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Synopsis

Pattern formation at nanoscale is currently an active fiélctesearch. It is important for a
growing number of technological applications such as &hion of nano-devices, designing
of materials with desired electrical, optical and mechahnproperties [1]. Nanopatterning on
surfaces can be achieved by many ways, for example by sgigation and artificially by
direct atom manipulation, to name a few [2—4]. It is also img@ot from a theoretical point of
view as it presents a considerable amount of challenge foearétical understanding of the
processes at nanoscale. In the pattern formation at ndessitas experimentally found that
clusters are formed and are distributed on the surfaceinigaad interesting types of nanopat-
terns. So, it is important to model and study theoreticdli®r formation and its dynamics
over a time period.

The surface plays a very crucial role in deciding the proeerdf the nanostructure. It
has been observed that preferential nucleation of selrorgd nanostructures takes place on
the surface along step edges [5, 6], dislocations [7—10]dammdain boundaries [11, 12]. We
have proposed a two dimensional reaction-diffusion meisharor the formation of clusters
in the presence of surface defects such as point defeagsdefects and extended island like
defects [13]. But, the model is general enough to implemeatlitrary dimensions.

Reaction-diffusion models have been used to model pattemafiton in physics, chem-
istry and biology [14]. In a seminal paper by Alan Turing, es\shown for the first time that, a
variety of pattern can emerge from a spatially homogeneiatis due to diffusion driven insta-
bilities [15]. This instability, called the Turing instdity, was originally proposed to explain
morphogenesis. Reaction-diffusion models in disorderediangave been studied extensively
in the past [16] for various physical and chemical procesBerdered media has been mod-
eled through fractals, percolation clusters, hierardHattice or quenched disorder. Various
aspects of reaction-diffusion processes in disorderedarmath as self-segregation of diffus-
ing particles [17, 18], long time behavior of the decay oftioée density [19-21], the kinetics
of diffusion limited coalescence and annihilation in ramdmedia [22—25], have been studied.
Recently, the effect of quenched disorder and internal naisthe transport properties in a
reaction-diffusion model has been studied for the ’birdaith’ process in a real world situa-
tion [26]. Reaction-diffusion in disordered systems is alsed to model the decay and preser-

vation of marine organic carbon [27]. It is generally fouhdttreaction-diffusion processes in
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random media show anomalous behavior [28].

In this thesis we present a theoretical study of reactidiaglon models in the presence of
disorder. The motivation of this work comes from experinseintwhich Ge is deposited on
Si surfaces. From the experiments it was found that clustere preferentially formed at the
locations of surface defects on Si surfaces [13]. Througkelreaction-diffusion models the
growth process of Ge clusters on Si surfaces are studied.féuind that patterns formed are
qualitatively similar to those observed in the experimefs, we establish through this work
that these patterns are primarily induced by surface detead domain boundaries.

In the first part of the thesis we study the cluster formatigrlibear reaction-diffusion
model. The cluster formation process is approximated bysa dirder reaction of the form
S = P. HereS denotes the deposited Ge ad-atom &hdenotes the Ge-cluster. This simpli-
fied reaction scheme arises, due to the fact that we do nanglissh between different sizes
of clusters as different species of product. The origin efdlssumption is as follows. Since
the diffusion coefficients of these clusters are almost savedherefore denote all clusters by
a single specie®. The surface defects are assumed as isolated regions onsiindsge where
the reactions take place. However, away from the defecte ikeonly diffusion and no reac-
tions can occur. Diffusion takes place on the surface withstant diffusion coefficients. The
coupled reaction-diffusion equations are solved by Grenictions and regular perturbation
technique in the abstract vector space [29, 30]. In this,¢hseatural vector space is a Hilbert
space [31]. Itis to be noted that when the problem is cast mitipect to its natural Hilbert
space, remarkable similarities with related quantum meichiscattering processes are nicely
revealed [30].

It can be shown that folV,; surface defects the coupled reaction-diffusion equatiotise
Laplace domain forms a set 0V, linear equations. SolvingN, linear equations gives the
solution at each defect position. Furthermore, the salugitban arbitrary position can then be
expressed as a linear combination of the all the solutiodsfact positions. We have obtained
the concentrations by implementing Talbot method for nucaéimverse Laplace transforma-
tion [32]. From our numerical calculations we have found ttiasters start emerging at the
location of the surface defects and grows with time. In timglome limit the profile becomes
flat as more Ge is deposited. This is also true in the expetahease. We have explored
numerically the sizes of these cluster as a function of thetren rates and the diffusion con-

stants. Furthermore, we have studied the cluster formatitime presence of large number of



defects by Monte Carlo simulations. The first passage tintessta is studied and we have
obtained empirically the first passage time probabilitysiign

In the second part of the thesis we consider the formationuster in the presence of ex-
clusion. The origin of exclusion is related to non-bondintgractions between the particles.
In any volume element only a finite number of particles candmamodated. So, when the
number of cluster particles in the volume element increaasggtoms and/or cluster particles
repel one another. This in turn, prevents packing of unahlatnumber of particles in a given
volume. The non-bonding interaction is an effective for€espulsive nature between the dif-
fusing particles. Diffusion coefficients of the reactingsies are determined experimentally.
In the reaction-diffusion equations, adatom-adatom austef-cluster exclusion effect are ab-
sorbed in the mean field way in their diffusion coefficientspectively. So, in the zeroth order
approximation this self exclusion contribution can be asstito be negligible. The adatom-
cluster exclusion is incorporated into the reaction-diifun equations through a repelling force
proportional to the gradient of the concentrations. Thygetpf approach has been taken to
understand chemotaxis in biological problems [33, 34].

It is found that the exclusion terms can be derived from therosicopic principle using
master equation. Nonlinear term appears in the reactibumstn equations which consists of
coupling of the concentration of one species with the gradéthe other species. We assume
that the medium is inhomogeneous and consists of point tef€or the cluster formation in
the vicinity of a surface defects, we further consider arlatgic nonlinear reaction process in
whichn number of adatoms react to form a cluster.

Clearly the problem becomes too difficult to be tractable wiwlly. However, in the limit
when exclusion effect is weak we find a linearized reactiffuglon equation. The linear
equation gives us very important insight into the process.fd that due to the presence of
exclusion an extra drift term appears in the reaction-diion equations. For the adatoms the
drift velocity is outward from the location of the point detevhere as for the cluster parti-
cles it is directed into the defect site. Furthermore, ibddseaks the symmetry of the reaction
terms by effectively modifying the reaction rates. Thesedirized equations are solved in the
Laplace domain using the Green'’s function method. The isolus obtained by Talbot nu-
merical inverse Laplace transform. Numerical investmatising finite difference methods is
further conducted in one and two dimensions for varying @stohn strengtlx and nonlinear-

ity n. From our numerics, we confirm that, the predictions of thelified linear equations



qualitatively agrees with the original equations. The Widf the cluster concentration profile
is found to be decreasing with increasing exclusion sttelagid decreasing nonlinearity. In
two dimension it is found that the mean concentration desa®avith nonlinearity and exclu-
sion. The most interesting conclusion that we can draw fiosirhodel is that, exclusion and
algebraic nonlinearity both suppress the formation oftelss

We have further studied the effect of self-exclusion in teaediffusion process. In this
model we consider a single static trap) (at the origin where a diffusing adatorg)(get ad-
sorbed at a constant rate i+ 7 — 7. Self-exclusion however has the opposite effect on the
reaction-diffusion process as compared to the exclusi@datoms due to the cluster and vice
versa. We note that the self exclusion can also describedighra concentration dependent
diffusion coefficient. Perturbative solution to the reantdiffusion is calculated upto second
order in reaction rate. It is found that the width of the déplezone increases and is propor-
tional to exclusion strength The concentration at a the trapping site is more as compgared
the case when exclusion process is absent.

We finally conclude that reaction-diffusion models in infmyeneous media can be used
successfully to describe the formation of clusters at neales in the presence of surface de-
fects of any topology, step edges and domain boundariessUii@ce defects are modeled as
reaction centers in the reaction-diffusion model havingotes topologies. We find that models
considered, albeit minimal in nature, are quite good in&xyhg qualitatively the formation of
clusters. In the nonlinear model we have investigated tfeeiedf exclusion and nonlinearity
in the cluster formation process. We draw the most importantlusion that exclusion and

nonlinearity both have a suppressing effect in the fornmadioclusters.
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Chapter 1

Introduction to pattern formation and
reaction-diffusion systems with disorder

1.1 Introduction

Since ancient times pattern formation in nature has beeea gource of curiosity and fascina-
tion to mankind mostly due to their aesthetic values. Evengthat we see around us possesses
some kind of pattern. A beautiful pattern that can be obskirvebjects like snowflakes, crys-
tal structure, hexagonal convection cells, pattern on timgsvof a butterfly, sunflower, etc is
usually identified by a high degree of symmetry. These bkdwtiructure are mostly ordered
geometrical objects or fractal structure with certain syagtmes. However, there are other pat-
terns in nature which are equally fascinating but, whicheagpp not so beautiful. These patterns
are mostly random patterns with no specific order or lenghesc Some common examples
of random patterns are turbulence, diffusion limited aggt®n clusters, fracture, percolation,
etc. When we look at these patterns we can observe that napeats certain kind of similari-
ties in a large number of seemingly unrelated patterns. ytafso happen that similar kinds of
pattern found at widely separated length scales have a commeghanism by which they are
formed.

At nanoscales a large variety of pattern can be seen. In a eailcases formation of
pattern at nanoscale can also be modeled by the same eguttaindescribe macroscopic
pattern formation. In the following we shall discuss theexmental motivation of the present

work on cluster formation at nanoscale.



1.1.1 Experimental motivation

In the recent years there has been a tremendous amount afalesievoted to understand
physics at nanoscale. The formation of patterns at naros$ed been studied extensively.
Patterns at nanoscale is achieved both by self-organz§iie3] as well as artificially [4].
Self-organized alignment of island has been studied by aeurof author [6, 11, 35, 36]. It
has been found that the variation of strain field over theesierhas significant effect on surface
diffusion and nucleation of islands [7]. Also the presentalisorder on the surface plays
a very important role in the formation of the nanopatternlf-8eganized nanostructures is
observed to favor nucleation along step edges [6, 13, 37d83bcations [7,39—-41] or domain
boundaries [11, 13,42].

Epitaxial growth of Ge on a clean, defect-free Si surfaces;geds through the completion
of a wetting layer, grown in the layer-by-layer mode [43] eigher 2D island nucleation or
step flow [44—46]. However, in the presence of defects sudoamin boundaries, Ge adatoms
deposited on the surface follow the preferential nucleasind growth at domain boundaries
[13].

Various types of defects are formed on Si(111)-{7 surface [11,47-55]. From our ex-
periments we have observed the presence of bilayer stegemades with domain boundaries
formed on clean Si(111)-¢/7) surface. Growth processes on these surfaces are sthiongly
fluenced by the presence these defects. In Fig. (1.1)(a) weseaal000 x 1000 nm? area
which shows bilayer steps along the vertical direction li@asline) and terraces with domain
boundaries along the horizontal direction (solid line) lo& ¢tlean Si(111)-(¥7) surface. These
defect may have been formed due to a short annealing periodrorthe presence of contami-
nants on the surface [50]. Irregularity in these structaneges it difficult to understand these
defects [53]. The strong interaction between dimer andogasit changed electronic config-
uration between faulted and unfaulted halves of the unis @ld other metastable triangular
subunits (i.e. %5 unit cell) play a key role in the formation of these struetirWe have ob-
served that a prolonged flask (5min) at~ 1200°C followed by controlled cooling to room
temperature produces such domains.

In Fig. (1.1)(b) we can see a high resolution STM image whiatws the atomic arrange-
ments of &7 surface reconstruction-urthermore, due to missing atoms at isolated points

from the surface layer, defects are formed at random postidhe height profiles are shown
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Figure 1.1: STM images of Si(111)-X77) surface: (a) steps and domain boundaries on terraces
are seen (scan ar@a00 x 1000 nn¥, bias voltage-2 V, tunneling current.18 nA), (b) a high
resolution STM image (scan are@ x 40 nm?, bias voltage2.3 V, tunneling current.19 nA)

- a part of the image in (a) - showsx7) surface reconstruction. The depth of the dark regions
and the height of the bright spot in (b) are0.1 nm. Height profiles from the image in (a) are
shown - (c) along the vertical dashed line and (d) along threzbiotal line. The step heights
[seen in (c)] correspond to a bilayer height (0.31 nm) or d)Hlanar spacing.

in Fig. (1.1)(c) and (d). A height scan across the step edyas that the steps are bilayer steps
Fig. (1.1)(c). A scan on the terrace shows that the domaimdenies are trenches of depth
~0.1nm and width~0.2nm. The domain boundaries appear almost straight ape peicular

to the terrace.

From the deposition of Ge on these surfaces we observed thad&oms nucleate first
at the domain boundaries and the step edges and subseqoertig flat terraces. Similar
growth processes has been reported earlier by a numberhadral6, 11, 56]. Sgarlata et. al.
have shown that, after formation of wetting layer, the Gandk grow preferentially along the
step edges [6]. In our experiment we have found that prefiategrowth of Ge within the
wetting layer (0.5 bilayer). Similar growth processes halg® been reported [57, 58] Fig.
(1.2) we see a dense decoration of domain boundaries with @edsland smaller density
of islands within the domainDue to the missing adatoms at the domain boundaries, a large
number of broken bonds are present there. The adsorptioa afl@&oms reduces the number of
broken bonds which is thermodynamically favorable as idmsithe free energy of the system.
The stability of the structure has been tested experinmgrigl annealing the sample for 30

min at the same temperature. Once the Ge clusters are fotheeduster diffusion would be
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Figure 1.2: STM images (bias voltage2 V and tunneling current.2 nA) from a0.5 BL Ge
grown a Si(111)-(%7) surface at elevated substrate temperattré{0°C) showing pattern
formation: (a) scan arez00 x 2500 nm? (b) scan are@000 x 2000 nm? at different positions
on the surface. Three denuded regions are marked in (a) an@¢tclustering is dominant at
domain boundaries and step edges.

negligible compared to adatom diffusion. Smallest domam@e cluster only at the step edges
and domain boundaries, the domains themselves are dermdek@ by circles in Fig. (1.2)).
The largest such domain {80nm which gives an estimate of the effective diffusion kang
Diffusion lengths of the same order has been observed in REf(90 nm) and [58] (70 nm).

We propose a reaction-diffusion model of cluster formabbserved in these experiments.
We assume that clusters are formed in localized areas wihedefects are located. Since the
structure appears first at the domain boundaries and thedtgs, it indicates that the reaction
rate at the boundary is higher from the rate at the defeciddrise domains.

In the following section we present a brief review of somehs key concepts and some
important results in pattern formation. The theory of pattrmation in reaction-diffusion
systems is discussed in Sec. 1.3. Here we will discuss thagrarechanism of pattern forma-
tion. In Sec. 1.4 we review reaction-diffusion processedisordered media. We will discuss
using a simple example of trapping reaction-diffusion peabhow anomalous behavior arises
due to the presence of disorder. Through this example weakalillustrate the mathematical
techniques we shall be using in studying our reaction-glifia models. The law of stretched

exponential is re-derived. The plan of the thesis is disethgs Sec. 1.7.



1.2 Pattern formation in nature

The study of pattern formation is a vast subject that has growt of centuries of human in-
quiry. A mathematical understanding of some aspects oépatormation had been achieved
only in the recent times. The key ingredient necessary ferettmergence of pattern from a
uniform structureless state is “instability” that leadsatepontaneous breaking of symmetry.
Instability sets in when a system is driven away from equiiiilm and various types of pat-
tern can be categorized according to the instabilities.[TAE earliest studies were performed
on fluid mechanical systems. In 1900 Benard demonstrateessitdly that a layer of liquid
between two flat plates when heated from below evolves intorastable state of convective
roll patterns. Rayleigh latter showed that the onset of tloeseective rolls depends on a di-
mensionless numbédk which is the ratio between the buoyancy force and the vistoee.
This numberR is called the Rayleigh number. He showed that wRegxceeds a critical value
R. ~ 1708, instability sets in. This number is universal to differénids used in the experi-
ment. From the conducting state the fluid evolves into statip hexagonal cell pattern which
further bifurcate into convective roll patterns [59]. Tiodl pattern is the only pattern predicted
by the Bossinesq approximation. Hexagonal cells patterrcengequence of non-Bossinesq
approximation. It has been reported that there is a poggithiht during the transition from the
hexagonal to the convective roll state the fluid has a tendemspontaneously form rotating
spiral state [60]. Furthermore, it has been found that rattgyn evolves into “target” patterns
that arises due to the defect core instability mechanisrh [Bansition from a many “target”
to spiral state and target to spiral turbulence has also tlesgrved [62]. Similarly in fluid flow
problems there is a transition from laminar to turbulent flelaen the dimensionless Reynolds
number exceeds a critical value. A complete understandirigrbulence has still not been
achieved to this day. Turbulent flow is very common in naturd ean be seen everywhere
around us. Cumulus clouds, plume of smokestack, flowing watevers, wakes of ship etc.
are some common examples of turbulence. Although there @e@se definition of turbu-
lence it can be characterized by the irregularity in the flattgrn, diffusivity which causes
rapid mixing, very high rate of mass, momentum and heat p@msvorticity fluctuations and
dissipation etc [63].

One can see the most beautiful patterns in snowflakes. Srkewféae found naturally in a

wide variety of patterns. They all posses hexagonal synynetrich arises due to the molec-



ular structure of the water molecule. The snowflakes groweaad particles in an environment
of supersaturated water vapor. The growth takes place withré moving outward with the
seed at the center. It is found that the surface tension digbiel-solid interface provides
the stabilizing force responsible for pattern formatiod][6The boundary condition has to in-
clude the effect of curvature in order to form the patterngbigotropic growth. The ratio of
the surface tension at the liquid-solid interface to therlaheat per unit volume provides the
length scale of the pattern formation. There are also rancystal growth which produces
dendritic structures. The diffusion limited aggregatdsfiPmodel was introduced by Witten
and Sanders to describe the formation of random dendrystal growth [65]. These random
aggregates grows from a seed particle forming dendritindiras in all direction in a random
fashion. The dynamics involve solving the Laplace equatith moving boundary condition.
Random dendritic growth is seen in many cases such as eleptsition [66, 67], dendritic
solidification [68], viscous fingering [69], electric disaige and bacterial colony growth [70]
to name a few. It is found that the clusters are scale invarian there is no natural length
scale that can be identified in these objects. The densitgiyecorrelation has a power law
behavior (p(r')p(r' + r)) ~ r=4, where the exponent is related to the dimension of the
spaced and Hausdorff dimensiof; by D; = d — A. Instabilities of the Mullins and Sekerka
type is attributed to the unstable growth of the clusters T2]. Furthermore Tamas Vicsek
had shown that both ordered as well as disordered strucimbe generated by assuming that
the sticking probability of the particle arriving at the fge depends on the local curvature
of the cluster and a particle on the cluster is allowed toxr&dea neighboring site [73]. Two
dimensional growth of bacterial colony through diffusiimited process has been observed.
It has been found that the bacterial colony resembles the patfern with a fractal dimension
Dy ~ 1.73[70].

Pattern formation in chemical and biological systems isiawere complex. Alan Turing
in his seminal paper in 1952 proposed that, reaction-ddgfusystems consisting of chemical
species fhorphogei can give rise to pattern formation by diffusion driven atstities (cf.
Sec. 1.3). Latter Gierer and Meinhardt generalized Tusindga into patterning principle of
short-range activation, long-range inhibition or localiation, lateral inhibition [74]. These
ideas have been used to explain a large number of patterrafimmin biology such as the
development of organs in various organism, animal coaepetetc [75]. We do not wish to

pursue going further in this direction as we shall be discgspattern formation in reaction-



diffusion system in Sec. 1.3.

1.3 Pattern formation in reaction-diffusion systems

A reaction-diffusion system consists of a system of chehspacies undergoing a reactions
and diffusion process. The reaction-diffusion models dan describe processes other than
chemical systems such as population models [75]. The geeacion-diffusion equations for

a system oh. species inl dimensional space is given by the following

ou=Lu-+ pu,x,t),x € Qt>0, (1.1a)
u(x, 0) = ug(x), (1.1b)

whereQ) ¢ R and the boundary conditions are specified on the suif&te The vector
u = (uy,uy, ..., u,)" € R” represents the concentration of blnespecies,ﬁ is a differential
operator which describes the diffusive part gnah, x,7) € R™ is a smooth function which
denotes the reaction part. Let the differential operatoofttbe form £ = Do? whereD is a

n x n diffusion matrix andd? = Zle 92 is the Laplacian operator ihdimension. These
coupled partial differential equation describes the evmtuof the reacting species. Itis natural
to ask, how does the above set of coupled equations genextiéens. The mechanism for
the formation of patterns in homogeneous reaction-difiusystem was discovered by A. M.
Turing in 1952 [15]. He showed that diffusion driven instdigis can give rise to the formation
of a wide variety of patterns. The experimental verificatidTuring mechanism was found
by Belousov and Zhabotinskii [75]. However, the conditioegded for Turing instability in a
general reaction-diffusion system was found only receft}. Let us assume that diffusion
matrix D is constant and the reaction tegrdoes not depend explicitly ax andt. Suppose

thatu(¢) = u, is a locally stable homogeneous steady state solution ditietic equation
a(t) = p(u(t)), u(0) = uy (1.2)
Linearizing around the solution, the Eq. (1.1) can be written as
d0u = Lou + J(u,)du,x € Q,¢ > 0, (1.3)

whereu = u, + du andJ(uy) = [0,,p;(u(?))], 4,5 = 1,2,...,n is the Jacobian matrix. Let

du ~ exp(wt + ikx), so that the characteristic equation become
det{wI+ [k’D —J} =0 (1.4)

7



If all the roots of Eq. (1.4) have negative real part then Efl)is linearly stable. Turing
instability sets in when the control parameters are varmetlvee have a situation when for the
first time a single root crosses the imaginary axis while igikevalues of] has negative real
parts [77]. The change in control parameters makes the ramifteady state, unstable to
perturbations with a nonzero wave number. Wheis zero there are some modes that grow
into spatially inhomogeneous steady states giving risautong pattern.

Let us consider the activator-inhibitor model introducedTuring [15]. We haveD is
2 x 2 diagonal matrix with components;; = ¢,;D;, 4, j = 1,2 whereD; and D, are positive
constantsu = (uy,uz)?, p(u(t)) = (f(u1,u2), g(u,uz))’. The homogeneous steady state
solution of the kinetic equation Eq. (1.2) is linearly statilerefore from the linearized equation

we should have

aUlf + au2g < 07
8u1fau2.g - augfamg > 0 (15)

Substitutingdu ~ exp(wt — ikx) in Eq. (1.3) we obtain the following dispersion relation

w+k?Dy — 0y, f —0u, f B
det( —Oug WA KDy — g ) T 0. (1.6)

The solution of the above equation is givenday, = (—b + /b2 — 4c¢)/2 whereb = k*(D; +
Dy) — (Ou, f +0urg) @andc = (k*Dy — 0y, ) (k* Dy — 0., 9) — O, fOu, g- Using Eq. (1.5) we see
thatb > 0 for all £ € R. For instability the two roots should have alternate siyiis.therefore

havew,ws < 0 which results in the following inequality.

4 1.2 1 2 1 2 2 1
=k <D1 + D2>+ 5D, <0. (1.7)
From Eq. (1.7) we obtain
8u1f 8u2.g
o, "o, 7Y
amf awg ? 8u1 fawg - auz f&ug
< Dy "D, ) ! ( D7D, -0 49

The conditions Eq. (1.5) and (1.8) define the Turing space.

1.4 Reaction-diffusion systems in disordered media

It is interesting to study reaction-diffusion processethvdisorder because in real systems

we always see disorder. The existence of defects and ingaidte examples of disorder in
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crystals. The occurrence of defects becomes more promatdigher temperature. There are
various kinds of defect in crystals i.e. point defects suskacancies, interstitials, interstitial

impurities; line defects such as dislocations, grain bauies etc. Disorder in materials is very
crucial in determining the electrical, optical and mechkahproperties. For example, impurities
can be doped into material to increase its tensile strentle.dc conductivity of amorphous

germanium show (T') ~ exp(—(To/T)*?°), Ty ~ 7 x 107K due to the tunneling of localized

state of electron from one domain to other in the materia).[78

Reaction-diffusion processes in disordered media has liadied extensively in the past
[16, 28, 79]. In this section we review some of the work on tieacdiffusion models in disor-
dered media and we hope that it will give a general idea of #n®us interesting properties of
these processes. Using a trapping reaction problem welshallistrating how we can use the
abstract vector space notations and the Green’s functitinads to formulate the problem in a
very elegant way and calculate various quantities.

There are various models of disordered media that has beehtostudy these diffusion
processes. Fractals, percolation cluster, DLA clusteznghbed disorder etc has been used as
models of disorder. Random walk on Seirpinski gasket [80] stadied and it was found that
it shows anomalous behavior. The mean square displacem@it} ~ N4 d, ~ 2.32 +
0.01. The anomalous diffusion-exponent is related to the ftatitaension of the structure.
Here we havel,, = 2 — d+d; + ji = In(d + 3)/ In 2 whered is the space dimension on which
the structure is embedded adgis the fractal dimension. Similarly diffusion on percodati
cluster have been studied for various types of latticess kinown that for a two dimensional
square lattice there exist an infinite percolation clustist pbove the critical concentration
p = p. = 0.592745 (p is the fraction of occupied lattice sites) [16]. The proliabiP,, that
a site belongs to the incipient infinite clusteris, ~ (p — p.)? for p > p.. Forp < p.
the diameter of the cluster is characterized by a correldgagthé(p) ~ (p. — p)~". The
exponents’ andv are universal and depends only on the spatial dimensiondimthe type
of the lattice. Three characteristic regimes for diffusmmpercolation cluster are found. For
p > p. the infinite cluster is homogeneous for length scale grehter the correlation length
(R > £&(p)) the diffusion is regular with diffusion exponendt, = 2. At the critical point
p = p. the incipient infinite cluster is self similar and the diffois is anomalous witld,, > 2.
Forp < p. the largest cluster has a typical sige) and we have R(t)?) ~ &%(p) for large
time [16].



Disorder can also be introduced in diffusion problems evem oegular lattices by intro-
ducing a random waiting time in the random walk. A particlefpening a random walk on a
lattice spends a random waiting time> 0 at each site before every hopping [28]. The step
lengths could also be a random variable. This type of randatksiare called continuous time
random walk. The properties of the continuous time randoik depends on the distribution of
the random waiting time»(7). Suppose that the mean of the waiting titne is finite, then we
have in the large time limit a normal diffusion with the megase displacemenfX?) ~ 2Dt,
whereD = (I?)/2(r), L is a random step length arnds the total waiting time. However, if
Y(7) is a “broad” distribution such thatr) is not finite (i.e fory () ~ 7470+ (1 — o0)
andy € (0, 1] such that ~ 7, N'/#) we find that diffusion is sub-diffusive with
@) (5)" i we ),

(1)t/ 70
In(t/70)

(X?) ~ (1.9)

if pu=1.
Wheny € (1, 2] anomalous correction appears with the mean square dispéaxtdoecoming

2), (1.10)

5 2Dt +ct'/? if pe (1,
o)~ e

2Dt + ctInt if

and (X?) ~ Dt + ct'/? for u > 2 [28]. In these models the disorder is time varying as the
waiting time at a site for different visits can be differeBisorder can also be frozen into the
lattice and for all visits by the patrticle it spends the saar@om waiting time. This type of
disorder do not vary with time and are called quenched desofdeaction-diffusion processes
in media with quenched disorder has been studied by a nurhbetters [16-26,28,79,81-83].

Quenched disorder model has been used to study diffusianotied reaction processes in
disordered media. Diffusion on comb like structures whieeteeth of the comb act as traps
where the particle stay for longer time. With a waiting tinistdoutiony(7) ~ 7=%/1(i.e. taken
as the first time return to the origin) show anomalous ditfasiith (X?) ~ t!/2 [28, 84, 85].
Anomalous diffusion in an array of convective roll could bpassible physical realization of
the diffusion on comb like structures [84]. Random barriedeis has been studied in which
the transition rate are random variable show anomalouseptiep [82, 83,86—89]. It has been
shown through real-space renormalization group calariati that one dimensional random
walks with static disorder (i.e. disorder in hopping ratesl atep lengths) leads to a non-
Markovian diffusion with generalized diffusion constan{t) ~ ¢=3/2 ast — oo [90]. In a

recent study of diffusion processes in the presence of memelst it was shown that correlated
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spatial disorder gives rise to long term memory effect amough renormalization group tech-
nique it was shown that there is a slow decrease of the diifusbnstant(¢) ~ D, + =172,
The mean square displacemént) ~ 2Dt + consty/t [91].

Another class of problem with quenched disorder consistheftrapping reaction-diffusion”
models in which the number of particles is not conserved.s&hmodels consists of diffusing
particles on a lattice (continuous space) which contawlated sites (regions) called traps. The
traps can be assumed static or mobile which depends on thiepr@ne wish to study. When
a diffusing particlg A) arrive at a trag?’) the reactiolMA+7 — (1—¢)A+T, € € [0, 1] takes
place. Ife < 1 we know that only a portion of the particle get trapped and aleita partial
trap. Where = 1 we have a perfect trap [92]. The problem of trapping reaetifiusion pro-
cesses has been studied for almost a hundred years [93puSaspects of trapping reaction-
diffusion processes has been studied since then. Reactarrimg at the traps create depletion
zones that induces self-segregation of the diffusing glagi This self-segregation affects the
global reaction kinetics [18, 19, 94, 95]. Therefore, ifufon-controlled reaction processes
the rate equation solution may not always be accurate. Henerore realistic situations the
kinetic law needs to be modified.

Long time behavior in trapping reaction-diffusion proasshow that the survival proba-
bility in the asymptotic time limit follow a stretched expamtial law for both static [19, 96, 97]
and mobile [98-103] traps. For static trapgl/idimension distributed randomly with uniformly

probability density, the survival probability is given by
P(t) ~ exp(—agp™ T2/ 142, (1.11)

whereqy is a constant which depends on the dimensionality of theespas the trap density.
Similarly for the case of mobile traps the survival probiypik given by

exp(—arpt'’?)  d=1,

P(t) ~ < exp(—agpt/Int) d=2, , (1.12)

exp(—agpt)  d=3,
where the traps are undergoing normal diffusion and thetaatsy, depends also on the
diffusion constant of the traps.

So far, we have discussed diffusion phenomena in disordaegtia which can be catego-

rized according to the type of diffusion. The diffusion pegses on fractal structures, percola-

tion cluster, Brownian motion and other processes modeledigfih random walks are entirely
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different from the reaction-diffusion processes modeledugh macroscopic equation involv-
ing concentrations of the chemical species. The formerasctise of “self diffusion” where
as the latter is “collective diffusion” [104]. In the randomalk models (or Brownian motion)
the stochasticity in the dynamics arises due to the thermneifation of the surrounding media
(e.g. a pollen grain in water or diffusing impurity atom in riystal). Here we are concerned
with the motion of a single diffusing particle. The probdalgidensity of finding the Brownian
particle is described by the Fokker-Planck equation. Irotrer damped limit with no external
forces acting on the particle the equation reduces to a sidifflsion equation. The diffusion

constantD, can be expressed through the velocity auto-correlatioctiom.

D, = Nid ; /0 " d(vi(t)vi(0) (1.13)

whereN is the total number of particles;(t) is the velocity of the i-th particle anédldimension
of space [105].

Collective diffusion on the other hand takes into accountkeraction between particles.
A system of particles in equilibrium has a uniform concetraand for a any perturbation

form the equilibrium value there is a corresponding curggven by the Fick’s first law
J(x,t) = —D.0xc(x,1), (1.14)

where D.. is the collective diffusion constant angx, t) is the concentration at positicn at

timet. The diffusion constant can be expressed by the total flusetadron function

D= - > | @tz (1.15)

whereJ(t) = Zi]\il v;(t) in the total velocity flux,1/Sy is the thermodynamic factor which
is related to the isothermal compressibility = Sy/({c)kgT"). For surface diffusion it can
also be expressed in terms of the derivative of the chemictnpial .. We havel/S, =
(kyT)~'0u/01og 6 whered is the surface coverage. Although there is no general esiores
that relatedD. to D, and approximate relationship is given by the so-called Barkquation
D. = D,/S, [105].

The two diffusion constants are same for dilute system whderesity of particle is low.
Self-diffusion constanD, can simply be determined by observing a single Browinan garti

under the microscope. It can also be determined by “forcedeRey scattering or neutron
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scattering experiment. The collective diffusion constanton the other hand can be deter-
mined from the density correlation function using ineladight scattering techniques [104].
We note here that the effect of particle-particle inteactis already included in the collec-
tive diffusion constant). when we are concerned only about the diffusion. However,rwhe
particles of many species are involved and reactions betwléterent species can give rise
to large concentration gradients the interaction betweetigtes of different species has to be
introduced by hand. This interaction is the non-bondingrettion between particles which is

called volume exclusion (cf. Chapter 3).

1.4.1 Trapping reaction-diffusion process: Green’s function method

In this subsection we will illustrate the use of Green'’s fiimt in reaction-diffusion equations
and formulate the trapping reaction-diffusion problem madbstract vector space notations.
We will obtain the perturbation solution for the partialgsaproblem. Expressions for the
survival probabilities and the anomalous characterisiresre-derived and their implications
are discussed.

Let us consider the case of trapping reaction in one dimansiBuppose that, we have
traps uniformly distributed on the x-axis withtraps per unit length on an average. For all
xr; € Ryi=1,2,... real numbers, the sét= {z,z,,..., 2, ...} denote the positions of the

trapping sites on the x-axis. The reaction-diffusion emuneits given by

Ou(z,t) = DO?u(x,t) — K Z Oz —x)u(x,t),z € Rt >0,
;€S

u(z,0) = f(z), (1.16)

whereD is the diffusion coefficient and > 0 is the trapping rate. Taking Laplace transform
of Eq. (1.16) we obtain

(s — DI2 — K(z)) a(z, s) = f(z),z € R, (1.17)

whereK (z) = —r ), s 6(x — x;) anda(z, s) is the Laplace transform of the density, t).
We can use the Green'’s function method to solve Eq. (1.173.Gieen’s functiorG(z|z’) is
defined by

(s — DO? — K(2))G(x|z') = §(x — o), (1.18)

with G(z|2") satisfying the same boundary conditions.
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We cast the problem in an abstract vector space [30].ﬁl(e) be a hermitian differential

operator. There is a complete set of eigenfunctigngx) } such that

A

L(z)t,(z) = M\ (x), x € Q. (1.19)

subject to boundary conditions aif2. The set{w,(z)} can be assumed orthonormal. We can

use the Dirac’s bra and ket notation so that we have

() = (@[n), Gy (2) = (Tn|), (1.20a)
§(x — ') L(x) = (x|L|a"), (1.20b)
(x]a'y = 0(x — ), (1.20c)
/dm[z><x! 1 (1.20d)

where|z) is the eigenvector of the position operator. The eigenvatyeation in Eq. (1.19)
becomes
L) = Al i) (1.21)

Orthonormality and the completeness conditions are giyen b

(T |Tm) = Opm.s (1.22a)
D i) (| = 1 (1.22b)
respectively. The above Eg. (1.17) and Eq. (1.18) can battewin abstract notation as the
following
(s = DO} — K)la) = |f) (1.23)
(s — D& — K)G =1, (1.24a)
or G=(s—D& —K)™, (1.24b)

where (@) = a(x), (z|f) = f(x), {l(s — DI} — K)|i@) = (s — DI? — K(x))u(x) and
(z/|G|x) = G(«'|x). In the abstract notation the reaction tefti{z) becomes the reaction
operatork = —k > w5 [Ti) (zi|. From Eq. (1.23) the solution can be written in terms of the

Green’s function asi(z, s) = (z|a) = (z|G|f). The calculation of Green’s functiofi(z|x')
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D
== = G(z|2'), * = —K,
s G<0>(x|x’),

Figure 1.3: Feynman diagrams for Eq. (1.26).

should give the solution for any given initial conditigitz) . Consider the expression in Eq.
(1.24b)

(s — Do} — K)™,
(s — DO?)(1 — (s — Dag)—lfc)]l |
= (1—(s—D3&)'K) (s — D)
(1-GOR) GO
+

= GO 4 G0 KG<0>+G<° KGOKGO 4+ .| (1.25)

whereG®) = (s — Dd?)~! is the bare Green’s function. Eq. (1.25) can also be written a

(z|(Glz') = <x|(é<0>+é<0>f(é<0>+G<O>KC:<0>KG<0>+...)\x'>,

or G(z|lz)) = GO(z]a)) —/@ZG (2]2:) GO (2|2
z; €S
+ 1) GOz GO (]2 GO (ayla) + . (1.26)
x3,7;€S

The expression Eq. (1.26) is represented by Feynman diagrafig. (1.3) Rearranging
the terms in the right hand side of Eq. (1.25) gives

A N

G=G9 1+ GKGY =G0 + GOKG. (1.27)

The last equation Eq. (1.27) is called the Dyson equatiommMEqQ. (1.25) we obtain the

following solution

a(z,s) = (z|GIf)
= (2|(GY + GOKGO + GO KGO IIf), (1.28)
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Suppose that we hav&z) = §(z) = (z|0) then Eq. (1.28) becomes

i(x,s) = (10) = kY GO (a|2;) GO (:]0)
z; €S
+ 1Y GO (] GO (] ) GO (a500) + (1.29)
x4,2;€S
where
(@|(GN0) = GO(]0),
(| GOKRGO)0) = —fiZ<x|é(0)|xi><xilé(o)|0>,
z; €S
= —KZG (z|2;) GO (2;]0)
z; €S
etc. The bare Green’s function & (z|2') = exp(—+/s/D|x — 2'|)/(2V/Ds). A straight

forward inverse Laplace transform yields

1 —\xlz) K (\w—ﬂfilﬂfml)
u(z,t) = ex - — erfc| —————
R I D p(4Dt 4%% 2v/Di
K> Dt —z2(x, i, 25)?
t i {W?exp <—4Dt )

x;,2;E€S

s 2(x, x4, 25)
—2(z, z;, z;)erfc <—2\/ﬁt ) } +..., (2.30)

wherez(x, x;, ;) = |v — x;| + |z; — z;| + |x;|. This expression in Eq. (1.30) agrees well only

when timet is small. Due to the secular term at the second order theisolwill diverge for
large time. Let us assume that the traps are sparsely digdlso that contribution from terms
GO (zy]x;) fori # jin EQ. (1.29) can be ignored. This is decided by the diffusionstant for
the following reason a particle which diffuses faster wdhtribute more as it can move from

one trap to other easily. With this approximation Eq. (1.28) be written as

i(x,s) = GO(z)0) —KZG (z]2:) GO (2;]0)
xIES
+ K ZG (z]2:) GO (2] 2) GO (2;]0) +
x,GS
= G9(z)0) — RZG (x|z;)
z; €S

x {1 = kGO (2;]z;) + KGO (wi]2)? ...} GO(x]0)

+.

12

O () G (2,]0)
) (2|0) RZ 1—|—I€GO il (1.31)
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The Feynman diagrams for the Greens functiginr|2’) with the approximation in Eq. (1.31)

can be written by choosing appropriate diagrams from Fig)(&f. Fig. (1.4)). Taking Laplace

@)

-

R

+
t

+

; (1+ O
@
< 1— ©)717
—— —Galr), —— =G,

=K, O: —kGO (z;2;),

K3

:_,_+Z7:

(b)

Figure 1.4: (a)Feynman diagrams, (b) Notations. Setiing= 0 gives us the solution Eq.
(1.31).

transform of Eq. (1.31) we obtain

(2.) = e (2L
u\x, ~ exX
VirDt '\ 4Dt
K (lz — 2| + |z)r K%t |z — x| + |7] KT
_ — | erfc
4D xzegexp ( 2D 4D WDt 2vD

(1.32)

Note that the approximate solution given in Eq. (1.32) isdvedr a sparsely distributed traps.
We can immediately recognize from Eqg. (1.32) that this sofuis the sum of solutions of Eq.
(1.16) with a single trap located at= z; fori = 1,2, ..., Np, with initial conditiond(z)/Np
where Ny, is the total number of traps . In Fig. (1.5) we have plotted the solutiaiiz, ¢)
for the case when there are no traps. Without trap there iseadiffusive process and the delta
function evolves into a Gaussian (see Fig. (1.5) curve (Ahe curve (B) and (C) represent
the numerical and the perturbation solution Eq. (1.32)aetyely. It can be seen that the
approximate solution agrees quite well.

Using the Eq. (1.29) the concentration averaged over desaran be calculated order by
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Figure 1.5: The curve (A) shows the concentration, ¢) when there is no trap. A comparison
of the numerical solution in (B) with the perturbation sabuti(C) obtained from Eq. (1.32) is
shown. Number of traps is 80 randomly distributed 10, 10), diffusion constant) = 1.0,
trapping rate< = 0.1 and timet = 2.0.

order. We have

(i(z,s)) = (GO]0) = (kY GO(x]z;) GO (:]0))

;€S

+ (57 ) GO (a|a) GO (i) GO (]0)) + . (1.33)

x;,x; €S
where(-) denotes the mean taken over the disorder. The first term aigtitehand side of Eq.
(1.33) is(G(x|0)) = G©(z|0). The higher order terms can be calculated in the following
way. Let[—L, L] on the x-axis contaifV trapping sites with random variables € Sy, i =
1,2..., N being uniformly distributed with probability densi#(z,, x5 ..., zy5) = 1/(2L)V.
Note that, in the limitV, L — oo we haveN/L — p and the se§y = S. The second term on
the right had side becomes

Liz) = () GOalw)GO(x40)),

x‘iGSN

_ é (exp (—\/%( & — 2| + | ))>,

xiESN

L,N:—>oo 1% ,\/E|x| 2
LoV <|x|—|—\/8 . (1.34)

To calculate the third term we can uggx;) and assume total randomness [95] where the

correlation can be neglected. The mean of product can baaegby the product of means so
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that we obtain

Lz) = (Y GOle)GO(aila;)GO(x;)0)),

T4, X5 ESn

= () GO (),

T, ESN

LNz P /gl (12 3lel /D 3D
8(Ds)3/? 2 2 Vs 2s/°
(1.35)

Similarly,

3 . 3/2 /
P —/E S S S

Continuing in the same way we can calculate higher order tégns forn = 4,5,... The
mean concentratiofu(x, t)) can then be calculated by taking the inverse Laplace tramsbb
Eqg. (1.33) after substituting},(z) for n = 1,2, ... We obtain

2 3 _ 9
(u(z,t)) =~ (1 — kpt + (figt) B (fi/? +.. ) —471rDt exp ( 4’;1‘6 ) ,
_ 1 —|x|?
- P eXp(4Dt) (1.37)

The result obtained in Eqg. (1.37) can be understood by simplé@ive reasoning. The number
of traps in an unit length i®. At each trap a particle can get trapped at a ratelf the
number of particle per unit length at some instant of tinen(¢), then the number of particle
getting trapped will be proportional ta(t) with each particle getting trapped at a raje The
trapping reactiond + 7" = T for each trap is transformed into the reactidr> ¢. Thus the
trapping reaction-diffusion problem is transformed irftattof a “pure death process” with rate
kp. We can writedn(t)/dt = —kp n(t). EqQ. (1.37) therefore suggests that the density falls
of exponentially at a ratep at each point:. This is valid for allx with sufficiently largep.
Note also that, when limit — 0 the mean concentratidn(z, t)) evolves into a Gaussian due
to pure diffusion. In this limit we can therefore write anegffive reaction-diffusion equation
of the formd,u = Dd?u — kpu. The mean survival probability i8(t) := [(u(x,t))dx =
exp(—krpt). However, for perfect traps we shall see that this is not #se¢cf. Sec. 1.4.2).
The diffusive and the trapping reaction processes havébalsome independent in this limit

(0 < k < 1) when we are concerned only about the mean concentrations.
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Figure 1.6: (I) Concentration(z, ¢t) (100 realizations in pink) and the concentration averaged
over disorder{u(x,t)) (in thick black). (II) The mean concentrati@n(z, ¢)) from numerical
calculations(A) and the approximate solution Eq. (1.37)di®&)compared. The number of traps
is 80 randomly distributed i\—10, 10), diffusion constantD = 1.0, trapping rates = 0.2,

p = 4.0 and timet = 2.0.

In Fig. (1.6)(1) we have plotted the numerical solution f@0Mdifferent realizations (in pink)
of the trapping reaction-diffusion process and the mearceatnation(u(x,t)) is calculated
from 1000 realizations. The number of traps is taken 80 whiehchosen from a uniform
distribution in (—10,10), D = 1,k = 0.2 andt = 2.0. In Fig. (1.6)(ll) the solution Eg.
(1.37) is compared with the corresponding numerical vatiiése mean concentration. From
Fig. (1.6)(I) the spread in the individual curvegér,t) also indicates the non-selfaveraging

characteristics of the mean concentration.

1.4.2 Perfect traps and the law of stretched-exponential

Perfect traps are those which traps particles with unit odlly. Here we will consider the
case of perfect traps distributed uniformly along the xsaxunlike the case of partial traps
where only a fraction of the particles get trapped, in thisecave will see that the survival
probability decays slower than exponential. We call thesltiw of stretched exponential (i.e.
P(t) ~ exp(—at'/3) in one dimension).

For all finite reaction rates<( < oo) the probability of getting trapped at a trapping site
is less than unity hence making it a partial trap. We haveadiraliscussed this case in Sec.
1.4.1 and found that the survival probability decays exptia#ly in time (with the assumption
of complete randomness). In the limit— co we have “perfect traps” (i.eA + 7 = T).
Since every particle arriving at a trap vanishes, the thstion of perfect traps, partition the
x-axis into a collection of disjoint intervals. In each intal the concentration(x,t) evolve

independently, hence if we consider the dynamics in one Buehval we should be able to
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study the whole system. Consider the trapping reactiomsldh Eq. (1.16)
ou(x,t) = DO?u(x,t) — Kk Z 0z —z)u(x,t),zr € Rt >0,
;€S

with the initial conditionf(z) = 1. Consider a particular interval of leng2a so that we have
K(z) = —k(0(x — a) + d(z + a)) (i.e. after a linear transformation — = + const.). Using

Eq. (1.23) and Eq. (1.27) we have can be written write asvolig integral equation

@) = GO+ GORa),
= COU) + 5l GOla){ala) + GO — a)(~alit) ). (1.38)

Now closing from the left with(z| and substitutingz|G©|f) = [ G (z|2’)da’ = 1/s and
w(z|GO| £ a) (+ald) = GO (x| + a)a(+a, s) we have

(z,s) = % — K [G(O)(x|a)ﬁ(a, )+ GO(z| — a)u(—a, s)] . (1.39)

Settingz = +a in the left hand side of Eq. (1.39) and solving fgr-a, s) we obtain

u(+a, s) = ! : (1.40)
We have
i) = 1 & (GO(z]a) + GO(z| — a)) |
_ 1 GO(z]a) + GV(z| — a) (1.41)

s s (1+ exp(~2ay/5/D)) /(2VDs)

For « finite, the Eq. (1.41) leads to a power law decay of the suhpvabability of a par-
ticle P(t) ~ 2a*~'/%,(t — o0) in (—a,a). Also, for a periodic distribution of traps gives

exponential decay’(t) ~ exp(—«t/a) [21]. In the limitxk — oo we have

) 1 cosh(z/s/D) (1.42)

w(z,s) =— —

s s cosh(ay/s/D)

Inverse Laplace transform of Eq. (1.42) (cf. Ref. [106]) give

o0

u(z,t) = %Z 2nl+ 1 exp (_W2(2Z; 1)2Dt) sin <(2n i gzw i x)) . (1.43)
n=0
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Expression Eq. (1.43) can also be obtained by solving tHeasitin equation with absorbing
boundary conditions at the boundaries. We note here thatiave incorporated this in the
reaction operator. The survival probability in the intéri/aa, a) is

1 a

p(a7t> = % u(ac,t)da:,
8 — 1 —72(2n + 1)2Dt
= — . 1.44
2 ;% (2n +1)? P ( 4a? (1.44)

As the traps are uniformly distributed on the x-axis, thegai intervals has a Poission distri-
butionp(x) = pexp(—px) wherez is the length of an interval andis the density of traps (i.e.
number of traps per unit length). The probability that aipbatoccur in an interval of length
is proportional to the length. The probability of a particle occurring in an interval ohggh x

is thereforep?x exp(—px)dx. The survival probability becomes

P) = [ bl exp(—p2e)da,
0

8 i ! /OO exp(—ay /2 — pr)zde
= 5 T aNo Xp(—C&y, - ;
T = (2n+1)* Jo P p

16 1 3,0 o p? 3
= 52 Z (2n+1)2G0’3( 4 1 0,1,5 |, (1.45)

n=0

whereq,, = (2n + 1)272Dt and Gy (an?, 0,1,3 ) is the Meijer G-function [107]. In the

asymptotic limitt — oo taking then = 0 term only, we have from Eq. (1.45)

16 —3(p*m?DO)Y3N (27p ~—~  17x/3pl/3 16 16
P(t) - T3/2 exp ( 22/3 \/§ Dt + 21/3.31/2. 9(Dt) + O((Dt) )
(1.46)

This is the required stretched exponential behavior. Tinetched exponential behavior arises

due to the contribution from large trap free regions in th&rdution of traps which is in

contrast with the exponential decay whers finite andp is large.

1.5 The concept of the first passage time

The calculation of first passage time is very useful in thetf stochastic processes that are
triggered by first passage processes e.g. the Kramer'seegcaplem. In chapter 2 we have
studied the first passage time statistics for our reactifinstbn model using Monte Carlo

simulations. Here we discuss the concept of first passagpumneadiffusion process.
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Let us consider a particle at the oridirat timet = 0. The particle performs a random walk
in d dimensional space. What is the probabilifyx, ¢|0, 0) that the particle reaches the point
x at timet for the first time [108]. The probability’(x, ¢|0, 0) of finding the particle ak at

time¢ given that it started from the orig at timet = 0 can be written as

P(x,[0,0) = dx060 + Y _ F(x,1]0,0)P(x, tx,t). (1.47)

t'<t
The expression Eq. (1.47) says that, for a particle stadinthe origin at time = 0 the
probability of finding the particle at at timet equals the sum of all probabilities of finding the
particle for the first time ak at a timet’ < ¢ given that the particle is again foundsatt time

t. Using generating functions

[e.9]

P(x,z) = ZP(X £)0,0)2

F(x,2) = ZF x,1]0,0)z (1.48)
t=0
we obtain
P(x,2) = 6x0 + F(x,2)P(0, 2). (1.49)

In Eq. (1.49) we have used the fact thatx, ¢t|x,t') = P(x,t — ¢'|0,0). In the continuous
time limit the sum in Eq. (1.47) should be replaced by an irgkgver0 to ¢t and the generating
function by the corresponding Laplace transforms. The niiestrpassage time and the higher

moments can be calculated by
(t") = /t”F(x,t\0,0)dt, n=12.... (1.50)

The probability of first return time to the origin tells usenésting properties of the diffusion

process. In the large time limit— oo we have (for derivation see Ref. [108])

t4/2=2 d<?2

F(0,t0,0) ~ { 1/(t In*t), d=2. (1.51)
t=4/2, d>2

The probability of return to the origi#'(0,¢|0,0) is approximately related to the survival

probability S(¢) by 1 — S(t) ~ ft F(0,t'10,0)dt'. The above expression Eq. (1.51) indicates

a change in behavior with change in dimension of space.dFer2 the survival probability

S(t) vanishes as — oo which implies that the diffusive motion igcurrenti.e. the particle
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will return to the starting point with unit probability. Haver, ford > 2 there is a nonzero
probability that the particle will never return. In this eabe diffusion is calledransient
In the conventional method the first-passage probabilitybsacalculated from the diffusion

equation. Consider the diffusion equation
O = DO?u, x € Q,t>0. (1.52)

We have a single particle at the origin so we set the initialcemtrationu(x, 0) = J(x). We
want to compute the probability of hitting the boundaxy. Also, there should be no contri-
bution from the exterior of the boundary so we need to impds®iding boundary condition

u(x,t) =0 forall x € 0. The outgoing fluxj(y, t) at the boundary is given by
Jj(y,t) = —Doqu(x,t)|x=y, y € 0, (1.53)

wheren is the outward normal to the bounda®y2. The eventual hitting probability is given
by
Puains() = [ 3. 00t y € 09 (1.54)
0

The hitting probability in Eg. (1.54) can be calculated bgtfsolving the diffusion equation
Eq. (1.52) inQ2 with the absorbing boundary conditions and then computiegoutward flux
at the boundary(2. Finally, evaluating the integral in Eq. (1.54) giVESting(Y)-

1.6 Summary

In this chapter we discussed the experimental motivatidhe@present work. We saw that de-
fects on Si(111)% 7 surface plays a very crucial role in cluster formation pses at nanoscales.
We discussed pattern formation in nature with a number of krewn problems. It seems
that pattern formation arises due to instabilities thaegise to spontaneous symmetry break-
ing. Turing instability in reaction-diffusion problemsdéscussed. Furthermore, we discussed
reaction-diffusion systems in disordered medium. Anomsloehavior is seen due to the pres-
ence of disorder in a number of models.

Using trapping problems in one dimension we illustratedrtteghod of Green'’s function
techniques in reaction-diffusion systems. We showed tieté¢action term appears as a reac-
tion operator in the abstract vector space formulation. Wl e using these techniques to

study our models of cluster formation. Further the law aétstned exponential was re-derived
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where we found the exact expression for the survival prdityabin the large time limit we
found theexp(—at!/3) behavior from this expression. In addition to a factg? as obtained

in Ref. [96] the next order therm i3/, The first passage time probability was discussed.

1.7 Plan of the thesis

The plan of the thesis is the following. In chapter 2, we pg#a reaction-diffusion model
that describes the formation of Ge clusters on Si(1kT)8urface we have discussed above.
In our model we introduce a simple reaction scheme to desc¢hié reaction process for the
formation of clusters. The reactions are assumed to ocdyratrihe location of the defects,
step edges and domain boundaries which we call reactioersenf\s from our experiments
the step edges and domain boundaries for a single domaindaimsed geometry, we take
a circular boundary in our model. Under certain approxiorative show that the reaction-
diffusion process turns out to be a set coupled linear paliffarential equations. We shall use
the method of Green’s function and regular perturbatiooy& solve the coupled equations.
We will show that, through this minimal model we can form pats which is qualitatively
similar to the patterns we have observed in our experimdfaste Carlo simulation have been
used to show similar pattern for a large number of defecte. niban first passage time to exit
from the domain is calculated from the simulation. The pllitst density of the first passage
time is obtained and its properties are discussed.

In chapter 3, we investigate the effect of exclusion in thenfation of Ge clusters. The
origin of exclusion is related to the non-bonding interagtbetween particles. The exclusion
terms are derived form the microscopic principle using erasguations in which we assume
a concentration dependent hopping rate. The cluster fomagaction occurs in the vicinity
of the reaction centers. We assume an algebraic nonlineatioa process to account for
multiple number of adatoms reacting simultaneously. Ferdéise of weak exclusion we will
show that the reaction-diffusion equations can be reduceal det of coupled linear partial
differential equations with drifts. These drift diffusi@guations are exactly solvable and show
the qualitative behavior of our original equations. For tase of self exclusion we study
trapping problem where will show that the effect is oppasitée will then discuss survival
probability in the presence of exclusion. Finally, numariavestigation are presented.

In chapter 4, we conclude with future extensions of the waidk possible applications.
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Chapter 2

Reaction diffusion model for the formation
of clusters on a surface with defects

2.1 Introduction

Growth processes on surfaces at nanoscales can show aessuwatieties of patterns. Perfectly
ordered geometrical structures, random patterns or batld @wise in the growth processes de-
pending on the experimental conditions. Formation of egjanized nanostructures has been
extensively studied in the past [1-3]. Preferential nued@eof the self-organized nanostruc-
tures along step edges [5, 6, 109], dislocations [7—10] arado boundaries [12,110] has been
observed. It has been observed that for the Ge adatoms texposi the Si surface there is
a preferential growth at the domain boundaries [13]. Alswlman clusters are formed at the
location of surface defects present inside the domain bexyndhese domain boundaries and
surface defects act as traps for the deposited adatoms. &errhere a reaction diffusion
model for these growth processes and pattern formatiors Wik has been motivated by ex-
perimental work on pattern formation in the deposition ofdBeSi(111)-{ x 7) surfaces [13]
as well as several other previous investigations [5-11,02,110]. We note that ours is a case
of reaction-diffusion process in random media.

Reaction diffusion processes in random media has been @dbnstudied in the past. The
models that are considered consist of diffusion limiteattieas of a single species in the pres-
ence of static and moving traps. The traps are the sites vihereactant species get partially
or completely adsorbed. These models have been used tarexpl&éous processes such as
trapping of exciton in a crystal at a defect, electron-holé soliton-antisoliton recombination,
chemical binding of interstitial hydrogen atoms by impiest[16]. Various aspects of reaction-

diffusion processes in disordered media such as self-gatjpa of diffusing particles [17,18],
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long time behavior of decay of particle density [19-21], kingetics of diffusion limited coa-
lescence and annihilation in random media [22—25], have bealied. Recently, the effect of
quenched disorder and internal noise on the transport grepén a reaction diffusion model
has been studied for ’birth-death’ process in a real wotldasion [26]. Fertile patches called
oasis lay randomly in the desert where the population catiphuby birth process and in the
desert the population decays due to death processes. Reditfision in disordered systems
is also used to model the decay and preservation of mariranimrgarbon [27].

The model that we study here consists of two species lineatios diffusion processes
in the presence of reaction centers (surface defects). @uagy interest is to describe the
reaction-diffusion of Ge adatoms on the Si surface. Howetés model can be used in cases
where the process is occurring on a two dimensional surfReactions take place only in a
small neighborhood of the defects present on the Si surf&oene results of a two species
reaction diffusion process in the presence of ring defesntsbe found in Ref. [13,111,112].

In section 2.2 we describe theoretical models. The ring haghbint models are discussed.
Greens function method is used for the solution of our readtiffusion equation. In section
2.4 we will describe the Monte Carlo simulations and dische&srtumerical results for the
point defect model. Time evolution of the growth processestudied from the obtained solu-
tions. We will show that this reaction diffusion model shathe pattern formation that were
experimentally reported earlier. Through the MC simuladiove investigate the first passage
statistics. The first passage time studied here gives ustimma¢s of the time a particle takes
from the origin to reach the domain boundary. This providehastime scale for the growth
process at the domain boundary. The mean first passage tofrtbefirst passage time prob-
ability density are calculated numerically. The large tiasymptotic is discussed in section
2.3.

2.2 Formulation of the model

The model consist of the reaction-diffusion processes ofdpeciesS and P on a two dimen-
sional flat surface. Her® denotes the Ge adatoms aRddenotes the sum total of possible
Ge-clusters. The reactioty = P occurs at the location of the defects present on the surface.
We call these defects as reaction centers. The reactiomgcisechosen here to describe the

clusterization process (see Appendix C.1). We are consigl@rsequential clusterization pro-
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cess in this model, however, the actual clusterizationgsecould be quite complicated. The

coupled reaction diffusion equations are given by

0S(r,t) = DyLS(r,t) — Kf(r)S(r,t) — Kg(r)S(r,t) + K, P(r,t) + J(r,1),
0P(r,t) = D,LP(r,t) — Ky(r)P(r,t) + Ks(r)S(r, 1), (2.1)

whereS(r,t) and P(r, t) are the concentrations at positiorand timet, D, and D, are the
diffusion coefficients and(,(r) and K (r) are the reaction rates. The reaction rates are given
by K.(r) = k.0(r — p), for p € Q. The set2 denotes the regions on the Si surface where
defects are located. The domain boundary is modeled as afiragius R and is given by
Kg(r) = kgd(|r| — R)/|r|. Thisis no restriction of the proposed model. Any type of fuary

can be considered. Then the model will require a full-scalmerical approach.J(r,t) is an
external flux. Equation (2.1) is subject to the boundary d@ts S(r,¢), P(r,t) are finite at

the origin and vanishes at infinity. The initial conditione &(r,0) = P(r,0)=0. Let¢(r, s),

Y(r, ) andj(n s) be the Laplace transform 6f(r,¢) ,P(r,¢) andJ(r,t) respectively. From
Eqg. (2.1) we have

6(s)) = GW(s)D; (=Kfl(s)) + Kplyo(s)) + | I (s))),
W(s)) = GUDH(—Kyl(s)) + Krlo(s))). (2.2)

~

where(r [¢(s)) = o(r,s), (r [(s)) = v(rs), (x]J(s)) = J(r,s), 8(r — ') K,(r) =
(e[ KG[r') for j = f,b, R, (r|(sD7'=L)|¢(s)) = (sDT'=L)o(r,s) and(r|(sD, " —L)|(s)) =
(sD, " —L)y(r, s). [30] The orthogonality and the completeness relationgaen as(r|r’) =
§(r — ') and [ [r)(r|dr = 1. [30] The operatot_ is the Laplacian in polar coordinate sys-

tem [113]. The Green’s function are defined by

GO(s) = [SD;I—/J]*I,

p

GP(s) = [sDit L],

G\ [sD;' — L+ D;'Kg) ™. (2.3)

H
=
—~
®
=
|

The domain boundary is a circle of radiftsso that we can writé&r, = |R)kr(R| . Expression

for GV (s) can be written in terms of the t-matrix as

G (s) = G (s) + G () Tr(5)G (s) (2.4)
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where the t-matrix’z(s) [30] is given by

Tr(s) = —(D;'Kp— D;'KrG%s)D;'Kr+ D' KrG°(s)D;' KrG2(s)D; 'Ky . ..)
_ |R)(—kr/D,)(R|
= o (2.5)
1+ (kr/Dy) [ GY(R,0|R,0)dd
The Green'’s function in the limikty — oo is
(0) (0)
GO (s) = GO (s) Gs”(s)|R)(R|Gs” (s) (2.6)

~ [GOR,0IR,0)d0

The expressions fo& (s) and G (s) are given in Appendix A.1. Equation (2.4) and (2.5)
can also be written in terms of Feynman diagrams (cf. Fig).. 2J$ing these expression in Eq.
(2.2),|¢(s)) and|i(s)) can be written in terms of the Green’s functions. The corredéions
can then be calculated by inverse Laplace transformatign(ef) and | (s)). At the domain
boundary the reactiof — S’ takes place at a rate; which is sufficiently high. This implies

that those particles that reaches the domain boundary gegpently trapped there.

S X XE DX XEmIXE X
£ XEmIHEIRE X

- X
XG>

JGOR,0,R6)d8 = C==-> kr/Ds = X

Figure 2.1: Green’s functio@ﬁl)(r, 0|r',0") expressed in Feynman diagrams.

2.2.1 The ring model

The reaction centers are modeled as concentric rings wittecat the origin. Due to the

circular symmetry we havé = -4 (r4). The concentrations are given Byr, t) andP(r, t).
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The reaction rates are given By, (r) = k. >, d(r — r;)/r, where index is f or b andr;
denotes the collection of all random variable uniformlytdigited in(0, R). Thus2 is defined
by the collection of all these circles. A particle fluXr, ¢) is incident normal to the surface.
We assume/(r,t) = joexp(—Ar) to be exponentially decaying. Here the reacttor= P
occurs at the-th ring and there is diffusion away from the ring. At the bdaryr = R the
reactionS — S’ takes place at a rate;. The diffusion constant of’ is assumed very low as
compared to that of andP. Let¢(r, s), ¥ (r, s) andJ(r, s) = joexp(—Ar)/s be the Laplace

@A\

(@) (b)

Figure 2.2: Geometry of the reaction diffusion processlfa)ring model: the largest ring of
radius R denotes the domain boundary, other rings denotenthdefects, (b) the point model:
the dots dispersed within the radifisdenote the point defects on the surface.

transform of the concentratiortqr, t), P(r,t) and.J(r,t) respectively. We obtain(r, s) and

W (r, s) in terms of the Green’s functio@i!” (r|r') and G\ (r|1").

o(r,s) = Y GOlr)pi(ri,s) +Q(r,s),

{ri}
Uirs) = > GO(rlr)palri, s),
{ri}
k k
pl(ri»s) - Fbﬂ)(ri,S) - ngb(riv 8)7
k k
pa(riys) = ﬁﬂm,s)—ﬁqﬂ(m,s). (2.7)

whereQ(r, s) = (2m/D;) ngl)(T]r’)j(r’,s)r’dT’. Using Egs. (2.3) the Green'’s function can

be written as
1
GO (') = 2—[0(\/ s/ Dar)Ko(v/5/Dar’), (2.8)
s
where the indexx is s or p andr < . Whenr > 1’ replacer by " and vice versa in Eq.

(2.8). INGY(r|+) the Laplace variable has been kept implicit for clarity. It will be explicitly
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written asG (r,7',s) whenever required. The presence of the domain bounafy) acts

as a defect. So, we can write the Green’s function in the poesef single defect as

GO (r| RGO (R

G (r|r"y = GO(r|) —
R

S

(2.9)

in thelim £z — oo, which makes the domain boundary a perfect sink-at 2. Now, suppose
there areNp number of defects. Setting = r; forall j = 1,2,...,Np in Eq. (2.2) we
obtain2N, linear equations which can be solved to obtain;, s) and(r;,s) for all j =
1,2,...,Np. From Eq.(2.7)S(r,t) and P(r,t) can then be obtained using Inverse Laplace

transform. Let us now consider the case of a single defeomm(q.(2.7) we have

kr GO lr)Q(r1, )

o(r,s) =Q(r,s) — o) Al ; (2.10)
_ Ky G (rlr)Q(r, )
W(r,s) = Fp e , (2.11)

whereA(r) = 1+ (ks/Dy)G" (r1|r1) + (ky/Dy)GY (r1]r1). We notice from Eq. (2.10)
that, the inverse Laplace transform of the first gaft, s) gives the solution of the diffusion
equation with a sink at = R in the presence of external flux. The second part involves a
convolution in time the effect of which is to decrease theosmiration near the reaction center.
Similarly from Eq. (2.11) we can see the converse. For lagaber of defectg(r, s) and
Y(r, s) will be too complicated, but the concentrations will show ame behavior close to the
defect centers. We have implemented the Talbot Inverseacagransformation method [32]
in our numerical computations. In Fig. 2.3 we use the domaimbary as the unit circle so
that0 < r < 1(= R). In Fig. 2.3 we plot the concentratios§r, t) and P(r, t) at timet = 1.0

for D, = 0.1, D, = 0.01, ky = k, = 0.1. There are four ring defects with radius randomly
chosen in(0,1). The concentration foP shows peaks of decreasing heights at those radii.
This happens due to the exponentially decaying incident T will discuss next in the point
model how point defect gives rise to similar peaks. We wiél seat both models differs only

in their geometrical aspects.

2.2.2 The point model

In this model, we consider point reaction centers spreatbumly over the surface. Let;
be the position of the-th reaction center where < i < Np and Np, is the total number of

reaction centers (see Fig. 2.2(b)). So we have {ry,...,ry, } the set of position vectors of
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Figure 2.3: Concentrations (&)r,t) and (b)P(r,t) at timet = 1.0 wherer = (x,y), Ds; =
0.1, D, = 0.01, kf = 1.0, k, = 0.1 in the presence of four ring defectsin< » < 1. Incident
flux in exponentially decaying with = 1.0.

reaction centers. The reaction rates are givelkhyr) = k, > ., é(r —r;), wherea = f,b.

The Laplace transform of the concentratidi(s, t), P(r,t) are given by

o(r,0) = > GU(r,0lri,0:)p1(r:,0;) + Q(r,0),

(ri,0;)€Q

W(r,0) = Z GO (r,0lr, 0;)p(ri, 0;),

Q(r,0) = sD V0,0 J(r, 0 dr'de,
k
p1(ri,0;) = Dsf¢(7’z’79¢) + 321/1(7"1‘,9@'),
_ —h kg
,02(7’17 ez) - D %ZJ(T@, 92) + D Qb(?”l, 91)7 (212)

p p
Here we have = (r,0) andr; = (r;,0;) as we are using polar coordinate system. The values

of ¢(r;,6;) andw(r;, 0;) can be obtained by solving the following linear equations

Np
¢ = Y (GO)ij(—ksd; + ko) /Dy + Qi
i=1
o
Y = Z(Gg(oo )m( klﬂ% + kf¢])/ (2.13)
j=1

Where(Ggl))i’j = Ggl)(ri, 9,‘|Tj, gj), ¢j = ¢(Tj, Gj), I/Jj = w(’/’j7 8J> anin = 1/(8Ds) f Gg”(?“i,
O;|r", 6" J(r', 0)r'dr'de foralli = 1,2,..., Np. Inverting the Eq.(2.13 and 2.12) to the time

domain will give us the concentratios8r, ¢) and P(r, t).
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2.3 Asymptotic large time limit

Consider the ring model with one ring defect. The Green’s tioncin Eq.(2.10) and(2.11)

when expanded in Taylor series neas 0 can be written as

2 2
G (r|r') ~ 1 (1+ il > (1+ il )ln(r’/R)—I—...,

4D, 4D,

1 sr? sr'’? s'/2!
GO (r|r') ~ —— (1 1 1
p (i) o " 4D, ) \" Tap, )\ Mo ) T

S

wherer < 7. Forr > 1’ replacer by " and vice versa. Fok;/D, < 1 andk,/D, < 1
denominator can be approximated as unity. Using the abguessions we hav@(r, s) ~ s !

so thatQ(r, t) in the long time asymptotic limit becomes

Q*(r) ~ l;—j;z{m(—m) — Bi(=X\r) + e — M pIn(r/R)} (2.14)

The concentratio®(r, t) and P(r, t) in the asymptotic limit — oo [114] can be written as

S0) = Q)+ 5 5 QARE)
—k,

onD Q*(Tl)FQ<T), (215)

p

where

In 2 if r <y,
In 5 if r>rp.
4D,Ct r

A = |

—1n if r <y,
Fy(r) = { T 45501& B Sﬁpt — (2.16)

1 -
v —5In=% 8Dt ifr>r.

andy = InC = 0.5772.... The function@Q*(r) is a monotonically decreasing function with
maximum at the origir — 0 and zero at the domain boundary= R. From the expres-
sion obtained in Eqg.(2.15 and 2.16) we find that in the preseria single ring defect the

concentratiort(r) and P(r) varies logarithmically as one move away from the ring defect

2.4 Simulations and numerical results

We saw earlier that the solutio$r,¢), P(r,¢) can be calculated by using the Green’s func-
tions. However for a large number of defects it becomes diffio evaluate it numerically.
We explore numerically the results we have obtained in ExR)2for a small number of de-

fect Np = 8. In our computations we have implemented the fixed Talbohoeefor inverse
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Figure 2.4: Concentratiafi(r, ¢) attime (ay = 0.01, (c)t = 0.1, (e)t = 1.0 and concentration
P(r,t) attime (b)t = 0.01, (d)t =0.1, (f) t = 1.0 for Dy, = 1.0andD, = 0.1.

Laplace transformations [32]. For large number of defeatshave studied the system by
Monte Carlo simulations. For our numerical computations aeetscaled all relevant param-
eters of the model by the radius of the domain boundaime. D, — 7D,/R?, k, — Tk,
where the index is s or p, 7 = R?/D, is the unit of time. The values of plots are obtained
by setting fluxrj, — 1. The parametek is taken ad / R with the assumption that the flux of
particles falls off appreciably outside the domain bougd#m the plots in Fig. 2.4 we show
the time evolution of the diffusion process. The followingrametersp, = 1.0, D, = 0.1,

ks = 0.1 andk, = 0.01 were used. At = 0.01 (Fig. 2.4 a and b) one can find that the
reaction has just begun and thus the concentration3 afound the reaction centers can be
seen. As we advance ahead in time the concentratidn llécomes more prominent and the
space between the reaction centers starts filling up duestditftusion of P. Concentration of

S show dips at the locations where the concentratio® gieaks. We further note that peaks
of P appearing nearer to the origin are higher than those clodeetperiphery. This happens
as we have chosen an exponentially decaying flux. Asymptesialts were obtained for the

following set of parameter®, >> D, with k; = k, = 0.1 and timet = 1.0. Figure 2.5 (a,
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Figure 2.5: ConcentrationS(r,t) and P(r,t): (a,b) for D, >> D, att = 1.0, (c,d) for
D, << D, att = 1.0.

b) shows the case fdp, >> D,. In this case the& species diffuses very fast compared to the
P species. Consequently the concentration plat shows the expected smoothness. For the
opposite case (i.e[); << D,) we note that (Fig. 2.5 (c, d)) there are deep hole-like stines

in .S concentration plot. This means that more number of pastick/e undergone reactions
near the reaction centers as this should be the casBfer< D,. Similarly, if we vary the
reaction rate constants we find that the peak® girow and dips appear ifi with increasing

k¢, the rate constant for the conversion®fo P. The concentrations &f and P for ¢t = 1.0,

(k¢ ky) = (0.1,0.1), (0.5,0.1), (0.1,0.5) and D, = D,, = 1.0 are plotted in Fig. 2.6.

For a large number of reaction centers we performed MonteoGariulations to study the
reaction diffusion process. We have used the stochastiglaiion algorithm [115]. Reaction
centers are uniformly distributed inside the circular donwd radiusR. Each reaction center is
a circular disk of radiug <« R centered at;,7 = 1,2, ... Np where the reactiod = P take
place with ratet,, o = f,b. Outside the circular region there is no reaction. Note ith#tis
numerical approach we allow a definite area for the reaceones. The specieSandP freely
diffuse with diffusion constanb, and D, respectively. Whenever a particle of tySaeaches
the domain boundaryr| = R the reactionS — S; occur with probability 1. This makes it
a perfect sink (i.e. limitty — o0). We have taken a constant flux rate The simulation
algorithm in discussed in Appendix E. A snapshot of the satioh with Np = 150 is shown
in Fig. 2.7. The following parameters were used = 1.0, D, = 0.01, Dg, = 0.001,k; =

35



Figure 2.6: Concentrations 6fr) (a, b, c) and’(r) (d, e, f): (a, d)c; = 0.1,k, = 0.1,t = 1.0;
(b, €)k; = 0.1,k = 0.5,¢t = 1.0; (¢, f) kf = 0.5,k = 0.1, = 1.0,

Figure 2.7: Snapshots of concentrations:{ajb) P and (c)S; obtained from MC simulation
afters x 10* MC steps.

1.0, k, = 0.1. The plot shows the density of particlessak 10* Monte Carlo steps. One MC
step consist of one diffusive step of each particle on thiasarfollowed by the corresponding
reaction step which occurs at rdtgor &, depending on the type of particle.

We studied the first passage time statistics of the reactfusan process using MC sim-
ulations. In the previous chapter we discussed the firstagassme probability. In our sim-
ulation an adatom starts diffusion from the origin at time- 0. It undergoes a number of
reactions along its path before it hits the domain boundary.aThe diffusion coefficient at
a timet depends on whether it is of type S or P. The first passage timefiised as the time
required for the particle to reach the domain boundary: atrespective of its type when it

reaches the domain boundary. From our MC simulations we toavel that for a fixedV,, the
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Figure 2.8: (a) Mean first passage time and (b) mean numberaction as a function of;,.
Black lines in (a) isP(7) that are fit to the MC results(point$), = 1, k; = 1.

mean first passage time is correlated to the number of resctinee particle undergoes during
the entire path. We calculated the mean first passage timéhandean number of reactions
as a function of;, for different values ofD,. The mean first passage tine) is found to be
a strictly decreasing function df,. We found that(r;) ~ ¢;/(ky + c2) wWherec; andc, are
positive constants that dependsBp To the best of our knowledge it is a new result.

Let us assume that the probability density of first passage B(7;) = p(7y) exp(—Ary)
wherep(7¢) is a positive polynomial andl > 0 is a constant. For small values &f, we
have(rs) ~ c¢1/k;, (See Fig. 2.8 (a) foD, < 0.5). We can assumg(7;) linear which leads
to P(r;) = A%r;exp(—Ar;) where A depends orD,. This probability density agrees quite
well with the results obtained from the MC simulations. Theam first passage time then
givesA = 2k,/c;. In Fig. 2.9 we plotted the probability densify(r;) for D, = 0.1 and
ky, = 0.1,0.25,0.5 along with the densities obtained from the MC simulationgr $mall

values ofD,, we found that the functio#(7;) fit very well with the MC results.
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Figure 2.9: Comparison of probability densities obtainehfrMC simulations(thin colored
lines) with P(7) (thick solid lines).D, =1,D,, = 0.1,k; = 1.0
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Chapter 3

The effect of exclusion on nonlinear
reaction-diffusion system with disorder

3.1 Introduction

Cluster formation at nanoscales induced by surface defedsben studied extensively in
recent times ( [5-10, 12,13, 109, 110] and the referencesiti)e It has been found that step
edges [5, 6, 109], dislocations [7—10] and domain bounddti2, 110] play a very crucial role
in cluster formation. In a recent paper it is shown that whenissdeposited on Si surfaces
preferential growth occurs at surface defects and domaindbaries [13]. A reaction diffusion
model is proposed which qualitatively explains the clustemation [112]. Surface defects
and domain boundaries are taken as localized reactionrsentthe form of point defects and
ring defects. Furthermore, simple linear form of the reacis considered. This can be justified
under certain approximation. In the studied model clustacsadatoms were allowed to diffuse
normally with intrinsic diffusion coefficients [13,112].

Reaction diffusion models in presence of defects has bedrestaarlier to model a number
of phenomena such as trapping of exciton in a crystal at a&tjeézombination of electron and
hole and soliton and antisoliton [16]. In these works tragpieactions have been studied in
which the reactants get absorbed completely or partialisapping sites (i.e. reaction centers).
The authors have focused primarily on the statistical pittgse such as long time behavior
and self segregation [17-21]. Furthermore, these modslzithe a non-interacting system of
particle undergoing reactions in a disordered media. Hexewauld like to emphasize that
when we say an “interacting” reaction diffusion system, \wepy mean interaction between
particles other than the reactive interactions (or simpctions).

Our main aim in this chapter is two fold. In the first place, wanpto study the effect of
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exclusion in the formation of cluster induced by surfaceedts. The effect of exclusion in
a multispecies reaction-diffusion system in the preseriadisorder has not been studied so
widely. This exclusion effect arises due to repulsion amdifiyising particles. For the same
kind of particles, this repulsive effect is incorporatedainrmean field way in their diffusion
coefficients, which is an experimentally determined qugifitio4]. But, there is also repulsion
among dissimilar species. So, this must be taken into a¢@iueast in a mean field way in
any reaction-diffusion system.

Exclusion effect in homogeneous reaction diffusion systéms been studied by a num-
ber of authors. In lattice models exclusion is incorpordigdestricting the occupancy of a
site strictly to a single particle. Recently, it is shown thraa lattice system with contact in-
teractions there could be discrepancies between thedattid their corresponding continuum
model. This arises because in the continuum model the dfiusonstant becomes dependent
on the concentration which may take unphysical values fibergint lattice types and the cho-
sen interaction neighborhood [116]. However, the contmuunodel agrees well for mild to
moderate contact interaction strength.

If we look at normal diffusion the diffusivity is independasf the concentration of the dif-
fusing particles. However, in a multiparticle system in @fhthere is interaction between the
diffusing particles the diffusivity can depend on the cartcation. In such systems anomalous
diffusion might be observed. It was shown that the criticathdviors of non-equilibrium ab-
sorbing phase transitions under particle conservatioaféeeted when excluded volume inter-
action is incorporated [117]. Experimental observatioasshestablished that all concentration
dependent diffusion process leads to anomalous diffugid®,[L19]. In an interacting multipar-
ticle system, concentration dependent diffusion coefiicggpears naturally [120]. Nonlinear
Fokker-Planck equation has been studied in the past thatides the stochastic motion of a
particle in a media whose drift and diffusion terms depenushe probability density of the
particle [120-124]. In the model considered here we havedwgpled Smoluchosky equa-
tions [125] in which repulsive force on any one type of paesds generated by other species.
In the developed Smoluchosky equations the repulsive fonca given type of particles is as-
sumed to be generated by the concentration gradients otltiee gpecies. For a single species
system, equation studied here is same in form , developethiey authors [122,123].

On the same note repulsive interaction between particlesls® be seen as an exclusion

effect as the repulsive force originates from an effectig&lfproduced by other particles on a
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tagged particle. Note that any two particle cannot occupystiime position at the same time.
Hence, this effect can be introduced by a repulsive intemadietween the particles (i.e. hard
core repulsion) as it is done here. We would also like to ersiglkahere that this is an alter-

native way of incorporating exclusion effects in mean fieddaions. In this article we study

a reaction diffusion system in the presence of exclusiondasaorder. This type of approach

has been taken to understand chemotaxis in biological @nub[33, 34]. Furthermore, exclu-

sion processes on lattice has been studied extensivelg ekt to model problems in physics,
chemistry and biology. It is also shown how these reactifiuslon equation can be derived

using microscopic principles from the master equation [1285].

Another important feature here is that the incorporationasflinear cluster formation reac-
tion scheme. Since there is no proven reaction scheme fdotimation of nanoclusters on Si
surfaces, we use algebraic nonlinearity in the reactioerseh The relevant chemical kinetic
equations are derived in Appendix C.2.

In Sec. 3.2 we discuss the theoretical model. A perturbanadysis of one-dimensional
system is also presented. In Sec. 3.3 we study the effectabdig®n in a simple diffusion
process in the presence of a trap site at the origin. We shogvthat self-exclusion gives
rise to concentration dependent diffusion coefficient. \Wandmportant conclusions about the
formation of clusters in the presence of exclusion from #isple set up. Numerical results

for both one dimensional and the original model of two dinmems are discussed in Sec. 3.4.

3.2 Theoretical model

We consider a reaction diffusion process on a flat surfaceloochwreaction occurs only in the
neighborhood of reaction centers. Reaction centers arededaegions on the surface where
we allow the reaction to take place. Away from the reactiantees there is only diffusion. At a
reaction center we assumeadatom combine to form a cluster. The coupled reaction sldfu

equation is given by

0S(x,t) = 0Ox(Ds0xS(x,t) + €S(x,1)0xP(%,1))
—K¢(x)S(x,t)" + Kp(x)P(x,t) + J(x,1), (3.1)

O P(x,t) = 0Ox(D,0xP(x,t) +€P(x,1)0x5(x,1))
—K(x)P(x,t) + Kp(x)S(x,1)". (3.2)
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We assume that there is no external fluxx,¢) = 0 and the initial conditions are given by
S(x,0) = 1 and P(x,0) = 0. These equation are supplemented by appropriate boundary
conditions. The diffusion and the drift terms in Eq. (3.1Jdfq. (3.2) can be derived from
the master equation (see Eq. (D)). For 0 the process is purely diffusive and describes
a noninteracting system of particles. Whegt 0 it describes a system in which particles of
different species interact via volume exclusion. We havelehed this through an additional
drift term for each species that depends on the gradientrodezdration of the other species.
This can be pictured in the following manner. Consider anadan the vicinity of a cluster.
Due to thermal noise the diffusion term can be clearly wmitess D,02S. It is to be noted
that in Fickian diffusion arising from the nonuniformity tfie chemical potential the form
of the diffusive term remains same, except that self-diffascoefficientD, is replaced by
cooperative diffusion coefficient [104]. In addition toglthe adatom experiences a repelling
force (e > 0) —e0x P which appears as an additional drift term in Eq. (3.1) andlany in
Eq. (3.2) . We note here that the surface defects help restdioccur forming clusters in its
neighborhood. On the other hand the cluster repels adatberby preventing them to reach
the defect site. So, clearly the formation of cluster inesha competition between these two
counter processes. The exclusion of one species of pabyctbe other species of particles
we call here as cross-exclusion. When exclusion of a pattickaeir own kind is involved we
will call it self-exclusion. In our model we have not inclutithe self-exclusion-terms as it will
only make the diffusion coefficient dependent on conceiotnat In Sec. 3.3 we will consider
a trapping reaction at a static defect to examine the effestlbexclusion.

Our next aim is to analyze the solution of these coupled émpugfor a perturbative exclu-
sion effect with keeping the reaction scheme linear as ibisedn our earlier work [112]. We
further consider a single point defect at the origin. Not&t ihe = 0 andn = 1 the above
equation becomes linear. We can writg(x) = k;0(x) and K(x) = kyd(x). The above
equation for the linear case with a single defect is exacilyable and we get.

ky
2v/Dk
L
2/ D,k

wherek = (k;/\/Ds + ky/+/D,)/2 and the functiort,, (x, t) is given by

S(x,t)=1-— Hy(x,t), (3.3)

P(x,t) = H,(x,1), (3.4)

]

2v/ Dt

b

H,(x,t) = erfc
(x,t) (2 i

) — exp(|x|k/ D, + k*t)erfc(

+kt). (3.5)
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For the nonlinear case i.e. for finite valuec@n analytical solution to the above set of equations
cannot be obtained in a straight forward way.

Let us consider the nonlinear case 0 andn = 1 in one dimension with a single defect
at the origin. We want to see the effect of a small exclusiba ¢ < 1) term. We assume that
the solution to Eq. (3.1) and Eq. (3.2) can be written as [127]

S=Sy+eSi+ ...+ 1S, +O(e), (3.6)

P=Py+eP +...+"'P_1 +O("), (3.7)

whereS, andF, are solutions of Eq. (3.1) and Eq. (3.2) with= 0 and is given by Eq. (3.3) and
Eq. (3.4) in one dimension. We can expand the Eq. (3.1) and¥2).in a regular perturbation
series in powers of, the resulting equations of orderwill be the reaction diffusion equation
with e = 0 and a source (sink) terms centered at the defect sites ehétiaetions of solution

of order(n — 1) equations. The generalorder equation can be written as

O P, (z,t) = D,02P,(2,t) — Ky(x) Py(2,t) + K (2)Sn(z,t) + Jyn(z,t), (3.8b)

whereJ,, = 0and.J,, =0, J, ,(x,t) andJ; ,(x, t) are source (sink) functions that are written
interms ofS,,_, P, _, 0xSn_r andox P, for 1 < k < n. Although these equations are linear,
solving order by order is still very difficult due to the congaited source (sink) terms on the
right hand side. Itis also not our aim to find a perturbatietson of the problem at this point.
We can gain ample insight by replacing Eq. (3.1) and Eq. (8y2 simpler set of equations.

For smalle we can make the following approximation in Eq. (3.1) and BoR)
€0xS ™~ €0ySy, €0xP ~ €0y Py. (3.9

The resulting equations are a set of linear equations witlabie coefficients. However, theses
equations are still far from being solvable. To simplify urther we shall use the proper-
ties of the functionsSy(z,t) and Py(z,t). The gradientsg,Sy(x,t) andd, Py(z,t) are odd
functions inx and have a finite discontinuity at the reaction center= 0. So, we have
0,50(07,t) = —0,5(07,t) and 0, FPy(0~,t) = —0,.Py(0",¢). Also we have|0d,Sy(x,1)]
and |0, FPy(x,t)| monotonically decreasing for € (0,—o0) or z € (0,00) and asz —
+oo, 0,50(x,t) = 0,Py(z,t) = 0. Therefore there exist = z*,y* > 0 such that) <
|0:S0(x*,t)| < |0:50(07,¢)] and0 < |0, Po(y*, t)| < |0.FPo(0T,¢)| forall ¢ > 0.
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Figure 3.1: Schematic diagram: (a) adatom concentreign, t*), (b) cluster concentration
Py(x,t*), () exclusion term-¢d,.Sy(z, t*) and (d) exclusion term-ed, By(z, t*). Thick hor-
izontal arrows in (c) denotes the direction of the repul$oree on the cluster particles P due
to the adatoms. In (d) it denotes the direction of repulsored on the adatoms S due to the
clusters.v, = |ed, Py(y*,t*)| andv, = |e0,So(z*,t*)| are drift speed of adatoms and cluster
arising due to exclusion . Tim& € [0,¢] andz = z* > 0 andy* > 0 are points where the
concentrations have the mean value.

We can make further approximations so that the gradientgin(E9) can be replaced by
constants which is valid in some time intery@J¢]. Let us choose*,y* > 0 andt* € [0, ]
such that it satisfie$l,(z*,t*) = H,(0,t*)/2 and H,(y*,t*) = H,(0,t*)/2 (See Fig. 3.1).
Solution of these equations give the valuesrténd y* at which the concentrations has its
mean value at some tim&. In our calculations we have takeéh = ¢/2. Equation Eq. (3.9)
can now be written as

€0xS =~ v,8gN), €0x P ~ —v,Sgn(z), (3.10)

wherev, = €0 Po(y*, t*)| andv, = |edxSo(x*, t*)| and sgiiz) = 2(0(x) — 1/2) accounts for
the discontinuity at the reaction center= 0 (f(x) is the Heaviside step function) . Since we
are replacing monotonically decreasing functions by aotstthe approximation Eq. (3.10) is
valid in the neighborhood of the reaction center for a sniaktinterval|0, ¢|]. Note that in this
approximation all the particles are moving into or away frma reaction center at constant
speeds); andwv, but in the actual case this is not true when the gradients aretanically
decreasing. However, this overestimationupfandwv, will not alter the basic physics of the

problem. We obtain the following simplified reaction diffois equations

0iS(x,t) = D,02S(z,t) — v,sgNx)0,S(w, 1)
— (kg +2v,)6(x)S(z,t) + kpd(x) P(z, 1), (3.11)
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OP(z,t) = D,02P(z,t) + v,59N()0, P(z,t)
—(kp — 2v,)d(x) P(x,t) + ko(z)S(x, ). (3.12)

Here we note that, two very interesting features arise dubdceffect of exclusion. First,
it gives an extra drift term with velocity which is either inbr away from the defect site.
Secondly, it modifies the reaction rates and the reactiongd®ecome different for two reacting
species breaking constraints of our kinetic scheme (se€¢3H). and Eq. (3.2)). Let us define
ky = ks + 2v, andk, = k, — 2v,. The Eq. (3.11) and Eq. (3.12) after Laplace transform can

be written in an abstract notation [30] as the following
9(s)) = Guls) [=Kslo(s)) + Kl (s)) + 1T (5))] (3.13)

[9(5)) = Gyls) [~ Ealu(s)) + Klo(s)) ] (3.14)

where(z|p(s)) = ¢(x,s) and (x| (s)) = ¥(x,s) are the Laplace transform of(x,¢) and
P(z,t) respectively. The flux term appears due to the initial caodif (x,0) = 1 = (z|J(s)).
The reaction operators are defineddy — /)k.0(z) = (z|K,|2') andd(z — 2/ )k0(z) =
(z|K,|2'). The Green’s function§!,(s) andG,(s) are defined by

Gy(s) = [s — D03 + vysgn(z) Oy - (3.15)

Gy(s) = [s — D,02 — v,sgn(z)Ox| - (3.16)

The expressions for the Green’s functions in Eqg. (3.15) and(B16) are given in A.2. Next
consider diffusion of adatoms on a surface without defd€ise choose the initial concentra-
tion S(z,0) = o(x), we know that it will evolve as Gaussian as there is no clustenation.
Now suppose that we introduce a force field at the origin shehit gives rise to a constant
drift velocity v, in the outward direction. The diffusion of adatoms can becdbed by the
following equation

S (x,t) = 0y [DsOr — vs8gNx) 0, ] S(x,t) (3.17)

In the Laplace domain we can write

__ Gi(=]0)
1+ 20,G4(0]0)

¢(z, s) (3.18)

Here ¢(z, s) is the Laplace transform of (z,¢). For brevity the Laplace variableis kept

implicit in G4(z|z’). Using the expression for the Green'’s function Eq. (A.5) Bqd (A.6) in
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Eq. (3.18) and taking inverse Laplace transform, the smutif Eq. (3.17) can be written as

— (|| = vst)? Us _wslzl/Ds |z| + vst
ex — e’ "/ 7 erfc ) 3.19
p( 1D. 20/Dil (3.19)

1
5.0 = 755

Looking at Eq. (3.19) we note from the first term that adatoregpashed away from the origin
to a distance,t. The second term has a minimum at the origin and reduces tieentration
by small amount which is of the ordey.

Now returning to our reaction diffusion problem we shoulgest that, in the presence of
exclusion, adatoms will experience an extra repulsivefavhich is directed outward from the
center of the surface defect. From Eq. (3.13) and Eqg. (3.B40btain

 kpG(@]0)Q(0)  (kyky — krky)Gi(2]0)G,(0]0)Q(0)

o(z,5) = Q) X X . (320
where
A=1+ i iL Rk = Kk (3.22)

+ + ,
2Ds(—ps +7s)  2Dp(—pp + %) 4D Dp(—ps +7s)(—pp + )

ps = v/(2Dy), pp = —v,/(2D,), vs = \/p2 + s/D, and~, = |/p% + s/D,. The function
Q(x) = (z|Gs(s)]]) = 1/s.

The inverse Laplace transformation ofx, s) and v (z, s) is performed numerically by
Talbot method [32] which we denote Iy (z,¢) and P,(z,t) respectively. In Fig. 3.2 (a)
and 3.2 (b) we have plotted the concentrations for the ease0 denoted bysS,, F,, actual
numerical solutiort, P of (3.1) and (3.2) obtained by finite difference method aredsblution
of the modified linear equatiorts, /. The parameters are= 0.1, Dy =1, D, = 0.25, k; =
1.0, k, = 0.1 andt = 1.0. In Fig. 3.2(b), we note that the solutidhand P, and the numerical
solution S and P at a point close to the defect site have reduced as compartx tbare
case, i.e.¢ = 0 concentrationsS,, . The current due to diffusion and the drift current
are in opposite directions for both adatom and cluster waftdctively reduces the number of
particle at the origin. However, this is true only for smadlie of0 < ¢ < 1. For higher
values ofe the diffusion and the drift currents will be comparable amelthigher order terms in

e will also have a significant contribution (see Fig. 3.4).
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Figure 3.2: (a) Concentrations: Numerical soluti®nP, solution without exclusione(= 0)
So, P and solutions of the simplified linear equatidp P, (b) Concentrations close to the
defect at the origin.

3.3 Trapping reaction with self-exclusion

To understand the effect of self-exclusion we consider glsidiffusing species with a trap
at the origin. We assume that particles interact among teles, so we introduce a self-
exclusion term proportional to the density gradient as weeldone in the previous section.
When a particle reaches the trap site it gets trapped with e-itilependent rate constant

The reaction diffusion equation for the problem is then
Owu(x,t) = 0, (DoOpu(x,t) + eu(x, t)0,u(z,t)) — kd(z)u(z,t). (3.23)

We use the initial condition(z,0) = 1 along with appropriate boundary conditions [128].
By rearranging terms in Eq. (3.23) the term due to exclusion simply be absorbed in a
concentration dependent diffusion coefficiebt(u) = Dy(1 + cu) (heree is redefined as
e = ¢/Dy). We note that with self-exclusion the current due to diffasand drift are in the
same direction as this can be can seen from the expressitimefourrentj(u) = —D(u)0,u.
Fore = 0, Eq. (3.23) has an exact solution [21]. Let us consider tlse od a small reaction
ratex < 1 ande # 0.

With no loss of generality, setting, = 1 we expand Eq. (3.23) in terms of perturbation
series ink [127].

u = uy + Kuy + K*ug + O(K®). (3.24)

The solutionuy = 1 satisfy the zeroth order equation. The equationsfandu, are given by
atul = (1 + €>8§u1 - (5(3?), Ul(JZ, O) = 07 (325)
Oy = (1 + €)ug — 6(x)uy + €0, (u10,u1), uz(w,0) = 0. (3.26)

a7



Equation (3.25) describe diffusion with an external flux e¥hfor this case is a negative
point flux at the origin. In Eq. (3.26) the expressiah (u;0,u, ) albeit exactly known is quite
complicated. It is maximum at the origin and monotonicakcikases with increasing values
of |z| and vanishes at infinity. Inasmuch as we are interested ibehavior of the solution at
a finite time, we can replace this term by a point flux at theiongithout compromising the

basic physics. This assumption is valid only for smallVe have

wherejy = lim, o 0, (u10,u1) = (7 + 2)/(47(1 + €)?). Substituting Eq. (3.27) in Eq. (3.26)
and solving Eq. (3.25) and (3.26) we have

_ KRy t 22\ 7] kd
uat) =1 21+ ¢ 2\/;eXp<4(1+€)t) \/1—+eerfc(2 (1+e)t>]
K2 x? ||
IRICEy (2(1 ) ”) erie <—W1 +e)_t>

+ O, (3.28)

Let a(x,t) = lim._ou(z,t) be the concentration when there is no self-exclusion. Dédfine

Au = u(x,t) — u(z,t), the difference in the concentration. From Eqg. (3.28) weeribat
the concentration at the origin has increased due to theéhm f, and we have\u ~ (1 —
/1 F e)rn/t/m+r2ejor/t/(m(1+ €))—(1—1/(1+¢€))xt /4. Fore = 0.5, k = 0.2 att = 1.0
we haveAu = 0.019 and the corresponding numerical solutions give,.,ericat = 0.0154
see Fig. (3.3). We see that in this case the effect is exdwlppposite (compare Fig. 3.2 for
the multispecies case). Furthermore, the width of the diepleone has increased due to the

increase in the diffusion coefficient lay

3.3.1 Survival probability

In chapter 1 we discussed the survival probability for tlegping reaction-diffusion” problem
in one dimension. We observed that the survival probabilégays slower than exponential
decay. Here, we shall discuss the effect of self-exclusioswrvival probability. We recall
from Eq. (1.43) that, for the case of perfect traps i.e. limit~ oo the problem reduces to

solving the diffusion equation in a finite domdira, a| with absorbing boundary condition.
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Figure 3.3: Concentration(z, t) numerical solution (A) without exclusion= 0.0 and with
exclusione = 0.5 (B) numerical solution, (C) analytical solution (3.28) for= 0.2 and time
t = 1.0. The difference between (A) and (C)at= 0 is Aw.

With self-exclusion we have
Ou = 0,((1 + eu)O,u), = € [—a,al,t > 0. (3.29)

The initial concentratiom(z,0) = 1 and the absorbing boundary conditioniigta, t) = 0.

Let us consider the following eigenvalue problem
O (1 + €)0,0) + Mp =0, z € [—a,al. (3.30)

To understand the behavior of the survival probability fermeed to know how the eigenvalue

A get modified for nonzere. For smalle we can write [127]

Y =1+ e + Yy + ..,

)\:)\0+€)\1+€2/\2+.... (331)

Substituting Eq. (3.31) in Eg. (3.30) we obtain

O(1) : 9rho + Aotbo = 0, (3.32a)
O(e) : Dohy + Aoty = —Mthg — 9, (VoDatho), (3.32b)
O(e%) : O2ha + Aothy = — A1 — Aatby — O (V10,00 + oOuiby ). (3.32¢)

The above set of linear equation can be solved with the almgpbloundary conditiong,,,(£a) =
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0, m=0,1,2,.... The eigenvalues and the eigenfunctions of Eq. (3.32a)aea @y

(n) _ 1 | cos(nmx/2a), if nisodd
Yo () = Va { sin(nmwx/2a), if nis even (3:33)
/\(”) 77,27T2 f 3.3
0 4&2 OI’TL:LQ, (,4)
Similarly, from Eq. (3.32b) after settink, = A" andy, = " we have
Oy + A = =Ml — 0, (5 ™). (3.35)

Let ), be written as the sumy, = > A, (()m) which satisfies the boundary condition. From
Eqg. (3.35) we obtain

“+a
A XMy = 716, — A, (W 9, d (3.36)

—a

Using Eq. (3.33), Eqg. (3.34) and Eq. (3.36) we can write fal od

+a . . . )\(n)
/ 0, (03" 0,08 ™M da = —%umm (3.37)

wherefi, ,, = (4mcos(nm)sin(mm/2) — 8n cos(mm/2) sin(nw))/(7(m?* — 4n?)) for m odd
otherwisey,, ., = 0. Similarly for evenn we can calculate., ,,. Here we will not require
to calculate beyong, ; since we only need® = /\81) + e)\g) to determine the behavior of

the asymptotic survival probability. The eigenfunctiomsl dhe eigenvalues for = 1 can be

written as
oo (1)
1, € Ao (m)
PO = )+ = ety
R
2D = O (1+65/1a’1). (3.38)

In Sec. 1.4.2 we obtained the streched exponential behlyitaking into account = 1 case
only. The behavior of the survival probability can thereftwe found from (cf. Eq. (1.45) and
Eqg. (1.46))
P(t) ~ /00 exp(— AV (2)t) p*4ze " dx (3.39)
0

We will use the Laplace method to evaluate Eq. (3.39) as dgrigalagurov and Vaks [96].

The exponent in Eq. (3.39) can be explicitly written as

f(x) = —Z—z <1 + ﬁ\;’;”) t — pz. (3.40)
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The functionf(z) attains maximum at

~ D11
T~ +e—x* 3.41
6\/§V (3.41)

wherez* = (2%t /p)'/3. The integral Eq. (3.39) becomes

P(t) ~ cexp(f(Z)),

_3(P27T2t)1/3 m\ /3 5/6,1/6
= cexp <T - G/JJ1’1 <§) P t (342)
1/2 I :
wherec = (ﬁ) z, w1 = 4/3w. The derivation of the result Eq. (3.42) is based on the

fact that the eigenvalues get modified due to exclusion wdiigtts the exponent on averaging
over disorder. We note that an extra correction term'/¢ appear in the exponent. It would
be interesting to calculate the survival probability iniadyy dimension in a more rigorous

manner so that all modes contribue to the survival prokgbili

3.4 Numerical results

The well known finite difference method [129] is used to to powe the solution of Eq. (3.1)
and Eq. (3.2) numerically. In one dimension we will first exaenthe effect of exclusion and
nonlinearity on the shape of the concentration profile witkaction center at the origin. The
parameters used afe, = 1.0, D, = 0.25, ky = 1.0 andk, = 0.1. In Fig. 3.4 (a) and 3.4(b)
we have plotted concentratidf(z, t) for n = 1,2 and3 ate = 0.2 and timet = 1.0. The con-
centration of S is decreases with increase.imhe variation of concentrations with different
values of the exclusion parameter= 0.0, 0.1, 0.2 and0.3 are shown is Fig. 3.4 (c) and 3.4
(d). Here as we increasethe concentratioty(z, t) decreases. It has already been discussed
in our study of the modified linear equations (see Eq. (3.h#l)(&.12). It is shown that exclu-
sion effect modifies the reaction rate at the reaction cetdrconsequently the concentration
decreases. We also note that change in concentr&jont) with ¢ is negligible fore < 1.
This is also due to the fact that changefr, t) due to exclusion is not first order in We
have also found that the width of the concentration profilB eéduces as the parametés in-
creased. In Fig. (3.5) we have calculated the FWHM for the entrationP(x, t) for different
values ofy. This clearly indicates that exclusion or/and nonlingesitppress the formation of
clusters. In Fig. 3.6 we have plotted the concentration lgrofi P in two dimensions. Here

we have used the same set of parameters as in the one dimeas&nThe number of defects
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Figure 3.4: Variation of concentration with exclusion ammhlinearity. (a) and (by = 0.2 and
n=1 2,3, (c)and (dyy =1, e = 0.0, 0.1, 0.2, 0.3. The parameters al®;, = 1.0, D, =
0.25, k; = 1.0 andk, = 0.1 andt = 1.0.
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Figure 3.5: Width of concentratioR(x,t) for D, = 1.0, D, = 0.25, ky = 1.0 andk, = 0.1
andt =1.0, n =1, 2, 3.
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Figure 3.6: Formation of clusters in the presence of exofusi(a ) e = 0, n = 1, (b1 2)
e=0,7=3,(Ca)e=02 n=1(ds) e =02 n=3for D, =1.0, D, =0.25 k; = 1.0
andk, = 0.1 andt = 1.0.

is 100 which is uniformly distributed in the regionr3 < z < 3and-3 < y < 3. Fora
given randomly distributed defects we have plotted correéion P(z, y, t). Here also we see
that as we go frome = 0 to e = 0.2 keepingn = 1 fixed the concentration decreases. The
concentration is also found to decrease as we increase thi@eerity fromn = 1ton = 3.

In Fig. 3.7 we have calculated the mean concentration agdrager the randomness of defect
distribution. The decay of concentration S monotonicallgréases with time and the rate of
its decay slows down asis increased. Similarly for P its mean concentration insesavith
time and its concentration for any given timencreases with increase in We also note that
the mean concentration for both S and P decreases with siogea This clearly suggests
that both exclusion and nonlinearity suppress the formaticcluster and the effect of both is

additive.
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Figure 3.7: Mean concentrations of adatoms S fon (@)1, (b)y = 2, (c)y = 3 and cluster
Pfor(dy =1,y =2, (i =3 andD, = 1.0,D, = 0.25,k; = 1.0 andk, = 0.1 and
0.25 <t < 1.5.
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Chapter 4

Conclusion

The presence of randomness is ubiquitous in nature. The fatarstudy was to explain the
formation of random clusters that we observed in our expamnis1 We found that these patterns
can be explained by simple reaction diffusion models in Widisorder play a very important
role. Our results gives a qualitative understanding of thster formation processes.

In our linear models we presented a simple model which capttire essential features
of reaction-diffusion processes on surfaces having defethe solution to the problem was
obtained by the method of Green'’s functions. The reactioh gfathe equation was used as
perturbation which was found to be exactly summable. Ourehddscribes qualitatively the
observed features of pattern formation in Ge clusteringlearcSi(111)-{ x 7) and oxidized
Si(111)-¢ x 7) surfaces. First we had shown the formation of patternserritig model with
four ring defects. The point model was discussed in detdie fime evolution of the reaction
diffusion process was explored numerically from the sohsi obtained for a case of eight
defects distributed uniformly inside the domain.

We used further Monte Carlo simulations to study the point@hcdse for a large number
of defects. The first passage time statistics was also stadlid obtained empirically the first
passage time probability density. These models presemetdre real time analysis of the
deposition-diffusion-reaction process. It would be vereresting if a thorough time analysis
of the formation of patterns is carried out experimentatiyfuture. Finally we note that in
this model the producP describes n-mers; = 2,3, ... we assume that all n-mers have the
same diffusion coefficient. However, we believe, this agsiion does not seriously affect the
result obtained here. In earlier studies on fractal pastéonmed in diffusion limited cluster
aggregation, the fractal pattern and the fractal dimensiere found to be practically the same

for the two cases where (i) all clusters have been assumex/éothe same diffusion coefficient
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and (ii) diffusion coefficient was assumed to be inversegpprtional to the cluster mass [130].
Definitely, there will be some optimum size of the clusterhadispersion. So, an improved
model must include a sequence of reactions forming clusters

Furthermore, we studied the effect of exclusion on the foionaof cluster in the presence
of surface defects. In our reaction diffusion model we haeoduced exclusion through a
repulsive interaction between the particles of dissimrmiaure. This repulsive force is taken to
be proportional to the gradient of concentration and a sebopled Smoluchowsky equations
is obtained. In the perturbative regime a set of modifiedalirreaction-diffusion equation as
an approximation to the actual process is considered asd#ve us important understanding
of the effect of exclusion on the formation of clusters in thaction diffusion processes. The
solutions to these equation are obtained using Green'siummethod [131]. The most impor-
tant conclusion of this work is that, both exclusion and nodr reaction processes considered
here suppress the formation of cluster. The effect of salfusion on diffusion in one dimen-
sion with a trapping reaction at the origin is studied. loarid that self-exclusion can give rise
to a concentration dependent diffusion coefficient as abthin earlier works [121]. The width
of the depletion zone is found to increasedxgtrength of exclusion). Our numerical studies
in one dimension showed that the width of the cluster comagah profile decreases with in-
creasing:. We investigated how exclusion affects the survival praigtbor trapping reaction.
In two dimensions we calculated the mean concentrationsiged over the surface disorder
are calculated. It is found that the mean concentration ataads S decreases monotonically
where as the mean concentration of P increases monotgnicaiine respectively. However,
for higher exclusion and nonlinearity these mean conctobtsare found to decrease with the
increase in exclusion and nonlinearity in the reaction sehe

There can be quite a few extension of the present work. Fanpbe in this model, the
repulsive potential is considered to be simple linear fimmodf concentration. But, it is indeed
possible for this potential to depend nonlinearly on cotredion. This needs to be explored.
Furthermore, we have considered here a simple algebralmearity in the reaction scheme.
This is due to the lack of sufficient knowledge of the reacBoheme for the formation of Ge-
clusters on Si surfaces. As this model can be used in othesiqaiysituations, different types

of nonlinear exclusion potential and reaction scheme castuzied.
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Appendix A

Green’s function

A.1 Green’s functions-|

The Green'’s function appearing in Eq. (2.3) are given by

' S n_ n(r|R)gn(R]1") :
G(l)r,Qr,Q = (nrr _g(r\ cos(n(f —0")),
(s, 61,0 nz;gu) ) cos(n(o )
GO (r, 01,0 = Z ho (77" cos(n(0 — 0')), (A.1)
N En]n(\/S/DST)KN(\/S/DST‘/) if <o,
where gu(rlr) = { enln(\/$/Dsr" VK, (\/s/Dgr) if r>1r (A-2)
N endn(\/s/Dpr)K,(\/s/Dpr') if r <7’
(i) = { enln(\/s/Dpr") K, (\/s/Dpr) if r>r' (A-3)
with ey = 1 ande,, =2foralln =1,2....
A.2 Green’s functions-Il
The Green'’s function in (3.15) and (3.16) has the followiagr
Ga(s) = [s — Da03 + va5gn(z) O] - (A.4)
exp(—pao(z — ') Au(x, 2) ifz <2’ <0
(z|z") exp(—pa(z — ') An(2’, x) if 2/ <2 <0, (A.5)
mexp(pa(:c +2') = yolx—2')) ifa’ <0<z,
and
mexp(—pa(x -+ .T,) — ’)/a(ﬂf/ — ZE)) |f <0< l’/,
(z|x") exp(pa(r — 2'))Bo(z, 2') if0<ax<a (A.6)
exp(pa(r — ') By(2', x) if0<a <ua,
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whereA, (z,2') = 55— (exp(’ya(fc — ') = eexp(va(r + 1"))) and

Bu(x,2') = 55— (exp(fya(x —2!)) — Lo exp(—a (2 + a:’))). Herepa = va/(2D.) and

Pa—Va
Yo = \/ P2 + s/ D, are constants.
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Appendix B
The Talbot Method

We describe the fixed Talbot algorithm to compute the Inveeggdace transform of a function

f(s). The Inverse Laplace transform ffs) is given by

f(t) = QLM/BeXp(st)fA(s)ds, (B.1)
where B denotes the Bromwich contour defined by the vertical kne r + iy, —oco <

y < oo and a curve joining the endpoints at infinity such that alhlsfapoints remains outside

the contour. The Talbot algorithms computes the inversddcapransform by deforming the

contourB. The deformed contour is (cf. Fig. (B.1))

s(0) = rb(cotf +1i), —m < 0 < . (B.2)

The expression in Eg. (1) thus becomes

Im{s(6)]

A
Talbot Contou

Pis

1k

Refs(6)]

Figure B.1: The Talbot contour Eq. (B.2) and vertical line= r + iy, —00 < y < oo.
Parameter = 1.
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f(t) = = / " exp(s(0)1) f(5(0))s'(6)do. (B.3)

2mi
wheres’(0) = ir(1+io(0)) with o(8) = 6+ (f cot § — 1) cot . So Eq. (3) can now be written
as i
fy =" /0 Re [exp(s(0)1)/(s(0))(1 + o (6))] db. (B.4)
Since the above integral is evaluated over a finite rértger we adopt a trapezoidal integration

of Eq() as given in Ref. [32]

F) =1 <§f<r>e” 37 Re [exp(s(0)1) (s(00)) (1 + wwm}) . @9

wheref,, = kx/M forall k = 1,2,... M — 1 andr = 2M/5t. So finally there is only a single

free parametei/ which can be varied to obtain results at desired precession.
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Appendix C

Derivation of the kinetic equations

C.1 Kinetic equation for linear model

We denote by, a cluster ofn = 2,3,..., N Ge atoms. Various possible one step reactions
may occur at a reaction center in which cluster of sizeould break to form a cluster of size
n — 1 or an adatont could coalesce to form a cluster of sizet 1 (see Fig. C.1). The rate

equation are given by

ds,
o= (b + k)8,
+(kn_15Sn_1 + knSni1), (C.1)
ds
— = kvoaSSyo1— kov-ySy, (C.2)
where2 <n < N — 1.
d N
aZSn = (k1S)S — k_15,. (C.3)
n=2

We now make the following assumptions (i) All clustes§,to Sy have comparable diffusion
coefficients. So, in the first approximation, these can bertaqual. (ii) IfP = Zflv:? S, We
assume that formation of larger clusters at the reactiotecefis a very slow process ariel

is dominated byS,;. So, we replace; by ZnNZQ S,. This need arises for two considerations.

e

K,
T S\+l
[k—(n—l) [k—n
S S

Figure C.1: Reaction scheme.

S-
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Firstly we have no knowledge a¥, though it will not be very large. Secondly, since we want a
minimal model which is able to capture the basic physics, wkenthis approximation to close
the equation. So, the assumption is made that the cluste@edominantly of two Ge-atoms.
(iii) Even though the formation process is a second orderpedcess irb, we replace:, S by

k¢ which we call intrinsic clusterization rate of each avaléateaction center. The rate, is
redefined ag;,.

Albeit the assumptions incorporated in our model for cluktemation on Si surfaces, ap-
pears too simplistic, we are strongly of the opinion thatusmn of all the processes in the
clusterization will not significantly change the overauét. On the other hand as we are solv-
ing this problem numerically, inclusion of all possible pesses of clusterization will increase
the time and cost significantly without gaining much in plgsi We consider in a separate

analysis a reaction scheme in which the cluster formatised®nd order in substrate

C.2 Kinetic equations for nonlinear model

The reaction scheme is described in Fig C.2. We have

d[Sn]
=2 = k- [S)[Sn-1] — knlSw]. (C.4)

and

d[S,]
dt

— ko 1 [S][Sn 1] = (k- no1) + knlS]) [Su] + kn[Snpa], m=2,...,(N=1). (C.5)

We us assume that all intermediate states are in equilibriiims assumption implies that

intermediate reactions are very fast. With this assumptieget

k(n_l)[S] [S(n—l)] - k_(n_l)[Sn] = 0, n = 2, cee N — 2, (C.6)
k,_
S,] = PR ! | [9][Sn-1] = Kn[S][Sn-1], n=2,3,...,N =2 (C.7)
—(n—1

whereK,, = k,/k_,.

kl N-1
S+ Skis2 o St Ski
-1 =(N-1)

Figure C.2: Reaction scheme.
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Using (C.7) and (C.8) we obtain

d[Sn]

T Eerus. [ — kn[Sn]. (C.8)

In another approximation we replafgy| by Zivzz S,, = P to get the equation.
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Appendix D

Derivation of exclusion term from master
equation

The diffusion and the exclusion terms in (3.1) and (3.2) fiitve master equation are derived
in the following way. Let us discretize the continuous spiate cells of sizeAx and denote
byn, > 0andm; > 0foralli = 1,2,..., N the number of S and P patrticles in tixh

cell. The configuration of the system can be described by thedtbrsn = (ny,ns,...,ny)
andm = (mq,ms,...,my). LetN be the set of natural numbers, we define the operator
HF NV — NV py

+ _
Hi (nl,...,ni,l,ni,nHl,...,nN) = (nl,...,ni,l,ni—l,niH—l—l,...,nN),
Hi_(nla"'7ni—17n’i7ni+17"'an1\7) - (nly-"vni—1+17ni_17ni+17"'7nN)7

(D.1)

foralli =1,2,..., N. Note that fori = 1, N we use periodic boundary condition [126].
We define density dependent hopping ratés (i) and " (i) of a particle at theth site
for S and P respectively by

Wsi(z) = wy(1 — prs(Mix1 — my)),

Wy(i) = wp(l = pp(nizs — i), (D.2)
wherew,, w,, 1s andp,, are constants and the supersctiptlenotes hopping to the sitet 1.
Here we note that a particle S (say) at adflas lower hopping rate if the celkt 1 contains

more number of particles P than that in the éebimilarly for P this is exactly what should be

happening when there is an effect of exclusion. jk(@t, m, ¢) be the probability of finding the
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system in the configuration, m, at timet The master equation is given by [125, 126]

Op(m,m,t) = > (n;+1) (W, (j)p(H n,m,t) + W] (j)p(H;, jn,m,t)]

Jj=1

s +1) Wy ()pn, B m, )+ W G)p(o, H . 1)

= (ny (WS () + WG] +my (W, () + W, (5)]) p(n, m, 1)
(D.3)

LetS; = > onip(n,m,t) andP; = >, m;p(n, m, t) where)_, represents sum over all con-
figurations havinguy, ..., ny,mq, ..., my, be the mean number of particles in ttiecell. Let
us assume that there are no correlation between particteatsee can writ _, n;n;p(n, m, t) =
SiSi, > gmim;p(n,m,t) = PP;and) ,n;m;p(n, m,t) = S;FP;. Multiplying n; through

(D.3) and summing over all configurations we obtain

0S; = ws(Siy1 + Sic1 — 25;) — wspts [Si1 (P — Piya) + Sic1 (P, — Pizy)
—Si(Piy1+ Pioy — 2P)] (D.4)

Now we can substitut§; = S(z,t), P, = P(z,t) and expand,+; and P,., in Taylor series

Siz1 =~ S(z,t) + Ax0,S(z,t) + Ax*02S (2, 1),
Pii1 ~ P(x,t) £ Ax0, P(x,t) + Ax*0?P(x,t), (D.5)

and ignoringD(Az?) and higher order terms, we obtain from (D.4)

0:S(x,t) = w,Az*02S(x,t) — wepAx® [— (20,5 (2, )0, P(x,t)
+8(z,t)02P(z,t)) — S(z,t)02P(x,t)] (D.6)

Now rearranging terms in (D.6) we obtain
0,S(x,t) = DO?S(x,t) + €,(0,5(x,1)0, P(x,t) + S(x,t)0>P(x, 1)), (D.7)

whereD, = w,Az? ande, = 2w,u,Axz?. Similarly multiplying m; through (D.3) and sum-
ming over all configurations we obtain the equation ftz, ). A point to note here is that
0 < psp < 1, and for simplicity we have takefy = ¢, = €. Using expression (D.7), the

general expression in arbitrary dimension can be written as

0;S(x,t) = Ox [Ds0xS(X,1) + €55(x,t)0x P(x,t)] . (D.8)
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Appendix E

Monte Carlo Algorithm

E.1 Stochastic simulation algorithm based on Smoluchowski
equation:

Let Q) C R? be the domain of computation. In our model the domain boynidaassumed as a
circle of radiusR. Inside the domain, let there Bé, reaction centers of radius The reaction
centers are uniformly distributed with centersatr, ..., ry,. The reaction centers are given
by the setsv; = {r e R?: |[r —r;| <a}forallj =1,2,..., Np. The setting is described in
Fig. (E.1).

[ )
o
N . =
‘I
o @®-r
Wi [ ]

Q

Figure E.1: Schematic diagram for tlte = P in 2. The small blue filled circle denotes
adatomsS and the larger black filled circle denotes the cluster. Tigeoreenclosed inside the
circlew; denotes the reaction center. The ratiag? should be less than the minimum diffusion
length.

Let DY € {D,, D,} be the diffusion coefficient of thah particle. Similarly depending on
the current position of the particle its can undergo a reactiith reaction raté®) € {k;, k;}.
Let £(¢) be a Gaussian random number with zero mean and unit variditeealgorithm we

follow is described in Ref. [115,126] for the case of homogersareaction-diffusion processes.
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The stochastic simulation Algorithm:

1. If t <T GOTO Step (2),
else GOTO Step (6).

2. Drop an adatom S at a random positign £ > 0 inside the domain at every) §t time
step.
The number) can be varied to obtain the desired flux i¥.(r R*Mdt) adatoms per

unit time per unit area.

3. For each particle= 1, ..., k£ compute the diffusive step

s = Tig + V2DOSE £(2).

4. For each particle= 1, ..., k generate random ng.
if p<1—exp(—k@dt)andr;;.5 € w;V1<j< Np
perform reaction step.

5. Increase time byt
t—t+0t
GOTO Step (1)

6. STOP.

Note that for the computation of the first passage time pritibadistribution the adatom is
dropped at the center of the domain as in Step (2). The partidergoes the reaction-diffusion
processes. When ever the particle reaches the domain bgynfar R the timet, registered

and program is terminated. This process is repeated a nurhberes.
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Appendix F

Numerical Codes

Here we provide some of the computer programs that has beehnmsur calculations.

F.1 Numerical solution of the trapping problem

(+FIN TE D FFERENCE SQLUTI ON GF THE TRAPPI NG PRCBLEM | N 1Dx)
(*AUTHOR TR LOCHAN BAGARTI, | CP, BHUBANESWAR | NDA. %)
(xYEAR 2012x)

(*

Paranmeters: (-N xh, N xh) domain of conputation,
x = trapping rate,

strength of excl usion,

defN = # of traps

h = step size.

€

*)
N =100; h=0.1; x=0.1;

ri=1.0/h"2;

def N = 40;

Do[{X[i] =Randoninteger [{-N, N }]=*h}, {i, 1, defN}];

0'=0.5h;

(*Reaction function; Gaussian is used for the Drac delta functionsx)
1 - (x-X[i1)?

Kf unc [x_] :=Sum[ Exp[ ] {i, 1, defN}];

V2rn o 20

(*Mbdul e to sol ve the differential equationx)
DffSolve[vare_, varT_] : = Modul e[{e =vare, T=varT},
n=1,
QearAl [eq];

el=€e/ (4 h"2);

Do[{eq[n] =D[S[X, t], t]=rls(L0+eS[X, t1)*(S[x+1 t]+S[x-1, t]-2S[x t])+
el (S[x+1, t]1-S[x-1, t])?- xxKfunc[x«h]*«S[x, t]; n=n+1}, {x, -N, N}];
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(*Boundary conditionsx)

eq[n] =S[N +1, t]1=S[N -1, t]; n=n+1;
eq[n] =S[-N -1, t]1=S[-N +1, t]; n=n+1;
(xInitial conditionx)

D)[{eq[n] =S[X, 0.0] == 1 Exp[ -x2

‘\/27r o 20

pde = Tabl e [eq[m], {m 1, n-1}7;

]+0.00000001; n=n+1;}, x, -N, N}];

sol =Table[S[x, t], {X, -N -1, N +1}1;
pdsol = NDSol ve [pde, sol, {t, 0.0, T}];]

(xAearAl [ex]; )

T=20.0; Nk=100;

Do[

Do[{
Do[ {X[i] = Randominteger [{-N, N }1+h}, {i, 1, defN}];
Do[If [X[i]=X[]]&%i #], X[j] =Randonminteger [{-N, N}]=*h], {i, 1, defN}, {j, 1, defN}1;
DffSolve[0.0, T];
ex[k, m] = Eval uate[sol /. pdsol /.t - mT/10];
If [Md[k, 50] =0, Print ["ENSB=", k, " T =", mT/10]]
3, {m 1, 1}]

» {k, 1, Nk} ]

dearAl [t];

T=2.0;

Do[{X[i] =Randonminteger [{-N, N }]=*h}, {i, 1, defN}7;

Do[If [X[i]=X[]]1&i #], X[j] =Randomnteger [{-N, N }]=*h], {i, 1, defN}, {j, 1, defN}1;
DffSolve[0.0, T7;

exl=FEvaluate[sol /. pdsol /.t » TI;

1 -x2
gauss[x_, t_]:= Exp[—];
Vart 4t
1 -x2 K
anylU[x_, t_]:= Exp[—] -— SUm[Exp[(Abs[x—X[i 11 +AbS[X[I1]) x/2+ %%t /4]
4t 4
4t
AbS[X - X[ 11 +Abs[X[i1] =t
Erfc[ + ] G, 1 defN}];
24/t 2

tb=Tabl e[anyl U[xxh, T], {X, -N, N}1;
gtb=Tabl e[gauss[x*h, T], {Xx, -N, N}7I;
pl = ListLineP ot [th, Frame - True,
Dat aRange -» {-N % h, N xh}, Axes->None, PotSyle - Red, PotRange - A | ];
p2 = ListLineP ot [ex1[[1]], Frane » True, DataRange » {-N xh, N %h},
Axes -» None, PlotSyle»>B ack, PotRange - A | ];
p3 = ListLineP ot [gtb, Frane » True, DataRange » {-N = h, N % h},
Axes -»None, PlotSXyle >B ue, PotRange - Al 1;
Show[pl, p2, p3]
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F.2 Numerical solution of the ring defect model

(*PRORAM  CALOLLATI ON CF GONCENTRATION' S, P FOR R NG DEFECT CASEx)
(*AUTHOR TR LOCHAN BAGARTI, INST. GF PHYS. BHUBANESWAR | ND Ax)
(*DATE  JWN 26 2010%)

nPoi nt Def =4; (& of defect )

rndPts = {0.1, 0.3, 0.6, 0.7}; (= position of defectsx)

Do[r [i]=rndPts[[i]], {i, 1, nPointDef}];
(*QGeen’s functionsx)
GO[r_, rp_, s_]1:=I1f[r <rp, Bessel | [0, Sgrt [s/Ds] r ] Bessel K[O, Sgrt [s/Ds] rpl/ (2R ),
Bessel | [0, Sgrt [s/Ds] rp] Bessel K[O, Sart [s/Ds]r]1/ (2P)1;
QO[r_, rp_, s_1:=I1f[r <rp, Bessel | [0, Sgrt [s/Dp] r ] Bessel K[O, Sgrt [s/Dp] rpl/ (2R ),
Bessel | [0, Sgrt [s/Dp] rp] Bessel K[O, Sart [s/Dplr]1/ (2P)1;
GL[r_, rp_, s_1:=I1f[r <rp, (Bessell [0, Sgrt [s/Ds] r] Bessel K[O, Sgrt [s/Ds] rp] - Bessel | [0,
Sgrt [s/Ds]r] Bessell [0, Sgrt [s/Ds] rp] Bessel K[0, Sgrt [s/Ds] R] /Bessel | [0, Sgrt [s/Ds]1 R]) /
(2P), (Bessell [0, Sgrt [s/Ds] rp] Bessel K[O, Sgrt [s/Ds]r] -Bessell [0, Sgrt [s/Ds] r]
Bessel | [0, Sgrt [s/Ds] rp] Bessel K[O, Sgrt [s/Ds] R] /Bessel | [0, Sart [s/Ds]1 R]) 7/ (2R ) 1;

2P Exp[-Arp]l rp
Qr_, s_]:=|— Nntegrate[&l[r. rp, s]—, {rp, 10" (-6), R}];
Ds S

f[ro_, sO_]:=Mdule[{sVar =s0, rVar =r0},
Do[{GBL[i, j1=GBL[r[i], r[j]l, sVar]; GO[i, j1=QO[r [i], r[j], svVar];},
{i, 1, nPointDef}, {j, 1, nPointDef}];

nat GS1 = Tabl e [Tabl e [GSL[i, j1, {j, 1, nPointDef}], {i, 1, nPointDef}];
mat G0 = Tabl e [Tabl e [G0[i, j1, {j, 1, nPointDef}], {i, 1, nPointDef}];

inv@0 = I nverse [l dentityNMatrix[nPoi ntDef] + (kp/Dp) nat G07;
mat = ldentityMatrix[nPointDef] + (kf /Ds) nat GS1 - kap mat GS1. i nvG0. nat G0,

J =Table[Q[r [i], sVar], {i, 1, nPointDef}];
PH =Inverse[mat ].Q;
PS = (kf /Dp) »i nv@0. mat G?0. PH ;
y = {Q[rVar, sVar] +
Sum[Gs1[rVar, r [kk], sVar] = (-kf «PH [[kk]] + kp*xPSl [[kk1]) /Ds, {kk, 1, nPointDef }],
Sum[@O[rVar, r [kk], sVar 1= (kf *PH [[kk]] - kp*PSl [[kk]1) /7Dp, {kk, 1, nPointDef}]};
1;
Ds =0.1; (xDffusion constant of Sx)
Dp=0.01;, (xDffusion constant of Px)
kf =1.0; (%= Forward reaction ratex)
kp=0.1; (xBackward reaction ratex)
kap = kf * kp/ (Ds+Dp);
R=1,;
A=1.0;
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(+Tal bot net hodx)

Do[{

p=2xMi/ (5xt);

rc = Xc;

If[rc=0, rc = 10"-6];

f[rc, pl;

suml =0.5xy [[1]] *Exp[o*t ];

sun2 =0.5xy [[2]] *Exp[o*t ];

Dol {
6=kxP /M;
sf[k] =p*x6% (ot [6] +1);
o[k] =6+ (6x(ot [6] - 1) xCot [6];
f[rc, sf[k]1;
suml =sunl + Re [Exp[sf [k] *t 1 *y[[1]]* (L+1ixo[k])];
sunR =sun? + Re [Exp[sf [k] #t 1*y[[2]]1* (L+daxo[k])1;}, {k 1, Mi-1}7];

sunl = sunl o / My;
sun? = sunxp / Mu;
¢[xc] = Chop[suni];
g[xc] = Chop[sun®];
Print [N[xc], " ", Chop[surml], " ", Chop[sun®]];}, {xc, O, 1, 1/20}]

(*********************************************************************)
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F.3 Numerical solution of the point defect model

(*PROGRAM : CALAULATI ON CGF GONCENTRATIONS S, P FCR THE PG NT' DEFECT CASEx)
(*AUTHCR : TR LOCHAN BAGARTI, INST. CF PHYS. BHBANESWAR | ND Ax)
(*DATE : DEC 14 2010 =)
(*
nPoi ntDef = # of point defects, rndPts = pos vec of defect, Ds, Dp = diffusion const of S P,
kf, kb= forward, backward reaction rates, bessOd = highest order Bessel func used in the series,
R = radius of domain, lanbda = input flux strength, G1, Q@0 = Geen s functions
*)
nPoi nt Def = 8;
rndPts = {{0.5, 0.4}, {0.3, 0.1}, {-0.7, -0.4},
{0.1, 0.4}, {-0.5, 0.6}, {-0.4, 0.0}, {0.0, -0.3}, {0.4, -0.3}};
(*Position of random reaction centersx)

Do[{r[i]=Norm[rndPts[[i]]], th{i]l=AcTan[rndPts[[i]1]1[[1]1], rndPts[[i1]1[[2111},
{i, 1, nPointDef }]
DS:]..O;
Dp=0.1;
kf =1.0;
kp=0.1;
kap = kf *kp/ (Ds+Dp);
bessQd = 10;
R= 1;
| anbda = 1. 0;
g[n_, r_, rp_, s_1:=I1f[r <rp, Bessell [n, r Sgrt [s/Ds]] Bessel K[n, rpSart [s/Ds]1,
Bessel | [n, rpSart [s/Ds]] Bessel K[n, r Sgrt [s/Ds]]
1
hin_, r_, rp_, s_]1:=I1f[r <rp, Bessell [n, r Sgrt [s/Dp]] Bessel K[n, rpSart [s/Dp]1],
Bessel | [n, rpSart [s/Dp]] Bessel K[n, r Sgrt [s/Dp]]
IN
e[0]1=1;
Dof[e[m] =2, {m 1, bessOd}];
Gl[r_, th, rp, thp, s_]:=Sum[e[m]
(glm r, rp, s1-gm r, R s1g[m R rp, s]/g[m R R s]) Gos[m(th-thp)], {m O, bessQd}];
QOf[r_, th, rp_, thp_, s_]1:=Sum[e[m] h[m r, rp, s] Gs[m(th-thp)], {m O, bessQd}];

qlr_ s_1:=2P «Nntegrate[
g[0, r, R s19[0, R rp, s]
g[o, r, rp, s] - Exp[-lanbdaxrp] rp, {rp, 10"-5, R)]/ (s Ds);
g[0, R R s]

(%j 0=1
nodul e f [r,e,s] calculates ¢(r,e,s) and ¥ (r,e,s) for each (r,e,s), the
values are return by the variable y
*)
frro_, tho_, sO_]:=
Mdul e[ {sVar =s0, rVar =r0, thvar =th0}, Do[{GSLl[i, j]1 =G1[r[i], th[i]l, r[j], th[j], sVar];
QO[i, j1=Q@Of[r[i], th[il, r[j], th[j], sVar];}, {i, 1, nPointDef}, {j, 1, nPointDef}];
nat G51 = Tabl e[Tabl e [GSL[i, j], {j, 1, nPointDef}], {i, 1, nPointDef}];
nmat G0 = Tabl e[Tabl e [GO[i, j1, {j, 1, nPointDef}], {i, 1, nPointDef}];
inv@0 = I nverse[ldentityMatrix[nPointDef] + (kp/Dp) mat G0];
nmat =|dentityMatrix[nPointDef] + (kf /Ds) nat GS1 - kap nat GS1. i nv@0. nat G°0;
J =Table[q[r [i], sVar], {i, 1, nPointDef}];
PH =Inverse[mat ].J;
PSI = (kf /Dp) »i nv@0. mat GPO. PH ;
y:
{q[rVar, sVar] + Sum[G1[rVar, thVar, r [kk], th[kk], sVar] % (-kf «PH [[kk]] + kp*PS [[kk]]1) /Ds,
{kk, 1, nPointDef}], Sum[QO[rVar, thVar, r [kk], th[kk], sVar]
(kf *PH [[kk]] - kp*PS [[kk]1]1) 7Dp, {kk, 1, nPointDef}]};
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M = 20;
t =0.5;
(*
Nunerical eval uation of Inverse Laplace transfornation
by fixed Tal bot nethod
*)
Do[{
p=2xMiI/ (5%t);
rc =9grt [xc"2+yc”2];
If[Xc =0, Xxc =xc + S gn[xc] 10" -6];
thc = N[ArcTan[xc, yc]1;
frc, the, p];
sunl=0.5%y [[1]] *Exp[o=*t];
sun2=0.5xy[[2]] *Exp[o*t];
Do[{
e=kxP /M
sf[K] =p*x6* (COt [6] +1);
o[k] =@+ (6xCot [6] - 1) (0t [6];
f[rc, the, sf [k]];
sunl = sunl + Re [Exp[sf [k] *t ] *y[[1]1]* (L+i%xo[k])];
sun? =sun? + Re [Bxp[sf [kl *t 1 *y[[2]]1* (L+dixo[k])];}, {k 1, Mi-1}1;

suml = sunl xp / My;
sun? = sunxp / My;

¢[xc, yc] = Chop[sumi];

¥[xc, yc] = Chop[sung];

(*tnp=Print Tenporary [ {Chop[xc], Chop[yc], Chop[suml], Chop[sun®]}];

Pause [1];

Not ebookDel et e [t np]; *)

Print [{Chop[xc], Chop[yc], Chop[surml], Chop[sun®]}];

}, {xc, -1.0, 1.0, 0.1}, {yc, -1.0, 1.0, 0.1}1;

(*********************************************************)
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