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SynopsisIn this thesis we study non-equilibrium sto
hasti
 paths, espe
ially in the 
ontext ofthe binding-unbinding transition of polymers and DNA. The phases and the phasetransition of DNA being the main attra
tion, we study the same under a for
e forboth equilibrium and non-equilibrium 
ases. In 
ourse, we study an even simplertwo-state system, the Ising ferromagnet, to obtain similar results. The results of aDNA system often show similarities to other systems. For example, the phase dia-gram resembles that of super
ondu
tors, an imaginary time transformation makesthe polymer problem equivalent to a quantum problem, thereby, and, the reunionexponents and the order of phase transition are shown to be re
overed from theequivalent quantum problem by studying the quantum entanglement. Su
h 
on-ne
tions to other topi
s, whi
h are apparently or me
hanism-wise di�erent, areexplored.We start with the equilibrium phase transition of a double-stranded DNA (ds-DNA) under a for
e. A dsDNA is a two-stranded long double heli
al mole
ule. Dur-ing many biologi
al pro
esses like repli
ation, trans
ription, et
., the two strandsof the dsDNA are needed to be opened up partially or fully. In order to make thispossible, a few proteins, like heli
ases, sit at the jun
tion of the two strands andexert a for
e on the strands. When the strands are pulled in opposite dire
tionsby a for
e, the two strands get separated if the applied for
e ex
eeds a 
riti
alvalue. This unzipping transition is �rst-order below a 
riti
al temperature. Atthis 
riti
al temperature, the dsDNA melts to a pair of single stranded DNA (ss-DNA), even in the absen
e of any external for
e on the strands, and this meltingtransition is se
ond-order. This phase transition is studied by di�erent methodsstarting from renormalization group studies to various experiments looking at thephases. Among the theoreti
al studies, the most 
ommon is modeling a dsDNA astwo intera
ting polymers.In the �rst 
hapter, we show that a thermodynami
 study 
an produ
e thefeatures of the zipping-unzipping phase diagram of a dsDNA. We look at theinterfa
e between the zipped and the unzipped phases and 
lassify the existingDNAs into two types in terms of the sign of the interfa
e energy. Most of thepresent theoreti
al models ignore the heli
al stru
ture to simplify the model. Ourstudy shows that 
onsidering the heli
al order along with the external for
e undervi




ertain 
ir
umstan
es 
an even make the unzipping transition se
ond order, whi
hhas experimental eviden
e in a topology-preserved phase transition. The 
ru
ialrole is played by the 
ompetition between two independent length s
ales indu
edby the heli
al order and the external for
e. This fa
t along with the phase diagramof a DNA mat
hes with that of super
ondu
tors. This tempts us to name the two
lasses as Type I and Type II.In reality, the essential unbinding proteins like heli
ases get energy from pe-riodi
 ATP 
onsumption, thus produ
ing a periodi
 for
e on the strands of theDNA. Motivated by this, in the se
ond 
hapter, we study a DNA hairpin under aperiodi
 for
e. The analogous two-state Ising magnet shows a similar behaviourunder a periodi
 magneti
 �eld, though the detailed dynami
s are di�erent in thesetwo systems. For an Ising ferromagnet under a magneti
 �eld, there is a �rst orderphase transition from a positively magnetized state to a negatively magnetizedstate. Under a periodi
 for
e, near the phase transition, the mismat
h betweenthe time s
ales of the applied �eld and the relaxation time of the system givesrise to a forward and a ba
kward bran
hes to yield a magnetization vs. magneti
�eld loop. This is 
alled hysteresis. In hysteresis, usually a loop averaged overmany 
y
les re
eives attention. But we �nd that this averaging suppresses thea
tual pi
ture of the states. In this work, we quantify the phases by looking atthe time-resolved loops and propose a dynami
al phase diagram. This diagramis qualitatively similar to that obtained from a periodi
ally driven DNA hairpin.The importan
e of this dynami
al phase diagram, apart from the usual one, isthat it shows the possibility of going from one phase to the other just by varyingfrequen
y alone, keeping the amplitude of the external drive �xed.In the third 
hapter, we 
on
entrate on the hysteresis of the Ising ferromagnet.Here aim is to extra
t the equilibrium dis
ontinuous phase transition 
urve in themagnetization vs. magneti
 �eld plane, whi
h, in a real situation is impossible toget, no matter how long we allow the system to equilibrate. In a
hieve our goal, weutilize the work theorem and the histogram method. The work theorem relates theequilibrium free energy di�eren
e between any two states to the non-equilibriumwork done in going from one state to the other. The histogram te
hnique is widelyused in simulation whi
h extrapolates the equilibrium distribution given at someparameter value to that of another. We show that the work theorem 
an be ob-tained from the histogram transformation. Then we generalize the work theoremvii



to an arbitrary number of intensive parameters in
luding the temperature, andexpress the equilibrium distribution as the prin
ipal eigenve
tor of a spe
ially 
on-stru
ted matrix 
onsisting of the non-equilibrium measurements of the work done.Using this weighted averaging, one 
an get a mu
h better phase transition 
urvewhi
h 
an not be obtained using a simple averaging.Next we look at the quantum problem equivalent to the polymer unbindingtransition. A 
lassi
al path 
onne
ting two points in the 
on�guration spa
e 
anbe equivalently thought of as a traje
tory in a quantum problem under the imag-inary time transformation. Then the partition fun
tion in the 
lassi
al problemmaps on to Green's fun
tion in the quantum problem, the sum over all 
on�gu-rations represents the sum over all traje
tories in quantum 
ase, and so on. Thisequivalen
e maps the 
lassi
al problem of two intera
ting polymers onto the quan-tum problem of two parti
les. Then our interest is in the unbinding transition of apair of bound quantum parti
les. This depi
ts a quantum phase transition (QPT),governed by quantum �u
tuations. To observe the signature of the QPT, one im-portant quantity is the quantum entanglement entropy, the most 
ommon of whi
his the von Neumann entropy. The quantum entanglement entropy quanti�es thepure quantum 
orrelation in the system. For both the short-range and long-rangepotentials, we 
ompute the von Neumann entropy and �nd that near the QPT, itdiverges negatively. We dis
uss the behaviour of the entropy and its 
onne
tion tothe reunion exponents in the fourth 
hapter.Viewed as a sto
hasti
 path, a polymer 
an be interpreted as a 
lassi
al randomwalker with length of the polymer as time. A study of the paths of su
h a randomwalker is the topi
 of the �fth 
hapter. The 
lassi
al walker is asso
iated witha power law distribution of the hopping rates. The mean squared displa
ementand the persisten
e probability, the probability that a walker does not return toits starting point upto time t, are observed. We show that the quen
hed and theannealed averaging with the site and the bond disorders give di�erent persisten
ebehaviours, though all have the same behaviour for the mean squared displa
ement.To summarize, our fo
us is to study paths, mostly in the form of polymers, andthe phases of DNA, both in equilibrium and non-equilibrium. In the �rst part,the DNA phases are observed under pulling for
e at one end. Both stati
 andperiodi
 for
es are dis
ussed, with the 
orresponding phase diagrams. The resultsare then 
ompared from a mu
h simpler system of an Ising magnet, and for this 
aseviii



we even go further by utilizing variants of the work theorem. The mapping to theequivalent quantum problem of intera
ting parti
les led us to look at the unbindingtransition through the quantum entanglement entropy. Several interesting featuresof the entanglement entropy, as an entropy by itself, is dis
ussed along with its
onne
tion to the reunion exponents of two intera
ting polymers. The last part isa study on the behaviour of return to the origin of a random walker in a randommedium, a problem synonymous to loop formation in polymers. This thesis givesnew insights about polymers and DNA problems as these are looked from newangles, e.g. by looking at time-resolved states, by exploring the 
onne
tions toother systems like super
ondu
tors and quantum problems, thus bringing out thevastness and the universal nature of the polymer problems.
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1Introdu
tion
Among all dis
iplines in physi
s, statisti
al physi
s o

upies a privileged position asthe natural framework to understand the behaviour of the biologi
al systems at themole
ular level by using the 
on
epts of sto
hasti
ity, �u
tuations, metastabilityand thermal a
tivation. In this thesis, we dis
uss some biologi
al phenomena thato

ur inside living 
ells. Our main fo
us is to study the phases and the phase tran-sition of DNA. The behaviour of DNA is found to have very ni
e similarities withother non-biologi
al systems like super
ondu
tors. It �nds appli
ability in mu
hwider general topi
s like random walks. The behaviour of the 
omplex stru
tureof DNA under 
ertain 
ir
umstan
es resembles that of a mu
h simpler system likea two-state Ising spin system. These 
onne
tions are explored in this thesis alongwith some results of relevan
e in biology, obtained for DNA and polymers by usingthermodynami
 and statisti
al tools of Physi
s.1.1 DNADNA (Deoxyribonu
lei
 a
id) is an essential mole
ule that en
odes the geneti
instru
tions used in the development of living organisms. Geneti
 information isen
oded as a sequen
e of four types of nu
leotides: Guanine (G), Adenine(A),Thymine(T), and Cytosine(C). Most DNA mole
ules are double-stranded heli
es,
onsisting of two long polymers of simple units 
alled nu
leotides. This arrange-ment of two nu
leotides binding together a
ross the double helix is 
alled a basepair. This binding is 
reated by hydrogen bonds, whi
h 
an be broken and re-joined. The two strands of a DNA in a double helix 
an therefore be pulled apart1



Chapter 1. Introdu
tioninto two single stranded DNA (ssDNA) either by a me
hani
al for
e or at hightemperature. These are 
alled unzipping phase transition and melting of DNA.1.1.1 Phase transition of DNAThe phase transition 
an happen by various means like (i) temperature indu
edmelting or denaturation, (ii) for
e indu
ed unzipping, or (iii) pH indu
ed unzippingor 
hemi
al unzipping.For
e indu
ed unzipping:The theoreti
al models for the separation of a double stranded DNA (dsDNA) arebased on a simple extension of the Poland S
heraga model [1℄, in whi
h the twoDNA strands are homogeneous ideal polymer 
hains intera
ting with ea
h otheronly at the same 
ontour length. A 
onstant for
e applied at one end pulls apartthe two strands of the DNA. Consider two polymers ea
h of length N under thein�uen
e of an applied pulling for
e g at one end (z = N). The Hamiltonian ofdsDNA in the 
ontinuum 
an be written as [2℄,
H =

∫ N

0

dz

[

1

2
K

(

dr1
dz

)2

+
1

2
K

(

dr2
dz

)2

+ V (r1(z), r2(z))

]

−
∫ N

0

dz g.

(

∂r

∂z

)

,(1.1)where ri(z) is the d-dimensional position ve
tor of a monomer at a length z alongthe 
ontour of the ith strand, V (r1, r2) is the binding potential, and r(z) = r1(z)−
r2(z) is the relative 
oordinate. The dsDNA unzips to two single strands if thepulling for
e ex
eeds a 
riti
al value gc [2℄. This unzipping is a �rst order phasetransition as the separation between the strands in
reases dis
ontinuously as gapproa
hes gc. The unzipping of dsDNA 
an be studied in two ensembles.

• Fixed for
e ensemble: A 
onstant pulling for
e g is applied on the DNA. Therelevant free energy is the Gibbs free energy G(T, g).
• Fixed distan
e ensemble: The separation x between the strands is kept 
on-stant. The relevant free energy is the Helmholtz free energy F (T, x).The phase diagram in the for
e(g)-temperature(T ) plane 
ontains two phases,namely the zipped phase, in whi
h the DNA is a double stranded 
hain, and the2



Chapter 1. Introdu
tionunzipped phase, in whi
h the strands of the DNA get separated from ea
h other.It is known that a dsDNA 
an be 
onverted to two single strands by in
reasing thetemperature to 80C-100C. Unzipping is an initial step in biologi
al pro
esses likeDNA repli
ation and RNA trans
ription whi
h requires the aid of some enzymeslike heli
ases, polymerases et
. However, to a

ount for the unzipping in the 
el-lular medium, where it takes pla
e at physiologi
al 
onditions 37C and at neutralpH, one needs to 
onsider the unzipping by for
e whi
h 
omes from the me
hani
alfor
e exerted on the dsDNA by the enzymes to open it up.

TT

Zipped

Unzipped

C

g

C
g=g (T)

2nd
order

 Figure 1.1: Phase diagram of the for
e indu
ed unzipping transition. Here gc(T ) isthe 
riti
al for
e for unzipping and Tc is the 
riti
al temperature for melting whenno for
e is applied.Fig. 1.1 shows the phase diagram of DNA unzipping by a for
e in the for
e-temperature plane. The line gc(T ) separates the two phases. Here gc is the 
riti
alfor
e required for unzipping and is dependent on temperature. To get a for
e-indu
e transition one must stay below a 
riti
al temperature Tc, whi
h is themelting temperature when no for
e is applied. DNA in its double heli
al formshows a resilien
e against an external pulling for
e. The bound state does notallow a for
e g applied at an end to penetrate up to a 
riti
al for
e g = gc, abovewhi
h the DNA gets unzipped [2, 3, 4, 5, 6, 7℄. The transition is �rst order fortemperatures T < Tc where Tc is the denaturation(melting) temperature in theabsen
e of any for
e [8℄. In some models there happens a re-entran
e phenomenon,as shown by the dashed line in Fig. 1.1, where at low temperatures, the 
riti
al for
ede
reases with the temperature. The re-entran
e is due to the low temperatureentropy of the double stranded DNA. 3



Chapter 1. Introdu
tionTemperature indu
ed melting:When a solution of DNA is heated above some temperature, the dsDNA getsdenatured. The melting starts at the ends of the DNA, and at region whi
h isri
h in AT. This subsequently destabilizes adja
ent regions of helix, leading to aprogressive melting of the whole stru
ture at a well de�ned temperature knownas the melting temperature (Tm). The thermal denaturation of DNA is reversible.When the heated solutions of denatured DNA are slowly 
ooled, single strandsoften meet their 
omplementary strands and reform regular double helix. The DNAdenaturation has been studied extensively by various models whi
h are mainlybased on the Poland S
heraga model [1℄, or on the Peyrard Bishop model [9℄. Allthese models agree that the thermal denaturation of the DNA is a phase transition,but the order of the transition depends on the model used. Some models [10, 11,1, 12, 9℄ show it is a 
ontinuous transition while others [10, 13, 14℄ show it isdis
ontinuous. Ref. [15℄ reviews on thermal denaturation of DNA.Chemi
al denaturation:The dsDNA also denatures by extreme pH 
onditions. The unzipping by using
hemi
al agents in neutral pH is known as 
hemi
al denaturation [16℄. The pH ofmelting depends on the mole fra
tion of GC pairs on the DNA. Larger the molefra
tion of GC pairs, the higher the pH of melting. The denaturation of DNA atneutral pH is 
aused by a number of 
hemi
al agents, su
h as urea and formamide,by disrupting the hydrophobi
 for
es between the sta
ked bases.Exa
t solution of the DNA unzipping problemLet us 
onsider a dsDNA as two dire
ted polymers on a 1 + 1 dimensional squarelatti
e. It starts walking from the origin (z = 0). Two polymers are not allowedto 
ross ea
h other. The base pairing is put in by 
onsidering a 
onta
t energy
−ǫb (ǫb > 0) for ea
h 
onta
t when separation (x) between the two strands is zero.One end of the DNA is an
hored and the for
e is applied at the other end. Fig. 1.2shows a s
hemati
 pi
ture.Let dt(x) be the partition fun
tion in the �xed distan
e ensemble. Then one

4
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Figure 1.2: An oriented square latti
e. Two polymers (red lines) starts from r = 0and moves along the bonds 
onne
ting two 
rossing points without 
rossing ea
hother in upward dire
tion. An external for
e g is applied at one end.
an write the re
ursion relation as,
dt+1(x) = [dt(x+ 1) + 2dt(x) + dt(x− 1)]

[

1 +
(

eβǫb − 1
)

δx,0
]

, (1.2)where β is the inverse temperature. As an initial 
ondition of polymers held �xedand joined at one end, one has, d0(x) = eβǫbδx,0. To solve, one 
an take a generatingfun
tion for the partition fun
tion as,
d̄(z, x) =

∑

t

ztdt(x) = λx(z)A(z), (1.3)where λ and A are to be determined. Using this ansatz, one gets,
λ =

1− 2z −
√
1− 4z

2z
, (1.4)and

A =
1

1− z(2 + λ)eβǫb
. (1.5)

5



Chapter 1. Introdu
tionThe singularities of the generating fun
tions are then,
z1 = 1/4, (1.6)and

z2 =
√

1− e−βǫb − 1 + e−βǫb. (1.7)The zero for
e melting takes pla
e when z1 = z2, i.e. at Tc = 1/ ln(4/3).Fixed for
e ensemble: In the �xed for
e ensemble, the generating fun
tion iswritten as,
D(z, β, g) =

∑

x

eβgx
∑

t

ztdt(x) =
∑

x

eβgxλx(z)A(z) =
A(z)

1− λ(z)eβg
, (1.8)whi
h has the g-dependent singularity at

z3 =
1

2 + 2 cosh βg
. (1.9)Note here that Eqs.(1.6), (1.7) and (1.9), 
orrespond to the free energies of theunzipped state at zero for
e, of the zipped state whi
h is independent of for
e, andof the unzipped but stret
hed (by g) state, respe
tively. More expli
itly, the freeenergies per monomer are,

Gu(T, 0) =
1

β
ln z1 = − 1

β
ln 4, (1.10)

Gz(T, g) =
1

β
ln z2 =

1

β
ln
√

1− e−βǫb + 1− e−βǫb , (1.11)
Gu(T, g) =

1

β
ln z3 = − 1

β
ln 2− 1

β
ln(1 + cosh g), (1.12)whi
h will be mentioned in Chapter 2. Here the subs
ripts u and z refer to theunzipped and the zipped phases respe
tively.

6



Chapter 1. Introdu
tion1.1.2 Intera
ting polymersNe
kla
e modelThe ne
kla
e model 
aptures the features of the phase transition of intera
tingpolymers in any dimensions [17℄ provided the 
on�gurations have predominantlya one-dimensional stru
ture, though they may spread in transverse dire
tions in-de�nitely.
A A A A AB B B

B

nA

N

v v v v v v v v

nB
 

Figure 1.3: A ne
kla
e of bubble (B), of length nB, and bound (A), of length nAsegments.Any 
on�guration of this model 
onsists of alternating segments of mi
rostateslabeled A, 
onsisting of a bound part of length nA, and B, 
onsisting of an openpart or bubble of length nB (see Fig. 1.3). The free energy per unit length of thewhole 
on�guration is f(T ), at temperature T , where
βf(T ) = − lim

N→∞

1

N
lnZN(T ), (1.13)with ZN as the partition fun
tion. To 
al
ulate the free energy it is 
onvenient to
onsider a generating fun
tion,

G(z, T ) =

∞
∑

N=0

zNZN(T ). (1.14)If z0 is the singularity of G(z) 
losest to the origin of the 
omplex z-plane, thenthe limiting free energy would be,
βf(T ) = ln z0(T ). (1.15)In a similar way, the generating fun
tions for the A state and the B state 
an be7
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tion
onstru
ted,
GA(z) =

∑

n

QA
n z

n, GB(z) =
∑

n

QB
n z

n, (1.16)where QA and QB are 
orresponding 
anoni
al partition fun
tions. Often thebubble partition fun
tion QB
n is taken as

QB
n ≈ e−nσ0/nΨ, (1.17)with σ0 as the bubble entropy per monomer and Ψ as the reunion exponent (dis-
ussed in the next subse
tion).Now if a Boltzmann fa
tor v is asso
iated for the jun
tions AB or BA, andone puts the 
ondition that the polymers start and end with 
on�guration A, then

G(z) 
an be written as,
G(z) = GA(z)/

[

1− v2GA(z)GB(z)
]

. (1.18)The singularity of GA(z) and GB(z) will give the 
orresponding phases, but thesmallest root of the equation
v2GB(z) = 1/GA(z), (1.19)will 
orrespond to a new bound phase. A transition takes pla
e if the ne
kla
egoes from this new state to the open B-type phase. An analysis of Eq.(1.19) shows[17℄ that below the transition temperature Tc, with t = (Tc − T )/Tc,

f = σ0(T )−Ast
1/(Ψ−1) + ..., for 1 < Ψ < 2, (1.20)

f = σ0(T )−A1t+ Ast
Ψ−1 + ..., for Ψ > 2, (1.21)where Eq.(1.20) shows a 
riti
al behaviour and Eq.(1.21) has a �rst order transi-tion. There is no phase transition for Ψ < 1 and the system remains in the boundstate. Note here the 
hange of the order of the phase transition with the value of

Ψ, whi
h will later be 
onne
ted to the intera
tion strength of the inverse squarepotential in the 
ontext of quantum entanglement entropy near disso
iation.
8



Chapter 1. Introdu
tionReunion of two polymersLet us 
onsider two Gaussian polymers, joined at one end (z = 0), doing randomwalks. The elasti
 energy for ea
h 
hain is given by H =
∫ N

0
dz(dr/dz)2, where ris the d-dimensional ve
tor of monomer at z. The partition fun
tion, or the totalweight of all possible walks to rea
h r, starting from r = 0, is then,

Z(r, 0) ≈ e−σ
′Ne−r

2/(2b2N)

(b2N)d/2
, (1.22)where e−σ′N is the total partition fun
tion of all possible walks of N steps obtainedby integrating Z(r, 0) over r. Now the probability that the walker rea
hes r after

N steps is,
R(r, 0) =

Z(r, 0)

Ztotal
≈ n−d/2. (1.23)Then from Eq.(1.22), by putting r = 0, one gets the bubble partition fun
tion, thattwo walkers start from r1 = r2 = 0 and meet at r after N steps, as the produ
t oftwo individual partition fun
tions,

Z2(r, 0) ≈
e−σNe−r

2/N

Nψ
, with ψ = d, (1.24)where we have put b = 1 for brevity. The reunion exponent for meeting at parti
-ular point is denoted by ψ and reunion anywhere is denoted by Ψ. For the reunionanywhere, one has to integrate over r, in whi
h 
ase it be
omes,

Z2 =

∫

ddrZ2(r, 0) ≈
e−σN

NΨ
, with Ψ = d/2. (1.25)Hen
e the reunion exponents for two nonintera
ting Gaussian polymers are [18℄,

ψ = d for noninteracting walkers, reunion at a particular point, (1.26)
Ψ = d/2 for noninteracting walkers, reunion anywhere. (1.27)In the 
ase of intera
ting polymers the Hamiltonian looks like Eq.(1.31) givenbelow. For a long range g/r2 potential, the reunion exponent (for reunion any-

9
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tionwhere) for two walkers are [107℄,
Ψ = 1 +

√

4 + d2 − 4d+ 4g

2
, general d, (1.28)

= 1 +

√
1 + 4g

2
, for d = 3. (1.29)These are the exponents alluded to in the 
ontext of the ne
kla
e model dis
ussedin the previous subse
tion and will also appear in the 
ontext of quantum entan-glement entropy in Chapters 4 and 5.This lays the ba
kground of our study related to the phases and phase transitionof DNA and intera
ting polymers. At this point, we want to make a 
onne
tion of
lassi
al polymers to an equivalent quantum system whi
h will be utilized later.1.1.3 Path integral 
orresponden
eThe 
orresponden
e between the path integral in 
lassi
al statisti
al me
hani
sand the path integral in quantum me
hani
s is very well-known. The following ex-ample shows how the path integral formulation of quantum me
hani
s is related tostatisti
al me
hani
s. The partition fun
tion of two 
lassi
al polymers intera
tingvia a potential V reads,

Z =

∫

DR exp[−βH [r1, r2]]. (1.30)Here ∫ DR denotes the integration over all possible paths or polymer 
on�gura-tions, and H [r1, r2] is the energy,
H [r1(z), r2(z)] =

∫ N

0

dz

[

1

2
K

(

dr1
dz

)2

+
1

2
K

(

dr2
dz

)2

+ V (r1, r2)

]

, (1.31)where K is the elasti
 
onstant of a polymer, z is the 
ontour length along thepolymer of total length N and ri is the 
oordinate of the monomer of i-th polymerat length z. Then by using the imaginary time transformation, z → i t one gets,
H [r(t)] = −i

∫ T

0

dt

[

1

2
K

(

dr1
dt

)2

+
1

2
K

(

dr2
dt

)2

− V (r1, r2)

]

, (1.32)10
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tionwriting T = iN . Identifying β → 1/~, K → m (mass) and
S[r1, r2] =

∫ T

0

dt

[

1

2
m

(

dr1
dt

)2

+
1

2
m

(

dr2
dt

)2

− V (r1, r2)

]

=

∫ T

0

L dt. (1.33)one gets the Green's fun
tion or the propagator of the quantum problem of twointera
ting parti
les with the 
lassi
al a
tion S[r1, r2] with Lagrangian L as,
G =

∫

DR exp

[

i

~
S[r1, r2]

]

. (1.34)To be noted that the Hamiltonian in the polymer problem now be
omes the La-grangian after the transformation. Here G denotes the path integral over all possi-ble traje
tories in time going from one 
oordinate state to another. This transfor-mation thus relates the 
lassi
al statisti
al me
hani
al problem of polymers withthe quantum problem where mapping are as follows: the length of the polymermaps onto the time of the quantum problem, the partition fun
tion maps onto theGreen's fun
tion. Therefore, the problem of two intera
ting polymer be
omes aquantum problem of two intera
ting parti
les. The nonintera
ting part, separatedby a distan
e larger than the range of the intera
tion, whi
h forms bubbles, 
or-responds to the ex
ursion of quantum parti
les beyond the potential well. Thesame-z base pair intera
tion is the same time intera
tion in the quantum problem.We utilize this mapping to explain the behaviours of the quantum entanglementnear the quantum disso
iation of two parti
les with the known results of polymerunbinding transition.To avoid any 
onfusion, we mention that the above transformation is di�erentfrom the 
onventional quantum to thermal mapping, where time (it/~) in thequantum problem maps to the inverse temperature (β = 1/kBT ) in the 
lassi
althermal problem. The operator exp[−iHt/~] in quantum me
hani
s then be
omes
exp[−βH ], in both of whi
h H is the 
orresponding Hamiltonian.The polymer-quantummapping has been used in our study of Chapters 4 and 5.

11



Chapter 1. Introdu
tion1.2 Conne
tion of equilibrium and nonequilibriummeasurementsNow we move our attention from the equilibrium properties to the nonequilibriumones. For example, let us suppose one tries to observe the same system of polymersor DNA under time-dependent for
e, and do not allow the system to equilibrate.Obviously, the equilibrium phase diagram will not be obtained. Then the question
omes whether one 
an get the equilibrium quantities from the nonequilibriummeasurements. That one will not get it 
an be understood as follows. A systemin thermodynami
 equilibrium has no memory of its past. Consequently there isno leading role for time in the ensemble based statisti
al me
hani
s ex
ept thesubservient one to maintain equilibrium among the internal degrees of freedomand with external sour
es. This wisdom gets exploited in the dynami
s based al-gorithms like Monte Carlo, mole
ular dynami
s, sto
hasti
 quantization, to attainequilibrium from any arbitrary state albeit in in�nite time. Even a thermody-nami
 pro
ess involving 
hanges in parameters is an in�nite sequen
e of equilib-rium states, and is therefore in�nitely slow. A �nite duration pro
ess, not destinedto equilibrate at every instant of time, remains outside the realm of statisti
alme
hani
s and thermodynami
s. A work theorem [19, 20, 21, 22, 25℄ attempts tobridge the gap by providing a s
heme for getting the thermodynami
 free energydi�eren
e from a properly weighted nonequilibrium path integral [21, 22℄.1.2.1 Work theoremThe estimation of a quantity like the energy or the magnetization of a ma
ros
opi
system 
an be done by averaging over a reasonably large sample of mi
rostatesdrawn from an equilibrium ensemble. But an estimation of the entropy or the freeenergy from simulations or experimental data is a tri
ky problem as to do that wehave to ne
essarily 
onsider all the mi
rostates a

essible to the equilibrium systemand this number is indeed very large. There are useful Monte Carlo te
hniques viz.,the umbrella sampling and its variants, the entropi
 sampling, the multi
anoni
alsampling, the Wang-Landau algorithm, et
, that 
an be used for 
omputation ofthe entropy and the free energy.Consider a 
lassi
al ma
ros
opi
 system in thermal 
onta
t with a heat bath at12
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tiontemperature T . Let λ denote a parameter that 
an 
hange some degree of freedomof the system and 
an be 
ontrolled from outside. For example, the system 
anbe a gas 
ontained in a 
ylinder and λ 
an be its pressure (
hanging the volume)whi
h 
an be 
ontrolled from outside by moving a piston; the system 
an be a spinlatti
e and the parameter 
an be an external magneti
 �eld whose strength 
anbe 
hanged. To begin with, at time t = 0, let λ = λ1 and let the system be inequilibrium with the heat bath. Then swit
h the value of λ from λ1 to λ2 . Alsoassume that the swit
hing of λ from λ1 to λ2 is 
arried out over a time duration t.To estimate the 
hange in free energy let's 
onsider two 
ases. One in whi
hthe swit
hing is 
arried out in�nitely slowly, in other words t = ∞, and the se
ondone in whi
h the swit
hing pro
ess takes pla
e over a �nite time duration, i.e.
t <∞. In the �rst 
ase, the system passes through equilibrium states while in these
ond 
ase the system is never in equilibrium during the 
hange. The �rst 
ase
orresponds to a quasi-stati
 reversible equilibrium pro
ess so that the 
hange inthe free energy ∆F = F (λ2) − F (λ1) is the reversible work done on the system.In the se
ond 
ase, the work done will depend both on the parti
ular mi
rostateat the starting point and on the traje
tory. The work done is de�ned as,

W = −
∫ τ

0

dλ

dt

∂H

∂λ
dt, (1.35)where H is the Hamiltonian of the system. Therefore, for t <∞, W is not uniqueand it is to be des
ribed by a distribution Pt(W ). If 〈W 〉 denote the average workdone on the system, then

〈W 〉 =
∫

W Pt(W ) dW.In the ideal quasi-stati
 equilibrium limit of t → ∞, we have Pt→∞(W ) = δ(W −
WR); W does not 
hange from one experiment to another and it is equal to WR,the work done in the reversible pro
ess, whi
h also happens to be the 
hange inthe free energy.The work theorem relates the equilibrium free energy di�eren
es to the statisti
sof work done on a system to rea
h from the initial equilibrium state to the �nal statethrough nonequilibrium paths. Consider at t = 0, we start from an equilibriumstate of the Hamiltonian H(x,Λ) at temperature T = β−1 and Λ = λA. Now13
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tion
hosen a �nite time τ , it is dis
retized in n steps. In time τ , we rea
h to a �nalstate having Λ = λB, varying Λ in small n steps, i.e., at ea
h step Λ is in
reasedby ∆Λ = (λB − λA)/n. At ea
h small step, we let the system relax for a while,but do not allow it to equilibrate. The paths 
onne
ting the initial and the �nalstates are thus nonequilibrium paths. This pro
ess is repeated many times and
t=0 

x(t)

t

B

A

t=

Figure 1.4: Paths 
onne
ting an initial equilibrium state having an external pa-rameter value λA to a �nal nonequilibrium state having a parameter value λB. The�nal state is rea
hed in a time τ .for ea
h path, the work done W along the path, is noted. Then a

ording to thework theorem the equilibrium free energy di�eren
e, ∆F = FλB − FλA , betweenthe two states 
an be obtained from the nonequilibrium work done W by using therelation,
∆F = − 1

β
ln 〈e−βW 〉. (1.36)Here Fλ = −kBT lnZλ, Zλ =

∫

DXe−βH(x,λ), and 〈...〉 denotes an average over allpossible traje
tories (or realizations). This relation is used in many simulationsand experiments to get equilibrium free energy di�eren
es.As already mentioned, away from equilibrium, one gets a distribution Pn(W ) ofwork along the traje
tories 
onne
ting the two states. The peak of the distributionshifts with the 
loseness to the equilibrium [23℄. For an arbitrarily slow pro
ess, onegets a sharp peak at Weq. For the nonequilibrium pro
ess, there are traje
torieswhi
h has W < ∆F (see Fig. 1.5). These are the se
ond law violating paths.Various issues related to the distribution are explained in Ref. [24℄ by using the
umulant expansion.One may note that the de�nition of work used above is di�erent from the14
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Figure 1.5: A 
omparison of the work done between a 1-step pro
ess and an n-steppro
ess. For large n, the work distribution shows a peak at Weq.de�nition used in me
hani
s whi
h would have required
W0 =

∫ τ

0

Ẋ
∂H

∂X
dt, (1.37)as the de�nition of work. This di�eren
e stems from the fa
t that sin
e we are
hanging an �intensive� variable that does not s
ale with the size of the system, therelevant ensemble in equilibrium statisti
al me
hani
s is the 
onstant-λ ensemble.The work done in this ensemble is given by the de�nition of W with an additional

−λX in the Hamiltonian, a term generally asso
iated with the Legendre trans-formation for a 
hange of variables or ensembles. Another issue of importan
e isthe temperature to be used. Temperature is a stri
tly equilibrium 
on
ept andtherefore it is not possible to de�ne temperature at any point along the �nite timetraje
tory. However, the averaging is done over the equilibrium initial state whi
hhas a well de�ned temperature. The averaging over traje
tories is done with thistemperature with the assumption that the �nal temperature in equilibrium wouldremain the same. See Ref. [25, 26℄ for more elaborate dis
ussions and 
ontroversieson these issues.The derivation of the work theorem has been done by various means. In Ref.[27℄ the proof is obtained from a deterministi
 dynami
s in the full phase spa
e byusing the Hamilton's equation assuming weak 
oupling between the system and thereservoir. Later it was derived from a sto
hasti
 dynami
s of the system governed15
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tionby the master equation under the assumption of a Markovian evolution and detailedbalan
e [28℄ whi
h is valid only for a parti
ular 
lass of models of physi
al reality.Ref. [29℄ derives the results for a mi
ros
opi
ally reversible sto
hasti
 pro
ess. Thevalidity of the work theorem for nonequilibirum traje
tories generated with largetime steps is shown in Ref. [30℄. The derivation from the Feynman-Ka
 theoremis also well-do
umented in Ref. [21℄. In this thesis we presented a dynami
sindependent general proof of the work theorem.In our work, the work theorem is proved to be a generalized version of an oldte
hnique known as histogram method. The details of it is dis
ussed here in detail.Only the single histogram method is illustrated here.1.2.2 Histogram methodThe histogram method is a widely used te
hnique in Monte Carlo simulations.This method allows us to take a quantity obtained by Monte Carlo simulation atsome intensive parameter value and extrapolate the results to other nearby values.This saves the 
omputation time for other values. The idea was �rst given byValleau and Card [31℄ and then used by Fal
ioni et. al [32℄ and Ferrenberg andSwendsen [33℄.Histogram transformationLet us 
onsider the Hamiltonian:
H = H0 − λX. (1.38)The joint probability distribution of E (
ontribution from H0 only) and X (
on-tribution from the se
ond part only) at a point (β, λ) in the parameter spa
e isgiven by

Pλ(E,X) =
1

Z(λ)
Ω(E,X) exp(−βE + βλX), (1.39)where Ω(E,X) is the degenera
y or the number of states and Zλ is the 
anoni
alpartition fun
tion given by

Zλ =
∑

X,E

Ω(E,X) exp(−βE + βλX) . (1.40)16
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tionSuppose we want to �nd the average of a quantity A(E,X). The histogram ofthe pair (E,X) generated by the MC simulation is proportional to Pλ(E,X). Thenormalized probability distribution 
an be used to extrapolate the same to otherparameter values. If one has the average of that quantity, 〈A〉, then
〈A〉λ =

∑

E,X

A(E,X) Pλ(E,X) (1.41)
=

∑

E,X A(E,X) Ω(E,X) e−βE+βλX

∑

E,X Ω(E,X) e−βE+βλX
. (1.42)Similarly, for another value of the parameter λ′, we 
an write the average of thesame quantity A as

〈A〉λ′ =

∑

E,X A(E,X) Ω(E,X) e−βE+βλ′X

∑

E,X Ω(E,X) e−βE+βλ′X
(1.43)

=

∑

E,X A(E,X) Ω(E,X) e−βE+βλ′X eβλXe−βλX
∑

E,X Ω(E,X) e−βE+βλX

∑

E,X Ω(E,X)e−βE+βλ′X eβλXe−βλX
∑

E,X Ω(E,X)e−βE+βλX

(1.44)
=

∑

E,X A(E,X) Pλ(E,X) eβ(λ
′−λ)X

∑

E,X Pλ(E,X) eβ(λ′−λ)X
. (1.45)Hen
e, by using the histogram, Pλ(E,X), at λ one 
an get 〈A〉λ′, at λ′, and, thenormalized probability distribution with new parameter λ′ 
an be expressed interms of the distribution with λ as:

Pλ′(E,X) =
Pλ(E,X) exp[β(λ′ − λ)X ]

∑

E,X Pλ(E,X) exp[β(λ′ − λ)X ]
. (1.46)Again we 
an write from the above equation as,

Ω(E,X)e−βE+βλ′X

Zβ,λ′
=

Ω(E,X)e−βE+βλX

Zβ,λ
exp[β(λ′ − λ)X ]

∑

E,X Pλ(E,X) exp[β(λ′ − λ)X ]
, (1.47)

⇒ Zβ,λ′ = Zβ,λ
∑

E,X

Pλ(E,X) exp[β(λ′ − λ)X ] . (1.48)This 
an be extrapolated to an arbitrary number of variables in the following way.If the Hamiltonian is now, H = H0 −
∑

k λkXk, then the probability distribution17
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tionat {λi} 
an be related to that at {λf} as,
P{λf}(X) =

P{λi}(X) exp[β
∑

k(λ
f
k − λik)X ]

∑

X P{λi}(X) exp[β
∑

k(λ
f
k − λik)X ]

. (1.49)Monte Carlo implementationThe Monte Carlo approa
h is a fundamental tool to study the thermodynami
properties of model systems. The thermal averages are performed by taking a �niteset of judi
iously 
hosen states instead of taking into a

ount all possible states ofthe system. These states form the 
anoni
al Boltzmann probability distribution
PT (E) =

1

ZT
Ω(E) exp(−E/T ), (1.50)for ea
h possible (total) energy value E, where T is the �xed temperature (in unitof kB, or, kB = 1), Ω(E) is the degenera
y of energy level E, and

ZT =
∑

E

Ω(E) exp(−E/T ), (1.51)is the partition fun
tion. In the Monte Carlo te
hnique some random movements,for instan
e, through one-spin �ip, starting from the 
urrent state of the system,are made in the phase spa
e a

ording to some dynami
 rule whi
h produ
es thisprobability distribution. By repeating the pro
ess many times one forms an en-semble of states. The thermal average 〈A〉T of some quantity A (magnetization,sus
eptibility, spe
i�
 heat, et
.) is then simply the average of this quantity overthe generated ensemble of states. To get an a

urate value of the thermal averagedquantity one must take 
are of statisti
al 
orrelations and �u
tuations through anyof the standard pro
edures. Normally one needs to 
al
ulate 〈A〉T as a fun
tion ofsome parameter, e.g., T . So, one has to repeat the entire pro
ess for ea
h di�er-ent value of T . In order to save 
omputer time, an appealing strategy 
onsists inextra
ting out the T dependen
e from Eqs.((1.50)) and ((1.51)). First, the distri-bution PT (E) itself is measured by keeping a histogram, the number of o

urren
eof ea
h value of E, during the sequen
e of simulated states. Then, one 
an inferanother distribution PT ′(E) 
orresponding to a di�erent value T ′ without perform-ing any further 
omputer run, simply by reweighting Eqs.((1.50)) and ((1.51)).18
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tionThis approa
h is known as the histogram method [34, 35℄. The thermal averageat temperature T is then
〈A〉T =

∑

E

A(E)PT (E), (1.52)where A(E) is the value of A obtained at �xed energy E. On
e one has thereweighted distribution PT ′(E) from Eq.(1.46), Eq.((1.52)) 
an be applied to obtain
〈A〉T ′ for other temperatures T ′ without doing any simulation. The probabilitydistribution PT (E) presents a sharp peak at 〈E〉T and de
ays exponentially onboth sides. The larger the system size, the narrower is this peak. Thus, the
omputer measured PT (E) is only reliable around the peak, the statisti
s beingpoor in the exponential tails. The reweighting pro
edure 
orresponds to repla
ingthe Boltzmann fa
tors appearing in Eqs.((1.50)) and ((1.51)) by other Boltzmannfa
tors 
orresponding to the new value T ′, transforming the whole fun
tion PT (E)into PT ′(E). In parti
ular, the probability values are redu
ed near the former peak,and enhan
ed near the new peak position 〈E〉T ′. However, sin
e the statisti
s ispoor near this new peak position, the inferred PT ′(E) is not a

urate. That is whythis simple histogram method (known as the single histogram method), in spite ofits elegant reasoning, had di�
ulties in pra
ti
e whi
h later has been improved byintrodu
ing new methods: broad histogram method and multi-histogram method,to avoid the exponential tails responsible for the drawba
k of the single histogrammethod.1.3 An equivalent quantum system: two intera
t-ing parti
les and quantum phase transitionPreviously we have mentioned in Se
. 1.1.3 that the 
lassi
al problem of unbindingtransition of two intera
ting polymers, like DNA, 
an be mapped onto an equivalentquantum problem of disso
iation of two intera
ting quantum parti
les. Then the
on
epts and results of the 
lassi
al phase transition 
an be borrowed to analyzequantum entanglement and the entanglement entropy. This se
tion dis
usses theproblem of quantum entanglement, its measures and the 
onne
tion to polymerentropy as a prerequisite of the Chapters 4 and 5. 19



Chapter 1. Introdu
tion1.3.1 What is quantum entanglement?Quantum entanglement [36, 37, 38, 39℄ is a fundamental feature of quantum me-
hani
s that tells us about the quantum 
orrelation of two parti
les or subsystemsspatially apart. It says that performing a lo
al measurement may instantaneouslya�e
t the out
ome of lo
al measurements far away. When a 
omposite quantumsystem is in a pure state, then even if the subsystems are spatially far apart andnon-intera
ting, the measurement on one subsystem a�e
ts that on the other in-stantaneously. This �spooky a
tion at a distan
e� later gave birth to the term�entanglement�. This phenomenon was �rst marked by Einstein, Podolsky andRosen in a gedanken experiment [40℄, known as the EPR paradox. In their paper,they 
onsidered two parti
les whi
h intera
ted for some time and showed that it ispossible to measure the 
onjugate non-
ommutating quantities, like position andmomentum, simultaneously, whi
h violated the quantum theory. For example, onemay take a pair of parti
les in the zero total momentum state. Then, when theyare far apart, one may measure the momentum of one parti
le with arbitrary pre-
ision to predi
t the momentum of the other one. At the same time the positionof the se
ond parti
le 
an be measured pre
isely so that both position and mo-mentum are determined with arbitrary pre
ision. Later it was resolved and 
amethe idea of the quantum entanglement whi
h indi
ates the presen
e of the inherentquantum 
orrelation between the two parti
les or any two subsystems. We de�nean entangled pair as follows:De�nition: When a bipartite pure state 
an not be written in termsof a produ
t of two states of individual parts, then the two parts areentangled.This notion 
an be made more quantitative with the help of density matri
es.A quantum state 
an be pure or mixed. A pure state 
an be des
ribed bya single wave-fun
tion or by a linear superposition of other states. On the otherhand, a mixed state is a statisti
al mixture of pure states. For example, intera
tingparti
les like an EPR pair, or more spe
i�
ally in the two-parti
le energy eigenstateare examples of pure states. On the other hand, a quantum system in thermalequilibrium is des
ribed by the probabilities of the various energy eigen-states butit is not des
ribable by a wave fun
tion. Su
h states, 
alled mixed states, are20
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tiondes
ribed by a density matrix whi
h is represented by an operator
ρ(1, 2) =

∑

ij

cij | φi〉〈φj |, (1.53)where | φi〉's form a set of wave-fun
tions of the system. For a pure state of twoparts 1 and 2,
ρ(1, 2) =| φ(1, 2)〉〈φ(1, 2) | .A pure state satis�es ρ2 = ρ. Consequently, for a normalized density matrix

Trρ2 = 1 but for a mixed state, Trρ2 < 1.A redu
ed density matrix for one part is de�ned by
ρ = Tr2 ρ(1, 2),by tra
ing over part 2. This tra
e operation indi
ates the absen
e of any informa-tion about the se
ond part. If the redu
ed density matrix is not pure, i.e. ρ2 6= ρ,then the two parts are de�ned as entangled. Ne
essarily, the redu
ed density ma-trix is not separable in this situation. Needless to say, if the redu
ed density matrixfor part 1 is not pure, it will not be for part 2 either.Signature of quantum phase transitionThere is another feature of quantum me
hani
s where the zero-point �u
tuationsin the ground state may 
oherently add up to produ
e long-range 
orrelations oflo
al observables. This happens at quantum 
riti
al points (QCP), a point wherethe spe
trum be
omes gapless, obtained by tuning some parameter, say g, of theHamiltonian. A QPT o

urs at zero temperature and at the QPT the ground stateenergy is non-analyti
 with respe
t to some parameter in the Hamiltonian. Theground-state energy E0 remains 
ontinuous through the quantum phase transition(QPT) point at g = gc. If there is a slope dis
ontinuity of E0 as g → gc±, theQPT is 
alled a �rst order transition otherwise it is a 
ontinuous transition or aquantum 
riti
al point (QCP).For parti
le dynami
s, one may use a dimensional argument to 
hara
terize thephase transition. The gap in the spe
trum ∆, de�ned as the separation of the21
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tionground state from the rest of the spe
trum, gives a length s
ale
ξ ∼ ~√

2m∆
,where m is the relevant mass s
ale. A time s
ale for the quantum dynami
s mayalso be de�ned as

τ =
~

∆
.The signi�
an
e of these s
ales be
ome 
lear in a path integral formulation whereone 
onsiders traje
tories in spa
e and time. As the gap 
loses, ∆ → 0, both thes
ales ξ, τ → ∞ signaling a transition be
ause diverging length and time s
ales arethe hallmarks of any phase transition.For the two parti
le problem, when the ground state energy approa
hes zero,the bottom of the 
ontinuum, the width of the wave-fun
tion be
omes large. Thisis an indi
ation of 
orrelations between the two parti
les even if they are far apart,beyond the range of intera
tion. With diverging s
ales, the 
omposite wave fun
-tion is not expressible as a produ
t of individual wave fun
tions. Simply stated,
riti
al states are ne
essarily entangled, but the 
onverse is not ne
essarily true.There are states that are entangled but not 
riti
al.The wave fun
tion en
odes not only the non-analyti
ity asso
iated with a QPT,but also the spe
ial quantum entanglement intrinsi
 to the state. A QPT is fullygoverned by the quantum �u
tuation and hen
e one would expe
t that the quantumentanglement would show spe
ial signatures at the QPT.1.3.2 Quanti�
ation of entanglementDepending on the number of partitions of a quantum many body system, quantumentanglement 
an be of di�erent types, su
h as bipartite (entanglement betweentwo subsystems), multipartite (entanglement between multiple subsystems).To quantify the entanglement, various de�nitions of entanglement entropy areexplored [38, 37, 41℄, though a few 
an be used for exa
t 
omputation. The 
ondi-tions to be satis�ed by the measure of the entanglement are: (i) it should be zerofor a produ
t state, and (ii) it should not 
hange under lo
al unitary operationsor 
hoi
e of bases. A mu
h studied measure is in terms of an �entropy�. Themost 
ommon among these measures are the von Neumann entropy and the Renyi22
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tionentropy. As dis
ussed later, the problem we 
onsider involves a gapless entangle-ment spe
trum. The usual proof of the positivity of entanglement entropy is notappli
able in 
ase of 
ontinuous eigenvalues of the redu
ed density matrix.von Neumann entropyThe von Neumann entropy is the widely used measure of entanglement. If ρ is theredu
ed density matrix obtained from a two parti
le density matrix, as des
ribedabove, then the von Neumann entropy is de�ned as
SvN = −Tr ρ ln ρ







= 0 for a product state (no entanglement),

6= 0 for a nonproduct state (entangled).
(1.54)It is maximum for a 
ompletely mixed state. The von Neumann entropy is thequantum generalization of the Shannon entropy. It maps a density matrix toa number, its von Neumann entropy. It is generally 
onsidered as a 
anoni
almeasure of the entanglement for a pure bipartite state. For mixed states it is more
ompli
ated to evaluate.Renyi entropyThe Renyi entropy was �rst proposed by Renyi [42℄ in 1960 from the perspe
tive ofinformation theory. The idea is to look for the most general fun
tion that quanti�esthe un
ertainty in a system. The Renyi entropy of the 
ombined system of A andB is de�ned as

Sn =
1

1− n
ln[Tr ρnAB]. (1.55)The von Neumann is obtained from the Renyi entropy in the limit n → 1. TheRenyi entropy of order two, 
alled the extension entropy [43℄, is 
losely related tothe inverse parti
ipation ratio. In the 
ase of n = 0, the Renyi entropy is a fun
tionof the number m of positive 
omponents of the ve
tor ρ, S0 = lnm. In the limit

n → ∞, we obtain a quantity analogous to the Chebyshev norm, S∞ = − ln ρmax,where ρmax is the largest value of ρ.It is found that the entanglement entropy behaves in di�erent ways for a �rstorder and a 
ontinuous QPT. The 
riti
al behaviour of the entanglement entropyhas drawn mu
h attention now-a-days [44℄ and has been investigated for di�erent23
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tionspin models [39, 45, 36℄ as well as in 
ontinuum systems [46℄.1.4 Random walk in disordered mediaIn the last 
hapter we view the polymer as a random walker. A Gaussian polymer
an be modeled as a random walker on a latti
e. Time in the random walk problem
orresponds to the 
ontour length of the polymer. For a polymer of length N ,the mean square of the end-to-end distan
e R is given by 〈R2〉 ∼ N . With R
orresponding to the displa
ement X(t) of the walker after time t = N , this resultis expressed in the random walk analogy, as 〈X(t)2〉 = 2Dt, whi
h is the well-knowndi�usion law, D being the di�usion 
oe�
ient.Further, disorder plays an important role in the 
ase of polymers, e.g., to modelspatially varying sti�ness, intera
tion to the wall for adsorbed polymers et
. It isthus interesting to study the problem of random walk itself, whi
h �nds appli
a-tions in many other systems whose underlying dynami
s have a dire
t 
orrespon-den
e. Thus, for the random walker, disorder is introdu
ed in the mi
ros
opi
transition rates. Random walk in disordered media, whi
h often gives rise toanomalous di�usion, is an extensively studied topi
. In this 
hapter, we 
on
en-trate on 
ertain 
ommonly en
ountered forms of randomness in the hopping ratesand study the e�e
t of su
h disorder on the di�usion and persisten
e property ofthe random walk.1.4.1 Persisten
e probability P (t)An important quantity for a polymer is the reunion probability or the probability ofloop formation for a single 
hain dis
ussed in Se
. 1.1.2. The reunion probabilityof the polymer 
orresponds to persisten
e probability P (t) in the random walkanalogy. For the 1D random walk, if the walker starts at x0, P (t) is the probabilitythat x(t) − x0 does not 
hange sign upto time t. It is known that, for a Gaussianstationary pro
ess, persisten
e probability has the form, P (t) ∼ e−θt, where θ is
alled the persisten
e exponent [47℄. A pro
ess X(T ) is stationary if the two-time
orrelation fun
tion has the form
C(T1, T2) = 〈X(T1) X(T2)〉 = f(|T1 − T2|). 24



Chapter 1. Introdu
tionFor a normal random walk in 1D, 〈x(t1)x(t2)〉 ∝ min(t1, t2), and thus de�ning
T = ln t and X(T ) = x(t)/〈x2(t)〉, we immediately see that, X(T ) is a stationarypro
ess in the logarithmi
 time T ;

〈X(T1)X(T2)〉 =
〈x(t1)x(t2)〉

√

〈x2(t1)〉〈x2(t2)〉
=

min(t1, t2)√
t1t2

= e−
1
2
|T1−T2|. (1.56)Hen
e, for the pro
ess X(T ), the persisten
e probability de
ays exponentially,

P (T ) ∼ e−θT with θ = 1/2 and therefore, in real time t, persisten
e probability forthe original random walk pro
ess x(t) has a power-law de
ay,
P (t) ∼ t−θ0 , θ0 =

1

2
. (1.57)In a large number of sto
hasti
 pro
esses, persisten
e exponent is found to bea new nontrivial exponent and is apparently unrelated to the usual dynami
alexponents. This quantity probes high order temporal 
orrelations in dynami
sand depends on the whole history of the time evolution of the system and further
hara
terize a given sto
hasti
 pro
ess. It is di�
ult to determine analyti
ally asit depends on the full fun
tional form of the two-time 
orrelator, not only on itsasymptoti
 form. Thus, in this work we study the persisten
e of random walkersin a disordered systems in order to understand better the 
omplexity of anomalousdi�usion pro
esses in these systems.1.4.2 Di�usion in disordered mediaDi�usion in disordered media is an extensively studied topi
 within the generalproblem of transport in disordered media [48℄ with wide ranging physi
al inter-est and appli
ability. The 
lassi
 theories of transport valid for 
rystals do notapply in non-
rystalline, disordered materials, and the physi
s of transport, andin parti
ular di�usion, is anomalous in these disordered systems. Some exam-ples are: the problem of transport in fra
tured [49, 50℄ and in porous [51℄ ro
ks,anomalous density of states in randomly diluted magneti
 systems [52℄, in sili
aaerogels [53℄ and in glassy ioni
 
ondu
tors [54℄, anomalous relaxation phenomenain spin glasses [55℄ and in ma
romole
ules [56℄, 
ondu
tivity of superioni
 
ondu
-25



Chapter 1. Introdu
tiontors su
h as hollandite [57℄ and of per
olation 
luster of Pb on thin �lms of Ge orAu [58, 59, 60℄, di�usion 
ontrolled fusion of ex
itation in porous membrane �lms,polymeri
 glasses and isotropi
 mixed 
rystals [61℄ et
. Most of the above men-tioned systems, the density of the basi
 dynami
al entities are so small that theproblem 
an be treated as a non-intera
ting one, i.e., basi
 dynami
al quantitiesperforming the random walk are essentially independent of ea
h other. Thus, solv-ing the single walker problem is su�
ient in determining the transport propertiesof these system.The e�e
ts of disorder in these systems may be 
lassi�ed into three qualitativelydi�erent regimes based on the di�usion properties.1. Normal di�usion with renormalization of D: If the strength of disorder isweak (to be quanti�ed in the 
ontext of the spe
i�
 systems) the asymptoti
form of di�usion, 〈x2〉 = 2Dt, remains unaltered, only the numeri
al value ofdi�usion 
oe�
ient D 
hanges.2. Anomalous di�usion: Above a 
ertain strength of disorder, the di�usion lawitself is modi�ed, 〈x2〉 = Kβt
2β , where the wandering or spreading exponent

β 6= 1
2
is usually a fun
tion of the strength of the disorder as well.3. Extreme e�e
t of disorder: In some rare systems, disorder may lead to ex-tremely anomalous transport properties, e.g., in the Sinai model [62, 48℄,

〈x2〉 ∼ (ln t)4.In most systems, disorder distribution has a narrow spread around a �nitemean value, and these fall in to the �rst 
ategory. In the present work we makea detailed study of the se
ond 
ategory of systems with relatively strong disorder.We will see that in the 
ase of our interest, anomalous di�usion results due toe�e
tive long-range 
orrelations in disorder or a broad waiting time distribution orboth. Further, we will 
onsider di�usion on regular latti
es. Anomalous di�usionresulting from fra
tal properties of the underlying latti
e is of some physi
al interestand has been studied in a number of earlier works [48, 113℄.1.4.3 Modeling disordered mediaThe motion of a single random walker in a disordered system is des
ribed by amaster equation for the probability distribution of the walker on a latti
e. The26



Chapter 1. Introdu
tiontransition rates between neighbouring sites are random, and their distribution
hosen de�nes the spe
i�
 model studied. In parti
ular, one dimensional systemshave been studied extensively [63℄-[69℄. These systems are most generally des
ribedby the master equations
dPn
dt

=
∑

j

[Wj,nPj −Wn,jPn], (1.58)where n(n = 0,±1,±2, ...) denotes the latti
e sites, Pn(t) is the probability of�nding the walker or the amplitude of ex
itation at site n at time t, and thetransfer rates (or 
oupling 
onstants) Wi,j ≥ 0 are assumed to be independentrandom variables, distributed a

ording to a given probability density ρ(W ). Inthe most 
ommonly studied systems, W 's are nonzero only for nearest neighbours(i.e., Wi,j = 0 unless |i− j| = 1) and they are 
hosen su
h that there is no lo
al orglobal bias on the random walker.The following 
lasses of distributions ρ(W ) for transition rates Wn,n+1, essen-tially 
over most physi
al systems of interest.Class (a). ρ(W ) is su
h that
〈

1

W

〉

≡
∫ ∞

0

dW W−1ρ(W ) <∞. (1.59)Class (b). ρ(W ) is su
h that 〈 1
W
〉 = ∞. A single parameter 
hoi
e of su
h adistribution is,

ρ(W ) = (1− α) W−α, W → 0, 0 ≤ α < 1. (1.60)1.4.4 Anomalous di�usion due to broad waiting time distri-butionsIn all the models of disorder we 
onsider, it is known that the mean square dis-pla
ement 〈x2〉 ∼ t2β, where the wandering or spreading exponent β depends onthe exponent α of Eq.(1.60). Consider a random walk on a regular latti
e wherea parti
le has to wait on an average a time τ before performing the next jump1.1The a
tual waiting time is Poisson distributed as p(τ ′) = τeτ
′/τ 27
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tionLet this mean waiting time is a random variable and 
hanges with ea
h jump to avalue whi
h is 
hosen from a distribution: w(τ). One 
an think of this problem asdi�usion among traps where �xed mean waiting time is not asso
iated forever witha given site but 
hanges with ea
h new visit and thus the disorder is introdu
ed inan annealed way. If the distribution of mean waiting times is broad enough thenanomalous di�usion results. E.g., for a power law distribution of mean waitingtimes,
ω(τ) ∼ τ−µ, (1.61)one obtains,

• for 1 < µ < 2, subdi�usive behaviour with 〈x2(t)〉 ∼ tµ−1,
• for µ = 2, 〈x2(t)〉 ∼ t/τ0

ln(t/τ0)
,

• for µ > 2, �nite τ and normal di�usion, 〈x2(t)〉 = 2Dt.1.5 OrganizationThe above-dis
ussed topi
s are the main issues of 
on
ern in this thesis. The thesisis organized as follows.In Chapter 2, we analyze by using thermodynami
s the equilibrium phase tran-sition of DNA by for
e. The thermodynami
s is developed at the 
riti
al for
e.Here, instead of looking at the phases, we observe the interfa
e between the two
oexisting phases at the transition for
e. The heli
al order is 
onsidered in ourstudy along with the penetration of the external for
e inside the zipped phase. Intwo extreme regimes of these two 
ompetitive phenomena, the surfa
e energy hasopposite signs. The positive surfa
e energy being normal, we emphasize on thedis
ussion of the e�e
t of a negative surfa
e energy on the phase diagram. In anal-ogy to super
ondu
tors, when the interfa
ial energy be
omes negative, one gets amixed phase of DNA and the zipped-mixed phase transition be
omes 
ontinuous.Based on the sign of the zipped-unzipped interfa
ial energy we 
lassify DNA intotwo types: Type II has a negative interfa
ial energy whereas Type I is the 
onven-tional 
ase with a positive interfa
ial energy. This 
lassi�
ation is not related tothe existing 
lassi�
ation based on DNA 
onformation. 28



Chapter 1. Introdu
tionIn the next 
hapter, Chapter 3, the phase transition of a DNA hairpin undera periodi
 for
e is 
onsidered. A two-state model provides phenomenologi
al de-s
riptions of systems that 
an exist in two di�erent forms. In fa
t, the two-statemodel is shown to provide a good des
ription of the folding-unfolding dynami
s ofsmall DNA or RNA hairpins that display a strong 
ooperativity [70, 71℄ as wellas stru
tural transitions. On the basis of the results obtained by Mishra et. al.[72℄, in Chapter 3, we show that similar results 
an be obtained by any two-statesystem. We use an Ising ferromagnet to study the dynami
al phase transitionunder a periodi
 for
e. Both the system shows hysteresis near the 
riti
al for
e.A dynami
al phase diagram, in magneti
 �eld vs. frequen
y (of the applied �eld)plane, is proposed whi
h is qualitatively similar to that of DNA hairpin in for
evs. frequen
y plane.In Chapter 4, for the same two state Ising ferromagnet system, we then try toget ba
k the equilibrium magnetization 
urve from the nonequilibrium measure-ments. As a tool, we exploit the work theorem. We present here a generalized,dynami
s independent proof of the work theorem. The work theorem is shown tobe a 
onsequen
e of the exa
t histogram transformation. Combining these two,the work theorem and the histogram transformation, we show that any equilibriumprobability distribution 
an be obtained from the prin
ipal eigen-value of a spe-
ially 
onstru
ted matrix, whose elements are obtained from the nonequilibriummeasurements of work done along the path 
onne
ting the states having initialand �nal magneti
 �eld. These results indeed gives a good equilibrium magneti-zation 
urve, These are veri�ed by Monte Carlo simulations and appli
ations toBarkhausen-type noises are done.Chapter 5 and Chapter 6 look at a di�erent aspe
t of the DNA phase tran-sition. The equivalent quantum problem of two intera
ting parti
les, obtainedfrom the imaginary time transformation of the 
lassi
al problem of two intera
tingpolymers, is dis
ussed. As the intera
tion, we 
onsider both a short range squarewell (in Chapter 5) and a long range inverse square potential (in Chapter 6). Therelevant quantity to observe the signature of the quantum disso
iation is the quan-tum entanglement entropy. In the short range 
ase, the von Neumann entropy isfound to be negatively divergent near the unbinding transition, whi
h is a quan-tum 
riti
al point. For the long range one, there is an adjustable quantity, thestrength of the 1/r2 potential, whi
h 
an be 
ontrolled to get either a �rst order or29
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tiona 
ontinuous unbinding transition. It is found that for the se
ond order transitionthe entanglement entropy diverges negatively, but for the �rst order it is �nite.A s
aling relation is found from a data 
ollapse. The negative entropy, though
ounterintuitive, is a
tually essential for the phase transition. The 
onne
tion tothe equivalent polymer problem shows the 
orresponden
e between the quantumentropy and the polymer bubble entropy (dis
ussed in Se
.1.2), and explains theimportan
e and genuinity of the negative entropy. This study is extended to theRenyi entropy and some results are mentioned.In Chapter 7, we go ba
k to the 
lassi
al problem. Here we view a polymer asa sto
hasti
 path, like a Gaussian polymer maps on to a random walker, with thesame spa
e-time s
aling. In this pi
ture, the reunion probability of the polymerbe
omes the persisten
e probability of a random walker. We study a random walkerin a disordered latti
e, where the disorder is modeled through the randomness inthe hopping rates. In our model, both site and bond disorders are 
onsidered. Theannealed disorder averaging and quen
hed disorder averaging give di�erent resultsof various quantities, though all the models have same hopping rate distribution.The usual quantities in this 
ontext like mean squared displa
ement, two pointin
remental 
orrelations, waiting time distributions are veri�ed with known results.Our main interest is to study the persisten
e behaviour in all these four 
ases, whi
his found to have a power law behaviour with new exponent 
alled the persisten
eexponent. We �nd that though the persisten
e exponents in the annealed bond,annealed site, and quen
hed site disorder is same, the quen
hed bond disorder 
aseis qualitatively di�erent. It does not show a monotoni
 
hange with the disorderstrength. The behaviour of the persisten
e probability is explained using the �rstpassage time distribution and using properties of fra
tional Brownian motion.We summarize our �ndings of the thesis in Chapter 8.

30



2TYPE II DNA: when the interfa
ialenergy be
omes negative
DNA in its double heli
al form shows a resilien
e against an external pulling for
e.The bound state does not allow a for
e g applied at an end to penetrate up to a
riti
al for
e g = gc, above whi
h the DNA gets unzipped [2, 3, 4℄. The transi-tion is �rst order for temperatures T < Tc where Tc is the denaturation (melting)temperature in the absen
e of any for
e [8℄. In this 
hapter, we study the thermo-dynami
s of the unzipping transition. The phase transition is looked from anotheraspe
t, by observing the surfa
e energy. The surfa
e energy is quanti�ed from afree energy fun
tional in the linear response regime. We propose a new 
lassi�
a-tion of existing DNAs into two types, Type-I and Type-II, like super
ondu
tors,depending on the sign of the energy of the interfa
e separating the zipped and theunzipped phases.2.1 Introdu
tionThe for
e-indu
ed unzipping transition of DNA is due to a 
ompetition between thebond orientation by for
e and ordering by base pairing. The formation of a heli
allyordered dsDNA from denatured strands is a symmetry breaking transition. At a
oarse-grained level, the ordered state 
an be des
ribed by an order parameter ψ,with ψ = 0 for the denatured state. The external for
e does not 
ouple dire
tlyto this order parameter. Consequently, at a jun
tion of a bound and an unzippedDNA, there is a need to de�ne two length s
ales: one s
ale ξ that gives the length31



Chapter 2. TYPE II DNA: when the interfa
ial energy be
omes negativeover whi
h the DNA ordering is damaged on the bound side of the interfa
e,while the other s
ale λ gives the distan
e over whi
h the for
e penetrates thebound state. The existen
e of the se
ond s
ale λ was pointed out by de Gennesin a model involving stret
hing of the ba
kbone and the hydrogen bonds [73℄.Generally one expe
ts interfa
es separating phases to be energeti
ally 
ostly (e.g.surfa
e tension), but here we show that if λ ≫ ξ, then the interfa
ial energy, orsurfa
e energy, between bound and unzipped DNA 
an be
ome negative. There
an then be a penetration of for
e in the form of distorted regions or �defe
t blobs�of length λ en
losing a denatured bubble of size ξ. In analogy to super
ondu
tors,when the interfa
ial energy be
omes negative, one gets a mixed phase of DNA andthe zipped-mixed phase transition be
omes 
ontinuous. Based on the sign of thezipped-unzipped interfa
ial energy we 
lassify DNA into two types: Type II hasnegative interfa
ial energy whereas Type I is the 
onventional 
ase with positiveinterfa
ial energy. This 
lassi�
ation is not related to the existing 
lassi�
ationbased on DNA 
onformation.A Type II DNA has novel features whi
h are of 
onsiderable biologi
al andphysi
al impli
ations. To be noted that the defe
t blobs are di�erent from ther-mally 
reated bubbles. This is be
ause the bubbles of the latter type would 
onsistof random 
on�gurations of denatured strands generated by thermal �u
tuationsand may have positive interfa
ial energy. The distin
tness of the defe
t blobs 
anbe a signature for their identi�
ation in biologi
al pro
esses. Let us 
onsider thetrans
ription pro
ess where the geneti
 
ode, determined by the base sequen
e,is transferred to the amino a
id sequen
e of a protein. For 
orre
t trans
ription,the sequen
e must be read from the 
orre
t starting point on DNA. These start-ing non-
oding regions are 
alled promoter regions and their identi�
ation is the�rst and vital step in trans
ription [74℄. A pulling for
e or a for
ed separationin a homogeneous Type II DNA produ
es a �nite density of the defe
t blobs [75℄(dis
ussed later). The non-
oding sequen
es or the promoter regions may a
t asinhomogeneities on a DNA and 
ould play the role of pinning 
enters for the defe
tblobs. The advantage of physi
al identi�
ation of pinned defe
t blobs 
ould fa
ili-tate re
ognition of the promoter regions for gene expression (e.g. see Ref. [76, 77℄).So far as physi
al properties are 
on
erned, Type I and Type II DNA will havedi�erent phase diagram and phase transition as dis
ussed later.Re
ently, both in experiment [78℄ and simulation [79℄, a 
ontinuous transition32



Chapter 2. TYPE II DNA: when the interfa
ial energy be
omes negativehas been observed if the topology is preserved in a stret
hing experiment by pullingboth the strands either at both ends or at one end of an an
hored DNA. We alsonote that a detailed mole
ular dynami
s study [80℄ of under- or over-wound DNAwithout writhe, observed the formation of lo
alized sequen
e-dependent defe
tswhi
h allow the rest of the dsDNA to be in the relaxed normal state. It is knownthat topoisomerase II may bind anywhere on the DNA but its topology 
hanginga
tivity is restri
ted to spe
i�
 sequen
es (
leavage sites) indi
ating that geometri
distortions get lo
alized around 
ertain sequen
es [81℄. These are 
onsistent withour general predi
tions, though we like to add that interfa
ial information in anyof these 
ases are not available.2.1.1 OutlineThe outline of the 
hapter is as follows. In Se
.2.2, we develop the thermodynami
sof the phase transition. A qualitative dis
ussion is done on the behaviour of theinterfa
e, followed by a quantitative 
al
ulation of the surfa
e energy at the 
riti
alfor
e by 
onstru
ting the free energy fun
tional. The phase transition is thenexplained in view of the sign of the surfa
e energy. In Se
.2.4, we summarize ourresult.2.2 Theory and results2.2.1 Thermodynami
sThe thermodynami
 des
ription of unzipping of DNA requires three variables, ψdes
ribing the heli
al ordering (i.e., broken symmetry) and a for
e-displa
ement
(g, x) 
onjugate pair, where x is the s
aled separation between the two strandsat the point of appli
ation of for
e g. On the bound side x 
an be taken as theresponse to an internal indu
ed for
e g̃, so that,

x(g̃) = χg̃, (2.1)where χ, the stret
hability or the response fun
tion, is independent of g in thelinear response regime. Though we restri
t to linear response regime here, the�nal results 
an be reprodu
ed for a general for
e-dependent χ. The variables are33
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ial energy be
omes negative
hosen su
h that ψ = 0 for the unzipped state, and ψ 6= 0 for the ordered state,while g̃ = 0 in the bulk of the ordered state. At this point it is to be noted thatthe order parameter ψ represents heli
al ordering whi
h is not dire
tly 
oupled tothe external pulling for
e. As a result we get two independent length s
ales in theproblem. This makes the present treatment di�erent from other existing models.For a homogeneous state, the Gibbs free energy G(T, g) per unit length attemperature T and a pulling for
e g is given by
G(T, g) = G(T, 0)−W (g), (2.2)where W (g) =

∫ g

0
x(g′) dg′ is the work for stret
hing. The 
onditions of phase
oexisten
e at g = gc is

Gz(T, gc) = Gu(T, gc). (2.3)Here the subs
ripts z and u represents the zipped and the unzipped phases. An-other 
ondition needed is for the non-penetration of for
e in the bound state for
g ≤ gc. This is given by,

Gz(T, g) = Gz(T, 0). (2.4)Substituting Eq.(2.3) and (2.4) in Eq.(2.2), we get a relation for the free energiesas,
Gz(T, g) = Gu(T, g) +W (g)−W (gc). (2.5)Eq.(2.5) agrees with the known exa
t results dis
ussed in Se
. 1.1.1 when appro-priate x(g) from the exa
t solution is used. In parti
ular one veri�es that

Gz −Gu =
1

2
χ(g2 − g2c ), (2.6)in the linear response regime (near melting).Compared to the stret
hed unzipped state, the zipped phase has to pay a 
ost

W (g) for for
e expulsion for not following the for
e-diktat, but gains energy W (gc)due to binding or ordering. The phase 
oexisten
e requires a perfe
t 
ompensationof one by the other. This 
ompensation may be used to obtain the binding energyof the zipped phase as,
Ez(T ) = W (gc). (2.7)34



Chapter 2. TYPE II DNA: when the interfa
ial energy be
omes negativeThis equation may also be used to de�ne gc from the binding energy.2.2.2 Surfa
e energyLet us now 
onsider an inhomogeneous situation of a dsDNA at T < Tc by pullingat one end by a for
e g = gc(T ) so that there is an interfa
e separating the 
oexist-ing zipped and unzipped phases. The interfa
ial energy is obtained by 
omparingthis mixed state free energy with that of a fully unzipped homogeneous state at
g = gc. Needless to say that an interfa
e 
an be 
reated spontaneously if there isa gain in energy in doing so.Sin
e far from the interfa
e, the Gibbs free energy density is the same in thetwo phases, the total free energy G 
an be written as

G =

∫ ∞

−∞

Gu(T, gc)dz + σ, (2.8)where σ is the �surfa
e tension�, and z is a 
ontour length measured along the DNAor the strands, the z = 0 point being 
hosen at the point of interfa
e with z < 0as the unzipped phase.
ZippedUnzipped

Unzipped

Figure 2.1: S
hemati
 representation of two 
on�gurations, fully zipped (above)and a 
on�guration of 
oexisting phases separated by an interfa
e (below) at g = gc.The di�eren
e in the free energies of this two 
on�guration gives the interfa
ialenergy.A pra
ti
al way to de�ne the surfa
e energy is to for
e an interfa
e by 
hoosing35



Chapter 2. TYPE II DNA: when the interfa
ial energy be
omes negativeappropriate boundary 
onditions as shown in Fig. 2.1. Let us 
onsider a DNAmaintained in the zipped (z) state at z = +∞ but in the unzipped (u) state at
z = −∞. This guarantees at least one interfa
e. At phase 
oexisten
e, we 
ompareits free energy with the 
ase for whi
h the DNA is maintained in the u state at both
z = ±∞. The di�eren
e of the total free energy is the surfa
e energy. Therefore,

σ =

∫ ∞

0

dz[G(gc)−Gu(gc)]. (2.9)We start with the free energy fun
tional
Ftot =

∫ ∞

−∞

dz F{ψ, x}, (2.10)whose minimum gives the equilibrium free energy in a �xed distan
e ensemble.The fun
tional F{ψ, x} 
an be taken as
F{ψ, x} = Fu + F{ψ}+ Kψ

2

(

∂ψ

∂z

)2

+
Kx

2

(

∂x

∂z

)2

+

∫ x

0

g(x̃) dx̃. (2.11)where F{ψ} is the free energy of the homogeneous bulk zipped phase with referen
eto the unzipped state free energy Fu. In the unzipped state F{ψ} = 0. Kψ and
Kx are additional �elasti
� 
onstants for distortions in ψ and x. The elasti
 partof the free energy 
an be extended to torques. The order parameter ψ and for
e g̃are not 
oupled in the free energy in the form taken in Eq.(2.11) and 
onsequently,this form is valid only in extreme limits. Further generalizations are not neededfor this 
hapter. The Gibbs free energy is obtained from Eq.(2.11) by using theequilibrium values of ψ and x, followed by a Legendre transformation from x to g.The equilibrium 
onditions, obtained by minimizing Ftot, are

δF

δψ
−Kψ

∂2ψ

∂z2
= 0, (2.12)

−Kx
∂2x

∂z2
+
x

χ
= 0, (2.13)with the 
ondition that

ψ = 0, x = xc = χgc at z = 0, (2.14)36
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Figure 2.2: S
hemati
 diagram of variation of zipping-unzipping order parameter
ψ (
ontinuous line) and applied for
e g (dashed line) inside unzipped and zippedphases. ξ is the length s
ale of variation of ψ inside the zipped phase and λ is thes
ale for g. For Type I (left �gure), κ = λ/ξ ≪ 1 and for Type II (right �gure),
κ≫ 1.and

ψ = ψ0, x = 0 at z → ∞, (2.15)
ψ0 being the solution of

δF

δψ
= 0to maximize the interfa
ial energy. The length s
ales ξ and λ, giving how fast ψor g̃ grow or de
ay inside the zipped phase (see Fig. 2.2), 
ome from Eqs. (2.12)and (2.13), as

ξ−2 =
1

Kψ

(

1

ψ

∂F

∂ψ

)
∣

∣

∣

∣

ψ→0

, and λ2 = Kxχ. (2.16)The equation for λ redu
es to the form derived by de Gennes [73℄ if the elasti

onstants of his model are used for Kx and χ. The dimensionless ratio
κ = λ/ξ (2.17)is expe
ted to be di�erent for di�erent sequen
es of DNA.By using Eqs.(2.11), (2.12) and (2.13), the surfa
e energy 
an be written in

37
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ial energy be
omes negativeterms of the free energy as,
σ =

∫ ∞

−∞

dz[G(gc)−Gu(gc)]

=

∫ ∞

0

dz
[

Fzg̃(x)− x.gc − Fu +
χ

2
g2c

]

, (2.18)where we use the fa
t that
Gu(gc) = Gu(0)−

1

2
χg2c = Fu −

1

2
χg2c , (2.19)and

G(ψ, g) = F{ψmin, xmin} − xmin.gc. (2.20)Extreme limit I: κ≪ 1

(a)
z

k <1

ξ

λ

ψ

unzipped

g

Energy gain

Net energy penalty
at interface

B.E.

B.E.

zipped

E

E

z

force to penetrate
for not allowing
Energy penalty

Eg

for being in 
ordered state

E ψ

~

(b)
Figure 2.3: (a) S
hemati
 diagram of the variation of the for
e and the heli
alorder inside the zipped phase for ξ ≫ λ (left �gure), resulting in a positive surfa
eenergy. (b) The �gure shows the ideal situation of ξ ≫ λ.For κ ≪ 1, the external for
e penetrates only a short distan
e λ into thezipped region. In 
ontrast the order parameter rises to its asymptoti
 value ψ0 ina mu
h larger length ξ. One has to pay the energy 
ost for the damage in ordering38



Chapter 2. TYPE II DNA: when the interfa
ial energy be
omes negativeover a length s
ale ξ. Therefore, in the extreme limit, when the variation 
an beapproximated as in Fig. 2.3b, one gets,
σ ∼ Ezξ =

1

2
χg2cξ (2.21)whi
h is positive. This 
an be understood from a pi
torial representation of thevariation of the energy, with respe
t to the unzipped phase and inside the zippedphase shown in Fig. 2.3a. This is the 
onventional s
enario of for
e expulsion ofvarious models on the zipping-unzipping phase transition and this s
enario givesthe well-known behavior of the unzipping transition.The surfa
e energy 
an be 
al
ulated using Eq.(2.18) for any κ more a

urately.As we are more interested in the sign of the surfa
e energy, we 
on
entrate in thesaid extreme limit, whi
h simpli�es the expression of surfa
e energy and the result
omes out easily. In the said limit, one 
an ignore the variation of x inside thezipped phase. So the term with (∂x/∂z)2 
an be negle
ted. Also x ≈ 0 for z > 0.Putting these in Eq.(2.18) yields,

σ =

∫ ∞

0

dz

[

F{ψ}+ Kψ

2

(

∂ψ

∂z

)2

+
1

2
χg2c

]

, (2.22)whi
h under the 
ondition that F{ψ} ≥ −1
2
χg2c gives σ > 0.Extreme limit II: κ≫ 1When κ ≫ 1, the for
e penetrates a greater distan
e λ into the sample, so thatthere is an obvious gain in the stret
hing energy (i.e. redu
tion of the �positiveenergy� for for
e expulsion) over the interval of penetration, over and above thegain by ordering. From the diagram shown in Fig. 2.4a, it 
an be understoodqualitatively that the surfa
e energy be
omes negative, and in the ideal 
ase, asshown in Fig. 2.4b, it be
omes

σ = −χg
2
c

2
λ, (2.23)whi
h is negative. The sign of the surfa
e energy 
an be 
on�rmed by 
al
ulating itfrom Eq.(2.18). In this limit, we negle
t the term with (∂ψ

∂z
)2 and write the surfa
e39
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Figure 2.4: (a) S
hemati
 diagram of the variation of the for
e and the heli
alorder inside the zipped phase for ξ ≪ λ (left �gure), resulting in a negative surfa
eenergy. (b) The �gure shows the ideal situation when ξ ≪ λ.energy as,

σ =

∫ ∞

0

dz

[

Kx

2

(

∂x

∂z

)2

+
1

2χ
x2 − x.gc

]

. (2.24)Then by using the 
ondition that Fmin
z {ψ} = −χg2c

2
and Eq.(2.13), one 
an easilyderive that σ < 0 in the limit κ≫ 1. Hen
e, it is possible to lower the free energyof the DNA by 
reating the interfa
e.The value of κ for transition from Type I to Type II depends on the form of χwhi
h, in turn, depends on the DNA sequen
e and the se
ondary stru
ture. It istherefore primarily the sequen
e but also the se
ondary stru
ture that determinewhether a DNA would behave like Type I or II.2.3 Dis
ussionIf we now 
onsider the bulk zipped state with a for
e g, then for
e penetration maybe possible in the form of many isolated distorted regions or blobs. For λ ≫ ξ,with the unzipped 
ore of size ξ 
osting an energy Ezξ, and the x part of the free40



Chapter 2. TYPE II DNA: when the interfa
ial energy be
omes negativeenergy F{ψ, x} in Eq.(2.11), one �nds for a homogeneous 
hain that a periodi
stru
ture of the blobs [75℄, as in Fig. 2.5, is possible energeti
ally, if g > gc/
√
κ.The initial penetration of for
e is at gc1 = gc/

√
κ with periodi
ity d → ∞. Theunzipping transition therefore be
omes 
ontinuous in 
ontrast to the �rst ordernature for Type I.

λ

ξ

dFigure 2.5: S
hemati
 diagram of a periodi
 array of defe
t blobs. The array has aperiodi
ity d whi
h 
ontrols the density of blobs. Ea
h distorted region is of length
∼ λ with an unzipped 
ore of size ∼ ξ.The negative interfa
ial energy is found in Type II super
ondu
tor [82℄ too. Ourformulation is similar to that of Type II super
ondu
tivity in a one-dimensionalgeometry. As there is indeed a phase transition in DNA, the Landau theory isjusti�ed here. It su�
es for a one dimensional 
ase to 
onsider a s
alar orderparameter.We may point out a few additional impli
ations of a negative interfa
ial energy.The penetration of the for
e is not possible in the 
onventional polymer models.For any heli
al or twisted pairs of strings, a pulling for
e produ
es over-winding.We expe
t this over-winding in DNA to be present at the interfa
e, distorting butnot vitiating the ordered state. The resulting distortion plays a role in determiningthe interfa
ial energy. The penetration of for
e is via a denatured 
ore of size ξ,surrounded by su
h a distorted region of size λ. These defe
t blobs 
ould bepinned by 
ertain sequen
es, thereby lo
alizing them in spe
i�
 regions of theDNA. We spe
ulate that the regions whi
h lo
alize the defe
t blobs are the non-
oding promoter regions. This gives a topologi
al interpretation of the defe
t bloband it would also be appli
able to torque. The existen
e of the mixed or Type IIphase with pinned defe
t blobs will a�e
t the melting pro�le under a for
e, and thefor
e-distan
e isotherm will show steps originating from the blobs, espe
ially for�nite 
hains. Our analysis shows that the relation between ordering and unzippingis needed to get a negative interfa
ial energy. The heli
al ordering is not justbase-pairing � it involves sta
king and other distant neighbor intera
tions. Any41



Chapter 2. TYPE II DNA: when the interfa
ial energy be
omes negativemi
ros
opi
 model for Type II DNA would have to take these into a

ount. On theexperimental front, it is time for a se
ond generation single mole
ular experimentsthat would explore the interfa
es on DNA.2.4 SummaryTo summarize, in this 
hapter we showed that di�erent types of phenomena happenfor two regimes of the ratio κ = λ
ξ
of the independent length s
ales ξ and λ, of DNAorder parameter (ψ) and internal for
e (g̃) respe
tively. For κ≪ 1, the interfa
ialenergy is positive, and the unzipping or melting under a for
e is �rst order. Theexternal for
e has no e�e
t inside the ordered, or, zipped phase, i.e., there is nointernal for
e (g̃) inside as λ is small. This is named Type I. On the 
ontrary,for κ ≫ 1, the interfa
ial energy be
omes negative and the for
e penetrates thezipped phase in the form of defe
t blobs. The 
reation of interfa
es are energeti
allyfavored, so that interfa
es are formed spontaneously. Thus defe
t blobs are formedinside the ordered phase. Above a for
e threshold g > gc1, there will be a �nitedensity of these defe
t blobs. The melting under tension of unzipping is se
ondorder. This 
ase is named Type II.What next: In the next 
hapter, we 
onsider a time-dependent for
e on DNAinstead of a stati
 one. The mole
ular dynami
s simulation of a DNA hairpin showsthat there is a possibility of a dynami
al phase transition. We obtain the similardynami
al phase transition from a simpler two-phase system like Ising magnetunder the periodi
 for
e. We infer that some basi
 features of these two systemsare responsible for the behaviour under time-varying for
e, not the details of thedynami
s.

42



Chapter 2. TYPE II DNA: when the interfa
ial energy be
omes negativeList of symbols
F Free energy fun
tional
χ Proportionality 
onstant for response to applied for
e
Ez Binding energy of z phase
F Helmholtz free energy
g Applied for
e on DNA
gc Criti
al for
e for for
e-indu
ed unzipping
Gz,u(T, g) Gibbs free energy of z or u phase at temperature T under for
e g
κ Ratio of length s
ales, λ/ξ
Kψ Elasti
 
onstant for ψ
Kx Elasti
 
onstant for x
λ Length s
ale of penetration of for
e inside zipped phase
σ Surfa
e energy
Tc Criti
al temperature for DNA melting
g̃ Indu
ed for
e inside the zipped phase
T Temperature
W Work done for stret
hing
ξ Length s
ale of damage in heli
al order
x Separation of two strands of DNA at the point of appli
ation of for
e
ψ Heli
al order parameter
z Axis along the length of DNA
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3Dynami
al phase transition of a drivenIsing magnet
During biologi
al pro
esses like, repli
ation, trans
ription, et
., DNA is opened byheli
ases, whi
h are motors that move along the DNA [74℄. Both the motion andthe opening pro
esses require 
onstant supply of energy. A few examples are DNA-B, a ring like hexameri
 heli
ase that pushes through the DNA like a wedge [83℄,P
rA that goes through 
y
les of pulling the ds part of the DNA and then movingon the ss part [84℄, viral RNA heli
ase NPH-II that hops 
y
li
ally from the ds tothe ss part of DNA and ba
k [85℄. Su
h 
y
les of a
tion and rest, with periodi
ATP 
onsumption, indi
ates exertion of a periodi
 for
e on the DNA. It drivesus to study the DNA phase transition under a periodi
 drive in an experimentallyrealizable situation. This dynami
s is studied by using a mole
ular dynami
s (MD)simulation. In this 
hapter, we show that the results for DNA a
tually resemblesthat obtained from a mu
h simpler system, namely, an Ising ferromagnet under aperiodi
 �eld. The reason that the two systems behave in the similar way is veryfundamental.3.1 Introdu
tionThe equilibrium unzipping transition is des
ribed by the two thermodynami
 
on-jugate variables, for
e g and separation x of the pulled base pair (see Se
. 1.1.1). Ifone thinks of a quasi-stati
 thermal equilibrium pro
ess where the for
e is 
hangedfrom zero to a maximum gm and then ba
k to zero, keeping other intensive quan-44



Chapter 3. Dynami
al phase transition of a driven Ising magnettities �xed, then one would retra
e the thermodynami
 isotherm, ending at theinitial state. In other words, there is no role of history in thermodynami
s; this isensured by ergodi
ity in statisti
al me
hani
s. However the situation is di�erentunder a periodi
 for
e. The external times
ale for 
hange of for
e may not mat
hthe relaxation time for DNA whi
h then explores a smaller region of the phasespa
e. This 
reates a di�eren
e in the response to an in
reasing or a de
reasingfor
e. The deviation from the thermodynami
 path looks prominent near a phasetransition when the typi
al time s
ales of dynami
s be
ome large. This leads tohysteresis in DNA unzipping [86℄. More re
ently Kapri [87℄ showed how the worktheorem 
an be used via a multi-histogram method to extra
t the equilibriumisotherm from hysteresis 
urvesThe study of hysteresis is an old topi
 mainly in the 
ontext of magneti
 andstru
tural systems [88, 89℄ be
ause of their pra
ti
al importan
e, but all thesestudies involve the time-averaged loop. In the 
ase of DNA, Mishra et al showedthat there are situations, depending on the for
e amplitude and the frequen
y,where sample to sample variations are too large to ignore. With the advent ofsingle-mole
ule experiments on short DNA 
hains (oligomers), it might be possibleto probe the time-resolved loops, not just averages. Motivated by the biologi
alrelevan
e and the experimental feasibility, the behavior of DNA under a periodi
for
e, 
alled a periodi
ally driven DNA, was studied. The results show that without
hanging the physiologi
al 
onditions (e.g. the temperature or pH of the solvent),a DNA 
hain may be brought from the unzipped state to the zipped state and vi
everse by varying the frequen
y (ν) alone.A well-studied example of a similar dynami
 symmetry breaking transition isin magnets [89℄. As a two phase system, we make use of the magneti
 Ising modelto 
orroborate the behavior of DNA. This study is prompted by the often-useddes
ription of the unzipping transition by a two state Landau type free energyfun
tional [90, 91, 92℄ similar to the Ising model. We establish that the observedfeatures and the phase diagram in both the 
ases are robust and generi
, eventhough they are di�erent models with di�erent types of dynami
s.
45



Chapter 3. Dynami
al phase transition of a driven Ising magnet3.1.1 OutlineThe 
hapter is organized as follows. In Se
. 3.2 we re
apitulate the results of adriven DNA hairpin. In Se
. 3.3 we introdu
e our magneti
 model and dis
ussthe numeri
al method to get the desired quantities. The results are analyzed interms of time resolved loops in Se
. 3.4. It 
ontains the explanation on why thestandard quantity fails and one needs to think in terms of a more �ner quantity.Finally, in Se
. 3.5 we summarize our main 
ontent of this 
hapter.3.2 Driven DNA and resultsA DNA hairpin 
onsists of a stem of pair of 
omplementary bases and a loopof non-
omplementary bases (see Fig. 3.1). It is 
hosen not only be
ause of itso

urren
e in vivo and its use in in-vitro experiments but also be
ause of the extraentropi
 e�e
t 
oming from the loop. The non-paired bases of the loop is a sour
eof entropy whi
h in turn 
ontrols the dynami
s of hysteresis. Langevin dynami
s(LD) simulations of a DNA hairpin were performed in Ref [86℄ to simulate thehysteresis behaviour of DNA. The separation x of the terminal base pairs pulledby a periodi
 for
e g(t) of time period τ(= 1/ν) was monitored. The for
e isapplied at one end of the hairpin keeping the other end �xed. The simulation isperformed in redu
ed unit as dis
ussed in [72℄.

gP
P−1

P−p+1

2
1

p

CLOSE

gOPEN

xFigure 3.1: A DNA hairpin of total length P = 32 in (a) a zipped (Z) and (b) anunzipped (U) state. The stem (solid lines) of length p = 10 
onsists of 
omplemen-tary nu
leotides with native intera
tion (dotted lines) for base pairing, whereasthe loop (dashed line) is made up of non-
omplementary nu
leotides. 46



Chapter 3. Dynami
al phase transition of a driven Ising magnetThe 
on�gurational energy [86℄ of the DNA hairpin is written as sum of har-moni
 terms for the bonds and the Lennard-Jones potential between 
omplemen-tary nu
leotides [86℄. The e�e
t of a periodi
 for
e is taken into a

ount by addingan extra energy −g(t).x(t) to the total energy of the system. With this energy,the zero for
e melting temperature in redu
ed units is T = 0.21, while the 
riti
alfor
e at T = 0.1 is gc ∼ 0.20 [93℄. During the simulation, g is 
hanged from 0 tothe 
hosen maximum, gm, and then ba
k to 0. This one period is to be referredto as a 
y
le and gm as the amplitude. By 
hanging gm or ν, it was found in Ref.[72℄ that it is possible to indu
e a dynami
al transition between a state of timeaveraged zipped (Z) or unzipped (U) to a dynami
al state (D) os
illating betweenZ and U. The operational de�nition adopted in Ref. [72℄ is the following. If 〈x〉 isless than 5, the system is in the zipped state and larger than 5 it is in the unzippedstate.In Fig. 3.2, the plots of the average value of x(g) over C (= 1000) 
y
les vs g,for di�erent values of gm and ν are shown. We point out the salient features ofthese loops.1. One notes a large variation in the size and shape of the loops whi
h remainalmost the same (ex
ept (23)) for di�erent samples or starting 
ondition.2. Like other hysteresis loops, DNA hysteresis also shows the phase lag be-tween the for
e and the extension, e.g., x(g) in
reases even when the appliedfor
e de
reases from gm (Fig. 3.2 (32 & 33)). If the system 
ould approa
hequilibrium, the lag disappears, as one sees in Fig. 3.2(21 & 31).3. At a high frequen
y, the DNA remains in Z or in U depending on whether
gm < 2gc or not, (Fig. 3.2(13)&(43)), irrespe
tive of the initial 
onformation.For a relatively smaller ν, a di�erent sequen
e (Fig. 3.2 (11,21 & 31)) isobserved. The DNA starts with x = 0 at the start of the 
y
le, i.e., in the Zphase and 
omes ba
k to the Z phase but via the U-phase with x = 30.4. In the 
ase of intermediate for
es there is a signi�
ant 
hange in the x-valuesat g = 0 and g = gm (Fig. 3.2 (21, 22 & 23) ). Most striking here is the widesample to sample �u
tuations in the loop whi
h 
ould not be redu
ed.
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Figure 3.2: DNA hysteresis for di�erent gm and ν as indi
ated. Ea
h plot 
ontainsthe loops for 10 di�erent initial 
onformations. These are at T = 0.10, for whi
h
gc ∼ 0.20 (see Ref. [72℄).The failure of the average response to provide a des
ription of the steady statedynami
 behavior prompts us to analyze the distribution of paths over the di�erent
y
les in terms of a new quantity whi
h 
an probe the states over one 
y
le. Thisis elaborated in the following se
tions.
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Chapter 3. Dynami
al phase transition of a driven Ising magnet3.3 Magneti
 model and methodAs mentioned already, an Ising system is a two phase system (up magnet anddown magnet) undergoing a �eld-indu
ed �rst order transition below the 
riti
altemperature. We study the dynami
 response under an asymmetri
 magneti
�eld. Our aim is to look at the time-resolved response to 
ompare with the DNA-hysteresis behaviour.3.3.1 ModelLet us 
onsider a two-dimensional Ising spin system ({si = ±1}) with nearestneighbor intera
tion and under a magneti
 �eld h,
H = −J

∑

〈i,j〉

sisj − h
∑

i

si, (J > 0), (3.1)with i labeling the sites of an 8×8 square latti
e with periodi
 boundary 
onditions.The in�nite latti
e 
riti
al temperature is Tc ≈ 2.269J/kB in zero �eld. Themagnetization is de�ned as the thermal average
m = N−1

∑

i

〈si〉, (3.2)of N(= 64) spins. For the above Hamiltonian, we 
hoose J = 1 and kBT = 2 with
kB = 1, so that T < Tc. Below the 
riti
al temperature Tc, the magnetization,
m =

∑

i si takes the sign of the applied �eld, and the magnitude depends on thestrength of the �eld due to �nite size e�e
t. There is a �rst order phase transitionat h = 0 with a jump in the magnetization. The hysteresis is the signature of thatphase transition away from equilibrium. The hysteresis loop is the 
urve in the
m-h plane for a 
omplete 
y
le of variation of the magneti
 �eld from hl to hm andba
k. The area of the hysteresis loop depends on how fast or slow the magneti
�eld is varied.3.3.2 Pro
edureThe Monte Carlo pro
edure used is as follows. We 
hoose a spin, 
al
ulate the
hange in energy∆E of the system if the spin gets �ipped. Whether this spin would49



Chapter 3. Dynami
al phase transition of a driven Ising magnetbe �ipped or not is determined by using the standard Metropolis algorithm, whi
hgives the probability of a

eptan
e of an attempted �ip by Paccept = min(1, e−β∆E).In this way, we sequentially 
onsider all the N spins, one at a time, to attempt a�ip. The time taken to attempt N spin �ips 
onstitutes one MC sweep.
h

h

hl

u

N

timet

h

Figure 3.3: One 
y
le of magneti
 �eld with time.Suppose the system is subje
ted to a periodi
 magneti
 �eld with the �eld atthe jth step as
hj = hl −

j−N
∑

i=−N

n sign(i) = hl +∆h(N − |j −N |) , (j = 0, ...2N ), (3.3)where hl (< 0) is the starting value or the lowest value of magneti
 �eld over a 
y
le,
N is the number of steps to rea
h upper value or the highest value of the magneti
�eld over a 
y
le, after whi
h �eld is de
reased, ∆h is the 
hange in magneti
 �eldin ea
h step, ∆h = (hm − hl)/N . As per our notation, h0 = h2N = hl, hN = hm.Initially system is equilibrated at hl = −0.6 and kBT = 2. Then the periodi
magneti
 �eld is swit
hed on. At ea
h step, (i) the magneti
 �eld is in
reased by
∆h = (hm − hl)/N and (ii) the system is relaxed towards equilibrium by n = 5MC sweeps, whi
h is mu
h less than the equilibration time. The magnetization mis 
al
ulated at ea
h of su
h 2N steps. The average of magnetization 
al
ulatedover a 
y
le then gives the quantity Q. The above pro
ess is repeated for 104
y
les. Below Tc, the steady state depends on both the frequen
y, ν = 1/(2N∆t),50



Chapter 3. Dynami
al phase transition of a driven Ising magnetwhere ∆t is the number of Monte Carlo sweeps at that temperature and magneti
�eld to relax the system for a while, and the amplitude hl and hm of the periodi
�eld. Be
ause of the up-down symmetry of the system, we see di�erent behaviourof the state for two 
ases: one where the �eld is symmetri
ally varied aroundzero with hm = −hl and the other where it is asymmetri
. In order to 
omparewith the for
e-frequen
y (g-ν) diagram of the DNA hairpin we take the 
ase of anasymmetri
 variation of the magneti
 �eld with time. The lower amplitude (hl)is kept �xed at a negative value while the upper one (hm) is varied. We simulatethe system for various frequen
ies (by 
ontrolling N ) and di�erent values of hm,keeping hl �xed.3.4 Numeri
al resultsLike the 
ase of DNA, the hysteresis of the Ising ferromagnet also shows largesample to sample �u
tuations and di�erent kinds of shapes. Therefore, we look ata �ner level. We de�ne a quantity, the average magnetization over a 
y
le, as
Q =

1

τ

∫ τ

0

m(t) dt. (3.4)It is the dynami
al order parameter studied in the 
ontext of magneti
 systems [89℄.The time sequen
e of Q seems not to indi
ate any regular pattern (see Fig. 3.4),and, therefore, we assume that the allowed states o

ur randomly. The time se-quen
e 
an then be interpreted in terms of a probability of getting a parti
ularvalue of Q. We �nd that the steady state is des
ribed by a stationary probabilitydistribution (P (Q)) whi
h are also shown in Fig. 3.5.At equilibrium, for a symmetri
 
y
le, i.e., with hl = −hm, we expe
t Q = 0.But if hm is varied from a value a little higher than hl to a value whi
h is well above
−hl then away from equilibrium Q should vary from a value 
lose to equilibriumvalue of magnetization at hl to that of −hl, whi
h in our 
ase will be any valuefrom −82 to 82. An asymmetri
 �eld in the Ising model enables us to distinguishthe two di�erently ordered phases, the 
ounterparts of the zipped and the unzippedstates and, in addition, a hystereti
 state, to be 
alled the dynami
 state D. Foreasy 
omparison, the negatively magnetized state is named Z while the positivelymagnetized state is U. The operational de�nition adopted is 51
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cycle (C)Figure 3.4: Plot shows the time sequen
e of Q with 
y
les (hm = 0.6, ν = 1/70).Three bands indi
ate that the states with di�erent Q values o

ur randomly.(i) QZ ≡ {−64 ≤ Q ≤ −40},(ii)QU ≡ {55 ≤ Q ≤ 64}, and(iii) the rest is QD.Cases (i) and (ii) o

ur when the paths in the m-h diagram remain on one sidethroughout the 
y
le, and 
ase (iii), the dynami
al state, D, o

urs either if thereare paths 
onne
ting the positive and the negative values of the magnetization orif the paths remain more or less near zero of magnetization. The division of thethree intervals or regions are independent of hm.As we �nd the Q values of 
onse
utive 
y
les are random and has no indi
ationto stabilize, we plot the distribution P (Q) to �nd out the phases. To be noted thatthe division of three intervals or regions are independent of hU and 
ut-o� valuesare 
hosen suitably by observing the distribution of Q's su
h that two regions donot overlap in P (Q) vs Q plot. Below is the plot of P (Q) vs Q (Fig. 3.5) fordi�erent frequen
ies for �xed hl and same set of hm.3.4.1 Dynami
al phase diagramFrom the peak lo
ations of P (Q), we map out the phase diagram of the Isingmagnet in the hm-ν plane (Fig 3.6). A line in Fig. 3.6 represents a boundary52
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Figure 3.5: The distribution of Q is plotted for three di�erent frequen
ies andsame set of hm. For a frequen
y, the distribution P (Q) shifts as hm in
reases. Itgoes from Z-state to U-state through D-state. The 
orresponding states/phasesin Q are identi�ed observing the distribution. (a) frequen
y ν = 1/70. Phases:
Z → Z+D → Z+D+U → D+U → U . (b) frequen
y ν = 1/250. Phases:Z → Z+
D → D → D+U → U (
) frequen
y ν = 1/1000. Phases: Z → Z+D → D → U .beyond whi
h a parti
ular peak appears or disappears and resembles a �rst-orderline.We start at the equilibrium of hl.

• Now set an hm whi
h is negative or zero. The loop 
onne
ting hl and hmwill naturally give QZ. The probability distribution P (Q) will show a peaknear equilibrium magnetization value of hl, for any frequen
y, as shown bythe bla
k dotted 
urve in Fig. 3.5.
• As hm is in
reased to positive values, a se
ond peak in QD appears. Thevalue of hU where the se
ond peak appears has a very weak dependen
eon the frequen
y and has a small positive slope in the h-ν phase diagram(Fig. 3.6).
• As hm is in
reased further the peak height of QZ de
reases and that of QDin
reases with a shift in the peak position. This shift seems to be independentof frequen
y.
• There is a range of magneti
 �eld for whi
h two peaks, at QZ and QD, 
oexist.53



Chapter 3. Dynami
al phase transition of a driven Ising magnet
0.

01
0.

00
5

0.
04 0.

1

0.
14

3

0.
2

0.
01

ν

0.01

0.1

0.3
0.6

1.5
3

5.4
10

100

h
m

Z upper

U lower
D lower
D upper

Z+D+U

D+U

Z+D

D

U

Z

Figure 3.6: Dynami
al phase diagram of a periodi
ally driven Ising ferromagnetin the hm-ν plane. The lines are boundaries for various phases U, D and Z. HereZ 
orresponds to the negatively magnetized state, U 
orresponds to the positivelymagnetized state and D is the dynami
al state. The points are from the simulationand the lines are guide to eye.This phase is shown as Z+D in the phase diagram.
• At some hm, the peak at QZ vanishes. This threshold hm depends on thefrequen
y and the dependen
e is shown in the h-ν diagram by the bla
kdashed 
urve with 
ir
les. Now, at this hm two things 
an happen. EitherZ phase vanishes leaving alone the D phase, or, by that time the U phase(thepeak at QU in Fig. 3.5) appears and the system shows the 
oexisten
e ofthree phases, Z+D+U. In the latter 
ase, as Z vanishes, the system remains ina mixed state of D+U. When the peak in QU or U phase will reappear againdepends on the frequen
y. This dependen
e is shown by red dash-dotted
urve with squares.
• We see there is an interse
tion of the two 
urves, boundaries of Z and U inthe phase diagram of Fig. 3.6. This is a spe
ial point exa
tly at hm = −hl54



Chapter 3. Dynami
al phase transition of a driven Ising magnetwhere Z disappears and U appears at a same time. If one goes along thehorizontal line through hm = hl in phase diagram, i.e. keeping hm �xed at
−hl but varying the frequen
y, then at very low frequen
ies one would seeonly the D phase for some range, and then as the frequen
y in
reases twoother peaks at Z and U will appear. If the frequen
y is in
reased further,the peak at QD vanishes leaving the 
oexisting phase of Z+U. The span ofthe three phase 
oexisten
e region depends on the value of hl. The Z+D+Uregion may even be
ome very small.

• Going ba
k to the previous 
ases, after having the two possibilities thatthe system is either in D only or in Z+D+U, if the upper magneti
 �eldis in
reased then one gets the phase D+U. On
e this phase appears, witha shifting QD-peak, any in
rease of hm beyond the blue starred line in thephase diagram of Fig. 3.6 vanishes the intermediate peak; only one peak at
U survives.

• The vanishing or de
aying of the intermediate peak has di�erent natures atdi�erent frequen
ies.� The intermediate peak �rst grows from zero when the green line is
rossed. With in
reasing hm, the peak in
reases �rst and then de
reases.While the intermediate peak is de
reasing, another peak at QU appears.� But for low frequen
ies, the peak height keeps in
reasing upto a veryhigh �eld, even though the peak position be
omes very 
lose to theboundary of QD and QU. At very high magneti
 �eld the peak at QUappears. This indi
ates that the phase D and U physi
ally give twodi�erent types of loops in the m-h plane.The U-peak shows the paths whi
h remain in the positively magnetizedstates. This is similar to the Z-peak with the whole 
y
le in negatively mag-netized states. In 
ontrast, the D-peak appears where there are 
onne
tingpaths between positively and negatively magnetized states.See Fig. 3.7 to 
ompare Fig. 3.6 with the dynami
al phase diagram of a drivenDNA. One 
an easily �nd the 
orresponden
e between the states of the two above-mentioned system. 55
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Figure 3.7: Dynami
al phase diagram of a periodi
ally driven DNA hairpin in the
gm-ν plane. The lines are boundaries for various phases U, D and Z. The pointsare from the simulation and the lines are guide to eye (see Ref. [72℄).3.5 SummaryIn this 
hapter, we studied a driven magneti
 system. The motivation 
omes fromthe realizable phenomenon of a DNA during trans
ription and repli
ation. Boththe systems, DNA and the Ising ferromagnet, are two state systems, undergoinga �rst order phase transition. This fundamental similarity produ
es qualitativelysimilar behaviour under a periodi
 drive, though the detailed dynami
s are di�er-ent. The results are obtained using Monte Carlo simulation of the Ising system.We emphasize here that the one should rather look at the time-resolved loops toget an exa
t pi
ture of the states. A dynami
al phase diagram is found in mag-neti
 �eld (h) vs. frequen
y (ν) plane. The phase diagram shows the possibility ofvarious mixed states depending on the frequen
y and the amplitude of the periodi
�eld. The important out
ome is that there is a possibility of going from one phaseto the other just by varying frequen
y alone, keeping the amplitude of the externaldrive �xed. The same observations apply for the driven DNA.What next: In order to get an equilibrium 
urve from a hysteresis loop, wedevelop a te
hnique by using the work theorem and the histogram method. Theresults are veri�ed again by using Monte Carlo simulation of Ising model, and 
anbe applied to the hysteresis of driven DNA. 56
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β Inverse temperature
C No. of 
y
les
∆h Field in
rement
∆t MC 
y
le
g For
e in DNA hairpin
H Hamiltonian
h Magneti
 �eld
hm Upper amp. of mag.
hl Lower amp. of mag.
J Nearest Neighbour intera
tion strength
L Size of spin array
m Magnetization
N No. of steps
ν Frequen
y
P (Q) Prob. of Q
Q Average response over one 
y
le
QD Q-value for D (Dynami
) state
QU Q-value for U (or +ve magnetization) state
QZ Q-value for Z (or -ve magnetization) state
s Ising spin
Tc Criti
al temperature for DNA melting
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4Equilibrium probability distribution fromnonequilibrium path integral
Near a phase transitions, a system under 
onsideration has a very large relaxationtime. Under an periodi
 drive, one observes hysteresis when the transition is�rst order. In su
h a situating, it is almost impossible to get the equilibriumor the thermodynami
 
urve. For example, if one wants to get, numeri
ally orexperimentally, the 
riti
al for
e for the unzipping phase transition of a DNA underfor
e, one ends up with a hysteresis loop in the for
e-distan
e plane, from whi
hit is di�
ult to �nd out the 
riti
al for
e a

urately. We propose a di�erent bute�
ient method to get the equilibrium 
urve from nonequilibrium measurements.In doing that, we exploit the work theorem and the histogram te
hnique. In this
hapter, we dis
uss this fundamental 
onne
tion between equilibrium propertiesand nonequilibrium work done.4.1 Introdu
tionA system in thermodynami
 equilibrium has no memory of its past. Consequentlythere is no leading role for time in the ensemble based statisti
al me
hani
s ex
eptthe subservient one to maintain equilibrium among the internal degrees of freedomand with external sour
es. This wisdom gets exploited in the dynami
s basedalgorithms like Monte Carlo, mole
ular dynami
s, sto
hasti
 quantization, to namea few, to attain equilibrium from any arbitrary state albeit in in�nite time. Evena thermodynami
 pro
ess involving 
hanges in parameters is an in�nite sequen
e58



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralof equilibrium states, and is therefore in�nitely slow. A �nite duration pro
ess,not destined to equilibrate at every instant of time, maintains a memory of theinitial 
onditions or a short time 
orrelation of states. The biased sampling of thephase spa
e keeps these pro
esses outside the realm of statisti
al me
hani
s andthermodynami
s. In this equilibrium-nonequilibrium di
hotomy, a work theorem[19, 20, 22, 21, 25℄ attempts to bridge the gap by providing a s
heme for gettingthe thermodynami
 free energy di�eren
e from a properly weighted nonequilibriumpath integral [22, 21℄.We show in this 
hapter that purely nonequilibrium measurements of workgives an operator S, de�ned on the phase or 
on�guration spa
e, whose normal-ized prin
ipal right eigenve
tor is the equilibrium probability distribution. Ourresult is valid for any number of parameters in
luding temperature and intera
-tion. With this extension we 
an get the equilibrium distribution by 
onstru
tinga matrix S 
onne
ting any two allowed states of the system without any referen
eto equilibrium anywhere, thereby 
ompletely blurring the boundary between equi-librium and nonequilibrium. This �nds dire
t appli
ation in out-of-equilibriumphenomena like hysteresis.Barkhausen noise is an example of nonequilibrium response of a ferromagnetas the magneti
 �eld is 
hanged at a given rate [94, 95℄. By measuring the voltageindu
ed in a se
ondary 
oil as the 
urrent in the primary 
oil wound around aferromagnet is 
hanged, one gets the time variation of the magnetization. The noisysignal one gets is not unique but sto
hasti
 in nature, re�e
ting the �u
tuatingmi
ros
opi
 response to the external �eld. Su
h signals have been analyzed in thepast to extra
t information like avalan
he statisti
s, material 
hara
teristi
s et
.Our results �nd a di�erent use of the Barkhausen noise to 
onstru
t the S matrix.Similar 
onstru
tions for other 
ases like protein or DNA dynami
s in vivo, pullingof polymers in single-mole
ule experiments, et
, 
all for new 
lass of experimentsto monitor the noise signals during these events.4.1.1 OutlineThis 
hapter is organized as follows: In Se
. 4.2, we re
apitulate the work theorem,introdu
e the paths and dis
uss the 
onne
tion between the work theorem and thehistogram transformation of equilibrium statisti
al me
hani
s. In Se
. 4.3 we give59



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegrala simple and general, dynami
s independent proof of the relation between theequilibrium probability distribution and the work done in nonequilibrium paths.This relation in some form is already known [21, 22℄ but our derivation allows usin generalizing the result to other 
ases involving temperature, intera
tions, et
.Se
. 4.4 deals with the main result of this 
hapter. There we prove the eigenvalueequation for S. A few examples are also given there. How to get the operator
S dire
tly from experimental measurements of Barkhausen noise is also dis
ussedhere. Numeri
al veri�
ations of some of the results are presented in Se
. 4.5 bytaking the 2D Ising model as an example. We summarize in Se
. 4.6.4.2 Work theorem and path integral4.2.1 Work theoremConsider a 
lassi
al system des
ribed by a Hamiltonian H(Λ, x) where Λ is anexternal �eld that 
ouples to its 
onjugate, a mi
ros
opi
ally de�ned quantity, x.The thermodynami
 state is spe
i�ed by temperature T and �eld Λ. Let us startwith the system at Λ = 0 in thermal equilibrium at temperature T . External�eld Λ is 
hanged in some given way from 0 to a �nal value λ in a �nite time
τ or in a �nite number of steps n, letting the system evolve in 
onta
t with theheat reservoir. No attempt is made to ensure equilibrium during the pro
ess. Thevariation of x along the nonequilibrium path (x(t) vs t) and the instantaneous �nal(boundary of the path) value of x, xb, when the �eld rea
hes λ, are noted. Thework done along a nonequilibrium path by the external sour
e (as in Ref. [20℄) is

W =

∫ τ

0

∂H

∂Λ

dΛ

dt
dt, (4.1)in time τ , and it varies from path to path. The di�eren
e between two de�nitionsof work in the 
ontext of work theorem, one used in Ref. [19℄ and the other in Ref.[20℄, is dis
ussed in Ref. [37℄. For the sake of notational simpli
ity we 
hoose,

H = H0 +H1(Λ, x) = H0 − Λ x, (4.2)
60



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralwhere H0 is the energy for Λ = 0. There is not mu
h loss of generality in 
hoosingthe form of Eq.(4.2) be
ause Λ and x refer to any pair of 
onjugate variables so that
x itself need not be a linear fun
tion of the internal 
oordinates. As an example,in an intera
ting spin problem in a magneti
 �eld h (≡ Λ), H = H0 − h

∑

k skwhere sk is the spin variable at a site denoted by k, with x =
∑

k sk. Often Λ 
anbe taken as the swit
hing parameter to turn on a perturbation or intera
tion in aHamiltonian H = H0 −H ′ with HΛ = H0 − ΛH ′.The work theorem [19, 20℄ provides the equilibrium free energy di�eren
e ∆Fbetween the two states with Λ = 0 and Λ = λ, both at inverse temperature
β = 1/kBT (kB is the Boltzmann 
onstant), from the nonequilibrium work doneas

∆F = − 1

β
ln〈e−βW 〉, (4.3)where 〈...〉 denotes the average over all possible paths.4.2.2 Paths: equilibrium and nonequilibriumWe are using here a des
ription of a state by the intensive parameters whi
h a
tu-ally 
hara
terize the surroundings. In equilibrium any system is expe
ted to havethe values of the intensive parameters same as that of the environment. A 
hangein any of the parameters, say Λ, from λ0 to λ, would require heat and/or energytransfer. The work done on or by the system is determined by the 
hange in thefree energies, independent of the path of variation of the intensive parameters.This is expressed as

∆F =Weq = −
∫ λ

λ0

xeq(Λ) dΛ, (4.4)where ∆F = F (β, λ) − F (β, λ0). Here xeq(Λ) =
∫

xPΛ(x)dx is the equilibriumaverage at the instantaneous values of the intensive parameters and PΛ(x) is the
orresponding equilibrium probability distribution of x. This follows from theidenti�
ation of the equilibrium value of x as xeq = −∂F/∂Λ, in 
ontrast to the
onjugate ensemble de�nition Λ = ∂F/∂x where F(β, x) is the �xed-x ensemblefree energy.For 
onvenien
e, let us dis
retize the integrals. For example, for Λ ∈ [λ0, λ], wehave a sequen
e (Λ0,Λ1, ...Λn = λ) and the 
ontinuum is re
overed by taking theusual limit of n → ∞ with max{∆Λi = Λi+1 − Λi} → 0. The work done 
an be61



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralrewritten as
Weq = −

n−1
∑

i=0

∆Λi

{

∑

x

PΛi
(x)x

}

. (4.5)By inter
hanging the sums over x and Λ, we de�ne (i) a sequen
e {xi|i = 0, ...n} asinstantaneous values, and (ii) a sequen
e-dependent work done as W =
∑

i xi∆Λi,to reinterpret Eq. (4.5) as an average over these xi's. Therefore,
Weq = −

∑

{xi}

P{xi}
∑

i

xi∆Λi, (4.6)where P{xi} =
∏

i PΛi
(xi) is the joint probability of getting the parti
ular {xi}sequen
e, be
ause, for a thermodynami
 pro
ess, there is no memory. Going overto the 
ontinuum limit, the thermodynami
 pro
ess of varying Λ is now seen asequivalent to 
hoosing a path in the 
on�guration spa
e and re-weight the pathsa

ording to the probability of its o

urren
e in the Λ-ensemble. The relationbetween the free energy 
hange and work, Eq. (4.4), now gets a path integralmeaning where the pro
ess takes the system over the mi
rostates and one averagesthe work over individual paths.This thermodynami
 
onne
tion is valid only in equilibrium. The work theo-rem generalizes this idea by repla
ing P{xi} by the nonequilibrium probability ofgetting a path and asserting

e−β∆F ≡ Zλ
Z0

=

∫

DX e−βW , (4.7)where ∫ DX stands for the normalized sum over paths, i.e., sum over intermediate
x's with appropriate probabilities.4.2.3 Histogram transformation and in�nitely fast pro
essThere is a fundamental transformation rule obeyed by the partition fun
tion, oftenused in numeri
al simulations as the histogram method [32℄. This transformation
onne
ts the equilibrium probability distributions at two parameter values, Λ = λ0and Λ = λ as

Pλ(x) =
Pλ0(x) e

β(λ−λ0)x

∑

x Pλ0(x) e
β(λ−λ0)x

, (4.8)62



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralwhere the sum in the denominator is over the allowed values of x. The denominatorof the right hand side of Eq.4.8 is Zλ/Zλ0 where Zλ is the partition fun
tion atinverse temperature β,
ZΛ =

∑

states

e−βH0 eβΛx. (4.9)From Eq.(4.1), (λ−λ0)x 
an be taken as the work done in an instantaneous pro
essthat 
hanges Λ from λ0 to λ without 
hanging x. The probability of getting x forequilibrium at λ0 is Pλ0(x) and therefore the sum in the denominator of Eq.(4.8)is the path integral of Eq.(4.7), be
ause x does not 
hange. This gives the worktheorem.4.2.4 Work theorem and histogram methodAbove the equivalen
e of the work theorem and a one step histogram transfor-mation where the magneti
 �eld has been 
hanged from 0 to h in one step, hasbeen shown. Similarly one 
an write the n-step histogram transformation whi
his representative of the a
tual pro
ess of doing the MC simulation to �nd out thefree energy di�eren
e of initial and �nal states. Suppose initially we have zeromagneti
 �eld initially and at the �nal state magneti
 �eld is h.One step pro
ess: If the �nal state is rea
hed from the initial state in one step,then 
hange in magneti
 �eld is, ∆h = h. Hen
e the partition fun
tion at themagneti
 �eld h is
Zβ,h = Zβ,0

∑

E0,M0

P (E0,M0)e
β∆hM0 , (4.10)where E0 and M0 are the initial state energy and magnetization.Two step pro
ess: The 
hange in magneti
 �eld while going from one state to thenext is ∆h = h/2 and hen
e Zβ,h is

Zβ,h = Zβ,h/2
∑

E1,M1

P1(E1,M1)e
β∆hM1 (4.11)

= Zβ,0
∑

E0,M0

P0(E0,M0)e
β∆hM0

∑

E1,M1

P1(E1,M1)e
β∆hM1 . (4.12)
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Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralSimilarly for an n-step pro
ess ∆h = h/n and Zβ,h is
Zβ,h = Zβ,0

∑

E0,M0

P0(E0,M0)e
β∆hM0 ×

∑

E1,M1

P1(E1,M1)e
β∆hM1...

∑

En,Mn

Pn−1(En−1,Mn−1)e
β∆hMn−1 (4.13)

= Zβ,0

n−1
∏

i=0

∑

Ei,Mi

Pi(Ei,Mi)e
β∆hMi . (4.14)For the two extreme 
ases, the in�nitely fast and the in�nitely slow pro
esses, itfollows immediately that the histogram transformation gives ba
k the work the-orem. For a pro
ess whi
h is in�nitely fast, or with a strong memory, one 
antake the probability distribution of the intermediate i-th state, Pi(Ei,Mi), as deltafun
tion, δE0,Ei

δM0,Mi
. This gives

Zβ,h =
∑

E0,M0

P0(E0,M0)e
βn∆hM0 =

∑

E0,M0

P0(E0,M0)e
βhM0 , (4.15)whi
h is the same as that of the 1-step pro
ess. For an in�nitely slow pro
ess, atea
h step Pi(Ei,Mi) is the equilibrium distribution P eq

i (Ei,Mi) at the 
orrespond-ing magneti
 �eld, hi = i∆h.This 
onne
tion of the work theorem with the histogram method 
an be usedto make general 
onstraints/
omments on the probability distributions P (E,M)whi
h will be appli
able to any problem, as the histogram method is independentof any spe
i�
 problem.We see that in the histogram transformation there is no need to keep tra
k ofenergy E in the probability distribution, P (M) is su�
ient. Again the distributionof magnetization depends on the magnetization of the previous state if it is not anequilibrium state. So we repla
e P (Ei,Mi) by P (Mi|Mi−1). Hen
e
Zβ,h = Zβ,0

n−1
∏

i=0

∑

Mi

Pi(Mi|Mi−1)e
β∆hMi . (4.16)A

ording to this method, on
e the initial and �nal values of the swit
hing pa-rameter are de
ided, one gets the same free energy di�eren
e independent of thenumber of steps in between the initial and the �nal states. In other words, the re-64



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralsult is the same for all n-step pro
esses with any positive integer n. So, 
omparinga one step pro
ess and a two step pro
ess we 
an write,
∑

M1

P (M1|M0)e
βhM1 = eβhM0 . (4.17)4.3 Equilibrium probability distributionWe in this se
tion use the dis
rete version of the pro
ess to re-derive the equilib-rium probability distribution from the work theorem in a general and dynami
sindependent way. For the kind of nonequilibrium pro
esses mentioned in Se
.4.2.2 the equilibrium probability distribution of x at a parameter value λ 
an beobtained from a weighted path integral [22, 21℄

Pλ(x) =

∫

DX e−βW δ(xb − x)
∫

DX e−βW
, (4.18)where xb is the instantaneous boundary value at the end of the path, and thedenominator is same as r.h.s. of Eq.(4.7). This is in the form of a path integralwhere the paths are weighted by a Boltzmann-like fa
tor exp(−βW ). The samewas established previously in spe
i�
 
ases like, the Master equation approa
h [20℄,the Feynman-Ka
 formula [21℄ and Monte Carlo dynami
s [22℄.The equilibrium average xeq is de�ned as

xeq =
1

β

∂

∂Λ
lnZΛ = lim

δ→0

(

β
ZΛ

Z0

)−1
1

δ

(

ZΛ

Z0

− ZΛ−δ

Z0

)

, (4.19)where work theorem is to be used for the partition fun
tions.The system starts in equilibrium at temperature T and Λ = 0, and then Λ isbuilt up at 
onstant T as a sequen
e of in�nitely fast jump of ∆λ = λ/n, ea
hjump followed by a �nite time evolution in 
onta
t with the heat bath. Considernow two n-step pro
esses, one pro
ess with �nal �eld λ and another one with λ−δ(δ → 0 at the end). In fa
t, the se
ond pro
ess is just a 
opy (repli
a) of the �rstone in every respe
t ex
ept at the last stage (Fig. 4.1). For the last jump, the
hange in Λ for repli
a 1 is ∆λ while for repli
a 2 it is ∆λ− δ.A path is spe
i�ed or de�ned by the sequen
e {xi | i = 0, ...n − 1}. The65
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x

i=1

i=0,

,

,

δ

Λ=0

Λ=∆λ

Λ=λ−∆λi=n−1

Λ

replica 1 replica 2Figure 4.1: S
hemati
 representation of two repli
as of same paths, ea
h startingfrom Λ = 0 and ending at Λ = λ in repli
a 1 and at Λ = λ − δ in repli
a 2.Label i denotes the step number as Λ is 
hanged in steps of λ/n. Lines of di�erentstyles (dashed, dotted et
) represent di�erent realizations of paths starting fromdi�erent values of x. The verti
al portion of a path is an instantaneous pro
ess(no 
hange in x) and the horizontal part is under intera
tion with the surrounding(x evolves at a 
onstant Λ). Identi
ally shaded lines in the two repli
as have thesame evolution.
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Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegral
hanges in xi at any step is be
ause of internal dynami
s or ex
hange of heat withthe external reservoirs. We do not need to let the system evolve on
e the �eldrea
hes the �nal desired value. Therefore, the sequen
e {xi | i = 0...n− 1} is thesame for both the repli
as. The work done W1,W2 along an n-step nonequilibriumpath for repli
as 1, 2 are related via
W2 =W1 + δ xn−1, (4.20)withW1 is of the form given above Eq. (4.6). The work theorem of Eq. (4.7) whenused in Eq.(4.19) yields

xeq = lim
δ→0

1

β
∑

paths e
β
∑n−1

i=0 ∆Λixi

∑

paths e
β
∑n−1

i=0 ∆Λixi
(

1− e−βδxn−1
)

δ

=

∫

DX xb e
−βW

∫

DX e−βW
, (xb ≡ xn−1). (4.21)This shows that the equilibrium average 
an be expressed in terms of the boundaryvalue with proper weightage of the paths. The above proof 
an be generalized toany moments of x.Now if P(x) is the distribution of xb, that gives the average in Eq.(4.21)

xeq = 〈x〉 =
∫

xP(x) dx, (4.22)then P(x) 
an be written as
P(x) =

∫

DX e−βW δ(xb − x)
∫

DX e−βW
, (4.23)as quoted in Eq.(4.18). We now invoke the moment theorem [96℄ whi
h, in our
ase, states that for a probability distribution without su�
iently long tails, themoments uniquely spe
ify the distribution. Sin
e these 
onditions are satis�edby the equilibrium probability distributions for any �nite system, the momenttheorem applies. Sin
e the moments from the nonequilibrium path integral are theequilibrium moments, P(x) is the equilibrium distribution: P(x) = Pλ(x). This
ompletes the proof. 67



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegral4.3.1 GeneralizationIn general, for a Hamiltonian of the form H = H({Λα}, {Xα}), the equilibriumdistribution, P (E, x1, x2, ...), at some given parameter values, {λα} and temper-ature β−1, 
an be obtained in the same way provided the paths start from anequilibrium state for H = H0, where H0 gives the energy for all Λα = 0 and Wis the total work done on the system along a nonequilibrium path, by ea
h of theexternally 
ontrolled parameters. E here 
orresponds to the energy from H0 only.Our starting H0 may be a free Hamiltonian for a me
hani
al system and 
an aswell be zero for intera
ting spin-like systems.Consider the Hamiltonian H = γH0 for a spin-like system (i.e. without anykineti
 energy). In this 
ase one of the {Λα} 
ould be the strength of intera
tion.Let's start with γ = 0, i.e. the starting point is any random 
on�guration of thefree system or a non-intera
ting system, and then 
hange γ in some given way from
γ = 0 to γ = 1. We thus generate the equilibrium distribution of H0 at a parti
ular
β, by doing a similar nonequilibrium path averaging. Note that everywhere we needthe produ
t βW . So, we 
an dis
retize temperature instead of Λ and the pro
ess
an be reinterpreted as 
ooling down to a �nite temperature from an initial in�nitetemperature. In the usual formulation of work theorem, Λ refers to me
hani
alparameters su
h as the pulling for
e in AFM, whi
h are under dire
t 
ontrol ofthe experimentalists. In 
ontrast, other intensive parameters su
h as temperaturemay not be 
ontrolled with this level of pre
ision in experiments. But this �ndsvarious appli
ations in numeri
al experiments. Su
h thermal quen
hes are quite
ommon in numeri
al simulations and our results show how these 
an be harnessedto extra
t equilibrium information as well. The ensemble of states obtained in theabove dis
ussed way at the end of the path is not a representative sample ofthe equilibrium ensemble at the 
on
erned temperature and �eld. However, thehistory-averaged distribution is the equilibrium distribution. The boundary stateswould relax to rea
h equilibrium via energy transfer to the reservoirs but that partof the pro
ess is not required. This di�eren
e be
omes important and visible insystems exhibiting hysteresis as e.g. for a ferromagnet.
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Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegral4.3.2 Appli
ation to ferromagnet to get equilibrium magne-tization 
urveThe above-mentioned s
heme 
an be used to get the equilibrium probability distri-bution or thermodynami
 quantity from a pro
ess whi
h is arbitrarily away fromequilibrium and at all temperatures in
luding phase transition points. Now weapply our result to the 
ase of hysteresis of a ferromagnet below the 
riti
al tem-perature (TC). Consider a Hamiltonian: H = H0 − hM . The external magneti
�eld is varied from −h0 to +h0 in a �xed manner and then reversed. 〈M〉 is
al
ulated using Eq.(4.21). Below the 
riti
al temperature, magnetization (M)vs. magneti
 �eld (h) 
urve shows a dis
ontinuity at h = 0 for in�nite systemsize. For a �nite system there is no dis
ontinuity, M-h 
urve is 
ontinuous passingthrough the origin, and the slope of M-h 
urve at h = 0 in
reases as system sizein
reases. But, in reality, when experiments or simulations are done, instead ofsingle retra
eable 
urve passing through the origin we get a loop 
alled hysteresisloop, no matter how slowly we vary the magneti
 �eld. The 
ommon te
hniqueknown to get the equilibrium 
urve is to 
onne
t the verti
es of the sub-loops [95℄.Here the weighted nonequilibrium path integral s
heme is a way out to get theequilibrium magnetization 
urve. We verify this for Ising ferromagnet and dis
ussthe observations about it in Se
. 4.5.4.4 Equilibrium probability distribution from aneigenvalue equation: Operator SIn this se
tion we derive the main result of this 
hapter: equilibrium probabilitydistribution as an eigenfun
tion of a nonequilibrium operator S.Using the dis
rete notation, we 
an write Eq.(4.18) as
Pλ(x) =

Zλ0
Zλ

∑

paths

e−βW δxb,x , (4.24)
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Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralby using the work theorem, Eq.(4.3), that
∑

paths

e−βW =
Zλ
Zλ0

. (4.25)Again, writing∑paths =
∑

xi
Pλ0(xi)

∑′

paths, where the primed summation denotesthe sum for �xed initial value of x = xi with appropriate probability and Pλ0(xi)denotes the equilibrium distribution of xi for Λ = λ0, we get,
Pλ(x) =

Zλ0
Zλ

∑

xi

∑

paths

′

Pλ0(xi) e
−βW δxb,x. (4.26)Use the transformation rule for the partition fun
tion (Se
. 4.2.3),

Zλ
Zλ0

=
∑

x

Pλ0(x) e
β(λ−λ0)x, (4.27)to absorb Zλ0/Zλ into the probability distribution. This transforms Pλ0(xi) into

Pλ(xi), in Eq.(4.26) as
Pλ(x) =

∑

xi

∑

paths

′

e−βW−β(λ−λ0)xi δxb,xPλ(xi) (4.28)
=

∑

xi

Sx,xi Pλ(xi), (4.29)
⇒ S Pλ = Pλ, (4.30)with Pλ as a 
olumn ve
tor of {Pλ(x)} and the matrix elements of S as
Sxf ,xi =

∑

paths

′

e−βW−β(λ−λ0)xi . (4.31)The summation in Eq.(4.31) is over all paths that start from an equilibrium distri-bution of Λ = λ0 with value of x as xi and end in a state with Λ = λ and x = xf ,with proper normalization (denoted by prime).Although we use the simple Hamiltonian: H = H0 − Λ x in the 
onstru
tion,Eq.4.31 
an be generalized for a HamiltonianH = H+H1(Λ, x), be
ause Eq.(4.27)
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Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralhas the general form,
Zλ
Zλ0

=
∑

x

Pλ0(x) e
−β [H(λ,x)−H(λ0,x)].Now we address the remaining problem � the normalization of the primedsummation over paths in Eq.(4.31). This problem is inherited from Eq.(4.25).Note that the l.h.s. of Eq. 4.25 should add up to 1 for λ = λ0 with W = 0. Sowe 
hoose the hidden fa
tor a posteriori by demanding proper normalization ofthe �nal probability distribution. This 
ondition 
an be ensured in a pro
ess- orsystem-independent way by 
hoosing ∑x Sx,xi = f(xi) = 1, (Eq.(4.29)), i.e. bymaking the 
olumn sum of S independent of xi. By this normalization of the sumof ea
h 
olumn to unity it is also guaranteed that the prin
ipal eigenvalue is 1. The
orresponding right prin
ipal eigenve
tor has all the elements real and non-negative� a ne
essary 
ondition to be a probability distribution and when normalized, su
hthat sum of all elements is unity, this eigenve
tor gives the equilibrium probabilitydistribution.The number of rows and 
olumns in S is determined by the number of allowedvalues of x. For 
ontinuum of states, the matrix equation is to be repla
ed by anintegral eigenvalue equation.Hen
e, in brief, the s
heme to get the equilibrium distribution at some pa-rameter value λ and temperature β−1 is as follows: Pre-�x some arbitrary or
onvenient-to-start-with initial parameter value λ0 whi
h will be same for allpaths/experiments. Choose a mi
rostate from the equilibrium distribution at �eld

λ0 and 
all its value of x as xi. Change the parameter value from λ0 to λ in somepredetermined way and measure the work done by the external parameter on thesystem a

ording to Eq.(4.1). Repeat the experiments several times and 
onstru
tthe matrix S using Eq.(4.31). Next, ea
h 
olumn of the matrix is normalized tounity. The normalized prin
ipal eigen-ve
tor is the equilibrium probability distri-bution, Pλ(x), at the �eld λ.Eq.(4.30) is the main result of this 
hapter and it is not restri
ted to oneexternal parameter only and 
an be generalized to any parameter as mentionedabove. The matrix S 
onne
ts any two allowed states of the system without anyreferen
e to equilibrium anywhere and yet its prin
ipal eigen-ve
tor determines71



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralthe equilibrium distribution. Despite resemblan
e, there is no similarity eitherwith the sto
hasti
 matrix of a Markov pro
ess or the adiabati
 swit
hing on ofintera
tion in a quantum system be
ause S is 
onstru
ted out of a �nite pro
essand needs global information about the work done.Another issue that 
omes up in this approa
h via S, is the question of ergodi
itywhi
h 
onne
ts the Gibbsian statisti
al me
hani
s with equilibrium thermodynam-i
s. The nonequilibrium dynami
s used to 
onstru
t S may not respe
t ergodi
itybut the starting points for the paths in prin
iple span the whole phase spa
e, evenin the 
ase when one starts with a free non-intera
ting system. It seems ergod-i
ity of the free non-intera
ting system is su�
ient to generate the equilibriumdistribution.4.4.1 ExamplesExample 1: Extreme 
asesConsider an extreme 
ase: a 
ompletely equilibrium evolution of the system, whereat ea
h step the system rea
hes its equilibrium. Take a simple system: a singlespin problem in magneti
 �eld h and temperature β−1: βH = −Ks, where s = ±1and K = βh. For an n-step pro
ess, K varies from 0 to nk in steps of k, and the
olumn normalized S matrix 
an be 
al
ulated exa
tly where at ea
h step the spinrea
hes the 
orresponding equilibrium state, as
S =

(

Pnk(+) Pnk(+)

Pnk(−) Pnk(−)

)

, (4.32)where Pnk(±) is the equilibrium probability of �nding ±1 spin at the n-th step.Thus for a 
ompletely equilibrium evolution of the system the elements of thematrix S are unique and, therefore, S has only one and unique eigenve
tor. Inthat 
ase prin
ipal eigenvalue is 1 and all other eigenvalues are zero. We may
on
lude that a 
omplete redu
ibility of S is the signature of a thermodynami
pro
ess.Eq.(4.32) is to be 
ompared with the extreme nonequilibrium pro
ess as em-bodied in Eq.(4.8). For this instantaneous 
hange in λ, S = I, the identity matrix,with no zero eigenvalues. 72



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralIf at ea
h of these n steps, the system evolves for a time ∆t in 
onta
t with thebath, then Sn,∆t → Seq as ∆t → ∞. The smallness of the rest of the eigenvalueswould indi
ate how 
lose to equilibrium the system is.The dynami
s of a many body system might be 
ompartmentalized into slowmodes and fast modes, where the fast modes would equilibrate mu
h more qui
klythan slow ones. How many su
h fast modes have a
tually equilibrated, 
an begauged by the number of zero eigenvalues. The S matrix is not ne
essarily symmet-ri
, though real and there is a possibility of pairs of 
omplex 
onjugate eigenvalues,with their magnitudes going to zero as equilibrium is rea
hed.Example 2: Barkhausen noise and matrix SWe now show the pra
ti
al feasibility of the operator method for a magnet byusing the Barkhausen noise [94, 95℄ as re
orded through the output voltage a
rossa se
ondary 
oil wound around a ferromagneti
 material. Though Barkhausennoise has seen many appli
ations, its use for equilibrium properties has not beenanti
ipated.Consider the Hamiltonian
H = H0 − hM. (4.33)Here magneti
 �eld h and magnetization M 
orrespond to Λ and x respe
tively.The �eld is varied from hi to hf in a time interval τ at a 
onstant rate ḣ. TheBarkhausen e�e
t is a noisy signal proportional to the 
hange in magnetization,

η(t) = dM(t)
dt

. So by integrating the Barkhausen noise up to time t one gets thenonequilibrium instantaneous magnetization of the material. Therefore, we 
anwrite the work related exponent in Eq.(4.31) as
W + [h(τ)− h(0)]Mi = −ḣ

∫ τ

0

dt

∫ t

0

η(t′) dt′, (4.34)whi
h, in a dis
retized form, looks like
W + [hf − hi]Mi = −∆h

n−1
∑

j=1

j
∑

k=1

ηk, (4.35)
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Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralwhere the Barkhausen noise at k-th step is ηk = Mk −Mk−1. Hen
e the matrixelements SMf ,Mi
takes the form

SMf ,Mi
=
∑

expts.

′

exp

[

β∆h
n−1
∑

j=1

j
∑

k=1

ηk

]

, (4.36)expressed entirely in terms of the Barkhausen noise along the nonequilibrium paths.The primed summation over paths that start with Mi and end at Mf in
ludesproper normalization as mentioned earlier.To go to other 
ases, e.g., for the 
ase of a polymer pulled at a 
onstant rateof 
hange of for
e, one needs to monitor the time variation of the pulled pointdispla
ement dx/dt vs t. This information 
an then be used in Eq.(4.36) to getthe 
orresponding S.4.5 Numeri
al veri�
ation of resultsOur 
laims about the probability have been veri�ed for the 
ase of 2D Ising modelon a square latti
e, L×L, where L is the size of the latti
e with periodi
 boundary
ondition. Consider the Hamiltonian
H = −J

∑

<k,l>

sksl − h
∑

k

sk, (4.37)where J is the intera
tion strength, h is the external magneti
 �eld and sk = ±1is the spin at k-th site of a square latti
e. Here ∑<k,l> denotes the sum overnearest neighbor spins. Here J and h play the roles of external parameter (Λ) and
∑

<k,l> sksl and ∑k sk are the internal variables (x).We �nd equilibrium probability distribution for given J and h using weightednonequilibrium path integral, normalizing the eigenfun
tion of S and 
omparethose with the equilibrium probability distribution obtained from a usual MonteCarlo pro
edure. The overlap of the two distributions is determined by the Bhat-ta
haryya 
oe�
ient [97℄ de�ned as
BC =

∑

E,M

√

Ph(E,M)Peq(E,M) = 1− ǫ, (4.38)74



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralwith BC = 0 for no overlap and BC = 1 for 
omplete overlap.The pra
ti
al implementation is done as follows.1. Consider an L× L square latti
e with periodi
 boundary 
ondition.2. Start with h = 0. Take an arbitrary spin 
on�guration. Let the Ising spinsystem evolve and equilibrate with the heat bath at β = 1/T , employingthe Metropolis algorithm. In other words, this is a mi
rostate, C0, randomlysampled from an equilibrium 
anoni
al ensemble. Let E0 be its energy and
M0 be its magnetization. Then 
all the equilibrium distribution at temper-ature T for h = 0 as P (0)

β,0(E0,M0).3. Work step: Swit
h the magneti
 �eld: h→ h+∆h, keeping the the mi
rostatesame as C0 . Cal
ulate the energy of C0 with �eld h+∆h and let it be E1 .Work done on the system equals E1 − E0 = −M0∆h.4. Heat step: Carry out a few Monte Carlo sweeps with �eld h + ∆h on. Ittakes the system towards the equilibrium at �eld h + ∆h and temperature
T . Let the system after the heat step be in mi
rostate C1.5. Next the work step and the heat step, (3) and (4) are 
ontinued alternatelyuntil the magneti
 �eld rea
hes the prede�ned value. Thus alternate workstep (in whi
h the mi
rostate does not 
hange but the �eld 
hanges) - andthe heat step (in whi
h system swit
hes from one mi
rostate to another inthe presen
e of the in
reased external �eld) is the swit
hing proto
ol. Thiswhole pro
ess starting from step (2) 
onstitutes one experiment.6. The experiment of step (5) is 
arried out several times and an ensemble ofwork values are 
onstru
ted. Thus one gets the work distribution P (W ).4.5.1 Numeri
al veri�
ation of the equilibrium probabilitydistribution starting from a uniform distributionLet us take an 8 × 8 latti
e and start from H = 0. Ea
h time we start from astate 
hosen from a uniform distribution and rea
h the �nal state with J = 1 and

h = 1 in n-steps. At ea
h i-th step, J is swit
hed from Ji to Ji+1 and the external75
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Figure 4.2: Plot of the weighted distribution (a) PJ,h(E) vs. E and (b) PJ,h(M)vs. M (dotted line with 
ir
les) for varying J and h with n = 20 and equilibriumdistributions Peq(E) and Peq(M) (
rosses) with J = 1, h = 1 and β = 0.2 for a
8× 8 latti
e, showing that PJ,h(E) = Peq(E) and PJ,h(M) = Peq(M).magneti
 �eld from hi to hi+1,

∆J = Ji+1 − Ji = J/n and ∆hi = hi+1 − hi = h/n;keeping the spin 
on�guration un
hanged, and the amount of work done on thesystem
Wi = −∆JiEi −∆hiMi,is 
al
ulated whereMi is the magnetization and Ei is∑ sksl at the i-th step. Thenwe let the system relax at that �eld hi, Ji and β for a while, but do not equilibrate.Thus the work along a path 
onsisting of n steps is

W = −
n−1
∑

i=0

∆JiEi +∆hiMi,whi
h is di�erent for di�erent paths. We �nd the weighted distribution
PJ,h(E,M) =

∫

DX e−βW δ(Eb − E)δ(Mb −M)
∫

DX e−βW
, (4.39)and then

PJ,h(M) =
∑

E

P (E,M) 76



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegraland
PJ,h(E) =

∑

M

P (E,M).It is observed that these distributions merge well with the 
orresponding equilib-rium distributions and for PJ,h(E) (Fig. 4.2(a)) and PJ,h(M) (Fig. 4.2(b)) we get
ǫ ∼ 10−3 (Eq.(4.38)).4.5.2 Equilibrium magnetization 
urve using nonequilibriumpath integralFor this 
ase latti
e size is 8×8 and the intera
tion strength is kept �xed at J = 1.Ea
h time we start from an equilibrium distribution of h = −h0. The �eld isvaried from −h0 to +h0 in n steps. W (n) vs. n data are re
orded and 〈M〉(h) is
al
ulated using Eq.(4.21).We plot the weight averaged magnetization 
urve, 〈M〉(h), along with thehysteresis loop, average magnetization over samples, against h for h0 = 0.2 inFig. 4.3(a) and h0 = 2 in Fig. 4.3(b).A retra
eable equilibrium 
urve is obtained as expe
ted though the nomi-nally averaged magnetization neither 
hanges sign nor makes a 
omplete loop(Fig. 4.3(a)) [89℄. This re�e
ts the fa
t that though in majority the magneti-zation does not rea
h the 
orre
t value, there are a few rare samples for whi
h thespins do �ip and these rare 
on�gurations, whi
h are 
lose to equilibrium, get moreweight in the weighted path integral to give the 
orre
t equilibrium 
urve.For the larger �eld, we obtain a 
urve whi
h is mu
h narrower than the hys-teresis 
urve (Fig. 4.3b). The equilibrium 
urve obtained this way is still not asingle 
urve. The width of the loop might be 
onne
ted to the droplet time s
ale,and signals the need for a more 
areful sum over paths to take 
are of droplet�u
tuations.4.5.3 Numeri
al veri�
ation of the eigenvalue equationWe start from an equilibrium ensemble at inverse temperature β = 0.2 (kept �xedthroughout the experiment), J = 1 and h = 0. Ea
h time we start from a state
hosen from its equilibrium distribution and rea
h the �nal state with J = 1 and77
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orresponding hysteresisloop (simple averaged M vs. h) for a 8× 8 latti
e. The magneti
 �eld varies from

−h0 to +h0 in 100 steps. (a) h0 = 0.1. The weighted loop and the hysteresis loopsare represented by the bla
k solid line and the green and blue dashed lines.Theinset shows the hysteresis loop for the small (green and blues lines) �eld withrespe
t to the large �eld (red double dash-dotted line) and the weight averagedmagnetization for small �eld. (b) h0 = 2. The weighted loop and the hysteresisloops are represented by the dashed lines and the red solid line respe
tively.
h = 1 in n-steps in the same way des
ribed above and 
al
ulate the amount ofwork on the system at i-th step: Wi = −∆hiMi. We �nd the matrix elements:

SMf ,Mi
=
∑

paths

′

e−βW−β(h−h0)Mi δMb,Mf
. (4.40)After the matrix is 
onstru
ted, we normalize sum of ea
h 
olumn to unity and �ndthe normalized prin
ipal eigen-ve
tor 
orresponding to the Prin
ipal eigenvalue 1,whi
h is guaranteed. We 
ompare the normalized eigenfun
tion with the a
tualequilibrium distribution for L = 4 and 8. We see that these distributions mergewith the 
orresponding equilibrium distributions for L = 4 (Fig. 4.4(a)) and L = 8(Fig. 4.4(b)) with ǫ ∼ 10−4 (Eq.(4.38)).4.6 SummaryIn this 
hapter we show and verify numeri
ally that the repeated nonequilibriummeasurements of work done to 
onne
t any two mi
rostates of a system 
an be used78
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Figure 4.4: Plot of the equilibrium distribution Peq(M) vs. M (boxes with dottedline) and normalized prin
ipal eigen-ve
tor Ph(M) (dashed line with 
ir
les) with
J = 1, h = 1, β = 0.2 and n = 1000 for (a) 4×4 latti
e and (b) 8×8 latti
e, showingthat Ph(M) = Peq(M), i.e., eigenfun
tion is indeed an equilibrium distribution.to 
onstru
t a matrix S whose prin
ipal eigenve
tor is the equilibrium distribution.The matrix elements of S (Eq.(4.31)) for a Hamiltonian H(Λ, x) with (Λ, x) as a
onjugate pair are:

Sxf ,xi =
∑

paths

′

e−βW+β[H(λ,xi)−H(λ0,xi)] (4.41)where the summation is over all paths that start from an equilibrium distributionof externally 
ontrolled parameter Λ = λ0 with value of 
onjugate variable x as
xi and end in a state with Λ = λ and x = xf , with proper normalization. Thework done W is de�ned in Eq.(4.1). The values of the elements of S depend onthe details of the pro
ess and, therefore, there 
an be many di�erent S, but allwill have the same invariant prin
ipal eigenve
tor. In this way the distribution ofan intera
ting system 
an be obtained from a free, non-intera
ting one withoutany referen
e to equilibrium anywhere. In the pro
ess, we also provide a dynami
sindependent proof of the result that the equilibrium probability distribution 
an beobtained using the nonequilibrium path integral. Besides giving a new perspe
tiveof thermodynami
s and statisti
al me
hani
s, our result has dire
t impli
ations fornew ways in numeri
al simulations and experiments.What next: Now we study the equilibrium phase transition of a DNA by79



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralmapping to an equivalent quantum problem. The phase transition is then observedthrough the problem of disso
iation of two intera
ting quantum parti
les. Tostudy the quantum phase transition we make use of the quantum entanglemententropy, mainly the von Neumann entropy. The spe
ial behaviours of the phasetransition are shown to be same for the 
lassi
al polymer problem and the problemof quantum disso
iation.List of symbols
β Inverse temperature
E Energy
F Fixed x ensemble free energy
∆F Free energy di�eren
e
H0 Hamiltonian under no drive
H Hamiltonian
h Magneti
 �eld
Λ Intensive variable, 
ontrol parameter
M Magnetization
n Number of steps to rea
h �nal state from the initial one
P Equilibrium probability distribution
PΛ(x) Equilibrium probability distribution of x at λ
P Probability distribution
S Matrix 
onstru
ted from nonequilibrium work done
Weq Equilibrium work done
W Work done
xb Value of x at work step
xeq Equilibrium value of x
x Extensive variable
ZΛ Partition fun
tion at Λ
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5Entanglement entropy of a quantumunbinding transition and entropy of DNA
In this 
hapter, we use the ideas and the results of DNA phase transition in adi�erent way to study the disso
iation of a quantum mole
ule. The quantumdisso
iation of a bound pair is a quantum phase transition 
hara
terized by di-verging length s
ales. This QPT is tra
ed by the quantum entanglement entropy,a measure of pure quantum 
orrelation. We show that the quantum entanglemententropy 
aptures the important features of the phase transition. Moreover, someinteresting 
hara
teristi
s of the entanglement entropy is revealed, whi
h is thenjusti�ed from the known results of the DNA.5.1 Introdu
tionAt or near a QCP, the signatures of its universality 
an be found in the en-tanglement, a 
ommon measure of whi
h is the von Neumann entropy (SvN)[36, 39, 45, 44, 98, 99℄. The exa
t results of this 
hapter show that for a 
lassof 
riti
al points, viz., the disso
iation of a pair of parti
les in the unitarity limitof in�nite s
attering length, there is the possibility of a negatively diverging SvN .Although 
ounter-intuitive, this is not an artifa
t. Analogous situation o

urs instatisti
al me
hani
s for Gibbs entropy in 
anoni
al ensemble for a gapless spe
-trum. As dis
ussed below, the problem in hand involves a gapless entanglementspe
trum. The usual proof of the positivity of entanglement entropy is not appli-
able in 
ase of 
ontinuous eigenvalues of the redu
ed density matrix. The negative81



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAentropy is essential for the 
riti
ality itself. Its importan
e is brought out via themapping of the quantum problem to the equivalent 
lassi
al statisti
al me
hani
alproblem, the melting of a double-stranded DNA [100, 101, 102, 107℄.5.1.1 OutlineThe outline of the 
hapter is as follows. We analyti
ally �nd out the von Neumannentropy of two intera
ting parti
les in Se
. 5.2 and in the next se
tion, Se
.5.3, weexplain how the entanglement entropy is related to the entropy of bubbles in DNAmelting.5.2 Entanglement entropyRe
all the problem of a quantum parti
le of massm in a three dimensional spheri
alpotential well,
V (r) = −V0 for r < a,

= 0 for r > a, (5.1)where r is the radial 
oordinate, a and V0 are the width and the depth of thepotential well. What is spe
ial is that V0 > 0 does not guarantee the existen
e of abound state, unlike in one or two dimensions, or in 
lassi
al me
hani
s. No boundstate exists for u < uc where u = 2mV0a
2/~2 is the dimensionless parameter forthe potential and uc 
orresponds to a 
riti
al value of u. For simpli
ity, we take

u ≈ uc so that there is only one bound state. In this situation energy |E | itselfis the gap in the spe
trum. If we tune u to get a state with zero energy (E = 0),then at that energy in d = 3 the wave fun
tion ϕ(r) ∼ 1/r whi
h is like a non-normalizable 
riti
al state. Like a bound state the probability density does de
ayto zero but like an unbound state it is not normalizable. In higher dimensions, the
ondition for a minimal strength of the potential for a bound state remains true,but the state 
orresponding to E = 0 be
omes normalizable as it should be fora bound state. So we see that this bound to unbound transition for a potentialwell has di�erent nature in di�erent dimensions. In general, (i) for d ≤ 2 thereis no su
h transition as E = 0 requires V0 = 0, though there are remnants of the82



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAtransition as V0 → 0, (ii) for 2 < d < 4, the transition is 
ontinuous (
riti
al) �the bound state be
omes unbound through a non-normalizable 
riti
al state as we
hange u, and, (iii) for d > 4, the bound state remains normalizable up to andin
luding E = 0, and be
omes unbound as u is de
reased further, thus making thetransition �rst-order. This depi
ts a QPT and the 
ase of a potential well gives asimple example of a quantum 
riti
al point for 2 < d < 4 with diverging lengths
ales.
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(a) (b)

ground state u  

first
order

continuous

uc

0

en
er

gy

−EFigure 5.1: (a) Gap ∆ in the energy spe
trum. The shaded region is the 
ontinuumof energy. (b) The graph shows how energy gap goes to zero. The 
ontinuous linedes
ribes a se
ond order or 
ontinuous transition (
riti
al) and the dashed lineshows the �rst order transition. The two are distinguished by the behaviour of theslope at u = uc.The ground state energy, for u 
lose to uc, is the gap ∆ in the spe
trum. Aquantum phase transition is 
hara
terized by a vanishing gap. A dis
ontinuity ofthe �rst derivative d∆/du signals a �rst order transition, otherwise it is 
riti
al or
ontinuous, as shown in Fig. 5.1. One may de�ne 
hara
teristi
 time and lengths
ales
ξ‖ = ~∆−1, and ξ⊥ = ~/

√
2m∆, (5.2)both of whi
h diverge as ∆ → 0, with ξ‖ ∼ ξz⊥, z (= 2 in this 
ase) being thedynami
 exponent. One may 
ompare with the 
lassi
al ground state to see theimportan
e of quantum (zero-point) �u
tuations and the importan
e of time ordynami
s in quantum phase transitions. A path-integral interpretation of theses
ales, useful for the DNA mapping, is given below.Let us now 
onsider the ground state of two dissimilar parti
les intera
ting viaa 
entral potential V(|r1−r2 |) of the type of Eq.(5.1), with ri denoting the 
o-83



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAordinate of the i-th parti
le. The existen
e of diverging length s
ales and s
alingbehavior around u = uc justi�es the disso
iation of the bound pair to be a QCPor a QPT depending on the dimensions they are in. The 
riti
ality is des
ribed bythe exponents for the diverging length s
ales and the energy, as
|E| ∼ ξ−1

‖ ∼|u− uc |ν‖ , and ξ⊥ ∼| u− uc |−ν⊥, (5.3)with
ν‖ = zν⊥ = 1/(Ψ− 1), for 1 < Ψ ≤ 2, (5.4)

= 1, for Ψ ≥ 2, (5.5)whi
h involve (i) z the dynami
 exponent, and (ii) a universal exponent Ψ, knownas the reunion exponent for polymers [100, 101, 102℄. For the short range intera
-tion problem, Ψ = d/2, as for random walkers, from whi
h the spe
ialty of d = 4is apparent.In a quantum bound state a parti
le 
an tunnel through the potential. Ina path integral approa
h the parti
le does a sizable ex
ursion in the 
lassi
allyforbidden region outside the intera
tion well, sooner or later returning to the well(see Fig. 5.2). That the two parti
les will eventually be 
lose-by to form a boundstate is the sour
e of entanglement while the ex
ursions produ
e spreads of thetraje
tories in spa
e and time. These spreads give the two relevant length s
ales
ξ‖, ξ⊥. The large width of the bound state wave fun
tion near the QCP ensuresthe mutual in�uen
e of the parti
les even if far away from ea
h other (r ≫ a) sothat the redu
ed density matrix for one parti
le still 
arries the signature of theentanglement and the 
riti
ality. For this bipartite system, we are interested in the�parti
le-partitioning entanglement� [103℄. This makes the von Neumann entropya valuable quantity for the transition whi
h reads,

SvN = −Tr ρ ln ρ, (5.6)where ρ is the redu
ed density matrix for the ground state |ψ〉,
ρ(r1, r′1) = Tr2 ̺(1, 2) =

∫

ddr2 〈r1, r2|ψ〉〈ψ|r′1, r2〉, (5.7)84



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNA
−a +a

B U

t

(a)

 

x

xx1 2

1
’ x2

’

(b)

 

Figure 5.2: Path integral representation in the x-t plane. (a) A relative 
oordinatepath for two parti
les in one-dimension. The solid portions represent the 
lassi-
al bound state, i.e., inside the well (B), and the dashed portions represent theunbound (U) state in the 
lassi
ally forbidden region. (b) Corresponding path rep-resentation of two quantum parti
les with time, though interse
tions of paths arenot shown expli
itly. It is also a 
on�guration of two 
lassi
al Gaussian polymersintera
ting at the same 
ontour length as for DNA base pairing, the t-axis repre-senting the 
ontour length (z) of the polymers. The dotted lines are the meltedbubbles whose partition fun
tions are 
hara
terized by the reunion exponent Ψ.This des
ription holds for any general d.obtained from the two parti
le density matrix ̺(1, 2) =|ψ〉〈ψ | by integrating out(or tra
ing out) parti
le 2. In Eq.(5.6), we shall introdu
e some pre-
hosen lengths
ale to make the argument of log dimensionless. If, with mi, ri denoting the massand the position of the ith parti
le, the full ground state wave-fun
tion (in
ludingthe 
enter of mass (CM)) is
ψ(r1, r2) = Φ

(

m1r1 +m2r2
m1 +m2

)

ϕ(r1 − r2), (5.8)where Φ is CM wave fun
tion (plane waves) and ϕ is the wave fun
tion in relative
85



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNA
oordinate (the relative wave-fun
tion), then
ρ(r1, r′1) = ∫ ddr2 ψ(r1, r2)ψ∗(r′1, r2). (5.9)Although the 
enter of mass and the relative parts are not entangled, the twoparti
les are entangled. The la
k of knowledge of the state of one parti
le is thesour
e of a nonzero entropy asso
iated with the redu
ed density matrix [37, 38, 39℄.The translational invarian
e of the intera
tion guarantees that the redu
eddensity matrix ρ(r, r′) ≡ ρ(r − r′) has exp(−iq · r) as the eigenve
tor,
∫

ddr′ρ(r− r′)e−iq·r′ = ρ̂(q) e−iq·r, (5.10)with the eigenvalue
ρ̂(q) =

∣

∣

∣

∣

φ

(

q +
Kµ
m2

)
∣

∣

∣

∣

2

, (5.11)K being CM wave ve
tor and φ(q) the normalized momentum spa
e wave fun
tion,the Fourier transform of the relative wave-fun
tion ϕ(r) in Eq.(5.8). Sin
e theentropy involves an integral over the whole range of q, it is independent of the CMwave-ve
tor, an expe
ted 
onsequen
e of Galilean invarian
e. Therefore, withoutany loss of generality, we 
hoose | K |= 0. The eigenvalues 
onstituting the�entanglement spe
trum� 
an be written in a s
aling form
|φ(q) |2= κ−d F (q/κ, aκ), (5.12)where κ2 = 2µ |E | /~2 = ξ−2

⊥ , µ being the redu
ed mass. Eq.(5.12) satis�es
Tr ρ̂ = 1. In the 
riti
al regime (also 
alled the �unitarity limit�), aκ → 0, if thes
aling fun
tion behaves smoothly, then

F (q̃, aκ) → F (q̃, 0) ≡ f(q̃), (q̃ ≡ q/κ) (5.13)whi
h we �nd to be true for d < 4. For d ≥ 4, we �nd that F (q̃, aκ) for aκ → 0behaves in a singular fashion as
F (x, y) ∼ yd−4f(x), (5.14)86



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAso that the prefa
tor in Eq.(5.12) be
omes κ−4ad−4. Here f represents a generi
fun
tion. By using these limiting forms, we �nd the entanglement entropy to be
SvN = P ln aκ + c0, (5.15a)
P = min(d, 4), and c0 = −

∫

ddx f(x) ln f(x). (5.15b)The last statement 
an be veri�ed by dire
t 
omputation of the momentum dis-tribution fun
tion of the relative motion in d-dimensions. There are further log-
orre
tions at d = 2 and d = 4 whi
h we do not dis
uss here. To motivateEq.(5.15a) let us 
onsider a few examples. Consider the quantum problem oftwo parti
les intera
ting via a delta-fun
tion potential in one dimension: V (x) =
−v0δ(x). By using the 
enter of mass and the relative 
oordinate wave-fun
tion,we write the wave fun
tion as

ψ(x1, x2) = C e
iKµ

(

x1
m2

+
x2
m1

)

e−κ|x1−x2| (5.16)whi
h is translationally invariant. Here K is the CM wave ve
tor, κ = ξ−1
⊥ , and Cis the normalization 
onstant. The redu
ed density matrix for parti
le 1 is then

ρ(x, x′) =
C2

κ
e−(iKµ/m2+κ)|x′−x| [1 + κ|x− x′|] (5.17)having eigenvalues (Eq.(5.11))

ρ̂(q) =
2

π

1

κ

1

(1 + q̃2)2
, (K = 0), (5.18)whi
h is of the form Eq.(5.13) with f(q̃) ∼ (1+q̃2)−2. By introdu
ing an arbitrarily
hosen well strength v̄ or a s
ale a = ~

2/2µv̄ in Eq.(5.6), the entanglement entropyis found to be of the form of Eq.(5.15a) with
P = 1, and c0 = ln 8π − 2. (5.19)For κ → 0, ρ̂(q) → δ(q) with SvN = 0. There is a di�eren
e between κ → 0 and

κ = 0. For a one-dimensional problem with the potential of Eq.(5.1), one 
an goover to the delta fun
tion potential problem by taking a → 0 keeping V0a = v0
onstant to get the same ln κ behaviour as in Eq.(5.19). We then 
he
k for a87



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNA
3-dimensional potential well, Eq.(5.1). The relative wave-fun
tion (l = 0) for thispotential is

ϕ(r) =







A sinkr
r

r < a

B e−κr

r
r > a,

(5.20)with k and κ as de�ned earlier and 
onstants A,B determined in the usual way of
ontinuity of the wave fun
tion and its derivative. A dire
t Fourier transformationof ϕ(r) has been used to numeri
ally 
ompute the entanglement entropy. To derivean analyti
al formula, we note that the dominant 
ontribution in ρ̂(q) in the limit
aκ→ 0 
omes from the outer part. In this approximation we get

ρ̂(q) = 1

κ3
1

π2

(

1

1 + q̃2

)2

= κ−3f(q̃). (5.21)This ρ̂(q) satis�es the normalization 
ondition ∫ d3q ρ̂(q) = 1. Thus for the 3Dpotential well intera
tion, the entanglement entropy is of the form of Eq.(5.15a)with
P = 3, and c0 = 2(1 + log(4π)) ≈ 7.06205. (5.22)Exa
t numeri
al 
omputations of von Neumann entropy for d = 3 are done byusing MATHEMATICA. For a given κ with a = 1, we determine V0, the depth ofthe well and then the mat
hing 
onditions and the Fourier transform were usedto obtain the entanglement spe
tra. The entanglement entropy is then obtainedby a numeri
al integration. The results are shown in a log-linear SvN vs. κ plotin Fig. 5.3 whi
h also shows the line obtained from Eq.(5.15a) and Eq.(5.22). Itshows that SvN is negative for small κ and that it has linear ln κ dependen
e. Theapproximations show that the entropy is determined mainly by the outer part ofthe wave-fun
tion.To generalize the result to any dimension we 
arried out the 
al
ulation forgeneral d. The density matrix, solely from the outer part, is expe
ted to be ofthe form f(q̃) ∼ (1 + q̃2)−2 as in previous 
ases but then there is a divergen
eproblem for normalization for d ≥ 4. Sin
e we want Tr ρ̂ = 1, an ultraviolet 
uto�is required. This makes aκ an important variable even in the limit aκ → 0. Thespe
ialty of d = 4 is now evident.
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Figure 5.3: Plot of SvN vs. ln κ with a = 1. The 
ir
les are the numeri
al valuesand the straight line is the predi
ted line SvN = 3 ln κ+ 7.06, Eq.(5.22).The radial wave fun
tion R(r) (l = 0 state as the ground state) is,
R(r) =







A rǫ/2J|ǫ/2|(kr) for r < a

B rǫ/2H
(1)
|ǫ/2|(iκr) for r > a,

(5.23)where ǫ = 2− d, A,B determine the normalization and mat
hing of the inner andthe outer solutions. Here J and H(1) are the Bessel and the Hankel fun
tion of the�rst kind. The 
ontinuity of the wave fun
tion at r = a gives
AJ| 2−d

2 |(kc) = B (κa)−| 2−d
2 |, (5.24)under the 
ondition κ → 0 and ka → kc = π/2. Eq.(5.3) follows from Eq.(5.24),the mat
hing of log derivative and the Bessel fun
tion identities. By using thenormalization 
ondition and Eq.(5.24), we get

B =







κ̄
a

for d < 4

κ̄|2−d|/2

a
for d > 4.

(5.25)
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Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAIn the same κ→ 0 limit, with outer part dominan
e,
φ(q = 0) ≈ Bκ−

2+d
2 , (5.26)whi
h gives

ρ̂(q) = |φ(q)|2 = B2κ−(2+d) f(q̃)

≈







κ−d, for d < 4,

κ−4ad−4, for d > 4.
(5.27)So the von Neumann entropy is of the form Eq.(5.15a) with P = 4 for d > 4.In terms of the deviation from the 
riti
al point, the entropy is

SvN =
d

z(Ψ− 1)
ln |u− uc|, for Ψ < 2. (5.28)For the 
ase in hand, Ψ = d/2. The form of Eq.(5.28) brings out the universalbehavior of the entropy and has validity for potentials di�erent from Eq.(5.1), likee.g. s
ale-free 1/r2 potential [107℄. All the details of the intera
tion go in theuniversal exponents z and Ψ. The entropy diverges at the 
riti
al point and, isnegative.5.3 DNA 
onne
tionWe show the 
onne
tion of the quantum entanglement entropy to the entropyof bubbles in DNA melting. Under an imaginary time transformation, the pathintegral formulation of the quantum problem is analogous to a 
lassi
al statisti
alme
hani
al system of polymers used in the 
ontext of melting of DNA [100, 101,102, 104℄.Let us 
onsider a DNA whose two strands are two Gaussian polymers in d-dimensions and index the points (monomers) by the 
ontour length z measuredfrom one end. The native base pairing of a DNA requires that a monomer atindex z on one strand intera
ts with a point on the other strand with the sameindex z. This is the Poland-S
heraga type model [102℄ for DNA melting. Byusing one extra 
oordinate for the sequen
e or the length of the polymers, we get90



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAdire
ted polymers in d + 1 dimensions like paths in path integrals, as shown inFig. 5.2. In this representation the base pairing intera
tion maps onto the sametime intera
tion of the quantum system, time playing the role of the base pairindex. The DNA partition fun
tion as a sum over all polymer 
on�gurations isequivalent to the sum over all paths in quantum me
hani
s. The DNA Boltzmannfa
tor exp(−βH) with β as the inverse temperature and H the Hamiltonian fortwo 
hains of elasti
 
onstants Kj as
βH=

∫ N

0

[

∑

j=1,2

Kj

2

(

∂rj(z)
∂z

)2

+V (r1(z)− r2(z))]dz, (5.29)
orresponds to the fa
tor exp(iS/~) for path integrals with S the 
lassi
al a
-tion of two intera
ting parti
les under z → it. This makes the Green fun
-tion or the propagator G(x1, x2, τ |x′1, x′2, 0) equivalent to the partition fun
tion
Z(x1, x2, N |x′1, x′2, 0), (N → iτ). Here xj , x′j are the 
oordinates of the j-th strandend-points at 0 and at length N . The free energy per unit length of DNA for
N → ∞ is the ground state energy of the quantum problem.The short range base-pairing potential 
an be taken to be a 
onta
t potential ora well of Eq.(5.1). Then the pi
ture of return of the quantum parti
les within therange of intera
tion after ex
ursions outside the well gives the equivalent pi
ture ofpolymers with broken base pairs having ex
ursion away from binding and eventu-ally 
oming ba
k to the well to form pairs. This ex
ursion swells the polymer and
reates bubbles along the length of the DNA. Thermal energy opens up bubblesin the bound state of DNA. The entropy of a bubble of length N is determinedby the reunion partition fun
tion of two polymers starting together and reunitingagain at N , whi
h for large N , has the form Ω(N)=N−ΨeNσ0 , or the entropy

S ≡ ln Ω(N) = Nσ0 −Ψ lnN, (5.30)in units of the Boltzmann 
onstant kB = 1. Eq.(5.30) shows that σ0 is the bubbleentropy per unit length that survives in the thermodynami
 limit. However, thepower lawN-dependen
e whi
h gives the negative sub-extensive part of the entropyis essential for the transition and also for the bound state. The reunion exponent
Ψ determines the universality 
lass of the binding-unbinding transition and there91



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAis a melting transition if and only if Ψ > 1. See Ref. [100℄ for details.The one-dimensionality of the 
hains requires an alternating arrangement ofbound regions and bubbles as in Fig. 5.2. The arrangement allows one to writethe partition fun
tion, after Lapla
e transform with respe
t to the length (i.e. inthe grand 
anoni
al ensemble) [100℄, as
G(x, y; s) = Go(x; s)G(0, s)Go(y; s)

=
Go(x; s)Go(y; s)G

B(s, u)

1−GU(s, σ0)GB(s, u)
. (5.31)Here x ≡ {x1, x2}, y = {x′1, x′2}, Go is the Lapla
e transformed partition fun
tionof two polymers tied at one end and open at the other, 
alled the survival partitionfun
tion, and G(0, s) is the total partition fun
tion with two ends bound. In Go,the tied point is to be integrated over keeping the set x or y �xed. G(0, s) 
anbe written as a sum of a geometri
al series (see Fig. 5.2) involving the partitionfun
tions of the bound parts and the bubbles, GB(s, u) and GU(s, σ0). The freeenergy 
omes from the singularity of G(x, y, s) whi
h is either s = σ0 ≡ 0 or at

s = s0 for whi
h
GU(s, σ0)G

B(s, u) = 1, (5.32)with σ0 = 0, s0 satis�es Eq.(5.3).Near the nontrivial singularity, a pole at s = s0, the form of G(x, y, s) resemblesthe Green fun
tion in the energy eigenfun
tion expansion as
〈y|ψ〉〈ψ|x〉
E − E0

, (5.33)with ground state dominan
e. From the equivalen
e between DNA model and thequantum problem, we identify the density matrix as
ρ(x, y) ∼ Go(x; s0)Go(y; s0)/G

U(s0),so that the entanglement entropy would behave like S ∼ lnGU(s0, σ0). By usingGaussian distributions for Gaussian polymers (i.e. random walkers), one re
oversEq.(5.21).To get the behaviour of lnGU, we employ a �nite-size s
aling analysis. The92



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAphase transition in the polymeri
 system o

urs in the N → ∞ limit so that a �nite
N a
ts as a �nite size s
ale both for DNA and in the quantum problem. The �nitesize s
aling variable is N/ξz⊥ so that the entanglement entropy is proportional to
−z ln ξ⊥ ∼ 1

Ψ−1
ln | u−uc | (see Eq.(5.28)). The di�eren
e in the amplitude o

ursbe
ause of the di�erent normalization used for polymers and quantum problems.The point to note is that the entanglement entropy in the quantum problem 
omesfrom the universal non-extensive part of the entropy of the bubbles. Sin
e the fullentanglement spe
trum is known, it is also possible to 
ompute the Renyi entropy[44℄. We re
over in the appropriate limit the result quoted in Eq.(5.15a). Inthe DNA interpretation, the Renyi entropy would 
ome from many 
ir
ular singlestrands (repli
as) pairing with a large single strand, resembling the rolling 
ir
lerepli
ation of viruses. Details will be dis
ussed elsewhere.5.4 Dis
ussionA negative entropy is 
ounter-intuitive when one has the third law of thermody-nami
s in the ba
k of one's mind, though ex
eptions are known; e.g. negativeentropy is found for perfe
t gases at low temperatures or as a 
orollary of the 
las-si
al equipartition theorem. One 
an see the same feature by writing the redu
eddensity matrix in terms of an entanglement Hamiltonian, ρ ∝ exp(−βHent), in aform reminis
ent of a Boltzmann fa
tor. The diagonal form in Eq.(5.21) shows
βHent = 2 ln(1 + q2/κ2) ≈ 2q2/κ2, (for small q), (5.34)whi
h is like a 
lassi
al d-dimensional os
illator in q-spa
e, with κ2 as the e�e
tivetemperature. A dire
t 
al
ulation or use of the 
lassi
al equipartition theoremnow tells us that the entropy has d ln κ behaviour as in Eq.(5.15a). We believethis to be a generi
 feature whenever the entanglement Hamiltonian is gapless.Another way to see this emergen
e of ln κ in entropy is to 
ompare with the DNAproblem. The equivalent 
lassi
al DNA model also has a negative diverging partof entropy but that sub-extensive part vanishes in the thermodynami
 limit of theentropy per unit length. In the quantum 
ase, the equivalent limit has no su
hadvantage in �nding the entropy be
ause demanding extensivity in time dire
tionis meaningless. Hen
e the negatively diverging term is inevitable near 
riti
ality. 93



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAIn this 
hapter we show that the quantum entanglement entropy near thebound-unbound transition of two intera
ting parti
les 
omes out to be negative,and it diverges at the QCP. Using the equivalent 
lassi
al statisti
al me
hani
alsystem of DNA near the melting transition we show that the negativity of theentanglement entropy is a ne
essity and is essential for the phase transition. The
oe�
ient of the logarithmi
 term 
ontains the information of the intera
tion andthe universal behaviour of the phase transition. The 
oe�
ient is shown to berelated to the reunion exponent of vi
ious walkers. This is the �rst time in the
ontext of quantum entanglement that the negative entropy is found by expli
it
al
ulation. We argue that this log divergen
e in the quantum 
ase and the sub-extensive part in the DNA problem are linked by �nite size s
aling near the 
riti
alpoint. From the renormalization group (RG) approa
h for the DNA melting prob-lem [101, 107℄, one may infer that the entanglement entropy in
reases along theRG �ow, sin
e the 
riti
al point 
orresponds to the unstable �xed point. It hasbeen argued re
ently that entanglement 
an be used to produ
e negative entropy[105℄. The information theoreti
al meaning of the negative entropy in our 
ase isnot very 
lear. Our spe
ulation is that the negative entropy is the norm, not anex
eption near a quantum binding-unbinding transition. We feel signatures of neg-ative entropy might be dete
table in 
old atoms where intera
tions 
an be tuned tothe unitarity limit. If one 
an harness the negative entropy, one may 
ool a systemor a 
omputer and possibly may over
ome the obsta
le to 
ir
uit miniaturization.What next: In the next 
hapter, we are going to 
onsider another importantintera
tion, an inverse square potential, whi
h itself has a great importan
e asa quantum as well as 
lassi
al problem. The spe
ial points in the DNA phasetransition are again obtained from the study of the quantum problem, thus makingthe 
onne
tion of the intera
ting polymers vs. intera
ting quantum parti
les morerobust.
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Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAList of symbols
A,B Normalization 
onstants of the wave fun
tion
a Width of the potential
d Dimension
Hent Entanglement Hamiltonian
H Hamiltonian
|k〉 Basis of momentum states
λ Redu
ed strength of 1/r2 potential
m Mass
µ Redu
ed mass
N Length of polymer
Ω Reunion partition fun
tion
p, q Momentum
r Relative distan
e
σ0 Bubble entropy per unit length
SvN von Neumann entropy
T Temperature
t Time
u Dimensionless short range potential
V0 Depth of the potential well
V Potential
Ψ Reunion exponent of two polymers
Z Partition fun
tion
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6Quantum unbinding transition for a longrange potential
It is shown in the previous 
hapter that the von Neumann entropy of two par-ti
les has a d lnκ behavior at the quantum 
riti
al point (QCP) of unbinding indimensions 1 < d < 4 where κ is the inverse of the width of the wave fun
tion.Here the QCP is attained when the inverse length s
ale κ approa
hes zero. Thisis a
hieved by tuning the potential or the mass. This has been established analyt-i
ally for a 3D potential well [106℄. Also, in analogy to polymer, it is shown thatthis divergen
e is essential for the 
riti
ality and linked to the reunion behaviorof two polymers in the equivalent 
lassi
al statisti
al me
hani
al problem. In this
hapter, we study the von Neumann entropy for a QPT involving a marginal long-range potential. The equivalent 
lassi
al statisti
al me
hani
al problem involvestwo dire
ted polymers intera
ting at the same 
ontour length like a DNA withnative base pairing but with an additional 1/r2 intera
tion. This model has beenstudied using renormalization group in Ref. [107, 108℄. Sin
e the strength of thelong-range intera
tion 
hanges the nature of the transition, we study how the vonNeumann entropy 
hanges with variation of its strength and sign. In addition,we extend our study on the entanglement entropy to the Renyi entropy, whi
h isanother extensively studied quantity in the 
ontext of the quantum entanglemententropy.
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Chapter 6. Quantum unbinding transition for a long range potential6.1 Introdu
tionThis 
hapter 
onsiders two parti
les intera
ting through the three-dimensional in-verse square law potential and �nds the quantum entanglement between the parti-
les. Here we use parti
le partitioning [44℄. The Hamiltonian for the two parti
leswe shall be using is,
H =

p2
1

2m1
+

p2
2

2m2
+ V (r1 − r2), (6.1)where mi, ri and pi are the mass, position and the momentum of the ith parti
leand

V (r) =







−V0, for r < a,

−2µ
~2

g
r2
, for r > a,

(6.2)is a 
entral potential, where V0 > 0 and µ = m1m2/(m1+m2) is the redu
ed massof two parti
les. We take 2µ/~2 = 1.The inverse square potential is of immense importan
e in quantum me
hani
s[109℄. It is at the boundary of the short and long range potential. For potentialsde
aying like r−p, there is no �nite bound state if p > 2 while for slower divergen
e,i.e., p < 2, there is a �nite negative lower bound in energy. For an attra
tivepotential −g/r2 (g > 0), the kineti
 and the potential energies are of the sameorder near small r and so the bound state spe
trum depends on the value of g. Amanifestation of the borderline 
ase is in the s
ale-free nature, H(λr) = λ−2H(r).This makes, g, the dimensionless strength of the potential, a �marginal� parameterin the RG sense in all dimensions. The singularity of g/r2 at the origin preventsdis
rete bound states to o

ur. A suitable modi�
ation of the potential at small
r, e.g. by putting a 
ut o� and repla
ing the potential by a short range �nite onenear origin, gives dis
rete bound states. This is done in Eq.(6.2).It is established in quantum me
hani
s that there is no �nite energy groundstate for g > 1/4. For g < 1/4 the wave fun
tion is normalizable and the boundstate energy 
an be obtained by the standard pro
edure. In the above-mentionedrange of g, the unbinding transition 
an be obtained by tuning the strength of theshort range potential near r = 0 depi
ting the quantum phase transition. Theunbinding transition in this long range intera
tion is a unique example of a QPTwhose type 
an be �rst order (g < −3/4), 
riti
al (g > −3/4) but non-universal,and even Kosterlitz-Thouless type (g = 1/4) [108℄. The solvability and the wide97



Chapter 6. Quantum unbinding transition for a long range potentialrepertoire of QPT behavior make this model an ideal terrain for exploration of thenature of entanglement entropy around a QPT. This is what we set to do in this
hapter.A phase transition is de�ned as a singularity in the energy, asso
iated withdiverging length s
ales. In this sense the quantum unbinding transition is a gen-uine phase transition. This QPT exists be
ause time of in�nite extent plays a rolein quantum me
hani
s. It be
omes 
lear in the path integral formulation. Thequantum problem 
an be mapped onto an equivalent 
lassi
al statisti
al me
hani-
al problem of polymers under the imaginary time transformation (it → N). Thetime in the quantum problem then be
omes the length of the polymer, N , theGreen's fun
tion maps to the partition fun
tion and the ground state energy isequivalent to the free energy per unit length. The intera
tion between the poly-mers means the intera
tion of a pair of bases or monomers at the same index alongthe length of the polymers as in DNA. This is equivalent to the same time inter-a
tion of two quantum parti
les. The equivalent 
lassi
al problem in the 
ontextof melting transition of two polymers intera
ting via a potential like Eq.(6.2) hasbeen dis
ussed in Ref. [107℄ whi
h reveals that the results of the quantum problems
an be re
overed from su
h studies. Like the quantum parti
le making ex
ursioninside and outside of the well, the polymers also 
ome 
loser, they reunite, andmove further, forming swollen bubbles. The entropy of a bubble of length N is
lnΩ(N) = Nσ0 −Ψ lnN, (6.3)where Ω(N) is the reunion partition fun
tion of two polymers starting together,reuniting anywhere in spa
e again at length N , σ0 is the bubble entropy per unitlength and Ψ is the reunion exponent. The details 
an be found in Refs. [106, 107,100℄.The binding-unbinding transition of polymers has been studied in the 
ontextof the ne
kla
e model of polymers and it is found that the reunion exponent Ψdetermines the order of transition [100℄. The phase transition o

urs if Ψ ≥ 1.The transition is 
ontinuous if 1 < Ψ < 2, while it is �rst order for Ψ > 2. In threedimension, the reunion exponent is given by [107℄

Ψ = 1 + λ, with λ =

√

1

4
− g, (6.4)98



Chapter 6. Quantum unbinding transition for a long range potential
g -2 −3/4 0 < 1/4 1/4 > 1/4
λ 1.5 1 1/2 real 0 imaginaryTable 6.1: g-λ 
onversion table.where the dependen
e on g, a bit 
ounter-intuitive, is a 
onsequen
e of its marginal-ity. Here also we use the parameter λ(> 0) be
ause of its o

urren
e in the sequel.Table 1 gives the 
orresponden
e between g and λ for easy referen
e.

u

* 1

1/4
0

g λ2

9/4

bo
un

d

unbound

 1 0.5 0−0.5−1−1.5−2

 −3/4

−2

 0
 1/4

Figure 6.1: g vs. u phase diagram. The plot shows the phases and the RG�xed points in the g-u plane (u = −V0 a2). The red 
urve below g = 1/4 and
u = −0.5 show the binding-unbinding transitions governed by a line of unstablereal �xed points. The transition is �rst order for g < −3/4 and se
ond orderfor −3/4 < g < 1/4. This line is the transition line in the limit of zero rangepotential (a → 0, V0 → ∞, with u =
onstant) The bla
k 
ontinuous 
urve for
u > −0.5 shows the lo
us of stable �xed points representing the unbound phase.The dashed-dotted line at g = 1/4 is the boundary beyond whi
h the �xed pointsare 
omplex.The phase diagram and the lines of RG �xed points are shown in Fig. 6.1. Thisplot shows the phases in the g-u plane, where

u = −V0 a2, (6.5)in the unit of 2µ/~2 = 1, is the dimensionless short range potential whi
h the twoparti
le state is in. The �xed points shown here are obtained from the renormal-ization group analysis done in Ref. [107℄. The red line for u < −0.5 shows theunstable �xed points a
ross whi
h the unbinding transition takes pla
e, and the99



Chapter 6. Quantum unbinding transition for a long range potentialbla
k 
ontinuous line for u > −0.5 shows the phases by stable �xed points. For
g < −3/4, the bound-unbound transition is �rst order as Ψ > 2, whi
h is shown bythe red 
ontinuous line ending at the symbol * at g = −3/4, or, λ = 1, multi
riti
alpoint. After that the transition is 
ontinuous upto g = 1/4 with Ψ < 2. Beyondthat, where λ is imaginary, there is no real �xed point, and the system is in abound state. A
ross the g = 1/4 line, with u ≥ −0.5, a Kosterlitz-Thouless typephase transition from the bound to the unbound state 
an be indu
ed by tuning
g. The two regimes, Ψ < 2 and Ψ > 2 are governed by di�erent behaviors, withadditional log-
orre
tions at Ψ = 2.We �nd that the entanglement entropy also 
arries this signature of the spe-
ialilty of g = −3/4 or λ = 1. The entropy in the three di�erent regimes, λ < 1,
λ = 1 and λ > 1 s
ale in di�erent manners. We establish that λ = 1 behaves likea multi
riti
al point, 
ontrolling both the �rst order and the 
riti
al behavior inthe whole range −2 ≤ g ≤ 1/4.6.1.1 OutlineThe outline of the 
hapter is following. In Se
. 6.2, we des
ribe our model and themethod by whi
h we 
al
ulate the von Neumann entropy. The analyti
al resultsare presented in Se
. 6.3 and the von Neumann entropy is 
al
ulated for λ < 1.Next we present the exa
t numeri
al results done in mathemati
a and dis
ussthe behavior of the entropy and its s
aling in Se
. 6.4. Finally we 
on
lude in Se
.6.5.6.2 Model and methodEq.(6.2) is used for our study. The detailed nature of the short range potential isnot important and we take it as a simple square well potential. We 
on
entrate inthe range 0 < λ < 1.5.The redu
ed density matrix of the 
onsidered problem in the basis of momen-tum states |k〉 has the form

ρ =

∫

ddk |φ(k)|2 |k〉〈k| =
∫

ddk
e−βHent

Z
|k〉〈k|, (6.6)100



Chapter 6. Quantum unbinding transition for a long range potentialwhi
h makes the mixed state 
hara
teristi
 expli
it. Eq.(6.6) allows us to de�ne ρas a thermal density matrix with an entanglement Hamiltonian Hent at a �
titiousinverse temperature β with Z as the partition fun
tion. This thermal 
orrespon-den
e makes the von Neumann entropy equivalent to the Gibbs entropy of Hent.In Eq.(6.6), Hent is a 
-number. Consider the 
anoni
al partition fun
tion of afree parti
le at temperature T ,
Z ∼

∫

ddq exp(−βH) ∼ T d/2, (6.7)where H = ~
2q2/2m. Then the entropy be
omes,

SvN = lnZ ∼ ln, T (6.8)whi
h for very low temperature, T → 0 be
omes negative. In another way, onegets a 
onstant spe
i�
 heat C from the equipartition theorem, whi
h then givesa logarithmi
 dependen
e on temperature of the entropy,
SvN =

∫ T

C/TdT ∼ lnT. (6.9)The Sa
kur-Tetrode 
onstant, S0/R, the entropy of one mole of an ideal gas at tem-perature T = 1K and at one atmospheri
 pressure, 101.325 kPa, is a fundamental
onstant [110℄. Its value is −1.1648708. Note that this fundamental entropy isnegative. Classi
al harmoni
 os
illator is no ex
eption. It is well-known that the
ondition SvN ≥ 0 does not hold for the 
lassi
al 
ontinuous statisti
al me
hani
s[111℄.6.3 Analyti
al resultsIn this se
tion, we derive the asymptoti
 behavior of φ(q). In parti
ular we �ndthat the entropy is dominated by the outer part, i.e. the ex
ursion in the 
lassi
allyforbidden region, if the unbinding transition is 
riti
al. This happens for 0 < λ ≤ 1.For �rst order transition, the inner part also 
ontributes signi�
antly.The ground state has zero angular momentum. For this s-state, the radial part101



Chapter 6. Quantum unbinding transition for a long range potentialof the S
hrodinger equation then reads [112℄:
∂2R

∂r2
+

2

r

∂R

∂r
+ (V0 + E)R = 0, for r<a, (6.10)

and,
∂2R

∂r2
+

2

r

∂R

∂r
+
( g

r2
+ E

)

R = 0, for r>a, (6.11)where E is the ground state energy of the parti
le des
ribing the behavior of thetwo parti
les in relative 
oordinate. The radial part of the wave fun
tions in therelative 
oordinate are then obtained by solving Eqs.(6.10) and (6.11),
R(r) =















A

r
sin kr, for r ≤ a, (6.12a)

B√
r
H

(1)
λ (iκr), for r ≥ a, (6.12b)with A and B as the normalization 
onstants,

k2 = V0 − |E|, κ2 = |E|. (6.13)We 
hoose λ to be positive and it is given by Eq.(6.4). In the limit of κ → 0,the unbinding transition takes pla
e. This makes our interest in studying the vonNeumann entropy in this limit.The 
ontinuity of the wave fun
tions at r = a gives,
A

a
sin ka =

B√
a
H

(1)
λ (iκa). (6.14)The mat
hing 
ondition of the derivative of the wave fun
tion at r = a gives therelation between k and κ whi
h determines the value of k for a given κ,

ak cot ak = iκa
H

(1)
λ−1(iκr)

H
(1)
λ (iκr)

− λ +
1

2
. (6.15)Given the values of λ and a, one 
an get the threshold or minimum value of k, km,for just one bound state. For κ = 0,

akc cot akc =
1

2
− λ, (6.16)102



Chapter 6. Quantum unbinding transition for a long range potentialis the 
ondition for the transition point when the ground state energy E → 0. For
λ = −1/2, kc = 0 and λ → ∞ gives akc = π/2. But as we take λ ≥ 0, there isalways a kc for any λ.Now 
onsider a small deviation from the 
riti
al value of k, k = kc − δ where
δ ∼ V0 − Vc. Then, from Eq.(6.15),

(akc − aδ) cot(akc − aδ) ∼







(κa)2λ, for λ < 1,

κ2a2, for λ > 1,
(6.17)or,

|E| ∼ κ2 ∼







δ1/λ, for 0 < λ < 1,

δ +O(δ1/(λ−1)), for λ > 1.
(6.18)These show that as V0 → Vc ≡ k2c , E remains 
ontinuous, as it should. For λ < 1,

E approa
hes zero tangentially while for λ > 1, there is a nonzero slope at κ = 0.This dis
ontinuity of slope 
lassi�es the λ > 1 transition as �rst order. Despitethat, the higher derivatives on the bound side ∂nE/∂δn would show divergen
eslike a 
riti
al point.The normalization 
onstants A and B are found by using the 
ontinuity 
on-dition and taking the limit κ→ 0 (see Appendix for details)
|B|2 ∼







κ2, for λ < 1,

κ2(aκ)2λ−2, for λ > 1,
(6.19)and,

|A|2 ∼







(aκ)2−2λ/a, for λ < 1,

1/a, for λ > 1.
(6.20)At λ = 1, there are log 
orre
tions whi
h we do not get into here. The log 
orre
tionappears in the Ne
kla
e model for polymers whenever the reunion exponent Ψ(Eq.(6.4)) is an integer. The log appears in Eq.(6.15) via H(1)

0 for λ = 1. Now oneknows the full wave fun
tion and its limiting κ behavior.The redu
ed density matrix has eigenvalues |φ(q)|2, where q is the momentumspa
e variable. To get these eigenvalues, the Fourier transformation of the wave-103



Chapter 6. Quantum unbinding transition for a long range potentialfun
tion needs to be done,
φ(q) =

1

(2π)3/2

∫

d3r eiq.rR(r) = φi(q) + φo(q), (6.21)where the subs
ript i, o refer to the inner (r < a) and the outer (r > a) part. TheFourier transform of the inner part (Eq.(6.12a)) is
φi(q) =

A

q

1√
2π

[

sin(k − q)a

k − q
− sin(q + k)a

q + k

]

, (6.22)and of the outer part (Eq.(6.12b)) is
φo(q) = |B| κ−5/2 2

π

√
2 Γ

[

5

4
+
λ

2

]

Γ

[

5

4
− λ

2

]

2F1

(

5

4
+
λ

2
,
5

4
− λ

2
;
3

2
;−q̃2

)

−|B|
∫ a

0

dr
√
r
sin qr

q
Kλ(κr), (6.23)where q̃ = q/κ, 2F1 is the hypergeometri
 fun
tion and Kλ is the modi�ed Besselfun
tion. The last integral in Eq.(6.23) is 
onvergent for all λ < 3/2 and therefore
an be ignored in the aκ→ 0 limit.The limiting small κ dependen
e of the inner and the outer parts of the wavefun
tion from Eqs.(6.22) and (6.23) are,

φi(q) =







κ̄1−λa3/2fi(aq) if λ < 1,

a3/2fi(aq) if λ > 1,
(6.24)and

φo(q) =







κ−
3
2 fλ(q̃) if λ < 1,

κ−
3
2 κ̄λ−1fλ(q̃) if λ > 1,

(6.25)where q̃ = q/κ and fi is a well-behaved fun
tion. Eq.(6.24) is for large q̃.From Eqs.(6.24) and (6.25), we see that the double limit κ → 0, λ → 1 issingular be
ause of the term κ̄1−λ. This identi�es (κ = 0, λ = 1) as a spe
ial point.From this we also identify (1 − λ) ln κ as an appropriate s
aling variable. Thiss
aling variable will o

ur below in the analysis of the numeri
al results.For λ < 1, i.e., 1 − λ > 0, κ̄1−λ → 0 as κ → 0 and therefore, the 
ontributionof outer part dominates over the inner part in the von Neumann entropy. Without104



Chapter 6. Quantum unbinding transition for a long range potentialmu
h loss, one 
an then write the entropy with the outer part only (Eq.(6.25)),
SvN ≈ −

∫

d3q |φ|2 ln |φo|2

= 3 lnκ + cλ, (for λ < 1), (6.26)with
cλ =

∫

dq̃ q̃2fλ(q̃) ln fλ(q̃). (6.27)As per our interest, we extra
t the κ-dependent term and 
all the rest cλ, whi
h isa fun
tion of other parameters. The main result is that there is a log divergen
eof SvN as κ→ 0.6.4 Exa
t numeri
al resultsTo study the nature of the entanglement entropy, over the whole range of λ we takere
ourse to exa
t numeri
al 
al
ulation using mathemati
a for the 3-dimensionalpotential well. We 
ross-
he
k our predi
tion of Eq.(6.26) and then show a multi-
riti
al s
aling that 
overs the range 0 < λ < 1.5.6.4.1 Proto
olAlthough V0 is the tuning parameter, it is more 
onvenient to use the length s
aleas the independent parameter. With this treading of κ for V0, our proto
ol is likethis: Given the values of κ and λ, the value of km was determined from Eq.(6.15),with km < π that assures us the ground state As κ→ 0, km → kc. Then the 
orre-sponding normalization 
oe�
ients A and B were found using the normalization
ondition and the 
ontinuity equation, i.e., by doing the r-integrations of the innerand the outer parts of the wave fun
tion in Eq.(6.35). These 
onstants are usedin the Fourier transformed inner and outer parts of the wave fun
tion, Eqs.(6.22)and (6.23), to 
al
ulate the von Neumann entropy. In the �nal integration for
SvN = −Tr ρ ln ρ, we put an upper 
ut o� making sure that the �nal numbers areindependent of this 
hoi
e of 
ut o�. Also the intervals of the integration rangehave been 
hosen 
arefully espe
ially for q ∼ κ. This gives numeri
ally exa
t num-bers for the entropy for the given κ and λ. This pro
edure is repeated for various105



Chapter 6. Quantum unbinding transition for a long range potential
λ and κ. We set a = 1.6.4.2 Behavior of the von Neumann entropy SvN

λ dependen
e:The plots of the numeri
al values of the von Neumann entropy SvN against ln κand λ show di�erent behavior of entropy in di�erent ranges of λ, viz., λ < 1, λ > 1and λ = 1.
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Figure 6.2: SvN vs. λ for various κ. In the plot S = SvN + 8 ln 2
π
. The plot showsthat the entropy diverges for λ ≤ 0 as κ → 0. The dashed line marked as κ → 0is the expe
ted behavior of the entropy for λ > 1.Let us �rst look at the plot of SvN vs. λ in Fig. 6.2, where di�erent linesrepresent di�erent values of κ. For λ < 1, the von Neumann entropy for small

κ saturates to a negative value as λ is varied and that saturation value dependson the value of κ. The smaller the value of κ, the more negative is the entropy,and κ → 0 takes the saturation value to negative in�nity. The long range part ofthe potential is attra
tive for λ > 0.5 and repulsive otherwise. But the entropyshows no signature as it 
rosses λ = 0.5. On the other hand, for λ > 1 where thetransition be
omes �rst order, the entropy does not de
rease mu
h with κ, ratherbe
omes independent of κ. It remains �nite for λ > 1 and diverges at λ = 1 like106



Chapter 6. Quantum unbinding transition for a long range potentialthe bla
k dashed 
urve in Fig. 6.2. SvN be
omes positive at λ ∼ 1.3. It seems thatthis point has no signi�
an
e otherwise.
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Figure 6.3: SvN vs. ln κ for various λ. Here, as in Fig. 6.2, S = SvN + 8 ln 2
π
. For
omparison, 3 lnκ and 3

2
ln κ are shown by bla
k lines with the symbols + and ×.The inset shows that the entropy is κ-independent for λ > 1.

κ dependen
e:The behavior of the von Neumann entropy with λ and κ be
omes more 
learwhen one looks at the plot of SvN vs. κ (Fig. 6.3). This plot shows the di�erent
hara
teristi
 behaviors of SvN in the three distin
t ranges of λ: λ < 1, λ = 1and λ > 1. For small κ, all λ < 1 
urves have slope 3 when plotted against ln κ,i.e. for λ < 1, the entropy is of the expe
ted form 3 ln κ+ cλ whi
h is shown fromanalyti
al 
al
ulations. To get 3 ln κ, one has to see below some value of κ, andas λ approa
hes one, even smaller κ needs to be 
onsidered. But no matter how
lose to 1 is the value of λ, one gets 3 lnκ until λ < 1. Exa
tly at λ = 1, the slope
hanges suddenly to 3/2 and hen
e
SvN =

3

2
ln κ+ c1, for λ = 1. (6.28)A somewhat di�erent behavior is seen for the rest with λ > 1 (inset of Fig. 6.3).For small κ, the 
urves rea
h a λ-dependent 
onstant value and do not 
hange with

κ. Clearly the entropy has no κ-dependen
e for λ > 1 and it is �nite. By de�nition,these 
onstant values are cλ and SvN(λ > 1) = cλ. So, we see that there are three107
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lasses:
SvN =



















3 lnκ + cλ for λ < 1,

3
2
ln κ+ c1 for λ = 1,

cλ for λ > 1.

(6.29)
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Figure 6.4: The plot of cλ vs. λ, showing a divergen
e at λ = 1.On cλNow we have knowledge of the κ dependent part in the von Neumann entropyfor di�erent λ. The next question is how the cλ behaves with λ, and if theyhave di�erent nature in di�erent regimes of λ. So, we 
olle
t the cλs a

ording toEq. eq
h6:s
la and plot against λ. This plot (Fig. 6.4) shows a divergen
e at λ = 1indi
ating that (1 − λ) is an important quantity. The data points are �t into thefun
tion
cλ = a+ b/(1− λ), (6.30)via a and b, and the �tted set of parameters are (4.52, 1.38) and (3.76, 1.48) for λgreater and less than one respe
tively. The divergen
e of cλ at λ = 1 leads to thepossibility of a redu
tion of the slope of SvN from 3 to 3/2 when plotted against

ln κ. 108
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Figure 6.5: Data 
ollapse: (SvNλ − SvN1 )/3
2
ln κ vs (1− λ) lnκ.Data 
ollapseWe noted that for λ > 1, cλ and hen
e the entropy itself, has a (1−λ) dependen
eand for λ < 1, the entropy has a ln κ term with cλ = f(1 − λ). It was pointedout in Se
 III, below Eq.(6.25) that (1− λ) lnκ seems to be a s
aling variable. Wetherefore look at the plot of the entropy vs. (1−λ) ln κ. The entropy has di�erentbehaviors on the two sides of the λ = 1 making it a spe
ial point. Also, it hasa separate s
aling behavior. This drives us to plot (SvNλ − SvN1 )/(3

2
ln κ) against

(1 − λ) lnκ. We see a good data 
ollapse (see Fig. 6.5) for various sets of data ofFig 6.2. Hen
e, one 
an write the s
aling form of von Neumann entropy:
(SvNλ − SvN1 )/

3

2
ln κ = F((1− λ) ln κ). (6.31)Fig. 6.5 shows that (SvNλ − SvN1 )/3

2
ln κ rea
hes +1 for small enough κ for λ < 1and −1 for λ > 1. On
e we get the s
aling behavior of the entropy at λ = 1, thesame away from this spe
ial point 
an also be obtained.
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Chapter 6. Quantum unbinding transition for a long range potential6.4.3 Behaviour of the Renyi entropyThe Renyi entropy is 
al
ulated by using the same wave fun
tion and the sameMATHEMATICA program, by using the formula of the Renyi entropy that,
Sn =

1

1− n
ln Trρn with ρ = |φ(q)|2. (6.32)The limit n → 1 gives the von Neumann entropy. The entropy is 
al
ulated forvarious λ, for λ < 1, λ = 1 and λ > 1, near n = 1.
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Figure 6.6: Renyi entropy: plot of Sn against λ for various n.The Renyi entropy, when plotted against λ for various n, looks similar to thatof the von Neumann entropy. All the 
urves merge after a 
ertain value of λ, for
λ > 1.4, and the Renyi entropy be
omes positive. Similarly for λ < 1, all the
urves saturate to an n-dependent 
onstant. Fig. 6.6 shows the variation of theRenyi entropy with λ for κ = 10−10. As κ de
reases, the saturation value be
omesmore negative for λ < 1. This indi
ates that eventually it goes to negative in�nityin the limit κ→ 0. At λ = 1, the divergen
e of the Renyi entropy depends on thevalue of n.
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κ dependen
eThe diverging behaviour be
omes more evident when one plots the Renyi entropyagainst κ (Fig. 6.7 a,b, and Fig. 6.8). For λ < 1, the 
urves of Sn vs. ln κ arelinear with slope 3 (see Fig. 6.7(a)). For λ = 1, the slope is not �xed but 
hangeswith n (see Fig. 6.7(b)). The variation of the 
oe�
ient of ln κ with n is shown inFig. 6.9(b).For λ > 1, one �nds a κ-independent entropy below some 
riti
al value of n,
nc, whi
h again depends on the value of λ (see Fig. 6.8 a,b).
n dependen
eIn addition, we show, in Fig. 6.10, the n-dependen
e of the Renyi entropy for thethree ranges of λ, viz., λ < 1, λ = 1 and λ > 1. The nature of the 
urves 
hangesbe
ause of the extra n-dependen
e in the 
oe�
ient of ln κ for λ = 1.Fig. 6.9(a) shows the behaviour of the additive κ-independent 
onstant cn,λ for
λ = 1 (see Eq.(6.33)).The existen
e of a 
ut-o� nc, below whi
h the entropy Sn is independent of κ,be
omes evident from the plot of 
oe�
ient of ln κ vs. n as shown in Fig. 6.11(a).The value of nc seems to vary with λ in a linear fashion, nc = λ − 0.1, for λ > 1(see Fig. 6.11(b)). 111
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Figure 6.9: The plots show (a) cn,λ vs. n, and (b) f1(n) (
oe�
ient of ln κ, seeEq.(6.33)) vs. n, both for λ = 1.Combining the results for all λ for the Renyi entropy, we then write,
Sn =































3 lnκ+ cn,λ, for λ < 1,

f1(n) ln κ+ cn, for λ = 1,






cn,λ, for λ > 1, n < nc(λ),

fλ(n) lnκ+ cn,λ, for λ > 1, n > nc(λ).

(6.33)
A s
aling form of the Renyi entropy involving an nc and n-dependent 
oe�
ientof ln κ is expe
ted, but yet unknown. 112
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Figure 6.11: (a) The plot shows fλ(n) vs. n (
oe�
ient of ln κ, see Eq.(6.33)). Itshows the existen
e of a spe
ial value of n, below whi
h the Renyi entropy Sn isindependent of κ. (b) The variation of nc with λ.6.5 Dis
ussion and 
on
lusionIn this 
hapter we studied the von Neumann entropy SvN and the Renyi entropy
Sn, the most 
ommon measures of the entanglement entropy, for an inverse squarepotential in three dimensions.The von Neumann entropy behaves in di�erent ways for three di�erent ranges ofmodi�ed intera
tion strength λ and given by Eq. (6.29). For λ < 1 and λ = 1, theentropy has a diverging nature as one approa
hes quantum 
riti
al point by tuning
κ, ex
ept for λ = 1 the prefa
tor is di�erent from that for λ < 1. The behavior ofentropy is 
ompletely di�erent for λ > 1, where the κ-dependen
e of the entropyvanishes. There is a 1

1−λ divergen
e in the entropy. These three distin
t 
lasses
ollapse onto a single 
urve when (SvNλ −SvN1 )/3
2
ln κ is plotted against (1−λ) ln κ.This data 
ollapse indi
ates that there is a 
ommon s
aling behavior of the entropyfor any λ and that λ = 1 is spe
ial. Be
ause of the dependen
e of the divergingfa
tor on (1 − λ), one has to be 
areful in taking the required limit of κ → 0 asthat would give a log 
orre
tion in entropy for λ = 1. For g > 1/4, λ is imaginarywhi
h we do not 
onsider here. Here we fo
used on the multi
riti
al point at λ = 1.There is one more multi
riti
al point at λ = 0 with KT transition whi
h has notbeen studied so far. 114
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Figure 6.12: The path dependen
e of entropy. Two di�erent limits of approa
hing
{λ = 1, κ → 0}. (a) First κ → 0 and then λ = 1 (red line). The entropy divergeslike 1/(1− λ). (b) First λ → 1 and then κ → 0 (blue line). The entropy divergeslike ln κ Thi
k line along x-axis for λ ≤ 1 denotes divergent entropy. (
) For λ < 1,taking the limit κ → 0 (bla
k verti
al line with arrow) leads to divergent entropyand SvN remains so along the horizontal stret
h.The nature of the divergen
e of the entanglement entropy at λ = 1 dependson the path of approa
hing λ = 1 in a λ-κ plane. Diagrammati
ally it has beenshown in Fig. 6.12. If we take the limit κ → 0 �rst and then λ = 1, the entropydiverges like 1/(1 − λ) (shown by red line (a) in Fig. 6.12), and like ln κ for theother way around (see the blue line (b) in the same �gure). For λ < 1, the
κ → 0 line 
orresponds to SvN = −∞, but for λ > 1 the same line gives a �nitevalue for entropy. The path dependen
e of Fig. 6.12 summarizes the features ofthe entanglement entropy, with λ = 1, κ = 0 as a spe
ial point 
ontrolling thebehavior in its neighborhood. The data 
ollapse of Fig. 6.5, then, suggests thatthe paths should be 
lassi�ed by the 
onstant value of X = (1− λ) ln κ.The Renyi entropy is studied for the same intera
tion. The behaviour for λ < 1is same as the von Neumann entropy, i.e., for λ < 1, the Renyi entropy is of theform, Sn = 3 lnκ + cn,λ. The origin of an extra n-dependen
e in the behaviour of
λ = 1, Sn = f(n) ln κ + cλ, is not very 
lear. Like the von Neumann entropy, Snis independent of λ above some nc. We �nd a linear dependen
e of nc on λ. One115



Chapter 6. Quantum unbinding transition for a long range potentialwould then expe
t an n-dependent s
aling of the Renyi entropy.For λ < 1, restri
ting to the 
riti
al 
ase, we see ρ(q) ∼ |φ(q)|2. These are theeigenvalues of the density matrix. Now the redu
ed density matrix ρ des
ribes amixed state, though the full ground state is pure. Being a mixed state, we mayrepresent ρ as a �thermal� density matrix, ρ ∼ exp(−βHent), as done in Eq.(6.6).Sin
e the entanglement spe
trum is known, we have
βHent ≈ ln |2F1|2 ≈

1

2

q2

κ2
, for q → 0, (6.34)identifying β = 1/κ2 and Hent = q2/2. As mentioned before for this Hamiltonian

SvN = d
2
lnT . Sin
e in this 
ase T ≃ κ2, we �nd SvN ∼ d lnκ.What next: In the next 
hapter, we study the sto
hasti
 paths viewing poly-mers length as time. A polymer then 
an be 
onsidered as a random walker. Theproblem of random walk is itself is a vast area of study. We 
on
entrate on thee�e
t of the random medium on the mean square displa
ement, 
orrelation andthe persisten
e of the random walker in a disordered medium.Appendix : Cal
ulation of the normalization 
on-stants A and BThe normalization 
onstants A and B are found using the 
ontinuity 
onditionand taking limit κ→ 0, that

4π

[
∫ a

0

|A2| sin2 kr dr +

∫ ∞

a

r|B2H
(1)
λ

2
(iκr)| dr

]

= 1.The 
ontinuity 
ondition, Eq.(6.14), repla
ing A by B,
[

(

2πa− π

k
sin 2ak

) | H(1)
λ (iκa) |2
sin2 ka

+ 4π

∫ ∞

a

r | H(1)
λ (iκr) |2 dr

]

|B|2 = 1. (6.35)Now we use the form of the Hankel fun
tion in the limit κ→ 0,
| H(1)

λ (iκr) |2 ∼ 2λΓ2(λ)

π2
r−2λ, (6.36)116



Chapter 6. Quantum unbinding transition for a long range potentialand rewrite the outer part integral in the normalization 
ondition in a simplerform,
∫ ∞

κa

r | H(1)
λ (ir) |2 dr

=

∫ 1

κa

[

|H(1)
λ (ir)|2 −2λΓ2(λ)

π2
r−2λ

]

dr +

∫ 1

κa

2λΓ2(λ)

π2
r−2λ dr+

∫ ∞

1

r |H(1)
λ (ir)|2 dr

=
Γ2(λ)

π2 21−λ
1− (aκ)2(1−λ)

1− λ
+ ... (6.37)Putting Eqs.(6.37) and (6.36) in the Eq.(6.35) after simpli�
ation one gets,

|B|2 =
π

2λ+1Γ2(λ)

[(

λ2 + a2k2 − 1/4

ak2

)

(aκ)−2λ +
1

κ2
1− (aκ)2(1−λ)

(1− λ)

]

,(6.38)whi
h in the extreme limit of κ→ 0 gives the κ dependen
e of B,
|B|2 ∼







κ2, for λ < 1,

κ2(aκ)2λ−2, for λ > 1.
(6.39)On
e B is obtained, the κ-dependen
e of the other 
onstants A 
an be found usingthe 
ontinuity 
ondition,

|A|2 ∼







(aκ)2−2λ/a, for λ < 1,

1/a, for λ > 1.
(6.40)
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Chapter 6. Quantum unbinding transition for a long range potentialList of symbols
A,B Normalization 
onstants of the wave fun
tion
a Width of the potential
p, q Momentum
d Dimension
g Strength of 1/r2 potential
Hent Entanglement Hamiltonian
H Hamiltonian
|k〉 Basis of momentum states
λ Redu
ed strength of 1/r2 potential
m Mass
µ Redu
ed mass
N Length of polymer
Ω Reunion partition fun
tion
Ψ Reunion exponent of two polymers
r Relative distan
e
σ0 Bubble entropy per unit length
SvN von Neumann entropy
Sn Renyi entropy
T Temperature
t Time
u Dimensionless short range potential
V0 Depth of the potential well
V Potential
Z Partition fun
tion
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7Random walks in disordered media
Anomalous di�usion arising from broad waiting time distributions, has been usedto model a variety of physi
al phenomena. For example, dynami
s of 
arrier di�u-sion and re
ombination in disordered media, the ele
tri
al properties of disorderedmedia, photo-
ondu
tivity of amorphous insulating materials, frequen
y depen-dent 
ondu
tivity of hollandite et
. have been des
ribed in terms of a 
ontinuoustime random walk (CTRW) [48℄-[118℄.Many physi
al situations are en
ountered whi
h 
an be modeled as randomwalks in quen
hed disordered media, e.g., 
ondu
tivity of amorphous materials orquasi-one-dimensional ioni
 
ondu
tors, dynami
s of domain walls or dislo
ationset
. In this 
hapter, we study the random walk with a power law distribution oftransition rates in whi
h the spreading be
omes subdi�usive [119℄-[123℄, namely,

〈x2(t)〉 ∼ t2β , with β < 1/2. (7.1)This 
hapter is organized as follows. In Se
. 7.1 we dis
uss the model and itsrelevan
e to physi
al systems. The results are dis
ussed in Se
. 7.2. Consider-ing four models of disorders, the behaviour of the mean square displa
ement, thewaiting time distribution, two time 
orrelation fun
tion and the persisten
e prob-ability are observed in this se
tion. In Se
. 7.2.5 we try to give explanations to theanomalous behaviour of the persisten
e probability of one of those four models.
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Chapter 7. Random walks in disordered media7.1 Latti
e models and simulationsThe random walk is performed on a 1D regular latti
e of L sites, with periodi
boundary 
onditions, i.e., the site i = L + 1 is identi�ed with the �rst site i = 1.Only hopping between nearest neighbor sites are allowed and the hopping rates
Wi,j are 
hosen from the power law distribution Eq. (1.60). This is 
arried outnumeri
ally by �rst generating a uniform random number r in the interval [0, 1]and using the transformation w = r1/(1−α) with suitable res
aling by a 
onstant.There are two standard 
hoi
es in assigning the hopping rates Wi,j between twoneighbouring sites, namely,(i) Random barrier model or bond disorder (RB): Hopping rates are assignedto the bonds, Wi,i+1 =Wi+1,i. I.e. the transition rate from i to i+1 is the same asthe rate for the reverse transition and thus bond 
onne
ting two neighboring sitesa
ts as a symmetri
al barrier (Fig. 7.1)

wi,i−1

i−1,iw

i−1 i i+1

wi,i−1

i−1,iw

i−1 i i+1

Figure 7.1: The bond disorder or random barrier model. In this model the hoppingrate Wi,i−1 =Wi−1,i.(ii) Random trap model or site disorder (RS): Random hopping rate is assignedto ea
h site whi
h a
ts as a trap, Wi,i+1 = Wi,i−1. I.e. the transition rate from asite i is independent of the target site (i ± 1) and on
e the random walker 
omesout of the trap it has equal probability to jump to either of the two neighboringsites (Fig. 7.2).Further, for ea
h of the above type of assignment of transition rates one 
ande�ne further an annealed or a quen
hed model. In the annealed models, a newtransition rate Wi,j is assigned ea
h time the walker visits a site i. In the quen
hedmodels, a set of Wi,j's for the entire latti
e is 
hosen at the beginning of thesimulation and is referred to as a disorder realization.Hen
e, we have four models, namely, (a) Annealed Site disorder (AS), (b)120



Chapter 7. Random walks in disordered media
i−1 i i+1

wi,i+1

i−1 i i+1

wi,i−1 i,i−1w wi,i+1

Figure 7.2: The site disorder or random trap model. In this model the hoppingrate Wi,i−1 =Wi,i+1.Annealed Bond disorder (AB), (
) Quen
hed Site disorder (QS) and (d) Quen
hedBond disorder (QB).In ea
h Monte Carlo Step (MCS), the random walker at site i makes an attemptto jump to either neighbouring site (j = i ± 1) with a probability proportional
Wi,j . All the Monte Carlo simulations have been performed on a latti
e of L = 103sites with periodi
 boundary 
ondition. The random walker starts at an arbitrarily
hosen site at t = 0 and the simulations are 
arried out for a typi
al maximum time
T ∼ 106MCS. For the annealed models, the observed quantities are averaged overall initial 
onditions randomly 
hosen with equal weight. For the quen
hed models,a further averaging over disorder realizations is done (typi
ally 103 samples).The di�eren
e between quen
hed disorder and annealed disorder models liesin the fa
t that the mean waiting time at a given site is the same for ea
h visitof the site for the quen
hed models, thus indu
ing strong 
orrelations betweenthe su

essive waiting times en
ountered. It makes the quen
hed problem moredi�
ult to analyze.7.1.1 Relevan
e to real systemsThe 
hoi
e of power law distribution of hopping rates �nd many appli
ations inmodeling various physi
al systems. Some examples are following [113℄:(i) The temperature dependen
e of the dynami
al 
ondu
tivity exponent ob-served in the one-dimensional superioni
 
ondu
tor hollandite [124℄.(ii) Continuum random systems su
h as the Swiss-
heese model 
an be mappedonto random per
olation networks with a power-law distribution of bond 
ondu
-tivities [125℄.(iii) The problem of biased di�usion in random stru
tures su
h as the random121



Chapter 7. Random walks in disordered media
omb or the per
olation system 
an be modeled by biased di�usion in a linear
hain with a power-law distribution of transition rates [126, 127℄.(iv) Anomalous relaxation in spin glasses 
an be interpreted in terms of sto
has-ti
 motion in phase spa
e with a power-law distribution of transition rates [128,129℄.7.2 Numeri
al resultsWe present below, the numeri
al results for the mean square displa
ement 〈x(t)2〉,waiting time distribution ω(τ), two-time in
remental 
orrelation fun
tion C(t1, t2)and persisten
e probability P (t) for all the four models for 10 values of α in theinterval [0, 1].7.2.1 Mean square displa
ement 〈x2(t)〉The disorder averaged square displa
ement 〈x2〉 for all 
ases 
an be written in ageneral form:
〈x2〉 ∼ t2β. (7.2)The wandering or spreading exponent β for the four models we 
onsider are knownfrom various analyti
al arguments [67, 69, 48℄, whi
h are veri�ed by our numeri
alresults.1. Annealed bond disorder: β =







1
2
, 0 ≤ α < 1

2
,

1− α , α > 1
2
,2. Annealed site disorder: β = 1−α

2
, 0 ≤ α < 1,3. Quen
hed bond disorder: β = 1−α

2−α , 0 ≤ α < 1,4. Quen
hed site disorder: β = 1−α
2−α

, 0 ≤ α < 1.7.2.2 Waiting time distribution ω(τ)The distribution of the hopping rates, ρ(W ) ∼ W−α, in turn produ
es a waitingtime distribution ω(τ) ∼ τ−µ. For the annealed models and the quen
hed sitemodel, the waiting time distribution ω(τ) and ρ(W ) are simply related, sin
e the122
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Figure 7.3: The waiting time distribution ω(τ) vs. τ for (a) annealed site disorderand (b) annealed bond disorder for di�erent α.(a) (b)
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Figure 7.4: The waiting time distribution ω(τ) vs. τ for (a) quen
hed site disorderand (b) quen
hed bond disorder for di�erent α.random walk en
ounters the barriers or traps with the same probability they are
hosen from. Thus, for the annealed and quen
hed site (AS, QS) models we have
ω(τ)dτ = ρ(W )dW and with τ = 1/W , we obtain µ = 2 − α. For the annealedbond disorder (AB), the mean waiting time τ at a given site i is related to thetransition rates of two bonds on either side as τ−1 = Wi,i−1 +Wi,i+1. This resultsin a mean waiting time distribution with µ = 3 − 2α. For the quen
hed bond(QB) disorder a large τ would result when (Wi−1,i +Wi,i+1)

−1 is large, i.e. for avalley en
losed by two large barriers (Fig. 7.1). But these are di�
ult to rea
h aswell and hen
e are sampled less in quen
hed bond disorder model. In this 
ase thebonds are not sampled a

ording to the original disorder distribution and thus the123



Chapter 7. Random walks in disordered mediawaiting time distribution 
an not be related to ρ(W ) as simply [48℄.We �nd that the waiting time distributions found in our numeri
al simulationsare 
onsistent with the analyti
al predi
tions:
ω(τ) =























τ−(3−2α) for annealed bond (AB), (7.3a)
τ−(2−α) for annealed site (AS), (7.3b)
τ−(4−2α) for quen
hed bond (QB), (7.3
)
τ−(2−α) for quen
hed site (QS). (7.3d)Figs. 7.3 and 7.4 show the variation of waiting time distribution with time. Thevalue of β obtained in the previous se
tion for the 
ases AB, AS are 
onsistent withthe above results for the waiting time distribution (β = µ−1

2
). For the QS problem,it 
an be seen that even though the waiting time distribution is the same as thatfor AS, the exponents β in the two 
ases are di�erent. This is a 
onsequen
e of thetemporal 
orrelations indu
ed due to the quen
hed randomness in the model. Forthe AB model, for 0 ≤ α < 1

2
, µ > 2 and thus one gets normal di�usion, whi
h is
onsistent with the value of β observed for this regime.7.2.3 Two point in
remental 
orrelation fun
tion C(t1, t2)(a) (b)
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Figure 7.5: (a) Plot of C(t1, t2) vs. |t1 − t2| for quen
hed bond disorder. Here Hdenotes the Hurst exponent. (b) Plot of C(t1, t2) vs. t1 for quen
hed site disorder.Here t2 is kept �xed and region of interest in t1 >> t2.Although all of the models studied have similar s
aling behaviour, the two point124



Chapter 7. Random walks in disordered mediain
remental 
orrelations behave qualitatively di�erently. For annealed disorder, theform of two point in
remental 
orrelation is known from a representation in termsof 
oupled Langevin equations as shown by Baule et al. The two-point 
orrelationfor quen
hed disorder is not analyti
ally known. The same for annealed disorderdisplays the non-stationary 
hara
ter of the CTRW pro
ess. For annealed bondand annealed site disorder it is expe
ted to be |t2β1 − t2β2 | and from simulations wedo get results 
onsistent with these. Further, for quen
hed site disorder we seethe same behaviour of two-point 
orrelation (see Fig. 7.5(b)) whereas for quen
hedbond disorder
C(t1, t2) ∼ |t1 − t2|2β ,for long times. To show the stationarity more 
learly, we plot C(t1, t2) against

|t1− t2| in Fig. 7.5(a). In log s
ale, this plot is a straight line for large |t1− t2|. Forthe other 
ase, we take t1 ≫ t2 and keep t2 �xed, and plot against t1. The reasonof plotting against t1 is that, in this limit,
|t2β1 − t2β2 | = t2β1

∣

∣

∣

∣

∣

1−
(

t2
t1

)2β
∣

∣

∣

∣

∣

∼ t2β1 . (7.4)We see, only quen
hed bond disorder has a stationary two point in
remental 
orre-lation while others have de
aying 
orrelations. The stationarity 
an be observed inthe plot of C(t1, t2) vs. t1 for �xed |t1−t2|. Hen
e, in spite of having the same s
al-ing behaviour of the mean square displa
ement with the same dynami
 exponent
β, C(t1, t2) behaves qualitatively di�erently for the quen
hed bond disorder.7.2.4 Persisten
e probabilityFigs. 7.6 and 7.7 are the log-log plots of P (t) vs. t for di�erent models of disorder.In ea
h graph there are ten data sets for ten di�erent α values. Asymptoti
ally,these plots are straight lines with slope θ whi
h is extra
ted for ea
h data setusing standard �tting routines. In Fig. 7.8, exponents θ and β are plotted against
α simultaneously. It is observed that the persisten
e exponent θ is equal to the
orresponding β in all 
ases ex
ept for quen
hed bond disorder, in whi
h 
ase

θ = min(1− β, 2β). 125
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e probability P (t) vs. t for (a) annealed site disorder and (b)annealed bond disorder for di�erent α.The main result of our work is this observation and possible explanations for thisqualitatively nontrivial result.(a) (b)
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e probability P (t) vs. t for (a) quen
hed site disorder and(b) quen
hed bond disorder for di�erent α.We put together all the exponents related to the di�usion, waiting time, two-time 
orrelation fun
tion and persisten
e for all the four models in table 7.1.7.2.5 Explanation of the observed P (t)As the value of α in
reases, the probability of en
ountering deep traps or highbarrier in
reases resulting in trapping of the random walker. This de
reases theprobability of 
oming ba
k to the staring point. Thus, one would normally expe
t126



Chapter 7. Random walks in disordered mediaAnnealed Quen
hedBond Site Bond Site
t0.5; 0 < α < 1

2
t2β; 0<α<1 t2β ; 0<α<1 t2β ; 0<α<1

〈x2〉 t2β ; 1
2
< α < 1

β = 1− α β = 1−α
2

β = 1−α
2−α β = 1−α

2−α

ω(τ) τ−(3−2α) τ−(2−α) τ−(4−2α) τ−(2−α)

C(t1, t2) |t22β − t1
2β | |t22β − t1

2β | |t1 − t2|2β |t22β − t1
2β|

θ
[P (t) ∼ t−θ ] β β min(1−β, 2β) βTable 7.1: The table shows the forms and values of di�erent quantities of interestin the four types of disorder models: annealed bond, annealed site, quen
hedbond, and quen
hed site disorder 
ases. The quantities in gray are known fromearlier works and 
on�rmed by our simulations. The remaining data are from oursimulations. The quen
hed bond disorder 
ase has entirely di�erent persisten
eand 
orrelation properties from the other three models.this would result in in
rease of persisten
e probability and hen
e de
rease in theexponent θ. This, indeed, is what is observed in the three types of disorder, andfor the quen
hed bond disorder for α > 1/2. However, 
ounter-intuitively, forthe quen
hed bond disorder 
ase with α < 1/2, the persisten
e exponent a
tuallyin
reases with α (see Fig. 7.8). One 
ould possibly argue that as the walker 
annot go farther with in
reasing α be
ause of lower mean square displa
ement, it hashigher probability to 
ome ba
k to the starting point. But this explanation failsfor α > 1/2 for the quen
hed disorder 
ase and the other three models. By oneof these or similar qualitative arguments, one would expe
t a monotoni
 θ-α plot.In the following, we use a number of di�erent analyti
 and s
aling arguments toexplain the observed nontrivial dependen
e of θ andα.Spa
e-time res
alingThe simplest way to predi
t the persisten
e exponent in the disordered system, isto 
ompare with the persisten
e probability P0(t) for the pure system via a straight127
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Figure 7.8: Persisten
e exponent θ vs. α for di�erent models of disorder.forward spa
e-time res
aling. In a pure medium,
P0(t) ∼

1

tθo
, with θ0 =

1

2
. (7.5)For a random walk in an ordered medium, or for a normal Brownian motion,

t ∼ 〈x2〉. Thus, we rewrite P0(t) in terms of the 〈x2(t)〉,
P0(t) ∼

1

〈x2〉θ0 . (7.6)Now we use the s
aling relation for 〈x2〉 in the disordered system to get the 
orre-sponding P (t),
P (t) ∼ 1

(t2β)θo
∼ 1

tβ
. (7.7)I.e., for the disordered system θ = β. Surprisingly, this simple s
aling argumentworks quite well as seen from the numeri
al results, in all 
ases, ex
ept for thequen
hed bond disorder 
ase. Below, we put a 
ouple of seemingly independentarguments to explain the nontrivial results for the quen
hed bond disordered 
ase.

128



Chapter 7. Random walks in disordered mediaFra
tional Brownian motion (fBm)A pro
ess is termed as a fra
tional Brownian motion (fBm) if the asymptoti
 twopoint in
remental 
orrelation is stationary in time,
C(t1, t2) = 〈[x(t1)− x(t2)]

2〉 ∼ |t1 − t2|2H .The exponent H is 
alled the Hurst exponent. Depending on the value of H , thepro
esses are divided into three types.(i) H = 1/2: normal Brownian motion,(ii) H > 1/2: a pro
ess with positively 
orrelated in
rements,(iii) H < 1/2: a pro
ess with negatively 
orrelated in
rements.It is shown in [130, 131℄, that for an fBm, the persisten
e probability is given by
P (t) ∼ t−(1−H).For the quen
hed bond disorder 
ase we found that the two point in
remental
orrelation fun
tion is: C(t1, t2) ∼ |t1 − t2|2β for large |t1 − t2|. Thus, identifyingthe pro
ess as an fBm with Hurst exponent H = β, we predi
t the persisten
eexponent as θ = 1− β. This relation holds quite good for α < 1/2 (Fig. 7.9).However, for α > 1/2, the predi
tion 
learly does not hold. In the followingsubse
tion, we use the s
aling arguments based on the �rst passage time to havea quantitative understanding of of the persisten
e exponent for α > 1/2.First passage time distribution (FPT)The �rst return time problem 
an be de
omposed into two �rst passage time prob-lems. I.e. The random walk starts at x0 at t = 0 and rea
hes a spe
i�ed target xfor the �rst time at t = t′ and then starting from x 
omes to X0 at time t = t. Letus denote F (x, t|x0, t0) as the probability that the walker rea
hes x for the �rsttime at time instant t, starting from x0 at time t0.Here we re
all that the �rst passage time is related to the survival probability
S(t), the probability that the walker does not rea
h to the spe
i�ed point uptotime t through

F (t) = −dS
dt

∼ t−(1+γ).We �nd numeri
ally that S(t) de
ays with a power law S(t) ∼ t−γ and from thesimulation results we �nd that γ = β (see Fig. 7.9). Hen
e the �rst passage time129
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Figure 7.9: The survival probability for the quen
hed bond disorder. (a) The plotshows the survival probability with time in log-log plot. (b) This is the plot of thesurvival exponent γ for di�erent α. Here, x-axis is the value of α and the y-axis isthe survival exponent γ. The red 
urve shows the variation of β with α.distribution is
F (x, t|x0, t0) ∼ t−(1+β).Thus, the �rst return probability density N(t), that the walker 
omes ba
k tothe starting point, x0, for the �rst time at t, is

N(t) =

∫ t

0

F (x0 +∆, t′|x0, 0) F (x0, t|x0 +∆, t′) dt′

=

∫ t

0

t′
−(1+β)

(t− t′)−(1+β) dt′

∼ t−(1+2β). (7.8)This in turn yields the persisten
e probability P (t), whi
h is the probability thatthe walker rea
hes the target for the �rst time at t′ > t as,
P (t) =

∫ ∞

t

N(t′) dt′ ∼ t−2β . (7.9)As for both fBm and FPT based arguments, there seems to be no restri
tion ontheir appli
ability based on the value of α. Hen
e we 
onje
ture that the persisten
eprobability is in fa
t a sum of the two terms, ea
h resulting from a di�erent set of130



Chapter 7. Random walks in disordered mediaa
tual dynami
al traje
tories, P (t) = At−(1−β) + Bt−2β for large t. This form of
P (t) easily explains the two exponents for two di�erent ranges of α as the slowlyde
aying part will dominate the long time behaviour and hen
e the asymptoti
persisten
e exponent. Thus, for large t, min(1 − β, 2β) dominates implying that
θ = min(1− β, 2β) whi
h mat
hes with our numeri
al results rather well.Similarly, for other three models, i.e., annealed site, annealed bond and thequen
hed site, we similarly write the persisten
e probability as a sum of two terms
P (t) = At−β+Bt−2β. In these 
ases, the asymptoti
 behaviour is always dominatedby the �rst term and hen
e the persisten
e exponent θ = β for the entire range of
α. This is 
onsistent with the analyti
al known result for the survival probability
S(t) ∼ t−β for t→ ∞.7.3 Summary and 
on
luding remarksIn this 
hapter, we have studied numeri
ally the persisten
e properties of a randomwalker in 1D latti
e where disorder in the hopping rates is introdu
ed. We 
onsiderfour di�erent models depending upon whether the rates are introdu
ed on bondsor sites and as annealed or quen
hed. The rates are 
hosen from a power lawdistribution. The persisten
e exponent obtained for annealed bond, annealed siteand quen
hed site disorder agrees very well with the predi
tion from a simple spa
e-time s
aling argument. However, the 
orresponding exponent for the quen
hedbond disorder model is qualitatively di�erent. The exponent in this 
ase variesnon-monotoni
ally with the disorder strength exponent α. Using two di�erentarguments, one based on a result for fra
tional Brownian motion (fBm) and anotherusing the �rst passage time distribution we show that the persisten
e probabilityin this 
ase is a sum of two terms P (t) = At−(1−β) + Bt−2β . Thus, one of theterms dominates depending on whether β is greater or less than 1/3, i.e., whether
α is greater or less than 1/2. We further argue that though in 
ases of annealedbond and site disorder and quen
hed site disorder we see a single exponent atlarge time, two exponents, β and 2β are present simultaneously for all α. At largetime only the slowly de
aying part, having exponent min(β, 2β) = β, shows upin our results. For the quen
hed bond disorder 
ase, based on numeri
al studieswe 
onje
ture that there seems to be two 
lasses of dynami
al traje
tories, both131



Chapter 7. Random walks in disordered mediapresent for all α, responsible for two exponents. It would be interesting to analyzethe persisten
e properties of quen
hed bond disorder in some more detail as itmay provide some new information and explore properties relating to the randommotion of parti
les in this kind of disordered media.List of symbols
α Hopping rate exponent
β Root mean square (RMS) displa
ement exponent
C(t1, t2) Two-point in
remental 
orrelation fun
tion
F (t) First passage time distribution: F (t) ≡ F (x0, t|x0, 0)
F (x, t|x0, t0) First passage time distribution that the walker rea
hes

x for the �rst time at t starting from x0 at time t0
γ Exponent of survival probability distribution
H Hurst exponent
l(t) RMS displa
ement of a random walker after time t
µ waiting time exponent-1
N(t) First return probability
ω(τ) Waiting time distribution
P (t) Persisten
e probability upto time t
ρ(W ) Hopping rate distribution
S(t) Survival probability
θ Persisten
e exponent
T ln t

t, τ Time
Wi,j Hopping rate from i-th to j-th site
x(t) Position of the random walker at time t
〈x2(t)〉 Mean square displa
ement of a random walker after time t
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8Summary
This thesis 
ontains some studies on sto
hasti
 paths, espe
ially in the 
ontextof unbinding transition of polymers. The unbinding transition o

urs when theintera
tion between the two polymers are varied, or, in the 
ase of the DNA, thepulling for
e on the strands of a double heli
al bound DNA is in
reased. Theoverall qualitative features for this phase transitions and the phase diagram arevery similar to some other system, though the me
hanisms or the detailed dynami
sare 
ompletely di�erent. We explore su
h 
onne
tions for better understanding andgeneri
 nature of the problem.The �rst 
hapter shows that by using thermodynami
 arguments, one 
an un-derstand the phase diagram and the nature of the phase transition. Our fo
us is onthe interfa
es between phases rather than looking at the phases. By emphasizingthe fa
t that the double heli
al state is a broken symmetry phase 
ompared to thedenatured phase, we introdu
e the heli
al order parameter to des
ribe melting.Along with this, we put in another modi�
ation that the pulling for
e a
tuallytries to penetrate the zipped phase but experien
es resilien
e and de
ays to zeroafter some distan
e. In our study, we �nd that the 
ombined e�e
t of the heli
alorder and the for
e penetration into the zipped phase 
an a
tually produ
e a phasetransition whi
h is se
ond order. Moreover, the 
ompetition of the two indepen-dent length s
ales, one for the damage in the heli
al order through the interfa
eand the other for the penetration of for
e upto a length, 
an 
hange the sign ofthe interfa
ial energy from positive to negative, resulting in a se
ond order phasetransition. Be
ause of the similarity of the formulation to that of the super
on-du
tors, we name the two 
lasses of DNA as Type I (positive surfa
e energy) and133



Chapter 8. SummaryType II (negative surfa
e energy).In the next 
hapter, we move our attention from a �xed for
e 
ase to a periodi
one, the unzipping of a DNA by an external for
e on the strands, where the for
eis varied periodi
ally. Be
ause of the �rst order nature of the zipping-unzippingphase transition at the 
riti
al for
e, one would expe
t hysteresis for a periodi
for
e. The results from the MD simulation on a DNA hairpin shows that thestandard averaging over many 
y
les of the for
e suppresses the a
tual pi
tureof the states. Here we emphasize the point that one should look at the time-resolved loops, the quantity of interest being the average separation between thetwo strands over one 
y
le. The two-state nature of the problem reminds us ofanother simpler and well-known system, viz., an Ising ferromagnet. Very similarresults are shown to be produ
ed from the MC simulation of an Ising ferromagnetunder a periodi
 magneti
 �eld. The relevant quantity for the Ising 
ase is theaverage magnetization over one 
y
le. In terms of that we propose a dynami
alphase diagram in the magneti
 �eld vs. frequen
y plane. The main lesson onelearns from this study is that though the two systems, DNA and the Ising magnet,have 
ompletely di�erent dynami
s, they behave in a similar way under the periodi
drive. The dynami
al phase diagram reveals the possibility of the phase transitionby varying only the frequen
y of the external drive.When a system undergoes a �rst order phase transition, then under a peri-odi
 variation of the parameter indu
ing the phase transition, the system showshysteresis. It is be
ause of the mismat
h in the time s
ales of the relaxation ofthe system and the applied drive. The relaxation time be
omes very large nearthe phase transition. In this 
ontext, in the third 
hapter, we dis
uss a methodto get the equilibrium quantities from nonequilibrium measurements by using thework theorem and the histogram te
hnique. We present a dynami
s-independentproof of the work theorem and generalize the theorem to any thermodynami
 in-tensive parameter in
luding the temperature and any arbitrary number of them.The nonequilibrium work 
onne
ting to 
on�gurations are used to 
onstru
t aspe
ial matrix whose prin
ipal eigen-ve
tor is the equilibrium probability distribu-tion. This 
hapter also shows how an equilibrium 
urve 
an be obtained from thenonequilibrium hysteresis loop by using appropriate weight fa
tors. The resultsare veri�ed by the MC simulation of an Ising magnet.The fo
us of the fourth and the �fth 
hapters is on exploring the 
onne
tion of134



Chapter 8. Summarythe polymer unbinding transition to the quantum disso
iation. An imaginary timetransformation maps a 
lassi
al polymer partition fun
tion into a quantum propa-gator. Thus a problem of two intera
ting polymers maps on to the problem a twoquantum parti
les intera
ting via a potential. In the 
ase of the quantum prob-lem, the QPT is a
hieved by varying the strength of the intera
tion. The quantumdisso
iation being a quantum phase transition (QPT), we use the quantum entan-glement to observe the signatures of the QPT. The von Neumann entropy showsthe spe
ial features of a polymer unbinding transition. This is veri�ed analyti-
ally for a short-ranged potential and by exa
t numeri
al 
al
ulations for inversesquare potential. The spe
ial points or the RG �xed points show di�erent s
alingbehaviours whi
h are justi�ed from the polymer entropy. We �nd the quantumentanglement entropy to be negative whi
h 
an be justi�ed when thought of interms of the polymer language. The study of the quantum entanglement is thenextended to the Renyi entropy where we have extra 
omplexities, though similartype of the s
aling behaviour is expe
ted. The exa
t s
aling form is not yet knownto us.Lastly, we go beyond the polymer pi
ture to 
onsider a polymer as a randomwalker. We study the random walk problem in presen
e of disorder in the medium.We look at the mean square displa
ement, two-point 
orrelation fun
tion, and thepersisten
e probability as a fun
tion of the strength of disorder. The persisten
eprobability 
an be identi�ed as the reunion probability of the polymer. We studyone-dimension random walker with a power-law distribution of hopping rates. A
-
ording to the assignment of the hopping rates to the left and to the right, one
an have random bond model and random site model. For a disordered medium,one may think of two kinds of disorder averaging, quen
hed and annealed. Thus,we 
onsider all the four 
ases; quen
hed site, quen
hed bond, annealed site, an-nealed bond disordered 
ases. For su
h types of models with broad waiting timedistribution, generated by the power-law hopping rate distributions, makes thedi�usion anomalous, more spe
i�
ally, sub-di�usive. Although we start from thesame hopping rate distributions, the four 
ases have di�erent waiting time dis-tributions, two-point 
orrelations and the persisten
e properties. The results ofthe quen
hed site, annealed bond, and annealed site disordered 
ases are in linewith our expe
tations, while the quen
hed bond disorder has qualitatively di�er-ent behaviour. We use a result from the fra
tional Brownian motion (fBm) and an135



Chapter 8. Summaryargument based on the �rst passage times to explain the nontrivial dependen
e ofthe persisten
e exponent in the 
ase of quen
hed bond disorder.In 
on
lusion, this thesis sees a few polymer problems from a new angle andexplores the 
onne
tions to other systems whi
h are apparently di�erent. Thebehaviour of the polymers and DNA are studied in equilibrium and nonequilibrium.Viewing a polymer as a �u
tuating path, the paths are studied through worktheorem, as quantum traje
tories, and as random walkers. Thus di�erent topi
sare uni�ed through the polymer language, hen
e revealing its generi
 nature.
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