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Synopsis
The aim of this thesis is to study the melting of a triple-stranded DNA (tsDNA) and the
onformational transition of a double-stranded DNA (dsDNA) in parti
ular from the Bform to the Z form of DNA.Certain sequen
es of Watson-Cri
k-dsDNA allow a third strand DNA to bind viaHoogsteen or reverse-Hoogsteen base paring to form tsDNA. The formation of triple he-li
al DNA is of great interest in 
urrent era. Owing to its enhan
ed stability in a�e
tingthe a
tivities su
h as gene expression, DNA repli
ation and others requiring DNA open-ing, the triple helix fostered new hopes in therapeuti
 appli
ations. The third 
hain'sability in re
ognizing the base sequen
es of a dsDNA, not by opening the double helixbut rather by forming a triple helix would be one of the major input in developing newtypes of antibioti
. There have been many physi
al, 
hemi
al and biologi
al studies ofthis triple helix forming nu
leotides (TFO). It is known that not only DNA, even RNAand PNA (polypeptide nu
lei
 a
id) are 
apable of forming triple heli
es with duplexDNA.To study the phase diagram and the phase transition of a triple helix DNA we 
onsidera few simpli�ed polymer models and take a thermodynami
 point of view, where the long
hain limit is taken. Using the real-spa
e Renormalization Group (RG) approa
h andan exa
t iteration method on a hierar
hi
al latti
e of dimensions d > 2 we show thepossibility of a three-strand DNA bound state in 
onditions where a duplex DNA wouldbe in the denatured state. Su
h a loosely bound state whi
h o

urs at or above the duplexmelting point is a biologi
al analogue of the nu
lear or 
old atom E�mov state and we
all it an E�mov-DNA. From the RG �ows and the thermodynami
 phase diagram we�nd that the three 
hain bound state disso
iates at a higher temperature than the duplexmelting. All these transitions are indu
ed by the bubble formations.From the 
lassi
al phase transition point of view, we further analyze the E�movphenomena by looking at the zeros of the partition fun
tions. The distribution of zeros
omes out to have a very beautiful stru
ture on the 
omplex plane of the Boltzmannfa
tor. Apart from this stru
ture, the separator of two types of �ows to the two di�erentstable �xed points identi�es the transition point as a limit point on the real axis in thethermodynami
 limit. Here we study the partition fun
tion of the three 
hain systemby 
ombining the re
ursion relations and the RG transformations, and then �nding thezeros. We also extend the model to the three 
hain repulsive intera
tion regime anda striking result that emerges is that in a higher dimension for example d > 8.596 atransition 
an be indu
ed from the 
riti
al state to the E�mov-DNA. In addition, wedis
uss several other features of the zeros in the 
omplex plane, for instan
e the detailedstru
ture, and the 
onne
tion to the Julia set.



iv SynopsisWe also study the melting of three dire
ted polymers on a Sierpinski Gasket to observethe E�mov e�e
t. Here the dimension of the fra
tal latti
e is d = 1.58. We show thatthe E�mov e�e
t o

urs even in the lower dimensions provided some spe
i�
 intera
tionsare 
onsidered among the polymers. Based on the 
onditions for 
rossing and mutualintera
tion, we 
lassify di�erent polymer models. Furthermore we obtain a new state tobe 
alled a mixed or anti-E�mov state. The average energy 
al
ulations show that themixed state is a separate state but the E�mov state, just a 
ross over.B-DNA (right-handed heli
ity) is the most 
ommon form of DNA found under normalphysiologi
al 
onditions. Often Z-DNA (left-handed heli
ity) appears in presen
e of highsalt 
on
entration, 
ations or negative super-
oiling. Although the Z form is transient invivo due to the la
k of a friendly environment, still the B-Z transition is relevant in severaldiseases. Many theoreti
al and experimental attempts of a detailed understanding of thetransition me
hanisms have been 
arried out for a long time. The transition via the basepair separation followed by the base pair �ipping or the base pair �ipping without anybase pair separation are the two existing hypotheses on the B-Z transition me
hanism.We 
onsider a 
oarse-grained thermodynami
 model based on 
hiral symmetry. Wemodel a free energy like entity and restri
t the geometry to the one dimension only,whi
h may shed some light on the 
urrent 
ontroversies on the transition me
hanism ofthe B-DNA to Z-DNA. Using the theory of wave front propagation we �nd that there isa dynami
 phase transition in the 
onformational 
onversion of B-DNA to Z-DNA andobtain the dynami
 phase diagram. The diagram shows that for the spe
i�
 
hoi
es ofthe system parameters the dynami
s allows the formation of the intermediate denaturedstate even though it is thermodynami
ally forbidden.
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1Introdu
tion
When there is life there is DNA. There is no way to begin life without it�a mole
ule
ontained in all organisms and 
ells. Essentially, DNA is the leading 
hara
ter for life'spro
esses. Deoxy-ribo-Nu
lei
 A
id, DNA in short is a long polymer made from repeatingsub-units, viz., nu
leotides, 
onne
ted by 
ovalent bonds. A nu
leotide 
onsists of a 5-
arbon sugar, a nitrogen 
ontaining base, and a phosphate group. The bases of DNA areadenine (A), 
ytosine (C), guanine (G) and thymine (T). A strand of DNA prefers basepairing via hydrogen bonds with the bases of a 
omplementary polymer. As a matterof fa
t the two strands entwine around ea
h other in antiparallel fashion in the shapeof a double helix. The �rst 
orre
t double-helix model of DNA stru
ture was proposedby James D. Watson and Fran
is Cri
k in the year of 1953, whi
h laid the foundationstone for mole
ular biology [1℄. The 
omplementarity of the bases is an essential fa
tor inmaking an identi
al 
opy of a parent DNA during DNA repli
ation thereby maintaininginheritan
e. They do have interesting behavior and spe
ial physi
al properties be
auseof their large size and equal sequen
e base pair intera
tions. DNA's are being studiedfor last few de
ades at various length s
ales for its immense biologi
al impli
ations [2, 3℄.In re
ent times the formation of a triple-heli
al DNA has be
ome a topi
 of 
onsid-erable importan
e be
ause of its possible impli
ations in the �eld of mole
ular biology.In 1957, it was dis
overed that 
ertain sequen
es of a Watson-Cri
k-double heli
al DNAallow a third strand to form a triple helix [4℄. Felsenfeld, Davis and Ri
h �rst showedthe formation of the triple helix in nu
lei
 a
ids, whi
h was later on 
on�rmed by severalother groups [5, 6℄. To de
ode the geneti
 
ode, a double heli
al DNA has to be unzippedto reveal the bases. Quite strikingly, a third strand 
an identify the base sequen
es, notby opening the double helix but rather by forming a triple helix.1.1 Triple helixOligonu
leotides of three strands of DNA wind around ea
h other to form a triple helixDNA as shown in Fig. 1.1. Watson-Cri
k DNA duplex has the room in its major groovefor an additional strand. At ambient temperatures, the double helix is formed with



2 Introdu
tion

Figure 1.1: S
hemati
 diagram of triple stranded DNA.

lassi
al Watson-Cri
k base pairing (see Fig. 1.2(a)) while the third strand forms non-
lassi
al Hoogsteen (see Fig. 1.2(b)) or reverse Hoogsteen base pairing with one of theother two [1, 7, 2℄. The known stru
tures suggests that the 
entral strand of a triple helixhas to be purine ri
h (G or A), so that the third strand 
an provide the two hydrogenbonding surfa
es to form two di�erent types of base parings. The pyrimidine ri
h thirdstrand forms non-
lassi
al Hoogsteen base pairing when it binds to a purine ri
h strand ofthe duplex in a parallel fashion while reverse Hoogsteen when a Purine ri
h strand bindsto another purine ri
h strand of the duplex in an anti-parallel fashion. Triple heli
es
an also be formed with DNA-RNA [8℄ and DNA-PNA (peptide nu
lei
 a
id), whoseun
harged peptide ba
kbone helps in the stabilization of the triplet stru
ture [9, 10℄.PNA is an arti�
ially 
reated biologi
ally relevant mole
ule and might o�er intriguingpossibilities in the therapeuti
 appli
ations. Some of the triple helix forming tripletstru
tures of bases e. g., T-A-T and A-A-T are shown in Figs. 1.2(
) and 1.2(d).The 1957-dis
overy of a three-stranded DNA remained a 
uriosity till the re
ognitionin 1987 that a third strand DNA 
an a
tually re
ognize the base sequen
e of the doublehelix even without opening it. Owing to its enhan
ed stability that 
an a�e
t a
tivitieslike gene expression, trans
riptional inhibition, DNA repli
ation and others requiringDNA opening, triple helix kindled new hopes in therapeuti
 appli
ations [11℄. Till dateit has been possible to make and study triple heli
es in vitro, amidst high hopes of theirrelevan
e in vivo [12, 13℄. The stru
ture of a triple helix is surprisingly resistant tothermal disso
iation 
ompared to the double heli
al DNA. The Oligonu
leotides formingtriplex DNA disso
iate at higher temperatures than the duplex melting [14℄.
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4 Introdu
tion1.2 E�mov e�e
tAn unexpe
ted phenomenon to turn up in the quantum three-body problem was �rstpointed out by V. E�mov in 1970 and now bearing his name in three-body non-relativisti
quantum me
hani
s [17, 18℄. It is su
h an unusual e�e
t that even after 40 years of itsdis
overy it is still of great interest. He predi
ted from his studies on nu
leons thatthe three parti
les 
an have an in�nite number of bound states eventhough no pairsare being bound. If the three parti
les are subje
ted to a short range pair intera
tionsu
h that a pair would have a zero energy state, an e�e
tive long range intera
tionemerges due to quantum �u
tuations. Thus in�nitely many bound states appear at the
riti
al threshold of the two-body binding. As one moves away from the 
riti
al point,the number of bound states de
reases and vanishes at a point of unzipping of the threeparti
les. Surprisingly, this e�e
tive three-body intera
tion is universal in nature and isa
tually independent of the detailed form of the pair potentials as well as the range of thepotential. The origin of the quantum E�mov e�e
t is the s
ale free quantum �u
tuationnear the zero-energy threshold of the two-body binding. The overall size of the e�e
tivethree-body bound state is mu
h larger than the range of pair potentials [18, 19, 20, 21℄.There are several theoreti
al and experimental investigations using di�erent models andmethods that show this e�e
t. Many years sin
e its dis
overy, it is now seen in systemsover various length s
ales ranging from nu
leons (halo nu
leus) to atomi
 physi
s andultra-
old atoms under Feshba
h resonan
e [22, 23, 24℄.
r

2

3

r+R/2 r−R/2

1
O−R/2 R/2Figure 1.3: Two heavy (M) and one light (m) parti
les are shown with the position ve
tors. 1and 2 are at a distan
e R and 3 is at a distan
e r from the 
enter of mass O of 1 and 2.There are many 
omplex analyti
al and numeri
al methods to show the E�mov e�e
t.For example, E�mov obtained the e�e
tive potential by studying the three-body systemin hyperspheri
al 
oordinates. Fonse
a et al., used the Born-Oppenheimer approximation



1.2 E�mov e�e
t 5to study the E�mov e�e
t in a model 
onsisting of one light and two heavy parti
les ofmass m and M , respe
tively, as shown in Fig. 1.3, intera
ting by means of a short-rangepair potential. If the intera
tion between the heavy-light parti
les has nearly zero energybound state, the large size of this bound state indu
es a long range attra
tive potentialof 1/R2 type between the two heavy masses as if the small parti
le is shared by the twoheavy masses. Thus an e�e
tive potential between the heavy masses emerges in the form
R

R >

r

R ~

R

{

hydrogen
bond length

crossover regime

0

−R/

r0
>

R
>>

scalefree regime

−1/ RRε(   ) ∼ 
2

ε(   )

a

a

a )

a

a

ε /R(R) ~− exp (

Figure 1.4: The e�e
tive intera
tion ǫ(R) between 1 and 2 from Fig. 1.3. An e�e
tive three-body bound state (E�mov e�e
t) o

urs in the region r0 < R << a and extends over the wholerange for a → ∞.of
ǫ(R) − ǫ0 ∼

1

R2

(

2

a
Re−R/a + e−2R/a

)

, (1.1)where a is the width of the pair wave fun
tion or the s
attering length of the heavy-lightparti
les and ǫ0 is the heavy-light binding energy. For a → ∞, Eq. (1.1) should beindependent of a, so that in this limit, the e�e
tive potential emerges as − 1
R2 , whi
his a `universal' intera
tion for a region r0 < R << a, where r0 is the range of pairintera
tion. Moreover one sees a 
ross-over from − 1

R2 for R
a
<< 1 to the Yukawa form

e−R/a

R
for R

a
∼ O(1) as shown in Fig. 1.4. Here ǫ(R), 
omes as the separation 
onstantwhen the 
omposite S
hrodinger equation of the three-parti
le model is treated in theBorn-Oppenheimer approximation.The S
hrodinger equation for the three-parti
le system shown in Fig. 1.3 is written



6 Introdu
tionin the 
enter of mass frame as
H Ψ(r, R) = E Ψ(r,R), (1.2)where H is the Hamiltonian and E, the eigenvalue. The wave fun
tion Ψ(r,R) is asso-
iated with the boundary 
ondition that it vanishes as either r or R be
omes in�nity.The separable ansatz is of the form
Ψ(r,R) = ψ(r,R)Φ(R), (1.3)where the wave fun
tion ψ(r,R) des
ribes the motion of the light parti
le when theheavy masses are at a �xed distan
e R, and Φ(R) des
ribes the motion of the heavyparti
les. With the Born-Oppenheimer approximation Eq. (1.2) separates into a pair ofequations. Thus the heavy and the light parti
le equations be
ome
HMΦ(R) = EΦ(R), (1.4)

Hmψ(r,R) = ǫ(R)ψ(r,R), (1.5)with appropriate Hamiltonians HM and Hm of the heavy and the light parti
les, respe
-tively. The eigen value ǫ(R) of Eq. (1.5) appears as the extra intera
tion potential inthe Hamiltonian for the two heavy parti
les.1.3 Quantum AnalogyDue to the sequential base pairing of DNA, there is a dire
t analogy between DNA andquantum me
hani
s [25℄. There is an exa
t mapping of the partition fun
tion of two idealpolymers with DNA base-pairing type short range intera
tion to the Green fun
tion ofthe two-parti
le quantum me
hani
s in a potential under a transformation of the lengthof the polymers to the imaginary time. This in turn maps the ground state energy ofthe parti
le to the free energy of the polymer per unit length.Following this analogy, the universality of the E�mov phenomenon en
ompasses theanalogous 
lassi
al model, namely the melting of three-stranded DNA. Here, for theo

urren
e of su
h phenomena, the 
riti
al thermal �u
tuations from the 
lassi
al domainplay a role analogous to that of quantum �u
tuations. A s
aling argument has been usedin [26℄ for three ideal polymers, whi
h justi�es the o

urren
e of the e�e
tive two-
hainattra
tive potential 1
r2 as a sour
e of the E�mov e�e
t. Su
h a long range intera
tionleads to a broad three-strand DNA bound state at or beyond the melting point of aduplex DNA. This is a state where no two are bound but the three are bound together.



1.4 Random Walk 7Su
h a loosely bound state is 
alled the E�mov DNA [26℄.1.4 Random WalkThe ideal 
hain is the most simpli�ed model to des
ribe a polymer as a random walkby ex
luding any kind of monomer intera
tions. If a polymer 
onsists of N number ofmonomer-monomer links of unit length, keeping one end �xed at the origin, the averageposition of the other end will be zero, but the size of the polymer (see Fig. 1.5) will begiven by the root mean square of the end to end ve
tor r as
R ∼< r2 >1/2∼ Nν . (1.6)The size exponent ν = 1/2 is for the ideal polymer but not in general. The randomwalk is 
losely related to a model of a dire
ted walk. A walk is 
alled dire
ted whenit advan
es in a preferred dire
tion and does not go in the opposite dire
tion. For adire
ted walk the transverse and the longitudinal sizes of the polymer are given by

R⊥ ∼< r2 >1/2∼ Nν⊥ , with ν⊥ = 1/2, (1.7)
R‖ ∼< r2 >1/2∼ Nν‖ , with ν‖ = 1. (1.8)These exponents are independent of the dimensionality. Real polymers are studied bythe self avoiding walk models, where ex
luded volume e�e
ts are 
ru
ial [28, 29℄. As wedeal with the ideal 
hain in this thesis, we will not go into the other random walk models.Fig. 1.5(a) shows a polymer in a 
ontinuum limit while Fig. 1.5(b) shows a dis
retized

R r= N

r= 0

(a) (b)

Figure 1.5: (a) A polymer as a random walk (not dire
ted walk) is shown. One end of thepolymer is �xed at r = 0. The other end is at r = N . Here N is the number of monomer-monomer links of unit bond length and R is the size of the polymer. (b) The dis
rete form ofthe polymer walk on a square latti
e of 1 + 1 dimension is shown.form of the polymer 
hain when pla
ed on a square latti
e.



8 Introdu
tionWhen polymers are on a latti
e as random walks, a single monomer essentially rep-resents several base pairs. Often simpli�ed dire
ted polymers are useful for studyingglobal properties that depend on the large length of polymer, temperature, et
. Vari-ous physi
al properties of the polymeri
 systems in
luding melting, unzipping and otherthermodynami
 quantities have been studied on real latti
es e. g., square, 
ubi
, honey-
omb et
. and on pseudo latti
es e. g., hierar
hi
al, fra
tal et
. using dire
ted polymer
hain [30℄.1.5 Hierar
hi
al latti
eA hierar
hi
al latti
e provides one of the most 
onvenient media to study many 
riti
alphenomena and other physi
al problems. Hierar
hi
al latti
es are 
onstru
ted by are
ursive repla
ement of a motif. The geometri
 
onstru
tion of su
h a latti
e lookssimilar at a di�erent s
ale no matter what size it is viewed at [31℄. These spe
ial latti
esdo not have any proper Eu
lidean 
oordinates. Consequently the metri
 is not de�nedin su
h latti
es. Su
h pseudo latti
es were introdu
ed as simpli�ed stru
tures to studyvarious statisti
al me
hani
al problems. Their simpli
ity has motivated a lot of work.Although these latti
e models are relatively easy to handle, they provide a very detailedresults. Several models, su
h as the Ising, Potts and polymer systems are exa
tly solvableon these latti
es [32, 33, 34, 35℄. Diamond stru
tured latti
e, Honey
omb stru
turedlatti
e et
. are the examples of hierar
hi
al latti
es. Su
h latti
es have a mu
h lowersymmetry 
ompare to the Bravais latti
es, whi
h in turn may provide insights into otherlower symmetry problems. Essentially all these features have led hierar
hi
al latti
emodels as a testing ground for many new 
on
epts. Dire
ted polymers on hierar
hi
allatti
es were studied as model of random system in Ref. [32, 36, 37, 38℄. The 
ase ofrandom intera
tion was studied by Derrida et al., Cao and by Mukherji et al.,. Morere
ently, the hierar
hi
al latti
e models were exploited in the study the dynami
s ofglassy materials, spin glasses, per
olation 
luster et
. [39, 40, 41, 42℄. Chakrabarti etal., have studied the ele
troni
 properties on su
h latti
es [43℄.1.5.1 Diamond hierar
hi
al latti
eTo 
onstru
t a diamond hierar
hi
al latti
e one starts with a single bond and then inthe next generation that single bond is repla
ed by a motif of λb bonds, where b is thebran
hing fa
tor and λ is the bond length s
ale fa
tor. Again in the next generationea
h bond is repla
ed by a motif of λb bonds. A 
onstru
tion of the latti
e is shown inFig. 1.6. Thus by an in�nite iteration (n → ∞) one obtains an in�nite latti
e whose



1.5 Hierar
hi
al latti
e 9
0 n= 21n= n=Figure 1.6: The re
ursive 
onstru
tion of the hierar
hi
al latti
e is shown for n = 0, 1, 2, ...generations. The diamond motif is for b = 2 and length s
ale fa
tor λ = 2.dimensionality is given by

λd =
vn+1

vn

i .e. d =
ln vn+1

vn

lnλ
, (1.9)where λ, d, vn+1, vn are asso
iated with length res
aling fa
tor, dimension, and numberof bonds of the hierar
hi
al latti
e at (n+ 1)th and nth generation, respe
tively. For thisparti
ular latti
e model with b = 2 and λ = 2

λd =
(λb)n+1

(λb)n
i .e., d =

lnλb

lnλ
=

ln 4

ln 2
= 2. (1.10)The bran
hing fa
tor b 
ontrols the dimensionality of the latti
e, e. g., for b = 3,

d = 2.58496, for b = 4, d = 3 and so on. Two other examples of the hierar
hi
al latti
esare shown in Fig. 1.7. These lead to stru
tures with dimensions d ≥ 2.
0n= n= n= 21 n=1n= 0

(a) (b)

Figure 1.7: The re
ursive 
onstru
tions of the hierar
hi
al latti
es.1.5.2 Fra
tal latti
e: Sierpinski gasketThere is a di�erent 
lass of latti
e, 
alled fra
tals with lower dimensions. Sierpinski
arpet, Sierpinski gasket are examples of regular fra
tals whi
h are extensively exploitedto study 
riti
al phenomena. The s
ale invarian
e of su
h latti
es allows one to apply the
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tionreal-spa
e renormalization group (RG) methodology. The results are also amenable toexa
t solutions. Some of the 
onstru
tions of the fra
tal latti
es are depi
ted in Fig. 1.8.Sierpinski gasket was invented in 1916 by Polish mathemati
ian Wa
law Sierpinski.This is embedded in a Eu
lidean spa
e. See Fig. 1.8(a). In this 
ase the s
aling fa
torof ea
h line is 2. In the �rst generation of the 
onstru
tion a single triangular motif isdivided into four self similar stru
tures of the triangular shape. Out of the four triangles,the middle triangle is removed from the spa
e. Subsequently in the next generation therest of the three follow the same pro
edure. Thus a Sierpinski graph is 
onstru
ted inan iterative manner. For this parti
ular stru
ture the number of bonds is 3n+1 and thenumber of sites is 3(3n+1)
2

. The e�e
tive dimensionality is given by
d =

lnNn

ln sn
, (1.11)where sn = λn with the bond length s
aling fa
tor λ = 2 and Nn is the number ofthe self similar stru
tures at nth generation. This is a general de�nition of �nding the

(a)

(b)

(c)

n=2n=1n=0

n=1 n=2n=0

n=0 n=1 n=2Figure 1.8: Constru
tions of the fra
tal latti
es.dimensionality of any stru
ture. The Sierpinski gasket is the most 
ommon regular fra
talused in studying di�erent statisti
al models, for instan
e the Ising model, the dire
ted orthe self avoiding polymer models, Potts model et
. Furthermore the sandpile model, selfavoiding walk and dire
ted polymer models have also been studied on Sierpinski gasket



1.6 Zeros of the partition fun
tion 11fra
tals of di�erent dimensions using the real-spa
e RG approa
h [44, 45, 46, 47℄.1.5.3 Real-spa
e Renormalization GroupRG is well dis
ussed in many text books [48, 49℄. Here we give a brief des
ription aboutRG. RG is a standard te
hnique in 
ondensed matter physi
s and already has been usedin many other bran
hes of physi
s. It is a tool to investigate a physi
al system at adi�erent length s
ale without any 
hange of the underlying physi
s. Many real-spa
eRG methods have been developed in obtaining approximate RG transformation. Thespe
iality of the hierar
hi
al latti
e is the s
ale invarian
e property. This is what enablesone to implement the real-spa
e RG te
hnique to study many models [31, 32, 34, 35℄.To implement RG one starts from a large latti
e and removes short s
ale �u
tuationsby renormalizing the parameters su
h as the 
oupling 
onstant et
., by res
aling thelatti
e to the original size. This pro
edure of thinning out of the degrees of freedom andres
aling is followed in ea
h step of the RG de
imation. The RG relation of the 
oupling
onstant emerges from this repeated pro
edure. The �xed points obtained from the RGrelation, des
ribe the phase transition.1.6 Zeros of the partition fun
tionFinding zeros of the partition fun
tion in the 
omplex plane of any physi
al variable isa mathemati
al way to understand the phase transition phenomenon. However �ndingzeros is possible only for small latti
e sizes or when a partition fun
tion redu
es to apolynomial form, but not in general. The zeros of the partition fun
tion are the 
omplexvalues of the Boltzmann fa
tor or other parameters at whi
h the partition fun
tionvanishes.Yang and Lee �rst studied the Ising ferromagneti
 system in a 
omplex magneti
 �eldto show that for a properly 
hosen variable the zeros lie on a unit 
ir
le, known as theYang-Lee 
ir
le [50, 51℄. Later the zeros were studied in the 
omplex temperature planeand other variables [52℄. Sin
e there 
annot be any real zero, the zeros may a

umulateand pin
h the real axis as a limit point in the thermodynami
 limit. This method 
anprovide relevant information on phase transitions su
h as the 
riti
al �eld or temperatureand the values of the asso
iated 
riti
al exponents.1.7 Julia setThe distribution of the zeros of the partition fun
tion on a 
omplex plane may formmany 
ompli
ated stru
tures other than a 
ir
le. These stru
tures are nothing but the
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tionseparatri
es of the two types of �ows, to the two di�erent stable �xed points of theRG transformation and are similar to the Julia sets [53, 54℄. The Julia set, namedafter Fren
h mathemati
ian Gaston Julia, is a type of fra
tal generated by an iterative
Im
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−1.5 −1 −0.5  0  0.5  1  1.5Figure 1.9: Julia sets in the 
omplex z plane for (a) c = 0, whi
h is an unit 
ir
le, (b) 
omplex
c = 0.8 + 0.156i. Ex
ept for c = 0, these sets exhibit self-similarity.fun
tion over the 
omplex numbers. The standard de�nition of a Julia set is the set ofpoints on the 
omplex plane whi
h �ow to a �xed point (no divergen
e) after a fun
tion,e. g.,

zn = z2
n−1 + c, (1.12)is repeatedly applied, where c is any arbitrary 
onstant, real or 
omplex. Let us 
hoose

c = 0.The �xed point solution for c = 0 are z = 0, 1,∞, where z = 1 is the unstable�xed point. Here for n → ∞, zn+1 → 0, when started with |z0| < 1 and zn+1 → ∞,when started with |z0| > 1. Therefore the unit 
ir
le |z| = 1 as shown in Fig. 1.9(a) isthe boundary between the two stable �xed points z = 0,∞. The unstable point lies onthis boundary. For the di�erent values of c (real or imaginary) di�erent stru
tures areobtained in the 
omplex z plane as shown in Fig. 1.9(b). The study of su
h stru
tureshas appli
ations in 
omplex dynami
s, partial di�erential equations, statisti
s et
. Wewill dis
uss several features of the zeros in the 
omplex plane, and the 
onne
tion to theJulia set in Chap. 3.1.8 Studies on double-stranded DNASeveral latti
e polymer models, have long been used for theoreti
al understanding ofvarious aspe
ts of DNA, espe
ially its thermodynami
s properties. Various analyti
al



1.9 Studies on triple-stranded DNA 13and numeri
al s
hemes su
h as generating fun
tions, exa
t transfer matrix, RG andMonte Carlo simulations have been su

essfully applied in the studies of the meltingand the unzipping of a double-stranded DNA [55, 56, 57, 32, 58℄. The melting of DNAre
eived a spe
ial attention as it the 
ru
ial step for DNA repli
ation. The melting isthe temperature indu
ed separation of the two strands, whi
h happens at a 
riti
al valueof the temperature (Tc). This is also 
alled the melting point or the denaturation point.The melting of a double heli
al DNA of large length, generally o

urs in the range 80o
�
100o
 [59℄. pH and 
hemi
al indu
ed denaturation also have been studied. Dependingon the model, melting 
ould be 
ontinuous or dis
ontinuous [56, 60, 61, 62℄. For a reviewon melting of DNA see Ref. [63℄.The 
riti
al behavior of two dire
ted polymers has been studied by Mukherji et al.,on a hierar
hi
al latti
e by the real-spa
e RG [32℄. The two 
hain melting was shown.The 
riti
al exponents obtained from the RG found to des
ribe the �nite size s
alingform of the energy derived from the exa
t iteration of the hierar
hi
al latti
e startingfrom a smaller latti
e. The two 
hain model further was extended to the random or thedisordered hierar
hi
al latti
e medium [36, 64, 65, 32℄. The for
e indu
ed unzipping of adsDNA at a 
riti
al value of the for
e was �rst shown by Bhatta
harjee in a 
ontinuummodel of DNA [58℄. The unzipping was reported as a �rst order phase transition. Furtherstudies on the 
ontinuum and the dis
rete model were done by Sebastian and Marenduzzoet al., [66, 56, 67℄. The 
omplete phase diagram in the for
e-temperature plane in this
ontext was obtained by Kapri et al., [68℄ by applying pulling for
e at any intermediatepoint of dsDNA. Various additional phases were obtained by Giri and Kumar for thedire
tion dependent pulling for
es [69℄. Sadhukhan et al., reported the existen
e of thetypeII-DNA in a 
ondition of negative zipped-unzipped interfa
ial energy [70℄. Di�erentsingle mole
ule experiments done with DNA are dis
ussed in Ref. [59℄.1.9 Studies on triple-stranded DNAA lot of progress has been made re
ently in the stru
tural understanding of the triplehelix DNA [71, 72℄. There have been a number of studies in vitro that have dire
tlytested the formation of a triple-stranded DNA [5, 6, 73, 13℄. So far most of the e�ortswere dire
ted towards understanding the bound state of the triple-stranded DNA.Triple helix is not a stable stru
ture under normal physiologi
al 
onditions and ishighly spe
i�
. The sequen
e-spe
i�
 re
ognition of the duplex DNA by a third-strandis of great use in targeting parti
ular sites of the duplex DNA. It has been reported thatthe triple helix forming Oligonu
leotides (TFO) might be a universal drug in re
ognizingthe spe
i�
 sequen
es of the duplex DNA [11, 71℄. It has been shown that the peptide-
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tionor polyamide- nu
lei
 a
ids (PNA) 
an bind to DNA and RNA with higher a�nity thannatural Oligonu
leotides to form a triple helix [74, 75℄.The stability of the triple helix DNA is of importan
e for possible biologi
al ap-pli
ations. Several studies have been aimed towards stabilization of DNA triplexes atphysiologi
al 
onditions [76℄. Its stability is a fun
tion of temperature, salt 
on
entrationand pH. The thermodynami
al studies on the triple helix formation have been reviewedin Ref. [77, 72℄. Plum has presented a state diagram on the 
omplex behavior of thetriple helix DNA. An Oligonu
leotide hairpin, forming a triple helix with a single-strandwas found more stable than a triple helix 
omposed of the two Oligonu
leotides and asingle-stranded DNA [14, 15, 16℄. The latter one underwent two distin
t melting tran-sitions. Furthermore many experimental results demonstrated that the denaturationtemperature of the triplex DNA is mu
h higher than the melting of the duplex DNA[78℄.
1.10 Conformational transitionThe 
onformational transitions of various biomole
ules are often related to their bio-logi
al fun
tions. For last few de
ades many experimental and theoreti
al models havebeen explored to study the inter
onversion of DNA. It is known that dsDNA exists inmany possible 
onformations like B-DNA, A-DNA, Z-DNA et
. Although B-DNA is very
ommon under normal physiologi
al 
onditions, Z-DNA appears in fun
tional organismsunder 
ertain 
ir
umstan
es. The B form also 
onverts to A-DNA under dehydrated
ondition or C-DNA in 
ertain solvents. However, the B-Z 
onversion is 
hallengingbe
ause of the 
hange in the heli
ity. Here we give a very brief review of the stru
turalform of B- and Z-DNA, and the interfa
e between B- and Z-DNA. We also dis
uss thedi�erent me
hanisms proposed for the 
onformational transition.1.10.1 B-DNAThe most 
ommon form of DNA found under normal physiologi
al low salt 
onditions isthe B-DNA [1, 79℄, the well known double helix with a right handed heli
ity as pi
turedin Fig. 1.10(a). The stru
ture of B DNA was originally proposed in 1953 by Watson andCri
k. It has 10.5 base pairs per heli
al turn and two distin
t grooves, a major and aminor groove. The Watson-Cri
k base pairs are sta
ked at the 
enter of the helix formedby the phosphate ba
kbones.
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(a) (b)Figure 1.10: (a) S
hemati
 stru
ture of B DNA with right handed heli
ity. Two single strandspaired by A-T and G-C type base pairs. Base pairs are shown by the horizontal lines. (b)S
hemati
 stru
ture of Z DNA (taken from Wikipedia) with left handed zigzag heli
al form.1.10.2 Z-DNAQuite surprisingly, the �rst DNA stru
ture to be solved by X-ray 
rystallography turnedout to be a left handed zig-zag form 
alled Z-DNA [2, 80, 81, 82℄. The stru
ture of ZDNA is substantially di�erent from B-DNA. It has 12 base pairs per heli
al turn andhas a narrow groove nearly similar to the minor groove of B-DNA. The stru
ture of Z-DNA is shown in Fig. 1.10(b). Su
h a non-Watson-Cri
k stru
ture would have profoundimpli
ations in DNA repli
ation, re
ombination and trans
ription. The Z form of DNAis found to be transient in vivo due to the la
k of a friendly environment. However it
an be stabilized in vitro in presen
e of high salt 
on
entration, 
ations and negativesuper-
oiling. Z-DNA is found in a number of eukaryoti
 
ells, animal 
ells, plant 
ellsand in ba
terial 
ells e. g., E-Coli.1.10.3 B-Z transitionThe 
onformational transition from the B to the Z form of DNA was dis
overed in 1972 byPhol and Jovin [83℄. As the fundamental di�eren
e between two forms is asso
iated withthe heli
ity, the transition goes through a dramati
 
onversion at the mole
ular level.This 
onformational transition requires the base pairs and a subset of ba
kbone sugarrings to �ip, followed by other 
hanges. The transition 
an be indu
ed by several s
hemessu
h as ioni
 
on
entration, negative super 
oiling et
. Indu
ing the 
onformationaltransition between two su
h 
hiral phases is tantamount to a lowering of the free energyof Z 
ompared to B, making Z the most preferable state, or the other way around [84℄. It
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tionhas been argued that the B-Z 
onversion is relevant in poxviruses [85℄, and Alzheimer'sdisease [86℄. The B-Z transition is reported to be �rst order in nature [80, 87, 88, 89, 90℄.As the base pairs and a subset of the ba
kbone sugar rings have to �ip to 
onvertB to Z, the dynami
s o�ers intriguing possibilities [81℄. Only re
ently methods havebeen developed to explore the dynami
s in single DNA as opposed to earlier studies insolutions.1.10.4 The B-Z interfa
eOne 
an 
hara
terize the B-Z transformation by a growth of a suitable domain over thebulk of DNA. In any su
h s
enario, the B-Z interfa
e, the separator between the two
hiral phases, plays an important role. The equilibrium interfa
e has been 
hara
terizedstru
turally and from other studies. The stru
ture of a short oligomer in presen
e of a Z-DNA binding protein at 2.6A resolution indi
ates broken base pairs separating the B andthe Z phases. The protein a
ting as an external sour
e indu
ing the transition is expe
tedto produ
e a sharp interfa
e [91℄. A very ingenious way of studying the interfa
e is touse mirror DNA [92, 93℄, though it 
annot be used for the 
hirality 
hanging transition.Interfa
ial studies and melting of short B-B* oligomers, where B* is the enantiomer of B,show that the jun
tion mimi
s the B-Z jun
tion, and the interfa
e broadens as the meltingpoint is rea
hed. In 
ontrast to these equilibrium 
ases, the nature of the interfa
e duringthe transition depends on the nature of the transition me
hanism [88, 89℄. Several su
hs
hemes are in vogue and dis
ussed in detail in Ref. [81℄.1.10.5 Contradi
tory hypothesesThe 
onformational 
onversion of B to Z has been studied by using di�erent types ofsingle mole
ular experiments. In an experiment by D. A. Heller et al., [94℄, a 
onfor-mational transition from the B form to the Z form of DNA was observed. The B-Ztransformation for a short 15 base pair GT (non-Watson-Cri
k wobble base pair) DNAwrapped on the single walled 
arbon nanotube was monitored as a fun
tion of time bythe addition of 
ounter-ions. The nanotube helped in identifying the phases via a

uratemeasurements of the band-gap in a simpler geometry. This transition is 
ompletely re-versible and is thermodynami
ally identi
al to the transition seen in the absen
e of thenanotube. The results seem to indi
ate the formation of a denatured DNA during thetransformation, eventhough a denatured state under the experimental 
onditions is notpossible thermodynami
ally.A di�erent single mole
ule experiment studied the transition under a tension andnegative super-heli
ity by 
ombining FRET with magneti
 tweezers [95℄. This experi-
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tively (GC)11 DNA (i.e. 22 bases) seems to favour a single interfa
ebetween B and Z without any denatured bubble.The two main 
ompeting hypothesis for the B to Z transition me
hanism are thefollowing:1. via base pair separation followed by base pair �ipping [80℄,2. via base pair �ipping without any base pair separation [87℄.In the �rst 
ase there 
ould be a denatured intermediate state while in the se
ond there
ould be a Z type but following the standard Watson-Cri
k base pairing (ZWC-DNA).
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tion1.11 AimThe aim of this thesis:
• Our aim would be to look for the signature of an E�mov-like e�e
t in triple-strandedDNA. We will study the melting of a three-stranded DNA, the possibility of otherphases, and the phase diagrams. In order to study the thermodynami
 behaviourwe will take the large length limit. We will model three dire
ted polymers on ahierar
hi
al latti
e and further on a Sierpinski gasket. We will apply the real-spa
erenormalization group (RG), the exa
t iteration method, and then the pro
edureof �nding the zeros of the partition fun
tions. We will use the �nite size s
alinganalysis for a further investigation on the nature of transitions and explore themodel in di�erent dimensions (d < 2 and d > 2) to see the dimensional e�e
t ondi�erent possible states.
• In 
onne
tion to the existing hypotheses on B-Z transition our aim would to estab-lish a theoreti
al understanding towards this 
onformational transition. We willuse a general form of the the Landau free energy des
ribing three states B, Z andthe denatured state as

F (φ) =
αβ

2
φ2 − α− β

3
φ3 − 1 + αβ

4
φ4 +

α− β

5
φ5 +

1

6
φ6,where α, β determine the free energy di�eren
es between the two states and φ(z, t)des
ribes the state of the 
oarse-grained base-pair at index z along the DNA. Ouremphasis will be on the underlying interfa
e between the two relevant states. Bythe 
hoi
e of the spe
i�
 parameters we allow the fronts to propagate and studythe dynami
s of the transitions and draw the phase diagram in the α-β plane. Wewill use the wave front propagation methodology and the numeri
al approa
hes todetermine the uniform velo
ity of these propagation. Furthermore, a perturbationte
hnique will be used to justify the dynami
 phase around the equilibrium point.We will also study the behavior of the width of the interfa
e and the appropriatetimes
ale.



1.12 Thesis organization 191.12 Thesis organizationWe study the melting of a three-stranded DNA and the 
onformational transition of Bto Z DNA. The thesis is organized as follows:In Chap. 2 we model three dire
ted polymers on a hierar
hi
al latti
e. Polymersare pla
ed from bottom to top, but they 
an wander at the intermediate step. Thereal-spa
e RG approa
h and exa
t iteration method are used to show that, despite thetremendous simpli
ity of the model, the three-strand DNA exhibits an E�mov-like state.Su
h a state o

urs at or above the duplex melting point, where three are bound butno two are bound. We show the feature of an enhan
ed stability of the triple-strandedDNA 
ompared to the duplex-DNA by the numeri
al 
al
ulations for both the 
ases ofsymmetri
 and asymmetri
 pair intera
tions. We also show the nature of transitions ofthe two- and the three-
hain systems.In Chap. 3 we study the same model and follow the same approa
h as is dis
ussed inChap. 2. Here we study the partition fun
tion of the three-
hain system by 
ombiningthe re
ursion relations and the RG transformations and then �nding the zeros. We showthat the distribution of zeros gives Julia-set like stru
tures in the 
omplex plane of thepartition fun
tion. We �nd that all the transition points obtained from RG �ows, are ingood agreement with the zeros of the partition fun
tion on the real axis. We also extendthe model to the three-
hain repulsive intera
tion region. We go to higher dimensionsto show that a transition 
an be indu
ed from the E�mov state of DNA to a 
riti
alrepulsive state. We show that to be a 
ontinuous transition, obeying the �nite sizes
aling law with the exponents obtained from RG.In Chap. 4 we further model the three-
hain system on a Sierpinski gasket fra
tallatti
e. We show that the E�mov e�e
t o

urs even in lower dimensions if some spe
i�
intera
tions are assigned to the polymers. We study di�erent models in detail and obtaina new state, to be 
alled a mixed state.In Chap. 5 we study the 
onformational transformation form B to the Z form by thetheory of wave front propagation. The dynami
s of B-Z interfa
e is studied by writingdown the nonlinear di�usion equation with a free energy like quantity. A dynami
 phasediagram is obtained for the stability of the front separating B and Z. The instability inthis front results in two split fronts moving with di�erent velo
ities. We also show that adenatured state may develop dynami
ally eventhough it is thermodynami
ally forbiddenif the system parameters are tuned a

ordingly.





2When a DNA triple helix melts: an analogueof the E�mov state
In this 
hapter we study the melting of a three-stranded DNA on a hierar
hi
al latti
e.It is predi
ted here that a three-stranded DNA exhibits the unusual behaviour of theexisten
e of a three-
hain bound state in the absen
e of any two being bound. Su
h astate 
an o

ur at or above the duplex melting point. This phenomenon is analogous tothe quantum E�mov state. In three parti
le quantum me
hani
s, su
h a state o

urs viathe development of an attra
tive 1/r2 intera
tion over a range beyond the short rangepotential. Here we have 
onsidered the 
lassi
al 
oarse-grained model of a three-
hainsystem in a dis
retized spa
e. Real-spa
e RG is used to show the E�mov-like three-
hainphase. Further exa
t numeri
al 
al
ulations are used to validate the predi
tion of su
ha biologi
al E�mov e�e
t.The 
hapter is organized as follows. We introdu
e a simpli�ed polymer model on ahierar
hi
al latti
e in Se
. 2.1. In Se
. 2.2 the re
ursion relations from the RG de
imationand for the exa
t iterations are written. Within this se
tion, the subsequent subse
tions
ontain the results and the dis
ussions from the RG and the exa
t iteration approa
hes.We draw our 
on
lusions in Se
. 2.3.
2.1 ModelLet us 
onsider three dire
ted polymers on a hierar
hi
al latti
e, 
onstru
ted re
ursivelywith a motif of λb bonds, as shown in Fig. 2.1(a), where λ and b represent the bonds
aling fa
tor and the bran
hing fa
tor, respe
tively. The latti
e is generated iterativelyby the repla
ement of ea
h bond at the (n − 1)th generation by a motif of λb bonds toget the nth generation. In the thermodynami
 limit n→ ∞, the e�e
tive dimensionalityof the latti
e is de�ned by

d =
lnλb

lnλ
. (2.1)
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0n= n= n= 21

(a) (b)

Figure 2.1: (a) The re
ursive 
onstru
tion of the hierar
hi
al latti
e with b = 2 for n = 0, 1, 2, ...generations. At every stage, ea
h line is repla
ed by a diamond of 2b lines. The right arrows rep-resent the dire
tion of iteration towards larger latti
es. The left arrows represent the dire
tionof de
imation used in RG. (b) A motif of 2b bonds, where b = 4.In this thesis we shall 
hoose λ = 2. By 
hanging the value of b, the dimensionality ofthe latti
e 
an be tuned. For example the dimensionality of the latti
e is d = 2 for b = 2(see Fig. 2.1(a)) and d = 3 for b = 4 (see Fig. 2.1(b)). Sin
e in lower dimensions a boundstate always exists due to any shallow potential, a simple random walk1 would not havethe transition for d ≤ 2. So we always 
hoose b > 2 for a three 
hain model2.
(b) (c)(a)

Figure 2.2: Examples of three-
hain 
on�gurations on a diamond motif for b = 4. (a) Polymersdo not share any single bond. The number of su
h 
on�gurations is b(b − 1)(b − 2). (b) Twopolymers share a bond and the number of su
h 
on�gurations is b(b − 1). (
) Three polymersshare the same bond. The number of su
h 
on�gurations is b.One major feature about hierar
hi
al latti
es is their unusual s
ale invarian
e prop-erty. They have a dis
rete s
aling symmetry. That is why an exa
t implementation ofthe real-spa
e RG te
hnique is possible. The de
imation of the nth generation to arriveat the (n − 1)th generation is pre
isely what is needed in an RG transformation. On
ethe partition fun
tion is known, it is possible to 
al
ulate the free energy, and the otherthermodynami
 quantities. One may even write down re
ursion relations for them.Three 
hains on a hierar
hi
al latti
e are stret
hed from bottom to top, but they
an wander at intermediate points. The 
onta
t energies are de�ned at the bonds only.The polymers are assigned attra
tive potentials −ǫij and −ǫijk (ǫij , ǫijk > 0) if a single1A simple random walk in d dimension, whi
h is a dire
ted walk along its length in d + 1 dimension
an be mapped to the path of a parti
le in quantum me
hani
s under imaginary time transformation.2d = 2 with b = 2 is the lower 
riti
al dimension for a two 
hain system.



2.2 E�mov-like phase in d > 2 23bond is shared by the two and the three polymers, respe
tively (see Fig. 2.2). At ea
hgeneration, the length of ea
h polymer in
reases by a fa
tor λ = 2 so that the length ofpolymers at the nth generation is
Ln = 2n. (2.2)We have 
onsidered a 
oarse-grained model. What we 
all a monomer in fa
t representsseveral base-pairs. The intera
tion involves monomers with same sequen
e of di�erent
hains. The total energy for the two and the three strands for the n = 1 generationlatti
e as shown in Fig. 2.1(a), respe
tively, are given by

E2 = −m2ǫ12, (2.3)
E3 = −m2 (ǫ12 + ǫ23 + ǫ31) −m3ǫ123, (2.4)where m2 is the two-
hain and m3, the three-
hain 
onta
ts.For the E�mov e�e
t, only pairwise intera
tion is enough. However in an RG pro
e-dure it is imperative to de�ne the model with both ǫij and ǫ123, be
ause the three-
hainintera
tion gets generated on a longer s
ale.We introdu
e the Boltzmann fa
tors,
yij = exp(βǫij), and w = exp(βǫ123), (2.5)where β = 1/kBT , kB being the Boltzmann 
onstant, T the temperature.2.2 E�mov-like phase in d > 2We adopt a real-spa
e RG approa
h for d > 2 to study the three-
hain melting. In theRG approa
h, the e�e
ts of intera
tion is probed by summing over the 
on�gurationsat a smaller s
ale (in the partition fun
tion) and rede�ning the e�e
tive intera
tion ona larger s
ale. This is done by preserving the form of partition fun
tion upto a s
alefa
tor. For a bound state, we should see an e�e
tive intera
tion among the 
hains,irrespe
tive of the s
ale of 
oarse-graining. In 
ontrast, for an unbound state, lo
allybound monomers lose their importan
e as we sum over 
on�gurations and therefore thee�e
tive intera
tion would vanish as the probing length s
ale in
reases. These e�e
ts areexpressed by the RG �ow equations or re
ursion relations, as �ows of the intera
tionswith length s
ale. A two-body bound state should therefore be possible if the two-bodyintera
tion does not vanish. In the same spirit, a three body bound state would o

urif a three-body intera
tion be
omes operative, even if there is none to start with. Weexpress these RG relations in an exa
t form on spe
ially 
onstru
ted hierar
hi
al latti
es
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rete s
aling symmetry and tunable dimensionality.2.2.1 E�mov DNA: RGThe 
on�gurations of the two-
hain system on a motif of the hierar
hi
al latti
e 
an be
lassi�ed as1. two independent 
hains,2. inherently two-
hain 
on�gurations i. e., two 
hains sharing the same bond.By summing over all 
on�gurations the partition fun
tions for n = 0 and n = 1 genera-tion latti
es for general b will be written as [32℄
Z0(y) = yij, (2.6)

Z1(y) = b(b− 1) + by2
ij . (2.7)Sin
e by RG de
imation, a motif of 2b bonds of n = 1 generation is repla
ed by a singlebond in n = 0 generation, the RG demands

Z0(y
′
ij) ∝ Z1(yij), (2.8)where y′ is the renormalized Boltzmann fa
tor. With the free 
hain boundary 
onditionsi. e., yij = 1, implies yij

′ = 1, the proportionality 
onstant of Eq. (2.8) 
an be deter-mined. Therefore the RG transformation for the two-
hain Boltzmann fa
tor be
omes
y′ij =

b(b − 1) + by2
ij

b2
. (2.9)The RG transformation for the three-
hain 
ase 
an also be written in the same spiritas in two-
hain 
ase. The three-
hain 
on�gurations (see Fig. 2.2) 
an be 
lassi�ed as1. three independent 
hains,2. a 
ombination of a double- and a single-
hain,3. inherently three-
hain 
on�gurations, i. e., three 
hains sharing the same bond.The free 
hain 
ondition yij = w = 1 implies y′

ij = w′ = 1. Also to be noted that whenthree 
hains share the same bond the 
ontribution is y3
ijw (y3

ij for three pairs). The RG



2.2 E�mov-like phase in d > 2 25transformation for w is then
w′ =

b(b− 1)(b− 2) + b(b − 1)
∑

i<j

y2
ij + bw2

∏

i<j

yij
2

b3
∏

i<j

y
′

ij

, (2.10)where w′ is the renormalized value of w. These re
ursion relations show that the three-body term is generated eventhough we start with ǫ123 = 0, i. e., w = 1. For given yijand w, the �ows from su

essive use of Eqs. (2.9)-(2.10) would give us the phases andthe nature of the transitions.For the above analysis one needs the �xed points of the RG transformations. Thethree �xed points of yij 
orrespond to1. y∗ = 1, stable in�nite temperature �xed point representing an unbound state,2. y∗ = yc = (b−1), unstable �xed point representing the two-
hain melting or 
riti
alpoint,3. y∗ = ∞ (zero temperature representing a bound duplex state) is the obvious stable�xed point, whi
h does not 
ome from the RG relation but 
omes from the RG�ow.In 
ase there is no pairwise bound state (no pair intera
tion i. e., yij = 1), w has three�xed points,1. w∗ = 1, stable in�nite temperature, an unbound state,2. w∗ = wc = (b2 − 1), unstable �xed point representing three-
hain 
riti
al point.3. w∗ = ∞ (zero temperature), representing pure three-
hain bound state, 
omesfrom the RG �ow.The stable �xed point w∗ = 1 des
ribes the high temperature �xed point or an absen
eof the three-body intera
tion and the unstable �xed point wc = b2 − 1 des
ribes the
riti
al state produ
ed by a pure three-body intera
tion.In 
ase all pairs are in the 
riti
al state so far as the two-body intera
tion is 
on
erned(y∗ij = b− 1), the �xed points of w are found to be
w± =

b2 ±
√

4 − 24b+ 32b2 − 12b3 + b4

2(b− 1)3
. (2.11)In the range 2.303 < b < 8.596, no real roots are found for w from the three-
hain RGrelation (Eq. (2.10)) at the 
riti
al line y = yc.
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Figure 2.3: (a) RG Flow-diagram in the y-w plane for the symmetri
 
ase y12 = y23 = y13, allstarting with w = 1. Here b = 4. The �ow of w goes to ∞ if the starting y > yE = 2.32402...,otherwise to 1 (high temperature �xed point). The traje
tories with starting y < yE end at
w = y = 1. (b) Average energy per monomer vs temperature from dire
t 
omputation (
hainlength=225). For two 
hains (marked 2) the average energy undergoes a 
ontinuous transitionat y = yc while the average energy for three 
hains (marked 3) shows a jump at y = yE. Theregion from yE to yc is the E�mov-like three 
hain bound state.
Symmetri
 pair intera
tionHere we 
onsider all three pairs identi
al (either Watson-Cri
k type or Hoogsteen type).The RG-�ow diagram is shown in Fig. 2.3(a) for bran
hing fa
tor b = 4. The RG �owsare shown in the di�erent regions. The arrows are to denote the dire
tion of RG �ows.We 
onsidered only b = 4 as a representative of the range where there is no real �xedpoint along the two-
hain 
riti
al line. Here yc = 3 is the two-
hain melting point. TheRG �ow of w depends on the initial value of y. The renormalization �ow takes w toin�nity with an initial value yij = yc = b−1, as shown in Fig. 2.3(a) by the red 
urve. Thethree 
hains then form a bound state at the two-body 
riti
al point. For temperaturesabove the duplex melting, i. e., with initial values y = y12 = y23 = y31 < b − 1 thethree 
hains would be in the denatured state if the �ow goes to y = 1, w = 1, but for
y ≥ 2.32402, the �ow goes to in�nity and rea
hes w = ∞ at y = 1. Hen
e an e�e
tivethree-
hain intera
tion develops when the pairs are unbound. Below y < yc the three-
hain system is in the high temperature phase� note that, by 
hoi
e, the �ow startsfrom w = 1. Therefore for b = 4, the melting of an e�e
tive three-
hain bound state isat y = 2.32402.... The region between y = yE to y = yc 
orresponding to w = 1, is for ane�e
tive triple stranded bound state when there should not be any duplex bound state.If a separatrix is imagined in the y-w plane between (1, b2 − 1) and (yE, 1), then in theregion en
losed by this separatrix and the two-
hain 
riti
al line y = yc, a triplex statewould exist eventhough no two are bound. Su
h a loosely bound state will be 
alled theE�mov DNA.



2.2 E�mov-like phase in d > 2 272.2.2 E�mov DNA: Numeri
al eviden
e
A further 
on�rmation of this triplex melting 
omes from an exa
t numeri
al 
al
ulationof the average energy by iterating the partition fun
tions and their derivatives for largelatti
es. In exa
t iteration method the latti
e is built generation by generation so thatone may study the behaviour of any quantity of interest as a fun
tion of length of thepolymers. The dire
tion of iteration towards larger latti
es are shown by the right arrowsas shown in Fig. 2.1. With the tra
e over all 
on�gurations if Cn, Zn and Qn are the nthgeneration partition fun
tions for single-, double- and triple-
hain systems, then theseobey the re
ursion relations [32℄

Cn = bC2
n−1, (2.12)

Zn = b(b− 1)C4
n−1 + bZ2

n−1, (2.13)
Qn = b(b− 1)(b− 2)C6

n−1

+b(b− 1)C2
n−1

3
∑

i,j=1

i<j

Z(ij)2
n−1 + bQ2

n−1, (2.14)where the arguments of Zn−1 in Eq. (2.14) refer to the two 
hains involved. The initial
onditions are taken as
C0 = 1, Z0 = y,Q0 = y3.

To write down the derivatives of the above partition fun
tions (Eqs. 2.12-2.14) wehave 
onsidered the symmetri
 situations, i. e., the equal pair intera
tions. Thereforewe write the average energy and the spe
i�
 heat as
En =

∂ ln Qn

∂x
, and Cn =

∂En

∂x
, (2.15)where x is the appropriate variable (y or w as the 
ase may be). Though these de�nitionsare di�erent from the a
tual de�nitions, proportionality fa
tors are not 
ru
ial here.The re
ursion relations of the two-
hain and the three-
hain average energy (En, En)and the spe
i�
 heat (C̆n, Cn), derived from the nth generation partition fun
tion are as
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En = 2b

Z2
n−1En−1

Zn
, (2.16)

C̆n = En
2 +

C̆n−1En

En−1
− 2EnEn−1, (2.17)

En = 2b
3(b− 1)C2

n−1Z
2
n−1En−1 +Q2

n−1En−1

Qn
, (2.18)

Cn = 2b
3(b− 1)C2

n−1Z
2
n−1(C̆n−1 − 2E2

n−1) +Q2
n−1(Cn−1 − 2E2

n−1)

Qn

+ E2
n. (2.19)For given y and w, Eqs. (2.12)-(2.14) give the partition fun
tions for di�erent Ln. The
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 0Figure 2.4: Plots of En/Ln vs 1/n, En being the three-
hain average energy, n the generationnumber. We went upto n = 25 for whi
h the length of ea
h polymer is Ln = 225. In (a)we show for y = 2.322 + n x 10−3, n =0,...,5, while a �ner grid result is shown in (b) with

y = 2.32400 + n x 10−5, n =1,...,4. The lines show the extrapolations to n → ∞. Thedis
ontinuity at the transition is visible.two- and the three-
hain average energies per monomer are shown in Fig. 2.3(b). With
y ≡ y12 = y23 = y31, as in Fig. 2.3(b), the two-
hain system melts through a se
ond ordertransition at y = yc (energy going 
ontinuously to zero) [96, 97℄ whereas the three-
hainsystem undergoes a �rst order transition at a temperature y = yE < yc (energy showinga dis
ontinuity).The dis
ontinuity in the three-strand average energy has been shown in Fig. 2.4.Sin
e the length of the polymer at the nth generation is Ln = 2n, the thermodynami
limit of the energy per monomer En/Ln 
an be obtained by extrapolation to 1/n → 0.Fig. 2.4(a) shows the extrapolation in the range of y = 2.323 to 2.327 whi
h bra
kets thetransition in the range (2.324, 2.325). The dis
ontinuity survives even on a �ner s
alein Fig. 2.4(b), whi
h gives yE in the range (2.32402, 2.32403) 
onsistent with the RGresult of Fig. 2.3(a). The numeri
al estimations of the e�e
tive three-
hain melting tem-peratures for di�erent b are given in the table below when there is no pure three-
hain



2.2 E�mov-like phase in d > 2 29intera
tion (i. e., w = 1).
b 3 4 5 6
yE 1.8.. 2.32402.. 2.77.. 3.179..Table 2.1: The E�mov transition points (yE's) for di�erent values of b when w = 1.

Asymmetri
 pair intera
tionThe RG �ows 
an be generalized for asymmetri
 pair binding energies too. This is theasymmetri
 
ase where we have 
onsidered ǫ12 = ǫ23 6= ǫ31. For generalization we may
onsider all three pairs di�erent (one pair Watson-Cri
k type and remaining Hoogsteentype). The phase diagram in the plane of y−1
13 vs y−1

12 with y12 = y23, w = 1 is shown inFig. 2.5. For y−1
13 = 0, 
hains 1 and 3 are bound for ever and therefore 
hain 2 melts o� at

y12 =
√
b− 1. This point is indi
ated by a star in Fig. 2.5. Within the triangular shadedregion bounded by y−1

13 = 1/(b− 1), y−1
12 = 1/(b− 1), and the 
urved line separating theunbound state, we have a triplex phase without pairing of any two � the desired E�move�e
t. In y−1

13 -y−1
12 plane the diagonal dire
tion (i. e., y13 = y12) gives the symmetri
 
ase(Fig. 2.3(a)) where all the pair intera
tions are same.
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Figure 2.5: Phase Diagram: y−1
31 vs y−1

12 (y12 = y23), for b = 4. The duplex melting pointat y
{ij}
c = b − 1 is indi
ated by the horizontal and verti
al lines. Three 
hains are bound inthe shaded region with the thi
k 
urve representing the three-
hain bound-unbound transition.Above the horizontal line at y31 = b− 1 in the shaded region, a triplex state exists even thoughno two should be bound. The bound states in other regions are as indi
ated. The star at

y−1
12 = 1/

√
b − 1 is the melting of 
hain 2 and 
omposite 1,3.
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lusionsOur emphasis is on the E�mov like state exhibited by the three-
hain system at orbeyond the two-
hain melting, where no two are bound, and the nature of transitions.The RG relations and the exa
t numeri
al 
al
ulations are used for d > 2 to show thepossibility of su
h three-strand DNA bound state at 
onditions where a duplex DNAwould be in the denatured state. This is a biologi
al analog of the nu
lear or 
old atomE�mov e�e
t. The existen
e of su
h a bound state involving two otherwise denaturedstrands of DNA due to the presen
e of a third strand, with overall separation mu
hlarger than the hydrogen bond length would have important impli
ations in biologi
alpro
esses. Nonetheless, we anti
ipate new experiments to look for signatures of ourproposed E�mov DNA.



3E�mov DNA and its transitions
In this 
hapter we study the melting of a three-stranded DNA by using real spa
e renor-malization group and exa
t re
ursion relations. The predi
tion of an unusual E�mov-analog three-
hain bound state, that appears at the 
riti
al melting of a two-
hain DNA,is 
orroborated from the zeros of the partition fun
tion. The distribution of the zeroshave been studied in detail for various situations. We extend the model to the three-
hain repulsive zone. We show that the E�mov DNA 
an o

ur even if the three-
hain (i.e., three monomer) intera
tion is repulsive in nature. In higher dimensions, a strikingresult that emerged in this repulsive zone is a 
ontinuous transition from the 
riti
alstate to the E�mov DNA.The 
hapter is organized as follows. In Se
. 3.2, the re
ursion relations from RGde
imation and those for exa
t iterations are written. The method of �nding the zerosof the partition fun
tion is dis
ussed and we �nd the limit point of the zeros to lo
atethe phase transition. Se
. 3.3 
ontains the results and dis
ussions on the two- and thethree-
hain system under di�erent situations. In parti
ular we estimate the transitionpoint for E�mov DNA. Se
. 3.4 extends the problem to three 
hains repulsive intera
tion.The existen
e of a transition between the E�mov DNA and the 
riti
al repulsive statein higher dimensions is established there.
3.1 ModelBased on the model dis
ussed in Se
. 2.1, in this 
hapter we have 
onsidered the three-
hain system on a re
ursively 
onstru
ted hierar
hi
al latti
e as shown in Fig. 2.1 forsymmetri
 pair intera
tions. The polymers are assigned attra
tive potentials −ǫ and
−ǫ123 (ǫ, ǫ123 > 0) if a single bond is shared by the two and the three polymers, re-spe
tively (see Fig. 2.2). Although ǫ123 = 0, still this term will be needed for the RGtransformation to probe the three-body bound state and is generated by renormalization.



32 E�mov DNA and its transitions3.2 MethodIn this se
tion we summarize the RG transformations and the exa
t re
ursion relationsfor the partition fun
tions. The two ways of handling the problem are just two di�erentways to look at it. In the RG 
ase, we start from a large latti
e and remove short s
ale�u
tuations by renormalizing the parameters, e�e
tively redu
ing the size of the latti
e.In 
ontrast to this idea of thinning out the degrees of freedom, in the se
ond methodthe latti
e is built generation by generation so that one may study the behavior of anyquantity of interest as a fun
tion of the length of the polymers. This is useful in studyingphase transitions be
ause �nite size s
aling 
an then be used to explore the nature ofthe transition.3.2.1 Renormalization groupBy de�ning the Boltzmann fa
tors,
y = exp(βǫ), and w = exp(βǫ123), (3.1)the RG transformations of the two-
hain and the three-
hain Boltzmann fa
tors 
an bewritten as (with y12 = y23 = y31 = y from Eqs. (2.9) and (2.10))

y′ =
(b− 1) + y2

b
, (3.2)

w′ =
(b− 1)(b− 2) + 3(b− 1)y2 + y6w2

b2y′3
, (3.3)where the primed variables y′ and w′ on the left hand side represent the renormalizedvalues of the Boltzmann fa
tors.To dis
uss the phases and the nature of the transitions, one needs the �xed pointsfor this analysis. These are dis
ussed in Se
. 2.2.1. The 
orrelation lengths for su

essivegenerations are related by ξ′ = ξ

λ
. This is 
oupled with the deviation of temperaturefrom the 
riti
al point. Thus, on
e the �xed points are known, transition exponents 
anbe 
al
ulated from the RG relations by linear expansion around the 
riti
al points. Thetwo-
hain melting is 
riti
al with the diverging length s
ale with exponents
ν =

lnλ

ln

(

dy′

dy

∣

∣

∣

y→yc

) (3.4)and the spe
i�
 heat exponent
α = 2 − ν. (3.5)



3.2 Method 33It is known from the Eq. (2.11) that at the two-
hain 
riti
al point yc = b−1, no real rootsare found from the three-
hain RG relation, Eq. (3.3), within the range 2.303 < b < 8.596.These 
omplex roots lead to a limit 
y
le behaviour, whi
h is intimately related to theE�mov e�e
t (see appendix B).3.2.2 Exa
t re
ursion relationsWith the tra
e over all 
on�gurations the nth generation partition fun
tions for single-(Cn), double- (Zn), and triple- (Qn) 
hain systems obey the re
ursion relations
Cn = bC2

n−1, (3.6)
Zn = b(b− 1)C4

n−1 + bZ2
n−1, (3.7)

Qn = b(b− 1)(b− 2)C6
n−1

+3b(b− 1)C2
n−1Z

2
n−1 + bQ2

n−1. (3.8)The initial 
onditions are taken as
C0 = 1, Z0 = y, Q0 = y3w. (3.9)The two- and the three- 
hain average energy and the spe
i�
 heat are given by Eqs. (2.16)-(2.19) [see Eq. (2.15)℄.3.2.3 Zeros of the partition fun
tions Zn and QnIf we take w = 1, i. e., no three-body intera
tion, then the partition fun
tions arepolynomials in y. In general, Zn is a polynomial in y of order Ln whileQn is a multinomialin y and w. These partition fun
tions are then 
ompletely des
ribed by the zeros whi
hare ne
essarily 
omplex. A phase transition is signaled by a real limit point of the zeros.However, the rapid growth of the order of the polynomials makes it di�
ult to implementthis program dire
tly. A di�erent representation is used to get the zeros [54℄.For n = 1, the two-
hain partition fun
tion is written as

Z1 = b(b− 1)C4
0 + bZ2

0 . (3.10)With the initial 
onditions C0 = 1, Z0 = y, Eq. (3.10) be
omes
Z1 = b(b− 1) + by2, (3.11)



34 E�mov DNA and its transitionswhi
h, by using Eq. (3.2), 
an be written as
Z1(y) = b2y′ = b2Z0(y

′). (3.12)In a similar way, Z2, for n = 2, 
an be written as
Z2 = b5(b− 1) + bZ2

1 , (3.13)and, by using the two-
hain RG relation, Eq. (3.13) be
omes
Z2(y) = b5y′ = b4Z1(y

′). (3.14)Thus by using the RG transformations of y and w, the re
ursion relations from Eqs. (3.6)-(3.8) 
an be redu
ed exa
tly to the forms
Zn(y) = bLnZn−1(y

′), (3.15)
Qn(y, w) = (bLn)3/2Qn−1(y

′, w′), (3.16)with y′, w′ given by Eqs. (3.2) and (3.3). These relations 
an be veri�ed by dire
tsubstitution and, if ne
essary, by the method of indu
tion as dis
ussed above.Sin
e the zeros determine a polynomial 
ompletely, the two-
hain partition fun
tions
an be written as
Zn(y) = bLn−1

Ln
∏

l=1

(y − ql), (3.17)
and Zn−1(y) = bLn−1−1

Ln−1
∏

j=1

(y − q̃j), (3.18)where the ql's and q̃j 's are the zeros of the partition fun
tions Zn(y) and Zn−1(y), re-spe
tively. These zeros appear in 
omplex-
onjugate pairs. With the substitution ofEqs. (3.17) and (3.18), Eq. (3.15) be
omes
bLn−1

Ln
∏

l=1

(y − ql) = bLnbLn−1−1

Ln−1
∏

j=1

(y′ − q̃j). (3.19)Then the use of Eq. (3.2), the relation between y′ and y, gives two roots from ea
h fa
toron the right hand side, so that the ql's are the solutions of
(b− 1) + y2

b
= q̃j , (3.20)



3.3 Behavior of zeros: two- and three-
hain systems 35i. e.,
q = ±

√

bq̃j − (b− 1). (3.21)The subs
ript of q is omitted. This 
learly shows that if we know the 2n−1 zeros q̃j of
Zn−1(y), we will be able to know the 2n zeros ql of Zn(y). One may start with the rootsof Z1 and generate su

essively the roots of ea
h generation, by just solving a quadrati
equation.Instead of generating all the roots, a random generation is more easily implementable.With an initial value y0 
hosen randomly from the two roots of Z1, the new roots aredetermined by Eq. (3.21). If one of them is 
hosen at random and substituted as q̃j , theroots for the next generation 
an be found. Thus, after the nth iteration, the set obtainedis basi
ally the zeros in the 
omplex y-plane. These roots are nothing but the zeros ofthe partition fun
tion found from di�erent sizes of the latti
e, whi
h in this problemwould be equivalent to di�erent lengths of polymers. The zeros qui
kly 
onverge and as
n → ∞ we look for the limit point on the real axis. Apart from that, the distributionin the 
omplex y-plane itself is of interest. This method has been generalized for thethree-
hain system.3.3 Behavior of zeros: two- and three-
hain systems3.3.1 Two-
hain system: b = 4For di�erent bran
hing fa
tors, fra
tal-like stru
tures are obtained from the zeros of thepartition fun
tions of the two- and the three-
hain systems. We 
onsidered only b = 4 asa representative of the range where there is no real �xed point along the two-
hain 
riti
alline. For b = 4 the stru
ture shown in Fig. 3.1(a) is obtained in the 
omplex y planefrom the exa
t re
ursion relation Eq. (3.15). Exa
t solutions are possible only up to the

(a) (b)

−3

 0

 3

−3  0  3
Re y

Im
 y

−4
−2
 0
 2
 4

−4 −2  0  2  4
Re y

Im
 y

Figure 3.1: Plot of zeros of Zn(y) in the 
omplex y-plane for b = 4 from (a) the exa
t re
ursionrelation for n = 6, and (b) the RG relation. The 
losest point to the Re(y) axis approa
hes
yc = 3, the two-
hain melting point in the limit n → ∞, the unstable �xed point of Eq. (3.2).The sele
ted region shown by a box is zoomed in Fig. 3.2(a).
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n = 6 generation be
ause of 
omputational hardware limitations. This is insu�
ient,as the thermodynami
 limit (n → ∞) is needed to observe a phase transition. Findingzeros at random from the RG relations [Eqs. (3.2) and (3.3)℄ over
omes su
h di�
ultiesand hen
e large lengths 
an be rea
hed. The zeros obtained from Eq. (3.20) give thefra
tal-like stru
ture shown in Fig. 3.1(b). The a

essed zero nearest to the real axisapproa
hes the two-
hain transition point yc = 3 for large n. Apart from the limit point,the distribution of the zeros in the 
omplex y plane is also non-trivial.
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Figure 3.2: Zeros of Zn(y): The inner re
tangular box is zoomed su

essively. A self-similarstru
ture be
omes apparent. Note that the zeros are known with high a

ura
y.The �rst feature to note is that the zeros do not seem to lie on a smooth di�erentiable
urve. A zoomed pi
ture of a small 
ross se
tion of the stru
ture for the two-
hain system[from Fig. 3.1(b)℄ is shown in Fig. 3.2(a). Further the sele
ted regions have been zoomedsu

essively and are shown in Figs. 3.2(b) and 3.2(
). The self-similarity of the stru
tureis visible. This is an indi
ation of the fra
tal nature of the distribution. Further analysisrequired for a quantitative des
ription is not done here.These fra
tal like stru
tures obtained above are nothing but the separatri
es of theset of RG �ows in the 
omplex plane to the appropriate stable �xed points. Theseseparatri
es for iterations of any fun
tion in the 
omplex plane are known as the Juliaset (see appendix A). The sets are obtained after an in�nite number of iterations of are
ursive formula by identifying the points that do not �ow to the stable �xed points.Our method of �nding the zeros by using the RG relations is in fa
t equivalent to aninverse iteration method, whi
h is more e�
ient in produ
ing su
h stru
tures.In Fig. 3.3(a) the RG �ows are shown in the 
omplex y plane for a two-
hain system.The dotted line (red 
urve) shows the �ow towards the stable �xed point y = 1, i. e.,the high temperature region, when we start with a value from the inner region of thefra
tal-like stru
ture. On the other hand, a point from the outskirts of the line of zeros�ows to the stable �xed point y = ∞, whi
h is the bound state with zero temperature.The 
riti
al point, being an unstable �xed point, does not a
tually belong to the set but,as dis
ussed, is a limit point � in a sense a boundary of the set.The se
ond feature to note is the 3-like shape near the real-axis limit point. It is not



3.3 Behavior of zeros: two- and three-
hain systems 37arbitrary. The angle at the limit point in the 
omplex plane is related to the spe
i�
heat exponent by [98℄
tan (φν) = − tan (πα) +

A−
A+

csc(πα), (3.22)where φ is the angle between the tangent of zeros at the limit point, and the real axisof y, and A± are the amplitudes of the spe
i�
 heat on the low and the high y side ofthe transition. Just like the exponents, A−/A+ is a universal number for a universality
lass of transition. For the two-
hain problem, we know that A−/A+ → ∞ as A+ = 0.Therefore the angle φ is given by
φ =

π

2ν
. (3.23)The zeros obtained by the su

essive iterations of the one 
lose to the real axis areshown in Fig. 3.3(b) by the triangles. They approa
h the real axis in a linear fashionwith an angle φ, given by the straight line

Im z = (Re z − c) tan
π

2ν
, (3.24)in the generi
 
omplex z plane with ν from Eq. (3.4). Here c represents the limit pointof the zeros on the real axis. The zeros o

ur in 
omplex 
onjugate pairs. Therefore ifwe take the mirror image of the distribution of zeros about the real axis in Fig. 3.3(b),the beak of the 3-like shape 
an be obtained.
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Re yFigure 3.3: (a) Plot of zeros of Zn(y) in the 
omplex y plane. Two types of RG �ow are shown.The dotted red 
urve starts from a point of the inner region and �ows to y = 1. The dashedblue 
urve starts from a point of the outer region and �ows to ∞. (b) The triangles are thezeros and approa
h the limit point yc = 3 at large n. The solid red line, given by Eq. (3.24),makes an angle φ with the real axis with ν of Eq. (3.4) and c = yc.



38 E�mov DNA and its transitions3.3.2 Three-
hain system: b = 4We have 
al
ulated the zeros of Qn(1, w) for a three-
hain system with a pure three-
hainintera
tion. By 
onsidering y = 1 in Eq. (3.3), we get
w′ =

(b2 − 1) + w2

b2
. (3.25)The zeros 
ome from the equation

ql = ±
√

b2q̃j − (b2 − 1),where the ql's and q̃j 's are the zeros of Qn(1, w) and Qn−1(1, w), respe
tively. The dis-tribution of zeros is the Julia set whi
h has a fra
tal-like stru
ture shown in Figs. 3.4(a),3.4(
), and 3.4(d). By 
hoosing the zero near to the limit point wc, the nature of thedistribution 
an be determined, as shown in Fig. 3.4(b) by the straight line given byEq. (3.24) with ν of Eq. (3.29) and c = wc.
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Figure 3.4: (a) Plot of the zeros of Qn(1, w) in the 
omplex w-plane for b = 4. The 
losestpoint to the real axis approa
hes wc = 15 for large n. There is self-similarity in the distributionof zeros. (b) The triangles are the zeros. The solid red line given by Eq. (3.24) passes throughthem with ν of Eq. (3.29) and c = wc. (
), (d) The inner re
tangular box [from (a)℄ is zoomedsu

essively.3.3.3 E�mov DNA: b = 4The idea is to show the E�mov transition point of DNA by �nding the limit point of zeroson the real y axis. Although we 
onsider w = 1, the e�e
tive three-
hain intera
tion getsgenerated by renormalization. As a result the zeros found from Eqs. (3.6)-(3.8) seem topin
h the Re(y) axis at a point where no pair of 
hains is bound. The exa
t solutions



3.3 Behavior of zeros: two- and three-
hain systems 39are shown in Fig. 3.5(a) for n = 6. On a �ner s
ale the zeros are shown in Fig. 3.5(b).For su
h small latti
es the limit point is not a

essible, hen
e an extrapolation s
hememay be used. The zeros nearest to the Re(y) axis, obtained in di�erent generations(n = 2, ..., 6) are shown in Fig. 3.5(
) by bla
k dots. A straight line ni
ely �ts these zerosand is shown by the solid red 
urve.
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Figure 3.5: Plot of zeros in the 
omplex y-plane for b = 4. (a) Zeros of Qn(y, 1), when n = 6,(b) a �ner s
ale of (a) near the real axis, and (
) 
ombined plot of zeros. The bigger bla
k 
ir
lesare the zeros 
losest to the real axis (i. e., with smallest imaginary part) obtained from Qn(y, 1)for n = 2, ..., 6 and the solid (red) straight line is a �t to these. The �Milky Way"-like regionshows the distribution of zeros from Eq. (3.26) on whi
h we superpose the positive quadrant of(a) shown by the small bla
k dots.The straight line interse
ts the real axis at y = 2.321. This value is the large nextrapolation and 
an be taken as an estimate of the E�mov transition. We may 
omparethis extrapolated value with the previous RG-based estimate of yE = 2.32402. Findingthe zeros for the two-
hain system is easier than for the three-
hain system. Sin
e thethree-
hain equation holds both the variables y and w, �nding zeros from the three-
hainRG relation is tantamount to generating the full relation for Qn. This is be
ause oneneeds to keep w at all the intermediate values of n and then, at the the desired value of
n, w is to be set to 1. One sees the di�
ulty of the E�mov physi
s even though w = 1.It is tempting to simplify the re
ursion relation at the 
ost of some approximation. Weset w = w′ = 1 to get a renormalized y′ that des
ribes the three-
hain system. Su
h arelation follows from Eq. (3.3), as

y′
3

=
(b− 1)(b− 2) + 3(b− 1)y2 + y6

b2
. (3.26)The zeros obtained from Eq. (3.26) spread out in a �Milky Way� over a region in the
omplex plane of y. The spread makes it di�
ult to make an estimate of the real-axislimit point, but one may use the width to put a bound on the E�mov transition point[see Fig. 3.5(
)℄.
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Figure 3.6: (a) Zeros of Qn(yc, w) in the 
omplex w plane for b = 9. The stable �xed point
w = ws is shown by a bla
k 
ir
le. (b) The solid red line is given by Eq. (3.24) and passesthrough the zeros shown by the triangles, with ν from Eq. (3.30) and c = wE .3.3.4 E�mov DNA at yc = b− 1: b = 9A study along the 
riti
al threshold of the two-
hain melting is quite interesting. Noreal �xed point for w exists for Eq. (3.3) when b is in the range 2.303 ≤ b ≤ 8.596 alongthe y = yc line. For y = yc, the single parameter RG relation is

w′ =
(b− 2) + 3(b− 1)2 + (b− 1)5w2

b2(b− 1)2
. (3.27)The two �xed points for this 
ase are given by Eq. (2.11). For b = 9, these are

w = ws = 0.0655347... (stable), (3.28a)
w = wE = 0.0926684... (unstable). (3.28b)The unstable �xed point, as the phase transition point, determines the limit point of thezeros of the partition fun
tion on the real axis. Hen
e it 
an be predi
ted that at thetwo-
hain melting point, by tuning w, a transition o

urs at w = wE, from the E�movDNA to the 
riti
al state of polymer pairs. Figure 3.6(a) shows the distribution of zerosof Qn(yc, w) in the 
omplex w plane. The set of these zeros is a Julia set, separating the�ows to the stable �xed points. The stable �xed point in the inner region of the set isgiven by Eq. (3.28a). The zeros near the real axis approa
h w = wE linearly, followingEq. (3.24) with c = wE and ν of Eq. (3.30) as shown in Fig. 3.6(b). A detailed dis
ussionis given in the next se
tion.3.4 E�mov DNA: RG �ow and numeri
al eviden
eTo explore the robustness of the E�mov e�e
t, we now in
lude a three-
hain repulsiveintera
tion along with the pairwise attra
tive one. The three-
hain intera
tion is attra
-
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Figure 3.7: RG phase diagram in the y-w plane. The arrows are to show the �ow of therenormalized parameter s
hemati
ally. (a) For b = 4. The solid red 
urve and the dashed
urve represent the separatri
es, where w �ows to two di�erent �xed points on either side of theseparatrix. The zoomed area near yc = 3 is shown in the inset. For w = 1, yE = 2.32402 is theE�mov DNA transition point. The �lled 
ir
les are the E�mov transition points for w = 0.5,and w = 0.2, w = 0, respe
tively, obtained from Fig. 3.8(a). (b) For b = 9. Along yc = 8,there are two real �xed points given by Eq. (3.28a). The solid (red) and dashed lines are theseparatri
es. The �lled 
ir
les are the E�mov transition points for w = 0.15 and w = 0.12,respe
tively, obtained from Fig. 3.8(b).tive when w > 1 and repulsive for 0 ≤ w < 1. For w = 0, representing the hard 
orethree-
hain repulsive intera
tion, three 
hains 
an never be on the same bond in thismodel.A. b = 4For b = 4 the RG phase diagram is shown in Fig. 3.7(a). The solid red line is theseparatrix 
onne
ting the pure three-
hain transition point (1, wc) to an E�mov transitionpoint for w = 0. Ea
h point on the solid line represents an E�mov transition point. Inother words keeping w �xed, by 
hanging y, we 
an see a melting of a loosely boundE�mov DNA with no pairwise binding. The region en
losed between this separatrix(solid red line) and the yc = 3 line is the E�mov region and (y, w) �ows to (1,∞). Belowthe solid red line is the high temperature zone of denatured DNA, where RG �ows are to
(1, 1). The region to the right of the yc = 3 line is the two-
hain bound state. The areabelow the dashed 
urve, where the RG �ow takes w to zero when two-
hain pairs arestrongly bound, represents a di�erent state where one �nds a three-
hain bound statebut with no three-
hain 
onta
t. The dashed line is then a 
rossover line. It remains tobe seen if under some 
onditions this 
rossover line be
omes a true phase transition line.
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yyFigure 3.8: The three-
hain average energy per monomer with y from dire
t 
omputation. (a)For b = 4, the average energy 
urves (marked 1, 2, and 3) with the �xed values w = 0.5,
w = 0.2, and w = 0 show �rst order transitions. (b) For b = 9, the average energy 
urves(marked 1 and 2) with the �xed values w = 0.15 and w = 0.12 show �rst-order transitions.Curves (marked 3, 4, and 5) with the 
onstant values w = 0.09, w = 0.065, and w = 0 show a
ontinuous transition at yc = 8.B. b = 9, yc = b− 1The RG phase diagram is shown in Fig. 3.7(b) for b = 9. In the diagram two separatri
es(the solid red line and the dashed line) meet at an unstable �xed point. The two �xedpoints w = ws and w = wE are shown in Fig. 3.7(b). The presen
e of any unstable�xed point re�e
ts a 
ontinuous transition along the two-
hain 
riti
al line. Hen
e we
an say that by tuning the three-
hain repulsive intera
tion parameter or temperaturein the repulsive zone a transition 
an be indu
ed in the E�mov DNA at the 
riti
althreshold of duplex binding. The transition is from the E�mov state to the 
riti
al stateof pairs dominated by the three-
hain repulsion. The E�mov region is now restri
ted bya separatrix 
onne
ting the two unstable �xed points (1, wc) and (yc, wE) and the 
riti
alline yc = b− 1.On the 
riti
al line at both the �xed points w = ws and w = wE, y is a relevantvariable (unstable in the y dire
tion). But y does not 
ouple to w in the RG equation[Eq. (3.2)℄. The melting for w < wE would be similar to the pure two-
hain meltingdes
ribed by Eqs. (3.4) and (3.5). In the y-w plane, (yc,wE) is a multi
riti
al pointwhere the line of �rst-order transitions goes over to a line of 
riti
al points.C. Data 
ollapseWe now provide numeri
al eviden
e for the above RG-based inferen
es. Exa
t numeri
al
al
ulations of the average energy and the spe
i�
 heat are done by iterating the partitionfun
tions and their higher derivatives for latti
es of various sizes for di�erent �xed valuesof w. Figure 3.8(a) for b = 4 shows that at w = 0.5, w = 0.2, and w = 0, there are�rst-order transitions. The transition points estimated from the point of dis
ontinuityare shown by the �lled 
ir
les in Fig. 3.7(a). They are on the separatrix and are the
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1/νFigure 3.9: For b = 4. (a) The three-
hain average energy per monomer versus the 
orrespond-ing Boltzmann fa
tor for 
hain length up to 226 when y = 1. The average energy shows a
ontinuous transition at w = wc. (b) The three-
hain spe
i�
 heat (Cn) per monomer with the
orresponding Boltzmann fa
tor. (
) Data 
ollapse of energy. (d) Data 
ollapse of spe
i�
 heat.E�mov transition points for the 
orresponding values of w.The energy 
urves in Fig. 3.8(b) for b = 9 with w = 0.15 and w = 0.12, show �rst-order transitions. These transition points are shown by the �lled 
ir
les in Fig. 3.7(b).In 
ontrast, the energy 
urves (marked 3, 4, and 5) show 
ontinuous transitions for
w = 0.09, w = 0.065, and w = 0, respe
tively at yc = 8. This is 
onsistent with the RGpredi
tion of Fig. 3.7(b).The energy and the spe
i�
 heat 
urves are shown in Figs. 3.9(a) and 3.9(b) for b = 9,
y = 1 and in Figs. 3.10(a) and 3.10(b) for b = 9, y = yc = b− 1. Also the 
orresponding�nite size s
aling is shown in Figs. 3.9(
) and 3.9(d) for b = 9, y = 1 and in Figs. 3.10(
)and 3.10(d) for b = 9, y = yc = b − 1. The �nite size s
aling behavior of di�erentthermodynami
 quantities is des
ribed by the length s
ale exponents. In analogy withEq. (3.4), the exponents to des
ribe the three-
hain transition for y = 1 and y = yc atappropriate 
riti
al points are given by

ν =
ln 2

ln 2(b2−1)
b2

, (3.29)
ν =

ln 2

ln

(

∂w′

∂w

∣

∣

yc=b−1
w→wE

) . (3.30)Around a 
riti
al point one should see a �nite size s
aling. Therefore the three-
hain
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Figure 3.10: For b = 9. (a) The three-
hain average energy per monomer versus the 
orrespond-ing Boltzmann fa
tor for 
hain length up to 226 when yc = b − 1. The average energy showsa 
ontinuous transition at w = wE . (b) The three-
hain spe
i�
 heat (Cn) per monomer withthe 
orresponding Boltzmann fa
tor. The length dependen
e is shown in the inset. (
) Data
ollapse of energy. (d) Data 
ollapse of spe
i�
 heat.
average energy and the spe
i�
 heat obeying the �nite size s
aling 
an be written in theforms

E ∼ L1/νf(L1/ν |w − w∗|), (3.31)
C ∼ L2/νf(L1/ν |w − w∗|), (3.32)with appropriate ν and w∗. In Figs. 3.9(
) and 3.9(d) we see that the average energyand the spe
i�
 heat s
ale as EnL

−1/ν
n and CnL

−2/ν
n , respe
tively, when plotted versus

|(w−w∗)|L1/ν
n with the ν of Eq. (3.29) and w∗ = wc for y = 1, all the data 
ollapse ontoa single 
urve for di�erent lengths of polymers, where n = 6, 7, ..., 26.Figures 3.10(
) and 3.10(d) show similar plots for the 
riti
al line (yc = b − 1) with

ν of Eq. (3.30) and w∗ = wE. Sin
e the spe
i�
 heat diverges with in
reasing length,data 
ollapse is good for the 
ase y = 1. The data 
ollapse for the 
ase yc = b − 1 isnot so good due to a smoother behavior of the spe
i�
 heat at the 
riti
al point. Theseestablish the weak 
riti
ality at w = wE.
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Figure 3.11: For b=9. Data 
ollapse of the average energy of the two-
hain system (set I) andthe three-
hain system (set II and III) with w = 0.07 and w = wE, respe
tively.D. Data 
ollapse(w ≤ wE)The �nite size s
aling of the two- and the three-
hain average energy are shown inFig. 3.11 for b = 9. The average energy obeying the �nite size s
aling is of the form,
E ∼ L1/νf(L1/ν |y − yc|), (3.33)with appropriate ν. The two- and the three-
hain average energy s
aled with EnL

−1/ν
nare plotted with |(y− yc)|L1/ν

n . All the data seem to give good data
ollapse as shown inFig. 3.11 by sets I, II and III for di�erent lengths of polymers, where n = 10, 11, ...., 16.The set I is the data
ollapse for the two-
hain system [32℄ with the exponent of Eq. (3.4)and the set II shows the data
ollapse for the three-
hain system for w = 0.07 < wEwith the same exponent like the two-
hain 
ase, given by Eq. (3.4). The set III showsthe data
ollapse for the three-
hain system for w = wE with the two-
hain length s
aleexponent of Eq. (3.4) with 1% error bar. Theses show that the three-
hain melting for
w ≤ wE is similar to the pure two-
hain melting. The di�eren
es between the two setsof 
ollapse are due to 
orre
tions from the w term. The two-
hain system does not havethe three-
hain intera
tion term. So for w ≤ wE, the transitions are 
ontrolled by thetwo-
hain length s
ale exponent.3.5 Con
lusionTo summarize, the RG relations and exa
t re
ursion relations are used to study the three-
hain system on a diamond hierar
hi
al latti
e. Our emphasis is on the E�mov-like stateexhibited by the three-
hain system at or beyond the two-
hain melting, where no two
hains are bound, and the nature of the transitions. Fra
tal-like stru
tures are obtainedfor the zeros of the partition fun
tions. These zeros, when they pin
h the real axis,



46 E�mov DNA and its transitionsdetermine the phase transition points. We �nd that all the transition points obtainedfrom RG �ows, are in good agreement with the zeros of the partition fun
tion on thereal axis. The E�mov transition point thus found strengthens the predi
tion of E�mov-like phenomena for the three-
hain system. We have shown that the E�mov e�e
t isexhibited by a three-
hain system even if there is a repulsive three-
hain intera
tion. Atransition 
an be indu
ed in higher dimensions from the E�mov state to the three-
hain
riti
al repulsive state at the melting of duplex DNA. The transition to this three-
hain
riti
al repulsive state is 
ontinuous and obeys a �nite size s
aling law with exponentsobtained from the RG. In the (y, w) phase diagram, (yc, wE) is a multi
riti
al point.Although the model studied in this paper is simplisti
, mainly to get exa
t results,still the denaturation transition indu
ed by bubble formation a

ompanied by diverginglength s
ales is the generi
 s
enario for more realisti
 polymeri
 models. The qualitativepi
ture is therefore expe
ted to be valid for those models too. We await experimentaleviden
e for the existen
e of the E�mov DNA or the E�mov transition. Again, theexisten
e of su
h a state remains a 
hallenge for mole
ular dynami
s and Monte Carlosimulations.



4E�mov e�e
t: Polymers on the Sierpinskigasket
In the previous two 
hapters three polymers on a hierar
hi
al latti
e of dimension d >
2 have been studied and the E�mov-DNA was predi
ted. In this 
hapter we showthat the E�mov e�e
t o

urs even in lower dimensions if some spe
i�
 intera
tions are
onsidered among the polymers. Here we study the melting of the three-stranded DNAon a Sierpinski Gasket and show that a transition 
an be indu
ed if extra weight fa
torsare given to the fork opening and 
losing. We study di�erent models in detail and obtaina new state, to be 
alled a mixed state.This 
hapter is organized as follows. In Se
. 4.1, we de�ne our model on a Sierpinskigasket. In Se
. 4.2 and Se
. 4.3 the polymers with the 
rossing and the non-
rossing
onditions are de�ned. The exa
t re
ursion relations of the partition fun
tions are writtenand the methods of 
al
ulation are dis
ussed. Three di�erent models for the three-
hain
ase are studied. A summary is given in a table in Se
. 4.5.4.1 Model

n=2n=1n=0Figure 4.1: Re
ursive 
onstru
tion of the Sierpinski Gasket. Polymer walk is not allowed in theshaded triangles.The Sierpinski gasket is a fra
tal latti
e obtained after an in�nite iteration from asingle equilateral triangular latti
e. This parti
ular latti
e is drawn in the two dimen-



48 E�mov e�e
t: Polymers on the Sierpinski gasketsional (d = 2) plane. Taking out the middle pie
e of a triangular shape yields threesmaller triangles. Thus the fra
tal latti
e is formed re
ursively after an in�nite numberof iteration. See Fig. 4.1. The dimension is 
al
ulated for an in�nite latti
e, and it is
d =

lnNn→∞
lnLn→∞

=
ln 3

ln 2
≈ 1.58, (4.1)where Nn is the the number of the surviving triangles and Ln is the length of unit stepor the number of bonds of the latti
e from bottom to top along the any one side of thelatti
e at the nth generation.

Figure 4.2: Two 
hains along the non horizontal bonds. Two possible walks are shown (bn and
gn type from Fig. 4.3).On the Sierpinski Gasket, polymers are restri
ted to o

upy only the non-horizontalbonds as shown in Fig. 4.2. Following weights are assigned to the polymers:
• Fuga
ity z for ea
h bond,
• Boltzmann fa
tor yij = eβǫij , when a single bond is shared by the two polymers and
yijk = eβǫijk when a single bond is shared by the three polymers.
• σij for the two-
hain and σijk for the three-
hain bubble opening or 
losure.The weight of a walk of a single 
hain of length N is zN , where N is the number ofbonds. The tradition is to 
onsider z as an extra variable, but we will set it to 1, as isdis
ussed below. Here σ = 1 implies no weight is given for bubble opening or 
losure,and σ = 0 implies no bubble formation, i. e., a model without any bubble.To study the melting of DNA on a fra
tal latti
e, we need to de�ne the partitionfun
tions for the two- and the three-
hain systems as shown in Fig. 4.3. We 
hoose
z = 1 to be in the 
anoni
al ensemble. The standard way to study the polymers on afra
tal latti
e is to �nd out the �xed point of z by an RG pro
edure as proposed by D.Dhar [44℄. This 
orresponds to the Grand 
anoni
al ensemble, where the �xed point of
z gives the free energy. We know that the 
hoi
e of ensemble does not matter, as longas we work with the large length of the polymer. In our approa
h we 
al
ulate the freeenergies, look for the most favorable one and obtain the phase diagram dire
tly from the



4.1 Model 49free energies. Sin
e all the polymers are of same length (→ ∞) and traverse the wholelatti
e, we may set z = 1.Di�erent possible polymer 
on�gurations are shown in Fig. 4.3. The partition fun
-tions an, bn, cn, dn, en, fn, gn, hn, in are de�ned at the nth generation and the re
ursionrelations are written for su

essive generations. If the nth partition fun
tion is known,the (n + 1)th generation partition fun
tion 
an be derived from the re
ursion relations.Based on the idea of the various phases, the total partition fun
tions for the two- andthe three-
hain system in the �xed length ensemble are written as
Ztot = b2n+1 + dn+1, (4.2)
Qtot = fn+1 + b3n+1 + ncdn+1bn+1, (4.3)in terms of the subpartition fun
tions bn+1, dn+1 and fn+1. Here nc is the number of

n n

n n n

n n n

na b c

d e f

g h iFigure 4.3: Generating fun
tions for two and three strands.
on�guration of dn+1bn+1 state. It is 3 when 
hains 
an 
ross ea
h other and 2 when they
an not. Two 
hain bubble is given by b2n+1, dn+1 is the two-
hain bound state. Similarlyfor the three-
hain system, three-
hain bubble is given by b3n+1, fn+1 is the three-
hainbound state. The last term in Eq. (4.3) des
ribes the mixed state a state when one isfree with the other two forming a duplex. If the free 
hain has no entropy, the statewould be de�ned by d3/2
n+1, but as we argue below this is an unphysi
al state.



50 E�mov e�e
t: Polymers on the Sierpinski gasket4.2 Two strands DNA4.2.1 With 
rossing
bound

yc

unbound

 1.3
 0

 1  1.2 1.1
y

Two chain: crossing

 0.8

 0.4σ

Figure 4.4: Two-
hain phase diagram for σ vs y. Polymers 
an 
ross ea
h other. The two-
hainmelting is at yc(0) = 1.264 for σ = 0.We 
onsider the two-
hain system. The walks 
an 
ross ea
h other. Here y is theweight at the bond for sharing the same bond by the two polymers. The two-
hainbubble opening or 
losure is asso
iated with the weight σ at the vertex. The partitionfun
tions for the two-strand problem for the (n+ 1)th generation are given by,
an+1 = a2

n, (4.4a)
bn+1 = b2n + a2

nbn, (4.4b)
cn+1 = c2n, (4.4
)
dn+1 = d2

n + 2g2
nbn + c2ndn, (4.4d)

gn+1 = angn(bn + cn). (4.4e)The initial 
onditions are taken as
a0 = 1, b0 = 1, c0 = y, d0 = y2, g0 = yσ. (4.5)We look at the divergen
e or 
onvergen
e of the ratio

r1 =
dn+1

b2n+1

(4.6)for given σ and y. By this ratio r1, the two-
hain bound state free energy is 
omparedwith the free energy when the two strands are in the denatured state. By looking atthe 
onvergen
e and the divergen
e of r1 we obtain the phase diagram in the y-σ plane



4.3 Three strands 51as shown in Fig. 4.4. The transition is from the unbound to the bound state of thetwo-stranded DNA at y = yc(σ). The nature of the transition line near σ = 0 has beenstudied in small intervals of σ, but many points are omitted from the graph. For σ = 0,the two-
hain melting is at yc(0) = 1.264. The melting transition is �rst order where thetwo-
hain average energy per bond shows a dis
ontinuity. The issue of dis
ontinuity isdis
ussed in Se
. 4.4.4.2.2 No 
rossing
unbound

bound

yc
 0

 0.4

 1.2

 1.1  1.2  1.3 1
y

σ

Two chain: noncrossing

Figure 4.5: Two-
hain phase diagram for σ vs y. Non-
rossing walk. The two-
hain melting isat yc(0) = 1.264 for σ = 0.If the 
rossing between the two strands DNA is not allowed, the re
ursion relationsare same as the 
rossing 
ase ex
ept for dn, whi
h in this 
ase is
dn+1 = d2

n + g2
nbn + c2ndn. (4.7)The initial 
onditions are still given by Eq. (4.5). A similar 
omparison method [Eq. (4.6)℄is used here as in the two-
hain 
rossing 
ase. We obtain the phase diagram in the y-σplane as shown in Fig. 4.5. For σ = 0 the two-
hain melting is at yc(0) = 1.264, whi
his the same as in the 
rossing 
ase. There is a di�eren
e between the 
rossing and thenon-
rossing melting 
urve for σ 6= 0.4.3 Three strandsWhen we 
onsider the three-
hain system, several 
ases are possible. With 
rossing andnon-
rossing 
onditions and intera
ting and non-intera
ting pairs we 
lassify di�erentmodels. There are many possible varieties but we will dis
uss only three of them, TS1,TS2 and TS3. With di�erent 
onsiderations of intera
tions the models are the following:



52 E�mov e�e
t: Polymers on the Sierpinski gasket1. Model TS1: This is the non-
rossing 
ase and favours two-
hain bubble openingor 
losure. No 
onta
t energy between 
hains 1 and 3.2. Model TS2: This is the 
rossing 
ase with the three-
hain repulsion and favourstwo-
hain bubble opening or 
losure.3. Model TS3: This is the 
rossing 
ase with the three-
hain repulsion and weight forthe two- and the three-
hain bubble opening or 
losure.
4.3.1 Model TS1: Non-
rossingIn this 
ase walks 
an not 
ross ea
h other. We assign a weight Boltzmann fa
tor yfor ea
h intera
tion between 
hains 1 and 2, and 2 and 3 i. e., y12 = y23 = y, but nointera
tion between 
hains 1 and 3, i. e., y31 = 1. The weight σ is assigned for ea
hbubble opening between all pairs, i. e., σ12 = σ23 = σ31 = σ. When all 
hains aretogether we 
onsider a weight y2 and su
h a situation 
an also be des
ribed if we take
y12 = y23 = y31 = y and yijk = 1/y. If y > 1, yijk is repulsive in nature.The re
ursion relations for the partition fun
tions for this model are given by

an+1 = a2
n, (4.8a)

bn+1 = b2n + a2
nbn, (4.8b)

cn+1 = c2n, (4.8
)
dn+1 = d2

n + g2
nbn + c2ndn, (4.8d)

en+1 = e2n, (4.8e)
fn+1 = f 2

n + e2nfn + h2
ndn + i2nbn, (4.8f)

gn+1 = angn(bn + cn), (4.8g)
hn+1 = hn(anen + bncn), (4.8h)
in+1 = in(cnen + dnan) + g2

nhn, (4.8i)and the initial 
onditions are
a0 = 1, b0 = 1, c0 = y, d0 = y2, e0 = y2, f0 = y4, g0 = yσ, h0 = y2σ2, i0 = y3σ2. (4.9)



4.3 Three strands 53We look at the divergen
e or 
onvergen
e of the ratios
r2 =

fn+1

b3n+1

, (4.10)
r3 =

fn+1

bn+1dn+1
, (4.11)

r4 =
fn+1

d
3/2
n+1

(4.12)for given σ and y. The idea behind 
hoosing the above three ratios is to 
ompare the

3 12 1 2 3

(a) (b)

Figure 4.6: S
hemati
 diagram of a mixed phase of three polymers of two possible 
on�gurations.At ea
h monomer position, two are bound but the third monomer is free along the length ofthe 
hains. (a) Polymer 
hains 
an 
ross ea
h other. (b) Polymer 
hains 
an not 
ross ea
hother and no intera
tion between 
hains 1 and 3.three-
hain free energy with the free energy when three 
hains are free [r2 in Eq. (4.10)℄,when one 
hain remains free while the other two forming a duplex [r3 in Eq. (4.11)℄and when all are paired but no three-
hain 
onta
t [r4 in Eq. (4.12)℄. By looking at thedivergen
e or 
onvergen
e of the ratios r2, r3, and r4 for di�erent y, σ and 
omparingthese values with the two-
hain melting 
urve, di�erent phases are obtained. We make a
omparison between r3 and r4. If we have a phase where the strands are pairwise boundbut no three-
hain 
onta
t, we 
an have two possibilities. This mixed phase 
ould bedes
ribed either by the free energy ln d
3/2
n+1 or by the free energy ln bn+1dn+1. If thereare pair intera
tions among all 
hains and walks 
an 
ross ea
h other then for ea
h pairwe get dn+1. If the free 
hain has limited 
on�gurations, we 
an write the free energy
ontribution as ln (d3

n+1)
1/2 = ln d

3/2
n+1 leaving aside other fa
tors. Evenif 1 and 3 donot intera
t and walks do not 
ross ea
h other, the possible phase has the free energy
ontribution ln(d2

n+1)
3/4 = ln d

3/2
n+1. The other possibility is to have a situation wherethe strands are pairwise bound but no three-
hain 
onta
t but the free 
hain has fullentropy, then the free energy is ln bn+1dn+1. Fig. 4.6(a), 4.6(b) are the 
on�gurations ofthe mixed phase for the 
rossing and the non
rossing 
ases.
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Figure 4.7: Three-
hain phase diagram in the y-σ plane for the model TS1. The bound,unbound, the E�mov and the mixed states are shown. The red 
urve is the two-
hain melting
urve and is valid for the three-
hain 
ase in the region y > 1.07526 but not in the region
y < 1.07526. The E�mov and the mixed both states appear in this 
ase for appropriate σ and
y. Fig. 4.7 shows the phase diagram if d3/2

n+1 des
ribes the mixed phase while Fig. 4.8would be phase diagram if the mixed phase is des
ribed by ln bn+1dn+1. In both 
ases, weobtain two di�erent phases, an E�mov phase and a mixed phase. However the E�movphase is not a distin
t phase. It is just an e�e
t on three 
hains, where no two are boundbut three are bound. On the other hand, in a mixed phase, the strands are pair-wisebound but no three-
hain 
onta
t. In Fig. 4.7, within the range y = 1 to y < 1.07526 for
σ > 1.14458 the E�mov region is obtained and the region is en
losed between the linefor r2 and the two-
hain melting 
urve. The mixed phase is en
losed between the line
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Figure 4.8: Three-
hain phase diagram in the y-σ plane for the model TS1. This is the 
orre
tphase diagram. The bound, unbound, the E�mov and the mixed states are shown. The red 
urveis the two-
hain melting 
urve and is valid for the three-
hain 
ase in the region y > 1.07526but not in the region y < 1.07526. The E�mov and the mixed both states appear in this 
asefor appropriate σ and y.



4.3 Three strands 55for r4 and the two-
hain melting 
urve for y > 1.07526 and σ < 1.14458. Based on thephysi
al intuition we believe, Fig. 4.8 is the 
orre
t phase diagram.4.3.2 Model TS2: With 
rossingWe now extend the study to a slightly di�erent model with the following 
hara
teristi
s:
• Walks 
an 
ross ea
h other.
• y12 = y23 = y31 = y, y123 = 1

y
.

• σ12 = σ23 = σ31 = σ, σ123 = 1.In this model all 
hains are having equal pair intera
tion. There is a three-
hain repulsiveintera
tion. A weight is given for the two-
hain bubble opening or 
losure. The re
ursionrelations for the (n + 1)th generation partition fun
tions are given by
an+1 = a2

n, (4.13a)
bn+1 = b2n + a2

nbn, (4.13b)
cn+1 = c2n, (4.13
)
dn+1 = d2

n + 2g2
nbn + c2ndn, (4.13d)

en+1 = e2n (4.13e)
fn+1 = f 2

n + e2nfn + 3h2
ndn + 3i2nbn, (4.13f)

gn+1 = angn(bn + cn), (4.13g)
hn+1 = hn(anen + bncn), (4.13h)
in+1 = in(cnen + dnan) + 2g2

nhn, (4.13i)with the initial 
onditions
a0 = 1, b0 = 1, c0 = y, d0 = y2, e0 = y2, f0 = y4, g0 = yσ, h0 = y2σ2, i0 = y3σ2.(4.14)Following the same pro
edure of 
omparison of free energies, the phase diagram isobtained in the y-σ plane, as shown in Figs. 4.9, and 4.10. Here also we believe Fig. 4.10is the 
orre
t phase diagram.With the given initial 
onditions this model exhibits the mixed phase. One sees twotransitions: At low temperature we have a three-
hain bound state that goes into themixed state (blue line in Fig. 4.10) and the mixed state melts into free 
hains (red linein Fig. 4.10).
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hain phase diagram in the y-σ plane for model TS2. The unbound, thebound and the mixed phases are shown. The red 
urve is the two-
hain melting 
urve whi
hpresents in the three-
hain 
ase also. There is no E�mov DNA here.
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 1.264Figure 4.10: Three-
hain phase diagram in the y-σ plane for model TS2. This is the 
orre
tphase diagram. The unbound, the bound and the mixed phases are shown. The red 
urve isthe two-
hain melting 
urve whi
h presents in the three-
hain 
ase also. There is no E�movDNA here.



4.4 Energy diagram 574.3.3 Model TS3: With 
rossingWe 
onsider a di�erent generalization that favours three-
hain bubbles
• Walks 
an 
ross ea
h other.
• y12 = y23 = y31 = y, y123 = 1

y
.

• σ12 = σ23 = σ31 = σ, σ123 = 1
σ
.Here σ < 1. Therefore σ123 > 1. Two-
hain bubbles are suppresses by σ but σ123 favoursthree-
hain bubbles. Here three 
hains have repulsive intera
tion. A weight is given for
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Figure 4.11: Three-
hain phase diagram in the y-σ plane for model TS3. The unbound, thebound and the E�mov states are shown. The red 
urve is the two-
hain melting 
urve, whi
his not present in the three-
hain 
ase.the two and the three 
hains bubble opening or 
losure. However the re
ursion relationsare same as for TS2 given by Eqs. (4.13a)-(4.13i). The initial 
onditions are
a0 = 1, b0 = 1, c0 = y, d0 = y2, e0 = y2, f0 = y4, g0 = yσ, h0 = y2σ, i0 = y3σ. (4.15)The three-
hain intera
tion is repulsive in this 
ase. Following the same pro
edure of
omparison of free energies, the E�mov state is obtained and is shown in Fig. 4.11.4.4 Energy diagramThe exa
t numeri
al 
al
ulations of the total average energy are done by taking thederivatives of the total partition fun
tion. The total average energy of the two-
hainsystem (Etot) and the three-
hain system (Etot) [using Eq. (4.2) and Eq. (4.3)℄ are given
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t: Polymers on the Sierpinski gasketby [see Eq. (2.15)℄
Etot =

dnEdn

Ztot
, (4.16)

Etot =
fnEfn + ncbndnEdn

Qtot
. (4.17)The three-
hain average energy per bond is shown for model TS1 in Fig. 4.12. For
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Figure 4.12: Model TS1. Plot of the average energy per bond with y. Dotted lines are toshow the dis
ontinuity in the energy 
urves. (a)For σ = 1.25. The three-
hain average energy(marked as 1) is 
ompared to the two-
hain average energy (marked as 2). (b) For σ = 0.5. Thethree-
hain average energy (marked as 1) is 
ompared to two-
hain average energy (marked as2). For both 
ases the three- and the two-
hain average energy approa
hes the magnitude 2and 1 with y respe
tively.non
rossing TS1 model nc = 2. Fig. 4.12(a) is for σ = 1.25. The three-
hain averageenergy (marked as 1) is 
ompared to the two-
hain average energy (marked as 2). Thisshows the nonzero three-
hain average energy, eventhough the duplex average energy iszero. This is the E�mov-DNA, observed in Chap. 2 for d > 2. Thus we 
on
lude that,for appropriate values of y and σ, the E�mov e�e
t is indu
ed for d < 2.Fig. 4.12(b) is for σ = 0.5. The three-
hain average energy (marked as 1) is 
om-pared to the two-
hain average energy (marked as 2). The transition from the unboundto the mixed state is at the same temperature as the two-
hain 
ase, i. e., at yc(σ).The transition from the mixed state to the bound state o

urs for y > yc(σ) (lowertemperature).The average energy 
urve in Fig. 4.12(a) marked as 1 shows only one jump, whereas in Fig. 4.12(b) the average energy 
urve marked as 1 shows two jumps. In the later
ase the two transitions are from the unbound to the mixed state and from the mixedto the two-
hain bound state. So it is predi
ted that the E�mov state is a 
rossover, nota separate phase. The transition from the unbound to the two-
hain bound sate is �rst



4.5 Remarks 59order. So is the transition from the mixed state (denoted by bd) to a three-
hain boundstate (des
ribed by f).4.5 RemarksAll the models and results are given below for easy referen
e. Model TS2 shows theModel: TS1 Model: TS2 Model: TS3Non-
rossing Crossing Crossing
y12 = y23 = y, σij = σ yij = y, σij = σ yij = y, σij = σ
y31 = 1, σ123 = 1 y123 = 1/y, σ123 = 1 y123 = 1/y, σ123 = 1/σE�mov, Mixed Mixed E�movTable 4.1: The results obtained from the three-
hain models with the initial 
onditions areshown. The new phases obtained are also �ashed in this table.mixed state, model TS3 shows an E�mov like state. But for model TS1 we get both ofthe states though in di�erent regimes of σ and y. If we 
ompare models TS2 and TS3where three-
hain intera
tion is repulsive in nature (y123 > 1), there is a bias in TS3 forthree 
hain bubble opening or 
losure. This biasing seems to favor the E�mov e�e
t inTS3. For σ = 0 the models are like the Y-fork model, whi
h show a �rst order transition.All the models 
ome out to be same for σ = 0 and yc(0) = 1.264... denotes the meltingfor the two- and the three-
hain systems.4.6 Con
lusionIn this 
hapter we have shown that, when an extra weight σ in the favour of the two- andthe three-
hain bubble opening and 
losure is introdu
ed, the phase transition o

urseven in d < 2. Here we have obtained the E�mov-DNA, a loosely three-
hain boundstate where no two are bound. This observation is same as dis
ussed in the previous two
hapters (Chap. 2 and Chap. 3). In addition we have obtained a new state, to be 
alleda mixed state, where lo
ally any two are bound keeping the third-strand always free butin a global view no one is 
ompletely free.The limiting model for σ = 0 is the Y-fork type whi
h shows a �rst order transitionwithout any bubbles. No E�mov or mixed state are possible in this 
ase. In fa
t thetransitions for σ > 0 in these models are also �rst order and we have observed theintermediate phase (mixed phase) for y > yc(σ) and the E�mov state for y < yc(σ). Theintermediate phase evolves as a separate phase but the E�mov state is a 
rossover.





5Dynami
 phase transition in the 
onversionof B-DNA to Z-DNA
In this 
hapter we study the 
onformational 
onversion of B-DNA to Z-DNA using wave-front propagation and obtain the dynami
 phase diagram. The dynami
 phase diagramis obtained for the stability of the front separating B and Z. The instability in this frontresults in two split fronts moving with di�erent velo
ities. This shows that, depending onthe system parameters a denatured state also may develop dynami
ally eventhough it isthermodynami
ally forbidden. This resolves the 
urrent 
ontroversies on the transitionme
hanism of the B-DNA to Z-DNA.This 
hapter is organized as follows. The 
onformational transition of B-DNA toZ-DNA is studied using wave-front propagation. We dis
uss the wave front propagationin Se
. 5.1 with a suitable example. Our proposed thermodynami
 model is introdu
edin Se
. 5.2. The dynami
 phase diagram is dis
ussed by numeri
al and perturbativeapproa
h in Se
. 5.3. Con
lusions are drawn on the B-Z transition me
hanism in Se
. 5.4.The two main 
ompeting hypotheses for the B to Z transition me
hanism are onthe foyer to motivate us to study the B-Z transition me
hanisms with a thermodynami
model. With the purpose of investigating the transition pro
edure, we 
onsider a 
oarse-grained thermodynami
 model and restri
t the geometry to one-dimension only. Wemaintain the boundaries of the long 
hain in the two states so that the new stru
turedevelops from one side. In su
h a problem, the dynami
s of the transition produ
es asteady state with uniformly moving front or fronts. An investigation of various types offronts would 
larify the dynami
 generation of any thermodynami
ally forbidden state.With that ambition we study the transition from the B-DNA to the Z-DNA by usingthe theory of wave-front propagation. In the next se
tion we review the wave frontpropagation method with an example of two 
oexisting states.



62 Dynami
 phase transition in the 
onversion of B-DNA to Z-DNA5.1 Wave front propagationIn this se
tion the wave front propagation is dis
ussed very brie�y. Front propagationphenomena arises from the rea
tion di�usion equation [99, 100℄. An interfa
e developsbetween two distin
t phases (one is stable and another is unstable). A driving for
etends to favor the stable state among the di�erent distin
t phases. As a result theinterfa
e starts moving. The moving interfa
e is a
tually 
hara
terized as the travelingwave front when one phase invades the other. Front propagation is widely used in thestudy of many biologi
al events su
h as epidemi
 dynami
s, population dynami
s, pulsepropagation in nerves or other growth dynami
s. To study the heli
ase a
tivity on DNA,a simple 
oarse grain model was proposed by Bhatta
harjee [101℄. By the study of wavefront propagation he proposed that the Y-fork is an interfa
e whose propagation is thebasi
 step for the repli
ation pro
edure and repli
ation me
hanism. We also en
ounterpropagating front in spreading of �ames, 
hemi
al rea
tions and in any dynami
 system.If the dynami
s is governed by a nonlinear di�usion equation the quantity of interestwould be to measure the rate of 
onvergen
e of velo
ity or relaxation of velo
ity and howthe interfa
e of a wavefront propagates into an unstable state. For a wide range of initial
onditions the velo
ity of su
h a front approa
hes a marginal value. In asymptoti
 limitthe velo
ity of the traveling wave is uniform and the shape of the wave front remainsun
hanged.Let us 
onsider the Landau free energy su
h that, its minimization des
ribes twohomogeneous states given by φ = 0 and φ = 1. The order parameter φ(z, t) is thedi�usive �eld in one dimension with z (spa
e) and t (time), two independent variables.The equation governing the propagation is of the form
∂φ

∂t
= D

∂2φ

∂z2
+ f(φ), (5.1)where D is the di�usion 
oe�
ient and f(φ) is the thermodynami
 for
e, derived fromthe Ginzburg-Landau free energy

H(φ) =

∫

dz

[

D

2

(

∂φ

∂z

)2

+ F (φ)

]

, (5.2)where F (φ) = −
∫

f(φ)dφ is the Landau free energy, and φ(−∞, t) = 1, φ(∞, t) = 0 asthe boundary 
onditions. The traveling wave solution satisfying Eq. (5.1) is given by
φ(z, t) = U(τ), where τ = z − vt. (5.3)In Eq. (5.1), f(φ) a
ts as a �for
e� on the interfa
e, as a result of whi
h the indu
ed
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e between the two states su�ers an instability. The traveling front moves withvelo
ity v, whi
h is to be determined.In 
ontrast to the non-linear di�usion equation the simple di�usion equation doesnot lead to any velo
ity and 
an be veri�ed very easily. If we substitute Eq. (5.3) inEq. (5.1) with f(φ) = 0, the solution 
omes out to be
U(τ) = A+B exp

−v
D

τ ,where A,B are the integration 
onstants. Sin
e U has to be bounded for all z, B mustbe zero as the exponential be
omes unbound for τ → −∞. Therefore U(τ) = A, a
onstant 
an not be a wave solution. Hen
e simple di�usion 
an not have traveling wavesolution. Dimensional analysis is a simpler way to justify the above argument. Thevelo
ity, determined by the dimensional analysis is [v] = [z]
[t]

∼
√

D
t−ti

. This shows thatat any t = ti, v is in�nity. Therefore the di�usion equation does not have a well de�nedvelo
ity.
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−1
 3 2Figure 5.1: The Landau fun
tion F (φ) as a fun
tion φ. φ = 1 is the stable state and φ = 0represents the unstable state.Due to the time dependen
y, the di�usion equation 
an not be redu
ed to a thermody-nami
 problem. But the nonequilibrium pro
ess is driven by the underlying equilibriumLandau fun
tion. If the for
e term involves the stable phase at φ = 1 and the unstablephase at φ = 0, then

f(φ) = kφ(1 − φ), (5.4)where k is a 
onstant and the Landau free energy is
F (φ) = −k(1

2
φ2 − 1

3
φ3). (5.5)The nonlinear di�usion equation

∂φ

∂t
= kφ(1 − φ) +D

∂2φ

∂z2
, (5.6)



64 Dynami
 phase transition in the 
onversion of B-DNA to Z-DNAwith the boundary 
onditions
φ(−∞, t) = 1, φ(∞, t) = 0, for all t, (5.7)is known as the Fisher-Kolmogorov (F-K) equation [99℄. Here k > 0 and D > 0. Thepositivity of D ensures the stability of the system. The nontrivial dynami
s emergesfrom the 
ompetition between the di�usivity and the non-linearity of the for
e term. Asa result, the stable state invades the unstable one.Res
aling the F-K equation by t̃ = kt and z̃ = z

√

k
D
we get

∂φ

∂t̃
= φ(1 − φ) +

∂2φ

∂z̃2
. (5.8)For notational simpli
ity we avoid the tilde sign. Therefore Eq. (5.8) be
omes

∂φ

∂t
= φ(1 − φ) +

∂2φ

∂z2
. (5.9)In the spatially homogeneous situation the steady states are φ = 1 and φ = 0 whi
h arerespe
tively homogeneous stable and unstable states. We restri
t ourselves in the region

0 ≤ φ ≤ 1. Note that Eq. (5.9) is invariant under re�e
tion of x. With the uniformlytranslating front solution,
φ(z, t) = U(τ), where τ = z − vt, (5.10)Eq. (5.9) is written as

U ′′ + vU ′ + U(1 − U) = 0, (5.11)where the prime denotes the derivative of U with respe
t to τ . The boundary 
onditions
U(τ → −∞) = 1, U(τ → ∞) = 0 (5.12)denote the stable and the unstable states respe
tively. To study Eq. (5.11) we split these
ond order di�erential equation into two �rst order di�erential equations in the (U, P )plane, 
alled the phase plane as follows
dU

dτ
= g(U, P ) = P, (5.13)

dP

dτ
= h(U, P ) = −vP − U(1 − U). (5.14)In the phase spa
e approa
h it is easy to handle higher order di�erential equations bymapping into �rst order di�erential equations and with the �xed points one 
an know



5.1 Wave front propagation 65the bulk behavior by extrapolating the behavior around the �xed points in the spa
e. Byequating Eqs. (5.13) and (5.14) to zero, one would get the �xed points ((Us, Ps)) whi
hare (0, 0) and (1, 0). Here s runs over 1, 2. The points in the phase plane 
orrespondto the stable and the unstable states respe
tively. Sin
e these �xed points 
ontrol thewhole dynami
s, the aim would be to 
on
entrate on the region around these points.The ratio of the above two di�erential equations,
dP

dU
=

−vP − U(1 − U)

P
, (5.15)justi�es 
alling �xed points as singular points. Eq. (5.15) possesses a unique solutionover the phase spa
e ex
ept at the �xed points, i.e., only one traje
tory will pass throughany point on the phase spa
e. Here the region of interest 
an be studied by the linearizedfun
tion g(U, P ) and h(U, P ) 
onsidering (U−Us) and (P−Ps) to be small. The stabilityoperator is obtained from Eqs. (5.13) and (5.14), by the Taylor expansion of g(U, P ) and

h(U, P ) about the �xed points and by keeping the leading order terms. The velo
ity ofthe front is determined by the eigenvalue equation of the stability operator. Eqs. (5.13)and (5.14) des
ribe the �ow in the phase plane (U,U ′) 
orresponding to the stable �xedpoint (0, 0) and unstable �xed point (1, 0). Here τ plays the role of time. The uniformlytranslating front solutions of Eqs. (5.13) and (5.14) 
orresponding to the traje
toriesbetween the two �xed points are given by
(

U ′ − Us
′

U − Us

)

= c1aje
λ−τ + c2bje

λ+τ , (5.16)where c1 and c2 are arbitrary 
onstants, aj and bj(for j = 1, 2) are the eigen ve
tors ofthe stability matrix 
orresponding to the eigenvalues λj . The eigenvalues for the �xedpoints (0, 0) and (1, 0) respe
tively are given by,
λ± =

1

2
[−v ±

√
v2 − 4] =⇒

{

stable node for v2 > 4

stable spiral for v2 < 4
(5.17)and

λ± =
1

2
[−v ±

√
v2 + 4] =⇒ saddlepoint. (5.18)Eq. (5.17) puts a bound on the velo
ity. The 
riti
al velo
ity obtained is v∗ = 2. Withvelo
ity v ≥ v∗ we get the stable node whereas for v < v∗, U shows an os
illatorybehavior, 
orresponding to the stable spiral node. But as per the boundary 
onditions,

v < v∗ is forbidden. The threshold velo
ity v∗ is 
alled the marginal velo
ity. The linearstability analysis around the unstable �xed point gives the stable node for (0, 0) andsaddle point for (1, 0). The traje
tory 
onne
ting these two �xed points is shown in
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0
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λ +U = U

λ −U = U (b) 0
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Figure 5.2: (a) Two �xed points (0, 0) and (1, 0) in the phase spa
e are 
onne
ted by a separatrix.Arrows represent the dire
tion of �ows. Ea
h line represents a traje
tory in the phase spa
e.Red lines are the two eigen ve
tors with eigenvalues λ−, λ+. (b) This is the pro�le of thefront moving along the positive τ dire
tion. In (a), as one starts from (1, 0), where U = 1,moves along the traje
tory with U ′ < 0 everywhere, and rea
hes (0, 0), where U = 0, one getsthe separatrix 
onne
ting the two �xed points. The front pro�le follows from this parti
ulartraje
tory.Fig. 5.2(a). The front pro�le is obtained from the separatrix, 
onne
ting the two �xedpoints, when U(τ) is plotted with τ . The wave solution shown in Fig. 5.2(b) moves alongthe positive z dire
tion with uniform velo
ity v∗ = 2.Therefore we see that the interfa
e between the two homogeneous states propagatesfrom an unstable state to a stable state with a well de�ned velo
ity. A linear stabilityanalysis about the unstable position determines the linear marginal stability. In theasymptoti
 limit the front approa
hes the 
riti
al velo
ity v∗ whi
h shows that the fronthas the uniformly traveling wave solution. We exploit this methodology to study thedynami
s of the B-Z interfa
e.
5.2 ModelOur model 
onsists of three states B, the denatured state, and Z, to be represented bythe parameter φ = −1, 0, 1, respe
tively. The spa
e and time 
oordinates z and t aretaken to be 
ontinuous. It is a one dimensional problem where φ(z, t) des
ribes the stateof the 
oarse-grained base-pair at index z along the DNA. For the B-Z transition, wetake φ = −1 (B state) to be unstable (or metastable) whi
h is getting invaded by thestable state at φ = 1 (Z state). We study this phenomenon through a Landau free energy
F (φ) taken as a sixth order polynomial with the 
oe�
ients 
hosen to have extrema at



5.2 Model 67
(a)
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−0.1

−1 −0.5  0  0.5  1
−0.2  0  1−1Figure 5.3: (a) The Landau fun
tion F (φ) as a fun
tion of φ. In all 
ases, φ = 1 is the stablestate, Z-DNA, φ = −1 represents an unstable (dashed line) or metastable (solid and dotted lines)state, B-DNA while φ = 0 is a quadrati
ally unstable (solid and dashed lines) or metastable(dotted line) state, denatured state. The three 
ases I, II and III in the text 
orrespond todotted, solid and dashed lines. (b) Potential V (U) = −F (U) for the parti
le-on-a-hill analogy.

φ = 0,±1. This is ensured by 
hoosing the thermodynami
 for
e f(φ) as
f(φ) = −dF (φ)

dφ
= φ(φ+ α)(φ− β)(1 − φ)(1 + φ), (5.19)where α, β > 0 are 
onstants, whose values are system spe
i�
. Needless to say, therelative stability of the three phases 
an be adjusted by α, β. The Landau Ginzburg freeenergy is taken as

H(φ) =

∫

dz

[

D

2

(

∂φ

∂z

)2

+ F (φ)

]

, (5.20)where D > 0 is the elasti
 
onstant. D-term allows inhomogeneity, e.g., at the interfa
ebetween two phases. The three homogeneous phases are given by the minima of theLandau free energy F (φ). The dynami
s is governed by the non linear di�usion equation
∂φ

∂t
= −∂H

∂φ
= D

∂2φ

∂z2
+ f(φ), (5.21)derived from Eq. (5.20) in the overdamped limit. The geometry to be 
onsidered is su
hthat the B state is on one side and the Z state on the other with the front moving towardsthe unstable state. For the B-Z 
ase, this is ensured by the boundary 
onditions

φ(z → −∞, t) = 1, φ(z → ∞, t) = −1
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 phase transition in the 
onversion of B-DNA to Z-DNAfor Eq. (5.21) for all time. A few other boundary 
onditions are 
onsidered too. Thethree generi
 
ases obtained by �xing α and β are the following (see Fig. 5.3(a))
• Case I : while quen
hing to the stable state, Z, state B remains in a metastablestate while the denatured state φ = 0 is also metastable. Sin
e the barriers aresomewhere in between φ = −1 and φ = 1, we have 0 ≤ α, β < 1.
• Case II : the metastable state (B-DNA) sees a barrier somewhere inbetween −1to 0, while the denatured state is quadrati
ally unstable state. This 
ase is for

0 < α < 1, and β = 0.
• Case III : unstable B state quen
hed into stable Z while the denatured state remainsin a quadrati
ally unstable state (i.e., without fa
ing any barrier). This happenswhen α > 1 and β = 0.To be noted that 
ases I and II are similar to the free energy lands
ape obtained inRef. [102℄ as the potential of the mean for
e obtained from mole
ular dynami
s.The di�usive term in Eq. (5.21) 
oming from the elasti
 part of Eq. (5.20) tendsto smoothen out any inhomogeneity while the driving for
e f(φ) tends to favour thestable state whenever there is any inhomogeneity. The 
ombined e�e
t of the di�usionlike spreading and the sele
tion of one phase by the drive leads to a steady state wherethe interfa
e shows a uniform motion and takes a shape whi
h is not ne
essarily theequilibrium shape [99℄. Based on the Fisher-Kolmogorov (F-K) idea, the traveling wavesolution φ(z, t) = U(z − vt) 
an be used to rewrite Eq. (5.21) as

d2U

dτ 2
+ v

dU

dτ
+ f(U) = 0, (τ = z − vt), (5.22)where v the velo
ity of the front is to be determined. The interfa
e whi
h we are studyingis between φ = +1 and φ = −1 states. Eq. (5.22) 
an be interpreted as the motion of aparti
le moving in a potential V = −F (U) (Fig. 5.3(b)) starting at the hill at U = +1 attime τ = −∞ just rea
hing the other hill at U = −1 at time τ = +∞ losing energy dueto �fri
tion� v. For a given potential, su
h a motion is possible only for parti
ular valuesof v and that velo
ity is the sele
ted velo
ity of the front. However, it is also possiblethat the parti
le spends an in�nite amount of time in the intermediate state so that thedes
ent from U = +1 to U = 0 and the des
ent from U = 0 to U = −1 are independentrequiring two di�erent fri
tion 
oe�
ients. The physi
al pi
ture that emerges is that thestable state moves towards the unstable state, and the propagating front will have a timeindependent shape and a 
onstant velo
ity v. However in some situations, the initial bigfront separating the two phases φ = ±1 splits into two, one front between φ = −1 and

φ = 0, while the other one between φ = 0 and φ = 1. The two smaller fronts move
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Figure 5.4: For α = 0.4 and β = 0.2. (a) The time evolution of the pro�le is shown. The plot
φ vs z for di�erent time t as marked. Arrow shows the dire
tion of velo
ity. The stable stateZ invades B. (b) Velo
ity as a fun
tion of time. With time, the velo
ity approa
hes a uniformvalue.with di�erent shapes and speeds v−10, v01. The φ = 0 state may then get dynami
allygenerated. Consequently one may see the development of the denatured state. The lesspreferable state will eventually be devoured by the stable state 
ompleting the transitionfrom B- to Z-DNA.5.3 Dynami
 phase diagram5.3.1 Numeri
al approa
hThe velo
ity of the front has been determined by numeri
al analysis for di�erent bound-ary 
onditions like (a) φ(−∞, t) = 1, φ(∞, t) = −1 for the B-Z front, (b) φ(−∞, t) = 1,
φ(∞, t) = 0 for a front between Z and the denatured state, (
) φ(−∞, t) = 0, φ(∞, t) =

−1 for a front between B and the denatured state. The initial (t = 0) interfa
e of width
w is lo
ated at z = z0 where z0 
hosen away from the boundary and a Crank Ni
olsonmethod is used to evolve the nonlinear di�usion equation. For numeri
al solution we
hoose dis
rete latti
e spa
ing and time of the order 10−2 and the di�usion 
onstant
D of the order 1. The interfa
e evolves to its steady state starting from any arbitraryinitial pro�le as shown in Fig. 5.4(a) for α = 0.4 and β = 0.6 (Case I). The initial pro�leat t = 0 is taken very sharp and seems to evolve with time as shown in the diagram.On
e a steady state is rea
hed, the velo
ity is determined by lo
ating the positions atwhi
h φ = ±.5, and φ = 0 as appropriate. The velo
ity 
orresponding to the pro�le inFig. 5.4(a) approa
hes a uniform velo
ity with time and is shown in Fig. 5.4(b). Sin
ethe F-K analysis is based on the linear stability analysis around the unstable �xed point,in the 
ase of the split front, only the velo
ity v01 
an be obtained by the F-K analysis,but not in general.
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Figure 5.5: (a) Plot of velo
ity vs α for a �xed value of β = 0.45. Three velo
ities meet at a
ommon point at αc (β). The remaining three �gures (φ vs z) represent the time evolution ofthe front (or fronts). (b) A single front for α = 0.6 < αc (β). (
) A single front for α = 0.7near αc (β) with a signature of the width widening but no �0� phase. (d) For α = 0.72 > αc (β)single front splits into two fronts.The dependen
e of the velo
ities on α for a �xed β is shown in Fig. 5.5(a). We seethat three fronts move with di�erent velo
ities for α < αc(β) with v01 > v−11 > v−10.All these velo
ities are same at α = αc(β). For α > αc(β), the B-Z front splits into twofronts and the denatured state grows with time as (v−10 − v01) t. It is straightforwardto see that no stable front between ±1 
an exist if v−10 < v01. Also the v−11 
urve endsat αc(β) and has no 
ontinuation for α > αc(β). This indi
ates that αc(β) is a singularpoint.The numeri
ally determined αc(β) vs β line is shown in Fig. 5.6. This is the phasediagram for dynami
s with the phase boundary as the limit of stability of the BZ front(from below). The interse
tion of the 
riti
al and α = β lines, turns out to be anequilibrium point. The phase diagram 
an be 
on�rmed by 
onsidering a few spe
ial
ases. For α = β, the free energies of B and Z are same (see dotted 
urve in Fig. 5.7(b))and the BZ front should have zero velo
ity. The point α = β = 1√
3

orresponds tothe equilibrium situation with equal free energies of all the states (see dashed 
urve inFig. 5.7(b)), for whi
h all the three fronts are stati
, and therefore the 
ondition to be onthe phase boundary is trivially satis�ed. This point is denoted by q in Fig. 5.6. Alongthe α = β line for α < αc(β), v01, v−10 6= 0 with state +1 or −1 invading 0. In 
ontrast inregion 2, along the same α = β line, �0� is the stable state and it invades both ±1 states.In region 2 above the dotted line, obtained by equating F (1) = F (0) [Eq. (5.19)℄, the �0�state grows with the two fronts moving away from ea
h other as shown in Fig. 5.8(a) for

α = 0.7 and β = 0.6 and 
orresponding velo
ities in Fig. 5.8(b), but below that dottedline in region 1 the Z state grows though the fronts move in the same dire
tion (towardsright). The Z ↔ B symmetry in our 
hoi
e of the free energy mandates a symmetri
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 0.4  0.6  0.75 0.5Figure 5.6: Dynami
 phases in a plot of α vs β, the boundary (solid red line) being given by

α = αc (β). In the region below the boundary line, a single front between −1 to 1 (big front)propagates without splitting. In the region above the boundary line the front between −1 to
+1 splits into two (small) fronts. Z, �0� and B are the stable states in regions 1, 2 and 3,respe
tively. The dotted line 
orresponds to v01 = 0, while the dash-dotted line to v−10 = 0and the 
orresponding free energies are shown in Fig. 5.7(a). The split fronts move away fromea
h other in region 2 (
orresponding free energy 
urve is shown in Fig. 5.7(b) by a dotted line),both towards right in 1 and both towards left in 3, as per the 
hosen boundary 
onditions. Thebig front has zero velo
ity on the α = β line and the 
orresponding free energy 
urve is shownin Fig. 5.7(b) by a solid 
urve. The diagram is symmetri
 around the α = β line. Point qrepresents the equilibrium point, where three states have the same free energy as shown inFig. 5.7(b) by a dashed 
urve.
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orresponds to v01 = 0. (b) The Landaufun
tion F (φ) as a fun
tion φ. Dotted 
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urve is for α = β = 0.5.phase diagram a
ross the α = β line with the fronts moving towards left in region 3.
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Figure 5.8: For α = 0.7 and β = 0.6. (a) The time evolution of pro�le is shown to split intotwo parts. The plot φ vs z is for di�erent time t as marked. Arrows show the dire
tion ofvelo
ity. The split fronts move opposite to ea
h other. The denatured state invades both B andZ. (b) Velo
ity as a fun
tion of time. With the time, the velo
ity of the lower and the upperfronts v−10 and v01 approa
h the uniform velo
ities. The negative velo
ity represents the frontpropagation towards −z dire
tion.
5.3.2 Perturbative approa
hIf a small 
hange 
auses a small e�e
t, then a perturbation theory is appli
able. Soa perturbative analysis around the point of equilibrium 
an be done provided the freeenergy di�eren
e between the two states is small enough, to dedu
e the dynami
al prop-erties from the stati
 or the unperturbed 
ase. Here for α, β 
lose to the equilibriumpoint α = β = 1√

3
, a perturbative analysis [103℄ is done to determine the velo
ity, whi
h
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φ(z, t) ≈ φ0(z) + φ1(z, t), (5.23)for the for
e

f(φ0 + φ1) ≈ f(φ) + δf(φ) = f(φ0) + φ1f
′(φ0) + δf(φ0), (5.24)where φ0(z), f(φ0) are respe
tively the pro�le solution, and for
e term for the equilibriuminterfa
e. The equilibrium pro�le is stati
. Here the perturbation series is in the smallparameter ǫ. With the substitution of the perturbative expressions Eqs. (5.23) and (5.24)in Eq. (5.19) and by keeping the leading order terms in the series we get,

φ
′′

0(z) = −f(φ0), (5.25)
Ĥ0φ1 = δf(φ0), (5.26)where

Ĥ0 =
∂

∂t
− ∂2

∂z2
− f

′

0(φ0(z)),and prime on φ and f denotes the derivatives with respe
t to z, and φ(z), respe
tively.The stati
 solution satis�es Eq. (5.25), where φ′

0(z) is an eigen fun
tion with an eigenvalue
E0 = 0. Therefore for the rest of the nonzero eigenvalues, with eigen fun
tion φ̃n(z), thetime independent part 
an be written as

[

∂2

∂z2
+ f

′

(φ0)

]

φ̃n(z) = En φ̃n(z). (5.27)Let us assume Green's fun
tion of the form
G(z, z1; t, t1) =

∑

n

φ̃n(z)φ̃n(z1)e
−En(t−t1). (5.28)Therefore the solution of φ1 
omes out to be

φ1(z, t) =

∫ t

0

dt1

∫ ∞

−∞
dz1 G(z, z1; t, t1)δf(φ0). (5.29)With the known eigenvalue 
orresponding to the eigen fun
tion φ′

0 we are able to to �nd
φ1, whi
h is

φ1 = t
φ

′

0(z)
∫

dφ0 δf(φ0)
∫

dz|φ′

0(z)|2
. (5.30)
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ause of the existen
e of the traveling wave solution, by writing, to �rst order in thevelo
ity v, the front solution for a small 
hange around the equilibrium position will be
φ(z, t) ≈ φ0(z) − v t φ

′

0(z). (5.31)So by 
omparing Eqs. (5.30) and (5.31), v 
an be written with the eigen fun
tion renor-malization fa
tors as
v =

∆F
∫ ∞
∞ dz|φ′

0(z)|2
, (5.32)where,

∆F = −
∫

dφ0 δf(φ0). (5.33)Thus we see that v 
an be determined to �rst order in free energy di�eren
e if φ0 isknown. In the equilibrium situation, there is a Goldstone like zero-energy mode [103℄,be
ause, the interfa
e 
an be pla
ed anywhere or shifted along z without any 
ost ofenergy. We therefore take φ0(z) as 
entered around an arbitrarily 
hosen origin. Thestati
 solution for the free energy F (φ) [from Eq. (5.19)℄ satis�es,
1

2
(φ

′

0(z))
2 = F (φ0) =

1

6
φ2

0(φ
2
0 − 1)2. (5.34)With a �rst order 
orre
tion, the velo
ities of the interfa
es are

vij =
ǫij

∫ ∞
−∞dz[φ

′
0(z)]

2
, (5.35)where i, j = 0,±1, and the free energy di�eren
es ǫij are

ǫ01 = − 1

12
− 2

(α− β)

15
+
αβ

4
, (5.36)

ǫ−10 =
1

12
− 2

(α− β)

15
− αβ

4
, (5.37)

ǫ−11 = −4
(α− β)

15
. (5.38)

At the point of equilibrium α = β = 1√
3
, all these front velo
ities are zero implyingthe stati
 fronts. At the perturbative regime, by equating the velo
ities, we �nd theslope of the 
riti
al line around ( 1√

3
, 1√

3
). The slope 
an be obtained from

ǫ01 = ǫ−10 or ǫ01 = ǫ−11/2. (5.39)For the small �u
tuations on α and β i. e., for α → 1√
3

+ δα and β → 1√
3

+ δβ, from
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δα = −δβ. (5.40)Thus we see that around the point of equilibrium the straight line is with the slope−1,whi
h is 
onsistent with the numeri
ally determined phase boundary shown in Fig. 5.6.Moreover we also �nd the phase boundary to deviate very slightly from a straight lineover the range shown there. There is a deviation from linearity beyond that but thenumeri
al error be
omes larger.We next study the behavior of the width of the interfa
e and of the appropriatetimes
ale for the dynami
s. For the spe
ial 
ase of β = 0.5 as α → αc (β) the divergen
eof the width has been noted in Ref. [104℄. At α = β = 1√

3
, any length of �0� domain
an be inserted and therefore the width of the BZ interfa
e at the limit of stability isin�nity. On the split-front side (Fig. 5.5(d)), the width in
reases linearly with time as

W = (v01 − v−10)t [Fig. 5.9(a) for α = 0.75205℄. While, on the other side of the phaseboundary the single front (Fig. 5.5(b)) has a �nite width (Fig. 5.9(a) for α = 0.745).Close to the phase boundary though a deformation of the moving front is visible around
φ = 0 (Fig. 5.5(
)), but width saturates at large time (Fig. 5.9(a) for α = 0.75175)without any appearan
e of the denatured phase. Hen
e s
aling forms are expe
ted as

W ∼ | α− αc (β) |−µ, τ ∼W z.Fig. 5.9(a) shows the time evolution of the width of an interfa
e for various α at a �xed
β, where the instantaneous width W of the interfa
e at time t is obtained as

W 2 = < z2 > − < z >2, where (5.41)
< zn > =

∫

zn
(

dφ(z,t)
dz

)2

dz

∫

(

dφ(z,t)
dz

)2

dz
. (5.42)Another way to 
hara
terize the width would be to look at the slope of the pro�lei. e., dφ(z)

dz

∣

∣

∣

φ=0
, whi
h is related to the inverse of W and also shows the s
aling with
hara
teristi
 dynami
 exponent. We started with an interfa
e that has an insertion ofthe �0� state and the width monitors the de
ay or the growth of the �0� state. The widthsaturates exponentially for α < αc (β) albeit slowly near α→ αc−, while a linear growthis observed for α > αc (β). Time here refers to the dis
retized time in the Crank-Ni
olsonapproa
h. By �tting an exponential to the time evolution of W , the 
hara
teristi
 times
ale was determined, for α < αc (β). The exponent µ is found to be rather small, notin
onsistent with the logarithmi
 growth observed in Ref. [104℄. Fig. 5.9(b) shows thelog-log plot of τ vs W indi
ating a value of z within 3.0 to 4.0. However for better
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ura
y one requires a large system and long time observation as well. The divergen
esof W and τ with s
aling establish the 
riti
al nature of the α = αc (β) line.
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 6.3 6.2  6.5  6.7Figure 5.9: (a) Time evolutions of the width (in arbitrary units) of the front are shown fordi�erent values of α keeping β = 0.4 �xed. The initial front had a stret
h of �0� phase whi
hde
ays for α < αc (β) but grows linearly for α > αc (β). The times
ale to rea
h saturationin
reases as α → αc (β)−. For this 
ase αc (β) ≈ 0.752. (b) Log-Log plot of width versus times
ale for α < αc (β). Two solid line slopes are shown far from and near αc (β).Despite the immense su

ess in probing the various phases of DNA by single mole
ularmanipulation te
hniques, interfa
es have not been explored thoroughly. We hope ourresults will motivate dire
t studies of interfa
es of DNA, espe
ially their stability. Evenon the theoreti
al front, it remains to be seen if all atom mole
ular dynami
s simulationsthat have been su

essful [102, 105, 106℄ in seeing various phases, 
an be used to monitorthe dynami
s of interfa
es, B-Z in parti
ular, under given boundary 
onditions.5.4 Con
lusionIn this 
hapter we have studied the 
onformational transition from B-DNA to Z-DNA.Wehave 
onsidered the Landau free energy to des
ribe the B-Z interfa
e and have formulatedthe propagating front equation. With the wave front propagation approa
h and thenumeri
al 
al
ulations we have obtained the dynami
 phase diagram. The dynami
phase diagram for the steady state is obtained in the α-β plane, where α, β 
hara
terizethe relative stability of the phases, by the 
riti
al value αc for di�erent values of β. Wehave obtained an equilibrium point, the Goldstone like free energy mode. The phase
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lusion 77boundary in the α-β plane has been determined and 
orroborated by a perturbationanalysis. The dynami
 transition is asso
iated with diverging length and time s
ales andhas its own dynami
 exponent. On one side of the phase boundary the dynami
s involvespropagation of one B-Z interfa
e with a uniform speed, while on the other phase su
han interfa
e is unstable leading to the formation of the thermodynami
ally forbiddendenatured state. This in turn, suggests that there is no unique me
hanism for the B-Zdynami
s and it is possible to swit
h from one type to other by tuning the parameters.A resolution of the 
ontroversy in experiments is that the two 
ases, namely nanotubeand magneti
 tweezers are on the two sides of the phase boundary.





6Summary
In this thesis we have studied the melting of a triple-stranded DNA and the 
onforma-tional transitions of a double-stranded DNA from the B from to the Z form of DNA.To address the problems we have adopted real-spa
e RG, exa
t iteration, wave frontpropagation and perturbation methodologies.In the introdu
tory se
tion we reviewed on the following topi
s:

• We introdu
ed the double and the triple helix DNA. Following the dire
t analogybetween DNA and quantum me
hani
s we dis
ussed the quantum E�mov e�e
texhibited by a three-parti
le system.
• Dire
ted polymer on hierar
hi
al latti
es and on fra
tal latti
es like the SierpinskiGasket are introdu
ed. We reviewed some exa
t results of the dire
ted polymer
hains solved on su
h pseudo latti
es.
• We gave a brief introdu
tion to the real-spa
e RG. The zeros of the partitionfun
tion asso
iated with the phase transition are dis
ussed. Thereafter the Juliasets in 
onne
tion with the zeros of partition fun
tion are dis
ussed.
• Various thermodynami
al studies in
luding melting, unzipping and other thermo-dynami
 properties of the double-stranded and the triple-stranded DNA have beenreviewed.
• The 
onformational transition of B- to Z-DNA has been introdu
ed. This in
ludesthe introdu
tion to the B and the Z form of DNA, the B-Z transition me
hanism,the role of the BZ interfa
e and the existing 
ontradi
tory hypotheses on thistransition.We modeled the three-
hain system as three dire
ted walks on a diamond hierar
hi
allatti
e of dimension d > 2, and used the real-spa
e RG method. We studied boththe 
ases of symmetri
 and asymmetri
 pair intera
tions. By looking at the RG �owsof the two- and the three-
hain Boltzmann fa
tors we predi
ted the existen
e of ane�e
tive three-strand bound state in 
onditions where duplex would be in the denatured



80 Summarystate. Su
h a loosely bound state is 
alled the E�mov-DNA. Further exa
t numeri
al
al
ulations are used to validate the predi
tion of su
h a polymeri
 E�mov e�e
t. Wefound the nonzero three-
hain average energy in the unbound region of the duplex DNA.The E�mov transition point was found to be dis
ontinuous. The E�mov DNA was foundthermodynami
ally more stable than the duplex DNA. In addition we showed di�erentE�mov transition points for di�erent dimensions.The predi
tion of the E�mov-analog three-
hain bound state was 
orroborated bythe zeros of the partition fun
tion. These zeros produ
e fra
tal-like stru
tures, andthey pin
h the real axis in the thermodynami
 limit with an angle determined by theexponents 
hara
terizing the phase transition. We found that all the transition pointsobtained from RG �ows, are 
onsistent with the zeros of the partition fun
tion. Weshowed that the E�mov e�e
t o

urs even if the three-
hain intera
tion is repulsive innature. We found that a transition 
an be indu
ed in higher dimensions (d > 4.1) fromthe E�mov state to the three-
hain 
riti
al repulsive state, when 
hains are 
riti
allypaired. We emphasized on the nature of the transitions and found that the transitionto this three-
hain 
riti
al repulsive state is 
ontinuous obeying a �nite size s
aling lawwith exponents obtained from the RG. In addition we found a new state, where three
hains are bound with no three 
hain 
onta
t.The existen
e of an E�mov DNA was further veri�ed on a Sierpinski Gasket latti
eof dimension d < 2 by applying some extra weight fa
tors to the polymer 
hains. Anew state to be 
alled a mixed state is found, where in 
loser view any two 
hains arealways bound keeping the third free, but in global view no one is free. The mixed phasewas found to be a separate phase, where as the E�mov state appeared as a 
rossover.We suggested that the triplex DNA might provide a unique, amenable biologi
al testingground for the E�mov e�e
t.We gave a theoreti
al explanation to the B-Z transition me
hanism. We modeled aLandau free energy and applied the wave front propagation approa
h to �nd the steadystate velo
ity of the B-Z interfa
e. By varying the system parameters determining sta-bility and instability of the homogeneous states, we obtained a dynami
 phase diagram,whi
h was further 
orroborated by a perturbation analysis. We found that, on one sideof the phase boundary no intermediate state is formed but on the other side of the phaseboundary �0� state is preferred. As a result the denatured state develops dynami
allyeventhough it is thermodynami
ally forbidden. We showed that the dynami
 transitionis asso
iated with a diverging length s
ale with its own dynami
 exponent. Su
h a the-oreti
al analysis resolves the 
urrent 
ontroversies on the transition me
hanism of theB-DNA to Z-DNA.



AJulia set
Earlier we dis
ussed the Julia set in Chap. 1 and Chap. 3. We give an example of aquadrati
 equation [Eq. (1.12)℄ to des
ribe the Julia set. In the same spirit, the two-
hain RG relation [Eq. (3.2)℄ is written in a quadrati
 form as

zn =
z2

n−1

b
+ c′, (A.1)where c′ = b−1

b
. At the 
riti
al threshold of two-
hain melting (i. e., y = yc), thethree-
hain RG relation [Eq. (3.3)℄ 
an be written as

zn =
(b− 1)3

b2
z2

n−1 + c′′, (A.2)where c′′ = b−2
b2(b−1)2

+ 3
b2
. Here c′, c′′ are not arbitrary and are determined by b. In ourmodel c′, c′′ 
ome out to be real. We obtained fra
tal-like stru
tures, as dis
ussed inChap. 3.





BLimit 
y
le
The 
onne
tion between the quantum E�mov e�e
t and RG limit 
y
les is dis
ussed inRef. [21℄. The emergen
e of an in�nite number of bound states at the 
riti
al two-bodyzero-energy state is linked to the limit 
y
le behaviour. A limit 
y
le is an isolated 
losedloop with 
ertain periodi
ity, whi
h appears due to the 
omplex �xed points obtainedfrom the RG �ow equation, and where the running parameter e. g., 
oupling 
onstantretra
es the path of that 
losed loop forever with a 
ertain periodi
ity.For two su

essive generations Eq. (3.3) will be

wn − wn+1 = f(wn+1) − wn+1. (B.1)But if the 
ontinuum limit is taken, Eq. (B.1) 
an be written as
l
dw

dl
= −(w − w+)(w − w−), (B.2)at the 
riti
al line yc = b− 1, where l = lnL and L = 2n. For 
omplex w± = α± iβ, thesolution of Eq. (B.2) is then

w = α− β tanβ(ln l + θ), (B.3)where θ is the integration 
onstant. The above equation re�e
ts the periodi
ity of w in
ln l with the property

w(l) = w(lλ), where lnλ =
π

β
. (B.4)Here as l in
reases w approa
hes ±∞. This behavior 
an be mapped into a limit 
y
lein the 
omplex plane with a phase fa
tor de�ned by the equation

eiφ =
w − w+

w − w−
. (B.5)



84 Limit 
y
leWith the help of Eq. (B.2) and its derivative, φ will be
φ =

β

α
ln l + φ0, (B.6)where φ0 is the integration 
onstant.Our model on the hierar
hi
al latti
e is a dis
rete model. Certainly a limit 
y
le isobtainable from the RG relations in the 
ontinuum limit, but it is not straight forwardto do so in the dis
rete 
ase.
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