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Synopsis

Graphite, a typical layered material, consists of hexagonal carbon sheets which are stacked

on top of each other. Each layer contains two interpenetrating triangular sublattices denoted

as A and B. Elemental carbon is tetravalent. Its2s and2p electrons hybridize with each

other leading to the formation of strongσ bond and the sidewise overlap ofpz electrons

gives rise toπ bonds. Theσ-bonded electrons are at the root of the hexagonal structureof

each layer of graphite whereas theπ-bonded electrons are of vital importance for its various

electronic properties. The interaction between theπ electrons in two consecutive layers is

very small compared to the in-plane interaction. This difference in two directions makes

graphite a quasi-two-dimensional system, the layers of which could be peeled off easily.

Exploring this characteristic, to avoid many experimentalcomplications, the momentum

resolved electronic structure of graphite has been studiedextensively in the past using an-

gle resolved photoelectron spectroscopy. There have been many band structure calculations

also of graphite. Recently, the discovery of the two-dimensional system, graphene with its

peculiar electronic structure in which charge carriers mimic massless fermions, has created

a renewed interest in the mother system, graphite. Moreover, some of the exotic properties

like room temperature ferromagnetism (FM), quantum Hall effect (QHE) in Highly Ori-

ented Pyrolytic Graphite (HOPG) and the M-I like behaviour of graphite have enhanced

the necessity to reinvestigate the electronic structure ofgraphite. Recent angle resolved

photoelectron spectroscopic experiments have lead to several new observations, e.g., mass-

less electronic charge carriers (Dirac fermions) coexisting with quasiparticles having finite

effective mass, presence of non-dispersive band very closeto Fermi energy which was

neither predicted by band calculations and strong electron-phonon coupling along with lin-

ear energy dependence of the quasiparticle scattering rateindicating a deviation from the

Fermi-liquid behaviour of quasiparticles in graphite.

Electron spectroscopy is a very powerful experimental toolfor probing the electronic

structure, bonding and chemical nature of a material. Angleresolved photoelectron spec-

troscopy (ARPES) is of partucular interest because it provides the advantage of directly

probing the electronic structure with both energy and momentum information which is not

accessible by any other measurement. Ultra violet photon isused to probe the occupied

band structure. On the other hand, angle resolved inverse photoelectron spectroscopy in

which energetic electrons are used as the probing agent, is the most direct technique to

elucidate the momentum resolved unoccupied electronic structure of a material. More-
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over, the introduction of high energy resolution to these techniques enables one to probe

directly the most crucial low-energy excitations near the Fermi level (EF ). It can give valu-

able information regarding the quasiparticle lifetime andstrength of various interctions like

electron-electron, electron-phonon and so on inside a solid. For this thesis we have used

Angle resolved photoelectron spectroscopy (ARPES) andk-resolved inverse photoelectron

spectroscopy (KRIPES) techniques to probe the valence and conduction band structure of

single crystal graphite and HOPG along the different high symmetry directions of their

brillouin zone.

We have carried out a comparative study of the near fermi-level electronic structure

of single crystal graphite and highly oriented pyrolitic graphite (HOPG). Angle resolved

photoelectron spectroscopy and angle resolved inverse photoelectron spectroscopy have

been used to probe the occupied and unoccupied electronic states, respectively. The single

crystal graphite showed distinctive band dispersions along the symmetry directionsΓK

andΓM of its hexagonal brillouin zone. We compared these dispersing features with the

existing first principle band structure calculations to identify the experimental bands and

found them to be in good agreement. All along the symmetry directions only oneπ band

is visible but near theK point (brillouin zone corner) theπ bands of single crystal graphite

show a splitting. The splitting at theK-point was estimated to be∼ 0.5 eV. We have also

compared the dispersingπ bands with another band structure calculation performed byus

within tight binding model with much importance on the in-plane interactions among the

electrons. In the following paragraph we will describe the outline of the formalism and

compare the experimental results with that. We have done a low temperature (77K) study

of the near EF feature at theK point and observed the presence of a quasiparticle peak

below EF which indicates a strong electron-phonon coupling in graphite. On the other

hand, HOPG showed a circular low energy electron diffraction (LEED) image consistent

with the presence of microcrystalline grains in the material. In ARPES experiment on

HOPG, theM and K points like features were found to be present in the same radial

direction due to the superposition of theΓM andΓK directions. Angle resolved inverse

photoemission spectroscopy, which gives the dispersions of the conduction band states,

have been carried out on single crystal graphite (along a brillouin zone direction very close

to ΓM) and on HOPG (along a radial direction). Results from this spectroscopy have

displayed band dispersions which are matching with the lower π∗ band along theΓM

direction of the calculated conduction band structure. We have also found the presence of

some non-dispersive features in both the valence and conduction bands which are thought
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to be coming from the presence of loose carbon atoms at the surface or from the high

density of states due to the flat band near theM point.

Since singly occupiedpz electrons are responsible for the electronic properties ofgraphite,

we have particularly compared the experimentally foundπ bands with our tight bindingπ

bands on graphite. To calculate the bands we have initially constructed the formalism for

graphene which could be thought as the first approximation ofgraphite. We have calcu-

lated the bands considering the hopping of the electrons up to third nearest neighbours in

the graphene plane with an aim to find a set of parameters whichwill not be mere fitting

parameter, rather have some physical ground, e.g. the parameters should be decreasing in

magnitude with increasing distance. We have also included the overlap integral corrections

to the bands. We find that theπ bands are linear near theK point and the nearK point

regions of the dispersions are very little affected by the inclusion of different parameters

whereas the slope of the bands change considerably in the region near about theΓ point.

We have fixed the values of the parameters by comparing the results with a first principle

band structure calculation. We have also produced the partial density of states (due toπ

band only) within the same model. Furthermore, we have investigated the effects of these

in-plane parameters on theπ bands of bilayer graphene along with its out-of-plane inter-

action between the neighbouring planes. Here we have also searched for the effect of the

site energy difference (∆) which comes from the difference in structural environmentbe-

tween two atoms in two different sublattices in the same graphene layer. It is observed that

the bands become quadratic in nature near theK point of bilayer brillouin zone. We also

observe that∆ introduces asymmetry in energy values of top conduction band and bottom

valence band at theK point with respect to zero energy and the out-of-plane overlap in-

tegral introduces further asymmetry to these. In general there is noticeable electron-hole

asymmetry in the slope of the bands away from theK point, and also the changes in band

widths due to different in-plane coupling parameters. For this system also we have derived

the density of states within the same model. Finally, we haveapplied this formalism on

graphite which is nothing but a bilayer graphene with periodicity along the z-axis. So, the

brillouin zone of graphite is also three dimensional. In this system we find that the bands

are non-linear near theK point whereas they are linear near theH point (another corner at

the top) of the brillouin zone. Comparison of the experimental π bands with those of the

calculated ones in theΓMK plane of the brillouin zone reveals that the bands having the

effect of parameters up to third nearest neighbours have a better matching near the zone

boundaries, i.e. nearK andM point compared to the bands with nearest neighbour hop-
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ping only. At and around the zone centre none of the calculated bands superpose well with

the experimental bands.

Though, for this thesis the major work is on graphite system,we have done some elec-

tronic structure studies applying the photoelectron spectroscopic methods on two transi-

tion metal oxide systems of current interest namely, BiFeO3, a multiferroic material and

Sm0.1Ca0.9−xSrxMnO3, a colossal magnetoresistive material.

Multiferroic materials are of great interest because of their huge application possibil-

ity in magnetic storage devices, electronics, sensor etc. and also from the physics point

of view the simultaneous presence of different ferroic orders (magnetic, electric and/or

structural) and their coupling mechanism needs to be understood. BiFeO3 is of particular

interest because its both the transition temperatures (TC and TN ) are above room tempera-

ture. Here, we have studied the valence band electronic structure of Pb doped BiFeO3 i.e.,

Bi1−xPbxFeO3 (x = 0.02 to 0.15) system using X-ray (XPS) and ultra-violet photoelec-

tron spectroscopy (UPS). The system undergoes a R3c (distorted cubic perovskite) to cubic

phase transition with Pb doping. The cubic composition shows an enhancement of the oxy-

gen 2p character in the near Fermi level density of states, possibly due to the weakening of

the Fe 3d - O 2p - Bi 6p hybridization strengths following the changes in the topology of the

oxygen octahedra in its structure. The compositions with the R3c structure showed a much

larger band gap and band width compared to those reported from LSDA + U calculations.

We attribute this to a larger effective Coulomb interaction(Ueff ).

To study the electronic structure of Sm0.1Ca0.9−xSrxMnO3 which is an electron doped

system (x=0.0, 0.2, 0.3, 0.4 and 0.6) we have used ultra violet photoelectron spectroscopy

(UPS) with fixed photon energy (HeI line) and resonance photoelectron spectroscopy (Re-

sPES) with varying photon energy across Mn 2p-3d absorptionedge. The manganese based

perovskite systems, usually known as manganites, have attracted enormous attention over

the last several decades because of their potential application in data storage and because

of the richness of physics involved in various interesting phenomena exhibited by them .

They show a huge decrease of electrical resistance due to theapplication of external mag-

netic field, a phenomenon leading to the name colossal magnetoresistance (CMR). The

electronic degrees of freedom e.g. charge, spin, orbital and their interplay show interesting

phenomena like charge ordering, orbital ordering, pseudogap formation, phase separation

etc. Electronic structure study, particularly the near Fermi level electronic structure could

shed light on the nature of the interactions behind these phenomena. The magnetic ground

state of the parent compound (Sm0.1Ca0.9MnO3) at low temperatures (below TN=Tc=110K)
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comprises of ferromagnetic clusters (FM) embedded in a G-type AFM phase. Composi-

tions with x < 0.2 also show the presence of this FM component. This component is

sensitive to the substitution of Sr for Ca. From the combinedUPS and ResPES studies we

find that the valence band of this material has major contribution from Mn 3d states and

there is a strong hybridization between Mn 3d t2g and O 2p states. The very weak spectral

weight around the Fermi energy in the resonant photoemission spectrum is attributed to

low density of Mn 3d eg electrons in Sm0.1Ca0.9−xSrxMnO3; having only a small fraction

of Mn3+ (t32ge
1
g) ions. With strontium doping, the A site cation size increases leading to

significant changes in the Mn 3d spectral weight. This indicates that there is a change in

Mn 3d - O 2p hybridization strength due to structural modification caused by Sr doping.
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1
Introduction

The prime objective of this thesis is to study the electronicstructure of graphite systems

(single crystal graphite, HOPG, bilayer graphene, graphene) and the transition metal oxides

(BiFeO3, Sm0.1Ca0.9MnO3) using the electron spectroscopic techniques ARUPS, KRIPES,

UPS, XPS and ResPES; and tight binding band calculation. In the following we will first

introduce the material systems which have been studied hereand then describe the structure

of the thesis.

1.1 sp2 hybridized carbon materials

Carbon based materials are unique in many ways. They share the same chemistry, carbon,

but are very different in their structure and properties. Hybridization of atomic orbitals

leads to several possible configurations of the electronic states of carbon atoms. Atomic

carbon has six electrons with the configuration1s2, 2s2 and2p2. The1s2 orbital contains

two strongly bound electrons and they are called core electrons. There are four not so

tightly bound electrons in2s22p2 orbitals which are called valence electrons. Since the en-

ergy difference between the2s and2p energy levels is small, the electronic wave functions

of these four electrons can mix with each other and give rise to various hybridized orbitals

depending on the contributions froms andp orbitals.

1.1.1 Graphite

Graphite is a system withsp2 hybridization. It has a three dimensional layered structure.

Each of these layers consists of carbon atoms arranged in a honeycomb structure. The

hexagonal planar arrangement occurs due tosp2 hybridization. Insp2 hybridization2s
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Chapter 1. Introduction

orbital overlaps with2px and2py orbitals and generates three new in-plane hybridized or-

bitals each having one electron. Due to overlap ofsp2 orbitals of adjacent carbon atoms

strong bonding and antibondingσ bonds are formed. The bondingσ bonds make an angle

of 120◦ among each other and lies in a plane forming hexagonal structure. The singly occu-

pied2pz orbitals remain unaltered. Thepz orbitals are perpendicular to the hexagonal plane

and forms bonding and antibondingπ bonds due to their overlap in a sidewise fashion. In

crystalline phasesp2 orbitals with a lower binding energy compared to1s (core level) are

called semi core levels andpz orbitals having lowest binding energy are the valence levels.

The electronic properties of graphite are controlled bypz electrons. Further, the in-plane

interatomic distance in graphite is much less compared to that between adjacent planes.

Hence, the lateral overlap of thepz orbitals is very strong in comparison to the longitudinal

overlap which results in a very weak coupling between the twolayers of graphite. More-

over, the layers could be stacked together in various ways leading to the formation of AA,

AB (Bernal) and ABC (rhombohedral) stacked graphite. Because of its weakly coupled

layered structure, the surface planes can easily be peeled off. This quality makes graphite

a very suitable material for its electronic structure to be studied by angle resolved photo-

electron spectroscopy. In fact, using angle resolved photoelectron spectroscopy there have

been intensive studies of its electronic structure in the past [1–6]. There have been many

band structure calculations [7–13] also on graphite. Earlier band structure calculations also

predicted the presence of non-linear dispersion near theK point, i.e., electrons with fi-

nite effective mass and linear dispersion near theH point, i.e., massless fermions in the

same graphite system. But until very recent measurements the coexistence of massive and

massless fermions remained unrevealed experimentally [19]. The recent discovery of the

two-dimensional system, graphene with its peculiar electronic structure in which charge

carriers mimic massless fermions, has created a renewed interest in the mother system,

graphite. Moreover, some of the exotic properties like roomtemperature ferromagnetism

(FM), quantum Hall effect (QHE) in Highly Oriented Pyrolytic Graphite (HOPG) and the

metal-insulator (M-I) like behaviour of graphite have enhanced the necessity to reinvesti-

gate the electronic structure of graphite. Recent angle resolved photoelectron spectroscopic

experiments have lead to several new observations, e.g., massless electronic charge carri-

ers (Dirac fermions) coexisting with quasiparticles having finite effective mass, presence

of non-dispersive bands very close to Fermi energy which areneither predicted by band

calculations and strong electron-phonon coupling along with linear energy dependence of

the quasiparticle scattering rate indicating a deviation from the Fermi-liquid behaviour of
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quasiparticles in graphite, presence of a sharp quasiparticle peak in HOPG [14–19].

HOPG: Highly oriented pyrolytic graphite is also three dimensional graphite but it is not a

perfect single crystal. It has many microcrystal grains with the c-axes being highly oriented

(within ∼ 0.3◦ - 0.4◦). Though this system is characterized by orientationally disordered

domains, it shows distinct dispersions in the radial directions along with clear evidence of

a sharp quasiparticle peak near the Fermi energy [18].

1.1.2 Graphene

Graphene is a one atom thick sheet of hexagonally arranged carbon atoms. It is an ultimate

two dimensional material which was once thought to be nonexisting in reality because of

large thermal fluctuation. But its existence became an experimental success in 2004 [20].

It has hexagonal brillouin zone, the corners of which are called K points and the middle

of each side is known as theM point. Near theK points graphene exhibits unique proper-

ties such as the Dirac-like spectrum that derives from its honeycomb lattice structure, the

effective fermion velocity being 300 times less than the velocity of light. Actually, the rela-

tivistic behaviour of the electrons in graphene was first predicted in 1947 by Philip Russell

Wallace [21]. At that time, since nobody believed that a one-atom-thin solid could exist,

Wallace rather used the graphene model as his starting pointto study graphite. Technolog-

ically this material is of great importance in the field of high speed electronics, sensors and

energy storage devices.

1.1.3 Bilayer graphene

Bilayer graphene is a system of two graphene sheets stacked together. Among all the car-

bon based materials of recent interest, bilayer graphene isof major practical importance

because this is the only two dimensional material in which the band gap between valence

and conduction bands can be monitored by applying an external electric field perpendicular

to the layers [22–27] or by chemical doping of one of the layers [28]. This makes it a poten-

tial candidate for future application in nanoelectronics.The most common and distinctive

difference in the electronic features of single-layer and bilayer graphene is that the charge

carriers in this material are massive and they behave similar to conventional nonrelativis-

tic electrons. This is caused due to the presence of interlayer coupling in Bernal stacked

bilayer graphene.
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1.2 Transition metal oxides

Transition metal oxides, apart from their unexpected insulating behaviour, exhibit a number

of fascinating physical properties like high temperature superconductivity, colossal mag-

netoresistance (CMR), multiferroicity etc. and fall in thecategory of strongly correlated

electron systems. Because of the inherent richness of physics involved in their properties

and large possibility of application in technology, they have attracted considerable attention

since last few decades.

1.2.1 Multiferroics

Multiferroics are a class of materials which show simultaneous existence of both magnetic,

ferroelectric (FE) and/or ferroelastic orders in the same phase. They have the possibility

to control the magnetic response by applying electric field and vice versa [29]. Recently,

a huge interest has emerged regarding the multiferroics since they are technologically very

promising for the construction of multifunctional devicesin the field of spintronics and

sensors. In general they have a distorted cubic perovskite structure with the general formula

ABO3 where A (Bi, Pb) is rare earth ion and B (Fe, Mn, V) is transition metal ion with much

less ionic radius compared to the A-site ion. Among all the multiferroic materials, BiFeO3
is the most studied one. There is a co-existence of antiferromagnetic (AFM) and FE orders

in BiFeO3. At room temperature it has a distorted perovskite structure with R3c symmetry

where the Bi3+ and Fe3+ ions are displaced relative to the oxygen octahedra [30]. Also both

of its ferroelectric curie temperature (TC) and antiferromagnetic Néel temperature (TN )

are above room temperature. At TC this material undergoes a first order structural phase

transition from FE (R3c) to paraelectric (PE) (P21/m) which is accompanied by a strong

tilting of the FeO6 octahedra. This tilting of the oxygen octahedra results in significant

electronic re-arrangements of the chemical bondings, especially the Fe - O bond lengths

and Fe - O - Fe bond angles [30]. Partial substitutions of Bi byother elements were also

found to result in the tilting of the oxygen octahedra leading to enhanced or suppressed

multiferroic properties [31]. Pb substitution for Bi was expected to modify the magnetic

and FE properties as Pb ion has similar electronic structureas Bi ion, especially the lone

pair electrons, Further, the difference in the charge and ionic radii of Bi3+ and Pb2+ can

also lead to topological changes in the oxygen octahedra. Itis found that Pb substitution

reduces the rhombohedral distortion and progressively breaks the ferroelectric order [32].
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1.2.2 Manganites

The other class of transition-metal oxides, the colossal magnetoresistance (CMR) materi-

als, also have cubic perovskite structures with the B-site ion being a manganese one. They

are very often called manganites because the manganese ion is a key ingredient of these

compounds. The term colossal magnetoresistance (CMR) essentially means a huge de-

crease in electrical resistivity in presence of an externalmagnetic field. Magnetoresistance

is defined by the following equation:

MR = 100 × ρ(H) − ρ(H = 0)

ρ(H = 0)

whereρ(H) is the resistivity in presence of the external magnetic fieldH. A wide variety

of intriguing phenomena like many types of magnetic ordering, metal-insulator transition,

charge and orbital ordering and pressure induced phase transitions etc. are observed by

doping the trivalent rare earth (La, Pr, Nd) site with a divalent alkaline earth element(Sr,

Ca, Ba) [33]. The undoped parent compound is usually an insulator whereas at low tem-

peratures, properly doped manganites exhibit ferromagnetic metallic or nearly metallic be-

haviour but at high temperatures they exhibit a paramagnetic insulating behaviour [34]. A

qualitatively correct picture of the colossal magnetoresistive effect is given by the double

exchange mechanism developed by Zener, DeGennes, Andersonand Hasegawa [35–37].

According to this mechanism, the alignment of adjacent localized t2g spins on Mn3+ and

Mn4+ governs the dynamics of eg electrons. However, it can not explain the behaviours

of manganites quantitatively. So there are several theories depending on the mechanisms

such as electron-phonon interaction, charge and orbital ordering, phase separation etc. The

SmxCa1−xMnO3 series shows phase separated behaviour i.e, existence of ferromagnetic

domains embedded in an antiferromagnetic matrix over a verysmall doping range and

the ferromagnetic component is maximum near x=0.1 [38]. Further, the nature of phase

separation and magnitude of the ferromagnetic component isgreatly affected by the A-site

cationic size. By substituting Sr for Ca the A-site cationicsize is increased in the compound

Sm0.1Ca0.9−xSrxMnO3. The manganese valence state of the series Sm0.1Ca0.9−xSrxMnO3

remains constant at +3.9 irrespective of the doping concentration. At low temperature

(T < 100 K) the parent compound Sm0.1Ca0.9MnO3 shows phase separated behaviour with

ferromagnetic domains embedded in aG type antiferromagnetic matrix and at lower tem-

perature the ferromagnetic domains percolate leading to a more metallic behaviour. This
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ferromagnetic component is very sensitive to Sr for Ca substitution. It is almost washed

away as soon asx reaches a value of∼ 0.2 [39].

1.3 Structure of the thesis

The thesis is arranged as follows. Inchapter twothe experimental techniques used in this

thesis have been discussed along with a brief description ofthe theory of photoemission

and the basic principles of inverse photoemission and resonance photoemission. Brief de-

scription of the vital parts of instruments used have also been given.

Chapter threeis devoted to the electronic band structure calculation of graphite using

tight binding description. First, the bands of graphene andbilayer graphene have been

calculated within tight binding model to develop the methodology and to determine the

parameters to be used for graphite band calculation. In these calculations focus has been

given only on theπ bands because theπ electrons play the key role for the manifestations

of the interesting electronic behaviours in these systems.Further, the tight binding model is

suitable here because thepz orbitals almost keep their atomic character due to small overlap

among themselves.

The occupied and unoccupied electronic band structure of single crystal graphite and

highly oriented pyrolytic graphite as measured by ARUPS andKRIPES have been pre-

sented inchapter four. A comparison of the experimentally found bands with the calculated

ones have also been shown in this chapter. The splitting between twoπ bands of graphite

at theK point has been estimated.

The general features of the valence electronic structure ofBi1−xPbxFeO3 from XPS

measurements and the near Fermi energy (EF ) electronic behaviour using UPS have been

discussed inchapter five.

Chapter sixconsists of the study of near EF electronic behaviour of the manganite

sample Sm0.1Ca0.9−xSrxMnO3 using high resolution photoemission experiments. The bulk-

sensitive Mn2p - 3d resonant photoemission spectroscopy has also been appliedto know

the contribution of Mn 3d states in the valence band of this material.

The entire work of this thesis has been summed up inchapter seven.
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2
Experimental Techniques

2.1 Photoelectron Spectroscopy:

2.1.1 History of Photoelectron Spectroscopy:

Based on the principle of photoelectric effect there are several techniques, e.g., ultraviolet

photoemission spectroscopy (UPS), x-ray photoemission spectroscopy (XPS), angle re-

solved photoemission spectroscopy (ARPES) and resonance photoemission spectroscopy

(ResPES) which come under the common name of photoemission spectroscopy (PES). The

photoelectric effect was first discovered by Hertz [1] in 1887 and subsequently observed

by Thomson [2] and Lenard [3] in 1899 and 1900 respectively. Within classical theory

of electromagnetic radiation this phenomenon remained unresolved. In 1905 [4] Einstein

gave a satisfactory explanation of this observation by invoking the concept of quantum na-

ture of light. However, it took a long time for photoelectriceffect to get established as a

technique to extract interesting and valuable informationregarding the states of an electron

inside a solid. In 1964 Berglund and Spicer [5] performed photoemission experiment on

Cu and Ag and showed that their d bands were in good agreement with the predictions of

non-interacting band theory. Though, in the same year Kane [6, 7] argued that momentum

dependent electronic structure could be mapped from the angle and energy dependence

of photoemission spectra; the early time photoemission experiments were purely angle-

integrated studies. Later, in 1974 Smith, Traum and DiSalvo[8–11] first performed the

angular dependent band mapping of the layered compounds TaS2 and TaSe2. Kai Sieg-

bahn was awarded the Nobel Prize in Physics in 1981 for his development of electron spec-

troscopy. In its early days the energy and momentum resolutions were around 100 meV and
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2◦ respectively. This was not sufficient for the study of phenomena like superconductivity,

ferromagnetism etc. in a solid because these properties aregoverned by electrons residing

within ∼ 25 meV below Fermi energy (EF ). Significant progress towards the advance-

ment of photoelectron spectroscopy has lead to the state of the art energy and momentum

resolutions to reach to the regime of sub-meV [12] and fraction of a degree respectively.

The enormous evolution of PES is intimately related with thedevelopment of many other

experimental techniques, such as the improvement of ultrahigh vacuum (UHV) techniques,

the design of electron energy analyzers with high energy resolution, the development of

synchrotron radiation, laser based light sources and very low temperature facilities.

2.1.2 Principle of photoemission and some of its general aspects

In the most simplified picture, photoemission is described as a photon in-electron out pro-

cess. In this process a photon with energyhν excites an electron to a higher energy state

inside a solid. If the photoexcited electron has sufficient energy to overcome the surface

barrier (work function) of the material, it comes out of the solid and is detected by an

energy analyzer. In Figure 2.1, the schematic of a photoemission geometry is shown.

The kinetic energy of the photoemitted electron is governedby the following equation:

Ekin = hν − |EB| − φ (2.1)

where hν is the photon energy, Ekin is the kinetic energy of the photoexcited electron, EB

is the binding energy of the electron inside the solid andφ is the work function, which

is the energy required for an electron at EF to just escape from the solid. The schematic

energy level diagram of photoemission process is depicted in figure 2.2. Depending on the

energy of the exciting photon there are broadly two types of photoemission spectroscopy

namely, XPS and UPS. As the name suggests, in XPS the energy ofthe exciting photon

lies in the X-ray range. Hence, this technique has the capability to probe electrons from

the core levels of a material which helps to determine the chemical species present in a

material, its elemental concentrations and the charge states of the elements. On the other

hand the energy of the incident photon is chosen in the ultra-violet range in case of UPS.

As the photon energy used in UPS is lower compared to that in XPS, it has a higher prob-

ability to interact with the valence electrons of the solid.Thus, UPS gives information

regarding energy states of the valence electrons. In UPS if the emitted photoelectrons are

collected from a large solid angle by the energy analyzer, the angular information of the
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Figure 2.1: The schematic of a photoemission experiment. The photoemitted electron is
specified by its kinetic energy (Ekin) and the emission anglesθ andφ. The intensity of the
outcoming electrons is measured by the analyzer as a function of (Ekin).

electrons is lost. The photocurrent is measured as a function of electron kinetic energy

and the resulting spectrum is energy distribution curve (EDC). This is technically known

as angle integrated ultraviolet photoelectron spectroscopy but is commonly known as only

UPS. Since the emission angles of the photoelectrons are notconsidered, this technique

can give information only about the density of states (DOS) of the valence band either of

a single crystal or a polycrystalline material but not the momentum (k) dependent valence

band structure. To obtain momentum resolved energy band of asolid the take off angles

of the photoelectrons are also taken care of either by an analyzer with pin hole entrance

aperture and EDCs being recorded point by point by moving theanalyzer or by a more

advanced analyzer with channel plate. This technique is known as angle resolved photoe-
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Figure 2.2: The schematic energy level diagram of photoemission process. EF and Evac

are the Fermi energy and the vacuum level of the system. The intensity of the outcoming
electrons is measured as a function of kinetic energy (Ekin).

mission spectroscopy (ARPES) in general or ARUPS when ultraviolet photon is used. The

momentum conservation relation which is important in ARPESto obtain thek dependence

of the electronic states along with the energy conservationin equation (2.1), is as follows:

ki + khν = kf (2.2)

whereki andkf are the reduced wave vectors of the electron in its initial and final states

respectively inside the solid andkhν is the wave vector of the incident photon. For low

energy photon, used to study the valence band, the momentum of the exciting photon can

be neglected when compared with the crystal momentum of the electron in the first Bril-

louin zone. For example, for the typical photon energy of20 eV, the photon wave vector

(2πkhν=E/~c) is ∼ 0.01 ρA, which is less than 1% of the typical size of the reduced bril-
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louin zone of graphite or transition metal oxides. Hence, the transition from initial to final

state is essentially considered as a vertical one, i.e.,ki = kf . Moreover, like the initial

state wave function of the electron, the final state also is a Bloch wave so far the electron

resides inside the solid. Therefore, one can writekf askf = k + G, whereG is the re-

ciprocal lattice vector coming from the periodicity of lattice andk is the final state crystal

momentum in the reduced brillouin zone. But the photoexcited electron outside the solid is

a free electron. Hence, for each (k+G) component, there exists the possibility that it can be

matched to a travelling wave outside the crystal. Thus, the conservation of the wave vector

is given by

kf = k + G = K, (2.3)

K being the wavevector of the travelling free electron. Combining equations (2.2) and (2.3)

we get

ki = K (2.4)

But due to the discontinuity of the solid because of the presence of its surface the total

momentum is no longer conserved, rather only the component parallel to the surface is

conserved. Hence, the correct momentum conservation relation is

ki‖ = k‖ + G‖ = K‖ (2.5)

whereki‖, k‖, G‖ andK ‖ are the components parallel to the sample surface of the reduced

initial state wave vectorki, the reduced final state wave vectork, the reciprocal lattice vec-

tor G and the external photoelectron wave vectorK respectively. Since the kinetic energy of

the photoelectron is measured experimentally, its total momentum can be calculated from

the following equation

~
2K2/2me = Ekin (2.6)

where me is the mass of an electron. According to the geometry in fig. 2.1 and using

equation (2.6) the parallel and perpendicular components of the momentum are obtained as

K‖ =

√
2meEkin

~
sin θ (2.7)

K⊥ =

√
2meEkin

~
cos θ (2.8)

14



Chapter 2. Experimental Techniques

Thex andy components of K‖ are related to the azimuthal angleφ in the following way

K‖x =

√
2meEkin

~
sin θ cos φ (2.9)

K‖y =

√
2meEkin

~
sin θ sin φ (2.10)

OnceK‖x andK‖y become known, the parallel component of the crystal momentum (ki‖)

of the electron in its initial state is also known through therelation in equation (2.5). The

perpendicular component can not be extracted so easily because it is not a conserved quan-

tity. One has to take special care in order to get informationregarding this component. The

ARPES work presented in this thesis has dealt only with the parallel component of mo-

mentum and hence an elaborate discussion of the procedure todetermine the perpendicular

component is skipped.

Due to inherent randomness polycrystals do not show a brillouin zone with well defined

high symmetry directions and hence using ARPES polycrystalline materials can not be

studied because bands are usually measured along the high symmetry directions of the

Brillouin zone of the material. Single crystals, on the other hand, show diffraction images

which give the symmetry of the crystal. Though, a part of thisthesis is based on the ARPES

study of a material which is not a perfect single crystal but very close to a single crystal, it

is worthy to mention here that some information of the band structure get lost because of

the loss of single crystallinity of the material.

The high surface sensitivity of low energy photoemission spectroscopy is also an im-

portant issue to be discussed, particularly when ultraviolet photon and soft X-ray is used.

The so called ‘universal curve’ which gives an idea of the inelastic mean free path of the

photoexcited electron versus its kinetic energy is shown infig. 2.3. As seen from the fig-

ure, the mean free path lies around or below 10ρA in the kinetic energy range of 20-200

eV, which implies that the PES experiment is a highly surfacesensitive technique [29].

So to obtain spectra from clean surfaces, vacuum better than10−10 mbar is mandatory for

UV-PES experiments.

2.1.3 Theory of photoemission

In photoemission experiment the measured quantity is the photoelectron intensity as a func-

tion of the kinetic energy of the emitted electrons. The total intensity of the photoemitted
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Figure 2.3: The universal curve of the electron mean free path versus kinetic energy.

electronsI(E, k) (k dependence being taken care of only in ARPES) is a sum of thedis-

tribution of primary electronsIp(E, k) that have not suffered an inelastic collision and a

background of secondary electronsIs(E, k) which have suffered an energy loss in one or

more collisions. Therefore,

I(E, k) = Ip(E, k) + Is(E, k) (2.11)

The background of secondary electrons can be subtracted from the energy distribution

curve (EDC) of the photoemitted electrons. To have an idea ofthe factors contributing

to the primary photoelectron intensity, the photoemissionprocess is usually described in

the framework of two theoretical models namely, the one-step model and the three-step

model. In the one-step model, though the photon absorption,electron removal and electron

detection is considered as a single coherent process, it hascomputational difficulties due

to its inherent complexities arising from the involvement of surface vacuum interface and

choices of wave functions. Hence, the photoemission process is most often interpreted in

terms of the much simpler three-step model [5, 14–16]. Within this approach, the photoe-

mission process is subdivided into three sequential independent steps (Fig. 2.4) such as:

(1) the optical excitation of an electron in the bulk, (2) thetransport of the excited electron

through the solid to the surface and (3) the escape of the electron from the solid surface
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into the vacuum. The photoemission intensity (Ip(E, k)) is then given by the product of

three independent quantities: the total probability for the optical transition (P (E, k)), the

scattering probability of the electrons while travelling through the solid (d(E, k)) and the

transmission probability (T (E, k)) through the surface potential barrier.

Figure 2.4: Illustration of the three-step model of photoemission. It consists of (1) the
photoexcitation of an electron in the bulk, (2) its travel through the solid to the surface and
(3) its transmission through the surface into the vacuum.

Step one :For the first step of this model one has to calculate the transition probability

wfi due to an optical excitation from theN-electron initial stateΨN
i to one of the possible

final statesΨN
f . This can be approximated by Fermi’s Golden Rule:

wfi =
2π

~
|〈ΨN

f |Hint|ΨN
i 〉|

2
δ(EN

f − EN
i − hν), (2.12)

whereEN
i = EN−1

i − Ek
B andEN

f = EN−1
f + Ekin are the energies of the initial and

final N-electron states,Ek
B is the binding energy of the photoelectron with momentumk

and kinetic energyEkin. The interaction of the electron with the electromagnetic field of

photon is considered as a perturbation. Neglecting the contribution from the quadratic term

in vector potentialA, the interaction Hamiltonian is given by

Hint = − e

2mec
(A.p + p.A), (2.13)
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p being the momentum operator,e andc are the electronic charge and velocity of light in

free space respectively. Further,Hint can be approximated as

Hint = − e

2mec
A.p (2.14)

using the commutator relation[p,A] = −i~∇.A and the dipole approximation∇.A = 0,

i.e.,A is constant over atomic dimensions compared to the wavelength of light used. This

is not a good approximation becauseA might have a substantial amount of change at the

solid surface. For further discussion of the transition matrix element some approximations

are required regarding the wave functions contained in it. In the simplest approximation

scheme one can take a one-electron view of the initial and final state wave functions. Then

the initial state can be written as a product ofφk
i , the state from which the electron with

momentumk is photoexcited and the wave function of the remaining electronsΨN−1
i , i.e.,

ΨN
i = Cφk

i Ψ
N−1
i , (2.15)

where C is the operator that antisymmetrizes the wave function properly. In a similar way

the final state can also be expressed as

ΨN
f = CφEkin

f ΨN−1
f , (2.16)

whereφEkin
f is the wave function of the photoemitted electron andΨN−1

f is the same for the

remaining(N − 1) electrons. The transition matrix element then reduces to

wfi =
2π

~
|〈φEkin

f |Hint|φk
i 〉|

2|〈ΨN−1
f |ΨN−1

i 〉|2δ(EN
f − EN

i − hν) (2.17)

or

wfi = |Mk
fi|

2|cfi|2δ(EN
f − EN

i − hν), (2.18)

where|Mk
fi|

2
= |〈φEkin

f |Hint|φk
i 〉|

2
is the one-electron matrix element and|cfi|2 = |〈ΨN−1

f |ΨN−1
i 〉|2

is (N − 1) electron overlap integral. Basically, this is the probability that the removal of

an electron from theith state of aN-electron system leaves the system in any of its excited

statef of the(N − 1)-electron system. In a real solid many of thecfi are non-zero which

will contribute to the photoemission intensity as additional peaks (called satellites) along
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with the main peak. The intensity is then proportional to
∑

fi wfi, i.e.,

Ip(E, k) ∝
∑

f,i

|Mk
fi|

2|cfi|2δ(EN
f − EN

i − hν) (2.19)

Step two : The photoexcited electron while travelling towards the surface may undergo

collision via several mechanisms like electron-electron,electron-phonon and so on. The

dominant scattering mechanism is the electron-electron interaction. Assuming that the

scattering frequency1/τ (τ being lifetime) is isotropic and depends only on energy, the

electron inelastic mean free pathλ(E, k) is given by

λ(E, k) = τvg =
τ

~
dE/dk, (2.20)

wherevg is the group velocity in the final state. The transmission factor T (E, k) is cal-

culated in terms of the electron mean free pathλ(E, k) and the photon penetration depth

λph(ν) by the following equation:

T (E, k) =
λ(E, k)/λph(ν)

1 + λ(E, k)/λph(ν)
(2.21)

The typical values ofλ(E, k) andλph(ν) are∼ 5-20ρA and 100-1000ρA, respectively.

Therefore,λ(E, k)/λph(ν) ≪ 1 andT (E, k) can be replaced byλ(E, k)/λph(ν).

Step three : Out of all, the escaping electrons are those for which the contribution

to the kinetic energy from the normal component of momentum is sufficient to overcome

the surface potential barrier. All other electrons are totally reflected back into the bulk.

Approximately, the escape function is defined as

D(E) = 0 : Ef(k) − Evac ≤ ~
2(k‖ + G‖)

2/2me

= 1 : Ef (k) − Evac > ~
2(k‖ + G‖)

2/2me (2.22)

with Ef (k) − Evac = Ekin = ~
2(k‖ + G‖ + K⊥)2/2me.

Considering all these three factors of the model together and taking into account the

conservation of wave vector, the final expression forIp(E, k) is given by

Ip(E, k) ∝
∑

f,i

|Mk
fi|

2|cfi|2T (E, k)D(E) × δ(k + G − ki)δ(k‖ + G‖ −K‖) ×

δ[Ef (k) − Ei(k) − hν]δ[E − Ef(k) + φ] (2.23)
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In the discussion of strongly correlated systems for which the independent-electron ap-

proximation is not valid, the interacting electrons are conveniently described using Green’s

function formalism where the Green’s function is related toanother quantity called spectral

functionA(k, E) in the following manner:

A(k, E) = π−1Im{G(k, E)} (2.24)

It is also found thatA(k, E) has a form which is very similar to the photoemission intensity

described above and in factIp(E, k) can be expressed as

Ip(E, k) ∝
∑

f,i

|Mk
fi|

2
A(k, E) (2.25)

A(k, E) describes the probability of removing (forE below EF ) or adding (toE above

EF ) an electron with energyE and wave vectork from (to) the interacting system.

For a non-interacting system with one-electron energyE0
k, the Green’s function is given

by

G0(k, E) =
1

E − E0
k − iǫ

(2.26)

whereǫ is a very small quantity and

A0(k, E) = δ(E − E0
k) (2.27)

which means that the spectral function for a non-interacting system is aδ-function centered

atE = E0
k .

In an interacting electron system the electron energy gets renormalized by the self-

energy
∑

(k, E) = Re{
∑

(k, E)} + iIm{
∑

(k, E)}. The Green’s function changes to

G(k, E) =
1

E − E0
k −

∑

(k, E)
(2.28)

and correspondingly the spectral function gets modified as

A(k, E) = π−1 Im{
∑

(k, E)}
[E − E0

k − Re{
∑

(k, E)}]2 + [Im{
∑

(k, E)}]2 . (2.29)

The real part of the self-energy corresponds to the shift in the energy of the particle (called

quasiparticle for interacting system) from its one-electron value, while the imaginary part
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is related to the life-time of the quasiparticle.

2.2 Inverse Photoelectron Spectroscopy:

In order to investigate the electronic properties of a solid, it is useful to have a knowledge

of both the occupied and the unoccupied states near the Fermilevel (EF ). It has already

been discussed that photoelectron spectroscopy probes theoccupied electronic states of

solid. On the other hand, inverse photoemission spectroscopy (IPES) has emerged as a

powerful technique to study the unoccupied electronic states of a solid [17–19]. It can

access the otherwise hardly accessible region between the Fermi and the vacuum level of

the sample. Hence, photoelectron spectroscopy and inversephotoemission spectroscopy

are complementary to each other. But the yield in IPES is verylow compared to that of

PES as can be seen from the ratio (R) of their differential cross-section:

R =
(dσ/dω)IPES

(dσ/dω)PES

= (
λe

λhν

)2, (2.30)

whereλe andλhν are the wavelengths of emitted electron and photon in PES andIPES

respectively. This ratio is a reflection of the different densities of final states available for

the two transitions. In the UV energy range R is approximately 10−5 and in the x-ray range

approximately10−3. The low cross section for emission of photons in IPES is the major

reason for a relatively slow development of the technique ascompared with PES.

Moreover, compared to other techniques such as appearance potential spectroscopy

(APS), x-ray absorption spectroscopy (XAS) which can probeunoccupied electronic states,

IPES has the special advantage of resolving the momentum dependence of the empty bands.

So, apart from the density of states in its angle-integratedmode it is possible to obtain thek-

dependent band structure fromk-resolved inverse photoemission spectroscopy (KRIPES).

2.2.1 Basic principle

As the name suggests, it is a time reversed process of direct photoemission spectroscopy,

i.e., it is an electron-in photon-out process. The schematic diagram of a typical experi-

mental arrangement and the energy level diagram of an inverse photoemission process is

presented in figure 2.5. An initially free electron with energy Ei impinges on a solid and

occupies an empty electronic state. This electron relaxes to a final unoccupied state at en-
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Figure 2.5: Illustration of inverse photoemission spectroscopy. The typical experimental
arrangement (upper diagram). The energy level diagram of the process (lower diagram). If
the measured photon energy is held constant and the incidentelectron beam energy is swept
(isochromat mode), the intensity distribution of photon replicates the density of states of
unoccupied electronic states.

ergyEf either through radiative or non-radiative transition. When it undergoes a radiative

transition with the emission of a photon of energyhν, the intensity of the outcoming photon

is measured. This is usually carried out in two ways: (i) the energy of the detected photon

hν is held constant and the spectrum is obtained by sweepingEi (isochromat mode), and

(ii) by fixing the incident electron energy and collecting photons emitted over a range of

energies (parallel detection or spectrograph mode). Analogous to the photoemission one

can measure an intensity distribution of the emitted photonas a function of the final state

energyEf = Ei − hν by varying the initial state energyEi and keeping photon energyhν

constant. Within similar approximation schemes, it turns out that this distribution reflects

the available number of empty final electronic states above the Fermi level. The interaction

Hamiltonian in this case also is same as in direct photoemission (equation 2.14) because

both the processes involve interaction of electron with photon. The sampling of the Bril-

louin zone is determined by the angle of incidence of the electron beam. In the isochromat
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mode, the parallel component of the crystal momentumk‖ is given by

k‖ =

√
2me

~

√

Ef + hν − φ sin θ, (2.31)

whereθ is the angle of incidence of the electron beam with respect tothe surface normal of

the sample andφ is the work function of the material. In spectrograph modek‖ is given by

k‖ =

√
2me

~

√

Ei − φ sin θ, (2.32)

where the initial energyEi is fixed.

2.2.2 Instrumentation

The basic experimental requirement of IPES is an electron source providing a well-defined

beam and a photon detector with limited bandwidth. The photon detectors used in IPES

have fallen into two categories, those which operate in an isochromat or fixed photon en-

ergy mode and those that are tunable, allowing detection at different photon energies. The

KRIPES results, presented in this thesis, were obtained using a band-pass Geiger-M̈uller

type photon detector with acetone gas filling and CaF2 window (acetone/CaF2) in isochro-

mat mode with a mean photon energy of 9.9eV [20]. A Geiger-M̈uller counter, as schemat-

ically shown in the upper panel of figure 2.5, consists of a tube closed at one end by a cal-

cium fluoride (CaF2) window and filled with a gas to a certain pressure. The combination

of the transmission properties of the window and the photoionization cross section of the

gas determines the photon energy detected and the bandwidth. A photon with an energy

lower than the cut-off of the window but higher than the ionization potential of the gas will

initiate an electron cascade which is collected by a centralelectrode. For example, the high

energy cut-off of the acetone/CaF2 detector is due to the CaF2 window that does not trans-

mit photons with energy> 10.2eV , while the threshold for the photoionization of acetone

at 9.7eV sets the low energy cut-off. This determines the band-pass function and results

in a mean photon detection energy of 9.9eV with a FWHM of 0.4eV . Thus, 9.9±0.2eV

photons can enter the detector to photoionize acetone.

The typical requirements of electron sources for IPES are a large current at low energies

with a narrow angular spread in the beam. However, the ability to achieve the requirements

of high currents and low energies is restricted by fundamental limits imposed by space-

charge effects: the space-charge-limited current densityat a cathode varies as the three-
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halves power of the extraction voltage and inversely as the square of the cathode-anode

distance. A Stoffel-Johnson type [21] electron source was used in our experiment. This is

chosen because it has less space-charge effect and high beamcurrent.

2.3 Resonance Photoemission Spectroscopy (ResPES)

Resonance photoemission is one of the not so common photoemission techniques and has

been used for the investigation of valence band features in transition-metal oxide com-

pounds. Before going into the details of this technique, a brief description of another

technique called X-ray absorption spectroscopy (XAS) willbe given because to carry out

a resonance photoemission experiment, XAS is a prerequisite in order to select the photon

energy at which the resonance phenomenon will occur.

2.3.1 X-ray Absorption Spectroscopy

X-ray absorption spectroscopy (XAS) is a very powerful technique in the investigation of

the unoccupied states as well as the local geometrical structure of a material near an atom.

In this method a monochromatic beam of X-rays enters into thesolid and may get scattered

or absorbed. In the absorption process a core electron is excited to an unoccupied state or to

continuum depending on the energy of incident X-rays. Fig 2.6 shows the schematic of X-

ray absorption process. When the energy of an incident X-rayphoton exceeds the binding

energy of a particular core level, the photon can be absorbed, and the core electron is

excited to an unoccupied state, leaving a hole in the core-level. Such a core hole may decay

through X-ray fluorescence or Auger electron emission. The incident photon intensityI0

and transmitted photon intensityI are related asI = I0 exp−µx with x being the sample

thickness andµ is called the absorption coefficient.µ is a function of sample densityρ,

atomic numberZ, atomic massA and energyE of incident X-rays. In XAS, the absorption

coefficientµ is measured as a function of energyE. A typical XAS spectrum has several

parts. As the photon energy equals with the binding energy ofa core level, there is a

sharp rise inµ which is known as edge and the energy is referred as absorption threshold.

The spectral region of a few tens of eV near the threshold is known as near-edge X-ray

absorption fine structure (NEXAFS) and the region (upto∼ 100 eV) beyond NEXAFS

is known as extended X-ray absorption fine structure (EXAFS). Using X-ray absorption

spectroscopy we determined the threshold energy of Mn2p-3dtransition in a manganite
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Figure 2.6: A schematic diagram of the X-ray absorption process: an electron is excited
from the core level (CL) to the unoccupied states in conduction bands (CB) by absorbing
a photon with energy hν, leaving a hole in the core level. Such an electron-hole pairmay
decay through either X-ray fluorescence or emission of Augerelectrons.

sample.

There are several techniques for measuring the XAS. The mostdirect method is to mea-

sure the absorption of the sample by monitoring the incomingand the transmitted flux. But

this method requires the sample thickness to be very small incase of a large absorption

coefficient. By monitoring secondary processes like X-ray fluorescence and Auger elec-

tron emission, the absorption can also be measured. A more practical way to measure the

absorption is the total-electron yield (TEY) mode, in whichall electrons emitted from the

sample are collected by an analyzer. The XAS data presented in this thesis were collected

in the total electron yield mode.

2.3.2 ResPES

In this spectroscopy one excites electrons with photons of energyhν very near to the ab-

sorption threshold of a core level. The direct photoemission of valence band electrons can

then interfere with the Auger CVV-electrons that are emitted in a Super Koster-Kronig
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process. The intensity in the valence band features for which the direct photoemission pro-

cess and the Auger emission overlap is given as a function of the photon energyhν by the

so-called Fano lineshape

N(hν) ≃ (ǫ + q)2

(ǫ2 + 1)
; ǫ =

(hν − hνj)

∆(hνj)/2
(2.33)

wherehνj is a photon energy equal to the binding energy of a core level (near which the

resonance is investigated),q is a parameter for the particular core level and∆(hνj) is the

full width at half maxima (FWHM) of that core level.

Figure 2.7: A schematic diagram for a resonant photoemission process for 3d transition
metal compounds.

Fig. 2.7 illustrates the resonant photoemission process ofa 3d transition-metal com-

pound at the2p-3d threshold. In the2p-3d threshold, in addition to the direct photoemis-

sion process (process 1 in the Fig. 2.7): 3dn + hν → 3dn−1 + e−, the following atomic

process (process 2 in Fig 2.7) takes place. 3dn → c3dn+1 → 3dn−1 + e−, where cdenotes

a hole in the2p core level. The first step of such a process is the absorption of a photon,

leading to a transition from the2p core level to the3d valence band and leaving an inter-

mediate hole state in the2p core level. The second step is a two-electron Koster-Kronig

decay of the intermediate state involving emission of an Auger electron. The above two

indistinguishable processes are added coherently due to quantum interference, leading to
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an intensity modulation at the2p-3d threshold.

2.4 Instrumentation

The photoemission spectrometric system in our laboratory consists of two OMICRON

ultra-high vacuum (UHV) chambers, the main chamber or analysis chamber and a sam-

ple preparation chamber. For quick sample loading without breaking the UHV conditions

in preparation and analysis chambers a small load lock chamber is attached with the prepa-

ration chamber. Further, the sample preparation chamber isequipped with a four-axes ma-

nipulator, a diamond file, a sample heater, an evaporator andan Ar ion sputter gun. Samples

from the preparation chamber are transferred by using a magnetically coupled transfer rod.

Theµ metal main chamber can protect the photoemitted electrons from earth’s magnetic

field and any stray magnetic field. The analysis chamber is equipped with the sources of

energetic photons (X-ray and VUV-light), the hemispherical electron energy analysers (EA

125 and AR 65), four-axes cryo-manipulator and low energy electron diffraction (LEED)

unit to check sample surface orientation. The working principle of a few of the important

components are discussed below.

2.4.1 Gas Discharge Lamp

The VUV source can be operated with various discharge gases like helium, neon, argon,

krypton, xenon or hydrogen. The operation of the lamp is based on the principle of a cold

cathode capillary discharge [30]. The lamp is water cooled in order to allow for high dis-

charge current and to reduce electrode degradation resulting in prolonged service intervals.

There is a windowless direct sight connection between the discharge area and target. The

ignition potential is an order of magnitude higher than the operating potential needed to

maintain a continuous discharge. The nature and intensity of the radiation are strongly

dependent on gas pressure and discharge current. There are two modes of functioning,

namely, lines of neutral atoms (HeI, NeI etc.) and lines of singly charged ions (HeII, NeII

etc.). Here, in our ARUPS Laboratory we use a discharge lamp using He or Ne for high

resolution studies of the valence band and the near Fermi level (EF ) features.

In the VUV discharge lamp, a high dc voltage (∼ 500 V) is applied across a cell con-

taining an inert gas e.g., helium or neon. This will cause an electrical discharge in the gas in

which atoms go into an excited state and subsequently the excited states decay very fast by
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emitting photons with an energy equal to the energy difference between the excited states

and the ground states. In the case of helium, two groups of radiation are present: the first

one originates from the decay of excited neutral helium atoms i.e., He 1s 2p→ He1s2 (α),

He 1s 3p→ He 1s2 (β), He 1s 4p→ He 1s2 (γ), He 1s 5p→ He 1s2 (δ), and the second

one from the decay of singly ionized helium atoms, i.e., He+ 2p→ He+ 1s (α), He+ 3p→
He+ 1s (β), He+ 4p→ He+ 1s (γ), He+ 5p→ He+ 1s (δ). They are labeled as He I (α, β,

γ andδ) and He II (α, β, γ andδ) respectively. Theα lines are the strongest ones and occur

at21.22 eV and40.81 eV for He I and He II respectively. The relative intensities of He I α

and He IIα depend on the conditions of the discharge, particularly thelamp pressure. The

amount of He II radiation is normally very small but can be increased by decreasing the

lamp pressure. The typical discharge condition for He I are the following:

Inert gas used Discharge voltage Discharge current Lamp pressure

(Volt) (mA) (mbar)

Helium ∼ 500 80 ∼ 8.7 × 10−01

1s 2p→ 1s2 (He I α)

In order to produce a narrow beam the discharge is confined in anarrow quartz capillary.

A capillary is mounted at the output stage of the lamp to direct the light onto the sample

target. The total photon intensity that is transferred through the capillary to the sample

target is proportional to the cross sectional area of the inner bore of the capillary. Due to

lack of proper window material in the UV range, two stages of differential pumping are

employed to maintain the chamber in UHV while providing a stable pressure in the lamp.

At the first stage, the discharge region is pumped down to a pressure of∼ 10−2 mbar using

a rotary pump, whereas for the second stage, a turbomolecular pump is employed to further

reduce the He gas pressure before the main vacuum chamber.

2.4.2 X-ray source

We used DAR 400 X-ray source from OMICRON. It is a twin anode (Mg Kα (1253.6 eV)

Al K α (1486.6 eV)) X-ray source. Electrons are extracted from a hot filament and focused

to bombard the selected surface of an anode at high positive potential. The excited core
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level electrons emit characteristic X-rays when they de-excite to a lower energy level. The

anode is water cooled to prevent the aluminium or magnesium surfaces from evaporating.

X-rays generated at the surface of the anode pass through a thin aluminium window to the

sample under study. The aluminium window acts as a partial vacuum barrier between the

source and the sample region.

2.4.3 Synchrotron Radiation

Frequencies generated in Synchrotron radiation (SR) covers almost the entire range of elec-

tromagnetic spectrum. Hence, Synchrotron radiation sources are widely used in PES ex-

periments. It is well known that accelerated or deceleratedcharged particles emit elec-

tromagnetic radiation. Based on this principle, Synchrotron radiation is produced from

the relativistic electrons, which are guided in a polygon-shaped vacuum tube (called stor-

age ring) by applying a centripetal acceleration. This centripetal acceleration is caused by

strong magnets arranged on the corners of the polygon. The electrons are emitted from

a cathode and accelerated linearly outside the ring up to several MeV. Then the electrons

are inserted into the ring and the bending magnets deflect them. At this stage the electrons

emit synchrotron radiation tangential to their trajectory. The energy loss of the electrons

due to emission of radiation is compensated by allowing the electrons to pass through

radio-frequency cavity. In the present days, insertion devices such as wigglers and undu-

lators which employ periodic magnetic fields to produce radiation with no net deflection

of the beam are used to obtain much brighter radiation. Finally a beamline takes the ra-

diation from the ring to the experimental stations. Compared to discrete resonance lines

obtained from laboratory source synchrotron source provides several advantages, e.g., its

high intensity photon beam allows rapid experiments and highly collimated (due to spatial

coherence) photon beam generated by a small divergence allows one to study very small

size sample.

The resonance photoemission and x-ray absorption spectroscopy presented in this work

were carried out using BACH beamline at Elettra synchrotronlight laboratory, Trieste,

Italy. BACH beamline employs undulators to enhance the intensity of emitted radiation.

It works in the UV-soft X-ray photon energy range (35-1600 eV) with selectable light

polarizations. It is equipped with four spherical gratings(SG1, SG2, SG3 and SG4) to

select photons in different energy ranges.
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2.5 Energy Analyser

In this work the UPS and XPS data were collected by a hemispherical analyser (EA125)

with a mean radius of 125 mm and the ARPES spectra were recorded by a rotatable hemi-

spherical analyser (AR65) with a mean radius of 65 mm. The analyser EA125 is not mov-

able whereas the AR65 analyser is mounted on a double axes goniometer with two inde-

pendent degrees of freedom. The possible directions of rotation of the analyser is shown in

figure 2.8.

Figure 2.8: Rotation planes of AR65 analyser.

2.5.1 Hemispherical Analyser

A hemispherical deflection analyser consists of two concentric hemispheres, schematically

shown in Fig. 2.9. The entrance and exit slits are centered onthe mean radius of the inner

and outer spheres. A potential difference is applied between the two hemispheres, with the

outer one being negative with respect to the inner one. The voltages on the inner and outer

hemispheres (V1 and V2), which allow only those electrons having a kinetic energy Epass

(usually called pass energy) to enter into the analyser, aregiven by the following equations:

eV1 = Epass[2R0/R1 − 1] (2.34)

eV2 = Epass[2R0/R2 − 1] (2.35)

30



Chapter 2. Experimental Techniques

Figure 2.9: A schematic diagram of hemispherical analyser.

where R1 and R2 are the radii of the inner and outer spheres, respectively with respect to a

common centre, and R0 denotes the mean radius of the two spheres with R0 = (R1 + R2)/2.

The theoretical energy resolution of the analyser∆E is approximately expressed as [28]

∆E = Epass[d/2R0 + α2/4] (2.36)

whered is the slit width (entrance slit) andα (in radian unit) is the acceptance angle of the

analyser. In practice the energy resolution can be varied bychanging the pass energy and

slit width.

2.5.2 Electron Lens System

The electron lens is a multi-element electrostatic lens fitted at the entrance to the analyser.

The purpose of the lens is to collect electrons from a larger solid angle and to vary the

energy of the beam to the pass energy of the analyser. The resolution obtainable with the

hemispherical analyser can be significantly increased by reducing the pass energy of the

analysed electrons. An electron lens typically consists oftwo or more cylinders, which

are held at different potentials. The electric field that exists between the elements acts
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upon the electrons that pass through it. In cylindrical lenses, the adjacent cylinders are

kept at different potentials and focusing takes place. The simplest practical lens consists of

two aligned cylinders at different potentials. However, byemploying a third element it is

possible to accelerate or retard electrons by varying amounts.

2.5.3 Single Channel Detector

The photoelectrons in a PES experiment is counted using a channeltron. A channeltron is

an electron multiplier made up of a small curved glass tube, the inside wall being coated

with a high resistance material. A high voltage is applied along the tube. When a high

energy particle enters the low potential end of the tube it collides with the wall, ejecting

secondary electrons. These secondary electrons are then accelerated down the tube, making

further collisions with the curved wall; each collision generates more and more electrons

in an avalanche, resulting in a large electron cloud at the other end of the tube. Thus,

from an input of one electron the channeltron respond by producing an output pulse with a

typical gain of 108 [28]. The output can either be measured by a ratemeter or a computer.

The data-taking capacity can be enhanced by using a multichannel detector, which consists

essentially of a microchannel plate or several channeltrons to perform parallel detection.

We have used a single channel detector to detect the photoelectrons passing through the

hemispherical deflector.

Figure 2.10: A schematic diagram of electron amplification in a channeltron.
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2.5.4 Pulse Counting Operation

In an electron spectrometer, electrons which arrive at the input of the channeltron detector

generate secondary electrons which are then accelerated down the channeltron by a positive

voltage bias (+2 kV to +3 kV at the output). These electrons strike the channeltron wall

producing additional electrons progressively down the channeltron to the output where

between 107 to 108 electrons arrive (fig. 2.10).

2.5.5 Channeltron Operating Plateau

C
o

u
n

t 
R

at
e 

 Desired 
 Operating 
 Voltage

 Maximum 
 Operating 
 Voltage

Operating region 

Plateau

Applied Voltage (kV)

 Ionic feedback 
  region

~ 2.1 kV ~ 2.8 kV

Figure 2.11: A plateau curve of a channeltron.

As the voltage applied to a channeltron is increased, the gain increases and the output

pulse height increases. As more and more output pulses exceed the threshold set in the

preamplifier, the observed count rate increases. When the gain is large enough for the

smallest pulses in the distribution to exceed the threshold, a plateau is reached and no

further increase in count rate is observed with higher voltages as shown in figure 2.11. At

very high voltages, the observed count rate again increasesdue to the feedback of positive

ions generated within the channeltron. This should always be avoided as the observed

pulses do not result from an input and operating channeltrons in this condition considerably

reduces their lifetime.
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The onset of the plateau is reached at approximately2 kV for new channeltrons and this

slowly increases as the channeltron ages. The desired operating voltage is approximately

100 V above the onset of the plateau. The electron pulse is then routed to a preamplifier

which filters out the system noise using a high speed threshold comparator circuit. The

electrical signal is converted to an optical signal which istransmitted to the receiver unit

via an optical fiber link. The receiver unit converts the optical signal to a digital electronic

pulse which is then counted by the computer. The optical linkisolates the pulse counting

system, usually a computer, from the spectrometer and low noise data levels.

2.5.6 Low Energy Electron Diffraction (LEED) unit

In addition to the gas discharge lamp and two electron spectrometers EA125 and AR65,

the main chamber is also equipped with a Low Energy Electron Diffraction (LEED) appa-

ratus which is used to determine the orientation of crystal surface. The LEED experiment

uses a beam of electrons of a well-defined low energy (typically within 20 -200 eV) inci-

dent normally on the sample. Since the de Broglie wavelengthassociated with low energy

electron is comparable to the lattice constant of a crystal,its diffraction can give informa-

tion regarding the geometrical structure of the crystal andas the energy is quite low it is

very much surface sensitive. The sample under study must be asingle crystal with a well-

ordered surface structure in order to generate a back- scattered electron diffraction pattern.

For a polycrystal it will give a diffused circular pattern. Atypical experimental set-up

is shown in figure 2.12. Only the elastically-scattered electrons contribute to the diffrac-

tion pattern. The lower energy (secondary) electrons are removed by energy-filtering grids

placed in front of the fluorescent screen that is employed to display the pattern.

2.5.7 Sample Surface Preparation

It has already been discussed that the PES experiment is a highly surface sensitive tech-

nique [29]. In order to get the spectra from clean surfaces, vacuum better than 10−10 mbar

is mandatory for VUV-PES experiments. This makes the preparation and preservation of a

clean sample surface essential to PES measurement. Among the surface preparation tech-

niques that have been used, in situ scraping and in situ cleaving are the safest. Here we have

used in situ cleaving for graphite samples, i.e., single crystal graphite and HOPG. The sam-

ples were cleaved by using post technique inside the preparation chamber. The transition

metal oxide samples, i.e., Bi1−xPbxFeO3 and Sm0.1Ca0.9−xSrxMnO3, were scraped insitu
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Figure 2.12: A typical set-up of LEED experimental.

using a diamond file. The sample was mounted on a stainless steel sample holder using

commercial UHV compatible glue and using silver paste it wasmade conductive with the

sample plate. The sample was first loaded under atmosphere into the load lock, which can

be pumped down to 1× 10−7 mbar within one hour, then transferred into the preparation

chamber with base vacuum∼ 7 × 10−10 mbar. In the preparation chamber, we cleaved

the graphite samples and then took the LEED pattern inside the analysis chamber. We re-

peatedly scraped the oxide samples by a diamond file until thefeature at∼ 9.5 eV binding

energy disappears. This feature has earlier been shown to originate from surface contam-

ination, particularly adsorbed oxygen [31]. After scraping we transfer the sample into the

analysis chamber immediately and take the spectra quickly.To check the reproducibility

of the results, all measurements reported here have been repeated at different times.
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3
Tight Binding Calculations of Graphene,

Bilayer Graphene and Graphite

3.1 Introduction

In this chapter we describe our tight binding band structurecalculations of three graphitic

systems, namely, graphene, bilayer graphene and graphite as in the next chapter we will be

presenting valence and conduction band mapping of graphiteusing ARPES and KRIPES.

Though we have done experiment only on graphite, the band calculation has been initiated

with graphene, the two dimensional approximation of graphite, then developed for bilayer

graphene, a system more close to graphite in reality, and finally extended up to three dimen-

sional graphite within similar formalism because it gives some sort of completeness as well

as helps to build up an insight of how the electronic dispersion evolves with the dimension-

ality of a system. To calculate the bands, tight binding scheme has been chosen because the

pz electrons, which are almost localized in space, play the fundamental role in determining

the electronic behaviours in these materials. In the subsequent paragraphs we will intro-

duce the above mentioned systems individually and discuss how far these materials have

been exploited using tight binding method.

Graphene is a single sheet of atomic thickness with carbon atoms arranged hexagonally.

Though it is an ideal two dimensional material of theoretical interest and one of the earliest

material on which tight binding band structure calculationwas done [2, 3], it has triggered

recently a lot of interest including the reinvestigation ofmany earlier results since its ex-

perimental discovery in 2004 [4], particularly, a large no of tight binding band calculations

have been performed with nearest neighbour hopping but without overlap integral correc-
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tion [1–3, 5–9]. Some calculations have considered the overlap integral correction [2, 8],

out of these only few calculations are there which take care of second and third nearest

neighbours along with overlap integral corrections [1, 9].It is noticed that the first nearest

neighbour hopping integral (γ0) lies around 2.5eV-3.0eV when tight binding band is fitted

with first principle calculation or experimental data [1, 6,8] near theK point of the bril-

louin zone of graphene, but interestingly, when one tries tohave a good agreement of the

tight binding band over the whole brillouin zone by including up to third nearest neighbour

hoppings and overlap integrals, the tight binding parameters are considered as merely fit-

ting parameters, not as physical entities [1] i.e., the values of parameters do not decrease

consistently as one moves towards second and third nearest neighbours. In present work

we have fitted our tight binding band with first principle datawith the objective to get a set

of parameters which is free from the above discrepancy and found out a set which gives

good matching with the first principle data over the whole brillouin zone. Here we have

also calculated the density of states with second and third nearest neighbours.

Bilayer graphene is a system of two stacked hexagonal graphene sheets. Among all the

carbon based materials of recent interest, bilayer graphene is of much importance because

this is the only two dimensional material in which the band gap between valence and con-

duction bands can be controlled by applying an external electric field perpendicular to the

layers [9–14] or by chemical doping of one of the layers [15].This makes it a potential

candidate for future application in nanoelectronics. There has been a significant amount of

effort to study the band structure of bilayer graphene [5, 9,15–17]. Regarding this the ma-

jor concern was to see how the linear dispersion near theK point in single layer graphene

gets modified in presence of interlayer coupling in bilayer graphene. It is now well estab-

lished that even the slightest presence of the interlayer coupling kills the linearity of the

dispersion of monolayer graphene and converts it to a parabolic one for the Bernal stacked

bilayer graphene. Moreover, most of the studies have talkedabout the symmetric nature

of the valence and conduction bands of bilayer graphene. Only very recently there have

been reports [17–19] regarding asymmetry between the valence and conduction bands in

this system. In the present work on bilayer graphene we have investigated some parameters

which also contribute appreciably towards asymmetry in thebands of this system. While

the existing literature mostly discusses the effect of interlayer coupling in bands of bilayer

graphene and in graphite [20], we report here about the asymmetry in band structure of

bilayer graphene which arises due to the inclusion of in-plane and interplane nearest neigh-

bour overlap integrals (s0 ands
′

1) in the tight binding band structure calculation because
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we have noticed that the presence of nearest neighbour overlap integral (s0) gives quite a

bit of asymmetry in the band structure of monolayer graphene[2,8]. We have also studied

the effects of in-plane next nearest neighbour and next to next nearest neighbour hopping

energies (γ1 andγ2) along with the corresponding overlap integrals (s1 ands2) on the band

structure of this system in line with the work on single layergraphene [1]. The in-plane

parameters used here were determined by comparing the tightbinding bands of single layer

graphene with the first principle results, by emphasizing the fact that the magnitudes of the

parameters should decrease with increasing distance (e.g., γ0 > γ1 > γ2 ands0 > s1 > s2

) as has been mentioned in the previous paragraph.

Graphite is a weakly three dimensional system of infinite stack of graphene sheets with

interlayer distance much larger than in-plane interatomicdistance. In nature graphite exists

with various stacking sequences, namely AA, AB (Bernal stacking) and ABC among which

AB stacked graphite is most abundant. In this work, utilizing the same tight binding in-

plane coupling parameters for single layer graphene and theinterlayer coupling parameters

for bilayer graphene, we have calculated the band structureof AB stacked graphite in the

way similar to that of bilayer graphene and discussed the effect of these parameters on the

energy dispersions along different high symmetry directions, particularly near theK and

H points.

3.2 Geometrical structure

Since the geometrical structure of a material plays a crucial role in determining its elec-

tronic dispersion, it is important to look at the details of the crystal structure. Here we

describe the structures of graphene, bilayer graphene and graphite. An ideal graphene

sheet consists of a regular hexagonal arrangement of carbonatoms in two dimension as

shown in fig. 3.1. It consists of two inequivalent (with respect to orientations of bonds)

triangular sublattices called A-sublattice and B-sublattice. The unit cell contains one A

and one B type of carbon atoms contributed by respective sublattices. Each carbon atom

has three nearest neighbours coming from the other sublattice, six next nearest neighbours

from the same sublattice and three next to next nearest neighbours from the other sublat-

tice. a0 (1.42 Å) is the nearest neighbour lattice distance. In the figure,~a1 and~a2 are

the unit vectors with magnitudea =
√

3a0 i.e., 2.46Å. With respect toA0 atom the

coordinates of the first neighbours (B1i, i = 1, 2, 3); second neighbours (A2i, i = 1, ...6)

and third neighbours (B3i, i = 1, 2, 3) are
(

a/
√

3, 0
)

,
(

−a/2
√

3,−a/2
)

,
(

−a/2
√

3, a/2
)

;
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(0, a) ,
(√

3a/2, a/2
)

,
(√

3a/2,−a/2
)

,

(0,−a) ,
(

−
√

3a/2,−a/2
)

,
(

−
√

3a/2, a/2
)

and
(

a/
√

3, a
)

,
(

a/
√

3,−a
)

,
(

−2a/
√

3, 0
)

re-

spectively.
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Figure 3.1: Structure of graphene. The structure with black circles forms the A-sublattice
and that with empty circles gives B-sublattice.~a1 and~a2 are the unit vectors.

Bilayer graphene is a coupled system of two monolayers of graphene with usually an

AB-stacking fashion of the layers, i.e., the atoms in one layer are not just on top of the

corresponding atoms in the other layer, rather the arrangement is such that if one layer

is projected on the other, the A-type (say) atoms coincide with the A-type atoms but the

B-type atoms come at the center of the hexagons of the other layer [16]. So A and B

type atoms can not be treated as chemically equivalent carbon atoms as they belong to two

different chemical environments. This site energy difference between two atoms in two

different sublattices in the same layer is defined here as theasymmetry energy∆. Since

its value is very small (∼ 18 meV) [18], these two atoms are usually treated as chemically

equivalent. The structure of AB stacked bilayer graphene and its brillouin zone are shown

in figure (3.2). The distance between two atoms in a layer is the same as graphene and

the interlayer separation is 3.35̊A. The brillouin zone of bilayer graphene is also same

as that of single layer graphene because it does not have periodicity along z-direction.

Bilayer graphene unit cell contains four atoms. The relevant hopping parameters, i.e.,
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nearest neighbour in-plane coupling energy (γ0), nearest neighbour interplane coupling

energy (γ
′

1), next nearest neighbour in-plane coupling energy (γ1) and next to next nearest

neighbour in-plane coupling energy (γ2) have also been shown in the figure.

A 
B 

b 2

b1

M

K

Γ

(a)

a 1

a 2

γ0

γ

(b)

γ

γ

1
2

’1

Figure 3.2: (a) Structure of bilayer graphene with unit vectors~a1, ~a2; the intralayer near-
est neighbour coupling energy (γ0), interlayer nearest neighbour coupling energy (γ

′

1), in-
tralayer next nearest neighbour coupling energy (γ1) and next to next nearest neighbour
coupling energy (γ2). (b) Brillouin zone of single layer and bilayer graphene with unit
vectors~b1,~b2 and the high symmetry directions.

The structure of graphite is an infinite sequence of AB-stacked graphene layers where

the interlayer atomic distance is much larger compared to the intralayer atomic distance

similar to bilayer graphene. The only difference with a bilayer graphene is that it has

periodicity along the third direction also leading to a three dimensional brillouin zone.

Also, in principle, the value of the asymmetric energy parameter∆ should be different in

this case.

3.3 Electronic structure of a hexagonal sheet of carbon

atoms

Since hexagonal array of carbon atoms, i.e., graphene is thebuilding block of bilayer

graphene and graphite, it will be relevant to discuss first the basics of electronic config-

uration of the carbon atoms in graphene. Carbon atom has six electrons with the electronic

configuration1s22s22p2. 2s and 2p levels of carbon atom can mix up with each other and

give rise to various hybridized orbitals depending on the proportionality of s and p orbitals.

Graphene hassp2 hybridization: 2s orbital overlaps with2px and2py orbitals and generates

three new in-planesp2 orbitals each having one electron. The2pz orbital remains unaltered

and becomes singly occupied. Due to overlap ofsp2 orbitals of adjacent carbon atoms
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strongσ (bonding) andσ∗ (antibonding) bonds are formed. The bondingσ bonds, lying in

a plane, make an angle of120◦ with each other and is at the root of hexagonal planar struc-

ture of graphene.pz orbitals being perpendicular to the plane overlap in a sidewise fashion

and giveπ (bonding) andπ∗ (antibonding) bonds.sp2 orbitals with a lower binding energy

compared to1s (core level) are designated as semi core levels andpz orbitals having lowest

binding energy are the valence levels. Overlapping ofpz energy levels gives the valence

band (bondingπ band) and conduction band (antibondingπ∗ band) in graphene. Thus, we

see that while the structure of graphene is because ofσ bonds, theπ band is responsible for

the electronic properties of graphene and hence, as far as electronic properties of graphene

are concerned, emphasis is given only onπ bands. Since thepz orbitals overlap in a side-

wise manner, the corresponding coupling is weaker comparedto that ofσ bonds (wheresp2

orbitals overlap face to face). Therefore thepz orbitals essentially retain their atomic char-

acter. Hence, to describe the electronic structure of graphene as well as of bilayer graphene

and graphite, tight binding model could be a good choice.

3.3.1 Tight binding band of graphene

In this subsection tight binding bands of graphene have beenreproduced including up to

third nearest neighbour hopping of electrons and overlap integral corrections with focus

on the point to find out tight binding parameters which are notjust fitting parameters but

they have physical significance. The results have been compared with existing literature [1].

The key equations are shown here for the different cases of nearest neighbours, next nearest

neighbours and next to next nearest neighbours and the details of the calculations are given

in the last section of this chapter. Since there are two atomsper unit cell coming from two

sublattices, the total wave function can be written as

Ψk(r) = CAΨk
A + CBΨk

B, where (3.1)

Ψk
A/B(r) =

(

1/
√

N
)

∑

A/B

ei~k.~rA/BΦA/B(r − rA/B) (3.2)

are the tight binding Bloch wave functions from A and B sublattices. Here, N is the number

of unit cells in the crystal,CA andCB are contributions coming from A and B sublattices

respectively,Φ
′

s are2pz atomic orbitals,k is crystal momentum andrA andrB are the posi-

tions of A and B atoms respectively with respect to a chosen origin. If H is the Hamiltonian
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andE(k) the eigenvalue then

HΨk(r) = E(k)Ψk(r), (3.3)

which leads to the secular equation

∣

∣

∣

∣

∣

HAA − E(k)SAA HAB − E(k)SAB

H∗
AB − E(k)S∗

AB HBB − E(k)SAA

∣

∣

∣

∣

∣

= 0 (3.4)

whereHxy =
∫

Ψ∗k
x (r)HΨk

y(r)d~r = H∗
yx andSxy =

∫

Ψ∗k
x (r)Ψk

y(r)d~r = S∗
yx. The indices

x andy represent both A and B. Since two sublattices are equivalent, HAA = HBB and

SAA = SBB . The general dispersion relation follows as

E±(k) =
[

(2E0 − E1) ±
√

(E1 − 2E0)2 − 4E1E2

]

/2E3, (3.5)

whereSAAHAA = E0, HABS∗
AB + H∗

ABSAB = E1, H2
AA − HABH∗

AB = E2 andS2
AA −

SABS∗
AB = E3. The explicit forms of the dispersions in presence of different levels of

neighbours are discussed below.

1. In case of nearest neighbour approximation the contribution comes from nearest

atoms of the other sublattice. Detailed calculations of allthe matrix elements are

given in the last section of this chapter. From equation (3.5) the dispersion relation

for this case becomes

E±(k) =
[

(E2p − s0γ0g(k)) ± (γ0 − s0E2p)
√

g(k)
]

/
[

1 − s2
0g(k)

]

, (3.6)

whereE2p, γ0 ands0 are site energy, nearest neighbour hopping and overlap integrals

respectively.

2. With second nearest neighbour approximation the matrix elementsHAA andSAA

get modified butHAB and SAB remain as they were. The corresponding energy

momentum relation is

E±(k) =
[

E2p + γ1u(k) ∓ γ0

√

g(k)
]

/
[

1 + s1u(k) ∓ s0

√

g(k)
]

, (3.7)

whereγ1 ands1 are next nearest neighbour hopping and overlap integrals respec-

tively.
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3. With third nearest neighbour approximation the matrix elementsHAB andSAB get

changed butHAA andSAA remain unaltered. Calculation of all the matrix elements

gives expressions forE1, E2, E3 as follows:

E1 = 2s0γ0g(k) + (s0γ2 + γ0s2) t(k) + 2s2γ2g(2k)

E2 = [E2p + γ1u(k)]2 −
[

γ2
0g(k) + γ0γ2t(k) + γ2

2g(2k)
]

E3 = [1 + s1u(k)]2 −
[

s2
0g(k) + s0s2t(k) + s2

2g(2k)
]

,

which when put in equation (3.5) gives the energy momentum relation in this case.

γ2 ands2 being next to next nearest neighbour hopping and overlap integrals respec-

tively.

The bands of graphene for above three cases are plotted alongthe high symmetry direc-

tions of its hexagonal brillouin zone sketched in figure (3.2). As shown in the figure, the

symmetry points areΓ(0, 0), M(2π/
√

3a, 0) andK(2π/
√

3a, 2π/3a). There are six corner

points, out of which three are independent since the nearby corner points(K andK ′) are

inequivalent. In fig. (3.3) we have compared the bands with nearest, next nearest and next

to next nearest neighbour hopping and overlaps with a first principle calculation (produced

from this model with the parametersE2p = −0.36 eV, γ0 = −2.78 eV, γ1 = −0.12 eV,

γ2 = −0.068 eV, s0 = 0.106, s1 = 0.001, s2 = 0.003 because within the chosen energy

scale it does not show any energy difference with first principle data [1]) for the set of

parameters shown in table 3.1 where we have first determined values of nearest neighbour

parameters (γ0 ands0) which best reproduces the first principle result, then we have taken

care of second nearest neighbours (γ1 ands1) keeping first nearest neighbour parameters

fixed and lastly considered the third nearest neighbour parameters (γ2 ands2) with fixed

(γ0, s0) and (γ1, s1) with the expectation to have better matching over the wholebrillouin

zone of graphene. We observe that nearest neighbour coupling gives good overall agree-

ment for both valence and conduction bands but with the inclusion of second and third

nearest neighbours under the above restrictions, the overall matching of the valence band

with the first principle band improves whereas for the conduction band it is good only in

the optical range. When only nearest neighbour hopping is considered, the total band width

(difference between valence band and conduction band energies) atΓ point is6|γ0|, that at

M point is2|γ0| but when nearest neighbour overlap integral is also included the valence
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Figure 3.3: Electronic structure of graphene with first principle result (full curves), first
nearest neighbour interactions (dashed-dotted curves), second nearest neighbour interac-
tions (dotted curves) when first nearest neighbour parameters are fixed and third nearest
neighbour interactions (dashed curves) when first and second nearest neighbour parame-
ters are fixed. The parameters are listed in Table 3.1.

Table 3.1: Tight binding parameters

Neighbours E2p (eV) γ0 (eV) γ1 (eV) γ2 (eV) s0 s1 s2

1st 0.0 -2.74 0.065
2nd -0.21 -2.74 -0.07 0.065 0.002
3rd -0.21 -2.74 -0.07 -0.015 0.065 0.002 0.001
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Figure 3.4: Electronic structure of graphene with first principle result (full curves), first
nearest neighbour interactions (dashed-dotted curves), second nearest neighbour interac-
tions (dotted curves) and third nearest neighbour interactions (dashed curves). The param-
eters are listed in Table 3.2. Here for each curve the parameters are chosen freely.

and conduction band energies atΓ point occur at3γ0/(1+3s0) and−3γ0/(1−3s0) respec-

tively and those atM point appear atγ0/(1 + s0) and−γ0/(1 − s0) respectively. TheK

point energy is zero for both the cases. Including next nearest neighbours the energy atK

point is(E2p − 3γ1)/(1− 3s1). So the values ofE2p andγ1 are properly chosen to haveK

point energy at zero. In this case the valence and conductionband energies atΓ point are at

(E2p + 6s1 + 3γ0)/(1 + 6s1 + 3s0) and(E2p + 6s1 − 3γ0)/(1 + 6s1 − 3s0) and those atM

point are at(E2p+2s1+γ0)/(1+2s1+s0) and(E2p+2s1−γ0)/(1+2s1−s0) respectively.

In fig. (3.4) we have plotted the above set of curves with a different set of parameters such

that both nearest neighbour and next nearest neighbour parameters are free when the ef-

fect of second nearest neighbour is looked for and all three,i.e., (nearest, next nearest and

next to next nearest neighbour) parameters are free when thethird nearest neighbours are

included. The parameters are shown in table 3.2. Fig. (3.4) shows that inclusion of second

nearest neighbour gives better result over first nearest neighbour interaction compared to

the plots in fig. (3.3). Consideration of third nearest neighbour couplings gives very good

matching for both valence and conduction bands along all thehigh symmetry directions of

the brillouin zone.
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Table 3.2: Tight binding parameters

Neighbours E2p (eV) γ0 (eV) γ1 (eV) γ2 (eV) s0 s1 s2

1st 0.0 -2.74 0.065
2nd -0.30 -2.77 -0.10 0.095 0.003
3rd -0.45 -2.78 -0.15 -0.095 0.117 0.004 0.002

3.3.2 Tight binding band of bilayer graphene

In the following we first present general aspects of the formalism of tight binding band

structure of bilayer graphene and then give details of tightbinding band dispersion under

different situations like: (i) the simplest case with nearest neighbour in-plane and inter-

plane hopping ofπ electrons; (ii) modifications in the bands due to the inclusion of overlap

integrals coming from the same neighbours and due to site energy difference (∆) between

A and B atoms in two different sublattices in the same layer; (iii) effect of in-plane sec-

ond nearest neighbour hopping and corresponding overlap integral; (iv) effect of in-plane

third nearest neighbour hopping and overlap integral on theband near the brillouin zone

corner (K) point and over the whole brillouin zone, and also the density of states of bilayer

graphene corresponding to the above mentioned dispersions. Since bilayer graphene unit

cell contains four atoms coming from two different sublattices of two layers, the Bloch

wave functions for A and B type atoms for each layer [5] are

ΨAi
k (r) = 1/

√
N

∑

Ai

ΦA(r − rAi
)eik.rAi and ΨBi

k (r) = 1/
√

N
∑

Bi

ΦB(r − rBi
)eik.rBi ,

wherei refers to layer index,Φ
′s arepz atomic orbitals, N is the number of unit cells in the

crystal,CAi
andCBi

are contributions to the total wavefunction coming fromith atom of A

and B sublattices respectively. The total wave function is

Ψk(r) =
∑

i=1,2

CAi
ΨAi

k (r) +
∑

i=1,2

CBi
ΨBi

k (r).
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With this choice of wavefunction a secular equation including the overlap integrals can be

set up as follows

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

HA1A1
− E(k)SA1A1

HA1B1
− E(k)SA1B1

HA1A2
− E(k)SA1A2

HA1B2
− E(k)SA1B2

HB1A1
− E(k)SB1A1

HB1B1
− E(k)SB1B1

HB1A2
− E(k)SB1A2

HB1B2
− E(k)SB1B2

HA2A1
− E(k)SA2A1

HA2B1
− E(k)SA2B1

HA2A2
− E(k)SA2A2

HA2B2
− E(k)SA2B2

HB2A1
− E(k)SB2A1

HB2B1
− E(k)SB2B1

HB2A2
− E(k)SB2A2

HB2B2
− E(k)SB2B2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

where H is the Hamiltonian of the system andH
′s
xiyj

, S
′s
xiyj

are defined as

Hxiyj
=

〈

Ψxi
k |H|Ψyj

k

〉

and Sxiyj
=

〈

Ψxi
k |Ψyj

k

〉

respectively.

Herex, y stand for both A and B;i, j can take either of the values 1 and 2. When this

equation is solved for finiteγ0 andγ
′

1 only, ignoring the asymmetric energy (∆), in-plane

overlap integral (s0) and the interplane overlap integral (s
′

1), the resulting energy eigenval-

ues values are

E1/2(k) = ∓1

2

[

γ
′

1 ∓
[

γ
′2
1 + 4γ2

0g(k)
]1/2

]

and E3/4(k) = ∓1

2

[

γ
′

1 ±
[

γ
′2
1 + 4γ2

0g(k)
]1/2

]

,

where

g(k) =
[

1 + 4 cos2 (kya/2) + 4 cos (
√

3kxa/2) cos (kya/2)
]

,

γ0 = 〈φ(r − rAi
|H|φ(r − rBi

〉 ; i being the layer index andγ
′

1 = 〈φ(r − rA1
|H|φ(r − rA2

〉 .

In a similar wayγ1 andγ2 can be defined. The expansion around theK
(

2π/
√

3a, 2π/3a
)

point gives

E1/4(k) = ±3

4

(

γ2
0/γ

′

1

)

a2(δk)2,

and E2/3(k) = ±γ
′

1 ±
3

4

(

γ2
0/γ

′

1

)

a2(δk)2

whereδk is a small change ink around theK point. From the above results we see that

there are fourπ bands in bilayer graphene. All the bands are parabolic near the brillouin

zone corner. Two of the bands are degenerate with zero energyat theK point. -γ
′

1 and

γ
′

1 are the energies of the other two bands at that point, i.e.,±γ
′

1 is the energy separation
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between the highest conduction and the lowest valence bandsat that point. Also the valence

and conduction bands are symmetric over the entire brillouin zone. Since each atomic site

has onepz electron, the Fermi energy (EF ) for undoped bilayer graphene is at zero energy.

The bands are plotted in figure (3.5).

3.3.2.1 Modifications in the bands due to the inclusion of overlap integrals (s0, s
′

1)

coming from in-plane and interplane nearest neighbours anddue to breaking

of sublattice symmetry

The secular equation now becomes

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

E2p + ∆ − E(k) a − bE(k) γ
′

1 − s
′

1E(k) 0

c − dE(k) E2p − E(k) 0 0

γ
′

1 − s
′

1E(k) 0 E2p + ∆ − E(k) c − dE(k)

0 0 a − bE(k) E2p − E(k)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (3.8)

wherea = γ0f(k), b = s0f(k), c = γ0f
∗(k), d = s0f

∗(k) and f(k) = eikxa/
√

3 +

2e−ikxa/2
√

3 cos kya/2, s0 = 〈φ(r − rAi
|φ(r − rBi

〉 ands
′

1 = 〈φ(r − rA1
|φ(r − rA2

〉. In a

similar ways1 ands2 can also be defined. The eigen solutions to the above equationare

E1/2(k) =
[

−B1 ±
[

B2
1 − 4A1C1

]1/2
]

/2A1 (3.9)

and E3/4(k) =
[

−B2 ±
[

B2
2 − 4A2C2

]1/2
]

/2A2, (3.10)

where

A1/2 = 1−bd±s
′

1, B1/2 = ad+bc∓γ
′

1∓s
′

1E2p−2E2p−∆, C1/2 = ±γ
′

1E2p−ac+E2p(E2p+∆).

Figure (3.5) also shows the bands with finite values of∆, s0 ands
′

1 for comparison. We

first discuss the effect of the asymmetry term (∆) on the spectra atK point. The two bands

which are degenerate atK point, are not affected by∆ at that point but the other two bands

appear at energies∆ − γ
′

1 and∆ + γ
′

1, i.e., though the separation is still±γ
′

1, they become

asymmetric with respect to Fermi energy at that point. This term has negligible effect on

the slope of these curves. The lower panel of (a) in fig. (3.5) shows that the lower valence

band comes closer toEF whereas the upper conduction band moves away fromEF when

the sublattice asymmetry is taken care of. Next we illustrate the effect of overlap integrals
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Figure 3.5: Electronic spectra of bilayer graphene. For all three cases, in the upper panel
we have plotted the bands along all the high symmetry directions of the brillouin zone
and the lower panels show zoomed versions of the corresponding upper panels near the
K point. In all the panels the full curves represent the symmetric bands, i.e., bands in
presence of nearest neighbour in-plane (γ0) and interplane (γ

′

1) hopping energies. In (a)
the dashed curves contain informations due to the presence of sublattice asymmetry (∆),
clearly visible from the lower panel; in (b) the dashed curves have the effect of nearest
neighbour in-plane (s0) and interplane (s

′

1) overlap integrals but zero∆, whereas the dotted
curves are plotted with non-zero values ofs0, s

′

1 and∆. Effects of these parameters at the
K point are visible from the lower panel. In (c) the bands in presence of finite values of
s0, s

′

1 and∆ (dashed curves) are compared with the symmetric bands (fullcurves) over the
whole brillouin zone (upper panel) and nearer to theK point within optical energy range
(lower panel). The relevant parameters are given in rows numbered 1 and 2 in Table 3.3.
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s0 ands
′

1 atK point. It is observed that the in-plane nearest neighbour overlap integrals0

has no effect atK point because it always appears in product withg(k) which vanishes at

K. But the interlayer overlap integrals
′

1, though not altering the degenerate bands, affects

those bands lying further fromEF quite significantly. The upper lying band shifts further

to −γ
′

1/(1 − s
′

1) and the lower band comes closer toγ
′

1/(1 + s
′

1) (dashed curves in lower

panel of (b) in fig. (3.5)). The energy separation between them becomes2γ
′

1/(1 − s
′2
1 ).

When∆ and overlap integrals are considered together, the upper band shifts even further

to (∆ − γ
′

1)/(1 − s
′

1) and the lower band comes more close to(∆ + γ
′

1)/(1 + s
′

1) (dotted

curves in lower panel of (b) in fig. (3.5)). Under this condition the above energy separation

becomes2(γ
′

1 − s
′

1∆)/(1 − s
′2
1 ). Moreover,s0 ands

′

1 play important role in changing the

slope of the curves. They push off the conduction bands and pull in the valence bands with

respect to Fermi energy almost over the entire energy range,particularly near theΓ point

where the effect is most prominent (dashed curves in upper panel of (c) in fig. (3.5)). With

a closer look over the smaller energy range, i.e., the optical range, we see (in lower panel of

(c)) that the separation between conduction bands increases while that between the valence

bands decreases.

3.3.2.2 Effect of in-plane second nearest neighbour hopping (γ1) and corresponding

overlap integral (s1) on the spectra of bilayer graphene

Since the in-plane next nearest neighbour atoms belong to same sublattice in a plane, we

have in this case

A1/2 = (1 + s1u(k))2 − bd ± s
′

1(1 + s1u(k)),

B1/2 = ad + bc ∓ γ
′

1(1 + s1u(k)) ∓ s
′

1(E2p + γ1u(k))

−(1 + s1u(k))(2E2p + 2γ1u(k) + ∆),

C1/2 = ±γ
′

1(E2p + γ1u(k)) − ac + (E2p + γ1u(k))(E2p + γ1u(k) + ∆),

whereu(k) = 2 cos (kya) + 4 cos (kxa
√

3) cos (kya/2). The eigen solutions are same as

in equations (3.9) and (3.10) with the modifications inA1, B1, C1 andA2, B2, C2 given

above.
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3.3.2.3 Modification due to the in-plane third nearest neighbour hopping energy (γ2)

and the overlap integral (s2) on the bands of bilayer graphene

The in-plane third nearest neighbour atoms belonging to theother sublattice incorporate

changes inA1, B1, C1 andA2, B2, C2 through changes ina, b, c andd. Modifieda, b, c

andd appear as

a = γ0f(k) + γ2f1(k), b = s0f(k) + s2f1(k),

c = γ0f
∗(k) + γ2f

∗
1 (k) and d = s0f

∗(k) + s2f
∗
1 (k),

wheref1(k) = eikxa/
√

32 cos kya + e−2ikxa/
√

3. The eigen solutions in this case are also

same as in equations (3.9) and (3.10) but with a different setof A1, B1, C1 andA2, B2,

C2 due to differences appearing ina, b, c andd. To illustrate the effects of in-plane next

nearest neighbours and next to next nearest neighbours on the spectra of bilayer graphene,

all the bands are plotted together with the symmetric spectra (full curves) and the spectra

with corrections due to nearest neighbour in-plane and interplane overlaps (dashed curves)

in figure (3.6). From the plots shown in fig. (3.6) (and also from those not shown here) it

is very clear that the presence of any of the parameters (s0, s
′

1, γ1, s1, γ2, s2) or all of them

together introduces asymmetry of different amounts on the symmetric bands due toγ0 and

γ
′

1. While ∆ makes the upper conduction and lower valence band positionsasymmetric at

K point, others give asymmetry to the bands almost over the whole brillouin zone. We have

already discussed the effects ofs0, s
′

1 on the spectra withγ0 andγ
′

1 in the previous section.

Now, we describe the effects due to in-plane next nearest neighbours (γ1, s1) and in-plane

next to next nearest neighbours (γ2, s2) on top ofs0, s
′

1. There is no significant change in

energy values of the top conduction band and the bottom valence band at theK point in

presence of in-plane next nearest neighbour and next to nextnearest neighbour interactions.

For the valence bands, the bands from inclusion of next nearest neighbour hopping energy

and overlap integral (dotted curves) are nearer to the symmetric bands (full curves) within∼
2 eV but those due to the inclusion of next to next nearest neighbour interactions (triangles)

are closer to the modified bands (dashed curves) due tos0 ands
′

1. For the conduction bands

the scenario is opposite within the same energy range. Beyond that the bands with next

nearest neighbour interactions move away from the symmetric bands. Both conduction and

the valence bands move upward with respect to the previous band center. The bands with

next to next nearest neighbour interactions start moving towards the symmetric bands such

that the valence bands for both the cases almost coincide andthe conduction bands keep
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Figure 3.6: Electronic dispersions of bilayer graphene in presence of nearest neighbour
in-plane and interplane transfer integrals (full curves),nearest neighbour in-plane and
interplane transfer integrals, overlap integrals and sublattice asymmetric energy (dashed
curves), in-plane next nearest neighbour interactions (dotted curves) and in-plane next to
next nearest neighbour interactions (triangles). The parameters used for these bands are
given in Table 3.3. The rows numbered 1, 2, 3 and 4 in the table correspond to the curves
with full lines, dashed lines, dotted lines and triangles respectively in the figure.
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a separation among themselves aroundΓ point. The values of the parameters used for the

plotted bands are given in Table 3.3, the site energy and transfer integrals are ineV . The

rows numbered 1, 2, 3 and 4 in the table correspond to the curves with full lines, dashed

lines, dotted lines and triangles respectively in figure (3.6) and (3.10).

Table 3.3: Tight binding parameters.γ0, γ1, γ2 andγ
′

1 are in eV.

Curves E2p ∆∗ γ0 γ
′∗
1 γ1 γ2 s0 s

′∗∗
1 s1 s2

1 -2.78 -0.4
2 0.018 -2.78 -0.4 0.117 0.04
3 -0.45 0.018 -2.78 -0.4 -0.15 0.117 0.04 0.004
4 -0.45 0.018 -2.78 -0.4 -0.15 -0.095 0.117 0.04 0.004 0.002

∗taken from reference [18].
∗∗chosen as 10 times less than the magnitude ofγ

′

1.

In presence of in-plane next nearest neighbour interactions there are three choices of

E2p (= 3γ1, 3γ1 −∆± γ
′

1) for which the Fermi energy comes at zero. For other choices of

E2p the Fermi level shifts from zero. In presence of in-plane next to next nearest neighbour

interactions, the choices ofE2p for which Fermi energy will be at zero, are same as in the

case of next nearest neighbour interactions.

3.3.3 Tight binding band of graphite

Here we shall present a comparative study of the tight binding dispersions of graphite

obtained by following the same prescription used for bilayer graphene. Also, the same set

of tight binding parameters (table 3.3 ) has been utilized. The unit cell of graphite contains

four carbon atoms. The collective wave function of the crystal can be written as

Ψk(r) =
∑

i=1,..4

CiΨ
k
i , where (3.11)

Ψk
i (r) =

(

1/
√

N
)

∑

A/B

ei~k.~r
A/B
i ΦA/B(r − r

A/B
i )

Proceeding in the same way as described for bilayer graphene, the dispersion relations in

presence of nearest neighbour in-plane and interplane overlap, i.e., for finiteγ0 and γ
′

1

only, ignoring the asymmetric energy (∆), in-plane overlap integral (s0) and the interplane
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overlap integral (s
′

1), are given as

E1/2(k) = ∓1

2

[

γ
′

1fz(k) ∓
[

γ
′2
1 f 2

z (k) + 4γ2
0g(k)

]1/2
]

and E3/4(k) = ∓1

2

[

γ
′

1fz(k) ±
[

γ
′2
1 f 2

z (k) + 4γ2
0g(k)

]1/2
]

,

wherefz(k) = 2 cos (kzc/2), c being unit cell parameter along z-direction.

In presence of nearest neighbour in-plane overlap integral(s0), interplane overlap inte-

gral (s
′

1), the asymmetric energy (∆) and in-plane second nearest neighbour hopping (γ1)

and corresponding overlap integral (s1), the energy dispersions change to

E1/2(k) =
[

−B1 ±
[

B2
1 − 4A1C1

]1/2
]

/2A1 (3.12)

and E3/4(k) =
[

−B2 ±
[

B2
2 − 4A2C2

]1/2
]

/2A2, (3.13)

where

A1/2 = (1 + s1u(k))2 − bd ± s
′

1fz(k)(1 + s1u(k)),

B1/2 = ad + bc ∓ γ
′

1fz(k)(1 + s1u(k)) ∓ s
′

1fz(k)(E2p + γ1u(k))

−(1 + s1u(k))(2E2p + 2γ1u(k) + ∆),

C1/2 = ±γ
′

1fz(k)(E2p + γ1u(k)) − ac + (E2p + γ1u(k))(E2p + γ1u(k) + ∆),

whereu(k), a, b, c andd have been defined in the discussion of bilayer graphene.

The energy eigenvalues in presence of in-plane next to next nearest neighbours are same

as in equations (3.12) and (3.13) with the modifications inA1, B1, C1 andA2, B2, C2 as

has been mentioned in the calculation of bilayer graphene. The above results have been

depicted in figures 3.7 and 3.8. In figure 3.7 (a) the bands withγ0 andγ
′

1 only and bands

along with (s0), (s
′

1) and (∆) have been compared over the entire brillouin zone. It is found

that in both the cases there are two bondingπ bands and two antibondingπ bands in the

ΓMKΓ plane whereas inAHLA plane theπ bands are degenerate and so are theπ∗ bands.

Widths of the bands at theΓ point increases and slope the bands changes when (s0) and

(s
′

1) are included. In fig. 3.7 (b) and (c) the effect of the parameters (s0), (s
′

1) and (∆) has

been clearly shown near the zone cornersK andH respectively. From the plots shown and

from the plots which have not been presented here it is noticed that (s0), (s
′

1) and (∆) affect

the bands at and near theK point in a manner exactly similar to that of bilayer graphene.
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Figure 3.7: Electronic spectra of graphite. The upper panel shows the bands along all
the high symmetry directions of the graphite brillouin zoneand in the lower panels we
have shown the zoomed versions of the spectra near the brillouin zone corners (K and
H points). In all the panels the full curves represent the symmetric bands, i.e., bands
in presence of nearest neighbour in-plane (γ0) and interplane (γ

′

1) hopping energies. In
(a) the dashed curves contain informations due to the presence of sublattice asymmetry
(∆), nearest neighbour in-plane (s0) and interplane (s

′

1) overlap integrals. Effects of these
parameters at and around theK andH points are visible from the lower panel (in (b)and
(c) respectively). The relevant parameters are given in rows numbered 1 and 2 in Table 3.3.
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The effect of (s0) and (s
′

1) is not prominent nearH point but away fromH point the slope

differs (dashed curves) from those due toγ0 andγ
′

1 only (full curves) whereas the asym-

metric energy term (∆) opens up a gap atH point but affects the slope very little. Further,

the bands are linear nearH point but parabolic nearK point. In fig. 3.8 we have compared

the bands with different neighbours namely, in presence of nearest in-plane and interplane

hopping (γ0 andγ
′

1, full curves), in-plane and interplane overlap integral, asymmetric en-

ergy term (s0, s
′

1 and∆, dashed curves), in-plane 2nd nearest neighbour coupling (γ1, s1,

dotted curves) and in-plane 3rd nearest neighbour coupling(γ2, s2, curves with triangles).

Compared to the bands withγ0 andγ
′

1 only, all other parameters introduce certain amount

of asymmetry in slope also in band widths with respect to the zero eigenvalue value. Apart

from the exact magnitudes of the band energies, the overall characteristics of the band in

presence of various neighbours are similar to that of the corresponding bands of bilayer

graphene.
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Figure 3.8: Electronic dispersions of graphite in presence of nearest neighbour in-plane
and interplane transfer integrals (full curves), nearest neighbour in-plane and interplane
transfer integrals, overlap integrals and sublattice asymmetric energy (dashed curves), in-
plane next nearest neighbour interactions (dotted curves)and in-plane next to next nearest
neighbour interactions (triangles). The parameters used for these bands are given in Table
3.3. The rows numbered 1, 2, 3 and 4 in the table correspond to the curves with full lines,
dashed lines, dotted lines and triangles respectively in the figure.
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3.4 Density of states

In fig. 3.9 (a) we have plotted the density of states (due toπ band) of graphene for near-

est neighbour interaction only without (full curve) and with (dashed-dotted curve) overlap

integral correction. It shows that without overlap integral valence and conduction bands
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Figure 3.9: Density of states of graphene (a) with nearest neighbour hopping but zero over-
lap integral (full curve) and with nearest neighbour hopping and overlap integral (dashed-
dotted curve), (b) derived from the bands in fig. 3.3 (parameters are in Table 3.1). First
principle result (full curve), first nearest neighbour interactions (dashed-dotted curve), sec-
ond nearest neighbour interactions (dotted curve) and third nearest neighbour interactions
(dashed curve) and (c) calculated from the bands plotted in fig. 3.4 (parameters are in Table
3.2). First principle result (full curve), first nearest neighbour interactions (dashed-dotted
curve), second nearest neighbour interactions (dotted curve) and third nearest neighbour
interactions (dashed curve).

are symmetric but in presence of overlap integral width of valence band decreases and that

of conduction band increases. Since there are two atoms in each unit cell and each carbon

atom has one electron inpz state, the valence band is completely filled and hence, the Fermi

level lies at the top of the valence band at zero energy which appears atK andK ′ points of

the brillouin zone in energy momentum space. Graphene has zero density of states at Fermi

energy and over a very small energy range around zero (i.e.,K point energy around which

energy dispersion is also linear in momentum) the density ofstates is varying linearly with

energy. Due to the flat part of the band nearM point of brillouin zone Van Hove singu-

larities are arising in density of states. The positions of the singular points are symmetric

in absence of overlap term while the singularity moves slightly towards Fermi energy for

valence band and goes slightly away from Fermi energy for conduction bands with overlap
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Figure 3.10: Density of states of bilayer graphene in presence of nearestneighbour in-
plane and interplane transfer integrals (full curves), nearest neighbour in-plane and in-
terplane transfer integrals, overlap integrals and sublattice asymmetric energy (dashed
curves), in-plane next nearest neighbour interactions (dotted curves) and in-plane next to
next nearest neighbours (triangles). The parameters used in these curves are given in Table
3.3.

(s0). In figure 3.9 (b) and (c) the density of states have been plotted as per the bands in fig.

(3.3) and (3.4). Here we see that though the density of statesis linear near Fermi energy,

it becomes asymmetric due to the presence of second and thirdnearest neighbour interac-

tions. As expected the density of states in presence of thirdnearest neighbours is matching

well with the density of states due to first principle bands when the parameters are chosen

freely. In all other cases the band width is changing slightly and positions of Van Hove

singularities are changing over a narrow energy range. Whencompared with ref. [9], the

density of states in presence of second nearest neighbours shows a noticeable difference.

It is observed that when the second nearest neighbours are chosen for good fitting of low

energy part of the spectrum, it gives rise to another Van Hovesingularity at conduction

band edge but that is removed if the parameters are such that it gives good agreement over

the whole energy range. Also, that is suppressed in presenceof third nearest neighbour

interactions.

The density of states (DOS) of bilayer graphene corresponding to the bands in fig. (3.6)

with the parameters in Table 3.3 are shown in figure (3.10). From these curves it is ev-

ident that the finite, though small, density of states (DOS) at the zero energy of bilayer

graphene remains unaffected due to the presence of factors which lead to asymmetry in

bands. Further, the slope of the density of states curves within < 0.5 eV does not change

due to the factors mentioned above. Rather, they have prominent effect in bringing asym-

metry in band widths. To illustrate, we see that when only nearest neighbour in-plane and
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Figure 3.11: Density of states of graphite in presence of nearest neighbour in-plane and
interplane transfer integrals (full curves), nearest neighbour in-plane and interplane transfer
integrals, overlap integrals and sublattice asymmetric energy (dashed curves), in-plane next
nearest neighbour interactions (dotted curves) and in-plane next to next nearest neighbours
(triangles). The parameters used in these curves are given in Table 3.3.

interplane transfer energies (γ0 andγ
′

1) are there, valence band DOS and conduction band

DOS (full curves) are exactly symmetric with respect to the Fermi energy at zero, that is

the band widths are same. Also the van Hove singularities areat symmetric positions, the

scenario being consistent with the corresponding band structure. As soon as the nearest

neighbour in-plane and interplane overlap integrals (s0 ands
′

1) are taken into account the

valence band (VB) DOS and conduction band (CB) DOS (dashed curves) start becoming

asymmetric, i.e., the band widths become different: valence band becomes narrow and

conduction band widens. Moreover, the van Hove singularities in VB come closer toEF

whereas those in CB move away fromEF . In presence of in-plane second nearest neigh-

bours (dotted curves) CB becomes slightly narrow and VB slightly wide compared to the

previous case, though VB is still narrower compared to CB. There is no significant change

in the positions of the van Hove singularities in this case when compared with the previous

one. In-plane third nearest neighbour interactions do not have much effect on the widths of

the bands on top of that of the in-plane second nearest neighbour interactions but bring the

van Hove singularities slightly nearer to the Fermi energy.It is also observed that the sub-

lattice asymmetric energy (∆) does not have any significant effect on the density of states

of bilayer graphene.

In figure 3.11 the density of states of graphite corresponding to the bands in fig. (3.8)

with the parameters in Table 3.3 are shown. Though little buta finite density of states

are present at zero energy. Apart from the nature of the van Hove singularities, the overall

appearance of the density of states obtained from the bands due to different coupling param-
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eters is similar to those of bilayer graphene (fig. 3.11). There is one van Hove singularity

in each band of monolayer graphene and bilayer graphene had two adjacent singularities

in each band. In three dimensional graphite it appears as a rise in the density of states

rather than the spike like features in monolayer and bilayergraphene, i.e., the singularities

become smoother. It needs to be mentioned that all the density of states data presented here

are not absolute values, they are arbitrary up to a normalization factor.

3.5 Summary and Conclusion

To summarize, we have calculated the electronic spectrum and density of states of graphene

including up to third nearest neighbour interactions and got a set of tight binding parame-

ters on the physical ground that the absolute values of the parameters should decrease as

one moves from first nearest neighbour towards higher distance. This set of parameters has

been used to see the effect of in-plane first nearest neighbour overlap integral (s0), second

(γ1, s1) and third (γ2, s2) nearest neighbour interactions on the band structure of bilayer

graphene also. We have illustrated the role of these parameters in governing electron-hole

asymmetry in the band structure of bilayer graphene within tight binding model. When

compared the role of site energy difference (∆) between A and B sublattices in the same

graphene layer on the electronic spectra of single layer graphene and bilayer graphene, a

distinct difference is observed between the two systems. Sublattice asymmetry in mono-

layer graphene introduces a gap in the spectra at theK point whereas in bilayer it does

not induce gap in the spectra, rather it gives an asymmetry inthe energy values of the top

valence and bottom conduction bands with respect to the energy at which the other two

bands are degenerate. Moreover, in presence of∆ the gap between top valence and bottom

conduction bands at theK point remains intact to±γ
′

1 which is the separation even without

∆. Apart from∆ the other important factor which contributes significantlyto the values of

the top valence and bottom conduction bands atK point is the interlayer nearest neighbour

overlap integral (s
′

1). Hence, we find thatEc (top) andEv (bottom) are functions of∆ and

s
′

1 both atK point. Regarding this, Z. Q. Li et al. [18] discuss only the dependence on∆.

Our study suggests for the consideration of a model containing both∆ ands
′

1 for a more

accurate determination of∆ from experimental results. Further, we observe a considerable

change in the slope of the bands in presence of nearest neighbour in-plane and interplane

overlap integrals (s0 ands
′

1) compared to those with nearest neighbour in-plane and inter-

layer coupling energies (γ0 andγ
′

1) only. Z. Q. Li et al. [18] have discussed the induction of
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electron-hole asymmetry in the slope of valence and conduction bands due to next nearest

neighbour interlayer coupling energy (γ4) but without overlap integrals. It is noted there

that with a finite value ofγ4, two conduction bands are closer and the valence bands are

further apart atk values away from theK point. We observe that finite values ofs0 ands
′

1

also give electron-hole asymmetry in the slope of valence and conduction bands but with

an opposite trend compared to the bands withγ4. With finite values ofs0 ands
′

1 the con-

duction bands move further from each other and the valence bands come closer fork values

away from theK point. It could be concluded from this comparative study that the com-

bined effect ofγ4, s0 ands
′

1 could make some balance between the above two cases, may

not be a complete balance to get back the symmetric spectra with only γ0 andγ
′

1 but the

degree of electron-hole asymmetry in slope of the bands willget modified nevertheless. A

model includingγ4, s0 ands
′

1, though very complicated to handle, may lead to more accu-

rate determination of the important parameter likeγ
′

1 when comparing experimental results

having asymmetry in electron and hole sides. With in-plane next nearest neighbour interac-

tions (γ1 ands1) the trend of electron-hole asymmetry in slope of bands remains similar as

that withs0 ands
′

1 but the asymmetry in valence and conduction band widths nearΓ point

is reduced compared to that with zero values ofγ1 ands1. Moreover, in this case if the site

energy termE2p is not chosen properly there will be a shift in Fermi energy [19]. In-plane

third nearest neighbour interactions (γ2 ands2) do not affect much on top of in-plane sec-

ond nearest neighbour interactions except very little change in band widths atΓ point and

slight modifications in the slope of the bands. Hence, as far as electron-hole asymmetry

in slope of valence and conduction bands is concerned, a Hamiltonian includings0, s
′

1 and

in-plane second nearest neighbour interactions (γ1 ands1) could be sufficient to interpret

experimental results (e.g. the cyclotron resonance data) with asymmetry in electron and

hole sides. Also, the in-plane third nearest neighbour interactions could be more useful

in determining all the above mentioned parameters by fittingbilayer graphene bands with

first principle results or with angle resolved photoemission data over the whole brillouin

zone. Within similar formalism, we have also shown the effects of in-plane nearest, next

nearest and next to next nearest neighbour couplings along with the nearest interlayer cou-

pling on the band structure of three dimensional graphite. NearK point the effect of these

parameters mimics those of bilayer graphene whereas atH point a gap is opened up by the

asymmetric energy∆ but s0 ands
′

1 incorporate only changes in slope of the bands.
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3.6 Derivation of the electronic dispersions of graphene in

presence of different neighbours

In this last section, as mentioned earlier, we present some details of the derivations of

the dispersion relations of graphene in presence of variousnearest neighbours. The cor-

responding matrix elements in equation (3.4) are computed here in presence of different

neighbours.

1. For nearest neighbour approximation, we have

HAA = (1/N)
∑

A

ei~k.(~rA−~rA) 〈ΦA(r − rA)|H|ΦA(r − rA)〉 ≈ E2p,

SAA = 〈ΦA(r − rA)|ΦA(r − rA)〉 = 1,

because the wave functions are normalized;

HAB = γ0

∑

B

ei~k.(~rB−~rA) = γ0f(k), SAB = s0f(k) where

γ0 = (1/N)
∑

A

〈ΦA(r − rA)|H|ΦB1
(r − rB1

)〉 ,

s0 = (1/N)
∑

A

〈ΦA(r − rA)ΦB1
(r − rB1

)〉 , and

f(k) = eikxa/
√

3 + 2e−ikxa/2
√

3 cos kya/2.

Hence

E0 = E2p, E1 = 2γ0s0|f(k)|2, E2 = E2
2p − γ2

0 |f(k)|2 and,

E3 = 1 − s2
0|f(k)|2 with

|f(k)|2 = g(k) = 1 + 4 cos2 (kya/2) + 4 cos (
√

3kxa/2) cos (kya/2),

leading to

E±(k) =

[

(E2p − s0γ0g(k)) ± (γ0 − s0E2p)
√

g(k)
]

[1 − s2
0g(k)]

. (3.14)
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From the secular determinant the dispersion can alternatively be written as [8]

E±(k) =
(

E2p ± γ0

√

g(k)
)

/
(

1 ± s0

√

g(k)
)

. (3.15)

2. For second nearest neighbour approximation we need the matrix elementsHAA and

SAA only as these two are affected by next nearest neighbours. These are

HAA =

∫

Ψ∗k
A (r)HΨk

A(r)d~r = E2p + γ1u(k),

SAA = 1 + s1u(k), where

u(k) = 2 cos (kya) + 4 cos (kxa
√

3) cos (kya/2),

γ1 = (1/N)
∑

A2

〈ΦA2
(r − rA2

)|H|ΦA(r − rA)〉 , and

s1 = (1/N)
∑

A2

〈ΦA2
(r − rA2

)|ΦA(r − rA)〉 .

Putting all the above elements in the secular determinant weget

E±(k) =
[

E2p + γ1u(k) ∓ γ0

√

g(k)
]

/
[

1 + s1u(k) ∓ s0

√

g(k)
]

. (3.16)

3. In presence of third nearest neighbours only the matrix elementsHAB andSAB get

changed butHAA andSAA remain unchanged. Hence

HAB =

∫

Ψ∗k
B (r)HΨk

A(r)d~r = γ0f(k) + γ2v(k),

SAB = s0f(k) + s2v(k), where

γ2 = (1/N)
∑

A

〈ΦA(r − rA)|H|ΦB3
(r − rB3

)〉 ,

s2 = (1/N)
∑

A

〈ΦA(r − rA)|ΦB3
(r − rB3

)〉 and

v(k) = eikxa/
√

32 cos kya + e−2ikxa/
√

3.
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Therefore, expressions forE1, E2, E3 are

E1 = 2s0γ0g(k) + (s0γ2 + γ0s2) t(k) + 2s2γ2g(2k)

E2 = [E2p + γ1u(k)]2 −
[

γ2
0g(k) + γ0γ2t(k) + γ2

2g(2k)
]

E3 = [1 + s1u(k)]2 −
[

s2
0g(k) + s0s2t(k) + s2

2g(2k)
]

, where

g(2k) = 1 + 4 cos2 (kya) + cos (
√

3kxa) cos (kya) and

t(k) = 2 cos (kxa
√

3) + 4 cos (kya) + 4 cos (kya/2) cos (kxa
√

3/2)

+8 cos (kya) cos (kya/2) cos (kxa
√

3/2).
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4
Band Structure of single crystal graphite

and HOPG from ARPES and KRIPES

4.1 Introduction

The recent discovery of zero dimensional fullerene, one dimensional carbon nanotubes and

the research activities on the very recently found two dimensional material graphene have

given an impetus to the reinvestigation of some of the exoticand fundamentally important

physical properties of carbon based materials. Like graphene, which shows a peculiar low

energy electronic spectrum due to its sublattice structure, graphite also has a linear dis-

persion near theH point along with its quadratic band near theK point of its Brillouin

zone [1]. Many physical properties like the transport and magnetic behaviours, in single

crystal graphite and in highly oriented pyrolytic graphite(HOPG) [2–5] are not well un-

derstood and might be governed by the carrier dynamics near their Fermi energy (EF ). The

near EF electronic structure on both the occupied and unoccupied sides are important for a

consolidated understanding of the physics behind these properties. There have been many

experimental studies [6–10] earlier on the electronic structure of the occupied states of

graphite in which various bands were unambiguously identified using monochromatic light

sources or synchrotron radiation. There are lot of PES studies (angle integrated and angle

resolved) on HOPG and single crystal graphite along with many intercalated compounds

of graphite. Although, the electronic structure studies ongraphite seems to be complete,

recent works have shown several new results owing mainly to the improved experimen-

tal techniques. On the other hand, along with ARPES study on graphite to determine its

occupied band structure, a significant amount of effort was also put to study the unoccu-
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pied band structure of it usingk-resolved inverse photoelectron spectroscopy. But only a

few studies [21] have been reported recently on the electronic structure of the unoccupied

states.

Angle resolved photoelectron spectroscopy (ARPES) has been quite successful in elu-

cidating the momentum-resolved valence band electronic structure of the graphite sys-

tems [11–16]. This spectroscopy gives a direct measurementof the spectral functions which

reflect the quasiparticle lifetime and self-energies. Earlier ARPES studies on single crys-

tal graphite have shown the energy dispersion ofπ andσ bands along different in-plane

and out of plane symmetry directions of graphite Brillouin zone [12, 14, 15]. It was also

shown that there exists some anomalous non-dispersive states very close to EF over a small

momentum region near theK point in the Brillouin zone which were attributed to edge-

localized states and dangling bonds present on the surface [12]. ARPES studies on HOPG

have reported that this azimuthally disordered material can exhibit energy dispersion along

the radial direction with a loss of information in the azimuthal direction [16–19] and also

shown that sharp quasiparticle dispersions can coexist with its in-plane randomness [16].

The unoccupied electronic states of single crystal graphite [20, 21] and HOPG [22,

23, 25] have been studied earlier usingk-resolved inverse photoemission spectroscopy

(KRIPES) which gives the wave-vector resolved unoccupied electronic structure of graphite.

This spectroscopy has the ability to probe the energy regionbetween the EF and the vac-

uum level (EV ) which is inaccessible by direct photoemission spectroscopy. In this chapter,

we have compared the band structure of single crystal (natural) graphite and HOPG, partic-

ularly their near EF electronic states along the high symmetry directions of their Brillouin

zones. We have used ARPES to probe the occupied states and KRIPES to probe the unoc-

cupied states. We have also compared theπ bands of graphite obtained from the ARPES

experiment with the tight bindingπ bands calculated in the previous chapter.

4.2 Experimental

Angle resolved ultraviolet photoemission data were collected using an AR65 hemispherical

energy analyzer with a resolution of∼ 50 meV at a pass energy of 1 eV and an acceptance

angle of±1◦. The analyzer is mounted on a double axes goniometer and can rotate inde-

pendently along two planes mutually perpendicular to the sample surface. The rotational

degrees of freedom are designated byθ andφ. Angular resolutions for both the directions

are±0.1◦. A high intensity vacuum ultraviolet source (HIS 13) with a photon flux of the

70



Chapter 4. Band Structure of single crystal graphite and HOPG from ARPES and
KRIPES

order of1016 photons/s/sr at the HeI (21.2 eV) line and a beam spot size of 2.5 mm di-

ameter was used. The samples studied were natural graphite commercially obtained from

NGS Naturgraphit GmbH and highly oriented pyrolitic graphite of grade SPI-1 commer-

cially supplied by SPI Supplies Division of Structure Probe, Inc. The angular spread of the

c-axes of the crystallites for the above mentioned grade of HOPG is∼ 0.4◦ ± 0.1◦. Both

natural single crystal graphite and HOPG samples were cleaved insitu using post technique

under a base vacuum of∼ 2.5 × 10−10 mbar in the preparation chamber and were imme-

diately transferred to the analysis chamber. The orientations of the crystal surfaces were

determined by low energy electron diffraction (LEED) performed in the analysis chamber

at a base pressure of∼ 2.8 × 10−11 mbar. Before doing photoemission experiment the

samples were freshly cleaved again to avoid any unwanted surface contamination due to

LEED experiment on the samples. The Fermi energy was calibrated using the Fermi edge

spectra of silver, freshly evaporated on to a sample holder.

The inverse photoemission experiments were carried out with an KRIPES spectrometer

in the isochromat mode with a mean photon energy of 9.9 eV. Thespectrometer consists of

a low-energy Stoffel-Johnson type electron gun and a band-pass Geiger-Müller type photon

detector with acetone gas filling and CaF2 window (acetone/CaF2) [26]. The overall energy

resolution of the spectrometer is 0.55 eV. The spectra have been normalized by dividing the

photon counts from the acetone/CaF2 detector by the incident electron beam current, as in

our other works [27]. The system is also equipped with a low energy electron diffraction

(LEED) unit which was used to determine the orientation of single crystal graphite and to

check the surface cleanliness of HOPG sample by looking at the sharpness of its diffrac-

tion ring. Both the samples were cleaved insitu with an adhesive tape at a pressure of∼
1.6 × 10−8 mbar in the preparation chamber. The experiments were performed at a base

pressure of∼ 6 × 10−10 mbar in the main chamber. Momentum-resolved spectra were

collected by rotating the sample (say byθ◦) with respect to the incident electron beam at

an angular interval of5◦. The Fermi energy was calibrated by using the spectrum takenon

a polycrystalline silver sample.

4.3 Results and Discussions

Figure 4.1(a) shows the ARPES spectra of the single crystal graphite sample taken at room

temperature along theΓK direction of its Brillouin zone (marked by the thick arrow in

inset) by using He I excitation line. The high symmetry directions of the sample were
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determined from its low energy electron diffraction (LEED)pattern (fig. 4.2) having six

bright spots which indicates the hexagonal symmetry of the surface. It can be seen from the

figure that the spectrum at theΓ point has three weak features at∼ 2.8 eV,∼ 8.3 eV and∼
10.3 eV. The peak at around 8.3 eV could be from the bottom of the lowerπ band. Along

theΓK direction we find two dispersing bands; one moving towards higher binding energy

up to∼ 9.8 eV and the other dispersing strongly towards Fermi energy. Earlier reported

ARPES measurements [11,12] and band structure calculations [28–31] have identified this

strongly dispersing band as the valenceπ band. Near about theK point of the Brillouin

zone, this band splits into the upperπ band (π1) and the lowerπ band (π2). In order to

estimate the splitting between the twoπ bands at theK point, spectrum was taken over a

smaller energy range at that point (spectrum marked as K in figure 4.1(c)). To visualize

the dispersion of the nearK-point features more clearly, a few spectra at and around theK

point along the cut marked as A (in the inset) over an energy range of∼ 3.5 eV are shown in

fig. 4.1(c). The splitting between the twoπ bands at theK point is∼ 0.5 eV, comparable

to the value reported earlier [11, 13–15] in the literature.This splitting arises due to the

coupling between adjacent layers in graphite. In figure 4.1(d) theK-point spectra over a

very small energy range (∼ 0.6 eV) taken at room temperature and at 77 K are compared.

It is observed that the spectral feature sharpens at lower temperature. This spectral feature

could be ascribed to the formation of quasiparticles due to the coupling ofπ electrons

with the collective excitations such as phonon. The sharpening of this feature shows the

increased lifetime of these quasiparticles at low temperature. Presence of the quasiparticles

demonstrate the strong electron-phonon coupling in graphite. A recent study by Sugawara

et al [13] on kish graphite has reported about a sharp peak appearing at low temperature

very close to theK point within 200 meV below EF and it becomes extremely sharp at

theK point. This strong enhancement of spectral intensity is explained by the formation

of quasiparticles due to coupling ofπ electrons with some collective excitation, namely

phonon. Ref. [13] has also found the existence of another sharp peak above EF originating

from antibondingπ∗ band and the estimated separation between the peaks due toπ andπ∗

bands at theK point at 260 K temperature is 25 meV. In our spectrum at theK point taken

at room temperature the quasiparticle peak due toπ∗ band is not visible, could be due to

poor instrumental resolution. They have shown that the linear energy dependence of this

quasiparticle scattering rate indicates a non Fermi-liquid behaviour of electrons in graphite.

In figure 4.1(b), the dispersion of theπ band towards EF is presented graphically by plotting

the photoemission intensity against the energy and momentum component parallel to the
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surface.

The ARPES spectra taken alongΓM direction of the Brillouin zone of the single crystal

graphite sample is shown in figure 4.3(a). The spectra show anintense peak moving up to

∼ 2.8 eV below the Fermi energy. Apart from this, there is one feature at∼ 10.3 eV which

does not disperse with changes in emission angles whereas another feature at∼ 7.8 eV

appearing at higher emission angles disperses towards lower binding energy as the emission

angles decrease. It can be seen from Fig. 4.3(a) that at some point the broad hump, present

in theΓ point spectrum, splits into two bands: one goes towards higher binding energy up

to ∼ 7.8 eV and the other disperses up to∼ 2.8 eV below Fermi energy near theM point

of Brillouin zone. Dispersion of this band is clearly visible in the intensity plot shown in

figure 4.3(b). It is also observed that the feature at∼ 2.8 eV becomes very intense and

remains non-dispersive over a certain angular range near the M point, consistent with the

reported dispersion near this point.

In order to compare our results in different high symmetry directions, the experimen-

tal data have been superimposed (Fig. 4.4) on a theoretically calculated band structure of

graphite derived from first principle calculations [29] of Willis et al. The overall agree-

ment of the experimental valence band features with calculated band structure in various

symmetry directions,ΓK andΓM , is good with some quantitative differences, although

the differences are consistent with earlier experimental works [11, 12]. As mentioned ear-

lier, at theK point, twoπ bands occur near EF with a splitting of∼ 0.5 eV. At higher

emission angles they disperse towards higher binding energy in the second Brillouin zone

(k‖ > 1.70ρA−1). We find that one of these twoπ bands undergoes a dispersion towards

higher binding energy from theK point towards theΓ point and almost coincides with the

lower π band. It is observed that in bothΓK andΓM directions the intensity of this peak

is quite weak belowk‖ = 0.6ρA−1. Moreover, alongΓK we have found a dispersive band

which originates from weakly intense features but does not superpose onto any calculated

bulk band and is almost parallel to theσ1 band. It has a relatively lower binding energy

compared to theσ1 band. In theΓM direction also our results are in good agreement with

the calculations on the dispersing lowerπ band and the upper mostσ band. The top of the

π band at theM point (k‖ = 1.47ρA−1) appears at∼ 2.8 eV. Apart from these dispersing

bands we find two extra non-dispersive features which are absent in the calculated valence

band structure [31, 32]. All along theKΓM direction these weak features appear at∼ 2.8

eV and∼ 10.3 eV. The 2.8 eV feature has been attributed to isolated carbon atoms on the

surface or to surface states [6, 8, 10] while the 10.3 eV feature to conduction states [9] or
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Figure 4.1: (a) The raw photoemission data from single crystal graphitealong theΓK
direction of its Brillouin zone. Shown in the inset is the twodimensional brillouin zone
of graphite. The emission anglesθ andφ (in degree) for some of the spectra are indicated
beside the spectra. In (b) the photoemission intensity plotas a function of binding energy
and k‖ derived from the spectra in (a) is shown. The spectra along the cut A of the brilouin
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(300 K (black curve) and 77 K (red curve)) are compared.
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Figure 4.2: The low energy electron diffraction pattern of single crystal graphite.

a momentum broadening at regions of high densities of final states [7]. Law et al [7] have

explained these nondispersive features by plotting them ona kinetic energy vs k‖ diagram

and then compared them with a conduction band calculation. They observed coincidence

of these bands with some conduction bands having large effective mass atΓ point or at

some other k values which leads to the conclusion that these bands are related to regions of

high densities of final states. On the other hand, it is arguedin ref. [8, 10] that along with

direct photoemission there are indirect transitions also with conservation of energy. This

process usually gives the energy of initial states with highdensity in the valence band. The

nondispersive feature at∼ 3 eV appears in measurements with varying photon energy also,

indicating that it must be an initial-state feature. The binding energy atM point has almost

a similar value and the dispersionless feature could be due to non-k-conserving transitions

from the high density of states region atM point at that binding energy.

In figure 4.5 we have compared theπ bands of graphite obtained from ARPES experi-

ment with the tight bindingπ bands of graphite calculated in the previous chapter using the

coupling parameters listed in table 3.3. In the previous chapter, in figs. 3.7 and 3.8 we have

shown the tight bindingπ bands of graphite over the two symmetry planes of its brillouin

zone namely,ΓMKΓ andALHA planes. In this chapter we have compared our experi-

mentalπ bands with our calculatedπ bands in theΓMKΓ plane only. The logic behind

this choice is that an experimental spectrum from theH point should contain only a single

feature at the Fermi level whereas the obtained experimental results show two features near

Fermi energy with a separation of∼ 0.5 eV. This indicates that the spectra are not from the

ALHA plane, rather they might be from theΓMKΓ plane. The red and green circles in
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the figure are the strong and weak features respectively fromARPES experiment, the black

curves contain informations of nearest neighbour in-planeand interplane hopping (γ0 and

γ
′

1) only and the blue curves are obtained by considering both the hopping and overlap

integrals along with the coupling up to in-plane third nearest neighbours. The in-plane pa-

rameters were found by fitting our tight binding model up to third nearest neighbour with a

first principle result [33]. The parameters were determinedon the ground that they should

decrease in magnitude with respect to distant neighbours. In this plot our intention is to

check the reproducibility of these energy dispersions withour own ARPES band mapping.

We notice that there is an overall matching of the experimental bands with the first neigh-

bour tight binding bands, in particular this is prominentlyvisible near theΓ point. Near the

M point the experimental points are more close to the band withthird nearest neighbours

and very close to theK point the first neighbour (black curves) and the third neighbour

(blue curves) bands differ very little and the experimentalpoints are going well with both

the curves.

In figure 4.6(a), we present the normalized spectra in a radial direction (marked by

arrow in the LEED pattern shown in the inset) of the Brillouinzone of HOPG. The photoe-

mission intensity map as a function of the binding energy andthe in-plane component of

the crystal momentum in this direction is displayed in Fig. 4.6(b). In these figures, we find

a clearly visible dispersing feature, becoming very prominent over certain angular range

(aroundk‖ = kM ). Further, at higher emission angles (near theK point) some density of

states appears near the Fermi energy and moves up to EF . We assign the intense feature at

∼ 2.8 eV to the valenceπ band at theM point and the density of states moving towards

Fermi energy to the valenceπ band at theK point of the Brillouin zone, in accordance

with the earlier reports [16–19]. The presence ofM andK points like features in the same

radial direction of the Brillouin zone indicates that theΓM andΓK directions are super-

posed in HOPG due to its inherent in-plane misorientations.Here theπ band feature atK

point is not as prominent as that of single crystal graphite because of the azimuthal disor-

der. We have taken the photoemission spectra along three different radial directions which

show similar features indicating that the photoemission peaks have dispersion in the radial

direction but do not have any azimuthal dependence. Similarto the single crystal graphite,

along with the dispersing band we notice a feature at∼ 2.9 eV which does not disperse

at all and another at∼ 10.2 eV which disperses within∼ 300 meV. In contrast to single

crystal graphite, HOPG has another non-dispersive band over the entire momentum range

at∼ 6 eV. Like in single crystal, the 2.9 eV non-dispersive peak could well be attributed to
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the isolated carbon atoms on the surface or to surface statesor grain boundaries. Lanzara

et al [16] have observed such nondispersive features in HOPGat 2.9 eV, 4.3 eV and 7.8

eV and suggested their origin to be the non-k-conserving transitions in the photoemission

process or the elastic scattering of electrons in either theinitial state or the final state by

inhomogeneity or disorder.

As mentioned earlier, emission at angles near theK point show some states near EF

coming from the valenceπ band. Due to random in-plane orientations of the crystallites

in HOPG the intensity of this structure is weak, although visible in fig. 4.6 as well as in

the intensity plots along different radial directions (spectra along other radial directions are

not shown here). In figure 4.7 we show this near EF feature in detail. TheΓ and theK

point spectra are compared in Fig. 4.7(a). It should be notedfrom fig. 4.7(b) and (c) that

along with the sharp peak at∼ 2.8 eV there exists a broad feature (∼ 1.7 eV wide) near

the EF in the K point spectrum. Fig. 4.7(d) clearly shows this feature, which could be

identified as the upperπ band of graphite. Fig. 4.7(d) further shows that this weak peak is

dispersing back towards higher binding energy at higher emission angles. In figure 4.7(e)

the normalized spectra of the HOPG sample taken at 77 K temperature at and around the

K point is shown. Lowering of temperature does not result in any significant change in the

spectra except for a slight enhancement of the intensity of the peak.

In figure 4.8 we present the angle resolved inverse photoemission spectra taken on the

HOPG and single crystal samples at room temperature. Fig. 4.8(a) shows the spectra from

HOPG along a radial direction of its circular Brillouin zone. The normal incidence spec-

trum has a rising tail at∼ 1.5 eV and a small broad feature at∼ 10.2 eV. There is no

significant change in the spectral appearance up to an angle of ∼ 15◦ away from normal

incidence. Atθ = 20◦ a broad peak at∼ 8.5 eV appears and becomes relatively narrow

as well as dispersive in nature towards lower binding energyat higher polar angles. It dis-

perses up to 2.5 eV above EF . Due to grazing incidence of the electrons on the sample, this

peak is suppressed at higher polar angles. In fig. 4.8(b) the bands obtained experimentally

have been superimposed on a theoretical [30] unoccupied band structure of graphite along

ΓM direction. It is noted from the figure that the dispersing peaks in fig. 4.8(a) are mainly

coming from the lowerπ∗ band of graphite while the last two points are nearer to the upper

π∗ band. Dispersing nature of this band is in agreement with previous experimental results

on HOPG [22, 23, 25]. Apart from this feature, there is a non-dispersive peak at∼ 1.5 eV

above EF over the entire radial direction. Earlier studies on HOPG have reported this non-

dispersive peak appearing within an energy interval of∼ 1.5 eV to 2.5 eV. A non-dispersive
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Figure 4.6: (a) The angle resolved photoemission spectra of HOPG along aradial direction
of the circular Brillouin zone (along the arrow shown in inset); the low energy electron
diffraction pattern of HOPG was taken at room temperature with a beam energy of 165
eV. The circular pattern, instead of six distinct spots as insingle crystal graphite, shows
its quasi crystalline structure. Since different symmetrydirections of the Brillouin zone
get averaged out, all the radial directions become equivalent. (b) The intensity plot of the
photoemission spectra shown in (a).
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Figure 4.7: Spectra of HOPG along the same direction as in fig. 4.6 over different energy
ranges: (a) shows the spectra at theΓ point (black curve) and at the zone boundary (red
curve) over an energy range of∼ 11 eV, (b) shows a set of spectra at and around the zone
boundary over an energy range of∼ 5 eV, in (c) the spectra atK point (red curve) and
slightly away from theK point (black curve) of the Brillouin zone over the energy range of
∼ 3 eV are compared. TheK point spectra shows the appearance of a small peak very close
to the Fermi energy. The dispersion of this peak for some nearby angles is shown in (d)
where the spectra are taken over an energy range of 0.5 eV, thesame taken at a temperature
of 77 K is shown in (e).
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peak at similar energy position is also visible in the spectra (Fig. 4.8(c)) from single crystal

graphite. Like the non-dispersive feature in ARPES spectraseen at∼ 2.8 eV, this feature

could as well be related to indirect transitions into the high density of states of theπ∗ band

at theM point, probably aided by phonon or defect scattering [20–23]. Alternatively, these

states could be attributed to extrinsic surface states or emission from isolated carbon atoms

sitting on top of the outermost atomic plane [24]. Another clearly visible feature in the

spectra of single crystal graphite is the peak appearing at apolar angle of∼ 20◦ and dis-

persing towards the lower binding energy at higher polar angles. This is identified as the

lowerπ∗ band of graphite by comparing the experimentally obtained Evs k‖ result with the

calculated band alongΓM direction (fig. 4.8(d)). Though we have taken angle resolved

data along a direction which is∼ 17◦ off from theΓM symmetry direction, we notice from

the E vs k‖ plot in fig. 4.8(d) that the dispersion is comparable with theπ∗ band inΓM

direction [20] which is quite unexpected for single crystalgraphite.

4.4 Summary and Conclusions

Using ARPES, we have studied the valence band structure of natural single crystal graphite

along the symmetry directionsΓK andΓM . We observe that the agreement of ARPES re-

sults near the zone boundary is good with our calculatedπ bands having effect of coupling

up to third nearest neighbours and near the zone centre the experimental features superpose

better with the calculated band structure having first nearest neighbour coupling only. In

HOPG the valence band dispersions were taken along different radial directions of its Bril-

louin zone and we found no azimuthal dependence of the spectra. We estimate a splitting

of ∼ 0.5 eV between the two valenceπ bands of single crystal graphite from its near Fermi

energy spectra. This splitting is due to the coupling between two layers of graphite. We also

notice the appearance of a sharp peak below EF at theK point at low temperature which

comes up due to coupling of electrons with phonon, indicating a strong electron-phonon

coupling. In HOPG we see only a singleπ band feature near the Fermi energy at its zone

boundary. The inherent in-plane randomness of HOPG could bethe reason for its twoπ

bands to be unresolved. We have used KRIPES to study the conduction band structure of

HOPG along a radial direction of its circular Brillouin zoneand that of a single crystal

graphite along a direction, slightly away from theΓM symmetry direction. We see that for

both the systems, the results superimpose on the theoretical conduction band structure of

graphite alongΓM direction.
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Figure 4.8: (a) Thek-resolved inverse photoemission spectra of HOPG along a radial
direction; (c) the same taken on single crystal graphite along the direction shown in inset.
It is ∼ 17◦ away from theΓ − M direction of the Brillouin zone of graphite. The spectra
were taken at an interval of5◦. For clarity, polar angle of incident electrons referred tothe
surface normal for some of the spectra are marked beside. Allthe strong (red circles) and
weak (green circles) peaks of the experimental results in (a) and (c) have been plotted in (b)
and (d) respectively along with the theoretical (black circles) unoccupied bands of graphite
calculated by Holzwarth et al [30] in theΓ − M direction of the Brillouin zone.
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5
Electronic structure of Bi1−xPbxFeO3

from XPS and UPS

5.1 Introduction

Multiferroic materials simultaneously exhibit ferroelectric (FE), magnetic and/or ferroe-

lasticity orders in the same phase and a coupling between them over certain ranges of

temperature [1,2]. These type of materials could be electrically polarized using an external

magnetic field or structural strains and alternately an external electric field could induce

magnetization in them. Hence, due to co-existence of different ferroic orders multiferroic

materials are technologically very important. They can provide opportunities for potential

applications in magnetic and ferroelectric devices as wellas devices whose action is based

on magneto electric effects. For the construction of multifunctional devices like data stor-

age, spintronics, microelectronic devices and sensors [3,4] etc. multiferroic materials have

huge application possibility. Owing to their potential applications and the physical mech-

anism behind their co-existing magnetic, ferroelectric and/or ferroelasticity orders, multi-

ferroic materials have attracted a lot of interest in the last several years. So far BiFeO3 is

the most widely studied multiferroic material, majorly because of its both the electrical and

magnetic ordering occur above room temperature. Its ferroelectric TC is ∼(810-830◦C)

and antiferromagnetic TN is ∼ (350-370◦C) [5]. Moreover, thin film BiFeO3 shows ex-

ceptionally large polarization current compared to the conventional ferroelectric materials.

BiFeO3 has its ferroelectric (FE) and antiferromagnetic (AFM) orders originating from the

6s2 lone pair electrons of the off-center located Bi ions and thepartially filled d orbitals of

the Fe ions respectively [3]. The large spontaneous FE polarization shown by this material

87



Chapter 5. Electronic structure of Bi1−xPbxFeO3 from XPS and UPS

was initially thought to be due to the heteroepitaxial constraint on its crystal structure [2].

But, recent measurements on thin films and single crystals [6,7] have shown that strain has

only minor effects on this FE polarization and it arises fromthe structural modifications.

These studies have further shown that the FE polarization isintrinsic to the BiFeO3 and

depends strongly on the topology of the oxygen octahedra in its structure.

At room temperature the BiFeO3 has a distorted ABO3 perovskite structure with R3c

symmetry where the Bi3+ and Fe3+ ions are displaced relative to the oxygen octahedra [8].

At TC (810-830◦C), this material undergoes a first order structural phase transition from

FE (R3c) to paraelectric (PE) (P21/m) which is accompanied by a strong tilting of the

octahedra along the b axis and antiferroelectric displacements of the Fe cations. Haumont

et al. have shown that this tilting of the oxygen octahedra results in significant electronic

re-arrangements of the chemical bondings, especially the Fe - O bond lengths and Fe - O -

Fe bond angles [8]. Such a tilting with respect to the Bi and Fecations can lead to changes

in the Bi 6p - O 2p and Fe 3d - O 2p hybridization strengths and thereby changes in the

average valence of Bi and Fe sites. Partial substitutions ofBi by other elements were also

found to result in the tilting of the oxygen octahedra leading to enhanced or suppressed

multiferroic properties [9, 10]. With similar electronic structure, especially the lone pair

electrons, Pb substitution for Bi was expected to modify themagnetic and FE properties.

Further, the difference in the charge and ionic radii of Bi3+ and Pb2+ can also lead to

topological changes in the oxygen octahedra. Our recent study on Pb substitution reported

a structural phase transition reducing the rhombohedral distortion and leading towards a

cubic structure with progressive breaking of the ferroelectric order [11].

The changes in Fe 3d - O 2p - Bi 6p hybridization strengths across the structural phase

transition should reflect on the valence band electronic structure, particularly on the near

Fermi level (EF ) density of states (DOS) which are crucial to the FE and magnetic proper-

ties of this material. In order to understand the role of the R3c to cubic structural transition

and its associated changes in the oxygen octahedra in reducing the ferroelectric order we

have studied the changes in the valence band electronic structure of Bi1−xPbxFeO3 (x=0.02

to 0.15) system across its phase transition. The structure of this solid solution, at room tem-

perature, presents a first order phase transition from R3c tocubic. We have used ultraviolet

photoelectron spectroscopy (UPS) and X-ray photoelectronspectroscopy (XPS) in order to

probe the fine changes in the valence band electronic structure of the Bi1−xPbxFeO3 (x =

0.02 to 0.15) system.
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5.2 Experimental

Polycrystalline samples of Bi1−xPbxFeO3 with x = (0.02 to 0.15) were prepared by conven-

tional solid state reactions by using high purity bismuth oxide, lead oxide and iron oxide

as starting compounds. The compositional homogeneity of the samples were confirmed by

a careful investigation using X-ray diffraction (XRD, Philips X-celerator Bragg-Brentano

diffractometer) and scanning electron microscopy (SEM FEG, LEO 1530). XRD and SEM

have confirmed a pure perovskite phase free from any impurities or intergranular second

phases. The details of the sample preparation and characterization measurements were

published elsewhere [11]. Our XRD measurements have shown that the composition with

x= 0.02 has a R3c crystal structure which is like pure BiFeO3. As the Pb content increases

from x = 0.05 the samples showed the presence of nano regions with a Pm-3m structure.

The size of these nano regions increased systematically with the Pb content and finally the

x= 0.15 has a long range cubic Pm-3m structure.

The photoemission measurements were performed by using an Omicron mu-metal ul-

tra high vacuum system equipped with an Al Kα X-ray source, a high intensity vacuum

ultraviolet (VUV) source (HIS 13) and a hemispherical (meanradius of 125 mm) electron

energy analyzer (EA125HR). The overall resolution for the XPS measurements was∼ 1

eV. At the He I (21.2 eV) line, the photon flux from the VUV source was of the order of

1016 photons/sec/steradian with a beam spot of 2.5 mm diameter. The Fermi energies (EF )

for all measurements were calibrated by using the EF of a freshly evaporated Ag film on a

sample holder. The total energy resolution of the UPS measurements, estimated from the

width of the Ag Fermi edge, was about 80 meV. Freshly cleaned surfaces of the samples

were obtained by repeatedly scraping the sample surfaces byusing a diamond file inside the

chamber under a base vacuum of∼ 1.0 x 10−10 mbar. The XPS and UPS measurements

were performed under a base vacuum of∼ 1.0 x 10−10 mbar. The negligible intensity

found for the∼ 9.5 eV bump (commonly regarded as a signature of un-clean surfaces)

in the UPS spectra ensures the cleanliness of our sample surfaces. For the temperature

dependent measurements, the samples were cooled by pumpingliquid nitrogen through

the sample manipulator fitted with a cryostat. The sample temperatures were measured by

using a silicon diode sensor touching the bottom of the stainless steel sample holder.
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Figure 5.1: Valence Band Spectra of the Bi1−xPbxFeO3 (x = 0.02 to 0.15) samples taken
at room temperature by using Al Kα X-rays. The spectra corresponding to the x = 0.125
and 0.15 shift towards lower binding energy, possibly due toincrease in metallicity.

5.3 Results and Discussions

Figure 5.1 shows the valence band spectra of the Bi1−xPbxFeO3 (x = 0.02 to 0.15) samples

taken at room temperature by using XPS. The spectra are normalized for their intensities

and shifted along the ordinate axis for clarity of display. The main feature appearing at

∼ 6 eV could be due to the hybridized Fe 3d, O 2p and Bi 6p states. Although, band

structure calculations based on local spin density approximations and strong correlation

effect (LSDA + U, U being Hubbard parameter) agree qualitatively with this assignment,

they have shown the Fe 3d derived states to dominate around the Fermi energy [6,12]. The

spectra corresponding to the x = 0.125 and 0.15 show a shift tothe lower binding energy

compared to the other compositions. This shift in the valence band spectra is reflected in

all the other core-level spectra of different compositions. In figure 5.2 we show the O 1s

level photoemission spectra of the different samples. Herealso the spectra are normalized

in intensities and shifted along the ordinate axis for clarity. The O 1s spectra corresponding

to the x = 0.125 and 0.15 show a shift to the lower binding energy, even though the spectra

are broad in shape. Since, this shift is observed in all the core level positions of both these

compositions, it could well be ascribed to the increasing metallicity with increase in the
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Figure 5.2: O 1s XPS spectra of the Bi1−xPbxFeO3 (x = 0.02 to 0.15) samples taken by
using Al Kα X-rays at room temperature. The spectra corresponding to the x = 0.125 and
0.15 shift towards lower binding energy.

doping concentration.

The valence band spectra taken by using ultra-violet light are shown in Fig. 5.3. The

main feature is similar to the one in the XPS valence band spectra. In this spectra (Fig.

5.3) also the x = 0.125 and 0.15 compositions show a shift towards the Fermi level. Both

the XPS and UPS valence band spectra look similar to the spectra obtained from the Fe

2p fluorescence by resonant X-ray emission spectroscopy [12, 13]. Although, the energy

positions are similar in the XPS and the UPS spectra, an additional∼ 3 eV feature appears

in the UPS spectra. This feature with its long tail towards the EF could be important to

the electrical and magnetic properties of the Bi0.85Pb0.15FeO3 composition. The absence of

this feature in the XPS spectra shows that it has predominantO 2p character, as the cross

section of O 2p states at the ultra-violet energy range is larger compared to the X-ray.

It is mentioned earlier that the LSDA + U band structure calculations of Neaton et al.

on BiFeO3 with R3c crystal structure have shown the states closest to the EF have Fe 3d

character [6]. within LSDA calculation they have found a small gap of ∼ 0.4 eV. With

the inclusion of strong correlation term (U), the gap value increases which goes closer

to our experimental findings. Though, in their calculationsthey used different values for

the Coulomb term, only those results with Ueff = 4 eV (Ueff = U − J , J being Hund
′

s
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Figure 5.3: Valence Band spectra of the Bi1−xPbxFeO3 (x = 0.02 to 0.15) samples taken
by using He I photons at room temperature. The cubic composition x = 0.15 shows the
presence of an additional feature at∼ 3 eV below the EF .

coupling) or higher look reasonably similar to our experimental results. According to these

calculations the R3c structure is insulating with a band gapof 1.9 eV for Ueff = 4 eV.

The x = 0.02 composition in our study has the same R3c crystal structure. The spectra

corresponding to this composition presented in both Fig. 5.1 and 5.3 show that the value

of the gap must be much larger (> 2.5 eV). This indicates that the coulomb interaction has

a significant role in this systems. Coupled to this large gap,the width of the valence band

is also smaller compared to the calculated spectra. In our spectra, the emission from the

Fe 3d states appears to be falling at a deeper energy position(higher binding energy). This

would mean that the Fe 3d states are much strongly hybridizedwith the O 2p and Bi 6p

states and the Coulomb term Ueff should effectively be larger than the value (4 eV) used

in the LSDA + U calculations [6].

It is to be noted that the additional feature at∼ 3 eV shown (Fig. 5.3) by the x =

0.15 composition has emerged due to the transition of its crystal structure to cubic. As

stated earlier, a comparison of the XPS and UPS valence band spectra shows that the∼
3 eV feature has mainly O 2p character. In Fig. 5.4 we show the UPS valence band

spectra taken at 77 K which show that the behavior of the valence band features do not

have any major temperature dependence. The spectra of the Bi0.85Pb0.15FeO3 sample taken
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Figure 5.4: Valence Band spectra of the Bi1−xPbxFeO3 (x = 0.02 to 0.15) samples taken
at 77 K by using He I photons. Inset: Comparison of the spectraof x = 0.15 sample taken
at 300 K, 150 K and 77 K.

at different temperatures also do not show any change with temperature (inset of Fig. 5.4).

Nevertheless, the∼ 3 eV feature with its long tail towards the EF shows that the x = 0.15

composition is more metallic in nature compared to the others. Neaton et al. have also

performed band structure calculation on the possible cubicphase of BiFeO3. Within LSDA

scheme it shows metallicity and within LSDA+U a gap of∼ 0.5 eV opens up with Ueff

= 2 eV whereas this gap is 1.3 eV for the same value of Ueff with R3c structure. Our

Bi1−xPbxFeO3 sample with x = 0.15 composition also posses a cubic structure and the

spectroscopic results show it is less insulating compared to other compositions indicative

of a smaller value of U with respect to pure BiFeO3. Though the LSDA + U band structure

calculations for the cubic structure also show a nearly metallic nature [6], it is not well

accounted for. The R3c to cubic phase transition with Pb doping in BiFeO3 should be

leading to a straightening up of the Fe-O-Fe bond angle to 180degree from the buckled

165 degree. This would mean less distortion / tilting of the oxygen octahedra with respect

to the Bi as well as Fe. Consequently, the Fe 3d - O 2p, Bi 6p - O 2phybridization

strengths might weaken resulting in the shift of O 2p states more close to the EF . Structural

studies [11] performed on various compositions of the Bi1−xPbxFeO3 have also arrived at

similar conclusions. Addition of Pb reduces the rhombohedral distortion and progressively
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breaks the ferroelectric ordering where the structure becomes cubic [11].

5.4 Summary and Conclusions

We have studied the valence band electronic structure of theBi1−xPbxFeO3 (x = 0.02 to

0.15) system by using X-ray and ultra-violet photoelectronspectroscopy. As this system

undergoes a R3c to cubic phase transition with Pb doping, thenear Fermi level states show

an enhanced oxygen 2p character due to the weakening of the Fe3d - O 2p - Bi 6p hy-

bridization strength. The valence bands of compositions with the R3c structure were found

to be qualitatively similar to the LSDA calculations exceptfor their estimates of the band

width and band gap. Reasons for this could be the higher valueof the effective Coulomb

interaction. These results could be of importance to the understanding of the electron-

electron correlation in multiferroic materials.
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6
Electronic Structure of

Sm0.1Ca0.9−xSrxMnO3 from UPS and

ResPES Studies

6.1 Introduction

Perovskite manganites show a fascinating competition between various magnetic ground

states originating from the spin and orbital degrees of freedom of charge carriers. For

example, the magnetic and electrical properties of the Ln1−xCaxMnO3 show dissimilar be-

haviours in their electron-doped (x > 0.5) and hole-doped (x < 0.5) versions [1,2]. Maig-

nan et al. have shown that the electron-doped manganites exhibit a semimetallic behaviour

in their normal state for lowx values while the hole-doped compositions show an insulat-

ing nature for similar doping [1]. Further, the cluster glass-like ferromagnetic behaviour

shown by the electron doped compositions is markedly different from the ferromagnetism

in hole-doped compounds [2]. Neutron diffraction studies have shown that these compo-

sitions show a phase separation comprising of ferromagnetic (FM) clusters embedded in

a G-type antiferromagnetic (AFM) insulating matrix [2]. Such phase separated systems

are at the focus of many theoretical models explaining the physical properties of CMR

systems [3,4].

SmxCa1−xMnO3 is a typical example of the electron doped manganite systems. For x

ranging from 0 to 0.12 this compound shows a semimetallic behaviour in the range 300-

175 K, which could be explained considering the weak Jahn-Teller effect and consequently

weak electron-phonon coupling [1]. Electrons in the sparingly occupied narrow eg band
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are delocalized leading to the semimetallic behavior. Interestingly, the SmxCa1−xMnO3

system exhibits ferromagnetism only in a narrow range of doping or Mn3+ concentration.

In this range this compound shows coexisting ferromagneticand G-type AFM phases for

doping levels of about 5 percent of Mn3+. Further, the nature of phase separation and

amount of ferromagnetic component in this compound is controlled by the size of the A-

site cation. The ferromagnetic (FM) and antiferromagnetic(AFM) interactions present are

governed by the one electron band width of the eg band which in turn is controlled by the

Mn-O-Mn bond angles and Mn-O bond lengths. It has been shown that the FM component

is the largest in the Sm0.1Ca0.9MnO3 sample with a manganese oxidation state of +3.9 [5].

In order to see the consequence of the A-site cationic changeand ferromagnetism

on the near Fermi level electronic structure, in this study we have used samples of the

Sm0.1Ca0.9−xSrxMnO3 system doped with Sr in place of Ca. As can be noticed from the

Mn valence, the eg electron concentration in these samples remain the same irrespective of

the doping. As mentioned earlier, the A -site cation controls the nature of the phase separa-

tion in this system. We have used photoelectron spectroscopy and resonant photoelectron

spectroscopy for our studies.

6.2 Experimental

The polycrystalline samples of Sm0.1Ca0.9−xSrxMnO3 were prepared by conventional solid

state reactions by mixing MnO2, CaO, SrCO3 and Sm2O3 in stoichiometric proportions.

The powders were first heated at 1000◦C for 12 hrs with intermediate grindings and then

pressed in the form of pellets. They were then sintered at 1200 and 1500◦C for 12 h in air

with a slow cooling down to 800◦C and finally quenched to room temperature. Details of

the sample preparation technique could be found elsewhere [6]. The monophasic, homoge-

neous nature of the samples have been checked by using x-ray powder and electron diffrac-

tion techniques. The cationic compositions, close to theirnominal values were confirmed

by using energy dispersive spectroscopy and iodometric titrations. Magnetic and electrical

transport properties of the samples were determined by using a vibrating sample magne-

tometer (SQUID-VSM, Quantum Design) and four probe resistivity measurements (PPMS,

Quantum Design). Consolidated results of these studies arepublished elsewhere [6].

Angle integrated ultraviolet photoemission measurementswere performed by using

an Omicron mu-metal ultra high vacuum system equipped with ahigh intensity vacuum-

ultraviolet source (HIS13) and a hemispherical electron energy analyzer (EA125 HR). At
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the HeI (h ν = 21.2 eV) line, the photon flux was of the order of1016 photons/sec/steradian

with a beam spot of2.5 mm diameter. Fermi energies for all measurements were calibrated

using a freshly evaporated Ag film on a sample holder. The total energy resolution, es-

timated from the width of the Fermi edge, was about80 meV for He I excitation. All

the photoemission measurements were performed inside the analysis chamber under a base

vacuum of∼ 7.0 × 10−11 mbar. The polycrystalline samples were repeatedly scrapedusing

a diamond file inside the preparation chamber with a base vacuum of∼ 2.0 × 10−10 mbar

and the spectra were taken within1 hour, so as to avoid any surface degradation. All mea-

surements were repeated many times to ensure the reproducibility of the spectra. For the

temperature dependent measurements, the samples were cooled by pumping liquid nitrogen

through the sample manipulator fitted with a cryostat. Sample temperatures were measured

using a silicon diode sensor touching the bottom of the stainless steel sample plate. The

low temperature photoemission measurements at77 K were performed immediately after

cleaning the sample surfaces followed by the room temperature measurements. Resonant

photoemission measurements were performed across the MnL2−3 absorption edge under

UHV conditions. Soft X rays from the BACH beamline associated with the ELETTRA

synchrotron light source at Trieste had been used for these measurements. The total energy

resolutions were set at 381 meV for Mn 2p-3d ResPES measurements. The fermi level of

the samples were referred to that of a freshly cleaned gold sample in good electrical con-

tact with the sample holder. The measurements were carried out in the analysis chamber

with a base vacuum of about1× 10−10 mbar. Before each measurement, the samples were

cleaned by repeated scraping using a diamond file inside the preparation chamber with a

base vacuum of about1 × 10−9 mbar.

6.3 Results and Discussion

At room temperature Sm0.1Ca0.9−xSrxMnO3 (0≤ x ≤ 0.8) has aPnma structure (ap

√
2×

2ap × ap

√
2) for x ≤ 0.4 and for 0.5 ≤ x < 0.8 the structure isI4/mcm (ap

√
2 ×

ap

√
2 × 2ap, ap being the cell parameter for cubic perovskite). Forx ≥ 0.8 the structure

is a mixture of hexagonal and cubic phases. Further, in thePnma domain there are two

types of lattices, i.e., (a > b/
√

2 > c) for x < 0.2 and (c > b/
√

2 > a) for x > 0.2.

All the three lattice parameters increase with increasing Sr content. The phase diagram of

the Sm0.1Ca0.9−xSrxMnO3 system built from the magnetic and transport measurements and

published earlier [6] is shown in Fig.6.1. The magnetic ground state of the parent com-
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Figure 6.1: Phase diagram of Sm0.1Ca0.9−xSrxMnO3 samples determined from magnetic
and transport measurement (taken from reference [6]).

pound (Sm0.1Ca0.9MnO3) at low temperatures (below TN=TC=110K) comprises of ferro-

magnetic clusters (FM) embedded in a G-type AFM phase. Compositions with x< 0.2 also

show the presence of this FM component. This component is sensitive to the substitution

of Sr for Ca. Compositions with0.18 ≤ x ≤ 0.6 have TC 6= TN and they vary from 70K to

120K and 140K to 315K (forx=0.3 to 0.6).

In Fig.6.2 we present the angle integrated valence band photoemission spectra from

the different compositions of the Sm0.1Ca0.9−xSrxMnO3 system taken at room temperature

by using He I photons. Intensities of all the spectra are normalized and shifted along the

ordinate axis by a constant value for clarity of presentation. The features seen in the spectra

are dominated by the states due to the Mn 3d-O 2p hybridized orbitals. The origin of the

two prominent features, one at∼ 2.9 eV (marked B) and another at∼ 5.3 eV (marked

C) below EF , are by now well understood from earlier experiments and band structure

calculations [7–11] on similar systems. The feature at∼ 2.9 eV is mainly due to the t2g↑

states of the MnO6 octahedra while the one at∼ 5.3 eV has contributions from both Mn

t2g and O 2p states. The Mn 3d eg states appear in the figure as a tail towards the EF .

Intensity of this feature is quite small compared to B and C, indicating the small eg electron

concentration in these samples.

Figure 6.3 shows the resonant photoemission spectra of the Sm0.1Ca0.9−xSrxMnO3 (x

= 0) sample taken at room temperature across the Mn2p → 3d absorption edge. The

photon energies at which these spectra were collected are marked in the inset showing
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Figure 6.2: Angle integrated valence band photoemission spectra from the different com-
positions of the Sm0.1Ca0.9−xSrxMnO3 system taken at room temperature by using He I
photons. Intensities of all the spectra are normalized and shifted along the ordinate axis by
a constant value for clarity of presentation.

theMnL edge x-ray absorption spectrum (XAS). All the spectra shown in the figure are

normalized by the incident photon flux. Different features of the spectra are marked A -

E. As mentioned earlier the valence band consists mainly of Mn 3d and O2p states. In

Mn2p - 3d resonant photoemission, the photoemission process from Mn3d level is strongly

enhanced when the energy of the exciting photons equals the energy necessary to excite a

Mn2p electron to an unoccupied Mn3d level. As we can see from the figure, the resonant

enhancement of the Mn3d valence states have a maximum for hν = 641.03 eV and a

minimum for hν = 633.0 eV, marked as the on- and off-resonant spectra. This resonance

of the Mn 3d photoemission is due to the process 3dn → c3dn+1 → 3dn−1 + e−, where

c denotes a Mn2p hole. Interference between the normal photoemission process and the

Mn2p - 3d transition followed by a 2p-3d-3d Coster-Kronig decay generates this resonance

in the valence band. The on-resonance spectra shows a sharp peak (marked B) positioned at

∼ 2.5 eV which could be ascribed to the Mn 3d t2g states. The broad feature (C) appearing

at∼ 6.5 eV originates from the hybridized O 2p and Mn 3d t2g bonding states. Features D

and E shift to higher binding energy with increasing photon energy and hence their origin

could be assigned to Auger processes. Feature F at∼ 20 eV is due to O 2s [12–15]. The

individual plots (not shown here) of the compositionsx=0.2, 0.3 and 0.6 show an extra

small feature at∼ 18 eV which could be assigned to Sr 4p states [12, 13]. Appearance of

a small spectral weight very close to EF and the strong enhancement in intensity of the 1.9
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Figure 6.3: Valence band resonant photoemission spectra of Sm0.1Ca0.9−xSrxMnO3 for
x = 0.0 composition. In the inset theMnL edge x-ray absorption spectrum (XAS) is
shown. The photon energies used to probe the resonant valence band are marked by black
circles in the XAS spectrum. Off- and on- resonance spectra are mentioned. Various peaks
appearing in the on-resonance spectrum have been indicatedby A, B, C, D, E and F respec-
tively.

eV feature indicate that Mn 3d states give a significant contribution to the valence band of

Sm0.1Ca0.9MnO3. The sharp feature at 6 eV indicates the existence of strong Mn3d-O2p

hybridization in the valence band regime. The very weak spectral weight (feature A) around

Fermi energy in the resonant photoemission spectrum could be attributed to low density of

eg electrons in Sm0.1Ca0.9−xSrxMnO3; having only a small fraction of Mn3+ (t32ge1
g) ions.

In figure 6.4 we present the Mn3d spectra from the Sm0.1Ca0.9−xSrxMnO3 samples.

These spectra were obtained by subtracting the corresponding off-resonant spectra from

the on-resonant spectra obtained from the different compositions. The difference spectrum

is expected to resemble the Mn 3d partial density of states. As can be seen from the figure,

there are significant spectral changes with increase in the Sr doping. The states coming

from the Mn 3d eg band do not show any shift in binding energy positions or a change in

spectral intensity. This behaviour is consistent with its electrical transport measurements

which showed that the room temperature resistivity values of various compositions (x) have

almost the same order of magnitude. For x=0.2, the Mn t2g peak shows a shift towards the

lower binding energy. This shift indicates a change in the Mn-O-Mn hybridization strength.
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Figure 6.4: The difference spectra obtained from the on and off resonance spectra corre-
sponding to the compositionsx=0.2, 0.3, 0.4 and 0.6 are shown. The spectra have been
given constant shifts along y-axis for clarity of presentation.

As strontium content is raised, the A site cation size increases. Ionic radii of Sr2+ is 132

pm while Ca2+ is 114 pm. Increase in cation size could be leading to a decrease in the

distortion of the MnO6 octahedra and straightening of Mn-O-Mn bond angle. This results

in an increase in Mn 3d - O 2p hybridization. Hence Mn t2g peak shifts towards Fermi

energy. For higher doping like x= 0.3 and 0.4, the size mismatch could be detrimental

to the Mn-O-Mn bond angle and the Mn 3d - O 2p hybridization [6]. Therefore despite

the increase in Sr, the Mn-O-Mn bond angle decreases and thisreduces the Mn 3d - O

2p hybridization. Dalai et al. [7] have reported in a recent paper that the electron-doped

compound Ca0.86Pr0.14MnO3 shows a transfer of some of the electrons from the t2g states to

eg states due to the reduced crystal field splitting in the FMM phase. The low temperature

ground state of this compound also comprises of phase separated FMM and AFMI clusters.

The observed shift in the t2g states in our Sm0.1Ca0.9−xSrxMnO3 samples could also indicate

a similar weakening of the crystal field splitting in compositions with x≤ 0.2 following the

structural changes in the MnO6 octahedra.
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6.4 Conclusions

We have studied the valence electronic structure of the electron-doped CMR material

Sm0.1Ca0.9−xSrxMnO3 for x=0.0, 0.2, 0.3, 0.4 and 0.6 using ultra violet photoelectronspec-

troscopy (UPS) and resonance photoelectron spectroscopy (ResPES) with varying photon

energy across the Mn 2p-3d absorption edge. The magnetic ground state of the parent

compound (Sm0.1Ca0.9MnO3) at low temperatures consists of ferromagnetic clusters (FM)

embedded in a G-type AFM phase. But this FM component is very sensitive to the substitu-

tion of Sr for Ca. The combined UPS and ResPES studies suggestthat the valence band of

this material has major contribution from Mn 3d states and there is a strong hybridization

between Mn 3d t2g and O 2p states. With strontium doping, the A site cation sizeincreases

and a significant change in the Mn 3d spectral weight is observed, indicating that there is a

change in Mn 3d - O 2p hybridization strength due to structural modification caused by Sr

doping.
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7
Summary

In this thesis, the electronic structures of single crystalgraphite and highly oriented py-

rolytic graphite have been studied using ARPES, KRIPES and band structure calculations.

The electronic structures of single layer graphene and bilayer graphene have also been in-

vestigated using tight binding calculations. Further, theoccupied electronic structures of

Pb doped multiferroic material, (Bi1−xPbxFeO3) and Sr doped Sm0.1Ca0.9MnO3 (a colossal

magnetoresistive material) have been studied using UPS, XPS and ResPES techniques.

Using ARPES, we have studied the valence band structure of natural single crystal

graphite along the symmetry directionsΓK andΓM of its brillouin zone. We find two

clearly dispersing bands (π andσ) in both the directions. We observe that the agreement of

our results is good near the zone boundaries (theK andM points) with the calculated band

structure for which interactions of electrons up to third nearest neighbours are considered

and near the zone centre (theΓ point) the agreement is better with the calculated bands

having first nearest neighbour interaction only. In HOPG thevalence band dispersions

were taken along different radial directions of its Brillouin zone and we found no azimuthal

dependence of the spectra as expected. We estimated a splitting of ∼ 0.5 eV between the

two valenceπ bands of single crystal graphite from its near Fermi energy spectra at theK

point. This splitting is due to the weak interlayer couplingin graphite. We also observe

the appearance of a sharp peak below EF at theK point at low temperature which comes

up due to coupling of electrons with phonon, indicating a strong electron-phonon coupling.

In HOPG we see only a singleπ band feature near the Fermi energy at its zone boundary.

The inherent azimuthal disorder of HOPG makes it difficult toresolve the twoπ bands

at the zone boundary. To study the conduction band structureof HOPG along a radial

direction of its circular Brillouin zone and that of a singlecrystal graphite along a direction,
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slightly away from theΓM symmetry direction, we have used KRIPES. We see that for

both the systems, the results superimpose on the theoretical conduction band structure of

graphite alongΓM direction. In order to calculate the band structure of threedimensional

graphite we have first constructed a formalism for the electronic structure calculation of

single layer graphene, developed the method for bilayer graphene including up to third

nearest neighbour interactions and finally applied it on graphite. From the calculations

on graphene we have got a set of tight binding parameters on the physical ground that the

absolute values of the parameters should decrease as one moves from first nearest neighbour

towards higher distance. This set of parameters has been used to see the effect of in-plane

first nearest neighbour overlap integral, second and third nearest neighbour interactions on

the band structure of bilayer graphene. We have also illustrated the role of site energy

difference (∆) between A and B sublattices in the same graphene layer on theelectronic

spectra of bilayer graphene. The Sublattice asymmetry in monolayer graphene introduces

a gap in the spectra at theK point whereas in bilayer it gives an asymmetry in the energy

values of the top valence and bottom conduction bands with respect to the energy at which

the other two bands are degenerate. The different in-plane parameters also induce electron-

hole asymmetry in the slope of the valence and conduction bands. The effects of these

parameters are similar, on graphite at theK point, to those of bilayer graphene but at the

H point a gap opens up due to∆.

Further, we have studied the valence band electronic structure of the Bi1−xPbxFeO3

(x = 0.02 to 0.15) system by using X-ray and ultra-violet photoelectron spectroscopy. As

this system undergoes a R3c to cubic phase transition with Pbdoping, the near Fermi level

states show an enhanced oxygen 2p character due to the weakening of the Fe 3d - O 2p

- Bi 6p hybridization strength. The valence bands of compositions with the R3c structure

were found to be qualitatively similar to the LSDA calculations except for their estimates

of the band width and band gap. Reasons for this could be the higher value of the effective

Coulomb interaction. These results could be of importance to the understanding of the

electron-electron correlation in multiferroic materials.

Finally, we have studied the electronic structure of Sm0.1Ca0.9−xSrxMnO3 (x=0.0, 0.2,

0.3, 0.4 and 0.6) system, an electron-doped CMR material using ultra violet photoelectron

spectroscopy (UPS) and resonance photoelectron spectroscopy (ResPES) with varying pho-

ton energy across the Mn 2p-3d absorption edge. The magneticground state of the parent

compound (Sm0.1Ca0.9MnO3) at low temperatures consists of ferromagnetic clusters (FM)

embedded in a G-type AFM phase. But this FM component is very sensitive to the substi-
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tution of Sr for Ca. From the combined UPS and ResPES studies we find that the valence

band of this material has major contribution from Mn 3d states and a strong hybridization

is there between Mn 3d t2g and O 2p states. With strontium doping, the A site cation size

increases and a significant change in the Mn 3d spectral weight is observed which indicates

that there is a change in Mn 3d - O 2p hybridization strength due to structural modification

caused by Sr doping.

Regarding the first part of this thesis, i.e., the electronicstructure study of graphite,

it could be noted that though the system has been studied earlier quite a bit, many of its

modified forms like intercalated and irradiated graphite might display interesting physics

if reinvestigated using the advanced experimental facilities that are available in the present

day. On the other hand, the transition metal oxides need a lotmore studies for a better

understanding of their complex physical properties.

108


