
ON PHASES OF DNA, ENTANGLEMENT AND

PERSISTENCE

ByPoulomi SadhukhanInstitute of Physis, Bhubaneswar.
A thesis submitted to theBoard of Studies in Physial SienesIn partial ful�llment of the requirementsFor the Degree ofDOCTOR OF PHILOSOPHYofHOMI BHABHA NATIONAL INSTITUTE

Deember 25, 2012.



Homi Bhabha National InstituteReommendations of the Viva Voe BoardAs members of the Viva Voe Board, we reommend that the dissertation preparedby Poulomi Sadhukhan entitled �On phases of DNA, entanglement and persis-tene� may be aepted as ful�lling the dissertation requirement for the Degree ofDotor of Philosophy. Date :Chairman : Chairman of ommittee Date :Convener : Convener of Committee Date :Member : Member 1 of ommittee Date :Member : Member 2 of ommittee Date :Member : Member 3 of ommitteeFinal approval and aeptane of this dissertation is ontingent upon the an-didate's submission of the �nal opies of the dissertation to HBNI.I hereby ertify that I have read this dissertation prepared under my diretionand reommend that it may be aepted as ful�lling the dissertation requirement.Date :Guide : Prof. Somendra Mohan Bhattaharjee



DECLARATION
I, hereby delare that the investigation presented in the thesishas been arried out by me. The work is original and thework has not been submitted earlier as a whole or in part fora degree/diploma at this or any other Institution or University.

Poulomi Sadhukhan



To my father



ACKNOWLEDGEMENTSCompletion of this thesis was possible with the support of several people. Iwould like to express my sinere gratitude to all of them.First of all, I am extremely grateful to my supervisor, Prof. Somendra MohanBhattaharjee, whose profound impat deserves speial aknowledgement.I would like to thank Prof. Sanjay Kumar and Prof. Goutam Tripathy foruseful disussions, espeially in onnetion with the work reported in this thesis.I express my gratitude to all of my teahers who helped me in understanding thesubjet.This is a time to aknowledge the useful interations with Jaya Maji, GarimaMishra and Tanmoy Pal as oauthors of some of my papers. I also thank thesholars and post-dos of IOP for various disussions and making my stay at IOPmemorable.I want to express my heartfelt gratitude and indebtedness to my friends andfamily for their support in every possible way.



SynopsisIn this thesis we study non-equilibrium stohasti paths, espeially in the ontext ofthe binding-unbinding transition of polymers and DNA. The phases and the phasetransition of DNA being the main attration, we study the same under a fore forboth equilibrium and non-equilibrium ases. In ourse, we study an even simplertwo-state system, the Ising ferromagnet, to obtain similar results. The results of aDNA system often show similarities to other systems. For example, the phase dia-gram resembles that of superondutors, an imaginary time transformation makesthe polymer problem equivalent to a quantum problem, thereby, and, the reunionexponents and the order of phase transition are shown to be reovered from theequivalent quantum problem by studying the quantum entanglement. Suh on-netions to other topis, whih are apparently or mehanism-wise di�erent, areexplored.We start with the equilibrium phase transition of a double-stranded DNA (ds-DNA) under a fore. A dsDNA is a two-stranded long double helial moleule. Dur-ing many biologial proesses like repliation, transription, et., the two strandsof the dsDNA are needed to be opened up partially or fully. In order to make thispossible, a few proteins, like heliases, sit at the juntion of the two strands andexert a fore on the strands. When the strands are pulled in opposite diretionsby a fore, the two strands get separated if the applied fore exeeds a ritialvalue. This unzipping transition is �rst-order below a ritial temperature. Atthis ritial temperature, the dsDNA melts to a pair of single stranded DNA (ss-DNA), even in the absene of any external fore on the strands, and this meltingtransition is seond-order. This phase transition is studied by di�erent methodsstarting from renormalization group studies to various experiments looking at thephases. Among the theoretial studies, the most ommon is modeling a dsDNA astwo interating polymers.In the �rst hapter, we show that a thermodynami study an produe thefeatures of the zipping-unzipping phase diagram of a dsDNA. We look at theinterfae between the zipped and the unzipped phases and lassify the existingDNAs into two types in terms of the sign of the interfae energy. Most of thepresent theoretial models ignore the helial struture to simplify the model. Ourstudy shows that onsidering the helial order along with the external fore undervi



ertain irumstanes an even make the unzipping transition seond order, whihhas experimental evidene in a topology-preserved phase transition. The ruialrole is played by the ompetition between two independent length sales induedby the helial order and the external fore. This fat along with the phase diagramof a DNA mathes with that of superondutors. This tempts us to name the twolasses as Type I and Type II.In reality, the essential unbinding proteins like heliases get energy from pe-riodi ATP onsumption, thus produing a periodi fore on the strands of theDNA. Motivated by this, in the seond hapter, we study a DNA hairpin under aperiodi fore. The analogous two-state Ising magnet shows a similar behaviourunder a periodi magneti �eld, though the detailed dynamis are di�erent in thesetwo systems. For an Ising ferromagnet under a magneti �eld, there is a �rst orderphase transition from a positively magnetized state to a negatively magnetizedstate. Under a periodi fore, near the phase transition, the mismath betweenthe time sales of the applied �eld and the relaxation time of the system givesrise to a forward and a bakward branhes to yield a magnetization vs. magneti�eld loop. This is alled hysteresis. In hysteresis, usually a loop averaged overmany yles reeives attention. But we �nd that this averaging suppresses theatual piture of the states. In this work, we quantify the phases by looking atthe time-resolved loops and propose a dynamial phase diagram. This diagramis qualitatively similar to that obtained from a periodially driven DNA hairpin.The importane of this dynamial phase diagram, apart from the usual one, isthat it shows the possibility of going from one phase to the other just by varyingfrequeny alone, keeping the amplitude of the external drive �xed.In the third hapter, we onentrate on the hysteresis of the Ising ferromagnet.Here aim is to extrat the equilibrium disontinuous phase transition urve in themagnetization vs. magneti �eld plane, whih, in a real situation is impossible toget, no matter how long we allow the system to equilibrate. In ahieve our goal, weutilize the work theorem and the histogram method. The work theorem relates theequilibrium free energy di�erene between any two states to the non-equilibriumwork done in going from one state to the other. The histogram tehnique is widelyused in simulation whih extrapolates the equilibrium distribution given at someparameter value to that of another. We show that the work theorem an be ob-tained from the histogram transformation. Then we generalize the work theoremvii



to an arbitrary number of intensive parameters inluding the temperature, andexpress the equilibrium distribution as the prinipal eigenvetor of a speially on-struted matrix onsisting of the non-equilibrium measurements of the work done.Using this weighted averaging, one an get a muh better phase transition urvewhih an not be obtained using a simple averaging.Next we look at the quantum problem equivalent to the polymer unbindingtransition. A lassial path onneting two points in the on�guration spae anbe equivalently thought of as a trajetory in a quantum problem under the imag-inary time transformation. Then the partition funtion in the lassial problemmaps on to Green's funtion in the quantum problem, the sum over all on�gu-rations represents the sum over all trajetories in quantum ase, and so on. Thisequivalene maps the lassial problem of two interating polymers onto the quan-tum problem of two partiles. Then our interest is in the unbinding transition of apair of bound quantum partiles. This depits a quantum phase transition (QPT),governed by quantum �utuations. To observe the signature of the QPT, one im-portant quantity is the quantum entanglement entropy, the most ommon of whihis the von Neumann entropy. The quantum entanglement entropy quanti�es thepure quantum orrelation in the system. For both the short-range and long-rangepotentials, we ompute the von Neumann entropy and �nd that near the QPT, itdiverges negatively. We disuss the behaviour of the entropy and its onnetion tothe reunion exponents in the fourth hapter.Viewed as a stohasti path, a polymer an be interpreted as a lassial randomwalker with length of the polymer as time. A study of the paths of suh a randomwalker is the topi of the �fth hapter. The lassial walker is assoiated witha power law distribution of the hopping rates. The mean squared displaementand the persistene probability, the probability that a walker does not return toits starting point upto time t, are observed. We show that the quenhed and theannealed averaging with the site and the bond disorders give di�erent persistenebehaviours, though all have the same behaviour for the mean squared displaement.To summarize, our fous is to study paths, mostly in the form of polymers, andthe phases of DNA, both in equilibrium and non-equilibrium. In the �rst part,the DNA phases are observed under pulling fore at one end. Both stati andperiodi fores are disussed, with the orresponding phase diagrams. The resultsare then ompared from a muh simpler system of an Ising magnet, and for this aseviii



we even go further by utilizing variants of the work theorem. The mapping to theequivalent quantum problem of interating partiles led us to look at the unbindingtransition through the quantum entanglement entropy. Several interesting featuresof the entanglement entropy, as an entropy by itself, is disussed along with itsonnetion to the reunion exponents of two interating polymers. The last part isa study on the behaviour of return to the origin of a random walker in a randommedium, a problem synonymous to loop formation in polymers. This thesis givesnew insights about polymers and DNA problems as these are looked from newangles, e.g. by looking at time-resolved states, by exploring the onnetions toother systems like superondutors and quantum problems, thus bringing out thevastness and the universal nature of the polymer problems.
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1Introdution
Among all disiplines in physis, statistial physis oupies a privileged position asthe natural framework to understand the behaviour of the biologial systems at themoleular level by using the onepts of stohastiity, �utuations, metastabilityand thermal ativation. In this thesis, we disuss some biologial phenomena thatour inside living ells. Our main fous is to study the phases and the phase tran-sition of DNA. The behaviour of DNA is found to have very nie similarities withother non-biologial systems like superondutors. It �nds appliability in muhwider general topis like random walks. The behaviour of the omplex strutureof DNA under ertain irumstanes resembles that of a muh simpler system likea two-state Ising spin system. These onnetions are explored in this thesis alongwith some results of relevane in biology, obtained for DNA and polymers by usingthermodynami and statistial tools of Physis.1.1 DNADNA (Deoxyribonulei aid) is an essential moleule that enodes the genetiinstrutions used in the development of living organisms. Geneti information isenoded as a sequene of four types of nuleotides: Guanine (G), Adenine(A),Thymine(T), and Cytosine(C). Most DNA moleules are double-stranded helies,onsisting of two long polymers of simple units alled nuleotides. This arrange-ment of two nuleotides binding together aross the double helix is alled a basepair. This binding is reated by hydrogen bonds, whih an be broken and re-joined. The two strands of a DNA in a double helix an therefore be pulled apart1



Chapter 1. Introdutioninto two single stranded DNA (ssDNA) either by a mehanial fore or at hightemperature. These are alled unzipping phase transition and melting of DNA.1.1.1 Phase transition of DNAThe phase transition an happen by various means like (i) temperature induedmelting or denaturation, (ii) fore indued unzipping, or (iii) pH indued unzippingor hemial unzipping.Fore indued unzipping:The theoretial models for the separation of a double stranded DNA (dsDNA) arebased on a simple extension of the Poland Sheraga model [1℄, in whih the twoDNA strands are homogeneous ideal polymer hains interating with eah otheronly at the same ontour length. A onstant fore applied at one end pulls apartthe two strands of the DNA. Consider two polymers eah of length N under thein�uene of an applied pulling fore g at one end (z = N). The Hamiltonian ofdsDNA in the ontinuum an be written as [2℄,
H =

∫ N

0

dz

[

1

2
K

(

dr1
dz

)2

+
1

2
K

(

dr2
dz

)2

+ V (r1(z), r2(z))

]

−
∫ N

0

dz g.

(

∂r

∂z

)

,(1.1)where ri(z) is the d-dimensional position vetor of a monomer at a length z alongthe ontour of the ith strand, V (r1, r2) is the binding potential, and r(z) = r1(z)−
r2(z) is the relative oordinate. The dsDNA unzips to two single strands if thepulling fore exeeds a ritial value gc [2℄. This unzipping is a �rst order phasetransition as the separation between the strands inreases disontinuously as gapproahes gc. The unzipping of dsDNA an be studied in two ensembles.

• Fixed fore ensemble: A onstant pulling fore g is applied on the DNA. Therelevant free energy is the Gibbs free energy G(T, g).
• Fixed distane ensemble: The separation x between the strands is kept on-stant. The relevant free energy is the Helmholtz free energy F (T, x).The phase diagram in the fore(g)-temperature(T ) plane ontains two phases,namely the zipped phase, in whih the DNA is a double stranded hain, and the2



Chapter 1. Introdutionunzipped phase, in whih the strands of the DNA get separated from eah other.It is known that a dsDNA an be onverted to two single strands by inreasing thetemperature to 80C-100C. Unzipping is an initial step in biologial proesses likeDNA repliation and RNA transription whih requires the aid of some enzymeslike heliases, polymerases et. However, to aount for the unzipping in the el-lular medium, where it takes plae at physiologial onditions 37C and at neutralpH, one needs to onsider the unzipping by fore whih omes from the mehanialfore exerted on the dsDNA by the enzymes to open it up.

TT

Zipped

Unzipped

C

g

C
g=g (T)

2nd
order

 Figure 1.1: Phase diagram of the fore indued unzipping transition. Here gc(T ) isthe ritial fore for unzipping and Tc is the ritial temperature for melting whenno fore is applied.Fig. 1.1 shows the phase diagram of DNA unzipping by a fore in the fore-temperature plane. The line gc(T ) separates the two phases. Here gc is the ritialfore required for unzipping and is dependent on temperature. To get a fore-indue transition one must stay below a ritial temperature Tc, whih is themelting temperature when no fore is applied. DNA in its double helial formshows a resiliene against an external pulling fore. The bound state does notallow a fore g applied at an end to penetrate up to a ritial fore g = gc, abovewhih the DNA gets unzipped [2, 3, 4, 5, 6, 7℄. The transition is �rst order fortemperatures T < Tc where Tc is the denaturation(melting) temperature in theabsene of any fore [8℄. In some models there happens a re-entrane phenomenon,as shown by the dashed line in Fig. 1.1, where at low temperatures, the ritial foredereases with the temperature. The re-entrane is due to the low temperatureentropy of the double stranded DNA. 3



Chapter 1. IntrodutionTemperature indued melting:When a solution of DNA is heated above some temperature, the dsDNA getsdenatured. The melting starts at the ends of the DNA, and at region whih isrih in AT. This subsequently destabilizes adjaent regions of helix, leading to aprogressive melting of the whole struture at a well de�ned temperature knownas the melting temperature (Tm). The thermal denaturation of DNA is reversible.When the heated solutions of denatured DNA are slowly ooled, single strandsoften meet their omplementary strands and reform regular double helix. The DNAdenaturation has been studied extensively by various models whih are mainlybased on the Poland Sheraga model [1℄, or on the Peyrard Bishop model [9℄. Allthese models agree that the thermal denaturation of the DNA is a phase transition,but the order of the transition depends on the model used. Some models [10, 11,1, 12, 9℄ show it is a ontinuous transition while others [10, 13, 14℄ show it isdisontinuous. Ref. [15℄ reviews on thermal denaturation of DNA.Chemial denaturation:The dsDNA also denatures by extreme pH onditions. The unzipping by usinghemial agents in neutral pH is known as hemial denaturation [16℄. The pH ofmelting depends on the mole fration of GC pairs on the DNA. Larger the molefration of GC pairs, the higher the pH of melting. The denaturation of DNA atneutral pH is aused by a number of hemial agents, suh as urea and formamide,by disrupting the hydrophobi fores between the staked bases.Exat solution of the DNA unzipping problemLet us onsider a dsDNA as two direted polymers on a 1 + 1 dimensional squarelattie. It starts walking from the origin (z = 0). Two polymers are not allowedto ross eah other. The base pairing is put in by onsidering a ontat energy
−ǫb (ǫb > 0) for eah ontat when separation (x) between the two strands is zero.One end of the DNA is anhored and the fore is applied at the other end. Fig. 1.2shows a shemati piture.Let dt(x) be the partition funtion in the �xed distane ensemble. Then one
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Chapter 1. Introdution
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Figure 1.2: An oriented square lattie. Two polymers (red lines) starts from r = 0and moves along the bonds onneting two rossing points without rossing eahother in upward diretion. An external fore g is applied at one end.an write the reursion relation as,
dt+1(x) = [dt(x+ 1) + 2dt(x) + dt(x− 1)]

[

1 +
(

eβǫb − 1
)

δx,0
]

, (1.2)where β is the inverse temperature. As an initial ondition of polymers held �xedand joined at one end, one has, d0(x) = eβǫbδx,0. To solve, one an take a generatingfuntion for the partition funtion as,
d̄(z, x) =

∑

t

ztdt(x) = λx(z)A(z), (1.3)where λ and A are to be determined. Using this ansatz, one gets,
λ =

1− 2z −
√
1− 4z

2z
, (1.4)and

A =
1

1− z(2 + λ)eβǫb
. (1.5)

5



Chapter 1. IntrodutionThe singularities of the generating funtions are then,
z1 = 1/4, (1.6)and

z2 =
√

1− e−βǫb − 1 + e−βǫb. (1.7)The zero fore melting takes plae when z1 = z2, i.e. at Tc = 1/ ln(4/3).Fixed fore ensemble: In the �xed fore ensemble, the generating funtion iswritten as,
D(z, β, g) =

∑

x

eβgx
∑

t

ztdt(x) =
∑

x

eβgxλx(z)A(z) =
A(z)

1− λ(z)eβg
, (1.8)whih has the g-dependent singularity at

z3 =
1

2 + 2 cosh βg
. (1.9)Note here that Eqs.(1.6), (1.7) and (1.9), orrespond to the free energies of theunzipped state at zero fore, of the zipped state whih is independent of fore, andof the unzipped but strethed (by g) state, respetively. More expliitly, the freeenergies per monomer are,

Gu(T, 0) =
1

β
ln z1 = − 1

β
ln 4, (1.10)

Gz(T, g) =
1

β
ln z2 =

1

β
ln
√

1− e−βǫb + 1− e−βǫb , (1.11)
Gu(T, g) =

1

β
ln z3 = − 1

β
ln 2− 1

β
ln(1 + cosh g), (1.12)whih will be mentioned in Chapter 2. Here the subsripts u and z refer to theunzipped and the zipped phases respetively.
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Chapter 1. Introdution1.1.2 Interating polymersNeklae modelThe neklae model aptures the features of the phase transition of interatingpolymers in any dimensions [17℄ provided the on�gurations have predominantlya one-dimensional struture, though they may spread in transverse diretions in-de�nitely.
A A A A AB B B

B

nA

N

v v v v v v v v

nB
 

Figure 1.3: A neklae of bubble (B), of length nB, and bound (A), of length nAsegments.Any on�guration of this model onsists of alternating segments of mirostateslabeled A, onsisting of a bound part of length nA, and B, onsisting of an openpart or bubble of length nB (see Fig. 1.3). The free energy per unit length of thewhole on�guration is f(T ), at temperature T , where
βf(T ) = − lim

N→∞

1

N
lnZN(T ), (1.13)with ZN as the partition funtion. To alulate the free energy it is onvenient toonsider a generating funtion,

G(z, T ) =

∞
∑

N=0

zNZN(T ). (1.14)If z0 is the singularity of G(z) losest to the origin of the omplex z-plane, thenthe limiting free energy would be,
βf(T ) = ln z0(T ). (1.15)In a similar way, the generating funtions for the A state and the B state an be7



Chapter 1. Introdutiononstruted,
GA(z) =

∑

n

QA
n z

n, GB(z) =
∑

n

QB
n z

n, (1.16)where QA and QB are orresponding anonial partition funtions. Often thebubble partition funtion QB
n is taken as

QB
n ≈ e−nσ0/nΨ, (1.17)with σ0 as the bubble entropy per monomer and Ψ as the reunion exponent (dis-ussed in the next subsetion).Now if a Boltzmann fator v is assoiated for the juntions AB or BA, andone puts the ondition that the polymers start and end with on�guration A, then

G(z) an be written as,
G(z) = GA(z)/

[

1− v2GA(z)GB(z)
]

. (1.18)The singularity of GA(z) and GB(z) will give the orresponding phases, but thesmallest root of the equation
v2GB(z) = 1/GA(z), (1.19)will orrespond to a new bound phase. A transition takes plae if the neklaegoes from this new state to the open B-type phase. An analysis of Eq.(1.19) shows[17℄ that below the transition temperature Tc, with t = (Tc − T )/Tc,

f = σ0(T )−Ast
1/(Ψ−1) + ..., for 1 < Ψ < 2, (1.20)

f = σ0(T )−A1t+ Ast
Ψ−1 + ..., for Ψ > 2, (1.21)where Eq.(1.20) shows a ritial behaviour and Eq.(1.21) has a �rst order transi-tion. There is no phase transition for Ψ < 1 and the system remains in the boundstate. Note here the hange of the order of the phase transition with the value of

Ψ, whih will later be onneted to the interation strength of the inverse squarepotential in the ontext of quantum entanglement entropy near dissoiation.
8



Chapter 1. IntrodutionReunion of two polymersLet us onsider two Gaussian polymers, joined at one end (z = 0), doing randomwalks. The elasti energy for eah hain is given by H =
∫ N

0
dz(dr/dz)2, where ris the d-dimensional vetor of monomer at z. The partition funtion, or the totalweight of all possible walks to reah r, starting from r = 0, is then,

Z(r, 0) ≈ e−σ
′Ne−r

2/(2b2N)

(b2N)d/2
, (1.22)where e−σ′N is the total partition funtion of all possible walks of N steps obtainedby integrating Z(r, 0) over r. Now the probability that the walker reahes r after

N steps is,
R(r, 0) =

Z(r, 0)

Ztotal
≈ n−d/2. (1.23)Then from Eq.(1.22), by putting r = 0, one gets the bubble partition funtion, thattwo walkers start from r1 = r2 = 0 and meet at r after N steps, as the produt oftwo individual partition funtions,

Z2(r, 0) ≈
e−σNe−r

2/N

Nψ
, with ψ = d, (1.24)where we have put b = 1 for brevity. The reunion exponent for meeting at parti-ular point is denoted by ψ and reunion anywhere is denoted by Ψ. For the reunionanywhere, one has to integrate over r, in whih ase it beomes,

Z2 =

∫

ddrZ2(r, 0) ≈
e−σN

NΨ
, with Ψ = d/2. (1.25)Hene the reunion exponents for two noninterating Gaussian polymers are [18℄,

ψ = d for noninteracting walkers, reunion at a particular point, (1.26)
Ψ = d/2 for noninteracting walkers, reunion anywhere. (1.27)In the ase of interating polymers the Hamiltonian looks like Eq.(1.31) givenbelow. For a long range g/r2 potential, the reunion exponent (for reunion any-

9



Chapter 1. Introdutionwhere) for two walkers are [107℄,
Ψ = 1 +

√

4 + d2 − 4d+ 4g

2
, general d, (1.28)

= 1 +

√
1 + 4g

2
, for d = 3. (1.29)These are the exponents alluded to in the ontext of the neklae model disussedin the previous subsetion and will also appear in the ontext of quantum entan-glement entropy in Chapters 4 and 5.This lays the bakground of our study related to the phases and phase transitionof DNA and interating polymers. At this point, we want to make a onnetion oflassial polymers to an equivalent quantum system whih will be utilized later.1.1.3 Path integral orrespondeneThe orrespondene between the path integral in lassial statistial mehanisand the path integral in quantum mehanis is very well-known. The following ex-ample shows how the path integral formulation of quantum mehanis is related tostatistial mehanis. The partition funtion of two lassial polymers interatingvia a potential V reads,

Z =

∫

DR exp[−βH [r1, r2]]. (1.30)Here ∫ DR denotes the integration over all possible paths or polymer on�gura-tions, and H [r1, r2] is the energy,
H [r1(z), r2(z)] =

∫ N

0

dz

[

1

2
K

(

dr1
dz

)2

+
1

2
K

(

dr2
dz

)2

+ V (r1, r2)

]

, (1.31)where K is the elasti onstant of a polymer, z is the ontour length along thepolymer of total length N and ri is the oordinate of the monomer of i-th polymerat length z. Then by using the imaginary time transformation, z → i t one gets,
H [r(t)] = −i

∫ T

0

dt

[

1

2
K

(

dr1
dt

)2

+
1

2
K

(

dr2
dt

)2

− V (r1, r2)

]

, (1.32)10



Chapter 1. Introdutionwriting T = iN . Identifying β → 1/~, K → m (mass) and
S[r1, r2] =

∫ T

0

dt

[

1

2
m

(

dr1
dt

)2

+
1

2
m

(

dr2
dt

)2

− V (r1, r2)

]

=

∫ T

0

L dt. (1.33)one gets the Green's funtion or the propagator of the quantum problem of twointerating partiles with the lassial ation S[r1, r2] with Lagrangian L as,
G =

∫

DR exp

[

i

~
S[r1, r2]

]

. (1.34)To be noted that the Hamiltonian in the polymer problem now beomes the La-grangian after the transformation. Here G denotes the path integral over all possi-ble trajetories in time going from one oordinate state to another. This transfor-mation thus relates the lassial statistial mehanial problem of polymers withthe quantum problem where mapping are as follows: the length of the polymermaps onto the time of the quantum problem, the partition funtion maps onto theGreen's funtion. Therefore, the problem of two interating polymer beomes aquantum problem of two interating partiles. The noninterating part, separatedby a distane larger than the range of the interation, whih forms bubbles, or-responds to the exursion of quantum partiles beyond the potential well. Thesame-z base pair interation is the same time interation in the quantum problem.We utilize this mapping to explain the behaviours of the quantum entanglementnear the quantum dissoiation of two partiles with the known results of polymerunbinding transition.To avoid any onfusion, we mention that the above transformation is di�erentfrom the onventional quantum to thermal mapping, where time (it/~) in thequantum problem maps to the inverse temperature (β = 1/kBT ) in the lassialthermal problem. The operator exp[−iHt/~] in quantum mehanis then beomes
exp[−βH ], in both of whih H is the orresponding Hamiltonian.The polymer-quantummapping has been used in our study of Chapters 4 and 5.
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Chapter 1. Introdution1.2 Connetion of equilibrium and nonequilibriummeasurementsNow we move our attention from the equilibrium properties to the nonequilibriumones. For example, let us suppose one tries to observe the same system of polymersor DNA under time-dependent fore, and do not allow the system to equilibrate.Obviously, the equilibrium phase diagram will not be obtained. Then the questionomes whether one an get the equilibrium quantities from the nonequilibriummeasurements. That one will not get it an be understood as follows. A systemin thermodynami equilibrium has no memory of its past. Consequently there isno leading role for time in the ensemble based statistial mehanis exept thesubservient one to maintain equilibrium among the internal degrees of freedomand with external soures. This wisdom gets exploited in the dynamis based al-gorithms like Monte Carlo, moleular dynamis, stohasti quantization, to attainequilibrium from any arbitrary state albeit in in�nite time. Even a thermody-nami proess involving hanges in parameters is an in�nite sequene of equilib-rium states, and is therefore in�nitely slow. A �nite duration proess, not destinedto equilibrate at every instant of time, remains outside the realm of statistialmehanis and thermodynamis. A work theorem [19, 20, 21, 22, 25℄ attempts tobridge the gap by providing a sheme for getting the thermodynami free energydi�erene from a properly weighted nonequilibrium path integral [21, 22℄.1.2.1 Work theoremThe estimation of a quantity like the energy or the magnetization of a marosopisystem an be done by averaging over a reasonably large sample of mirostatesdrawn from an equilibrium ensemble. But an estimation of the entropy or the freeenergy from simulations or experimental data is a triky problem as to do that wehave to neessarily onsider all the mirostates aessible to the equilibrium systemand this number is indeed very large. There are useful Monte Carlo tehniques viz.,the umbrella sampling and its variants, the entropi sampling, the multianonialsampling, the Wang-Landau algorithm, et, that an be used for omputation ofthe entropy and the free energy.Consider a lassial marosopi system in thermal ontat with a heat bath at12



Chapter 1. Introdutiontemperature T . Let λ denote a parameter that an hange some degree of freedomof the system and an be ontrolled from outside. For example, the system anbe a gas ontained in a ylinder and λ an be its pressure (hanging the volume)whih an be ontrolled from outside by moving a piston; the system an be a spinlattie and the parameter an be an external magneti �eld whose strength anbe hanged. To begin with, at time t = 0, let λ = λ1 and let the system be inequilibrium with the heat bath. Then swith the value of λ from λ1 to λ2 . Alsoassume that the swithing of λ from λ1 to λ2 is arried out over a time duration t.To estimate the hange in free energy let's onsider two ases. One in whihthe swithing is arried out in�nitely slowly, in other words t = ∞, and the seondone in whih the swithing proess takes plae over a �nite time duration, i.e.
t <∞. In the �rst ase, the system passes through equilibrium states while in theseond ase the system is never in equilibrium during the hange. The �rst aseorresponds to a quasi-stati reversible equilibrium proess so that the hange inthe free energy ∆F = F (λ2) − F (λ1) is the reversible work done on the system.In the seond ase, the work done will depend both on the partiular mirostateat the starting point and on the trajetory. The work done is de�ned as,

W = −
∫ τ

0

dλ

dt

∂H

∂λ
dt, (1.35)where H is the Hamiltonian of the system. Therefore, for t <∞, W is not uniqueand it is to be desribed by a distribution Pt(W ). If 〈W 〉 denote the average workdone on the system, then

〈W 〉 =
∫

W Pt(W ) dW.In the ideal quasi-stati equilibrium limit of t → ∞, we have Pt→∞(W ) = δ(W −
WR); W does not hange from one experiment to another and it is equal to WR,the work done in the reversible proess, whih also happens to be the hange inthe free energy.The work theorem relates the equilibrium free energy di�erenes to the statistisof work done on a system to reah from the initial equilibrium state to the �nal statethrough nonequilibrium paths. Consider at t = 0, we start from an equilibriumstate of the Hamiltonian H(x,Λ) at temperature T = β−1 and Λ = λA. Now13



Chapter 1. Introdutionhosen a �nite time τ , it is disretized in n steps. In time τ , we reah to a �nalstate having Λ = λB, varying Λ in small n steps, i.e., at eah step Λ is inreasedby ∆Λ = (λB − λA)/n. At eah small step, we let the system relax for a while,but do not allow it to equilibrate. The paths onneting the initial and the �nalstates are thus nonequilibrium paths. This proess is repeated many times and
t=0 

x(t)

t

B

A

t=

Figure 1.4: Paths onneting an initial equilibrium state having an external pa-rameter value λA to a �nal nonequilibrium state having a parameter value λB. The�nal state is reahed in a time τ .for eah path, the work done W along the path, is noted. Then aording to thework theorem the equilibrium free energy di�erene, ∆F = FλB − FλA , betweenthe two states an be obtained from the nonequilibrium work done W by using therelation,
∆F = − 1

β
ln 〈e−βW 〉. (1.36)Here Fλ = −kBT lnZλ, Zλ =

∫

DXe−βH(x,λ), and 〈...〉 denotes an average over allpossible trajetories (or realizations). This relation is used in many simulationsand experiments to get equilibrium free energy di�erenes.As already mentioned, away from equilibrium, one gets a distribution Pn(W ) ofwork along the trajetories onneting the two states. The peak of the distributionshifts with the loseness to the equilibrium [23℄. For an arbitrarily slow proess, onegets a sharp peak at Weq. For the nonequilibrium proess, there are trajetorieswhih has W < ∆F (see Fig. 1.5). These are the seond law violating paths.Various issues related to the distribution are explained in Ref. [24℄ by using theumulant expansion.One may note that the de�nition of work used above is di�erent from the14



Chapter 1. Introdution
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Figure 1.5: A omparison of the work done between a 1-step proess and an n-stepproess. For large n, the work distribution shows a peak at Weq.de�nition used in mehanis whih would have required
W0 =

∫ τ

0

Ẋ
∂H

∂X
dt, (1.37)as the de�nition of work. This di�erene stems from the fat that sine we arehanging an �intensive� variable that does not sale with the size of the system, therelevant ensemble in equilibrium statistial mehanis is the onstant-λ ensemble.The work done in this ensemble is given by the de�nition of W with an additional

−λX in the Hamiltonian, a term generally assoiated with the Legendre trans-formation for a hange of variables or ensembles. Another issue of importane isthe temperature to be used. Temperature is a stritly equilibrium onept andtherefore it is not possible to de�ne temperature at any point along the �nite timetrajetory. However, the averaging is done over the equilibrium initial state whihhas a well de�ned temperature. The averaging over trajetories is done with thistemperature with the assumption that the �nal temperature in equilibrium wouldremain the same. See Ref. [25, 26℄ for more elaborate disussions and ontroversieson these issues.The derivation of the work theorem has been done by various means. In Ref.[27℄ the proof is obtained from a deterministi dynamis in the full phase spae byusing the Hamilton's equation assuming weak oupling between the system and thereservoir. Later it was derived from a stohasti dynamis of the system governed15



Chapter 1. Introdutionby the master equation under the assumption of a Markovian evolution and detailedbalane [28℄ whih is valid only for a partiular lass of models of physial reality.Ref. [29℄ derives the results for a mirosopially reversible stohasti proess. Thevalidity of the work theorem for nonequilibirum trajetories generated with largetime steps is shown in Ref. [30℄. The derivation from the Feynman-Ka theoremis also well-doumented in Ref. [21℄. In this thesis we presented a dynamisindependent general proof of the work theorem.In our work, the work theorem is proved to be a generalized version of an oldtehnique known as histogram method. The details of it is disussed here in detail.Only the single histogram method is illustrated here.1.2.2 Histogram methodThe histogram method is a widely used tehnique in Monte Carlo simulations.This method allows us to take a quantity obtained by Monte Carlo simulation atsome intensive parameter value and extrapolate the results to other nearby values.This saves the omputation time for other values. The idea was �rst given byValleau and Card [31℄ and then used by Falioni et. al [32℄ and Ferrenberg andSwendsen [33℄.Histogram transformationLet us onsider the Hamiltonian:
H = H0 − λX. (1.38)The joint probability distribution of E (ontribution from H0 only) and X (on-tribution from the seond part only) at a point (β, λ) in the parameter spae isgiven by

Pλ(E,X) =
1

Z(λ)
Ω(E,X) exp(−βE + βλX), (1.39)where Ω(E,X) is the degeneray or the number of states and Zλ is the anonialpartition funtion given by

Zλ =
∑

X,E

Ω(E,X) exp(−βE + βλX) . (1.40)16



Chapter 1. IntrodutionSuppose we want to �nd the average of a quantity A(E,X). The histogram ofthe pair (E,X) generated by the MC simulation is proportional to Pλ(E,X). Thenormalized probability distribution an be used to extrapolate the same to otherparameter values. If one has the average of that quantity, 〈A〉, then
〈A〉λ =

∑

E,X

A(E,X) Pλ(E,X) (1.41)
=

∑

E,X A(E,X) Ω(E,X) e−βE+βλX

∑

E,X Ω(E,X) e−βE+βλX
. (1.42)Similarly, for another value of the parameter λ′, we an write the average of thesame quantity A as

〈A〉λ′ =

∑

E,X A(E,X) Ω(E,X) e−βE+βλ′X

∑

E,X Ω(E,X) e−βE+βλ′X
(1.43)

=

∑

E,X A(E,X) Ω(E,X) e−βE+βλ′X eβλXe−βλX
∑

E,X Ω(E,X) e−βE+βλX

∑

E,X Ω(E,X)e−βE+βλ′X eβλXe−βλX
∑

E,X Ω(E,X)e−βE+βλX

(1.44)
=

∑

E,X A(E,X) Pλ(E,X) eβ(λ
′−λ)X

∑

E,X Pλ(E,X) eβ(λ′−λ)X
. (1.45)Hene, by using the histogram, Pλ(E,X), at λ one an get 〈A〉λ′, at λ′, and, thenormalized probability distribution with new parameter λ′ an be expressed interms of the distribution with λ as:

Pλ′(E,X) =
Pλ(E,X) exp[β(λ′ − λ)X ]

∑

E,X Pλ(E,X) exp[β(λ′ − λ)X ]
. (1.46)Again we an write from the above equation as,

Ω(E,X)e−βE+βλ′X

Zβ,λ′
=

Ω(E,X)e−βE+βλX

Zβ,λ
exp[β(λ′ − λ)X ]

∑

E,X Pλ(E,X) exp[β(λ′ − λ)X ]
, (1.47)

⇒ Zβ,λ′ = Zβ,λ
∑

E,X

Pλ(E,X) exp[β(λ′ − λ)X ] . (1.48)This an be extrapolated to an arbitrary number of variables in the following way.If the Hamiltonian is now, H = H0 −
∑

k λkXk, then the probability distribution17



Chapter 1. Introdutionat {λi} an be related to that at {λf} as,
P{λf}(X) =

P{λi}(X) exp[β
∑

k(λ
f
k − λik)X ]

∑

X P{λi}(X) exp[β
∑

k(λ
f
k − λik)X ]

. (1.49)Monte Carlo implementationThe Monte Carlo approah is a fundamental tool to study the thermodynamiproperties of model systems. The thermal averages are performed by taking a �niteset of judiiously hosen states instead of taking into aount all possible states ofthe system. These states form the anonial Boltzmann probability distribution
PT (E) =

1

ZT
Ω(E) exp(−E/T ), (1.50)for eah possible (total) energy value E, where T is the �xed temperature (in unitof kB, or, kB = 1), Ω(E) is the degeneray of energy level E, and

ZT =
∑

E

Ω(E) exp(−E/T ), (1.51)is the partition funtion. In the Monte Carlo tehnique some random movements,for instane, through one-spin �ip, starting from the urrent state of the system,are made in the phase spae aording to some dynami rule whih produes thisprobability distribution. By repeating the proess many times one forms an en-semble of states. The thermal average 〈A〉T of some quantity A (magnetization,suseptibility, spei� heat, et.) is then simply the average of this quantity overthe generated ensemble of states. To get an aurate value of the thermal averagedquantity one must take are of statistial orrelations and �utuations through anyof the standard proedures. Normally one needs to alulate 〈A〉T as a funtion ofsome parameter, e.g., T . So, one has to repeat the entire proess for eah di�er-ent value of T . In order to save omputer time, an appealing strategy onsists inextrating out the T dependene from Eqs.((1.50)) and ((1.51)). First, the distri-bution PT (E) itself is measured by keeping a histogram, the number of ourreneof eah value of E, during the sequene of simulated states. Then, one an inferanother distribution PT ′(E) orresponding to a di�erent value T ′ without perform-ing any further omputer run, simply by reweighting Eqs.((1.50)) and ((1.51)).18



Chapter 1. IntrodutionThis approah is known as the histogram method [34, 35℄. The thermal averageat temperature T is then
〈A〉T =

∑

E

A(E)PT (E), (1.52)where A(E) is the value of A obtained at �xed energy E. One one has thereweighted distribution PT ′(E) from Eq.(1.46), Eq.((1.52)) an be applied to obtain
〈A〉T ′ for other temperatures T ′ without doing any simulation. The probabilitydistribution PT (E) presents a sharp peak at 〈E〉T and deays exponentially onboth sides. The larger the system size, the narrower is this peak. Thus, theomputer measured PT (E) is only reliable around the peak, the statistis beingpoor in the exponential tails. The reweighting proedure orresponds to replaingthe Boltzmann fators appearing in Eqs.((1.50)) and ((1.51)) by other Boltzmannfators orresponding to the new value T ′, transforming the whole funtion PT (E)into PT ′(E). In partiular, the probability values are redued near the former peak,and enhaned near the new peak position 〈E〉T ′. However, sine the statistis ispoor near this new peak position, the inferred PT ′(E) is not aurate. That is whythis simple histogram method (known as the single histogram method), in spite ofits elegant reasoning, had di�ulties in pratie whih later has been improved byintroduing new methods: broad histogram method and multi-histogram method,to avoid the exponential tails responsible for the drawbak of the single histogrammethod.1.3 An equivalent quantum system: two interat-ing partiles and quantum phase transitionPreviously we have mentioned in Se. 1.1.3 that the lassial problem of unbindingtransition of two interating polymers, like DNA, an be mapped onto an equivalentquantum problem of dissoiation of two interating quantum partiles. Then theonepts and results of the lassial phase transition an be borrowed to analyzequantum entanglement and the entanglement entropy. This setion disusses theproblem of quantum entanglement, its measures and the onnetion to polymerentropy as a prerequisite of the Chapters 4 and 5. 19



Chapter 1. Introdution1.3.1 What is quantum entanglement?Quantum entanglement [36, 37, 38, 39℄ is a fundamental feature of quantum me-hanis that tells us about the quantum orrelation of two partiles or subsystemsspatially apart. It says that performing a loal measurement may instantaneouslya�et the outome of loal measurements far away. When a omposite quantumsystem is in a pure state, then even if the subsystems are spatially far apart andnon-interating, the measurement on one subsystem a�ets that on the other in-stantaneously. This �spooky ation at a distane� later gave birth to the term�entanglement�. This phenomenon was �rst marked by Einstein, Podolsky andRosen in a gedanken experiment [40℄, known as the EPR paradox. In their paper,they onsidered two partiles whih interated for some time and showed that it ispossible to measure the onjugate non-ommutating quantities, like position andmomentum, simultaneously, whih violated the quantum theory. For example, onemay take a pair of partiles in the zero total momentum state. Then, when theyare far apart, one may measure the momentum of one partile with arbitrary pre-ision to predit the momentum of the other one. At the same time the positionof the seond partile an be measured preisely so that both position and mo-mentum are determined with arbitrary preision. Later it was resolved and amethe idea of the quantum entanglement whih indiates the presene of the inherentquantum orrelation between the two partiles or any two subsystems. We de�nean entangled pair as follows:De�nition: When a bipartite pure state an not be written in termsof a produt of two states of individual parts, then the two parts areentangled.This notion an be made more quantitative with the help of density matries.A quantum state an be pure or mixed. A pure state an be desribed bya single wave-funtion or by a linear superposition of other states. On the otherhand, a mixed state is a statistial mixture of pure states. For example, interatingpartiles like an EPR pair, or more spei�ally in the two-partile energy eigenstateare examples of pure states. On the other hand, a quantum system in thermalequilibrium is desribed by the probabilities of the various energy eigen-states butit is not desribable by a wave funtion. Suh states, alled mixed states, are20



Chapter 1. Introdutiondesribed by a density matrix whih is represented by an operator
ρ(1, 2) =

∑

ij

cij | φi〉〈φj |, (1.53)where | φi〉's form a set of wave-funtions of the system. For a pure state of twoparts 1 and 2,
ρ(1, 2) =| φ(1, 2)〉〈φ(1, 2) | .A pure state satis�es ρ2 = ρ. Consequently, for a normalized density matrix

Trρ2 = 1 but for a mixed state, Trρ2 < 1.A redued density matrix for one part is de�ned by
ρ = Tr2 ρ(1, 2),by traing over part 2. This trae operation indiates the absene of any informa-tion about the seond part. If the redued density matrix is not pure, i.e. ρ2 6= ρ,then the two parts are de�ned as entangled. Neessarily, the redued density ma-trix is not separable in this situation. Needless to say, if the redued density matrixfor part 1 is not pure, it will not be for part 2 either.Signature of quantum phase transitionThere is another feature of quantum mehanis where the zero-point �utuationsin the ground state may oherently add up to produe long-range orrelations ofloal observables. This happens at quantum ritial points (QCP), a point wherethe spetrum beomes gapless, obtained by tuning some parameter, say g, of theHamiltonian. A QPT ours at zero temperature and at the QPT the ground stateenergy is non-analyti with respet to some parameter in the Hamiltonian. Theground-state energy E0 remains ontinuous through the quantum phase transition(QPT) point at g = gc. If there is a slope disontinuity of E0 as g → gc±, theQPT is alled a �rst order transition otherwise it is a ontinuous transition or aquantum ritial point (QCP).For partile dynamis, one may use a dimensional argument to haraterize thephase transition. The gap in the spetrum ∆, de�ned as the separation of the21



Chapter 1. Introdutionground state from the rest of the spetrum, gives a length sale
ξ ∼ ~√

2m∆
,where m is the relevant mass sale. A time sale for the quantum dynamis mayalso be de�ned as

τ =
~

∆
.The signi�ane of these sales beome lear in a path integral formulation whereone onsiders trajetories in spae and time. As the gap loses, ∆ → 0, both thesales ξ, τ → ∞ signaling a transition beause diverging length and time sales arethe hallmarks of any phase transition.For the two partile problem, when the ground state energy approahes zero,the bottom of the ontinuum, the width of the wave-funtion beomes large. Thisis an indiation of orrelations between the two partiles even if they are far apart,beyond the range of interation. With diverging sales, the omposite wave fun-tion is not expressible as a produt of individual wave funtions. Simply stated,ritial states are neessarily entangled, but the onverse is not neessarily true.There are states that are entangled but not ritial.The wave funtion enodes not only the non-analytiity assoiated with a QPT,but also the speial quantum entanglement intrinsi to the state. A QPT is fullygoverned by the quantum �utuation and hene one would expet that the quantumentanglement would show speial signatures at the QPT.1.3.2 Quanti�ation of entanglementDepending on the number of partitions of a quantum many body system, quantumentanglement an be of di�erent types, suh as bipartite (entanglement betweentwo subsystems), multipartite (entanglement between multiple subsystems).To quantify the entanglement, various de�nitions of entanglement entropy areexplored [38, 37, 41℄, though a few an be used for exat omputation. The ondi-tions to be satis�ed by the measure of the entanglement are: (i) it should be zerofor a produt state, and (ii) it should not hange under loal unitary operationsor hoie of bases. A muh studied measure is in terms of an �entropy�. Themost ommon among these measures are the von Neumann entropy and the Renyi22



Chapter 1. Introdutionentropy. As disussed later, the problem we onsider involves a gapless entangle-ment spetrum. The usual proof of the positivity of entanglement entropy is notappliable in ase of ontinuous eigenvalues of the redued density matrix.von Neumann entropyThe von Neumann entropy is the widely used measure of entanglement. If ρ is theredued density matrix obtained from a two partile density matrix, as desribedabove, then the von Neumann entropy is de�ned as
SvN = −Tr ρ ln ρ







= 0 for a product state (no entanglement),

6= 0 for a nonproduct state (entangled).
(1.54)It is maximum for a ompletely mixed state. The von Neumann entropy is thequantum generalization of the Shannon entropy. It maps a density matrix toa number, its von Neumann entropy. It is generally onsidered as a anonialmeasure of the entanglement for a pure bipartite state. For mixed states it is moreompliated to evaluate.Renyi entropyThe Renyi entropy was �rst proposed by Renyi [42℄ in 1960 from the perspetive ofinformation theory. The idea is to look for the most general funtion that quanti�esthe unertainty in a system. The Renyi entropy of the ombined system of A andB is de�ned as

Sn =
1

1− n
ln[Tr ρnAB]. (1.55)The von Neumann is obtained from the Renyi entropy in the limit n → 1. TheRenyi entropy of order two, alled the extension entropy [43℄, is losely related tothe inverse partiipation ratio. In the ase of n = 0, the Renyi entropy is a funtionof the number m of positive omponents of the vetor ρ, S0 = lnm. In the limit

n → ∞, we obtain a quantity analogous to the Chebyshev norm, S∞ = − ln ρmax,where ρmax is the largest value of ρ.It is found that the entanglement entropy behaves in di�erent ways for a �rstorder and a ontinuous QPT. The ritial behaviour of the entanglement entropyhas drawn muh attention now-a-days [44℄ and has been investigated for di�erent23



Chapter 1. Introdutionspin models [39, 45, 36℄ as well as in ontinuum systems [46℄.1.4 Random walk in disordered mediaIn the last hapter we view the polymer as a random walker. A Gaussian polymeran be modeled as a random walker on a lattie. Time in the random walk problemorresponds to the ontour length of the polymer. For a polymer of length N ,the mean square of the end-to-end distane R is given by 〈R2〉 ∼ N . With Rorresponding to the displaement X(t) of the walker after time t = N , this resultis expressed in the random walk analogy, as 〈X(t)2〉 = 2Dt, whih is the well-knowndi�usion law, D being the di�usion oe�ient.Further, disorder plays an important role in the ase of polymers, e.g., to modelspatially varying sti�ness, interation to the wall for adsorbed polymers et. It isthus interesting to study the problem of random walk itself, whih �nds applia-tions in many other systems whose underlying dynamis have a diret orrespon-dene. Thus, for the random walker, disorder is introdued in the mirosopitransition rates. Random walk in disordered media, whih often gives rise toanomalous di�usion, is an extensively studied topi. In this hapter, we onen-trate on ertain ommonly enountered forms of randomness in the hopping ratesand study the e�et of suh disorder on the di�usion and persistene property ofthe random walk.1.4.1 Persistene probability P (t)An important quantity for a polymer is the reunion probability or the probability ofloop formation for a single hain disussed in Se. 1.1.2. The reunion probabilityof the polymer orresponds to persistene probability P (t) in the random walkanalogy. For the 1D random walk, if the walker starts at x0, P (t) is the probabilitythat x(t) − x0 does not hange sign upto time t. It is known that, for a Gaussianstationary proess, persistene probability has the form, P (t) ∼ e−θt, where θ isalled the persistene exponent [47℄. A proess X(T ) is stationary if the two-timeorrelation funtion has the form
C(T1, T2) = 〈X(T1) X(T2)〉 = f(|T1 − T2|). 24



Chapter 1. IntrodutionFor a normal random walk in 1D, 〈x(t1)x(t2)〉 ∝ min(t1, t2), and thus de�ning
T = ln t and X(T ) = x(t)/〈x2(t)〉, we immediately see that, X(T ) is a stationaryproess in the logarithmi time T ;

〈X(T1)X(T2)〉 =
〈x(t1)x(t2)〉

√

〈x2(t1)〉〈x2(t2)〉
=

min(t1, t2)√
t1t2

= e−
1
2
|T1−T2|. (1.56)Hene, for the proess X(T ), the persistene probability deays exponentially,

P (T ) ∼ e−θT with θ = 1/2 and therefore, in real time t, persistene probability forthe original random walk proess x(t) has a power-law deay,
P (t) ∼ t−θ0 , θ0 =

1

2
. (1.57)In a large number of stohasti proesses, persistene exponent is found to bea new nontrivial exponent and is apparently unrelated to the usual dynamialexponents. This quantity probes high order temporal orrelations in dynamisand depends on the whole history of the time evolution of the system and furtherharaterize a given stohasti proess. It is di�ult to determine analytially asit depends on the full funtional form of the two-time orrelator, not only on itsasymptoti form. Thus, in this work we study the persistene of random walkersin a disordered systems in order to understand better the omplexity of anomalousdi�usion proesses in these systems.1.4.2 Di�usion in disordered mediaDi�usion in disordered media is an extensively studied topi within the generalproblem of transport in disordered media [48℄ with wide ranging physial inter-est and appliability. The lassi theories of transport valid for rystals do notapply in non-rystalline, disordered materials, and the physis of transport, andin partiular di�usion, is anomalous in these disordered systems. Some exam-ples are: the problem of transport in fratured [49, 50℄ and in porous [51℄ roks,anomalous density of states in randomly diluted magneti systems [52℄, in siliaaerogels [53℄ and in glassy ioni ondutors [54℄, anomalous relaxation phenomenain spin glasses [55℄ and in maromoleules [56℄, ondutivity of superioni ondu-25



Chapter 1. Introdutiontors suh as hollandite [57℄ and of perolation luster of Pb on thin �lms of Ge orAu [58, 59, 60℄, di�usion ontrolled fusion of exitation in porous membrane �lms,polymeri glasses and isotropi mixed rystals [61℄ et. Most of the above men-tioned systems, the density of the basi dynamial entities are so small that theproblem an be treated as a non-interating one, i.e., basi dynamial quantitiesperforming the random walk are essentially independent of eah other. Thus, solv-ing the single walker problem is su�ient in determining the transport propertiesof these system.The e�ets of disorder in these systems may be lassi�ed into three qualitativelydi�erent regimes based on the di�usion properties.1. Normal di�usion with renormalization of D: If the strength of disorder isweak (to be quanti�ed in the ontext of the spei� systems) the asymptotiform of di�usion, 〈x2〉 = 2Dt, remains unaltered, only the numerial value ofdi�usion oe�ient D hanges.2. Anomalous di�usion: Above a ertain strength of disorder, the di�usion lawitself is modi�ed, 〈x2〉 = Kβt
2β , where the wandering or spreading exponent

β 6= 1
2
is usually a funtion of the strength of the disorder as well.3. Extreme e�et of disorder: In some rare systems, disorder may lead to ex-tremely anomalous transport properties, e.g., in the Sinai model [62, 48℄,

〈x2〉 ∼ (ln t)4.In most systems, disorder distribution has a narrow spread around a �nitemean value, and these fall in to the �rst ategory. In the present work we makea detailed study of the seond ategory of systems with relatively strong disorder.We will see that in the ase of our interest, anomalous di�usion results due toe�etive long-range orrelations in disorder or a broad waiting time distribution orboth. Further, we will onsider di�usion on regular latties. Anomalous di�usionresulting from fratal properties of the underlying lattie is of some physial interestand has been studied in a number of earlier works [48, 113℄.1.4.3 Modeling disordered mediaThe motion of a single random walker in a disordered system is desribed by amaster equation for the probability distribution of the walker on a lattie. The26



Chapter 1. Introdutiontransition rates between neighbouring sites are random, and their distributionhosen de�nes the spei� model studied. In partiular, one dimensional systemshave been studied extensively [63℄-[69℄. These systems are most generally desribedby the master equations
dPn
dt

=
∑

j

[Wj,nPj −Wn,jPn], (1.58)where n(n = 0,±1,±2, ...) denotes the lattie sites, Pn(t) is the probability of�nding the walker or the amplitude of exitation at site n at time t, and thetransfer rates (or oupling onstants) Wi,j ≥ 0 are assumed to be independentrandom variables, distributed aording to a given probability density ρ(W ). Inthe most ommonly studied systems, W 's are nonzero only for nearest neighbours(i.e., Wi,j = 0 unless |i− j| = 1) and they are hosen suh that there is no loal orglobal bias on the random walker.The following lasses of distributions ρ(W ) for transition rates Wn,n+1, essen-tially over most physial systems of interest.Class (a). ρ(W ) is suh that
〈

1

W

〉

≡
∫ ∞

0

dW W−1ρ(W ) <∞. (1.59)Class (b). ρ(W ) is suh that 〈 1
W
〉 = ∞. A single parameter hoie of suh adistribution is,

ρ(W ) = (1− α) W−α, W → 0, 0 ≤ α < 1. (1.60)1.4.4 Anomalous di�usion due to broad waiting time distri-butionsIn all the models of disorder we onsider, it is known that the mean square dis-plaement 〈x2〉 ∼ t2β, where the wandering or spreading exponent β depends onthe exponent α of Eq.(1.60). Consider a random walk on a regular lattie wherea partile has to wait on an average a time τ before performing the next jump1.1The atual waiting time is Poisson distributed as p(τ ′) = τeτ
′/τ 27



Chapter 1. IntrodutionLet this mean waiting time is a random variable and hanges with eah jump to avalue whih is hosen from a distribution: w(τ). One an think of this problem asdi�usion among traps where �xed mean waiting time is not assoiated forever witha given site but hanges with eah new visit and thus the disorder is introdued inan annealed way. If the distribution of mean waiting times is broad enough thenanomalous di�usion results. E.g., for a power law distribution of mean waitingtimes,
ω(τ) ∼ τ−µ, (1.61)one obtains,

• for 1 < µ < 2, subdi�usive behaviour with 〈x2(t)〉 ∼ tµ−1,
• for µ = 2, 〈x2(t)〉 ∼ t/τ0

ln(t/τ0)
,

• for µ > 2, �nite τ and normal di�usion, 〈x2(t)〉 = 2Dt.1.5 OrganizationThe above-disussed topis are the main issues of onern in this thesis. The thesisis organized as follows.In Chapter 2, we analyze by using thermodynamis the equilibrium phase tran-sition of DNA by fore. The thermodynamis is developed at the ritial fore.Here, instead of looking at the phases, we observe the interfae between the twooexisting phases at the transition fore. The helial order is onsidered in ourstudy along with the penetration of the external fore inside the zipped phase. Intwo extreme regimes of these two ompetitive phenomena, the surfae energy hasopposite signs. The positive surfae energy being normal, we emphasize on thedisussion of the e�et of a negative surfae energy on the phase diagram. In anal-ogy to superondutors, when the interfaial energy beomes negative, one gets amixed phase of DNA and the zipped-mixed phase transition beomes ontinuous.Based on the sign of the zipped-unzipped interfaial energy we lassify DNA intotwo types: Type II has a negative interfaial energy whereas Type I is the onven-tional ase with a positive interfaial energy. This lassi�ation is not related tothe existing lassi�ation based on DNA onformation. 28



Chapter 1. IntrodutionIn the next hapter, Chapter 3, the phase transition of a DNA hairpin undera periodi fore is onsidered. A two-state model provides phenomenologial de-sriptions of systems that an exist in two di�erent forms. In fat, the two-statemodel is shown to provide a good desription of the folding-unfolding dynamis ofsmall DNA or RNA hairpins that display a strong ooperativity [70, 71℄ as wellas strutural transitions. On the basis of the results obtained by Mishra et. al.[72℄, in Chapter 3, we show that similar results an be obtained by any two-statesystem. We use an Ising ferromagnet to study the dynamial phase transitionunder a periodi fore. Both the system shows hysteresis near the ritial fore.A dynamial phase diagram, in magneti �eld vs. frequeny (of the applied �eld)plane, is proposed whih is qualitatively similar to that of DNA hairpin in forevs. frequeny plane.In Chapter 4, for the same two state Ising ferromagnet system, we then try toget bak the equilibrium magnetization urve from the nonequilibrium measure-ments. As a tool, we exploit the work theorem. We present here a generalized,dynamis independent proof of the work theorem. The work theorem is shown tobe a onsequene of the exat histogram transformation. Combining these two,the work theorem and the histogram transformation, we show that any equilibriumprobability distribution an be obtained from the prinipal eigen-value of a spe-ially onstruted matrix, whose elements are obtained from the nonequilibriummeasurements of work done along the path onneting the states having initialand �nal magneti �eld. These results indeed gives a good equilibrium magneti-zation urve, These are veri�ed by Monte Carlo simulations and appliations toBarkhausen-type noises are done.Chapter 5 and Chapter 6 look at a di�erent aspet of the DNA phase tran-sition. The equivalent quantum problem of two interating partiles, obtainedfrom the imaginary time transformation of the lassial problem of two interatingpolymers, is disussed. As the interation, we onsider both a short range squarewell (in Chapter 5) and a long range inverse square potential (in Chapter 6). Therelevant quantity to observe the signature of the quantum dissoiation is the quan-tum entanglement entropy. In the short range ase, the von Neumann entropy isfound to be negatively divergent near the unbinding transition, whih is a quan-tum ritial point. For the long range one, there is an adjustable quantity, thestrength of the 1/r2 potential, whih an be ontrolled to get either a �rst order or29



Chapter 1. Introdutiona ontinuous unbinding transition. It is found that for the seond order transitionthe entanglement entropy diverges negatively, but for the �rst order it is �nite.A saling relation is found from a data ollapse. The negative entropy, thoughounterintuitive, is atually essential for the phase transition. The onnetion tothe equivalent polymer problem shows the orrespondene between the quantumentropy and the polymer bubble entropy (disussed in Se.1.2), and explains theimportane and genuinity of the negative entropy. This study is extended to theRenyi entropy and some results are mentioned.In Chapter 7, we go bak to the lassial problem. Here we view a polymer asa stohasti path, like a Gaussian polymer maps on to a random walker, with thesame spae-time saling. In this piture, the reunion probability of the polymerbeomes the persistene probability of a random walker. We study a random walkerin a disordered lattie, where the disorder is modeled through the randomness inthe hopping rates. In our model, both site and bond disorders are onsidered. Theannealed disorder averaging and quenhed disorder averaging give di�erent resultsof various quantities, though all the models have same hopping rate distribution.The usual quantities in this ontext like mean squared displaement, two pointinremental orrelations, waiting time distributions are veri�ed with known results.Our main interest is to study the persistene behaviour in all these four ases, whihis found to have a power law behaviour with new exponent alled the persisteneexponent. We �nd that though the persistene exponents in the annealed bond,annealed site, and quenhed site disorder is same, the quenhed bond disorder aseis qualitatively di�erent. It does not show a monotoni hange with the disorderstrength. The behaviour of the persistene probability is explained using the �rstpassage time distribution and using properties of frational Brownian motion.We summarize our �ndings of the thesis in Chapter 8.

30



2TYPE II DNA: when the interfaialenergy beomes negative
DNA in its double helial form shows a resiliene against an external pulling fore.The bound state does not allow a fore g applied at an end to penetrate up to aritial fore g = gc, above whih the DNA gets unzipped [2, 3, 4℄. The transi-tion is �rst order for temperatures T < Tc where Tc is the denaturation (melting)temperature in the absene of any fore [8℄. In this hapter, we study the thermo-dynamis of the unzipping transition. The phase transition is looked from anotheraspet, by observing the surfae energy. The surfae energy is quanti�ed from afree energy funtional in the linear response regime. We propose a new lassi�a-tion of existing DNAs into two types, Type-I and Type-II, like superondutors,depending on the sign of the energy of the interfae separating the zipped and theunzipped phases.2.1 IntrodutionThe fore-indued unzipping transition of DNA is due to a ompetition between thebond orientation by fore and ordering by base pairing. The formation of a heliallyordered dsDNA from denatured strands is a symmetry breaking transition. At aoarse-grained level, the ordered state an be desribed by an order parameter ψ,with ψ = 0 for the denatured state. The external fore does not ouple diretlyto this order parameter. Consequently, at a juntion of a bound and an unzippedDNA, there is a need to de�ne two length sales: one sale ξ that gives the length31



Chapter 2. TYPE II DNA: when the interfaial energy beomes negativeover whih the DNA ordering is damaged on the bound side of the interfae,while the other sale λ gives the distane over whih the fore penetrates thebound state. The existene of the seond sale λ was pointed out by de Gennesin a model involving strething of the bakbone and the hydrogen bonds [73℄.Generally one expets interfaes separating phases to be energetially ostly (e.g.surfae tension), but here we show that if λ ≫ ξ, then the interfaial energy, orsurfae energy, between bound and unzipped DNA an beome negative. Therean then be a penetration of fore in the form of distorted regions or �defet blobs�of length λ enlosing a denatured bubble of size ξ. In analogy to superondutors,when the interfaial energy beomes negative, one gets a mixed phase of DNA andthe zipped-mixed phase transition beomes ontinuous. Based on the sign of thezipped-unzipped interfaial energy we lassify DNA into two types: Type II hasnegative interfaial energy whereas Type I is the onventional ase with positiveinterfaial energy. This lassi�ation is not related to the existing lassi�ationbased on DNA onformation.A Type II DNA has novel features whih are of onsiderable biologial andphysial impliations. To be noted that the defet blobs are di�erent from ther-mally reated bubbles. This is beause the bubbles of the latter type would onsistof random on�gurations of denatured strands generated by thermal �utuationsand may have positive interfaial energy. The distintness of the defet blobs anbe a signature for their identi�ation in biologial proesses. Let us onsider thetransription proess where the geneti ode, determined by the base sequene,is transferred to the amino aid sequene of a protein. For orret transription,the sequene must be read from the orret starting point on DNA. These start-ing non-oding regions are alled promoter regions and their identi�ation is the�rst and vital step in transription [74℄. A pulling fore or a fored separationin a homogeneous Type II DNA produes a �nite density of the defet blobs [75℄(disussed later). The non-oding sequenes or the promoter regions may at asinhomogeneities on a DNA and ould play the role of pinning enters for the defetblobs. The advantage of physial identi�ation of pinned defet blobs ould faili-tate reognition of the promoter regions for gene expression (e.g. see Ref. [76, 77℄).So far as physial properties are onerned, Type I and Type II DNA will havedi�erent phase diagram and phase transition as disussed later.Reently, both in experiment [78℄ and simulation [79℄, a ontinuous transition32



Chapter 2. TYPE II DNA: when the interfaial energy beomes negativehas been observed if the topology is preserved in a strething experiment by pullingboth the strands either at both ends or at one end of an anhored DNA. We alsonote that a detailed moleular dynamis study [80℄ of under- or over-wound DNAwithout writhe, observed the formation of loalized sequene-dependent defetswhih allow the rest of the dsDNA to be in the relaxed normal state. It is knownthat topoisomerase II may bind anywhere on the DNA but its topology hangingativity is restrited to spei� sequenes (leavage sites) indiating that geometridistortions get loalized around ertain sequenes [81℄. These are onsistent withour general preditions, though we like to add that interfaial information in anyof these ases are not available.2.1.1 OutlineThe outline of the hapter is as follows. In Se.2.2, we develop the thermodynamisof the phase transition. A qualitative disussion is done on the behaviour of theinterfae, followed by a quantitative alulation of the surfae energy at the ritialfore by onstruting the free energy funtional. The phase transition is thenexplained in view of the sign of the surfae energy. In Se.2.4, we summarize ourresult.2.2 Theory and results2.2.1 ThermodynamisThe thermodynami desription of unzipping of DNA requires three variables, ψdesribing the helial ordering (i.e., broken symmetry) and a fore-displaement
(g, x) onjugate pair, where x is the saled separation between the two strandsat the point of appliation of fore g. On the bound side x an be taken as theresponse to an internal indued fore g̃, so that,

x(g̃) = χg̃, (2.1)where χ, the strethability or the response funtion, is independent of g in thelinear response regime. Though we restrit to linear response regime here, the�nal results an be reprodued for a general fore-dependent χ. The variables are33



Chapter 2. TYPE II DNA: when the interfaial energy beomes negativehosen suh that ψ = 0 for the unzipped state, and ψ 6= 0 for the ordered state,while g̃ = 0 in the bulk of the ordered state. At this point it is to be noted thatthe order parameter ψ represents helial ordering whih is not diretly oupled tothe external pulling fore. As a result we get two independent length sales in theproblem. This makes the present treatment di�erent from other existing models.For a homogeneous state, the Gibbs free energy G(T, g) per unit length attemperature T and a pulling fore g is given by
G(T, g) = G(T, 0)−W (g), (2.2)where W (g) =

∫ g

0
x(g′) dg′ is the work for strething. The onditions of phaseoexistene at g = gc is

Gz(T, gc) = Gu(T, gc). (2.3)Here the subsripts z and u represents the zipped and the unzipped phases. An-other ondition needed is for the non-penetration of fore in the bound state for
g ≤ gc. This is given by,

Gz(T, g) = Gz(T, 0). (2.4)Substituting Eq.(2.3) and (2.4) in Eq.(2.2), we get a relation for the free energiesas,
Gz(T, g) = Gu(T, g) +W (g)−W (gc). (2.5)Eq.(2.5) agrees with the known exat results disussed in Se. 1.1.1 when appro-priate x(g) from the exat solution is used. In partiular one veri�es that

Gz −Gu =
1

2
χ(g2 − g2c ), (2.6)in the linear response regime (near melting).Compared to the strethed unzipped state, the zipped phase has to pay a ost

W (g) for fore expulsion for not following the fore-diktat, but gains energy W (gc)due to binding or ordering. The phase oexistene requires a perfet ompensationof one by the other. This ompensation may be used to obtain the binding energyof the zipped phase as,
Ez(T ) = W (gc). (2.7)34



Chapter 2. TYPE II DNA: when the interfaial energy beomes negativeThis equation may also be used to de�ne gc from the binding energy.2.2.2 Surfae energyLet us now onsider an inhomogeneous situation of a dsDNA at T < Tc by pullingat one end by a fore g = gc(T ) so that there is an interfae separating the oexist-ing zipped and unzipped phases. The interfaial energy is obtained by omparingthis mixed state free energy with that of a fully unzipped homogeneous state at
g = gc. Needless to say that an interfae an be reated spontaneously if there isa gain in energy in doing so.Sine far from the interfae, the Gibbs free energy density is the same in thetwo phases, the total free energy G an be written as

G =

∫ ∞

−∞

Gu(T, gc)dz + σ, (2.8)where σ is the �surfae tension�, and z is a ontour length measured along the DNAor the strands, the z = 0 point being hosen at the point of interfae with z < 0as the unzipped phase.
ZippedUnzipped

Unzipped

Figure 2.1: Shemati representation of two on�gurations, fully zipped (above)and a on�guration of oexisting phases separated by an interfae (below) at g = gc.The di�erene in the free energies of this two on�guration gives the interfaialenergy.A pratial way to de�ne the surfae energy is to fore an interfae by hoosing35



Chapter 2. TYPE II DNA: when the interfaial energy beomes negativeappropriate boundary onditions as shown in Fig. 2.1. Let us onsider a DNAmaintained in the zipped (z) state at z = +∞ but in the unzipped (u) state at
z = −∞. This guarantees at least one interfae. At phase oexistene, we ompareits free energy with the ase for whih the DNA is maintained in the u state at both
z = ±∞. The di�erene of the total free energy is the surfae energy. Therefore,

σ =

∫ ∞

0

dz[G(gc)−Gu(gc)]. (2.9)We start with the free energy funtional
Ftot =

∫ ∞

−∞

dz F{ψ, x}, (2.10)whose minimum gives the equilibrium free energy in a �xed distane ensemble.The funtional F{ψ, x} an be taken as
F{ψ, x} = Fu + F{ψ}+ Kψ

2

(

∂ψ

∂z

)2

+
Kx

2

(

∂x

∂z

)2

+

∫ x

0

g(x̃) dx̃. (2.11)where F{ψ} is the free energy of the homogeneous bulk zipped phase with refereneto the unzipped state free energy Fu. In the unzipped state F{ψ} = 0. Kψ and
Kx are additional �elasti� onstants for distortions in ψ and x. The elasti partof the free energy an be extended to torques. The order parameter ψ and fore g̃are not oupled in the free energy in the form taken in Eq.(2.11) and onsequently,this form is valid only in extreme limits. Further generalizations are not neededfor this hapter. The Gibbs free energy is obtained from Eq.(2.11) by using theequilibrium values of ψ and x, followed by a Legendre transformation from x to g.The equilibrium onditions, obtained by minimizing Ftot, are

δF

δψ
−Kψ

∂2ψ

∂z2
= 0, (2.12)

−Kx
∂2x

∂z2
+
x

χ
= 0, (2.13)with the ondition that

ψ = 0, x = xc = χgc at z = 0, (2.14)36



Chapter 2. TYPE II DNA: when the interfaial energy beomes negative
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Figure 2.2: Shemati diagram of variation of zipping-unzipping order parameter
ψ (ontinuous line) and applied fore g (dashed line) inside unzipped and zippedphases. ξ is the length sale of variation of ψ inside the zipped phase and λ is thesale for g. For Type I (left �gure), κ = λ/ξ ≪ 1 and for Type II (right �gure),
κ≫ 1.and

ψ = ψ0, x = 0 at z → ∞, (2.15)
ψ0 being the solution of

δF

δψ
= 0to maximize the interfaial energy. The length sales ξ and λ, giving how fast ψor g̃ grow or deay inside the zipped phase (see Fig. 2.2), ome from Eqs. (2.12)and (2.13), as

ξ−2 =
1

Kψ

(

1

ψ

∂F

∂ψ

)
∣

∣

∣

∣

ψ→0

, and λ2 = Kxχ. (2.16)The equation for λ redues to the form derived by de Gennes [73℄ if the elastionstants of his model are used for Kx and χ. The dimensionless ratio
κ = λ/ξ (2.17)is expeted to be di�erent for di�erent sequenes of DNA.By using Eqs.(2.11), (2.12) and (2.13), the surfae energy an be written in
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Chapter 2. TYPE II DNA: when the interfaial energy beomes negativeterms of the free energy as,
σ =

∫ ∞

−∞

dz[G(gc)−Gu(gc)]

=

∫ ∞

0

dz
[

Fzg̃(x)− x.gc − Fu +
χ

2
g2c

]

, (2.18)where we use the fat that
Gu(gc) = Gu(0)−

1

2
χg2c = Fu −

1

2
χg2c , (2.19)and

G(ψ, g) = F{ψmin, xmin} − xmin.gc. (2.20)Extreme limit I: κ≪ 1
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Figure 2.3: (a) Shemati diagram of the variation of the fore and the helialorder inside the zipped phase for ξ ≫ λ (left �gure), resulting in a positive surfaeenergy. (b) The �gure shows the ideal situation of ξ ≫ λ.For κ ≪ 1, the external fore penetrates only a short distane λ into thezipped region. In ontrast the order parameter rises to its asymptoti value ψ0 ina muh larger length ξ. One has to pay the energy ost for the damage in ordering38



Chapter 2. TYPE II DNA: when the interfaial energy beomes negativeover a length sale ξ. Therefore, in the extreme limit, when the variation an beapproximated as in Fig. 2.3b, one gets,
σ ∼ Ezξ =

1

2
χg2cξ (2.21)whih is positive. This an be understood from a pitorial representation of thevariation of the energy, with respet to the unzipped phase and inside the zippedphase shown in Fig. 2.3a. This is the onventional senario of fore expulsion ofvarious models on the zipping-unzipping phase transition and this senario givesthe well-known behavior of the unzipping transition.The surfae energy an be alulated using Eq.(2.18) for any κ more aurately.As we are more interested in the sign of the surfae energy, we onentrate in thesaid extreme limit, whih simpli�es the expression of surfae energy and the resultomes out easily. In the said limit, one an ignore the variation of x inside thezipped phase. So the term with (∂x/∂z)2 an be negleted. Also x ≈ 0 for z > 0.Putting these in Eq.(2.18) yields,

σ =

∫ ∞

0

dz

[

F{ψ}+ Kψ

2

(

∂ψ

∂z

)2

+
1

2
χg2c

]

, (2.22)whih under the ondition that F{ψ} ≥ −1
2
χg2c gives σ > 0.Extreme limit II: κ≫ 1When κ ≫ 1, the fore penetrates a greater distane λ into the sample, so thatthere is an obvious gain in the strething energy (i.e. redution of the �positiveenergy� for fore expulsion) over the interval of penetration, over and above thegain by ordering. From the diagram shown in Fig. 2.4a, it an be understoodqualitatively that the surfae energy beomes negative, and in the ideal ase, asshown in Fig. 2.4b, it beomes

σ = −χg
2
c

2
λ, (2.23)whih is negative. The sign of the surfae energy an be on�rmed by alulating itfrom Eq.(2.18). In this limit, we neglet the term with (∂ψ

∂z
)2 and write the surfae39



Chapter 2. TYPE II DNA: when the interfaial energy beomes negative
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Figure 2.4: (a) Shemati diagram of the variation of the fore and the helialorder inside the zipped phase for ξ ≪ λ (left �gure), resulting in a negative surfaeenergy. (b) The �gure shows the ideal situation when ξ ≪ λ.energy as,

σ =

∫ ∞

0

dz

[

Kx

2

(

∂x

∂z

)2

+
1

2χ
x2 − x.gc

]

. (2.24)Then by using the ondition that Fmin
z {ψ} = −χg2c

2
and Eq.(2.13), one an easilyderive that σ < 0 in the limit κ≫ 1. Hene, it is possible to lower the free energyof the DNA by reating the interfae.The value of κ for transition from Type I to Type II depends on the form of χwhih, in turn, depends on the DNA sequene and the seondary struture. It istherefore primarily the sequene but also the seondary struture that determinewhether a DNA would behave like Type I or II.2.3 DisussionIf we now onsider the bulk zipped state with a fore g, then fore penetration maybe possible in the form of many isolated distorted regions or blobs. For λ ≫ ξ,with the unzipped ore of size ξ osting an energy Ezξ, and the x part of the free40



Chapter 2. TYPE II DNA: when the interfaial energy beomes negativeenergy F{ψ, x} in Eq.(2.11), one �nds for a homogeneous hain that a periodistruture of the blobs [75℄, as in Fig. 2.5, is possible energetially, if g > gc/
√
κ.The initial penetration of fore is at gc1 = gc/

√
κ with periodiity d → ∞. Theunzipping transition therefore beomes ontinuous in ontrast to the �rst ordernature for Type I.

λ

ξ

dFigure 2.5: Shemati diagram of a periodi array of defet blobs. The array has aperiodiity d whih ontrols the density of blobs. Eah distorted region is of length
∼ λ with an unzipped ore of size ∼ ξ.The negative interfaial energy is found in Type II superondutor [82℄ too. Ourformulation is similar to that of Type II superondutivity in a one-dimensionalgeometry. As there is indeed a phase transition in DNA, the Landau theory isjusti�ed here. It su�es for a one dimensional ase to onsider a salar orderparameter.We may point out a few additional impliations of a negative interfaial energy.The penetration of the fore is not possible in the onventional polymer models.For any helial or twisted pairs of strings, a pulling fore produes over-winding.We expet this over-winding in DNA to be present at the interfae, distorting butnot vitiating the ordered state. The resulting distortion plays a role in determiningthe interfaial energy. The penetration of fore is via a denatured ore of size ξ,surrounded by suh a distorted region of size λ. These defet blobs ould bepinned by ertain sequenes, thereby loalizing them in spei� regions of theDNA. We speulate that the regions whih loalize the defet blobs are the non-oding promoter regions. This gives a topologial interpretation of the defet bloband it would also be appliable to torque. The existene of the mixed or Type IIphase with pinned defet blobs will a�et the melting pro�le under a fore, and thefore-distane isotherm will show steps originating from the blobs, espeially for�nite hains. Our analysis shows that the relation between ordering and unzippingis needed to get a negative interfaial energy. The helial ordering is not justbase-pairing � it involves staking and other distant neighbor interations. Any41



Chapter 2. TYPE II DNA: when the interfaial energy beomes negativemirosopi model for Type II DNA would have to take these into aount. On theexperimental front, it is time for a seond generation single moleular experimentsthat would explore the interfaes on DNA.2.4 SummaryTo summarize, in this hapter we showed that di�erent types of phenomena happenfor two regimes of the ratio κ = λ
ξ
of the independent length sales ξ and λ, of DNAorder parameter (ψ) and internal fore (g̃) respetively. For κ≪ 1, the interfaialenergy is positive, and the unzipping or melting under a fore is �rst order. Theexternal fore has no e�et inside the ordered, or, zipped phase, i.e., there is nointernal fore (g̃) inside as λ is small. This is named Type I. On the ontrary,for κ ≫ 1, the interfaial energy beomes negative and the fore penetrates thezipped phase in the form of defet blobs. The reation of interfaes are energetiallyfavored, so that interfaes are formed spontaneously. Thus defet blobs are formedinside the ordered phase. Above a fore threshold g > gc1, there will be a �nitedensity of these defet blobs. The melting under tension of unzipping is seondorder. This ase is named Type II.What next: In the next hapter, we onsider a time-dependent fore on DNAinstead of a stati one. The moleular dynamis simulation of a DNA hairpin showsthat there is a possibility of a dynamial phase transition. We obtain the similardynamial phase transition from a simpler two-phase system like Ising magnetunder the periodi fore. We infer that some basi features of these two systemsare responsible for the behaviour under time-varying fore, not the details of thedynamis.
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Chapter 2. TYPE II DNA: when the interfaial energy beomes negativeList of symbols
F Free energy funtional
χ Proportionality onstant for response to applied fore
Ez Binding energy of z phase
F Helmholtz free energy
g Applied fore on DNA
gc Critial fore for fore-indued unzipping
Gz,u(T, g) Gibbs free energy of z or u phase at temperature T under fore g
κ Ratio of length sales, λ/ξ
Kψ Elasti onstant for ψ
Kx Elasti onstant for x
λ Length sale of penetration of fore inside zipped phase
σ Surfae energy
Tc Critial temperature for DNA melting
g̃ Indued fore inside the zipped phase
T Temperature
W Work done for strething
ξ Length sale of damage in helial order
x Separation of two strands of DNA at the point of appliation of fore
ψ Helial order parameter
z Axis along the length of DNA
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3Dynamial phase transition of a drivenIsing magnet
During biologial proesses like, repliation, transription, et., DNA is opened byheliases, whih are motors that move along the DNA [74℄. Both the motion andthe opening proesses require onstant supply of energy. A few examples are DNA-B, a ring like hexameri heliase that pushes through the DNA like a wedge [83℄,PrA that goes through yles of pulling the ds part of the DNA and then movingon the ss part [84℄, viral RNA heliase NPH-II that hops ylially from the ds tothe ss part of DNA and bak [85℄. Suh yles of ation and rest, with periodiATP onsumption, indiates exertion of a periodi fore on the DNA. It drivesus to study the DNA phase transition under a periodi drive in an experimentallyrealizable situation. This dynamis is studied by using a moleular dynamis (MD)simulation. In this hapter, we show that the results for DNA atually resemblesthat obtained from a muh simpler system, namely, an Ising ferromagnet under aperiodi �eld. The reason that the two systems behave in the similar way is veryfundamental.3.1 IntrodutionThe equilibrium unzipping transition is desribed by the two thermodynami on-jugate variables, fore g and separation x of the pulled base pair (see Se. 1.1.1). Ifone thinks of a quasi-stati thermal equilibrium proess where the fore is hangedfrom zero to a maximum gm and then bak to zero, keeping other intensive quan-44



Chapter 3. Dynamial phase transition of a driven Ising magnettities �xed, then one would retrae the thermodynami isotherm, ending at theinitial state. In other words, there is no role of history in thermodynamis; this isensured by ergodiity in statistial mehanis. However the situation is di�erentunder a periodi fore. The external timesale for hange of fore may not maththe relaxation time for DNA whih then explores a smaller region of the phasespae. This reates a di�erene in the response to an inreasing or a dereasingfore. The deviation from the thermodynami path looks prominent near a phasetransition when the typial time sales of dynamis beome large. This leads tohysteresis in DNA unzipping [86℄. More reently Kapri [87℄ showed how the worktheorem an be used via a multi-histogram method to extrat the equilibriumisotherm from hysteresis urvesThe study of hysteresis is an old topi mainly in the ontext of magneti andstrutural systems [88, 89℄ beause of their pratial importane, but all thesestudies involve the time-averaged loop. In the ase of DNA, Mishra et al showedthat there are situations, depending on the fore amplitude and the frequeny,where sample to sample variations are too large to ignore. With the advent ofsingle-moleule experiments on short DNA hains (oligomers), it might be possibleto probe the time-resolved loops, not just averages. Motivated by the biologialrelevane and the experimental feasibility, the behavior of DNA under a periodifore, alled a periodially driven DNA, was studied. The results show that withouthanging the physiologial onditions (e.g. the temperature or pH of the solvent),a DNA hain may be brought from the unzipped state to the zipped state and vieverse by varying the frequeny (ν) alone.A well-studied example of a similar dynami symmetry breaking transition isin magnets [89℄. As a two phase system, we make use of the magneti Ising modelto orroborate the behavior of DNA. This study is prompted by the often-useddesription of the unzipping transition by a two state Landau type free energyfuntional [90, 91, 92℄ similar to the Ising model. We establish that the observedfeatures and the phase diagram in both the ases are robust and generi, eventhough they are di�erent models with di�erent types of dynamis.
45



Chapter 3. Dynamial phase transition of a driven Ising magnet3.1.1 OutlineThe hapter is organized as follows. In Se. 3.2 we reapitulate the results of adriven DNA hairpin. In Se. 3.3 we introdue our magneti model and disussthe numerial method to get the desired quantities. The results are analyzed interms of time resolved loops in Se. 3.4. It ontains the explanation on why thestandard quantity fails and one needs to think in terms of a more �ner quantity.Finally, in Se. 3.5 we summarize our main ontent of this hapter.3.2 Driven DNA and resultsA DNA hairpin onsists of a stem of pair of omplementary bases and a loopof non-omplementary bases (see Fig. 3.1). It is hosen not only beause of itsourrene in vivo and its use in in-vitro experiments but also beause of the extraentropi e�et oming from the loop. The non-paired bases of the loop is a soureof entropy whih in turn ontrols the dynamis of hysteresis. Langevin dynamis(LD) simulations of a DNA hairpin were performed in Ref [86℄ to simulate thehysteresis behaviour of DNA. The separation x of the terminal base pairs pulledby a periodi fore g(t) of time period τ(= 1/ν) was monitored. The fore isapplied at one end of the hairpin keeping the other end �xed. The simulation isperformed in redued unit as disussed in [72℄.
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xFigure 3.1: A DNA hairpin of total length P = 32 in (a) a zipped (Z) and (b) anunzipped (U) state. The stem (solid lines) of length p = 10 onsists of omplemen-tary nuleotides with native interation (dotted lines) for base pairing, whereasthe loop (dashed line) is made up of non-omplementary nuleotides. 46



Chapter 3. Dynamial phase transition of a driven Ising magnetThe on�gurational energy [86℄ of the DNA hairpin is written as sum of har-moni terms for the bonds and the Lennard-Jones potential between omplemen-tary nuleotides [86℄. The e�et of a periodi fore is taken into aount by addingan extra energy −g(t).x(t) to the total energy of the system. With this energy,the zero fore melting temperature in redued units is T = 0.21, while the ritialfore at T = 0.1 is gc ∼ 0.20 [93℄. During the simulation, g is hanged from 0 tothe hosen maximum, gm, and then bak to 0. This one period is to be referredto as a yle and gm as the amplitude. By hanging gm or ν, it was found in Ref.[72℄ that it is possible to indue a dynamial transition between a state of timeaveraged zipped (Z) or unzipped (U) to a dynamial state (D) osillating betweenZ and U. The operational de�nition adopted in Ref. [72℄ is the following. If 〈x〉 isless than 5, the system is in the zipped state and larger than 5 it is in the unzippedstate.In Fig. 3.2, the plots of the average value of x(g) over C (= 1000) yles vs g,for di�erent values of gm and ν are shown. We point out the salient features ofthese loops.1. One notes a large variation in the size and shape of the loops whih remainalmost the same (exept (23)) for di�erent samples or starting ondition.2. Like other hysteresis loops, DNA hysteresis also shows the phase lag be-tween the fore and the extension, e.g., x(g) inreases even when the appliedfore dereases from gm (Fig. 3.2 (32 & 33)). If the system ould approahequilibrium, the lag disappears, as one sees in Fig. 3.2(21 & 31).3. At a high frequeny, the DNA remains in Z or in U depending on whether
gm < 2gc or not, (Fig. 3.2(13)&(43)), irrespetive of the initial onformation.For a relatively smaller ν, a di�erent sequene (Fig. 3.2 (11,21 & 31)) isobserved. The DNA starts with x = 0 at the start of the yle, i.e., in the Zphase and omes bak to the Z phase but via the U-phase with x = 30.4. In the ase of intermediate fores there is a signi�ant hange in the x-valuesat g = 0 and g = gm (Fig. 3.2 (21, 22 & 23) ). Most striking here is the widesample to sample �utuations in the loop whih ould not be redued.
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Chapter 3. Dynamial phase transition of a driven Ising magnet
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Figure 3.2: DNA hysteresis for di�erent gm and ν as indiated. Eah plot ontainsthe loops for 10 di�erent initial onformations. These are at T = 0.10, for whih
gc ∼ 0.20 (see Ref. [72℄).The failure of the average response to provide a desription of the steady statedynami behavior prompts us to analyze the distribution of paths over the di�erentyles in terms of a new quantity whih an probe the states over one yle. Thisis elaborated in the following setions.
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Chapter 3. Dynamial phase transition of a driven Ising magnet3.3 Magneti model and methodAs mentioned already, an Ising system is a two phase system (up magnet anddown magnet) undergoing a �eld-indued �rst order transition below the ritialtemperature. We study the dynami response under an asymmetri magneti�eld. Our aim is to look at the time-resolved response to ompare with the DNA-hysteresis behaviour.3.3.1 ModelLet us onsider a two-dimensional Ising spin system ({si = ±1}) with nearestneighbor interation and under a magneti �eld h,
H = −J

∑

〈i,j〉

sisj − h
∑

i

si, (J > 0), (3.1)with i labeling the sites of an 8×8 square lattie with periodi boundary onditions.The in�nite lattie ritial temperature is Tc ≈ 2.269J/kB in zero �eld. Themagnetization is de�ned as the thermal average
m = N−1

∑

i

〈si〉, (3.2)of N(= 64) spins. For the above Hamiltonian, we hoose J = 1 and kBT = 2 with
kB = 1, so that T < Tc. Below the ritial temperature Tc, the magnetization,
m =

∑

i si takes the sign of the applied �eld, and the magnitude depends on thestrength of the �eld due to �nite size e�et. There is a �rst order phase transitionat h = 0 with a jump in the magnetization. The hysteresis is the signature of thatphase transition away from equilibrium. The hysteresis loop is the urve in the
m-h plane for a omplete yle of variation of the magneti �eld from hl to hm andbak. The area of the hysteresis loop depends on how fast or slow the magneti�eld is varied.3.3.2 ProedureThe Monte Carlo proedure used is as follows. We hoose a spin, alulate thehange in energy∆E of the system if the spin gets �ipped. Whether this spin would49



Chapter 3. Dynamial phase transition of a driven Ising magnetbe �ipped or not is determined by using the standard Metropolis algorithm, whihgives the probability of aeptane of an attempted �ip by Paccept = min(1, e−β∆E).In this way, we sequentially onsider all the N spins, one at a time, to attempt a�ip. The time taken to attempt N spin �ips onstitutes one MC sweep.
h

h

hl

u

N

timet

h

Figure 3.3: One yle of magneti �eld with time.Suppose the system is subjeted to a periodi magneti �eld with the �eld atthe jth step as
hj = hl −

j−N
∑

i=−N

n sign(i) = hl +∆h(N − |j −N |) , (j = 0, ...2N ), (3.3)where hl (< 0) is the starting value or the lowest value of magneti �eld over a yle,
N is the number of steps to reah upper value or the highest value of the magneti�eld over a yle, after whih �eld is dereased, ∆h is the hange in magneti �eldin eah step, ∆h = (hm − hl)/N . As per our notation, h0 = h2N = hl, hN = hm.Initially system is equilibrated at hl = −0.6 and kBT = 2. Then the periodimagneti �eld is swithed on. At eah step, (i) the magneti �eld is inreased by
∆h = (hm − hl)/N and (ii) the system is relaxed towards equilibrium by n = 5MC sweeps, whih is muh less than the equilibration time. The magnetization mis alulated at eah of suh 2N steps. The average of magnetization alulatedover a yle then gives the quantity Q. The above proess is repeated for 104yles. Below Tc, the steady state depends on both the frequeny, ν = 1/(2N∆t),50



Chapter 3. Dynamial phase transition of a driven Ising magnetwhere ∆t is the number of Monte Carlo sweeps at that temperature and magneti�eld to relax the system for a while, and the amplitude hl and hm of the periodi�eld. Beause of the up-down symmetry of the system, we see di�erent behaviourof the state for two ases: one where the �eld is symmetrially varied aroundzero with hm = −hl and the other where it is asymmetri. In order to omparewith the fore-frequeny (g-ν) diagram of the DNA hairpin we take the ase of anasymmetri variation of the magneti �eld with time. The lower amplitude (hl)is kept �xed at a negative value while the upper one (hm) is varied. We simulatethe system for various frequenies (by ontrolling N ) and di�erent values of hm,keeping hl �xed.3.4 Numerial resultsLike the ase of DNA, the hysteresis of the Ising ferromagnet also shows largesample to sample �utuations and di�erent kinds of shapes. Therefore, we look ata �ner level. We de�ne a quantity, the average magnetization over a yle, as
Q =

1

τ

∫ τ

0

m(t) dt. (3.4)It is the dynamial order parameter studied in the ontext of magneti systems [89℄.The time sequene of Q seems not to indiate any regular pattern (see Fig. 3.4),and, therefore, we assume that the allowed states our randomly. The time se-quene an then be interpreted in terms of a probability of getting a partiularvalue of Q. We �nd that the steady state is desribed by a stationary probabilitydistribution (P (Q)) whih are also shown in Fig. 3.5.At equilibrium, for a symmetri yle, i.e., with hl = −hm, we expet Q = 0.But if hm is varied from a value a little higher than hl to a value whih is well above
−hl then away from equilibrium Q should vary from a value lose to equilibriumvalue of magnetization at hl to that of −hl, whih in our ase will be any valuefrom −82 to 82. An asymmetri �eld in the Ising model enables us to distinguishthe two di�erently ordered phases, the ounterparts of the zipped and the unzippedstates and, in addition, a hystereti state, to be alled the dynami state D. Foreasy omparison, the negatively magnetized state is named Z while the positivelymagnetized state is U. The operational de�nition adopted is 51
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Figure 3.5: The distribution of Q is plotted for three di�erent frequenies andsame set of hm. For a frequeny, the distribution P (Q) shifts as hm inreases. Itgoes from Z-state to U-state through D-state. The orresponding states/phasesin Q are identi�ed observing the distribution. (a) frequeny ν = 1/70. Phases:
Z → Z+D → Z+D+U → D+U → U . (b) frequeny ν = 1/250. Phases:Z → Z+
D → D → D+U → U () frequeny ν = 1/1000. Phases: Z → Z+D → D → U .beyond whih a partiular peak appears or disappears and resembles a �rst-orderline.We start at the equilibrium of hl.

• Now set an hm whih is negative or zero. The loop onneting hl and hmwill naturally give QZ. The probability distribution P (Q) will show a peaknear equilibrium magnetization value of hl, for any frequeny, as shown bythe blak dotted urve in Fig. 3.5.
• As hm is inreased to positive values, a seond peak in QD appears. Thevalue of hU where the seond peak appears has a very weak dependeneon the frequeny and has a small positive slope in the h-ν phase diagram(Fig. 3.6).
• As hm is inreased further the peak height of QZ dereases and that of QDinreases with a shift in the peak position. This shift seems to be independentof frequeny.
• There is a range of magneti �eld for whih two peaks, at QZ and QD, oexist.53
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• At some hm, the peak at QZ vanishes. This threshold hm depends on thefrequeny and the dependene is shown in the h-ν diagram by the blakdashed urve with irles. Now, at this hm two things an happen. EitherZ phase vanishes leaving alone the D phase, or, by that time the U phase(thepeak at QU in Fig. 3.5) appears and the system shows the oexistene ofthree phases, Z+D+U. In the latter ase, as Z vanishes, the system remains ina mixed state of D+U. When the peak in QU or U phase will reappear againdepends on the frequeny. This dependene is shown by red dash-dottedurve with squares.
• We see there is an intersetion of the two urves, boundaries of Z and U inthe phase diagram of Fig. 3.6. This is a speial point exatly at hm = −hl54



Chapter 3. Dynamial phase transition of a driven Ising magnetwhere Z disappears and U appears at a same time. If one goes along thehorizontal line through hm = hl in phase diagram, i.e. keeping hm �xed at
−hl but varying the frequeny, then at very low frequenies one would seeonly the D phase for some range, and then as the frequeny inreases twoother peaks at Z and U will appear. If the frequeny is inreased further,the peak at QD vanishes leaving the oexisting phase of Z+U. The span ofthe three phase oexistene region depends on the value of hl. The Z+D+Uregion may even beome very small.

• Going bak to the previous ases, after having the two possibilities thatthe system is either in D only or in Z+D+U, if the upper magneti �eldis inreased then one gets the phase D+U. One this phase appears, witha shifting QD-peak, any inrease of hm beyond the blue starred line in thephase diagram of Fig. 3.6 vanishes the intermediate peak; only one peak at
U survives.

• The vanishing or deaying of the intermediate peak has di�erent natures atdi�erent frequenies.� The intermediate peak �rst grows from zero when the green line isrossed. With inreasing hm, the peak inreases �rst and then dereases.While the intermediate peak is dereasing, another peak at QU appears.� But for low frequenies, the peak height keeps inreasing upto a veryhigh �eld, even though the peak position beomes very lose to theboundary of QD and QU. At very high magneti �eld the peak at QUappears. This indiates that the phase D and U physially give twodi�erent types of loops in the m-h plane.The U-peak shows the paths whih remain in the positively magnetizedstates. This is similar to the Z-peak with the whole yle in negatively mag-netized states. In ontrast, the D-peak appears where there are onnetingpaths between positively and negatively magnetized states.See Fig. 3.7 to ompare Fig. 3.6 with the dynamial phase diagram of a drivenDNA. One an easily �nd the orrespondene between the states of the two above-mentioned system. 55



Chapter 3. Dynamial phase transition of a driven Ising magnet

1e-05 1e-04 1e-03 ν

1.0

g m

lower bound of U
lower bound of D
upper bound of D
upper bound of Z

Z
Z+D

Z+D+U

U

U+D
D

Z+U

Figure 3.7: Dynamial phase diagram of a periodially driven DNA hairpin in the
gm-ν plane. The lines are boundaries for various phases U, D and Z. The pointsare from the simulation and the lines are guide to eye (see Ref. [72℄).3.5 SummaryIn this hapter, we studied a driven magneti system. The motivation omes fromthe realizable phenomenon of a DNA during transription and repliation. Boththe systems, DNA and the Ising ferromagnet, are two state systems, undergoinga �rst order phase transition. This fundamental similarity produes qualitativelysimilar behaviour under a periodi drive, though the detailed dynamis are di�er-ent. The results are obtained using Monte Carlo simulation of the Ising system.We emphasize here that the one should rather look at the time-resolved loops toget an exat piture of the states. A dynamial phase diagram is found in mag-neti �eld (h) vs. frequeny (ν) plane. The phase diagram shows the possibility ofvarious mixed states depending on the frequeny and the amplitude of the periodi�eld. The important outome is that there is a possibility of going from one phaseto the other just by varying frequeny alone, keeping the amplitude of the externaldrive �xed. The same observations apply for the driven DNA.What next: In order to get an equilibrium urve from a hysteresis loop, wedevelop a tehnique by using the work theorem and the histogram method. Theresults are veri�ed again by using Monte Carlo simulation of Ising model, and anbe applied to the hysteresis of driven DNA. 56



Chapter 3. Dynamial phase transition of a driven Ising magnetList of symbols
β Inverse temperature
C No. of yles
∆h Field inrement
∆t MC yle
g Fore in DNA hairpin
H Hamiltonian
h Magneti �eld
hm Upper amp. of mag.
hl Lower amp. of mag.
J Nearest Neighbour interation strength
L Size of spin array
m Magnetization
N No. of steps
ν Frequeny
P (Q) Prob. of Q
Q Average response over one yle
QD Q-value for D (Dynami) state
QU Q-value for U (or +ve magnetization) state
QZ Q-value for Z (or -ve magnetization) state
s Ising spin
Tc Critial temperature for DNA melting
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4Equilibrium probability distribution fromnonequilibrium path integral
Near a phase transitions, a system under onsideration has a very large relaxationtime. Under an periodi drive, one observes hysteresis when the transition is�rst order. In suh a situating, it is almost impossible to get the equilibriumor the thermodynami urve. For example, if one wants to get, numerially orexperimentally, the ritial fore for the unzipping phase transition of a DNA underfore, one ends up with a hysteresis loop in the fore-distane plane, from whihit is di�ult to �nd out the ritial fore aurately. We propose a di�erent bute�ient method to get the equilibrium urve from nonequilibrium measurements.In doing that, we exploit the work theorem and the histogram tehnique. In thishapter, we disuss this fundamental onnetion between equilibrium propertiesand nonequilibrium work done.4.1 IntrodutionA system in thermodynami equilibrium has no memory of its past. Consequentlythere is no leading role for time in the ensemble based statistial mehanis exeptthe subservient one to maintain equilibrium among the internal degrees of freedomand with external soures. This wisdom gets exploited in the dynamis basedalgorithms like Monte Carlo, moleular dynamis, stohasti quantization, to namea few, to attain equilibrium from any arbitrary state albeit in in�nite time. Evena thermodynami proess involving hanges in parameters is an in�nite sequene58



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralof equilibrium states, and is therefore in�nitely slow. A �nite duration proess,not destined to equilibrate at every instant of time, maintains a memory of theinitial onditions or a short time orrelation of states. The biased sampling of thephase spae keeps these proesses outside the realm of statistial mehanis andthermodynamis. In this equilibrium-nonequilibrium dihotomy, a work theorem[19, 20, 22, 21, 25℄ attempts to bridge the gap by providing a sheme for gettingthe thermodynami free energy di�erene from a properly weighted nonequilibriumpath integral [22, 21℄.We show in this hapter that purely nonequilibrium measurements of workgives an operator S, de�ned on the phase or on�guration spae, whose normal-ized prinipal right eigenvetor is the equilibrium probability distribution. Ourresult is valid for any number of parameters inluding temperature and intera-tion. With this extension we an get the equilibrium distribution by onstrutinga matrix S onneting any two allowed states of the system without any refereneto equilibrium anywhere, thereby ompletely blurring the boundary between equi-librium and nonequilibrium. This �nds diret appliation in out-of-equilibriumphenomena like hysteresis.Barkhausen noise is an example of nonequilibrium response of a ferromagnetas the magneti �eld is hanged at a given rate [94, 95℄. By measuring the voltageindued in a seondary oil as the urrent in the primary oil wound around aferromagnet is hanged, one gets the time variation of the magnetization. The noisysignal one gets is not unique but stohasti in nature, re�eting the �utuatingmirosopi response to the external �eld. Suh signals have been analyzed in thepast to extrat information like avalanhe statistis, material harateristis et.Our results �nd a di�erent use of the Barkhausen noise to onstrut the S matrix.Similar onstrutions for other ases like protein or DNA dynamis in vivo, pullingof polymers in single-moleule experiments, et, all for new lass of experimentsto monitor the noise signals during these events.4.1.1 OutlineThis hapter is organized as follows: In Se. 4.2, we reapitulate the work theorem,introdue the paths and disuss the onnetion between the work theorem and thehistogram transformation of equilibrium statistial mehanis. In Se. 4.3 we give59



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegrala simple and general, dynamis independent proof of the relation between theequilibrium probability distribution and the work done in nonequilibrium paths.This relation in some form is already known [21, 22℄ but our derivation allows usin generalizing the result to other ases involving temperature, interations, et.Se. 4.4 deals with the main result of this hapter. There we prove the eigenvalueequation for S. A few examples are also given there. How to get the operator
S diretly from experimental measurements of Barkhausen noise is also disussedhere. Numerial veri�ations of some of the results are presented in Se. 4.5 bytaking the 2D Ising model as an example. We summarize in Se. 4.6.4.2 Work theorem and path integral4.2.1 Work theoremConsider a lassial system desribed by a Hamiltonian H(Λ, x) where Λ is anexternal �eld that ouples to its onjugate, a mirosopially de�ned quantity, x.The thermodynami state is spei�ed by temperature T and �eld Λ. Let us startwith the system at Λ = 0 in thermal equilibrium at temperature T . External�eld Λ is hanged in some given way from 0 to a �nal value λ in a �nite time
τ or in a �nite number of steps n, letting the system evolve in ontat with theheat reservoir. No attempt is made to ensure equilibrium during the proess. Thevariation of x along the nonequilibrium path (x(t) vs t) and the instantaneous �nal(boundary of the path) value of x, xb, when the �eld reahes λ, are noted. Thework done along a nonequilibrium path by the external soure (as in Ref. [20℄) is

W =

∫ τ

0

∂H

∂Λ

dΛ

dt
dt, (4.1)in time τ , and it varies from path to path. The di�erene between two de�nitionsof work in the ontext of work theorem, one used in Ref. [19℄ and the other in Ref.[20℄, is disussed in Ref. [37℄. For the sake of notational simpliity we hoose,

H = H0 +H1(Λ, x) = H0 − Λ x, (4.2)
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Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralwhere H0 is the energy for Λ = 0. There is not muh loss of generality in hoosingthe form of Eq.(4.2) beause Λ and x refer to any pair of onjugate variables so that
x itself need not be a linear funtion of the internal oordinates. As an example,in an interating spin problem in a magneti �eld h (≡ Λ), H = H0 − h

∑

k skwhere sk is the spin variable at a site denoted by k, with x =
∑

k sk. Often Λ anbe taken as the swithing parameter to turn on a perturbation or interation in aHamiltonian H = H0 −H ′ with HΛ = H0 − ΛH ′.The work theorem [19, 20℄ provides the equilibrium free energy di�erene ∆Fbetween the two states with Λ = 0 and Λ = λ, both at inverse temperature
β = 1/kBT (kB is the Boltzmann onstant), from the nonequilibrium work doneas

∆F = − 1

β
ln〈e−βW 〉, (4.3)where 〈...〉 denotes the average over all possible paths.4.2.2 Paths: equilibrium and nonequilibriumWe are using here a desription of a state by the intensive parameters whih atu-ally haraterize the surroundings. In equilibrium any system is expeted to havethe values of the intensive parameters same as that of the environment. A hangein any of the parameters, say Λ, from λ0 to λ, would require heat and/or energytransfer. The work done on or by the system is determined by the hange in thefree energies, independent of the path of variation of the intensive parameters.This is expressed as

∆F =Weq = −
∫ λ

λ0

xeq(Λ) dΛ, (4.4)where ∆F = F (β, λ) − F (β, λ0). Here xeq(Λ) =
∫

xPΛ(x)dx is the equilibriumaverage at the instantaneous values of the intensive parameters and PΛ(x) is theorresponding equilibrium probability distribution of x. This follows from theidenti�ation of the equilibrium value of x as xeq = −∂F/∂Λ, in ontrast to theonjugate ensemble de�nition Λ = ∂F/∂x where F(β, x) is the �xed-x ensemblefree energy.For onveniene, let us disretize the integrals. For example, for Λ ∈ [λ0, λ], wehave a sequene (Λ0,Λ1, ...Λn = λ) and the ontinuum is reovered by taking theusual limit of n → ∞ with max{∆Λi = Λi+1 − Λi} → 0. The work done an be61



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralrewritten as
Weq = −

n−1
∑

i=0

∆Λi

{

∑

x

PΛi
(x)x

}

. (4.5)By interhanging the sums over x and Λ, we de�ne (i) a sequene {xi|i = 0, ...n} asinstantaneous values, and (ii) a sequene-dependent work done as W =
∑

i xi∆Λi,to reinterpret Eq. (4.5) as an average over these xi's. Therefore,
Weq = −

∑

{xi}

P{xi}
∑

i

xi∆Λi, (4.6)where P{xi} =
∏

i PΛi
(xi) is the joint probability of getting the partiular {xi}sequene, beause, for a thermodynami proess, there is no memory. Going overto the ontinuum limit, the thermodynami proess of varying Λ is now seen asequivalent to hoosing a path in the on�guration spae and re-weight the pathsaording to the probability of its ourrene in the Λ-ensemble. The relationbetween the free energy hange and work, Eq. (4.4), now gets a path integralmeaning where the proess takes the system over the mirostates and one averagesthe work over individual paths.This thermodynami onnetion is valid only in equilibrium. The work theo-rem generalizes this idea by replaing P{xi} by the nonequilibrium probability ofgetting a path and asserting

e−β∆F ≡ Zλ
Z0

=

∫

DX e−βW , (4.7)where ∫ DX stands for the normalized sum over paths, i.e., sum over intermediate
x's with appropriate probabilities.4.2.3 Histogram transformation and in�nitely fast proessThere is a fundamental transformation rule obeyed by the partition funtion, oftenused in numerial simulations as the histogram method [32℄. This transformationonnets the equilibrium probability distributions at two parameter values, Λ = λ0and Λ = λ as

Pλ(x) =
Pλ0(x) e

β(λ−λ0)x

∑

x Pλ0(x) e
β(λ−λ0)x

, (4.8)62



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralwhere the sum in the denominator is over the allowed values of x. The denominatorof the right hand side of Eq.4.8 is Zλ/Zλ0 where Zλ is the partition funtion atinverse temperature β,
ZΛ =

∑

states

e−βH0 eβΛx. (4.9)From Eq.(4.1), (λ−λ0)x an be taken as the work done in an instantaneous proessthat hanges Λ from λ0 to λ without hanging x. The probability of getting x forequilibrium at λ0 is Pλ0(x) and therefore the sum in the denominator of Eq.(4.8)is the path integral of Eq.(4.7), beause x does not hange. This gives the worktheorem.4.2.4 Work theorem and histogram methodAbove the equivalene of the work theorem and a one step histogram transfor-mation where the magneti �eld has been hanged from 0 to h in one step, hasbeen shown. Similarly one an write the n-step histogram transformation whihis representative of the atual proess of doing the MC simulation to �nd out thefree energy di�erene of initial and �nal states. Suppose initially we have zeromagneti �eld initially and at the �nal state magneti �eld is h.One step proess: If the �nal state is reahed from the initial state in one step,then hange in magneti �eld is, ∆h = h. Hene the partition funtion at themagneti �eld h is
Zβ,h = Zβ,0

∑

E0,M0

P (E0,M0)e
β∆hM0 , (4.10)where E0 and M0 are the initial state energy and magnetization.Two step proess: The hange in magneti �eld while going from one state to thenext is ∆h = h/2 and hene Zβ,h is

Zβ,h = Zβ,h/2
∑

E1,M1

P1(E1,M1)e
β∆hM1 (4.11)

= Zβ,0
∑

E0,M0

P0(E0,M0)e
β∆hM0

∑

E1,M1

P1(E1,M1)e
β∆hM1 . (4.12)
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Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralSimilarly for an n-step proess ∆h = h/n and Zβ,h is
Zβ,h = Zβ,0

∑

E0,M0

P0(E0,M0)e
β∆hM0 ×

∑

E1,M1

P1(E1,M1)e
β∆hM1...

∑

En,Mn

Pn−1(En−1,Mn−1)e
β∆hMn−1 (4.13)

= Zβ,0

n−1
∏

i=0

∑

Ei,Mi

Pi(Ei,Mi)e
β∆hMi . (4.14)For the two extreme ases, the in�nitely fast and the in�nitely slow proesses, itfollows immediately that the histogram transformation gives bak the work the-orem. For a proess whih is in�nitely fast, or with a strong memory, one antake the probability distribution of the intermediate i-th state, Pi(Ei,Mi), as deltafuntion, δE0,Ei

δM0,Mi
. This gives

Zβ,h =
∑

E0,M0

P0(E0,M0)e
βn∆hM0 =

∑

E0,M0

P0(E0,M0)e
βhM0 , (4.15)whih is the same as that of the 1-step proess. For an in�nitely slow proess, ateah step Pi(Ei,Mi) is the equilibrium distribution P eq

i (Ei,Mi) at the orrespond-ing magneti �eld, hi = i∆h.This onnetion of the work theorem with the histogram method an be usedto make general onstraints/omments on the probability distributions P (E,M)whih will be appliable to any problem, as the histogram method is independentof any spei� problem.We see that in the histogram transformation there is no need to keep trak ofenergy E in the probability distribution, P (M) is su�ient. Again the distributionof magnetization depends on the magnetization of the previous state if it is not anequilibrium state. So we replae P (Ei,Mi) by P (Mi|Mi−1). Hene
Zβ,h = Zβ,0

n−1
∏

i=0

∑

Mi

Pi(Mi|Mi−1)e
β∆hMi . (4.16)Aording to this method, one the initial and �nal values of the swithing pa-rameter are deided, one gets the same free energy di�erene independent of thenumber of steps in between the initial and the �nal states. In other words, the re-64



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralsult is the same for all n-step proesses with any positive integer n. So, omparinga one step proess and a two step proess we an write,
∑

M1

P (M1|M0)e
βhM1 = eβhM0 . (4.17)4.3 Equilibrium probability distributionWe in this setion use the disrete version of the proess to re-derive the equilib-rium probability distribution from the work theorem in a general and dynamisindependent way. For the kind of nonequilibrium proesses mentioned in Se.4.2.2 the equilibrium probability distribution of x at a parameter value λ an beobtained from a weighted path integral [22, 21℄

Pλ(x) =

∫

DX e−βW δ(xb − x)
∫

DX e−βW
, (4.18)where xb is the instantaneous boundary value at the end of the path, and thedenominator is same as r.h.s. of Eq.(4.7). This is in the form of a path integralwhere the paths are weighted by a Boltzmann-like fator exp(−βW ). The samewas established previously in spei� ases like, the Master equation approah [20℄,the Feynman-Ka formula [21℄ and Monte Carlo dynamis [22℄.The equilibrium average xeq is de�ned as

xeq =
1

β

∂

∂Λ
lnZΛ = lim

δ→0

(

β
ZΛ

Z0

)−1
1

δ

(

ZΛ

Z0

− ZΛ−δ

Z0

)

, (4.19)where work theorem is to be used for the partition funtions.The system starts in equilibrium at temperature T and Λ = 0, and then Λ isbuilt up at onstant T as a sequene of in�nitely fast jump of ∆λ = λ/n, eahjump followed by a �nite time evolution in ontat with the heat bath. Considernow two n-step proesses, one proess with �nal �eld λ and another one with λ−δ(δ → 0 at the end). In fat, the seond proess is just a opy (replia) of the �rstone in every respet exept at the last stage (Fig. 4.1). For the last jump, thehange in Λ for replia 1 is ∆λ while for replia 2 it is ∆λ− δ.A path is spei�ed or de�ned by the sequene {xi | i = 0, ...n − 1}. The65



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegral

x

i=1

i=0,

,

,

δ

Λ=0

Λ=∆λ

Λ=λ−∆λi=n−1

Λ

replica 1 replica 2Figure 4.1: Shemati representation of two replias of same paths, eah startingfrom Λ = 0 and ending at Λ = λ in replia 1 and at Λ = λ − δ in replia 2.Label i denotes the step number as Λ is hanged in steps of λ/n. Lines of di�erentstyles (dashed, dotted et) represent di�erent realizations of paths starting fromdi�erent values of x. The vertial portion of a path is an instantaneous proess(no hange in x) and the horizontal part is under interation with the surrounding(x evolves at a onstant Λ). Identially shaded lines in the two replias have thesame evolution.
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Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralhanges in xi at any step is beause of internal dynamis or exhange of heat withthe external reservoirs. We do not need to let the system evolve one the �eldreahes the �nal desired value. Therefore, the sequene {xi | i = 0...n− 1} is thesame for both the replias. The work done W1,W2 along an n-step nonequilibriumpath for replias 1, 2 are related via
W2 =W1 + δ xn−1, (4.20)withW1 is of the form given above Eq. (4.6). The work theorem of Eq. (4.7) whenused in Eq.(4.19) yields

xeq = lim
δ→0

1

β
∑

paths e
β
∑n−1

i=0 ∆Λixi

∑

paths e
β
∑n−1

i=0 ∆Λixi
(

1− e−βδxn−1
)

δ

=

∫

DX xb e
−βW

∫

DX e−βW
, (xb ≡ xn−1). (4.21)This shows that the equilibrium average an be expressed in terms of the boundaryvalue with proper weightage of the paths. The above proof an be generalized toany moments of x.Now if P(x) is the distribution of xb, that gives the average in Eq.(4.21)

xeq = 〈x〉 =
∫

xP(x) dx, (4.22)then P(x) an be written as
P(x) =

∫

DX e−βW δ(xb − x)
∫

DX e−βW
, (4.23)as quoted in Eq.(4.18). We now invoke the moment theorem [96℄ whih, in ourase, states that for a probability distribution without su�iently long tails, themoments uniquely speify the distribution. Sine these onditions are satis�edby the equilibrium probability distributions for any �nite system, the momenttheorem applies. Sine the moments from the nonequilibrium path integral are theequilibrium moments, P(x) is the equilibrium distribution: P(x) = Pλ(x). Thisompletes the proof. 67



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegral4.3.1 GeneralizationIn general, for a Hamiltonian of the form H = H({Λα}, {Xα}), the equilibriumdistribution, P (E, x1, x2, ...), at some given parameter values, {λα} and temper-ature β−1, an be obtained in the same way provided the paths start from anequilibrium state for H = H0, where H0 gives the energy for all Λα = 0 and Wis the total work done on the system along a nonequilibrium path, by eah of theexternally ontrolled parameters. E here orresponds to the energy from H0 only.Our starting H0 may be a free Hamiltonian for a mehanial system and an aswell be zero for interating spin-like systems.Consider the Hamiltonian H = γH0 for a spin-like system (i.e. without anykineti energy). In this ase one of the {Λα} ould be the strength of interation.Let's start with γ = 0, i.e. the starting point is any random on�guration of thefree system or a non-interating system, and then hange γ in some given way from
γ = 0 to γ = 1. We thus generate the equilibrium distribution of H0 at a partiular
β, by doing a similar nonequilibrium path averaging. Note that everywhere we needthe produt βW . So, we an disretize temperature instead of Λ and the proessan be reinterpreted as ooling down to a �nite temperature from an initial in�nitetemperature. In the usual formulation of work theorem, Λ refers to mehanialparameters suh as the pulling fore in AFM, whih are under diret ontrol ofthe experimentalists. In ontrast, other intensive parameters suh as temperaturemay not be ontrolled with this level of preision in experiments. But this �ndsvarious appliations in numerial experiments. Suh thermal quenhes are quiteommon in numerial simulations and our results show how these an be harnessedto extrat equilibrium information as well. The ensemble of states obtained in theabove disussed way at the end of the path is not a representative sample ofthe equilibrium ensemble at the onerned temperature and �eld. However, thehistory-averaged distribution is the equilibrium distribution. The boundary stateswould relax to reah equilibrium via energy transfer to the reservoirs but that partof the proess is not required. This di�erene beomes important and visible insystems exhibiting hysteresis as e.g. for a ferromagnet.
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Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegral4.3.2 Appliation to ferromagnet to get equilibrium magne-tization urveThe above-mentioned sheme an be used to get the equilibrium probability distri-bution or thermodynami quantity from a proess whih is arbitrarily away fromequilibrium and at all temperatures inluding phase transition points. Now weapply our result to the ase of hysteresis of a ferromagnet below the ritial tem-perature (TC). Consider a Hamiltonian: H = H0 − hM . The external magneti�eld is varied from −h0 to +h0 in a �xed manner and then reversed. 〈M〉 isalulated using Eq.(4.21). Below the ritial temperature, magnetization (M)vs. magneti �eld (h) urve shows a disontinuity at h = 0 for in�nite systemsize. For a �nite system there is no disontinuity, M-h urve is ontinuous passingthrough the origin, and the slope of M-h urve at h = 0 inreases as system sizeinreases. But, in reality, when experiments or simulations are done, instead ofsingle retraeable urve passing through the origin we get a loop alled hysteresisloop, no matter how slowly we vary the magneti �eld. The ommon tehniqueknown to get the equilibrium urve is to onnet the verties of the sub-loops [95℄.Here the weighted nonequilibrium path integral sheme is a way out to get theequilibrium magnetization urve. We verify this for Ising ferromagnet and disussthe observations about it in Se. 4.5.4.4 Equilibrium probability distribution from aneigenvalue equation: Operator SIn this setion we derive the main result of this hapter: equilibrium probabilitydistribution as an eigenfuntion of a nonequilibrium operator S.Using the disrete notation, we an write Eq.(4.18) as
Pλ(x) =

Zλ0
Zλ

∑

paths

e−βW δxb,x , (4.24)
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Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralby using the work theorem, Eq.(4.3), that
∑

paths

e−βW =
Zλ
Zλ0

. (4.25)Again, writing∑paths =
∑

xi
Pλ0(xi)

∑′

paths, where the primed summation denotesthe sum for �xed initial value of x = xi with appropriate probability and Pλ0(xi)denotes the equilibrium distribution of xi for Λ = λ0, we get,
Pλ(x) =

Zλ0
Zλ

∑

xi

∑

paths

′

Pλ0(xi) e
−βW δxb,x. (4.26)Use the transformation rule for the partition funtion (Se. 4.2.3),

Zλ
Zλ0

=
∑

x

Pλ0(x) e
β(λ−λ0)x, (4.27)to absorb Zλ0/Zλ into the probability distribution. This transforms Pλ0(xi) into

Pλ(xi), in Eq.(4.26) as
Pλ(x) =

∑

xi

∑

paths

′

e−βW−β(λ−λ0)xi δxb,xPλ(xi) (4.28)
=

∑

xi

Sx,xi Pλ(xi), (4.29)
⇒ S Pλ = Pλ, (4.30)with Pλ as a olumn vetor of {Pλ(x)} and the matrix elements of S as
Sxf ,xi =

∑

paths

′

e−βW−β(λ−λ0)xi . (4.31)The summation in Eq.(4.31) is over all paths that start from an equilibrium distri-bution of Λ = λ0 with value of x as xi and end in a state with Λ = λ and x = xf ,with proper normalization (denoted by prime).Although we use the simple Hamiltonian: H = H0 − Λ x in the onstrution,Eq.4.31 an be generalized for a HamiltonianH = H+H1(Λ, x), beause Eq.(4.27)
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Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralhas the general form,
Zλ
Zλ0

=
∑

x

Pλ0(x) e
−β [H(λ,x)−H(λ0,x)].Now we address the remaining problem � the normalization of the primedsummation over paths in Eq.(4.31). This problem is inherited from Eq.(4.25).Note that the l.h.s. of Eq. 4.25 should add up to 1 for λ = λ0 with W = 0. Sowe hoose the hidden fator a posteriori by demanding proper normalization ofthe �nal probability distribution. This ondition an be ensured in a proess- orsystem-independent way by hoosing ∑x Sx,xi = f(xi) = 1, (Eq.(4.29)), i.e. bymaking the olumn sum of S independent of xi. By this normalization of the sumof eah olumn to unity it is also guaranteed that the prinipal eigenvalue is 1. Theorresponding right prinipal eigenvetor has all the elements real and non-negative� a neessary ondition to be a probability distribution and when normalized, suhthat sum of all elements is unity, this eigenvetor gives the equilibrium probabilitydistribution.The number of rows and olumns in S is determined by the number of allowedvalues of x. For ontinuum of states, the matrix equation is to be replaed by anintegral eigenvalue equation.Hene, in brief, the sheme to get the equilibrium distribution at some pa-rameter value λ and temperature β−1 is as follows: Pre-�x some arbitrary oronvenient-to-start-with initial parameter value λ0 whih will be same for allpaths/experiments. Choose a mirostate from the equilibrium distribution at �eld

λ0 and all its value of x as xi. Change the parameter value from λ0 to λ in somepredetermined way and measure the work done by the external parameter on thesystem aording to Eq.(4.1). Repeat the experiments several times and onstrutthe matrix S using Eq.(4.31). Next, eah olumn of the matrix is normalized tounity. The normalized prinipal eigen-vetor is the equilibrium probability distri-bution, Pλ(x), at the �eld λ.Eq.(4.30) is the main result of this hapter and it is not restrited to oneexternal parameter only and an be generalized to any parameter as mentionedabove. The matrix S onnets any two allowed states of the system without anyreferene to equilibrium anywhere and yet its prinipal eigen-vetor determines71



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralthe equilibrium distribution. Despite resemblane, there is no similarity eitherwith the stohasti matrix of a Markov proess or the adiabati swithing on ofinteration in a quantum system beause S is onstruted out of a �nite proessand needs global information about the work done.Another issue that omes up in this approah via S, is the question of ergodiitywhih onnets the Gibbsian statistial mehanis with equilibrium thermodynam-is. The nonequilibrium dynamis used to onstrut S may not respet ergodiitybut the starting points for the paths in priniple span the whole phase spae, evenin the ase when one starts with a free non-interating system. It seems ergod-iity of the free non-interating system is su�ient to generate the equilibriumdistribution.4.4.1 ExamplesExample 1: Extreme asesConsider an extreme ase: a ompletely equilibrium evolution of the system, whereat eah step the system reahes its equilibrium. Take a simple system: a singlespin problem in magneti �eld h and temperature β−1: βH = −Ks, where s = ±1and K = βh. For an n-step proess, K varies from 0 to nk in steps of k, and theolumn normalized S matrix an be alulated exatly where at eah step the spinreahes the orresponding equilibrium state, as
S =

(

Pnk(+) Pnk(+)

Pnk(−) Pnk(−)

)

, (4.32)where Pnk(±) is the equilibrium probability of �nding ±1 spin at the n-th step.Thus for a ompletely equilibrium evolution of the system the elements of thematrix S are unique and, therefore, S has only one and unique eigenvetor. Inthat ase prinipal eigenvalue is 1 and all other eigenvalues are zero. We mayonlude that a omplete reduibility of S is the signature of a thermodynamiproess.Eq.(4.32) is to be ompared with the extreme nonequilibrium proess as em-bodied in Eq.(4.8). For this instantaneous hange in λ, S = I, the identity matrix,with no zero eigenvalues. 72



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralIf at eah of these n steps, the system evolves for a time ∆t in ontat with thebath, then Sn,∆t → Seq as ∆t → ∞. The smallness of the rest of the eigenvalueswould indiate how lose to equilibrium the system is.The dynamis of a many body system might be ompartmentalized into slowmodes and fast modes, where the fast modes would equilibrate muh more quiklythan slow ones. How many suh fast modes have atually equilibrated, an begauged by the number of zero eigenvalues. The S matrix is not neessarily symmet-ri, though real and there is a possibility of pairs of omplex onjugate eigenvalues,with their magnitudes going to zero as equilibrium is reahed.Example 2: Barkhausen noise and matrix SWe now show the pratial feasibility of the operator method for a magnet byusing the Barkhausen noise [94, 95℄ as reorded through the output voltage arossa seondary oil wound around a ferromagneti material. Though Barkhausennoise has seen many appliations, its use for equilibrium properties has not beenantiipated.Consider the Hamiltonian
H = H0 − hM. (4.33)Here magneti �eld h and magnetization M orrespond to Λ and x respetively.The �eld is varied from hi to hf in a time interval τ at a onstant rate ḣ. TheBarkhausen e�et is a noisy signal proportional to the hange in magnetization,

η(t) = dM(t)
dt

. So by integrating the Barkhausen noise up to time t one gets thenonequilibrium instantaneous magnetization of the material. Therefore, we anwrite the work related exponent in Eq.(4.31) as
W + [h(τ)− h(0)]Mi = −ḣ

∫ τ

0

dt

∫ t

0

η(t′) dt′, (4.34)whih, in a disretized form, looks like
W + [hf − hi]Mi = −∆h

n−1
∑

j=1

j
∑

k=1

ηk, (4.35)
73



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralwhere the Barkhausen noise at k-th step is ηk = Mk −Mk−1. Hene the matrixelements SMf ,Mi
takes the form

SMf ,Mi
=
∑

expts.

′

exp

[

β∆h
n−1
∑

j=1

j
∑

k=1

ηk

]

, (4.36)expressed entirely in terms of the Barkhausen noise along the nonequilibrium paths.The primed summation over paths that start with Mi and end at Mf inludesproper normalization as mentioned earlier.To go to other ases, e.g., for the ase of a polymer pulled at a onstant rateof hange of fore, one needs to monitor the time variation of the pulled pointdisplaement dx/dt vs t. This information an then be used in Eq.(4.36) to getthe orresponding S.4.5 Numerial veri�ation of resultsOur laims about the probability have been veri�ed for the ase of 2D Ising modelon a square lattie, L×L, where L is the size of the lattie with periodi boundaryondition. Consider the Hamiltonian
H = −J

∑

<k,l>

sksl − h
∑

k

sk, (4.37)where J is the interation strength, h is the external magneti �eld and sk = ±1is the spin at k-th site of a square lattie. Here ∑<k,l> denotes the sum overnearest neighbor spins. Here J and h play the roles of external parameter (Λ) and
∑

<k,l> sksl and ∑k sk are the internal variables (x).We �nd equilibrium probability distribution for given J and h using weightednonequilibrium path integral, normalizing the eigenfuntion of S and omparethose with the equilibrium probability distribution obtained from a usual MonteCarlo proedure. The overlap of the two distributions is determined by the Bhat-taharyya oe�ient [97℄ de�ned as
BC =

∑

E,M

√

Ph(E,M)Peq(E,M) = 1− ǫ, (4.38)74



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralwith BC = 0 for no overlap and BC = 1 for omplete overlap.The pratial implementation is done as follows.1. Consider an L× L square lattie with periodi boundary ondition.2. Start with h = 0. Take an arbitrary spin on�guration. Let the Ising spinsystem evolve and equilibrate with the heat bath at β = 1/T , employingthe Metropolis algorithm. In other words, this is a mirostate, C0, randomlysampled from an equilibrium anonial ensemble. Let E0 be its energy and
M0 be its magnetization. Then all the equilibrium distribution at temper-ature T for h = 0 as P (0)

β,0(E0,M0).3. Work step: Swith the magneti �eld: h→ h+∆h, keeping the the mirostatesame as C0 . Calulate the energy of C0 with �eld h+∆h and let it be E1 .Work done on the system equals E1 − E0 = −M0∆h.4. Heat step: Carry out a few Monte Carlo sweeps with �eld h + ∆h on. Ittakes the system towards the equilibrium at �eld h + ∆h and temperature
T . Let the system after the heat step be in mirostate C1.5. Next the work step and the heat step, (3) and (4) are ontinued alternatelyuntil the magneti �eld reahes the prede�ned value. Thus alternate workstep (in whih the mirostate does not hange but the �eld hanges) - andthe heat step (in whih system swithes from one mirostate to another inthe presene of the inreased external �eld) is the swithing protool. Thiswhole proess starting from step (2) onstitutes one experiment.6. The experiment of step (5) is arried out several times and an ensemble ofwork values are onstruted. Thus one gets the work distribution P (W ).4.5.1 Numerial veri�ation of the equilibrium probabilitydistribution starting from a uniform distributionLet us take an 8 × 8 lattie and start from H = 0. Eah time we start from astate hosen from a uniform distribution and reah the �nal state with J = 1 and

h = 1 in n-steps. At eah i-th step, J is swithed from Ji to Ji+1 and the external75
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Figure 4.2: Plot of the weighted distribution (a) PJ,h(E) vs. E and (b) PJ,h(M)vs. M (dotted line with irles) for varying J and h with n = 20 and equilibriumdistributions Peq(E) and Peq(M) (rosses) with J = 1, h = 1 and β = 0.2 for a
8× 8 lattie, showing that PJ,h(E) = Peq(E) and PJ,h(M) = Peq(M).magneti �eld from hi to hi+1,

∆J = Ji+1 − Ji = J/n and ∆hi = hi+1 − hi = h/n;keeping the spin on�guration unhanged, and the amount of work done on thesystem
Wi = −∆JiEi −∆hiMi,is alulated whereMi is the magnetization and Ei is∑ sksl at the i-th step. Thenwe let the system relax at that �eld hi, Ji and β for a while, but do not equilibrate.Thus the work along a path onsisting of n steps is

W = −
n−1
∑

i=0

∆JiEi +∆hiMi,whih is di�erent for di�erent paths. We �nd the weighted distribution
PJ,h(E,M) =

∫

DX e−βW δ(Eb − E)δ(Mb −M)
∫

DX e−βW
, (4.39)and then

PJ,h(M) =
∑

E

P (E,M) 76



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegraland
PJ,h(E) =

∑

M

P (E,M).It is observed that these distributions merge well with the orresponding equilib-rium distributions and for PJ,h(E) (Fig. 4.2(a)) and PJ,h(M) (Fig. 4.2(b)) we get
ǫ ∼ 10−3 (Eq.(4.38)).4.5.2 Equilibrium magnetization urve using nonequilibriumpath integralFor this ase lattie size is 8×8 and the interation strength is kept �xed at J = 1.Eah time we start from an equilibrium distribution of h = −h0. The �eld isvaried from −h0 to +h0 in n steps. W (n) vs. n data are reorded and 〈M〉(h) isalulated using Eq.(4.21).We plot the weight averaged magnetization urve, 〈M〉(h), along with thehysteresis loop, average magnetization over samples, against h for h0 = 0.2 inFig. 4.3(a) and h0 = 2 in Fig. 4.3(b).A retraeable equilibrium urve is obtained as expeted though the nomi-nally averaged magnetization neither hanges sign nor makes a omplete loop(Fig. 4.3(a)) [89℄. This re�ets the fat that though in majority the magneti-zation does not reah the orret value, there are a few rare samples for whih thespins do �ip and these rare on�gurations, whih are lose to equilibrium, get moreweight in the weighted path integral to give the orret equilibrium urve.For the larger �eld, we obtain a urve whih is muh narrower than the hys-teresis urve (Fig. 4.3b). The equilibrium urve obtained this way is still not asingle urve. The width of the loop might be onneted to the droplet time sale,and signals the need for a more areful sum over paths to take are of droplet�utuations.4.5.3 Numerial veri�ation of the eigenvalue equationWe start from an equilibrium ensemble at inverse temperature β = 0.2 (kept �xedthroughout the experiment), J = 1 and h = 0. Eah time we start from a statehosen from its equilibrium distribution and reah the �nal state with J = 1 and77
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h = 1 in n-steps in the same way desribed above and alulate the amount ofwork on the system at i-th step: Wi = −∆hiMi. We �nd the matrix elements:

SMf ,Mi
=
∑

paths

′

e−βW−β(h−h0)Mi δMb,Mf
. (4.40)After the matrix is onstruted, we normalize sum of eah olumn to unity and �ndthe normalized prinipal eigen-vetor orresponding to the Prinipal eigenvalue 1,whih is guaranteed. We ompare the normalized eigenfuntion with the atualequilibrium distribution for L = 4 and 8. We see that these distributions mergewith the orresponding equilibrium distributions for L = 4 (Fig. 4.4(a)) and L = 8(Fig. 4.4(b)) with ǫ ∼ 10−4 (Eq.(4.38)).4.6 SummaryIn this hapter we show and verify numerially that the repeated nonequilibriummeasurements of work done to onnet any two mirostates of a system an be used78
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Figure 4.4: Plot of the equilibrium distribution Peq(M) vs. M (boxes with dottedline) and normalized prinipal eigen-vetor Ph(M) (dashed line with irles) with
J = 1, h = 1, β = 0.2 and n = 1000 for (a) 4×4 lattie and (b) 8×8 lattie, showingthat Ph(M) = Peq(M), i.e., eigenfuntion is indeed an equilibrium distribution.to onstrut a matrix S whose prinipal eigenvetor is the equilibrium distribution.The matrix elements of S (Eq.(4.31)) for a Hamiltonian H(Λ, x) with (Λ, x) as aonjugate pair are:

Sxf ,xi =
∑

paths

′

e−βW+β[H(λ,xi)−H(λ0,xi)] (4.41)where the summation is over all paths that start from an equilibrium distributionof externally ontrolled parameter Λ = λ0 with value of onjugate variable x as
xi and end in a state with Λ = λ and x = xf , with proper normalization. Thework done W is de�ned in Eq.(4.1). The values of the elements of S depend onthe details of the proess and, therefore, there an be many di�erent S, but allwill have the same invariant prinipal eigenvetor. In this way the distribution ofan interating system an be obtained from a free, non-interating one withoutany referene to equilibrium anywhere. In the proess, we also provide a dynamisindependent proof of the result that the equilibrium probability distribution an beobtained using the nonequilibrium path integral. Besides giving a new perspetiveof thermodynamis and statistial mehanis, our result has diret impliations fornew ways in numerial simulations and experiments.What next: Now we study the equilibrium phase transition of a DNA by79



Chapter 4. Equilibrium probability distribution from nonequilibrium pathintegralmapping to an equivalent quantum problem. The phase transition is then observedthrough the problem of dissoiation of two interating quantum partiles. Tostudy the quantum phase transition we make use of the quantum entanglemententropy, mainly the von Neumann entropy. The speial behaviours of the phasetransition are shown to be same for the lassial polymer problem and the problemof quantum dissoiation.List of symbols
β Inverse temperature
E Energy
F Fixed x ensemble free energy
∆F Free energy di�erene
H0 Hamiltonian under no drive
H Hamiltonian
h Magneti �eld
Λ Intensive variable, ontrol parameter
M Magnetization
n Number of steps to reah �nal state from the initial one
P Equilibrium probability distribution
PΛ(x) Equilibrium probability distribution of x at λ
P Probability distribution
S Matrix onstruted from nonequilibrium work done
Weq Equilibrium work done
W Work done
xb Value of x at work step
xeq Equilibrium value of x
x Extensive variable
ZΛ Partition funtion at Λ
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5Entanglement entropy of a quantumunbinding transition and entropy of DNA
In this hapter, we use the ideas and the results of DNA phase transition in adi�erent way to study the dissoiation of a quantum moleule. The quantumdissoiation of a bound pair is a quantum phase transition haraterized by di-verging length sales. This QPT is traed by the quantum entanglement entropy,a measure of pure quantum orrelation. We show that the quantum entanglemententropy aptures the important features of the phase transition. Moreover, someinteresting harateristis of the entanglement entropy is revealed, whih is thenjusti�ed from the known results of the DNA.5.1 IntrodutionAt or near a QCP, the signatures of its universality an be found in the en-tanglement, a ommon measure of whih is the von Neumann entropy (SvN)[36, 39, 45, 44, 98, 99℄. The exat results of this hapter show that for a lassof ritial points, viz., the dissoiation of a pair of partiles in the unitarity limitof in�nite sattering length, there is the possibility of a negatively diverging SvN .Although ounter-intuitive, this is not an artifat. Analogous situation ours instatistial mehanis for Gibbs entropy in anonial ensemble for a gapless spe-trum. As disussed below, the problem in hand involves a gapless entanglementspetrum. The usual proof of the positivity of entanglement entropy is not appli-able in ase of ontinuous eigenvalues of the redued density matrix. The negative81



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAentropy is essential for the ritiality itself. Its importane is brought out via themapping of the quantum problem to the equivalent lassial statistial mehanialproblem, the melting of a double-stranded DNA [100, 101, 102, 107℄.5.1.1 OutlineThe outline of the hapter is as follows. We analytially �nd out the von Neumannentropy of two interating partiles in Se. 5.2 and in the next setion, Se.5.3, weexplain how the entanglement entropy is related to the entropy of bubbles in DNAmelting.5.2 Entanglement entropyReall the problem of a quantum partile of massm in a three dimensional spherialpotential well,
V (r) = −V0 for r < a,

= 0 for r > a, (5.1)where r is the radial oordinate, a and V0 are the width and the depth of thepotential well. What is speial is that V0 > 0 does not guarantee the existene of abound state, unlike in one or two dimensions, or in lassial mehanis. No boundstate exists for u < uc where u = 2mV0a
2/~2 is the dimensionless parameter forthe potential and uc orresponds to a ritial value of u. For simpliity, we take

u ≈ uc so that there is only one bound state. In this situation energy |E | itselfis the gap in the spetrum. If we tune u to get a state with zero energy (E = 0),then at that energy in d = 3 the wave funtion ϕ(r) ∼ 1/r whih is like a non-normalizable ritial state. Like a bound state the probability density does deayto zero but like an unbound state it is not normalizable. In higher dimensions, theondition for a minimal strength of the potential for a bound state remains true,but the state orresponding to E = 0 beomes normalizable as it should be fora bound state. So we see that this bound to unbound transition for a potentialwell has di�erent nature in di�erent dimensions. In general, (i) for d ≤ 2 thereis no suh transition as E = 0 requires V0 = 0, though there are remnants of the82



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAtransition as V0 → 0, (ii) for 2 < d < 4, the transition is ontinuous (ritial) �the bound state beomes unbound through a non-normalizable ritial state as wehange u, and, (iii) for d > 4, the bound state remains normalizable up to andinluding E = 0, and beomes unbound as u is dereased further, thus making thetransition �rst-order. This depits a QPT and the ase of a potential well gives asimple example of a quantum ritial point for 2 < d < 4 with diverging lengthsales.
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−EFigure 5.1: (a) Gap ∆ in the energy spetrum. The shaded region is the ontinuumof energy. (b) The graph shows how energy gap goes to zero. The ontinuous linedesribes a seond order or ontinuous transition (ritial) and the dashed lineshows the �rst order transition. The two are distinguished by the behaviour of theslope at u = uc.The ground state energy, for u lose to uc, is the gap ∆ in the spetrum. Aquantum phase transition is haraterized by a vanishing gap. A disontinuity ofthe �rst derivative d∆/du signals a �rst order transition, otherwise it is ritial orontinuous, as shown in Fig. 5.1. One may de�ne harateristi time and lengthsales
ξ‖ = ~∆−1, and ξ⊥ = ~/

√
2m∆, (5.2)both of whih diverge as ∆ → 0, with ξ‖ ∼ ξz⊥, z (= 2 in this ase) being thedynami exponent. One may ompare with the lassial ground state to see theimportane of quantum (zero-point) �utuations and the importane of time ordynamis in quantum phase transitions. A path-integral interpretation of thesesales, useful for the DNA mapping, is given below.Let us now onsider the ground state of two dissimilar partiles interating viaa entral potential V(|r1−r2 |) of the type of Eq.(5.1), with ri denoting the o-83



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAordinate of the i-th partile. The existene of diverging length sales and salingbehavior around u = uc justi�es the dissoiation of the bound pair to be a QCPor a QPT depending on the dimensions they are in. The ritiality is desribed bythe exponents for the diverging length sales and the energy, as
|E| ∼ ξ−1

‖ ∼|u− uc |ν‖ , and ξ⊥ ∼| u− uc |−ν⊥, (5.3)with
ν‖ = zν⊥ = 1/(Ψ− 1), for 1 < Ψ ≤ 2, (5.4)

= 1, for Ψ ≥ 2, (5.5)whih involve (i) z the dynami exponent, and (ii) a universal exponent Ψ, knownas the reunion exponent for polymers [100, 101, 102℄. For the short range intera-tion problem, Ψ = d/2, as for random walkers, from whih the speialty of d = 4is apparent.In a quantum bound state a partile an tunnel through the potential. Ina path integral approah the partile does a sizable exursion in the lassiallyforbidden region outside the interation well, sooner or later returning to the well(see Fig. 5.2). That the two partiles will eventually be lose-by to form a boundstate is the soure of entanglement while the exursions produe spreads of thetrajetories in spae and time. These spreads give the two relevant length sales
ξ‖, ξ⊥. The large width of the bound state wave funtion near the QCP ensuresthe mutual in�uene of the partiles even if far away from eah other (r ≫ a) sothat the redued density matrix for one partile still arries the signature of theentanglement and the ritiality. For this bipartite system, we are interested in the�partile-partitioning entanglement� [103℄. This makes the von Neumann entropya valuable quantity for the transition whih reads,

SvN = −Tr ρ ln ρ, (5.6)where ρ is the redued density matrix for the ground state |ψ〉,
ρ(r1, r′1) = Tr2 ̺(1, 2) =

∫

ddr2 〈r1, r2|ψ〉〈ψ|r′1, r2〉, (5.7)84
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Figure 5.2: Path integral representation in the x-t plane. (a) A relative oordinatepath for two partiles in one-dimension. The solid portions represent the lassi-al bound state, i.e., inside the well (B), and the dashed portions represent theunbound (U) state in the lassially forbidden region. (b) Corresponding path rep-resentation of two quantum partiles with time, though intersetions of paths arenot shown expliitly. It is also a on�guration of two lassial Gaussian polymersinterating at the same ontour length as for DNA base pairing, the t-axis repre-senting the ontour length (z) of the polymers. The dotted lines are the meltedbubbles whose partition funtions are haraterized by the reunion exponent Ψ.This desription holds for any general d.obtained from the two partile density matrix ̺(1, 2) =|ψ〉〈ψ | by integrating out(or traing out) partile 2. In Eq.(5.6), we shall introdue some pre-hosen lengthsale to make the argument of log dimensionless. If, with mi, ri denoting the massand the position of the ith partile, the full ground state wave-funtion (inludingthe enter of mass (CM)) is
ψ(r1, r2) = Φ

(

m1r1 +m2r2
m1 +m2

)

ϕ(r1 − r2), (5.8)where Φ is CM wave funtion (plane waves) and ϕ is the wave funtion in relative
85



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAoordinate (the relative wave-funtion), then
ρ(r1, r′1) = ∫ ddr2 ψ(r1, r2)ψ∗(r′1, r2). (5.9)Although the enter of mass and the relative parts are not entangled, the twopartiles are entangled. The lak of knowledge of the state of one partile is thesoure of a nonzero entropy assoiated with the redued density matrix [37, 38, 39℄.The translational invariane of the interation guarantees that the redueddensity matrix ρ(r, r′) ≡ ρ(r − r′) has exp(−iq · r) as the eigenvetor,
∫

ddr′ρ(r− r′)e−iq·r′ = ρ̂(q) e−iq·r, (5.10)with the eigenvalue
ρ̂(q) =

∣

∣

∣

∣

φ

(

q +
Kµ
m2

)
∣

∣

∣

∣

2

, (5.11)K being CM wave vetor and φ(q) the normalized momentum spae wave funtion,the Fourier transform of the relative wave-funtion ϕ(r) in Eq.(5.8). Sine theentropy involves an integral over the whole range of q, it is independent of the CMwave-vetor, an expeted onsequene of Galilean invariane. Therefore, withoutany loss of generality, we hoose | K |= 0. The eigenvalues onstituting the�entanglement spetrum� an be written in a saling form
|φ(q) |2= κ−d F (q/κ, aκ), (5.12)where κ2 = 2µ |E | /~2 = ξ−2

⊥ , µ being the redued mass. Eq.(5.12) satis�es
Tr ρ̂ = 1. In the ritial regime (also alled the �unitarity limit�), aκ → 0, if thesaling funtion behaves smoothly, then

F (q̃, aκ) → F (q̃, 0) ≡ f(q̃), (q̃ ≡ q/κ) (5.13)whih we �nd to be true for d < 4. For d ≥ 4, we �nd that F (q̃, aκ) for aκ → 0behaves in a singular fashion as
F (x, y) ∼ yd−4f(x), (5.14)86



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAso that the prefator in Eq.(5.12) beomes κ−4ad−4. Here f represents a generifuntion. By using these limiting forms, we �nd the entanglement entropy to be
SvN = P ln aκ + c0, (5.15a)
P = min(d, 4), and c0 = −

∫

ddx f(x) ln f(x). (5.15b)The last statement an be veri�ed by diret omputation of the momentum dis-tribution funtion of the relative motion in d-dimensions. There are further log-orretions at d = 2 and d = 4 whih we do not disuss here. To motivateEq.(5.15a) let us onsider a few examples. Consider the quantum problem oftwo partiles interating via a delta-funtion potential in one dimension: V (x) =
−v0δ(x). By using the enter of mass and the relative oordinate wave-funtion,we write the wave funtion as

ψ(x1, x2) = C e
iKµ

(

x1
m2

+
x2
m1

)

e−κ|x1−x2| (5.16)whih is translationally invariant. Here K is the CM wave vetor, κ = ξ−1
⊥ , and Cis the normalization onstant. The redued density matrix for partile 1 is then

ρ(x, x′) =
C2

κ
e−(iKµ/m2+κ)|x′−x| [1 + κ|x− x′|] (5.17)having eigenvalues (Eq.(5.11))

ρ̂(q) =
2

π

1

κ

1

(1 + q̃2)2
, (K = 0), (5.18)whih is of the form Eq.(5.13) with f(q̃) ∼ (1+q̃2)−2. By introduing an arbitrarilyhosen well strength v̄ or a sale a = ~

2/2µv̄ in Eq.(5.6), the entanglement entropyis found to be of the form of Eq.(5.15a) with
P = 1, and c0 = ln 8π − 2. (5.19)For κ → 0, ρ̂(q) → δ(q) with SvN = 0. There is a di�erene between κ → 0 and

κ = 0. For a one-dimensional problem with the potential of Eq.(5.1), one an goover to the delta funtion potential problem by taking a → 0 keeping V0a = v0onstant to get the same ln κ behaviour as in Eq.(5.19). We then hek for a87



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNA
3-dimensional potential well, Eq.(5.1). The relative wave-funtion (l = 0) for thispotential is

ϕ(r) =







A sinkr
r

r < a

B e−κr

r
r > a,

(5.20)with k and κ as de�ned earlier and onstants A,B determined in the usual way ofontinuity of the wave funtion and its derivative. A diret Fourier transformationof ϕ(r) has been used to numerially ompute the entanglement entropy. To derivean analytial formula, we note that the dominant ontribution in ρ̂(q) in the limit
aκ→ 0 omes from the outer part. In this approximation we get

ρ̂(q) = 1

κ3
1

π2

(

1

1 + q̃2

)2

= κ−3f(q̃). (5.21)This ρ̂(q) satis�es the normalization ondition ∫ d3q ρ̂(q) = 1. Thus for the 3Dpotential well interation, the entanglement entropy is of the form of Eq.(5.15a)with
P = 3, and c0 = 2(1 + log(4π)) ≈ 7.06205. (5.22)Exat numerial omputations of von Neumann entropy for d = 3 are done byusing MATHEMATICA. For a given κ with a = 1, we determine V0, the depth ofthe well and then the mathing onditions and the Fourier transform were usedto obtain the entanglement spetra. The entanglement entropy is then obtainedby a numerial integration. The results are shown in a log-linear SvN vs. κ plotin Fig. 5.3 whih also shows the line obtained from Eq.(5.15a) and Eq.(5.22). Itshows that SvN is negative for small κ and that it has linear ln κ dependene. Theapproximations show that the entropy is determined mainly by the outer part ofthe wave-funtion.To generalize the result to any dimension we arried out the alulation forgeneral d. The density matrix, solely from the outer part, is expeted to be ofthe form f(q̃) ∼ (1 + q̃2)−2 as in previous ases but then there is a divergeneproblem for normalization for d ≥ 4. Sine we want Tr ρ̂ = 1, an ultraviolet uto�is required. This makes aκ an important variable even in the limit aκ → 0. Thespeialty of d = 4 is now evident.
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Figure 5.3: Plot of SvN vs. ln κ with a = 1. The irles are the numerial valuesand the straight line is the predited line SvN = 3 ln κ+ 7.06, Eq.(5.22).The radial wave funtion R(r) (l = 0 state as the ground state) is,
R(r) =







A rǫ/2J|ǫ/2|(kr) for r < a

B rǫ/2H
(1)
|ǫ/2|(iκr) for r > a,

(5.23)where ǫ = 2− d, A,B determine the normalization and mathing of the inner andthe outer solutions. Here J and H(1) are the Bessel and the Hankel funtion of the�rst kind. The ontinuity of the wave funtion at r = a gives
AJ| 2−d

2 |(kc) = B (κa)−| 2−d
2 |, (5.24)under the ondition κ → 0 and ka → kc = π/2. Eq.(5.3) follows from Eq.(5.24),the mathing of log derivative and the Bessel funtion identities. By using thenormalization ondition and Eq.(5.24), we get

B =







κ̄
a

for d < 4

κ̄|2−d|/2

a
for d > 4.

(5.25)
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Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAIn the same κ→ 0 limit, with outer part dominane,
φ(q = 0) ≈ Bκ−

2+d
2 , (5.26)whih gives

ρ̂(q) = |φ(q)|2 = B2κ−(2+d) f(q̃)

≈







κ−d, for d < 4,

κ−4ad−4, for d > 4.
(5.27)So the von Neumann entropy is of the form Eq.(5.15a) with P = 4 for d > 4.In terms of the deviation from the ritial point, the entropy is

SvN =
d

z(Ψ− 1)
ln |u− uc|, for Ψ < 2. (5.28)For the ase in hand, Ψ = d/2. The form of Eq.(5.28) brings out the universalbehavior of the entropy and has validity for potentials di�erent from Eq.(5.1), likee.g. sale-free 1/r2 potential [107℄. All the details of the interation go in theuniversal exponents z and Ψ. The entropy diverges at the ritial point and, isnegative.5.3 DNA onnetionWe show the onnetion of the quantum entanglement entropy to the entropyof bubbles in DNA melting. Under an imaginary time transformation, the pathintegral formulation of the quantum problem is analogous to a lassial statistialmehanial system of polymers used in the ontext of melting of DNA [100, 101,102, 104℄.Let us onsider a DNA whose two strands are two Gaussian polymers in d-dimensions and index the points (monomers) by the ontour length z measuredfrom one end. The native base pairing of a DNA requires that a monomer atindex z on one strand interats with a point on the other strand with the sameindex z. This is the Poland-Sheraga type model [102℄ for DNA melting. Byusing one extra oordinate for the sequene or the length of the polymers, we get90



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAdireted polymers in d + 1 dimensions like paths in path integrals, as shown inFig. 5.2. In this representation the base pairing interation maps onto the sametime interation of the quantum system, time playing the role of the base pairindex. The DNA partition funtion as a sum over all polymer on�gurations isequivalent to the sum over all paths in quantum mehanis. The DNA Boltzmannfator exp(−βH) with β as the inverse temperature and H the Hamiltonian fortwo hains of elasti onstants Kj as
βH=

∫ N

0

[

∑

j=1,2

Kj

2

(

∂rj(z)
∂z

)2

+V (r1(z)− r2(z))]dz, (5.29)orresponds to the fator exp(iS/~) for path integrals with S the lassial a-tion of two interating partiles under z → it. This makes the Green fun-tion or the propagator G(x1, x2, τ |x′1, x′2, 0) equivalent to the partition funtion
Z(x1, x2, N |x′1, x′2, 0), (N → iτ). Here xj , x′j are the oordinates of the j-th strandend-points at 0 and at length N . The free energy per unit length of DNA for
N → ∞ is the ground state energy of the quantum problem.The short range base-pairing potential an be taken to be a ontat potential ora well of Eq.(5.1). Then the piture of return of the quantum partiles within therange of interation after exursions outside the well gives the equivalent piture ofpolymers with broken base pairs having exursion away from binding and eventu-ally oming bak to the well to form pairs. This exursion swells the polymer andreates bubbles along the length of the DNA. Thermal energy opens up bubblesin the bound state of DNA. The entropy of a bubble of length N is determinedby the reunion partition funtion of two polymers starting together and reunitingagain at N , whih for large N , has the form Ω(N)=N−ΨeNσ0 , or the entropy

S ≡ ln Ω(N) = Nσ0 −Ψ lnN, (5.30)in units of the Boltzmann onstant kB = 1. Eq.(5.30) shows that σ0 is the bubbleentropy per unit length that survives in the thermodynami limit. However, thepower lawN-dependene whih gives the negative sub-extensive part of the entropyis essential for the transition and also for the bound state. The reunion exponent
Ψ determines the universality lass of the binding-unbinding transition and there91



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAis a melting transition if and only if Ψ > 1. See Ref. [100℄ for details.The one-dimensionality of the hains requires an alternating arrangement ofbound regions and bubbles as in Fig. 5.2. The arrangement allows one to writethe partition funtion, after Laplae transform with respet to the length (i.e. inthe grand anonial ensemble) [100℄, as
G(x, y; s) = Go(x; s)G(0, s)Go(y; s)

=
Go(x; s)Go(y; s)G

B(s, u)

1−GU(s, σ0)GB(s, u)
. (5.31)Here x ≡ {x1, x2}, y = {x′1, x′2}, Go is the Laplae transformed partition funtionof two polymers tied at one end and open at the other, alled the survival partitionfuntion, and G(0, s) is the total partition funtion with two ends bound. In Go,the tied point is to be integrated over keeping the set x or y �xed. G(0, s) anbe written as a sum of a geometrial series (see Fig. 5.2) involving the partitionfuntions of the bound parts and the bubbles, GB(s, u) and GU(s, σ0). The freeenergy omes from the singularity of G(x, y, s) whih is either s = σ0 ≡ 0 or at

s = s0 for whih
GU(s, σ0)G

B(s, u) = 1, (5.32)with σ0 = 0, s0 satis�es Eq.(5.3).Near the nontrivial singularity, a pole at s = s0, the form of G(x, y, s) resemblesthe Green funtion in the energy eigenfuntion expansion as
〈y|ψ〉〈ψ|x〉
E − E0

, (5.33)with ground state dominane. From the equivalene between DNA model and thequantum problem, we identify the density matrix as
ρ(x, y) ∼ Go(x; s0)Go(y; s0)/G

U(s0),so that the entanglement entropy would behave like S ∼ lnGU(s0, σ0). By usingGaussian distributions for Gaussian polymers (i.e. random walkers), one reoversEq.(5.21).To get the behaviour of lnGU, we employ a �nite-size saling analysis. The92



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAphase transition in the polymeri system ours in the N → ∞ limit so that a �nite
N ats as a �nite size sale both for DNA and in the quantum problem. The �nitesize saling variable is N/ξz⊥ so that the entanglement entropy is proportional to
−z ln ξ⊥ ∼ 1

Ψ−1
ln | u−uc | (see Eq.(5.28)). The di�erene in the amplitude oursbeause of the di�erent normalization used for polymers and quantum problems.The point to note is that the entanglement entropy in the quantum problem omesfrom the universal non-extensive part of the entropy of the bubbles. Sine the fullentanglement spetrum is known, it is also possible to ompute the Renyi entropy[44℄. We reover in the appropriate limit the result quoted in Eq.(5.15a). Inthe DNA interpretation, the Renyi entropy would ome from many irular singlestrands (replias) pairing with a large single strand, resembling the rolling irlerepliation of viruses. Details will be disussed elsewhere.5.4 DisussionA negative entropy is ounter-intuitive when one has the third law of thermody-namis in the bak of one's mind, though exeptions are known; e.g. negativeentropy is found for perfet gases at low temperatures or as a orollary of the las-sial equipartition theorem. One an see the same feature by writing the redueddensity matrix in terms of an entanglement Hamiltonian, ρ ∝ exp(−βHent), in aform reminisent of a Boltzmann fator. The diagonal form in Eq.(5.21) shows
βHent = 2 ln(1 + q2/κ2) ≈ 2q2/κ2, (for small q), (5.34)whih is like a lassial d-dimensional osillator in q-spae, with κ2 as the e�etivetemperature. A diret alulation or use of the lassial equipartition theoremnow tells us that the entropy has d ln κ behaviour as in Eq.(5.15a). We believethis to be a generi feature whenever the entanglement Hamiltonian is gapless.Another way to see this emergene of ln κ in entropy is to ompare with the DNAproblem. The equivalent lassial DNA model also has a negative diverging partof entropy but that sub-extensive part vanishes in the thermodynami limit of theentropy per unit length. In the quantum ase, the equivalent limit has no suhadvantage in �nding the entropy beause demanding extensivity in time diretionis meaningless. Hene the negatively diverging term is inevitable near ritiality. 93



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAIn this hapter we show that the quantum entanglement entropy near thebound-unbound transition of two interating partiles omes out to be negative,and it diverges at the QCP. Using the equivalent lassial statistial mehanialsystem of DNA near the melting transition we show that the negativity of theentanglement entropy is a neessity and is essential for the phase transition. Theoe�ient of the logarithmi term ontains the information of the interation andthe universal behaviour of the phase transition. The oe�ient is shown to berelated to the reunion exponent of viious walkers. This is the �rst time in theontext of quantum entanglement that the negative entropy is found by expliitalulation. We argue that this log divergene in the quantum ase and the sub-extensive part in the DNA problem are linked by �nite size saling near the ritialpoint. From the renormalization group (RG) approah for the DNA melting prob-lem [101, 107℄, one may infer that the entanglement entropy inreases along theRG �ow, sine the ritial point orresponds to the unstable �xed point. It hasbeen argued reently that entanglement an be used to produe negative entropy[105℄. The information theoretial meaning of the negative entropy in our ase isnot very lear. Our speulation is that the negative entropy is the norm, not anexeption near a quantum binding-unbinding transition. We feel signatures of neg-ative entropy might be detetable in old atoms where interations an be tuned tothe unitarity limit. If one an harness the negative entropy, one may ool a systemor a omputer and possibly may overome the obstale to iruit miniaturization.What next: In the next hapter, we are going to onsider another importantinteration, an inverse square potential, whih itself has a great importane asa quantum as well as lassial problem. The speial points in the DNA phasetransition are again obtained from the study of the quantum problem, thus makingthe onnetion of the interating polymers vs. interating quantum partiles morerobust.

94



Chapter 5. Entanglement entropy of a quantum unbinding transition andentropy of DNAList of symbols
A,B Normalization onstants of the wave funtion
a Width of the potential
d Dimension
Hent Entanglement Hamiltonian
H Hamiltonian
|k〉 Basis of momentum states
λ Redued strength of 1/r2 potential
m Mass
µ Redued mass
N Length of polymer
Ω Reunion partition funtion
p, q Momentum
r Relative distane
σ0 Bubble entropy per unit length
SvN von Neumann entropy
T Temperature
t Time
u Dimensionless short range potential
V0 Depth of the potential well
V Potential
Ψ Reunion exponent of two polymers
Z Partition funtion
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6Quantum unbinding transition for a longrange potential
It is shown in the previous hapter that the von Neumann entropy of two par-tiles has a d lnκ behavior at the quantum ritial point (QCP) of unbinding indimensions 1 < d < 4 where κ is the inverse of the width of the wave funtion.Here the QCP is attained when the inverse length sale κ approahes zero. Thisis ahieved by tuning the potential or the mass. This has been established analyt-ially for a 3D potential well [106℄. Also, in analogy to polymer, it is shown thatthis divergene is essential for the ritiality and linked to the reunion behaviorof two polymers in the equivalent lassial statistial mehanial problem. In thishapter, we study the von Neumann entropy for a QPT involving a marginal long-range potential. The equivalent lassial statistial mehanial problem involvestwo direted polymers interating at the same ontour length like a DNA withnative base pairing but with an additional 1/r2 interation. This model has beenstudied using renormalization group in Ref. [107, 108℄. Sine the strength of thelong-range interation hanges the nature of the transition, we study how the vonNeumann entropy hanges with variation of its strength and sign. In addition,we extend our study on the entanglement entropy to the Renyi entropy, whih isanother extensively studied quantity in the ontext of the quantum entanglemententropy.
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Chapter 6. Quantum unbinding transition for a long range potential6.1 IntrodutionThis hapter onsiders two partiles interating through the three-dimensional in-verse square law potential and �nds the quantum entanglement between the parti-les. Here we use partile partitioning [44℄. The Hamiltonian for the two partileswe shall be using is,
H =

p2
1

2m1
+

p2
2

2m2
+ V (r1 − r2), (6.1)where mi, ri and pi are the mass, position and the momentum of the ith partileand

V (r) =







−V0, for r < a,

−2µ
~2

g
r2
, for r > a,

(6.2)is a entral potential, where V0 > 0 and µ = m1m2/(m1+m2) is the redued massof two partiles. We take 2µ/~2 = 1.The inverse square potential is of immense importane in quantum mehanis[109℄. It is at the boundary of the short and long range potential. For potentialsdeaying like r−p, there is no �nite bound state if p > 2 while for slower divergene,i.e., p < 2, there is a �nite negative lower bound in energy. For an attrativepotential −g/r2 (g > 0), the kineti and the potential energies are of the sameorder near small r and so the bound state spetrum depends on the value of g. Amanifestation of the borderline ase is in the sale-free nature, H(λr) = λ−2H(r).This makes, g, the dimensionless strength of the potential, a �marginal� parameterin the RG sense in all dimensions. The singularity of g/r2 at the origin preventsdisrete bound states to our. A suitable modi�ation of the potential at small
r, e.g. by putting a ut o� and replaing the potential by a short range �nite onenear origin, gives disrete bound states. This is done in Eq.(6.2).It is established in quantum mehanis that there is no �nite energy groundstate for g > 1/4. For g < 1/4 the wave funtion is normalizable and the boundstate energy an be obtained by the standard proedure. In the above-mentionedrange of g, the unbinding transition an be obtained by tuning the strength of theshort range potential near r = 0 depiting the quantum phase transition. Theunbinding transition in this long range interation is a unique example of a QPTwhose type an be �rst order (g < −3/4), ritial (g > −3/4) but non-universal,and even Kosterlitz-Thouless type (g = 1/4) [108℄. The solvability and the wide97



Chapter 6. Quantum unbinding transition for a long range potentialrepertoire of QPT behavior make this model an ideal terrain for exploration of thenature of entanglement entropy around a QPT. This is what we set to do in thishapter.A phase transition is de�ned as a singularity in the energy, assoiated withdiverging length sales. In this sense the quantum unbinding transition is a gen-uine phase transition. This QPT exists beause time of in�nite extent plays a rolein quantum mehanis. It beomes lear in the path integral formulation. Thequantum problem an be mapped onto an equivalent lassial statistial mehani-al problem of polymers under the imaginary time transformation (it → N). Thetime in the quantum problem then beomes the length of the polymer, N , theGreen's funtion maps to the partition funtion and the ground state energy isequivalent to the free energy per unit length. The interation between the poly-mers means the interation of a pair of bases or monomers at the same index alongthe length of the polymers as in DNA. This is equivalent to the same time inter-ation of two quantum partiles. The equivalent lassial problem in the ontextof melting transition of two polymers interating via a potential like Eq.(6.2) hasbeen disussed in Ref. [107℄ whih reveals that the results of the quantum problemsan be reovered from suh studies. Like the quantum partile making exursioninside and outside of the well, the polymers also ome loser, they reunite, andmove further, forming swollen bubbles. The entropy of a bubble of length N is
lnΩ(N) = Nσ0 −Ψ lnN, (6.3)where Ω(N) is the reunion partition funtion of two polymers starting together,reuniting anywhere in spae again at length N , σ0 is the bubble entropy per unitlength and Ψ is the reunion exponent. The details an be found in Refs. [106, 107,100℄.The binding-unbinding transition of polymers has been studied in the ontextof the neklae model of polymers and it is found that the reunion exponent Ψdetermines the order of transition [100℄. The phase transition ours if Ψ ≥ 1.The transition is ontinuous if 1 < Ψ < 2, while it is �rst order for Ψ > 2. In threedimension, the reunion exponent is given by [107℄

Ψ = 1 + λ, with λ =

√

1

4
− g, (6.4)98



Chapter 6. Quantum unbinding transition for a long range potential
g -2 −3/4 0 < 1/4 1/4 > 1/4
λ 1.5 1 1/2 real 0 imaginaryTable 6.1: g-λ onversion table.where the dependene on g, a bit ounter-intuitive, is a onsequene of its marginal-ity. Here also we use the parameter λ(> 0) beause of its ourrene in the sequel.Table 1 gives the orrespondene between g and λ for easy referene.
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Figure 6.1: g vs. u phase diagram. The plot shows the phases and the RG�xed points in the g-u plane (u = −V0 a2). The red urve below g = 1/4 and
u = −0.5 show the binding-unbinding transitions governed by a line of unstablereal �xed points. The transition is �rst order for g < −3/4 and seond orderfor −3/4 < g < 1/4. This line is the transition line in the limit of zero rangepotential (a → 0, V0 → ∞, with u =onstant) The blak ontinuous urve for
u > −0.5 shows the lous of stable �xed points representing the unbound phase.The dashed-dotted line at g = 1/4 is the boundary beyond whih the �xed pointsare omplex.The phase diagram and the lines of RG �xed points are shown in Fig. 6.1. Thisplot shows the phases in the g-u plane, where

u = −V0 a2, (6.5)in the unit of 2µ/~2 = 1, is the dimensionless short range potential whih the twopartile state is in. The �xed points shown here are obtained from the renormal-ization group analysis done in Ref. [107℄. The red line for u < −0.5 shows theunstable �xed points aross whih the unbinding transition takes plae, and the99



Chapter 6. Quantum unbinding transition for a long range potentialblak ontinuous line for u > −0.5 shows the phases by stable �xed points. For
g < −3/4, the bound-unbound transition is �rst order as Ψ > 2, whih is shown bythe red ontinuous line ending at the symbol * at g = −3/4, or, λ = 1, multiritialpoint. After that the transition is ontinuous upto g = 1/4 with Ψ < 2. Beyondthat, where λ is imaginary, there is no real �xed point, and the system is in abound state. Aross the g = 1/4 line, with u ≥ −0.5, a Kosterlitz-Thouless typephase transition from the bound to the unbound state an be indued by tuning
g. The two regimes, Ψ < 2 and Ψ > 2 are governed by di�erent behaviors, withadditional log-orretions at Ψ = 2.We �nd that the entanglement entropy also arries this signature of the spe-ialilty of g = −3/4 or λ = 1. The entropy in the three di�erent regimes, λ < 1,
λ = 1 and λ > 1 sale in di�erent manners. We establish that λ = 1 behaves likea multiritial point, ontrolling both the �rst order and the ritial behavior inthe whole range −2 ≤ g ≤ 1/4.6.1.1 OutlineThe outline of the hapter is following. In Se. 6.2, we desribe our model and themethod by whih we alulate the von Neumann entropy. The analytial resultsare presented in Se. 6.3 and the von Neumann entropy is alulated for λ < 1.Next we present the exat numerial results done in mathematia and disussthe behavior of the entropy and its saling in Se. 6.4. Finally we onlude in Se.6.5.6.2 Model and methodEq.(6.2) is used for our study. The detailed nature of the short range potential isnot important and we take it as a simple square well potential. We onentrate inthe range 0 < λ < 1.5.The redued density matrix of the onsidered problem in the basis of momen-tum states |k〉 has the form

ρ =

∫

ddk |φ(k)|2 |k〉〈k| =
∫

ddk
e−βHent

Z
|k〉〈k|, (6.6)100



Chapter 6. Quantum unbinding transition for a long range potentialwhih makes the mixed state harateristi expliit. Eq.(6.6) allows us to de�ne ρas a thermal density matrix with an entanglement Hamiltonian Hent at a �titiousinverse temperature β with Z as the partition funtion. This thermal orrespon-dene makes the von Neumann entropy equivalent to the Gibbs entropy of Hent.In Eq.(6.6), Hent is a -number. Consider the anonial partition funtion of afree partile at temperature T ,
Z ∼

∫

ddq exp(−βH) ∼ T d/2, (6.7)where H = ~
2q2/2m. Then the entropy beomes,

SvN = lnZ ∼ ln, T (6.8)whih for very low temperature, T → 0 beomes negative. In another way, onegets a onstant spei� heat C from the equipartition theorem, whih then givesa logarithmi dependene on temperature of the entropy,
SvN =

∫ T

C/TdT ∼ lnT. (6.9)The Sakur-Tetrode onstant, S0/R, the entropy of one mole of an ideal gas at tem-perature T = 1K and at one atmospheri pressure, 101.325 kPa, is a fundamentalonstant [110℄. Its value is −1.1648708. Note that this fundamental entropy isnegative. Classial harmoni osillator is no exeption. It is well-known that theondition SvN ≥ 0 does not hold for the lassial ontinuous statistial mehanis[111℄.6.3 Analytial resultsIn this setion, we derive the asymptoti behavior of φ(q). In partiular we �ndthat the entropy is dominated by the outer part, i.e. the exursion in the lassiallyforbidden region, if the unbinding transition is ritial. This happens for 0 < λ ≤ 1.For �rst order transition, the inner part also ontributes signi�antly.The ground state has zero angular momentum. For this s-state, the radial part101



Chapter 6. Quantum unbinding transition for a long range potentialof the Shrodinger equation then reads [112℄:
∂2R

∂r2
+

2

r

∂R

∂r
+ (V0 + E)R = 0, for r<a, (6.10)

and,
∂2R

∂r2
+

2

r

∂R

∂r
+
( g

r2
+ E

)

R = 0, for r>a, (6.11)where E is the ground state energy of the partile desribing the behavior of thetwo partiles in relative oordinate. The radial part of the wave funtions in therelative oordinate are then obtained by solving Eqs.(6.10) and (6.11),
R(r) =















A

r
sin kr, for r ≤ a, (6.12a)

B√
r
H

(1)
λ (iκr), for r ≥ a, (6.12b)with A and B as the normalization onstants,

k2 = V0 − |E|, κ2 = |E|. (6.13)We hoose λ to be positive and it is given by Eq.(6.4). In the limit of κ → 0,the unbinding transition takes plae. This makes our interest in studying the vonNeumann entropy in this limit.The ontinuity of the wave funtions at r = a gives,
A

a
sin ka =

B√
a
H

(1)
λ (iκa). (6.14)The mathing ondition of the derivative of the wave funtion at r = a gives therelation between k and κ whih determines the value of k for a given κ,

ak cot ak = iκa
H

(1)
λ−1(iκr)

H
(1)
λ (iκr)

− λ +
1

2
. (6.15)Given the values of λ and a, one an get the threshold or minimum value of k, km,for just one bound state. For κ = 0,

akc cot akc =
1

2
− λ, (6.16)102



Chapter 6. Quantum unbinding transition for a long range potentialis the ondition for the transition point when the ground state energy E → 0. For
λ = −1/2, kc = 0 and λ → ∞ gives akc = π/2. But as we take λ ≥ 0, there isalways a kc for any λ.Now onsider a small deviation from the ritial value of k, k = kc − δ where
δ ∼ V0 − Vc. Then, from Eq.(6.15),

(akc − aδ) cot(akc − aδ) ∼







(κa)2λ, for λ < 1,

κ2a2, for λ > 1,
(6.17)or,

|E| ∼ κ2 ∼







δ1/λ, for 0 < λ < 1,

δ +O(δ1/(λ−1)), for λ > 1.
(6.18)These show that as V0 → Vc ≡ k2c , E remains ontinuous, as it should. For λ < 1,

E approahes zero tangentially while for λ > 1, there is a nonzero slope at κ = 0.This disontinuity of slope lassi�es the λ > 1 transition as �rst order. Despitethat, the higher derivatives on the bound side ∂nE/∂δn would show divergeneslike a ritial point.The normalization onstants A and B are found by using the ontinuity on-dition and taking the limit κ→ 0 (see Appendix for details)
|B|2 ∼







κ2, for λ < 1,

κ2(aκ)2λ−2, for λ > 1,
(6.19)and,

|A|2 ∼







(aκ)2−2λ/a, for λ < 1,

1/a, for λ > 1.
(6.20)At λ = 1, there are log orretions whih we do not get into here. The log orretionappears in the Neklae model for polymers whenever the reunion exponent Ψ(Eq.(6.4)) is an integer. The log appears in Eq.(6.15) via H(1)

0 for λ = 1. Now oneknows the full wave funtion and its limiting κ behavior.The redued density matrix has eigenvalues |φ(q)|2, where q is the momentumspae variable. To get these eigenvalues, the Fourier transformation of the wave-103



Chapter 6. Quantum unbinding transition for a long range potentialfuntion needs to be done,
φ(q) =

1

(2π)3/2

∫

d3r eiq.rR(r) = φi(q) + φo(q), (6.21)where the subsript i, o refer to the inner (r < a) and the outer (r > a) part. TheFourier transform of the inner part (Eq.(6.12a)) is
φi(q) =

A

q

1√
2π

[

sin(k − q)a

k − q
− sin(q + k)a

q + k

]

, (6.22)and of the outer part (Eq.(6.12b)) is
φo(q) = |B| κ−5/2 2

π

√
2 Γ

[

5

4
+
λ

2

]

Γ

[

5

4
− λ

2

]

2F1

(

5

4
+
λ

2
,
5

4
− λ

2
;
3

2
;−q̃2

)

−|B|
∫ a

0

dr
√
r
sin qr

q
Kλ(κr), (6.23)where q̃ = q/κ, 2F1 is the hypergeometri funtion and Kλ is the modi�ed Besselfuntion. The last integral in Eq.(6.23) is onvergent for all λ < 3/2 and thereforean be ignored in the aκ→ 0 limit.The limiting small κ dependene of the inner and the outer parts of the wavefuntion from Eqs.(6.22) and (6.23) are,

φi(q) =







κ̄1−λa3/2fi(aq) if λ < 1,

a3/2fi(aq) if λ > 1,
(6.24)and

φo(q) =







κ−
3
2 fλ(q̃) if λ < 1,

κ−
3
2 κ̄λ−1fλ(q̃) if λ > 1,

(6.25)where q̃ = q/κ and fi is a well-behaved funtion. Eq.(6.24) is for large q̃.From Eqs.(6.24) and (6.25), we see that the double limit κ → 0, λ → 1 issingular beause of the term κ̄1−λ. This identi�es (κ = 0, λ = 1) as a speial point.From this we also identify (1 − λ) ln κ as an appropriate saling variable. Thissaling variable will our below in the analysis of the numerial results.For λ < 1, i.e., 1 − λ > 0, κ̄1−λ → 0 as κ → 0 and therefore, the ontributionof outer part dominates over the inner part in the von Neumann entropy. Without104



Chapter 6. Quantum unbinding transition for a long range potentialmuh loss, one an then write the entropy with the outer part only (Eq.(6.25)),
SvN ≈ −

∫

d3q |φ|2 ln |φo|2

= 3 lnκ + cλ, (for λ < 1), (6.26)with
cλ =

∫

dq̃ q̃2fλ(q̃) ln fλ(q̃). (6.27)As per our interest, we extrat the κ-dependent term and all the rest cλ, whih isa funtion of other parameters. The main result is that there is a log divergeneof SvN as κ→ 0.6.4 Exat numerial resultsTo study the nature of the entanglement entropy, over the whole range of λ we takereourse to exat numerial alulation using mathematia for the 3-dimensionalpotential well. We ross-hek our predition of Eq.(6.26) and then show a multi-ritial saling that overs the range 0 < λ < 1.5.6.4.1 ProtoolAlthough V0 is the tuning parameter, it is more onvenient to use the length saleas the independent parameter. With this treading of κ for V0, our protool is likethis: Given the values of κ and λ, the value of km was determined from Eq.(6.15),with km < π that assures us the ground state As κ→ 0, km → kc. Then the orre-sponding normalization oe�ients A and B were found using the normalizationondition and the ontinuity equation, i.e., by doing the r-integrations of the innerand the outer parts of the wave funtion in Eq.(6.35). These onstants are usedin the Fourier transformed inner and outer parts of the wave funtion, Eqs.(6.22)and (6.23), to alulate the von Neumann entropy. In the �nal integration for
SvN = −Tr ρ ln ρ, we put an upper ut o� making sure that the �nal numbers areindependent of this hoie of ut o�. Also the intervals of the integration rangehave been hosen arefully espeially for q ∼ κ. This gives numerially exat num-bers for the entropy for the given κ and λ. This proedure is repeated for various105



Chapter 6. Quantum unbinding transition for a long range potential
λ and κ. We set a = 1.6.4.2 Behavior of the von Neumann entropy SvN

λ dependene:The plots of the numerial values of the von Neumann entropy SvN against ln κand λ show di�erent behavior of entropy in di�erent ranges of λ, viz., λ < 1, λ > 1and λ = 1.
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Figure 6.2: SvN vs. λ for various κ. In the plot S = SvN + 8 ln 2
π
. The plot showsthat the entropy diverges for λ ≤ 0 as κ → 0. The dashed line marked as κ → 0is the expeted behavior of the entropy for λ > 1.Let us �rst look at the plot of SvN vs. λ in Fig. 6.2, where di�erent linesrepresent di�erent values of κ. For λ < 1, the von Neumann entropy for small

κ saturates to a negative value as λ is varied and that saturation value dependson the value of κ. The smaller the value of κ, the more negative is the entropy,and κ → 0 takes the saturation value to negative in�nity. The long range part ofthe potential is attrative for λ > 0.5 and repulsive otherwise. But the entropyshows no signature as it rosses λ = 0.5. On the other hand, for λ > 1 where thetransition beomes �rst order, the entropy does not derease muh with κ, ratherbeomes independent of κ. It remains �nite for λ > 1 and diverges at λ = 1 like106



Chapter 6. Quantum unbinding transition for a long range potentialthe blak dashed urve in Fig. 6.2. SvN beomes positive at λ ∼ 1.3. It seems thatthis point has no signi�ane otherwise.
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κ dependene:The behavior of the von Neumann entropy with λ and κ beomes more learwhen one looks at the plot of SvN vs. κ (Fig. 6.3). This plot shows the di�erentharateristi behaviors of SvN in the three distint ranges of λ: λ < 1, λ = 1and λ > 1. For small κ, all λ < 1 urves have slope 3 when plotted against ln κ,i.e. for λ < 1, the entropy is of the expeted form 3 ln κ+ cλ whih is shown fromanalytial alulations. To get 3 ln κ, one has to see below some value of κ, andas λ approahes one, even smaller κ needs to be onsidered. But no matter howlose to 1 is the value of λ, one gets 3 lnκ until λ < 1. Exatly at λ = 1, the slopehanges suddenly to 3/2 and hene
SvN =

3

2
ln κ+ c1, for λ = 1. (6.28)A somewhat di�erent behavior is seen for the rest with λ > 1 (inset of Fig. 6.3).For small κ, the urves reah a λ-dependent onstant value and do not hange with

κ. Clearly the entropy has no κ-dependene for λ > 1 and it is �nite. By de�nition,these onstant values are cλ and SvN(λ > 1) = cλ. So, we see that there are three107



Chapter 6. Quantum unbinding transition for a long range potentiallasses:
SvN =



















3 lnκ + cλ for λ < 1,

3
2
ln κ+ c1 for λ = 1,

cλ for λ > 1.

(6.29)
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Figure 6.4: The plot of cλ vs. λ, showing a divergene at λ = 1.On cλNow we have knowledge of the κ dependent part in the von Neumann entropyfor di�erent λ. The next question is how the cλ behaves with λ, and if theyhave di�erent nature in di�erent regimes of λ. So, we ollet the cλs aording toEq. eqh6:sla and plot against λ. This plot (Fig. 6.4) shows a divergene at λ = 1indiating that (1 − λ) is an important quantity. The data points are �t into thefuntion
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2
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(1 − λ) lnκ. We see a good data ollapse (see Fig. 6.5) for various sets of data ofFig 6.2. Hene, one an write the saling form of von Neumann entropy:
(SvNλ − SvN1 )/

3

2
ln κ = F((1− λ) ln κ). (6.31)Fig. 6.5 shows that (SvNλ − SvN1 )/3

2
ln κ reahes +1 for small enough κ for λ < 1and −1 for λ > 1. One we get the saling behavior of the entropy at λ = 1, thesame away from this speial point an also be obtained.

109



Chapter 6. Quantum unbinding transition for a long range potential6.4.3 Behaviour of the Renyi entropyThe Renyi entropy is alulated by using the same wave funtion and the sameMATHEMATICA program, by using the formula of the Renyi entropy that,
Sn =

1

1− n
ln Trρn with ρ = |φ(q)|2. (6.32)The limit n → 1 gives the von Neumann entropy. The entropy is alulated forvarious λ, for λ < 1, λ = 1 and λ > 1, near n = 1.
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λ > 1.4, and the Renyi entropy beomes positive. Similarly for λ < 1, all theurves saturate to an n-dependent onstant. Fig. 6.6 shows the variation of theRenyi entropy with λ for κ = 10−10. As κ dereases, the saturation value beomesmore negative for λ < 1. This indiates that eventually it goes to negative in�nityin the limit κ→ 0. At λ = 1, the divergene of the Renyi entropy depends on thevalue of n.
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κ dependeneThe diverging behaviour beomes more evident when one plots the Renyi entropyagainst κ (Fig. 6.7 a,b, and Fig. 6.8). For λ < 1, the urves of Sn vs. ln κ arelinear with slope 3 (see Fig. 6.7(a)). For λ = 1, the slope is not �xed but hangeswith n (see Fig. 6.7(b)). The variation of the oe�ient of ln κ with n is shown inFig. 6.9(b).For λ > 1, one �nds a κ-independent entropy below some ritial value of n,
nc, whih again depends on the value of λ (see Fig. 6.8 a,b).
n dependeneIn addition, we show, in Fig. 6.10, the n-dependene of the Renyi entropy for thethree ranges of λ, viz., λ < 1, λ = 1 and λ > 1. The nature of the urves hangesbeause of the extra n-dependene in the oe�ient of ln κ for λ = 1.Fig. 6.9(a) shows the behaviour of the additive κ-independent onstant cn,λ for
λ = 1 (see Eq.(6.33)).The existene of a ut-o� nc, below whih the entropy Sn is independent of κ,beomes evident from the plot of oe�ient of ln κ vs. n as shown in Fig. 6.11(a).The value of nc seems to vary with λ in a linear fashion, nc = λ − 0.1, for λ > 1(see Fig. 6.11(b)). 111
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Sn =































3 lnκ+ cn,λ, for λ < 1,

f1(n) ln κ+ cn, for λ = 1,






cn,λ, for λ > 1, n < nc(λ),

fλ(n) lnκ+ cn,λ, for λ > 1, n > nc(λ).

(6.33)
A saling form of the Renyi entropy involving an nc and n-dependent oe�ientof ln κ is expeted, but yet unknown. 112
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1−λ divergene in the entropy. These three distint lassesollapse onto a single urve when (SvNλ −SvN1 )/3
2
ln κ is plotted against (1−λ) ln κ.This data ollapse indiates that there is a ommon saling behavior of the entropyfor any λ and that λ = 1 is speial. Beause of the dependene of the divergingfator on (1 − λ), one has to be areful in taking the required limit of κ → 0 asthat would give a log orretion in entropy for λ = 1. For g > 1/4, λ is imaginarywhih we do not onsider here. Here we foused on the multiritial point at λ = 1.There is one more multiritial point at λ = 0 with KT transition whih has notbeen studied so far. 114
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Chapter 6. Quantum unbinding transition for a long range potentialwould then expet an n-dependent saling of the Renyi entropy.For λ < 1, restriting to the ritial ase, we see ρ(q) ∼ |φ(q)|2. These are theeigenvalues of the density matrix. Now the redued density matrix ρ desribes amixed state, though the full ground state is pure. Being a mixed state, we mayrepresent ρ as a �thermal� density matrix, ρ ∼ exp(−βHent), as done in Eq.(6.6).Sine the entanglement spetrum is known, we have
βHent ≈ ln |2F1|2 ≈

1

2

q2

κ2
, for q → 0, (6.34)identifying β = 1/κ2 and Hent = q2/2. As mentioned before for this Hamiltonian

SvN = d
2
lnT . Sine in this ase T ≃ κ2, we �nd SvN ∼ d lnκ.What next: In the next hapter, we study the stohasti paths viewing poly-mers length as time. A polymer then an be onsidered as a random walker. Theproblem of random walk is itself is a vast area of study. We onentrate on thee�et of the random medium on the mean square displaement, orrelation andthe persistene of the random walker in a disordered medium.Appendix : Calulation of the normalization on-stants A and BThe normalization onstants A and B are found using the ontinuity onditionand taking limit κ→ 0, that

4π

[
∫ a

0

|A2| sin2 kr dr +

∫ ∞

a

r|B2H
(1)
λ

2
(iκr)| dr

]

= 1.The ontinuity ondition, Eq.(6.14), replaing A by B,
[

(

2πa− π

k
sin 2ak

) | H(1)
λ (iκa) |2
sin2 ka

+ 4π

∫ ∞

a

r | H(1)
λ (iκr) |2 dr

]

|B|2 = 1. (6.35)Now we use the form of the Hankel funtion in the limit κ→ 0,
| H(1)

λ (iκr) |2 ∼ 2λΓ2(λ)

π2
r−2λ, (6.36)116



Chapter 6. Quantum unbinding transition for a long range potentialand rewrite the outer part integral in the normalization ondition in a simplerform,
∫ ∞

κa

r | H(1)
λ (ir) |2 dr

=

∫ 1

κa

[

|H(1)
λ (ir)|2 −2λΓ2(λ)

π2
r−2λ

]

dr +

∫ 1

κa

2λΓ2(λ)

π2
r−2λ dr+

∫ ∞

1

r |H(1)
λ (ir)|2 dr

=
Γ2(λ)

π2 21−λ
1− (aκ)2(1−λ)

1− λ
+ ... (6.37)Putting Eqs.(6.37) and (6.36) in the Eq.(6.35) after simpli�ation one gets,

|B|2 =
π

2λ+1Γ2(λ)

[(

λ2 + a2k2 − 1/4

ak2

)

(aκ)−2λ +
1

κ2
1− (aκ)2(1−λ)

(1− λ)

]

,(6.38)whih in the extreme limit of κ→ 0 gives the κ dependene of B,
|B|2 ∼







κ2, for λ < 1,

κ2(aκ)2λ−2, for λ > 1.
(6.39)One B is obtained, the κ-dependene of the other onstants A an be found usingthe ontinuity ondition,

|A|2 ∼







(aκ)2−2λ/a, for λ < 1,

1/a, for λ > 1.
(6.40)
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Chapter 6. Quantum unbinding transition for a long range potentialList of symbols
A,B Normalization onstants of the wave funtion
a Width of the potential
p, q Momentum
d Dimension
g Strength of 1/r2 potential
Hent Entanglement Hamiltonian
H Hamiltonian
|k〉 Basis of momentum states
λ Redued strength of 1/r2 potential
m Mass
µ Redued mass
N Length of polymer
Ω Reunion partition funtion
Ψ Reunion exponent of two polymers
r Relative distane
σ0 Bubble entropy per unit length
SvN von Neumann entropy
Sn Renyi entropy
T Temperature
t Time
u Dimensionless short range potential
V0 Depth of the potential well
V Potential
Z Partition funtion
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7Random walks in disordered media
Anomalous di�usion arising from broad waiting time distributions, has been usedto model a variety of physial phenomena. For example, dynamis of arrier di�u-sion and reombination in disordered media, the eletrial properties of disorderedmedia, photo-ondutivity of amorphous insulating materials, frequeny depen-dent ondutivity of hollandite et. have been desribed in terms of a ontinuoustime random walk (CTRW) [48℄-[118℄.Many physial situations are enountered whih an be modeled as randomwalks in quenhed disordered media, e.g., ondutivity of amorphous materials orquasi-one-dimensional ioni ondutors, dynamis of domain walls or disloationset. In this hapter, we study the random walk with a power law distribution oftransition rates in whih the spreading beomes subdi�usive [119℄-[123℄, namely,

〈x2(t)〉 ∼ t2β , with β < 1/2. (7.1)This hapter is organized as follows. In Se. 7.1 we disuss the model and itsrelevane to physial systems. The results are disussed in Se. 7.2. Consider-ing four models of disorders, the behaviour of the mean square displaement, thewaiting time distribution, two time orrelation funtion and the persistene prob-ability are observed in this setion. In Se. 7.2.5 we try to give explanations to theanomalous behaviour of the persistene probability of one of those four models.
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Chapter 7. Random walks in disordered media7.1 Lattie models and simulationsThe random walk is performed on a 1D regular lattie of L sites, with periodiboundary onditions, i.e., the site i = L + 1 is identi�ed with the �rst site i = 1.Only hopping between nearest neighbor sites are allowed and the hopping rates
Wi,j are hosen from the power law distribution Eq. (1.60). This is arried outnumerially by �rst generating a uniform random number r in the interval [0, 1]and using the transformation w = r1/(1−α) with suitable resaling by a onstant.There are two standard hoies in assigning the hopping rates Wi,j between twoneighbouring sites, namely,(i) Random barrier model or bond disorder (RB): Hopping rates are assignedto the bonds, Wi,i+1 =Wi+1,i. I.e. the transition rate from i to i+1 is the same asthe rate for the reverse transition and thus bond onneting two neighboring sitesats as a symmetrial barrier (Fig. 7.1)

wi,i−1

i−1,iw

i−1 i i+1

wi,i−1

i−1,iw

i−1 i i+1

Figure 7.1: The bond disorder or random barrier model. In this model the hoppingrate Wi,i−1 =Wi−1,i.(ii) Random trap model or site disorder (RS): Random hopping rate is assignedto eah site whih ats as a trap, Wi,i+1 = Wi,i−1. I.e. the transition rate from asite i is independent of the target site (i ± 1) and one the random walker omesout of the trap it has equal probability to jump to either of the two neighboringsites (Fig. 7.2).Further, for eah of the above type of assignment of transition rates one ande�ne further an annealed or a quenhed model. In the annealed models, a newtransition rate Wi,j is assigned eah time the walker visits a site i. In the quenhedmodels, a set of Wi,j's for the entire lattie is hosen at the beginning of thesimulation and is referred to as a disorder realization.Hene, we have four models, namely, (a) Annealed Site disorder (AS), (b)120



Chapter 7. Random walks in disordered media
i−1 i i+1

wi,i+1

i−1 i i+1

wi,i−1 i,i−1w wi,i+1

Figure 7.2: The site disorder or random trap model. In this model the hoppingrate Wi,i−1 =Wi,i+1.Annealed Bond disorder (AB), () Quenhed Site disorder (QS) and (d) QuenhedBond disorder (QB).In eah Monte Carlo Step (MCS), the random walker at site i makes an attemptto jump to either neighbouring site (j = i ± 1) with a probability proportional
Wi,j . All the Monte Carlo simulations have been performed on a lattie of L = 103sites with periodi boundary ondition. The random walker starts at an arbitrarilyhosen site at t = 0 and the simulations are arried out for a typial maximum time
T ∼ 106MCS. For the annealed models, the observed quantities are averaged overall initial onditions randomly hosen with equal weight. For the quenhed models,a further averaging over disorder realizations is done (typially 103 samples).The di�erene between quenhed disorder and annealed disorder models liesin the fat that the mean waiting time at a given site is the same for eah visitof the site for the quenhed models, thus induing strong orrelations betweenthe suessive waiting times enountered. It makes the quenhed problem moredi�ult to analyze.7.1.1 Relevane to real systemsThe hoie of power law distribution of hopping rates �nd many appliations inmodeling various physial systems. Some examples are following [113℄:(i) The temperature dependene of the dynamial ondutivity exponent ob-served in the one-dimensional superioni ondutor hollandite [124℄.(ii) Continuum random systems suh as the Swiss-heese model an be mappedonto random perolation networks with a power-law distribution of bond ondu-tivities [125℄.(iii) The problem of biased di�usion in random strutures suh as the random121



Chapter 7. Random walks in disordered mediaomb or the perolation system an be modeled by biased di�usion in a linearhain with a power-law distribution of transition rates [126, 127℄.(iv) Anomalous relaxation in spin glasses an be interpreted in terms of stohas-ti motion in phase spae with a power-law distribution of transition rates [128,129℄.7.2 Numerial resultsWe present below, the numerial results for the mean square displaement 〈x(t)2〉,waiting time distribution ω(τ), two-time inremental orrelation funtion C(t1, t2)and persistene probability P (t) for all the four models for 10 values of α in theinterval [0, 1].7.2.1 Mean square displaement 〈x2(t)〉The disorder averaged square displaement 〈x2〉 for all ases an be written in ageneral form:
〈x2〉 ∼ t2β. (7.2)The wandering or spreading exponent β for the four models we onsider are knownfrom various analytial arguments [67, 69, 48℄, whih are veri�ed by our numerialresults.1. Annealed bond disorder: β =







1
2
, 0 ≤ α < 1

2
,

1− α , α > 1
2
,2. Annealed site disorder: β = 1−α

2
, 0 ≤ α < 1,3. Quenhed bond disorder: β = 1−α

2−α , 0 ≤ α < 1,4. Quenhed site disorder: β = 1−α
2−α

, 0 ≤ α < 1.7.2.2 Waiting time distribution ω(τ)The distribution of the hopping rates, ρ(W ) ∼ W−α, in turn produes a waitingtime distribution ω(τ) ∼ τ−µ. For the annealed models and the quenhed sitemodel, the waiting time distribution ω(τ) and ρ(W ) are simply related, sine the122



Chapter 7. Random walks in disordered media(a) (b)
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Figure 7.3: The waiting time distribution ω(τ) vs. τ for (a) annealed site disorderand (b) annealed bond disorder for di�erent α.(a) (b)
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−1 is large, i.e. for avalley enlosed by two large barriers (Fig. 7.1). But these are di�ult to reah aswell and hene are sampled less in quenhed bond disorder model. In this ase thebonds are not sampled aording to the original disorder distribution and thus the123



Chapter 7. Random walks in disordered mediawaiting time distribution an not be related to ρ(W ) as simply [48℄.We �nd that the waiting time distributions found in our numerial simulationsare onsistent with the analytial preditions:
ω(τ) =























τ−(3−2α) for annealed bond (AB), (7.3a)
τ−(2−α) for annealed site (AS), (7.3b)
τ−(4−2α) for quenhed bond (QB), (7.3)
τ−(2−α) for quenhed site (QS). (7.3d)Figs. 7.3 and 7.4 show the variation of waiting time distribution with time. Thevalue of β obtained in the previous setion for the ases AB, AS are onsistent withthe above results for the waiting time distribution (β = µ−1

2
). For the QS problem,it an be seen that even though the waiting time distribution is the same as thatfor AS, the exponents β in the two ases are di�erent. This is a onsequene of thetemporal orrelations indued due to the quenhed randomness in the model. Forthe AB model, for 0 ≤ α < 1

2
, µ > 2 and thus one gets normal di�usion, whih isonsistent with the value of β observed for this regime.7.2.3 Two point inremental orrelation funtion C(t1, t2)(a) (b)
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Chapter 7. Random walks in disordered mediainremental orrelations behave qualitatively di�erently. For annealed disorder, theform of two point inremental orrelation is known from a representation in termsof oupled Langevin equations as shown by Baule et al. The two-point orrelationfor quenhed disorder is not analytially known. The same for annealed disorderdisplays the non-stationary harater of the CTRW proess. For annealed bondand annealed site disorder it is expeted to be |t2β1 − t2β2 | and from simulations wedo get results onsistent with these. Further, for quenhed site disorder we seethe same behaviour of two-point orrelation (see Fig. 7.5(b)) whereas for quenhedbond disorder
C(t1, t2) ∼ |t1 − t2|2β ,for long times. To show the stationarity more learly, we plot C(t1, t2) against

|t1− t2| in Fig. 7.5(a). In log sale, this plot is a straight line for large |t1− t2|. Forthe other ase, we take t1 ≫ t2 and keep t2 �xed, and plot against t1. The reasonof plotting against t1 is that, in this limit,
|t2β1 − t2β2 | = t2β1
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∼ t2β1 . (7.4)We see, only quenhed bond disorder has a stationary two point inremental orre-lation while others have deaying orrelations. The stationarity an be observed inthe plot of C(t1, t2) vs. t1 for �xed |t1−t2|. Hene, in spite of having the same sal-ing behaviour of the mean square displaement with the same dynami exponent
β, C(t1, t2) behaves qualitatively di�erently for the quenhed bond disorder.7.2.4 Persistene probabilityFigs. 7.6 and 7.7 are the log-log plots of P (t) vs. t for di�erent models of disorder.In eah graph there are ten data sets for ten di�erent α values. Asymptotially,these plots are straight lines with slope θ whih is extrated for eah data setusing standard �tting routines. In Fig. 7.8, exponents θ and β are plotted against
α simultaneously. It is observed that the persistene exponent θ is equal to theorresponding β in all ases exept for quenhed bond disorder, in whih ase

θ = min(1− β, 2β). 125



Chapter 7. Random walks in disordered media(a) (b)
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Chapter 7. Random walks in disordered mediaAnnealed QuenhedBond Site Bond Site
t0.5; 0 < α < 1

2
t2β; 0<α<1 t2β ; 0<α<1 t2β ; 0<α<1

〈x2〉 t2β ; 1
2
< α < 1

β = 1− α β = 1−α
2

β = 1−α
2−α β = 1−α

2−α

ω(τ) τ−(3−2α) τ−(2−α) τ−(4−2α) τ−(2−α)

C(t1, t2) |t22β − t1
2β | |t22β − t1

2β | |t1 − t2|2β |t22β − t1
2β|

θ
[P (t) ∼ t−θ ] β β min(1−β, 2β) βTable 7.1: The table shows the forms and values of di�erent quantities of interestin the four types of disorder models: annealed bond, annealed site, quenhedbond, and quenhed site disorder ases. The quantities in gray are known fromearlier works and on�rmed by our simulations. The remaining data are from oursimulations. The quenhed bond disorder ase has entirely di�erent persisteneand orrelation properties from the other three models.this would result in inrease of persistene probability and hene derease in theexponent θ. This, indeed, is what is observed in the three types of disorder, andfor the quenhed bond disorder for α > 1/2. However, ounter-intuitively, forthe quenhed bond disorder ase with α < 1/2, the persistene exponent atuallyinreases with α (see Fig. 7.8). One ould possibly argue that as the walker annot go farther with inreasing α beause of lower mean square displaement, it hashigher probability to ome bak to the starting point. But this explanation failsfor α > 1/2 for the quenhed disorder ase and the other three models. By oneof these or similar qualitative arguments, one would expet a monotoni θ-α plot.In the following, we use a number of di�erent analyti and saling arguments toexplain the observed nontrivial dependene of θ andα.Spae-time resalingThe simplest way to predit the persistene exponent in the disordered system, isto ompare with the persistene probability P0(t) for the pure system via a straight127
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Figure 7.8: Persistene exponent θ vs. α for di�erent models of disorder.forward spae-time resaling. In a pure medium,
P0(t) ∼

1

tθo
, with θ0 =

1

2
. (7.5)For a random walk in an ordered medium, or for a normal Brownian motion,

t ∼ 〈x2〉. Thus, we rewrite P0(t) in terms of the 〈x2(t)〉,
P0(t) ∼

1

〈x2〉θ0 . (7.6)Now we use the saling relation for 〈x2〉 in the disordered system to get the orre-sponding P (t),
P (t) ∼ 1

(t2β)θo
∼ 1

tβ
. (7.7)I.e., for the disordered system θ = β. Surprisingly, this simple saling argumentworks quite well as seen from the numerial results, in all ases, exept for thequenhed bond disorder ase. Below, we put a ouple of seemingly independentarguments to explain the nontrivial results for the quenhed bond disordered ase.
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Chapter 7. Random walks in disordered mediaFrational Brownian motion (fBm)A proess is termed as a frational Brownian motion (fBm) if the asymptoti twopoint inremental orrelation is stationary in time,
C(t1, t2) = 〈[x(t1)− x(t2)]

2〉 ∼ |t1 − t2|2H .The exponent H is alled the Hurst exponent. Depending on the value of H , theproesses are divided into three types.(i) H = 1/2: normal Brownian motion,(ii) H > 1/2: a proess with positively orrelated inrements,(iii) H < 1/2: a proess with negatively orrelated inrements.It is shown in [130, 131℄, that for an fBm, the persistene probability is given by
P (t) ∼ t−(1−H).For the quenhed bond disorder ase we found that the two point inrementalorrelation funtion is: C(t1, t2) ∼ |t1 − t2|2β for large |t1 − t2|. Thus, identifyingthe proess as an fBm with Hurst exponent H = β, we predit the persisteneexponent as θ = 1− β. This relation holds quite good for α < 1/2 (Fig. 7.9).However, for α > 1/2, the predition learly does not hold. In the followingsubsetion, we use the saling arguments based on the �rst passage time to havea quantitative understanding of of the persistene exponent for α > 1/2.First passage time distribution (FPT)The �rst return time problem an be deomposed into two �rst passage time prob-lems. I.e. The random walk starts at x0 at t = 0 and reahes a spei�ed target xfor the �rst time at t = t′ and then starting from x omes to X0 at time t = t. Letus denote F (x, t|x0, t0) as the probability that the walker reahes x for the �rsttime at time instant t, starting from x0 at time t0.Here we reall that the �rst passage time is related to the survival probability
S(t), the probability that the walker does not reah to the spei�ed point uptotime t through

F (t) = −dS
dt

∼ t−(1+γ).We �nd numerially that S(t) deays with a power law S(t) ∼ t−γ and from thesimulation results we �nd that γ = β (see Fig. 7.9). Hene the �rst passage time129
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F (x, t|x0, t0) ∼ t−(1+β).Thus, the �rst return probability density N(t), that the walker omes bak tothe starting point, x0, for the �rst time at t, is

N(t) =

∫ t

0

F (x0 +∆, t′|x0, 0) F (x0, t|x0 +∆, t′) dt′

=

∫ t

0

t′
−(1+β)

(t− t′)−(1+β) dt′

∼ t−(1+2β). (7.8)This in turn yields the persistene probability P (t), whih is the probability thatthe walker reahes the target for the �rst time at t′ > t as,
P (t) =

∫ ∞

t

N(t′) dt′ ∼ t−2β . (7.9)As for both fBm and FPT based arguments, there seems to be no restrition ontheir appliability based on the value of α. Hene we onjeture that the persisteneprobability is in fat a sum of the two terms, eah resulting from a di�erent set of130



Chapter 7. Random walks in disordered mediaatual dynamial trajetories, P (t) = At−(1−β) + Bt−2β for large t. This form of
P (t) easily explains the two exponents for two di�erent ranges of α as the slowlydeaying part will dominate the long time behaviour and hene the asymptotipersistene exponent. Thus, for large t, min(1 − β, 2β) dominates implying that
θ = min(1− β, 2β) whih mathes with our numerial results rather well.Similarly, for other three models, i.e., annealed site, annealed bond and thequenhed site, we similarly write the persistene probability as a sum of two terms
P (t) = At−β+Bt−2β. In these ases, the asymptoti behaviour is always dominatedby the �rst term and hene the persistene exponent θ = β for the entire range of
α. This is onsistent with the analytial known result for the survival probability
S(t) ∼ t−β for t→ ∞.7.3 Summary and onluding remarksIn this hapter, we have studied numerially the persistene properties of a randomwalker in 1D lattie where disorder in the hopping rates is introdued. We onsiderfour di�erent models depending upon whether the rates are introdued on bondsor sites and as annealed or quenhed. The rates are hosen from a power lawdistribution. The persistene exponent obtained for annealed bond, annealed siteand quenhed site disorder agrees very well with the predition from a simple spae-time saling argument. However, the orresponding exponent for the quenhedbond disorder model is qualitatively di�erent. The exponent in this ase variesnon-monotonially with the disorder strength exponent α. Using two di�erentarguments, one based on a result for frational Brownian motion (fBm) and anotherusing the �rst passage time distribution we show that the persistene probabilityin this ase is a sum of two terms P (t) = At−(1−β) + Bt−2β . Thus, one of theterms dominates depending on whether β is greater or less than 1/3, i.e., whether
α is greater or less than 1/2. We further argue that though in ases of annealedbond and site disorder and quenhed site disorder we see a single exponent atlarge time, two exponents, β and 2β are present simultaneously for all α. At largetime only the slowly deaying part, having exponent min(β, 2β) = β, shows upin our results. For the quenhed bond disorder ase, based on numerial studieswe onjeture that there seems to be two lasses of dynamial trajetories, both131



Chapter 7. Random walks in disordered mediapresent for all α, responsible for two exponents. It would be interesting to analyzethe persistene properties of quenhed bond disorder in some more detail as itmay provide some new information and explore properties relating to the randommotion of partiles in this kind of disordered media.List of symbols
α Hopping rate exponent
β Root mean square (RMS) displaement exponent
C(t1, t2) Two-point inremental orrelation funtion
F (t) First passage time distribution: F (t) ≡ F (x0, t|x0, 0)
F (x, t|x0, t0) First passage time distribution that the walker reahes

x for the �rst time at t starting from x0 at time t0
γ Exponent of survival probability distribution
H Hurst exponent
l(t) RMS displaement of a random walker after time t
µ waiting time exponent-1
N(t) First return probability
ω(τ) Waiting time distribution
P (t) Persistene probability upto time t
ρ(W ) Hopping rate distribution
S(t) Survival probability
θ Persistene exponent
T ln t

t, τ Time
Wi,j Hopping rate from i-th to j-th site
x(t) Position of the random walker at time t
〈x2(t)〉 Mean square displaement of a random walker after time t
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8Summary
This thesis ontains some studies on stohasti paths, espeially in the ontextof unbinding transition of polymers. The unbinding transition ours when theinteration between the two polymers are varied, or, in the ase of the DNA, thepulling fore on the strands of a double helial bound DNA is inreased. Theoverall qualitative features for this phase transitions and the phase diagram arevery similar to some other system, though the mehanisms or the detailed dynamisare ompletely di�erent. We explore suh onnetions for better understanding andgeneri nature of the problem.The �rst hapter shows that by using thermodynami arguments, one an un-derstand the phase diagram and the nature of the phase transition. Our fous is onthe interfaes between phases rather than looking at the phases. By emphasizingthe fat that the double helial state is a broken symmetry phase ompared to thedenatured phase, we introdue the helial order parameter to desribe melting.Along with this, we put in another modi�ation that the pulling fore atuallytries to penetrate the zipped phase but experienes resiliene and deays to zeroafter some distane. In our study, we �nd that the ombined e�et of the helialorder and the fore penetration into the zipped phase an atually produe a phasetransition whih is seond order. Moreover, the ompetition of the two indepen-dent length sales, one for the damage in the helial order through the interfaeand the other for the penetration of fore upto a length, an hange the sign ofthe interfaial energy from positive to negative, resulting in a seond order phasetransition. Beause of the similarity of the formulation to that of the superon-dutors, we name the two lasses of DNA as Type I (positive surfae energy) and133



Chapter 8. SummaryType II (negative surfae energy).In the next hapter, we move our attention from a �xed fore ase to a periodione, the unzipping of a DNA by an external fore on the strands, where the foreis varied periodially. Beause of the �rst order nature of the zipping-unzippingphase transition at the ritial fore, one would expet hysteresis for a periodifore. The results from the MD simulation on a DNA hairpin shows that thestandard averaging over many yles of the fore suppresses the atual pitureof the states. Here we emphasize the point that one should look at the time-resolved loops, the quantity of interest being the average separation between thetwo strands over one yle. The two-state nature of the problem reminds us ofanother simpler and well-known system, viz., an Ising ferromagnet. Very similarresults are shown to be produed from the MC simulation of an Ising ferromagnetunder a periodi magneti �eld. The relevant quantity for the Ising ase is theaverage magnetization over one yle. In terms of that we propose a dynamialphase diagram in the magneti �eld vs. frequeny plane. The main lesson onelearns from this study is that though the two systems, DNA and the Ising magnet,have ompletely di�erent dynamis, they behave in a similar way under the periodidrive. The dynamial phase diagram reveals the possibility of the phase transitionby varying only the frequeny of the external drive.When a system undergoes a �rst order phase transition, then under a peri-odi variation of the parameter induing the phase transition, the system showshysteresis. It is beause of the mismath in the time sales of the relaxation ofthe system and the applied drive. The relaxation time beomes very large nearthe phase transition. In this ontext, in the third hapter, we disuss a methodto get the equilibrium quantities from nonequilibrium measurements by using thework theorem and the histogram tehnique. We present a dynamis-independentproof of the work theorem and generalize the theorem to any thermodynami in-tensive parameter inluding the temperature and any arbitrary number of them.The nonequilibrium work onneting to on�gurations are used to onstrut aspeial matrix whose prinipal eigen-vetor is the equilibrium probability distribu-tion. This hapter also shows how an equilibrium urve an be obtained from thenonequilibrium hysteresis loop by using appropriate weight fators. The resultsare veri�ed by the MC simulation of an Ising magnet.The fous of the fourth and the �fth hapters is on exploring the onnetion of134



Chapter 8. Summarythe polymer unbinding transition to the quantum dissoiation. An imaginary timetransformation maps a lassial polymer partition funtion into a quantum propa-gator. Thus a problem of two interating polymers maps on to the problem a twoquantum partiles interating via a potential. In the ase of the quantum prob-lem, the QPT is ahieved by varying the strength of the interation. The quantumdissoiation being a quantum phase transition (QPT), we use the quantum entan-glement to observe the signatures of the QPT. The von Neumann entropy showsthe speial features of a polymer unbinding transition. This is veri�ed analyti-ally for a short-ranged potential and by exat numerial alulations for inversesquare potential. The speial points or the RG �xed points show di�erent salingbehaviours whih are justi�ed from the polymer entropy. We �nd the quantumentanglement entropy to be negative whih an be justi�ed when thought of interms of the polymer language. The study of the quantum entanglement is thenextended to the Renyi entropy where we have extra omplexities, though similartype of the saling behaviour is expeted. The exat saling form is not yet knownto us.Lastly, we go beyond the polymer piture to onsider a polymer as a randomwalker. We study the random walk problem in presene of disorder in the medium.We look at the mean square displaement, two-point orrelation funtion, and thepersistene probability as a funtion of the strength of disorder. The persisteneprobability an be identi�ed as the reunion probability of the polymer. We studyone-dimension random walker with a power-law distribution of hopping rates. A-ording to the assignment of the hopping rates to the left and to the right, onean have random bond model and random site model. For a disordered medium,one may think of two kinds of disorder averaging, quenhed and annealed. Thus,we onsider all the four ases; quenhed site, quenhed bond, annealed site, an-nealed bond disordered ases. For suh types of models with broad waiting timedistribution, generated by the power-law hopping rate distributions, makes thedi�usion anomalous, more spei�ally, sub-di�usive. Although we start from thesame hopping rate distributions, the four ases have di�erent waiting time dis-tributions, two-point orrelations and the persistene properties. The results ofthe quenhed site, annealed bond, and annealed site disordered ases are in linewith our expetations, while the quenhed bond disorder has qualitatively di�er-ent behaviour. We use a result from the frational Brownian motion (fBm) and an135



Chapter 8. Summaryargument based on the �rst passage times to explain the nontrivial dependene ofthe persistene exponent in the ase of quenhed bond disorder.In onlusion, this thesis sees a few polymer problems from a new angle andexplores the onnetions to other systems whih are apparently di�erent. Thebehaviour of the polymers and DNA are studied in equilibrium and nonequilibrium.Viewing a polymer as a �utuating path, the paths are studied through worktheorem, as quantum trajetories, and as random walkers. Thus di�erent topisare uni�ed through the polymer language, hene revealing its generi nature.
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