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Synopsis

As of now, string theory is believed to be the most successfulquantum theory of gravity and

a strong contender to be the fundamental microscopic theoryof “everything”. It starts with

the idea that the world at its microscopic-most level is madeup of some tiny stringy objects,

which vibrate, do all kinds of funny acts and finally come up with the macroscopic world

we see everyday. The different vibrational modes give rise to different elementary particles

which we had so far been thinking of as the fundamental constituents of the universe. In

other words, the long term goal of string theory is to providea complete and universal

microscopic foundation to more macroscopic theories and phenomenologies, such as the

standard model of particle physics and Einstein’s theory ofgravitation, to name a few.

However, string theory is a framework that operates in such an ultra-high energy regime

that this is far beyond the reach of even the most modern particle accelerators like RHIC

and LHC. But this is not really a matter to worry as such. Asking whether string theory can

explain the real world is probably as irrelevant as to ask whether one can solve the problem

of the oscillation of a simple pendulum in quantum field theory. We need to remember,

just like quantum field theory, the theory of strings is also aframework, the justification

whereof would probably be found from the theories derived from it.

With this aim in view string theory has expanded its horizon to other branches of the-

oretical physics where the possibility of having a derived theory with greater testibility

increases with a decrement in energy scale. AdS/CFT correspondence is one such hypoth-

esis derived in the string framework that nurtures this possibility. AdS/CFT, as we would

discuss in gory detail in due course, is an illustrative realization of the old holographic

principle which states that the degrees of freedom of quantum gravity reside on the bound-

ary space-time. This in turn gives rise to a duality principle that maps the states in gauge

theory to solutions in string theory living in one higher dimension. Particular significance

and predictibility of such a miraculous hypothesis can be put to test when the t’Hooft cou-

pling and the rank of the gauge group of the gauge theory in question becomes so high

that it becomes intractable by traditional methods in quantum field theory. Even in this

case, the hypothesis ensures the “dual” theory to be a simpleclassical theory of gravity

with minimally coupled matter fields, namely the supergravity theory that is also realized

as some consistent trancation of string theory at low energy. The advantage of working

in supergravity limit of string theory is that unlike the full string theory which is a theory

with infinite degrees of freedom, here one has to deal with only finite degrees of freedom.
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Synopsis

From the perspective of the full supersymmetric string theory this amounts to integrating

out massive string excitations by taking the limitα′ → 0 where
√
α′ is a characteristic

small length scale∼ 10−33 cm and is related to the string tension asT ≡ 1
2πα′ ≡ 1

l2s
, ls

being the string length scale.

In this thesis, we will use AdS/CFT, or more broadly the principles of gauge/ gravity

duality to understand some features of physics out of equilibrium. We will discuss various

non-equilibrium states and their gravity duals. We will categorize the constructions accord-

ing to the phenomena we would like to address through them. Ingeneral, non-equilibrium

phenomena occur in many branches of physics. Most celebrated among these, are relativis-

tic heavy ion collision and cosmology. Many features of relativistic heavy ion collision

were revealed in recent experiments like RHIC, though a little progress has been made to

understand the very essential quantum kinetic theory governing their dynamics. Cosmo-

logical data are abundant, most of them, of course begging a proper explanatory theory.

Not only this, even some recent condensed matter experiments, like tARPES where one

can see the non-equilibrium evolution of Fermi-surface, still lack a proper theoretical jus-

tification. All these are excellent set ups to test the applicablity of gauge/ gravity duality in

non-equilibrium. In this thesis we would proceed towards addressing some of those issues

in these directions by building up problem specific machinary.

In its weak form (i.e. in the limit when the rank of the gauge group,N → ∞ with

a large ’t Hooft coupling,λ = g2YMN very large as well) AdS/CFT relates supergravity

theory inAdS5 × S5 background to a strongly coupledN = 4 SU(N) SYM theory living

on the boundary ofAdS5. For incorporating finite temperature, holographically, one intro-

duces black hole in thisAdS space-time in a way that theAdS nature of the space-time

is preserved asymptotically. The intuition follows from the fact that stationary black holes

behave like thermodynamical objects in all respect. The surface gravity at the black hole

horizon can be identified with temperature while the mass, with the total energy. Further-

more, in all dynamical processes known, the area of the blackhole event horizon can only

increase monotonically, justifying its identification with entropy. Also, for any dynamical

process the black hole horizon possesses uniform surface gravity mimicing the thermody-

namical equilibriation.

With this basic understanding of the holographic meaning ofequilibrium the tools of

holography enable us to develop methologies to deal with different non-equilibrium sce-

narios in holographic set-up. We will develop tools and prescriptions contemplating on

applications towards physically interesting problems like quantum quench, Fermi liquid

vii



Synopsis

theory in non-equilibrium and cosmological evolution of the universe. We will argue some

of the methods developed might as well be very much useful in understanding and improv-

ing upon existing tools to study ultra relativistic heavy ion collisions. As mentioned before,

the methods we would use will be problem specific, but we will broadly categorize them in

two parts. Following our understanding of holographic meaning of equilibrium, these are,

(A) Going to a temperature other than the Hawking temperature ofthe black hole

As mentioned before, in any dynamical gravitational process involving black holes,

attaining Hawking temperature at the horizon signals the equilibriation. Hence, at the level

of free-energy, if we somehow make the temperature off-shell it would enable us to study

the dynamics of equilibriation. Motivated byBragg-Williams methodin condensed matter

physics [1] and its adoption in black hole physics and holography [2], we use this idea to

analyse, holographically, the phenomenon of temperature quench in specific black hole set-

up [3]. Apart from the dynamics, we see, even the analysis of phase transition particularly

of the first order, which otherwise is difficult to capture in the framework of Landau theory,

becomes easier in this framework. We also show that this method works even when we

take stringyα′ corrections to gauge theory sector [4]. This method also proves handy in

analysing the system out of chemical equilibrium. We also propose an effective off-shell

potential in the gauge theory sector using out holographic knowledge of bulk gravity.

(B) Obtaining time-dependent backgrounds suitable to study non-equilibrium phenom-

ena

There are different ways to construct time-dependent backgrounds. The first method

among them is to obtain time-dependent bulk space-time dualto specific non-equilibrium

states starting from the observables of the boundary theory. This analysis is based on the

Fefferman-Graham construction ofAAdS spaces. We considered non-equilibrium fluctu-

ations on the top of equilibrium states which holographically mapped into incorporating

quasi normal mode fluctuations on theAdS black hole in equilibrium. Upon construct-

ing the background, we use this to find the spectral function in specific non-equilibrium

states [5]. We further show the usefulness of the mechanism developed in understanding

Fermi liquid theory for non-equilibrium strongly coupled systems.

The other methods of constructing time-dependent geometries are aimed at cosmolog-

ical applications. The first of them [6] is based on Verlinde’s idea [7] that the time in the

AdS bulk and that of the boundary conformal field theory are different and a dynamic

boundary space-time can in principle be obtained starting from a static bulk. This idea was

further extended with charged black holes in [8]. Motivatedby these two, we used the
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techniques of holographic renormalization [9] with modified boundary conditions to come

up with cosmological evolution on the boundary.

The second one in this line starts with a dynamical bulk itself. The time-dependent

cosmological solution in supergravity is scarce in general. We, however, manage to find

explicitly time-dependent brane solutions in10 and 11 dimensional supergravity which

takes Kasner-like scaling in world-volume directions on the brane [10]. Such solutions in

near horizon limit reduces toAdS5 × S5 andAdS7 × S4 with Kasner scaling in transverse

directions for KasnerD3 andM5 brane solutions respectively. TheAdS5 solutions with

Kasner scaling as solutions to5-dimensional Einstein’s equation with a negative cosmo-

logical constant was however studied in the literature either in the context of understanding

gauge theory near cosmological singularity [11] or in the context of anisotropic expansion

of strongly coupled quark gluon plasma [12]. We, however, concentrate on cosmology,

namely realizing cosmological evolution on probe dynamic branes in these time-dependent

backgrounds and find interesting consequences like dynamical compactification of extra

dimensions.
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1
Introduction

1.1 Overview

As of now, string theory [1–6] is believed to be the most successful quantum theory of

gravity and a strong contender to be the fundamental microscopic theory of “everything”.

It starts with the idea that the world at its microscopic-most level is made up of some tiny

stringy objects, which vibrate, do all kinds of funny acts and finally come up with the

macroscopic world we see everyday. The different vibrational modes give rise to different

elementary particles which we had so far been thinking of as the fundamental constituents

of the universe. In other words, the long term goal of string theory is to provide a complete

and universal microscopic foundation to more macroscopic theories and phenomenologies,

such as the standard model of particle physics and Einstein’s theory of gravitation, to name

a few. However, string theory is a framework that operates insuch an ultra-high energy

regime that this is far beyond the reach of even the most modern particle accelerators like

RHIC and LHC. But this is not really a matter to worry as such. Asking whether string

theory can explain the real world is probably as irrelevant as to ask whether one can solve

the problem of the oscillation of a simple pendulum in quantum field theory. We need to

remember, just like quantum field theory, the theory of strings is also a framework, the

justification whereof would probably be found from the theories derived from it.

With this aim in view string theory has expanded its horizon to other branches of the-

oretical physics where the possibility of having a derived theory with greater testibility

increases with a decrement in energy scale. AdS/CFT correspondence [7–10] is one such

hypothesis derived in the string framework that nurtures this possibility. AdS/CFT, as we

would discuss in gory detail in due course, is an illustrative realization of the old holo-

1



Chapter 1. Introduction

graphic principle which states that the degrees of freedom of quantum gravity reside on the

boundary space-time. This in turn gives rise to a duality principle that maps the states in

gauge theory to solutions in string theory living in one higher dimension. Particular sig-

nificance and predictability of such a miraculous hypothesis can be put to test when the

t’Hooft coupling and the rank of the gauge group of the gauge theory in question becomes

so high that it becomes intractable by traditional methods in quantum field theory. Even in

this case, the hypothesis ensures the “dual” theory to be a simple classical theory of gravity

with minimally coupled matter fields, namely the supergravity theory that is also realized

as some consistent truncation of string theory at low energy. The advantage of working

in supergravity limit of string theory is that unlike the full string theory which is a theory

with infinite degrees of freedom, here one has to deal with only finite degrees of freedom.

From the perspective of the full supersymmetric string theory this amounts to integrating

out massive string excitations by taking the limitα′ → 0 where
√
α′ is a characteristic

small length scale∼ 10−33 cm and is related to the string tension asT ≡ 1
2πα′ ≡ 1

l2s
, ls

being the string length scale.

In this thesis, we will use AdS/CFT, or more broadly the principles of gauge/ gravity

duality to understand some features of physics out of equilibrium. We will discuss various

non-equilibrium states and their gravity duals. We will categorize the constructions accord-

ing to the phenomena we would like to address through them. Ingeneral, non-equilibrium

phenomena occur in many branches of physics. Most celebrated among these, are relativis-

tic heavy ion collision and cosmology. Many features of relativistic heavy ion collision

were revealed in recent experiments like RHIC, though a little progress has been made to

understand the very essential quantum kinetic theory governing their dynamics. Cosmolog-

ical data are abundant, most of them, of course begging a proper explanatory theory. Not

only this, even some recent condensed matter experiments, like tARPES where one can see

the non-equilibrium evolution of Fermi-surface, still lack a proper theoretical justification.

All these are excellent set ups to test the applicability of gauge/ gravity duality in non-

equilibrium. We would proceed slowly towards addressing some of those issues in these

directions by building up problem specific machinery. In therest of this chapter we will

cover some basics that will be proven handy in course of our journey out of equilibrium.
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Chapter 1. Introduction

1.2 Solitonic Solutions in Supergravity

In this thesis we will be mostly interested in type II supergravity solutions. This is a low

energy effective theory of type II (A or B) superstring theory with following field contents:

• gravitongµν , antisymmetric tensorBµν and dilatonφ coming from (NS-NS) sector

of the theory.

• p + 1 form fieldsAp+1 originating from the massless spectrum of (R-R) sector. De-

pending onp is even or odd, the theory is type IIA or type IIB respectively.

• space-time Fermions that belong to (R-NS) and (NS-R) sectors.

In Einstein frame, the action for the type II supergravity can be written as [11–14],

IE =
1

16πG10

∫

d10x
√

|g|(R− 1

2
∂µφ∂

µφ− 1

2

∑

p

1

(p+ 2)!
eapφF 2

p+2 + ....), (1.1)

with ap = −1
2
(p − 3). The dots denote the (NS − NS) 3 form field strength and the

fermionic terms.G10 is the Newton’s constant in 10 dimensions.

The equations of motion for graviton, dilaton and thep + 2 form field strengths are,

respectively,

Rµ
ν =

1

2
∂µφ∂νφ+

1

2(p+ 2)!
eapφ((p+ 2)F µξ2...ξp+2Fνξ2...ξp+2 −

p+ 1

8
δµνF

2
p+2),

∇2φ =
1√
g
∂µ(

√
g∂νφg

µν) =
ap

2(p+ 2)!
F 2
p+2,

∂µ(
√
geapφF µν2...νp+2) = 0. (1.2)

The field strength,Fp+2 in the action is termed as electric. One can also define its magnetic

dual

F̃10−p−2 = eapφ ∗ Fp+2 (1.3)

and show that under the duality transformations,

apφ → −apφ, (p+ 2) → (10− p− 2), Fp+2 → F̃10−p−2, (1.4)

the equations of motion (1.2) remain invariant [14].
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Chapter 1. Introduction

With a view to motivating our way towards AdS/ CFT correspondence, we will con-

template on a particular solitonic solution of type II B supergravity, namely theD3 brane

solution. From the perspective of string theory this can as well be thought of as a3 dimen-

sional hypersurface on which an open string can end. The letter “D” stands for Dirichlet -

the string end points attached to the hypersurface can move freely on the brane and hence

satisfy Neumann boundary condition along3 brane directions +1 time direction. In the

remaining6 spatial directions, Dirichlet boundary condition is obeyed.

In Einstein frame theD3 brane solution is given by

ds2 = H−1/2(−fdt2 +
3∑

i=1

(dxi)
2
) +H1/2(f−1dr2 + r2(dΩ5

2)),

H = 1 +

(
h

r

)4

, f = 1−
(r0
r

)4

,

h8 + r40h
4 =

Q2

16
, φ = Constant, (1.5)

where we have imposed the self duality condition, namely,F5 = ∗F5.

Solution for five form field strength is,

Fti1i2i3r = ǫi1i2i3H
−2Q

r5
. (1.6)

Herer is the radial coordinate in transverse directions of the brane. Q is an integration

constant which is related to theD3 brane charge,µ3 given by

µ3 =
Ω5Q

(2π)
7
2 l4sgs

, (1.7)

wheregs is the string coupling constant given bygs = eφ andΩ5, the volume of the5-

sphere.φ being a constant, can be set to zero. The metric, (1.5) has a singularity atr = 0

and a horizon atr = r0 where the metric function,f vanishes. In the extremal limit,r → 0,

the horizon sits on the singularity and this configuration preserves half of the space-time

supersymmetries. Configurations with arbitraryr0, however, break all supersymmetries.
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Near Horizon limit of Extremal Brane

In the extremal limit,r → 0, the metric, (1.5) takes the simple form

ds2 = H−1/2(−dt2 +

3∑

i=1

(dxi)
2
) +H1/2(dr2 + r2(dΩ5

2)),

h4 =
Q

4
, f(r) = 1, H = 1 +

Q

4r4
. (1.8)

We now considerN-coincidentD3 branes. For a singleD3 brane the normalized flux is

given by

µ3 = T3(2π)
7
2 ls

4gs. (1.9)

For coincidentN number of branes it changes in a multiplicative way withN :

µ
(N )
3 = NT3(2π)

7
2 ls

4gs. (1.10)

Using (1.7), this in turn fixes the integration constant,Q as

Q = 16Nπgsls
4. (1.11)

With all these considerations taken into account, the metric for N coincidentD3 branes

takes the form

ds2 = H−1/2(−dt2 +

3∑

i=1

(dxi)
2
) +H1/2(dr2 + r2(dΩ5

2))

H = 1 +
4πNgsls

4

r4
= 1 +

l4

r4
, (1.12)

where l4

ls
4 = 4Nπgs.

l is the characteristic length scale proportional to the gravitational field strength. In the

asymptotic limit,r ≫ l, the metric takes the form of a flat Minkowski metric. In the near

horizon limit,r ≪ l the metric becomes5-dimensional Anti de Sitter(AdS5)× S5.

ds2AdS5×S5 =
r2

l2
(−dt2 +

3∑

i=1

(dxi)
2
) +

l2

r2
dr2

︸ ︷︷ ︸

AdS5

+ l2(dΩ5
2)

︸ ︷︷ ︸

S5

. (1.13)
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Hints Towards a Duality :

• The isometry group ofAdS5 is SO(2, 4). Additionally, theS5 part has an isometry

groupSO(6) ∼ SU(4)R. This is, surprisingly, the same as the Bosonic subgroup

of the superconformal group ofN = 4 supersymmetric Yang-Mills(SYM) gauge

theoryPSU(2, 2|4).

PSU(2, 2|4) ⊂ SO(2, 4)× SU(4)R, (1.14)

corresponding to the conformal group and theR symmetry group respectively.

• Looking at the supergravity spectrum, one can note a mappingof the supergravity

tower of states to the single trace operators and their descendants in the conformal

field theory living on the flat asymptotic boundary of theAdS5 space-time. The

matching also extends at the level of correlators of those operators.

Motivated by the holographic principles, the afore-mentioned hints guide towards a pos-

sible duality principle that connects two apparently distinct sectors, namely a supergravity

theory inAdS5 space andN = 4 SYM theory inD = 4. This indeed is the AdS/CFT

correspondence which we will jot down in more precise mannernext.

1.3 The AdS/CFT Conjecture

The AdS/CFT correspondence, in itsstrongest formis based on the open string-closed

string duality which states that the dynamics of open strings contains that of closed strings.

As we know, closed string contains gravity whereas the open string spectrum does not

contain graviton. This correspondence, in its simplest setting implies a duality between

type IIB string theory on asymptoticallyAdS5×S5 with constant5-form RR field strength

(generated by massless closed string modes) andN = 4 SU(N) SYM theory in3 + 1

dimensions (generated by massless open string modes), the parameters of the two theories

being related as :

gs = g2YM ,

g2YMN = λ =
l4

4πls
4 (1.15)

λ has a name -it is called ’t Hooft coupling.
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The ’t Hooft Limit

This verystrong formof the conjecture is physically intractable particularly since we do

not quite understand quantization of string theory in RR background itself. The ’t Hooft

limit, namely,N → ∞ with λ = g2YMN fixed provides with the following simplifications :

• In theN = 4 SU(N) SYM theory we can safely neglect non-planar diagrams as

they are suppressed by orders of1
N2g , g being the genus of the surface.

• In the string theory side, it also becomes simple and in fact it suffices to work with

classical string theory inAdS5 × S5 background which is much more well under-

stood. The justification lies in the fact that the perturbative expansion in string theory

is basically a genus expansion of surfaces. Correlation function on a genusg surface

usually scales asg2g−2
s . But in the ’t Hooft limit,gs = λ

N
itself goes to zero resulting

in vanishing contributions from higher genus surfaces.

Simplifying further : the Large λ Limit

AdS/CFT conjecture probably finds its maximum usefulness when we further send the ’t

Hooft couplingλ to infinity. Two things happen :

• N = 4 SU(N) SYM theory enters into a strongly coupled regime. Availablepertur-

bative techniques therefore becomes invalid.

• However, the dual string theory simply reduces to supergravity. This can be vi-

sualized on noting that perturbative expansion of the Lagrangian in curvature in

this background is basically an expansion inλ−
1
2 , since the Ricci scalar scales as

: R ∼ 1
l2

= λ− 1
2

α′ . In largeλ limit, we can therefore safely drop out higher order

curvature terms and end up in achieving a supergravity limitof the full superstring

theory. This supergravity theory is classical type IIB supergravity in AdS5 × S5

space-time.

• This is the weak form of AdS/CFT correspondence but the most tractable one from

the gravity side of the story. Since it relates the weakly coupled supergravity to a

strongly coupled quantum field theory, this form isbelieved to bethe most useful

version of all the three forms in taming otherwise quite intractable strongly coupled

phases of the boundary gauge theories. In this thesis, we will be dealing with this

weak form of gauge/ gravity duality principle only.
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1.4 Setting up the Dictionary

In the supergravity limit, the10-dimensional type IIB action, (1.1) reduces to

ISUGRA =
1

16πG10

∫

d10x
√

|g|
(

R− 1

2

1

5!
F 2
5

)

. (1.16)

We are focusing on non-dilatonic solutions. ForD3 brane solution, as we have seen before,

the dilaton profile is constant and hence this can as well be set to zero. To get to a form

suitable for reduction overS5 we write the metric breaking it explicitly as :

ds2 = g5µνdx
µdxν + l2dΩ2

5. (1.17)

HeredΩ5 is the metric onS5. Takingg5µν as the metric ofAdS5, we end up in getting the

following 5-dimensional reduced action :

ds25 =
1

16πG5

∫

d5x
√

|g(5)|
(
R(5) − 2Λ

)
. (1.18)

HereG5 is the5-dimensional Newton’s constant related to its10-dimensional counterpart

asG5 =
G10

π3l5
. Λ is the cosmological constant and is given byΛ = − 6

l2
. The steps towards

obtaining this5-dimensional reduced action with a negative cosmological constant,Λ are

the following :

• The metric being diagonal, the full10-dimensional Ricci scalar completely decouples

into two parts - the Ricci scalar onAdS5 which we denote asR(5) and that onS5

which is a constant.

• The full 10-dimensional5-form field strength,F5 has non-vanishing contributions in

form of constant0-forms onAdS5.

• The constant contributions coming from the Ricci scalar onS5 and that from the

constant0-forms add up and give the negative cosmological constant appearing in

(1.18).

A more detailed discussion on this can be found in [15, 16].

From the5-dimensional point of view theAdS5 space-time can therefore be thought

of as a maximally symmetric solution of Einstein’s equationin presence of a negative

8
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cosmological constant :

RAB − 1

2
RGAB = ΛGAB. (1.19)

This is a solution with constant negative curvature such that :

RABCD =
1

l2
(GACGBD −GADGBC) . (1.20)

For future use, we will, at this point, introduce new coordinates known as the Fefferman-

Graham coordinates. The metric for theAdS5 space-time in this coordinates takes the

form:

ds2 =
l2

ρ2
(
dρ2 + ηµνdz

µdzν
)
. (1.21)

ρ is the radial coordinate here and satisfiesρ ≥ 0, ρ = 0 being the boundary. But it is

worth noting that the metric having a second order pole atρ = 0, does not yield an induced

metric on the boundary. However, one is allowed to define a conformal structure at the

boundary through adefining function, r(ρ, z) which has a first order zero at the boundary.

In the interior, however,r(ρ, z) is positive definite everywhere. With this, one can define

boundary metric,g(0) as

g(0) = r2G|ρ=0 (1.22)

r(ρ, z) is otherwise arbitrary. We can therefore as well chooser = ρ. With this choice the

boundary metric becomes flat Minkowski, namely,g
(0)
µν = ηµν .

Now we define asymptoticallyAdS5 (AAdS5) space-time as a spacetime having the

following form of the metric in Fefferman-Graham coordinates:

ds2 =
l2

ρ2
(
dρ2 + gµν(ρ, z)dz

µdzν
)
, (1.23)

where we have replaced the flat Minkowski part,ηµν in (1.21) bygµν(ρ, z). This metric is

free of coordinate and curvature singularities upto a finiteradial distance from the bound-

ary. Furthermore,ρ → 0 limit of the metric,gµν(ρ, z) is smooth and takes the following

expansion near the boundary:

gµν(ρ, z) = g(0)µν (z) + g(2)µν (z)ρ
2 + g(4)µν (z)ρ

4 + ḡ(4)µν (z)log(ρ
2) + ... (1.24)

It can be shown the above form indeed yields a solution of Einstein’s equation in the pres-

ence of a negative cosmological constant.
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Justification

The above form of asymptotically AdS metric gets its justification from the fact that one

can precisely draw a one-to-one map connecting the bulk diffeomorphisms preserving the

form of the metric given by (1.23) and boundary conformal transformations.

Under such bulk diffeomorphism thegµν of (1.23) transform infinitesimally as:

δgµν(ρ, z) = 2σ(z)(1− ρ∂ρ)gµν(ρ, z) +∇µaν(ρ, z) +∇νaµ(ρ, z). (1.25)

Here∇ is the covariant derivative in terms of the metric,gµν andaµ = aνgµν is defined as:

aµ(ρ, z) =
1

2

∫ ρ

0

dρ′gµν(ρ′, z)∂νσ(ρ
′, z). (1.26)

It can be easily checked that under this bulk diffeomorphisms, the boundary metric,

g
(0)
µν (z) is transformed as

δg(0)µν (z) = 2σ(z)g(0)µν (z), (1.27)

which is nothing but a Weyl transformation.

Therefore, in asymptoticallyAdS5 space-timeSO(4, 2) conformal symmetry of the

boundary theory can be realized as the asymptotic symmetry group. The lifting of symme-

try from boundary to bulk can be easily understood in terms ofsimple scale transformation.

A uniform scale transformation of the boundary coordinates, z → λz, λ being constant gets

lifted to z → λz, ρ → λρ in the bulk.

Fields inAAdS5

Just like the metric itself, any fieldΦ(ρ, z) in AAdS5 space-time also assumes an asymp-

totic expansion near the boundary:

Φ(ρ, z) = ρα
(
Φ(0)(z) + Φ(2)(z)ρ2 + ..... + Φ(2n)(z)ρ2n + Φ̄(2n)(z)log(ρ2) + ...

)
. (1.28)

The job is now to impose the equations of motion ofΦ(ρ, z) which includesgµν(ρ, z)

as well. No matter whether the equations of motion are linearized perturbations around

the AdS5 or the full non-linear equations of gravity, the field equations of motion will

be second order differential equations inρ and hence will have two independent series

solutions. Asymptotically these two solutions will go asρα andρα+2n in the leading order.

10
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Now we jot down the main features of the series solutions:

• Expect the coefficient,Φ(2n)(z), all other coefficients,Φ(2k)(z) for 0 < k < n are

algebraically determined in terms ofΦ(0)(z) and their derivatives up to order2k.

Φ(2n)(z) remains undetermined by equations of motion.

• The coefficient,̄Φ(2n)(z) is also determined byΦ(0)(z) and their derivatives in a sim-

ilar spirit.

• We callΦ(0)(z) the non-normalizable mode, Φ(2n)(z), the normalizable modeand

Φ̄(2n)(z), the anomaly coefficient. In other words, though a bit misnomer (strictly

speaking, these are only coefficients of expansions, not a solution or mode!), thenon-

normalizableand thenormalizablemodes refer to the leading term in the asymptotic

expansion of the two linearly independent solutions of the field equations of motion.

• Once we invoke regularity in the interior of theAdS space-time, the normalizable

mode corresponding to any linearlized perturbation aroundtheAdS space-time gets

fixed in terms of the corresponding non-normalizable mode, though the normaliz-

able mode isnot a local functional of the non-normalizable mode. This is a generic

observation and it goes through even when we consider perturbation around more

non-trivial backgrounds likeAdS black holes. We will use these ideas later on in

this thesis.

The Dictionary

With the basic set up ready, we are now in a position to state the dictionary of gauge/gravity

duality.

• Corresponding to every field,Φ in the bulk gravity, there exists a gauge-invariant

operator which we will denote asOΦ. For instance, the bulk metric corresponds

to the stress-energy tensor at the boundary whereas the gauge fields in the bulk are

mapped to boundary symmetry currents.

• The non-normalizable mode,Φ(0) in the asymptotic expansion, (1.28) is identified

with the source that couples to the operator,OΦ in the boundary gauge theory. As an

example, the boundary metric,g(0)µν is identified as the metric on the flat Minkowski

space on which the gauge theory lives. It couples to the stress energy tensor operator

of the boundary gauge theory.

11
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• The partition function on the bulk side withΦ(0) specified as boundary condition,

gives the generating functional on the field theory side.

ZString [Φ |ρ=0= Φ(0)

︸ ︷︷ ︸
Dirichlet Boundary condition

] =

∫

Φ≈Φ(0)

DΦ exp(−S[Φ]))

=

〈

exp

(

−
∫

Φ(0)OΦ

)〉

QFT

. (1.29)

In the limit when ’t Hooft coupling is large and so is the rank of the gauge group,

as discussed earlier, the left hand side of (1.29) can be approximated by supergravity

partition function with the action,S replaced by the supergravity action,SSugra.

• This, however, is not the end of the story. In order to end up ingetting finite corre-

lation functions for the local gauge-invariant operators in the boundary theory, one

needs to get rid of the divergent parts of the supergravity action. The methodology to

making the observables in gauge theory sector finite by adding appropriate counter-

terms to supergravity action is well known in the literatureand goes by the name,

“holographic renormalization” technique.

• Finally, functional differentiations of the renormalizedaction with respect to the

source,Φ(0) give correlators of all the local gauge-invariant operators.

• ForAAdS5 space-time, it is always possible to find a suitable renormalization scheme

in which the normalizable mode of graviton,g
(4)
µν (z) can be identified with boundary

stress energy tensor.

1.5 Finite Temperature : Thermal Retarded Correlators

in AdS/CFT

In the thesis, we will mostly deal with finite temperature systems. The dictionary we just

gave is typically for zero temperature. In the bulk gravity sector the most natural way of

introducing temperature is to consider black holes in theAdS geometry. The intuition fol-

lows from the fact that stationary black holes behave like thermodynamical objects in all

respect. The surface gravity at the black hole horizon can beidentified with temperature

while the mass, with the total energy. Furthermore, in all dynamical processes known, the

12
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area of the black hole event horizon can only increase monotonically, justifying its iden-

tification with entropy. Also, for any dynamical process theblack hole horizon possesses

uniform surface gravity mimicking the thermodynamical equilibriation. Since we are in-

terested to study strongly coupled gauge theory on Minkowski space-time, we will fix the

boundary metric toηµν by imposing Dirichlet boundary condition. We will focus on the

cases where the topology of the horizon is the same as that of the boundary. Considering

all these, a5-dimensional black hole metric which asymptotes toAdS5 takes the form:

ds2 = −r2f (r) dt2 +
dr2

r2f (r)
+ r2(dx2 + dy2 + dz2), (1.30)

with f (r) = 1− r40
r4

, r0 being the position of the horizon.

With proper coordinate redefinition, this metric can as wellbe re-written in Fefferman-

Graham form, (1.23). In the asymptotic region,r → ∞, f (r) goes to1, reducing the form

of the metric to that ofAdS5 space-time.

In the thesis, we will also deal with a larger class of black hole solutions obtained by

boosting the boundary coordinates,(t, x, y, z). The class of solution is obtained by replac-

ing dt → uµdx
µ, uµ being a time-like vector in Minkowski space, satisfyinguµuνηµν =

−1. We further construct the projection vectorPµν = uµuν + ηµν that projects on the spa-

tial slice orthogonal touµ. With all these ingredients, the metric for the class of boosted

solutions, known as theboosted black branesis given by

ds2 = −r2f (r) uµuνdx
µdxν +

dr2

r2f (r)
+ r2Pµνdx

µdxν . (1.31)

The boosted black brane metric can also be cast in the Fefferman-Graham form (1.23).

In this form, the metric shows no coordinate singularity allthe way to the horizon. From the

Fefferman-Graham form of the above metric one can easily read off the boundary stress-

energy tensor. Whenuµ = (1, 0, 0, 0) we retrieve back (1.30). With this choice ofuµ, the

energy density,ǫ and the pressure density,P are given byǫ = 3π4T 4 andP = π4T 4. These

are exactly of the same form as that of black body radiation and hence establishes the fact

that (1.31) is indeed the holographic dual for CFT states in thermal equilibrium.
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Chapter 1. Introduction

Thermal Retarded Correlators

We will end this discussion with a prescription to thermal retarded correlators that we will

use later on. In quantum field theories, retarded correlators measure the causal response to

a source. It was argued in [17] that one way to ensure causal response in a theory of gravity

is to replace the regularity condition of the solution in theinterior ofAdS with the incoming

wave boundary condition at the horizon. This is causal in thesense that classically probe

waves can only fall into the horizon but never come out. Once we invoke this condition, the

two point function turns out to be the ratio of the normalizable and the non-normalizable

modes.

Let us write the general solution of the bulk field as :

Φ(r, t, x, y) = A(ω,k)exp(−iωt + ik.x)r−∆−(1 + ...)

+ B(ω,k)exp(−iωt + ik.x)r−∆+(1 + ...), (1.32)

where∆− < ∆+ and∆+ > 0. Since in the leading order the Fefferman-Graham coordi-

nate,ρ is related to the Schwarzschild coordinate,r asρ ∼ 1
r

this leads to identifyingA
with the non-normalizable mode or the source andB with the normalizable mode or the

response.

The two point thermal retarded correlator then takes the form [18, 19]:

〈OΦOΦ〉 = C B(ω,k)A(ω,k)
+ Contact terms, (1.33)

C is a scheme independent constant.

It can be shown that the retarded correlator has a pole only when the non-normalizable

mode,A(ω,k) vanishes. This vanishing of non-normalizable mode+ infalling wave

boundary condition at the horizon gives a very special solution for Φ(r, t, x, y). These are

called quasi-normal modes of the linearlized perturbationaround the black brane space-

time. Going by our earlier logic this means, the poles of the retarded propagator of the

boundary gauge theory can occuriff the dispersion relations corresponding to quasi-normal

modes are satisfied.
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Chapter 1. Introduction

1.6 Plan for the Rest of the Thesis

Upon understanding the basic notion and the tools of holography, we will proceed further,

in subsequent chapters of this thesis, to develop methologies to deal with different non-

equilibrium scenarios in holographic set-up. We will develop tools and prescriptions con-

templating on applications towards physically interesting problems like quantum quench,

Fermi liquid theory in non-equilibrium and cosmological evolution of the universe. We

will argue some of the methods developed might as well be verymuch useful in under-

standing and improving upon existing tools to study ultra relativistic heavy ion collisions.

As mentioned in the overview, the methods we would use will beproblem specific, but

we will broadly categorize them in two parts. Following our understanding of holographic

meaning of equilibrium, these are,

(A) Going to a temperature other than the Hawking temperature ofthe black hole

As we mentioned in previous subsection, in any dynamical gravitational process involv-

ing black holes, attaining Hawking temperature at the horizon signals the equilibriation.

Hence, at the level of free-energy, if we somehow make the temperature off-shell it would

enable us to study the dynamics of equilibriation. Motivated by Bragg-Williams methodin

condensed matter physics [20] and its adoption in black holephysics and holography [21],

we will use this idea to analyze, holographically, the phenomenon of temperature quench

in specific black hole set-up. Apart from the dynamics, we will see, even the analysis of

phase transition particularly of the first order, which otherwise is difficult to capture in

the framework of Landau theory, becomes easier in this framework. ThisBragg-Williams

methodand applications thereof involving different black hole geometries will be discussed

in detail in chapter 1 of this thesis.

(B) Obtaining time-dependent backgrounds suitable to study non-equilibrium phenom-

ena

There are different ways to construct time-dependent backgrounds. In chapter 2 of this

thesis we will discuss how to obtain time-dependent bulk space-time dual to specific non-

equilibrium states starting from the observables of the boundary theory. This analysis is

based on the Fefferman-Graham construction ofAAdS spaces which we have already de-

veloped in section1.4. We will consider non-equilibrium fluctuations on the top ofequilib-

rium states which holographically maps into incorporatingquasi normal mode fluctuations

on theAdS black hole in equilibrium. Upon constructing the background, we will use this

to find the spectral function in specific non-equilibrium states. We will show the useful-
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ness of the mechanism developed in understanding Fermi liquid theory for non-equilibrium

strongly coupled systems.

The other methods of constructing time-dependent geometries are aimed at cosmologi-

cal applications. The first of them is based on Verlinde’s idea [22] that the time in theAdS

bulk and that of the boundary conformal field theory are different and a dynamic boundary

space-time can in principle be obtained starting from a static bulk. This idea was further

extended with charged black holes in [23]. Motivated by these two, we will use the tech-

niques of holographic renormalization with modified boundary conditions to come up with

cosmological evolution on the boundary.

The second one in this line starts with a dynamical bulk itself. The time-dependent

cosmological solution in supergravity is scarce in general. We, however, manage to find

explicitly time-dependent brane solutions in10 and 11 dimensional supergravity which

takes Kasner-like scaling in world-volume directions on the brane. Such solutions in near

horizon limit reduces toAdS5 × S5 andAdS7 × S4 with Kasner scaling in transverse di-

rections for KasnerD3 andM5 brane solutions respectively. TheAdS5 solutions with

Kasner scaling as solutions to5-dimensional Einstein’s equation with a negative cosmo-

logical constant was however studied in the literature either in the context of understanding

gauge theory near cosmological singularity [25] or in the context of anisotropic expansion

of strongly coupled quark gluon plasma [26]. We will, however, concentrate on cosmo-

logical implications, namely realizing cosmological evolution on probe dynamic branes in

these time-dependent backgrounds and find interesting consequences like dynamical com-

pactification of extra dimensions.

The third chapter in this thesis is fully devoted to such cosmological applications.
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2
The Bragg-Williams Method

Prelude

Going by the plan chalked out in the introduction, we start with our first scheme to go

out of equilibrium through a construction of an effective free-energy which is off-shell in

temperature. This construction which goes by the name “Bragg-Williams Method” was,

however, originally proposed as an efficient mean field technique to study phase transition

phenomena in condensed matter physics. As we know, within the mean field approxima-

tion, phase transition is primarily described via Landau theory. Under the assumptions that

the order parameter is small and uniform near the transition, this theory provides us with

a wealth of information about the nature of the phase transition. It is based upon a power

series expansion of free energy in terms of the order parameter. The terms in this expansion

are normally determined by symmetry considerations of the phases. Furthermore, owing

to the smallness of the order parameter, only a few leading terms are kept. The usefulness

of the Landau theory lies in its simplicity as most of its predictions can be achieved by

solving simple algebraic equations [1]. While this theory is most suitable in describing a

second order phase transition, one needs to be somewhat careful to treat first order phase

transition within this framework. This is because, in a firstorder transition, order param-

eter suffers a discontinuous jump across the critical temperature. If this change is large, a

power series expansion of free energy may acquire ambiguities. One then requires a more

complete mean field theory. This is where the Bragg-Williams(BW) method [2, 3] comes

in handy. Originally used to describe order - disorder transition of alloys, it has a wide

range of applications [1, 4]. In this approach, one constructs an approximate expression for

the free energy in terms of the order parameter and uses the condition that its equilibrium
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Chapter 2. The Bragg-Williams Method

value minimizes the free energy. In the following sections we will extend this novel idea to

study phase transitions involvingAdS black holes. We will start with SchwarzschildAdS

black hole and later generalize it for charged black holes inAdS. Going off-shell to study

black hole phase transition within the BW framework gets support from a previous work

of Fursaev and Solodukhin [5]. We will discuss their approach later in this chapter. In the

process we will propose one possible construction for an effective off-shell free energy of

the boundary gauge theory. Finally we will show, through a specific example, how this

method can be immensely helpful in understanding the phenomenon of quantum quench.

But even before going into its applications, we need to know this construction in a set up

where it was born. This chapter is primarily based on our work, [6, 7].

2.1 Bragg-Williams construction: a brief review

This section is a review of BW theory and is pedagogical in nature. It has two subsections.

In the first subsection, we discuss Ising model and use BW theory to capture second order

paramagnetic to ferromagnetic transition. In the next subsection we describe how to gener-

alize this concept for Schwarzschild black hole in AdS spaceand reproduce the qualitative

features of the first order Hawking-Page transitions.

2.1.1 Paramagnetic to ferromagnetic transition

Bragg-Williams construction is perhaps best described viaIsing model [1]. Let us consider

Ising model on a lattice where, on each site, the classical spin variableσl takes values±1.

These spins interact via a nearest neighbour couplingJ > 0. The Hamiltonian is given by

H = −J
∑

<ll′>

σlσl′ . (2.1)

Here the sum is over the nearest neighbourl andλ′. The order parameter ism =< σ >,

the average of the spin. For spatially uniformm, the entropy can be computed exactly. The

total magnetic moment is

m =
N+1 −N−1

N
, (2.2)

whereN+1 andN−1 are the total number of+1 and−1 spins respectively. The total number

of lattice sites is denoted byN . The entropy is the logarithm of the number of states and is
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Chapter 2. The Bragg-Williams Method

given by

S = ln(NCN+1) = ln(NCN(1+m)/2) (2.3)

which, for entropy per unit spin, gives

s(m) =
S

N
= ln 2− 1

2
(1 +m)ln(1 +m)− 1

2
(1−m)ln(1−m). (2.4)

In BW theory, the energy< H > is approximated via replacingσ by its position indepen-

dent averagem. Thus

E = −J
∑

<ll′>

m2 = −1

2
JNzm2, (2.5)

wherez is the number of nearest neighbours in the lattice. One then constructs the BW free

energy per spin as

f(T,m) =
E − TS

N

= −1

2
Jzm2 − T ln 2 +

T

2
(1 +m)ln(1 +m) +

T

2
(1−m)ln(1−m).(2.6)

The BW free energyf(T,m) can be plotted as a function ofm for various temperatures. It

can be checked that, forT > Jz, it has a single minimum atm = 0. However, forT < Jz,

two minima occurs for non-zero values ofm leading to paramagnetic to ferromagnetic

transition. Critical temperature(Tc) for this second order transition can be found by setting

first and second derivative off to zero with the resultTc = Jz. More details about Bragg-

Williams mean field construction in the context of statistical mechanics and condensed

matter can be found in [1, 4].

2.1.2 Hawking-Page transition: AdS-Schwarzschild black hole

We can implement similar construction for AdS black holes aswell. Let us consider a

Schwarzschild black hole in(n+ 2) dimensional AdS space. The metric is given by

ds2 = −V (r)dt2 + V (r)−1dr2 + r2dΩ2
n, (2.7)

with

V (r) =
(

1− M

rn−1
+

r2

l2

)

. (2.8)
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HereM is a parameter related to the mass or internal energy of the hole andl is the inverse

radius of AdS space. We have set(n + 2) dimensional gravitational constantGn+2 to one.

The black hole has a single horizon wheregtt vanishes. We will identify the horizon radius

asr+. The dimensionless temperature, energy and entropy densities are give by

T̄ = lT =
(n+ 1)r̄2 + (n− 1)

4πr̄
,

Ē = lE =
n(r̄n+1 + r̄n−1)

16π
,

S̄ =
r̄n

4
. (2.9)

Here lr̄ = r+. Before constructing the BW free energy, we will have to decide on an

order parameter. Noticing the form of the entropy and the energy, it is only natural to

considerr̄ as the order parameter. We will see later that this order parameter has right

behaviour expected from the instability associated with this hole. We are now in a position

to construct the BW free energȳF(r̄, T̄ ) as

F̄(r̄, T̄ ) = Ē − T̄ S̄ =
n(r̄n+1 + r̄n−1)

16π
− T̄

r̄n

4
. (2.10)

A plot of the free energy in five dimensions as a function ofr̄ for various temperatures is

shown in figure (2.1). Note that in (2.10), the temperature isa parameter. Its dependence

on r̄ as given in (2.9) appears after minimizinḡF with respect tōr. At this minimumF̄
reduces to the on-shell free energy of the black hole. It is given by

F̄ = F̄|min = − r̄n−1(r̄2 − 1)

16π
. (2.11)

We identify the AdS free energy with̄r equals to zero. The first order transition appears

when

F̄ = 0, and
∂F̄
∂r̄

= 0, (2.12)

are satisfied simultaneously. This happens for

r̄ = 1, and T̄c =
3

2π
. (2.13)

Below this temperature, black hole phase becomes unstable.As can be seen from the

dashed line of figure (2.1), thēr = 0 phase is preferred. This is identified as the AdS
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Figure 2.1: BW free energy for five dimensional AdS-Schwarzschild blackholes plotted
against horizon radius̄r for different temperatures̄T . The solid line has two degenerate
minima - representing co-existence of black hole phase (minimum atr̄ = 1) and the thermal
AdS phase (with̄r = 0). This happens at a critical temperatureT̄c = 3/(2π). While
above this temperature black hole is stable (dotted line), AdS is a preferred phase below̄Tc

(dashed line).

phase. This is a first order transition causing a discontinuous change in the order parameter

r̄. This instability is well known in the literature asthe Hawking-Page (HP) instability[8],

where below a critical temperature, a AdS-Schwarzschild black hole becomes unstable and

crosses over to the thermal AdS space via a first order phase transition.

Upon constructing the BW free energy for SchwarzschildAdS black holes, we now

move onto incorporating charged black holes inAdS space in this frame-work.

2.2 Charged black holes

As discussed in the introduction, for a(n+1+q) dimensional theory of gravity compactified

onAdSn+1 ×Xq, the dual field theory lives on a space whose topology is same as that of

the boundary ofAdSn+1. The isometries ofXq becomes global symmetries of the field

theory. Now whenXq is a five-sphere, theSO(6) isometry allows one to introduce three

independent R-charges through rotation inS5 direction. These three R-charges correspond

to the three Cartans ofSO(6). Consequently, one can turn on three independent chemical
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potentials inN = 4 SYM. At finite temperature, the gravity dual of this theory isthe R-

charged black holes ofN = 2 gauged supergravity [9–11]. For the special case, when

the charges are equal, these black holes reduce to the Reissner-Nordström black holes in

AdS space. Many features of these black holes and their gaugetheory duals were studied

in [12, 13].

Furthermore, it is also clear from the previous discussionsthat working at the super-

gravity level corresponds to analyzing gauge theories, at infinite coupling, with large num-

ber of colours. To see any finite coupling/finite colour effect in gauge theory, one requires

studying string theory on AdS. However, since this is as yet apoorly understood area, many

authors have looked into the effects of addingα′ corrections to supergravity. See [14–17]

for an incomplete list of references. In general, it is also expected that string theory will

introduce higher order gauge field corrections to supergravity actions. These corrections,

in turn, would modify various equilibrium and non-equilibrium properties of the gauge

theory. The reader can look at [18] for work in this direction. At finite temperature, the

gravity duals of these are the black holes in the presence of higher derivative corrections.

Construction of such black holes becomes progressively difficult as one introduces more

and more higher derivative terms in the action. In fact, in many cases, one relies on per-

turbative construction of the black holes. However, there exists a rare example of exact

black hole solution which takes into account a specific set ofgauge field higher derivative

corrections to all orders. These are the black holes in the Born-Infeld (BI) theories in the

presence of a negative cosmological constant. BI black holes were constructed in [19, 20].

Assumingthat there exists a dual gauge theory, equilibrium and non-equilibrium properties

of the finite temperature gauge theory were studied by many authors by exploiting the black

hole solution [21, 22]. We have discussed previously that adding a gauge field in the bulk

is equivalent to turning of a chemical potential in the gaugetheory. Since BI black holes

accommodate all order gauge field corrections, they incorporate large chemical potential

contributions into the gauge theory. In this section we willaddress some issues along these

directions.

This section is structured as follows. In the next subsection we review the Born-Infeld

black hole solutions inAdS space in(n + 1)-dimensions. In subsection 2 we compute

the Born-Infeld actions in two different thermodynamical ensembles - namely the fixed

potential and the fixed charge ensembles. In the following subsection we compute differ-

ent thermodynamic quantities in the two ensembles directlyfrom the action. In subsection

4, we go into the study of phase structure of those black holesin grand canonical (fixed
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potential) ensemble. Although those have already been wellstudied [19, 23, 24], we use

Bragg-Williams technique to find an off-shell potential. Westart with an easier system,

namely the Reissner-Nordström, which is the zeroth order expansion of Born-Infeld solu-

tion and study its phase structure using Bragg-Williams construction. This again shows a

first order phase transition corresponding to the Hawking-Page phase transition from black

hole phase toAdS phase. We then repeat the same exercise for Born-Infeld case. In the next

subsection, we continue this study, but this time with R-charge black holes whose phase

structure exhibit both the first and the second order phase transitions. With this we move

on to proposing some possible gauge theoretic free energy construction in the last subsec-

tion. We successfully construct off-shell boundary potentials dual to Reissner-Nordström

and Born-Infeld black holes.

2.2.1 Born-Infeld black holes in AdS space

We start by reviewing some essential features of Born-Infeld action and its black hole so-

lution. Let us consider the(n+1) dimensional Einstein-Born-Infeld action with a negative

cosmological constantΛ of the form

S =
1

16πG

∫

dn+1x
√−g

[

(R− 2Λ) + L(F )
]

, (2.14)

whereL(F ) is given by

L(F ) = 4β2
(

1−
√

1 +
F µνFµν

2β2

)

. (2.15)

The constantβ is called the Born-Infeld parameter and has the dimension ofmass. In the

limit β → ∞ , higher order gauge field fluctuations can be neglected and, therefore,L(F )

reduces to the standard Maxwell form

L(F ) = −F µνFµν +O(F 4). (2.16)

Thus the action, S, reduces to the standard form for which theReissner-Nordström in AdS

is the black hole solution. Thermodynamics and phase structure of such black holes were

studied in detail in [12, 13].1

1In what follows, for simplicity, we will work in a unit in which 16πG = 1, G being the Newton’s
constant in(n+ 1) dimensions.
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Equations of motions can be obtained by varying the action with respect to the gauge field

Aµ and the metricgµν . ForAµ and forgµν those are respectively given by

▽µ

( F µν

√

1 + F 2

2β2

)

= 0, (2.17)

and

Rµν −
1

2
Rgµν + Λgµν =

1

2
gµνL(F ) +

2FµαF
α

ν
√

1 + FµνFµν

2β2

, (2.18)

whereRµν is the Ricci tensor andR, the Ricci scalar. In order to solve the equations of

motion, we use the metric ansatz

ds2 = −V (r)dt2 +
dr2

V (r)
+ f 2(r)gijdx

idxj, (2.19)

The metric on the foliating submanifold,gij, is a function of coordinatesxi and spans

an (n − 1)-dimensional hypersurface with scalar curvature(n − 1)(n − 2)k, k being a

constant which characterizes the afore-mentioned hypersurface. Depending on whether the

black hole horizon is elliptical, flat or hyperbolic, k can betaken as±1 and0 respectively

without any loss of generality. For the metric (2.19), we have non-vanishing components

of Ricci tensor

Rt
t = −V ′′

2
− (n− 1)

V ′R′

2R
, (2.20)

Rr
r = −V ′′

2
− (n− 1)

V ′R′

2R
− (n− 1)

V R′′

R
, (2.21)

Ri
j =

(
n− 2

R2
k − 1

(n− 1)Rn−1
[V (Rn−1)′]′

)

δij , (2.22)

where the primed quantities denote the derivatives with respect tor.

Let us consider the case where all the components ofF µν are zero exceptF rt. In that case

(2.17) can be immediately solved to yield

F rt =

√

(n− 1)(n− 2)βq
√

2β2r2n−2 + (n− 1)(n− 2)q2
. (2.23)

Hereq is an integration constant and is related to the electromagnetic charge. From (2.23)
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we can also find the electric gauge potential as

At =
1

c

q

rn−2 2F1

[ n− 2

2n− 2
,
1

2
,
3n− 4

2n− 2
,−(n− 1)(n− 2)q2

2β2r2n−2

]

− φ, (2.24)

whereφ is a constant and can be interpreted as the electrostatic potential difference between

the black hole horizon and infinity andc is a constant given byc =
√

2(n−2)
n−1

. 2F1 is a

hypergeometric function. Furthermore, we chooseφ in a way that makesAt vanish at the

horizon2.

φ =
1

c

q

rn−2
+

2F1[
n− 2

2(n− 1)
,
1

2
,
3n− 4

2(n− 1)
,−(n− 1)(n− 2)q2

2β2r2n−2
+

]. (2.25)

Now if F rt is the only non-zero component of all theF µν ’s, one can easily check from

equation (2.18) thatRr
r = Rt

t and hence, from (2.20) and (2.21) it followsR′′(r) = 0

which has two solutions,f(r) = r andf(r) = Constant. We will consider the case of

f(r) = r here. With this, and settingΛ = −n(n − 1)/2l2, we get the solution forV (r)

as [20, 24]

V (r) = k − m

rn−2
+

(
4β2

n(n− 1)
+

1

l2

)

r2

− 2
√
2β

(n− 1)rn−2

∫
√

2β2r2n−2 + (n− 1)(n− 2)q2dr. (2.26)

m here is an integration constant. Later we will see that this is related to the ADM mass of

the black hole. The integral can also be expressed in terms ofhypergeometric functions:

V (r) = k − m

rn−2
+

(
4β2

n(n− 1)
+

1

l2

)

r2 − 2
√
2β
√

2β2r2n−2 + (n− 1)(n− 2)q2

n(n− 1)rn−3

+
2(n− 1)q2

nr2n−4 2F1[
n− 2

2(n− 1)
,
1

2
,
3n− 4

2(n− 1)
,−(n− 1)(n− 2)q2

2β2r2n−2
]. (2.27)

It is worth mentioning here that there is an ambiguity in the lower limit of the integral

in the RHS of eqn.(2.26). In order to fix this up, one has to invoke again the fact that

V (r) should reduce to that of Reissner-Nordström [12] onceβ → ∞ limit is taken. This

2ActuallyAt at the horizonr = r+ cannot be chosen arbitrarily. The event horizon of the afore-mentioned
background is a killing horizon of killing vector∂t and therefore contains a bifurcation surface atr = r+
where the killing vector vanishes. This in turn demands the vanishing ofAt atr = r+ if the one formA is to
be well-defined [25, 26]. A more detailed discussion regarding this can be found in [27].
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tells that the lower limit of the integral should be such thatthe integral vanishes at that limit.

Black hole horizon satisfiesV (r) = 0. Denoting the solution asr = r+, one can express

m in terms ofr+ as

m = rn−2
+ +

[ 4β2

n(n− 1)
+

1

l2

]

rn+ − 2
√
2βr+

n(n− 1)

√

2β2r2n−2
+ + (n− 1)(n− 2)q2

+
2(n− 1)q2

nrn−2
+

2F1

[ n− 2

2n− 2
,
1

2
,
3n− 4

2n− 2
,−(n− 1)(n− 2)q2

2β2r2n−2
+

]

. (2.28)

Next, to find the temperature of the black hole, we follow the standard prescription and

expandV (r) in Taylor expansion aroundr = r+ so that

V (r) ≃ ∂V

∂r
|r=r+(r − r+)

Using this and a redefinition of the variabler, the radial and temporal part of the metric

reduces to the form

ds2 = dρ2 + ρ2d

(
∂V

∂r

∣
∣
∣
r=r+

τ

2

)2

(2.29)

τ being the Euclidean time. Now, to avoid conical singularity

(

∂V
∂r

∣
∣
∣
r=r+

τ
2

)

should have a

periodicity of2π and the periodicity inτ is therefore given by

βbh =
4π

∂V
∂r

∣
∣
∣
r=r+

This period is identified with the inverse of black hole temperature,Tbh = 1
βbh

.

For our case∂V
∂r

∣
∣
∣
r=r+

can be easily found from eqn. (2.26). Once again, one has to fix

the lower limit of the integral and regarding this, the discussion at the end of eqn. (2.27)

still holds. Finally the temperature of the black hole comesout to be

Tbh =
1

4π

[n− 2

r+
k +

{ 4β2

n− 1
+

n

l2

}

r+ − 2
√
2β

(n− 1)r+n−2

√

2β2r+2n−2 + (n− 1)(n− 2)q2
]

,

(2.30)

which matches exactly with the expression of temperature obtained in [20, 24]. From now
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on we will takek = 1 for all our computations.

There are normally two ways to calculate thermodynamic quantities. First, one assumes

that the black hole satisfies laws of thermodynamics and usesthat to find thermodynamic

quantities. Second is to compute the action for a black hole and use it to derive various

state variables following standard prescription. Here we will follow the second path.

2.2.2 Action Calculation

We will now calculate the black hole action in two different ensembles. First, we will focus

on the grand canonical ensemble which is defined as a fixed potential ensemble. In the

language of thermodynamics, this can be thought of as connecting the system to a heat

reservoir full of quanta at a temperature,Tbh, the reservoir being identified as a pure AdS

background with charged and uncharged quanta which are freeto fluctuate in presence of

a constant potentialφ. The scenario is quite different in case of a fixed charge, namely the

canonical ensemble. Since AdS with localized charge is not asolution of BIAdS equation,

pure AdS background cannot serve the purpose of a heat reservoir. It turns out that extremal

black hole background is a good candidate in this regard.3 In order to keep charge,Q fixed,

we, in this case, retain only neutral quanta in the heat reservoir. 4

2.2.2.1 Fixed Potential

The action for this is the one given in (2.14) analytically continued to Euclidean space

by takingt → iτ . We then use the equation of motion given in (2.18) for the metric to

eliminateR to obtain the on-shell action as:

S =

∫

dn+1x
√−g

[ 4Λ

n− 1
− 2L(F )

n− 1
− 4F 2

(n− 1)

1
√

1 + F 2

2β2

]

, (2.31)

It is worth mentioning in this regard that since the space is asymptotically AdS, there is no

contribution from the Gibbons-Hawking-York boundary term. Also the surface term that

arises from the variation of the action with respect to the gauge field vanishes in this case,

since, for this particular ensemble, the potential is kept fixed at∞. Furthermore, since we

3This follows from an argument of [12] where the extremal black hole solution was used as a background
on which the free energy was computed for canonical ensemble. We expect this to hold good for our finiteβ
case as well.

4In grand canonical ensemble, an action calculation in four dimensions was performed earlier in [23]. We
generalize the computation for arbitrary dimensions.
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contemplate on purely electrical solutions only (only non-zero component ofF µν being

F rτ ), the possibility of having a Chern-Simons term does not arise as well.

Now we use the equation of motion for the gauge field given in (2.17) and get the full

on-shell action as

Ibh = ωn−1

∫ βbh

0

dτ

∫
∞

r+

dr
[2n

l2
rn−1+

8β2

n− 1
rn−1− 8β

n− 1

√

β2r2n−2 + q2
(n− 1)(n− 2)

2

]

,

(2.32)

ωn−1 being the volume of a unit(n − 1) sphere. This integral is clearly divergent. This

is because of the infinite volume of the black hole spacetime.This is where the idea of

introducing a heat reservoir in form of background pure AdS spacetime, as discussed in the

beginning of this section exactly fits in. What we would do is to subtract from (2.32) the

pure AdS action,

IAdS = ωn−1

∫ βAdS

0

dτ

∫
∞

0

dr
[2n

l2
rn−1

]

, (2.33)

which is also evidently infinity.

In order to implement this regularization scheme [28] properly, we put an upper cut-offR

on the radial integration, which we would eventually take toinfinity. For the black hole

space-time to be smooth,βbh is given by the inverse of Hawking temperature,Tbh, given

in eqn.(2.30).βAdS can, in general, be anything. But there is one constraint.βAdS should

have the value which makes the geometries of the AdS and the black hole spacetimes the

same on the asymptotic hypersurface defined byr = R. This is done by setting

βAdS

√
[

1 +
R2

l2

]

= βbh

[

1− m

Rn−2
+

4β2

n(n− 1)
R2 +

R2

l2

− 2
√
2β

n(n− 1)Rn−3

√

2β2R2n−2 + (n− 1)(n− 2)q2

+
2(n− 1)q2

nR2n−4 2F1[
n− 2

2(n− 1)
,
1

2
,
3n− 4

2(n− 1)
,−(n− 1)(n− 2)q2

2β2R2n−2
]
] 1

2
.

(2.34)
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After some algebraic manipulation, this becomes,

βAdS = βbh

[

1− ml2

2Rn
+

2β2l2

n(n− 1)
{1−

√

1 +
(n− 1)(n− 2)q2

2β2R2n−2
}

+
(n− 1)q2l2

nR2n−2 2F1[
n− 2

2(n− 1)
,
1

2
,
3n− 4

2(n− 1)
,−(n− 1)(n− 2)q2

2β2R2n−2
]
]

. (2.35)

Using this relation along with eqn (2.28) and then taking thelimit R → ∞ we finally get

the Born-Infeld action in the grand canonical ensemble as

IGC = ωn−1βbh

[

rn−2
+ − rn+

l2
− 4β2rn+

n(n− 1)
{1−

√

1 +
(n− 1)(n− 2)q2

2β2r2n−2
+

}

− 2(n− 1)

n
q2

1

rn−2
+

2F1[
n− 2

2(n− 1)
,
1

2
,
3n− 4

2(n− 1)
,−(n− 1)(n− 2)q2

2β2r2n−2
+

]
]

. (2.36)

As a consistency check of our result, we see that withβ → ∞ limit,

IGC

∣
∣
∣
β→∞

= ωn−1βbh

[

rn−2
+ − rn+

l2
− q2

rn−2
+

]

. (2.37)

which is exactly the same as the Reissner-Nordström action for the grand canonical ensem-

ble as obtained in [12].

2.2.2.2 Fixed Charge

In this ensemble, we, instead of fixing the potential at infinity, fix the charge of the black

hole. Then the action given in (2.31) is no longer the appropriate one. Since the potential

is not fixed at infinity, the boundary term as obtained by the variation of the gauge field,

unlike in the case of fixed potential ensemble, has a non-vanishing contribution given by

Is = −4

∫

dnx
√
−h

Fµν
√

1 + F 2

2β2

nµAν , (2.38)

which after some straightforward computation becomes

Is = 2(n− 1)ωn−1βbh
q

r+n−2 2
F1[

n− 2

2(n− 1)
,
1

2
,
3n− 4

2(n− 1)
,−(n− 1)(n− 2)q2

2β2r2n−2
+

], (2.39)
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h being the determinant of the induced metric at the boundary andnµ, the radial unit vector

pointing outward. Not only that, we also have to subtract thepure AdS background as

before to ensure the convergence of the integral, the difference with the previous case of

fixed potential ensemble being only that in the present case AdS background cannot be

interpreted as the metric background or heat reservoir as argued before.

Ibh + Is − IAdS = ωn−1βbh

[

rn−2
+ − {r

n
+

l2
+ 4β2rn+}+

2
√
2βr+

n(n− 1)

√

2β2r2n−2
+ + (n− 1)(n− 2)q2

+
2(n− 1)2q2

nrn−2
+

2F1[
n− 2

2(n− 1)
,
1

2
,
3n− 4

2(n− 1)
,−(n− 1)(n− 2)q2

2β2r2n−2
+

]
]

. (2.40)

The metric background in this case is the extremal black hole. The action for the extremal

black hole can be found by substituting in (2.40), the condition for extremality withr+ =

rex, rex being the horizon of the extremal black hole.

The condition for extremality can be obtained by settingTbh = 0 as

(n− 2)rn−3
ex +

[n

l2
+

4β2

n− 1

]

rn−1
ex − 2

√
2β

n− 1

√

2β2r2n−2
ex + (n− 1)(n− 2)q2 = 0. (2.41)

And with this the action for the extremal black hole becomes

Iex = 2(n−1)ωn−1βbh

[rn−2
ex

n
+
(n− 1)q2

nrn−2
ex

2F1[
n− 2

2(n− 1)
,
1

2
,
3n− 4

2(n− 1)
,−(n− 1)(n− 2)q2

2β2r2n−2
ex

]
]

.

(2.42)

Subtracting the extremal background, finally, the full Born-Infeld action for canonical en-

semble becomes:

IC = ωn−1βbh

[

rn−2
+ − {r

n
+

l2
+

4β2rn+
n(n− 1)

}+ 2
√
2βr+

n(n− 1)

√

2β2r2n−2
+ + (n− 1)(n− 2)q2

+
2(n− 1)2q2

nrn−2
+

2F1[
n− 2

2(n− 1)
,
1

2
,
3n− 4

2(n− 1)
,−(n− 1)(n− 2)q2

2β2r2n−2
+

]

− 2(n− 1)ωn−1βbh{
rn−2
ex

n

+
(n− 1)q2

nrn−2
ex

2F1[
n− 2

2(n− 1)
,
1

2
,
3n− 4

2(n− 1)
,−(n− 1)(n− 2)q2

2β2r2n−2
ex

]}
]

. (2.43)
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As a check of our computation, if we takeβ → ∞ limit of (2.43) we get,

IC

∣
∣
∣
β→∞

= ωn−1βbh

[

rn−2
+ − rn+

l2
− (2n− 3)q2

rn−2
+

− 2(n− 1)

n
rex −

2(n− 1)2

n

q2

rn−2
ex

]

,(2.44)

which is exactly the same as the Reissner-Nordström action as obtained for the fixed charge

ensemble in [12]. Next, we calculate thermodynamic quantities directly from those actions.

2.2.3 Thermodynamical quantities

The state variables for the system can be computed from the actions,IGC andIC given in

(2.36) and (2.43) respectively.

2.2.3.1 Fixed Potential

The grand canonical free energy is given byFGC = E − TS − Qφ. Now F is also equal

to IGC

βbh
. Combining these two definitions we can find the state variables for the system as

follows:

E =
(∂IGC

∂βbh

)

φ
− φ

βbh

(∂IGC

∂φ

)

βbh

, (2.45)

S = βbh

(∂IGC

∂βbh

)

φ
− IGC , (2.46)

Q = − 1

βbh

(∂IGC

∂φ

)

βbh

. (2.47)

Now for this ensemble,φ is a constant. Thus to find the partial derivatives keepingφ

constant, one has to substitute the condition∂φ
∂r+

= 0, which we obtain from (2.24) keeping

in mind that in this caseq is no longer a constant, but a function ofr+.

With all these, we get the state variables as:

E = ωn−1(n− 1)
[

rn−2
+ + {r

n
+

l2
+

4β2rn+
n(n− 1)

} − 2
√
2βr+

n(n− 1)

√

2β2r2n−2
+ + (n− 1)(n− 2)q2

+
2(n− 1)q2

nrn−2
+

2F1[
n− 2

2(n− 1)
,
1

2
,
3n− 4

2(n− 1)
,−(n− 1)(n− 2)q2

2β2r2n−2
+

]
]

, (2.48)

using (2.28), which can also write this as

E = ωn−1(n− 1)m, (2.49)
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and

S = 4πωn−1r
n−1
+ , (2.50)

Q = 2
√

2(n− 1)(n− 2)ωn−1q. (2.51)

2.2.3.2 Fixed Charge

In the canonical ensemble, the free energy is given byFC = E − TS, which is again equal

to IC
βbh

. Then in a similar way as done before, one can find the corresponding state variables

as:

E =
( ∂IC
∂βbh

)

q
= (n− 1)m− (n− 1)mex, (2.52)

S = βbh

( ∂IC
∂βbh

)

q
− IC = 4πωn−1r

n−1
+ , (2.53)

wheremex is given by

mex = 2
[rn−2

ex

n
+

(n− 1)q2

nrn−2
ex

2F1[
n− 2

2(n− 1)
,
1

2
,
3n− 4

2(n− 1)
,−(n− 1)(n− 2)q2

2β2r2n−2
ex

]
]

.(2.54)

This expression formex can also be obtained by plugging in (2.28) the condition for ex-

tremality, (2.41).

Having obtained the thermodynamical quantities, we would like to study various stable,

unstable and metastable phases associated with the black hole. For that, we construct an

“off-shell” free energy, the saddle points of which dictates the (in)stability of the black

hole. The details of this construction is discussed in the next subsection.

2.2.4 Construction of Bragg-Williams free energy & study of phase

structure

In the case ofβ → ∞, i.e. for Reissner-Nordström black hole, we know from [12] that

there is a first order Hawking-Page (HP) transition. At a critical temperature, the black

hole becomes unstable. The system prefers the AdS phase. This transition is of first order

in nature, marked by a discontinuous change in the gravitational entropy. Our primary

motivation would be to study the fate of this transition whenβ is finite. So we would be

interested in constructing Bragg-Williams potential for Born-Infeld black hole. In order
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to do so, we have to first decide on an order parameter. To this end, we note that a first

order phase transition is characterized by a discrete jump of the order parameter. Like in

the case of SchwarzschildAdS, in charged case also this jump shows up in the horizon

radius of the black hole. Indeed, at the Hawking-Page (HP) point, AdS phase (identified

with r+ = 0) crosses over to the black hole phase (with non-zeror+). So again, we find it

suitable to user+ as the order parameter. Before we go on to discuss the phase structure in

the Born-Infeld theory, we find it instructive to first analyze the Reissner-Nordström case.

In a later sub-section, we generalize this for Born-Infeld black holes. We, further, stick to

the grand canonical ensemble for the rest of our discussions.

2.2.4.1 Reissner-Nordström

The Bragg-Williams free energy for a Reissner-Nordström black hole in a grand canonical

ensemble is given byWGC = E − TS − Qφ with T andφ treated as external parameters.

E can be found by takingβ → ∞ limit of (2.48) with the understanding that since we are

working in a fixed potential ensemble we have to writeq in terms ofφ. In order to achieve

this we use the relation between charge and potential of Reissner-Nordström black hole,

φ =
1

c

q

rn−2
+

, (2.55)

which can be directly obtained by takingβ → ∞ limit of eqn.(2.25).

With this, the Bragg-Williams free energy for the Reissner-Nordström black hole is given

by

WRN
BW = E − TS −Qφ

= ωn−1

[

(n− 1)rn−2
+ (1− c2φ2)− 4πrn−1

+ T +
rn+
l2
(n− 1)

]

. (2.56)

The on-shell temperature can be computed by differentiating WRN
BW with respect tor+ and

then setting it to zero. The temperature comes out to be5

TRN =
(n− 2)l2(1− c2φ2) + nr2+

4πl2r+
, (2.57)

which is the same as theβ → ∞ limit of (2.30) and also matches with the expression

5In eqn.(2.56),r+ should be treated as an unconstrained variable. Only on shell, r+ is related toφ andT .
This can be found by inverting eqn.(2.57) forr+.
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for the temperature of Reissner-Nordström black holes obtained in [12]. The behaviour of

WRN
BW as a function of the order parameter for a fixedφ and for different temperatures is

shown in the figure 2.2.

0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 2.2: This is a plot ofWRN
BW as a function ofr+ for fixed φ. The phase structure

shown here is forn = 4 and forφ=0.0003. The dashed line is for the critical temperature,
T = Tc, the orange one is the transition involving a metastable phase, another feature of a
generic first order phase transition. The red, green, blue and black lines are forT > Tc in
an increasing order.

We see from the phase diagram that ther3+ term present in the free energy expression for

n = 4 brings in an asymmetry inWRN
BW as a function ofr+ and results in an emergence of

a secondary minimum at finite value ofr+. The value ofWRN
BW at this secondary minimum

is greater than zero whenT < Tc, but becomes zero at the critical temperatureT = Tc. For

all T > Tc, WRN
BW is negative at the secondary minimum. Thus there is a phase transition

from black hole to AdS as we tune the temperature belowTc, with a discontinuous change

in r+ atT = Tc. This is, clearly, the signature of a first order phase transition occurring at

T = Tc.

An analytic expression forTc can be obtained on requiring thatWRN
BW is an extremum

with respect tor+ in equilibrium, i.e,
(

∂WRN
BW

∂r+

)

= 0 along with the condition that the free

energies of the ordered and the disordered phases match exactly at the transition, which,

in turn, implies,WRN
BW = 0. From these two conditions, we obtain the critical value of the

order parameter,r+.
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For Reissner-Nordström case, in(n+ 1) dimensions, the requirement,WRN
BW = 0 gives

r+ =
4πl2T +

√

16l4T 2π2 − 4l2(n− 1)2(1− c2φ2)

2(n− 1)
. (2.58)

The other one, namely
(

∂WRN
BW

∂r+

)

= 0 gives

r+ =
4πl2T +

√

16l4T 2π2 − 4l2(n− 2)(1− c2φ2)

2n
. (2.59)

Equations (2.58) and (2.59) can be solved to yield the transition temperature,Tc in terms

of the corresponding critical value ofφ

Tc =
(n− 1)

2πl

√

1− c2φ2
c . (2.60)

This is precisely the same critical temperature,Tc as obtained from theWRN
BW vs r+ dia-

gram, as expected.

Non-Extremal Black 
              Holes

AdS

Extremal Black Holes

Φ = 1�c
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T

0.80
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Φ

Figure 2.3: The phase structure of Reissner-Nordström in fixed potential ensembles.T = 0
line corresponds to extremal black holes. The extremal black holes are unstable. This plot
is for n = 4 and we have setl = 1 here.

A similar exercise can also be done keepingT fixed and studying the phase structure vary-

ing the parameter,φ. The resulting phase structure is shown in figure 2.4.

The behaviour shows, as expected, the features of first orderphase transition atφ = φc.

The analytic expression forφ = φc can be obtained from eqn.(2.60) as

φc =
1

c

√

1− 4π2l2T 2
c

(n− 1)2
. (2.61)
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Figure 2.4: This is a plot ofWRN
BW as a function ofr+ for fixed T . The phase structure

shown here is forn = 4 and forT = 0.47. The dashed line is for the critical value of
potential,φ = φc, the blue one is forφ < φc. The black, orange, red and green lines are for
φ > φc in an increasing order.

The full phase structure inφ − T plane is shown in fig.2.3. Having discussed theβ → ∞
case, in the next sub-section we turn our attention to finiteβ.

2.2.4.2 Born-Infeld

It turns out, owing to the non-linear relation betweenφ andq as in eqn.(2.25), a complete

analytical treatment is difficult in this case. One way to circumvent this problem is to make

largeβ expansion and introduce1
β

correction order by order over the Reissner-Nordström

construction. However, this would not allow us to study the Bragg-Williams potential at

finite β. So we restrict ourselves to a semi-analytic approach to construct the free energy.

This is done as follows. First we define a new variable,x as

x =
q

r+n−1
. (2.62)

The horizon radius,r+ can now be rewritten as

r+(x, φ) =
φc

x2F1[
n−2

2(n−1)
, 1
2
, 3n−4
2(n−1)

,− (n−1)(n−2)x2

2β2 ]
. (2.63)

We can write down the grand canonical Bragg-Williams free energy for a Born-Infeld black

hole as
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WGC
BW = E − TS − φQ, (2.64)

whereE, S andQ are given by (2.48) with the substitution (2.63) being takencare of. To

see howWGC
BW behaves with change in the order parameter, we, therefore, do a parametric

plot. The behaviour is shown in fig.2.56, which again shows a first order phase transition at

a critical temperature,Tc.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-0.2
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0.5

Figure 2.5: WGC
BW is plotted againstr+ usingx as a parameter forn = 4. We have fixed

φ = 0.2 and have plotted for different values of temperature. The red line is forT = Tc.
The blue and green lines are forT > Tc in an increasing order, whereas the orange line is
for T < Tc

We would like to mention one point in this regard. For the Reissner-Nordström, in grand

canonical ensemble, we would observe this phase structure only whenφc < 1 [12]. For

Born-Infeld case also there is a similar critical value forφc which can be determined by

plotting the on-shell free energy againstT for different values ofφ [23].

Interlude I : From elliptical to planar horizon

Our notion here is to consider the limit where the boundary (and the horizon) ofAdSn+1 is

Rn (flat) instead ofR × S3 (elliptical). For Reissner-Nordström in an asymptotically AdS

space in(n + 1) dimensions, the metric ansatz is similar to the Born-Infeldcase, (2.19)

6Those plots go down smoothly tor+ = 0 as in the case of Reissner-Nordström. But unfortunately, that
feature is not clearly visible in this phase diagram becauseof the fact that, the parameter, x, we have chosen
for plotting goes as 1

r
. However, this feature can be easily checked from the expression for free energy

directly.
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and the solution thereof is

V (r) = k − m

rn−2
+

q2

r2n−4
+

r2

l2
, (2.65)

[12] where k is related to scalar curvature. For elliptical horizon k = 1, whereas for

k = 0, the horizon geometry will be flat. This solution can, in fact, be obtained by taking

β → ∞ limit of (2.26). Thus fork = 0,

ds2 = −V (r)dt2 +
dr2

V (r)
+

r2

l2

n−1∑

i=1

(dxi)
2, (2.66)

with

V (r) =
r2

l2
− m

rn−2
+

q2

r2n−4
. (2.67)

The limit in which one can go from the elliptic geometry of thehorizon to a flat horizon is

termed as “ infinite volume limit ”, since the area of a flat horizon is infinite. This limit

can be obtained by introducing a dimensionless parameter,λ with which we scale different

relevant quantities as [12]

r → λ
1
n r, t → λ−

1
n t,m → λm, q → λ

n−1
n q, (2.68)

and finally then takingλ → ∞. In fact, one can check, this is precisely the limit in which

V (r) for k = 1 reduces to that fork = 0. Furthermore, the(n− 1) volume has also to be

scaled as

l2dΩ2
n−1 → λ−

2
n

n−1∑

i=1

(dxi)
2. (2.69)

From (2.55), one can find the scaling forφ,

φ → λ
1
nφ. (2.70)

In the same spirit, one can scale thermodynamic quantities too. Temperature, entropy,

Energy and thermodynamic potential scale as [9]

T → λ
1
nT, S → S,E → λ

1
nE,W → λ

1
nW. (2.71)
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The on-shell temperature, (2.57), on rescaling and then taking λ → ∞ limit, becomes

TRN |λ→∞=
nr2+ − (n− 2)c2l2φ2

4πl2r+
, (2.72)

which is the same temperature as obtained directly by differentiating (2.67) with respect to

r+ and dividing by4π ( The Hawking temperature of a black hole,TH = κ
2π

whereκ is

the surface gravity given byκ = −1
2
∂gtt
∂r

|r=r+ . The physical reasoning behind this was

discussed before in the context of Born-Infeld black holes.One can repeat the same with

theV (r) defined in (2.67) and come across the same expression for temperature. )

For Reissner-Nordström black holes in grand canonical ensemble, Energy, entropy and

the Bragg-Williams free energy are given by

E =
ωn−1

16πG
(n− 1)

[

rn−2
+ (1 + φ2c2) +

rn+
l2

]

, (2.73)

S =
ωn−1r

n−1
+

4G
, (2.74)

Qφ =
ωn−1

8πG
φ2c2(n− 1)rn−2

+ , (2.75)

WRN
BW =

ωn−1

16πG

[

(n− 1)rn−2
+ (1− c2φ2)− 4πrn−1

+ T +
rn+
l2
(n− 1)

]

. (2.76)

With the scaling defined above and taking the limitλ → ∞ thereafter, those become

E = λ
n−1
n

ωn−1

16πG
(n− 1)

[

rn−2
+ φ2c2 +

rn+
l2

]

, (2.77)

S = λ
n−1
n

ωn−1r
n−1
+

4G
, (2.78)

Qφ = λ
n−1
n

ωn−1

8πG
φ2c2(n− 1)rn−2

+ , (2.79)

WRN
BW = λ

n−1
n

ωn−1

16πG

[

(n− 1)
rn+
l2

− (n− 1)rn−2
+ c2φ2 − 4πrn−1

+ T
]

. (2.80)

Thus on takingλ → ∞ limit, all those quantities diverge. This is quite expecteda result

because, for a flat horizon geometry, the horizon area is infinity. So, instead of total energy,

entropy and charge, one has to consider the corresponding densities. From (2.69), the

(n − 1) volumeωn−1 should also scale asωn−1 → λ−
n−1
n ωn−1. Then the energy density,
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entropy density and off-shell free energy density are givenby

ε =
E

ωn−1
=

1

16πG
(n− 1)

[

rn−2
+ φ2c2 +

rn+
l2

]

, (2.81)

s =
S

ωn−1
=

rn−1
+

4G
, (2.82)

ρφ =
Qφ

ωn−1
=

1

8πG
φ2c2(n− 1)rn−2

+ , (2.83)

ΩRN
BW =

WRN
BW

ωn−1
=

1

16πG

[

(n− 1)
rn+
l2

− (n− 1)rn−2
+ c2φ2 − 4πrn−1

+ T
]

. (2.84)

∂ΩRN
BW

∂r+
= 0 gives the correct on-shell temperature, (2.72).

Now following the discussion leading to eqn.(2.60), one cancheck that there is no real

solution forTc in this case. This is consistent with the infinite volume limit taken, because

as we arrive at the flat horizon geometry, there will be only black hole phase and hence the

possibility of Hawking-Page phase transition from black hole to AdS does not arise at all.

2.2.5 R-charged black hole with spherical horizon: Instabilities

As mentioned in the beginning of this section,R-charged black holes are asymptotically

AdS solutions to five dimensionalN = 2 gauged supergravity [10]. These black holes can

carry three independent gauge charges and the stability of these black holes were studied,

for example, in [29–31]. Here we will only focus on singly charged black hole with spher-

ical horizon. The reason to study those black holes are that they exhibit even richer phase

structure consisting of both the first and the second order transitions.

For singleR-charged holes, the phase structure is shown in figure (2.6).It is plotted in

theT − µ plane whereµ is the chemical potential conjugate to the charge. There arethree

distinct phases, namely, the thermal AdS, black hole and a yet unknown phase. At a low

temperature and small chemical potential, the system is always in thermal AdS phase. The

cross-over from AdS to the black hole phase is shown by the dotted line in the plot. This is

the usual first order HP transition. The black hole phase at fixed temperature also becomes

unstable once the chemical potential is increased beyond a critical value. The correspond-

ing stable phase is unknown as yet7. However, if a stable phase exists, this transition would

be a continuous phase transition marked by divergences of specific heat and susceptibility.

7It may also be possible that there is no stable phase at all.
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Figure 2.6: Phase diagram for theR-charged black hole with single charge shown in tem-
perature, chemical potential plane. Line separating thermal AdS and black hole represents
the first order phase transition line given by equation (2.105). On the other hand, the line
between black hole and the unknown phase is a second order line - the equation of which
is given in (2.106). The dashed line is forT̄ = 1/π below which we can not extend various
phases.

The solid line in figure (2.6) represents this critical line.Upon understanding, schemat-

ically, the rich phase structure ofR-charged black holes with spherical horizon, we give

below the details of the phase structure.

The black hole metric with a singleU(1) charge is given by

ds2 = −H−
2
3 fdt2 +H

1
3

(

f−1dr2 + r2dΩ2
3

)

, (2.85)

where

f = 1− m

r2
+

r2

l2
H, H = 1 +

q

r2
. (2.86)

In the above equation,dΩ2
3 is the metric on unit three sphere,l andm are related to the

cosmological constant and the ADM mass of the black hole. In particular,l has a dimension

of length. The zero off gives the location of the horizon and in the above parametrization,
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the horizon appears atr = r+ where

r+ =

(

−l2 − q +
√

(l2 + q)2 + 4ml2

2

) 1
2

. (2.87)

There is a non-trivial gauge field potential associated withthis geometry and is given by

Ai
t =

√

q(r2+ + q)(1 + r2+)

r2 + q
. (2.88)

From the above we see thatq is related to the physical charge. More explicitly, the physical

charge

Q =
√

q(r2+ + q)(1 + r2+). (2.89)

The chemical potential is defined as the value ofAi
t at the horizon and is given by

µ =

√

q(1 + r2+)

r2+ + q
. (2.90)

It will be convenient for us to scale all the dimensionful quantities with appropriate powers

of l and make them dimensionless. We write all these parameters with a bar on the top. For

example, the dimensionless horizon radius and Hawking temperature of the black hole are

given by,

r̄ =
r+
l
, q̄ =

q

l2
, T̄ = lT =

2r̄2 + q̄ + 1

2π
√

r̄2 + q̄
. (2.91)

Furthermore, we define the dimensionless Newton’s constantḠ asḠ = l3G and setḠ =

π/4. With this convention, energy and entropy are given by

Ē =
3

2
m̄+ q̄, S̄ = 2πr̄2

√

r̄2 + q̄. (2.92)

We would like to study the system in the grand canonical ensemble where we treat̄T and

µ̄ as external parameters. The free energy is given by

F̄ = Ē − T̄ S̄ − µ̄Q̄ = − r̄2(r̄4 + µ̄2 − 1)

2(r̄2 − µ̄2 + 1)
= −P̄ . (2.93)

HereP̄ is the pressure. Let us note thatF̄ changes sign when̄r4 + µ̄2 − 1 changes sign.

This is a first order transition and it leads to a crossover from AdS phase to the black hole
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phase. For the gauge theory this represents the deconfining transition. Given all these ther-

modynamic quantities, it is straightforward to compute thespecific heat and susceptibility.

These are given respectively by

C̄ =

(

T̄
∂S̄

∂T̄

)

µ̄

=
2πr̄2(1 + 2r̄2 + q̄)(3 + 3r̄2 − q̄)

√

r̄2 + q̄

2r̄4 + r̄2 + q̄r̄2 − q̄2 + 2q̄ − 1
,

χ̄ =

(

∂Q̄

∂µ̄

)

T̄

=
(r̄2 + q̄)(2r̄4 + r̄2 + 5r̄2q̄ + 6q̄ − q̄2 − 1)

2r̄4 + r̄2 + q̄r̄2 − q̄2 + 2q̄ − 1
. (2.94)

We note that specific heat and susceptibility diverge at

2r̄4 + r̄2 + q̄r̄2 − q̄2 + 2q̄ − 1 = 0. (2.95)

This represents the line of continuous phase transition. Asone approaches this critical

line, correlation length diverges. This shows up, as above,in the divergences of some

thermodynamic quantities. Near this critical line, the black holes are expected to exhibit

some universal features. These are encoded in a set of critical exponents normally called

α, β, γ andδ. Going close to this line with̄µ fixed, we define exponentsα, β, γ as

C̄ ∼ (T̄ − T̄c)
−α, Q̄− Q̄c ∼ (T̄ − T̄c)

β, χ̄ ∼ (T̄ − T̄c)
−γ. (2.96)

Here T̄c is the value of the critical temperature for the chosenµ̄ (The critical line can be

expressed in terms of̄T andµ̄ and is given later, see (2.106)). Similarly, one definesQ̄c.

The other static exponentδ is defined as

Q̄− Q̄c ∼ (µ̄− µ̄c)
1
δ . (2.97)

Here one approaches the critical line with a trajectory on which T̄ is constant. For the black

holes in consideration, these quantities are easily calculable and are given by

(

α, β, γ, δ
)

=
(1

2
,
1

2
,
1

2
, 2
)

. (2.98)

Firstly note that these exponents are same as the one computed for black holes with planar

horizon [33, 34]. Secondly, they satisfy the scaling relations

α + 2β + γ = 2, γ = β(δ − 1). (2.99)

45



Chapter 2. The Bragg-Williams Method

Our main task is now to construct an effective potential thatcaptures all the phases that

we have just discussed. We will use the BW approach for this purpose. This approach re-

quires us to identify an order parameter. Noting the fact that, for a first order transition, the

change in order parameter is discontinuous and for second order, it changes continuously,

we continue to use the horizon radiusr̄ of the black hole as the order parameter. Once a

suitable order parameter is identified, one constructs the BW potential which depends on

the order parameter, the temperature and the chemical potential. This is given by

F̄(r̄, T̄ , µ̄) = Ē − T̄ S̄ − µ̄Q̄. (2.100)

In our case, using (2.89) and (2.92), we immediately get8

F̄(r̄, T̄ , µ̄) =
1

2
r̄2

[

3− 4πT̄
r̄
√
1 + r̄2

√

1 + r̄2 − µ̄2
+ r̄2

(

3 +
µ̄2

1 + r̄2 − µ̄2

)
]

. (2.101)

The saddle point of̄F , namely
∂F̄
∂r̄

= 0 (2.102)

gives the equilibrium temperature. Using (2.101), from (2.102) we get

T̄ =

√
1 + r̄2(1 + 2r̄2 − µ̄2)

2πr̄
√

1 + r̄2 − µ̄2
. (2.103)

Upon using (2.90), the above expression reduces to the one in(2.91). Furthermore, substi-

tuting (2.103) in (2.101), we get the on-shell free energy expression as in (2.93). We now

proceed to studȳF as we changēT andµ̄. From the expression of temperature, it is easy

to note that it has a minimum̄T0 = 1/π whenr̄ = 0 andµ̄ = 1. In what follows, we will

focus ourselves in the region̄T ≥ T̄0 andµ̄ ≥ 0. As noted before, the first order transition

line is given by the equation

r̄4 + µ̄2 − 1 = 0. (2.104)

Expressed in terms of̄T andµ̄, this equation reduces to

T̄ =
2 +

√

1− µ̄2

2π
, (2.105)

8For a black hole with flat horizon a similar construction was provided in [32].
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represented by the dotted line in figure (2.6). On the other hand, the second order instability

line (2.95) reads as

T̄ =
(−∆µ̄2 + Γ +∆)√

2πΓ

√

Γ(Γ + 2∆)

∆ (Γ− 2∆ (µ̄2 − 1))
(2.106)

where

∆ = (µ̄2 − 1)
2
3 (µ̄+ 1)

2
3 , Γ = µ̄4 + (∆− 2)µ̄2 +∆2 −∆+ 1. (2.107)

This is denoted by the solid line in figure (2.6).

To see thatF̄(r̄, T̄ , µ̄) captures the whole phase diagram, we first fixµ̄ and plotF̄ for

various temperatures starting with̄T = T̄0 = 1/π. We start withµ̄ = 1. The behaviour is

shown in figure (2.7). We note that atT̄ = T̄0 = 1/π, F̄ has a minimum at̄r = 0. Its first

and second derivatives with respect tor̄ also vanish at that point. In this sense, it is a point

of inflection for F̄ . If we increaseT̄ further, we get minima for increasing values ofr̄ –

representing stable black hole phases with increasing size. This is in complete agreement

with the phase diagram in figure (2.6). Next, we analyze the system for0 ≤ µ̄ < 1. From

figure (2.6), we expect that̄F should show a HP transition as we increase the temperature

beyond a critical value. We precisely see this in figure (2.8), where we have plotted̄F
for µ̄ = .5. While the pointr̄ = 0 is identified with the AdS phase, any finite value ofr̄

represents a black hole with̄r being the horizon. As we increase the temperature, we note a

crossover from AdS to the black hole phase atT̄ = T̄HP = 1.433/π. This is shown by the

dotted line in the figure. At this temperature the order parameterr̄ changes discontinuously

from zero to a finite value - clearly a signature of a first-order transition. Now as we

decreasēµ, HP transition temperature increases. In particular, forµ̄ = 0, T̄HP = 3/(2π) as

expected for AdS-Schwarzschild black hole. Finally, we increasēµ beyond1. For µ̄ = 2,

F is shown in figure (2.9). Plot is shown for different temperature, starting with the critical

one (solid curve). Below this temperature, we reach the yet unknown phase and the black

hole is unstable. At higher temperatures (dashed and dottedcurve), minima of the curves

represent the stable black hole phases.

We can continue the same exercise forT̄ fixed at any value above1/π and change

µ̄. For T̄HP ≤ 3/(2π) and µ̄ ≤ 1, we first cross the HP line. Close to this point,F
behaves similar to figure that of (2.8). Further increasingµ̄ but keepingT̄ fixed, we hit the

continuous phase transition line leading to figure (2.9). For T̄ ≥ 3/(2π), the first order
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Figure 2.7: F̄ is plotted as a function of the order parameterr̄ for µ̄ = 1. The solid, dotted
and dashed curves are forT̄ = 1/π, 1.01/π, 1.015/π.
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Figure 2.8: F̄ is plotted as a function of the order parameterr̄ for µ̄ = .5. The solid,
dot-dashed, dotted and dashed lines are forT̄ = 1/π, 1.3/π, 1.433/π, 1.45/π.
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Figure 2.9: F̄ for µ̄ = 2. Solid, dashed and dotted lines are forT̄ = 0.86, 0.93, 0.95
respectively. Solid line representsF at critical temperature. Below this temperature, black
hole becomes unstable. The minima in the rest two curves showthe stable black hole phase.
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transition is lost. Black hole is always a stable phase for low µ̄. However, as we takēµ to

a critical value, black hole ceases to be stable and we reach the second order line getting a

figure similar to figure (2.9).

Finally, let us now discuss about the procedure for obtaining the critical exponents

from the mean field potential̄F which has already been written in (2.98). We note that the

specific heat at fixed chemical potential can be obtained from(2.101).

C̄µ̄ = −T̄
∂2F̄
∂T̄ 2

∣
∣
∣
∣
∣
µ̄

∼ (T̄ − T̄c)
−

1
2 , (2.108)

which givesα = 1
2
. If we approach the critical line along constantµ̄ = µ̄c, then we see that

Q̄− Q̄c ∼ (T̄ − T̄c)
1
2 , (2.109)

whereQ̄c is the critical value of the charge at fixedµ̄c. This shows that the critical exponent

β has the value1
2
. Similarly, the susceptibility behaves near the critical temperature as

χ =
∂Q̄

∂µ̄

∣
∣
∣
∣
∣
T̄

∼ (T̄ − T̄c)
−

1
2 . (2.110)

This leads us to the critical exponentγ = 1
2
. Finally, on approaching the critical line with

T̄ = T̄c we get

Q̄− Q̄c ∼ (µ̄− µ̄c)
1
2 . (2.111)

So, this gives usδ = 2.

Interlude II : On geometric realization of Bragg-Williams

constructions

The Bragg-Williams construction owes its justification to aprevious work by Fursaev and

Solodukhin [5]. In this work they studied space-time manifolds with conical singularities.

We discussed before in the context ofAdS Born-Infeld black holes that temperature of

the black hole comes as a consequence of ensuring that the space-time near horizon is

free from any conical singularity. Therefore the most natural geometric interpretation of

the “off-shellness” must arise from the space-time with conical singularity at the horizon
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hypersurface.

According to the construction in [5], the Ricci tensor and curvature scalar of a manifold

M̃ with conical singularity on the surface,Σ (horizon in our case) can be expressed in

terms of the Ricci tensor and curvature scalar for singularity-free region,M ≡ M̃ / Σ

respectively.

R̃µν = Rµν + nµnν∆ΣδΣ. (2.112)

Here R̃µν andRµν are Ricci tensors onM̃ andM respectively.δΣ is the delta function

and is defined as
∫

M̃
fδΣ =

∫

Σ
f for any function,f . nµ’s are components of unit vectors

orthogonal toΣ. ∆Σ is the conical deficit angle given by∆Σ = 2π − β
βH

, βH being the

periodicity of Euclidean time to get rid of conical singularity at the horizon andβ, an

arbitrary period.

One can then easily find the Ricci scalar for the full manifoldM̃ in terms of Ricci scalar

of M and plug back in the Hilbert-Einstein action. The first term of the action becomes:

∫

M̃

√
gR̃ =

∫

M

√
gR + ISingular. (2.113)

For all the static, stationary black holes we consideredISingular is proportional to∆ΣAΣ,

AΣ being the area of the horizon,Σ for a fixed cone. The constant of proportionality

depends on the number of unit vectors orthogonal toΣ.

One can evaluate these quantities for specific black holes and find the off-shell action.

Multiplying the off-shell action byβ−1 we get the off-shell version of free energy which

turns out to be identical to our Bragg-Williams free energy.

Similar idea was nurtured in a recent work [35], though in thecontext of the BTZ black

hole, a2 + 1 dimensional asymptoticallyAdS black hole. We have, however, checked that

the arguments of [5] go through in favour of the BW construction of free energy, off-shell

in temperature, for any asymptoticallyAdS black hole.

2.2.6 Proposal for effective potentials in the boundary theory

So far we constructed effective off-shell potential for different supergravity solutions

and analyzed their rich phase structures. Let us now pause for a bit and ask the follow-

ing question: Can we at least phenomenologically constructan effective potential in the

boundary gauge theory which describe its equilibrium and non-equilibrium properties? In
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particular if our bulk has electrical charges, gauge theoryin question must also have asso-

ciated R-charges and corresponding chemical potentials.

It is worth mentioning that direct computation of effectivepotential in terms of the order

parameter in gauge theory is difficult. However, it is possible to use AdS/CFT conjecture

and our computations in the previous subsections to proposean effective potential whose

saddle points represent various phases of the gauge theory.However, we should emphasize

that the potential constructed this way may not be unique, except perhaps close to the tran-

sition line.

In the following, we first deal with the simpler case of gauge theory dual of Reissner-

Nordström black hole. Finally we generalize it to the Born-Infeld case.

2.2.6.1 Reissner-Nordström

While in the gravity theory the order parameter wasr+, in the dual theory the corresponding

order parameter would be the physical charge,Q =
∫
∗
F , which turns out to be the same

as the charge one derives from the action. In our case,Q = ωn−1
1

8πG

√

(n− 1)(n− 2)q,

whereq is the “charge” that appears in the action andωn−1, then−1 dimensional transverse

volume.

The conjugate chemical potentialµ is the same as the electric potential,φ at the horizon

given eqn.(2.55). Inn+ 1 dimensions,

µ = φ =

√

n− 1

2(n− 2)

q

rn−2
+

=
4πGQ

(n− 2)ωn−1r
n−2
+

. (2.114)

We now use (2.114) to expressWRN
BW given in (2.56) in terms of Q andφ in the following

form

WRN
BT =

N2
c

8π2
ωn−1

[2π2(n− 1)(1− c2φ2)

(n− 2)

Q

φ
− 2

3n−5
n−2 π

3n−4
n−2 T

(n− 2)
n−1
n−2

(Q

φ

)n−1
n−2

+
2

n
n−2π

2n
n−2 (n− 1)

(n− 2)
n

n−2 l2

(Q

φ

) n
n−2
]

, (2.115)

whereQ is rescaled asQ = Q
Nc

2ωn−1
, Nc being the number of colours. The motivation

behind doing this scaling is that in the deconfined phase, thefree energy and the charge,

both are of the order ofN2
c . Therefore, the appropriate observable in largeNc limit, is,
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Figure 2.10: Plots ofWRN
BT vs order parameter,Q (the left one) for small Q values and (the

right one) with relatively large range of values for Q forn = 4, show the signature of first
order phase transition. The dashed line is forT = Tc. The orange and the black lines are
for T < Tc in decreasing order in temperature, and the red, the blue andthe green lines are
for T > Tc in increasing order in temperature. For both the plotsφ is kept fixed at the value
0.03. We have also takenNc = 1, ω3 = 1 andl = 1 while plotting these.

instead ofQ, limNc→∞
Q
N2

c
. We have also used the relationG = πln−1

2Nc
2 and while using this

in the expression for effective potential, we have made it dimensionless by redefiningG as
G

ln−1 . The plot of the boundary effective potentialWRN
BT given in (2.115) against the new

order parameterQ again gives a first order phase transition as shown in fig.2.10. This phase

transition corresponds to the confinement-deconfinement transition in the strongly coupled

gauge theory as discussed in [28].

The temperature of the gauge theory can be found by extremizingWRN
BW with respect to the

order parameter,Q and this comes out to be

T =
(n− 2)22−

3n−5
n−2 π−

3n−4
n−2

n− 1

( Q

(n− 2)φ

)− 1
n−2

φ
[2(n− 1)π2

(n− 2)φ
(1− c2φ2)

+
n(n− 1)

l2(n− 2)2φ
2

n
n−2π

2n
n−2

(
Q

(n− 2)φ

) 2
n−2 ]

, (2.116)

which is exactly the same as the Reissner-Nordström temperature as in (2.57) once we sub-

stitute in itQ in terms ofr+ andφ through eqn.(2.114).

Following our previous discussion, we would now try to find the confinement-deconfinement
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transition temperature,Tc. The conditionWRN
BT = 0 gives

T = 2π
[

2
1

n−2π
2

n−2

(
Q

(n− 2)φ

) 1
n−2 ]1−n[

(n− 1) (1− c2φ2)

(

2
1

n−2π
2

n−2

(
Q

(n−2)φ

) 1
n−2

)n−2

8π2

+

(n− 1)

(

2
1

n−2π
2

n−2

(
Q

(n−2)φ

) 1
n−2

)n

8l2π2

]

, (2.117)

whereas, the other requirement,
(

∂WRN
BT

∂Q

)

= 0 gives (2.116). From (2.117) and (2.116), we

can find an equation involving critical charge,Qc as

2
2

n−2π
4

n−2

(
Qc

(n− 2)φ

) 2
n−2

− l2 + c2l2φ2
c = 0. (2.118)

Substituting this relation in (2.117) or (2.116) we can write down the critical temperature,

Tc for the confinement-deconfinement transition as

Tc =
(n− 1)

2πl

√

1− c2φ2
c , (2.119)

which turns out to be exactly the same as that obtained in (2.60).

2.2.6.2 Born-Infeld

One can generalize the ideas mentioned in the previous sub-section to the case of Born-

Infeld to find a gauge theory effective potential. But because of the non-linear non-invertible

relationship between the electric potential at the horizon, φ and the charge,Q as in eqn.(2.25),

it is not possible to write an exact expression forr+ in terms ofQ andφ. However, a para-

metric plot suggests that our construction leads us to a candidate effective potential for

Born-Infeld dual. Following the case of Reissner-Nordström, we propose, in this case, the

gauge theory effective potential, inn = 4 as

WBI
BT = N2

c ω3

[

− Tr3+
2π

−Qφ +
3

8π2

(β2r4+
3

+
r4+
l2

+ r2+ − βr+
√

2β2r6+ + 8π4Q2

3
√
2

+
2π4Q2

2F1

(
1
3
, 1
2
, 4
3
,−4π4Q2

β2r6+

)

r2+

)]

, (2.120)
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Figure 2.11: Parametric plot ofq againstr+ for different values of the parameter,φ.

along with the relation among chemical potential,µ, charge,q andr+ from which one has

to expressr+ in terms ofµ andq.

µ = φ =

√
3q

2r2+
2F1

[1

3
,
1

2
,
4

3
,− 3q2

β2r6+

]

, (2.121)

whereq is the “charge” appearing at the action which can be related to the physical charge,

“Q” through the relation given in eqn. (2.51). One can solve this equation numerically to

find a relation betweenr+ andq for a fixed value of the parameter,φ.

Equation (2.120) is derived from (2.64) by first substituting in it the expressions forE, S

andQ given in equations (2.48), (2.50) and (2.51) with reinstatement of the gravitational

constant,G for n = 4. We then use the relationG = πl3

2Nc
2 . However, we makeG dimen-

sionless by dividing it byl3 and scale Q asQ
N2

c
for the same reason as given in the previous

section in the context of Reissner-Nordström.

In order to study the phase structure, we usex, defined in eqn.(2.62), as a parameter and

carry out a parametric plot ofWBI
BT againstQ, the order parameter in the boundary theory.

The resulting phase structure [fig.2.12]9 shows a first order phase transition at some critical

temperature,T = Tc which turns out to be exactly the same as that in fig. 2.5.

To conclude, for Reissner-Nordström black hole, we are ableto construct a candidate off-

shell potential in terms of R-charge,Q, which, on-shell, gives all the stable phases of

N = 4 super Yang-Mills theory onS3 at finite temperatures and finite non-zero chemical

9Again one expects the plots to go smoothly towardsQ = 0, which indeed is the case as can be checked
from the free energy. But by the same argument given before, this is not visible because of the choice of the
plotting parameter.
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Figure 2.12: WBI
BT is plotted againstQ usingx as a parameter forn = 4. We have fixed

φ = 0.2 and have plotted for different values of temperature. The red line is forT = Tc.
The blue and green lines are forT > Tc in an increasing order, whereas the orange line is
for T < Tc

potentials. As for Born-Infeld black holes, an analytic construction becomes difficult. Via

a semi-analytic approach, we showed that our construction leads to an effective potential

with expected behaviour.

Now that we have a gauge theory effective potential, we couldperhaps explore the de-

tails of the transition from the deconfining phase to the confining phase as we reduce the

temperature.

2.3 Towards Dynamics : Hairy to Reissner-Nodström Black

Holes

We end this chapter with a section where we give an attempt to study quench phenomena

in the BW frame-work. This study necessitates similar construction for certain hairy black
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holes. The one which we consider here was found in [36]. Theseare electrically charged

black hole solutions in four dimensional AdS space with a conformally coupled scalar. Un-

like previous examples, here, the horizon is a negatively curved two dimensional constant

curvature manifold.

In this section, we first review the main features of the hairyblack holes [36] and their

instability [37]. We then characterize this instability via BW construction and argue that

this black holes undergo a continuous transition at high temperature.

We consider four dimensional gravity action in the presenceof a negative cosmological

constant where the matter content is given by a conformally coupled real self interacting

scalar field and a Maxwell gauge field.

S =

∫

d4x
√−g

(

1

16π

(

R+
3

l2

)

− FµνF
µν

16π
− 1

2
gµν∂µφ∂

µφ− 1

12
Rφ2 − αφ4

)

. (2.122)

The black holes of this theory are described by the metric

ds2 = −V (r)dt2 + V (r)−1dr2 + r2dσ2, (2.123)

with

V (r) =
r2

l2
−
(

1 +
M

r

)2

. (2.124)

In the expression of the metric,dσ2 represents the line element of a constant negative

curvature two dimensional manifold. The scalar and the non-zero component of the elec-

tromagnetic field are given by

φ =

√

1

2αl2

(

M

r +M

)

, At(r) = −q

r
. (2.125)

It is important to note that the mass and charge are not independent but related via

q2 = M2

(

2π

3l2α
− 1

)

= M2(a− 1). (2.126)

Herea is defined as

a =
2π

3l2α
. (2.127)

In terms of appropriately scaled variables, the temperature, chemical potential, internal
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energy, charge, and entropy densities are given by [36]

T̄ =
1

2π
(2r̄ − 1), µ̄ =

q̄

r̄
,

Ē =
1

4π
r̄(r̄ − 1), Q̄ =

q̄

4π
,

S̄ =
r̄2

4

(

1− a(r̄ − 1)2

r̄2

)

. (2.128)

Note that due to the conformal coupling of the scalar to the curvature, the entropy density

gets modified from standard form by an“effective" gravitational constant [37]. We also

note that entropy remains positive only in the temperature range

1

2π

(√
a− 1√
a+ 1

)

≤ T̄ ≤ 1

2π

(√
a + 1√
a− 1

)

. (2.129)

We call the limiting values to bēTmin, T̄max respectively.

There is an additional black hole solution to the action (2.122). We will call this the

Reissner-Nordström solution. The metric has the form [36]

ds2 = −V (ρ)dt2 + V (ρ)−1dρ2 + ρ2dσ2, (2.130)

with

V (ρ) =
ρ2

l2
−
(

1 +
2M0

ρ
− q20

ρ2

)

. (2.131)

with

φ = 0, and At = −q0
ρ
. (2.132)

The event horizon is located atV (ρ) = 0, the solution of which we will call̄ρ. Thermody-

namic quantities associated with this black holes are

T̄ =
1

2π

(

3

2
ρ̄− 1

2ρ̄
− q̄20

2ρ̄3

)

,

Ē =
1

8π

(

ρ̄3 − ρ̄− q20
ρ̄

)

,

Q̄ =
q̄0
4π

, S̄ =
ρ̄2

4
, µ̄ =

q̄0
ρ̄
. (2.133)
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In the following, we will argue that the hairy black holes, inthe grand canonical ensem-

ble, are unstable and crosses over to the RN black holes at high temperature. We will also

characterize this instability via BW analysis. First of all, in order to compare two different

black holes, namely the RN and the hairy one, we will have to make sure that they have the

same temperature and chemical potential. That means

1

2π

(3

2
ρ̄− 1

2ρ̄
− q̄20

2ρ̄3

)

=
1

2π
(2r̄ − 1),

q̄0
ρ̄

=
q̄

r̄
. (2.134)

These two equations allow us to expressq̄0 andρ̄ in terms ofq̄ andr̄. In particular, forρ̄,

we get

ρ̄ =
1

3r̄

(

− r̄ + 2r̄2 +
√

3q̄2 + 4r̄2 − 4r̄3 + 4r̄4
)

. (2.135)

The BW free energy density for both the black holes can now be easily computed as

was done in the previous sections. For the hairy one it reads

4πF̄hair = 4π(Ē − T̄ S̄ − Q̄µ̄)

= r̄(r̄ − 1)− πr̄2
(

1− a
(r̄ − 1)2

r̄2

)

T̄ − r̄(r̄ − 1)
√
a− 1 µ̄

= r̄(r̄ − 1)− πr̄2
(

1− a
(r̄ − 1)2

r̄2

)

T̄ − (a− 1)

2
r̄(r̄ − 1)(2πT̄ − 1).

(2.136)

In going from the first line to the second, we use the fact that for hairy black holes,̄q is not

independent, but related tōµ and hencēr through (2.126). Similarly, the conjugatesµ̄ is

related toT̄ via

µ̄ =
1

2

√
a− 1(2πT̄ − 1). (2.137)

We used this equation to get to the last line of (2.136). As forRN black holes, we can
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proceed similarly to get

4πF̄RN = 4π(Ē − T̄ S̄ − Q̄µ̄)

=
ρ̄3

2
− ρ̄

2
+

q20
2ρ̄

− πρ̄2T̄ − q̄0µ̄

=
ρ̄3

2
− ρ̄

2
+

ρ̄

2
(a− 1)(r̄ − 1)2 − πρ̄2T̄ − ρ̄

2
(a− 1)(r̄ − 1)(2πT̄ − 1),

(2.138)

where we need to substitutēρ using (2.135) and further̄q by m̄ and hence bȳr. In order to

write (2.138), we have also made use of the second identification given in (2.134). Further,

using (2.135) and (2.136), after some simplification, we canre-writeF̄RN as

F̄RN(r̄, T̄ , ā) =
1

54

[

(1 + r̄)(−1− r̄ + δ)(−5 + 4r̄ − 6πT̄ ) + 3a(r̄ − 1){3 + 12r̄2 − δ

+ 30πT̄ − 6πδT̄ + r̄(−21 + 4δ − 18πT̄ )}
]

+ r̄(r̄ − 1)

−πr̄2
(

1− a
(r̄ − 1)2

r̄2

)

T̄ − (a− 1)

2
r̄(r̄ − 1)(2πT̄ − 1). (2.139)

with

δ =
√

3a(r̄ − 1)2 + (r̄ + 1)2. (2.140)

The saddle point of (2.136) and (2.139) occurs at

r̄ =
1

2
(1 + 2πT̄ ), (2.141)

and at the minima,

F̄hair = − 1

8π

(

r̄2 + a(r̄ − 1)2
)

,

F̄RN =
1

216π

(

2 + 6r̄ − 21r̄2 + 2r̄3 − 2δ(1 + r̄)2 − 3a(−1 + r̄)2(−3 + 2δ + 6r̄)
)

.

(2.142)

While for T̄ ≤ T̄c = 1/(2π), F̄hair minimizes the free energy, for̄T ≥ T̄c, RN represents

the stable black holes. From (2.141), it follows that at the critical temperaturēTc, r̄ = r̄c =

1. NearT̄c it follows that

r̄ − r̄c ∼ T̄ − T̄c, F̄ − F̄c ∼ (T̄ − T̄c)
3, (2.143)
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Figure 2.13: This figure is a plot of (2.136) and (2.139) fora = 25 and for different tem-
peratures. The solid lines and the dashed lines represent the hairy and the RN black holes
respectively. Green, magenta and black curves are forT̄ = 0.11, 1/(2π), 0.2 respectively.
We see that while at low temperature free energy is minimizedby the hairy black hole, RN
black holes dominate at high temperature. AtT̄ = 1/(2π), free energies are equal at the
minimum.
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Figure 2.14: This figure is the behaviour of the free energy function closeto T̄ = T̄c =
1/(2π) for a = 30. Blue and red are for̄T ≤ Tc andT̄ ≥ T̄c representing hairy and RN
black holes respectively. At̄T = T̄c, the minima for both are degenerate. Clearly, the order
parameter̄r, at which the minima occur, changes continuously around critical temperature
leading to a continuous phase transition.

where F̄c is the value ofF̄ at r̄ = r̄c. The derivative of specific heat with respect to

temperature has a discontinuity aroundr̄c of (2 + a)π2. This is thus a continuous phase

transition from hairy to RN black holes. The critical exponent following from (2.143) is

α = −1, β = 1. In figure 2.13, we have plotted̄F for different black holes at different

temperatures and scalar couplings. The behaviour ofF̄ closeT̄c is shown in figure 2.14.

We note that the BW free energy constructed in (2.136) can also be expressed using the

value of the scalarφ at the horizon as order parameter. Inverting (2.125), we canexpress

F̄hair as,

4πF̄hair =

√
a

(
√

3a
π
− 2φh)2

(

4
√
aπT̄φ2

h+

√

3

π
(1+ a− 2(a− 1)πT̄ )φh− 3

√
aT̄
)

. (2.144)

Hereφh is the value of the scalar at the horizon. The expression on the right has a minimum

at

φh =

√

3a

4π

(

2πT̄ − 1

2πT̄ + 1

)

, (2.145)
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such that, forT̄ = T̄c, φ = 0.

Having reached this far, we now like to address some dynamical issues associated with

this system. In particular, we ask as to how the order parameter φh behaves in time as

we temperature quench the system fromT̄ > T̄c to T̄ < T̄c. We assume that, during the

quench, the temperature changes so fast thatφh, immediately after the change, is identical

to its value before . However, at a later timeφh must roll down to its stable position given

by (2.145). In the following, we will be interested in findingout the interpolating solution

φh(t) which connects the unstable to the stable point.

The equation that we need to solve is

∂2
t φh(t) +

∂F̄hair

∂φh(t)
= 0, (2.146)

whereF̄hair is given by (2.144). This equation can be immediately integrated once to get

1

2
(∂tφh)

2 + F̄hair(φh) = C. (2.147)

The integration constantC can be fixed by the boundary condition∂tφh = 0 for φh = 0.

This gives
1

2
(∂tφh)

2 + F̄hair(φh) = F̄hair(0) (2.148)

It turns out that this equation can be integrated exactly with the boundary conditionφh(t) =

0 at t = 0. The result can be expressed in a form

f(φh, a, T̄ ) = t, (2.149)

wheref is a known function ofφh. Furthermore, it has parametric dependences onT̄ and

a. This function is too non-illuminating and hence we do not display it here. It however

turns out that the equation above can not be analytically inverted to getφh(t) as an explicit

function oft. Nevertheless, numerically it can be solved and the result is shown in the figure

2.15. In the plot, we have shown two cases where temperatureT̄ is quenched down to.14

(red) and.13 (blue). The value ofa that we have chosen is90. Starting fromφh(t) = 0 at

t = 0, φh(t) rolls down to respective stable points dictated by the equation (2.145).
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Figure 2.15: This figure shows behaviour ofφh(t) after quenched to different temperatures
below T̄c = 1/(2π). The vertical axis isφh and the horizontal one ist. The plots are for
a = 90. While the lower one (blue) curve is for temperature quenched to T̄ = .13, the
upper one (red) is for̄T = .14. We seeφh(t) starts with zero value att = 0 and at a later
time reaches a non-zero negative stable point determined bythe equation (2.145)

.
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2.4 Summary and future directions

In this chapter our aim was to study black hole instabilitieswithin the framework of BW

theory of phase transition. After providing a pedagogical review to this subject, we em-

ployed BW method in two cases. One involved charged black holes in five dimensional

AdS space. This included Reissner-Nordström and Born-Infeld black holes and also gen-

eral R-charged black holes with spherical horizon. In the presence of non-zero chemi-

cal potential, theR-charged black hole undergoes both first and second order transitions

whereas in the case of Reissner-Nordström and Born-Infeld black holes only first order

transitions take place. We found that BW theory, with horizon radius as order parameter,

captures all these instabilities. We hope that, via AdS/CFTcorrespondence, the constructed

BW free energy will be useful to study the phases of strongly coupledN = 4 SYM theory

onR3 at finite temperature and chemical potential.

The other example that we studied is the fate of four dimensional hairy black holes with

hyperbolic horizon. Again, via a BW analysis we argued that with the increase in temper-

ature, this black hole becomes unstable, loses its “hair" and turns into a stable RN black

hole. This transition is analogous to a third order phase transition with a singularity in the

derivative of the specific heat. The BW free energy is constructed in (2.136). Using value

of the scalar on the horizon as order parameter, we studied its behaviour under temperature

quench. The corresponding rolling down solutions were semi-analytically constructed.

Within the AdS/CFT correspondence, in [38, 39], second order instabilities associated

with hairy black holes with flat horizon were used to understand holographic superconduc-

tors at the boundary. We note that superconductors with possible higher order transition

(similar to the one we discussed) has been reported earlier,see for example [40]. We hope

a construction like (2.144) will be useful to analyse such holographic superconductors,

however in hyperbolic space.
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3
The Holographic Spectral Function in

Non-Equilibrium States

Prelude

As discussed in the introduction, holography has given us a new paradigm to deal with

strongly coupled systems [1]. One of the many attractive features of this paradigm is that

we can deal with phenomena at strong coupling in real time.

Though there has been substantial progress in using holography to study hydrody-

namics [2–5] and relaxation of strongly coupled systems [6–8], we still lack a systematic

method for studying non-equilibrium Green’s functions in holography. The latter turn out

to be extremely useful in many applications such as understanding thermalization1 and

obtaining strongly coupled generalizations of quantum kinetic theories, to name a few. The

importance of pursuing this direction can be readily illustrated by two examples.

Modeling the space-time evolution of matter formed by ultra-relativistic collisions of

heavy ions at RHIC and ALICE is a great theoretical challenge. It is equally challenging

to develop reliable methods of inference for deducing this space-time evolution [10]. Ulti-

mately, it is important to not only understand how the matterthermalizes incredibly fast in

time≤ 1 fm at temperature about 175 MeV (at RHIC) and subsequently undergoes hydro-

dynamic expansion, but also how hadrons and resonances are produced and transported in

this so-called fireball before finally getting frozen chemically and thermally. Ultimately, we

do infer the expansion of the fireball from the emitted hadrons. If the expansion of the RHIC

1Holographic non-equilibrium Green’s functions as an aid for understanding thermalization have been
studied earlier in [9] using geodesic approximation, etc.
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fireball is indeed governed by strongly coupled physics, then we can expect that hologra-

phy will not only help us in modeling the space-time evolution of the fireball, but also help

us improve upon existing techniques like Hanbury-Brown-Twiss pion-interferometry used

to deduce the expansion of the fireball.

Quantum kinetic theories are already being employed to understand the dynamics of the

hadron gas after the chemical and thermal freeze-out in the hydrodynamically expanding

fireball [11]. However, in order to understand the details ofhow the hadron gas comes to ex-

istence in the first place and its subsequent freeze-out, as also correlations in the emissions

of hadrons, one needs quantum kinetic theories constructedusing non-equilibrium Green’s

functions. Therefore, to understand such questions at strong coupling using holography, we

need to develop formalism to systematically obtain non-equilibrium Green’s functions. The

second example pertains to holographic models of non-Fermiliquids [12–16]2. Hologra-

phy has been successful in reproducing some of the features of ARPES experiments in

cuprates and other strongly correlated electron systems - the spectral function has a pole

on a momentum shell at zero frequency and also shows non-trivial scaling for low energy

excitations. These results may be interpreted as holographic reproduction of Fermi surfaces

different from that in Landau’s Fermi liquid theory. In absence of a better way of dealing

with strongly interacting fermions at finite density, holographic methods could provide us

with useful qualitative insights.

Nevertheless, to test such holographic models, we need to see if we can also reproduce

qualitative aspects of non-equilibrium dynamics in strongly interacting fermionic systems.

Ultimately, when the electrons are weakly interacting, Landau’s Fermi liquid theory gives

a unified way of dealing with both equilibrium and non-equilibrium phenomena. It is rea-

sonable to expect that holography can do a similar job at strong coupling. Once again, we

need to understand how to obtain quantum kinetic theory fromholography, and therefore a

systematic method of obtaining non-equilibrium Green’s functions.

There are two important issues associated with obtaining non-equilibrium Green’s func-

tions in field theory [18].

1. There is no partition function which plays the role of generating functional of non-

equilibrium Green’s functions. As we will review briefly later, these are obtained

from a generalized effective action. The effective action technique guarantees the

full hierarchy is consistently solved and Ward identities are preserved.

2For interesting holographic models of Fermi liquids see [17]. Our comments are applicable to such
models as well.
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2. We cannot use conventional perturbation theory to obtainthe behavior in time, like

for instance, dependence of observables on hydrodynamic and relaxation modes.

This is because usual time-dependent perturbation theory gives us the behavior in

time in the form of a Taylor series, which fails to capture late time behavior like

exponential decay.

Therefore, even at weak coupling non-equilibrium field theory is hard and typically we

need to make educated guesses, depending on the understanding of a specific system. It

will be remarkable if, on the strong coupling side, holography can provide us with a good

perturbation theory for the non-equilibrium observables we will deal with here. The lack of

a generating functional for non-equilibrium correlation functions on the field theory side,

nevertheless, makes it hard to use the holographic dictionary to translate such observables

to the field theory side.

The observables of primary importance are two-point correlation functions. In the vac-

uum, once the Euclidean Green’s function is specified, we cananalytically continue to

obtain the Feynman propagator, the retarded and advanced Green’s function etc. at equilib-

rium. At finite temperature too, it thus suffices to know the retarded Green’s function, from

which we can obtain other propagators like the Feynman propagator. At non-equilibrium

the situation is different - we cannot deduce from the retarded Green’s function, for in-

stance, the Feynman propagator which will have independentdynamics. Nevertheless, all

Green’s functions can be expressed in terms of two independent, real observables - the

spectral functionand thestatistical function, which we briefly review now.

The spectral component (or spectral function) of bosonic Green’s functions (ind spatial

dimensions) can be defined as the Wigner transform (i.e. the Fourier transform in the

relative coordinater and time differencetr) of the commutator

A(ω,k,x, t) =

∫

ddr dtr e
i(ωtr−k·r)

〈[

Φ
(

x +
r

2
, t+

tr
2

)

,Φ
(

x− r

2
, t− tr

2

)]〉

. (3.1)

Similarly in case of fermionic fields, we can define the spectral component as the Wigner

transform of the anti-commutator

A(ω,k,x, t) =

∫

ddr dtr e
i(ωtr−k·r)

〈{

Ψ
(

x +
r

2
, t+

tr
2

)

,Ψ
(

x− r

2
, t− tr

2

)}〉

. (3.2)

In both the equations above〈....〉 denotes expectation value in a non-equilibrium state. The
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fermionic spectral function is :

A(ω,k,x, t) = Tr
(

γtA(ω,k,x, t)
)

. (3.3)

The statistical function (also known as the Keldysh propagator) is defined as the Wigner

transform of the anti-commutator of two bosonic fields

GK(ω,k,x, t) = − i

2

∫

ddr dtr e
i(ωtr−k·r)

〈{

Φ
(

x+
r

2
, t+

tr
2

)

,Φ
(

x− r

2
, t− tr

2

)}〉

. (3.4)

or as the same of the commutator of two fermionic fields

GK(ω,k,x, t) = − i

2

∫

ddr dtr e
i(ωtr−k·r)

〈[

Ψ
(

x+
r

2
, t+

tr
2

)

,Ψ
(

x− r

2
, t− tr

2

)]〉

. (3.5)

All propagators can be expressed as appropriate linear combinations of the spectral and

statistical functions. We will be interested in the retarded correlation function in particular.

It is actually more convenient to define the Wigner transformof the retarded correlator. In

case of bosonic fields, this is defined as

GR(ω,k,x, t) = −i

∫

ddr dtr e
i(ωtr−k·r)θ(tr)

〈[

Φ
(

x+
r

2
, t+

tr
2

)

,Φ
(

x− r

2
, t− tr

2

)]〉

.

(3.6)

Similarly for fermionic fields, the anti-commutator is usedabove.

It is clear from the definitions of the spectral functions (3.1) and (3.3) respectively

that the bosonic spectral function is related to the retarded correlator viaA(ω,k,x, t) =

−2ImGR(ω,k,x, t), while for the fermionic spectral function, the relation isA(ω,k,x, t) =

−2Im(Tr(γtGR(ω,k,x, t))). The retarded correlation function does not contain any more

information than the spectral function, since it is analytic inω for a givenk for everyx and

t. Therefore,

GR(ω,k,x, t) =

∫
dω′

2π

A(ω′,k,x, t)

ω − ω′ + iǫ
(3.7)

in both the bosonic and fermionic cases.

On the other hand the Feynman propagatorGF is a linear combination of both the

spectral and statistical components. For both bosonic and fermionic fields, prior to Wigner

transform :

GF (x, t,y, t
′) = GK(x, t,y, t

′)− i

2
A(x, t,y, t′) sign(t− t′). (3.8)
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Since the Feynman propagator involves the statistical function which is unrelated to the

spectral function algebraically out of equilibrium, we cannot deduce this propagator from

the retarded function in non-equilibrium states.

At equilibrium, both the spectral and statistical functions depend only onω andk, i.e.

they are homogeneous inx andt, owing to translational invariance. Furthermore, they are

related by fluctuation-dissipation relations :

GK(ω,k) = −i
(1

2
+ nBE(ω)

)

A(ω,k) (3.9)

for the bosonic case and

GK(ω,k) = −i
(1

2
− nFD(ω)

)

A(ω,k) (3.10)

for the fermionic case, withnBE(ω) = (eβω−1)−1 being the Bose-Einstein distribution and

nFD(ω) = (eβω + 1)−1 being the Fermi-Dirac distribution.

Away from equilibrium, the statistical and spectral functions follow a coupled set of

equations which were first found by Kadanoff and Baym [18]. These equations are not so

easily tractable in field theory even at weak-coupling, however educated guesses lead us to

standard kinetic equations like the Boltzmann equation with quantum corrections. We will

skip issues involving renormalization etc. and simply mention here that they can be dealt

with efficiently at the level of the effective action.

The spectral function, especially for fermions, is directly measurable by ARPES like

experiments. Usually it is the equilibrium spectral functions that are measured experimen-

tally, so that we need be concerned with their dependence on frequency and momentum

only. Recently however, there have been time-resolved ARPES experiments in which non-

equilibrium time-dependent spectral functions have been measured in approximately spa-

tially homogeneous situations and their dependence on frequency, momentum as well as

time have been obtained (see, for example, time-resolved ARPES across the metal-insulator

transition in [19]). Conceptually, when integrated over frequency at a given momentum and

at a given point in space-time, the spectral function gives the space-time dependent density

of states. The spectral function thus reveals the non-equilibrium structure of the effective

phase-space of quasi-particles (provided we do have well defined quasi-particles).

The statistical function, on the other hand, carries complementary information about

how quasi-particles (whenever they can be defined) are distributed in phase-space and time

and can be indirectly measured. For instance, in the case of asingle species of fermions,
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the conserved current is

jµ(x, t) = iq

∫

dωddk Tr
(

γµGK(ω,k,x, t)
)

+ constant, (3.11)

whereq is the conserved charge of the fermionic field, and the constant is independent of

the state and required to provide an infinite subtraction which produces a finite result. In

the so called quasi-particle approximation, we can assume that the statistical function is

peaked only whenω is on-shell, so that it reduces to the standard phase-space distribution

which follows the semi-classical Boltzmann equation in certain limits.

This completes our very brief review of the spectral and statistical functions respec-

tively. In this chapter, we would like to describe the methodology to obtain the non-

equilibrium retarded function holographically. Our focuswill be on the retarded function

because we can compute it using linear response theory even in a non-equilibrium state.

The holographic dictionary enables defining the source and expectation value of an oper-

ator in any arbitrary state. Therefore, we can avoid issues associated with the lack of a

generating functional for non-equilibrium correlation functions.

To be specific, we would like to achieve the following :

1. to evaluate the retarded correlation function and the spectral function in non-equilibrium

states,

2. to find space-time dependent shifts in the energy and spinsof quasi-particles in the

non-equilibrium medium, and

3. to obtain the space-time dependent shifts in energy per particle and spin orientation

at the holographic Fermi surface.

With respect to the last point, we will reproduce a strongly coupled version of what is

expected from Landau’s Fermi liquid theory, as reviewed later. The second objective is

justified on the grounds that it is known that in non-equilibrium states, the effective masses

of quasi-particles become space-time dependent (via an inhomogeneous temperature dis-

tribution for instance, or an inhomogeneous distribution of the velocity field as discussed

later). We will succeed in all these objectives for scalar and fermionic operators.

We only consider spectral function here and do not address the information contained

in the statistical function and how to obtain it holographically. Partial work in the latter

direction appeared in [20] and more work is in progress. These issues will be complicated
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by the fact that we are dealing with composite operators in holography and we leave this

for future study. We note here that there has been previous work where the equilibrium sta-

tistical function has been defined holographically in a consistent manner [21], based on the

correspondence between the generating functional of field-theoretic correlation functions

and a suitable partition function of quantum gravity. However, these cannot be readily

generalized to non-equilibrium states because of the lack of a generating functional for

non-equilibrium correlation functions as observed before.

The key result we present in this chapter is the development of perturbation theory

of scalar and fermionic fields in holographic duals of non-equilibrium backgrounds. At

equilibrium, the incoming boundary condition mimics causal response in field theory and

suffices to define a well-defined linear response theory holographically [22, 23]. However,

the incoming wave boundary condition does not suffice to givewell defined linear response

theory in non-equilibrium states. This can be briefly demonstrated as follows.

Suppose we have a non-equilibrium background in which a hydrodynamic mode with

momentumk(h) has been excited. Let the source of the operator at equilibrium beJ (0)(x, t)

and the expectation value beO(0)(x, t) which can be read-off from the profile of the

field Φ(0)(r,x, t) in the bulk. The non-equilibrium bulk contribution can be denoted as

Φ(1)(k(h), r,x, t) and this gives contribution to both the sourceJ (1) and expectation value

O(1) of the operator. The full retarded function can be obtained from :

GR(x, t;y, t
′) = C O(0)(x, t) +O(1)(k(h), r,x, t)

J (0)(y, t′) + J (1)(k(h), r,y, t′)
, (3.12)

whereC is a constant which depends on the action and has been set to unity here. However,

the general solution forΦ(1) will have :

i) two homogeneous solutions which are incoming and outgoing at the horizon respectively

and,

ii) a particular solution which will be completely determined by the hydrodynamic back-

ground perturbation and the equilibrium solutionΦ(0).

This particular solution will contribute to bothO(1) andJ (1), as will the homogeneous

solutions. The incoming boundary condition will set the coefficient of the outgoing homo-

geneous solution to zero. The coefficient of the homogeneousincoming wave solution is

left arbitrary. At equilibrium, this arbitrary coefficientcancels between the numerator and

denominator, but at non-equilibrium we have an extra coefficient fromΦ(1) and therefore

(3.12) is ill-defined.
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Later in this chapter, we show that careful treatment of regularity of the solution at

the horizon implies that the coefficient of the homogenous incoming solution should also

be zero in presence of background quasinormal modes. This will allow us to put forth a

well-defined prescription for obtaining the non-equilibrium retarded Green’s function and

spectral function holographically. In fact, the prescription can be precisely stated in a man-

ner which is independent of the non-equilibrium state. Thus, holography gives a very well-

defined perturbation expansion of non-equilibrium observables which can be understood in

an universal manner.

This chapter is based on our work, [24]. The organization of the chapter is as follows.

In section 3.1, we give a general review of holographic dualsof non-equilibrium states.

Though most of this section is a review, the explicit metricsfor charged hydrodynamics

and homogeneous relaxation in section 3.1.4 inAdS4 are new as far as we are aware of

the literature. The key point in the discussion in section 3.1.2 however, to the best of our

knowledge, is novel. Here we argue that in a non-supersymmetric theory with a gravity

dual, there may exist a window of temperature and chemical potential at largeN , in which

a generic non-equilibrium state can be characterized by just a finitely few operators with

low scaling dimensions even far away from the hydrodynamic limit. We also point out

that there are surprising similarities with solutions of the Boltzmann equation on the weak

coupling side, which we review in section 3.2.1.

In section 3.2, we develop the formalism for obtaining non-equilibrium retarded Green’s

function and spectral function holographically in the approximation where the background

fluctuation is linearized i.e. when the non-equilibrium state is studied in the linearized

approximation. An interesting result is that we can read offthe relaxation modes in the

background by measuring the non-equilibrium spectral function.

In section 3.3, we compare our holographic approach with field theory. We also make a

comparison with Landau’s Fermi liquid theory regarding non-equilibrium dynamics of the

Fermi surface. Furthermore, we obtain a holographic prescription to calculate space-time

dependent non-equilibrium shifts in the energy and spin of the quasi-particles.

In section 3.4, we show that our prescription for the holographic retarded Green’s func-

tion readily generalizes when we take non-linearities in the dynamics of the variables char-

acterizing the non-equilibrium state into account.

Finally, in section 3.5, we conclude by pointing out interesting issues that could be

addressed numerically.
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3.1 On non-equilibrium states, their holographic duals and

quasi-normal modes

An equilibrium state can always be characterized by a few macroscopic variables related

by an equation of state. The distribution functions of particles, density of states, expecta-

tion values of operators, Green’s functions, etc. depend onthese macroscopic variables.

We also know, in principle, how to calculate the equation of state relating the macroscopic

variables of equilibrium states. Most importantly, we knowin principle how to calculate

the dependence of the observables in the underlying field theory on these variables charac-

terizing equilibrium states.

The most pressing problem in dealing with non-equilibrium states is that, typically even

at the coarse-grained level, we need an infinite number of macroscopic variables to char-

acterize them. These variables also depend on space and time. Aside from taking recourse

to a kinetic approximation, which is typically uncontrolled (but intuitively well-motivated)

from the point of view of the exact field theory, we usually do not know how to obtain

the equations of motion of these macroscopic variables (thereby generalizing the notion of

equation of state applicable at equilibrium). It is also notclear how to relate observables in

the field theory to the macroscopic coarse-grained non-equilibrium variables.

Here, we will address these issues from the point of view of holography. Firstly, we

will identify a special sector of non-equilibrium states which can be described in terms of a

finite number of operators of low scaling dimensions in kinetic theories. These states exist

for any value of the coupling at least in the kinetic approximation. Then we will argue

holographically that these states also exist in the exact field theory and are generic at strong

coupling and largeN after a microscopic time-scale, irrespective of the initial condition.

We will further discuss how solutions in gravity describe such non-equilibrium states.

3.1.1 Conservative states in the kinetic approximation

Let us first look at the kinetic approximation in some details. In particular let us analyze

the Boltzmann limit which is valid typically when,nldmfp is small, wheren is the typical

number density,lmfp is the mean free path andd is the number of spatial dimensions.

Boltzmann equation describes the dynamics of particle-distributions in phase space. It

can be reduced to local dynamics of the infinite number of moments of the phase-space
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distribution of particlesf (s)(x,p, t) of a given speciess. These moments are

f (s)
µ1µ2...µn

(x, t) =

∫
ddp

p(s)0
pµ1pµ2 ....pµnf

(s)(x,p, t) (3.13)

wherepµ is thed+ 1-momentum withp0 being on-shell energy for each speciess.

A conserved current (for instance the baryon number current) is given by :

jµ(x, t) =
∑

s

qs

∫
ddp

p(s)0
pµf

(s)(x,p, t), (3.14)

whereqs is the charge (for instance baryon charge) of thes−th species.

The energy-momentum tensor is given by

tµν(x, t) =
∑

s

∫
ddp

p(s)0
pµpνf

(s)(x,p, t). (3.15)

Thus we see that the energy-momentum tensor and conserved currents are parametrized by

a weighted sum of first few moments of the quasi-particle distribution functions.

Three comments are in order here :

1. The Boltzmann equation has no dependence on temperature or non-equilibrium pa-

rameters. The latter parametrize the solutions. The thermal Bose-Einstein or Fermi-

Dirac distributions are exact solutions of the Boltzmann equation. In absence of

external fields, Boltzmann’s H-theorem indicates all solutions finally equilibrate into

thermal Bose-Einstein or Fermi-Dirac distribution.

2. The integrals involved in collision terms on the right hand side of the Boltzmann

equation (see eq. (3.106) for weakly interacting electrons) have divergences coming

from phase-space volume. To regulate these divergences onecan put a IR-cutoff

corrsponding to the thermal mass of the quarks and gluons with temperature being

the final equilibrium temperature [25]. The dispersion relations are also accordingly

modified.

3. In the dilute limit the effect of the interactions is takeninto account via an effective

thermal mass. Thus the energy-momentum tensor takes a free particle form with an

effective thermal mass.

It can be shown that the higher velocity moments parametrizethe flow of the flow, the
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flow of the flow of the flow, etc. of charge, energy and momentum.For example, if we

define :

Sµνρ(x, t) =
∑

s

∫
ddp

p(s)0
pµpνpρf

(s)(x,p, t), (3.16)

then the heat-current isSµ = Sµνρη
νρ.

The Boltzmann equation can have solutions where the partialconserved currents are

j(s)µ are all proportional to each other. This happens precisely when chemical equilibrium

is achieved, and in fact any arbitrary solution achieves chemical equilibrium after suffi-

ciently long time. In that case, we can define a four-velocityfield uµ and charge densityρ

such that :

j(s)µ = ρ(s)uµ, ρ =
∑

s

ρ(s), jµ =
∑

s

j(s)µ = ρuµ. (3.17)

The energy-densityǫ is :

ǫ = tµνu
µuν . (3.18)

The hydrodynamic variables areǫ, ρ anduµ. We can define temperatureT and chemical

potentialµ fields in terms ofǫ andρ by using the equation of state of the full system at

thermal and chemical equilibrium locally.

There are special solutions of the full non-linear Boltzmann equation, known asnor-

mal solutionsin the literature, which are purely hydrodynamic [26]. These solutions are

such that all the momentsf (s)
µ1....µn of the phase-space quasi-particle distributions of various

species are algebraic functions of just the hydrodynamic variablesuµ, T andµ, and their

spatialderivatives in the local inertial frame co-moving withuµ. The full phase-space dis-

tributions can thus be characterized uniquely by the hydrodynamic variables. Furthermore,

any arbitrary solution of the Boltzmann equation can be approximated by an appropriate

normal solution after a sufficiently long time.

The hydrodynamic equations can be derived from the Boltzmann equation; these are

the Navier-Stokes equation, charge diffusion equation andFourier’s law of energy trans-

port with systematic higher derivative corrections. The shear viscosity, charge diffusion

constant, thermal conductivity and all the higher order transport coefficients can be ob-

tained from the relevant Boltzmann equation specified by thedominant collision processes.

These solutions can be further generalized to what were named conservative solu-

tions [6]. In such solutions, the various momentsf (s)
µ1....µn are algebraic functionals ofρ,

uµ (or equivalently the conserved currentjµ) and the energy-momentum tensortµν , and

their spatial derivatives in a local inertial frame co-moving with uµ. Thus the full solu-
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tion can be specified bytµν and jµ. In such solutions the energy-momentum tensor is

not necessarily hydrodynamic. Furthermore, any solution of the Boltzmann equation re-

duces to an appropriateconservative solutionafter sufficiently long time, and the latter

reduces to an appropriatenormal solutionafter the relaxational time scale. The first claim

follows from the fact that the independent dynamical parts of higher moments of the quasi-

particle distributions decay faster compared to the non-hydrodynamic relaxational mode of

the energy-momentum tensor [27].

The energy-momentum tensortµν and the conserved currentjµ (or equivalently the

charge densityρ and the velocityuµ) follow a closed system of equations in conser-

vative solutions of the Boltzmann equation. This gives a systematic generalization of

phenomenology beyond hydrodynamics to include processes like relaxation. These phe-

nomenological equations have been obtained in [6, 7].

Obviously, the existence of normal and conservative solutions of the Boltzmann equa-

tion can be seen at the linearized level and provides a methodto obtain good approximations

to the transport coefficients and relaxation parameters.

Thus,in the semi-classical kinetic limit captured by the Boltzmann equation, an arbi-

trary non-equilibrium state can be approximated by a conservative state whose dynamics

is given by the conserved current and the energy-momentum tensor even away from the

hydrodynamic limit.This approximation is reliable after a microscopic time-scale which

is shorter than the leading non-hydrodynamic relaxation mode, i.e. the time scale of local

thermalization.

The quasi-particle distribution is said to have locally thermalized when it can be charac-

terized well by space-time dependent parameters of equilibrium distribution. Afterwards,

hydrodynamics takes over and the system equilibrates globally. In a generic solution of the

Boltzmann equation, we thus have three time scales. The firsttime-scale is the time for

chemical equilibrationtchem after which inelastic collisions effectively cease, the second

time scale istcons after which an approximation by an appropriate conservative solution

becomes valid, and the third time scale is after which the hydrodynamic approximation is

valid and is also the time scale of thermalizationttherm. The hierarchy is

tchem < tcons < ttherm.

The conservative solutions of Boltzmann equation describethe dynamics of both thermal-

ization and hydrodynamics in an unified framework in the Boltzmann limit.
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We note that there is no scale which parametrically separates the dynamics of the non-

hydrodynamic part of the energy-momentum tensor and conserved currents from that of

other relaxation modes. Thus we may argue that even if conservative states exist beyond

the Boltzmann limit, they may not be typical non-equilibrium states after microscopic times

as in the Boltzmann equation. The typicality is just a special feature of the Boltzmann limit.

In fact, once we go away from the dilute limit necessary for the Boltzmann equation

to be reliable or consider genuine quantum dynamics (not just quantum statistics), the typ-

icality of conservative states will no longer be preserved.The conserved currents and

energy-momentum tensor do not seem to capture generic dynamics beyond the hydrody-

namic limit. Conservative solutions may exist beyond the Boltzmann approximation, but

only in the purely hydrodynamic limit can they approximate ageneric state.

We will argue that if a theory has a holographic dual, then in certain phases in the large

N limit, the dynamics can indeed be captured by just the conserved current and energy-

momentum tensor generically, after a microscopic time-scale which is much shorter than

the time-scale for local thermalization. In such cases, theconservative state can indeed

capture generic non-equilibrium dynamics even far away from the hydrodynamic limit.

3.1.2 Holographic duals of non-equilibrium states and typicality at

strong-coupling

Holography maps a field theory to a quantum theory of gravity in one extra spatial dimen-

sion. It further states that in the largeN and strongly coupled limit, the dual theory of

gravity reduces to a classical theory. Therefore, in this limit states of the field theory are

dual to solutions of the classical theory of gravity which are regular in an appropriate sense.

Furthermore, every operator is dual to a field and the expectation value of an operator in a

state can be obtained from the asymptotic behavior of the dual field in the corresponding

gravity solution.

The question of which operators matter in characterizing states in the largeN and

strong coupling limit can be seen from the masses of the dual fields. The mass of the field

is related to the scaling dimension of the dual operator.

The largeN limit in the (D dimensional) field theory side is the limit when the scalel,

corresponding to asymptotic curvature radius of the (D+1 dimensional) space-time, is large

compared to the effective Planck scalelP (in D + 1 dimensions) on the quantum gravity

(string theory) side of the holographic correspondence. The strong coupling limit on the
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field-theory side is the limit when the length of the fundamental stringls is small compared

to the asymptotic curvature radiusl on the quantum gravity side. The first conditionlP <<

l allows us to consider the classical limit of gravity. The second conditionls << l allows us

to ignore the massive stringy fields corresponding to higherexcitations of the fundamental

string.

Nevertheless, string theory is a theory in 10 dimensions. So, there has to be a compact

space of9 − D dimensions on top of theD + 1 dimensional non-compact coordinates.

The condiitonsls << l and lP << l, i.e. strong coupling and largeN limit in the field

theory side allows us to decouple the massive stringy modes whose masses scale likel−1
s

whenls andlP are small compared tol. Thus from the ten-dimensional viewpoint we are

left with just the massless fields which include the gravitonand gauge fields. However, the

compactification over the compact9 −D dimensions still creates a tower of Kaluza-Klein

fields which are dual to operators with possibly small scaling dimensions if the typical size

of the compact dimensions is of the same order as the asymptotic curvature radiusl.

In a supersymmetric set-up [28], the typical radius of the9 − D dimensional compact

space is indeed of the same order as theD + 1 dimensional asymptotic curvature radiusl.

Therefore, in the strong coupling and largeN field-theoretic limit, the Kaluza-Klein spec-

trum still plays a role in characterizing states. In fact, these Kaluza-Klein fields are dual to

chiral primary operators and their descendants. Therefore, a prediction of the holographic

correspondence is that at largeN the scaling dimensions of the chiral primary operators do

not deviate much from the weak coupling limit.

Despite the presence of the Kaluza-Klein spectrum, it is known that almost all known

supergravity theories in 10 dimensions admit consistent truncation at the classical level to

gauged supergravity inD+1 dimensions when dimensionally reduced over the appropriate

9−D dimensional compact space. TheD + 1 dimensional graviton is dual to the energy-

momentum operator on the field-theory side and theD + 1 dimensional gauge fields are

dual to the conserved currents with the global symmetry groups being gauged in the gravity

side.

One can also show that all solutions ofD+1 dimensional gauged supergravities which

thermalize to black branes with regular future horizons canbe characterized uniquely by

the expectation values of the energy-momentum tensor and conserved currents of the dual

states3. These solutions thus correspond to special non-equilibrium states - namely the

3Despite these not being Cauchy data from the gravity point ofview, this holds if the geometry corre-
sponds to regular perturbations of a black brane at late time[29]. We also note that the consistent truncation
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strongly coupled version of the conservative states which can be characterized by the

energy-momentum tensor and conserved currents alone. The parameters of phenomenolog-

ical equations for the energy-momentum tensor and conserved currents which generalize

hydrodynamics should now be obtained from gravity and not from kinetic theories valid at

weak coupling [6–8]. Evidence that the solutions of pure gravity in particular, which have

regular future horizons, can be interpreted as conservative states has been presented in [7]

for the special case of homogeneous relaxation. It has been proved that regularity at the

horizon gives an equation of motion for the non-hydrodynamic energy-momentum tensor

with precise coefficients for this case.

Furthermore, such conservative states should also exist holographically away from the

strong coupling and large N limit, since the dual solutions in gravity can be constructed

by perturbatively correcting the gauged supergravity solutions in l2s/l
2 and1/N2. Nev-

ertheless, in the known supersymmetric cases these solutions are always special and not

typical even in the strong coupling and largeN limit, because the intrinsic dynamics of

Kaluza-Klein modes are absent in these solutions.

The situation can be expected to be very different in non-supersymmetric cases. There

is no analogue of chiral primary operators and typically we do not expect that quantum

corrections to scaling dimensions of operators will be small at strong coupling, unless these

are suppressed because of symmetries.

In order to use our intuition obtained from well studied examples with the field theory

being conformal and supersymmetric, we will need to focus only on a certain window of

temperatures and chemical potentials, such that :

1. the effective coupling is strong,

2. the beta function is vanishing or approximately so, i.e. the system is close to a critical

point, and

3. there are no new emergent symmetries at the critical pointother than the (exact or

approximate) full conformal symmetry.

Furthermore, we also require that the largeN approximation is valid, or useful for quali-

tative understanding. Probably, all these requirements could be satisfied for the fireball at

RHIC near temperatures of 175 MeV and small baryon charge densities as supported by

to pure gravity does not involve separation of scales. This simply reflects the fact that the conservative states
are not typical states in these examples.
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lattice data [30]. We can also hope that the strange metallicphase of strongly correlated

electron systems will satisfy these requirements in a window of temperatures and chemical

potentials.

We note that certain examples of non-supersymmetric holography have been proposed

in the literature [31]. However, in these special examples,infinite number of gauge sym-

metries appear in the bulk at largeN , implying infinite number of global symmetries in the

dual field theory. Our observations below will not be necessarily true in such cases4.

In case of a typical non-supersymmetric theory with a gravity dual, at temperatures and

chemical potentials such that the system is close to a strongly coupled critical point, we

expect there will be a few operators whose scaling dimensions will be small. We observe

that the scaling dimensions depend on the scale through the coupling and hence also on

the phase of the theory being considered which is parametrized by the temperature and

chemical potential. The relevant operators with small scaling dimensions in the window of

temperature and chemical potentials considered here can beexpected to be

1. the energy-momentum tensor,

2. the conserved currents, and

3. order parameters of spontaneous symmetry breaking.

Therefore, the operators dual to the Kaluza-Klein modes of gravity are expected to have

large scaling dimensions very simlar to those dual to the stringy modes. If this expectation

is true, the typical scale of the compact dimensions should be of the same order asls and

not l.

For instance, in the case of QCD, the relevant operators withsmall scaling dimensions

in the conditions of RHIC can be expected to be

1. energy-momentum tensor,

2. the baryon number current,

3. the approximately conservedSU(3)L×SU(3)R flavor symmetry of the light quarks,

and
4The examples [31] are also not stringy and so far well defined only in the largeN limit, i.e. only when

the theory of gravity is classical.
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4. the order parameter of chiral symmetry breaking having zero baryon number, trans-

forming as(3L, 3R) under the flavor symmetry group and with scaling dimension

approximately3.

The dual massless fields on the gravity side should be

1. the graviton,

2. a U(1) abelian gauge field,

3. SU(3)L × SU(3)R non-Abelian gauge fields, and

4. a neutral scalar field transforming in the(3L, 3R) representation of the non-Abelian

gauge group and with mass approximately given bym2 = −3/l2 5.

Such a holographic model for QCD has already been proposed in[32]. However, our

arguments above show that such models can be considered moreseriously in the conditions

of RHIC. In fact, for RHIC conditions we also do not need the hardwall cut-off proposed

in these models to achieve confinement, as the mass gap is expected to become very mild

at temperatures close to 175 MeV and for small baryon number densities.

Furthermore, if the temperature is higher than 125 MeV, chiral symmetry is expected to

be restored, so that the profile of the bulk scalar field dual tothe chiral symmetry breaking

order parameter will be stabilized by a potential. Therefore, only the conserved currents and

energy-momentum tensor can characterize non-equilibriumdynamics at largeN and large

’t Hooft couplingλ for temperatures above 125 MeV. The other fields in the holographic

dual should have masses which grow like1/ls i.e. 1/λ
1
4 , and thus are expected to be

effectively decoupled from the classical theory.

The correlation functions of the non-Abelian gauge fields inthe gravity backgrounds

which thermalize to a black brane are all we need to constructquantum kinetic theories of

production and freeze-out of axial and vector mesons (and resonances) in the expanding

fireball holographically. The interpretation of poles of correlation functions of these gauge

fields in terms of mesons has been given in [32]. Using the methods to be described later,

we can obtain the non-equilibrium corrections to these mesonic poles systematically.

5As the chiral symmetry breaking order parameter is〈qiqj〉, it has approximate mass dimension of3.
Moreover, QCD being asymptotically free, the dual boundarycondition will be approximatelyAdS5-like as
well. Then we can use the standard relation forAdS5 for mass of the fieldm and the scaling dimension of
the dual operator∆ which givesm2 = −3/l2 when∆ = 3.
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Let us estimate the relevant time scale at strong coupling after which the conservative

solutions become relevant. This in the dual gravity description is given by the mass of the

lightest stringy field or Kaluza-Klein mode. According to the discussion above, the time

scale should beO(λ−
1
4 ) in a non-susy conformal theory at strong coupling. After such a

time-scale, we may expect that the massive fields in gravity will decay and the relevant

dynamics will be described by the metric, gauge fields and thelight fields dual to order

parameters of symmetry breaking relevant at the critical point. Thus decay of a massive

field in gravity can be interpreted as transition to a conservative state at strong coupling

where the dynamics is governed by the energy-momentum tensor, conserved currents and

order parameters alone.

We concludein a typical non-supersymmetric theory which has a holographic dual, in a

window of temperature and chemical potentials such that thedynamics is strongly coupled

and approximately conformal, all non-equilibrium states can be characterized by just the

energy-momentum tensor and conserved currents (and order parameters of spontaneous

symmetry breaking if any), irrespective of the initial conditions, after a microscopic time-

scale which scales with the couplingλ like 1/λ
1
4 in the largeN limit. In other words,

conservative states are typical states irrespective of theinitial conditions after a microscopic

time-scale much smaller than the time-scale of thermalization in the strongly coupled and

nearly conformal phase at largeN .

If the above arguments are indeed relevant for QCD and strange metals in a window

of temperature and chemical potentials, we have a unique opportunity to understand non-

equilibrium dynamics with only a finitely few operators in this special phase of these the-

ories. As conservative states will be typical non-equilibrium states, we can use general

phenomenological equations for non-equilibrium dynamicsas proposed in [6, 7], and also

hope to construct a general theory of kinetics and fluctuations to connect to experiments as

we want to do here and more completely in the future.

If the above arguments fail, the reasons should certainly bedeep. In that case, we

also need to know how to generalize non-equilibrium holography beyond the sector of

conservative states sufficiently so that we can describe a typical non-equilbrium state.

3.1.3 Quasinormal modes

The thermal states in the field theory at largeN and strong coupling are captured by

black brane solutions of classical gravity holographically. In the linearized limit, the non-
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equilibrium fluctuations are captured by the linearized equations of motion of gauge field

and the metric fluctuations about the black brane background. These fluctuations are dual to

perturbations of the energy-momentum tensor and conservedcurrents about thermal equi-

librium. Furthermore, these fluctuations should satisfy the incoming boundary condition at

the horizon and Dirichlet boundary condition asymptotically [22]. Thus they are quasinor-

mal modes capturing intrinsic fluctuations in the dual field theory which can exist in ab-

sence of sources and provide good approximation to a typicalnon-equilibrium state close

to equilibrium at strong coupling and largeN .

There is, however, a significant difference between the linearized Boltzmann limit and

the quasinormal mode approximation of solutions of gravity. Instead of a finitely few decay

modes on top of the hydrodynamic mode, we have an infinite tower of quasi-normal modes.

The reason that we do not have an infinite tower of modes for theenergy-momentum tensor

perturbations in the Boltzmann equation is that it has only one time derivative (which in

a Lorentz-invariant language is the derivative along the local velocity field). Quantum

corrections to the Boltzmann equation are known to result inan infinite number of time

derivatives, and it is not hard to see this will produce an infinite number of decay modes as

well.

We will now obtain the phenomenological form of the non-equilibrium energy-momentum

tensor and conserved cuurent. Instead of stating in a Lorentz-invariant way, we will state

the form of the energy-momentum tensor in the frame where thedual thermal state is at

rest, i.e. the laboratory frame. It is convenient to define the velocity perturbationδu(x, t)

such that the velocity field is co-moving with the energy-flow, instead of the charge-flow as

done usually in the Boltzmann limit. Thus the non-equilibrium energy-momentum tensor

thus takes the Landau-Lifshitz form in the global co-movingframe :

t00 = ǫ(T, µ) +
∂ǫ(T, µ)

∂T
δT (x, t) +

∂ǫ(T, µ)

∂µ
δµ(x, t),

t0i = ti0 =
(

ǫ(T, µ) + p(T, µ)
)

δui(x, t),

tij = p(T, µ)δij +
(∂p(T, µ)

∂T
δT (x, t) +

∂p(T, µ)

∂µ
δµ(x, t)

)

δij + πij(x, t). (3.19)

Abovep is the pressure andπij is the shear-stress tensor. The shear-stress tensor can thus be

defined as the dissipative part of the energy-momentum tensor or the spatial components

of the energy-momentum tensor not in local equilibrium in the co-moving frame. The
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conserved current takes the form :

j0 = ρ(T, µ) +
∂ρ(T, µ)

∂T
δT (x, t) +

∂ρ(T, µ)

∂µ
δµ(x, t) + ν0(x, t),

ji = ρ(T, µ)δui(x, t) + νi(x, t). (3.20)

Aboveνi is the dissipative part of the conserved current or the spatial components of the

current away from local equilibrium in the co-moving frame.However, as the co-moving

frame is aligned with the energy flow, the charge can have a non-equilibrium part by itself.

This isν0.

In order to have conformal invariance, we should further have

ǫ(T, µ) = d p(T, µ), δǫ = d δp, πijδij = 0, (3.21)

with d being the number of spatial dimensions in the field theory. Aboveδǫ andδp denote

change in energy density and pressure due to change in temperature and chemical poten-

tial. From now onwards, we will be interested in the specific case when the field theory

is conformal, so that on the gravity side we will be using asymptoticallyAdS boundary

conditions.

The shear-stress tensor and the dissipative part of the current can be split into hydrody-

namic partsπ(h)
ij andν(h)

i respectively which are functions of the hydrodynamic fieldsδT and

δu, and non-hydrodynamic partsπ(nh)
ij andν(nh)

i respectively which cannot be parametrized

by hydrodynamic variables alone. On the other hand,ν0 does not have any purely hydro-

dynamic part.
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In the case of a conformal field theory, at the linearized level,

πij = π(h)
ij + π(nh)

ij , νi = ν(h)
i + ν(nh)

i ,

π(h)
ij = −η(T, µ)

(

∂iδuj + ∂jδui −
2

d
(∂ · δu)δij

)

+ ...,

ν(h)
i = −D(T, µ)

(∂ρ(T, µ)

∂T
∂iδT +

∂ρ(T, µ)

∂µ
∂iδµ

)

+ ...,

π(nh)
ij =

∞∑

n=1

a(n)ij e
i(k·x−ω(n)(k)t), with a(n)ij δij = 0 for all n,

ν(nh)
i =

∞∑

n=1

b(n)i e
i(k·x−ω̃(n)(k)t),

ν(nh)
0 =

∞∑

n=1

c(n) e
i(k·x−ω̌(n)(k)t). (3.22)

Above,π(h)
ij andν(h)

i have been expanded in the derivative expansion, which is an expan-

sion in the scale of variation of hydrodynamic variables over the mean free path. We also

requireδui and δT to be small uniformly for the linearized approximation to bevalid.

Furthermore,η is the shear viscosity andD is the charge diffusion constant. On the

other handa(n)ij , b(n)i and c(n) parametrize the dissipative non-hydrodynamic modes of

the energy-momentum tensor and conserved current. Then here represents the various

non-hydrodynamic branches of quasinormal mode perturbations which dissipate because

their dispersion relationsω(n)(k), ω̃(n)(k) andω̌(n)(k) have negative imaginary parts. We

requirea(n)ij/p, b(n)i/ρ andc(n)/ρ to be small for the linearized approximation to be valid.

We note the separation ofπij andνi into hydrodynamic and non-hydrodynamic parts

can also be done at the non-linear level. This is so because even at the non-linear level

the hydrodynamic partsπ(h)
ij andν(h)

i are solutions by themselves - from the perspective

of kinetic theories this follows from existence ofnormal solutionsas discussed before and

from the point of view of gravity they give regular metrics via fluid/gravity correspondence.

For anyπij andνi, the non-hydrodynamic partsπ(nh)
ij andν(nh)

i are just whatever remains

after subtracting out the purely hydrodynamic partsπ(h)
ij andν(h)

i constructed algebraically

from the profile of the hydrodynamic variables in the full solution of the energy-momentum

tensor and conserved currents.

In order to obtain the hydrodynamic modes at the linearized level, we simply put all

a(n)ij andb(n)i to zero in (3.22) and impose the conservation of energy, momentum and
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charge :

∂µtµν = 0, ∂µjµ = 0. (3.23)

We then obtain three modes, the sound mode, the shear mode andthe charge diffusion

mode. In the sound mode,

δu(k) is parallel to k,

ω = ± 1√
d
| k | −i

(d− 1

d

) η(T, µ)

ǫ(T, µ) + p(T, µ)
| k |2 +...,

δǫ(k) = d δp(k) = ±
√
d | δu(k) |

(

ǫ(T, µ) + p(T, µ)
)

+ ...,

δρ(k)

ρ
=

δǫ(k)

ǫ(T, µ) + p(T, µ)
+ ... . (3.24)

Above (...) refers to higher derivative corrections in powers ofk. Using thermodynamic

relations locally, one can obtainδT (k) andδµ(k) from δǫ(k) andδρ(k).

In the shear mode,

δu(k) is orthogonal to k,

ω = −i
η(T )

ǫ(T ) + p(T )
| k |2 +.... ,

δǫ(k) = δp(k) = δρ(k) = 0. (3.25)

In the charge-diffusion mode

δǫ(k) = 0, δp(k) = 0, δui(k) = 0,

ω = −iD(T, µ) | k |2 . (3.26)

The quasinormal modes of the metric and gauge fields containsthese hydrodynamic

modes as the only branches in whichω andk can go simultaneously to zero. We can also

obtain the transport coefficients by using the incoming boundary condition at the horizon.

We will be interested in the shear mode in particular. The shear-viscosity is given by [2]:

η(T, µ)

s(T, µ)
=

Tη(T, µ)

ǫ(T, µ) + p(T, µ)
=

1

4π
. (3.27)

Above,s is the entropy density and we have used the thermodynamic identity s = (ǫ +

p)/T .
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In order to obtain the simplest non-hydrodynamic modes we need to set the perturba-

tions of the hydrodynamic variablesδui, δT andδµ in (3.22) to zero. Also we look for

spatially homogeneous perturbations so that the momentumk is zero. Nevertheless, unlike

the case of hydrodynamic modes, the frequencyω(n) do not vanish whenk goes to zero.

In such a configuration, for arbitrarya(n)ij , it is easy to see that energy and momentum is

conserved because∂µtµν vanishes identically. When the chemical potential is set tozero,

the quasi-normal modes in five dimensional gravity inAdS5 give [33] :

ω(n)(k = 0) = πT
[

± 1.2139− 0.7775 i± 2n(1∓ i)
]

, for large n. (3.28)

Clearly, the conservation equations are not enough to reproduce all the quasi-normal

modes. We need extra phenomenological equations. Such phenomenological equations

can be derived from kinetic theories like Boltzmann equation at weak coupling or gravity at

strong coupling. However, we can also write them on general phenomenological grounds.

At present, these will not be important for us, we merely mention these have been found in

the most general form in [6, 7].

We will be interested in the spectral function in this class of non-equilibrium states,

whose dynamics is determined by the non-equilibrium fluctuations of energy-momentum

tensor and conserved currents only. If we want to obtain these spectral functions holograph-

ically, we need the explicit metric and gauge field corresponding to the non-equilibrium

state. It will be important for us to write the metric and gauge field fluctuation about the

equilibrium black-brane background explicitly in terms ofδui, δT , δµ, π(nh)
ij , ν0 andν(nh)

i .

As we will show in the next subsection, the spectral functionin the dual states will depend

explicitly just on these non-equilibrium variables.

Later in section 3.4, we will discuss what happens when we take into account non-

linearities in the dynamics ofδui, δT , π(nh)
ij , etc.

3.1.4 Explicit examples of backgrounds

We will be interested in strongly coupled conformal field theories in three space-time di-

mensions in the largeN limit. Therefore, as discussed earlier, we will be concerned with

solutions of Einstein-Maxwell equations which are asymptotically AdS4 and are quasi-

normal mode fluctuations about a Reissner-Nordstorm black brane with both mass and

charge.
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As discussed earlier, on the gravity side we will need the Einstein-Maxwell action :

S =
1

2κ2

∫

d4x
(

R +
6

l2
− l2

4
FMNF

MN
)

. (3.29)

Above l sets the scale of asymptotic (negative) curvature via a (negative) cosmological

constant. This is required so that the asymptotic isometry of the spacetime is the same

as the conformal group in 3 dimensions. We will useκ to denote the effective Newton’s

constant in four-dimensional gravity in lieu of Planck length lP .

The metric of the Reissner-Nordstorm black brane inAdS4 is :

ds2 =
l2

r2
dr2

f
(
rr0
l2

) +
l2

r2

(

− f
(rr0
l2

)

dt2 + dx2 + dy2
)

, (3.30)

wheref is the so-called blackening function given by :

f(s) = 1−
(

3
r4∗
r40

+ 1
)

s3 + 3
r4∗
r40
s4. (3.31)

In case of the gauge field, it is convenient to use the gaugeAr = 0. The only non-zero

component of the gauge field isAt and is given by :

At =
2
√
3r2∗

l2r0

(

1− rr0
l2

)

. (3.32)

The boundary ofAdS4 in these coordinates is atr = 0 and the outer horizon is at

r = l2/r0. The total massM and chargeQ of the black hole are given by :

Q =
√
3r2∗, M = r30 + 3

r4∗
r0
. (3.33)

Using the standard holographic dictionary we can relate thetwo parametersr∗ andr0 of

the geometry and the Newton’s constantκ in to the energy densityǫ, charge densityρ and

entropy densitys as below :

ǫ = 2p =
r30
κ2l4

(

3
r4∗
r40

+ 1
)

, ρ =

√
3

κ2

(r∗
l

)2

, s =
2πr0
κ2l2

. (3.34)
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The thermodynamic relation

dǫ = Tds+ µdρ (3.35)

gives the temperature and chemical potential as below :

T =
3r0
4πl2

(

1−
(r∗
r0

)4)

, µ =
2
√
3r2∗

l2r0
. (3.36)

The first example of a non-equilibrium background we will describe is that with a hy-

drodynamic shear-mode turned on. The velocity perturbation will be denoted asδu(k(h))

with k(h) being the three-momentum of the fluctuation. We recall thatk(h) · δu(k(h)) = 0, as

the shear wave perturbation is transverse.

It is a well-defined problem to find a given metric and gauge field perturbation in the

bulk corresponding to a definite energy-momentum tensor andconserved current fluctua-

tion about the equilibrium at the boundary, when the Dirichlet boudary condition is imposed

for the bulk perturbations at the boundary. The latter is needed so that the dual field theory

lives in flat space and is influenced by an externally fixed chemical potential. Regularity at

the horizon fixes the transport coefficients appearing in theenergy-momentum tensor and

conserved currents.

This procedure can be readily implemented in Fefferman-Graham coordinates [29]. A

similar procedure can be implemented in Schwarzchild-likecoordinates as well because

the Schwarzchild radial coordinate and the Fefferman-Graham radial coordinate are only

functions of each other when the temperature remains unperturbed. Then it follows [29]

that :

δgij will be proportional to (k(h)i δuj(k(h)) + k(h)j δui(k(h)))e
i(k(h)·x−ω(h)t), and,

δgi0 will be proportional to δui(k(h))e
i(k(h)·x−ω(h)t).

It can be also shown that in the radial gauge,Ar = 0, the fluctuation in the gauge field is

also proportional to the fluctuation in the conserved current, i.e. proportional to :

δui(k(h))e
i(k(h)·x−ω(h)t).
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The explicit metric is given by :

ds2 =
l2

r2
dr2

f
(
rr0
l2

) +
l2

r2

(

− f
(rr0
l2

)

dt2 + dx2 + dy2

−2
(

1− f
(rr0

l2

))

δui(k(h))e
i(k(h)·x−ω(h)t)dtdxi

)

+
2l2

r2

(

− i
l2

3r0
k(h)i δuj(k(h))e

i(k(h)·x−ω(h)t) h
(rr0
l2

)

dxidxj
)

+O(ǫ2),(3.37)

where,

h(s) = 3

∫ s

0

ds̃
s̃2

(1 + s̃+ s̃2 − 3 r4∗
r40
s̃4)(1− s̃)

, (3.38)

and

ω(h) = −i
k2

(h)

4πT
+O(ǫ3), η =

r20
2κ2l2

= 4πs. (3.39)

In the radial gaugeAr = 0, the gauge field takes the form

At =
2
√
3r2∗

l2r0

(

1− rr0
l2

)

+O(ǫ2),

Ai = −2
√
3r2∗

l2r0

(

1− rr0
l2

)

δui(k(h))e
i(k(h)·x−ω(h)t) +O(ǫ2). (3.40)

Aboveǫ denotes the parameter of derivative expansion in hydrodynamics.

It is to be noted that we have written the full metric and gaugefield in a global frame co-

moving with the equilibrium part of the energy-momentum tensor and conserved currents,

i.e. in the laboratory frame. We can readily make the metric and gauge field Lorentz-

covariant by boosting such that the unperturbed velocity field is a four-velocity vectoruµ

[5]. However, this will be unnecessary for the purposes of this paper as we will be interested

in the results in the laboratory frame.

Also one can readily realize that the metric is singular at the outer horizonr = l2/r0.

This is however only an artifact of the coordinate system. Wecan systematically change

coordinates order by order in the derivative expansion so that the metric and gauge fields

are manifestly regular at the horizon [29]. In our coordinates, the radius of convergence of

the derivative expansion is of the order of the effective mean-free path or the inverse of the

effective temperature at a given radius given byTeff (r) = T/
√

f(rr0/l2). Therefore, we

have a finite radius of convergence of the derivative expansion a finite distance away from
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the horizon. Furthermore, we will be interested in calculating boundary correlators which

are independent of the choice of bulk coordinate system.

The metric (3.37) and gauge field (3.40) in manifestly regular coordinates are given in

appendix A.

The second example which we will be concerned with will be a homogeneous non-

hydrodynamic perturbation of the energy-momentum tensor,i.e. with onea(n)ij in (3.22)

turned on. The momentum of this perturbation is zero on account of homogeneity, but its

frequency is non-zero and complex like in (3.28). The metriccan be obtained following

[7] in the Fefferman-Graham coordinate and re-expressed inthe Schwarzchild coordinate

used here by simply changing the radial coordinate. Again, as the temperature remains

unperturbed, up to linear order the change of coordinate involves transformation of one

variable. It can be shown that the metric perturbation is proportional to

a(n)ije
−iω(n)t.

Explicitly the perturbed metric is :

ds2 =
l2

r2
dr2

f
(
rr0
l2

) +
l2

r2

(

− f
(rr0
l2

)

dt2 + dx2 + dy2
)

+
2l2

r2

(

a(n)ije
−iω(n)t h̃

(rr0
l2

, ω(n)

)

dxidxj
)

+O(δ2), (3.41)

with δ being the parameter of non-hydrodynamic amplitude expansion. Furthermore,̃h(s, ω(n))

follows the equation of motion :

d2h̃(s, ω(n))

ds2
−

(

2 + (1 + 3 r4∗
r40
)s3 − 6 r4∗

r40
s4
)

sf(s)

dh̃(s, ω(n))

ds

+
ω2
(n)l

4

r20

(

1

f 2(s)

)

h̃(s, ω(n)) = 0. (3.42)

We will also require that :

h̃(s, ω(n)) = s3 +O(s4) ass → 0. (3.43)

This is the asymptotic boundary condition and determinesh̃ uniquely as it puts the co-

efficient of the non-normalizable to zero and the coefficientof the normalizable mode to
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be unity so that the boundary energy-momentum tensor fluctuation is as given by (3.22).

Though the equation for̃h cannot be analytically solved, the solution can be readily ex-

panded in a power series inω(n).

Furthermore, the gauge field remains unperturbed from the black brane profile.

The metric above is also not manifestly regular at the horizon, but once again it is just

an artifact of the choice of coordinates. One can again translate the metric systematically

to Eddington-Finkelstein coordinates to see manifest regularity [7]. The regularity is man-

ifest only when we sum over all orders inω(n). This is to be expected because, although

the amplitude of the non-hydrodynamic perturbationa(n)ij is small, it’s rate of change in

time is not small (unlike the hydrodynamic modes) sinceω(n) is of the same order as the

temperature.

Though we will not discuss the details here, we can constructthe explicit metrics in

the case of both hydrodynamic and non-hydrodynamic perturbations even at the non-linear

level [5, 7]. The metric is regular at each order in the derivative expansion for hydrody-

namic perturbations and for each order in the amplitude expansion for non-hydrodynamic

perturbations, provided all time-derivatives (or covariantly speaking convective derivatives)

are summed over at each order in the latter case [7].

3.2 The holographic prescription for the non-equilibrium

spectral function

As discussed in the Introduction, the spectral function is given by the imaginary part of

the retarded propagator which can be obtained from causal response of an operator to it’s

source. A convenient way to obtain the spectral function is to calculate the retarded propa-

gator using linear response theory first and then isolate itsimaginary part.

In this section, we will consider single trace scalar and fermionic operators in field

theory whose back-reaction to the metric is suppressed byO(1/N2). As we have argued in

subsection 3.1.2, the possibly interesting scalar operators in the strong coupling and large

N limit are order parameters of symmetry breaking. If we are ina range of temperature

and chemical potentials, where such symmetry breaking doesnot occur, the profile of the

scalar fields dual to these operators vanishes in the background classically. Therefore, the

backreaction is indeedO(1/N2) suppressed. This observation may be applied to study pion

correlations in the quark-gluon plasma at RHIC.
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In popular holographic models of strongly correlated systems, the electron is thought

to couple to a composite operator made out of strongly interacting fractionalized degrees

of freedom (for a clear exposition please see [34]). The holographic dual is thought to

capture the dynamics of the fractionalized degrees of freedom. The strongly interacting

fractionalized degrees of freedom areO(N2), but the coupling of the electron to the com-

posite operator of the strongly coupled theory isO(1). The spectral function obtained from

photo-electron spectroscopy (ARPES) will receive corrections from the spectral function

of the composite fermionic operator of the strongly coupledsector. As the coupling of the

electron to this operator isO(1), we can ignore the backreaction of the fermionic field dual

to this operator on the geometry representing the dual state, at the leading order. If this

picture is qualitatively viable, our set-up will be relevant for describing non-equilibrium

features of non-Fermi liquids described by such models.

Holographically, causal response implies the incoming boundary condition at the hori-

zon. The event horizon separates space-time into two causalparts, one that is inside and

ends at a singularity, and the other that is outside and stretches all the way to the bound-

ary. No light ray can come out of the inside region to the outside region, though light rays

can propagate from the outside to the inside. Therefore, theperturbations which respect

the causal structure of the space-time are those which are purely incoming at the horizon,

having no component which propagates from the inside to the outside.

The event horizon is not only a feature of the eternal static black hole, but also of the

perturbed black hole (for instance, the black hole with the quasi-normal mode fluctuations

of the metric and gauge fields). The event horizons of these non-equilibrium geometries

are also perturbed from their equilibrium location and their positions can be calculated in a

perturbative expansion [35]. Equilibration in this context means that the event horizon will

have uniform surface gravity (the gravitational analogue of temperature) everywhere and it

happens only far in the future.

Though the incoming boundary condition is insufficient for awell defined perturbation

theory in non-equilibrium geometries as noted in the Introduction, we expect regularity at

the future horizon to be a sufficient condition. It turns out that it is sufficient to impose

the regularity condition only far in the future, that is in the asymptotic static black brane

geometry. This has been observed before in [5, 7] in another context - while constructing

time-dependent non-linear solutions of gravity with regular future horizons perturbatively.

In such solutions it indeed suffices to impose regularity of the perturbations at the final

equilibrium location of the horizon. In fact, the incoming boundary condition is itself tied
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up to regularity [36]6. In this section we will find a precise non-equilibrium generalization

of the incoming boundary condition for bosonic and fermionic field configuratons in non-

equilibrium geometries.

For purposes of illustration, let us consider the non-equilibrium state which is the sim-

plest to analyze from the gravity point of view - it is the AdS black brane with a linearized

hydrodynamic shear mode perturbation of spatial momentumk(h). The advantage of this

geometry is that it can be shown that the event horizon do not fluctuate up to first order

in the derivative expansion (i.e. up to first order ink(h)/T ) essentially because the tem-

perature field does not fluctuate as discussed in section 3.1.We will first demonstrate how

we can develop a prescription for obtaining the holographicspectral function in such a

non-equilibrium state. Our aim will be to obtain the correction to the equilibrium spectral

function up to first order in derivative expansion, i.e. up tofirst order ink(h)/T .

The explicit metric and gauge field of the black brane with thehydrodynamic shear

mode perturbation is given in (3.37) and (3.40) respectively up to first order in the derivative

expansion. We will work explicitly with four space-time dimensions in gravity, as we will

be interested primarily in a three space-time dimensional dual strongly coupled field theory.

This is because we are interested in applications to strongly correlated electron systems at

finite density living in two spatial dimensions. As argued insubsection 3.1.2, our analysis

may apply to the strange metallic phase in a qualitative manner.

An elegant way to solve the equations of motion of scalar and fermionic fields is by

using the Fourier transform in all the field-theory (i.e. boundary) coordinates. Obviously,

in order to express the equations of motion of the fields in Fourier space, it is necessary to

do the Fourier transform of the background perturbation first, i.e. we need to do the Fourier

transform of the velocity field fluctuationδui. The dispersion relation for this fluctuation

is as given by eqs. (3.25) and (3.27). We see that the frequency given by the dispersion

relation is strictly (negative) imaginary, while the frequency related to Fourier transform

is strictly real. Furthermore, the negative imaginary frequency given by the dispersion

relation makesδui decay in the future but grow in the past as a function of time. AFourier

transform of such a function needs to be defined with care. In order to distinguish from

the frequency and momenta associated with the scalar/fermionic field, we will denote the

frequency and momenta ofδui asω(h) andk(h) respectively. The correct Fourier transform

6See also [7] for an explicit proof in a non-hydrodynamic context.
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which reproduces the hydrodynamic dispersion relation is :

δui(ω(h),k(h)) = −
(

1

2πi

)

δui(k(h))

ω(h) + i
k2

(h)

4πT

. (3.44)

To check the above, one can try to reproduce the time dependence by doing the inverse

Fourier transform. This needs to be done with a specific contour prescription for integration

overω(h) as shown in Fig.3.1. This contour is the usual contour associated with the retarded

propagator in field theory - it runs from−∞ to ∞ infinitesimally below the real axis and

then closes itself through the circle at infinity. This contour picks up contribution only from

the negative imaginary pole reproducing the correct time dependence ofδui at givenk(h).

Figure 3.1: Contour for integration overω(h), with pole at negative imaginary axis

It will be easier to solve the scalar/fermionic field equations after doing the Fourier

transform ofδui, however we need to finally integrate overω(h) with the above contour

prescription in order to obtain the observed behavior in real time.

For demonstrative purposes, we will analyze the scalar fieldequations first and then the

fermionic field equations. Finally, we will see how we can apply our prescription for the

non-equilibrium retarded Green’s function when the background contains other quasinor-

mal modes of the metric and gauge field.
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3.2.1 Scalar field equation and the non-equilibrium spectral function

We will be interested in the non-equilibrium holographic spectral function for a scalar

operator first. This requires us to solve the equation of motion of the dual scalar field in

the non-equilibrium background; in particular we need to understand how the equilibrium

part determines the non-equilibrium part completely. Without this, as we have mentioned

before, the spectral function cannot be determined.

We will need to specify the equilibrium part of the solution first. We can assume,

without loss of generality, that the equilibrium solution is in a specific(ω,k) mode and

obtain the non-equilibrium correction for each such mode. Using the fact that our field

equation is linear, we can then linearly superimpose the solutions with the non-equilibrium

correction for each equilibrium mode to obtain the most general solution.

The background in which the scalar field propagates is theAdS4 Reissner-Nordstorm

black hole with the hydrodynamic shear-mode perturbation.This hydrodynamic mode

is given by the velocity perturbationδui in a specific momentumk(h) but its dependence

on ω(h) is given by (3.44). We have to consider the background first ina definiteω(h)

perturbation and then integrate overω(h) finally with the contour prescription discussed

before. The scalar field while propagating in the backgroundwill pick up a (ω + ω(h),k +

k(h)) mode. The profile of the scalar field, will therefore be of the following form :

Φ(x, t, r) = Φ(0)(ω,k, r)e−i(ωt−k·x) + Φ(1)(ω,k, ω(h),k(h), r)e
−i((ω+ω(h))t−(k+k(h))·x).(3.45)

The equilibium part of the solution isΦ(0)(ω,k, r) and the non-equilibrium part isΦ(1)(ω,k, ω(h),k(h), r).

The non-equilibrium part does not depend on the combinationω + ω(h) andk + k(h) as the

space-time translational invariances of the equilibrium background are broken explicitly by

the hydrodynamic quasinormal modes.

If the scalar fieldΦ is minimally coupled to gravity, and its mass and charge arem and

q respectively, the equation of motion of the equilibrium part is simply

✷
ARN
ω′,k′ δ(ω′ − ω)δ2(k′ − k)Φ(0)(ω,k, r) = 0, (3.46)

where✷ARN
ω,k is the (gauge-invariant) Laplacian in the AdS Reissner-Nordstorm background
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metric (3.30) and gauge field (3.32) as given by :

✷
ARN
ω,k = r2f

(rr0
l2

)

∂2
r + r

[

− 2f
(rr0
l2

)

+
rr0
l2

f ′

(rr0
l2

)]

∂r

+ r2l2
[(ω + qµ

(
1− rr0

l2

)
)2

f
(

rr0
l2

) − k2

]

+m2l2. (3.47)

Again, f is the blackening function of the AdS Reissner-Nordstorm black brane which

vanishes at the horizon located atr = l2/r0.

With the metric and gauge field in presence of hydrodynamic shear perturbation given

by (3.37) and (3.40) respectively, the equation of motion for the non-equilibrium part up to

first order in the hydrodynamic momentak(h) is :

✷
ARN
ω′,k′ δ(ω′ − ω − ω(h))δ

2(k′ − k− k(h))Φ
(1)(ω, ω(h),k,k(h), r) = V (ω, ω(h),k,k(h), r)

Φ(0)(ω,k, r), (3.48)

with

V = V1 + V2,

V1 =
2r2

f
(

rr0
l2

)

(

ω
(

1− f
(rr0
l2

))

+ qµ
(

1− rr0
l2

))

δu(ω(h),k(h)) · k,

V2 = i
2l2r2

3r0
h
(rr0

l2

)

kikjk(h)iδuj(ω(h),k(h)). (3.49)

Above,h gives the hydrodynamic correction to the background metricwhich is propor-

tional tok(h)iδuj + (i ↔ j) as in (3.38).

The behavior of the general solution ofΦ(0)(ω,k, r) near the horizon is well-known. It

can be split into an incoming and outgoing wave as below :

Φ(0)(ω,k, r) ≈ Ain(ω,k)

(

1− rr0
l2

)−i ω
4πT

+ Aout(ω,k)

(

1− rr0
l2

)i ω
4πT

(3.50)

nearr = l2

r0
.

In order to select the incoming wave, we should put

Aout(ω,k) = 0. (3.51)
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We can also normalize the overall solution by choosing

Ain(ω,k) = C, (3.52)

with C being a numerical constant. This overall normalization will play no role in the

Green’s functions.

The behavior of the general non-equilibrium part of the solution near the horizon is :

Φ(1)(ω, ω(h),k,k(h), r) ≈ Ain(ω, ω(h),k,k(h))

(

1− rr0
l2

)−i
ω+ω(h)
4πT

+Aout(ω, ω(h),k,k(h))

(

1− rr0
l2

)i
ω+ω(h)
4πT

+iC
(

4πT l2

r0

)2(

2

9
(

1− r4∗
r40

)2

)

ωδu(ω,k(h)) · k
(2ω + ω(h))ω(h)

(

1− rr0
l2

)−i ω
4πT

,

(3.53)

nearr = l2

r0
.

The first two terms on the RHS above are the homogeneous incoming and outgoing

solutions for frequency modeω + ω(h). The third term is the particular solution which is

determined completely by the equilibrium solution. The above behavior at the horizon is

exact up to first order ink(h). In fact the full general solution which reproduces the above

can be given elegantly in an integral representation as in appendix B.

Obviously, we need to impose the incoming boundary condition again. Therefore,

Aout(ω, ω(h),k,k(h)) = 0. (3.54)

We will now show that in order to impose regularity at the horizon, we also need to

dispose of the ingoing non-equilibrium homogeneous solution at the horizon. We recall

that finally we need to integrate overω(h).

In order to be consistent with the derivative expansion,Ain(ω, ω(h),k,k(h)) must take

the form as follows. It is proportional to components ofδu at the linear order as it should

vanish in absence of the background perturbation. It’s dependence onω(h) andk(h) can be

expanded systematically in terms of rotationally invariant scalars likeδu · k, kikjk(h)iδuj,
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ω(h)kikjk(h)iδuj, etc. Up to first order in the derivative expansions only the first two scalars

will apear. The coefficients of these scalars should be functions ofω andk only, as the

depenedence onω(h) andk(h) can be absorbed in coefficients of the scalars appearing at

higher orders in the derivative expansion. Thus, up to first order in derivative expansion,

we should have :

Ain(ω, ω(h),k,k(h)) = Ain
1 (ω,k) δu(ω(h),k(h)) · k + Ain

2 (ω,k) kikjk(h)iδuj(ω(h),k(h)).

(3.55)

We recall for the hydrodynamic shear modeδu · k(h) = 0, so there is no more possible

terms up to first order ink(h). When we integrate overω(h), the Fourier transform ofδu as

given by (3.44) will give a pole contribution. Taking this into account the behavior of the

ingoing non-equilibrium mode at the horizon will be :

(

1− rr0
l2

)−i ω
4πT

−
k
2
(h)

16π2T2

. (3.56)

Therefore, we find the ingoing homogeneous non-equilibriummode diverges at the horizon

ask2
(h)/(16π

2T 2) is strictly positive. This divergence is not an artifact of the coordinate

system because we are studying the behavior of a scalar field.The only way this divergence

can be removed is by putting

Ain(ω, ω(h),k,k(h)) = 0, i.e.Ain
1 (ω,k) = Ain

2 (ω,k) = 0. (3.57)

The particular solution at the horizon as defined as the thirdterm in (3.53) produces no

divergence after we do the integral overω(h). It is regular at and outside the horizon.

Summing up, the full solution with the non-equilibrium correction is the following :

Φ(x, t, r) ≈ C
((

1− rr0
l2

)−i ω
4πT

e−i(ωt−k·x) + i

(

4πT l2

r0

)2(

2

9
(

1− r4∗
r40

)2

)

ωδu(ω,k(h)) · k
(2ω + ω(h))ω(h)

(

1− rr0
l2

)−i ω
4πT

e−i((ω+ω(h))t−(k+k(h))·x)

)

, (3.58)

nearr = l2

r0
.

The above behavior when specified near the horizon uniquely fixes the full non-equilibrium
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solution aside for an overall normalizationC.

We can numerically extrapolate the full solution all the wayto the boundaryr = 0. As

the background is asymptoticallyAdS, we should have the following behavior :

Φ(x, t, r) ≈ J(x, t)r3−∆ +O(x, t)r∆ nearr = 0. (3.59)

By the holographic dictionary,J is indeed the source andO is the expectation value of the

dual operator in the dual non-equilibrium state7. Also,∆ is the scaling dimension of the

dual operator given by the mass of the scalar field as below :

∆ =
3

2
+

√

9

4
+m2l2. (3.60)

The positivity of the Hamiltonian requiresm2l2 > −9/4 [38].

Furthermore, nearr = 0, the equilibrium and non-equilibrium parts of the solution

individually have the same behavior, so

Φ(0)(ω,k, r) ≈ J (0)(ω,k)r3−∆ +O(0)(ω,k)r∆,

Φ(1)(ω, ω(h),k,k(h), r) ≈ J (1)(ω, ω(h),k,k(h))r
3−∆ +O(1)(ω, ω(h),k,k(h))r

∆

. (3.61)

Therefore,

J(x, t) = J (0)(ω,k)e−i(ωt−k·x) +

∫
∞

−∞

dω(h)J
(1)(ω, ω(h),k,k(h))e

−i((ω+ω(h))t−(k+k(h))·x),

O(x, t) = O(0)(ω,k)e−i(ωt−k·x) +

∫
∞

−∞

dω(h)O
(1)(ω, ω(h),k,k(h))e

−i((ω+ω(h))t−(k+k(h))·x)

. (3.62)

The unique solution ofΦ(1) with our prescribed behavior near the horizon (3.58) gives

us the precise non-equilibrium contributions to both the operator and the source in the

7When−9/4 < m2l2 < −5/4, we can do an alternate quantization whereJ can be interpreted as
the expectation value andO as the source [37]. This requires the scaling dimension of the operator to be
∆ = 3/2−

√

9/4 +m2l2. The partition functions of the two theories are related by aLegendre transform.
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following form :

O(1)(ω, ω(h),k,k(h)) = O
(1)
A

(

ω,k
)

δu(ω(h),k(h)) · k + O
(1)
B

(

ω,k
)

kikjk(h)iδuj(ω(h),k(h)),

J (1)(ω, ω(h),k,k(h)) = J
(1)
A

(

ω,k
)

δu(ω(h),k(h)) · k + J
(1)
B

(

ω,k
)

kikjk(h)iδuj(ω(h),k(h)).

(3.63)

The explicit forms ofO(1)
A , O(1)

B , J (1)
A and J

(1)
A can be obtained as in appendix B. The

integration overω(h) then will be given by the contribution from the pole inδu.

The non-equilibrium retarded correlator is8:

GR(x1, t1,x2, t2) =
O(x1, t1)

J(x2, t2)
= e−iω(t1−t2)eik·(x1−x2)

O(0)(ω,k) +O(1)(ω,k,k(h))e
ik(h)·x1e−

k
2
(h)

4πT
t1

J (0)(ω,k) + J (1)(ω,k,k(h))eik(h)·x2e−
k2(h)
4πT

t2

≈ e−iω(t1−t2)eik·(x1−x2)
O(0)(ω,k)

J (0)(ω,k)
(

1 +

(

O(1)(ω,k,k(h))

O(0)(ω,k)
eik(h)·x1e−

k
2
(h)

4πT
t1

−J (1)(ω,k,k(h))

J (0)(ω,k)
eik(h)·x2e−

k
2
(h)

4πT
t2

))

,

(3.64)

where

O(1)(ω,k,k(h)) = O
(1)
A

(

ω,k
)

δu(k(h)) · k + O
(1)
B

(

ω,k
)

kikjk(h)iδuj(k(h)),

J (1)(ω,k,k(h)) = J
(1)
A

(

ω,k
)

δu(k(h)) · k + J
(1)
B

(

ω,k
)

kikjk(h)iδuj(k(h)). (3.65)

The difference of the above from (3.63) is that inδu which has no dependence inω(h).

The latter has been integrated over. This integration produces the contribution from the

diffusion pole and the residue has been obtained from (3.44).

Clearly, the choice of overall normalization of the solution given byC in (3.58) does

not matter as mentioned before. It cancels between the numerator and denominator in the
8At equilibrium, this prescription has been proposed in [22]. As noted in the Introduction, we can apply

this prescription also at non-equilibrium using the validity of linear response theory.
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retarded correlator. To readily compare with experimentaldata, we have to do the Wigner

transform of the retarded correlator, as discussed before.We find

GR(ω,k,x, t) =

∫

dω0

∫

d2k0

[

O(0)(ω0,k0)

J (0)(ω0,k0)
δ(ω − ω0)δ

2(k− k0)

−O(0)(ω0,k0)

J (0)(ω0,k0)

1

2πi

(

O(1)(ω0,k0,k(h))

O(0)(ω0,k0)
δ2
(

k− k0 −
k(h)

2

) 1
(

ω − ω0 + i
k2

(h)

8πT

)

−J (1)(ω0,k0,k(h))

J (0)(ω0,k0)
δ2
(

k− k0 +
k(h)

2

) 1
(

ω − ω0 − i
k2

(h)

8πT

)

)

eik(h)·xe−
k
2
(h)

4πT
t

]

.

(3.66)

The first term above is just the equilibrium retarded propagator. The second and third

terms are the non-equilibrium contributions. The non-equilibrium contributions have an

explicit space-time dependencewhich is co-moving with the velocity perturbation in the

background.

The spectral function can be obtained from the imaginary part of the retarded propaga-

tor by usingA(ω,k,x, t) = −2ImGR(ω,k,x, t).

3.2.2 Fermionic field equations and the non-equilibrium spectral func-

tion

We will now extend the prescription to obtain the non-equilibrium fermionic spectral func-

tion. We begin by constructing the equation of motion for a Dirac spinor explicitly in the

same non-equilibrium background, which isAdS4 Reissner-Nordstorm black hole with a

hydrodynamic shear-mode perturbation.

We recall that the Dirac equation for a Dirac spinor of mass m and charge q in curved

space is :
(

eMA ΓA

(

∂M +
1

8
ωBC
M [ΓB,ΓC] + iqAM

)

+m

)

Ψ = 0, (3.67)

whereM are the space-time indices, andA, B andC are the tangent space indices col-

lectively. We will denote tangent space indices with underlines as in(r, t, x, y) or more
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compactly as(r, µ) to distinguish from the space-time indices which will not beunderlined

as in(r, t, x, y) or (r, µ).

In order to work with the holographic dictionary, it is convenient to choose the following

representation for Gamma matrices [23]:

Γr =

(

1 0

0 −1

)

, Γµ =

(

0 γµ

γµ 0

)

, (3.68)

whereγµs are the2 + 1 dimensional Gamma mtrices in a chosen representation. We will

choose the latter in the following representation :

γt = iσ3, γx = σ1, γy = σ2. (3.69)

It is also useful to decompose the3+1 space-time dimensional Dirac spinor as eigenvectors

of Γ± defined as :

Γ± =
1

2

(

1± Γr
)

, (3.70)

so that

Ψ = Ψ+ +Ψ−, Ψ± = Γ±Ψ. (3.71)

The advantage of this decomposition is that bothΨ+ andΨ− transform as 3 space-time

dimensional Dirac spinors when the Gamma matrices are in therepresentation above.

It might be puzzling as to how a Dirac spinor in the bulk maps totwo Dirac spinors

in the boundary, but we note unlike the scalar field equation,the Dirac equation is first

order. Therefore, as in the case of the scalar field we have twoindependent boundary data,

corresponding toΨ+ andΨ− each. Eventually, we will see how these two boundary data

maps to source and expectation value of the dual operator, and further how they get related

to each other by regularity in the bulk giving us the dual fermionic retarded propagator.

Just as in the case of the scalar field, the space-time profile of the Dirac spinor also

has an equilibrium and non-equilibrium part. We can first assume that the equilibrium part

is in a specific(ω,k) mode and determine the non-equilibrium correction to this.Later,

we can obtain the most general solution by superimposing thefull solutions corresponding

to various equilibrium modes. The space-time profile of the Dirac spinor thus takes the
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following form :

Ψ(x, t, r) = Ψ(0)(ω,k, r)e−i(ωt−k·x) +Ψ(1)(ω,k, ω(h),k(h), r)e
−i((ω+ω(h))t−(k+k(h))·x),

(3.72)

whereΨ(0) is the equilibrium part,Ψ(1) is the non-equilibrium part, and(ω(h),k(h)) corre-

spond to the frequency and momenta of the velocity field perturbation in the background.

From now on, we will denote(ω,k) collectively ask, and(ω(h),k(h)) collectively ask(h).

The equations of motion forΨ can be written as two coupled first order PDEs forΨ±.

It will be convenient for us to decouple these PDEs and write asecond order PDE forΨ+.

It will turn out thatΨ− will be then algebraically determined byΨ+. For the equilibrium

AdS4 Reissner-Nordstorm black brane background, this has been done in [14]. Following

this, we write the equations of motion forΨ(0)
± as below :

(

∂2

∂r2
+ P (k, r)

∂

∂r
+Q(k, r)

)

Ψ
(0)
+ (k, r) = 0,

Ψ
(0)
− (k, r) = − /T k

T 2
k

(

∂

∂r
+A+

)

Ψ
(0)
+ (k, r),

(3.73)

where

P (k, r) = A+ +A− − r0
l2

/T
′

k

/T k

T 2
k

,

Q(k, r) = A+A− +
r0
l2
A+′ − r0

l2
/T
′

k

/T k

T 2
k

A+ + T 2
k , (3.74)

and

A± = − 1

2 r

[

3−
r f ′

(
r r0
l2

)

2 f
(

r r0
l2

)
r0
l2

]

± l

r

√

f
(

r r0
l2

)m,

/T k =
i

f
(

r r0
l2

)

[

(−ω + q A
(0)
t ) γt +

√

f
(r r0

l2

)

ki γ
i
]

, (3.75)

with ′ denoting differentiation w.r.t.rr0/l2, A
(0)
t representing the equilibrium configuration
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of the gauge field andT 2
k is /T k /T k.

In order to obtain the equations of motion forΨ
(1)
± we need to obtain the non-equilibrium

first order corrections to the vielbeins and spin connections in the derivative expansion.

These are given in details in appendix C with the metric being(3.37) corresponding to the

black brane perturbed by the hydrodynamic shear mode.

In order to simplify calculations, we will choose (without losing any generality) the

momentum of the velocity field perturbationk(h) in the background to be in thex direc-

tion; therefore the velocity perturbationδu being transverse should then be in they direc-

tion. Later, we can make the results manifestly rotationally covariant by rotating, and also

Lorentz covariant by boosting to an arbitrary frame. The momentum of the equilibrium

part ofΨ of course can have arbitrary components in bothx andy directions if we have to

retain full generality.

The equations of motion ofΨ(1) are as follows :

(

∂2

∂r2
+ P (k′, r)

∂

∂r
+Q(k′, r)

)

δ3(k̄) Ψ
(1)
+ (k, k(h), r) =

(

∂

∂r
+A− − r0

l2
/T
′

k+k(h)

/T k+k(h)

T 2
k+k(h)

)

S+(k, k(h), r)

−/T k+k(h)
S−(k, k(h), r),

δ3(k̄)Ψ
(1)
− (k, k(h), r) = − /T k′

T 2
k′

(

∂

∂r
+A+

)

δ3(k̄)

Ψ
(1)
+ (k, k(h), r)

+
/T k+k(h)

T 2
k+k(h)

S+(k, k(h), r), (3.76)

wherek̄ = k′ − k − k(h) and

S+(k, k(h), r) = −X+(k(h), r)Ψ
(0)
+ (k, r)−Y(k(h), r)Ψ

(0)
− (k, r)

S−(k, k(h), r) = −X−(k(h), r)Ψ
(0)
− (k, r)−Y(k(h), r)Ψ

(0)
+ (k, r) (3.77)

with

X±(k(h), r) = ∓1

2

(

E(k(h), r) γ
t γy −F(k(h), r) γ

xγy
)

,

Y(k(h), r) =
1

2

(

B(k(h), r) γ
y − C(k(h), r) γ

tγxγy
)

+ G(k(h), r) γ
t +H(k(h), r)γ

x.

(3.78)
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B, C, E , F , G,H are given in terms of the inverse vielbeins and the spin connections as

B(k(h), r) =
l

r

√

f
(

rr0
l2

)

(

2i q eyy Ay + 2i q ety At + ett ω
ty

t + 2 i ω ety − 2 i kx e
x
y

)(1)

C(k(h), r) =
l

r

√

f
(

rr0
l2

)

(

− ett ω
xy

t − exx ω
ty
x + eyy ω

tx
y

)(1)

E(k(h), r) =
l

r

√

f
(

rr0
l2

)

(

− ett ω
yr

t − eyy ω
tr
y + err ω

ty
r − ety ω

tr
t − eyt ω

yr
y

)(1)

F(k(h), r) =
l

r

√

f
(

rr0
l2

)

(

exx ω
yr
x − eyy ω

xr
y − exy ω

xr
x + eyx ω

yr
y

)(1)

G(k(h), r) =
l

r

√

f
(

rr0
l2

)

(

− i ky e
y
t

)(1)

H(k(h), r) =
l

r

√

f
(

rr0
l2

)

(

− i ky e
y
x

)(1)

(3.79)

Here(· · · )(1) means that we are extracting only those parts of the full expression which

is first order (i.e. linear) ink(h). Once again we mention that the exact expressions of the

inverse vielbeins (or einbeins) and spin connections appearing above are given in appendix

C exactly up to first order ink(h).

The most important observation regarding the equation of motion for Ψ(1) is that just

as in the case ofΨ(0), as evident from (3.76),Ψ(1)
+ can be determined first by solving a

second order ODE andΨ(1)
− can be determined algebraically in terms of the solution for

Ψ+. Therefore to uniquely specifyΨ(1) it is sufficient to uniquely specifyΨ(1)
+ . Moreover,

the differential operator on the LHS of the equation of motion (3.76) forΨ(1)
+ is the same

as that forΨ(0)
+ in (3.73) withk replaced byk+k(h). Therefore, the homogeneous solutions

of Ψ(1)
+ will be the same as those ofΨ(0)

+ with k replaced byk + k(h).

The general behavior of the equilibrium part of the solutionΨ
(0)
+ at the horizonr =
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l2/r0 is

Ψ
(0)
+ (ω,k, r) ≈ Ain

+ (ω,k)
(

1− rr0
l2

)−i ω
4πT

−
1
4
+ Aout

+ (ω,k)
(

1− rr0
l2

)i ω
4πT

−
1
4
.(3.80)

BothAin
+ andAout

+ are arbitrary linear combinations of

(

1

0

)

and

(

0

1

)

.

The incoming wave boundary condition requires us to impose

Aout
+ (ω,k) = 0. (3.81)

Furthermore, the choice ofAin
+ (ω,k) will not matter in the final answer for the retarded

propagator, so we will choose

Ain
+ (ω,k) =

(

K
0

)

(3.82)

with K being a constant. The behavior ofΨ
(0)
− near the horizon can be obtained via the

second algebraic equation of (3.73) as below :

Ψ
(0)
− (ω,k, r) ≈ −γt

(

1− rr0
l2

)−i ω
4πT

−
1
4

(

K
0

)

. (3.83)

ThusΨ(0)
− is also incoming at the horizon and isΨ(0)

+ times a specific function of the fre-

quency and momenta.

It is to be noted that the incoming wave solution of the fermion diverges at the horizon

as well. That this divergence is not an artifact of choice of coordinates can be seen by

computing the scalarΨΨ at the horizon. In fact, it is believed that the fermion backreaction

at the horizon is strong enough to change the near horizon geometry of the black brane [39].

As mentioned in the beginning of this section, we will assumehere that the backreaction is

suppressed by a factor ofO(1/N2) 9.

We now turn our attention to the non-equilibrium part of the solution. From, the first

9At orderO(1/N2) we cannot ignore the backreaction even in the linearized limit. This is because the
scalar and fermionic fields have non-trivial profiles even inthe background due to Hawking radiation. Par-
ticularly, the Hawking radiated fermions forms a Fermi-seain the near-horizon region of theAdS Reissner-
Nordstorm black hole.
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equation in (3.76) we obtain that near the horizon,Ψ
(1)
+ behaves as :

Ψ
(1)
+ (ω,k, ω(h),k(h), r) ≈ Ain

+ (ω,k, ω(h),k(h))
(

1− rr0
l2

)−i
ω+ω(h)
4πT

−
1
4

+Aout
+ (ω,k, ω(h),k(h))

(

1− rr0
l2

)i
ω+ω(h)
4πT

−
1
4

+α(ω,k, ω(h),k(h))
(

1− rr0
l2

)−i ω
4πT

−
3
4

(

K
0

)

,

α(ω,k, ω(h),k(h)) =

√
r0
πT

(ω(h)(3iπT − ω + ω(h))− 2(π2T 2 + ω2))

8 (3πT + iω) (7πT + iω)
δuy(k(h))γ

tγy.

(3.84)

when we have chosen the incoming wave boundary condition andour normalization for

Ψ
(0)
+ . Thus we have again two arbitrary coefficients for the incoming and outgoing ho-

mogeneous solutions at2 + 1 momentak + k(h), and then we have a particular solution

completely determined by the source term.

We now apply a similar logic as in the case of the scalar field. We putAout in (3.84)

to be zero again to satisfy the incoming boundary condition.In order to be consistent

with the derivative expansion,Ain has to linear combinations ofδu(ω(h),k(h)) · k and

kikjk(h)iδuj(ω(h),k(h)) with coefficients which are functions ofω andk only. The inte-

gration overω(h) in presence ofδu will give contribution from the diffusion pole which will

cause a further singularity in the behavior of the fermionicfield. This singularity involves

an extra factor of
(

1− rr0
l2

)−
k
2
(h)

16π2T2

.

So we putAin to be zero too. There is however, a difference in the behaviorof the particular

solution near the horizon from the scalar case, as evident from (3.84). It diverges at the

horizon with an extra factor of
(

1− rr0
l2

)−
1
2

.

The situation, therefore admittedly is confusing as both the incoming homogeneous solu-

tion and the particular solution are divergent by an extra power. Moreover, for sufficiently
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small hydrodynamic momentak(h), the divergence of the particular solution leads over that

of the incoming homogeneous solution.

Nevertheless, we can argue as follows. When we take the backreaction into account, the

part of the non-equilibrium solution completely determined by the source can be expected

to be regular, as the source involving the regular equilibrium solution in the modified back-

ground will be regular in the next order in perturbation. This feature is observed in the case

of fluid/gravity correspondence or for more general time-dependent solutions in gravity - if

we make the solution regular up ton−th order in perturbation theory, the source terms in

the equations forn + 1−th order perturbations are also regular, and the divergences at the

n + 1−th order can be removed by adjusting the homogeneous solutions only [5, 29].

In the present case, we will argue that the divergence of the incoming homogeneous

piece coming from the integration overω(h) is there as long as the backreacted background

has a horizon at the zeroth order. If indeed there is a horizon, we can define an incoming

wave also through geometrical optics approximation. We cancertainly construct an appro-

priate function ofr which we denote asr∗(r) such that the incoming radial null geodesic

at the (modified) horizon is :

v = t− r∗(r).

Clearlyr∗(r) has to increase indefinitely asr moves towards the horizon because of blue-

shifting. The incoming wave at the horizon will always behave like :

≈ e−i(ω+ω(h))v

as the geometrical optics approximation is always good at the horizon due to the blue-

shifting. Therefore, as long as the backreacted geometry still has a horizon, the integration

overω(h) will produce a divergent factor :

(r∗(r))
k
2
(h)

16π2T2 .

Above we have used the result that the hydrodynamic dispersion relation up to the leading

order remains the same in the presence of backreaction asη/s is universally1/4π in Ein-

stein’s gravity minimally coupled to any form of matter [40]. Therefore, this divergence is

not removable by backreaction as long as we do not get rid of the horizon completely.

Getting rid of the horizon is generically impossible if we demand that the solution

in gravity is well behaved, as that would expose the singularity unless the latter is also
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removed by the backreaction. The removal of singularity by back-reaction is impossible in

Einstein’s gravity minimally coupled to well-behaved matter. It is also hard to argue that

solutions in gravity with naked singularities could be dualto states in thermal and chemical

equilibrium in the dual theory.

We conclude that the sensible thing to do is to proceed as in the case of the scalar

field and putbothAin andAout to zero in the non-equilibrium part of the solution. This

determinesΨ(1)
+ completely and its behavior near the horizon is :

Ψ
(1)
+ (ω,k, ω(h),k(h), r) =

√
r0
πT

(ω(h)(3iπT − ω + ω(h))− 2(π2T 2 + ω2))

8 (3πT + iω) (7πT + iω)
δuy(k(h))γ

tγy

(

1− rr0
l2

)−i ω
4πT

−
3
4

(

K
0

)

+ sub-leading terms. (3.85)

OnceΨ(1)
+ is completely specified as above, we can determineΨ

(1)
− readily from the second

equation in (3.76) as it is algebraic. The behavior near the horizon is given by :

Ψ
(1)
− (ω,k, ω(h),k(h), r) =

√
r0
πT

(2πiT − 2ω + ω(h)) (19π
2T 2 + 11iπTω − 2ω2 + ω(h)(2iπT − ω))

8 (3πT + iω) (7πT + iω) (ω + ω(h))

δuy(k(h))γ
y
(

1− rr0
l2

)−i ω
4πT

−
3
4

(

K
0

)

+ sub-leading terms. (3.86)

We can integrate numerically from the horizon and find the full profile of Ψ± (both equi-

librium and non-equilibrium parts included) all the way up to the boundary.

At the boundary, the behavior ofΨ± is specified completely by theAdS4 asymptotic

nature of the background. Whenm ≥ 0, the behavior ofΨ+ at the boundary is :

Ψ+(k, k(h), r) ≈
(

J (0)(k)+J (1)(k, k(h))
)

r3−∆+
(

M(0)(k)+M(1)(k, k(h))
)

r∆+1, (3.87)

with ∆ being the scaling dimension of the dual operator and is related to the mass of the

fermionic field by :

∆ =
3

2
+ml. (3.88)

ClearlyJ (0) andM(0) are determined byΨ(0)
+ , andJ (1) andM(1) are determined byΨ(1)

+ .
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Similarly, the behavior ofΨ− at the boundary form ≥ 0 andm 6= 1/2l is :

Ψ−(k, k(h), r) ≈
(

N (0)(k) +N (1)(k, k(h))
)

r4−∆ +
(

O(0)(k) +O(1)(k, k(h))
)

r∆. (3.89)

Whenm = 1/2l, the leading powers of the homogeneous solutions above become the

same. The behavior ofΨ− at the boundary is then given by :

Ψ−(k, k(h), r) ≈
(

N (0)(k) +N (1)(k, k(h))
)

r2ln r +
(

O(0)(k) +O(1)(k, k(h))
)

r2. (3.90)

AsΨ− is determined byΨ+ algebraically, we get

O(k, k(h)) = −iγ · k
k2

(2m+ 1)M(k, k(h)), N (k, k(h)) =
iγ · k

(2m− 1)
J(k, k(h)),

γ · k = γµkµ, k2 = kµkµ, (3.91)

whereO = O(0)+O(1), etc. Thus we have just two independent boundary data correspond-

ing to the fermionic source and expectation value of the fermionic operator dual to the field.

The holographic dictionary indeed identifiesJ as the source andO as the expectation value

of the operator whenm ≥ 0 [23]. Both these are fixed up to an overall normalization

constant by the incoming boundary condition at the horizon and our regularity argument.

Changing the sign ofm is equivalent to interchangingΨ+ with Ψ− [23]. Consequently

J gets interchanged withO, andM gets interchanged withN 10. Whenm < 0, the scaling

dimension of the dual operator is given by :

∆ =
3

2
−ml. (3.92)

Once the solution in the bulk is determined, the source and the expectation value of the

fermionic operator get related by a matrixD :

J
(

ω,k, ω(h),k(h)

)

= D
(

ω,k, ω(h),k(h)

)

O
(

ω,k, ω(h),k(h)

)

. (3.93)

Clearly D is independent of the choice ofAin
+ for the equilibrium solution as we have

10When0 ≤ |m| < 1/2l we can also do an alternate quantization in whichO is interpreted as the source
andJ as the expectation value. This requires the scaling dimension of the dual fermionic operator to be
∆ = 3/2− |m|l. The partition functions of the two theories are related by aLegendre transform.
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claimed earlier. The retarded propagator is given by [23]:

GR

(

ω,k, ω(h),k(h)

)

= iD
(

ω,k, ω(h),k(h)

)

γt. (3.94)

Furthermore, as the non-equilibrium part of the solution iscompletely determined by

the equilibrium part of the solution, we can compute the relations :

O(1)
(

ω,k, ω(h),k(h)

)

= RA

(

ω, ω(h),k,k(h)

)

O(0)(ω, k),

J (1)
(

ω,k, ω(h),k(h)

)

= RB

(

ω, ω(h),k,k(h)

)

J (0)(ω,k). (3.95)

AboveRA andRB are fully determined by our boundary conditions onΨ
(1)
+ at the horizon.

They take the form :

RA

(

ω, ω(h),k,k(h)

)

= RAA

(

ω,k
)

δu(ω(h),kh) · k+RAB

(

ω,k
)

kikjk(h)iδuj(ω(h),k(h)),

RB

(

ω, ω(h),k,k(h)

)

= RBA

(

ω,k
)

δu(ω(h),kh) · k+RBB

(

ω,k
)

kikjk(h)iδuj(ω(h),k(h)).

(3.96)

By going through the steps as in the case of the scalar field, wecan easily see that the

generalization of the form of the bosonic non-equilibrium retarded propagator (3.66) to the

fermionic case is :

GR(ω,k,x, t) = i

∫

dω0

∫

d2k0

[

D(0)(ω0,k0)γ
tδ(ω − ω0)δ

2(k− k0)

− 1

2π

(

D(0)(ω0,k0)γ
tRA

(

ω0,k0,k(h)

)

δ2
(

k− k0 −
k(h)

2

) 1
(

ω − ω0 + i
k2

(h)

8πT

)

−RB

(

ω0,k0,k(h)

)

D(0)(ω0,k0)γ
tδ2
(

k− k0 +
k(h)

2

) 1
(

ω − ω0 − i
k2

(h)

8πT

)

)

eik(h)·xe−
k
2
(h)

4πT
t

]

(3.97)
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where

RA

(

ω,k,k(h)

)

= RAA

(

ω,k
)

δu(kh) · k +RAB

(

ω,k
)

kikjk(h)iδuj(k(h)),

RB

(

ω,k,k(h)

)

= RBA

(

ω,k
)

δu(kh) · k+RBB

(

ω,k
)

kikjk(h)iδuj(k(h)). (3.98)

The first line in (3.97) denotes the equilibrium correlator and the lines below are the non-

equilibrium contributions co-moving with the background velocity perturbation. The dif-

ference between (3.98) and (3.96) is that the integration overω(h) has kept only the residue

of the diffusion pole in the Fourier transform ofδu given by (3.44).

Once again the spectral function can be obtained by computing the imaginary part of

the retarded propagator above and usingA(ω,k,x, t) = −2Im
(

Tr(γtGR(ω,k,x, t))
)

.

3.2.3 Generalization to backgrounds with other quasinormal modes

The prescription we have presented so far is for the non-equilibrium retarded propagator in

the hydrodynamic shear-wave background. We will now show that this prescription with

its underlying logic can be readily generalized to any background which is a quasinormal

mode fluctuation of the black brane geometry.

The key observations are as follows :

1. Even if the horizon fluctuates in presence of the non-equilibrium energy-momentum

and charge current fluctuations in the dual state, i.e. the metric and gauge field quasi-

normal modes in the background, in the perturbation expansion, we need to apply the

incoming boundary condition and regularity only at the radial location of the horizon

at late time, which in our coordinates is always atr = l2/r0.

2. The quasinormal modes always have a negative imaginary part in their dispersion

relation, so the pole in the complex frequency plane of the background perturbation

will always be in the lower half plane.

The first point above makes sure that we can always write the non-equilibrium part of

the solution as the incoming and outgoing homogeneous solutions plus a particular solution

completely specified by the source at the horizon exactly as in the case of the hydrodynamic

shear mode. The second point will imply that integration over the background frequency

will produce a divergence at the horizon unless we put the coefficients of both the incom-

ing and outgoing parts of the non-equilibrium part of the solution to zero. Therefore, the
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non-equilibrium part of the solution is completely determined by the equilibrium part of

the solution for any background quasinormal mode. We can thus simply repeat the exer-

cise as we have done for the hydrodynamic shear-mode perturbation to obtain the retarded

propagator for any background quasinormal perturbation.

One may wonder if our prescribed solution at the horizon involving the specific particu-

lar solution is itself regular at the horizon. We have checked this is always so for the scalar

field. In case of the fermionic field, we can repeat the arguments we have made in case of

the hydrodynamic shear-mode.

For instance, let us consider a quasinormal mode for metric perturbation in the tensor

channel with momentumk(b) = 0. The frequency will be complex with a negative imagi-

nary part as in (3.28). The explicit metric and gauge field forsuch a spatially homogeneous

perturbation is as in (3.41). We can check that our prescribed non-equilibrium solution for

the scalar field dies down at the horizon due to the factors :

(

1− rr0
l2

)n
(

ln
(

1− rr0
l2

)
)m

multiplying the equilibrium incoming wave solution withn andm being positive integers
11.

The general dispersion relation for a quasi-normal mode maybe written as :

ω(b)(k(b)) = ωR(b)(k(b))− iωI(b)(k(b)), with ωI(b)(k(b)) > 0. (3.99)

Also bothωR(b) andωI(b) admit Taylor expansion ink(b) (and do not vanish whenk(b) = 0).

11This can checked by expandingh̃(s, ω(n)) in (3.41) inω(n). Though this expansion as noted before is
dangerous for seeing manifest regularity of the metric, it does good job for analyzing the behavior of the
scalar field in the perturbed background.
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The bosonic retarded propagator will take the following form in such a background :

GR(ω,k,x, t) =

∫

dω0

∫

ddk0

[

O(0)(ω0,k0)

J (0)(ω0,k0)
δ(ω − ω0)δ

2(k− k0)

−O(0)(ω0,k0)

J (0)(ω0,k0)

1

2πi

(

O(1)(ω0,k0,k(b))

O(0)(ω0,k0)
δ2
(

k− k0 −
k(b)

2

)

1
(

ω − ω0 − 1
2

(

ωR(b)(k(b))− iωI(b)(k(b))
))

−
J (1)

(

ω0,k0,k(b)

)

J (0)(ω0,k0)
δ2
(

k− k0 +
k(b)

2

)

1
(

ω − ω0 +
1
2

(

ωR(b)(k(b))− iωI(b)(k(b))
))

)

eik(b)·xe
−i

(

ωR(b)(k(b))−iωI(b)(k(b))

)

t

]

. (3.100)

The non-equilibrium part of the source and expectation values of the dual operators,J (1)(ω, ω(b),k,k(b))

and O(1)(ω, ω(b),k,k(b)) can be determined from the non-equilibrium part of the solu-

tion. J (1)(ω,k,k(b)) andO(1)(ω,k,k(b)) appearing in the retarded propagator above are the

residues ofJ (1)(ω, ω(b),k,k(b)) andO(1)(ω, ω(b),k,k(b)) respectively inω(b) atωR(b)(k(b))−
iωI(b)(k(b)). These will be linear in the hydrodynamic fluctuationsδui, δT , δρ and the non-

hydrodynamic fluctuationsδπ(nh)
ij , ν0 andν(nh)

i , and will have a systematic expansion in

k(b)
12.

12The Taylor expansion isk(b) always make sense near equilibrium as the perturbations areslowly varying
in space. However, all time derivatives need to be summed up for non-hydrodynamic perturbations at each
order in the amplitude andk(b) as the variation of these modes in time is not small even near equilibrium.
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Similarly, the fermionic non-equilbrium retarded propagator will take the general form:

GR(ω,k,x, t) = i

∫

dω0

∫

ddk0

[

D(0)(ω0,k0)γ
tδ(ω − ω0)δ

2(k− k0)

− 1

2π

(

D(0)(ω0,k0) γ
tRA

(

ω0,k0,k(b)

)

δ2
(

k− k0 −
k(b)

2

)

1
(

ω − ω0 − 1
2

(

ωR(b)(k(b))− iωI(b)(k(b))
))

−RB

(

ω0,k0,k(b)

)

D(0)(ω0,k0)γ
t δ2
(

k− k0 +
k(b)

2

)

1
(

ω − ω0 +
1
2

(

ωR(b)(k(b))− iωI(b)(k(b))
))

)

eik(b)·xe
−i

(

ωR(b)(k(b))−iωI(b)(k(b))

)

t

]

. (3.101)

RA andRB can be determined from the non-equilibrium part of the solution via the defin-

ing relations :

O(1)
(

ω,k, ω(b),k(b)

)

= RA

(

ω, ω(b),k,k(b)

)

O(0)(ω, k),

J (1)
(

ω,k, ω(b),k(b)

)

= RB

(

ω, ω(b),k,k(b)

)

J (0)(ω,k). (3.102)

RA(ω,k,k(b)) andRB(ω,k,k(b)) appearing in the retarded propagator above are the residues

of RA(ω, ω(b),k,k(b)) andRB(ω, ω(b),k,k(b)) respectively inω(b) atωR(b)(k(b))−iωI(b)(k(b)).

Both RA(ω,k,k(b)) andRB(ω,k,k(b)) will be linear in the hydrodyanamic fluctuations

δui, δT , δρ and the non-hydrodynamic fluctuationsδπ(nh)
ij , ν0 andν(nh)

i , and will have a

systematic expansion ink(b).

Thus we indeed obtain an universal form of the holographic non-equilibrium retarded

propagator (and hence the spectral function) in linearizednon-equilibrium backgrounds at

sufficiently late time.
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3.3 Non-equilibrium Fermi surface and dispersion rela-

tions

We will show here that our prescription for obtaining the non-equilibrium retarded correla-

tor gets a lot of support from field theoretic comparisons. Wewill begin with a brief review

of how we obtain non-equilibrium correlation functions in field theory. Then we will show

how our prescription reproduces the strongly coupled version of non-equilibrium dynamics

at the Fermi surface in Landau’s Fermi-liquid theory, and the non-equilibrium modifica-

tions of quasi-particle dispersion relations expected in field theory.

3.3.1 Comparison with field-theoretic approach

In field theory, there is no partition function which can playthe role of a generating func-

tional of non-equilibrium correlation functions. The way we obtain these is to construct a

generalized effective actionΓ (Ol(x), Gll′(x, y)) whose arguments are not only the expec-

tation value of the operator but also the two-point correlation functions of the operators.

Extremizing this leads us to obtain non-equilibrium correlation functions as functionals

of the expectation values of the operators in equilibrium and non-equilibrium states. The

crucial point is that the generalized effective action has no dependence on temperature or

other equilibrium/non-equilibrium parameters13. It is defined as a double Legendre trans-

form of a vacuum observable constructed over the Schwinger/Keldysh closed real time

contour as briefly reviewed in appendix D. Both equilibrium (temperature and chemical

potential dependent) and non-equilibrium dynamics of expectation values of operators and

their correlation functions can be derived by extremizing this generalized effective action.

At equilibrium, we can take an alternative route by constructing a generating functional of

thermal correlation functions as in vacuum, but in order to obtain non-equilibrium correla-

tion functions the use of the generalized effective action is indispensable.

We would like to mention here that the generalized effectiveaction not only allows us

to obtain the non-equilibrium two-point correlation functions, but it is also sufficient to

obtain the three, four and higher point correlation functions [18]. This is possible because

through the effective action, we know the two point correlation function as a functional

13This is also true for kinetic equations, like the Boltzmann equation. These equations do not depend on
temperature or non-equilibrium parameters, the latter parametrize equilibrium and non-equilibrium solutions
of these equations.
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of expectation values of operators, i.e. we know them not in one but in a manifold of

states. Furthermore, the effective action technique readily ensures that we satisfy Ward

identities. In practice, we need to make an uncontrolled buteducated approximation of the

effective action which allows us to obtain non-equilibriumdynamics of expectation values

of operators and their correlation functions. This has beensuccessful for instance in the

case of dilute cold non-relativistic Bose gases in optical traps [41], and in constructing a

quantum kinetic theory of hadrons for modeling their evolution after their chemical and

thermal freeze-out in the RHIC fireball [11].

The important point to note is that we can obtain the non-equilibrium correlation func-

tion by extremizing the effective action with respect to thecorrelation function first as

below :
δΓ (Ol, G

0
ll′(Ol))

δG0
ll′(x, y)

= 0. (3.103)

Thus we obtain the two point correlation functions as functionals of expectation values of

the operators. Here the time contour is the Schwinger-Keldysh closed real time contour,

so this determines both the statistical function and the retarded propagator (or the spec-

tral function). Further when we substitute the extremal forms of the two-point correlation

functions in the generalized effective action, we obtain the ordinary effective action, i.e.

Γ
(
Ol, G

0
ll′(Ol)

)
= Γ(Ol). (3.104)

Extremizing this further we obtain non-equilibrium dynamics of expectation values of op-

erators.

It is certainly interesting to see if we can construct a generalized effective action to

obtain non-equilibrium correlation functions in holography too. This will allow us to de-

termine the statistical function also and not the retarded propagator alone as we have done

here. However, we note two crucial points of our holographicprescription for obtaining

the retarded correlator (equivalently the spectral function).

1. Our prescription obtains the non-equilibrium retarded propagator as a functional

of the expectation value of the energy-momentum tensor and the charged current

parametrized byT , ρ, δT , δu, δρ, ν(nh)
i , ν0 andπ(nh)

ij .

2. The non-equilibrium part of the correlation function is determined completely by the

equilibrium part through universal rules at the horizon which do not depend on the

non-equilibrium state concerned. The rule simply involvesputting the homogeneous
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pieces of the non-equilibrium part of the solution of the bulk bosonic/fermionic field

to zero at the horizon.

Putting these together, we can see a parallel with field theory. In both approaches, we do

not need a specific rule for each non-equilibrium state, there is a universal rule which al-

lows us to extract the non-equilibrium correlation functions from observables defined at

equilibrium. In field theory the equilibrium temperature arises as the boundary condition

appearing in the far future. The generalized effective action as mentioned before is just

the double Legendre transform of an equilibrium observable, therefore non-equilibrium

dynamics can be obtained from equilibrium observables in field theory as well. Further-

more, our holographic prescription has the same measure of universality as the generalized

effective action to bring all non-equilibrium spectral functions under one fold at least in

perturbation theory.

The advantage of the holographic approach is that the late time behavior of the non-

equilibrium spectral function is reproduced automatically without any need for resumma-

tion. Thus we can do conventional perturbation theory.

3.3.2 Non-equilibrium dynamics at the Fermi-surface

It might have been a bit surprising that the logic of regularity required that we put the extra

boundary condition needed to determine the non-equilibrium part of the solution com-

pletely, at the horizon instead of at the boundary. It might seem that it would have been

more natural to suppose that the source does not fluctuate from it’s equilibrium value, so a

Dirichlet condition at the boundary would have been more justified. As we have already ar-

gued, this is not the case - the source gets screened or dressed by the collective excitations

present in the non-equilibrium state also. From the holographic perspective, the horizon

determines the screening/dressing of the source.

We will here give another holographic interpretation of thenon-equilibrium modifi-

cation of the source. This will further vindicate that we need to put the extra universal

boundary condition at the horizon and not at the boundary. That we have allowed the

source to fluctuate from it’s equilibrium value, is what willbring out the non-equilibrium

oscillation of the energy per particle at the Fermi surface and non-equilibrium shifts in the

quasi-particle dispersion relations.

A hallmark of Landau Fermi-liquid theory is that the collective modes as captured by

the Boltzmann equation leads to non-equilibrium dynamics at the Fermi surface. This
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dynamics is characterized byshifts in energy per quasi-particle at the Fermi surfaceδǫ at

a given direction̂n and at a given point in space and time in response to a local fluctuation

in occupation numbers of quasi-particles at the Fermi surface δn. Landau postulated the

following phenomenological relation [42]:

δǫ(kF n̂,x, t) = ǫ(kF n̂,x, t)− ǫ0(kF n̂) =
∑

n̂′

f(n̂, n̂′) δn(kF n̂
′,x, t), (3.105)

whereǫ0(kF n̂) is the equilibrium energy of a quasi-particle at the Fermi surface which is

justk2
F/2m

∗(T, µ) with m ∗ (T, µ) being the effective mass at the Fermi surface dependent

on temperature and chemical potential. The parametersf(n̂, n̂′) are phenomenological

inputs of the Landau model which can be obtained from field-theoretic two-point density

correlation functions. These phenomenological parameters determine all thermodynamic

and many non-equilibrium properties of Fermi liquids.

To obtain non-equilibrium properties one has to assume validity of Boltzmann equation

for δn. The equilibrium distributionn(0) is the Fermi-Dirac distribution at a fixed tem-

perature and chemical potential and is a trivial solution ofthe Boltzmann equation. Using

(3.105) and the Boltzmann equation, it can be shown that the fluctuationsδn follows :

∂δn(kF n̂,x, t)

∂t
+

kF n̂

m∗(T, µ)
· ∂δn(kF n̂,x, t)

∂x

+
∂n(0)(kF n̂, T, µ)

∂k
·
∑

n̂′

f(n̂, n̂′)
∂δn(kF n̂

′,x, t)

∂x

= I
(

n(0)(T, µ), δn(kF n̂,x, t)
)

(3.106)

in the linearized limit. AboveI captures the so-called quasi-particle collision kernel.

Studying this equation we can extract all collective excitations including the zero sound,

hydrodynamic shear-mode and non-hydrodynamic relaxationmodes. In order to obtain the

zero sound velocity, the collision kernel is not necessary but it is so in order to obtain the

viscosity and relaxation modes. Substituting a solution for δn in (3.105) we can obtain the

oscillation of the energy per particle at the Fermi surface.

The crucial point is that the oscillation is related locallyto the fluctuation in the occu-

pation number of the quasi-particles in (3.105). So, the oscillation in energy per particle at

the Fermi surface is in sync with the propagating collectiveexcitation.

We note that in non-equilibrium, we cannot obtain the changein energy at the Fermi-
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surface by looking at the spectral function alone. This is because the non-equilibrium

change in the spectral function comes from both (i) the shiftof the residue, and (ii) the shift

in the pole itself. We need to identify which part of the non-equilibrium contribution comes

from the shift in the residue and which part comes from the shift in the pole. Moreover, the

situation could be worse, as there can be non-equilibrium contributions which are simply

analytic near the location of the equilibrium Fermi surfaceand be neither the shift in the

residue nor shift of the pole.

In the holographic set-up, the Fermi surface(s) is related to the existence of normaliz-

able mode(s) of the bulk fermion field at zero frequency on a fixed momentum shell [13].

As the black brane retains rotational symmetry, the Fermi surface is spherical (circular for

a 2 + 1 dimensional system). We will be working in2 + 1 dimensional system (i.e. in a

3 + 1 dimensional bulk) for the sake of concreteness.

It will be worthwhile for us to first define the Fermi surface holographically in a more

general background which may not preserve rotational symmetry. This will help us to

readily understand non-equilibrium dynamics at the Fermi surface.

A Fermi surface picks up an internal direction in spin space.Therefore, let us represent

first an arbitrary normalized complex 2-vector which picks up a direction in spin space by

two real anglesθ andφ as below :

(

cos θ eiφ

sin θ e−iφ

)

(3.107)

The vector above may still be multiplied by an overall phase,but this will be unimportant

for us. We then note that the hermitian matrixP defined as

P (θ, φ) =

(

cos2 θ cos θ sin θ ei2φ

cos θ sin θ e−i2φ sin2 θ

)

(3.108)

is a matrix such that

P 2 = P, P

(

cos θ eiφ

sin θ e−iφ

)

=

(

cos θ eiφ

sin θ e−iφ

)

, P

(

sin θ eiφ

− cos θ e−iφ

)

= 0. (3.109)

ThereforeP is a projection operator, and it projects in the direction (3.107) and in the

orthogonal direction it has eigenvalue zero.

The holographic definition of Fermi surface at equilibrium is as follows. Let us choose
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a directionn̂ in momentum space. Then there existsθ, φ specifying a vector inspin space

andkF for everyn̂ such that :

[

P (θ, φ), GR(ω = 0,k = kF n̂)
]

= 0,

P (θ, φ)J
(

ω = 0,k = kF n̂
)

= 0. (3.110)

whereP is as defined in (3.108)andJ is the source obtained from the bulk solution. The

first equation above says thatGR is diagonal in spin space in the following basis :

(

cos θ eiφ

sin θ e−iφ

)

,

(

sin θ eiφ

− cos θ e−iφ

)

(3.111)

which is the same basis in whichP is diagonal. Thus this definesθ andφ. We note if we

replaceθ by θ + π/2, we merely exchange the eigenbasis. Therefore, ifθ is a solution, so

is θ + π/2. The second equation is equivalent to :

J
(

ω = 0,k ≡ kF n̂
)

≡
(

χ1

χ2

)

, cos θe−iφχ1 = sin θeiφχ2. (3.112)

Thus we have one linear complex equation to definekF . ThereforekF is complex (at finite

temperature) and associated with a specific direction in spin space. To get the Fermi surface

associated with the orthogonal direction in spin space which is also an eigenvector ofP and

GR we need to solve above withθ replaced byθ + π/2, i.e.

J
(

ω = 0,k ≡ kF n̂
)

≡
(

χ1

χ2

)

, sin θe−iφχ1 = − cos θeiφχ2. (3.113)

As theAdS4 Reissner-Nordstorm black brane background preserves rotational invariance,

θ, φ andkF will be independent ofn.

More generally, the holographic Fermi surface iskF (n) which solves (3.110) and is

associated with a specific direction in spin space in which the retarded propagator can be

diagonalized. The general definition stated here should be useful in analyzing cases where

we have spontaneous symmetry breaking in the boundary, particularly when these order

parameters break rotational invariance [43]. We note that at zero temperaturekF is strictly

real and corresponds to the pole atω = 0, but for non-zero temperatures the pole atω = 0

is complex. The imaginary part of the pole is negative and represents smearing of the Fermi
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surface at finite temperature, and vanishes as the temperature is reduced to zero. Thus we

can think ofkF as a complex parameter whose imaginary part vanishes at zerotemperature

and has a smallT expansion. The real part ofkF also has a smallT expansion and is

the Fermi surface. There is no dependence onω as to find the Fermi surfaceω is set to

zero. In the Reissner-Nordstorm black brane, the dependence of the negative imaginary

part of this complex parameterkF on the temperature is given by a power law for small

temperatures [44]. This power is controlled by the near horizonAdS2 × R2 geometry.

It can also be shown that the retarded propagator and the spectral function also have a

pole precisely when the source vanishes. Therefore, the holographic definition of the Fermi

surface matches with the conventional definition which is that it is the location of pole of

the spectral function in momentum space at vanishing frequency. In holographic systems

we typically get a family of nested Fermi surfaces.

As an aside let us mention that the pole structure of the holographic spectral function at

equilibrium is different at small frequencies from that of aconventional Fermi liquid and

the scaling exponents are controlled by the near-horizonAdS2 × R2 geometry [15]. This

means that holographic systems have generically non-Fermiliquid behavior.

The full non-equilibrium source is :

J
(

x, t
)

=

∫

d3x

(

J (0)
(

ω,k
)

+J (1)
(

ω,k,k(b)

)

eik(b)·xe
−i

(

ωR(b)(k(b))−iωI(b)(k(b))

)

t

)

e−i(ωt−k·x),

(3.114)

We recall that the full sourceJ can be determined from the boundary behavior of our

prescribed solution forΨ+ through (3.87). In fact we can explicitly write in case of the

hydrodynamic shear-mode up to first order in the hydrodynamic momentumk(h) :

J (1)(ω,k,k(h)) = J
(1)
A

(

ω,k
)

δu(k(h)) · k

+ J
(1)
B

(

ω,k
)

kikjk(h)iδuj(k(h)), (3.115)

whereJ (1)
A andJ (1)

B can be determined from the solution.

We will be interested in obtaining the energy oscillationδω(n̂,x, t) at the Fermi surface

by calculating shift of the frequency pole for a fixed Fermi momentum. We have to solve

this perturbatively in the momentum of the collective background modek(b).

Perturbatively, the energy shift on the Fermi surfaceδω in the directionn̂ at a given
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point in space-time is thus obtained by solving :

δω(n̂,x, t)

(

P (θ(0), φ(0))∂ωJ
(0)
(

ω = 0,k = kF n̂
)
)

+ δθ(kF n̂,x, t)

(

∂θP (θ(0), φ(0))

J (0)
(

ω = 0,k = kF n̂
)
)

+δφ(n̂,x, t)

(

∂φP (θ(0), φ(0))J (0)
(

ω = 0,k = kF n̂
)
)

= −
(

P (θ(0), φ(0))

J (1)
(

ω = 0,k = kF n̂,k(b)

)
)

eik(b)·x e
−i

(

ωR(b)(k(b))−iωI(b)(k(b))

)

t
,

(3.116)

whereθ(0) andφ(0) label the spin orientation of the equilibrium Fermi surfaceas discussed

before andP is as defined in (3.108). The above amounts to two complex equations and we

have four unknowns, namely realδθ andδφ giving change in the orientation in spin space

and complexδω. As we have mentioned earlier, the change in orientation in spin space

cannot be directly read off from the change in retarded correlator due to the ambiguity in

identifying which change is due to shift in the pole and whichchange is due to shift in the

residue. We can obtain the non-equilibrium shift in spin space at the Fermi surface from

the non-equilibrium source directly.

The shift in the energy of the equilibrium Fermi surface withorthogonal spin orientation

can be obtained by solving the above equation withθ(0) replaced byθ(0) + π/2.

Clearly in the hydrodynamic shear wave background,δω takes the form :

δω(n̂,x, t) =

(

δωA

(

n̂, kF

)

δu(k(h)) · n̂ + δωB

(

n̂, kF

)

n̂in̂jk(h)iδuj(k(h))

)

eik(h)·xe−i
k
2
(h)

4πT
t.

(3.117)

Therefore, we find that the holographic Fermi surface indeedoscillates in space and

time in sync with the background collective excitation. Nevertheless in order to obtain

the analogue of (3.105) in holography linking the spectral shift at the Fermi surface to the

statistical shift (i.e. shift in occupation number) we needto obtain the statistical function

holographically also. We leave this for the future.

128



Chapter 3. The Holographic Spectral Function in Non-Equilibrium States

3.3.3 Non-equilibrium shifts in energy and spin of quasi-particles

Not only the energy per particle at the Fermi surface but other normalizable modes with

non-zero frequencies also receive space-time dependent shifts in energy at a given mo-

mentum in sync with the background collective excitation. This can be interpreted as

the space-time dependent shifts of the dispersion relations of the quasi-particles in the

non-equilibrium medium. This is certainly expected as quasi-particles receive a thermal

mass and if the temperature oscillates for instance, the dispersion relations indeed become

space-time dependent. This is usually a hard calculation innon-equilibrium quantum field

theory, but we can readily generalize the holographic strategy discussed above to obtain

non-equilibrium shifts in quasi-particle dispersion relations.

A particular quasi-particle branch can be identified via thefollowing steps at equilib-

rium.

1. Consider the equilibrium Green’s functionG(0)
R (ω,k). This can be diagonalized at a

givenω andk and the eigenvectors can be labelled as in (3.111) byθ(0)(ω,k) and

φ(0)(ω,k). Furthermore, ifθ(0) is a solution, so is theθ(0) + π/2 as this merely

exchanges the eigenbasis.

2. The quasiparticle poleω(0)(k) can be identified with a definite orientation in spin

space by solving :

P (θ(0), φ(0)) J (0)
(

ω(0)(k),k
)

= 0. (3.118)

The above amounts to one complex equation which determinesω(0)(k) with θ(0) and

φ(0) determined in the previous step. The imaginary part ofω(0)(k) is negative. To

obtain the quasi-particle branch with opposite spin orientation, we need to solve the

above withθ(0) replaced byθ(0) + π/2.

Once again, if there is rotational symmetry in the background, i.e. if there are no order

paramaters of spontaneous symmetry breaking which breaks rotational invariance,θ(0), φ(0)

andω(0)(k) can depend only on the modulus ofk.

The space-time dependent shift in dispersion relation is characterized by :

ω = ω(0)(k) + δω(k,k(b),x, t). (3.119)
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The shiftδω can be obtained by solving :

δω(k,x, t)

(

P (θ(0), φ(0))∂ωJ
(0)
(

ω = ω(0)(k),k
)
)

+ δθ(k,x, t)

(

∂θP (θ(0), φ(0))

J (0)
(

ω = ω(0)(k),k
)
)

+δφ(k,x, t)

(

∂φP (θ(0), φ(0))J (0)
(

ω = ω(0)(k),k
)
)

= −
(

P (θ(0), φ(0))

J (1)
(

ω = ω(0)(k),k,k(b)

)
)

eik(b)·x e
−i

(

ωR(b)(k(b))−iωI(b)(k(b))

)

t
.

(3.120)

The above equation amounts to two complex equations which allows us to solve the real

unknownsδθ andδφ giving shifts in spin space and the complex unknownδω. To obtain

the non-equilibrium shift in the dispersion relation for the other equilibrium branch with

orthogonal spin orientation, we need to solve the above withθ(0) replaced byθ(0) + π/2.

The solution ofδω will take the form in a hydrodynamic shear-wave background,for

instance, clearly takes the form :

δω(k,x, t) =

(

δωA(k) δu(k(h)) · k + δωB(k) kikjk(h)iδuj(k(h))

)

eik(h)·xe−i
k
2
(h)

4πT
t. (3.121)

Therefore, we see that the shift in the dispersion relation of the quasi-particle pole is

also in sync with the propagating collective mode. Furthermore, though we have discussed

the fermionic case explicitly here, clearly the same strategy can be applied to the bosonic

field also. In fact, the source being a complex number insteadof a complex 2-vector in the

bosonic case, the equations will be much simpler.

The shiftδω in the quasi-particle pole is generically complex. Interestingly the sign

of the imaginary part ofδω can be both positive and negative. Thus we can get both non-

equilibrium suppression or enhancement of quasi-particledecays as indeed observed in the

RHIC fireball for various resonances (short-lived quasi-particles) [10].
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3.4 Taking into account non-linearities in the dynamics of

the non-equilibrium variables

It is known that solutions of gravity which have regular future horizons reproduce non-

linear phenomenological equations for irreversible processes in the dual field theory. The

best studied examples are related to fluid/gravity correspondence. The full non-linear

Navier-Stokes’ equation with higher derivative corrections can be reproduced from grav-

ity and this success has also been extended to the case of charged hydrodynamics [5]. As

we have discussed before, gravity is expected to reproduce the general phenomenologi-

cal equations which describe the full evolution of energy-momentum tensor and conserved

currents which generalize hydrodynamics [6]. This has beenshown explicitly for the case

of spatially homogeneous relaxation [7]. In all cases, the regularity of the future horizon

determines the phenomenological coefficients.

We would like to show that the prescriptions described so farcan be readily generalized

to include non-linearities in the dynamics of the energy-momentum tensor and conserved

currents characterizing the non-equilibrium states. We can systematically include these

non-linearities into the retarded correlator, the shifts in the dispersion relations of quasi-

particles, etc.

The key is to see how the solutions for the bosonic and fermionic fields get determined

in the perturbed background. Let us focus on the case of the hydrodynamic background.

If we take into account non-linearities inδu(k(h)) in the background, clearly these non-

linearities will also appear in the Laplacian of the bosonicfield. Let us consider quadratic

dependence on two distinct velocity perturbationsδu(k(h)) and δu(k′
(h)) for instance, at

a given order in the derivative expansionm (i.e. at themth order in the hydrodynamic

momentum). The solution forΦ will receive a correction quadratic in the amplitude of

velocity perturbation and atmth order in the derivative expansion which can be represented

as:

Φ(2,m)
(

r, k, k(h), k
′

(h)

)

ei(k+k(h)+k′(h))·x. (3.122)

The radial dependence above can be determined from the equation of motion :

✷
ARN
k δ3(k − k′)Φ(2,m)(r, k′, k(h), k

′

(h)) = S(2,m)(r, k, k(h), k
′

(h)), (3.123)

where✷ARN
k is the Laplacian for a scalar with3-momentumk in the unperturbedAdS4
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Reissner-Nordstorm background andS(2,m) is a generic source term. Form = 1 the source

S(2,1) can contain terms like(k · δu(k(h)))(k(h) · δu(k′
(h))), etc. It also contains the solutions

at the lower order in the perturbation expansion for instanceΦ(1,1)Φ(1,0).

Clearly the general solution ofΦ near the horizon can again be separated into two ho-

mogeneous pieces, the incoming and the outgoing modes, and aparticular piece which has

no arbitrary integration constant and is completely determined by the source termS(2,m).

In order to satisfy the incoming boundary condition, we should put the coefficient of the

outgoing mode to zero. Also as discussed before, the integration over the hydrodynamic

frequenciesω(h) andω′
(h) will produce a divergence at the horizon for the incoming mode,

as for instance in the case above with dependence on two hydrodynamic shear wave back-

ground modes like :
(

1− rr0
l2

)−i ω
4πT

−
k
2
(h)

16π2T2 −
k
′2
(h)

16π2T2 −...

. (3.124)

Obviously the coefficient of the incoming mode has to depend on δu and the hydrody-

namic momenta required by the order in the perturbation expansion. The contribution from

the frequency pole inδu(ω(h),k(h)) given by the hydrodynamic shear dispersion relation

produces the above divergent behavior. In general the divergence will always be there for

any quasinormal wave background as it’s dispersion relation ω(h)(k(h)) will have a nega-

tive imaginary part. Therefore, we should put the coefficients of the incoming mode at the

horizon to zero too. We are just left with the particular piece which is completely deter-

mined by the source term containing the solutions at the lower orders in the perturbation

expansion. Therefore, applying induction,at each order in the perturbation expansion,

the non-equilibrium solution is uniquely determined by theequilibrium solution, i.e. the

solution at the zeroth order in the unperturbed black brane background. The consistency

of holographic duality requires the solution at each order in the perturbation to be regular

at the horizon.

As the solution is uniquely fixed at each order in the perturbation expansion, we can

obtain the non-equilibrium contributions to the source andthe expectation value of the dual

operator by studying the asymptotic behavior of the solution at each order. This procedure

can also be applied for fermionic fields.

Once the source is obtained at a given order in the perturbation expansion, it is straight-

forward to obtain the shift in the dispersion relation of quasi-particles. For example,

δω(2,m)(k,x, t) along with the non-equilibrium shift in the spin orientation given byδθ(2,m)(k,x, t)
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andδφ(2,m)(k,x, t) can be obtained fromJ (2,m) by solving :

δω(2,m)

(

P (θ(0), φ(0))∂ωJ
(0)
(

ω = ω(0)(k),k
)
)

+ δθ(2,m)(k,x, t)

(

∂θP (θ(0), φ(0))

J (0)
(

ω = ω(0)(k),k
)
)

+δφ(2,m)

(

∂φP (θ(0), φ(0))J (0)
(

ω = ω(0)(k),k
)
)

= −
(

P (θ(0), φ(0))

J (2,m)
(

ω = ω(0)(k),k,k(b)

)
)

ei(k(b)+k′
(b))·x

e−i(ωR(b)(k(b))+ωR(b)(k
′
(b)))t

e−(ωI(b)(k(b))+ωI(b)(k
′
(b))t.

(3.125)

A consistent perturbation theory for the solution in the non-equilibrium background

thus suffices to take into account non-linearities inδui, δT , δπ(nh)
ij etc. in the retarded

correlation function, spectral function, non-equilibrium shift in the dispersion relations,

etc.

3.5 Summary and future directions

In this chapter we have discussed how to develop a general holographic formalism for

determining non-equilibrium retarded correlator, spectral function, shifts in dispersion re-

lations, etc. Needless to say, we would like to use this formalism to numerically calcu-

late these space-time dependent quantities in the specific set up of charged bosonic and

fermionic fields minimally coupled to Einstein-Maxwell gravity in AdS4 discussed here.

In particular, the following questions require attention.

1. It is known that at equilibrium the temperature modifies the spectral function only in

the infrared, while in the ultraviolet the spectral function remains as in the vacuum.

It can be expected that we have a similar feature even in non-equilibrium - the ultra-

violet behavior of the spectral function, quasi-particle dispersion relations should be

independent of the state. It will be interesting to see if this is reproduced in our case.
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Some of the background quasi-normal modes indeed can have very high frequencies,

while high frequency dependent corrections can also be generated by non-linearities.

Therefore, numerical studies can help us understand how theeffect of high frequency

dependent background modes gets suppressed in the ultraviolet, if this is indeed the

case.

2. The non-equilibrium shifts in the dispersion relations can have both positive and

negative imaginary parts. If positive it leads to suppression and if negative it leads to

enhancement of the decay. It will be interesting to see if onecan use non-linearities to

design a background in which a specific quasi-particle can bestabilized against decay

to a large extent in a certain range of energies. This can allow us to observe otherwise

short-lived quasi-particles. In particular, it will be interesting to see if some bound

states of heavy quarks can indeed exist in the quark-gluon plasma at temperature 175

MeV.

3. The quasi-particle dispersion relations can change non-analytically with the tem-

perature particularly if there is level crossing. It will beinteresting to design a

non-equilibrium background where the temperature varies in space and time over

the range in which this non-analyticity can occur and study exactly how the quasi-

particles behave in such backgrounds. It will be interesting to learn from such holo-

graphic examples how to describe such non-equilibrium states in field theory.

Work is in progress to tackle such issues numerically [45]. Our prescription here gives an

algorithm to tackle such questions in specific holographic models.

Another direction we want to pursue in the future is to study non-equilibrium spectral

functions in states corresponding to a plasma undergoing boost-invariant hydrodynamic

expansion as in the RHIC fireball. This will give us insights into how hadrons are produced

and transported in the medium, and finally get frozen chemically and thermally.

Appendices

A. Eddington-Finkelstein vs Schwarzchild coordinates

In order to see regularity at the horizon manifestly in the metric (3.37) corresponding to

hydrodynamic shear-mode perturbation of theAdS4 Reissner-Nordstorm black brane, we
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can consider the following change of coordinates following[29] :

t = v +
l2

r0
k
(rr0

l2

)

+O(ǫ2),

xi = x̃i +
l2

r0
k
(rr0
l2

)

δui(k(h))e
i(k(h)·x̃−ω(h)v)

−iω(h)
l4

r20
k1

(rr0
l2

)

δui(k(h))e
i(k(h)·x̃−ω(h)v) +O(ǫ2), (126)

where

k(a) =

∫ a

0

db
1

f(b)
, (127)

and

k1(a) =

∫ a

0

db
(1− f(b)

f(b)

)

k(b). (128)

These new coordinatesr, v andx̃i are ingoing Eddington-Finkelstein coordinates.

In these coordinates, the metric assumes the form :

ds2 = −2l2

r2

(

dv − δui(k(h))e
i(k(h)·x̃−ω(h)v)dx̃i

)

dr +
l2

r2

(

− f
(rr0
l2

)

dv2 + dx̃2 + dỹ2

)

−2δui(k(h))e
i(k(h)·x̃−ω(h)v)

(

1− f
(rr0
l2

)

+ i
ω(h)l

2

r0
f
(rr0
l2

)

k
(rr0

l2

)
)

dv dx̃i

−i2
l2

r0
k(h)i δuj(k(h))e

i(k(h)·x̃−ω(h)v)

(

1

3
h
(rr0

l2

)

− k
(rr0

l2

)
)

dx̃i dx̃j

+O(ǫ2). (129)

The bulk gauge field however no longer remains in the radial gauge and takes the form

:

Ar = −i
1

f
(

rr0
l2

)

√
3gF r0
l2

(

1− rr0
l2

)

+O(ǫ2),

Av =

√
3gF r0
l2

(

1− rr0
l2

)

+O(ǫ2),

Ai = −
√
3gF r0
l2

(

1− rr0
l2

)

δui(k(h))e
i(k(h)·x̃−ω(h)v)

(

1− i
ω(h)l

2

r0
k
(rr0
l2

))

+O(ǫ2).

(130)

135



Chapter 3. The Holographic Spectral Function in Non-Equilibrium States

It can be checked that the gauge field is also regular at the horizon.Av, Ai vanish whileAr

is a constant at the horizon. We can bring the gauge field back to radial gauge by a regular

gauge transformation.

Most importantly, theij components of the metric is regular as

1

3
h(a)− k(a) = terms which are regular at the horizon (i.e. ata = 1). (131)

So, the metric is manifestly regular up to the first order in the derivative expansion in these

coordinates.

We can implement this change of coordinates order by order inthe derivative expan-

sion. Even beyond the fluid/gravity correspondence, such coordinate transformations can

be implemented perturbatively to see manifest regularity [7].

B. The general solution for the non-equilibrium profile of

the scalar field

At the zeroth order, the equilibrium solution for a given mode can be written as an arbi-

trary linear superposition of two linearly independent homogeneous solutionsΦA(k, r) and

ΦB(k, r). Herek denotes(ω,k) collectively. Thus

Φ(0)(k, r) = A(0)(k)ΦA(k, r) +B(0)(k)ΦB(k, r), (132)

whereA(0)(k) andB(0)(k) are arbitrary.

Using the method of variation of parameters, we can write thegeneral solution for the

equation of motion (3.48) for the non-equilibrium part can be found and is as below :

Φ(k, k(h), r) = −ΦA(k + k(h), r)

∫ r

l1

dr′
ΦB(k + k(h), r

′)
(

V1 + V2

)

(k, k(h), r
′)Φ(0)(k, r)

W [ΦA(k + k(h), r′),ΦB(k + k(h), r′)]r
′2f
(

r′r0
l2

)

+ΦB(k + k(h), r)

∫ r

l2

dr′
ΦA(k + k(h), r

′)
(

V1 + V2

)

(k, k(h), r
′)Φ(0)(k, r)

W [ΦA(k + k(h), r′),ΦB(k + k(h), r′)]r
′2f
(

r′r0
l2

) .

(133)

Abovek(h) denotes(ω(h),k(h)) collectively,W denotes the Wronskian of the two homoge-
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neous solutions, andl1 andl2 are arbitrary setting the range of the two integrals.

One can readily verify that the above is independent of the choice ofΦA andΦB for

fixed l1 andl2. To see the general behavior at the horizon given by (3.53) one can setΦA to

beΦin andΦB to beΦout.

Furthermore, one notes that the above is consistent with thederivative expansion for

anyl1 andl2 as the dependence onδui andk(h) comes fromV1 andV2 directly. Comparing

(3.63) with (3.49) one gets that the explicit contribution to O
(1)
A andJ (1)

A comes fromV1,

and the contribution toO(1)
B andJ (1)

B comes fromV2.

C. Vielbeins and spin connections in the hydrodynamically

perturbed black-brane metric

We calculate here vielbeins, their inverses (or einbeins) and spin connections for the metric

(3.37) which corresponds to a black brane perturbed by a hydrodynamic shear mode. The

notation we use here is the same as defined in subsection 3.2.2. As noted there, to ease

computations we will choose, without loss of generality that δu is in they direction. Asδu

is transvere in the shear-mode,k(h) will be then in thex direction. On the other handk can

have arbitraryx andy components in order to retain full generality.

The non-zero vielbeins upto first order of derivative expansion are :

ett =
l

r

√

f
(rr0
l2

)

, ety =
l

2r

1− f
(

rr0
l2

)

√

f
(

rr0
l2

) δuy(k(h)) e
i(k(h)xx−ω(h)t),

exx =
l

r
, exy = −i

l

r

( l2

6r20

)

k(h)x δuy(k(h)) e
i(k(h)xx−ω(h)t) h

(rr0
l2

)

,

e
y

t = − l

2r

(

1− f
(rr0
l2

))

δuy(k(h)) e
i(k(h)xx−ω(h)t),

e
y
x = −i

l

r

( l2

6r20

)

k(h)x δuy(k(h)) e
i(k(h)xx−ω(h)t) h

(rr0
l2

)

,

e
y
y =

l

r
, err =

l

r

1
√

f
(

rr0
l2

) . (134)

From this, one can also construct inverse vielbeins (or einbeins) which are as follows :
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ett =
r

l

√

f
(

rr0
l2

) , ety = − r

2l

1− f
(

rr0
l2

)

f
(

rr0
l2

) δuy(k(h)) e
i(k(h)xx−ω(h)t),

exx =
r

l
, exy = i

r

l

( l2

6r20

)

k(h)x δuy(k(h)) e
i(k(h)xx−ω(h)t) h

(rr0
l2

)

,

eyt =
r

2l

1− f
(

rr0
l2

)

√

f
(

rr0
l2

) δuy(k(h)) e
i(k(h)xx−ω(h)t),

eyx = i
r

l

( l2
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In order to derive the equation of motion of the Fermions in the given background, we

require the spin connections associated with the first ordermetric.
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The non-zero components of the spin connection,ωAB
M are as below :
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Here prime denotes derivative with respect torr0
l2

.

It can be checked that the above spin connections satisfy Cartan structure equations up

to first order in the derivative expansion.

D. The generalized effective action

We will review the formalism for bosonic operators here. Thegeneralization to fermionic

operators is straightforward.

The starting point of the construction of the generalized effective action is to generalize

the partition function which is a generating functional of the vaccum correlation func-

tions. Here on top of a sourceJl(x) for a single operatorOl(x), we add a non-local source

Kll′(x, y) for a pair of operatorsOl(x) andOl′(y), and define:

Z(Jl, Kll′) = eiW (Jl,Kll′)

=

∫

DΦs exp

[

i

(

S[Φs] +

∫

dDxJl(x)Ol(x)

+
1

2

∫

dDxdDy Ol(x)Kll′(x, y)Ol′(y)

)]

. (137)

AboveD is the number of space-time dimensions in field theory.

We then define the expectation value of the operatorOl(x) and the Green’s function
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Gll′(x, y) through :

δW (Jl, Kll′)

δJl(x)
= Ol(x),

δW (Jl, Kll′)

δKll′(x, y)
=

1

2

(

Ol(x)Ol′(y) +Gll′(x, y)

)

. (138)

EliminatingJl andKll′ in favor of Ol andGll′, we can now do a Legendre transform to

define the generalized effective action :

Γ(Ol, Gll′) = W (Jl, Kll′)−
∫

dDxJl(x)Ol(x)

−1

2

∫

dDxdDy Kll′(x, y)

(

Ol(x)Ol′(y) +Gll′(x, y)

)

. (139)

Clearly,

δΓ(Ol, Gll′)

δOl(x)
= −Jl(x)−

∫

dDy Kll′(x, y)Ol′(y),

δΓ(Ol, Gll′)

δGll′(x, y)
= −1

2
Kll′(x, y). (140)

Therefore, in absence of sources, extremizing the generalized effective actionΓ(Ol, Gll′)

gives the dynamics of both the operators and their Green’s functions.

Such an effective action is usually considered for the elementary fields and their Green’s

functions in the literature. However, as discussed above wecan construct the same for the

set of gauge-invariant single trace operators in a non-Abelian gauge theory.

There is one important point in the above construction. The effective action is con-

structed over the so-called Schwinger-Keldysh real time contour shown in the figure below,

which travels from−∞ to ∞ infinitesimially above the real line and then back from∞ to

−∞ infinitesimially below the real line. It is necessary to consider this "closed-time" con-

tour because the usual time-ordered Green’s function or theFeynmann propagator do not

contain the full information about the operator in presenceof sources in a non-equilibrium

state as mentioned in the Introduction. The closed-time contour ensures we propagate the

full information of the operator in presence of the sources.In fact, the full closed-time

contour ordered Green’s function can be written as a combination of the commutator and
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the anti-commutator. For instance, if both operators are bosonic the

GCll′(x, y) =
1

2
〈{Ol(x),Ol′(y)}〉 −

i

2
〈[Ol(x),Ol′(y)]〉 signC(x

0 − y0). (141)

AboveC denotes the closed-time contour, andx0 andy0 are the time coordinates of the

D-dimensional position vectorx andy respectively.

The closed time Schwinger-Keldysh contour is as above. The forward and backward di-
rected parts of the contour have been displaced slightly above and below the real axis just
to distinguish them clearly.

In fact, as discussed in the beginning, the spectral function All′(x, y) is related to the

commutator and the statistical function (or Keldysh propagator)GKll′(x, y) is related to the

anti-commutator in the following way (for bosonic fields):

All′(x, y) = i〈[Ol(x),Ol′(y)]〉,
GKll′(x, y) =

1

2
〈{Ol(x),Ol′(y)}〉. (142)

The coupled equation of motion of the spectral and statistical functions are obtained from

the generalized effective action.

The generalized effective action has no dependence on temperature or non-equilibrium

variables, it is defined as a Legendre transform of the vacuumpersistence amplitude in the

presence of single and double operator sources. However, thermal and non-equilibrium

propagators also can be obtained as solutions which extremize this generalized effec-

tive action. In order to obtain thermal propagators, we need to impose translational in-

variance, so the Wigner transformed spectral and statistical functionsAll′(ω,p,x, t) and

GKll′(ω,p,x, t) do not depend on the centre-of-mass coordinatesx and t. Furthermore,

they should be related by a temperature dependent fluctuation-dissipation relation.
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4
Cosmological Applications

Prelude

In recent years, understanding cosmology within the framework of string theory, has been

an active and interesting field of study. Starting with [1], asubstantial amount of research

has been based on modeling the Universe by a 3-brane living ina higher-dimensional bulk

space (brane world scenario). An incomplete list of references is [2–13]. The Hubble

equation of cosmological evolution is thus reproduced by the trajectory of the brane. This

chapter in the thesis, as mentioned in the introduction, is devoted to such cosmological

studies.

This chapter is divided in two parts. Applying the gravity/gauge theory duality to a

cosmological setting is not straightforward due to the factthat the metric on the bound-

ary space in which the gauge theory lives must remain dynamical. This was long thought

to be problematic due to the possibility of the fluctuations of the bulk metric correspond-

ing to non-normalizable modes [14–20]. In the first part of this chapter we will discuss

how one can get rid of this following the prescription given in [21] which shows that such

problems can be avoided by introducing appropriate local boundary terms needed to cancel

the infinities. Thus starting with a static bulk space-time we will end up in getting a dy-

namic cosmological boundary using this dynamic boundary condition. This possiblity in

cosmological set up was first shown in [22].

In applications of the gravity/gauge theory duality (holography) to cosmology and other

settings, one generally places the boundary at a finite distancer and then takes the limit as

the cutoffr → ∞. The removal of the cutoff introduces infinities, which are canceled by

the addition of a local action on the boundary withr-dependent coefficients (counterterms)
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[23]. Unlike in quantum field theory, where counterterms areinterpreted as renormalization

of the (bare) parameters of the system, it is not clear if counterterms have a similiar physical

meaning in a holographic setting.

In this part we generalize the holographic approach to cosmology by placing the bound-

ary hypersurface at a finite distancer and derive expressions for the various physical quan-

tities (e.g., the stress-energy tensor) which are valid forarbitraryr. This leads to a gener-

alized Hubble equation of cosmological evolution. We stillneed to introduce the standard

counterterms to avoid infinities at larger. We show that these counterterms have the usual

field theoretic interpretation of renormalizing the (bare)parameters of the system, namely

Newton’s constant and the cosmological constant. Moreover, we recover the brane-world

scenario by fine-tuning Newton’s constant. Thus we show thatbrane-world scenarios are a

special case of our generalized holographic approach.

This part of the chapter is organized as follows. In section 4.1 we discuss the bulk space

concentrating on a time-independent solution (general black hole) of the field equations,

and define the boundary hypersurface. In section 4.2 we introduce the boundary conditions

and the counterterms needed to cancel infinities. We calculate the stress-energy tensor

and derive the Hubble equation of cosmological evolution. In section 4.3 we discuss the

example of a bulk Reissner-Nordström black hole including thermodynamics. In section

4.4 we discuss various examples of cosmological evolution.In particular, we show that the

brane-world scenarios are a special case of our holographicapproach. Finally in section

4.5 we conclude.

The second part of this chapter deals with explicit construction of time-dependent su-

pergravity solutions. The main motivation in this part is tounderstand the physics near

cosmological singularity. As we knowAdS/CFT relates a strongly coupled theory with a

weakly coupled one. Consequently, it provides us with a way to tame the non-perturbative

region of one by performing computations on its dual. Due to strong gravitational fluctu-

ations, physics around cosmological singularities is dominated by non-perturbative effects

and one hopes that the AdS/CFT correspondence would shed some light into it. Indeed,

in recent years, we have witnessed several important investigations where attempts were

made to find the signatures of these singularities in their gauge theory duals. Expectation

is that the dual theory evolution might be able to provide a sensible quantum description of

these singularities. Successes have been varied, please see the references [24] - [28].

Inspired by this line of developments, in this part, we search for D brane solutions in

ten dimensional type IIB theory where the world volume metric expands anisotropically
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and show instabilities within their supergravity descriptions. We find that appropriately

tuning the five form field strength, it is possible to construct a D3 brane with four dimen-

sional Kasner like world volume [44]. Along with a time-likesingularity atr = 0, the

metric shows an additional cosmological singularity att = 0. Perturbation aroundt = 0

generates an analogue of Belinskii-Lifshitz-Khalatnikov(BKL) oscillations [39]. The near

horizon geometry of this brane reduces to that of a Kasner-universe in AdS space plus a

five sphere along with an appropriate five form field strength.In the next section we probe

the geometry with a dynamical D3 brane whose world-volume inherits anisotropic expan-

sion/contraction along with a BKL like oscillation. We show, in subsequent sections, that

similar solutions can be constructed even within eleven dimensional supergravity. As an

illustrative example, we discuss the case of M5 brane. The near horizon geometry is now

a six dimensional Kasner space. A dynamical probe M5 brane inthis space-time again ac-

quires an anisotropic expansion in some directions and contraction along some. Amusingly,

we find that it is possible to tune parameters in such a manner that three directions expand

and the rest contract. Close to the cosmological singularities supergravity descriptions of

all these solutions are expected to break down. We hope that the gauge theory description

would shed some light on the physics near the singularities.

The first part of this chapter is based on our work, [29] while the second part follows

our work, [30].

Part I : Static Bulk - Dynamic Boundary

4.1 The Bulk

We start with a non-extremal black hole in a4 + 1 dimensional bulk space in the presence

of a negative cosmological constant

Λ5 = − 6

L2
. (4.1)

We consider the metricansatz

ds25 = −A(r)dt2 +B(r)dr2 + r2dΩ2
k , (4.2)

149



Chapter 4. Cosmological Applications

r being the radial direction, andk = +1, 0,−1 depending on the geometry of the constant

(t, r) hypersurfaces (spherical, flat, or hyperbolic, respectively). More general metrics are

also possible, but will clutter the notation unnecessarily. In section 4.3, we shall concentrate

on the special case of a Reissner-Nordström black hole for explicit calculations.

Asymptotically, we have AdS space of radiusL, therefore asr → ∞,

A(r) ≈ 1

B(r)
≈ r2

L2
. (4.3)

We introduce a radial cutoff,r = a and parametrisea andt asa = a(τ) andt = t(τ) so

thatda = ȧdt. Then the metric on the cut-off surface (boundary) takes theform

ds24 =

[

−A(a)(
dt

dτ
)2 +B(a)ȧ2

]

dτ 2 + a2(τ)dΩ2
k . (4.4)

In order that the metric on the boundary take the FRW form,

ds24 = −dτ 2 + a2(τ)dΩ2
k , (4.5)

the metric components should satisfy the relation

(
dt

dτ

)2

=
B
A

, B = B(a)ȧ2 + 1 . (4.6)

This in turn fixes our choice of the time parameterτ . Notice also that ifTH is the Hawking

temperature, then the temperature on the boundary is redshifted,

T =
TH√
AB

. (4.7)

This kind of parametrization has been used before, e.g., in [31–33]. Note that, while treat-

ing τ as a time parameter, we are effectively considering the radial motion of the cut-off

surface in the4 + 1 dimensional bulk. By adopting appropriate boundary conditions, the

cut-off surface can be thought of as the location of a brane, mimicking a moving brane

scenario.
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4.2 Boundary Conditions

The heart of the construction we are going to elaborate on is based on the observation that

the afore-mentioned dynamics of the boundary hypersurfacewill be captured through the

boundary conditions we impose on the system. This approach was first adopted in [22].

Let us consider a general five dimensional bulk action,

S5 =

∫

M

d5x
√−gL5 , (4.8)

where we keep the Lagrangian densityL5 unspecified. In the simplest case, this consists of

a five-dimensional Einstein-Hilbert action with a negativecosmological constant (4.1) plus

the requisite Gibbons-Hawking surface term for a well-defined variational principle. If one

varies this action with respect to the metric, one obtains a boundary term of the form

δS5 =
1

2

∫

∂M

d4x
√−γT (CFT)

µν δγµν , (4.9)

whereγµν is the induced boundary metric andγ is its determinant.T (CFT)
µν denotes the

(bare) stress-energy tensor of the dual conformal field theory that lives on the four-dimensional

boundary hypersurfacer = a. Generally in the context of the AdS/CFT correspondence,

Dirichlet boundary conditions are employed, which fix the boundary metric and conse-

quently eq. (4.9) vanishes. While this leads to a well-defined variational principle, it does

not allow for a dynamical boundary metric. Since we are primarily interested in obtaining

a cosmological evolution and hence a dynamical metric on theboundary, we seek differ-

ent boundary conditions that can be imposed without fixing the metric on the boundary.

It was noted in [22] that one could adopt appropriatemixedboundary conditions, which

were shown to lead to valid dynamics in [21]. Their definitioninvolves the addition of

an appropriate local action,Slocal, at the boundary. For cosmological evolution, this local

action will be chosen as the four-dimensional Einstein-Hilbert action on the boundary with

an arbitrary (positive, negative, or vanishing) four-dimensional cosmological constantΛ4,

Slocal = − 1

16πG4

∫

∂M

d4x
√−γ(R[γ]− 2Λ4), (4.10)

whereR[γ] is the Ricci scalar evaluated with the boundary metric which, in our case, is the

FRW metric (4.5). Notice that the cosmological constant maybe due, wholly or partly, to
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a brane of finite tension at the boundary.

Additionally, to cancel divergences in the limita → ∞, it is necessary to introduce

counterterms [23]. These are of the same form as the local action and renormalize the

four-dimensional physical parametersG4 andΛ4. We have

Sc.t. = −1

2

∫

∂M

d4x
√−γ (κ1R[γ] + κ2) , (4.11)

which diverges asa → ∞. The parametersκ1 andκ2 will be chosen so that physical

quantities such as the energy density and pressure remain finite in this limit.

Putting these pieces together, wedefineour boundary condition as

T (CFT)
µν + T (local)

µν + T (c.t.)
µν = 0, (4.12)

whereT (CFT)
µν is due to the variationδS5 (eq. (4.9)), and the other two terms,T

(local)
µν and

T
(c.t.)
µν come from the variations

δSlocal =
1

2

∫

∂M

d4x
√−γT (local)

µν δγµν ,

δSc.t. =
1

2

∫

∂M

d4x
√−γT (c.t.)

µν δγµν , (4.13)

respectively, with respect to the boundary metric,γµν . Similarly to Dirichlet boundary

conditions, the choice (4.12) leads to a well-defined variational principle with

δS5 + δSlocal + δSc.t. = 0 . (4.14)

To see the explicit physical content of ourmixedboundary conditions (4.12), we shall

derive explicit expressions for each of the three contributing terms. The bare stress-energy

tensor on the boundary is given by

T (CFT)
µν =

1

8πG5
(Kµν −Kγµν) , (4.15)

whereKµν is the extrinsic curvature, andK is its trace. The components of this tensor

can be evaluated by computing the velocityvµ and unit normalnν vectors on the boundary
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hypersurface,r = a(τ). For the metric (4.2), these vectors are given in component form as

vµ =

(√

B
A
, ȧ, 0, 0, 0

)

; vµ =
(

−
√
AB, Bȧ, 0, 0, 0

)

. (4.16)

and

nµ =

(

−
√

B

A
ȧ,−

√

B
B
, 0, 0, 0

)

; nµ =
(√

AB ȧ,−
√
BB, 0, 0, 0

)

, (4.17)

respectively. The direction of the unit normal vector is taken to be pointing inward, toward

the bulk. The extrinsic curvature can be written in terms of the unit normal and velocity

vectors as

Kij =
1

2
nk∂kγij Kττ = −∂τvt

nt
. (4.18)

Explicitly, they are

Kij = a

√

B
B
γij , Kττ = − 3

2aAB
(2ABä+ (AB)′ȧ + A′) , (4.19)

wherei, j are indices for the spatial coordinates on the boundary (spanned byΩk).

We deduce the explicit expressions for the components of thebare stress-energy tensor

(4.15),

T (CFT)
ττ = − 3

8πG5a

√

B
B

, (4.20)

T
i (CFT)
i =

1

16πG5

aA′B + A[aB′ȧ + 2B (aä + 2ȧ2) + 4]

aA
√
BB

, (4.21)

where no summing over the indexi is implied. Notice that the energy densityT (CFT)
ττ

obtained above is negative, however we should emphasize that this is only abarequantity

and therefore not physical. It will be corrected by the addition of counter terms resulting

into apositiveregularized (physical) quantity.

For the remaining two contributions in (4.12), we obtain thestandard expressions one

encounters in Einstein’s four-dimensional equations,

T (local)
µν = − 1

8πG4

(

Rµν −
1

2
γµνR− Λ4γµν

)

, T (c.t.)
µν = −κ1

(

Rµν −
1

2
γµνR

)

−κ2γµν ,

(4.22)
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whereRµν (R) is the four-dimensional Ricci tensor (scalar) constructed from the four-

dimensional boundary metricγµν . The counter terms diverge in the limita → ∞, and the

parametersκ1 andκ2 will be chosen so that they cancel the divergences in the barestress-

energy tensorT (CFT)
µν . Notice that the counter terms are of the same form as the terms

coming from the local action. Therefore, they admit the standard interpretation of inducing

the renormalization of the physical four-dimensional constantsG4 (Newton’s constant) and

Λ4 (cosmological constant).

The regularized (physical) stress-energy tensor is

T (reg)
µν = T (CFT)

µν + T (c.t.)
µν . (4.23)

We deduce the energy density and pressure, respectively,

ǫ = T (reg)
ττ = κ2 + κ1

(

H2 +
k

a2

)

− 3

8πG5a

√

B
B

,

p = T
i (reg)
i = −κ2 − κ1

{(

H2 +
k

a2
+

2ä

a

)}

+
1

16πG5

aA′B + A[aB′ȧ + 2B (aä + 2ȧ2) + 4]

aA
√
BB

.

(4.24)

whereH = ȧ/a is the Hubble parameter. The choice

κ1 =
3L

16πG5
, κ2 =

3

8πG5L
(4.25)

ensures finiteness in the limita → ∞. Unlike the bare energy density (4.20), the regular-

ized energy densityǫ is positive.

The boundary conditions (4.12) now read

Rµν −
1

2
γµνR− Λ4γµν = 8πG4T

(reg)
µν , (4.26)

which are the four-dimensional Einstein equations in the presence of a cosmological con-

stant.

The cosmological evolution equation is theττ component of the Einstein equations

(4.26),

H2 +
k

a2
− Λ4

3
=

8πG4

3
ǫ , (4.27)
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whereǫ is the energy density given in (4.24) under the condition (4.25). This is deceptively

similar to the standard equation of cosmological evolution. However, it differs in an es-

sential way, becauseǫ contains contributions that involve the Hubble parameterH = ȧ/a,

leading to novel cosmological scenarios.

4.3 AdS Reissner-Nordström black hole

In this section we take up the example of an asymptotically AdS charged black hole, namely

AdS Reissner-Nordström black hole for which the functionsA andB of (4.2) are

A(r) =
1

B(r)
=

r2

L2
+ k − M

r2
+

Q2

r4
. (4.28)

The parametersM andQ are related to the mass and charge of the black hole, respectively.

k can be+1, 0, or −1 depending on whether the black hole horizon is spherical, flat, or

hyperbolic, respectively.

The Hawking temperature is

TH =
2
r2+
L2 + k

2πr+
, (4.29)

wherer+ is the radius of the horizon satisfying

A(r+) =
r2+
L2

+ k − M

r2+
+

Q2

r4+
= 0 . (4.30)

The entropy is

S =
r3+
4G5

V3 , (4.31)

whereV3 is the three-dimensional volume spanned byΩk. Notice that the entropy is inde-

pendent ofa, and therefore constant in time, leading to an adiabatic evolution.

According to (4.7), the redshifted temperature on the boundary is

T =
TH

√

ȧ2 + A(a)
. (4.32)
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For largea, it is expanded as

T =
THL

a
− THL

3

2a

(

H2 +
k

a2

)

+ . . . . (4.33)

Similarly, we expand the regularized energy density and pressure (4.24), respectively,

ǫ =
3L3

64πG5

{(

H2 +
k

a2

)2

+
4M

L2a4

}

− 3L5

128πG5

{(

H2 +
k

a2

)3

+
4kM

L2a6
+

8Q2

L4a6
+

4M

L2

H2

a4

}

+ . . . , (4.34)

p =
L3

64πG5

{(

H2 +
k

a2

)2

+
4M

L2a4
− 4

(

H2 +
k

a2

)
ä

a

}

− 3L5

128πG5

{(

H2 +
k

a2

)3

+
4kM

L2a6
+

8Q2

L4a6
+

4M

L2

H2

a4
− 2

(

H2 +
k

a2

)2
ä

a
− 8

3L

Mä

a5

}

+ . . . . (4.35)

We deduce the conformal anomaly which is given by the trace ofthe stress-energy tensor,

TrT = ǫ− 3p

= − 3L3

16πG5

(

H2 +
1

a2

)
ä

a

− 3L5

64πG5

{(

H2 +
k

a2

)3

+
4kM

L2a6
+

8Q2

L4a6
+

4M

L2

H2

a4
− 3

(

H2 +
k

a2

)2
ä

a
− 4

L

Mä

a5

}

+ . . . . (4.36)

The first term is the standard conformal anomaly one obtains in the largea limit [22].

As an example, consider the case of a flat static boundary of a Schwarzschild black

hole. Thenk = 0, Q = 0, andH = 0. The radius of the horizon isr+ = (ML2)1/4. The
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expressions for the energy density, pressure and temperature simplify to, respectively,

ǫ = Tττ =
3

8πG5L

(

1−
√

1− r4+
a4

)

,

p = T i
i =

1

8πG5L




3− r4+

a4
√

1− r4+
a4

− 3



 ,

T =
r+

πLa

√

1− r4+
a4

(4.37)

In the largea limit, we deduce the expansions

ǫ =
3

8πG5L

(
(πLT )4

2
− 7(πLT )8

8
+ . . .

)

,

p =
1

8πG5L

(
(πLT )4

2
− 3(πLT )8

8
+ . . .

)

. (4.38)

Thus, at leading order, we haveǫ = 3p ∝ T 4, as expected for a conformal fluid. Including

next-order corrections, we no longer have a traceless stress-energy tensor.

Returning to the general case, we obtain the law of thermodynamics

dE = TdS − pdV + ΦdQ , (4.39)

whereE = ǫV , V = a3V3 is the volume, andΦ is the potential

Φ =
Q

G5a
. (4.40)

This is easily verified, e.g., by differentiating with respect to τ , r+, andQ (after using

(4.30) to expressM in terms of the other two parameters,r+ andQ).

4.4 Cosmological Evolution

Next, we discuss various explicit examples of cosmologicalevolution based on an AdS

Reissner-Nordström black hole. For simplicity, in what follows we shall be working with

units in whichL = 1.

157



Chapter 4. Cosmological Applications

The Hubble equation (4.27) can be massaged into the form

β

(

H2 +
k

a2

)

=
1

L′
−
√

H2 +
A(a)

a2
, (4.41)

where we introduced the convenient combinations of parameters

β =
G5

G4
− 1

2
,

1

L′
= 1 +

(1 + 2β)Λ4

6
. (4.42)

The Hubble equation can be expanded for largea as

H2 +
k

a2
− Λ4

3
=

G4L
3

16G5

{(

H2 +
1

a2

)2

+
4M

L2a4

}

−G4L
4

16G5

{(

H2 +
1

a2

)3

+
4M

L2a6
+

8Q2

L4a6
+

4M

L2a4
H2

}

+ . . . .

(4.43)

At leading order, it coincides with the result obtained in [22].

After squaring (4.41), we obtain a quadratic equation forH2. However, only one of the

two roots is a solution of (4.41). Let us concentrate on the range of parameters withβ > 0,

L′ > 0. We obtain

H2 =

(
1
L′ − k

a2
β
)2 − A(a)

a2

1
2
+ β

L′ − kβ2

a2
+
√

1
4
+ β

L′ + (A(a)− k)β
2

a2

. (4.44)

This can be solved fora = a(τ) to obtain the orbit of the boundary hypersurface. Once

a solution of (4.44) is obtained, we still need to verify thatit satisfies (4.41), because the

solutions of (4.41) in general form a subset of the solutionsof (4.44).

The fixed points of the orbits are found by settingH = 0 in (4.41). They are solutions

of

V (a) ≡ 1

L′
− k

a2
β − 1

a

√

A(a) = 0 . (4.45)

These fixed points are also fixed points of (4.44), but the converse is not always true.

With the choice of parameters such thatβ = 0 [34], eq. (4.44) simplifies to

H2 =

(

1 +
Λ4

6

)2

− A(a)

a2
, (4.46)
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which coincides with the results from a brane world scenario. Thus we recover the evo-

lution of a 3-brane in a five-dimensional bulk space if we fine tune the parameters of our

system so thatβ = 0.

The fixed points are solutions of

V (a) ≡ 1 +
Λ4

6
− 1

a

√

A(a) = 0 . (4.47)

Notice that no fixed points exist between the outer and inner horizons (withA(a) < 0),

because of the square root in the potentialV (a). Notice also thatV (a) ≈ Λ4

6
asa → ∞, so

the sign of the potential is determined by the sign ofΛ4, and at the horizon,V (r+) =
1
L′ >

0. Up to two fixed points can be outside the horizon. However, our classical results likely

receive significant quantum corrections as we approach the horizon. Therefore, our results

are reliable for orbits away from the horizon, which typically end at infinite distance from

the horizon.

ForΛ4 = 0, we recover from (4.46) the brane world scenario of [35]. This scenario is

depicted in figure 4.1a fork = +1 , M = 8 , Q = 1. We notice here that we have only

one solution that is bouncing. Of the two turning points, oneis inside the inner horizon

and the other outside the outer horizon. There is no fixed point between the inner and

outer horizons, as noted earlier, because of the presence ofthe square root in the potential

V (a) (4.45). This can be explicitly seen from figure 4.2a where we see clearly the position

of the inner fixed point as the point where the solid line cuts the a-axis. After crossing

the turning point outside the outer horizon, the square of the Hubble parameter becomes

negative and hence unphysical. The orbit of the bouncing solution is shown in figure 4.3.

Although we reproduce the bouncing cosmology of [35], through this, as argued in [36]

this kind of solution suffers from an instability. Indeed, the inner horizon is the Cauchy

horizon for this charged AdS black hole and is unstable underlinear fluctuations about the

equilibrium black hole space-time. So when the orbit crosses the inner horizon of the black

hole, it is not sufficient to consider only the unperturbed background. The backreaction

on the background metric due to the fluctuating modes has to betaken into account. This

backreaction is significant and may produce a curvature singularity. It should be noted that

this pathology occurs only forβ = 0. For β 6= 0, no outward crossing of the horizon

occurs. Thus, from our point of view,β acts as a regulator; keeping it small, but finite, is

essential for the handling of quantum fluctuations.

If we now tuneΛ4 to non-zero values, we obtain qualitatively different solutions. In the
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simplest case, when there is no chemical potential (Q = 0), for sufficiently smallΛ4 > 0,

andk = 1 (spherical geometry) we recover the de Sitter brane scenario of ref. [37]. As an

example, setM = 1, Λ4 = 0.5. For β = 0, we obtain two fixed pointsa = 1.13, 2.11,

outside the outer horizon (r+ = 1.03). As we increaseβ (i.e.,G5, or equivalently, decrease

G4), the larger fixed point increases and the smaller one decreases. After it hits the horizon,

the smaller fixed point disappears and we only have one fixed point. No fixed points exist

inside the horizon.

In the same set up and keeping all other parameters fixed to theafore-mentioned values,

if we now turn on the chemical potential, we obtain one more fixed point away from the

outer horizon. ForQ = 1 this is shown in figure 4.1b. Similarly to theΛ4 = 0 case, here

we also obtain one bouncing solution with two fixed points, one inside the inner horizon

(figure 4.2b) and the other outside the outer horizon. This solution for a(τ) is plotted in

figure 4.4a. Additionally, ata = 7.09 there is another fixed point. We obtain an accelerating

solution from this point (figure 4.4b). In the region betweenthe first fixed point outside the

outer horizon (a = 3.06) and second one ata = 7.09, the square of the Hubble parameter

is negative, hence there is no physical solution in this region.

Comparing the brane world scenario (4.46) with the general case,β 6= 0, we observe

that there are no qualitative differences in the flat case (k = 0). In the case of curved horizon

(boundary),k = ±1, in general one obtains fixed points other than the ones obtained in the

brane world scenario. As an example, consider the choice of parameters

k = +1 , M = 8 , Q = 1 , Λ4 = 0.05 , β = 6 . (4.48)

We have only one fixed point in this case, ata = 7.705 (figure 4.1d). The solution is

accelerating as shown in figure 4.5. There is no bouncing solution for any set of parameters

once we go away from the special caseβ = 0.

Forβ 6= 0, if we setΛ4 = 0, we do not obtain any physical solution. One such situation

is depicted in figure 4.1c. As we see, the square of the Hubble parameter is imaginary for

all values of the cosmic scalea in this case.
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Figure 4.1: Cosmological evolution scenarios for various values of parameters. Solid and
dashed lines are plots ofȧ2 andä, respectively. Dotted lines denote the black hole potential
with its zeros indicating the positions of the inner and outer horizons.
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Figure 4.2: Solid lines are plots oḟa2 whereas dotted lines are plots of the black hole
potential forβ = 0 and (a)Λ4 = 0, (b)Λ4 = 0.05. The inner fixed points and the position
of the inner horizon are shown.
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Figure 4.3: Plot ofa vs τ for β = 0, Λ4 = 0.
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Figure 4.4: Plots ofa vsτ for β = 0,Λ4 = 0.05. In (a) we have a bounce. Initial conditions
are chosen asa(0) = 0.356. At τ = 3.642, a reaches the second fixed point,a = 3.059. In
(b) we have an accelerating solution, with initial condition chosen asa(0) = 7.090.
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Figure 4.5: Plot of a vs τ for β = 6, Λ4 = 0.05. The initial condition is chosen as
a(0) = 7.705.

4.5 Summary and future directions : Part I

Let us pause here for a while and summarize this part before going into the next part of this

chapter. We discussed here the cosmological evolution derived from a static bulk solution

of the field equations with appropriately definedmixedboundary conditions using the grav-

ity/gauge theory duality (holography). Such an approach was first discussed in [22]. We

extended the results of [22] by considering a boundary hypersurface at arbitrary distance.

We calculated the general form of the stress-energy tensor and arrived at a generalized form

of the Hubble equation of cosmological evolution. We considered various explicit exam-

ples in detail based on an AdS Reissner-Nordström bulk blackhole solution. Interestingly,

we obtained the brane-world scenario as a special case, by fine-tuning the parameters of

the system, settingβ = 0 (eq. (4.42)). However, keepingβ small but finite is important in

order to avoid scenarios in which the boundary crosses the event horizon from within [35].

Thus,β acts as a regulator for such problematic solutions for whichquantum fluctuations

introduce instabilities [36]. Moreover, the countertermsone normally introduces to cancel

the infinities were shown to have the usual field theoretic interpretation of renormalizing

the bare parameters of the system (Newton’s constant and thecosmological constant).

It would be interesting to explore the parameter space of thecosmological system fur-

ther to obtain scenarios of cosmological evolution of interest, such as understanding infla-

tion, and phase transitions in general, in a holographic setting. Various extensions are also

possible, such as addition of matter fields on the boundary (without gravity duals). Also,

anisotropic cosmologies are possible from a static bulk background, if the boundary hyper-

surface is chosen with a different geometry than the horizon(e.g., flat boundary (k = 0) in

a bulk black hole background of spherical horizon (k = +1)). Work in this direction is in
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progress [38].

Part II : Dynamic Bulk - Dynamic Boundary

As mentioned in the prelude, in this part of the chapter we will deal with time-dependent

brane solutions in supergravity and their cosmological implications.

4.6 D3 brane with anisotropic time-dependent world vol-

ume

Besides the static D branes of odd space dimensions, the IIB string theory admitstime

dependentbranes. Consider, for example, the case of D3 brane. The equations of motion

following from the relevant part of standard IIB supergravity action

SIIB = − 1

16πG10

∫

d10x
√−g

(

R− 1

2
∂µφ∂µφ− 1

2× 5!
F 2
5

)

. (4.49)

has the following forms:

Rµ
ν =

1

2
∂µφ∂νφ+

1

2× 5!
(5F µξ2...ξ5Fνξ2...ξ5 −

1

2
δµνF

2
5 ),

∂µ(
√
gF µξ2...ξ5) = 0,

∇2φ = 0. (4.50)

These equations are solved by

ds2 =
(

1 +
l4

r4

)− 1
2
[

− dt2 + t2αdx2 + t2βdy2 + t2γdz2
]

+
(

1 +
l4

r4

) 1
2
[

dr2 + r2dΩ2
5

]

,

Ftxyzr =
4l4tα+β+γr3

(l4 + r4)2
,

φ = 0, (4.51)

provided

α+ β + γ = 1 and α2 + β2 + γ2 = 1. (4.52)
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The numbersα, β, γ can be organized in an increasing orderα < β < γ and they vary in

the range

−1

3
≤ α ≤ 0, 0 ≤ β ≤ 2

3
, and

2

3
≤ γ ≤ 1. (4.53)

These numbers can also be parametrized as

α(u) =
−u

1 + u+ u2
, β(u) =

1 + u

1 + u+ u2
, γ(u) =

u+ u2

1 + u+ u2
, (4.54)

where the Lifshitz-Khalatnikov parameteru ≥ 1. Further, valuesu < 1 lead to the same

range as

α(
1

u
) = α(u), β(

1

u
) = β(u), γ(

1

u
) = γ(u). (4.55)

The five form charge can be calculated by integrating∗F5 over the transverse space and it

turns out to be time independent.

In our convention, the extremal D3 brane is represented byα = β = γ = 0 and is

not continuously connected to the above solution. Unlike extremalD3 brane, this solution

breaks all the supersymmetries of IIB theory due to its explicit time dependence. The

Kretschmann scalar for the metric is given by

RµνρσR
µνρσ =

16(−α2(l4 + r4)6 + α3(l4 + r4)6 − 5l8r4(l8 + 12r8)t4)

r4(l4 + r4)5t4
. (4.56)

In writing the above equation, we have used the condition (4.52). It has a time-like singu-

larity at r = 0 at any finite time. It, further, has a cosmological singularity at t = 0.

In the larger limit, equations in (4.51) reduce to a four dimensional Kasner solution

plus a flat six-dimensional part. Within the Bianchi classification of homogeneous spaces,

the Kasner metric corresponds to choosing all three of the structure constants to be zero.

A generic perturbation near the singularity breaks these constraints generating Belinskii-

Lifshitz-Khalatnikov (BKL) oscillations [39]. To briefly illustrate the BKL oscillation,

appropriately generalized to our context, we replace the world volume metric on the brane

by type IX homogeneous space.

To this end, let us consider the brane configuration of the form

ds2 =
(

1 +
l4

r4

)− 1
2 [− dt2 + (a(t)2lilj + b(t)2mimj + c(t)2ninj)dx

idxj
]

+
(

1 +
l4

r4

) 1
2
[

dr2 + r2dΩ2
5

]

. (4.57)
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with the anti-symmetric five form field and the scalar

Ftxyzr =
4r3l4a(t)b(t)c(t) sin(x)

(r4 + l4)2
, (4.58)

φ = 0 . (4.59)

Hereli, mi, ni are frame vectors. For IX metric, all the three structure constants are 1 and

the simplest choice for the frame vectors is

li = (sinx,−cosz sinx, 0), mi = (cosx, sinz sinx, 0), ni = (0, cosx, 1). (4.60)

The coordinates run through values in the ranges0 ≤ x ≤ π, 0 ≤ y ≤ 2π, 0 ≤ z ≤ 4π1.

The above configuration (4.57 - 4.59) is a solution provided they satisfy IIB equations of

motion (4.50). This requirement leads to the following differential equations fora, b andc.

(atbc)t
abc

=
1

2a2b2c2
[
(b2 − c2)2 − a4

]
,

(abtc)t
abc

=
1

2a2b2c2
[
(c2 − a2)2 − b4

]
,

(abct)t
abc

=
1

2a2b2c2
[
(a2 − b2)2 − c4

]
,

att
a

+
btt
b

+
ctt
c

= 0 , (4.61)

where the subscript indicates derivative with respect tot. 2 These are exactly the equations

responsible for generating standard BKL oscillations. Consequently, the brane world-

volume metric will oscillate with negative powers oft oscillating from one direction to

another. In the next paragraph, for the sake of completeness, we give a brief analysis of this

oscillation.

To proceed, first we notice that if all the expressions on the right hand side of (4.61) are

small in some region, the system will have a Kasner-like regime with

a ∼ tα, b ∼ tβ , c ∼ tγ , (4.62)

whereα, β, γ satisfy constraint as in (4.52). However, now sinceα is negative, close to

1In all our discussion, we will closely follow [40]. [42] alsohas a lucid review of BKL oscillations for
types VIII and IX spaces.

2For type I spaces, in which Kasner metric belongs, the right hand sides of all the equations in (4.61)
would have been zero. This is due to the fact that all the structure constants are zero for type I spaces.
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t = 0, a4 term in the right hand sides of (4.61) will start dominating.It is useful to write

these equation in terms of new variables defined as

a = ep, b = eq, c = es, ep+q+sdτ = dt. (4.63)

In the vicinity of t = 0, (4.61) reduces to

pττ = −1

4
e4p, qττ = sττ =

1

2
e4p, (4.64)

where the subscriptsτ indicates derivative with respect toτ . The solution of these equa-

tions should describe the evolution of world-volume metricfrom the initial state of Kasner

metric. In terms of the new variables, this is equivalent to

pτ = α, qτ = β, sτ = γ. (4.65)

Note that the first equation in (4.64) can be interpreted as a particle moving in the presence

of an exponential wall-like potential. Due to the reflectionfrom this barrier, particle will

move withpτ = −α. However we see from (4.64) thatpτ + qτ andpτ + sτ are constants.

So we get

qτ = β + 2α, sτ = γ + 2α. (4.66)

These lead to

ep = e−ατ , eq = e(β+2α)τ , eτ = e(γ+2α)τ and t ∼ e(1+2α)τ . (4.67)

In terms of the original variables, we can re-write the aboveas

a = t
|α|

1−2|α| , b = t
β−2|α|
1−2|α| , c = t

γ−2|α|
1−2|α| . (4.68)

Therefore the action of the perturbation results oscillations between one Kasner regime to

another with negative power shifting froma to b to c, inducing BKL oscillations on the

world-volume of the D3 brane. We should however note that near the curvature singularity,

string action receives higher derivative gravitational corrections. Consequently, the nature

of the singularity and behaviour of its perturbation may getsubstantially modified. Solu-

tions may also get modified when one introduces other matter fields into the theory. If they

are represented by a perfect fluids on the world-volume, withpressure and energy density
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related asp = ωρ, it can be argued that forω < 1, BKL oscillations still persist. However,

situation changes drastically forω = 1, namely for the stiff-matter (a massless scalar field

for example). A general discussion on these issues can be found in [41, 43]. Indeed it is

easy to check that in our previous solution, one can introduce a dilaton with a profile

φ = λ log t. (4.69)

The metric and the form field remains same as before. However,the exponents now satisfy

new constraint relations :α + β + γ = 1, α2 + β2 + γ2 = 1 − λ2. The changes in these

relations allow BKL oscillation for a finite time and the system finally reaches an attractor.

We now proceed to study the metric in the near horizon limitr → 0. In this limit, the

metric reduces to

ds2 = −r2

l2
dt2 +

l2

r2
dr2 + r2(t2αdx2 + t2βdy2 + t2γdz2) + l2dΩ2

5, (4.70)

with

Ftxyzr =
4tr3

l4
, giving potential Ctxyz =

tr4

l4
. (4.71)

The Kretschmann scalar is,

RµνρσR
µνρσ =

16α2(α− 1)l4

r4t4
− 80

l4
. (4.72)

We call it a Kasner-AdS space. This Kasner-AdS solution separately satisfies five dimen-

sional Einstein equation in the presence of a negative cosmological constant and was found

in [44] in the context of brane-cosmology.

4.7 Probing with a D3 brane

In this section, we will probe the geometry (4.51) with a D3 brane. Distance of the probe

brane from the source now behaves as a scalar whose explicit time dependence can be

determined via a dynamical equation. We take the world-volume directions of the D3 brane

as ξ = (t, x, y, z). The world-volume action of the D3 brane in background geometry,

(4.51) takes the form :

S = T

∫

d4ξ
√

−det Gαβ + T

∫

d4ξ Ĉ4, (4.73)
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HereGαβ is the induced metric on the world-volume and̂C4 is the pull-back of the back-

ground4-form potential.T is the brane tension. We turn off all other fields on the brane.

The Lagrangian can be cast in the form :

L =
√

A(t, r) − B(t, r) ṙ2 − C(r), (4.74)

where,

A(t, r) = t2
(

1 +
l4

r4

)−2

B(t, r) = t2
(

1 +
l4

r4

)−1

C(r) = − t l4

l4 + r4

(4.75)

The equation of motion forr(t) is the Euler-Lagrange equation derived from (4.75) :

r4
(
l4 + r4

)2
[tr̈ + ṙ]− (l4 + r4)3ṙ3 − 2tl4r3

[
3(l4 + r4)ṙ2 − 2r4

]

−4tl4r
[
r4 −

(
l4 + r4

)
ṙ2
] 3

2 = 0 (4.76)

Here dot represents derivative with respect tot. Once this equation is solved with appro-

priate boundary conditions, the metric on the probe brane isuniquely determined. We will

carry out this computation in this section. However, owing to the explicit time dependence

in the background geometry, we find that the dynamical equation can not be solved analyti-

cally. Fortunately, it is not hard to find numerical solutionand a typical behaviour is shown

in the figure 4.6.
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2000 4000 6000 8000

1.0005

1.0010

1.0015

Figure 4.6: Plot of r as a function of time,t.

The functions that govern the anisotropic expansions in three spatial directions are

tα f(r), tβ f(r), tγ f(r), where

f(r) =

(

1 +
l4

r4

)−
1
4

. (4.77)

In order that the near horizon geometry is anAdS, as mentioned earlier,α,β,γ must satisfy

the constraint :α2 + β2 + γ2 = α + β + γ = 1. This means, once we specify one of the

three, say,α, the other two are automatically fixed :

β =
1

2

(

1− α +
√
−3α2 + 2α + 1

)

γ =
1

2

(

1− α−
√
−3α2 + 2α+ 1

)

(4.78)

Ideally, in cosmology, one defines cosmological time,η with which the metric on the

probe brane takes the form :

dS2
brane = −dη2 +

(

1 +
l4

r4(η)

)−
1
2

(t2α(η)dx2 + t2β(η)dy2 + t2γ(η)dz2). (4.79)

with

dη

dt
=

√
(

1 +
l4

r4

)−
1
2

−
(

1 +
l4

r4

) 1
2
(
dr(t)

dt

)2

. (4.80)
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The behaviour of time,t as a function ofη is depicted in figure 4.7.
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Figure 4.7: Plot of t as a function ofη.

At this, we plot the functionstα f(r), tβ f(r), tγ f(r) as functions ofη parametrically.

Heref(r) is defined through (4.77). One can tune the values ofα, β, γ consistent with the

Kasner constraints so that one of them goes down to zero (decelerating) while two of them

go up (accelerating) with cosmic time and vice versa. One such plot is given in figure 4.8.

10 20 30 40 50

5

10

15

Figure 4.8: The functions,f1 = tα(η) f(r), f2 = tβ(η) f(r), f3 = tγ(η) f(r), with f(r)
given in (4.77) are plotted as functions ofη. α, β andγ are 0.7, .632, -0.332 respectively
The plot off1 is in red, and that off2 andf3 are in green and black respectively.
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4.8 The dynamic M5 Brane

Our previous discussion can easily be extended to eleven dimensions. Here we discuss the

case of a M5 brane. We start withd = 11 supergravity action

S11d = − 1

2 κ2
11

∫

d11x
√−g

(

R− 1

48
F 2
4

)

, (4.81)

which is a generic action for the bosonic part ofd = 11 supergravity so long as we concen-

trate on static, flat translationally invariant p-brane solutions.

The equations of motion arising from (4.81) admits a solution of the form :

ds2 =

(

1 +
l3

r3

)−
1
3 [

−dt2 + t2α
2
1dx2

1 + t2α
2
2dx2

2 + t2α
2
3dx2

3 + t2α
2
4dx2

4 + t2α
2
5dx2

5

]

+

(

1 +
l3

r3

) 2
3 [

dr2 + r2dΩ2
4

]
, (4.82)

along with

Ftx1x2x3x4x5r =
3 l3 t r2

(l3 + r3)2
(4.83)

providedα1 + α2 + α3 + α4 + α5 = 1 andα2
1 + α2

2 + α2
3 + α2

4 + α2
5 = 1.

In the near horizon limit, i.e.r → 0, the metric and the non-zero component of the

form field reduce to the forms :

ds2 =
r

l

[

−dt2 + t2α
2
1dx2

1 + t2α
2
2dx2

2 + t2α
2
3dx2

3 + t2α
2
4dx2

4 + t2α
2
5dx2

5

]

+
l2

r2
[
dr2 + r2dΩ2

4

]
,

Ftx1x2x3x4x5r =
3 t r2

l3
, (4.84)

and hence the potential is given byCtx1x2x3x4x5 =
t r3

l3
.

We now make the following change of coordinates :

w2 =
r

l3
. (4.85)
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With this, the metric in (4.84) takes the form :

ds2 =
w2

4l2

(

−dt̄2 + t̄2α
2
1dx̄2

1 + t̄2α
2
2dx̄2

2 + t̄2α
2
3dx̄2

3 + t̄2α
2
4dx̄2

4 + t̄2α
2
5dx̄2

5

)

+4 l2
dw2

w2
+l2dΩ2

4,

(4.86)

wherex̄i and t̄ are suitably scaled versions of the coordinates,xi andt respectively. It is

worth mentioning in this regard that the scaling of the coordinates will not be the same

because of the presence of different powers oft in front of dx2
i . This is a consequence of

anisotropy.

Following our nomenclature, (4.86) is a metric of seven dimensional Kasner–AdS space

plus a four sphere. Forαi = 0 for i = 1, ..., 5, this reduces to our knownAdS7(2L)×S4(L)

solution.

4.9 Probing with a M5 brane

In the same spirit as we considered the case of probe D3 brane,we now consider a probe

M5 brane in the background (4.82) and (4.83).

In PST formalism [45], the world-volume action of M5 brane isgiven in terms of a

gauge invariant3-form field strength,H(3) = dA(2) + C(3), whereA(2) is world-volume

2-form andC(3), target space3-form. The world volume action in this formalism is written

as :

SM5 = TM5

∫

d6ξ [LDBI + LKE + LWZ ] , (4.87)

where

LDBI =

√

−det
(

Gij + H̃ij

)

is the Dirac-Born- Infeld Lagrangian,

LKE =
1

24 (∂a)2
ǫijklmnHlmnHjkpG

pq∂ia∂qa is the kinetic piece for the3-form,

LWZ =
1

6!
ǫijklmn

[

C(6)
ijklmn + 10 Hijk C(3)

lmn

]

is the Wess-Zumino term.

(4.88)

HereSαβ is the induced metric on the world-volume,C(3) andC(6) are the pull-backs of the
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3-form and6-form background potentials respectively.H̃ is defined as

H̃ij =
1

3!
√
−detG

√

−(∂a)2
ǫijklmn∂kaHlmn. (4.89)

“a” is an auxiliary scalar field introduced in PST formalism to maintain manifest covari-

ance.

If we now take the world-volume directions of the M5 brane asξ = (t, x1, x2, x3, x4, x5),

it can be explicitly checked that, in this “static gauge”, there will be no component ofC(3) in

world-volume directions. We further simplify the system byturning off the world-volume

2-form,A(2). With all these taken into account, the full Lagrangian takes the simple form :

L =
√

A(t, r) − B(t, r) ṙ2 − C(r), (4.90)

where,

A(t, r) = t2
(

1 +
l3

r3

)−2

B(t, r) = t2
(

1 +
l3

r3

)−1

C(r) = − t l3

l3 + r3
.

(4.91)

Here dot represents derivative with respect tot. The Euler Lagrange equation forr(t) is :

2r4
(
l3 + r3

)2
[tr̈ + ṙ]− 2r

(
l3 + r3

)3
ṙ3 − 3tl3r3

[
3
(
l3 + r3

)
ṙ2 − 2r3

]

−6tl3r
3
2

[
r3 − (l3 + r3)ṙ2

] 3
2 = 0 . (4.92)

In order to draw a cosmological interpretation of the solutions we obtain from (4.92), as

usual, we go to the “cosmic time” coordinate,η, in which the metric on the brane assumes

a form :

ds2brane = −dη(t)2 +

(

1 +
l3

r3(η)

)−
1
3

(
5∑

i=1

t2αi(η)dx2
i

)

, (4.93)
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with

dη

dt
=

√
(

1 +
l3

r3

)−
1
3

−
(

1 +
l3

r3

) 2
3
(
dr(t)

dt

)2

. (4.94)

The functions that govern the expansion of the universe in the spatial world-volume direc-

tions of the brane are in this casetαi f(r), where

f(r) =

(

1 +
l3

r3

)−
1
6

. (4.95)

We can chooseαi’s so that three of them are the same and mimics isotropic expansion

in three directions. The other two are anisotropic. Such a situation can be parametrized as :

α1 = α2 = α3 = p

α4 =
1

2

(√

−15p2 + 6p+ 1− 3p+ 1
)

α5 =
1

2

(

−
√

−15p2 + 6p+ 1− 3p+ 1
)

. (4.96)

Interestingly there exists a narrow window of parametric value for p, in whichαi for i =

1, 2, 3 are positive andα4 andα5 are negative. An illustrative plot is shown in figure 4.9

for a particular value ofp.
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Figure 4.9: The functions,tαi(η) f(r), for i = 1, 2, · · · , 5 are plotted as functions ofη for
p = 0.52. This corresponding values forαi’s are :α1 = α2 = α3 = 0.52 , α4 = −0.15 and
α5 = −0.41. The isotropic expansion corresponding toα1, α2, α3 is plotted in red. The
contraction corresponding toα4, α5 are plotted in green and black respectively.

4.10 Summary and future directions : Part II

In this part we have presented a class of time-dependent brane configurations of10 and11

dimensional supergravity. In particular, we showed probing certain brane configurations

with appropriate choice of parameters with another brane dynamically compactifies the

extra dimensions on the brane world-volume and hence mimicsthe cosmological evolution

of universe. Furthermore, near their cosmological singularities, this class of configurations

shows BKL oscillation. It will be worthwhile to look for the signatures of these oscillations

in their dual gauge theory descriptions as well.
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5
In Lieu of a Conclusion

Physics out of equilibrium is a huge field of study in itself and governs most of the interest-

ing real-life and real-time phenomena. Unfortunately, thefield theory tools to understand

non-equilibrium phenomena are not well-developed. This isprimarily because of the lack

of a reliable perturbation technique which in other branches of field theory has been proved

to be immensely helpful a tool. In this thesis we have chosen avery few non-equilibrium

phenomena, that too in a strongly coupled regime and have shown that machineries can be

derived from the AdS/CFT conjecture to handle such situations. We discussed phenom-

ena like temperature quench, non-Fermi liquid and early universe cosmologies and in each

case we got some success. Successes are varied, however, leaving some still unanswered

questions, here and there, but in conclusion, we can say, thesuccesses, even if partial, in

building up the problem-specific mechineries that we have reported in the chapters of this

thesis, definitely, hint at the point that AdS/CFT might be the very framework in which one

can do further studies in non-perturtive phenomena, in particular, the otherwise intractable

non-equilibrium scenarios.
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