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Synopsis

When a macroscopic system exchanges energy with its sulirmgsior some external drive
in the form of work or heat, it is usually given by a sharp disition whose mean is large
compared to its variance. However, as we go towards mesisspgtems, we find that the
fluctuations from the mean become comparable to the medh As¢hese scales, the thermal
fluctuations experienced by the system owing to its intéaatith the surroundings, begin to
dictate its evolution in phase space.

At the macroscopic level, even for a single experiment, weeekthe second law to hold.
For example, the work done on the macroscopic system, irpcesof a heat bath at constant
temperature, will be found with overwhelming probability he greater than or equal to the
change in its free energy. In other words, the probabilitirafing a deviation from the second
law is fantastically small, even if we consider a single eévestead of an ensemble. However,
this is not true for a mesoscopic system, where such demgtian occur with appreciable
probabilities. So the second law inequalities must holg anterms of theensemble averaged
work or entropy.

Recent advances in experimental techniques have allowéadl cerry out exact manipu-
lations on mesoscopic systems like RNA molecules, nandgizeticles, molecular motors,
etc. As aresult, the study of the thermodynamics of thesesyshas transformed itself from
being of mere academic interest to that of practical concéris now well-established that
the inequalities of the second law strictly hold for avetfeermodynamic variables for these
systems. More interestingly, it turns out that inclusiorflo€tuations actually helps us to find

stronger relations for the variables in terms of exaqialities which produce the second law
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inequalities as their corollaries. The last couple of desaldlave observed the development
of several such powerful theorems, calfacctuation theorem@-Ts) [1, 2], which dictate the
amount by which these energy exchanges can violate our etjpets. These relations have
recently gained a lot of attention. They have been deriveddwgeral different scenarios: for
deterministic as well as stochastic dynamics, and alsofantym dynamics. We have FTs that
apply to driven systems in transient state (for exampleCitwoks’ work fluctuation theorem),
or to systems in nonequilibrium steady state (for exampmée8'’s detailed fluctuation theorem
for total entropy). They exist for systems that begin in destd canonical, microcanonical or
grand canonical ensembles. There are FTs for differerabias like work done on the system,
heat exchanged with the reservoir, exchanged chargemiatarn, etc. These relations are very
robust and remain valid even when the system is driven fay dman equilibrium, where the
linear response theory breaks down.

In this thesis, we would concentrate primarily on various Ffiat are significant mainly
for mesoscopic systems. Some model systems are consiceceder to analytically verify
different results connected to FTs. Apart from these, sdveew FTs have been predicted.
In one of our works [3], we show that in the very special casemthe system begins from
thermal equilibrium and the confining potential is harmonine detailed fluctuation theorem
for the change in total entropy holds even in the transiggibre. This happens in spite of the
fact that the theorem is supposed to hold only for systemsonaquilibrium steady state. The
nature of entropy production during the relaxation of aeysto equilibrium is analyzed. The
averaged entropy production over a finite time interval gaetter bound for the average work
performed on the system than that obtained from the weliskngarzynski equality. Further, in
the same work, a new quantifier for the irreversibility of agess, namely, the average change
in the total entropy, has been introduced.

Using feedback-controlled protocol to drive a system has@ed a lot of attention in re-
cent years [2], primarily because it can drastically enkahe efficiency of the process. Using
proper feedback, one can extract work from a system coupledsingle reservoir as well as

reduce its entropy. In such processes, a system obsergaileasured at intermediate times,
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and the form of the protocol is changed according to the anésoof these measurements. In
presence of feedback, the fluctuation theorems, along Wwitls¢cond law, need modification.
The correction term includes the so-calleditual information The mutual information es-
sentially provides a measure of the information contaimeithié measurement outcomes about
the actual values of the observables being measured, whandhsuring device is in general
subject to measurement errors. We first show that thesededdiuctuation theorems can be
trivially obtained from the original ones (that are validabhsence of feedback) [4]. Interest-
ingly, the modified second law obtained on the applicatiothef Jensen’s inequality to the
extended fluctuation theorems allows for the average changsal entropy to be negative.
This is a consequence of the fact that we are actually iggdhie measuring apparatus from
the “universe” consisting of the system and the reservoie NAve used this method to gen-
eralize the Hatano-Sasa identity [5] as well as the Sesféictuation theorems for the total
entropy [6,7]. We have also extended our analysis to demegéneralized form of the detailed
as well as the integral form of fluctuation theorems for opgstesms in the quantum regime.

In addition to obtaining the modified relations for the workemtropy, one is also inter-
ested in how efficient a given feedback algorithm is. Thissoeais provided by thefficacy
parameterdefined by Sagawa and Ueda [8]. We show that other than congptine efficiency
of a feedback process, this parameter actually serves tadera useful generalized form of
FTs for the thermodynamic variables like work or entropy. [8he physical interpretation of
the efficacy parameter remains the same, regardless of ¢dbdek procedure used to gen-
erate the time-reversed process. This universal expressamds in contrast to the extended
fluctuation relations that are more commonly used, whichlmrery different depending on
the algorithm for feedback along the backward process. atterlrelations also give rise to
different bounds for the thermodynamic variables, depgmdn the feedback algorithm along
the reverse process, while the efficacy parameter provides/arsal bound.

One of the important examples where the random thermal #itictus contrive to produce
a very useful physical phenomenon is that of stochasticnaaste (SR) [10]. It is a highly

nonlinear phenomenon, and is usually modelled as a syséasiting between the two wells of
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a symmetric double-well potential subjected to an extepealbdic drive. This effect produces
amplified output of an otherwise weak periodic input drivee $tudy the behaviour of average
change in total entropy as well as of average work done in kecgs a function of both the
noise strength and of the frequency of external drive [11k fid that when noise strength
is changed, the peak in the average work correctly charaetethe resonance condition, but
not the peak in average total entropy change. In the secs® tae averages of both total
entropy change and work done peak when the resonance amditmet. It has also been
shown that the probability distribution for total entrogyanige obeys the detailed fluctuation
theorem given by Seifert, in the time-periodic steady state

In a separate work [12], we show that if a biharmonic drive ppleed to the potential
in place of a single harmonic drive, then not only does theame energy show a sharper
peak at stochastic resonance, it also leads to particle jmgmpto one of the wells. It is
also observed that introduction of an additional phasesidifice between the two harmonics
significantly affects the amount of particle pumping, areltalso produce appreciable changes
in the structures of the hysteresis loops. Along with this, eheck that the work done and
dissipated heat follow fluctuation theorems in the limit ofaege number of cycles in each

realization, when the contributions from the boundary ®ebmcome negligible.
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Chapter 1

Introduction

Statistical mechanics is the subject that strives to empila¢ macroscopic events from the
properties of microscopic dynamics of the constituentiplad. It is evidently computationally
impossible to apply and solve Newton’s laws of motion toladl particles present (typically of
the order ofl0%?) in a given macroscopic sample. Furthermore, often we arinterested in
the entire system, but only in a part of it. Henceforth, we ldazall this part as our system
of interest, or simply as thgystem The remaining portion that we are not interested in would
be termed as thenvironment Together they form thaniversegi.e., an isolated supersystem.
Classical mechanics would not allow us to study the timdtgian of the properties of the
system only, without taking into account the detailed tievelution of the supersystem.
Statistical mechanics provides us a way to circumvent tdé@&eulties by exploiting the
properties arising precisely due to the presence of a langgber of degrees of freedom [1].
These properties are described probabilistically. Fomgta, consider an ideal gas at equilib-
rium with a thermal reservoir. Although we do not know the @@ordinates and momenta
of each particle of the combined supersystem, we do knowribieapility distributiort of the
states of the molecules in this system. Thus, as the numb#ggrees of freedom becomes
very large, statistical laws come to our aid, and the job bfisg a huge number of differential

eguations no more remains a necessity.

1n this thesis, we would be using the terms “probability wlisttion” and “probability density” interchange-
ably, as long as there is no reason for confusion, althougle witen we would mean the latter.



The last couple of decades have observed a crescendo of gfiioig into the field of
nonequilibrium thermodynamics and statistical mechaofawesoscopic or smaller systems,
having dimensions typically in the range 1 nm th. This is mainly because of the advent
of new high-precision measurements to probe these systeniis,RNA pulling experiments,
dragged colloidal particles, molecular motors, etc. [2-98jus, at present this field has trans-
formed itself from being a problem of mere academic intetieeststudy dealing with practical
applications. Any attempt to build machines at such smallescbe preceded by a thorough
understanding of how differently the systems behave aetbesles. An efficient nano-engine
need not be (and, in fact, is not) a simple scaled down verdian efficient macro-engine.

A major development in the field of nonequilibrium statiatimechanics has been a group
of relations, collectively known as tHikeictuation theorem@Ts) (see section 1.3) [5]. This the-
sis is primarily aimed at the verification of FTs in severdiatent model systems, along with
the derivation of some new theorems. These theorems pragadus relations for the prob-
ability distributions (over a large number of experimemeadlizations of a process) of various
physical quantities like work, heat or entropy changesystesms undergoing nonequilbrium
processes (for details, see section 1.3). A knowledge ofi$-fiscessary to build efficient ma-
chines at small scales. We have also studied extension &hthen FTs to the case when the
externally applied drive is controlled by feedback. The nieg of feedback-controlled drive
would be explained shortly. Such drives are of extreme ingmme, because they can drasti-
cally enhance the efficiency of a process. Other than fluclua¢lations, the phenomenon of
stochastic resonance (see section 1.6), which is of majoifiance in biological systems, has
been studied.

The mathematical statement of the fluctuation theorems eayeberically stated as

= e, (1.2

whereX: is the observed value of an extensive variable (dissipate#,wdissipated heat, total

entropy change, etc.), andis a positive constant with inverse dimension of thatof The



symbolsP and P denote the probability density functions observed underftnward and
time-reversetiexternal perturbations qrotocols whose time dependences are given\s)
and\(r — t), respectively. Here, the period of observation beginsag¢ti= 0 to and ends at
timet = 7. Since all the dissipative quantities scale with the system, it is obvious that for
a macroscopic system, the probability of observing a negatlue of> will be fantastically
small compared to that of observing a positive valu&ofor a mesoscopic system, however,
the probability of observing such events can become ambksgias will be elaborated later
(see the discussion on pages 4 and 5). The strength of theseiths lies in the fact that they
remain valid no matter how far the system has been driven &wayequilibrium. Moreover,
they provide further insights into the microscopic basigtifie second law of thermodynamics.
We will see that the second law inequalities are readily iabthas corollaries, from these
theorems. Most of these theorems have been verified expaaitye3, 7-17].

In general, the second law specifies that the total entroplgentiniverse (system plus en-
vironment) never decreases in a process. However, sonsewaaeed to apply a drive that
is feedback-controlled. This means that during the proaessneasure some observable (say,
the position or the velocity) of the system, and dependintheroutcome of the measurement,
the form of the protocol is changed. In such a case, the sedeonihequality undergoes a
modification. This is because, now the measuring devices alpart of our universe. Thus,
if we still include only the system and the bath in our anay#ien we are actually ignoring a
part of the universe. The modified inequalities involve eotion terms that are encoded in the
information recorded by the measuring device. We have stiithiese modified expressions for
the fluctuation theorems in presence of feedback-contraltire in chapters three and four.

In chapter three, the extended relations in presence ob&chave also been studied for
guantum systems. Most of the fluctuation theorems have beeerglized to the quantum
regime [6,18-21]. A particularly simple approach adoptdjuantum systems is to consider
the system to be initially prepared in a state sampled fromesarbitrary distribution. Subse-

guently, it is kept isolated from its environment throughthe period of evolution so that the

2In chapter 4, we would find that certain fluctuation theorewid for transformations other than simple time-
reversal.



evolution operator is unitary. The other simplifying asgdion is the use of projective mea-
surements on the state of the system. Although these assmsire highly simplistic, they
provide a clear visualization of the process, and it is udive to study such processes before
embarking upon more general processes. For example, tHedeoe on an isolated system
is defined through two projective energy measurements anitied and the final times. If the
energy eigenvalues thus obtained Areand E,,, respectively, then the work done on the system
during that realization is defined ad; = F,, — E,. Only by such an identification, work can
be defined as an observable, which is difficult otherwise. IMmore detailed treatments are
called for in studying the quantum fluctuation theorems unaae general conditions, and the
subject is being studied intensively at present.

In this thesis, we would apply the FTs mainly to mesoscopstesys that undergo some
nonequilibrium process. The FTs are useful only when agghese small systems, where
thermal fluctuations become significant. In this regardatilel be useful to briefly discuss the
terms “mesoscopic systems” and “nonequilibrium procesgasately. We outline below the
special features of each.

Let us first discuss the properties mesoscopic systems$n general, the evolution of a
system in phase space will not follow a unique trajectory,viall be subject to thermal fluc-
tuations. Thermal fluctuations arise because of the syster@raction with its environment.
These fluctuations are ignored in macroscopic thermodyrganirhis approach yields quite
accurate results, as long as our system is itself macrascapthat deviations from the mean
value are negligibly small compared to the mean value itddtbwever, when we direct our
attention to systems at mesoscopic scales or smaller,dhiditoon gets invalidated. We can,
therefore, no more remain oblivious to the fluctuations B, 2Consequently, we will find
that the thermodynamic observables appearing in the sdaanohequality must be replaced
by their averages over a large number of experimental adadizs. Consider, for example, a
corollary of the Clausius statement for the second lawaliestthat, if we consider a system in
contact with a thermal reservoir, then we must haké: = W — AF > 0 (sect. 15 of [1]).

Here, W is the work doneon the system by the external force, and’ is the change in the



Helmoltz free energy of the system in the process. For a mepassystem, this inequality
would be modified tdWW,;) > 0, where(- - -) represents ensemble averaging.

The above fact has been shown diagrammatically in figure Thk figure clearly shows
that, when the mean value &F; becomes comparable to the typical energy obtained from
thermal fluctuations, there may be an appreciable numbererite in the ensemble in which
the dissipated work becomes negative. This is the shadeshriggthe figure. The phase space
trajectories along which an observable seems not to belmagedordance with the second
law are calledatypical trajectories Sometimes they are also termed as “transient second law
violating trajectories”. Neverthelesd};) remains positive, in conformity with the second law.

In the above discussion, the dissipated widikis the observabl&, in the context of eq. (1.1).

P(Wy)

4

Figure 1.1: The distribution at the right is that for the gissed work in a macroscopic system (diagram
is not to scale). Obviously, because of the large value offrtban, there would be negligible probability

of observing a process in which the dissipated widfkis negative. On the other hand, the distribution
for the mesoscopic system (left) may have an appreciableopdine distribution on the negative side

(shaded part).

Wy

We now discuss the features ohanequilibrium processNonequilibrium statistical me-
chanics studies processes where the system may be ahpitrady from equilibrium. Al-
though we have well-defined state variables for systemsatilegum, it is usually difficult
to define thermodynamic variables for a system that is fanfeguilibrium. Nevertheless,

the energy remains unambiguously defined for any given rsiate of the system, even if the



macrostate is no more well-defined. We will see that the eglike work, heat and internal
energy can be defined using physical arguments in stochastigetics [23, 24], even when
system undergoes a highly nonequilibrium process.

We would next go through a little more detailed introductiothe basic concepts involved
in the topics dealt with in this thesis, in sections 1.1-X.this chapter. In section 1.7, the plan

of this thesis will be outlined.

1.1 Langevin equation and stochastic thermodynamics

To get a proper understanding of the variables work, he&trnal energy and entropy at
mesoscopic scales, we need to define them unambiguously.h@ikibeen done by Sekimoto
in [23, 24], where he has used physical arguments to show hesetvariables naturally arise
from the Langevin dynamics of a Brownian particle. The Lamgequation is the extension
of the Newton’s equation of motion to the regime where thdesysinteracts with environ-
ment, and its effect on the system is given by a systematitidnial force and a fluctuating
force [48]. These fluctuations play a major role in determgrthe phase space trajectory of the
system. We suppose that a mesoscopic particle is perforBrimgnian motion in a medium
held at temperaturé which we would treat as a heat bath. The particle may be sigojeo

an external time-dependent perturbatjtin) that can be derived (say) from a time-dependent
potentiaf. Let the full potential (including the perturbation) to whithe system is subjected
beV (z,t). We then write the equation of motion for the system (in oimeeshsion) in the form:

OV (z,1)

mo = — o Y +£(t), 1.2)

where—~uv is the viscous force, angl¢) contains all the random contributions. We would use

an overhead dot to represent total time-derivatives. Tginout this thesis, we will assume that

3At the end of the section we would state the result in presehaeon-conservative force.



this random force follows a zero-mean Gaussian distribyfaod is delta-correlated in time:

(@) =0, (€®)&)) =2Ds(t —t'). (1.3)

In the above equatiomn) is the noise strength and is related to the bath parametensgin the
Einstein relation:D = vkgT, whereky is the Boltzmann constant. Following Sekimoto [24],
we will now trace the stefghat lead to the definitions of the thermodynamic variakethis

setup. We multiply both sides of (1.2) ldy: and rearrange the terms to get

dv ov
—[=yv +&(t)|dx = —madx - %dx. (1.4)

(—vyv + £(t)) consists of the forces that are generated by the bath—Seyv + £(t)) is the
reaction force of the system on the bath. Thus, the left hishelis the work done by this
reaction force of the system, on the bath. This work getfrienaably lost into the huge number
of degrees of freedom of the bath. We identify this term ashibet dissipated( (in a time

stepdt) into the medium:

4Q = [yv — £(t))dw. (1.5)

We then have, after rewriting eq. (1.4), and using the chamdl = %—‘;dx + %—Ydt,

B ov . 1, ov
dQ = —muvdv — dV + Edt = —d <§mv + V) + Edt' (1.6)

Finally, on integrating both sides, and writing the totadie in the internal energy ad/ =

A($mv? + V'), we obtain

Q=—-AU+ %—‘t/dt = AU+ W, (1.7)

4Although in [24], although Sekimoto had provided the defivafor an overdamped system, it is straightfor-
ward to see that it is easily applicable to underdamped systes well.



where, on comparing with the first law, we have identified theosid term on the right hand

side as the thermodynamic worK performed on the system by the external parameter:
oV
W = / Edt' (1.8)

Thus, we get the following expressions 1@y AU andW up to timer:

Q) = /O "(yw — £(1))dt = — /0 T (% + mi)) vt (1.9a)
AU(7) = %mv%) +V(a(r), ) — %mvz(O) —V((0),0). (1.9b)
W(r) = /O ' Wéf’t)dt. (1.9¢)

In eq. (1.9a), the integrand has been rewritten using eg). (1.

Overdamped case: Often in stochastic dynamics, we have systems whose momerdu-
able is a fast variable, i.e., the relaxation time~ m/~, is very small compared to the time
scale of change in the position distribution. We then saytti@system isverdampednd the

Langevin equation transforms to

v = (). (1.10)

Following a prescription similar to that of an underdampgstem, we arrive at the following

expressions fo), AU andW:

an) = [ i
AU(r) = V(a(r), ) ~ V(x(0), 0);

[T OV (x,1)
W(r) = /0 D (1.11)

Finally, in addition to the conservative force field that da derived from the potential



function V' (z, t), a non-conservative forcg,.(x,t) may also be present. This would simply
modify the definition of work to [5]

’Ta T
W(r) = /O %dw /O Frelz, t)idt. (1.12)

1.2 Second law at mesoscales

The second law for macroscopitosedsystems (one that can exchange only energy with its
surroundings) can be described through either of the fatiguwo statements, which arise

from the Clausius inequality:

First statement. Among all processes taking place between any two given dumamic
states, the work done on the system is minimum for a revergibtess.

For a system in contact with a thermal reservoir, this gii@sto the inequality
W > AF. (1.13)

Here, the change in free energyf’ is the work done during an isothermal reversible process
[1]. The above equation, when rewritten interms of wexkractedfrom the system, gives the

statement for the maximum work theorem [25].

Second statement: The total entropy of the universe (which is a closed systemsisting
of the system of interest and the environment with whichératts) can never decrease with
time:

ASi > 0. (1.14)

Here,AS,, is the change in total entropy of the universe, which, adogrtb the above state-
ment, is always non-negative [26].
The second law has been formulated for macroscopic systenese the effect of thermal

fluctuations are negligible. At mesoscopic scales, as meed above (page 5), there would



be atypical trajectories, although the ensemble-averggadtities must obey the second law.

Thus the statements of the second law at mesoscales become:

(W) = AF; (Asgor) > 0. (1.15)

Here, the angular brackets denote averages taken overearlargber of realizations of the
experiment, while the expressions withfjh denote the values of the observables (work or
change in total entropy) for each experiment, which in gaineary from one realization of the
experiment to the other. The change in total entrayy,,, for a given phase space trajectory
(corresponding to a given experiment) is defined as the suheafhanges in medium entropy
(As,,) and in system entropyXs) [28, 29] along that trajectory. A change in the medium
entropy over a time intervat is given by the heat dissipated into the medium divided by its
temperature:

Q(7)

Asy, (1) = i (1.16)

The nonequilibrium entropy of the system is defined as

S(t) = —/dx p(z,t) Inp(x,t) = —(lnp(z,1)), (1.17)

wherexz would be replaced by both position and velocity for an undergded system. This

leads to the definition of the configurational entropy of tadigle as [27—-29]
s(t) = —Inp(x,t). (1.18)

The change in the system entropy for any trajectory of domatiis given by

As(r) = —In Bzgo;] , (1.19)

wherepy(xy) andp,(z,) are the probability densities of the particle positionsratial time

t = 0 and final timet = 7, respectively. Thus for a given trajectory, the systemamytr(t)

10



depends on the initial probability density and hence costgie information about the whole

ensemble. The total entropy change over time durati@sgiven by

Asior(T) = Asp(T) + As(T). (1.20)

1.3 Fluctuation theorems

As stated earlier, the fluctuation theorems have been orlgeafare and significant develop-
ments in the field of nonequilibrium statistical mechanid@hese theorems remain valid no
matter how far the system has been driven away from equikforilnitially theorems of this
kind were proved for the entropy production, from simulatmf sheared fluids by Evans et
al [30]. It was proved mathematically for deterministict®yas in [31] and later by Gallavotti
and Cohen [32]. Several new relations in this field have copngnce then [20,27-29,33-43].
These theorems provide stringent restrictions on theifnaaif atypical realizations (i.e., the
ones that behave atypically with respect to the second lawxplained in page 5) in an en-
semble. They give rigorous relations for the propertiesisfridbution functions of physical
variables like work, heat and entropy production for systemven away from equilibrium,

where Onsager relations no longer hold.

1.3.1 The Jarzynski and Crooks relations

An important development in the field of fluctuation theordmas been the Jarzynski equal-
ity [33, 34] which provides a way to compute the change in tipeiléorium free energy of a
system from measurements of the work done on it along a ndi@gun process. Crooks [42]
later provided a more detailed fluctuation theorem from Wwhine Jarzynski equality automat-
ically follows. We would first describe the Crooks theorenoleand show how the Jarzynski
equality appears as a corollary. Although these theorews Ib@en proven for both determin-
istic as well as stochastic evolutions, we would outlineyanie of them below, namely for the

stochastic dynamics.
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Let us consider a system that has been equilibrated withteblagiawith temperaturé’ at
initial time ¢ = 0 [33, 34], corresponding to the valug0) = A, of an external thermodynamic
parameter (on which the system Hamiltonian depends eip)icAt ¢ = 0+ we switch on the
time-variation of the external perturbatioiit). The phase space coordinates of the particle
evolve along a trajectory governed by stochastic dynanfios) timet = 0 tot = 7, and
the final value of the parameter M7) = B. The time-dependence of the protocol is arbi-
trary. However, in an ensemble of realizations of a givereexpent, the same protocol is used
repeatedly.

As an example, in a particular experiment, the system magisbaf an RNA molecule,
whose free ends are attached to two polystyrene beads. Ctherofis held fixed, while the
other bead is moved using an optical trap, thereby eithetcting or contracting the molecule.
In this case, the external parameter would be the distarteeeba the two beads, and the time-
dependencg(t) of this parameter would specify tipeotocol

The full trajectory of the system’s evolution in phase spaikbe represented by (¢), to
differentiate it from the individual phase space pointS Now, any such point;, in general
consists of all the degrees of freedom associated with theclega but we will stick to a one-
dimensional overdamped motion to enhance the transpadntye following treatment. If
the system is underdamped, will denote both position and velocity of the particle at &m
t: x; = (x,v;t). Unless clear from the context, whenever we are consideringverdamped
system, we would always state this fact explicitly in thisgts. The treatment can be trivially
generalized to multiple dimensions.

The probability distribution of the initial phase spacergai, is given by the Boltzmann

distribution:

e~ BH(w0,A)

po(o) = 70 (1.21)

5If we discretize the time of observation &&),t1,--- ,tx}, the corresponding phase space trajectory would
be represented by a discrete set of po{nts, 21, - - - , x5 }. We are using the compact notatiop = x(t,). The
entire trajectory will then be denoted By = {xg, z1, - ,zn}.
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Here, H(xz(, A) is the system Hamiltonian at the initial statg with the external parameter
fixed atA, andZ(A) is the initial partition functions = 1/kgT is the inverse temperature of
the bath.

For the reverse process, we at first equilibrate the systemtiaé same heat bath, but now
with the protocol value held fixed d@. Subsequently we apply the time-reversed protocol

A\(T — t) to the systerhThus the system now has the following distribution to begithw

6_5H(:iT7B)

75 (1.22)

h (i'r) =

Here, the tilde symbol implies time-reversed variablesndefithrough the operation executing
the inversion of velocities. In other words;, v) goes to(x, —v) under the tilde operation. In
particular, the initial point of the reverse process is gitg z.. According to our notationg;
would mean the time-reversal of the variablewhere the time elapsed along leeward path
ist. However, we must keep in mind that the actual time elapsmtahe reverse trajectory is
T — t, wherer is the total time of observation in either process.
As shown by Crooks [42], the ratio of the forward to the reedrgjectory is given by
% = M9, (1.23)
where time runs from 0 te, and( is the heat dissipated into the heat bath during the forward
process. Here, the notatidf X |z,] is a compact representation of the probability density for
the entire trajectony (¢), beginning from a given initial state), when the process is generated
by the external protocol(t). Similarly, P[X|#.] represents the probability density for the time-
reversed patlj‘i'(t), beginning from the given initial point,. The initial point of the reverse
path is the time-reversed of the final state of the forwardh.p&ymbolically, if the forward
trajectory is denoted b (¢) = 2o — 1 — =2 — --- — z,, then the reverse trajectory will

be given byX (t) = &, « &, « & < - -- « &,. Another elegant proof for the relation (1.23)

6Note that this is not the same as the time-reversal of a mdreedorward process, as has been discussed in
detail in [44].
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is given in [41].

If both sides of eq. (1.23) are multiplied by(z,)/p:1(Z,), we would get the ratio of the
unconditional probability densities (i.e., for arbitranytial points) for the forward pati#®[.X]
and the corresponding reverse p&hX] in phase spaceP[X]| = P[X|zo]po(0); P[X] =
P[X|%.|p1(&,). A typical forward trajectory in phase space and its comesiing reverse

trajectory is given in figure 1.2.

Y
x

T T

ﬂ‘\/
N

X(t)

Figure 1.2: The figure shows a typical forward trajectofyt) in phase space and its corresponding
reverse trajectoryX (¢). The momentum coordinateg)(are inverted in the case of the reverse trajectory,
while the position coordinates:) remain the same.

Since we are considering the initial states of the systenetatithermal equilibrium for
either process, we hayg(z,) = p;(z,) (the Hamiltonian being assumed to be time-reversal

invariant), and the above ratio gives the Crooks work th@adrethe trajectory picture:

A

X _ oov-an), (1.24)

[X]

ekl

The detailed derivation for a system following overdampeathdv dynamics has been given
in appendix A. This theorem physically means that ratio efglobability density of observing

a trajectoryX for a system driven by the protocalt) (forward process), to the probability
density of observing the trajectoy under the protocok(r — t) (reverse process), is given by
the exponential of the dissipated work along the forwaradtess. The work theorem in terms

of probability densities for the work done on the system iwird and reverse processes can
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be readily obtained from the above relation (see appendix A)

POV) _ powv-am) (1.25)

The Jarzynski equality can be easily obtained from the dhictuation theorem (1.23)

by simple cross multiplication and integration over.

(e = / dW P(W) e PW = = PAF / dW P(—=W)

= e PAF, (1.26)

SinceAF is a constante =72 has been taken out of the integral. The final step uses the nor-
malization condition/ dW P(~W) = 1. Thus, from repeated measurements of the nonequi-
librium work and subsequent averaging over all the reabnat one can obtain the value of
the equilibrium free energy change of the system. This has berified experimentally [2].
Further, application of the Jensen’s inequdliffor exponential functions, this inequality is
given by(e?) > ™) to the relation (1.26), we get the generalized maximum woglorem for
mesoscopic systems:

(W) > AF. (1.27)

Interestingly, the Jarzynski equality implies that theomnfiation about equilibrium free energy

is encoded in the work done along a nonequilibrium process.

1.3.2 The Integral Fluctuation Theorem (IFT) for total entr opy

The entropy of a system is in general considered to be an didsgmoperty. However, the
entropy of a system along a single trajectory can be definkdsd definitions have been stated
in equations (1.16)—(1.19).

To discuss the approach of Seifert, we define the quaRtayg the ratio between the uncon-

Using the inequality [45¢¢ > 141, we get(e?) = (e¥~WIH W) = W) (ev=W)) > W) (1 49— (y)) = e,
which is the Jensen’s inequality for the exponential fuorcti
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ditional probability densities of the forward and the baekevpaths [28, 29]:

_ nP[X] I P[X|ao]po(0) | _ . npo(xo)

In the last step, we have used the Crooks fluctuation theooemig$sipated heat, eq. (1.23),
keeping in mind thatQ is simply the change in the entrogys,,, of the heat bath. In this case,
we do not consider equilibration of the system at the begmwif either the forward or the

reverse protocols, so tha§(z,) andp;(z,) are in general nonequilibrium distributions. The

following general identity can be easily derived [28]:

e~ ) /D P[X |zo]po(z0)e™ /D |P[X|%,|p1(&,) = 1. (1.29)

Here, D[X] is the measure of integration over all trajectories. In tisemte-time picture,
when the path is given b{ixg, z1, - - - , 2.}, we haveD[X]| = dzydz, - - - dz,. Also, the Jaco-
bian between any, and its time-reversed staig is identically equal to one, so that we have
D[X] = D[X]. po(x) andp;(z,) can be chosen to be any hypothetical normalized probability
distributions of the system states. pif(z,) is the solution of the Fokker-Planck equation for
the forward process, then the second term in eq. (1.28) besdime change in entropys of

the system, an is then the total entropy change of the systeWs;,; = As,, + As. In this

case, we can write equation (1.28) as

1 B, (1.30)

We then have the integral fluctuation theorem (IFT) for tetattopy change:

(emBstor) =1, (1.31)

Application of Jensen’s inequality to this IFT immediatéhads us to the second law of ther-
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modynamics that holds for the average change in total eyrtrop

<A8tot> Z 0. (132)

1.3.3 The Detailed Fluctuation Theorem (DFT)

The detailed fluctuation theorem (DFT) for total entropydsabnly if the system stays through-
out in the same steady state or is in equilibrium at the irata final times. The reason for this
constraintis that, in general the change in system entropg dot switch its sign in the reverse

path [27]. The theorem reads (see appendix A for the stepeiderivation)

P<A8t0t> — eAstot

P(—Aspy) (1.33)

Note that the tilde symbol to denote the reverse processdeasdone away with, in accordance
with the fact that the steady state distributions are charaed by a constant value of the

external protocol in either process.

1.4 Fluctuation theorems for systems making transition be-
tween steady states

The second law simply states that the total entropy chantieeafystem and environment never
decreases with time. However, while maintaining a steaalye gfor example, in the presence
of a time-independent non-conservative force), heat isray dissipated into the environment
and as a result the total entropy keeps increasing. Herewier bound (namely, zero) for the
change in total entropy looses its significance. Keepingithmind, Oono and Paniconi [46]
had proposed the division of the total dissipated heat intogeparate parts: one is called the
housekeeping hed},,;. that is required to maintain a particular steady state spoeding to

a fixed value of the external drive. The other was calledetteess heal),,. that is dissipated

over and above the housekeeping heat in presence of a tipgsidient perturbation or during
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relaxation to a steady state, and is obtained by subtratttergontribution of the housekeeping
heat from the total heat dissipated during the proc€ss:= Q — Q-

We would restrict ourselves to overdamped systems in tluBoge Interestingly, in this
case, both the housekeeping heat and the excess heat caswretsHollow separate fluctua-
tion theorems (the case of underdamped systems has begneaxhad [50], where it has been
shown that the housekeeping heat does not follow a fluctuatieorem in general for such
systems. Nevertheless, the Hatano-Sasa identity, ed/)(ieBow, is always obeyed), and the

second law takes the form [47]

B{Qea) + (As) = 0. (1.34)

The system has been assumed to be initially in a steady stadealso that it relaxes to a
steady state corresponding to the final protocol value aetitkof the process. Defining the
steady-state probability density ag(z; \) = e=*@ whereg(xz; \) is an effective potential,
the expressions for the housekeeping and the excess heat émerdamped system are given
respectively by

.0

Qnr = W/dt TVgs; Qex = —kBT/dt xﬁ— (1.35)
x

The local velocityu,, is obtained by dividing the steady-state probability cotrg, (obtained
from the corresponding Fokker-Planck equation [48]) by steady-state probability density
pss(, \) [47]:

jSS
Vgg = ———. (1.36)
pss(l’, )‘)

We define the total change in the effective potential tatie = ¢(z-;\;) — é(zo; Ao),
when the process is being carried out from titne 0 tot = 7. The Hatano-Sasa fluctuation

relation for the excess heat is given by
(e7PQea=a0y — 1, (1.37)

The application of the Jensen’s inequality to the aboveioglaives the modified second law,

eg. (1.34), provided the system is allowed to relax to thessmponding steady state at the final
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value of the protocol, so thats = A¢ = —In % The adiabatic entropy is defined in

terms ofQ;, as

As, = 2% 1.
Sa = 7 (1.38)
The nonadiabatic entropy is given by
. Qer o / \ 8¢
ASpg = T + A¢ = kgT [ dt A&X (1.39)

The quantityAs,,, is called the nonadiabatic entropy, becaysg,) vanishes for a system
undergoing an adiabatic transition between two steadgsfa?,49]. In an adiabatic transition,
the system remains in the steady state corresponding tongit@nianeous parameter value,
when the parameter is changed slowly enough during the gsodehe total entropy can then
be written as

ASior = As,, + As = As, + As,,,. (1.40)

1.5 The dual trajectory formalism

Let us consider an overdamped system in a nonequilibriuadgtstate (the analysis for un-
derdamped systems can be found in [50]). In this case, thalekbtoalance condition does
not hold, but there exists a counterpart to this conditiohictv also involves the transition

probabilities in the so-calledual dynamic$47,49,51,52] (denoted by the symbii
,Oss(l“z'; )\i)P(%H |$i; )\i) = Pss($i+1; )\i)pT(xi|xi+l§ )\i)- (1.41)

Here,p(x;11|z;; A;) is the transition probability of the system from statdo stater;,; when
the value of the external protocol s during this transition. Similarlyp'(z;|z;,1; \;) is the
transition probability of the system from statg ; to statexr; when the value of the external
protocol is);, in the dual dynamics.

Under the dual dynamics, if the system is allowed to relax sbeady state with a fixed
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value of \, then one would find that the functional form of the steadyestiensity remains
the same as in the original dynamics, while the probabilityent changes sign [51, 52]. For
a system at equilibrium, the dual transition probabilitee simply the same as those in the
original dynamics.

One can now obtain an elegant expression for the excess4watl|:

p IIZ'Z.|_1|IIZ'Z, i P[X|ZE'0]
e = 1n ” =Iln——= ) 1.42
6Q pJr IL’Z|IL'Z+1, ) PT[X|{L'T] ( )

Note that the denominator consists of path probability diexssobtained after switching over
to the dual dynamics and thereafter applying the time-saaprotocol.

In a similar way, the housekeeping heat can be shown to be biw¢51]

Cpl@inlraN) _ . PlX|w] | P[X]
BQus = 1anT Goleia) = mPT[X‘xO] mPT[X]. (1.43)

Here we have the same forward trajectory both in the numeastaell as in the denominator,
weighted in two different dynamics. The last step followsnfr the fact that the initial dis-
tribution, p,s(z0), is the same for both the processes. More detailed demstibthe above

relations are given in appendix B.

1.6 Stochastic resonance

The phenomenon of stochastic resonance (SR) [53] was firstlinced by Robert Benzi in his
seminal paper [54] in 1981, where he had pointed out thatrdwuéncy of occurrence of ice
ages on earth can be explained using this phenomenon.

The usual mechanical resonance is the property of a systatstwrb a large energy from
an external periodic force, when the frequency of this farqaals the natural frequency of
the system. An example is a swing, which after reaching adsgpoint has got all its kinetic
energy converted to potential energy, and then begins theeps of transferring potential to

kinetic energy. Now suppose that this transfer of energib®osted by applying a push at this
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highest point in the appropriate direction. Intuition @mtty tells us that this will cause the
swing to reach a higher point on the opposite side. If thiemel driving continues, then the
amplitude will become higher and higher, thus causing thegto resonate mechanically.
The phenomenon of SR is different from mechanical resonemite sense that it depends
on the presence of a noisy (thermal noise in our case) emaigoh The system is considered
to be a two-state one, whose “natural frequency” is the émerfrequency with which it can
cross the energy barrier and switch its state. A simple mtuske this is the double-well
potential V' (x) in which the system is confined and is kept in contact with antlaé bath at
temperaturd’. If a feeble periodic signal is applied to this potentialyill alternately rock the
left and the right wells in every cycle. We will consider tharler heightAV in-between the
wells to be high enough to stop the particle from moving frame avell to another in absence
of thermal noise. This is known asibthresholddriving. The barrier crossing rate (Kramers

escape rate) for the particle in the unperturbed well wiljlven by [48]

e (7\/V'/($mi;;"v”(xmar)‘> e PAV. (1.44)

Here, the double primed symbol implies double derivativhwespect tor, +x,,;, are the
positions of the minima of the potentiat,, ., is the position of the potential maximum in-
between the two minima, andis the friction coefficient. Figure 1.3 shows a typical bidéa

potential.

min Tmaz min

: E v $AV

Figure 1.3: A typical bistable potential showing the pasis oft+-x,,,;, andz,,...., and the barrier height
AV.
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We would consider a particle following the overdamped Lamgequation, eq. (1.10). Let
us suppose that the (feeble) input signal is of the fgiit) = Asinwt. It has a half time
period,/2 = w/w , which is in general different from the escape time . By tuning
either the bath temperature at a fixed frequency of the sigmddy keeping the former fixed
and tuning the latter, the SR conditiorn,( = ) can be satisfied. Under this condition, the

synchronization between the particle hopping and extetme is illustrated in figure 1.4. In

U

SR
.

Figure 1.4: Schematic diagram for synchronization of plathopping with the drive frequency at
stochastic resonance.

such a situation, we find that almost every time the right wedomes lower, the particle hops
into it and vice versa. How to quantify resonance has beessareiof a long-standing debate.
It has been recently found that the absorbed input energydde done on the system) may be

the appropriate quantifier [55].

1.7 Plan of the thesis

The plan of the thesis is as follows. ttapter two, the total entropy production fluctuations
are studied in some exactly solvable models. For thesemgstae detailed fluctuation theo-
rem holds even in the transient state, provided initialBt tithe system is prepared in thermal

equilibrium. The nature of entropy production during thiaxation of a system to equilibrium
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is analyzed. The averaged entropy production over a fimte interval gives a better bound for
the average work performed on the system than that obtarnedthe well-known Jarzynski
equality. Moreover, the average entropy production as atifiex for information theoretic
nature of irreversibility for finite time nonequilibrium cesses is discussed.

In chapter three, we rederive the fluctuation theorems in the presence ofofesd by
assuming the known Jarzynski equality and detailed flucna@heorems. We find that both the
classical and quantum systems can be analyzed using ardiredament in terms of state space
trajectories. First, we briefly reproduce the already knawrk theorems for a classical system
in order to show its equivalence with the quantum treatm&¥e. then extend the treatment
to arrive at new results, namely the generalizations ofe®sfentropy production theorem
and the Hatano-Sasa fluctuation theorem, in the presena=dbéck. We have also derived
the extended version of the Tasaki-Crooks fluctuation #maior a quantum particle in the
presence of multiple loop feedback. For deriving the exteinguantum fluctuation theorems,
we have considered open systems. No assumption is made oattire of environment and
the strength of system-bath coupling. However, it is assuthat the measurement process
involves classical errors.

In chapter four, we turn our attention to thefficacy parametethat quantifies how effi-
cient a given feedback algorithm is. In presence of feedbtnek forms of the conventional
fluctuation theorems get modified. The modified form involgesection terms that depend
on the rules of using feedback in order to generate the exaetreversed/conjugate protocols.
We show that this can be done in a large number of ways, andcim e@se we would get a
different expression for the correction term. This wouldum lead to several lower bounds
on the mean work performed on the system, or on the entropygelsa Here we analyze a
form of the extended fluctuation theorems involving the afficparameter, and find that this
form gives rise to a lower bound for the mean work that retaigsnsistent physical meaning
regardless of the design of feedback along the conjugatepso This is opposed to the case
of the usual form of the modified fluctuation theorems, th&bisd in literature.

In chapter five, we analyze the other important phenomenon that takes iplaeg¢ure under
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the influence of noise, namely stochastic resonance. Watigate the total entropy produc-
tion of a Brownian particle in a driven bistable system. Tdystem exhibits the phenomenon
of stochastic resonance. We show that in the time-periddady state, the probability den-
sity function for the total entropy production satisfiesf&eis integral and detailed fluctuation
theorems over finite time trajectories.

In chapter six, we study the fluctuations of work done and dissipated heatRBrfownian
particle in a symmetric double well system. The system igetirby two periodic input signals
that rock the potential simultaneously. Confinement in aredégored well can be achieved by
modulating the relative phase between the drives. We shatwirtithe presence of pumping
the stochastic resonance signal is enhanced when analyzteais of the average work done
on the system per cycle. This is in contrast to the case whempmg is achieved by applying
an external static bias, which degrades the resonance. &ligzarthe nature of work and heat
fluctuations and show that the steady state fluctuation émedolds in this system.

Chapter sevenconcludes the thesis by briefly summarizing the resultsiodtan the pre-

vious chapters.
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Chapter 2

Entropy production theorems and some

conseqguences

2.1 Introduction

In the field of nonequilibrium thermodynamics of small sys$e the fluctuation theorems (FTs)
[4,27-43] provide exact equalities valid in a system drigahof equilibrium, independent of
the nature of driving. FTs make quantitative predictionsdbserving events that violate the
second law within a short time for small systems by compatiregprobabilities of entropy
generating trajectories to those of entropy annihilatmagettories. They play an important
role in allowing us to obtain results generalizing Onsagetciprocity relations to the nonlinear
response coefficients in nonequilibrium state [56].

The total entropy production is shown to obey the integratélation theorem (IFT) [28,29]
for any initial condition and drive, over an arbitrary fintiee interval, i.e., transient case (see
last chapter). In [28,29], it is also shown that in the nonldgium steady state over a finite
time interval, a stronger fluctuation theorem, namely theitkel fluctuation theorem (DFT)
holds. Originally DFT was found in simulations of two-dinséonal sheared fluids [30] for
entropy production in the medium in the steady state, buhénlong-time limit. This was

proved in various contexts, e.g. (i) using chaotic hypathleg Gallavotti and Cohen [32], (ii)
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using stochastic dynamics by Kurchan [43] as well as by Letzosnd Spohn [57], and (iii)
for Hamiltonian systems by Jarzynski [58].

In this chapter, we obtain the total entropy productidr,,) distribution function P(As;,),
for different classes of solvable models [59]. In particee consider (i) a Brownian particle
in a harmonic trap subjected to an external time-dependece f and (ii) a Brownian particle
in a harmonic trap, the centre of which is dragged with antity time-dependent protocol.

In these models, we show that the DFT is vadikn in the transient caserovided the
initial distribution of the state variable is a canonicakonf the initial distribution is other
than canonical, DFT in transient case does not hold, as &ghedo illustrate this, we have
analyzed the total entropy production for a system initipilepared in nonequilibrium state
which relaxes to equilibrium. Finally we briefly discuss thgportant consequences of entropy
production fluctuation theorem, namely, (i) it gives a neward for the average work done
during a nonequilibrium process over a finite time, geneiradj the earlier known concept of
free energy to a time-dependent nonequilibrium state. bbisd is shown to be better than
that obtained from the Jarzynski equality; (ii) averagaltentropy production over a finite
time quantifies irreversibility in an information theoretramework via the concept of relative

entropy. This is distinct from the recently studied mea$6@e-64].

2.2 The model

2.2.1 Case I: A particle in a harmonic trap subjected to an extrnal time-

dependent force

We consider a Brownian particle in a harmonic potential anddntact with a heat bath at
temperaturd’. The system is then subjected to a general driving fgii¢¢. The potential is
given by Vy(x) = %ka. The particle dynamics is governed by the Langevin equatidhe
overdamped limit:

v = —kx + f(t) +£(2), (2.2)
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where~ is the friction coefficientk is the spring constant argdt) is the Gaussian white noise
with the propertiegé(t)) = 0 and (£(t)&(t')) = 2T~d(t — t'). The magnitude of the strength
of white noise ensures that the system reaches equilibmutinel absence of time-dependent
fields.

Such a system can be experimentally realized by using aidallparticle in a laser trap.
The setup is similar to the one used in [16, 65], where theaasthad modulated a bistable
potential sinusoidally. In the present case, to modulatetihp, the trap position as well as
the intensity of the laser have to be varied simultaneou$he former adjustment changes
the position of the potential, while the latter changes épttl. A superposition of these two
modulations, carried out in an appropriate manner, carodejme the action of an arbitrary
force on the bare potential.

Using the method of stochastic energetics (or the energnba) [23, 66], the values of
physical quantities such as injected work or thermodynanadk (11), change in internal
energy (A\U) and heat @) dissipated to the bath can be calculated for a given sttichas
trajectory X (¢) over a finite time durationt. Using the expression for the internal energy

U(z,t) = $ka® — xf(t), we get (see chapter 1, sect. 1.1)

oU (z,t) ¢ .
W= / éth:—AxWﬂwW, (2.2a)
AU:U@mJyJN%py:;ﬁ-mﬂﬂ—%mg (2.2b)
and
Q:—/@%%Qﬂwﬁzfemwwfwmwmﬂ (2.2)

Also, from the first law of thermodynamics, we have

Q=W - AU. (2.2d)

The particle trajectory extends from initial time= 0 to final timet, z, in equation (2.2b) is

the initial position of the particle. For simplicity, we hmassumed that(0) = 0.
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Initially the system is prepared in thermal equilibrium. eTdiistribution function is given

by

Po(xo) = 4/ %exp <—%) : (2.3)

The Boltzmann constaiiz has been absorbedin The evolved distribution functiom (x, t),
subjected to the initial conditiop(z,), is obtained by solving the corresponding Fokker

Planck equation, and is given by

e = o (HEZ ), oo

r) = = te—k(t—t’)/’y / /. )
(z) 7/O f(t)dt (2.5)

where

A change in the medium entropy\,,,) over a time interval is given by

As,, = (2.6)

NI

We now use the definition for the realization dependent egtrdt) of the particle [28, 29],
namelys(t) = —Inp(z(t),t). We then get the change in system entropy for any trajectory o

durationt as (see chapter 1, sect. 1.2)

IR
As = —1In {po(xo) } , 2.7)

wherepy(z) andp;(z,t) are the probability densities of the particle positionsnétial time
t = 0 and final timet respectively. Thus for a given trajectoryt), the system entropy(t)
depends on the initial probability density and hence cost#ie information about the whole

ensemble. The total entropy change over time duratisrgiven by

Asior = As,, + As. (2.8)
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Using the above definition of total entropy production, 8&if28, 29] has derived the IFT,
ie.,

(e A%ty =1, (2.9)

where angular brackets denote average over the statistisamble of realizations, or over the
ensemble of finite time trajectories.

In nonequilibrium steady state, where the system is chaniaet by time-independent sta-
tionary distribution, a stronger fluctuation theorem (DKa&)id over arbitrary finite time inter-

val holds [28, 29]:

P(Asyot) _ Asior
—— =€ .
P<_A5tot)

(2.10)
The above theorem holds even under more general situagonyhen system is subjected to
periodic driving: f(z,7) = f(x, T + 7,), wherer, is the period. The additional requirement is
that the system has to settle into a time-periodic st&ie:, 7) = P(z, T + 7,), and trajectory
lengtht is an integral multiple of,.

As a side remark, we would like to state that if the distribntP(As,,,) is a Gaussian and
satisfies IFT, then it naturally satisfies DFT, even if sysieim a transient state. This happens
to be the case in our present problem only under the condhairthe system is being prepared

initially in equilibrium, as shown below.

Using (2.2d), (2.6), (2.7) and (2.8), the total entropy lmees

- A t
w U_lnpl(x, )

ASior = : 2.11
ot T po(zo) (2.11)
Substituting forAU from equation (2.2b), and using (2.3) and (2.4), we get
1 1,
Astot = T W -+ §k<l'> -+ .I'f(t) — ]{f[lf(..’lj'> . (212)

The workWV is a linear functional of:(¢), and from the above equation, we observe that,

is linear inz, while x is itself a linear functional of Gaussian random variaile:
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T - e—kt/fy l te—k(t—t’)/’y / / ’ '
() = e+ / () + 8)]dt (2.13)

From the above fact it follows tha®(As,,,) is a Gaussian function. It is therefore sufficient

to calculate the mear{4s;.;)) and varianced? = (As?,) — (As;)?) to get the distribution,

which is of the form

. 1 (Astot - <A3tot>)2
P(Asiy) = Norw exp (— 52 ) : (2.14)
where
(i) = - (W) = grta)? + (0)1). (2.15)

oy =- | (@) () dt (2.16)

where(z) is given by (2.5). The variancg’ for total entropy is given by

o’ :% (<W ) ; W) + f ]{Et) + k(z)* — 2<x)f(t))

+ %«Wfﬂ) — (W){))(2/(t) — 2k({x)) (2.17a)

2 (20m)+ 20 oy 210

o (W) = (W) () (2 (1) — 2k()). (2.170)

To arrive at (2.17b), we have used the fact tH&t*) — (W)? = 2T <<W> + %) which

has been proved in appendix C. Also in the same appendix, we $feown that the cross-

correlation is given by

[k (e (t)) = f(1)]. (2.18)



Using equation (2.18) in (2.17b), it follows that
02 == 2<A8tot>' (219)

The Gaussian distribution dP(As,,;) along with the above obtained condition for variance
implies validity of the detailed fluctuation theorem for geal protocolf(¢). Needless to say,
this theorem in the considered linear system is valid in taesient casenly whenthe initial
distribution for the state variable is a canonical disttido. Further, DFT also implies IFT (but

the converse is not true).

Special case: sinusoidal perturbation

For this case, we consid¢(t) to be a sinusoidal oscillating drive, i.€.(t) = Asinwt.

Using equation (2.15), we then obtain

1

(Bse) =5 (W) %km? + Alz) sinwt

A?yw

:4T(7€2 2R [2w {k% + (_2 _ 6—2kt/-y) hy + tvzwz}

+8e KV krw cos wt — 2kyw cos 2wt + (k2 — v*w?) sin th} . (2.20)

The variance ig? = 2(As,,; ), and distribution”(As;,; ) is Gaussian as mentioned earlier. For
this case, if the initial distribution is not canonical, th8(As,,,) is not a Gaussian. This is
shown in figure 2.1 where we have plottedAs,,) for the above protocol obtained numeri-
cally for various times as mentioned in the figure caption.

The initial distribution being a Gaussian with(zy) = /5 exp( %) where the

_20%

conditiono? # T, represents an athermal distribution. In the inset, we péatted P(Asy,)

for same parameters used for the main figure for thermahlndistribution: 02 = 7' = 0.1

(for this case, distributions fahs;,; are Gaussian). All quantities are in dimensionless units

and values of physical parameters are mentioned in figurgocap/NVe clearly notice that the
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Figure 2.1: In the figure, we have plottdt] As,,;) vs Asy for various observation times, when the
initial distribution is athermal4? = 0.2). For thermal distributiong2 = 0.1. The observation times
aret = 10 (solid line),t = 20 (dashed line)t = 50 (bigger dashed line) and= 100 (dotted line). The
inset shows total entropy distributions for same obsesudiime values, when the the initial distribution
is thermal. For this case, all distributions are Gaussianbbth casesd = 0.1, £ = 0.1 andw = 0.1.

distributionsP(As,,;) in the main figure are non-Gaussian. The observed valuéas 6ft)
from our simulation equal 1.005, 1.006, 0.995 and 1.011 fer10, 20, 50 and 100 respectively
in the athermal case. All these values are close to unityinvabr numerical accuracy, clearly
validating IFT. For numerical simulations, we have used i&escheme. This gives a global
error in the dynamics of the order af, whereh is the time step taken in the simulation (for
details, refer to [67]). To minimize the error in calculaie~2%*), we have taken large
number of realizations (more than’), depending on parameters. Our estimated error bars are
found to be around0—*. Moreover, these values act as a check on our numerical s
[59, 68—70]. As the observation time of trajectory increaseeight on the negative side of
P(Asy,) decreases, i.e., the number of trajectories for which, < 0 decreases (see figure
2.1). This is expected as we go to macroscopic scale in tintee distributions that were
asymmetric at short time scales tend closer to being a Gausstribution with non-zero
positive (As;,;). The central Gaussian region increases with the time ofreagen. The
presence of non-Gaussian tails (large deviation functassociated with the probability of

extreme events) at large values®$,;,; becomes very difficult to detect numerically. However,
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they are not ruled out. For large times: ~ 2(As;,), suggesting validity of DFT only in
the time asymptotic regime. Similar observations have Imeade in regard to work and heat
distributions for a driven Brownian particle [59, 68—71].

The Fourier transform of the distributid?(As,,;) can be obtained analytically for a given
initial athermal Gaussian distribution of the particle iios in presence of a drive. This can be
obtained following exactly the same procedure of Zon et@] fdr heat fluctuations. However,
later we consider a simpler case of a system relaxing to ibguin in absence of protocol

(case-lll).

2.2.2 Case Il: P(Asy,) for particle in a dragged harmonic oscillator

For this case, the effective potentialx, t) for the Brownian particle is given by

Uz, t) = %k: (x - %)2 (2.21)
The centre of the harmonic oscillator is moved with a timpetelent protocof (¢)/k. The
special case of this model is whé(¥) /k = ut (centre of the oscillator is moved uniformly with
velocityu). This model has been extensively studied both experinigfif2] and theoretically
[39,40,73-75] in regard to analysis of Jarzynski non-eoyiilm work relation [33] and related
issues.

The expression for work is given by

W(t) = ta—Udt’ = —/Otx(t')f(t’)dt’+ % (2.22)

By taking canonical initial condition faw, (), given in equation (2.3), the probability density

pufz,t) = \/%exp (—M%Tm)z) : (2.23)

(x) = = /O t e R £t (2.24)

at timet is given by

where

v
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The change in internal energy during a time

2
AU = %k‘ <x — %) — %k‘x% (2.25)

For simplicity, we have sef(0) = 0. The expression fofs,,; reduces to

W f? zf k({x)? B kx<x>

= 2.2
T 28T T 2T T (2.26)

From equation (2.26), it follows thdt(As,,;) is a Gaussian. Carrying out exactly the similar
analysis as before (i.e., for case 1), after tedious butgdtteorward algebra, we finally obtain
the expressions for mean and variance:

Wy fF k@)? | fx)

+ (2.27)

(Bsion) = 5~ = 907 ~ o7 T

and

T kT T T

0.2 — 2<W> . f2 . ]{?<ZE’>2 + 2f<flﬁ'> — 2<A5tot>> (228)

where(WW) = fot(x(t’»f(t’)dt’, and(z) is given in equation (2.24). The condition (2.28) along
with P(As,, ) being Gaussian implies validity of both DFT and IFT ;.
Special case: The dragging force is linear

We conside& = ut, i.e., centre of the harmonic trap is being dragged unifgrmith velocity

u. To obtainP(As,, ), we need the expression fohs,,,) only:

2 2.2
(i) = = G (1= ) (3= e0) (2.29)

The above expression can be shown to be positive for all tiese must be.
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2.2.3 Case llI: Entropy production with athermal initial co ndition: a

case study for a relaxation dynamics

In this subsection, we study a system relaxing towards bquiin. If initially the system

is prepared in a nonequilibrium state, then in absence oftiamgrdependent perturbation or
protocol, it will relax to a unique equilibrium state. Thetsstics of total entropy production
is analyzed. Our system consists of an overdamped Browiditie in a harmonic oscillator

(Vo(z) = 1k2?) and the temperature of the surrounding mediur.isThe initial distribution

-2
k ka?
po(z0) = 4 /W exp (—208) (2.30)

Note that wherr? # T, it represents athermal initial distribution. Since notpowl is being

of the particle is taken to be

applied, the thermodynamic work done on the system is idaihizero. As time progresses,

the distribution evolves with probability density given by

= o) -

where(z?*(t)) is the variance in: at timet, which is equal tqz?(t)) = £ + ‘“%T‘Te‘z’“/v. The

distribution P(x, t) relaxes to equilibrium distribution as timte— co. Using equation (2.11),

(2.30) and (2.31), we get

As, = AU L (o N (2 | kxg
St =7 T 2 P\ k(e?) 2(z2) | 202 )

Now, considering the fact thaXU' = 1k(2? — 23), we arrive at

k(o2-=T\ o, 1/T—k{z*\ , 1 o2
A‘S“’t‘i( To? )”“"“5( T(a?) )x ‘5”‘<k<x2>)
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This can be written in a simplified form,

1 1
ASpp = iaxg + 561'2 + K, (2.32)

o2-T\. _ [ T—k(z _ o2
WhereO[ =k <T%>, ﬁ = <T<>> and/{ —1 ln ( <$2>>
The total entropy production is a quadratic functioncafndz, and hence”(As,,;) is not

Gaussian. To obtai?(As,,;), we have to know the joint distribution aof, and z, namely

P(xq, z,t) which in our problem can be obtained readily and is given by

P, 2,1) = wﬁ expl(a— (a)) A~ (a — (a))] (2.33)
where
a=| ™|, (2.34)
xXr

xo andz being respectively the initial and final positions of thetjgde. The matrixA is defined

through

(zx0)  (2?)
= . (2.35)
%6—%/7 Ty (aEk—T) o—2kt/
With the help of the distribution given in (2.33), one canteyusing equation (2.32),
P(AS;p,t) = / dx dxoP(xo, z,t)
B s
X 0 | Ay — on + x +r]|. (2.36)
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The evaluation ofP(As,,) is a difficult task. However, the Fourier transforﬁ(R, t) =
[ e fiAstot P(Asyp)dAsyy Of P(Asyy) can be obtained easily. To this end we can carry out the
analysis similar to that for heat distribution in a driverrthanic oscillator by Zon et al [40].

Finally we get

. ean

PR 1) = Jdet(I - iRA.B)

(2.37)

The details of this derivation are given in appendix C.3. s$iliting R = i in the above
equation, and we get(R = i,t) = (e-2st) = 1, consistent with the IFT (see appendix C.3
for details). From equation (2.37), we also note tﬁ'aR, t) # P(z‘ — R, 1), indicating that
DFT is not valid for this linear problem in the presence ofeathal initial distribution. From

above equation, we can also obtain average entropy produgitren by

10 -
<A8t0t> = —,—P(R, t)
1 OR R—0
o2 —-T 1 o
_ Yz 1 — e 2Rt/ _ 2 L . 2.38
o (=) — gl [T + e 2 (g2 — T) (2.38)

Similarly, higher moments can also be obtained with the dshis characteristic function.
One can invert the characteristic function to obt&if\s,,;) using integral tables. However,
the expression is complicated and unilluminating. FromRbarier transform, it is obvious
that P(As,,) is non-Gaussian.

In figure 2.2, we have plottef?(As,,;) versusAs,,, over a fixed time interval (see figure
caption) for two different cases for which initial width dfe distributions? equals 0.05 and
0.2. The temperature of the bath is 0.1. The distributtoi s, ) in both cases are asymmetric.
For the case? = 0.2, the distribution is peaked around the negative valua gf,. However,
it exhibits a long tail making sure thdf\s,,;) is always positive. Since initial width of the
distribution is larger than the thermal distribution, cann the entropy of the system during
the relaxation process is negative and it dominates thé¢ éotaopy production. Hence we
obtain peak inP(As;,) in the negative side ohs;,;. For the case? = 0.05, change in the

entropy of the system is positive. Hence peakPif\s,,,;) is in the positive region. In both
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Figure 2.2: The figure shows plots &f(As.) VS As;e during relaxation to equilibrium (external
protocol is absent). The initial distributions are athdrmih o2 = 0.05 (solid line) ando? = 0.2
(dashed line). The spring constankis= 0.1 and observation time was= 40, by which the system has
reached equilibrium (see inset). The inset shows plotsagesentropy versus observation time for the
same initial distributions.

cases, we obtaife=2*t) equal to unity within our numerical accuracy: 0.97§ & 0.2) and
1.001 ¢2 = 0.05), consistent with IFT. In the inset, we have plotte¥s,,;) as a function of
time for the above casesAs,,,) is a monotonically increasing function of time and satwsate
asymptotically when equilibrium is reached. It may be ndtext equilibrium is characterized

by zero total entropy production, change in the entropy tf Baany instant being compensated

by equal and opposite change in entropy of the system.

2.3 Some relations resulting from the average entropy pro-
duction fluctuations over finite time

We now discuss some related offshoots of the total entropglymtion. These give a better
bound for the average work done over a finite time and providéferent quantifier for the
footprints of irreversibility. The Jarzynski non-equiiibm work relation [33] relates work

done over a finite time in a non-equilibrium state to the eguium free energy differences,
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namely,

(e7PW) = e=PAF, (2.39)

Here the angular brackets denote an average over a sttestgemble of realizations of a given
thermodynamic process. The finite time thermodynamic m®aevolves changing the time
dependent thermodynamic parametér) of the system from initial valua(0) = A to a final
value\(7) = B. A(t) can be an arbitrary function of time. Initially the systenpiepared in
equilibrium state corresponding to parameteand workll is evaluated over a time At the
end of the period, the system in general will not be at equilibrium correspngdo parameter
B, yet from this non-equilibrium work, one can determine thféedence in equilibrium free
energiesAF, between the states described4Awnd B, using equation (2.39). From the same

eqguation, using Jensen’s inequality, it follows that

(W) > AF = F — Fy. (2.40)

This result is consistent with the Clausius inequality, abhis written in the form of work
and energy, instead of the usual heat and entropy. Usingdsrisequality and the integral
fluctuation theorem of entropy production, namely equafihf), it follows that the average
total entropy production over a time (As,,;) > 0. Using equation (2.2d), this can be rewritten

as
1

<A3tot> = T

(W —AU +TAs) > 0= (W) > (AU — TAs), (2.41)
where AU andAs are the changes in internal energy and in system entropgctgely. The
time-dependent free energy in a nonequilibrium state catebieed as [76]:

F(z,t) =U(x,t) — Ts(x,t) = U(x,t) + Tlnp(z,t), (2.42)

which is in general a fluctuating quantity. Since free enelglyends on entropy, it contains the
information of the whole ensemble. In equilibrium, the extpéion value of this free energy

reduces to the Helmholtz free energy. Using (2.41) and thengilefinition of nonequilibrium
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free energy described above, it follows that

(W) = (AF(7)), (2.43)

whereAF (1) = Fy(1) — F1(0).

If initially the system is prepared in equilibrium with panater A, F; equals equilibrium
free energyF4. F,(7) is determined by the probability distribution at the endnpaif the
protocol at which the system is out of equilibrium with systearameter at = B, i.e. F5(7) =

U(xz,7)+ T Inpi(z, 7). Now in the following, we show that

(AF(1)) > AF = Fp — Fua, (2.44)

thus giving a better bound for the average work done over gefiime. To this end, consider
a situation at which initially the system is prepared in &qtium with parameter\ = A
(corresponding to free enerdy,) and is allowed to evolve with the time-dependent protocol
A(t) up to timer at whichA = B. Beyondr, the system is allowed to relax to equilibrium
by keeping\ fixed at B. At the end of the entire process, the total changuilibrium free

energy equalé’s — F4. The free energy being a state function, one can rewrite it as

Fg—Fy, = <FB_F2(T)+F2<T)_FA>

= Fp— (F(7) + (AF(T)). (2.45)

Here, (AF (7)) is the average change in the nonequilibrium free endily,r)) — F4, dur-

ing the process up to time, whereasFz — (F»(7)) is the change in the free energy during
the relaxation period when the protocol is held fixed. Onereadlily show that [76] during
the relaxation process towards equilibrium, the averageXpectation value) of free energy
always decreases, i.€fz — F5(7)) is negative. From this and equation (2.45), it follows that
(AF(7)) > Fg— F4. Thus we get a better bound for the average work done thaolphained

from the Jarzynski identity [33].
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To illustrate this, in figure 2.3 we have plottéd’), (AF' (7)) andAF for a driven harmonic
oscillatorU(z) = 1ka? with force f(f) = Asinwt as a function of the amplitude of driving
A. For this graph, system parametgt) changes fromf(0) = 0to f(7) = A (AF =
Fg — Fy = ‘2—732), i.e., for a time variation fromt = 0 to¢ = 7 = ;=. We observe from the
figure that{ AF'(7)) is indeed a better bound. The analytical results for thisehace presented

in appendices C.4 and C.5.

o
N

AF, <AF(1)>, <W>
o
[e2]
T

1.2

— AF
--- <AF(1)>
—— <W>

w=0.2, k=0.1, t7w1/20

0.1

0.5

Figure 2.3: Plots foA F, (AF'(7)) and(W) as functions of the driving amplitudé, with the parameter
values setab = 0.2,k = 0.1 andt = 7/2w.

Some remarks, however, are in order. The realizations factwit’ < AF need not
correspond ta\s,,; < 0, and vice versa. This implies that the trajectories whidiate the
inequality As,,; > 0, do not necessarily violate the inequality > AF, although both the
inequalities are closely related to the second law [77]ighaalid on average. Equation (2.43)
can be treated as a generalization of maximum work thebtemonequilibrium processes.
Dissipation is related to our ability to distinguish theaayrof time. Hence the dissipated
work (W,) = (W) — AF is recently identified as the measure of irreversibility. ristover,
it turns out that the relative entropy of microscopic tréjeies Dl(PHJB) in full path space

between forward#) and reversef(’) processes is indeed equal to dissipative work,

1This theorem states that work extracted from a system ismamxi for a reversible process. In our notation,
sincelV is the work don@nthe system, the theorem implies th&tis minimum for a reversible process.

41



(Wa) = Dy(P||P). (2.46)

HenceD; (P| |}~’) works as a measure of irreversibility or indistinguishipietween forward
and backward evolutions. Here, forward evolution corresisato the system being prepared
initially at equilibrium in the state with control parametg&(0) = A evolved up to timer

at which the control parameter i{7) = B. During the backward evolution, the system is
prepared in equilibrium with control parametBrand the time-reversed protocol is applied
from B to A. For details, see [60-63]. Separately, it can also be shomasing Crooks
identity [42,61].

(Wa) = D(P(W)[|P(=W)) (2.47)

Here D(P(W)||P(=W)) is the relative entropy between the two probability disttibns
P(W) and P(—W) which are the work distributions for the same thermodynapnizcess
for forward and backward evolutions respectively. This\gs us to an important conclusion
that dissipation can be revealed by any finite set of vargaeich contain information about
the work or from the dynamics of those variables which coupléhe control parametex.
Thus one can identify few dynamical variables in which teagEthe dissipation reside. Thisis
unlike D(P||P), which requires information about entire set of microscapistem variables
during their evolution.

We note thatfAs,,;) can be taken as the measure of irreversibility as it alscesgmts the

relative probabilityD; ( P| |]3) between forward and time-reversed backward protocolsA2Ji—

(2.48)

(Asyor) = Do(P||P) = /D[X]p(xo)P[X|x0] In ( p(xo) P[X | 0] ) |

P1 (jT)p[X‘jT]

whereP[X |z,] and P[X |7, are the shorthand notations for the probabilities of trsiney the
entire forward path from = 0 to ¢ = 7 described byX (¢) and that of traversing the reverse

path described byX (7 — t). For details, see references [27—29]. Here, the forwartlitua
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corresponds to the system being prepared initially in ahitrary state and evolved up to time
7 along a prescribed protocol. At the end of the protocol, tfetesn is in a state; (x, 7) de-
termined by the initial condition and the dynamics. Durihg backward process, the system
is assumed to be in treamestate corresponding to the end point of forward evolutign:, 7)
and protocol is time-reversed, thereby evolving the systlmg the backward trajectory. Un-
like for work (equation (2.47)), there is no Crooks'-liketatity for the total entropy production
between forward and reverse process (except in the stafistete). Hence it is not possible
to describe the measure of irreversibility or dissipatioteirms of the relative entropy between
probability distribution ofAs,,; for forward and backward processes. Thus, the information
of irreversibility is contained in all the microscopic vabies associated with the system. This
can also be noticed from the fact that the definition of totat@py production, involves the
probability density of all the system variables. Moreovkis probability density contains the
information about the initial and final ensembles of the eyystariables.

Identification of(As,,,) as a measure of irreversibility, is tantamount to identifyaverage
dissipative work over a finite time proce$d” — AF(r)) = (Wy(7)) as a measure of irre-
versibility, where(AF' (7)) is the nonequilibrium change in average free energy overit fin
time as mentioned before. Needless to say, for this medBye-)), the system need not be in
equilibrium at the beginning of the forward process which isecessary condition for earlier

defined measure for irreversibility [60—63].

2.4 Conclusion

In conclusion, we have shown that in a class of solvable flineaels As,,; satisfies DFT even

in the transient regime provided the system is initiallygareed in an equilibrium state. For
athermal initial condition, the nature of total entropy gwation is analyzed during a relaxation
process. The bound on average entropy production over a fime process leads to a better
bound for the average work done over the same finite timevateiSome points have been

raised if one assigns meaning to the average entropy prodwag a measure of irreversibility.
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This measure implies the generalization of Clausius’ statg to nonequilibrium finite time

processes, namelyV,(7)) = (W — AF(7)) > 0.
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Chapter 3

Fluctuation theorems in presence of

Information gain and feedback

3.1 Introduction

One of the major breakthroughs in the field of fluctuation teats has been the Jarzynski
Equality [33], which has already been stated in the prevahapters. A direct outcome of this
equality is the second law of thermodynamics, which stdtasthe average work done on a
system that is initially in equilibrium with a thermal reseir, cannot be less than the change in
free energy during the proces$V) > AF. A further generalization of the Jarzynski Equality
is the the Crooks’ Work Theorem [42].

The above theorems are valid for what are knowo@en-loogfeedback, i.e., when the pro-
tocol for the entire process is predetermined. In contiasd,closed-loopgfeedback, a system
observable is measured along the forward trajectory, aadgtbtocol is changed depending
on the outcomes of these measurementhese systems have recently attracted much inter-
est, because they can enhance the efficiency of a proces®|8P—-89]. For such feedback-

controlled systems, the fluctuation theorems need modditao as to account for the infor-

Iperhaps the simplest example of such a feedback drivengzésthe Szilard engine [78,79], which consists
of a single particle in a box, into which a movable partitisimserted. Now the position of the particle is measured,
and depending on which side of the partition it is preserd,fértition is moved so as to extract work from the
system. The AFM cantelever, is another example [81].
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mation gained through measurement. Sagawa and Ueda haweddiese extended relations
for both the classical [82] and the quantum [21] cases. Inotiginal papers, a single mea-

surement (at some instant t¢,,,) was considered. Subsequently, in a detailed review [88], t

authors have derived the relations in the classical casenwtultiple measurements are being
performed.

In this work, we rederive the results for the classical saysteassuming the known fluctua-
tion theorems in their integral as well as detailed form [8A}e same treatment goes through
for deriving the generalized Hatano-Sasa identity, whidvigles equalities for a driven system
from one steady state to another. We also extend the santeém®izio the quantum case, and
show that no matter how many intermediate projective measents and subsequent feedbacks
are performed, the extended Tasaki-Crooks fluctuationrémeoemains unaffected. Although
we have considered non-degenerate states for the quanstiemsyt is easy to extend the treat-
ment to the degenerate case. The efficacy parameters fercelband quantum systems are

also obtained.

3.2 The System

We have a Brownian particle that is initially prepared in@aical equilibrium with a heat bath
at temperaturd’. Now, we apply an external drivi(¢) from timet, = 0 up tot = t;. At ¢4,
we measure the state of the system and find it tebésee figure 3.1). Then, we modify our
protocol from\y () to A,,,, (¢) and evolve the system up to time where we perform a second
measurement with outcome,. Subsequently the protocol is changeditg,(¢), and so on
up to the final form of the protocol,,, (¢), which ends at = 7 (total time of observation).
However, the time instants at which such measurements kea taeed not be equispaced.
We assume that there can be a measurement error with pridyo@abih |z ), wherem,, is the
measurement outcome at timeg when the system’s actual staterjs Obviously, the value of

AF will be different for different protocols.
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Figure 3.1: A typical phase space trajectaily) vst. The actual and the measured states at tipregre
x, andmy, respectively.

3.3 Rederivation of previous results

3.3.1 Extended Jarzynski equality

The results of this section have already been derived in [TB¢ result for a single measure-
ment has been derived in [82]. We briefly outline the derorin a simpler way, assuming
the already known fluctuation theorems in their integral af as detailed forms. This would
be helpful in bringing out the similarity between the classiand quantum approach. For a
givenset of observed values = {my, ms, - ,my}, which we would call theneasurement
trajectory, we have a given protocdl,,(t) = {Ao(t), Am, (), Ay (1), - -+, Ay (1) 1. Here, the
notation implies that the functional form of the protocohigt) from timet = 0to¢ = ¢,, then
itis A\, (t) fromt = ¢, tot = t5, and so on, up to the final forty,,, () fromt¢ =ty tot = 7.
This protocol depends on all the measured values}, as explained abo¥eFor such a given
protocol, the Jarzynski Equality must be satisfied. Theydeki Equality,(e=#V=21)) = 1,

can be explicitly written as
[ DT atan) Pay (X[l exp (=W X M)+ BAF Oy ()} = 1 3)

wherep,,(z) is the equilibrium distribution of the system at the begimgnof the protocol,

Py,,[X|xo] is the path probability for this fixed protocol, and the wvkis a functional of the

2In other words, we assume that the measurement trajedtbiig in one-to-one correspondence with the
functional form of the full protocol, namely, (t).
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path. D[X] is a measure for the functional integral over all possiblagghspace trajectories.
Since we are initially beginning with a predetermined peolo\,(¢), the value ofA F' depends
only on the value of the protocol at the final time, i.e.,)on, (7).

Now we average over all possible protocols (i.e., over afistde measurement trajecto-

ries), and readily arrive at

[ PRNP [ DX puala) Pr, (X exp {~GIWIX,M] + SAF Oy (1)} = L

(3.2)

Here,D[M| = dm,dms - - - dmy, andP[M] is the joint probability of a set of measured values.

Themutual informationwhich would soon appear in our derivation, is defined as [79]

p(mi|z1) p(malxa) -+ p(my|ry)

I=1In PIM]

(3.3)

The mutual information essentially provides a measure efitifiormation contained in the
measurement outcomes about the actual values of the obk\@eing measured, when the
measuring device is in general subject to measuremenserror

The path probabilityP, ,, [X] for a fixed protocolA,,(t) (i.e., for a fixed measurement

trajectoryM) is given by

Pry [X] = peg(0) Prglro — 21] Py, [11 — 3] -+ Py, [on — 4] (3.4)

The notationPAmk [z, — xx11] represents the probability of the path framto =41, under
the protocol\,,,, (t).
The joint probability for obtaining a phase space trajgctdrandthe corresponding mea-

surement trajectory/, in presence of feedback, will be given by

P[X, M] = peq(w0) Pxo[x0 — @1] p(ma|z1) Py, [#1 — 2]

X 17(77”b2|$2)13,\m2 (g — x3] - - p(mN\ﬁN)P,\mN (2N — 2]
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= Pay [X] p(ma|z1) p(malzs) -+ p(mylay), (3.5)
on using eq. (3.4). Using egs. (3.3) and (3.5), we have
Py, [X]P[M] = P[X, M]e™". (3.6)
Using (3.6) in (3.2), and using the relatiéf ,, [ X |zo]peq(z0) = Pa,, [X], we get

/ D[X|D[M] P[M]P,,,[X] e PW=2F) = 1

= / D[X|D[M] P[X, M] e PW=2F=1 — 1,

To keep the notations simple, the argument$iaf A and I have been omitted. The above

relation is then the generalized Jarzynski equality:
<e‘5(W‘AF)‘I> =1. (3.7)

The Jensen’s inequality leads to the second law of thermadigs which is generalized due to
information gain, namely,W) > (AF) — kgT(I). Since(I) > 0 (being a relative entropgy
[80], work extracted from the system can be made more tharrthibe reversible case, even

though the system is in contact with a single bath, by usieglf@ck controlled drive.

3.3.2 Detailed Fluctuation Theorem

The probability of forward path is given by (3.5). To generatreverse trajectory, we first
select one of the measurement trajectofiegwith probability P[/]), among all the possible

measurement trajectories generated in the forward prodégsthen begin with the system

3This is clear from eq. (3.6). We find that

P[X, M]

) _/D[X]D[M]P[X’MMDW

= D(P[X, M] || Pa,,[X]P[M]),

D(p(z)||q(x)) being the relative entropy between the two probability desp(x) andg(x).
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being at canonical equilibrium at the final value of the famvarotocol),, . (7), andblindly
run the full forward protocol in reverse, i.€\;(t) — Ay (t) = Ay (7 — t). We will use the
notationt = 7 — t to denote the time elapsed along the reverse process. Thadimarsal of

the forward protocol is shown in figure 3.2.

AM(T — t)

Figure 3.2: The figure at the top shows several protocolsrgéttin the forward process, as a function
of time. To generate the reverse process, we choose one s# pretocols, say the bold one with
functional formA;,(¢), and time reverse it, as shown in the lower figure.

It may be noted that, had we used feedback in the reversegegest as it had been used
along the forward process, then in the time interval figm to Z;, we should have the protocol
Am, (T —t), ending at time; where the measured outcome shouldihe Sincem; is thecause
and the protocoh,,,, (7 — t) is its effect the above procedure of implementing the protocol first
and then measuring the outcome that determines it, woulchk@ausal one [79]. Thus, no
feedback is performed during the reverse process in ordespect causalify

In the present case, the probability of a reverse trajecionply becomes

P[X; M] = P[M]F;,[X]. (3.8)

P[X; M] should not be confused with the joint probabili, [X, 1], that we would
use later (see eq. (3.12)). The former represents the piipalh the reverse path with the

particular protocol corresponding to the fixed measurentragectory M, namely P; (X7,

“4In the next chapter, we will see that even the reverse pramesbe generated by using feedback, albeit by a
different algorithm, without breaking the causality.
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multiplied by the probabilityP[)/] of choosing this particular measurement trajectory. On
the other hand, the latter represents the following: suppasare using the reverse protocol
A (7 — t) to generate the reverse process. Now we perform measurealent the reverse
process as well, at the time instants ¢y_1, and so on, up teé;. The joint probability of a
trajectoryX along with the measured outcomesin this process, will be denoted B{X, M].

Now we take the ratio of egs. (3.5) and (3.8), and use eq. {8 gt

— e , (3.9)

Py, [X] — PW-AF) (3.10)

Here, Py | [X] is the probability density for the time-reversed phase speajectoryX under
the time-reversed protocdl,;. Eq. (3.9) is the generalized Crooks theorem in the presehce

feedback.

3.3.3 The generalized Jarzynski equality and the efficacy pameter

The Jarzynski equality can also be extended to a different fo the presence of information:
(e PIV=AF)) = 5, (3.11)

where~ is the efficacy parameter [82, 83]. Note that the right hauie svould be equal to
one in absence of any feedback. The efficacy parametiefines how efficient our feedback
control is. This is because if dissipated work along a precekess, then eq. (3.11) says that
is more and hence the process is more efficient.

Following similar mathematical treatment as in the derorabf extended Jarzynski equal-
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ity, and using the definition of dissipated woik; = W — AF, we have

v = / D[X|D[M]|P[X, M]eWalX:M]
= / D[X|D[M]P[X; M] XM
— [ DI, Kptmofau)p(mlan) - plmyloy)
/ DIXID[M] Py, [X]p(io|o)p(rina|71) - - - p(in] )

:/D[X]D[ [Py, [X, M] = /D [Py, [M]. (3.12)

In the second step we have used eq. (3.9), while in the tregtse definition of X, M] (eq.
(3.3)) has been used. In the fourth step, the time-reveysairetry of the measurements [82],
i.e., the relationp(iny|@x) = p(my|zy), has been assumet;  [X, M] is the joint probability

of obtaining both the backward trajectakyand the set of measured outconiésn the reverse
process under the protocal,, (see the discussion below eq. (3.8)). Physically, this mean
that~ also describes the sum of the probabilities of observingtiaversed outcomes in the
time-reversed protocols. Note that the integral avgr [M 1] is not equal to unity, because the
reverse protocal, is itself dependent of/, and hence the probability function depends on

the forward measurements as well.

Experimental relevance: Some of the results in this section, including the compaotatf
efficacy parameter, have recently been verified experitlgj€2]. The setup consists of a
dimeric particle pinned at a single point, undergoing liotel Brownian motion inside a buffer
solution, and subjected to electric fields generated by iqud@lectrodes. The particle essen-
tially experiences a potential resembling a spiral stagcaAlthough it diffuses by jumping
either upwards or downwards along the staircase, its dowhjuanps are more probable. The
feedback is designed such that, whenever it jumps upwarllasréer is introduced so as to
block its subsequent downward jumps. This leads to a netaserin its free energy at the end

of the process, which is more than the work done on the system.
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3.4 Modification in Seifert’'s and Hatano-Sasa identities

Now we derive other identities which are straightforwardealizations of their earlier coun-
terparts, in the presence of information. The mathematisived is the same as in sections
3.3.1and 3.3.2. For a predetermined protocol, if the pridihadistribution of the initial states
for the forward path (denoted by (z()) are arbitrary rather than being the Boltzmann distribu-
tion, and that of the reverse path is the final distributiostates (denoted by, (x,)) attained

in the forward process, we obtain the Seifert’s theorenen &f the Jarzynski equality [28,29]:
(emAstor) = 1, (3.13)

Here, As;,; = As,, + As is the change in the total entropy of bath and system. The path
dependent medium entropy change is giventby, = /7, whereQ is the heat dissipated
into the bath.As is the change in the system entropy giveny = In[po(x¢)/p-(z,)]. EQ.

(3.13) can be explicitly written as (see the discussion teeéq). (3.1))
/ D[X] po(zo) Pa,,[X|xo] exp {—Asi[ X, M]} = 1, (3.14)

Averaging over different sets of protocols determined lgydtiferent measurement trajec-

tories, we get
/ D[M]P[M] / D[X] po(wo) Pa,, [X |zo)e 2oetM = 1. (3.15)
Proceeding exactly in the same way as in section 3.3.1 (€8/%—(3.7)), we readily get
(emAstor=ly — 1. (3.16)

Eq. (3.16) is the generalization of the entropy productimeotem and it gives the modified
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second law in the presence of feedback:

<A8tot> > _<I> (317)

Thus with the help of information (feedback), the lower liwfichange in average total entropy
change can be made less than zero, by an amount given by tregavautual information
gained.

The Hatano-Sasa identity [47] can also be similarly gensydi

T 00(x ) _
<exp {—/0 dtA o []> =1, (3.18)
whereg(x; \) = —In pss(2; A), the negative logarithm of the nonequilibrium steady stiéide

tribution corresponding to parameter valueThe derivation (3.18) is simple and similar to the
earlier derivations (see sections 3.3.1 and 3.3.2), nadehiemot reproduced here.

In terms of the excess he@t.., which is the heat dissipated in addition to the housekeepin
heat, when the system moves from one steady state to anthbehove equality (eq. (3.18))

can be rewritten in the following form (for details see [47])

<eXp[_ﬁQex’ - A¢ - ]]> = 1. (319)

Using the Jensen’s inequality, the generalized seconddatdnsitions between nonequilib-

rium steady states follows, namely,

T{As) 2 —(Qea) — kpT(I), (3.20)

whereAs is the change in system entropy definedby= — In % = A¢.
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3.5 Quantum case

Now we extend the above treatment to the case of a quantumsygam. Hanggi et al. have
shown [20] that for a closed quantum system, the fluctuatieotems remain unaffected even
if projective measurements are performed in-between. happens in spite of the fact that
the probabilities of the forward and backward paths (byHpate mean here a collection of
the successive eigenstates to which the system collapskdieg a projective measurement
is performed) do change in general. Taking cue from thisltese proceed as follows. The

supersystem consisting of the bath and the system evoler timel total Hamiltonian
H(t) = Hs(t) + Hsp + Hp. (3.21)

The bath Hamiltonia{ 5 and the interaction Hamiltonial sz have been assumed to be time-
independent, whereas the system Hamiltoigit) depends explicitly on time through a time-
dependent external drive(t). We first prepare the supersystem at canonical equilibrium a
temperaturé/’. At initial time ¢, = 0, we measure the total Hamiltonian, and the collapsed
eigenstate i$ky). The notation means that the total system has collapsea: tdtigenstate
(of the corresponding measured operator, whidt (8) at¢ = 0) when measured at timte= 0.

The supersystem consisting of the bath and the system isliesgdy the density matrix

¢—BH(0) Bk,

vy T T )

p(0) = (3.22)

In the above relatiom,x, are the diagonal elements of the initial density matrix ef sper-

system, and’(0) is the partition function for the entire supersystem:

Y (0) = Tre AHO), (3.23)

We then evolve the system up to timeunder a predetermined protocg|(¢), and att; we

measure some observallé of the system. Let the outcome be, whereas the actual col-
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lapsed state i) corresponding to eigenvalué,, . This outcome is obtained with probability
p(mq]k1), which is an assumed classical error involved in the measemé Now we introduce
the feedback by modifying the original protocol xg,, (¢), and then continue up tQ, where
we perform the measurement to get outcomg the actual state being.,). Subsequently
our protocol becomes,,, (¢), and so on. Thus the probability of getting the set of eigaerst

K = {lko), |k1), -, |k-)} with the measurement trajectofyn, } = M is given by

PIE, M] =pigiy | (k1|Uxy (t1, 0)[ ko) |[? p(rma|kr) [(2|Un,,, (t2, t1) k1)

- p(mn|kn) [k |Un,, (7,8 ka1 (3.24)

Here, Uy, (tiy1,t:) is the unitary evolution operator from timtgto time¢;,,. The reverse
process is generated by starting with the supersystem iongzad equilibrium with protocol
value\,,, (7), and blindly reversing one of the chosen protocols of the/émd process. Now
we need to perform measurements along the reverse procesdl asmply to ensure that the
statedoescollapse to specific eigenstates and we do obtain an unaoisgeverse trajectory

in each experiment. However, in order to respect causall®y, iwe do not perform feedback
using these measurements during the reverse process. diyabpity for a trajectory that starts
from initial collapsed energy eigenstate ) and follows the exact sequence of collapsed states

as the forward process, is given by

PR M) =|(kol©1Us, (0,1)01k0) 2|k | ©7U3, (F1, 82)© k)

c - [k |OTU5, (En, F)Ok)|? pror, PIM]. (3.25)

Here,© is a time-reversal operator [20], ar(d:n|@TU;7nn (tn, tni1)O|kny1)|? is the probability
of transition from the time-reversed statek,, . ;) to ©|k,) under the unitary evolution with
the reverse protocol’s | (tn tng1) = U, (T —tn, T — toy1). The tilde symbol implies time

calculated along the reverse trajectory= 7 — t. p;._.. is the diagonal element of the density
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matrix when the system is at canonical equilibrium at tharo@gg of the reverse process:

e PEk,
Phokr = iy (3.26)

Now we have,

t~7L

2 Hs, (t)dt

@TU;\mn (tntns1)© = O Texp S

t7L+1

S
=Texp +% Hy (t)dt]

£n+l

i [t

=Texp — H5 (17— t)dt]

tn+l
i [t

=Texp |— 7 Hy, (t)dt}

tn+1

= U, (tns tng1) = UL (tnsr,tn)- (3.27)

Here, T is the time-ordering operator. In the third step, the vdeias integration has been
changed front to 7 — ¢. In the next step, we have used the relatton (7 —¢) = H,,,, (¢),

which follows from the fact thad,,,, (1 — ) = A, (¢). Accordingly,

<kn‘@TU5\mn (Env £n+1)@‘kn+1> = <kn‘Uj\mn (tn+17 tn)‘kn+1> = <kn+1‘U>\mn (tn—i-b tn)|kn>T-
(3.28)

Thus, while dividing eq. (3.24) by (3.25), all the modulusiaed terms cancel, and we

have,

P[Ka M] _ Pkoko p<m1|k1)p<mN|kN>

P[K; M) Pr.k, P[M]

_Y()
= ¥10) WA (3.29)

wherelW = Ej,_— EJ, is the work done by the external drive on the system. Thig¥elfrom

the fact that the external forces act only on the systern the final step, egs. (3.22), (3.26)
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and (3.3) have been invoked.
Now we follow [19] and define the equilibrium free energy oétbystemFs(¢), as the
thermodynamic free energy of the open system, which is ttieredhce between the total free

energyF'(t) of the supersystem and the bare bath free engfgy
Fs(t) = F(t) — Fg. (3.30)

Here,t specifies the values of the external parameters in the cofithe protocol at time.

From the above equation, the partition function for the opgstem is given by [19, 90]

Tr e PH®)
Y(t) sB
Zs(t) =~ = "y (3.31)
B

whereS and B represent system and bath variables, respectively. $igds independent of

time, using (3.31) in (3.29), we have

PIE,M] _ Zs(T) swir _ sw-ars+1 (3.32)

P[K; M) Zs(0)

The above relation is the extended form of the Tasaki-Cratgtsiled fluctuation theorem
for open quantum systems in presence of feedback where tasumgnent process involves
classical errors.

From (3.32), the quantum Jarzynski Equality follows:

Z/D[M]P[K, M]e PW=AFs)=T — Z/D[M]P[f(; M] =1,

(e7PW=AF)=TY — 1. (3.33)

The summation extends over all possible intermediate pedld state$| k), |kq), - - -, [kn)}-
This is valid for open quantum system and is independent efcthupling strength and the

nature of the bath.
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The quantum efficacy parameter is definedas " —2s)) = +, and the calculation of
is exactly in the spirit of section 3.3.3, except taP[X] is replaced by ., i.e., summation

over all possible eigenstates. Finally we get the sametregrhely,

N = / DM P;,,[M]. (3.34)

3.6 Conclusion

In conclusion, we have rederived several extended fluctaéitieorems in the presence of feed-
back, and have also derived some new ones. To this end, waibadeseveral equalities given
by the already known fluctuation theorems. We have also detéthe quantum fluctuation

theorems for open systems, following the earlier treatrflEnt20]. No assumption is made on
the strength of the system-bath coupling and the naturesoéirironment. However, we have

assumed that the measurement process leading to informggtio involves classical errors.
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Chapter 4

Universal interpretation of efficacy
parameter in perturbed nonequilibrium

systems

4.1 Introduction

We have discussed about several fluctuation theorems intbégding chapters. In this chapter,

we will write the fluctuation theorems in the following geakform:

= e, (4.1)

wherePT is the functional form of the probability density along a gess which is related to
the forward process through a conjugate transformafignot to be confused with tempera-
ture). This transformation is not necessarily time-regeré\s before,X; is some observable
that is to be measured (up to timesay) and is in general a path functiaf(3,) is the prob-
ability density of this observable along the forward praceshich in turn is parametrized by
an externally controlled time-dependent protox@l). In the previous chapterg, was simply

the time-reversal operator that changes the signs of tleeitiels. However, there have been
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fluctuation theorems in which is not so. It may include the dual transformation or may be a
combination of both the dual transformation and time-reakras will be discussed later. The
argument:! in eq. (4.1) is the value assumed by the observable alongathiegate phase
space trajectory.

In this chapter, we will study the extended forms of thesati@hs in feedback-controlled
processes, when feedback is applied along the reversesgraseavell [91] (still respecting the
causality of the process, as will be elaborated later). iEhg®ntrast to the last chapter, where
the reverse process was generated by blindly reversingthaifd protocol.

In chapter 3, we had found that in the presence of feedbaekfotim of the second law
needs to be modified to:

(Xe) = =(I); (I) = 0. (4.2)

Here, the mutual information is defined as [21, 79, 8284, 86]

p(mo‘ﬁo)]?(ml\%) e ‘P(mN|$N)
P(m07m17"' 7mN)

I=1In

, (4.3)

where the presence of measurement errors is assumed (geercBl In the arguments of
the conditional probability(m;|x;), m, is the outcome when a measurement is performed at
time ¢;, while z; is the actual value of the observable. The entire sequenogeaturement
outcomes is given byM = {mg, my,--- ,my}, Which are measured at time instafits =
0,t,--+,ty}. The phase space trajectory will be denotedXy= {z¢,z1,--- ,z,}, where
T = tn41. The sequence of protocols used will thembg(t) = { A\, (1), Ay (1), -+, Ay (£) 1,
the subscripts denoting the measurement outcomes on wiadhrctional form of the proto-
col depends. Here\,, (¢) is the protocol in the time interval betweénandty, \,,, (¢) is the
protocol in the time interval between andi,, etc.

The Jarzynski equality [33, 34] has two different generaliforms in the presence of feed-

back. The more commonly used form of the extended Jarzyrgkaligy (EJE) is [21,79, 82—

1This time we would measure at the initial time= 0 as well, unlike in the previous chapter.
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84, 86]
<€—5Wd[X,M]—1[X,M]> —1 (4.4)

W, is the dissipated work defined through, = W — AF, whereA F' is the difference between
free energies at the end and at the beginning of a particubéogol. It is a functional of both
the phase space pathas well as of the measurement trajectdfy Note that the value cA F’
itself changes, depending the form of the protocol.

In eq. (4.4), the reverse trajectories are generated bylgirepersing the sequence of one
of the forward protocols. As we will show|.X, M] will in general be replaced by a different

physical quantitys[ X, M|, if we choose to use feedback along the reverse process ks evel

<e_IBWd[X7J\/[]_d)[X7M}> — 1 (4_5)

Other than eq. (4.4), there is yet another form of the extedaezynski Equality that has

been introduced in the literature [82, 83]:

(e Pl = . (4.6)

The efficacy parametety depends on the feedback control algorithm used along theafar
process, and determines the extent to which the feedbadka®et (i.e., more work can be
extracted from the system). We will find thatcan be shown to be equal to the sum of prob-
abilities for observing the time-reversed measurementsgaihe time-reversed trajectories. If
~v = 1, then we would have the Jarzynski equality in absence obiaad The efficacy param-
eter has been measured experimentally [92] and equatiof)sadd (4.6) have been verified.
Using the Jensen’s inequality, we have the dissipated wodkateed from below through the
relation

(WalX, M]) > —Iny. (4.7)

Thus,~y > 1 implies that work can be extracted, on average, from thesmyséven in the

presence of a single heat bath.
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Although this inequality looks similar to the one stated qm €4.2), it may seem to be a
trivial statement because it is a simple consequence ofédfirition of v. However, the fact
that this definition lends a very clear physical meaning todfficacy parameter and that this
meaning can be exploited to experimentally measufwithout using the definition eq. (4.6))
underlines the importance of the relations (4.6) and (A8 explicitly show thaty retains the
simple meaning even when we extend eq. (4.6) to driven systeaking transitions among

nonequilibrium steady states under arbitrary feedbackrotied protocols.

4.2 Extended Jarzynski Equality

4.2.1 Blind time-reversal of protocol

As shown in [21,79, 82-84, 86], in presence of informatiom@ad of feedback applieanly
along the forward trajectory, the Jarzynski Equality getslified to eq. (4.4). This relation is
easily derived from the detailed fluctuation theorem, indhse when the reverse protocol is
the blind time-reversal of the corresponding protocol gltre forward process (see chapter 3).

Then the ratio of the forward and reverse trajectories beda®, 84, 86]

PIX,M] _ PaylX] | pmolzo)p(muzy) - - Plmylzy)
PIX;M] Py, [X] P(mo,my, -+ ,my) ’
— e,@Wd[X,M}-i-I[X,J\/[]. (48)
In the above equationf{ is the time-reversed trajecto(y.,, Zn, - - - , Zo), Pa,,[X] IS the prob-

ability density of phase space trajectories when the faiwaotocol is given byA,, (cor-

responding to the measurement trajectdry; P[X, M] and P[X; M| are the probabilities
of the forward and reverse processes, as has been explairdbdypter 3. A simple cross-
multiplication followed by integration ovek and M will give rise to the modified Jarzynski

Equality, eq. (4.4).
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4.2.2 Using feedback to generate reverse process

The reverse process can also be defined by designing a sugaldback procedure to generate
the time-reversed protocol, which does not violate catysf8]. The feedback procedure is
as follows: we first measure system observable at%ime 7. Let the measurement outcome
be m! (say), which is the time-reversed valuesof (which in turn can be equal to any of
the possible measurement outcomes). Then the protogdlr — t) is applied, till we reach
the time instant = ty. At ¢y, we measure the outcome to bg,, and apply the protocol
Amy, (T —t), and so on.

Now, suppose that the chosen forward protocol correspanttetmeasurement outcomes
{mg, my,--- ,my} attimes{t, = 0,1, - ,tx}, respectively. By using the above algorithm,
we will get the exact time-reversed protocol only if the measent outcomes along the re-
verse process arfny,my_1, - ,mo} at the time instant$ty ., = 7,ty, -, 1}, respec-
tively. This means that, we need to hawi€, = my, m’y = my_1, and so on. Correspond-

ingly, the protocols applied ark,,, (7 — ), A (t —t), etc. Any other sequence of obtained

my—1
measured outcomes along the reverse process, would comces$p the reversal of a differ-
ent forward protocol. The procedure has been schematicgthesented in figure 4.1 for an

overdamped system, whete= z; andm; = m;.

X0

M1 )\m‘\s (T - t)

Figure 4.1: The above figure shows the forward (upper curmd)raverse (lower curve) phase space
trajectories for an overdamped system. The reverse pirdtasobeen generated using feedback during
the reverse process. The reversahgf, () to A\, (7 — t) has been indicated in the time interval from
tytor.

2For clarity, for the time being, let us use the forward timeléscribe the time instants in both the forward and
the reverse processes.
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In this process, i.e., changing the protocol according tasugezment outcom@,,_; at time
t = t;, the reverse protocol is exactly reproduced without evelating causality. This is
because nowhere are we implementing a protocol and therunegthe outcome that should
determine this protocol (as would have been the case if tlesurements were not made at the
shifted time instants).

The joint probability density for a forward phase spaceettry X and corresponding

measurement trajectory/ in presence of feedback is given by [84]

P[X, M| :p(xo)P(mo|$o)PAmo (g — xl]p<m1‘x1)P>\ml (1 — 3

. .p(mN|ng)P)\mN [«TN — JZ‘T]. (49)

The probability for the reverse trajectory in presence etifeack becomes

PIX; M) =p(z-)p(mn|i:) P, [T — Zn] p(y-1|Tn)P5 [N — TN

mp MmN _1

- p(imol 1) By, [#1 — &), (4.10)

Here, the notation,,, (t) = A, (7 — t), has been usegh(r,_|Z;) gives the error probability
of obtaining the outcome;,_;, when the actual state is.

This gives the new extended Crooks relation

PIX, M| _ OWal X+ Asy[X,M] (4.11)

PIX; M

We assume time-reversibility of measuremenptsp,|z;) = p(m}|x;), that is,p(m;_1|Z;) =

p(m;_1|z;). Then we have,

p(molxo)p(ma|zy) - p(myl|oy)
plmy|z-)p(myaley) - - p(molz)

Asy[X,M]=In (4.12)

Here,As, represents a disorder parameter, but is not the mutuahnafoon (see eq. (4.3)) as

defined in [82]. Of course, equations (4.8) and (4.11) cond#ferent information as well as
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provide different bounds for the average total entropy gedor the system.

4.2.3 The general case

X0

Blind protocol

| Feedback-controlled | | Feedback—controlleﬁj

protocol protocol

Figure 4.2: The figure shows the representative plot of ttes@lspace trajectory in a simple case for
the most general form of feedback that can be consideredglthie reverse process (the lower curve)
corresponding to the forward process (the upper curve)st,Flomt¢ = 7 tot = t,, we have the
feedback-controlled reverse protocol, while fram= ¢, to ¢t = t; we have used the blindly time-
reversed protocol. In the final part, uptte= 0, we revert to the feedback-controlled reverse protocol.

The general form of the probability density for a forwardeory in presence of feedback
is given by [84] equation (4.9).

The general protocol to generate the reverse process weuld bse both the protocols
described in sections 4.2.1 and 4.2.2 at random during trexge process. Let us take one
simple case when, along the reverse process, up taiting,, we use the feedback-controlled
protocol of section 4.2.2. Then from time= t, tot = t;, we use the blindly applied
reverse protocol of section 4.2.1. Finally, fram= ¢, to ¢ = 0, we once again use the
feedback-controlled reverse protocol (see figure 4.2, evtiee forward and reverse trajecto-
ries are shown for an overdamped system). Herandn can be any two integers chosen at

random from the sef1,2,--- , N}, with n > k. In this case, the reverse process becomes,
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P[X; M] Z{P(fr)P(mNWr)meN [z, — fN]p(mN—l|i'N)P5\mN71 [Ty — Tn_1]

te p<mn|jn+1>Pj\ jn—i—l - jn]} X {p(mn—la o 7mk)P[jn - jk]}

mn [

[T = Tea] -+ plmolZe) Py, [T1 — @]} (4.13)

My 1 m

X {p(mk—ﬂjk)P;\

Each of the three parts in the reverse process (time ingervalt,,, t,, to t;, andt; to 0) have
been enclosed within separate pairs of brggefor clarity. Therefore, we arrive at (once again

using the time-reversibility of measurements to do awap wie tilde symbols)

PIX, M| Py, [X] " p(molzo) - - p(my_1]zr1) " p(mg|ag) - - plmy 1|z, 1)

PIX;M] Py [X]  plmolwr) - plme_1|ag) p(mg, -+ My 1)

M

p(my|z,) - - plmy|zy)
(M| i) - p(mnl|e,)

=exp [6Wd + As; + I+ Asﬂ , (4.14)

where

I'=In p(mk|xk) o 'p(mn—1|xn—1) .

: (4.15)
p<mk7 e 7mn—1)
As) = 1 PUmol20) - plmucfei-), (4.16)
P pmolzy) - - - pmg_1|zy)
As2=In P(1mn|2n) - plm|n) (4.17)

(M |Tpg1) - -p(mN|xT)'

We are thus led to a different extended detailed fluctuahenitem where disorder parameters
Asll,, It andAsf, are different as they contain different information abdet teedback process.
Thus, itis clear that the[ X, M] in eq. (4.5) does not have a unique interpretation, but di#pen
on the manner of feedback along the backward process. Frordelgl), one can obtain the

related integral fluctuation theorem, namely

(exp[—BWy —I" = As) — As2]) = 1. (4.18)

67



All the three results derived above, egs. (4.8), (4.11) dnti4(, can be written in compact

form as

== = e

]Jj [[X % } AWartelX,M], (4.19)
In eq. (4.8),0[X, M] simply equals/[X, M]. In eq. (4.11), it is equal td\s,[X, M]. In eq.
(4.14),¢[X, M] = I'[X, M] + AsL[X, M] + As2[X, M].
In principle, for different feedback protocols[X, M| will be different, and terms like
As}g, Asi, etc. become difficult to interpret physically. This prablalso gets reflected in the

extended forms of the Jarzynski equality. We next turn oti@ndibn to the efficacy parameter.

4.3 Efficacy parameter in presence of general feedback

In absence of feedback, the Jarzynski equality is given By32, 34,42]
(e7PWalX]y — 1. (4.20)

In presence of feedback, the right hand side of the abovaaelwill in general not be unity.
The efficacy parameter for the feedback in this case (wheemsyss initially at thermal equi-

librium with the medium) is defined as
= (e~ AWalX]y, (4.21)

It can be readily seen that lesser the amount of dissipatekl, wwre is the magnitude of the
efficacy parameter, as is desirable for a quantity that meashe efficiency of feedback. Now
we use the general case for obtaining the reverse trajestaramely the case 4.2.3.

Therefore, we get

v = / DIX|D[M]P[X, M]e #WalX:M]

2

— [ D[X]|D[M]P[X; M]etss+!'+25;
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— [ DIXIDIM Py, Klpmoleo)plonsa1) - plomaloy)
- [ P s B )

/D 1Py, [X,M] = | D[M]Ps [M], (4.22)

where we have used the detailed fluctuation theorem (4.hd)thee definitions (4.16), (4.15)
and (4.17).D[X] is the measure for the functional integral over all possjifiase space tra-
jectories whileD|[M] is that for the integral over all possible measurement dtajees. The
time-reversibility of measurements has been assumied;|x;) = p(m;|z;) [82]. The physical
meaning ofP; [X M] has been clarified in chapter 3. The same chapter also expldip
the final integral,[ D[M] 1P4,, [M], is not unity.

In more general cases, when the two different algorithnssélof sections 4.2.1 and 4.2.2)
are applied at various time intervals to generate the rey@socol, we need to use the follow-

ing algebra in the integrand:

P[X; M]e?XM = P[X; M]exp (Z As + ZI])
i J

= Py, [XIp(moro) -+ ploma i)

= P;,, [X]p(mo|Zo) - - plimn|Tn)

= Py, [X, M]. (4.23)

Here, the summatiorjs; and} _; run over all the time intervals in which the reverse protscol
have been executed by using feedback and by blind timegalyeespectively. We find that
although the form of?[X'; M] contains detailed information about the actual feedbaokesr
dure used along the backward process, when it is multiphethe factore?*>"1 we obtain
PAM [X, M], whose form does not contain any such information. Thisés#fason behind the
fact that the efficacy parameter retains the same physicahimgin each case, namely, it is the
total probability to observe the time-reversed outcome#ife measurements performed along

the reverse proceg21, 82—84].
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This derivation ofy (eq. (4.22)) for the general case is our central result.nipyy shows
that it retains the same meaning as for the specific cased=yesi in the earlier literature
[79,82-88].

The results in this chapter can be verified, using the sanp sstmentioned in chapter 3.

4.4 The three detailed fluctuation theorems

We will be generalizing our treatment to the other detailedttlation theorems, which in-
volve the non-adiabatic entropy production and adiabaticopy production. The total en-
tropy change by definition is the sum of entropy changes isyiseem (\s) and in the medium
(As,): Asir = As + As,,. Recently it has been observed that while generalizingehersd
law for systems making transitions between steady stdtes$otal entropy production can also
be split into two distinct parts such that each part, intaéngly, follows a detailed fluctuation
theorem [49,51, 94, 95]:

ASior = ASpy + As,. (4.24)

The averages of all these three quantities are always ngative, thereby providing a new
twist to the second lawAs, is related to the housekeeping héay., while As,,, is the sum of
the entropy change of the system and the entropy producetbdixeess head., [49,51, 94,
95]. They are known as the adiabatic and the nonadiabatiomnproductions, respectively,
as has been discussed in the introduction (see section 1.4).

In the case of adiabatic and non-adiabatic entropy prooistithe concept of dual dynam-
ics is very helpful. Under the dual dynamics, if the systeallmswved to reach the corresponding
steady state, then the steady-state distribytignretains the same form as in the original dy-
namics, but the probability current reverses its sign [2],, Blatano and Sasa had shown that
the physical meaning of the nonadiabatic entropy beconses ot the dual dynamics formal-

ism [47]. These detailed fluctuation theorems are taken tipeiiollowing discussion.
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4.4.1 Total entropy

Suppose that the initial state of the system for the forwaodgss is not necessarily at thermal
equilibrium with the bath, and the initial distribution ftine reverse process is the final dis-
tribution attained in the forward process. Then in abserideanlback, the following ratio is

obtained between the forward and the reverse traject@|@8[29]:

PIX]_ etsterlX], (4.25)

from which the following integral fluctuation theorem candigained:
(emAstetlX]y — (4.26)

In presence of feedback, the right hand side will in geneeadlifferent from unity. For this
general case, instead of eq. (4.19), we would get the fotigwatio between the forward and

reverse paths:

PIX, M| _ ssioulx Mvoix.0, (4.27)
P[X; M]

We now consider the case with general reverse protocol. \fileedihe efficacy parameter as
Yeor = (€7 B (4.28)
Proceeding in exactly the same way as before (see eqs. @ghadZ¥.23)), we find

Vtot = /D[X]D[]\J]P[X7 Mo BstorX,)
_ [ DIXIDIMI PR et
- / DMy, (M) (4.29)

Thus, v, retains the same physical meaningrafor the Jarzynski equality, although here

we do not have the constraint of sampling the initial statehefsystem from the equilibrium
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distribution.

4.4.2 Nonadiabatic entropy

For transitions between nonequilibrium steady states,ave the following detailed fluctuation

theorem in absence of feedback [47,50,51, 94]:

% = efomelX], (4.30)
The superscript implies that keeping the functional form of the protocol same are switch-
ing to the dual dynamics. The tilde symbol overimplies that the protocol for the forward
process has been time-reversed after the system has besadtb follow the dual dynamics.
In other words,P'[X] is the probability density for a trajectory along the pracgenerated,

in presence of dual dynamics, by the time-reversed proto8ohilar to the above cases, in

presence of feedback, we have [84,87]

~P[X~’ M] — eASna[XvM}'i'(z)[X’J\/[]’ (4.31)
PHX; M]

where the form ofp[ X, M| depends on the way in which feedback is applied in the reverse

process, as given in section 2. The efficacy parameter ircdsis is given by

oa = (e 850eX) — [ DLCIDIMIPLY, Mo
= / DIX|D[M]PT[X; M]e? XM
~ [ DIXIDIMIP] Rlpomoleo) - -poms o)

:/D[X]D[M]pi (X, M) :/D[M]P/{M[M]. (4.32)

A
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In the third step, we have used the algebra that has alreatydb®wn in the case of the most

general protocol (section 4.3) for extended Jarzynski kgguahich results in

_ Pl XA, (4.33)

We have assumed that the measurement errors do not chanigeraing the dynamics, which
is quite reasonable assumption, because it is a properheaheasuring device. Thus,, is
the net probability for obtaining the time-reversed outesralong the time-reversed process in

dual dynamics.

4.4.3 Adiabatic entropy

The DFT for adiabatic entropy productibis given by [51, 94]

P[X] L Asq[X]
7PT[X] =e . (4.34)
PT[X] is the probability density for the path followed by the systi phase space, when the

system is evolving under the dual dynamics. In presenceealtfack, we then have,

]Z[ff)é?]\]{}] — oAsalX,M]+0[X,M] (4.35)
Since both the processes considered are forward proceaaswgo(different dynamics),
there is no need to perform measurements and feedbackdtatigimes in order to respect
causality. The denominator can therefore only consist@falowing options:
(1) The same feedback procedure is used to generate therfpvercess in the dual dynam-
ics as well, in which case we hayeX, M| = 0 (since the error probabilities in the numerator

cancel with those in the denominator). Once again, measmegrrors are assumed to be

3In this subsection, we will deal only with overdamped systewherei = 2 andsn = m. For underdamped
systems, this fluctuation theorem is in general not valid.[50
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independent of the dynamics followed by the system.

(2) One of the forward protocols in the original dynamicsasarded, and this protocol is
blindly executed in presence of the dual dynamics, in whaseove simply have[ X, M| =
11X, M].

(3) We use the above two procedures at random while gengithforward trajectories in
presence of dual dynamics, which is the most general cagbislease, howevey[ X, M| =
Zj I, i.e., the summation oveks’, will be absent, because the latter quantity never appears
in this case.

The efficacy parameter is

Yo = (e~ A5 lXNMIy (4.36)

which leads to

= /D[X]D[M] (X, M]e~AslX:M]

/ DIX|D[M|P[X; M]e=i ¥ / D[M]P{ [M]. (4.37)

Therefore;y, is the total probability for observing the same outcome#asttitial process
with the same protocols, if the system follows the dual dyicam

We thus find that the physical meaning of efficacy parametetbeavery generally stated
as follows: it is the total probability to observe the measuoutcomes conjugate to those
along the forward protocol, for the intermediate measurémalong the process with the cor-
responding conjugate dynamics. Since the efficacy parasate experimentally measurable,
they would provide more meaningful forms of the extendeddlation relations. Further, they
would provide universal bounds foW,), (As,), (As,.), (As.), and these bounds are in fact
independent of whether or not feedback is performed aloagdmjugate process in the actual
protocol.

For the other extended relations and bounds stated in set&othe expressions would de-

pend sensitively on whether and how the feedback is perfdatwng the conjugate dynamics,
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namely, the extended integral fluctuation theorems canatedsts

<exp (—Ask — Z As; — Z [j> > =1 (4.38)

for k = 1,2,3,4 representingVy, As;:, As,, andAs,, respectively (keeping in mind that

As! = 0 for all 4, in the case of\s,). This would lead to the bounds

(Asg) > — <Z As;> — <Z I > (4.39)

As a consequence, arbitrary number of modified relationscamgsponding bounds can be
computed for this latter case, which can cause confusioa.efficacy parameter, on the other
hand, is a more suitable experimentally measurable qyathi@t can characterize not only
the performance of the system, but can also act as a usetuhpger to define the extended

fluctuation relations.

4.5 Conclusion

In this chapter, we have shown that out of the two known forfie@modified fluctuation the-
orems in presence of feedback, one of the forms is heavilgrtignt on the way feedback is
applied along the conjugate process, and thereby leadsittaay number of extended relations
for work done on the system or for the relevant entropy chaiftmal entropy, nonadiabatic
and adiabatic entropies) taking place. The bounds obtdinedthese relations, therefore, also
have this arbitrariness. On the other hand, the second foamgly the fluctuation theorem
expressed in terms of the efficacy parameter, provides taarelfar work and entropy changes
that carries a clear and consistent physical meaningpeie of the manner of application of
feedback along the conjugate process. This consistenopist even when the conjugate pro-
cess is not the time-reversed process. This study wouldftilbpkelp in simpler experimental

verification of the extended fluctuation theorems.
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Chapter 5

Total entropy production fluctuation
theorems in a nonequilibrium

time-periodic steady state

5.1 Introduction

The fluctuation theorems reveal rigorous relations for proes of distribution functions of
physical variables such as work, heat and entropy produdtiosystems driven away from
equilibrium, where Einstein’s and Onsager’s relationsorgkr hold.

In the present work, we probe numerically the entropy prtidadluctuation theorems (the
IFT and the DFT) in the case of a Brownian particle placed ioabde well potential and sub-
jected to an external harmonic drive [96]. In the absenceivédthe particle hops between the
two wells with Kramer’s escape ratg: = 7, e~2"/#57 [97] wherer, is a characteristic time
(see chapter 1 for the explicit expression fgprin an overdamped system)\ V' is the energy
barrier height between the two symmetric wells dhis the temperature of the bath. The ran-
dom hops of the Brownian particle between the two wells gatByonized with the external
drive if r matches twice the frequency of the external drive. Thisnogtition condition can

be achieved by tuning the noise intensity, and is caledhastic resonand&R) [53, 54, 98].
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Noise plays a constructive role in this case and SR finds egipns in almost all areas of
natural sciences. To characterize this resonance behadiffarent quantifiers have been in-
troduced in the literature [53, 55, 65, 98-102]. The averagek injected into the system (or
the average thermodynamic work done on the system) per chelecterizes SR as a bona
fide resonance [55, 98, 102]. Recently work and heat flucnatieorems have been ana-
lyzed in a symmetric double well system exhibiting SR in pre of external subthreshold
harmonic [68, 69] and biharmonic [70] drives. Theoreti&8,[69] and experimental [15, 16]
studies reveal the validity of the steady state fluctuat@otem (SSFT) for heat and work in-
tegrated over finite time intervals. In the following, weexd the study to fluctuation theorems

for total entropy production and associated probabilitygity functions.

5.2 The Model

The overdamped dynamics for the positiaf) ¢f the particle is given by a Langevin equation
in a dimensionless form, namely
dx oU(x,t)

T T T o +&(1), (5.1)

where¢(t) is the Gaussian white noise with(t)) = 0 and(£(¢)&(t')) = 2Dd(t—t'), where
the noise strengthh = vkzT, kg being the Boltzmann constant. The potentidl, ¢) can be
split into two parts: a static potenti&d(z) = —%xz + ix‘*, and the potential due to external
harmonic perturbatiofv; (z,¢) = —xAsinwt. A andw are amplitude and frequency of the
external drive, respectively.

The static double well potentidl' (z) has a barrier heighAlV = 0.25 (see figure 5.1)
between two symmetrically placed wells (or minima) locaa¢d,, = +1. We have restricted
our analysis to subthreshold forcings$|z,,| < AV. The total potential/ (x,t) = V(x) +
Vi(z,t). Using the method of stochastic energetics [23] for a givertige trajectoryX (¢)
over a finite time duratiom, the physical quantities such as injected work or thermadyn

work (W), change in internal energyA(V) and heat@) dissipated to the bath are given by (see
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Figure 5.1: The double-well potential used in this chapitéere, AV is the barrier height between the
two wells, while the minima of the two wells are locatedrat = +1.

chapter 1, sect. 1.1)

T AU (1)
W_A et (5.2a)
AU =U(z(ty+7),to +7) — U(x(to), t9), and (5.2b)
Q=W — AU. (5.2¢)

Equation (5.2c) is a statement of the first law of thermodyicamThe particle trajectory ex-
tends from initial time, to final timet, + 7. W, AU and( are all stochastic quantities and we
have evaluated them numerically by solving Langevin eguatising Heun’s method [67—69]
(see appendix D).

A change in the medium entropyA§,,,) over a time interval is given byAs,, = Q/T.
As explained in sect. 1.2 of chapter 1, the change in the isystdéropy for any trajectory of

durationr is given by
pi(z(to +7),to+7)
po(x(to), to) ’

As = —1In (5.3)

wherepy(z(ty), to) andp (x(to+7), to+7) are the probability densities of the particle positions
at initial timet, and final timet, + 7 respectively.

The total entropy change over time duratiois given by

Asior = As,, + As. (5.4)
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Using the above definition of total entropy production, 8eihas derived the IFT [28, 29] (see
chapter 1), i.e.,
(e7er) =1, (5.5)

where angular brackets denote average over the statistisainble of realizations, i.e., over
the ensemble of finite time trajectories. This identity isyvgeneral and holds at any time
interval and for arbitrary initial conditions.

In the presence of external periodic perturbations, théegyselaxes to a time-periodic

steady state. In this state, a stronger detailed fluctuéttieorem holds [27-29]:

P(Astot) A
—— = 7t 5.6
P(—Astot) ( )

where As,,; is evaluated over time intervais = nT}, n being an integer, and; being the
period of the external drive.P(As,;,) (or P(—As,,)) is the probability that the trajectory
produces (or consumes) entropy with the magnitidg; .

To calculate the total entropy production, we evolve thedean system under the time-
periodic force over many realizations of noise. Ignorirapgients, we first find out probability
density functiorp(z, t) in the time asymptotic regime. In this cagéy, ) is a periodic function
in ¢ with the period equal to that of the external drive. The hésgigated is calculated over a
period (or over a number of periods) using (5.2c). Therebyphbtain the change in the medium
entropy As,, = Q/T). Knowing the end-points of each trajectory, and the tireaqalic
p(z,t), the change in system entrogys is calculated (equation (5.3)). Thus we obtain for
each trajectory the total entropy productiahst,; = As,, + As). To calculate the averages
of the physical quantities or the probability distributjahs,,; is obtained for more than0®
realizations. In the following we present the results wladrthe physical parameters are taken

in dimensionless form.
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5.3 Results and Discussions

The work W, calculated over a peride¢hosen at random varies from realization to realization
and is a random quantity. So are internal energy chaxigeand dissipated he&t,. However,

all these quantities satisfy equation 5.2c for each perfaben at random. The averages of
physical quantities(( - -)) are calculated ovel)® realizations.

In figure 5.2, we have plotted the average work done (or iageatork) (17,,) over a single
period of the external drive in nonequilibrium time-peiriositate, as a function of noise strength
D for A = 0.1 (subthreshold driving). The internal ener§ybeing a state variablé[/,) is
periodic in time and hencéAU,) = 0. From equation (5.2c) we find that the average heat
dissipated over a perioff),) equals the average wotkV,) done over a period. In the same
figure, average total entropy production over a single per{ds,, ,), as a function ofD
has also been plotted. Since entropy of system is a stat@bler{As,) = 0, and we have
(Asiotp) = (Asmp) = (%),

We observe from figure 5.2 that the average work or heat ashabivell-known SR peak
(aroundD = 0.12) consistent with the condition (at low frequency of drivé)eatching be-
tween Kramer’s rate and frequency of drive, which has begttied in earlier results [55,102].
However, peak in théAs,, ,) is not at the samé at which SR condition is satisfied. It is
expected that at resonance, system will absorb maximungefem the medium and being
in a stationary state, will release this same energy badkgtotedium.

The peak for{As, ) not being at the same temperature as that¢gy) or (IV,) is un-
derstandable a&\s;y:,) = (Asm,) = (Q,/T), i.e., peak in(Q,) versusT” will be shifted if
we plot(Q,/T) versusI'. Similar observations are noted in the nature of directedeot in
ratchet systems [103]. In these periodic systems, unitifire&! currents can be obtained in a
nonequilibrium state in the absence of obvious bias. Theageecurrent exhibits a resonance
peak as a function of temperature. Even though currentsegeteystems are generated at the

expense of entropy, the value bfat which entropy production shows a peak is not the same

1We would be using the subscriptto denote the quantities measured over a single periodidrchiapter as
well as in the next. This is done to differentiate it from theaqgtities measured overperiods (say), where the
measured quantities will carry the subscript
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as that at which current shows a peak.

0.6~

<Wp>, <Asmp>

0.2

Figure 5.2: Variation of W) (= (Qp)) and(As;e ») With D, for A = 0.1, w = 0.1. The curve of W,,)
versusD has been scaled by a factor of 8 for easy comparison. Insetsstie corresponding relative
variances as a function @j.

In the inset of figure 5.2, we have plotted the relative varéaof Work(<Wm) =Y

\/<As%ot,p> - (Astut,p>2
(Astot,p)

and that of total entrop((Asm) = ) (W,.,) exhibits a minimum around
SR condition. However{As,,) shows a minimum around the same temperature at which
(Astotp) Shows a peak. Thus, unlikél’,,) [17, 68, 69],(As,,) cannot be used as a quantifier
of SR. This is because the minimum(ias,.,) is correlated to the peak i{i\s,.. ,) as a function
of D, which itself does not occur at the value of theat which resonance condition is satisfied,
as discussed earlier. It may be noted that relative variahbeth work and total entropy pro-
duction over single period are larger than 1, implying thase quantities are not self-averaging
(i.e., fluctuation dominates the mean). However, when tiseation time for the stochastic
trajectory is increased to a large numbey) ¢f periods, the relative variance, which scales as
n~1/2, becomes a self-averaging quantity, i.e., mean is larger tihe dispersion [69].

In figure 5.3, we have plottedV,) and (As,,,) as a function otv. The injected work
(W,), exhibits a peak as a function af, thus characterizing SR as a bona fide resonance

[55, 98, 102]. It may be noted that the peak position(f,, ), in this case, is at the same

value as that fofIV,,) or (Q,), as expected. The inset shows the relative variancesspf ,
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Figure 5.3: Variation of W) = (Q,) and(As;u ) With w, for A = 0.1, D = 0.15. The curve of W,,)
versusw has been scaled by a factor of 6 for easy comparison. Insetsstihe corresponding relative
variances as a function af.

andW, versus frequency of external drive which in turn shows a minimum at the resonance

condition.
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Figure 5.4: Plots of probability distribution functions Afs,, ,, for different values of noise strengi.
The fixed parameters are = 0.1, w = 0.1.

In figure 5.4, we have plotted the probability distributiBAs;,: ,) versusAs, ,,, for dif-

ferent values of noise strength spanning a region of temyresaround that of SRY = 0.12).
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For low temperature sidd) = 0.06, P(As,.,) exhibits a double peak structure. The peak
around zero can be attributed to the intrawell motion. Thalspeak at higher positive values
of As,, IS caused by the occasional interwell transition which igtarger heat dissipa-
tion in the medium and contributes to the total entropy potidn via entropy produced in
the bath,(As,,,) = (Q,)/T. At very low temperatureD = 0.02, the interwell motion is
subdominant (particle exhibits small oscillations abde minimum). P(As,,,,) exhibits a
single peak aroun@As,, ,) and the distribution is closer to Gaussian, which is not show
the graphs. As temperature is increased, due to the enhanteimnterwell motion, peak at
the right increases. These multipeaked distributions syenenetric. The distributions extend
to the negative side. Finite values of distributions in tlegative side are necessary to satisfy
fluctuation theorems. The contribution to the negative sm@es from the trajectories which
lead to transient violations of the second law. For highdues of temperature) = 0.25
(and beyond), the peak structures merge &tds,,,) becomes closer to a Gaussian dis-
tribution. Similar observations have been made for digtidms of work and heat in earlier
literature [68,69]. The observed values(ef ~stt»), from our simulations, are equal to 1.045,
1.017, 0.980, 1.024 and 1.032, for values of temperatires 0.06,0.08,0.12,0.2 and 0.25,
respectively. All the values fofe2¢tt») are close to unity within our numerical accuracy,
which is clearly consistent with IFT (equation (5.5)).

We have plotted?(Asy,,) and P(—As;, ,)est» on the same graph for two values of
D (D = 0.08 and 0.25) in figures 5.5(a) and (b) respectively, which ablueequation (5.6),
namely the DFT. We would like to mention that the IFT and DF& axract theorems for a
driven Langevin system. Our results corresponding to figbré(a) and (b) act as a check on
the quality of our simulation.

In figure 5.6, we have plotted probability distributions dfaoiges in total entropss,,, ,,
medium entropyAs,, , and system entropsks, over a single period for the parameter values
D =0.08, w=0.1andA = 0.1. System entropy, () is a state function and its average value
is a periodic function of time in the asymptotic regime. Tlaerage change in the system

entropy over a period is zero. MoreovénAs,) is a symmetric function ofAs,. The medium
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Figure 5.5: (@) BOthP(Asyy ) and P(—As,r ,)e2%totr have been plotted on the same graphfos=
0.08, w = 0.1 and A = 0.1. These curves match to a good accuracy, thereby providingss-c
verification for the validity of DFT. (b) Similar plots fab = 0.25. Other parameters are the same as in

(a).
entropy is related to the heat dissipated along the trajedids,,, = @),/7). The nature
of P(As,,,) is identical to that of heat distribution [69]. All these pabilities exhibit finite
contribution to the negative side.

As the observation time of the trajectory increases, thaellebe decrease in the number

of trajectories for whichAs,,; < 0. This is expected as we go to macroscopic scale in time.
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Figure 5.6: Plots showing distribution functions &&;,; ,,, As,, , and of As, for D = 0.08, w = 0.1
andA = 0.1.

To this end we have plotted in figure 5.7(a) tReAs,, ,,) obtained over different numbers
(n) of cycles (or for observation times = nT}, whereT; is the period of external drive).
For a fixed value of the parameter3,= 0.12, A = 0.1 andw = 0.1, and over single cycle,
P(Asq ) exhibits multi-peaked structure which slowly disappearsva increase the period
of observation. For larger period®,(As;...,) tends closer to being a Gaussian distribution
with a non-zero positive meai\s,,;). We also notice that as the number of periods increases,
weight of the probability distributions to the negativeesitecreases.

In the inset of figure 5.7(a), we have plotted probability slgnof As,,; taken over 20
periods. The Gaussian fit is shown. The calculated valuearidice o = 28.61, and of the
mean,(As;,;) = 14.18, closely satisfy the condition? = 2(As,), thereby abiding by the
fluctuation-dissipation relation (see equation (18) of|3If the distribution is a Gaussian and
it satisfies the DFT, then the fluctuation-dissipation teeos? = 2(As,,;) must be satisfied
[27,37,75]. The presence of non-Gaussian tails at larggegabfAs,,, ,,, are not ruled out
(non-Gaussian nature of distribution). However, numdgicais difficult to detect them.

In figure 5.7(b), we have plotted the symmetry functioéhs [M]) VersusAsi,t np

P(_Astut,np)

for different periods. Irrespective of the number of pesiode find that slopes of all the curves
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Figure 5.7: (a) Distributions of total entropy for diffetenumbers of periodsn( = 1,2,3 and 4).
The inset shows data points far = 20 and the corresponding Gaussian fit with = 28.61 and
(Astot20p) = 14.18. Parameter values aret = 0.1, w = 0.1 andD = 0.12. (b) Corresponding plots
of symmetry functions of total entropy as a function of teatropy.
are equal to 1, which is consistent with DFT. The validity df Dimplies IFT, but not vice
versa.

The medium entropy is extensive in time while the systemogytis not. Only over larger
number of periods, the contribution fos,,, ,,, from As,,, becomes very small as compared to
As.,np- This means that only over large time periods;,,, ,,, obeys a DFT relation or steady

state fluctuation theorem as noted in the earlier literafiie69] (see figure 5.8). Strictly

speaking, this is valid if the system entropy is boundedhisfigure we have plotted symmetry
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Figure 5.8: The figure gives the plots of symmetry functiohsnedium entropy as a function of the
medium entropy, for different numbers of periods. Paramesties are:A = 0.1, w = 0.1 and
D =0.12.

functions for the medium entropy for different numbers ofipés (»). As we increasen,
the slope increases towards 1 and hence satisfies the DFarf@. The value ofn over
which As,, ,,,, follows DFT depends sensitively on the physical parameteriske the DFT for
ASiotnp-

All the results of this work can be tested experimentally Bing the experimental setup
in [16], and earlier in [65]. Here, the double-well potehtias prepared by switching a laser
trap very fast between two positions, compared to the rélaxaime of the trapped particle.
The sinusoidal modulation was achieved by changing the liansity harmonically. For other
experimental setups that have been used to check for stachesonance, see the references

cited in sec. Il C of [53].

5.4 Conclusion

In conclusion, we have studied the entropy production ofaBian particle in a driven double
well system which exhibits stochastic resonance. Averats® éntropy production per cycle

shows a peak as a function of noise strength. However, ittidinectly correlated to stochastic
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resonance condition. Moreover, as the period of obsenvatireases, contribution of negative
total entropy producing trajectories decreases. In thidinear system, we have verified the
integral fluctuation theorem valid for time-periodic stgatiates. In this case, we obtain a rich

structure for the probability distribution of trajectorgmendent total entropy production.
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Chapter 6

Energy fluctuations in a biharmonically

driven nonlinear system

6.1 Introduction

In recent theoretical [68, 69] and experimental [7] studibe distributions of dissipated heat
and work done on the system have been explored in a systemitexipistochastic resonance
[68, 69]. The steady state fluctuation theorem (SSFT) haldkis system. Exploring the FTs
in nonlinear systems by changing the symmetry of the dritamge cycle has been suggested
in [7]. To this end, we study the dynamics of a particle in a syatric double well potential
which is in contact with a thermal bath at temperatilie This system exhibits stochastic
resonance (SR) under subthreshold external ac drive [5d¢alse of its generic nature, this
phenomenon boasts applications in almost all areas ofalatience [53]. To characterize this
resonance phenomenon, several different quantifiers heeintroduced in the literature [53,
55,65,98-102]. One of the quantifiers, namely the inputgnefthe system or the work done
on the system per cycle is known to characterize SR as a ba@8dnance [55,68,69,102]. In
this case, the resonance can be shown to occur both as afun€tioise strength and driving
frequency.

It is known that static asymmetry in the bistable potentiabkens the magnitude of the
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SR effect [53,69]. Static tilt in the potential makes onegmial well more stable than the
other leading to more patrticle localization or pumping ireavell (lower well) compared to

the other. Moreover, due to asymmetry in the potential, gscate of a particle from higher
to lower well will be different from lower to higher well. Tise two different rates make
synchronization difficult between the signal and the dymarof the particle hopping, since the
driving frequency cannot match both these hopping ratealsmeously.

In the present work, we study the SR for a particle in a symimédtuble well potential,
driven simultaneously by two periodic signals of frequesci and2w with a relative phase
difference¢ between them [104]. Such a force averaged over a period didead to a net
bias and yet particle is preferentially pumped into one welpending on phase differenge
and other physical parameters [105-111]. This phenomenhd&nawn asharmonic mixing
[105-108]. Due to this statistical confinement of the p&tisimilar to the case of static
tilt [53,59], we expect to observe a reduced SR signal indpstem. However, contrary to this
expectation, we show that the resonance signal is enhandbd presence of the biharmonic
drive at frequenc®w when analyzed in terms of the average input energy (or thegeevork
done) per cycle, as a quantifier of SR. Using stochastic etiegg[23, 28, 112] we also study
the nature of fluctuations in the work done, dissipated hedtimternal energy across SR. In
some range of parameters, nature of hysteresis loops igzadal We show that the SSFT
holds for work done and heat dissipated over a long timevatehese results can be tested

experimentally, by using the setup discussed in chaptezes[(6] for details).

6.2 The Model: Brownian particle in a Rocked Double Well
Potential

We consider the stochastic dynamics of an overdamped Beowparticle in a double-well
potentialV/ (v) = —Z + 2’ (see figure 5.1), rocked by a weak biharmonic (time-asyrietr
external fieldF'(t) = Acos(wt) + Bcos(2wt + ¢). The potentiall’(x) has two minima at

x = =+1, separated by a central potential barrier of height = 0.25. The overdamped
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Langevin dynamics is given by [48],

dx oU (z,t)

Yo =T, TE), (6.1)

whereU (z,t) = V(z) — xF(t), v is the friction coefficient{(¢) is the Gaussian white noise
with the propertiesé(t)) = 0 and (((t)&(t')) = 2Dd(t — t') , whereD = ~kgT. The

thermodynamic work done by an external drive over a perige- %’r) is given by [23]

to+Tw t
W, — / 8U (x, gt

= /to+m x(t)[Aw sin wt + 2Bw sin (2wt + ¢)]dt. (6.2)

to

This work (or input energy) over a period equals the changéeéninternal energy\U,, =

Ulx(to + 70),to + 1) — U(x(t0), to) plus the heat dissipated over a periggl i.e.,

W, = AU, + Q,. (6.3)

The above equation is the statement of the First law of thdymamics and can readily be
obtained using stochastic energetics [23]. The above medmlved numerically by using
Heun’s method [67] (all the physical quantities are in disienless units). We have ignored
the initial transient regime up to timg, after which the system settles into a time-periodic
steady state. Then we have evaluatéd (),, and AU, over many cycles~ 10°) of a single
long trajectory of the particle.

We note that all our results can be verified experimentadiyygithe setup used in [16].
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6.3 Results and Discussions

6.3.1 SR as a function of noise strength

In figure 6.1, we have plotted the average work done over desjpgyiod (IV,,) in the time
asymptotic regime as a function of noise strenfittior different values of biharmonic drive
strengthB (for A=0.1). Phase differencgis taken to be zero. Other parameters are mentioned
in the figure captions. For the case®t= 0 we have reproduced earlier results [55,68,69,102].
The average input energyit/,)) shows a peak signifying SR as discussed extensively ifeearl
literature [55, 68, 69, 102]. The quantit},,) can also be identified as the average dissipated
heat or hysteresis loss into the bath in a time periodic gtetde. This follows from eq. (4) by
noting that the internal energy being a state variahlg, averaged over a period is identically
equal to zero. For different values Bf, the system exhibits SR as a function of noise strength.
The system in a steady state absorbs energy from the extkiveabnd the same is dissipated as
heat, on average, into the surrounding medium. It is expdbtt at the resonance the system
will absorb maximum energy from the external drive. The irgnergy curves for higher values
of B lie above those for the lower values B8f With increase inB, the peak position shifts
towards higher values ab.

It is evident from the figure that in the presence of biharraattive enhancement of SR
signal occurs even though there is more statistical coniemef the particle (a®? increases)
in one well as shown in figure 6.2. In this figure we have plotieerage position({)) over
a single period in the time asymptotic regime as a functiomdbr fixed D = 0.05. The
value of (z) not being zero signifies selective pumping or localizatibparticle from one
well to another in the presence of biharmonic drive. Comesiingly, the probability density
distribution of the particle averaged over a period showseed asymmetry even though the
potentialV (z) is symmetric [107]. In the absence of second harmonic comptre.,B = 0,
(r) = 0 as expected. The pumping is very significant at low valuegwiperature. As we
increase temperature, the effective pumping reduces.msrand beyond SR, pumping is quite

small as shown in the inset of figure 6.2.
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Figure 6.1: The input energ$y¥,,) as a function ofD for different values of the strength of second
harmonic(B). The parameters arer = 0.1, A = 0.1, and¢ = 0.
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Figure 6.2: Particle mean positidm) as a function o3 for D = 0.05. In the inset we have plotted:)
as a functionD. Other parameters ar& = 0.06, A = 0.1, andw = 0.1.

Stochastic resonance being a synchronization phenom88oh(1] it is expected that par-
ticle hopping dynamics between the wells get synchronizig thie input signal. We expect

2\ _ 2
M} and heat

that the relative variance (RV) in physical quantities sastwork [: 0

(@p)
variance (RV) as a function db for various values oB3. The parameters used are the same as

l: M} also show minima at SR [7, 68, 69]. In figure 6.3 we have ploteddtive

in figure 6.1. For a given value d# the RV shows a minimum around the same valu®addt
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Figure 6.3: Relative variance (RV) of input energy versufor different values of3. Other parameters
are same as in figure 1.
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Figure 6.4: (a) Hysteresis loop&z{ vs F) for different values o3, and forD = 0.1. Other parameters
are same in figure 1. (b) Hysteresis loops for different @B at D = 0.05.

which (WW,) exhibits a maximum. As the amplitude of the biharmonic ddéncreases, RV
curves shift downwards. Higher the value®f the lower is the value of RV at the resonance.
These results are consistent with figure 6.1. In the paramegéne that we have considered,
the RV is larger than one, i.e., variance in work is large carag to the mean. Hence in this
regime, one should analyze full probability distribution @posed to moments to get better
understanding of the phenomenon.

Increasing the amplitude of biharmonic drive leads to moaéstical confinement of par-

ticles (figure 6.2). This must be reflected in the nature otdrgsis loops [101, 109]. More
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the pumping, more is the asymmetry in the hysteresis logpsaa be seen in figure 6.4(a) and
(b). In these figures hysteresis loops are plotted for diffevalues ofD and B. The pumping

of the particles also gets reflected in the shifting of figunethe vertical upward direction (as
(x) > 0). For the case whe® = 0, there will be no pumping and as expected, the loop is

symmetric.

6.3.2 SR inthe presence of static tilt

Particle pumping in a preferential well can also be inducgdpplying a static tilt to the
otherwise symmetric double well potential. For this we takéential to bel; (z) = —% +
% — cx. Depending on the value of the potential/; (x) becomes asymmetric and obviously

more pumping results in the lower potential well. When tlyistem is driven by external AC

force A coswt we show that SR signal weakens.

10

0.08 / » «— C=0

0.06—

0.02—

Figure 6.5: (a) Plots ofl¥},) as a function ofD for different values of the static tiltc]. (b) Corre-
sponding plots of relative variance @, as a function ofD. Fixed parameters are mentioned on the
graphs.

Figure 6.5(a) shows the average input energy as a functidn fafr various values ot.
From this, we notice that the input energy curves for higteue of c are below those with
lower value ofc (other parameters being fixed). Agicreases SR peak becomes broadened and
shifts towards higher values éf. We thus observe that in the presence of pumping induced by

static tilt, SR weakens as mentioned in the introductiohi®d¢hapter. This is also corroborated
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by the nature of relative work fluctuations as a functiooffigure 6.5(b)). From this figure
we note that as we increasgRV increases for a given value &f. The magnitude of the RV
at the minimum becomes larger as we increasehis implies degradation of SR signal in the
presence of particle pumping induced by a static tilt.

The pumping due to static tilt makes the hysteresis loopsasstric (figure 6.6). By in-
creasing ¢, more pumping is achieved and this is reflectetarvertical shift of hysteresis
loops. Thus from the above figures and discussions, we cdacthat in the presence of bihar-

monic drive, SR increases while in the presence of statj&iR weakens.
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Figure 6.6: Plots showing hysteresis loofs), vs F, for different values of static tilfc). Fixed param-
etersareD = 0.1, A = 0.1 andw = 0.1.

6.3.3 SR as a function of driving frequency

In figure 6.7(a), we have plotted average input energy as etitmof w for various values
of B. Once again we notice that SR signal even for this case isased as we increase the
biharmonic componenB. Each curve exhibits a peak as a functionupthus establishing SR
as a bona fide resonance. The peak shifts to the lower valuessfwe increasé#. This is
consistent with the fact that peaks in figure 6.1 shift towdadger values oD as we increase

B. This is a requirement for the time scale matching betwBesmdw. Since increase i
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Figure 6.7: (a) The average input energy per pefiad,) as a function of frequency. (b) Relative
variance (RV) of input energy vs frequengyfor different values of the strength of the second harmonic,
B. The parameters used ate= 0.1, A = 0.1,¢ = 0.

slows down the effective time averaged hopping rates betwezwells, higheD is required
to achieve resonance. This lowering of effective escameatagivenD in turn implies decrease
in the resonant frequency. The enhancement of SR signa¢iprésence of B can be inferred
from figure 6.7(b) where we have plotted relative variancessthe SR as a function offor
various values of3. Lower values of relative variance across the SR for larg&res ofB are
suggestive of the fact that SR is enhanced in the presendbarfionic drive, consistent with

the conclusions of figure 6.1.

6.3.4 Energy fluctuations over a single period

Next, we analyze the nature of distribution functions ofunhpnergyP(W,), dissipated heat
P(Q,) and internal energy’(AU,) for different values ofD. These distributions are plotted
in figure 6.8 (a), (b), and (c) below resonande & 0.05), at resonancel{ = 0.12), and

above resonancéX = 0.3) respectively. The averaged internal eneffy being a state func-
tion assumes the same value at the beginning and at the engkoibd or periods in the time
asymptotic regime. Hence average change in the internaegaU,,) over a period is equal
to zero and it is also expected that the distributidf\U,,) is symmetric as is evident from

figure 6.8 (a), (b) and (c). The nature B{AU,) is explained in [7] for a single harmonic
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Figure 6.8: Plots (a), (b), and (c) show the distributidn&¥,), P(Q,), and P(AU,) for different
values ofD, below resonancel{ = 0.05), at resonancelf = 0.12), and above resonanc® (= 0.3),
respectively. Other fixed parameters are also shown on #pigr

drive. As opposed ta\U,, distributions forl¥,, and(), are asymmetric. These distributions
keep on changing in shape depending on the number of cycéesadwch they have been ob-
tained which will be discussed later in connection with dyestate fluctuation theorem (SSFT).
Probability distributions for work and heat have finite whigfor the negative values of their ar-
guments. These negative values correspond to the tragstonere the particle moves against
the perturbing AC field over a short time. For small value®dfD = 0.05), peak forlV, or ),
near the origin corresponds mainly to intrawell dynamicthefparticle and is mostly confined

to a single well. The occasional excursion of the particte the other well as a function of

time is clearly reflected as a small hump at higher valué®pbr @), in the plot of P(,) and
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P(Q,). As we increase) further (D = 0.12), interwell dynamics starts playing a dominant
role, and hence the distributions become broader. Workiloligsion exhibits three prominent
peaks including one at the negative side. For larger valtigs beyond SR point, shapes of
P(WW,) and P(Q,) tend closer to Gaussian distribution with increased vaee#luctuations.
For such high temperatures, particle makes several randoarsons between the two wells
during a single time period of the external drive. It may béedahat the relative variances
in W, and@, are larger than 1. Also, fluctuations in heat are larger thasg of work when

averaged over a single period.

6.3.5 Effect of phase difference on SR

We now analyze the role of phase differengg lpetween driving fields on pumping and en-
ergetics of the system. In figure 6.9 (a), we have plotiég) as a function of noise strength
D for various values of. Other physical parameters are held fixed as mentioned ifigiine
captions. In figure 6.9 (b), we have plotted relative vareantiV, as a function ofD. It is
interesting to note thdtV,) is insensitive tap, even though the relative variance dependson
This is a rather surprising result, given the fact that défg values of phasg lead to different
degrees of localization of the patrticle in one of the wells.

We have characterized this dynamic localization of patidly average positiofx) of the
particle in the double well potential which in fact can begldepending o and¢. This is
shown in figure 6.10 where we have plotted as a function ofs for two different values of
noise strengttD. One can readily see thét) is periodic ing as expected.

The insensitivity of(1/,) on phase gets reflected in the hysteresis loop areas as shown i
figures 6.11 (a) L = 0.1) and (b) © = 0.05) for different values of» and fixed value of
B (B = 0.06). We notice that the areas of the hysteresis loops remaie sandifferente.
However, their shapes are asymmetric and qualitativeferdint for differenty (i.e., sensitive
dependence on phagg. Due to the different degree of localization or pumpingyds are
shifted in(x) — F plane.

The sensitivity of full probability distribution on the pba difference can be seen from
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Figure 6.9: (a) The average input energy per pe(idgl)as a function ofD and frequency for various
values of the phase differenge (b) relative variances (RV) offf’, versusD. Fixed parameters are
shown on the graphs.
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Figure 6.10: Average positiofx) as a function of phase for two different values oD. In (a), D =

0.05, and in (b),D = 0.12. Other fixed parameters ar8. = 0.06, A = 0.1, andw = 0.1

figures 6.12. In these figures we have plotfedl),) and P(Q,) for different values ofp

as indicated. Note that the distributions exhibit qualadifferences for different. We
have also verified separately that for different values akimmg amplitudes, as long as we
are in subthreshold regime, average input energy is notsemgitive top as opposed to full
probability distribution. By tuning, one can achieve different degrees of particle confinement

and can control the fluctuations in heat and work.
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Figure 6.11: (a) Hysteresis loops for different values @ft D = 0.1, (b) Hysteresis loops for different
¢ at D = 0.05, with other parameterd = 0.1, B = 0.06, andw = 0.1

45 25
D=0.12, B=0.06, phase=0 — D=0.12, B=0.06, phase=0 —

phase=90 -=----- phase=90 -=-----
4k o phase=180 e 4 1 phase=180 e

PW)

V(\J/ 0.2 0.4 0.6 -1 -0.5 (g 0.5 1
(@) (b)

Figure 6.12: Figures (a) and (b) show the distributiét{$V, ) and P(Q,) respectively for three different
values of phasep = 0, 7/2 andw. HereD = 0.12 and B = 0.06.
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6.3.6 Energy fluctuations and SSFT

Finally we discuss the validity of SSFT in the present casaarfequilibrium time periodic
steady state. Here, by SSFT we would mean the probabilitsitalision of physical quantityd

to satisfy relatiorp(A4)/p(—A) = %4, whereg is the inverse temperature of the bath ahib
the work done on the system or the heat released to the bath tmreg time of observation. For
nonlinear systems it has been observed experimentallyreswddtically that SSFT is satisfied
if one considers work done over a large number of cycles [88,83]. In regard to heat, SSFT

is known to be valid for) < (Q) [114]. Since(Q) increases with the number of periods or
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Figure 6.13: (a) The evolution d?(1V,,) over different periods. In the insét(1V1¢,) is plotted together
with its Gaussian fitG(17). (b) The plot of symmetry functiofin PP((_WW”:I),)) versusgW,,, for various
values of periods. The parameters used &re= 0.16,w = 0.1, B = 0.06, A = 0.1,¢ = 0. The solid

line is the best fit for symmetry function calculated for 1@leg.

measured time interval in the limit of largen — o), (Q)) — oo and hence the conventional
SSFT is valid over an entire range of Q [115]. It may be noted there exists an alternative
relation for heat fluctuation, namely extended heat fluataaheorem [40, 114].

In figure 6.13(a) we have plotted probability distributiéniv;,,) of work W, integrated

over different number (n) of periods?(W,,,) for a single period exhibits double peak struc-
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ture. As we increase the number of periods the probabilgiribution shifts towards right as
the mean value of work scales linearly with n. Fine structarprobability distributions get
smeared out progressively and distribution tends towafglawssian. In the inset of figure 6.13
(a) we have shown the Gaussian fit for the obtained distohutr 10 cycles. From this fit

we obtain(1Wy,,) = 1.16 and variancer? = (W?) — (IWW)? = 0.37. From this we can obtain

w2)—(w)?
2W)/pB

condition to satisfy SSFT when observed distribution is €3&an [68,116,117].

dissipation ratioR ;s = ~ 1, i.e., the variance equaﬁW} which is the required

The validity of SSFT for work is also observed from figure gd)3vhere we have plotted
the symmetry functiofiin L’)))) versussW,, for work evaluated over different cycles as in-
dicated in the figure. As we increase the number of periods ftdo 10 the slope of symmetry
function approaches 1. The number of periods above whiclT $S¥alid depends sensitively
on the parameters in the problem.

As already noted heat fluctuations over a cycle are large aosdpto work fluctuations.
The heat fluctuations get an additional contribution from ititernal energy (eq. (6.3)). The
contribution from internal energy is supposed to dominateeay large values of Q, making
the distributionP((Q)) exponential in the large Q limit [40, 114]. However, it may heted
that the distribution of the change in internal energy dag#schange with number of periods.
Heat being an extensive quantity in time, distribution demas we change the number of
periods as shown in figure 6.14(a) where we have platt&d,,,) for various values of.. As
anticipated, by increasing the distribution tends towards the a Gaussian (see for oydl6s).
The Gaussian fit for thé’((Q),,,) (inset of figure 6.14(a)) gives the value for the variance as
0.56, and mean as 1.74. Thus dissipation ratio is 0.99, wikicdhoser to unity, satisfying
SSFT. In principle, one should be able to observe expordatia for the distribution”(Q)
in the large Q limit [40]. However, our simulations will noelable to detect it due to lack of
required precision. As mentioned earlier, in the limit— oo, conventional SSFT holds for
heat distributions [113].

In figure 6.14(b), we have plotted the symmetry functlQhB Q’”’ ) as a function of

np)
BQnp- The slope of the symmetry function approaches unity as erease, thereby suggest-
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Figure 6.14: (a) The evolution d?((,) over different periods. In the insét(Q1¢,) is plotted together
with its Gaussian fitz(Q). (b) The plot of symmetry functioifin P(Qé”’))) versusfsQ)y,,, for various
values of periods. The solid line is the best fit for symmetmction calculated for 10 cycles. The
parameters used are same as in figure 13.

ing the validity of SSFT.

6.4 Conclusion

In conclusion, we have studied the nature of energy fluanatin a biharmonically driven

bistable system. This system is driven simultaneously it periodic input signals of fre-
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guenciesv and2w, having phase differencgbetween them. The presence of additional peri-
odic drive induces patrticle confinement or localization preferred potential well. The degree
of confinement analyzed in terms of the averaged value ofdhécfe position(x) depends on
the system parameters. We have shown that in spite of corgime®R signal when quantified
via the averaged work per period exhibits enhanced respdiss is in sharp contrast to the
case when confinement is induced by static tilt, which degge&®R. Surprisingly, the average
input energy over a period is not very sensitivesteven though variation af leads to signifi-
cant particle pumping. However, changespidoes affect qualitatively the nature of hysteresis
loop and distributions/fluctuations of work and heat. Weehaalyzed the fluctuations in work
done, heat dissipated, and internal energy over a largerbig fiumber of periods. Our data

suggests that the SSFT for work and heat hold in this systetarge number of periods.
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Chapter 7

Summary and Conclusions

In this thesis, we have studied some exact relations, ciletuation relations, that are valid
for systems that are perturbed arbitrarily out of equilibmi Such relations hold good for sys-
tems following several different dynamics, for exampleltamiltonian dynamics or stochastic
dynamics. We have concerned ourselves mainly with therlegtiegory of systems. There are
several relations that are collectively referred to as thetdlation theorems — the Jarzynski
equality and Crooks fluctuation theorems for nonequiliriwork done on the system, the to-
tal entropy production fluctuation theorems (both integwad detailed forms) by Seifert, the
Hatano-Sasa relation for transitions between steadyssttie

In this thesis, we have studied the verification of some flatotin theorems in different
situations and model systems, and have put forward a few new. o

We have observed that Seifert’s detailed fluctuation thedoe the total entropy change is
valid even in the transient case for a system trapped in adrd@opotential, provided it begins
from a state of thermal equilibrium. We have further obsérieat the two frequently used
statements of the second law in terms of total entropy pribaluand dissipated work, are not
equivalent. In fact one of them provides a better bound feraverage work done. A new
guantifier of irreversibility of a process has been proposed

We have extended several fluctuation theorems, both inicédssd the quantum regime,

when the system is driven by a feedback controlled externat.dHere, we measure some

106



observable of the system, and change our drive accordiidggyfind that all the relations now
involve a corrections term that depend on the mutual inféionabetween the measurement
outcomes and actual values of observables, when no feedbapklied along the reverse pro-
cess. We also find that the correction term changes, if thaighgn for the feedback applied
along the reverse process is changed. In contrast, thedémon extended fluctuation theo-
rems, that is expressed in terms of efficacy parameter (anedea that decides the efficiency
of a feedback), always retains the same form.

We have verified the fluctuation theorems for total entropgngfe, work done and dissi-
pated heat, when the system is in a time-periodic steady. skatthis case, a system present
in a bistable potential has been considered, where the pieman of stochastic resonance has
also been analyzed. In such systems, we have shown thatigithibe fluctuation theorems
for total entropy holds exactly over any number of cycleshef €xternal drive, work and heat
will follow the steady state fluctuation theorem only if agarenough number of cycles are
observed in each experimental realization. In presencéaftmonic drive applied to the same
system, we obtain particle confinement into one of the wallsng with a sharper stochastic

resonance peak, in clear contrast to the behaviour in pressra static drive.
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Appendix A

Derivation of Crooks work theorem and
Seifert’s detailed fluctuation theorem for

total entropy

A.1 Crooks Theorem for forward and reverse trajectories

The relation is given by [27]
PIX ]
P[X|i,]

= P9, (A.1)

The left hand side is the ratio of the probability density dfaectory X (¢) in the forward
process for initial pointz,, to the probability density of a trajectory () along the reverse
process for the initial point.. @ is the heat dissipated by the system into the bath. The above
relation has been proved systems obeying various dynalmiteere we would briefly discuss
the case of stochastic dynamics of a Markovian overdampséd sy

We first discretize time a§ty, = 0,14, -- ,txy = 7}, and the forward trajectory &sp —
r1 — --- — x,;}. The reverse trajectory will contain the same sequence a$lpoints as
the forward trajectory but traversed in the opposite dioect{zq < z; «— --- < z,}. The
external protocol as a function of time is given Py, — Ay — --- — A, }. Along the reverse

process, this same sequence gets reversédpas- \; < --- — \.}. The forward trajectory
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in presence of this protocol can thus be represented by [42]

A A A Ar
P R TR RN g (A2)

Each of these steps can once again be broken up as follows [42]

Aj
(@5, M) ————— (2, \j11) ——— (2541, Aj 1), (A.3)
work step heat step

where in the first step, the position remains constant athile the protocol changes fror,
to \;+1. This step is called theork step The work done by the protocol in this step is given
by the change in the system’s energy during this s&p:= E(z;, \;+1) — E(z;, ;). Here,
E(x,\) is the energy of the statewhen the value of the protocol s In the second step, the
protocol remains fixed aX,,, while the position changes from to z;,;. This is called the
heat stepin which the heat dissipated@®; = —[F(zj1, A\j+1) — E(x;, A\j11)].

We next assume that the transition probabilities betweenstates:; andz;_;, follow the

condition of local detailed balance for a given value of poot A, [42]:

Py (Tj41]75)

Py (T]T5410)

= exp{B[E(z5; A1) — Bz A0)]} = 79 (A.4)

This condition implies that if the parameter is held fixedddong enough time interval, then
the system would reach the equilibrium state that corredptmthis fixed value of the control
parameter.

We then get the ratio between the forward and reverse tamjeas (using the Markovian

property of the dynamics)

P[Xlao] _ po(@120)prg (walar) - - (rl2r1) _ 530, _ 0 (A.5)
P[X|x:] P (@olm)pa, (T1|72) - - - P, (201 |27) ’

with the net dissipated heat in the forward path being giverd)b= Zj.vz‘ol Q;. This is the

well-known Crooks’ theorem for the phase space trajec$qgé].
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For an underdamped system, the reverse trajectory will bengby [27] (as before, the
tilde symbol represents switching of the signs of the véies): {7, — 7, «— --- «— Z,}.
The Crooks theorem for underdamped systems can be deriusgl stechastic path-integral
formulation' [41,118], and is shown to remain the same as in the overdangsed(eq. (A.5)),

except the fact the initial state of the reverse traject@gomest . instead ofr,:

= e, (A.6)

A.2 Crooks work theorem

If the system is initially at equilibrium with the reservothen the initial distribution for the

forward process will be given by (with parameter value fixed(@) = A)

6_5E(1'0)

Z(A)

Peq(0) = (A.7)

Z(A) being the partition function corresponding to the initialue of the protocol. For the
reverse process, the systems begins at thermal equilibwitimthe same bath, but now with
the value of the external protocol given Byr) = B, so that the initial distribution for the

reverse process will be given by

Z(B)

ﬁeq(«r7—> = (A8)

Here, Z(B) is the partition function corresponding to the final valuetioé protocol. We
have assumed that the equilibrium distribution is invariamder the time-reversal operation:

Peq(Z7) = Deq(z-). Then from the Crooks heat theorem, we get

PIX] _ P[X|ro] peglzo) _ pq €500 Z(B)

~ ~ ~ = 6 . 3
PIX]  PIX|Z:] Peq(2r) Z(A) e PEE)
— BQRFTAU-AF) (A.9)

1The same treatment can also be applied to the overdampesrsyst
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On application of the first law, we get

= PWIXI=AF) (A.10)

Here, we have explicitly written the work done as a functibthe forward trajectoryX.

Now, the probability density for work) done along the forward process is defined as

POW) = (0(OW - WI[X))), (A.11)

wherelV [X] is a path function. We then get

/ DIX] P[X] SOV — WX))
:/D SWIXIZAF) 50 _ (X))
= AF/D[ PLX] 6(W — W[X])
efOV=AE) /D J(W + WI[X])
= P(—W) POV-AF), (A.12)
Here we have used the relati6h[X] = —WW[X], andD[X] = D[X]. The delta-function

allows us to take the®” factor out of the integral, ane?2%" is a constant. The above relation

can be rewritten, by replacing the symb®lby I/, in the standard form:

P W) _ ePIW-AF), (A.13)

111



A.3 Seifert's detailed fluctuation theorem for the total en-

tropy

Using eq. (1.30)P[X]/P[X] = e®*=[X], we have in steady state, the probability of obtaining

a total entropy change &S;,; to be

AStot /D A‘S‘tot Astot[X])
= / D[X] P[X] e®*'X §(AS,0r — Aspor[X])
AS’“)’/D X 15 X AStot+AStot[X])

= P(—AS) 25, (A.14)

The property of steady state has been used in the third stegrewve have assumed that
ASior [X] = —As;[X]. In other words, we have assumed that, along with the mediiroggy
change, the change in system entropy also reverses sigy i@eerse path, which is possible
only if the initial and final distributions interchange th&arms along the reverse process. This
condition holds for stochastic evolution only if the progsgarts and ends in equilibrium states,
or in time-symmetric nonequilibrium steady states [27].

Once again, replacing the symhals,,; by As,,;, and noting that the functional forms of
P and P are same in a steady state, we can rearrange and write thesfinilin the standard

form

P<A8t0t> — 6Astut

7}3(_&%0 (A.15)
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Appendix B

Dual dynamics and heat exchanges in

steady state

B.1 The Hatano-Sasa indentity

As shown by Hatano and Sasa [47], the following identity Bdtit systems making transitions

between nonequilibrium steady states (we would deal witbvemdamped system):

N-1
<H pss(fb’z’+1;)\z’+1)> 1 (B.1)

0 pss(xi-i-l; )\i)

2

The steady state density,(x; \) is assumed to be given ly?@* whereg(x; \) is an effec-
tive potential. To prove the identity, we would use the propef a steady state, that for a fixed

value\ of the external non-autonomous drive, it remains in the sstesdy state:

[ el Npalafs2) = puli ), (B.2)

The left hand side can be explicitly written as

pss Lit1s H—l) /d d )\ Jhlp | Pss($i+1§ )\i—i—l)
= Lo - prss Zo; 0 ﬂfz ETR i B S ——
i—0 pss Tit1s )\ ) i—0 " pss(xi-i-l; )\z)

(B.3)
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We therefore have,

N-1 N—-1
ss\Vi+1y 7\ = ss\41 ;)\i
< p l'+1 +1)> = /dl’ldl’N H P(xi+1|xi;)\i)nl_]\?—1p (x ~ +1)
=0

Pss Tit1; ) i1 Hi:() pss($i+1§)\i)

X /dﬂfopss(xo;AO)P($1|$0;)\0)

N-1 N—1
1 ss\ L7 ; )\z Ss 3 )\

= /d% cedry H P (21| 2s; )\i)HZZO Pis(Tisy N—+11> X pss(@1; Ao)
=1 pss(xl; )\0) Hi:l pss(xi+1; )\Z)

p pes(@izr; Mis1)
dxy - - drypss(T13 A1) P(xiq1|zi; ) w
/ :Zl;[ - pss<xi+1; )\2)

= /depss(xN;)‘N) =1 (B.4)

In the second step, we have used the property (B.2) to reglaagpss(zo; Ao) P(1]xo; Ao)
by pss(x1; Ao). In the third step, the factgr,s(x1; A1) has been taken out of the product over
pss(Tir1; Aiv1) in the numerator. The-*-” symbol in the last line implies repetition of the

same sequence of stef§ — 1) times.

B.2 Dual dynamics and its relation to steady state heat ex-
changes
The dual dynamics (denoted by the symbjois defined through its transition probabilities as

Pss(@is M) p(Tig1|Tis Ni) = pss(Tisa; )\i)pT(xz |Ziv1; \i); (B.5a)

Pss (CCz'; )\z’)pT<xi+1 |$z‘; )\i> = Pss ($i+1; )\i)p(% |$i+1; )\i>; (B-5b)

Here,p(z;1|7s; \i) andp’ (z;,1|x;; \;) are the transition probabilities from statgto the state
x; 41 at the parameter valug, in the original and the dual dynamics, respectively. Eq563
is obtained by taking dual transformation of both sides of(Bgba). Under such a dynamics, if
the system is allowed to relax to a steady state with a fixageval \, then one would find that

the steady state density,(x; \) retains its form while the probability current changes sign
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Now, proceeding along the lines of Hatano and Sasa, we eethetidentity (B.1) as

<N_1 Pss («Ti+1; )\i—i-l) > _ <pss («TN; )\N> va_oz Pss (xz-l—l; )\z-‘rl) >

0 pss(xi—i-l;)\i) pss(xla)\0> HNI pss(xz—i-h )

_ <pss(xNa)\N) Pss($07 0) Hz 0 pss<x2+1;)\z+1)>

pss(an)\O) pSS T3 0) ;Nl pss(xz—l—lv)\)

N-1
— €_A¢ pss xl;
pss xz—i—h

—A¢p p x2|xz+17 1 B.6
< H xz+1|x27 2)> . ( l )

1=

In the first step, the last factor from the product in the nuaterand the first factor from the
product in the denominator, have been taken out of the régpgoduct signs, consequently
changing the limits of these products. In the second stepghave multiplied the numerator
and denominator o% by the factorp,s(zo; A\g). We have used the relatioh¢ =
—1In[pss(xn; An)/pss(o; Ao)] in the next step, and have made use of the relations (B.5a) and
(B.5b) in the final step.

Comparing with the Hatano-Sasa equality, eq.(1.37), we tfiadl the product within the

angular brackets in eq. (B.6) must be equalté?<:. Therefore,

)\ N—-1
Qe _ H Pss(@it1; Ai)

p(xl-i-l‘xla i p x2+1|x27 z)
_— = _ | | . B.7
i=0 Pss(Ti5 Ai) pT(xZ|xH_1, p(; (B7)

|JJ2+17 )

The second equality follows from eq. (B.5b). To derive a famexpression for the housekeep-

ing heat, we begin with the Crooks theorem:

8Q NH p(xz—i-l‘xz; i) H p(Tit1|zi; A) % P(@igalzs A
e =
(il M) p(;

1
=0

Tl ig1; i |Tig1; A P (@i |ms; A)
N-1 N—1
B P(Tiga|zis Ai) pf($i+1|$z; Ai) _ BQex P(Tig1|Ti; A
- —e LT 2 - (B.8)
s pT(xi—i-l‘xi; i) p(wilTiga; A im0 pH(@ir|zis A)
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In the final step, eq. (B.7) has been used. Thus, we get

N-1 )
B _ PQ-Qer) _ T Pinaltis M) (B.9)
0 P (@i |Ti; i)

Equations (B.7) and (B.9) thus provide the expression$i®ekcess heat and the housekeeping

heat, respectively.
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Appendix C

Calculation of variance of W, and the
Fourier transform of P(Asot) for a

system in a harmonic potential

C.1 Calculation of variance of W:

Using equation (2.2a),

t t’
_ / dt/f(t,) [xoe—kt’/-y + 6—kt’/-y/ ekt”/-yf(t//)dt//] :
0 0

t . , t )
AW = (W) =ty [t feye [ et
0 0
t . / t . t B t
# oz ) i@ [anfee ol [T ard e [ ane i)
t t
:<l‘(2)>/0 dt/]&(t/)e—kt’/“{/o dtlf’(tl)e—ktl/fy

or [t . , to ¢ " t
+—/ dt' f(t")e /V/ dtlf(tl)e—’“l/”/ dt" ekt /V/ dtoeF2I§ (" — t5).
Y Jo 0 0 0
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In the second line, we have got an integral of the form

t t t
I = / dt/f(t/)e—kt’/fy / dtlf(tl)e—kh/fy / dt' e ktff/,y/ dtzektg/-yé(t// _ t2)
0 0 0 0

= I, + I, (C.1)

wherel; and/, are contain the same integrands, but the contributions doomethe region

t' < t, and fromt’ > ¢, respectively. Then we have,

t t !
L= / dt’f(t’)e"“’” / dtf(t)e 0 / di" e
0 0 0
t
N Ry S
0

t
ﬁf<xk”“—fwﬁy/dmﬂuw*wv

(C.2)
Therefore we have,

T [t R L
- / dt' f(t")e '/ / dty f(ty)e "0/
0 0

T t Y ! ! t 5
+E/ dt’f(t’)(e’“/’Y—e—’“/’Y)/ dty f(t,)e Ft/
0

i/ﬁﬂ)“d/%mmﬁw

/ dt’ / dir f(#) f(t2)eHB=, (C.3)

(W = (W) )v<e, =

Similarly, one gets

(W = (W) psy, = — / dt’ / dt, f(t e kE=t)/y, (C.4)

Therefore, we can write in compact notation,

(W — (W))?) = %/0 dt//O dtlf(tl)f(tl)e—k\t’—tl\/-y
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/dt/ dty f(t) f(ty)e FE—t)/

- ! (e / dt f(tr)e" . (C.5)

Note that eq. (C.5) is obtained only when the contributioasfeq. (C.3) or (C.4) are summed
up, which leads to an integrand that is symmetric with resfmet and¢; (see the first line of

eg. (C.5)). Partial integration of the integral ovegives

2 i -2

(W2) — (W)* = i S

/O dt' f(t"e k' /Ot/ 1Y f(ty)dt.

Noting that(x(t')) = # fot P/ f(ty)dty andW = — [ f(¢')(x("))dt', we finally get

2T
v

(W= (W))?) = —f2( )+

— (W) =2T [<W> + f;g)} :

C.2 Calculation of cross correlation(Wz) — (W) (x):

We have, from (2.2a) and (2.13),

W) a(t) = [— / <x<t'>>f<t'>dt’] < (a(1))

I D 0 N YRR R [l L k-t
[ / (7 / 1t )dt>f(t)dt] < |2 / F(t)dty

]. t e t/ / 1" t
= / d'f(¢') / dte M p (i) / dtye "D f (). (C6)
7" Jo 0 0

On the other hand,

Wa = <— /O tx(t’) f(t’)dt’) z(t)
[— /0 t (l’oe‘“'/ T+ % /0 ! e MR (F (") +§(t”))dt”> f (t’)dt’]

X lxoe_kt” + %/0 e MM (f(t) +§(t1))dt1}
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co(W) :—/ (x2)e FEHY f(1)dt
——/ﬁf /t““”wéhwwmm+mmwmeWM

=% [ erennsiar

t t "
_ iZ/ dt’f(t’)/ dt//e—k(t'_t/’)/’y/ dtl[f(t”)f(tl) +2T(t — t//)]e—k(t—tl)/-y7

(C.7)

where we have used the fact tHat(zo)? = 17, and(¢(¢)E(t)) = 2Tvd(t — ¢'). Also, z, and

&(t) are uncorrelated, and the average of each is zero. From&adg)C.7),

(W @)z (t)) = (W) (z(t)) = - (T//f)/o s (L
. (2T/’}/) /t dt/f(t/) /tl e—k(t’—t”)/’ye—k(t—t”)/ﬂydt//
— (T/k)e */ /t e R f(t)dt

0

_ —kt/~y ' 1, —kt' [y t/€2kt”/~/ " 8
(2T /~)e /0 at f()e /0 . (C8)
Finally, one obtains

(VO (0) — WO a0 =~ [ ar e c9)

On integrating by parts, the integral on the RHS becomes

, t (ko E [t
)] = [ Sy = s = 2 [ e

Using this, equation (C.9) reduces to

k(e (t)) = f(1)]. (C.10)
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Finally, from (C.10) and (2.17b), we get

o? = ;[2<W> — k(2)? + 2(2) f] = 2(As101). (C.11)
C.3 Calculation of the Fourier transform of P(As;y,t)

p(R, t) E/ dAStoteiRAsth(AStot,t)

= / dx dxoP(xo, z,t) exp {ZR ( x5 + ﬁxz + m)}
= eiRH/ dx dxoP(xo, z;t) exp [@R( x5 +§ )} . (C.12)

The factorexp [iR (222 + 22?)] in (C.12) can be written as

exp [ZR ( ra+ gx )} ezifial.B. 2 (C.13)
with
o a 0
a= : B = . (C.14)
x 0 g

Therefore, from (C.12), we have,

. e —lat.A-latiBalBa
.'.P(R,t):m/_oodae jal.A L arifal B
- Qm/j:tA _OO daeme
_ i OO da e—%aT.Afl.(I—iRA.B).a
2mvdet A J -
B eiRn o
 27Vdet A \/det(A—T) det(I — iRA B)
iRk

€
~ /det(I—iRAB)

(C.15)

which is equation (2.37).
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The determinandet(I — iRA.B) is given by

det( — iRA.B) =L — i]i(x‘% =D, (“g <;2>T) e [(1 4 iR)?

o2 —-T o2
+R(i — R) {( xT ) e 2Rt ?H . (C.16)

C.4 Proof of (AF (7)) > AF for harmonic potential

In this appendix, our motivation is to evaludt® F'(7)) and show thatAF(7)) > AF.

Let us consider the potential
1 2
Uz, t) = §kx —zf(t), (C.17)

where f(t) is an arbitrary protocol. The protocalt) = f(¢) is assumed to be equal to zero
at timet = 0. Thus,\(0) = 0. After timer, A\(7) = f(7). The equilibrium free energy,
calculated from the partition function, at parameter val(@), is Fx = 7'In (,/%). The

equilibrium free energy corresponding to the final valuehef protocol is

_ |k f?
FB—T1n< ﬁ>—ﬁ. (C.18)

2
AF =Fp—F, = —g—k. (C.19)

Here,

The initial probability density of the particle position is

p(xo) =1/ %exp (_2]{5()) ) (C.20)

The final time-evolved solution fgr(x, 7) is
|k —k(x — (x))?
p(..'lf, '7-) = ﬁ exXp <T . (C21)
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where(x(7)) is obtained from equation (2.5) on replacihgy 7. Using the definition (2.42)

for nonequilibrium free energy, and the variari¢e — (z))?) = T'/k, we then have

(AF(r)) = (AU() ~ T(ds(r)) = Sh{a®) — (0)] — -

Thus,

o

kQ@—jJ2zo (C.22)

In the second step, we have used the fact thdt — (z)? = T'/k, so that(z?) = T'/k + (x)*.

C.5 Explicit expressions for free energy changes in a sinu-
soidally driven system in harmonic potential

Whenf(t) = Asinwt, the instantaneous change in free energy is given by

1
(AF(1)) Zik:(x(t))2 — (x(t)) f(1)
k,Aze—th/»y ‘ ,
:W [%} + "7 (—yw coswt + ksin wt)}
_ A2e k7 gin wt

k2 1 202 [%} + ekt/”’(—vw coswt + k sin wt)} ) (C.23)

and change in equilibrium free energy is given by

AZsin® wt

AF = —
2k

(C.24)
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For a protocol of time interval betweén= 0tot = 7 = /2w, we therefore get

A2 [k3 + (2 _ 6—k7r/'yw) k:,y2w2 + 26—k7r/2~/w,y3w3} .

(AF(T)) = — 2(k2 + 72w?)? )

(C.25)

T p— (C.26)
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Appendix D

Heun’s method of numerical integration

Here we describe briefly the Heun’s method of integratior).[6&t the slope of a curve(t) at

some point be given by the function

WO  pir. 900 (0.1)

Consider the solution curve to be the blue curve in the figatevia The actual value af(t+h)

9(t)
L3
| L,
L,
t t'+h t
Figure D.1
must be given by, from eq. (D.1),
t+h
ot h) =g)+ [ dsflsig(s) ©.2)
t
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Now, we exaggerate one of the time steps, denoteld, iy show the essential principle which
the method relies on. Suppose that the region of the cun&dered be convex, as depicted in
the figure. As is obvious from the figure, the slope correspantb ¢ = t’ (line L) is smaller
and that at = ¢’ 4+ h (line L) is higher than the desired slope given by the line One can
decrease the inaccuracy of computation by substitutitgedf these slopes with the average

of the slopesat the two point$ = ¢ andt = t' + h:
1 / / / /
slope= S [f(t, g(t')) + f(t' + h, g(t' + h))]. (D-3)

To do this, we first calculate the slope at the poinflo get the slope at the right end, Heun’s
method approximateg(t’ + h) by the value obtained through the Euler methed, + h) ~

g(t')+ hf(t', g(t')), and then computes the slop&’ + h, g(t' + h)). We then write

gt +h) =g(t') + h- frewn(t', g()), (D.4)

where

[F(tg() + f(t'+ h,g(t) + hf({H, g(t')))]- (D.5)

NN

fHeun(tlv g(t/)) =

The Heun’s method is accurate up@gh?) (per step) for deterministic integrals [67]. In
[67], it has been shown that this method reproduces theibquih distribution faithfully for
stochastic systems.

The entire analysis remains similar if the considered megicthe curve is concave instead

of being convex.

1This is the basic principle of the trapezoidal method ofgnagion.
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