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Synopsis

When a macroscopic system exchanges energy with its surroundings or some external drive

in the form of work or heat, it is usually given by a sharp distribution whose mean is large

compared to its variance. However, as we go towards mesoscopic systems, we find that the

fluctuations from the mean become comparable to the mean itself. At these scales, the thermal

fluctuations experienced by the system owing to its interaction with the surroundings, begin to

dictate its evolution in phase space.

At the macroscopic level, even for a single experiment, we expect the second law to hold.

For example, the work done on the macroscopic system, in presence of a heat bath at constant

temperature, will be found with overwhelming probability to be greater than or equal to the

change in its free energy. In other words, the probability offinding a deviation from the second

law is fantastically small, even if we consider a single event instead of an ensemble. However,

this is not true for a mesoscopic system, where such deviations can occur with appreciable

probabilities. So the second law inequalities must hold only in terms of theensemble averaged

work or entropy.

Recent advances in experimental techniques have allowed usto carry out exact manipu-

lations on mesoscopic systems like RNA molecules, nanosized particles, molecular motors,

etc. As a result, the study of the thermodynamics of these systems has transformed itself from

being of mere academic interest to that of practical concern. It is now well-established that

the inequalities of the second law strictly hold for averaged thermodynamic variables for these

systems. More interestingly, it turns out that inclusion offluctuations actually helps us to find

stronger relations for the variables in terms of exactequalities, which produce the second law
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inequalities as their corollaries. The last couple of decades have observed the development

of several such powerful theorems, calledfluctuation theorems(FTs) [1, 2], which dictate the

amount by which these energy exchanges can violate our expectations. These relations have

recently gained a lot of attention. They have been derived for several different scenarios: for

deterministic as well as stochastic dynamics, and also for quantum dynamics. We have FTs that

apply to driven systems in transient state (for example, theCrooks’ work fluctuation theorem),

or to systems in nonequilibrium steady state (for example, Seifert’s detailed fluctuation theorem

for total entropy). They exist for systems that begin in a state of canonical, microcanonical or

grand canonical ensembles. There are FTs for different variables like work done on the system,

heat exchanged with the reservoir, exchanged charge, information, etc. These relations are very

robust and remain valid even when the system is driven far away from equilibrium, where the

linear response theory breaks down.

In this thesis, we would concentrate primarily on various FTs that are significant mainly

for mesoscopic systems. Some model systems are considered in order to analytically verify

different results connected to FTs. Apart from these, several new FTs have been predicted.

In one of our works [3], we show that in the very special case when the system begins from

thermal equilibrium and the confining potential is harmonic, the detailed fluctuation theorem

for the change in total entropy holds even in the transient regime. This happens in spite of the

fact that the theorem is supposed to hold only for systems in anonequilibrium steady state. The

nature of entropy production during the relaxation of a system to equilibrium is analyzed. The

averaged entropy production over a finite time interval gives a better bound for the average work

performed on the system than that obtained from the well-known Jarzynski equality. Further, in

the same work, a new quantifier for the irreversibility of a process, namely, the average change

in the total entropy, has been introduced.

Using feedback-controlled protocol to drive a system has attracted a lot of attention in re-

cent years [2], primarily because it can drastically enhance the efficiency of the process. Using

proper feedback, one can extract work from a system coupled to a single reservoir as well as

reduce its entropy. In such processes, a system observable is measured at intermediate times,
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and the form of the protocol is changed according to the outcomes of these measurements. In

presence of feedback, the fluctuation theorems, along with the second law, need modification.

The correction term includes the so-calledmutual information. The mutual information es-

sentially provides a measure of the information contained in the measurement outcomes about

the actual values of the observables being measured, when the measuring device is in general

subject to measurement errors. We first show that these extended fluctuation theorems can be

trivially obtained from the original ones (that are valid inabsence of feedback) [4]. Interest-

ingly, the modified second law obtained on the application ofthe Jensen’s inequality to the

extended fluctuation theorems allows for the average changein total entropy to be negative.

This is a consequence of the fact that we are actually ignoring the measuring apparatus from

the “universe” consisting of the system and the reservoir. We have used this method to gen-

eralize the Hatano-Sasa identity [5] as well as the Seifert’s fluctuation theorems for the total

entropy [6,7]. We have also extended our analysis to derive the generalized form of the detailed

as well as the integral form of fluctuation theorems for open systems in the quantum regime.

In addition to obtaining the modified relations for the work or entropy, one is also inter-

ested in how efficient a given feedback algorithm is. This measure is provided by theefficacy

parameterdefined by Sagawa and Ueda [8]. We show that other than computing the efficiency

of a feedback process, this parameter actually serves to provide a useful generalized form of

FTs for the thermodynamic variables like work or entropy [9]. The physical interpretation of

the efficacy parameter remains the same, regardless of the feedback procedure used to gen-

erate the time-reversed process. This universal expression stands in contrast to the extended

fluctuation relations that are more commonly used, which canbe very different depending on

the algorithm for feedback along the backward process. The latter relations also give rise to

different bounds for the thermodynamic variables, depending on the feedback algorithm along

the reverse process, while the efficacy parameter provides auniversal bound.

One of the important examples where the random thermal fluctuations contrive to produce

a very useful physical phenomenon is that of stochastic resonance (SR) [10]. It is a highly

nonlinear phenomenon, and is usually modelled as a system transiting between the two wells of
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a symmetric double-well potential subjected to an externalperiodic drive. This effect produces

amplified output of an otherwise weak periodic input drive. We study the behaviour of average

change in total entropy as well as of average work done in a cycle, as a function of both the

noise strength and of the frequency of external drive [11]. We find that when noise strength

is changed, the peak in the average work correctly characterizes the resonance condition, but

not the peak in average total entropy change. In the second case, the averages of both total

entropy change and work done peak when the resonance condition is met. It has also been

shown that the probability distribution for total entropy change obeys the detailed fluctuation

theorem given by Seifert, in the time-periodic steady state.

In a separate work [12], we show that if a biharmonic drive is applied to the potential

in place of a single harmonic drive, then not only does the average energy show a sharper

peak at stochastic resonance, it also leads to particle pumping into one of the wells. It is

also observed that introduction of an additional phase difference between the two harmonics

significantly affects the amount of particle pumping, and they also produce appreciable changes

in the structures of the hysteresis loops. Along with this, we check that the work done and

dissipated heat follow fluctuation theorems in the limit of alarge number of cycles in each

realization, when the contributions from the boundary terms become negligible.
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Chapter 1

Introduction

Statistical mechanics is the subject that strives to explain the macroscopic events from the

properties of microscopic dynamics of the constituent particles. It is evidently computationally

impossible to apply and solve Newton’s laws of motion to all the particles present (typically of

the order of1023) in a given macroscopic sample. Furthermore, often we are not interested in

the entire system, but only in a part of it. Henceforth, we would call this part as our system

of interest, or simply as thesystem. The remaining portion that we are not interested in would

be termed as theenvironment. Together they form theuniverse, i.e., an isolated supersystem.

Classical mechanics would not allow us to study the time-evolution of the properties of the

system only, without taking into account the detailed time-evolution of the supersystem.

Statistical mechanics provides us a way to circumvent thesedifficulties by exploiting the

properties arising precisely due to the presence of a large number of degrees of freedom [1].

These properties are described probabilistically. For example, consider an ideal gas at equilib-

rium with a thermal reservoir. Although we do not know the exact coordinates and momenta

of each particle of the combined supersystem, we do know the probability distribution1 of the

states of the molecules in this system. Thus, as the number ofdegrees of freedom becomes

very large, statistical laws come to our aid, and the job of solving a huge number of differential

equations no more remains a necessity.

1In this thesis, we would be using the terms “probability distribution” and “probability density” interchange-
ably, as long as there is no reason for confusion, although more often we would mean the latter.
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The last couple of decades have observed a crescendo of effort going into the field of

nonequilibrium thermodynamics and statistical mechanicsof mesoscopic or smaller systems,

having dimensions typically in the range 1 nm to 1µm. This is mainly because of the advent

of new high-precision measurements to probe these systems,as in RNA pulling experiments,

dragged colloidal particles, molecular motors, etc. [2–6]. Thus, at present this field has trans-

formed itself from being a problem of mere academic interestto a study dealing with practical

applications. Any attempt to build machines at such small scales be preceded by a thorough

understanding of how differently the systems behave at these scales. An efficient nano-engine

need not be (and, in fact, is not) a simple scaled down versionof an efficient macro-engine.

A major development in the field of nonequilibrium statistical mechanics has been a group

of relations, collectively known as thefluctuation theorems(FTs) (see section 1.3) [5]. This the-

sis is primarily aimed at the verification of FTs in several different model systems, along with

the derivation of some new theorems. These theorems providerigorous relations for the prob-

ability distributions (over a large number of experimentalrealizations of a process) of various

physical quantities like work, heat or entropy changes, in systems undergoing nonequilbrium

processes (for details, see section 1.3). A knowledge of FTsis necessary to build efficient ma-

chines at small scales. We have also studied extension of theknown FTs to the case when the

externally applied drive is controlled by feedback. The meaning of feedback-controlled drive

would be explained shortly. Such drives are of extreme importance, because they can drasti-

cally enhance the efficiency of a process. Other than fluctuation relations, the phenomenon of

stochastic resonance (see section 1.6), which is of major significance in biological systems, has

been studied.

The mathematical statement of the fluctuation theorems can be generically stated as

P (Σ)

P̃ (−Σ)
= eαΣ, (1.1)

whereΣ is the observed value of an extensive variable (dissipated work, dissipated heat, total

entropy change, etc.), andα is a positive constant with inverse dimension of that ofΣ. The

2



symbolsP and P̃ denote the probability density functions observed under the forward and

time-reversed2 external perturbations orprotocols, whose time dependences are given byλ(t)

andλ(τ − t), respectively. Here, the period of observation begins at timet = 0 to and ends at

time t = τ . Since all the dissipative quantities scale with the systemsize, it is obvious that for

a macroscopic system, the probability of observing a negative value ofΣ will be fantastically

small compared to that of observing a positive value ofΣ. For a mesoscopic system, however,

the probability of observing such events can become appreciable, as will be elaborated later

(see the discussion on pages 4 and 5). The strength of these theorems lies in the fact that they

remain valid no matter how far the system has been driven awayfrom equilibrium. Moreover,

they provide further insights into the microscopic basis for the second law of thermodynamics.

We will see that the second law inequalities are readily obtained as corollaries, from these

theorems. Most of these theorems have been verified experimentally [3,7–17].

In general, the second law specifies that the total entropy ofthe universe (system plus en-

vironment) never decreases in a process. However, sometimes we need to apply a drive that

is feedback-controlled. This means that during the process, we measure some observable (say,

the position or the velocity) of the system, and depending onthe outcome of the measurement,

the form of the protocol is changed. In such a case, the secondlaw inequality undergoes a

modification. This is because, now the measuring device is also a part of our universe. Thus,

if we still include only the system and the bath in our analysis, then we are actually ignoring a

part of the universe. The modified inequalities involve correction terms that are encoded in the

information recorded by the measuring device. We have studied these modified expressions for

the fluctuation theorems in presence of feedback-controlled drive in chapters three and four.

In chapter three, the extended relations in presence of feedback have also been studied for

quantum systems. Most of the fluctuation theorems have been generalized to the quantum

regime [6, 18–21]. A particularly simple approach adopted for quantum systems is to consider

the system to be initially prepared in a state sampled from some arbitrary distribution. Subse-

quently, it is kept isolated from its environment throughout the period of evolution so that the

2In chapter 4, we would find that certain fluctuation theorems hold for transformations other than simple time-
reversal.

3



evolution operator is unitary. The other simplifying assumption is the use of projective mea-

surements on the state of the system. Although these assumptions are highly simplistic, they

provide a clear visualization of the process, and it is instructive to study such processes before

embarking upon more general processes. For example, the work done on an isolated system

is defined through two projective energy measurements at theinitial and the final times. If the

energy eigenvalues thus obtained areEn andEm respectively, then the work done on the system

during that realization is defined as:W = Em − En. Only by such an identification, work can

be defined as an observable, which is difficult otherwise. Much more detailed treatments are

called for in studying the quantum fluctuation theorems under more general conditions, and the

subject is being studied intensively at present.

In this thesis, we would apply the FTs mainly to mesoscopic systems that undergo some

nonequilibrium process. The FTs are useful only when applied these small systems, where

thermal fluctuations become significant. In this regard, it would be useful to briefly discuss the

terms “mesoscopic systems” and “nonequilibrium process” separately. We outline below the

special features of each.

Let us first discuss the properties ofmesoscopic systems. In general, the evolution of a

system in phase space will not follow a unique trajectory, but will be subject to thermal fluc-

tuations. Thermal fluctuations arise because of the system’s interaction with its environment.

These fluctuations are ignored in macroscopic thermodynamics. This approach yields quite

accurate results, as long as our system is itself macroscopic, so that deviations from the mean

value are negligibly small compared to the mean value itself. However, when we direct our

attention to systems at mesoscopic scales or smaller, this condition gets invalidated. We can,

therefore, no more remain oblivious to the fluctuations [5, 22]. Consequently, we will find

that the thermodynamic observables appearing in the secondlaw inequality must be replaced

by their averages over a large number of experimental realizations. Consider, for example, a

corollary of the Clausius statement for the second law. It states that, if we consider a system in

contact with a thermal reservoir, then we must have:Wd ≡ W − ∆F ≥ 0 (sect. 15 of [1]).

Here,W is the work doneon the system by the external force, and∆F is the change in the
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Helmoltz free energy of the system in the process. For a mesoscopic system, this inequality

would be modified to〈Wd〉 ≥ 0, where〈· · ·〉 represents ensemble averaging.

The above fact has been shown diagrammatically in figure 1.1.The figure clearly shows

that, when the mean value ofWd becomes comparable to the typical energy obtained from

thermal fluctuations, there may be an appreciable number of events in the ensemble in which

the dissipated work becomes negative. This is the shaded region in the figure. The phase space

trajectories along which an observable seems not to behave in accordance with the second

law are calledatypical trajectories. Sometimes they are also termed as “transient second law

violating trajectories”. Nevertheless,〈Wd〉 remains positive, in conformity with the second law.

In the above discussion, the dissipated workWd is the observableΣ, in the context of eq. (1.1).

Wd

P(W )d

Figure 1.1: The distribution at the right is that for the dissipated work in a macroscopic system (diagram
is not to scale). Obviously, because of the large value of themean, there would be negligible probability
of observing a process in which the dissipated workWd is negative. On the other hand, the distribution
for the mesoscopic system (left) may have an appreciable part of the distribution on the negative side
(shaded part).

We now discuss the features of anonequilibrium process. Nonequilibrium statistical me-

chanics studies processes where the system may be arbitrarily away from equilibrium. Al-

though we have well-defined state variables for systems at equilibrium, it is usually difficult

to define thermodynamic variables for a system that is far from equilibrium. Nevertheless,

the energy remains unambiguously defined for any given microstate of the system, even if the
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macrostate is no more well-defined. We will see that the variables like work, heat and internal

energy can be defined using physical arguments in stochasticenergetics [23, 24], even when

system undergoes a highly nonequilibrium process.

We would next go through a little more detailed introductionto the basic concepts involved

in the topics dealt with in this thesis, in sections 1.1–1.6 of this chapter. In section 1.7, the plan

of this thesis will be outlined.

1.1 Langevin equation and stochastic thermodynamics

To get a proper understanding of the variables work, heat, internal energy and entropy at

mesoscopic scales, we need to define them unambiguously. This has been done by Sekimoto

in [23, 24], where he has used physical arguments to show how these variables naturally arise

from the Langevin dynamics of a Brownian particle. The Langevin equation is the extension

of the Newton’s equation of motion to the regime where the system interacts with environ-

ment, and its effect on the system is given by a systematic frictional force and a fluctuating

force [48]. These fluctuations play a major role in determining the phase space trajectory of the

system. We suppose that a mesoscopic particle is performingBrownian motion in a medium

held at temperatureT which we would treat as a heat bath. The particle may be subjected to

an external time-dependent perturbationf(t) that can be derived (say) from a time-dependent

potential3. Let the full potential (including the perturbation) to which the system is subjected

beV (x, t). We then write the equation of motion for the system (in one-dimension) in the form:

mv̇ = −∂V (x, t)

∂x
− γv + ξ(t), (1.2)

where−γv is the viscous force, andξ(t) contains all the random contributions. We would use

an overhead dot to represent total time-derivatives. Throughout this thesis, we will assume that

3At the end of the section we would state the result in presenceof a non-conservative force.
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this random force follows a zero-mean Gaussian distribution, and is delta-correlated in time:

〈ξ(t)〉 = 0; 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′). (1.3)

In the above equation,D is the noise strength and is related to the bath parameters through the

Einstein relation:D = γkBT , wherekB is the Boltzmann constant. Following Sekimoto [24],

we will now trace the steps4 that lead to the definitions of the thermodynamic variables in this

setup. We multiply both sides of (1.2) bydx and rearrange the terms to get

−[−γv + ξ(t)]dx = −m
dv

dt
dx− ∂V

∂x
dx. (1.4)

(−γv + ξ(t)) consists of the forces that are generated by the bath. So,−(−γv + ξ(t)) is the

reaction force of the system on the bath. Thus, the left hand side is the work done by this

reaction force of the system, on the bath. This work gets irretrievably lost into the huge number

of degrees of freedom of the bath. We identify this term as theheat dissipateddQ (in a time

stepdt) into the medium:

dQ = [γv − ξ(t)]dx. (1.5)

We then have, after rewriting eq. (1.4), and using the chain ruledV = ∂V
∂x

dx + ∂V
∂t

dt,

dQ = −mvdv − dV +
∂V

∂t
dt = −d

(
1

2
mv2 + V

)
+

∂V

∂t
dt. (1.6)

Finally, on integrating both sides, and writing the total change in the internal energy as∆U =

∆(1
2
mv2 + V ), we obtain

Q = −∆U +

∫
∂V

∂t
dt = −∆U + W, (1.7)

4Although in [24], although Sekimoto had provided the derivation for an overdamped system, it is straightfor-
ward to see that it is easily applicable to underdamped systems as well.
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where, on comparing with the first law, we have identified the second term on the right hand

side as the thermodynamic workW performed on the system by the external parameter:

W =

∫
∂V

∂t
dt. (1.8)

Thus, we get the following expressions forQ, ∆U andW up to timeτ :

Q(τ) =

∫ τ

0

(γv − ξ(t))ẋdt = −
∫ τ

0

(
∂V (x, t)

∂x
+ mv̇

)
vdt. (1.9a)

∆U(τ) =
1

2
mv2(τ) + V (x(τ), τ)− 1

2
mv2(0)− V (x(0), 0). (1.9b)

W (τ) =

∫ τ

0

∂V (x, t)

∂t
dt. (1.9c)

In eq. (1.9a), the integrand has been rewritten using eq. (1.2).

Overdamped case: Often in stochastic dynamics, we have systems whose momentum vari-

able is a fast variable, i.e., the relaxation timeτv ∼ m/γ, is very small compared to the time

scale of change in the position distribution. We then say that the system isoverdampedand the

Langevin equation transforms to

γẋ = −∂V (x, t)

∂x
+ ξ(t). (1.10)

Following a prescription similar to that of an underdamped system, we arrive at the following

expressions forQ, ∆U andW :

Q(τ) = −
∫ τ

0

∂V (x, t)

∂x
ẋdt;

∆U(τ) = V (x(τ), τ)− V (x(0), 0);

W (τ) =

∫ τ

0

∂V (x, t)

∂t
dt. (1.11)

Finally, in addition to the conservative force field that canbe derived from the potential
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function V (x, t), a non-conservative forcefnc(x, t) may also be present. This would simply

modify the definition of work to [5]

W (τ) =

∫ τ

0

∂V (x, t)

∂t
dt +

∫ τ

0

fnc(x, t)ẋdt. (1.12)

1.2 Second law at mesoscales

The second law for macroscopicclosedsystems (one that can exchange only energy with its

surroundings) can be described through either of the following two statements, which arise

from the Clausius inequality:

First statement: Among all processes taking place between any two given thermodynamic

states, the work done on the system is minimum for a reversible process.

For a system in contact with a thermal reservoir, this gives rise to the inequality

W ≥ ∆F. (1.13)

Here, the change in free energy∆F is the work done during an isothermal reversible process

[1]. The above equation, when rewritten interms of workextractedfrom the system, gives the

statement for the maximum work theorem [25].

Second statement: The total entropy of the universe (which is a closed system consisting

of the system of interest and the environment with which it interacts) can never decrease with

time:

∆Stot ≥ 0. (1.14)

Here,∆Stot is the change in total entropy of the universe, which, according to the above state-

ment, is always non-negative [26].

The second law has been formulated for macroscopic systems,where the effect of thermal

fluctuations are negligible. At mesoscopic scales, as mentioned above (page 5), there would
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be atypical trajectories, although the ensemble-averagedquantities must obey the second law.

Thus the statements of the second law at mesoscales become:

〈W 〉 ≥ ∆F ; 〈∆stot〉 ≥ 0. (1.15)

Here, the angular brackets denote averages taken over a large number of realizations of the

experiment, while the expressions within〈〉 denote the values of the observables (work or

change in total entropy) for each experiment, which in general vary from one realization of the

experiment to the other. The change in total entropy,∆stot, for a given phase space trajectory

(corresponding to a given experiment) is defined as the sum ofthe changes in medium entropy

(∆sm) and in system entropy (∆s) [28, 29] along that trajectory. A change in the medium

entropy over a time intervalτ is given by the heat dissipated into the medium divided by its

temperature:

∆sm(τ) =
Q(τ)

T
. (1.16)

The nonequilibrium entropyS of the system is defined as

S(t) = −
∫

dx p(x, t) ln p(x, t) = −〈ln p(x, t)〉, (1.17)

wherex would be replaced by both position and velocity for an underdamped system. This

leads to the definition of the configurational entropy of the particle as [27–29]

s(t) = − ln p(x, t). (1.18)

The change in the system entropy for any trajectory of duration τ is given by

∆s(τ) = − ln

[
p1(xτ )

p0(x0)

]
, (1.19)

wherep0(x0) andp1(xτ ) are the probability densities of the particle positions at initial time

t = 0 and final timet = τ , respectively. Thus for a given trajectory, the system entropy s(t)
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depends on the initial probability density and hence contains the information about the whole

ensemble. The total entropy change over time durationτ is given by

∆stot(τ) = ∆sm(τ) + ∆s(τ). (1.20)

1.3 Fluctuation theorems

As stated earlier, the fluctuation theorems have been one of the rare and significant develop-

ments in the field of nonequilibrium statistical mechanics.These theorems remain valid no

matter how far the system has been driven away from equilibrium. Initially theorems of this

kind were proved for the entropy production, from simulation of sheared fluids by Evans et

al [30]. It was proved mathematically for deterministic systems in [31] and later by Gallavotti

and Cohen [32]. Several new relations in this field have come up since then [20,27–29,33–43].

These theorems provide stringent restrictions on the fraction of atypical realizations (i.e., the

ones that behave atypically with respect to the second law, as explained in page 5) in an en-

semble. They give rigorous relations for the properties of distribution functions of physical

variables like work, heat and entropy production for systems driven away from equilibrium,

where Onsager relations no longer hold.

1.3.1 The Jarzynski and Crooks relations

An important development in the field of fluctuation theoremshas been the Jarzynski equal-

ity [33, 34] which provides a way to compute the change in the equilibrium free energy of a

system from measurements of the work done on it along a nonequilibrium process. Crooks [42]

later provided a more detailed fluctuation theorem from which the Jarzynski equality automat-

ically follows. We would first describe the Crooks theorem below and show how the Jarzynski

equality appears as a corollary. Although these theorems have been proven for both determin-

istic as well as stochastic evolutions, we would outline only one of them below, namely for the

stochastic dynamics.
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Let us consider a system that has been equilibrated with a heat bath with temperatureT at

initial time t = 0 [33,34], corresponding to the valueλ(0) ≡ A, of an external thermodynamic

parameter (on which the system Hamiltonian depends explicitly). At t = 0+ we switch on the

time-variation of the external perturbationλ(t). The phase space coordinates of the particle

evolve along a trajectory governed by stochastic dynamics,from time t = 0 to t = τ , and

the final value of the parameter isλ(τ) ≡ B. The time-dependence of the protocol is arbi-

trary. However, in an ensemble of realizations of a given experiment, the same protocol is used

repeatedly.

As an example, in a particular experiment, the system may consist of an RNA molecule,

whose free ends are attached to two polystyrene beads. One ofthem is held fixed, while the

other bead is moved using an optical trap, thereby either stretching or contracting the molecule.

In this case, the external parameter would be the distance between the two beads, and the time-

dependenceλ(t) of this parameter would specify theprotocol.

The full trajectory of the system’s evolution in phase spacewill be represented byX(t), to

differentiate it from the individual phase space pointsxt.5 Now, any such pointxt in general

consists of all the degrees of freedom associated with the particle, but we will stick to a one-

dimensional overdamped motion to enhance the transparencyof the following treatment. If

the system is underdamped,xt will denote both position and velocity of the particle at time

t: xt ≡ (x, v; t). Unless clear from the context, whenever we are consideringan overdamped

system, we would always state this fact explicitly in this thesis. The treatment can be trivially

generalized to multiple dimensions.

The probability distribution of the initial phase space point x0 is given by the Boltzmann

distribution:

p0(x0) =
e−βH(x0,A)

Z(A)
. (1.21)

5If we discretize the time of observation as{t0, t1, · · · , tN}, the corresponding phase space trajectory would
be represented by a discrete set of points{x0, x1, · · · , xN}. We are using the compact notationxk = x(tk). The
entire trajectory will then be denoted byX ≡ {x0, x1, · · · , xN}.
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Here,H(x0, A) is the system Hamiltonian at the initial statex0 with the external parameter

fixed atA, andZ(A) is the initial partition function.β = 1/kBT is the inverse temperature of

the bath.

For the reverse process, we at first equilibrate the system with the same heat bath, but now

with the protocol value held fixed atB. Subsequently we apply the time-reversed protocol

λ(τ − t) to the system6 Thus the system now has the following distribution to begin with:

p1(x̃τ ) =
e−βH(x̃τ ,B)

Z(B)
. (1.22)

Here, the tilde symbol implies time-reversed variables defined through the operation executing

the inversion of velocities. In other words,(x, v) goes to(x,−v) under the tilde operation. In

particular, the initial point of the reverse process is given by x̃τ . According to our notation,̃xt

would mean the time-reversal of the variablext, where the time elapsed along theforward path

is t. However, we must keep in mind that the actual time elapsed along the reverse trajectory is

τ − t, whereτ is the total time of observation in either process.

As shown by Crooks [42], the ratio of the forward to the reverse trajectory is given by

P [X|x0]

P̃ [X̃|x̃τ ]
= eβQ. (1.23)

where time runs from 0 toτ , andQ is the heat dissipated into the heat bath during the forward

process. Here, the notationP [X|x0] is a compact representation of the probability density for

the entire trajectoryX(t), beginning from a given initial statex0, when the process is generated

by the external protocolλ(t). Similarly,P̃ [X̃|x̃τ ] represents the probability density for the time-

reversed path̃X(t), beginning from the given initial point̃xτ . The initial point of the reverse

path is the time-reversed of the final state of the forward path. Symbolically, if the forward

trajectory is denoted byX(t) ≡ x0 → x1 → x2 → · · · → xτ , then the reverse trajectory will

be given byX̃(t) ≡ x̃0 ← x̃1 ← x̃2 ← · · · ← x̃τ . Another elegant proof for the relation (1.23)

6Note that this is not the same as the time-reversal of a movie of the forward process, as has been discussed in
detail in [44].
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is given in [41].

If both sides of eq. (1.23) are multiplied byp0(x0)/p1(x̃τ ), we would get the ratio of the

unconditional probability densities (i.e., for arbitraryinitial points) for the forward pathP [X]

and the corresponding reverse pathP̃ [X̃] in phase space:P [X] = P [X|x0]p0(x0); P̃ [X̃] =

P̃ [X̃|x̃τ ]p1(x̃τ ). A typical forward trajectory in phase space and its corresponding reverse

trajectory is given in figure 1.2.

p

x

~

X(t)

X(t)

Figure 1.2: The figure shows a typical forward trajectoryX(t) in phase space and its corresponding
reverse trajectorỹX(t). The momentum coordinates (p) are inverted in the case of the reverse trajectory,
while the position coordinates (x) remain the same.

Since we are considering the initial states of the system to be at thermal equilibrium for

either process, we havep1(x̃τ ) = p1(xτ ) (the Hamiltonian being assumed to be time-reversal

invariant), and the above ratio gives the Crooks work theorem in the trajectory picture:

P [X]

P̃ [X̃]
= eβ(W−∆F ). (1.24)

The detailed derivation for a system following overdamped Markov dynamics has been given

in appendix A. This theorem physically means that ratio of the probability density of observing

a trajectoryX for a system driven by the protocolλ(t) (forward process), to the probability

density of observing the trajectorỹX under the protocolλ(τ − t) (reverse process), is given by

the exponential of the dissipated work along the forward process. The work theorem in terms

of probability densities for the work done on the system in forward and reverse processes can
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be readily obtained from the above relation (see appendix A):

P (W )

P̃ (−W )
= eβ(W−∆F ). (1.25)

The Jarzynski equality can be easily obtained from the Crooks fluctuation theorem (1.23)

by simple cross multiplication and integration overW :

〈e−βW 〉 =

∫
dW P (W ) e−βW = e−β∆F

∫
dWP̃ (−W )

= e−β∆F . (1.26)

Since∆F is a constant,e−β∆F has been taken out of the integral. The final step uses the nor-

malization condition
∫

dWP̃ (−W ) = 1. Thus, from repeated measurements of the nonequi-

librium work and subsequent averaging over all the realizations, one can obtain the value of

the equilibrium free energy change of the system. This has been verified experimentally [2].

Further, application of the Jensen’s inequality7 (for exponential functions, this inequality is

given by〈ey〉 ≥ e〈y〉) to the relation (1.26), we get the generalized maximum worktheorem for

mesoscopic systems:

〈W 〉 ≥ ∆F. (1.27)

Interestingly, the Jarzynski equality implies that the information about equilibrium free energy

is encoded in the work done along a nonequilibrium process.

1.3.2 The Integral Fluctuation Theorem (IFT) for total entropy

The entropy of a system is in general considered to be an ensemble property. However, the

entropy of a system along a single trajectory can be defined. These definitions have been stated

in equations (1.16)–(1.19).

To discuss the approach of Seifert, we define the quantityR as the ratio between the uncon-

7Using the inequality [45]ey ≥ 1+y, we get〈ey〉 = 〈ey−〈y〉+〈y〉〉 = e〈y〉〈ey−〈y〉〉 ≥ e〈y〉〈1+y−〈y〉〉 = e〈y〉,
which is the Jensen’s inequality for the exponential function.
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ditional probability densities of the forward and the backward paths [28,29]:

R ≡ ln
P [X]

P̃ [X̃]
= ln

{
P [X|x0]p0(x0)

P̃ [X̃|x̃τ ]p1(x̃τ )

}
= ∆sm + ln

p0(x0)

p1(x̃τ )
(1.28)

In the last step, we have used the Crooks fluctuation theorem for dissipated heat, eq. (1.23),

keeping in mind thatβQ is simply the change in the entropy∆sm of the heat bath. In this case,

we do not consider equilibration of the system at the beginning of either the forward or the

reverse protocols, so thatp0(x0) andp1(xτ ) are in general nonequilibrium distributions. The

following general identity can be easily derived [28]:

〈e−R〉 ≡
∫
D[X]P [X|x0]p0(x0)e

−R =

∫
D[X]P̃ [X̃|x̃τ ]p1(x̃τ ) = 1. (1.29)

Here,D[X] is the measure of integration over all trajectories. In the discrete-time picture,

when the path is given by{x0, x1, · · · , xτ}, we haveD[X] = dx0dx1 · · · dxτ . Also, the Jaco-

bian between anyxt and its time-reversed statẽxt is identically equal to one, so that we have

D[X] = D[X̃]. p0(x0) andp1(xτ ) can be chosen to be any hypothetical normalized probability

distributions of the system states. Ifp1(xτ ) is the solution of the Fokker-Planck equation for

the forward process, then the second term in eq. (1.28) becomes the change in entropy∆s of

the system, andR is then the total entropy change of the system:∆stot = ∆sm + ∆s. In this

case, we can write equation (1.28) as

P [X]

P̃ [X̃]
= e∆stot. (1.30)

We then have the integral fluctuation theorem (IFT) for totalentropy change:

〈e−∆stot〉 = 1. (1.31)

Application of Jensen’s inequality to this IFT immediatelyleads us to the second law of ther-
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modynamics that holds for the average change in total entropy:

〈∆stot〉 ≥ 0. (1.32)

1.3.3 The Detailed Fluctuation Theorem (DFT)

The detailed fluctuation theorem (DFT) for total entropy holds only if the system stays through-

out in the same steady state or is in equilibrium at the initial and final times. The reason for this

constraint is that, in general the change in system entropy does not switch its sign in the reverse

path [27]. The theorem reads (see appendix A for the steps in the derivation)

P (∆stot)

P (−∆stot)
= e∆stot. (1.33)

Note that the tilde symbol to denote the reverse process has been done away with, in accordance

with the fact that the steady state distributions are characterized by a constant value of the

external protocol in either process.

1.4 Fluctuation theorems for systems making transition be-

tween steady states

The second law simply states that the total entropy change ofthe system and environment never

decreases with time. However, while maintaining a steady state (for example, in the presence

of a time-independent non-conservative force), heat is naturally dissipated into the environment

and as a result the total entropy keeps increasing. Hence, the lower bound (namely, zero) for the

change in total entropy looses its significance. Keeping this in mind, Oono and Paniconi [46]

had proposed the division of the total dissipated heat into two separate parts: one is called the

housekeeping heatQhk that is required to maintain a particular steady state corresponding to

a fixed value of the external drive. The other was called theexcess heatQex that is dissipated

over and above the housekeeping heat in presence of a time-dependent perturbation or during
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relaxation to a steady state, and is obtained by subtractingthe contribution of the housekeeping

heat from the total heat dissipated during the process:Qex = Q−Qhk.

We would restrict ourselves to overdamped systems in this section. Interestingly, in this

case, both the housekeeping heat and the excess heat can be shown to follow separate fluctua-

tion theorems (the case of underdamped systems has been analyzed in [50], where it has been

shown that the housekeeping heat does not follow a fluctuation theorem in general for such

systems. Nevertheless, the Hatano-Sasa identity, eq. (1.37) below, is always obeyed), and the

second law takes the form [47]

β〈Qex〉+ 〈∆s〉 ≥ 0. (1.34)

The system has been assumed to be initially in a steady state,and also that it relaxes to a

steady state corresponding to the final protocol value at theend of the process. Defining the

steady-state probability density asρss(x; λ) = e−φ(x;λ), whereφ(x; λ) is an effective potential,

the expressions for the housekeeping and the excess heat foran overdamped system are given

respectively by

Qhk = γ

∫
dt ẋvss; Qex = −kBT

∫
dt ẋ

∂φ

∂x
. (1.35)

The local velocityvss is obtained by dividing the steady-state probability current jss (obtained

from the corresponding Fokker-Planck equation [48]) by thesteady-state probability density

ρss(x, λ) [47]:

vss ≡
jss

ρss(x, λ)
. (1.36)

We define the total change in the effective potential to be∆φ = φ(xτ ; λτ ) − φ(x0; λ0),

when the process is being carried out from timet = 0 to t = τ . The Hatano-Sasa fluctuation

relation for the excess heat is given by

〈e−βQex−∆φ〉 = 1. (1.37)

The application of the Jensen’s inequality to the above relation gives the modified second law,

eq. (1.34), provided the system is allowed to relax to the corresponding steady state at the final
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value of the protocol, so that∆s = ∆φ = − ln ρss(x;λ(t))
ρss(x0;λ(0))

. The adiabatic entropy is defined in

terms ofQhk as

∆sa =
Qhk

T
. (1.38)

The nonadiabatic entropy is given by

∆sna =
Qex

T
+ ∆φ = kBT

∫
dt λ̇

∂φ

∂λ
. (1.39)

The quantity∆sna is called the nonadiabatic entropy, because〈ṡna〉 vanishes for a system

undergoing an adiabatic transition between two steady states [47,49]. In an adiabatic transition,

the system remains in the steady state corresponding to the instantaneous parameter value,

when the parameter is changed slowly enough during the process. The total entropy can then

be written as

∆stot = ∆sm + ∆s = ∆sa + ∆sna. (1.40)

1.5 The dual trajectory formalism

Let us consider an overdamped system in a nonequilibrium steady state (the analysis for un-

derdamped systems can be found in [50]). In this case, the detailed balance condition does

not hold, but there exists a counterpart to this condition, which also involves the transition

probabilities in the so-calleddual dynamics[47,49,51,52] (denoted by the symbol†):

ρss(xi; λi)p(xi+1|xi; λi) = ρss(xi+1; λi)p
†(xi|xi+1; λi). (1.41)

Here,p(xi+1|xi; λi) is the transition probability of the system from statexi to statexi+1 when

the value of the external protocol isλi during this transition. Similarly,p†(xi|xi+1; λi) is the

transition probability of the system from statexi+1 to statexi when the value of the external

protocol isλi, in the dual dynamics.

Under the dual dynamics, if the system is allowed to relax to asteady state with a fixed
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value ofλ, then one would find that the functional form of the steady state density remains

the same as in the original dynamics, while the probability current changes sign [51, 52]. For

a system at equilibrium, the dual transition probabilitiesare simply the same as those in the

original dynamics.

One can now obtain an elegant expression for the excess heat [47,51]:

βQex = ln
N−1∏

i=1

p(xi+1|xi; λi)

p†(xi|xi+1; λi)
≡ ln

P [X|x0]

P̃ †[X̃|xτ ]
. (1.42)

Note that the denominator consists of path probability densities obtained after switching over

to the dual dynamics and thereafter applying the time-reversed protocol.

In a similar way, the housekeeping heat can be shown to be given by [51]

βQhk = ln

N−1∏

i=1

p(xi+1|xi; λi)

p†(xi+1|xi; λi)
≡ ln

P [X|x0]

P †[X|x0]
= ln

P [X]

P †[X]
. (1.43)

Here we have the same forward trajectory both in the numerator as well as in the denominator,

weighted in two different dynamics. The last step follows from the fact that the initial dis-

tribution, ρss(x0), is the same for both the processes. More detailed derivations of the above

relations are given in appendix B.

1.6 Stochastic resonance

The phenomenon of stochastic resonance (SR) [53] was first introduced by Robert Benzi in his

seminal paper [54] in 1981, where he had pointed out that the frequency of occurrence of ice

ages on earth can be explained using this phenomenon.

The usual mechanical resonance is the property of a system toabsorb a large energy from

an external periodic force, when the frequency of this forceequals the natural frequency of

the system. An example is a swing, which after reaching a highest point has got all its kinetic

energy converted to potential energy, and then begins the process of transferring potential to

kinetic energy. Now suppose that this transfer of energies is boosted by applying a push at this
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highest point in the appropriate direction. Intuition correctly tells us that this will cause the

swing to reach a higher point on the opposite side. If this external driving continues, then the

amplitude will become higher and higher, thus causing the swing to resonate mechanically.

The phenomenon of SR is different from mechanical resonancein the sense that it depends

on the presence of a noisy (thermal noise in our case) environment. The system is considered

to be a two-state one, whose “natural frequency” is the (average) frequency with which it can

cross the energy barrier and switch its state. A simple modelto see this is the double-well

potentialV (x) in which the system is confined and is kept in contact with a thermal bath at

temperatureT . If a feeble periodic signal is applied to this potential, itwill alternately rock the

left and the right wells in every cycle. We will consider the barrier height∆V in-between the

wells to be high enough to stop the particle from moving from one well to another in absence

of thermal noise. This is known assubthresholddriving. The barrier crossing rate (Kramers

escape rate) for the particle in the unperturbed well will begiven by [48]

rK =

(
γ
√

V ′′(xmin).|V ′′(xmax)|
2π

)
e−β∆V . (1.44)

Here, the double primed symbol implies double derivative with respect tox, ±xmin are the

positions of the minima of the potential,xmax is the position of the potential maximum in-

between the two minima, andγ is the friction coefficient. Figure 1.3 shows a typical bistable

potential.

−xmin xminxmax

V (x)

x ∆V

Figure 1.3: A typical bistable potential showing the positions of±xmin andxmax, and the barrier height
∆V .
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We would consider a particle following the overdamped Langevin equation, eq. (1.10). Let

us suppose that the (feeble) input signal is of the formf(t) = A sin ωt. It has a half time

period τω/2 = π/ω , which is in general different from the escape time1/rK. By tuning

either the bath temperature at a fixed frequency of the signal, or by keeping the former fixed

and tuning the latter, the SR condition (rK = π
ω

) can be satisfied. Under this condition, the

synchronization between the particle hopping and externaldrive is illustrated in figure 1.4. In

Figure 1.4: Schematic diagram for synchronization of particle hopping with the drive frequency at
stochastic resonance.

such a situation, we find that almost every time the right wellbecomes lower, the particle hops

into it and vice versa. How to quantify resonance has been an issue of a long-standing debate.

It has been recently found that the absorbed input energy (orwork done on the system) may be

the appropriate quantifier [55].

1.7 Plan of the thesis

The plan of the thesis is as follows. Inchapter two, the total entropy production fluctuations

are studied in some exactly solvable models. For these systems, the detailed fluctuation theo-

rem holds even in the transient state, provided initially that the system is prepared in thermal

equilibrium. The nature of entropy production during the relaxation of a system to equilibrium
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is analyzed. The averaged entropy production over a finite time interval gives a better bound for

the average work performed on the system than that obtained from the well-known Jarzynski

equality. Moreover, the average entropy production as a quantifier for information theoretic

nature of irreversibility for finite time nonequilibrium processes is discussed.

In chapter three, we rederive the fluctuation theorems in the presence of feedback by

assuming the known Jarzynski equality and detailed fluctuation theorems. We find that both the

classical and quantum systems can be analyzed using a similar treatment in terms of state space

trajectories. First, we briefly reproduce the already knownwork theorems for a classical system

in order to show its equivalence with the quantum treatment.We then extend the treatment

to arrive at new results, namely the generalizations of Seifert’s entropy production theorem

and the Hatano-Sasa fluctuation theorem, in the presence of feedback. We have also derived

the extended version of the Tasaki-Crooks fluctuation theorem for a quantum particle in the

presence of multiple loop feedback. For deriving the extended quantum fluctuation theorems,

we have considered open systems. No assumption is made on thenature of environment and

the strength of system-bath coupling. However, it is assumed that the measurement process

involves classical errors.

In chapter four, we turn our attention to theefficacy parameterthat quantifies how effi-

cient a given feedback algorithm is. In presence of feedback, the forms of the conventional

fluctuation theorems get modified. The modified form involvescorrection terms that depend

on the rules of using feedback in order to generate the exact time-reversed/conjugate protocols.

We show that this can be done in a large number of ways, and in each case we would get a

different expression for the correction term. This would inturn lead to several lower bounds

on the mean work performed on the system, or on the entropy changes. Here we analyze a

form of the extended fluctuation theorems involving the efficacy parameter, and find that this

form gives rise to a lower bound for the mean work that retainsa consistent physical meaning

regardless of the design of feedback along the conjugate process. This is opposed to the case

of the usual form of the modified fluctuation theorems, that isfound in literature.

In chapter five, we analyze the other important phenomenon that takes placein nature under
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the influence of noise, namely stochastic resonance. We investigate the total entropy produc-

tion of a Brownian particle in a driven bistable system. Thissystem exhibits the phenomenon

of stochastic resonance. We show that in the time-periodic steady state, the probability den-

sity function for the total entropy production satisfies Seifert’s integral and detailed fluctuation

theorems over finite time trajectories.

In chapter six, we study the fluctuations of work done and dissipated heat ofa Brownian

particle in a symmetric double well system. The system is driven by two periodic input signals

that rock the potential simultaneously. Confinement in one preferred well can be achieved by

modulating the relative phase between the drives. We show that in the presence of pumping

the stochastic resonance signal is enhanced when analyzed in terms of the average work done

on the system per cycle. This is in contrast to the case when pumping is achieved by applying

an external static bias, which degrades the resonance. We analyze the nature of work and heat

fluctuations and show that the steady state fluctuation theorem holds in this system.

Chapter sevenconcludes the thesis by briefly summarizing the results obtained in the pre-

vious chapters.
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Chapter 2

Entropy production theorems and some

consequences

2.1 Introduction

In the field of nonequilibrium thermodynamics of small systems, the fluctuation theorems (FTs)

[4, 27–43] provide exact equalities valid in a system drivenout of equilibrium, independent of

the nature of driving. FTs make quantitative predictions for observing events that violate the

second law within a short time for small systems by comparingthe probabilities of entropy

generating trajectories to those of entropy annihilating trajectories. They play an important

role in allowing us to obtain results generalizing Onsager Reciprocity relations to the nonlinear

response coefficients in nonequilibrium state [56].

The total entropy production is shown to obey the integral fluctuation theorem (IFT) [28,29]

for any initial condition and drive, over an arbitrary finitetime interval, i.e., transient case (see

last chapter). In [28, 29], it is also shown that in the nonequilibrium steady state over a finite

time interval, a stronger fluctuation theorem, namely the detailed fluctuation theorem (DFT)

holds. Originally DFT was found in simulations of two-dimensional sheared fluids [30] for

entropy production in the medium in the steady state, but in the long-time limit. This was

proved in various contexts, e.g. (i) using chaotic hypothesis by Gallavotti and Cohen [32], (ii)
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using stochastic dynamics by Kurchan [43] as well as by Lebowitz and Spohn [57], and (iii)

for Hamiltonian systems by Jarzynski [58].

In this chapter, we obtain the total entropy production (∆stot) distribution function,P (∆stot),

for different classes of solvable models [59]. In particular, we consider (i) a Brownian particle

in a harmonic trap subjected to an external time-dependent force, and (ii) a Brownian particle

in a harmonic trap, the centre of which is dragged with an arbitrary time-dependent protocol.

In these models, we show that the DFT is valideven in the transient case, provided the

initial distribution of the state variable is a canonical one. If the initial distribution is other

than canonical, DFT in transient case does not hold, as expected. To illustrate this, we have

analyzed the total entropy production for a system initially prepared in nonequilibrium state

which relaxes to equilibrium. Finally we briefly discuss theimportant consequences of entropy

production fluctuation theorem, namely, (i) it gives a new bound for the average work done

during a nonequilibrium process over a finite time, generalizing the earlier known concept of

free energy to a time-dependent nonequilibrium state. Thisbound is shown to be better than

that obtained from the Jarzynski equality; (ii) average total entropy production over a finite

time quantifies irreversibility in an information theoretic framework via the concept of relative

entropy. This is distinct from the recently studied measure[60–64].

2.2 The model

2.2.1 Case I: A particle in a harmonic trap subjected to an external time-

dependent force

We consider a Brownian particle in a harmonic potential and in contact with a heat bath at

temperatureT . The system is then subjected to a general driving forcef(t). The potential is

given byV0(x) = 1
2
kx2. The particle dynamics is governed by the Langevin equationin the

overdamped limit:

γẋ = −kx + f(t) + ξ(t), (2.1)
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whereγ is the friction coefficient,k is the spring constant andξ(t) is the Gaussian white noise

with the properties〈ξ(t)〉 = 0 and〈ξ(t)ξ(t′)〉 = 2Tγδ(t − t′). The magnitude of the strength

of white noise ensures that the system reaches equilibrium in the absence of time-dependent

fields.

Such a system can be experimentally realized by using a colloidal particle in a laser trap.

The setup is similar to the one used in [16, 65], where the authors had modulated a bistable

potential sinusoidally. In the present case, to modulate the trap, the trap position as well as

the intensity of the laser have to be varied simultaneously.The former adjustment changes

the position of the potential, while the latter changes its depth. A superposition of these two

modulations, carried out in an appropriate manner, can reproduce the action of an arbitrary

force on the bare potential.

Using the method of stochastic energetics (or the energy balance) [23, 66], the values of

physical quantities such as injected work or thermodynamicwork (W ), change in internal

energy (∆U) and heat (Q) dissipated to the bath can be calculated for a given stochastic

trajectoryX(t) over a finite time durationt. Using the expression for the internal energy

U(x, t) = 1
2
kx2 − xf(t), we get (see chapter 1, sect. 1.1)

W =

∫ t

0

∂U(x, t′)

∂t′
dt′ = −

∫ t

0

x(t′)ḟ(t′)dt′, (2.2a)

∆U = U(x(t), t)− U(x0, 0) =
1

2
kx2 − xf(t)− 1

2
kx2

0, (2.2b)

and

Q = −
∫

∂U(x, t′)

∂x
ẋ(t′)dt′ =

∫
(−kx(t′) + f(t′))ẋ(t′)dt′. (2.2c)

Also, from the first law of thermodynamics, we have

Q = W −∆U. (2.2d)

The particle trajectory extends from initial timet = 0 to final timet, x0 in equation (2.2b) is

the initial position of the particle. For simplicity, we have assumed thatf(0) = 0.
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Initially the system is prepared in thermal equilibrium. The distribution function is given

by

p0(x0) =

√
k

2πT
exp

(
−kx2

0

2T

)
. (2.3)

The Boltzmann constantkB has been absorbed inT . The evolved distribution functionp1(x, t),

subjected to the initial conditionp0(x0), is obtained by solving the corresponding Fokker

Planck equation, and is given by

p1(x, t) =

√
k

2πT
exp

(
−k(x− 〈x〉)2

2T

)
, (2.4)

where

〈x〉 =
1

γ

∫ t

0

e−k(t−t′)/γf(t′)dt′. (2.5)

A change in the medium entropy (∆sm) over a time interval is given by

∆sm =
Q

T
. (2.6)

We now use the definition for the realization dependent entropy s(t) of the particle [28, 29],

namelys(t) = − ln p(x(t), t). We then get the change in system entropy for any trajectory of

durationt as (see chapter 1, sect. 1.2)

∆s = − ln

[
p1(x, t)

p0(x0)

]
, (2.7)

wherep0(x0) andp1(x, t) are the probability densities of the particle positions at initial time

t = 0 and final timet respectively. Thus for a given trajectoryx(t), the system entropys(t)

depends on the initial probability density and hence contains the information about the whole

ensemble. The total entropy change over time durationt is given by

∆stot = ∆sm + ∆s. (2.8)
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Using the above definition of total entropy production, Seifert [28,29] has derived the IFT,

i.e.,

〈e−∆stot〉 = 1, (2.9)

where angular brackets denote average over the statisticalensemble of realizations, or over the

ensemble of finite time trajectories.

In nonequilibrium steady state, where the system is characterized by time-independent sta-

tionary distribution, a stronger fluctuation theorem (DFT)valid over arbitrary finite time inter-

val holds [28,29]:
P (∆stot)

P (−∆stot)
= e∆stot. (2.10)

The above theorem holds even under more general situation, i.e. when system is subjected to

periodic driving:f(x, τ) = f(x, τ + τp), whereτp is the period. The additional requirement is

that the system has to settle into a time-periodic state:P (x, τ) = P (x, τ + τp), and trajectory

lengtht is an integral multiple ofτp.

As a side remark, we would like to state that if the distributionP (∆stot) is a Gaussian and

satisfies IFT, then it naturally satisfies DFT, even if systemis in a transient state. This happens

to be the case in our present problem only under the conditionthat the system is being prepared

initially in equilibrium, as shown below.

Using (2.2d), (2.6), (2.7) and (2.8), the total entropy becomes

∆stot =
W −∆U

T
− ln

p1(x, t)

p0(x0)
. (2.11)

Substituting for∆U from equation (2.2b), and using (2.3) and (2.4), we get

∆stot =
1

T

(
W +

1

2
k〈x〉2 + xf(t)− kx〈x〉

)
. (2.12)

The workW is a linear functional ofx(t), and from the above equation, we observe that∆stot

is linear inx, while x is itself a linear functional of Gaussian random variableξ(t):
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x(t) = x0e
−kt/γ +

1

γ

∫ t

0

e−k(t−t′)/γ [f(t′) + ξ(t′)]dt′. (2.13)

From the above fact it follows thatP (∆stot) is a Gaussian function. It is therefore sufficient

to calculate the mean (〈∆stot〉) and variance (σ2 ≡ 〈∆s2
tot〉 − 〈∆stot〉2) to get the distribution,

which is of the form

P (∆stot) =
1√

2πσ2
exp

(
−(∆stot − 〈∆stot〉)2

2σ2

)
, (2.14)

where

〈∆stot〉 =
1

T

(
〈W 〉 − 1

2
k〈x〉2 + 〈x〉f

)
. (2.15)

The formal expression of〈W 〉 is given by

〈W 〉 = −
∫ t

0

〈x(t′)〉ḟ(t′) dt (2.16)

where〈x〉 is given by (2.5). The varianceσ2 for total entropy is given by

σ2 =
1

T

(〈W 2〉 − 〈W 〉2
T

+
f 2(t)

k
+ k〈x〉2 − 2〈x〉f(t)

)

+
1

T 2
(〈Wx〉 − 〈W 〉〈x〉)(2f(t)− 2k〈x〉) (2.17a)

=
1

T

(
2〈W 〉+ 2f 2(t)

k
+ k〈x〉2 − 2〈x〉f(t)

)

+
1

T 2
(〈Wx〉 − 〈W 〉〈x〉)(2f(t)− 2k〈x〉). (2.17b)

To arrive at (2.17b), we have used the fact that〈W 2〉 − 〈W 〉2 = 2T
(
〈W 〉+ f2(t)

2k

)
which

has been proved in appendix C. Also in the same appendix, we have shown that the cross-

correlation is given by

〈Wx〉 − 〈W 〉〈x〉 =
T

k
[k〈x(t)〉 − f(t)]. (2.18)
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Using equation (2.18) in (2.17b), it follows that

σ2 = 2〈∆stot〉. (2.19)

The Gaussian distribution ofP (∆stot) along with the above obtained condition for variance

implies validity of the detailed fluctuation theorem for general protocolf(t). Needless to say,

this theorem in the considered linear system is valid in the transient caseonly whenthe initial

distribution for the state variable is a canonical distribution. Further, DFT also implies IFT (but

the converse is not true).

Special case: sinusoidal perturbation

For this case, we considerf(t) to be a sinusoidal oscillating drive, i.e.,f(t) = A sin ωt.

Using equation (2.15), we then obtain

〈∆stot〉 =
1

T

[
〈W 〉 − 1

2
k〈x〉2 + A〈x〉 sin ωt

]

=
A2γω

4T (k2 + γ2ω2)

[
2ω
{
k2t +

(
−2− e−2kt/γ

)
kγ + tγ2ω2

}

+8e−kt/γkγω cos ωt− 2kγω cos 2ωt + (k2 − γ2ω2) sin 2ωt
]
. (2.20)

The variance isσ2 = 2〈∆stot〉, and distributionP (∆stot) is Gaussian as mentioned earlier. For

this case, if the initial distribution is not canonical, then P (∆stot) is not a Gaussian. This is

shown in figure 2.1 where we have plottedP (∆stot) for the above protocol obtained numeri-

cally for various times as mentioned in the figure caption.

The initial distribution being a Gaussian withp0(x0) =
√

k
2πσ2

x
exp

(
−kx2

0

2σ2
x

)
, where the

conditionσ2
x 6= T , represents an athermal distribution. In the inset, we haveplottedP (∆stot)

for same parameters used for the main figure for thermal initial distribution: σ2
x = T = 0.1

(for this case, distributions for∆stot are Gaussian). All quantities are in dimensionless units

and values of physical parameters are mentioned in figure caption. We clearly notice that the
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Figure 2.1: In the figure, we have plottedP (∆stot) vs ∆stot for various observation times, when the
initial distribution is athermal (σ2

x = 0.2). For thermal distribution,σ2
x = 0.1. The observation times

aret = 10 (solid line),t = 20 (dashed line),t = 50 (bigger dashed line) andt = 100 (dotted line). The
inset shows total entropy distributions for same observation time values, when the the initial distribution
is thermal. For this case, all distributions are Gaussian. For both cases,A = 0.1, k = 0.1 andω = 0.1.

distributionsP (∆stot) in the main figure are non-Gaussian. The observed values of〈e−∆stot〉

from our simulation equal 1.005, 1.006, 0.995 and 1.011 fort = 10, 20, 50 and 100 respectively

in the athermal case. All these values are close to unity within our numerical accuracy, clearly

validating IFT. For numerical simulations, we have used Heun’s scheme. This gives a global

error in the dynamics of the order ofh2, whereh is the time step taken in the simulation (for

details, refer to [67]). To minimize the error in calculating 〈e−∆stot〉, we have taken large

number of realizations (more than105), depending on parameters. Our estimated error bars are

found to be around10−4. Moreover, these values act as a check on our numerical simulations

[59, 68–70]. As the observation time of trajectory increases, weight on the negative side of

P (∆stot) decreases, i.e., the number of trajectories for which∆stot < 0 decreases (see figure

2.1). This is expected as we go to macroscopic scale in time. The distributions that were

asymmetric at short time scales tend closer to being a Gaussian distribution with non-zero

positive 〈∆stot〉. The central Gaussian region increases with the time of observation. The

presence of non-Gaussian tails (large deviation functionsassociated with the probability of

extreme events) at large values of∆stot becomes very difficult to detect numerically. However,
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they are not ruled out. For large times,σ2 ≈ 2〈∆stot〉, suggesting validity of DFT only in

the time asymptotic regime. Similar observations have beenmade in regard to work and heat

distributions for a driven Brownian particle [59,68–71].

The Fourier transform of the distributionP (∆stot) can be obtained analytically for a given

initial athermal Gaussian distribution of the particle position in presence of a drive. This can be

obtained following exactly the same procedure of Zon et al [40] for heat fluctuations. However,

later we consider a simpler case of a system relaxing to equilibrium in absence of protocol

(case-III).

2.2.2 Case II:P (∆stot) for particle in a dragged harmonic oscillator

For this case, the effective potentialU(x, t) for the Brownian particle is given by

U(x, t) =
1

2
k

(
x− f(t)

k

)2

. (2.21)

The centre of the harmonic oscillator is moved with a time-dependent protocolf(t)/k. The

special case of this model is whenf(t)/k = ut (centre of the oscillator is moved uniformly with

velocityu). This model has been extensively studied both experimentally [72] and theoretically

[39,40,73–75] in regard to analysis of Jarzynski non-equilibrium work relation [33] and related

issues.

The expression for work is given by

W (t) ≡
∫ t

0

∂U

∂t′
dt′ = −

∫ t

0

x(t′)ḟ(t′)dt′ +
f 2(t)

2k
. (2.22)

By taking canonical initial condition forp0(x0), given in equation (2.3), the probability density

at timet is given by

p1(x, t) =

√
k

2πT
exp

(
−k(x− 〈x〉)2

2T

)
. (2.23)

where

〈x〉 =
1

γ

∫ t

0

e−k(t−t′)/γf(t′)dt′. (2.24)
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The change in internal energy during a timet is

∆U =
1

2
k

(
x− f(t)

k

)2

− 1

2
kx2

0. (2.25)

For simplicity, we have setf(0) = 0. The expression for∆stot reduces to

∆stot =
W

T
− f 2

2kT
+

xf

T
+

k〈x〉2
2T

− kx〈x〉
T

. (2.26)

From equation (2.26), it follows thatP (∆stot) is a Gaussian. Carrying out exactly the similar

analysis as before (i.e., for case I), after tedious but straightforward algebra, we finally obtain

the expressions for mean and variance:

〈∆stot〉 =
〈W 〉
T
− f 2

2kT
− k〈x〉2

2T
+

f〈x〉
T

(2.27)

and

σ2 =
2〈W 〉

T
− f 2

kT
− k〈x〉2

T
+

2f〈x〉
T

= 2〈∆stot〉, (2.28)

where〈W 〉 =
∫ t

0
〈x(t′)〉ḟ(t′)dt′, and〈x〉 is given in equation (2.24). The condition (2.28) along

with P (∆stot) being Gaussian implies validity of both DFT and IFT for∆stot.

Special case: The dragging force is linear

We considerf(t)
k

= ut, i.e., centre of the harmonic trap is being dragged uniformly with velocity

u. To obtainP (∆stot), we need the expression for〈∆stot〉 only:

〈∆stot〉 =
u2γt

T
− u2γ2

2kT

(
1− e−kt/γ

) (
3− e−kt/γ

)
. (2.29)

The above expression can be shown to be positive for all times, as it must be.
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2.2.3 Case III: Entropy production with athermal initial co ndition: a

case study for a relaxation dynamics

In this subsection, we study a system relaxing towards equilibrium. If initially the system

is prepared in a nonequilibrium state, then in absence of anytime-dependent perturbation or

protocol, it will relax to a unique equilibrium state. The statistics of total entropy production

is analyzed. Our system consists of an overdamped Brownian particle in a harmonic oscillator

(V0(x) = 1
2
kx2) and the temperature of the surrounding medium isT . The initial distribution

of the particle is taken to be

p0(x0) =

√
k

2πσ2
x

exp

(
−kx2

0

2σ2
x

)
(2.30)

Note that whenσ2
x 6= T , it represents athermal initial distribution. Since no protocol is being

applied, the thermodynamic work done on the system is identically zero. As time progresses,

the distribution evolves with probability density given by

p1(x, t) =

√
1

2π〈x2〉 exp

(
− x2

2〈x2〉

)
, (2.31)

where〈x2(t)〉 is the variance inx at timet, which is equal to〈x2(t)〉 = T
k

+ σ2
x−T
k

e−2kt/γ . The

distributionP (x, t) relaxes to equilibrium distribution as timet → ∞. Using equation (2.11),

(2.30) and (2.31), we get

∆stot = −∆U

T
− 1

2
ln

(
σ2

x

k〈x2〉

)
−
(
− x2

2〈x2〉 +
kx2

0

2σ2
x

)
.

Now, considering the fact that∆U = 1
2
k(x2 − x2

0), we arrive at

∆stot =
k

2

(
σ2

x − T

Tσ2
x

)
x2

0 +
1

2

(
T − k〈x2〉

T 〈x2〉

)
x2 − 1

2
ln

(
σ2

x

k〈x2〉

)
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This can be written in a simplified form,

∆stot =
1

2
αx2

0 +
1

2
βx2 + κ, (2.32)

whereα = k
(

σ2
x−T
Tσ2

x

)
; β =

(
T−k〈x2〉

T 〈x2〉

)
andκ = −1

2
ln
(

σ2
x

k〈x2〉

)
.

The total entropy production is a quadratic function ofx andx0 and henceP (∆stot) is not

Gaussian. To obtainP (∆stot), we have to know the joint distribution ofx0 andx, namely

P (x0, x, t) which in our problem can be obtained readily and is given by

p(x0, x, t) =
1

2π
√

detA
exp[(a− 〈a〉)† .A−1. (a− 〈a〉)] (2.33)

where

a =




x0

x


 , (2.34)

x0 andx being respectively the initial and final positions of the particle. The matrixA is defined

through

A ≡ 〈(a− 〈a〉).(a− 〈a〉)†〉 = 〈a.a†〉

=

〈


x0

x



(

x0 x

)〉
=




〈x2
0〉 〈xx0〉

〈xx0〉 〈x2〉




=




σ2
x

k
σ2

x

k
e−kt/γ

σ2
x

k
e−kt/γ T

k
+
(

σ2
x−T
k

)
e−2kt/γ




. (2.35)

With the help of the distribution given in (2.33), one can write, using equation (2.32),

P (∆Stot, t) =

∫ ∞

−∞

dx dx0P (x0, x, t)

× δ

[
∆stot −

(
α

2
x2

0 +
β

2
x2 + κ

)]
. (2.36)
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The evaluation ofP (∆stot) is a difficult task. However, the Fourier transform̂P (R, t) ≡
∫

eiR∆stotP (∆stot)d∆stot of P (∆stot) can be obtained easily. To this end we can carry out the

analysis similar to that for heat distribution in a driven harmonic oscillator by Zon et al [40].

Finally we get

P̂ (R, t) =
eiRκ

√
det(I− iRA.B)

. (2.37)

The details of this derivation are given in appendix C.3. Substituting R = i in the above

equation, and we get̂P (R = i, t) = 〈e−∆stot〉 = 1, consistent with the IFT (see appendix C.3

for details). From equation (2.37), we also note thatP̂ (R, t) 6= P̂ (i − R, t), indicating that

DFT is not valid for this linear problem in the presence of athermal initial distribution. From

above equation, we can also obtain average entropy production given by

〈∆stot〉 =
1

i

∂

∂R
P̂ (R, t)

∣∣∣∣
R=0

=
σ2

x − T

2T

(
1− e−2kt/γ

)
− 1

2
ln

[
σ2

x

T + e−2kt/γ(σ2
x − T )

]
. (2.38)

Similarly, higher moments can also be obtained with the use of this characteristic function.

One can invert the characteristic function to obtainP (∆stot) using integral tables. However,

the expression is complicated and unilluminating. From theFourier transform, it is obvious

thatP (∆stot) is non-Gaussian.

In figure 2.2, we have plottedP (∆stot) versus∆stot over a fixed time interval (see figure

caption) for two different cases for which initial width of the distributionσ2
x equals 0.05 and

0.2. The temperature of the bath is 0.1. The distributionP (∆stot) in both cases are asymmetric.

For the caseσ2
x = 0.2, the distribution is peaked around the negative value of∆stot. However,

it exhibits a long tail making sure that〈∆stot〉 is always positive. Since initial width of the

distribution is larger than the thermal distribution, change in the entropy of the system during

the relaxation process is negative and it dominates the total entropy production. Hence we

obtain peak inP (∆stot) in the negative side of∆stot. For the caseσ2
x = 0.05, change in the

entropy of the system is positive. Hence peak inP (∆stot) is in the positive region. In both
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Figure 2.2: The figure shows plots ofP (∆stot) vs ∆stot during relaxation to equilibrium (external
protocol is absent). The initial distributions are athermal with σ2

x = 0.05 (solid line) andσ2
x = 0.2

(dashed line). The spring constant isk = 0.1 and observation time wast = 40, by which the system has
reached equilibrium (see inset). The inset shows plots average entropy versus observation time for the
same initial distributions.

cases, we obtain〈e−∆stot〉 equal to unity within our numerical accuracy: 0.978 (σ2
x = 0.2) and

1.001 (σ2
x = 0.05), consistent with IFT. In the inset, we have plotted〈∆stot〉 as a function of

time for the above cases.〈∆stot〉 is a monotonically increasing function of time and saturates

asymptotically when equilibrium is reached. It may be notedthat equilibrium is characterized

by zero total entropy production, change in the entropy of bath at any instant being compensated

by equal and opposite change in entropy of the system.

2.3 Some relations resulting from the average entropy pro-

duction fluctuations over finite time

We now discuss some related offshoots of the total entropy production. These give a better

bound for the average work done over a finite time and provide adifferent quantifier for the

footprints of irreversibility. The Jarzynski non-equilibrium work relation [33] relates work

done over a finite time in a non-equilibrium state to the equilibrium free energy differences,
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namely,

〈e−βW 〉 = e−β∆F . (2.39)

Here the angular brackets denote an average over a statistical ensemble of realizations of a given

thermodynamic process. The finite time thermodynamic process involves changing the time

dependent thermodynamic parameterλ(t) of the system from initial valueλ(0) = A to a final

valueλ(τ) = B. λ(t) can be an arbitrary function of time. Initially the system isprepared in

equilibrium state corresponding to parameterA, and workW is evaluated over a timeτ . At the

end of the periodτ , the system in general will not be at equilibrium corresponding to parameter

B, yet from this non-equilibrium work, one can determine the difference in equilibrium free

energies,∆F , between the states described byA andB, using equation (2.39). From the same

equation, using Jensen’s inequality, it follows that

〈W 〉 ≥ ∆F = FB − FA. (2.40)

This result is consistent with the Clausius inequality, which is written in the form of work

and energy, instead of the usual heat and entropy. Using Jensen’s inequality and the integral

fluctuation theorem of entropy production, namely equation(2.9), it follows that the average

total entropy production over a timeτ , 〈∆stot〉 ≥ 0. Using equation (2.2d), this can be rewritten

as

〈∆stot〉 =
1

T
〈W −∆U + T∆s〉 ≥ 0⇒ 〈W 〉 ≥ 〈∆U − T∆s〉, (2.41)

where∆U and∆s are the changes in internal energy and in system entropy respectively. The

time-dependent free energy in a nonequilibrium state can bedefined as [76]:

F (x, t) = U(x, t)− Ts(x, t) = U(x, t) + T ln p(x, t), (2.42)

which is in general a fluctuating quantity. Since free energydepends on entropy, it contains the

information of the whole ensemble. In equilibrium, the expectation value of this free energy

reduces to the Helmholtz free energy. Using (2.41) and the given definition of nonequilibrium
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free energy described above, it follows that

〈W 〉 ≥ 〈∆F (τ)〉, (2.43)

where∆F (τ) = F2(τ)− F1(0).

If initially the system is prepared in equilibrium with parameterA, F1 equals equilibrium

free energyFA. F2(τ) is determined by the probability distribution at the end point of the

protocol at which the system is out of equilibrium with system parameter atλ = B, i.e.F2(τ) ≡

U(x, τ) + T ln p1(x, τ). Now in the following, we show that

〈∆F (τ)〉 ≥ ∆F = FB − FA, (2.44)

thus giving a better bound for the average work done over a finite time. To this end, consider

a situation at which initially the system is prepared in equilibrium with parameterλ = A

(corresponding to free energyFA) and is allowed to evolve with the time-dependent protocol

λ(t) up to timeτ at whichλ = B. Beyondτ , the system is allowed to relax to equilibrium

by keepingλ fixed at B. At the end of the entire process, the total change inequilibrium free

energy equalsFB − FA. The free energy being a state function, one can rewrite it as

FB − FA = 〈FB − F2(τ) + F2(τ)− FA〉

= FB − 〈F2(τ)〉+ 〈∆F (τ)〉. (2.45)

Here,〈∆F (τ)〉 is the average change in the nonequilibrium free energy,〈F2(τ)〉 − FA, dur-

ing the process up to timeτ , whereasFB − 〈F2(τ)〉 is the change in the free energy during

the relaxation period when the protocol is held fixed. One canreadily show that [76] during

the relaxation process towards equilibrium, the average (or expectation value) of free energy

always decreases, i.e.,〈FB − F2(τ)〉 is negative. From this and equation (2.45), it follows that

〈∆F (τ)〉 ≥ FB−FA. Thus we get a better bound for the average work done than thatobtained

from the Jarzynski identity [33].
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To illustrate this, in figure 2.3 we have plotted〈W 〉, 〈∆F (τ)〉 and∆F for a driven harmonic

oscillatorU(x) = 1
2
kx2 with forcef(t) = A sin ωt as a function of the amplitude of driving

A. For this graph, system parameterf(t) changes fromf(0) = 0 to f(τ) = A (∆F =

FB − FA = −A2

2k
), i.e., for a time variation fromt = 0 to t = τ = π

2ω
. We observe from the

figure that〈∆F (τ)〉 is indeed a better bound. The analytical results for this model are presented

in appendices C.4 and C.5.
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Figure 2.3: Plots for∆F, 〈∆F (τ)〉 and〈W 〉 as functions of the driving amplitudeA, with the parameter
values set atω = 0.2, k = 0.1 andτ = π/2ω.

Some remarks, however, are in order. The realizations for which W < ∆F need not

correspond to∆stot < 0, and vice versa. This implies that the trajectories which violate the

inequality∆stot ≥ 0, do not necessarily violate the inequalityW ≥ ∆F , although both the

inequalities are closely related to the second law [77] thatis valid on average. Equation (2.43)

can be treated as a generalization of maximum work theorem1 to nonequilibrium processes.

Dissipation is related to our ability to distinguish the arrow of time. Hence the dissipated

work 〈Wd〉 = 〈W 〉 − ∆F is recently identified as the measure of irreversibility. Moreover,

it turns out that the relative entropy of microscopic trajectoriesD1(P ||P̃ ) in full path space

between forward (P ) and reverse (̃P ) processes is indeed equal to dissipative work,

1This theorem states that work extracted from a system is maximum for a reversible process. In our notation,
sinceW is the work doneon the system, the theorem implies thatW is minimum for a reversible process.
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〈Wd〉 = D1(P ||P̃ ). (2.46)

HenceD1(P ||P̃ ) works as a measure of irreversibility or indistinguishability between forward

and backward evolutions. Here, forward evolution corresponds to the system being prepared

initially at equilibrium in the state with control parameter λ(0) = A evolved up to timeτ

at which the control parameter isλ(τ) = B. During the backward evolution, the system is

prepared in equilibrium with control parameterB and the time-reversed protocol is applied

from B to A. For details, see [60–63]. Separately, it can also be shown by using Crooks

identity [42,61].

〈Wd〉 = D(P (W )||P̃(−W )) (2.47)

Here D(P (W )||P̃ (−W )) is the relative entropy between the two probability distributions

P (W ) and P̃ (−W ) which are the work distributions for the same thermodynamicprocess

for forward and backward evolutions respectively. This brings us to an important conclusion

that dissipation can be revealed by any finite set of variables which contain information about

the work or from the dynamics of those variables which coupleto the control parameterλ.

Thus one can identify few dynamical variables in which traces of the dissipation reside. This is

unlike D(P ||P̃ ), which requires information about entire set of microscopic system variables

during their evolution.

We note that〈∆stot〉 can be taken as the measure of irreversibility as it also represents the

relative probabilityD2(P ||P̃ ) between forward and time-reversed backward protocols [27–29]:

〈∆stot〉 = D2(P ||P̃ ) =

∫
D[X]p(x0)P [X|x0] ln

(
p(x0)P [X|x0]

p1(x̃τ )P̃ [X̃|x̃τ ]

)
. (2.48)

whereP [X|x0] andP̃ [X̃|x̃τ ] are the shorthand notations for the probabilities of traversing the

entire forward path fromt = 0 to t = τ described byX(t) and that of traversing the reverse

path described bỹX(τ − t). For details, see references [27–29]. Here, the forward evolution
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corresponds to the system being prepared initially in any arbitrary state and evolved up to time

τ along a prescribed protocol. At the end of the protocol, the system is in a statep1(x, τ) de-

termined by the initial condition and the dynamics. During the backward process, the system

is assumed to be in thesamestate corresponding to the end point of forward evolutionp1(x, τ)

and protocol is time-reversed, thereby evolving the systemalong the backward trajectory. Un-

like for work (equation (2.47)), there is no Crooks’-like identity for the total entropy production

between forward and reverse process (except in the stationary state). Hence it is not possible

to describe the measure of irreversibility or dissipation in terms of the relative entropy between

probability distribution of∆stot for forward and backward processes. Thus, the information

of irreversibility is contained in all the microscopic variables associated with the system. This

can also be noticed from the fact that the definition of total entropy production, involves the

probability density of all the system variables. Moreover,this probability density contains the

information about the initial and final ensembles of the system variables.

Identification of〈∆stot〉 as a measure of irreversibility, is tantamount to identifying average

dissipative work over a finite time process〈W − ∆F (τ)〉 ≡ 〈Wd(τ)〉 as a measure of irre-

versibility, where〈∆F (τ)〉 is the nonequilibrium change in average free energy over a finite

time as mentioned before. Needless to say, for this measure〈Wd(τ)〉, the system need not be in

equilibrium at the beginning of the forward process which isa necessary condition for earlier

defined measure for irreversibility [60–63].

2.4 Conclusion

In conclusion, we have shown that in a class of solvable linear models,∆stot satisfies DFT even

in the transient regime provided the system is initially prepared in an equilibrium state. For

athermal initial condition, the nature of total entropy production is analyzed during a relaxation

process. The bound on average entropy production over a finite time process leads to a better

bound for the average work done over the same finite time interval. Some points have been

raised if one assigns meaning to the average entropy production as a measure of irreversibility.
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This measure implies the generalization of Clausius’ statement to nonequilibrium finite time

processes, namely〈Wd(τ)〉 = 〈W −∆F (τ)〉 ≥ 0.
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Chapter 3

Fluctuation theorems in presence of

information gain and feedback

3.1 Introduction

One of the major breakthroughs in the field of fluctuation theorems has been the Jarzynski

Equality [33], which has already been stated in the previouschapters. A direct outcome of this

equality is the second law of thermodynamics, which states that the average work done on a

system that is initially in equilibrium with a thermal reservoir, cannot be less than the change in

free energy during the process:〈W 〉 ≥ ∆F. A further generalization of the Jarzynski Equality

is the the Crooks’ Work Theorem [42].

The above theorems are valid for what are known asopen-loopfeedback, i.e., when the pro-

tocol for the entire process is predetermined. In contrast,in a closed-loopfeedback, a system

observable is measured along the forward trajectory, and the protocol is changed depending

on the outcomes of these measurements1. These systems have recently attracted much inter-

est, because they can enhance the efficiency of a process [21,79, 82–89]. For such feedback-

controlled systems, the fluctuation theorems need modifications so as to account for the infor-

1Perhaps the simplest example of such a feedback driven process is the Szilard engine [78,79], which consists
of a single particle in a box, into which a movable partition is inserted. Now the position of the particle is measured,
and depending on which side of the partition it is present, the partition is moved so as to extract work from the
system. The AFM cantelever, is another example [81].
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mation gained through measurement. Sagawa and Ueda have derived these extended relations

for both the classical [82] and the quantum [21] cases. In theoriginal papers, a single mea-

surement (at some instantt = tm) was considered. Subsequently, in a detailed review [83], the

authors have derived the relations in the classical case, when multiple measurements are being

performed.

In this work, we rederive the results for the classical systems, assuming the known fluctua-

tion theorems in their integral as well as detailed form [84]. The same treatment goes through

for deriving the generalized Hatano-Sasa identity, which provides equalities for a driven system

from one steady state to another. We also extend the same treatment to the quantum case, and

show that no matter how many intermediate projective measurements and subsequent feedbacks

are performed, the extended Tasaki-Crooks fluctuation theorem remains unaffected. Although

we have considered non-degenerate states for the quantum system, it is easy to extend the treat-

ment to the degenerate case. The efficacy parameters for classical and quantum systems are

also obtained.

3.2 The System

We have a Brownian particle that is initially prepared in canonical equilibrium with a heat bath

at temperatureT . Now, we apply an external driveλ0(t) from timet0 = 0 up tot = t1. At t1,

we measure the state of the system and find it to bem1 (see figure 3.1). Then, we modify our

protocol fromλ0(t) to λm1
(t) and evolve the system up to timet2, where we perform a second

measurement with outcomem2. Subsequently the protocol is changed toλm2
(t), and so on

up to the final form of the protocolλmN
(t), which ends att = τ (total time of observation).

However, the time instants at which such measurements are taken need not be equispaced.

We assume that there can be a measurement error with probability p(mk|xk), wheremk is the

measurement outcome at timetk, when the system’s actual state isxk. Obviously, the value of

∆F will be different for different protocols.
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Figure 3.1: A typical phase space trajectoryx(t) vs t. The actual and the measured states at timetk are
xk andmk, respectively.

3.3 Rederivation of previous results

3.3.1 Extended Jarzynski equality

The results of this section have already been derived in [79]. The result for a single measure-

ment has been derived in [82]. We briefly outline the derivation in a simpler way, assuming

the already known fluctuation theorems in their integral as well as detailed forms. This would

be helpful in bringing out the similarity between the classical and quantum approach. For a

givenset of observed valuesM ≡ {m1, m2, · · · , mN}, which we would call themeasurement

trajectory, we have a given protocolΛM(t) ≡ {λ0(t), λm1
(t), λm2

(t), · · · , λmN
(t)}. Here, the

notation implies that the functional form of the protocol isλ0(t) from timet = 0 to t = t1, then

it is λm1
(t) from t = t1 to t = t2, and so on, up to the final formλmN

(t) from t = tN to t = τ .

This protocol depends on all the measured values{mk}, as explained above2. For such a given

protocol, the Jarzynski Equality must be satisfied. The Jarzynski Equality,〈e−β(W−∆F )〉 = 1,

can be explicitly written as

∫
D[X] peq(x0) PΛM

[X|x0] exp {−βW [X, M ] + β∆F (λmN
(τ))} = 1, (3.1)

wherepeq(x0) is the equilibrium distribution of the system at the beginning of the protocol,

PΛM
[X|x0] is the path probability for this fixed protocol, and the workW is a functional of the

2In other words, we assume that the measurement trajectoryM is in one-to-one correspondence with the
functional form of the full protocol, namelyΛM (t).

47



path.D[X] is a measure for the functional integral over all possible phase space trajectories.

Since we are initially beginning with a predetermined protocol λ0(t), the value of∆F depends

only on the value of the protocol at the final time, i.e., onλmN
(τ).

Now we average over all possible protocols (i.e., over all possible measurement trajecto-

ries), and readily arrive at

∫
D[M ]P [M ]

∫
D[X] peq(x0) PΛM

[X|x0] exp {−βW [X, M ] + β∆F (λmN
(τ))} = 1.

(3.2)

Here,D[M ] ≡ dm1dm2 · · · dmN , andP [M ] is the joint probability of a set of measured values.

Themutual information, which would soon appear in our derivation, is defined as [79]

I ≡ ln

[
p(m1|x1) p(m2|x2) · · · p(mN |xN )

P [M ]

]
. (3.3)

The mutual information essentially provides a measure of the information contained in the

measurement outcomes about the actual values of the observables being measured, when the

measuring device is in general subject to measurement errors.

The path probabilityPΛM
[X] for a fixed protocolΛM(t) (i.e., for a fixed measurement

trajectoryM) is given by

PΛM
[X] = peq(x0) Pλ0

[x0 → x1] Pλm1
[x1 → x2] · · · PλmN

[xN → xτ ]. (3.4)

The notationPλmk
[xk → xk+1] represents the probability of the path fromxk to xk+1, under

the protocolλmk
(t).

The joint probability for obtaining a phase space trajectory X and the corresponding mea-

surement trajectoryM , in presence of feedback, will be given by

P [X, M ] = peq(x0)Pλ0
[x0 → x1] p(m1|x1)Pλm1

[x1 → x2]

× p(m2|x2)Pλm2
[x2 → x3] · · · p(mN |xN)PλmN

[xN → xτ ].
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= PΛM
[X] p(m1|x1) p(m2|x2) · · · p(mN |xN ), (3.5)

on using eq. (3.4). Using eqs. (3.3) and (3.5), we have

PΛM
[X]P [M ] = P [X, M ]e−I . (3.6)

Using (3.6) in (3.2), and using the relationPΛM
[X|x0]peq(x0) = PΛM

[X], we get

∫
D[X]D[M ] P [M ]PΛM

[X] e−β(W−∆F ) = 1

⇒
∫
D[X]D[M ] P [X, M ] e−β(W−∆F )−I = 1.

To keep the notations simple, the arguments ofW , ∆F andI have been omitted. The above

relation is then the generalized Jarzynski equality:

〈
e−β(W−∆F )−I

〉
= 1. (3.7)

The Jensen’s inequality leads to the second law of thermodynamics which is generalized due to

information gain, namely,〈W 〉 ≥ 〈∆F 〉 − kBT 〈I〉. Since〈I〉 ≥ 0 (being a relative entropy3)

[80], work extracted from the system can be made more than that in the reversible case, even

though the system is in contact with a single bath, by using feedback controlled drive.

3.3.2 Detailed Fluctuation Theorem

The probability of forward path is given by (3.5). To generate a reverse trajectory, we first

select one of the measurement trajectoriesM (with probabilityP [M ]), among all the possible

measurement trajectories generated in the forward process. We then begin with the system

3This is clear from eq. (3.6). We find that

〈I〉 =

∫
D[X ]D[M ]P [X, M ] ln

P [X, M ]

PΛM
[X ]P [M ]

= D(P [X, M ] || PΛM
[X ]P [M ]),

D(p(x)||q(x)) being the relative entropy between the two probability densitiesp(x) andq(x).
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being at canonical equilibrium at the final value of the forward protocolλmN
(τ), andblindly

run the full forward protocol in reverse, i.e.,ΛM(t) → Λ̃M(t) ≡ ΛM(τ − t). We will use the

notationt̃ ≡ τ − t to denote the time elapsed along the reverse process. The time-reversal of

the forward protocol is shown in figure 3.2.

ΛM(τ − t)

ΛM(t)

Figure 3.2: The figure at the top shows several protocols generated in the forward process, as a function
of time. To generate the reverse process, we choose one of these protocols, say the bold one with
functional formΛM (t), and time reverse it, as shown in the lower figure.

It may be noted that, had we used feedback in the reverse process just as it had been used

along the forward process, then in the time interval fromt̃i+1 to t̃i, we should have the protocol

λmi
(τ − t), ending at timẽti where the measured outcome should bemi. Sincemi is thecause

and the protocolλmi
(τ − t) is itseffect, the above procedure of implementing the protocol first

and then measuring the outcome that determines it, would be an acausal one [79]. Thus, no

feedback is performed during the reverse process in order torespect causality4.

In the present case, the probability of a reverse trajectorysimply becomes

P̃ [X̃; M ] = P [M ]PΛ̃M
[X̃]. (3.8)

P̃ [X̃; M ] should not be confused with the joint probabilityPΛ̃M
[X̃, M̃ ], that we would

use later (see eq. (3.12)). The former represents the probability of the reverse path with the

particular protocol corresponding to the fixed measurementtrajectoryM , namelyPΛ̃M
[X̃],

4In the next chapter, we will see that even the reverse processcan be generated by using feedback, albeit by a
different algorithm, without breaking the causality.
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multiplied by the probabilityP [M ] of choosing this particular measurement trajectory. On

the other hand, the latter represents the following: suppose we are using the reverse protocol

Λ̃M(τ − t) to generate the reverse process. Now we perform measurements along the reverse

process as well, at the time instantst̃N , t̃N−1, and so on, up tõt1. The joint probability of a

trajectoryX̃ along with the measured outcomesM̃ in this process, will be denoted byP [X̃, M̃ ].

Now we take the ratio of eqs. (3.5) and (3.8), and use eq. (3.6)to get

P [X, M ]

P̃ [X̃; M ]
=

PΛM
[X]P [M ] eI

PΛ̃M
[X̃]P [M ]

= eβ(W−∆F )+I , (3.9)

where we have used the known Crooks’ work theorem (for a predetermined protocol) [27,42],

PΛM
[X]

PΛ̃M
[X̃]

= eβ(W−∆F ). (3.10)

Here,PΛ̃M
[X̃] is the probability density for the time-reversed phase space trajectoryX̃ under

the time-reversed protocol̃ΛM . Eq. (3.9) is the generalized Crooks theorem in the presenceof

feedback.

3.3.3 The generalized Jarzynski equality and the efficacy parameter

The Jarzynski equality can also be extended to a different form in the presence of information:

〈e−β(W−∆F )〉 = γ, (3.11)

whereγ is the efficacy parameter [82, 83]. Note that the right hand side would be equal to

one in absence of any feedback. The efficacy parameterγ defines how efficient our feedback

control is. This is because if dissipated work along a process is less, then eq. (3.11) says thatγ

is more and hence the process is more efficient.

Following similar mathematical treatment as in the derivation of extended Jarzynski equal-
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ity, and using the definition of dissipated work,Wd = W −∆F , we have

γ =

∫
D[X]D[M ]P [X, M ]e−βWd[X,M ]

=

∫
D[X]D[M ]P̃ [X̃; M ] eI[X,M ]

=

∫
D[X]D[M ]PΛ̃M

[X̃]p(m0|x0)p(m1|x1) · · ·p(mN |xN )

=

∫
D[X]D[M ]PΛ̃M

[X̃]p(m̃0|x̃0)p(m̃1|x̃1) · · ·p(m̃N |x̃N )

=

∫
D[X̃]D[M ]PΛ̃M

[X̃, M̃ ] =

∫
D[M ]PΛ̃M

[M̃ ]. (3.12)

In the second step we have used eq. (3.9), while in the third step the definition ofI[X, M ] (eq.

(3.3)) has been used. In the fourth step, the time-reversal symmetry of the measurements [82],

i.e., the relationp(m̃k|x̃k) = p(mk|xk), has been assumed.PΛ̃M
[X̃, M̃ ] is the joint probability

of obtaining both the backward trajectorỹX and the set of measured outcomesM̃ in the reverse

process under the protocolΛ̃M (see the discussion below eq. (3.8)). Physically, this means

thatγ also describes the sum of the probabilities of observing time-reversed outcomes in the

time-reversed protocols. Note that the integral overPΛ̃M
[M̃ ] is not equal to unity, because the

reverse protocol̃ΛM is itself dependent onM , and hence the probability function depends on

the forward measurements as well.

Experimental relevance: Some of the results in this section, including the computation of

efficacy parameter, have recently been verified experimentally [92]. The setup consists of a

dimeric particle pinned at a single point, undergoing rotational Brownian motion inside a buffer

solution, and subjected to electric fields generated by quadrant electrodes. The particle essen-

tially experiences a potential resembling a spiral staircase. Although it diffuses by jumping

either upwards or downwards along the staircase, its downward jumps are more probable. The

feedback is designed such that, whenever it jumps upwards, abarrier is introduced so as to

block its subsequent downward jumps. This leads to a net increase in its free energy at the end

of the process, which is more than the work done on the system.
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3.4 Modification in Seifert’s and Hatano-Sasa identities

Now we derive other identities which are straightforward generalizations of their earlier coun-

terparts, in the presence of information. The mathematics involved is the same as in sections

3.3.1 and 3.3.2. For a predetermined protocol, if the probability distribution of the initial states

for the forward path (denoted byp0(x0)) are arbitrary rather than being the Boltzmann distribu-

tion, and that of the reverse path is the final distribution ofstates (denoted bypτ (xτ )) attained

in the forward process, we obtain the Seifert’s theorem in lieu of the Jarzynski equality [28,29]:

〈e−∆stot〉 = 1. (3.13)

Here,∆stot = ∆sm + ∆s is the change in the total entropy of bath and system. The path-

dependent medium entropy change is given by∆sm = Q/T , whereQ is the heat dissipated

into the bath.∆s is the change in the system entropy given by∆s = ln[p0(x0)/pτ(xτ )]. Eq.

(3.13) can be explicitly written as (see the discussion before eq. (3.1))

∫
D[X] p0(x0) PΛM

[X|x0] exp {−∆stot[X, M ]} = 1, (3.14)

Averaging over different sets of protocols determined by the different measurement trajec-

tories, we get

∫
D[M ]P [M ]

∫
D[X] p0(x0) PΛM

[X|x0]e
−∆stot[X,M ] = 1. (3.15)

Proceeding exactly in the same way as in section 3.3.1 (eqns.(3.2)–(3.7)), we readily get

〈e−∆stot−I〉 = 1. (3.16)

Eq. (3.16) is the generalization of the entropy production theorem and it gives the modified
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second law in the presence of feedback:

〈∆stot〉 ≥ −〈I〉. (3.17)

Thus with the help of information (feedback), the lower limit of change in average total entropy

change can be made less than zero, by an amount given by the average mutual information

gained.

The Hatano-Sasa identity [47] can also be similarly generalized:

〈
exp

[
−
∫ τ

0

dtλ̇
∂φ(x; λ)

∂λ
− I

]〉
= 1, (3.18)

whereφ(x; λ) ≡ − ln ρss(x; λ), the negative logarithm of the nonequilibrium steady statedis-

tribution corresponding to parameter valueλ. The derivation (3.18) is simple and similar to the

earlier derivations (see sections 3.3.1 and 3.3.2), nad hence is not reproduced here.

In terms of the excess heatQex, which is the heat dissipated in addition to the housekeeping

heat, when the system moves from one steady state to another,the above equality (eq. (3.18))

can be rewritten in the following form (for details see [47]):

〈exp[−βQex −∆φ− I]〉 = 1. (3.19)

Using the Jensen’s inequality, the generalized second law for transitions between nonequilib-

rium steady states follows, namely,

T 〈∆s〉 ≥ −〈Qex〉 − kBT 〈I〉, (3.20)

where∆s is the change in system entropy defined by∆s ≡ − ln ρss(x,λτ )
ρss(x,λ0)

= ∆φ.
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3.5 Quantum case

Now we extend the above treatment to the case of a quantum opensystem. Hänggi et al. have

shown [20] that for a closed quantum system, the fluctuation theorems remain unaffected even

if projective measurements are performed in-between. Thishappens in spite of the fact that

the probabilities of the forward and backward paths (by “path” we mean here a collection of

the successive eigenstates to which the system collapses each time a projective measurement

is performed) do change in general. Taking cue from this result, we proceed as follows. The

supersystem consisting of the bath and the system evolve under the total Hamiltonian

H(t) = HS(t) + HSB + HB. (3.21)

The bath HamiltonianHB and the interaction HamiltonianHSB have been assumed to be time-

independent, whereas the system HamiltonianHS(t) depends explicitly on time through a time-

dependent external driveλ(t). We first prepare the supersystem at canonical equilibrium at

temperatureT . At initial time t0 = 0, we measure the total Hamiltonian, and the collapsed

eigenstate is|k0〉. The notation means that the total system has collapsed to the kth
0 eigenstate

(of the corresponding measured operator, which isH(0) att = 0) when measured at timet = 0.

The supersystem consisting of the bath and the system is described by the density matrix

ρ(0) ≡ e−βH(0)

Y (0)
⇒ ρk0k0

=
e−βEk0

Y (0)
. (3.22)

In the above relation,ρk0k0
are the diagonal elements of the initial density matrix of the super-

system, andY (0) is the partition function for the entire supersystem:

Y (0) = Tr e−βH(0). (3.23)

We then evolve the system up to timet1 under a predetermined protocolλ0(t), and att1 we

measure some observableM of the system. Let the outcome bem1, whereas the actual col-
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lapsed state is|k1〉 corresponding to eigenvalueMk1
. This outcome is obtained with probability

p(m1|k1), which is an assumed classical error involved in the measurement. Now we introduce

the feedback by modifying the original protocol toλm1
(t), and then continue up tot2, where

we perform the measurement to get outcomem2, the actual state being|k2〉. Subsequently

our protocol becomesλm2
(t), and so on. Thus the probability of getting the set of eigenstates

K ≡ {|k0〉, |k1〉, · · · , |kτ〉} with the measurement trajectory{mk} ≡ M is given by

P [K, M ] =ρk0k0
|〈k1|Uλ0

(t1, 0)|k0〉|2 p(m1|k1) |〈k2|Uλm1
(t2, t1)|k1〉|2

· · · p(mN |kN) |〈kτ |UλmN
(τ, tN)|kN〉|2. (3.24)

Here,Uλmi
(ti+1, ti) is the unitary evolution operator from timeti to time ti+1. The reverse

process is generated by starting with the supersystem in canonical equilibrium with protocol

valueλmN
(τ), and blindly reversing one of the chosen protocols of the forward process. Now

we need to perform measurements along the reverse process aswell, simply to ensure that the

statedoescollapse to specific eigenstates and we do obtain an unambiguous reverse trajectory

in each experiment. However, in order to respect causality [79], we do not perform feedback

using these measurements during the reverse process. The probability for a trajectory that starts

from initial collapsed energy eigenstate|kτ〉 and follows the exact sequence of collapsed states

as the forward process, is given by

P̃ [K̃; M ] =|〈k0|Θ†Uλ̃0
(0̃, t̃1)Θ|k1〉|2|〈k1|Θ†Uλ̃m1

(t̃1, t̃2)Θ|k2〉|2

· · · |〈kN |Θ†Uλ̃0
(t̃N , τ̃)Θ|kτ〉|2 ρkτ kτ P [M ]. (3.25)

Here,Θ is a time-reversal operator [20], and|〈kn|Θ†Uλ̃mn
(t̃n, t̃n+1)Θ|kn+1〉|2 is the probability

of transition from the time-reversed stateΘ|kn+1〉 to Θ|kn〉 under the unitary evolution with

the reverse protocol:Uλ̃mn
(t̃n, t̃n+1) = Uλmn

(τ − tn, τ − tn+1). The tilde symbol implies time

calculated along the reverse trajectory:t̃ ≡ τ − t. ρkτ kτ is the diagonal element of the density

56



matrix when the system is at canonical equilibrium at the beginning of the reverse process:

ρkτ kτ =
e−βEkτ

Y (τ)
. (3.26)

Now we have,

Θ†Uλ̃mn
(t̃n, t̃n+1)Θ = Θ†T exp

[
− i

~

∫ t̃n

t̃n+1

Hλ̃mn
(t)dt

]
Θ

= T exp

[
+

i

~

∫ t̃n

t̃n+1

Hλ̃mn
(t)dt

]

= T exp

[
− i

~

∫ tn

tn+1

Hλ̃mn
(τ − t)dt

]

= T exp

[
− i

~

∫ tn

tn+1

Hλmn
(t)dt

]

= Uλmn
(tn, tn+1) = U †

λmn
(tn+1, tn). (3.27)

Here,T is the time-ordering operator. In the third step, the variable of integration has been

changed fromt to τ − t. In the next step, we have used the relationHλ̃mn
(τ − t) = Hλmn

(t),

which follows from the fact that̃λmn(τ − t) = λmn(t). Accordingly,

〈kn|Θ†Uλ̃mn
(t̃n, t̃n+1)Θ|kn+1〉 = 〈kn|U †

λmn
(tn+1, tn)|kn+1〉 = 〈kn+1|Uλmn

(tn+1, tn)|kn〉†.

(3.28)

Thus, while dividing eq. (3.24) by (3.25), all the modulus squared terms cancel, and we

have,

P [K, M ]

P̃ [K̃; M ]
=

ρk0k0

ρkτ kτ

p(m1|k1) · · · p(mN |kN)

P [M ]

=
Y (τ)

Y (0)
eβW+I , (3.29)

whereW ≡ Ekτ −Ek0
is the work done by the external drive on the system. This follows from

the fact that the external forces act only on the systemS. In the final step, eqs. (3.22), (3.26)
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and (3.3) have been invoked.

Now we follow [19] and define the equilibrium free energy of the system,FS(t), as the

thermodynamic free energy of the open system, which is the difference between the total free

energyF (t) of the supersystem and the bare bath free energyFB:

FS(t) ≡ F (t)− FB. (3.30)

Here,t specifies the values of the external parameters in the courseof the protocol at timet.

From the above equation, the partition function for the opensystem is given by [19,90]

ZS(t) =
Y (t)

ZB

=
Tr
S,B

e−βH(t)

Tr
B

e−βHB
, (3.31)

whereS andB represent system and bath variables, respectively. SinceZB is independent of

time, using (3.31) in (3.29), we have

P [K, M ]

P̃ [K̃; M ]
=

ZS(τ)

ZS(0)
eβW+I = eβ(W−∆FS)+I . (3.32)

The above relation is the extended form of the Tasaki-Crooksdetailed fluctuation theorem

for open quantum systems in presence of feedback where the measurement process involves

classical errors.

From (3.32), the quantum Jarzynski Equality follows:

∑

K

∫
D[M ]P [K, M ]e−β(W−∆FS)−I =

∑

K

∫
D[M ]P̃ [K̃; M ] = 1,

i.e.,
〈
e−β(W−∆FS)−I

〉
= 1. (3.33)

The summation extends over all possible intermediate collapsed states{|k1〉, |k2〉, · · · , |kN〉}.

This is valid for open quantum system and is independent of the coupling strength and the

nature of the bath.
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The quantum efficacy parameter is defined as〈e−β(W−∆FS)〉 ≡ γ, and the calculation ofγ

is exactly in the spirit of section 3.3.3, except that
∫
D[X] is replaced by

∑
K , i.e., summation

over all possible eigenstates. Finally we get the same result, namely,

γ =

∫
D[M ]PΛ̃M

[M̃ ]. (3.34)

3.6 Conclusion

In conclusion, we have rederived several extended fluctuation theorems in the presence of feed-

back, and have also derived some new ones. To this end, we haveused several equalities given

by the already known fluctuation theorems. We have also extended the quantum fluctuation

theorems for open systems, following the earlier treatment[19,20]. No assumption is made on

the strength of the system-bath coupling and the nature of the environment. However, we have

assumed that the measurement process leading to information gain involves classical errors.
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Chapter 4

Universal interpretation of efficacy

parameter in perturbed nonequilibrium

systems

4.1 Introduction

We have discussed about several fluctuation theorems in the foregoing chapters. In this chapter,

we will write the fluctuation theorems in the following general form:

P (Σt)

P T (ΣT
t )

= eΣt , (4.1)

whereP T is the functional form of the probability density along a process which is related to

the forward process through a conjugate transformationT (not to be confused with tempera-

ture). This transformation is not necessarily time-reversal. As before,Σt is some observable

that is to be measured (up to timet, say) and is in general a path function.P (Σt) is the prob-

ability density of this observable along the forward process, which in turn is parametrized by

an externally controlled time-dependent protocolλ(t). In the previous chapters,T was simply

the time-reversal operator that changes the signs of the velocities. However, there have been
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fluctuation theorems in whichT is not so. It may include the dual transformation or may be a

combination of both the dual transformation and time-reversal, as will be discussed later. The

argumentΣT
t in eq. (4.1) is the value assumed by the observable along the conjugate phase

space trajectory.

In this chapter, we will study the extended forms of these relations in feedback-controlled

processes, when feedback is applied along the reverse process as well [91] (still respecting the

causality of the process, as will be elaborated later). Thisis contrast to the last chapter, where

the reverse process was generated by blindly reversing the forward protocol.

In chapter 3, we had found that in the presence of feedback, the form of the second law

needs to be modified to:

〈Σt〉 ≥ −〈I〉; 〈I〉 ≥ 0. (4.2)

Here, the mutual information is defined as [21,79,82–84,86]

I ≡ ln
p(m0|x0)p(m1|x1) · · ·P (mN |xN)

P (m0, m1, · · · , mN)
, (4.3)

where the presence of measurement errors is assumed (see chapter 3). In the arguments of

the conditional probabilityp(mi|xi), mi is the outcome when a measurement is performed at

time ti, while xi is the actual value of the observable. The entire sequence ofmeasurement

outcomes1 is given byM ≡ {m0, m1, · · · , mN}, which are measured at time instants{t0 =

0, t1, · · · , tN}. The phase space trajectory will be denoted byX ≡ {x0, x1, · · · , xτ}, where

τ = tN+1. The sequence of protocols used will then beΛM(t) ≡ {λm0
(t), λm1

(t), · · · , λmN
(t)},

the subscripts denoting the measurement outcomes on which the functional form of the proto-

col depends. Here,λm0
(t) is the protocol in the time interval betweent0 andt1, λm1

(t) is the

protocol in the time interval betweent1 andt2, etc.

The Jarzynski equality [33,34] has two different generalized forms in the presence of feed-

back. The more commonly used form of the extended Jarzynski Equality (EJE) is [21, 79, 82–

1This time we would measure at the initial timet = 0 as well, unlike in the previous chapter.
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84,86]

〈e−βWd[X,M ]−I[X,M ]〉 = 1. (4.4)

Wd is the dissipated work defined throughWd = W−∆F , where∆F is the difference between

free energies at the end and at the beginning of a particular protocol. It is a functional of both

the phase space pathX as well as of the measurement trajectoryM . Note that the value of∆F

itself changes, depending the form of the protocol.

In eq. (4.4), the reverse trajectories are generated by simply reversing the sequence of one

of the forward protocols. As we will show,I[X, M ] will in general be replaced by a different

physical quantityφ[X, M ], if we choose to use feedback along the reverse process as well, i.e.,

〈e−βWd[X,M ]−φ[X,M ]〉 = 1. (4.5)

Other than eq. (4.4), there is yet another form of the extended Jarzynski Equality that has

been introduced in the literature [82,83]:

〈e−βWd[X,M ]〉 = γ. (4.6)

The efficacy parameterγ depends on the feedback control algorithm used along the forward

process, and determines the extent to which the feedback is efficient (i.e., more work can be

extracted from the system). We will find thatγ can be shown to be equal to the sum of prob-

abilities for observing the time-reversed measurements along the time-reversed trajectories. If

γ = 1, then we would have the Jarzynski equality in absence of feedback. The efficacy param-

eter has been measured experimentally [92] and equations (4.4) and (4.6) have been verified.

Using the Jensen’s inequality, we have the dissipated work bounded from below through the

relation

〈Wd[X, M ]〉 ≥ − ln γ. (4.7)

Thus,γ > 1 implies that work can be extracted, on average, from the system, even in the

presence of a single heat bath.
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Although this inequality looks similar to the one stated in eq. (4.2), it may seem to be a

trivial statement because it is a simple consequence of the definition of γ. However, the fact

that this definition lends a very clear physical meaning to the efficacy parameter and that this

meaning can be exploited to experimentally measureγ (without using the definition eq. (4.6))

underlines the importance of the relations (4.6) and (4.7).We explicitly show thatγ retains the

simple meaning even when we extend eq. (4.6) to driven systems making transitions among

nonequilibrium steady states under arbitrary feedback-controlled protocols.

4.2 Extended Jarzynski Equality

4.2.1 Blind time-reversal of protocol

As shown in [21, 79, 82–84, 86], in presence of information gain and of feedback appliedonly

along the forward trajectory, the Jarzynski Equality gets modified to eq. (4.4). This relation is

easily derived from the detailed fluctuation theorem, in thecase when the reverse protocol is

the blind time-reversal of the corresponding protocol along the forward process (see chapter 3).

Then the ratio of the forward and reverse trajectories become [79,84,86]

P [X, M ]

P̃ [X̃; M ]
=

PΛM
[X]

PΛ̃M
[X̃]
× p(m0|x0)p(m1|x1) · · ·P (mN |xN)

P (m0, m1, · · · , mN)
,

= eβWd[X,M ]+I[X,M ]. (4.8)

In the above equation,̃X is the time-reversed trajectory(x̃τ , x̃N , · · · , x̃0), PΛM
[X] is the prob-

ability density of phase space trajectories when the forward protocol is given byΛM (cor-

responding to the measurement trajectoryM); P [X, M ] and P̃ [X̃; M ] are the probabilities

of the forward and reverse processes, as has been explained in chapter 3. A simple cross-

multiplication followed by integration overX andM will give rise to the modified Jarzynski

Equality, eq. (4.4).
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4.2.2 Using feedback to generate reverse process

The reverse process can also be defined by designing a suitable feedback procedure to generate

the time-reversed protocol, which does not violate causality [93]. The feedback procedure is

as follows: we first measure system observable at time2 t = τ . Let the measurement outcome

be m̃′
τ (say), which is the time-reversed value ofm′

τ (which in turn can be equal to any of

the possible measurement outcomes). Then the protocolλm′
τ
(τ − t) is applied, till we reach

the time instantt = tN . At tN , we measure the outcome to bem̃′
N , and apply the protocol

λm′
N
(τ − t), and so on.

Now, suppose that the chosen forward protocol corresponds to the measurement outcomes

{m0, m1, · · · , mN} at times{t0 = 0, t1, · · · , tN}, respectively. By using the above algorithm,

we will get the exact time-reversed protocol only if the measurement outcomes along the re-

verse process are{m̃N , m̃N−1, · · · , m̃0} at the time instants{tN+1 = τ, tN , · · · , t1}, respec-

tively. This means that, we need to have,m̃′
τ = m̃N , m̃′

N = m̃N−1, and so on. Correspond-

ingly, the protocols applied areλmN
(τ − t), λmN−1

(τ − t), etc. Any other sequence of obtained

measured outcomes along the reverse process, would correspond to the reversal of a differ-

ent forward protocol. The procedure has been schematicallyrepresented in figure 4.1 for an

overdamped system, wherex̃i = xi andm̃i = mi.
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Figure 4.1: The above figure shows the forward (upper curve) and reverse (lower curve) phase space
trajectories for an overdamped system. The reverse protocol has been generated using feedback during
the reverse process. The reversal ofλmN

(t) to λmN
(τ − t) has been indicated in the time interval from

tN to τ .

2For clarity, for the time being, let us use the forward time todescribe the time instants in both the forward and
the reverse processes.
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In this process, i.e., changing the protocol according to measurement outcomẽmk−1 at time

t = tk, the reverse protocol is exactly reproduced without ever violating causality. This is

because nowhere are we implementing a protocol and then measuring the outcome that should

determine this protocol (as would have been the case if the measurements were not made at the

shifted time instants).

The joint probability density for a forward phase space trajectoryX and corresponding

measurement trajectoryM in presence of feedback is given by [84]

P [X, M ] =p(x0)p(m0|x0)Pλm0
[x0 → x1]p(m1|x1)Pλm1

[x1 → x2]

· · · p(mN |xN)PλmN
[xN → xτ ]. (4.9)

The probability for the reverse trajectory in presence of feedback becomes

P̃ [X̃; M ] =p(x̃τ )p(m̃N |x̃τ )Pλ̃mN
[x̃τ → x̃N ] p(m̃N−1|x̃N )Pλ̃mN−1

[x̃N → x̃N−1]

· · ·p(m̃0|x̃1)P̃λ̃m0

[x̃1 → x̃0]. (4.10)

Here, the notatioñλmk
(t) ≡ λmk

(τ − t), has been used.p(m̃k−1|x̃k) gives the error probability

of obtaining the outcomẽmk−1, when the actual state is̃xk.

This gives the new extended Crooks relation

P [X, M ]

P̃ [X̃; M ]
= eβWd[X]+∆sp[X,M ], (4.11)

We assume time-reversibility of measurements,p(m̃′
i|x̃i) = p(m′

i|xi), that is,p(m̃i−1|x̃i) =

p(mi−1|xi). Then we have,

∆sp[X, M ] ≡ ln
p(m0|x0)p(m1|x1) · · · p(mN |xN )

p(mN |xτ )p(mN−1|xN ) · · ·p(m0|x1)
. (4.12)

Here,∆sp represents a disorder parameter, but is not the mutual information (see eq. (4.3)) as

defined in [82]. Of course, equations (4.8) and (4.11) contain different information as well as
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provide different bounds for the average total entropy change for the system.

4.2.3 The general case
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Figure 4.2: The figure shows the representative plot of the phase space trajectory in a simple case for
the most general form of feedback that can be considered during the reverse process (the lower curve)
corresponding to the forward process (the upper curve). First, from t = τ to t = tn, we have the
feedback-controlled reverse protocol, while fromt = tn to t = tk we have used the blindly time-
reversed protocol. In the final part, up tot = 0, we revert to the feedback-controlled reverse protocol.

The general form of the probability density for a forward trajectory in presence of feedback

is given by [84] equation (4.9).

The general protocol to generate the reverse process would be to use both the protocols

described in sections 4.2.1 and 4.2.2 at random during the reverse process. Let us take one

simple case when, along the reverse process, up to timet = tn, we use the feedback-controlled

protocol of section 4.2.2. Then from timet = tn to t = tk, we use the blindly applied

reverse protocol of section 4.2.1. Finally, fromt = tk to t = 0, we once again use the

feedback-controlled reverse protocol (see figure 4.2, where the forward and reverse trajecto-

ries are shown for an overdamped system). Here,k andn can be any two integers chosen at

random from the set{1, 2, · · · , N}, with n > k. In this case, the reverse process becomes,
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P̃ [X̃; M ] ={p(x̃τ )p(m̃N |x̃τ )Pλ̃mN
[x̃τ → x̃N ]p(m̃N−1|x̃N )Pλ̃mN−1

[x̃N → x̃N−1]

· · · p(m̃n|x̃n+1)Pλ̃mn
[x̃n+1 → x̃n]}× {p(mn−1, · · · , mk)P̃ [x̃n → x̃k]}

× {p(m̃k−1|x̃k)Pλ̃mk−1

[x̃k → x̃k−1] · · ·p(m̃0|x̃1)Pλ̃m0

[x̃1 → x̃0]}. (4.13)

Each of the three parts in the reverse process (time intervals τ to tn, tn to tk, andtk to 0) have

been enclosed within separate pairs of braces{} for clarity. Therefore, we arrive at (once again

using the time-reversibility of measurements to do away with the tilde symbols)

P [X, M ]

P̃ [X̃; M ]
=

PΛM
[X]

PΛ̃M
[X̃]
× p(m0|x0) · · ·p(mk−1|xk−1)

p(m0|x1) · · ·p(mk−1|xk)
× p(mk|xk) · · ·p(mn−1|xn−1)

p(mk, · · · , mn−1)

× p(mn|xn) · · · p(mN |xN)

p(mn|xn+1) · · · p(mN |xτ )

= exp
[
βWd + ∆s1

p + I1 + ∆s2
p

]
, (4.14)

where

I1 = ln
p(mk|xk) · · ·p(mn−1|xn−1)

p(mk, · · · , mn−1)
; (4.15)

∆s1
p = ln

p(m0|x0) · · · p(mk−1|xk−1)

p(m0|x1) · · · p(mk−1|xk)
; (4.16)

∆s2
p = ln

p(mn|xn) · · · p(mN |xN )

p(mn|xn+1) · · ·p(mN |xτ )
. (4.17)

We are thus led to a different extended detailed fluctuation theorem where disorder parameters

∆s1
p, I

1 and∆s2
p are different as they contain different information about the feedback process.

Thus, it is clear that theφ[X, M ] in eq. (4.5) does not have a unique interpretation, but depends

on the manner of feedback along the backward process. From eq. (4.14), one can obtain the

related integral fluctuation theorem, namely

〈exp[−βWd − I1 −∆s1
p −∆s2

p]〉 = 1. (4.18)
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All the three results derived above, eqs. (4.8), (4.11) and (4.14), can be written in compact

form as
P [X, M ]

P̃ [X̃; M ]
= eβWd+φ[X,M ]. (4.19)

In eq. (4.8),φ[X, M ] simply equalsI[X, M ]. In eq. (4.11), it is equal to∆sp[X, M ]. In eq.

(4.14),φ[X, M ] = I1[X, M ] + ∆s1
p[X, M ] + ∆s2

p[X, M ].

In principle, for different feedback protocols,φ[X, M ] will be different, and terms like

∆s1
p, ∆s2

p, etc. become difficult to interpret physically. This problem also gets reflected in the

extended forms of the Jarzynski equality. We next turn our attention to the efficacy parameter.

4.3 Efficacy parameter in presence of general feedback

In absence of feedback, the Jarzynski equality is given by [27,33,34,42]

〈e−βWd[X]〉 = 1. (4.20)

In presence of feedback, the right hand side of the above relation will in general not be unity.

The efficacy parameter for the feedback in this case (when system is initially at thermal equi-

librium with the medium) is defined as

γ = 〈e−βWd[X]〉. (4.21)

It can be readily seen that lesser the amount of dissipated work, more is the magnitude of the

efficacy parameter, as is desirable for a quantity that measures the efficiency of feedback. Now

we use the general case for obtaining the reverse trajectories, namely the case 4.2.3.

Therefore, we get

γ =

∫
D[X]D[M ]P [X, M ]e−βWd[X,M ]

=

∫
D[X]D[M ]P̃ [X̃; M ]e∆s1

p+I1+∆s2
p
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=

∫
D[X]D[M ]PΛ̃M

[X̃]p(m0|x0)p(m1|x1) · · ·p(mN |xN )

=

∫
D[X̃]D[M̃ ]PΛ̃M

[X̃]p(m̃0|x̃0)p(m̃1|x̃1) · · ·p(m̃N |x̃N )

=

∫
D[X̃]D[M̃ ]PΛ̃M

[X̃, M̃ ] =

∫
D[M̃ ]PΛ̃M

[M̃ ], (4.22)

where we have used the detailed fluctuation theorem (4.14), and the definitions (4.16), (4.15)

and (4.17).D[X] is the measure for the functional integral over all possiblephase space tra-

jectories whileD[M ] is that for the integral over all possible measurement trajectories. The

time-reversibility of measurements has been assumed:p(mi|xi) = p̃(m̃i|x̃i) [82]. The physical

meaning ofPΛ̃M
[X̃, M̃ ] has been clarified in chapter 3. The same chapter also explains why

the final integral,
∫
D[M̃ ]PΛ̃M

[M̃ ], is not unity.

In more general cases, when the two different algorithms (those of sections 4.2.1 and 4.2.2)

are applied at various time intervals to generate the reverse protocol, we need to use the follow-

ing algebra in the integrand:

P̃ [X̃; M ]eφ[X,M ] = P̃ [X̃; M ] exp

(
∑

i

∆si
p +

∑

j

Ij

)

= PΛ̃M
[X̃]p(m0|x0) · · ·p(mN |xN)

= PΛ̃M
[X̃]p̃(m̃0|x̃0) · · · p̃(m̃N |x̃N)

= PΛ̃M
[X̃, M̃ ]. (4.23)

Here, the summations
∑

i and
∑

j run over all the time intervals in which the reverse protocols

have been executed by using feedback and by blind time-reversal, respectively. We find that

although the form of̃P [X̃; M ] contains detailed information about the actual feedback proce-

dure used along the backward process, when it is multiplied by the factoreφ[X,M ], we obtain

P̃Λ̃M
[X̃, M̃ ], whose form does not contain any such information. This is the reason behind the

fact that the efficacy parameter retains the same physical meaning in each case, namely, it is the

total probability to observe the time-reversed outcomes for the measurements performed along

the reverse process[21,82–84].
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This derivation ofγ (eq. (4.22)) for the general case is our central result. It simply shows

that it retains the same meaning as for the specific case considered in the earlier literature

[79,82–88].

The results in this chapter can be verified, using the same setup as mentioned in chapter 3.

4.4 The three detailed fluctuation theorems

We will be generalizing our treatment to the other detailed fluctuation theorems, which in-

volve the non-adiabatic entropy production and adiabatic entropy production. The total en-

tropy change by definition is the sum of entropy changes in thesystem (∆s) and in the medium

(∆sm): ∆stot = ∆s + ∆sm. Recently it has been observed that while generalizing the second

law for systems making transitions between steady states, the total entropy production can also

be split into two distinct parts such that each part, interestingly, follows a detailed fluctuation

theorem [49,51,94,95]:

∆stot = ∆sna + ∆sa. (4.24)

The averages of all these three quantities are always non-negative, thereby providing a new

twist to the second law.∆sa is related to the housekeeping heatQhk, while ∆sna is the sum of

the entropy change of the system and the entropy produced dueto excess heatQex [49, 51, 94,

95]. They are known as the adiabatic and the nonadiabatic entropy productions, respectively,

as has been discussed in the introduction (see section 1.4).

In the case of adiabatic and non-adiabatic entropy productions, the concept of dual dynam-

ics is very helpful. Under the dual dynamics, if the system isallowed to reach the corresponding

steady state, then the steady-state distributionρSS retains the same form as in the original dy-

namics, but the probability current reverses its sign [51, 52]. Hatano and Sasa had shown that

the physical meaning of the nonadiabatic entropy becomes clear in the dual dynamics formal-

ism [47]. These detailed fluctuation theorems are taken up inthe following discussion.
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4.4.1 Total entropy

Suppose that the initial state of the system for the forward process is not necessarily at thermal

equilibrium with the bath, and the initial distribution forthe reverse process is the final dis-

tribution attained in the forward process. Then in absence of feedback, the following ratio is

obtained between the forward and the reverse trajectories [5,28,29]:

P [X]

P̃ [X̃]
= e∆stot[X], (4.25)

from which the following integral fluctuation theorem can beobtained:

〈e−∆stot[X]〉 = 1. (4.26)

In presence of feedback, the right hand side will in general be different from unity. For this

general case, instead of eq. (4.19), we would get the following ratio between the forward and

reverse paths:
P [X, M ]

P̃ [X̃; M ]
= e∆stot[X,M ]+φ[X,M ]. (4.27)

We now consider the case with general reverse protocol. We define the efficacy parameter as

γtot = 〈e−∆stot[X,M ]〉 (4.28)

Proceeding in exactly the same way as before (see eqs. (4.22)and (4.23)), we find

γtot =

∫
D[X]D[M ]P [X, M ]e−∆stot[X,M ]

=

∫
D[X]D[M ]P̃ [X̃; M ]eφ[X,M ]

=

∫
D[M̃ ]PΛ̃M

[M̃ ]. (4.29)

Thus,γtot retains the same physical meaning asγ for the Jarzynski equality, although here

we do not have the constraint of sampling the initial state ofthe system from the equilibrium
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distribution.

4.4.2 Nonadiabatic entropy

For transitions between nonequilibrium steady states, we have the following detailed fluctuation

theorem in absence of feedback [47,50,51,94]:

P [X]

P̃ †[X̃]
= e∆sna[X]. (4.30)

The superscript† implies that keeping the functional form of the protocol same, we are switch-

ing to the dual dynamics. The tilde symbol overP implies that the protocol for the forward

process has been time-reversed after the system has been allowed to follow the dual dynamics.

In other words,P̃ †[X̃] is the probability density for a trajectory along the process generated,

in presence of dual dynamics, by the time-reversed protocol. Similar to the above cases, in

presence of feedback, we have [84,87]

P [X, M ]

P̃ †[X̃; M ]
= e∆sna[X,M ]+φ[X,M ], (4.31)

where the form ofφ[X, M ] depends on the way in which feedback is applied in the reverse

process, as given in section 2. The efficacy parameter in thiscase is given by

γna = 〈e−∆sna[X,M ]〉 =

∫
D[X]D[M ]P [X, M ]e−∆sna[X,M ]

=

∫
D[X]D[M ]P̃ †[X̃; M ]eφ[X,M ]

=

∫
D[X]D[M ]P †

Λ̃M
[X̃]p(m0|x0) · · · p(mN |xN )

=

∫
D[X]D[M ]P †

Λ̃M
[X̃, M̃ ] =

∫
D[M̃ ]P †

Λ̃M
[M̃ ]. (4.32)
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In the third step, we have used the algebra that has already been shown in the case of the most

general protocol (section 4.3) for extended Jarzynski equality, which results in

P̃ †[X̃; M ]eφ[X,M ] = PΛ̃M
[X̃] exp

(
∑

i

∆si
p +

∑

j

Ij

)

= P †

Λ̃M
[X̃, M̃ ]. (4.33)

We have assumed that the measurement errors do not change on changing the dynamics, which

is quite reasonable assumption, because it is a property of the measuring device. Thus,γna is

the net probability for obtaining the time-reversed outcomes along the time-reversed process in

dual dynamics.

4.4.3 Adiabatic entropy

The DFT for adiabatic entropy production3 is given by [51,94]

P [X]

P †[X]
= e∆sa[X]. (4.34)

P †[X] is the probability density for the path followed by the system in phase space, when the

system is evolving under the dual dynamics. In presence of feedback, we then have,

P [X, M ]

P †[X; M ]
= e∆sa[X,M ]+φ[X,M ]. (4.35)

Since both the processes considered are forward processes (in two different dynamics),

there is no need to perform measurements and feedbacks at shifted times in order to respect

causality. The denominator can therefore only consist of the following options:

(1) The same feedback procedure is used to generate the forward process in the dual dynam-

ics as well, in which case we haveφ[X, M ] = 0 (since the error probabilities in the numerator

cancel with those in the denominator). Once again, measurement errors are assumed to be

3In this subsection, we will deal only with overdamped systems, wherẽx = x andm̃ = m. For underdamped
systems, this fluctuation theorem is in general not valid [50].

73



independent of the dynamics followed by the system.

(2) One of the forward protocols in the original dynamics is recorded, and this protocol is

blindly executed in presence of the dual dynamics, in which case we simply haveφ[X, M ] =

I[X, M ].

(3) We use the above two procedures at random while generating the forward trajectories in

presence of dual dynamics, which is the most general case. Inthis case, however,φ[X, M ] =
∑

j Ij , i.e., the summation over∆si
p will be absent, because the latter quantity never appears

in this case.

The efficacy parameter is

γa ≡ 〈e−∆sa[X,M ]〉, (4.36)

which leads to

γa =

∫
D[X]D[M ]P [X, M ]e−∆sa[X,M ]

=

∫
D[X]D[M ]P †[X; M ]e

P

j Ij

=

∫
D[M ]P †

ΛM
[M ]. (4.37)

Therefore,γa is the total probability for observing the same outcomes as the initial process

with the same protocols, if the system follows the dual dynamics.

We thus find that the physical meaning of efficacy parameter can be very generally stated

as follows: it is the total probability to observe the measured outcomes conjugate to those

along the forward protocol, for the intermediate measurements along the process with the cor-

responding conjugate dynamics. Since the efficacy parameters are experimentally measurable,

they would provide more meaningful forms of the extended fluctuation relations. Further, they

would provide universal bounds for〈Wd〉, 〈∆sa〉, 〈∆sna〉, 〈∆stot〉, and these bounds are in fact

independent of whether or not feedback is performed along the conjugate process in the actual

protocol.

For the other extended relations and bounds stated in section 4.2, the expressions would de-

pend sensitively on whether and how the feedback is performed along the conjugate dynamics,
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namely, the extended integral fluctuation theorems can be stated as

〈
exp

(
−∆sk −

∑

i

∆si
p −

∑

j

Ij

)〉
= 1 (4.38)

for k = 1, 2, 3, 4 representingWd, ∆stot, ∆sna and∆sa, respectively (keeping in mind that

∆si
p = 0 for all i, in the case of∆sa). This would lead to the bounds

〈∆sk〉 ≥ −
〈
∑

i

∆si
p

〉
−
〈
∑

j

Ij

〉
. (4.39)

As a consequence, arbitrary number of modified relations andcorresponding bounds can be

computed for this latter case, which can cause confusion. The efficacy parameter, on the other

hand, is a more suitable experimentally measurable quantity that can characterize not only

the performance of the system, but can also act as a useful parameter to define the extended

fluctuation relations.

4.5 Conclusion

In this chapter, we have shown that out of the two known forms of the modified fluctuation the-

orems in presence of feedback, one of the forms is heavily dependent on the way feedback is

applied along the conjugate process, and thereby leads to arbitrary number of extended relations

for work done on the system or for the relevant entropy changes (total entropy, nonadiabatic

and adiabatic entropies) taking place. The bounds obtainedfrom these relations, therefore, also

have this arbitrariness. On the other hand, the second form,namely the fluctuation theorem

expressed in terms of the efficacy parameter, provides a relation for work and entropy changes

that carries a clear and consistent physical meaning, irrespective of the manner of application of

feedback along the conjugate process. This consistency is robust even when the conjugate pro-

cess is not the time-reversed process. This study would hopefully help in simpler experimental

verification of the extended fluctuation theorems.
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Chapter 5

Total entropy production fluctuation

theorems in a nonequilibrium

time-periodic steady state

5.1 Introduction

The fluctuation theorems reveal rigorous relations for properties of distribution functions of

physical variables such as work, heat and entropy production for systems driven away from

equilibrium, where Einstein’s and Onsager’s relations no longer hold.

In the present work, we probe numerically the entropy production fluctuation theorems (the

IFT and the DFT) in the case of a Brownian particle placed in a double well potential and sub-

jected to an external harmonic drive [96]. In the absence of drive, the particle hops between the

two wells with Kramer’s escape raterK = τ−1
0 e−∆V/kBT [97] whereτ0 is a characteristic time

(see chapter 1 for the explicit expression forτ0 in an overdamped system),∆V is the energy

barrier height between the two symmetric wells andT is the temperature of the bath. The ran-

dom hops of the Brownian particle between the two wells get synchronized with the external

drive if rK matches twice the frequency of the external drive. This optimization condition can

be achieved by tuning the noise intensity, and is calledstochastic resonance(SR) [53, 54, 98].
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Noise plays a constructive role in this case and SR finds applications in almost all areas of

natural sciences. To characterize this resonance behaviour, different quantifiers have been in-

troduced in the literature [53, 55, 65, 98–102]. The averagework injected into the system (or

the average thermodynamic work done on the system) per cyclecharacterizes SR as a bona

fide resonance [55, 98, 102]. Recently work and heat fluctuation theorems have been ana-

lyzed in a symmetric double well system exhibiting SR in presence of external subthreshold

harmonic [68, 69] and biharmonic [70] drives. Theoretical [68, 69] and experimental [15, 16]

studies reveal the validity of the steady state fluctuation theorem (SSFT) for heat and work in-

tegrated over finite time intervals. In the following, we extend the study to fluctuation theorems

for total entropy production and associated probability density functions.

5.2 The Model

The overdamped dynamics for the position (x) of the particle is given by a Langevin equation

in a dimensionless form, namely

γ
dx

dt
= −∂U(x, t)

∂x
+ ξ(t), (5.1)

whereξ(t) is the Gaussian white noise with〈ξ(t)〉 = 0 and〈ξ(t)ξ(t′)〉 = 2Dδ(t−t′), where

the noise strengthD = γkBT , kB being the Boltzmann constant. The potentialU(x, t) can be

split into two parts: a static potentialV (x) = −1
2
x2 + 1

4
x4, and the potential due to external

harmonic perturbationV1(x, t) = −xA sin ωt. A andω are amplitude and frequency of the

external drive, respectively.

The static double well potentialV (x) has a barrier height∆V = 0.25 (see figure 5.1)

between two symmetrically placed wells (or minima) locatedat xm = ±1. We have restricted

our analysis to subthreshold forcings,A|xm| < ∆V . The total potentialU(x, t) = V (x) +

V1(x, t). Using the method of stochastic energetics [23] for a given particle trajectoryX(t)

over a finite time durationτ , the physical quantities such as injected work or thermodynamic

work (W ), change in internal energy (∆U) and heat (Q) dissipated to the bath are given by (see
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Figure 5.1: The double-well potential used in this chapter.Here,∆V is the barrier height between the
two wells, while the minima of the two wells are located atxm = ±1.

chapter 1, sect. 1.1)

W =

∫ t0+τ

t0

∂U(x, t)

∂t
dt, (5.2a)

∆U = U(x(t0 + τ), t0 + τ)− U(x(t0), t0), and (5.2b)

Q = W −∆U. (5.2c)

Equation (5.2c) is a statement of the first law of thermodynamics. The particle trajectory ex-

tends from initial timet0 to final timet0 + τ . W , ∆U andQ are all stochastic quantities and we

have evaluated them numerically by solving Langevin equation using Heun’s method [67–69]

(see appendix D).

A change in the medium entropy (∆sm) over a time intervalτ is given by∆sm = Q/T .

As explained in sect. 1.2 of chapter 1, the change in the system entropy for any trajectory of

durationτ is given by

∆s = − ln

[
p1(x(t0 + τ), t0 + τ)

p0(x(t0), t0)

]
, (5.3)

wherep0(x(t0), t0) andp1(x(t0+τ), t0+τ) are the probability densities of the particle positions

at initial timet0 and final timet0 + τ respectively.

The total entropy change over time durationτ is given by

∆stot = ∆sm + ∆s. (5.4)
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Using the above definition of total entropy production, Seifert has derived the IFT [28,29] (see

chapter 1), i.e.,

〈e−∆stot〉 = 1, (5.5)

where angular brackets denote average over the statisticalensemble of realizations, i.e., over

the ensemble of finite time trajectories. This identity is very general and holds at any time

interval and for arbitrary initial conditions.

In the presence of external periodic perturbations, the system relaxes to a time-periodic

steady state. In this state, a stronger detailed fluctuationtheorem holds [27–29]:

P (∆stot)

P (−∆stot)
= e∆stot, (5.6)

where∆stot is evaluated over time intervalsτ = nT1, n being an integer, andT1 being the

period of the external drive.P (∆stot) (or P (−∆stot)) is the probability that the trajectory

produces (or consumes) entropy with the magnitude∆stot.

To calculate the total entropy production, we evolve the Langevin system under the time-

periodic force over many realizations of noise. Ignoring transients, we first find out probability

density functionp(x, t) in the time asymptotic regime. In this case,p(x, t) is a periodic function

in t with the period equal to that of the external drive. The heat dissipated is calculated over a

period (or over a number of periods) using (5.2c). Thereby weobtain the change in the medium

entropy (∆sm = Q/T ). Knowing the end-points of each trajectory, and the time-periodic

p(x, t), the change in system entropy∆s is calculated (equation (5.3)). Thus we obtain for

each trajectory the total entropy production (∆stot = ∆sm + ∆s). To calculate the averages

of the physical quantities or the probability distribution, ∆stot is obtained for more than105

realizations. In the following we present the results whereall the physical parameters are taken

in dimensionless form.
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5.3 Results and Discussions

The workWp calculated over a period1 chosen at random varies from realization to realization

and is a random quantity. So are internal energy change∆Up and dissipated heatQp. However,

all these quantities satisfy equation 5.2c for each period chosen at random. The averages of

physical quantities (〈· · ·〉) are calculated over105 realizations.

In figure 5.2, we have plotted the average work done (or injected work)〈Wp〉 over a single

period of the external drive in nonequilibrium time-periodic state, as a function of noise strength

D for A = 0.1 (subthreshold driving). The internal energyU being a state variable,〈Up〉 is

periodic in time and hence〈∆Up〉 = 0. From equation (5.2c) we find that the average heat

dissipated over a period〈Qp〉 equals the average work〈Wp〉 done over a period. In the same

figure, average total entropy production over a single period, 〈∆stot,p〉, as a function ofD

has also been plotted. Since entropy of system is a state variable,〈∆sp〉 = 0, and we have

〈∆stot,p〉 = 〈∆sm,p〉 = 〈Qp

T
〉.

We observe from figure 5.2 that the average work or heat exhibits a well-known SR peak

(aroundD = 0.12) consistent with the condition (at low frequency of drive) of matching be-

tween Kramer’s rate and frequency of drive, which has been studied in earlier results [55,102].

However, peak in the〈∆stot,p〉 is not at the sameD at which SR condition is satisfied. It is

expected that at resonance, system will absorb maximum energy from the medium and being

in a stationary state, will release this same energy back to the medium.

The peak for〈∆stot,p〉 not being at the same temperature as that for〈Qp〉 or 〈Wp〉 is un-

derstandable as〈∆stot,p〉 = 〈∆sm,p〉 = 〈Qp/T 〉, i.e., peak in〈Qp〉 versusT will be shifted if

we plot 〈Qp/T 〉 versusT . Similar observations are noted in the nature of directed current in

ratchet systems [103]. In these periodic systems, unidirectional currents can be obtained in a

nonequilibrium state in the absence of obvious bias. The average current exhibits a resonance

peak as a function of temperature. Even though currents in these systems are generated at the

expense of entropy, the value ofD at which entropy production shows a peak is not the same

1We would be using the subscriptp to denote the quantities measured over a single period, in this chapter as
well as in the next. This is done to differentiate it from the quantities measured overn periods (say), where the
measured quantities will carry the subscriptnp.
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as that at which current shows a peak.
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Figure 5.2: Variation of〈Wp〉(= 〈Qp〉) and〈∆stot,p〉with D, for A = 0.1, ω = 0.1. The curve of〈Wp〉
versusD has been scaled by a factor of 8 for easy comparison. Inset shows the corresponding relative
variances as a function ofD.

In the inset of figure 5.2, we have plotted the relative variance of work

(
〈Wrv〉 ≡

√
〈W 2

p 〉−〈Wp〉2

〈Wp〉

)

and that of total entropy

(
〈∆srv〉 ≡

√
〈∆s2

tot,p〉−〈∆stot,p〉2

〈∆stot,p〉

)
. 〈Wrv〉 exhibits a minimum around

SR condition. However,〈∆srv〉 shows a minimum around the same temperature at which

〈∆stot,p〉 shows a peak. Thus, unlike〈Wrv〉 [17, 68, 69],〈∆srv〉 cannot be used as a quantifier

of SR. This is because the minimum in〈∆srv〉 is correlated to the peak in〈∆stot,p〉 as a function

of D, which itself does not occur at the value of theD at which resonance condition is satisfied,

as discussed earlier. It may be noted that relative varianceof both work and total entropy pro-

duction over single period are larger than 1, implying that these quantities are not self-averaging

(i.e., fluctuation dominates the mean). However, when the observation time for the stochastic

trajectory is increased to a large number (n) of periods, the relative variance, which scales as

n−1/2, becomes a self-averaging quantity, i.e., mean is larger than the dispersion [69].

In figure 5.3, we have plotted〈Wp〉 and〈∆stot,p〉 as a function ofω. The injected work

〈Wp〉, exhibits a peak as a function ofω, thus characterizing SR as a bona fide resonance

[55, 98, 102]. It may be noted that the peak position for〈∆stot,p〉, in this case, is at the same

value as that for〈Wp〉 or 〈Qp〉, as expected. The inset shows the relative variances of∆stot,p
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andWp versus frequency of external driveω, which in turn shows a minimum at the resonance

condition.
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Figure 5.4: Plots of probability distribution functions of∆stot,p for different values of noise strengthD.
The fixed parameters are:A = 0.1, ω = 0.1.

In figure 5.4, we have plotted the probability distributionP (∆stot,p) versus∆stot,p, for dif-

ferent values of noise strength spanning a region of temperatures around that of SR (D = 0.12).
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For low temperature side,D = 0.06, P (∆stot,p) exhibits a double peak structure. The peak

around zero can be attributed to the intrawell motion. The small peak at higher positive values

of ∆stot,p is caused by the occasional interwell transition which entails larger heat dissipa-

tion in the medium and contributes to the total entropy production via entropy produced in

the bath,〈∆sm,p〉 = 〈Qp〉/T . At very low temperature,D = 0.02, the interwell motion is

subdominant (particle exhibits small oscillations about the minimum). P (∆stot,p) exhibits a

single peak around〈∆stot,p〉 and the distribution is closer to Gaussian, which is not shown in

the graphs. As temperature is increased, due to the enhancement of interwell motion, peak at

the right increases. These multipeaked distributions are asymmetric. The distributions extend

to the negative side. Finite values of distributions in the negative side are necessary to satisfy

fluctuation theorems. The contribution to the negative sidecomes from the trajectories which

lead to transient violations of the second law. For higher values of temperature,D = 0.25

(and beyond), the peak structures merge andP (∆stot,p) becomes closer to a Gaussian dis-

tribution. Similar observations have been made for distributions of work and heat in earlier

literature [68,69]. The observed values of〈e−∆stot,p〉, from our simulations, are equal to 1.045,

1.017, 0.980, 1.024 and 1.032, for values of temperaturesD = 0.06, 0.08, 0.12, 0.2 and 0.25,

respectively. All the values for〈e−∆stot,p〉 are close to unity within our numerical accuracy,

which is clearly consistent with IFT (equation (5.5)).

We have plottedP (∆stot,p) andP (−∆stot,p)e
∆stot,p on the same graph for two values of

D (D = 0.08 and 0.25) in figures 5.5(a) and (b) respectively, which abides by equation (5.6),

namely the DFT. We would like to mention that the IFT and DFT are exact theorems for a

driven Langevin system. Our results corresponding to figures 5.5(a) and (b) act as a check on

the quality of our simulation.

In figure 5.6, we have plotted probability distributions of changes in total entropy∆stot,p,

medium entropy∆sm,p and system entropy∆sp over a single period for the parameter values

D = 0.08, ω = 0.1 andA = 0.1. System entropysp(t) is a state function and its average value

is a periodic function of time in the asymptotic regime. Thusaverage change in the system

entropy over a period is zero. Moreover,P (∆sp) is a symmetric function of∆sp. The medium
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Figure 5.5: (a) BothP (∆stot,p) andP (−∆stot,p)e
∆stot,p have been plotted on the same graph forD =

0.08, ω = 0.1 and A = 0.1. These curves match to a good accuracy, thereby providing a cross-
verification for the validity of DFT. (b) Similar plots forD = 0.25. Other parameters are the same as in
(a).

entropy is related to the heat dissipated along the trajectory (∆sm,p = Qp/T ). The nature

of P (∆sm,p) is identical to that of heat distribution [69]. All these probabilities exhibit finite

contribution to the negative side.

As the observation time of the trajectory increases, there will be decrease in the number

of trajectories for which∆stot < 0. This is expected as we go to macroscopic scale in time.
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Figure 5.6: Plots showing distribution functions of∆stot,p, ∆sm,p and of∆sp, for D = 0.08, ω = 0.1
andA = 0.1.

To this end we have plotted in figure 5.7(a) theP (∆stot,np) obtained over different numbers

(n) of cycles (or for observation timesτ = nT1, whereT1 is the period of external drive).

For a fixed value of the parameters,D = 0.12, A = 0.1 andω = 0.1, and over single cycle,

P (∆stot,p) exhibits multi-peaked structure which slowly disappears as we increase the period

of observation. For larger periods,P (∆stot,np) tends closer to being a Gaussian distribution

with a non-zero positive mean〈∆stot〉. We also notice that as the number of periods increases,

weight of the probability distributions to the negative side decreases.

In the inset of figure 5.7(a), we have plotted probability density of ∆stot taken over 20

periods. The Gaussian fit is shown. The calculated values of variance,σ2 = 28.61, and of the

mean,〈∆stot〉 = 14.18, closely satisfy the conditionσ2 = 2〈∆stot〉, thereby abiding by the

fluctuation-dissipation relation (see equation (18) of [37]). If the distribution is a Gaussian and

it satisfies the DFT, then the fluctuation-dissipation theoremσ2 = 2〈∆stot〉 must be satisfied

[27, 37, 75]. The presence of non-Gaussian tails at large values of∆stot,np are not ruled out

(non-Gaussian nature of distribution). However, numerically it is difficult to detect them.

In figure 5.7(b), we have plotted the symmetry functions
(
ln
[

P (∆stot,np)
P (−∆stot,np)

])
versus∆stot,np

for different periods. Irrespective of the number of periods, we find that slopes of all the curves
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Figure 5.7: (a) Distributions of total entropy for different numbers of periods (n = 1, 2, 3 and 4).
The inset shows data points forn = 20 and the corresponding Gaussian fit withσ2 = 28.61 and
〈∆stot,20p〉 = 14.18. Parameter values are:A = 0.1, ω = 0.1 andD = 0.12. (b) Corresponding plots
of symmetry functions of total entropy as a function of totalentropy.

are equal to 1, which is consistent with DFT. The validity of DFT implies IFT, but not vice

versa.

The medium entropy is extensive in time while the system entropy is not. Only over larger

number of periods, the contribution to∆stot,np from ∆snp becomes very small as compared to

∆sm,np. This means that only over large time periods,∆sm,np obeys a DFT relation or steady

state fluctuation theorem as noted in the earlier literature[16, 69] (see figure 5.8). Strictly

speaking, this is valid if the system entropy is bounded. In this figure we have plotted symmetry
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D = 0.12.

functions for the medium entropy for different numbers of periods (n). As we increasen,

the slope increases towards 1 and hence satisfies the DFT for largen. The value ofn over

which∆sm,np follows DFT depends sensitively on the physical parameters, unlike the DFT for

∆stot,np.

All the results of this work can be tested experimentally by using the experimental setup

in [16], and earlier in [65]. Here, the double-well potential was prepared by switching a laser

trap very fast between two positions, compared to the relaxation time of the trapped particle.

The sinusoidal modulation was achieved by changing the laser intensity harmonically. For other

experimental setups that have been used to check for stochastic resonance, see the references

cited in sec. II C of [53].

5.4 Conclusion

In conclusion, we have studied the entropy production of a Brownian particle in a driven double

well system which exhibits stochastic resonance. Average total entropy production per cycle

shows a peak as a function of noise strength. However, it is not directly correlated to stochastic
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resonance condition. Moreover, as the period of observation increases, contribution of negative

total entropy producing trajectories decreases. In this nonlinear system, we have verified the

integral fluctuation theorem valid for time-periodic steady states. In this case, we obtain a rich

structure for the probability distribution of trajectory dependent total entropy production.
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Chapter 6

Energy fluctuations in a biharmonically

driven nonlinear system

6.1 Introduction

In recent theoretical [68, 69] and experimental [7] studies, the distributions of dissipated heat

and work done on the system have been explored in a system exhibiting stochastic resonance

[68, 69]. The steady state fluctuation theorem (SSFT) holds in this system. Exploring the FTs

in nonlinear systems by changing the symmetry of the drivingforce cycle has been suggested

in [7]. To this end, we study the dynamics of a particle in a symmetric double well potential

which is in contact with a thermal bath at temperatureT . This system exhibits stochastic

resonance (SR) under subthreshold external ac drive [54]. Because of its generic nature, this

phenomenon boasts applications in almost all areas of natural science [53]. To characterize this

resonance phenomenon, several different quantifiers have been introduced in the literature [53,

55,65,98–102]. One of the quantifiers, namely the input energy of the system or the work done

on the system per cycle is known to characterize SR as a bona fide resonance [55,68,69,102]. In

this case, the resonance can be shown to occur both as a function of noise strength and driving

frequency.

It is known that static asymmetry in the bistable potential weakens the magnitude of the
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SR effect [53, 69]. Static tilt in the potential makes one potential well more stable than the

other leading to more particle localization or pumping in one well (lower well) compared to

the other. Moreover, due to asymmetry in the potential, escape rate of a particle from higher

to lower well will be different from lower to higher well. These two different rates make

synchronization difficult between the signal and the dynamics of the particle hopping, since the

driving frequency cannot match both these hopping rates simultaneously.

In the present work, we study the SR for a particle in a symmetric double well potential,

driven simultaneously by two periodic signals of frequenciesω and2ω with a relative phase

differenceφ between them [104]. Such a force averaged over a period does not lead to a net

bias and yet particle is preferentially pumped into one welldepending on phase differenceφ

and other physical parameters [105–111]. This phenomenon is known asharmonic mixing

[105–108]. Due to this statistical confinement of the particle, similar to the case of static

tilt [53,59], we expect to observe a reduced SR signal in thissystem. However, contrary to this

expectation, we show that the resonance signal is enhanced in the presence of the biharmonic

drive at frequency2ω when analyzed in terms of the average input energy (or the average work

done) per cycle, as a quantifier of SR. Using stochastic energetics [23, 28, 112] we also study

the nature of fluctuations in the work done, dissipated heat and internal energy across SR. In

some range of parameters, nature of hysteresis loops is analyzed. We show that the SSFT

holds for work done and heat dissipated over a long time interval. These results can be tested

experimentally, by using the setup discussed in chapter 5 (see [16] for details).

6.2 The Model: Brownian particle in a Rocked Double Well

Potential

We consider the stochastic dynamics of an overdamped Brownian particle in a double-well

potentialV (x) = −x2

2
+ x4

4
(see figure 5.1), rocked by a weak biharmonic (time-asymmetric)

external fieldF (t) = A cos(ωt) + B cos(2wt + φ). The potentialV (x) has two minima at

x = ±1, separated by a central potential barrier of height∆V = 0.25. The overdamped
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Langevin dynamics is given by [48],

γ
dx

dt
= −∂U(x, t)

∂x
+ ξ(t), (6.1)

whereU(x, t) = V (x) − xF (t), γ is the friction coefficient,ξ(t) is the Gaussian white noise

with the properties〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′) , whereD = γkBT . The

thermodynamic work done by an external drive over a periodτω(= 2π
ω

) is given by [23]

Wp =

∫ t0+τω

t0

∂U(x, t)

∂t
dt

=

∫ t0+τω

t0

x(t)[Aω sin ωt + 2Bω sin(2ωt + φ)]dt. (6.2)

This work (or input energy) over a period equals the change inthe internal energy∆Up =

U(x(t0 + τω), t0 + τω)− U(x(t0), t0) plus the heat dissipated over a periodQp, i.e.,

Wp = ∆Up + Qp. (6.3)

The above equation is the statement of the First law of thermodynamics and can readily be

obtained using stochastic energetics [23]. The above modelis solved numerically by using

Heun’s method [67] (all the physical quantities are in dimensionless units). We have ignored

the initial transient regime up to timet0, after which the system settles into a time-periodic

steady state. Then we have evaluatedWp, Qp, and∆Up over many cycles (∼ 105) of a single

long trajectory of the particle.

We note that all our results can be verified experimentally, using the setup used in [16].
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6.3 Results and Discussions

6.3.1 SR as a function of noise strength

In figure 6.1, we have plotted the average work done over a single period〈Wp〉 in the time

asymptotic regime as a function of noise strengthD for different values of biharmonic drive

strengthB (for A=0.1). Phase differenceφ is taken to be zero. Other parameters are mentioned

in the figure captions. For the case ofB = 0 we have reproduced earlier results [55,68,69,102].

The average input energy (〈Wp〉) shows a peak signifying SR as discussed extensively in earlier

literature [55, 68, 69, 102]. The quantity〈Wp〉 can also be identified as the average dissipated

heat or hysteresis loss into the bath in a time periodic steady state. This follows from eq. (4) by

noting that the internal energy being a state variable,∆Up averaged over a period is identically

equal to zero. For different values ofB, the system exhibits SR as a function of noise strength.

The system in a steady state absorbs energy from the externaldrive and the same is dissipated as

heat, on average, into the surrounding medium. It is expected that at the resonance the system

will absorb maximum energy from the external drive. The input energy curves for higher values

of B lie above those for the lower values ofB. With increase inB, the peak position shifts

towards higher values ofD.

It is evident from the figure that in the presence of biharmonic drive enhancement of SR

signal occurs even though there is more statistical confinement of the particle (asB increases)

in one well as shown in figure 6.2. In this figure we have plottedaverage position (〈x〉) over

a single period in the time asymptotic regime as a function ofB for fixed D = 0.05. The

value of 〈x〉 not being zero signifies selective pumping or localization of particle from one

well to another in the presence of biharmonic drive. Correspondingly, the probability density

distribution of the particle averaged over a period shows a marked asymmetry even though the

potentialV (x) is symmetric [107]. In the absence of second harmonic component i.e.,B = 0,

〈x〉 = 0 as expected. The pumping is very significant at low values of temperature. As we

increase temperature, the effective pumping reduces. Around and beyond SR, pumping is quite

small as shown in the inset of figure 6.2.
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Figure 6.1: The input energy〈Wp〉 as a function ofD for different values of the strength of second
harmonic(B). The parameters are:ω = 0.1, A = 0.1, andφ = 0.
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Figure 6.2: Particle mean position〈x〉 as a function ofB for D = 0.05. In the inset we have plotted〈x〉
as a functionD. Other parameters are:B = 0.06, A = 0.1, andω = 0.1.

Stochastic resonance being a synchronization phenomenon [99,101] it is expected that par-

ticle hopping dynamics between the wells get synchronized with the input signal. We expect

that the relative variance (RV) in physical quantities suchas work

[
=

√
〈W 2

p 〉−〈Wp〉2

〈Wp〉

]
and heat

[
=

√
〈Q2

p〉−〈Qp〉2

〈Qp〉

]
also show minima at SR [7, 68, 69]. In figure 6.3 we have plottedrelative

variance (RV) as a function ofD for various values ofB. The parameters used are the same as

in figure 6.1. For a given value ofB the RV shows a minimum around the same value ofD at
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Figure 6.3: Relative variance (RV) of input energy versusD for different values ofB. Other parameters
are same as in figure 1.
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Figure 6.4: (a) Hysteresis loops (〈x〉 vsF ) for different values ofB, and forD = 0.1. Other parameters
are same in figure 1. (b) Hysteresis loops for different values ofB atD = 0.05.

which 〈Wp〉 exhibits a maximum. As the amplitude of the biharmonic driveB increases, RV

curves shift downwards. Higher the value ofB, the lower is the value of RV at the resonance.

These results are consistent with figure 6.1. In the parameter regime that we have considered,

the RV is larger than one, i.e., variance in work is large compared to the mean. Hence in this

regime, one should analyze full probability distribution as opposed to moments to get better

understanding of the phenomenon.

Increasing the amplitude of biharmonic drive leads to more statistical confinement of par-

ticles (figure 6.2). This must be reflected in the nature of hysteresis loops [101, 109]. More
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the pumping, more is the asymmetry in the hysteresis loops, as can be seen in figure 6.4(a) and

(b). In these figures hysteresis loops are plotted for different values ofD andB. The pumping

of the particles also gets reflected in the shifting of figuresin the vertical upward direction (as

〈x〉 > 0). For the case whenB = 0, there will be no pumping and as expected, the loop is

symmetric.

6.3.2 SR in the presence of static tilt

Particle pumping in a preferential well can also be induced by applying a static tilt to the

otherwise symmetric double well potential. For this we takepotential to beV1(x) = −x2

2
+

x4

4
− cx. Depending on the value ofc, the potentialV1(x) becomes asymmetric and obviously

more pumping results in the lower potential well. When this system is driven by external AC

forceA cos ωt we show that SR signal weakens.
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Figure 6.5: (a) Plots of〈Wp〉 as a function ofD for different values of the static tilt (c). (b) Corre-
sponding plots of relative variance ofWp as a function ofD. Fixed parameters are mentioned on the
graphs.

Figure 6.5(a) shows the average input energy as a function ofD for various values ofc.

From this, we notice that the input energy curves for higher value ofc are below those with

lower value ofc (other parameters being fixed). Asc increases SR peak becomes broadened and

shifts towards higher values ofD. We thus observe that in the presence of pumping induced by

static tilt, SR weakens as mentioned in the introduction to this chapter. This is also corroborated
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by the nature of relative work fluctuations as a function ofD (figure 6.5(b)). From this figure

we note that as we increasec, RV increases for a given value ofD. The magnitude of the RV

at the minimum becomes larger as we increasec. This implies degradation of SR signal in the

presence of particle pumping induced by a static tilt.

The pumping due to static tilt makes the hysteresis loops asymmetric (figure 6.6). By in-

creasing c, more pumping is achieved and this is reflected in the vertical shift of hysteresis

loops. Thus from the above figures and discussions, we conclude that in the presence of bihar-

monic drive, SR increases while in the presence of static tilt, SR weakens.
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Figure 6.6: Plots showing hysteresis loops,〈x〉 vsF , for different values of static tilt(c). Fixed param-
eters are:D = 0.1, A = 0.1 andω = 0.1.

6.3.3 SR as a function of driving frequency

In figure 6.7(a), we have plotted average input energy as a function of ω for various values

of B. Once again we notice that SR signal even for this case is increased as we increase the

biharmonic componentB. Each curve exhibits a peak as a function ofω, thus establishing SR

as a bona fide resonance. The peak shifts to the lower values ofω as we increaseB. This is

consistent with the fact that peaks in figure 6.1 shift towards larger values ofD as we increase

B. This is a requirement for the time scale matching betweenD andω. Since increase inB
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Figure 6.7: (a) The average input energy per period〈Wp〉 as a function of frequencyω. (b) Relative
variance (RV) of input energy vs frequencyω for different values of the strength of the second harmonic,
B. The parameters used are:ω = 0.1, A = 0.1, φ = 0.

slows down the effective time averaged hopping rates between the wells, higherD is required

to achieve resonance. This lowering of effective escape rate at givenD in turn implies decrease

in the resonant frequency. The enhancement of SR signal in the presence of B can be inferred

from figure 6.7(b) where we have plotted relative variance across the SR as a function ofω for

various values ofB. Lower values of relative variance across the SR for larger values ofB are

suggestive of the fact that SR is enhanced in the presence of biharmonic drive, consistent with

the conclusions of figure 6.1.

6.3.4 Energy fluctuations over a single period

Next, we analyze the nature of distribution functions of input energyP (Wp), dissipated heat

P (Qp) and internal energyP (∆Up) for different values ofD. These distributions are plotted

in figure 6.8 (a), (b), and (c) below resonance (D = 0.05), at resonance (D = 0.12), and

above resonance (D = 0.3) respectively. The averaged internal energy〈U〉 being a state func-

tion assumes the same value at the beginning and at the end of aperiod or periods in the time

asymptotic regime. Hence average change in the internal energy 〈∆Up〉 over a period is equal

to zero and it is also expected that the distributionP (∆Up) is symmetric as is evident from

figure 6.8 (a), (b) and (c). The nature ofP (∆Up) is explained in [7] for a single harmonic
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Figure 6.8: Plots (a), (b), and (c) show the distributionsP (Wp), P (Qp), andP (∆Up) for different
values ofD, below resonance (D = 0.05), at resonance (D = 0.12), and above resonance (D = 0.3),
respectively. Other fixed parameters are also shown on the graphs.

drive. As opposed to∆Up, distributions forWp andQp are asymmetric. These distributions

keep on changing in shape depending on the number of cycles over which they have been ob-

tained which will be discussed later in connection with steady state fluctuation theorem (SSFT).

Probability distributions for work and heat have finite weights for the negative values of their ar-

guments. These negative values correspond to the trajectories where the particle moves against

the perturbing AC field over a short time. For small values ofD (D = 0.05), peak forWp or Qp

near the origin corresponds mainly to intrawell dynamics ofthe particle and is mostly confined

to a single well. The occasional excursion of the particle into the other well as a function of

time is clearly reflected as a small hump at higher values ofWp or Qp in the plot ofP (Wp) and
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P (Qp). As we increaseD further (D = 0.12), interwell dynamics starts playing a dominant

role, and hence the distributions become broader. Work distribution exhibits three prominent

peaks including one at the negative side. For larger values of D beyond SR point, shapes of

P (Wp) andP (Qp) tend closer to Gaussian distribution with increased variance/fluctuations.

For such high temperatures, particle makes several random excursions between the two wells

during a single time period of the external drive. It may be noted that the relative variances

in Wp andQp are larger than 1. Also, fluctuations in heat are larger than those of work when

averaged over a single period.

6.3.5 Effect of phase difference on SR

We now analyze the role of phase difference (φ) between driving fields on pumping and en-

ergetics of the system. In figure 6.9 (a), we have plotted〈Wp〉 as a function of noise strength

D for various values ofφ. Other physical parameters are held fixed as mentioned in thefigure

captions. In figure 6.9 (b), we have plotted relative variance of Wp as a function ofD. It is

interesting to note that〈Wp〉 is insensitive toφ, even though the relative variance depends onφ.

This is a rather surprising result, given the fact that different values of phaseφ lead to different

degrees of localization of the particle in one of the wells.

We have characterized this dynamic localization of particles by average position〈x〉 of the

particle in the double well potential which in fact can be large depending onD andφ. This is

shown in figure 6.10 where we have plotted〈x〉 as a function ofφ for two different values of

noise strengthD. One can readily see that〈x〉 is periodic inφ as expected.

The insensitivity of〈Wp〉 on phase gets reflected in the hysteresis loop areas as shown in

figures 6.11 (a) (D = 0.1) and (b) (D = 0.05) for different values ofφ and fixed value of

B (B = 0.06). We notice that the areas of the hysteresis loops remain same for differentφ.

However, their shapes are asymmetric and qualitatively different for differentφ (i.e., sensitive

dependence on phaseφ). Due to the different degree of localization or pumping, loops are

shifted in〈x〉 − F plane.

The sensitivity of full probability distribution on the phase difference can be seen from
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Figure 6.9: (a) The average input energy per period〈Wp〉as a function ofD and frequencyω for various
values of the phase differenceφ. (b) relative variances (RV) ofWp versusD. Fixed parameters are
shown on the graphs.
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Figure 6.10: Average position〈x〉 as a function of phaseφ for two different values ofD. In (a),D =
0.05, and in (b),D = 0.12. Other fixed parameters are:B = 0.06, A = 0.1, andω = 0.1

figures 6.12. In these figures we have plottedP (Wp) and P (Qp) for different values ofφ

as indicated. Note that the distributions exhibit qualitative differences for differentφ. We

have also verified separately that for different values of rocking amplitudes, as long as we

are in subthreshold regime, average input energy is not verysensitive toφ as opposed to full

probability distribution. By tuningφ, one can achieve different degrees of particle confinement

and can control the fluctuations in heat and work.
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Figure 6.11: (a) Hysteresis loops for different values ofφ at D = 0.1, (b) Hysteresis loops for different
φ atD = 0.05, with other parametersA = 0.1, B = 0.06, andω = 0.1
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Figure 6.12: Figures (a) and (b) show the distributionsP (Wp) andP (Qp) respectively for three different
values of phase:φ = 0, π/2 andπ. HereD = 0.12 andB = 0.06.

6.3.6 Energy fluctuations and SSFT

Finally we discuss the validity of SSFT in the present case ofnonequilibrium time periodic

steady state. Here, by SSFT we would mean the probability distribution of physical quantityA

to satisfy relationp(A)/p(−A) = eβA, whereβ is the inverse temperature of the bath andA is

the work done on the system or the heat released to the bath over a long time of observation. For

nonlinear systems it has been observed experimentally and theoretically that SSFT is satisfied

if one considers work done over a large number of cycles [68,69,113]. In regard to heat, SSFT

is known to be valid forQ < 〈Q〉 [114]. Since〈Q〉 increases with the number of periods or
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Figure 6.13: (a) The evolution ofP (Wp) over different periods. In the insetP (W10p) is plotted together

with its Gaussian fitG(W ). (b) The plot of symmetry function(ln P (Wnp)
P (−Wnp)) versusβWnp for various

values of periods. The parameters used are:D = 0.16, ω = 0.1, B = 0.06, A = 0.1, φ = 0. The solid
line is the best fit for symmetry function calculated for 10 cycles.

measured time interval in the limit of large n(n→∞), 〈Q〉 → ∞ and hence the conventional

SSFT is valid over an entire range of Q [115]. It may be noted that there exists an alternative

relation for heat fluctuation, namely extended heat fluctuation theorem [40,114].

In figure 6.13(a) we have plotted probability distributionP (Wnp) of work Wnp integrated

over different number (n) of periods.P (Wnp) for a single period exhibits double peak struc-
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ture. As we increase the number of periods the probability distribution shifts towards right as

the mean value of work scales linearly with n. Fine structurein probability distributions get

smeared out progressively and distribution tends towards aGaussian. In the inset of figure 6.13

(a) we have shown the Gaussian fit for the obtained distribution for 10 cycles. From this fit

we obtain〈W10p〉 = 1.16 and varianceσ2 ≡ 〈W 2〉 − 〈W 〉2 = 0.37. From this we can obtain

dissipation ratioRdiss = 〈W 2〉−〈W 〉2

2〈W 〉/β
≃ 1, i.e., the variance equals2

β
〈W 〉 which is the required

condition to satisfy SSFT when observed distribution is Gaussian [68,116,117].

The validity of SSFT for work is also observed from figure 6.13(b) where we have plotted

the symmetry function(ln P (Wnp)
P (−Wnp)

) versusβWnp for work evaluated over different cycles as in-

dicated in the figure. As we increase the number of periods from 1 to 10 the slope of symmetry

function approaches 1. The number of periods above which SSFT is valid depends sensitively

on the parameters in the problem.

As already noted heat fluctuations over a cycle are large compared to work fluctuations.

The heat fluctuations get an additional contribution from the internal energy (eq. (6.3)). The

contribution from internal energy is supposed to dominate at very large values of Q, making

the distributionP (Q) exponential in the large Q limit [40, 114]. However, it may benoted

that the distribution of the change in internal energy does not change with number of periods.

Heat being an extensive quantity in time, distribution changes as we change the number of

periods as shown in figure 6.14(a) where we have plottedP (Qnp) for various values ofn. As

anticipated, by increasingn, the distribution tends towards the a Gaussian (see for n=10cycles).

The Gaussian fit for theP (Qnp) (inset of figure 6.14(a)) gives the value for the variance as

0.56, and mean as 1.74. Thus dissipation ratio is 0.99, whichis closer to unity, satisfying

SSFT. In principle, one should be able to observe exponential tails for the distributionP (Q)

in the large Q limit [40]. However, our simulations will not be able to detect it due to lack of

required precision. As mentioned earlier, in the limitn → ∞, conventional SSFT holds for

heat distributions [113].

In figure 6.14(b), we have plotted the symmetry functions(ln P (Qnp)
P (−Qnp)

) as a function of

βQnp. The slope of the symmetry function approaches unity as we increasen, thereby suggest-
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Figure 6.14: (a) The evolution ofP (Qp) over different periods. In the insetP (Q10p) is plotted together

with its Gaussian fitG(Q). (b) The plot of symmetry function(ln P (Qnp)
P (−Qnp)) versusβQnp for various

values of periods. The solid line is the best fit for symmetry function calculated for 10 cycles. The
parameters used are same as in figure 13.

ing the validity of SSFT.

6.4 Conclusion

In conclusion, we have studied the nature of energy fluctuations in a biharmonically driven

bistable system. This system is driven simultaneously withtwo periodic input signals of fre-
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quenciesω and2ω, having phase differenceφ between them. The presence of additional peri-

odic drive induces particle confinement or localization in apreferred potential well. The degree

of confinement analyzed in terms of the averaged value of the particle position〈x〉 depends on

the system parameters. We have shown that in spite of confinement, SR signal when quantified

via the averaged work per period exhibits enhanced response. This is in sharp contrast to the

case when confinement is induced by static tilt, which degrades SR. Surprisingly, the average

input energy over a period is not very sensitive toφ even though variation ofφ leads to signifi-

cant particle pumping. However, changes inφ does affect qualitatively the nature of hysteresis

loop and distributions/fluctuations of work and heat. We have analyzed the fluctuations in work

done, heat dissipated, and internal energy over a large but finite number of periods. Our data

suggests that the SSFT for work and heat hold in this system for large number of periods.
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Chapter 7

Summary and Conclusions

In this thesis, we have studied some exact relations, calledfluctuation relations, that are valid

for systems that are perturbed arbitrarily out of equilibrium. Such relations hold good for sys-

tems following several different dynamics, for example theHamiltonian dynamics or stochastic

dynamics. We have concerned ourselves mainly with the latter category of systems. There are

several relations that are collectively referred to as the fluctuation theorems – the Jarzynski

equality and Crooks fluctuation theorems for nonequilibrium work done on the system, the to-

tal entropy production fluctuation theorems (both integraland detailed forms) by Seifert, the

Hatano-Sasa relation for transitions between steady states, etc.

In this thesis, we have studied the verification of some fluctuation theorems in different

situations and model systems, and have put forward a few new ones.

We have observed that Seifert’s detailed fluctuation theorem for the total entropy change is

valid even in the transient case for a system trapped in a harmonic potential, provided it begins

from a state of thermal equilibrium. We have further observed that the two frequently used

statements of the second law in terms of total entropy production and dissipated work, are not

equivalent. In fact one of them provides a better bound for the average work done. A new

quantifier of irreversibility of a process has been proposed.

We have extended several fluctuation theorems, both in classical and the quantum regime,

when the system is driven by a feedback controlled external drive. Here, we measure some
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observable of the system, and change our drive accordingly.We find that all the relations now

involve a corrections term that depend on the mutual information between the measurement

outcomes and actual values of observables, when no feedbackis applied along the reverse pro-

cess. We also find that the correction term changes, if the algorithm for the feedback applied

along the reverse process is changed. In contrast, the second form extended fluctuation theo-

rems, that is expressed in terms of efficacy parameter (a parameter that decides the efficiency

of a feedback), always retains the same form.

We have verified the fluctuation theorems for total entropy change, work done and dissi-

pated heat, when the system is in a time-periodic steady state. In this case, a system present

in a bistable potential has been considered, where the phenomenon of stochastic resonance has

also been analyzed. In such systems, we have shown that although the fluctuation theorems

for total entropy holds exactly over any number of cycles of the external drive, work and heat

will follow the steady state fluctuation theorem only if a large enough number of cycles are

observed in each experimental realization. In presence of biharmonic drive applied to the same

system, we obtain particle confinement into one of the wells,along with a sharper stochastic

resonance peak, in clear contrast to the behaviour in presence of a static drive.
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Appendix A

Derivation of Crooks work theorem and

Seifert’s detailed fluctuation theorem for

total entropy

A.1 Crooks Theorem for forward and reverse trajectories

The relation is given by [27]
P [X|x0]

P̃ [X̃|x̃τ ]
= eβQ. (A.1)

The left hand side is the ratio of the probability density of atrajectoryX(t) in the forward

process for initial pointx0, to the probability density of a trajectorỹX(t) along the reverse

process for the initial point̃xτ . Q is the heat dissipated by the system into the bath. The above

relation has been proved systems obeying various dynamics,but here we would briefly discuss

the case of stochastic dynamics of a Markovian overdamped system.

We first discretize time as{t0 = 0, t1, · · · , tN = τ}, and the forward trajectory as{x0 →

x1 → · · · → xτ}. The reverse trajectory will contain the same sequence of phase points as

the forward trajectory but traversed in the opposite direction: {x0 ← x1 ← · · · ← xτ}. The

external protocol as a function of time is given by{λ0 → λ1 → · · · → λτ}. Along the reverse

process, this same sequence gets reversed as{λ0 ← λ1 ← · · · ← λτ}. The forward trajectory
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in presence of this protocol can thus be represented by [42]

x0
λ1−→ x1

λ2−→ x2
λ3−→ · · · λτ−→ xτ . (A.2)

Each of these steps can once again be broken up as follows [42]:

(xj , λj) −−−−−−→
work step

(xj , λj+1)
λj+1−−−−−→

heat step
(xj+1, λj+1), (A.3)

where in the first step, the position remains constant atxj while the protocol changes fromλj

to λj+1. This step is called thework step. The work done by the protocol in this step is given

by the change in the system’s energy during this step:Wj = E(xj , λj+1) − E(xj , λj). Here,

E(x, λ) is the energy of the statex when the value of the protocol isλ. In the second step, the

protocol remains fixed atλj+1, while the position changes fromxj to xj+1. This is called the

heat step, in which the heat dissipated isQj = −[E(xj+1, λj+1)− E(xj , λj+1)].

We next assume that the transition probabilities between two statesxj andxj+1, follow the

condition of local detailed balance for a given value of protocolλj+1 [42]:

pλj+1
(xj+1|xj)

pλj+1
(xj |xj+1)

= exp{β[E(xj; λj+1)− E(xj+1; λj+1)]} = eβQj . (A.4)

This condition implies that if the parameter is held fixed fora long enough time interval, then

the system would reach the equilibrium state that corresponds to this fixed value of the control

parameter.

We then get the ratio between the forward and reverse trajectory as (using the Markovian

property of the dynamics)

P [X|x0]

P̃ [X̃|xτ ]
=

pλ1
(x1|x0)pλ2

(x2|x1) · · ·pλτ (xτ |xτ−1)

pλ1
(x0|x1)pλ2

(x1|x2) · · ·pλτ (xτ−1|xτ )
= eβ

P

j Qj = eβQ, (A.5)

with the net dissipated heat in the forward path being given by Q =
∑N−1

j=0 Qj . This is the

well-known Crooks’ theorem for the phase space trajectories [27].
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For an underdamped system, the reverse trajectory will be given by [27] (as before, the

tilde symbol represents switching of the signs of the velocities): {x̃0 ← x̃1 ← · · · ← x̃τ}.

The Crooks theorem for underdamped systems can be derived using stochastic path-integral

formulation1 [41,118], and is shown to remain the same as in the overdampedcase (eq. (A.5)),

except the fact the initial state of the reverse trajectory becomes̃xτ instead ofxτ :

P [X|x0]

P̃ [X̃|x̃τ ]
= eβQ. (A.6)

A.2 Crooks work theorem

If the system is initially at equilibrium with the reservoir, then the initial distribution for the

forward process will be given by (with parameter value fixed at λ(0) = A)

peq(x0) =
e−βE(x0)

Z(A)
, (A.7)

Z(A) being the partition function corresponding to the initial value of the protocol. For the

reverse process, the systems begins at thermal equilibriumwith the same bath, but now with

the value of the external protocol given byλ(τ) = B, so that the initial distribution for the

reverse process will be given by

p̃eq(xτ ) =
e−βE(xτ )

Z(B)
. (A.8)

Here, Z(B) is the partition function corresponding to the final value ofthe protocol. We

have assumed that the equilibrium distribution is invariant under the time-reversal operation:

p̃eq(x̃τ ) = p̃eq(xτ ). Then from the Crooks heat theorem, we get

P [X]

P̃ [X̃]
=

P [X|x0] peq(x0)

P̃ [X̃|x̃τ ] p̃eq(xτ )
= eβQ e−βE(x0)

Z(A)
· Z(B)

e−βE(xτ )
.

= eβ(Q+∆U−∆F ). (A.9)

1The same treatment can also be applied to the overdamped systems.
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On application of the first law, we get

P [X]

P̃ [X̃]
= eβ(W [X]−∆F ) (A.10)

Here, we have explicitly written the work done as a function of the forward trajectoryX.

Now, the probability density for workW done along the forward process is defined as

P (W) ≡ 〈δ(W −W [X])〉, (A.11)

whereW [X] is a path function. We then get

P (W) =

∫
D[X] P [X] δ(W −W [X])

=

∫
D[X] P̃ [X̃] eβ(W [X]−∆F ) δ(W −W [X])

= eβ(W−∆F )

∫
D[X] P̃ [X̃] δ(W −W [X])

= eβ(W−∆F )

∫
D[X̃] P̃ [X̃] δ(W + W [X̃])

= P̃ (−W) eβ(W−∆F ). (A.12)

Here we have used the relationW [X̃] = −W [X], andD[X̃] = D[X]. The delta-function

allows us to take theeβW factor out of the integral, ande−β∆F is a constant. The above relation

can be rewritten, by replacing the symbolW by W , in the standard form:

P (W )

P̃ (−W )
= eβ(W−∆F ). (A.13)
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A.3 Seifert’s detailed fluctuation theorem for the total en-

tropy

Using eq. (1.30),P [X]/P̃ [X̃] = e∆stot[X], we have in steady state, the probability of obtaining

a total entropy change of∆Stot to be

P (∆Stot) =

∫
D[X] P [X] δ(∆Stot −∆stot[X])

=

∫
D[X] P̃ [X̃] e∆stot[X] δ(∆Stot −∆stot[X])

= e∆Stot

∫
D[X̃] P̃ [X̃] δ(∆Stot + ∆stot[X̃])

= P̃ (−∆Stot) e∆Stot. (A.14)

The property of steady state has been used in the third step, where we have assumed that

∆stot[X̃] = −∆stot[X]. In other words, we have assumed that, along with the medium entropy

change, the change in system entropy also reverses sign along reverse path, which is possible

only if the initial and final distributions interchange their forms along the reverse process. This

condition holds for stochastic evolution only if the process starts and ends in equilibrium states,

or in time-symmetric nonequilibrium steady states [27].

Once again, replacing the symbol∆Stot by ∆stot, and noting that the functional forms of

P andP̃ are same in a steady state, we can rearrange and write the finalresult in the standard

form
P (∆stot)

P (−∆stot)
= e∆stot. (A.15)
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Appendix B

Dual dynamics and heat exchanges in

steady state

B.1 The Hatano-Sasa indentity

As shown by Hatano and Sasa [47], the following identity holds for systems making transitions

between nonequilibrium steady states (we would deal with anoverdamped system):

〈
N−1∏

i=0

ρss(xi+1; λi+1)

ρss(xi+1; λi)

〉
= 1. (B.1)

The steady state densityρss(x; λ) is assumed to be given bye−φ(x;λ), whereφ(x; λ) is an effec-

tive potential. To prove the identity, we would use the property of a steady state, that for a fixed

valueλ of the external non-autonomous drive, it remains in the samesteady state:

∫
dx′p(x|x′; λ)ρss(x

′; λ) = ρss(x; λ). (B.2)

The left hand side can be explicitly written as

〈
N−1∏

i=0

ρss(xi+1; λi+1)

ρss(xi+1; λi)

〉
≡
∫

dx0 · · · dxNρss(x0; λ0)

N−1∏

i=0

P (xi+1|xi; λi)
ρss(xi+1; λi+1)

ρss(xi+1; λi)
.

(B.3)

113



We therefore have,

〈
N−1∏

i=0

ρss(xi+1; λi+1)

ρss(xi+1; λi)

〉
=

∫
dx1 · · · dxN

N−1∏

i=1

P (xi+1|xi; λi)

∏N−1
i=0 ρss(xi+1; λi+1)∏N−1

i=0 ρss(xi+1; λi)

×
∫

dx0ρss(x0; λ0)P (x1|x0; λ0)

=

∫
dx1 · · · dxN

N−1∏

i=1

P (xi+1|xi; λi)

∏N−1
i=0 ρss(xi+1; λi+1)× ρss(x1; λ0)

ρss(x1; λ0)
∏N−1

i=1 ρss(xi+1; λi)

=

∫
dx1 · · · dxNρss(x1; λ1)

N−1∏

i=1

P (xi+1|xi; λi)
ρss(xi+1; λi+1)

ρss(xi+1; λi)

= · · · =
∫

dxNρss(xN ; λN) = 1. (B.4)

In the second step, we have used the property (B.2) to replace
∫

dx0ρss(x0; λ0)P (x1|x0; λ0)

by ρss(x1; λ0). In the third step, the factorρss(x1; λ1) has been taken out of the product over

ρss(xi+1; λi+1) in the numerator. The “· · · ” symbol in the last line implies repetition of the

same sequence of steps(N − 1) times.

B.2 Dual dynamics and its relation to steady state heat ex-

changes

The dual dynamics (denoted by the symbol†) is defined through its transition probabilities as

ρss(xi; λi)p(xi+1|xi; λi) = ρss(xi+1; λi)p
†(xi|xi+1; λi); (B.5a)

ρss(xi; λi)p
†(xi+1|xi; λi) = ρss(xi+1; λi)p(xi|xi+1; λi); (B.5b)

Here,p(xi+1|xi; λi) andp†(xi+1|xi; λi) are the transition probabilities from statexi to the state

xi+1 at the parameter valueλi, in the original and the dual dynamics, respectively. Eq. (B.5b)

is obtained by taking dual transformation of both sides of eq. (B.5a). Under such a dynamics, if

the system is allowed to relax to a steady state with a fixed value ofλ, then one would find that

the steady state densityρss(x; λ) retains its form while the probability current changes sign.
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Now, proceeding along the lines of Hatano and Sasa, we rewrite the identity (B.1) as

〈
N−1∏

i=0

ρss(xi+1; λi+1)

ρss(xi+1; λi)

〉
=

〈
ρss(xN ; λN)

ρss(x1; λ0)

∏N−2
i=0 ρss(xi+1; λi+1)∏N−1

i=1 ρss(xi+1; λi)

〉

=

〈
ρss(xN ; λN)

ρss(x0; λ0)

ρss(x0; λ0)

ρss(x1; λ0)

∏N−2
i=0 ρss(xi+1; λi+1)∏N−1

i=1 ρss(xi+1; λi)

〉

=

〈
e−∆φ

N−1∏

i=0

ρss(xi; λi)

ρss(xi+1; λi)

〉

=

〈
e−∆φ

N−1∏

i=0

p†(xi|xi+1; λi)

p(xi+1|xi; λi)

〉
= 1. (B.6)

In the first step, the last factor from the product in the numerator and the first factor from the

product in the denominator, have been taken out of the respective product signs, consequently

changing the limits of these products. In the second step, wehave multiplied the numerator

and denominator ofρss(xN ;λN )
ρss(x1;λ0)

by the factorρss(x0; λ0). We have used the relation∆φ =

− ln[ρss(xN ; λN)/ρss(x0; λ0)] in the next step, and have made use of the relations (B.5a) and

(B.5b) in the final step.

Comparing with the Hatano-Sasa equality, eq.(1.37), we findthat the product within the

angular brackets in eq. (B.6) must be equal toe−βQex. Therefore,

eβQex =

N−1∏

i=0

ρss(xi+1; λi)

ρss(xi; λi)
=

N−1∏

i=0

p(xi+1|xi; λi)

p†(xi|xi+1; λi)
=

N−1∏

i=0

p†(xi+1|xi; λi)

p(xi|xi+1; λi)
. (B.7)

The second equality follows from eq. (B.5b). To derive a similar expression for the housekeep-

ing heat, we begin with the Crooks theorem:

eβQ =

N−1∏

i=0

p(xi+1|xi; λi)

p(xi|xi+1; λi)
=

N−1∏

i=0

p(xi+1|xi; λi)

p(xi|xi+1; λi)
× p†(xi+1|xi; λi)

p†(xi+1|xi; λi)

=

N−1∏

i=0

p(xi+1|xi; λi)

p†(xi+1|xi; λi)
× p†(xi+1|xi; λi)

p(xi|xi+1; λi)
= eβQex

N−1∏

i=0

p(xi+1|xi; λi)

p†(xi+1|xi; λi)
. (B.8)
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In the final step, eq. (B.7) has been used. Thus, we get

eβQhk = eβ(Q−Qex) =
N−1∏

i=0

p(xi+1|xi; λi)

p†(xi+1|xi; λi)
. (B.9)

Equations (B.7) and (B.9) thus provide the expressions for the excess heat and the housekeeping

heat, respectively.

116



Appendix C

Calculation of variance ofW , and the

Fourier transform of P (∆stot) for a

system in a harmonic potential

C.1 Calculation of variance ofW :

Using equation (2.2a),

W − 〈W 〉 =−
∫ t

0

(x(t′)− 〈x(t′)〉)ḟ(t′)dt′

=−
∫ t

0

dt′ḟ(t′)

[
x0e

−kt′/γ + e−kt′/γ

∫ t′

0

ekt′′/γξ(t′′)dt′′

]
,

∴ 〈(W − 〈W 〉)2〉 =〈x2
0〉
∫ t

0
dt′ḟ(t′)e−kt′/γ

∫ t

0
dt1ḟ(t1)e

−kt1/γ

+
1

γ2

∫ t

0
dt′ḟ(t′)e−kt′/γ

∫ t

0
dt1ḟ(t1)e

−kt1/γ

∫ t′

0
dt′′ekt′′/γ

∫ t1

0
dt2e

kt2/γ〈ξ(t′′)ξ(t2)〉

=〈x2
0〉
∫ t

0
dt′ḟ(t′)e−kt′/γ

∫ t

0
dt1ḟ(t1)e

−kt1/γ

+
2T

γ

∫ t

0
dt′ḟ(t′)e−kt′/γ

∫ t

0
dt1ḟ(t1)e

−kt1/γ

∫ t′

0
dt′′ekt′′/γ

∫ t1

0
dt2e

kt2/γδ(t′′ − t2).
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In the second line, we have got an integral of the form

I =

∫ t

0

dt′ḟ(t′)e−kt′/γ

∫ t

0

dt1ḟ(t1)e
−kt1/γ

∫ t′

0

dt′′ekt′′/γ

∫ t1

0

dt2e
kt2/γδ(t′′ − t2)

= I1 + I2, (C.1)

whereI1 andI2 are contain the same integrands, but the contributions comefrom the region

t′ ≤ t1 and fromt′ > t1, respectively. Then we have,

I1 =

∫ t

0

dt′ḟ(t′)e−kt′/γ

∫ t

0

dt1ḟ(t1)e
−kt1/γ

∫ t′

0

dt′′e2kt′′/γ

=
γ

2k

∫ t

0

dt′ḟ(t′)e−kt′/γ(e2kt′/γ − 1)

∫ t

0

dt1ḟ(t1)e
−kt1/γ

=
γ

2k

∫ t

0

dt′ḟ(t′)(ekt′/γ − e−kt′/γ)

∫ t

0

dt1ḟ(t1)e
−kt1/γ

(C.2)

Therefore we have,

〈(W − 〈W 〉)2〉t′≤t1 =
T

k

∫ t

0

dt′ḟ(t′)e−kt′/γ

∫ t

0

dt1ḟ(t1)e
−kt1/γ

+
T

k

∫ t

0

dt′ḟ(t′)(ekt′/γ − e−kt′/γ)

∫ t

0

dt1ḟ(t1)e
−kt1/γ

=
T

k

∫ t

0

dt′ḟ(t′)ekt′/γ

∫ t

0

dt1ḟ(t1)e
−kt1/γ

=
T

k

∫ t

0

dt′
∫ t

0

dt1ḟ(t′)ḟ(t1)e
−k(t1−t′)/γ . (C.3)

Similarly, one gets

〈(W − 〈W 〉)2〉t′>t1 =
T

k

∫ t

0

dt′
∫ t

0

dt1ḟ(t′)ḟ(t1)e
−k(t′−t1)/γ . (C.4)

Therefore, we can write in compact notation,

〈(W − 〈W 〉)2〉 =
T

k

∫ t

0

dt′
∫ t

0

dt1ḟ(t′)ḟ(t1)e
−k|t′−t1|/γ
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=
2T

k

∫ t

0

dt′
∫ t′

0

dt1ḟ(t′)ḟ(t1)e
−k(t′−t1)/γ

=
2T

k

∫ t

0

dt′ḟ(t′)e−kt′/γ

∫ t′

0

dt1ḟ(t1)e
kt1/γ . (C.5)

Note that eq. (C.5) is obtained only when the contributions from eq. (C.3) or (C.4) are summed

up, which leads to an integrand that is symmetric with respect to t′ andt1 (see the first line of

eq. (C.5)). Partial integration of the integral overt1 gives

〈W 2〉 − 〈W 〉2 =
2T

k

∫ t

0

dt′ḟ(t′)f(t′)− 2T

γ

∫ t

0

dt′ḟ(t′)e−kt′/γ

∫ t′

0

ekt1/γf(t1)dt1.

Noting that〈x(t′)〉 = e−kt′/γ

γ

∫ t′

0
ekt1/γf(t1)dt1 andW = −

∫ t

0
ḟ(t′)〈x(t′)〉dt′, we finally get

〈(W − 〈W 〉)2〉 =
2T

2k
f 2(t) +

2T

γ
〈W 〉 = 2T

[
〈W 〉+ f 2(t)

2k

]
.

C.2 Calculation of cross correlation〈Wx〉 − 〈W 〉〈x〉:

We have, from (2.2a) and (2.13),

〈W (t)〉〈x(t)〉 =

[
−
∫ t

0

〈x(t′)〉ḟ(t′)dt′
]
× 〈x(t)〉

=

[
−
∫ t

0

(
1

γ

∫ t′

0

e−k(t′−t′′)/γf(t′′)dt′′

)
ḟ(t′)dt′

]
×
[

1

γ

∫ t

0

e−k(t−t1)/γf(t1)dt1

]

=− 1

γ2

∫ t

0

dt′ḟ(t′)

∫ t′

0

dt′′e−k(t′−t′′)/γf(t′′)

∫ t

0

dt1e
−k(t−t1)/γf(t1). (C.6)

On the other hand,

W.x =

(
−
∫ t

0

x(t′)ḟ(t′)dt′
)

x(t)

=

[
−
∫ t

0

(
x0e

−kt′/γ +
1

γ

∫ t′

0

e−k(t′−t′′)/γ(f(t′′) + ξ(t′′))dt′′

)
ḟ(t′)dt′

]

×
[
x0e

−kt/γ +
1

γ

∫ t

0

e−k(t−t1)/γ(f(t1) + ξ(t1))dt1

]
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∴ 〈W.x〉 =−
∫ t

0
〈x2

0〉e−k(t+t′)/γ ḟ(t′)dt′

− 1

γ2

∫ t

0
dt′ḟ(t′)

∫ t′

0
dt′′e−k(t′−t′′)/γ

∫ t

0
dt1[f(t′′)f(t1) + 〈ξ(t′′)ξ(t1)〉]e−k(t−t1)/γ

=− T

k

∫ t

0
e−k(t+t′)/γ ḟ(t′)dt′

− 1

γ2

∫ t

0
dt′ḟ(t′)

∫ t′

0
dt′′e−k(t′−t′′)/γ

∫ t

0
dt1[f(t′′)f(t1) + 2Tγδ(t1 − t′′)]e−k(t−t1)/γ ,

(C.7)

where we have used the fact that1
2
k〈x0〉2 = 1

2
T , and〈ξ(t)ξ(t′)〉 = 2Tγδ(t− t′). Also,x0 and

ξ(t) are uncorrelated, and the average of each is zero. From (C.6)and (C.7),

〈W (t)x(t)〉 − 〈W (t)〉〈x(t)〉 =− (T/k)

∫ t

0

e−k(t+t′)/γ ḟ(t′)dt′

− (2T/γ)

∫ t

0

dt′ḟ(t′)

∫ t′

0

e−k(t′−t′′)/γe−k(t−t′′)/γdt′′

=− (T/k)e−kt/γ

∫ t

0

e−kt′/γ ḟ(t′)dt′

− (2T/γ)e−kt/γ

∫ t

0

dt′ḟ(t′)e−kt′/γ

∫ t′

0

e2kt′′/γdt′′. (C.8)

Finally, one obtains

〈W (t)x(t)〉 − 〈W (t)〉〈x(t)〉 = −T

k
e−kt/γ

∫ t

0

dt′ḟ(t′)ekt′/γdt′. (C.9)

On integrating by parts, the integral on the RHS becomes

[
ekt′/γf(t′)

]t
0
−
∫ t

0

k

γ
ekt′/γf(t′) = ekt/γf(t)− k

γ

∫ t

0

ekt′/γf(t′)dt′.

Using this, equation (C.9) reduces to

〈W (t)x(t)〉 − 〈W (t)〉〈x(t)〉 =
T

k
[k〈x(t)〉 − f(t)]. (C.10)
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Finally, from (C.10) and (2.17b), we get

σ2 =
T

T
[2〈W 〉 − k〈x〉2 + 2〈x〉f ] = 2〈∆stot〉. (C.11)

C.3 Calculation of the Fourier transform of P (∆stot, t)

P̂ (R, t) ≡
∫ ∞

−∞

d∆stote
iR∆stotP (∆stot, t)

=

∫ ∞

−∞

dx dx0P (x0, x, t) exp

[
iR

(
α

2
x2

0 +
β

2
x2 + κ

)]

= eiRκ

∫ ∞

−∞

dx dx0P (x0, x; t) exp

[
iR

(
α

2
x2

0 +
β

2
x2

)]
. (C.12)

The factorexp
[
iR
(

α
2
x2

0 + β
2
x2
)]

in (C.12) can be written as

exp

[
iR

(
α

2
x2

0 +
β

2
x2

)]
= e

1

2
iRa†.B.a, (C.13)

with

a =




x0

x


 ; B =




α 0

0 β


 . (C.14)

Therefore, from (C.12), we have,

∴ P̂ (R, t) =
eiRκ

2π
√

detA

∫ ∞

−∞

da e−
1

2
a†.A−1.a+i R

2
a†.B.a

=
eiRκ

2π
√

detA

∫ ∞

−∞

da e−
1

2
a†.(A−1−iRB).a

=
eiRκ

2π
√

detA

∫ ∞

−∞

da e−
1

2
a†.A−1.(I−iRA.B).a

=
eiRκ

2π
√

detA

2π√
det(A−1) det(I− iRA.B)

=
eiRκ

√
det(I− iRA.B)

. (C.15)

which is equation (2.37).
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The determinantdet(I− iRA.B) is given by

det(I − iRA.B) =
T − iR(σ2

x − T )

k〈x2〉 +

(
σ2

x − T

k〈x2〉

)
e−2kt/γ

[
(1 + iR)2

+R(i− R)

{(
σ2

x − T

T

)
e−2kt/γ − σ2

x

T

}]
. (C.16)

C.4 Proof of 〈∆F (τ )〉 ≥ ∆F for harmonic potential

In this appendix, our motivation is to evaluate〈∆F (τ)〉 and show that〈∆F (τ)〉 ≥ ∆F .

Let us consider the potential

U(x, t) =
1

2
kx2 − xf(t), (C.17)

wheref(t) is an arbitrary protocol. The protocolλ(t) = f(t) is assumed to be equal to zero

at timet = 0. Thus,λ(0) = 0. After time τ , λ(τ) = f(τ). The equilibrium free energy,

calculated from the partition function, at parameter valueλ(0), is FA = T ln
(√

k
2πT

)
. The

equilibrium free energy corresponding to the final value of the protocol is

FB = T ln

(√
k

2πT

)
− f 2

2k
. (C.18)

Here,

∆F = FB − FA = −f 2

2k
. (C.19)

The initial probability density of the particle position is

p(x0) =

√
k

2πT
exp

(−kx2
0

2T

)
. (C.20)

The final time-evolved solution forp(x, τ) is

p(x, τ) =

√
k

2πT
exp

(−k(x− 〈x〉)2

2T

)
. (C.21)
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where〈x(τ)〉 is obtained from equation (2.5) on replacingt by τ . Using the definition (2.42)

for nonequilibrium free energy, and the variance〈(x− 〈x〉)2〉 = T/k, we then have

〈∆F (τ)〉 = 〈∆U(τ)〉 − T 〈∆s(τ)〉 =
1

2
k〈x2〉 − 〈x〉f − T

2
.

Thus,

〈∆F (τ)〉 −∆F =
1

2
k〈x2〉 − 〈x〉f − T

2
+

f 2

2k

=
1

2
k

(
T

k
+ 〈x〉2

)
− 〈x〉f − T

2
+

f 2

2k

=
1

2
k

(
〈x〉2 − 2〈x〉f

k
+

f 2

k2

)

=
1

2
k

(
〈x〉 − f

k

)2

≥ 0. (C.22)

In the second step, we have used the fact that〈x2〉 − 〈x〉2 = T/k, so that〈x2〉 = T/k + 〈x〉2.

C.5 Explicit expressions for free energy changes in a sinu-

soidally driven system in harmonic potential

Whenf(t) = A sin ωt, the instantaneous change in free energy is given by

〈∆F (t)〉 =
1

2
k〈x(t)〉2 − 〈x(t)〉f(t)

=
kA2e−2kt/γ

2(k2 + γ2ω2)2

[
γω + ekt/γ(−γω cos ωt + k sin ωt)

]2

− A2e−kt/γ sin ωt

k2 + γ2ω2

[
γω + ekt/γ(−γω cos ωt + k sin ωt)

]
. (C.23)

and change in equilibrium free energy is given by

∆F = −A2 sin2 ωt

2k
. (C.24)
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For a protocol of time interval betweent = 0 to t = τ = π/2ω, we therefore get

〈∆F (τ)〉 = −A2
[
k3 +

(
2− e−kπ/γω

)
kγ2ω2 + 2e−kπ/2γωγ3ω3

]

2(k2 + γ2ω2)2
; (C.25)

〈∆F 〉 = −A2

2k
. (C.26)
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Appendix D

Heun’s method of numerical integration

Here we describe briefly the Heun’s method of integration [67]. Let the slope of a curveg(t) at

some point bet given by the function

dg(t)

dt
≡ f(t, g(t)). (D.1)

Consider the solution curve to be the blue curve in the figure below. The actual value ofg(t+h)

g(t)

t

L

L

L

2

1

3

t’ ’t +h

Figure D.1

must be given by, from eq. (D.1),

g(t + h) = g(t) +

∫ t+h

t

dsf(s, g(s)). (D.2)
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Now, we exaggerate one of the time steps, denoted byh, to show the essential principle which

the method relies on. Suppose that the region of the curve considered be convex, as depicted in

the figure. As is obvious from the figure, the slope corresponding to t = t′ (line L1) is smaller

and that att = t′ + h (line L2) is higher than the desired slope given by the lineL3. One can

decrease the inaccuracy of computation by substituting either of these slopes with the average

of the slopes1 at the two pointst = t′ andt = t′ + h:

slope=
1

2
[f(t′, g(t′)) + f(t′ + h, g(t′ + h))]. (D.3)

To do this, we first calculate the slope at the pointt′. To get the slope at the right end, Heun’s

method approximatesg(t′ + h) by the value obtained through the Euler method,g(t′ + h) ≃

g(t′) + hf(t′, g(t′)), and then computes the slopef(t′ + h, g(t′ + h)). We then write

g(t′ + h) = g(t′) + h · fHeun(t′, g(t′)), (D.4)

where

fHeun(t′, g(t′)) =
1

2
[f(t′, g(t′)) + f(t′ + h, g(t′) + hf(t′, g(t′)))]. (D.5)

The Heun’s method is accurate up toO(h2) (per step) for deterministic integrals [67]. In

[67], it has been shown that this method reproduces the equilibrium distribution faithfully for

stochastic systems.

The entire analysis remains similar if the considered region of the curve is concave instead

of being convex.

1This is the basic principle of the trapezoidal method of integration.
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