PHENOMENOLOGY WITH MAGNETIZED D-BRANES

By
Binata Panda

INSTITUTE OF PHYSICS, BHUBANESWAR.

A thesis submitted to the
Board of Studies in Physical Sciences

In partial fulfillment of the requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of
HOMI BHABHA NATIONAL INSTITUTE

March 2, 2012



Homi Bhabha National Institute

Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we recommend that the dissertation prepared by
Binata Panda entitled “Phenomenology with Magnetized D-branes” may be accepted
as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy.

____________________________________________________ Date
Chairman : Chairman of committee
____________________________________________________ Date
Convener : Convener of Committee
____________________________________________________ Date
Member : Member 1 of committee
____________________________________________________ Date
Member : Member 2 of committee
____________________________________________________ Date

Member : Member 3 of committee

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my direction and
recommend that it may be accepted as fulfilling the dissertation requirement.

Guide : Dr. Sudipta Mukherji



STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of require-
ments for an advanced degree at Homi Bhabha Institute (HBNI) and
is deposited in the Library to be made available to borrowers under
rules of the HBNI.

Brief quotations from this dissertation are allowable without special
permission, provided that accurate acknowledgement of source is
made. Requests for permission for extended quotation from or
reproduction of this manuscript in whole or in part may be granted
by the Competent Authority of HBNI when in his or her judgment
the proposed use of the material is in the interests of scholarship.
In all other instances, however, permission must be obtained from
the author.

Binata Panda



DECLARATION

I, hereby declare that the investigation presented in the thesis has
been carried out by me. The work is original and the work has not
been submitted earlier as a whole or in part for a degree/diploma

at this or any other Institution or University.

Binata Panda



To My Parents and Prof. Alok Kumar ......



ACKNOWLEDGEMENTS

This thesis is the outcome of many experiences, I have encountered at IOP from many
individuals to whom I sincerely owe for their inspiration, support and help during my
doctoral study. Foremost, I would like to express my deep and sincere gratitude to my
mentor Prof. Alok Kumar for his guidance, discussions, constructive criticisms, collabora-
tions and unequivocal support. His wide knowledge and innovative thoughts have been of
great value to me. I have learnt a lot not only about physics but also about life in general
from him. He has been the constant source of inspiration all along the way. I am indebted
to him and Archana for the continuous encouragement and support.

I wish to express my warm and sincere thanks to Prof. Ignatios Antoniadis, for his
invaluable advice and support throughout my research work. He guided me through the
detailed analysis of my thesis topic, patiently answering all my queries. It has been
a learning and rewarding experience working with him. I heartily thank him for his
guidance and support after untimely demise of Prof. Alok Kumar. T am happy to have
an opportunity to thank my supervisor Dr. Sudipta Mukherji for his guidance, constant
encouragement and fruitful collaborations. I heartily thank him for going through my
thesis and suggesting improvements. It would have been really hard to finish this thesis
without his support and help. T would like to thank Prof. J. Maharana for his timely advice
and useful suggestions. I am very much thankful to my collaborators : B. Chandrasekhar,
Souvik, Sayan for fruitful and enjoyable collaborations. I also wish to thank Dr. Anirban
Basu, Dr. Swarnendu Sarkar and Dr. Subir Mukhopadhyay for useful discussions.

I would like to thank the Theory Division of CERN physics department, where I have
carried out most of this thesis work during my Ph.D. period. I have worked as a Marie
Curie Fellow at CERN on a Marie Curie Early Stage Research Training Fellowship of the
European Community’s Sixth Framework Programme under contract number MEST-CT-
2005-020238-EUROTHEPHY and as a visiting Ph.D. student, supported by the European
Commission under the ERC Advanced Grant 226371. I acknowledge the Commission for
the financial support. T am very much thankful to all the members of the CERN PH-TH
division for their wonderful hospitalities during my stay there.

I take the opportunity to thank all the faculty members of IOP for their support,
teachings and guidance. T would also like to thank all my teachers at Utkal University for
their encouragement to pursue research. It is my immense pleasure to express my gratitude
to my B. Sc. teacher Salil Chakraborty, for his continuous encouragement and support. I
would like to thank all my seniors, my predoctoral batchmates and my loving juniors for

all their help and good wishes. My special thanks to Kuntala, Tanay, Sadhana, Sankha,



Rupali, Sayan, Sachin and Pramita for their constant help, inspirations, companionship
in every aspect to make my stay lively at the institute. It is a pleasure to thank Dr. B.
R. Sekhar for his constant support.

[ am also thankful to all administrative, library and computer center staff of IOP
for their prompt support at every stage. I express my sincere gratitude to the following
organizations for support and hospitality during my visits at various stages of research:
Ecole Polytechnique in Paris, IPMU in Tokyo, KMI in Nagoya and YITP in Kyoto.

My deepest gratitude goes to my parents, my sister, my brother-in-law, my brother
and my sister-in-law for their unconditional love and support throughout my life. I am
indebted to them for their relentless care and sacrifices for me; this dissertation is simply
impossible without them. T wish to thank my husband Sumanta, whose love, affection and

constant moral support has been the driving force to finish this thesis.

Binata Panda

vii



Contents

Synopsis iv
List of Tables ix
Introduction 1
1.1 An Overview . . . . . . . . . e 1
1.2 The Search for the Standard Model . . . . . .. .. ... ... ... .... 4
1.3 Planofthethesis. . . . . . . . . . .. .. .. ... 12
Magnetic Flux in Toroidal Type I Compactification 14
2.1 Introduction . . . . . . .. . 14
2.2 Torus compactification : Parametrization of 7% and Moduli space . . . . . 16
2.3 Magnetized D9-branes: Fluxes and Windings . . . . . .. .. .. ... .. 18
2.4 Supersymmetry Conditions and Moduli Stabilization . . . .. ... .. .. 24
2.5 Tadpoles . . . . . . . e 27
2.6 Spectrum . . . .. ... e 28
2.7 Constant NS-NS B-field background . . . . . .. ... ... .. ... .... 30

Fermion Wavefunctions in Magnetized branes:

Theta identities and Yukawa couplings 32
3.1 Introduction . . . . . . . . . .. 32
3.2 Ten Dimensional N’ = 1 Super Yang-Mills compactification with magnetic
fluxes . . . . 36
3.3 Toroidal Wavefunctions . . . . . . . . . . .. L 37
3.4 Yukawa computation on factorized tori . . . . . ... ... L. 42
3.4.1 Wavefunction . . . . ... . ... .. 42
3.4.2 Interaction for factorized tori . . . . . ... .. ... ... .. ... 45
3.4.3 Jacobi theta function identities . . . . . . . .. .. ... ... ... 46
3.4.4 Application to Yukawa computation for factorized tori . . . . . .. 48
3.5 General tori and ‘oblique’ fluxes . . . . . .. ..o 50
3.5.1  Riemann theta function identity . . . . .. .. ... .. ... ... o1
3.5.2  Proof of the identity . . . . .. ... ... ... L. 25
3.5.3  Yukawa expressions for oblique fluxes . . . . . . .. ... .. ... o7
3.5.4 Explict Yukawa coupling expressions . . . . . . . . ... ... ... 59

3.5.5 arbitrary-ac . ... 65



Contents

3.5.6 General complex structure . . . . .. ... ... L.
3.5.7 Hermitian intersection matrices . . . . . . . .. .. ... ... ...
3.5.8 Constraints on the results in section-3.5 and further generalization .
3.6 Negative-chirality fermion wavefunction . . . . . . . . . .. ... ... ...
3.6.1 Construction of the wavefunction . . . . . ... .. ... .. ... ..
3.6.2 New wavefunction . . . . . . . . ... .. ... ... .
3.6.3 Normalization . . . . . . . . .. ... ...
3.6.4 FEigenfunctions of the Laplace equation . . . . . ... ... .. ...
3.6.5 Mapping of basis functions from positive to negative chirality
3.6.6 Mapping the equations of motion . . . . .. .. ... ... .....
3.6.7 Mapping for arbitrary complex structure Q . . . . . ... ... ...
3.6.8 Generalization for the T6-case . .. .. ... ... ... ......
3.6.9 Computation of Yukawa couplings . . . . ... ... ... ... ..

3.7 Discussions and Conclusions . . . . . . . . . . ...

Supersymmetric SU(5) GUT model with Stabilized Moduli:

4.1 Introduction . . . . . . . ..

4.2 Constructing a three generation SU(5) GUT model . . . . ... ... ...
4.2.1 SU(5) GUT brane stacks . . . . . ... ... ... ... ...
4.2.2 Non-chiral stacks . . . . .. .. .. o
4.2.3 Supersymmetry constraint . . . . .. .. ..o
4.2.4  Solution for the stacks Oy,..., 04 . . . . . . ... oL
4.2.5 Additional stacks: Os,...,O0g . . . . . . ... .
4.2.6 Tadpole cancellation . . . . .. ... ... ... ... .. ... ...
4.2.7 Non-chiral spectrum . . . . . . ... Lo L

4.3 Moduli stabilization . . . . . . ... Lo Lo

4.4 Supersymmetry of stacks Uy, Aand B . . . . . ... ... ... .. ...

4.5 Mass generation for non-chiral fermions . . . . . . ... ..o

4.6 DIscussion . . . . . ..o

5 Summary
A Fluxes for the stacks U, U, ,A, B, Oq,...,0g
B Complex structure moduli stabilization

C Kahler class moduli stabilization

73
74
5
78
81
82

85
86
87
89
94

125

128

135

139

ii



D More information on fluxes

Contents

142

iii



SYnopsis

Superstring theory is currently considered to be one of the most promising candidates for
unifying the different particles and their interactions in nature. This is due to the fact
that it provides a description of gauge and gravitational interactions in a unified frame-
work consistently at the quantum level. If String theory is indeed realized in nature, it’s
certain low energy limit should reproduce the Standard Model (SM), a unified model of
strong and electroweak interactions, which has been so successful in describing the parti-
cle world. As it is well known, the superstring theories are consistent in ten dimensional
spacetime, and usually have a high degree of supersymmetry. In the process of describ-
ing models reducing at low energies to four dimensions with less or no supersymmetry,
there is an enormous arbitrariness in the choice of the background configuration. To re-
produce four-dimensional physics at low energies, one needs to compactify the theory on
a six-dimensional manifold. This leads to the existence of large number of unobserved
neutral massless scalar particles (moduli fields). Geometrically the vacuum expectation
values of these moduli fields parametrize, among other things, the size and shape of the
compactification manifolds. These values are also related to the parameters like gauge
coupling constants or masses of the effective four dimensional theory. By not being able
to provide these expectation values via minimization of some effective potential, string
models generally lose the predictive power. One of the main focus of present day research
is to generate, in various ways, potentials for these moduli fields, minima of which could
give masses to these fields. This goes by the name of 'moduli stabilization’.

The search for realistic string vacua is one of the most ambitious tasks in Super-
string theory, and thus essentially covers the branch known as String Phenomenology.
A phenomenologically viable string compactification should contain three chiral fermion
generations, the Standard Model gauge group or some extension of it e.g. GUT mod-
els and broken space-time supersymmetry. In addition to this basic structure, it should
reproduce the exact gauge and Yukawa couplings. Moreover, it should satisfy a set of con-
ditions in order to produce a consistent anomaly free theory. Further, all the modulis are
needed to be stabilized. There have been a lot of effort devoted along this direction in past
years. Consequently there exists a good number of string constructions like heterotic string
compactification on Calabi-Yau threefolds, M-theory compactifications on G2-holonomy
spaces, intersecting D-brane models, compactification with non-trivial fluxes etc. aiming
to reproduce the physics of the Standard Model at low energies.

In the present thesis, we discuss a simple framework of toroidal compactification of
type I string theory with magnetized D-branes ( D-branes with worldvolume fluxes along

compactified tori), that offers an interesting self-consistent set up for string phenomenol-
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Synopsis

ogy. In such models, the gauge bosons and the chiral fermions come from the open string
sector. In particular, the gauge bosons appear due to strings attached to stacks of D-branes
and chiral matter arises from the strings stretching between different stacks of D-branes.
Gravity, as usual, originates from the closed string sector. The fluxes that are turned on,
can be used to build phenomenological models with an exact chiral fermion spectrum and
gauge group, where some/all the moduli are stabilized and spacetime supersymmetry is
broken.

We begin with a discussion of compactification of type I strings on a torus with ad-
ditional background gauge flux on the D9-branes and review the necessary constraints
needed for constructing semi-realistic models in such a framework. Switching on constant
internal magnetic fields has important consequences in type I string compactifications to
four-dimensions [1,2]. Such magnetic fluxes are described by exact conformal field theories
and they give a spin dependent shift (for states which are charged under the corresponding
gauge transformation) in the masses leading to a spectrum described by various Landau
energy levels. This leads to chiral massless spectra in four space-time dimensions. More-
over, when the magnetic field is turned on along the compact directions, it has to satisfy
Dirac quantization conditions. Fluxes, in general, break supersymmetry. However, in some
special cases, a part of the supersymmetry can be preserved provided fluxes satisfy certain
constraints. These constraints, in turn, can be used for stabilizing the closed string moduli
because they correspond to stable minima of the scalar potential. However, in order to
stabilize all 36 closed string geometric moduli of the torus 7%, one needs to include both
‘diagonal’” and ‘oblique’ fluxes [5,6]. These methods can also be employed for the open
string moduli stabilization in any specific model. We also study the tadpole cancellation
conditions which are required for consistency of type I string vacua. Since a crucial step in
a three generation model building is the introduction of a Neveu Schwarz - Neveu Schwarz
B-field background, the effect of non-zero B on the chirality and tadpoles is summarized
following [3,4].

We then carry out the computations of Yukawa couplings in such magnetized brane
constructions and find the close form expressions for them. In such a framework, the
computation of the Yukawa couplings amounts to evaluating overlap integrals of three
wavefunctions (contributing to the interaction) along internal directions. To perform the
task, knowledge of the fermion (scalar) wavefunctions on toroidally compactified spaces
(in the presence of fluxes) is required. However, technical difficulties arise in dealing with
the explicit form of the fermion wavefunctions on tori in the presence of magnetic fluxes.
Particularly, the presence of ‘oblique’ fluxes adds extra complexity to the problem.

We summarize the results for the fermion (scalar) wave functions and the Yukawa
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interaction for factorized tori and ‘diagonal’ fluxes [7]. In this case, the fermion wavefunc-
tions are given by Jacobi Theta functions. The Yukawas are obtained by performing the
overlap integrals of these wavefunctions and using certain identity [8] satisfied by Jacobi
theta functions. We present a proof of the identity. We then generalize the results to
write down the expression for the Yukawa interaction when oblique fluxes are present [10].
In order to perform this task, fermion (scalar) wavefunctions on toroidally compactified
spaces are presented for general fluxes. These are parametrized by Hermitian matrices
with eigenvalues of arbitrary signatures. The wavefunctions, so obtained, are given by
general Riemann Theta functions with matrix valued modular parameter. We also give
explicit mappings among fermion wavefunctions, of different internal chiralities on the
tori, which interchange the role of the flux components with the complex structure of the
torus. By evaluating the overlap integral of the wave functions, the expressions for Yukawa
couplings among chiral multiplets, arising from an arbitrary set of branes are obtained.
This essentially leads us to construct certain mathematical identities for general Riemann
theta functions. We generalize the theta identity for Riemann theta functions and present
a proof of this. We then use this new mathematical relation for writing down the expres-
sion for the Yukawa interaction when oblique fluxes consistent with supersymmetry and
‘Riemann condition’ requirements are present. In order to relax the later, the results are
further generalized to include the wavefunctions of the other internal chiralities, in order
to accommodate general fluxes consistent with supersymmetry restrictions.

Finally, we present a minimal example of a supersymmetric grand unified model in
a toroidal compactification of type I string theory with magnetized D9-branes [9]. We
obtain general solutions for fluxes along magnetized D9-branes yielding the chiral spectrum
and gauge group of a three generation SU(5) GUT model, with no extra chiral matter
nor U(1) factors. The gauge symmetry is just SU(5) and the gauge non-singlet chiral
spectrum contains only three families of quarks and leptons transforming in the 10 + 5
representations. Brane stacks with oblique fluxes play a central role in this construction, in
order to stabilize all close string moduli, in a manner restricting the chiral matter content
to precisely that of SU(5) GUT. Another interesting feature of this model is that it is free
from any chiral exotics that often appear in such brane constructions. The flux solutions
also satisfy the RR tadpole cancellation conditions resulting the model to be consistent.
However, the model contains extra non-chiral matter that is expected to become massive
at a high scale, close to that of SU(5) breaking. Finally, we present a brief analysis of
the superpotential and D-terms for the model in order to show the mass generation for
several non-chiral fermion multiplets in a supersymmetric ground state [10]. Using the

results for Yukawa couplings, we show that a ground state allowing masses for the above
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matter multiplets is possible. This exercise further fine tunes our SU(5) GUT model to

the ones used in conventional grand unification.
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Introduction

1.1 An Overview

General theory of relativity and the Standard Model (SM) of particle physics perhaps are
the two greatest discoveries in physics during the last century. However, their domains
of applicability remained largely disjoint. While general theory of relativity was found to
dominate at large distances (for instance, describing the motion of a planet), SM described
interactions at small length scales. But, surely, there are situations where these two forces
become equally crucial. Universe at a very early time, behaviour near the horizon of a
not-so-large black hole provide such situations. In these cases, gravitational force becomes
strong even at small distances and, therefore, there is a need to consider gravitational
interaction along with the other three interactions of the Standard Model.

Preceding discussion, therefore, suggests that the Standard Model alone is not enough
in describing our universe at high energies. There are other reasons to believe that this
model indeed is not complete. SM contains nineteen free parameters which are fixed, a
posteriori, by experimental data. Furthermore, it suffers from well known hierarchy and
naturalness problems. A correct description of the observed masses and mixing of quarks
and leptons require very different values for the Yukawa coupling constants for different
generations. Although many approaches have been put forward to describe the hierarchical
structure of Yukawa couplings between the Higgs field and the SM fermions, it is perhaps
fair to say that we do not have, at the moment, a compelling theory for quark and lepton
masses. On the other hand, naturalness technically refers to the necessity of fine-tuning
the tree level parameters to accommodate for experimentally acceptable values given the
size of the perturbative quantum corrections.

These lead us to believe that there is a more fundamental theory which incorporates

gravity along with SM in a unified framework and, in turn, fixes all the arbitrariness of the
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SM. Among all the possibilities that have so far been put forward, supersymmetric string
theory or superstring theory, surely, is the most promising one. Instead of point particles,
here, fundamental objects are the strings and particles appear as different vibrational
modes of the string. Strings with open and closed ends constitute two different sectors
known as open and closed string sectors respectively. While closed strings have, in it’s
spectrum, a mass-less spin two particle known as graviton [1|, the open strings carry
gauge charges at it’s end points. Therefore, strings provide a possibility to unify gauge
and gravitational interactions in a natural way. The scale of this unification is dictated by
the inverse of the size of a string. This scale is, however, much higher than the accessible
energies in present day accelerators and hence, strings remained un-observable. At the
same time, since via accelerators, the correctness of the SM have been tested to a very
high accuracy, string theory must reproduce just the SM at low energies. In spite of several
attempts, getting just the SM from string theory has so far remained an illusive task.
Consistency requires superstrings to live in ten space-time dimensions with space-time
supersymmetry. As we will discuss in the later sections, consistency also requires five
different kinds of superstrings in ten dimensions. The connection to our four dimensional
observational world is made via compactification of six space dimensions. Unfortunately,
it turns out that, there are several consistent compactification schemes which produce
different effective field theories in four dimensions at low energy scale. Even if strings at ten
dimensions do not have any free parameter, arbitrariness in compactification introduces
many undetermined parameters in the low energy theory. Among them, for example,
are the sizes and shapes of the compact manifold. In four dimensional theories, these
parameters appear as the vacuum expectation values (vev) of the scalars. These are
commonly known as the moduli fields. Continuous deformations in size and shape of the
compact manifold show up as continuous changes in the vevs of these moduli. This, in
turn, means that these scalars are not accompanied by any potentials. One of the main
focus of present day research is to find ways to remove these flat directions of the moduli
by generating their masses. Unless these moduli fields are de-coupled at a scale higher
than the presently accessible scale, relating string theory to SM remains a difficult task.
In spite of this vexing problem, exciting progress, however, has been made in achieving
partial stabilization of these moduli. This will be discussed in details in the later sections.
The present thesis serves as an attempt to construct low energy string models by par-
tially stabilizing the moduli and constructing an extension of the SM. A crucial ingredient
in our model building will be the Dirichlet branes or the D-branes in short. D-branes,
discovered in |2, 3|, are the solitonic configurations in sting theory on which open string

can end. As we will see, magnetized D-branes contain several phenomenologically appeal-
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ing general features suggesting that they may offer an interesting self-consistent set up to
construct semi-realistic models.

Any phenomenologically viable string compactification should contain three chiral gen-
erations, the SM gauge group or some extension of it and broken space-time supersym-
metry. In addition it should reproduce the exact gauge and Yukawa couplings. It must
satisfy a set of conditions in order to produce a consistent anomaly free theory. Moreover,
all the moduli fields are needed to be stabilized. In this thesis, we start with type I string
theory (one out of five consistent string theories in 10 dimensions) compactified on a six
dimensional torus 7. In type I string theory, there exists two known ways of achieving
chirality in the effective lower dimensional theory. Either, one can compactify on curved
spaces, in particular on orbifolds, leading to supersymmetric and non-supersymmetric chi-
ral models in four dimensions. Or, one can obtain chiral spectra by introducing D-branes
with magnetic flux [4]. We follow the later approach and discuss the toroidal compacti-
fication of type I string theory with additional background gauge flux on the D9-branes.
A D9-brane is a soliton in type I theory with 9 + 1 world-volume directions filling up
the whole space time. We review the necessary constraints required for constructing phe-
nomenological models in such a framework. For arbitrary magnetic fields, supersymmetry
is spontaneously broken. However, a part of the supersymmetry can be preserved provided
fluxes satisfy certain constraints. These constraints, in turn, can be used for stabilizing
the closed string moduli. However, in order to stabilize all closed string geometric moduli
of the torus 7, one needs to include both diagonal and oblique fluxes.

The main aim of the thesis is to build phenomenological models, with an exact chiral
fermion spectrum and gauge group, where some/all the moduli are stabilized and space-
time supersymmetry is broken, in the framework described above. Moreover, we carry out
the computations of Yukawa couplings in such magnetized brane constructions and find
the close form expressions for them. In such a framework, the computation of the Yukawa
couplings amounts to evaluating overlap integrals of three wavefunctions (contributing to
the interaction) along internal directions. In the course of this work, we explicitly solve
for the fermion (scalar) wavefunctions on toroidally compactified spaces in the presence
of general fluxes. The wavefunctions, so obtained, are given by general Riemann Theta
functions with matrix valued modular parameter. By evaluating the overlap integrals
of these wave functions, the expressions for Yukawa couplings among chiral multiplets
are obtained [5]. This essentially leads us to construct certain mathematical identities
for general Riemann theta functions. We generalize the existing theta identity, satisfied
by Jacobi theta functions, for Riemann theta functions and present a proof of this. We

then use these new mathematical relations to write down the expressions for the Yukawa
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interactions. In special cases, our results reproduce the results obtained in [6] for factorized
tori and ‘diagonal’ fluxes.

Finally, we present an example of a three generation SU(5) supersymmetric grand
unified (GUT) model in simple toroidal compactifications of type I string theory with
magnetized D9 branes in [7|. The gauge group is just SU(5) and the chiral gauge non-
singlet spectrum consists of three families with the quantum numbers of quarks and lep-
tons, transforming in the 10 + 5 representations of SU(5). The fluxes also satisfy the RR
tadpole cancellation conditions yielding a consistent model. Brane stacks with oblique
fluxes play a central role in this construction, in order to stabilize all close string moduli,
in a manner restricting the chiral matter content to precisely that of SU(5) GUT. Another
interesting feature of this model is that it is free from any chiral exotics that often appear
in such brane constructions. However, the model contains extra non-chiral matter that is
expected to become massive at a high scale, close to that of SU(5) breaking. Using the
results for Yukawa couplings, we show the mass generation for several non-chiral fermion
multiplets in a supersymmetric ground state which further fine tunes the SU(5) GUT
modell[5].

Before we go on to present our results in the later chapters, in the next section of this
chapter, we give a brief historical survey on the search of the SM or Grand Unified Theory
(GUT) models in the context of string theory. The aim of this survey is to motivate
our work, as well as giving an account of all the efforts that have made in the branch of
Superstring Phenomenology. We will use elements and notations that are already standard
in string theory literature, and are common in the basic texts [8, 9, 10, 11, 12, 13]. We
refer the reader to these texts for the details and completeness on the basic aspects of the

theory.

1.2 The Search for the Standard Model

The First String Revolution took place around 1984, when Green and Schwarz discovered
a new mechanism to formulate consistent superstring theories in ten dimensions [14]. Until
then, two such consistent theories had been constructed, namely type IIA and type IIB
superstring theories. Both involved closed strings only, and the effective field theories
derived from the low energy spectrum amounted to the two different N' = 2 Supergravity
(SUGRA) theories in ten dimensions, named in the same manner. Both of these effective
theories are free of inconsistencies such as chiral, mixed and gravitational anomalies. On
the contrary, the superstring theory known as type I, which involved both open and closed

strings, seemed to have such quantum anomalies. With the discovery of the Green-Schwarz
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mechanism, however, it was possible to show that if type I theory was endowed with
a Yang-Mills theory with gauge group SO(32), then the anomalies could factorize and
be canceled, finally obtaining a consistent theory. This was followed by the subsequent
construction of the heterotic superstring theory in ten dimensions, [15, 16, 17]. These two
theories involve a 10D SUGRA N = 1 effective theory and are endowed with gauge groups
which are, respectively, SO(32) and Eg x Eg.

The first attempts to build realistic string models were based on Eg x Fg heterotic
string compactifications. A phenomenologically viable compactification requires obtaining
an effective theory in four dimensions with a chiral spectrum and a gauge group containing
SU(3) x SU(2) x U(1). Since gravity was also to be a part of the low energy spectrum,
the string scale was fixed at the order of the Planck scale, and the hierarchy problem was
avoided by imposing local N' = 1 supersymmetry (SUSY). As it was shown in [18, 19], such
conditions required the six extra dimensions to fulfill some constraints, namely it should be
a compact Riemannian manifold with SU(3) holonomy group. Such manifolds are known
as Calabi-Yau threefolds, or CY3 [20, 21, 22|. An explicit model with three generations
based on heterotic superstring compactification is presented in [23, 24]. Although Eg x Fg
heterotic compactifications on Calabi-Yau manifolds have provided rather realistic models,
it is difficult to perform computations in such manifolds where, in most cases, not even
the metric is known. An interesting class of spaces where computations are much more
tractable is given by the toroidal orbifolds [25, 26]. Since the geometry is simpler than that
of a CY and the metric is flat outside the singularities, computations can be easily carried
out, and quantities of physical interest are thus more easily computable. Subsequently,
exact heterotic string solutions on six dimensional orbifold spaces were constructed [27,
28, 29]. This was followed by a series of constructions, such as the Gepner models [30],
the free-fermion models [31, 32| or heterotic string-derived flipped SU(5) models [33].

The Second Superstring Revolution took place around 1995, and it mainly concerned
the non-perturbative aspects of string theory. Until then, string theory was understood
as five different superstring theories, apparently independent, known as type I, type IT (A
and B) and the two heterotic theories. However, in the context of this second revolution,
it was learnt that they were all related to each other by a web of string dualities. The
duality establishes a one-to-one correspondence between parameters and fields defining one
theory (compactification radii, coupling constants, etc.) and the same set of quantities
defining its dual. Duality involves strong-weak coupling exchange either in sigma- model
or in space-time. The string duality web revealed that these five string theories were not
isolated independent theories, but actually limiting cases of a deeper, more fundamental

theory, named M-theory, whose precise nature has not yet been unraveled [34, 35]. Such
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theory would be formulated in eleven space time dimensions, and its basic dynamical
objects would be membranes rather than strings. These membranes naturally appear as
solitonic objects of D = 11 SUGRA, which would be another limiting case of M-theory.
The other five limiting cases, i.e., the five superstring theories, would then be obtained
from compactifying the eleventh dimension in a very small length. Figure 1.1 shows an

schematic representation of the situation.

TypellB TypellA

Heterotic Heterotic
EgxE g S0(32)

Figure 1.1: Situation of string theory after the second superstring revolution. The
previously disconnected five superstring theories are nothing but specific (limiting) points
in the parameter space of a more fundamental theory: M-theory.

In the formulation of these new string dualities, non-perturbative objects of the theory
such as the so-called D-branes played a prime role. D-branes naturally emerge while
considering a toroidal compactification of type I theory and performing a T-duality on
one of the compact dimensions |2, 3|. Generically, a Dp-brane is a BPS solitonic object of
spatial dimension p where the open strings localize their ends. Type IIA theory contains
Dp-branes with p even, whereas, for type IIB, p must be odd. The lowest excitation modes
of the open strings gives rise to massless gauge fields and their fermionic superpartners.
The supersymmetric effective theory arising from the worldvolume of a D-brane is endowed
with a U(1) gauge group. And a stack of N D-branes of the same kind on top of each
other have U(N) gauge symmetry. Moreover, the effective field theory is defined on the
p+ 1 dimensional D-brane worldwolume, and the fields on it are confined to propagate on
such worldvolume. D-branes being solitonic in nature, are massive within the perturbative

string theory. Their mass scales as gi where g, is the string coupling constant.
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The properties of these D-branes make them promising candidates for string model
building and indeed, new semi-realistic models based on type I and type II theories
started appearing. Actually, the first consistent compactifications of type I theory on
orbifold spaces were realized long time ago in [36, 37|, obtaining D = 6 supersymmetric
effective theories. In addition, such type I orbifolds were related to type II orientifold com-
pactifications [38, 39, 40, 41|. Roughly, an orientifold is a generalization of the orbifold,
where an element €2 for changing string orientation is included. Such D = 6 construc-
tions were rediscovered in the modern language of D-branes in [42, 43, 44]. Such class
of compactifications was then generalized to orbifolds and orientifolds of type I and type
IT theories on six compact dimensions, yielding N' = 1 chiral theories in four dimensions
[45, 46, 47, 48, 49, 50, 51, 52]. At the same time, such compactifications were related with
their heterotic duals. Some semi-realistic models were achieved in this particular context
[53, 54, 55]. A review of the phenomenology associated to these constructions can be found
in [56].

D-brane constructions not only allowed to re-derive the previous achievements of het-
erotic compactification, but its properties as extended objects gave new possibilities into
semi-realistic model-building, allowing to consider non-supersymmetric models. In het-
erotic models, both gauge and gravitational interactions have the same origin, as massless
modes of the closed heterotic string. So they correspond to fields that propagate through
the whole target space and they are unified at the string scale M. In order to reproduce
two energy scales which differ by several orders of magnitude, such as the Planck and
the Electroweak scale, one needs to introduce in general new parameters or a new scale
and the predictive power is essentially lost. On the otherhand, in D-brane constructions
the gauge and gravitational interactions have different origin. The latter are described
by closed strings, while the former emerge as excitations of open strings with end points
confined on Dp-branes with (p < 9). The gauge theory is confined to the p+ 1 dimensions
of the D-brane worldvolume, whereas gravitation, arising from the closed string sector,
will propagate on the full ten-dimensional target space or bulk of the theory. As it was
shown in [57, 58, 59, 60, 61], from this simple observation, we can obtain a difference of
scales between gauge and gravitational interactions. In particular, we can obtain realistic
compactifications where the string scale M, should not necessarily be of the order of the
Planck scale, but as low at the TeV region or at some intermediate scale [62, 63, 64]. In
this way, we can consider non-supersymmetric models free from the scale hierarchy prob-
lem. Non-supersymmetric orientifold compactifications were first constructed in [65, 66],
whereas the semi-realistic models and the phenomenology associated to them were pro-
vided in |67, 68|.
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The theoretical development in these new class of constructions, where D-branes played
a central role, allowed to take one step further in semirealistic model building. So far, the
quest for the SM had been based on considering a family of consistent compactifications in
a certain superstring theory (as e.g., CY3 heterotic compactifications) and exploring the
parameter or moduli space of such family (Euler characteristic, Wilson lines, etc.) looking
for a low energy theory which resembled as much as possible to the SM. In [69], a new
strategy for finding the SM in a string-based model was proposed. Since the gauge group
and chiral matter content of the SM may arise as an effective theory from a set of Dp-
branes, and the physics of this effective theory is not very sensitive to the rest of the details
of the compactification, one may conceive the construction of a realistic model in two steps.
First, we consider a consistent D-brane configuration with the low-energy spectrum of the
SM. Second, we complete the construction by adding all the extra elements necessary to
yield a fully-fledged compactification, including four-dimensional gravity. This, so-called
bottom-up philosophy, enables us to find the simplest semi-realistic models. In such models,
the SM was obtained from a bunch of D3-branes filling four-dimensional Minkowski space
time and localized at an orbifold singularity in the compact space. Consistency conditions
known as tadpole conditions imposed the presence of additional D-branes, namely D7-
branes.

The bottom-up philosophy has indeed produced a whole set of D-brane models whose
semi-realistic effective theories contain either the SM gauge group, or some extension of it.
After it was realized that chiral fermions appear on the intersection of two D-branes [70],
model building involving configurations of D-branes at angles or intersecting D-branes
were intensively studied. Generically, these configurations yield a non-supersymmetric
chiral low-energy spectrum. FEach stack of N D-branes will be endowed with a U(N)
gauge theory, so that the construction of the SM gauge group or some extension of it
basically reduces to consider the appropriate set of D-brane stacks. The chiral matter
fields appear at their intersection, transforming in the bi fundamental representations.
The number of zero modes i.e. the generation number is given by the intersection number
in the compact six-dimensional space. These class of models, baptized as Intersecting
Brane Worlds presents an interesting hierarchy on the different sectors of the effective
theory. The gravity sector propagates on the whole target space i.e. on the four non-
compact dimensions and on the six compact dimensions. The gauge sector, on the other
hand, remains confined to the D-brane worldvolume, which fills the four non-compact
dimensions and a submanifold of the compact space. Chiral matter is localized at D-
branes intersections so, generically, they fill the non-compact dimensions and stuck at

a point in the compact space. This natural hierarchy allows one to implement the low
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string scale scenario discussed above, as well as to consider non-supersymmetric models.
Intersecting brane worlds provide a scenario to address some well known phenomenological
problems and features of SM physics, by translating them to a more geometrical language.
The specific examples for this type of models are discussed in the context of type ITA
strings, see for example [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83].

The intersecting D-brane models are related by T-duality to the magnetized D-brane
models. In the language of T-duality, the intersecting angle of two D-branes in the type ITA
side is interpreted as the magnetic flux inside two internal dimensions in the type IIB
picture. Roughly, two T-dual theories yield the same physics: same interactions, same
operators, same Hilbert space. It implies a one-to-one correspondence between two theo-
ries. On one side of the T-dual picture we have D-branes with magnetic fluxes, whereas
on the other side we have D-branes at angles. The T-dual models i.e. the magnetized
D-brane models also have been investigated. In particular, it was observed in [4] that
turning on a non-vanishing magnetic field in a simple toroidal compactification of type I
string theory implies both chiral spectra and supersymmetry breaking. Some theoretical
aspects, as well as semi-realistic constructions have been analyzed in this framework in
[6, 84, 85, 86, 87, 83, 89, 90, 92, 93, 94]. Non-supersymmetric toroidal compactifications
of type I string theory with both constant background Neveu Schwarz - Neveu Schwarz
(NSNS) two-form flux and non-trivial magnetic flux on the various D9-branes are dis-
cussed in [90, 94]. The solutions to the cancellation of the RR tadpoles display various
phenomenologically attractive features: supersymmetry breaking, chiral fermions and the
opportunity to reduce the rank of the gauge group. The non-vanishing B-flux admits
four-dimensional models with three generations of chiral fermions in standard model like
gauge groups. We refer to [95, 96| for more details on type I constructions.

In recent years a renewal of the local model building has been developing, for instance,
F-theory model buildings [97, 98|. F-theory models naturally include exceptional gauge
groups beyond the type IIB D-branes. Since the flavor structures are different from that
of D-branes models, there are a lot of developments in phenomenological studies.

Although the general features get us quite close to obtain a realistic D-brane construc-
tion, in any string model one always find large number of unobserved light neutral scalar
particles (moduli fields), extra chiral fermions and U(1) gauge groups in the low energy
spectrum. Geometrically, the vacuum expectation values of the so called moduli fields
parametrize the size and shape of the compactification manifold or positions of D-branes.
These values are also related to the parameters like gauge coupling constants or masses
of the effective four dimensional theory. Without uniquely determining these expectation

values by means of minimizing an effective potential, which could then also induce mass
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terms for the moduli, string models are not predictive. This led to an intensive study on
the problem of moduli stabilization to discover a controllable mechanism which generates
a potential for the moduli fields. Such stabilizations employ various supergravity [99, 100],
non-perturbative [101] and string theory [102, 103, 104] techniques to generate potentials
for the moduli fields.

The superstring spectrum in ten dimensions contains various anti-symmetric tensor
fields, the so called p-form fields C,. It has been realized that by allowing the corresponding
field strengths, schematically F,,; = dC), to take non-trivial expectation values along the
internal space, one can fix the vevs of the moduli fields and therefore provide the possibility
for choosing a ground state as a local isolated minimum of the scalar potential of the theory.
Moreover, when the fluxes are turned on along the compact directions, they have to satisfy
Dirac quantization conditions and hence take discrete values. By a suitable choice of NS-
NS and Ramond - Ramond (R-R) 3-form fluxes, one can find NV = 1 supersymmetric vacua
where all complex structure moduli, as well as the dilaton, are fixed [100]. A disadvantage
of this method is that there is no exact string description of such fluxes and thus the
analysis is restricted to the lowest order in o expansion, described by the effective field
theory. Moreover, generalization of the stabilization mechanism to Ké&hler class moduli
requires introduction of non-perturbative effects which are again treated in the low-energy
supergravity approximation [101].

An alternative mechanism of moduli stabilization based on open string constant mag-
netic backgrounds that have an exact description in string theory [4, 105] is presented
in [102, 103|. In fact, magnetic fluxes can be turned on in any 2-cycle of the internal
compactification manifold. In the simplest case, magnetic backgrounds on (1,1)-cycles
fix the Kahler class moduli [106, 107], while backgrounds on holomorphic (2,0)-cycles fix
the complex structure moduli. In the generic Calabi-Yau case, this method can stabilize
mainly the Kéhler moduli [102, 106, 107| and is thus complementary to 3-form closed
string fluxes that stabilize the complex structure and the dilaton [100]. On the other
hand, it can also be used in simple toroidal compactifications, stabilizing all the geometric
moduli in a supersymmetric vacuum using only magnetized D9-branes. This has an exact
perturbative string description [4, 105]. RR tadpole cancellation requires some charged
scalar fields from the branes to acquire non-vanishing vacuum expectation values, break-
ing partly the gauge symmetry in order to preserve supersymmetry [103|. Alternatively,
one can break supersymmetry by D-terms and fix the dilaton at weak string coupling, by
going “slightly" off-criticality and thus generating a tree-level bulk dilaton potential [108].
One of the main ingredients for this approach of moduli stabilization is the inclusion of

‘oblique’ fluxes given by mutually non-commuting matrices, in order to fix all off-diagonal
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components of the metric. This mechanism can be combined with the presence of closed
type IIB string 3-form fluxes, allowing to fix the dilaton and the complex structure of more
general compactification manifolds.

However, despite enormous efforts, very few examples are known so far of a complete
stabilization of closed string moduli in any specific model, while the known ones are too
constrained to accommodate interesting models from physical perspective. Hence, there
have been very few attempts to construct a concrete model of particle physics even with
partially stabilized moduli. Nevertheless, in view of the importance of the task at hand,
we revisit the type I string constructions with moduli stabilizations [102, 103, 104], to
explore the possibility of incorporating particle physics models, such as the SM or GUT
models based on grand unified groups, in such a framework.

In the quest for obtaining a realistic string-based model, generic properties of the
low-energy effective Lagrangian such as D = 4 chirality and unitary gauge groups are
of fundamental importance. Once these have been found in a particular setup of string
theory, there are still many other issues to face in order to reproduce some realistic physics
at low energies. In particular, even if one manages to obtain a massless spectrum quite
close to the SM (or some extension of it), one is eventually faced with the problem of
computing some finer data defining a Quantum Field Theory. These data may tell us how
close are we of reproducing the SM which, as we know, is not a group of chiral fermions
with appropriate quantum numbers, but an intricate theory with lots of well-measured
parameters. One should know the Yukawa couplings in any string model.

Close form expressions for Yukawa couplings have been written down for Type ITA
models with intersecting branes [81, 109]. In this case, one has to perform a sum over
string worldsheet instanton contributions to obtain the final expression of Yukawa cou-
plings, a pure stringy (non-field theoretical) computation. These results have been further
generalized to include Euclidean D2 brane instanton contributions to the Yukawa cou-
plings [110, 111, 112, 113, 114, 115, 116, 117, 118], generating up quark and right handed
neutrino masses through a Higgs mechanism, in a particular class of models. On the other
hand, in the T-dual picture, the calculations of the Yukawa couplings are purely field the-
oretical. Yukawa interactions can be calculated by overlap integrals over internal spaces

with three wavefunctions as the following forms

y — / Ay () (9)b(v) (1.1)

where 1; ;(y) correspond to the internal wavefunctions of chiral matter fields and ¢(y) is

the internal wavefunctions of Higgs scalar fields. The explicit calculations of the overlap
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integrals can tell us the form of the Yukawa couplings. It is found that two different
approaches of stringy and field theory calculations lead to the consistent results of the
Yukawa couplings after proper transformation of moduli parameters [6]. A limitation on
the exercise performed in these papers comes from the factorized structure of the tori,
which arises from the orientations of the brane wrappings that are classified by angles in
three different 72 planes or fluxes that are diagonal along three T%’s. These results require
generalizations further to obtain the interactions involving branes with oblique fluxes, in
view of the importance of such fluxes for obtaining phenomenologically viable models.

In this thesis, we discuss a simple framework of toroidal string models with magnetized
branes, that offers an interesting self-consistent set up for string phenomenology. We will
see, in the following chapters, how one can address the issues of moduli stabilization (fixing
the geometric parameters of the compactification), building calculable particle physics
models (gauge group, chiral fermions, family triplication, anomaly cancellation etc.) and
computations of the Yukawa couplings in such a framework.

With this brief introduction, in the next section, we discuss the structure of the thesis.

1.3 Plan of the thesis

In chapter 2, we briefly review the string construction using magnetized branes. We discuss
the compactification of type I strings on a torus with additional background gauge flux
on the D9-branes and summarize the necessary constraints needed for constructing semi-
realistic models in such a framework. We recall the main properties of the six-dimensional
toroidal compactification and its moduli space. We consider the open string propagation
in the presence of constant internal magnetic fields [4] and summarize the conditions for
unbroken supersymmetry. We analyze the conditions for the unbroken supersymmetry
in the presence of a stack of magnetized D9-branes and discuss the closed string moduli
stabilization. We also study the tadpole cancellation conditions which are required for
consistency of type I string vacua. Then we discuss the low-energy spectrum of the effective
theory within this compactification scheme. Here we pay special attention to the massless
open string of the theory, where unitary gauge groups and chiral fermions charged under
them arise. Since a crucial step in a three generation model building is the introduction
of a NS-NS B-field background (without which only even generation models can be built),
the effects of non-zero B on the chirality and the tadpoles is summarized.

The next chapter is dedicated to obtain close form expressions for Yukawa couplings in
such magnetized brane constructions. We first review the known results on the Jacobi theta

identity given in [119] and present a proof of its validity. We also give an expression for the
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Yukawa interaction for factorized tori and ‘diagonal’ fluxes using the theta identity [6]. We
then generalize the results to writing down expressions for the Yukawa interactions when
oblique fluxes are present. In order to perform this task, fermion (scalar) wavefunctions on
toroidally compactified spaces are presented for general fluxes, parametrized by Hermitian
matrices with eigenvalues of arbitrary signatures. We also give explicit mappings among
fermion wavefunctions, of different internal chiralities on the tori, which interchange the
role of the flux components with the complex structure of the torus. By evaluating the
overlap integral of the wavefunctions, we give the expressions for Yukawa couplings among
chiral multiplets arising from an arbitrary set of branes (or their orientifold images). The
method is based on constructing certain mathematical identities for general Riemann theta
functions with matrix valued modular parameter.

After developing this theoretical framework, we present a specific model in the chapter
4. We construct a minimal example of a supersymmetric grand unified model in a toroidal
compactification of type I string theory with magnetized D9-branes. We obtain general
solutions for fluxes along magnetized D9-branes yielding the chiral spectrum and gauge
group of a three generation SU(5) GUT model, with no extra chiral matter nor U(1) factors.
The gauge symmetry is just SU(5) and the gauge non-singlet chiral spectrum contains only
three families of quarks and leptons transforming in the 104 5 representations. Moreover,
all geometric moduli are stabilized in terms of the background internal magnetic fluxes
which are of “oblique" type (mutually non-commuting). The flux solutions also satisfy
the RR tadpole cancellation conditions yielding a consistent model. Finally, we present a
brief analysis of the superpotential and D-terms for the model in order to show the mass
generation for several non-chiral fermion multiplets in a supersymmetric ground state.

We end this thesis with a conclusion. In the appendix, we collect all the technical

details required for the main text.
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Magnetic Flux in Toroidal Type I

Compactification

2.1 Introduction

In this chapter we introduce the basic class of objects upon the whole thesis is based: D-
branes with magnetic fluxes or magnetized branes. We study some of their salient features,
which motivate their role as building blocks of semirealistic string-based constructions.

As it is discussed in the previous chapter, string theory is known to possess a large
number of vacua which contain the basic structure of grand unified theories and in partic-
ular of the Standard Model. However, the presence of moduli fields with flat directions has
remained one of the major stumbling blocks in making further progress. Consequently,
closed string moduli stabilization has been intensively studied during the last years for
its implication towards a comprehensive understanding of the superstring vacual99, 101],
as well as due to its significance in deriving definite low energy predictions for particle
models from string theory. Such stabilizations employ various supergravity[99, 100], non-
perturbative[101] and string theory[102, 103, 104| techniques to generate potentials for
the moduli fields. However, very few examples are known so far of a complete stabiliza-
tion of all closed string moduli in any specific model. The known models with stabilized
moduli are too constrained to accommodate interesting models from physical point of
view. Hence, there have been very few attempts to construct a concrete model of particle
physics even with partially stabilized moduli. With the above motivation, we revisit the
type I string constructions[95, 96] and moduli stabilizations[102, 103, 104|, to explore the
possibility of incorporating particle physics models, such as the Standard Model or GUT
models based on grand unified groups.

A new calculable method of moduli stabilization was recently proposed, using constant
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internal magnetic fields in four-dimensional (4d) type I string compactifications[102, 103].
In the generic Calabi-Yau case, this method can stabilize mainly the Kéhler moduli [102,
106] and is thus complementary to 3-form closed string fluxes that stabilize the complex
structure and the dilaton [100]. On the other hand, it can also be used in simple toroidal
compactifications, stabilizing all geometric moduli in a supersymmetric vacuum using only
magnetized D9-branes that have an exact perturbative string description [4, 105]. RR
tadpole cancellation requires then some charged scalar fields from the branes to acquire
non-vanishing vacuum expectation values (VEVs), breaking partly the gauge symmetry in
order to preserve supersymmetry [103|. Alternatively, one can break supersymmetry by
D-terms and fix the dilaton at weak string coupling, by going “slightly" off-criticality and
thus generating a tree-level bulk dilaton potential [108].

There are two main ingredients for this approach of moduli stabilization [102, 103]:
(1) A set of nine magnetized D9-branes is needed to stabilize all 36 moduli of the torus
T° by the supersymmetry conditions [89, 120]. Moreover, at least six of them must have
oblique fluxes given by mutually non-commuting matrices, in order to fix all off-diagonal
components of the metric. On the other hand, all nine U(1) brane factors become massive
by absorbing the RR partners of the Kéhler class moduli [89]. (2) Some extra branes are
needed to satisfy the RR tadpole cancellation conditions, with non-trivial charged scalar
VEVs turned on, in order to maintain supersymmetry.

However, as already pointed out in [103], our moduli stabilization scheme is restricted
to closed string moduli space that may be enlarged if one takes into account open string
fields'. Unfortunately, their effects cannot be taken into account exactly at the string level,
as the geometric toroidal closed string moduli. Moreover, they have N = 1 superpotential
leading to non-trivial F-flatness conditions, besides the D-terms arising from the magnetic
fields. A recent analysis shows that a generalization of the stabilization mechanism may be
possible in the quadratic approximation and, for reasonable conditions on the spectrum,
open string ‘recombination’ fields can also be fixed [121]. In the present work, we apply the
following algorithm for moduli stabilization in toroidal type I compactifications: (1) All
geometric moduli are first fixed using a minimal set of (nine in the present case) magnetized
branes, in the absence of charged scalar VEVs. This has the advantage of being exact in
o/ (world-sheet) perturbation theory, but does not satisfy tadpole cancellation. (2) The
latter is achieved by adding extra magnetized branes on which some charged scalars are

forced to acquire non-vanishing VEVs in order to cancel the induced Fayet-Iliopoulos

'Many open string moduli are charged and their VEVs break local and global symmetries. For instance
they play the role of ordinary higgses either for GUT or Standard Model breaking. These VEVs could be
driven from soft supersymmetry breaking terms. The issue is related to supersymmetry breaking, however
in the present thesis we are interested in N' = 1 supersymmetric vacuum.
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terms. Since the inclusion of charged fields in the D-terms is not known exactly, their
VEVs can be determined only perturbatively in o/, when their values are small compared
to the string scale. As a result, any ‘back-reaction’ of the charged scalar VEVs, coming
from this perturbative brane action, is expected to be small on the closed string moduli,
and therefore not of any significant phenomenological consequence.

We apply the above method to construct phenomenologically interesting models. In
this chapter, we briefly describe the construction based on D-branes with magnetic fluxes
in type I string theory, or equivalently type IIB with orientifold O9-planes and magne-
tized D9-branes, in a T compactification. The rest of the chapter is structured as follows.
We start with summarizing the main properties of the six dimensional toroidal compact-
ification and its moduli space in Section 2.2. In Section 2.3, we consider open string
propagation in the presence of constant internal magnetic fields. Further, we discuss the
general setup with the magnetized branes, including the gauge fluxes that can be turned
on, in a consistent manner. In Section 2.4, we write down the conditions that guarantee the
existence of one unbroken supersymmetry preserved by stacks magnetized D9-branes. We
then discuss the stabilization of complex structure and kédhler class moduli using such con-
ditions. We study the tadpole cancellation conditions which are required for consistency
of type I string vacua in the presence of internal magnetic fields in Section 2.5. Further,
in Section 2.6, we discuss the low energy spectrum, in particular fermion degeneracies,
of the effective theory in this compactification. Since a crucial step in a three generation
model building is the introduction of a NS-NS B-field background without which only
even generation models can be built, the effect of non-zero B on the chirality and tadpoles

is summarized in Section 2.7.

2.2 Torus compactification : Parametrization of 7° and

Moduli space

Consider a six-dimensional torus 7° having six coordinates z¢, y; with ¢ = 1,2,3 and

periodicity normalized to unity z° = 2° + 1, y; = y; + 1 [102]. We choose the orientation

/ det Ady A da® A dys Ada® A dys = 1 (2.1)
T6
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and define the basis of the cohomology H?(T°,Z)

ap = daxt Ada® Adad
1
Qi; = §€ilmdl’l A dx™ A dyj (22)
. 1 . .
g = —Ee”mdyl A dy,, N\ dx?

BY = dy Adys A dys,

forming a symplectic structure on 7T°:

/ ag NP ==, fora,b=1,--- hg/2, (2.3)
T6

with h3 = 20, the dimension of the cohomology H?*(T°,Z).

The 36 moduli of T° correspond to 21 independent deformations of the internal metric
and 15 deformations of the two-index antisymmetric tensor Cy from the RR closed string
sector. They form nine complex parameters of Kahler class and nine of complex structure.
Indeed, the geometric moduli of 7° decompose in a complex structure variation which is

parametrized by the matrix Q¥ entering in the definition of the complex coordinates
=2+ Oy, (2.4)
and in the Kéahler variation of the mixed part of the metric described by the real (1, 1)-form
J =ibg;dz" NdZ. (2.5)
Choosing the basis e/ of the cohomology H"! to be of the form
eV = idz' Nd# (2.6)
the Kéhler form can be parametrized as
J = Jgze. (2.7)

The dimension of the space of complex structure moduli is given by the dimension of
the cohomology H*' on the torus T° hy; = 9. The elements J;; satisfy the reality
condition JZ% = Jj;, implying that J depends on nine real parameters. They can be used
to parametrize the space of Kéhler deformations whose dimension is given by the dimension

of the cohomology H'!' on the torus 7% h;; = 9. The Kéhler form is complexified with

17



Chapter 2. Magnetic Flux in Toroidal Type I Compactification

the corresponding RR two-form deformation.

2.3 Magnetized D9-branes: Fluxes and Windings

Let’s consider a stack of N coincident D9-branes, giving rise to a U(N) N = 4 supersym-
metric gauge theory. We pick up a U(1) subgroup in the Cartan subalgebra of U(N) with
gauge potential A, and turn on a constant magnetic field. Thus, the corresponding field
strength F,,5 is constant and A, = %Faguﬁ , where u? stands for all six coordinates of 79,
2* and y*. This constant magnetic background couples to the boundary of the open string
on the brane by quadratic terms in the world-sheet action S, [105]. The corresponding

conformal field theory can therefore be solved exactly:

1 -
Sw =~ /2 dido (93X O X,, — i p O,
- / dtqrFag (X “9,X" — %w‘ap%ﬁ ) (2.8)
o=0

- / dtqrFas (X“@Xﬁ — %@/?“p%ﬁ )
o=n
where o' is the Regge slope, ¥* are the real Majorana fermionic superpartners of the
coordinates X* and p* with A\ = 0,1 are the two-dimensional gamma-matrices. The
indices «, f run over the magnetized dimensions «,( = 4,---,9, whereas the indices
i, v run over all ten-dimensional spacetime coordinates p,v = 0,---,9. The couplings
of the left and right endpoints of the open string to the background are given by the
corresponding charges q; and qg.
The field F,s corresponds to a non trivial U(1) gauge bundle over the torus 7° with
transition function around the cycles u,:

Aa} (Aq — ie’iqeﬁaeiq‘g) . 0= F,u’ (2.9)

uP+1 -
ub

with ¢ = g7 + qr. Imposing the phase over each cycle u® to be single-valued leads to the

usual Dirac quantization condition
q-Fog=2mmap, Yo,8=4,...,9, (2.10)

where m,s are integers corresponding to the first Chern class of the U(1) gauge bundle.
Let us now be more specific and assume the presence of K stacks of N, magnetized

D9-branes, a = 1,..., K. Each stack is associated with a corresponding U(N,) gauge
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symmetry. We choose K linear combinations of the generators of U(N,) which lie in the
Cartan subalgebra and denote their abelian gauge potentials by A%; for simplicity, we
identify them with U(1),. Their field strengths are assumed to take constant values on
the torus T°. Thus there is a set of K U(1) gauge potentials A% with constant background
field strengths

Al = %FgﬁXﬁ where a=1,..., K. (2.11)

The stacks of D9-branes are characterized by three independent sets of data: (a) their
multiplicities N,, (b) winding matrices Wlf’“ and (c) 1st Chern numbers m$; of the U(1)
background on their world-volume %, a = 1,..., K. And I, I run over the target space
and world-volume indices, respectively. These parameters are described below:

(a) Multiplicities: The first quantity N, describes the rank of the the unitary gauge
group U(N,) on each D9 stack.

(b) Winding Matrices: The second set of parameters WII ' is the covering of the world-
volume of each stack of D9-branes on the ambient space. In other words, they give
the winding of the branes around the different cycles of the internal space. They are
characterized by the wrapping numbers of the branes around the different 1-cycles of the

. . . . i
torus?, which are encoded in the covering matrices W7 ¢ defined as
) I

Wi oe

JZ@XJ for f,J:O,...,9, (2.12)

where the coordinates on the world-volume are denoted by fj , while the coordinates of
the space-time M, are X’. Since space-time is assumed to be a direct product of a
four-dimensional Minkowski manifold with a six-dimensional torus, the covering matrix is

of the form:

; 60
whe=1|( "» °~ for p,i=0,...,3 and a,é6=1,....6, 2.13
J (0 WM) o fl (2.13)

«

with the upper block corresponding to the covering of ¥ on the four-dimensional space-
time My. Since these are assumed to be identical, the associated covering map W[j is
the identity, W/ = 0%. The entries of the lower block, on the other hand, describe the
wrapping numbers of the D9-branes around the different 1-cycles of the torus 7 which
are therefore restricted to be integers W € Z, V o,& = 1,...,6 [104]. The K D9 stacks

are then ten-dimensional objects which fill the four-dimensional space-time and cover the

2There is no wrap factor here because the fluxes are magnetic (at the disk level) with an exact CFT
description, in contrast to the closed string fluxes.
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internal torus 7°. Thus there are K different coverings 7 of the torus 7° described by
the K covering maps W& fora=1,..., K.

For simplicity, in the examples we consider in this thesis, the winding matrix Wg‘ in
the internal directions is also chosen to be a six-dimensional diagonal matrix, implying
an embedding such that the six compact D9 world-volume coordinates are identified with
those of the internal target space T°, up to a winding multiplicity factor n2, for a brane
stack-a:

n’ = Woe. (2.14)

We will also use the notation
o0 — a,  a A — a, . a A — a, . a
ny =ning, ng =niny, ng =ning, (nosum on a) (2.15)

to define the diagonal wrapping of the D9’s on the three orthogonal T%’s inside T, given
by:

:EZEXOC7 a:173’5; ysza, a:274’6’ (2'16)
with periodicities: 2° = 2' + 1, y* = y' + 1:

3
=), 12, (2.17)

and coordinates of the orthogonal 2-tori (77) being (z,y") for i = 1,2, 3.

For further simplification, in our example, we will choose for all stacks trivial windings:
n® =W =1, fora=1,.,6. (2.18)

However in this section, in order to describe the formalism, we keep still general winding
matrices W

(c) First Chern numbers: The parameters mf; of the brane data given above are the 1st
Chern numbers of the U(1) C U(N,) background on the world-volume of the D9-branes.
For each stack U(N,) = U(1), x SU(N,), the U(1), has a constant field strength on the
covering of the internal space. These are subject to the Dirac quantization condition which

implies that all internal magnetic fluxes F¢

apb’
branes, are integrally quantized. The Dirac quantization condition applies independently
to the K fluxes F?..

ap

Explicitly, the world-volume fluxes FéchB and the corresponding target space induced

on the world-volume of each stack of D9-
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fluxes pg 4 are quantized as
FgB:mZBEZ Va,=1,...,6
Va=1,....,K. (2.19)
pag =W W)g me, €Q, Va,f=1,....6

o

When fluxes are turned on only along three factorized T%s of eq. (2.17), as will be the

case for some of our brane stacks, we make use of the following convenient notation:

S a — a — a Sa — a — a Sa — a — a
My =miy = Mg, My = Mgy = Mz, M3 = M5 = Miyays. (2.20)

The magnetized D9-branes couple only to the U(1) flux associated with the gauge fields
located on their own world-volume. In other words, the charges of the endpoints ¢z and ¢,
of the open strings stretched between the i-th and the j-th D9-brane can be written as q; =
¢; and qp = —¢;, while the Cartan generator h is given by h = diag(hy Iy,, ..., hn Iy, ),
with 1y, being the N, x N, identity matrix. In addition, in type I string theory, the
number of magnetized D9-branes must be doubled. Since the orientifold projection O is
defined by the world-sheet parity, it maps the field strength F, = dA, of the U(1), gauge
potential A, to its opposite, O : F, — —F,. Therefore, the magnetized D9-branes are not
an invariant configuration and for each stack a mirror stack must be added with opposite
flux on its world-volume 3.

A general gauge flux, on 7% with coordinates X' = (z%,y*), i = 1,2, 3, has the form:

F =prsdX' AdX7
= Dpigidx’ A da? + pyiady’ A dy’ + ppigsdz’ A dy’ + pyigsdy’ A da? (2.21)

Then using the definition of a general complex structure matrix €2 as defined in eq.(2.4) :
dz' = da' + Qidy’, dz' = da’ + Qidy’,

we obtain:
F = FLid2" Nd2? + Flizi(id2' NdZ) + Fizidz N dZ. (2.22)

Choosing the basis ¢ of the cohomology H™! to be of the form e¥ = idz' A dz7, we get:

— o T — — -_— —_— —_ _
Fog =F.i.i =(Q—Q) ! (QTme — Qszy +pny +pyy) Q-)! (2.23)

3There are no Os planes in our model. However every magnetic flux creates also 5-brane charges that
are cancelled among various stacks of magnetized D9-branes.
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and
Funy = Faz = (=)(Q = Q)7 (Q7peQ — Wy + 0104 py,) (- Q)7L (2.24)

where the matrices (p,;), (P}:,;) and (p;,;) are the quantized field strengths in target
space, given in eq. (2.19). For our choice (2.18), they coincide with the Chern numbers
m® along the corresponding cycles. The field strengths Féo) and F, (1,1) are 3 x 3 matrices

that correspond to the upper half of the matrix F*:

e Fg
Fo = —(271')2@'0/ ( (2}0) ailvl) ) , (225)
—q 0y Fe0

which is the total field strength in the cohomology basis e;; = idz* AdZz’. In addition, Fis;
is complex conjugate to Fi,; and Fsi,; = —Fjz.

In this thesis, we consider the fluxes for which a four dimensional supersymmetric
theory can be recovered. As it will be discussed in the following sections, supersymmetry

demands all fluxes to be of (1,1) form which gives us the condition:

(2 peaft — QT + pL, Q2+ py,) =0, (2.26)
or equivalently:
(2 puaQ — U,y + pL Q2+ pyy) = 0, (2.27)

Eqgs. (2.26) and (2.27) together give two real matrix equations. These equations can then
be used to eliminate some of the variables and write the final (1, 1) form in terms of certain
independent variables only.

Using eq. (2.27), eq. (2.24) reduces to the following form,

inZj == (pzzQ - pzy) (Q - Q>71 . (228)

On the other hand, use of eq. (2.26) in eq. (2.24) gives,
A AT &
Fam=—i(Q—Q)" (=" pue — pfy) : (2.29)

We also notice that the (1,1) form F,iy; given in eq. (2.24) satisfies the hermiticity

property: Fli.; = F',_.. To explicitly see that, we use eqs. (2.28), (2.29).

Zizi"

Fl = [(=i (0ee® = pay) (2= )7
_ —Z(Q _ Q)—lT (—QTpm _ pfy) = Fli. (2.30)
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There are some special cases, however, in which eqs. (2.26) and (2.27) simplify further
and the resulting F:5; can be written more compactly. One such case arises when p,, and

pyy components are turned off. In such a situation Fi, ) = 0 condition (2.27), reduces to:
O pay = P02 (231)

Thus far, we have concentrated on the spatial components of the gauge fluxes, but
ignored the gauge indices. In the magnetized D-brane construction, gauge quantum num-
bers arise from the Chan-Paton factors associated with the end points of the open strings
for a given stack of branes. The simplest possibility is to consider fluxes with gauge indices

given by an n x n identity matrix for a stack of D-branes:
F=mlI,, (2.32)

with m an arbitrary integer giving the 1st Chern number. All spatial indices of the gauge
flux above have been suppressed, which are given as in eq. (2.21) by the components :
Daiyi Driniy Dyiyi- Actually, eq. (2.32) corresponds to the situation when all the wrapping
numbers are trivial: n* = n¥' = 1 as discussed in eq.(2.18). F, then represents a stack
of n magnetized D-branes with a U(1)" gauge flux. The first Chern number for each
of the U(1) fluxes is equal to m. Moreover, D-brane wrapping numbers on the internal
directions, are all unity, given by a diagonal embedding of the brane in target space and
winding around each 1-cycle once. In most of the thesis, we will consider fluxes of the
above type.

For multiple stacks of n; branes with respective 1st Chern numbers m;, the flux matrix

is of block diagonal form:

mljnl
mZ-[ng

F = _ (2.33)

mnplnp

and corresponds to gauge fluxes in the diagonal U(1)’s of U(ny) x U(ng) X - - - gauge group.

Gauge fluxes on branes with higher wrapping numbers can also be given a gauge
theoretic interpretation. The method is based on a representation of the magnetized
brane constructions [6] in terms of fluxes along internal directions in a compactified gauge

theory. In this picture, the effect of windings of branes around 7 is simulated by the
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rank of the gauge group. In particular, due to the Dirac quantization condition on fluxes,
a U(n) flux on, say T

F=—1I,, 2.34

& (2.34

with I,, being the n-dimensional identity matrix, and (n,m) relatively prime, represents a
single brane wound n times around 72 with flux quantum m and resulting gauge symmetry
being only U(1). On the other hand, if m is an integer multiple of n such that m = pn, then
each of the entries in the identity matrix represents a well defined U(1) flux of quantum
p and the gauge symmetry is U(n), given by a stack of n such magnetized branes, as
described in the last paragraph. It turns out that explicit realization of fluxes with (n, m)
relatively prime, needs gauge configurations with non-abelian Wilson lines.

In the next section, we write down the supersymmetry conditions for magnetized D9-
branes in the context of type I toroidal compactifications and discuss the stabilization of

complex structure and Kéahler class moduli using such conditions.

2.4 Supersymmetry Conditions and Moduli Stabiliza-
tion

The presence of constant internal magnetic fields breaks supersymmetry by shifting the
masses of the four dimensional scalars and fermions [4]. A single magnetized D9-brane in
type I string theory is not generically supersymmetric. Indeed, the orientifold projection
implies the presence of mirror branes. Twisted scalars from the Neveu-Schwarz sector of
open string stretched between a brane and its image are generically massive, while some
chiral spinors from the Ramond sector remain massless. In other words, the D9-brane
does not preserve the same supersymmetry as the orientifold projection. However, for
suitable choice of the fluxes and moduli, a four-dimensional supersymmetric theory can be
recovered [89]. In this section, we summarize the conditions under which a supersymmetric
vacuum can exist.

Written in the complex basis (eq. (2.4)) where the field strength F splits in purely
(anti-) holomorphic (Fo2)), F2,0) and mixed F{; 1) parts, the condition for N" = 1 super-

symmetry in four dimensions can be written as [102, 103]:

. A Vi
(i +F)?* = V]gs + F| JIZT (2.35)
6

Foo = 0, (2.36)

where Vg is the volume form of 7 and gg is its metric. Eq. (2.35) can be rewritten in the
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form:

tan (JANJANF—-FANFANF)=JIJNINT—JNFAF, (2.37)

where the wedge product A" is defined with an implicit normalization factor 1/N!. Note
that only the (1,1)-part of F contributes in this formula. Formally, (2.37) can be also
written as

Im (e 7®) =0, (2.38)

with
Q= (J+F)N(EJ+F)N@GS+F). (2.39)

The constant phase 6 selects which supersymmetry the magnetized D9-brane preserves.
In the case of type I string theory, the supercharges preserved by the magnetic background
field is consistent with the presence of the orientifold plane O9 for the choice of 6 = —7.

Similarly, for a given configuration of K stacks of magnetized branes, one may ask
whether the different stacks forming the brane configuration preserve some common su-
persymmetries. All 6,’s, for a = 1,..., K, have to be the same in order to preserve the
same supersymmetry. We then have 6, = —7 Va. The supersymmetry conditions for

each stack then read[102, 103]:

Fép) :O,
FoNFoNFo=FsNJINJ;
detW, (JANIJNT = FoNFoNJT) >0, (2.40)

foreacha=1,... K.

The first set of conditions of eq. (2.40) states that the purely holomorphic flux vanishes.
For given flux quanta and winding numbers, this matrix equation restricts the complex
structure €. Using eq. (2.23), the supersymmetry conditions for each stack can first be

seen as a restriction on the parameters of the complex structure matrix elements €2:
Fog=0 = (99— Q" pey + 9,2 +pyy) =0, (2.41)

giving rise to at most six complex equations for each brane stack a.

The second set of conditions of eq. (2.40) gives rise to a real equation and restricts the
Ké&hler moduli. This can be understood as a D-flatness condition. In the four-dimensional
effective action, the magnetic fluxes give rise to topological couplings for the different
axions of the compactified field theory. These arise from the dimensional reduction of the

Wess Zumino action. In addition to the topological coupling, the N' = 1 supersymmetric
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action yields a Fayet-Iliopoulos (FI) term of the form:

€a 1 /

== FaNFaNFo—FaNINT). 2.42

g2 (Am2a') Jpe ( ) (2.42)
The D-flatness condition in the absence of charged scalars requires then that < D, >=
&, = 0, which is equivalent to the second equation of eq. (2.40). Finally, the last inequality
in eq. (2.40) may also be understood from a four-dimensional viewpoint as the positivity

of the U(1), gauge coupling g2, since its expression in terms of the fluxes and moduli reads

1 1
- = JNINT —F ANF NT). 2.43
92 (4m2a)? /T6( FaNF ) ( )
The above supersymmetry conditions, get modified in the presence of VEVs for scalars
charged under the U(1) gauge groups of the branes. The D-flatness condition, in the low

energy field theory approximation, then reads:

D, = — <Z 65161 Gy + MS&@) =0, (2.44)
¢

where M, = o/~1/2

is the string scale*, and the sum is extended over all scalars ¢ charged
under the a-th U(1), with charge ¢¢ and metric G. Such scalars arise in the compacti-
fication of magnetized D9-branes in type I string theory, for instance from the NS sector
of open strings stretched between the a-th brane and its image a*, or between the stack-a
and another stack-b or its image b*. When one of these scalars acquire a non-vanishing

VEV (|¢[)* = vZ, the calibration condition of eq. (2.40) is modified to:

2
qavC%/ (JANINT =FaNFaNJT) = —]\g/ (Fa NFa NFoy—Fa NJ A J)(2.45)
T6 ¢ JT6

det Wo (JANINT =FoNFaNJ) >0 , Ya=1,...,K. (2.46)

Note that our computation is valid for small values of v, (in string units), since the inclusion
of the charged scalars in the D-term is in principle valid perturbatively.

Actually, the fields appearing in (2.44) are not canonically normalized since the metric
G4 appears explicitly also in their kinetic terms. Thus, the physical VEV is vm/GTd,.
However, to estimate the validity of the perturbative approach, it is more appropriate
to keep v, instead of U¢>\/G>¢- The reason is that the next to leading correction to the

D-term involves a quartic term of the type |¢|?, proportional to a new coefficient K, and

4“When mass scales are absent, string units are implicit throughout the thesis.
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the condition of validity of perturbation theory is ICU;/G¢ << 1. A rough estimate is then
obtained by approximating K ~ G, which gives our condition.

The metric G, of the scalars living on the brane has been computed explicitly for the
case of diagonal fluxes[122]. In this special case, the fluxes are denoted by three angles 6%,

(i =1,2,3).5 Then suppressing index-a, we have:

Py (F(1,1)>zi5i

t 0; = = , 2.47
R J; (2:47)
and
L ()T (62)T(65)
— E(01+62+463) 2.48
G=c . \/m — )T (1 — 6,)0(1 — 65)’ (248)

with vz being the Euler constant®.

The above results will be applied in Section 4.4 to find out the FI parameters and
charged scalar VEVs along three of the twelve brane stacks: U;, A and B. The other nine
stacks, Us, Oq,...,Og, stabilizing all the geometric moduli, will satisfy the calibration
condition £ = 0 in the absence of open string scalar VEVs. Moreover, the RR moduli that
appear in the same chiral multiplets as the geometric Kédhler moduli, become Goldstone
modes which get absorbed by the U(1) gauge bosons [102| corresponding to each of the

D-terms that stabilize the relevant geometric moduli.

2.5 Tadpoles

In this section, we discuss the the consistency conditions that a magnetized D-brane con-
figuration must satisfy. Such restrictions play a crucial role when constructing a consistent
effective field theory. Necessary conditions for a consistent construction involving K stacks
of N, magnetic D9-branes on a compact orientifold compactification follow from the RR
tadpole cancellations. These account for the absence of UV divergences in the one loop
amplitude and ensure, via a generalized Green-Schwarz mechanism, the cancellation of
gauge anomalies in the associated four dimensional field theories.

In toroidal compactifications of type I string theory, the magnetized D9-branes induce
5-brane charges as well, while the 3-brane and 7-brane charges automatically vanish due to

the presence of mirror branes with opposite flux. For general magnetic fluxes, RR tadpole

5See examples in Appendix A for the precise map between Paiyi and (F(1,1))izi-

6The T° metric is diagonal in our case a posteriori, since the moduli are fixed in this way. To leading
order in o (corresponding to keep the matter scalar VEVs small) the matter metric is diagonal but its
elements have a non-trivial (torus) moduli dependence due to the magnetic fluxes, that we calculated
explicitly using the relations given in equation (2.47) and (2.48).

27



Chapter 2. Magnetic Flux in Toroidal Type I Compactification

conditions can be written in terms of the Chern numbers and winding matrix [103, 104]

as:
K K
16 = > NydetW, =) Q" (2.49)
a=1 a=1
K K
0 = ) NodetW,Q"*=>"Qu, Va,8=1,...6 (2.50)
a=1 a=1
where

a, aff __ _afdéyor, a ,a
Q = e p&ypm—'

The Lh.s. of eq. (2.49) arises from the contribution of the O9-plane. On the other hand, in
toroidal compactifications there are no O5-planes and thus the Lh.s. of eq. (2.50) vanishes.

For our choice of windings (2.18), I/VZZ = 1, the D9 tadpole contribution from a given
stack-a of branes is simply equal to the number of branes, N,. The D5 tadpole expression
also takes a simple form for the fluxes satisfying the F, ;) = 0 condition (2.40). The fluxes
are then represented by three-dimensional Hermitian matrices (F(“Ll)) which appeared in
eq. (2.25) and the D5 tadpoles Q%Ta are the Cofactors of the ij matrix elements (F1))i-

Fluxes and tadpoles in such a form are given in Appendix A.

2.6 Spectrum

Analyzing the low energy spectrum of a string based model is the first step towards
building a semirealistic D = 4 compactification from a superstring theory. In particular,
in order to build a semirealistic model important issues as chirality, family triplication
and realistic gauge group must be possible to achieve. In this section, we will study the
four dimensional low energy spectrum that we get in a magnetized D-brane constructions
involving K stacks of N, magnetic D9-branes.

As a D9-brane with F # 0 is not invariant under orientifold projection, but maps to the
brane of opposite flux, there is no orientifold projection in its open string spectrum. The
resulting gauge group on a stack of N such branes is therefore U(N) instead of SO(N) or
Sp(N). For the configuration involving K stacks of N, magnetized D9-branes, the gauge
sector of the spectrum follows from the open string states corresponding to strings starting
and ending on the same brane stack. The gauge symmetry group is given by a product of
unitary groups ®,U(N,), upon identification of the associated open strings attached on a
given stack with the ones attached on the mirror (under the orientifold transformation)

stack. In addition to these vector bosons, the massless spectrum contains adjoint scalars
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and fermions forming N’ = 4, D = 4 supermultiplets.
In the matter sector, the massless spectrum is obtained from the following open string
states|75, 89, 93]:

1. Open strings stretched between the a-th and b-th stack give rise to chiral spinors in
the bi fundamental representation (N, N;) of U(N,) x U(N,). Their multiplicity I
is given by [104]:

detW,detW, " 3
= BT / (an(l,l) + QbF(bl,l)) ) (251)
(27T) T6

where F| ) (given in egs. (2.24) and (2.25)) is the pullback of the integrally quan-
tized world-volume flux mzﬁ on the target torus in the complex basis (eq. 2.4), and
qa is the corresponding U(1), charge; in our case ¢, = +1 (—1) for the fundamental
(anti-fundamental representation). The transformation under the gauge group and

their multiplicities are thus determined in terms of the data (N, W, m; ;).

For factorized toroidal compactifications (T%)? (eq. 2.17) with only diagonal fluxes
Paiyi (i = 1,2,3), the multiplicities of chiral fermions, arising from strings starting
from stack a and ending at b or vice verse, take the simple form (using notations of
eqs. (2.15) and (2.20)):

(Nos V) : Iy = [ [ (g — ),

i

(Nay No) + T = [ [Ogal + afoinf) . (2.52)
where 7 is the label of the i-th two-tori 77, and the integers m?, n¢ enter in the

multiplicity expressions through the magnetic field as in eq. (2.19).

In the model that we construct, however, we need stacks with fluxes which contain
both diagonal and oblique flux components, for the purpose of complete Kahler and

complex structure moduli stabilization.

2. Open strings stretched between the a-th brane and its mirror a* give rise to massless
modes associated to I,,+ chiral fermions. These transform either in the antisymmetric
or symmetric representation of U(N,). For factorized toroidal compactifications

(T?)3, the multiplicities of chiral fermions are given by;

. . 1 ~a ~a
Antisymmetric : 3 (H 2mi> (H n; + 1) ,
i j
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: 1 ~a ~a
Symmetric : B <H 27’%‘) <H ng — 1) . (2.53)
i j

In generic configurations, where supersymmetry is broken by the magnetic fluxes, the
scalar partners of the massless chiral spinors in twisted open string sectors (i.e. from non-
trivial brane intersections) are massive (or tachyonic). Moreover, when a chiral index I,
vanishes, the corresponding intersection of stacks a and b is non-chiral. The multiplicity
of the non-chiral spectrum is then determined by extracting the vanishing factor and
calculating the corresponding chiral index in higher dimensions. This analysis is done

explicitly in section 4.2.7, once explicit semi-realistic examples are constructed.

2.7 Constant NS-NS B-field background

In toroidal models with vanishing B-field, the net generation number of chiral fermions is
in general even|94|. Thus, it is necessary to turn on a constant B-field background in order
to obtain a Standard Model like spectrum with three generations. Due to the world-sheet
parity projection O, the NS-NS two-index field B,z is projected out from the physical
spectrum and constrained to take the discrete values 0 or 1/2 (in string units) along a
2-cycle (af3) of T° [91, 92].

For branes at angles, B,3 = 1/2 changes the number of intersection points of the two
branes. For the case of magnetized D9-branes, if B is turned on only along the three
diagonal 2-tori:

Buy = bi — % i=1,23 (2.54)

the effect is accounted for by introducing an effective world-volume magnetic flux quantum,
defined by ﬁzj =mj+ %fz?, while the first Chern numbers along all other 2-cycles remain

unchanged (and integral). Thus, the modification can be summarized by

~a pa ~a 1Aa ~a\ — (A9 ~a 1
(mj,ng) for by =0 — (M + §nj,nj) = (my,nj), for b; = 3 (2.55)
along the particular 2-cycles where the NS-NS B-field is turned on. This transformation
also takes into account the changes in the fermion degeneracies given in eqs. (2.52) and
(2.53) (as well as in (2.59), (2.60) below), due to the presence of a non-zero B:

(Naaﬁb) : Iab - H(ﬁlgﬂf - ’fl?’ﬁ”b?),

i
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(Nas No) : Lape = [ [Omafaf + afrm) (2.56)
. . A ]- X a AQ
Antisymmetric : [/, = 5 H 21 17 +1], (2.57)
j

Symmetric : 2. = % (H 27%1?) (H ng — 1) . (2.58)
J

In addition, similar modifications take place in the tadpole cancellation conditions, as well.
Note that for non trivial B, if n¢ is odd m¢ is half-integer, while if 22 is even ¢ must be
integer.

When restricting to the trivial windings of eq. (2.18) that we use in constructing explicit

semirealistic examples, n¢ = 1, the degeneracy formula (2.51) simplifies to:

(Na,Nb) . _[ab - det (F(aLl) - F(bLl)) 5 (259)

(Nuy Ny) : Loy = dlet (ﬁgﬁl) n ﬁ(z71)> , (2.60)
where F = F + B and we have assumed the canonical volume normalization (2.1) on T°.
Similarly, the multiplicity of chiral antisymmetric representations is given by:

Antisymmetric : [} = H (277:19> , (2.61)

[
%

while there are no states in symmetric representations. Finally, the tadpole cancellation
conditions (2.49) and (2.50) become:

K K
D Ne=16 ; Y N,Co(Ffip)j=0 Vij=1...3. (2.62)
a=1

a=1
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Fermion Wavefunctions in Magnetized
branes:

Theta i1dentities and Yukawa couplings

3.1 Introduction

One of the most outstanding puzzles of the Standard Model (SM) of particle physics is the
structure of the Yukawa couplings between the Higgs field and the SM fermions. A correct
description of the observed masses and mixing of quarks and leptons require very different
values for the Yukawa coupling constants for the different generations. In the context
of semirealistic model building from string theory, one should look for the possibility of
computing Yukawa couplings in terms of the extra-dimensional geography. Starting from
a (D+4)-dimensional field theory and compactifying D dimensions one may get massless
modes with factorized wavefunctions x(z) x ¥ (y), with z, y denoting Minkowski and ex-
tra dimensions respectively. Gauge boson components A? in extra dimensions give rise to
scalars at low energies and Yukawa couplings are thus expected to appear upon compact-
ification from the higher dimensional gauge vertex interaction A WI'y,¥. The Yukawa
coupling constants are then computed from overlap integrals over the extra dimensions.
The aim of this chapter is to address the issue of computating Yukawa couplings, in the
context of magnetized D-brane models. We consider, as our starting point, ten dimensional
super-Yang-Mills (SYM) theory as the best motivated extra dimensional field theory, since
it appears in the low-energy limit of Type I, Type IIB and heterotic string theories. We
compactify D=10 N = 1 SYM on a 6-torus 7° and, in order to obtain chiral fermions,
we add constant magnetic flux through the torus. We solve Dirac and Laplace equations

to find out the explicit form of wavefunctions in extra dimensions. The Yukawa couplings
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are obtained by performing the overlap integrals of these wavefunctions.

Close form expressions for Yukawa couplings have been written down for string con-
structions involving branes at angles [81, 109] or those with magnetized branes [4, 6, 89,
90, 93, 96, 102, 103, 104, 107, 123, 124, 125, 126, 127]. In the ITA picture, the inter-
action is described by the worldsheet instanton contributions from the sum of areas of
various triangles that are formed by three D6 branes intersecting at three vertices, form-
ing a triangle. This is due to the fact that the intersection of branes relevant for Yukawa
interactions are those which are point-like giving chiral multiplets. Line or surface like
intersections, on the other hand, would give rise to interactions of non-chiral matter. In
these discussions, the orientation of the branes themselves are parameterized by three
angles in the three orthogonal 2-planes, inside 7°. These results have been further gen-
eralized to include FEuclidean D2 brane instanton contributions to the Yukawa couplings
[110, 111, 112, 113, 114, 115, 116, 117, 118], generating up quark and right handed neutrino
masses through a Higgs mechanism, in a particular class of models. A limitation on the
exercise performed in these papers comes from the factorized structure of the tori, which
arises from the orientations of the brane wrappings that are classified by angles in three
different. 72 planes, rather than their general orientations in the internal six dimensional
space parameterized for instance by the SU(3) angles in supersymmetric situations.

Similar results for perturbative Yukawa couplings have also been obtained in the mag-
netized brane picture, based on their gauge theoretic representation [6]. In this case, the
interactions are given by the overlap integral of three wavefunctions (contributing to the
interaction) along internal directions. The wavefunctions correspond, in the ordinary field
theory context, to those belonging to two fermions and a scalar, and are given by Jacobi
theta functions, when fluxes are turned on along three diagonal 2-tori. The relationship
between the Yukawa interactions in the magnetized brane constructions and those involv-
ing D6 branes, have also been established using T-duality rules. However, these exercises
have once again been of limited scope due to the fact that explicit expressions are written
down only for magnetized branes with fluxes that are diagonal along three T2’s.

Technically, the wavefunctions of chiral fields participating in Yukawa interactions are
defined in terms of Jacobi theta functions, with a modular parameter identified as a
product of the complex structure of the 72, with the flux that is turned on along it. The
Yukawa interactions are therefore computed for the case when the six dimensional internal

space is of a factorized form:
T? xT? x T? € T (3.1)

As advocated in [7, 102, 103, 104], one, in general, needs to include both ‘diagonal” and

‘oblique’ fluxes for applications to model building with moduli stabilization. Therefore it
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is imperative that we generalize previous results further and obtain interactions involving
branes with oblique fluxes. As stated, in the language of D6 branes such generalizations
would amount to intersections of branes with orientations given by SU(3) rotation angles,
resulting to N' = 1 supersymmetry in D = 4 with chiral matter. In view of the importance
of such fluxes in obtaining realistic particle physics models with stabilized moduli, and to
describe the interactions among the chiral fields, we shall study the explicit construction
of fermion (and scalar) wavefunctions on compact toroidal spaces with arbitrary constant
fluxes.

Scattered results on fermion wavefunctions in presence of constant gauge fluxes, on tori
of arbitrary dimensions, exist already in the literature |6, 128|. However, they are of limited
use for our purpose. First, any wavefunction obtained through a diagonalization process
of the gauge fluxes [128], is not in general suitable for obtaining an overlap integral of
wavefunctions. This is because the flux matrices need not commute along different stacks
of branes that participate in the interaction through the chiral multiplets, arising from the
strings that join these branes and therefore they are not simultaneously diagonalizable.

In [6], a set of wavefunctions was given for constant gauge fluxes. However, once again,
explicit results are valid only for those fluxes which satisfy a set of ‘Riemann conditions’,
including a positivity criterion on the flux matrices. As the analysis in this chapter will
clarify, the positivity restrictions on the fluxes is due to the fact that the given wavefunction
in [6] corresponds to a specific component of the 2" dimensional Dirac spinor for a 2n-
dimensional torus 72". We will show that this restriction is relaxed, if one considers
wavefunctions of various chiralities, such that all possible flux matrices are allowed, though
in our case we restrict to only those fluxes that are consistent with the requirements of
space-time supersymmetry .

In fact, we give explicit solutions for the wavefunctions for arbitrary fluxes, that are well
defined globally on the toroidal space. We also give explicit mappings among the wave-
functions of different chiralities, satisfying different consistency criterion. These mappings
are shown to relate wavefunctions corresponding to different fluxes and complex structures
of the tori. We further reconfirm that our wavefunctions, as well as mappings are indeed
correct, by showing that equations of motion also map into each other for the fermion
wavefunctions just described, corresponding to different internal chiralities.

Apart from the lack of enough knowledge about the fermion wavefunctions, the limi-
tations on available information about the Yukawa couplings for general gauge fluxes also
arose from the technicalities in dealing with general Riemann theta functions that are
used for defining the wavefunctions on toroidal spaces. Internal wavefunctions of chiral

fermions participating in the interaction are given by a general Riemann theta function
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whose modular parameter argument is determined in terms of the complex structure of 7
as well as the ‘oblique’ fluxes that we turn on. Hence, the limitations on available results
for Yukawa interactions in the literature, arise due to the intricacies involved in evaluat-
ing the overlap integrals of the trilinear product of general Riemann theta functions over
the six dimensional internal space. In particular, even for positive chirality wavefunctions
along the internal T° given in [6], one finds that theta identities [119] need to be further
generalized, in order to compute the Yukawa interactions with oblique fluxes. The task
goes beyond the identity given in [119], since one needs to evaluate the overlap integral of
three wavefunctions, all having different modular parameter matrices as arguments, due
to the presence of different fluxes along the three brane stacks involved in generating the
Yukawa coupling.

In this chapter, first, we generalize the identities used in [6] (available from mathemat-
ical literature [119]) for the known positive chirality wavefunctions to those with general
Riemann theta functions representing the fermion wavefunctions. This gives an explicit
answer for the Yukawa interaction in a close form and generalizes the results of [6, 81]. In
particular, we generalize the result further for the positive chirality wavefunction, when
general (hermitian) fluxes with all nine parameters rather than the six components, con-
sidered before, are turned on.

Furthermore, as already stated earlier, we give explicit constructions of the other 7°
spinor wavefunctions, as well. In these cases too, we obtain the selection rules among
chiral multiplets giving nonzero Yukawa couplings. Now, however, the final answer is left
as a real finite integration of a theta function, over three toroidal coordinate variables.
This integration can be evaluated numerically for any given example.

The chapter is organized as follows. In the next section we briefly discuss the origin
of Yukawa couplings in extra dimensional theories. We motivate the study of magnetized
compactification in order to achieve D = 4 chiral models from extra dimensions. We de-
scribe the general strategy that we follow to compute three-point functions in such models
[6]. In Section 3.3, we give the chiral fermion wavefunctions in the presence of constant
fluxes. In Section 3.4, we review the known results on the Jacobi theta identity given in
[119] and present a proof of its validity. We also give an expression for the Yukawa inter-
action for factorized tori and ‘diagonal’ fluxes using the theta identity. In Section 3.5, we
construct a similar identity, but now for the general Riemann theta function. We then use
this new mathematical relation for writing down the expression for the Yukawa interaction
when oblique fluxes are present and satisfy the ‘Riemann conditions’ of [6]. Results are
further generalized to include the most general flux matrices consistent with supersym-

metry and ‘Riemann condition’ requirements. In order to relax the later, in Section 3.6,
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we present the generalizations to include the wavefunctions of the other internal chirali-
ties, in order to accommodate general fluxes consistent with supersymmetry restrictions.

Conclusions are presented in Section 3.7.

3.2 Ten Dimensional A/ =1 Super Yang-Mills compact-

ification with magnetic fluxes

Let us consider NV = 1 supersymmetric Yang-Mills theory in ten dimensions. Its La-
grangian density is given by

1 MN i YT M
where M, N = 0,...,9. Here, A denotes gaugino field, g is the Yang-Mills coupling

constant in D = 10, and I'M is the gamma matrix for ten dimensions. The gauge group

field strength F);n and covariant derivative D), are given by

FMN - 8MAN—6NAM—Z[AM,AN] (33)
Dyh = Oyl —i[Ay, (3.4)

where A, is the ten-dimensional vector field.

In order to obtain a D = 4 theory at low energies, we should consider the above
theory compactified on a six-dimensional compact manifold Mg, so that we recover four-
dimensional physics at energies below the compactification scale M.. Here we consider the
torus 7 as the extra dimensional compact space. The ten-dimensional fields A,; and A

are decomposed as

AXH,a™) an ) @ tn(2™) (3.5)

where X#, = 0,...,3 and 2™, m = 4,...,9 stand for the non-compact and internal
dimensions, respectively. The internal wavefunctions 1), ¢,y can be chosen to be eigen-

states of the corresponding internal wave operator

D, = 0 (3.7)
Aoy = M2M¢nM (3.8)
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By introducing non-trivial expectation values for the gauge field A,;, one can ob-
tain chiral fermions in four dimension. Indeed, since we are only interested in preserving
Poincaré invariance in the four non-compact dimensions, we are entitled to consider non-
vanishing v.e.v.’s (A,,(x)), m = 4,...,9. A non-trivial gauge field modifies the Dirac
operator and hence the computation of the Dirac index, and may introduce a chiral asym-
metry that allows for a chiral massless spectrum. We hence find that compactifications
with non-trivial gauge fields (A,,(x)), or equivalently, magnetized Mg compactifications
with (Fj,.,) # 0, provide a natural way of achieving D = 4 chiral theories with reduced
gauge group.

In addition, the introduction of a magnetic field in the compactification may not only
lead to chiral matter but also to replication of chiral fermions, since the Dirac equation
for the internal fermionic wavefunction )59 = 0 may yield several independent degen-
erate solutions, labeled by ;(z). In order to get canonical kinetic terms, these internal

wavefunctions must satisfy

d®y () Yr(z) = o (3.9)
Me

the same condition applying to bosonic wavefunctions.

Finally, given the internal wavefunctions v;, ¢, corresponding to the D = 4 chiral
fermions and lightest scalars, it is possible to compute the Yukawa couplings between
them, as an overlap between three wavefunctions. Indeed, the fermionic part of the D = 10
SYM action (3.2) contains a term of the form A - X -\, which upon dimensional reduction

yields the Yukawa coupling

Yije = / T @ fabe (3.10)
M

where f,. are the structure constants of the higher dimensional gauge group.

3.3 Toroidal Wavefunctions

We first present the construction of chiral fermion wavefunctions on tori and give their
representation in terms of theta functions. For definiteness we first discuss the case of
4-tori, though T° chiral multiplet structure can be analyzed in a similar manner. To be
explicit, for the moment we restrict ourselves to the canonical complex structure: 2 = ily
and Q = il3 for T* and T° respectively, where I; represents a d-dimensional identity
matrix. The general complex structure is restored while writing the wavefunctions as well

as interaction vertices.
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To obtain the Dirac wavefunctions in 7%, we start by writing four Dirac Gamma

matrices (in a complex basis) :

' =% x0° = e I'2=]x0° = , (3.11)
0 0

where the information about the complex structure in the above expression is hidden in

the fact that we have used the definitions: z; = x; 4+ 1y; in writing these Dirac matrices.

Similarly,
. _ _ 00
' =¢° x0° = , 2=[Ix0"= . (3.12)
0 O
-2 0
They satisfy the anti-commutation relations:
(3.13)

{r= 17} =0, {T*,I¥} =0, {I'* 7} =49

with 4,7 = 1,2. In the above basis I'"® takes the form:

- (3.14)

= (3.15)

In such a decomposition of ¥, Dirac equations for fermions in the adjoint representation

are of the form:

OTL + 002 + [An, U]+ [AL,, 9] = 0,
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VL — 002 +[A,, U] — [A,,, V2]
02 4+ 00t 4 [A,, W] + [A,,, U]
52\112, - 51\1117 + [Aiw \I]%] - [A?fm \1117]

0
0,
0

(3.16)

In a generic model, chiral fermions arise either from the string starting at a brane
stack-a and ending at another brane stack-b (or its image b*) or from strings starting
at a brane stack a and ending at its image a*. We already showed the correspondence
between a stack of magnetized branes and flux quanta in supersymmetric gauge theory,
in eq. (2.34). The correspondence is easily generalized when several stacks of branes are
present. Explicitly, in a construction with P number of stacks of branes, with number of
branes being n; for the i’th stack, the flux (for a given target space component (ij) ) takes

a form:

Fy; = . (3.17)

Frel,

with I, being the n;dimensional identity matrix and we have hidden the 4j indices in
the RHS of eq. (3.17) in constants F" that are all integrally quantized, as given earlier
explicitly in eqs. (2.32) and (2.33). The corresponding gauge potentials will also then

have a block diagonal structure:

All,
A2,
A = i . (3.18)
AP,

Now, in order to understand the wavefunctions associated with chiral fermion bifun-
damentals, in such a representation of the brane stacks, we consider the flux matrix F};
in eq. (3.17) and gauge potential in eq. (3.18) with only two blocks (P = 2). The chiral

fermion bilinears between stack-a and stack-b are then represented by:

Cn Xab
U= ™ , 3.19
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with C,,, C,, being constant matrices of dimensions n, and n;, respectively 7. We can
easily derive the equation satisfied by the various Dirac components, as given in eq. (3.15),

for yu such that W, satisfies the Dirac equation (3.16). We obtain:

—

2

DXy + O+ (AN =A%) X + (AT =A%) =0,

5gxi — 81X+ + (A' — A4?) —2xi (A — Az)zlxi =0,

Ox> + Ooxt + (AN = A7), 2 + (A' = A%).,xE =0,

Oox® — Xt + (A — AH) 2 — (A' — AP\t =0, (3.20)
with subscript a,b being dropped from x,, to make the expressions simpler. We will,

however, restore the indices at a later stage while evaluating the overlap of three such
wave functions from different intersections. In particular, for the chiral components, x}

equations reduce to:

(AT =A%)
(A" =A%)

?19@ +
daxy + (3.21)

The generalization of eq. (3.21) to the T case is straightforward and can be written

as:
Dix¥ = 0ix + (A = A%)ox$ =0, (i=1,2,3) (3.22)

Eq. (3.22) matches with the results obtained in [6] for € = I3, with the identification:
(Al — A?), = g ([N.(i + 5)].(Imﬂ)*1> | (3.23)

with 5 being the complex constants representing the Wilson lines and N is the difference
of fluxes between the two stacks a and b, having constant fluxes F! and F?, giving the
fermion bilinears in the representation (nq,ns).

Such a solution for eq. (3.22) and (3.23) is given in [6] for arbitrary complex structure

Q2 by the basis elements:

-

w]’,N( ) N - e{m[NZ](N ImQ) " Im[N.Z]} | 19[ ] (N NQ) (3_24)
0

"The constant matrices correspond to gaugino wavefunction. The A" = 1 gauginos are massless as long
as supersymmetry remains unbroken. The other gauginos coming from the A = 4, that acquire high scale
masses, and decouples from the massless spectrum, which we are interested in.
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with general definition of Riemann theta function:

(7)) = Z 67r(n7¢+6).ﬂ.(7ﬁ+6)627rz‘(7ﬁ+6).(17+5). (3.25)

mezZmn

Moreover, the matrix N should satisfy the following conditions in order to have well
defined bifundamental wavefunctions. These are the so-called Riemann conditions [6] and

are written as:

(N.ImQ)" = N.ImSQ,
N.ImQ > 0. (3.26)

The first condition in eq. (3.26) is the integrality of the elements of N, that we discuss
later on, in the absence of any non-abelian Wilson lines [6], following from the Dirac
quantization of fluxes. To understand the last condition of eq. (3.26), one rewrites the

(1,1) form F,i;, for the case when p,, = p,, = 0. Indeed using eq. (2.31), one obtains:

Fu ;= —ipzy(ﬂ — Q)fl, (327)

which matches with the expression for H in eq. (4.73) of [6] upon the identification
NT = pyy and H = sNT.ImQ~'. Also using (2.31), it follows that:

(NOQ)T = (NQ). (3.28)

The positivity requirement on H then arises from the condition that the solutions of the
Dirac equation, corresponding to chiral wavefuntions, be normalizable.

Again, N satisfies the constraints given in eqs. (3.26) as well as:
jN ez (3.29)

implying that 7.N is an n-dimensional vector with integer entries. Also, the normalization

factor NV in eq. (3.24) is given by:

3, (3.30)

IS

N = (2" det N|. det(ImQ))* (Vol(T*"))
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Then wavefunctions satisfy the orthonormality relations:

)

[N = (3.31)

These results are useful in determining the interaction terms in Section 3.5. However,
to have well-defined wavefunctions, N’s must satisfy the Riemann conditions given in eq.
(3.26).

The wavefunctions of the chiral fermion bifundamentals, with both abelian and non-
abelian Wilson lines, involved in Yukawa computations, are given in [6| for the case of
the factorized tori, eq. (3.1), and diagonal fluxes. For oblique fluxes, we postpone the
discussion of non-abelian Wilson lines and rational fluxes to the last section of the chapter
and for the moment we consider the case of integral fluxes only. This restriction, never-
theless, allows for a rich structure of phenomenological value, since semi-realistic models
with three generations of chiral fermions and stabilized moduli can be built even in the
context of such integral fluxes, by turning on NS-NS antisymmetric tensor background.
For example, a three generation SU(5) GUT with stabilized moduli given in [7] was con-
structed with all winding numbers, n = 1, for different stacks of branes. Also, the presence
of a half-integral NS-NS antisymmetric tensor does not modify any of our results, since all
the relevant chiral fermion wavefunctions depend on the difference of fluxes along pairs of

brane stacks which is always integral.

3.4 Yukawa computation on factorized tori

3.4.1 Wavefunction

A detail discussion of the chiral fermion wavefunctions in the presence of constant gauge
fluxes is presented in the previous section for general tori and fluxes. In the case of
factorized tori, eq. (3.1), the six dimensional chiral /anti-chiral wavefunctions are written
as a product of wavefunctions on 72. To show this explicitly, we present the case of T
as an example, with 7 case working out in a similar fashion. More precisely, considering

that on two T2’s, fermion wavefunctions

p = 3 B = iy (3.32)
o) w2 ) |
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with their internal U(n;) x U(ns) structure being represented in a manner as in eq. (3.19),

satisfy the equations:

B! + (A — A% 0 =0,
oV 4 (A — A7), W =,
0+ (A — A%) 0P =0,
0@ 4 (A — A%)_ @ =0. (3.33)

T* fermion wavefunctions are then constructed through a direct product of ' and 9?2 (in

the notations of Section 3.3):

o (1) (2)
\IIQ_ 1/1 1 2
w?

In particular,
Ul =yl eyl (3.35)

satisfies precisely the equations (3.21) for chiral fermions on T*. We can further extend
these results to show that 7¢ chiral wavefunctions can also be written as a product of the
chiral wavefunctions on three 7%’s in the decomposition (3.1).

Yukawa interaction on 7% is then also given by an expression which is a direct product
of the interaction terms for the three T2’s. Wavefunctions for the chiral fermions on a 72

(with coordinates z, y) are expressed in terms of the basis wavefunctions 7V [6]:

wj,N<7_7 Z) :N einzImz/ImT . 19 ](\)7 ] (]\727 NT), ] = 07. . .,N —1 , (336)

with N denoting the difference of the U(n,) and U(n,) magnetic gauge fluxes, turned on
along the Cartan generators, representing stacks of n, and n;, branes respectively and gives

the degeneracy of the chiral fermions:
N = Mg — Mp = Lgp, (337)

with m, and m; being the 1st Chern number of fluxes along stacks a and b, with unit
windings.

Using such a basis, the chiral and anti-chiral (left and right handed fermions) basis
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wavefunctions:

v-()
v )’

are given by:

=N (1,24 (), (W) =0 N 2+ 0),

W= N(F 2+ ), W) =y N (1, 2+ (),

and satisfy the equations:

Dyl =0, D'(¢%)" =0,
DY =0, D) =0

Expanding as in 3.33 and by substituting the corresponding gauge potentials,

1 Mg oy _ T
Al _ - a /— = AQ _ - b,
( )Zl QImT (Z + g)? ( )Zl 2[m7_

one gets,

(3.38)

(3.39)

(3.40)

with ¢ representing the Wilson lines. In the following we set the Wilson lines ¢ = 0.

Furthermore, expressions of the chiral and anti-chiral solutions, as given in eqs. (3.39)

and (3.36), are well defined provided N > 0 for the wavefunctions ¢, and N < 0 for the

wavefunctions ¢/ . In these cases, for wi and ¢ to be properly normalized:

|, dztz vty = 6

(3.41)
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an additional factor )
2Im7|N|\*
g (2o "
needs to be introduced, with A being the area of the T2
In fact, the basis functions (3.36) are also eigenfunctions of the Laplacian. We elaborate
on this point more in Section 3.6.4 and now proceed to make use of these fermion and
boson basis functions to determine the Yukawa interaction in the case of factorized tori

and ‘diagonal’ fluxes.

3.4.2 Interaction for factorized tori

We now summarize the basic results of [6] regarding the computations of Yukawa interac-
tions. As discussed in Section 3.2, such four dimensional interaction terms were obtained
through a dimensional reduction of the D = 10, N = 1 super-Yang-Mills theory to four

dimensions in the presence of constant magnetic fluxes. The Yukawa coupling is given by
Vi= [ 007065 (3.43)
M

where M is the internal space on which the gauge theory has been compactified and
and ¢ are the internal zero mode fluctuations of the gaugino and Yang-Mills fields with
fave being the structure constants of the higher dimensional gauge group. For the torus
compactification that we are discussing, the internal wavefunctions are factorized into
those depending on the coordinates of three 72’s. In turn, these involve the evaluation of

terms of the type:

/T2 dzdzZTr{v,.[¢p_,v,]} and /T2 dzdzTr{¢y_.[¢p4, ¥ ]}, (3.44)

with ¢4 being the wavefunctions of the bosonic fluctuations of the ten dimensional gauge
fields with helicity &1 along the particular 7% direction. Similarly 1)+ denotes the spinor
fluctuations with helicities +5. Therefore, In the factorized case of eq. (3.1), the full
interaction term is computed as a product of three such integrals. To evaluate these
integrals, one uses the wavefunctions (3.32) and basis functions as given in eq. (3.36).

In the language of string construction with magnetized branes, N = I,, corresponds
to the intersection number for the string starting at a stack a and ending on another one

b. The Yukawa interaction then reads:

Yijk = G0abe / dzdz ptar (1, 2) apd e (7, 2). (W (7, 2))* (3.45)
T2
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with I, < 0, corresponding to the fact that when the intersection numbers [, and I,
are positive, then [,. has to be negative, since I, + I, + I, = 0. A similar expression
exists for I, > 0 as well. To evaluate this integral, one uses an identity, satisfied by the
theta functions appearing in the definition of the basis functions (3.36). The aim of this
relation is to establish a connection between the wavefunctions with intersection numbers
N; and N, for bifundamental states in brane intersections ab and ca with the one in the
intersection bc with N3 = N; + N,. However, in view of the further generalization to the
oblique flux case, we establish this identity explicitly in the next subsection and generalize
it further in Section 3.5.

3.4.3 Jacobi theta function identities

We now explicitly prove the following theta function identity[119] used in [6] for computing

the Yukawa couplings:

r 5 r+s+Nim
oM ] (21, 7Ny) -0 [ N2 ] (29, TN2) = Z Y [ NiAN2 (2 + 29, 7(Ny + No))
0 0 mGZN1+N2
Nor—Ni1s+Ni1Nam
x99 NINQ(](\)[1+N2) (ZlNQ — ZQNl, TNlNQ(Nl + NQ)), (346)
where 1 is the Jacobi theta-function:
9 [ Z ] (1/, 7_) _ Zewi(aJrl)QT e2mi(at+l)(v+b) (3_47)
l€Z

To proceed with the proof of the above identity, we write its LHS explicitly as:

o F Jiewrmr o ey = 53 eron gt
0 0 W€Z 12€Z

eﬂ—i(Ni2+l2)2TN2 62“(1\%“2)&. (3'48)

Similarly the RHS of the identity (3.46 ) can be written as:

> v

mEZN1+N2

N1+Na

r+s+Nim
(21 + 22, T(N71 + N3))

0

Nor—Nis+Ni1Nam
x99 N1Na(N1+N2) (21N2 — ZQNl,TNlNQ(Nl +N2))
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. N . N
_ Z Z Z em(*}i@mﬂg)%wﬁm) em(*}jiNIQWHB)(zlJFZQ)
mGZN1+N2 I3€Z 47

. Nor—N1s+NjNom 2 .. Nor—N1s+NiNom
Xeﬂ'l(W+l4) TNlNQ(N1+N2) 62W2(W+l4)(Z1N27Z2N1). (349)

Now, to match the 21, z5 terms in both sides of eq. (3.46), we first note the identity:

+ Nor — N
(i) (2’1 +22)+< 2T 1S ) (21N2 o 22N1) _ (L?«’l + iZQ) ,

N, + Ny NiNo(N; + Ns) NN,
(3.50)
and find coefficients pi, p2, ¢1, ¢2 such that,
(Prily + pola) (21 + 22) + (1ly + q2l2) (21 N2 — 22N1) = (l121 + l922) (3.51)
Eq. (3.51) leads to the following values for pq, p2, ¢1, ¢ :
Ny Ny
. A P NN
= ———. 3.52
q N, + N, q2 N, + N, ( )

Then the two terms, containing z;, z9, in the RHS of eq. (3.48) can be rewritten as:

627TZ'(NL1+11)21 627Ti(Ni2+l2)22 _ 627‘-@'(1\7;1?\72+NT£]{72+N]¥?FZI%2)(ZI+Z2) 627Ti(N111\\]722T(17\71vij\72)+1\l71;l1\272)(ZIN27Z2N1)_
(3.53)
Similarly, coefficients p, q satisfying identity:
r+s Nlll NQZQ :|2+ |: NQT—le ll —lg :|2 o (3 54)
b Ni+Ny, Ni+Ny, N+ N, 1 NiNy(Ny + Ny) Ny + N, B .
2 2
r s
—+L| N — +1ly| N
{NlJr 1} 1+[N2+ 2} 2,
are given as:
p:N1+N2, q:NlNQ(N1+N2) (355)

Using eqs. (3.50), (3.51), (3.53) and (3.55), the RHS of eq. (3.48) (appearing in the LHS
of eq. (3.46) ) can be re-written :

§ : § :eﬂ’i(NL1+ll)27-N1 e?ﬂi(NLl-Hl)Zl . eﬂi(Ni2+lg)27-N2 6271'1'(1\%-{-12)22 o

LhWEZIeZ
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(_rts N1l Naly 2 i(_r+s N1l Nalo
§ § eﬂZ(N1+N2+N1+N2+N1+N2) T(N1+N2) 627”(N1+N2+N1+N2+N1+N2)(Z1+z2).

W€Z 27

. Nor—Nqs =P
™
e (N1N2(N1+N2)+N1+N2

)27'N1N2(N1+N2) eZWi(NI%éL_\,iV_’l_?\,Q)+J\l,};é\2,2)(z1N2—z2N1). (356)
Proving the identity, eq. (3.46), now amounts to showing that the RHS of eq. (3.49)
matches precisely with that of eq. (3.56) with m in eq. (3.49) taking value as m =

0,1,....... , (N1 4+ Ny — 1). We note:

1. When [; =I5 in eq. (3.56), the terms in the RHS are identical to those in the RHS
of eq. (3.49), with m = 0,1, = 0, if we identify [y with [3.
When l; = Iy + 1, the terms in eq. (3.56) exactly match with those in eq. (3.49)
obtained for the values m = 1,1, = 0 with the identification of I, with [3.
This goes on up to l; = ly + (N7 + Ny — 1) which corresponds to the case for
ls5(=13),m=(Ny+ Ny —1) and I, = 0.

2. The terms obtained in eq. (3.56) for [; = ls+ (Ny+ Ny) corresponds tom = 0,1, = 1
and Iy + N; identified with I3 in eq. (3.49).
When [; = Iy + (N7 + Ny) + 1 the terms correspond to the case m = 1,14 = 1 and
lo + Ny identified with /3 in eq. (3.49).
This goes on till [; = Iy + (N7 + Ny) + (N1 + Ny — 1) when they correspond to
m = (N7 + Ny — 1)1y = 1 and [y + N; identified with I3 in eq. (3.49).

3. Similarly the terms for [; = lo+2(N; + N3) correspond to the terms for m = 0,1y = 2
and I3 = (I +2N;7) . And so on....

We have therefore shown a one-to-one correspondence between the terms in the RHS
of eqs. (3.49) and (3.56). The identity eq. (3.46 ) has thus been proved explicitly.

3.4.4 Application to Yukawa computation for factorized tori

We now make use of the above Jacobi theta identity as well as of the explicit forms of the
fermion and scalar wavefunctions, defined in terms of the basis functions in eq. (3.36) to
write the expression for the Yukawa interaction term. More precisely, in order to evaluate
the Yukawa coupling given in eq. (3.45), one uses the theta identity of eq. (3.46) and the

basis function in eq. (3.36) and proceeds by writing down:

2Imt

A2
i g

X1 [ ]Bl ] <N127N17—)'19[ ]\62 ] (N227N2T)7 i:Ow'le_lv j:077N2_1

i, 2)0(,) =

) 2 (Ipl.q) 3 im(N1+N2)2Im 2/Im 7
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(3.57)

where we have also made use of the normalization factor, N given in eq. (3.42), and

identified for a T2 compactification:

Nl = 1gb, N2 - Icaa (358)
with

Iy = mg —my, etc. (3.59)
giving

N3 = (N1 + Ny) = 1. (3.60)

Now, using the theta identity (3.46), eq. (3.57) can be rewritten in the form:

1
- , 21 (Tl
wl,[ab(,r7 Z)_W,Ica(T7 z) _ ( AWZLT) ( b ) Z W+J+Iabm ch(T z)><
meZy b
Icaiflab]“r[ablcam
X1 [ I‘“’I(C)“Id’ ] (0, TIabIcach)- (361)

The Yukawa interaction (3.45), is then evaluated using the orthogonality property of the

wavefunctions given in eq. (3.41) and reads ®

1 . .
QImT a1 o Ica Ical_lab]+lablcam
}/zyk = Oabcd (?) ( b ) Z 5k Ja+i+Ilgpm * v [ Iab[(c]ald) (07 T[ab[ca[cb).

m€Z1

(3.62)
After imposing the Kronecker delta constraint, we obtain:

1 1 .
20mr\ ¥ (Iula\* [ = (5 + £) /o
}/ijk = Oabcy ( mT) ( ’ ) Y [ fea OIbc / ’ (OaT]abIca]cb)' (363)

A2 Iy

The final answer can be expressed as :

2Imr\ 1

[a Ica i 5@
( b ) 91 (0, 7 LapToeLea), (3.64)
ch 0

8In eq. (3.62), the computed Yukawa coupling is evaluated from the expression of Yukawa interaction
given in eq. (3.45) which is a triple overlap of basis wavefunctions given in eq. (3.36). These basis
functions not only represent zero modes of the Dirac operator but also eigenfunctions of the Laplacian.
This is explicitly shown in Ref. [6] for the positive chirality wavefunction and in Section (3.6.4) for the
negative chirality wavefunction.
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with » . "
[ J

dijk = i + TR (3.65)
The result can be easily extended to the case of factorized T° (3.1) and the interaction is
then written in terms of the products of theta functions of the type appearing in eq. (3.64).
We refer the reader to [6] for the details and now go on to the generalization when fluxes
of both oblique and diagonal forms are present. Such magnetic fluxes do not respect the
factorization and hence involve the wavefunctions written in terms of the general Riemann

theta functions.

3.5 General tori and ‘oblique’ fluxes

Let us now consider the more general case where the 2n-dimensional torus is not neces-
sarily factorizable. A generic flat 2n-dimensional torus, 7** ~ C"/A, inherits a complex
structure from the covering space C". Its geometry can hence be described in terms of a

Kaéhler metric and complex structure as

ds* = hypdztdz"

(3.66)
dzt = dxt + Qkdy”

where z# y* € (0,1), p = 1,...,n, parametrize the 2n vectors of the lattice A. The
natural generalization of the Jacobi theta function (3.47) to this higher-dimensional tori

is known as Riemann ¢-functions, as defined in eq. (3.25):

(7]Q) = Z 6m(f+a).9.(f+a)62m<f+a).(ﬁ+5)' (3.67)

lezn

As already elaborated upon earlier, in our case, although the geometry itself may be
such that T is factorizable as in eq. (3.1), the fluxes turned on, may violate in general the
factorizable structure of the tori. Indeed, the general wavefunctions for bifundamentals
given in terms of basis functions (3.24):

—

WYN(ZQ) = N.e{”[N-E]-(N-ImQ)”’”[N'E]}-"z?[‘é ] (N.ZIN.Q),

—

- N eiﬂ[N.g].(ImQ)*l-ImZ. 9 [ é ] (N .7 |N . Q) ’ (3.68)

with IN’s being the intersection matrices, depend on such fluxes explicitly in terms of its
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modular parameter argument: IN(); this breaks in general the factorized structure, even
if the complex structure Q is diagonal. The explicit form of the normalization factor N
appearing in eq. (3.68) is given eq. (3.30). One needs to obtain an overlap integral
of three basis functions of the type (3.68), in order to generalize the results of Yukawa
computations given in eqs. (3.45), (3.61) - (3.64).

3.5.1 Riemann theta function identity

We now generalize eq. (3.46) to the case of general Riemann theta functions given in eq.

(3.67). Explicitly, we consider the LHS of our identity to be given by an expression:

9 [‘70 ] (£Ny Q) -9 [ jo ] (%/Ns - Q) (3.69)

where €2 is an nxn complex matrix and Ny, Ny are nxn integer-valued symmetric matrices
satisfying the constraints (3.26). These constraints, in turn, follow from the convergence
of theta series expansion, as well as from the holomorphicity of fluxes: for instance, eq.
(2.31) when p,, and p,, components of fluxes are zero, with 2%, ", (i = 1,2, 3) denoting the
coordinates of three T%'s in the decomposition (3.1) and (3.66). Generalization to the case
when p,, and p,, flux components are also present is discussed later on in subsection 3.5.7,
and is relevant for evaluating the Yukawa couplings in models with moduli stabilization,
such as the one of [7].

Initially, we also restrict ourselves to the case when 2 = 71, with I, being a n X
n identity matrix, implying that the geometric structure is factorized as in eq. (3.1).
However, in Section 3.5.6, we generalize the results further to the case when () is an
arbitrary matrix satisfying the F{s ) = 0 supersymmetry condition, as given in egs. (2.26)
and (2.27). Then, using the definition of Riemann J-functions (3.67), the expression in
eq. (3.69) can be expanded as:

o3| o 5] i = 55 st
RNV AL

emiltiat+a) Nar-(atle) 2miliz+) 5 (3 70)

Now, by defining 2n-dimensional vectors:

TR '_’"—l_» R 2
GeD=(""2 ), 2= 7, (3.71)
Jo+ 1o 29
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and the 2n x 2n dimensional matrix:

NlT 0
o (M 0) -

eq. (3.70) can be re-written as:

9 [ jol ] (71|Ny7) -9 [ joz ] (BINg7) = Y miUHD QD) 2riG+D T2 (3.73)

lez2n

Our aim in combining the terms into 2n dimensional vectors and matrices is to gen-
eralize the procedure outlined in [119] to our situation, namely when two theta functions
appearing in the LHS of the identity (that we propose below) carry independent modular
parameter matrices N17 and Ny7, which generally may not commute. Note that the re-
sults of [119] are insufficient to give such an identity as they involve theta functions whose
modular parameter matrices are proportional to each other and therefore commute. In

order to proceed, we note that using a transformation matrix:

1 1

T — N1 " (3.74)

QINq —QIN g

1 N; laf

T 1
T — ( R ) , (3.75)
and
N —1 Oé_l
T'=(N;y '+ Ny ! ( szl - ) : (3.76)
L _

with o being an arbitrary matrix (to be determined below) and Ny, Ny being real sym-

metric matrices, due to the condition (3.26) (for Q2 = 71,), one obtains:

Q=r.q 1= NN ; (3.77)
0 Oz(Nl_l + Nz_l)TO[T
In the following we also make use of the identities:
(1\1171 + Nzil) = N171(N1 + Nz)Nzil = NZ?I(NI + N2)N171 (3.78)
and
(N171 + Nzil)_1 = N;(N; + N2)_1N2 = N(N;y + NZ)_lNl (3.79)
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in simplifying certain expressions.

The transformation matrix 7" defined above is used to transform the product of theta
functions in the LHS of eq. (3.73), in terms of a finite sum over another product of theta’s,
now with modular parameter matrices: (Nj 4+ Njy)7 and a(N; ' + Ny~ ')7a”. Explicitly,

we can write the terms appearing in the exponents in the RHS of eq. (3.73) as:

G+D"- Q-G+ =G+ D" - (T'1)-Q- (T (1)) - (G+1) (3.80)
G+D7-z2=G+ D) (T'T)-Z (3.81)
Then using:
L 21+ 2
T -7Z= < ANy N, 12 ) ) (3.82)

I Lo T
L A1) (ND P+ NSNS + (o + 1) (N7 4+ NS D INT?
G+ DT = ( (j1+0h)(Ny ™ + N3y 5 + (o + o) (N7 + N3 ) 1 ) (3.83)

(i + 1) = (o + L) (NT '+ Ny ') ta?

and

TG AT = ( NG NG+ N )T+ 1)+ NN+ NG 7 (e + ) ) (3.84)

(@ HT(NT! + NG + 1) = (o + )]

we can re-write eq. (3.70) as,

9| @IV 9 | 2] (B Ner) =
0 0
Z 6’”[{((ﬁ+l;)N1+(J§+l§)N2)(N1+N2)*1}-(N1+N2)T'{(N1+N2)71(Nl(ﬁJrlIHNz(JEH;))}]

I,lzeZn

o 27l +T)N +(3+3)N2) (N1 +N2) ) (71472} o
eﬂ{[((ﬁ*ﬁ)Jr(l;*l;))Nl(N1+N2)71N2071}'[0(N1_1(N1+N2)N2_I)TQT]-[(afl)TNﬂNl+N2)71N1((ﬁ*ﬁ)ﬂl}*l;))}}

s e2mH{[((71=52)+(11~12))N1 (N1+N2) "' Noa =] -[aNy ' zi—aN; 4]} (3.85)

Now, to reexpress the above series expansion in terms of a sum over theta functions

with modular parameter matrices: Ny + N3 and a(N; ' + Ny ')a”, we rearrange the
series in eq. (3.85) in terms of new summation variables lg, lz, m, whose values and ranges

will be assigned later. In the course of going from eq. (3.85) to (3.87) below, however, one
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needs to make sure that such redefined variables are integers. This requirement constrains

the matrix o whose ‘minimal’ solution will be taken to be
a = (det Ny det No)I. (3.86)

We will later on discuss also the possibility of choosing other forms of o and show that
such choices lead to the cyclicity of the superpotential coefficients, as in eqs. (3.64), (3.65).
Using eq. (3.86), the RHS of eq. (3.85) takes the form:

Z 2 :em‘[(ﬁNl+j;N2+mN1)(N1+N2)-1+z§]~(N1+N2)T-[(N1+N2>-1(N1ﬁ+N2ﬁ+N1m>+l§}
ls,la€Zn MM

2Tl (IN1+72No+mN1 ) (N1 +N2) ~ 5] 2423 o

o = L, Ny(N{+No) Ny | - _ 17 (No(Ny+No)"INy = = . =
eWZ[(Jl_]2+m)%+l4]'[(det Ny det N2)2N1 1(N1+N2)N2 1}T~[%(]1—j2+m)+l4}

o = L Np(Np+No)INg |~ e 1
_e2ﬂl[(j17]2+m)W§tN22+l4}-detN1 det N2[N7 "2 —N; " 23] ) (387)

This series can now be reexpressed in terms of a finite sum over product of generalized

theta functions given in eq. (3.67), leading to a generalization of the identity (3.46) to:

9 [ Jn ] (£1|Ny7) - 0 [ ]; ] (%|Ngr) =

S v [ (iN1 + JoNa + 17.N1) (N + Ny)-!
— 0

- - 51N1(N1+N2) N
J [ (1 — 7o) + AR

o

(21 + 23|(Ny + Np)7) x

0
((det N1 det N2)(N1712_£ — N27123)|(d6t N1 det N2)2(N171(N1 + Nz)Nzil)T),

(3.88)

where 71 = ). m;é; are all vectors generated by the basis vectors é;:

1 0
0 1

.|| ete, (3.89)
0 0
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and lied within the unit-cell defined by the new basis vectors:
¢ = &(det Ny det Np)(N; (N + Np)Ny ). (3.90)

The above identity already assumes the form 2 = 71, for the complex structure of
T?". As mentioned already, in subsection 3.5.6 below, we make further generalization to
include arbitrary complex structure 2 as well. Also, note that, due to the identities (3.78)
and (3.79), the theta functions appearing in the RHS of eq. (3.88) satisfy the constraint

(3.29) with respect to their own arguments.

3.5.2 Proof of the identity

We now show the equality of the series expansions (3.85) and (3.87) to establish the
identity eq. (3.88). We also show that matrix « needs to be chosen as in eq. (3.86) for
showing the equality of eqs. (3.85) and (3.87) for the case when det N and det Ny are
relatively prime. In other cases a can be chosen as the least common multiple of det Ny
and det N5. Here we assume them to be relatively prime, while the remaining cases can
be worked out in a similar fashion.

We now follow an exercise similar to the one in Section 3.4.3, to show that series in
eqs. (3.85) and (3.87) precisely match with 7 restricted to be an integer, provided « is
given by eq. (3.86).

1. When I; = I in eq. (3.85), we have:
and
(I; — )Ny (N] + Ny) 'Nya ' =0 (3.92)

These terms are exactly same if we consider the series given in eq. (3.87) for the

values lg(E l;), li =0 and 11 = 0, irrespective of the choice for the matrix o.

2. In order to see the restriction on the matrix «, one needs to understand how the
nonzero integers Iy # 0 in eq. (3.87) are generated from the terms in eq. (3.85). In

other words, one needs to make sure that

—

(I — )N (Ny 4+ No) "'Nya ! = [ (3.93)
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is an integer. This in turn is possible only if l; is of the form:
I1 = Iy + ljaN;  (Ny + No )N (3.94)

However, since l;, N;, N, take integral values, the RHS in eq. (3.94) is an integer
only if a(N7' + N3 ') is an integer. In other words, for det Ny and det Ny relatively

prime, « needs to be of the form:
a = (det Ny det No) P. (3.95)

with P being an arbitrary invertible integer matrix. ‘Minimal’ choice also demands
det P = 1, otherwise [; will not span over all integers. Then, since P is invertible, it
is fixed to be the identity matrix. We have therefore established the restriction on «
as in eq. (3.86). At the same time, we have also proved that the series in eqs. (3.85)
and (3.87) precisely match for 7 = 0 provided I, + det N det NleNQ’1 is identified
with I3 in eq.(3.87). Note that (det Ny det N)N; ! is also integer valued and ensures
that such an identification with z} holds.

. On the other hand, When l; = I, + 77 in eq. (3.85), we end up with terms like:
(1N 4 15N (N + No) ™ = [ 4 m.Ny (Ng + Np) ™ (3.96)

and
-~ - Nl(Nl + N2)71N2
(lh = 15)

B le(N1 + N2)71N2
det N1 det N2 N det N1 det N2

These terms can also be obtained in the series (3.87), for the following values of the

(3.97)
variables: I3(= l5), [; = 0, 77 arbitrary. However, as seen above in eqs. (3.93), (3.94),
the sum over m is finite due to the fact that

I — Iy = m = L det Ny det NaN; 1 (N7 + No)N7 !, (3.98)

for L arbitrary integers, contributes to the values of I; in the RHS of eq. (3.87) by
an amount E, while setting m to zero, l_g: is identified with l; + det N det NzﬁNgl.
In other words, we have shown that the sum over 7 in (3.87) is over all integrally

defined vectors in the unit cell generated by the basis elements:
¢ = &det Ny det NoN5 (N 4+ Ny)N7! (3.99)

with € being the elements of the canonical basis (3.89).
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We have therefore proved that identity eq. (3.88) holds by explicitly showing a one to

one correspondence between the series in eqs. (3.85) and (3.87).

3.5.3 Yukawa expressions for oblique fluxes

We now use the wavefunctions given in eqs. (3.68) and (3.67), to obtain the expression of

Yukawa interactions when oblique fluxes, specified by intersection matrices
N,=F,—F,, No=F,—F,, Ng3=F.— F,. (3.100)

are turned on along branes a, b and ¢. N1, Ny and N3 are all real symmetric matrices
(in the absence of components p,., py,) and in addition the complex structure matrix is

chosen to be proportional to the identity: 71, with 7 complex. We then have:

¢{7N1 (g’ = ) ¢j Nz Z 0O = Tln 2% Vol TZn)) (| det N1|| det ].\12|(I’rn7')6)i

Xelﬂ'Ng Z[mz/lmﬂ-ﬁ [ ] 1\]’1 Z|N1 7_) 0 [ ‘(7) ] (N2 . Z|N2 . 7—)_ (3101)

Using the Riemann theta identity derived earlier in eq. (3.88), eq. (3.101) can be rewritten

as:

PN (Z) N (z) = 3 (2%)% (Vol(T?)) [(I det N1|| Eﬁfwm) )]

3

sz -1 NiN3~ !N
w(fN1+fN2+mN1).N3—17N3 (Z> s [ [(Z - j) i m] dethladet N22

0
(0](det Ny det N3)*(Ny 'NgNy)7). (3.102)

Note that the integrality condition (3.29) is maintained by t((N1+iN2+7N1)Ns™". N ()

appearing in the RHS of the above equation, since the expression
(iNy + 7N + le)N{l] "Ny (3.103)

is always an integer. On the other hand, the sum 7 in eq. (3.102) is over the integers
inside the cell generated by the lattice vectors in eq. (3.99) and total number of them is
given by the volume of this compact space. The size of the cell, i.e., its volume matches
with those in eq. (3.60) and (3.61) for the T2 case which is just the number, N3 = I in
eq. (3.60), of chiral states for brane intersection bc. However, the situation is different for

T?' n > 1. This becomes clear by observing that the size of the cell given in eq. (3.99)
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is bigger than the number of states (/;) in the intersection Ng between the branes b and
c by a factor det(det Ny det NyN;'NT!). This factor, on the other hand, for 72 is unity.
We therefore notice that the sum 7 is over many more terms than the actual number of
states (E) in the intersection N3 between the branes b and c.

The extra factor of terms appearing in eq. (3.102) can be explained by noticing that the
sum over terms in egs. (3.102) and (3.104) is over the states )(N1+iN2+7N1).Na ™" Na (2 thap
are inside the cell in eq. (3.99) and contribute to the Yukawa coupling by the orthogonality
relation eq. (3.31). As any state (with more details given in the subsection-3.5.4) k,
satisfying integrality conditions such as (3.29) is defined only upto the integer lattice
shifts, one therefore has appearance of the same states inside the volume of lattice (3.99),
multiple times. In other words, for any given state, in the RHS of eqs. (3.102), all those
integer vector (m) shifts also contribute to the sum which satisfy the integrality condition
for mN; N3~ * inside the cell (3.99). Explicit solution of this condition is presented later
on in section 3.5.4 in eq. (3.110).

Then, as in the T2 case, orthonormality of wavefunctions (3.31), implies that the

Yukawa coupling, whose explicit form is given in section 3.5.4, can be ‘formally’ written

in a form :
! oy —2 [ (| det Nq|.| det No|(Im7)3) 74
Vi = gou (28)F (Vol(T2)) { do NG| X2 O T
me{e’}
_»’_ 2 — N1N371N2
s [ [(d J)+ﬂ;]7dem1demz ] (0|(det Ny det N)2(N; 'NaNo D7), (3.104)

where by the summation index m € {g’}, one means to sum over all integer points inside
the lattice generated by €’ ¢, - - -/ in eq. (3.99) and the Kronecker delta is to identify all
the states k upto integer shifts.

The above expression reduces in the case of T2 flux compactification to eq. (3.63), since
the Kronecker delta constraint has a unique solution in such a situation. To compare the
two expressions, note that the indices 7, j, k in the factorized case are scaled with respect
N%’ N% and N%, respectively. Then, the Kronecker
delta constraint in eq. (3.104) precisely matches with the one in eq. (3.62). In the case of

to the one of general tori, by the factors

general tori, however, the constraint implies that the interaction terms involve the states

which satisfy the equation
N3k = (Nyi + Naj 4+ Nymm) (3.105)

among the vectors N, sz, Nk for m integers inside the unit cell given in eq. (3.90)
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and corresponding states k are only defined upto integer lattice shifts. We now find all
such solutions of the lattice shifts in the next subsection and present the explicit answer

for the Yukawa coupling for general tori.

3.5.4 Explict Yukawa coupling expressions

In this subsection we now present the set of terms that contribute to eqs. (3.102) and
(3.104). In order to clarify the situation we analyze the correspondence between the chiral
multiplet families of states such as the ones appearing in eq. (3.103) and the fluxes along
the branes. Our discussion is restricted to IN being real symmetric matrices, due to the
imposition of the Riemann conditions (3.26) for the special complex structure Q = 71,
under discussion.

For a given pair of brane-stacks with intersection matrix N, the condition eq. (3.29)
that a state ¢ needs to satisfy is N.i = integer. The solution of this condition is: ¢ = N~!¢,
with € being the integer basis vectors in an n-dimensional space as given in eq. (3.89).
The states are therefore generated by the set of n vectors: #; = ¢;N~', with subscript
i=1,2---n and are det(N) in number, namely those which are inside the cell generated
by €;’s. Here and in following we also keep in mind that all the chiral multiplet states that
we are discussing, are defined only upto the shift by integer lattice vectors é;’s.

To give an example: for n = 2 (corresponding to T*), with

N = (O‘ ;) , (3.106)
v

we have the basis vectors for generating the states:

A 1 6] 2 _ 1 —
" faf ) (—7)’ S <a) 100

To obtain the degeneracy count, we note that for the above example we have:

«
€ = iy + Bia. (3.108)

The number of independent states inside the cell with lattice vectors €1 and €3 is then the

determinant of the above transformation which is detIN. A generic state appearing in eq.
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(3.105) then has a form:

-

= mﬂ'_{ + mﬂ; j: nl]'_{ + anga k= plk_; + pzk;- (3.109)

with j:-, k: defined in a similar way as in eq. (3.107) with respect to the corresponding
intersection matrices. Also, integers m;, n;, p; label the states of a chiral family in a given
brane stack.

We now go on to give explicit solution for the vector m that contribute to the sum
of terms in Yukawa coupling expressions (3.102) and (3.104), namely those inside the cell
defined in eq. (3.99). The size of the cell, namely the number of states that it contains
is equal to det(det Ny det NoN; (N + Ny)N; 1), as stated earlier. In a situation with
2 x 2 matrices, for example, it is detN;detNodetN3. For illustration purposes we restrict
ourselves to the discussion with 2 x 2 matrices. However, all the results we write below
are valid for other situations as well.

Now, restricting to this 2 x 2 case for the simplicity of discussion, we write all possible
solutions for /7 that provide integer solutions for mIN{N3 ™!, as appearing in the definition
of states in eqs. (3.102), (3.103), and show that they are detN;detNy in number. So that
the degeneracy of the state matches with detN;detNydetINg given in the last paragraph.
To compare, note that for a diagonal flux situation, as in section-3.4, we have m = ng as
a single solution of an analogous condition mn;n; ' = integer, corresponding to the state
degeneracy which is ngs.

The integer solutions for mN; Nz ! are:
7 = pdetN1NgNy ' + pdetN;NgN, ™, (3.110)

where p'is all integer vectors within a cell generated by édetN,N, ' and ﬁ is all inte-
ger vectors within a cell generated by édetN;N;~'. It is easy to see that i satisfies
mN1 N3~ = integer (by making use of Ny = N3 — N3). Together, for every solution of
the first term in m we have detN; solution for the second term and this goes on for detNo
number of terms from the first term. So that total degeneracy of such m is detINydetNa,
as stated earlier.

About the states: 7 given in eq. (3.110) defines a periodic set, in the same way as for
the T? case m = nj defines the periodic set of states in the RHS of eqs. (3.61) and (3.62).
There the states are explicitly given as k = (0), (n1/n3), (2n1/n3), - - - [(ng — 1)ny /ng] with
a periodicity ng for this series. Various states inside the cell (3.99) can also be found using
eq. (3.105) and making use of the condition: N;j = N3 — Ny as: (also the fact that any
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state is defined upto integer vectors). The states are:
E = ﬁd@tNlNgil + ﬁd@tN2N371 etc. (3111)

and the state degeneracy is detINydetNodetNg.

The Yukawa coupling can now be written in an explicit form given by a sum of
detN1detNy number of terms, which can be read off from eq. (3.102) directly, with
m replaced by

1 + pdetN1NgN; ™! + pdetNyNgN, ™! (3.112)

and now such m are the unique solutions of eq. (3.105) where all other solutions defined
upto the shifts in 7 by pdet Ny NsN; ' + pdet NyN3N; ' have been identified.
Eq. (3.104) now reads as:

NI

-3 (|detN1|.|detN2|(]mT)3)}ixz

(Vol(T")) det Ng|

}/ijk = 90abc ( %)

0
(O|(det N1 det NZ)Z(N171N3N2717—), (3113)

28
» [ = 7) + (FNg = Ny = JNo)Ny 0+ (i3, + P ]

or equivalently:

SIS

(Vol(T?™))

1
n 1 det Nq|.| det No|(Im7)3)] *
1/'ij/f:gaa,bc( 5) ? (| 1| | 2|( ) ):| XZ

|det N3|

Sy

ﬁ7

s 7 N2 — N2 =
XQ9 [ [(_‘7 + k)detNldeth + (pdeth +pdetN1 )]
0
(0|(det N det N5)*(Ny 'NgNy '7).  (3.114)

Note that the sum over m is now broken into sum over p and ﬁ We end this discussion
by reminding ourselves once again that p runs over all the states inside the cell generated
by €;detNaNy ™! and €3detIN,N, L. Similarly ﬁ runs over all the states inside the cell
generated by é1detN{N; ! and é;detN,{N; L.

We now present two explicit examples, one for the oblique situation and the other for
the commuting diagonal fluxes. We show that our answer for the diagonal flux is identical
to the one for the diagonal yukawa coupling expression given in [6] for 72". In fact this
holds for any set of fluxes with N1, N3, N3 diagonal. On the other hand, we also show
that the set of terms given above in eqs. (3.113) and (3.114) can also be summed up in a

number of cases, for the oblique cases as well.
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Example : Oblique flux

For the oblique case, by taking two noncommuting matrices:

N1:(2 1), NF(l ) 115)
1 2 2

(detNq)N; ' = ( 21 _21> , (detNy)Ny ™ = <2 1) . (3.116)

we have:

The set of integer points inside the cell generated by €;detNyNg ' = (2,0) and é3detNyNg
(0,1), are: (0,0) and (1,0), as det(detNyNy ) = 2. The set of integer points inside the
cell generated by é1detN;{N; ' = (2, —1) and é3detN{N; ' = (—1,2), are : (0,0), (1,0)
and (0,1), as det(detN;N; ') = 3.7

Now, to illustrate our method, we concentrate on finding a particular Yukawa interac-
tion among states: i = j = k = (0,0). This particular Yukawa now has the form, making
use of Eq. (3.113) as:

N 1 (| det Ny|.| det No|(Im7)3)]1
Yooo = goooo (22)7 (Vol(T?")) 2 {(| 1“ |detN3\2‘< ) )} XZ

-
— =

p,p

- No ~ Nip
J [ (Paer + Pk, ] (0](cet Ny det N)*(N;~ N3N, 7)),

0

To see what terms in p and ﬁdependent arguements appear in the sum, we write down

all the possibilities that arise from the combinations:

LN, =Ny (3 21 (201
_ - 3.117
(pdetN2+pdetN1) p( ) Ps (8.117)

with 7= (0,0), (1,0) and p = (0,0), (0,1), (1,0). All the six possibilities then imply that

9 Another example with mixed eigenvalues for the matrix N1 can be constructed by exchanging the off-
diagonal and diagonal entries in eq. (3.115) for Ny. Such an example will be relevant for the situtation
discussed in later sections where intersection matrices with both positive and negative eigenvalues are
discussed.
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in Theta function we get the following explicit sum:
0,0
(0 [ (0,0)]
0

where a common modular parameter arguement of the all the six Theta terms have been

[(5:3)]

: (G- 3)]
0

wino

+7 + +

0

(0|(det N1 det N2)2(N1_1N3N2_17)) (3118)

written outside of the bracket for saving space. The integer sums of the six terms over

integer [ are of the forms:

Z e[f+(q17q2)](det N1 det N2)? (N1 ! NaN2 ~17)[I%H(q1,02)] (3‘ 119)

l

with [+ (g1, q2) given explicitly as:

- 21 - 12 - 11 - 52

. .1

- 3.120
27 ( )

for the six terms in eq. (3.118). It can also be seen that we can write them as:

(=000 e

with m = 0,1 and n = 0,1, 2. Now, using the inverse of the matrix

1(3 4
P=- : 3.122
6(0 ) 512)

appearing in eq. (3.121):

L (2 4
P _<0 3), (3.123)

we can write eq. (3.121) as:

13 4\ [(2, -4\ (m
o) [ ) o

with m =0,1and n=0,1, 2.

It can now be seen that as [;, [, vary over all integers, and m = 0,1 and n = 0, 1, 2,
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then the combination of terms in the big square bracket in eq. (3.124) also span over ALL
integers. As a result we are able to take the factor of matrix P out by summing over all
the six terms, while reducing the six terms in eq.(3.118) to one. The net result is then the

arguement of theta function modifies by the factor:
(det N det N)*(N; 'NgNy '7) — PT(det Ny det N2)*(N; 'NgNy '7)P (3.125)
and final answer for Yukawa coupling is:

(| det N1 |.| det Na|(Im7)?) ix
|det N3|

Y000 = 9000 (2%)E (Vol(T%))_% [

0

9 (0] P (det Ny det N)?(N; ~'NgNy ') P).

We can similarly take care of other nonzero values ;, ﬁ', k etc. as well, but details are being
left.

Example : Diagonal Flux

We take another example, now with diagonal fluxes :

2 by
2
( 5) : (3.127)

Set of integer points inside the cell generated by € detN,Ny ™! = (2,0) and é5detN,Ny 1 =

(0,5), are: (0,0), (0,1), (0,2), (0,3), (0,4), (1,0), (1,1), (1,2), (1,3), (1,4), as det(detNyNy 1) =
10. On the other hand, set of integer points inside the cell generated by éjdetN;N; ' =

(3,0) and é3detN;N; ! = (0,2), are: (0,0), (1,0) (0,1), (1,1), (2,0), (2,1), as det(detN;N; ') =
6.

Then:

3
(detNl)Nl_l = ( 2) , (detN2)N2_1

We now have:

NI S Y T (3.128)
pdeth pdetNl N P 1 P L] ’
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which can also be written as:

- N2 - N1 ll 1 P 1 ﬁl
i - _ 2 3 3.129
TGN PNy <52> N ( L)\ p, U \s) (3129

with p; = 0,1, pp = 0,1,2,3,4, 5, = 0,1,2, f» = 0, 1.

By taking a factor of %

N;N, - N, - Ny 1 614 3p1 21
It (7 G 3.130

with p1 = 0,1, po = 0,1,2,3,4, p; = 0,1,2, po = 0,1. It can again be checked explicitly

out, the above equation can also be rewritten as:

that it leads to ALL integer variables inside the square bracket. The net result of summing

over different terms in the diagonal case therefore is the appearance of the matrix outside

Ni1Ns2
detN1detN2 *

appearing in eq. (3.113), from both left and the right, this precisely reproduces a modified

the square bracket: When multiplying the modular parameter arguement as
modular parameter which matches with the known diagonal flux solultion for Yukawa
coupling in [6]. This holds for the diagonal flux in general, not restricted to the example

above.

3.5.5 arbitrary-«

The results, obtained so far in this section, are derived for a particular choice of o given
in the eq. (3.86). However, all the results can be re-derived for arbitrary «, appearing in
eq. (3.74) etc.. For the factorized case, we saw in that the Yukawa coupling expression
(3.63) can be recast into a symmetric form in eq. (3.64) (apart from the prefactor),
where the arguments of the Jacobi theta functions are invariant under a cyclic change:
a — b — c. This is due to the cyclic property of the superpotential coefficients obtained by
a third derivative of the superpotential W;;;. The prefactor does not obey in general this
symmetry, since it depends on the wave function normalizations (K&hler metric). Here,
we show a similar cyclic property in the non-factorized case, given above in the Yukawa
coupling expression (3.114), by making different choices of the matrix «in eq. (3.86). Note
that different choices of this matrix provide equivalent expressions for the wavefunctions,
and in turn Yukawa couplings, since they are related though a change of variables inside
the theta sum. The a matrix can be chosen appropriately so that the redefined variables
in egs. (3.94) and (3.98) are well defined integers. Below we present a few examples with

different choices of «, to demonstrate the cyclicity mentioned above.
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Eq. (3.87), for arbitrary «, can be written as:

Z Z (el N1H72N N (N1 +N2) ™ 5] (N1 +N2) 7 (N1 N2) = (N i+ N+ Nai) )

I3,lz€2Zn M

x 2mil(AN1 72NN (N1 -+ N2) = 3] [ +22]

x ( il —2+m)N1 (N14+N2) " N~ 4] [aNT (N1 +N2)NG Hrla” (a7 ) T N2 (N1 +N2) =Ny (1 —j2-+7) +a

s 2mil(J1—72+m)N1 (N1 +N2) "' Noa ™ +la] [aNy 14~ Ny 1 23] )

’ (3.131)

provided lz, defined in eq. (3.93), is an integer vector, and so is m given in eq. (3.98). In

addition the unit-cell, within which m lie, is now defined by the basis vectors :

—

¢ = éa(N; H(Ny + Ngo)Ny ™). (3.132)

Moreover, eq. (3.88) takes the form:

9 [ jol ] (£1|Ny7) -0

i ] (5/Na7) =

Ny + 5N + m.N1)(Ny + Ny) !
Zﬁ[(‘h 1+ N £ 7N (NN o N N

0
g | 11 = 72) + N1 (Ny + Np) 'Npa ™!
0
(OZ(NlilZ’_i — N2712_é)|O[(N171(N1 -+ Nz)N2717')OZT) . (3133)

It is then easy to see, all equations from (3.101) to (3.104) go through for arbitrary a,

giving the following expression for the Yukawa couplings:

(| det N1 |.| det No|(Im7)?) 11 s
|detN3\

(=] + K)Naa~! + mN; N3 'Nya !
0

Yige = goue (25)F (Vol(T2)) {

N
m

9

where the sum 77 is now over all the integer solutions of 7mN; N3 ! in the cell given in eq.
(3.132). Explicit contributions to this sum, of course, will depend on the exact form of a.
In subsection 3.5.4, we have presented the case of o = detINidetNs.

We now study how the above expression (3.134) reduces for another choice of «, such

as:
o = N3 'Nj(det Ny. det N3). (3.135)

] (0la(N; 'NgNy '7)a’). (3.134)
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Note, for this choice of «, that the degeneracy of states in the cell given in eq. (3.132) is
det(detNgdetNyNy ™). As a result, for the case of 2 x 2 matrices for example, one now
expects the sum over m to run over detINodetINg values. Explicit solutions are now given
as:

1M = pdetNy N3N, ™! + pdetNs, (3.136)

where 7 is all integer vectors within a cell generated by édetN3Nz ™' and ﬁ is all integer
vectors within a cell generated by edetN,N, 1. It is again easy to see that 1 satisfies
mN; N3~ ! = integer (by making use of Ny = N3 — Ny).

The characteristic of the J-function in eq. (3.134), becomes:

N; 'Nj

P4+ KF)Noa™! = (—kNj +iN; + mN
(—j + k)Naa ( 1+ Ny A+ m 1)(detN2.detN3)

—

(—k + 1)N3
(det Ng. det N3)’

(3.137)

where in the first equality we have made use of eq. (3.105). Also we have,

Q(N171N3N2717)OZT = (N371N1)(N171N3N271)(N1N371)T(det N2.det ]N-;_.‘g)2
= (N3 'N;N3 '7)(det Nj. det Ng)2. (3.138)

The Yukawa couplings then read (following the exercise performed in subsection 3.5.4):

1
ny g -1 det N¢|.| det No|(Im7)3)]*
Vi = g (21)F (V) ¢ [ ASE R TR

_E ; N3 —> N3 ~ N
219 ( + Z}deth detN30+ (pdetNa _'_pdetN?) ] (0|(det N, det N3)2(N2_1N1N3_1)7’)7

p:ﬁ

(3.139)

where the summation over indices p" and ﬁ is explained earlier after eq. (3.136). We can
also explicitly obtain the sums, as done for various examples in the last subsection.

Now, a comparison of egs. (3.114) and (3.139) shows a symmetry between the ¥-
function characteristics in these cases, including the summation variables p" and p. It is
obvious that the replacement i — j,j — lg, k — 7 and Ny — N3, N2 — N3, N3 — Ny in
eq. (3.114) results eq. (3.139). We have thus established that just as in the factorized case,
for oblique fluxes too, one can show the cyclicity property of the Yukawa superpotential

coefficients, as naively expected.
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3.5.6 General complex structure

In the previous subsections 3.5.1 - 3.5.3, we have confined ourselves to the complex struc-
ture matrix €2 = 71, for a 2n dimensional torus. This implies the restriction to orthogonal
tori, a solution which is already used in many phenomenologically interesting models.
However, the results are easily generalized to complex structure with arbitrary 2. More
precisely, to write down an identity generalizing eq. (3.88) one starts with the product
expression given in eq. (3.69) and rescales Ny, Ny in eqs. (3.72) - (3.90) to N;Q/7,

N2 /7. At the same time, the matrix a in eq. (3.86) is also rescaled :

Q
a — & = det Ny det NoQ/7 = 2. (3.140)
T

Moreover, one needs to take into account that in relations such as (3.75) earlier, we have

made use of the property N7 = N, which is true for the complex structure of the form:

71,. Replacements: N7 — N2 are, however, to be done in the original expression.
Explicitly, under the changes mentioned, the transformation matrix 7" in eq. (3.74)

remains unchanged, while its transposition in eq. (3.75) is now written as:

1 Nl_lTOéT
77 = . 3.141
( 1 —N2_1TOZT ( )

Also, (3.76) is unchanged, whereas Q' in eq. (3.77) goes over to

(3.142)

0 a(Ny ' 4+ Ny HQla”

where we have made use of the fact that both (Nj + N3)Q and (N; ! + Ny HQT are
symmetric matrices, due to the condition (2.31), with N defined as N” = Py —p’;y. Then
expressions (3.82) and (3.83) remain unchanged, while (3.84) is modified to:

1T 1T 1T\ _ P - 1T 1T 1T\ _ - -
<T71>T(?+T): N21 (Nll +N21 ) 17§j1+l1:’2+N11 (ljll +N, 1_») 1(]2+l2) 3.143)
(@ )TNV HNG ) +h) = (2 + 1))

68



Chapter 3. Fermion Wavefunctions in Magnetized branes:
Theta identities and Yukawa couplings

The identity (3.88) then takes the form:

19[‘701](51|N1§2)-19 2 (5IN.Q) = (3.144)

°N CN 7 N+ (N N, )L
Zﬁl(ﬁ 1+ Jj2Na +7.Np)(Ny + N») (71 + 23|(N1 + N2)Q) x

0

N1(N14+N2) "IN
[ (i = 7o) + | MR ) ]

0
((det Ny det No)(Ny 14 — No '4)|(det Ny det N )?(N; (N; + N3)Ny 'Q1)),

leading to the expression for the Yukawa interaction:

N —1 [ (] det Ny[.| det Na|| det Q) i
Y. = 5 ) 2 T2n 2 (| 1
ijk Oabed ( ) (VOZ( )) |: \det N3| X ;
\p
- E ~ No —
¥ ( - >detN1 detN20+ (pdeth _'_pdetNl) ] (0|(det N; det N2)2(N1_1N3N2_1QT>>'

(3.145)

We leave the rest of the details, which can be worked out easily.

3.5.7 Hermitian intersection matrices

In subsections 3.5.1, 3.5.2, 3.5.3, we have assumed that intersection matrices N1, N2 etc.
are real symmetric. As explained, this restriction originates from the case when fluxes p,.,
Dyy are zero and the intersection matrix N is represented by the real matrix p,,, which is
symmetric whenever the complex structure is of the canonical form: 2 = il;. Moreover,
the Yukawa coupling expression was generalized nicely in the last subsection to the case
of arbitrary complex structure, as well.

In this subsection we discuss the case when fluxes p,, and p,, are also present, in
addition to those of the type p,, and p,,. Furthermore, all these fluxes are constrained
by the conditions (2.26) and (2.27) giving a resulting (1,1) - form flux which can be
represented by the Hermitian matrix (2.28), (2.29). We explicitly present the case of
Q) =il solution (I : d-dimensional Identity matrix), which is particularly simple, since
in this case due to constraints (D.1), the Hermitian flux has the simple final form of eq.
(D.2). The generalization to arbitrary complex structure {2 can also be done, but is left
as an exercise.

Wavefunctions on 79, as given in eq. (3.68), satisfy the following field equations (3.22)
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and (3.23):

DX+ (AT = Ao =0, (1=1,2,3) (3.146)

We now show that the solution for the above equation, together with proper periodicity

requirements on 7, is given by the basis elements:

= ~

YNE) = N;-f(2,2)O(2,2)

T —1 Zl-Im 2 j - .
= N;-e [(Ng —iNp)-2]-1 ,ﬁ[OI(NR.z‘NR.ZIB) (3.147)
where N is a real, symmetric matrix.

The wavefunction given in eq. (3.147) satisfies the Dirac equations (3.146) for the

following gauge potentials.
m .
(A' =A%), = (5) 2(Ng — iNy);;, (3.148)

which exactly matches with eq. (3.23) for the complex structure 2 = ¢3. The intersection
matrix is therefore given by :
N = Ngr — Ny, (3.149)

where we identify,
NR = p;y - pg:y’ NI = p;x - pla):x (3150)

The wavefunction described in eq. (3.147) can be re-written in terms of the real coordinates
Z and ¢ as well as matrices Ngr, N;. By a slight abuse of notation, below, only for this
subsection, we use Ng = pgy, N1 = pg,, by setting p’s to zero in eq. (3.150) and
suppressing the superscript a in p®. Such a notational change, helps to make comparison
of the transformation rules we derive for the wavefunction written above in eq. (3.147)
with general transition functions, consistent with the gauge transformations along the
2n non-contractible cycles of T™, given in [6]. These transition functions are written in
equations (4.40), (4.41) of [6] for the fields that transform in fundamental representation
rather than as bifundamentals. Hence, the notation changes above are meant to make the

expressions consistent with the ones of [6].
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The wavefunction (3.147), in the real coordinates ¥ and ¥, then reads:

WIN(E) = NG el P VR R )]

Z (@) [Gt50) Py - (+35)] e2im [(lit30) Py (27 iy ) (3.151)

l,eZ™

This expression in terms of real coordinates is useful in comparing the transformation
properties of the wavefunction over T° with the one in [6]. The transformation properties,

as derived from eq. (3.147), are given by,

wi,N(g_'_ ﬁ) —  im(IN-i]-Im 2) ,W,N(g)’

- o . (3.152)
W,N(aniﬁ) — e—im(N ~n}-ReZ).¢a,N(g)7

provided that
® (NR);j = psiys € Z, i.e Ng is integrally quantized,
° j satisfies j Ngr € Z".

We therefore notice that the integer quantization is imposed only on the symmetric part
Ng of the intersection matrix from the periodicity of the wavefunction as well. However,
Dirac quantization already imposes both p,, and p,, to be integral for unit windings, as
discussed in Section 2.3.

Using eq. (3.151), the expressions (3.152) can be re-written in terms of real coordinates

as:

¢5,N(5+ i+ Zy—») _ eiﬂ[m(pziyj*ipzizj)yj} ‘¢57N(f+ Z?j), (3153)

-

PN il ) = e e N (i i), (3.154)

In order to see that eqs. (3.153) and (3.154) are the proper transformation properties of the
fermion wavefunction over 7, let us compare them with the the transition functions eq.
(4.41) of |6] given for a fundamental representation in six real coordinates X;, [ = 1,--- |6,
as used in our eq. (2.21) as well. After changing variables first to the coordinates z°, 3",
i = 1,2,3 and then making coordinate transformation to z*,izi, as described in Section

2.3, the general transition function is given by,

(@, i) = emlmiting-Fg (v tiad )+ imitni) Fiy (@) +iy?)] (3.155)
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In correspondence to the transformation along the 1-cycles, the integer parameters on z;
and y; are denoted as m; and n; respectively. One then has two cases:
Case -I : When n; =0, i.e ¥ — (£ + m), eq. (3.155) reduces to
X<xl yz) _ eiﬂ{[mi.Fi3.yj—mi.F;j.yj}-l—i[mi.Fij.a:j—i—mi.F;j.xj}}
= eHmimiFy)), (3.156)

where we used the hermiticity property of F. Using the expression (D.2 ) in eq. (3.156),
we recover the transformation given in eq. ( 3.153).
Case -1T : When m; = 0i.e ¥ — (¥ + 1), eq. (3.155) takes the form,
(@, y;) = et tnlyallrilnbyy’ tniliy )
= e 2inlniFigal] (3.157)

Again, using eq. (D.2 ) in eq. (3.157), we reproduce the transformation (3.154).
It can also be easily seen that the basis wavefunctions given in eqs. (3.147) and (3.151)

satisfy the orthonormality condition

[N =g, (3.158)
by fixing the normalization constant to
N; = (2"|detNg|)"/* - Vol(T?) 712 vy . (3.159)

We have therefore confirmed that the wavefunction written in (3.147) is not only a solution
of the field equation, but also has the correct periodicity properties on the torus under
the gauge transformation. Now, regarding the Yukawa interaction, since only Ng, which
is real symmetric matrix, appears in the é(z, z) part of the wavefunction (3.147), all
the theta function identities described in Sections 3.5.1, 3.5.2 hold for this new O(z, %).
Similarly, as in the expression (3.114), the Yukawa coupling Y;;; now has the following

form,

1 2 i
(| det Ng|.| detNR|)] " Z

ny 3 o — L

p,p

-7 NZ ~ N% > Ng
(=7 + k) g NL detNZ, (P deNZ T PNt
0

¥ ) ] (0|(det N& det NZ)2(NL 'N3NZ ')7)

(3.160)
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with P running over all the states inside the cell generated by e}detNZRN%{l and
&detNZNZ ™', Similarly § runs over all the states inside the cell generated by €1 detNENE
and e}detNhNh_l.

3.5.8 Constraints on the results in section-3.5 and further gener-

alization

To summarize, in this section we have given a close form expression for the Yukawa cou-
plings in the magnetized brane constructions, when in general both oblique and diagonal
fluxes are present along the branes. However, the results of this section are somewhat
restrictive, since the basis wavefunctions used for the computations are well defined only
when the intersection matrices satisfy a positivity condition given in eq. (3.26) for arbi-
trary complex structure 2. A similar positivity criterion, for the case when p,i,; and pyi,;
are nonzero, can be written using the wavefunction (3.147), as well; it implies simply the
positivity of Ng.

On the other hand, in realistic string model building, one may need intersection ma-
trices that are not necessarily positive definite. The simplest examples correspond simply
to diagonal intersection matrices, having some positive and some negative elements along
the diagonal. In such a factorized torus case, there is a unique prescription, to define
the basis functions corresponding to the negative elements in the intersection matrix, as
given in [6], consisting of taking complex conjugates of the wavefunctions for the positive
elements. Such a prescription also works, in the case of oblique + diagonal fluxes, when
some intersection matrices are ‘negative-definite’ rather than being positive definite. One
can then take a complete complex conjugation over all the coordinates, in order to obtain
a well defined wavefunction.

Such a process, however, does not work when oblique fluxes are present and intersection
matrices have mixed eigenvalues. Note that a diagonal flux of the type F,;. preserves its
(1,1)-form structure, under the interchange : 2 — z', required by supersymmetry. This
is, however, no longer true when oblique fluxes are present, since off diagonal elements of
a (1,1)-form flux, say F.: >, does not remain of the (1, 1) form when complex conjugation
is taken only along 2! or 22.

In order to cure the problem, one needs to construct new basis functions. We present
the results of our investigation in the next section, where we first restrict to the case of a
T* compactification, for simplicity. The complications arising from the oblique nature of
the fluxes are manifest in the T example as well, though it is possible to generalize the
result to the full 7¢, which is discussed in Section 3.6.8.
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3.6 Negative-chirality fermion wavefunction

As already mentioned, the basis wavefunctions given in eq. (3.68), used for deriving the
Yukawa coupling expression in eq. (3.145), are constrained by the Riemann conditions
(3.26), which imply in particular the positive-definiteness of the matrix NIm).

Now, first restricting to 7%, we will show that the basis function (3.68) corresponds
to the positive chirality spinor on 7. On the other hand, to accommodate intersection
matrices, having two eigenvalues of opposite signature, one needs to find out the basis
function corresponding to negative chirality spinor. The need to use such basis functions,
for intersection matrices with mixed eigenvalues, can be easily seen in the case when the
T* factorizes into T? x T? and one turns on only non-oblique (diagonal) fluxes. In this
case, the intersection matrix has one positive diagonal element along the first 72 and one
negative diagonal element along the second one. Good basis functions are then products
of two T? wavefunctions of opposite chiralities|[6], and the total wavefunction on T* is of
negative chirality.

Our task therefore amounts to searching for the basis functions corresponding to neg-
ative chirality spinors on 7% with oblique fluxes. Search for fermion wavefunctions in the
presence of arbitrary fluxes (in general oblique) has been pursued in [128]. However, the
resulting wavefunctions are presented in terms of diagonalized coordinates and eigenvalues
of fluxes. Any such solution is however unsuitable for the Yukawa computation, both for
the purpose of extracting the selection rules of the type given in eq. (3.105), as well as
in actual evaluation, since the diagonalized coordinates become ‘stack dependent’ and in-
herent nonlinearities involved in the diagonalization process appear in the wavefunctions,
prohibiting the derivation of Yukawa couplings in a concrete form.

In this section, we are able to write both the positive and negative chirality basis
functions in a ‘unified’ fashion, by showing that all basis functions have a form similar to
the one given in eq. (3.68). However, the complex structure {2 appearing in eq. (3.68) for
a positive chirality wavefunction needs to be replaced by an ‘effective’ modular parameter
matrix Q2 = Q€, in order to accommodate the negative chirality wavefunctions, where Q
is given in terms of the elements of the intersection matrices (as explicitly obtained later).
We also show that our results reduce to the ones in [6] for the case of diagonal fluxes.

First, in the next subsection we present new basis functions, relevant for the situation
when the intersection matrices are neither positive nor negative definite. In a later subsec-
tion, we show how the negative chirality spinor basis functions can be identified with the
positive chirality ones given in eq. (3.68), with an effective modular parameter, defined in

terms of the fluxes. We verify this fact by mapping the wavefunctions into each other, as
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well as, by showing explicitly that the relevant field equations transform into each other
through such a mapping. As a result, we are able to absorb the complications associated in
the diagonalization process of the modular parameter matrix, and the final wavefunction
once again has an identical form as given in eq. (3.68), however, with a flux dependent

modular parameter argument.

3.6.1 Construction of the wavefunction

In this subsection, as mentioned earlier, we discuss the case of 4-tori, though T generaliza-
tion can be analyzed in a similar manner. We first also restrict ourselves to the situation
with canonical complex structure: Q = il, and Q = il5 for T* and T° respectively, where
I, represents the d-dimensional identity matrix. The generalization to arbitrary € is given
in subsections 3.6.6 - 3.6.8. Now, in oder to avoid the restriction to the positivity condi-
tion (3.26), we present an explicit solution of a wavefunction of negative chirality satisfying
both the equations of motion, as well as the periodicity requirements on 7.

Going back to the positive chirality wavefunctions, note that the two equations for
the component x! in eq. (3.21) (derived from the original Dirac equation (3.16)) can be
simultaneously solved, since when acting on x} with two covariant derivatives, we have:
[D1, D3] ~ F'% and the RHS is zero, since all the (0,2) components of the gauge fluxes are
zero in order to maintain supersymmetry. The superscript ab in this relation implies that
we need to take the difference of fluxes in brane stacks a and b due to the combination
A® — A® that appears in eq. (3.21) for the bifundamental wavefunction. Same is true for
the two Xi equations, since (2,0) components of the fluxes are zero as well. On the other

hand, the relevant equations for the negative chirality spinors are:
Dix% + Doxt =0, (3.161)

and
Dyx? — Dixt =0. (3.162)

When only one of the two components x"? is excited at a time, y'* satisfy: Diyl =
Dox! =0 or Dix%2 = Dyx? = 0. But none of these sets of equations can be consistently
solved when oblique fluxes are present, since [Dy, Dy] ~ Fi5 # 0.

The two negative chirality components x"? therefore need to be mixed up in order to
obtain a solution of the relevant Dirac equations, when oblique fluxes are present. In other

words, we need to simultancously excite both y"*. Then, taking

YL =, % = p, (3.163)
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equations (3.6.1) and (3.162) become:
(BDy — aDy)y =0, (3.164)

and
(D1 + aDy)y = 0. (3.165)

In order for these two equations to have simultaneous solution, one obtains the condition:

—afFY — *Ff + B°F + afF2 =0, (3.166)
where F%b = N;; is again the difference of fluxes in brane stacks a and b and N;; is the
same hermitian intersection matrix, eq. (3.149), used in writing the positive chirality
wavefunction and Yukawa couplings in eq. (3.68), and other parts of Section 3.5. When

Paizi = 0, and Q = i3, N reduces to the real symmetric matrix.

Fortunately, equation (3.166) has arbitrary solutions of the type:

. 1 — - 2
F® =N = Ny TN (T, (3.167)
-q ¢ q 1

with ¢ = g and ]\711, Ny being arbitrary integers whose notation will become clear later
(see eq. (3.186) below). The RHS of the above relation is a general parameterization of a

2 X 2 symmetric matrix, since the two terms can be written as

FP=N= N, <_1q> (1 —q) 4 Ny (?) <q 1) . (3.168)

After having shown the possible existence of the solution of the type (3.163), we pro-
ceed to find the explicit form of the wavefunction 1 by applying the allowed orthogonal
transformations on the wavefunction of the negative chirality fermion on a T* which is
factorized into 72 x T2. To obtain the explicit form of this orthogonal transformation, we
start by writing the coordinate 7% coordinate, XM = 2% z* (i = 1,2), in the spinor basis.
We note, for the choice of Dirac Gamma matrices (in a real basis) given in eqs. (3.11),
(3.12) that

M™MX, = : (3.169)

Z2 —2
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with z; = x; +iy; and z; = x; — iy;, (1 = 1,2), which factorizes into 2 x 2 blocks providing
the basis on which SU(2)’s in the Lorentz group : SU(2), x SU(2)r ~ SO(1,3) act. We

get ' in the spinor basis in the form of a 2 x 2 matrix:

Xow = ( . ZQ) . (3.170)
—Z22 z

Now to understand the transformation properties of the fermions on 7, we consider

the following transformations on X,4:

ei(’l 0 21 29 67i€2 0 o ei(917€2)271 Gi(€1+92)272 (3 171)
0 e ) \—2 = 0 eifz] | —eiO1402) 5, =ili=62) 5 '

We learn from eq. (3.171) that when T factorizes into T2 x T?, the transformations
of the positive and negative chirality fermions on the two 72’s can be read off from the
transformation rules of z; and 2z, given above!. Indeed, the transformation rules for the

fermions @/)(ii) on the two T?’s, denoted by indices i = 1,2 are:

o) L@t ) () 0150 ()

— € 2 ; S — e 2 _,

1/1(+2) iz w(z) -—<01+92)w<2>
e 2 ol — ety (3.172)

In this case, as described in the section 3.4.1, the 7" fermion wavefunctions can be
written as a direct product of the ones on two T?’s as in eq. (3.34). We obtain the

transformation of 7% wavefunctions (eq. (3.34)):

UL — el U e
Ul —— eyl g2 g2 (3.173)

It follows that a left transformation (0; # 0,6, = 0) acts independently on (left handed)
positive chirality wavefunctions, and a right transformation (§; = 0,6, # 0) acts on
the negative-chirality (right handed) wavefunctions. Now, consider the following complex

transformation on vectors in spinor basis:

0The equation number (3.171) is matrix multiplication defining the transformations on X,4. The

equation number (3.172) gives the transformation rules for the fermions wii) on the two 7%’s, which are
read off from the transformation rules of z; and z given in equation (3.171).
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CO-EIENC) e
2z —21 c d] \z»n —z g h

Case-I: Fore=h =1, f =g =0, c= —b, a = d, i.e a left transformation results in the

following orthogonal coordinate transformation,
21 — az) + bz 29 — azg — b7, (3.175)

Case-1I: Similarly, fora =d =1,c=0b0=0, h = e, f = —g, i.e a right transformation

leads to
21— ez — [z, 29 —> ez + [21. (3.176)

In order to maintain the holomorphicity of the gauge fluxes, one therefore needs to
make use of the later transformation, in order to generate a general wavefunction, starting
with the one which corresponds to the diagonal (non-oblique) flux. In addition, we need
to maintain the integrality of the fluxes, as we make such orthogonal transformations.
However, in our case, we do not make use of any specific form of the transformation and
rather use the above analysis as a guide for writing down a general solution. We then
verify the equations of motion directly, in order to confirm that the solution we propose

is indeed the correct one.

3.6.2 New wavefunction

We now use the transformation (3.176) to obtain the wavefunction associated with the
negative chirality fermion bifundamentals, starting with a wavefunction associated with a
negative chirality spinor for a diagonal flux. In the notations of eq. (3.15), it corresponds

to exciting only the negative chirality component

AN
(=)-(2) o
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We ignore the explicit form of ¢, except to note that after the transformation (3.176), one

(o) = () () s
0 vl o

while (U}, ¥2) remain zero. In the gauge sector, such wavefunctions are parameterized

generates

in the bifundamental representations by:

Cn a
Uy = < o X b) , (3.179)
Co,

as also given in eq. (3.19). For negative chirality components, the equations to be satisfied

by the various components are: (see eq. (3.20))

OxE 4 Ot + (A =A%), \2 + (A' — A%)x! =0,
Oox® — 01Xt 4 (AN = A5 x7 — (A" =A%) )t =0, (3.180)

We now show that the solution to eqs. (3.180), together with proper periodicity re-

quirements on 7, is given by the basis elements:

1/}5'7&1(7 =N - f(z, %) @A(Z’ ) (3.181)
where,
F(z, 2) = ™ MNigzilme)~(Nygzilmz)] (3.182)
O(z2) = 3 emlmioMilms i) 2millmi) Nz 2mitmctioNgs | (3.183)
mi1,moEZL™
with
M;; = Nij — Nj3 (3.184)

where both N, N are real, symmetric matrices, given earlier in eq. (3.167), and so also is
M (M;; = Mj;). We retain, however, both types of indices: i and j to incorporate real
as well as complex components of the (1,1)-form fluxes F};. Also, an extra factor of 7 in
the exponent of é(z,é) corresponds to the fact that we are working with the canonical

complex structure : Q = i/, for the present example of the fermion wavefuncton on 7.
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The wavefunction (3.181) satisfies the Dirac equations (3.180) for the following gauge

potentials:

(Al — A2)z’1 = (N N )Zl —+ (N12 -+ N12)22
(A' — A%)., = (N3 + Ny3)z; + (Nos + Nas) 2. (3.185)

The intersection matrix N is therefore given by:
N =N+ N, (3.186)

as appearing previously in eqs. (3.166), (3.167). Also, we have imposed the following
constraints, in order to retain the holomorphicity of gauge potentials:
—Niz Nz Ny 1

N
= - __B__B2__2__ (3.187)
N5 Nzé Nli Nli q

@
B

Note that the ratios of the matrix elements of N and N are identical to those given in eq.
(3.167). We have therefore explicitly shown that the solution given in eqs. (3.181) - (3.183)
satisfies the equations of motion. The transformation properties of this wavefunction

(3.181) along the four 1-cycles of T*, are given by:
¢f,N,N(g+ ﬁ) _ eiw([N-ﬁ}-Imé‘f[N-ﬁ]-Imz:) _¢f,N,N(g)’
o A ) o (3.188)
wj,N,N(g_F zﬁ) _ e—iw([N~ﬁ]~Re2+[N-ﬁ}-Re§) ,W’,N,N(Z)’
provided that
o Nj= (N + N)g €7, ie (N - N) is integrally quantized,

e j satisfies: j - (N4 N) € Z".

We therefore notice that the integer quantization is imposed only on the intersection matrix
N given in eq. (3.186) and does not necessarily hold for the matrix M in eq. (3.184).
Explicitly, we have:

~ ~ ~ 1 — - 2
M:N—N:NH< Q—Nﬂc 9, (3.189)

where the first eq. in (3.189) is identical to the solutions in eq. (3.167).

80



Chapter 3. Fermion Wavefunctions in Magnetized branes:
Theta identities and Yukawa couplings

Note that the wavefunction given in eqs. (3.181), (3.182) and (3.183) is now well
defined, as the series expansion in eq. (3.183) is now convergent. To show this, we note

the following relation:
det N = —det M = N ;1N (1 + ¢%)% (3.190)

As a result, in the case when det N is negative ( when N has two eigenvalues of opposite
signatures), det M > 0. So, the series (3.183) is now convergent when the two eigenvalues
are of positive signature, since it is the quadratic part, in the summation index in theta
series, that dominates in the exponent of this expansion. An overall complex conjugation

will be required, for the case when two eigenvalues are negative rather than positive.

3.6.3 Normalization

Now that we have found a basis of wavefunctions, classified by the index j; in the exponent
n (3.183), we proceed to show its orthonormality. The wavefunctions described in egs.
(3.181), (3.182), (3.183) can be re-written in terms of the real coordinates ¥ and 7 as

follows:
wf,N,M :A/'j.ein[f-N-g’Jrig’-M-gj Z (O [(7+7) M (171+7)] 2 (747) NG (4-7)- Mg (3.191)
MELM

Then the following orthonormality conditions are satisfied:
[y giny g (3.192)

To verify the orthogonality relation and obtain the normalization factor, we note that, in

terms of the wavefunctions (3.191) we have:

P

(wE,N,M)*,l?Z);,N,M :NE —m[a:Ny 15 M-9] Z mi () [(IFE)-M-(I+F)] —27rz[(l+k) —i(l+

“‘l
??‘L
s

M-

lezn
N e al#N-g+ig M-g] Zee (D[(7+7) M- | 27 (7)) N-Z+i(7+7) M-
meznr
= NN - e 2 MD) Z emi@D[(A7) Mo (7)) | mi(D)[(F+k) M- (14F)]
m,lcZn
27”[(m+J) (+ E)}-N~f.€27ri(z)[(m+])+(f E)}'M'ﬂ_ (3.193)

The integration over & in eq. (3.192) imposes the condition j = k and equality on the sum-

mation indices 77 = [. In particular, the condition j =k gives our orthogonality condition
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(3.192). One can now obtain the normalization factor by performing the integration:

1
/ dQ?j [e_Qnﬂ.M-g Z e—27r(7ﬁ+i)~M-(ﬁ1+j) . e—4n(7ﬁ+;).M.y~]
0 —
1 o o
:/ d? (g») [Z e—27r((7ﬁ+])+y)-M.((m+J)+y)] . (3.194)
0

One can integrate over ¢/, using

1 R . 1 R -
b o~ 2r (4D +9) M (4 +9) | / i |:6727r[(r?b+j)+37]-M-((r?LJrj)Jrg)
[ % > |

mezZmn mezZmn

= / @2y [ 2™ | (3.195)

—00

The integration (3.195) fixes then the normalization constant to

N = (2[detM|)"* - Vol(T*) 712, ;. (3.196)

3.6.4 Eigenfunctions of the Laplace equation

The wavefunctions (3.181) not only represent zero modes of the Dirac operator, but are
also eigenfunctions of the Laplacian. In order to see this, we start with computing the

Dirac operator in four dimensions. In our notations:

O Oy

o) Do

o) —0
0y —0

T4, = , (3.197)
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which leads to

DIDI —+ D2D2
(lp)z _ DDy + DyDs
DyDy + Dy Dy

DyD; + DyDs
Fii+ Fy
= A+ e . (3.198)
—(Fi1 + Fa)

The Dirac equation ¥ = 0, with ¥ given in eq. (3.34), implies that such basis functions
are also eigenfunctions of the Laplacian A. The question whether massless scalars exist,
depends on whether some combination of fluxes appearing in eq. (3.198) vanish'*. Of

course, their existence is guaranteed in the supersymmetric case.

3.6.5 Mapping of basis functions from positive to negative chiral-
ity
We now show that the basis for the negative chirality wavefunction, given in eqs. (3.181),
(3.182), (3.183) can in fact be obtained by a mapping from the basis of the positive chirality
wavefunction given in eq. (3.68). We also present the mapping between the corresponding
field equations. Our mapping reduces to the ones in [6] for the case of factorized tori.
More precisely, we show that our negative chirality wavefunction, given in eqs. (3.181),
(3.182), (3.183), as well as (3.191) (for a trivial modular parameter matrix : Q = ily) is
identical to the positive chirality wavefunction (3.68) for a ‘nontrivial’ (flux dependent)
modular parameter matrix Q = ). Explicitly,  is given in terms of the ratios (¢) of
flux components. This result gives a ‘unified’ picture of all the relevant basis functions.
Later on, in Section 3.6.7, we show that a similar mapping holds for nontrivial complex
structure on 7%, by examining the equations of motion.

Let us write down explicitly the wavefunction (3.68) for complex structure with arbi-

"The condition Fy; = —F,y implies massless scalar and supersymmetry in T¢. The other two scalars
become tachyonic.
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trary Q (= iQ).
¢37N’ (7,Q) = N- 6i7r[(f+iflgj).N/Q_1.ng]_ Z 6m[(m+§).z‘N’§2.(m+i)] 62m[(m+§)(N/f+z‘N'§z.g)}
mezn
N TENGHOQTN G Z (T 3)- AN Q. ()] 2] (1747 (N'F+IN'Q.9)] (3.199)
mezn
where N is changed to N’ to show a distinction between the two wavefunctions for the
purpose of defining the mapping as given below. Next consider the negative chirality

wavefunction (3.191), written in terms of real coordinates # and ¥,

-,

wf,N,M ~ i EN GG M- Z ewi(i)[(erf)-M-(r?hLJ)] e2m'[(m+f)-N-f+i(ﬁz+f)-M-g‘]_ (3.200)

mezn

It is now easy to check that the above equations (3.199) and (3.200) precisely match with

the following identification :
N=N+N=N
M=N-N=NQ=Q=N"'M, (3.201)
with Q = 0, and © is a real matrix. For the N and M, defined in eq. (3.189), N~! and
Q) are given by;

_ 1 1 I —q 1 (¢ q

1 _

N = 1+ o) < ) + = - . , (3.202)
q N1 q q Ny \ ¢

i 1 [(1-¢ -2 i
Q= — 1 ) = @) (3.203)
I+ \ —2¢ ¢—1

We have therefore shown explicitly that the positive chirality basis wavefunction (3.68),
known earlier in the literature, can be mapped to the negative chirality wavefunctions
that we have constructed in eqs. (3.181)-(3.183), (3.191). Such a map also confirms the
validity of our construction for the negative chirality basis functions, presented using basic
principles, such as equations of motion as well as periodicity requirement. In fact, in the
next subsection, the same mapping is also obtained through comparison of the relevant
equations of motion, which further confirms our results for the construction of the basis

functions. Note that for ¢ = 0 or ¢ — oo, corresponding to the case when both matrices
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N and M in eq. (3.189) are diagonal, we have:

. 1 0 A —1
0= , or = ; , (3.204)
0 -1 0 1

respectively. As a result, one reproduces the known mapping of the wavefunctions between

positive and negative chirality spinors in the case when T* is factorized into T? x T2 [6].

3.6.6 Mapping the equations of motion

In order to derive a similar mapping of the equations of motion, we show below that the
covariant derivative operators appearing in eqs. (3.22) for the positive chirality wavefunc-
tion, with a nontrivial complex structure (ZQ), are equivalent to the derivative operators
appearing in eqs. (3.164), (3.165) for the negative chirality wavefunction (with complex
structure 2 = ily). The mapping of corresponding gauge potentials can also be shown
in the same manner, since they have similar dependence on the complex structure as
the derivative operator. Note that the complex structure appears in the wavefunctions
as modular parameter matrices. We therefore reconfirm the mapping between the two
wavefunctions by comparing the equations of motion as well.

We now examine the Dirac equations for both cases. For the first one, with arbitrary
Q(= i), we have

ey

S
+
ST
<y
I
—~
o
S—
iR
VR
0y
|
QY
~_

T=F+iy; FT=F—iQy = I=

which implies

g 1[0 Ay O
Dz 2 (8:5" Z(Q)ji a—yj) ’

0 1[0 - 0

Then, the Dirac equation for the positive chirality wavefunction is:

_ 2 N7/ 1 N 2N/
Det?N'(2,0) = 5 (Das +i(Q)5' Dy ) ¥WN (20) =0, i,j=1,2. (3.200)

On the other hand, for the negative chirality solution (3.180), with complex structure

Q) = il,, the relevant derivative operators are:

(BDy + aDy) WNM = 0; (8D, — aDy) ™M =0, (3.207)
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These equations, using the definitions 2* = 2% + iy?, z; = 2 — iy’, i.e. substituting

D; = % (Dyi —iD,i),
D; = % (Dyi +iDyi) . i=1,2
can be rewritten as:
p ~ @ - 7 N.M
{5 (Dgr — D) + 5 (D2 — szz)} I =0,

{g (Dy2 +iD,2) — % (Dy1 + z’Dyl)} YINM
These two equations upon simplification leads to,

1 . O{2—/82 2(]{6 ZN.M
é{D;pl +Z<mDyl—&2+ﬁ2Dy2)}w]7 ) :O,

; {DxQ i (a2+620y1 Foa e ) P =0 (3.208)

Now using g = ¢ from eq. (3.187) and comparing the equations (3.206) and (3.208), one

finds that they precisely match for the following complex structure:

Avo1 1 1-¢*> —2¢
A ey ( P 1) : (3.209)

which is exactly the same as eq. (3.203). Thus, the wavefunctions as well as the Dirac

equations for both cases match exactly. This mapping can be generalized further, as given

in subsection 3.6.8 below.

3.6.7 Mapping for arbitrary complex structure ()

In this subsection, we generalize the mapping between the equations of motion associated
with the positive and negative chirality wavefunction to the case of T compactification

with arbitrary complex structure 2. Now, the negative chirality basis functions satisfy:

1 oy [oF =52 o 203 7
5 {Dazl + ’L(Q)ill (ZQ + BgDyi) — Z(Q)z‘Ql (ﬁ@Dyz) } @/) ANM 0
. _ _2 . _ 2 — 2 s
{Dx2 +i(Q)7! (WO@DZJ") +i(Q)' (gz T gsz") } PPRM =0, (3.210)

DO | =
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which can be identified with the equations satisfied by the positive chirality wavefunction

with Q = QQ, as can be seen through the decomposition:

o 1[0 - .0
azi_é(axi_l(mﬁ @)

o 1[0 - 0
az_i—2(axi+z((2).. ) (3.211)

Thus, eq. (3.68) with = QQ, with  given in eq. (3.209), provides the negative chirality
solution for arbitrary complex structure €2, where both ‘oblique’ and diagonal fluxes are

turned on.

3.6.8 Generalization for the T°- case

In this subsection, we generalize the results obtained so far for negative chirality fermions
on T* to the more general T case. We only consider the wavefunctions that are well
defined with two positive and one negative eigenvalues of the 3 x 3 Hermitian intersection
matrices, since these will complete the list of well defined wavefunctions, once complex
conjugations are taken into account. For the case of T, the relevant equations, obtained

by generalization of eqs. (3.164) and (3.165) to be examined, are:
(aDy = B;D;)ip = 0, (3.212)
and

Note that in these equations and below, the indices i, j = 1,2 (used for the T* with wave-
functions of positive chirality). In order for the above two equations to have simultaneous

solution, one obtains the condition :
PFY + afi i — af;FY — BifFyy = (3.214)

where F® = N is the difference of fluxes in brane stacks a and b. The general solution of

this equation is of the following type:

F*=N=N ( 14 _@T> + <@TN§ fN) , (3.215)

-7 qqr
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where N is a 2 x 2 matrix and N is a number. Also, 7 is the two-dimensional (2d) vector
defined as:
=" (3.216)
42

Now, after showing the possible existence of the solution by defining F'® in (3.215),

with ¢; = %

for the negative chirality wavefunction on 7%, we proceed to present a mapping between
the equations of motion for negative chirality and positive chirality wavefunctions on 7.
As described before in section 3.6.6. Here also we show that the covariant derivative
operators appearing in eqs. (3.22), for the positive chirality wavefunction, with a nontrivial
complex structure are equivalent to the derivative operators appearing in eqs. (3.212),
(3.213) for the negative chirality wavefunction (with complex structure € = il3) and the
corresponding gauge potentials map in the same manner.

For the positive chirality case, with arbitrary Q(= Q) and egs. (3.205), (3.205), the

Dirac equation reads:

D: /N (2,Q) = (DW + i(Q);;Dyu> PN(EQ) =0, pr=123. (3.217)

N | —

On the other hand, for the negative chirality solution, with complex structure 2 = il3,

the relevant derivative operators, given in eqs. (3.212), (3.213), take the form:

( 25@] + BZ/B_]) P 7 (20(50 Dy1 + 1 (Blﬁj _ a25ij) Dyj}w;7N’M _ O,

{
{(82+ %) Dy +i (0% = B2) Dyi — i (2i0) Dy } NM = 0, (3.218)

N RN~

Now, defining new 2 x 2 matrices,
Ay = (%6 + BiBj) . By = (BiB; — ady5)
and

P, = (2a8,), (3.219)
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eqs. (3.218) can be re-written as:

1 ;- —_ . . s
3 {Dani —i(A™'P), D, +i (A IB)@-]' Dyj} HINM

1 042—62 20[/8 2
D a+il— VD —i [ —2 ) D, S NM — .22
s () o) o e

A comparison of equations (3.217) and (3.220) implies that they precisely match for the

following complex structure:

(3.221)

This expression for the complex structure generalizes the one derived earlier in eq. (3.203)
for the T* case. The results are also easily generalizable to arbitrary complex structure €

following the discussions in subsection 3.6.7 for the special case of T? (see eq. (3.211)).

3.6.9 Computation of Yukawa couplings

Now that we have derived both the fermionic and bosonic internal wavefunctions and
expressed them as an orthonormal basis, we compute the Yukawa couplings using the
basis wavefunctions (3.191). We also point out how the results derived below reduce to
the ones in section 3.5.

Starting with basis functions described in eq. (3.191), for the case of the canonical

complex structure € = il, (in the T case), we have:

¢Z,N1,M1(5),wf7Nz,Mz,(g) - /\/’;./\[3.eiﬂ[f(Nl+N2)-27+i?3'(M1+M2)'?31 (3.222)
Z o+ My (11 +0)+(l2+7) Mz (l2+7)]

I1,lz€Zn
o2mil(114) N1+ (l2+) Na) &, 2mi(0) (i +0) M +(12+) Mz f

This expression can be re-written as:

w?,Nl,Ml(g)_wi‘,NzMz,(g) _ /\/‘z./\/;.eiﬂ[f-(Nl+N2)-!7+i!7'(M1+M2)'@7 (3.223)
Z i@ QD 2mi(l"-QX) 2mi()(-Q-Y) ’

I1,lz€Zn
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where we defined the 4d-vectors:

. i+ . 7 . 7
=70} k=" ), v=("), (3.224)
J+ 12 x Y

and the 4d-matrices:

N; O A M; O
= 7 = ) 3.225
a- (V) e (N ) (3229
Using the transformation matrix 7', defined in eq. (3.74), and eqs. (3.75)-(3.79), we
explicitly write the terms appearing in the exponents in the RHS of eq. (3.223) as:

— A~ = — ~ =2

Q- M) =0"(T7'7) Q- (T(TH)") - (),

i-Q-X)=1 . (1'7)-Q- (17T 7). - X,
T-Q-Y)=1 -(1'7)- Q- (T (1TH7) - Y. (3.226)
Then using:
iy o [ N1+ Nz 0
Q=7-Q-T _< ; DNy 4 Ny ) (3.227)
N A T (M; + M) (M;N; ' — MyNy H)a?
Q=T-QT _<a(N1_1M1—N2_1M2) (N7 "M;N; ' + N 'M,Ny Ha? )7
. (+ N NGNGB NN
Trm—1 __
. ‘< (40— G+ )] (N7 4 Ny T (022
and
R N NT 4+ NGOG+ 4) + N NT + N DL + 1)
T-HT(1) = 2 2 Lylr o . (3.229
SR < (@ DTN NG @+ 1) = (7 + 1) (3:229)
(%) - ( ’ ) @Y - ( §> , (3.230)
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we can re-write eq. (3.223) as

iN1,M1 (2 5 NaMa, (oA _ AL N[ in[@(N1+Na)-g+ig-(My+Maz)-7]
w 1 1(2) w] 2Ma2 (z) _/\[i _/\/’J e 1+N2)-y+ey-(Ma 2)Yl (3_231)
Z o™i (L )N+ (I247)N2] (N1 4+N2) = (M1 +Ma)-{ (N1 +N2) = (N1 (1) +N2(7+2))})

I1,lz€Zn
o2mi{[(11+0)- N1 +(I2+7) N2 (N1 4+N2) 7' }-(N1+N2)Z | 2mi(6){[(11+0)-Na+(l2+7) N2 (N1 4+N2) 71 1 (M1 4+ M2)g

E2mi(D{(H) ~ G+ (NT 4Ny ) o™ pa(Ny 7 M1 —N2 ™' Ma)-4 o

i) ({{+)N1+(l2+7)N2] (N1 +N2) = (M Ny ' =M2Nz = Ha” {(a~ ) N (N1+N2) ' Na[((=5)+ (1 —12)}) o

e O(E=7)+ (11 ~12)) N1 (N1 +N2) "' Noa~!]-[a(N1 ~ M1 ~Na = Ma2)](N1+N2) = (N1 (1) +N2 (+2))}

em'(i){[((;*f)+(lzfl;))N1(N1+N2)71N2a71][a(Nl_1M1N1_1+N2_1M2N2_1)aT][(Ofl)TN2(N1+N2)71N1 [G—)+(1—12)]}
Now, in a similar exercise as the one performed earlier in sections 3.5.2, 3.5.3, 3.5.4, we

rearrange the series in eq. (3.231) in terms of new summation variables lg, lz, m, whose val-

ues and ranges are assigned as in these sections.'> With the value of a = (det Ny det N3/,

defined in eq. (3.86), eq. (3.231) takes the form:

Z,Nl,Ml 7\ . ;,NzMz, 2\ . - iﬂ[f-(N1+N2)-g+ig-(M1+M2)-3ﬂ

0 (2) - (2) =N;-N;-e (3.232)
Z Z (D[N +7N2+7iN1) (N1 +N2) = +3]- (M1 +Ma) (N1 +N2) = (N1 Noj +Nii) +s] 5

[3,la€Zn

62ni[(fN1+fN2+mN1)(N1+N2)*1+l§]~(N1+N2)f ) 62ni(i)[(fN1+fN2+7ﬁN1)(N1+N2)*1+l§]~(M1+M2)gj %

.- -1 -
62ﬂi(i)[(i—j+7ﬁ)%+l4}-[(det N det N2)(Ny ~*M;—Nz~1My)]-7 y

- - - -1 - = -
I DIEN TN 47N ) (N1 +N2) ™ 5] (det N1 det N2)(M1 Ny~ =Mp N~ )] [FEEETREE R () 3]

- - -1 . o . -
ewi(i)[(iqutm)%Jrld-[(det N det N2)(N1 ~ 1Mz —Ng =1 Ma)]-[(N14+N3) =1 (N1 i+ Noj+N1mm)+i3] y

ot 2 o\ Np(Nj+No) INg |~ _ _ _ 1y No(Ny+No) "INy 2 = oy ~
em(z)[(zfﬁtm)%Jrld[(detN1 det N2)2(N7~'M;N; 1+ N~ M2Ny 1)][%(%%@“41

Using from eq.(3.191):

(¢E,N3,M3)* _ NIZ . o—i7l#Ns §—i7-Ms-7]
% Z i[5 +R)- Ms-(I+F)] _e*?ﬁi[(l?)‘FE)-N;;-ffi(l§+lz)-M3-m’ (3.233)

lhezn

we can then proceed to calculate the Yukawa coupling:

Yijk = Oabeg / dzidz; - " NML i NaMz | (ENsMsys (1 9) (3.234)
T4

12For details see sections 3.5.1, 3.5.2, 3.5.3, 3.5.4.
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Consider first the integration over z:

/d2feiw{f-[(N1+N2)N3]-g’} Z Z62m’[(7N1+fN2+r?LN1)(N1+N2)—1+l§}-(N1+N2):i’6727ri(l73+13)-N3-f
I3,l,lezn ™

(3.235)

which implies, using (N + N3) = N3 , the following conditions:
e equality of the summation indices lg = l73,
e the relation (iN; 4+ jN, + mN;)(N3) ' =k .

Note that (N7 + Njy) = N3 is a valid condition in a triple intersection since I, + Ipe = L4,
with complex conjugation taking care of the fact that I,. = —I,, which changes the signs
of N3 and M3. Also, as in section 3.5.3, 3.5.4, for any given solution of the above constraint
equation for 7, 7, k,m, other solutions inside the cell of eq. (3.99) that are shifted by ni’s
satisfying mN;Ng ' : integer are also allowed. In view of this, as in eq. (3.112), we break
the sum over m into two parts, one corresponding to ’I”?l, which is a given specific solution
of eq. (3.105) and the other ones as given by sum over integer variables p" and ﬁ whose
ranges are as defined in eq. (3.110).

Imposing the constraints from the ¥ integration, we obtain:

Yijk = abeg - Ny N - N (3.236)

/ng»{e—ﬂ[g'(M1+Mz+M3)~ﬂ Z Zem'(i)[E+l§}-(M1+M2).[E+l§} %
I3,Ja€Z" Fp

N _ _ No(N{4+No) "INy » = =, -~
67rz(z)[k+l3}-[(detN1 det N2)(M1N; 1 —M2N, 1)]-[%(%%@“4 %

o o o -1 _ - =
O m) MEE R N2 1G] (det Nu det Na)(Na ~'Ma~No ™' Mo)}(F+15]

- - o -1 - -1 - = —
i) (F— ) LT ) (det Na det N2) (N2~ MaNa 1 4N2 ~ 1M N~ )] (RAEHERD R () 4]

2 2P o -1 g — — —
Xeﬂ@'(i)[kleS].(MhLMQ).g’.ewi(i)[(z—j-l—m)%-{-h“(detN1 det N2)(M1 N3~ ' —M2Ng2 1)}-y}

)

where the range of the sum over g, p is as used in eq. (3.110) in section 3.5.3.
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The above expression for the Yukawa interaction can be written as following:

_3
Yijk = Oapeg- (2°)3(|det My|.| det Mal.| det Mg|)s (Vol(T*)) " ?
/ Pij{e I OEMEM 5§ § @R QR 2R Y
I5,la€Z" Fp

= Oweq - (2%)1(|detM, |.|detMs)|.|detMs))

Z/de{ —7[g-(M1+M2+Ms)-g] | 19[ ] Y’ 'LQ, (3237)

_3
2

Vol T4 X

where we defined new 4d-vectors:

. I3 . k
L=(2], K= NN Na | (3.238)
<z4) <[<z—y+m>n—N;eTNt2‘esz 1)
. M; + M,)7
Y = (M + _zl)y o (3.239)
[(det N1 det N2)<M1N1 — M2N2 )] Y

and the 4d-matrix:

~ /_ (M1 + M2) (det N1 det N2)(M1N171 - M2N271)
~\(det Ny det No)(N; 'M; — Ny 'M,)  (det Ny det Ng)2(Ny "M N; ! + Ny 'M,N, )
(3.240)

with k appearing in eq. (3.238) restricted by the Kronecker delta relation written above,
as following from the z integration, in eq. (3.235) and the range of the sum over f, p is as
used in eq. (3.110) in section 3.5.3, we skip the details regarding them.

In fact, the form of the result (3.237) is valid for all basis functions, whether cor-
responding to positive or negative chirality wavefunctions, since the negative chirality
wavefunction (3.191), written for the complex structure {2 = i/, and used in obtaining the
final answer for Yukawa coupling in eq. (3.237), reduces to the one for positive chirality
wavefunction for the same complex structure when M is set to N (see eq. (3.68) for the
general form of the positive chirality wavefunction). For such a choice: M; = Nj, Ql has

a factorized block form and the vector Y in eq. (3.239) now has a form:

Y = <(Nl ENZW> . (3.241)
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The theta function in eq. (3.237) then factorizes and the final answer reduces to the form
given in eqs. (3.104), (3.114) for the choice 7 = i corresponding to the complex structure
of our choice in the negative chirality wavefunction (3.181).

The Yukawa coupling expression (3.237) can be further generalized to other situations.
First, although the above analysis was very specific to the case of T* due to our choice
of wavefunction in eq. (3.191), the generlization to the T° is staightforward. Mapping
between matrices N and M is identical and follows from the definition of €} in subsection
3.6.8. The final answer is identical to the one given in eq. (3.237).

Further generalization to the situation of arbitrary complex structure should also be
possible, using the wavefunctions that emerge due to the mappings obtained in subsection
(3.6.7) and scaling procedure presented in section (3.5.6) for the positive chirality wave-
functions. One, however, also needs to examine the symmetry property of the matrices
NQQ etc., appearing in the definition of the wavefunction. We leave further details for

future work.

3.7 Discussions and Conclusions

In this concluding section, we first comment on the case of magnetized branes with higher
winding numbers. The form of the wrapping matrices [104] for D9 branes on T° was
discussed in [7, 103|. They are real 6 x 6 matrices giving the embedding of the brane along
spatial internal directions. The situation where worldvolume coordinates are identified
with the spatial coordinates corresponds to W being diagonal. Then, for example, for a
canonical complex structure {2 = il3, the spatial components of the flux matrices are of the
form given in eqs. (D.3), (D.4), (D.5). Taking into account the gauge indices, one obtains
a block diagonal matrix structure for the fluxes, that reduces in the case of factorized tori

to the form:

™ e
F=1" b , (3.242)
n_l;INb
with @ and b representing the brane-stacks and i denotes the i’th T2. Also m$” are the

first Chern numbers, as given in egs. (D.3) and (D.4), whereas n® are the product of the
winding numbers along various 1-cycles of (Tz)3 € TS. Also, N® and N’ are the number
of branes in stacks a and b respectively and the above expression has a straightforward
generalization when many such brane stacks are involved.

In [6], a gauge theoretic picture of the magnetic fluxes along brane stacks with higher

winding numbers (> 1) was given. For instance, consider the simplest choice N = N =
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1. In this case, the configuration of the brane stacks a and b with one D-brane each,

b

having wrapping numbers n%, n® and 1st Chern numbers m?, m®, is given by a flux matrix

associated with a U(n®+n?) gauge group with flux having the internal (gauge) components:
F=" " , (3.243)

along the 7’th T% and m¢, n{ etc. are relatively prime.
Given the U(n® + n®) flux in eq. (3.243), the fermion wavefunctions associated with
bifundamentals were constructed in [6]. The new feature is that, to have proper periodicity

property for these fermion wavefunctions, non-abelian Wilson lines need to be turned
b

on. In turn, these non-abelian Wilson lines mix up n{ x n; components and the set of
periodicity constraints only allows the bifundamentals belonging to the representations of
the gauge group: U(P?) x U(P?), with P* = g.c.d.(m¢,n%). In our example above we have
P*=P)=1.

The case of oblique fluxes brings in extra complexities in the analysis due to the
presence of six independent 1-cycles along which non-abelian Wilson line actions need
to be fixed. Given the action of these Wilson lines, one can then proceed to obtain the
wavefunctions as well as the Yukawa couplings. However, unlike the factorized situation in
[6], one finds that the action of non-abelian Wilson lines on the wavefunction, is dependent
on the particular model, or more precisely, on the details of the oblique fluxes that are
turned on. Further analysis along this line is, though cumbersome, possible.

To summarize, in this work, we have been able to explicitly generalize the Yukawa
coupling expressions to the situation when the worldvolume fluxes, that are responsible
for moduli stabilization, chiral mass generation, supersymmetry breaking to N =1 etc.,
do not respect the factorization of T¢ into (72). For the factorized tori, the mappings
of the Yukawa couplings, superpotentials and Kéahler potential between the type IIB and
ITA expressions was discussed in [6]. In the ITA case, the results are obtained through a
‘diagonal” wrapping of the D6 branes in three T%’s.

It will also be interesting to map our IIB expressions, given in this chapter to the
ITA side and find the corresponding intersecting brane picture. Due to the presence of
magnetic fluxes, obtaining the Type ITA picture by simply applying T-duality is not trivial.
When fluxes are turned on along the three diagonal 2-tori, the corresponding T-dual
picture is given by intersecting D6-branes, the angle of intersection being related to the
magnetic flux turned along that tori. However, when there are ’oblique’ fluxes present, the

corresponding intersecting brane picture is not very illustrative. As stated earlier, such a
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ITA construction will require putting the branes along general SU(3) rotation angles and
then obtain the area of the triangles corresponding to the intersections of three branes
giving chiral multiplets.

Finally, it will be interesting to explore the generalization of our results to higher-
point functions (computing couplings of higher dimensional effective operators) [129] and
make explicit comparisons of our results with those in [124, 125|, where the situation
with diagonal intersection matrices INj, but non-factorized complex structure, is addressed
through a computation of twist field correlations. However, one then needs to examine
the effect of supersymmetry conditions (2.26) and (2.27) to see if the interaction indeed

remains nontrivial in a supersymmetric set up.
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Supersymmetric SU(5) GUT model
with Stabilized Moduli:

4.1 Introduction

In this chapter, we apply the framework described in the previous chapters, as well as
the theoretical results derived in them, to construct semi-realstic models. In particular,
we discuss the construction of a three generation SU(5) supersymmetric grand unified
(GUT) model in simple toroidal compactifications of type I string theory with magnetized
D9 branes. The final gauge group is just SU(5) and the chiral gauge non-singlet spectrum
consists of three families with the quantum numbers of quarks and leptons, transforming
in the 10 + 5 representations of SU(5). Brane stacks with oblique fluxes play a central
role in this construction, in order to stabilize all close string moduli. Moreover, the model
is free from any chiral exotics that often appear in such brane constructions.

In the minimal case, three stacks of branes are needed to embed locally the Standard
Model (SM) gauge group and the quantum numbers of quarks and leptons in their inter-
sections [123]. They give rise to the gauge group U(3) x U(2) x U(1), with the hypercharge
being a linear combination of the three U(1)’s. Three different models can then be ob-
tained, one of which corresponds to an SU(5) Grand Unified Theory (GUT) when U(3)
and U(2) are coincident. Here, we focus precisely on this U(5) x U(1) model employing two
magnetized D9-brane stacks. Open strings stretched in the intersection of U(5) with its
orientifold image give rise to 3 chiral generations in the antisymmetric representation 10
of SU(5), while the intersection of U(5) with the orientifold image of U(1) gives 3 chiral
states transforming as 5. Finally, the intersection of U(5) with the U(1) is non chiral,
giving rise to Higgs pairs 5 + 5.

In order to obtain an odd number (3) of fermion generations, a NS-NS 2-form B-
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field background[91, 92| must be turned on [94|. This requires the generalization of the
minimal set of branes with oblique magnetic fluxes that generate only diagonal 5-brane
tadpoles on the three orthogonal tori of T°¢ = HLT;. We find indeed a set of eight
such “oblique" branes which combined with U(5) can fix all geometric moduli by the
supersymmetry conditions. The metric is fixed in a diagonal form, depending on six radii
given in terms of the magnetic fluxes. At the same time, all nine corresponding U(1)’s
become massive yielding an SU(5) x U(1) gauge symmetry. This U(1) factor cannot be
made supersymmetric without the presence of charged scalar VEVs. Moreover, two extra
branes are needed for RR tadpole cancellation, which also require non-vanishing VEVs to
be made supersymmetric. As a result, all extra U(1)’s are broken and the only leftover
gauge symmetry is an SU(5) GUT. Furthermore, the intersections of the U(5) stack with
any additional brane used for moduli stabilization are non-chiral, yielding the three families
of quarks and leptons in the 1045 representations as the only chiral spectrum of the model
(gauge non-singlet).

To elaborate further, the model is described by twelve stacks of branes, namely Us, Uy,
O1...,0s, A, and B. The SU(5) gauge group arises from the open string states of stack-
Us containing five magnetized branes. The remaining eleven stacks contain only a single
magnetized brane. Also, the stack-Us containing the GUT gauge sector, contributes to the
GUT particle spectrum through open string states which either start and end on itself!3
or on the stack-Uj, having only a single brane and therefore contributing an extra U(1).
For this reason we will also refer to these stacks as Us and U, stacks.

The matter sector of the SU(5) GUT is specified by 3 generations of fermions in the
group representations 5 and 10 of SU(5), both of left-handed helicity. In the magnetized
branes construction, the 10 dimensional (antisymmetric) representation of left-handed

fermions:

0 u§ us w dy

0 u‘{ (%) dg

10 = 0 wug ds (4.1)
0 et
0
L

arises from the doubly charged open string states starting on the stack-Us and ending at
its orientifold image: Uz and vice verse. They transform as 1020y of SU(5) x U(1) x U(1),
where the first U(1) refers to stack-Us and the second one to stack-U;, while the subscript
denotes the corresponding U(1) charges. The 5 of SU(5) containing left-handed chiral

13For simplicity, we do not distinguish a brane stack with its orientifold image, unless is explicitly stated.
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fermions, or alternatively the 5 with right-handed fermions:

(S}

Il

=8
w

(4.2)

R

are identified as states of open strings starting from stack-Us (with five magnetized branes)
and ending on stack-U; (i.e. the orientifold image of stack-U;) and vice verse. The
magnetic fluxes along the various branes are constrained by the fact that the chiral fermion
spectrum, mentioned above, of the SU(5) GUT should arise from these two sectors only.
The appearance of this form is discussed in later Subsection (4.2.1).

Our aim, in this chapter, is to give a supersymmetric construction which incorporates
the above features of SU(5) GUT while stabilizing all the Kéhler and complex struc-
ture moduli. More precisely, for fluxes to be supersymmetric, one demands that their
holomorphic (2,0) part vanishes. This condition then leads to complex structure mod-
uli stabilization[102]. In our case we show that, for the fluxes we turn on, the complex
structure Q of T is fixed to

Q =113, (4.3)

with 13 being the 3 x 3 identity matrix.

In this chapter, we make use of the conventions given in chapter 2, for the parametriza-
tion of the torus 7, as well as for the general definitions of the Kihler and complex struc-
ture moduli. In particular, the coordinates of three factorized tori: (7?)% € T® are given

by z;,y; © = 1,2,3 with a volume normalization:

For Kéahler moduli stabilization, we make use of the mechanism based on the magne-
tized D-branes supersymmetry conditions as discussed in [102, 103, 120|. Physically this
corresponds to the requirement of vanishing of the potential which is generated for the
moduli fields from the Fayet-Iliopoulos (FI) D-terms associated with the various branes.
Even in this simplified scenario, the mammothness of the exercise is realized by noting that
every magnetic flux that is introduced along any brane also induces charges corresponding
to lower dimensional branes, giving rise to new tadpoles that need to be canceled. In par-

ticular, for the type I string that we are discussing, there are induced D5 tadpoles from
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fluxes along the magnetized D9 branes. These fluxes, in turn, are forced to be non-zero
not only in order to satisfy the condition of zero net chirality among the Us and the extra
brane stacks (except with the U;), but in order to implement the mechanism of complex
structure and Kéahler moduli stabilization, as well. Specifically, for stabilizing the non-
diagonal components of the metric, one is forced to introduce ‘oblique’ fluxes along the
D9-branes, thus generating ‘oblique’ D5-brane tadpoles, and all these need to be canceled.

However, as mentioned earlier, we are able to find eight brane stacks Oy, ..., Og, with
different oblique fluxes, such that the combined net induced D5-brane charge lies only
along the three diagonal directions [x;, y;]. The holomorphicity conditions of fluxes, namely
the vanishing of field strengths with purely holomorphic indices, for these brane stacks
stabilizes the complex structure moduli to the value (4.3). These fluxes also introduce
D-term potential for the Kihler moduli. Once the complex structure is fixed as in (4.3),
the fluxes in the nine stacks Us, Oy, ..., Og generate potential in such a a way that all the
nine Kéhler moduli, J;5, (i, = 1,2,3) are completely fixed by the D-flatness conditions,
imposing the vanishing of the FI terms. The residual diagonal tadpoles of the branes in
the stacks Us, Uy, Oq,...,Og are then canceled by introducing the last two brane stacks
A and B. D-flatness conditions for the brane stacks U;, A and B are also satisfied,
provided some VEVs of charged scalars living on these branes are turned on to cancel
the corresponding FI parameters. Magnetized D-branes provide exact CFT (conformal
field theory) construction of the GUT model. However, in the presence of the these non-
vanishing scalar VEVs, exact CF'T description is lost. The validity of the approximation
then requires these VEVs to be smaller than unity in string units, a condition which is
met in our case. We explicitly determine the charged scalar VEVs and verify that they all
take values v* << 1. Our model therefore corresponds to the Higgsing of a magnetized
D9-brane model to be made supersymmetric through the VEVs of certain charged scalar
fields on the intersections of the branes U;, A and B.

At this point we would like to point out that, our strategy is to start with a suitable
ansatz for both the complex structure (4.3) and Kéhler moduli leading to diagonal internal
metric. Using this ansatz, we then determine fluxes along the branes satisfying all the
constraints we elaborated upon earlier. We then use the flux solutions, to show explicitly
that the moduli are indeed completely fixed, consistent with our ansatz.

The chapter is organized as follows. In Section 4.2, we obtain general solutions for
fluxes along magnetized D9-branes satisfying the necessary constraints, as described in
chapter 2, for building the model. Moduli stabilization is discussed in Section 4.3. In
Section 4.4, the VEVs of charged scalars on the stacks U;, A and B are determined. In

Section 4.5, we briefly present an analysis of the superpotential and D-terms for the model

100



Chapter 4. Supersymmetric SU(5) GUT model with Stabilized Moduli:

in order to show how masses for several non-chiral fermion multiplets can be generated,
without evaluating explicitly the superpotential coefficients. This chapter ends with a
discussion, Section 4.6, of our results. In Appendix A, the fluxes along branes are written
explicitly for the stacks Oy, ..., Og and the associated D5-brane tadpoles are given. The
absence of chiral fermions is also shown from these sectors. In Appendix B, complex
structure stabilization is shown explicitly using the fluxes given in Appendix A. Finally,

the Kéhler moduli stabilization is shown in Appendix C.

4.2 Constructing a three generation SU(5) GUT model

In this section, we first present in subsection 4.2.1 the brane stacks Us and U;, on which
the SU(5) GUT, with three generations of chiral fermions, lives. Then, in subsection 4.2.2,
we write down the conditions which any extra stacks, called O, have to satisfy, so that
there are no net SU(5) non-singlet chiral fermions corresponding to open strings of the
type: Us — O, and Us — O;. In other words:

[U5Oa -+ [USOZ = 0. (45)

In addition, we also write down, in subsection 4.2.3, the condition that such stacks are
mutually supersymmetric with the stack Us, without turning on any charged scalar VEVs
on these branes. The solution of these conditions giving eight branes Oy, ..., Og is presented
in subsections 4.2.4 and 4.2.5. They are all supersymmetric, stabilize all K&hler moduli
(together with stack-U;) and cancel all tadpoles along the oblique directions, z;x;, x;y;,
y;y; for ¢ # j. Finally in subsection 4.2.6, two more stacks A and B are found which cancel
the overall D9 and D5-brane tadpoles (together with the U; stack).

As stated earlier, our strategy to find solutions for branes and fluxes is to first assume
a canonical complex structure and Kéhler moduli which have non-zero components only
along the three factorized orthogonal 2-tori. In other words, we look for solutions where

Kahler moduli are eventually stabilized such that

By assuming the complex structure and Kéhler moduli as in eqs. (4.3) and (4.6), we then
find fluxes needed to be turned on in order to cancel tadpoles. These fluxes are also used
in the stabilization equations, in section 4.3 and Appendices B and C, to show that moduli

are indeed completely fixed in a way that the six-torus metric becomes diagonal.
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4.2.1 SU(5) GUT brane stacks

We now present the two brane stacks Us and U; which give the particle spectrum of SU(5)
GUT. For this purpose, we consider diagonally magnetized D9-branes on a factorized six-
dimensional internal torus (2.17), in the presence of a NS-NS B-field turned on according
to eq. (2.54). The stacks of D9-branes have multiplicities Ny, = 5 and Ny, = 1, so that an
SU(5) gauge group can be accommodated on the first one. Next, we impose a constraint
on the windings 7 (defined in eq.(2.15)) of this stack by demanding that chiral fermion
multiplicities in the symmetric representation of SU(5) is zero. Then from eqs. (2.58), we

obtain the constraint:

[17% =1 (4.7)
J

We solve eq. (4.7) by making the choice (2.18): nls = W®Us =1 for the stack Us. This
also implies ﬁz% =1 for i = 1,2,3. Moreover, since from (2.49) the total D9-brane charge
has to be sixteen and higher winding numbers give larger contributions to the D9 tadpole,
the windings in all stacks will be restricted* to n¢ = 1 so that a maximum number of brane
stacks can be accommodated (with Q? = 16), in view of fulfilling the task of stabilization.

Indeed, the stack Us already saturates five units of D9 charge while stabilizing only a
single Kédhler modulus. One more unit of D9 charge is saturated by the U; stack, respon-
sible for producing the chiral fermions in the representation 5 of SU(5) at its intersection
with Us. Moreover, it cannot be made supersymmetric in the absence of charged scalar
VEVs, as we will see below. Thus, stabilization of the eight remaining Kahler moduli,
apart from the one stabilized by the Us stack, needs eight additional branes Oy, ..., Os,
contributing at least that many units of D9 charge (when windings are all one). These
leave only two units of D9 charge yet to be saturated, which are also required to cancel
any Db-brane tadpoles generated by the ten stacks, Us, U; and Oy,...,Og. We find that
this is achieved by two stacks A and B, also of windings one, so that the total D9 charge
is @” = 16 and all D5 tadpoles vanish Q%; = 0.

Now, after having imposed the condition that symmetric doubly charged representation
of SU(5) is absent, we find solutions for the first Chern numbers and fluxes, so that the
degeneracy of chiral fermions in the antisymmetric representation (10) of SU(5) is equal
to three. These multiplicities are given in eqs. (2.57), (2.61), and when applied to the

stack Us give the constraint:

(2ms +1)(2m5® + 1)(2mf® + 1) = 3, (4.8)

14 detW is restricted to be positive definite in order to avoid the presence of anti-branes.
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with a solution:
i = -2, my» =1, m§®>=0. (4.9)

The corresponding flux components are:

3 1
Py = =5 Pubp =5 Py =3 (4.10)

associated to the total (target space) flux matrix

_3
2

Us
Fll -

Us = (4.11)

At this level, the choice of signs is arbitrary and is taken for convenience.

Next, we solve the condition for the presence of three generations of chiral fermions
transforming in 5 of SU(5). These come from singly charged open string states starting
from the U; stack and ending on the U; stack or its image. In other words, we use the
condition:

Iy,v, + lysur = —3. (4.12)

To solve this condition for diagonal fluxes, one can use the formulae (2.56), or alternatively
egs. (2.59) and (2.60). In the presence of the NS-NS B,s-field of our choice (2.54), and
using the fluxes along the Us stack (4.10) or (4.11), the formulae take a form:

3 1 1

(NU57NU1) : [U5U1 = (_5 - FlUl)<_§ - F2Ul>(§ - 3Ul>7 (4'13)
3 1 1 Uy 1 Uy
(NUsaNUl) : ]UsUl* :(_§+FU1)(_§+F2 )(§+F3 )a (414)

where we have used the notation F = (F(“ll))zg for a given stack-a. We will also demand
that all components F'*, FY1, F?fjl are half-integers, due to the shift in 1st Chern numbers
" by half a unit, in the presence of a non-zero NS-NS B-field along the three 72’s (2.17).
We then get a solution of eq. (4.12):

Iy,u, =0, Iy,uy = =3, (4.15)
for flux components on the stack Us:

Fv=-Z Fh =2 F = (4.16)
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Stack no. No. of Windings Chern no. Fluxes

a branes: N, | (n{,ng,ng) | ( m$,mg,m3 ) [(m?ﬂg?‘fﬂ)’ (m%;gg/z)’ (mgzgg/m]
StaCk_U5 5 (17 17 1) (_27 _17 O) ['%7 '%7 % ]
Stack-U, |1 (LL1) | (21,0 3,8, 1]

Table 4.1: Basic branes for the SU(5) model

One can ask whether solutions other than (4.16) are possible for the U; stack. For
instance, instead of the choice (0, —3) of eq. (4.15) for the intersections Us —U; and Us —U;
subject to the condition (4.12), one could try (—3,0) or in general (n, —n — 3), for n any
integer. Note that n (for n > 0) or —n—3 (for n < —3) is the number of electroweak Higgs
pairs contained in 5 + 5 of SU(5). Thus, the cases (—1,—2) and (—2, —1) were excluded
because of the absence of higgses, but other cases such as n = 1 or n = —4 (containing
one Higgs pair) are worth to explore. We leave these as exercises for the future.

The present results, including the quanta (m;, ;) for both Us and U; stacks, are sum-
marized in Table 4.1.

Moreover, the (chiral) massless spectrum under the resulting gauge group U(5)xU (1) is
summarized in Table 4.2. The intersection of Us with U; is non-chiral since ;5. 7, vanishes.
The corresponding non-chiral massless spectrum shown in the table consists of four pairs
of 5+ 5 and will be discussed in section 4.2.7.

4.2.2 Non-chiral stacks

So far, we have obtained the gauge and matter chiral spectrum of the SU(5) GUT using
two stacks of magnetized branes '>. However, in order to complete the model and stabilize
all moduli, one needs to add additional stacks of magnetized branes. This has to be done in
a manner such that the supersymmetries of all the brane stacks are mutually compatible.

To this end, we first examine whether the first two stacks Us and U; can have mutually

15The gauge sector of the SU(5) arises from the open string states starting and ending on the stack-Us.
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SU(5) x U(1)? | number

(10;2,0) 3
(5;1,1) -3
(5;—1,1) 4—4

Table 4.2: Massless spectrum

compatible supersymmetry in a way suitable for moduli stabilization. The Kéhler moduli
stabilization conditions are written in eqs. (2.40) and (2.45), corresponding to the cases
where charged scalar VEVs are respectively zero or non-zero.

Since the VEV of any charged scalar on the Us stack is required to be zero, in order

to preserve the gauge symmetry, the supersymmetry conditions for the Us stack read:

<J1J2 - 3J2J3 - J1J3) - 0, (417)

ool w
N |~

1
J1J2J3 — Z(_Jl —3Jy + 3J3) > 0, (418)

where we have used the fact that all windings are equal to unity and that eventually the
Kihler moduli are stabilized according to our ansatz (4.6), such that J;; = 0 for i # j,
and we have also defined

Ji; = J;. (4.19)

For the U; stack on the other hand, one has the option of turning on a charged scalar
VEV without breaking SU(5) gauge invariance. However, since all windings are equal to
unity, there are no charged states under U(1) which are SU(5) singlets. Indeed, there
is no antisymmetric representation for U(1), while symmetric representations are absent
because of our winding choice. The only charged states then come from the intersection
of Uy with Us (or its image). Thus, the supersymmetry condition for the U; stack follows
from eq. (2.40), with the fluxes given in eq. (4.16) and Table 4.1:

9 1
—g - §(J1J2 - 3J2J3 + 3J1J3) - O, (420)
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1
J1J2J3 — Z(3J1 —3Jy — 9J3) > 0. (421)

Subtracting eq. (4.20) from eq. (4.17) one obtains: .J;J; = —3 which is clearly not allowed.
We then conclude that the U; stack is not suitable for closed string moduli stabilization
without charged scalar VEVs from its intersection with other brane stacks (besides Us).
We therefore need eight new U(1) stacks for stabilizing all the nine geometric Kéhler
moduli, in the absence of open string VEVs.

In order to find such new stacks, one needs to impose the condition that any chiral
fermions, other than those discussed in section 4.2.1, are SU(5) singlets and thus belong

to the ‘hidden sector’, satisfying:
Ijga + lyge =0, fora=1,.,8. (4.22)

We then introduce eight new stacks Oy, ..., Og, which carry in general both oblique and
diagonal fluxes in order to stabilize eight of the geometric Kéhler moduli, using the su-
persymmetry constraints (2.40). The remaining one is stabilized by the stack Us. More
precisely, to determine the brane stacks Oy, ..., Og, we start with our ansatz for both Kéh-
ler and complex structure moduli, and use them to find out the allowed fluxes, consistent
with zero net chirality and supersymmetry. Later on, we use the resulting fluxes to show
the complete stabilization of moduli, and thus prove the validity of our ansatz.

In general, along a stack-a, the fluxes can be denoted by 3 x 3 Hermitian matrices,

Ji a b
Fiy=1a fo c|, (4.23)
b* ¢ fs

with f;’s being real numbers, and we have suppressed the superscript ‘e’ on the ma-

trix components in the rhs of eq. (4.23). The relationships between the matrix elements

a

iyi A€

(F{1,1))i7 and the flux components pg. ;, i, P

fi= Daiyi , @ = Pgiy2 + Pg1z2, b= Patys + IPplgs, C= D23 + 1Pp243 - (4.24)

The subscript (1,1) will also sometimes be suppressed for notational simplicity. We now

solve the non-chirality condition (4.22) that a general flux of the type (4.23) must satisfy:

Iva + Ipsqr = det(FY — ) +det(F% + F*) = 0. (4.25)
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The general solution for the flux (4.23) is:

% + (fifa = 3fafs — fifs) + (3cc® —aa™ +bb*) = 0. (4.26)

All additional stacks, including O, ..., Og, are required to satisfy this condition.

4.2.3 Supersymmetry constraint

We now impose an additional requirement on the fluxes along the stacks Oy, ..., Og, that
together with the stack Us they should satisfy the supersymmetry conditions (2.40), in
the absence of charged scalar VEVs. Using F of eq. (4.23), the supersymmetry equations
analogous to (4.17) and (4.18) for a stack O, read:

(fifafs —cc"fi = bb" foa — aa” f3 + a"bc” + ab’c)
—(N1Jafs + Jadsfi + JiJsf2) =0, (4.27)
J1J2J3 — [Jl(fgfg — CC*) + J2<f3f1 — bb*) -+ J3(f1f2 - CLCL*)] > 0. (428)

Next, we obtain two sets of fluxes of the form (4.23) which satisfy eqs. (4.26) and
(4.27). The two sets, O1,...,04 and Os, ..., Og, are characterized by the diagonal entries
in the matrix F* (4.23), which will be the same for the branes of each set. The motivation
behind such choices is dictated by the fact that once the off diagonal components of J;
are fixed to zero, these two sets of fluxes along the diagonal, together with the flux of Us

stack, determine the three diagonal elements J; (4.19), completely.

4.2.4 Solution for the stacks Oy,...,0y

In order to find a constraint on the flux components f;, f5, f3 and a, b, ¢ arising out of the
requirement that equations (4.17) and (4.27) should be satisfied simultaneously, we start

with a particular one-parameter solution of eq. (4.17):

Sh=—— h=—t=, Jy=

1 1
— — = 4.29
4e?’ 2¢ 2 2¢ 2 ( )
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for arbitrary parameter ¢ € (0,1).' Then, by inserting (4.29) into eq. (4.27), one obtains

the relation:

3 fot+f 1.3
4—63< 5 3)+4—€2[§(f3—f2)+f1]
fi

o fs —cc* fy — bb" fo — aa” f3 + a*bc” + ab™c) + % : (4.30)

In solving eqs. (4.26) and (4.30), satisfying also the positivity condition (4.28), we have
to keep in mind that f;’s take half-integer values due to the NS-NS B-field background
(2.54). On the other hand the parameters a, b, c must be integers, since the windings are
all one and there is no B-field turned on along any off-diagonal 2-cycle. Our approach is
then to first look for a solution of eq. (4.26) and then examine whether such a solution
gives an € from eq. (4.30) such that all the J;’s in eq. (4.29) are positive. In addition,
both positivity conditions (4.18) and (4.28) have to be satisfied.

To solve eq. (4.26), we impose the relation fo = —f;. The two equations (4.26) and
(4.30) are then reduced to

3
Z+2ﬁﬁ+3ﬁ+ﬁw“+%“—mf:0, (4.31)

and

1
@(—Bfg + f1) = —f1f2 —cc fi — bb* fo + aa” fy + a*bc* + ab*c + % (4.32)

A solution of eq. (4.31) with purely real flux components is found to be:

h=5, fh=5, fa=—5, a=4, b=3, c=1. (4.33)

NN

Moreover, we notice from eqs. (4.31), (4.32) and the identity:
a*bc* + ab*c = 2a1<b101 —+ bgCg) -+ 2&2(()201 — blcg) s (434)

with a = a1 + iag, b = by + iby, ¢ = ¢1 + icy, that other solutions can be found simply
by replacing some of the real components of a,b,c by imaginary ones modulo signs, as
long as the values of the products aa*, bb*, cc*, as well as that of (a*bc* + ab*c) remain

unchanged. We make use of such choices for canceling off-diagonal D5-brane tadpoles

60One can also write down a full two-parameter solution of eq. (4.17), however we prefer to use two
different one-parameter families with appropriate parametrization for convenience in model building. The
second one-parameter solution will be used in section 4.2.5. Equation (4.40) represents the second one-
parameter solution.
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which for a general flux matrix (4.23) read (using eq. (2.50)):

= (fafs —cc), Q= (fsfr —bbY), 21{‘ = (fif2 — aa®),
i),ia = (b*c - a’*f?)) ) géa = (b*a’ - C*fl) ) 271“ = (CI,C - bf2) . (435)

Here we have used the complex coordinates 2%, z and the assumption that complex struc-
ture is eventually stabilized as in eq. (4.3).

The result of our analysis above, giving fluxes for the brane stacks Oy, ..., Oy, (includ-
ing the solution (4.33)) is presented in Appendix A, in eqs. (A.2), (A.7), (A.12), (A.17).

In this Appendix, we also show that the net chiral fermion contribution from the inter-

section of each of the four stacks Oy, ..., 04 with Us (and its image) is zero, as shown in
eqs. (A.3), (A.8), (A.13), (A.18). Oblique tadpoles Q3,, Q33, @5; are given in eqs. (A.4),

(A.9), (A.14), (A.19) and their cancellations among these branes is also apparent. This
leaves only diagonal D5 tadpoles, given in eqs. (A.5), (A.10), (A.15), (A.20). The fluxes
in real basis are given in eqs. (A.6), (A.11), (A.16), (A.21). In Table 4.3, we summarize
all Chern numbers and windings for the stacks Oy, ..., Oy, as well as those for the stacks
Os, ...,0Og appearing in the next subsection.

From egs. (4.27) and (4.32), the stacks Oy, . .., Oy satisfy the supersymmetry condition:

195 1
? - 5[—J1J2 + 5J2J3 + J1J3] = O, (436)
for € = 75 in eq. (4.29). The positivity condition (4.28) for all of them has the following
final form: - " 0
J1J2J3 + ZJI + ZJQ + ZJg > O, (437)

which is obviously satisfied for the solution (4.29) with ¢ = 5. Also, the chiral fermion

degeneracies on the intersections Us — O, and Us — O} are equal to
Ivso, = =23, Iyo: =23, a=1,...,4, (4.38)

giving vanishing net chirality for all of them individually. The non-trivial tadpole contri-

butions from the four stacks are:

Qg — 4, ilyl — —5, Qigyg — —41, Qigy'g, — —59 . (439)
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Stack | No. of Windings Diag. Chern no. Diagonal Oblique
branes: nof, nO;, nog,“ m% , mZs - moga 3 fluxes Chern no.
Ou  0u O A
NOa (nyla7ny2a7ny3a> [ffafélafg]
01 1 (17 71) (2707'1) [% 7%7'%] mmollyQ = m321y1 =1
(17 ) 1) mgllys = m331y1 =3
mgzly:a = mg:aluz =1
0> 1 (17 1, ) (2707'1) [g 7%7‘%] m312y2 = m§22y1 =4
(]-7 17 ) mglzy?, - mgazyl = -3
mffys mgs?yz =-1
03 1 (17 17 1) (2707'1) [% 7%7'% mglg 2 = mi)ze, = —4
(1,1,1) Mgy =y, =3
M3 = Myo3 = 1
04 1 (1717 ) (2707'1) [% 7%7'%] mgfl 2 mmoglyl — _4
O4 Os _ _
(1,1,1) m%gfl mgfl = i)
Mp2z3 =My = —
Os 1 (1,1,1) (-13,0,0) E m;)gyz = —2
Os 5
y Ly ms . =mz, =1
a3z y3y
Os _ 05
m oy s =m73,=1
z2y z3y
Og 1 (1,1,1) (-13,0,0) [’725 ,%,%] mglﬁﬂ — mz)fyz _9
(17 17 1) mgSGml m036 1 — —1
mo% , = m%Sy =-1
x201/3 9630112
07 1 (]-7 17 ) (_137070) [_725 7%7%] mml712 = my17y2 -
(1717 ) m§173 :mg371 =-—1
Mg 5 = M55 =1
08 1 (17 17 1) (_137070) [_725 ;%;%] m;)18$2 - m518y2 - 2
(1,1,1) mo%, =m%, =1
Os’ _ O
M2y = M2 = -1
Table 4.3: Chern numbers and windings of the oblique stacks Oy, ..., Og
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4.2.5 Additional stacks: Os,..., Oy

In the last subsection we found four stacks Oy,...,O4 with oblique fluxes but diagonal
5-brane charges. Clearly, in order to stabilize all the Ké&hler moduli, we need at least four
additional stacks with oblique fluxes. The search for such branes is simplified by observing
that the supersymmetry condition (4.17) for the stack Us has another one parameter family
of solutions, independent of (4.29), which solves also the condition (4.36) for the stacks
O1,...,04:

300« 99 99

Jo=a, J3==, with a2>z. (4.40)

J = ——
L™ a2 — 997 4oy

By inserting expressions (4.40) into the general supersymmetry condition (4.27), and
following steps similar to those of the last subsection, we find the set of stacks Os, ..., Og
given in Appendix A, with fluxes as in eqgs. (A.22), (A.27), (A.32), (A.37). One of these
solutions has flux components:

25 1 1
flz—?, f2:— f3:— CL:—Qi, b:—’l, Czl, (441)
while the others can be obtained by trivial changes of the off-diagonal elements, as for the
stacks Oq,...,0, discussed in the previous subsection. Oblique D5 tadpoles are written
in egs. (A.24), (A.29), (A.34), (A.39) and the diagonal ones in eqs. (A.25), (A.30), (A.35),
(A.40). The net SU(5) non-singlet fermion chirality for these stacks is also zero, as shown

in egs. (A.23), (A.28), (A.33), (A.38). Once again, all off-diagonal D5 tadpoles of the type
12
we summarize the Chern numbers and windings of the stacks Os, ..., Og, as well.

Q55 and Q3; cancel among the contributions of the four brane stacks. In Table 4.3,

The four stacks Os, ..., Og satisfy the supersymmetry condition:

87

1
g - §[J1J2 - 25J2J3 + J1J3] = O, (442)
for 99 1431
o’ = VEREEEIE (4.43)

consistently with the inequality (4.40). For this value of «, the positivity conditions (4.18)
and (4.21) for the Us and U, stacks are also satisfied by J;’s of the form (4.40). On the
other hand, using the flux components (4.23) from Table 4.3, the positivity condition for

the four new stacks takes the following form:

3 29

41
J1J2J3 + Zjl + ZJQ + ng > O, (444)
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Stack no. No. of Windings Chern no. Fluxes
a | branes: Ny | (Af,78,75) | (vif, i, g ) | gt (gl Lsgii)
11
Stack-A 1 (17 17 1) (1477 07 O) [%7 29 2 ]
StackB |1 LY | (1,16.0) 3,8,

Table 4.4: A and B branes

and is again obviously satisfied, as is the positivity condition (4.37) for stacks Oy, ..., Oy.
The final uncanceled tadpoles from these stacks are:
Q" =4, Qh,=-3, Qhp=-29, Qs =—41, (4.45)

while the chiral fermion degeneracy from the intersections Us — O, and Us — O} is given
by:

IU5Oa = _]‘47 IU5O(*1 - 147 78 . (446)

a=2>5,...

4.2.6 Tadpole cancellation

We now collect the tadpole contribution from different stacks to find out how the total RR
charges cancel in our model by adding two extra stacks of single branes, A and B. The
tadpole contributions from stacks Oy, ..., O, with oblique fluxes, are given in eq. (4.39),
while those from stacks Os,...Og are given in eq. (4.45). In addition, the stacks Us and

U, together contribute:

9 3

5
50 W@asyps =3

0 =6, Q22 = 5 (4.47)

where we used the flux components (4.10) and (4.16). These tadpoles are then saturated
by the brane stacks A and B of Table 4.4.

Their contributions to the tadpoles are:

34

9 __ 5 _
Q' =2, Q= (4.48)
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which precisely cancel the contributions from eqs. (4.39), (4.45) and (4.47). Moreover,
chiral fermion multiplicities from the intersections of stacks A and B with Us vanish, as
well:

Iyos = Iyae = Iy = Iy = 0. (4.49)

We have thus obtained fluxes for the twelve stacks, saturating both D9 and D5 tad-
poles. However, for supersymmetry, we have only discussed the conditions for nine of
the twelve brane stacks, namely Us and Oy, ..., Og. The status of supersymmetry for the
brane stacks U;, A and B will be studied later, in section 4.4.

Before closing this section, we also examine briefly whether it would be possible to
manage tadpole cancellation without adding the extra stacks A and B, within the context
of our construction specified by the choice (4.15) of intersection numbers. Note that the
nine stacks Us and Oq,...,0Og were the minimal ones needed for Kéahler moduli stabi-
lization, since the use of the U; brane for this purpose was ruled out, as we discussed in
section 4.2.2. The U; stack on the other hand is needed to get the right SU(5) particle
spectrum. Thus, in order to avoid the use of stacks A and B, one needs to examine whether
there are solutions, other than the one found in eq. (4.16), for fluxes along the stack-U;
such that tadpole cancellations are possible, while a scalar VEV charged under this U(1)
may have to be turned on in order to maintain supersymmetry. In such a situation, one
needs a winding number three (det W = 3) for the stack U; to saturate the D9 tadpole.
Moreover, all oblique fluxes along the U; stack have to vanish, otherwise they would give
rise to uncanceled tadpoles in oblique directions. Then, by writing the tadpole contribu-
tions of three diagonal fluxes f; satisfying the constraint (4.15), it can be easily seen that
one is not able to cancel the combined tadpoles from stacks Us and Oy,...,Og. Such a
possibility is therefore ruled out. Of course, one could try to find a solution that satisfies
the constraint (4.15) but not necessarily (4.12), as we discussed already in section 4.2.1.
Alternatively, one can possibly attempt to manage with just two stacks U; and A, by using
winding number two in one of them. These are straight-forward exercises which can be

examined easily.

4.2.7 Non-chiral spectrum

The degeneracies of non-chiral states coming from intersections of the stack Us with O,
and O} are already given in eqs. (4.38) and (4.46), leading to 4 x (23 + 14) = 148 pairs of
(5 + 5) representations of SU(5). They follow from the degeneracy formulae (2.56), when
the net numbers of left- and right-handed fermions are equal. In our case, this is insured

since Iy0, = —Iu,0:. However, non-chiral particle spectrum also follows from eqgs. (2.56),
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(2.57) and (2.58), when any of I, I+, I and I3 . are zero, as explained at the end of
section 2.6. This occurs because for instance Hl(ﬁﬁﬁi’iﬁfrﬁf) vanishes along one or more

of the 2-tori, T?. Similarly for I}. or I}

aa*’

this occurs because of the vanishing of fluxes
along one or more of the 72’s. Given the fluxes in stack Us, which are non-zero along all
three T?’s, non-chiral states can come only from various intersections of the Us stack with
other branes.

For example, the intersection numbers between stacks Us and U, are given in eq. (4.15).

One sees that I;.p, is zero as (mY5 Pt — pUsmit)

vanishes along T? and T7. However, in
this case there exists a non-zero intersection number in d = 8 dimensions corresponding

to the T3 compactification of the d = 10 theory, given by:
IU5U1|T127T32 = (mZUSTLQUl ﬁQUSmQUl) = -2, (450)

with the subscripts 77, T% of Iy, | standing for those tori along which the intersection
number vanishes. This implies two negative chirality (right-handed) fermions in d = 8,
in the fundamental representation of SU(5). Under further compactification along T}
and T, we get four Dirac spinors in d = 4, or equivalently four pairs of (5 + 5) Weyl
fermions, shown already in the massless spectrum of Table 4.2. They give rise to four
pairs of electroweak higgses, having non-vanishing tree-level Yukawa couplings with the
down-type quarks and leptons, as it can be easily seen.

A similar analysis for the remaining stacks A and B gives chiral spectra in d = 6 with

degeneracies:
IU5A\T§ = (m[fnf — 'lelj5mf) X (m2U5n§‘ — ﬁg5m2) = 149, (4.51)

and

Iygarlrz = (m{®af + a5mi) x (myg + At mi) = 146. (4.52)

They give rise to 149 + 146 = 295 pairs of (5 + 5). Similarly, we obtain for the stack B:

[U5B|T32 = (m§]5n1 - ﬁlljsml ) X <m2U5”2 - ﬁg5m2 ) =51, (4.53)
and
_ (5 Usn ~Us AU5 S _
Tusp+|r2 = (m2 ny + g m2) X (m3 g + iy my) =16, (4.54)

leading to 51 4+ 16 = 67 pairs of (5 + 5). All these non chiral states become massive by
displacing appropriately the branes A and B in directions along the tori T3, T3 and 7%,

T2, respectively.
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In addition to the states above, there are several SU(5) singlets coming from the
intersections among the branes Oq,...,0Og, U;, A and B. Since they do not play any
particular role in physics concerning our analysis, we do not discuss them explicitly here.
However, such scalars from the non-chiral intersections among U;, A and B will be used
in section 4.4 for supersymmetrizing these stacks, by cancelling the corresponding non-
zero F1 parameters upon turning on non-trivial VEVs for these fields. The corresponding

non-chiral spectrum will be therefore discussed below, in section 4.4.

4.3 Moduli stabilization

Earlier, we have found fluxes along the nine brane stacks Us, O,...,Og, given in Ta-
bles 4.1, 4.2, 4.3, 4.4 and in Appendix A, consistent with our ansatz (4.3) for the complex
structure and (4.6) for the geometric K&hler moduli. We now prove our ansatz by showing
that both Q and J are uniquely fixed to the values (4.3), (4.6) and (4.40), (4.43). To show
this, we make use of the full supersymmetry conditions for the Us stack as well as for the
stacks Oy, ..., Os.

For the complex structure moduli stabilization, we make use of the F&O) condition
(2.41) implying that purely holomorphic components of fluxes vanish. Then, by inserting
the flux components pyiyi, Paiyi Pyiys, as given in Table 4.1 and Table 4.3, as well as
in Appendix A, along the Us and Oy, .., Og stacks, we obtain a set of conditions on the
complex structure matrix €2, given explicitly in Appendix B in egs. (B.1) - (B.47). These
equations imply the final answer (4.3). The details can be found in Appendix B.

For Kéahler moduli stabilization, we make use of the D-flatness condition in stacks Us,
O1, . .. Og which amounts to using the last two equations in (2.40). Explicit stabilization of
the geometric Kéhler moduli to the diagonal form, J;; = 0, (i # j) is given in egs. (C.2) -
(C.26) of Appendix C. For the stabilization of the diagonal components, the relevant
equations are: (4.17), (4.18), (4.36), (4.37), (4.42), (4.44). The final solution for the
stabilized moduli is given in eqs. (4.40) and (4.43). The numerical values of J;’s can also
be approximated as:

Jy ~63.96, Jy~b559, J3~4.42. (4.55)

4.4 Supersymmetry of stacks U;, A and B

We now discuss the supersymmetry of the remaining stacks U;, A and B by making use

of the D-flatness conditions (2.44), (2.45) and (2.46). From these equations, suppressing
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the superscript a, we obtain the FI parameters ¢ as:

F(?’l,l) - JZF(LI)

£ = ,
J5—JF}

(4.56)

where we have made use of eq. (2.25) and the canonical volume normalization (4.4). Then,
using the values of the magnetic fluxes in stacks U;, A and B from Tables 4.1 and 4.4, the
explicit form of the FI parameters in terms of the moduli J; (that are already completely
fixed to the values (4.55)) is given by:

e — 28— s(hh = 30T+ 851) (4.57)
JiJoJ3 — i(&]l —3J2 = 9J3) 7 |

A 25 — S( s+ 2950505 + Jy J3) (458)
 Didads — 2(J1 429505 +295.05) '

o B _ (N1 Js+ 3JoJs + 33J1.J3) (450)
 idads — 23301 4 3J2 + 99J5) '

leading to the numerical values:
U~ —0.366, €4~ —4.753, B~ —5.173. (4.60)

On the other hand, the charged scalar VEVs v, entering in the modified D-flatness
conditions (2.44) and (2.45) are related to the modified FI parameters £{*/G®, as it can
be easily seen from the expressions (2.42) and (2.43), that are also relevant for the per-
turbativity criterion: vy << 1 in string units. Their knowledge needs determination of
the matter field metric G* on the branes U;, A and B. For this purpose, we make use of
eq. (2.48) with the angles 6; defined in eq. (2.47). One finds the following values for the

metric G in the three stacks '7:
G ~ 2815, G*~5045, GP ~94551, (4.61)

that lead to the modified FI parameters:

€U1 SA
o~ 0130, 2~ —0.094, Zp o~ —0.057. (4.62)

'"The matter metric Gy is diagonal to the leading order in o’ but its elements have a non-trivial (torus)
moduli dependence due to the magnetic fluxes, that we calculated explicitly and the values are given in
equation number (4.61).
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Note that the positivity conditions (2.46), giving positive gauge couplings through eq. (2.43)
for the stacks U;, A and B, hold as well. These expressions appear also in the FI param-
eters £* as the denominators in the rhs of eqgs. (4.57) - (4.59).

The last part of the exercise is to cancel the FI parameters (4.62) with VEVs of specific
charged scalars living on the branes Uy, A and B, in order to satisfy the D-flatness condition

(2.44). For this we first compute the chiral fermion multiplicities on their intersections:
Ippa=F"—F =0, Iyp=(F"-FB? =0, ILip=(F*-FP)?=0. (4.63)

Since they all vanish, there are equal numbers of chiral and anti-chiral fields in each of
these intersections. In order to determine separately their multiplicities, we follow the

method used in section 4.2.7 and compute:
Iyoalre = =149, Iuglry =45, Iaplpz = —2336. (4.64)

These correspond to chiral fermion multiplicities in six dimensions generating upon com-

pactification to D = 4 pairs of left- and right-handed fermions. We also have:

Iipar = (FU + FA? =292, Iyp = (FU + FP)? =0
Iyg = (FA 4+ FP)3 =149 x 17, (4.65)

which gives zero net chirality for the U; — B* intersection. Computing
Iy, B|p2 = 18, (4.66)

one then finds 18 pairs of left- and right-handed fermions in D = 4 from this intersection.

As a result, we have the following non-chiral fields, where the superscript refers to
the two stacks between which the open string is stretched and the subscript denotes the
charges under the respective U(1)’s : (¢, ¢U'1), (677, ¢U'P), (918, ¢45), (o7,
qbgLB*), with fields in the brackets having multiplicities 149, 45, 2336 and 18, respectively.
Restricting only to possible VEVs for these fields, eq. (2.44) takes the following form for
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the stacks Uy, A and B:

£ A A

& +|¢U1 |2 ‘(bUl |2_'_‘¢U13|2
A

GA +|¢U1A|2 |¢U1A|2+|¢AB|2
B

GB + |¢UlB|2 |¢U1B|2 + |¢AB 2

These equations can also be written as:

€U1 U2 U §U1
GUl_'_(Ul) =0 = (Ul) :_GU17
& A2 A2 3
@WL(U ) =0 = (v = TgAr
3 B\2 B2 3
cs tW)T=0 = (07)=-25,
following the notation of eq. (2.45), where we defined:
L e N o i O
= (UUlA)2_'_<UUlB)2+(UUIB*>2’
(A7 = I — 64 + 622 — |62
= —(UUIA)2+(UAB)2,
(P = 1P — 6P+ AT — |47+ [

with for instance (v*5)? = |p4B8|% —

R e S Py

|¢AB2—O

2:0

— loB + [P = |62 = 0

_(,UUlB)Q o (,UAB)Q + (leB*)Z ’

1B

— 1T

|p28]? and similarly for the others.

)

2

(4.67)

(4.68)

(4.69)

(4.70)
(4.71)

(4.72)

(4.73)

(4.74)

(4.75)

Since we have three equations and four unknowns, we choose to obtain a special solution

by setting (vV1%)? = 0. Equations (4.73) -

(leA)2 + (,UUlB*)2
_(,UUlA)Q + (,UAB)Q

_(,UAB)Z + (,UUlB*)Q

(4.75) then give:

3

= o ~ 0130,
A

= —% ~ 0.004,
B

= —% ~ 0.057,

(4.76)
(4.77)

(4.78)
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that can be solved to obtain:
(N2 = —0.011, (WUP)2=0.141, (v*F)?2=0.084. (4.79)

Recalling from eqs. (4.73) - (4.75) that

N e A I G i ?,

(P = 18> — |97, (4.80)

il e

and comparing with the results of eq. (4.79) (taking into account the different signs), VEVs
for the fields ¢21+A, ZEFB “and qbf_g are switched on. Moreover, as required by the validity
of the approximation, the values of the charged scalar VEVs satisfy the condition v* << 1

in string units.

4.5 Mass generation for non-chiral fermions

In this section, we briefly discuss one of the applications of the results derived in chapter
3, for giving mass to the non-chiral gauge non-singlet states of the magnetized brane
model discussed in previous sections. We have constructed a three generation SU(5)
supersymmetric grand unified (GUT) model in simple toroidal compactifications of type
I string theory with magnetized D9 branes. The final gauge group is just SU(5) and the
chiral gauge non-singlet spectrum consists of three families with the quantum numbers of
quarks and leptons, transforming in the 10 + 5 representations of SU(5). Brane stacks
with oblique fluxes played a central role in this construction, in order to stabilize all close
string moduli, in a manner restricting the chiral matter content to precisely that of SU(5)
GUT. Another interesting feature of this model is that it is free from any chiral exotics
that often appear in such brane constructions. However, the model contains extra non-
chiral matter that is expected to become massive at a high scale, close to that of SU(5)
breaking.

The results obtained in chapter & can be used for examining the issue of the mass
generation for these non-chiral multiplets in a supersymmetric ground state. The aim is
to analyze the D and F term conditions, and show that a ground state allowing masses
for the above matter multiplets is possible. The exercise will further fine tune our SU(5)
GUT model to the ones used in conventional grand unification.

Although, we will not be evaluating any of the Yukawa couplings explicitly, which
using our results is in principle possible to do, the aim of the exercise below is to show

that indeed one can give masses to non-chiral matter. Our procedure involves the analysis
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of both the F and D-term supersymmetry conditions. As discussed in section 4.4 certain
charged scalar vacuum expectation values (VEVs) were turned on in order to restore
supersymmetry in some of the “hidden" branes sector. These charged scalar VEVs gave a
nontrivial solution to the D-term conditions, but left the F-terms identically zero in the
vacuum. In the following, on the other hand, our aim is to find out the possibility for a
large number of scalars in various chiral multiples to acquire expectation values. For this,
we need to examine both the F and D conditions, as already mentioned.

As we discussed in the previous sections, the model is described by twelve stacks of
branes, namely Us, Uy, O;...,0g, A, and B. The magnetic fluxes are chosen to generate
the required spectrum, to stabilize all the geometric moduli and to satisfy the RR-tadpole
conditions as well. The fluxes for all the stacks are summarized in Appendix A. The fluxes
for stacks Us, Uy, A, B are purely diagonal whereas stacks O;...,Og carry in general
both oblique and diagonal fluxes. All 36 closed string moduli are fixed in a NV = 1
supersymmetric vacuum, apart from the dilaton, in a way that the 75-torus metric becomes
diagonal with the six internal radii given in terms of the integrally quantized magnetic
fluxes.

Moreover, from our discussion in section 4.2, the two brane stacks Us; and U; give
the particle spectrum of SU(5) GUT. We solve the condition Iy, + Iy,ur = —3 for the
presence of three generations of chiral fermions transforming in 5 of SU(5) and continue
with the solution [y,y, = 0, Iy,p; = —3. The intersection of Us with Uj is non-chiral since
Iy, vanishes. The corresponding non-chiral massless spectrum consists of four pairs of
5 4+ 5, which we would like to give mass. Obviously, we would like to keep massless at
least one pair of electroweak higgses but this requires a detailed phenomenological analysis
that goes beyond the scope of this work. Here, we would like only to show how to use the
results obtained in chapter & in order to give masses to unwanted non chiral states that
often appear in magnetized brane constructions.

So, we have the following non-chiral fields where the superscript refers to the two
stacks between which the open string is stretched and the subscript denotes the charges
under the respective U(1)’s :(¢>"" %" | 4), with numbers in the brackets denoting the
corresponding multiplicities. Similarly, the intersections of the Us stack with the two extra
branes A, B and their images are non-chiral, giving rise to the extra 5+5 pairs: ( ZEA, If’f,
149), (o5 0% 146), (6778 ,6V28, 51), (05 ,0%5P7, 16). A common feature of all these
states is that they arise in non-chiral intersections, where the two brane stacks involved
have diagonal fluxes and are parallel in one of the three tori. It is then straightforward
to give masses by moving, say, the Us stack away from the others along these tori. In the

language of D9 branes, this amounts to turn on corresponding open string Wilson lines.
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On the other hand, analysis of the particle spectrum on the intersections of the stack
Us with the oblique branes O, and O} , satisfying the condition Iy, + I7,e- =0, for a =
1,..,8, leads to 4 x (23 + 14) = 148 pairs of (5 + 5) representations of SU(5) ( eqs. (4.38)
and (4.46)):
Iyso, = =23, Iyo: =23, a=1,...,4,

[U5Oa:_147 [U5Oé:]~47 a:57’8

We then have the following chiral multiplets, (¢7°°, 23), ( JUfJFO;, 23), (%52, 14), ( :{iog,
14) (a=1,...,4,b=5,...,8). In order to examine the mass generation for these fields,
one needs to write down the superpotential terms involving the above chiral multiplets, as
well as those coming from the brane stacks Oy, - -, Og and their orientifold images. The
list of the later, involving purely oblique stacks, is given in Appendix A.

Now, using the results in Appendix A in eqs. (A.45) and (A.46), one can analyze the
associated superpotential and D-terms and look for supersymmetric minima. The relevant

superpotential reads:

W=D WS @1 ) (670 4 D WS (@2 (477 (620

ijk ik
Z zyk O3U5 ( J[{5+O O 03 Z z]k O4U5 ( JUriro;)]( ??704)k
ijk ijk
D WES (60 (83275 (0227 4+ D W (91 (1) (027) (4.81)
ijk ijk

where the sum over i, 7, k runs over the “flavor" indices. The couplings ng, given in eq.
(4.81), can be read off from our results in the previous sections. In addition to the complex
structure, these also depend on the first Chern numbers of the branes in each triangle.
The F-flatness conditions (F;) = (Dy, W) = 0 (at zero superpotential, W = 0), imply
that for each “triangle” at least two fields must have a zero VEV in order to form a su-
persymmetric vacuum [121]. In this theory, there exists indeed a supersymmetric vacuum

where six charged fields remain unconstrained by the F-flatness conditions. Let’s choose

them to be (6731, (6719%), (6%5), (67791, (67°%%), (¢%5°7) (they are neutral under

the U(1) of the U(5)). The remaining fields appearing in the superpotential acquire a mass

from the F-term potential only if these unconstrained scalars possess a non-vanishing VEV.
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Indeed, their masses read:

~ M3

Pugoy

2 2
M2~ M2

2
~ (|@ozo. )
¢“‘501 u50§ ¢0402 )

MQ% ~ M;usog ~ <|¢0§0/7|2> M2 ~ M2 ~ <|¢O;O4|2>’ (482)

ugol, ’ busoy ¢u5o;

M3 ~ M¢2> ~ <|¢ogos|2> )

¢U505

~ <|¢0§01|2>7 M

buso

u5og

where ¢, denotes linear combinations of ¢y;0, With @y, and @u:,r denotes linear com-
binations of Pozor With @ozo5. Thus, the leftover massless states from the intersection of
Us with the oblique branes are 60 pairs of 5 + 5: ¢y for a = 1,2,5 of positive chi-
rality together with the negative chirality states ¢,.,, for a = 6,7, as well as 23 linear
combinations of ¢, With @y.o., and 14 ¢y,

However, switching on non-zero VEVs for these fields, modifies the existing D-term
conditions for the stacks of branes Oy, ....Og. As it is described in section 4.4, the stacks
Us, O ... Og satisfy the supersymmetry conditions in the absence of charged scalar VEVs,
but VEVs for the fields ng(fﬂrA, E{f " and f—f are switched on, for the same supersymmetry
to be preserved by the stacks Uy, A and B. The D-terms for each U(1) factor of the eight
branes Oq, .....Og read

DOl = _l(bOlO;: 27 D02 = _|¢O2OZ 2
Do, = |67 = [6%03[2, Do, = —[603[2 — |60 )
D - _ 0505 2 D — _ Osog 2 '
Os |¢ ; Osg |¢
DO7 — _|¢O4O$ 2 |¢O7O§ 2’ DOg — _|¢030§ 2 |¢O7O§ 2

We can regain the supersymmetry conditions D, = 0, Va = 1,...,8 with §,(F, J) = 0,

. . . Olog OQO; O30$ 0301 O40§
by switching on VEVs for the following fields: (¢ ), (¢51 "), (05 "), (o4 1), (651 °),
( iiog), provided these fields do not modify the superpotential (4.81). The modified

D-terms read:

Do, = —|¢C1032 1 |¢0105 2
Do, = —|¢00%2 1 |¢0:07 2

Doy, = —|¢01032 — |00 |2 4 903052 4 |0:05 |2

Do, = —|¢020i[2 — 01072 4 |gO:0i |2 1 | 01052

Do, = —|¢0082 1 |¢0105 2

Do, = —|¢0082 1 |¢0s0% 2

Do, = —[¢010%[2 — |gO0k |2 4 |40207|2 4 | 0203 |2

Do, = —|¢0208[2 — g0k |2 4 |40s05|2 4 | 4010k |2 (4.84)
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The supersymmetry conditions D, = 0, Va = 1,...,8 with {,(F*,J) = 0 can be simulta-
neously satisfied if and only if the VEVs for all these fields appearing in the expressions
(4.84), have the same value, say v?. Moreover we can restrict v << 1 in string units, as
required by the validity of the approximation for inclusion of charged scalar fields in the
D-term.

We have therefore shown the mass generation for a large set of non-chiral fields as given
in eq. (4.82). It is possible, that remaining ones can also be made massive by incorporating
non perturbative instanton contributions to the superpotential. We also do not give any

superpotential couplings, in terms of fluxes, as given explicitly in chapter 3.

4.6 Discussion

In this chapter, we have constructed a three generation SU(5) supersymmetric GUT in
simple toroidal compactifications of type I string theory with magnetized D9-branes. All
36 closed string moduli are fixed in a N/ = 1 supersymmetric vacuum, apart from the
dilaton, in a way that the T°-torus metric becomes diagonal with the six internal radii
given in terms of the integrally quantized magnetic fluxes. Supersymmetry requirement
and RR tadpole cancellation conditions impose some of the charged open string scalars
(but SU(5) singlets) to acquire non-vanishing VEVs, breaking part of the U(1) factors.
The rest become massive by absorbing the RR scalars which are part of the K&hler moduli
supermultiplets. Thus, the final gauge group is just SU(5) and the chiral gauge non-singlet
spectrum consists of three families with the quantum numbers of quarks and leptons,
transforming in the 10 + 5 representations of SU(5). It is of course desirable to study the
physics of this model in detail and perhaps to construct other more ‘realistic’ variations,
using the same framework which has an exact string description.

As discussed in the last section, giving a mass to the non-chiral gauge non-singlet states
with the quantum numbers of higgses transforming in pairs of 545 representations, keeping
massless only one pair needed to break the electroweak symmetry is one of the obvious
questions to be examined. Breaking the SU(5) GUT symmetry down to the Standard
Model is another important issue to be studied. This can be in principle realized at the
string level separating the U(5) stack into U(3) x U(2) by parallel brane displacement.
However, one would like to realize at the same time the so-called doublet-triplet splitting
for the Higgs 5 + 5 pair, i.e. giving mass to the unwanted triplets which can mediate
fast proton decay and invalidate gauge coupling unification, while keeping the doublets
massless. One possibility would be to deform the model by introducing angles, in realizing
the SU(5) breaking.
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Chapter 4. Supersymmetric SU(5) GUT model with Stabilized Moduli:

A general defect of the present construction is the absence of up-type Yukawa couplings.
The recent developments in writing the instanton induced superpotential terms are also
encouraging, for the purpose of examining the up-quark mass generations in a GUT setting
[81, 130, 131]. In this context, it has been shown that the magnetized branes too can give
rise to interesting superpotentials through the lift of fermion zero modes when fluxes are
turned on.

Supersymmetry breaking is of course an important issue in model building. Though
generally, for magnetized branes, one encounters instabilities in such a situation, it should
be however possible to obtain non-supersymmetric magnetized brane constructions for a
rich variety of fluxes accompanied by orientifold planes which can possibly project out
tachyons that may be generated during the process of supersymmetry breaking. In order
to study the supersymmatry breaking in the SU(5) model, an attractive direction would be
to start with a supersymmetry breaking vacuum in the absence of charged scalar VEVs for
the extra branes needed to satisfy the RR tadpole cancellation, U(1) xU(1) 4 xU(1)p. This
‘hidden sector’ could then mediate supersymmetry breaking, which is mainly of D-type,
to the Standard Model via gauge interactions. Gauginos can then acquire Dirac masses at
one loop without breaking the R-symmetry, due to the extended supersymmetric nature

of the gauge sector [132].
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Summary

String theory provides us an exciting avenue for research. It brings together different as-
pects of our world in a very natural and compelling manner. To mention a few, it provides
us with a ultraviolet finite theory of gravity, allows us to understand the holographic na-
ture of the gravitational interactions and unifies all the four fundamental forces in nature.
Supersymmetry appears as a consistency requirement of this theory. It is our hope that
this theory will, in the future, exhibit a mechanism producing the SU(3) x SU(2) x U(1)
gauge group, the exact particle content of our world with broken supersymmetry at low
scale. As we have discussed in the beginning of this thesis, enormous efforts have gone in
this direction with partial success. This thesis can perhaps be considered as a small step
in this direction. We have presented a detailed study of building some phenomenological
models, with an exact chiral fermion spectrum and gauge group, where some/all mod-
uli are stabilized and space-time supersymmetry is partially broken. This is done within
a simple framework of toroidal compactification of type I string theory with magnetized
D-branes. In the next few paragraphs we provide a summary of the wrk done in the thesis.

In chapter 2, we have briefly discussed the compactification of type I strings on a torus
with additional background gauge flux on the D9-branes and summarize the necessary con-
straints needed for constructing semi-realistic models in such a framework. We reviewed
the main properties of the six-dimensional toroidal compactification and its moduli space.
We considered the open string propagation in the presence of constant internal magnetic
fields and summarized the conditions for unbroken supersymmetry. We have discussed
the closed string moduli stabilization by analyzing the conditions for the unbroken super-
symmetry in the presence of stacks of magnetized D9-branes. In order to stabilize all 36
closed string geometric moduli of the torus 7, one needs to include both diagonal and
oblique fluxes. We have also studied the tadpole cancellation conditions which are re-
quired for consistency of type I string vacua. Then we discussed the low-energy spectrum

of the effective theory within this compactification scheme. Since a crucial step in a three
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generation model building is the introduction of a NS-NS B-field background, the effects
of non-zero B on the chirality and the tadpoles is summarized.

In chapter 3, we have obtained the close form expressions for Yukawa couplings in
such magnetized brane constructions. We summarized the results for the fermion (scalar)
wave functions and the Yukawa interaction for factorized tori and diagonal fluxes. In
this case, the fermion wavefunctions are given by Jacobi Theta functions. The Yukawas
are obtained by performing the overlap integrals of these wavefunctions and using certain
identity satisfied by Jacobi theta functions. We have presented a proof of the identity. We
then generalized the results to write down the expression for the Yukawa interaction when
oblique fluxes are present. In order to perform this task, fermion (scalar) wavefunctions
on toroidally compactified spaces are presented for general fluxes. The wavefunctions, so
obtained, are given by general Riemann Theta functions with matrix valued modular pa-
rameter. We have also given explicit mappings among fermion wavefunctions, of different
internal chiralities on the tori, which interchange the role of the flux components with
the complex structure of the torus. By evaluating the overlap integral of the wave func-
tions, the expressions for Yukawa couplings among chiral multiplets are obtained. This
essentially leads us to construct certain mathematical identities for general Riemann theta
functions. We generalized the theta identity for Riemann theta functions and presented a
proof of this. We then used this new mathematical relation for writing down the expres-
sion for the Yukawa interaction when oblique fluxes consistent with supersymmetry and
‘Riemann condition’ requirements are present. In order to relax the later, the results are
further generalized to include the wavefunctions of the other internal chiralities, in order
to accommodate general fluxes consistent with supersymmetry restrictions.

Finally, in chapter 4, we have presented a minimal example of a supersymmetric grand
unified model in a toroidal compactification of type I string theory with magnetized D9-
branes. We obtain general solutions for fluxes along magnetized D9-branes yielding the
chiral spectrum and gauge group of a three generation SU(5) GUT model, with no extra
chiral matter nor U(1) factors. The gauge symmetry is just SU(5) and the gauge non-
singlet chiral spectrum contains only three families of quarks and leptons transforming
in the 10 + 5 representations. Moreover, all geometric moduli are stabilized in terms
of the background internal magnetic fluxes. Another interesting feature of this model
is that it is free from any chiral exotics that often appear in such brane constructions.
The flux solutions also satisfy the RR tadpole cancellation conditions resulting the model
to be consistent. However, the model contains extra non-chiral matter that is expected
to become massive at a high scale, close to that of SU(5) breaking. We presented a

brief analysis of the superpotential and D-terms for the model in order to show the mass
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generation for several non-chiral fermion multiplets in a supersymmetric ground state.
Using the results for Yukawa couplings, we showed that a ground state allowing masses
for the above matter multiplets is possible. This exercise further fine tunes our SU(5)
GUT model to the ones used in conventional grand unification.

Thus, the framework of toroidal string compactification, with magnetized branes, offers
a possible self-consistent setup for string phenomenology, in which one can build simple
calculable models of particle physics with stabilized moduli and implement low energy
supersymmetry breaking that can be studied directly at the string level.

So, finally where are we? It is evidently true that, in spite of remarkable progress,
we still lack a complete understanding of string theory. It is yet to produce SU(3) x
SU(2) x U(1) gauge group, the exact particle content of our world and a mechanism to
break supersymmetry at low energy scale. However, we believe that pursuance will surely
bring in success and conclude with an encouraging remark by Ashoke Sen, “I think we
have an extremely strong candidate for the basic constituents of matter and this theory

needs to be explored much more than it has been so far."!®

18As  appeared in http://parsareport.blogspot.com/2006/12/i-cannot-talk-about-others-but-i-am-
as.html.
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Fluxes for the stacks Us, Uy A, B,
O1,...,0g

In this Appendix, we write all the fluxes in the complex coordinate basis (z,z) with

2z = x + 1y. Then, for the windings and 1st Chern numbers of Table 4.1, we obtain:

. —3 dz
F([{,sl) = _% (le dZQ ng) — d,§2 . (A].)

1 —
) ng

N[

Below, we sometimes suppress the subscript (1,1) to keep the expressions simpler. The

fluxes of the 8 stacks Oy, ..., Og can also be written in the same coordinate basis:
: 24 3 dz,
i
FQy = =5 (42 dz dz) (4 1 1| [dn]. (A.2)
31 —1) \dz

From eq. (A.2) we get

195
|[FY + FO'| =23, |FY% —F%|=-23, |F9=—

=, (A.3)

where we have used the notation |FYs + FO1| = det(FY + FO) etc. The oblique D5

tadpoles are:

0 O _y

6) 6)
121:3+27 231:12_5’ 31

: (A.4)

DN o
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Appendix A. Fluxes for the stacks Us, Uy ,A, B, O, ...

while the diagonal ones are:

QQl _ _§ O1 _ _4_1 O1 _ _@
11 4’ 22 47 33 4 "
In real coordinates, the fluxes are:
D 1
pgl1yl — 5’ p321y2 = _pggly?) = 5’ pgllyQ = Pa2yl = 4,
pgfys = pg:?yl =3, p§21y3 = p§31y2 =L

708

(A.6)

The 1st Chern numbers given in Table 4.4 can then be read directly from the values

of fluxes given above. We now give similar data for the stacks O, ..., Os:
, 24 =3 dz
1
F((l)?l) = —5 (le dZQ d23> 4 % —1 dfg 5
-3 -1 —3 dzs

leading to:

195
|[FY + F?| =23, |FY% - F%|=-23, |F?|= -

The oblique tadpoles are:

3

5)
Qloi2:3+27 QQO;:_12+§7 Q3012:_4+§7
while the diagonal tadpoles are:
5 41 59
Oy O2 __ O2 __
Q112 Ty ng 4 332 4
The fluxes in the real basis are:
5) 1
pgfyl = 57 pg22y2 = _pggy?) = 57 pgfyz = ngle =4,
pgfy?, = pf:fyl = -3, pg;ya = pf;fyz = -1
, 2 -4 =30\ [dzn
1 . _
F(?fl) =3 (dzl dzo dzg) —4 % 1 dzy |,
3i —i —3 dz;

(A7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)
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leading to
195
|FUs + F93 =23, |FY% - F9% =23, |F? = - (A.13)
The oblique tadpoles are:
5 3
Q% =-3-2, %3:—12¢+§Z, %3:—4¢+§Z, (A.14)
and the diagonal ones are:
5 41 59
o o o
Qi =-7, @ =—7, QF="7" (A1)
The fluxes in the real basis are:
bt 1
pff’yl =3 p223y2 = _p§33y3 =3 pfny = p§23y1 = —4,
pg.;’xl g pyo?)gyl g 3’ p:L'O23:L'3 —= pg;’yg g 1 (A16)
, 2 -4 3\ [dzn
FQ4y = -2 (421 dz dz) | -4 5 —i| [d= |, (A.17)
-3 i —3 dzs
leading to
195
|FUs 4 FO1| =23, |FY% — P94 = 23 |F9 -5 (A.18)
The oblique tadpoles are:
. Dl R 1/
Q% =-3-2, %4:121—5, Q%4:4z—§, (A.19)
and the diagonal tadpoles are:
5 41 59
o o o
Q1I4 = VR » = VN 3§ = T4 (A.20)
The fluxes in the real basis are:
5 1
Dol =5 Dlhe = —Pla=15, Pie = Dli=—4,
p%“xl = pyoza4y1 =3, me;mS = p;“yg =—1. (A21)
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The stacks Oy, ..

now give the set of four stacks, Os, ..

(4.42) for the values of J; given in eqs. (4.40), (4.43):

_25

. 2

?

|FYUs 4 9| = 14,

. 25
QF =i—1, %5:2+7’
3 29

6) 16)
Q115 :_Z’ 225 :_Z>

25
pgﬂﬂ = _?7 p325y2

Os

_ 05

. 2
1
FQy = =5 (da dz dz) | 2

|[FY 4+ F9%| = 14,

25
Q¥ =i—i, QF=-2-

=Py =

_ 05 _ Os _ 05
Dyspr = Pysyn = 1, Dy2ys = Pys

7 9

|[FY — P95 = —14,

|[FY — 95| = —14,

—21 —1 dz;
: 1 dz | ;
1 3/ \dz
87
|Fo| = —;
8
o) St
315 =—2 + 5 )
0s 41
33 4
2’ p315x2 = p515y2 = -2,
y2 — 1.
—21 7 dfl
: =1 |dzm|;
-1 2 dzs
87
|Fo| = —;
o) .1
Q51 = 20 — 9
O¢ 41 .
33 4

'708

., Oy, given above, satisfy the supersymmetry conditions (4.36). We

., Og, which satisfy the supersymmetry condition

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)
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25
O¢ _ =¥ Os _ ,06 _~ 0O _ ,06 __
Dy = 5 Dy = Prays = 5k Dyigz = Pyry2 = 2,
Os _ ,06 __ Os _ 06 __
Dyspr = Pysyr = —1, Dp2ys = Ppayz = —L

—% 2% -1\ [dzn

1
F(?jl) = —5 (le dZQ ng) —21 % 7 dfg 5
-1 —i 3 dzs
87
|FU 4 FO| =14, |F% - F9| = -14, |F97| = 3
251 1
QOJZ_% O]__@ 07__41
11 4’ 22 4’ 33 4’
2 1
pgfy1 :_?7 pggyz = pggys 257 pgfxz = pyol7y2 =2,
ngys = pggyl =-—1, pmogxza - pSJyS =1
, -2 2 1 dz
1
F(??l) = —5 (le dZQ ng) —2 % —1 dgg ;
IR dz;
87
FU 4+ PO = 14, [FU = FOY = —14, |FO| =
C .25 1
Q%SZ_Z_'_Z, %8:2Z+77 %8:2—57

708

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)
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p218y1 = 5 pg28y = pgagys = 5% p§18x2 = pyoliﬁ =2,
pzolsy?) = pIOSBy = 1 px2x3 = py028y3 = —1 (A41)
Moreover,
. -3 dz,
FUl = —5 <d21 dZQ ng) % dZQ 5 (A42)
: dzs
. 5 dz,
FA = —5 <d21 dZQ ng) % dZQ 5 (A43)
1) \dz
. % dz
i
PP =2 (420 dz dz)| % dz | . (A.44)
1) \dz

Using the above fluxes, one can find out the chiral multiplets in the model. This has been
done for the brane intersections involving stacks - Us, U;. A computation of the chiral
fermion multiplicities on the intersections O; — O; and O; — OF Jfor i, j = 1,...8, implies

the existence of following fields in the non-chiral spectrum of the model. They are:

((bgl_OQ; 9102 40) ( 0103 ¢O103 ) ( 0104, O}’—O4, 84) ( 0105 20) (¢$1_05, 9}’_06,

49), (¢$LO7, 6) ( 2108, 14), ( 0203, ¢0203 84) ( 0204, ¢O204 84) ( 0205, ¢0205 49)
(6929, 20), (62277, 14 ), (6227, 6), (6227, 6717, 40), (6927, 14), (67, 6), (67",
20), (6327, 247, 49), (6927, 6), (627, 14), (62277, 62477, 49), (627, 20), (62,

¢O5OG 8) (¢$5_O7, 2107, 20), ((bgg,_Og, Oi—Os, 20) (¢2(5_O7, (_)3_07 20) ((bgs_OS, (_)608 20)

<¢2108, 6270, 8), (6772, 59), (6%, 33), (67171, 33), (61, 86), (671", 10), (6777,
24), (671%, 52), (5725, 33), (677, 33), (67, 10), (aﬁi%, 86), ( 2107, 52), (672",
24), (9757, 59, (0717, 52), (62377, 24), (937, 86), (677, 10), (67577, 24), (971,

52), (6217, 10), (671, 86), (672, 41), (6777, 23), (¢ 3108, 23), (¢5°77, 23), (677",

23), (¢>‘3108 41).

(A.45)

As a result of a similar analysis for the remaining stacks A and B, we have also the

following fields:

(624, V52, 149), (45, 62, 146), (627, 628, 51), (920, 027", 16), (o, 01,
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149), (6U15, §UB, 45), (647, 978, 2336), (6VF", 6UF | 18), (614", 202), (647", e)
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Complex structure moduli stabilization

For each stack of magnetized D9-branes, we have three complex conditions for the moduli
of the complex structure derived from eq. (2.41).
From stack-O; :

1 5
40, + 5921 +Q3 = 5912 + 4Q495 + 3Q3,, (B.1)
1 5
31 + Qg1 — 5931 = 5913 + 4Q93 + 3€33, (B.2)
1 1
39 + Qgg — 5932 = 405+ 5923 + Q33. (B.3)
From stack-O, :
1 5
400 + Q9 — Q31 = -+ 409 — 30, (B.4)
2 212
1 5
=30 — Qo — 5931 = 5913 + 493 — 3033, (B.5)
1 1
—39 — gy — 5932 = 43+ 5923 — (3. (B.6)
From stack-Os :
1 5
=311 232 + Qo1 €239 + 3031012 — Q310 + 48211 — 5921 + 5912 — 409 = 0,(B.7)
1 5
=311 Q33 + Q21 Q33 + 30138031 — Q31003 + 5931 + 5913 — 4803 —3=0, (B.)

1 1
—3Q12 33 + Q92833 + 302138030 — 38235 + 5932 — 403 + 5923 +1=0. (B.9)
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From stack-O, :

1 5
3011 Q39 — Q9139 — 3823119 + Q31 Q90 + 4824, — 5921 + 5912 — 4099

1 5
38211 Q33 — Q91 Q33 — 3013031 + Q31 23 + 5931 + 5913 — 493 + 3

1 1
3012833 — Q99833 — 302138230 + Q93230 + 5932 — 403 + 5923 -1

From stack-Os :

25
—2011 Q99 — 11032 + 2091 Q49 + Q31042 — —921 — Q3 — —912 -2

25
=201 Q93 — Q11 Q33 + 2091 Qy3 + Q31043 — Q9 — _Q31 — —913 -1

—2019003 — Q198035 + 2958013 + Q398213 — oy — 5932 + 5923 + Q33

From stack-Og :

25
—2011Q99 + Q110232 + 2Q91 Q15 — Q310212 — —Qm + Qg — —912 —2

25
—2011 Q03 + Q211 Q33 + 20915 — Q31043 + Qo — —931 — —Ql3 +1

—2019C03 + Q19835 + 2958013 — Q39043 + 9y — 5932 + 5923 — (3

From stack-O7 :

25
2€0118Q05 — 2091 Qg + Q21 C239 — Qo231 — —Qm - —912 — Qg +2

25
201193 — 2091 Q43 + Q91033 — Qo331 + Qg — 5931 — 7913 — Qg3

1 1
2019093 — 20998013 + Q9oll33 — Qo330 + Qq9 — 5932 + 5923 +1

From stack-Osg :

25
20119 — 2091019 — Q91 Q30 + Q900231 — —921 — —912 + Q30+ 2

25
2011093 — 2Q9; 3 — Q91 Qg3 4 Qo3lgy — Oy — —931 — —913 + Q33

2019093 — 20998013 — Q933 + Qo330 — 1y — 5932 + 5923 —1

0, (B.10)
0, (B.11)

0.(B.12)

0, (B.13)
0, (B.14)

0. (B.15)

0, (B.16)
0, (B.17)

0. (B.18)

0, (B.19)
0, (B.20)

0. (B.21)

0, (B.22)
0, (B.23)

0. (B.24)
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Now, from stack-O; and stack-O, one obtains from eqs. (B.1) and (B.4):
Q31 = 3,

and
5

1
480, + 5921 = 5912 +4€ ;
from eqs. (B.2) and (B.5):
301 + Qo = 333,

and

1 5
——Qq = =0 4003 :
5t = 5ihs + 48do3 ]

and from egs. (B.3) and (B.6):
3Q12 + Qg = (3,

and
9 32 13 2 23

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

Similarly, from stack-O3 and stack-O, one has, by adding eqs. (B.7) and (B.10):

1 5
40, — 5921 + 5912 — 4099 =0;

by adding eqs. (B.8) and (B.11):
1 5
5931 + 5913 — 43 = 0;
and by adding eqs. (B.9) and (B.12):
1 1
5932 — 483 + 5923 =0.
Use of egs. (B.30) and (B.33) gives:

913207

and
Qag + Qo3 = 0.

Moreover, one has from eqs. (B.34) and (B.32):

Q31 = 8Qs3;

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)
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from eqs. (B.36) and (B.25):
335 = 8oy ;

from eqs. (B.37) and (B.35):
Q30 = (o3 = 0;

and from egs. (B.38) and (B.36):
le =0.

Similarly, use of eqs. (B.26) and (B.31) implies:
Qo1 = 52,

and
Q1 = Qo

while use of eq. (B.41) in egs. (B.27) and (B.29) gives:
31 + Qg1 — 3033 =0,

and

3911 + 9912 - 3933 - 0 .

Eqgs. (B.42) and (B.43) give:
Q21 =92,

which comparing with eq. (B.40) implies:

Using the result of eq. (B.45) into eq. (B.42) then gives (using also eq. (B.41)),

Oy = Qo = Q33 = Q1.

(B.37)

(B.38)

(B.39)

(B.40)

(B.41)

(B.42)

(B.43)

(B.44)

(B.45)

(B.46)

The value of Q is finally determined from any of the bilinear equations, such as eq. (B.8)

or (B.9):
Q=q.

(B.47)
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Kahler class moduli stabilization

For the stabilization of Kéhler class, let us denote for definiteness the volume of the 4-cycles
associated to J A J as

(JAT)ig = Vi, (C.1)
where the indices 4, j correspond to the (1, 1)-cycle perpendicular to the given 4-cycle. In
the above notation, the supersymmetry conditions on the Kéhler moduli for the various
stacks read as follows :

From stack-O; using eq. (A.2):

195 5 1
8

1
§Vﬁ + 5‘/22 — 5‘/33 +4Vis +4Vo1 + 3Vi3 + 3Vag + Vo + ‘/32} =0, (C.2)

from stack-O, using eq. (A.7):

195 [5., 1
8

1
5‘/11 + 5‘/22 - 5%3 +4Vis +4Vo1 — 3Vi3 — 3Vap — Vo — Véz] =0, (C.3)

from stack-O3 using eq. (A.12):

195 [5 1 1
— - {QV“ + 5 Van = 5 Vag — AVip — 4Vr — 3iVig + 3iVaq + iVig — Z'Vzaz] =0, (C4)

from stack-Oy4 using eq. (A.17):

195 ) 1 1
= - livn + 5‘/22 — 5‘/33 —4Vi5 — 4AVo1 4+ 3iViz — iV — Vo3 + Zv?,z] =0, (C5)

from stack-Os using eq. (A.22):

8T

—25 1 1 . ) ) )
3 { Vii + 5‘/22 + 5%3 — 2tVia + 20Vo1 — iVig + Va1 + Vs + Véz] =0, (C.6)

2
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Appendix C. Kahler class moduli stabilization

from stack-Og using eq. (A.27):

8T

25 1. 1 | S
8 { Vit + 5 Vo + 5 Vg — 2iVig + 2iVi1 + iVig — iVia —V23—V32] =0,

2
from stack-O; using eq. (A.32):

87

—25 1 1
3 {—Vn +5Var + 5 Vas + 2iVip — 2iVo1 — Vi — Vg + Va3 — 11/32} —0,

2

from stack-Og using eq. (A.37):

87 =25
2

g | Vut %ng + %Vgg + 2iViz — 2iVor + Vig + Va1 —iVa3 + i‘/i’,2:| = 0.
Now, from stacks-O; and O,, egs. (C.2) and (C.3) give:
3 (Vis + Va1) + (Vas + Vi) = 0;
from stacks-Oz and Oy, eqs. (C.4) and (C.5) give:
—3i (Vi — Va1) + 1 (Vaz — Vaz) = 0;
from stacks-Os and Og, eqs. (C.6) and (C.7) give:
—i (Vis = Va1) + (Vaz + Vaz) = 0;
and from stacks-O7 and Oy, egs. (C.8) and (C.9) give:
—(Vis + Va1) + i (Vaz — Vaz) = 0.

Eq. (C.13) implies
i (Vg — Vi) = (Vi + Va1)

which leads from eq. (C.10)
3i (Vo — Vi) + (Vaz + Viz) = 0.
Similarly, eq.(C.12) implies

i (Viz — Va1) = (Vg + Visa)

(C.7)

(C.8)

(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)
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Appendix C. Kahler class moduli stabilization

which leads from eq. (C.11)
—3 (Vo + Vi) +4 (Vaz — Vaz) = 0., (C.17)

Now egs. (C.15) and (C.17) can be solved to give

Vaz + Va3 =0, (C.18)
and

Vaz — Vaz =0, (C.19)
implying

Vaz = V33 = 0. (C.20)

Then one has from eq. (C.10)

Viz + Va1 = 0, (C.21)
and from eq. (C.11)

Vizs = Va1 =0, (C.22)
implying

Vig = Va1 = 0. (C.23)

Using the obtained values, eqs. (C.2) - (C.4) give

Viz + Va1 = 0, (C.24)
while eqs. (C.8) - eq. (C.6) give

Vis — Vo1 =0, (C.25)
implying

Vis = Vo1 = 0. (C.26)
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More mformation on fluxes

In general, the (1, 1) form flux F.i;; given by a hermitian matrix in eq. (2.24) is constrained
by two equations (2.26) and (2.27) which mix the matrix components p,., p,, and p,, for
general €). However, for a canonical complex structure, corresponding to orthogonal tori,

the constraints simplify and are written in the matrix form:

Pzz = Pyy> pfy = Pzy- (Dl)

Fluxes of such types have been used in [7| for constructing an SU(5) GUT with stabilized
moduli and in Section 4.5 we apply the Yukawa couplings computation results to show
the mass generation for extra non-chiral states in the model of [7]. In this case, the (1,1)

form flux Fliz, for (2 = il3), reduces to:

1 .
Fiz = i(pxy — iDys) (D.2)

Explicitly, the hermitian flux matrix F' in eq. (3.17) is given as:

Dalyl Daly? + 'L'px1x2 Dalys + 'L'px3x1
F= Daty2 — 1P 1 22 Di2y2 Da2y3 + Pp223 | - (D3)
D3yt — ipzszl Px2y3 — ipx2x3 Pa3y3

For magnetized branes in [103, 7|, we used the quantization rule for p’s:

mxiyj S M i i S mziyj
Pzigi = pxlyﬂ -

(D.4)

Paiyi =

n*'ny’ n*'nv’’ ny'ny’’

where mygiyi, Myigi, My are the first Chern numbers along the corresponding 2-cycles
and n®', n¥' etc. are the wrapping numbers along the 1-cycles z?, . However, for the

model [7], we have used only integral fluxes corresponding to n* =n¥ =1.
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Appendix D. More information on fluxes

An additional modification comes when nonzero NS-NS B-field background is turned
on along some 2-cycle. In this case, the first Chern number along the particular 2-cycle
(for n*" = n¥ = 1) is shifted by:

Myiyi — mxiyj = Myiyi + 5, etc. (D5)

In the model that we discussed in [7], we turn on nonzero NS-NS B-field, (B = 1),
along the 2-cycles diagonally in the three 7?’s. Resulting fluxes are then half-integral.
However, as already mentioned earlier, in writing the wavefunctions of chiral fermions x,
in bifundamentals, the relevant quantities are the difference of fluxes in the two stacks,
or the two diagonal blocks in the gauge theory picture. In addition to the D-branes, an
orientifold model also contains image D-branes with fluxes of opposite signature than the
ones present in the original brane. In such cases, the corresponding wavefunctions y -
will obey similar equations as that of y,,, but with the addition of the gauge potentials
A® + AP rather than their difference as in eq. (3.22). The relevant matrix N which will
now be the addition of fluxes in the two stacks, rather than their difference, will once again
be integral.

We also learnt from the second equation in (3.26) that (N./m£2) is a symmetric matrix.
However, as explained in eqs. (2.24) in the general situation and in (D.2) for {2 = i1, fluxes

are in general hermitian when components of all types: p,,, py, and p,, are present.
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