by the validityof the approximation, the values of the 
harged s
alar VEVs satisfy the 
ondition va << 1in string units.4.5 Mass generation for non-
hiral fermionsIn this se
tion, we brie�y dis
uss one of the appli
ations of the results derived in 
hapter3, for giving mass to the non-
hiral gauge non-singlet states of the magnetized branemodel dis
ussed in previous se
tions. We have 
onstru
ted a three generation SU(5)supersymmetri
 grand uni�ed (GUT) model in simple toroidal 
ompa
ti�
ations of typeI string theory with magnetized D9 branes. The �nal gauge group is just SU(5) and the
hiral gauge non-singlet spe
trum 
onsists of three families with the quantum numbers ofquarks and leptons, transforming in the 10 + 5̄ representations of SU(5). Brane sta
kswith oblique �uxes played a 
entral role in this 
onstru
tion, in order to stabilize all 
losestring moduli, in a manner restri
ting the 
hiral matter 
ontent to pre
isely that of SU(5)GUT. Another interesting feature of this model is that it is free from any 
hiral exoti
sthat often appear in su
h brane 
onstru
tions. However, the model 
ontains extra non-
hiral matter that is expe
ted to be
ome massive at a high s
ale, 
lose to that of SU(5)breaking.The results obtained in 
hapter 3 
an be used for examining the issue of the massgeneration for these non-
hiral multiplets in a supersymmetri
 ground state. The aim isto analyze the D and F term 
onditions, and show that a ground state allowing massesfor the above matter multiplets is possible. The exer
ise will further �ne tune our SU(5)GUT model to the ones used in 
onventional grand uni�
ation.Although, we will not be evaluating any of the Yukawa 
ouplings expli
itly, whi
husing our results is in prin
iple possible to do, the aim of the exer
ise below is to showthat indeed one 
an give masses to non-
hiral matter. Our pro
edure involves the analysis119



Chapter 4. Supersymmetri
 SU(5) GUT model with Stabilized Moduli:of both the F and D-term supersymmetry 
onditions. As dis
ussed in se
tion 4.4 
ertain
harged s
alar va
uum expe
tation values (VEVs) were turned on in order to restoresupersymmetry in some of the �hidden" branes se
tor. These 
harged s
alar VEVs gave anontrivial solution to the D-term 
onditions, but left the F-terms identi
ally zero in theva
uum. In the following, on the other hand, our aim is to �nd out the possibility for alarge number of s
alars in various 
hiral multiples to a
quire expe
tation values. For this,we need to examine both the F and D 
onditions, as already mentioned.As we dis
ussed in the previous se
tions, the model is des
ribed by twelve sta
ks ofbranes, namely U5, U1, O1 . . . , O8, A, and B. The magneti
 �uxes are 
hosen to generatethe required spe
trum, to stabilize all the geometri
 moduli and to satisfy the RR-tadpole
onditions as well. The �uxes for all the sta
ks are summarized in Appendix A. The �uxesfor sta
ks U5, U1, A, B are purely diagonal whereas sta
ks O1 . . . , O8 
arry in generalboth oblique and diagonal �uxes. All 36 
losed string moduli are �xed in a N = 1supersymmetri
 va
uum, apart from the dilaton, in a way that the T 6-torus metri
 be
omesdiagonal with the six internal radii given in terms of the integrally quantized magneti
�uxes.Moreover, from our dis
ussion in se
tion 4.2, the two brane sta
ks U5 and U1 givethe parti
le spe
trum of SU(5) GUT. We solve the 
ondition IU5U1 + IU5U∗

1
= −3 for thepresen
e of three generations of 
hiral fermions transforming in 5̄ of SU(5) and 
ontinuewith the solution IU5U1 = 0, IU5U∗

1
= −3. The interse
tion of U5 with U1 is non-
hiral sin
e

IU5U1 vanishes. The 
orresponding non-
hiral massless spe
trum 
onsists of four pairs of
5 + 5̄, whi
h we would like to give mass. Obviously, we would like to keep massless atleast one pair of ele
troweak higgses but this requires a detailed phenomenologi
al analysisthat goes beyond the s
ope of this work. Here, we would like only to show how to use theresults obtained in 
hapter 3 in order to give masses to unwanted non 
hiral states thatoften appear in magnetized brane 
onstru
tions.So, we have the following non-
hiral �elds where the supers
ript refers to the twosta
ks between whi
h the open string is stret
hed and the subs
ript denotes the 
hargesunder the respe
tive U(1)'s :(φU5U1

+− ,φU5U1
−+ , 4), with numbers in the bra
kets denoting the
orresponding multipli
ities. Similarly, the interse
tions of the U5 sta
k with the two extrabranes A,B and their images are non-
hiral, giving rise to the extra 5+5̄ pairs: (φU5A

+− ,φU5A
−+ ,

149), (φU5A∗

++ ,φU5A∗

−− , 146), (φU5B
+− ,φU5B

−+ , 51), (φU5B∗

++ ,φU5B∗

−− , 16). A 
ommon feature of all thesestates is that they arise in non-
hiral interse
tions, where the two brane sta
ks involvedhave diagonal �uxes and are parallel in one of the three tori. It is then straightforwardto give masses by moving, say, the U5 sta
k away from the others along these tori. In thelanguage of D9 branes, this amounts to turn on 
orresponding open string Wilson lines. 120



Chapter 4. Supersymmetri
 SU(5) GUT model with Stabilized Moduli:On the other hand, analysis of the parti
le spe
trum on the interse
tions of the sta
k
U5 with the oblique branes Oa and O∗

a , satisfying the 
ondition IU5a + IU5a∗ = 0, for a =

1, .., 8 , leads to 4× (23+ 14) = 148 pairs of (5+ 5̄) representations of SU(5) ( eqs. (4.38)and (4.46)):
IU5Oa

= −23 , IU5O∗

a
= 23 , a = 1, . . . , 4 ,

IU5Oa
= −14 , IU5O∗

a
= 14 , a = 5, . . . , 8 .We then have the following 
hiral multiplets, (φU5Oa

−+ , 23), (φU5O∗

a
++ , 23), (φU5Ob

−+ , 14), (φU5O∗

b
++ ,

14) (a = 1, . . . , 4, b = 5, . . . , 8). In order to examine the mass generation for these �elds,one needs to write down the superpotential terms involving the above 
hiral multiplets, aswell as those 
oming from the brane sta
ks O1, · · · , O8 and their orientifold images. Thelist of the later, involving purely oblique sta
ks, is given in Appendix A.Now, using the results in Appendix A in eqs. (A.45) and (A.46), one 
an analyze theasso
iated superpotential and D-terms and look for supersymmetri
 minima. The relevantsuperpotential reads:
W =

∑

ijk

W ijk
O1

(φO1U5
+− )i (φ

U5O∗

3
++ )j (φ

O∗

3O1

−− )k +
∑

ijk

W ijk
O2

(φO2U5
+− )i (φ

U5O∗

4
++ )j (φ

O∗

4O2

−− )k

+
∑

ijk

W ijk
O3

(φO3U5
+− )i (φ

U5O∗

8
++ )j (φ

O∗

8O3

−− )k +
∑

ijk

W ijk
O4

(φO4U5
+− )i (φ

U5O∗

7
++ )j (φ

O∗

7O4

−− )k

+
∑

ijk

W ijk
O5

(φO5U5
+− )i (φ

U5O∗

6
++ )j (φ

O∗

6O5

−− )k +
∑

ijk

W ijk
O7

(φO7U5
+− )i (φ

U5O∗

8
++ )j (φ

O∗

8O7

−− )k (4.81)where the sum over i, j, k runs over the ��avor" indi
es. The 
ouplings W ijk
Oi

, given in eq.(4.81), 
an be read o� from our results in the previous se
tions. In addition to the 
omplexstru
ture, these also depend on the �rst Chern numbers of the branes in ea
h triangle.The F-�atness 
onditions 〈Fi〉 = 〈Dφi
W 〉 = 0 (at zero superpotential, W = 0), implythat for ea
h �triangle� at least two �elds must have a zero VEV in order to form a su-persymmetri
 va
uum [121℄. In this theory, there exists indeed a supersymmetri
 va
uumwhere six 
harged �elds remain un
onstrained by the F-�atness 
onditions. Let's 
hoosethem to be (φ

O∗

3O1

−− ), (φO∗

4O2

−− ), (φO∗

8O3

−− ), (φO∗

7O4

−− ), (φO∗

6O5

−− ), (φO∗

8O7

−− ) (they are neutral underthe U(1) of the U(5)). The remaining �elds appearing in the superpotential a
quire a massfrom the F-term potential only if these un
onstrained s
alars possess a non-vanishing VEV.
121



Chapter 4. Supersymmetri
 SU(5) GUT model with Stabilized Moduli:Indeed, their masses read:
M2

φu5o1
∼M2

φu5o
∗

3

∼ 〈|φo∗3o1
|2〉 , M2

φu5o2
∼M2

φu5o
∗

4

∼ 〈|φo∗4o2
|2〉 ,

M2
φu5o

′

7

∼M2
φu5o

∗

8

∼ 〈|φo∗8o
′

7
|2〉 , M2

φu5o4
∼M2

φu5o
∗

7

∼ 〈|φo∗7o4
|2〉 ,

M2
φu5o5

∼M2
φu5o

∗

6

∼ 〈|φo∗6o5
|2〉 ,

(4.82)where φu5o′7
denotes linear 
ombinations of φu5o7 with φu5o3 and φo∗8o

′

7
denotes linear 
om-binations of φo∗8o7

with φo∗8o3
. Thus, the leftover massless states from the interse
tion of

U5 with the oblique branes are 60 pairs of 5 + 5̄: φu5o∗a for a = 1, 2, 5 of positive 
hi-rality together with the negative 
hirality states φu5oa for a = 6, 7, as well as 23 linear
ombinations of φu5o3 with φu5o7 , and 14 φu5o4 .However, swit
hing on non-zero VEVs for these �elds, modi�es the existing D-term
onditions for the sta
ks of branes O1, ....O8. As it is des
ribed in se
tion 4.4, the sta
ks
U5, O1 . . . O8 satisfy the supersymmetry 
onditions in the absen
e of 
harged s
alar VEVs,but VEVs for the �elds φU1A

−+ , φU1B∗

++ and φAB
+− are swit
hed on, for the same supersymmetryto be preserved by the sta
ks U1, A and B. The D-terms for ea
h U(1) fa
tor of the eightbranes O1, .....O8 read

DO1 = −|φO1O∗

3 |2 , DO2 = −|φO2O∗

4 |2

DO3 = −|φO1O∗

3 |2 − |φO3O∗

8 |2 , DO4 = −|φO2O∗

4 |2 − |φO4O∗

7 |2

DO5 = −|φO5O∗

6 |2 , DO6 = −|φO5O∗

6 |2

DO7 = −|φO4O∗

7 |2 − |φO7O∗

8 |2 , DO8 = −|φO3O∗

8 |2 − |φO7O∗

8 |2

(4.83)We 
an regain the supersymmetry 
onditionsDa = 0, ∀a = 1, . . . , 8 with ξa(F a, J) = 0,by swit
hing on VEVs for the following �elds: (φO1O∗

5
++ ), (φO2O∗

7
++ ), (φO3O∗

7
++ ), (φO3O∗

4
++ ), (φO4O∗

8
++ ),

(φ
O6O∗

8
++ ), provided these �elds do not modify the superpotential (4.81). The modi�edD-terms read:

DO1 = −|φO1O∗

3 |2 + |φO1O∗

5 |2

DO2 = −|φO2O∗

4 |2 + |φO2O∗

7 |2

DO3 = −|φO1O∗

3 |2 − |φO3O∗

8 |2 + |φO3O∗

4 |2 + |φO3O∗

7 |2

DO4 = −|φO2O∗

4 |2 − |φO4O∗

7 |2 + |φO3O∗

4 |2 + |φO4O∗

8 |2

DO5 = −|φO5O∗

6 |2 + |φO1O∗

5 |2

DO6 = −|φO5O∗

6 |2 + |φO6O∗

8 |2

DO7 = −|φO4O∗

7 |2 − |φO7O∗

8 |2 + |φO2O∗

7 |2 + |φO3O∗

7 |2

DO8 = −|φO3O∗

8 |2 − |φO7O∗

8 |2 + |φO6O∗

8 |2 + |φO4O∗

8 |2 (4.84)122



Chapter 4. Supersymmetri
 SU(5) GUT model with Stabilized Moduli:The supersymmetry 
onditions Da = 0, ∀a = 1, . . . , 8 with ξa(F a, J) = 0 
an be simulta-neously satis�ed if and only if the VEVs for all these �elds appearing in the expressions(4.84), have the same value, say v2. Moreover we 
an restri
t v << 1 in string units, asrequired by the validity of the approximation for in
lusion of 
harged s
alar �elds in theD-term.We have therefore shown the mass generation for a large set of non-
hiral �elds as givenin eq. (4.82). It is possible, that remaining ones 
an also be made massive by in
orporatingnon perturbative instanton 
ontributions to the superpotential. We also do not give anysuperpotential 
ouplings, in terms of �uxes, as given expli
itly in 
hapter 3.4.6 Dis
ussionIn this 
hapter, we have 
onstru
ted a three generation SU(5) supersymmetri
 GUT insimple toroidal 
ompa
ti�
ations of type I string theory with magnetized D9-branes. All36 
losed string moduli are �xed in a N = 1 supersymmetri
 va
uum, apart from thedilaton, in a way that the T 6-torus metri
 be
omes diagonal with the six internal radiigiven in terms of the integrally quantized magneti
 �uxes. Supersymmetry requirementand RR tadpole 
an
ellation 
onditions impose some of the 
harged open string s
alars(but SU(5) singlets) to a
quire non-vanishing VEVs, breaking part of the U(1) fa
tors.The rest be
ome massive by absorbing the RR s
alars whi
h are part of the Kähler modulisupermultiplets. Thus, the �nal gauge group is just SU(5) and the 
hiral gauge non-singletspe
trum 
onsists of three families with the quantum numbers of quarks and leptons,transforming in the 10+ 5̄ representations of SU(5). It is of 
ourse desirable to study thephysi
s of this model in detail and perhaps to 
onstru
t other more `realisti
' variations,using the same framework whi
h has an exa
t string des
ription.As dis
ussed in the last se
tion, giving a mass to the non-
hiral gauge non-singlet stateswith the quantum numbers of higgses transforming in pairs of 5+5̄ representations, keepingmassless only one pair needed to break the ele
troweak symmetry is one of the obviousquestions to be examined. Breaking the SU(5) GUT symmetry down to the StandardModel is another important issue to be studied. This 
an be in prin
iple realized at thestring level separating the U(5) sta
k into U(3) × U(2) by parallel brane displa
ement.However, one would like to realize at the same time the so-
alled doublet-triplet splittingfor the Higgs 5 + 5̄ pair, i.e. giving mass to the unwanted triplets whi
h 
an mediatefast proton de
ay and invalidate gauge 
oupling uni�
ation, while keeping the doubletsmassless. One possibility would be to deform the model by introdu
ing angles, in realizingthe SU(5) breaking. 123



Chapter 4. Supersymmetri
 SU(5) GUT model with Stabilized Moduli:A general defe
t of the present 
onstru
tion is the absen
e of up-type Yukawa 
ouplings.The re
ent developments in writing the instanton indu
ed superpotential terms are alsoen
ouraging, for the purpose of examining the up-quark mass generations in a GUT setting[81, 130, 131℄. In this 
ontext, it has been shown that the magnetized branes too 
an giverise to interesting superpotentials through the lift of fermion zero modes when �uxes areturned on.Supersymmetry breaking is of 
ourse an important issue in model building. Thoughgenerally, for magnetized branes, one en
ounters instabilities in su
h a situation, it shouldbe however possible to obtain non-supersymmetri
 magnetized brane 
onstru
tions for ari
h variety of �uxes a

ompanied by orientifold planes whi
h 
an possibly proje
t outta
hyons that may be generated during the pro
ess of supersymmetry breaking. In orderto study the supersymmatry breaking in the SU(5)model, an attra
tive dire
tion would beto start with a supersymmetry breaking va
uum in the absen
e of 
harged s
alar VEVs forthe extra branes needed to satisfy the RR tadpole 
an
ellation, U(1)×U(1)A×U(1)B. This`hidden se
tor' 
ould then mediate supersymmetry breaking, whi
h is mainly of D-type,to the Standard Model via gauge intera
tions. Gauginos 
an then a
quire Dira
 masses atone loop without breaking the R-symmetry, due to the extended supersymmetri
 natureof the gauge se
tor [132℄.
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5Summary
String theory provides us an ex
iting avenue for resear
h. It brings together di�erent as-pe
ts of our world in a very natural and 
ompelling manner. To mention a few, it providesus with a ultraviolet �nite theory of gravity, allows us to understand the holographi
 na-ture of the gravitational intera
tions and uni�es all the four fundamental for
es in nature.Supersymmetry appears as a 
onsisten
y requirement of this theory. It is our hope thatthis theory will, in the future, exhibit a me
hanism produ
ing the SU(3)× SU(2)×U(1)gauge group, the exa
t parti
le 
ontent of our world with broken supersymmetry at lows
ale. As we have dis
ussed in the beginning of this thesis, enormous e�orts have gone inthis dire
tion with partial su

ess. This thesis 
an perhaps be 
onsidered as a small stepin this dire
tion. We have presented a detailed study of building some phenomenologi
almodels, with an exa
t 
hiral fermion spe
trum and gauge group, where some/all mod-uli are stabilized and spa
e-time supersymmetry is partially broken. This is done withina simple framework of toroidal 
ompa
ti�
ation of type I string theory with magnetizedD-branes. In the next few paragraphs we provide a summary of the wrk done in the thesis.In 
hapter 2, we have brie�y dis
ussed the 
ompa
ti�
ation of type I strings on a toruswith additional ba
kground gauge �ux on the D9-branes and summarize the ne
essary 
on-straints needed for 
onstru
ting semi-realisti
 models in su
h a framework. We reviewedthe main properties of the six-dimensional toroidal 
ompa
ti�
ation and its moduli spa
e.We 
onsidered the open string propagation in the presen
e of 
onstant internal magneti
�elds and summarized the 
onditions for unbroken supersymmetry. We have dis
ussedthe 
losed string moduli stabilization by analyzing the 
onditions for the unbroken super-symmetry in the presen
e of sta
ks of magnetized D9-branes. In order to stabilize all 36
losed string geometri
 moduli of the torus T 6, one needs to in
lude both diagonal andoblique �uxes. We have also studied the tadpole 
an
ellation 
onditions whi
h are re-quired for 
onsisten
y of type I string va
ua. Then we dis
ussed the low-energy spe
trumof the e�e
tive theory within this 
ompa
ti�
ation s
heme. Sin
e a 
ru
ial step in a three125



Chapter 5. Summarygeneration model building is the introdu
tion of a NS-NS B-�eld ba
kground, the e�e
tsof non-zero B on the 
hirality and the tadpoles is summarized.In 
hapter 3, we have obtained the 
lose form expressions for Yukawa 
ouplings insu
h magnetized brane 
onstru
tions. We summarized the results for the fermion (s
alar)wave fun
tions and the Yukawa intera
tion for fa
torized tori and diagonal �uxes. Inthis 
ase, the fermion wavefun
tions are given by Ja
obi Theta fun
tions. The Yukawasare obtained by performing the overlap integrals of these wavefun
tions and using 
ertainidentity satis�ed by Ja
obi theta fun
tions. We have presented a proof of the identity. Wethen generalized the results to write down the expression for the Yukawa intera
tion whenoblique �uxes are present. In order to perform this task, fermion (s
alar) wavefun
tionson toroidally 
ompa
ti�ed spa
es are presented for general �uxes. The wavefun
tions, soobtained, are given by general Riemann Theta fun
tions with matrix valued modular pa-rameter. We have also given expli
it mappings among fermion wavefun
tions, of di�erentinternal 
hiralities on the tori, whi
h inter
hange the role of the �ux 
omponents withthe 
omplex stru
ture of the torus. By evaluating the overlap integral of the wave fun
-tions, the expressions for Yukawa 
ouplings among 
hiral multiplets are obtained. Thisessentially leads us to 
onstru
t 
ertain mathemati
al identities for general Riemann thetafun
tions. We generalized the theta identity for Riemann theta fun
tions and presented aproof of this. We then used this new mathemati
al relation for writing down the expres-sion for the Yukawa intera
tion when oblique �uxes 
onsistent with supersymmetry and`Riemann 
ondition' requirements are present. In order to relax the later, the results arefurther generalized to in
lude the wavefun
tions of the other internal 
hiralities, in orderto a

ommodate general �uxes 
onsistent with supersymmetry restri
tions.Finally, in 
hapter 4, we have presented a minimal example of a supersymmetri
 granduni�ed model in a toroidal 
ompa
ti�
ation of type I string theory with magnetized D9-branes. We obtain general solutions for �uxes along magnetized D9-branes yielding the
hiral spe
trum and gauge group of a three generation SU(5) GUT model, with no extra
hiral matter nor U(1) fa
tors. The gauge symmetry is just SU(5) and the gauge non-singlet 
hiral spe
trum 
ontains only three families of quarks and leptons transformingin the 10 + 5̄ representations. Moreover, all geometri
 moduli are stabilized in termsof the ba
kground internal magneti
 �uxes. Another interesting feature of this modelis that it is free from any 
hiral exoti
s that often appear in su
h brane 
onstru
tions.The �ux solutions also satisfy the RR tadpole 
an
ellation 
onditions resulting the modelto be 
onsistent. However, the model 
ontains extra non-
hiral matter that is expe
tedto be
ome massive at a high s
ale, 
lose to that of SU(5) breaking. We presented abrief analysis of the superpotential and D-terms for the model in order to show the mass126



Chapter 5. Summarygeneration for several non-
hiral fermion multiplets in a supersymmetri
 ground state.Using the results for Yukawa 
ouplings, we showed that a ground state allowing massesfor the above matter multiplets is possible. This exer
ise further �ne tunes our SU(5)GUT model to the ones used in 
onventional grand uni�
ation.Thus, the framework of toroidal string 
ompa
ti�
ation, with magnetized branes, o�ersa possible self-
onsistent setup for string phenomenology, in whi
h one 
an build simple
al
ulable models of parti
le physi
s with stabilized moduli and implement low energysupersymmetry breaking that 
an be studied dire
tly at the string level.So, �nally where are we? It is evidently true that, in spite of remarkable progress,we still la
k a 
omplete understanding of string theory. It is yet to produ
e SU(3) ×
SU(2) × U(1) gauge group, the exa
t parti
le 
ontent of our world and a me
hanism tobreak supersymmetry at low energy s
ale. However, we believe that pursuan
e will surelybring in su

ess and 
on
lude with an en
ouraging remark by Ashoke Sen, �I think wehave an extremely strong 
andidate for the basi
 
onstituents of matter and this theoryneeds to be explored mu
h more than it has been so far."18

18As appeared in http://parsareport.blogspot.
om/2006/12/i-
annot-talk-about-others-but-i-am-as.html. 127



AFluxes for the sta
ks U5, U1 ,A, B,
O1, . . . , O8

In this Appendix, we write all the �uxes in the 
omplex 
oordinate basis (z, z̄) with
z = x+ iy. Then, for the windings and 1st Chern numbers of Table 4.1, we obtain:

FU5

(1,1) = −
i

2

(

dz1 dz2 dz3

)







−3
2

−1
2

1
2













dz̄1

dz̄2

dz̄3






. (A.1)Below, we sometimes suppress the subs
ript (1, 1) to keep the expressions simpler. The�uxes of the 8 sta
ks O1, . . . , O8 
an also be written in the same 
oordinate basis:

FO1

(1,1) = −
i

2

(

dz1 dz2 dz3

)







5
2

4 3

4 1
2

1

3 1 −1
2













dz̄1

dz̄2

dz̄3






. (A.2)From eq. (A.2) we get

|FU5 + FO1| = 23 , |FU5 − FO1| = −23 , |FO1| =
195

8
, (A.3)where we have used the notation |FU5 + FO1| ≡ det(FU5 + FO1) et
. The oblique D5tadpoles are:

QO1

12̄
= 3 + 2 , QO1

23̄
= 12−

5

2
, QO1

31̄
= 4−

3

2
, (A.4)
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Appendix A. Fluxes for the sta
ks U5, U1 ,A, B, O1, . . . , O8while the diagonal ones are:
QO1

11̄
= −

5

4
, QO1

22̄
= −

41

4
, QO1

33̄
= −

59

4
. (A.5)In real 
oordinates, the �uxes are:

pO1

x1y1 =
5

2
, pO1

x2y2 = −pO1

x3y3 =
1

2
, pO1

x1y2 = px2y1 = 4,

pO1

x1y3 = pO1

x3y1 = 3, pO1

x2y3 = pO1

x3y2 = 1. (A.6)The 1st Chern numbers given in Table 4.4 
an then be read dire
tly from the valuesof �uxes given above. We now give similar data for the sta
ks O2, . . . , O8:
FO2

(1,1) = −
i

2

(

dz1 dz2 dz3

)







5
2

4 −3

4 1
2

−1

−3 −1 −1
2













dz̄1

dz̄2

dz̄3






, (A.7)leading to:

|FU5 + FO2| = 23 , |FU5 − FO2| = −23 , |FO2| =
195

8
. (A.8)The oblique tadpoles are:

QO2

12̄
= 3 + 2 , QO2

23̄
= −12 +

5

2
, QO2

31̄
= −4 +

3

2
, (A.9)while the diagonal tadpoles are:

QO2

11̄
= −

5

4
, QO2

22̄
= −

41

4
, QO2

33̄
= −

59

4
. (A.10)The �uxes in the real basis are:

pO2

x1y1 =
5

2
, pO2

x2y2 = −pO2

x3y3 =
1

2
, pO2

x1y2 = pO2

x2y1 = 4,

pO2

x1y3 = pO2

x3y1 = −3, pO2

x2y3 = pO2

x3y2 = −1. (A.11)
FO3

(1,1) = −
i

2

(

dz1 dz2 dz3

)







5
2

−4 −3i

−4 1
2

i

3i −i −1
2













dz̄1

dz̄2

dz̄3






, (A.12)
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Appendix A. Fluxes for the sta
ks U5, U1 ,A, B, O1, . . . , O8leading to
|FU5 + FO3| = 23 , |FU5 − FO3| = −23 , |FO3| =

195

8
. (A.13)The oblique tadpoles are:

QO3

12̄
= −3 − 2 , QO3

23̄
= −12i+

5i

2
, QO3

31̄
= −4i+

3i

2
, (A.14)and the diagonal ones are:

QO3

11̄
= −

5

4
, QO3

22̄
= −

41

4
, QO3

33̄
= −

59

4
. (A.15)The �uxes in the real basis are:

pO3

x1y1 =
5

2
, pO3

x2y2 = −pO3

x3y3 =
1

2
, pO3

x1y2 = pO3

x2y1 = −4,

pO3

x3x1 = pO3

y3y1 = 3, pO3

x2x3 = pO3

y2y3 = 1. (A.16)
FO4

(1,1) = −
i

2

(

dz1 dz2 dz3

)







5
2

−4 3i

−4 1
2

−i

−3i i −1
2













dz̄1

dz̄2

dz̄3






, (A.17)leading to

|FU5 + FO4| = 23 , |FU5 − FO4| = −23 , |FO4| =
195

8
. (A.18)The oblique tadpoles are:

QO4

12̄
= −3 − 2 , QO4

23̄
= 12i−

5i

2
, QO4

31̄
= 4i−

3i

2
, (A.19)and the diagonal tadpoles are:

QO4

11̄
= −

5

4
, QO4

22̄
= −

41

4
, QO4

33̄
= −

59

4
. (A.20)The �uxes in the real basis are:

pO4

x1y1 =
5

2
, pO4

x2y2 = −pO4

x3y3 =
1

2
, pO4

x1y2 = pO4

x2y1 =−4,

pO4

x3x1 = pO4

y3y1 =−3, pO4

x2x3 = pO4

y2y3 =−1. (A.21)130



Appendix A. Fluxes for the sta
ks U5, U1 ,A, B, O1, . . . , O8The sta
ks O1, . . . , O4, given above, satisfy the supersymmetry 
onditions (4.36). Wenow give the set of four sta
ks, O5, . . . , O8, whi
h satisfy the supersymmetry 
ondition(4.42) for the values of Ji given in eqs. (4.40), (4.43):
FO5

(1,1) = −
i

2

(

dz1 dz2 dz3

)







−25
2

−2i −i

2i 1
2

1

i 1 1
2













dz̄1

dz̄2

dz̄3






; (A.22)

|FU5 + FO5| = 14 , |FU5 − FO5| = −14 , |FO5| =
87

8
; (A.23)

QO5

12̄
= i− i , QO5

23̄
= 2 +

25

2
, QO5

31̄
= −2i+

i

2
, (A.24)

QO5

11̄
= −

3

4
, QO5

22̄
= −

29

4
, QO5

33̄
= −

41

4
; (A.25)

pO5

x1y1 = −
25

2
, pO5

x2y2 = pO5

x3y3 =
1

2
, pO5

x1x2 = pO5

y1y2 = −2,

pO5

x3x1 = pO5

y3y1 = 1, pO5

x2y3 = pO5

x3y2 = 1. (A.26)
FO6

(1,1) = −
i

2

(

dz1 dz2 dz3

)







−25
2

−2i i

2i 1
2

−1

−i −1 1
2













dz̄1

dz̄2

dz̄3






; (A.27)

|FU5 + FO6| = 14 , |FU5 − FO6| = −14 , |FO6| =
87

8
; (A.28)

QO6

12̄
= i− i , QO6

23̄
= −2−

25

2
, QO6

31̄
= 2i−

i

2
, (A.29)

QO6

11̄
= −

3

4
, QO6

22̄
= −

29

4
, QO6

33̄
= −

41

4
; (A.30)
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Appendix A. Fluxes for the sta
ks U5, U1 ,A, B, O1, . . . , O8

pO6

x1y1 =−
25

2
, pO6

x2y2 = pO6

x3y3 =
1

2
, pO6

x1x2 = pO6

y1y2 =−2,

pO6

x3x1 = pO6

y3y1 =−1, pO6

x2y3 = pO6

x3y2 =−1. (A.31)
FO7

(1,1) = −
i

2

(

dz1 dz2 dz3

)







−25
2

2i −1

−2i 1
2

i

−1 −i 1
2













dz̄1

dz̄2

dz̄3






; (A.32)

|FU5 + FO7| = 14 , |FU5 − FO7| = −14 , |FO7| =
87

8
; (A.33)

QO7

12̄
= −i+ i , QO7

23̄
= −2i−

25i

2
, QO7

31̄
= −2 +

1

2
, (A.34)

QO7

11̄
= −

3

4
, QO7

22̄
= −

29

4
, QO7

33̄
= −

41

4
; (A.35)

pO7

x1y1 =−
25

2
, pO7

x2y2 = pO7

x3y3 =
1

2
, pO7

x1x2 = pO7

y1y2 =2,

pO7

x1y3 = pO7

x3y1 =−1, pO7

x2x3 = pO7

y2y3 =1. (A.36)
FO8

(1,1) = −
i

2

(

dz1 dz2 dz3

)







−25
2

2i 1

−2i 1
2

−i

1 i 1
2













dz̄1

dz̄2

dz̄3






; (A.37)

|FU5 + FO8| = 14 , |FU5 − FO8| = −14 , |FO8| =
87

8
; (A.38)

QO8

12̄
= −i+ i , QO8

23̄
= 2i+

25i

2
, QO8

31̄
= 2−

1

2
, (A.39)

QO8

11̄
= −

3

4
, QO8

22̄
= −

29

4
, QO8

33̄
= −

41

4
; (A.40)
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Appendix A. Fluxes for the sta
ks U5, U1 ,A, B, O1, . . . , O8

pO8

x1y1 = −
5

2
, pO8

x2y2 = pO8

x3y3 =
1

2
, pO8

x1x2 = pO8
y1y2 = 2,

pO8

x1y3 = pO8

x3y1 = 1, pO8

x2x3 = pO8

y2y3 = −1. (A.41)Moreover,
FU1 = −

i

2

(

dz1 dz2 dz3

)







−3
2

3
2

1
2













dz̄1

dz̄2

dz̄3






, (A.42)

FA = −
i

2

(

dz1 dz2 dz3

)







295
2

1
2

1
2













dz̄1

dz̄2

dz̄3






, (A.43)

FB = −
i

2

(

dz1 dz2 dz3

)







3
2

33
2

1
2













dz̄1

dz̄2

dz̄3






. (A.44)Using the above �uxes, one 
an �nd out the 
hiral multiplets in the model. This has beendone for the brane interse
tions involving sta
ks - U5, U1. A 
omputation of the 
hiralfermion multipli
ities on the interse
tions Oi − Oj and Oi − O∗

j ,for i, j = 1, . . . 8, impliesthe existen
e of following �elds in the non-
hiral spe
trum of the model. They are:(φO1O2
+− , φO1O2

−+ , 40), (φO1O3
+− , φO1O3

−+ , 84), (φO1O4
+− , φO1O4

−+ , 84), (φO1O5
+− , 20), (φO1O6

+− , φO1O6
−+ ,

49), (φO1O7
+− , 6), (φO1O8

+− , 14), (φO2O3
+− , φO2O3

−+ , 84), (φO2O4
+− , φO2O4

−+ , 84), (φO2O5
+− , φO2O5

−+ , 49),(φO2O6
+− , 20), (φO2O7

+− , 14 ), (φO2O8
+− , 6), (φO3O4

+− , φO3O4
−+ , 40), (φO3O5

+− , 14), (φO3O6
+− , 6), (φO3O7

+− ,
20), (φO3O8

+− , φO3O8
−+ , 49), (φO4O5

+− , 6), (φO4O6
+− , 14), (φO4O7

+− , φO4O7
−+ , 49), (φO4O8

+− , 20), (φO5O6
+− ,

φO5O6
−+ , 8), (φO5O7

+− , φO5O7
−+ , 20), (φO5O8

+− , φO5O8
−+ , 20), (φO6O7

+− , φO6O7
−+ , 20), (φO6O8

+− , φO6O8
−+ , 20),(φO7O8

+− , φO7O8
−+ , 8), (φO1O∗

2
++ , 59), (φO1O∗

3
−− , 33), (φO1O∗

4
−− , 33), (φO1O∗

5
++ , 86), (φO1O∗

6
−− , 10), (φO1O∗

7
++ ,

24), (φO1O∗

8
++ , 52), (φO2O∗

3
−− , 33), (φO2O∗

4
−− , 33), (φO2O∗

5
−− , 10), (φO2O∗

6
++ , 86), (φO2O∗

7
++ , 52), (φO2O∗

8
++ ,

24), (φO3O∗

4
++ , 59), (φO3O∗

5
++ , 52), (φO3O∗

6
++ , 24), (φO3O∗

7
++ , 86), (φO3O∗

8
−− , 10), (φO4O∗

5
++ , 24), (φO4O∗

6
++ ,

52), (φO4O∗

7
−− , 10), (φO4O∗

8
++ , 86), (φO5O∗

6
−− , 41), (φO5O∗

7
++ , 23), (φO5O∗

8
++ , 23), (φO6O∗

7
++ , 23), (φO6O∗

8
++ ,

23), (φO7O∗

8
−− , 41). (A.45)As a result of a similar analysis for the remaining sta
ks A and B, we have also thefollowing �elds:(φU5A

+− , φU5A
−+ , 149), (φU5A∗

++ , φU5A∗

−− , 146), (φU5B
+− , φU5B

−+ , 51), (φU5B∗

++ , φU5B∗

−− , 16), (φU1A
+− , φU1A

−+ ,133
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ks U5, U1 ,A, B, O1, . . . , O8

149), (φU1B
+− , φU1B

−+ , 45), (φAB
+−, φAB

−+, 2336), (φU1B∗

++ , φU1B∗

−− , 18), (φU1A∗

+− , 292), (φAB∗

+− , 149).(A.46)
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BComplex stru
ture moduli stabilization
For ea
h sta
k of magnetized D9-branes, we have three 
omplex 
onditions for the moduliof the 
omplex stru
ture derived from eq. (2.41).From sta
k-O1 :

4Ω11 +
1

2
Ω21 + Ω31 =

5

2
Ω12 + 4Ω22 + 3Ω32, (B.1)

3Ω11 + Ω21 −
1

2
Ω31 =

5

2
Ω13 + 4Ω23 + 3Ω33, (B.2)

3Ω12 + Ω22 −
1

2
Ω32 = 4Ω13 +

1

2
Ω23 + Ω33. (B.3)From sta
k-O2 :

4Ω11 +
1

2
Ω21 − Ω31 =

5

212
+ 4Ω22 − 3Ω32, (B.4)

−3Ω11 − Ω21 −
1

2
Ω31 =

5

2
Ω13 + 4Ω23 − 3Ω33, (B.5)

−3Ω12 − Ω22 −
1

2
Ω32 = 4Ω13 +

1

2
Ω23 − Ω33. (B.6)From sta
k-O3 :

−3Ω11Ω32 + Ω21Ω32 + 3Ω31Ω12 − Ω31Ω22 + 4Ω11 −
1

2
Ω21 +

5

2
Ω12 − 4Ω22 = 0,(B.7)

−3Ω11Ω33 + Ω21Ω33 + 3Ω13Ω31 − Ω31Ω23 +
1

2
Ω31 +

5

2
Ω13 − 4Ω23 − 3 = 0, (B.8)

−3Ω12Ω33 + Ω22Ω33 + 3Ω13Ω32 − Ω23Ω32 +
1

2
Ω32 − 4Ω13 +

1

2
Ω23 + 1 = 0. (B.9)
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Appendix B. Complex stru
ture moduli stabilizationFrom sta
k-O4 :
3Ω11Ω32 − Ω21Ω32 − 3Ω31Ω12 + Ω31Ω22 + 4Ω11 −

1

2
Ω21 +

5

2
Ω12 − 4Ω22 = 0, (B.10)

3Ω11Ω33 − Ω21Ω33 − 3Ω13Ω31 + Ω31Ω23 +
1

2
Ω31 +

5

2
Ω13 − 4Ω23 + 3 = 0, (B.11)

3Ω12Ω33 − Ω22Ω33 − 3Ω13Ω32 + Ω23Ω32 +
1

2
Ω32 − 4Ω13 +

1

2
Ω23 − 1 = 0. (B.12)From sta
k-O5 :

−2Ω11Ω22 − Ω11Ω32 + 2Ω21Ω12 + Ω31Ω12 −
1

2
Ω21 − Ω31 −

25

2
Ω12 − 2 = 0, (B.13)

−2Ω11Ω23 − Ω11Ω33 + 2Ω21Ω13 + Ω31Ω13 − Ω21 −
1

2
Ω31 −

25

2
Ω13 − 1 = 0, (B.14)

−2Ω12Ω23 − Ω12Ω33 + 2Ω22Ω13 + Ω32Ω13 − Ω22 −
1

2
Ω32 +

1

2
Ω23 + Ω33 = 0. (B.15)From sta
k-O6 :

−2Ω11Ω22 + Ω11Ω32 + 2Ω21Ω12 − Ω31Ω12 −
1

2
Ω21 + Ω31 −

25

2
Ω12 − 2 = 0, (B.16)

−2Ω11Ω23 + Ω11Ω33 + 2Ω21Ω13 − Ω31Ω13 + Ω21 −
1

2
Ω31 −

25

2
Ω13 + 1 = 0, (B.17)

−2Ω12Ω23 + Ω12Ω33 + 2Ω22Ω13 − Ω32Ω13 + Ω22 −
1

2
Ω32 +

1

2
Ω23 − Ω33 = 0. (B.18)From sta
k-O7 :

2Ω11Ω22 − 2Ω21Ω12 + Ω21Ω32 − Ω22Ω31 −
1

2
Ω21 −

25

2
Ω12 − Ω32 + 2 = 0, (B.19)

2Ω11Ω23 − 2Ω21Ω13 + Ω21Ω33 − Ω23Ω31 + Ω11 −
1

2
Ω31 −

25

2
Ω13 − Ω33 = 0, (B.20)

2Ω12Ω23 − 2Ω22Ω13 + Ω22Ω33 − Ω23Ω32 + Ω12 −
1

2
Ω32 +

1

2
Ω23 + 1 = 0. (B.21)From sta
k-O8 :

2Ω11Ω22 − 2Ω21Ω12 − Ω21Ω32 + Ω22Ω31 −
1

2
Ω21 −

25

2
Ω12 + Ω32 + 2 = 0, (B.22)

2Ω11Ω23 − 2Ω21Ω13 − Ω21Ω33 + Ω23Ω31 − Ω11 −
1

2
Ω31 −

25

2
Ω13 + Ω33 = 0, (B.23)

2Ω12Ω23 − 2Ω22Ω13 − Ω22Ω33 + Ω23Ω32 − Ω12 −
1

2
Ω32 +

1

2
Ω23 − 1 = 0. (B.24)136



Appendix B. Complex stru
ture moduli stabilizationNow, from sta
k-O1 and sta
k-O2 one obtains from eqs. (B.1) and (B.4):
Ω31 = 3Ω32 , (B.25)and

4Ω11 +
1

2
Ω21 =

5

2
Ω12 + 4Ω22 ; (B.26)from eqs. (B.2) and (B.5):

3Ω11 + Ω21 = 3Ω33 , (B.27)and
−
1

2
Ω31 =

5

2
Ω13 + 4Ω23 ; (B.28)and from eqs. (B.3) and (B.6):

3Ω12 + Ω22 = Ω33 , (B.29)and
−
1

2
Ω32 = 4Ω13 +

1

2
Ω23 ; (B.30)Similarly, from sta
k-O3 and sta
k-O4 one has, by adding eqs. (B.7) and (B.10):

4Ω11 −
1

2
Ω21 +

5

2
Ω12 − 4Ω22 = 0 ; (B.31)by adding eqs. (B.8) and (B.11):

1

2
Ω31 +

5

2
Ω13 − 4Ω23 = 0 ; (B.32)and by adding eqs. (B.9) and (B.12):

1

2
Ω32 − 4Ω13 +

1

2
Ω23 = 0. (B.33)Use of eqs. (B.30) and (B.33) gives:

Ω13 = 0 , (B.34)and
Ω32 + Ω23 = 0 . (B.35)Moreover, one has from eqs. (B.34) and (B.32):
Ω31 = 8Ω23 ; (B.36)137



Appendix B. Complex stru
ture moduli stabilizationfrom eqs. (B.36) and (B.25):
3Ω32 = 8Ω23 ; (B.37)from eqs. (B.37) and (B.35):
Ω32 = Ω23 = 0 ; (B.38)and from eqs. (B.38) and (B.36):

Ω31 = 0 . (B.39)Similarly, use of eqs. (B.26) and (B.31) implies:
Ω21 = 5Ω12 , (B.40)and
Ω11 = Ω22 ; (B.41)while use of eq. (B.41) in eqs. (B.27) and (B.29) gives:

3Ω11 + Ω21 − 3Ω33 = 0 , (B.42)and
3Ω11 + 9Ω12 − 3Ω33 = 0 . (B.43)Eqs. (B.42) and (B.43) give:

Ω21 = 9Ω12 , (B.44)whi
h 
omparing with eq. (B.40) implies:
Ω21 = Ω12 = 0 . (B.45)Using the result of eq. (B.45) into eq. (B.42) then gives (using also eq. (B.41)),

Ω11 = Ω22 = Ω33 ≡ Ω . (B.46)The value of Ω is �nally determined from any of the bilinear equations, su
h as eq. (B.8)or (B.9):
Ω = i . (B.47)
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CKähler 
lass moduli stabilization
For the stabilization of Kähler 
lass, let us denote for de�niteness the volume of the 4-
y
lesasso
iated to J ∧ J as

(J ∧ J)ij̄ = Vij̄ , (C.1)where the indi
es i, j̄ 
orrespond to the (1, 1)-
y
le perpendi
ular to the given 4-
y
le. Inthe above notation, the supersymmetry 
onditions on the Kähler moduli for the varioussta
ks read as follows :From sta
k-O1 using eq. (A.2):
195

8
−

[

5

2
V11̄ +

1

2
V22̄ −

1

2
V33̄ + 4V12̄ + 4V21̄ + 3V13̄ + 3V31̄ + V23̄ + V32̄

]

= 0, (C.2)from sta
k-O2 using eq. (A.7):
195

8
−

[

5

2
V11̄ +

1

2
V22̄ −

1

2
V33̄ + 4V12̄ + 4V21̄ − 3V13̄ − 3V31̄ − V23̄ − V32̄

]

= 0, (C.3)from sta
k-O3 using eq. (A.12):
195

8
−

[

5

2
V11̄ +

1

2
V22̄ −

1

2
V33̄ − 4V12̄ − 4V21̄ − 3iV13̄ + 3iV31̄ + iV23̄ − iV32̄

]

= 0, (C.4)from sta
k-O4 using eq. (A.17):
195

8
−

[

5

2
V11̄ +

1

2
V22̄ −

1

2
V33̄ − 4V12̄ − 4V21̄ + 3iV13̄ − 3iV31̄ − iV23̄ + iV32̄

]

= 0, (C.5)from sta
k-O5 using eq. (A.22):
87

8
−

[

−25

2
V11̄ +

1

2
V22̄ +

1

2
V33̄ − 2iV12̄ + 2iV21̄ − iV13̄ + iV31̄ + V23̄ + V32̄

]

= 0, (C.6)139



Appendix C. Kähler 
lass moduli stabilizationfrom sta
k-O6 using eq. (A.27):
87

8
−

[

−25

2
V11̄ +

1

2
V22̄ +

1

2
V33̄ − 2iV12̄ + 2iV21̄ + iV13̄ − iV31̄ − V23̄ − V32̄

]

= 0, (C.7)from sta
k-O7 using eq. (A.32):
87

8
−

[

−25

2
V11̄ +

1

2
V22̄ +

1

2
V33̄ + 2iV12̄ − 2iV21̄ − V13̄ − V31̄ + iV23̄ − iV32̄

]

= 0, (C.8)from sta
k-O8 using eq. (A.37):
87

8
−

[

−25

2
V11̄ +

1

2
V22̄ +

1

2
V33̄ + 2iV12̄ − 2iV21̄ + V13̄ + V31̄ − iV23̄ + iV32̄

]

= 0. (C.9)Now, from sta
ks-O1 and O2, eqs. (C.2) and (C.3) give:
3 (V13̄ + V31̄) + (V23̄ + V32̄) = 0; (C.10)from sta
ks-O3 and O4, eqs. (C.4) and (C.5) give:

−3i (V13̄ − V31̄) + i (V23̄ − V32̄) = 0; (C.11)from sta
ks-O5 and O6, eqs. (C.6) and (C.7) give:
−i (V13̄ − V31̄) + (V23̄ + V32̄) = 0; (C.12)and from sta
ks-O7 and O8, eqs. (C.8) and (C.9) give:
− (V13̄ + V31̄) + i (V23̄ − V32̄) = 0. (C.13)Eq. (C.13) implies
i (V23̄ − V32̄) = (V13̄ + V31̄) , (C.14)whi
h leads from eq. (C.10)

3i (V23̄ − V32̄) + (V23̄ + V32̄) = 0 . (C.15)Similarly, eq.(C.12) implies
i (V13̄ − V31̄) = (V23̄ + V32̄) , (C.16)140



Appendix C. Kähler 
lass moduli stabilizationwhi
h leads from eq. (C.11)
−3 (V23̄ + V32̄) + i (V23̄ − V32̄) = 0 . (C.17)Now eqs. (C.15) and (C.17) 
an be solved to give

V23̄ + V32̄ = 0, (C.18)and
V23̄ − V32̄ = 0, (C.19)implying
V23̄ = V32̄ = 0. (C.20)Then one has from eq. (C.10)
V13̄ + V31̄ = 0, (C.21)and from eq. (C.11)
V13̄ − V31̄ = 0, (C.22)implying
V13̄ = V31̄ = 0. (C.23)Using the obtained values, eqs. (C.2) - (C.4) give
V12̄ + V21̄ = 0, (C.24)while eqs. (C.8) - eq. (C.6) give
V12̄ − V21̄ = 0, (C.25)implying
V12̄ = V21̄ = 0. (C.26)
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DMore information on �uxes
In general, the (1, 1) form �ux Fziz̄j given by a hermitian matrix in eq. (2.24) is 
onstrainedby two equations (2.26) and (2.27) whi
h mix the matrix 
omponents pxx, pyy and pxy forgeneral Ω. However, for a 
anoni
al 
omplex stru
ture, 
orresponding to orthogonal tori,the 
onstraints simplify and are written in the matrix form:

pxx = pyy, pTxy = pxy. (D.1)Fluxes of su
h types have been used in [7℄ for 
onstru
ting an SU(5) GUT with stabilizedmoduli and in Se
tion 4.5 we apply the Yukawa 
ouplings 
omputation results to showthe mass generation for extra non-
hiral states in the model of [7℄. In this 
ase, the (1, 1)form �ux Fziz̄j , for (Ω = iI3), redu
es to:
Fziz̄j =

1

2
(pxy − ipxx) (D.2)Expli
itly, the hermitian �ux matrix F in eq. (3.17) is given as:

F =







px1y1 px1y2 + ipx1x2 px1y3 + ipx3x1

px1y2 − ipx1x2 px2y2 px2y3 + ipx2x3

px3y1 − ipx3x1 px2y3 − ipx2x3 px3y3






. (D.3)For magnetized branes in [103, 7℄, we used the quantization rule for p's:

pxiyj =
mxiyj

nxinyj
, pxixj =

mxixj

nxinxj , pxiyj =
mxiyj

nyinyj
, (D.4)where mxiyj , mxixj , myiyj are the �rst Chern numbers along the 
orresponding 2-
y
lesand nxi, nyi et
. are the wrapping numbers along the 1-
y
les xi, yi. However, for themodel [7℄, we have used only integral �uxes 
orresponding to nxi

= nyi = 1. 142



Appendix D. More information on �uxesAn additional modi�
ation 
omes when nonzero NS-NS B-�eld ba
kground is turnedon along some 2-
y
le. In this 
ase, the �rst Chern number along the parti
ular 2-
y
le(for nxi

= nyi = 1) is shifted by:
mxiyj → m̃xiyj = mxiyj +

1

2
, etc. (D.5)In the model that we dis
ussed in [7℄, we turn on nonzero NS-NS B-�eld, (B = 1

2
),along the 2-
y
les diagonally in the three T 2's. Resulting �uxes are then half-integral.However, as already mentioned earlier, in writing the wavefun
tions of 
hiral fermions χabin bifundamentals, the relevant quantities are the di�eren
e of �uxes in the two sta
ks,or the two diagonal blo
ks in the gauge theory pi
ture. In addition to the D-branes, anorientifold model also 
ontains image D-branes with �uxes of opposite signature than theones present in the original brane. In su
h 
ases, the 
orresponding wavefun
tions χab∗will obey similar equations as that of χab, but with the addition of the gauge potentials

Aa + Ab rather than their di�eren
e as in eq. (3.22). The relevant matrix N whi
h willnow be the addition of �uxes in the two sta
ks, rather than their di�eren
e, will on
e againbe integral.We also learnt from the se
ond equation in (3.26) that (N.ImΩ) is a symmetri
 matrix.However, as explained in eqs. (2.24) in the general situation and in (D.2) for Ω = iI3, �uxesare in general hermitian when 
omponents of all types: pxx, pyy and pxy are present.
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