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Synopsis

In this thesis we study non-equilibrium stochastic paths, especially in the context of
the binding-unbinding transition of polymers and DNA. The phases and the phase
transition of DNA being the main attraction, we study the same under a force for
both equilibrium and non-equilibrium cases. In course, we study an even simpler
two-state system, the Ising ferromagnet, to obtain similar results. The results of a
DNA system often show similarities to other systems. For example, the phase dia-
gram resembles that of superconductors, an imaginary time transformation makes
the polymer problem equivalent to a quantum problem, thereby, and, the reunion
exponents and the order of phase transition are shown to be recovered from the
equivalent quantum problem by studying the quantum entanglement. Such con-
nections to other topics, which are apparently or mechanism-wise different, are
explored.

We start with the equilibrium phase transition of a double-stranded DNA (ds-
DNA) under a force. A dsDNA is a two-stranded long double helical molecule. Dur-
ing many biological processes like replication, transcription, etc., the two strands
of the dsDNA are needed to be opened up partially or fully. In order to make this
possible, a few proteins, like helicases, sit at the junction of the two strands and
exert a force on the strands. When the strands are pulled in opposite directions
by a force, the two strands get separated if the applied force exceeds a critical
value. This unzipping transition is first-order below a critical temperature. At
this critical temperature, the dSDNA melts to a pair of single stranded DNA (ss-
DNA), even in the absence of any external force on the strands, and this melting
transition is second-order. This phase transition is studied by different methods
starting from renormalization group studies to various experiments looking at the
phases. Among the theoretical studies, the most common is modeling a dsDNA as
two interacting polymers.

In the first chapter, we show that a thermodynamic study can produce the
features of the zipping-unzipping phase diagram of a dsDNA. We look at the
interface between the zipped and the unzipped phases and classify the existing
DNAs into two types in terms of the sign of the interface energy. Most of the
present theoretical models ignore the helical structure to simplify the model. Our

study shows that considering the helical order along with the external force under
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certain circumstances can even make the unzipping transition second order, which
has experimental evidence in a topology-preserved phase transition. The crucial
role is played by the competition between two independent length scales induced
by the helical order and the external force. This fact along with the phase diagram
of a DNA matches with that of superconductors. This tempts us to name the two
classes as Type I and Type II.

In reality, the essential unbinding proteins like helicases get energy from pe-
riodic ATP consumption, thus producing a periodic force on the strands of the
DNA. Motivated by this, in the second chapter, we study a DNA hairpin under a
periodic force. The analogous two-state Ising magnet shows a similar behaviour
under a periodic magnetic field, though the detailed dynamics are different in these
two systems. For an Ising ferromagnet under a magnetic field, there is a first order
phase transition from a positively magnetized state to a negatively magnetized
state. Under a periodic force, near the phase transition, the mismatch between
the time scales of the applied field and the relaxation time of the system gives
rise to a forward and a backward branches to yield a magnetization vs. magnetic
field loop. This is called hysteresis. In hysteresis, usually a loop averaged over
many cycles receives attention. But we find that this averaging suppresses the
actual picture of the states. In this work, we quantify the phases by looking at
the time-resolved loops and propose a dynamical phase diagram. This diagram
is qualitatively similar to that obtained from a periodically driven DNA hairpin.
The importance of this dynamical phase diagram, apart from the usual one, is
that it shows the possibility of going from one phase to the other just by varying
frequency alone, keeping the amplitude of the external drive fixed.

In the third chapter, we concentrate on the hysteresis of the Ising ferromagnet.
Here aim is to extract the equilibrium discontinuous phase transition curve in the
magnetization vs. magnetic field plane, which, in a real situation is impossible to
get, no matter how long we allow the system to equilibrate. In achieve our goal, we
utilize the work theorem and the histogram method. The work theorem relates the
equilibrium free energy difference between any two states to the non-equilibrium
work done in going from one state to the other. The histogram technique is widely
used in simulation which extrapolates the equilibrium distribution given at some
parameter value to that of another. We show that the work theorem can be ob-

tained from the histogram transformation. Then we generalize the work theorem
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to an arbitrary number of intensive parameters including the temperature, and
express the equilibrium distribution as the principal eigenvector of a specially con-
structed matrix consisting of the non-equilibrium measurements of the work done.
Using this weighted averaging, one can get a much better phase transition curve
which can not be obtained using a simple averaging.

Next we look at the quantum problem equivalent to the polymer unbinding
transition. A classical path connecting two points in the configuration space can
be equivalently thought of as a trajectory in a quantum problem under the imag-
inary time transformation. Then the partition function in the classical problem
maps on to Green’s function in the quantum problem, the sum over all configu-
rations represents the sum over all trajectories in quantum case, and so on. This
equivalence maps the classical problem of two interacting polymers onto the quan-
tum problem of two particles. Then our interest is in the unbinding transition of a
pair of bound quantum particles. This depicts a quantum phase transition (QPT),
governed by quantum fluctuations. To observe the signature of the QPT, one im-
portant quantity is the quantum entanglement entropy, the most common of which
is the von Neumann entropy. The quantum entanglement entropy quantifies the
pure quantum correlation in the system. For both the short-range and long-range
potentials, we compute the von Neumann entropy and find that near the QPT, it
diverges negatively. We discuss the behaviour of the entropy and its connection to
the reunion exponents in the fourth chapter.

Viewed as a stochastic path, a polymer can be interpreted as a classical random
walker with length of the polymer as time. A study of the paths of such a random
walker is the topic of the fifth chapter. The classical walker is associated with
a power law distribution of the hopping rates. The mean squared displacement
and the persistence probability, the probability that a walker does not return to
its starting point upto time t, are observed. We show that the quenched and the
annealed averaging with the site and the bond disorders give different persistence
behaviours, though all have the same behaviour for the mean squared displacement.

To summarize, our focus is to study paths, mostly in the form of polymers, and
the phases of DNA, both in equilibrium and non-equilibrium. In the first part,
the DNA phases are observed under pulling force at one end. Both static and
periodic forces are discussed, with the corresponding phase diagrams. The results

are then compared from a much simpler system of an Ising magnet, and for this case
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we even go further by utilizing variants of the work theorem. The mapping to the
equivalent quantum problem of interacting particles led us to look at the unbinding
transition through the quantum entanglement entropy. Several interesting features
of the entanglement entropy, as an entropy by itself, is discussed along with its
connection to the reunion exponents of two interacting polymers. The last part is
a study on the behaviour of return to the origin of a random walker in a random
medium, a problem synonymous to loop formation in polymers. This thesis gives
new insights about polymers and DNA problems as these are looked from new
angles, e.g. by looking at time-resolved states, by exploring the connections to
other systems like superconductors and quantum problems, thus bringing out the

vastness and the universal nature of the polymer problems.
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Introduction

Among all disciplines in physics, statistical physics occupies a privileged position as
the natural framework to understand the behaviour of the biological systems at the
molecular level by using the concepts of stochasticity, fluctuations, metastability
and thermal activation. In this thesis, we discuss some biological phenomena that
occur inside living cells. Our main focus is to study the phases and the phase tran-
sition of DNA. The behaviour of DNA is found to have very nice similarities with
other non-biological systems like superconductors. It finds applicability in much
wider general topics like random walks. The behaviour of the complex structure
of DNA under certain circumstances resembles that of a much simpler system like
a two-state Ising spin system. These connections are explored in this thesis along
with some results of relevance in biology, obtained for DNA and polymers by using

thermodynamic and statistical tools of Physics.

1.1 DNA

DNA (Deoxyribonucleic acid) is an essential molecule that encodes the genetic
instructions used in the development of living organisms. Genetic information is
encoded as a sequence of four types of nucleotides: Guanine (G), Adenine(A),
Thymine(T), and Cytosine(C). Most DNA molecules are double-stranded helices,
consisting of two long polymers of simple units called nucleotides. This arrange-
ment of two nucleotides binding together across the double helix is called a base
pair. This binding is created by hydrogen bonds, which can be broken and re-
joined. The two strands of a DNA in a double helix can therefore be pulled apart
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into two single stranded DNA (ssDNA) either by a mechanical force or at high

temperature. These are called unzipping phase transition and melting of DNA.

1.1.1 Phase transition of DNA

The phase transition can happen by various means like (i) temperature induced
melting or denaturation, (ii) force induced unzipping, or (iii) pH induced unzipping

or chemical unzipping.

Force induced unzipping:

The theoretical models for the separation of a double stranded DNA (dsDNA) are
based on a simple extension of the Poland Scheraga model [1], in which the two
DNA strands are homogeneous ideal polymer chains interacting with each other
only at the same contour length. A constant force applied at one end pulls apart
the two strands of the DNA. Consider two polymers each of length N under the
influence of an applied pulling force g at one end (z = N). The Hamiltonian of

dsDNA in the continuum can be written as [2],

"= /dz[— (@) _K(?j) +V(r1(z),r2(z))] /ONdzg (gﬁ)
(1.1)

where r;(z) is the d-dimensional position vector of a monomer at a length 2 along
the contour of the ith strand, V (ry, ry) is the binding potential, and r(z) = ry(2) —
ro(z) is the relative coordinate. The dsDNA unzips to two single strands if the
pulling force exceeds a critical value g. [2]. This unzipping is a first order phase
transition as the separation between the strands increases discontinuously as g

approaches g.. The unzipping of dsDNA can be studied in two ensembles.

e Fized force ensemble: A constant pulling force g is applied on the DNA. The
relevant free energy is the Gibbs free energy G(T), g).

o Fized distance ensemble: The separation x between the strands is kept con-

stant. The relevant free energy is the Helmholtz free energy F(T), x).

The phase diagram in the force(g)-temperature(7’) plane contains two phases,

namely the zipped phase, in which the DNA is a double stranded chain, and the

2
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unzipped phase, in which the strands of the DNA get separated from each other.
It is known that a dsDNA can be converted to two single strands by increasing the
temperature to 80C-100C. Unzipping is an initial step in biological processes like
DNA replication and RNA transcription which requires the aid of some enzymes
like helicases, polymerases etc. However, to account for the unzipping in the cel-
lular medium, where it takes place at physiological conditions 37C and at neutral
pH, one needs to consider the unzipping by force which comes from the mechanical

force exerted on the dsSDNA by the enzymes to open it up.

9 Unzipped

Figure 1.1: Phase diagram of the force induced unzipping transition. Here ¢.(7T') is
the critical force for unzipping and 7, is the critical temperature for melting when
no force is applied.

Fig. 1.1 shows the phase diagram of DNA unzipping by a force in the force-
temperature plane. The line g.(T") separates the two phases. Here g, is the critical
force required for unzipping and is dependent on temperature. To get a force-
induce transition one must stay below a critical temperature 7., which is the
melting temperature when no force is applied. DNA in its double helical form
shows a resilience against an external pulling force. The bound state does not
allow a force g applied at an end to penetrate up to a critical force g = g., above
which the DNA gets unzipped [2, 3, 4, 5, 6, 7]. The transition is first order for
temperatures 7' < 7T, where 7T, is the denaturation(melting) temperature in the
absence of any force [8]. In some models there happens a re-entrance phenomenon,
as shown by the dashed line in Fig. 1.1, where at low temperatures, the critical force
decreases with the temperature. The re-entrance is due to the low temperature
entropy of the double stranded DNA.
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Temperature induced melting:

When a solution of DNA is heated above some temperature, the dsDNA gets
denatured. The melting starts at the ends of the DNA, and at region which is
rich in AT. This subsequently destabilizes adjacent regions of helix, leading to a
progressive melting of the whole structure at a well defined temperature known
as the melting temperature (7,,,). The thermal denaturation of DNA is reversible.
When the heated solutions of denatured DNA are slowly cooled, single strands
often meet their complementary strands and reform regular double helix. The DNA
denaturation has been studied extensively by various models which are mainly
based on the Poland Scheraga model [1], or on the Peyrard Bishop model [9]. All
these models agree that the thermal denaturation of the DNA is a phase transition,
but the order of the transition depends on the model used. Some models [10, 11,
1, 12, 9] show it is a continuous transition while others [10, 13, 14| show it is

discontinuous. Ref. [15] reviews on thermal denaturation of DNA.

Chemical denaturation:

The dsDNA also denatures by extreme pH conditions. The unzipping by using
chemical agents in neutral pH is known as chemical denaturation [16]. The pH of
melting depends on the mole fraction of GC pairs on the DNA. Larger the mole
fraction of GC pairs, the higher the pH of melting. The denaturation of DNA at
neutral pH is caused by a number of chemical agents, such as urea and formamide,

by disrupting the hydrophobic forces between the stacked bases.

Exact solution of the DNA unzipping problem

Let us consider a dsDNA as two directed polymers on a 1+ 1 dimensional square
lattice. It starts walking from the origin (2 = 0). Two polymers are not allowed
to cross each other. The base pairing is put in by considering a contact energy
—ep (65 > 0) for each contact when separation (x) between the two strands is zero.
One end of the DNA is anchored and the force is applied at the other end. Fig. 1.2
shows a schematic picture.

Let d;(z) be the partition function in the fixed distance ensemble. Then one
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Figure 1.2: An oriented square lattice. Two polymers (red lines) starts from r = 0
and moves along the bonds connecting two crossing points without crossing each
other in upward direction. An external force g is applied at one end.

can write the recursion relation as,
dt+1(.’1§') = [dt<x + 1) + 2dt<$’) -+ dt<.§U — 1)] [1 -+ (eﬁeb — 1) 5:1:,0:| s (12)

where (5 is the inverse temperature. As an initial condition of polymers held fixed
and joined at one end, one has, dy(z) = €4, . To solve, one can take a generating

function for the partition function as,
d(z,2) =) 2'dy(z) = X (2) A(2), (1.3)
t

where A\ and A are to be determined. Using this ansatz, one gets,

_1—22—\/1—4,2

A :
2z

(1.4)

and
1

T 1- z(2+ Nefe’

(1.5)



Chapter 1. Introduction

The singularities of the generating functions are then,
2 = 1/4, (1.6)

and

z=1—eBo —1 e P (1.7)
The zero force melting takes place when z; = 29, i.e. at T, = 1/1n(4/3).

Fixed force ensemble: In the fixed force ensemble, the generating function is

written as,

D(z,6,9) = Zeﬁgz Z Zdy(z) = Zeﬁgr)\x(z)A@) = #(Zz)eﬁg’

N—
—
—t
oo
N

which has the g-dependent singularity at

1

= 1.9
2+ 2 cosh g (1.9)

z3
Note here that Eqs.(1.6), (1.7) and (1.9), correspond to the free energies of the
unzipped state at zero force, of the zipped state which is independent of force, and
of the unzipped but stretched (by g) state, respectively. More explicitly, the free

energies per monomer are,

1 1
G.(T,0) = 3 Inz = 3 In4, (1.10)
1 1
G.(T,g) = 3 Inzy = 3 Inyv1—ePBo1—ePo (1.11)
Gu(T,g9) = %11123 = —%an— %ln(l—i—coshg), (1.12)

which will be mentioned in Chapter 2. Here the subscripts u and z refer to the

unzipped and the zipped phases respectively.
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1.1.2 Interacting polymers
Necklace model

The necklace model captures the features of the phase transition of interacting
polymers in any dimensions [17] provided the configurations have predominantly
a one-dimensional structure, though they may spread in transverse directions in-
definitely.

A Ng
> -
v vV v A vV Vv v
C DI A
A B A 5 B A A
B

Figure 1.3: A necklace of bubble (B), of length ng, and bound (A), of length n4
segments.

Any configuration of this model consists of alternating segments of microstates
labeled A, consisting of a bound part of length n,4, and B, consisting of an open
part or bubble of length ng (see Fig. 1.3). The free energy per unit length of the

whole configuration is f(7'), at temperature 7', where

i 1
Bf(T)=— lim NIHZN(T)’ (1.13)

N—o0

with Zy as the partition function. To calculate the free energy it is convenient to

consider a generating function,
G(2,T) =Y 2NZn(T). (1.14)
N=0

If 2y is the singularity of G(z) closest to the origin of the complex z-plane, then

the limiting free energy would be,

BF(T) = In 2(T). (1.15)

In a similar way, the generating functions for the A state and the B state can be
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constructed,

Ga(z) = ZQ,‘;‘Z”, Gp(z) = Zsz”, (1.16)

n n
where Q4 and QP are corresponding canonical partition functions. Often the
bubble partition function QF is taken as
QF ~ e /n?, (1.17)
with oy as the bubble entropy per monomer and ¥ as the reunion exponent (dis-
cussed in the next subsection).
Now if a Boltzmann factor v is associated for the junctions AB or BA, and

one puts the condition that the polymers start and end with configuration A, then

G(z) can be written as,
G(Z) = GA<Z)/ [1 — UZGA(Z)GB@:)} . (1.18)

The singularity of G4(z) and Gg(z) will give the corresponding phases, but the

smallest root of the equation
v?Gp(2) = 1/GA(2), (1.19)

will correspond to a new bound phase. A transition takes place if the necklace
goes from this new state to the open B-type phase. An analysis of Eq.(1.19) shows
[17] that below the transition temperature 7., with ¢t = (T. — T') /T,

f = oo(T) =AY 4 - for 1<V <2, (1.20)
f = oo(T)— At + A"+ ..., for ¥ >2 (1.21)

where Eq.(1.20) shows a critical behaviour and Eq.(1.21) has a first order transi-
tion. There is no phase transition for ¥ < 1 and the system remains in the bound
state. Note here the change of the order of the phase transition with the value of
W, which will later be connected to the interaction strength of the inverse square

potential in the context of quantum entanglement entropy near dissociation.
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Reunion of two polymers

Let us consider two Gaussian polymers, joined at one end (z = 0), doing random
walks. The elastic energy for each chain is given by H = fON dz(dr/dz)?, where r
is the d-dimensional vector of monomer at z. The partition function, or the total

weight of all possible walks to reach r, starting from r = 0, is then,

—O'/Ne—T‘Q/(QbQN)

(2N )d/2 ’

e

Z(r,0) ~ (1.22)

where e~V is the total partition function of all possible walks of N steps obtained
by integrating Z(r,0) over r. Now the probability that the walker reaches r after

N steps is,

Z
(I‘, O) ~ nfd/2.
Ztotal

Then from Eq.(1.22), by putting » = 0, one gets the bubble partition function, that

R(r,0) = (1.23)

two walkers start from r; = ro = 0 and meet at r after N steps, as the product of

two individual partition functions,

e~ N —r2/N

Zs(r,0) ~ N

with 1 = d, (1.24)

where we have put b = 1 for brevity. The reunion exponent for meeting at partic-
ular point is denoted by 1 and reunion anywhere is denoted by W. For the reunion

anywhere, one has to integrate over r, in which case it becomes,

—oN

Zoy = /derQ(r, 0) ~ & with U = d/2. (1.25)

NY

Hence the reunion exponents for two noninteracting Gaussian polymers are [18§],

¢ = d for noninteracting walkers, reunion at a particular point, (1.26)

U = d/2 for noninteracting walkers, reunion anywhere. (1.27)

In the case of interacting polymers the Hamiltonian looks like Eq.(1.31) given

below. For a long range g/r? potential, the reunion exponent (for reunion any-
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where) for two walkers are [107],

44+ d>—4d+4
U = 1+\/ i 5 i g’ general d, (1.28)

VT 4g
VY a3, (1.29)

2 )

These are the exponents alluded to in the context of the necklace model discussed
in the previous subsection and will also appear in the context of quantum entan-
glement entropy in Chapters 4 and 5.

This lays the background of our study related to the phases and phase transition
of DNA and interacting polymers. At this point, we want to make a connection of

classical polymers to an equivalent quantum system which will be utilized later.

1.1.3 Path integral correspondence

The correspondence between the path integral in classical statistical mechanics
and the path integral in quantum mechanics is very well-known. The following ex-
ample shows how the path integral formulation of quantum mechanics is related to
statistical mechanics. The partition function of two classical polymers interacting

via a potential V' reads,
7z - / DR exp|—BH[r1, m3]]. (1.30)

Here [ DR denotes the integration over all possible paths or polymer configura-

tions, and H|rq,rs] is the energy,

Hiry(2),ral(2)] = /ON i EK (%)2 + %K (%)2 + V(m,m)] s

where K is the elastic constant of a polymer, z is the contour length along the
polymer of total length N and r; is the coordinate of the monomer of i-th polymer

at length z. Then by using the imaginary time transformation, z — 7t one gets,

HIr(1)] = —i /OT it EK (%)2 + %K (%)2 - V(Tl,rz)] L (132

10
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writing T = iN. Identifying 5 — 1/h, K — m (mass) and

T 1 drq S| dry ? g
Slri,r :/ dt —m(—) +—m(—) —V(r,r :/ Ldt. (1.33
[r1,72] i [2 o 5" = (r1,72) ; (1.33)

one gets the Green’s function or the propagator of the quantum problem of two

interacting particles with the classical action S[rq,re] with Lagrangian L as,

G- / DR exp {%S[rl,m]] | (1.34)

To be noted that the Hamiltonian in the polymer problem now becomes the La-
grangian after the transformation. Here G denotes the path integral over all possi-
ble trajectories in time going from one coordinate state to another. This transfor-
mation thus relates the classical statistical mechanical problem of polymers with
the quantum problem where mapping are as follows: the length of the polymer
maps onto the time of the quantum problem, the partition function maps onto the
Green’s function. Therefore, the problem of two interacting polymer becomes a
quantum problem of two interacting particles. The noninteracting part, separated
by a distance larger than the range of the interaction, which forms bubbles, cor-
responds to the excursion of quantum particles beyond the potential well. The
same-z base pair interaction is the same time interaction in the quantum problem.
We utilize this mapping to explain the behaviours of the quantum entanglement
near the quantum dissociation of two particles with the known results of polymer
unbinding transition.

To avoid any confusion, we mention that the above transformation is different
from the conventional quantum to thermal mapping, where time (it/h) in the
quantum problem maps to the inverse temperature (8 = 1/kgT) in the classical
thermal problem. The operator exp[—iHt/h] in quantum mechanics then becomes
exp|—FH], in both of which H is the corresponding Hamiltonian.

The polymer-quantum mapping has been used in our study of Chapters 4 and 5.

11
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1.2 Connection of equilibrium and nonequilibrium

measurements

Now we move our attention from the equilibrium properties to the nonequilibrium
ones. For example, let us suppose one tries to observe the same system of polymers
or DNA under time-dependent force, and do not allow the system to equilibrate.
Obviously, the equilibrium phase diagram will not be obtained. Then the question
comes whether one can get the equilibrium quantities from the nonequilibrium
measurements. That one will not get it can be understood as follows. A system
in thermodynamic equilibrium has no memory of its past. Consequently there is
no leading role for time in the ensemble based statistical mechanics except the
subservient one to maintain equilibrium among the internal degrees of freedom
and with external sources. This wisdom gets exploited in the dynamics based al-
gorithms like Monte Carlo, molecular dynamics, stochastic quantization, to attain
equilibrium from any arbitrary state albeit in infinite time. Even a thermody-
namic process involving changes in parameters is an infinite sequence of equilib-
rium states, and is therefore infinitely slow. A finite duration process, not destined
to equilibrate at every instant of time, remains outside the realm of statistical
mechanics and thermodynamics. A work theorem [19, 20, 21, 22, 25| attempts to
bridge the gap by providing a scheme for getting the thermodynamic free energy
difference from a properly weighted nonequilibrium path integral [21, 22].

1.2.1 Work theorem

The estimation of a quantity like the energy or the magnetization of a macroscopic
system can be done by averaging over a reasonably large sample of microstates
drawn from an equilibrium ensemble. But an estimation of the entropy or the free
energy from simulations or experimental data is a tricky problem as to do that we
have to necessarily consider all the microstates accessible to the equilibrium system
and this number is indeed very large. There are useful Monte Carlo techniques viz.,
the umbrella sampling and its variants, the entropic sampling, the multicanonical
sampling, the Wang-Landau algorithm, etc, that can be used for computation of
the entropy and the free energy.

Consider a classical macroscopic system in thermal contact with a heat bath at

12
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temperature T'. Let A denote a parameter that can change some degree of freedom
of the system and can be controlled from outside. For example, the system can
be a gas contained in a cylinder and A can be its pressure (changing the volume)
which can be controlled from outside by moving a piston; the system can be a spin
lattice and the parameter can be an external magnetic field whose strength can
be changed. To begin with, at time ¢ = 0, let A = A; and let the system be in
equilibrium with the heat bath. Then switch the value of A from A; to Ay . Also
assume that the switching of A from \; to A5 is carried out over a time duration ¢.

To estimate the change in free energy let’s consider two cases. One in which
the switching is carried out infinitely slowly, in other words ¢ = oo, and the second
one in which the switching process takes place over a finite time duration, i.e.
t < co. In the first case, the system passes through equilibrium states while in the
second case the system is never in equilibrium during the change. The first case
corresponds to a quasi-static reversible equilibrium process so that the change in
the free energy AF = F(Xy) — F/(\1) is the reversible work done on the system.
In the second case, the work done will depend both on the particular microstate

at the starting point and on the trajectory. The work done is defined as,

Td\ OH
W =— — ——dt 1.35

/0 dt N (1.35)
where H is the Hamiltonian of the system. Therefore, for t < co, W is not unique
and it is to be described by a distribution P;(W). If (W) denote the average work

done on the system, then
(W) = /WPt(W) aw.

In the ideal quasi-static equilibrium limit of ¢ — oo, we have P, (W) = §(W —
Wgr); W does not change from one experiment to another and it is equal to Wg,
the work done in the reversible process, which also happens to be the change in
the free energy.

The work theorem relates the equilibrium free energy differences to the statistics
of work done on a system to reach from the initial equilibrium state to the final state
through nonequilibrium paths. Consider at t = 0, we start from an equilibrium
state of the Hamiltonian H(x,A) at temperature T = 37! and A = \4. Now

13
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chosen a finite time 7, it is discretized in n steps. In time 7, we reach to a final
state having A = A\pg, varying A in small n steps, i.e., at each step A is increased
by AA = (Ag — Aa)/n. At each small step, we let the system relax for a while,
but do not allow it to equilibrate. The paths connecting the initial and the final

states are thus nonequilibrium paths. This process is repeated many times and

}\B t=v
t
}\A t=0
X(t)

Figure 1.4: Paths connecting an initial equilibrium state having an external pa-
rameter value A4 to a final nonequilibrium state having a parameter value A\g. The
final state is reached in a time 7.

for each path, the work done W along the path, is noted. Then according to the
work theorem the equilibrium free energy difference, AF = F\, — F),, between
the two states can be obtained from the nonequilibrium work done W by using the
relation,

AF = ! In (e V). (1.36)

g

Here F\ = —kpTInZ,, Zy = [ DXe P1@N and (...) denotes an average over all
possible trajectories (or realizations). This relation is used in many simulations
and experiments to get equilibrium free energy differences.

As already mentioned, away from equilibrium, one gets a distribution P, (W) of
work along the trajectories connecting the two states. The peak of the distribution
shifts with the closeness to the equilibrium [23]. For an arbitrarily slow process, one
gets a sharp peak at W.,. For the nonequilibrium process, there are trajectories
which has W < AF (see Fig. 1.5). These are the second law violating paths.
Various issues related to the distribution are explained in Ref. [24] by using the
cumulant expansion.

One may note that the definition of work used above is different from the

14
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01 — nstep process| |
--- 1 step process
n=10"
0 0051 -
0 A | | | L
40 20 0 20 40
w

Figure 1.5: A comparison of the work done between a 1-step process and an n-step
process. For large n, the work distribution shows a peak at W,.

definition used in mechanics which would have required
T OH
Wy = X—dt 1.37
o= [ X5z (1.37)

as the definition of work. This difference stems from the fact that since we are
changing an “intensive” variable that does not scale with the size of the system, the
relevant ensemble in equilibrium statistical mechanics is the constant-\ ensemble.
The work done in this ensemble is given by the definition of W with an additional
—AX in the Hamiltonian, a term generally associated with the Legendre trans-
formation for a change of variables or ensembles. Another issue of importance is
the temperature to be used. Temperature is a strictly equilibrium concept and
therefore it is not possible to define temperature at any point along the finite time
trajectory. However, the averaging is done over the equilibrium initial state which
has a well defined temperature. The averaging over trajectories is done with this
temperature with the assumption that the final temperature in equilibrium would
remain the same. See Ref. |25, 26| for more elaborate discussions and controversies
on these issues.

The derivation of the work theorem has been done by various means. In Ref.
[27] the proof is obtained from a deterministic dynamics in the full phase space by
using the Hamilton’s equation assuming weak coupling between the system and the

reservoir. Later it was derived from a stochastic dynamics of the system governed

15



Chapter 1. Introduction

by the master equation under the assumption of a Markovian evolution and detailed
balance [28| which is valid only for a particular class of models of physical reality.
Ref. [29] derives the results for a microscopically reversible stochastic process. The
validity of the work theorem for nonequilibirum trajectories generated with large
time steps is shown in Ref. [30]. The derivation from the Feynman-Kac theorem
is also well-documented in Ref. [21]. In this thesis we presented a dynamics
independent general proof of the work theorem.

In our work, the work theorem is proved to be a generalized version of an old
technique known as histogram method. The details of it is discussed here in detail.

Only the single histogram method is illustrated here.

1.2.2 Histogram method

The histogram method is a widely used technique in Monte Carlo simulations.
This method allows us to take a quantity obtained by Monte Carlo simulation at
some intensive parameter value and extrapolate the results to other nearby values.
This saves the computation time for other values. The idea was first given by
Valleau and Card [31] and then used by Falcioni et. al [32] and Ferrenberg and
Swendsen [33].

Histogram transformation

Let us consider the Hamiltonian:
H=H,— \X. (1.38)

The joint probability distribution of E (contribution from Hy only) and X (con-
tribution from the second part only) at a point (/3,\) in the parameter space is

given by
1
Z(A)

where (E, X) is the degeneracy or the number of states and Z) is the canonical

P\(E,X) = Q(E, X) exp(—BE + pAX), (1.39)

partition function given by

7y =Y QUE, X) exp(—BE + AX). (1.40)

16
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Suppose we want to find the average of a quantity A(F,X). The histogram of
the pair (E, X) generated by the MC simulation is proportional to P\(F, X). The
normalized probability distribution can be used to extrapolate the same to other

parameter values. If one has the average of that quantity, (A), then

(A)y = > A(E, X) P\(E,X) (1.41)
iE,X AB, X) Q(E, X) e PEHAAX

) Yopx SUE,X) e PEFAAX (1.42)

Similarly, for another value of the parameter ), we can write the average of the

same quantity A as

ZE,X AE, X) Q(E,X) e BEFBNX

W Yopx QUE,X) e PEFBNX (1.43)
- ! eBAX g—BAX
- ZE,X A(E7 X) Q(E’ X) (& BE+B>\ X ZE’X Q(E',X) e*ﬁE«kB)\X (1 44)
> opx SUE, X)e PEFANX S ;ﬁg;—):igmwx
A(E,X) P\(FE, X BN =NX
_ > x Al ) Pa( ) | .

> p.x PA(E, X) ef=0X

Hence, by using the histogram, P\(E, X), at A one can get (A)y, at X', and, the
normalized probability distribution with new parameter A’ can be expressed in

terms of the distribution with \ as:

 P(E,X) explBN — N)X]
DB X) = = BB X) explBV — WX (1.46)

Again we can write from the above equation as,

e~ BE+BAX
Q(E, X)e PPN % exp[B(N — M) X] 1.47)
Zgxn ZE,X PA(E, X) exp[B(N — N X'
= Zox = Zax Yy PAEX)exp[B(N —NX]. (148
E.X

This can be extrapolated to an arbitrary number of variables in the following way.
If the Hamiltonian is now, H = Hy — >, A\ X}, then the probability distribution
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at {\'} can be related to that at {\} as,

Py (X) = Py (X) explB8 Y, (M = M) X]

- T (1.49)
>ox Py (X) exp[8 32, (A, = AL)X]

Monte Carlo implementation

The Monte Carlo approach is a fundamental tool to study the thermodynamic
properties of model systems. The thermal averages are performed by taking a finite
set of judiciously chosen states instead of taking into account all possible states of

the system. These states form the canonical Boltzmann probability distribution

1
Pr(E) = ——U(E) exp(~E/T), (1.50)
T
for each possible (total) energy value F, where T is the fixed temperature (in unit

of kg, or, kg = 1), Q(F) is the degeneracy of energy level E, and
Zr =Y _Q(E) exp(—E/T), (1.51)
E

is the partition function. In the Monte Carlo technique some random movements,
for instance, through one-spin flip, starting from the current state of the system,
are made in the phase space according to some dynamic rule which produces this
probability distribution. By repeating the process many times one forms an en-
semble of states. The thermal average (A)r of some quantity A (magnetization,
susceptibility, specific heat, etc.) is then simply the average of this quantity over
the generated ensemble of states. To get an accurate value of the thermal averaged
quantity one must take care of statistical correlations and fluctuations through any
of the standard procedures. Normally one needs to calculate (A)r as a function of
some parameter, e.g., T. So, one has to repeat the entire process for each differ-
ent value of T'. In order to save computer time, an appealing strategy consists in
extracting out the 7' dependence from Eqs.((1.50)) and ((1.51)). First, the distri-
bution Pr(F) itself is measured by keeping a histogram, the number of occurrence
of each value of E, during the sequence of simulated states. Then, one can infer
another distribution Pr(E) corresponding to a different value 7" without perform-

ing any further computer run, simply by reweighting Eqs.((1.50)) and ((1.51)).
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This approach is known as the histogram method [34, 35]. The thermal average

at temperature 7' is then
(A)r =" A(E)Pr(E), (152)
E

where A(E) is the value of A obtained at fixed energy E. Once one has the
reweighted distribution Pr (F) from Eq.(1.46), Eq.((1.52)) can be applied to obtain
(A)r for other temperatures 7" without doing any simulation. The probability
distribution Pr(F) presents a sharp peak at (F)r and decays exponentially on
both sides. The larger the system size, the narrower is this peak. Thus, the
computer measured Pr(F) is only reliable around the peak, the statistics being
poor in the exponential tails. The reweighting procedure corresponds to replacing
the Boltzmann factors appearing in Eqgs.((1.50)) and ((1.51)) by other Boltzmann
factors corresponding to the new value 7", transforming the whole function Pr(E)
into Pp(FE). In particular, the probability values are reduced near the former peak,
and enhanced near the new peak position (F)7. However, since the statistics is
poor near this new peak position, the inferred P/ (FE) is not accurate. That is why
this simple histogram method (known as the single histogram method), in spite of
its elegant reasoning, had difficulties in practice which later has been improved by
introducing new methods: broad histogram method and multi-histogram method,
to avoid the exponential tails responsible for the drawback of the single histogram
method.

1.3 An equivalent quantum system: two interact-

ing particles and quantum phase transition

Previously we have mentioned in Sec. 1.1.3 that the classical problem of unbinding
transition of two interacting polymers, like DNA, can be mapped onto an equivalent
quantum problem of dissociation of two interacting quantum particles. Then the
concepts and results of the classical phase transition can be borrowed to analyze
quantum entanglement and the entanglement entropy. This section discusses the
problem of quantum entanglement, its measures and the connection to polymer

entropy as a prerequisite of the Chapters 4 and 5.
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1.3.1 What is quantum entanglement?

Quantum entanglement [36, 37, 38, 39| is a fundamental feature of quantum me-
chanics that tells us about the quantum correlation of two particles or subsystems
spatially apart. It says that performing a local measurement may instantaneously
affect the outcome of local measurements far away. When a composite quantum
system is in a pure state, then even if the subsystems are spatially far apart and
non-interacting, the measurement on one subsystem affects that on the other in-
stantaneously. This “spooky action at a distance” later gave birth to the term
“entanglement”. This phenomenon was first marked by Einstein, Podolsky and
Rosen in a gedanken experiment [40], known as the EPR paradox. In their paper,
they considered two particles which interacted for some time and showed that it is
possible to measure the conjugate non-commutating quantities, like position and
momentum, simultaneously, which violated the quantum theory. For example, one
may take a pair of particles in the zero total momentum state. Then, when they
are far apart, one may measure the momentum of one particle with arbitrary pre-
cision to predict the momentum of the other one. At the same time the position
of the second particle can be measured precisely so that both position and mo-
mentum are determined with arbitrary precision. Later it was resolved and came
the idea of the quantum entanglement which indicates the presence of the inherent
quantum correlation between the two particles or any two subsystems. We define

an entangled pair as follows:

Definition: When a bipartite pure state can not be written in terms
of a product of two states of individual parts, then the two parts are

entangled.

This notion can be made more quantitative with the help of density matrices.

A quantum state can be pure or mixed. A pure state can be described by
a single wave-function or by a linear superposition of other states. On the other
hand, a mixed state is a statistical mixture of pure states. For example, interacting
particles like an EPR pair, or more specifically in the two-particle energy eigenstate
are examples of pure states. On the other hand, a quantum system in thermal
equilibrium is described by the probabilities of the various energy eigen-states but

it is not describable by a wave function. Such states, called mixed states, are
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described by a density matrix which is represented by an operator
p(1,2) = i | di)(d5 ], (1.53)
ij

where | ¢;)’s form a set of wave-functions of the system. For a pure state of two

parts 1 and 2,
p(1,2) =[ ¢(1,2))(6(1,2) | .

A pure state satisfies p?> = p. Consequently, for a normalized density matrix
Trp? = 1 but for a mixed state, Trp* < 1.

A reduced density matrix for one part is defined by

p=Tr, p(1,2),

by tracing over part 2. This trace operation indicates the absence of any informa-
tion about the second part. If the reduced density matrix is not pure, i.e. p* # p,
then the two parts are defined as entangled. Necessarily, the reduced density ma-
trix is not separable in this situation. Needless to say, if the reduced density matrix

for part 1 is not pure, it will not be for part 2 either.

Signature of quantum phase transition

There is another feature of quantum mechanics where the zero-point fluctuations
in the ground state may coherently add up to produce long-range correlations of
local observables. This happens at quantum critical points (QCP), a point where
the spectrum becomes gapless, obtained by tuning some parameter, say g, of the
Hamiltonian. A QPT occurs at zero temperature and at the QPT the ground state
energy is non-analytic with respect to some parameter in the Hamiltonian. The
ground-state energy Fy remains continuous through the quantum phase transition
(QPT) point at g = g.. If there is a slope discontinuity of Ey as ¢ — g.+, the
QPT is called a first order transition otherwise it is a continuous transition or a
quantum critical point (QCP).

For particle dynamics, one may use a dimensional argument to characterize the

phase transition. The gap in the spectrum A, defined as the separation of the
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ground state from the rest of the spectrum, gives a length scale

where m is the relevant mass scale. A time scale for the quantum dynamics may
also be defined as "

T=X
The significance of these scales become clear in a path integral formulation where
one considers trajectories in space and time. As the gap closes, A — 0, both the
scales £, 7 — oo signaling a transition because diverging length and time scales are
the hallmarks of any phase transition.

For the two particle problem, when the ground state energy approaches zero,
the bottom of the continuum, the width of the wave-function becomes large. This
is an indication of correlations between the two particles even if they are far apart,
beyond the range of interaction. With diverging scales, the composite wave func-
tion is not expressible as a product of individual wave functions. Simply stated,
critical states are necessarily entangled, but the converse is not necessarily true.
There are states that are entangled but not critical.

The wave function encodes not only the non-analyticity associated with a QPT,
but also the special quantum entanglement intrinsic to the state. A QPT is fully
governed by the quantum fluctuation and hence one would expect that the quantum

entanglement would show special signatures at the QPT.

1.3.2 Quantification of entanglement

Depending on the number of partitions of a quantum many body system, quantum
entanglement can be of different types, such as bipartite (entanglement between
two subsystems), multipartite (entanglement between multiple subsystems).

To quantify the entanglement, various definitions of entanglement entropy are
explored [38, 37, 41|, though a few can be used for exact computation. The condi-
tions to be satisfied by the measure of the entanglement are: (i) it should be zero
for a product state, and (ii) it should not change under local unitary operations
or choice of bases. A much studied measure is in terms of an “entropy”. The

most common among these measures are the von Neumann entropy and the Renyi
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entropy. As discussed later, the problem we consider involves a gapless entangle-
ment spectrum. The usual proof of the positivity of entanglement entropy is not

applicable in case of continuous eigenvalues of the reduced density matrix.

von Neumann entropy

The von Neumann entropy is the widely used measure of entanglement. If p is the
reduced density matrix obtained from a two particle density matrix, as described

above, then the von Neumann entropy is defined as

GoN Tr o1 =0 for a product state (no entanglement), (1.54)
=—Tr plnp :
# 0 for a nonproduct state (entangled).

It is maximum for a completely mixed state. The von Neumann entropy is the
quantum generalization of the Shannon entropy. It maps a density matrix to
a number, its von Neumann entropy. It is generally considered as a canonical
measure of the entanglement for a pure bipartite state. For mixed states it is more

complicated to evaluate.

Renyi entropy

The Renyi entropy was first proposed by Renyi [42] in 1960 from the perspective of
information theory. The idea is to look for the most general function that quantifies
the uncertainty in a system. The Renyi entropy of the combined system of A and
B is defined as

1
Sy = 1 In[Tr p' 5]. (1.55)

-n
The von Neumann is obtained from the Renyi entropy in the limit n — 1. The
Renyi entropy of order two, called the extension entropy [43], is closely related to
the inverse participation ratio. In the case of n = 0, the Renyi entropy is a function
of the number m of positive components of the vector p, Sy = Inm. In the limit
n — 0o, we obtain a quantity analogous to the Chebyshev norm, S, = — In ppax,
where pn.x is the largest value of p.

It is found that the entanglement entropy behaves in different ways for a first
order and a continuous QPT. The critical behaviour of the entanglement entropy

has drawn much attention now-a-days [44| and has been investigated for different
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spin models [39, 45, 36] as well as in continuum systems [46].

1.4 Random walk in disordered media

In the last chapter we view the polymer as a random walker. A Gaussian polymer
can be modeled as a random walker on a lattice. Time in the random walk problem
corresponds to the contour length of the polymer. For a polymer of length N,
the mean square of the end-to-end distance R is given by (R?) ~ N. With R
corresponding to the displacement X (¢) of the walker after time ¢ = N, this result
is expressed in the random walk analogy, as (X (t)?) = 2Dt, which is the well-known
diffusion law, D being the diffusion coefficient.

Further, disorder plays an important role in the case of polymers, e.g., to model
spatially varying stiffness, interaction to the wall for adsorbed polymers etc. It is
thus interesting to study the problem of random walk itself, which finds applica-
tions in many other systems whose underlying dynamics have a direct correspon-
dence. Thus, for the random walker, disorder is introduced in the microscopic
transition rates. Random walk in disordered media, which often gives rise to
anomalous diffusion, is an extensively studied topic. In this chapter, we concen-
trate on certain commonly encountered forms of randomness in the hopping rates
and study the effect of such disorder on the diffusion and persistence property of

the random walk.

1.4.1 Persistence probability P(t)

An important quantity for a polymer is the reunion probability or the probability of
loop formation for a single chain discussed in Sec. 1.1.2. The reunion probability
of the polymer corresponds to persistence probability P(t) in the random walk
analogy. For the 1D random walk, if the walker starts at xqy, P(t) is the probability
that x(t) — o does not change sign upto time ¢. It is known that, for a Gaussian
stationary process, persistence probability has the form, P(t) ~ =%, where 0 is
called the persistence exponent [47]. A process X (T') is stationary if the two-time

correlation function has the form

C(N,Ty) = (X(T1) X(12)) = f(|Ty — T3).

24



Chapter 1. Introduction

For a normal random walk in 1D, (x(t;)z(t2)) o min(¢y,t5), and thus defining
T =Int and X(T) = x(t)/{2*(t)), we immediately see that, X (7' is a stationary

process in the logarithmic time 7

(X(T)X(Ty)) = (x(t1)x(ts2)) _ min(tq, t5) — o 3ITi-T2| (1.56)

V(22 () (22 (t2)) Viily

Hence, for the process X (7), the persistence probability decays exponentially,
P(T) ~ e % with § = 1/2 and therefore, in real time ¢, persistence probability for

the original random walk process z(t) has a power-law decay,

Pt)~t% 0, = % (1.57)

In a large number of stochastic processes, persistence exponent is found to be
a new nontrivial exponent and is apparently unrelated to the usual dynamical
exponents. This quantity probes high order temporal correlations in dynamics
and depends on the whole history of the time evolution of the system and further
characterize a given stochastic process. It is difficult to determine analytically as
it depends on the full functional form of the two-time correlator, not only on its
asymptotic form. Thus, in this work we study the persistence of random walkers
in a disordered systems in order to understand better the complexity of anomalous

diffusion processes in these systems.

1.4.2 Diffusion in disordered media

Diffusion in disordered media is an extensively studied topic within the general
problem of transport in disordered media [48] with wide ranging physical inter-
est and applicability. The classic theories of transport valid for crystals do not
apply in non-crystalline, disordered materials, and the physics of transport, and
in particular diffusion, is anomalous in these disordered systems. Some exam-
ples are: the problem of transport in fractured [49, 50] and in porous [51] rocks,
anomalous density of states in randomly diluted magnetic systems [52], in silica
aerogels [53] and in glassy ionic conductors [54], anomalous relaxation phenomena

in spin glasses [55] and in macromolecules [56], conductivity of superionic conduc-

25



Chapter 1. Introduction

tors such as hollandite [57] and of percolation cluster of Pb on thin films of Ge or
Au [58, 59, 60], diffusion controlled fusion of excitation in porous membrane films,
polymeric glasses and isotropic mixed crystals [61] etc. Most of the above men-
tioned systems, the density of the basic dynamical entities are so small that the
problem can be treated as a non-interacting one, i.e., basic dynamical quantities
performing the random walk are essentially independent of each other. Thus, solv-
ing the single walker problem is sufficient in determining the transport properties
of these system.

The effects of disorder in these systems may be classified into three qualitatively

different regimes based on the diffusion properties.

1. Normal diffusion with renormalization of D: If the strength of disorder is
weak (to be quantified in the context of the specific systems) the asymptotic
form of diffusion, (x?) = 2Dt, remains unaltered, only the numerical value of

diffusion coefficient D changes.

2. Anomalous diffusion: Above a certain strength of disorder, the diffusion law
itself is modified, (z*) = Kzt**, where the wandering or spreading exponent

B # % is usually a function of the strength of the disorder as well.

3. Extreme effect of disorder: In some rare systems, disorder may lead to ex-
tremely anomalous transport properties, e.g., in the Sinai model [62, 48|,
(2?) ~ (Int)*.

In most systems, disorder distribution has a narrow spread around a finite
mean value, and these fall in to the first category. In the present work we make
a detailed study of the second category of systems with relatively strong disorder.
We will see that in the case of our interest, anomalous diffusion results due to
effective long-range correlations in disorder or a broad waiting time distribution or
both. Further, we will consider diffusion on regular lattices. Anomalous diffusion
resulting from fractal properties of the underlying lattice is of some physical interest

and has been studied in a number of earlier works [48, 113].

1.4.3 Modeling disordered media

The motion of a single random walker in a disordered system is described by a

master equation for the probability distribution of the walker on a lattice. The
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transition rates between neighbouring sites are random, and their distribution
chosen defines the specific model studied. In particular, one dimensional systems
have been studied extensively [63|-[69]. These systems are most generally described

by the master equations

dp,
dt

= (WP — W B, (1.58)

J

where n(n = 0,£1,+2,...) denotes the lattice sites, P,(t) is the probability of
finding the walker or the amplitude of excitation at site n at time ¢, and the
transfer rates (or coupling constants) W;; > 0 are assumed to be independent
random variables, distributed according to a given probability density p(W). In
the most commonly studied systems, W’s are nonzero only for nearest neighbours
(i.e., W;; = 0 unless |i — j| = 1) and they are chosen such that there is no local or
global bias on the random walker.

The following classes of distributions p(1W) for transition rates W, .1, essen-

tially cover most physical systems of interest.
Class (a).  p(W) is such that

<%> = /OOO AW W p(W) < oo, (1.59)

Class (b).  p(W) is such that (;) = co. A single parameter choice of such a

distribution is,

pW)y=1-a)W™ W0, 0<a<l. (1.60)

1.4.4 Anomalous diffusion due to broad waiting time distri-

butions

In all the models of disorder we consider, it is known that the mean square dis-
placement (x?) ~ t?#, where the wandering or spreading exponent 3 depends on
the exponent o of Eq.(1.60). Consider a random walk on a regular lattice where

a particle has to wait on an average a time 7 before performing the next jump®.

'The actual waiting time is Poisson distributed as p(7') = re™ /7
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Let this mean waiting time is a random variable and changes with each jump to a
value which is chosen from a distribution: w(7). One can think of this problem as
diffusion among traps where fixed mean waiting time is not associated forever with
a given site but changes with each new visit and thus the disorder is introduced in
an annealed way. If the distribution of mean waiting times is broad enough then
anomalous diffusion results. E.g., for a power law distribution of mean waiting
times,

w(r) ~ 77" (1.61)

one obtains,
e for 1 < p < 2, subdiffusive behaviour with (z%(¢)) ~ t*~1,

o for u =2, (x?(1)) ~ lnt(gio)a

e for ;1 > 2, finite 7 and normal diffusion, (z%(t)) = 2Dt.

1.5 Organization

The above-discussed topics are the main issues of concern in this thesis. The thesis
is organized as follows.

In Chapter 2, we analyze by using thermodynamics the equilibrium phase tran-
sition of DNA by force. The thermodynamics is developed at the critical force.
Here, instead of looking at the phases, we observe the interface between the two
coexisting phases at the transition force. The helical order is considered in our
study along with the penetration of the external force inside the zipped phase. In
two extreme regimes of these two competitive phenomena, the surface energy has
opposite signs. The positive surface energy being normal, we emphasize on the
discussion of the effect of a negative surface energy on the phase diagram. In anal-
ogy to superconductors, when the interfacial energy becomes negative, one gets a
mized phase of DNA and the zipped-mixed phase transition becomes continuous.
Based on the sign of the zipped-unzipped interfacial energy we classify DNA into
two types: Type II has a negative interfacial energy whereas Type I is the conven-
tional case with a positive interfacial energy. This classification is not related to

the existing classification based on DNA conformation.
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In the next chapter, Chapter 3, the phase transition of a DNA hairpin under
a periodic force is considered. A two-state model provides phenomenological de-
scriptions of systems that can exist in two different forms. In fact, the two-state
model is shown to provide a good description of the folding-unfolding dynamics of
small DNA or RNA hairpins that display a strong cooperativity [70, 71] as well
as structural transitions. On the basis of the results obtained by Mishra et. al.
[72], in Chapter 3, we show that similar results can be obtained by any two-state
system. We use an Ising ferromagnet to study the dynamical phase transition
under a periodic force. Both the system shows hysteresis near the critical force.
A dynamical phase diagram, in magnetic field vs. frequency (of the applied field)
plane, is proposed which is qualitatively similar to that of DNA hairpin in force
vs. frequency plane.

In Chapter 4, for the same two state Ising ferromagnet system, we then try to
get back the equilibrium magnetization curve from the nonequilibrium measure-
ments. As a tool, we exploit the work theorem. We present here a generalized,
dynamics independent proof of the work theorem. The work theorem is shown to
be a consequence of the exact histogram transformation. Combining these two,
the work theorem and the histogram transformation, we show that any equilibrium
probability distribution can be obtained from the principal eigen-value of a spe-
cially constructed matrix, whose elements are obtained from the nonequilibrium
measurements of work done along the path connecting the states having initial
and final magnetic field. These results indeed gives a good equilibrium magneti-
zation curve, These are verified by Monte Carlo simulations and applications to
Barkhausen-type noises are done.

Chapter 5 and Chapter 6 look at a different aspect of the DNA phase tran-
sition. The equivalent quantum problem of two interacting particles, obtained
from the imaginary time transformation of the classical problem of two interacting
polymers, is discussed. As the interaction, we consider both a short range square
well (in Chapter 5) and a long range inverse square potential (in Chapter 6). The
relevant quantity to observe the signature of the quantum dissociation is the quan-
tum entanglement entropy. In the short range case, the von Neumann entropy is
found to be negatively divergent near the unbinding transition, which is a quan-
tum critical point. For the long range one, there is an adjustable quantity, the

strength of the 1/r? potential, which can be controlled to get either a first order or
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a continuous unbinding transition. It is found that for the second order transition
the entanglement entropy diverges negatively, but for the first order it is finite.
A scaling relation is found from a data collapse. The negative entropy, though
counterintuitive, is actually essential for the phase transition. The connection to
the equivalent polymer problem shows the correspondence between the quantum
entropy and the polymer bubble entropy (discussed in Sec.1.2), and explains the
importance and genuinity of the negative entropy. This study is extended to the
Renyi entropy and some results are mentioned.

In Chapter 7, we go back to the classical problem. Here we view a polymer as
a stochastic path, like a Gaussian polymer maps on to a random walker, with the
same space-time scaling. In this picture, the reunion probability of the polymer
becomes the persistence probability of a random walker. We study a random walker
in a disordered lattice, where the disorder is modeled through the randomness in
the hopping rates. In our model, both site and bond disorders are considered. The
annealed disorder averaging and quenched disorder averaging give different results
of various quantities, though all the models have same hopping rate distribution.
The usual quantities in this context like mean squared displacement, two point
incremental correlations, waiting time distributions are verified with known results.
Our main interest is to study the persistence behaviour in all these four cases, which
is found to have a power law behaviour with new exponent called the persistence
exponent. We find that though the persistence exponents in the annealed bond,
annealed site, and quenched site disorder is same, the quenched bond disorder case
is qualitatively different. It does not show a monotonic change with the disorder
strength. The behaviour of the persistence probability is explained using the first
passage time distribution and using properties of fractional Brownian motion.

We summarize our findings of the thesis in Chapter 8.

30



TYPE II DNA: when the interfacial

energy becomes negative

DNA in its double helical form shows a resilience against an external pulling force.
The bound state does not allow a force g applied at an end to penetrate up to a
critical force ¢ = g., above which the DNA gets unzipped [2, 3, 4]. The transi-
tion is first order for temperatures 7' < T, where 7, is the denaturation (melting)
temperature in the absence of any force [8]. In this chapter, we study the thermo-
dynamics of the unzipping transition. The phase transition is looked from another
aspect, by observing the surface energy. The surface energy is quantified from a
free energy functional in the linear response regime. We propose a new classifica-
tion of existing DNAs into two types, Type-I and Type-II, like superconductors,
depending on the sign of the energy of the interface separating the zipped and the
unzipped phases.

2.1 Introduction

The force-induced unzipping transition of DNA is due to a competition between the
bond orientation by force and ordering by base pairing. The formation of a helically
ordered dsDNA from denatured strands is a symmetry breaking transition. At a
coarse-grained level, the ordered state can be described by an order parameter 1),
with ¢y = 0 for the denatured state. The external force does not couple directly
to this order parameter. Consequently, at a junction of a bound and an unzipped

DNA, there is a need to define two length scales: one scale & that gives the length
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over which the DNA ordering is damaged on the bound side of the interface,
while the other scale A\ gives the distance over which the force penetrates the
bound state. The existence of the second scale A was pointed out by de Gennes
in a model involving stretching of the backbone and the hydrogen bonds [73].
Generally one expects interfaces separating phases to be energetically costly (e.g.
surface tension), but here we show that if A > &, then the interfacial energy, or
surface energy, between bound and unzipped DNA can become negative. There
can then be a penetration of force in the form of distorted regions or “defect blobs”
of length A enclosing a denatured bubble of size £. In analogy to superconductors,
when the interfacial energy becomes negative, one gets a mixed phase of DNA and
the zipped-mixed phase transition becomes continuous. Based on the sign of the
zipped-unzipped interfacial energy we classify DNA into two types: Type II has
negative interfacial energy whereas Type I is the conventional case with positive
interfacial energy. This classification is not related to the existing classification
based on DNA conformation.

A Type IT DNA has novel features which are of considerable biological and
physical implications. To be noted that the defect blobs are different from ther-
mally created bubbles. This is because the bubbles of the latter type would consist
of random configurations of denatured strands generated by thermal fluctuations
and may have positive interfacial energy. The distinctness of the defect blobs can
be a signature for their identification in biological processes. Let us consider the
transcription process where the genetic code, determined by the base sequence,
is transferred to the amino acid sequence of a protein. For correct transcription,
the sequence must be read from the correct starting point on DNA. These start-
ing non-coding regions are called promoter regions and their identification is the
first and vital step in transcription [74]. A pulling force or a forced separation
in a homogeneous Type IT DNA produces a finite density of the defect blobs [75]
(discussed later). The non-coding sequences or the promoter regions may act as
inhomogeneities on a DNA and could play the role of pinning centers for the defect
blobs. The advantage of physical identification of pinned defect blobs could facili-
tate recognition of the promoter regions for gene expression (e.g. see Ref. [76, 77]).
So far as physical properties are concerned, Type I and Type IT DNA will have
different phase diagram and phase transition as discussed later.

Recently, both in experiment 78] and simulation [79], a continuous transition
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has been observed if the topology is preserved in a stretching experiment by pulling
both the strands either at both ends or at one end of an anchored DNA. We also
note that a detailed molecular dynamics study [80] of under- or over-wound DNA
without writhe, observed the formation of localized sequence-dependent defects
which allow the rest of the dsSDNA to be in the relaxed normal state. It is known
that topoisomerase II may bind anywhere on the DNA but its topology changing
activity is restricted to specific sequences (cleavage sites) indicating that geometric
distortions get localized around certain sequences [81]. These are consistent with
our general predictions, though we like to add that interfacial information in any

of these cases are not available.

2.1.1 Outline

The outline of the chapter is as follows. In Sec.2.2, we develop the thermodynamics
of the phase transition. A qualitative discussion is done on the behaviour of the
interface, followed by a quantitative calculation of the surface energy at the critical
force by constructing the free energy functional. The phase transition is then
explained in view of the sign of the surface energy. In Sec.2.4, we summarize our

result.

2.2 Theory and results

2.2.1 Thermodynamics

The thermodynamic description of unzipping of DNA requires three variables, 1
describing the helical ordering (i.e., broken symmetry) and a force-displacement
(g,x) conjugate pair, where z is the scaled separation between the two strands
at the point of application of force g. On the bound side x can be taken as the

response to an internal induced force g, so that,

z(9) = X9, (2.1)

where y, the stretchability or the response function, is independent of ¢ in the
linear response regime. Though we restrict to linear response regime here, the

final results can be reproduced for a general force-dependent x. The variables are
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chosen such that ¢ = 0 for the unzipped state, and ¢ # 0 for the ordered state,
while g = 0 in the bulk of the ordered state. At this point it is to be noted that
the order parameter ¢ represents helical ordering which is not directly coupled to
the external pulling force. As a result we get two independent length scales in the
problem. This makes the present treatment different from other existing models.

For a homogeneous state, the Gibbs free energy G(T,¢g) per unit length at

temperature 7" and a pulling force g is given by

where W(g) = [Jx(g) dg' is the work for stretching. The conditions of phase

coexistence at g = g, is
GZ<T7 gc) - Gu (T7 90> (23)

Here the subscripts z and u represents the zipped and the unzipped phases. An-
other condition needed is for the non-penetration of force in the bound state for
g < g.. This is given by,

G,(T,g) = G,(T,0). (2.4)

Substituting Eq.(2.3) and (2.4) in Eq.(2.2), we get a relation for the free energies
as,

G.(T,g) = Gu(T, g) + W(g) — W(ge). (2.5)

Eq.(2.5) agrees with the known exact results discussed in Sec. 1.1.1 when appro-

priate z(g) from the exact solution is used. In particular one verifies that

1

in the linear response regime (near melting).
Compared to the stretched unzipped state, the zipped phase has to pay a cost
W (g) for force expulsion for not following the force-diktat, but gains energy W (g.)
due to binding or ordering. The phase coexistence requires a perfect compensation
of one by the other. This compensation may be used to obtain the binding energy
of the zipped phase as,
E.(T) = W(g.). (2.7)
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This equation may also be used to define g. from the binding energy.

2.2.2 Surface energy

Let us now consider an inhomogeneous situation of a dsDNA at T" < T, by pulling
at one end by a force g = ¢.(T') so that there is an interface separating the coexist-
ing zipped and unzipped phases. The interfacial energy is obtained by comparing
this mixed state free energy with that of a fully unzipped homogeneous state at
g = g.. Needless to say that an interface can be created spontaneously if there is
a gain in energy in doing so.

Since far from the interface, the Gibbs free energy density is the same in the

two phases, the total free energy G can be written as

g - /OO Gu(T7 gc)dz + g, (28)

where o is the “surface tension”, and z is a contour length measured along the DNA
or the strands, the z = 0 point being chosen at the point of interface with z < 0

as the unzipped phase.

N
Unzipped N Zipped
N\

UnZipped

|

1

1
Figure 2.1: Schematic representation of two configurations, fully zipped (above)
and a configuration of coexisting phases separated by an interface (below) at g = g..
The difference in the free energies of this two configuration gives the interfacial
energy.

A practical way to define the surface energy is to force an interface by choosing
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appropriate boundary conditions as shown in Fig. 2.1. Let us consider a DNA
maintained in the zipped (z) state at z = +o0o0 but in the unzipped (u) state at
2z = —oo. This guarantees at least one interface. At phase coexistence, we compare
its free energy with the case for which the DNA is maintained in the u state at both

2z = H+o00. The difference of the total free energy is the surface energy. Therefore,

o= / " (G (g) - Culgn). (2.9)

We start with the free energy functional

Fui= [ dz Flw.a) (2.10)
whose minimum gives the equilibrium free energy in a fixed distance ensemble.
The functional F{v,x} can be taken as

F{y,x} = F, + F{y} + % (g—f)Q + K7 (%)2 + /Oxg(:z) dz.  (2.11)

where F'{1} is the free energy of the homogeneous bulk zipped phase with reference
to the unzipped state free energy F,. In the unzipped state F'{¢)} = 0. K, and
K, are additional “elastic” constants for distortions in 1) and x. The elastic part
of the free energy can be extended to torques. The order parameter ¢) and force g
are not coupled in the free energy in the form taken in Eq.(2.11) and consequently,
this form is valid only in extreme limits. Further generalizations are not needed
for this chapter. The Gibbs free energy is obtained from Eq.(2.11) by using the
equilibrium values of 1) and z, followed by a Legendre transformation from z to g.

The equilibrium conditions, obtained by minimizing Fi., are

g—f; — Kw% = 0, (2.12)
—Kx% + % = 0, (2.13)

with the condition that
Yp=0, r=zx.=xg. at z=0, (2.14)
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unzipped Zipped unzipped Zipped

Figure 2.2: Schematic diagram of variation of zipping-unzipping order parameter
Y (continuous line) and applied force g (dashed line) inside unzipped and zipped
phases. ¢ is the length scale of variation of ¢ inside the zipped phase and A is the
scale for g. For Type I (left figure), K = A\/{ < 1 and for Type II (right figure),
k> 1.

and
=1y, x=0 at z— oo, (2.15)

1o being the solution of
or
5

to maximize the interfacial energy. The length scales £ and A, giving how fast ¢

0

or g grow or decay inside the zipped phase (see Fig. 2.2), come from Eqs. (2.12)

and (2.13), as
5—2 — L <l 8_F)
- Ky \¥ Y

The equation for A reduces to the form derived by de Gennes [73] if the elastic

, and \? = K, x. (2.16)
Pp—0

constants of his model are used for K, and x. The dimensionless ratio
k= M\E (2.17)

is expected to be different for different sequences of DNA.
By using Egs.(2.11), (2.12) and (2.13), the surface energy can be written in
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terms of the free energy as,

/dz
|

dz

where we use the fact that

Gulge)

and

Extreme limit I: K < 1

unzipped

[G(ge)
[Fzg (x

— Gul(ge)]
X 9
) —x.gc—Fu+§gc , (2.18)
I I
L= Fy— Iy, 2.19
5 XYe 5 XYe (2.19)
(2.20)

Energy penalty
for not allowing
force to penetrate

(b)

Energy gain
for being in
ordered state

Ey

Net energy penalty
at interface

()

z

Figure 2.3: (a) Schematic diagram of the variation of the force and the helical
order inside the zipped phase for £ > X (left figure), resulting in a positive surface
energy. (b) The figure shows the ideal situation of £ > .

For k < 1, the external force penetrates only a short distance \ into the

zipped region. In contrast the order parameter rises to its asymptotic value ¢y in

a much larger length £. One has to pay the energy cost for the damage in ordering
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over a length scale £&. Therefore, in the extreme limit, when the variation can be

approximated as in Fig. 2.3b, one gets,

1
o~ B = Sxolt (221)

which is positive. This can be understood from a pictorial representation of the
variation of the energy, with respect to the unzipped phase and inside the zipped
phase shown in Fig. 2.3a. This is the conventional scenario of force expulsion of
various models on the zipping-unzipping phase transition and this scenario gives
the well-known behavior of the unzipping transition.

The surface energy can be calculated using Eq.(2.18) for any x more accurately.
As we are more interested in the sign of the surface energy, we concentrate in the
said extreme limit, which simplifies the expression of surface energy and the result
comes out easily. In the said limit, one can ignore the variation of x inside the
zipped phase. So the term with (9x/02)? can be neglected. Also x = 0 for z > 0.
Putting these in Eq.(2.18) yields,

o= /OOO dz | Fioy + 2o (%)2 + lng] : (2.22)

2 \ 0z 2
which under the condition that F{¢} > —1yg? gives o > 0.

Extreme limit II: <k > 1

When x > 1, the force penetrates a greater distance A into the sample, so that
there is an obvious gain in the stretching energy (i.e. reduction of the “positive
energy” for force expulsion) over the interval of penetration, over and above the
gain by ordering. From the diagram shown in Fig. 2.4a, it can be understood
qualitatively that the surface energy becomes negative, and in the ideal case, as

shown in Fig. 2.4b, it becomes

2
XY Al
2

(2.23)

o = —

which is negative. The sign of the surface energy can be confirmed by calculating it

from Eq.(2.18). In this limit, we neglect the term with (%)2 and write the surface
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unzipped zipped

Energy penalty
for not allowing
force to penetrate

(b)

Energy gain
for being in
ordered state
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4

Net energy gain
at interface

(a)

Figure 2.4: (a) Schematic diagram of the variation of the force and the helical
order inside the zipped phase for £ < A\ (left figure), resulting in a negative surface
energy. (b) The figure shows the ideal situation when £ < \.

energy as,
o K, (0x\° 1
= dz | =2 | == —a* — 1.9 . 2.24
o /0 2[2 (82) +2X3: :L’g] ( )
_xg2

Then by using the condition that F""{} = —X
derive that 0 < 0 in the limit x > 1. Hence, it is possible to lower the free energy
of the DNA by creating the interface.

The value of x for transition from Type I to Type II depends on the form of y

and Eq.(2.13), one can easily

which, in turn, depends on the DNA sequence and the secondary structure. It is

therefore primarily the sequence but also the secondary structure that determine
whether a DNA would behave like Type I or II.

2.3 Discussion

If we now consider the bulk zipped state with a force g, then force penetration may
be possible in the form of many isolated distorted regions or blobs. For A > ¢,
with the unzipped core of size £ costing an energy F,&, and the x part of the free
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energy F{v¢,x} in Eq.(2.11), one finds for a homogeneous chain that a periodic
structure of the blobs [75], as in Fig. 2.5, is possible energetically, if g > g./v/k-
The initial penetration of force is at g = ¢./+/k with periodicity d — oo. The
unzipping transition therefore becomes continuous in contrast to the first order

nature for Type I.

—-—

;
:i-' :-.l.-.' :-.-.-.'
X g

Figure 2.5: Schematic diagram of a periodic array of defect blobs. The array has a
periodicity d which controls the density of blobs. Each distorted region is of length
~ X with an unzipped core of size ~ &.

The negative interfacial energy is found in Type II superconductor [82] too. Our
formulation is similar to that of Type II superconductivity in a one-dimensional
geometry. As there is indeed a phase transition in DNA, the Landau theory is
justified here. It suffices for a one dimensional case to consider a scalar order
parameter.

We may point out a few additional implications of a negative interfacial energy.
The penetration of the force is not possible in the conventional polymer models.
For any helical or twisted pairs of strings, a pulling force produces over-winding.
We expect this over-winding in DNA to be present at the interface, distorting but
not vitiating the ordered state. The resulting distortion plays a role in determining
the interfacial energy. The penetration of force is via a denatured core of size &,
surrounded by such a distorted region of size A\. These defect blobs could be
pinned by certain sequences, thereby localizing them in specific regions of the
DNA. We speculate that the regions which localize the defect blobs are the non-
coding promoter regions. This gives a topological interpretation of the defect blob
and it would also be applicable to torque. The existence of the mixed or Type II
phase with pinned defect blobs will affect the melting profile under a force, and the
force-distance isotherm will show steps originating from the blobs, especially for
finite chains. Our analysis shows that the relation between ordering and unzipping
is needed to get a negative interfacial energy. The helical ordering is not just

base-pairing — it involves stacking and other distant neighbor interactions. Any
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microscopic model for Type II DNA would have to take these into account. On the
experimental front, it is time for a second generation single molecular experiments

that would explore the interfaces on DNA.

2.4 Summary

To summarize, in this chapter we showed that different types of phenomena happen
for two regimes of the ratio k = % of the independent length scales £ and A, of DNA
order parameter (1)) and internal force (g) respectively. For k < 1, the interfacial
energy is positive, and the unzipping or melting under a force is first order. The
external force has no effect inside the ordered, or, zipped phase, i.e., there is no
internal force (g) inside as A is small. This is named Type I. On the contrary,
for k > 1, the interfacial energy becomes negative and the force penetrates the
zipped phase in the form of defect blobs. The creation of interfaces are energetically
favored, so that interfaces are formed spontaneously. Thus defect blobs are formed
inside the ordered phase. Above a force threshold g > g.1, there will be a finite
density of these defect blobs. The melting under tension of unzipping is second
order. This case is named Type II.

What next: In the next chapter, we consider a time-dependent force on DNA
instead of a static one. The molecular dynamics simulation of a DNA hairpin shows
that there is a possibility of a dynamical phase transition. We obtain the similar
dynamical phase transition from a simpler two-phase system like Ising magnet
under the periodic force. We infer that some basic features of these two systems
are responsible for the behaviour under time-varying force, not the details of the

dynamics.
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List of symbols
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Free energy functional

Proportionality constant for response to applied force
Binding energy of z phase

Helmholtz free energy

Applied force on DNA

Critical force for force-induced unzipping

Gibbs free energy of z or u phase at temperature 7" under force g
Ratio of length scales, A/

Elastic constant for v

Elastic constant for x

Length scale of penetration of force inside zipped phase
Surface energy

Critical temperature for DNA melting

Induced force inside the zipped phase

Temperature

Work done for stretching

Length scale of damage in helical order

Separation of two strands of DNA at the point of application of force

Helical order parameter
Axis along the length of DNA
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Dynamical phase transition of a driven

Ising magnet

During biological processes like, replication, transcription, etc., DNA is opened by
helicases, which are motors that move along the DNA [74]. Both the motion and
the opening processes require constant supply of energy. A few examples are DNA-
B, a ring like hexameric helicase that pushes through the DNA like a wedge [83],
PcrA that goes through cycles of pulling the ds part of the DNA and then moving
on the ss part [84], viral RNA helicase NPH-II that hops cyclically from the ds to
the ss part of DNA and back [85]. Such cycles of action and rest, with periodic
ATP consumption, indicates exertion of a periodic force on the DNA. It drives
us to study the DNA phase transition under a periodic drive in an experimentally
realizable situation. This dynamics is studied by using a molecular dynamics (MD)
simulation. In this chapter, we show that the results for DNA actually resembles
that obtained from a much simpler system, namely, an Ising ferromagnet under a
periodic field. The reason that the two systems behave in the similar way is very

fundamental.

3.1 Introduction

The equilibrium unzipping transition is described by the two thermodynamic con-
jugate variables, force g and separation z of the pulled base pair (see Sec. 1.1.1). If
one thinks of a quasi-static thermal equilibrium process where the force is changed

from zero to a maximum g,, and then back to zero, keeping other intensive quan-
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tities fixed, then one would retrace the thermodynamic isotherm, ending at the
initial state. In other words, there is no role of history in thermodynamics; this is
ensured by ergodicity in statistical mechanics. However the situation is different
under a periodic force. The external timescale for change of force may not match
the relaxation time for DNA which then explores a smaller region of the phase
space. This creates a difference in the response to an increasing or a decreasing
force. The deviation from the thermodynamic path looks prominent near a phase
transition when the typical time scales of dynamics become large. This leads to
hysteresis in DNA unzipping [86]. More recently Kapri [87] showed how the work
theorem can be used wvia a multi-histogram method to extract the equilibrium
isotherm from hysteresis curves

The study of hysteresis is an old topic mainly in the context of magnetic and
structural systems [88, 89| because of their practical importance, but all these
studies involve the time-averaged loop. In the case of DNA, Mishra et al showed
that there are situations, depending on the force amplitude and the frequency,
where sample to sample variations are too large to ignore. With the advent of
single-molecule experiments on short DNA chains (oligomers), it might be possible
to probe the time-resolved loops, not just averages. Motivated by the biological
relevance and the experimental feasibility, the behavior of DNA under a periodic
force, called a periodically driven DNA, was studied. The results show that without
changing the physiological conditions (e.g. the temperature or pH of the solvent),
a DNA chain may be brought from the unzipped state to the zipped state and vice
verse by varying the frequency (v) alone.

A well-studied example of a similar dynamic symmetry breaking transition is
in magnets [89]. As a two phase system, we make use of the magnetic Ising model
to corroborate the behavior of DNA. This study is prompted by the often-used
description of the unzipping transition by a two state Landau type free energy
functional [90, 91, 92| similar to the Ising model. We establish that the observed
features and the phase diagram in both the cases are robust and generic, even

though they are different models with different types of dynamics.
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3.1.1 Outline

The chapter is organized as follows. In Sec. 3.2 we recapitulate the results of a
driven DNA hairpin. In Sec. 3.3 we introduce our magnetic model and discuss
the numerical method to get the desired quantities. The results are analyzed in
terms of time resolved loops in Sec. 3.4. It contains the explanation on why the
standard quantity fails and one needs to think in terms of a more finer quantity.

Finally, in Sec. 3.5 we summarize our main content of this chapter.

3.2 Driven DNA and results

A DNA hairpin consists of a stem of pair of complementary bases and a loop
of non-complementary bases (see Fig. 3.1). It is chosen not only because of its
occurrence in vivo and its use in in-vitro experiments but also because of the extra
entropic effect coming from the loop. The non-paired bases of the loop is a source
of entropy which in turn controls the dynamics of hysteresis. Langevin dynamics
(LD) simulations of a DNA hairpin were performed in Ref [86] to simulate the
hysteresis behaviour of DNA. The separation x of the terminal base pairs pulled
by a periodic force g(t) of time period 7(= 1/v) was monitored. The force is
applied at one end of the hairpin keeping the other end fixed. The simulation is

performed in reduced unit as discussed in [72].

Figure 3.1: A DNA hairpin of total length P = 32 in (a) a zipped (Z) and (b) an
unzipped (U) state. The stem (solid lines) of length p = 10 consists of complemen-
tary nucleotides with native interaction (dotted lines) for base pairing, whereas
the loop (dashed line) is made up of non-complementary nucleotides.
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The configurational energy [86] of the DNA hairpin is written as sum of har-
monic terms for the bonds and the Lennard-Jones potential between complemen-
tary nucleotides [86]. The effect of a periodic force is taken into account by adding
an extra energy —g(t).z(t) to the total energy of the system. With this energy,
the zero force melting temperature in reduced units is 7" = 0.21, while the critical
force at T' = 0.1 is g. ~ 0.20 [93]|. During the simulation, g is changed from 0 to
the chosen maximum, g¢,,, and then back to 0. This one period is to be referred
to as a cycle and g,, as the amplitude. By changing g,, or v, it was found in Ref.
[72] that it is possible to induce a dynamical transition between a state of time
averaged zipped (Z) or unzipped (U) to a dynamical state (D) oscillating between
Z and U. The operational definition adopted in Ref. [72] is the following. If (x) is
less than 5, the system is in the zipped state and larger than 5 it is in the unzipped
state.

In Fig. 3.2, the plots of the average value of x(g) over C (= 1000) cycles vs g,
for different values of g, and v are shown. We point out the salient features of

these loops.

1. One notes a large variation in the size and shape of the loops which remain

almost the same (except (23)) for different samples or starting condition.

2. Like other hysteresis loops, DNA hysteresis also shows the phase lag be-
tween the force and the extension, e.g., z(g) increases even when the applied
force decreases from g, (Fig. 3.2 (32 & 33)). If the system could approach
equilibrium, the lag disappears, as one sees in Fig. 3.2(21 & 31).

3. At a high frequency, the DNA remains in Z or in U depending on whether
gm < 2g. or not, (Fig. 3.2(13)&(43)), irrespective of the initial conformation.
For a relatively smaller v, a different sequence (Fig. 3.2 (11,21 & 31)) is
observed. The DNA starts with z = 0 at the start of the cycle, i.e., in the Z
phase and comes back to the Z phase but via the U-phase with z = 30.

4. In the case of intermediate forces there is a significant change in the z-values
at g = 0 and g = g,, (Fig. 3.2 (21, 22 & 23) ). Most striking here is the wide

sample to sample fluctuations in the loop which could not be reduced.
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v=6.4E-5
T

<x(g9)>

Figure 3.2: DNA hysteresis for different g,, and v as indicated. Each plot contains
the loops for 10 different initial conformations. These are at T" = 0.10, for which

ge ~ 0.20 (see Ref. [72]).

The failure of the average response to provide a description of the steady state
dynamic behavior prompts us to analyze the distribution of paths over the different

cycles in terms of a new quantity which can probe the states over one cycle. This

is elaborated in the following sections.
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3.3 Magnetic model and method

As mentioned already, an Ising system is a two phase system (up magnet and
down magnet) undergoing a field-induced first order transition below the critical
temperature. We study the dynamic response under an asymmetric magnetic
field. Our aim is to look at the time-resolved response to compare with the DNA-

hysteresis behaviour.

3.3.1 Model

Let us consider a two-dimensional Ising spin system ({s; = 41}) with nearest

neighbor interaction and under a magnetic field h,
H=-J> sisj—hY s, (J>0), (3.1)
(i.5) i

with i labeling the sites of an 8 x8 square lattice with periodic boundary conditions.
The infinite lattice critical temperature is T, =~ 2.269.J/kp in zero field. The

magnetization is defined as the thermal average
m=N"" Z<Si>’ (3.2)

of N(= 64) spins. For the above Hamiltonian, we choose J =1 and kg7 = 2 with
kg = 1, so that T" < T.. Below the critical temperature 7., the magnetization,
m =Y. s; takes the sign of the applied field, and the magnitude depends on the
strength of the field due to finite size effect. There is a first order phase transition
at h = 0 with a jump in the magnetization. The hysteresis is the signature of that
phase transition away from equilibrium. The hysteresis loop is the curve in the
m-h plane for a complete cycle of variation of the magnetic field from h; to h,, and
back. The area of the hysteresis loop depends on how fast or slow the magnetic

field is varied.

3.3.2 Procedure

The Monte Carlo procedure used is as follows. We choose a spin, calculate the

change in energy AF of the system if the spin gets flipped. Whether this spin would
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be flipped or not is determined by using the standard Metropolis algorithm, which
gives the probability of acceptance of an attempted flip by Pieceps = min(1, e #2F).
In this way, we sequentially consider all the N spins, one at a time, to attempt a

flip. The time taken to attempt NN spin flips constitutes one MC sweep.

h

[

Ah
At time
<>
<«~—>

N

Figure 3.3: One cycle of magnetic field with time.

Suppose the system is subjected to a periodic magnetic field with the field at
the jth step as

hj=h— > msign(i) =h +Ah(N = |j = N|), (j=0.2N),  (3.3)

where h; (< 0) is the starting value or the lowest value of magnetic field over a cycle,
N is the number of steps to reach upper value or the highest value of the magnetic
field over a cycle, after which field is decreased, Ah is the change in magnetic field
in each step, Ah = (h,, — hy)/N. As per our notation, hg = hopr = hy, hpr = hyp.
Initially system is equilibrated at h; = —0.6 and kg7 = 2. Then the periodic
magnetic field is switched on. At each step, (i) the magnetic field is increased by
Ah = (hy — hy)/N and (ii) the system is relaxed towards equilibrium by n = 5
MC sweeps, which is much less than the equilibration time. The magnetization m
is calculated at each of such 2\ steps. The average of magnetization calculated
over a cycle then gives the quantity Q). The above process is repeated for 10*
cycles. Below T, the steady state depends on both the frequency, v = 1/(2N At),
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where At is the number of Monte Carlo sweeps at that temperature and magnetic
field to relax the system for a while, and the amplitude h; and h,, of the periodic
field. Because of the up-down symmetry of the system, we see different behaviour
of the state for two cases: one where the field is symmetrically varied around
zero with h,, = —h; and the other where it is asymmetric. In order to compare
with the force-frequency (g-v) diagram of the DNA hairpin we take the case of an
asymmetric variation of the magnetic field with time. The lower amplitude (h;)
is kept fixed at a negative value while the upper one (h,,) is varied. We simulate
the system for various frequencies (by controlling A/) and different values of h,,,

keeping h; fixed.

3.4 Numerical results

Like the case of DNA, the hysteresis of the Ising ferromagnet also shows large
sample to sample fluctuations and different kinds of shapes. Therefore, we look at

a finer level. We define a quantity, the average magnetization over a cycle, as

Q= % /0 "t dt. (3.4)

It is the dynamical order parameter studied in the context of magnetic systems [89).
The time sequence of @) seems not to indicate any regular pattern (see Fig. 3.4),
and, therefore, we assume that the allowed states occur randomly. The time se-
quence can then be interpreted in terms of a probability of getting a particular
value of ). We find that the steady state is described by a stationary probability
distribution (P(Q)) which are also shown in Fig. 3.5.

At equilibrium, for a symmetric cycle, i.e., with h; = —h,,,, we expect () = 0.
But if h,, is varied from a value a little higher than h; to a value which is well above
—h; then away from equilibrium () should vary from a value close to equilibrium
value of magnetization at h; to that of —h;, which in our case will be any value
from —82 to 82. An asymmetric field in the Ising model enables us to distinguish
the two differently ordered phases, the counterparts of the zipped and the unzipped
states and, in addition, a hysteretic state, to be called the dynamic state D. For
easy comparison, the negatively magnetized state is named Z while the positively

magnetized state is U. The operational definition adopted is
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Figure 3.4: Plot shows the time sequence of @) with cycles (h,, = 0.6, v = 1/70).
Three bands indicate that the states with different () values occur randomly.

() Qz = {—64 < Q < —40},

(i))Qu = {55 < Q < 64}, and

(iii) the rest is Qp.

Cases (i) and (ii) occur when the paths in the m-h diagram remain on one side
throughout the cycle, and case (iii), the dynamical state, D, occurs either if there
are paths connecting the positive and the negative values of the magnetization or
if the paths remain more or less near zero of magnetization. The division of the
three intervals or regions are independent of h,,.

As we find the @) values of consecutive cycles are random and has no indication
to stabilize, we plot the distribution P(Q) to find out the phases. To be noted that
the division of three intervals or regions are independent of Ay and cut-off values
are chosen suitably by observing the distribution of )’s such that two regions do
not overlap in P(Q) vs @ plot. Below is the plot of P(Q) vs @ (Fig. 3.5) for

different frequencies for fixed h; and same set of h,,.

3.4.1 Dynamical phase diagram

From the peak locations of P(Q), we map out the phase diagram of the Ising
magnet in the h,,-v plane (Fig 3.6). A line in Fig. 3.6 represents a boundary
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Figure 3.5: The distribution of ) is plotted for three different frequencies and
same set of h,,. For a frequency, the distribution P(Q) shifts as h,, increases. It
goes from Z-state to U-state through D-state. The corresponding states/phases
in @ are identified observing the distribution. (a) frequency v = 1/70. Phases:
Z = Z+D — Z+D+U — D+U — U. (b) frequency v = 1/250. Phases:Z — Z+
D — D — D+U — U (c) frequency v = 1/1000. Phases: Z - Z+D — D — U.

beyond which a particular peak appears or disappears and resembles a first-order
line.

We start at the equilibrium of h;.

e Now set an h,, which is negative or zero. The loop connecting h; and h,,
will naturally give Q7. The probability distribution P(Q) will show a peak
near equilibrium magnetization value of h;, for any frequency, as shown by
the black dotted curve in Fig. 3.5.

e As h,, is increased to positive values, a second peak in QJp appears. The
value of hy where the second peak appears has a very weak dependence

on the frequency and has a small positive slope in the h-v phase diagram
(Fig. 3.6).

e As h,, is increased further the peak height of ()7 decreases and that of Qp
increases with a shift in the peak position. This shift seems to be independent

of frequency.

e There is a range of magnetic field for which two peaks, at ()7 and Q)p, coexist.
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Figure 3.6: Dynamical phase diagram of a periodically driven Ising ferromagnet
in the h,,-v plane. The lines are boundaries for various phases U, D and Z. Here
Z corresponds to the negatively magnetized state, U corresponds to the positively
magnetized state and D is the dynamical state. The points are from the simulation
and the lines are guide to eye.

This phase is shown as Z+D in the phase diagram.

e At some h,,, the peak at ()7 vanishes. This threshold h,, depends on the
frequency and the dependence is shown in the h-v diagram by the black
dashed curve with circles. Now, at this h,, two things can happen. FEither
7 phase vanishes leaving alone the D phase, or, by that time the U phase
(thepeak at Qu in Fig. 3.5) appears and the system shows the coexistence of
three phases, Z-+D-+U. In the latter case, as Z vanishes, the system remains in
a mixed state of D-+U. When the peak in )y or U phase will reappear again
depends on the frequency. This dependence is shown by red dash-dotted

curve with squares.

e We see there is an intersection of the two curves, boundaries of Z and U in

the phase diagram of Fig. 3.6. This is a special point exactly at h,, = —h;
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where 7 disappears and U appears at a same time. If one goes along the
horizontal line through h,, = h; in phase diagram, i.e. keeping h,, fixed at
—h; but varying the frequency, then at very low frequencies one would see
only the D phase for some range, and then as the frequency increases two
other peaks at Z and U will appear. If the frequency is increased further,
the peak at ()p vanishes leaving the coexisting phase of Z+U. The span of
the three phase coexistence region depends on the value of h;. The Z+D-+U

region may even become very small.

e Going back to the previous cases, after having the two possibilities that
the system is either in D only or in Z+4D-+U, if the upper magnetic field
is increased then one gets the phase D-+U. Once this phase appears, with
a shifting )p-peak, any increase of h,, beyond the blue starred line in the
phase diagram of Fig. 3.6 vanishes the intermediate peak; only one peak at

U survives.

e The vanishing or decaying of the intermediate peak has different natures at

different frequencies.

— The intermediate peak first grows from zero when the green line is
crossed. With increasing h,,, the peak increases first and then decreases.

While the intermediate peak is decreasing, another peak at )y appears.

— But for low frequencies, the peak height keeps increasing upto a very
high field, even though the peak position becomes very close to the
boundary of Qp and Qy. At very high magnetic field the peak at Qu
appears. This indicates that the phase D and U physically give two
different types of loops in the m-h plane.

The U-peak shows the paths which remain in the positively magnetized
states. This is similar to the Z-peak with the whole cycle in negatively mag-
netized states. In contrast, the D-peak appears where there are connecting

paths between positively and negatively magnetized states.

See Fig. 3.7 to compare Fig. 3.6 with the dynamical phase diagram of a driven
DNA. One can easily find the correspondence between the states of the two above-

mentioned system.
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Figure 3.7: Dynamical phase diagram of a periodically driven DNA hairpin in the

gm-v plane. The lines are boundaries for various phases U, D and Z. The points
are from the simulation and the lines are guide to eye (see Ref. [72]).

3.5 Summary

In this chapter, we studied a driven magnetic system. The motivation comes from
the realizable phenomenon of a DNA during transcription and replication. Both
the systems, DNA and the Ising ferromagnet, are two state systems, undergoing
a first order phase transition. This fundamental similarity produces qualitatively
similar behaviour under a periodic drive, though the detailed dynamics are differ-
ent. The results are obtained using Monte Carlo simulation of the Ising system.
We emphasize here that the one should rather look at the time-resolved loops to
get an exact picture of the states. A dynamical phase diagram is found in mag-
netic field (h) vs. frequency (v) plane. The phase diagram shows the possibility of
various mixed states depending on the frequency and the amplitude of the periodic
field. The important outcome is that there is a possibility of going from one phase
to the other just by varying frequency alone, keeping the amplitude of the external
drive fixed. The same observations apply for the driven DNA.

What next: In order to get an equilibrium curve from a hysteresis loop, we
develop a technique by using the work theorem and the histogram method. The
results are verified again by using Monte Carlo simulation of Ising model, and can
be applied to the hysteresis of driven DNA.
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List of symbols

s
C
Ah
At

Inverse temperature

No. of cycles

Field increment

MC cycle

Force in DNA hairpin

Hamiltonian

Magnetic field

Upper amp. of mag.

Lower amp. of mag.

Nearest Neighbour interaction strength
Size of spin array

Magnetization

No. of steps

Frequency

Prob. of @

Average response over one cycle

@-value for D (Dynamic) state

@-value for U (or +ve magnetization) state
Q-value for Z (or -ve magnetization) state
I[sing spin

Critical temperature for DNA melting
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Equilibrium probability distribution from

nonequilibrium path integral

Near a phase transitions, a system under consideration has a very large relaxation
time. Under an periodic drive, one observes hysteresis when the transition is
first order. In such a situating, it is almost impossible to get the equilibrium
or the thermodynamic curve. For example, if one wants to get, numerically or
experimentally, the critical force for the unzipping phase transition of a DNA under
force, one ends up with a hysteresis loop in the force-distance plane, from which
it is difficult to find out the critical force accurately. We propose a different but
efficient method to get the equilibrium curve from nonequilibrium measurements.
In doing that, we exploit the work theorem and the histogram technique. In this
chapter, we discuss this fundamental connection between equilibrium properties

and nonequilibrium work done.

4.1 Introduction

A system in thermodynamic equilibrium has no memory of its past. Consequently
there is no leading role for time in the ensemble based statistical mechanics except
the subservient one to maintain equilibrium among the internal degrees of freedom
and with external sources. This wisdom gets exploited in the dynamics based
algorithms like Monte Carlo, molecular dynamics, stochastic quantization, to name
a few, to attain equilibrium from any arbitrary state albeit in infinite time. Even

a thermodynamic process involving changes in parameters is an infinite sequence
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of equilibrium states, and is therefore infinitely slow. A finite duration process,
not destined to equilibrate at every instant of time, maintains a memory of the
initial conditions or a short time correlation of states. The biased sampling of the
phase space keeps these processes outside the realm of statistical mechanics and
thermodynamics. In this equilibrium-nonequilibrium dichotomy, a work theorem
[19, 20, 22, 21, 25| attempts to bridge the gap by providing a scheme for getting
the thermodynamic free energy difference from a properly weighted nonequilibrium
path integral [22, 21].

We show in this chapter that purely nonequilibrium measurements of work
gives an operator S, defined on the phase or configuration space, whose normal-
ized principal right eigenvector is the equilibrium probability distribution. Our
result is valid for any number of parameters including temperature and interac-
tion. With this extension we can get the equilibrium distribution by constructing
a matrix S connecting any two allowed states of the system without any reference
to equilibrium anywhere, thereby completely blurring the boundary between equi-
librium and nonequilibrium. This finds direct application in out-of-equilibrium
phenomena like hysteresis.

Barkhausen noise is an example of nonequilibrium response of a ferromagnet
as the magnetic field is changed at a given rate [94, 95]. By measuring the voltage
induced in a secondary coil as the current in the primary coil wound around a
ferromagnet is changed, one gets the time variation of the magnetization. The noisy
signal one gets is not unique but stochastic in nature, reflecting the fluctuating
microscopic response to the external field. Such signals have been analyzed in the
past to extract information like avalanche statistics, material characteristics etc.
Our results find a different use of the Barkhausen noise to construct the S matrix.
Similar constructions for other cases like protein or DNA dynamics in vivo, pulling
of polymers in single-molecule experiments, etc, call for new class of experiments

to monitor the noise signals during these events.

4.1.1 Outline

This chapter is organized as follows: In Sec. 4.2, we recapitulate the work theorem,
introduce the paths and discuss the connection between the work theorem and the

histogram transformation of equilibrium statistical mechanics. In Sec. 4.3 we give
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a simple and general, dynamics independent proof of the relation between the
equilibrium probability distribution and the work done in nonequilibrium paths.
This relation in some form is already known [21, 22| but our derivation allows us
in generalizing the result to other cases involving temperature, interactions, etc.
Sec. 4.4 deals with the main result of this chapter. There we prove the eigenvalue
equation for S. A few examples are also given there. How to get the operator
S directly from experimental measurements of Barkhausen noise is also discussed
here. Numerical verifications of some of the results are presented in Sec. 4.5 by

taking the 2D Ising model as an example. We summarize in Sec. 4.6.

4.2 Work theorem and path integral

4.2.1 Work theorem

Consider a classical system described by a Hamiltonian H(A,z) where A is an
external field that couples to its conjugate, a microscopically defined quantity, x
The thermodynamic state is specified by temperature 7" and field A. Let us start
with the system at A = 0 in thermal equilibrium at temperature 7. External
field A is changed in some given way from 0 to a final value A\ in a finite time
7 or in a finite number of steps n, letting the system evolve in contact with the
heat reservoir. No attempt is made to ensure equilibrium during the process. The
variation of 2 along the nonequilibrium path (z(¢) vs ¢) and the instantaneous final
(boundary of the path) value of z, x1,, when the field reaches A, are noted. The

work done along a nonequilibrium path by the external source (as in Ref. [20]) is

aHdA
W= /aA dt b (4.1)

in time 7, and it varies from path to path. The difference between two definitions
of work in the context of work theorem, one used in Ref. [19] and the other in Ref.

[20], is discussed in Ref. [37]. For the sake of notational simplicity we choose,

H:H0+H1(A,$):HO—AI‘, (42)

60



Chapter 4. Equilibrium probability distribution from nonequilibrium path
integral

where Hj is the energy for A = 0. There is not much loss of generality in choosing
the form of Eq.(4.2) because A and x refer to any pair of conjugate variables so that
x itself need not be a linear function of the internal coordinates. As an example,
in an interacting spin problem in a magnetic field h (=A), H = Hy — h ), sk
where s;, is the spin variable at a site denoted by k, with =), s;. Often A can
be taken as the switching parameter to turn on a perturbation or interaction in a
Hamiltonian H = Hy — H' with Hy = Hy — AH'.

The work theorem [19, 20| provides the equilibrium free energy difference AF
between the two states with A = 0 and A = A, both at inverse temperature
f = 1/kgT (kg is the Boltzmann constant), from the nonequilibrium work done
as

1
AF = ——In(e W )
F 51 (7", (4.3)

where (...) denotes the average over all possible paths.

4.2.2 Paths: equilibrium and nonequilibrium

We are using here a description of a state by the intensive parameters which actu-
ally characterize the surroundings. In equilibrium any system is expected to have
the values of the intensive parameters same as that of the environment. A change
in any of the parameters, say A, from )y to A, would require heat and/or energy
transfer. The work done on or by the system is determined by the change in the
free energies, independent of the path of variation of the intensive parameters.

This is expressed as
A

AF = Wy = — / Teg (M) dA, (4.4)
Ao

where AF = F(3,\) — F(8,\). Here xeq(A) = [z Py(x)dx is the equilibrium
average at the instantaneous values of the intensive parameters and P, (x) is the
corresponding equilibrium probability distribution of x. This follows from the
identification of the equilibrium value of z as ., = —0F/JA, in contrast to the
conjugate ensemble definition A = 0F /Ox where F(f3,z) is the fixed-z ensemble
free energy.

For convenience, let us discretize the integrals. For example, for A € [\g, A], we
have a sequence (Ag, Aq,...A,, = A) and the continuum is recovered by taking the

usual limit of n — oo with max{AA; = A;;1 — A;} — 0. The work done can be
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rewritten as .
Weg ==Y AN {Z PAi(x)x} . (4.5)
=0 x

By interchanging the sums over z and A, we define (i) a sequence {x;|i = 0,...n} as
instantaneous values, and (ii) a sequence-dependent work done as W = >, x; AA,,

to reinterpret Eq. (4.5) as an average over these x;’s. Therefore,

Weg ==Y Plai} Yz AN, (4.6)

{zi} ¢

where P{z;} = [[, Pa,(z;) is the joint probability of getting the particular {z;}
sequence, because, for a thermodynamic process, there is no memory. Going over
to the continuum limit, the thermodynamic process of varying A is now seen as
equivalent to choosing a path in the configuration space and re-weight the paths
according to the probability of its occurrence in the A-ensemble. The relation
between the free energy change and work, Eq. (4.4), now gets a path integral
meaning where the process takes the system over the microstates and one averages
the work over individual paths.

This thermodynamic connection is valid only in equilibrium. The work theo-
rem generalizes this idea by replacing P{x;} by the nonequilibrium probability of
getting a path and asserting

Z
e POl = 22 = /DX e PV (4.7)
Zo

where [ DX stands for the normalized sum over paths, i.e., sum over intermediate

x’s with appropriate probabilities.

4.2.3 Histogram transformation and infinitely fast process

There is a fundamental transformation rule obeyed by the partition function, often
used in numerical simulations as the histogram method [32]. This transformation
connects the equilibrium probability distributions at two parameter values, A = \g
and A = )\ as

p B(A=Xo)x
PA(ZL‘) o Ao (SL’) €

=S Py (@) PO (48)
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where the sum in the denominator is over the allowed values of . The denominator
of the right hand side of Eq.4.8 is Z,/Z,, where Z, is the partition function at

inverse temperature (3,
Zy = Z e PHo PhT, (4.9)
states
From Eq.(4.1), (A—Xp)x can be taken as the work done in an instantaneous process
that changes A from )y to A without changing x. The probability of getting x for
equilibrium at Ay is Py,(x) and therefore the sum in the denominator of Eq.(4.8)
is the path integral of Eq.(4.7), because x does not change. This gives the work

theorem.

4.2.4 Work theorem and histogram method

Above the equivalence of the work theorem and a one step histogram transfor-
mation where the magnetic field has been changed from 0 to A in one step, has
been shown. Similarly one can write the n-step histogram transformation which
is representative of the actual process of doing the MC simulation to find out the
free energy difference of initial and final states. Suppose initially we have zero
magnetic field initially and at the final state magnetic field is h.
One step process: If the final state is reached from the initial state in one step,
then change in magnetic field is, Ah = h. Hence the partition function at the
magnetic field h is

Zgn=Zpo »_ P(Eq, Mp)e "o, (4.10)

Eo,Mo

where Fjy and M, are the initial state energy and magnetization.
Two step process: The change in magnetic field while going from one state to the
next is Ah = h/2 and hence Zz, is

Zﬁ,h = ZB,h/Q Z P1<E1,M1)€6AhMl (411)
Eq1,M
= Zso S Po(Eo, M)e® ™Mo N7 Py(Ey, My)e®MM . (4.12)
Eo,Mop E1,M
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Similarly for an n-step process Ah = h/n and Zg, is
Zﬁ,h = ZB,O Z Po(Eo, MQ)GﬁAhMO X
Eo,Mo
Z P1 (Eb Ml)eﬁAhMl... Z Pnfl(Enfh Mn,l)eﬁAhM”‘l (413)
E17M1 EnyMn
n—1
= Zso [[ D P(E:, My)eP2he, (4.14)
i=0 E;,M;

For the two extreme cases, the infinitely fast and the infinitely slow processes, it
follows immediately that the histogram transformation gives back the work the-
orem. For a process which is infinitely fast, or with a strong memory, one can
take the probability distribution of the intermediate i-th state, P;(E;, M;), as delta

function, dg, g,00,,01,- This gives

Zgh = Z Py(Eo, My)eaMMo — Z Py(Eo, My)e”™M, (4.15)

Eo,Mo Eo,Mo

which is the same as that of the 1-step process. For an infinitely slow process, at
each step P;(E;, M;) is the equilibrium distribution P{?(E;, M;) at the correspond-
ing magnetic field, h; = 1Ah.

This connection of the work theorem with the histogram method can be used
to make general constraints/comments on the probability distributions P(FE, M)
which will be applicable to any problem, as the histogram method is independent
of any specific problem.

We see that in the histogram transformation there is no need to keep track of
energy F in the probability distribution, P(M) is sufficient. Again the distribution
of magnetization depends on the magnetization of the previous state if it is not an
equilibrium state. So we replace P(E;, M;) by P(M;|M;_1). Hence

n—1
Zﬁ,h = ZB,O H Z PZ'(MZ'|MZ‘_1)€BAhMi . (416)
=0 M;

According to this method, once the initial and final values of the switching pa-
rameter are decided, one gets the same free energy difference independent of the

number of steps in between the initial and the final states. In other words, the re-
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sult is the same for all n-step processes with any positive integer n. So, comparing

a one step process and a two step process we can write,

> P(My|Mp)eM = Mo, (4.17)

My

4.3 Equilibrium probability distribution

We in this section use the discrete version of the process to re-derive the equilib-
rium probability distribution from the work theorem in a general and dynamics
independent way. For the kind of nonequilibrium processes mentioned in Sec.
4.2.2 the equilibrium probability distribution of x at a parameter value A can be

obtained from a weighted path integral [22, 21|

DX e PV §(w, — )

P

(4.18)
where zy, is the instantaneous boundary value at the end of the path, and the
denominator is same as r.h.s. of Eq.(4.7). This is in the form of a path integral
where the paths are weighted by a Boltzmann-like factor exp(—SW). The same
was established previously in specific cases like, the Master equation approach [20],
the Feynman-Kac formula [21] and Monte Carlo dynamics [22].

The equilibrium average x.q is defined as

10 o ZN\ "1 (Zn Zas
Leog = Ba—A In ZA = (lsl_r% (670) g (70 - ZO s (4:]_9)

where work theorem is to be used for the partition functions.

The system starts in equilibrium at temperature 7" and A = 0, and then A is
built up at constant 7" as a sequence of infinitely fast jump of A\ = \/n, each
jump followed by a finite time evolution in contact with the heat bath. Consider
now two n-step processes, one process with final field A and another one with A —¢
(0 — 0 at the end). In fact, the second process is just a copy (replica) of the first
one in every respect except at the last stage (Fig. 4.1). For the last jump, the
change in A for replica 1 is A\ while for replica 2 it is A\ — 0.

A path is specified or defined by the sequence {z; | i = 0,..n — 1}. The
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L - - - 4

I

replica 1

integral

replica 2

Figure 4.1: Schematic representation of two replicas of same paths, each starting
from A = 0 and ending at A = X in replica 1 and at A = XA — ¢ in replica 2.
Label i denotes the step number as A is changed in steps of A/n. Lines of different
styles (dashed, dotted etc) represent different realizations of paths starting from
different values of x. The vertical portion of a path is an instantaneous process
(no change in x) and the horizontal part is under interaction with the surrounding
(x evolves at a constant A). Identically shaded lines in the two replicas have the

same evolution.
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changes in x; at any step is because of internal dynamics or exchange of heat with
the external reservoirs. We do not need to let the system evolve once the field
reaches the final desired value. Therefore, the sequence {z; | i = 0...n — 1} is the
same for both the replicas. The work done Wy, W, along an n-step nonequilibrium

path for replicas 1,2 are related via
W2 = W1 —+ (51’”,1, (420)

with W is of the form given above Eq. (4.6). The work theorem of Eq. (4.7) when
used in Eq.(4.19) yields

| I N Ll ()
Teq = lim —

5—0 ﬁ Zpaths eB2isy Al )

fDX xp e AW -

This shows that the equilibrium average can be expressed in terms of the boundary
value with proper weightage of the paths. The above proof can be generalized to
any moments of x.

Now if P(x) is the distribution of z,, that gives the average in Eq.(4.21)

Teq = (T) = /azP(:c) dx, (4.22)
then P(z) can be written as

DX eV §(xy, — x
Py = L2 =,

(4.23)

as quoted in Eq.(4.18). We now invoke the moment theorem [96] which, in our
case, states that for a probability distribution without sufficiently long tails, the
moments uniquely specify the distribution. Since these conditions are satisfied
by the equilibrium probability distributions for any finite system, the moment
theorem applies. Since the moments from the nonequilibrium path integral are the
equilibrium moments, P(z) is the equilibrium distribution: P(z) = P\(z). This

completes the proof.
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4.3.1 Generalization

In general, for a Hamiltonian of the form H = H({A,},{X.}), the equilibrium
distribution, P(F, 1, xs,...), at some given parameter values, {)\,} and temper-
ature 87!, can be obtained in the same way provided the paths start from an
equilibrium state for H = H,, where H, gives the energy for all A, = 0 and W
is the total work done on the system along a nonequilibrium path, by each of the
externally controlled parameters. E here corresponds to the energy from H only.
Our starting Hy may be a free Hamiltonian for a mechanical system and can as
well be zero for interacting spin-like systems.

Consider the Hamiltonian H = vH, for a spin-like system (i.e. without any
kinetic energy). In this case one of the {A,} could be the strength of interaction.
Let’s start with v = 0, i.e. the starting point is any random configuration of the
free system or a non-interacting system, and then change v in some given way from
v =0to~y = 1. We thus generate the equilibrium distribution of Hy at a particular
5, by doing a similar nonequilibrium path averaging. Note that everywhere we need
the product SW. So, we can discretize temperature instead of A and the process
can be reinterpreted as cooling down to a finite temperature from an initial infinite
temperature. In the usual formulation of work theorem, A refers to mechanical
parameters such as the pulling force in AFM, which are under direct control of
the experimentalists. In contrast, other intensive parameters such as temperature
may not be controlled with this level of precision in experiments. But this finds
various applications in numerical experiments. Such thermal quenches are quite
common in numerical simulations and our results show how these can be harnessed
to extract equilibrium information as well. The ensemble of states obtained in the
above discussed way at the end of the path is not a representative sample of
the equilibrium ensemble at the concerned temperature and field. However, the
history-averaged distribution is the equilibrium distribution. The boundary states
would relax to reach equilibrium via energy transfer to the reservoirs but that part
of the process is not required. This difference becomes important and visible in

systems exhibiting hysteresis as e.g. for a ferromagnet.
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4.3.2 Application to ferromagnet to get equilibrium magne-

tization curve

The above-mentioned scheme can be used to get the equilibrium probability distri-
bution or thermodynamic quantity from a process which is arbitrarily away from
equilibrium and at all temperatures including phase transition points. Now we
apply our result to the case of hysteresis of a ferromagnet below the critical tem-
perature (T¢). Consider a Hamiltonian: H = Hy — hM. The external magnetic
field is varied from —hg to +hg in a fixed manner and then reversed. (M) is
calculated using Eq.(4.21). Below the critical temperature, magnetization (M)
vs. magnetic field (h) curve shows a discontinuity at h = 0 for infinite system
size. For a finite system there is no discontinuity, M-h curve is continuous passing
through the origin, and the slope of M-h curve at h = 0 increases as system size
increases. But, in reality, when experiments or simulations are done, instead of
single retraceable curve passing through the origin we get a loop called hysteresis
loop, no matter how slowly we vary the magnetic field. The common technique
known to get the equilibrium curve is to connect the vertices of the sub-loops [95].
Here the weighted nonequilibrium path integral scheme is a way out to get the
equilibrium magnetization curve. We verify this for Ising ferromagnet and discuss

the observations about it in Sec. 4.5.

4.4 Equilibrium probability distribution from an

eigenvalue equation: Operator S

In this section we derive the main result of this chapter: equilibrium probability
distribution as an eigenfunction of a nonequilibrium operator S.

Using the discrete notation, we can write Eq.(4.18) as

Z
Py(z) = ZAO > e Moa (4.24)

A paths
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by using the work theorem, Eq.(4.3), that

e = 2 (4.25)

Again, writing > 0= D" Py () Z;aths, where the primed summation denotes
the sum for fixed initial value of x = z; with appropriate probability and Py, (x;)

denotes the equilibrium distribution of z; for A = \g, we get,

Z /
Py(z) = ZAA SN Py(r) e by (4.26)

x; paths
Use the transformation rule for the partition function (Sec. 4.2.3),

Z
AW

=) Py () SO0, (4.27)

xT

to absorb Z,,/Z, into the probability distribution. This transforms P, (x;) into
Py\(z;), in Eq.(4.26) as

Py(z) = > Y e W0 Py(a) (4.28)

z; paths
= > Siw Pa(m), (4.29)
= SP,="P,, (430)

with Py as a column vector of {P\(z)} and the matrix elements of S as

Sy = Y e WO (4.31)

paths

The summation in Eq.(4.31) is over all paths that start from an equilibrium distri-
bution of A = A\g with value of x as z; and end in a state with A = X\ and x = xy,
with proper normalization (denoted by prime).

Although we use the simple Hamiltonian: H = Hy — A x in the construction,
Eq.4.31 can be generalized for a Hamiltonian H = H + Hy (A, x), because Eq.(4.27)
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has the general form,

Z

= Z Py, (z) e BHO)=HR0.2)]
Ao

xT

Now we address the remaining problem — the normalization of the primed
summation over paths in Eq.(4.31). This problem is inherited from Eq.(4.25).
Note that the l.h.s. of Eq. 4.25 should add up to 1 for A = )y with W = 0. So
we choose the hidden factor a posterior: by demanding proper normalization of
the final probability distribution. This condition can be ensured in a process- or
system-independent way by choosing > S, .. = f(z;) = 1, (Eq.(4.29)), i.e. by
making the column sum of § independent of x;. By this normalization of the sum
of each column to unity it is also guaranteed that the principal eigenvalue is 1. The
corresponding right principal eigenvector has all the elements real and non-negative
— a necessary condition to be a probability distribution and when normalized, such
that sum of all elements is unity, this eigenvector gives the equilibrium probability
distribution.

The number of rows and columns in S is determined by the number of allowed
values of x. For continuum of states, the matrix equation is to be replaced by an
integral eigenvalue equation.

Hence, in brief, the scheme to get the equilibrium distribution at some pa-
rameter value A\ and temperature 37! is as follows: Pre-fix some arbitrary or
convenient-to-start-with initial parameter value Ay which will be same for all
paths/experiments. Choose a microstate from the equilibrium distribution at field
Ao and call its value of = as z;. Change the parameter value from Ay to A in some
predetermined way and measure the work done by the external parameter on the
system according to Eq.(4.1). Repeat the experiments several times and construct
the matrix S using Eq.(4.31). Next, each column of the matrix is normalized to
unity. The normalized principal eigen-vector is the equilibrium probability distri-
bution, Py(z), at the field .

Eq.(4.30) is the main result of this chapter and it is not restricted to one
external parameter only and can be generalized to any parameter as mentioned
above. The matrix & connects any two allowed states of the system without any

reference to equilibrium anywhere and yet its principal eigen-vector determines

71



Chapter 4. Equilibrium probability distribution from nonequilibrium path
integral

the equilibrium distribution. Despite resemblance, there is no similarity either
with the stochastic matrix of a Markov process or the adiabatic switching on of
interaction in a quantum system because S is constructed out of a finite process
and needs global information about the work done.

Another issue that comes up in this approach via S, is the question of ergodicity
which connects the Gibbsian statistical mechanics with equilibrium thermodynam-
ics. The nonequilibrium dynamics used to construct S may not respect ergodicity
but the starting points for the paths in principle span the whole phase space, even
in the case when one starts with a free non-interacting system. It seems ergod-
icity of the free non-interacting system is sufficient to generate the equilibrium

distribution.

4.4.1 Examples
Example 1: Extreme cases

Consider an extreme case: a completely equilibrium evolution of the system, where
at each step the system reaches its equilibrium. Take a simple system: a single
spin problem in magnetic field h and temperature 3~ SH = —Ks, where s = +1
and K = Sh. For an n-step process, K varies from 0 to nk in steps of k, and the
column normalized S matrix can be calculated exactly where at each step the spin

reaches the corresponding equilibrium state, as

o ( Pou(+) Pur(+) ) | (.32
Pn (_) Pn <_>

where P,;(£) is the equilibrium probability of finding 41 spin at the n-th step.
Thus for a completely equilibrium evolution of the system the elements of the
matrix § are unique and, therefore, S has only one and unique eigenvector. In
that case principal eigenvalue is 1 and all other eigenvalues are zero. We may
conclude that a complete reducibility of & is the signature of a thermodynamic
process.

Eq.(4.32) is to be compared with the extreme nonequilibrium process as em-
bodied in Eq.(4.8). For this instantaneous change in A\, S = I, the identity matrix,

with no zero eigenvalues.
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If at each of these n steps, the system evolves for a time At in contact with the
bath, then S, oy — Seq as At — co. The smallness of the rest of the eigenvalues
would indicate how close to equilibrium the system is.

The dynamics of a many body system might be compartmentalized into slow
modes and fast modes, where the fast modes would equilibrate much more quickly
than slow ones. How many such fast modes have actually equilibrated, can be
gauged by the number of zero eigenvalues. The S matrix is not necessarily symmet-
ric, though real and there is a possibility of pairs of complex conjugate eigenvalues,

with their magnitudes going to zero as equilibrium is reached.

Example 2: Barkhausen noise and matrix S

We now show the practical feasibility of the operator method for a magnet by
using the Barkhausen noise [94, 95| as recorded through the output voltage across
a secondary coil wound around a ferromagnetic material. Though Barkhausen
noise has seen many applications, its use for equilibrium properties has not been
anticipated.

Consider the Hamiltonian
H=Hy,— hM. (4.33)

Here magnetic field h and magnetization M correspond to A and x respectively.
The field is varied from h; to hy in a time interval 7 at a constant rate h. The

Barkhausen effect is a noisy signal proportional to the change in magnetization,

n(t) = dﬂgt(t). So by integrating the Barkhausen noise up to time ¢ one gets the

nonequilibrium instantaneous magnetization of the material. Therefore, we can

write the work related exponent in Eq.(4.31) as

W+ [h(r) — h(0)] My = —h /O "t /0 () dt (4.34)

which, in a discretized form, looks like

W+ (b — ba] My = =AR> Y g, (4.35)
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where the Barkhausen noise at k-th step is n, = My — M;_,. Hence the matrix

elements Sy, a, takes the form

S = Z /eXp

expts.

BAh nz > nk] : (4.36)

j=1 k=1

expressed entirely in terms of the Barkhausen noise along the nonequilibrium paths.
The primed summation over paths that start with M; and end at M; includes
proper normalization as mentioned earlier.

To go to other cases, e.g., for the case of a polymer pulled at a constant rate
of change of force, one needs to monitor the time variation of the pulled point
displacement dx/dt vs t. This information can then be used in Eq.(4.36) to get
the corresponding S.

4.5 Numerical verification of results

Our claims about the probability have been verified for the case of 2D Ising model
on a square lattice, L X L, where L is the size of the lattice with periodic boundary

condition. Consider the Hamiltonian

H=-J> spsi—hY s (4.37)

<k,l> k

where J is the interaction strength, h is the external magnetic field and s, = +1
is the spin at k-th site of a square lattice. Here Z<k’l> denotes the sum over
nearest neighbor spins. Here J and h play the roles of external parameter (A) and
> <rys Sksiand D7, s are the internal variables ().

We find equilibrium probability distribution for given J and h using weighted
nonequilibrium path integral, normalizing the eigenfunction of & and compare
those with the equilibrium probability distribution obtained from a usual Monte
Carlo procedure. The overlap of the two distributions is determined by the Bhat-
tacharyya coefficient [97] defined as

BO =" \/Pu(E. M)Py(E.M) =1 (4.38)

E,M
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with BC' = 0 for no overlap and BC' = 1 for complete overlap.

The practical implementation is done as follows.
1. Consider an L x L square lattice with periodic boundary condition.

2. Start with h = 0. Take an arbitrary spin configuration. Let the Ising spin
system evolve and equilibrate with the heat bath at § = 1/7, employing
the Metropolis algorithm. In other words, this is a microstate, Cy, randomly
sampled from an equilibrium canonical ensemble. Let Ej be its energy and
My be its magnetization. Then call the equilibrium distribution at temper-
ature 1" for h =0 as Pﬁ(?g(Eo, M,).

3. Work step: Switch the magnetic field: A — h+Ah, keeping the the microstate
same as Cy . Calculate the energy of Cy with field h + Ah and let it be F; .
Work done on the system equals E; — Eyg = —MyAh.

4. Heat step: Carry out a few Monte Carlo sweeps with field A + Ah on. It
takes the system towards the equilibrium at field h + Ah and temperature
T'. Let the system after the heat step be in microstate Cf.

5. Next the work step and the heat step, (3) and (4) are continued alternately
until the magnetic field reaches the predefined value. Thus alternate work
step (in which the microstate does not change but the field changes) - and
the heat step (in which system switches from one microstate to another in
the presence of the increased external field) is the switching protocol. This

whole process starting from step (2) constitutes one experiment.

6. The experiment of step (5) is carried out several times and an ensemble of

work values are constructed. Thus one gets the work distribution P(WV).

4.5.1 Numerical verification of the equilibrium probability

distribution starting from a uniform distribution

Let us take an 8 x 8 lattice and start from H = 0. Each time we start from a
state chosen from a uniform distribution and reach the final state with J = 1 and

h =1 in n-steps. At each i-th step, J is switched from J; to J;,; and the external
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Figure 4.2: Plot of the weighted distribution (a) P;,(E) vs. E and (b) Py,(M)
vs. M (dotted line with circles) for varying J and h with n = 20 and equilibrium
distributions P.,(E) and P.,(M) (crosses) with J =1, h = 1 and § = 0.2 for a
8 x 8 lattice, showing that P;,(E) = P.,(F) and Py, (M) = P.,(M).

magnetic field from h; to h;yq,
AJ = Ji—i—l - Jz = J/TL and Ahz = hi—l—l — hz = h/’I’L7

keeping the spin configuration unchanged, and the amount of work done on the
system
Wi = =AJ;E; — Ah; M;,

is calculated where M; is the magnetization and E; is ) sis; at the i-th step. Then
we let the system relax at that field h;, J; and 8 for a while, but do not equilibrate.

Thus the work along a path consisting of n steps is

n—1
W= — Z AJE; + Ah; M;,

i=0
which is different for different paths. We find the weighted distribution

Pyu(E, M) = /D e_BW;;E; ;_?fwb —M) (4.39)

and then
Py (M) =Y P(E,M)
FE
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and
Pyu(E) =Y P(E,M).

It is observed that these distributions merge well with the corresponding equilib-
rium distributions and for P;,(E) (Fig. 4.2(a)) and P;,(M) (Fig. 4.2(b)) we get
€ ~ 1073 (Eq.(4.38)).

4.5.2 Equilibrium magnetization curve using nonequilibrium

path integral

For this case lattice size is 8 x 8 and the interaction strength is kept fixed at J = 1.
Each time we start from an equilibrium distribution of h = —hgy. The field is
varied from —hgy to +hg in n steps. W(n) vs. n data are recorded and (M) (h) is
calculated using Eq.(4.21).

We plot the weight averaged magnetization curve, (M)(h), along with the
hysteresis loop, average magnetization over samples, against h for hyg = 0.2 in
Fig. 4.3(a) and hy = 2 in Fig. 4.3(b).

A retraceable equilibrium curve is obtained as expected though the nomi-
nally averaged magnetization neither changes sign nor makes a complete loop
(Fig. 4.3(a)) [89]. This reflects the fact that though in majority the magneti-
zation does not reach the correct value, there are a few rare samples for which the
spins do flip and these rare configurations, which are close to equilibrium, get more
weight in the weighted path integral to give the correct equilibrium curve.

For the larger field, we obtain a curve which is much narrower than the hys-
teresis curve (Fig. 4.3b). The equilibrium curve obtained this way is still not a
single curve. The width of the loop might be connected to the droplet time scale,
and signals the need for a more careful sum over paths to take care of droplet

fluctuations.

4.5.3 Numerical verification of the eigenvalue equation

We start from an equilibrium ensemble at inverse temperature § = 0.2 (kept fixed
throughout the experiment), J = 1 and h = 0. Each time we start from a state

chosen from its equilibrium distribution and reach the final state with J = 1 and
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Figure 4.3: Plot of weighted average M (h) vs. h and the corresponding hysteresis
loop (simple averaged M vs. h) for a 8 x 8 lattice. The magnetic field varies from
—hg to +hg in 100 steps. (a) hg = 0.1. The weighted loop and the hysteresis loops
are represented by the black solid line and the green and blue dashed lines.The
inset shows the hysteresis loop for the small (green and blues lines) field with
respect to the large field (red double dash-dotted line) and the weight averaged
magnetization for small field. (b) hg = 2. The weighted loop and the hysteresis
loops are represented by the dashed lines and the red solid line respectively.

h = 1 in n-steps in the same way described above and calculate the amount of

work on the system at i-th step: W; = —Ah;M;. We find the matrix elements:

Suar, =Y e WVIOTROM S (4.40)

paths

After the matrix is constructed, we normalize sum of each column to unity and find
the normalized principal eigen-vector corresponding to the Principal eigenvalue 1,
which is guaranteed. We compare the normalized eigenfunction with the actual
equilibrium distribution for L = 4 and 8. We see that these distributions merge
with the corresponding equilibrium distributions for L = 4 (Fig. 4.4(a)) and L = 8
(Fig. 4.4(b)) with € ~ 107 (Eq.(4.38)).

4.6 Summary

In this chapter we show and verify numerically that the repeated nonequilibrium

measurements of work done to connect any two microstates of a system can be used
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Figure 4.4: Plot of the equilibrium distribution P.,(M) vs. M (boxes with dotted
line) and normalized principal eigen-vector P, (M) (dashed line with circles) with
J=1,h=1,=0.2and n = 1000 for (a) 4x4 lattice and (b) 8 x8 lattice, showing
that Ph<M) =

= P.,(M), i.e., eigenfunction is indeed an equilibrium distribution.

to construct a matrix S whose principal eigenvector is the equilibrium distribution.

The matrix elements of S (Eq.(4.31)) for a Hamiltonian H (A, z) with (A, z) as a
conjugate pair are:

Smf,xi = Z 4 675W+6[H()‘7$i)*H(>\0,:B1)}

paths

(4.41)

where the summation is over all paths that start from an equilibrium distribution
of externally controlled parameter A = \g with value of conjugate variable = as
x; and end in a state with A = X and @ = xy, with proper normalization. The
work done W is defined in Eq.(4.1). The values of the elements of S depend on
the details of the process and, therefore, there can be many different S, but all
will have the same invariant principal eigenvector. In this way the distribution of
an interacting system can be obtained from a free, non-interacting one without
any reference to equilibrium anywhere. In the process, we also provide a dynamics
independent proof of the result that the equilibrium probability distribution can be
obtained using the nonequilibrium path integral. Besides giving a new perspective
of thermodynamics and statistical mechanics, our result has direct implications for

new ways in numerical simulations and experiments.

What next: Now we study the equilibrium phase transition of a DNA by
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mapping to an equivalent quantum problem. The phase transition is then observed
through the problem of dissociation of two interacting quantum particles. To
study the quantum phase transition we make use of the quantum entanglement
entropy, mainly the von Neumann entropy. The special behaviours of the phase
transition are shown to be same for the classical polymer problem and the problem

of quantum dissociation.

List of symbols

Inverse temperature
Energy
Fixed x ensemble free energy

Free energy difference

g

E

F

AF

H, Hamiltonian under no drive

H Hamiltonian

h Magnetic field

A Intensive variable, control parameter
M Magnetization

n Number of steps to reach final state from the initial one
P

Equilibrium probability distribution

Py(z) Equilibrium probability distribution of x at A

P Probability distribution

S Matrix constructed from nonequilibrium work done
Weq Equilibrium work done

%4 Work done

p Value of z at work step

Teq Equilibrium value of z

x Extensive variable

ZA Partition function at A



Entanglement entropy of a quantum

unbinding transition and entropy of DNA

In this chapter, we use the ideas and the results of DNA phase transition in a
different way to study the dissociation of a quantum molecule. The quantum
dissociation of a bound pair is a quantum phase transition characterized by di-
verging length scales. This QPT is traced by the quantum entanglement entropy,
a measure of pure quantum correlation. We show that the quantum entanglement
entropy captures the important features of the phase transition. Moreover, some
interesting characteristics of the entanglement entropy is revealed, which is then
justified from the known results of the DNA.

5.1 Introduction

At or near a QCP, the signatures of its universality can be found in the en-
tanglement, a common measure of which is the von Neumann entropy (SV)
[36, 39, 45, 44, 98, 99]. The exact results of this chapter show that for a class
of critical points, viz., the dissociation of a pair of particles in the unitarity limit
of infinite scattering length, there is the possibility of a negatively diverging S*V.
Although counter-intuitive, this is not an artifact. Analogous situation occurs in
statistical mechanics for Gibbs entropy in canonical ensemble for a gapless spec-
trum. As discussed below, the problem in hand involves a gapless entanglement
spectrum. The usual proof of the positivity of entanglement entropy is not appli-

cable in case of continuous eigenvalues of the reduced density matrix. The negative
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entropy is essential for the criticality itself. Its importance is brought out via the
mapping of the quantum problem to the equivalent classical statistical mechanical
problem, the melting of a double-stranded DNA [100, 101, 102, 107].

5.1.1 Outline

The outline of the chapter is as follows. We analytically find out the von Neumann
entropy of two interacting particles in Sec. 5.2 and in the next section, Sec.5.3, we
explain how the entanglement entropy is related to the entropy of bubbles in DNA

melting.

5.2 Entanglement entropy

Recall the problem of a quantum particle of mass m in a three dimensional spherical

potential well,

V(i) = =Vp  forr<a,
= 0 for r > a, (5.1)

where r is the radial coordinate, a and 1} are the width and the depth of the
potential well. What is special is that V; > 0 does not guarantee the existence of a
bound state, unlike in one or two dimensions, or in classical mechanics. No bound
state exists for u < u. where u = 2mVpa®/Rh? is the dimensionless parameter for
the potential and u,. corresponds to a critical value of u. For simplicity, we take
u &~ u. so that there is only one bound state. In this situation energy |FE| itself
is the gap in the spectrum. If we tune u to get a state with zero energy (E = 0),
then at that energy in d = 3 the wave function ¢(r) ~ 1/r which is like a non-
normalizable critical state. Like a bound state the probability density does decay
to zero but like an unbound state it is not normalizable. In higher dimensions, the
condition for a minimal strength of the potential for a bound state remains true,
but the state corresponding to £ = 0 becomes normalizable as it should be for
a bound state. So we see that this bound to unbound transition for a potential
well has different nature in different dimensions. In general, (i) for d < 2 there

is no such transition as £ = 0 requires V;; = 0, though there are remnants of the
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transition as Vy — 0, (i) for 2 < d < 4, the transition is continuous (critical) —
the bound state becomes unbound through a non-normalizable critical state as we
change u, and, (i) for d > 4, the bound state remains normalizable up to and
including £ = 0, and becomes unbound as u is decreased further, thus making the
transition first-order. This depicts a QPT and the case of a potential well gives a

simple example of a quantum critical point for 2 < d < 4 with diverging length

scales.
(@) | (b)
& A
>
@)}
D| 0
D A

ground state

Figure 5.1: (a) Gap A in the energy spectrum. The shaded region is the continuum
of energy. (b) The graph shows how energy gap goes to zero. The continuous line
describes a second order or continuous transition (critical) and the dashed line
shows the first order transition. The two are distinguished by the behaviour of the
slope at u = u,.

The ground state energy, for u close to u,., is the gap A in the spectrum. A
quantum phase transition is characterized by a vanishing gap. A discontinuity of
the first derivative dA/du signals a first order transition, otherwise it is critical or
continuous, as shown in Fig. 5.1. One may define characteristic time and length

scales

& =hA™Y, and £, = h/V2mA, (5.2)

both of which diverge as A — 0, with £ ~ &7, z (= 2 in this case) being the
dynamic exponent. One may compare with the classical ground state to see the
importance of quantum (zero-point) fluctuations and the importance of time or
dynamics in quantum phase transitions. A path-integral interpretation of these
scales, useful for the DNA mapping, is given below.

Let us now consider the ground state of two dissimilar particles interacting via

a central potential V(|r; —rq|) of the type of Eq.(5.1), with r; denoting the co-
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ordinate of the i-th particle. The existence of diverging length scales and scaling
behavior around u = wu, justifies the dissociation of the bound pair to be a QCP
or a QPT depending on the dimensions they are in. The criticality is described by

the exponents for the diverging length scales and the energy, as

|E| an_l ~lu—u Y, and £ ~| u — u. |7V, (5.3)

with
yy=zvy = 1/(V-1), for 1< ¥ <2 (5.4)
= 1, for ¥ > 2, (5.5)

which involve (i) z the dynamic exponent, and (ii) a universal exponent W, known
as the reunion exponent for polymers [100, 101, 102]. For the short range interac-
tion problem, W = d/2, as for random walkers, from which the specialty of d = 4
is apparent.

In a quantum bound state a particle can tunnel through the potential. In
a path integral approach the particle does a sizable excursion in the classically
forbidden region outside the interaction well, sooner or later returning to the well
(see Fig. 5.2). That the two particles will eventually be close-by to form a bound
state is the source of entanglement while the excursions produce spreads of the
trajectories in space and time. These spreads give the two relevant length scales
§,€L. The large width of the bound state wave function near the QCP ensures
the mutual influence of the particles even if far away from each other (r > a) so
that the reduced density matrix for one particle still carries the signature of the
entanglement and the criticality. For this bipartite system, we are interested in the
“particle-partitioning entanglement” [103|. This makes the von Neumann entropy

a valuable quantity for the transition which reads,
SN = —Tr p Inp, (5.6)

where p is the reduced density matrix for the ground state |v),

p(ry,r)) =Try 0(1,2) = /ddr2 1, rdY) Wr], ra), (5.7)
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(b)

Figure 5.2: Path integral representation in the z-¢ plane. (a) A relative coordinate
path for two particles in one-dimension. The solid portions represent the classi-
cal bound state, i.e., inside the well (B), and the dashed portions represent the
unbound (U) state in the classically forbidden region. (b) Corresponding path rep-
resentation of two quantum particles with time, though intersections of paths are
not shown explicitly. It is also a configuration of two classical Gaussian polymers
interacting at the same contour length as for DNA base pairing, the t-axis repre-
senting the contour length (z) of the polymers. The dotted lines are the melted
bubbles whose partition functions are characterized by the reunion exponent W.
This description holds for any general d.

obtained from the two particle density matrix o(1,2) =[v)@ | by integrating out
(or tracing out) particle 2. In Eq.(5.6), we shall introduce some pre-chosen length
scale to make the argument of log dimensionless. If, with m;, r; denoting the mass
and the position of the ith particle, the full ground state wave-function (including
the center of mass (CM)) is

miry + Mals

(ry,re) =P ( ) o(r; —ry), (5.8)

my + Mo

where ® is CM wave function (plane waves) and ¢ is the wave function in relative
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coordinate (the relative wave-function), then

oy, ¥)) = / &y (e, e (), 1), (5.9)

Although the center of mass and the relative parts are not entangled, the two
particles are entangled. The lack of knowledge of the state of one particle is the
source of a nonzero entropy associated with the reduced density matrix [37, 38, 39).

The translational invariance of the interaction guarantees that the reduced

density matrix p(r,r’) = p(r — r’) has exp(—iq - r) as the eigenvector,

/ d'r'p(r —r')e 9 = p(q)e T, (5.10)

with the eigenvalue
2

5.11
L)) (5.11)

) =|o (a+31)

K being CM wave vector and ¢(q) the normalized momentum space wave function,
the Fourier transform of the relative wave-function ¢(r) in Eq.(5.8). Since the
entropy involves an integral over the whole range of q, it is independent of the CM
wave-vector, an expected consequence of Galilean invariance. Therefore, without
any loss of generality, we choose | K |= 0. The eigenvalues constituting the

“entanglement spectrum” can be written in a scaling form

[6(a) = x~" F(a/k, ar), (5.12)

where 2 = 2u | E|/h* = £, u being the reduced mass. Eq.(5.12) satisfies
Tr p = 1. In the critical regime (also called the “unitarity limit”), ax — 0, if the

scaling function behaves smoothly, then

F(§,ar) = F(q,0) = f(@), (@=q/k) (5.13)

which we find to be true for d < 4. For d > 4, we find that F(q, ax) for ax — 0

behaves in a singular fashion as

F(x,y) ~y* " f(x), (5.14)
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so that the prefactor in Eq.(5.12) becomes x %a?%. Here f represents a generic

function. By using these limiting forms, we find the entanglement entropy to be

SN = P Inak + c, (5.15a)
P =min(d,4), and ¢y = — [d% f(z)In f(z). (5.15b)

The last statement can be verified by direct computation of the momentum dis-
tribution function of the relative motion in d-dimensions. There are further log-
corrections at d = 2 and d = 4 which we do not discuss here. To motivate
Eq.(5.15a) let us consider a few examples. Consider the quantum problem of
two particles interacting via a delta-function potential in one dimension: V(x) =
—upd(x). By using the center of mass and the relative coordinate wave-function,

we write the wave function as

r1

Y(xy,x0) = C’emﬂ(m2+’%> e e (5.16)

which is translationally invariant. Here K is the CM wave vector, x = £|*, and C

is the normalization constant. The reduced density matrix for particle 1 is then
plz,z') = — e~ @Ru/matmll’=al 1] L w0 — o] (5.17)

having eigenvalues (Eq.(5.11))

=211 (k=o) (5.18)

mr (14 @)
which is of the form Eq.(5.13) with f(q) ~ (1+¢?)~2. By introducing an arbitrarily
chosen well strength o or a scale a = h%/2uv in Eq.(5.6), the entanglement entropy
is found to be of the form of Eq.(5.15a) with

P =1, and ¢g = In 87 — 2. (5.19)

For k — 0, p(q) — d(q) with SN = 0. There is a difference between x — 0 and
k = 0. For a one-dimensional problem with the potential of Eq.(5.1), one can go
over to the delta function potential problem by taking a — 0 keeping Voa = vy

constant to get the same In x behaviour as in Eq.(5.19). We then check for a
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3-dimensional potential well, Eq.(5.1). The relative wave-function (I = 0) for this
potential is

ASREL g
p(r) = " (5.20)
B < r > a,

T

with k£ and k as defined earlier and constants A, B determined in the usual way of
continuity of the wave function and its derivative. A direct Fourier transformation
of p(r) has been used to numerically compute the entanglement entropy. To derive
an analytical formula, we note that the dominant contribution in j(q) in the limit

ak — 0 comes from the outer part. In this approximation we get

11 1\’
~ —3 p/~
_ 11 _ , 5.21
) =5 (1) =@ (5.21)
This p(q) satisfies the normalization condition [ d*q p(q) = 1. Thus for the 3D
potential well interaction, the entanglement entropy is of the form of Eq.(5.15a)
with

P =3, and ¢q = 2(1 + log(4m)) ~ 7.06205. (5.22)

Exact numerical computations of von Neumann entropy for d = 3 are done by
using MATHEMATICA. For a given x with a = 1, we determine V), the depth of
the well and then the matching conditions and the Fourier transform were used
to obtain the entanglement spectra. The entanglement entropy is then obtained
by a numerical integration. The results are shown in a log-linear S°V vs. & plot
in Fig. 5.3 which also shows the line obtained from Eq.(5.15a) and Eq.(5.22). It
shows that SUV is negative for small x and that it has linear In x dependence. The
approximations show that the entropy is determined mainly by the outer part of
the wave-function.

To generalize the result to any dimension we carried out the calculation for
general d. The density matrix, solely from the outer part, is expected to be of
the form f(q) ~ (1 + ¢?)~2 as in previous cases but then there is a divergence
problem for normalization for d > 4. Since we want Tr p = 1, an ultraviolet cutoff
is required. This makes ax an important variable even in the limit ax — 0. The

specialty of d = 4 is now evident.
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Figure 5.3: Plot of SV vs. In k with @ = 1. The circles are the numerical values
and the straight line is the predicted line S*Y = 31n x + 7.06, Eq.(5.22).

The radial wave function R(r) (I = 0 state as the ground state) is,
A r2 ] o (kr forr <a
/21 (KT) (5.23)
for r > a,

R(r) =
€ 1 >
Br /2H|(€/)2‘(mr)
where € = 2 — d, A, B determine the normalization and matching of the inner and

the outer solutions. Here J and H™ are the Bessel and the Hankel function of the

first kind. The continuity of the wave function at » = a gives
il (5.24)

AJ|¥|(]€6) = B(FLCL)

under the condition k — 0 and ka — k. = 7/2. Eq.(5.3) follows from Eq.(5.24),
the matching of log derivative and the Bessel function identities. By using the

normalization condition and Eq.(5.24), we get
for d < 4

B=1q o ap
HT fOI' d > 4

(5.25)
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In the same x — 0 limit, with outer part dominance,

2+d

#(q=0)=~ Br™ 2, (5.26)
which gives

pla) =lo(q)> = B« 9 f(q)
k=, for d <4,

k4a?*,  for d > 4.

Q

(5.27)

So the von Neumann entropy is of the form Eq.(5.15a) with P = 4 for d > 4.

In terms of the deviation from the critical point, the entropy is

d

oN __
o 2P 1)

Inju—u, for¥ <2, (5.28)
For the case in hand, ¥ = d/2. The form of Eq.(5.28) brings out the universal
behavior of the entropy and has validity for potentials different from Eq.(5.1), like
e.g. scale-free 1/r? potential [107]. All the details of the interaction go in the
universal exponents z and W. The entropy diverges at the critical point and, s

negative.

5.3 DNA connection

We show the connection of the quantum entanglement entropy to the entropy
of bubbles in DNA melting. Under an imaginary time transformation, the path
integral formulation of the quantum problem is analogous to a classical statistical
mechanical system of polymers used in the context of melting of DNA [100, 101,
102, 104].

Let us consider a DNA whose two strands are two Gaussian polymers in d-
dimensions and index the points (monomers) by the contour length z measured
from one end. The native base pairing of a DNA requires that a monomer at
index z on one strand interacts with a point on the other strand with the same
index z. This is the Poland-Scheraga type model [102] for DNA melting. By

using one extra coordinate for the sequence or the length of the polymers, we get

90



Chapter 5. Entanglement entropy of a quantum unbinding transition and
entropy of DNA

directed polymers in d + 1 dimensions like paths in path integrals, as shown in
Fig. 5.2. In this representation the base pairing interaction maps onto the same
time interaction of the quantum system, time playing the role of the base pair
index. The DNA partition function as a sum over all polymer configurations is
equivalent to the sum over all paths in quantum mechanics. The DNA Boltzmann
factor exp(—pH) with § as the inverse temperature and H the Hamiltonian for

two chains of elastic constants K as

6H:/0 N[;% (a‘gf) ) V() rg(z))]dz, (5.29)

=1,2

corresponds to the factor exp(iS/h) for path integrals with S the classical ac-
tion of two interacting particles under z — 4t. This makes the Green func-
tion or the propagator G(zy,xq, 7|z, x5,0) equivalent to the partition function
Z (w1, 2, N|2},15,0), (N — i7). Here x;, 2 are the coordinates of the j-th strand
end-points at 0 and at length N. The free energy per unit length of DNA for
N — oo is the ground state energy of the quantum problem.

The short range base-pairing potential can be taken to be a contact potential or
a well of Eq.(5.1). Then the picture of return of the quantum particles within the
range of interaction after excursions outside the well gives the equivalent picture of
polymers with broken base pairs having excursion away from binding and eventu-
ally coming back to the well to form pairs. This excursion swells the polymer and
creates bubbles along the length of the DNA. Thermal energy opens up bubbles
in the bound state of DNA. The entropy of a bubble of length N is determined
by the reunion partition function of two polymers starting together and reuniting
again at N, which for large N, has the form Q(N)=N"Ye"0 or the entropy

S=mQ(N)=Noy—¥InN, (5.30)

in units of the Boltzmann constant kg = 1. Eq.(5.30) shows that o is the bubble
entropy per unit length that survives in the thermodynamic limit. However, the
power law N-dependence which gives the negative sub-extensive part of the entropy
is essential for the transition and also for the bound state. The reunion exponent

U determines the universality class of the binding-unbinding transition and there
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is a melting transition if and only if ¥ > 1. See Ref. [100] for details.

The one-dimensionality of the chains requires an alternating arrangement of
bound regions and bubbles as in Fig. 5.2. The arrangement allows one to write
the partition function, after Laplace transform with respect to the length (i.e. in

the grand canonical ensemble) [100], as

G(z,y;8) = Golz;5)G(0,5)Go(y; 9)
Go(1;5)Go(y; 8)GB (s, u)
1 —GY(s,00)GB(s,u)

(5.31)

Here © = {x1, 22}, y = {2, 25}, G, is the Laplace transformed partition function
of two polymers tied at one end and open at the other, called the survival partition
function, and G(0, s) is the total partition function with two ends bound. In G,,
the tied point is to be integrated over keeping the set x or y fixed. G(0,s) can
be written as a sum of a geometrical series (see Fig. 5.2) involving the partition
functions of the bound parts and the bubbles, GB(s,u) and GY(s,00). The free
energy comes from the singularity of G(z,y,s) which is either s = 09 = 0 or at
s = sg for which

GY(s,00)G"(s,u) = 1, (5.32)

with o9 = 0, s satisfies Eq.(5.3).
Near the nontrivial singularity, a pole at s = s, the form of G(z, y, s) resembles
the Green function in the energy eigenfunction expansion as
E - E
with ground state dominance. From the equivalence between DNA model and the

quantum problem, we identify the density matrix as

p(x,y) ~ Go(: 50)Go(y; 50)/ GV (0),

so that the entanglement entropy would behave like S ~ In GY(sg, 0p). By using
Gaussian distributions for Gaussian polymers (i.e. random walkers), one recovers
Eq.(5.21).

To get the behaviour of In GV, we employ a finite-size scaling analysis. The
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phase transition in the polymeric system occurs in the N — oo limit so that a finite
N acts as a finite size scale both for DNA and in the quantum problem. The finite
size scaling variable is N/&% so that the entanglement entropy is proportional to
—zIné| ~ g5 In | u—uc | (see Bq.(5.28)). The difference in the amplitude occurs
because of the different normalization used for polymers and quantum problems.
The point to note is that the entanglement entropy in the quantum problem comes
from the universal non-extensive part of the entropy of the bubbles. Since the full
entanglement spectrum is known, it is also possible to compute the Renyi entropy
[44]. 'We recover in the appropriate limit the result quoted in Eq.(5.15a). In
the DNA interpretation, the Renyi entropy would come from many circular single
strands (replicas) pairing with a large single strand, resembling the rolling circle

replication of viruses. Details will be discussed elsewhere.

5.4 Discussion

A negative entropy is counter-intuitive when one has the third law of thermody-
namics in the back of one’s mind, though exceptions are known; e.g. negative
entropy is found for perfect gases at low temperatures or as a corollary of the clas-
sical equipartition theorem. One can see the same feature by writing the reduced
density matrix in terms of an entanglement Hamiltonian, p oc exp(—/fHep), in a

form reminiscent of a Boltzmann factor. The diagonal form in Eq.(5.21) shows
BHeoy = 2In(1 + ¢*/k*) =~ 2¢*/x?, (for small q), (5.34)

which is like a classical d-dimensional oscillator in g-space, with 2 as the effective
temperature. A direct calculation or use of the classical equipartition theorem
now tells us that the entropy has d Inx behaviour as in Eq.(5.15a). We believe
this to be a generic feature whenever the entanglement Hamiltonian is gapless.
Another way to see this emergence of In x in entropy is to compare with the DNA
problem. The equivalent classical DNA model also has a negative diverging part
of entropy but that sub-extensive part vanishes in the thermodynamic limit of the
entropy per unit length. In the quantum case, the equivalent limit has no such
advantage in finding the entropy because demanding extensivity in time direction

is meaningless. Hence the negatively diverging term is inevitable near criticality.
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In this chapter we show that the quantum entanglement entropy near the
bound-unbound transition of two interacting particles comes out to be negative,
and it diverges at the QCP. Using the equivalent classical statistical mechanical
system of DNA near the melting transition we show that the negativity of the
entanglement entropy is a necessity and is essential for the phase transition. The
coefficient of the logarithmic term contains the information of the interaction and
the universal behaviour of the phase transition. The coefficient is shown to be
related to the reunion exponent of vicious walkers. This is the first time in the
context of quantum entanglement that the negative entropy is found by explicit
calculation. We argue that this log divergence in the quantum case and the sub-
extensive part in the DNA problem are linked by finite size scaling near the critical
point. From the renormalization group (RG) approach for the DNA melting prob-
lem [101, 107], one may infer that the entanglement entropy increases along the
RG flow, since the critical point corresponds to the unstable fixed point. It has
been argued recently that entanglement can be used to produce negative entropy
[105]. The information theoretical meaning of the negative entropy in our case is
not very clear. Our speculation is that the negative entropy is the norm, not an
exception near a quantum binding-unbinding transition. We feel signatures of neg-
ative entropy might be detectable in cold atoms where interactions can be tuned to
the unitarity limit. If one can harness the negative entropy, one may cool a system
or a computer and possibly may overcome the obstacle to circuit miniaturization.

What next: In the next chapter, we are going to consider another important
interaction, an inverse square potential, which itself has a great importance as
a quantum as well as classical problem. The special points in the DNA phase
transition are again obtained from the study of the quantum problem, thus making
the connection of the interacting polymers vs. interacting quantum particles more

robust.
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List of symbols

A, B Normalization constants of the wave function
a Width of the potential

d Dimension

H.,, Entanglement Hamiltonian

Hamiltonian

Basis of momentum states

Reduced strength of 1/r* potential

Mass

Reduced mass

2= 3 > % 3

Length of polymer
Reunion partition function

Momentum

=" D
<

Relative distance

S
()

Bubble entropy per unit length

S*N yon Neumann entropy

T Temperature
t Time
u Dimensionless short range potential

Vo Depth of the potential well
\%4 Potential
v Reunion exponent of two polymers

A Partition function



Quantum unbinding transition for a long

range potential

It is shown in the previous chapter that the von Neumann entropy of two par-
ticles has a dlnk behavior at the quantum critical point (QCP) of unbinding in
dimensions 1 < d < 4 where x is the inverse of the width of the wave function.
Here the QCP is attained when the inverse length scale x approaches zero. This
is achieved by tuning the potential or the mass. This has been established analyt-
ically for a 3D potential well [106]. Also, in analogy to polymer, it is shown that
this divergence is essential for the criticality and linked to the reunion behavior
of two polymers in the equivalent classical statistical mechanical problem. In this
chapter, we study the von Neumann entropy for a QPT involving a marginal long-
range potential. The equivalent classical statistical mechanical problem involves
two directed polymers interacting at the same contour length like a DNA with
native base pairing but with an additional 1/r? interaction. This model has been
studied using renormalization group in Ref. [107, 108]. Since the strength of the
long-range interaction changes the nature of the transition, we study how the von
Neumann entropy changes with variation of its strength and sign. In addition,
we extend our study on the entanglement entropy to the Renyi entropy, which is
another extensively studied quantity in the context of the quantum entanglement

entropy.
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6.1 Introduction

This chapter considers two particles interacting through the three-dimensional in-
verse square law potential and finds the quantum entanglement between the parti-
cles. Here we use particle partitioning [44]. The Hamiltonian for the two particles
we shall be using is,
H:p—%—i—p—%—l—‘/(rl—m) (6.1)
2m,  2my ’

where m;, r; and p; are the mass, position and the momentum of the ¢th particle

and
—Vo, for r < a,
UOERE (6.2)
—h—gr%, for r > a,

is a central potential, where Vj > 0 and p = myms/(my + msy) is the reduced mass
of two particles. We take 2u/h? = 1.

The inverse square potential is of immense importance in quantum mechanics
[109]. Tt is at the boundary of the short and long range potential. For potentials
decaying like » 77, there is no finite bound state if p > 2 while for slower divergence,
i.e., p < 2, there is a finite negative lower bound in energy. For an attractive
potential —g/r? (g > 0), the kinetic and the potential energies are of the same
order near small r and so the bound state spectrum depends on the value of g. A
manifestation of the borderline case is in the scale-free nature, H(Ar) = A"2H(r).
This makes, g, the dimensionless strength of the potential, a “marginal” parameter
in the RG sense in all dimensions. The singularity of g/r? at the origin prevents
discrete bound states to occur. A suitable modification of the potential at small
r, e.g. by putting a cut off and replacing the potential by a short range finite one
near origin, gives discrete bound states. This is done in Eq.(6.2).

It is established in quantum mechanics that there is no finite energy ground
state for g > 1/4. For g < 1/4 the wave function is normalizable and the bound
state energy can be obtained by the standard procedure. In the above-mentioned
range of g, the unbinding transition can be obtained by tuning the strength of the
short range potential near » = 0 depicting the quantum phase transition. The
unbinding transition in this long range interaction is a unique example of a QPT
whose type can be first order (¢ < —3/4), critical (¢ > —3/4) but non-universal,
and even Kosterlitz-Thouless type (g = 1/4) [108]. The solvability and the wide
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repertoire of QPT behavior make this model an ideal terrain for exploration of the
nature of entanglement entropy around a QPT. This is what we set to do in this
chapter.

A phase transition is defined as a singularity in the energy, associated with
diverging length scales. In this sense the quantum unbinding transition is a gen-
uine phase transition. This QPT exists because time of infinite extent plays a role
in quantum mechanics. It becomes clear in the path integral formulation. The
quantum problem can be mapped onto an equivalent classical statistical mechani-
cal problem of polymers under the imaginary time transformation (it — N). The
time in the quantum problem then becomes the length of the polymer, N, the
Green’s function maps to the partition function and the ground state energy is
equivalent to the free energy per unit length. The interaction between the poly-
mers means the interaction of a pair of bases or monomers at the same index along
the length of the polymers as in DNA. This is equivalent to the same time inter-
action of two quantum particles. The equivalent classical problem in the context
of melting transition of two polymers interacting via a potential like Eq.(6.2) has
been discussed in Ref. [107] which reveals that the results of the quantum problems
can be recovered from such studies. Like the quantum particle making excursion
inside and outside of the well, the polymers also come closer, they reunite, and

move further, forming swollen bubbles. The entropy of a bubble of length N is
InQ(N)=Noy—¥InN, (6.3)

where Q(N) is the reunion partition function of two polymers starting together,
reuniting anywhere in space again at length N, oy is the bubble entropy per unit
length and W is the reunion exponent. The details can be found in Refs. [106, 107,
100].

The binding-unbinding transition of polymers has been studied in the context
of the necklace model of polymers and it is found that the reunion exponent ¥
determines the order of transition [100]. The phase transition occurs if ¥ > 1.
The transition is continuous if 1 < ¥ < 2, while it is first order for ¥ > 2. In three

dimension, the reunion exponent is given by [107]

1
U =1+, with )\:\/Z—g, (6.4)
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g 2 [—3/4] 0 [<1/a[1/4] >1/4
Al 15 1 1/2 | real 0 | imaginary

Table 6.1: g-A conversion table.

where the dependence on g, a bit counter-intuitive, is a consequence of its marginal-
ity. Here also we use the parameter A(> 0) because of its occurrence in the sequel.

Table 1 gives the correspondence between g and A for easy reference.

1/4 O CE—— == 0
0 1/4
o 2
9 < - A
-3/4f unpound -1
-2 x 9/4

-2 -15 -1 -05 0 05 1
u

Figure 6.1: ¢ wvs. wu phase diagram. The plot shows the phases and the RG
fixed points in the g-u plane (u = —Vja?). The red curve below g = 1/4 and
u = —0.5 show the binding-unbinding transitions governed by a line of unstable
real fixed points. The transition is first order for ¢ < —3/4 and second order
for —3/4 < g < 1/4. This line is the transition line in the limit of zero range
potential (a — 0, Vj — oo, with « =constant) The black continuous curve for
u > —0.5 shows the locus of stable fixed points representing the unbound phase.
The dashed-dotted line at g = 1/4 is the boundary beyond which the fixed points
are complex.

The phase diagram and the lines of RG fixed points are shown in Fig. 6.1. This

plot shows the phases in the g-u plane, where
u=—Vyad?, (6.5)

in the unit of 2/4/h? = 1, is the dimensionless short range potential which the two
particle state is in. The fixed points shown here are obtained from the renormal-
ization group analysis done in Ref. [107]. The red line for u < —0.5 shows the

unstable fixed points across which the unbinding transition takes place, and the
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black continuous line for u > —0.5 shows the phases by stable fixed points. For
g < —3/4, the bound-unbound transition is first order as ¥ > 2, which is shown by
the red continuous line ending at the symbol * at ¢ = —3/4, or, A = 1, multicritical
point. After that the transition is continuous upto g = 1/4 with ¥ < 2. Beyond
that, where ) is imaginary, there is no real fixed point, and the system is in a
bound state. Across the g = 1/4 line, with u > —0.5, a Kosterlitz-Thouless type
phase transition from the bound to the unbound state can be induced by tuning
g. The two regimes, ¥ < 2 and ¥ > 2 are governed by different behaviors, with
additional log-corrections at ¥ = 2.

We find that the entanglement entropy also carries this signature of the spe-
cialilty of g = —3/4 or A = 1. The entropy in the three different regimes, A < 1,
A =1and XA > 1 scale in different manners. We establish that A\ = 1 behaves like
a multicritical point, controlling both the first order and the critical behavior in
the whole range —2 < g < 1/4.

6.1.1 Outline

The outline of the chapter is following. In Sec. 6.2, we describe our model and the
method by which we calculate the von Neumann entropy. The analytical results
are presented in Sec. 6.3 and the von Neumann entropy is calculated for A < 1.
Next we present the exact numerical results done in MATHEMATICA and discuss
the behavior of the entropy and its scaling in Sec. 6.4. Finally we conclude in Sec.
6.5.

6.2 Model and method

Eq.(6.2) is used for our study. The detailed nature of the short range potential is
not important and we take it as a simple square well potential. We concentrate in
the range 0 < A\ < 1.5.

The reduced density matrix of the considered problem in the basis of momen-

tum states |k) has the form

676Hent

p= [t lot? I = [tk S kK, (6:5)
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which makes the mixed state characteristic explicit. Eq.(6.6) allows us to define p
as a thermal density matrix with an entanglement Hamiltonian H.,; at a fictitious
inverse temperature 5 with Z as the partition function. This thermal correspon-
dence makes the von Neumann entropy equivalent to the Gibbs entropy of H.,;.
In Eq.(6.6), Hey is a c-number. Consider the canonical partition function of a

free particle at temperature 7',
Z ~ /ddqexp(—BH) ~ T2 (6.7)
where H = h?q*/2m. Then the entropy becomes,
SN =InZ~In,T (6.8)

which for very low temperature, 7" — 0 becomes negative. In another way, one
gets a constant specific heat C' from the equipartition theorem, which then gives

a logarithmic dependence on temperature of the entropy,
T
SN = / C/TdT ~InT. (6.9)

The Sackur-Tetrode constant, Sy/ R, the entropy of one mole of an ideal gas at tem-
perature T' = 1K and at one atmospheric pressure, 101.325 kPa, is a fundamental
constant [110]. Its value is —1.1648708. Note that this fundamental entropy is
negative. Classical harmonic oscillator is no exception. It is well-known that the
condition S*V > 0 does not hold for the classical continuous statistical mechanics
[111].

6.3 Analytical results

In this section, we derive the asymptotic behavior of ¢(q). In particular we find
that the entropy is dominated by the outer part, i.e. the excursion in the classically
forbidden region, if the unbinding transition is critical. This happens for 0 < \ < 1.
For first order transition, the inner part also contributes significantly.

The ground state has zero angular momentum. For this s-state, the radial part

101



Chapter 6. Quantum unbinding transition for a long range potential

of the Schrodinger equation then reads [112]:

0*°R  20R
W+;5+(%+E)R_O’ for r<a, (6.10)
O’R  20R g

and, W+;W +(T—2+E>R:0, for r>a, (6-11)

where FE is the ground state energy of the particle describing the behavior of the
two particles in relative coordinate. The radial part of the wave functions in the

relative coordinate are then obtained by solving Eqgs.(6.10) and (6.11),

A
— sin kr, for r <a, (6.12a)
,

R(r) = B

—_H(irr), for r>a (6.12b)
\/; A ’ =

with A and B as the normalization constants,
K=V, —|E|, k*=|E|. (6.13)

We choose A to be positive and it is given by Eq.(6.4). In the limit of K — 0,
the unbinding transition takes place. This makes our interest in studying the von
Neumann entropy in this limit.
The continuity of the wave functions at r = a gives,
A B

—sinka = —=H
_sinka Jalh

The matching condition of the derivative of the wave function at r = a gives the

(ika). (6.14)

relation between k and x which determines the value of k for a given k,

Y (i 1
oyl 1 (6.15)

ak cot ak = ika o)
H, " (ikr) 2

Given the values of A and a, one can get the threshold or minimum value of k, k,,,

for just one bound state. For x = 0,

1
ak, cot ak, = 5 A, (6.16)

102



Chapter 6. Quantum unbinding transition for a long range potential

is the condition for the transition point when the ground state energy £ — 0. For
A= —1/2, k. =0 and A — oo gives ak. = /2. But as we take A > 0, there is
always a k. for any \.

Now consider a small deviation from the critical value of k, k = k. — 6 where
d ~ Vo — V.. Then, from Eq.(6.15),

ka)*, for A <1,
(ak. — ad) cot(ak. — ad) ~ (ka) (6.17)
K2a?, for A >1,
or,
) SV, for 0 <A <1,
|E| ~ K2 ~ (6.18)

§+O0YAD) for A > 1.

These show that as Vy — V. = k?, E remains continuous, as it should. For A < 1,
E approaches zero tangentially while for A > 1, there is a nonzero slope at k = 0.
This discontinuity of slope classifies the A > 1 transition as first order. Despite
that, the higher derivatives on the bound side 9" F /0™ would show divergences
like a critical point.

The normalization constants A and B are found by using the continuity con-

dition and taking the limit x — 0 (see Appendix for details)

) K2, for A <1,
IBJ? ~ (6.19)
k2 (ar)?2, for A >1,
and,
ak)> P a, for <1,
A~ T (6.20)

1/a, for A > 1.

At A = 1, there are log corrections which we do not get into here. The log correction
appears in the Necklace model for polymers whenever the reunion exponent W
(Eq.(6.4)) is an integer. The log appears in Eq.(6.15) via Hél) for A = 1. Now one
knows the full wave function and its limiting x behavior.

%,

The reduced density matrix has eigenvalues |¢(q)|?, where ¢ is the momentum

space variable. To get these eigenvalues, the Fourier transformation of the wave-
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function needs to be done,

1

G / d’r e R(r) = ¢i(q) + bo(q), (6.21)

o(q) = o)

where the subscript i, o0 refer to the inner (r < a) and the outer (r > a) part. The

Fourier transform of the inner part (Eq.(6.12a)) is

bi(q)

A [sin(k; —qa sin(q+ k;)a] | 6.22)

_E\/Qﬂ' k—q q+k
and of the outer part (Eq.(6.12b)) is
2 5 A 5 A 5 A5 A3
— 1Bl &2 EVar |22 02 2 (245222
o) = 1812 2Var 3o 3] )3 -5 an (S4 3.5 - 3:5-¢)

2
1B / dr i
0

sin qr
q

Ky(kr), (6.23)

where ¢ = q/k, oF} is the hypergeometric function and K is the modified Bessel
function. The last integral in Eq.(6.23) is convergent for all A < 3/2 and therefore
can be ignored in the ax — 0 limit.

The limiting small £ dependence of the inner and the outer parts of the wave
function from Eqs.(6.22) and (6.23) are,

R1a*? fi(aq) if A< 1,
¢ilq) = (6.24)
a*? fi(aq) if A>1,

and
3
ko2 f)\(qN) if A< 15
Pola) =4 (6.25)
k2 RMLA(G) if A >,
where ¢ = ¢/k and f; is a well-behaved function. Eq.(6.24) is for large §.

From Eqs.(6.24) and (6.25), we see that the double limit K — 0, A — 1 is
singular because of the term %!~*. This identifies (x = 0, A\ = 1) as a special point.
From this we also identify (1 — A)Inx as an appropriate scaling variable. This
scaling variable will occur below in the analysis of the numerical results.

For A < 1,ie.,1—X>0, & — 0as x — 0 and therefore, the contribution

of outer part dominates over the inner part in the von Neumann entropy. Without
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Chapter 6. Quantum unbinding transition for a long range potential

much loss, one can then write the entropy with the outer part only (Eq.(6.25)),

SNV~ - / &g 16 In |6 ?
= 3lnk+cy, (for A<1), (6.26)
with
o = / 43 (@) In r(@). (6.27)

As per our interest, we extract the k-dependent term and call the rest ¢y, which is
a function of other parameters. The main result is that there is a log divergence
of SN as k — 0.

6.4 Exact numerical results

To study the nature of the entanglement entropy, over the whole range of A we take
recourse to exact numerical calculation using MATHEMATICA for the 3-dimensional
potential well. We cross-check our prediction of Eq.(6.26) and then show a multi-
critical scaling that covers the range 0 < A < 1.5.

6.4.1 Protocol

Although Vj is the tuning parameter, it is more convenient to use the length scale
as the independent parameter. With this treading of s for V{, our protocol is like
this: Given the values of k and A, the value of k,, was determined from Eq.(6.15),
with k,, < 7 that assures us the ground state As k — 0, k,,, — k.. Then the corre-
sponding normalization coefficients A and B were found using the normalization
condition and the continuity equation, i.e., by doing the r-integrations of the inner
and the outer parts of the wave function in Eq.(6.35). These constants are used
in the Fourier transformed inner and outer parts of the wave function, Eqs.(6.22)
and (6.23), to calculate the von Neumann entropy. In the final integration for
SN = —Tr pln p, we put an upper cut off making sure that the final numbers are
independent of this choice of cut off. Also the intervals of the integration range
have been chosen carefully especially for ¢ ~ k. This gives numerically exact num-

bers for the entropy for the given x and A. This procedure is repeated for various
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A and k. We set a = 1.

6.4.2 Behavior of the von Neumann entropy 5"

A dependence:

The plots of the numerical values of the von Neumann entropy S*V against In s
and A show different behavior of entropy in different ranges of A\, viz., A <1, A > 1
and A = 1.
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Figure 6.2: S*N vs. A for various . In the plot S = SV +8In 2. The plot shows
that the entropy diverges for A < 0 as kK — 0. The dashed line marked as k — 0
is the expected behavior of the entropy for A > 1.

Let us first look at the plot of SN ws. X in Fig. 6.2, where different lines
represent different values of k. For A < 1, the von Neumann entropy for small
k saturates to a negative value as A is varied and that saturation value depends
on the value of k. The smaller the value of x, the more negative is the entropy,
and x — 0 takes the saturation value to negative infinity. The long range part of
the potential is attractive for A > 0.5 and repulsive otherwise. But the entropy
shows no signature as it crosses A = 0.5. On the other hand, for A > 1 where the
transition becomes first order, the entropy does not decrease much with x, rather

becomes independent of k. It remains finite for A > 1 and diverges at A = 1 like
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the black dashed curve in Fig. 6.2. S*Y becomes positive at A ~ 1.3. It seems that

this point has no significance otherwise.

Figure 6.3: S"~ vs. In & for various A. Here, as in Fig. 6.2, S = 5"V +8In2. For
comparison, 31In s and %lnm are shown by black lines with the symbols + and Xx.
The inset shows that the entropy is x-independent for A > 1.

x dependence:

The behavior of the von Neumann entropy with A and s becomes more clear
when one looks at the plot of SV ws. k (Fig. 6.3). This plot shows the different
characteristic behaviors of SV in the three distinct ranges of \: A < 1, A = 1
and A > 1. For small x, all A < 1 curves have slope 3 when plotted against In x,
i.e. for A < 1, the entropy is of the expected form 31n x + ¢, which is shown from
analytical calculations. To get 31nk, one has to see below some value of x, and
as A\ approaches one, even smaller x needs to be considered. But no matter how
close to 1 is the value of A\, one gets 3Inx until A < 1. Exactly at A = 1, the slope
changes suddenly to 3/2 and hence

3
SN = §1n/{+cl, for A=1. (6.28)

A somewhat different behavior is seen for the rest with A > 1 (inset of Fig. 6.3).
For small x, the curves reach a A-dependent constant value and do not change with
k. Clearly the entropy has no x-dependence for A > 1 and it is finite. By definition,

these constant values are ¢y and S"V(\ > 1) = c¢,. So, we see that there are three
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classes:
3lnk + ¢\, for A <1,
SN = Snk+a for A\ =1, (6.29)
Cy for A > 1.
30 P -
207 }tl) ]
I A<l _°
101 G_O,O‘Q -
S feeewot”
or : g
[~ 376+1.48/(1-A) e
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A
Figure 6.4: The plot of ¢\ vs. A, showing a divergence at A = 1.
On cy

Now we have knowledge of the x dependent part in the von Neumann entropy
for different A\. The next question is how the ¢, behaves with A\, and if they
have different nature in different regimes of A\. So, we collect the cy\s according to
Eq. eqch6:scla and plot against A. This plot (Fig. 6.4) shows a divergence at A = 1
indicating that (1 — A) is an important quantity. The data points are fit into the

function
ecx=a+b/(1—-M\), (6.30)

via a and b, and the fitted set of parameters are (4.52,1.38) and (3.76, 1.48) for A
greater and less than one respectively. The divergence of ¢, at A = 1 leads to the

possibility of a reduction of the slope of SV from 3 to 3/2 when plotted against

In &.
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Figure 6.5: Data collapse: (S3Y — SyN)/3Ink vs (1 — \) Ink.

Data collapse

We noted that for A > 1, ¢y and hence the entropy itself, has a (1 — \) dependence
and for A < 1, the entropy has a Inx term with ¢y = f(1 — \). It was pointed
out in Sec III, below Eq.(6.25) that (1 — ) In x seems to be a scaling variable. We
therefore look at the plot of the entropy vs. (1 —\)In k. The entropy has different
behaviors on the two sides of the A = 1 making it a special point. Also, it has
a separate scaling behavior. This drives us to plot (SN — SPV)/(2Ink) against
(1 = X)Ink. We see a good data collapse (see Fig. 6.5) for various sets of data of

Fig 6.2. Hence, one can write the scaling form of von Neumann entropy:
3
(S;\}N—SfN)/ihl/i:f((l — A lnk). (6.31)

Fig. 6.5 shows that (SyN — StV)/21nk reaches +1 for small enough  for A < 1
and —1 for A > 1. Once we get the scaling behavior of the entropy at A = 1, the

same away from this special point can also be obtained.
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6.4.3 Behaviour of the Renyi entropy
The Renyi entropy is calculated by using the same wave function and the same

MATHEMATICA program, by using the formula of the Renyi entropy that,

Sn = InTrp"  with p = |¢(q)|*. (6.32)

1—n

The limit n — 1 gives the von Neumann entropy. The entropy is calculated for

various A, for A\ <1, A =1and A > 1, near n = 1.

A dependence

A
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Figure 6.6: Renyi entropy: plot of 5, against A for various n.

The Renyi entropy, when plotted against A\ for various n, looks similar to that
of the von Neumann entropy. All the curves merge after a certain value of A, for
A > 1.4, and the Renyi entropy becomes positive. Similarly for A < 1, all the
curves saturate to an n-dependent constant. Fig. 6.6 shows the variation of the
Renyi entropy with X for & = 10719 As x decreases, the saturation value becomes
more negative for A < 1. This indicates that eventually it goes to negative infinity
in the limit kK — 0. At A = 1, the divergence of the Renyi entropy depends on the

value of n.
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Figure 6.7: S, vs. logk for (a) A <1 and (b) A = 1. For the both, S, , is linear
in log k. For (a), slope is 3 and for (b) slope varies with n.

x dependence

The diverging behaviour becomes more evident when one plots the Renyi entropy
against « (Fig. 6.7 a,b, and Fig. 6.8). For A < 1, the curves of S,, vs. Ink are
linear with slope 3 (see Fig. 6.7(a)). For A = 1, the slope is not fixed but changes
with n (see Fig. 6.7(b)). The variation of the coefficient of In x with n is shown in
Fig. 6.9(b).

For A > 1, one finds a k-independent entropy below some critical value of n,

ne, which again depends on the value of \ (see Fig. 6.8 a,b).

n dependence

In addition, we show, in Fig. 6.10, the n-dependence of the Renyi entropy for the
three ranges of A, viz., A < 1, A=1and A > 1. The nature of the curves changes
because of the extra n-dependence in the coefficient of In k for A = 1.

Fig. 6.9(a) shows the behaviour of the additive s-independent constant ¢,  for
A =1 (see Eq.(6.33)).

The existence of a cut-off n., below which the entropy 5, is independent of x,
becomes evident from the plot of coefficient of In x vs. n as shown in Fig. 6.11(a).
The value of n. seems to vary with A in a linear fashion, n, = A — 0.1, for A > 1
(see Fig. 6.11(b)).
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Figure 6.8: S, vs. Ink for A > 1, for (a) n = 1.025 and (b) n = 1.400. S, is
independent of A below some n,.
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Figure 6.9: The plots show (a) ¢, vs. n, and (b) fi(n) (coefficient of Ink, see
Eq.(6.33)) vs. n, both for A = 1.

Combining the results for all A for the Renyi entropy, we then write,

4

3Ink + ¢y, for A < 1,
n)Ink + c,, for A =1,
Crxs for A\>1, n<n.(N),
Hn)Ink+c,n, for A>1, n>n(N).

A scaling form of the Renyi entropy involving an n. and n-dependent coefficient

of In k is expected, but yet unknown.
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Figure 6.11: (a) The plot shows fy(n) vs. n (coefficient of In k, see Eq.(6.33)). It
shows the existence of a special value of n, below which the Renyi entropy S, is
independent of k. (b) The variation of n. with A.

6.5 Discussion and conclusion

In this chapter we studied the von Neumann entropy S*V and the Renyi entropy
Sy, the most common measures of the entanglement entropy, for an inverse square
potential in three dimensions.

The von Neumann entropy behaves in different ways for three different ranges of
modified interaction strength A and given by Eq. (6.29). For A < 1 and A = 1, the
entropy has a diverging nature as one approaches quantum critical point by tuning
k, except for A = 1 the prefactor is different from that for A < 1. The behavior of

entropy is completely different for A > 1, where the x-dependence of the entropy

1
1-X

collapse onto a single curve when (SyN — S?N) /2 In k is plotted against (1—X) In k.

vanishes. There is a divergence in the entropy. These three distinct classes
This data collapse indicates that there is a common scaling behavior of the entropy
for any A and that A = 1 is special. Because of the dependence of the diverging
factor on (1 — \), one has to be careful in taking the required limit of K — 0 as
that would give a log correction in entropy for A = 1. For g > 1/4, X is imaginary
which we do not consider here. Here we focused on the multicritical point at A = 1.
There is one more multicritical point at A = 0 with KT transition which has not

been studied so far.
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() @)
(b)

Figure 6.12: The path dependence of entropy. Two different limits of approaching
{A=1,k = 0}. (a) First kK — 0 and then A = 1 (red line). The entropy diverges
like 1/(1 — A). (b) First A — 1 and then x — 0 (blue line). The entropy diverges
like In x Thick line along z-axis for A < 1 denotes divergent entropy. (c) For A < 1,
taking the limit kK — 0 (black vertical line with arrow) leads to divergent entropy
and S*N remains so along the horizontal stretch.

The nature of the divergence of the entanglement entropy at A = 1 depends
on the path of approaching A = 1 in a A-x plane. Diagrammatically it has been
shown in Fig. 6.12. If we take the limit x — 0 first and then A\ = 1, the entropy
diverges like 1/(1 — A) (shown by red line (a) in Fig. 6.12), and like Inx for the
other way around (see the blue line (b) in the same figure). For A < 1, the
k — 0 line corresponds to S*Y = —o0, but for A > 1 the same line gives a finite
value for entropy. The path dependence of Fig. 6.12 summarizes the features of
the entanglement entropy, with A = 1,x = 0 as a special point controlling the
behavior in its neighborhood. The data collapse of Fig. 6.5, then, suggests that
the paths should be classified by the constant value of X = (1 — ) Inx.

The Renyi entropy is studied for the same interaction. The behaviour for A < 1
is same as the von Neumann entropy, i.e., for A < 1, the Renyi entropy is of the
form, S,, = 3Ink + ¢, ». The origin of an extra n-dependence in the behaviour of
A=1,5,= f(n)Ink + c,, is not very clear. Like the von Neumann entropy, S,

is independent of A above some n.. We find a linear dependence of n. on A. One
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would then expect an n-dependent scaling of the Renyi entropy.

For A < 1, restricting to the critical case, we see p(q) ~ |¢(q)|?>. These are the
eigenvalues of the density matrix. Now the reduced density matrix p describes a
mixed state, though the full ground state is pure. Being a mixed state, we may
represent p as a “thermal” density matrix, p ~ exp(—fH,,;), as done in Eq.(6.6).

Since the entanglement spectrum is known, we have
o 1 q
BHeny =~ In|oF1|° &~ ST for ¢ — 0, (6.34)
K

identifying 3 = 1/xk* and H,,; = ¢*/2. As mentioned before for this Hamiltonian
S*N = 4InT. Since in this case T ~ x%, we find S*V ~ dIn k.

What next: In the next chapter, we study the stochastic paths viewing poly-
mers length as time. A polymer then can be considered as a random walker. The
problem of random walk is itself is a vast area of study. We concentrate on the
effect of the random medium on the mean square displacement, correlation and

the persistence of the random walker in a disordered medium.

Appendix : Calculation of the normalization con-
stants A and B

The normalization constants A and B are found using the continuity condition

and taking limit k — 0, that

47 [/ | A?| sin? krdr—i—/ r|BQH§1)2(mr)|dr] =1.
0

a

The continuity condition, Eq.(6.14), replacing A by B,

™ | By (ira) o g
(27m - —sin2ak> A +47T/ r| Hy (ikr) |* dr||B|* = 1.(6.35)
k sin“ ka a
Now we use the form of the Hankel function in the limit x — 0,
2AT2()\)
1), _
| H)(\ ikr) 2 ~ T 2 (6.36)
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and rewrite the outer part integral in the normalization condition in a simpler

form,

/ r | HOGr) P dr

1 2>\F2 A 1 2>\F2 oo
— / [|H)(\1)(ir)|2 — ) r_z/\] dr +/ () r2 dr+/ r |H/(\1)(ir)|2 dr
K K 1

2 . T

a

I2(\) 1 — (ar)?0-Y

Putting Eqs.(6.37) and (6.36) in the Eq.(6.35) after simplification one gets,

B = s [()\2 +a’k* —1/4 11- (ar)20-Y

2AHIT2()) ak? ) (ar) ™ + k2 (L—\) ‘] (6.38)

which in the extreme limit of x — 0 gives the x dependence of B,

K2, for \ <1,

| BI* ~
k2 (ar)?72, for A > 1.

(6.39)

Once B is obtained, the x-dependence of the other constants A can be found using

the continuity condition,

AP~ (ak)*?*/a, for X\ <1, (6.40)
1/a, for A > 1.
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List of symbols

A B
a

b.q

Normalization constants of the wave function

Width of the potential
Momentum

Dimension

Strength of 1/r? potential
Entanglement Hamiltonian
Hamiltonian

Basis of momentum states
Reduced strength of 1/r? potential
Mass

Reduced mass

Length of polymer

Reunion partition function
Reunion exponent of two polymers
Relative distance

Bubble entropy per unit length
von Neumann entropy

Renyi entropy

Temperature

Time

Dimensionless short range potential
Depth of the potential well
Potential

Partition function
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Random walks in disordered media

Anomalous diffusion arising from broad waiting time distributions, has been used
to model a variety of physical phenomena. For example, dynamics of carrier diffu-
sion and recombination in disordered media, the electrical properties of disordered
media, photo-conductivity of amorphous insulating materials, frequency depen-
dent conductivity of hollandite etc. have been described in terms of a continuous
time random walk (CTRW) [48]-[118].

Many physical situations are encountered which can be modeled as random
walks in quenched disordered media, e.g., conductivity of amorphous materials or
quasi-one-dimensional ionic conductors, dynamics of domain walls or dislocations
etc. In this chapter, we study the random walk with a power law distribution of

transition rates in which the spreading becomes subdiffusive [119]-[123|, namely,
(2%(t)) ~ %7, with B < 1/2. (7.1)

This chapter is organized as follows. In Sec. 7.1 we discuss the model and its
relevance to physical systems. The results are discussed in Sec. 7.2. Consider-
ing four models of disorders, the behaviour of the mean square displacement, the
waiting time distribution, two time correlation function and the persistence prob-
ability are observed in this section. In Sec. 7.2.5 we try to give explanations to the

anomalous behaviour of the persistence probability of one of those four models.
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Chapter 7. Random walks in disordered media

7.1 Lattice models and simulations

The random walk is performed on a 1D regular lattice of L sites, with periodic
boundary conditions, i.e., the site ¢ = L 4 1 is identified with the first site ¢+ = 1.
Only hopping between nearest neighbor sites are allowed and the hopping rates
W, ; are chosen from the power law distribution Eq. (1.60). This is carried out
numerically by first generating a uniform random number r in the interval [0, 1]

/(=) with suitable rescaling by a constant.

and using the transformation w = r
There are two standard choices in assigning the hopping rates W, ; between two
neighbouring sites, namely,

(i) Random barrier model or bond disorder (RB): Hopping rates are assigned
to the bonds, W; ;11 = W;1,. Le. the transition rate from ¢ to ¢ +1 is the same as
the rate for the reverse transition and thus bond connecting two neighboring sites

acts as a symmetrical barrier (Fig. 7.1)

Wi,i-1 Wii-1

& LR

o—6o—6—6—6——6— = o Lol Lol Lol el Lo
-1 i i+1 -1 i i+1
N A
Wi-1,i Wi-1,i

Figure 7.1: The bond disorder or random barrier model. In this model the hopping
rate Wi,ifl = Wifl,i-

(ii) Random trap model or site disorder (RS): Random hopping rate is assigned
to each site which acts as a trap, W; ;41 = W;,_1. Le. the transition rate from a
site 4 is independent of the target site (¢ == 1) and once the random walker comes
out of the trap it has equal probability to jump to either of the two neighboring
sites (Fig. 7.2).

Further, for each of the above type of assignment of transition rates one can
define further an annealed or a quenched model. In the annealed models, a new
transition rate W ; is assigned each time the walker visits a site 7. In the quenched
models, a set of W;;’s for the entire lattice is chosen at the beginning of the
simulation and is referred to as a disorder realization.

Hence, we have four models, namely, (a) Annealed Site disorder (AS), (b)
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Figure 7.2: The site disorder or random trap model. In this model the hopping
rate Wi ,—1 = Wi i41.
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Annealed Bond disorder (AB), (¢) Quenched Site disorder (QS) and (d) Quenched
Bond disorder (QB).

In each Monte Carlo Step (MCS), the random walker at site i makes an attempt
to jump to either neighbouring site (j = ¢ & 1) with a probability proportional
W, ;. All the Monte Carlo simulations have been performed on a lattice of L = 107
sites with periodic boundary condition. The random walker starts at an arbitrarily
chosen site at t = 0 and the simulations are carried out for a typical maximum time
T ~ 10°MCS. For the annealed models, the observed quantities are averaged over
all initial conditions randomly chosen with equal weight. For the quenched models,
a further averaging over disorder realizations is done (typically 10 samples).

The difference between quenched disorder and annealed disorder models lies
in the fact that the mean waiting time at a given site is the same for each visit
of the site for the quenched models, thus inducing strong correlations between
the successive waiting times encountered. It makes the quenched problem more

difficult to analyze.

7.1.1 Relevance to real systems

The choice of power law distribution of hopping rates find many applications in
modeling various physical systems. Some examples are following [113]:

(i) The temperature dependence of the dynamical conductivity exponent ob-
served in the one-dimensional superionic conductor hollandite [124].

(ii) Continuum random systems such as the Swiss-cheese model can be mapped
onto random percolation networks with a power-law distribution of bond conduc-
tivities [125].

(iii) The problem of biased diffusion in random structures such as the random
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comb or the percolation system can be modeled by biased diffusion in a linear
chain with a power-law distribution of transition rates [126, 127].

(iv) Anomalous relaxation in spin glasses can be interpreted in terms of stochas-
tic motion in phase space with a power-law distribution of transition rates [128,
129].

7.2 Numerical results

We present below, the numerical results for the mean square displacement (z(t)?),
waiting time distribution w(7), two-time incremental correlation function C'(t4,t2)
and persistence probability P(t) for all the four models for 10 values of « in the
interval [0, 1].

7.2.1 Mean square displacement (z?(t))

The disorder averaged square displacement (z?) for all cases can be written in a

general form:
(2?) ~ 1%, (7.2)

The wandering or spreading exponent 3 for the four models we consider are known

from various analytical arguments [67, 69, 48|, which are verified by our numerical

results.
. 5, 0<a<y,
1. Annealed bond disorder: § =
1—a, o > %,
2. Annealed site disorder: g = I’TO‘ , 0<ax<l,

3. Quenched bond disorder: 3 =12 0<a <1,

2—a

4. Quenched site disorder: =312 0<a< 1.

2—a

7.2.2 Waiting time distribution w(7)

The distribution of the hopping rates, p(W) ~ W=, in turn produces a waiting
time distribution w(7) ~ 77#. For the annealed models and the quenched site

model, the waiting time distribution w(7) and p(W) are simply related, since the
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S

Figure 7.3: The waiting time distribution w(7) vs. 7 for (a) annealed site disorder
and (b) annealed bond disorder for different .
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Figure 7.4: The waiting time distribution w(7) vs. 7 for (a) quenched site disorder
and (b) quenched bond disorder for different .

random walk encounters the barriers or traps with the same probability they are
chosen from. Thus, for the annealed and quenched site (AS, QS) models we have
w(r)dr = p(W)dW and with 7 = 1/W, we obtain u = 2 — a. For the annealed
bond disorder (AB), the mean waiting time 7 at a given site 7 is related to the
transition rates of two bonds on either side as 77! = Wii—1 + W, it1. This results
in a mean waiting time distribution with © = 3 — 2a. For the quenched bond
(QB) disorder a large 7 would result when (W;_1; + W, 1)~ " is large, i.e. for a
valley enclosed by two large barriers (Fig. 7.1). But these are difficult to reach as
well and hence are sampled less in quenched bond disorder model. In this case the

bonds are not sampled according to the original disorder distribution and thus the
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waiting time distribution can not be related to p(W) as simply [48].
We find that the waiting time distributions found in our numerical simulations

are consistent with the analytical predictions:

=629 for annealed bond (AB),

)

. F—(2=a) for annealed site (AS), )
w(T) =

7__(4—2a) for quenched bond (QB)a (73C)

)

7 (2-0) for quenched site (QS). (7.3d

Figs. 7.3 and 7.4 show the variation of waiting time distribution with time. The
value of 3 obtained in the previous section for the cases AB, AS are consistent with
the above results for the waiting time distribution (8 = “T_l) For the QS problem,
it can be seen that even though the waiting time distribution is the same as that
for AS, the exponents 3 in the two cases are different. This is a consequence of the
temporal correlations induced due to the quenched randomness in the model. For
the AB model, for 0 < a < %, 1 > 2 and thus one gets normal diffusion, which is

consistent with the value of 8 observed for this regime.

7.2.3 Two point incremental correlation function C(t1,t5)

10000y = g 5[ ™ !
— H=044
— H=042 I |
7&38“3“7) 20000 ]
~ H=034
10| H=030 ] N
N | H=02 —
2 H=0.19 - —
— _ ]
&' |—H=013 N
o - 1 O /
1 -
g 1;///;
0.01! 1 1 L n

Figure 7.5: (a) Plot of C(t1,ts) vs. |t; — ta] for quenched bond disorder. Here H
denotes the Hurst exponent. (b) Plot of C(¢1,t3) vs. t; for quenched site disorder.
Here t, is kept fixed and region of interest in t; >> 5.

Although all of the models studied have similar scaling behaviour, the two point
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incremental correlations behave qualitatively differently. For annealed disorder, the
form of two point incremental correlation is known from a representation in terms
of coupled Langevin equations as shown by Baule et al. The two-point correlation
for quenched disorder is not analytically known. The same for annealed disorder
displays the non-stationary character of the CTRW process. For annealed bond
and annealed site disorder it is expected to be |2 — t2°| and from simulations we
do get results consistent with these. Further, for quenched site disorder we see
the same behaviour of two-point correlation (see Fig. 7.5(b)) whereas for quenched
bond disorder
C(ty, ty) ~ |t — to]*?,

for long times. To show the stationarity more clearly, we plot C(t;,t5) against
|t1 —to| in Fig. 7.5(a). In log scale, this plot is a straight line for large |t; —t5|. For
the other case, we take t; > t5 and keep ¢, fixed, and plot against ¢;. The reason
of plotting against ¢; is that, in this limit,

253
t
- (3)
151

We see, only quenched bond disorder has a stationary two point incremental corre-

1 =57 = & ~ 1. (74)

lation while others have decaying correlations. The stationarity can be observed in
the plot of C'(t1,ty) vs. t; for fixed |t; —t3|. Hence, in spite of having the same scal-
ing behaviour of the mean square displacement with the same dynamic exponent
B, C(t1,t2) behaves qualitatively differently for the quenched bond disorder.

7.2.4 Persistence probability

Figs. 7.6 and 7.7 are the log-log plots of P(t) vs. t for different models of disorder.
In each graph there are ten data sets for ten different o values. Asymptotically,
these plots are straight lines with slope # which is extracted for each data set
using standard fitting routines. In Fig. 7.8, exponents 6 and 3 are plotted against
a simultaneously. It is observed that the persistence exponent 6 is equal to the

corresponding 3 in all cases except for quenched bond disorder, in which case

0 = min(1 — 3,20).
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Figure 7.6: Persistence probability P(t) vs. t for (a) annealed site disorder and (b)
annealed bond disorder for different o.

The main result of our work is this observation and possible explanations for this

qualitatively nontrivial result.
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Figure 7.7: Persistence probability P(t) vs. t for (a) quenched site disorder and
(b) quenched bond disorder for different c.

We put together all the exponents related to the diffusion, waiting time, two-

time correlation function and persistence for all the four models in table 7.1.

7.2.5 Explanation of the observed P(t)

As the value of « increases, the probability of encountering deep traps or high
barrier increases resulting in trapping of the random walker. This decreases the

probability of coming back to the staring point. Thus, one would normally expect
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Annealed Quenched
Bond Site Bond Site
9% 0<a< g |t O<a<l| t*; O<a<l |t*%; O<a<l
(x?) P s <a<1
- _l-a 1= 1=
8—1—()/ B—Ta B—ﬁ B—ﬁ
W(T) 7.—(3—2()() 7_—(2—()() 7_—(4—2(1) 7_—(2—()()
C(tl, t2) |t22“8 o t12b’| |t22“8 o t12b’| |t1 _ t2|25 |t225 _ t12ﬁ|
0
[P(t) ~ ) B B min(1-43,24) B

Table 7.1: The table shows the forms and values of different quantities of interest
in the four types of disorder models: annealed bond, annealed site, quenched
bond, and quenched site disorder cases. The quantities in gray are known from
earlier works and confirmed by our simulations. The remaining data are from our
simulations. The quenched bond disorder case has entirely different persistence
and correlation properties from the other three models.

this would result in increase of persistence probability and hence decrease in the
exponent #. This, indeed, is what is observed in the three types of disorder, and
for the quenched bond disorder for @ > 1/2. However, counter-intuitively, for
the quenched bond disorder case with a < 1/2, the persistence exponent actually
increases with « (see Fig. 7.8). One could possibly argue that as the walker can
not go farther with increasing o because of lower mean square displacement, it has
higher probability to come back to the starting point. But this explanation fails
for @ > 1/2 for the quenched disorder case and the other three models. By one
of these or similar qualitative arguments, one would expect a monotonic -« plot.
In the following, we use a number of different analytic and scaling arguments to

explain the observed nontrivial dependence of 6 and o.

Space-time rescaling

The simplest way to predict the persistence exponent in the disordered system, is

to compare with the persistence probability Py(t) for the pure system via a straight
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Figure 7.8: Persistence exponent 6 vs. « for different models of disorder.
forward space-time rescaling. In a pure medium,
) 1

For a random walk in an ordered medium, or for a normal Brownian motion,
t ~ (z?). Thus, we rewrite Py(t) in terms of the (z?(t)),

(7.6)

Now we use the scaling relation for (x?) in the disordered system to get the corre-
sponding P(t),
1 1

P(t) ~ O (7.7)

L.e., for the disordered system 6 = (. Surprisingly, this simple scaling argument
works quite well as seen from the numerical results, in all cases, except for the
quenched bond disorder case. Below, we put a couple of seemingly independent

arguments to explain the nontrivial results for the quenched bond disordered case.
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Fractional Brownian motion (fBm)

A process is termed as a fractional Brownian motion (fBm) if the asymptotic two

point incremental correlation is stationary in time,
Cltr,ta) = ([x(t) — x(t2)]*) ~ [t — tof*".

The exponent H is called the Hurst exponent. Depending on the value of H, the
processes are divided into three types.

(i) H = 1/2: normal Brownian motion,

(ii) H > 1/2: a process with positively correlated increments,

(iii) H < 1/2: a process with negatively correlated increments.

It is shown in [130, 131], that for an fBm, the persistence probability is given by
P(t) ~ t~0-H),

For the quenched bond disorder case we found that the two point incremental
correlation function is: C(ty,ty) ~ [t; — to|?? for large |t; — t5|. Thus, identifying
the process as an fBm with Hurst exponent H = 3, we predict the persistence
exponent as @ = 1 — . This relation holds quite good for v < 1/2 (Fig. 7.9).

However, for av > 1/2, the prediction clearly does not hold. In the following
subsection, we use the scaling arguments based on the first passage time to have

a quantitative understanding of of the persistence exponent for o > 1/2.

First passage time distribution (FPT)

The first return time problem can be decomposed into two first passage time prob-
lems. I.e. The random walk starts at xy at t = 0 and reaches a specified target z
for the first time at ¢t = ¢’ and then starting from x comes to X, at time t = ¢. Let
us denote F'(x,t|zg,ty) as the probability that the walker reaches x for the first
time at time instant ¢, starting from x, at time t,.

Here we recall that the first passage time is related to the survival probability
S(t), the probability that the walker does not reach to the specified point upto

time ¢ through
as

Cdt
We find numerically that S(¢) decays with a power law S(t) ~ ¢~ and from the

F(t) = =1+,

simulation results we find that v = 3 (see Fig. 7.9). Hence the first passage time
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Figure 7.9: The survival probability for the quenched bond disorder. (a) The plot
shows the survival probability with time in log-log plot. (b) This is the plot of the
survival exponent v for different «. Here, x-axis is the value of o and the y-axis is
the survival exponent . The red curve shows the variation of § with a.

distribution is
F(x,t|zo, tg) ~ t~ 15,

Thus, the first return probability density N(t¢), that the walker comes back to

the starting point, g, for the first time at ¢, is
t
N(t) = / F($0+A,t,|l‘0,0) F(ZL‘Q,t|ZL'Q+A,t,) dt,
0

t
_ / t/7(1+5) (t_t/)f(lJrB) dt'
0

~ 7129, (7.8)

This in turn yields the persistence probability P(t), which is the probability that
the walker reaches the target for the first time at ¢’ > t as,

P(t) = /t TN i~ (7.9)

As for both fBm and FPT based arguments, there seems to be no restriction on
their applicability based on the value of . Hence we conjecture that the persistence

probability is in fact a sum of the two terms, each resulting from a different set of
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actual dynamical trajectories, P(t) = At~0=5 + Bt=25 for large t. This form of
P(t) easily explains the two exponents for two different ranges of « as the slowly
decaying part will dominate the long time behaviour and hence the asymptotic
persistence exponent. Thus, for large ¢, min(1 — (3, 24) dominates implying that
6 = min(1 — 3,24) which matches with our numerical results rather well.

Similarly, for other three models, i.e., annealed site, annealed bond and the
quenched site, we similarly write the persistence probability as a sum of two terms
P(t) = At=P+Bt~%’. In these cases, the asymptotic behaviour is always dominated
by the first term and hence the persistence exponent § =  for the entire range of
«. This is consistent with the analytical known result for the survival probability
S(t) ~t=P for t — .

7.3 Summary and concluding remarks

In this chapter, we have studied numerically the persistence properties of a random
walker in 1D lattice where disorder in the hopping rates is introduced. We consider
four different models depending upon whether the rates are introduced on bonds
or sites and as annealed or quenched. The rates are chosen from a power law
distribution. The persistence exponent obtained for annealed bond, annealed site
and quenched site disorder agrees very well with the prediction from a simple space-
time scaling argument. However, the corresponding exponent for the quenched
bond disorder model is qualitatively different. The exponent in this case varies
non-monotonically with the disorder strength exponent «. Using two different
arguments, one based on a result for fractional Brownian motion (fBm) and another
using the first passage time distribution we show that the persistence probability
in this case is a sum of two terms P(t) = At~0= 4 Bt=2%_ Thus, one of the
terms dominates depending on whether 3 is greater or less than 1/3, i.e., whether
« is greater or less than 1/2. We further argue that though in cases of annealed
bond and site disorder and quenched site disorder we see a single exponent at
large time, two exponents, § and 23 are present simultaneously for all a. At large
time only the slowly decaying part, having exponent min(53,23) = /3, shows up
in our results. For the quenched bond disorder case, based on numerical studies

we conjecture that there seems to be two classes of dynamical trajectories, both
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present for all «, responsible for two exponents. It would be interesting to analyze
the persistence properties of quenched bond disorder in some more detail as it
may provide some new information and explore properties relating to the random

motion of particles in this kind of disordered media.

List of symbols

« Hopping rate exponent

I6] Root mean square (RMS) displacement exponent
C(ty,t2) Two-point incremental correlation function

F(t) First passage time distribution: F(t) = F(xo, t|zo,0)

F(x,t|xg,ty) First passage time distribution that the walker reaches

x for the first time at ¢ starting from x, at time ¢,

vy Exponent of survival probability distribution

H Hurst exponent

I(t) RMS displacement of a random walker after time ¢
W waiting time exponent-1

N(t) First return probability

w(T) Waiting time distribution

P(t) Persistence probability upto time ¢

p(W) Hopping rate distribution

S(t) Survival probability

0 Persistence exponent

T Int

t, T Time

Wi ; Hopping rate from i-th to j-th site

x(t) Position of the random walker at time ¢

(x2(t)) Mean square displacement of a random walker after time ¢
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Summary

This thesis contains some studies on stochastic paths, especially in the context
of unbinding transition of polymers. The unbinding transition occurs when the
interaction between the two polymers are varied, or, in the case of the DNA, the
pulling force on the strands of a double helical bound DNA is increased. The
overall qualitative features for this phase transitions and the phase diagram are
very similar to some other system, though the mechanisms or the detailed dynamics
are completely different. We explore such connections for better understanding and
generic nature of the problem.

The first chapter shows that by using thermodynamic arguments, one can un-
derstand the phase diagram and the nature of the phase transition. Our focus is on
the interfaces between phases rather than looking at the phases. By emphasizing
the fact that the double helical state is a broken symmetry phase compared to the
denatured phase, we introduce the helical order parameter to describe melting.
Along with this, we put in another modification that the pulling force actually
tries to penetrate the zipped phase but experiences resilience and decays to zero
after some distance. In our study, we find that the combined effect of the helical
order and the force penetration into the zipped phase can actually produce a phase
transition which is second order. Moreover, the competition of the two indepen-
dent length scales, one for the damage in the helical order through the interface
and the other for the penetration of force upto a length, can change the sign of
the interfacial energy from positive to negative, resulting in a second order phase
transition. Because of the similarity of the formulation to that of the supercon-

ductors, we name the two classes of DNA as Type I (positive surface energy) and
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Type II (negative surface energy).

In the next chapter, we move our attention from a fixed force case to a periodic
one, the unzipping of a DNA by an external force on the strands, where the force
is varied periodically. Because of the first order nature of the zipping-unzipping
phase transition at the critical force, one would expect hysteresis for a periodic
force. The results from the MD simulation on a DNA hairpin shows that the
standard averaging over many cycles of the force suppresses the actual picture
of the states. Here we emphasize the point that one should look at the time-
resolved loops, the quantity of interest being the average separation between the
two strands over one cycle. The two-state nature of the problem reminds us of
another simpler and well-known system, viz., an Ising ferromagnet. Very similar
results are shown to be produced from the MC simulation of an Ising ferromagnet
under a periodic magnetic field. The relevant quantity for the Ising case is the
average magnetization over one cycle. In terms of that we propose a dynamical
phase diagram in the magnetic field vs. frequency plane. The main lesson one
learns from this study is that though the two systems, DNA and the Ising magnet,
have completely different dynamics, they behave in a similar way under the periodic
drive. The dynamical phase diagram reveals the possibility of the phase transition
by varying only the frequency of the external drive.

When a system undergoes a first order phase transition, then under a peri-
odic variation of the parameter inducing the phase transition, the system shows
hysteresis. It is because of the mismatch in the time scales of the relaxation of
the system and the applied drive. The relaxation time becomes very large near
the phase transition. In this context, in the third chapter, we discuss a method
to get the equilibrium quantities from nonequilibrium measurements by using the
work theorem and the histogram technique. We present a dynamics-independent
proof of the work theorem and generalize the theorem to any thermodynamic in-
tensive parameter including the temperature and any arbitrary number of them.
The nonequilibrium work connecting to configurations are used to construct a
special matrix whose principal eigen-vector is the equilibrium probability distribu-
tion. This chapter also shows how an equilibrium curve can be obtained from the
nonequilibrium hysteresis loop by using appropriate weight factors. The results
are verified by the MC simulation of an Ising magnet.

The focus of the fourth and the fifth chapters is on exploring the connection of
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the polymer unbinding transition to the quantum dissociation. An imaginary time
transformation maps a classical polymer partition function into a quantum propa-
gator. Thus a problem of two interacting polymers maps on to the problem a two
quantum particles interacting via a potential. In the case of the quantum prob-
lem, the QPT is achieved by varying the strength of the interaction. The quantum
dissociation being a quantum phase transition (QPT), we use the quantum entan-
glement to observe the signatures of the QPT. The von Neumann entropy shows
the special features of a polymer unbinding transition. This is verified analyti-
cally for a short-ranged potential and by exact numerical calculations for inverse
square potential. The special points or the RG fixed points show different scaling
behaviours which are justified from the polymer entropy. We find the quantum
entanglement entropy to be negative which can be justified when thought of in
terms of the polymer language. The study of the quantum entanglement is then
extended to the Renyi entropy where we have extra complexities, though similar
type of the scaling behaviour is expected. The exact scaling form is not yet known
to us.

Lastly, we go beyond the polymer picture to consider a polymer as a random
walker. We study the random walk problem in presence of disorder in the medium.
We look at the mean square displacement, two-point correlation function, and the
persistence probability as a function of the strength of disorder. The persistence
probability can be identified as the reunion probability of the polymer. We study
one-dimension random walker with a power-law distribution of hopping rates. Ac-
cording to the assignment of the hopping rates to the left and to the right, one
can have random bond model and random site model. For a disordered medium,
one may think of two kinds of disorder averaging, quenched and annealed. Thus,
we consider all the four cases; quenched site, quenched bond, annealed site, an-
nealed bond disordered cases. For such types of models with broad waiting time
distribution, generated by the power-law hopping rate distributions, makes the
diffusion anomalous, more specifically, sub-diffusive. Although we start from the
same hopping rate distributions, the four cases have different waiting time dis-
tributions, two-point correlations and the persistence properties. The results of
the quenched site, annealed bond, and annealed site disordered cases are in line
with our expectations, while the quenched bond disorder has qualitatively differ-

ent behaviour. We use a result from the fractional Brownian motion (fBm) and an
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argument based on the first passage times to explain the nontrivial dependence of
the persistence exponent in the case of quenched bond disorder.

In conclusion, this thesis sees a few polymer problems from a new angle and
explores the connections to other systems which are apparently different. The
behaviour of the polymers and DNA are studied in equilibrium and nonequilibrium.
Viewing a polymer as a fluctuating path, the paths are studied through work
theorem, as quantum trajectories, and as random walkers. Thus different topics

are unified through the polymer language, hence revealing its generic nature.
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