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Synopsis

As of now, string theory is believed to be the most succesgfahtum theory of gravity and
a strong contender to be the fundamental microscopic thefdgrverything”. It starts with
the idea that the world at its microscopic-most level is maalef some tiny stringy objects,
which vibrate, do all kinds of funny acts and finally come uphithe macroscopic world
we see everyday. The different vibrational modes give os#fferent elementary particles
which we had so far been thinking of as the fundamental ciuestis of the universe. In
other words, the long term goal of string theory is to provedeomplete and universal
microscopic foundation to more macroscopic theories arehpimenologies, such as the
standard model of particle physics and Einstein’s theorgrakitation, to name a few.
However, string theory is a framework that operates in suchlaa-high energy regime
that this is far beyond the reach of even the most moderncpaeccelerators like RHIC
and LHC. But this is not really a matter to worry as such. Agkirhether string theory can
explain the real world is probably as irrelevant as to askttwreone can solve the problem
of the oscillation of a simple pendulum in quantum field tlyediVe need to remember,
just like quantum field theory, the theory of strings is alsibaanework, the justification
whereof would probably be found from the theories derivedrfit.

With this aim in view string theory has expanded its horizomwther branches of the-
oretical physics where the possibility of having a derivedary with greater testibility
increases with a decrement in energy scale. AAS/CFT camnelgmce is one such hypoth-
esis derived in the string framework that nurtures this ipdgy. AAS/CFT, as we would
discuss in gory detail in due course, is an illustrativeiradion of the old holographic
principle which states that the degrees of freedom of qumarmftavity reside on the bound-
ary space-time. This in turn gives rise to a duality prineifilat maps the states in gauge
theory to solutions in string theory living in one higher énsion. Particular significance
and predictibility of such a miraculous hypothesis can betptest when the t'Hooft cou-
pling and the rank of the gauge group of the gauge theory istoqprebecomes so high
that it becomes intractable by traditional methods in quiantield theory. Even in this
case, the hypothesis ensures the “dual” theory to be a sioligmsical theory of gravity
with minimally coupled matter fields, namely the supergrsatheory that is also realized
as some consistent trancation of string theory at low enefdne advantage of working
in supergravity limit of string theory is that unlike the fstring theory which is a theory
with infinite degrees of freedom, here one has to deal witly bnite degrees of freedom.

Vi



Synopsis

From the perspective of the full supersymmetric string thd¢bis amounts to integrating
out massive string excitations by taking the limit — 0 where+/«/ is a characteristic
small length scale- 10~ cm and is related to the string tensionBs= - = 7, [,
being the string length scale. S

In this thesis, we will use AJS/CFT, or more broadly the piphes of gauge/ gravity
duality to understand some features of physics out of dajuilin. We will discuss various
non-equilibrium states and their gravity duals. We willegadrize the constructions accord-
ing to the phenomena we would like to address through themetral, non-equilibrium
phenomena occur in many branches of physics. Most celebaateng these, are relativis-
tic heavy ion collision and cosmology. Many features of trelstic heavy ion collision
were revealed in recent experiments like RHIC, though ke Igtogress has been made to
understand the very essential quantum kinetic theory gavgrtheir dynamics. Cosmo-
logical data are abundant, most of them, of course beggingep explanatory theory.
Not only this, even some recent condensed matter expersmike tARPES where one
can see the non-equilibrium evolution of Fermi-surfac#,latk a proper theoretical jus-
tification. All these are excellent set ups to test the applity of gauge/ gravity duality in
non-equilibrium. In this thesis we would proceed towarddradsing some of those issues
in these directions by building up problem specific machjinar

In its weak form (i.e. in the limit when the rank of the gaugews, N — oo with
a large 't Hooft coupling\ = ¢%,,N very large as well) AAS/CFT relates supergravity
theory inAdSs x S° background to a strongly coupléd = 4 SU(N) SYM theory living
on the boundary ofidS5. For incorporating finite temperature, holographicallye antro-
duces black hole in thigldS space-time in a way that thédS nature of the space-time
is preserved asymptotically. The intuition follows fronetfact that stationary black holes
behave like thermodynamical objects in all respect. Thésargravity at the black hole
horizon can be identified with temperature while the mas#) thie total energy. Further-
more, in all dynamical processes known, the area of the latkevent horizon can only
increase monotonically, justifying its identification Wwieéntropy. Also, for any dynamical
process the black hole horizon possesses uniform surfagéygmimicing the thermody-
namical equilibriation.

With this basic understanding of the holographic meaningapfilibrium the tools of
holography enable us to develop methologies to deal witleréiit non-equilibrium sce-
narios in holographic set-up. We will develop tools and priggions contemplating on
applications towards physically interesting probleme Iguantum quench, Fermi liquid

Vil
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theory in non-equilibrium and cosmological evolution of tlniverse. We will argue some
of the methods developed might as well be very much usefutderstanding and improv-
ing upon existing tools to study ultra relativistic heavg mpllisions. As mentioned before,
the methods we would use will be problem specific, but we wdkdlly categorize them in
two parts. Following our understanding of holographic miegmf equilibrium, these are,

(A) Going to a temperature other than the Hawking temperatutb@black hole

As mentioned before, in any dynamical gravitational precesolving black holes,
attaining Hawking temperature at the horizon signals thalibgiation. Hence, at the level
of free-energy, if we somehow make the temperature offtsh&buld enable us to study
the dynamics of equilibriation. Motivated Bragg-Williams methoth condensed matter
physics [1] and its adoption in black hole physics and hapby [2], we use this idea to
analyse, holographically, the phenomenon of temperawgach in specific black hole set-
up [3]. Apart from the dynamics, we see, even the analysifaép transition particularly
of the first order, which otherwise is difficult to capture retframework of Landau theory,
becomes easier in this framework. We also show that this edetiorks even when we
take stringya’ corrections to gauge theory sector [4]. This method alseggdandy in
analysing the system out of chemical equilibrium. We alsgppse an effective off-shell
potential in the gauge theory sector using out holographawkedge of bulk gravity.

(B) Obtaining time-dependent backgrounds suitable to studyaguilibrium phenom-
ena

There are different ways to construct time-dependent backgls. The first method
among them is to obtain time-dependent bulk space-timetdusglecific non-equilibrium
states starting from the observables of the boundary thddrg analysis is based on the
Fefferman-Graham construction dfAd.S spaces. We considered non-equilibrium fluctu-
ations on the top of equilibrium states which holograptycaiapped into incorporating
guasi normal mode fluctuations on tHel.S black hole in equilibrium. Upon construct-
ing the background, we use this to find the spectral functiogpecific non-equilibrium
states [5]. We further show the usefulness of the mechanearaldped in understanding
Fermi liquid theory for non-equilibrium strongly couplegssems.

The other methods of constructing time-dependent geoesedre aimed at cosmolog-
ical applications. The first of them [6] is based on Verliriglea [7] that the time in the
AdS bulk and that of the boundary conformal field theory are déife and a dynamic
boundary space-time can in principle be obtained startmg fa static bulk. This idea was
further extended with charged black holes in [8]. Motivalsdthese two, we used the

viii



Synopsis

techniques of holographic renormalization [9] with modiflundary conditions to come
up with cosmological evolution on the boundary.

The second one in this line starts with a dynamical bulk fits&€he time-dependent
cosmological solution in supergravity is scarce in genevdék, however, manage to find
explicitly time-dependent brane solutions ifi and 11 dimensional supergravity which
takes Kasner-like scaling in world-volume directions oe brane [10]. Such solutions in
near horizon limit reduces tddS; x S° andAdS; x S* with Kasner scaling in transverse
directions for KasneD3 and M5 brane solutions respectively. Th&iS5 solutions with
Kasner scaling as solutions fedimensional Einstein’s equation with a negative cosmo-
logical constant was however studied in the literatureegitinthe context of understanding
gauge theory near cosmological singularity [11] or in thetegt of anisotropic expansion
of strongly coupled quark gluon plasma [12]. We, howevencemtrate on cosmology,
namely realizing cosmological evolution on probe dynamaies in these time-dependent
backgrounds and find interesting consequences like dym@mmaenpactification of extra
dimensions.
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Introduction

1.1 Overview

As of now, string theory [1-6] is believed to be the most sastid quantum theory of
gravity and a strong contender to be the fundamental miopectheory of “everything”.
It starts with the idea that the world at its microscopic-triegel is made up of some tiny
stringy objects, which vibrate, do all kinds of funny actsgddmally come up with the
macroscopic world we see everyday. The different vibratiomodes give rise to different
elementary particles which we had so far been thinking ohagundamental constituents
of the universe. In other words, the long term goal of strimepty is to provide a complete
and universal microscopic foundation to more macroscd@oties and phenomenologies,
such as the standard model of particle physics and Einstgiedry of gravitation, to name
a few. However, string theory is a framework that operatesuich an ultra-high energy
regime that this is far beyond the reach of even the most maaaticle accelerators like
RHIC and LHC. But this is not really a matter to worry as suctsking whether string
theory can explain the real world is probably as irrelevantosask whether one can solve
the problem of the oscillation of a simple pendulum in quanfield theory. We need to
remember, just like quantum field theory, the theory of gsiis also a framework, the
justification whereof would probably be found from the theserived from it.

With this aim in view string theory has expanded its horizomther branches of the-
oretical physics where the possibility of having a derivedary with greater testibility
increases with a decrement in energy scale. AdS/CFT camelgmce [7—10] is one such
hypothesis derived in the string framework that nurtures plossibility. AAS/CFT, as we
would discuss in gory detail in due course, is an illusteatigalization of the old holo-



Chapter 1. Introduction

graphic principle which states that the degrees of freedioguantum gravity reside on the
boundary space-time. This in turn gives rise to a dualitp@gle that maps the states in
gauge theory to solutions in string theory living in one t@gdimension. Particular sig-
nificance and predictability of such a miraculous hypothesin be put to test when the
t'Hooft coupling and the rank of the gauge group of the gahgety in question becomes
so high that it becomes intractable by traditional methadguantum field theory. Even in
this case, the hypothesis ensures the “dual” theory to halsiclassical theory of gravity
with minimally coupled matter fields, namely the supergrsatheory that is also realized
as some consistent truncation of string theory at low enefdye advantage of working
in supergravity limit of string theory is that unlike the lfgtring theory which is a theory
with infinite degrees of freedom, here one has to deal witly bnite degrees of freedom.
From the perspective of the full supersymmetric string thebis amounts to integrating
out massive string excitations by taking the limit — 0 where+v/a/ is a characteristic
small length scale- 10732 cm and is related to the string tensionAs= ﬁ = l% ls
being the string length scale. S

In this thesis, we will use AJS/CFT, or more broadly the piphes of gauge/ gravity
duality to understand some features of physics out of dauilin. We will discuss various
non-equilibrium states and their gravity duals. We willegadrize the constructions accord-
ing to the phenomena we would like to address through themgemeral, non-equilibrium
phenomena occur in many branches of physics. Most celebaateng these, are relativis-
tic heavy ion collision and cosmology. Many features of tieistic heavy ion collision
were revealed in recent experiments like RHIC, though ke Igtogress has been made to
understand the very essential quantum kinetic theory gavgtheir dynamics. Cosmolog-
ical data are abundant, most of them, of course begging a&peyplanatory theory. Not
only this, even some recent condensed matter experimi@$ARPES where one can see
the non-equilibrium evolution of Fermi-surface, still ka& proper theoretical justification.
All these are excellent set ups to test the applicability afige/ gravity duality in non-
equilibrium. We would proceed slowly towards addressingeof those issues in these
directions by building up problem specific machinery. In thst of this chapter we will
cover some basics that will be proven handy in course of aungy out of equilibrium.
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1.2 Solitonic Solutions in Supergravity

In this thesis we will be mostly interested in type Il supexgty solutions. This is a low
energy effective theory of type Il (A or B) superstring thewrith following field contents:

e gravitong,,, antisymmetric tensaB,,, and dilatony coming from (V.S-NS) sector
of the theory.

e p+ 1form fields A, originating from the massless spectrum B8f ) sector. De-
pending orp is even or odd, the theory is type IIA or type IIB respectively

e space-time Fermions that belong #®-(V.S) and (V.S-R) sectors.

In Einstein frame, the action for the type Il supergravity te written as [11-14],

1 10 1 ng 1 1 apP 2
Ig = e /d o/ [gl(R = 50,60"¢ — - Zp: BT F2,+..), (11
with a, = —3(p — 3). The dots denote the\(S — NS) 3 form field strength and the

fermionic terms(, is the Newton’s constant in 10 dimensions.
The equations of motion for graviton, dilaton and the- 2 form field strengths are,

respectively,
1 1 @ ) ) P -+ 1
R = 50" 00,0 + o0 o€ (0 + DP9 Fuy g, = T 0 Fy0),
1 a
2 ) al/ A P F2
Dul(y/ger? Fra-r2) = 0. (1.2)

The field strengthf,. , in the action is termed as electric. One can also define its1atay
dual
ﬁ107p72 = €% % Fpio (1.3)

and show that under the duality transformations,
a’p¢ — _apgbv (p + 2) - (10 - P 2)7 Fp+2 - FlO—p—Qa (14)

the equations of motion (1.2) remain invariant [14].
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With a view to motivating our way towards AdS/ CFT correspenck, we will con-
template on a particular solitonic solution of type Il B stgravity, namely theD3 brane
solution. From the perspective of string theory this can els me thought of as & dimen-
sional hypersurface on which an open string can end. Ther [t stands for Dirichlet -
the string end points attached to the hypersurface can megtyfon the brane and hence
satisfy Neumann boundary condition aloBidprane directions # time direction. In the
remaining6 spatial directions, Dirichlet boundary condition is obeye

In Einstein frame thé)3 brane solution is given by

3
ds? = H7'2(—fdi* + " (da')”) + HY2(f7'dr? + r2(ds7)),

i=1

4 4
H=1+<@) ,f=1—(r_0> ’
T T
Q2
h® 4 roh* = 16 ¢ = Constant (1.5)
where we have imposed the self duality condition, namiéjy= * F.
Solution for five form field strength is,
2@
F;thizia?“ = €i1i2i3H 27“_5. (16)
Herer is the radial coordinate in transverse directions of thendra) is an integration
constant which is related to the3 brane chargeys given by

5Q

—, (1.7)
(27)21tgs

3 =
whereg, is the string coupling constant given y = ¢? and (s, the volume of thes-
sphere.¢ being a constant, can be set to zero. The metric, (1.5) hamalarity atr = 0
and a horizon at = r, where the metric functiory, vanishes. In the extremal limit,— 0,

the horizon sits on the singularity and this configuratioeserves half of the space-time
supersymmetries. Configurations with arbitragyhowever, break all supersymmetries.
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Near Horizon limit of Extremal Brane

In the extremal limity; — 0, the metric, (1.5) takes the simple form

3
ds? = H7V2(—dt* + 3 (da')’) + HY*(dr? + r*(d252)),

=1
Q Q
4

=2 fr)y=1, H=1+-"2. (1.8)

4t

We now considetV-coincidentD3 branes. For a singl®3 brane the normalized flux is
given by
M3 = T3(27T)%ls4gs~ (19)

For coincidentN number of branes it changes in a multiplicative way with
ui" = NTy(2m)31 g, (1.10)
Using (1.7), this in turn fixes the integration constapias
Q = 16Nwg,l*. (1.11)

With all these considerations taken into account, the mébri N coincidentD3 branes
takes the form

ds®> = H dt2+z (da)?) + HY2(dr? + r2(ds2))
=1

A7 Ng,l 4
H o= 14 2Vsbs

(1.12)
Wherells—zl4 =4Nmgs.

[ is the characteristic length scale proportional to the igmtiwnal field strength. In the
asymptotic limit,r > [, the metric takes the form of a flat Minkowski metric. In thene
horizon limit,r < [ the metric becomes-dimensional Anti de SittefAdS;) x S°.

ds® yasixss = dt2+z (dz') + dr + 12(d25?) . (1.13)
——

N\ J 55
AdS5
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Hints Towards a Duality :

e The isometry group ofidSs is SO(2,4). Additionally, theS® part has an isometry
group SO(6) ~ SU(4)g. This is, surprisingly, the same as the Bosonic subgroup
of the superconformal group d¥" = 4 supersymmetric Yang-Mills(SYM) gauge
theory PSU (2, 2|4).

PSU(2,2/4) € SO(2,4) x SU(4), (1.14)

corresponding to the conformal group and theymmetry group respectively.

e Looking at the supergravity spectrum, one can note a mapginige supergravity
tower of states to the single trace operators and their ddacgs in the conformal
field theory living on the flat asymptotic boundary of tHel.S; space-time. The
matching also extends at the level of correlators of thoseaiprs.

Motivated by the holographic principles, the afore-memtid hints guide towards a pos-
sible duality principle that connects two apparently distisectors, namely a supergravity
theory in AdSs space andV’' = 4 SYM theory inD = 4. This indeed is the AdS/CFT
correspondence which we will jot down in more precise mamegt.

1.3 The AdS/CFT Conjecture

The AdS/CFT correspondence, in gongest forms based on the open string-closed
string duality which states that the dynamics of open s&rizgntains that of closed strings.
As we know, closed string contains gravity whereas the opengsspectrum does not
contain graviton. This correspondence, in its simpledirgeimplies a duality between
type 1IB string theory on asymptoticall{tdS; x S® with constant-form RR field strength
(generated by massless closed string modes)\ng 4 SU(N) SYM theory in3 + 1
dimensions (generated by massless open string modesgihmeters of the two theories
being related as :

gs - g}2/M7

912/MN =A=

4

(1.15)

4l At

A has a name -itis called 't Hooft coupling.
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The 't Hooft Limit

This verystrong formof the conjecture is physically intractable particulangce we do
not quite understand quantization of string theory in RRkgaaund itself. The 't Hooft
limit, namely, N — oo with A = g, N fixed provides with the following simplifications :

e Inthe NV = 4 SU(N) SYM theory we can safely neglect non-planar diagrams as
they are suppressed by ordersj—\é{g, g being the genus of the surface.

¢ In the string theory side, it also becomes simple and in tasiffices to work with
classical string theory inldSs x S° background which is much more well under-
stood. The justification lies in the fact that the pertunmgxpansion in string theory
is basically a genus expansion of surfaces. Correlatioctimmon a genug surface
usually scales ag¢~2. But in the 't Hooft limit, g, = £ itself goes to zero resulting
in vanishing contributions from higher genus surfaces.

Simplifying further : the Large X Limit

AdS/CFT conjecture probably finds its maximum usefulnesenwive further send the 't
Hooft couplingA to infinity. Two things happen :

e N =4 SU(N) SYM theory enters into a strongly coupled regime. Availgi#etur-
bative techniques therefore becomes invalid.

e However, the dual string theory simply reduces to supeitytavihis can be vi-
sualized on noting that perturbative expansion of the Lagjem in curvature in
this background is basically an expansioniirz, since the Ricci scalar scales as
R ~ llg = Aj. In large A limit, we can therefore safely drop out higher order
curvature terms and end up in achieving a supergravity kiihe full superstring
theory. This supergravity theory is classical type |IB sgpavity in AdSs x S°
space-time.

e This is the weak form of AdS/CFT correspondence but the nmastable one from
the gravity side of the story. Since it relates the weaklypted supergravity to a
strongly coupled quantum field theory, this formbislieved to beéhe most useful
version of all the three forms in taming otherwise quiteantable strongly coupled
phases of the boundary gauge theories. In this thesis, Wéevidlealing with this
weak form of gauge/ gravity duality principle only.
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1.4 Setting up the Dictionary

In the supergravity limit, thé0-dimensional type 1IB action, (1.1) reduces to

1 11
I = d" R—-=FZ?). 1.16
SUGRA 167G / z+/ 9] ( 951"5 ( )
We are focusing on non-dilatonic solutions. Fo3 brane solution, as we have seen before,
the dilaton profile is constant and hence this can as well bsossero. To get to a form
suitable for reduction ove$® we write the metric breaking it explicitly as :

ds* = gzydx“dx” + 12d3. (1.17)

Hered(s; is the metric onS®. Takinggfw as the metric ofAd.S5, we end up in getting the
following 5-dimensional reduced action :

1
2 — S24/19®)| (R® — 2A) . 1.1

Here G5 is the5-dimensional Newton’s constant related tolitsdimensional counterpart
asGy = gll%. A is the cosmological constant and is given/by= —l%. The steps towards

obtaining thiss-dimensional reduced action with a negative cosmologicattant,A are
the following :

e The metric being diagonal, the full-dimensional Ricci scalar completely decouples
into two parts - the Ricci scalar aAdSs which we denote a®® and that onS®
which is a constant.

e The full 10-dimensionab-form field strength /% has non-vanishing contributions in
form of constand-forms onAdSs.

e The constant contributions coming from the Ricci scalarS9nand that from the
constant)-forms add up and give the negative cosmological constgmtang in
(1.18).

A more detailed discussion on this can be found in [15, 16].
From the5-dimensional point of view theldS; space-time can therefore be thought
of as a maximally symmetric solution of Einstein’s equationpresence of a negative
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cosmological constant :
1
Rap — QRGAB = AGap. (1.19)

This is a solution with constant negative curvature such:tha

1
Rapep = 2 (GacGpp — GapGre) . (1.20)

For future use, we will, at this point, introduce new cooedes known as the Fefferman-
Graham coordinates. The metric for thelS; space-time in this coordinates takes the
form: )

ds* = % (dp2 + nwdz“dz”) . (1.22)

p is the radial coordinate here and satisfies 0, p = 0 being the boundary. But it is
worth noting that the metric having a second order poje-at0, does not yield an induced
metric on the boundary. However, one is allowed to define dotoral structure at the
boundary through defining functionr(p, z) which has a first order zero at the boundary.
In the interior, however;(p, z) is positive definite everywhere. With this, one can define
boundary metricg®” as

g9 =r2Gl,— (1.22)

r(p, z) is otherwise arbitrary. We can therefore as well chaosep. With this choice the
boundary metric becomes flat Minkowski, namesl) = 7,.,.

Now we define asymptoticallyidS; (AAdS5) space-time as a spacetime having the
following form of the metric in Fefferman-Graham coordiestt

l2
ds* = p (dp® + gw(p, 2)d2"d2") (1.23)

where we have replaced the flat Minkowski payj, in (1.21) byg,.(p, z). This metric is
free of coordinate and curvature singularities upto a firatial distance from the bound-
ary. Furthermorep — 0 limit of the metric, g, (p, ) is smooth and takes the following
expansion near the boundary:

guw(p,2) = g0 (2) + 92 (2)p* + giD (2)p* + ) (2)log(p?) + ... (1.24)

It can be shown the above form indeed yields a solution oftEin's equation in the pres-
ence of a negative cosmological constant.
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Justification

The above form of asymptotically AdS metric gets its juséifion from the fact that one
can precisely draw a one-to-one map connecting the bulkatifiorphisms preserving the
form of the metric given by (1.23) and boundary conformahgfarmations.

Under such bulk diffeomorphism thg, of (1.23) transform infinitesimally as:

09 (p: 2) = 20(2)(1 = p0,) gy (p; 2) + Vyuaw(p, 2) + Via,(p, ). (1.25)

HereV is the covariant derivative in terms of the metgg, anda, = a”g,, is defined as:

1 P / v / /
a*(p,z) = 5/ dp'g" (p', 2)0u0 (¢, 2). (1.26)
0

It can be easily checked that under this bulk diffeomorpiistne boundary metric,
g,(f]y)(z) is transformed as

59\ (2) = 20(2)g{)(2), (1.27)

which is nothing but a Weyl transformation.

Therefore, in asymptoticallyldSs space-timeSO(4,2) conformal symmetry of the
boundary theory can be realized as the asymptotic symmeigpg The lifting of symme-
try from boundary to bulk can be easily understood in ternsrople scale transformation.
A uniform scale transformation of the boundary coordinates Az, A being constant gets
lifted to z — Az, p — Apinthe bulk.

Fields in AAdS5

Just like the metric itself, any field(p, z) in AAdS; space-time also assumes an asymp-
totic expansion near the boundary:

O(p,z) =p° (QD(O)(Z) + 0@ () 4+ ...+ B (2)p* 4+ BV (2)log(p?) + ..). (1.28)

The job is now to impose the equations of motiondg(, ) which includesg,, (p, z)

as well. No matter whether the equations of motion are linedrperturbations around
the AdS; or the full non-linear equations of gravity, the field eqoas of motion will

be second order differential equationsgrand hence will have two independent series
solutions. Asymptotically these two solutions will goasandp®*2" in the leading order.

10
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Now we jot down the main features of the series solutions:

Expect the coefficientp®™)(z), all other coefficientsp*)(z) for 0 < k < n are
algebraically determined in terms @f% (z) and their derivatives up to ordéi.
(") () remains undetermined by equations of motion.

The coefficient®®")(2) is also determined b$ () (z) and their derivatives in a sim-
ilar spirit.

We call @ (z) the non-normalizable moded®")(z), the normalizable modend
d(")(z), the anomaly coefficientIn other words, though a bit misnomer (strictly
speaking, these are only coefficients of expansions, nduéi@oor mode!), thexon-
normalizableand thenormalizablenodes refer to the leading term in the asymptotic
expansion of the two linearly independent solutions of tllkelfequations of motion.

Once we invoke regularity in the interior of th&lS space-time, the normalizable
mode corresponding to any linearlized perturbation ardhedidS space-time gets
fixed in terms of the corresponding non-normalizable modeyugh the normaliz-
able mode is1ota local functional of the non-normalizable mode. This is aegE
observation and it goes through even when we consider patian around more
non-trivial backgrounds likeddS black holes. We will use these ideas later on in
this thesis.

The Dictionary

With the basic set up ready, we are now in a position to statditttionary of gauge/gravity
duality.

e Corresponding to every fieldp in the bulk gravity, there exists a gauge-invariant

operator which we will denote a94. For instance, the bulk metric corresponds
to the stress-energy tensor at the boundary whereas the fialds in the bulk are
mapped to boundary symmetry currents.

The non-normalizable mod&© in the asymptotic expansion, (1.28) is identified
with the source that couples to the operaty,in the boundary gauge theory. As an
example, the boundary metri () is identified as the metric on the flat Minkowski
space on which the gauge theory lives. It couples to thessénesrgy tensor operator
of the boundary gauge theory.

11
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e The partition function on the bulk side with®) specified as boundary condition,
gives the generating functional on the field theory side.

ZString [@ |p:0: @(O) ] = / Do exp(—S[q)]))
P d(0)

Dirichlet Boundary condition
= <e:cp (— / ®(0)0¢)> . (1.29)
QFT

In the limit when 't Hooft coupling is large and so is the ranktloe gauge group,
as discussed earlier, the left hand side of (1.29) can beappated by supergravity
partition function with the actionS replaced by the supergravity actiofk, ..

e This, however, is not the end of the story. In order to end ugeitting finite corre-
lation functions for the local gauge-invariant operatarshe boundary theory, one
needs to get rid of the divergent parts of the supergraviigacThe methodology to
making the observables in gauge theory sector finite by gdajppropriate counter-
terms to supergravity action is well known in the literatared goes by the name,
“holographic renormalization” technique.

e Finally, functional differentiations of the renormalizedtion with respect to the
source ®) give correlators of all the local gauge-invariant opersitor

e For AAdSs space-time, itis always possible to find a suitable renaeatibn scheme
in which the normalizable mode of gravitogﬁ)(z) can be identified with boundary
stress energy tensor.

1.5 Finite Temperature : Thermal Retarded Correlators
in AAS/CFT

In the thesis, we will mostly deal with finite temperatureteyss. The dictionary we just
gave is typically for zero temperature. In the bulk graviegter the most natural way of
introducing temperature is to consider black holes inAd& geometry. The intuition fol-
lows from the fact that stationary black holes behave lilerttodynamical objects in all
respect. The surface gravity at the black hole horizon caldétified with temperature
while the mass, with the total energy. Furthermore, in allaipical processes known, the

12
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area of the black hole event horizon can only increase maigzly, justifying its iden-
tification with entropy. Also, for any dynamical process tilack hole horizon possesses
uniform surface gravity mimicking the thermodynamical #iguation. Since we are in-
terested to study strongly coupled gauge theory on Minkogs&ce-time, we will fix the
boundary metric tg),, by imposing Dirichlet boundary condition. We will focus dmet
cases where the topology of the horizon is the same as thaedfdundary. Considering
all these, &-dimensional black hole metric which asymptoteslits; takes the form:

dr?

ds* = —r2f (r)dt* + 2 ()

+ r2(dz® + dy?* + d=?), (2.30)

with f (r) =1 — :—é ro being the position of the horizon.

With proper coordinate redefinition, this metric can as Wwelre-written in Fefferman-
Graham form, (1.23). In the asymptotic regiony» oo, f () goes tol, reducing the form
of the metric to that ofAd.S; space-time.

In the thesis, we will also deal with a larger class of blaclersnlutions obtained by
boosting the boundary coordinatés,z, y, z). The class of solution is obtained by replac-
ing dt — u,dx", u, being a time-like vector in Minkowski space, satisfyiagu,n,, =
—1. We further construct the projection vect8y, = u,u, + 7, that projects on the spa-
tial slice orthogonal ta;,. With all these ingredients, the metric for the class of beds
solutions, known as thisoosted black branes given by

2
r2f(r)

The boosted black brane metric can also be cast in the Feffetaraham form (1.23).

ds® = =1 f (r) wu,dz"dz” +

+ r?P,, dr"dx" . (1.31)

In this form, the metric shows no coordinate singularitytlad way to the horizon. From the
Fefferman-Graham form of the above metric one can easily offathe boundary stress-
energy tensor. Whew* = (1,0,0,0) we retrieve back (1.30). With this choice of, the
energy density; and the pressure densify,are given by = 37*7* andP = 7T*. These
are exactly of the same form as that of black body radiati@hlence establishes the fact
that (1.31) is indeed the holographic dual for CFT stateb@nrhal equilibrium.

13
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Thermal Retarded Correlators

We will end this discussion with a prescription to thermaarded correlators that we will
use later on. In quantum field theories, retarded corredatmasure the causal response to
a source. It was argued in [17] that one way to ensure causgabnse in a theory of gravity
is to replace the regularity condition of the solution inithierior of AdS with the incoming
wave boundary condition at the horizon. This is causal institese that classically probe
waves can only fall into the horizon but never come out. Oneéwoke this condition, the
two point function turns out to be the ratio of the normalieaénd the non-normalizable
modes.

Let us write the general solution of the bulk field as :

O(rt,z,y) = Alw, k)exp(—iwt +ikx)r (14 ...)
+  Blw, k)exp(—iwt + ik x)r (14 ...), (1.32)

whereA_ < A, andA, > 0. Since in the leading order the Fefferman-Graham coordi-
nate,p is related to the Schwarzschild coordinategsp ~ 1 this leads to identifying4
with the non-normalizable mode or the source &dith the normalizable mode or the
response.

The two point thermal retarded correlator then takes the {&8, 19]:

(0$04) =C i(&’, B + Contact terms (1.33)
C is a scheme independent constant.

It can be shown that the retarded correlator has a pole onénltie non-normalizable
mode, A(w, k) vanishes. This vanishing of non-normalizable moedenfalling wave
boundary condition at the horizon gives a very special gmiuor ¢(r, ¢, z,y). These are
called quasi-normal modes of the linearlized perturbatioound the black brane space-
time. Going by our earlier logic this means, the poles of #tanded propagator of the
boundary gauge theory can ocdifithe dispersion relations corresponding to quasi-normal
modes are satisfied.

14
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1.6 Plan for the Rest of the Thesis

Upon understanding the basic notion and the tools of hofgrave will proceed further,
in subsequent chapters of this thesis, to develop metheddgi deal with different non-
equilibrium scenarios in holographic set-up. We will deyetools and prescriptions con-
templating on applications towards physically interegfmoblems like quantum quench,
Fermi liquid theory in non-equilibrium and cosmologicabéwion of the universe. We
will argue some of the methods developed might as well be wargh useful in under-
standing and improving upon existing tools to study ultlatie@stic heavy ion collisions.
As mentioned in the overview, the methods we would use wilpbmblem specific, but
we will broadly categorize them in two parts. Following owmderstanding of holographic
meaning of equilibrium, these are,

(A) Going to a temperature other than the Hawking temperatutb@black hole

As we mentioned in previous subsection, in any dynamicalitational process involv-
ing black holes, attaining Hawking temperature at the lorigignals the equilibriation.
Hence, at the level of free-energy, if we somehow make th@éeature off-shell it would
enable us to study the dynamics of equilibriation. Motidabg Bragg-Williams methoth
condensed matter physics [20] and its adoption in black pleysics and holography [21],
we will use this idea to analyze, holographically, the phmeanon of temperature quench
in specific black hole set-up. Apart from the dynamics, wd sek, even the analysis of
phase transition particularly of the first order, which otise is difficult to capture in
the framework of Landau theory, becomes easier in this fveorie ThisBragg-Williams
methodand applications thereof involving different black holegeetries will be discussed
in detail in chapter 1 of this thesis.

(B) Obtaining time-dependent backgrounds suitable to studyaguilibrium phenom-
ena

There are different ways to construct time-dependent backgls. In chapter 2 of this
thesis we will discuss how to obtain time-dependent bullcegane dual to specific non-
equilibrium states starting from the observables of thenblany theory. This analysis is
based on the Fefferman-Graham constructiod 4ilS spaces which we have already de-
veloped in section.4. We will consider non-equilibrium fluctuations on the topegjuilib-
rium states which holographically maps into incorporatjo@si normal mode fluctuations
on theAdS black hole in equilibrium. Upon constructing the backgréuwe will use this
to find the spectral function in specific non-equilibriumtega We will show the useful-

15
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ness of the mechanism developed in understanding Fernd lilgeory for non-equilibrium
strongly coupled systems.

The other methods of constructing time-dependent geoesedre aimed at cosmologi-
cal applications. The first of them is based on Verlinde'sif#2] that the time in theldS
bulk and that of the boundary conformal field theory are déife and a dynamic boundary
space-time can in principle be obtained starting from acshatlk. This idea was further
extended with charged black holes in [23]. Motivated by ¢hego, we will use the tech-
niques of holographic renormalization with modified bounydaonditions to come up with
cosmological evolution on the boundary.

The second one in this line starts with a dynamical bulk fits&he time-dependent
cosmological solution in supergravity is scarce in genevdék, however, manage to find
explicitly time-dependent brane solutions ifi and 11 dimensional supergravity which
takes Kasner-like scaling in world-volume directions oe brane. Such solutions in near
horizon limit reduces toldS; x S° and AdS; x S* with Kasner scaling in transverse di-
rections for Kasnei»3 and M5 brane solutions respectively. Th&lS; solutions with
Kasner scaling as solutions fedimensional Einstein’s equation with a negative cosmo-
logical constant was however studied in the literatureegitinthe context of understanding
gauge theory near cosmological singularity [25] or in thetegt of anisotropic expansion
of strongly coupled quark gluon plasma [26]. We will, howmew@ncentrate on cosmo-
logical implications, namely realizing cosmological avixdn on probe dynamic branes in
these time-dependent backgrounds and find interestinggegaesces like dynamical com-
pactification of extra dimensions.

The third chapter in this thesis is fully devoted to such colemical applications.
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The Bragg-Williams Method

Prelude

Going by the plan chalked out in the introduction, we stathvaur first scheme to go
out of equilibrium through a construction of an effectivedrenergy which is off-shell in
temperature. This construction which goes by the name ‘@B4gliams Method” was,
however, originally proposed as an efficient mean field teghento study phase transition
phenomena in condensed matter physics. As we know, witlkimban field approxima-
tion, phase transition is primarily described via Landaeotly. Under the assumptions that
the order parameter is small and uniform near the transitios theory provides us with
a wealth of information about the nature of the phase tramsitt is based upon a power
series expansion of free energy in terms of the order pasangte terms in this expansion
are normally determined by symmetry considerations of thesps. Furthermore, owing
to the smallness of the order parameter, only a few leadimgstare kept. The usefulness
of the Landau theory lies in its simplicity as most of its potidns can be achieved by
solving simple algebraic equations [1]. While this the@ymost suitable in describing a
second order phase transition, one needs to be somewhatl careeat first order phase
transition within this framework. This is because, in a fosder transition, order param-
eter suffers a discontinuous jump across the critical teatpee. If this change is large, a
power series expansion of free energy may acquire ambkegui®ne then requires a more
complete mean field theory. This is where the Bragg-WilligB¥/) method [2, 3] comes
in handy. Originally used to describe order - disorder titaors of alloys, it has a wide
range of applications [1, 4]. In this approach, one conssran approximate expression for
the free energy in terms of the order parameter and uses thitiom that its equilibrium
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value minimizes the free energy. In the following sectiomswill extend this novel idea to
study phase transitions involvingylS black holes. We will start with SchwarzschiltiS
black hole and later generalize it for charged black hole$ds. Going off-shell to study
black hole phase transition within the BW framework getspgupfrom a previous work
of Fursaev and Solodukhin [5]. We will discuss their applokater in this chapter. In the
process we will propose one possible construction for aeceffe off-shell free energy of
the boundary gauge theory. Finally we will show, through acdc example, how this
method can be immensely helpful in understanding the phenomof quantum quench.
But even before going into its applications, we need to knw& ¢onstruction in a set up
where it was born. This chapter is primarily based on our Wi@k7].

2.1 Bragg-Williams construction: a brief review

This section is a review of BW theory and is pedagogical imretlt has two subsections.
In the first subsection, we discuss Ising model and use BWythea:apture second order
paramagnetic to ferromagnetic transition. In the next satisn we describe how to gener-
alize this concept for Schwarzschild black hole in AdS sgawreproduce the qualitative
features of the first order Hawking-Page transitions.

2.1.1 Paramagnetic to ferromagnetic transition

Bragg-Williams construction is perhaps best describedsimeg model [1]. Let us consider
Ising model on a lattice where, on each site, the classicahgpiables; takes values1.
These spins interact via a nearest neighbour coupling0. The Hamiltonian is given by

H=-J]) oo (2.1)

Here the sum is over the nearest neighbioaind \’. The order parameter is& =< o >,
the average of the spin. For spatially unifonmthe entropy can be computed exactly. The

total magnetic moment is
_ Ny — N,

N )
whereN,; and/N_; are the total number of 1 and—1 spins respectively. The total number
of lattice sites is denoted hy. The entropy is the logarithm of the number of states and is

(2.2)
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given by
S = ln(NCN+1) = hl(NCN(H—m)/Q) (2.3)

which, for entropy per unit spin, gives

s(m) = % =In2-— %(1 +m)Iln(l +m) — %(1 —m)In(l —m). (2.4)

In BW theory, the energy: H > is approximated via replacing by its position indepen-
dent averagen. Thus

1
E=-]) m’= —§Jsz2, (2.5)

wherez is the number of nearest neighbours in the lattice. One tbestraucts the BW free
energy per spin as

E-TS
N

1 T T
= —§sz2 —TIn2+ 5(1 +m)In(l +m) + 5(1 —m)ln(l —m)(2.6)

f(Tv m) =

The BW free energy (7', m) can be plotted as a function of for various temperatures. It
can be checked that, f@r > Jz, it has a single minimum at = 0. However, forl’ < Jz,

two minima occurs for non-zero values of leading to paramagnetic to ferromagnetic
transition. Critical temperatur@.) for this second order transition can be found by setting
first and second derivative gfto zero with the resulf,. = Jz. More details about Bragg-
Williams mean field construction in the context of statigtimechanics and condensed
matter can be found in [1, 4].

2.1.2 Hawking-Page transition: AdS-Schwarzschild black ble

We can implement similar construction for AdS black holesnvadl. Let us consider a
Schwarzschild black hole im + 2) dimensional AdS space. The metric is given by

ds* = =V (r)dt* + V(r) tdr® + r2dQ2, (2.7)

with

(2.8)
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Here M is a parameter related to the mass or internal energy of tleeaind! is the inverse
radius of AdS space. We have $et+ 2) dimensional gravitational constaft, . » to one.
The black hole has a single horizon wherevanishes. We will identify the horizon radius
asr, . The dimensionless temperature, energy and entropy tenare give by

(n+ 1)+ (n—1)

T=IT = — ,
4rr
=n+1 =n—1
BolE— n(r"tt 47 )’
167

_pn
S=—. 2.9

- 2.9)

Herelr = r,.. Before constructing the BW free energy, we will have to decon an
order parameter. Noticing the form of the entropy and thegnet is only natural to
considerr as the order parameter. We will see later that this ordempatier has right
behaviour expected from the instability associated wiik liole. We are now in a position
to construct the BW free energy(r, T') as

- _ n(rFtt 4 el

) - _ 7"
F(rT)=E—T8 = o ~T (2.10)

A plot of the free energy in five dimensions as a functiomr ébr various temperatures is
shown in figure (2.1). Note that in (2.10), the temperatur@ pgarameter. Its dependence
on7 as given in (2.9) appears after minimizigggwith respect ta=. At this minimumJF
reduces to the on-shell free energy of the black hole. Itismgby

(= 1)

= Floin = = 167

(2.11)
We identify the AdS free energy with equals to zero. The first order transition appears

when

or

are satisfied simultaneously. This happens for

_ 3
r=1, and T, = —. (2.13)
2m

Below this temperature, black hole phase becomes unstatdecan be seen from the
dashed line of figure (2.1), the = 0 phase is preferred. This is identified as the AdS
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i
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Figure 2.1: BW free energy for five dimensional AdS-Schwarzschild blhaoles plotted
against horizon radius for different temperature¥. The solid line has two degenerate
minima - representing co-existence of black hole phaseifmim at = 1) and the thermal
AdS phase (withm = 0). This happens at a critical temperatdfe = 3/(27). While
above this temperature black hole is stable (dotted lind} i a preferred phase belGw
(dashed line).

phase. This is a first order transition causing a discontiswbange in the order parameter
7. This instability is well known in the literature #ise Hawking-Page (HP) instabilify3],
where below a critical temperature, a AdS-Schwarzschddibhole becomes unstable and
crosses over to the thermal AdS space via a first order preasstion.

Upon constructing the BW free energy for SchwarzschiléS black holes, we now
move onto incorporating charged black holeslihS space in this frame-work.

2.2 Charged black holes

As discussed in the introduction, fofa+1+¢) dimensional theory of gravity compactified

on AdS, 1 x X1, the dual field theory lives on a space whose topology is santieah of

the boundary ofAdS,, ;. The isometries ofX? becomes global symmetries of the field
theory. Now whenX? is a five-sphere, th€O(6) isometry allows one to introduce three
independent R-charges through rotatiosndirection. These three R-charges correspond
to the three Cartans ¢fO(6). Consequently, one can turn on three independent chemical
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potentials in\' = 4 SYM. At finite temperature, the gravity dual of this theonthe R-
charged black holes of/ = 2 gauged supergravity [9-11]. For the special case, when
the charges are equal, these black holes reduce to the Beldsrdstrom black holes in
AdS space. Many features of these black holes and their gaegey duals were studied
in[12, 13].

Furthermore, it is also clear from the previous discusstbas working at the super-
gravity level corresponds to analyzing gauge theoriesfatiie coupling, with large num-
ber of colours. To see any finite coupling/finite colour efffi@cgauge theory, one requires
studying string theory on AdS. However, since this is as ymi@ly understood area, many
authors have looked into the effects of addirigcorrections to supergravity. See [14-17]
for an incomplete list of references. In general, it is alspeeted that string theory will
introduce higher order gauge field corrections to supertyractions. These corrections,
in turn, would modify various equilibrium and non-equillom properties of the gauge
theory. The reader can look at [18] for work in this directioht finite temperature, the
gravity duals of these are the black holes in the presencegbéhderivative corrections.
Construction of such black holes becomes progressiveligulif as one introduces more
and more higher derivative terms in the action. In fact, imyeases, one relies on per-
turbative construction of the black holes. However, thetiste a rare example of exact
black hole solution which takes into account a specific sgianige field higher derivative
corrections to all orders. These are the black holes in thre-Bdeld (Bl) theories in the
presence of a negative cosmological constant. Bl blackshe&e constructed in [19, 20].
Assuminghat there exists a dual gauge theory, equilibrium and ruikibrium properties
of the finite temperature gauge theory were studied by matipesiby exploiting the black
hole solution [21, 22]. We have discussed previously thdtragpla gauge field in the bulk
is equivalent to turning of a chemical potential in the gatigory. Since Bl black holes
accommodate all order gauge field corrections, they incatpdarge chemical potential
contributions into the gauge theory. In this section we adltiress some issues along these
directions.

This section is structured as follows. In the next subsaatie review the Born-Infeld
black hole solutions iMdS space in(n + 1)-dimensions. In subsection 2 we compute
the Born-Infeld actions in two different thermodynamicakembles - namely the fixed
potential and the fixed charge ensembles. In the followirdzgsation we compute differ-
ent thermodynamic quantities in the two ensembles dirdigily the action. In subsection
4, we go into the study of phase structure of those black holgsand canonical (fixed

24



Chapter 2. The Bragg-Williams Method

potential) ensemble. Although those have already beensuadied [19, 23, 24], we use
Bragg-Williams technique to find an off-shell potential. \&fart with an easier system,
namely the Reissner-Nordstrom, which is the zeroth ordpaesion of Born-Infeld solu-
tion and study its phase structure using Bragg-Williamsstaction. This again shows a
first order phase transition corresponding to the Hawkiagephase transition from black
hole phase teldS phase. We then repeat the same exercise for Born-Infeld beibee next
subsection, we continue this study, but this time with Rrgbalack holes whose phase
structure exhibit both the first and the second order phaseitions. With this we move
on to proposing some possible gauge theoretic free energgtroction in the last subsec-
tion. We successfully construct off-shell boundary patdstdual to Reissner-Nordstrom
and Born-Infeld black holes.

2.2.1 Born-Infeld black holes in AdS space

We start by reviewing some essential features of Born-théeition and its black hole so-
lution. Let us consider thé: + 1) dimensional Einstein-Born-Infeld action with a negative
cosmological constant of the form

1
5= 167G

/ d"e/ =g [(R —2A) + L(F)} , (2.14)

whereL(F) is given by

FuF
W) . (2.15)

L(F) :452<1— T+

The constang is called the Born-Infeld parameter and has the dimensionasfs. In the
limit 5 — oo, higher order gauge field fluctuations can be neglected hrdsfore,L(F)
reduces to the standard Maxwell form

L(F) = —F"F,, + O(F*. (2.16)

Thus the action, S, reduces to the standard form for whiclRthesner-Nordstréom in AdS
is the black hole solution. Thermodynamics and phase streicf such black holes were
studied in detail in [12, 13}

In what follows, for simplicity, we will work in a unit in whik 167G = 1, G being the Newton’s
constantinn + 1) dimensions.
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Equations of motions can be obtained by varying the actidh mispect to the gauge field
A, and the metrig,,.. For A4, and forg,, those are respectively given by

m(%:%) =0, (2.17)

and
2F,o F,°

1+ S
whereR,, is the Ricci tensor an®, the Ricci scalar. In order to solve the equations of
motion, we use the metric ansatz

1 1
Ruu - QRg,uu + Agw/ = _gw/L<F) + (218)

2

dr?

ds® = —V (r)dt* + Vi)

+ f3(r)gijdz’da?, (2.19)
The metric on the foliating submanifold,;, is a function of coordinates’ and spans
an (n — 1)-dimensional hypersurface with scalar curvatimwe— 1)(n — 2)k, k being a
constant which characterizes the afore-mentioned hydarcsi Depending on whether the
black hole horizon is elliptical, flat or hyperbolic, k can tad&en ast-1 and0 respectively
without any loss of generality. For the metric (2.19), wedawon-vanishing components
of Ricci tensor

V// V/R/
t —_ —— — — _—
R; = ( 1) SR (2.20)
V// V/R/ VR//
rf=———(n—1 —(n—1 2.21
i (v 2 1 n—1\/1/ i
R} = ( R ey V(R )])@., (2.22)

where the primed quantities denote the derivatives witpgetstor.
Let us consider the case where all the componentd‘dfare zero except™. In that case
(2.17) can be immediately solved to yield

S o )
LT g “2

Hereq is an integration constant and is related to the electroetagoharge. From (2.23)
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we can also find the electric gauge potential as

A 1 q n—2 13n—-4 (n—1)(n—-2)¢
P o2 op —272 2 — 27 232y2n—2

} &) (2.24)

whereg is a constant and can be interpreted as the electrostatintadtdifference between
the black hole horizon and infinity andis a constant given by = % 2F) is a
hypergeometric function. Furthermore, we chogsa a way that makesl, vanish at the

horizonZ.

1 ¢ n—2 1 3n—4 (n—1)(n—2)¢*

¢:Erf22 1[2(n—1)’§’2(n—1)’_ 2327202

I (2.25)

Now if F"* is the only non-zero component of all ti&*’s, one can easily check from
equation (2.18) thaR’ = R! and hence, from (2.20) and (2.21) it follow®'(r) = 0
which has two solutionsf(r) = r and f(r) = Constant. We will consider the case of
f(r) = r here. With this, and setting = —n(n — 1)/2/%, we get the solution fob/(r)
as [20, 24]

- m 43 1
Vir) = k- rn—2 i (n(n - 1) i 1_2) *

oD 2‘ffn 2/\/2527«% 24 (n—1)(n — 2)¢%dr. (2.26)

m here is an integration constant. Later we will see that thiglated to the ADM mass of
the black hole. The integral can also be expressed in termmgp@Ergeometric functions:

- m 432 1 Qﬂﬁ\/zﬁ%znd T (n—1)n-2)
V() = k-t (n(n i l_) e EE

2(n —1)¢? n—2

R 3n—4  (n—1)(n—2)¢

1
2n—1)2"2(n—1) 232202

]. (2.27)

n,r2n74

It is worth mentioning here that there is an ambiguity in toeér limit of the integral
in the RHS of eqn.(2.26). In order to fix this up, one has to kevagain the fact that
V (r) should reduce to that of Reissner-Nordstrom [12] ofice> oo limit is taken. This

2Actually A; atthe horizon = . cannot be chosen arbitrarily. The event horizon of the afoeationed
background is a killing horizon of killing vecta?, and therefore contains a bifurcation surface at r
where the killing vector vanishes. This in turn demands tr@shing ofA; atr = r,. if the one formA is to
be well-defined [25, 26]. A more detailed discussion regaydhis can be found in [27].
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tells that the lower limit of the integral should be such tihatintegral vanishes at that limit.

Black hole horizon satisfiels () = 0. Denoting the solution as = ., one can express
m in terms ofr, as

_ e [ 452 1]n 2V2pry

nn "+ n—l

V2 4 (0= 1)(n - 2)¢?

(2.28)

N 2(n —1)¢* [n—2 1 3n—4 (n—1(n 2)q2]
nr’? n—2"2"2m—2 232r3" 2 '

Next, to find the temperature of the black hole, we follow tkendard prescription and
expandV/ (r) in Taylor expansion around= r, so that

oV
V(r) ~ E“:”(T —7ry)

Using this and a redefinition of the variablgthe radial and temporal part of the metric
reduces to the form )
T) (2.29)

r= T+2

ov

ds®* = dp? +p2d(8'r’

T=r4

g) should have a
periodicity of 27 and the periodicity i is therefore given by

A7

oV
or

Bon =

T=r4

This period is identified with the inverse of black hole temgpere, 7;, = i.

For our caseg—‘r’

can be easily found from egn. (2.26). Once again, one has to fix
r=r4

the lower limit of the integral and regarding this, the dission at the end of eqn. (2.27)
still holds. Finally the temperature of the black hole cormesto be

1 -2 432 2
e (R B e PO 9
(2.30)

which matches exactly with the expression of temperatutainéd in [20, 24]. From now
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on we will takek = 1 for all our computations.

There are normally two ways to calculate thermodynamic tji@es First, one assumes
that the black hole satisfies laws of thermodynamics and the¢go find thermodynamic
guantities. Second is to compute the action for a black hatewse it to derive various
state variables following standard prescription. Here wkfallow the second path.

2.2.2 Action Calculation

We will now calculate the black hole action in two differensembles. First, we will focus
on the grand canonical ensemble which is defined as a fixesfmtensemble. In the
language of thermodynamics, this can be thought of as ctingethe system to a heat
reservoir full of quanta at a temperatufg;, the reservoir being identified as a pure AdS
background with charged and uncharged quanta which aredrgctuate in presence of
a constant potential. The scenario is quite different in case of a fixed charge ahathe
canonical ensemble. Since AdS with localized charge is sotw@ion of BIAdS equation,
pure AdS background cannot serve the purpose of a heatogsédirturns out that extremal
black hole background is a good candidate in this re§ancbrder to keep chargé) fixed,
we, in this case, retain only neutral quanta in the heat vegef

2.2.2.1 Fixed Potential

The action for this is the one given in (2.14) analyticallyhtoued to Euclidean space
by takingt — ir. We then use the equation of motion given in (2.18) for theriméd
eliminateR to obtain the on-shell action as:

(2.31)

OL(F)  4F? 1
T n—1 (n-1) P2 ]’

5= [arriey=g[ 2
n—1

1+ 5

It is worth mentioning in this regard that since the spaceysrgtotically AdS, there is no
contribution from the Gibbons-Hawking-York boundary ter&lso the surface term that
arises from the variation of the action with respect to theggefield vanishes in this case,
since, for this particular ensemble, the potential is keqgdiatoo. Furthermore, since we

3This follows from an argument of [12] where the extremal klhole solution was used as a background
on which the free energy was computed for canonical ensetdeexpect this to hold good for our finite
case as well.

“4In grand canonical ensemble, an action calculation in femedsions was performed earlier in [23]. We
generalize the computation for arbitrary dimensions.
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contemplate on purely electrical solutions only (only remme component of’*” being
F7), the possibility of having a Chern-Simons term does nateaais well.

Now we use the equation of motion for the gauge field given id{Rand get the full
on-shell action as

Ly, = wn—1/ dT/ dr[l—;lr"_lJr b 11”"_1— p \/62r2n—2 Ny (n )2(” )]’
0 T4 -

n n—1
(2.32)
wn—1 being the volume of a unitn — 1) sphere. This integral is clearly divergent. This
is because of the infinite volume of the black hole spacetiifi@s is where the idea of
introducing a heat reservoir in form of background pure Ag&cetime, as discussed in the
beginning of this section exactly fits in. What we would dodsstibtract from (2.32) the

pure AdS action,
Bads 00 m
Tas = wWn 1 / dr / dr [Z—QT"*}, (2.33)
0 0

which is also evidently infinity.

In order to implement this regularization scheme [28] prbpeve put an upper cut-ofR?
on the radial integration, which we would eventually takertiinity. For the black hole
space-time to be smooth,, is given by the inverse of Hawking temperatufg,, given
in egn.(2.30).5445 can, in general, be anything. But there is one constrainis should
have the value which makes the geometries of the AdS and #ok hble spacetimes the
same on the asymptotic hypersurface defined byR. This is done by setting

m 432 , R?
— 1— -
ﬁbh[ R”—2+n(n—1)R * [?

_ %\/2@3%4 +(n—1(n—-2)¢

n(n —1)R"=3
3n —4 (n—l)(n—Q)qQ]]%

Bads [1 + %2}

2(n —1)¢* [ n—2 1
nR2=4 271 —1) 2" 2(n—1)’ 232 R¥n—2

(2.34)
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After some algebraic manipulation, this becomes,

ﬁAdS = Bbh 1— ml2 25%2 {1 _ \/1_'_ (n_ 1)(71—2)(]2}

2R" * n(n—1) 2p2R?n—2
(n —1)¢* n—2 1 3n—4 (n—1)(n—2)¢

nR:n-2 * 1[2(n—1)’§’2(n—1)’_ g ) (239

Using this relation along with eqn (2.28) and then takinglim& R — oo we finally get
the Born-Infeld action in the grand canonical ensemble as

Iec = wn1Pwm [sz T ;MQTK {1- \/1 + (n—Dn - 2)q2}

2 nn-1) 232r2n 2
2(n—1 1 n—2 1 3n—4 n—1)(n—2)¢?
- ( >q2 n,QQFl[ 5o ) _( )2( 2n—2 ) ]] : (236)
n rl 2(n—1)"2"2(n—1) 26%ry
As a consistency check of our result, we see that with oo limit,
o Th q°
[GC 300 - wnflﬁbh Ty o — l_2 Ti_2 (237)

which is exactly the same as the Reissner-Nordstrém aaiathé grand canonical ensem-
ble as obtained in [12].

2.2.2.2 Fixed Charge

In this ensemble, we, instead of fixing the potential at ibfjrix the charge of the black
hole. Then the action given in (2.31) is no longer the appab@one. Since the potential
is not fixed at infinity, the boundary term as obtained by theawi@n of the gauge field,

unlike in the case of fixed potential ensemble, has a norstaarg contribution given by

Fu
I, = —4 / A"z —h——_p, A, (2.38)

V1+ 5

which after some straightforward computation becomes

q n—2 1 3n—4 (n—1)(n—2)¢
I, =2(n— 1w,_ F - — 2.
s (TL )Wn 16bh T+n722 1[2(n _ 1)7 27 2<n — 1)7 2627“3”_2 ]7 ( 39)
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h being the determinant of the induced metric at the boundaaty.g, the radial unit vector
pointing outward. Not only that, we also have to subtractghee AdS background as
before to ensure the convergence of the integral, the diifar with the previous case of
fixed potential ensemble being only that in the present cak® Background cannot be
interpreted as the metric background or heat reservoirgagedrbefore.

no  (TH ny , 2V20r o
Iop + Iy — Tags = wn1fon |1} — l_; + 467} + W_f)\/%pri 2+ (n—1)(n—2)¢?

2(n —1)%¢? n—2 1 3n—-4 n—1)(n—2)¢>
e L s ey
nrl (n—1)"2"2(n—1) 25%r7

The metric background in this case is the extremal black. hidie action for the extremal
black hole can be found by substituting in (2.40), the coaditor extremality withr, =
Tez» Ter DEING the horizon of the extremal black hole.

The condition for extremality can be obtained by setfihg= 0 as

n o 4p Jrmt = i\/_ﬁﬁ V2 4 (= D)(n = 2)¢ = 0. (2.41)

— 9)pn—3 [_
(TL )rem + 12+n_1 ex

And with this the action for the extremal black hole becomes

re? (n—1)¢? n—2 3n—4 (n—1)(n-2)¢
fee = 20 V[ o - B
(n—1)wn—15n 0 + nrn—2 2 1[2(71— 1)°22(n—1) 2B%rey 2 |

(2.42)
Subtracting the extremal background, finally, the full Bémfeld action for canonical en-
semble becomes:

ez (TR 40 2287 -
fo = wnrfm |1 - {l_;L n(n —+1)} * n(n f 1+) \/262T—2F 2+ (n—1)(n—2)¢
2(n — 1)2¢? n—2 1 3n—4 (n—1)(n—2)¢
+ n—2 2F1[2 5 —, = s ]
nrll (n—1)"2"2(n—1) 2322
Tn72
— 2(n — w18 e;
(n—1)¢ ., n=2 1 3n—4 (n—1)(n—2)¢
2 - : 2.4
+ nTgm—Q 2 1[2(n - 1)’ 9’ 2(n _ 1)7 zﬁg,rgg_g ]}] ( 3)
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As a check of our computation, if we take— oc limit of (2.43) we get,

. T’ 2n —3)¢>  2(n—1 2(n —1)? ¢
]C' - wn—lﬁbh |:T’+ 2 x ( — 2) - ( )Tex - u n 2
p—ro0 ry n n ry

|-2.44

which is exactly the same as the Reissner-Nordstrom acsiobtined for the fixed charge
ensemble in [12]. Next, we calculate thermodynamic quiastdirectly from those actions.

2.2.3 Thermodynamical quantities

The state variables for the system can be computed from tlenag/, and . given in
(2.36) and (2.43) respectively.

2.2.3.1 Fixed Potential

The grand canonical free energy is givenBy- = E — T'S — Q¢. Now F is also equal
to %Tf' Combining these two definitions we can find the state vaeghbdr the system as
follows:

b= (%;ii ) 6 ﬁfh (3120 ) Bon’ (2.45)
S = ﬁbh(aa;ii)(é — Igc, (2.46)

Now for this ensembleg is a constant. Thus to find the partial derivatives keeping
constant, one has to substitute the condig%n: 0, which we obtain from (2.24) keeping
in mind that in this case is no longer a constant, but a functionof.

With all these, we get the state variables as:

rn 432 - 2\/_57’+ \/252 2 1 (n—1)(n — 2)¢?

Boon(n=1)7" nn—1)
2(n - 1)¢” n—2 1 3n—4 (n—1(n-2)¢
2 2F1[2< )1y ap ]}, (2.48)

using (2.28), which can also write this as

E=w, 1(n—1)m, (2.49)
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and

S = Adnw, rt, (2.50)
Q = 22(n—1)(n—2)w,_1q. (2.51)

2.2.3.2 Fixed Charge

In the canonical ensemble, the free energy is giveahy=- £ — T'S, which is again equal
to éﬁ. Then in a similar way as done before, one can find the correlipg state variables
as:

E = (@)q =(n—1m— (n— 1)me,, (2.52)
_ 6[0 _ n—1
S = ﬁbh(—a Bbh>q — Ic = 4mw, 11" (2.53)

wherem,, is given by

it (n—1)¢? n—2 1 3n—4 (n—1)(n—2)¢
ez F - — 2.54
* ? 1[2(n —1)'22(n—1) 232r2n—2 ]} )

Mez = 2 n nri-?
This expression fomn,, can also be obtained by plugging in (2.28) the condition for e
tremality, (2.41).

Having obtained the thermodynamical quantities, we woikld to study various stable,
unstable and metastable phases associated with the bleckFar that, we construct an
“off-shell” free energy, the saddle points of which dictatae (in)stability of the black

hole. The details of this construction is discussed in the sigbsection.

2.2.4 Construction of Bragg-Williams free energy & study ofphase
structure

In the case of — oo, i.e. for Reissner-Nordstrom black hole, we know from [123tt

there is a first order Hawking-Page (HP) transition. At aicalttemperature, the black
hole becomes unstable. The system prefers the AdS phasetrdimsition is of first order
in nature, marked by a discontinuous change in the gramitatientropy. Our primary
motivation would be to study the fate of this transition witers finite. So we would be
interested in constructing Bragg-Williams potential foorB-Infeld black hole. In order
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to do so, we have to first decide on an order parameter. To ticisvee note that a first
order phase transition is characterized by a discrete juntipecorder parameter. Like in
the case of SchwarzschilddS, in charged case also this jump shows up in the horizon
radius of the black hole. Indeed, at the Hawking-Page (H)tpAdS phase (identified
with », = 0) crosses over to the black hole phase (with non-zejo So again, we find it
suitable to use, as the order parameter. Before we go on to discuss the pmastist in

the Born-Infeld theory, we find it instructive to first anadythe Reissner-Nordstrom case.
In a later sub-section, we generalize this for Born-Infdltk holes. We, further, stick to
the grand canonical ensemble for the rest of our discussions

2.2.4.1 Reissner-Nordstrom

The Bragg-Williams free energy for a Reissner-Nordstroatklhole in a grand canonical
ensemble is given bW, = E — T'S — Q¢ with T and¢ treated as external parameters.
E can be found by taking — oo limit of (2.48) with the understanding that since we are
working in a fixed potential ensemble we have to wiitie terms of¢. In order to achieve
this we use the relation between charge and potential osRetisNordstrom black hole,

q
¢=-—=, (2.55)
CT+

which can be directly obtained by takimg— oo limit of egn.(2.25).
With this, the Bragg-Williams free energy for the ReissNerdstrom black hole is given

by

WEY = E-T5-Q¢

= Wn1 [(n — (1 = ) — 4mrt T + Z—Z(n - 1)} . (2.56)

The on-shell temperature can be computed by differengatif’}} with respect to-, and
then setting it to zero. The temperature comes out to be

(n —2)(1 — 2¢*) + nr2
472y, ’

Ty = (2.57)

which is the same as the — oo limit of (2.30) and also matches with the expression

5In eqn.(2.56)r, should be treated as an unconstrained variable. Only oh shes related tap and7'.
This can be found by inverting eqn.(2.57) for.
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for the temperature of Reissner-Nordstrom black holesiogthin [12]. The behaviour of
WELY as a function of the order parameter for a fixednd for different temperatures is
shown in the figure 2.2.

1.5+
1.0-

0.5F

0.5 2.0

-1.0F

-1.5F

Figure 2.2: This is a plot of W24 as a function of-, for fixed ¢. The phase structure
shown here is fon = 4 and for$=0.0003. The dashed line is for the critical temperature,
T = T,, the orange one is the transition involving a metastablsg@hanother feature of a
generic first order phase transition. The red, green, bldebtack lines are foil” > T, in

an increasing order.

We see from the phase diagram that tfietlerm present in the free energy expression for
n = 4 brings in an asymmetry i’} as a function of, and results in an emergence of
a secondary minimum at finite valueof. The value of VY at this secondary minimum
is greater than zero whéh < T, but becomes zero at the critical temperaflire T,. For

all T > T,, WEY is negative at the secondary minimum. Thus there is a phassition
from black hole to AdS as we tune the temperature bélpgwvith a discontinuous change
inr, atT = T,. This is, clearly, the signature of a first order phase ttarsoccurring at
T="T..

An analytic expression fof, can be obtained on requiring thEtZY is an extremum
with respect ta-, in equilibrium, i.e,(ag’%%) = (0 along with the condition that the free
energies of the ordered and the disordered phases matciyeataihe transition, which,

in turn, implies, W5 = 0. From these two conditions, we obtain the critical valuehef t

order parameter,, .
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For Reissner-Nordstrom case,(im+ 1) dimensions, the requirement, %)} = 0 gives

47T + /160272 — 4P (n — 1)2(1 — 26?)

) 2.58
" 2(n — 1) (2.58)
The other one, namelQ%) = 0 gives
T+
Ar 2T 1607272 — 412(n — 2)(1 — 2¢?
ry = T+ IGETo ~ 4P D)1 = &) 259
n

Equations (2.58) and (2.59) can be solved to yield the triansiemperatureT.. in terms
of the corresponding critical value of

- =D g 242, (2.60)

27l

This is precisely the same critical temperatufeas obtained from th&/ 5y vsr, dia-
gram, as expected.

Extremal Black Hole:

b=1/c

0.84F Non-Extremal Black
Holes

| | | |
005 0.10 015 020

Figure 2.3: The phase structure of Reissner-Nordstrom in fixed potiesrisembles’” = 0
line corresponds to extremal black holes. The extremakidtates are unstable. This plot
is for n = 4 and we have sét= 1 here.

A similar exercise can also be done keepinfixed and studying the phase structure vary-
ing the parameter). The resulting phase structure is shown in figure 2.4.

The behaviour shows, as expected, the features of first pitse transition at = ¢..
The analytic expression far = ¢. can be obtained from eqn.(2.60) as

1 . 4212172

Pe =~ o1 (2.61)
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0.6
0.4

0.2r

-0.21-

-04f

-0.6F S

Figure 2.4: This is a plot of WY as a function of-, for fixed 7. The phase structure
shown here is fon. = 4 and forT = 0.47. The dashed line is for the critical value of
potential,p = ¢., the blue one is fop < ¢.. The black, orange, red and green lines are for
¢ > ¢. in anincreasing order.

The full phase structure in — 7" plane is shown in fig.2.3. Having discussed the> oo
case, in the next sub-section we turn our attention to finite

2.2.4.2 Born-Infeld

It turns out, owing to the non-linear relation betwegandq as in eqn.(2.25), a complete
analytical treatment is difficult in this case. One way t@emvent this problem is to make
large 5 expansion and introduc}; correction order by order over the Reissner-Nordstrom
construction. However, this would not allow us to study thradg)-Williams potential at
finite 5. So we restrict ourselves to a semi-analytic approach tetoact the free energy.
This is done as follows. First we define a new variablas

c=—1 (2.62)

r_’_nfl

The horizon radius;, can now be rewritten as

¢c
ry(z,¢) = — — — (2.63)
{E2F1[2(n,21)7 %7 szn,zll)a ! 1)2(62 2 ]

We can write down the grand canonical Bragg-Williams freergyn for a Born-Infeld black
hole as
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Wiy = E —TS — ¢Q, (2.64)

whereFE, S and( are given by (2.48) with the substitution (2.63) being takare of. To
see howV5§, behaves with change in the order parameter, we, therefora pdrametric
plot. The behaviour is shown in fig.2,5vhich again shows a first order phase transition at
a critical temperaturél,..

Figure 2.5: WSS is plotted against, usingz as a parameter for = 4. We have fixed

¢ = 0.2 and have plotted for different values of temperature. Tlires is forT = T..
The blue and green lines are for> T, in an increasing order, whereas the orange line is
forT <T,

We would like to mention one point in this regard. For the Ree&-Nordstrom, in grand
canonical ensemble, we would observe this phase structilyendhen¢c < 1 [12]. For
Born-Infeld case also there is a similar critical value ferwhich can be determined by
plotting the on-shell free energy agaifistor different values of [23].

Interlude | : From elliptical to planar horizon

Our notion here is to consider the limit where the boundaryd¢he horizon) ofAdS,, . is
R™ (flat) instead of? x S (elliptical). For Reissner-Nordstrom in an asymptotigafldS
space in(n + 1) dimensions, the metric ansatz is similar to the Born-Infeide, (2.19)

5Those plots go down smoothly to = 0 as in the case of Reissner-Nordstrom. But unfortunatedy, th
feature is not clearly visible in this phase diagram becadisiee fact that, the parameter, x, we have chosen
for plotting goes as%. However, this feature can be easily checked from the egfmedor free energy
directly.
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and the solution thereof is

2 T2
+

yn—2 + T2n74 l_2’ (265)

[12] where k is related to scalar curvature. For ellipticabhizon .k = 1, whereas for
k = 0, the horizon geometry will be flat. This solution can, in fd obtained by taking
B — oo limit of (2.26). Thus fok = 0,

) , dr* r? - )
ds® = =V (r)dt* + vt e Z(dxi) : (2.66)
with
r? m q>
V(T) = l_2 — rn*2 + 7”2”*4. (267)

The limit in which one can go from the elliptic geometry of legizon to a flat horizon is

termed as “ infinite volume limit 7, since the area of a flat hoon is infinite. This limit

can be obtained by introducing a dimensionless paramgteith which we scale different
relevant quantities as [12]

n—1

r— Anr,t— AN Tntm — Am,q — A g, (2.68)

and finally then taking. — oo. In fact, one can check, this is precisely the limit in which
V(r) for k = 1 reduces to that fok = 0. Furthermore, thgn — 1) volume has also to be
scaled as

n—1
PdO2 = AT (day)?. (2.69)
=1
From (2.55), one can find the scaling for
b — A, (2.70)

In the same spirit, one can scale thermodynamic quantibes tTemperature, entropy,
Energy and thermodynamic potential scale as [9]

T = AT, S — S, E — Ao E, W — \aW. (2.71)
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The on-shell temperature, (2.57), on rescaling and themgpk — oo limit, becomes

nr2 — (n—2)c*?¢?

Arl?r,

TrN [rso00= , (2.72)
which is the same temperature as obtained directly by @iffiéating (2.67) with respect to
r, and dividing by4r ( The Hawking temperature of a black holg; = - wherex is
the surface gravity given by = —%ag;t l—r,. The physical reasoning behind this was
discussed before in the context of Born-Infeld black ho&se can repeat the same with

the V' (r) defined in (2.67) and come across the same expression foetatage. )

For Reissner-Nordstrom black holes in grand canonical emnde, Energy, entropy and
the Bragg-Williams free energy are given by

n

E = ;é;;é(n ~ D[ ) + :—;] (2.73)

S = %_4172}_1’ (2.74)
Qo = %dfc?(n — 1), (2.75)
WEL = 1“’6’;*5 [(n — D)2 (1= 2¢?) — dmrt'T + C—Z(n —1)|. (2.76)

With the scaling defined above and taking the limit> co thereafter, those become

n

E — A% fg;é (n—1) [ri—%?c? + 7;—; , 2.77)

S — ;%—4172”}_1 (2.78)
Qo = N e — 1, (2.79)
WEL = 2t n L [(n — 1)% — (n—1)r2c¢* — 4mr'T. (2.80)

167CG

Thus on taking\ — oo limit, all those quantities diverge. This is quite expeciesult
because, for a flat horizon geometry, the horizon area isitgfiSo, instead of total energy,
entropy and charge, one has to consider the correspondimgities. From (2.69), the

n

(n — 1) volumew, _; should also scale as,,_; — A\~ Elwnfl. Then the energy density,
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entropy density and off-shell free energy density are gbxen

E 1 i
_ _ — 1 [2g22 _+] 281
T Tere L (ool (281
S rfl
— = 2.82
° Wn—1 4G ’ ( )
Qd) 1 2 2 -2
_ _ — 1) 2.83
WRN 1 rr-n n— n—
Oy = A= [ DG - - Dt —amt 7). (280
9% _ () gives th hell
e = gives the correct on-shell temperature, (2.72).

Now following the discussion leading to egn.(2.60), one dagck that there is no real
solution forT, in this case. This is consistent with the infinite volumetlialen, because
as we arrive at the flat horizon geometry, there will be oncklhole phase and hence the
possibility of Hawking-Page phase transition from blackehim AdS does not arise at all.

2.2.5 R-charged black hole with spherical horizon: Instabilities

As mentioned in the beginning of this sectidi;charged black holes are asymptotically
AdS solutions to five dimensional” = 2 gauged supergravity [10]. These black holes can
carry three independent gauge charges and the stabilihesétblack holes were studied,
for example, in [29—-31]. Here we will only focus on singly epad black hole with spher-
ical horizon. The reason to study those black holes are hiegtéxhibit even richer phase
structure consisting of both the first and the second ordesitions.

For singleR-charged holes, the phase structure is shown in figure (R.i8)plotted in
theT — 1 plane wherg: is the chemical potential conjugate to the charge. Theréhaee
distinct phases, namely, the thermal AdS, black hole and arjenown phase. At a low
temperature and small chemical potential, the system iayawn thermal AdS phase. The
cross-over from AdS to the black hole phase is shown by thieddite in the plot. This is
the usual first order HP transition. The black hole phase atlfigmperature also becomes
unstable once the chemical potential is increased beyonti@tvalue. The correspond-
ing stable phase is unknown as yefowever, if a stable phase exists, this transition would
be a continuous phase transition marked by divergencesegifgpheat and susceptibility.

It may also be possible that there is no stable phase at all.
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T
0.8+
0.6+
_________ black hole
0.4r AdS unknowr
I 71
0.2+ T
I | I I I I | I I I I | I I I I | /1l
0.5 1.0 15 2.0 s

Figure 2.6: Phase diagram for the-charged black hole with single charge shown in tem-
perature, chemical potential plane. Line separating theAdS and black hole represents
the first order phase transition line given by equation (2)1@n the other hand, the line
between black hole and the unknown phase is a second ordertlie equation of which

is given in (2.106). The dashed line is fbr= 1/7 below which we can not extend various
phases.

The solid line in figure (2.6) represents this critical lindpon understanding, schemat-
ically, the rich phase structure @f-charged black holes with spherical horizon, we give
below the details of the phase structure.

The black hole metric with a singlé(1) charge is given by

ds* = —H ™3 fdt? + H3 (f*ldr2 + r2dQ§), (2.85)

where
m  r? q

In the above equationi? is the metric on unit three spherieandm are related to the
cosmological constant and the ADM mass of the black holeattiqular,/ has a dimension

of length. The zero of gives the location of the horizon and in the above paransgiaa,

(2.86)

r2’
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the horizon appears at= r, where

% - [? 2 4 4ml? :
'r’+=< ‘J+V(2+‘1)+m ) (2.87)
There is a non-trivial gauge field potential associated tith geometry and is given by
] 2 1 2
r“+q

From the above we see thais related to the physical charge. More explicitly, the pbals
charge

Q= \Jalr3 +a)(1+73). (2.89)
The chemical potential is defined as the valuelpht the horizon and is given by
2
aitr) (2.90)
ry+q

It will be convenient for us to scale all the dimensionful gtikes with appropriate powers
of [ and make them dimensionless. We write all these paramettrawar on the top. For
example, the dimensionless horizon radius and Hawking ¢eatpre of the black hole are
given by,

_ %2 4 g+ 1
et g=4 oo T4T

D= T e

Furthermore, we define the dimensionless Newton’s con§tadG = [°G and setG =

(2.91)

/4. With this convention, energy and entropy are given by

FE = gm +q, S=217*\/?+q. (2.92)

We would like to study the system in the grand canonical ebdemhere we treaf” and
i, as external parameters. The free energy is given by
. Pt 4+ 1) .

F:E—TS—ﬂQ:—Q(fz_ﬂ2+1>:—P. (2.93)

Here P is the pressure. Let us note thatchanges sign wheft + ji2 — 1 changes sign.
This is a first order transition and it leads to a crossovenf&xdS phase to the black hole
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phase. For the gauge theory this represents the deconfiaimgjtion. Given all these ther-
modynamic quantities, it is straightforward to computeghpecific heat and susceptibility.
These are given respectively by

Y

o _ (798 _ 20+ 27+ @343 -9V +q
n or ) 2+ 724 g2 — @2+ 27— 1
In

6_ =2 = 274 =2 5727 6q — 72_1
v - _C? _(r +qf)(7“7+7“:r T?Jr q—4 ) (2.94)
oji - M+ 2 qrr — @ +20—1
We note that specific heat and susceptibility diverge at
2+ P2 4 Gt — P +27—1=0. (2.95)

This represents the line of continuous phase transition.oe approaches this critical
line, correlation length diverges. This shows up, as abovéhe divergences of some
thermodynamic quantities. Near this critical line, thecklfoles are expected to exhibit
some universal features. These are encoded in a set ohtakponents normally called
a, B,~vandé. Going close to this line witlx fixed, we define exponents 3,y as

é ~ (T - Tc>_a7 Q - Qc ~ (T - Tc>ﬂv X ~ (T - Tc)_v' (296)

HereT, is the value of the critical temperature for the chogefThe critical line can be
expressed in terms &f and and is given later, see (2.106)). Similarly, one defifes
The other static exponents defined as

Q—Qc~ (i—f1)s. (2.97)

Here one approaches the critical line with a trajectory oiclvi is constant. For the black
holes in consideration, these quantities are easily cabteilland are given by

<a,6,7,5> _ (% % %2) (2.98)

Firstly note that these exponents are same as the one cairfputdack holes with planar
horizon [33, 34]. Secondly, they satisfy the scaling relagi

a+2604+vy=2, v=p(06-1). (2.99)
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Our main task is now to construct an effective potential tagitures all the phases that
we have just discussed. We will use the BW approach for thisgee. This approach re-
quires us to identify an order parameter. Noting the fadt fioaa first order transition, the
change in order parameter is discontinuous and for secatet,ot changes continuously,
we continue to use the horizon radio®f the black hole as the order parameter. Once a
suitable order parameter is identified, one constructs iVepBtential which depends on
the order parameter, the temperature and the chemicalt@btdrhis is given by

FrT,0) = E— TS — iQ. (2.100)

F(r, T, i) = 57 3—A4nT (2.101)

1472 — pi?

. 1 L V14T f2<3+ i )]

The saddle point afF, namely B
oF _
or

gives the equilibrium temperature. Using (2.101), fromi(2) we get

V1+72(1 427 — %)
27/ 1+ 72 — 12

Upon using (2.90), the above expression reduces to the d2edih). Furthermore, substi-
tuting (2.103) in (2.101), we get the on-shell free energyregsion as in (2.93). We now
proceed to studyF as we chang& andi. From the expression of temperature, it is easy
to note that it has a minimuffy, = 1/7 when7 = 0 andjz = 1. In what follows, we will
focus ourselves in the regidh > Tj, andji > 0. As noted before, the first order transition
line is given by the equation

0 (2.102)

T = (2.103)

P4t —-1=0. (2.104)

Expressed in terms &f andz, this equation reduces to

24+ +/1—p?
2 '

8For a black hole with flat horizon a similar construction wasvided in [32].

T = (2.105)
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represented by the dotted line in figure (2.6). On the othedhthe second order instability
line (2.95) reads as

_ (AR +T+A) (T + 2A)
T = 2.106
VaT AT -zAGE-1) (2.109)
where
A= —1D)i(a+1)35, T=p"+(A-2)p2+A>—A+1, (2.107)

This is denoted by the solid line in figure (2.6).

To see thatF (7, T, i) captures the whole phase diagram, we firsfifiand plotF for
various temperatures starting with= T, = 1/7. We start withz = 1. The behaviour is
shown in figure (2.7). We note that&t= T, = 1/, F has a minimum at = 0. Its first
and second derivatives with respecttalso vanish at that point. In this sense, it is a point
of inflection for F. If we increasel” further, we get minima for increasing valuesiof
representing stable black hole phases with increasing $izis is in complete agreement
with the phase diagram in figure (2.6). Next, we analyze tis¢esy for0 < i < 1. From
figure (2.6), we expect thak should show a HP transition as we increase the temperature
beyond a critical value. We precisely see this in figure (28)ere we have plotted
for i = .5. While the pointr = 0 is identified with the AdS phase, any finite valuerof
represents a black hole wittbeing the horizon. As we increase the temperature, we note a
crossover from AdS to the black hole phas@at Ty p = 1.433 /7. This is shown by the
dotted line in the figure. At this temperature the order patanr changes discontinuously
from zero to a finite value - clearly a signature of a first-orttansition. Now as we
decreasg, HP transition temperature increases. In particularifer 0, Ty p = 3/(27) as
expected for AdS-Schwarzschild black hole. Finally, we@asen beyondl. For i = 2,

F is shown in figure (2.9). Plot is shown for different temparaf starting with the critical
one (solid curve). Below this temperature, we reach the gkhown phase and the black
hole is unstable. At higher temperatures (dashed and dotie@), minima of the curves
represent the stable black hole phases.

We can continue the same exercise Tofixed at any value abové/mr and change
f. ForTyp < 3/(27) andj < 1, we first cross the HP line. Close to this poirF,
behaves similar to figure that of (2.8). Further increagirmit keepingl fixed, we hit the
continuous phase transition line leading to figure (2.9)r Fo> 3/(2r), the first order
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Figure 2.7: F is plotted as a function of the order parametéor i = 1. The solid, dotted

and dashed curves are for=1/7,1.01/7,1.015/x.
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Figure 2.8: F is plotted as a function of the order parametdor i = .5. The solid,
dot-dashed, dotted and dashed lines ardfer 1/m,1.3/7,1.433/m,1.45 /.
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Figure 2.9: F for i = 2. Solid, dashed and dotted lines are for= 0.86,0.93,0.95

respectively. Solid line representsat critical temperature. Below this temperature, black
hole becomes unstable. The minima in the rest two curves gtestable black hole phase.
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transition is lost. Black hole is always a stable phase farjio However, as we takg to
a critical value, black hole ceases to be stable and we réacketond order line getting a
figure similar to figure (2.9).

Finally, let us now discuss about the procedure for obtagiriire critical exponents
from the mean field potentidf which has already been written in (2.98). We note that the
specific heat at fixed chemical potential can be obtained {th@01).

_ _O*F
Cn=T5m|

m

N

~ (T =T, 2, (2.108)

which givesa = % If we approach the critical line along constant /i., then we see that
Q—Q.~ (T —T.):z, (2.109)

where(). is the critical value of the charge at fixgd. This shows that the critical exponent
S has the valu%. Similarly, the susceptibility behaves near the critiesthperature as

NI

~ (T —T) 3. (2.110)

This leads us to the critical exponent= 1. Finally, on approaching the critical line with
T =T. we get

= _ _ 41

Q— Qc~ ([t —fic)?. (2.111)

So, this gives ug = 2.

Interlude 1l : On geometric realization of Bragg-Williams
constructions

The Bragg-Williams construction owes its justification tpravious work by Fursaev and
Solodukhin [5]. In this work they studied space-time mddgavith conical singularities.
We discussed before in the context4fS Born-Infeld black holes that temperature of
the black hole comes as a consequence of ensuring that tlve-sip@e near horizon is
free from any conical singularity. Therefore the most natgeometric interpretation of
the “off-shellness” must arise from the space-time withicahsingularity at the horizon
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hypersurface.

According to the constructionin [5], the Ricci tensor andhvature scalar of a manifold
M with conical singularity on the surfacé&; (horizon in our case) can be expressed in
terms of the Ricci tensor and curvature scalar for singuiafree region,M = M /
respectively.

R, = Ry, + nun,Asds. (2.112)

Here R, and R, are Ricci tensors ooV and M respectively.ds; is the delta function
and is defined a§M fos = [, f for any function,f. n,’s are components of unit vectors
orthogonal toX.. Ay is the conical deficit angle given by, = 27 — %, By being the
periodicity of Euclidean time to get rid of conical singulgrat the horizon and3, an
arbitrary period.

One can then easily find the Ricci scalar for the full manifdldin terms of Ricci scalar
of M and plug back in the Hilbert-Einstein action. The first terfiihee action becomes:

/~ \/gé = / \/ER + ]Singular- (2113)
M M

For all the static, stationary black holes we considefgg,,..., is proportional toAy, Ay,
Ay, being the area of the horizon}; for a fixed cone. The constant of proportionality
depends on the number of unit vectors orthogonal to

One can evaluate these quantities for specific black holddiad the off-shell action.
Multiplying the off-shell action by3—! we get the off-shell version of free energy which
turns out to be identical to our Bragg-Williams free energy.

Similar idea was nurtured in a recent work [35], though in tentext of the BTZ black
hole, a2 + 1 dimensional asymptoticallytdS black hole. We have, however, checked that
the arguments of [5] go through in favour of the BW constrctof free energy, off-shell
in temperature, for any asymptoticalldS black hole.

2.2.6 Proposal for effective potentials in the boundary thery

So far we constructed effective off-shell potential forfeliént supergravity solutions
and analyzed their rich phase structures. Let us now pause lig and ask the follow-
ing question: Can we at least phenomenologically consanatffective potential in the
boundary gauge theory which describe its equilibrium ana-@guilibrium properties? In
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particular if our bulk has electrical charges, gauge th@ouestion must also have asso-
ciated R-charges and corresponding chemical potentials.

Itis worth mentioning that direct computation of effectp@tential in terms of the order
parameter in gauge theory is difficult. However, it is polestb use AAS/CFT conjecture
and our computations in the previous subsections to proposdfective potential whose
saddle points represent various phases of the gauge ttémmever, we should emphasize
that the potential constructed this way may not be uniqueggbperhaps close to the tran-
sition line.

In the following, we first deal with the simpler case of gaugedry dual of Reissner-
Nordstrom black hole. Finally we generalize it to the Bonfeld case.
2.2.6.1 Reissner-Nordstrom

While in the gravity theory the order parameter wasin the dual theory the corresponding
order parameter would be the physical cha@e= [~ F, which turns out to be the same
as the charge one derives from the action. In our 0@se; w,_15:5+/(n — 1)(n — 2)g,

whereg is the “charge” that appears in the action and;, then—1 dimensional transverse

volume.
The conjugate chemical potentialis the same as the electric potentialat the horizon
given eqn.(2.55). Im + 1 dimensions,

n—-1 q 47GQ

= . 2.114
20 —=2)7r"2  (n—2wp_ 12 ( )

p=0¢=

We now use (2.114) to expreB&5 given in (2.56) in terms of Q and in the following
form

. N2 2m2(n — 1)(1 — 2¢?) Q 273 rn2T ;Q\ 2
Wi = e e = )

81 (n—2) ¢ (n—2)n2 \O
n 2n

2n—2qrn=2(n — 1 e

+ e (n )<9) 2], (2.115)
(n—2)n2[2 ¢
where( is rescaled ag) = #_1, N. being the number of colours. The motivation

behind doing this scaling is that in the deconfined phasefrégeenergy and the charge,
both are of the order olV?. Therefore, the appropriate observable in lafgelimit, is,
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Figure 2.10: Plots of W2 vs order parameteq) (the left one) for small Q values and (the
right one) with relatively large range of values for Q for= 4, show the signature of first
order phase transition. The dashed line isfoe T,.. The orange and the black lines are
for T' < T, in decreasing order in temperature, and the red, the bluéhagteen lines are
for " > T, inincreasing order in temperature. For both the pfotskept fixed at the value
0.03. We have also takeM,. = 1, ws = 1 andl = 1 while plotting these.

instead ofQ), limy, % We have also used the relatiGh= ’;l;:; and while using this
in the expression for effective potential, we have madentatisionless by redefining as
-2, The plot of the boundary effective potentialf) given in (2.115) against the new
order parametep again gives a first order phase transition as shown in fig. Z i3 phase
transition corresponds to the confinement-deconfinemansitron in the strongly coupled
gauge theory as discussed in [28].

The temperature of the gauge theory can be found by extregiiZ{\}, with respect to the

order parametery) and this comes out to be

_ (TL—'2)2213::257T7§’%’:izé Q —w [2(n = Dn? 2 42
T amme) Telae 0
Fo et (o)) e

which is exactly the same as the Reissner-Nordstrom teryperas in (2.57) once we sub-
stitute in it@ in terms ofr, and¢ through eqn.(2.114).
Following our previous discussion, we would now try to find tonfinement-deconfinement
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transition temperaturd,.. The conditionVAY = 0 gives

1 n—2
1 2 n—2
(n — 1) (1 — CQQZ)Q) (2"‘271'"_2 (W%) )

r o= el (i) =
(n—1) (2,;2 (9 )
. n ;wa( 2>¢> ] -

whereas, the other requiremeé%gg) = (0 gives (2.116). From (2.117) and (2.116), we

can find an equation involving critical charge, as

2
2 4 Q n=2
2nzn—z [ —C — PP+ PP¢? = 0. 2.118
(5) (2:119)

Substituting this relation in (2.117) or (2.116) we can wdown the critical temperature,
T. for the confinement-deconfinement transition as

T, = (”2;l1) Nrr) (2.119)

which turns out to be exactly the same as that obtained i9)2.6

2.2.6.2 Born-Infeld

One can generalize the ideas mentioned in the previousexilms to the case of Born-
Infeld to find a gauge theory effective potential. But beeanfdhe non-linear non-invertible
relationship between the electric potential at the horizaand the charge) as in eqn.(2.25),
it is not possible to write an exact expressioniforin terms of() and¢. However, a para-
metric plot suggests that our construction leads us to aidatedeffective potential for
Born-Infeld dual. Following the case of Reissner-Nordstrive propose, in this case, the
gauge theory effective potential, in= 4 as

T3 3 2pd 4 226 84 2
ng{ = N3w3|: T-l— Q(z)_'_ (6 T++T_—|—+Ti_ﬁr+\/ﬁ7’+—|— 7-(@

2 82\ 3 12 3v/2
27T4Q2 2F1 (la la é) _47r24TQ62>
+ 22 E )] (2.120)
T
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Figure 2.11: Parametric plot of against-, for different values of the paramete,

along with the relation among chemical potentjglchargeg andr, from which one has
to express, in terms ofy andg.

V3¢ 114 3¢
= L~ o 2155050 )
2r2 323" B8

p=¢

(2.121)

whereq is the “charge” appearing at the action which can be relat¢e physical charge,
“@Q” through the relation given in egn. (2.51). One can solve #guation numerically to
find a relation between, andgq for a fixed value of the parameter,

Equation (2.120) is derived from (2.64) by first substitgtin it the expressions faF, S
and( given in equations (2.48), (2.50) and (2.51) with reinstaat of the gravitational
constant(s for n = 4. We then use the relatiai = 2’;;. However, we maké: dimen-
sionless by dividing it by* and scale Q a% for the same reason as given in the previous

section in the context of Reissner-Nordstrom.

In order to study the phase structure, we usdefined in eqn.(2.62), as a parameter and
carry out a parametric plot a¥/ 21 againstQ, the order parameter in the boundary theory.
The resulting phase structure [fig.2.4&8hows a first order phase transition at some critical
temperature]’ = T, which turns out to be exactly the same as that in fig. 2.5.

To conclude, for Reissner-Nordstrém black hole, we are @ht®nstruct a candidate off-
shell potential in terms of R-charg€), which, on-shell, gives all the stable phases of
N = 4 super Yang-Mills theory oi$* at finite temperatures and finite non-zero chemical

9Again one expects the plots to go smoothly towagds- 0, which indeed is the case as can be checked
from the free energy. But by the same argument given befloisid not visible because of the choice of the
plotting parameter.
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Figure 2.12: W is plotted agains) usingx as a parameter for = 4. We have fixed

¢ = 0.2 and have plotted for different values of temperature. Tlidiree is for7T = T..
The blue and green lines are for> T, in an increasing order, whereas the orange line is
forT < T,

potentials. As for Born-Infeld black holes, an analytic swaction becomes difficult. Via
a semi-analytic approach, we showed that our constructiads to an effective potential
with expected behaviour.

Now that we have a gauge theory effective potential, we cpelthaps explore the de-
tails of the transition from the deconfining phase to the comfj phase as we reduce the
temperature.

2.3 Towards Dynamics : Hairy to Reissner-Nodstrom Black
Holes

We end this chapter with a section where we give an attemgutly gjuench phenomena
in the BW frame-work. This study necessitates similar caasion for certain hairy black
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holes. The one which we consider here was found in [36]. Theselectrically charged
black hole solutions in four dimensional AdS space with aa@onally coupled scalar. Un-
like previous examples, here, the horizon is a negativelyenitwo dimensional constant
curvature manifold.

In this section, we first review the main features of the hhlack holes [36] and their
instability [37]. We then characterize this instabilityaBW construction and argue that
this black holes undergo a continuous transition at higlpenature.

We consider four dimensional gravity action in the presai@negative cosmological
constant where the matter content is given by a conformallypled real self interacting
scalar field and a Maxwell gauge field.

3> F,Fmv 1

— 4 — L = . 7 e _i 2 _ 4
S—/dx«/_g<16ﬂ(R+l2 L g 0,00" 0 — RS —ag' . (2.122)

The black holes of this theory are described by the metric
ds* = =V (r)dt* + V(r) tdr® 4+ r*do?, (2.123)

with )
V(r) = Z_j _ (1 + %) ) (2.124)

In the expression of the metrids? represents the line element of a constant negative
curvature two dimensional manifold. The scalar and the zeno-component of the elec-
tromagnetic field are given by

¢ = glp (r ﬁw) Ay(r) = —g. (2.125)
It is important to note that the mass and charge are not imikgpe: but related via
2 o 27 2
g =M <3l2a — 1) =M"(a—1). (2.126)
Herea is defined as o
0= 5 (2.127)

In terms of appropriately scaled variables, the tempegatcinemical potential, internal
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energy, charge, and entropy densities are given by [36]

_ 1 q
T:— 2_—1 [l = =
27T< r )7 :u 7:7
_ 1 _ q
E—ET(T—l), Q_Ea
o T a(f —1)?
S = Z(l . T) (2.128)

Note that due to the conformal coupling of the scalar to threature, the entropy density
gets modified from standard form by an“effective" gravitaal constant [37]. We also

note that entropy remains positive only in the temperatange

! (ﬁ‘1><f<i<ﬁ“>. (2.129)

am\Va+1) =" “2r\Va—1

We call the limiting values to b&,.;,, Thax respectively.
There is an additional black hole solution to the actionZ2)1 We will call this the

Reissner-Nordstrom solution. The metric has the form [36]

ds* = =V (p)dt* +V(p) tdp® + p*do?, (2.130)
with
2 2
P 2My g
Vip)=2 — (142D, (2.131)
() =75 < p p2>
with
¢=0, and A, = -2 (2.132)

The event horizon is located &t(p) = 0, the solution of which we will calp. Thermody-

namic quantities associated with this black holes are
— 1 /(3 1 7
LN PR )
27\ 2 20 2p3
& (2.133)
P
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In the following, we will argue that the hairy black holestive grand canonical ensem-
ble, are unstable and crosses over to the RN black holeslatdmgperature. We will also
characterize this instability via BW analysis. First of, &l order to compare two different
black holes, namely the RN and the hairy one, we will have tkensaire that they have the
same temperature and chemical potential. That means

—_
X
(=)}

N—

| —

(2r — 1),

1 (3_
on\2” T 25 T o T

(2.134)

R ST V]

These two equations allow us to exprggsndp in terms ofg andr. In particular, forp,

we get
1
p= g(_f+2f2+\/3q2+4f2—4f3+4f4>. (2.135)
T

The BW free energy density for both the black holes can nowaséyecomputed as
was done in the previous sections. For the hairy one it reads

A7 Fraie = 4m(E —TS — Qp)
(f—l)—ﬂf2<1—a(r_1) )T—ff—l) a—1[
(a—1)

I
=

772

F(F—1)(2rT - 1).
(2.136)

I
x

(r—1) —Wf2<1 — a(f_ 1)2>T—

f2

In going from the first line to the second, we use the fact thiah&iry black holes; is not
independent, but related foand hence through (2.126). Similarly, the conjugatgss
related tol’ via

= %\/a —1(27T — 1). (2.137)

We used this equation to get to the last line of (2.136). AsRbr black holes, we can
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proceed similarly to get

47TﬁRN = 47T(E — TS - Qﬂ)
53

P P 9 27
- L _F % T —
5 2 + 2 P qolt
_3 — — —
- % - g + g(a D) —1)?— w2 T — g(a S D)(F—1)2rT - 1),

where we need to substityteusing (2.135) and further by m and hence by. In order to
write (2.138), we have also made use of the second idenitficgtven in (2.134). Further,
using (2.135) and (2.136), after some simplification, wereawrite Fzy as

Fen(r,T,a) = 5%1 [(1 +7) (=1 =7+ 0)(=5+ 47 — 67T + 3a(r — 1){3 + 127> — 6
+ 3077 — 6707 + F(—21 + 46 — 1877T)}| +7(7 — 1)
S rF—1)\~- (a—1)_ _ _
—TT (1 — a?)T — Tr(r - 1H)(27xT - 1). (2.139)
with
6= +/3a(F —1)2 + (7 + 1) (2.140)

The saddle point of (2.136) and (2.139) occurs at

1 _
r= 51+ 2rT), (2.141)

and at the minima,

_ 1
-Fhair - __(fQ + a’(77 - 1)2)7
8T

_ 1
i = g (24 67 = 207 4 2% = 26(1 4 )2 = 3a(~1 + 1)*(~3 + 26 + 67) ).
2167
(2.142)

While for T < T, = 1/(27), Fuai Minimizes the free energy, f& > 7., RN represents
the stable black holes. From (2.141), it follows that at thigoal temperaturd,, 7 = 7, =
1. NearT. it follows that

f_chT_Tm ﬁ_‘FCN(T_ c)ga (2143)
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Figure 2.13: This figure is a plot of (2.136) and (2.139) fer= 25 and for different tem-
peratures. The solid lines and the dashed lines represehithy and the RN black holes
respectively. Green, magenta and black curves aré fer0.11,1/(2x), 0.2 respectively.
We see that while at low temperature free energy is minimi@etthe hairy black hole, RN
black holes dominate at high temperature.7At= 1/(2r), free energies are equal at the
minimum.
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Figure 2.14: This figure is the behaviour of the free energy function clws®& = 7, =
1/(27) for a = 30. Blue and red are fof' < 7. andT > T. representing hairy and RN
black holes respectively. At = T,, the minima for both are degenerate. Clearly, the order
parameter, at which the minima occur, changes continuously arourtitatitemperature
leading to a continuous phase transition.

where F, is the value ofF at# = 7.. The derivative of specific heat with respect to
temperature has a discontinuity aroundf (2 + a)7?. This is thus a continuous phase
transition from hairy to RN black holes. The critical expah®&llowing from (2.143) is
a = —1,8 = 1. In figure 2.13, we have plotted for different black holes at different
temperatures and scalar couplings. The behaviolff abseT., is shown in figure 2.14.

We note that the BW free energy constructed in (2.136) cantesexpressed using the
value of the scalap at the horizon as order parameter. Inverting (2.125), weesgmess
Fhair S,

47Tﬁhair - L (4\/E7TT¢%L + \/g(l +a— 2(& — 1)7TT)¢h — 3\/5T> . (2144)

(/% - 26n)

Hereg,, is the value of the scalar at the horizon. The expression@right has a minimum

at B
3a [ 27T — 1
— = === 2.145
On 47 <27TT + 1) ’ ( )
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such that, fofl’ = T, ¢ = 0.

Having reached this far, we now like to address some dynamsgaes associated with
this system. In particular, we ask as to how the order pammggtbehaves in time as
we temperature quench the system frdm> 7, to T < T.. We assume that, during the
guench, the temperature changes so fastghatmmediately after the change, is identical
to its value before . However, at a later timg must roll down to its stable position given
by (2.145). In the following, we will be interested in findiogt the interpolating solution
¢n(t) which connects the unstable to the stable point.

The equation that we need to solve is

6ﬁhair
Odn(t)

O pn(t) + =0, (2.146)

where F..;. is given by (2.144). This equation can be immediately iratggt once to get

%(@@)2 + Fraie(on) = C. (2.147)

The integration constardt can be fixed by the boundary conditiopy, = 0 for ¢, = 0.
This gives

1 _ _

5(@5%)2 + Fhair(On) = Fhair(0) (2.148)

It turns out that this equation can be integrated exactliy thieé boundary conditiopy, (t) =
0 att = 0. The result can be expressed in a form

f(pn,a,T) =1, (2.149)

where f is a known function ofy;,. Furthermore, it has parametric dependence$ amd
a. This function is too non-illuminating and hence we do nafpthy it here. It however
turns out that the equation above can not be analyticallgried to get, (¢) as an explicit
function oft. Nevertheless, numerically it can be solved and the resstiown in the figure
2.15. In the plot, we have shown two cases where temperatisguenched down td4
(red) and.13 (blue). The value ofi that we have chosen 9. Starting from¢,, () = 0 at
t =0, ¢n(t) rolls down to respective stable points dictated by the equg®.145).
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Figure 2.15: This figure shows behaviour ¢f,(¢) after quenched to different temperatures
belowT, = 1/(27). The vertical axis is), and the horizontal one is The plots are for

a = 90. While the lower one (blue) curve is for temperature queddioel’ = .13, the
upper one (red) is fof’ = .14. We seep,,(t) starts with zero value dt= 0 and at a later
time reaches a non-zero negative stable point determinéuebgquation (2.145)
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2.4 Summary and future directions

In this chapter our aim was to study black hole instabilitiethin the framework of BW
theory of phase transition. After providing a pedagogiesiew to this subject, we em-
ployed BW method in two cases. One involved charged blackshil five dimensional
AdS space. This included Reissner-Nordstrom and Borrdrfkack holes and also gen-
eral R-charged black holes with spherical horizon. In the presasfcnon-zero chemi-
cal potential, theR-charged black hole undergoes both first and second ordesiticns
whereas in the case of Reissner-Nordstrom and Born-Infieickiholes only first order
transitions take place. We found that BW theory, with hamizadius as order parameter,
captures all these instabilities. We hope that, via AdS/€éifespondence, the constructed
BW free energy will be useful to study the phases of stronglyptedN = 4 SYM theory
on R? at finite temperature and chemical potential.

The other example that we studied is the fate of four dimevatibairy black holes with
hyperbolic horizon. Again, via a BW analysis we argued thigh Whe increase in temper-
ature, this black hole becomes unstable, loses its “hanl"tams into a stable RN black
hole. This transition is analogous to a third order phagestt@n with a singularity in the
derivative of the specific heat. The BW free energy is corstaiin (2.136). Using value
of the scalar on the horizon as order parameter, we studieeltaviour under temperature
guench. The corresponding rolling down solutions were samaiytically constructed.

Within the AdS/CFT correspondence, in [38, 39], second oirttabilities associated
with hairy black holes with flat horizon were used to underdtaolographic superconduc-
tors at the boundary. We note that superconductors withilgedsigher order transition
(similar to the one we discussed) has been reported eadierfor example [40]. We hope
a construction like (2.144) will be useful to analyse suclofmphic superconductors,
however in hyperbolic space.
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The Holographic Spectral Function In
Non-Equilibrium States

Prelude

As discussed in the introduction, holography has given usve paradigm to deal with
strongly coupled systems [1]. One of the many attractiveufea of this paradigm is that
we can deal with phenomena at strong coupling in real time.

Though there has been substantial progress in using hplogr@ study hydrody-
namics [2-5] and relaxation of strongly coupled system8]6we still lack a systematic
method for studying non-equilibrium Green'’s functions oidgraphy. The latter turn out
to be extremely useful in many applications such as undwaistg thermalizatiort and
obtaining strongly coupled generalizations of quantunetaitheories, to name a few. The
importance of pursuing this direction can be readily iltattd by two examples.

Modeling the space-time evolution of matter formed by ufekativistic collisions of
heavy ions at RHIC and ALICE is a great theoretical challeriges equally challenging
to develop reliable methods of inference for deducing thacs-time evolution [10]. Ulti-
mately, it is important to not only understand how the mattermalizes incredibly fast in
time < 1 fm at temperature about 175 MeV (at RHIC) and subsequentlgigoes hydro-
dynamic expansion, but also how hadrons and resonancesaal@cpd and transported in
this so-called fireball before finally getting frozen chealiig and thermally. Ultimately, we
do infer the expansion of the fireball from the emitted hadrdfthe expansion of the RHIC

'Holographic non-equilibrium Green’s functions as an aiddoderstanding thermalization have been
studied earlier in [9] using geodesic approximation, etc.
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fireball is indeed governed by strongly coupled physicsy tive can expect that hologra-
phy will not only help us in modeling the space-time evolatad the fireball, but also help
us improve upon existing techniques like Hanbury-BrowrisBipion-interferometry used
to deduce the expansion of the fireball.

Quantum kinetic theories are already being employed tonsteted the dynamics of the
hadron gas after the chemical and thermal freeze-out inydeodynamically expanding
fireball [11]. However, in order to understand the details@# the hadron gas comes to ex-
istence in the first place and its subsequent freeze-ouls@asarrelations in the emissions
of hadrons, one needs quantum kinetic theories construsiag non-equilibrium Green’s
functions. Therefore, to understand such questions atgtoupling using holography, we
need to develop formalism to systematically obtain nondgagium Green'’s functions. The
second example pertains to holographic models of non-Fegmds [12—16]?. Hologra-
phy has been successful in reproducing some of the feat@irRRIBES experiments in
cuprates and other strongly correlated electron systemms sgectral function has a pole
on a momentum shell at zero frequency and also shows naatsialing for low energy
excitations. These results may be interpreted as hologregproduction of Fermi surfaces
different from that in Landau’s Fermi liquid theory. In abse of a better way of dealing
with strongly interacting fermions at finite density, hataghic methods could provide us
with useful qualitative insights.

Nevertheless, to test such holographic models, we neecktib we can also reproduce
gualitative aspects of non-equilibrium dynamics in stigmgteracting fermionic systems.
Ultimately, when the electrons are weakly interacting, daunis Fermi liquid theory gives
a unified way of dealing with both equilibrium and non-edwilum phenomena. It is rea-
sonable to expect that holography can do a similar job ahgtooupling. Once again, we
need to understand how to obtain quantum kinetic theory fiolagraphy, and therefore a
systematic method of obtaining non-equilibrium Greenischions.

There are two important issues associated with obtainingauilibrium Green’s func-
tions in field theory [18].

1. There is no partition function which plays the role of garieg functional of non-
equilibrium Green’s functions. As we will review briefly &t these are obtained
from a generalized effective action. The effective actiechhique guarantees the
full hierarchy is consistently solved and Ward identities preserved.

2For interesting holographic models of Fermi liquids se€].[1@ur comments are applicable to such
models as well.
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2. We cannot use conventional perturbation theory to oltterbehavior in time, like
for instance, dependence of observables on hydrodynandiacedaxation modes.
This is because usual time-dependent perturbation theweg gs the behavior in
time in the form of a Taylor series, which fails to capturesléitne behavior like
exponential decay.

Therefore, even at weak coupling non-equilibrium field tiyeis hard and typically we
need to make educated guesses, depending on the undergtahdi specific system. It
will be remarkable if, on the strong coupling side, holodmnapan provide us with a good
perturbation theory for the non-equilibrium observableswil deal with here. The lack of
a generating functional for non-equilibrium correlatiamétions on the field theory side,
nevertheless, makes it hard to use the holographic dicidoaranslate such observables
to the field theory side.

The observables of primary importance are two-point cati@h functions. In the vac-
uum, once the Euclidean Green’s function is specified, wearalytically continue to
obtain the Feynman propagator, the retarded and advanesth&function etc. at equilib-
rium. At finite temperature too, it thus suffices to know thiarded Green'’s function, from
which we can obtain other propagators like the Feynman gaipa At non-equilibrium
the situation is different - we cannot deduce from the retdr@reen’s function, for in-
stance, the Feynman propagator which will have indeperaigramics. Nevertheless, all
Green'’s functions can be expressed in terms of two indepgndesal observables - the
spectral functiorand thestatistical functiopnwhich we briefly review now.

The spectral component (or spectral function) of bosonae@’s functions (irl spatial
dimensions) can be defined as the Wigner transform (i.e. theidéf transform in the
relative coordinate and time difference,) of the commutator

A(w, k,x,t) = /ddrdtr ei(“tr_k'r)< |:q)<X+ g,t+ %),@(x — g,t — %>]> (3.1)

Similarly in case of fermionic fields, we can define the s@@atomponent as the Wigner
transform of the anti-commutator

A(w,k,x,t):/ddrdtrei(w“‘_k'r)<{\lf(x+g,t+%>,@<x—g,t—%>}>. (3.2)

In both the equations aboye..) denotes expectation value in a non-equilibrium state. The
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fermionic spectral function is :
Aw,k,x, 1) = Tr(yt.A(w, k, X, t)). (3.3)

The statistical function (also known as the Keldysh propag& defined as the Wigner
transform of the anti-commutator of two bosonic fields

Gre(w, k, x, 1) = —%/ddrdtrei(“”_k'r)<{®<x+g,t+%),@(x—g,t—%)}>. (3.4)

or as the same of the commutator of two fermionic fields

Gre(w, k, x, 1) = —%/ddrdtrei(“’trk'r)<[Q/(x+g,t+%),@<x—g,t—%>]>. (3.5)

All propagators can be expressed as appropriate linearicatndns of the spectral and
statistical functions. We will be interested in the retakderrelation function in particular.
It is actually more convenient to define the Wigner transfofrthe retarded correlator. In
case of bosonic fields, this is defined as

Gr(w,k,x,t) = —i / dér dt, ei(“tr_k'r)ﬁ(tr)< [@ (x + %’ t+ %) , @(x — g,t — %)} >
(3.6)
Similarly for fermionic fields, the anti-commutator is usaabve.

It is clear from the definitions of the spectral functionsl{3and (3.3) respectively
that the bosonic spectral function is related to the rethterelator viad(w, k,x,t) =
—2ImGg(w, k, x, t), while for the fermionic spectral function, the relationigv, k, x, t) =
—2Im(Tr(v'Gr(w, k, x,t))). The retarded correlation function does not contain anyemor
information than the spectral function, since it is analytiw for a givenk for everyx and

t. Therefore,
dw" AW, k,x,t)
G kxt) = [ =Y
r(w kX, t) /27T w—w + e
in both the bosonic and fermionic cases.
On the other hand the Feynman propagdtar is a linear combination of both the
spectral and statistical components. For both bosonicemaidnic fields, prior to Wigner

transform :

(3.7)

GF(Xa ta Yy, t/) = G/C(Xa ta Yy, t,) - % A(X7 tv Yy, t,) Slgr(t - t/) (38)
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Since the Feynman propagator involves the statisticaltfomavhich is unrelated to the
spectral function algebraically out of equilibrium, we nahdeduce this propagator from
the retarded function in non-equilibrium states.

At equilibrium, both the spectral and statistical funcsatepend only o andk, i.e.
they are homogeneous inandt, owing to translational invariance. Furthermore, they are
related by fluctuation-dissipation relations :

Gr(w, k) = —z(% + nBE(w))A(w, k) (3.9)
for the bosonic case and
Gr(w, k) = —z(% — nFD(w)>A(w,k) (3.10)

for the fermionic case, withge(w) = (¢”* —1)~! being the Bose-Einstein distribution and
nep(w) = (7 + 1)~! being the Fermi-Dirac distribution.

Away from equilibrium, the statistical and spectral fuocis follow a coupled set of
equations which were first found by Kadanoff and Baym [18]eJénequations are not so
easily tractable in field theory even at weak-coupling, h@veducated guesses lead us to
standard kinetic equations like the Boltzmann equatioh gitantum corrections. We will
skip issues involving renormalization etc. and simply n@nhere that they can be dealt
with efficiently at the level of the effective action.

The spectral function, especially for fermions, is dirgetieasurable by ARPES like
experiments. Usually it is the equilibrium spectral funas that are measured experimen-
tally, so that we need be concerned with their dependenceeguiéncy and momentum
only. Recently however, there have been time-resolved AR&periments in which non-
equilibrium time-dependent spectral functions have beeasured in approximately spa-
tially homogeneous situations and their dependence omdrery, momentum as well as
time have been obtained (see, for example, time-resolvédeESacross the metal-insulator
transition in [19]). Conceptually, when integrated ovexguency at a given momentum and
at a given point in space-time, the spectral function gitiesspace-time dependent density
of states. The spectral function thus reveals the non4éeguin structure of the effective
phase-space of quasi-particles (provided we do have wigtletbquasi-particles).

The statistical function, on the other hand, carries complgary information about
how quasi-particles (whenever they can be defined) areldigtd in phase-space and time
and can be indirectly measured. For instance, in the caseiobée species of fermions,
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the conserved current is
JH(x,t) :iq/dwddk Tr(y“G,c(w,k, X, t)) + constant (3.11)

whereq is the conserved charge of the fermionic field, and the cah&andependent of
the state and required to provide an infinite subtractiorctviproduces a finite result. In
the so called quasi-particle approximation, we can assimaiethe statistical function is
peaked only whew is on-shell, so that it reduces to the standard phase-spstcéuation
which follows the semi-classical Boltzmann equation irtaerlimits.

This completes our very brief review of the spectral andigtiaal functions respec-
tively. In this chapter, we would like to describe the metblody to obtain the non-
equilibrium retarded function holographically. Our foousl be on the retarded function
because we can compute it using linear response theory Bvemon-equilibrium state.
The holographic dictionary enables defining the source apdatation value of an oper-
ator inany arbitrary state Therefore, we can avoid issues associated with the lack of a
generating functional for non-equilibrium correlatiométions.

To be specific, we would like to achieve the following :

1. to evaluate the retarded correlation function and thetsgléunction in non-equilibrium
states,

2. to find space-time dependent shifts in the energy and siigsasi-particles in the
non-equilibrium medium, and

3. to obtain the space-time dependent shifts in energy péclgeand spin orientation
at the holographic Fermi surface.

With respect to the last point, we will reproduce a strongtymed version of what is
expected from Landau’s Fermi liquid theory, as reviewedrlafThe second objective is
justified on the grounds that it is known that in non-equilibr states, the effective masses
of quasi-particles become space-time dependent (via amogeneous temperature dis-
tribution for instance, or an inhomogeneous distributibthe velocity field as discussed
later). We will succeed in all these objectives for scalat Baimionic operators.

We only consider spectral function here and do not addresgthrmation contained
in the statistical function and how to obtain it hologragttiz. Partial work in the latter
direction appeared in [20] and more work is in progress. €hesues will be complicated

74



Chapter 3. The Holographic Spectral Function in Non-Equilim States

by the fact that we are dealing with composite operators Indraphy and we leave this

for future study. We note here that there has been previodswizere the equilibrium sta-

tistical function has been defined holographically in a cstest manner [21], based on the
correspondence between the generating functional of tieddretic correlation functions

and a suitable partition function of quantum gravity. Hoemwthese cannot be readily
generalized to non-equilibrium states because of the laak generating functional for

non-equilibrium correlation functions as observed before

The key result we present in this chapter is the developmipedurbation theory
of scalar and fermionic fields in holographic duals of nomilgrium backgrounds. At
equilibrium, the incoming boundary condition mimics cdugsgponse in field theory and
suffices to define a well-defined linear response theory hafdgcally [22, 23]. However,
the incoming wave boundary condition does not suffice to gk defined linear response
theory in non-equilibrium states. This can be briefly dent@ted as follows.

Suppose we have a non-equilibrium background in which addydramic mode with
momentunky has been excited. Let the source of the operator at equitibie /) (x, ¢)
and the expectation value W@ (x,¢) which can be read-off from the profile of the
field ®© (r,x,t) in the bulk. The non-equilibrium bulk contribution can bendeed as
®W k), 7, x,t) and this gives contribution to both the sourt®’ and expectation value
OW of the operator. The full retarded function can be obtaimechf:

0 (X, t) +0W (k(h), T, X, t)

Gr(x,t;y,t") =C
R(X7 )y7 ) J(O)(y’t/)+J(1)(k(h)’r’y’t/)7

(3.12)

whereC is a constant which depends on the action and has been setytbere. However,
the general solution fob™™ will have :

i) two homogeneous solutions which are incoming and outgatrthe horizon respectively
and,

i) a particular solution which will be completely deterraih by the hydrodynamic back-
ground perturbation and the equilibrium solutidfy) .

This particular solution will contribute to bot®) and .J®, as will the homogeneous
solutions. The incoming boundary condition will set thefGoent of the outgoing homo-
geneous solution to zero. The coefficient of the homogenemasning wave solution is
left arbitrary. At equilibrium, this arbitrary coefficiestincels between the numerator and
denominator, but at non-equilibrium we have an extra caefficrom (") and therefore
(3.12) is ill-defined.
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Later in this chapter, we show that careful treatment of legy of the solution at
the horizon implies that the coefficient of the homogenogsmning solution should also
be zero in presence of background quasinormal modes. THialleiw us to put forth a
well-defined prescription for obtaining the non-equiltbm retarded Green’s function and
spectral function holographically. In fact, the presadptcan be precisely stated in a man-
ner which is independent of the non-equilibrium state. Thotography gives a very well-
defined perturbation expansion of non-equilibrium obdale@which can be understood in
an universal manner.

This chapter is based on our work, [24]. The organizatiorhefdhapter is as follows.
In section 3.1, we give a general review of holographic de&lson-equilibrium states.
Though most of this section is a review, the explicit metfmscharged hydrodynamics
and homogeneous relaxation in section 3.1.4ifb, are new as far as we are aware of
the literature. The key point in the discussion in sectidnhZhowever, to the best of our
knowledge, is novel. Here we argue that in a non-supersynurbeory with a gravity
dual, there may exist a window of temperature and chemidainial at largeV, in which
a generic non-equilibrium state can be characterized hygjtisitely few operators with
low scaling dimensions even far away from the hydrodynamniit! We also point out
that there are surprising similarities with solutions o Boltzmann equation on the weak
coupling side, which we review in section 3.2.1.

In section 3.2, we develop the formalism for obtaining nonikbrium retarded Green’s
function and spectral function holographically in the apgmation where the background
fluctuation is linearized i.e. when the non-equilibriumtstes studied in the linearized
approximation. An interesting result is that we can readtlodf relaxation modes in the
background by measuring the non-equilibrium spectraltionc

In section 3.3, we compare our holographic approach witd flretory. We also make a
comparison with Landau’s Fermi liquid theory regarding +gmuilibrium dynamics of the
Fermi surface. Furthermore, we obtain a holographic pigtsan to calculate space-time
dependent non-equilibrium shifts in the energy and spitefjuasi-particles.

In section 3.4, we show that our prescription for the holpgraretarded Green’s func-
tion readily generalizes when we take non-linearities endiinamics of the variables char-
acterizing the non-equilibrium state into account.

Finally, in section 3.5, we conclude by pointing out intéireg issues that could be
addressed numerically.

76



Chapter 3. The Holographic Spectral Function in Non-Equilim States

3.1 Onnon-equilibrium states, their holographic duals and
guasi-normal modes

An equilibrium state can always be characterized by a fewrasgopic variables related
by an equation of state. The distribution functions of gée8, density of states, expecta-
tion values of operators, Green’s functions, etc. depenthese macroscopic variables.
We also know, in principle, how to calculate the equationtafesrelating the macroscopic
variables of equilibrium states. Most importantly, we kniowprinciple how to calculate
the dependence of the observables in the underlying fietwtyhen these variables charac-
terizing equilibrium states.

The most pressing problem in dealing with non-equilibridates is that, typically even
at the coarse-grained level, we need an infinite number ofesaopic variables to char-
acterize them. These variables also depend on space andAsnde from taking recourse
to a kinetic approximation, which is typically uncontralléut intuitively well-motivated)
from the point of view of the exact field theory, we usually dat know how to obtain
the equations of motion of these macroscopic variablesdltyegeneralizing the notion of
equation of state applicable at equilibrium). It is also clear how to relate observables in
the field theory to the macroscopic coarse-grained nonlibgum variables.

Here, we will address these issues from the point of view dddraphy. Firstly, we
will identify a special sector of non-equilibrium statesialincan be described in terms of a
finite number of operators of low scaling dimensions in kin#teories. These states exist
for any value of the coupling at least in the kinetic approadion. Then we will argue
holographically that these states also exist in the exddttheory and are generic at strong
coupling and largeV after a microscopic time-scale, irrespective of the iht@ndition.
We will further discuss how solutions in gravity describelsmon-equilibrium states.

3.1.1 Conservative states in the kinetic approximation

Let us first look at the kinetic approximation in some detalts particular let us analyze

the Boltzmann limit which is valid typically Whemlfnfp is small, wheren is the typical

number density,,, s, is the mean free path artds the number of spatial dimensions.
Boltzmann equation describes the dynamics of particletbdigions in phase space. It

can be reduced to local dynamics of the infinite number of mumef the phase-space
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distribution of particles’®)(x, p, ) of a given species. These moments are

‘ d’p ‘
Lo (X,1) = / S0 PiaPaa -+ Pun f (6, 2, 1) (3.13)

wherep* is thed 4+ 1-momentum withp® being on-shell energy for each species

A conserved current (for instance the baryon number curregiven by :

. d'p
ju(xa t) - qu / W puf( )(Xapat)v (314)

whereg, is the charge (for instance baryon charge) of4¢h¢h species.

The energy-momentum tensor is given by

dp s
bux.t) = Y [ S8 nns . pt). (3.15)

Thus we see that the energy-momentum tensor and consemvedtsiare parametrized by
a weighted sum of first few moments of the quasi-particleithstion functions.

Three comments are in order here :

1. The Boltzmann equation has no dependence on temperatoom-@quilibrium pa-
rameters. The latter parametrize the solutions. The tHéBse-Einstein or Fermi-
Dirac distributions are exact solutions of the Boltzmannagmpn. In absence of
external fields, Boltzmann’s H-theorem indicates all Sohs finally equilibrate into
thermal Bose-Einstein or Fermi-Dirac distribution.

2. The integrals involved in collision terms on the right taside of the Boltzmann
equation (see eq. (3.106) for weakly interacting elecirbiase divergences coming
from phase-space volume. To regulate these divergencesammput a IR-cutoff
corrsponding to the thermal mass of the quarks and gluortstesihperature being
the final equilibrium temperature [25]. The dispersiontielss are also accordingly
modified.

3. In the dilute limit the effect of the interactions is takiaito account via an effective
thermal mass. Thus the energy-momentum tensor takes adrgelgpform with an
effective thermal mass.

It can be shown that the higher velocity moments parametiniedlow of the flow, the
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flow of the flow of the flow, etc. of charge, energy and momentiior example, if we
define :

d%p s
S;wp(xa t) = Z / W pupuppf( )(Xa p; t)a (316)

then the heat-current i, = S, ,n"".

The Boltzmann equation can have solutions where the padiaterved currents are
4 are all proportional to each other. This happens precisalgnachemical equilibrium
is achieved, and in fact any arbitrary solution achievesrsbal equilibrium after suffi-
ciently long time. In that case, we can define a four-velobéld «* and charge density
such that :

The energy-densityis :
€ =t utu”. (3.18)

The hydrodynamic variables atep andu”. We can define temperatuféand chemical
potentialy fields in terms ofe and p by using the equation of state of the full system at
thermal and chemical equilibrium locally.

There are special solutions of the full non-linear Boltzma&quation, known asor-
mal solutiondn the literature, which are purely hydrodynamic [26]. Tée®lutions are
such that all the momenyéf)___,m of the phase-space quasi-patrticle distributions of variou
species are algebraic functions of just the hydrodynamiebkesw,, 7' andx, and their
spatialderivatives in the local inertial frame co-moving witH. The full phase-space dis-
tributions can thus be characterized uniquely by the hyghtathic variables. Furthermore,
any arbitrary solution of the Boltzmann equation can be axiprated by an appropriate
normal solution after a sufficiently long time.

The hydrodynamic equations can be derived from the Boltznexjuation; these are
the Navier-Stokes equation, charge diffusion equationFoutier’s law of energy trans-
port with systematic higher derivative corrections. Theashviscosity, charge diffusion
constant, thermal conductivity and all the higher ordengport coefficients can be ob-
tained from the relevant Boltzmann equation specified byltrainant collision processes.

These solutions can be further generalized to what were diameservative solu-
tions[6]. In such solutions, the various momerﬁ%’.,,,un are algebraic functionals of,

u,, (or equivalently the conserved curref) and the energy-momentum tensgy, and
their spatial derivatives in a local inertial frame co-muyiwith «*. Thus the full solu-
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tion can be specified by, andj,. In such solutions the energy-momentum tensor is
not necessarily hydrodynamic. Furthermore, any solutioth® Boltzmann equation re-
duces to an appropriatmnservative solutiomfter sufficiently long time, and the latter
reduces to an appropriat@rmal solutionafter the relaxational time scale. The first claim
follows from the fact that the independent dynamical pafrtsgher moments of the quasi-
particle distributions decay faster compared to the nagrdgynamic relaxational mode of
the energy-momentum tensor [27].

The energy-momentum tensgy, and the conserved currept (or equivalently the
charge density and the velocityu,) follow a closed system of equations in conser-
vative solutions of the Boltzmann equation. This gives desystic generalization of
phenomenology beyond hydrodynamics to include procesisesdlaxation. These phe-
nomenological equations have been obtained in [6, 7].

Obviously, the existence of normal and conservative sagtof the Boltzmann equa-
tion can be seen at the linearized level and provides a médhadatain good approximations
to the transport coefficients and relaxation parameters.

Thus,in the semi-classical kinetic limit captured by the Boltomaquation, an arbi-
trary non-equilibrium state can be approximated by a comatve state whose dynamics
is given by the conserved current and the energy-momentusorteven away from the
hydrodynamic limit. This approximation is reliable after a microscopic timedsowvhich
is shorter than the leading non-hydrodynamic relaxatiodenae. the time scale of local
thermalization.

The quasi-particle distribution is said to have locallyrthalized when it can be charac-
terized well by space-time dependent parameters of equitibdistribution. Afterwards,
hydrodynamics takes over and the system equilibrates yobaa generic solution of the
Boltzmann equation, we thus have three time scales. Thédifiistscale is the time for
chemical equilibratiort,.,, after which inelastic collisions effectively cease, thes®l
time scale is,,,, after which an approximation by an appropriate consergamlution
becomes valid, and the third time scale is after which thedgyghamic approximation is
valid and is also the time scale of thermalizatign,,,.. The hierarchy is

tchem < tcons < ttherm-

The conservative solutions of Boltzmann equation des¢hbalynamics of both thermal-
ization and hydrodynamics in an unified framework in the Bolann limit.
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We note that there is no scale which parametrically sepathgedynamics of the non-
hydrodynamic part of the energy-momentum tensor and ceedesurrents from that of
other relaxation modes. Thus we may argue that even if coahes states exist beyond
the Boltzmann limit, they may not be typical non-equilibnistates after microscopic times
as in the Boltzmann equation. The typicality is just a sgdeg&ture of the Boltzmann limit.

In fact, once we go away from the dilute limit necessary f@& Boltzmann equation
to be reliable or consider genuine quantum dynamics (nogusntum statistics), the typ-
icality of conservative states will no longer be preserv@the conserved currents and
energy-momentum tensor do not seem to capture generic dysndeyond the hydrody-
namic limit. Conservative solutions may exist beyond théBorann approximation, but
only in the purely hydrodynamic limit can they approximatgeseric state.

We will argue that if a theory has a holographic dual, thereiriain phases in the large
N limit, the dynamics can indeed be captured by just the cergecurrent and energy-
momentum tensor generically, after a microscopic timdesadich is much shorter than
the time-scale for local thermalization. In such cases,ctieservative state can indeed
capture generic non-equilibrium dynamics even far awamftioe hydrodynamic limit.

3.1.2 Holographic duals of non-equilibrium states and typtality at
strong-coupling

Holography maps a field theory to a quantum theory of gravityrie extra spatial dimen-
sion. It further states that in the largé and strongly coupled limit, the dual theory of
gravity reduces to a classical theory. Therefore, in tmstlstates of the field theory are
dual to solutions of the classical theory of gravity whick eggular in an appropriate sense.
Furthermore, every operator is dual to a field and the expentaalue of an operator in a
state can be obtained from the asymptotic behavior of théfale in the corresponding
gravity solution.

The question of which operators matter in characterizirgestin the largeV and
strong coupling limit can be seen from the masses of the deldkfi The mass of the field
is related to the scaling dimension of the dual operator.

The largeN limit in the (D dimensional) field theory side is the limit when the sdale
corresponding to asymptotic curvature radius of the-( dimensional) space-time, is large
compared to the effective Planck scéle(in D + 1 dimensions) on the quantum gravity
(string theory) side of the holographic correspondencee §thong coupling limit on the
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field-theory side is the limit when the length of the fundamaéstringl, is small compared
to the asymptotic curvature radilien the quantum gravity side. The first conditign< <

[ allows us to consider the classical limit of gravity. The@®tcondition, << [ allows us
to ignore the massive stringy fields corresponding to higieitations of the fundamental
string.

Nevertheless, string theory is a theory in 10 dimensionsii&we has to be a compact
space ofy — D dimensions on top of thé& + 1 dimensional non-compact coordinates.
The condiitond, << [ andlp << I, i.e. strong coupling and larg¥ limit in the field
theory side allows us to decouple the massive stringy modese/masses scale likg!
whenl, and/p are small compared tb Thus from the ten-dimensional viewpoint we are
left with just the massless fields which include the gravaod gauge fields. However, the
compactification over the compatt D dimensions still creates a tower of Kaluza-Klein
fields which are dual to operators with possibly small sgatiimensions if the typical size
of the compact dimensions is of the same order as the asyimptovature radius.

In a supersymmetric set-up [28], the typical radius ofd@he D dimensional compact
space is indeed of the same order asfthe 1 dimensional asymptotic curvature radius
Therefore, in the strong coupling and lar§efield-theoretic limit, the Kaluza-Klein spec-
trum still plays a role in characterizing states. In facgsh Kaluza-Klein fields are dual to
chiral primary operators and their descendants. Therefopeediction of the holographic
correspondence is that at larfyethe scaling dimensions of the chiral primary operators do
not deviate much from the weak coupling limit.

Despite the presence of the Kaluza-Klein spectrum, it istknthat almost all known
supergravity theories in 10 dimensions admit consistemicttion at the classical level to
gauged supergravity i + 1 dimensions when dimensionally reduced over the apprapriat
9 — D dimensional compact space. Thet 1 dimensional graviton is dual to the energy-
momentum operator on the field-theory side andfhe 1 dimensional gauge fields are
dual to the conserved currents with the global symmetrygsdaeing gauged in the gravity
side.

One can also show that all solutionsiof+ 1 dimensional gauged supergravities which
thermalize to black branes with regular future horizons loarcharacterized uniquely by
the expectation values of the energy-momentum tensor amgeceed currents of the dual
states®. These solutions thus correspond to special non-equilibstates - namely the

3Despite these not being Cauchy data from the gravity poimie, this holds if the geometry corre-
sponds to regular perturbations of a black brane at late [@29je We also note that the consistent truncation
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strongly coupled version of the conservative states wheoh loe characterized by the
energy-momentum tensor and conserved currents alone.arampters of phenomenolog-
ical equations for the energy-momentum tensor and condeweents which generalize
hydrodynamics should now be obtained from gravity and ranfkinetic theories valid at
weak coupling [6-8]. Evidence that the solutions of pure/iyan particular, which have
regular future horizons, can be interpreted as conseevatates has been presented in [7]
for the special case of homogeneous relaxation. It has bewmg that regularity at the
horizon gives an equation of motion for the non-hydrodyraemergy-momentum tensor
with precise coefficients for this case.

Furthermore, such conservative states should also exsgtaphically away from the
strong coupling and large N limit, since the dual solutiomgiavity can be constructed
by perturbatively correcting the gauged supergravity tsmhs in /2/1> and 1/N?. Nev-
ertheless, in the known supersymmetric cases these s@ui@ always special and not
typical even in the strong coupling and largelimit, because the intrinsic dynamics of
Kaluza-Klein modes are absent in these solutions.

The situation can be expected to be very different in noresymmetric cases. There
is no analogue of chiral primary operators and typically wendt expect that quantum
corrections to scaling dimensions of operators will be $atatrong coupling, unless these
are suppressed because of symmetries.

In order to use our intuition obtained from well studied exéas with the field theory
being conformal and supersymmetric, we will need to focug on a certain window of
temperatures and chemical potentials, such that :

1. the effective coupling is strong,

2. the beta function is vanishing or approximately so, he.dystem is close to a critical
point, and

3. there are no new emergent symmetries at the critical oih@r than the (exact or
approximate) full conformal symmetry.

Furthermore, we also require that the laf§eapproximation is valid, or useful for quali-
tative understanding. Probably, all these requiremenifddoe satisfied for the fireball at
RHIC near temperatures of 175 MeV and small baryon chargsitiiemas supported by

to pure gravity does not involve separation of scales. Tihiply reflects the fact that the conservative states
are not typical states in these examples.
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lattice data [30]. We can also hope that the strange mefatiiase of strongly correlated
electron systems will satisfy these requirements in a windiotemperatures and chemical
potentials.

We note that certain examples of non-supersymmetric hapdgr have been proposed
in the literature [31]. However, in these special exampld#ite number of gauge sym-
metries appear in the bulk at largg implying infinite number of global symmetries in the
dual field theory. Our observations below will not be necelstiue in such case$

In case of a typical non-supersymmetric theory with a gyathital, at temperatures and
chemical potentials such that the system is close to a dyr@ogpled critical point, we
expect there will be a few operators whose scaling dimessiah be small. We observe
that the scaling dimensions depend on the scale throughotinging and hence also on
the phase of the theory being considered which is pararedtitiy the temperature and
chemical potential. The relevant operators with smallisgadimensions in the window of
temperature and chemical potentials considered here cexpeeted to be

1. the energy-momentum tensor,
2. the conserved currents, and
3. order parameters of spontaneous symmetry breaking.

Therefore, the operators dual to the Kaluza-Klein modesra¥ity are expected to have
large scaling dimensions very simlar to those dual to thegtrmodes. If this expectation
is true, the typical scale of the compact dimensions shoeldflihe same order dsand
not/.

For instance, in the case of QCD, the relevant operatorssmithll scaling dimensions
in the conditions of RHIC can be expected to be

1. energy-momentum tensor,
2. the baryon number current,

3. the approximately conservéd/ (3),, x SU(3)r flavor symmetry of the light quarks,
and

4The examples [31] are also not stringy and so far well defimdg ia the largeN limit, i.e. only when
the theory of gravity is classical.
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4. the order parameter of chiral symmetry breaking havimg baryon number, trans-
forming as(3;,3x) under the flavor symmetry group and with scaling dimension
approximatelys.

The dual massless fields on the gravity side should be
1. the graviton,
2. aU(1) abelian gauge field,
3. SU(3), x SU(3)r non-Abelian gauge fields, and

4. a neutral scalar field transforming in tf8,, 3z) representation of the non-Abelian
gauge group and with mass approximately givemBy= —3 /1% °.

Such a holographic model for QCD has already been propos¢gin However, our
arguments above show that such models can be consideredenmanasly in the conditions
of RHIC. In fact, for RHIC conditions we also do not need thedweall cut-off proposed
in these models to achieve confinement, as the mass gap istedpe become very mild
at temperatures close to 175 MeV and for small baryon numdesities.

Furthermore, if the temperature is higher than 125 MeVatisymmetry is expected to
be restored, so that the profile of the bulk scalar field dutiiécchiral symmetry breaking
order parameter will be stabilized by a potential. Therefonly the conserved currents and
energy-momentum tensor can characterize non-equilibdymamics at largev and large
't Hooft coupling A for temperatures above 125 MeV. The other fields in the halagc
dual should have masses which grow likd, i.e. 1/A1, and thus are expected to be
effectively decoupled from the classical theory.

The correlation functions of the non-Abelian gauge fieldshim gravity backgrounds
which thermalize to a black brane are all we need to constuahtum kinetic theories of
production and freeze-out of axial and vector mesons (asohances) in the expanding
fireball holographically. The interpretation of poles ofm@dation functions of these gauge
fields in terms of mesons has been given in [32]. Using the austho be described later,
we can obtain the non-equilibrium corrections to these miegmles systematically.

SAs the chiral symmetry breaking order paramete(gg’), it has approximate mass dimension3of
Moreover, QCD being asymptotically free, the dual boundanydition will be approximatelyddSs-like as
well. Then we can use the standard relationAaiS5 for mass of the fieldn and the scaling dimension of
the dual operataA which givesm? = —3/1?> whenA = 3.
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Let us estimate the relevant time scale at strong coupliteg afich the conservative
solutions become relevant. This in the dual gravity desiomgs given by the mass of the
lightest stringy field or Kaluza-Klein mode. According teetliscussion above, the time
scale should bé)()\—i) in a non-susy conformal theory at strong coupling. Aftertsac
time-scale, we may expect that the massive fields in gravilydecay and the relevant
dynamics will be described by the metric, gauge fields andigjin fields dual to order
parameters of symmetry breaking relevant at the criticaitpdrhus decay of a massive
field in gravity can be interpreted as transition to a core@re state at strong coupling
where the dynamics is governed by the energy-momentumnesmtserved currents and
order parameters alone.

We concluden a typical non-supersymmetric theory which has a holograpgual, in a
window of temperature and chemical potentials such thatifimamics is strongly coupled
and approximately conformal, all non-equilibrium stateside characterized by just the
energy-momentum tensor and conserved currents (and osatf@anmeters of spontaneous
symmetry breaking if any), irrespective of the initial cdiwhs, after a microscopic time-
scale which scales with the couplinglike 1/)\i in the large N limit. In other words,
conservative states are typical states irrespective ohiti@ conditions after a microscopic
time-scale much smaller than the time-scale of thermahaah the strongly coupled and
nearly conformal phase at largé.

If the above arguments are indeed relevant for QCD and stramgals in a window
of temperature and chemical potentials, we have a uniquertppty to understand non-
equilibrium dynamics with only a finitely few operators indfspecial phase of these the-
ories. As conservative states will be typical non-equillibr states, we can use general
phenomenological equations for non-equilibrium dynamaggroposed in [6, 7], and also
hope to construct a general theory of kinetics and fluctnatio connect to experiments as
we want to do here and more completely in the future.

If the above arguments fail, the reasons should certainlgdep. In that case, we
also need to know how to generalize non-equilibrium holpgyabeyond the sector of
conservative states sufficiently so that we can describpiealynon-equilbrium state.

3.1.3 Quasinormal modes

The thermal states in the field theory at laryeand strong coupling are captured by
black brane solutions of classical gravity holographicdih the linearized limit, the non-
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equilibrium fluctuations are captured by the linearizedagiquns of motion of gauge field

and the metric fluctuations about the black brane backgrolinese fluctuations are dual to
perturbations of the energy-momentum tensor and conserveents about thermal equi-
librium. Furthermore, these fluctuations should satiséitttoming boundary condition at
the horizon and Dirichlet boundary condition asymptotic2]. Thus they are quasinor-
mal modes capturing intrinsic fluctuations in the dual figdddry which can exist in ab-

sence of sources and provide good approximation to a typaalequilibrium state close
to equilibrium at strong coupling and largé.

There is, however, a significant difference between thehzed Boltzmann limit and
the quasinormal mode approximation of solutions of gravitgtead of a finitely few decay
modes on top of the hydrodynamic mode, we have an infinitertohguasi-normal modes.
The reason that we do not have an infinite tower of modes fogitleegy-momentum tensor
perturbations in the Boltzmann equation is that it has omlg tme derivative (which in
a Lorentz-invariant language is the derivative along theallovelocity field). Quantum
corrections to the Boltzmann equation are known to resuétninnfinite number of time
derivatives, and it is not hard to see this will produce amitdinumber of decay modes as
well.

We will now obtain the phenomenological form of the non-éguum energy-momentum
tensor and conserved cuurent. Instead of stating in a Loianariant way, we will state
the form of the energy-momentum tensor in the frame wherealtiz thermal state is at
rest, i.e. the laboratory frame. It is convenient to defireevblocity perturbationu(x, t)
such that the velocity field is co-moving with the energy-flavstead of the charge-flow as
done usually in the Boltzmann limit. Thus the non-equiliioni energy-momentum tensor
thus takes the Landau-Lifshitz form in the global co-momiragne :

Oe(T, 9e(T,
too = €T, M)+%6T(x, t)+%5u(x, t),
loi = lio= <€(T7 ) + p(T, M)>5ui<x’ ),
op(T, Ip(T,
tiy = p(T,pm)dy; + (%57&9 t)+ %@i(x, t)>5ij (1) (3:19)

Abovep is the pressure and; is the shear-stress tensor. The shear-stress tensor sarethu
defined as the dissipative part of the energy-momentum temghe spatial components
of the energy-momentum tensor not in local equilibrium ie to-moving frame. The
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conserved current takes the form :

o Ip(T', 1) Ip(T', 1)
Jjo = p(T,n)+ 5T 6T (x,t) + on Ip(x,t) + vo(x,t),
Ji = p(T, p)ou;(x,t) + vi(x,t). (3.20)

Above y; is the dissipative part of the conserved current or the apadmponents of the
current away from local equilibrium in the co-moving frantdéowever, as the co-moving
frame is aligned with the energy flow, the charge can have aagaoiiibrium part by itself.
This isy.

In order to have conformal invariance, we should furtherehav

e(T,p) =dp(T,p), de=ddp, ;o =0, (3.21)

with d being the number of spatial dimensions in the field theoryo\Ade anddp denote
change in energy density and pressure due to change in taetapeand chemical poten-
tial. From now onwards, we will be interested in the specifiseewhen the field theory
is conformal, so that on the gravity side we will be using agigtically AdS boundary
conditions.

The shear-stress tensor and the dissipative part of therdwran be split into hydrody-
namic partst\’ andv{"” respectively which are functions of the hydrodynamic fiélfisind
du, and non-hydrodynamic parts!” andv{"" respectively which cannot be parametrized
by hydrodynamic variables alone. On the other hagdjoes not have any purely hydro-
dynamic part.
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In the case of a conformal field theory, at the linearizedlleve

T = 7TZ(?) + Wz(;h)a v, = V@(h) _i_yl(nh)’
2
n) = (T ) (Do + Bious — 59T + .
Ip(T', 1) Ip(T', 1)
W = (1, ) (L oeT L 0.5) + .
v, (T’ ) o7 00T + =5 =0 ) + ..
Wf?h) — Z a(n)zj ei(lox—w(n)(k)t)’ W|th a'(n)ij 52] — 0 for a” n,
n=1

Vz(nh) _ Z Diny: ei(k-xf&;(n)(k)t)’
n=1

S = 3 gy eilxim 9, (3.22)

n=1

Above, ") and (" have been expanded in the derivative expansion, which isaane
sion in the scale of variation of hydrodynamic variablesrdatxe mean free path. We also
requiredu; and o7’ to be small uniformly for the linearized approximation to \edid.
Furthermore,n is the shear viscosity an® is the charge diffusion constant. On the
other handu(,);;, by andc,) parametrize the dissipative non-hydrodynamic modes of
the energy-momentum tensor and conserved current. nTihere represents the various
non-hydrodynamic branches of quasinormal mode pertunbaitivhich dissipate because
their dispersion relations,,)(k), &, (k) andw,)(k) have negative imaginary parts. We
requirea,);; /p, bmyi/p andeg,)/ p to be small for the linearized approximation to be valid.

We note the separation af; andy; into hydrodynamic and non-hydrodynamic parts
can also be done at the non-linear level. This is so becauwese @&vthe non-linear level
the hydrodynamic parts{? and+{" are solutions by themselves - from the perspective
of kinetic theories this follows from existence wdrmal solutionsas discussed before and
from the point of view of gravity they give regular metricaiuid/gravity correspondence.
For anyr;; andy;, the non-hydrodynamic partg’" and ™ are just whatever remains
after subtracting out the purely hydrodynamic paif8 and»{"” constructed algebraically
from the profile of the hydrodynamic variables in the full@bn of the energy-momentum
tensor and conserved currents.

In order to obtain the hydrodynamic modes at the lineariesel| we simply put all
amyi; andbg,); to zero in (3.22) and impose the conservation of energy, mtme and
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charge :
o"t,, =0, 0"j,=0. (3.23)

We then obtain three modes, the sound mode, the shear modéetiarge diffusion
mode. In the sound mode,

du(k) isparallelto k,
1 d—1 T
w _ 4_——|k|—i( ) UCETD AT
d +pd, p

Vd d /Je(T,pu)+p(T,p)
be(k) = ddp(k) = =V | ou(k) | (e(T, ) +p(T, ) + ..
dp(k) B oe(k)
p ; (T )+ () ©29

Above (...) refers to higher derivative corrections in powerskofUsing thermodynamic
relations locally, one can obtai’ (k) andou (k) from de(k) anddp(k).
In the shear mode,

du(k) is orthogonalto  k,
w = L e 1
p(T)
de(k) =dpk) =dpk) = 0. (3.25)

de(k) =0, opk) =0, duk) =0,
w=—iD(T,p) | k|*. (3.26)

The quasinormal modes of the metric and gauge fields contlags® hydrodynamic
modes as the only branches in whiclandk can go simultaneously to zero. We can also
obtain the transport coefficients by using the incoming lolauy condition at the horizon.
We will be interested in the shear mode in particular. Theskescosity is given by [2]:

(T, 1) Tn(T,p) 1 (3.27)

s(Typ)  e(T,p) +p(T,p)  Ar

Above, s is the entropy density and we have used the thermodynamidiige = (e +
p)/T.
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In order to obtain the simplest non-hydrodynamic modes vesinie set the perturba-
tions of the hydrodynamic variablés;, 07" anddy in (3.22) to zero. Also we look for
spatially homogeneous perturbations so that the momektisrrero. Nevertheless, unlike
the case of hydrodynamic modes, the frequengy do not vanish whetk goes to zero.

In such a configuration, for arbitrary,,;;, it is easy to see that energy and momentum is
conserved becaus#t,, vanishes identically. When the chemical potential is setet®,
the quasi-normal modes in five dimensional gravitylihSs give [33] :

Wk =0) = 7T [i 1.2139 — 0.7775 i £ 2n(1 F i)], forlargen  (3.28)

Clearly, the conservation equations are not enough to degeall the quasi-normal
modes. We need extra phenomenological equations. Suclompiesmological equations
can be derived from kinetic theories like Boltzmann equasibweak coupling or gravity at
strong coupling. However, we can also write them on gendrahpmenological grounds.
At present, these will not be important for us, we merely nwmthese have been found in
the most general formin [6, 7].

We will be interested in the spectral function in this clagsion-equilibrium states,
whose dynamics is determined by the non-equilibrium fluobna of energy-momentum
tensor and conserved currents only. If we want to obtairetBpsctral functions holograph-
ically, we need the explicit metric and gauge field corresipag to the non-equilibrium
state. It will be important for us to write the metric and gadggld fluctuation about the
equilibrium black-brane background explicitly in termsdaf, 67", oy, 7", 1o and ™.
As we will show in the next subsection, the spectral functiothe dual states will depend
explicitly just on these non-equilibrium variables.

Later in section 3.4, we will discuss what happens when we tato account non-

linearities in the dynamics afu;, 07, wgfh), etc.

3.1.4 Explicit examples of backgrounds

We will be interested in strongly coupled conformal fielddhes in three space-time di-
mensions in the largd’ limit. Therefore, as discussed earlier, we will be concerwéh
solutions of Einstein-Maxwell equations which are asyrtip#gdly AdS, and are quasi-
normal mode fluctuations about a Reissner-Nordstorm blaakeowith both mass and
charge.
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As discussed earlier, on the gravity side we will need thestein-Maxwell action :

2
S = # /d% (R n g . ZZFMNFMN). (3.29)
Above [ sets the scale of asymptotic (negative) curvature via aatiex) cosmological
constant. This is required so that the asymptotic isométth® spacetime is the same
as the conformal group in 3 dimensions. We will usto denote the effective Newton’s
constant in four-dimensional gravity in lieu of Planck |&mgp.

The metric of the Reissner-Nordstorm black brandlitt, is :

1?2 dr? 2 T
ds? — T 72( _ (5_20) dt? + di? + dzﬂ), (3.30)

wheref is the so-called blackening function given by :

7’3 3 7’3 4
fls) = 1—(3—4+1)s +3xst, (3.31)
To To

In case of the gauge field, it is convenient to use the galige- 0. The only non-zero
component of the gauge field i and is given by :

21/3r2 70
A= (1 _ T?) . (3.32)
The boundary ofAdS, in these coordinates is at= 0 and the outer horizon is at
r = 1?/ro. The total masg/ and charge) of the black hole are given by :
4

Q=32 M=r+3" (3.33)
To
Using the standard holographic dictionary we can relatawweparameters, andr, of
the geometry and the Newton’s constarit to the energy density, charge density and
entropy density as below :

3 4

3 1\ 2 2
cmop— (35 1), o= YR(L) s 2 (3.3
0

K24\ r l K212
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The thermodynamic relation
de = T'ds + pdp (3.35)

gives the temperature and chemical potential as below :

31 (1 B (E)‘*)’ . 2v/3r (3.36)

" a2 To 12ry

The first example of a non-equilibrium background we willddse is that with a hy-
drodynamic shear-mode turned on. The velocity perturbaiidl be denoted asu(kp))
with &, being the three-momentum of the fluctuation. We recall kgt du (k) = 0, as
the shear wave perturbation is transverse.

It is a well-defined problem to find a given metric and gaugelf@@rturbation in the
bulk corresponding to a definite energy-momentum tensorcanderved current fluctua-
tion about the equilibrium at the boundary, when the Digtbloudary condition is imposed
for the bulk perturbations at the boundary. The latter isleéeso that the dual field theory
lives in flat space and is influenced by an externally fixed ébahpotential. Regularity at
the horizon fixes the transport coefficients appearing iretilergy-momentum tensor and
conserved currents.

This procedure can be readily implemented in Feffermarii@racoordinates [29]. A
similar procedure can be implemented in Schwarzchild-tigerdinates as well because
the Schwarzchild radial coordinate and the Fefferman-&rahadial coordinate are only
functions of each other when the temperature remains unped. Then it follows [29]
that :

d6g;;  will be proportional to (kg 6u; (k) + ki, 0us(Ky))e 8o*—+ob - and

590 will be proportional to  du; (kg )e’ o=«

It can be also shown that in the radial gauge,= 0, the fluctuation in the gauge field is
also proportional to the fluctuation in the conserved curiies proportional to :

Sl K0y 00),
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The explicit metric is given by :

12 dr? 12
ds® = ﬁf(:%)+ﬁ<_f<z2)dt2+dx + dy?

—2(1 —f (TZQO) )5ul(k(h)) iyt gt g )

2[2 l2 ket . ,
+ﬁ< i35 b ou; (Key)e' h( B ) dz'dax ) 0(¢%),(3.37)

where,

S 52
h(s) = 3 / ds . , (3.38)
0 (1+§+§2—3:—§§4)(1—§)
and

Win) = —24 T +0(€), n=g35 = drs. (3.39)

In the radial gaugel, = 0, the gauge field takes the form

2v/312 TTo 2
Lo ) o
2
A = —er* (1 — %) (5ui(k(h))ei(k(h)'xiw(h)t) + 0(62). (340)
To

Abovee denotes the parameter of derivative expansion in hydradicge

Itis to be noted that we have written the full metric and gdlfigjd in a global frame co-
moving with the equilibrium part of the energy-momentumsi@nand conserved currents,
i.e. in the laboratory frame. We can readily make the metnid gauge field Lorentz-
covariant by boosting such that the unperturbed velocityg feea four-velocity vector*
[5]. However, this will be unnecessary for the purposesisfiaper as we will be interested
in the results in the laboratory frame.

Also one can readily realize that the metric is singular atdbter horizon = 12 /7.
This is however only an artifact of the coordinate system. dAe systematically change
coordinates order by order in the derivative expansion abttie metric and gauge fields
are manifestly regular at the horizon [29]. In our coordasathe radius of convergence of
the derivative expansion is of the order of the effective mafeae path or the inverse of the
effective temperature at a given radius giventby;(r) = T/+/f(rro/12). Therefore, we
have a finite radius of convergence of the derivative expanasifinite distance away from
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the horizon. Furthermore, we will be interested in caléntaboundary correlators which
are independent of the choice of bulk coordinate system.

The metric (3.37) and gauge field (3.40) in manifestly regotardinates are given in
appendix A.

The second example which we will be concerned with will be enbgeneous non-
hydrodynamic perturbation of the energy-momentum tensarwith onea,);; in (3.22)
turned on. The momentum of this perturbation is zero on attcoiulhomogeneity, but its
frequency is non-zero and complex like in (3.28). The matan be obtained following
[7] in the Fefferman-Graham coordinate and re-expressdaeirschwarzchild coordinate
used here by simply changing the radial coordinate. Agairnthe temperature remains
unperturbed, up to linear order the change of coordinatelveg transformation of one
variable. It can be shown that the metric perturbation ipprbonal to

—twpt
Anyige "

Explicitly the perturbed metric is :

2 dr? 12
ds® = ﬁﬁ%())—l—ﬁ(—f(%)dtz%—df%-dyz)

202 , ~ o
+— (a(n)ijew‘”)t h (TTO w(m) da’da’ ) +0(8%), (3.41)
T

l—27

with § being the parameter of non-hydrodynamic amplitude expanﬁurthermore’}(s, Wn))
follows the equation of motion :

- riN.3  pard o4 -
th(S, W(n)) _ (2 + (1 + 3T§)S 6r§8 ) dh(s, W(n))
ds? sf(s) ds
;] h(s,w(m) = 0 (3.42)
g\ sy ) '

We will also require that :
h(s,wm) = s> + O(s*) ass — 0. (3.43)

This is the asymptotic boundary condition and determihemiquely as it puts the co-
efficient of the non-normalizable to zero and the coefficamnte normalizable mode to
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be unity so that the boundary energy-momentum tensor fltictugs as given by (3.22).
Though the equation fat cannot be analytically solved, the solution can be readily e
panded in a power seriesdn,,).

Furthermore, the gauge field remains unperturbed from thekbdrane profile.

The metric above is also not manifestly regular at the hariboit once again it is just
an artifact of the choice of coordinates. One can again fenthe metric systematically
to Eddington-Finkelstein coordinates to see manifestleggw[7]. The regularity is man-
ifest only when we sum over all ordersdn,,). This is to be expected because, although
the amplitude of the non-hydrodynamic perturbatigp,; is small, it's rate of change in
time is not small (unlike the hydrodynamic modes) singg is of the same order as the
temperature.

Though we will not discuss the details here, we can consthe&explicit metrics in
the case of both hydrodynamic and non-hydrodynamic peatimbs even at the non-linear
level [5, 7]. The metric is regular at each order in the derreaexpansion for hydrody-
namic perturbations and for each order in the amplitudesipa for non-hydrodynamic
perturbations, provided all time-derivatives (or covatigspeaking convective derivatives)
are summed over at each order in the latter case [7].

3.2 The holographic prescription for the non-equilibrium
spectral function

As discussed in the Introduction, the spectral functioniverg by the imaginary part of
the retarded propagator which can be obtained from causpbnse of an operator to it’s
source. A convenient way to obtain the spectral functioo aiculate the retarded propa-
gator using linear response theory first and then isolatemaginary part.

In this section, we will consider single trace scalar andnfenic operators in field
theory whose back-reaction to the metric is suppressed(byN?). As we have argued in
subsection 3.1.2, the possibly interesting scalar opexratcahe strong coupling and large
N limit are order parameters of symmetry breaking. If we ara nange of temperature
and chemical potentials, where such symmetry breaking doesccur, the profile of the
scalar fields dual to these operators vanishes in the baskdrdassically. Therefore, the
backreaction is indee@(1/N?) suppressed. This observation may be applied to study pion
correlations in the quark-gluon plasma at RHIC.
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In popular holographic models of strongly correlated systethe electron is thought
to couple to a composite operator made out of strongly interg fractionalized degrees
of freedom (for a clear exposition please see [34]). The dralphic dual is thought to
capture the dynamics of the fractionalized degrees of &needThe strongly interacting
fractionalized degrees of freedom a&p¢N?), but the coupling of the electron to the com-
posite operator of the strongly coupled theor@id ). The spectral function obtained from
photo-electron spectroscopy (ARPES) will receive coroest from the spectral function
of the composite fermionic operator of the strongly cougedtor. As the coupling of the
electron to this operator (3(1), we can ignore the backreaction of the fermionic field dual
to this operator on the geometry representing the dual, saatihe leading order. If this
picture is qualitatively viable, our set-up will be relevdar describing non-equilibrium
features of non-Fermi liquids described by such models.

Holographically, causal response implies the incomingidauy condition at the hori-
zon. The event horizon separates space-time into two cpasal, one that is inside and
ends at a singularity, and the other that is outside andchistall the way to the bound-
ary. No light ray can come out of the inside region to the al@&segion, though light rays
can propagate from the outside to the inside. Thereforepéneirbations which respect
the causal structure of the space-time are those which aeéypocoming at the horizon,
having no component which propagates from the inside to titsde.

The event horizon is not only a feature of the eternal stdéiclbhole, but also of the
perturbed black hole (for instance, the black hole with thasitnormal mode fluctuations
of the metric and gauge fields). The event horizons of theseegailibrium geometries
are also perturbed from their equilibrium location andttipeisitions can be calculated in a
perturbative expansion [35]. Equilibration in this coriteeans that the event horizon will
have uniform surface gravity (the gravitational analogigemperature) everywhere and it
happens only far in the future.

Though the incoming boundary condition is insufficient favell defined perturbation
theory in non-equilibrium geometries as noted in the Inticdan, we expect regularity at
the future horizon to be a sufficient condition. It turns duttit is sufficient to impose
the regularity condition only far in the future, that is iretasymptotic static black brane
geometry. This has been observed before in [5, 7] in anothaegt - while constructing
time-dependent non-linear solutions of gravity with regdlture horizons perturbatively.
In such solutions it indeed suffices to impose regularityhaf perturbations at the final
equilibrium location of the horizon. In fact, the incomingundary condition is itself tied
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up to regularity [36P. In this section we will find a precise non-equilibrium gealezation
of the incoming boundary condition for bosonic and fermadifeld configuratons in non-
equilibrium geometries.

For purposes of illustration, let us consider the non-éguiim state which is the sim-
plest to analyze from the gravity point of view - it is the Ad&adk brane with a linearized
hydrodynamic shear mode perturbation of spatial momermn The advantage of this
geometry is that it can be shown that the event horizon do notuate up to first order
in the derivative expansion (i.e. up to first orderkif/7") essentially because the tem-
perature field does not fluctuate as discussed in sectioM& ill first demonstrate how
we can develop a prescription for obtaining the holograipectral function in such a
non-equilibrium state. Our aim will be to obtain the corretto the equilibrium spectral
function up to first order in derivative expansion, i.e. ufitst order ink)/7".

The explicit metric and gauge field of the black brane with hiydrodynamic shear
mode perturbation is given in (3.37) and (3.40) respedtiuplto first order in the derivative
expansion. We will work explicitly with four space-time demsions in gravity, as we will
be interested primarily in a three space-time dimensioual skrongly coupled field theory.
This is because we are interested in applications to styarggtelated electron systems at
finite density living in two spatial dimensions. As arguedubsection 3.1.2, our analysis
may apply to the strange metallic phase in a qualitative rann

An elegant way to solve the equations of motion of scalar anchibnic fields is by
using the Fourier transform in all the field-theory (i.e. hdary) coordinates. Obviously,
in order to express the equations of motion of the fields irrieogpace, it is necessary to
do the Fourier transform of the background perturbatioh fies we need to do the Fourier
transform of the velocity field fluctuatiosw;. The dispersion relation for this fluctuation
is as given by egs. (3.25) and (3.27). We see that the fregugmen by the dispersion
relation is strictly (negative) imaginary, while the freancy related to Fourier transform
is strictly real. Furthermore, the negative imaginary frexacy given by the dispersion
relation makegw; decay in the future but grow in the past as a function of tim&aoérier
transform of such a function needs to be defined with care.rderao distinguish from
the frequency and momenta associated with the scalarferatiield, we will denote the
frequency and momenta of,; asw(,y andk) respectively. The correct Fourier transform

6See also [7] for an explicit proof in a non-hydrodynamic et
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which reproduces the hydrodynamic dispersion relation is :

5ui(w(h), k(h)) = — <%> 7(11%] (344)
Wehy + ZM%

To check the above, one can try to reproduce the time depead®ndoing the inverse
Fourier transform. This needs to be done with a specific eaomteescription for integration

overw(y as shown in Fig.3.1. This contour is the usual contour aasetwith the retarded
propagator in field theory - it runs fromoo to co infinitesimally below the real axis and
then closes itself through the circle at infinity. This cantpicks up contribution only from

the negative imaginary pole reproducing the correct tinpeddence ofu, at givenky,.

Im

Re

Figure 3.1: Contour for integration over,, with pole at negative imaginary axis

It will be easier to solve the scalar/fermionic field equasiafter doing the Fourier
transform oféw;, however we need to finally integrate oveg, with the above contour
prescription in order to obtain the observed behavior ihtreee.

For demonstrative purposes, we will analyze the scalar éegldations first and then the
fermionic field equations. Finally, we will see how we can lgpgur prescription for the
non-equilibrium retarded Green’s function when the backgd contains other quasinor-
mal modes of the metric and gauge field.
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3.2.1 Scalar field equation and the non-equilibrium spectrbfunction

We will be interested in the non-equilibrium holographiesfal function for a scalar
operator first. This requires us to solve the equation of omotif the dual scalar field in
the non-equilibrium background; in particular we need tdenstand how the equilibrium
part determines the non-equilibrium part completely. \Miththis, as we have mentioned
before, the spectral function cannot be determined.

We will need to specify the equilibrium part of the solutiorsfi We can assume,
without loss of generality, that the equilibrium solutianin a specifiqw, k) mode and
obtain the non-equilibrium correction for each such modsiny the fact that our field
equation is linear, we can then linearly superimpose thaisols with the non-equilibrium
correction for each equilibrium mode to obtain the most gairsolution.

The background in which the scalar field propagates is4thg, Reissner-Nordstorm
black hole with the hydrodynamic shear-mode perturbatidhis hydrodynamic mode
is given by the velocity perturbatiof; in a specific momenturk, but its dependence
on wy is given by (3.44). We have to consider the background first shefinitewp,
perturbation and then integrate oveg, finally with the contour prescription discussed
before. The scalar field while propagating in the backgrowitidoick up a (w + wg), k +
kn) mode. The profile of the scalar field, will therefore be of thkkdiwing form :

O(x,t, 1) = O (w, k, T)eii(wtik'x) + oW (w, k, W), Ky 7’)eii((erw(h))t*(kJrk(h))'X) .(3.45)

The equilibium part of the solution 8 (w, k, r) and the non-equilibrium part &%) (w, k, wiy, kpy, 7).
The non-equilibrium part does not depend on the combinatienvy andk + k¢, as the
space-time translational invariances of the equilibriaokground are broken explicitly by
the hydrodynamic quasinormal modes.

If the scalar fieldP is minimally coupled to gravity, and its mass and chargenaend
q respectively, the equation of motion of the equilibriumtpaisimply

0.8V 6(w — w)s* (K — k)@@ (w, k,r) = 0, (3.46)

whered[ " is the (gauge-invariant) Laplacian in the AdS Reissnersitarm background
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metric (3.30) and gauge field (3.32) as given by :

o = () -2 () + T (7)o
272 [(W +aqu (1- 7))
7(%)
Again, f is the blackening function of the AdS Reissner-Nordstoracklbrane which
vanishes at the horizon locatedrat 12 /7.
With the metric and gauge field in presence of hydrodynameasperturbation given

by (3.37) and (3.40) respectively, the equation of motiarttie non-equilibrium part up to
first order in the hydrodynamic momerkg, is :

. k2] +m2l2, (3.47)

028 6(w' — w — wy)6® (K — k — k) W (w, winy, k ke, ) = V{(w, wiy, k, Ky, 1)
dO(w,k,r), (3.48)

with
Vo= Vi+V;,
= I o -5 i &
7
V, = 2'2;22h(%)kikjk:(h)iéuj(w(h),k(h)). (3.49)

Above, h gives the hydrodynamic correction to the background metthich is propor-
tional to kny0u; + (i < j) asin (3.38).

The behavior of the general solution®f”) (w, k, ) near the horizon is well-known. It
can be split into an incoming and outgoing wave as below :

w S w

To TTo

PO (w, k,r) ~ A™(w, k) (1 — z_2> + A% (w, k) (1 - T?) (3.50)

l2
nearr = —.
To

In order to select the incoming wave, we should put

A% (w, k) = 0. (3.51)
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We can also normalize the overall solution by choosing
A™(w, k) =C, (3.52)

with C being a numerical constant. This overall normalization plidy no role in the
Green’s functions.
The behavior of the general non-equilibrium part of the 8ofunear the horizon is :

_Z_w+u.1(h2
4T
. rr
(I)(l) (w, Why, k, k(h), T) ~ Am(w, Why, k, k(h)) (1 - —0>

iw+w(h2
4nT
+Aout(w7 Wihy, k, k(h)) <1 - l—2>

2 _w
AnTI? 2 Su(w, kpy) - k .
+ZC T; A\ 2 Q(JQu(w’ (h)) 1 - TZ;O )
0 9 (1 _ %) W+ W) winy

O (3.53)

l2
nearr = —.
70

The first two terms on the RHS above are the homogeneous ingoamd outgoing
solutions for frequency mode + wy. The third term is the particular solution which is
determined completely by the equilibrium solution. Theabbehavior at the horizon is
exact up to first order ik(,). In fact the full general solution which reproduces the abov
can be given elegantly in an integral representation asperagtix B.

Obviously, we need to impose the incoming boundary condgigain. Therefore,

AOUt (w, w(h), k, k(h)) = 0. (354)

We will now show that in order to impose regularity at the kori, we also need to
dispose of the ingoing non-equilibrium homogeneous smtust the horizon. We recall
that finally we need to integrate ovef,.

In order to be consistent with the derivative expansidft(w, wp), k, k) must take
the form as follows. It is proportional to componentsiafat the linear order as it should
vanish in absence of the background perturbation. It's degece onuy,y andk) can be
expanded systematically in terms of rotationally invarisealars likeyu - k, k;k;knyou;,
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wykikjknydu;, etc. Up to first order in the derivative expansions only thst fivo scalars

will apear. The coefficients of these scalars should be fonstof w andk only, as the
depenedence ang andkg can be absorbed in coefficients of the scalars appearing at
higher orders in the derivative expansion. Thus, up to firdeoin derivative expansion,
we should have :

A (w, wiy, k k) = AV (@, k) du(wey, key) - K+ Ay (w0, k) kik ko (@, k)
(3.55)
We recall for the hydrodynamic shear madie - ki) = 0, so there is no more possible
terms up to first order ik). When we integrate overy,, the Fourier transform afu as
given by (3.44) will give a pole contribution. Taking thiganaccount the behavior of the
ingoing non-equilibrium mode at the horizon will be :

2
kih

—i g — ks
rr o
<1 - T;]) . (3.56)

Therefore, we find the ingoing homogeneous non-equilibrumde diverges at the horizon
askg,/(167°17) is strictly positive. This divergence is not an artifact bétcoordinate
system because we are studying the behavior of a scalarTietdonly way this divergence
can be removed is by putting

Am(w, W(hys k, k(h)) =0, i.e. Ailn(w, k) = Ag"(w, k) =0. (357)

The patrticular solution at the horizon as defined as the tieineh in (3.53) produces no
divergence after we do the integral ovgs). It is regular at and outside the horizon.
Summing up, the full solution with the non-equilibrium cection is the following :

w

by 9
' 47TI? 9
d(x,t,7) ~ C<<1 - %) emilwt—kx) 4 2( m ) < : 2)
To .
9 (1 — —j;)
To

w5U(w, k(h)) -k (1 _ @) e—i((w—}—W(h))t—(k-i-k(h))-x)) ’ (358)

(2w + W(h))W(h) {2

l2
nearr = —.
ro

The above behavior when specified near the horizon uniquely fhe full non-equilibrium
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solution aside for an overall normalizatiGn
We can numerically extrapolate the full solution all the wayhe boundary = 0. As
the background is asymptoticallS, we should have the following behavior :

d(x,t,r) ~ Jx O 4+ 0(x,t)r® nearr = 0. (3.59)

By the holographic dictionary/ is indeed the source arid is the expectation value of the
dual operator in the dual non-equilibrium stateAlso, A is the scaling dimension of the
dual operator given by the mass of the scalar field as below :

A= g + \/2 + m22, (3.60)

The positivity of the Hamiltonian requires?/> > —9/4 [38].
Furthermore, near = 0, the equilibrium and non-equilibrium parts of the solution
individually have the same behavior, so

PO (w, k1) ~ JOw k)r*2 4+ 09w, k)r?,
(I)(l) (w, W(h), k, k(h), 7’) ~~ J(l)(w, W(h)s k, k(h))T?’iA -+ O(l) (w, W(h), k, k(h))'r’A
(3.61)

Therefore,

J(x,t) = J(O)(w’k)ei(wtk-xur/ dw(h)J(l)(w’w(h)’k’k(h))e*i((WJFW(h))t*(kJFk(h))'X)’

O(th) — O(O)(w’k)ei(wtk-x)_'_/ dw(h)O(l)(w’w(h)’k’k(h))e*i((erW(h))tf(kJrk(h))-x)
(3.62)

The unique solution oft™™ with our prescribed behavior near the horizon (3.58) gives
us the precise non-equilibrium contributions to both therar and the source in the

"When—-9/4 < m?I? < —5/4, we can do an alternate quantization wherean be interpreted as
the expectation value and as the source [37]. This requires the scaling dimension efierator to be
A =3/2—,/9/4 + m?22. The partition functions of the two theories are related lhyegendre transform.
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following form :

O (w, wey k k) = OF (w,k) u(wy, k) -k + OF (wk) kikjkwyiou; (wny, Kmy),

TV (w, wiy, k k) = S (w,k> Ju(wey, k) -k + Jg (w7k> kik ko (Wi, Keny)-
(3.63)

The explicit forms ofOS), 0};% JS) and JS) can be obtained as in appendix B. The
integration ovety then will be given by the contribution from the poledn.
The non-equilibrium retarded correlatoris
O(Xl, tl)

Gr(x1,t1,X2,t2) = 7J(x ) — e~ wlti—t2) gike (x1—x2)
2, L2

2

) K
O(O) (wa k) + O(l)(wa ka k(h))elk(h).)q6_ﬁr%):t1

k2
JO) (w, K) + JO (w, k, Kgy)eknrxz e~ a2
) 0w, k)
JO (w, k)

O(l)(w k k(h)) ik k(2h)
P kX1 o= grrtt
(H ( 00wk < 7

JO)(w, k) |

~ e—zw(tl —tz)ezk(xl —X2

(3.64)

where

0V (w,k k) = OF (w,k)éu(k(h)) k + O (w,k) Feske Koo (Kqny),

Tk k) = I (w,K)dulkg) -k + T4 (w0, k) kikshdu; (k). (3.65)

The difference of the above from (3.63) is thatdia which has no dependence df,.
The latter has been integrated over. This integration preslthe contribution from the
diffusion pole and the residue has been obtained from (3.44)

Clearly, the choice of overall normalization of the solatigiven byC in (3.58) does
not matter as mentioned before. It cancels between the mtonend denominator in the

8At equilibrium, this prescription has been proposed in [283 noted in the Introduction, we can apply
this prescription also at non-equilibrium using the vajidif linear response theory.
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retarded correlator. To readily compare with experimetiédh, we have to do the Wigner
transform of the retarded correlator, as discussed befdgedind

Gr(w, k,x,t) /dwo/d ko

0 (wy, ko) 1 [ OW (wo,ko,k(h))52 (k K k(h))
0 9. 0 R0 T 5T
J( )(wo,ko) 211 Ol )(WO,ko) 2 (

O(O CUO, ko)

—_ 2 —_
T (a0, o) —————(w — wp)o”(k — ko)

1

ki
w— wp + 287TT>

J(l)(WQ kO k(h)) k h 1
. ) ) 52 (k k ( )) .
J(O) ((,do, ko) + 2 (w o (,U(] o k(h) )

, (h)
etk X o= 4th] i

(3.66)

The first term above is just the equilibrium retarded propagaThe second and third
terms are the non-equilibrium contributions. The non-Eoguum contributions have an
explicit space-time dependenadiich is co-moving with the velocity perturbation in the
background.

The spectral function can be obtained from the imaginartgfahe retarded propaga-
tor by usingA(w, k, x,t) = —2ImGg(w, k, x, t).

3.2.2 Fermionic field equations and the non-equilibrium spetral func-
tion

We will now extend the prescription to obtain the non-edpitim fermionic spectral func-
tion. We begin by constructing the equation of motion for @abispinor explicitly in the
same non-equilibrium background, whichAg€.S, Reissner-Nordstorm black hole with a
hydrodynamic shear-mode perturbation.

We recall that the Dirac equation for a Dirac spinor of masswh@harge q in curved
spaceis:

1
(eAMFA (ahf + gwﬁC[FBa FC] + ZqAM) + m) v = 07 (367)

where M are the space-time indices, add B andC' are the tangent space indices col-
lectively. We will denote tangent space indices with unides as in(r,, z, y) or more
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compactly agr, 1) to distinguish from the space-time indices which will noturelerlined
asin(r,t,z,y) or (r, u).

In order to work with the holographic dictionary, itis comient to choose the following
representation for Gamma matrices [23]:

1 "
e — O o (O 77) (3.68)
0 -1 N

where~£s are the2 + 1 dimensional Gamma mtrices in a chosen representation. We wi
choose the latter in the following representation :

Wt =io3, 2 =0l ¥ =02 (3.69)

It is also useful to decompose the 1 space-time dimensional Dirac spinor as eigenvectors
of 'y defined as :
1
=3 (1 + Ff), (3.70)

so that
=0, +0_, U, =T,0. (3.71)

The advantage of this decomposition is that béth and ¥ _ transform as 3 space-time
dimensional Dirac spinors when the Gamma matrices are ireiresentation above.

It might be puzzling as to how a Dirac spinor in the bulk maps$ao Dirac spinors
in the boundary, but we note unlike the scalar field equatibe,Dirac equation is first
order. Therefore, as in the case of the scalar field we havéaidependent boundary data,
corresponding tov, andV_ each. Eventually, we will see how these two boundary data
maps to source and expectation value of the dual operatfuaimer how they get related
to each other by regularity in the bulk giving us the dual fiemmic retarded propagator.

Just as in the case of the scalar field, the space-time prdfileedDirac spinor also
has an equilibrium and non-equilibrium part. We can firsuassthat the equilibrium part
is in a specific(w, k) mode and determine the non-equilibrium correction to thiater,
we can obtain the most general solution by superimposinfutheolutions corresponding
to various equilibrium modes. The space-time profile of tha®spinor thus takes the
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following form :
7i((w+UJ(h))t7(k+k(h))-X) ’

(3.72)

U(x,t,7) = O (w, k,r)e @5 4 G0 (w, k, wpy, kg, 7)e

where¥ © is the equilibrium part¥( is the non-equilibrium part, an@, k) corre-

spond to the frequency and momenta of the velocity field pleation in the background.

From now on, we will denotéw, k) collectively ask, and(wg), kn)) collectively ask .
The equations of motion fob can be written as two coupled first order PDEsYor.

It will be convenient for us to decouple these PDEs and write@nd order PDE fob . .

It will turn out thatW_ will be then algebraically determined by, . For the equilibrium

AdS, Reissner-Nordstorm black brane background, this has bema id [14]. Following

this, we write the equations of motion fdn‘f) as below :

(5’_22+P<k r) T+@<k,r>> v (k,r) = 0,

vk, r) = . <2+A+> v (k. ),

T2 \ or
(3.73)
where
Plk,r) = AT+ A — T’ L
) kT27
Qlk,r) = A+A‘+Z—QA+’—Z—2T;£’§ At 412, (3.74)
and
P LA DRSO
27() B0 i)
10 = @[(—wq/ﬁ‘”ww £(T0 k], (3.75)

with ’ denoting differentiation w.r.ter /12, AEO) representing the equilibrium configuration
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of the gauge field and@2? is 7.7,

In order to obtain the equations of motion fbﬁj) we need to obtain the non-equilibrium
first order corrections to the vielbeins and spin connestionthe derivative expansion.
These are given in details in appendix C with the metric békg7) corresponding to the
black brane perturbed by the hydrodynamic shear mode.

In order to simplify calculations, we will choose (withowising any generality) the
momentum of the velocity field perturbatidqy) in the background to be in the direc-
tion; therefore the velocity perturbatiom being transverse should then be in thdirec-
tion. Later, we can make the results manifestly rotatignadvariant by rotating, and also
Lorentz covariant by boosting to an arbitrary frame. The rantam of the equilibrium
part of U of course can have arbitrary components in botindy directions if we have to
retain full generality.

The equations of motion oF ") are as follows :

0?2 ; - .
<ﬁ+P( ) +Q( )) (k?) \Ifgrl)(k‘,k(h),’f’) = <E+A _l_;JTk_'_k(h)Tink(h)
(h)
Sy (k, by, r)

~T ki ki S— (K, ey, 1),

S (RO (k, kg, ) = AT (8'/’ +A+>53( )

T2
\I/(l)</{} ]{Z(h),'f’)
+§§+k(h)8+(k k(h)v )7 (3'76)
k-}—k(h)
wherek = k' — k — k¢ and
Si(k k) = =Xy (kg 1)U (k1) = Vg, )@ (k, 7)
S_(k k) = =X (g, 1)U (k1) = Vb, )@ (K, 7) (3.77)
with
1 t vy .Y
Xi(bpy,r) = +5 (5(7€(h),7") VY — F(ky, ) ’V—%>a
1
V(kwy, 1) = 5(3(1%), r) 72 — C(kgy, r )7§7£7g>+g(k3(h)>7“)7£+7'[(k(h)ﬂ“)7£

(3.78)
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B,C, &, F,G,H are given in terms of the inverse vielbeins and the spin cctiones as

l ey
B(kpy,r) = —F——— (ZiquAy + 2iqetgAt + ezwfg + inetg — 20k, ei)
()
l o ey
C(/{Z(h),’f’) = 7( — eéw{g — 62(«0? + 63; wz_x)
()
l , ) N
E(kpy,r) = 7( - eéwtg‘ — ey wzi + ezwfiy — 62 wf* —¢f w%‘)
()
[ r \ (D
Flkpy,r) = ——— (ez wy — R w%‘)
(%)
l , ey
G(km,r) = 7( —iky eé’)
()
l A
H(kwy,r) = 7< — ik, eg) (3.79)

Here (- --)®) means that we are extracting only those parts of the fullesgion which
is first order (i.e. linear) iky). Once again we mention that the exact expressions of the
inverse vielbeins (or einbeins) and spin connections appgeabove are given in appendix
C exactly up to first order ik .

The most important observation regarding the equation dfandor ¥V is that just
as in the case oP®, as evident from (3.76)\1/9 can be determined first by solving a
second order ODE and@'" can be determined algebraically in terms of the solution for
U, . Therefore to uniquely specify (! it is sufficient to uniquely specif}lfﬁf). Moreover,
the differential operator on the LHS of the equation of mot(8.76) for\11(+1) Is the same
as that for\Ifﬁf) in (3.73) withk replaced by: + k(. Therefore, the homogeneous solutions
of U will be the same as those & with k replaced by: + k).

The general behavior of the equilibrium part of the solut\bﬁ) at the horizonr =
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l2/T0 is

+ AT, k)(l - @) e

rro\ “iasT 4
) ; (3.80)

\If(f)(w,k,r) R~ Aif(cu,k)(l—l—2

Both A" and A%* are arbitrary linear combinations of
1 0
and )
0 1
The incoming wave boundary condition requires us to impose

A% (w, k) = 0. (3.81)

Furthermore, the choice of?(w, k) will not matter in the final answer for the retarded

A (w, k) = (’g) (3.82)

propagator, so we will choose

with I being a constant. The behavior " near the horizon can be obtained via the
second algebraic equation of (3.73) as below :

,i%,l ]C
7w, k,7) ~ _%(1 . %) e <0> . (3.83)

Thus?'? is also incoming at the horizon andxléf) times a specific function of the fre-
quency and momenta.

It is to be noted that the incoming wave solution of the femrdaverges at the horizon
as well. That this divergence is not an artifact of choice @frdinates can be seen by
computing the scalab ¥ at the horizon. In fact, it is believed that the fermion baelation
at the horizon is strong enough to change the near horizanegey of the black brane [39].
As mentioned in the beginning of this section, we will assumaee that the backreaction is
suppressed by a factor 6f(1/N?) °.

We now turn our attention to the non-equilibrium part of tliduson. From, the first

%At order O(1/N?) we cannot ignore the backreaction even in the linearized. lifthis is because the
scalar and fermionic fields have non-trivial profiles evethia background due to Hawking radiation. Par-
ticularly, the Hawking radiated fermions forms a Fermi-Bethe near-horizon region of thédS Reissner-
Nordstorm black hole.
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equation in (3.76) we obtain that near the horizéfi) behaves as :

LWHwm) 1
j o\t amr i
\If(Jrl)(W, k,winy, kpy, ) =~ AT(W’ k, winy, k) (1 . 1_20> ixT 4
rr jw+w(h)7l
ou 0 irT 4
+AL "(w, k, winy, k) (1 — l—2>
w3
rro\ “lar 1 (K
+ale. K ko) (1- ) (o) |
7o
alw,k wm kp) = 1/ —
(W(h)(?)i?'rT —w+ W(h)) _ 2(7T2T2 + wg)) t
Sty (K ) VA2
8 (37T + iw) (77T + iw) Uy (km) 7™y
(3.84)

when we have chosen the incoming wave boundary conditioroandiormalization for
\Ifﬁ?). Thus we have again two arbitrary coefficients for the incayrand outgoing ho-
mogeneous solutions at+ 1 momentak + k@), and then we have a particular solution
completely determined by the source term.

We now apply a similar logic as in the case of the scalar fielé. ptt A°“* in (3.84)
to be zero again to satisfy the incoming boundary conditibm.order to be consistent
with the derivative expansiond” has to linear combinations @fu(wg), k¢) - k and
kikjknyou; (wmy, key) with coefficients which are functions of andk only. The inte-
gration ovetv, in presence ofu will give contribution from the diffusion pole which will
cause a further singularity in the behavior of the fermidretd. This singularity involves
an extra factor of

2
kih

)
167272

Lo
[? '

So we putd™ to be zero too. There is however, a difference in the behafithre particular
solution near the horizon from the scalar case, as evident {8.84). It diverges at the
horizon with an extra factor of
rTo
(1 : Z_) |

The situation, therefore admittedly is confusing as bothititoming homogeneous solu-

NI

tion and the particular solution are divergent by an extragyo Moreover, for sufficiently
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small hydrodynamic momentay,, the divergence of the particular solution leads over that
of the incoming homogeneous solution.

Nevertheless, we can argue as follows. When we take thedmaion into account, the
part of the non-equilibrium solution completely deterndrmy the source can be expected
to be regular, as the source involving the regular equiirsolution in the modified back-
ground will be regular in the next order in perturbation. Sf@ature is observed in the case
of fluid/gravity correspondence or for more general timpatelent solutions in gravity - if
we make the solution regular up to-th order in perturbation theory, the source terms in
the equations fon + 1—th order perturbations are also regular, and the divergeaictne
n + 1—th order can be removed by adjusting the homogeneous saéutialy [5, 29].

In the present case, we will argue that the divergence ofrtbenning homogeneous
piece coming from the integration ovey, is there as long as the backreacted background
has a horizon at the zeroth order. If indeed there is a hormercan define an incoming
wave also through geometrical optics approximation. Weceatainly construct an appro-
priate function ofr which we denote as,(r) such that the incoming radial null geodesic
at the (modified) horizon is :

v="t-—r.r).

Clearlyr.(r) has to increase indefinitely asmoves towards the horizon because of blue-
shifting. The incoming wave at the horizon will always behéke :

~ e*i(w+w(h))v

as the geometrical optics approximation is always good athtbrizon due to the blue-
shifting. Therefore, as long as the backreacted geomelirgas a horizon, the integration
overw,) Will produce a divergent factor :

2
k)

(1)

Above we have used the result that the hydrodynamic digpersiation up to the leading
order remains the same in the presence of backreactigpsds universallyl /4 in Ein-
stein’s gravity minimally coupled to any form of matter [4Q]herefore, this divergence is
not removable by backreaction as long as we do not get rideditihizon completely.
Getting rid of the horizon is generically impossible if wenuend that the solution
in gravity is well behaved, as that would expose the singylamnless the latter is also
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removed by the backreaction. The removal of singularity &gkbreaction is impossible in
Einstein’s gravity minimally coupled to well-behaved neaitlt is also hard to argue that
solutions in gravity with naked singularities could be digegtates in thermal and chemical
equilibrium in the dual theory.

We conclude that the sensible thing to do is to proceed asercéise of the scalar
field and putboth A and A°* to zero in the non-equilibrium part of the solution. This
determinesIf(j) completely and its behavior near the horizon is :

3imT — w + wy) — 2(7?T? + w?))
0D (0 ke o K _ o (we (h) S (bt
+ (@, wy, Ky, ) \/ =T 8 (3nT + iw) (77T + iw) ty (k)7

—izr =3 (K :
(1 — %) (0) + sub-leading terms. (3.85)
Once\I!Srl) is completely specified as above, we can deterrﬂliﬂéreadily from the second
equation in (3.76) as it is algebraic. The behavior near trezbn is given by :

To
7T
(27TiT — 2w + (,U(h)) (197T2T2 + 1linTw — 2w? + W(h)(QiﬂT - w))
8 (37TT + iw) (77TT + iw) (w + w(h))

\If(_l) (w, k, W(h), k(h), T) =

TTo

—izr—i (K :
(5uy(k:(h))72<1 - Z_Z) <0> + sub-leading terms. (3.86)

We can integrate numerically from the horizon and find thegubfile of ¥, (both equi-
librium and non-equilibrium parts included) all the way wythe boundary.

At the boundary, the behavior df.. is specified completely by théddsS, asymptotic
nature of the background. Whem > 0, the behavior of/, at the boundary is :

@4(hk%ﬁr)az(wak)+uﬂ”(hkmﬁ)ﬁ*A—%<A4@Nk%+AA“th%Q>W”H,(387)

with A being the scaling dimension of the dual operator and iseaélad the mass of the
fermionic field by :

3
A=2+mi (3.88)

Clearly J® andM© are determined by'”, and.J( and M are determined by ".
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Similarly, the behavior ofv _ at the boundary fom > 0 andm # 1/2lis:
\I’,(k, k(h), T) ~ <N(O)(l{7) —|—N(1)(1€, k(h))>T47A + (O(O)U{Z) + O(l)(k}, /{Z(h)))TA. (389)

Whenm = 1/2I, the leading powers of the homogeneous solutions abovenieetioe
same. The behavior df _ at the boundary is then given by :

U_(k, gy, 1) ~ (N(O)(k) +NO(, k(h))>r2ln rt (O(O)(k) + OO, k(h))>r2. (3.90)

As U _ is determined by, algebraically, we get

1y - k 1y - k
Ok, k) = =5 (2m+ DM(k k), Nk k) = mJ(ka k),
vk = Ak, K =k'E, (3.91)

whereO = 0O +0W, etc. Thus we have just two independent boundary data qanmes
ing to the fermionic source and expectation value of the ifl@nio operator dual to the field.
The holographic dictionary indeed identifiéss the source and as the expectation value
of the operator whem: > 0 [23]. Both these are fixed up to an overall normalization
constant by the incoming boundary condition at the horizwh@ur regularity argument.
Changing the sign af: is equivalent to interchanging, with ¥_ [23]. Consequently
J gets interchanged witf?, and M gets interchanged with" 1°. Whenm < 0, the scaling
dimension of the dual operator is given by :

A= g —ml. (3.92)

Once the solution in the bulk is determined, the source améxpectation value of the
fermionic operator get related by a matix:

J(w, k, Wehy, k(h)> =D (w, k, Why, k(h)> O (w, k, Wihy, k(h)> . (393)

Clearly D is independent of the choice of?" for the equilibrium solution as we have

®Wheno < |m| < 1/21 we can also do an alternate quantization in whikfs interpreted as the source
and J as the expectation value. This requires the scaling diroardi the dual fermionic operator to be
A = 3/2 — |m/|l. The partition functions of the two theories are related lhygendre transform.
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claimed earlier. The retarded propagator is given by [23]:
GR (w, k, Why, k(h)) =D (w, k, Why, k(h)) ’yi. (394)

Furthermore, as the non-equilibrium part of the solutionampletely determined by

the equilibrium part of the solution, we can compute thetietes :

O(l) (w, k, Wihy, k(h)) = RA (w, Wih), k, k(h)) O(O) (w, k‘),

J(l) (w, k, W(hy, k(h)) = RB (w, Why, k, k(h)) J(O) (w, k) (395)
AboveR 4 andR  are fully determined by our boundary conditionstbﬂ) at the horizon.
They take the form :
Ra (% wny, K, k(h)) = Raa (w, k) du(wp), kn) -k + Rap (% k) kikjkmyidu; (wey, k),
RB (w, Why, k, k(h)> = RBA (w, k) 5u(w(h), kh) -k —+ RBB (w, k) kikjk(h)iéuj (w(h), k(h)).

(3.96)

By going through the steps as in the case of the scalar fieldaweasily see that the
generalization of the form of the bosonic non-equilibritetarded propagator (3.66) to the
fermionic case is :

Gr(w, k,x,t) = i/dwo/d%o [D(O)(wmkow%(w—W0)52(k—k0)

1 K ]
5 (D(O) (wo,ko)7*R (wo, ko, k(h)) &2 (k —ko — %) -
7r (w —wo + z%)
(0) t52 k) 1
—Rs (Wo, ko, k(h)>D (wo, ko)7to (k — ko + 7) _
(w —wp — 287%)

, kfh)
ek~ gt (3.97)
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where

Ra(wk k) = Raa(w,k)oulkn) &+ Rap (w, k) kikkepou; (k).
Rps(w,k k) = Rpa(w,K)oulkn) - K+ Ry (w, k) ik (key)- (3.98)

The first line in (3.97) denotes the equilibrium correlatod @he lines below are the non-
equilibrium contributions co-moving with the backgrounelacity perturbation. The dif-
ference between (3.98) and (3.96) is that the integrati@nwy, has kept only the residue
of the diffusion pole in the Fourier transform &f given by (3.44).

Once again the spectral function can be obtained by congpthim imaginary part of
the retarded propagator above and usiig, k, x,t) = —2Im<Tr(inR(w, k, x, t))).

3.2.3 Generalization to backgrounds with other quasinormémodes

The prescription we have presented so far is for the nonlibguim retarded propagator in
the hydrodynamic shear-wave background. We will now shat tihis prescription with
its underlying logic can be readily generalized to any bagckgd which is a quasinormal
mode fluctuation of the black brane geometry.

The key observations are as follows :

1. Even if the horizon fluctuates in presence of the non-dayitim energy-momentum
and charge current fluctuations in the dual state, i.e. thae@nd gauge field quasi-
normal modes in the background, in the perturbation expangsie need to apply the
incoming boundary condition and regularity only at the ahtbcation of the horizon
at late time, which in our coordinates is always at 1% /r.

2. The quasinormal modes always have a negative imaginatyrptheir dispersion
relation, so the pole in the complex frequency plane of thek@@und perturbation
will always be in the lower half plane.

The first point above makes sure that we can always write theagailibrium part of
the solution as the incoming and outgoing homogeneousispéplus a particular solution
completely specified by the source at the horizon exactly Hse case of the hydrodynamic
shear mode. The second point will imply that integrationratie background frequency
will produce a divergence at the horizon unless we put théficemnts of both the incom-
ing and outgoing parts of the non-equilibrium part of theusoh to zero. Therefore, the
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non-equilibrium part of the solution is completely detemad by the equilibrium part of
the solution for any background quasinormal mode. We cas $imaply repeat the exer-
cise as we have done for the hydrodynamic shear-mode patitmtio obtain the retarded
propagator for any background quasinormal perturbation.

One may wonder if our prescribed solution at the horizonlwing the specific particu-
lar solution is itself regular at the horizon. We have cheldkes is always so for the scalar
field. In case of the fermionic field, we can repeat the arguswee have made in case of
the hydrodynamic shear-mode.

For instance, let us consider a quasinormal mode for megritighation in the tensor
channel with momenturk;, = 0. The frequency will be complex with a negative imagi-
nary part as in (3.28). The explicit metric and gauge fieldstarh a spatially homogeneous
perturbation is as in (3.41). We can check that our presgnitma-equilibrium solution for
the scalar field dies down at the horizon due to the factors :

(-5 (m0-5))

multiplying the equilibrium incoming wave solution withandm being positive integers
11

The general dispersion relation for a quasi-normal mode Ineayritten as :

wib)(Kp)) = wrp)(Kp)) — iwip) (Kp)),  With  wip) (k) > 0. (3.99)

Also bothwgp andwy admit Taylor expansion ik, (and do not vanish whekyy) = 0).

1This can checked by expandiﬁgs,w(n)) in (3.41) inw(,,). Though this expansion as noted before is
dangerous for seeing manifest regularity of the metricossigood job for analyzing the behavior of the
scalar field in the perturbed background.
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The bosonic retarded propagator will take the followingrion such a background :

GR(w,k,xt /da)()/d k?o

OO (wp, ko) 2L (O(l)(wo, ko, k(b))52 (k Sk — @)

wo, ko)

wo ko) (5(&) — WQ)(SQ(k — ko)

B J(O) (wo,ko) O(O)(u)o,ko)
1

(w —wp — %(WR(b)(k(b)) - Z'“"(b)(k(b))))

JI (wm ko, k(b))

52<k—k0+%)

1
(w —Wot %<WR(b)<k(b)) - iw'(b)<k(b))>> )

oikmrx eii (WR(b)(kw) )*WI(b)(k(b))) t] . (3.100)

The non-equilibrium part of the source and expectationasbf the dual operators(V) (w, w), k, k(b))
and O (w, we), k, k) can be determined from the non-equilibrium part of the solu-

tion. JW (w, k, k) andOW (w, k, kg,)) appearing in the retarded propagator above are the
residues off V) (w, w), k, k) andOW (w, wiy), k, k) respectively invg, atwrp) (k) —
iwipy(kpy). These will be linear in the hydrodynamic fluctuatiens, 67", 6p and the non-
hydrodynamic quctuationéwZ(;Lh), vy and VZ.(”h), and will have a systematic expansion in

k(b) 12

12The Taylor expansion &) always make sense near equilibrium as the perturbatiorsawy varying
in space. However, all time derivatives need to be summea@updn-hydrodynamic perturbations at each
order in the amplitude arkly as the variation of these modes in time is not small even rogalilerium.
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Similarly, the fermionic non-equilbrium retarded proptgavill take the general form:

Grlw, k,x,t) = /dwO/ddkol ) (wo, ko) V0 (w — wp)d? (k — ko)

(D(O (wo, ko) V¥R A <W0> ko, k(b)> 0? (k ~ko - %)

1
(w —wo— 3 (wR<b)(k(b)) - M(b)(k(b))))

K
_Rp (wo,ko,k(b)> DO (wp, ko)t 87 (k ko + g’))

Cor

1
(w — wo + % (wR(b)(k(b)) — iw|(b)(k(b))>) )

. —i| w k(p) ) —iwip) (k
ok X, ( rRb)(K () —wi)( (b)>>t]. (3.101)

R4 andR g can be determined from the non-equilibrium part of the sotuvia the defin-
ing relations :

O(l) (w, k, Wib), k(b)> = RA (w, W(b), k, k(b)> O(O) (w, k‘),
J(l) (w, k, W(b), k(b)) = RB (w, W(b), k, k(b)) J(O) (w, k) (3102)

Ra(w, k, kg)) andR 5 (w, k, k(y)) appearing in the retarded propagator above are the residues
of Ra(w, wp), k, k() andR g (w, w), k, k) respectively inug,) atwrp (k) ) —iwip (Kb))-
Both Ra(w, k, k) andRp(w, k, k() will be linear in the hydrodyanamic fluctuations
ou;, 67T, dp and the non-hydrodynamic quctuatlom(”h) Vo andz/ , and will have a
systematic expansion iqy).

Thus we indeed obtain an universal form of the holographiceguilibrium retarded
propagator (and hence the spectral function) in lineammadequilibrium backgrounds at
sufficiently late time.
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3.3 Non-equilibrium Fermi surface and dispersion rela-
tions

We will show here that our prescription for obtaining the reaquilibrium retarded correla-
tor gets a lot of support from field theoretic comparisons.Wwilebegin with a brief review
of how we obtain non-equilibrium correlation functions ielél theory. Then we will show
how our prescription reproduces the strongly coupled garsf non-equilibrium dynamics
at the Fermi surface in Landau’s Fermi-liquid theory, anel tlon-equilibrium modifica-
tions of quasi-particle dispersion relations expectedeidfineory.

3.3.1 Comparison with field-theoretic approach

In field theory, there is no partition function which can ptag role of a generating func-
tional of non-equilibrium correlation functions. The wagwbtain these is to construct a
generalized effective actidn (O,(z), Gy (x, y)) whose arguments are not only the expec-
tation value of the operator but also the two-point corfefafunctions of the operators.
Extremizing this leads us to obtain non-equilibrium cateln functions as functionals
of the expectation values of the operators in equilibriurd aan-equilibrium states. The
crucial point is that the generalized effective action haslependence on temperature or
other equilibrium/non-equilibrium parametéss It is defined as a double Legendre trans-
form of a vacuum observable constructed over the Schwikgklysh closed real time
contour as briefly reviewed in appendix D. Both equilibriuteniperature and chemical
potential dependent) and non-equilibrium dynamics of etgi@n values of operators and
their correlation functions can be derived by extremizimg generalized effective action.
At equilibrium, we can take an alternative route by congstngca generating functional of
thermal correlation functions as in vacuum, but in ordertitam non-equilibrium correla-
tion functions the use of the generalized effective actsoondispensable.

We would like to mention here that the generalized effectiotton not only allows us
to obtain the non-equilibrium two-point correlation fuloets, but it is also sufficient to
obtain the three, four and higher point correlation funwifl8]. This is possible because
through the effective action, we know the two point correlatfunction as a functional

13This is also true for kinetic equations, like the Boltzmamuation. These equations do not depend on
temperature or non-equilibrium parameters, the latteaupatrize equilibrium and non-equilibrium solutions
of these equations.
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of expectation values of operators, i.e. we know them notne but in a manifold of
states. Furthermore, the effective action technique keadisures that we satisfy Ward
identities. In practice, we need to make an uncontrollecedutated approximation of the
effective action which allows us to obtain non-equilibridgmamics of expectation values
of operators and their correlation functions. This has tmetessful for instance in the
case of dilute cold non-relativistic Bose gases in opticgbs [41], and in constructing a
guantum kinetic theory of hadrons for modeling their eviolutafter their chemical and
thermal freeze-out in the RHIC fireball [11].

The important point to note is that we can obtain the non{dagisim correlation func-
tion by extremizing the effective action with respect to ttwerelation function first as

below : 0

oGy (. y)
Thus we obtain the two point correlation functions as funmwdis of expectation values of
the operators. Here the time contour is the Schwinger-Ksidytosed real time contour,
so this determines both the statistical function and tharded propagator (or the spec-
tral function). Further when we substitute the extremati®iof the two-point correlation
functions in the generalized effective action, we obtasdhdinary effective action, i.e.

_ 0. (3.103)

I (0, G (O) =T(Oy). (3.104)

Extremizing this further we obtain non-equilibrium dynasof expectation values of op-
erators.

It is certainly interesting to see if we can construct a gelwezd effective action to
obtain non-equilibrium correlation functions in hologhgptoo. This will allow us to de-
termine the statistical function also and not the retardegggator alone as we have done
here. However, we note two crucial points of our holograggrescription for obtaining
the retarded correlator (equivalently the spectral fumjti

1. Our prescription obtains the non-equilibrium retardedppgator as a functional
of the expectation value of the energy-momentum tensor haedcharged current

parametrized by’ p, 6T, ou, dp, Vi(nh), Vo andﬂi(;bh)'

2. The non-equilibrium part of the correlation function etermined completely by the
equilibrium part through universal rules at the horizonethdo not depend on the
non-equilibrium state concerned. The rule simply involpeting the homogeneous
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pieces of the non-equilibrium part of the solution of thekdubsonic/fermionic field
to zero at the horizon.

Putting these together, we can see a parallel with field yhdorboth approaches, we do
not need a specific rule for each non-equilibrium state etiern universal rule which al-
lows us to extract the non-equilibrium correlation funosdrom observables defined at
equilibrium. In field theory the equilibrium temperaturésas as the boundary condition
appearing in the far future. The generalized effectiveoaictis mentioned before is just
the double Legendre transform of an equilibrium observathlerefore non-equilibrium
dynamics can be obtained from equilibrium observables Id tleeory as well. Further-
more, our holographic prescription has the same measumrgarsality as the generalized
effective action to bring all non-equilibrium spectral @tions under one fold at least in
perturbation theory.

The advantage of the holographic approach is that the late biehavior of the non-
equilibrium spectral function is reproduced automaticalithout any need for resumma-
tion. Thus we can do conventional perturbation theory.

3.3.2 Non-equilibrium dynamics at the Fermi-surface

It might have been a bit surprising that the logic of regiyarequired that we put the extra
boundary condition needed to determine the non-equilibrpart of the solution com-

pletely, at the horizon instead of at the boundary. It migdgrs that it would have been
more natural to suppose that the source does not fluctuateifsoequilibrium value, so a

Dirichlet condition at the boundary would have been moréfjed. As we have already ar-
gued, this is not the case - the source gets screened orditest®e collective excitations
present in the non-equilibrium state also. From the holoigiaperspective, the horizon
determines the screening/dressing of the source.

We will here give another holographic interpretation of tien-equilibrium modifi-
cation of the source. This will further vindicate that we dde put the extra universal
boundary condition at the horizon and not at the boundaryat We have allowed the
source to fluctuate from it’s equilibrium value, is what waling out the non-equilibrium
oscillation of the energy per particle at the Fermi surfaoa @on-equilibrium shifts in the
guasi-particle dispersion relations.

A hallmark of Landau Fermi-liquid theory is that the colieetmodes as captured by
the Boltzmann equation leads to non-equilibrium dynamictha Fermi surface. This
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dynamics is characterized Isyifts in energy per quasi-particle at the Fermi surfaeeat
a given directiom and at a given point in space and time in response to a localéition
in occupation numbers of quasi-particles at the Fermi sarda. Landau postulated the
following phenomenological relation [42]:

Se(kpi, x, t) = e(kph, x, t) — €o(kpn) = Z F(h,0') on(kpi, x, 1), (3.105)

whereey(kpn) is the equilibrium energy of a quasi-particle at the Fernfasze which is
justk? /2m* (T, u) with m x (T, 1) being the effective mass at the Fermi surface dependent
on temperature and chemical potential. The paramet@iisn’) are phenomenological
inputs of the Landau model which can be obtained from fietbthtic two-point density
correlation functions. These phenomenological parametetermine all thermodynamic
and many non-equilibrium properties of Fermi liquids.

To obtain non-equilibrium properties one has to assumeiabf Boltzmann equation
for én. The equilibrium distributiom® is the Fermi-Dirac distribution at a fixed tem-
perature and chemical potential and is a trivial solutiothefBoltzmann equation. Using
(3.105) and the Boltzmann equation, it can be shown that tletuthtionsin follows :

don(kpn, x,t) krn 0dn(kpn, x,t)
ot m*(7T, ) 0x
onO (kpn, T, . 00n(kpn! x,t
(8Fk )'Zf(nan) (gX )
- 1(n<°> (T, 12), on(kpi, x, t)) (3.106)

in the linearized limit. Abovel captures the so-called quasi-particle collision kernel.
Studying this equation we can extract all collective extmtass including the zero sound,
hydrodynamic shear-mode and non-hydrodynamic relaxatioges. In order to obtain the
zero sound velocity, the collision kernel is not necessaityitds so in order to obtain the
viscosity and relaxation modes. Substituting a solutiorfoin (3.105) we can obtain the
oscillation of the energy per particle at the Fermi surface.

The crucial point is that the oscillation is related locdthythe fluctuation in the occu-
pation number of the quasi-particles in (3.105). So, thdlason in energy per particle at
the Fermi surface is in sync with the propagating collectixeitation.

We note that in non-equilibrium, we cannot obtain the changmergy at the Fermi-
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surface by looking at the spectral function alone. This isaose the non-equilibrium
change in the spectral function comes from both (i) the siithe residue, and (ii) the shift
in the pole itself. We need to identify which part of the naqugibrium contribution comes
from the shift in the residue and which part comes from th& shihe pole. Moreover, the
situation could be worse, as there can be non-equilibriumtribmtions which are simply
analytic near the location of the equilibrium Fermi surfacel be neither the shift in the
residue nor shift of the pole.

In the holographic set-up, the Fermi surface(s) is relateti¢ existence of normaliz-
able mode(s) of the bulk fermion field at zero frequency on edfimomentum shell [13].
As the black brane retains rotational symmetry, the Fermiasa is spherical (circular for
a2 + 1 dimensional system). We will be working ih+ 1 dimensional system (i.e. in a
3 + 1 dimensional bulk) for the sake of concreteness.

It will be worthwhile for us to first define the Fermi surfacelbgraphically in a more
general background which may not preserve rotational syimymdhis will help us to
readily understand non-equilibrium dynamics at the Feurfege.

A Fermi surface picks up an internal direction in spin spdderefore, let us represent
first an arbitrary normalized complex 2-vector which picksaudirection in spin space by

two real angle¢ and¢ as below :
cos B e?
‘ 3.107
<sin 0 e_l¢> ( )

The vector above may still be multiplied by an overall phamg,this will be unimportant
for us. We then note that the hermitian matfdefined as

20 0'sin 6 ¢
P(@,gb):( COS ‘ cosvsmo e ) (3108)

cos 0 sin 0 e 120 sin? 6

iS a matrix such that

PP—p P cos 0 e"‘é _ cos 6 e"‘é P sin@eid’_ o (3.100)
sinf e~ sinf e~ —cosfe
ThereforeP is a projection operator, and it projects in the directiorl(3) and in the

orthogonal direction it has eigenvalue zero.
The holographic definition of Fermi surface at equilibrisvas follows. Let us choose
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a directionn in momentum space. Then there exttg specifying a vector irspin space
andk for everyn such that :

[P(H, ), Gr(w =0,k = kFﬁ)} — 0,
P, ¢>)J(w — 0,k = k;Fﬁ) _— (3.110)

whereP is as defined in (3.108)and s the source obtained from the bulk solution. The
first equation above says th@y; is diagonal in spin space in the following basis :

cos 0 e'? sin 6 e'?
1, _ 3.111
(sin 0 e_“b) <— cos 6 e_“b) ( )
which is the same basis in whidhis diagonal. Thus this definésand¢. We note if we

replaced by 6 + 7 /2, we merely exchange the eigenbasis. Therefor¢jdfa solution, so
is® + /2. The second equation is equivalent to :

J(w =0,k = k;Fﬁ) = <X1> ., cosfe Py, = sinfe . (3.112)
X2

Thus we have one linear complex equation to defineThereforek - is complex (at finite
temperature) and associated with a specific direction mgmce. To get the Fermi surface
associated with the orthogonal direction in spin space lisialso an eigenvector éf and
Gr we need to solve above withreplaced by + 7/2, i.e.

J(w =0,k = k:Ffl> = <§1> . sinfe @y = — cos e ys. (3.113)
2

As the AdS, Reissner-Nordstorm black brane background preservetsomdhinvariance,

0, » andk will be independent of.

More generally, the holographic Fermi surfacetjgn) which solves (3.110) and is
associated with a specific direction in spin space in whiehrétarded propagator can be
diagonalized. The general definition stated here shouldgbailin analyzing cases where
we have spontaneous symmetry breaking in the boundarycylarty when these order
parameters break rotational invariance [43]. We note tha¢@® temperaturgy Is strictly
real and corresponds to the polewat 0, but for non-zero temperatures the polevat 0
is complex. The imaginary part of the pole is negative andaggnts smearing of the Fermi
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surface at finite temperature, and vanishes as the temperatteduced to zero. Thus we
can think ofk - as a complex parameter whose imaginary part vanishes atereperature
and has a small’ expansion. The real part éf- also has a small’ expansion and is
the Fermi surface. There is no dependencevas to find the Fermi surface is set to
zero. In the Reissner-Nordstorm black brane, the depeedeithe negative imaginary
part of this complex parametér- on the temperature is given by a power law for small
temperatures [44]. This power is controlled by the neardworiddS, x R? geometry.

It can also be shown that the retarded propagator and thé&rajpemction also have a
pole precisely when the source vanishes. Therefore, tloghagphic definition of the Fermi
surface matches with the conventional definition which & this the location of pole of
the spectral function in momentum space at vanishing frecueln holographic systems
we typically get a family of nested Fermi surfaces.

As an aside let us mention that the pole structure of the majpgc spectral function at
equilibrium is different at small frequencies from that of@ventional Fermi liquid and
the scaling exponents are controlled by the near-horizéf, x R? geometry [15]. This
means that holographic systems have generically non-Reuid behavior.

The full non-equilibrium source is :

J(x, t) = /d?’x <J(0) (w, k>+J(1) (w, k, k(b)) ez‘k(b).xefz' <wR(b)(k(b))iwl(b)(k(b))>t> e_i(“t_k'x),

(3.114)
We recall that the full sourcd can be determined from the boundary behavior of our
prescribed solution fow , through (3.87). In fact we can explicitly write in case of the
hydrodynamic shear-mode up to first order in the hydrodyoan@mentuniky, :

IO,k kp) = JU (w, k) du(km) - k

+ Jg) (w, k) k‘ik?jk?(h)i(;u]-(k(h)), (3115)

whereJ{" and.J\) can be determined from the solution.

We will be interested in obtaining the energy oscillatbor{n, x, t) at the Fermi surface
by calculating shift of the frequency pole for a fixed Fermimentum. We have to solve
this perturbatively in the momentum of the collective backmd modék .

Perturbatively, the energy shift on the Fermi surfacein the directionn at a given
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point in space-time is thus obtained by solving :

Sw(n,x,t) (P(Q(O), »0,,J© (w =0,k = k:Fn)> + 00(kpn,x,t) <69P(9(°), )

JO (w — 0,k = k@))

+d¢(n, x, 1) <6¢P(9(0)’¢(0))J(0) (w — 0. k= k‘Fﬁ>> _ <P(0(°),¢>(0))

JO (w — 0,k = kph, k(b))>

. —i| w k —iw k t
kx|, < R (K () i) ( (b))>

9

(3.116)

whered©) and® label the spin orientation of the equilibrium Fermi surfasediscussed
before andP is as defined in (3.108). The above amounts to two complextieqsand we
have four unknowns, namely re& andd¢ giving change in the orientation in spin space
and complexw. As we have mentioned earlier, the change in orientatiorpin space
cannot be directly read off from the change in retarded taoedue to the ambiguity in
identifying which change is due to shift in the pole and whsblange is due to shift in the
residue. We can obtain the non-equilibrium shift in spincgpat the Fermi surface from
the non-equilibrium source directly.

The shiftin the energy of the equilibrium Fermi surface watthogonal spin orientation
can be obtained by solving the above equation Withreplaced by© + /2.

Clearly in the hydrodynamic shear wave backgrouwadtakes the form :
dw(n,x,t) = <5wA <n, k;F> du(kp) -n + dwp <n, k;F> Rt ikgyou; (k) | e O*e ot

(3.117)

Therefore, we find that the holographic Fermi surface indesaillates in space and
time in sync with the background collective excitation. Mefieless in order to obtain
the analogue of (3.105) in holography linking the spectnit sit the Fermi surface to the
statistical shift (i.e. shift in occupation number) we néedbtain the statistical function
holographically also. We leave this for the future.
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3.3.3 Non-equilibrium shifts in energy and spin of quasi-p#icles

Not only the energy per particle at the Fermi surface butrotioemalizable modes with
non-zero frequencies also receive space-time depend#ist ishenergy at a given mo-
mentum in sync with the background collective excitationhisTcan be interpreted as
the space-time dependent shifts of the dispersion reltodrthe quasi-particles in the
non-equilibrium medium. This is certainly expected as gpasticles receive a thermal
mass and if the temperature oscillates for instance, tipedion relations indeed become
space-time dependent. This is usually a hard calculatimomequilibrium quantum field
theory, but we can readily generalize the holographic egsatliscussed above to obtain
non-equilibrium shifts in quasi-particle dispersion telas.

A particular quasi-particle branch can be identified viafthllowing steps at equilib-
rium.

1. Consider the equilibrium Green’s functi@f) (w, k). This can be diagonalized at a
givenw andk and the eigenvectors can be labelled as in (3.111)Byw, k) and
#(w, k). Furthermore, if9”) is a solution, so is th€® + /2 as this merely
exchanges the eigenbasis.

2. The quasiparticle pole® (k) can be identified with a definite orientation in spin
space by solving :
POO, ) O (w(o)(k),k> —0. (3.118)

The above amounts to one complex equation which determifigd) with 6 and
#» determined in the previous step. The imaginary pat©f(k) is negative. To
obtain the quasi-particle branch with opposite spin oagan, we need to solve the
above withd© replaced by + /2.

Once again, if there is rotational symmetry in the backgdyuue. if there are no order
paramaters of spontaneous symmetry breaking which brestsonal invarianceq®, ¢
andw(© (k) can depend only on the moduluslof

The space-time dependent shift in dispersion relationasatdterized by :

w = wO(k) + dw(k, k), X, t). (3.119)

129



Chapter 3. The Holographic Spectral Function in Non-Equilim States

The shiftow can be obtained by solving :

dw(k, x,t) <P(0(0),¢(0))6wj(0)<w:w(o)(k),k>> + 60(k,x,1) <69P(8(°),¢>(0))

o (w — WO (K), k))

oo (k, x, 1) <6¢P(9(0), 6©).J© (w — WO (), k)) S (P(9<0>, 50

g (w = wO(k), K, k(b)>>

. —i | w k —iw k t
kx|, ( rRb)(K (b)) —iwip)( <b>)) .

(3.120)

The above equation amounts to two complex equations whiolvglus to solve the real
unknownsié andd¢ giving shifts in spin space and the complex unknawn To obtain
the non-equilibrium shift in the dispersion relation foetbther equilibrium branch with
orthogonal spin orientation, we need to solve the above lithveplaced by© + 7 /2.

The solution ofjw will take the form in a hydrodynamic shear-wave backgroudad,
instance, clearly takes the form :

2

5w(k, X, t) = <5w,4(k) 5u(k(h)) -k -+ 5&)3(1() k?ik?jk?(h)i(SUj(k(h))) eik(h)'xe_iﬁrh%t. (3121)

Therefore, we see that the shift in the dispersion relatioi@ quasi-particle pole is
also in sync with the propagating collective mode. Furtt@enthough we have discussed
the fermionic case explicitly here, clearly the same sgpatsan be applied to the bosonic
field also. In fact, the source being a complex number instéaccomplex 2-vector in the
bosonic case, the equations will be much simpler.

The shiftéw in the quasi-particle pole is generically complex. Intéregy the sign
of the imaginary part odw can be both positive and negative. Thus we can get both non-
equilibrium suppression or enhancement of quasi-pardietays as indeed observed in the
RHIC fireball for various resonances (short-lived quastipkes) [10].
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3.4 Taking into account non-linearities in the dynamics of
the non-equilibrium variables

It is known that solutions of gravity which have regular figthorizons reproduce non-
linear phenomenological equations for irreversible psses in the dual field theory. The
best studied examples are related to fluid/gravity cornedeoce. The full non-linear
Navier-Stokes’ equation with higher derivative correnticcan be reproduced from grav-
ity and this success has also been extended to the case gédhiardrodynamics [5]. As
we have discussed before, gravity is expected to reprochegdneral phenomenologi-
cal equations which describe the full evolution of energyamentum tensor and conserved
currents which generalize hydrodynamics [6]. This has lsbewvn explicitly for the case
of spatially homogeneous relaxation [7]. In all cases, #gwlarity of the future horizon
determines the phenomenological coefficients.

We would like to show that the prescriptions described scdarbe readily generalized
to include non-linearities in the dynamics of the energyamatum tensor and conserved
currents characterizing the non-equilibrium states. We sstematically include these
non-linearities into the retarded correlator, the shiftshe dispersion relations of quasi-
particles, etc.

The key is to see how the solutions for the bosonic and ferimitelds get determined
in the perturbed background. Let us focus on the case of tdeodynamic background.
If we take into account non-linearities tu(k¢) in the background, clearly these non-
linearities will also appear in the Laplacian of the bosdietd. Let us consider quadratic
dependence on two distinct velocity perturbatiomng k) and du(ky,) for instance, at
a given order in the derivative expansion(i.e. at themth order in the hydrodynamic
momentum). The solution fob will receive a correction quadratic in the amplitude of
velocity perturbation and atth order in the derivative expansion which can be represgente
as:

o (r, k, k. k;gh)) ¢l +hethy)e. (3.122)

The radial dependence above can be determined from the@go&motion :
0N (ke — KNOP™ (1, K, ke, k) = S (r, k, by, i), (3.123)

where 01N is the Laplacian for a scalar witthrmomentumk in the unperturbedidsS,
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Reissner-Nordstorm background a$id™ is a generic source term. For = 1 the source
531 can contain terms likék - du (k) (K - du(kgy,)), etc. It also contains the solutions
at the lower order in the perturbation expansion for instaié!) d(10),

Clearly the general solution df near the horizon can again be separated into two ho-
mogeneous pieces, the incoming and the outgoing modes, @antieular piece which has
no arbitrary integration constant and is completely deieeah by the source terr§>™).

In order to satisfy the incoming boundary condition, we dtdqaut the coefficient of the

outgoing mode to zero. Also as discussed before, the irttegraver the hydrodynamic

frequenciesv,) andw,, will produce a divergence at the horizon for the incoming mod
as for instance in the case above with dependence on two diyakinic shear wave back-
ground modes like :

(3.124)

Obviously the coefficient of the incoming mode has to depemdw and the hydrody-
namic momenta required by the order in the perturbationmsipa. The contribution from
the frequency pole idu(wgy, ki) given by the hydrodynamic shear dispersion relation
produces the above divergent behavior. In general thegbwnee will always be there for
any quasinormal wave background as it's dispersion reiatig (k) will have a nega-
tive imaginary part. Therefore, we should put the coeffitseri the incoming mode at the
horizon to zero too. We are just left with the particular giechich is completely deter-
mined by the source term containing the solutions at the l@sgers in the perturbation
expansion. Therefore, applying inducticat, each order in the perturbation expansion,
the non-equilibrium solution is uniquely determined by ¢ogiilibrium solution, i.e. the
solution at the zeroth order in the unperturbed black braaekground The consistency
of holographic duality requires the solution at each ordehe perturbation to be regular
at the horizon.

As the solution is uniquely fixed at each order in the pertibaexpansion, we can
obtain the non-equilibrium contributions to the source @nedexpectation value of the dual
operator by studying the asymptotic behavior of the sotluséibeach order. This procedure
can also be applied for fermionic fields.

Once the source is obtained at a given order in the pertorbakpansion, it is straight-
forward to obtain the shift in the dispersion relation of gjuaarticles. For example,
5w®™ (k, x, t) along with the non-equilibrium shift in the spin orientatigiven byso?™ (k, x, t)
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anddo®™ (k,x, t) can be obtained fromi>™) by solving :

S ®m) <P(9<O>,¢<O>)awj<0> (w :w<0>(k),k>> +00@m (k, x, 1) (69P(9<0>,¢<°>)

JO (w = wO(k), k))

o™ <a ,P(0©, ) J© (w — WO (K), k)) _ < POO, o)

J@zm) (w — @ (k), k, k(b)) )

ei(k(b)Jrk'(b))-X
o~ (wrm)(Kp) +wr) (K )t

e~ Wi (k) i) (K o)t

(3.125)

A consistent perturbation theory for the solution in the +sguilibrium background
thus suffices to take into account non-linearitiesiin, 67, (573.(]’7“ etc. in the retarded

correlation function, spectral function, non-equilibrisshift in the dispersion relations,
etc.

3.5 Summary and future directions

In this chapter we have discussed how to develop a generagtaphic formalism for

determining non-equilibrium retarded correlator, spEduinction, shifts in dispersion re-
lations, etc. Needless to say, we would like to use this fiemato numerically calcu-

late these space-time dependent quantities in the speeifigpsof charged bosonic and
fermionic fields minimally coupled to Einstein-Maxwell gity in AdS, discussed here.
In particular, the following questions require attention.

1. Itis known that at equilibrium the temperature modifiesgpectral function only in
the infrared, while in the ultraviolet the spectral functi@mains as in the vacuum.
It can be expected that we have a similar feature even in gaiiarium - the ultra-
violet behavior of the spectral function, quasi-partidgpersion relations should be
independent of the state. It will be interesting to see #& thireproduced in our case.
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Some of the background quasi-normal modes indeed can hayhigé frequencies,
while high frequency dependent corrections can also bergerteby non-linearities.
Therefore, numerical studies can help us understand hoeffenet of high frequency
dependent background modes gets suppressed in the Uuktatfithis is indeed the
case.

2. The non-equilibrium shifts in the dispersion relatior dhave both positive and
negative imaginary parts. If positive it leads to supp@ssind if negative it leads to
enhancement of the decay. It will be interesting to see ifaameuse non-linearities to
design a background in which a specific quasi-particle castdi®lized against decay
to a large extent in a certain range of energies. This cawaltto observe otherwise
short-lived quasi-particles. In particular, it will be @mesting to see if some bound
states of heavy quarks can indeed exist in the quark-gluesnp at temperature 175
MeV.

3. The quasi-particle dispersion relations can changeamatytically with the tem-
perature particularly if there is level crossing. It will li@eresting to design a
non-equilibrium background where the temperature vanespace and time over
the range in which this non-analyticity can occur and studycdy how the quasi-
particles behave in such backgrounds. It will be intergstinlearn from such holo-
graphic examples how to describe such non-equilibriunestatfield theory.

Work is in progress to tackle such issues numerically [43]r @escription here gives an
algorithm to tackle such questions in specific holographociets.

Another direction we want to pursue in the future is to studg-equilibrium spectral
functions in states corresponding to a plasma undergoigtbhovariant hydrodynamic
expansion as in the RHIC fireball. This will give us insighitiihow hadrons are produced
and transported in the medium, and finally get frozen chdiyiaad thermally.

Appendices

A. Eddington-Finkelstein vs Schwarzchild coordinates

In order to see regularity at the horizon manifestly in therin€3.37) corresponding to
hydrodynamic shear-mode perturbation of théS, Reissner-Nordstorm black brane, we
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can consider the following change of coordinates followi2@j :

t = v+ l2k(rl20> + O(é?),

= i 12/’{;(7;0) ou’ (kny) e Ko F=wmw)
—Zw(h) " k:1 (TZZ()) 5ui(k(h))e"(k(h)'jfw(h)v) + O(€%), (126)
where . .
k(a) = /0 g (127)
and . "
kl(a):/o db( 0 )k(b). (128)

These new coordinatesv andz’ are ingoing Eddington-Finkelstein coordinates.
In these coordinates, the metric assumes the form :

2 217 (K- Z—wmyv) 0 I?
ds® = ——(dv — Oui (k)"0 FTEmY g )d’r’ + 2| f(

TTo

12
oo (1 () S () o a2

12 1 o
=12k 0u; k)€’ o (5%%) N k(r;;o) )dfz “

+O(62). (129)

)dv + di? —l—dy)

The bulk gauge field however no longer remains in the radiajgand takes the form

A, = —i

Ty =) o
;
A, = \/gl’;m (1- ) + o),

A = _\/ggFTO (1 7“7”0) 5uz(/€(h)) z(k(h)-fitfw(h)v)<1 . iw(h)l2k<@>> +O(€2).

{2 2 o 12
(130)
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It can be checked that the gauge field is also regular at thedmor4,,, A; vanish whileA.
is a constant at the horizon. We can bring the gauge field lmacdial gauge by a regular
gauge transformation.

Most importantly, the;j components of the metric is regular as

1 : . .
§h<a) — k(a) = terms which are regular at the horizon (i.ecat 1). (131)

So, the metric is manifestly regular up to the first order mdlerivative expansion in these
coordinates.

We can implement this change of coordinates order by ord#érdarderivative expan-
sion. Even beyond the fluid/gravity correspondence, suondigate transformations can
be implemented perturbatively to see manifest regularnity [

B. The general solution for the non-equilibrium profile of
the scalar field

At the zeroth order, the equilibrium solution for a given reathn be written as an arbi-
trary linear superposition of two linearly independent log@neous solutions” (%, r) and
®B(k,r). Herek denotegw, k) collectively. Thus

OO (k,r) = AO(k)dA(k,r) + BO(k)DB(k,7), (132)

whereA®© (k) and B (k) are arbitrary.
Using the method of variation of parameters, we can writegdreeral solution for the
equation of motion (3.48) for the non-equilibrium part canfbund and is as below :

(I)B(k + k(h), T/) (‘/1 —+ ‘/2> (k, k(h), T/)(I)(O) (k, T)

Ok, kgy,r) = —@*(k+ kg,r) / dr’ —
ly W[(I)A(k? -+ k‘(h), r’), (I)B(k‘ + k‘(h), T’)]T 2f Tlgo

i P Ot ke, ) (Vi V2) (R Ky, ) @O (k)
+P (k) —+ k)(h), T) / dr’ .
l2 W[(I)A(k? + k‘(h), T”), (I)B(k‘ + k‘(h), r’)]r’2f<7“l;“0>

Above k) denotegwp), k) collectively, W denotes the Wronskian of the two homoge-
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neous solutions, ang and/, are arbitrary setting the range of the two integrals.

One can readily verify that the above is independent of tlecehof 4 and & for
fixedl, andl,. To see the general behavior at the horizon given by (3.58)an seth to
be " and®” to bed*,

Furthermore, one notes that the above is consistent witlleéhgative expansion for
any!l; andl, as the dependence 6n; andk comes froml; andV; directly. Comparing
(3.63) with (3.49) one gets that the explicit contributioraﬂll) and JE) comes fromVj,
and the contribution tO)g) anng) comes fromvs.

C. Vielbeins and spin connections in the hydrodynamically
perturbed black-brane metric

We calculate here vielbeins, their inverses (or einbeind)spin connections for the metric
(3.37) which corresponds to a black brane perturbed by adldythiamic shear mode. The
notation we use here is the same as defined in subsection Z2.8oted there, to ease
computations we will choose, without loss of generalityt thais in they direction. Asju
is transvere in the shear-modgy,) will be then in thexr direction. On the other harkican
have arbitraryr andy components in order to retain full generality.

The non-zero vielbeins upto first order of derivative expamsire :

l zl—fem> |
¢ = —/f <@> ?%_—715uy(7€(h))62(%”7“(“”7

r [2 or o
()
T [ T . [ l2 1 (k(hxx —w TTo
€ = o G =i <6—T8>k(h)m Sy (k) €' Eore—emt) h<l—2)
l To 4 T—w

e = o (1 - f(l_2>> Sty (k) e'Fore—eon
Y . i L — W, 0
ez = —i <6—7’3> Ko Sty (k) €0 Mh(l—g),

l l 1
& o= L o=t (134)

T T f(%)

From this, one can also construct inverse vielbeins (oresig) which are as follows :
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P 1=l
62 - ;’ 62 T 5uy k(h) = W(h)t)
/1 () (w)
T r T T l2 i (khyxx —wnyt TTo
€ = 7 =17 (6—7“3> Ky Oty (Kqy) €/ Fome=eo) h(l—2>’
()
¢of = %715%(7%)) “epe—em?),
r(#)
ey = is (ﬁz) ity Oy (k) €0 ”(“)t)h(@>,
- [ \6r§ 2
. i)

In order to derive the equation of motion of the Fermions mgiven background, we
require the spin connections associated with the first araric.
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The non-zero components of the spin connectigh? are as below :

) 5uy(/€(h)) ik —winyt) k(h)x [37’0( -1+ f(ﬂ“o)) 441* nK h(rm) w(h)}

.
oy ()
w  POuy(ke) e/ (— 1+ f (%)) Win)
= —Ww = )
2,1 (%)
o (k) oo b5 ke, wp
= _CUE = — s

g Ouy(kg) etommao rg (—res())r ()
472 f3 (1_0) ’

_f(rm 1( rro

)
. Sty (Kny) e Fome =t [[2 ( — 14 f(?“?“o)) —rrg f’(m’)]
T 202r J
= —w = l5uy(’€(h)) ot (‘ 1+ f (m})) ke
r(#)

- e = T

i1y (ki) €' Hone =00 m’f(mx (3l h (—2°> — 277 h’<%)>
T T 6rre )
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yr ry 5uy(k(h)> et [2 ’ <_ 1+ f<%>> f<%> —TTo <1 + f<%>) ,<%>]

w; = _wti — — ’
42y f(l—>
iéuy(k(hﬂ e!kre—en?) f<%> Knyx <3 12 h<%) —2rr h/<%>)
o _ Y _
T 6rr ’
()
S A 136)

Here prime denotes derivative with respectia
It can be checked that the above spin connections satistaiCstructure equations up
to first order in the derivative expansion.

D. The generalized effective action

We will review the formalism for bosonic operators here. Geaeralization to fermionic
operators is straightforward.

The starting point of the construction of the generalizéelative action is to generalize
the partition function which is a generating functional bétvaccum correlation func-
tions. Here on top of a sourck(x) for a single operato®;(x), we add a non-local source
Ky (x,y) for a pair of operator®),;(z) andOy (y), and define:

Z(JlaKll/) = eiW(Jl,K”/)

= /D@S exp [z <S[q)s] +/dD37Jl(5U)Ol(37)
—i—% /dedDy (’)l(x)Ku'(x,y)Ol’(y))]' (137)

Above D is the number of space-time dimensions in field theory.
We then define the expectation value of the operéxgr:) and the Green’s function
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Gll/(l’, y) through .

W (Jy, Kyyr)
o) Oi(z),
% = %(Oz(af)Ow(y)+Gzl/(a:,y)>. (138)

Eliminating J; and K- in favor of O; andG;, we can now do a Legendre transform to
define the generalized effective action :

F(Ol,G”/) = W(Jl,Kll/)—/dDZCJl(Jf)Ol(Jf)

—% /dD?UdDZ/ Ky (z,y) <Oz($)0w(y) + Gw(%?/))- (139)

Clearly,
oL (O, Gy
o = )~ [ aPy Kule)0nto)
(O, Gr) 1
m = —2Kll’($>?/)- (140)

Therefore, in absence of sources, extremizing the gemedaéffective action'(O;, Gyy)
gives the dynamics of both the operators and their Green&tinns.

Such an effective action is usually considered for the efearg fields and their Green’s
functions in the literature. However, as discussed aboveameconstruct the same for the
set of gauge-invariant single trace operators in a noniAbgjauge theory.

There is one important point in the above construction. Tifec#ve action is con-
structed over the so-called Schwinger-Keldysh real timméa@ar shown in the figure below,
which travels from—oo to oo infinitesimially above the real line and then back fremto
—oo infinitesimially below the real line. It is necessary to cioles this "closed-time" con-
tour because the usual time-ordered Green’s function oFgy@mann propagator do not
contain the full information about the operator in preseofcgources in a non-equilibrium
state as mentioned in the Introduction. The closed-timéoatorensures we propagate the
full information of the operator in presence of the sourcksfact, the full closed-time
contour ordered Green’s function can be written as a comibmaf the commutator and
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the anti-commutator. For instance, if both operators asobic the

Cow (1) = 5({OU2). Ou(w)}) — H{(Oa), Ou )] SigL (2" — ). (141)

Above C denotes the closed-time contour, arfdandy° are the time coordinates of the
D-dimensional position vectar andy respectively.

C

—
<

4

The closed time Schwinger-Keldysh contour is as above. dhedrd and backward di-
rected parts of the contour have been displaced slightlyeabod below the real axis just
to distinguish them clearly.

In fact, as discussed in the beginning, the spectral functig (z, vy) is related to the
commutator and the statistical function (or Keldysh pragag G, (x, y) is related to the
anti-commutator in the following way (for bosonic fields):

Aw(z,y) = [Oi(x), Or(y)]),
Gru(w.y) = 5UO), 0uy)}). (142)
The coupled equation of motion of the spectral and staséisticctions are obtained from
the generalized effective action.

The generalized effective action has no dependence on tatupeeor non-equilibrium
variables, it is defined as a Legendre transform of the vacpersistence amplitude in the
presence of single and double operator sources. Howevenmél and non-equilibrium
propagators also can be obtained as solutions which exuertiis generalized effec-
tive action. In order to obtain thermal propagators, we need to imposestaonal in-
variance, so the Wigner transformed spectral and statidtioctions A, (w, p, x,t) and
Gruw (w, p,x,t) do not depend on the centre-of-mass coordinatesd¢. Furthermore,
they should be related by a temperature dependent fluatudissipation relation.

142



Bibliography

[1] J. M. Maldacena, Int. J. Theor. Phy38, 1113 (1999)] [arXiv:hep-th/9711200];
S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phys. Lett483 105
(1998) [arXiv:hep-th/9802109]; E. Witten, Adv. Theor. MatPhys.2, 253 (1998)
[arXiv:hep-th/9802150].

[2] G. Policastro, D. T. Son, A. O. Starinets, JHER09 043 (2002) [hep-th/0205052];
G. Policastro, D. T. Son, A. O. Starinets, JHEPL2 054 (2002) [hep-th/0210220].

[3] R. A. Janik and R. B. Peschanski, Phys. Rev78 045013 (2006) [arXiv:hep-
th/0512162]; R. A. Janik, Phys. Rev. Lefi8, 022302 (2007) [hep-th/0610144];
M. P. Heller and R. A. Janik, Phys. Rev./8, 025027 (2007) [arXiv:hep-th/0703243].

[4] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets and Mst&phanov, JHEB804
100 (2008) [arXiv:0712.2451 [hep-th]]; M. Natsuume and Ka®wura, Phys. Rev. D
77,066014 (2008) [Erratum-ibid. 38, 089902 (2008)] [arXiv:0712.2916 [hep-th]].

[5] S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. RangamJHEP0802 045
(2008) [arXiv:0712.2456 [hep-th]]; N. Banerjee, J. Bhalktarya, S. Bhattacharyya,
S. Dutta, R. Loganayagam and P. Surowka, JAE®], 094 (2011) [arXiv:0809.2596
[hep-th]].

[6] R. lyer, and A. Mukhopadhyay, Phys. Rev.d1, 086005 (2010) [arXiv:0907.1156
[hep-th]].

[7] R. lyer and A. Mukhopadhyay, Phys. Rev.83, 126013 (2011) [arXiv:1103.1814
[hep-th]].

[8] R. lyer and A. Mukhopadhyay, POBPS-HEP2011 123 (2011) [arXiv:1111.4185
[hep-th]].

[9] U. H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, BPI0002 039 (2000)
[hep-th/9912209]; S. B. Giddings and A. Nudelman, JHE®2 003 (2002) [hep-
th/0112099]; V. Balasubramanian, A. Bernamonti, J. de BdeCopland, B. Craps,
E. Keski-Vakkuri, B. Muller and A. Schafest al., Phys. Rev. 84, 026010 (2011)
[arXiv:1103.2683 [hep-th]]; J. Erdmenger, C. Hoyos and B, [arXiv:1112.1963
[hep-th]].

143



Bibliography
[10] W. Florkowski, “Phenomenology of Ultra-Relativistic Heavy-lon CollissgriWorld

Scientific, 2010

[11] M. Bleicher, E. Zabrodin, C. Spieles, S. A. Bass, C. Ers Soff, L. Bravina and
M. Belkacemet al., J. Phys. G &5, 1859 (1999) [hep-ph/9909407].

[12] S.S. Lee, Phys. Rev. D9, 086006 (2009) [arXiv:0809.3402 [hep-th]].

[13] H. Liu, J. McGreevy, D. Vegh, Phys. Rel83, 065029 (2011) [arXiv:0903.2477
[hep-th]].

[14] M. Cubrovic, J. Zaanen, K. Schalm, Scier825, 439-444 (2009) [arXiv:0904.1993
[hep-th]].

[15] T. Faulkner, H. Liu, J. McGreevy, D. Vegh, Phys. R&83, 125002 (2011)
[arXiv:0907.2694 [hep-th]].

[16] S. A. Hartnoll and A. Tavanfar, Phys. Rev.&3, 046003 (2011) [arXiv:1008.2828
[hep-th]].

[17] M. Cubrovic, J. Zaanen and K. Schalm, JHEP1Q 017 (2011) [arXiv:1012.5681
[hep-th]]; S. Sachdev, Phys. Rev.84, 066009 (2011) [arXiv:1107.5321 [hep-th]].

[18] T.Kita, Prog. Theor. Phys. Vol. 123 No. 4 (2010) pp.3&48 [arXiv:1005.0393[cond-
mat]]; J. Berges, AIP Conf. Pro@39, 3 (2005) [arXiv:hep-ph/0409233].

[19] L. Perfetti et. al. , Phys. Rev. Le@7, 067402 (2006)

[20] A. Mukhopadhyay, “Non-equilibrium fluctuation-digsition relation from hologra-
phy,” Phys. Rev. (87, 066004 (2013) [arXiv:1206.3311 [hep-th]].

[21] C. P. Herzog and D. T. Son, JHERB03 046 (2003) [hep-th/0212072]; K. Skenderis
and B. C. van Rees, Phys. Rev. Léi01, 081601 (2008) [arXiv:0805.0150 [hep-th]];
G. C. Giecold, JHEP91Q 057 (2009) [arXiv:0904.4869 [hep-th]].

[22] D. T. Son and A. O. Starinets, JHER09 042 (2002) [hep-th/0205051].
[23] N. Igbal and H. Liu, Fortsch. PhyS7, 367 (2009) [arXiv:0903.2596 [hep-th]].

[24] S. Banerjee, R. lyer and A. Mukhopadhyay, Phys. Rev8%) 106009 (2012)
[arXiv:1202.1521 [hep-th]].

144



Bibliography
[25] P. Arnold, G. D. Moore and L. G. Yaffe, JHEBO11 001 (2000) [arXiv:hep-
ph/0010177].

[26] S. Chapman and T. Cowling,The Mathematical Theory of Non-Uniform Gases
Cambridge University Press, Cambridge, England, 1960ptéhs 7, 8, 10, 15 and
17; J. M. StewartPh. D. dissertationUniversity of Cambridge, 1969.

[27] H. Grad, Comm. Pure Appl. Matt,(1949), 331-407.

[28] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri an@%, Phys. Rept323
183 (2000) [hep-th/9905111].

[29] R. K. Gupta and A. Mukhopadhyay, JHBER03 067 (2009) [arXiv:0810.4851 [hep-
th]].

[30] R. V. Gavai and S. Gupta, Phys. Rev/l 114014 (2005) [hep-lat/0412035].

[31] I. R. Klebanov and A. M. Polyakov, Phys. Lett. B50, 213 (2002) [hep-
th/0210114]; M. R. Gaberdiel and R. Gopakumar, Phys. Re83066007 (2011)
[arXiv:1011.2986 [hep-th]].

[32] J. Erlich, E. Katz, D. T. Son and M. A. Stephanov, Physs.Rett. 95, 261602 (2005)
[hep-ph/0501128]; L. Da Rold and A. Pomarol, Nucl. PhystA, 79 (2005) [hep-
ph/0501218].

[33] A. O. Starinets, Phys. Rev. 66, 124013 (2002). [hep-th/0207133].
[34] T. Faulkner and J. Polchinski, JHERO0G 012 (2011) [arXiv:1001.5049 [hep-th]].

[35] S.Bhattacharyya, V. E. Hubeny, R. Loganayagam, G. Mii&l Minwalla, T. Morita,
M. Rangamani and H. S. Reall, JHBB0G 055 (2008) [arXiv:0803.2526 [hep-th]].

[36] G. T. Horowitz, V. E. Hubeny, Phys. Rev. &2, 024027 (2000). [hep-th/9909056].

[37] V. Balasubramanian, P. Kraus and A. E. Lawrence, Phgs. R59, 046003 (1999)
[hep-th/9805171]; I. R. Klebanov and E. Witten, Nucl. Pig$556, 89 (1999) [hep-
th/9905104].

[38] P. Breitenlohner and D.Z. Freedman, Ann. Physt (1982) 249.

145



Bibliography

[39] S. A. Hartnoll, J. Polchinski, E. Silverstein and D. TordHEP1004 120 (2010)
[arXiv:0912.1061 [hep-th]]; L. Y. Hung, D. P. Jatkar and AinBa, Class. Quant.
Grav.28, 015013 (2011) [arXiv:1006.3762 [hep-th]].

[40] N. Igbal and H. Liu, Phys. Rev. @9, 025023 (2009) [arXiv:0809.3808 [hep-th]].

[41] J. Rammer, Quantum field theory of non-equilibrium state€ambridge University
Press, Cambridge, UK, 2007, Chapter 10.6.

[42] J. W. Negele and H. OrlandQuantum many-particle systems (Advanced Book clas-
sics)" Westview Press, USA 1998, Chapter 6.

[43] P. Basu, J. He, A. Mukherjee and H. -H. Shieh, Phys. LBti689 45 (2010)
[arXiv:0911.4999 [hep-th]]; M. Ammon, J. Erdmenger, V. Gsa P. Kerner and
A. O’Bannon, Phys. Lett. B86, 192 (2010) [arXiv:0912.3515 [hep-th]]; F. Benini,
C. P. Herzog and A. Yarom, Phys. Lett. 81, 626 (2011) [arXiv:1006.0731 [hep-
th]].

[44] T. Faulkner, N. Igbal, H. Liu, J. McGreevy and D. VeghXar.1101.0597 [hep-th].

[45] S. Banerjee, A. Mukhopadhyay, in progress.

146



Cosmological Applications

Prelude

In recent years, understanding cosmology within the fraonkwf string theory, has been
an active and interesting field of study. Starting with [1§ulbstantial amount of research
has been based on modeling the Universe by a 3-brane liviadpigher-dimensional bulk
space (brane world scenario). An incomplete list of refeesnis [2—13]. The Hubble
equation of cosmological evolution is thus reproduced leytthjectory of the brane. This
chapter in the thesis, as mentioned in the introductiongeioted to such cosmological
studies.

This chapter is divided in two parts. Applying the gravigimge theory duality to a
cosmological setting is not straightforward due to the thet the metric on the bound-
ary space in which the gauge theory lives must remain dyremidis was long thought
to be problematic due to the possibility of the fluctuatiohghe bulk metric correspond-
ing to non-normalizable modes [14-20]. In the first part a$ tthapter we will discuss
how one can get rid of this following the prescription giver{21] which shows that such
problems can be avoided by introducing appropriate locahdary terms needed to cancel
the infinities. Thus starting with a static bulk space-time will end up in getting a dy-
namic cosmological boundary using this dynamic boundanditmn. This possiblity in
cosmological set up was first shown in [22].

In applications of the gravity/gauge theory duality (hakyghy) to cosmology and other
settings, one generally places the boundary at a finiterdistaand then takes the limit as
the cutoffr — oo. The removal of the cutoff introduces infinities, which aemceled by
the addition of a local action on the boundary witdependent coefficients (counterterms)
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[23]. Unlike in quantum field theory, where countertermsiaterpreted as renormalization
of the (bare) parameters of the system, it is not clear if terterms have a similiar physical
meaning in a holographic setting.

In this part we generalize the holographic approach to césyydy placing the bound-
ary hypersurface at a finite distancand derive expressions for the various physical quan-
tities (e.g., the stress-energy tensor) which are valicfbitraryr. This leads to a gener-
alized Hubble equation of cosmological evolution. We stded to introduce the standard
counterterms to avoid infinities at largeWe show that these counterterms have the usual
field theoretic interpretation of renormalizing the (bgrajameters of the system, namely
Newton’s constant and the cosmological constant. Moreaverecover the brane-world
scenario by fine-tuning Newton’s constant. Thus we showtiheate-world scenarios are a
special case of our generalized holographic approach.

This part of the chapter is organized as follows. In sectidn¥ke discuss the bulk space
concentrating on a time-independent solution (generalkbiteole) of the field equations,
and define the boundary hypersurface. In section 4.2 wednt®the boundary conditions
and the counterterms needed to cancel infinities. We caéctitee stress-energy tensor
and derive the Hubble equation of cosmological evolutionséction 4.3 we discuss the
example of a bulk Reissner-Nordstrom black hole includimgrmodynamics. In section
4.4 we discuss various examples of cosmological evolutioparticular, we show that the
brane-world scenarios are a special case of our hologragpoach. Finally in section
4.5 we conclude.

The second part of this chapter deals with explicit consimanomf time-dependent su-
pergravity solutions. The main motivation in this part isuiederstand the physics near
cosmological singularity. As we knowdS/C F'T relates a strongly coupled theory with a
weakly coupled one. Consequently, it provides us with a wapme the non-perturbative
region of one by performing computations on its dual. Duettong gravitational fluctu-
ations, physics around cosmological singularities is ag@t@d by non-perturbative effects
and one hopes that the AdS/CFT correspondence would shesl Iggithinto it. Indeed,
in recent years, we have withessed several important igatsins where attempts were
made to find the signatures of these singularities in thaiggaheory duals. Expectation
is that the dual theory evolution might be able to providerssg®e quantum description of
these singularities. Successes have been varied, pleadeseferences [24] - [28].

Inspired by this line of developments, in this part, we skdor D brane solutions in
ten dimensional type 1B theory where the world volume noe&xpands anisotropically
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and show instabilities within their supergravity desaops. We find that appropriately
tuning the five form field strength, it is possible to constrai®3 brane with four dimen-
sional Kasner like world volume [44]. Along with a time-lilgngularity atr = 0, the
metric shows an additional cosmological singularity at 0. Perturbation arount = 0
generates an analogue of Belinskii-Lifshitz-KhalatnikBKL) oscillations [39]. The near
horizon geometry of this brane reduces to that of a Kasnietse in AdS space plus a
five sphere along with an appropriate five form field strengjgtiihe next section we probe
the geometry with a dynamical D3 brane whose world-volunheiits anisotropic expan-
sion/contraction along with a BKL like oscillation. We shaw subsequent sections, that
similar solutions can be constructed even within elevenedisional supergravity. As an
illustrative example, we discuss the case of M5 brane. Tlae Inerizon geometry is now
a six dimensional Kasner space. A dynamical probe M5 brati@srspace-time again ac-
quires an anisotropic expansion in some directions andgacticn along some. Amusingly,
we find that it is possible to tune parameters in such a mahaethree directions expand
and the rest contract. Close to the cosmological singidargdupergravity descriptions of
all these solutions are expected to break down. We hopehteajauge theory description
would shed some light on the physics near the singularities.

The first part of this chapter is based on our work, [29] while second part follows
our work, [30].

Part | : Static Bulk - Dynamic Boundary

4.1 The Bulk

We start with a non-extremal black hole inta- 1 dimensional bulk space in the presence
of a negative cosmological constant

6
Ay = ~7z- (4.1)
We consider the metriansatz
dsi = —A(r)dt* + B(r)dr? + r*dS2; 4.2)
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r being the radial direction, anid= +1, 0, —1 depending on the geometry of the constant

(t,r) hypersurfaces (spherical, flat, or hyperbolic, respelstivélore general metrics are

also possible, but will clutter the notation unnecessalilgection 4.3, we shall concentrate

on the special case of a Reissner-Nordstrom black hole fdrogcalculations.
Asymptotically, we have AdS space of radilistherefore ag — oo,

A(r) = ~— . (4.3)

We introduce a radial cutoff; = « and parametrise andt asa = a(7) andt = t(7) so
thatda = adt. Then the metric on the cut-off surface (boundary) takeddira

ds? = —A(a)(%f + B(a)a®| dr* 4 a*(1)d$2} . (4.4)

In order that the metric on the boundary take the FRW form,
ds? = —dr? + a*(7)dQ} (4.5)

the metric components should satisfy the relation

(5_;) :S , B=B(a)a®+1. (4.6)

This in turn fixes our choice of the time parameteNotice also that il 5 is the Hawking
temperature, then the temperature on the boundary is festkhi
Ty
T=—. 4.7

VAB 1)
This kind of parametrization has been used before, e.g31ir33]. Note that, while treat-
ing T as a time parameter, we are effectively considering theafawotion of the cut-off
surface in thet + 1 dimensional bulk. By adopting appropriate boundary cooads, the
cut-off surface can be thought of as the location of a brarimicking a moving brane
scenario.

150



Chapter 4. Cosmological Applications

4.2 Boundary Conditions

The heart of the construction we are going to elaborate oassd on the observation that
the afore-mentioned dynamics of the boundary hypersusaitée captured through the
boundary conditions we impose on the system. This approasHivet adopted in [22].

Let us consider a general five dimensional bulk action,

Ss :/ d°x\/—gLs | (4.8)
M

where we keep the Lagrangian dengityunspecified. In the simplest case, this consists of
a five-dimensional Einstein-Hilbert action with a negattesmological constant (4.1) plus
the requisite Gibbons-Hawking surface term for a well-deimariational principle. If one
varies this action with respect to the metric, one obtainsumbary term of the form

1
585 = ~ / d'z /=T S5y, (4.9)
2 Jom

where~*” is the induced boundary metric andis its determinant.TﬁSFT) denotes the
(bare) stress-energy tensor of the dual conformal fieldryhibat lives on the four-dimensional
boundary hypersurface = a. Generally in the context of the AAS/CFT correspondence,
Dirichlet boundary conditions are employed, which fix theibdary metric and conse-
quently eq. (4.9) vanishes. While this leads to a well-defivariational principle, it does
not allow for a dynamical boundary metric. Since we are prilyéterested in obtaining

a cosmological evolution and hence a dynamical metric orbthndary, we seek differ-
ent boundary conditions that can be imposed without fixirgrtietric on the boundary.

It was noted in [22] that one could adopt appropriatixed boundary conditions, which
were shown to lead to valid dynamics in [21]. Their definitiomolves the addition of
an appropriate local actiow;,..;, at the boundary. For cosmological evolution, this local
action will be chosen as the four-dimensional Einsteirbelit action on the boundary with
an arbitrary (positive, negative, or vanishing) four-dmsi®nal cosmological constant,

1
167TG4

Slocal =

| dtay=irE) - 200, (4.10)
oM

whereR[v] is the Ricci scalar evaluated with the boundary metric whiclour case, is the
FRW metric (4.5). Notice that the cosmological constant tmaylue, wholly or partly, to
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a brane of finite tension at the boundary.

Additionally, to cancel divergences in the limit— oo, it is necessary to introduce
counterterms [23]. These are of the same form as the locminaahd renormalize the
four-dimensional physical parameté&rs andA4. We have

1

Sev =~y / /= (R[] + #2) | (4.11)
oM

which diverges as — oo. The parameters; and x, will be chosen so that physical
guantities such as the energy density and pressure remigniffithis limit.
Putting these pieces together, defineour boundary condition as

CFT local c.t.) __

TE™D + T 4 T =0, (4.12)
whereTS"™ is due to the variatiodS; (eq. (4.9)), and the other two terniEy“* and
T,EV ) come from the variations

1
et = 5 [ doy/ AT
2 Jom
1
0Se;. = — / d'a /=TS oy (4.13)
2 Jom

respectively, with respect to the boundary metfig,. Similarly to Dirichlet boundary
conditions, the choice (4.12) leads to a well-defined vianai principle with

535 + 6Slocal + 55&1}. == 0 . (414)

To see the explicit physical content of oomixed boundary conditions (4.12), we shall
derive explicit expressions for each of the three conthilguterms. The bare stress-energy
tensor on the boundary is given by

1
TﬁSFT) — %(ICW — Kvw) (4.15)

whereC,, is the extrinsic curvature, and is its trace. The components of this tensor
can be evaluated by computing the veloeityand unit normakh” vectors on the boundary
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hypersurface; = a(7). For the metric (4.2), these vectors are given in comporent &is

and

| B /A ./
TLM: <— Zd,—\/%ﬂ,&@) ; nu:( ABCL,— 38707070) ) (417)

respectively. The direction of the unit normal vector isgiakto be pointing inward, toward
the bulk. The extrinsic curvature can be written in termshaf tinit normal and velocity
vectors as

1 Oyv
ICZ] = §nkakfylj ICTT = - !

(4.18)

nt'

Explicitly, they are

/B _ 3 . /- /
Kij=a RCE K= ~5 15 (2ABi + (AB)'a+ A') | (4.19)

wherei, 7 are indices for the spatial coordinates on the boundarn(sghbys2,).
We deduce the explicit expressions for the components didhe stress-energy tensor

(4.15),
3 B
TOFT) JE 4.2
o 87TG5CL B’ ( O)
THCFT 1 aA'B+ AlaB'a+ 2B (ad + 2ad*) + 4] | @.21)
167G aAvVBB

where no summing over the indéxs implied. Notice that the energy densify CFT)

obtained above is negative, however we should emphasizéhibas only abare quantity
and therefore not physical. It will be corrected by the addibf counter terms resulting
into apositiveregularized (physical) quantity.

For the remaining two contributions in (4.12), we obtain stendard expressions one
encounters in Einstein’s four-dimensional equations,

1 1 1
T,L(Lllf)cal) — _87TG4 (RMV — Q’YNVR — A47MV) , T}Sit) = —K1 (RMV — §7WR) _K’Q’YMV ,
(4.22)
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whereR,, (R) is the four-dimensional Ricci tensor (scalar) constrddtem the four-
dimensional boundary metrig,,. The counter terms diverge in the limit— oo, and the
parameters; andx, will be chosen so that they cancel the divergences in thedisess-
energy tensoﬂ}ﬁfFT). Notice that the counter terms are of the same form as thesterm
coming from the local action. Therefore, they admit the déad interpretation of inducing
the renormalization of the physical four-dimensional cantsGG, (Newton’s constant) and
A4 (cosmological constant).

The regularized (physical) stress-energy tensor is

reg) __ CFT c.t.
T = T 4+ 70 (4.23)
We deduce the energy density and pressure, respectively,
k 3 /B
— Tlreg) H? + 2 ) — =
€T fa ( * a2) 8rGsa \V B’
 (re ko 2a
p:Tz‘Z( ¥ = —HQ—%1{(H2+—2+—Q)}
a a
1 aA'B+ AlaB'a + 2B (ai + 24°) + 4]
+ .
167G aAv/BB
(4.24)
whereH = a/a is the Hubble parameter. The choice
3L 3
K1 (4.25)

T 160G, T T BaGsL

ensures finiteness in the limit— oo. Unlike the bare energy density (4.20), the regular-
ized energy densityis positive.
The boundary conditions (4.12) now read

1
RMV B 5%“/7—\’/ - A4’7;w = 87TG4TlEfxeg) ) (4.26)

which are the four-dimensional Einstein equations in tlesence of a cosmological con-
stant.
The cosmological evolution equation is the component of the Einstein equations

(4.26), \
k 4 87TG4
NN
+ a? 3 3

€, (4.27)
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wherese is the energy density given in (4.24) under the conditioB%%. This is deceptively
similar to the standard equation of cosmological evolutiblowever, it differs in an es-
sential way, becausecontains contributions that involve the Hubble paraméier a/a,
leading to novel cosmological scenarios.

4.3 AdS Reissner-Nordstrom black hole

In this section we take up the example of an asymptoticallg Aldarged black hole, namely
AdS Reissner-Nordstrom black hole for which the functignand B of (4.2) are

1 r? M Q?

=——= - =+ —=. 4.28
B(r) L2 * 72 * r (4.28)

The parameters/ and( are related to the mass and charge of the black hole, regglgcti
k can be+1, 0, or —1 depending on whether the black hole horizon is sphericdl|,dfa
hyperbolic, respectively.
The Hawking temperature is
275+ k

Ty = , (4.29)
27T7"+

wherer, is the radius of the horizon satisfying

2 2
ri M Q
The entropy is
3
"y
= 4.31
S 4G5V3, (4.31)

whereVj is the three-dimensional volume spanned iy Notice that the entropy is inde-
pendent of:, and therefore constant in time, leading to an adiabatituéon.
According to (4.7), the redshifted temperature on the baunis

A L (4.32)

V& + Ala)
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For largeq, it is expanded as

Tyl TyL? k
=22 A <H2+—)+.... (4.33)

a 2a a?

Similarly, we expand the regularized energy density andsue (4.24), respectively,

3L3 E\?  AM
— H? + —
‘ 647G { < * a2> * L2a4}

3L° EN\® 4kM  8Q2 4AM H?
- H? + — ) QI 4.34
128765 {( T a2) + 7206 + T446 + 12 g4 } + ) ( )

L3 E\?  4AM kN d
= H?> + — —4( H? -
b 647G { < * a2> * L2g* ( N a2> a}

Lo 5 4kM 2 4M g2 2 Mi
; {(H2+£) AR B4 ——2<H +£) g—i—a}

- 1287Gs a? L2a5  L*S L2 ot
o (4.35)

We deduce the conformal anomaly which is given by the tradbeostress-energy tensor,
™l = e—3p
B 3L3
- 167Gs a2
3L° Jre k
647TG5 a?
The first term is the standard conformal anomaly one obtaitisa large: limit [22].

As an example, consider the case of a flat static boundary eha&@zschild black
hole. Thenk = 0, Q = 0, andH = 0. The radius of the horizon is, = (M L?)'/*. The

208 " Thgs T I ot 3

a
a
) 4RM | 8Q | AM I (H k)Qd 4Md}
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expressions for the energy density, pressure and tempesamplify to, respectively,

A ks (4.37)

In the largex limit, we deduce the expansions

_ 3 (®LT)' &LT)
© T 8GL \ 2 8 )
B 1 (rLT)*  3(wLT)8
p = SrGoL < 5 3 +... ). (4.38)

Thus, at leading order, we have- 3p oc T, as expected for a conformal fluid. Including
next-order corrections, we no longer have a tracelessssémasrgy tensor.
Returning to the general case, we obtain the law of thermaalycs

dE = TdS — pdV + ®dQ , (4.39)

whereE = ¢V, V = a3Vs is the volume, an@ is the potential

Q

o =—.
G5a

(4.40)

This is easily verified, e.g., by differentiating with respéo 7, ., and @ (after using
(4.30) to expresa/ in terms of the other two parameters, and@).

4.4 Cosmological Evolution

Next, we discuss various explicit examples of cosmologasalution based on an AdS
Reissner-Nordstrom black hole. For simplicity, in whaidals we shall be working with
units in whichL = 1.
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The Hubble equation (4.27) can be massaged into the form

3 <H2 n 5) _ L A (4.41)

a? L a?
where we introduced the convenient combinations of pararset

ﬁ—%_ i:1+w_

1
Gy 2 U 6 (4.42)

The Hubble equation can be expanded for larges

ko Ay G, L3 1\? 4M
H4+—-—= = H?* + —
* a2 3 16G5 * a? + L2a*

G, L IN\® 4m 8Q%  4M
4 {<H2+ )+ + ¢ + H2}+....

116G a? L2a5 ' L4a5 ' L2q*
(4.43)

At leading order, it coincides with the result obtained i2][2

After squaring (4.41), we obtain a quadratic equationf8r However, only one of the
two roots is a solution of (4.41). Let us concentrate on thgeaof parameters with > 0,
L' > 0. We obtain

( ~ 40)" = 42

2 2.
%+%—%+\/i+g+(/l(a)—k:)§—2

H? =

(4.44)

This can be solved fot = a(7) to obtain the orbit of the boundary hypersurface. Once
a solution of (4.44) is obtained, we still need to verify thiadatisfies (4.41), because the
solutions of (4.41) in general form a subset of the solutmi(@.44).
The fixed points of the orbits are found by settiig= 0 in (4.41). They are solutions
of
Vie)= —=— =pF——-yAa)=0. (4.45)

These fixed points are also fixed points of (4.44), but the es®vis not always true.
With the choice of parameters such that 0 [34], eq. (4.44) simplifies to

H? = (1 + 5)2 _Ala). (4.46)

6 a?
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which coincides with the results from a brane world scenafibus we recover the evo-
lution of a 3-brane in a five-dimensional bulk space if we fineet the parameters of our
system so that = 0.

The fixed points are solutions of

V(a) 514—%—%\/14(@) =0. (4.47)

Notice that no fixed points exist between the outer and inoezbns (withA(a) < 0),
because of the square root in the poteritial). Notice also that (a) ~ % asa — o0, SO
the sign of the potential is determined by the sigih@fand at the horizorl/ (r;) = &, >

0. Up to two fixed points can be outside the horizon. Howeveratassical results likely
receive significant quantum corrections as we approachdhedmn. Therefore, our results
are reliable for orbits away from the horizon, which typlgand at infinite distance from
the horizon.

For A, = 0, we recover from (4.46) the brane world scenario of [35].s[$tenario is
depicted in figure 4.1afdk = +1, M =8, @ = 1. We notice here that we have only
one solution that is bouncing. Of the two turning points, @side the inner horizon
and the other outside the outer horizon. There is no fixedtgam@tween the inner and
outer horizons, as noted earlier, because of the preseribe sfuare root in the potential
V' (a) (4.45). This can be explicitly seen from figure 4.2a where aedearly the position
of the inner fixed point as the point where the solid line chisd-axis. After crossing
the turning point outside the outer horizon, the square efHhbble parameter becomes
negative and hence unphysical. The orbit of the bouncingtisol is shown in figure 4.3.
Although we reproduce the bouncing cosmology of [35], tigiothis, as argued in [36]
this kind of solution suffers from an instability. Indeetietinner horizon is the Cauchy
horizon for this charged AdS black hole and is unstable uhidear fluctuations about the
equilibrium black hole space-time. So when the orbit cresse inner horizon of the black
hole, it is not sufficient to consider only the unperturbedKkgsround. The backreaction
on the background metric due to the fluctuating modes has takes into account. This
backreaction is significant and may produce a curvatureutanigy. It should be noted that
this pathology occurs only fof = 0. For 8 # 0, no outward crossing of the horizon
occurs. Thus, from our point of views, acts as a regulator; keeping it small, but finite, is
essential for the handling of quantum fluctuations.

If we now tuneA 4 to non-zero values, we obtain qualitatively different $iolns. In the
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simplest case, when there is no chemical potentiaiH 0), for sufficiently smallA, > 0,
andk = 1 (spherical geometry) we recover the de Sitter brane saepéaref. [37]. As an
example, sef\/ = 1, A, = 0.5. For3 = 0, we obtain two fixed points = 1.13, 2.11,
outside the outer horizom ( = 1.03). As we increasé (i.e., G5, or equivalently, decrease
(G4), the larger fixed point increases and the smaller one deesedfter it hits the horizon,
the smaller fixed point disappears and we only have one fixed.ddo fixed points exist
inside the horizon.

In the same set up and keeping all other parameters fixed &ddhe mentioned values,
if we now turn on the chemical potential, we obtain one moredipoint away from the
outer horizon. For) = 1 this is shown in figure 4.1b. Similarly to the, = 0 case, here
we also obtain one bouncing solution with two fixed pointsg arside the inner horizon
(figure 4.2b) and the other outside the outer horizon. Thistiem for a(7) is plotted in
figure 4.4a. Additionally, ai = 7.09 there is another fixed point. We obtain an accelerating
solution from this point (figure 4.4b). In the region betwelea first fixed point outside the
outer horizon ¢ = 3.06) and second one at= 7.09, the square of the Hubble parameter
is negative, hence there is no physical solution in thisoregi

Comparing the brane world scenario (4.46) with the geners¢ @ # 0, we observe
that there are no qualitative differences in the flat case ()). In the case of curved horizon
(boundary)f = +1, in general one obtains fixed points other than the onesradatan the
brane world scenario. As an example, consider the choicarainpeters

k=+1, M=8, Q=1, A,=0.05, 3=6. (4.48)

We have only one fixed point in this case,aat= 7.705 (figure 4.1d). The solution is
accelerating as shown in figure 4.5. There is no bouncindisaltor any set of parameters
once we go away from the special case- 0.

For g # 0, if we setA, = 0, we do not obtain any physical solution. One such situation
is depicted in figure 4.1c. As we see, the square of the Huldvknpeter is imaginary for
all values of the cosmic scatein this case.
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for various values oépweters. Solid and

dashed lines are plots af andd, respectively. Dotted lines denote the black hole poténtia
with its zeros indicating the positions of the inner and ot@izons.
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Figure 4.2: Solid lines are plots ofi> whereas dotted lines are plots of the black hole
potential for5 = 0 and (a)A, = 0, (b) A, = 0.05. The inner fixed points and the position
of the inner horizon are shown.
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Figure 4.3: Plot ofa vs7 for 3 =0, A, = 0.
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Figure 4.4: Plots ofa vs for g = 0, A, = 0.05. In (a) we have a bounce. Initial conditions
are chosen ag(0) = 0.356. At 7 = 3.642, a reaches the second fixed poiat= 3.059. In
(b) we have an accelerating solution, with initial conditichosen ag(0) = 7.090.
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Figure 4.5: Plot of a vs 7 for = 6, A, = 0.05. The initial condition is chosen as
a(0) = 7.705.

4.5 Summary and future directions : Part |

Let us pause here for a while and summarize this part befong gato the next part of this
chapter. We discussed here the cosmological evolutionatkfrom a static bulk solution
of the field equations with appropriately defimatkedboundary conditions using the grav-
ity/gauge theory duality (holography). Such an approach fivat discussed in [22]. We
extended the results of [22] by considering a boundary tsypéace at arbitrary distance.
We calculated the general form of the stress-energy temsbauaived at a generalized form
of the Hubble equation of cosmological evolution. We coesed various explicit exam-
ples in detail based on an AdS Reissner-Nordstrom bulk datk solution. Interestingly,
we obtained the brane-world scenario as a special case, dyiiring the parameters of
the system, setting = 0 (eq. (4.42)). However, keepingsmall but finite is important in
order to avoid scenarios in which the boundary crosses that éorizon from within [35].
Thus, acts as a regulator for such problematic solutions for whjicdintum fluctuations
introduce instabilities [36]. Moreover, the counterterom& normally introduces to cancel
the infinities were shown to have the usual field theoretierpretation of renormalizing
the bare parameters of the system (Newton’s constant armb#imeological constant).

It would be interesting to explore the parameter space oftisenological system fur-
ther to obtain scenarios of cosmological evolution of ieg¢rsuch as understanding infla-
tion, and phase transitions in general, in a holographtmggetVarious extensions are also
possible, such as addition of matter fields on the boundaith@wt gravity duals). Also,
anisotropic cosmologies are possible from a static bulkdpazind, if the boundary hyper-
surface is chosen with a different geometry than the horfean, flat boundaryk(= 0) in
a bulk black hole background of spherical horizén< +1)). Work in this direction is in
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progress [38].

Part Il : Dynamic Bulk - Dynamic Boundary

As mentioned in the prelude, in this part of the chapter wé dghl with time-dependent
brane solutions in supergravity and their cosmologicalliicagions.

4.6 D3 brane with anisotropic time-dependent world vol-
ume

Besides the static D branes of odd space dimensions, thetrilig) sheory admitgime
dependenbranes. Consider, for example, the case of D3 brane. Thdiegs@f motion
following from the relevant part of standard 11B supergtgwaction

1
167TG10

SIIB -

1 1
/ d"z/—g (R — 56%6@ — mFg) . (4.49)

has the following forms:

1 . 1
R = 50"00,6 + 5— 5!(5F“£2”'£“’Fu52...55 - 555F52)>

8H(\/§F“§2'“55) =0,
Vg =0. (4.50)

These equations are solved by

4

l4

-1 1“3
ds? — (1 + —4) [— di? + 12dz? + 20 dy? + t%sz] n (1 + —4> [dﬁ n rdeﬁ],
T T
Aot BEy s
B$yzr = Wa
¢ =0, (4.51)
provided
a+B+v=1 anda®+ B> ++° =1. (4.52)
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The numbersy, 5,y can be organized in an increasing ordex 3 < « and they vary in
the range

1 2 2
These numbers can also be parametrized as

—u 14w u+ u?

= 1+u+u27 B(U): 1+u+u27 fy(u): 1+u+u27

a(u) (4.54)

where the Lifshitz-Khalatnikov parameter> 1. Further, values < 1 lead to the same
range as

a(=) = a(u), B(=)=pu), 7(=)=(u). (4.55)

The five form charge can be calculated by integratifg over the transverse space and it
turns out to be time independent.

In our convention, the extremal D3 brane is represented by § = v = 0 and is
not continuously connected to the above solution. Unlikesewal D3 brane, this solution
breaks all the supersymmetries of 11B theory due to its exptime dependence. The
Kretschmann scalar for the metric is given by

16(—a®(I* + 1) + (1 +r)® = 515 (1° +12r%)1Y)

RuupaRWW - r4(l4 + 7“4)5754

(4.56)

In writing the above equation, we have used the conditidd2.It has a time-like singu-
larity atr = 0 at any finite time. It, further, has a cosmological singweaitt = 0.

In the larger limit, equations in (4.51) reduce to a four dimensional Kassolution
plus a flat six-dimensional part. Within the Bianchi classifion of homogeneous spaces,
the Kasner metric corresponds to choosing all three of thetsire constants to be zero.
A generic perturbation near the singularity breaks thesestcaints generating Belinskii-
Lifshitz-Khalatnikov (BKL) oscillations [39]. To brieflyliustrate the BKL oscillation,
appropriately generalized to our context, we replace theédumlume metric on the brane
by type IX homogeneous space.

To this end, let us consider the brane configuration of the for

4 —

ds" = <1 * %) [=df? (a2l + b(t)*mim; + C(t)Qni”j)d‘”idxj]

4

+ (1 + %) [dr2 +r2d9§] . (4.57)
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with the anti-symmetric five form field and the scalar

Frayor 4r3l4a(t)b(t)c(t2) sin(z) |
(o 1

¢»=0. (4.59)

(4.58)

Herel;, m;, n; are frame vectors. For IX metric, all the three structurestants are 1 and
the simplest choice for the frame vectors is

l; = (sinz, —cosz sinz, 0), m; = (cosz, sinz sinz, 0), n; = (0, cosz, 1). (4.60)

The coordinates run through values in the rargjesz < 7,0 < y < 2w, 0 < z < 47
The above configuration (4.57 - 4.59) is a solution providexytsatisfy 11B equations of
motion (4.50). This requirement leads to the following eliéfntial equations fat, b andc.

(aézz)t - 2a22202 [(bQ —¢) - a4] ’
(aci)li)t B 2a22202 [(02 —a) - 64] '
(acflfé)t B 2a22202 [(a2 — ) - 04} '
o %+%:m (4.61)

where the subscript indicates derivative with respect toThese are exactly the equations
responsible for generating standard BKL oscillations. $amuently, the brane world-
volume metric will oscillate with negative powers pfscillating from one direction to
another. In the next paragraph, for the sake of completenesgive a brief analysis of this
oscillation.

To proceed, first we notice that if all the expressions onitte hand side of (4.61) are
small in some region, the system will have a Kasner-likemegivith

a~t b~ t? et (4.62)

wherea, (3, v satisfy constraint as in (4.52). However, now siacé negative, close to

In all our discussion, we will closely follow [40]. [42] alswas a lucid review of BKL oscillations for
types VIII and IX spaces.

2For type | spaces, in which Kasner metric belongs, the rigimdhsides of all the equations in (4.61)
would have been zero. This is due to the fact that all the gtraconstants are zero for type | spaces.
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t = 0, a* term in the right hand sides of (4.61) will start dominatirigis useful to write
these equation in terms of new variables defined as

a=eP, b=¢l c=¢e® ePTI3dr = dt. (4.63)

In the vicinity oft = 0, (4.61) reduces to

1
4p’ Qrr = Srr = 564}37 (464)

where the subscripts indicates derivative with respect to The solution of these equa-
tions should describe the evolution of world-volume mefimgen the initial state of Kasner
metric. In terms of the new variables, this is equivalent to

Pr=0q, gr = ﬁa Sy =7. (465)

Note that the first equation in (4.64) can be interpreted ast&cfe moving in the presence
of an exponential wall-like potential. Due to the reflectioom this barrier, particle will
move withp, = —«a. However we see from (4.64) that + ¢, andp. + s, are constants.
So we get

¢ = [+ 2a, s, =7+ 2. (4.66)

These lead to

P =7 el = T2 o7 — pOF2IT gnd t ~ (1F20T (4.67)

In terms of the original variables, we can re-write the abase

ol p—ajaf 0l
a=tT2lel | b= t12l | ¢ =12l (4.68)

Therefore the action of the perturbation results oscilaibetween one Kasner regime to
another with negative power shifting fromto b to ¢, inducing BKL oscillations on the
world-volume of the D3 brane. We should however note that tieacurvature singularity,
string action receives higher derivative gravitationateotions. Consequently, the nature
of the singularity and behaviour of its perturbation may gdistantially modified. Solu-
tions may also get modified when one introduces other magfielisfinto the theory. If they
are represented by a perfect fluids on the world-volume, piiéissure and energy density
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related ap = wp, it can be argued that far < 1, BKL oscillations still persist. However,
situation changes drastically far= 1, namely for the stiff-matter (a massless scalar field
for example). A general discussion on these issues can Inel iol41, 43]. Indeed it is
easy to check that in our previous solution, one can intre@udilaton with a profile

¢ = \logt. (4.69)

The metric and the form field remains same as before. Howthagxponents now satisfy
new constraint relationsa + 3+~ = 1, o® + 8% ++2 = 1 — A\%. The changes in these
relations allow BKL oscillation for a finite time and the sgst finally reaches an attractor.

We now proceed to study the metric in the near horizon limit 0. In this limit, the
metric reduces to

2 l2
ds* = —%dt2 —gdr? £ ¥ da? + 10dy? +17d27) + Q5 (4.70)
with 4 L
r .. . r
Fiayer = i giving potential Cyyy, = T (4.71)

The Kretschmann scalar is,

16a%(a —1)I* 80

Ryp BRIV = 29200 22,
Hep ritd [4

(4.72)
We call it a Kasner-AdS space. This Kasner-AdS solution isgply satisfies five dimen-
sional Einstein equation in the presence of a negative clogneal constant and was found
in [44] in the context of brane-cosmology.

4.7 Probing with a D3 brane

In this section, we will probe the geometry (4.51) with a Dare. Distance of the probe
brane from the source now behaves as a scalar whose explieitdependence can be
determined via a dynamical equation. We take the world+weldirections of the D3 brane
as¢ = (t,x,y,z). The world-volume action of the D3 brane in background geoyme
(4.51) takes the form :

S = T/d%«/—det Gop +T/d4§ Cy, (4.73)
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HereG 5 is the induced metric on the world-volume aﬁgj is the pull-back of the back-
ground4-form potential.7" is the brane tension. We turn off all other fields on the brane.
The Lagrangian can be cast in the form :

L=+/A(t,r) — B(t,r)r2 — C(r), (4.74)

where,

Alt,r) = ¢ <1+E)2

T4
2 l4 -
B(t,?") =t (1+ﬁ)
ti
¢lr) = [+

(4.75)
The equation of motion for(¢) is the Euler-Lagrange equation derived from (4.75) :

P ) Tt ] — (1 )R — 2000 [3(10 )2 — 2]
3
—4tltr [t = (P4 rY) ]2 =0 (4.76)
Here dot represents derivative with respect.t®©nce this equation is solved with appro-
priate boundary conditions, the metric on the probe braneiguely determined. We will
carry out this computation in this section. However, owiogie explicit time dependence
in the background geometry, we find that the dynamical eqoatan not be solved analyti-
cally. Fortunately, it is not hard to find numerical solutemd a typical behaviour is shown
in the figure 4.6.
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Figure 4.6: Plot of r as a function of timet,

The functions that govern the anisotropic expansions iaethgpatial directions are
t* f(r), t° f(r),t" f(r), where

flr) = (1 + —)_ . 4.77)

In order that the near horizon geometry isA4dS, as mentioned earliet, 5,y must satisfy
the constraint o + 3% + 72 = a + 8 + v = 1. This means, once we specify one of the
three, sayq, the other two are automatically fixed :

1
B = §<1—a+\/—3a2+2a+1>

1
v = 5(1—@—\/—3a2+2a+1) (4.78)

Ideally, in cosmology, one defines cosmological timayith which the metric on the
probe brane takes the form :

4

ri(n)

DTG e
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The behaviour of time, as a function of; is depicted in figure 4.7.

Looct
800}
600:—
400:—

2001
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200 400 60C 800 100C

Figure 4.7: Plot of ¢ as a function of.

At this, we plot the functiong* f(r), t? f(r),t” f(r) as functions of) parametrically.
Here f(r) is defined through (4.77). One can tune the values, @f, v consistent with the
Kasner constraints so that one of them goes down to zerol@latirg) while two of them
go up (accelerating) with cosmic time and vice versa. Oné glat is given in figure 4.8.

10 20 30 40 50

Figure 4.8: The functions,f; = t*(n) f(r), fo = t°(n) f(r), fs = t'(n) f(r), with f(r)
given in (4.77) are plotted as functions®f «, g and~ are 0.7, .632, -0.332 respectively
The plot of f; is in red, and that of, and f5 are in green and black respectively.
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4.8 The dynamic M5 Brane

Our previous discussion can easily be extended to eleveardiions. Here we discuss the
case of a M5 brane. We start with= 11 supergravity action

1 1
Si1g = — d'v/=g | R— — F} 4.81
11d 5 5%1 / z g ( 48 14 ) ( )
which is a generic action for the bosonic partiof 11 supergravity so long as we concen-
trate on static, flat translationally invariant p-braneusiohs.

The equations of motion arising from (4.81) admits a sotutibthe form :

1
l3 o3 2 2 2 2 2
ds®> = (1 + —3) [—dt2 + 120 dr] + t**2das + Y3 da; + t**ida] + t2°‘5dx§]
T
l3 : 2 2 2
+ (143 [@+rd], (4.82)
along with
303¢tr?

thmz:vs:mxm - m (483)

provideda; + as + az + ag + a5 = 1 anda? + a2 + a2 + a3 + o = 1.
In the near horizon limit, i.er — 0, the metric and the non-zero component of the
form field reduce to the forms :
r

ds? = l[-dtQ+t2a?dﬁ+t2a%dg;§+t2a%d;p§+t2aidz§+t2a?dz§

2
+ % [dr2 + TQin] ,

3tr?
th1m2m3x4x5r = I3 > (484)
and hence the potential is given 6Y,,.,.y0.05 = S5
We now make the following change of coordinates :
w? =L (4.85)
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With this, the metric in (4.84) takes the form :

U)2

e

ds? (—d? + otz + 23l + Poddag + £oldad + 20 dad ) +4 zzdw—“fH?in,

(4.86)
wherez; andt are suitably scaled versions of the coordinatesndt respectively. It is
worth mentioning in this regard that the scaling of the comates will not be the same
because of the presence of different powersioffront of dz?. This is a consequence of
anisotropy.

Following our nomenclature, (4.86) is a metric of seven disienal Kasner—AdS space

plus a four sphere. Fer; = 0 for: = 1, ..., 5, this reduces to our knowadS;(2L) x S*(L)

solution.

4.9 Probing with a M5 brane

In the same spirit as we considered the case of probe D3 branepw consider a probe
M5 brane in the background (4.82) and (4.83).

In PST formalism [45], the world-volume action of M5 branegisen in terms of a
gauge invariang-form field strengthH#® = dA® + C®, where A® is world-volume
2-form andC®, target spaca-form. The world volume action in this formalism is written
as:

Swms = Ts / d6§ [Lppr + Lxkp+ Lwz|, (4.87)

where

Lppr = \/—det (Gij + 7-2@-]») is the Dirac-Born- Infeld Lagrangian,

1 . e
Lrxp = e E )2e“klm"Hzmnijpquaiaﬁqa is the kinetic piece for tha-form,
a
1 .. . ,
Lwz = e [Cff,ilmn 10 Hijn Cl(jfn} is the Wess-Zumino term.

(4.88)

HereS,; is the induced metric on the world-volun@&?) andC® are the pull-backs of the
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3-form and6-form background potentials respectivedy.is defined as

1
"~ 31V—detG /—(0a)?

“a” is an auxiliary scalar field introduced in PST formalism taintain manifest covari-

TR 0 H . (4.89)

ij

ance.

If we now take the world-volume directions of the M5 bran€ as (¢, x1, ©2, x3, 4, T5),
it can be explicitly checked that, in this “static gaugegriawill be no component af®) in
world-volume directions. We further simplify the systemtoyning off the world-volume
2-form, A With all these taken into account, the full Lagrangian satkes simple form :

L=+/A(t,r) — B(t,r)r2 —C(r), (4.90)
where,
At,r) = ¢ (1+ ﬁ)_

BN
B(t,r) = <1+ﬁ)

cr) = —Fis
(4.91)

Here dot represents derivative with respect. tbhe Euler Lagrange equation foft) is :

20 (13 4 %) [t + 7] — 2 (1 4 %) 7 = 333 [3 (1P + %) 2 — 2]

—6tPr [ — (1P + %) = 0. (4.92)

In order to draw a cosmological interpretation of the solusiwe obtain from (4.92), as
usual, we go to the “cosmic time” coordinatg,in which the metric on the brane assumes

aform :

l3

,% 5
dsi, = —dn(t)2 + (1 + W) (Z {2 (n)dazf) , (4.93)
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with

=

P08 () () e

The functions that govern the expansion of the universearsgiatial world-volume direc-
tions of the brane are in this cage f(r), where

) = (1 N _)é ' (4.95)

We can choose;’s so that three of them are the same and mimics isotropicresipa
in three directions. The other two are anisotropic. Suctuaton can be parametrized as :

Q) = Qg =0Q3=07p
1
Q= 5(\/—15p2+6p+1—3p+1>
1
0 — 5(—\/—15p2+6p+1—3p+1). (4.96)

Interestingly there exists a narrow window of parametrilcigdor p, in which «; for i =
1,2, 3 are positive andv, andas are negative. An illustrative plot is shown in figure 4.9
for a particular value op.
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Figure 4.9: The functionst®(n) f(r), fori =1,2,---,5 are plotted as functions offor
p = 0.52. This corresponding values fag's are :a; = s = a3 = 0.52, ay = —0.15 and
a; = —0.41. The isotropic expansion correspondingatg «s, ag is plotted in red. The
contraction corresponding te,, a5 are plotted in green and black respectively.

4.10 Summary and future directions : Part I

In this part we have presented a class of time-dependeng loanfigurations ot0 and11
dimensional supergravity. In particular, we showed prglgertain brane configurations
with appropriate choice of parameters with another branenhycally compactifies the
extra dimensions on the brane world-volume and hence mitmécsosmological evolution
of universe. Furthermore, near their cosmological singjigs, this class of configurations
shows BKL oscillation. It will be worthwhile to look for thegnatures of these oscillations
in their dual gauge theory descriptions as well.
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In Lieu of a Conclusion

Physics out of equilibrium is a huge field of study in itselflayjoverns most of the interest-
ing real-life and real-time phenomena. Unfortunately,ftbkl theory tools to understand
non-equilibrium phenomena are not well-developed. Thiimarily because of the lack
of a reliable perturbation technique which in other brasabidield theory has been proved
to be immensely helpful a tool. In this thesis we have chosesrafew non-equilibrium
phenomena, that too in a strongly coupled regime and hawerstiat machineries can be
derived from the AdS/CFT conjecture to handle such situatioVe discussed phenom-
ena like temperature quench, non-Fermi liquid and earlyarse cosmologies and in each
case we got some success. Successes are varied, howexiag Eane still unanswered
guestions, here and there, but in conclusion, we can saguiteesses, even if partial, in
building up the problem-specific mechineries that we hapented in the chapters of this
thesis, definitely, hint at the point that AAS/CFT might be wery framework in which one
can do further studies in non-perturtive phenomena, inquaat, the otherwise intractable
non-equilibrium scenarios.
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