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Synopsis
The aim of this thesis is to study the melting of a triple-stranded DNA (tsDNA) and theonformational transition of a double-stranded DNA (dsDNA) in partiular from the Bform to the Z form of DNA.Certain sequenes of Watson-Crik-dsDNA allow a third strand DNA to bind viaHoogsteen or reverse-Hoogsteen base paring to form tsDNA. The formation of triple he-lial DNA is of great interest in urrent era. Owing to its enhaned stability in a�etingthe ativities suh as gene expression, DNA repliation and others requiring DNA open-ing, the triple helix fostered new hopes in therapeuti appliations. The third hain'sability in reognizing the base sequenes of a dsDNA, not by opening the double helixbut rather by forming a triple helix would be one of the major input in developing newtypes of antibioti. There have been many physial, hemial and biologial studies ofthis triple helix forming nuleotides (TFO). It is known that not only DNA, even RNAand PNA (polypeptide nulei aid) are apable of forming triple helies with duplexDNA.To study the phase diagram and the phase transition of a triple helix DNA we onsidera few simpli�ed polymer models and take a thermodynami point of view, where the longhain limit is taken. Using the real-spae Renormalization Group (RG) approah andan exat iteration method on a hierarhial lattie of dimensions d > 2 we show thepossibility of a three-strand DNA bound state in onditions where a duplex DNA wouldbe in the denatured state. Suh a loosely bound state whih ours at or above the duplexmelting point is a biologial analogue of the nulear or old atom E�mov state and weall it an E�mov-DNA. From the RG �ows and the thermodynami phase diagram we�nd that the three hain bound state dissoiates at a higher temperature than the duplexmelting. All these transitions are indued by the bubble formations.From the lassial phase transition point of view, we further analyze the E�movphenomena by looking at the zeros of the partition funtions. The distribution of zerosomes out to have a very beautiful struture on the omplex plane of the Boltzmannfator. Apart from this struture, the separator of two types of �ows to the two di�erentstable �xed points identi�es the transition point as a limit point on the real axis in thethermodynami limit. Here we study the partition funtion of the three hain systemby ombining the reursion relations and the RG transformations, and then �nding thezeros. We also extend the model to the three hain repulsive interation regime anda striking result that emerges is that in a higher dimension for example d > 8.596 atransition an be indued from the ritial state to the E�mov-DNA. In addition, wedisuss several other features of the zeros in the omplex plane, for instane the detailedstruture, and the onnetion to the Julia set.



iv SynopsisWe also study the melting of three direted polymers on a Sierpinski Gasket to observethe E�mov e�et. Here the dimension of the fratal lattie is d = 1.58. We show thatthe E�mov e�et ours even in the lower dimensions provided some spei� interationsare onsidered among the polymers. Based on the onditions for rossing and mutualinteration, we lassify di�erent polymer models. Furthermore we obtain a new state tobe alled a mixed or anti-E�mov state. The average energy alulations show that themixed state is a separate state but the E�mov state, just a ross over.B-DNA (right-handed heliity) is the most ommon form of DNA found under normalphysiologial onditions. Often Z-DNA (left-handed heliity) appears in presene of highsalt onentration, ations or negative super-oiling. Although the Z form is transient invivo due to the lak of a friendly environment, still the B-Z transition is relevant in severaldiseases. Many theoretial and experimental attempts of a detailed understanding of thetransition mehanisms have been arried out for a long time. The transition via the basepair separation followed by the base pair �ipping or the base pair �ipping without anybase pair separation are the two existing hypotheses on the B-Z transition mehanism.We onsider a oarse-grained thermodynami model based on hiral symmetry. Wemodel a free energy like entity and restrit the geometry to the one dimension only,whih may shed some light on the urrent ontroversies on the transition mehanism ofthe B-DNA to Z-DNA. Using the theory of wave front propagation we �nd that there isa dynami phase transition in the onformational onversion of B-DNA to Z-DNA andobtain the dynami phase diagram. The diagram shows that for the spei� hoies ofthe system parameters the dynamis allows the formation of the intermediate denaturedstate even though it is thermodynamially forbidden.
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1Introdution
When there is life there is DNA. There is no way to begin life without it�a moleuleontained in all organisms and ells. Essentially, DNA is the leading harater for life'sproesses. Deoxy-ribo-Nulei Aid, DNA in short is a long polymer made from repeatingsub-units, viz., nuleotides, onneted by ovalent bonds. A nuleotide onsists of a 5-arbon sugar, a nitrogen ontaining base, and a phosphate group. The bases of DNA areadenine (A), ytosine (C), guanine (G) and thymine (T). A strand of DNA prefers basepairing via hydrogen bonds with the bases of a omplementary polymer. As a matterof fat the two strands entwine around eah other in antiparallel fashion in the shapeof a double helix. The �rst orret double-helix model of DNA struture was proposedby James D. Watson and Franis Crik in the year of 1953, whih laid the foundationstone for moleular biology [1℄. The omplementarity of the bases is an essential fator inmaking an idential opy of a parent DNA during DNA repliation thereby maintaininginheritane. They do have interesting behavior and speial physial properties beauseof their large size and equal sequene base pair interations. DNA's are being studiedfor last few deades at various length sales for its immense biologial impliations [2, 3℄.In reent times the formation of a triple-helial DNA has beome a topi of onsid-erable importane beause of its possible impliations in the �eld of moleular biology.In 1957, it was disovered that ertain sequenes of a Watson-Crik-double helial DNAallow a third strand to form a triple helix [4℄. Felsenfeld, Davis and Rih �rst showedthe formation of the triple helix in nulei aids, whih was later on on�rmed by severalother groups [5, 6℄. To deode the geneti ode, a double helial DNA has to be unzippedto reveal the bases. Quite strikingly, a third strand an identify the base sequenes, notby opening the double helix but rather by forming a triple helix.1.1 Triple helixOligonuleotides of three strands of DNA wind around eah other to form a triple helixDNA as shown in Fig. 1.1. Watson-Crik DNA duplex has the room in its major groovefor an additional strand. At ambient temperatures, the double helix is formed with



2 Introdution

Figure 1.1: Shemati diagram of triple stranded DNA.
lassial Watson-Crik base pairing (see Fig. 1.2(a)) while the third strand forms non-lassial Hoogsteen (see Fig. 1.2(b)) or reverse Hoogsteen base pairing with one of theother two [1, 7, 2℄. The known strutures suggests that the entral strand of a triple helixhas to be purine rih (G or A), so that the third strand an provide the two hydrogenbonding surfaes to form two di�erent types of base parings. The pyrimidine rih thirdstrand forms non-lassial Hoogsteen base pairing when it binds to a purine rih strand ofthe duplex in a parallel fashion while reverse Hoogsteen when a Purine rih strand bindsto another purine rih strand of the duplex in an anti-parallel fashion. Triple heliesan also be formed with DNA-RNA [8℄ and DNA-PNA (peptide nulei aid), whoseunharged peptide bakbone helps in the stabilization of the triplet struture [9, 10℄.PNA is an arti�ially reated biologially relevant moleule and might o�er intriguingpossibilities in the therapeuti appliations. Some of the triple helix forming tripletstrutures of bases e. g., T-A-T and A-A-T are shown in Figs. 1.2() and 1.2(d).The 1957-disovery of a three-stranded DNA remained a uriosity till the reognitionin 1987 that a third strand DNA an atually reognize the base sequene of the doublehelix even without opening it. Owing to its enhaned stability that an a�et ativitieslike gene expression, transriptional inhibition, DNA repliation and others requiringDNA opening, triple helix kindled new hopes in therapeuti appliations [11℄. Till dateit has been possible to make and study triple helies in vitro, amidst high hopes of theirrelevane in vivo [12, 13℄. The struture of a triple helix is surprisingly resistant tothermal dissoiation ompared to the double helial DNA. The Oligonuleotides formingtriplex DNA dissoiate at higher temperatures than the duplex melting [14℄.
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Figure 1.2: Red dotted lines are the Hydrogen bonds. (a) Watson-rik basepairing between Aand T bases. (b) Hoogsteen basepairing between A and T bases. () Triple helix forming basetriplet T-A-T. (d) Triple helix forming base triplet A-A-T.



4 Introdution1.2 E�mov e�etAn unexpeted phenomenon to turn up in the quantum three-body problem was �rstpointed out by V. E�mov in 1970 and now bearing his name in three-body non-relativistiquantum mehanis [17, 18℄. It is suh an unusual e�et that even after 40 years of itsdisovery it is still of great interest. He predited from his studies on nuleons thatthe three partiles an have an in�nite number of bound states eventhough no pairsare being bound. If the three partiles are subjeted to a short range pair interationsuh that a pair would have a zero energy state, an e�etive long range interationemerges due to quantum �utuations. Thus in�nitely many bound states appear at theritial threshold of the two-body binding. As one moves away from the ritial point,the number of bound states dereases and vanishes at a point of unzipping of the threepartiles. Surprisingly, this e�etive three-body interation is universal in nature and isatually independent of the detailed form of the pair potentials as well as the range of thepotential. The origin of the quantum E�mov e�et is the sale free quantum �utuationnear the zero-energy threshold of the two-body binding. The overall size of the e�etivethree-body bound state is muh larger than the range of pair potentials [18, 19, 20, 21℄.There are several theoretial and experimental investigations using di�erent models andmethods that show this e�et. Many years sine its disovery, it is now seen in systemsover various length sales ranging from nuleons (halo nuleus) to atomi physis andultra-old atoms under Feshbah resonane [22, 23, 24℄.
r
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r+R/2 r−R/2

1
O−R/2 R/2Figure 1.3: Two heavy (M) and one light (m) partiles are shown with the position vetors. 1and 2 are at a distane R and 3 is at a distane r from the enter of mass O of 1 and 2.There are many omplex analytial and numerial methods to show the E�mov e�et.For example, E�mov obtained the e�etive potential by studying the three-body systemin hyperspherial oordinates. Fonsea et al., used the Born-Oppenheimer approximation



1.2 E�mov e�et 5to study the E�mov e�et in a model onsisting of one light and two heavy partiles ofmass m and M , respetively, as shown in Fig. 1.3, interating by means of a short-rangepair potential. If the interation between the heavy-light partiles has nearly zero energybound state, the large size of this bound state indues a long range attrative potentialof 1/R2 type between the two heavy masses as if the small partile is shared by the twoheavy masses. Thus an e�etive potential between the heavy masses emerges in the form
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Figure 1.4: The e�etive interation ǫ(R) between 1 and 2 from Fig. 1.3. An e�etive three-body bound state (E�mov e�et) ours in the region r0 < R << a and extends over the wholerange for a → ∞.of
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, (1.1)where a is the width of the pair wave funtion or the sattering length of the heavy-lightpartiles and ǫ0 is the heavy-light binding energy. For a → ∞, Eq. (1.1) should beindependent of a, so that in this limit, the e�etive potential emerges as − 1
R2 , whihis a `universal' interation for a region r0 < R << a, where r0 is the range of pairinteration. Moreover one sees a ross-over from − 1

R2 for R
a
<< 1 to the Yukawa form

e−R/a

R
for R

a
∼ O(1) as shown in Fig. 1.4. Here ǫ(R), omes as the separation onstantwhen the omposite Shrodinger equation of the three-partile model is treated in theBorn-Oppenheimer approximation.The Shrodinger equation for the three-partile system shown in Fig. 1.3 is written



6 Introdutionin the enter of mass frame as
H Ψ(r, R) = E Ψ(r,R), (1.2)where H is the Hamiltonian and E, the eigenvalue. The wave funtion Ψ(r,R) is asso-iated with the boundary ondition that it vanishes as either r or R beomes in�nity.The separable ansatz is of the form
Ψ(r,R) = ψ(r,R)Φ(R), (1.3)where the wave funtion ψ(r,R) desribes the motion of the light partile when theheavy masses are at a �xed distane R, and Φ(R) desribes the motion of the heavypartiles. With the Born-Oppenheimer approximation Eq. (1.2) separates into a pair ofequations. Thus the heavy and the light partile equations beome
HMΦ(R) = EΦ(R), (1.4)

Hmψ(r,R) = ǫ(R)ψ(r,R), (1.5)with appropriate Hamiltonians HM and Hm of the heavy and the light partiles, respe-tively. The eigen value ǫ(R) of Eq. (1.5) appears as the extra interation potential inthe Hamiltonian for the two heavy partiles.1.3 Quantum AnalogyDue to the sequential base pairing of DNA, there is a diret analogy between DNA andquantum mehanis [25℄. There is an exat mapping of the partition funtion of two idealpolymers with DNA base-pairing type short range interation to the Green funtion ofthe two-partile quantum mehanis in a potential under a transformation of the lengthof the polymers to the imaginary time. This in turn maps the ground state energy ofthe partile to the free energy of the polymer per unit length.Following this analogy, the universality of the E�mov phenomenon enompasses theanalogous lassial model, namely the melting of three-stranded DNA. Here, for theourrene of suh phenomena, the ritial thermal �utuations from the lassial domainplay a role analogous to that of quantum �utuations. A saling argument has been usedin [26℄ for three ideal polymers, whih justi�es the ourrene of the e�etive two-hainattrative potential 1
r2 as a soure of the E�mov e�et. Suh a long range interationleads to a broad three-strand DNA bound state at or beyond the melting point of aduplex DNA. This is a state where no two are bound but the three are bound together.



1.4 Random Walk 7Suh a loosely bound state is alled the E�mov DNA [26℄.1.4 Random WalkThe ideal hain is the most simpli�ed model to desribe a polymer as a random walkby exluding any kind of monomer interations. If a polymer onsists of N number ofmonomer-monomer links of unit length, keeping one end �xed at the origin, the averageposition of the other end will be zero, but the size of the polymer (see Fig. 1.5) will begiven by the root mean square of the end to end vetor r as
R ∼< r2 >1/2∼ Nν . (1.6)The size exponent ν = 1/2 is for the ideal polymer but not in general. The randomwalk is losely related to a model of a direted walk. A walk is alled direted whenit advanes in a preferred diretion and does not go in the opposite diretion. For adireted walk the transverse and the longitudinal sizes of the polymer are given by

R⊥ ∼< r2 >1/2∼ Nν⊥ , with ν⊥ = 1/2, (1.7)
R‖ ∼< r2 >1/2∼ Nν‖ , with ν‖ = 1. (1.8)These exponents are independent of the dimensionality. Real polymers are studied bythe self avoiding walk models, where exluded volume e�ets are ruial [28, 29℄. As wedeal with the ideal hain in this thesis, we will not go into the other random walk models.Fig. 1.5(a) shows a polymer in a ontinuum limit while Fig. 1.5(b) shows a disretized

R r= N

r= 0

(a) (b)

Figure 1.5: (a) A polymer as a random walk (not direted walk) is shown. One end of thepolymer is �xed at r = 0. The other end is at r = N . Here N is the number of monomer-monomer links of unit bond length and R is the size of the polymer. (b) The disrete form ofthe polymer walk on a square lattie of 1 + 1 dimension is shown.form of the polymer hain when plaed on a square lattie.



8 IntrodutionWhen polymers are on a lattie as random walks, a single monomer essentially rep-resents several base pairs. Often simpli�ed direted polymers are useful for studyingglobal properties that depend on the large length of polymer, temperature, et. Vari-ous physial properties of the polymeri systems inluding melting, unzipping and otherthermodynami quantities have been studied on real latties e. g., square, ubi, honey-omb et. and on pseudo latties e. g., hierarhial, fratal et. using direted polymerhain [30℄.1.5 Hierarhial lattieA hierarhial lattie provides one of the most onvenient media to study many ritialphenomena and other physial problems. Hierarhial latties are onstruted by areursive replaement of a motif. The geometri onstrution of suh a lattie lookssimilar at a di�erent sale no matter what size it is viewed at [31℄. These speial lattiesdo not have any proper Eulidean oordinates. Consequently the metri is not de�nedin suh latties. Suh pseudo latties were introdued as simpli�ed strutures to studyvarious statistial mehanial problems. Their simpliity has motivated a lot of work.Although these lattie models are relatively easy to handle, they provide a very detailedresults. Several models, suh as the Ising, Potts and polymer systems are exatly solvableon these latties [32, 33, 34, 35℄. Diamond strutured lattie, Honeyomb struturedlattie et. are the examples of hierarhial latties. Suh latties have a muh lowersymmetry ompare to the Bravais latties, whih in turn may provide insights into otherlower symmetry problems. Essentially all these features have led hierarhial lattiemodels as a testing ground for many new onepts. Direted polymers on hierarhiallatties were studied as model of random system in Ref. [32, 36, 37, 38℄. The ase ofrandom interation was studied by Derrida et al., Cao and by Mukherji et al.,. Morereently, the hierarhial lattie models were exploited in the study the dynamis ofglassy materials, spin glasses, perolation luster et. [39, 40, 41, 42℄. Chakrabarti etal., have studied the eletroni properties on suh latties [43℄.1.5.1 Diamond hierarhial lattieTo onstrut a diamond hierarhial lattie one starts with a single bond and then inthe next generation that single bond is replaed by a motif of λb bonds, where b is thebranhing fator and λ is the bond length sale fator. Again in the next generationeah bond is replaed by a motif of λb bonds. A onstrution of the lattie is shown inFig. 1.6. Thus by an in�nite iteration (n → ∞) one obtains an in�nite lattie whose



1.5 Hierarhial lattie 9
0 n= 21n= n=Figure 1.6: The reursive onstrution of the hierarhial lattie is shown for n = 0, 1, 2, ...generations. The diamond motif is for b = 2 and length sale fator λ = 2.dimensionality is given by

λd =
vn+1

vn

i .e. d =
ln vn+1

vn

lnλ
, (1.9)where λ, d, vn+1, vn are assoiated with length resaling fator, dimension, and numberof bonds of the hierarhial lattie at (n+ 1)th and nth generation, respetively. For thispartiular lattie model with b = 2 and λ = 2

λd =
(λb)n+1

(λb)n
i .e., d =

lnλb

lnλ
=

ln 4

ln 2
= 2. (1.10)The branhing fator b ontrols the dimensionality of the lattie, e. g., for b = 3,

d = 2.58496, for b = 4, d = 3 and so on. Two other examples of the hierarhial lattiesare shown in Fig. 1.7. These lead to strutures with dimensions d ≥ 2.
0n= n= n= 21 n=1n= 0

(a) (b)

Figure 1.7: The reursive onstrutions of the hierarhial latties.1.5.2 Fratal lattie: Sierpinski gasketThere is a di�erent lass of lattie, alled fratals with lower dimensions. Sierpinskiarpet, Sierpinski gasket are examples of regular fratals whih are extensively exploitedto study ritial phenomena. The sale invariane of suh latties allows one to apply the



10 Introdutionreal-spae renormalization group (RG) methodology. The results are also amenable toexat solutions. Some of the onstrutions of the fratal latties are depited in Fig. 1.8.Sierpinski gasket was invented in 1916 by Polish mathematiian Walaw Sierpinski.This is embedded in a Eulidean spae. See Fig. 1.8(a). In this ase the saling fatorof eah line is 2. In the �rst generation of the onstrution a single triangular motif isdivided into four self similar strutures of the triangular shape. Out of the four triangles,the middle triangle is removed from the spae. Subsequently in the next generation therest of the three follow the same proedure. Thus a Sierpinski graph is onstruted inan iterative manner. For this partiular struture the number of bonds is 3n+1 and thenumber of sites is 3(3n+1)
2

. The e�etive dimensionality is given by
d =

lnNn

ln sn
, (1.11)where sn = λn with the bond length saling fator λ = 2 and Nn is the number ofthe self similar strutures at nth generation. This is a general de�nition of �nding the

(a)

(b)

(c)

n=2n=1n=0

n=1 n=2n=0

n=0 n=1 n=2Figure 1.8: Construtions of the fratal latties.dimensionality of any struture. The Sierpinski gasket is the most ommon regular fratalused in studying di�erent statistial models, for instane the Ising model, the direted orthe self avoiding polymer models, Potts model et. Furthermore the sandpile model, selfavoiding walk and direted polymer models have also been studied on Sierpinski gasket



1.6 Zeros of the partition funtion 11fratals of di�erent dimensions using the real-spae RG approah [44, 45, 46, 47℄.1.5.3 Real-spae Renormalization GroupRG is well disussed in many text books [48, 49℄. Here we give a brief desription aboutRG. RG is a standard tehnique in ondensed matter physis and already has been usedin many other branhes of physis. It is a tool to investigate a physial system at adi�erent length sale without any hange of the underlying physis. Many real-spaeRG methods have been developed in obtaining approximate RG transformation. Thespeiality of the hierarhial lattie is the sale invariane property. This is what enablesone to implement the real-spae RG tehnique to study many models [31, 32, 34, 35℄.To implement RG one starts from a large lattie and removes short sale �utuationsby renormalizing the parameters suh as the oupling onstant et., by resaling thelattie to the original size. This proedure of thinning out of the degrees of freedom andresaling is followed in eah step of the RG deimation. The RG relation of the ouplingonstant emerges from this repeated proedure. The �xed points obtained from the RGrelation, desribe the phase transition.1.6 Zeros of the partition funtionFinding zeros of the partition funtion in the omplex plane of any physial variable isa mathematial way to understand the phase transition phenomenon. However �ndingzeros is possible only for small lattie sizes or when a partition funtion redues to apolynomial form, but not in general. The zeros of the partition funtion are the omplexvalues of the Boltzmann fator or other parameters at whih the partition funtionvanishes.Yang and Lee �rst studied the Ising ferromagneti system in a omplex magneti �eldto show that for a properly hosen variable the zeros lie on a unit irle, known as theYang-Lee irle [50, 51℄. Later the zeros were studied in the omplex temperature planeand other variables [52℄. Sine there annot be any real zero, the zeros may aumulateand pinh the real axis as a limit point in the thermodynami limit. This method anprovide relevant information on phase transitions suh as the ritial �eld or temperatureand the values of the assoiated ritial exponents.1.7 Julia setThe distribution of the zeros of the partition funtion on a omplex plane may formmany ompliated strutures other than a irle. These strutures are nothing but the



12 Introdutionseparatries of the two types of �ows, to the two di�erent stable �xed points of theRG transformation and are similar to the Julia sets [53, 54℄. The Julia set, namedafter Frenh mathematiian Gaston Julia, is a type of fratal generated by an iterative
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−1.5 −1 −0.5  0  0.5  1  1.5Figure 1.9: Julia sets in the omplex z plane for (a) c = 0, whih is an unit irle, (b) omplex
c = 0.8 + 0.156i. Exept for c = 0, these sets exhibit self-similarity.funtion over the omplex numbers. The standard de�nition of a Julia set is the set ofpoints on the omplex plane whih �ow to a �xed point (no divergene) after a funtion,e. g.,

zn = z2
n−1 + c, (1.12)is repeatedly applied, where c is any arbitrary onstant, real or omplex. Let us hoose

c = 0.The �xed point solution for c = 0 are z = 0, 1,∞, where z = 1 is the unstable�xed point. Here for n → ∞, zn+1 → 0, when started with |z0| < 1 and zn+1 → ∞,when started with |z0| > 1. Therefore the unit irle |z| = 1 as shown in Fig. 1.9(a) isthe boundary between the two stable �xed points z = 0,∞. The unstable point lies onthis boundary. For the di�erent values of c (real or imaginary) di�erent strutures areobtained in the omplex z plane as shown in Fig. 1.9(b). The study of suh strutureshas appliations in omplex dynamis, partial di�erential equations, statistis et. Wewill disuss several features of the zeros in the omplex plane, and the onnetion to theJulia set in Chap. 3.1.8 Studies on double-stranded DNASeveral lattie polymer models, have long been used for theoretial understanding ofvarious aspets of DNA, espeially its thermodynamis properties. Various analytial



1.9 Studies on triple-stranded DNA 13and numerial shemes suh as generating funtions, exat transfer matrix, RG andMonte Carlo simulations have been suessfully applied in the studies of the meltingand the unzipping of a double-stranded DNA [55, 56, 57, 32, 58℄. The melting of DNAreeived a speial attention as it the ruial step for DNA repliation. The melting isthe temperature indued separation of the two strands, whih happens at a ritial valueof the temperature (Tc). This is also alled the melting point or the denaturation point.The melting of a double helial DNA of large length, generally ours in the range 80o�
100o [59℄. pH and hemial indued denaturation also have been studied. Dependingon the model, melting ould be ontinuous or disontinuous [56, 60, 61, 62℄. For a reviewon melting of DNA see Ref. [63℄.The ritial behavior of two direted polymers has been studied by Mukherji et al.,on a hierarhial lattie by the real-spae RG [32℄. The two hain melting was shown.The ritial exponents obtained from the RG found to desribe the �nite size salingform of the energy derived from the exat iteration of the hierarhial lattie startingfrom a smaller lattie. The two hain model further was extended to the random or thedisordered hierarhial lattie medium [36, 64, 65, 32℄. The fore indued unzipping of adsDNA at a ritial value of the fore was �rst shown by Bhattaharjee in a ontinuummodel of DNA [58℄. The unzipping was reported as a �rst order phase transition. Furtherstudies on the ontinuum and the disrete model were done by Sebastian and Marenduzzoet al., [66, 56, 67℄. The omplete phase diagram in the fore-temperature plane in thisontext was obtained by Kapri et al., [68℄ by applying pulling fore at any intermediatepoint of dsDNA. Various additional phases were obtained by Giri and Kumar for thediretion dependent pulling fores [69℄. Sadhukhan et al., reported the existene of thetypeII-DNA in a ondition of negative zipped-unzipped interfaial energy [70℄. Di�erentsingle moleule experiments done with DNA are disussed in Ref. [59℄.1.9 Studies on triple-stranded DNAA lot of progress has been made reently in the strutural understanding of the triplehelix DNA [71, 72℄. There have been a number of studies in vitro that have diretlytested the formation of a triple-stranded DNA [5, 6, 73, 13℄. So far most of the e�ortswere direted towards understanding the bound state of the triple-stranded DNA.Triple helix is not a stable struture under normal physiologial onditions and ishighly spei�. The sequene-spei� reognition of the duplex DNA by a third-strandis of great use in targeting partiular sites of the duplex DNA. It has been reported thatthe triple helix forming Oligonuleotides (TFO) might be a universal drug in reognizingthe spei� sequenes of the duplex DNA [11, 71℄. It has been shown that the peptide-



14 Introdutionor polyamide- nulei aids (PNA) an bind to DNA and RNA with higher a�nity thannatural Oligonuleotides to form a triple helix [74, 75℄.The stability of the triple helix DNA is of importane for possible biologial ap-pliations. Several studies have been aimed towards stabilization of DNA triplexes atphysiologial onditions [76℄. Its stability is a funtion of temperature, salt onentrationand pH. The thermodynamial studies on the triple helix formation have been reviewedin Ref. [77, 72℄. Plum has presented a state diagram on the omplex behavior of thetriple helix DNA. An Oligonuleotide hairpin, forming a triple helix with a single-strandwas found more stable than a triple helix omposed of the two Oligonuleotides and asingle-stranded DNA [14, 15, 16℄. The latter one underwent two distint melting tran-sitions. Furthermore many experimental results demonstrated that the denaturationtemperature of the triplex DNA is muh higher than the melting of the duplex DNA[78℄.
1.10 Conformational transitionThe onformational transitions of various biomoleules are often related to their bio-logial funtions. For last few deades many experimental and theoretial models havebeen explored to study the interonversion of DNA. It is known that dsDNA exists inmany possible onformations like B-DNA, A-DNA, Z-DNA et. Although B-DNA is veryommon under normal physiologial onditions, Z-DNA appears in funtional organismsunder ertain irumstanes. The B form also onverts to A-DNA under dehydratedondition or C-DNA in ertain solvents. However, the B-Z onversion is hallengingbeause of the hange in the heliity. Here we give a very brief review of the struturalform of B- and Z-DNA, and the interfae between B- and Z-DNA. We also disuss thedi�erent mehanisms proposed for the onformational transition.1.10.1 B-DNAThe most ommon form of DNA found under normal physiologial low salt onditions isthe B-DNA [1, 79℄, the well known double helix with a right handed heliity as pituredin Fig. 1.10(a). The struture of B DNA was originally proposed in 1953 by Watson andCrik. It has 10.5 base pairs per helial turn and two distint grooves, a major and aminor groove. The Watson-Crik base pairs are staked at the enter of the helix formedby the phosphate bakbones.



1.10 Conformational transition 15

(a) (b)Figure 1.10: (a) Shemati struture of B DNA with right handed heliity. Two single strandspaired by A-T and G-C type base pairs. Base pairs are shown by the horizontal lines. (b)Shemati struture of Z DNA (taken from Wikipedia) with left handed zigzag helial form.1.10.2 Z-DNAQuite surprisingly, the �rst DNA struture to be solved by X-ray rystallography turnedout to be a left handed zig-zag form alled Z-DNA [2, 80, 81, 82℄. The struture of ZDNA is substantially di�erent from B-DNA. It has 12 base pairs per helial turn andhas a narrow groove nearly similar to the minor groove of B-DNA. The struture of Z-DNA is shown in Fig. 1.10(b). Suh a non-Watson-Crik struture would have profoundimpliations in DNA repliation, reombination and transription. The Z form of DNAis found to be transient in vivo due to the lak of a friendly environment. However itan be stabilized in vitro in presene of high salt onentration, ations and negativesuper-oiling. Z-DNA is found in a number of eukaryoti ells, animal ells, plant ellsand in baterial ells e. g., E-Coli.1.10.3 B-Z transitionThe onformational transition from the B to the Z form of DNA was disovered in 1972 byPhol and Jovin [83℄. As the fundamental di�erene between two forms is assoiated withthe heliity, the transition goes through a dramati onversion at the moleular level.This onformational transition requires the base pairs and a subset of bakbone sugarrings to �ip, followed by other hanges. The transition an be indued by several shemessuh as ioni onentration, negative super oiling et. Induing the onformationaltransition between two suh hiral phases is tantamount to a lowering of the free energyof Z ompared to B, making Z the most preferable state, or the other way around [84℄. It



16 Introdutionhas been argued that the B-Z onversion is relevant in poxviruses [85℄, and Alzheimer'sdisease [86℄. The B-Z transition is reported to be �rst order in nature [80, 87, 88, 89, 90℄.As the base pairs and a subset of the bakbone sugar rings have to �ip to onvertB to Z, the dynamis o�ers intriguing possibilities [81℄. Only reently methods havebeen developed to explore the dynamis in single DNA as opposed to earlier studies insolutions.1.10.4 The B-Z interfaeOne an haraterize the B-Z transformation by a growth of a suitable domain over thebulk of DNA. In any suh senario, the B-Z interfae, the separator between the twohiral phases, plays an important role. The equilibrium interfae has been haraterizedstruturally and from other studies. The struture of a short oligomer in presene of a Z-DNA binding protein at 2.6A resolution indiates broken base pairs separating the B andthe Z phases. The protein ating as an external soure induing the transition is expetedto produe a sharp interfae [91℄. A very ingenious way of studying the interfae is touse mirror DNA [92, 93℄, though it annot be used for the hirality hanging transition.Interfaial studies and melting of short B-B* oligomers, where B* is the enantiomer of B,show that the juntion mimis the B-Z juntion, and the interfae broadens as the meltingpoint is reahed. In ontrast to these equilibrium ases, the nature of the interfae duringthe transition depends on the nature of the transition mehanism [88, 89℄. Several suhshemes are in vogue and disussed in detail in Ref. [81℄.1.10.5 Contraditory hypothesesThe onformational onversion of B to Z has been studied by using di�erent types ofsingle moleular experiments. In an experiment by D. A. Heller et al., [94℄, a onfor-mational transition from the B form to the Z form of DNA was observed. The B-Ztransformation for a short 15 base pair GT (non-Watson-Crik wobble base pair) DNAwrapped on the single walled arbon nanotube was monitored as a funtion of time bythe addition of ounter-ions. The nanotube helped in identifying the phases via auratemeasurements of the band-gap in a simpler geometry. This transition is ompletely re-versible and is thermodynamially idential to the transition seen in the absene of thenanotube. The results seem to indiate the formation of a denatured DNA during thetransformation, eventhough a denatured state under the experimental onditions is notpossible thermodynamially.A di�erent single moleule experiment studied the transition under a tension andnegative super-heliity by ombining FRET with magneti tweezers [95℄. This experi-



1.10 Conformational transition 17ment on an e�etively (GC)11 DNA (i.e. 22 bases) seems to favour a single interfaebetween B and Z without any denatured bubble.The two main ompeting hypothesis for the B to Z transition mehanism are thefollowing:1. via base pair separation followed by base pair �ipping [80℄,2. via base pair �ipping without any base pair separation [87℄.In the �rst ase there ould be a denatured intermediate state while in the seond thereould be a Z type but following the standard Watson-Crik base pairing (ZWC-DNA).



18 Introdution1.11 AimThe aim of this thesis:
• Our aim would be to look for the signature of an E�mov-like e�et in triple-strandedDNA. We will study the melting of a three-stranded DNA, the possibility of otherphases, and the phase diagrams. In order to study the thermodynami behaviourwe will take the large length limit. We will model three direted polymers on ahierarhial lattie and further on a Sierpinski gasket. We will apply the real-spaerenormalization group (RG), the exat iteration method, and then the proedureof �nding the zeros of the partition funtions. We will use the �nite size salinganalysis for a further investigation on the nature of transitions and explore themodel in di�erent dimensions (d < 2 and d > 2) to see the dimensional e�et ondi�erent possible states.
• In onnetion to the existing hypotheses on B-Z transition our aim would to estab-lish a theoretial understanding towards this onformational transition. We willuse a general form of the the Landau free energy desribing three states B, Z andthe denatured state as
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φ6,where α, β determine the free energy di�erenes between the two states and φ(z, t)desribes the state of the oarse-grained base-pair at index z along the DNA. Ouremphasis will be on the underlying interfae between the two relevant states. Bythe hoie of the spei� parameters we allow the fronts to propagate and studythe dynamis of the transitions and draw the phase diagram in the α-β plane. Wewill use the wave front propagation methodology and the numerial approahes todetermine the uniform veloity of these propagation. Furthermore, a perturbationtehnique will be used to justify the dynami phase around the equilibrium point.We will also study the behavior of the width of the interfae and the appropriatetimesale.



1.12 Thesis organization 191.12 Thesis organizationWe study the melting of a three-stranded DNA and the onformational transition of Bto Z DNA. The thesis is organized as follows:In Chap. 2 we model three direted polymers on a hierarhial lattie. Polymersare plaed from bottom to top, but they an wander at the intermediate step. Thereal-spae RG approah and exat iteration method are used to show that, despite thetremendous simpliity of the model, the three-strand DNA exhibits an E�mov-like state.Suh a state ours at or above the duplex melting point, where three are bound butno two are bound. We show the feature of an enhaned stability of the triple-strandedDNA ompared to the duplex-DNA by the numerial alulations for both the ases ofsymmetri and asymmetri pair interations. We also show the nature of transitions ofthe two- and the three-hain systems.In Chap. 3 we study the same model and follow the same approah as is disussed inChap. 2. Here we study the partition funtion of the three-hain system by ombiningthe reursion relations and the RG transformations and then �nding the zeros. We showthat the distribution of zeros gives Julia-set like strutures in the omplex plane of thepartition funtion. We �nd that all the transition points obtained from RG �ows, are ingood agreement with the zeros of the partition funtion on the real axis. We also extendthe model to the three-hain repulsive interation region. We go to higher dimensionsto show that a transition an be indued from the E�mov state of DNA to a ritialrepulsive state. We show that to be a ontinuous transition, obeying the �nite sizesaling law with the exponents obtained from RG.In Chap. 4 we further model the three-hain system on a Sierpinski gasket fratallattie. We show that the E�mov e�et ours even in lower dimensions if some spei�interations are assigned to the polymers. We study di�erent models in detail and obtaina new state, to be alled a mixed state.In Chap. 5 we study the onformational transformation form B to the Z form by thetheory of wave front propagation. The dynamis of B-Z interfae is studied by writingdown the nonlinear di�usion equation with a free energy like quantity. A dynami phasediagram is obtained for the stability of the front separating B and Z. The instability inthis front results in two split fronts moving with di�erent veloities. We also show that adenatured state may develop dynamially eventhough it is thermodynamially forbiddenif the system parameters are tuned aordingly.





2When a DNA triple helix melts: an analogueof the E�mov state
In this hapter we study the melting of a three-stranded DNA on a hierarhial lattie.It is predited here that a three-stranded DNA exhibits the unusual behaviour of theexistene of a three-hain bound state in the absene of any two being bound. Suh astate an our at or above the duplex melting point. This phenomenon is analogous tothe quantum E�mov state. In three partile quantum mehanis, suh a state ours viathe development of an attrative 1/r2 interation over a range beyond the short rangepotential. Here we have onsidered the lassial oarse-grained model of a three-hainsystem in a disretized spae. Real-spae RG is used to show the E�mov-like three-hainphase. Further exat numerial alulations are used to validate the predition of suha biologial E�mov e�et.The hapter is organized as follows. We introdue a simpli�ed polymer model on ahierarhial lattie in Se. 2.1. In Se. 2.2 the reursion relations from the RG deimationand for the exat iterations are written. Within this setion, the subsequent subsetionsontain the results and the disussions from the RG and the exat iteration approahes.We draw our onlusions in Se. 2.3.
2.1 ModelLet us onsider three direted polymers on a hierarhial lattie, onstruted reursivelywith a motif of λb bonds, as shown in Fig. 2.1(a), where λ and b represent the bondsaling fator and the branhing fator, respetively. The lattie is generated iterativelyby the replaement of eah bond at the (n − 1)th generation by a motif of λb bonds toget the nth generation. In the thermodynami limit n→ ∞, the e�etive dimensionalityof the lattie is de�ned by

d =
lnλb

lnλ
. (2.1)



22 When a DNA triple helix melts: an analogue of the E�mov state
0n= n= n= 21

(a) (b)

Figure 2.1: (a) The reursive onstrution of the hierarhial lattie with b = 2 for n = 0, 1, 2, ...generations. At every stage, eah line is replaed by a diamond of 2b lines. The right arrows rep-resent the diretion of iteration towards larger latties. The left arrows represent the diretionof deimation used in RG. (b) A motif of 2b bonds, where b = 4.In this thesis we shall hoose λ = 2. By hanging the value of b, the dimensionality ofthe lattie an be tuned. For example the dimensionality of the lattie is d = 2 for b = 2(see Fig. 2.1(a)) and d = 3 for b = 4 (see Fig. 2.1(b)). Sine in lower dimensions a boundstate always exists due to any shallow potential, a simple random walk1 would not havethe transition for d ≤ 2. So we always hoose b > 2 for a three hain model2.
(b) (c)(a)

Figure 2.2: Examples of three-hain on�gurations on a diamond motif for b = 4. (a) Polymersdo not share any single bond. The number of suh on�gurations is b(b − 1)(b − 2). (b) Twopolymers share a bond and the number of suh on�gurations is b(b − 1). () Three polymersshare the same bond. The number of suh on�gurations is b.One major feature about hierarhial latties is their unusual sale invariane prop-erty. They have a disrete saling symmetry. That is why an exat implementation ofthe real-spae RG tehnique is possible. The deimation of the nth generation to arriveat the (n − 1)th generation is preisely what is needed in an RG transformation. Onethe partition funtion is known, it is possible to alulate the free energy, and the otherthermodynami quantities. One may even write down reursion relations for them.Three hains on a hierarhial lattie are strethed from bottom to top, but theyan wander at intermediate points. The ontat energies are de�ned at the bonds only.The polymers are assigned attrative potentials −ǫij and −ǫijk (ǫij , ǫijk > 0) if a single1A simple random walk in d dimension, whih is a direted walk along its length in d + 1 dimensionan be mapped to the path of a partile in quantum mehanis under imaginary time transformation.2d = 2 with b = 2 is the lower ritial dimension for a two hain system.



2.2 E�mov-like phase in d > 2 23bond is shared by the two and the three polymers, respetively (see Fig. 2.2). At eahgeneration, the length of eah polymer inreases by a fator λ = 2 so that the length ofpolymers at the nth generation is
Ln = 2n. (2.2)We have onsidered a oarse-grained model. What we all a monomer in fat representsseveral base-pairs. The interation involves monomers with same sequene of di�erenthains. The total energy for the two and the three strands for the n = 1 generationlattie as shown in Fig. 2.1(a), respetively, are given by

E2 = −m2ǫ12, (2.3)
E3 = −m2 (ǫ12 + ǫ23 + ǫ31) −m3ǫ123, (2.4)where m2 is the two-hain and m3, the three-hain ontats.For the E�mov e�et, only pairwise interation is enough. However in an RG proe-dure it is imperative to de�ne the model with both ǫij and ǫ123, beause the three-haininteration gets generated on a longer sale.We introdue the Boltzmann fators,
yij = exp(βǫij), and w = exp(βǫ123), (2.5)where β = 1/kBT , kB being the Boltzmann onstant, T the temperature.2.2 E�mov-like phase in d > 2We adopt a real-spae RG approah for d > 2 to study the three-hain melting. In theRG approah, the e�ets of interation is probed by summing over the on�gurationsat a smaller sale (in the partition funtion) and rede�ning the e�etive interation ona larger sale. This is done by preserving the form of partition funtion upto a salefator. For a bound state, we should see an e�etive interation among the hains,irrespetive of the sale of oarse-graining. In ontrast, for an unbound state, loallybound monomers lose their importane as we sum over on�gurations and therefore thee�etive interation would vanish as the probing length sale inreases. These e�ets areexpressed by the RG �ow equations or reursion relations, as �ows of the interationswith length sale. A two-body bound state should therefore be possible if the two-bodyinteration does not vanish. In the same spirit, a three body bound state would ourif a three-body interation beomes operative, even if there is none to start with. Weexpress these RG relations in an exat form on speially onstruted hierarhial latties



24 When a DNA triple helix melts: an analogue of the E�mov statewith disrete saling symmetry and tunable dimensionality.2.2.1 E�mov DNA: RGThe on�gurations of the two-hain system on a motif of the hierarhial lattie an belassi�ed as1. two independent hains,2. inherently two-hain on�gurations i. e., two hains sharing the same bond.By summing over all on�gurations the partition funtions for n = 0 and n = 1 genera-tion latties for general b will be written as [32℄
Z0(y) = yij, (2.6)

Z1(y) = b(b− 1) + by2
ij . (2.7)Sine by RG deimation, a motif of 2b bonds of n = 1 generation is replaed by a singlebond in n = 0 generation, the RG demands

Z0(y
′
ij) ∝ Z1(yij), (2.8)where y′ is the renormalized Boltzmann fator. With the free hain boundary onditionsi. e., yij = 1, implies yij

′ = 1, the proportionality onstant of Eq. (2.8) an be deter-mined. Therefore the RG transformation for the two-hain Boltzmann fator beomes
y′ij =

b(b − 1) + by2
ij

b2
. (2.9)The RG transformation for the three-hain ase an also be written in the same spiritas in two-hain ase. The three-hain on�gurations (see Fig. 2.2) an be lassi�ed as1. three independent hains,2. a ombination of a double- and a single-hain,3. inherently three-hain on�gurations, i. e., three hains sharing the same bond.The free hain ondition yij = w = 1 implies y′

ij = w′ = 1. Also to be noted that whenthree hains share the same bond the ontribution is y3
ijw (y3

ij for three pairs). The RG



2.2 E�mov-like phase in d > 2 25transformation for w is then
w′ =

b(b− 1)(b− 2) + b(b − 1)
∑

i<j

y2
ij + bw2

∏

i<j

yij
2

b3
∏

i<j

y
′

ij

, (2.10)where w′ is the renormalized value of w. These reursion relations show that the three-body term is generated eventhough we start with ǫ123 = 0, i. e., w = 1. For given yijand w, the �ows from suessive use of Eqs. (2.9)-(2.10) would give us the phases andthe nature of the transitions.For the above analysis one needs the �xed points of the RG transformations. Thethree �xed points of yij orrespond to1. y∗ = 1, stable in�nite temperature �xed point representing an unbound state,2. y∗ = yc = (b−1), unstable �xed point representing the two-hain melting or ritialpoint,3. y∗ = ∞ (zero temperature representing a bound duplex state) is the obvious stable�xed point, whih does not ome from the RG relation but omes from the RG�ow.In ase there is no pairwise bound state (no pair interation i. e., yij = 1), w has three�xed points,1. w∗ = 1, stable in�nite temperature, an unbound state,2. w∗ = wc = (b2 − 1), unstable �xed point representing three-hain ritial point.3. w∗ = ∞ (zero temperature), representing pure three-hain bound state, omesfrom the RG �ow.The stable �xed point w∗ = 1 desribes the high temperature �xed point or an abseneof the three-body interation and the unstable �xed point wc = b2 − 1 desribes theritial state produed by a pure three-body interation.In ase all pairs are in the ritial state so far as the two-body interation is onerned(y∗ij = b− 1), the �xed points of w are found to be
w± =

b2 ±
√

4 − 24b+ 32b2 − 12b3 + b4

2(b− 1)3
. (2.11)In the range 2.303 < b < 8.596, no real roots are found for w from the three-hain RGrelation (Eq. (2.10)) at the ritial line y = yc.
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Figure 2.3: (a) RG Flow-diagram in the y-w plane for the symmetri ase y12 = y23 = y13, allstarting with w = 1. Here b = 4. The �ow of w goes to ∞ if the starting y > yE = 2.32402...,otherwise to 1 (high temperature �xed point). The trajetories with starting y < yE end at
w = y = 1. (b) Average energy per monomer vs temperature from diret omputation (hainlength=225). For two hains (marked 2) the average energy undergoes a ontinuous transitionat y = yc while the average energy for three hains (marked 3) shows a jump at y = yE. Theregion from yE to yc is the E�mov-like three hain bound state.
Symmetri pair interationHere we onsider all three pairs idential (either Watson-Crik type or Hoogsteen type).The RG-�ow diagram is shown in Fig. 2.3(a) for branhing fator b = 4. The RG �owsare shown in the di�erent regions. The arrows are to denote the diretion of RG �ows.We onsidered only b = 4 as a representative of the range where there is no real �xedpoint along the two-hain ritial line. Here yc = 3 is the two-hain melting point. TheRG �ow of w depends on the initial value of y. The renormalization �ow takes w toin�nity with an initial value yij = yc = b−1, as shown in Fig. 2.3(a) by the red urve. Thethree hains then form a bound state at the two-body ritial point. For temperaturesabove the duplex melting, i. e., with initial values y = y12 = y23 = y31 < b − 1 thethree hains would be in the denatured state if the �ow goes to y = 1, w = 1, but for
y ≥ 2.32402, the �ow goes to in�nity and reahes w = ∞ at y = 1. Hene an e�etivethree-hain interation develops when the pairs are unbound. Below y < yc the three-hain system is in the high temperature phase� note that, by hoie, the �ow startsfrom w = 1. Therefore for b = 4, the melting of an e�etive three-hain bound state isat y = 2.32402.... The region between y = yE to y = yc orresponding to w = 1, is for ane�etive triple stranded bound state when there should not be any duplex bound state.If a separatrix is imagined in the y-w plane between (1, b2 − 1) and (yE, 1), then in theregion enlosed by this separatrix and the two-hain ritial line y = yc, a triplex statewould exist eventhough no two are bound. Suh a loosely bound state will be alled theE�mov DNA.



2.2 E�mov-like phase in d > 2 272.2.2 E�mov DNA: Numerial evidene
A further on�rmation of this triplex melting omes from an exat numerial alulationof the average energy by iterating the partition funtions and their derivatives for largelatties. In exat iteration method the lattie is built generation by generation so thatone may study the behaviour of any quantity of interest as a funtion of length of thepolymers. The diretion of iteration towards larger latties are shown by the right arrowsas shown in Fig. 2.1. With the trae over all on�gurations if Cn, Zn and Qn are the nthgeneration partition funtions for single-, double- and triple-hain systems, then theseobey the reursion relations [32℄

Cn = bC2
n−1, (2.12)

Zn = b(b− 1)C4
n−1 + bZ2

n−1, (2.13)
Qn = b(b− 1)(b− 2)C6

n−1

+b(b− 1)C2
n−1

3
∑

i,j=1

i<j

Z(ij)2
n−1 + bQ2

n−1, (2.14)where the arguments of Zn−1 in Eq. (2.14) refer to the two hains involved. The initialonditions are taken as
C0 = 1, Z0 = y,Q0 = y3.

To write down the derivatives of the above partition funtions (Eqs. 2.12-2.14) wehave onsidered the symmetri situations, i. e., the equal pair interations. Thereforewe write the average energy and the spei� heat as
En =

∂ ln Qn

∂x
, and Cn =

∂En

∂x
, (2.15)where x is the appropriate variable (y or w as the ase may be). Though these de�nitionsare di�erent from the atual de�nitions, proportionality fators are not ruial here.The reursion relations of the two-hain and the three-hain average energy (En, En)and the spei� heat (C̆n, Cn), derived from the nth generation partition funtion are as



28 When a DNA triple helix melts: an analogue of the E�mov statefollows.
En = 2b

Z2
n−1En−1

Zn
, (2.16)

C̆n = En
2 +

C̆n−1En

En−1
− 2EnEn−1, (2.17)

En = 2b
3(b− 1)C2

n−1Z
2
n−1En−1 +Q2

n−1En−1

Qn
, (2.18)

Cn = 2b
3(b− 1)C2

n−1Z
2
n−1(C̆n−1 − 2E2

n−1) +Q2
n−1(Cn−1 − 2E2

n−1)

Qn

+ E2
n. (2.19)For given y and w, Eqs. (2.12)-(2.14) give the partition funtions for di�erent Ln. The
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y = 2.32400 + n x 10−5, n =1,...,4. The lines show the extrapolations to n → ∞. Thedisontinuity at the transition is visible.two- and the three-hain average energies per monomer are shown in Fig. 2.3(b). With
y ≡ y12 = y23 = y31, as in Fig. 2.3(b), the two-hain system melts through a seond ordertransition at y = yc (energy going ontinuously to zero) [96, 97℄ whereas the three-hainsystem undergoes a �rst order transition at a temperature y = yE < yc (energy showinga disontinuity).The disontinuity in the three-strand average energy has been shown in Fig. 2.4.Sine the length of the polymer at the nth generation is Ln = 2n, the thermodynamilimit of the energy per monomer En/Ln an be obtained by extrapolation to 1/n → 0.Fig. 2.4(a) shows the extrapolation in the range of y = 2.323 to 2.327 whih brakets thetransition in the range (2.324, 2.325). The disontinuity survives even on a �ner salein Fig. 2.4(b), whih gives yE in the range (2.32402, 2.32403) onsistent with the RGresult of Fig. 2.3(a). The numerial estimations of the e�etive three-hain melting tem-peratures for di�erent b are given in the table below when there is no pure three-hain



2.2 E�mov-like phase in d > 2 29interation (i. e., w = 1).
b 3 4 5 6
yE 1.8.. 2.32402.. 2.77.. 3.179..Table 2.1: The E�mov transition points (yE's) for di�erent values of b when w = 1.

Asymmetri pair interationThe RG �ows an be generalized for asymmetri pair binding energies too. This is theasymmetri ase where we have onsidered ǫ12 = ǫ23 6= ǫ31. For generalization we mayonsider all three pairs di�erent (one pair Watson-Crik type and remaining Hoogsteentype). The phase diagram in the plane of y−1
13 vs y−1

12 with y12 = y23, w = 1 is shown inFig. 2.5. For y−1
13 = 0, hains 1 and 3 are bound for ever and therefore hain 2 melts o� at

y12 =
√
b− 1. This point is indiated by a star in Fig. 2.5. Within the triangular shadedregion bounded by y−1

13 = 1/(b− 1), y−1
12 = 1/(b− 1), and the urved line separating theunbound state, we have a triplex phase without pairing of any two � the desired E�move�et. In y−1

13 -y−1
12 plane the diagonal diretion (i. e., y13 = y12) gives the symmetri ase(Fig. 2.3(a)) where all the pair interations are same.
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Figure 2.5: Phase Diagram: y−1
31 vs y−1

12 (y12 = y23), for b = 4. The duplex melting pointat y
{ij}
c = b − 1 is indiated by the horizontal and vertial lines. Three hains are bound inthe shaded region with the thik urve representing the three-hain bound-unbound transition.Above the horizontal line at y31 = b− 1 in the shaded region, a triplex state exists even thoughno two should be bound. The bound states in other regions are as indiated. The star at
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12 = 1/

√
b − 1 is the melting of hain 2 and omposite 1,3.



30 When a DNA triple helix melts: an analogue of the E�mov state2.3 ConlusionsOur emphasis is on the E�mov like state exhibited by the three-hain system at orbeyond the two-hain melting, where no two are bound, and the nature of transitions.The RG relations and the exat numerial alulations are used for d > 2 to show thepossibility of suh three-strand DNA bound state at onditions where a duplex DNAwould be in the denatured state. This is a biologial analog of the nulear or old atomE�mov e�et. The existene of suh a bound state involving two otherwise denaturedstrands of DNA due to the presene of a third strand, with overall separation muhlarger than the hydrogen bond length would have important impliations in biologialproesses. Nonetheless, we antiipate new experiments to look for signatures of ourproposed E�mov DNA.



3E�mov DNA and its transitions
In this hapter we study the melting of a three-stranded DNA by using real spae renor-malization group and exat reursion relations. The predition of an unusual E�mov-analog three-hain bound state, that appears at the ritial melting of a two-hain DNA,is orroborated from the zeros of the partition funtion. The distribution of the zeroshave been studied in detail for various situations. We extend the model to the three-hain repulsive zone. We show that the E�mov DNA an our even if the three-hain (i.e., three monomer) interation is repulsive in nature. In higher dimensions, a strikingresult that emerged in this repulsive zone is a ontinuous transition from the ritialstate to the E�mov DNA.The hapter is organized as follows. In Se. 3.2, the reursion relations from RGdeimation and those for exat iterations are written. The method of �nding the zerosof the partition funtion is disussed and we �nd the limit point of the zeros to loatethe phase transition. Se. 3.3 ontains the results and disussions on the two- and thethree-hain system under di�erent situations. In partiular we estimate the transitionpoint for E�mov DNA. Se. 3.4 extends the problem to three hains repulsive interation.The existene of a transition between the E�mov DNA and the ritial repulsive statein higher dimensions is established there.
3.1 ModelBased on the model disussed in Se. 2.1, in this hapter we have onsidered the three-hain system on a reursively onstruted hierarhial lattie as shown in Fig. 2.1 forsymmetri pair interations. The polymers are assigned attrative potentials −ǫ and
−ǫ123 (ǫ, ǫ123 > 0) if a single bond is shared by the two and the three polymers, re-spetively (see Fig. 2.2). Although ǫ123 = 0, still this term will be needed for the RGtransformation to probe the three-body bound state and is generated by renormalization.



32 E�mov DNA and its transitions3.2 MethodIn this setion we summarize the RG transformations and the exat reursion relationsfor the partition funtions. The two ways of handling the problem are just two di�erentways to look at it. In the RG ase, we start from a large lattie and remove short sale�utuations by renormalizing the parameters, e�etively reduing the size of the lattie.In ontrast to this idea of thinning out the degrees of freedom, in the seond methodthe lattie is built generation by generation so that one may study the behavior of anyquantity of interest as a funtion of the length of the polymers. This is useful in studyingphase transitions beause �nite size saling an then be used to explore the nature ofthe transition.3.2.1 Renormalization groupBy de�ning the Boltzmann fators,
y = exp(βǫ), and w = exp(βǫ123), (3.1)the RG transformations of the two-hain and the three-hain Boltzmann fators an bewritten as (with y12 = y23 = y31 = y from Eqs. (2.9) and (2.10))

y′ =
(b− 1) + y2

b
, (3.2)

w′ =
(b− 1)(b− 2) + 3(b− 1)y2 + y6w2

b2y′3
, (3.3)where the primed variables y′ and w′ on the left hand side represent the renormalizedvalues of the Boltzmann fators.To disuss the phases and the nature of the transitions, one needs the �xed pointsfor this analysis. These are disussed in Se. 2.2.1. The orrelation lengths for suessivegenerations are related by ξ′ = ξ

λ
. This is oupled with the deviation of temperaturefrom the ritial point. Thus, one the �xed points are known, transition exponents anbe alulated from the RG relations by linear expansion around the ritial points. Thetwo-hain melting is ritial with the diverging length sale with exponents
ν =

lnλ

ln

(

dy′

dy

∣

∣

∣

y→yc

) (3.4)and the spei� heat exponent
α = 2 − ν. (3.5)



3.2 Method 33It is known from the Eq. (2.11) that at the two-hain ritial point yc = b−1, no real rootsare found from the three-hain RG relation, Eq. (3.3), within the range 2.303 < b < 8.596.These omplex roots lead to a limit yle behaviour, whih is intimately related to theE�mov e�et (see appendix B).3.2.2 Exat reursion relationsWith the trae over all on�gurations the nth generation partition funtions for single-(Cn), double- (Zn), and triple- (Qn) hain systems obey the reursion relations
Cn = bC2

n−1, (3.6)
Zn = b(b− 1)C4

n−1 + bZ2
n−1, (3.7)

Qn = b(b− 1)(b− 2)C6
n−1

+3b(b− 1)C2
n−1Z

2
n−1 + bQ2

n−1. (3.8)The initial onditions are taken as
C0 = 1, Z0 = y, Q0 = y3w. (3.9)The two- and the three- hain average energy and the spei� heat are given by Eqs. (2.16)-(2.19) [see Eq. (2.15)℄.3.2.3 Zeros of the partition funtions Zn and QnIf we take w = 1, i. e., no three-body interation, then the partition funtions arepolynomials in y. In general, Zn is a polynomial in y of order Ln whileQn is a multinomialin y and w. These partition funtions are then ompletely desribed by the zeros whihare neessarily omplex. A phase transition is signaled by a real limit point of the zeros.However, the rapid growth of the order of the polynomials makes it di�ult to implementthis program diretly. A di�erent representation is used to get the zeros [54℄.For n = 1, the two-hain partition funtion is written as

Z1 = b(b− 1)C4
0 + bZ2

0 . (3.10)With the initial onditions C0 = 1, Z0 = y, Eq. (3.10) beomes
Z1 = b(b− 1) + by2, (3.11)



34 E�mov DNA and its transitionswhih, by using Eq. (3.2), an be written as
Z1(y) = b2y′ = b2Z0(y

′). (3.12)In a similar way, Z2, for n = 2, an be written as
Z2 = b5(b− 1) + bZ2

1 , (3.13)and, by using the two-hain RG relation, Eq. (3.13) beomes
Z2(y) = b5y′ = b4Z1(y

′). (3.14)Thus by using the RG transformations of y and w, the reursion relations from Eqs. (3.6)-(3.8) an be redued exatly to the forms
Zn(y) = bLnZn−1(y

′), (3.15)
Qn(y, w) = (bLn)3/2Qn−1(y

′, w′), (3.16)with y′, w′ given by Eqs. (3.2) and (3.3). These relations an be veri�ed by diretsubstitution and, if neessary, by the method of indution as disussed above.Sine the zeros determine a polynomial ompletely, the two-hain partition funtionsan be written as
Zn(y) = bLn−1

Ln
∏

l=1

(y − ql), (3.17)
and Zn−1(y) = bLn−1−1

Ln−1
∏

j=1

(y − q̃j), (3.18)where the ql's and q̃j 's are the zeros of the partition funtions Zn(y) and Zn−1(y), re-spetively. These zeros appear in omplex-onjugate pairs. With the substitution ofEqs. (3.17) and (3.18), Eq. (3.15) beomes
bLn−1

Ln
∏

l=1

(y − ql) = bLnbLn−1−1

Ln−1
∏

j=1

(y′ − q̃j). (3.19)Then the use of Eq. (3.2), the relation between y′ and y, gives two roots from eah fatoron the right hand side, so that the ql's are the solutions of
(b− 1) + y2

b
= q̃j , (3.20)



3.3 Behavior of zeros: two- and three-hain systems 35i. e.,
q = ±

√

bq̃j − (b− 1). (3.21)The subsript of q is omitted. This learly shows that if we know the 2n−1 zeros q̃j of
Zn−1(y), we will be able to know the 2n zeros ql of Zn(y). One may start with the rootsof Z1 and generate suessively the roots of eah generation, by just solving a quadratiequation.Instead of generating all the roots, a random generation is more easily implementable.With an initial value y0 hosen randomly from the two roots of Z1, the new roots aredetermined by Eq. (3.21). If one of them is hosen at random and substituted as q̃j , theroots for the next generation an be found. Thus, after the nth iteration, the set obtainedis basially the zeros in the omplex y-plane. These roots are nothing but the zeros ofthe partition funtion found from di�erent sizes of the lattie, whih in this problemwould be equivalent to di�erent lengths of polymers. The zeros quikly onverge and as
n → ∞ we look for the limit point on the real axis. Apart from that, the distributionin the omplex y-plane itself is of interest. This method has been generalized for thethree-hain system.3.3 Behavior of zeros: two- and three-hain systems3.3.1 Two-hain system: b = 4For di�erent branhing fators, fratal-like strutures are obtained from the zeros of thepartition funtions of the two- and the three-hain systems. We onsidered only b = 4 asa representative of the range where there is no real �xed point along the two-hain ritialline. For b = 4 the struture shown in Fig. 3.1(a) is obtained in the omplex y planefrom the exat reursion relation Eq. (3.15). Exat solutions are possible only up to the
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Figure 3.1: Plot of zeros of Zn(y) in the omplex y-plane for b = 4 from (a) the exat reursionrelation for n = 6, and (b) the RG relation. The losest point to the Re(y) axis approahes
yc = 3, the two-hain melting point in the limit n → ∞, the unstable �xed point of Eq. (3.2).The seleted region shown by a box is zoomed in Fig. 3.2(a).



36 E�mov DNA and its transitions
n = 6 generation beause of omputational hardware limitations. This is insu�ient,as the thermodynami limit (n → ∞) is needed to observe a phase transition. Findingzeros at random from the RG relations [Eqs. (3.2) and (3.3)℄ overomes suh di�ultiesand hene large lengths an be reahed. The zeros obtained from Eq. (3.20) give thefratal-like struture shown in Fig. 3.1(b). The aessed zero nearest to the real axisapproahes the two-hain transition point yc = 3 for large n. Apart from the limit point,the distribution of the zeros in the omplex y plane is also non-trivial.
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Figure 3.2: Zeros of Zn(y): The inner retangular box is zoomed suessively. A self-similarstruture beomes apparent. Note that the zeros are known with high auray.The �rst feature to note is that the zeros do not seem to lie on a smooth di�erentiableurve. A zoomed piture of a small ross setion of the struture for the two-hain system[from Fig. 3.1(b)℄ is shown in Fig. 3.2(a). Further the seleted regions have been zoomedsuessively and are shown in Figs. 3.2(b) and 3.2(). The self-similarity of the strutureis visible. This is an indiation of the fratal nature of the distribution. Further analysisrequired for a quantitative desription is not done here.These fratal like strutures obtained above are nothing but the separatries of theset of RG �ows in the omplex plane to the appropriate stable �xed points. Theseseparatries for iterations of any funtion in the omplex plane are known as the Juliaset (see appendix A). The sets are obtained after an in�nite number of iterations of areursive formula by identifying the points that do not �ow to the stable �xed points.Our method of �nding the zeros by using the RG relations is in fat equivalent to aninverse iteration method, whih is more e�ient in produing suh strutures.In Fig. 3.3(a) the RG �ows are shown in the omplex y plane for a two-hain system.The dotted line (red urve) shows the �ow towards the stable �xed point y = 1, i. e.,the high temperature region, when we start with a value from the inner region of thefratal-like struture. On the other hand, a point from the outskirts of the line of zeros�ows to the stable �xed point y = ∞, whih is the bound state with zero temperature.The ritial point, being an unstable �xed point, does not atually belong to the set but,as disussed, is a limit point � in a sense a boundary of the set.The seond feature to note is the 3-like shape near the real-axis limit point. It is not



3.3 Behavior of zeros: two- and three-hain systems 37arbitrary. The angle at the limit point in the omplex plane is related to the spei�heat exponent by [98℄
tan (φν) = − tan (πα) +

A−
A+

csc(πα), (3.22)where φ is the angle between the tangent of zeros at the limit point, and the real axisof y, and A± are the amplitudes of the spei� heat on the low and the high y side ofthe transition. Just like the exponents, A−/A+ is a universal number for a universalitylass of transition. For the two-hain problem, we know that A−/A+ → ∞ as A+ = 0.Therefore the angle φ is given by
φ =

π

2ν
. (3.23)The zeros obtained by the suessive iterations of the one lose to the real axis areshown in Fig. 3.3(b) by the triangles. They approah the real axis in a linear fashionwith an angle φ, given by the straight line

Im z = (Re z − c) tan
π

2ν
, (3.24)in the generi omplex z plane with ν from Eq. (3.4). Here c represents the limit pointof the zeros on the real axis. The zeros our in omplex onjugate pairs. Therefore ifwe take the mirror image of the distribution of zeros about the real axis in Fig. 3.3(b),the beak of the 3-like shape an be obtained.
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38 E�mov DNA and its transitions3.3.2 Three-hain system: b = 4We have alulated the zeros of Qn(1, w) for a three-hain system with a pure three-haininteration. By onsidering y = 1 in Eq. (3.3), we get
w′ =

(b2 − 1) + w2

b2
. (3.25)The zeros ome from the equation

ql = ±
√

b2q̃j − (b2 − 1),where the ql's and q̃j 's are the zeros of Qn(1, w) and Qn−1(1, w), respetively. The dis-tribution of zeros is the Julia set whih has a fratal-like struture shown in Figs. 3.4(a),3.4(), and 3.4(d). By hoosing the zero near to the limit point wc, the nature of thedistribution an be determined, as shown in Fig. 3.4(b) by the straight line given byEq. (3.24) with ν of Eq. (3.29) and c = wc.
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Figure 3.4: (a) Plot of the zeros of Qn(1, w) in the omplex w-plane for b = 4. The losestpoint to the real axis approahes wc = 15 for large n. There is self-similarity in the distributionof zeros. (b) The triangles are the zeros. The solid red line given by Eq. (3.24) passes throughthem with ν of Eq. (3.29) and c = wc. (), (d) The inner retangular box [from (a)℄ is zoomedsuessively.3.3.3 E�mov DNA: b = 4The idea is to show the E�mov transition point of DNA by �nding the limit point of zeroson the real y axis. Although we onsider w = 1, the e�etive three-hain interation getsgenerated by renormalization. As a result the zeros found from Eqs. (3.6)-(3.8) seem topinh the Re(y) axis at a point where no pair of hains is bound. The exat solutions



3.3 Behavior of zeros: two- and three-hain systems 39are shown in Fig. 3.5(a) for n = 6. On a �ner sale the zeros are shown in Fig. 3.5(b).For suh small latties the limit point is not aessible, hene an extrapolation shememay be used. The zeros nearest to the Re(y) axis, obtained in di�erent generations(n = 2, ..., 6) are shown in Fig. 3.5() by blak dots. A straight line niely �ts these zerosand is shown by the solid red urve.
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Figure 3.5: Plot of zeros in the omplex y-plane for b = 4. (a) Zeros of Qn(y, 1), when n = 6,(b) a �ner sale of (a) near the real axis, and () ombined plot of zeros. The bigger blak irlesare the zeros losest to the real axis (i. e., with smallest imaginary part) obtained from Qn(y, 1)for n = 2, ..., 6 and the solid (red) straight line is a �t to these. The �Milky Way"-like regionshows the distribution of zeros from Eq. (3.26) on whih we superpose the positive quadrant of(a) shown by the small blak dots.The straight line intersets the real axis at y = 2.321. This value is the large nextrapolation and an be taken as an estimate of the E�mov transition. We may omparethis extrapolated value with the previous RG-based estimate of yE = 2.32402. Findingthe zeros for the two-hain system is easier than for the three-hain system. Sine thethree-hain equation holds both the variables y and w, �nding zeros from the three-hainRG relation is tantamount to generating the full relation for Qn. This is beause oneneeds to keep w at all the intermediate values of n and then, at the the desired value of
n, w is to be set to 1. One sees the di�ulty of the E�mov physis even though w = 1.It is tempting to simplify the reursion relation at the ost of some approximation. Weset w = w′ = 1 to get a renormalized y′ that desribes the three-hain system. Suh arelation follows from Eq. (3.3), as

y′
3

=
(b− 1)(b− 2) + 3(b− 1)y2 + y6

b2
. (3.26)The zeros obtained from Eq. (3.26) spread out in a �Milky Way� over a region in theomplex plane of y. The spread makes it di�ult to make an estimate of the real-axislimit point, but one may use the width to put a bound on the E�mov transition point[see Fig. 3.5()℄.
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Figure 3.6: (a) Zeros of Qn(yc, w) in the omplex w plane for b = 9. The stable �xed point
w = ws is shown by a blak irle. (b) The solid red line is given by Eq. (3.24) and passesthrough the zeros shown by the triangles, with ν from Eq. (3.30) and c = wE .3.3.4 E�mov DNA at yc = b− 1: b = 9A study along the ritial threshold of the two-hain melting is quite interesting. Noreal �xed point for w exists for Eq. (3.3) when b is in the range 2.303 ≤ b ≤ 8.596 alongthe y = yc line. For y = yc, the single parameter RG relation is

w′ =
(b− 2) + 3(b− 1)2 + (b− 1)5w2

b2(b− 1)2
. (3.27)The two �xed points for this ase are given by Eq. (2.11). For b = 9, these are

w = ws = 0.0655347... (stable), (3.28a)
w = wE = 0.0926684... (unstable). (3.28b)The unstable �xed point, as the phase transition point, determines the limit point of thezeros of the partition funtion on the real axis. Hene it an be predited that at thetwo-hain melting point, by tuning w, a transition ours at w = wE, from the E�movDNA to the ritial state of polymer pairs. Figure 3.6(a) shows the distribution of zerosof Qn(yc, w) in the omplex w plane. The set of these zeros is a Julia set, separating the�ows to the stable �xed points. The stable �xed point in the inner region of the set isgiven by Eq. (3.28a). The zeros near the real axis approah w = wE linearly, followingEq. (3.24) with c = wE and ν of Eq. (3.30) as shown in Fig. 3.6(b). A detailed disussionis given in the next setion.3.4 E�mov DNA: RG �ow and numerial evideneTo explore the robustness of the E�mov e�et, we now inlude a three-hain repulsiveinteration along with the pairwise attrative one. The three-hain interation is attra-
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ν =
ln 2

ln 2(b2−1)
b2

, (3.29)
ν =

ln 2

ln

(

∂w′

∂w

∣

∣

yc=b−1
w→wE

) . (3.30)Around a ritial point one should see a �nite size saling. Therefore the three-hain
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average energy and the spei� heat obeying the �nite size saling an be written in theforms

E ∼ L1/νf(L1/ν |w − w∗|), (3.31)
C ∼ L2/νf(L1/ν |w − w∗|), (3.32)with appropriate ν and w∗. In Figs. 3.9() and 3.9(d) we see that the average energyand the spei� heat sale as EnL

−1/ν
n and CnL

−2/ν
n , respetively, when plotted versus

|(w−w∗)|L1/ν
n with the ν of Eq. (3.29) and w∗ = wc for y = 1, all the data ollapse ontoa single urve for di�erent lengths of polymers, where n = 6, 7, ..., 26.Figures 3.10() and 3.10(d) show similar plots for the ritial line (yc = b − 1) with

ν of Eq. (3.30) and w∗ = wE. Sine the spei� heat diverges with inreasing length,data ollapse is good for the ase y = 1. The data ollapse for the ase yc = b − 1 isnot so good due to a smoother behavior of the spei� heat at the ritial point. Theseestablish the weak ritiality at w = wE.
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E ∼ L1/νf(L1/ν |y − yc|), (3.33)with appropriate ν. The two- and the three-hain average energy saled with EnL

−1/ν
nare plotted with |(y− yc)|L1/ν

n . All the data seem to give good dataollapse as shown inFig. 3.11 by sets I, II and III for di�erent lengths of polymers, where n = 10, 11, ...., 16.The set I is the dataollapse for the two-hain system [32℄ with the exponent of Eq. (3.4)and the set II shows the dataollapse for the three-hain system for w = 0.07 < wEwith the same exponent like the two-hain ase, given by Eq. (3.4). The set III showsthe dataollapse for the three-hain system for w = wE with the two-hain length saleexponent of Eq. (3.4) with 1% error bar. Theses show that the three-hain melting for
w ≤ wE is similar to the pure two-hain melting. The di�erenes between the two setsof ollapse are due to orretions from the w term. The two-hain system does not havethe three-hain interation term. So for w ≤ wE, the transitions are ontrolled by thetwo-hain length sale exponent.3.5 ConlusionTo summarize, the RG relations and exat reursion relations are used to study the three-hain system on a diamond hierarhial lattie. Our emphasis is on the E�mov-like stateexhibited by the three-hain system at or beyond the two-hain melting, where no twohains are bound, and the nature of the transitions. Fratal-like strutures are obtainedfor the zeros of the partition funtions. These zeros, when they pinh the real axis,



46 E�mov DNA and its transitionsdetermine the phase transition points. We �nd that all the transition points obtainedfrom RG �ows, are in good agreement with the zeros of the partition funtion on thereal axis. The E�mov transition point thus found strengthens the predition of E�mov-like phenomena for the three-hain system. We have shown that the E�mov e�et isexhibited by a three-hain system even if there is a repulsive three-hain interation. Atransition an be indued in higher dimensions from the E�mov state to the three-hainritial repulsive state at the melting of duplex DNA. The transition to this three-hainritial repulsive state is ontinuous and obeys a �nite size saling law with exponentsobtained from the RG. In the (y, w) phase diagram, (yc, wE) is a multiritial point.Although the model studied in this paper is simplisti, mainly to get exat results,still the denaturation transition indued by bubble formation aompanied by diverginglength sales is the generi senario for more realisti polymeri models. The qualitativepiture is therefore expeted to be valid for those models too. We await experimentalevidene for the existene of the E�mov DNA or the E�mov transition. Again, theexistene of suh a state remains a hallenge for moleular dynamis and Monte Carlosimulations.



4E�mov e�et: Polymers on the Sierpinskigasket
In the previous two hapters three polymers on a hierarhial lattie of dimension d >
2 have been studied and the E�mov-DNA was predited. In this hapter we showthat the E�mov e�et ours even in lower dimensions if some spei� interations areonsidered among the polymers. Here we study the melting of the three-stranded DNAon a Sierpinski Gasket and show that a transition an be indued if extra weight fatorsare given to the fork opening and losing. We study di�erent models in detail and obtaina new state, to be alled a mixed state.This hapter is organized as follows. In Se. 4.1, we de�ne our model on a Sierpinskigasket. In Se. 4.2 and Se. 4.3 the polymers with the rossing and the non-rossingonditions are de�ned. The exat reursion relations of the partition funtions are writtenand the methods of alulation are disussed. Three di�erent models for the three-hainase are studied. A summary is given in a table in Se. 4.5.4.1 Model

n=2n=1n=0Figure 4.1: Reursive onstrution of the Sierpinski Gasket. Polymer walk is not allowed in theshaded triangles.The Sierpinski gasket is a fratal lattie obtained after an in�nite iteration from asingle equilateral triangular lattie. This partiular lattie is drawn in the two dimen-



48 E�mov e�et: Polymers on the Sierpinski gasketsional (d = 2) plane. Taking out the middle piee of a triangular shape yields threesmaller triangles. Thus the fratal lattie is formed reursively after an in�nite numberof iteration. See Fig. 4.1. The dimension is alulated for an in�nite lattie, and it is
d =

lnNn→∞
lnLn→∞

=
ln 3

ln 2
≈ 1.58, (4.1)where Nn is the the number of the surviving triangles and Ln is the length of unit stepor the number of bonds of the lattie from bottom to top along the any one side of thelattie at the nth generation.

Figure 4.2: Two hains along the non horizontal bonds. Two possible walks are shown (bn and
gn type from Fig. 4.3).On the Sierpinski Gasket, polymers are restrited to oupy only the non-horizontalbonds as shown in Fig. 4.2. Following weights are assigned to the polymers:
• Fugaity z for eah bond,
• Boltzmann fator yij = eβǫij , when a single bond is shared by the two polymers and
yijk = eβǫijk when a single bond is shared by the three polymers.
• σij for the two-hain and σijk for the three-hain bubble opening or losure.The weight of a walk of a single hain of length N is zN , where N is the number ofbonds. The tradition is to onsider z as an extra variable, but we will set it to 1, as isdisussed below. Here σ = 1 implies no weight is given for bubble opening or losure,and σ = 0 implies no bubble formation, i. e., a model without any bubble.To study the melting of DNA on a fratal lattie, we need to de�ne the partitionfuntions for the two- and the three-hain systems as shown in Fig. 4.3. We hoose
z = 1 to be in the anonial ensemble. The standard way to study the polymers on afratal lattie is to �nd out the �xed point of z by an RG proedure as proposed by D.Dhar [44℄. This orresponds to the Grand anonial ensemble, where the �xed point of
z gives the free energy. We know that the hoie of ensemble does not matter, as longas we work with the large length of the polymer. In our approah we alulate the freeenergies, look for the most favorable one and obtain the phase diagram diretly from the



4.1 Model 49free energies. Sine all the polymers are of same length (→ ∞) and traverse the wholelattie, we may set z = 1.Di�erent possible polymer on�gurations are shown in Fig. 4.3. The partition fun-tions an, bn, cn, dn, en, fn, gn, hn, in are de�ned at the nth generation and the reursionrelations are written for suessive generations. If the nth partition funtion is known,the (n + 1)th generation partition funtion an be derived from the reursion relations.Based on the idea of the various phases, the total partition funtions for the two- andthe three-hain system in the �xed length ensemble are written as
Ztot = b2n+1 + dn+1, (4.2)
Qtot = fn+1 + b3n+1 + ncdn+1bn+1, (4.3)in terms of the subpartition funtions bn+1, dn+1 and fn+1. Here nc is the number of

n n

n n n

n n n

na b c

d e f

g h iFigure 4.3: Generating funtions for two and three strands.on�guration of dn+1bn+1 state. It is 3 when hains an ross eah other and 2 when theyan not. Two hain bubble is given by b2n+1, dn+1 is the two-hain bound state. Similarlyfor the three-hain system, three-hain bubble is given by b3n+1, fn+1 is the three-hainbound state. The last term in Eq. (4.3) desribes the mixed state a state when one isfree with the other two forming a duplex. If the free hain has no entropy, the statewould be de�ned by d3/2
n+1, but as we argue below this is an unphysial state.



50 E�mov e�et: Polymers on the Sierpinski gasket4.2 Two strands DNA4.2.1 With rossing
bound

yc

unbound

 1.3
 0

 1  1.2 1.1
y

Two chain: crossing

 0.8

 0.4σ

Figure 4.4: Two-hain phase diagram for σ vs y. Polymers an ross eah other. The two-hainmelting is at yc(0) = 1.264 for σ = 0.We onsider the two-hain system. The walks an ross eah other. Here y is theweight at the bond for sharing the same bond by the two polymers. The two-hainbubble opening or losure is assoiated with the weight σ at the vertex. The partitionfuntions for the two-strand problem for the (n+ 1)th generation are given by,
an+1 = a2

n, (4.4a)
bn+1 = b2n + a2

nbn, (4.4b)
cn+1 = c2n, (4.4)
dn+1 = d2

n + 2g2
nbn + c2ndn, (4.4d)

gn+1 = angn(bn + cn). (4.4e)The initial onditions are taken as
a0 = 1, b0 = 1, c0 = y, d0 = y2, g0 = yσ. (4.5)We look at the divergene or onvergene of the ratio

r1 =
dn+1

b2n+1

(4.6)for given σ and y. By this ratio r1, the two-hain bound state free energy is omparedwith the free energy when the two strands are in the denatured state. By looking atthe onvergene and the divergene of r1 we obtain the phase diagram in the y-σ plane



4.3 Three strands 51as shown in Fig. 4.4. The transition is from the unbound to the bound state of thetwo-stranded DNA at y = yc(σ). The nature of the transition line near σ = 0 has beenstudied in small intervals of σ, but many points are omitted from the graph. For σ = 0,the two-hain melting is at yc(0) = 1.264. The melting transition is �rst order where thetwo-hain average energy per bond shows a disontinuity. The issue of disontinuity isdisussed in Se. 4.4.4.2.2 No rossing
unbound

bound

yc
 0

 0.4

 1.2

 1.1  1.2  1.3 1
y
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Two chain: noncrossing

Figure 4.5: Two-hain phase diagram for σ vs y. Non-rossing walk. The two-hain melting isat yc(0) = 1.264 for σ = 0.If the rossing between the two strands DNA is not allowed, the reursion relationsare same as the rossing ase exept for dn, whih in this ase is
dn+1 = d2

n + g2
nbn + c2ndn. (4.7)The initial onditions are still given by Eq. (4.5). A similar omparison method [Eq. (4.6)℄is used here as in the two-hain rossing ase. We obtain the phase diagram in the y-σplane as shown in Fig. 4.5. For σ = 0 the two-hain melting is at yc(0) = 1.264, whihis the same as in the rossing ase. There is a di�erene between the rossing and thenon-rossing melting urve for σ 6= 0.4.3 Three strandsWhen we onsider the three-hain system, several ases are possible. With rossing andnon-rossing onditions and interating and non-interating pairs we lassify di�erentmodels. There are many possible varieties but we will disuss only three of them, TS1,TS2 and TS3. With di�erent onsiderations of interations the models are the following:



52 E�mov e�et: Polymers on the Sierpinski gasket1. Model TS1: This is the non-rossing ase and favours two-hain bubble openingor losure. No ontat energy between hains 1 and 3.2. Model TS2: This is the rossing ase with the three-hain repulsion and favourstwo-hain bubble opening or losure.3. Model TS3: This is the rossing ase with the three-hain repulsion and weight forthe two- and the three-hain bubble opening or losure.
4.3.1 Model TS1: Non-rossingIn this ase walks an not ross eah other. We assign a weight Boltzmann fator yfor eah interation between hains 1 and 2, and 2 and 3 i. e., y12 = y23 = y, but nointeration between hains 1 and 3, i. e., y31 = 1. The weight σ is assigned for eahbubble opening between all pairs, i. e., σ12 = σ23 = σ31 = σ. When all hains aretogether we onsider a weight y2 and suh a situation an also be desribed if we take
y12 = y23 = y31 = y and yijk = 1/y. If y > 1, yijk is repulsive in nature.The reursion relations for the partition funtions for this model are given by

an+1 = a2
n, (4.8a)

bn+1 = b2n + a2
nbn, (4.8b)

cn+1 = c2n, (4.8)
dn+1 = d2

n + g2
nbn + c2ndn, (4.8d)

en+1 = e2n, (4.8e)
fn+1 = f 2

n + e2nfn + h2
ndn + i2nbn, (4.8f)

gn+1 = angn(bn + cn), (4.8g)
hn+1 = hn(anen + bncn), (4.8h)
in+1 = in(cnen + dnan) + g2

nhn, (4.8i)and the initial onditions are
a0 = 1, b0 = 1, c0 = y, d0 = y2, e0 = y2, f0 = y4, g0 = yσ, h0 = y2σ2, i0 = y3σ2. (4.9)



4.3 Three strands 53We look at the divergene or onvergene of the ratios
r2 =

fn+1

b3n+1

, (4.10)
r3 =

fn+1

bn+1dn+1
, (4.11)

r4 =
fn+1

d
3/2
n+1

(4.12)for given σ and y. The idea behind hoosing the above three ratios is to ompare the

3 12 1 2 3

(a) (b)

Figure 4.6: Shemati diagram of a mixed phase of three polymers of two possible on�gurations.At eah monomer position, two are bound but the third monomer is free along the length ofthe hains. (a) Polymer hains an ross eah other. (b) Polymer hains an not ross eahother and no interation between hains 1 and 3.three-hain free energy with the free energy when three hains are free [r2 in Eq. (4.10)℄,when one hain remains free while the other two forming a duplex [r3 in Eq. (4.11)℄and when all are paired but no three-hain ontat [r4 in Eq. (4.12)℄. By looking at thedivergene or onvergene of the ratios r2, r3, and r4 for di�erent y, σ and omparingthese values with the two-hain melting urve, di�erent phases are obtained. We make aomparison between r3 and r4. If we have a phase where the strands are pairwise boundbut no three-hain ontat, we an have two possibilities. This mixed phase ould bedesribed either by the free energy ln d
3/2
n+1 or by the free energy ln bn+1dn+1. If thereare pair interations among all hains and walks an ross eah other then for eah pairwe get dn+1. If the free hain has limited on�gurations, we an write the free energyontribution as ln (d3

n+1)
1/2 = ln d

3/2
n+1 leaving aside other fators. Evenif 1 and 3 donot interat and walks do not ross eah other, the possible phase has the free energyontribution ln(d2

n+1)
3/4 = ln d

3/2
n+1. The other possibility is to have a situation wherethe strands are pairwise bound but no three-hain ontat but the free hain has fullentropy, then the free energy is ln bn+1dn+1. Fig. 4.6(a), 4.6(b) are the on�gurations ofthe mixed phase for the rossing and the nonrossing ases.
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Figure 4.7: Three-hain phase diagram in the y-σ plane for the model TS1. The bound,unbound, the E�mov and the mixed states are shown. The red urve is the two-hain meltingurve and is valid for the three-hain ase in the region y > 1.07526 but not in the region
y < 1.07526. The E�mov and the mixed both states appear in this ase for appropriate σ and
y. Fig. 4.7 shows the phase diagram if d3/2

n+1 desribes the mixed phase while Fig. 4.8would be phase diagram if the mixed phase is desribed by ln bn+1dn+1. In both ases, weobtain two di�erent phases, an E�mov phase and a mixed phase. However the E�movphase is not a distint phase. It is just an e�et on three hains, where no two are boundbut three are bound. On the other hand, in a mixed phase, the strands are pair-wisebound but no three-hain ontat. In Fig. 4.7, within the range y = 1 to y < 1.07526 for
σ > 1.14458 the E�mov region is obtained and the region is enlosed between the linefor r2 and the two-hain melting urve. The mixed phase is enlosed between the line
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Figure 4.8: Three-hain phase diagram in the y-σ plane for the model TS1. This is the orretphase diagram. The bound, unbound, the E�mov and the mixed states are shown. The red urveis the two-hain melting urve and is valid for the three-hain ase in the region y > 1.07526but not in the region y < 1.07526. The E�mov and the mixed both states appear in this asefor appropriate σ and y.



4.3 Three strands 55for r4 and the two-hain melting urve for y > 1.07526 and σ < 1.14458. Based on thephysial intuition we believe, Fig. 4.8 is the orret phase diagram.4.3.2 Model TS2: With rossingWe now extend the study to a slightly di�erent model with the following harateristis:
• Walks an ross eah other.
• y12 = y23 = y31 = y, y123 = 1

y
.

• σ12 = σ23 = σ31 = σ, σ123 = 1.In this model all hains are having equal pair interation. There is a three-hain repulsiveinteration. A weight is given for the two-hain bubble opening or losure. The reursionrelations for the (n + 1)th generation partition funtions are given by
an+1 = a2

n, (4.13a)
bn+1 = b2n + a2

nbn, (4.13b)
cn+1 = c2n, (4.13)
dn+1 = d2

n + 2g2
nbn + c2ndn, (4.13d)

en+1 = e2n (4.13e)
fn+1 = f 2

n + e2nfn + 3h2
ndn + 3i2nbn, (4.13f)

gn+1 = angn(bn + cn), (4.13g)
hn+1 = hn(anen + bncn), (4.13h)
in+1 = in(cnen + dnan) + 2g2

nhn, (4.13i)with the initial onditions
a0 = 1, b0 = 1, c0 = y, d0 = y2, e0 = y2, f0 = y4, g0 = yσ, h0 = y2σ2, i0 = y3σ2.(4.14)Following the same proedure of omparison of free energies, the phase diagram isobtained in the y-σ plane, as shown in Figs. 4.9, and 4.10. Here also we believe Fig. 4.10is the orret phase diagram.With the given initial onditions this model exhibits the mixed phase. One sees twotransitions: At low temperature we have a three-hain bound state that goes into themixed state (blue line in Fig. 4.10) and the mixed state melts into free hains (red linein Fig. 4.10).
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4.4 Energy diagram 574.3.3 Model TS3: With rossingWe onsider a di�erent generalization that favours three-hain bubbles
• Walks an ross eah other.
• y12 = y23 = y31 = y, y123 = 1

y
.

• σ12 = σ23 = σ31 = σ, σ123 = 1
σ
.Here σ < 1. Therefore σ123 > 1. Two-hain bubbles are suppresses by σ but σ123 favoursthree-hain bubbles. Here three hains have repulsive interation. A weight is given for
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Figure 4.11: Three-hain phase diagram in the y-σ plane for model TS3. The unbound, thebound and the E�mov states are shown. The red urve is the two-hain melting urve, whihis not present in the three-hain ase.the two and the three hains bubble opening or losure. However the reursion relationsare same as for TS2 given by Eqs. (4.13a)-(4.13i). The initial onditions are
a0 = 1, b0 = 1, c0 = y, d0 = y2, e0 = y2, f0 = y4, g0 = yσ, h0 = y2σ, i0 = y3σ. (4.15)The three-hain interation is repulsive in this ase. Following the same proedure ofomparison of free energies, the E�mov state is obtained and is shown in Fig. 4.11.4.4 Energy diagramThe exat numerial alulations of the total average energy are done by taking thederivatives of the total partition funtion. The total average energy of the two-hainsystem (Etot) and the three-hain system (Etot) [using Eq. (4.2) and Eq. (4.3)℄ are given



58 E�mov e�et: Polymers on the Sierpinski gasketby [see Eq. (2.15)℄
Etot =

dnEdn

Ztot
, (4.16)

Etot =
fnEfn + ncbndnEdn

Qtot
. (4.17)The three-hain average energy per bond is shown for model TS1 in Fig. 4.12. For
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Figure 4.12: Model TS1. Plot of the average energy per bond with y. Dotted lines are toshow the disontinuity in the energy urves. (a)For σ = 1.25. The three-hain average energy(marked as 1) is ompared to the two-hain average energy (marked as 2). (b) For σ = 0.5. Thethree-hain average energy (marked as 1) is ompared to two-hain average energy (marked as2). For both ases the three- and the two-hain average energy approahes the magnitude 2and 1 with y respetively.nonrossing TS1 model nc = 2. Fig. 4.12(a) is for σ = 1.25. The three-hain averageenergy (marked as 1) is ompared to the two-hain average energy (marked as 2). Thisshows the nonzero three-hain average energy, eventhough the duplex average energy iszero. This is the E�mov-DNA, observed in Chap. 2 for d > 2. Thus we onlude that,for appropriate values of y and σ, the E�mov e�et is indued for d < 2.Fig. 4.12(b) is for σ = 0.5. The three-hain average energy (marked as 1) is om-pared to the two-hain average energy (marked as 2). The transition from the unboundto the mixed state is at the same temperature as the two-hain ase, i. e., at yc(σ).The transition from the mixed state to the bound state ours for y > yc(σ) (lowertemperature).The average energy urve in Fig. 4.12(a) marked as 1 shows only one jump, whereas in Fig. 4.12(b) the average energy urve marked as 1 shows two jumps. In the laterase the two transitions are from the unbound to the mixed state and from the mixedto the two-hain bound state. So it is predited that the E�mov state is a rossover, nota separate phase. The transition from the unbound to the two-hain bound sate is �rst



4.5 Remarks 59order. So is the transition from the mixed state (denoted by bd) to a three-hain boundstate (desribed by f).4.5 RemarksAll the models and results are given below for easy referene. Model TS2 shows theModel: TS1 Model: TS2 Model: TS3Non-rossing Crossing Crossing
y12 = y23 = y, σij = σ yij = y, σij = σ yij = y, σij = σ
y31 = 1, σ123 = 1 y123 = 1/y, σ123 = 1 y123 = 1/y, σ123 = 1/σE�mov, Mixed Mixed E�movTable 4.1: The results obtained from the three-hain models with the initial onditions areshown. The new phases obtained are also �ashed in this table.mixed state, model TS3 shows an E�mov like state. But for model TS1 we get both ofthe states though in di�erent regimes of σ and y. If we ompare models TS2 and TS3where three-hain interation is repulsive in nature (y123 > 1), there is a bias in TS3 forthree hain bubble opening or losure. This biasing seems to favor the E�mov e�et inTS3. For σ = 0 the models are like the Y-fork model, whih show a �rst order transition.All the models ome out to be same for σ = 0 and yc(0) = 1.264... denotes the meltingfor the two- and the three-hain systems.4.6 ConlusionIn this hapter we have shown that, when an extra weight σ in the favour of the two- andthe three-hain bubble opening and losure is introdued, the phase transition ourseven in d < 2. Here we have obtained the E�mov-DNA, a loosely three-hain boundstate where no two are bound. This observation is same as disussed in the previous twohapters (Chap. 2 and Chap. 3). In addition we have obtained a new state, to be alleda mixed state, where loally any two are bound keeping the third-strand always free butin a global view no one is ompletely free.The limiting model for σ = 0 is the Y-fork type whih shows a �rst order transitionwithout any bubbles. No E�mov or mixed state are possible in this ase. In fat thetransitions for σ > 0 in these models are also �rst order and we have observed theintermediate phase (mixed phase) for y > yc(σ) and the E�mov state for y < yc(σ). Theintermediate phase evolves as a separate phase but the E�mov state is a rossover.





5Dynami phase transition in the onversionof B-DNA to Z-DNA
In this hapter we study the onformational onversion of B-DNA to Z-DNA using wave-front propagation and obtain the dynami phase diagram. The dynami phase diagramis obtained for the stability of the front separating B and Z. The instability in this frontresults in two split fronts moving with di�erent veloities. This shows that, depending onthe system parameters a denatured state also may develop dynamially eventhough it isthermodynamially forbidden. This resolves the urrent ontroversies on the transitionmehanism of the B-DNA to Z-DNA.This hapter is organized as follows. The onformational transition of B-DNA toZ-DNA is studied using wave-front propagation. We disuss the wave front propagationin Se. 5.1 with a suitable example. Our proposed thermodynami model is introduedin Se. 5.2. The dynami phase diagram is disussed by numerial and perturbativeapproah in Se. 5.3. Conlusions are drawn on the B-Z transition mehanism in Se. 5.4.The two main ompeting hypotheses for the B to Z transition mehanism are onthe foyer to motivate us to study the B-Z transition mehanisms with a thermodynamimodel. With the purpose of investigating the transition proedure, we onsider a oarse-grained thermodynami model and restrit the geometry to one-dimension only. Wemaintain the boundaries of the long hain in the two states so that the new struturedevelops from one side. In suh a problem, the dynamis of the transition produes asteady state with uniformly moving front or fronts. An investigation of various types offronts would larify the dynami generation of any thermodynamially forbidden state.With that ambition we study the transition from the B-DNA to the Z-DNA by usingthe theory of wave-front propagation. In the next setion we review the wave frontpropagation method with an example of two oexisting states.



62 Dynami phase transition in the onversion of B-DNA to Z-DNA5.1 Wave front propagationIn this setion the wave front propagation is disussed very brie�y. Front propagationphenomena arises from the reation di�usion equation [99, 100℄. An interfae developsbetween two distint phases (one is stable and another is unstable). A driving foretends to favor the stable state among the di�erent distint phases. As a result theinterfae starts moving. The moving interfae is atually haraterized as the travelingwave front when one phase invades the other. Front propagation is widely used in thestudy of many biologial events suh as epidemi dynamis, population dynamis, pulsepropagation in nerves or other growth dynamis. To study the heliase ativity on DNA,a simple oarse grain model was proposed by Bhattaharjee [101℄. By the study of wavefront propagation he proposed that the Y-fork is an interfae whose propagation is thebasi step for the repliation proedure and repliation mehanism. We also enounterpropagating front in spreading of �ames, hemial reations and in any dynami system.If the dynamis is governed by a nonlinear di�usion equation the quantity of interestwould be to measure the rate of onvergene of veloity or relaxation of veloity and howthe interfae of a wavefront propagates into an unstable state. For a wide range of initialonditions the veloity of suh a front approahes a marginal value. In asymptoti limitthe veloity of the traveling wave is uniform and the shape of the wave front remainsunhanged.Let us onsider the Landau free energy suh that, its minimization desribes twohomogeneous states given by φ = 0 and φ = 1. The order parameter φ(z, t) is thedi�usive �eld in one dimension with z (spae) and t (time), two independent variables.The equation governing the propagation is of the form
∂φ

∂t
= D

∂2φ

∂z2
+ f(φ), (5.1)where D is the di�usion oe�ient and f(φ) is the thermodynami fore, derived fromthe Ginzburg-Landau free energy

H(φ) =

∫

dz

[

D

2

(

∂φ

∂z

)2

+ F (φ)

]

, (5.2)where F (φ) = −
∫

f(φ)dφ is the Landau free energy, and φ(−∞, t) = 1, φ(∞, t) = 0 asthe boundary onditions. The traveling wave solution satisfying Eq. (5.1) is given by
φ(z, t) = U(τ), where τ = z − vt. (5.3)In Eq. (5.1), f(φ) ats as a �fore� on the interfae, as a result of whih the indued



5.1 Wave front propagation 63interfae between the two states su�ers an instability. The traveling front moves withveloity v, whih is to be determined.In ontrast to the non-linear di�usion equation the simple di�usion equation doesnot lead to any veloity and an be veri�ed very easily. If we substitute Eq. (5.3) inEq. (5.1) with f(φ) = 0, the solution omes out to be
U(τ) = A+B exp

−v
D

τ ,where A,B are the integration onstants. Sine U has to be bounded for all z, B mustbe zero as the exponential beomes unbound for τ → −∞. Therefore U(τ) = A, aonstant an not be a wave solution. Hene simple di�usion an not have traveling wavesolution. Dimensional analysis is a simpler way to justify the above argument. Theveloity, determined by the dimensional analysis is [v] = [z]
[t]

∼
√

D
t−ti

. This shows thatat any t = ti, v is in�nity. Therefore the di�usion equation does not have a well de�nedveloity.
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 3 2Figure 5.1: The Landau funtion F (φ) as a funtion φ. φ = 1 is the stable state and φ = 0represents the unstable state.Due to the time dependeny, the di�usion equation an not be redued to a thermody-nami problem. But the nonequilibrium proess is driven by the underlying equilibriumLandau funtion. If the fore term involves the stable phase at φ = 1 and the unstablephase at φ = 0, then

f(φ) = kφ(1 − φ), (5.4)where k is a onstant and the Landau free energy is
F (φ) = −k(1

2
φ2 − 1

3
φ3). (5.5)The nonlinear di�usion equation

∂φ

∂t
= kφ(1 − φ) +D

∂2φ

∂z2
, (5.6)



64 Dynami phase transition in the onversion of B-DNA to Z-DNAwith the boundary onditions
φ(−∞, t) = 1, φ(∞, t) = 0, for all t, (5.7)is known as the Fisher-Kolmogorov (F-K) equation [99℄. Here k > 0 and D > 0. Thepositivity of D ensures the stability of the system. The nontrivial dynamis emergesfrom the ompetition between the di�usivity and the non-linearity of the fore term. Asa result, the stable state invades the unstable one.Resaling the F-K equation by t̃ = kt and z̃ = z

√

k
D
we get

∂φ

∂t̃
= φ(1 − φ) +

∂2φ

∂z̃2
. (5.8)For notational simpliity we avoid the tilde sign. Therefore Eq. (5.8) beomes

∂φ

∂t
= φ(1 − φ) +

∂2φ

∂z2
. (5.9)In the spatially homogeneous situation the steady states are φ = 1 and φ = 0 whih arerespetively homogeneous stable and unstable states. We restrit ourselves in the region

0 ≤ φ ≤ 1. Note that Eq. (5.9) is invariant under re�etion of x. With the uniformlytranslating front solution,
φ(z, t) = U(τ), where τ = z − vt, (5.10)Eq. (5.9) is written as

U ′′ + vU ′ + U(1 − U) = 0, (5.11)where the prime denotes the derivative of U with respet to τ . The boundary onditions
U(τ → −∞) = 1, U(τ → ∞) = 0 (5.12)denote the stable and the unstable states respetively. To study Eq. (5.11) we split theseond order di�erential equation into two �rst order di�erential equations in the (U, P )plane, alled the phase plane as follows
dU

dτ
= g(U, P ) = P, (5.13)

dP

dτ
= h(U, P ) = −vP − U(1 − U). (5.14)In the phase spae approah it is easy to handle higher order di�erential equations bymapping into �rst order di�erential equations and with the �xed points one an know



5.1 Wave front propagation 65the bulk behavior by extrapolating the behavior around the �xed points in the spae. Byequating Eqs. (5.13) and (5.14) to zero, one would get the �xed points ((Us, Ps)) whihare (0, 0) and (1, 0). Here s runs over 1, 2. The points in the phase plane orrespondto the stable and the unstable states respetively. Sine these �xed points ontrol thewhole dynamis, the aim would be to onentrate on the region around these points.The ratio of the above two di�erential equations,
dP

dU
=

−vP − U(1 − U)

P
, (5.15)justi�es alling �xed points as singular points. Eq. (5.15) possesses a unique solutionover the phase spae exept at the �xed points, i.e., only one trajetory will pass throughany point on the phase spae. Here the region of interest an be studied by the linearizedfuntion g(U, P ) and h(U, P ) onsidering (U−Us) and (P−Ps) to be small. The stabilityoperator is obtained from Eqs. (5.13) and (5.14), by the Taylor expansion of g(U, P ) and

h(U, P ) about the �xed points and by keeping the leading order terms. The veloity ofthe front is determined by the eigenvalue equation of the stability operator. Eqs. (5.13)and (5.14) desribe the �ow in the phase plane (U,U ′) orresponding to the stable �xedpoint (0, 0) and unstable �xed point (1, 0). Here τ plays the role of time. The uniformlytranslating front solutions of Eqs. (5.13) and (5.14) orresponding to the trajetoriesbetween the two �xed points are given by
(

U ′ − Us
′

U − Us

)

= c1aje
λ−τ + c2bje

λ+τ , (5.16)where c1 and c2 are arbitrary onstants, aj and bj(for j = 1, 2) are the eigen vetors ofthe stability matrix orresponding to the eigenvalues λj . The eigenvalues for the �xedpoints (0, 0) and (1, 0) respetively are given by,
λ± =

1

2
[−v ±

√
v2 − 4] =⇒

{

stable node for v2 > 4

stable spiral for v2 < 4
(5.17)and

λ± =
1

2
[−v ±

√
v2 + 4] =⇒ saddlepoint. (5.18)Eq. (5.17) puts a bound on the veloity. The ritial veloity obtained is v∗ = 2. Withveloity v ≥ v∗ we get the stable node whereas for v < v∗, U shows an osillatorybehavior, orresponding to the stable spiral node. But as per the boundary onditions,

v < v∗ is forbidden. The threshold veloity v∗ is alled the marginal veloity. The linearstability analysis around the unstable �xed point gives the stable node for (0, 0) andsaddle point for (1, 0). The trajetory onneting these two �xed points is shown in
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Figure 5.2: (a) Two �xed points (0, 0) and (1, 0) in the phase spae are onneted by a separatrix.Arrows represent the diretion of �ows. Eah line represents a trajetory in the phase spae.Red lines are the two eigen vetors with eigenvalues λ−, λ+. (b) This is the pro�le of thefront moving along the positive τ diretion. In (a), as one starts from (1, 0), where U = 1,moves along the trajetory with U ′ < 0 everywhere, and reahes (0, 0), where U = 0, one getsthe separatrix onneting the two �xed points. The front pro�le follows from this partiulartrajetory.Fig. 5.2(a). The front pro�le is obtained from the separatrix, onneting the two �xedpoints, when U(τ) is plotted with τ . The wave solution shown in Fig. 5.2(b) moves alongthe positive z diretion with uniform veloity v∗ = 2.Therefore we see that the interfae between the two homogeneous states propagatesfrom an unstable state to a stable state with a well de�ned veloity. A linear stabilityanalysis about the unstable position determines the linear marginal stability. In theasymptoti limit the front approahes the ritial veloity v∗ whih shows that the fronthas the uniformly traveling wave solution. We exploit this methodology to study thedynamis of the B-Z interfae.
5.2 ModelOur model onsists of three states B, the denatured state, and Z, to be represented bythe parameter φ = −1, 0, 1, respetively. The spae and time oordinates z and t aretaken to be ontinuous. It is a one dimensional problem where φ(z, t) desribes the stateof the oarse-grained base-pair at index z along the DNA. For the B-Z transition, wetake φ = −1 (B state) to be unstable (or metastable) whih is getting invaded by thestable state at φ = 1 (Z state). We study this phenomenon through a Landau free energy
F (φ) taken as a sixth order polynomial with the oe�ients hosen to have extrema at
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−0.2  0  1−1Figure 5.3: (a) The Landau funtion F (φ) as a funtion of φ. In all ases, φ = 1 is the stablestate, Z-DNA, φ = −1 represents an unstable (dashed line) or metastable (solid and dotted lines)state, B-DNA while φ = 0 is a quadratially unstable (solid and dashed lines) or metastable(dotted line) state, denatured state. The three ases I, II and III in the text orrespond todotted, solid and dashed lines. (b) Potential V (U) = −F (U) for the partile-on-a-hill analogy.

φ = 0,±1. This is ensured by hoosing the thermodynami fore f(φ) as
f(φ) = −dF (φ)

dφ
= φ(φ+ α)(φ− β)(1 − φ)(1 + φ), (5.19)where α, β > 0 are onstants, whose values are system spei�. Needless to say, therelative stability of the three phases an be adjusted by α, β. The Landau Ginzburg freeenergy is taken as

H(φ) =

∫

dz

[

D

2

(

∂φ

∂z

)2

+ F (φ)

]

, (5.20)where D > 0 is the elasti onstant. D-term allows inhomogeneity, e.g., at the interfaebetween two phases. The three homogeneous phases are given by the minima of theLandau free energy F (φ). The dynamis is governed by the non linear di�usion equation
∂φ

∂t
= −∂H

∂φ
= D

∂2φ

∂z2
+ f(φ), (5.21)derived from Eq. (5.20) in the overdamped limit. The geometry to be onsidered is suhthat the B state is on one side and the Z state on the other with the front moving towardsthe unstable state. For the B-Z ase, this is ensured by the boundary onditions

φ(z → −∞, t) = 1, φ(z → ∞, t) = −1



68 Dynami phase transition in the onversion of B-DNA to Z-DNAfor Eq. (5.21) for all time. A few other boundary onditions are onsidered too. Thethree generi ases obtained by �xing α and β are the following (see Fig. 5.3(a))
• Case I : while quenhing to the stable state, Z, state B remains in a metastablestate while the denatured state φ = 0 is also metastable. Sine the barriers aresomewhere in between φ = −1 and φ = 1, we have 0 ≤ α, β < 1.
• Case II : the metastable state (B-DNA) sees a barrier somewhere inbetween −1to 0, while the denatured state is quadratially unstable state. This ase is for

0 < α < 1, and β = 0.
• Case III : unstable B state quenhed into stable Z while the denatured state remainsin a quadratially unstable state (i.e., without faing any barrier). This happenswhen α > 1 and β = 0.To be noted that ases I and II are similar to the free energy landsape obtained inRef. [102℄ as the potential of the mean fore obtained from moleular dynamis.The di�usive term in Eq. (5.21) oming from the elasti part of Eq. (5.20) tendsto smoothen out any inhomogeneity while the driving fore f(φ) tends to favour thestable state whenever there is any inhomogeneity. The ombined e�et of the di�usionlike spreading and the seletion of one phase by the drive leads to a steady state wherethe interfae shows a uniform motion and takes a shape whih is not neessarily theequilibrium shape [99℄. Based on the Fisher-Kolmogorov (F-K) idea, the traveling wavesolution φ(z, t) = U(z − vt) an be used to rewrite Eq. (5.21) as

d2U

dτ 2
+ v

dU

dτ
+ f(U) = 0, (τ = z − vt), (5.22)where v the veloity of the front is to be determined. The interfae whih we are studyingis between φ = +1 and φ = −1 states. Eq. (5.22) an be interpreted as the motion of apartile moving in a potential V = −F (U) (Fig. 5.3(b)) starting at the hill at U = +1 attime τ = −∞ just reahing the other hill at U = −1 at time τ = +∞ losing energy dueto �frition� v. For a given potential, suh a motion is possible only for partiular valuesof v and that veloity is the seleted veloity of the front. However, it is also possiblethat the partile spends an in�nite amount of time in the intermediate state so that thedesent from U = +1 to U = 0 and the desent from U = 0 to U = −1 are independentrequiring two di�erent frition oe�ients. The physial piture that emerges is that thestable state moves towards the unstable state, and the propagating front will have a timeindependent shape and a onstant veloity v. However in some situations, the initial bigfront separating the two phases φ = ±1 splits into two, one front between φ = −1 and

φ = 0, while the other one between φ = 0 and φ = 1. The two smaller fronts move
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Figure 5.4: For α = 0.4 and β = 0.2. (a) The time evolution of the pro�le is shown. The plot
φ vs z for di�erent time t as marked. Arrow shows the diretion of veloity. The stable stateZ invades B. (b) Veloity as a funtion of time. With time, the veloity approahes a uniformvalue.with di�erent shapes and speeds v−10, v01. The φ = 0 state may then get dynamiallygenerated. Consequently one may see the development of the denatured state. The lesspreferable state will eventually be devoured by the stable state ompleting the transitionfrom B- to Z-DNA.5.3 Dynami phase diagram5.3.1 Numerial approahThe veloity of the front has been determined by numerial analysis for di�erent bound-ary onditions like (a) φ(−∞, t) = 1, φ(∞, t) = −1 for the B-Z front, (b) φ(−∞, t) = 1,
φ(∞, t) = 0 for a front between Z and the denatured state, () φ(−∞, t) = 0, φ(∞, t) =

−1 for a front between B and the denatured state. The initial (t = 0) interfae of width
w is loated at z = z0 where z0 hosen away from the boundary and a Crank Niolsonmethod is used to evolve the nonlinear di�usion equation. For numerial solution wehoose disrete lattie spaing and time of the order 10−2 and the di�usion onstant
D of the order 1. The interfae evolves to its steady state starting from any arbitraryinitial pro�le as shown in Fig. 5.4(a) for α = 0.4 and β = 0.6 (Case I). The initial pro�leat t = 0 is taken very sharp and seems to evolve with time as shown in the diagram.One a steady state is reahed, the veloity is determined by loating the positions atwhih φ = ±.5, and φ = 0 as appropriate. The veloity orresponding to the pro�le inFig. 5.4(a) approahes a uniform veloity with time and is shown in Fig. 5.4(b). Sinethe F-K analysis is based on the linear stability analysis around the unstable �xed point,in the ase of the split front, only the veloity v01 an be obtained by the F-K analysis,but not in general.
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Figure 5.5: (a) Plot of veloity vs α for a �xed value of β = 0.45. Three veloities meet at aommon point at αc (β). The remaining three �gures (φ vs z) represent the time evolution ofthe front (or fronts). (b) A single front for α = 0.6 < αc (β). () A single front for α = 0.7near αc (β) with a signature of the width widening but no �0� phase. (d) For α = 0.72 > αc (β)single front splits into two fronts.The dependene of the veloities on α for a �xed β is shown in Fig. 5.5(a). We seethat three fronts move with di�erent veloities for α < αc(β) with v01 > v−11 > v−10.All these veloities are same at α = αc(β). For α > αc(β), the B-Z front splits into twofronts and the denatured state grows with time as (v−10 − v01) t. It is straightforwardto see that no stable front between ±1 an exist if v−10 < v01. Also the v−11 urve endsat αc(β) and has no ontinuation for α > αc(β). This indiates that αc(β) is a singularpoint.The numerially determined αc(β) vs β line is shown in Fig. 5.6. This is the phasediagram for dynamis with the phase boundary as the limit of stability of the BZ front(from below). The intersetion of the ritial and α = β lines, turns out to be anequilibrium point. The phase diagram an be on�rmed by onsidering a few speialases. For α = β, the free energies of B and Z are same (see dotted urve in Fig. 5.7(b))and the BZ front should have zero veloity. The point α = β = 1√
3
orresponds tothe equilibrium situation with equal free energies of all the states (see dashed urve inFig. 5.7(b)), for whih all the three fronts are stati, and therefore the ondition to be onthe phase boundary is trivially satis�ed. This point is denoted by q in Fig. 5.6. Alongthe α = β line for α < αc(β), v01, v−10 6= 0 with state +1 or −1 invading 0. In ontrast inregion 2, along the same α = β line, �0� is the stable state and it invades both ±1 states.In region 2 above the dotted line, obtained by equating F (1) = F (0) [Eq. (5.19)℄, the �0�state grows with the two fronts moving away from eah other as shown in Fig. 5.8(a) for

α = 0.7 and β = 0.6 and orresponding veloities in Fig. 5.8(b), but below that dottedline in region 1 the Z state grows though the fronts move in the same diretion (towardsright). The Z ↔ B symmetry in our hoie of the free energy mandates a symmetri
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α = αc (β). In the region below the boundary line, a single front between −1 to 1 (big front)propagates without splitting. In the region above the boundary line the front between −1 to
+1 splits into two (small) fronts. Z, �0� and B are the stable states in regions 1, 2 and 3,respetively. The dotted line orresponds to v01 = 0, while the dash-dotted line to v−10 = 0and the orresponding free energies are shown in Fig. 5.7(a). The split fronts move away fromeah other in region 2 (orresponding free energy urve is shown in Fig. 5.7(b) by a dotted line),both towards right in 1 and both towards left in 3, as per the hosen boundary onditions. Thebig front has zero veloity on the α = β line and the orresponding free energy urve is shownin Fig. 5.7(b) by a solid urve. The diagram is symmetri around the α = β line. Point qrepresents the equilibrium point, where three states have the same free energy as shown inFig. 5.7(b) by a dashed urve.
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Figure 5.8: For α = 0.7 and β = 0.6. (a) The time evolution of pro�le is shown to split intotwo parts. The plot φ vs z is for di�erent time t as marked. Arrows show the diretion ofveloity. The split fronts move opposite to eah other. The denatured state invades both B andZ. (b) Veloity as a funtion of time. With the time, the veloity of the lower and the upperfronts v−10 and v01 approah the uniform veloities. The negative veloity represents the frontpropagation towards −z diretion.
5.3.2 Perturbative approahIf a small hange auses a small e�et, then a perturbation theory is appliable. Soa perturbative analysis around the point of equilibrium an be done provided the freeenergy di�erene between the two states is small enough, to dedue the dynamial prop-erties from the stati or the unperturbed ase. Here for α, β lose to the equilibriumpoint α = β = 1√

3
, a perturbative analysis [103℄ is done to determine the veloity, whih



5.3 Dynami phase diagram 73is now a small parameter. With a small perturbation, the front solution is
φ(z, t) ≈ φ0(z) + φ1(z, t), (5.23)for the fore

f(φ0 + φ1) ≈ f(φ) + δf(φ) = f(φ0) + φ1f
′(φ0) + δf(φ0), (5.24)where φ0(z), f(φ0) are respetively the pro�le solution, and fore term for the equilibriuminterfae. The equilibrium pro�le is stati. Here the perturbation series is in the smallparameter ǫ. With the substitution of the perturbative expressions Eqs. (5.23) and (5.24)in Eq. (5.19) and by keeping the leading order terms in the series we get,

φ
′′

0(z) = −f(φ0), (5.25)
Ĥ0φ1 = δf(φ0), (5.26)where

Ĥ0 =
∂

∂t
− ∂2

∂z2
− f

′

0(φ0(z)),and prime on φ and f denotes the derivatives with respet to z, and φ(z), respetively.The stati solution satis�es Eq. (5.25), where φ′

0(z) is an eigen funtion with an eigenvalue
E0 = 0. Therefore for the rest of the nonzero eigenvalues, with eigen funtion φ̃n(z), thetime independent part an be written as

[

∂2

∂z2
+ f

′

(φ0)

]

φ̃n(z) = En φ̃n(z). (5.27)Let us assume Green's funtion of the form
G(z, z1; t, t1) =

∑

n

φ̃n(z)φ̃n(z1)e
−En(t−t1). (5.28)Therefore the solution of φ1 omes out to be

φ1(z, t) =

∫ t

0

dt1

∫ ∞

−∞
dz1 G(z, z1; t, t1)δf(φ0). (5.29)With the known eigenvalue orresponding to the eigen funtion φ′

0 we are able to to �nd
φ1, whih is

φ1 = t
φ

′

0(z)
∫

dφ0 δf(φ0)
∫

dz|φ′

0(z)|2
. (5.30)



74 Dynami phase transition in the onversion of B-DNA to Z-DNABeause of the existene of the traveling wave solution, by writing, to �rst order in theveloity v, the front solution for a small hange around the equilibrium position will be
φ(z, t) ≈ φ0(z) − v t φ

′

0(z). (5.31)So by omparing Eqs. (5.30) and (5.31), v an be written with the eigen funtion renor-malization fators as
v =

∆F
∫ ∞
∞ dz|φ′

0(z)|2
, (5.32)where,

∆F = −
∫

dφ0 δf(φ0). (5.33)Thus we see that v an be determined to �rst order in free energy di�erene if φ0 isknown. In the equilibrium situation, there is a Goldstone like zero-energy mode [103℄,beause, the interfae an be plaed anywhere or shifted along z without any ost ofenergy. We therefore take φ0(z) as entered around an arbitrarily hosen origin. Thestati solution for the free energy F (φ) [from Eq. (5.19)℄ satis�es,
1

2
(φ

′

0(z))
2 = F (φ0) =

1

6
φ2

0(φ
2
0 − 1)2. (5.34)With a �rst order orretion, the veloities of the interfaes are

vij =
ǫij

∫ ∞
−∞dz[φ

′
0(z)]

2
, (5.35)where i, j = 0,±1, and the free energy di�erenes ǫij are

ǫ01 = − 1

12
− 2

(α− β)

15
+
αβ

4
, (5.36)

ǫ−10 =
1

12
− 2

(α− β)

15
− αβ

4
, (5.37)

ǫ−11 = −4
(α− β)

15
. (5.38)

At the point of equilibrium α = β = 1√
3
, all these front veloities are zero implyingthe stati fronts. At the perturbative regime, by equating the veloities, we �nd theslope of the ritial line around ( 1√

3
, 1√

3
). The slope an be obtained from

ǫ01 = ǫ−10 or ǫ01 = ǫ−11/2. (5.39)For the small �utuations on α and β i. e., for α → 1√
3

+ δα and β → 1√
3

+ δβ, from
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δα = −δβ. (5.40)Thus we see that around the point of equilibrium the straight line is with the slope−1,whih is onsistent with the numerially determined phase boundary shown in Fig. 5.6.Moreover we also �nd the phase boundary to deviate very slightly from a straight lineover the range shown there. There is a deviation from linearity beyond that but thenumerial error beomes larger.We next study the behavior of the width of the interfae and of the appropriatetimesale for the dynamis. For the speial ase of β = 0.5 as α → αc (β) the divergeneof the width has been noted in Ref. [104℄. At α = β = 1√

3
, any length of �0� domainan be inserted and therefore the width of the BZ interfae at the limit of stability isin�nity. On the split-front side (Fig. 5.5(d)), the width inreases linearly with time as

W = (v01 − v−10)t [Fig. 5.9(a) for α = 0.75205℄. While, on the other side of the phaseboundary the single front (Fig. 5.5(b)) has a �nite width (Fig. 5.9(a) for α = 0.745).Close to the phase boundary though a deformation of the moving front is visible around
φ = 0 (Fig. 5.5()), but width saturates at large time (Fig. 5.9(a) for α = 0.75175)without any appearane of the denatured phase. Hene saling forms are expeted as

W ∼ | α− αc (β) |−µ, τ ∼W z.Fig. 5.9(a) shows the time evolution of the width of an interfae for various α at a �xed
β, where the instantaneous width W of the interfae at time t is obtained as

W 2 = < z2 > − < z >2, where (5.41)
< zn > =

∫

zn
(

dφ(z,t)
dz

)2

dz

∫

(

dφ(z,t)
dz

)2

dz
. (5.42)Another way to haraterize the width would be to look at the slope of the pro�lei. e., dφ(z)

dz

∣

∣

∣

φ=0
, whih is related to the inverse of W and also shows the saling withharateristi dynami exponent. We started with an interfae that has an insertion ofthe �0� state and the width monitors the deay or the growth of the �0� state. The widthsaturates exponentially for α < αc (β) albeit slowly near α→ αc−, while a linear growthis observed for α > αc (β). Time here refers to the disretized time in the Crank-Niolsonapproah. By �tting an exponential to the time evolution of W , the harateristi timesale was determined, for α < αc (β). The exponent µ is found to be rather small, notinonsistent with the logarithmi growth observed in Ref. [104℄. Fig. 5.9(b) shows thelog-log plot of τ vs W indiating a value of z within 3.0 to 4.0. However for better



76 Dynami phase transition in the onversion of B-DNA to Z-DNAauray one requires a large system and long time observation as well. The divergenesof W and τ with saling establish the ritial nature of the α = αc (β) line.
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 6.3 6.2  6.5  6.7Figure 5.9: (a) Time evolutions of the width (in arbitrary units) of the front are shown fordi�erent values of α keeping β = 0.4 �xed. The initial front had a streth of �0� phase whihdeays for α < αc (β) but grows linearly for α > αc (β). The timesale to reah saturationinreases as α → αc (β)−. For this ase αc (β) ≈ 0.752. (b) Log-Log plot of width versus timesale for α < αc (β). Two solid line slopes are shown far from and near αc (β).Despite the immense suess in probing the various phases of DNA by single moleularmanipulation tehniques, interfaes have not been explored thoroughly. We hope ourresults will motivate diret studies of interfaes of DNA, espeially their stability. Evenon the theoretial front, it remains to be seen if all atom moleular dynamis simulationsthat have been suessful [102, 105, 106℄ in seeing various phases, an be used to monitorthe dynamis of interfaes, B-Z in partiular, under given boundary onditions.5.4 ConlusionIn this hapter we have studied the onformational transition from B-DNA to Z-DNA.Wehave onsidered the Landau free energy to desribe the B-Z interfae and have formulatedthe propagating front equation. With the wave front propagation approah and thenumerial alulations we have obtained the dynami phase diagram. The dynamiphase diagram for the steady state is obtained in the α-β plane, where α, β haraterizethe relative stability of the phases, by the ritial value αc for di�erent values of β. Wehave obtained an equilibrium point, the Goldstone like free energy mode. The phase



5.4 Conlusion 77boundary in the α-β plane has been determined and orroborated by a perturbationanalysis. The dynami transition is assoiated with diverging length and time sales andhas its own dynami exponent. On one side of the phase boundary the dynamis involvespropagation of one B-Z interfae with a uniform speed, while on the other phase suhan interfae is unstable leading to the formation of the thermodynamially forbiddendenatured state. This in turn, suggests that there is no unique mehanism for the B-Zdynamis and it is possible to swith from one type to other by tuning the parameters.A resolution of the ontroversy in experiments is that the two ases, namely nanotubeand magneti tweezers are on the two sides of the phase boundary.





6Summary
In this thesis we have studied the melting of a triple-stranded DNA and the onforma-tional transitions of a double-stranded DNA from the B from to the Z form of DNA.To address the problems we have adopted real-spae RG, exat iteration, wave frontpropagation and perturbation methodologies.In the introdutory setion we reviewed on the following topis:

• We introdued the double and the triple helix DNA. Following the diret analogybetween DNA and quantum mehanis we disussed the quantum E�mov e�etexhibited by a three-partile system.
• Direted polymer on hierarhial latties and on fratal latties like the SierpinskiGasket are introdued. We reviewed some exat results of the direted polymerhains solved on suh pseudo latties.
• We gave a brief introdution to the real-spae RG. The zeros of the partitionfuntion assoiated with the phase transition are disussed. Thereafter the Juliasets in onnetion with the zeros of partition funtion are disussed.
• Various thermodynamial studies inluding melting, unzipping and other thermo-dynami properties of the double-stranded and the triple-stranded DNA have beenreviewed.
• The onformational transition of B- to Z-DNA has been introdued. This inludesthe introdution to the B and the Z form of DNA, the B-Z transition mehanism,the role of the BZ interfae and the existing ontraditory hypotheses on thistransition.We modeled the three-hain system as three direted walks on a diamond hierarhiallattie of dimension d > 2, and used the real-spae RG method. We studied boththe ases of symmetri and asymmetri pair interations. By looking at the RG �owsof the two- and the three-hain Boltzmann fators we predited the existene of ane�etive three-strand bound state in onditions where duplex would be in the denatured



80 Summarystate. Suh a loosely bound state is alled the E�mov-DNA. Further exat numerialalulations are used to validate the predition of suh a polymeri E�mov e�et. Wefound the nonzero three-hain average energy in the unbound region of the duplex DNA.The E�mov transition point was found to be disontinuous. The E�mov DNA was foundthermodynamially more stable than the duplex DNA. In addition we showed di�erentE�mov transition points for di�erent dimensions.The predition of the E�mov-analog three-hain bound state was orroborated bythe zeros of the partition funtion. These zeros produe fratal-like strutures, andthey pinh the real axis in the thermodynami limit with an angle determined by theexponents haraterizing the phase transition. We found that all the transition pointsobtained from RG �ows, are onsistent with the zeros of the partition funtion. Weshowed that the E�mov e�et ours even if the three-hain interation is repulsive innature. We found that a transition an be indued in higher dimensions (d > 4.1) fromthe E�mov state to the three-hain ritial repulsive state, when hains are ritiallypaired. We emphasized on the nature of the transitions and found that the transitionto this three-hain ritial repulsive state is ontinuous obeying a �nite size saling lawwith exponents obtained from the RG. In addition we found a new state, where threehains are bound with no three hain ontat.The existene of an E�mov DNA was further veri�ed on a Sierpinski Gasket lattieof dimension d < 2 by applying some extra weight fators to the polymer hains. Anew state to be alled a mixed state is found, where in loser view any two hains arealways bound keeping the third free, but in global view no one is free. The mixed phasewas found to be a separate phase, where as the E�mov state appeared as a rossover.We suggested that the triplex DNA might provide a unique, amenable biologial testingground for the E�mov e�et.We gave a theoretial explanation to the B-Z transition mehanism. We modeled aLandau free energy and applied the wave front propagation approah to �nd the steadystate veloity of the B-Z interfae. By varying the system parameters determining sta-bility and instability of the homogeneous states, we obtained a dynami phase diagram,whih was further orroborated by a perturbation analysis. We found that, on one sideof the phase boundary no intermediate state is formed but on the other side of the phaseboundary �0� state is preferred. As a result the denatured state develops dynamiallyeventhough it is thermodynamially forbidden. We showed that the dynami transitionis assoiated with a diverging length sale with its own dynami exponent. Suh a the-oretial analysis resolves the urrent ontroversies on the transition mehanism of theB-DNA to Z-DNA.



AJulia set
Earlier we disussed the Julia set in Chap. 1 and Chap. 3. We give an example of aquadrati equation [Eq. (1.12)℄ to desribe the Julia set. In the same spirit, the two-hain RG relation [Eq. (3.2)℄ is written in a quadrati form as

zn =
z2

n−1

b
+ c′, (A.1)where c′ = b−1

b
. At the ritial threshold of two-hain melting (i. e., y = yc), thethree-hain RG relation [Eq. (3.3)℄ an be written as

zn =
(b− 1)3

b2
z2

n−1 + c′′, (A.2)where c′′ = b−2
b2(b−1)2

+ 3
b2
. Here c′, c′′ are not arbitrary and are determined by b. In ourmodel c′, c′′ ome out to be real. We obtained fratal-like strutures, as disussed inChap. 3.





BLimit yle
The onnetion between the quantum E�mov e�et and RG limit yles is disussed inRef. [21℄. The emergene of an in�nite number of bound states at the ritial two-bodyzero-energy state is linked to the limit yle behaviour. A limit yle is an isolated losedloop with ertain periodiity, whih appears due to the omplex �xed points obtainedfrom the RG �ow equation, and where the running parameter e. g., oupling onstantretraes the path of that losed loop forever with a ertain periodiity.For two suessive generations Eq. (3.3) will be

wn − wn+1 = f(wn+1) − wn+1. (B.1)But if the ontinuum limit is taken, Eq. (B.1) an be written as
l
dw

dl
= −(w − w+)(w − w−), (B.2)at the ritial line yc = b− 1, where l = lnL and L = 2n. For omplex w± = α± iβ, thesolution of Eq. (B.2) is then

w = α− β tanβ(ln l + θ), (B.3)where θ is the integration onstant. The above equation re�ets the periodiity of w in
ln l with the property

w(l) = w(lλ), where lnλ =
π

β
. (B.4)Here as l inreases w approahes ±∞. This behavior an be mapped into a limit ylein the omplex plane with a phase fator de�ned by the equation

eiφ =
w − w+

w − w−
. (B.5)



84 Limit yleWith the help of Eq. (B.2) and its derivative, φ will be
φ =

β

α
ln l + φ0, (B.6)where φ0 is the integration onstant.Our model on the hierarhial lattie is a disrete model. Certainly a limit yle isobtainable from the RG relations in the ontinuum limit, but it is not straight forwardto do so in the disrete ase.
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