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SYNopsis

The aim of this thesis is to study the melting of a triple-stranded DNA (tsDNA) and the
conformational transition of a double-stranded DNA (dsDNA) in particular from the B
form to the Z form of DNA.

Certain sequences of Watson-Crick-dsDNA allow a third strand DNA to bind via
Hoogsteen or reverse-Hoogsteen base paring to form tsDNA. The formation of triple he-
lical DNA is of great interest in current era. Owing to its enhanced stability in affecting
the activities such as gene expression, DNA replication and others requiring DNA open-
ing, the triple helix fostered new hopes in therapeutic applications. The third chain’s
ability in recognizing the base sequences of a dsDNA, not by opening the double helix
but rather by forming a triple helix would be one of the major input in developing new
types of antibiotic. There have been many physical, chemical and biological studies of
this triple helix forming nucleotides (TFO). It is known that not only DNA, even RNA
and PNA (polypeptide nucleic acid) are capable of forming triple helices with duplex
DNA.

To study the phase diagram and the phase transition of a triple helix DNA we consider
a few simplified polymer models and take a thermodynamic point of view, where the long
chain limit is taken. Using the real-space Renormalization Group (RG) approach and
an exact iteration method on a hierarchical lattice of dimensions d > 2 we show the
possibility of a three-strand DNA bound state in conditions where a duplex DNA would
be in the denatured state. Such a loosely bound state which occurs at or above the duplex
melting point is a biological analogue of the nuclear or cold atom Efimov state and we
call it an Efimov-DNA. From the RG flows and the thermodynamic phase diagram we
find that the three chain bound state dissociates at a higher temperature than the duplex
melting. All these transitions are induced by the bubble formations.

From the classical phase transition point of view, we further analyze the Efimov
phenomena by looking at the zeros of the partition functions. The distribution of zeros
comes out to have a very beautiful structure on the complex plane of the Boltzmann
factor. Apart from this structure, the separator of two types of flows to the two different
stable fixed points identifies the transition point as a limit point on the real axis in the
thermodynamic limit. Here we study the partition function of the three chain system
by combining the recursion relations and the RG transformations, and then finding the
zeros. We also extend the model to the three chain repulsive interaction regime and
a striking result that emerges is that in a higher dimension for example d > 8.596 a
transition can be induced from the critical state to the Efimov-DNA. In addition, we
discuss several other features of the zeros in the complex plane, for instance the detailed

structure, and the connection to the Julia set.
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We also study the melting of three directed polymers on a Sierpinski Gasket to observe
the Efimov effect. Here the dimension of the fractal lattice is d = 1.58. We show that
the Efimov effect occurs even in the lower dimensions provided some specific interactions
are considered among the polymers. Based on the conditions for crossing and mutual
interaction, we classify different polymer models. Furthermore we obtain a new state to
be called a mixed or anti-Efimov state. The average energy calculations show that the
mixed state is a separate state but the Efimov state, just a cross over.

B-DNA (right-handed helicity) is the most common form of DNA found under normal
physiological conditions. Often Z-DNA (left-handed helicity) appears in presence of high
salt concentration, cations or negative super-coiling. Although the Z form is transient in
vivo due to the lack of a friendly environment, still the B-Z transition is relevant in several
diseases. Many theoretical and experimental attempts of a detailed understanding of the
transition mechanisms have been carried out for a long time. The transition via the base
pair separation followed by the base pair flipping or the base pair flipping without any
base pair separation are the two existing hypotheses on the B-Z transition mechanism.
We consider a coarse-grained thermodynamic model based on chiral symmetry. We
model a free energy like entity and restrict the geometry to the one dimension only,
which may shed some light on the current controversies on the transition mechanism of
the B-DNA to Z-DNA. Using the theory of wave front propagation we find that there is
a dynamic phase transition in the conformational conversion of B-DNA to Z-DNA and
obtain the dynamic phase diagram. The diagram shows that for the specific choices of
the system parameters the dynamics allows the formation of the intermediate denatured

state even though it is thermodynamically forbidden.
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Introduction

When there is life there is DNA. There is no way to begin life without it—a molecule
contained in all organisms and cells. Essentially, DNA is the leading character for life’s
processes. Deoxy-ribo-Nucleic Acid, DNA in short is a long polymer made from repeating
sub-units, viz., nucleotides, connected by covalent bonds. A nucleotide consists of a 5-
carbon sugar, a nitrogen containing base, and a phosphate group. The bases of DNA are
adenine (A), cytosine (C), guanine (G) and thymine (T). A strand of DNA prefers base
pairing via hydrogen bonds with the bases of a complementary polymer. As a matter
of fact the two strands entwine around each other in antiparallel fashion in the shape
of a double helix. The first correct double-helix model of DNA structure was proposed
by James D. Watson and Francis Crick in the year of 1953, which laid the foundation
stone for molecular biology [1]. The complementarity of the bases is an essential factor in
making an identical copy of a parent DNA during DNA replication thereby maintaining
inheritance. They do have interesting behavior and special physical properties because
of their large size and equal sequence base pair interactions. DNA’s are being studied
for last few decades at various length scales for its immense biological implications |2, 3.

In recent times the formation of a triple-helical DNA has become a topic of consid-
erable importance because of its possible implications in the field of molecular biology.
In 1957, it was discovered that certain sequences of a Watson-Crick-double helical DNA
allow a third strand to form a triple helix [4|. Felsenfeld, Davis and Rich first showed
the formation of the triple helix in nucleic acids, which was later on confirmed by several
other groups |5, 6]. To decode the genetic code, a double helical DNA has to be unzipped
to reveal the bases. Quite strikingly, a third strand can identify the base sequences, not

by opening the double helix but rather by forming a triple helix.

1.1 Triple helix

Oligonucleotides of three strands of DNA wind around each other to form a triple helix
DNA as shown in Fig. 1.1. Watson-Crick DNA duplex has the room in its major groove

for an additional strand. At ambient temperatures, the double helix is formed with
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Figure 1.1: Schematic diagram of triple stranded DNA.

classical Watson-Crick base pairing (see Fig. 1.2(a)) while the third strand forms non-
classical Hoogsteen (see Fig. 1.2(b)) or reverse Hoogsteen base pairing with one of the
other two [1, 7, 2]. The known structures suggests that the central strand of a triple helix
has to be purine rich (G or A), so that the third strand can provide the two hydrogen
bonding surfaces to form two different types of base parings. The pyrimidine rich third
strand forms non-classical Hoogsteen base pairing when it binds to a purine rich strand of
the duplex in a parallel fashion while reverse Hoogsteen when a Purine rich strand binds
to another purine rich strand of the duplex in an anti-parallel fashion. Triple helices
can also be formed with DNA-RNA [8] and DNA-PNA (peptide nucleic acid), whose
uncharged peptide backbone helps in the stabilization of the triplet structure [9, 10].
PNA is an artificially created biologically relevant molecule and might offer intriguing
possibilities in the therapeutic applications. Some of the triple helix forming triplet
structures of bases e. g., T-A-T and A-A-T are shown in Figs. 1.2(c) and 1.2(d).

The 1957-discovery of a three-stranded DNA remained a curiosity till the recognition
in 1987 that a third strand DNA can actually recognize the base sequence of the double
helix even without opening it. Owing to its enhanced stability that can affect activities
like gene expression, transcriptional inhibition, DNA replication and others requiring
DNA opening, triple helix kindled new hopes in therapeutic applications [11]. Till date
it has been possible to make and study triple helices in vitro, amidst high hopes of their
relevance in vivo [12, 13]. The structure of a triple helix is surprisingly resistant to
thermal dissociation compared to the double helical DNA. The Oligonucleotides forming
triplex DNA dissociate at higher temperatures than the duplex melting [14].
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and T bases. (b) Hoogsteen basepairing between A and T bases. (¢) Triple helix forming base
triplet T-A-T. (d) Triple helix forming base triplet A-A-T.
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1.2 Efimov effect

An unexpected phenomenon to turn up in the quantum three-body problem was first
pointed out by V. Efimov in 1970 and now bearing his name in three-body non-relativistic
quantum mechanics [17, 18]. It is such an unusual effect that even after 40 years of its
discovery it is still of great interest. He predicted from his studies on nucleons that
the three particles can have an infinite number of bound states eventhough no pairs
are being bound. If the three particles are subjected to a short range pair interaction
such that a pair would have a zero energy state, an effective long range interaction
emerges due to quantum fluctuations. Thus infinitely many bound states appear at the
critical threshold of the two-body binding. As one moves away from the critical point,
the number of bound states decreases and vanishes at a point of unzipping of the three
particles. Surprisingly, this effective three-body interaction is universal in nature and is
actually independent of the detailed form of the pair potentials as well as the range of the
potential. The origin of the quantum Efimov effect is the scale free quantum fluctuation
near the zero-energy threshold of the two-body binding. The overall size of the effective
three-body bound state is much larger than the range of pair potentials |18, 19, 20, 21|.
There are several theoretical and experimental investigations using different models and
methods that show this effect. Many years since its discovery, it is now seen in systems
over various length scales ranging from nucleons (halo nucleus) to atomic physics and

ultra-cold atoms under Feshbach resonance |22, 23, 24].

3

r+R/2 r-R/z

-R/2 O R/2

Figure 1.3: Two heavy (M) and one light (m) particles are shown with the position vectors. 1
and 2 are at a distance R and 3 is at a distance r from the center of mass O of 1 and 2.

There are many complex analytical and numerical methods to show the Efimov effect.
For example, Efimov obtained the effective potential by studying the three-body system

in hyperspherical coordinates. Fonseca et al., used the Born-Oppenheimer approximation
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to study the Efimov effect in a model consisting of one light and two heavy particles of
mass m and M, respectively, as shown in Fig. 1.3, interacting by means of a short-range
pair potential. If the interaction between the heavy-light particles has nearly zero energy
bound state, the large size of this bound state induces a long range attractive potential
of 1/R? type between the two heavy masses as if the small particle is shared by the two

heavy masses. Thus an effective potential between the heavy masses emerges in the form

&(R)

R ~a
€ (R) ~— exp{RAa) IR

crossover regime
R> a

scalefree regime
- {r0< R<< a
hydrogen ) 5
bond length ¢(R)0O -1/R

Figure 1.4: The effective interaction e(R) between 1 and 2 from Fig. 1.3. An effective three-
body bound state (Efimov effect) occurs in the region g < R << a and extends over the whole
range for a — oo.

of
1 /2
e(R) —eg ~ 2 (aRe_R/“ + 6_2R/“) , (1.1)

where a is the width of the pair wave function or the scattering length of the heavy-light
particles and ¢ is the heavy-light binding energy. For a — oo, Eq. (1.1) should be

independent of a, so that in this limit, the effective potential emerges as —%, which

is a ‘universal’ interaction for a region rp < R << a, where ry is the range of pair
interaction. Moreover one sees a cross-over from —% for g << 1 to the Yukawa form
e—R/a
R
when the composite Schrodinger equation of the three-particle model is treated in the

for £ ~ O(1) as shown in Fig. 1.4. Here €(R), comes as the separation constant

Born-Oppenheimer approximation.

The Schrodinger equation for the three-particle system shown in Fig. 1.3 is written
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in the center of mass frame as
HUY(r, R)=FE ¥(r,R), (1.2)

where H is the Hamiltonian and F, the eigenvalue. The wave function ¥(r, R) is asso-
ciated with the boundary condition that it vanishes as either » or R becomes infinity.

The separable ansatz is of the form
¥(r,R) = (r, R)D(R), (L.3)

where the wave function 1 (r,R) describes the motion of the light particle when the
heavy masses are at a fixed distance R, and ®(R) describes the motion of the heavy
particles. With the Born-Oppenheimer approximation Eq. (1.2) separates into a pair of

equations. Thus the heavy and the light particle equations become

Hy®R) = EO(R), (1.4)
Hob(r,R) = e(R)y(r,R), (1.5)

with appropriate Hamiltonians H,; and H,, of the heavy and the light particles, respec-
tively. The eigen value €¢(R) of Eq. (1.5) appears as the extra interaction potential in

the Hamiltonian for the two heavy particles.

1.3 Quantum Analogy

Due to the sequential base pairing of DNA, there is a direct analogy between DNA and
quantum mechanics |25]. There is an exact mapping of the partition function of two ideal
polymers with DNA base-pairing type short range interaction to the Green function of
the two-particle quantum mechanics in a potential under a transformation of the length
of the polymers to the imaginary time. This in turn maps the ground state energy of
the particle to the free energy of the polymer per unit length.

Following this analogy, the universality of the Efimov phenomenon encompasses the
analogous classical model, namely the melting of three-stranded DNA. Here, for the
occurrence of such phenomena, the critical thermal fluctuations from the classical domain
play a role analogous to that of quantum fluctuations. A scaling argument has been used
in [26] for three ideal polymers, which justifies the occurrence of the effective two-chain
attractive potential r% as a source of the Efimov effect. Such a long range interaction
leads to a broad three-strand DNA bound state at or beyond the melting point of a
duplex DNA. This is a state where no two are bound but the three are bound together.
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Such a loosely bound state is called the Efimov DNA |26].

1.4 Random Walk

The ideal chain is the most simplified model to describe a polymer as a random walk
by excluding any kind of monomer interactions. If a polymer consists of N number of
monomer-monomer links of unit length, keeping one end fixed at the origin, the average
position of the other end will be zero, but the size of the polymer (see Fig. 1.5) will be

given by the root mean square of the end to end vector r as
R~<r? >0 NV, (1.6)

The size exponent v = 1/2 is for the ideal polymer but not in general. The random
walk is closely related to a model of a directed walk. A walk is called directed when
it advances in a preferred direction and does not go in the opposite direction. For a

directed walk the transverse and the longitudinal sizes of the polymer are given by

Ry ~<r? >Y20 N with vy, = 1/2, (1.7)
R” ~< >1/2N N™I, with V= 1. (18)

These exponents are independent of the dimensionality. Real polymers are studied by
the self avoiding walk models, where excluded volume effects are crucial [28, 29]. As we
deal with the ideal chain in this thesis, we will not go into the other random walk models.

Fig. 1.5(a) shows a polymer in a continuum limit while Fig. 1.5(b) shows a discretized

(@) (b)
R

r=0

Figure 1.5: (a) A polymer as a random walk (not directed walk) is shown. One end of the
polymer is fixed at 7 = 0. The other end is at » = N. Here N is the number of monomer-
monomer links of unit bond length and R is the size of the polymer. (b) The discrete form of
the polymer walk on a square lattice of 1 4+ 1 dimension is shown.

form of the polymer chain when placed on a square lattice.
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When polymers are on a lattice as random walks, a single monomer essentially rep-
resents several base pairs. Often simplified directed polymers are useful for studying
global properties that depend on the large length of polymer, temperature, etc. Vari-
ous physical properties of the polymeric systems including melting, unzipping and other
thermodynamic quantities have been studied on real lattices e. g., square, cubic, honey-
comb etc. and on pseudo lattices e. g., hierarchical, fractal etc. using directed polymer
chain [30].

1.5 Hierarchical lattice

A hierarchical lattice provides one of the most convenient media to study many critical
phenomena and other physical problems. Hierarchical lattices are constructed by a
recursive replacement of a motif. The geometric construction of such a lattice looks
similar at a different scale no matter what size it is viewed at [31]. These special lattices
do not have any proper Euclidean coordinates. Consequently the metric is not defined
in such lattices. Such pseudo lattices were introduced as simplified structures to study
various statistical mechanical problems. Their simplicity has motivated a lot of work.
Although these lattice models are relatively easy to handle, they provide a very detailed
results. Several models, such as the Ising, Potts and polymer systems are exactly solvable
on these lattices [32, 33, 34, 35|]. Diamond structured lattice, Honeycomb structured
lattice etc. are the examples of hierarchical lattices. Such lattices have a much lower
symmetry compare to the Bravais lattices, which in turn may provide insights into other
lower symmetry problems. Essentially all these features have led hierarchical lattice
models as a testing ground for many new concepts. Directed polymers on hierarchical
lattices were studied as model of random system in Ref. [32, 36, 37, 38]. The case of
random interaction was studied by Derrida et al., Cao and by Mukherji et al.,. More
recently, the hierarchical lattice models were exploited in the study the dynamics of
glassy materials, spin glasses, percolation cluster etc. [39, 40, 41, 42|. Chakrabarti et

al., have studied the electronic properties on such lattices [43].

1.5.1 Diamond hierarchical lattice

To construct a diamond hierarchical lattice one starts with a single bond and then in
the next generation that single bond is replaced by a motif of Ab bonds, where b is the
branching factor and A is the bond length scale factor. Again in the next generation
each bond is replaced by a motif of \b bonds. A construction of the lattice is shown in

Fig. 1.6. Thus by an infinite iteration (n — oo) one obtains an infinite lattice whose
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0 n=1 n=2

Figure 1.6: The recursive construction of the hierarchical lattice is shown for n = 0,1,2,...
generations. The diamond motif is for b = 2 and length scale factor A = 2.

n=

dimensionality is given by

In Yntl
A=l e = 1.9
o, € A (1.9)

where A\, d, v, 1, v, are associated with length rescaling factor, dimension, and number
of bonds of the hierarchical lattice at (n + 1) and n'® generation, respectively. For this

particular lattice model with b =2 and \ = 2

n+1
(AD) , d_ln)\b_ln4_2

d_ _— = — =
M=o e T T e

(1.10)

The branching factor b controls the dimensionality of the lattice, e. g¢., for b = 3,
d = 2.58496, for b = 4, d = 3 and so on. Two other examples of the hierarchical lattices

are shown in Fig. 1.7. These lead to structures with dimensions d > 2.

(a) (b)
n=0 n=1 n=2 n=0 r@

Figure 1.7: The recursive constructions of the hierarchical lattices.

1.5.2 Fractal lattice: Sierpinski gasket

There is a different class of lattice, called fractals with lower dimensions. Sierpinski
carpet, Sierpinski gasket are examples of regular fractals which are extensively exploited

to study critical phenomena. The scale invariance of such lattices allows one to apply the
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real-space renormalization group (RG) methodology. The results are also amenable to
exact solutions. Some of the constructions of the fractal lattices are depicted in Fig. 1.8.

Sierpinski gasket was invented in 1916 by Polish mathematician Waclaw Sierpinski.
This is embedded in a Euclidean space. See Fig. 1.8(a). In this case the scaling factor
of each line is 2. In the first generation of the construction a single triangular motif is
divided into four self similar structures of the triangular shape. Out of the four triangles,
the middle triangle is removed from the space. Subsequently in the next generation the
rest of the three follow the same procedure. Thus a Sierpinski graph is constructed in
an iterative manner. For this particular structure the number of bonds is 3"*! and the

3(3"+1)

number of sites is =——. The effective dimensionality is given by

~ InN,

Ins,’

d

(1.11)

where s, = A" with the bond length scaling factor A = 2 and N,, is the number of

the self similar structures at n'" generation. This is a general definition of finding the

(@)
—>
n=0 n=1 n=2
(b)
—_
n=0 n=1 n=2
(©)
—> —>
n=0 n=1 n=2

Figure 1.8: Constructions of the fractal lattices.

dimensionality of any structure. The Sierpinski gasket is the most common regular fractal
used in studying different statistical models, for instance the Ising model, the directed or
the self avoiding polymer models, Potts model etc. Furthermore the sandpile model, self

avoiding walk and directed polymer models have also been studied on Sierpinski gasket
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fractals of different dimensions using the real-space RG approach |44, 45, 46, 47]|.

1.5.3 Real-space Renormalization Group

RG is well discussed in many text books [48, 49]. Here we give a brief description about
RG. RG is a standard technique in condensed matter physics and already has been used
in many other branches of physics. It is a tool to investigate a physical system at a
different length scale without any change of the underlying physics. Many real-space
RG methods have been developed in obtaining approximate RG transformation. The
speciality of the hierarchical lattice is the scale invariance property. This is what enables
one to implement the real-space RG technique to study many models [31, 32, 34, 35|.
To implement RG one starts from a large lattice and removes short scale fluctuations
by renormalizing the parameters such as the coupling constant etc., by rescaling the
lattice to the original size. This procedure of thinning out of the degrees of freedom and
rescaling is followed in each step of the RG decimation. The RG relation of the coupling
constant emerges from this repeated procedure. The fixed points obtained from the RG

relation, describe the phase transition.

1.6 Zeros of the partition function

Finding zeros of the partition function in the complex plane of any physical variable is
a mathematical way to understand the phase transition phenomenon. However finding
zeros is possible only for small lattice sizes or when a partition function reduces to a
polynomial form, but not in general. The zeros of the partition function are the complex
values of the Boltzmann factor or other parameters at which the partition function
vanishes.

Yang and Lee first studied the Ising ferromagnetic system in a complex magnetic field
to show that for a properly chosen variable the zeros lie on a unit circle, known as the
Yang-Lee circle [50, 51]. Later the zeros were studied in the complex temperature plane
and other variables [52]. Since there cannot be any real zero, the zeros may accumulate
and pinch the real axis as a limit point in the thermodynamic limit. This method can
provide relevant information on phase transitions such as the critical field or temperature

and the values of the associated critical exponents.

1.7 Julia set

The distribution of the zeros of the partition function on a complex plane may form

many complicated structures other than a circle. These structures are nothing but the
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separatrices of the two types of flows, to the two different stable fixed points of the
RG transformation and are similar to the Julia sets [53, 54]. The Julia set, named

after French mathematician Gaston Julia, is a type of fractal generated by an iterative

(a) c=0 (b) c=0.8+0.156i
1 B [ [ [ [ [ ]
05+ —
N N
g Or . c 0
-05+ - -05
-1r ! ! l ! L
-1 -05 0 05 1 -15-1-05 0 05 1 1
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Figure 1.9: Julia sets in the complex z plane for (a) ¢ = 0, which is an unit circle, (b) complex
¢ = 0.8+ 0.156¢. Except for ¢ = 0, these sets exhibit self-similarity.

function over the complex numbers. The standard definition of a Julia set is the set of

points on the complex plane which flow to a fixed point (no divergence) after a function,

e. g.,
Zm = 22, +c, (1.12)

is repeatedly applied, where c is any arbitrary constant, real or complex. Let us choose
¢ = 0.The fixed point solution for ¢ = 0 are z = 0,1, 00, where z = 1 is the unstable
fixed point. Here for n — oo, z,,1 — 0, when started with |z9| < 1 and z,,; — o0,
when started with |zo| > 1. Therefore the unit circle |z| = 1 as shown in Fig. 1.9(a) is
the boundary between the two stable fixed points z = 0, 00. The unstable point lies on
this boundary. For the different values of ¢ (real or imaginary) different structures are
obtained in the complex z plane as shown in Fig. 1.9(b). The study of such structures
has applications in complex dynamics, partial differential equations, statistics etc. We
will discuss several features of the zeros in the complex plane, and the connection to the
Julia set in Chap. 3.

1.8 Studies on double-stranded DNA

Several lattice polymer models, have long been used for theoretical understanding of

various aspects of DNA, especially its thermodynamics properties. Various analytical
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and numerical schemes such as generating functions, exact transfer matrix, RG and
Monte Carlo simulations have been successfully applied in the studies of the melting
and the unzipping of a double-stranded DNA [55, 56, 57, 32, 58|. The melting of DNA
received a special attention as it the crucial step for DNA replication. The melting is
the temperature induced separation of the two strands, which happens at a critical value
of the temperature (7,). This is also called the melting point or the denaturation point.
The melting of a double helical DNA of large length, generally occurs in the range 80°c—
100%¢ [59]. pH and chemical induced denaturation also have been studied. Depending
on the model, melting could be continuous or discontinuous |56, 60, 61, 62|. For a review
on melting of DNA see Ref. [63].

The critical behavior of two directed polymers has been studied by Mukherji et al.,
on a hierarchical lattice by the real-space RG [32]. The two chain melting was shown.
The critical exponents obtained from the RG found to describe the finite size scaling
form of the energy derived from the exact iteration of the hierarchical lattice starting
from a smaller lattice. The two chain model further was extended to the random or the
disordered hierarchical lattice medium [36, 64, 65, 32]. The force induced unzipping of a
dsDNA at a critical value of the force was first shown by Bhattacharjee in a continuum
model of DNA [58]. The unzipping was reported as a first order phase transition. Further
studies on the continuum and the discrete model were done by Sebastian and Marenduzzo
et al., |66, 56, 67]. The complete phase diagram in the force-temperature plane in this
context was obtained by Kapri et al., [68] by applying pulling force at any intermediate
point of dsDNA. Various additional phases were obtained by Giri and Kumar for the
direction dependent pulling forces [69]. Sadhukhan et al., reported the existence of the
typelI-DNA in a condition of negative zipped-unzipped interfacial energy |70|. Different

single molecule experiments done with DNA are discussed in Ref. [59].

1.9 Studies on triple-stranded DNA

A lot of progress has been made recently in the structural understanding of the triple
helix DNA |71, 72|. There have been a number of studies in vitro that have directly
tested the formation of a triple-stranded DNA [5, 6, 73, 13]. So far most of the efforts
were directed towards understanding the bound state of the triple-stranded DNA.
Triple helix is not a stable structure under normal physiological conditions and is
highly specific. The sequence-specific recognition of the duplex DNA by a third-strand
is of great use in targeting particular sites of the duplex DNA. It has been reported that
the triple helix forming Oligonucleotides (TFO) might be a universal drug in recognizing
the specific sequences of the duplex DNA [11, 71|. It has been shown that the peptide-
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or polyamide- nucleic acids (PNA) can bind to DNA and RNA with higher affinity than
natural Oligonucleotides to form a triple helix [74, 75].

The stability of the triple helix DNA is of importance for possible biological ap-
plications. Several studies have been aimed towards stabilization of DNA triplexes at
physiological conditions [76]. Its stability is a function of temperature, salt concentration
and pH. The thermodynamical studies on the triple helix formation have been reviewed
in Ref. |77, 72]. Plum has presented a state diagram on the complex behavior of the
triple helix DNA. An Oligonucleotide hairpin, forming a triple helix with a single-strand
was found more stable than a triple helix composed of the two Oligonucleotides and a
single-stranded DNA |14, 15, 16]. The latter one underwent two distinct melting tran-
sitions. Furthermore many experimental results demonstrated that the denaturation
temperature of the triplex DNA is much higher than the melting of the duplex DNA
[78].

1.10 Conformational transition

The conformational transitions of various biomolecules are often related to their bio-
logical functions. For last few decades many experimental and theoretical models have
been explored to study the interconversion of DNA. It is known that dsDNA exists in
many possible conformations like B-DNA, A-DNA, Z-DNA etc. Although B-DNA is very
common under normal physiological conditions, Z-DNA appears in functional organisms
under certain circumstances. The B form also converts to A-DNA under dehydrated
condition or C-DNA in certain solvents. However, the B-Z conversion is challenging
because of the change in the helicity. Here we give a very brief review of the structural
form of B- and Z-DNA, and the interface between B- and Z-DNA. We also discuss the

different mechanisms proposed for the conformational transition.

1.10.1 B-DNA

The most common form of DNA found under normal physiological low salt conditions is
the B-DNA [1, 79|, the well known double helix with a right handed helicity as pictured
in Fig. 1.10(a). The structure of B DNA was originally proposed in 1953 by Watson and
Crick. It has 10.5 base pairs per helical turn and two distinct grooves, a major and a
minor groove. The Watson-Crick base pairs are stacked at the center of the helix formed

by the phosphate backbones.
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(a)

Figure 1.10: (a) Schematic structure of B DNA with right handed helicity. Two single strands
paired by A-T and G-C type base pairs. Base pairs are shown by the horizontal lines. (b)
Schematic structure of Z DNA (taken from Wikipedia) with left handed zigzag helical form.

1.10.2 Z-DNA

Quite surprisingly, the first DNA structure to be solved by X-ray crystallography turned
out to be a left handed zig-zag form called Z-DNA [2, 80, 81, 82|. The structure of Z
DNA is substantially different from B-DNA. It has 12 base pairs per helical turn and
has a narrow groove nearly similar to the minor groove of B-DNA. The structure of Z-
DNA is shown in Fig. 1.10(b). Such a non-Watson-Crick structure would have profound
implications in DNA replication, recombination and transcription. The Z form of DNA
is found to be transient in vivo due to the lack of a friendly environment. However it
can be stabilized in vitro in presence of high salt concentration, cations and negative
super-coiling. Z-DNA is found in a number of eukaryotic cells, animal cells, plant cells

and in bacterial cells e. g¢., E-Coli.

1.10.3 B-Z transition

The conformational transition from the B to the Z form of DNA was discovered in 1972 by
Phol and Jovin [83]. As the fundamental difference between two forms is associated with
the helicity, the transition goes through a dramatic conversion at the molecular level.
This conformational transition requires the base pairs and a subset of backbone sugar
rings to flip, followed by other changes. The transition can be induced by several schemes
such as ionic concentration, negative super coiling etc. Inducing the conformational
transition between two such chiral phases is tantamount to a lowering of the free energy

of Z compared to B, making Z the most preferable state, or the other way around [84]. It
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has been argued that the B-Z conversion is relevant in poxviruses |85], and Alzheimer’s
disease |86]. The B-Z transition is reported to be first order in nature [80, 87, 88, 89, 90|.
As the base pairs and a subset of the backbone sugar rings have to flip to convert
B to Z, the dynamics offers intriguing possibilities [81]. Only recently methods have
been developed to explore the dynamics in single DNA as opposed to earlier studies in

solutions.

1.10.4 The B-Z interface

One can characterize the B-Z transformation by a growth of a suitable domain over the
bulk of DNA. In any such scenario, the B-Z interface, the separator between the two
chiral phases, plays an important role. The equilibrium interface has been characterized
structurally and from other studies. The structure of a short oligomer in presence of a Z-
DNA binding protein at 2.6A resolution indicates broken base pairs separating the B and
the Z phases. The protein acting as an external source inducing the transition is expected
to produce a sharp interface [91]. A very ingenious way of studying the interface is to
use mirror DNA [92, 93], though it cannot be used for the chirality changing transition.
Interfacial studies and melting of short B-B* oligomers, where B* is the enantiomer of B,
show that the junction mimics the B-Z junction, and the interface broadens as the melting
point is reached. In contrast to these equilibrium cases, the nature of the interface during
the transition depends on the nature of the transition mechanism [88, 89|. Several such

schemes are in vogue and discussed in detail in Ref. [81].

1.10.5 Contradictory hypotheses

The conformational conversion of B to Z has been studied by using different types of
single molecular experiments. In an experiment by D. A. Heller et al., [94], a confor-
mational transition from the B form to the Z form of DNA was observed. The B-Z
transformation for a short 15 base pair GT (non-Watson-Crick wobble base pair) DNA
wrapped on the single walled carbon nanotube was monitored as a function of time by
the addition of counter-ions. The nanotube helped in identifying the phases via accurate
measurements of the band-gap in a simpler geometry. This transition is completely re-
versible and is thermodynamically identical to the transition seen in the absence of the
nanotube. The results seem to indicate the formation of a denatured DNA during the
transformation, eventhough a denatured state under the experimental conditions is not
possible thermodynamically.

A different single molecule experiment studied the transition under a tension and

negative super-helicity by combining FRET with magnetic tweezers [95]. This experi-



1.10 Conformational transition 17

ment on an effectively (GC);; DNA (i.e. 22 bases) seems to favour a single interface
between B and Z without any denatured bubble.

The two main competing hypothesis for the B to Z transition mechanism are the

following:
1. via base pair separation followed by base pair flipping [80],
2. via base pair flipping without any base pair separation [87].

In the first case there could be a denatured intermediate state while in the second there
could be a Z type but following the standard Watson-Crick base pairing (ZWC-DNA).
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1.11 Aim

The aim of this thesis:

e Our aim would be to look for the signature of an Efimov-like effect in triple-stranded
DNA. We will study the melting of a three-stranded DNA, the possibility of other
phases, and the phase diagrams. In order to study the thermodynamic behaviour
we will take the large length limit. We will model three directed polymers on a
hierarchical lattice and further on a Sierpinski gasket. We will apply the real-space
renormalization group (RG), the exact iteration method, and then the procedure
of finding the zeros of the partition functions. We will use the finite size scaling
analysis for a further investigation on the nature of transitions and explore the
model in different dimensions (d < 2 and d > 2) to see the dimensional effect on

different possible states.

e [n connection to the existing hypotheses on B-Z transition our aim would to estab-
lish a theoretical understanding towards this conformational transition. We will
use a general form of the the Landau free energy describing three states B, Z and

the denatured state as
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where o, 3 determine the free energy differences between the two states and ¢(z, t)
describes the state of the coarse-grained base-pair at index z along the DNA. Our
emphasis will be on the underlying interface between the two relevant states. By
the choice of the specific parameters we allow the fronts to propagate and study
the dynamics of the transitions and draw the phase diagram in the a-3 plane. We
will use the wave front propagation methodology and the numerical approaches to
determine the uniform velocity of these propagation. Furthermore, a perturbation
technique will be used to justify the dynamic phase around the equilibrium point.
We will also study the behavior of the width of the interface and the appropriate

timescale.
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1.12 Thesis organization

We study the melting of a three-stranded DNA and the conformational transition of B
to Z DNA. The thesis is organized as follows:

In Chap. 2 we model three directed polymers on a hierarchical lattice. Polymers
are placed from bottom to top, but they can wander at the intermediate step. The
real-space RG approach and exact iteration method are used to show that, despite the
tremendous simplicity of the model, the three-strand DNA exhibits an Efimov-like state.
Such a state occurs at or above the duplex melting point, where three are bound but
no two are bound. We show the feature of an enhanced stability of the triple-stranded
DNA compared to the duplex-DNA by the numerical calculations for both the cases of
symmetric and asymmetric pair interactions. We also show the nature of transitions of
the two- and the three-chain systems.

In Chap. 3 we study the same model and follow the same approach as is discussed in
Chap. 2. Here we study the partition function of the three-chain system by combining
the recursion relations and the RG transformations and then finding the zeros. We show
that the distribution of zeros gives Julia-set like structures in the complex plane of the
partition function. We find that all the transition points obtained from RG flows, are in
good agreement with the zeros of the partition function on the real axis. We also extend
the model to the three-chain repulsive interaction region. We go to higher dimensions
to show that a transition can be induced from the Efimov state of DNA to a critical
repulsive state. We show that to be a continuous transition, obeying the finite size
scaling law with the exponents obtained from RG.

In Chap. 4 we further model the three-chain system on a Sierpinski gasket fractal
lattice. We show that the Efimov effect occurs even in lower dimensions if some specific
interactions are assigned to the polymers. We study different models in detail and obtain
a new state, to be called a mixed state.

In Chap. 5 we study the conformational transformation form B to the Z form by the
theory of wave front propagation. The dynamics of B-Z interface is studied by writing
down the nonlinear diffusion equation with a free energy like quantity. A dynamic phase
diagram is obtained for the stability of the front separating B and Z. The instability in
this front results in two split fronts moving with different velocities. We also show that a
denatured state may develop dynamically eventhough it is thermodynamically forbidden

if the system parameters are tuned accordingly.






When a DNA triple helix melts: an analogue
of the Efimov state

In this chapter we study the melting of a three-stranded DNA on a hierarchical lattice.
It is predicted here that a three-stranded DNA exhibits the unusual behaviour of the
existence of a three-chain bound state in the absence of any two being bound. Such a
state can occur at or above the duplex melting point. This phenomenon is analogous to
the quantum Efimov state. In three particle quantum mechanics, such a state occurs via
the development of an attractive 1/r? interaction over a range beyond the short range
potential. Here we have considered the classical coarse-grained model of a three-chain
system in a discretized space. Real-space RG is used to show the Efimov-like three-chain
phase. Further exact numerical calculations are used to validate the prediction of such

a biological Efimov effect.

The chapter is organized as follows. We introduce a simplified polymer model on a
hierarchical lattice in Sec. 2.1. In Sec. 2.2 the recursion relations from the RG decimation
and for the exact iterations are written. Within this section, the subsequent subsections
contain the results and the discussions from the RG and the exact iteration approaches.

We draw our conclusions in Sec. 2.3.

2.1 Model

Let us consider three directed polymers on a hierarchical lattice, constructed recursively
with a motif of Ab bonds, as shown in Fig. 2.1(a), where A and b represent the bond
scaling factor and the branching factor, respectively. The lattice is generated iteratively
by the replacement of each bond at the (n — 1) generation by a motif of Ab bonds to
get the n'" generation. In the thermodynamic limit n — oo, the effective dimensionality

of the lattice is defined by
Je In Ab

- (2.1)
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Figure 2.1: (a) The recursive construction of the hierarchical lattice with b = 2 forn =0,1,2, ...
generations. At every stage, each line is replaced by a diamond of 2b lines. The right arrows rep-
resent the direction of iteration towards larger lattices. The left arrows represent the direction
of decimation used in RG. (b) A motif of 2b bonds, where b = 4.

In this thesis we shall choose A = 2. By changing the value of b, the dimensionality of
the lattice can be tuned. For example the dimensionality of the lattice is d = 2 for b = 2
(see Fig. 2.1(a)) and d = 3 for b = 4 (see Fig. 2.1(b)). Since in lower dimensions a bound
state always exists due to any shallow potential, a simple random walk! would not have

the transition for d < 2. So we always choose b > 2 for a three chain model?.

Figure 2.2: Examples of three-chain configurations on a diamond motif for b = 4. (a) Polymers
do not share any single bond. The number of such configurations is b(b — 1)(b — 2). (b) Two
polymers share a bond and the number of such configurations is b(b — 1). (c) Three polymers
share the same bond. The number of such configurations is b.

One major feature about hierarchical lattices is their unusual scale invariance prop-
erty. They have a discrete scaling symmetry. That is why an exact implementation of
the real-space RG technique is possible. The decimation of the n'® generation to arrive
at the (n — 1)'™® generation is precisely what is needed in an RG transformation. Once
the partition function is known, it is possible to calculate the free energy, and the other
thermodynamic quantities. One may even write down recursion relations for them.

Three chains on a hierarchical lattice are stretched from bottom to top, but they
can wander at intermediate points. The contact energies are defined at the bonds only.

The polymers are assigned attractive potentials —¢;; and —e;;i (€5, €55 > 0) if a single

LA simple random walk in d dimension, which is a directed walk along its length in d + 1 dimension
can be mapped to the path of a particle in quantum mechanics under imaginary time transformation.
2d = 2 with b = 2 is the lower critical dimension for a two chain system.
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bond is shared by the two and the three polymers, respectively (see Fig. 2.2). At each
generation, the length of each polymer increases by a factor A = 2 so that the length of
polymers at the n'" generation is

L, =2". (2.2)

We have considered a coarse-grained model. What we call a monomer in fact represents
several base-pairs. The interaction involves monomers with same sequence of different
chains. The total energy for the two and the three strands for the n = 1 generation

lattice as shown in Fig. 2.1(a), respectively, are given by

E2 = —MMa€12, (23)

E3 = —my (€12 + €23 + €31) — m3€qs, (2.4)

where ms is the two-chain and mgs, the three-chain contacts.

For the Efimov effect, only pairwise interaction is enough. However in an RG proce-
dure it is imperative to define the model with both €;; and €23, because the three-chain
interaction gets generated on a longer scale.

We introduce the Boltzmann factors,

yij = exp(Bey;), and w = exp(Bers), (2.5)

where = 1/kgT, kg being the Boltzmann constant, 7" the temperature.

2.2 Efimov-like phase in d > 2

We adopt a real-space RG approach for d > 2 to study the three-chain melting. In the
RG approach, the effects of interaction is probed by summing over the configurations
at a smaller scale (in the partition function) and redefining the effective interaction on
a larger scale. This is done by preserving the form of partition function upto a scale
factor. For a bound state, we should see an effective interaction among the chains,
irrespective of the scale of coarse-graining. In contrast, for an unbound state, locally
bound monomers lose their importance as we sum over configurations and therefore the
effective interaction would vanish as the probing length scale increases. These effects are
expressed by the RG flow equations or recursion relations, as flows of the interactions
with length scale. A two-body bound state should therefore be possible if the two-body
interaction does not vanish. In the same spirit, a three body bound state would occur
if a three-body interaction becomes operative, even if there is none to start with. We

express these RG relations in an exact form on specially constructed hierarchical lattices
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with discrete scaling symmetry and tunable dimensionality.

2.2.1 Efimov DNA: RG

The configurations of the two-chain system on a motif of the hierarchical lattice can be

classified as
1. two independent chains,
2. inherently two-chain configurations i. e., two chains sharing the same bond.

By summing over all configurations the partition functions for n = 0 and n = 1 genera-

tion lattices for general b will be written as [32]

Zo(y) = yij, (2.6)

Z1(y) = b(b— 1) + by}, (2.7)

Since by RG decimation, a motif of 2b bonds of n = 1 generation is replaced by a single

bond in n = 0 generation, the RG demands

Zo(Y'i5) o< Z1(yiz), (2.8)

where ¢’ is the renormalized Boltzmann factor. With the free chain boundary conditions
i. e., y; = 1, implies y;; = 1, the proportionality constant of Eq. (2.8) can be deter-

mined. Therefore the RG transformation for the two-chain Boltzmann factor becomes

b(b— 1) + by?
Yy = R (2.9)

The RG transformation for the three-chain case can also be written in the same spirit

as in two-chain case. The three-chain configurations (see Fig. 2.2) can be classified as
1. three independent chains,
2. a combination of a double- and a single-chain,
3. inherently three-chain configurations, i. e., three chains sharing the same bond.

The free chain condition y;; = w = 1 implies y;j = w’' = 1. Also to be noted that when

three chains share the same bond the contribution is y};w (yj; for three pairs). The RG
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transformation for w is then

b(b—1)(b—2) +b(b — 1)S y2 + bw?] [y
! i<j 1<J

w = ; , (2.10)
bSHyij

i<j

where w’ is the renormalized value of w. These recursion relations show that the three-
body term is generated eventhough we start with €193 = 0, ¢. e., w = 1. For given y;;
and w, the flows from successive use of Egs. (2.9)-(2.10) would give us the phases and
the nature of the transitions.

For the above analysis one needs the fixed points of the RG transformations. The

three fixed points of y;; correspond to
1. y* =1, stable infinite temperature fixed point representing an unbound state,

2. y* = y. = (b—1), unstable fixed point representing the two-chain melting or critical

point,

3. y* = 0o (zero temperature representing a bound duplex state) is the obvious stable
fixed point, which does not come from the RG relation but comes from the RG

flow.

In case there is no pairwise bound state (no pair interaction i. e., y;; = 1), w has three

fixed points,
1. w* =1, stable infinite temperature, an unbound state,
2. w* = w, = (b* — 1), unstable fixed point representing three-chain critical point.

3. w* = oo (zero temperature), representing pure three-chain bound state, comes
from the RG flow.

The stable fixed point w* = 1 describes the high temperature fixed point or an absence
of the three-body interaction and the unstable fixed point w. = b? — 1 describes the
critical state produced by a pure three-body interaction.

In case all pairs are in the critical state so far as the two-body interaction is concerned

(yi; = b— 1), the fixed points of w are found to be

B2 /A — 24b + 3207 — 1207 + b

wy = RN (2.11)

In the range 2.303 < b < 8.596, no real roots are found for w from the three-chain RG
relation (Eq. (2.10)) at the critical line y = y..
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Figure 2.3: (a) RG Flow-diagram in the y-w plane for the symmetric case y12 = ya23 = y13, all
starting with w = 1. Here b = 4. The flow of w goes to oo if the starting y > ygp = 2.32402...,
otherwise to 1 (high temperature fixed point). The trajectories with starting y < yg end at
w =y = 1. (b) Average energy per monomer vs temperature from direct computation (chain
length—22%). For two chains (marked 2) the average energy undergoes a continuous transition
at y = y. while the average energy for three chains (marked 3) shows a jump at y = yg. The
region from yp to y. is the Efimov-like three chain bound state.

Symmetric pair interaction

Here we consider all three pairs identical (either Watson-Crick type or Hoogsteen type).
The RG-flow diagram is shown in Fig. 2.3(a) for branching factor b = 4. The RG flows
are shown in the different regions. The arrows are to denote the direction of RG flows.
We considered only b = 4 as a representative of the range where there is no real fixed
point along the two-chain critical line. Here y. = 3 is the two-chain melting point. The
RG flow of w depends on the initial value of y. The renormalization flow takes w to
infinity with an initial value y;; = y. = b—1, as shown in Fig. 2.3(a) by the red curve. The
three chains then form a bound state at the two-body critical point. For temperatures
above the duplex melting, i. e., with initial values y = y19 = yo3 = y31 < b — 1 the
three chains would be in the denatured state if the flow goes to y = 1, w = 1, but for
y > 2.32402, the flow goes to infinity and reaches w = co at y = 1. Hence an effective
three-chain interaction develops when the pairs are unbound. Below y < y. the three-
chain system is in the high temperature phase— note that, by choice, the flow starts
from w = 1. Therefore for b = 4, the melting of an effective three-chain bound state is
at y = 2.32402.... The region between y = yg to y = y. corresponding to w = 1, is for an
effective triple stranded bound state when there should not be any duplex bound state.
If a separatrix is imagined in the y-w plane between (1,5 — 1) and (yg, 1), then in the
region enclosed by this separatrix and the two-chain critical line y = y,, a triplex state
would exist eventhough no two are bound. Such a loosely bound state will be called the
Efimov DNA.
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2.2.2 Efimov DNA: Numerical evidence

A further confirmation of this triplex melting comes from an exact numerical calculation
of the average energy by iterating the partition functions and their derivatives for large
lattices. In exact iteration method the lattice is built generation by generation so that
one may study the behaviour of any quantity of interest as a function of length of the
polymers. The direction of iteration towards larger lattices are shown by the right arrows
as shown in Fig. 2.1. With the trace over all configurations if C,, Z, and Q,, are the n'®
generation partition functions for single-, double- and triple-chain systems, then these

obey the recursion relations |32]

C, = bC*_|, (2.12)
Zn = bb—1)C | +bZ2 |, (2.13)
Qn = bb—-1)(~-2)C,

3
+b(b = 1)Cr_y Y Z(if)a s + Q5. (2.14)
where the arguments of Z,_; in Eq. (2.14) refer to the two chains involved. The initial

conditions are taken as
Co=1,Zy=y,Qv=1".

To write down the derivatives of the above partition functions (Eqs. 2.12-2.14) we
have considered the symmetric situations, 7. e., the equal pair interactions. Therefore
we write the average energy and the specific heat as

I Q, ~ OE,
or and Gy = O’

E, = (2.15)

where z is the appropriate variable (y or w as the case may be). Though these definitions

are different from the actual definitions, proportionality factors are not crucial here.

The recursion relations of the two-chain and the three-chain average energy (&, E,,)

and the specific heat (é’n, C,), derived from the n'" generation partition function are as
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follows.
72 &,
g, = 2l 2.16
Z, (2.16)
3y Coi&n
Co = &+ 28,61, (2.17)
n—1
3(b—1)C?_ 7% &, 2 B,
Qn
3(b—1)C%_,Z2_(Cp_q — 2F> 2 (C,_1 — 2F?
Cn — 92 ( ) n—1 n—l( 1 n—l) +Qn—1( 1 n—l) +E721 (219)

@n

For given y and w, Eqs. (2.12)-(2.14) give the partition functions for different L,. The
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Figure 2.4: Plots of E,,/L,, vs 1/n, E,, being the three-chain average energy, n the generation
number. We went upto n = 25 for which the length of each polymer is L, = 2?°. In (a)
we show for y = 2.322 + n x 1073, n =0,...,5, while a finer grid result is shown in (b) with
y = 2.32400 + n x 107°,n =1,....4. The lines show the extrapolations to n — oo. The
discontinuity at the transition is visible.

two- and the three-chain average energies per monomer are shown in Fig. 2.3(b). With
Y = Y12 = Y23 = Y31, as in Fig. 2.3(b), the two-chain system melts through a second order
transition at y = y. (energy going continuously to zero) [96, 97| whereas the three-chain
system undergoes a first order transition at a temperature y = yg < y. (energy showing
a discontinuity).

The discontinuity in the three-strand average energy has been shown in Fig. 2.4.
Since the length of the polymer at the n'® generation is L, = 2", the thermodynamic
limit of the energy per monomer £, /L, can be obtained by extrapolation to 1/n — 0.
Fig. 2.4(a) shows the extrapolation in the range of y = 2.323 to 2.327 which brackets the
transition in the range (2.324, 2.325). The discontinuity survives even on a finer scale
in Fig. 2.4(b), which gives yg in the range (2.32402, 2.32403) consistent with the RG
result of Fig. 2.3(a). The numerical estimations of the effective three-chain melting tem-

peratures for different b are given in the table below when there is no pure three-chain
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interaction (i. e., w =1).

b |3 4 Y 6
ye | 1.8.. | 2.32402.. | 2.77.. | 3.179..

Table 2.1: The Efimov transition points (yg’s) for different values of b when w = 1.

Asymmetric pair interaction

The RG flows can be generalized for asymmetric pair binding energies too. This is the
asymmetric case where we have considered €15 = €53 # €31. For generalization we may
consider all three pairs different (one pair Watson-Crick type and remaining Hoogsteen
type). The phase diagram in the plane of y3' vs ;5" with y12 = yo3,w = 1 is shown in
Fig. 2.5. For y;3' = 0, chains 1 and 3 are bound for ever and therefore chain 2 melts off at
112 = Vb — 1. This point is indicated by a star in Fig. 2.5. Within the triangular shaded
region bounded by ;5 = 1/(b— 1), y;5 = 1/(b— 1), and the curved line separating the
unbound state, we have a triplex phase without pairing of any two — the desired Efimov
effect. In yl_gl—yl_zl plane the diagonal direction (i. e., y13 = y12) gives the symmetric case

(Fig. 2.3(a)) where all the pair interactions are same.

1|8
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(q\]
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Figure 2.5: Phase Diagram: y3_11 VS y1_21 (y12 = y23), for b = 4. The duplex melting point
at yiij Y — b~ 1 is indicated by the horizontal and vertical lines. Three chains are bound in
the shaded region with the thick curve representing the three-chain bound-unbound transition.
Above the horizontal line at y31 = b— 1 in the shaded region, a triplex state exists even though
no two should be bound. The bound states in other regions are as indicated. The star at
y1_21 = 1/v/b— 1 is the melting of chain 2 and composite 1,3.
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2.3 Conclusions

Our emphasis is on the Efimov like state exhibited by the three-chain system at or
beyond the two-chain melting, where no two are bound, and the nature of transitions.
The RG relations and the exact numerical calculations are used for d > 2 to show the
possibility of such three-strand DNA bound state at conditions where a duplex DNA
would be in the denatured state. This is a biological analog of the nuclear or cold atom
Efimov effect. The existence of such a bound state involving two otherwise denatured
strands of DNA due to the presence of a third strand, with overall separation much
larger than the hydrogen bond length would have important implications in biological
processes. Nomnetheless, we anticipate new experiments to look for signatures of our
proposed Efimov DNA.



Efimov DNA and its transitions

In this chapter we study the melting of a three-stranded DNA by using real space renor-
malization group and exact recursion relations. The prediction of an unusual Efimov-
analog three-chain bound state, that appears at the critical melting of a two-chain DNA,
is corroborated from the zeros of the partition function. The distribution of the zeros
have been studied in detail for various situations. We extend the model to the three-
chain repulsive zone. We show that the Efimov DNA can occur even if the three-chain (.
e., three monomer) interaction is repulsive in nature. In higher dimensions, a striking

result that emerged in this repulsive zone is a continuous transition from the critical
state to the Efimov DNA.

The chapter is organized as follows. In Sec. 3.2, the recursion relations from RG
decimation and those for exact iterations are written. The method of finding the zeros
of the partition function is discussed and we find the limit point of the zeros to locate
the phase transition. Sec. 3.3 contains the results and discussions on the two- and the
three-chain system under different situations. In particular we estimate the transition
point for Efimov DNA. Sec. 3.4 extends the problem to three chains repulsive interaction.
The existence of a transition between the Efimov DNA and the critical repulsive state

in higher dimensions is established there.

3.1 Model

Based on the model discussed in Sec. 2.1, in this chapter we have considered the three-
chain system on a recursively constructed hierarchical lattice as shown in Fig. 2.1 for
symmetric pair interactions. The polymers are assigned attractive potentials —e and
—€123 (€, €103 > 0) if a single bond is shared by the two and the three polymers, re-
spectively (see Fig. 2.2). Although €193 = 0, still this term will be needed for the RG

transformation to probe the three-body bound state and is generated by renormalization.



32 Efimov DNA and its transitions

3.2 Method

In this section we summarize the RG transformations and the exact recursion relations
for the partition functions. The two ways of handling the problem are just two different
ways to look at it. In the RG case, we start from a large lattice and remove short scale
fluctuations by renormalizing the parameters, effectively reducing the size of the lattice.
In contrast to this idea of thinning out the degrees of freedom, in the second method
the lattice is built generation by generation so that one may study the behavior of any
quantity of interest as a function of the length of the polymers. This is useful in studying
phase transitions because finite size scaling can then be used to explore the nature of

the transition.

3.2.1 Renormalization group

By defining the Boltzmann factors,

y = exp(fe), and w = exp(Leqas), (3.1)

the RG transformations of the two-chain and the three-chain Boltzmann factors can be

written as (with 12 = yo3 = y31 = y from Eqgs. (2.9) and (2.10))

) b—1)+y?
y = =Dty b) J , (3.2)
b—1)(b—2)+3(b—1)y?+ yow?

where the primed variables 3’ and w’ on the left hand side represent the renormalized
values of the Boltzmann factors.
To discuss the phases and the nature of the transitions, one needs the fixed points

for this analysis. These are discussed in Sec. 2.2.1. The correlation lengths for successive

generations are related by ¢ = % This is coupled with the deviation of temperature

from the critical point. Thus, once the fixed points are known, transition exponents can
be calculated from the RG relations by linear expansion around the critical points. The

two-chain melting is critical with the diverging length scale with exponents

In A

ay’
In ( % )
Y—Yc

v= (3.4)

and the specific heat exponent
a=2—v. (3.5)
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It is known from the Eq. (2.11) that at the two-chain critical point y. = b—1, no real roots
are found from the three-chain RG relation, Eq. (3.3), within the range 2.303 < b < 8.596.
These complex roots lead to a limit cycle behaviour, which is intimately related to the

Efimov effect (see appendix B).

3.2.2 Exact recursion relations

With the trace over all configurations the n'" generation partition functions for single-

(Cy), double- (Z,), and triple- (Q,) chain systems obey the recursion relations

C, = bC% |, (3.6)
Z, = bb—-1)Ch | +0bZ2 |, (3.7)
Qn = bb—-1)(~2)Cp 4

+3b(b—1)C2_ | Z2 | +bQ? .. (3.8)

The initial conditions are taken as
Co=1 Zy=y, Qo=y’w. (3.9)

The two- and the three- chain average energy and the specific heat are given by Egs. (2.16)-
(2.19) [see Eq. (2.15)].

3.2.3 Zeros of the partition functions Z,, and @),

If we take w = 1, 7. e., no three-body interaction, then the partition functions are
polynomialsin y. In general, Z,, is a polynomial in y of order L,, while ),, is a multinomial
in y and w. These partition functions are then completely described by the zeros which
are necessarily complex. A phase transition is signaled by a real limit point of the zeros.
However, the rapid growth of the order of the polynomials makes it difficult to implement

this program directly. A different representation is used to get the zeros [54].

For n = 1, the two-chain partition function is written as
Zy =b(b—1)C5 + bZ3. (3.10)
With the initial conditions Cy = 1, Zy =y, Eq. (3.10) becomes

Z1 =b(b— 1)+ by?, (3.11)
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which, by using Eq. (3.2), can be written as
Zi(y) = 0%y = b Zo(y). (3.12)
In a similar way, Z,, for n = 2, can be written as
Zy =b"(b— 1)+ bZ3, (3.13)
and, by using the two-chain RG relation, Eq. (3.13) becomes
Zy(y) =0y = b Z:(y). (3.14)

Thus by using the RG transformations of y and w, the recursion relations from Egs. (3.6)-

(3.8) can be reduced exactly to the forms

Znly) = b Zua(y), (3.15)
Qu(y,w) = (") ?Qua(y,u'), (3.16)

with ¢/, w’ given by Egs. (3.2) and (3.3). These relations can be verified by direct

substitution and, if necessary, by the method of induction as discussed above.

Since the zeros determine a polynomial completely, the two-chain partition functions

can be written as

Ln
Zuly) = " ']w—a) (3.17)
=1
Lnfl
and  Z,aly) = o0 [[ - ), (3.18)
j=1

where the ¢’s and ¢;’s are the zeros of the partition functions Z,(y) and Z,_(y), re-
spectively. These zeros appear in complex-conjugate pairs. With the substitution of
Egs. (3.17) and (3.18), Eq. (3.15) becomes

Lnfl

Ly
bL”_lH(y _ ql) _ bLnbLn—l—l H (,y/ _ dj) (319)
1=1 J=1

Then the use of Eq. (3.2), the relation between 3 and y, gives two roots from each factor

on the right hand side, so that the ¢;’s are the solutions of

(b—1)+y

2 = qj, (3.20)
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i €.,

q=41/bj — (b—1). (3.21)

The subscript of ¢ is omitted. This clearly shows that if we know the 2" zeros ¢; of
Zn-1(y), we will be able to know the 2" zeros ¢; of Z,(y). One may start with the roots
of Z; and generate successively the roots of each generation, by just solving a quadratic
equation.

Instead of generating all the roots, a random generation is more easily implementable.
With an initial value yo chosen randomly from the two roots of Z;, the new roots are
determined by Eq. (3.21). If one of them is chosen at random and substituted as ¢;, the
roots for the next generation can be found. Thus, after the nth iteration, the set obtained
is basically the zeros in the complex y-plane. These roots are nothing but the zeros of
the partition function found from different sizes of the lattice, which in this problem
would be equivalent to different lengths of polymers. The zeros quickly converge and as
n — oo we look for the limit point on the real axis. Apart from that, the distribution
in the complex y-plane itself is of interest. This method has been generalized for the

three-chain system.

3.3 Behavior of zeros: two- and three-chain systems

3.3.1 Two-chain system: b =14

For different branching factors, fractal-like structures are obtained from the zeros of the
partition functions of the two- and the three-chain systems. We considered only b = 4 as
a representative of the range where there is no real fixed point along the two-chain critical
line. For b = 4 the structure shown in Fig. 3.1(a) is obtained in the complex y plane

from the exact recursion relation Eq. (3.15). Exact solutions are possible only up to the

(a) 3 B lw#w by [ b e ,..*&Nl | (b) 4 _l I T I_
_ ; i : _ S i (\w i
E o+ *, g
NAY A T2r <\_’ J -
_3 B %MMH** N»«-w*"# N _4 I~ 1
| | | | | |
-3 0 3 -4 =2 0 2 4

Rey Rey

Figure 3.1: Plot of zeros of Z,(y) in the complex y-plane for b = 4 from (a) the exact recursion
relation for n = 6, and (b) the RG relation. The closest point to the Re(y) axis approaches
Yo = 3, the two-chain melting point in the limit 7 — oo, the unstable fixed point of Eq. (3.2).
The selected region shown by a box is zoomed in Fig. 3.2(a).
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n = 6 generation because of computational hardware limitations. This is insufficient,
as the thermodynamic limit (n — o0) is needed to observe a phase transition. Finding
zeros at random from the RG relations [Egs. (3.2) and (3.3)] overcomes such difficulties
and hence large lengths can be reached. The zeros obtained from Eq. (3.20) give the
fractal-like structure shown in Fig. 3.1(b). The accessed zero nearest to the real axis
approaches the two-chain transition point y. = 3 for large n. Apart from the limit point,

the distribution of the zeros in the complex y plane is also non-trivial.
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Figure 3.2: Zeros of Z,(y): The inner rectangular box is zoomed successively. A self-similar
structure becomes apparent. Note that the zeros are known with high accuracy.

The first feature to note is that the zeros do not seem to lie on a smooth differentiable
curve. A zoomed picture of a small cross section of the structure for the two-chain system
[from Fig. 3.1(b)] is shown in Fig. 3.2(a). Further the selected regions have been zoomed
successively and are shown in Figs. 3.2(b) and 3.2(c). The self-similarity of the structure
is visible. This is an indication of the fractal nature of the distribution. Further analysis
required for a quantitative description is not done here.

These fractal like structures obtained above are nothing but the separatrices of the
set of RG flows in the complex plane to the appropriate stable fixed points. These
separatrices for iterations of any function in the complex plane are known as the Julia
set (see appendix A). The sets are obtained after an infinite number of iterations of a
recursive formula by identifying the points that do not flow to the stable fixed points.
Our method of finding the zeros by using the RG relations is in fact equivalent to an
inverse iteration method, which is more efficient in producing such structures.

In Fig. 3.3(a) the RG flows are shown in the complex y plane for a two-chain system.
The dotted line (red curve) shows the flow towards the stable fixed point y = 1, i. e.,
the high temperature region, when we start with a value from the inner region of the
fractal-like structure. On the other hand, a point from the outskirts of the line of zeros
flows to the stable fixed point y = oo, which is the bound state with zero temperature.
The critical point, being an unstable fixed point, does not actually belong to the set but,
as discussed, is a limit point — in a sense a boundary of the set.

The second feature to note is the 3-like shape near the real-axis limit point. It is not
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arbitrary. The angle at the limit point in the complex plane is related to the specific

heat exponent by [98]

A

tan (¢r) = — tan (ma) + A—csc(ﬁa), (3.22)
+

where ¢ is the angle between the tangent of zeros at the limit point, and the real axis

of y, and A4 are the amplitudes of the specific heat on the low and the high y side of

the transition. Just like the exponents, A_ /A, is a universal number for a universality

class of transition. For the two-chain problem, we know that A_/A, — oo as Ay = 0.

Therefore the angle ¢ is given by
T
=—. 3.23
o= (323)

The zeros obtained by the successive iterations of the one close to the real axis are
shown in Fig. 3.3(b) by the triangles. They approach the real axis in a linear fashion
with an angle ¢, given by the straight line

T
I = — ¢)tan — .24
m z = (Re z — ¢) tan 5 (3.24)

in the generic complex z plane with v from Eq. (3.4). Here ¢ represents the limit point
of the zeros on the real axis. The zeros occur in complex conjugate pairs. Therefore if
we take the mirror image of the distribution of zeros about the real axis in Fig. 3.3(b),
the beak of the 3-like shape can be obtained.

3 302 3.04
Rey Rey

Figure 3.3: (a) Plot of zeros of Z,(y) in the complex y plane. Two types of RG flow are shown.
The dotted red curve starts from a point of the inner region and flows to y = 1. The dashed
blue curve starts from a point of the outer region and flows to co. (b) The triangles are the
zeros and approach the limit point y. = 3 at large n. The solid red line, given by Eq. (3.24),
makes an angle ¢ with the real axis with v of Eq. (3.4) and ¢ = y..



38 Efimov DNA and its transitions

3.3.2 Three-chain system: b =4

We have calculated the zeros of @, (1, w) for a three-chain system with a pure three-chain

interaction. By considering y = 1 in Eq. (3.3), we get

, (P —1) +w?

(3.25)

The zeros come from the equation

Q= i\/b267j - (?-1),

where the ¢’s and §;’s are the zeros of @, (1,w) and Q),,—1(1,w), respectively. The dis-
tribution of zeros is the Julia set which has a fractal-like structure shown in Figs. 3.4(a),
3.4(c), and 3.4(d). By choosing the zero near to the limit point w,, the nature of the
distribution can be determined, as shown in Fig. 3.4(b) by the straight line given by
Eq. (3.24) with v of Eq. (3.29) and ¢ = w..
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Figure 3.4: (a) Plot of the zeros of @,(1,w) in the complex w-plane for b = 4. The closest
point to the real axis approaches w. = 15 for large n. There is self-similarity in the distribution
of zeros. (b) The triangles are the zeros. The solid red line given by Eq. (3.24) passes through
them with v of Eq. (3.29) and ¢ = w,. (c), (d) The inner rectangular box [from (a)| is zoomed
successively.

3.3.3 Efimov DNA: b=4

The idea is to show the Efimov transition point of DNA by finding the limit point of zeros
on the real y axis. Although we consider w = 1, the effective three-chain interaction gets
generated by renormalization. As a result the zeros found from Eqgs. (3.6)-(3.8) seem to

pinch the Re(y) axis at a point where no pair of chains is bound. The exact solutions
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are shown in Fig. 3.5(a) for n = 6. On a finer scale the zeros are shown in Fig. 3.5(b).
For such small lattices the limit point is not accessible, hence an extrapolation scheme
may be used. The zeros nearest to the Re(y) axis, obtained in different generations
(n = 2,...,6) are shown in Fig. 3.5(c) by black dots. A straight line nicely fits these zeros

and is shown by the solid red curve.
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Figure 3.5: Plot of zeros in the complex y-plane for b = 4. (a) Zeros of @, (y, 1), when n = 6,
(b) a finer scale of (a) near the real axis, and (c) combined plot of zeros. The bigger black circles
are the zeros closest to the real axis (i. e., with smallest imaginary part) obtained from Q,(y, 1)
for n = 2,...,6 and the solid (red) straight line is a fit to these. The “Milky Way"-like region
shows the distribution of zeros from Eq. (3.26) on which we superpose the positive quadrant of
(a) shown by the small black dots.

The straight line intersects the real axis at y = 2.321. This value is the large n
extrapolation and can be taken as an estimate of the Efimov transition. We may compare
this extrapolated value with the previous RG-based estimate of yp = 2.32402. Finding
the zeros for the two-chain system is easier than for the three-chain system. Since the
three-chain equation holds both the variables y and w, finding zeros from the three-chain
RG relation is tantamount to generating the full relation for (),. This is because one
needs to keep w at all the intermediate values of n and then, at the the desired value of
n, w is to be set to 1. One sees the difficulty of the Efimov physics even though w = 1.
It is tempting to simplify the recursion relation at the cost of some approximation. We
set w = w’ =1 to get a renormalized 3" that describes the three-chain system. Such a

relation follows from Eq. (3.3), as

s_(b=1(b—=2)+30b—-1)y"+¢°
y" = ¥ .

(3.26)

The zeros obtained from Eq. (3.26) spread out in a “Milky Way” over a region in the
complex plane of y. The spread makes it difficult to make an estimate of the real-axis
limit point, but one may use the width to put a bound on the Efimov transition point
[see Fig. 3.5(c)].
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Figure 3.6: (a) Zeros of @ (yc, w) in the complex w plane for b = 9. The stable fixed point
w = ws is shown by a black circle. (b) The solid red line is given by Eq. (3.24) and passes
through the zeros shown by the triangles, with v from Eq. (3.30) and ¢ = wg.

3.3.4 Efimov DNA at y.=0—1: b =9

A study along the critical threshold of the two-chain melting is quite interesting. No
real fixed point for w exists for Eq. (3.3) when b is in the range 2.303 < b < 8.596 along
the y = y, line. For y = y,, the single parameter RG relation is

, (b=2)+3(b—=1)2+ (b—1)°w?

w' = EIE . (3.27)

The two fixed points for this case are given by Eq. (2.11). For b =9, these are

w = ws = 0.0655347... (stable), (3.28a)
w = wg = 0.0926684... (unstable). (3.28b)

The unstable fixed point, as the phase transition point, determines the limit point of the
zeros of the partition function on the real axis. Hence it can be predicted that at the
two-chain melting point, by tuning w, a transition occurs at w = wg, from the Efimov
DNA to the critical state of polymer pairs. Figure 3.6(a) shows the distribution of zeros
of @, (ye, w) in the complex w plane. The set of these zeros is a Julia set, separating the
flows to the stable fixed points. The stable fixed point in the inner region of the set is
given by Eq. (3.28a). The zeros near the real axis approach w = wg linearly, following
Eq. (3.24) with ¢ = wg and v of Eq. (3.30) as shown in Fig. 3.6(b). A detailed discussion

is given in the next section.

3.4 Efimov DNA: RG flow and numerical evidence

To explore the robustness of the Efimov effect, we now include a three-chain repulsive

interaction along with the pairwise attractive one. The three-chain interaction is attrac-
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Figure 3.7: RG phase diagram in the y-w plane. The arrows are to show the flow of the
renormalized parameter schematically. (a) For b = 4. The solid red curve and the dashed
curve represent the separatrices, where w flows to two different fixed points on either side of the
separatrix. The zoomed area near y. = 3 is shown in the inset. For w =1, yg = 2.32402 is the
Efimov DNA transition point. The filled circles are the Efimov transition points for w = 0.5,
and w = 0.2, w = 0, respectively, obtained from Fig. 3.8(a). (b) For b = 9. Along y. = 8,
there are two real fixed points given by Eq. (3.28a). The solid (red) and dashed lines are the
separatrices. The filled circles are the Efimov transition points for w = 0.15 and w = 0.12,
respectively, obtained from Fig. 3.8(b).

tive when w > 1 and repulsive for 0 < w < 1. For w = 0, representing the hard core
three-chain repulsive interaction, three chains can never be on the same bond in this

model.

A.b=14

For b = 4 the RG phase diagram is shown in Fig. 3.7(a). The solid red line is the
separatrix connecting the pure three-chain transition point (1, w.) to an Efimov transition
point for w = 0. Each point on the solid line represents an Efimov transition point. In
other words keeping w fixed, by changing y, we can see a melting of a loosely bound
Efimov DNA with no pairwise binding. The region enclosed between this separatrix
(solid red line) and the y. = 3 line is the Efimov region and (y,w) flows to (1, 00). Below
the solid red line is the high temperature zone of denatured DNA, where RG flows are to
(1,1). The region to the right of the y. = 3 line is the two-chain bound state. The area
below the dashed curve, where the RG flow takes w to zero when two-chain pairs are
strongly bound, represents a different state where one finds a three-chain bound state
but with no three-chain contact. The dashed line is then a crossover line. It remains to

be seen if under some conditions this crossover line becomes a true phase transition line.
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2.75 3 3.25

Figure 3.8: The three-chain average energy per monomer with y from direct computation. (a)
For b = 4, the average energy curves (marked 1, 2, and 3) with the fixed values w = 0.5,
w = 0.2, and w = 0 show first order transitions. (b) For b = 9, the average energy curves
(marked 1 and 2) with the fixed values w = 0.15 and w = 0.12 show first-order transitions.
Curves (marked 3, 4, and 5) with the constant values w = 0.09, w = 0.065, and w = 0 show a
continuous transition at y. = 8.

B.b=9,y.=b—1

The RG phase diagram is shown in Fig. 3.7(b) for b = 9. In the diagram two separatrices
(the solid red line and the dashed line) meet at an unstable fixed point. The two fixed
points w = ws and w = wg are shown in Fig. 3.7(b). The presence of any unstable
fixed point reflects a continuous transition along the two-chain critical line. Hence we
can say that by tuning the three-chain repulsive interaction parameter or temperature
in the repulsive zone a transition can be induced in the Efimov DNA at the critical
threshold of duplex binding. The transition is from the Efimov state to the critical state
of pairs dominated by the three-chain repulsion. The Efimov region is now restricted by
a separatrix connecting the two unstable fixed points (1, w.) and (y., wg) and the critical
line y. =b— 1.

On the critical line at both the fixed points w = ws and w = wg, y is a relevant
variable (unstable in the y direction). But y does not couple to w in the RG equation
[Eq. (3.2)]. The melting for w < wg would be similar to the pure two-chain melting
described by Egs. (3.4) and (3.5). In the y-w plane, (y.,wg) is a multicritical point

where the line of first-order transitions goes over to a line of critical points.

C. Data collapse

We now provide numerical evidence for the above RG-based inferences. Exact numerical
calculations of the average energy and the specific heat are done by iterating the partition
functions and their higher derivatives for lattices of various sizes for different fixed values
of w. Figure 3.8(a) for b = 4 shows that at w = 0.5, w = 0.2, and w = 0, there are
first-order transitions. The transition points estimated from the point of discontinuity

are shown by the filled circles in Fig. 3.7(a). They are on the separatrix and are the
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Figure 3.9: For b = 4. (a) The three-chain average energy per monomer versus the correspond-
ing Boltzmann factor for chain length up to 226 when y = 1. The average energy shows a
continuous transition at w = we. (b) The three-chain specific heat (C,) per monomer with the
corresponding Boltzmann factor. (c) Data collapse of energy. (d) Data collapse of specific heat.

Efimov transition points for the corresponding values of w.

The energy curves in Fig. 3.8(b) for b = 9 with w = 0.15 and w = 0.12, show first-
order transitions. These transition points are shown by the filled circles in Fig. 3.7(b).
In contrast, the energy curves (marked 3, 4, and 5) show continuous transitions for
w = 0.09, w = 0.065, and w = 0, respectively at y. = 8. This is consistent with the RG
prediction of Fig. 3.7(b).

The energy and the specific heat curves are shown in Figs. 3.9(a) and 3.9(b) for b = 9,
y =1 and in Figs. 3.10(a) and 3.10(b) for b =9, y = y. = b — 1. Also the corresponding
finite size scaling is shown in Figs. 3.9(c) and 3.9(d) for b =9, y = 1 and in Figs. 3.10(c)
and 3.10(d) for b = 9, y = y. = b — 1. The finite size scaling behavior of different
thermodynamic quantities is described by the length scale exponents. In analogy with
Eq. (3.4), the exponents to describe the three-chain transition for y = 1 and y = y,. at
appropriate critical points are given by
v o= lni?ﬁ, (3.29)

In2
v = " . (3.30)

Jw’
In <8_w yc:b_l)
W—WE

Around a critical point one should see a finite size scaling. Therefore the three-chain
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Figure 3.10: For b = 9. (a) The three-chain average energy per monomer versus the correspond-
ing Boltzmann factor for chain length up to 226 when y. = b — 1. The average energy shows
a continuous transition at w = wg. (b) The three-chain specific heat (C,,) per monomer with
the corresponding Boltzmann factor. The length dependence is shown in the inset. (c¢) Data
collapse of energy. (d) Data collapse of specific heat.

average energy and the specific heat obeying the finite size scaling can be written in the

forms

E ~ LY LY w—w), (3.31)
C ~ LfLM"|w—w)), (3.32)

with appropriate v and w*. In Figs. 3.9(c) and 3.9(d) we see that the average energy
and the specific heat scale as F, Ly, Y and CnL,Zz/ ”_ respectively, when plotted versus
|(w— w*)|Li/" with the v of Eq. (3.29) and w* = w, for y = 1, all the data collapse onto

a single curve for different lengths of polymers, where n = 6,7, ..., 26.

Figures 3.10(c) and 3.10(d) show similar plots for the critical line (y. = b — 1) with
v of Eq. (3.30) and w* = wg. Since the specific heat diverges with increasing length,
data collapse is good for the case y = 1. The data collapse for the case y. = b — 1 is
not so good due to a smoother behavior of the specific heat at the critical point. These

establish the weak criticality at w = wg.
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Figure 3.11: For b=9. Data collapse of the average energy of the two-chain system (set I) and
the three-chain system (set IT and III) with w = 0.07 and w = wp, respectively.

D. Data collapse(w < wg)

The finite size scaling of the two- and the three-chain average energy are shown in

Fig. 3.11 for b = 9. The average energy obeying the finite size scaling is of the form,

E~ L' f(LY |y — ye)), (3.33)

with appropriate v. The two- and the three-chain average energy scaled with E, L, v

are plotted with |(y — yc)|L}/V. All the data seem to give good datacollapse as shown in
Fig. 3.11 by sets I, IT and III for different lengths of polymers, where n = 10,11, ...., 16.
The set I is the datacollapse for the two-chain system [32] with the exponent of Eq. (3.4)
and the set Il shows the datacollapse for the three-chain system for w = 0.07 < wg
with the same exponent like the two-chain case, given by Eq. (3.4). The set III shows
the datacollapse for the three-chain system for w = wg with the two-chain length scale
exponent of Eq. (3.4) with 1% error bar. Theses show that the three-chain melting for
w < wg is similar to the pure two-chain melting. The differences between the two sets
of collapse are due to corrections from the w term. The two-chain system does not have
the three-chain interaction term. So for w < wpg, the transitions are controlled by the

two-chain length scale exponent.

3.5 Conclusion

To summarize, the RG relations and exact recursion relations are used to study the three-
chain system on a diamond hierarchical lattice. Our emphasis is on the Efimov-like state
exhibited by the three-chain system at or beyond the two-chain melting, where no two
chains are bound, and the nature of the transitions. Fractal-like structures are obtained

for the zeros of the partition functions. These zeros, when they pinch the real axis,
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determine the phase transition points. We find that all the transition points obtained
from RG flows, are in good agreement with the zeros of the partition function on the
real axis. The Efimov transition point thus found strengthens the prediction of Efimov-
like phenomena for the three-chain system. We have shown that the Efimov effect is
exhibited by a three-chain system even if there is a repulsive three-chain interaction. A
transition can be induced in higher dimensions from the Efimov state to the three-chain
critical repulsive state at the melting of duplex DNA. The transition to this three-chain
critical repulsive state is continuous and obeys a finite size scaling law with exponents
obtained from the RG. In the (y,w) phase diagram, (y., wg) is a multicritical point.
Although the model studied in this paper is simplistic, mainly to get exact results,
still the denaturation transition induced by bubble formation accompanied by diverging
length scales is the generic scenario for more realistic polymeric models. The qualitative
picture is therefore expected to be valid for those models too. We await experimental
evidence for the existence of the Efimov DNA or the Efimov transition. Again, the
existence of such a state remains a challenge for molecular dynamics and Monte Carlo

simulations.



Efimov effect: Polymers on the Sierpinski

casket

In the previous two chapters three polymers on a hierarchical lattice of dimension d >
2 have been studied and the Efimov-DNA was predicted. In this chapter we show
that the Efimov effect occurs even in lower dimensions if some specific interactions are
considered among the polymers. Here we study the melting of the three-stranded DNA
on a Sierpinski Gasket and show that a transition can be induced if extra weight factors
are given to the fork opening and closing. We study different models in detail and obtain
a new state, to be called a mixed state.

This chapter is organized as follows. In Sec. 4.1, we define our model on a Sierpinski
gasket. In Sec. 4.2 and Sec. 4.3 the polymers with the crossing and the non-crossing
conditions are defined. The exact recursion relations of the partition functions are written
and the methods of calculation are discussed. Three different models for the three-chain

case are studied. A summary is given in a table in Sec. 4.5.

4.1 Model

n=0 n=1 n=2

Figure 4.1: Recursive construction of the Sierpinski Gasket. Polymer walk is not allowed in the
shaded triangles.

The Sierpinski gasket is a fractal lattice obtained after an infinite iteration from a

single equilateral triangular lattice. This particular lattice is drawn in the two dimen-
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sional (d = 2) plane. Taking out the middle piece of a triangular shape yields three
smaller triangles. Thus the fractal lattice is formed recursively after an infinite number
of iteration. See Fig. 4.1. The dimension is calculated for an infinite lattice, and it is
_ InN,..o 1In3

T2~ 158, (4.1)

d= InL, ... In2

where NV, is the the number of the surviving triangles and L, is the length of unit step
or the number of bonds of the lattice from bottom to top along the any one side of the

lattice at the n'" generation.

Figure 4.2: Two chains along the non horizontal bonds. Two possible walks are shown (b,, and
gn type from Fig. 4.3).

On the Sierpinski Gasket, polymers are restricted to occupy only the non-horizontal

bonds as shown in Fig. 4.2. Following weights are assigned to the polymers:

e Fugacity z for each bond,

e Boltzmann factor y;; = €%, when a single bond is shared by the two polymers and
Yijr. = €’k when a single bond is shared by the three polymers.

e 0;; for the two-chain and o;;;, for the three-chain bubble opening or closure.

The weight of a walk of a single chain of length N is 2V, where N is the number of
bonds. The tradition is to consider z as an extra variable, but we will set it to 1, as is
discussed below. Here ¢ = 1 implies no weight is given for bubble opening or closure,
and ¢ = 0 implies no bubble formation, i. e., a model without any bubble.

To study the melting of DNA on a fractal lattice, we need to define the partition
functions for the two- and the three-chain systems as shown in Fig. 4.3. We choose
z = 1 to be in the canonical ensemble. The standard way to study the polymers on a
fractal lattice is to find out the fixed point of z by an RG procedure as proposed by D.
Dhar [44]. This corresponds to the Grand canonical ensemble, where the fixed point of
z gives the free energy. We know that the choice of ensemble does not matter, as long
as we work with the large length of the polymer. In our approach we calculate the free

energies, look for the most favorable one and obtain the phase diagram directly from the
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free energies. Since all the polymers are of same length (— oco) and traverse the whole
lattice, we may set z = 1.

Different possible polymer configurations are shown in Fig. 4.3. The partition func-
tions an, by, Cn, dns €n, frs Grs I, in are defined at the n'™ generation and the recursion
relations are written for successive generations. If the n'" partition function is known,
the (n + 1)™ generation partition function can be derived from the recursion relations.
Based on the idea of the various phases, the total partition functions for the two- and

the three-chain system in the fixed length ensemble are written as

Ztot = biﬂ + dn—l—lv (42)
Qtot = fn—i—l + bi+1 + ncdn—i-lbn—i-b (43)

in terms of the subpartition functions b,,1, d,+1 and f,.;. Here n. is the number of

VAVAWA
AN

AAA

Figure 4.3: Generating functions for two and three strands.

configuration of d,,11b,.1 state. It is 3 when chains can cross each other and 2 when they
can not. Two chain bubble is given by b2, |, d,41 is the two-chain bound state. Similarly
for the three-chain system, three-chain bubble is given by b3, f,11 is the three-chain
bound state. The last term in Eq. (4.3) describes the mixed state a state when one is
free with the other two forming a duplex. If the free chain has no entropy, the state

would be defined by dn /1, but as we argue below this is an unphysical state.
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4.2 Two strands DNA

4.2.1 With crossing

Two chain: crossing

0.8f bound
© 0.4} unbound -
O 1 1
1 1.1 y 1.2 Y. 13

Figure 4.4: Two-chain phase diagram for o vs y. Polymers can cross each other. The two-chain
melting is at y.(0) = 1.264 for o = 0.

We consider the two-chain system. The walks can cross each other. Here y is the
weight at the bond for sharing the same bond by the two polymers. The two-chain
bubble opening or closure is associated with the weight o at the vertex. The partition

functions for the two-strand problem for the (n + 1)™ generation are given by,

Uni1 = a2, (4.4a)
b1 = b2 + a2by, (4.4b)
Cng1 = €, (4.4c)
dpi1 = d2 +2g2b, + 2d,, (4.4d)
Gn+1 = AnGn(bn + cn). (4.4e)

The initial conditions are taken as
CL(]:l, b():l, Co =Y, d(]:yz, Jgo = Yyo. (45)
We look at the divergence or convergence of the ratio

d,
=1 1 (4.6)
n+1

for given o and y. By this ratio ry, the two-chain bound state free energy is compared
with the free energy when the two strands are in the denatured state. By looking at

the convergence and the divergence of r; we obtain the phase diagram in the y-o plane
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as shown in Fig. 4.4. The transition is from the unbound to the bound state of the
two-stranded DNA at y = y.(0). The nature of the transition line near o = 0 has been
studied in small intervals of o, but many points are omitted from the graph. For o = 0,
the two-chain melting is at y.(0) = 1.264. The melting transition is first order where the
two-chain average energy per bond shows a discontinuity. The issue of discontinuity is

discussed in Sec. 4.4.

4.2.2 No crossing

Two chain: noncrossing

unbound

O | |
1 1.1 y 1.2 y. 1.3

Figure 4.5: Two-chain phase diagram for o vs y. Non-crossing walk. The two-chain melting is
at y.(0) = 1.264 for ¢ = 0.

If the crossing between the two strands DNA is not allowed, the recursion relations

are same as the crossing case except for d,, which in this case is
dpy1 = d2 + g2b, + 2d,,. (4.7)

The initial conditions are still given by Eq. (4.5). A similar comparison method [Eq. (4.6)]
is used here as in the two-chain crossing case. We obtain the phase diagram in the y-o
plane as shown in Fig. 4.5. For 0 = 0 the two-chain melting is at y.(0) = 1.264, which
is the same as in the crossing case. There is a difference between the crossing and the

non-crossing melting curve for o # 0.

4.3 Three strands

When we consider the three-chain system, several cases are possible. With crossing and
non-crossing conditions and interacting and non-interacting pairs we classify different
models. There are many possible varieties but we will discuss only three of them, TSI,

TS2 and TS3. With different considerations of interactions the models are the following:
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1. Model TS1: This is the non-crossing case and favours two-chain bubble opening

or closure. No contact energy between chains 1 and 3.

2. Model TS2: This is the crossing case with the three-chain repulsion and favours

two-chain bubble opening or closure.

3. Model TS3: This is the crossing case with the three-chain repulsion and weight for

the two- and the three-chain bubble opening or closure.

4.3.1 Model TS1: Non-crossing

In this case walks can not cross each other. We assign a weight Boltzmann factor y
for each interaction between chains 1 and 2, and 2 and 3 ¢ e., Y12 = Y23 = y, but no
interaction between chains 1 and 3, 7. e., y33 = 1. The weight o is assigned for each
bubble opening between all pairs, 7. e., 019 = 093 = 033 = 0. When all chains are
together we consider a weight y? and such a situation can also be described if we take

Y12 = Yo3 = y31 = y and vy, = 1/y. If y > 1, y;;;, is repulsive in nature.

The recursion relations for the partition functions for this model are given by

(ns1 = a2, (4.8a)
bpi1 = b2 + alb,, (4.8b)
Cns1 = €2, (4.8c)
dpy1 = d2 + g2, + Cody, (4.8d)
Cni1 = €2, (4.8¢)
a1 = fi 4 € fo + Bipdn + 30, (4.8f)
In+1 = angn(by + ¢n), (4.8g)
hps1 = hp(anen + bypcy), (4.8h)
i1 = in(Cnen + dpay) + g2hn, (4.8i)

and the initial conditions are

ay = 17 b(] - 17 Co =Y, dO = y27 €o = y27 fO = y47 Jdo = Yo, ho = y20'2, 7;0 = y30'2. (49)
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We look at the divergence or convergence of the ratios

ry = fo+1 (4.10)

byt

fn-‘,—l
rg = ——— 4.11
D bpniden (4.11)
- fn-i—l 4.19
v = R (4.12)
dn—l—l

for given o and y. The idea behind choosing the above three ratios is to compare the

(@) (b)

2 3 1 1

N

3

Figure 4.6: Schematic diagram of a mixed phase of three polymers of two possible configurations.
At each monomer position, two are bound but the third monomer is free along the length of
the chains. (a) Polymer chains can cross each other. (b) Polymer chains can not cross each
other and no interaction between chains 1 and 3.

three-chain free energy with the free energy when three chains are free |5 in Eq. (4.10)],
when one chain remains free while the other two forming a duplex [r3 in Eq. (4.11)]
and when all are paired but no three-chain contact [r4 in Eq. (4.12)]. By looking at the
divergence or convergence of the ratios ro, 73, and r, for different y, ¢ and comparing
these values with the two-chain melting curve, different phases are obtained. We make a
comparison between rs and r4. If we have a phase where the strands are pairwise bound
but no three-chain contact, we can have two possibilities. This mixed phase could be
described either by the free energy In di/fl or by the free energy Inb,id, 1. If there
are pair interactions among all chains and walks can cross each other then for each pair
we get d, 1. If the free chain has limited configurations, we can write the free energy
contribution as In(d2,,)"? = In 4’2, leaving aside other factors. Evenif 1 and 3 do
not interact and walks do not cross each other, the possible phase has the free energy
contribution In(d2,,)3* = Ind”?. The other possibility is to have a situation where
the strands are pairwise bound but no three-chain contact but the free chain has full
entropy, then the free energy is Inb,1d,1;. Fig. 4.6(a), 4.6(b) are the configurations of

the mixed phase for the crossing and the noncrossing cases.
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TS1: noncrossing case

1.2L : bound F;: _
efimov 49—
0.8 .
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0.4} -
0 1 1 1
1 1.1 y 1.2 1.2641.3

Figure 4.7: Three-chain phase diagram in the y-o plane for the model TS1. The bound,
unbound, the Efimov and the mixed states are shown. The red curve is the two-chain melting
curve and is valid for the three-chain case in the region y > 1.07526 but not in the region
y < 1.07526. The Efimov and the mixed both states appear in this case for appropriate o and
Y.

Fig. 4.7 shows the phase diagram if di’/fl describes the mixed phase while Fig. 4.8
would be phase diagram if the mixed phase is described by Inb,,1d,,1. In both cases, we
obtain two different phases, an Efimov phase and a mixed phase. However the Efimov
phase is not a distinct phase. It is just an effect on three chains, where no two are bound
but three are bound. On the other hand, in a mixed phase, the strands are pair-wise
bound but no three-chain contact. In Fig. 4.7, within the range y = 1 to y < 1.07526 for
o > 1.14458 the Efimov region is obtained and the region is enclosed between the line

for ro and the two-chain melting curve. The mixed phase is enclosed between the line

TS1: noncrossing case

I I rl
12 bound ]
efimov
0.8 .
o
0.4 unbound 7
0 | |
1 1.1 1.2 1.264 1.

y

Figure 4.8: Three-chain phase diagram in the y-o plane for the model TS1. This is the correct
phase diagram. The bound, unbound, the Efimov and the mixed states are shown. The red curve
is the two-chain melting curve and is valid for the three-chain case in the region y > 1.07526
but not in the region y < 1.07526. The Efimov and the mixed both states appear in this case
for appropriate o and y.
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for r4 and the two-chain melting curve for y > 1.07526 and o < 1.14458. Based on the

physical intuition we believe, Fig. 4.8 is the correct phase diagram.

4.3.2 Model TS2: With crossing

We now extend the study to a slightly different model with the following characteristics:

e Walks can cross each other.

® Y2 = Y23 = Y31 =Y, Y123 = i

® 019 =093 =031 =0, 0123 = L.

In this model all chains are having equal pair interaction. There is a three-chain repulsive
interaction. A weight is given for the two-chain bubble opening or closure. The recursion

relations for the (n + l)th generation partition functions are given by

Upy1 = a2, (4.13a)
b1 = b2 + alby, (4.13b)
Cna1 = €2, (4.13c)
dpi1 = d> +2¢2b, + 2d,, (4.13d)
i1 = €2 (4.13e)
for1 = f24 €2 fn + 3h2d,, + 3i2b,, (4.13f)
Gnt1 = AnGn(bp + 1), (4.13g)
hni1 = hy(ane, + bycy), (4.13h)
int1 = in(Cn€y + dnan) + 292 R0, (4.13i)

with the initial conditions

% o = ylo.
(4.14)

Following the same procedure of comparison of free energies, the phase diagram is

a=1by=1, co=vy, do=9> eo =v>, fo=1y", g0 =yo, ho=1y’c

obtained in the y-o plane, as shown in Figs. 4.9, and 4.10. Here also we believe Fig. 4.10
is the correct phase diagram.

With the given initial conditions this model exhibits the mixed phase. One sees two
transitions: At low temperature we have a three-chain bound state that goes into the
mixed state (blue line in Fig. 4.10) and the mixed state melts into free chains (red line
in Fig. 4.10).
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TS2: crossing case
1 T T

[

r,——
r,— |
0.6 bound
mixed
0.4 unbound i

0.2 N

0 | | |
1 1.1 121264 1.3 1.

y

Figure 4.9: Three-chain phase diagram in the y-o plane for model TS2. The unbound, the
bound and the mixed phases are shown. The red curve is the two-chain melting curve which
presents in the three-chain case also. There is no Efimov DNA here.

TS2: crossing case

1 [ [ r
1
bound r
0.8+ 3 .
0.6 .
b ’77/')(60,
0.4 unbound i
0.2r .
O | |
1 1.1 1.2 1.264 1.
y

Figure 4.10: Three-chain phase diagram in the y-o plane for model TS2. This is the correct
phase diagram. The unbound, the bound and the mixed phases are shown. The red curve is

the two-chain melting curve which presents in the three-chain case also. There is no Efimov
DNA here.
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4.3.3 Model TS3: With crossing

We consider a different generalization that favours three-chain bubbles

e Walks can cross each other.

1

® Y12 = Y23 = Y3z =Y, Y123 =

1
® 019 =093 =031 =0, 0123 = —

o

Here o < 1. Therefore o153 > 1. Two-chain bubbles are suppresses by o but o193 favours

three-chain bubbles. Here three chains have repulsive interaction. A weight is given for

TS3: crossing case
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Figure 4.11: Three-chain phase diagram in the y-o plane for model TS3. The unbound, the
bound and the Efimov states are shown. The red curve is the two-chain melting curve, which
is not present in the three-chain case.

the two and the three chains bubble opening or closure. However the recursion relations

are same as for TS2 given by Eqs. (4.13a)-(4.131). The initial conditions are

ay = 17 bO = 17 Co =Y, dO = y27 €y = y27 fO = y47 Jdo = Yo, h’O = y20', 7;0 = y30'. (415)

The three-chain interaction is repulsive in this case. Following the same procedure of

comparison of free energies, the Efimov state is obtained and is shown in Fig. 4.11.

4.4 Enmergy diagram

The exact numerical calculations of the total average energy are done by taking the
derivatives of the total partition function. The total average energy of the two-chain

system (Fiot) and the three-chain system (Eiot) [using Eq. (4.2) and Eq. (4.3)] are given
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by [see Eq. (2.15)]

d,Ey
Eiw = =, 4.16
wor Ztot ( )
ot = JuEy, 1 dn. (4.17)
CQtot
The three-chain average energy per bond is shown for model TS1 in Fig. 4.12. For
a 0 =1.25 0 =0.5
@ | . | (b) , , .
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Figure 4.12: Model TS1. Plot of the average energy per bond with y. Dotted lines are to
show the discontinuity in the energy curves. (a)For o = 1.25. The three-chain average energy
(marked as 1) is compared to the two-chain average energy (marked as 2). (b) For ¢ = 0.5. The
three-chain average energy (marked as 1) is compared to two-chain average energy (marked as
2). For both cases the three- and the two-chain average energy approaches the magnitude 2
and 1 with y respectively.

noncrossing TS1 model n, = 2. Fig. 4.12(a) is for 0 = 1.25. The three-chain average
energy (marked as 1) is compared to the two-chain average energy (marked as 2). This
shows the nonzero three-chain average energy, eventhough the duplex average energy is
zero. This is the Efimov-DNA, observed in Chap. 2 for d > 2. Thus we conclude that,
for appropriate values of y and o, the Efimov effect is induced for d < 2.

Fig. 4.12(b) is for 0 = 0.5. The three-chain average energy (marked as 1) is com-
pared to the two-chain average energy (marked as 2). The transition from the unbound
to the mixed state is at the same temperature as the two-chain case, i. e., at y.(o).
The transition from the mixed state to the bound state occurs for y > y.(o) (lower
temperature).

The average energy curve in Fig. 4.12(a) marked as 1 shows only one jump, where
as in Fig. 4.12(b) the average energy curve marked as 1 shows two jumps. In the later
case the two transitions are from the unbound to the mixed state and from the mixed
to the two-chain bound state. So it is predicted that the Efimov state is a crossover, not

a separate phase. The transition from the unbound to the two-chain bound sate is first
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order. So is the transition from the mixed state (denoted by bd) to a three-chain bound
state (described by f).

4.5 Remarks

All the models and results are given below for easy reference. Model TS2 shows the

Model: TS1 Model: TS2 Model: TS3
Non-crossing Crossing Crossing

Y12 =Y23 =Y, Oij =0 Yy =Y, Oij =0 Yis =Y, Oijj =0
ys1 =1, o3 =1 Y123 = 1/y, o123 =1 Y123 = 1)y, o123 =1/0
Efimov, Mixed Mixed Efimov

Table 4.1: The results obtained from the three-chain models with the initial conditions are
shown. The new phases obtained are also flashed in this table.

mixed state, model T'S3 shows an Efimov like state. But for model TS1 we get both of
the states though in different regimes of o and y. If we compare models TS2 and TS3
where three-chain interaction is repulsive in nature (y23 > 1), there is a bias in TS3 for
three chain bubble opening or closure. This biasing seems to favor the Efimov effect in
TS3. For o = 0 the models are like the Y-fork model, which show a first order transition.
All the models come out to be same for ¢ = 0 and y.(0) = 1.264... denotes the melting

for the two- and the three-chain systems.

4.6 Conclusion

In this chapter we have shown that, when an extra weight o in the favour of the two- and
the three-chain bubble opening and closure is introduced, the phase transition occurs
even in d < 2. Here we have obtained the Efimov-DNA, a loosely three-chain bound
state where no two are bound. This observation is same as discussed in the previous two
chapters (Chap. 2 and Chap. 3). In addition we have obtained a new state, to be called
a mixed state, where locally any two are bound keeping the third-strand always free but
in a global view no one is completely free.

The limiting model for o = 0 is the Y-fork type which shows a first order transition
without any bubbles. No Efimov or mixed state are possible in this case. In fact the
transitions for ¢ > 0 in these models are also first order and we have observed the
intermediate phase (mixed phase) for y > y.(0) and the Efimov state for y < y.(c). The

intermediate phase evolves as a separate phase but the Efimov state is a crossover.






Dynamic phase transition in the conversion

of B-DNA to Z-DNA

In this chapter we study the conformational conversion of B-DNA to Z-DNA using wave-
front propagation and obtain the dynamic phase diagram. The dynamic phase diagram
is obtained for the stability of the front separating B and Z. The instability in this front
results in two split fronts moving with different velocities. This shows that, depending on
the system parameters a denatured state also may develop dynamically eventhough it is
thermodynamically forbidden. This resolves the current controversies on the transition
mechanism of the B-DNA to Z-DNA.

This chapter is organized as follows. The conformational transition of B-DNA to
Z-DNA is studied using wave-front propagation. We discuss the wave front propagation
in Sec. 5.1 with a suitable example. Our proposed thermodynamic model is introduced
in Sec. 5.2. The dynamic phase diagram is discussed by numerical and perturbative

approach in Sec. 5.3. Conclusions are drawn on the B-Z transition mechanism in Sec. 5.4.

The two main competing hypotheses for the B to Z transition mechanism are on
the foyer to motivate us to study the B-Z transition mechanisms with a thermodynamic
model. With the purpose of investigating the transition procedure, we consider a coarse-
grained thermodynamic model and restrict the geometry to one-dimension only. We
maintain the boundaries of the long chain in the two states so that the new structure
develops from one side. In such a problem, the dynamics of the transition produces a
steady state with uniformly moving front or fronts. An investigation of various types of
fronts would clarify the dynamic generation of any thermodynamically forbidden state.
With that ambition we study the transition from the B-DNA to the Z-DNA by using
the theory of wave-front propagation. In the next section we review the wave front

propagation method with an example of two coexisting states.
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5.1 Wayve front propagation

In this section the wave front propagation is discussed very briefly. Front propagation
phenomena arises from the reaction diffusion equation [99, 100]. An interface develops
between two distinct phases (one is stable and another is unstable). A driving force
tends to favor the stable state among the different distinct phases. As a result the
interface starts moving. The moving interface is actually characterized as the traveling
wave front when one phase invades the other. Front propagation is widely used in the
study of many biological events such as epidemic dynamics, population dynamics, pulse
propagation in nerves or other growth dynamics. To study the helicase activity on DNA,
a simple coarse grain model was proposed by Bhattacharjee [101]. By the study of wave
front propagation he proposed that the Y-fork is an interface whose propagation is the
basic step for the replication procedure and replication mechanism. We also encounter
propagating front in spreading of flames, chemical reactions and in any dynamic system.
If the dynamics is governed by a nonlinear diffusion equation the quantity of interest
would be to measure the rate of convergence of velocity or relaxation of velocity and how
the interface of a wavefront propagates into an unstable state. For a wide range of initial
conditions the velocity of such a front approaches a marginal value. In asymptotic limit
the velocity of the traveling wave is uniform and the shape of the wave front remains
unchanged.

Let us consider the Landau free energy such that, its minimization describes two
homogeneous states given by ¢ = 0 and ¢ = 1. The order parameter ¢(z,t) is the
diffusive field in one dimension with z (space) and ¢ (time), two independent variables.
The equation governing the propagation is of the form

dp ¢
= = D53+ 19), (5.1)

where D is the diffusion coefficient and f(¢) is the thermodynamic force, derived from

the Ginzburg-Landau free energy

o) = [ ds [§ (?) £ F(9)

where F(¢) = — [ f(¢)d¢ is the Landau free energy, and ¢(—oo, t) =1, ¢(oo, t) =0 as

the boundary conditions. The traveling wave solution satisfying Eq. (5.1) is given by

, (5.2)

¢(z,t) =U(r), where 7 =2z—ut. (5.3)

In Eq. (5.1), f(¢) acts as a “force” on the interface, as a result of which the induced
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interface between the two states suffers an instability. The traveling front moves with
velocity v, which is to be determined.

In contrast to the non-linear diffusion equation the simple diffusion equation does
not lead to any velocity and can be verified very easily. If we substitute Eq. (5.3) in
Eq. (5.1) with f(¢) = 0, the solution comes out to be

U(t)=A+ Bexp%uT,

where A, B are the integration constants. Since U has to be bounded for all z, B must
be zero as the exponential becomes unbound for 7 — —oo. Therefore U(7) = A, a
constant can not be a wave solution. Hence simple diffusion can not have traveling wave
solution. Dimensional analysis is a simpler way to justify the above argument. The
velocity, determined by the dimensional analysis is [v] = % ~ \/g . This shows that
at any t = t;, v is infinity. Therefore the diffusion equation does not have a well defined

velocity.

Figure 5.1: The Landau function F(¢) as a function ¢. ¢ = 1 is the stable state and ¢ = 0
represents the unstable state.

Due to the time dependency, the diffusion equation can not be reduced to a thermody-
namic problem. But the nonequilibrium process is driven by the underlying equilibrium
Landau function. If the force term involves the stable phase at ¢ = 1 and the unstable
phase at ¢ = 0, then

f(9) =ko(1— ), (5.4)
where k is a constant and the Landau free energy is
Loy 14
F(¢) = —k(§¢ - 5625 ). (5.5)
The nonlinear diffusion equation
0p 0%¢
— = 1— D— :
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with the boundary conditions
¢(—o0, t) =1, ¢(oo, t) =0, for all t, (5.7)

is known as the Fisher-Kolmogorov (F-K) equation [99]. Here £ > 0 and D > 0. The
positivity of D ensures the stability of the system. The nontrivial dynamics emerges
from the competition between the diffusivity and the non-linearity of the force term. As

a result, the stable state invades the unstable one.

Rescaling the F-K equation by £ = kt and z = z\/% we get

0¢ D¢
For notational simplicity we avoid the tilde sign. Therefore Eq. (5.8) becomes
0¢ D¢
— =01l — —. .
0 -0+ 2% (5.9)

In the spatially homogeneous situation the steady states are ¢ = 1 and ¢ = 0 which are
respectively homogeneous stable and unstable states. We restrict ourselves in the region
0 < ¢ < 1. Note that Eq. (5.9) is invariant under reflection of z. With the uniformly

translating front solution,
¢(z,t) =U(r), where 7 =2z —vt, (5.10)

Eq. (5.9) is written as
U'+oU +U(1-U) =0, (5.11)

where the prime denotes the derivative of U with respect to 7. The boundary conditions
UlrT— —c0)=1, U(t - 00)=0 (5.12)

denote the stable and the unstable states respectively. To study Eq. (5.11) we split the
second order differential equation into two first order differential equations in the (U, P)

plane, called the phase plane as follows

% =g(U,P) = P, (5.13)
g =h(U,P) = —vP-U(1-0). (5.14)

In the phase space approach it is easy to handle higher order differential equations by

mapping into first order differential equations and with the fixed points one can know
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the bulk behavior by extrapolating the behavior around the fixed points in the space. By
equating Eqs. (5.13) and (5.14) to zero, one would get the fixed points ((Us, Ps)) which
are (0,0) and (1,0). Here s runs over 1,2. The points in the phase plane correspond
to the stable and the unstable states respectively. Since these fixed points control the
whole dynamics, the aim would be to concentrate on the region around these points.

The ratio of the above two differential equations,

dP  —vP - U(1-U)
av P ’

(5.15)

justifies calling fixed points as singular points. Eq. (5.15) possesses a unique solution
over the phase space except at the fixed points, i.e., only one trajectory will pass through
any point on the phase space. Here the region of interest can be studied by the linearized
function g(U, P) and h(U, P) considering (U —Us) and (P — P;) to be small. The stability
operator is obtained from Egs. (5.13) and (5.14), by the Taylor expansion of ¢(U, P) and
h(U, P) about the fixed points and by keeping the leading order terms. The velocity of
the front is determined by the eigenvalue equation of the stability operator. Eqgs. (5.13)
and (5.14) describe the flow in the phase plane (U, U’) corresponding to the stable fixed
point (0,0) and unstable fixed point (1,0). Here 7 plays the role of time. The uniformly
translating front solutions of Eqgs. (5.13) and (5.14) corresponding to the trajectories

between the two fixed points are given by

U/ - US/ AT ApT
(U _ US) = Ccaje -+ c2bje + s (516)
where ¢; and ¢, are arbitrary constants, a; and b;(for j = 1,2) are the eigen vectors of
the stability matrix corresponding to the eigenvalues A;. The eigenvalues for the fixed

points (0,0) and (1,0) respectively are given by,

1 tabl de f 2>4
Ap = o[—vE VT —d) = { TO00 Bote Teh T (5.17)
2 stable spiral for v? < 4
and .
Ay = 5[—1} + Vv? + 4] = saddlepoint. (5.18)

Eq. (5.17) puts a bound on the velocity. The critical velocity obtained is v* = 2. With
velocity v > v* we get the stable node whereas for v < v*, U shows an oscillatory
behavior, corresponding to the stable spiral node. But as per the boundary conditions,
v < v* is forbidden. The threshold velocity v* is called the marginal velocity. The linear
stability analysis around the unstable fixed point gives the stable node for (0,0) and

saddle point for (1,0). The trajectory connecting these two fixed points is shown in
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Figure 5.2: (a) Two fixed points (0,0) and (1, 0) in the phase space are connected by a separatrix.
Arrows represent the direction of flows. Each line represents a trajectory in the phase space.
Red lines are the two eigen vectors with eigenvalues A, Ay. (b) This is the profile of the
front moving along the positive 7 direction. In (a), as one starts from (1,0), where U = 1,
moves along the trajectory with U’ < 0 everywhere, and reaches (0,0), where U = 0, one gets
the separatrix connecting the two fixed points. The front profile follows from this particular
trajectory.

Fig. 5.2(a). The front profile is obtained from the separatrix, connecting the two fixed
points, when U(7) is plotted with 7. The wave solution shown in Fig. 5.2(b) moves along

the positive z direction with uniform velocity v* = 2.

Therefore we see that the interface between the two homogeneous states propagates
from an unstable state to a stable state with a well defined velocity. A linear stability
analysis about the unstable position determines the linear marginal stability. In the
asymptotic limit the front approaches the critical velocity v* which shows that the front
has the uniformly traveling wave solution. We exploit this methodology to study the

dynamics of the B-Z interface.

5.2 Model

Our model consists of three states B, the denatured state, and Z, to be represented by
the parameter ¢ = —1,0, 1, respectively. The space and time coordinates z and ¢ are
taken to be continuous. It is a one dimensional problem where ¢(z,t) describes the state
of the coarse-grained base-pair at index z along the DNA. For the B-Z transition, we
take ¢ = —1 (B state) to be unstable (or metastable) which is getting invaded by the
stable state at ¢ = 1 (Z state). We study this phenomenon through a Landau free energy

F(¢) taken as a sixth order polynomial with the coefficients chosen to have extrema at



5.2 Model 67

(@
0.2 b

| F®) )

; [ J
AT Q| v 9 4
-0.1 | N __]

-0.2 \ \ \ ) —.l 0 1

-1 -05 0 0.5 1 U

Figure 5.3: (a) The Landau function F(¢) as a function of ¢. In all cases, ¢ = 1 is the stable
state, Z-DNA, ¢ = —1 represents an unstable (dashed line) or metastable (solid and dotted lines)
state, B-DNA while ¢ = 0 is a quadratically unstable (solid and dashed lines) or metastable
(dotted line) state, denatured state. The three cases I, II and III in the text correspond to
dotted, solid and dashed lines. (b) Potential V(U) = —F(U) for the particle-on-a-hill analogy.

¢ = 0,%1. This is ensured by choosing the thermodynamic force f(¢) as

10) = =02 = 606 + a6 - B)(1 - )1 +9). (5.19)

where «, 3 > 0 are constants, whose values are system specific. Needless to say, the

relative stability of the three phases can be adjusted by «, 3. The Landau Ginzburg free

H(o) = / i [g (%)2 + F(¢)] , (5.20)

where D > 0 is the elastic constant. D-term allows inhomogeneity, e.g., at the interface

energy is taken as

between two phases. The three homogeneous phases are given by the minima of the
Landau free energy F'(¢). The dynamics is governed by the non linear diffusion equation
0¢ OH D¢
— =—=D— 5.21
derived from Eq. (5.20) in the overdamped limit. The geometry to be considered is such
that the B state is on one side and the Z state on the other with the front moving towards

the unstable state. For the B-Z case, this is ensured by the boundary conditions

Oz — —o0, t) =1, oz — 0, t)=—1
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for Eq. (5.21) for all time. A few other boundary conditions are considered too. The
three generic cases obtained by fixing o and 3 are the following (see Fig. 5.3(a))

e Case I : while quenching to the stable state, Z, state B remains in a metastable
state while the denatured state ¢ = 0 is also metastable. Since the barriers are

somewhere in between ¢ = —1 and ¢ = 1, we have 0 < o, § < 1.

e Case II : the metastable state (B-DNA) sees a barrier somewhere inbetween —1
to 0, while the denatured state is quadratically unstable state. This case is for
0<a<l1,and §=0.

e Case III : unstable B state quenched into stable Z while the denatured state remains
in a quadratically unstable state (i.e., without facing any barrier). This happens
when o > 1 and = 0.

To be noted that cases I and II are similar to the free energy landscape obtained in
Ref. [102] as the potential of the mean force obtained from molecular dynamics.

The diffusive term in Eq. (5.21) coming from the elastic part of Eq. (5.20) tends
to smoothen out any inhomogeneity while the driving force f(¢) tends to favour the
stable state whenever there is any inhomogeneity. The combined effect of the diffusion
like spreading and the selection of one phase by the drive leads to a steady state where
the interface shows a uniform motion and takes a shape which is not necessarily the
equilibrium shape [99]. Based on the Fisher-Kolmogorov (F-K) idea, the traveling wave
solution ¢(z,t) = U(z — vt) can be used to rewrite Eq. (5.21) as

T4—1)—7_4—f(U):0, (1 =2z —wt), (5.22)

where v the velocity of the front is to be determined. The interface which we are studying
is between ¢ = +1 and ¢ = —1 states. Eq. (5.22) can be interpreted as the motion of a
particle moving in a potential V' = —F(U) (Fig. 5.3(b)) starting at the hill at U = +1 at
time 7 = —oo just reaching the other hill at U = —1 at time 7 = +o00 losing energy due
to “friction” v. For a given potential, such a motion is possible only for particular values
of v and that velocity is the selected velocity of the front. However, it is also possible
that the particle spends an infinite amount of time in the intermediate state so that the
descent from U = +1 to U = 0 and the descent from U = 0 to U = —1 are independent
requiring two different friction coefficients. The physical picture that emerges is that the
stable state moves towards the unstable state, and the propagating front will have a time
independent shape and a constant velocity v. However in some situations, the initial big
front separating the two phases ¢ = £1 splits into two, one front between ¢ = —1 and

¢ = 0, while the other one between ¢ = 0 and ¢ = 1. The two smaller fronts move



5.3 Dynamic phase diagram 69

(@) 1 . (b) . | .
051 1 2012 .
o= 'S Vo1
& ° _t—O 4 \40\80 200 _ % 0.09 b
S-05F 17
\ 0.06 | | | .
-1
0 10 20 30 0 50 100 150 20
z time

Figure 5.4: For @« = 0.4 and # = 0.2. (a) The time evolution of the profile is shown. The plot
¢ vs z for different time ¢t as marked. Arrow shows the direction of velocity. The stable state
Z invades B. (b) Velocity as a function of time. With time, the velocity approaches a uniform
value.

with different shapes and speeds v_1g,v0;. The ¢ = 0 state may then get dynamically
generated. Consequently one may see the development of the denatured state. The less
preferable state will eventually be devoured by the stable state completing the transition
from B- to Z-DNA.

5.3 Dynamic phase diagram

5.3.1 Numerical approach

The velocity of the front has been determined by numerical analysis for different bound-
ary conditions like (a) ¢(—o0,t) =1, ¢(c0,t) = —1 for the B-Z front, (b) ¢(—o0,t) =1,
¢(00,t) = 0 for a front between Z and the denatured state, (¢) ¢p(—o0,t) =0, ¢(o0,t) =
—1 for a front between B and the denatured state. The initial (f = 0) interface of width
w is located at z = zg where zy chosen away from the boundary and a Crank Nicolson
method is used to evolve the nonlinear diffusion equation. For numerical solution we
choose discrete lattice spacing and time of the order 1072 and the diffusion constant
D of the order 1. The interface evolves to its steady state starting from any arbitrary
initial profile as shown in Fig. 5.4(a) for &« = 0.4 and 5 = 0.6 (Case I). The initial profile
at ¢ = 0 is taken very sharp and seems to evolve with time as shown in the diagram.
Once a steady state is reached, the velocity is determined by locating the positions at
which ¢ = £.5, and ¢ = 0 as appropriate. The velocity corresponding to the profile in
Fig. 5.4(a) approaches a uniform velocity with time and is shown in Fig. 5.4(b). Since
the F-K analysis is based on the linear stability analysis around the unstable fixed point,
in the case of the split front, only the velocity vy, can be obtained by the F-K analysis,

but not in general.
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Figure 5.5: (a) Plot of velocity vs « for a fixed value of 5 = 0.45. Three velocities meet at a
common point at a. (). The remaining three figures (¢ vs z) represent the time evolution of
the front (or fronts). (b) A single front for a = 0.6 < a. (). (c) A single front for @ = 0.7
near . () with a signature of the width widening but no “0” phase. (d) For a = 0.72 > a. ()
single front splits into two fronts.

The dependence of the velocities on « for a fixed 3 is shown in Fig. 5.5(a). We see
that three fronts move with different velocities for a@ < a.(8) with vg; > v_11 > v_1p.
All these velocities are same at o = a.(). For a > a..(3), the B-Z front splits into two
fronts and the denatured state grows with time as (v_19 — vp1)t. It is straightforward
to see that no stable front between 41 can exist if v_jy < vg;. Also the v_q; curve ends
at a.(f) and has no continuation for a > a.(/3). This indicates that a.(() is a singular

point.

The numerically determined «.() vs [ line is shown in Fig. 5.6. This is the phase
diagram for dynamics with the phase boundary as the limit of stability of the BZ front
(from below). The intersection of the critical and o = [ lines, turns out to be an
equilibrium point. The phase diagram can be confirmed by considering a few special
cases. For a = 3, the free energies of B and Z are same (see dotted curve in Fig. 5.7(b))
and the BZ front should have zero velocity. The point a = § = % corresponds to
the equilibrium situation with equal free energies of all the states (see dashed curve in
Fig. 5.7(b)), for which all the three fronts are static, and therefore the condition to be on
the phase boundary is trivially satisfied. This point is denoted by ¢ in Fig. 5.6. Along
the a = f line for o < a.(8), vo1, v_10 # 0 with state +1 or —1 invading 0. In contrast in
region 2, along the same o = 3 line, “0” is the stable state and it invades both £1 states.
In region 2 above the dotted line, obtained by equating F'(1) = F/(0) [Eq. (5.19)], the “0”
state grows with the two fronts moving away from each other as shown in Fig. 5.8(a) for
a = 0.7 and # = 0.6 and corresponding velocities in Fig. 5.8(b), but below that dotted
line in region 1 the Z state grows though the fronts move in the same direction (towards

right). The Z < B symmetry in our choice of the free energy mandates a symmetric
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Figure 5.6: Dynamic phases in a plot of « vs 3, the boundary (solid red line) being given by
a = a¢ (). In the region below the boundary line, a single front between —1 to 1 (big front)
propagates without splitting. In the region above the boundary line the front between —1 to
+1 splits into two (small) fronts. Z, “0” and B are the stable states in regions 1, 2 and 3,
respectively. The dotted line corresponds to vg; = 0, while the dash-dotted line to v_19g = 0
and the corresponding free energies are shown in Fig. 5.7(a). The split fronts move away from
each other in region 2 (corresponding free energy curve is shown in Fig. 5.7(b) by a dotted line),
both towards right in 1 and both towards left in 3, as per the chosen boundary conditions. The
big front has zero velocity on the o = (3 line and the corresponding free energy curve is shown
in Fig. 5.7(b) by a solid curve. The diagram is symmetric around the o = 3 line. Point q
represents the equilibrium point, where three states have the same free energy as shown in
Fig. 5.7(b) by a dashed curve.
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Figure 5.7: Plot of F(¢) as a function ¢. (a) Dotted curve with o = 0.583, 3 = 0.45 corresponds

to v_19 = 0, and dashed curve with a = 0.45, § = 0.583 corresponds to vg; = 0. (b) The Landau
function F(¢) as a function ¢. Dotted curve is for « = = 0.7, dashed curve is for a« = § = %
and solid curve is for a = § = 0.5.

phase diagram across the a = 3 line with the fronts moving towards left in region 3.
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Figure 5.8: For @ = 0.7 and § = 0.6. (a) The time evolution of profile is shown to split into
two parts. The plot ¢ ws z is for different time ¢ as marked. Arrows show the direction of
velocity. The split fronts move opposite to each other. The denatured state invades both B and
Z. (b) Velocity as a function of time. With the time, the velocity of the lower and the upper

fronts v_19 and vg1 approach the uniform velocities. The negative velocity represents the front
propagation towards —z direction.

5.3.2 Perturbative approach

If a small change causes a small effect, then a perturbation theory is applicable. So
a perturbative analysis around the point of equilibrium can be done provided the free
energy difference between the two states is small enough, to deduce the dynamical prop-
erties from the static or the unperturbed case. Here for o, 3 close to the equilibrium

point a = 3 = %, a perturbative analysis [103| is done to determine the velocity, which
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is now a small parameter. With a small perturbation, the front solution is

Oz, 1) = ¢o(2) + ¢1(2, 1), (5.23)

for the force

f(@o+ d1) = f(¢) +0f(d) = f(do) + ¢rf (do) + 0.f (o), (5.24)

where ¢g(z2), f(¢o) are respectively the profile solution, and force term for the equilibrium
interface. The equilibrium profile is static. Here the perturbation series is in the small
parameter e. With the substitution of the perturbative expressions Egs. (5.23) and (5.24)
in Eq. (5.19) and by keeping the leading order terms in the series we get,

$o(2) = —f(d), (5.25)
Hopr = 6f(¢o), (5.26)
where ) 5 o

Hy = o 92 foldo(2)),

and prime on ¢ and f denotes the derivatives with respect to z, and ¢(z), respectively.
The static solution satisfies Eq. (5.25), where ¢,(2) is an eigen function with an eigenvalue
Ey = 0. Therefore for the rest of the nonzero eigenvalues, with eigen function an(z), the

time independent part can be written as

0? / ~
{@ + f (¢0):| ¢n(2) = En ¢n(z) (527)
Let us assume Green’s function of the form
G(z, zit, t1) = D du(2)dn(z1)e 71, (5.28)
Therefore the solution of ¢, comes out to be
t o0
¢1(Z, t) :/ dtl/ le G(Z, Zl;t, tl)df(¢o) (529)
0 —00

With the known eigenvalue corresponding to the eigen function ¢, we are able to to find

¢1, which is

t%(z) J doo 5f(¢0).
J dz|o(2)]?

¢ = (5.30)
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Because of the existence of the traveling wave solution, by writing, to first order in the

velocity v, the front solution for a small change around the equilibrium position will be

Oz, t) = po(z) — vt ¢6(2) (5.31)

So by comparing Egs. (5.30) and (5.31), v can be written with the eigen function renor-

malization factors as

v = OOA—}T, (5.32)
IRECE
where,
AF =~ [ don 5(on). (5.33)

Thus we see that v can be determined to first order in free energy difference if ¢ is
known. In the equilibrium situation, there is a Goldstone like zero-energy mode [103],
because, the interface can be placed anywhere or shifted along z without any cost of
energy. We therefore take ¢g(z) as centered around an arbitrarily chosen origin. The

static solution for the free energy F(¢) [from Eq. (5.19)] satisfies,

L 2 Lo, 2

5(%(2)) = F(¢o) = 6%(% - 1)~ (5.34)
With a first order correction, the velocities of the interfaces are

% = T AR (5:35)

where 7, 7 = 0, £1, and the free energy differences ¢;; are

1 _
€1 = —E — 2% + %ﬁ, (536)
1 _
1= - 2(0‘155) - O‘Iﬁ, (5.37)
e = —4(0‘1_5”6). (5.38)

At the point of equilibrium o = 3 = %, all these front velocities are zero implying

the static fronts. At the perturbative regime, by equating the velocities, we find the

slope of the critical line around (%, %) The slope can be obtained from
€1 — €—-10 O €p1 — 6_11/2. (539)

For the small fluctuations on « and 3 ¢ e., for a — % + 0 and [ — % + 643, from
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Eq. (5.39) we get
da = —4p. (5.40)

Thus we see that around the point of equilibrium the straight line is with the slope —1,
which is consistent with the numerically determined phase boundary shown in Fig. 5.6.
Moreover we also find the phase boundary to deviate very slightly from a straight line
over the range shown there. There is a deviation from linearity beyond that but the

numerical error becomes larger.

We next study the behavior of the width of the interface and of the appropriate
timescale for the dynamics. For the special case of § = 0.5 as @ — . () the divergence
of the width has been noted in Ref. [104]. At a = (3 = %,
can be inserted and therefore the width of the BZ interface at the limit of stability is
infinity. On the split-front side (Fig. 5.5(d)), the width increases linearly with time as
W = (vo1 — v_10)t [Fig. 5.9(a) for v = 0.75205]. While, on the other side of the phase
boundary the single front (Fig. 5.5(b)) has a finite width (Fig. 5.9(a) for a = 0.745).
Close to the phase boundary though a deformation of the moving front is visible around
¢ = 0 (Fig. 5.5(c)), but width saturates at large time (Fig. 5.9(a) for o = 0.75175)

without any appearance of the denatured phase. Hence scaling forms are expected as

any length of “0” domain

We~la—a () 7", 7~W2

Fig. 5.9(a) shows the time evolution of the width of an interface for various « at a fixed

[, where the instantaneous width W of the interface at time t is obtained as

W? = <z22>— <z>% where (5.41)
2
J 2" (%) dz
> = . (5.42)

J(42) as

Another way to characterize the width would be to look at the slope of the profile

. e, d(Z—(Zz) , which is related to the inverse of W and also shows the scaling with
$=0

characteristic dynamic exponent. We started with an interface that has an insertion of

the “0” state and the width monitors the decay or the growth of the “0” state. The width

saturates exponentially for o < a, () albeit slowly near & — a.—, while a linear growth

is observed for a > a. (). Time here refers to the discretized time in the Crank-Nicolson
approach. By fitting an exponential to the time evolution of W, the characteristic time
scale was determined, for a < a. (). The exponent p is found to be rather small, not
inconsistent with the logarithmic growth observed in Ref. [104]. Fig. 5.9(b) shows the
log-log plot of 7 vs W indicating a value of z within 3.0 to 4.0. However for better
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accuracy one requires a large system and long time observation as well. The divergences

of W and 7 with scaling establish the critical nature of the a = a. (/) line.
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Figure 5.9: (a) Time evolutions of the width (in arbitrary units) of the front are shown for
different values of « keeping 3 = 0.4 fixed. The initial front had a stretch of “0” phase which
decays for a@ < a. () but grows linearly for v > . (). The timescale to reach saturation
increases as o — . () —. For this case a. () ~ 0.752. (b) Log-Log plot of width versus time
scale for a < a. (). Two solid line slopes are shown far from and near a. ().

Despite the immense success in probing the various phases of DNA by single molecular
manipulation techniques, interfaces have not been explored thoroughly. We hope our
results will motivate direct studies of interfaces of DNA, especially their stability. Even
on the theoretical front, it remains to be seen if all atom molecular dynamics simulations
that have been successful [102, 105, 106] in seeing various phases, can be used to monitor

the dynamics of interfaces, B-Z in particular, under given boundary conditions.

5.4 Conclusion

In this chapter we have studied the conformational transition from B-DNA to Z-DNA. We
have considered the Landau free energy to describe the B-Z interface and have formulated
the propagating front equation. With the wave front propagation approach and the
numerical calculations we have obtained the dynamic phase diagram. The dynamic
phase diagram for the steady state is obtained in the a-/3 plane, where «, § characterize
the relative stability of the phases, by the critical value a. for different values of 5. We

have obtained an equilibrium point, the Goldstone like free energy mode. The phase
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boundary in the a-(3 plane has been determined and corroborated by a perturbation
analysis. The dynamic transition is associated with diverging length and time scales and
has its own dynamic exponent. On one side of the phase boundary the dynamics involves
propagation of one B-Z interface with a uniform speed, while on the other phase such
an interface is unstable leading to the formation of the thermodynamically forbidden
denatured state. This in turn, suggests that there is no unique mechanism for the B-Z
dynamics and it is possible to switch from one type to other by tuning the parameters.
A resolution of the controversy in experiments is that the two cases, namely nanotube

and magnetic tweezers are on the two sides of the phase boundary.






Summary

In this thesis we have studied the melting of a triple-stranded DNA and the conforma-
tional transitions of a double-stranded DNA from the B from to the Z form of DNA.
To address the problems we have adopted real-space RG, exact iteration, wave front
propagation and perturbation methodologies.

In the introductory section we reviewed on the following topics:

e We introduced the double and the triple helix DNA. Following the direct analogy
between DNA and quantum mechanics we discussed the quantum Efimov effect

exhibited by a three-particle system.

e Directed polymer on hierarchical lattices and on fractal lattices like the Sierpinski
Gasket are introduced. We reviewed some exact results of the directed polymer

chains solved on such pseudo lattices.

e We gave a brief introduction to the real-space RG. The zeros of the partition
function associated with the phase transition are discussed. Thereafter the Julia

sets in connection with the zeros of partition function are discussed.

e Various thermodynamical studies including melting, unzipping and other thermo-
dynamic properties of the double-stranded and the triple-stranded DNA have been

reviewed.

e The conformational transition of B- to Z-DNA has been introduced. This includes
the introduction to the B and the Z form of DNA, the B-Z transition mechanism,
the role of the BZ interface and the existing contradictory hypotheses on this

transition.

We modeled the three-chain system as three directed walks on a diamond hierarchical
lattice of dimension d > 2, and used the real-space RG method. We studied both
the cases of symmetric and asymmetric pair interactions. By looking at the RG flows
of the two- and the three-chain Boltzmann factors we predicted the existence of an

effective three-strand bound state in conditions where duplex would be in the denatured
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state. Such a loosely bound state is called the Efimov-DNA. Further exact numerical
calculations are used to validate the prediction of such a polymeric Efimov effect. We
found the nonzero three-chain average energy in the unbound region of the duplex DNA.
The Efimov transition point was found to be discontinuous. The Efimov DNA was found
thermodynamically more stable than the duplex DNA. In addition we showed different
Efimov transition points for different dimensions.

The prediction of the Efimov-analog three-chain bound state was corroborated by
the zeros of the partition function. These zeros produce fractal-like structures, and
they pinch the real axis in the thermodynamic limit with an angle determined by the
exponents characterizing the phase transition. We found that all the transition points
obtained from RG flows, are consistent with the zeros of the partition function. We
showed that the Efimov effect occurs even if the three-chain interaction is repulsive in
nature. We found that a transition can be induced in higher dimensions (d > 4.1) from
the Efimov state to the three-chain critical repulsive state, when chains are critically
paired. We emphasized on the nature of the transitions and found that the transition
to this three-chain critical repulsive state is continuous obeying a finite size scaling law
with exponents obtained from the RG. In addition we found a new state, where three
chains are bound with no three chain contact.

The existence of an Efimov DNA was further verified on a Sierpinski Gasket lattice
of dimension d < 2 by applying some extra weight factors to the polymer chains. A
new state to be called a mixed state is found, where in closer view any two chains are
always bound keeping the third free, but in global view no one is free. The mixed phase
was found to be a separate phase, where as the Efimov state appeared as a crossover.
We suggested that the triplex DNA might provide a unique, amenable biological testing
ground for the Efimov effect.

We gave a theoretical explanation to the B-Z transition mechanism. We modeled a
Landau free energy and applied the wave front propagation approach to find the steady
state velocity of the B-Z interface. By varying the system parameters determining sta-
bility and instability of the homogeneous states, we obtained a dynamic phase diagram,
which was further corroborated by a perturbation analysis. We found that, on one side
of the phase boundary no intermediate state is formed but on the other side of the phase
boundary “0” state is preferred. As a result the denatured state develops dynamically
eventhough it is thermodynamically forbidden. We showed that the dynamic transition
is associated with a diverging length scale with its own dynamic exponent. Such a the-
oretical analysis resolves the current controversies on the transition mechanism of the

B-DNA to Z-DNA.



Julia set

Earlier we discussed the Julia set in Chap. 1 and Chap. 3. We give an example of a
quadratic equation [Eq. (1.12)] to describe the Julia set. In the same spirit, the two-
chain RG relation [Eq. (3.2)] is written in a quadratic form as

22

o=l (A1)

where ¢ = b_Tl. At the critical threshold of two-chain melting (i. e., y = y.), the

three-chain RG relation |Eq. (3.3)] can be written as

—1)3
%:“w)44+& (A.2)

where ¢ = ,)2(1’,)_7_21)2 + . Here ¢, ¢ are not arbitrary and are determined by b. In our

/!

model ¢/, ¢’ come out to be real. We obtained fractal-like structures, as discussed in

Chap. 3.






Limit cycle

The connection between the quantum Efimov effect and RG limit cycles is discussed in
Ref. [21]. The emergence of an infinite number of bound states at the critical two-body
zero-energy state is linked to the limit cycle behaviour. A limit cycle is an isolated closed
loop with certain periodicity, which appears due to the complex fixed points obtained
from the RG flow equation, and where the running parameter e. g., coupling constant

retraces the path of that closed loop forever with a certain periodicity.
For two successive generations Eq. (3.3) will be

Wy, — Wyy1 = f(Wpi1) — Wpy1 (B.1)

But if the continuum limit is taken, Eq. (B.1) can be written as

d
1 = —(w = w)(w = w), (B.2)
dl
at the critical line y. = b — 1, where [ =1In L and L = 2". For complex w1 = o + i3, the

solution of Eq. (B.2) is then
w=a—pFtanF(Inl + 0), (B.3)

where 6 is the integration constant. The above equation reflects the periodicity of w in

In/ with the property
T

w(l) = w(l\), where In\ = 3 (B.4)
Here as [ increases w approaches dco. This behavior can be mapped into a limit cycle

in the complex plane with a phase factor defined by the equation

o = L (B.5)
w — w_
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With the help of Eq. (B.2) and its derivative, ¢ will be

&

«

) Inl + ¢o, (B.6)

where ¢ is the integration constant.
Our model on the hierarchical lattice is a discrete model. Certainly a limit cycle is
obtainable from the RG relations in the continuum limit, but it is not straight forward

to do so in the discrete case.
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