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Synopsis

Pattern formation at nanoscale is currently an active field of research. It is important for a

growing number of technological applications such as fabrication of nano-devices, designing

of materials with desired electrical, optical and mechanical properties [1]. Nanopatterning on

surfaces can be achieved by many ways, for example by self-organization and artificially by

direct atom manipulation, to name a few [2–4]. It is also important from a theoretical point of

view as it presents a considerable amount of challenge for a theoretical understanding of the

processes at nanoscale. In the pattern formation at nanoscales, it is experimentally found that

clusters are formed and are distributed on the surface, leading to interesting types of nanopat-

terns. So, it is important to model and study theoretically cluster formation and its dynamics

over a time period.

The surface plays a very crucial role in deciding the properties of the nanostructure. It

has been observed that preferential nucleation of self-organized nanostructures takes place on

the surface along step edges [5, 6], dislocations [7–10] anddomain boundaries [11, 12]. We

have proposed a two dimensional reaction-diffusion mechanism for the formation of clusters

in the presence of surface defects such as point defects, ring defects and extended island like

defects [13]. But, the model is general enough to implement inarbitrary dimensions.

Reaction-diffusion models have been used to model pattern formation in physics, chem-

istry and biology [14]. In a seminal paper by Alan Turing, it was shown for the first time that, a

variety of pattern can emerge from a spatially homogeneous state due to diffusion driven insta-

bilities [15]. This instability, called the Turing instability, was originally proposed to explain

morphogenesis. Reaction-diffusion models in disordered media have been studied extensively

in the past [16] for various physical and chemical processes. Disordered media has been mod-

eled through fractals, percolation clusters, hierarchical lattice or quenched disorder. Various

aspects of reaction-diffusion processes in disordered media such as self-segregation of diffus-

ing particles [17, 18], long time behavior of the decay of particle density [19–21], the kinetics

of diffusion limited coalescence and annihilation in random media [22–25], have been studied.

Recently, the effect of quenched disorder and internal noiseon the transport properties in a

reaction-diffusion model has been studied for the ’birth-death’ process in a real world situa-

tion [26]. Reaction-diffusion in disordered systems is alsoused to model the decay and preser-

vation of marine organic carbon [27]. It is generally found that reaction-diffusion processes in
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random media show anomalous behavior [28].

In this thesis we present a theoretical study of reaction-diffusion models in the presence of

disorder. The motivation of this work comes from experiments in which Ge is deposited on

Si surfaces. From the experiments it was found that clusterswere preferentially formed at the

locations of surface defects on Si surfaces [13]. Through these reaction-diffusion models the

growth process of Ge clusters on Si surfaces are studied. It is found that patterns formed are

qualitatively similar to those observed in the experiments. So, we establish through this work

that these patterns are primarily induced by surface defects and domain boundaries.

In the first part of the thesis we study the cluster formation by linear reaction-diffusion

model. The cluster formation process is approximated by a first order reaction of the form

S ⇋ P . HereS denotes the deposited Ge ad-atom andP denotes the Ge-cluster. This simpli-

fied reaction scheme arises, due to the fact that we do not distinguish between different sizes

of clusters as different species of product. The origin of the assumption is as follows. Since

the diffusion coefficients of these clusters are almost same, we therefore denote all clusters by

a single speciesP . The surface defects are assumed as isolated regions on the Si surface where

the reactions take place. However, away from the defects there is only diffusion and no reac-

tions can occur. Diffusion takes place on the surface with constant diffusion coefficients. The

coupled reaction-diffusion equations are solved by Green’s functions and regular perturbation

technique in the abstract vector space [29,30]. In this case, the natural vector space is a Hilbert

space [31]. It is to be noted that when the problem is cast withrespect to its natural Hilbert

space, remarkable similarities with related quantum mechanical scattering processes are nicely

revealed [30].

It can be shown that forNd surface defects the coupled reaction-diffusion equationsin the

Laplace domain forms a set of2Nd linear equations. Solving2Nd linear equations gives the

solution at each defect position. Furthermore, the solution at an arbitrary position can then be

expressed as a linear combination of the all the solutions atdefect positions. We have obtained

the concentrations by implementing Talbot method for numerical inverse Laplace transforma-

tion [32]. From our numerical calculations we have found that clusters start emerging at the

location of the surface defects and grows with time. In the long time limit the profile becomes

flat as more Ge is deposited. This is also true in the experimental case. We have explored

numerically the sizes of these cluster as a function of the reaction rates and the diffusion con-

stants. Furthermore, we have studied the cluster formationin the presence of large number of
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defects by Monte Carlo simulations. The first passage time statistics is studied and we have

obtained empirically the first passage time probability density.

In the second part of the thesis we consider the formation of cluster in the presence of ex-

clusion. The origin of exclusion is related to non-bonding interactions between the particles.

In any volume element only a finite number of particles can be accommodated. So, when the

number of cluster particles in the volume element increases, adatoms and/or cluster particles

repel one another. This in turn, prevents packing of uncountable number of particles in a given

volume. The non-bonding interaction is an effective force of repulsive nature between the dif-

fusing particles. Diffusion coefficients of the reacting species are determined experimentally.

In the reaction-diffusion equations, adatom-adatom and cluster-cluster exclusion effect are ab-

sorbed in the mean field way in their diffusion coefficients respectively. So, in the zeroth order

approximation this self exclusion contribution can be assumed to be negligible. The adatom-

cluster exclusion is incorporated into the reaction-diffusion equations through a repelling force

proportional to the gradient of the concentrations. This type of approach has been taken to

understand chemotaxis in biological problems [33,34].

It is found that the exclusion terms can be derived from the microscopic principle using

master equation. Nonlinear term appears in the reaction-diffusion equations which consists of

coupling of the concentration of one species with the gradient of the other species. We assume

that the medium is inhomogeneous and consists of point defects. For the cluster formation in

the vicinity of a surface defects, we further consider an algebraic nonlinear reaction process in

whichη number of adatoms react to form a cluster.

Clearly the problem becomes too difficult to be tractable analytically. However, in the limit

when exclusion effect is weak we find a linearized reaction-diffusion equation. The linear

equation gives us very important insight into the process. We find that due to the presence of

exclusion an extra drift term appears in the reaction-diffusion equations. For the adatoms the

drift velocity is outward from the location of the point defect where as for the cluster parti-

cles it is directed into the defect site. Furthermore, it also breaks the symmetry of the reaction

terms by effectively modifying the reaction rates. These linearized equations are solved in the

Laplace domain using the Green’s function method. The solution is obtained by Talbot nu-

merical inverse Laplace transform. Numerical investigation using finite difference methods is

further conducted in one and two dimensions for varying exclusion strengthǫ and nonlinear-

ity η. From our numerics, we confirm that, the predictions of the modified linear equations
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qualitatively agrees with the original equations. The width of the cluster concentration profile

is found to be decreasing with increasing exclusion strength and decreasing nonlinearity. In

two dimension it is found that the mean concentration decreases with nonlinearity and exclu-

sion. The most interesting conclusion that we can draw from this model is that, exclusion and

algebraic nonlinearity both suppress the formation of clusters.

We have further studied the effect of self-exclusion in reaction-diffusion process. In this

model we consider a single static trap (T ) at the origin where a diffusing adatom (S) get ad-

sorbed at a constant rate i.e.S +T → T . Self-exclusion however has the opposite effect on the

reaction-diffusion process as compared to the exclusion ofadatoms due to the cluster and vice

versa. We note that the self exclusion can also described through a concentration dependent

diffusion coefficient. Perturbative solution to the reaction-diffusion is calculated upto second

order in reaction rate. It is found that the width of the depletion zone increases and is propor-

tional to exclusion strengthǫ. The concentration at a the trapping site is more as comparedto

the case when exclusion process is absent.

We finally conclude that reaction-diffusion models in inhomogeneous media can be used

successfully to describe the formation of clusters at nanoscales in the presence of surface de-

fects of any topology, step edges and domain boundaries. Thesurface defects are modeled as

reaction centers in the reaction-diffusion model having various topologies. We find that models

considered, albeit minimal in nature, are quite good in explaining qualitatively the formation of

clusters. In the nonlinear model we have investigated the effect of exclusion and nonlinearity

in the cluster formation process. We draw the most importantconclusion that exclusion and

nonlinearity both have a suppressing effect in the formation of clusters.
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Chapter 1

Introduction to pattern formation and
reaction-diffusion systems with disorder

1.1 Introduction

Since ancient times pattern formation in nature has been a great source of curiosity and fascina-

tion to mankind mostly due to their aesthetic values. Everything that we see around us possesses

some kind of pattern. A beautiful pattern that can be observed in objects like snowflakes, crys-

tal structure, hexagonal convection cells, pattern on the wings of a butterfly, sunflower, etc is

usually identified by a high degree of symmetry. These beautiful structure are mostly ordered

geometrical objects or fractal structure with certain symmetries. However, there are other pat-

terns in nature which are equally fascinating but, which appears not so beautiful. These patterns

are mostly random patterns with no specific order or length scales. Some common examples

of random patterns are turbulence, diffusion limited aggregation clusters, fracture, percolation,

etc. When we look at these patterns we can observe that nature repeats certain kind of similari-

ties in a large number of seemingly unrelated patterns. It may also happen that similar kinds of

pattern found at widely separated length scales have a common mechanism by which they are

formed.

At nanoscales a large variety of pattern can be seen. In a number of cases formation of

pattern at nanoscale can also be modeled by the same equations that describe macroscopic

pattern formation. In the following we shall discuss the experimental motivation of the present

work on cluster formation at nanoscale.
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1.1.1 Experimental motivation

In the recent years there has been a tremendous amount of research devoted to understand

physics at nanoscale. The formation of patterns at nanoscale has been studied extensively.

Patterns at nanoscale is achieved both by self-organization [1–3] as well as artificially [4].

Self-organized alignment of island has been studied by a number of author [6, 11, 35, 36]. It

has been found that the variation of strain field over the surface has significant effect on surface

diffusion and nucleation of islands [7]. Also the presence of disorder on the surface plays

a very important role in the formation of the nanopattern. Self-organized nanostructures is

observed to favor nucleation along step edges [6,13,37,38], dislocations [7,39–41] or domain

boundaries [11,13,42].

Epitaxial growth of Ge on a clean, defect-free Si surfaces, proceeds through the completion

of a wetting layer, grown in the layer-by-layer mode [43] viaeither 2D island nucleation or

step flow [44–46]. However, in the presence of defects such asdomain boundaries, Ge adatoms

deposited on the surface follow the preferential nucleation and growth at domain boundaries

[13].

Various types of defects are formed on Si(111)-(7×7) surface [11, 47–55]. From our ex-

periments we have observed the presence of bilayer steps andterraces with domain boundaries

formed on clean Si(111)-(7×7) surface. Growth processes on these surfaces are stronglyin-

fluenced by the presence these defects. In Fig. (1.1)(a) we can see a1000 × 1000 nm2 area

which shows bilayer steps along the vertical direction (dashed line) and terraces with domain

boundaries along the horizontal direction (solid line) on the clean Si(111)-(7×7) surface. These

defect may have been formed due to a short annealing period orfrom the presence of contami-

nants on the surface [50]. Irregularity in these structuresmakes it difficult to understand these

defects [53]. The strong interaction between dimer and adatoms, changed electronic config-

uration between faulted and unfaulted halves of the unit cells and other metastable triangular

subunits (i.e. 5×5 unit cell) play a key role in the formation of these structures. We have ob-

served that a prolonged flash (∼ 5min) at∼ 1200oC followed by controlled cooling to room

temperature produces such domains.

In Fig. (1.1)(b) we can see a high resolution STM image which shows the atomic arrange-

ments of 7×7 surface reconstruction.Furthermore, due to missing atoms at isolated points

from the surface layer, defects are formed at random positions. The height profiles are shown
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Figure 1.1: STM images of Si(111)-(7×7) surface: (a) steps and domain boundaries on terraces
are seen (scan area1000× 1000 nm2, bias voltage−2 V, tunneling current0.18 nA), (b) a high
resolution STM image (scan area40 × 40 nm2, bias voltage2.3 V, tunneling current0.19 nA)
- a part of the image in (a) - shows (7×7) surface reconstruction. The depth of the dark regions
and the height of the bright spot in (b) are∼ 0.1 nm. Height profiles from the image in (a) are
shown - (c) along the vertical dashed line and (d) along the horizontal line. The step heights
[seen in (c)] correspond to a bilayer height (0.31 nm) or a (111) planar spacing.

in Fig. (1.1)(c) and (d). A height scan across the step edges show that the steps are bilayer steps

Fig. (1.1)(c). A scan on the terrace shows that the domain boundaries are trenches of depth

∼0.1nm and width∼0.2nm. The domain boundaries appear almost straight and perpendicular

to the terrace.

From the deposition of Ge on these surfaces we observed that Ge adatoms nucleate first

at the domain boundaries and the step edges and subsequentlyon the flat terraces. Similar

growth processes has been reported earlier by a number of authors [6, 11, 56]. Sgarlata et. al.

have shown that, after formation of wetting layer, the Ge islands grow preferentially along the

step edges [6]. In our experiment we have found that preferential growth of Ge within the

wetting layer (0.5 bilayer). Similar growth processes havealso been reported [57, 58].In Fig.

(1.2) we see a dense decoration of domain boundaries with Ge islands and smaller density

of islands within the domains. Due to the missing adatoms at the domain boundaries, a large

number of broken bonds are present there. The adsorption of Ge adatoms reduces the number of

broken bonds which is thermodynamically favorable as it lowers the free energy of the system.

The stability of the structure has been tested experimentally by annealing the sample for 30

min at the same temperature. Once the Ge clusters are formed,the cluster diffusion would be

3



Figure 1.2: STM images (bias voltage2.2 V and tunneling current0.2 nA) from a0.5 BL Ge
grown a Si(111)-(7×7) surface at elevated substrate temperature (∼ 550◦C) showing pattern
formation: (a) scan area2500× 2500 nm2 (b) scan area2000× 2000 nm2 at different positions
on the surface. Three denuded regions are marked in (a) and (b). Ge clustering is dominant at
domain boundaries and step edges.

negligible compared to adatom diffusion. Smallest domain has Ge cluster only at the step edges

and domain boundaries, the domains themselves are denuded (marked by circles in Fig. (1.2)).

The largest such domain is∼80nm which gives an estimate of the effective diffusion length.

Diffusion lengths of the same order has been observed in Ref. [11] (90 nm) and [58] (70 nm).

We propose a reaction-diffusion model of cluster formationobserved in these experiments.

We assume that clusters are formed in localized areas where the defects are located. Since the

structure appears first at the domain boundaries and the stepedges, it indicates that the reaction

rate at the boundary is higher from the rate at the defects inside the domains.

In the following section we present a brief review of some of the key concepts and some

important results in pattern formation. The theory of pattern formation in reaction-diffusion

systems is discussed in Sec. 1.3. Here we will discuss the Turing mechanism of pattern forma-

tion. In Sec. 1.4 we review reaction-diffusion processes indisordered media. We will discuss

using a simple example of trapping reaction-diffusion problem how anomalous behavior arises

due to the presence of disorder. Through this example we shall also illustrate the mathematical

techniques we shall be using in studying our reaction-diffusion models. The law of stretched

exponential is re-derived. The plan of the thesis is discussed in Sec. 1.7.
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1.2 Pattern formation in nature

The study of pattern formation is a vast subject that has grown out of centuries of human in-

quiry. A mathematical understanding of some aspects of pattern formation had been achieved

only in the recent times. The key ingredient necessary for the emergence of pattern from a

uniform structureless state is “instability” that leads toa spontaneous breaking of symmetry.

Instability sets in when a system is driven away from equilibrium and various types of pat-

tern can be categorized according to the instabilities [14]. The earliest studies were performed

on fluid mechanical systems. In 1900 Benard demonstrated successfully that a layer of liquid

between two flat plates when heated from below evolves into anunstable state of convective

roll patterns. Rayleigh latter showed that the onset of theseconvective rolls depends on a di-

mensionless numberR which is the ratio between the buoyancy force and the viscousforce.

This numberR is called the Rayleigh number. He showed that whenR exceeds a critical value

Rc ≃ 1708, instability sets in. This number is universal to differentfluids used in the experi-

ment. From the conducting state the fluid evolves into stationary hexagonal cell pattern which

further bifurcate into convective roll patterns [59]. The roll pattern is the only pattern predicted

by the Bossinesq approximation. Hexagonal cells pattern is aconsequence of non-Bossinesq

approximation. It has been reported that there is a possibility that during the transition from the

hexagonal to the convective roll state the fluid has a tendency to spontaneously form rotating

spiral state [60]. Furthermore, it has been found that roll pattern evolves into “target” patterns

that arises due to the defect core instability mechanism [61]. Transition from a many “target”

to spiral state and target to spiral turbulence has also beenobserved [62]. Similarly in fluid flow

problems there is a transition from laminar to turbulent flowwhen the dimensionless Reynolds

number exceeds a critical value. A complete understanding of turbulence has still not been

achieved to this day. Turbulent flow is very common in nature and can be seen everywhere

around us. Cumulus clouds, plume of smokestack, flowing waterin rivers, wakes of ship etc.

are some common examples of turbulence. Although there is noprecise definition of turbu-

lence it can be characterized by the irregularity in the flow pattern, diffusivity which causes

rapid mixing, very high rate of mass, momentum and heat transport, vorticity fluctuations and

dissipation etc [63].

One can see the most beautiful patterns in snowflakes. Snowflakes are found naturally in a

wide variety of patterns. They all posses hexagonal symmetry, which arises due to the molec-
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ular structure of the water molecule. The snowflakes grow on seed particles in an environment

of supersaturated water vapor. The growth takes place with afront moving outward with the

seed at the center. It is found that the surface tension at theliquid-solid interface provides

the stabilizing force responsible for pattern formation [64]. The boundary condition has to in-

clude the effect of curvature in order to form the patterns byanisotropic growth. The ratio of

the surface tension at the liquid-solid interface to the latent heat per unit volume provides the

length scale of the pattern formation. There are also randomcrystal growth which produces

dendritic structures. The diffusion limited aggregates(DLA) model was introduced by Witten

and Sanders to describe the formation of random dendritic-crystal growth [65]. These random

aggregates grows from a seed particle forming dendritic branches in all direction in a random

fashion. The dynamics involve solving the Laplace equationwith moving boundary condition.

Random dendritic growth is seen in many cases such as electrodeposition [66, 67], dendritic

solidification [68], viscous fingering [69], electric discharge and bacterial colony growth [70]

to name a few. It is found that the clusters are scale invariant i.e. there is no natural length

scale that can be identified in these objects. The density-density correlation has a power law

behavior〈ρ(r′)ρ(r′ + r)〉 ∼ r−A, where the exponentA is related to the dimension of the

spaced and Hausdorff dimensionDf by Df = d − A. Instabilities of the Mullins and Sekerka

type is attributed to the unstable growth of the clusters [71, 72]. Furthermore Tamas Vicsek

had shown that both ordered as well as disordered structure can be generated by assuming that

the sticking probability of the particle arriving at the surface depends on the local curvature

of the cluster and a particle on the cluster is allowed to relax to a neighboring site [73]. Two

dimensional growth of bacterial colony through diffusion-limited process has been observed.

It has been found that the bacterial colony resembles the DLApattern with a fractal dimension

Df ≃ 1.73 [70].

Pattern formation in chemical and biological systems is even more complex. Alan Turing

in his seminal paper in 1952 proposed that, reaction-diffusion systems consisting of chemical

species (morphogen) can give rise to pattern formation by diffusion driven instabilities (cf.

Sec. 1.3). Latter Gierer and Meinhardt generalized Turing’s idea into patterning principle of

short-range activation, long-range inhibition or local activation, lateral inhibition [74]. These

ideas have been used to explain a large number of pattern formation in biology such as the

development of organs in various organism, animal coat patterns etc [75]. We do not wish to

pursue going further in this direction as we shall be discussing pattern formation in reaction-

6



diffusion system in Sec. 1.3.

1.3 Pattern formation in reaction-diffusion systems

A reaction-diffusion system consists of a system of chemical species undergoing a reactions

and diffusion process. The reaction-diffusion models can also describe processes other than

chemical systems such as population models [75]. The general reaction-diffusion equations for

a system ofn species ind dimensional space is given by the following

∂tu = L̂u + ρ(u,x, t),x ∈ Ω, t > 0, (1.1a)

u(x, 0) = u0(x), (1.1b)

whereΩ ⊂ R
d and the boundary conditions are specified on the surface∂Ω . The vector

u = (u1, u2, . . . , un)T ∈ R
n
+ represents the concentration of then species,L̂ is a differential

operator which describes the diffusive part andρ(u,x, t) ∈ R
n is a smooth function which

denotes the reaction part. Let the differential operator beof the formL̂ = D∂2
x whereD is a

n × n diffusion matrix and∂2
x =

∑d
i=1 ∂2

xi
is the Laplacian operator ind dimension. Thesen

coupled partial differential equation describes the evolution of the reacting species. It is natural

to ask, how does the above set of coupled equations generate patterns. The mechanism for

the formation of patterns in homogeneous reaction-diffusion system was discovered by A. M.

Turing in 1952 [15]. He showed that diffusion driven instabilities can give rise to the formation

of a wide variety of patterns. The experimental verificationof Turing mechanism was found

by Belousov and Zhabotinskii [75]. However, the conditions needed for Turing instability in a

general reaction-diffusion system was found only recently[76]. Let us assume that diffusion

matrix D is constant and the reaction termρ does not depend explicitly onx andt. Suppose

thatu(t) = us is a locally stable homogeneous steady state solution of thekinetic equation

u̇(t) = ρ(u(t)),u(0) = u0 (1.2)

Linearizing around the solutionus the Eq. (1.1) can be written as

∂tδu = L̂δu + J(us)δu,x ∈ Ω, t > 0, (1.3)

whereu = us + δu andJ(us) = [∂ui
ρj(u(t))] , i, j = 1, 2, . . . , n is the Jacobian matrix. Let

δu ∼ exp(ωt + ikx), so that the characteristic equation become

det
{

ωI + |k|2D − J
}

= 0 (1.4)
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If all the roots of Eq. (1.4) have negative real part then Eq. (1.1) is linearly stable. Turing

instability sets in when the control parameters are varied and we have a situation when for the

first time a single root crosses the imaginary axis while all eigenvalues ofJ has negative real

parts [77]. The change in control parameters makes the uniform steady stateus unstable to

perturbations with a nonzero wave number. Whenω is zero there are some modes that grow

into spatially inhomogeneous steady states giving rise to Turing pattern.

Let us consider the activator-inhibitor model introduced by Turing [15]. We haveD is

2 × 2 diagonal matrix with componentsDij = δijDi, i, j = 1, 2 whereD1 andD2 are positive

constants,u = (u1, u2)
T , ρ(u(t)) = (f(u1, u2), g(u1, u2))

T . The homogeneous steady state

solution of the kinetic equation Eq. (1.2) is linearly stable therefore from the linearized equation

we should have

∂u1
f + ∂u2

g < 0,

∂u1
f∂u2

g − ∂u2
f∂u1

g > 0. (1.5)

Substitutingδu ∼ exp(ωt − ikx) in Eq. (1.3) we obtain the following dispersion relation

det

(

ω + k2D1 − ∂u1
f −∂u2

f
−∂u1

g ω + k2D2 − ∂u2
g

)

= 0. (1.6)

The solution of the above equation is given byω1,2 = (−b ±
√

b2 − 4c)/2 whereb = k2(D1 +

D2)− (∂u1
f +∂u2

g) andc = (k2D1−∂u1
f)(k2D2−∂u2

g)−∂u2
f∂u1

g. Using Eq. (1.5) we see

thatb > 0 for all k ∈ R. For instability the two roots should have alternate signs.We therefore

haveω1ω2 < 0 which results in the following inequality.

k4 − k2

(

∂u1
f

D1

+
∂u2

g

D2

)

+
∂u1

f∂u2
g − ∂u2

f∂u1
g

D1D2

< 0. (1.7)

From Eq. (1.7) we obtain

∂u1
f

D1

+
∂u2

g

D2

> 0,

(

∂u1
f

D1

+
∂u2

g

D2

)2

− 4

(

∂u1
f∂u2

g − ∂u2
f∂u1

g

D1D2

)

> 0. (1.8)

The conditions Eq. (1.5) and (1.8) define the Turing space.

1.4 Reaction-diffusion systems in disordered media

It is interesting to study reaction-diffusion processes with disorder because in real systems

we always see disorder. The existence of defects and impurities are examples of disorder in
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crystals. The occurrence of defects becomes more prominentat higher temperature. There are

various kinds of defect in crystals i.e. point defects such as vacancies, interstitials, interstitial

impurities; line defects such as dislocations, grain boundaries etc. Disorder in materials is very

crucial in determining the electrical, optical and mechanical properties. For example, impurities

can be doped into material to increase its tensile strength.The dc conductivity of amorphous

germanium showσ(T ) ∼ exp(−(T0/T )0.25), T0 ≃ 7 × 107K due to the tunneling of localized

state of electron from one domain to other in the material [78].

Reaction-diffusion processes in disordered media has been studied extensively in the past

[16, 28, 79]. In this section we review some of the work on reaction-diffusion models in disor-

dered media and we hope that it will give a general idea of the various interesting properties of

these processes. Using a trapping reaction problem we shallbe illustrating how we can use the

abstract vector space notations and the Green’s function methods to formulate the problem in a

very elegant way and calculate various quantities.

There are various models of disordered media that has been used to study these diffusion

processes. Fractals, percolation cluster, DLA cluster, quenched disorder etc has been used as

models of disorder. Random walk on Seirpinski gasket [80] wasstudied and it was found that

it shows anomalous behavior. The mean square displacement is 〈R2
N〉 ∼ N2/dw , dw ≃ 2.32 ±

0.01. The anomalous diffusion-exponent is related to the fractal dimension of the structure.

Here we havedw = 2− d + df + µ̃ = ln(d + 3)/ ln 2 whered is the space dimension on which

the structure is embedded anddf is the fractal dimension. Similarly diffusion on percolation

cluster have been studied for various types of lattices. It is known that for a two dimensional

square lattice there exist an infinite percolation cluster just above the critical concentration

p = pc = 0.592745 (p is the fraction of occupied lattice sites) [16]. The probability P∞ that

a site belongs to the incipient infinite cluster isP∞ ∼ (p − pc)
β for p > pc. For p < pc

the diameter of the cluster is characterized by a correlation lengthξ(p) ∼ (pc − p)−ν . The

exponentsβ andν are universal and depends only on the spatial dimension but not on the type

of the lattice. Three characteristic regimes for diffusionon percolation cluster are found. For

p > pc the infinite cluster is homogeneous for length scale greaterthan the correlation length

(R > ξ(p)) the diffusion is regular with diffusion exponentdw = 2. At the critical point

p = pc the incipient infinite cluster is self similar and the diffusion is anomalous withdw > 2.

For p < pc the largest cluster has a typical sizeξ(p) and we have〈R(t)2〉 ∼ ξ2(p) for large

time [16].
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Disorder can also be introduced in diffusion problems even on a regular lattices by intro-

ducing a random waiting time in the random walk. A particle performing a random walk on a

lattice spends a random waiting timeτ > 0 at each site before every hopping [28]. The step

lengths could also be a random variable. This type of random walks are called continuous time

random walk. The properties of the continuous time random walk depends on the distribution of

the random waiting timeψ(τ). Suppose that the mean of the waiting time〈τ〉 is finite, then we

have in the large time limit a normal diffusion with the mean space displacement〈X2〉 ∼ 2Dt,

whereD = 〈l2〉/2〈τ〉, l is a random step length andt is the total waiting time. However, if

ψ(τ) is a “broad” distribution such that〈τ〉 is not finite (i.e forψ(τ) ∼ τµ
0 τ−(1+µ),(τ → ∞)

andµ ∈ (0, 1] such thatt ∼ τ0N
1/µ) we find that diffusion is sub-diffusive with

〈X2〉 ∼







〈l2〉
(

t
τ0

)µ

if µ ∈ (0, 1),
〈l2〉t/τ0
ln(t/τ0)

if µ = 1.
(1.9)

Whenµ ∈ (1, 2] anomalous correction appears with the mean square displacement becoming

〈X2〉 ∼
{

2Dt + ct1/2 if µ ∈ (1, 2),
2Dt + ct ln t if µ = 2,

, (1.10)

and〈X2〉 ∼ Dt + ct1/2 for µ > 2 [28]. In these models the disorder is time varying as the

waiting time at a site for different visits can be different.Disorder can also be frozen into the

lattice and for all visits by the particle it spends the same random waiting time. This type of

disorder do not vary with time and are called quenched disorder. Reaction-diffusion processes

in media with quenched disorder has been studied by a number of authors [16–26,28,79,81–83].

Quenched disorder model has been used to study diffusion controlled reaction processes in

disordered media. Diffusion on comb like structures where the teeth of the comb act as traps

where the particle stay for longer time. With a waiting time distributionψ(τ) ∼ τ−3/1(i.e. taken

as the first time return to the origin) show anomalous diffusion with 〈X2〉 ∼ t1/2 [28, 84, 85].

Anomalous diffusion in an array of convective roll could be apossible physical realization of

the diffusion on comb like structures [84]. Random barrier models has been studied in which

the transition rate are random variable show anomalous properties [82, 83, 86–89]. It has been

shown through real-space renormalization group calculations, that one dimensional random

walks with static disorder (i.e. disorder in hopping rates and step lengths) leads to a non-

Markovian diffusion with generalized diffusion constantD(t) ∼ t−3/2 ast → ∞ [90]. In a

recent study of diffusion processes in the presence of membranes, it was shown that correlated
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spatial disorder gives rise to long term memory effect and through renormalization group tech-

nique it was shown that there is a slow decrease of the diffusion constantD(t) ≃ D∞ + t−1/2.

The mean square displacement〈x2〉 ≃ 2D∞t + const.
√

t [91].

Another class of problem with quenched disorder consists of“the trapping reaction-diffusion”

models in which the number of particles is not conserved. These models consists of diffusing

particles on a lattice (continuous space) which contains isolated sites (regions) called traps. The

traps can be assumed static or mobile which depends on the problem one wish to study. When

a diffusing particle(A) arrive at a trap(T ) the reactionA+T → (1− ǫ)A+T, ǫ ∈ [0, 1] takes

place. Ifǫ < 1 we know that only a portion of the particle get trapped and we call it a partial

trap. Whenǫ = 1 we have a perfect trap [92]. The problem of trapping reaction-diffusion pro-

cesses has been studied for almost a hundred years [93]. Various aspects of trapping reaction-

diffusion processes has been studied since then. Reaction occurring at the traps create depletion

zones that induces self-segregation of the diffusing particles. This self-segregation affects the

global reaction kinetics [18, 19, 94, 95]. Therefore, in diffusion-controlled reaction processes

the rate equation solution may not always be accurate. Hencefor more realistic situations the

kinetic law needs to be modified.

Long time behavior in trapping reaction-diffusion processes show that the survival proba-

bility in the asymptotic time limit follow a stretched exponential law for both static [19,96,97]

and mobile [98–103] traps. For static traps ind dimension distributed randomly with uniformly

probability density, the survival probability is given by

P (t) ∼ exp(−αdρ
2/(d+2)td/d+2), (1.11)

whereαd is a constant which depends on the dimensionality of the space,ρ is the trap density.

Similarly for the case of mobile traps the survival probability is given by

P (t) ∼







exp(−α1ρt1/2) d = 1,
exp(−α2ρt/ ln t) d = 2,
exp(−αdρt) d = 3,

, (1.12)

where the traps are undergoing normal diffusion and the constantsαd depends also on the

diffusion constant of the traps.

So far, we have discussed diffusion phenomena in disorderedmedia which can be catego-

rized according to the type of diffusion. The diffusion processes on fractal structures, percola-

tion cluster, Brownian motion and other processes modeled through random walks are entirely
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different from the reaction-diffusion processes modeled through macroscopic equation involv-

ing concentrations of the chemical species. The former is the case of “self diffusion” where

as the latter is “collective diffusion” [104]. In the randomwalk models (or Brownian motion)

the stochasticity in the dynamics arises due to the thermal fluctuation of the surrounding media

(e.g. a pollen grain in water or diffusing impurity atom in a crystal). Here we are concerned

with the motion of a single diffusing particle. The probability density of finding the Brownian

particle is described by the Fokker-Planck equation. In theover damped limit with no external

forces acting on the particle the equation reduces to a simple diffusion equation. The diffusion

constantDs can be expressed through the velocity auto-correlation function.

Ds =
1

Nd

N
∑

i=1

∫ ∞

0

dt〈vi(t)vi(0)〉 (1.13)

whereN is the total number of particles,vi(t) is the velocity of the i-th particle andd dimension

of space [105].

Collective diffusion on the other hand takes into account theinteraction between particles.

A system of particles in equilibrium has a uniform concentration and for a any perturbation

form the equilibrium value there is a corresponding currentgiven by the Fick’s first law

J(x, t) = −Dc∂xc(x, t), (1.14)

whereDc is the collective diffusion constant andc(x, t) is the concentration at positionx at

time t. The diffusion constant can be expressed by the total flux correlation function

Dc =
1

Nd

N
∑

i=1

∫ ∞

0

dt〈JT (t)JT (0))〉, (1.15)

whereJT (t) =
∑N

i=1 vi(t) in the total velocity flux,1/S0 is the thermodynamic factor which

is related to the isothermal compressibilityχT = S0/(〈c〉kBT ). For surface diffusion it can

also be expressed in terms of the derivative of the chemical potentialµ. We have1/S0 =

(kbT )−1∂µ/∂ log θ whereθ is the surface coverage. Although there is no general expression

that relatedDc to Ds and approximate relationship is given by the so-called Darken equation

Dc = Ds/S0 [105].

The two diffusion constants are same for dilute system wheredensity of particle is low.

Self-diffusion constantDs can simply be determined by observing a single Browinan particle

under the microscope. It can also be determined by “forced Rayleigh” scattering or neutron
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scattering experiment. The collective diffusion constantDc on the other hand can be deter-

mined from the density correlation function using inelastic light scattering techniques [104].

We note here that the effect of particle-particle interaction is already included in the collec-

tive diffusion constantDc when we are concerned only about the diffusion. However, when

particles of many species are involved and reactions between different species can give rise

to large concentration gradients the interaction between particles of different species has to be

introduced by hand. This interaction is the non-bonding interaction between particles which is

called volume exclusion (cf. Chapter 3).

1.4.1 Trapping reaction-diffusion process: Green’s function methods

In this subsection we will illustrate the use of Green’s function in reaction-diffusion equations

and formulate the trapping reaction-diffusion problem in an abstract vector space notations.

We will obtain the perturbation solution for the partial traps problem. Expressions for the

survival probabilities and the anomalous characteristicsare re-derived and their implications

are discussed.

Let us consider the case of trapping reaction in one dimension. Suppose that, we have

traps uniformly distributed on the x-axis withρ traps per unit length on an average. For all

xi ∈ R, i = 1, 2, . . . real numbers, the setS = {x1, x2, . . . , xk, . . .} denote the positions of the

trapping sites on the x-axis. The reaction-diffusion equation is given by

∂tu(x, t) = D∂2
xu(x, t) − κ

∑

xi∈S

δ(x − xi)u(x, t), x ∈ R, t > 0,

u(x, 0) = f(x), (1.16)

whereD is the diffusion coefficient andκ > 0 is the trapping rate. Taking Laplace transform

of Eq. (1.16) we obtain

(

s − D∂2
x − K(x)

)

ũ(x, s) = f(x), x ∈ R, (1.17)

whereK(x) = −κ
∑

xi∈S
δ(x− xi) andũ(x, s) is the Laplace transform of the densityu(x, t).

We can use the Green’s function method to solve Eq. (1.17). The Green’s functionG(x|x′) is

defined by

(s − D∂2
x − K(x))G(x|x′) = δ(x − x′), (1.18)

with G(x|x′) satisfying the same boundary conditions.
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We cast the problem in an abstract vector space [30]. LetL̂(x) be a hermitian differential

operator. There is a complete set of eigenfunctions{ũn(x)} such that

L̂(x)ũn(x) = λnũn(x), x ∈ Ω. (1.19)

subject to boundary conditions on∂Ω. The set{ũn(x)} can be assumed orthonormal. We can

use the Dirac’s bra and ket notation so that we have

ũn(x) = 〈x|ũn〉, ũ∗
n(x) = 〈ũn|x〉, (1.20a)

δ(x − x′)L̂(x) = 〈x|L̂|x′〉, (1.20b)

〈x|x′〉 = δ(x − x′), (1.20c)
∫

dx|x〉〈x| = 1, (1.20d)

where|x〉 is the eigenvector of the position operator. The eigenvalueequation in Eq. (1.19)

becomes

L̂|ûn〉 = λn|ûn〉. (1.21)

Orthonormality and the completeness conditions are given by

〈ũn|ũm〉 = δn,m, (1.22a)

∑

n

|ũn〉〈ũm| = 1 (1.22b)

respectively. The above Eq. (1.17) and Eq. (1.18) can be rewritten in abstract notation as the

following

(s − D∂2
x − K̂)|ũ〉 = |f〉 (1.23)

(s − D∂2
x − K̂)Ĝ = 1, (1.24a)

or Ĝ = (s − D∂2
x − K̂)−1, (1.24b)

where〈x|ũ〉 = ũ(x), 〈x|f〉 = f(x), 〈x|(s − D∂2
x − K̂)|ũ〉 = (s − D∂2

x − K(x))ũ(x) and

〈x′|Ĝ|x〉 = G(x′|x). In the abstract notation the reaction termK(x) becomes the reaction

operatorK̂ = −κ
∑

xi∈S
|xi〉〈xi|. From Eq. (1.23) the solution can be written in terms of the

Green’s function as̃u(x, s) = 〈x|ũ〉 = 〈x|Ĝ|f〉. The calculation of Green’s functionG(x|x′)
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= +

+

∑

i i

i j

∑

i,j

= G(0)(x|x′),

= −κ,= G(x|x′),

Figure 1.3: Feynman diagrams for Eq. (1.26).

should give the solution for any given initial conditionf(x) . Consider the expression in Eq.

(1.24b)

Ĝ = (s − D∂2
x − K̂)−1,

=
[

(s − D∂2
x)(1 − (s − D∂2

x)
−1K̂)

]−1

,

= (1 − (s − D∂2
x)

−1K̂)−1(s − D∂2
x)

−1,

= (1 − Ĝ(0)K̂)−1Ĝ(0),

= Ĝ(0) + Ĝ(0)K̂Ĝ(0) + Ĝ(0)K̂Ĝ(0)K̂Ĝ(0) + . . . , (1.25)

whereĜ(0) = (s − D∂2
x)

−1 is the bare Green’s function. Eq. (1.25) can also be written as

〈x|(Ĝ|x′〉 = 〈x|(Ĝ(0) + Ĝ(0)K̂Ĝ(0) + Ĝ(0)K̂Ĝ(0)K̂Ĝ(0) + . . .)|x′〉,

or G(x|x′) = G(0)(x|x′) − κ
∑

xi∈S

G(0)(x|xi)G
(0)(xi|x′)

+ κ2
∑

xi,xj∈S

G(0)(x|xi)G
(0)(xi|xj)G

(0)(xj|x′) + . . . , (1.26)

The expression Eq. (1.26) is represented by Feynman diagrams in Fig. (1.3) Rearranging

the terms in the right hand side of Eq. (1.25) gives

Ĝ = Ĝ(0) + ĜK̂Ĝ(0) = Ĝ(0) + Ĝ(0)K̂Ĝ. (1.27)

The last equation Eq. (1.27) is called the Dyson equation. From Eq. (1.25) we obtain the

following solution

ũ(x, s) = 〈x|Ĝ|f〉

= 〈x|(Ĝ(0) + Ĝ(0)K̂Ĝ(0) + Ĝ(0)K̂Ĝ(0)K̂Ĝ(0) + . . .)|f〉, (1.28)
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Suppose that we havef(x) = δ(x) = 〈x|0〉 then Eq. (1.28) becomes

ũ(x, s) = G(0)(x|0) − κ
∑

xi∈S

G(0)(x|xi)G
(0)(xi|0)

+ κ2
∑

xi,xj∈S

G(0)(x|xi)G
(0)(xi|xj)G

(0)(xj|0) + . . . , (1.29)

where

〈x|(Ĝ(0)|0〉 = G(0)(x|0),

〈x|Ĝ(0)K̂Ĝ(0)|0〉 = −κ
∑

xi∈S

〈x|Ĝ(0)|xi〉〈xi|Ĝ(0)|0〉,

= −κ
∑

xi∈S

G(0)(x|xi)G
(0)(xi|0)

etc. The bare Green’s function isG(0)(x|x′) = exp(−
√

s/D|x − x′|)/(2
√

Ds). A straight

forward inverse Laplace transform yields

u(x, t) =
1√

4πDt
exp

(−|x|2
4Dt

)

− κ

4D

∑

xi∈S

erfc

( |x − xi| + |xi|
2
√

Dt

)

+
κ2

8D2

∑

xi,xj∈S

{

2

√

Dt

π
exp

(−z(x, xi, xj)
2

4Dt

)

−z(x, xi, xj)erfc

(

z(x, xi, xj)

2
√

Dt

)}

+ . . . , (1.30)

wherez(x, xi, xj) = |x− xi|+ |xi − xj|+ |xj|. This expression in Eq. (1.30) agrees well only

when timet is small. Due to the secular term at the second order the solution will diverge for

large time. Let us assume that the traps are sparsely distributed so that contribution from terms

G(0)(xi|xj) for i 6= j in Eq. (1.29) can be ignored. This is decided by the diffusionconstant for

the following reason a particle which diffuses faster will contribute more as it can move from

one trap to other easily. With this approximation Eq. (1.29)can be written as

ũ(x, s) = G(0)(x|0) − κ
∑

xi∈S

G(0)(x|xi)G
(0)(xi|0)

+ κ2
∑

xi∈S

G(0)(x|xi)G
(0)(xi|xi)G

(0)(xi|0) + . . . ,

= G(0)(x|0) − κ
∑

xi∈S

G(0)(x|xi)

×
{

1 − κG(0)(xi|xi) + κ2G(0)(xi|xi)
2 . . .

}

G(0)(xi|0)

+ . . . ,

≃ G(0)(x|0) − κ
∑

xi∈S

G(0)(x|xi)G
(0)(xi|0)

1 + κG(0)(xi|xi)
(1.31)
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The Feynman diagrams for the Greens functionG(x|x′) with the approximation in Eq. (1.31)

can be written by choosing appropriate diagrams from Fig. (1.3)(cf. Fig. (1.4)). Taking Laplace

+

+

(a)

(b)

+ +

+ +

∑

i
= ( 1− )−1,

∑

i
= 1+

+ + . . . ),

(

∑

i i i≃

i

. . . ,

i

i

i

= G(x|x′),

i
= −κ,

= G(0)(x|x′),

= −κG(0)(xi|xi),

Figure 1.4: (a)Feynman diagrams, (b) Notations. Settingx′ = 0 gives us the solution Eq.
(1.31).

transform of Eq. (1.31) we obtain

u(x, t) ≃ 1√
4πDt

exp

(−|x|2
4Dt

)

− κ

4D

∑

xi∈S

exp

(

(|x − xi| + |xi|)κ
2D

+
κ2t

4D

)

erfc

( |x − xi| + |xi|
2
√

Dt
+

κ
√

t

2
√

D

)

(1.32)

Note that the approximate solution given in Eq. (1.32) is valid for a sparsely distributed traps.

We can immediately recognize from Eq. (1.32) that this solution is the sum of solutions of Eq.

(1.16) with a single trap located atx = xi for i = 1, 2, . . . , ND, with initial conditionδ(x)/ND

whereND is the total number of traps inS. In Fig. (1.5) we have plotted the solutionu(x, t)

for the case when there are no traps. Without trap there is a pure diffusive process and the delta

function evolves into a Gaussian (see Fig. (1.5) curve (A)).The curve (B) and (C) represent

the numerical and the perturbation solution Eq. (1.32) respectively. It can be seen that the

approximate solution agrees quite well.

Using the Eq. (1.29) the concentration averaged over disorder can be calculated order by
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Figure 1.5: The curve (A) shows the concentrationu(x, t) when there is no trap. A comparison
of the numerical solution in (B) with the perturbation solution (C) obtained from Eq. (1.32) is
shown. Number of traps is 80 randomly distributed in(−10, 10), diffusion constantD = 1.0,
trapping rateκ = 0.1 and timet = 2.0.

order. We have

〈ũ(x, s)〉 = 〈G(0)(x|0)〉 − 〈κ
∑

xi∈S

G(0)(x|xi)G
(0)(xi|0)〉

+ 〈κ2
∑

xi,xj∈S

G(0)(x|xi)G
(0)(xi|xj)G

(0)(xj|0)〉 + . . . , (1.33)

where〈·〉 denotes the mean taken over the disorder. The first term on theright hand side of Eq.

(1.33) is〈G(0)(x|0)〉 = G(0)(x|0). The higher order terms can be calculated in the following

way. Let [−L,L] on the x-axis containN trapping sites with random variablesxi ∈ SN , i =

1, 2 . . . , N being uniformly distributed with probability densityP (x1, x2 . . . , xN) = 1/(2L)N .

Note that, in the limitN,L → ∞ we haveN/L → ρ and the setSN = S. The second term on

the right had side becomes

I1(x) = 〈
∑

xi∈SN

G(0)(x|xi)G
(0)(xi|0)〉,

=
1

4sD

∑

xi∈SN

〈exp

(

−
√

s

D
( |x − xi| + |xi| )

)

〉,

L,N→∞
=

ρ

4sD
e−

√
s
D
|x|

(

|x| +
√

D

s

)

. (1.34)

To calculate the third term we can useI1(xi) and assume total randomness [95] where the

correlation can be neglected. The mean of product can be replaced by the product of means so
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that we obtain

I2(x) = 〈
∑

xi,xj∈SN

G(0)(x|xi)G
(0)(xi|xj)G

(0)(xj|0)〉,

= 〈
∑

xi∈SN

G(0)(x|xi)I1(xi)〉,

L,N→∞
=

ρ2

8(Ds)3/2
e−

√
s
D
|x|

(

|x|2
2

+
3|x|
2

√

D

s
+

3

2

D

s

)

.

(1.35)

Similarly,

I3(x) =
ρ3

96D1/2s5/2
e−

√
s
D
|x|

(

|x|3
( s

D

)3/2

+ 6|x|2 s

D
+ 15|x|

√

s

D
+ 15

)

. (1.36)

Continuing in the same way we can calculate higher order termsIn(x) for n = 4, 5, . . . The

mean concentration〈u(x, t)〉 can then be calculated by taking the inverse Laplace transform of

Eq. (1.33) after substitutingIn(x) for n = 1, 2, . . . We obtain

〈u(x, t)〉 ≃
(

1 − κρt +
(κρt)2

2
− (κρt)3

6
± . . .

)

1√
4πDt

exp

(−|x|2
4Dt

)

,

= exp(−κρt)
1√

4πDt
exp

(−|x|2
4Dt

)

(1.37)

The result obtained in Eq. (1.37) can be understood by simpleintuitive reasoning. The number

of traps in an unit length isρ. At each trap a particle can get trapped at a rateκ. If the

number of particle per unit length at some instant of timet is n(t), then the number of particle

getting trapped will be proportional ton(t) with each particle getting trapped at a rateκρ. The

trapping reaction,A + T
κ→ T for each trap is transformed into the reactionA

κρ→ φ. Thus the

trapping reaction-diffusion problem is transformed into that of a “pure death process” with rate

κρ. We can writedn(t)/dt = −κρ n(t). Eq. (1.37) therefore suggests that the density falls

of exponentially at a rateκρ at each pointx. This is valid for allκ with sufficiently largeρ.

Note also that, when limitκ → 0 the mean concentration〈u(x, t)〉 evolves into a Gaussian due

to pure diffusion. In this limit we can therefore write an effective reaction-diffusion equation

of the form∂tu = D∂2
xu − κρu. The mean survival probability isP (t) :=

∫

〈u(x, t)〉dx =

exp(−κρt). However, for perfect traps we shall see that this is not the case (cf. Sec. 1.4.2).

The diffusive and the trapping reaction processes have alsobecome independent in this limit

(0 < κ ≪ 1) when we are concerned only about the mean concentrations.
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Figure 1.6: (I) Concentrationu(x, t) (100 realizations in pink) and the concentration averaged
over disorder,〈u(x, t)〉 (in thick black). (II) The mean concentration〈u(x, t)〉 from numerical
calculations(A) and the approximate solution Eq. (1.37) (B)are compared. The number of traps
is 80 randomly distributed in(−10, 10), diffusion constantD = 1.0, trapping rateκ = 0.2 ,
ρ = 4.0 and timet = 2.0.

In Fig. (1.6)(I) we have plotted the numerical solution for 100 different realizations (in pink)

of the trapping reaction-diffusion process and the mean concentration〈u(x, t)〉 is calculated

from 1000 realizations. The number of traps is taken 80 whichare chosen from a uniform

distribution in (−10, 10), D = 1, κ = 0.2 and t = 2.0. In Fig. (1.6)(II) the solution Eq.

(1.37) is compared with the corresponding numerical valuesof the mean concentration. From

Fig. (1.6)(I) the spread in the individual curvesu(x, t) also indicates the non-selfaveraging

characteristics of the mean concentration.

1.4.2 Perfect traps and the law of stretched-exponential

Perfect traps are those which traps particles with unit probability. Here we will consider the

case of perfect traps distributed uniformly along the x-axis. Unlike the case of partial traps

where only a fraction of the particles get trapped, in this case we will see that the survival

probability decays slower than exponential. We call this the law of stretched exponential (i.e.

P (t) ∼ exp(−αt1/3) in one dimension).

For all finite reaction rates (κ < ∞) the probability of getting trapped at a trapping site

is less than unity hence making it a partial trap. We have already discussed this case in Sec.

1.4.1 and found that the survival probability decays exponentially in time (with the assumption

of complete randomness). In the limitκ → ∞ we have “perfect traps” (i.e.A + T
∞→ T ).

Since every particle arriving at a trap vanishes, the distribution of perfect traps, partition the

x-axis into a collection of disjoint intervals. In each interval the concentrationu(x, t) evolve

independently, hence if we consider the dynamics in one suchinterval we should be able to
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study the whole system. Consider the trapping reaction-diffusion Eq. (1.16)

∂tu(x, t) = D∂2
xu(x, t) − κ

∑

xi∈S

δ(x − xi)u(x, t), x ∈ R, t > 0,

with the initial conditionf(x) = 1. Consider a particular interval of length2a so that we have

K(x) = −κ(δ(x − a) + δ(x + a)) (i.e. after a linear transformationx → x + const.). Using

Eq. (1.23) and Eq. (1.27) we have can be written write as following integral equation

|ũ〉 = Ĝ(0)|f〉 + Ĝ(0)K̂|ũ〉,

= Ĝ(0)|f〉 + κ( Ĝ(0)|a〉〈a|ũ〉 + Ĝ(0)| − a〉〈−a|ũ〉 ). (1.38)

Now closing from the left with〈x| and substituting〈x|Ĝ(0)|f〉 =
∫

G(0)(x|x′)dx′ = 1/s and

κ〈x|Ĝ(0)| ± a〉〈±a|ũ〉 = G(0)(x| ± a)ũ(±a, s) we have

ũ(x, s) =
1

s
− κ

[

G(0)(x|a)ũ(a, s) + G(0)(x| − a)ũ(−a, s)
]

. (1.39)

Settingx = ±a in the left hand side of Eq. (1.39) and solving forũ(±a, s) we obtain

ũ(±a, s) =
1

s

(

1 + κ
2
√

Ds
+

κ exp(−2a
√

s/D)

2
√

Ds

) . (1.40)

We have

ũ(x, s) =
1

s
− κ

(

G(0)(x|a) + G(0)(x| − a)
)

s

(

1 + κ
2
√

Ds
+

κ exp(−2a
√

s/D)

2
√

Ds

) ,

=
1

s
− G(0)(x|a) + G(0)(x| − a)

s
(

1 + exp(−2a
√

s/D)
)

/(2
√

Ds)
. (1.41)

For κ finite, the Eq. (1.41) leads to a power law decay of the survival probability of a par-

ticle P (t) ∼ 2a2t−1/2, (t → ∞) in (−a, a). Also, for a periodic distribution of traps gives

exponential decayP (t) ∼ exp(−κt/a) [21]. In the limit κ → ∞ we have

ũ(x, s) =
1

s
− cosh(x

√

s/D)

s cosh(a
√

s/D)
. (1.42)

Inverse Laplace transform of Eq. (1.42) (cf. Ref. [106]) gives

u(x, t) =
4

π

∞
∑

n=0

1

2n + 1
exp

(−π2(2n + 1)2Dt

4a2

)

sin

(

(2n + 1)π(a + x)

2a

)

. (1.43)
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Expression Eq. (1.43) can also be obtained by solving the diffusion equation with absorbing

boundary conditions at the boundaries. We note here that, wehave incorporated this in the

reaction operator. The survival probability in the interval (−a, a) is

p(a, t) =
1

2a

∫ a

−a

u(x, t)dx,

=
8

π2

∞
∑

n=0

1

(2n + 1)2
exp

(−π2(2n + 1)2Dt

4a2

)

. (1.44)

As the traps are uniformly distributed on the x-axis, the disjoint intervals has a Poission distri-

butionp(x) = ρ exp(−ρx) wherex is the length of an interval andρ is the density of traps (i.e.

number of traps per unit length). The probability that a particle occur in an interval of lengthx

is proportional to the lengthx. The probability of a particle occurring in an interval of lengthx

is thereforeρ2x exp(−ρx)dx. The survival probability becomes

P (t) =

∫ ∞

0

p(x, t)ρ24x exp(−ρ2x)dx,

=
8ρ2

π2

∞
∑

n=0

1

(2n + 1)2

∫ ∞

0

exp(−αn/x2 − ρx)xdx,

=
16

π5/2

∞
∑

n=0

1

(2n + 1)2
G3,0

0,3

(

αnρ2

4
| 0, 1, 3

2

)

, (1.45)

whereαn = (2n + 1)2π2Dt andG3,0
0,3

(

αnρ2

4
| 0, 1, 3

2

)

is the Meijer G-function [107]. In the

asymptotic limitt → ∞ taking then = 0 term only, we have from Eq. (1.45)

P (t) =
16

π3/2
exp

(−3(ρ2π2Dt)1/3

22/3

) {

2πρ√
3

√
Dt +

17π1/3ρ1/3

21/3 · 31/2 · 9(Dt)1/6 + O((Dt)−1/6)

}

(1.46)

This is the required stretched exponential behavior. This stretched exponential behavior arises

due to the contribution from large trap free regions in the distribution of traps which is in

contrast with the exponential decay whenκ is finite andρ is large.

1.5 The concept of the first passage time

The calculation of first passage time is very useful in the study of stochastic processes that are

triggered by first passage processes e.g. the Kramer’s escape problem. In chapter 2 we have

studied the first passage time statistics for our reaction-diffusion model using Monte Carlo

simulations. Here we discuss the concept of first passage in apure diffusion process.
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Let us consider a particle at the origin0 at timet = 0. The particle performs a random walk

in d dimensional space. What is the probabilityF (x, t|0, 0) that the particle reaches the point

x at timet for the first time [108]. The probabilityP (x, t|0, 0) of finding the particle atx at

time t given that it started from the origin0 at timet = 0 can be written as

P (x, t|0, 0) = δx,0δt,0 +
∑

t′≤t

F (x, t′|0, 0)P (x, t|x, t′). (1.47)

The expression Eq. (1.47) says that, for a particle startingat the origin at timet = 0 the

probability of finding the particle atx at timet equals the sum of all probabilities of finding the

particle for the first time atx at a timet′ ≤ t given that the particle is again found atx at time

t. Using generating functions

P̃ (x, z) =
∞

∑

t=0

P (x, t|0, 0)zt,

F̃ (x, z) =
∞

∑

t=0

F (x, t|0, 0)zt (1.48)

we obtain

P̃ (x, z) = δx,0 + F̃ (x, z)P̃ (0, z). (1.49)

In Eq. (1.49) we have used the fact thatP (x, t|x, t′) = P (x, t − t′|0, 0). In the continuous

time limit the sum in Eq. (1.47) should be replaced by an integral over0 to t and the generating

function by the corresponding Laplace transforms. The meanfirst passage time and the higher

moments can be calculated by

〈tn〉 =

∫

tnF (x, t|0, 0)dt, n = 1, 2 . . . . (1.50)

The probability of first return time to the origin tells us interesting properties of the diffusion

process. In the large time limitt → ∞ we have (for derivation see Ref. [108])

F (0, t|0, 0) ∼







td/2−2, d < 2
1/(t ln2 t), d = 2.
t−d/2, d > 2

(1.51)

The probability of return to the originF (0, t|0, 0) is approximately related to the survival

probabilityS(t) by 1 − S(t) ∼
∫ t

F (0, t′|0, 0)dt′. The above expression Eq. (1.51) indicates

a change in behavior with change in dimension of space. Ford ≤ 2 the survival probability

S(t) vanishes ast → ∞ which implies that the diffusive motion isrecurrent i.e. the particle
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will return to the starting point with unit probability. However, ford > 2 there is a nonzero

probability that the particle will never return. In this case the diffusion is calledtransient.

In the conventional method the first-passage probability can be calculated from the diffusion

equation. Consider the diffusion equation

∂tu = D∂2
xu, x ∈ Ω, t > 0. (1.52)

We have a single particle at the origin so we set the initial concentrationu(x, 0) = δ(x). We

want to compute the probability of hitting the boundary∂Ω. Also, there should be no contri-

bution from the exterior of the boundary so we need to impose absorbing boundary condition

u(x, t) = 0 for all x ∈ ∂Ω. The outgoing fluxj(y, t) at the boundary is given by

j(y, t) = −D∂n̂u(x, t)|x=y, y ∈ ∂Ω, (1.53)

wheren̂ is the outward normal to the boundary∂Ω. The eventual hitting probability is given

by

Phitting(y) =

∫ ∞

0

j(y, t)dt, y ∈ ∂Ω. (1.54)

The hitting probability in Eq. (1.54) can be calculated by first solving the diffusion equation

Eq. (1.52) inΩ with the absorbing boundary conditions and then computing the outward flux

at the boundary∂Ω. Finally, evaluating the integral in Eq. (1.54) givesPhitting(y).

1.6 Summary

In this chapter we discussed the experimental motivation ofthe present work. We saw that de-

fects on Si(111)7×7 surface plays a very crucial role in cluster formation processes at nanoscales.

We discussed pattern formation in nature with a number of well known problems. It seems

that pattern formation arises due to instabilities that give rise to spontaneous symmetry break-

ing. Turing instability in reaction-diffusion problems isdiscussed. Furthermore, we discussed

reaction-diffusion systems in disordered medium. Anomalous behavior is seen due to the pres-

ence of disorder in a number of models.

Using trapping problems in one dimension we illustrated themethod of Green’s function

techniques in reaction-diffusion systems. We showed that the reaction term appears as a reac-

tion operator in the abstract vector space formulation. We shall be using these techniques to

study our models of cluster formation. Further the law of stretched exponential was re-derived
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where we found the exact expression for the survival probability. In the large time limit we

found theexp(−αt1/3) behavior from this expression. In addition to a factort1/2 as obtained

in Ref. [96] the next order therm ist1/6. The first passage time probability was discussed.

1.7 Plan of the thesis

The plan of the thesis is the following. In chapter 2, we propose a reaction-diffusion model

that describes the formation of Ge clusters on Si(111)7×7 surface we have discussed above.

In our model we introduce a simple reaction scheme to describe the reaction process for the

formation of clusters. The reactions are assumed to occur only at the location of the defects,

step edges and domain boundaries which we call reaction centers. As from our experiments

the step edges and domain boundaries for a single domain forma closed geometry, we take

a circular boundary in our model. Under certain approximation we show that the reaction-

diffusion process turns out to be a set coupled linear partial differential equations. We shall use

the method of Green’s function and regular perturbation theory to solve the coupled equations.

We will show that, through this minimal model we can form patterns which is qualitatively

similar to the patterns we have observed in our experiments.Monte Carlo simulation have been

used to show similar pattern for a large number of defects. The mean first passage time to exit

from the domain is calculated from the simulation. The probability density of the first passage

time is obtained and its properties are discussed.

In chapter 3, we investigate the effect of exclusion in the formation of Ge clusters. The

origin of exclusion is related to the non-bonding interaction between particles. The exclusion

terms are derived form the microscopic principle using master equations in which we assume

a concentration dependent hopping rate. The cluster formation reaction occurs in the vicinity

of the reaction centers. We assume an algebraic nonlinear reaction process to account for

multiple number of adatoms reacting simultaneously. For the case of weak exclusion we will

show that the reaction-diffusion equations can be reduced to a set of coupled linear partial

differential equations with drifts. These drift diffusionequations are exactly solvable and show

the qualitative behavior of our original equations. For thecase of self exclusion we study

trapping problem where will show that the effect is opposite. We will then discuss survival

probability in the presence of exclusion. Finally, numerical investigation are presented.

In chapter 4, we conclude with future extensions of the work and possible applications.
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Chapter 2

Reaction diffusion model for the formation
of clusters on a surface with defects

2.1 Introduction

Growth processes on surfaces at nanoscales can show a countless varieties of patterns. Perfectly

ordered geometrical structures, random patterns or both could arise in the growth processes de-

pending on the experimental conditions. Formation of self-organized nanostructures has been

extensively studied in the past [1–3]. Preferential nucleation of the self-organized nanostruc-

tures along step edges [5,6,109], dislocations [7–10] or domain boundaries [12,110] has been

observed. It has been observed that for the Ge adatoms deposited on the Si surface there is

a preferential growth at the domain boundaries [13]. Also random clusters are formed at the

location of surface defects present inside the domain boundary. These domain boundaries and

surface defects act as traps for the deposited adatoms. We present here a reaction diffusion

model for these growth processes and pattern formation. This work has been motivated by ex-

perimental work on pattern formation in the deposition of Geon Si(111)-(7 × 7) surfaces [13]

as well as several other previous investigations [5–10,12,109,110]. We note that ours is a case

of reaction-diffusion process in random media.

Reaction diffusion processes in random media has been extensively studied in the past. The

models that are considered consist of diffusion limited reactions of a single species in the pres-

ence of static and moving traps. The traps are the sites wherethe reactant species get partially

or completely adsorbed. These models have been used to explain various processes such as

trapping of exciton in a crystal at a defect, electron-hole and soliton-antisoliton recombination,

chemical binding of interstitial hydrogen atoms by impurities [16]. Various aspects of reaction-

diffusion processes in disordered media such as self-segregation of diffusing particles [17,18],
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long time behavior of decay of particle density [19–21], thekinetics of diffusion limited coa-

lescence and annihilation in random media [22–25], have been studied. Recently, the effect of

quenched disorder and internal noise on the transport properties in a reaction diffusion model

has been studied for ’birth-death’ process in a real world situation [26]. Fertile patches called

oasis lay randomly in the desert where the population can multiply by birth process and in the

desert the population decays due to death processes. Reaction-diffusion in disordered systems

is also used to model the decay and preservation of marine organic carbon [27].

The model that we study here consists of two species linear reaction diffusion processes

in the presence of reaction centers (surface defects). Our primary interest is to describe the

reaction-diffusion of Ge adatoms on the Si surface. However, this model can be used in cases

where the process is occurring on a two dimensional surface.Reactions take place only in a

small neighborhood of the defects present on the Si surface.Some results of a two species

reaction diffusion process in the presence of ring defects can be found in Ref. [13,111,112].

In section 2.2 we describe theoretical models. The ring and the point models are discussed.

Greens function method is used for the solution of our reaction diffusion equation. In section

2.4 we will describe the Monte Carlo simulations and discuss the numerical results for the

point defect model. Time evolution of the growth processes is studied from the obtained solu-

tions. We will show that this reaction diffusion model showsthe pattern formation that were

experimentally reported earlier. Through the MC simulations we investigate the first passage

statistics. The first passage time studied here gives us an estimate of the time a particle takes

from the origin to reach the domain boundary. This provide usthe time scale for the growth

process at the domain boundary. The mean first passage time and the first passage time prob-

ability density are calculated numerically. The large timeasymptotic is discussed in section

2.3.

2.2 Formulation of the model

The model consist of the reaction-diffusion processes of two speciesS andP on a two dimen-

sional flat surface. HereS denotes the Ge adatoms andP denotes the sum total of possible

Ge-clusters. The reactionS ⇋ P occurs at the location of the defects present on the surface.

We call these defects as reaction centers. The reaction scheme is chosen here to describe the

clusterization process (see Appendix C.1). We are considering a sequential clusterization pro-
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cess in this model, however, the actual clusterization process could be quite complicated. The

coupled reaction diffusion equations are given by

∂tS(r, t) = DsLS(r, t) − Kf (r)S(r, t) − KR(r)S(r, t) + KbP (r, t) + J(r, t),

∂tP (r, t) = DpLP (r, t) − Kb(r)P (r, t) + Kf (r)S(r, t), (2.1)

whereS(r, t) andP (r, t) are the concentrations at positionr and timet, Ds andDp are the

diffusion coefficients andKf (r) andKb(r) are the reaction rates. The reaction rates are given

by Kα(r) = kαδ(r − ρ), for ρ ∈ Ω. The setΩ denotes the regions on the Si surface where

defects are located. The domain boundary is modeled as a ringof radius R and is given by

KR(r) = kRδ(|r|−R)/|r|. This is no restriction of the proposed model. Any type of boundary

can be considered. Then the model will require a full-scale numerical approach.J(r, t) is an

external flux. Equation (2.1) is subject to the boundary conditions S(r, t), P (r, t) are finite at

the origin and vanishes at infinity. The initial conditions are S(r, 0) = P (r, 0)=0. Letφ(r, s),

ψ(r, s) andĴ(r, s) be the Laplace transform ofS(r, t) ,P (r, t) andJ(r, t) respectively. From

Eq. (2.1) we have

|φ(s)〉 = G(1)
s (s)D−1

s (−Kf |φ(s)〉 + Kb|ψ(s)〉 + |Ĵ(s)〉),

|ψ(s)〉 = G(0)
p D−1

p (−Kb|ψ(s)〉 + Kf |φ(s)〉). (2.2)

where〈r |φ(s)〉 = φ(r, s), 〈r |ψ(s)〉 = ψ(r, s), 〈r|Ĵ(s)〉 = Ĵ(r, s) , δ(r − r′)Kj(r) =

〈r|Kj|r′〉 for j = f, b, R, 〈r|(sD−1
s −L)|φ(s)〉 = (sD−1

s −L)φ(r, s) and〈r|(sD−1
p −L)|φ(s)〉 =

(sD−1
p −L)ψ(r, s). [30] The orthogonality and the completeness relations aregiven as〈r|r′〉 =

δ(r − r′) and
∫

|r〉〈r|dr = 1. [30] The operatorL is the Laplacian in polar coordinate sys-

tem [113]. The Green’s function are defined by

G(0)
p (s) = [sD−1

p − L]−1,

G(0)
s (s) = [sD−1

s − L]−1,

G(1)
s (s) = [sD−1

s − L + D−1
s KR]−1. (2.3)

The domain boundary is a circle of radiusR so that we can writeKR = |R〉kR〈R| . Expression

for G
(1)
s (s) can be written in terms of the t-matrix as

G(1)
s (s) = G(0)

s (s) + G(0)
s (s)TR(s)G(0)

s (s) (2.4)
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where the t-matrixTR(s) [30] is given by

TR(s) = −(D−1
s KR − D−1

s KRG0
s(s)D

−1
s KR + D−1

s KRG0
s(s)D

−1
s KRG0

s(s)D
−1
s KR . . .)

=
|R〉(−kR/Ds)〈R|

1 + (kR/Ds)
∫

G
(0)
s (R, θ|R, θ)dθ

(2.5)

The Green’s function in the limitkR → ∞ is

G(1)
s (s) = G(0)

s (s) − G
(0)
s (s)|R〉〈R|G(0)

s (s)
∫

G
(0)
s (R, θ|R, θ)dθ

(2.6)

The expressions forG(0)
α (s) andG

(1)
α (s) are given in Appendix A.1. Equation (2.4) and (2.5)

can also be written in terms of Feynman diagrams (cf. Fig. 2.1). Using these expression in Eq.

(2.2), |φ(s)〉 and|ψ(s)〉 can be written in terms of the Green’s functions. The concentrations

can then be calculated by inverse Laplace transformation of|φ(s)〉 and|ψ(s)〉. At the domain

boundary the reactionS → S ′ takes place at a ratekR which is sufficiently high. This implies

that those particles that reaches the domain boundary get permanently trapped there.

TR(s) =

= − + −

+ − . . .

=
−

1+

∫

G(0)
s (R, θ, R, θ)dθ =

= +

kR/Ds =

(r, θ) (r′, θ′)
G(1)

s
(r, θ|r′, θ′) =

(r, θ) (r′, θ′)
, G(0)

s (r, θ|r′, θ′) =

Figure 2.1: Green’s functionG(1)
s (r, θ|r′, θ′) expressed in Feynman diagrams.

2.2.1 The ring model

The reaction centers are modeled as concentric rings with center at the origin. Due to the

circular symmetry we haveL = 1
r

d
dr

(

r d
dr

)

. The concentrations are given byS(r, t) andP (r, t).
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The reaction rates are given byKα(r) = kα

∑

ri
δ(r − ri)/r, where indexα is f or b andri

denotes the collection of all random variable uniformly distributed in(0, R). ThusΩ is defined

by the collection of all these circles. A particle fluxJ(r, t) is incident normal to the surface.

We assumeJ(r, t) = j0exp(−λr) to be exponentially decaying. Here the reactionS ⇋ P

occurs at thei-th ring and there is diffusion away from the ring. At the boundary r = R the

reactionS → S ′ takes place at a ratekR. The diffusion constant ofS ′ is assumed very low as

compared to that ofS andP . Let φ(r, s), ψ(r, s) andĴ(r, s) = j0exp(−λr)/s be the Laplace

R

(a) (b)

R

ir ri

Figure 2.2: Geometry of the reaction diffusion process (a) the ring model: the largest ring of
radius R denotes the domain boundary, other rings denote thering defects, (b) the point model:
the dots dispersed within the radiusR denote the point defects on the surface.

transform of the concentrationsS(r, t), P (r, t) andJ(r, t) respectively. We obtainφ(r, s) and

ψ(r, s) in terms of the Green’s functionG(1)
s (r|r′) andG

(0)
p (r|r′).

φ(r, s) =
∑

{ri}
G(1)

s (r|ri)ρ1(ri, s) + Q(r, s),

ψ(r, s) =
∑

{ri}
G(0)

p (r|ri)ρ2(ri, s),

ρ1(ri, s) =
kb

Ds

ψ(ri, s) −
kf

Ds

φ(ri, s),

ρ2(ri, s) =
kf

Dp

φ(ri, s) −
kb

Dp

ψ(ri, s). (2.7)

whereQ(r, s) = (2π/Ds)
∫

G
(1)
s (r|r′)Ĵ(r′, s)r′dr′. Using Eqs. (2.3) the Green’s function can

be written as

G(0)
α (r|r′) =

1

2π
I0(

√

s/Dαr)K0(
√

s/Dαr′), (2.8)

where the indexα is s or p andr < r′. Whenr > r′ replacer by r′ and vice versa in Eq.

(2.8). InG
(0)
α (r|r′) the Laplace variables has been kept implicit for clarity. It will be explicitly
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written asG(0)
α (r, r′, s) whenever required. The presence of the domain boundaryKR(r) acts

as a defect. So, we can write the Green’s function in the presence of single defect as

G(1)
s (r|r′) = G(0)

s (r|r′) − G
(0)
s (r|R)G

(0)
s (R|r′)

G
(0)
s (R|R)

. (2.9)

in the lim kR → ∞, which makes the domain boundary a perfect sink atr = R. Now, suppose

there areND number of defects. Settingr = rj for all j = 1, 2, . . . , ND in Eq. (2.2) we

obtain2ND linear equations which can be solved to obtainφ(rj, s) andψ(rj, s) for all j =

1, 2, . . . , ND. From Eq.(2.7)S(r, t) andP (r, t) can then be obtained using Inverse Laplace

transform. Let us now consider the case of a single defect. From Eq.(2.7) we have

φ(r, s) = Q(r, s) − kf

Ds

G
(1)
s (r|r1)Q(r1, s)

∆(r1)
, (2.10)

ψ(r, s) =
kf

Dp

G
(0)
p (r|r1)Q(r1, s)

∆(r1)
, (2.11)

where∆(r1) = 1 + (kf/Ds)G
(1)
s (r1|r1) + (kb/Dp)G

(0)
p (r1|r1). We notice from Eq. (2.10)

that, the inverse Laplace transform of the first partQ(r, s) gives the solution of the diffusion

equation with a sink atr = R in the presence of external flux. The second part involves a

convolution in time the effect of which is to decrease the concentration near the reaction center.

Similarly from Eq. (2.11) we can see the converse. For large number of defectsφ(r, s) and

ψ(r, s) will be too complicated, but the concentrations will show the same behavior close to the

defect centers. We have implemented the Talbot Inverse Laplace transformation method [32]

in our numerical computations. In Fig. 2.3 we use the domain boundary as the unit circle so

that0 ≤ r ≤ 1(= R). In Fig. 2.3 we plot the concentrationsS(r, t) andP (r, t) at timet = 1.0

for Ds = 0.1, Dp = 0.01, kf = kp = 0.1. There are four ring defects with radius randomly

chosen in(0, 1). The concentration forP shows peaks of decreasing heights at those radii.

This happens due to the exponentially decaying incident flux. We will discuss next in the point

model how point defect gives rise to similar peaks. We will see that both models differs only

in their geometrical aspects.

2.2.2 The point model

In this model, we consider point reaction centers spread uniformly over the surface. Letri

be the position of thei-th reaction center where1 ≤ i ≤ ND andND is the total number of

reaction centers (see Fig. 2.2(b)). So we haveΩ = {r1, . . . , rND
} the set of position vectors of
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(a) (b)

Figure 2.3: Concentrations (a)S(r, t) and (b)P (r, t) at timet = 1.0 wherer = (x, y), Ds =
0.1, Dp = 0.01, kf = 1.0, kp = 0.1 in the presence of four ring defects in0 ≤ r ≤ 1. Incident
flux in exponentially decaying withλ = 1.0.

reaction centers. The reaction rates are given byKα(r) = kα

∑n
i=1 δ(r − ri), whereα = f, b.

The Laplace transform of the concentrationsS(r, t), P (r, t) are given by

φ(r, θ) =
∑

(ri,θi)∈Ω

G(1)
s (r, θ|ri, θi)ρ1(ri, θi) + Q(r, θ),

ψ(r, θ) =
∑

(ri,θi)∈Ω

G(0)
p (r, θ|ri, θi)ρ2(ri, θi),

Q(r, θ) =
1

sDs

∫

G(1)
s (r, θ|r′, θ′)J(r′, θ′)r′dr′dθ′,

ρ1(ri, θi) =
−kf

Ds

φ(ri, θi) +
kb

Ds

ψ(ri, θi),

ρ2(ri, θi) =
−kb

Dp

ψ(ri, θi) +
kf

Dp

φ(ri, θi), (2.12)

Here we haver = (r, θ) andri = (ri, θi) as we are using polar coordinate system. The values

of φ(ri, θi) andψ(ri, θi) can be obtained by solving the following linear equations

φi =

ND
∑

j=1

(G(1)
s )i,j(−kfφj + kbψj)/Ds + Qi,

ψi =

ND
∑

j=1

(G(0)
p )i,j(−kbψj + kfφj)/Dp. (2.13)

where(G(1)
s )i,j = G

(1)
s (ri, θi|rj, θj), φj = φ(rj, θj), ψj = ψ(rj, θj) andQi = 1/(sDs)

∫

G
(1)
s (ri,

θi|r′, θ′)J(r′, θ′)r′dr′dθ′ for all i = 1, 2, . . . , ND. Inverting the Eq.(2.13 and 2.12) to the time

domain will give us the concentrationsS(r, t) andP (r, t).
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2.3 Asymptotic large time limit

Consider the ring model with one ring defect. The Green’s function in Eq.(2.10) and(2.11)

when expanded in Taylor series nears = 0 can be written as

G(1)
s (r|r′) ≃ − 1

2π

(

1 +
sr2

4Ds

) (

1 +
sr′2

4Ds

)

ln(r′/R) + . . . ,

G(0)
p (r|r′) ≃ − 1

2π

(

1 +
sr2

4Ds

) (

1 +
sr′2

4Ds

) (

ln
s1/2r′

2D
1/2
s

+ γ

)

+ . . . ,

wherer < r′. For r > r′ replacer by r′ and vice versa. Forkf/Ds ≪ 1 andkb/Dp ≪ 1

denominator can be approximated as unity. Using the above expressions we haveQ(r, s) ∼ s−1

so thatQ(r, t) in the long time asymptotic limit becomes

Q∗(r) ≃ −j0

Dsλ2
{Ei(−λR) − Ei(−λr) + e−λr − eλR + ln(r/R)} (2.14)

The concentrationS(r, t) andP (r, t) in the asymptotic limitt → ∞ [114] can be written as

S(r) ≃ Q∗(r) +
kf

2πDs

Q∗(r1)F1(r),

P (r) ≃ −kb

2πDp

Q∗(r1)F2(r), (2.15)

where

F1(r) =

{

ln r1

R
if r ≤ r1,

ln r
R

if r > r1.

F2(r) =

{

γ − 1
2
ln 4DpCt

r2

1

− r
8Dpt

if r ≤ r1,

γ − 1
2
ln 4DpCt

r2 − r1

8Dpt
if r > r1.

(2.16)

andγ = ln C = 0.5772 . . .. The functionQ∗(r) is a monotonically decreasing function with

maximum at the originr → 0 and zero at the domain boundaryr = R. From the expres-

sion obtained in Eq.(2.15 and 2.16) we find that in the presence of a single ring defect the

concentrationS(r) andP (r) varies logarithmically as one move away from the ring defect.

2.4 Simulations and numerical results

We saw earlier that the solutionS(r, t), P (r, t) can be calculated by using the Green’s func-

tions. However for a large number of defects it becomes difficult to evaluate it numerically.

We explore numerically the results we have obtained in Eq.(2.12) for a small number of de-

fect ND = 8. In our computations we have implemented the fixed Talbot method for inverse
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: ConcentrationS(r, t) at time (a)t = 0.01, (c ) t = 0.1, (e)t = 1.0 and concentration
P (r, t) at time (b)t = 0.01, (d) t = 0.1, (f) t = 1.0 for Ds = 1.0 andDp = 0.1.

Laplace transformations [32]. For large number of defects we have studied the system by

Monte Carlo simulations. For our numerical computations we have scaled all relevant param-

eters of the model by the radius of the domain boundaryR i.e. Dα → τDα/R2, kα → τkα

where the indexα is s or p, τ = R2/Ds is the unit of time. The values of plots are obtained

by setting fluxτj0 → 1. The parameterλ is taken as1/R with the assumption that the flux of

particles falls off appreciably outside the domain boundary. In the plots in Fig. 2.4 we show

the time evolution of the diffusion process. The following parameters,Ds = 1.0, Dp = 0.1,

kf = 0.1 andkb = 0.01 were used. Att = 0.01 (Fig. 2.4 a and b) one can find that the

reaction has just begun and thus the concentrations ofP around the reaction centers can be

seen. As we advance ahead in time the concentration ofP becomes more prominent and the

space between the reaction centers starts filling up due to the diffusion ofP . Concentration of

S show dips at the locations where the concentration ofP peaks. We further note that peaks

of P appearing nearer to the origin are higher than those closer to the periphery. This happens

as we have chosen an exponentially decaying flux. Asymptoticresults were obtained for the

following set of parametersDs >> Dp with kf = kb = 0.1 and timet = 1.0. Figure 2.5 (a,
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(d)

(a) (b)

(c)

Figure 2.5: ConcentrationsS(r, t) and P (r, t): (a,b) for Ds >> Dp at t = 1.0, (c,d) for
Ds << Dp at t = 1.0.

b) shows the case forDs >> Dp. In this case theS species diffuses very fast compared to the

P species. Consequently the concentration plot ofS shows the expected smoothness. For the

opposite case (i.e.,Ds << Dp) we note that (Fig. 2.5 (c, d)) there are deep hole-like structures

in S concentration plot. This means that more number of particles have undergone reactions

near the reaction centers as this should be the case forDs << Dp. Similarly, if we vary the

reaction rate constants we find that the peaks ofP grow and dips appear inS with increasing

kf , the rate constant for the conversion ofS to P . The concentrations ofS andP for t = 1.0,

(kf , kb) = (0.1, 0.1), (0.5, 0.1), (0.1, 0.5) andDs = Dp = 1.0 are plotted in Fig. 2.6.

For a large number of reaction centers we performed Monte Carlo simulations to study the

reaction diffusion process. We have used the stochastic simulation algorithm [115]. Reaction

centers are uniformly distributed inside the circular domain of radiusR. Each reaction center is

a circular disk of radiusa ≪ R centered atri, i = 1, 2, . . . ND where the reactionS ⇋ P take

place with ratekα, α = f, b. Outside the circular region there is no reaction. Note thatin this

numerical approach we allow a definite area for the reaction center. The speciesS andP freely

diffuse with diffusion constantDs andDp respectively. Whenever a particle of typeS reaches

the domain boundary|r| = R the reactionS → S1 occur with probability 1. This makes it

a perfect sink (i.e. limitkR → ∞). We have taken a constant flux rateJ . The simulation

algorithm in discussed in Appendix E. A snapshot of the simulation withND = 150 is shown

in Fig. 2.7. The following parameters were usedDs = 1.0, Dp = 0.01, DS1
= 0.001, kf =
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(a) (d)

(b) (e)

(c) (f)

Figure 2.6: Concentrations ofS(r) (a, b, c) andP (r) (d, e, f): (a, d)kf = 0.1, kb = 0.1, t = 1.0;
(b, e)kf = 0.1, kb = 0.5, t = 1.0; (c, f) kf = 0.5, kb = 0.1, t = 1.0.

(c)(b)(a)

Figure 2.7: Snapshots of concentrations: (a)S, (b) P and (c)S1 obtained from MC simulation
after5 × 104 MC steps.

1.0, kb = 0.1. The plot shows the density of particles at5 × 104 Monte Carlo steps. One MC

step consist of one diffusive step of each particle on the surface followed by the corresponding

reaction step which occurs at ratekf or kb depending on the type of particle.

We studied the first passage time statistics of the reaction diffusion process using MC sim-

ulations. In the previous chapter we discussed the first passage time probability. In our sim-

ulation an adatom starts diffusion from the origin at timet = 0. It undergoes a number of

reactions along its path before it hits the domain boundary at R. The diffusion coefficient at

a timet depends on whether it is of type S or P. The first passage time isdefined as the time

required for the particle to reach the domain boundary atR irrespective of its type when it

reaches the domain boundary. From our MC simulations we havefound that for a fixedND the
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(b)(a)

Figure 2.8: (a) Mean first passage time and (b) mean number of reaction as a function ofkb.
Black lines in (a) isP (τf ) that are fit to the MC results(points).Ds = 1, kf = 1.

mean first passage time is correlated to the number of reactions the particle undergoes during

the entire path. We calculated the mean first passage time andthe mean number of reactions

as a function ofkb for different values ofDp. The mean first passage time〈τf〉 is found to be

a strictly decreasing function ofkb. We found that〈τf〉 ∼ c1/(kb + c2) wherec1 andc2 are

positive constants that depends onDp. To the best of our knowledge it is a new result.

Let us assume that the probability density of first passage timeP (τf ) = p(τf ) exp(−Aτf )

wherep(τf ) is a positive polynomial andA > 0 is a constant. For small values ofDp we

have〈τf〉 ∼ c1/kb (see Fig. 2.8 (a) forDp < 0.5). We can assumep(τf ) linear which leads

to P (τf ) = A2τf exp(−Aτf ) whereA depends onDp. This probability density agrees quite

well with the results obtained from the MC simulations. The mean first passage time then

givesA = 2kb/c1. In Fig. 2.9 we plotted the probability densityP (τf ) for Dp = 0.1 and

kb = 0.1, 0.25, 0.5 along with the densities obtained from the MC simulations. For small

values ofDp we found that the functionP (τf ) fit very well with the MC results.
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Figure 2.9: Comparison of probability densities obtained from MC simulations(thin colored
lines) withP (τf ) (thick solid lines).Ds = 1, Dp = 0.1, kf = 1.0
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Chapter 3

The effect of exclusion on nonlinear
reaction-diffusion system with disorder

3.1 Introduction

Cluster formation at nanoscales induced by surface defects has been studied extensively in

recent times ( [5–10, 12, 13, 109, 110] and the references therein). It has been found that step

edges [5, 6, 109], dislocations [7–10] and domain boundaries [12, 110] play a very crucial role

in cluster formation. In a recent paper it is shown that when Ge is deposited on Si surfaces

preferential growth occurs at surface defects and domain boundaries [13]. A reaction diffusion

model is proposed which qualitatively explains the clusterformation [112]. Surface defects

and domain boundaries are taken as localized reaction centers in the form of point defects and

ring defects. Furthermore, simple linear form of the reaction is considered. This can be justified

under certain approximation. In the studied model clustersand adatoms were allowed to diffuse

normally with intrinsic diffusion coefficients [13,112].

Reaction diffusion models in presence of defects has been studied earlier to model a number

of phenomena such as trapping of exciton in a crystal at a defect, recombination of electron and

hole and soliton and antisoliton [16]. In these works trapping reactions have been studied in

which the reactants get absorbed completely or partially attrapping sites (i.e. reaction centers).

The authors have focused primarily on the statistical properties such as long time behavior

and self segregation [17–21]. Furthermore, these models describe a non-interacting system of

particle undergoing reactions in a disordered media. Here we would like to emphasize that

when we say an “interacting“ reaction diffusion system, we simply mean interaction between

particles other than the reactive interactions (or simply reactions).

Our main aim in this chapter is two fold. In the first place, we plan to study the effect of
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exclusion in the formation of cluster induced by surface defects. The effect of exclusion in

a multispecies reaction-diffusion system in the presence of disorder has not been studied so

widely. This exclusion effect arises due to repulsion amongdiffusing particles. For the same

kind of particles, this repulsive effect is incorporated ina mean field way in their diffusion

coefficients, which is an experimentally determined quantity [104]. But, there is also repulsion

among dissimilar species. So, this must be taken into account at least in a mean field way in

any reaction-diffusion system.

Exclusion effect in homogeneous reaction diffusion systems has been studied by a num-

ber of authors. In lattice models exclusion is incorporatedby restricting the occupancy of a

site strictly to a single particle. Recently, it is shown thatin a lattice system with contact in-

teractions there could be discrepancies between the lattice and their corresponding continuum

model. This arises because in the continuum model the diffusion constant becomes dependent

on the concentration which may take unphysical values for different lattice types and the cho-

sen interaction neighborhood [116]. However, the continuum model agrees well for mild to

moderate contact interaction strength.

If we look at normal diffusion the diffusivity is independent of the concentration of the dif-

fusing particles. However, in a multiparticle system in which there is interaction between the

diffusing particles the diffusivity can depend on the concentration. In such systems anomalous

diffusion might be observed. It was shown that the critical behaviors of non-equilibrium ab-

sorbing phase transitions under particle conservation areaffected when excluded volume inter-

action is incorporated [117]. Experimental observations have established that all concentration

dependent diffusion process leads to anomalous diffusion [118,119]. In an interacting multipar-

ticle system, concentration dependent diffusion coefficient appears naturally [120]. Nonlinear

Fokker-Planck equation has been studied in the past that describes the stochastic motion of a

particle in a media whose drift and diffusion terms depends on the probability density of the

particle [120–124]. In the model considered here we have twocoupled Smoluchosky equa-

tions [125] in which repulsive force on any one type of particles is generated by other species.

In the developed Smoluchosky equations the repulsive forceon a given type of particles is as-

sumed to be generated by the concentration gradients of the other species. For a single species

system, equation studied here is same in form , developed by other authors [122,123].

On the same note repulsive interaction between particles can also be seen as an exclusion

effect as the repulsive force originates from an effective field produced by other particles on a
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tagged particle. Note that any two particle cannot occupy the same position at the same time.

Hence, this effect can be introduced by a repulsive interaction between the particles (i.e. hard

core repulsion) as it is done here. We would also like to emphasize here that this is an alter-

native way of incorporating exclusion effects in mean field equations. In this article we study

a reaction diffusion system in the presence of exclusion anddisorder. This type of approach

has been taken to understand chemotaxis in biological problems [33, 34]. Furthermore, exclu-

sion processes on lattice has been studied extensively in the past to model problems in physics,

chemistry and biology. It is also shown how these reaction diffusion equation can be derived

using microscopic principles from the master equation [125,126].

Another important feature here is that the incorporation ofnonlinear cluster formation reac-

tion scheme. Since there is no proven reaction scheme for theformation of nanoclusters on Si

surfaces, we use algebraic nonlinearity in the reaction scheme. The relevant chemical kinetic

equations are derived in Appendix C.2.

In Sec. 3.2 we discuss the theoretical model. A perturbativeanalysis of one-dimensional

system is also presented. In Sec. 3.3 we study the effect of exclusion in a simple diffusion

process in the presence of a trap site at the origin. We show here that self-exclusion gives

rise to concentration dependent diffusion coefficient. We draw important conclusions about the

formation of clusters in the presence of exclusion from thissimple set up. Numerical results

for both one dimensional and the original model of two dimensions are discussed in Sec. 3.4.

3.2 Theoretical model

We consider a reaction diffusion process on a flat surface on which reaction occurs only in the

neighborhood of reaction centers. Reaction centers are localized regions on the surface where

we allow the reaction to take place. Away from the reaction centers there is only diffusion. At a

reaction center we assumeη adatom combine to form a cluster. The coupled reaction diffusion

equation is given by

∂tS(x, t) = ∂x(Ds∂xS(x, t) + ǫS(x, t)∂xP (x, t))

−Kf (x)S(x, t)η + Kb(x)P (x, t) + J(x, t), (3.1)

∂tP (x, t) = ∂x(Dp∂xP (x, t) + ǫP (x, t)∂xS(x, t))

−Kb(x)P (x, t) + Kf (x)S(x, t)η. (3.2)
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We assume that there is no external flux,J(x, t) = 0 and the initial conditions are given by

S(x, 0) = 1 andP (x, 0) = 0. These equation are supplemented by appropriate boundary

conditions. The diffusion and the drift terms in Eq. (3.1)and Eq. (3.2) can be derived from

the master equation (see Eq. (D)). Forǫ = 0 the process is purely diffusive and describes

a noninteracting system of particles. Whenǫ 6= 0 it describes a system in which particles of

different species interact via volume exclusion. We have modeled this through an additional

drift term for each species that depends on the gradient of concentration of the other species.

This can be pictured in the following manner. Consider an adatom in the vicinity of a cluster.

Due to thermal noise the diffusion term can be clearly written asDs∂
2
xS. It is to be noted

that in Fickian diffusion arising from the nonuniformity ofthe chemical potential the form

of the diffusive term remains same, except that self-diffusion coefficientDs is replaced by

cooperative diffusion coefficient [104]. In addition to this the adatom experiences a repelling

force (ǫ > 0) −ǫ∂xP which appears as an additional drift term in Eq. (3.1) and similarly in

Eq. (3.2) . We note here that the surface defects help reaction to occur forming clusters in its

neighborhood. On the other hand the cluster repels adatoms,therby preventing them to reach

the defect site. So, clearly the formation of cluster involves a competition between these two

counter processes. The exclusion of one species of particleby the other species of particles

we call here as cross-exclusion. When exclusion of a particleby their own kind is involved we

will call it self-exclusion. In our model we have not included the self-exclusion-terms as it will

only make the diffusion coefficient dependent on concentrations. In Sec. 3.3 we will consider

a trapping reaction at a static defect to examine the effect of self-exclusion.

Our next aim is to analyze the solution of these coupled equations for a perturbative exclu-

sion effect with keeping the reaction scheme linear as it is done in our earlier work [112]. We

further consider a single point defect at the origin. Note that if ǫ = 0 andη = 1 the above

equation becomes linear. We can writeKf (x) = kfδ(x) andKb(x) = kbδ(x). The above

equation for the linear case with a single defect is exactly solvable and we get.

S(x, t) = 1 − kf

2
√

Dsk
Hs(x, t), (3.3)

P (x, t) =
kf

2
√

Dpk
Hp(x, t), (3.4)

wherek = (kf/
√

Ds + kb/
√

Dp)/2 and the functionHα(x, t) is given by

Hα(x, t) = erfc(
|x|

2
√

Dαt
) − exp(|x|k/Dα + k2t)erfc(

|x|
2
√

Dαt
+ kt). (3.5)
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For the nonlinear case i.e. for finite value ofǫ an analytical solution to the above set of equations

cannot be obtained in a straight forward way.

Let us consider the nonlinear caseǫ 6= 0 andη = 1 in one dimension with a single defect

at the origin. We want to see the effect of a small exclusion (0 < ǫ ≪ 1) term. We assume that

the solution to Eq. (3.1) and Eq. (3.2) can be written as [127]

S = S0 + ǫS1 + . . . + ǫn−1Sn−1 + O(ǫn), (3.6)

P = P0 + ǫP1 + . . . + ǫn−1Pn−1 + O(ǫn), (3.7)

whereS0 andP0 are solutions of Eq. (3.1) and Eq. (3.2) withǫ = 0 and is given by Eq. (3.3) and

Eq. (3.4) in one dimension. We can expand the Eq. (3.1) and Eq.(3.2) in a regular perturbation

series in powers ofǫ, the resulting equations of ordern will be the reaction diffusion equation

with ǫ = 0 and a source (sink) terms centered at the defect sites that are functions of solution

of order(n − 1) equations. The generaln order equation can be written as

∂tSn(x, t) = Ds∂
2
xSn(x, t) − Kf (x)Sn(x, t) + Kb(x)Pn(x, t) + Js,n(x, t), (3.8a)

∂tPn(x, t) = Dp∂
2
xPn(x, t) − Kb(x)Pn(x, t) + Kf (x)Sn(x, t) + Jp,n(x, t), (3.8b)

whereJs,0 = 0 andJp,0 = 0, Js,n(x, t) andJs,n(x, t) are source (sink) functions that are written

in terms ofSn−k, Pn−k, ∂xSn−k and∂xPn−k for 1 < k < n. Although these equations are linear,

solving order by order is still very difficult due to the complicated source (sink) terms on the

right hand side. It is also not our aim to find a perturbative solution of the problem at this point.

We can gain ample insight by replacing Eq. (3.1) and Eq. (3.2)by a simpler set of equations.

For smallǫ we can make the following approximation in Eq. (3.1) and Eq. (3.2)

ǫ∂xS ≃ ǫ∂xS0, ǫ∂xP ≃ ǫ∂xP0. (3.9)

The resulting equations are a set of linear equations with variable coefficients. However, theses

equations are still far from being solvable. To simplify it further we shall use the proper-

ties of the functionsS0(x, t) andP0(x, t). The gradients,∂xS0(x, t) and∂xP0(x, t) are odd

functions inx and have a finite discontinuity at the reaction centerx = 0. So, we have

∂xS0(0
−, t) = −∂xS0(0

+, t) and ∂xP0(0
−, t) = −∂xP0(0

+, t). Also we have|∂xS0(x, t)|
and |∂xP0(x, t)| monotonically decreasing forx ∈ (0,−∞) or x ∈ (0,∞) and asx →
±∞, ∂xS0(x, t) = ∂xP0(x, t) = 0. Therefore there existx = x∗, y∗ > 0 such that0 ≤
|∂xS0(x

∗, t)| ≤ |∂xS0(0
+, t)| and0 ≤ |∂xP0(y

∗, t)| ≤ |∂xP0(0
+, t)| for all t > 0.
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P0(y
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Figure 3.1: Schematic diagram: (a) adatom concentrationS0(x, t∗), (b) cluster concentration
P0(x, t∗), (c) exclusion term−ǫ∂xS0(x, t∗) and (d) exclusion term−ǫ∂xP0(x, t∗). Thick hor-
izontal arrows in (c) denotes the direction of the repulsiveforce on the cluster particles P due
to the adatoms. In (d) it denotes the direction of repulsive force on the adatoms S due to the
clusters.vs = |ǫ∂xP0(y

∗, t∗)| andvp = |ǫ∂xS0(x
∗, t∗)| are drift speed of adatoms and cluster

arising due to exclusion . Timet∗ ∈ [0, t] andx = x∗ > 0 andy∗ > 0 are points where the
concentrations have the mean value.

We can make further approximations so that the gradients in Eq. (3.9) can be replaced by

constants which is valid in some time interval[0, t]. Let us choosex∗, y∗ > 0 andt∗ ∈ [0, t]

such that it satisfiesHs(x
∗, t∗) = Hs(0, t

∗)/2 andHp(y
∗, t∗) = Hp(0, t

∗)/2 (See Fig. 3.1).

Solution of these equations give the values ofx∗and y∗ at which the concentrations has its

mean value at some timet∗. In our calculations we have takent∗ = t/2. Equation Eq. (3.9)

can now be written as

ǫ∂xS ≃ vpsgn(x), ǫ∂xP ≃ −vssgn(x), (3.10)

wherevs = |ǫ∂xP0(y
∗, t∗)| andvp = |ǫ∂xS0(x

∗, t∗)| and sgn(x) = 2(θ(x) − 1/2) accounts for

the discontinuity at the reaction centerx = 0 (θ(x) is the Heaviside step function) . Since we

are replacing monotonically decreasing functions by constants the approximation Eq. (3.10) is

valid in the neighborhood of the reaction center for a small time interval[0, t]. Note that in this

approximation all the particles are moving into or away fromthe reaction center at constant

speedsvs andvp but in the actual case this is not true when the gradients are monotonically

decreasing. However, this overestimation ofvs andvp will not alter the basic physics of the

problem. We obtain the following simplified reaction diffusion equations

∂tS(x, t) = Ds∂
2
xS(x, t) − vssgn(x)∂xS(x, t)

−(kf + 2vs)δ(x)S(x, t) + kbδ(x)P (x, t), (3.11)
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∂tP (x, t) = Dp∂
2
xP (x, t) + vpsgn(x)∂xP (x, t)

−(kb − 2vp)δ(x)P (x, t) + kfδ(x)S(x, t). (3.12)

Here we note that, two very interesting features arise due tothe effect of exclusion. First,

it gives an extra drift term with velocity which is either into or away from the defect site.

Secondly, it modifies the reaction rates and the reaction terms become different for two reacting

species breaking constraints of our kinetic scheme (see Eq.(3.1) and Eq. (3.2)). Let us define

k̃f = kf + 2vs andk̃b = kb − 2vp. The Eq. (3.11) and Eq. (3.12) after Laplace transform can

be written in an abstract notation [30] as the following

|φ(s)〉 = Gs(s)
[

−K̃f |φ(s)〉 + Kb|ψ(s)〉 + |J(s)〉
]

, (3.13)

|ψ(s)〉 = Gp(s)
[

−K̃b|ψ(s)〉 + Kf |φ(s)〉
]

, (3.14)

where〈x|φ(s)〉 = φ(x, s) and〈x|ψ(s)〉 = ψ(x, s) are the Laplace transform ofS(x, t) and

P (x, t) respectively. The flux term appears due to the initial condition S(x, 0) = 1 = 〈x|J(s)〉.
The reaction operators are defined byδ(x − x′)kαδ(x) = 〈x|Kα|x′〉 andδ(x − x′)k̃αδ(x) =

〈x|K̃α|x′〉. The Green’s functionsGs(s) andGp(s) are defined by

Gs(s) =
[

s − Ds∂
2
x + vssgn(x)∂x

]−1
, (3.15)

Gp(s) =
[

s − Dp∂
2
x − vpsgn(x)∂x

]−1
. (3.16)

The expressions for the Green’s functions in Eq. (3.15) and Eq. (3.16) are given in A.2. Next

consider diffusion of adatoms on a surface without defects.If we choose the initial concentra-

tion S(x, 0) = δ(x), we know that it will evolve as Gaussian as there is no clusterformation.

Now suppose that we introduce a force field at the origin such that it gives rise to a constant

drift velocity vs in the outward direction. The diffusion of adatoms can be described by the

following equation

∂tS(x, t) = ∂x [Ds∂x − vssgn(x)∂x] S(x, t) (3.17)

In the Laplace domain we can write

φ(x, s) =
Gs(x|0)

1 + 2vsGs(0|0)
. (3.18)

Hereφ(x, s) is the Laplace transform ofS(x, t). For brevity the Laplace variables is kept

implicit in Gs(x|x′). Using the expression for the Green’s function Eq. (A.5) andEq. (A.6) in
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Eq. (3.18) and taking inverse Laplace transform, the solution of Eq. (3.17) can be written as

S(x, t) =
1√

4πDst
exp

(−(|x| − vst)
2

4Dst

)

− vs

4Ds

evs|x|/Dserfc

( |x| + vst

2
√

Dst

)

. (3.19)

Looking at Eq. (3.19) we note from the first term that adatoms are pushed away from the origin

to a distancevst. The second term has a minimum at the origin and reduces the concentration

by small amount which is of the ordervs.

Now returning to our reaction diffusion problem we should expect that, in the presence of

exclusion, adatoms will experience an extra repulsive force which is directed outward from the

center of the surface defect. From Eq. (3.13) and Eq. (3.14) we obtain

φ(x, s) = Q(x) − k̃fGs(x|0)Q(0)

∆
− (k̃f k̃b − kfkb)Gs(x|0)Gp(0|0)Q(0)

∆
, (3.20)

ψ(x, s) =
kfGp(x|0)Q(0)

∆
, (3.21)

where

∆ = 1 +
k̃f

2Ds(−ρs + γs)
+

k̃b

2Dp(−ρp + γp)
+

k̃f k̃b − kfkb

4DsDp(−ρs + γs)(−ρp + γp)
, (3.22)

ρs = vs/(2Ds), ρp = −vp/(2Dp), γs =
√

ρ2
s + s/Ds andγp =

√

ρ2
p + s/Dp. The function

Q(x) = 〈x|Gs(s)|J〉 = 1/s.

The inverse Laplace transformation ofφ(x, s) and ψ(x, s) is performed numerically by

Talbot method [32] which we denote bySl(x, t) and Pl(x, t) respectively. In Fig. 3.2 (a)

and 3.2 (b) we have plotted the concentrations for the caseǫ = 0 denoted byS0, P0, actual

numerical solutionS, P of (3.1) and (3.2) obtained by finite difference method and the solution

of the modified linear equationsSl, Pl. The parameters areǫ = 0.1, Ds = 1, Dp = 0.25, kf =

1.0, kb = 0.1 andt = 1.0. In Fig. 3.2(b), we note that the solutionSl andPl and the numerical

solution S and P at a point close to the defect site have reduced as compared tothe bare

case, i.e. ǫ = 0 concentrations,S0, P0. The current due to diffusion and the drift current

are in opposite directions for both adatom and cluster whicheffectively reduces the number of

particle at the origin. However, this is true only for small value of0 < ǫ ≪ 1. For higher

values ofǫ the diffusion and the drift currents will be comparable and the higher order terms in

ǫ will also have a significant contribution (see Fig. 3.4).
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Figure 3.2: (a) Concentrations: Numerical solutionS, P , solution without exclusion (ǫ = 0)
S0, P0 and solutions of the simplified linear equationSl, Pl, (b) Concentrations close to the
defect at the origin.

3.3 Trapping reaction with self-exclusion

To understand the effect of self-exclusion we consider a single diffusing species with a trap

at the origin. We assume that particles interact among themselves, so we introduce a self-

exclusion term proportional to the density gradient as we have done in the previous section.

When a particle reaches the trap site it gets trapped with a time-independent rate constantκ.

The reaction diffusion equation for the problem is then

∂tu(x, t) = ∂x(D0∂xu(x, t) + ǫu(x, t)∂xu(x, t)) − κδ(x)u(x, t). (3.23)

We use the initial conditionu(x, 0) = 1 along with appropriate boundary conditions [128].

By rearranging terms in Eq. (3.23) the term due to exclusion can simply be absorbed in a

concentration dependent diffusion coefficient,D(u) = D0(1 + ǫu) (here ǫ is redefined as

ǫ = ǫ/D0). We note that with self-exclusion the current due to diffusion and drift are in the

same direction as this can be can seen from the expression forthe currentj(u) = −D(u)∂xu.

For ǫ = 0, Eq. (3.23) has an exact solution [21]. Let us consider the case of a small reaction

rateκ ≪ 1 andǫ 6= 0.

With no loss of generality, settingD0 = 1 we expand Eq. (3.23) in terms of perturbation

series inκ [127].

u = u0 + κu1 + κ2u2 + O(κ3). (3.24)

The solutionu0 = 1 satisfy the zeroth order equation. The equations foru1 andu2 are given by

∂tu1 = (1 + ǫ)∂2
xu1 − δ(x), u1(x, 0) = 0, (3.25)

∂tu2 = (1 + ǫ)∂2
xu2 − δ(x)u1 + ǫ∂x(u1∂xu1), u2(x, 0) = 0. (3.26)
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Equation (3.25) describe diffusion with an external flux which for this case is a negative

point flux at the origin. In Eq. (3.26) the expressionǫ∂x(u1∂xu1) albeit exactly known is quite

complicated. It is maximum at the origin and monotonically decreases with increasing values

of |x| and vanishes at infinity. Inasmuch as we are interested in thebehavior of the solution at

a finite time, we can replace this term by a point flux at the origin without compromising the

basic physics. This assumption is valid only for smallt. We have

∂x(u1∂xu1) ≃ j0δ(x), (3.27)

wherej0 = limx→0 ∂x(u1∂xu1) = (π + 2)/(4π(1 + ǫ)2). Substituting Eq. (3.27) in Eq. (3.26)

and solving Eq. (3.25) and (3.26) we have

u(x, t) = 1 − κ − ǫκ2j0

2
√

1 + ǫ

[

2

√

t

π
exp

( −x2

4(1 + ǫ)t

)

− |x|√
1 + ǫ

erfc

(

|x|
2
√

(1 + ǫ)t

)]

+
κ2

4(1 + ǫ)

[

(

x2

2(1 + ǫ)
+ t

)

erfc

(

|x|
2
√

(1 + ǫ)t

)

−|x|
√

t

π
exp

( −x2

4(1 + ǫ)t

)

]

+ O(κ3). (3.28)

Let ũ(x, t) = limǫ→0 u(x, t) be the concentration when there is no self-exclusion. Defineby

∆u = u(x, t) − ũ(x, t), the difference in the concentration. From Eq. (3.28) we note that

the concentration at the origin has increased due to the flux term j0 and we have∆u ≃ (1 −
1/
√

1 + ǫ)κ
√

t/π+κ2ǫj0

√

t/(π(1 + ǫ))−(1−1/(1+ǫ))κ2t/4. Forǫ = 0.5, κ = 0.2 att = 1.0

we have∆u = 0.019 and the corresponding numerical solutions give∆unumerical = 0.0154

see Fig. (3.3). We see that in this case the effect is exactly the opposite (compare Fig. 3.2 for

the multispecies case). Furthermore, the width of the depletion zone has increased due to the

increase in the diffusion coefficient byǫ.

3.3.1 Survival probability

In chapter 1 we discussed the survival probability for the “trapping reaction-diffusion” problem

in one dimension. We observed that the survival probabilitydecays slower than exponential

decay. Here, we shall discuss the effect of self-exclusion on survival probability. We recall

from Eq. (1.43) that, for the case of perfect traps i.e. limitκ → ∞ the problem reduces to

solving the diffusion equation in a finite domain[−a, a] with absorbing boundary condition.
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Figure 3.3: Concentrationu(x, t) numerical solution (A) without exclusionǫ = 0.0 and with
exclusionǫ = 0.5 (B) numerical solution, (C) analytical solution (3.28) forκ = 0.2 and time
t = 1.0. The difference between (A) and (C) atx = 0 is ∆u.

With self-exclusion we have

∂tu = ∂x((1 + ǫu)∂xu), x ∈ [−a, a], t > 0. (3.29)

The initial concentrationu(x, 0) = 1 and the absorbing boundary condition isu(±a, t) = 0.

Let us consider the following eigenvalue problem

∂x((1 + ǫψ)∂xψ) + λψ = 0, x ∈ [−a, a]. (3.30)

To understand the behavior of the survival probability for we need to know how the eigenvalue

λ get modified for nonzeroǫ. For smallǫ we can write [127]

ψ = ψ0 + ǫψ1 + ǫ2ψ2 + . . . ,

λ = λ0 + ǫλ1 + ǫ2λ2 + . . . . (3.31)

Substituting Eq. (3.31) in Eq. (3.30) we obtain

O(1) : ∂2
xψ0 + λ0ψ0 = 0, (3.32a)

O(ǫ) : ∂2
xψ1 + λ0ψ1 = −λ1ψ0 − ∂x(ψ0∂xψ0), (3.32b)

O(ǫ2) : ∂2
xψ2 + λ0ψ2 = −λ1ψ1 − λ2ψ0 − ∂x(ψ1∂xψ0 + ψ0∂xψ1). (3.32c)

The above set of linear equation can be solved with the absorbing boundary conditionsψm(±a) =
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0, m = 0, 1, 2, . . .. The eigenvalues and the eigenfunctions of Eq. (3.32a)are given by

ψ
(n)
0 (x) =

1√
a

{

cos(nπx/2a), if n is odd,
sin(nπx/2a), if n is even,

(3.33)

λ
(n)
0 =

n2π2

4a2
for n = 1, 2, . . . (3.34)

Similarly, from Eq. (3.32b) after settingλ0 = λ
(n)
0 andψ0 = ψ

(n)
0 we have

∂2
xψ1 + λ

(n)
0 ψ1 = −λ1ψ

(n)
0 − ∂x(ψ

(n)
0 ∂xψ

(n)
0 ). (3.35)

Let ψ1 be written as the sumψ1 =
∑

m Amψ
(m)
0 which satisfies the boundary condition. From

Eq. (3.35) we obtain

Am(λ
(n)
0 − λ

(m)
0 ) = −λ1δm,n −

∫ +a

−a

∂x(ψ
(n)
0 ∂xψ

(n)
0 )ψ

(m)
0 dx (3.36)

Using Eq. (3.33), Eq. (3.34) and Eq. (3.36) we can write for odd n

∫ +a

−a

∂x(ψ
(n)
0 ∂xψ

(n)
0 )ψ

(m)
0 dx = −λ

(n)
0√
a

µn,m (3.37)

whereµn,m = (4m cos(nπ) sin(mπ/2) − 8n cos(mπ/2) sin(nπ))/(π(m2 − 4n2)) for m odd

otherwiseµn,m = 0. Similarly for evenn we can calculateµn,m. Here we will not require

to calculate beyondµ1,1 since we only needλ(1) = λ
(1)
0 + ǫλ

(1)
1 to determine the behavior of

the asymptotic survival probability. The eigenfunctions and the eigenvalues forn = 1 can be

written as

ψ(1) = ψ
(1)
0 +

ǫ√
a

∞
∑

m=1

µ1,m
λ

(1)
0

λ
(1)
0 − λ

(m)
0

ψ
(m)
0 ,

λ(1) = λ
(1)
0

(

1 +
ǫµ1,1√

a

)

. (3.38)

In Sec. 1.4.2 we obtained the streched exponential behaviorby taking into accountn = 1 case

only. The behavior of the survival probability can therefore be found from (cf. Eq. (1.45) and

Eq. (1.46))

P (t) ∼
∫ ∞

0

exp(−λ(1)(x)t)ρ24xe−2ρxdx (3.39)

We will use the Laplace method to evaluate Eq. (3.39) as done by Balagurov and Vaks [96].

The exponent in Eq. (3.39) can be explicitly written as

f(x) = −π2

x2

(

1 +

√
2ǫµ1,1√

x

)

t − ρx. (3.40)
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The functionf(x) attains maximum at

x̃ ≃ x∗ + ǫ
5µ1,1

6
√

2

√
x∗ (3.41)

wherex∗ = (2π2t/ρ)1/3. The integral Eq. (3.39) becomes

P (t) ∼ c exp(f(x̃)),

= c exp

(−3(ρ2π2t)1/3

22/3
− ǫµ1,1

(π

2

)1/3

ρ5/6t1/6

)

(3.42)

wherec =
(

π
2f ′′(x̃)

)1/2

x̃, µ1,1 = 4/3π. The derivation of the result Eq. (3.42) is based on the

fact that the eigenvalues get modified due to exclusion whichaffects the exponent on averaging

over disorder. We note that an extra correction term∼ t1/6 appear in the exponent. It would

be interesting to calculate the survival probability in arbitrary dimension in a more rigorous

manner so that all modes contribue to the survival probability.

3.4 Numerical results

The well known finite difference method [129] is used to to compute the solution of Eq. (3.1)

and Eq. (3.2) numerically. In one dimension we will first examine the effect of exclusion and

nonlinearity on the shape of the concentration profile with areaction center at the origin. The

parameters used areDs = 1.0, Dp = 0.25, kf = 1.0 andkb = 0.1. In Fig. 3.4 (a) and 3.4(b)

we have plotted concentrationS(x, t) for η = 1, 2 and3 at ǫ = 0.2 and timet = 1.0. The con-

centration of S is decreases with increase inη. The variation of concentrations with different

values of the exclusion parameterǫ = 0.0, 0.1, 0.2 and0.3 are shown is Fig. 3.4 (c) and 3.4

(d). Here as we increaseǫ, the concentrationS(x, t) decreases. It has already been discussed

in our study of the modified linear equations (see Eq. (3.11) and (3.12). It is shown that exclu-

sion effect modifies the reaction rate at the reaction centerand consequently the concentration

decreases. We also note that change in concentrationP (x, t) with ǫ is negligible forǫ ≪ 1.

This is also due to the fact that change inP (x, t) due to exclusion is not first order inǫ. We

have also found that the width of the concentration profile ofP reduces as the parameterǫ is in-

creased. In Fig. (3.5) we have calculated the FWHM for the concentrationP (x, t) for different

values ofη. This clearly indicates that exclusion or/and nonlinearity suppress the formation of

clusters. In Fig. 3.6 we have plotted the concentration profile of P in two dimensions. Here

we have used the same set of parameters as in the one dimensioncase. The number of defects
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(a1) (b1)

(c1) (d1)

(a2) (b2)

(c2) (d2)

Figure 3.6: Formation of clusters in the presence of exclusion. (a1,2) ǫ = 0, η = 1, (b1,2)
ǫ = 0, η = 3, (c1,2) ǫ = 0.2, η = 1, (d1,2) ǫ = 0.2, η = 3 for Ds = 1.0, Dp = 0.25, kf = 1.0
andkb = 0.1 andt = 1.0.

is 100 which is uniformly distributed in the region−3 ≤ x ≤ 3 and−3 ≤ y ≤ 3. For a

given randomly distributed defects we have plotted concentrationP (x, y, t). Here also we see

that as we go fromǫ = 0 to ǫ = 0.2 keepingη = 1 fixed the concentration decreases. The

concentration is also found to decrease as we increase the nonlinearity fromη = 1 to η = 3.

In Fig. 3.7 we have calculated the mean concentration averaged over the randomness of defect

distribution. The decay of concentration S monotonically decreases with time and the rate of

its decay slows down asη is increased. Similarly for P its mean concentration increases with

time and its concentration for any given timet increases with increase inη. We also note that

the mean concentration for both S and P decreases with increasing ǫ. This clearly suggests

that both exclusion and nonlinearity suppress the formation of cluster and the effect of both is

additive.
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Figure 3.7: Mean concentrations of adatoms S for (a)η = 1, (b)η = 2, (c)η = 3 and cluster
P for (d)η = 1, (e)η = 2, (f)η = 3 andDs = 1.0, Dp = 0.25, kf = 1.0 andkb = 0.1 and
0.25 ≤ t ≤ 1.5.
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Chapter 4

Conclusion

The presence of randomness is ubiquitous in nature. The aim of our study was to explain the

formation of random clusters that we observed in our experiments. We found that these patterns

can be explained by simple reaction diffusion models in which disorder play a very important

role. Our results gives a qualitative understanding of the cluster formation processes.

In our linear models we presented a simple model which captures the essential features

of reaction-diffusion processes on surfaces having defects. The solution to the problem was

obtained by the method of Green’s functions. The reaction part of the equation was used as

perturbation which was found to be exactly summable. Our model describes qualitatively the

observed features of pattern formation in Ge clustering on clean Si(111)-(7 × 7) and oxidized

Si(111)-(7 × 7) surfaces. First we had shown the formation of patterns in the ring model with

four ring defects. The point model was discussed in detail. The time evolution of the reaction

diffusion process was explored numerically from the solutions obtained for a case of eight

defects distributed uniformly inside the domain.

We used further Monte Carlo simulations to study the point model case for a large number

of defects. The first passage time statistics was also studied and obtained empirically the first

passage time probability density. These models presented here are real time analysis of the

deposition-diffusion-reaction process. It would be very interesting if a thorough time analysis

of the formation of patterns is carried out experimentally in future. Finally we note that in

this model the productP describes n-mers,n = 2, 3, . . . we assume that all n-mers have the

same diffusion coefficient. However, we believe, this assumption does not seriously affect the

result obtained here. In earlier studies on fractal patterns formed in diffusion limited cluster

aggregation, the fractal pattern and the fractal dimensionwere found to be practically the same

for the two cases where (i) all clusters have been assumed to have the same diffusion coefficient
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and (ii) diffusion coefficient was assumed to be inversely proportional to the cluster mass [130].

Definitely, there will be some optimum size of the cluster with dispersion. So, an improved

model must include a sequence of reactions forming clusters.

Furthermore, we studied the effect of exclusion on the formation of cluster in the presence

of surface defects. In our reaction diffusion model we have introduced exclusion through a

repulsive interaction between the particles of dissimilarnature. This repulsive force is taken to

be proportional to the gradient of concentration and a set ofcoupled Smoluchowsky equations

is obtained. In the perturbative regime a set of modified linear reaction-diffusion equation as

an approximation to the actual process is considered and this gave us important understanding

of the effect of exclusion on the formation of clusters in thereaction diffusion processes. The

solutions to these equation are obtained using Green’s function method [131]. The most impor-

tant conclusion of this work is that, both exclusion and nonlinear reaction processes considered

here suppress the formation of cluster. The effect of self-exclusion on diffusion in one dimen-

sion with a trapping reaction at the origin is studied. It is found that self-exclusion can give rise

to a concentration dependent diffusion coefficient as obtained in earlier works [121]. The width

of the depletion zone is found to increase byǫ (strength of exclusion). Our numerical studies

in one dimension showed that the width of the cluster concentration profile decreases with in-

creasingǫ. We investigated how exclusion affects the survival probability for trapping reaction.

In two dimensions we calculated the mean concentrations averaged over the surface disorder

are calculated. It is found that the mean concentration of adatoms S decreases monotonically

where as the mean concentration of P increases monotonically in time respectively. However,

for higher exclusion and nonlinearity these mean concentrations are found to decrease with the

increase in exclusion and nonlinearity in the reaction scheme.

There can be quite a few extension of the present work. For example, in this model, the

repulsive potential is considered to be simple linear function of concentration. But, it is indeed

possible for this potential to depend nonlinearly on concentration. This needs to be explored.

Furthermore, we have considered here a simple algebraic nonlinearity in the reaction scheme.

This is due to the lack of sufficient knowledge of the reactionscheme for the formation of Ge-

clusters on Si surfaces. As this model can be used in other physical situations, different types

of nonlinear exclusion potential and reaction scheme can bestudied.
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Appendix A

Green’s function

A.1 Green’s functions-I

The Green’s function appearing in Eq. (2.3) are given by

G(1)
s (r, θ|r′, θ′) =

∞
∑

n=0

(

gn(r|r′) − gn(r|R)gn(R|r′)
gn(R|R)

)

cos(n(θ − θ′)),

G(0)
p (r, θ|r′, θ′) =

∞
∑

n=0

hn(r|r′) cos(n(θ − θ′)), (A.1)

where gn(r|r′) =

{

ǫnIn(
√

s/Dsr)Kn(
√

s/Dsr
′) if r ≤ r′,

ǫnIn(
√

s/Dsr
′)Kn(

√

s/Dsr) if r > r′.
(A.2)

hn(r|r′) =

{

ǫnIn(
√

s/Dpr)Kn(
√

s/Dpr
′) if r ≤ r′,

ǫnIn(
√

s/Dpr
′)Kn(

√

s/Dpr) if r > r′.
(A.3)

with ǫ0 = 1 andǫn = 2 for all n = 1, 2 . . ..

A.2 Green’s functions-II

The Green’s function in (3.15) and (3.16) has the following form

Gα(s) =
[

s − Dα∂2
x + vαsgn(x)∂x

]−1
(A.4)

Gα(x|x′) =







exp(−ρα(x − x′))Aα(x, x′) if x < x′ < 0
exp(−ρα(x − x′))Aα(x′, x) if x′ < x < 0,

1
2Dα(−ρα+γα)

exp(ρα(x + x′) − γα(x − x′)) if x′ < 0 < x,
(A.5)

and

Gα(x|x′) =







1
2Dα(−ρα+γα)

exp(−ρα(x + x′) − γα(x′ − x)) if x < 0 < x′,

exp(ρα(x − x′))Bα(x, x′) if 0 < x < x′

exp(ρα(x − x′))Bα(x′, x) if 0 < x′ < x,

(A.6)
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whereAα(x, x′) = 1
2Dαγα

(

exp(γα(x − x′)) − ρα

ρα−γα
exp(γα(x + x′))

)

and

Bα(x, x′) = 1
2Dαγα

(

exp(γα(x − x′)) − ρα

ρα−γα
exp(−γα(x + x′))

)

. Hereρα = vα/(2Dα) and

γα =
√

ρ2
α + s/Dα are constants.
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Appendix B

The Talbot Method

We describe the fixed Talbot algorithm to compute the InverseLaplace transform of a function

f̂(s). The Inverse Laplace transform off̂(s) is given by

f(t) =
1

2πi

∫

B

exp(st)f̂(s)ds, (B.1)

whereB denotes the Bromwich contour defined by the vertical lines = r + iy, −∞ <

y < ∞ and a curve joining the endpoints at infinity such that all branch points remains outside

the contour. The Talbot algorithms computes the inverse Laplace transform by deforming the

contourB. The deformed contour is (cf. Fig. (B.1))

s(θ) = rθ(cot θ + i),−π < θ < π. (B.2)

The expression in Eq. (1) thus becomes

Talbot Contour

-4 -3 -2 -1 1
Re@sHΘLD

-3

-2

-1

1

2

3

Im @sHΘLD

Figure B.1: The Talbot contour Eq. (B.2) and vertical lines = r + iy, −∞ < y < ∞.
Parameterr = 1.
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f(t) =
1

2πi

∫ π

−π

exp(s(θ)t)f̂(s(θ))s′(θ)dθ, (B.3)

wheres′(θ) = ir(1+ iσ(θ)) with σ(θ) = θ +(θ cot θ− 1) cot θ. So Eq. (3) can now be written

as

f(t) =
r

π

∫ π

0

Re
[

exp(s(θ)t)f̂(s(θ))(1 + iσ(θ))
]

dθ, (B.4)

Since the above integral is evaluated over a finite range0 toπ we adopt a trapezoidal integration

of Eq() as given in Ref. [32]

f(t) =
r

M

(

1

2
f̂(r)ert +

M−1
∑

k=1

Re
[

exp(s(θk)t)f̂(s(θk))(1 + iσ(θk))
]

)

, (B.5)

whereθk = kπ/M for all k = 1, 2, . . . M − 1 andr = 2M/5t. So finally there is only a single

free parameterM which can be varied to obtain results at desired precession.
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Appendix C

Derivation of the kinetic equations

C.1 Kinetic equation for linear model

We denote bySn a cluster ofn = 2, 3, . . . , N Ge atoms. Various possible one step reactions

may occur at a reaction center in which cluster of sizen could break to form a cluster of size

n − 1 or an adatomS could coalesce to form a cluster of sizen + 1 (see Fig. C.1). The rate

equation are given by

dSn

dt
= −(k−(n−1) + knS)Sn

+(kn−1SSn−1 + knSn+1), (C.1)
dSN

dt
= kN−1SSN−1 − k−(N−1)SN , (C.2)

where2 ≤ n ≤ N − 1.
d

dt

N
∑

n=2

Sn = (k1S)S − k−1S2. (C.3)

We now make the following assumptions (i) All clusters,S2 to SN have comparable diffusion

coefficients. So, in the first approximation, these can be taken equal. (ii) IfP =
∑N

n=2 Sn, we

assume that formation of larger clusters at the reaction centers is a very slow process andP

is dominated byS2. So, we replaceS2 by
∑N

n=2 Sn. This need arises for two considerations.

SnSn−1 Sn+1

kn

k−nk−(n−1)

kn−1

S

S

S

S

Figure C.1: Reaction scheme.
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Firstly we have no knowledge ofN , though it will not be very large. Secondly, since we want a

minimal model which is able to capture the basic physics, we make this approximation to close

the equation. So, the assumption is made that the clusters are predominantly of two Ge-atoms.

(iii) Even though the formation process is a second order rate process inS, we replacek1S by

kf which we call intrinsic clusterization rate of each available reaction center. The ratek−1 is

redefined askb.

Albeit the assumptions incorporated in our model for cluster formation on Si surfaces, ap-

pears too simplistic, we are strongly of the opinion that inclusion of all the processes in the

clusterization will not significantly change the overall result. On the other hand as we are solv-

ing this problem numerically, inclusion of all possible processes of clusterization will increase

the time and cost significantly without gaining much in physics. We consider in a separate

analysis a reaction scheme in which the cluster formation issecond order in substrateS.

C.2 Kinetic equations for nonlinear model

The reaction scheme is described in Fig C.2. We have

d[SN ]

dt
= kN−1[S][SN−1] − kN [SN ]. (C.4)

and

d[Sn]

dt
= kn−1[S][Sn−1] −

(

k−(n−1) + kn[S]
)

[Sn] + k−n[Sn+1], n = 2, . . . , (N − 1). (C.5)

We us assume that all intermediate states are in equilibrium. This assumption implies that

intermediate reactions are very fast. With this assumptionwe get

k(n−1)[S][S(n−1)] − k−(n−1)[Sn] = 0, n = 2, . . . , N − 2, (C.6)

[Sn] =
kn−1

k−(n−1)

[S][Sn−1] = Kn[S][Sn−1], n = 2, 3, . . . , N − 2 (C.7)

whereKn = kn/k−n.

S2 SN−1 SN

k1

k−1 k−(N−1)

kN−1

... S+SS +

Figure C.2: Reaction scheme.
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Using (C.7) and (C.8) we obtain

d[SN ]

dt
= kclus.[S]N − kN [SN ]. (C.8)

In another approximation we replace[SN ] by
∑N

n=2 Sn = P to get the equation.
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Appendix D

Derivation of exclusion term from master
equation

The diffusion and the exclusion terms in (3.1) and (3.2) fromthe master equation are derived

in the following way. Let us discretize the continuous spaceinto cells of size∆x and denote

by ni ≥ 0 andmi ≥ 0 for all i = 1, 2, . . . , N the number of S and P particles in thei-th

cell. The configuration of the system can be described by the N-vectorsn = (n1, n2, . . . , nN)

andm = (m1,m2, . . . ,mN). Let N be the set of natural numbers, we define the operator

H±
i : N

N → N
N by

H+
i (n1, . . . , ni−1, ni, ni+1, . . . , nN) = (n1, . . . , ni−1, ni − 1, ni+1 + 1, . . . , nN),

H−
i (n1, . . . , ni−1, ni, ni+1, . . . , nN) = (n1, . . . , ni−1 + 1, ni − 1, ni+1, . . . , nN),

(D.1)

for all i = 1, 2, . . . , N . Note that fori = 1, N we use periodic boundary condition [126].

We define density dependent hopping ratesW±
s (i) andW±

p (i) of a particle at theith site

for S and P respectively by

W±
s (i) = ws(1 − µs(mi±1 − mi)),

W±
p (i) = wp(1 − µp(ni±1 − ni)), (D.2)

wherews, wp, µs andµp are constants and the superscript± denotes hopping to the sitei ± 1.

Here we note that a particle S (say) at celli has lower hopping rate if the celli ± 1 contains

more number of particles P than that in the celli. Similarly for P this is exactly what should be

happening when there is an effect of exclusion. Letp(n,m, t) be the probability of finding the
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system in the configurationn,m, at timet The master equation is given by [125,126]

∂tp(n,m, t) =
N

∑

j=1

(nj + 1)
[

W−
s (j)p(H+

j−1n,m, t) + W+
s (j)p(H−

j+1n,m, t)
]

+(mj + 1)
[

W−
p (j)p(n, H+

j−1m, t) + W+
p (j)p(n, H−

j+1m, t)
]

−
(

nj

[

W−
s (j) + W+

s (j)
]

+ mj

[

W−
p (j) + W+

p (j)
])

p(n,m, t)

(D.3)

Let Si =
∑

Ω nip(n,m, t) andPi =
∑

Ω mip(n,m, t) where
∑

Ω represents sum over all con-

figurations havingn1, . . . , nN ,m1, . . . ,mN , be the mean number of particles in theith cell. Let

us assume that there are no correlation between particles sothat we can write
∑

Ω ninjp(n,m, t) =

SiSj,
∑

Ω mimjp(n,m, t) = PiPj and
∑

Ω nimjp(n,m, t) = SiPj. Multiplying ni through

(D.3) and summing over all configurations we obtain

∂tSi = ws(Si+1 + Si−1 − 2Si) − wsµs [Si+1(Pi − Pi+1) + Si−1(Pi − Pi−1)

−Si(Pi+1 + Pi−1 − 2Pi)] (D.4)

Now we can substituteSi = S(x, t), Pi = P (x, t) and expandSi±1 andPi±1 in Taylor series

Si±1 ≃ S(x, t) ± ∆x∂xS(x, t) + ∆x2∂2
xS(x, t),

Pi±1 ≃ P (x, t) ± ∆x∂xP (x, t) + ∆x2∂2
xP (x, t), (D.5)

and ignoringO(∆x3) and higher order terms, we obtain from (D.4)

∂tS(x, t) = ws∆x2∂2
xS(x, t) − wsµs∆x2 [− (2∂xS(x, t)∂xP (x, t)

+S(x, t)∂2
xP (x, t)

)

− S(x, t)∂2
xP (x, t)

]

(D.6)

Now rearranging terms in (D.6) we obtain

∂tS(x, t) = Ds∂
2
xS(x, t) + ǫs(∂xS(x, t)∂xP (x, t) + S(x, t)∂2

xP (x, t)), (D.7)

whereDs = ws∆x2 andǫs = 2wsµs∆x2. Similarly multiplying mi through (D.3) and sum-

ming over all configurations we obtain the equation forP (x, t). A point to note here is that

0 < µs,p ≪ 1, and for simplicity we have takenǫs = ǫp = ǫ. Using expression (D.7), the

general expression in arbitrary dimension can be written as

∂tS(x, t) = ∂x [Ds∂xS(x, t) + ǫsS(x, t)∂xP (x, t)] . (D.8)
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Appendix E

Monte Carlo Algorithm

E.1 Stochastic simulation algorithm based on Smoluchowski
equation:

Let Ω ⊂ R
2 be the domain of computation. In our model the domain boundary is assumed as a

circle of radiusR. Inside the domain, let there beND reaction centers of radiusa. The reaction

centers are uniformly distributed with centers atr1, r2 . . . , rND
. The reaction centers are given

by the setsωj = {r ∈ R
2 : |r − rj| ≤ a} for all j = 1, 2, . . . , ND . The setting is described in

Fig. (E.1).

P

S=

=

Ω

ωj

kb

kf

Figure E.1: Schematic diagram for theS ⇋ P in Ω. The small blue filled circle denotes
adatomsS and the larger black filled circle denotes the cluster. The region enclosed inside the
circleωj denotes the reaction center. The ratioa/R should be less than the minimum diffusion
length.

Let D(i) ∈ {Ds, Dp} be the diffusion coefficient of theith particle. Similarly depending on

the current position of the particle its can undergo a reaction with reaction ratek(i) ∈ {kf , kb}.

Let ξ(t) be a Gaussian random number with zero mean and unit variance.The algorithm we

follow is described in Ref. [115,126] for the case of homogeneous reaction-diffusion processes.
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The stochastic simulation Algorithm:

1. If t ≤ T GOTO Step (2),

else GOTO Step (6).

2. Drop an adatom S at a random positionrk, k > 0 inside the domain at everykMδt time

step.

The numberM can be varied to obtain the desired flux i.e.1/(πR2Mδt) adatoms per

unit time per unit area.

3. For each particlei = 1, . . . , k compute the diffusive step

ri,t+δt = ri,t +
√

2D(i)δt ξ(t).

4. For each particlei = 1, . . . , k generate random no.ρ

if ρ < 1 − exp(−k(i)δt) andri,t+δt ∈ ωj ∀ 1 < j < ND

perform reaction step.

5. Increase time byδt

t → t + δt

GOTO Step (1)

6. STOP.

Note that for the computation of the first passage time probability distribution the adatom is

dropped at the center of the domain as in Step (2). The particle undergoes the reaction-diffusion

processes. When ever the particle reaches the domain boundary |r| = R the timetk registered

and program is terminated. This process is repeated a numberof times.
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Appendix F

Numerical Codes

Here we provide some of the computer programs that has been used in our calculations.

F.1 Numerical solution of the trapping problem
H*FINITE DIFFERENCE SOLUTION OF THE TRAPPING PROBLEM IN 1D*L
H*AUTHOR: TRILOCHAN BAGARTI, IOP, BHUBANESWAR, INDIA.*L
H*YEAR: 2012*L

H*
Parameters: H-Nl*h, Nl*hL domain of computation,

Κ = trapping rate,

Ε = strength of exclusion,

defN = ð of traps

h = step size.

*L
Nl= 100; h= 0.1; Κ = 0.1;

r1= 1.0� h^2;
defN = 40;

Do@8X@iD = RandomInteger@8-Nl, Nl<D* h<, 8i, 1, defN<D;
Σ = 0.5 h;

H*Reaction function; Gaussian is used for the Dirac delta functions*L

Kfunc@x_D := SumB 1

2 Π Σ

ExpB-Hx- X@iDL
2

2 Σ2
F, 8i, 1, defN<F;

H*Module to solve the differential equation*L
DiffSolve@varΕ_, varT_D := ModuleA8Ε = varΕ, T= varT<,
n= 1;

ClearAll@eqD;

e1= Ε�H4 h^2L;

DoA9eq@nD = D@S@x, tD, tD� r1*H1.0+ Ε S@x, tDL*HS@x+ 1, tD + S@x- 1, tD - 2 S@x, tDL +
e1*HS@x+ 1, tD - S@x- 1, tDL2 - Κ*Kfunc@x* hD*S@x, tD;n= n+ 1;=, 8x, -Nl, Nl<E;
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H*Boundary conditions*L
eq@nD = S@Nl+ 1, tD� S@Nl- 1, tD;n= n+ 1;
eq@nD = S@-Nl- 1, tD� S@-Nl+ 1, tD;n= n+ 1;
H*Initial condition*L

DoB:eq@nD = S@x, 0.0D� 1

2 Π Σ

ExpB -x
2

2 Σ2
F + 0.00000001;n= n+ 1;>, 8x, -Nl, Nl<F;

pde = Table@eq@mD, 8m, 1, n- 1<D;

sol= Table@S@x, tD, 8x, -Nl- 1, Nl+ 1<D;
pdsol= NDSolve@pde, sol, 8t, 0.0, T<D;F

H*ClearAll@exD;*L
T= 20.0; Nk= 100;

Do@
Do@8
Do@8X@iD = RandomInteger@8-Nl, Nl<D* h<, 8i, 1, defN<D;
Do@If@X@iD� X@jD &&i¹ j, X@jD = RandomInteger@8-Nl, Nl<D* hD, 8i, 1, defN<, 8j, 1, defN<D;
DiffSolve@0.0, TD;
ex@k, mD = Evaluate@sol�.pdsol�.t ® m T�10D;
If@Mod@k, 50D� 0, Print@"ENSB=", k, " T =", m T�10DD
<, 8m, 1, 1<D
, 8k, 1, Nk<D

ClearAll@tD;
T= 2.0;

Do@8X@iD = RandomInteger@8-Nl, Nl<D* h<, 8i, 1, defN<D;
Do@If@X@iD� X@jD &&i¹ j, X@jD = RandomInteger@8-Nl, Nl<D* hD, 8i, 1, defN<, 8j, 1, defN<D;
DiffSolve@0.0, TD;
ex1= Evaluate@sol�.pdsol�.t ® TD;

gauss@x_, t_D := 1

4 Π t

ExpB-x
2

4 t
F;

anylU@x_, t_D := 1

4 Π t

ExpB-x
2

4 t
F - Κ

4
SumBExpAHAbs@x- X@iDD + Abs@X@iDDL Κ�2+ Κ2 t�4E

ErfcBAbs@x- X@iDD + Abs@X@iDD

2 t

+

Κ t

2
F, 8i, 1, defN<F;

tb= Table@anylU@x* h, TD, 8x, -Nl, Nl<D;
gtb= Table@gauss@x* h, TD, 8x, -Nl, Nl<D;
p1= ListLinePlot@tb, Frame ® True,

DataRange ® 8-Nl* h, Nl* h<, Axes® None, PlotStyle ® Red, PlotRange ® AllD;
p2= ListLinePlot@ex1@@1DD, Frame ® True, DataRange ® 8-Nl* h, Nl* h<,

Axes® None, PlotStyle ® Black, PlotRange ® AllD;
p3= ListLinePlot@gtb, Frame ® True, DataRange ® 8-Nl* h, Nl* h<,

Axes® None, PlotStyle ® Blue, PlotRange ® AllD;
Show@p1, p2, p3D
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F.2 Numerical solution of the ring defect model
H*PROGRAM: CALCULATION OF CONCENTRATION S, P FOR RING DEFECT CASE*L
H*AUTHOR: TRILOCHAN BAGARTI, INST. OF PHYS. BHUBANESWAR, INDIA*L
H*DATE: JUN 26 2010*L
nPointDef = 4;H*ð of defect*L
rndPts= 80.1, 0.3, 0.6, 0.7<; H* position of defects*L

Do@r@iD = rndPts@@iDD, 8i, 1, nPointDef<D;
H*Green’s functions*L
Gs0@r_, rp_, s_D := If@r < rp, BesselI@0, Sqrt@s�DsD rD BesselK@0, Sqrt@s�DsD rpD�H2 PiL,

BesselI@0, Sqrt@s�DsD rpD BesselK@0, Sqrt@s�DsD rD�H2 PiLD;
Gp0@r_, rp_, s_D := If@r < rp, BesselI@0, Sqrt@s�DpD rD BesselK@0, Sqrt@s�DpD rpD�H2 PiL,

BesselI@0, Sqrt@s�DpD rpD BesselK@0, Sqrt@s�DpD rD�H2 PiLD;
Gs1@r_, rp_, s_D := If@r < rp, HBesselI@0, Sqrt@s�DsD rD BesselK@0, Sqrt@s�DsD rpD - BesselI@0,

Sqrt@s�DsD rD BesselI@0, Sqrt@s�DsD rpD BesselK@0, Sqrt@s�DsD RD�BesselI@0, Sqrt@s�DsD RDL�
H2 PiL, HBesselI@0, Sqrt@s�DsD rpD BesselK@0, Sqrt@s�DsD rD - BesselI@0, Sqrt@s�DsD rD

BesselI@0, Sqrt@s�DsD rpD BesselK@0, Sqrt@s�DsD RD�BesselI@0, Sqrt@s�DsD RDL�H2 PiLD;
Q@r_, s_D := 2 Pi

Ds
NIntegrateAGs1@r, rp, sD Exp@- Λ rpD rp

s
, 8rp, 10^H-6L, R<E;

f@r0_, s0_D := Module@8sVar = s0, rVar = r0<,
Do@8GS1@i, jD = Gs1@r@iD, r@jD, sVarD;GP0@i, jD = Gp0@r@iD, r@jD, sVarD;<,
8i, 1, nPointDef<, 8j, 1, nPointDef<D;

matGS1= Table@Table@GS1@i, jD, 8j, 1, nPointDef<D, 8i, 1, nPointDef<D;
matGP0= Table@Table@GP0@i, jD, 8j, 1, nPointDef<D, 8i, 1, nPointDef<D;

invGP0= Inverse@IdentityMatrix@nPointDefD + Hkp�DpL matGP0D;
mat = IdentityMatrix@nPointDefD + Hkf�DsL matGS1- kap matGS1.invGP0.matGP0;

Qf= Table@Q@r@iD, sVarD, 8i, 1, nPointDef<D;
PHI= Inverse@matD.Qf;
PSI = Hkf�DpL*invGP0.matGP0.PHI;
y = 8Q@rVar, sVarD +

Sum@Gs1@rVar, r@kkD, sVarD*H-kf*PHI@@kkDD + kp*PSI@@kkDDL�Ds, 8kk, 1, nPointDef<D,
Sum@Gp0@rVar, r@kkD, sVarD*Hkf*PHI@@kkDD - kp*PSI@@kkDDL�Dp, 8kk, 1, nPointDef<D<;

D;
Ds= 0.1; H*Diffusion constant of S*L
Dp= 0.01; H*Diffusion constant of P*L
kf= 1.0; H* Forward reaction rate*L
kp= 0.1;H*Backward reaction rate*L
kap= kf* kp�HDs*DpL;
R= 1;

Λ = 1.0;
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H*Talbot method*L
Mu= 50;

t = 1.0;

Do@8
Ρ = 2*Mu�H5*tL;
rc = xc;

If@rc� 0, rc = 10^-6D;
f@rc, ΡD;
sum1= 0.5*y@@1DD*Exp@Ρ*tD;
sum2= 0.5*y@@2DD*Exp@Ρ*tD;
Do@8
Θ = k*Pi�Mu;
sf@kD = Ρ*Θ*HCot@ΘD + äL;
Σ@kD = Θ + HΘ*Cot@ΘD - 1L*Cot@ΘD;
f@rc, sf@kDD;
sum1= sum1+ Re@Exp@sf@kD*tD*y@@1DD*H1+ ä*Σ@kDLD;
sum2= sum2+ Re@Exp@sf@kD*tD*y@@2DD*H1+ ä*Σ@kDLD;<, 8k, 1, Mu- 1<D;

sum1= sum1*Ρ�Mu;
sum2= sum2*Ρ�Mu;

Φ@xcD = Chop@sum1D;
Ψ@xcD = Chop@sum2D;
Print@N@xcD, " ", Chop@sum1D, " ", Chop@sum2DD;<, 8xc, 0, 1, 1�20<D

H*********************************************************************L
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F.3 Numerical solution of the point defect model
H*PROGRAM : CALCULATION OF CONCENTRATIONS S,P FOR THE POINT DEFECT CASE*L
H*AUTHOR : TRILOCHAN BAGARTI, INST. OF PHYS. BHUBANESWAR, INDIA*L
H*DATE : DEC 14 2010 *L
H*
nPointDef = ð of point defects, rndPts = pos vec of defect, Ds, Dp = diffusion const of S, P,

kf,kb= forward, backward reaction rates, bessOrd = highest order Bessel func used in the series,

R = radius of domain, lambda = input flux strength, Gs1,Gp0 = Green’s functions

*L
nPointDef = 8;

rndPts= 880.5, 0.4<, 80.3, 0.1<, 8-0.7, -0.4<,
80.1, 0.4<, 8-0.5, 0.6<, 8-0.4, 0.0<, 80.0, -0.3<, 80.4, -0.3<<;

H*Position of random reaction centers*L

Do@8r@iD = Norm@rndPts@@iDDD, th@iD = ArcTan@rndPts@@iDD@@1DD, rndPts@@iDD@@2DDD<,
8i, 1, nPointDef<D
Ds= 1.0;

Dp= 0.1;

kf= 1.0;

kp= 0.1;

kap= kf* kp�HDs*DpL;
bessOrd= 10;

R= 1;

lambda= 1.0;

g@n_, r_, rp_, s_D := If@r £ rp, BesselI@n, r Sqrt@s�DsDD BesselK@n, rp Sqrt@s�DsDD,
BesselI@n, rp Sqrt@s�DsDD BesselK@n, r Sqrt@s�DsDD
D;

h@n_, r_, rp_, s_D := If@r £ rp, BesselI@n, r Sqrt@s�DpDD BesselK@n, rp Sqrt@s�DpDD,
BesselI@n, rp Sqrt@s�DpDD BesselK@n, r Sqrt@s�DpDD
D;

Ε@0D = 1;
Do@Ε@mD = 2, 8m, 1, bessOrd<D;
Gs1@r_, th_, rp_, thp_, s_D := Sum@Ε@mD

Hg@m, r, rp, sD - g@m, r, R, sD g@m, R, rp, sD�g@m, R, R, sDL Cos@m Hth- thpLD, 8m, 0, bessOrd<D;
Gp0@r_, th_, rp_, thp_, s_D := Sum@Ε@mD h@m, r, rp, sD Cos@m Hth- thpLD, 8m, 0, bessOrd<D;

q@r_, s_D := 2 Pi*NIntegrateA

g@0, r, rp, sD - g@0, r, R, sD g@0, R, rp, sD
g@0, R, R, sD

Exp@-lambda*rpD rp, 8rp, 10^-5, R<E� Hs DsL;

H*j0=1
module f@r,Θ,sD calculates ΦHr,Θ,sL and ΨHr,Θ,sL for each Hr,Θ,sL, the

values are return by the variable y

*L
f@r0_, th0_, s0_D :=
Module@8sVar = s0, rVar = r0, thVar = th0<, Do@8GS1@i, jD = Gs1@r@iD, th@iD, r@jD, th@jD, sVarD;

GP0@i, jD = Gp0@r@iD, th@iD, r@jD, th@jD, sVarD;<, 8i, 1, nPointDef<, 8j, 1, nPointDef<D;
matGS1= Table@Table@GS1@i, jD, 8j, 1, nPointDef<D, 8i, 1, nPointDef<D;
matGP0= Table@Table@GP0@i, jD, 8j, 1, nPointDef<D, 8i, 1, nPointDef<D;
invGP0= Inverse@IdentityMatrix@nPointDefD + Hkp�DpL matGP0D;
mat = IdentityMatrix@nPointDefD + Hkf�DsL matGS1- kap matGS1.invGP0.matGP0;
Qf= Table@q@r@iD, sVarD, 8i, 1, nPointDef<D;
PHI= Inverse@matD.Qf;
PSI = Hkf�DpL*invGP0.matGP0.PHI;
y =

8q@rVar, sVarD + Sum@Gs1@rVar, thVar, r@kkD, th@kkD, sVarD*H-kf*PHI@@kkDD + kp*PSI@@kkDDL�Ds,
8kk, 1, nPointDef<D, Sum@Gp0@rVar, thVar, r@kkD, th@kkD, sVarD*
Hkf*PHI@@kkDD - kp*PSI@@kkDDL�Dp, 8kk, 1, nPointDef<D<;

D;
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Mu= 20;

t = 0.5;

H*
Numerical evaluation of Inverse Laplace transformation

by fixed Talbot method

*L
Do@8
Ρ = 2*Mu�H5*tL;
rc = Sqrt@xc^2+ yc^2D;
If@xc� 0, xc = xc + Sign@xcD*10^-6D;
thc = N@ArcTan@xc, ycDD;
f@rc, thc, ΡD;
sum1= 0.5*y@@1DD*Exp@Ρ*tD;
sum2= 0.5*y@@2DD*Exp@Ρ*tD;
Do@8
Θ = k*Pi�Mu;
sf@kD = Ρ*Θ*HCot@ΘD + äL;
Σ@kD = Θ + HΘ*Cot@ΘD - 1L*Cot@ΘD;
f@rc, thc, sf@kDD;
sum1= sum1+ Re@Exp@sf@kD*tD*y@@1DD*H1+ ä*Σ@kDLD;
sum2= sum2+ Re@Exp@sf@kD*tD*y@@2DD*H1+ ä*Σ@kDLD;<, 8k, 1, Mu- 1<D;

sum1= sum1*Ρ�Mu;
sum2= sum2*Ρ�Mu;

Φ@xc, ycD = Chop@sum1D;
Ψ@xc, ycD = Chop@sum2D;
H*tmp=PrintTemporary@8Chop@xcD,Chop@ycD,Chop@sum1D,Chop@sum2D<D;
Pause@1D;
NotebookDelete@tmpD;*L
Print@8Chop@xcD, Chop@ycD, Chop@sum1D, Chop@sum2D<D;
<, 8xc, -1.0, 1.0, 0.1<, 8yc, -1.0, 1.0, 0.1<D;

H*********************************************************L
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