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SYNOPSIS

Classical thermodynamics holds for macroscopic systems and is built around the

concept of equilibrium states. However, the rich diverse field of non-equilibrium pro-

cesses is a subject of intensive ongoing current research. In microscopic systems,

fluctuations start playing a dominant role. In these systems the fluctuations of phys-

ical quantities become comparable to the relevant energy exchanges of the system.

The area of stochastic thermodynamics [1] provides a framework for extending no-

tions of classical thermodynamics to such small systems. The concepts of work, heat,

and entropy are thereby extended to the level of individual system trajectories during

the nonequilibrium processes. This is in contrast to the case of macroscopic systems

where one can determine these thermodynamic quantities very accurately and the

probability distributions reduce to a delta function.

For microscopic systems, in some trajectories one can even observe local violation

of the second law of thermodynamics and these trajectories are referred to as transient

second law violating trajectories. Along these trajectories the total entropy produc-

tion becomes negative. For some trajectories work done on the system becomes less

than the equilibrium free energy change. However, the second law continuous to be

valid when averaged over all the trajectories [2].

When the microscopic systems are driven far away from equilibrium, fluctuations

in physical quantities satisfy a number of strong relations. They are collectively known

as fluctuation theorems [2,3,4,5,6,7]. These theorems are valid even beyond the linear

response regime and replace inequalities of thermodynamic relations into equalities.

From these theorems one can obtain linear and non linear response coefficients, and

moreover, the second law of thermodynamics can be obtained as a corollary. These

theorems also shed light on some fundamental problems such as how irreversibility

arises from underlying time reversal dynamics. One of the FT was initially put

forward by Jarzynski [3] in the form of the nonequilibrium work theorem, by means
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of which one can extract information about equilibrium changes in free energy ∆F

by measuring the nonequilibrium work W performed on a system by the external

drive. The system is initially prepared in equilibrium, and then driven away from

equilibrium using some predetermined protocol λ(t) which runs from t = 0 to t = τ .

The Jarzynski Equality is given by

〈e−βW 〉 = e−β∆F . (0.1)

The work W , depends on trajectory of the system, whose initial state is sampled

from equilibrium distribution. β = 1/kBT , T being the temperature of the bath.

The angular brackets denote averaging over an ensemble of such trajectories and the

free energy differences ∆F = F (λ(τ))− F (λ(0). A stronger fluctuation theorem was

provided by Crooks [4, 5] in the form

Pf(W )

Pr(−W )
= eβ(W−∆F ), (0.2)

Pf(W ) and Pr(W ) being the work probability densities generated under the forward

protocol λ(t) and the reverse protocol λ(τ − t), respectively. Later a more general

fluctuation theorem was put forward by Seifert which contains Jarzynski and Crooks

theorems as special cases [6,7] taking arbitrary initial distribution. The Seifert fluctu-

ation theorem states that the ratio of the probability of a phase space trajectory along

forward process to that of the corresponding reverse phase space trajectory in the re-

verse process is equal to exponential of total entropy production along the forward

trajectory. In particular total entropy production ∆stot obeys integral fluctuation

theorems, 〈e−∆stot〉 = 1.

Fluctuation theorems constrain the performance characteristics of engines/molecular

motors at nano-scales and has proved successful in understanding the micro and the

nano world. With the improvement of technology one can monitor micron/nano sized
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objects such as RNA, single atom, molecular motor etc. Several fluctuation theorems

are verified experimentally.

In this thesis, We have mainly focused on the extensions of these fluctuation the-

orems to different scenarios. These include fluctuation relations for heat engines in

steady state, generalized fluctuation theorems in presence of measurement and feed-

back for quantum systems, and fluctuation theorems for inhomogenious system. We

have also studied the effect of confinement on stochastic resonance. In the following

we describe our work in brief.

A fluctuation relation for heat engines (FRHE) has been derived recently [8]. We

take a simple model [9], where the system is connected periodically with two heat

baths. The protocol is as follows. In the beginning, the system is in contact with

the cooler bath. The system is then coupled to the hotter bath and the external

parameters are changed cyclically, eventually bringing the system back to its initial

state, once the coupling with the hot bath is switched off. In this work, we lift

the condition of initial thermal equilibrium and derive a new fluctuation relation

for the central system (heat engine) being in a time-periodic steady state (TPSS).

Carnots inequality for classical thermodynamics follows as a direct consequence of

this fluctuation theorem even in TPSS. For the special case of the absence of hot

bath we obtain the integral fluctuation theorem for total entropy and for the case of

no extraction of work we get the generalized exchange fluctuation theorem. Recently

micro-sized heat engines have been realized experimentally [10] in the TPSS. We

numerically simulate the same model and verify our proposed theorems.

In another work, we study the stochastic thermodynamics of small scale heat en-

gines [11]. They operate in presence of highly fluctuating input and output energy

fluxes and are therefore much better characterized by fluctuating efficiencies. Finite

time stochastic thermodynamics provides us with a consistent framework for small

scale systems operating arbitrary far from equilibrium. Using this framework we
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have carried out an extensive analysis of single particle heat engines by manipulating

a Brownian particle in a time dependent harmonic potential with time-dependent

coupling to two heat baths. Different cyclic protocols with and without inertia are

considered. Thermodynamic quantities such as work, heat and stochastic efficiency

exhibit strong fluctuations in time periodic steady states. The fluctuations of stochas-

tic efficiency dominates over the mean value even in the quasi-static regime. The phase

diagrams for system operations are qualitatively different for inertial and over-damped

regimes. This is supported by our analytical results in the quasi-static regime. In

time periodic steady state there are several realizations where the system does not

work as a heat engine. Such transient second law violating realizations decrease as we

increase cycle time. Hence for larger cycle times our system works more reliably as an

engine. Some of our results differ qualitatively from earlier claims in the literature.

We have also verified fluctuation relations for heat engines in time periodic steady

state.

We have generalized the fluctuation theorems in presence of feedback and mea-

surements for quantum systems [12]. Intermediate measurements on the system leads

to information gain that can be used to extract more work from the system by driving

it using appropriate feedback. We have derived the Jarzynski equality (JE) for an

isolated quantum system in three different cases: (i) the full unitary evolution with no

intermediate measurements, (ii) with intermediate measurements of arbitrary observ-

ables and (iii) with intermediate measurements whose outcomes are used to modify

the external protocol (feedback). Our treatment is based on path probability in state

space for each realization. This is in contrast to the formal approach based on projec-

tion operators and density matrices. We have found that the JE remains unaffected

in the second case, but gets modified in the third case where the mutual information

between the measured values with the actual eigenvalues must be incorporated into

the relation.
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In an another work, using same trajectory dependent path probability formalism

in state space, we have also derived generalized entropy production fluctuation rela-

tions for a quantum system in the presence of measurement and feedback [13]. We

have obtained these results for three different cases: (i) system evolving in isolation

from its surroundings; (ii) system weakly coupled to a heat bath; and (iii) system in

contact with a reservoir using quantum Crooks fluctuation theorem. In the case (iii),

we have followed the treatment carried out in [14], where a quantum trajectory has

been defined as a sequence of alternating work and heat steps. The obtained entropy

production fluctuation theorems retain the same form as in the classical case. The

inequality of second law of thermodynamics gets modified in the presence of infor-

mation. These fluctuation theorems are robust against intermediate measurements

of any observable performed with respect to von Neumann projective measurements

as well as weak or positive operator valued measurements.

In a separate work, we compare the fluctuation relations for work and entropy in

underdamped and overdamped systems, when the friction coefficient of the medium

is space-dependent [15]. We find that these relations remain unaffected in both cases.

However, for the overdamped system, the analysis is more involved and a blind ap-

plication of normal rules of calculus would lead to inconsistent results.

Stochastic resonance (SR) is a phenomenon in which a feeble input signal ap-

plied to a bistable potential gets magnified at a particular noise strength. In this

phenomenon noise plays a constructive role. It has previously been shown that the

average injected energy to the system is the best quantifier of SR. Using this quan-

tifier, we have observed bistability as a necessary but not a sufficient condition for

observing SR [16]. SR is observed in superharmonic (hard) potentials, but is not

observed in subharmonic (soft) potentials, even through the potential is bistable.

However, in both soft and hard potentials, we have observed resonance phenomenon

as a function of driving frequency. Some subtleties in the dynamics of particle in the
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two different types of potentials are analyzed based on the probability distributions

of work done on the system over a period.
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Introduction
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1.1 Introduction

‘Thermo’ means heat and ‘dynamics’ means motion and thermodynamics is the sci-

ence of flow of heat. It is about the study of energy and its transformation into dif-

ferent forms [1]. Usually, thermodynamics deals with systems having large (∼ 1023)

number of particles without giving much importance to their individual microscopic

properties. Therefore, it can describe macroscopic physical properties of matter gener-

ically. For example, thermodynamics tells us physical properties like pressure, volume,

temperature of ∼ 1023 number of gas molecules at high temperatures and low density

can be related in a simple way as PV
T

= constant, which is a result that is indepen-

dent of the microscopic properties of individual gas molecules. On the other hand, if

we want to describe the system from microscopic point of view, we need the help of

statistical mechanics [2, 3].

Any typical macroscopic system contains large number of molecules and this has

large (∼ 1023) degrees of freedom. For classical systems these molecules obey simple

Newton’s equations of motion in some force field with appropriate boundary condi-

tions. Now, it is impossible to know all the initial coordinates and momenta of each

individual molecule/atom. Moreover, available techniques to solve dynamical equa-

tions are incapable to handle such huge number of equations. However, if we coarse

grain our observation, we find that these positions and momenta obey some proba-

bility laws. Indeed, the thermodynamic variables such as energy, volume, pressure,

etc. can be described probabilistically.

It can be shown that relative fluctuations for fixed intensive quantities (temper-

ature, pressure etc.), extensive quantities (volume, energy etc.) are proportional to

1/
√

N where N is the number of particles. For macroscopic systems, as the system

size is large, one simply recovers the classical thermodynamics observation. It can

be mentioned that depending on boundary, the system can be described in terms of
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microcanonical, canonical or grand canonical ensembles. For isolated system, micro-

canonical statistical mechanics is applicable. For this case, each micro-state has equal

probability. For canonical system, energy exchange (thermal or mechanical) with the

surroundings is allowed. Grand canonical system is more general in which both en-

ergy and particle exchange is possible. Gibbs, Maxwell and Boltzmann developed the

concepts of equilibrium statistical mechanics more than a century ago. The formalism

of equilibrium statistical mechanics is that we first have to find the equilibrium distri-

bution of occupation of the energy states of the system and determine the partition

function. Free energy can then be calculated from the partition function. Other ther-

modynamic variables like average energy, specific heat, entropy, magnetic moment,

susceptibility, conductance etc. can be found by taking appropriate derivatives of

the free energy. Hence, statistical mechanics describes the macroscopic phenomena of

the system statistically, by observing the properties of the individual molecules and

builds a bridge between mechanics with the thermodynamics where the typical time

scale of observation is much larger than atomic time scale.

It is easy to describe the system in equilibrium where the thermodynamic variables

do not change in time and they are related to each other. This relationship is called

equation of state. Equation of state of a system is the only system specific input which

classical thermodynamics requires. If we shift our focus away from the equilibrium

state, we come across the rich and diverse domain of non-equilibrium processes. The

system goes out of equilibrium in the presence of some drive and the principle of

detailed balance is broken. Take an example of a rod connecting two thermal baths.

When the two baths are kept at same temperature, the rod will be in equilibrium

with the baths. Now, if the rod is connected to two baths at different temperatures,

heat will flow through the rod from hot to the cold bath and rod will be out of

equilibrium. Actually we are surrounded by these noneqilibrium systems. Examples

include biological systems, driven colloids, flow of fluids, mechanical and biological
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transport, spreading of species, traffic movement, stock market, social network etc.

Although, equilibrium statistical mechanics can be used to describe the systems close

to equilibrium, linear response theory connects response functions for small drives to

equilibrium fluctuations. In this regime one obtains celebrated Onsagar reciprocal

relation and fluctuation dissipation relation. It can not be applied when the system

is far away from equilibrium. Indeed, there is no common prescription to deal with

such systems. Depending on the problem, some of the techniques can be applied to

describe the dynamical properties of the system in this regime. These include diffusion

equation [4], Fokker Planck equation [4, 5, 7, 6, 8], Boltzmann transport equation [9],

Cahn-Hilliard equation [10] etc. It is important to note that all these equations are

irreversible in time although the underlying microscopic dynamics is time reversible.

This is quite surprising and a long standing paradox is that how individual particle,

obeying time reversible equations of motion, when moving collectively, show time-

irreversibility. In this respect, Arthur Eddington first introduced the concepts of arrow

of time. This can be understood by a simple example. Take a box which is divided

into two parts by a partition and fill one part of it with ideal gas. Now, if the partition

is removed, the gas will fill the full box and after some time it reaches equilibrium.

But we do not observe the reverse process spontaneously, i.e., if initially the gas is

in equilibrium in the full box after some time we do not find all the gas molecules

in one half of the box. Although it is microscopically possible, as the microscopic

dynamics obey simple Newton’s laws of motion. If we reverse the velocities of all

the molecules at the full box in equilibrium, theoretically we can observe the reverse

process. However, in practice it does not happen because to reach this initial condition

in equilibrium it may take a time that is more than the age of the universe. The

concept of irreversibility is directly related to entropy. The second law states that

entropy always increases with time. Entropy is a measure of disorder. System always

chooses a path in which disorder (number of accessible configurations) increases. For
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isolated systems at equilibrium, the disorder is maximum. That’s why we do not

observe the reverse process.

For macroscopic systems, the effect of thermal fluctuations are negligible. One

can hardly observe any deviation of physical quantities from their means except in

some special cases such as near a phase transitions. At the critical point fluctuations

become so large that they become evident to macroscopic observations [1]. As soon

as the system size becomes macroscopic fluctuations start playing dominant role. In

this limit, the thermal fluctuations kBT ≈ 4 × 10−21J at room temperature (300

K) are comparable to the relevant energy exchanges of the system. To describe the

thermodynamics at this scale a new framework of stochastic energetics [12,11,13] has

evolved in the last two decades. Indeed, the concepts of input work, heat dissipation,

entropy production etc. have been extended to the level of individual phase space

trajectories. These thermodynamic quantities now become path dependent variables

and evolve along with the phase space evolution of the system. Moreover, for a single

trajectory it is possible to observe a rare event such as the decreasing of total entropy

over a short time interval. However, if we take ensemble of such trajectories by

repeating the same experiment again and again, the second law is obeyed on average.

Research in this area has given birth to a group of exact and powerful theorems

that dictate the behavior of such systems. They are commonly referred to as the

Fluctuation Theorems (FTs) [15,16,17,18,19,20,21,22,23,24,25,26,27,13,28,29,30],

and these theorems are valid even far from equilibrium, well beyond the scope of the

linear response theory. These theorems have been derived for different scenarios such

as for deterministic dynamics, stochastic dynamics and even for quantum dynamics

[31, 32, 33, 34, 35]. Different FTs hold when the system is in the transient regime

or in non-equilibrium steady state (NESS). The FTs provide quantitative relations

that measure the probability to observe rare events concerning the work performed

by the system [23, 29] or the entropy production [22] and also shed new light on
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the fundamental problem of how irreversibility arises from underlying time reversal

symmetries. Moreover the second law is obtained as a corollary from these theorems.

With the improvement of technology in last two decades, it has been possible to

manipulate and measure physical systems at the micro and nano scale. This opens

up vast new areas for new experiments and gives us an opportunity to improve our

understanding of the micro/nano world. Tiny biological systems, provide a natural

setting for applying the tools of non-equilibrium statistical mechanics. Several such

set-ups include bio-polymers like DNA, RNA etc. manipulated by optical tweezers

[37,38], molecular motors driven by chemical gradients [39]etc. FTs have already been

verified in those set-ups including other experiments like colloidal particle driven by

optical traps [40].

If a macroscopic system is initially at equilibrium with a single heat bath, it is

impossible to extract energy from the bath and perform some useful work during a

cyclic protocol. For non cyclic process that means input work W (i.e, extracted work

Wext= -W) is always greater than the free energy change of the system ∆F . How-

ever, for mesoscopic systems one may observe for few realizations, W < ∆F . These

trajectories are termed as transient second law violating trajectories [42]. However,

one recovers the second law on average i.e., 〈W 〉 > ∆F . Here the angular brackets

represent the ensemble average. Now, if a measurement is performed on the system

and a proper feedback is applied depending on the acquired information, then one can

extract energy even on average from a single heat bath in a cyclic process (for a non

cyclic process this is equivalent to 〈W 〉 < ∆F ). Szilard engine is a prime example in

this regard [43]. In recent studies [44,45,46,47]it has been shown that when feedback

is applied, the second law gets modified and the total entropy gets bounded below

by the acquired information. Motivated by this, in Chapter 4 and 5 of this thesis, we

have generalized the fluctuation theorems to quantum systems for multiple measure-

ment and feedback. In this respect it can be mentioned that, due to performance of
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measurement, entropy of the system may get reduced. But, this reduction of entropy

should be compensated by the increase of entropy of the measurement device [48,49].

Indeed, it is possible to do measurement without energy lost. However, one always

needs to do work to erase the information, which was stored in the memory, to make

the process complete. Thus, if we take the system, the bath and the measurement

device (memory) together as the universe second law is restored [49, 50].

FT for heat engine has recently been derived [51] and it is found Carnot efficiency

must be the upper bound on average. However, for single trajectory the efficiency

(stochastic efficiency) may violate this law. Last two years have witnessed growing

interest in this new area and it is observed that the distribution of stochastic efficiency

displays power law behavior [52]. In Chapter 3 we have shown that depending on

system parameters, during a single protocol of an engine one can observe different

phase space regions including a refrigerator region.

Before going into the details of our findings, we would like to go through the basic

concepts used in the rest of the thesis.

1.1.1 Langevin equation and fluctuation-dissipation theorem

When the system size are micron size or smaller, fluctuation play a dominant role.

One prime example is the Brownian motion which describes the random motion of a

micron size particle immersed into a liquid. This motion occurs due to random kicks

received from the liquid molecules. If we try to describe this motion by Newton’s Law,

we have to keep track of the motion of every single molecule in the liquid, including

the Brownian particle, at every moment. To resolve this issue simply, Langevin came

forward with an idea. He determined the total force acting on the Brownian particle

of mass m and velocity v at any time t and wrote the equation of motion as [7]

mv̇ = −γv + ξ(t), (1.1)
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which is known as Langevin equation. Here, the over-head dot represents time deriva-

tive. The deterministic force (first part) will be obviously the macroscopic frictional

force which is related to Stokes’ law and arises due to moving body inside a crowd

(liquid particles). This force always oppose to the motion of the Brownian particle

and is proportional to its velocity v. For a spherical particle of radius a, moving in

a fluid of viscosity η, frictional coefficient will be γ = 6πηa. The second term ξ(t)

represents the fluctuating force due to the random kicks of the liquid molecules on

the Brownian particle. This random force must obey certain properties. First of all,

as there is no preferential direction of the kicks, average will vanish, i.e.,

〈ξ(t)〉 = 0. (1.2)

Here, angular bracket represents ensemble average at any time. Now, as there is no

correlation between two successive kicks the second moment will follow

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), (1.3)

with D a constant to be determined. Note that, the Fourier transform of delta function

is independent of frequency. Hence corresponding noise is called white noise. Solving

eq.(1.1) one gets velocity of the particle at any time t, from given initial velocity, v0

as

v(t) = e−γt/mv0 +
1

m

∫ t

0

e−γ(t−t′)/mξ(t′). (1.4)

Thus, the average velocity goes to zero at long time, for any initial velocity. It

is expected because, in equilibrium, there will not be any preferential direction of a

Brownian motion. In this limit, average mean square velocity must satisfy the relation

〈v2〉eq = kBT
m

. Here, kB is the Boltzmann constant, T is temperature of the medium.
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Using this relation, one can determine the constant

D = γkBT, (1.5)

which is known as fluctuation-dissipation theorem. It relates the strength D of the

fluctuating force with the dissipation force having frictional coefficient γ.

1.1.2 Stochastic energetics

The evolution of the phase-space trajectory for mesoscopic systems become stochastic

in nature [12, 11]. All the thermodynamic quantities such as work, heat etc. become

stochastic and depend on this phase space trajectory. If a particle of mass m is con-

fined in a time dependent effective potential V (x, t) (which include effective potential

arises due to any external time dependent conservative force). The corresponding

Langevin equation contains an extra term:

mv̇ = −∂V (x, t)

∂x
− γv + ξ(t). (1.6)

The total force acting on the particle from its surrounding(bath) is −γv+ξ(t). Hence,

the reaction force of the particle will be −(−γv + ξ(t)). If the particle moves at an

amount dx, Sekimoto defined the heat dissipated to bath [12] as

dQ = −(−γv + ξ(t))dx = −
(

mv̇ +
∂V (x, t)

∂x

)

dx (1.7)

where we have used eq.(1.6) to rearrange the force term. Now, we have dV (x, t) =

∂V (x,t)
∂x

dx + ∂V (x,t)
∂t

dt. Then,
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dQ = −mv̇dx− dV (x, t) +
∂V (x, t)

∂t
dt

= −mvdv − dV (x, t) +
∂V (x, t)

∂t
dt

= −d(
1

2
mv2 + V (x, t)) +

∂V (x, t)

∂t
dt

= −dE + δW. (1.8)

In second line we have used Stratonivich type calculus. The first term in eq.(1.8)

represents the change in internal energy which is defined as E = 1
2
mv2 + V (x, t).

Then one can identify work done on the system [23] as

dW =
∂V (x, t)

∂t
dt. (1.9)

Eq.(1.8) represents first law for this small increment of time. For a stochastic trajec-

tory upto time τ total heat goes to bath and work done on the system is defined as

Q(τ) = −
∫ τ

0

(−γv + ξ(t))ẋdt = −
∫ τ

0

(

mv̇ +
∂V (x, t)

∂x

)

vdt, (1.10)

W (τ) =

∫ τ

0

∂V (x, t)

∂t
dt (1.11)

respectively and depend on the particular realization of the stochastic trajectory.

While internal energy is a state function and depend on the beginning and end point

of the path, ∆E(τ) = 1
2
mv2

τ + V (xτ , τ)− 1
2
mv2

0 − V (x0, 0), where (xτ , vτ ) and (x0, v0)

represent initial and final phase space point respectively.
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Overdamped case

When the relaxation time of velocity, m/γ, becomes much smaller compared to the

typical time scale of the change position variable (or in other way round the typical

time scale of our interest ∆t, is such that ∆t≫ m/γ), one can ignore the inertia term

and rewrite the Langevin equation as

γv = −∂V (x, t)

∂x
+ ξ(t). (1.12)

In this overdamped limit, one similarly defines the above mentioned thermodynamic

variables for a particular stochastic trajectory as

Q(τ) = −
∫ τ

0

∂V (x, t)

∂x
ẋdt

W (τ) =

∫ τ

0

∂V (x, t)

∂t
dt

∆E(τ) = V (xτ , τ)− V (x0, 0). (1.13)

If the time dependency of the system can be realized by changing the time-

dependent potential V (x, λ) and non-conservative force f(x, λ) through a protocol

λ(t), the overdamped equation becomes

γẋ = −∂V (x, λ)

∂x
+ f(x, λ) + ξ(t). (1.14)

For this case, the definition of work [30] is then modified to

W (τ) =

∫ τ

0

∂V (x, λ)

∂t
dt +

∫ τ

0

f(x, λ)ẋdt (1.15)

The drift coefficient is denoted as b(x, t) = 1
γ
(−∂V (x,λ)

∂x
+ f(x, λ)). If P (x, t) denotes

the probability of finding the particle at x in time t, corresponding Fokker-Planck
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equation [7] will be

∂P (x, t)

∂t
= −∂J(x, t)

∂x
, (1.16)

where the current is

J(x, t) = b(x, t)P (x, t)− kBT

γ

∂P (x, t)

∂x
. (1.17)

The local mean velocity of the particle at x at any time t is defined as

V(x, t) =
J(x, t)

P (x, t)
= b(x, t)− kBT

γ

∂ ln P (x, t)

∂x
. (1.18)

If there is no drive, i.e., f(x, λ) = 0 and the particle is kept at fixed potential V (x, λ),

the total current will be zero and the system will reach equilibrium with probability

distribution

Peq(x, λ) = e−β[V (x,λ)−F (λ)] (1.19)

where F (λ) is the equilibrium free energy defined as e−βF (λ) =
∫

dxe−βV (x,λ).

When the system is driven by a fixed λ, the total current become constant and

the system will reach a time independent NESS with probability distribution

Pss(x, λ) = e−φ(x,λ), (1.20)

where φ(x, λ) is the nonequilibrium potential. The steady state current now becomes

Jss(x, λ) = b(x, λ)Pss(x, λ)− kBT

γ

∂Pss(x, λ)

∂x
. (1.21)

and the mean local velocity at steady state becomes

Vss(x, λ) = b(x, λ) +
kBT

γ

∂φ(x, λ)

∂x
. (1.22)
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The idea of decomposing the total heat into two parts namely ’house-keeping heat’

and ’excess heat’ for the the system in time periodic steady state (TPSS), was put

forward by Oono and Paniconi [53] and made explicit in Langevin system by Hatano

and Sasa [54]. The dissipated heat now can be rewritten as

Q(τ) = −
∫ τ

0

(−γv + ξ(t))ẋdt

= γ

∫ τ

0

b(x, λ)ẋdt

= γ

∫ τ

0

Vss(x, λ)ẋdt− kBT

∫ τ

0

∂φ(x, λ)

∂x
ẋdt.

(1.23)

The house-keeping heat is the part which is required just to maintain the steady

state and is defined as

Qhk(τ) = γ

∫ τ

0

Vss(x, λ)ẋdt. (1.24)

On the other hand, excess heat is the heat that is produced on top of the house-

keeping heat, such that Q(τ) = Qhk(τ) + Qex(τ).

Qex(τ) = −kBT

∫ τ

0

∂φ(x, λ)

∂x
ẋdt

= kBT

[

−∆φ +

∫ τ

0

∂φ(x, λ)

∂λ
λ̇dt

]

, (1.25)

as dφ = ∂φ(x,λ)
∂x

dx + ∂φ(x,λ)
∂λ

dλ. For equilibrium system, Qhk = 0 due to Vss(x, λ) = 0

and hence Qex reduced to the total heat Q.
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1.2 Second law at mesoscopic scales

For classical thermodynamics the second law states that for any thermodynamic pro-

cess the total entropy change is always positive [1], i.e.,

∆Stot ≥ 0 (1.26)

The total entropy consists of two parts, the system entropy change ∆S and the bath

entropy change ∆Sm. Hence,

∆Stot = ∆S + ∆Sm. (1.27)

Now, if the system is connected to only one bath at temperature T , then bath entropy

change ∆Sm will be Q
T
, where Q is the heat goes to the bath during the process. Using

first law W = ∆E + Q we can rewrite the second law as

∆S + ∆Sm ≥ 0

∆S +
Q

T
≥ 0

T∆S −∆E + W ≥ 0. (1.28)

Using the definition of Helmholtz Free energy F = E−TS the above equation reduces

to

W −∆F ≥ 0. (1.29)

This is another form of second law and equality sign holds only during a reversible

process. The above inequality states that, among all processes taking place between

any two given thermodynamic states, the work done on the system is minimum for a

reversible process and is equal to the free energy change of the corresponding states.

The excess work done on the system during a process over the free energy change is
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called dissipated work Wdiss = W − ∆F , as this amount of work will be dissipated

into the bath. Hence, dissipated work is always non-negative, i.e., Wdiss ≥ 0.

However, for mesoscopic systems one may find few trajectories for which they

violate the above mentioned laws and are known as transient second law violating

trajectories. But, it can be shown that the second law is obeyed on average [23, 27],

〈∆stot〉 ≥ 0 〈W 〉 −∆F ≥ 0. (1.30)

Here, the angular bracket represents the ensemble average of given thermodynamic

quantity over large number of realizations of a process.

1.3 Fluctuation theorems

In the last couple of decades a lot of work has been directed towards nonequilibrium

statistical mechanics, and has given birth to several exact and unexpected relations

that are valid even when the system is far from equilibrium. These results, although

in principle valid quite generally, are in practice relevant mostly for mesoscopic sys-

tems for which the fluctuations are substantial. These are called fluctuation theo-

rems(FTs) [20, 21, 23, 28, 29]. They transform classical thermodynamic inequalities

into equalities. These theorems also shed new light on some fundamental problems

such as how irreversibility arises from underlying time-reversible dynamics. Moreover,

these theorems have important implications for nanotechnology and nano physics.

Advances in experimental techniques have made dramatic progress in the area of

single-molecule manipulation and nanotechnology have led to experimental verifica-

tion of the various fluctuation theorems [41, 18]. FTs are the universal properties of

the probability distribution P (Ω) for functional Ω[x(t)], like work, heat, entropy etc.,

evaluated along the stochastic trajectories from ensembles with well specified initial

distributions p0(x0). In the following, we will classify various FTs in brief.
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1.3.1 Integral fluctuation theorem

Any non-dimensionalized functional Ω[x(t)] with probability distribution P (Ω) obey

Integral Fluctuation Theorem (IFT) [30] if

〈exp(−Ω)〉 =

∫

P (Ω) exp(−Ω) = 1. (1.31)

From the convexity of exponential function one can obtain the following inequality

〈Ω〉 ≥ 0. (1.32)

Sometime this inequality represents a well known thermodynamic law. In this re-

spect, it should be mentioned that, classical thermodynamics is valid for macroscopic

systems and ignores any fluctuations in any thermodynamic variable. However, this

is not true for meso/ microscopic systems. The number of realizations for which

Ω < 0 can be characterized as ’violating’ the corresponding thermodynamic law at

trajectory level. The probability for obtaining Ω < −ω with ω ≥ 0 can be easily

calculated and can be given by

prob[Ω < −ω] ≤
∫ −ω

−∞

dΩP (Ω)e−ω−Ω ≤ e−ω. (1.33)

From the above expression it is revealed that the violation is of the order of 1.

Now, for an N dimensional system, Ω will be typically order of NKBT . Thus, the

violation is exponentially small for large systems and restores the classical result (as

shown in figure 1.1).

If the distribution P (Ω) is Gaussian, IFT gives a constraint on the width of the
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(Ω)P

Ω0

Figure 1.1: The distribution at the right is that of a thermodynamic variable Ω in a
macroscopic system (diagram is not to scale). Obviously, because of the large value
of the mean, there would be negligible probability of observing a process in which Ω
is negative. On the other hand, the distribution for the mesoscopic system (left) may
have an appreciable part of the distribution on the negative side (shaded part).

distribution and its mean and they are related by [55]

〈(Ω− 〈Ω〉)2〉 = 2〈Ω〉. (1.34)

The above equation referred to as fluctuation-dissipation relation.

1.3.2 Detailed fluctuation theorem

The detailed fluctuation theorem (DFT) is stronger than the IFT and relate the

positive part of any distribution to its negative part by

P (−Ω)

P (Ω)
= exp(−Ω). (1.35)

From DFT one can trivially gets corresponding IFT but the reverse is not true. Here,

DFT (eq.( 1.35)) is for a steady state.
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1.3.3 Generalized Crooks fluctuation theorems

These relation relate any distribution P (Ω) of the original process with the distribu-

tion P †(Ω) of same physical variable in the corresponding conjugate process and is

given by

P †(−Ω)

P (Ω)
= exp(−Ω). (1.36)

As P †(Ω) is normalized it implies IFT but not DFT. Next, we will discuss various

well known FTs in detail.

1.3.4 Crooks fluctuation theorem

Consider a system driven by a protocol λ(t) from time t = 0 to t = τ . This leads to

evolution of the phase space variable of the system xt at any time t. The initial and

final value of the protocol is λ(0) = λA and λ(τ) = λB respectively. For simplicity

we restrict the motion of the system in one dimension only and corresponding xt =

(x, v, t) where x, v represent position and velocity of the system (take for an example

of a single particle) at time t. One can easily extend the same treatment to the

multidimensional space. In the reverse process, the protocol would start from λB and

would go to λA and corresponding time reverse protocol of the forward process is

simply denoted as λ̃(t) = λ(τ − t). Note that, one can get reverse trajectory if the

particle travels through the same position with exactly equal but opposite velocity.

If x̃t denotes time reversed phase space point of xt then x̃t = (x,−v, t). Note

that in the reverse process the actual time of elapse is τ − t instead of t. In figure

1.2, we have shown the evolution of a typical forward trajectory X(t) in phase space

and corresponding reverse trajectory X̃(t). In discrete time step, consider a typical

trajectory X = x0 → x1 → x2 → .... → xτ then corresponding reverse trajectory

would be X̃ = x̃0 ← x̃1 ← x̃2 ← .... ← x̃τ . Crooks [28, 29] showed that in the
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X(t)
~

X(t)

p

x

Figure 1.2: The figure shows a typical forward trajectory X(t) in phase space and its
corresponding reverse trajectory X̃(t). The momentum coordinates (p) are inverted
in the case of the reverse trajectory, while the position coordinates (x) remain the
same.

trajectory picture,

P̃ [X̃|x̃τ ]

P [X|x0]
= exp(−βQ), (1.37)

where Q is the total heat flowing into the bath in the forward evolution and β =

1/kBT . Here, P [X|x0] denotes the conditional probability to observe trajectory X in

the forward process for given initial phase space point x0. While, P̃ [X̃|x̃τ ] represents

the conditional probability to observe the trajectory X̃ for given initial phase space

point x̃τ when the protocol is followed in reverse order. Now, let the system start

initially from equilibrium distribution for fixed initial protocol λA, then

p(x0) = e−β[H(x0,λA)−FA], (1.38)

where H(x0, λA) denotes the Hamiltonian of the system. Corresponding equilibrium

free energy is given by FA = −kBT ln ZA with partition function ZA =
∫

dx0 exp−β[H(x0,λA)].

Before the beginning of the the reverse process, one makes sure that the system is in

canonical distribution with the initial protocol of the reverse process λ̃(0) = λ(τ) =
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λB, which is the final protocol corresponding to the forward process. Then

p1(x̃τ ) = e−β[H(x̃τ ,λB)−FB ], (1.39)

where, H(x̃τ , λB) and FB represents corresponding Hamiltonian and free energy of

the system in the reverse process for fixed protocol λB. Then Crooks shows [28, 29]

that the probability to observe the froward trajectory to that of the corresponding

reverse trajectory is simply related by

P̃ [X̃]

P [X]
=

P̃ [X̃|x̃τ ]p1(x̃τ )

P [X|x0]p(x0)
= exp[−β(W −∆F )]. (1.40)

where ∆F = FB − FA. Using the above relation one can easily derive the Crooks

Fluctuation theorem (CFT) which relates the pdf of work P (W ) in the forward process

is under a protocol λ(t) to the corresponding pdf P̃ (W ) in the time reverse process,

driven by the protocol λ̃(t) = λ(τ − t) and is given by

P̃ (−W )

P (W )
= exp[−(W −∆F )/T ]. (1.41)

This implies that ∆F can be obtained by locating the crossing point of the two

distributions.

1.3.5 Jarzynski equality

Simply by cross multiplying and integrating the CFT one can obtain

〈e−βW 〉 =

∫

dWP (W )e−βW = e−β∆F

∫

dWP̃ (−W ) = e−β∆F . (1.42)

This is the celebrated Jarzynski Equality (JE) [23] which relates the nonequilib-

rium work done on the system with the equilibrium free energy difference and provide
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a tool to calculate free energy change from the ensemble of work done on the system

due to a particular protocol. Using Jensen’s inequality 〈e−x〉 ≥ e−〈x〉, we can write

e−β〈W 〉 ≤ 〈e−βW 〉 = e−β∆F ; which leads to the second law,

〈W 〉 ≥ ∆F. (1.43)

In this respect, it is mentioned that, for macroscopic system W is always greater than

∆F . But, for any microscopic system there may be many realizations that violate

this. These realizations are known as transient second law violating trajectories.

However, second law is valid on average which comes as a direct consequence of JE.

A more general FT was put forward by Seifert [13] which contains the Jarzynski and

the Crooks theorems as special cases.

1.3.6 Seifert’s Integral fluctuation theorem

Before going further in the fluctuation theorems now we give basic concepts of en-

tropy in small systems. Entropy in general is a concept valid in equilibrium. The

nonequlibrium entropy of a system with probability p(x, t) is defined as

S(t) = −kB

∫

dxp(x, t) ln p(x, t). (1.44)

However, Seifert [27] first introduced the concepts of entropy for individual trajectory.

In this trajectory picture he defined entropy as

s(t) = −kB ln p(x, t). (1.45)

A system which is in contact with a heat bath, is initially prepared in some arbitrary

distribution p(x0) of phase space points and is perturbed by varying an external

parameter λ(t) up to time t = τ . In the reverse process, the system evolves from
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some other initial distribution p1(x̃τ ) under the time-reversed protocol λ(τ − t). The

Seifert’s FT states that, the probability of a phase space trajectory along the forward

process, P [X] is related to that along the reverse process, P̃ [X̃], as

P̃ [X̃]

P [X]
=

P̃ [X̃|x̃τ ]p1(x̃τ )

P [X|x0]p(x0)
= e−βQ p1(x̃τ )

p(x0)
. (1.46)

If, in particular, the distribution p1(xτ ) in the final distribution at time τ as dictated

by dynamics, satisfy p1(xτ ) = p1(x̃τ ), we can write the system entropy change on this

particular forward trajectory as

∆s = −kB ln
p1(xτ )

p(x0)
= −kB ln

p1(x̃τ )

p(x0)
. (1.47)

The entropy change of the bath is defined as ∆sB = Q
T
, where Q is heat absorbed by

the bath. Hence the total entropy production along this particular trajectory consists

of two parts

∆stot = ∆s + ∆sB = −kB ln
p1(x̃τ )

p(x0)
+

Q

T
. (1.48)

Taking kB = 1, we can rewrite the Seifert FT in trajectory picture as

P̃ [X̃]

P [X]
= e−∆stot. (1.49)

Simply cross multiplying the above equation we get ∆stot obey

〈e−∆stot〉 = 1. (1.50)
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This is the celebrated integral fluctuation theorem (IFT) given by Seifert [27, 13].

Applying Jensen’s inequality one obtains

〈∆stot〉 ≥ 0. (1.51)

This is a statement of second law of thermodynamics, expressed in the form of

inequality for the average change in total entropy.

1.3.7 Steady state FT (SSFT)

In NESS, a stronger FT holds for ∆stot for arbitrary time τ [27] and corresponding

SSFT can be stated as

P (−∆stot)

P (∆stot)
= exp(−∆stot). (1.52)

IFT follows from this DFT. Earlier it was thought this theorem is valid only in the long

time limit. But, as we included the system entropy change for individual trajectory

in ∆stot, DFT hold for any arbitrary time.

1.3.8 Hatano-Sasa relation

When the system is in NESS, we already decomposed the total heat into two parts,

the house keeping heat qhk the heat needed to maintain the steady state and excess

heat qex which is produced on top of qhk.

When the system undergoes a transition between two steady states it follows the

Hatano-Sasa relation [54] ,

〈exp[−∆φ + βqex]〉 = 1. (1.53)

Here ∆φ is the change in nonequilibrium potential during this transition. This relation

is the generalization of Jarzynski equality in the time periodic steady state. It follows
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the inequality

〈∆φ〉 ≥ −β〈qex〉. (1.54)

As qex is bounded and the inequality becomes equality for the quasistatic process

while total heat dissipation q scales with time. Hence the above inequality is stronger

than the Clausius inequality 〈∆s〉 ≥ −q/T . When the system is given time to relax

to its final λt, ∆φ will be reduced to ∆s and one obtains the inequality

〈∆s〉 ≥ −β〈qex〉. (1.55)

This relation is the nonequilibrium steady state version of Clausius inequality.

The housekeeping heat qhk also obeys the following IFT [56]

〈exp[−qhk/T ]〉 = 1, (1.56)

for arbitrary initial state, driving and length of trajectories. The corresponding in-

equality

〈qhk〉 ≥ 0. (1.57)

1.4 Information and entropy

Maxwell in his famous gedanken experiment illustrated, only knowing velocity of each

individual gas molecules, a demon can monitor the gas particles and separate them

into hot and cold part. This seemed to be violation of the second law as there is no

energy cost for this action. Its resolution, for the first time, revealed the relationship

of information and entropy.

In 1921, Szilard formulated an engine that can extract energy from a heat bath

and convert it into useful work in presence of information. In his original derivation,

he considered a single gas molecule confined in a box of volume V and the box is
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connected to a bath with temperature T . A demon is placed to monitor the system

and extract energy. First the demon inserts a partition quickly in the middle and

separates the box into two equal parts. The gas molecule would be confined into any

of the two parts. Then it measures in which part the molecule is in. Depending on

the measurement the partition is moved isothermally to the end of the box, such that

kBT ln 2 work is extracted. Finally the partition is removed and the system goes to

its original state. Classically, insertion and removal of the partition do not need any

energy. Hence, one can extract energy from heat bath repeatedly which was a bit

surprising and was termed as a perpetual machine. However, it is unfair to treat a

single particle, kicking randomly to the wall of the box, as an ideal gas. But, any

system that undergoes a phase-space splitting can be used as a working system to

harness energy. The importance of Szilard Engine and Maxwell demon are that they

put information on the same footing as entropy that will be discussed below in more

detail.

1.4.1 Shannon entropy, non-equilibrium free energy and sec-

ond law

In information theory [43], the Shannon entropy of a random variable X with prob-

ability density matrix at any time ρ(x, t), is defined as

H(X, t) = −Tr ρ(x, t) ln ρ(x, t). (1.58)

Shannon entropy denotes the uncertainty of a random variable and measures the

amount of information needed to describe the random variable. When X represents

the microscopic state of a physical system one can define the non-equilibrium entropy

as

S(t) = kBH(X, t) = −kBTr ρ(x, t) ln ρ(x, t), (1.59)
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where kB is the Boltzmann constant. Let us consider a system connected to a bath

of temperature T and H(t) denotes corresponding time dependent Hamiltonian. The

system energy at any time is given by

E(t) = Tr ρ(t)H(t). (1.60)

Corresponding nonequilibrium free energy is defined as [57]

F(t) = E(t)− TS(t). (1.61)

Now, the instantaneous equilibrium density matrix of the system can be defined as

ρeq(t) = e−β(H(t)−F (t)), (1.62)

with β = 1/kBT the inverse bath temperature and the partition function Z(t) =

e−βF (t) = Tr e−βH(t). Then the non-equilibrium entropy coincides with the corre-

sponding equilibrium entropy and one can recover the usual relation F = Tr ρeqH −

TS with F as equilibrium free energy.

Suppose the system evolves from time 0 to upto time τ and W (τ) and Q(τ)

represent the work done on the system and heat input to the bath. Then according

to the first law of thermodynamics, the internal energy change of the system during

this evolution becomes

∆E(τ) = W (τ)−Q(τ). (1.63)

The change in nonequilibrium system entropy consists of two terms,

∆S(τ) = ∆Stot(τ)−∆SB(τ). (1.64)
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The first term, the total entropy production ∆Stot(τ) ≥ 0, is a positive quantity. The

second one, the entropy flow to the bath, is defined as ∆SB = Q/T . Using first law

and definition of nonequilibrium free energy one gets

T∆Stot(τ) = W (τ)−∆F(τ) ≥ 0, (1.65)

which implies the extractable work −W (τ) is always bounded by decrease of nonequi-

librium free energy difference −∆F(τ). The difference between F(t) and F (t) is

always positive and can be written as

F(t)− F (t) = TI(t) = TD[ρ(t)||ρeq(t)] ≥ 0. (1.66)

Here, I(t) represents the information needed to specify the noneqilibrium state from

the corresponding equilibrium state. One can rewrite the second law under the form

of nonequilibrium Landauer principle

Wirr(τ) = W (τ)−∆F (τ) = T∆Stot(τ) + T∆I(τ), (1.67)

⇒Wirr(τ) ≥ T∆I(τ). (1.68)

If ∆I(τ) is negative, then we can extract more work than the equilibrium free energy

difference. However for reversible process ∆Stot(τ) = 0 and this inequality becomes

Wirr(τ) = T∆I(τ). (1.69)

Now, if the system reaches finally an equilibrium distribution. i.e., no information

is left in the final distribution (I(τ) = 0), one can reach the minimum bound of the
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Wirr(τ) and the value will be

W min
irr (τ) = −TI(0). (1.70)

For this case, the total information in the initial state (I(0)) is completely used to

extract work from the system W max
ext = −W min

irr (τ) = TI(0).

1.4.2 Relative entropy and mutual information

In Information theory, the relative entropy or Kullback Leibler distance measures the

distance between two distributions and defined as

D(p||q) =
∑

x

p(x) ln
p(x)

q(x)
. (1.71)

It measures the inefficiency of taking the distribution q(x) while actual distribution

is p(x) and H(p) + D(p||q) is the number of bits required on average to describe the

random variable in terms of q(x). However, it is not true distance as the function

is not symmetric [43]. If the two distributions coincide, p(x) = q(x) then relative

entropy vanishes. Using the property, ln(x) ≤ 1− x for x ≥ 0 we have

D(p||q) =
∑

x

p(x) ln
p(x)

q(x)

= −
∑

x

p(x) ln
q(x)

p(x)

≥
∑

x

p(x)

[

1− q(x)

p(x)

]

=
∑

x

[p(x)− q(x)] = 1− 1 = 0,

(1.72)
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this means, relative entropy is always positive. The mutual information between two

random variables U and V is defined as

I(U ; V ) =
∑

u,v

ρ(u, v) ln
ρ(u, v)

ρ(u)ρ(v)
= H(U) +H(V )−H(U, V ). (1.73)

Mutual information is basically the relative entropy between the joint distribution of

the two random variables with their product distribution. Note that, unlike relative

entropy, mutual information is symmetric i.e, I(U ; V ) = I(V ; U). This I(U ; V ) is

always positive and vanishes only when these two random variables U and V are

statistically independent i.e., there is no correlation between them. One can rewrite

I(U ; V ) as (see figure 1.3)

I(U ; V ) = H(U)−H(U |V ) = H(V )−H(V |U). (1.74)

Where H(U |V ) = −
∑

u,v ρ(v)ρ(u|v) ln(u|v) denotes the conditional entropy. Hence,

mutual information denotes the reduction of uncertainty of one random variable due

to the knowledge of another.

I(U;V)

H(U)

H(V |U)

H(V )

H(U, V )

H(U |V )

Figure 1.3: a simple diagram to describe mutual information I(U ; V )
.

29



1.4.3 Measurement and entropy

Next, we will discuss the effect of measurement in the original system with probability

density ρ(x). Now, a measurement is performed and m is the outcome like left or

right in the Szilard engine. The probability density will be updated to ρ(x|m) after

this measurement. If the system is initially in equilibrium due to the performance

of measurement, ρ(x|m) will not be in canonical. That means measurement leads

the system to a nonequilibrium states although there is no energy cost. The change

in nonequilibrium entropy due to measurement is S(ρ(x|m) − S(ρ(x)). Taking the

average over all possible outcomes with probability pm, this noneqilibrium entropy

change becomes

∆Smeas = kB(H(X|M)−H(X)) = −kBI(X; M). (1.75)

Note that, in measurement process neither the Hamiltonian nor the micro-state of the

system are affected. That means the average energy of the system does not change

due to measurement. Hence the nonequilibrium free energy change becomes,

∆Fmeas =
∑

m

pmF(ρ(x|m);H)−F(ρ(x);H) = −T∆Smeas = kBTI(X; M). (1.76)

As, I(X; M) ≥ 0 there is always increase in nonequilibrium free energy which can be

eventually used to extract work at a latter time isothermally.

1.4.4 Landauer principle and memory

Information seems to be an abstract quantity at first glance. However, it is not.

When a measurement is performed, the obtained information is being stored in a

piece of paper or in the hard-disk etc. In this perspective Landauer shed new light in

his famous article ’Information is physical’ [58]. Any physical system with multiple
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distinguishable meta-stable states can be used to store the information. However,

these states should have long enough lifetimes and should not be affected by the

environmental fluctuations or any external constraints. Then only a system can act

reliably as memory in desired time. It means ergodicity must be broken or effectively

broken in the timescale when memory is reliable. The total phase space Γ is split into

several ergodic regions Γm for each memory outcome m. Magnetization in a small

ferromagnetic domain of a standard magnetic memory or high free barrier separating

microscopic degrees of freedom in single electron memory are few examples in this

regard.

Let pm denotes the probability to be in the ergodic region Γm of the memory. now

if the memory is in local equilibrium, one can take Em and Sm as average energy and

non-equilibrium entropy of the corresponding ergodic region. The nonequilibrium free

energy of the memory is [49]

F(M) =
∑

m

pmFm − kBTH(M), (1.77)

where, Fm = Em − TSm and H(M) = −
∑

m pm ln pm is the Shannon entropy of

the informational states. Note that, total entropy of the memory is sum of Shannon

entropy H(M) and the individual internal entropies Sm. Now after manipulation

of the memory, we assume that the Hamiltonian of the system reaches its initial

Hamiltonian. Then we need to be concerned about only the expression of pm for

particular memory state. Suppose, during measurement, the state changes from M ′

with probability p′m to the state M with probability pm. The change in free energy

for the memory for this case will be ∆Fmem
meas = F(M)−F(M ′). Similarly for resetting

the memory to its original state M ′ the free energy change will be ∆Fmem
reset = F(M ′)−

F(M) and work done to reset the memory must obey

Wreset ≥ ∆Fmem
reset . (1.78)
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In this respect, if one takes symmetric memory F0 = F1 = F2 = ... the free energy

change will be reduced to only the Shannon entropy change ∆Fmem
reset = −kBT (H(M)−

H(M ′)). Now if we reset the state to a standard state such that p′0 = 1 and all other

p′m = 0 then H(M ′) = 0. and get ∆Fmem
reset = −kBTH(M). Finally, if the memory

consists of only two states and for random bit p0 = p1 = 1/2, one obtains the

celebrated Landauer’s limit

Wreset ≥ kBT ln 2, (1.79)

while equality holds for a reversible process. This is the famous Landauer’s principle

which states that the minimum work needed to erase one bit of information is kBT ln 2.

1.5 Stochastic resonance

Resonance occurs when the internal frequency of a system matches with the frequency

of an applied periodic force. During resonance there is a periodic transfer of energy

from this applied force to the system. Take an example of a swing which moves in

a particular frequency. Now as soon as the swing reaches its highest point a small

force is applied. As a result, it will reach to a higher position in the opposite side.

Thus the amplitude of the swing would increase in each step if one performs the same

process again and again.

On the other hand in stochastic resonance(SR) [59, 60, 62, 61], a feeble signal

is amplified due to the presence of optimum noise. Generally, noise is unwanted

and hampers the accuracy of a device. However, some time an extra dose of noise

can improve the performance of the devices. In 1981, this phenomenon was first

introduced to explain occurrence of the ice ages. Recently, it has attracted much

interest in the field of physics, chemistry, biological science and engineering.

To explain SR, let us take a particle of mass m, placed in a thermal bath in

temperature T and confined in an one dimensional double well potential V (x) as
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shown at figure 1.4.

xmxm

V(x)

x

−

∆V

xb

Figure 1.4: A typical bistable potential showing the positions of maxima at xb; two
minima at xm and −xm. The barrier height is ∆V.

The particle follows the overdamped Langevin equation. Due to presence of ther-

mal noise particle may hop from one well to the other with Kramers escape rate [7]

rk =
(|V ′′

b ||V ′′
m|)

1

2

2πmγ
exp

[

−∆V

kBT

]

. (1.80)

Here ∆V is the height of the barrier ∆V = Vb − Vm and γ is the frictional coefficient

of the medium.

If a time dependent external force A sin(ωt) with frequency ω is applied to the

system then, it swings the potential in such a manner that in first half of the cycle,

the potential in one well become lower than the other (as shown in figure 1.5). In

second half, the effect is just the opposite. However, this force is too small to make the

particle cross the barrier. Hence, if the noise strength is very small the particle will be

confined in one well. On the other hand, for very high noise strength the particle may

not see the barrier and randomly jump from one well to the another. However in the

intermediate noise strength if the average waiting time 1/rk is comparable to half of
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Figure 1.5: Schematic diagram for synchronization of particle hopping with the drive
frequency at stochastic resonance

the time period of the external drive π/ω, the particle hopping will be synchronized

with the external drive. This phenomena is known as SR and occurs due to perfect

matching of these two time scales 1/rk = π/ω.

There are different quantifiers of SR such as signal to noise ratio, spectral power

amplification, and hysteresis loop area etc [59,63]. However, work done on the system

(absorbed energy) may be an appropriate quantifier [64].

1.6 Plan of the thesis

The plan of the thesis is as follows. In Chapter 2, we have derived fluctuation re-

lations for heat engines in TPSS. In the beginning, the system is in contact with the

cooler bath. The system is then coupled to the hotter bath and external parameters

are changed cyclically, eventually bringing the system back to its initial state, once
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the coupling with the hot bath is switched off. We lift the condition of initial ther-

mal equilibrium and derive a new fluctuation relation for the central system (heat

engine) being in a TPSS. Carnot’s inequality for classical thermodynamics follows as

a direct consequence of this FT even in TPSS. For the special cases of the absence

of hot bath and no extraction of work, we obtain the IFT for total entropy and the

generalized exchange FT, respectively. Recently microsized heat engines have been

realized experimentally in the TPSS. We numerically simulate the same model and

verify our proposed theorems.

In Chapter 3, we have performed an extensive analysis of a single particle stochas-

tic heat engine constructed by manipulating a Brownian particle in a time dependent

harmonic potential. The cycle consists of two isothermal steps at different tempera-

tures and two adiabatic steps similar to that of a Carnot engine. The engine shows

qualitative differences in inertial and overdamped regimes. All the thermodynamic

quantities, including efficiency, exhibit strong fluctuations in a TPSS. The fluctua-

tions of stochastic efficiency dominate over the mean values even in the quasistatic

regime. Interestingly, our system acts as an engine provided the temperature differ-

ence between the two reservoirs is greater than a finite critical value which in turn

depends on the cycle time and other system parameters. This is supported by our an-

alytical results carried out in the quasistatic regime. Our system works more reliably

as an engine for large cycle times. By studying various model systems we observe

that the operational characteristics are model dependent. Our results clearly rules

out any universal relation between efficiency at maximum power and temperature of

the baths. We have also verified fluctuation relations for heat engines in TPSS.

In Chapter 4, we derive the JE for an isolated quantum system for three different

cases: (i) the full evolution is unitary with no intermediate measurements, (ii) with

intermediate measurements of arbitrary observables being performed, and (iii) with

intermediate measurements whose outcomes are used to modify the external protocol

35



(feedback). We assume that the measurements will involve errors that are purely

classical in nature. Our treatment is based on path probability in state space for each

realization. This is in contrast to the formal approach based on projection operator

and density matrices. We find that the JE remains unaffected in the second case, but

gets modified in the third case where the mutual information between the measured

values with the actual eigenvalues must be incorporated into the relation.

Based on trajectory dependent path probability formalism in state space, in

Chapter 5, we derive generalized entropy production fluctuation relations for a quan-

tum system in the presence of measurement and feedback. We have obtained these

results for three different cases: (i) the system is evolving in isolation from its sur-

roundings; (ii) the system being weakly coupled to a heat bath; and (iii) system in

contact with reservoir using quantum CFT. In case (iii), we build on the treatment

carried out in [65], where a quantum trajectory has been defined as a sequence of al-

ternating work and heat steps. The obtained entropy production FTs retain the same

form as in the classical case. The inequality of second law of thermodynamics gets

modified in the presence of information. These FTs are robust against intermediate

measurements of any observable performed with respect to von Neumann projective

measurements as well as weak or positive operator valued measurements.

In Chapter 6, we compare the fluctuation relations for work and entropy in

underdamped and overdamped systems, when the friction coefficient of the medium

is space-dependent. We find that these relations remain unaffected in both cases. We

have restricted ourselves to Stratonovich discretization scheme for the overdamped

case.

Using the input energy per cycle as a quantifier of SR, in Chapter 7 we show

that SR is observed in superharmonic (hard) potentials. However, it is not observed

in subharmonic (soft) potentials, even though the potential is bistable. These results

are consistent with recent observations based on amplitude of average position as a
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quantifier. In both soft and hard potentials, we observe resonance phenomenon as a

function of the driving frequency. The nature of probability distributions of average

work are qualitatively different for soft and hard potentials.
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Chapter 2

Fluctuation relations for heat

engines in TPSS
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2.1 Introduction

In this chapter we derive fluctuation relations for heat engines (FRHE) in time peri-

odic steady state. As a corollary we prove the existence of a bound on efficiency for

engine, similar to Carnot result. However our bound is valid for arbitrary cycle time.

This fluctuation theorem put constrains on the operation characterization of engine.

Fluctuation theorems [20,21,23,28,29] are exact relations that remain valid even

for systems driven far away from thermal equilibrium. They transform classical ther-

modynamic inequalities into equalities. Advances in experimental techniques have

made dramatic progress in the area of single-molecule manipulation and nanotechnol-

ogy have led to experimental verification of the various fluctuation theorems [41,18].

Recently another equality is added to the class of fluctuation theorems, namely,

FRHE [51]. Initially the system is in thermal equilibrium with a cold thermal reser-

voir at temperature Tc, and then coupled to a hot thermal reservoir at temperature

Th > Tc. At this stage, the parameters driving the working substance (our system

of interest) are changed cyclically so that at the end of the cycle all the parameters

attain their initial values, and the interaction with the hot reservoir is switched off,

and the system is coupled to the cold reservoir. The equality reads

〈

exp

[

−Qh

(

1

Tc
− 1

Th

)

+
W

Tc

]〉

= 1. (2.1)

Here, 〈· · ·〉 denotes averaging over many realizations of the cycle. Qh is the heat

absorbed from the hot bath and W is the work extracted from the system in a cycle.

2.2 Derivation from Seifert’s theorem

We provide here a derivation slightly different from that given in [51,18], by using the

Seifert’s integral fluctuation theorem [27, 13], 〈e−∆stot〉 = 1 (in presence of multiple
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baths). Using first law of thermodynamics, the internal energy change of the system

∆E = Qh −Qc −W. (2.2)

E∆

Q h

cQ

W

hT

T c

Figure 2.1: During one cycle, energy flow in a heat engine as dictated by first law
∆E = Qh −Qc −W.

Here Qc denotes the heat dissipated to the cold bath. Figure 2.1 denotes the

schematic diagram of the energy flow over a cycle. The total entropy production

being given by

∆stot = ∆sh + ∆sc + ∆s. (2.3)

∆sh, ∆sc and ∆s are the entropy changes of the hot bath, the cold bath and of

the central system, respectively. Denoting the initial and final distributions for the

forward process by p0(x0) and p1(xτ ), we have [27, 13]

∆sh = −Qh

Th
; ∆sc =

Qc

Tc
; (2.4)

∆s = ln
p0(x0)

p1(xτ )
= ln

[

e−E(x0)/Tc

Z0
· Zτ

e−βE(xτ )/Tc

]

=
∆E

Tc
, (2.5)
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where ∆E = E(xτ ) − E(x0), and we have made use of the fact that for a cyclic

process, Z0 = Zτ . Using the first law, eq. (2.2), we have Qc = Qh −W −∆E. Thus,

∆stot becomes

∆stot = −Qh

Th
+

Qc

Tc
+

∆E

Tc

= −Qh

Th
+

Qh −W −∆E

Tc
+

∆E

Tc

= Qh

(

1

Tc
− 1

Th

)

− W

Tc
. (2.6)

Seifert’s theorem then gives eq. (2.1). Equality (2.1), together with the Jensen’s

inequality gives
〈

Qh

(

1

Tc

− 1

Th

)

− W

Tc

〉

≥ 0, (2.7)

which can be rewritten as

〈W 〉
〈Qh〉

≤ ηc, (2.8)

ηc being the Carnot efficiency given by ηc ≡ 1 − Tc

Th
. This is then, the Carnot’s

theorem for maximum efficiency applied to a mesoscopic heat engine. Now, instead of

taking the averaged quantities, one can also define the efficiency for each individual

trajectory, η ≡ W/Qh, which is, of course, a fluctuating quantity. Consequently,

there may be trajectories along which η > ηc, which will be termed as the atypical

trajectories (trajectories that seem to flout the behaviour dictated by the second law).

In fact, η can also become negative, in which case, along a cycle, the system does

not perform as a heat engine (for example, when heat is absorbed by the system, but

work is being done on the system). In next chapter it will be discussed in detail.
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2.3 Derivation of the FRHE for a time-periodic

steady state

Recently the Carnot engine has been investigated experimentally in the time-periodic

steady state (TPSS) [66]. In a TPSS, the probability density of system state, pss(x, t),

is periodic in time, pss(x, t + τ) = pss(x, t), where τ is the time-period of the external

drive. The occupation probabilities of a motor in a TPSS, consisting of a two-level

system, has been studied in [67]. In a TPSS, the probability density for the system

state can be written as pss(x, λ) = e−φ(x,λ), λ being the external time-dependent

protocol, and φ(x, λ) is an effective potential. In such a case, the condition of initial

equilibration of the working substance with the cold bath ought to be lifted. Once

again, in a part of the cycle, the system is connected to the cold bath, while in the

other part, it is connected to the hot bath. In this case, the change in system entropy

during a cycle is given by ∆φ, and the change in the total entropy becomes

∆stot = −Qh

Th
+

Qc

Tc
+ ∆φ

= −Qh

Th
+

Qh −W −∆E

Tc
+ ∆φ

= Qh

(

1

Tc
− 1

Th

)

− W + ∆E

Tc
+ ∆φ. (2.9)

Let X denote the short form for a trajectory in phase space: {x0 → x1 → x2 → · · · →

xτ}, and let X̃ denote the time-reversed path: {x0 ← x1 ← x2 ← · · · ← xτ}, the

subscripts denoting discretized time. According to the detailed fluctuation theorem

for total entropy [27, 13], we then have the following ratio between the probability

densities for the forward and reverse trajectories, represented by P [X] and P̃ [X̃],

respectively:

P [X]

P̃ [X̃]
= e∆stot = exp

[

Qh

(

1

Tc

− 1

Th

)

− W + ∆E

Tc

+ ∆φ

]

, (2.10)
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whose integrated form is given by the new equality

〈

exp

[

−Qh

(

1

Tc
− 1

Th

)

+
W + ∆E

Tc
−∆φ

]〉

= 1. (2.11)

We next derive a detailed fluctuation theorem for the joint probability

distribution for work, heat, change in internal energy and system entropy.

2.4 Fluctuation theorem for the joint probability

distribution

Using eq. (2.10), we obtain a relation for the joint probability density for Qh, W ,

∆E and ∆φ. These quantities are odd under time-reversal.

P (Qh, W, ∆E, ∆φ)

=

∫

D[X] P [X] δ(Qh −Qh[X]) δ(W −W [X])

×δ(∆E −∆E(x0, xτ )) δ(∆φ−∆φ(x0, xτ ))

=

∫

D[X] P [X̃] exp

[

−Qh

(

1

Tc

− 1

Th

)

+
W + ∆E

Tc

−∆φ

]

δ(Qh −Qh[X])

×δ(W −W [X]) δ(∆E −∆E(x0, xτ )) δ(∆φ−∆φ(x0, xτ )).
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Here, D[X] = D[X̃] = dx0dx1 · · ·dxτ , where x̃ is the time-reversed state of x. We

now now perform a change of variables from x to x̃. Then,

P (Qh, W, ∆E, ∆φ) = exp

[

Qh

(

1

Tc
− 1

Th

)

− W + ∆E

Tc
+ ∆φ

]

×
∫

D[X] δ(Qh + Q̃h[X̃]) δ(W + W̃ [X̃])

× δ(∆E + ∆Ẽ(x̃0, x̃τ )) δ(∆φ + ∆φ̃(x̃0, x̃τ ))

= P̃ (−Qh,−W,−∆E,−∆φ)

× exp

[

Qh

(

1

Tc
− 1

Th

)

− W + ∆E

Tc
+ ∆φ

]

. (2.12)

Here, P̃ (−Qh,−W,−∆E,−∆φ) is the joint probability density for −Qh, −W , −∆E

and −∆φ, along the reverse process. Noting that in a TPSS, P and P̃ have the same

functional forms, we can write

P (Qh, W, ∆E, ∆φ)

P (−Qh,−W,−∆E,−∆φ)
= exp

[

Qh

(

1

Tc

− 1

Th

)

− W + ∆E

Tc

+ ∆φ

]

. (2.13)

Eq. (2.13) readily leads to eq. (2.11), which in turn gives rise to the inequality

〈Qh〉
(

1
Tc
− 1

Th

)

− 〈W 〉+〈∆E〉−Tc〈∆φ〉
Tc

≥ 0.

(2.14)

In the TPSS, we have, 〈∆E〉 = 0, and 〈∆φ〉 = 0. Then we arrive, even for the TPSS,

to the Carnot’s theorem, namely,

〈W 〉
〈Qh〉

≤ ηc. (2.15)

For Tc = Th (system is in contact with a single bath), we retrieve the Seifert’s

integral fluctuation theorem from eq. (2.11) for a system in contact with a bath at
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temperature Tc [27, 13]:

〈

exp

[

W + ∆E

Tc
−∆φ

]〉

=

〈

exp

[

−Qc

Tc
−∆φ

]〉

= 〈e−∆stot〉 = 1. (2.16)

We have used the first law for system in contact with only the cold bath, ∆E =

−W − Qc, the first step. If no work is extracted from the system, then the system

effectively acts as a heat conductor between the two heat baths, giving rise to the

generalized exchange fluctuation theorem [68] in TPSS:

〈

exp

[

−Qh

(

1

Tc

− 1

Th

)

+
∆E

Tc

−∆φ

]〉

= 1. (2.17)

An example of the above case (eq. (2.17)) would be a particle in a harmonic potential

coupled to a bath whose temperature changes periodically in time, while no other

parameters of the harmonic oscillator are changed, and consequently work extracted

is zero. This model should be experimentally realizable.

To verify our proposed theorem, eq. (2.11), we study a simple heat engine which

has been experimentally realized recently. Some related points have been clarified

through the simulations of the distribution functions of physical quantities appearing

in our theorems.

2.5 The model and numerical results

In this section, we verify eq. (2.11) numerically. For this purpose, we choose the

model used in [66], namely, the mesoscopic realization of a Stirling engine. Each

cycle in its operation consists of the following steps:

1. Step 1: an overdamped colloidal particle is initially trapped in a harmonic

potential with a spring constant kmin (state A): V (x, 0) = 1
2
kminx

2. The particle

is in contact with a medium of temperature Tc. Without breaking contact with
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the heat bath, the stiffness constant is subsequently changed, via a prescribed

time-dependence of this constant k(t), until it reaches a value kmax (state B)

after a time τ . The potential function now is given by V (x, τ) = 1
2
kmaxx

2.

2. Step 2: the bath temperature is suddenly switched to Th > Tc (state C). The

distribution of states of the system does not change during this instantaneous

jump.

3. Step 3: now the spring constant follows a separate time dependence due to

which its value changes from kmax to kmin (state D) over a time τ .

4. Step 4: in the last step, the temperature of the medium is once again instan-

taneously switched back to its initial value Tc and the system returns to state

A. The full cycle is then repeated.

Since in steps 2 and 4, the stiffness constant is held fixed, the work done is identically

equal to zero in these two steps. We choose the functional dependence for the stiffness

constant during the transition state A → state B to be linear and of the following

form:

k(t) = kmin + q

(

t

τ

)

. (2.18)

According to this equation, after time τ , the system reaches kmax = k(τ) = kmin + q.

Similarly, during the transition state C → state D, the form of k(t) is given by

k(t) = kmax − q

(

t

τ
− 1

)

. (2.19)

We find that when the full cycle is complete, i.e. t = 2τ , we get back the initial

spring constant kmin = k(2τ) = kmax − q. In our simulation, we choose the values

of the constants (in dimensionless units) to be kmin = 1, kmax = 2, Tc = 0.1 and

Th = 0.4. Initially, as a consistency check, we verify that for a very slow process

(time of observation large compared to the relaxation period of the system to its
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Figure 2.2: (a) Distribution of Qh, W and ∆E for a single cycle of the heat engine
in a steady state, for τ = 5. (b) Distribution of ∆φ for the same parameters.

equilibrium state), the average work done on the system equals the change in its

free energy (quasi-static process). In our simulation, we have used Heun’s method of

integration and have generated ∼ 105 state space trajectories. The changes in free

energy during the steps 1 and 3 are

∆FA→B =
Tc

2
ln

kmax

kmin

(2.20)

and

∆FC→D =
Th

2
ln

kmin

kmax
, (2.21)

respectively. For our chosen parameters, we get ∆F1→2 = 0.035 and ∆F3→4 = −0.139.

From our simulation, we obtain the average works done in steps 1 and 3 reach these

values as we increase the time of observation. For τ = 50, we obtain 〈W 〉A→B = 0.036

and 〈W 〉C→D = −0.138, respectively, which match with the theoretical results, within

our numerical accuracy.

For reaching the time-periodic steady state, we leave out several initial cycles to

skip the transient regime. For this TPSS, we have chosen τ = 5, and we obtain the

value of eq. (2.11) to be 1.083, which is very close to unity. Thus, the above relation

is verified in our numerical simulations.

47



Now we study the behaviour of ∆stot (eq. (2.9)) when each realization of the

experiment consists of a large number of cycles. It apparently seems that since ∆E

and ∆φ are state functions, while Qh and W scale with time of observation, in the

limit of a large number of cycles, we will have vanishing contribution from the state

functions to the fluctuation theorem. To verify this numerically, in figure 2.2(a), we

have plotted the distributions for Qh, W and ∆E for a single cycle of the heat engine.

∆E being a state function is symmetric about the ∆E = 0 axis. In figure 2.2(b), the

distribution for change in system entropy, ∆φ, is plotted for a single cycle.
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Figure 2.3: Distribution of Qh, W and ∆E for 10 cycles of the heat engine in a steady
state, with the half observation time τ = 5 for each cycle.

In figure 2.3, we have plotted the distribution functions for Qh, W , ∆E and ∆φ

for 10 cycles in the steady state. As expected, we find that the distributions for Qh

and W tend towards a Gaussian and shift towards right, but those for ∆E and ∆φ

remain similar to the case of a single cycle.

In figure 2.4, we have plotted distributions of R ≡ Qh(1/Tc−1/Th)−W/Tc (which

is the extensive part of ∆stot) and of ∆stot itself. In figure 2.4(a), we find that the two

quantities follow distributions that are slightly different from each other. In figure

2.4 (b), we find that when we take a large number of cycles, the distributions begin

to coincide. This is because the contribution from the distributions of state functions
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Figure 2.4: (a) Distribution of the R ≡ Qh(1/Tc − 1/Th) − W/Tc, which is the
extensive part of ∆stot and of ∆stot itself, for a single cycle in steady state. (b) Same
distributions for 10 cycles, and we still find an appreciable difference between the two.

become small as compared to the contributions from the extensive quantities in the

limit of large number of cycles. However, it may be noted that the intensive quantities

do contribute in the extreme tails of the distributions (large deviation). To see this

contribution we need very high precision simulation in the tail region, which is beyond

the accuracy of our simulation. This point also arises in the case of heat and work

theorems. Work obeys a fluctuation theorem. However, due to the contribution from

the internal energy change, heat does not follow a fluctuation theorem, even in the

limit of large observation time [36, 25].

2.6 Conclusion

In conclusion, we have generalized the fluctuation relation for heat engines to time-

periodic steady states, which leads to the Carnot’s theorem. Generalized FRHE

leads to, in different limits, to the Seifert’s theorem, and the generalized exchange

fluctuation theorem. Our FRHE has been verified numerically in a simple realistic

heat engine. It would be interesting to check whether the steady state distribution

pss(x, t) in the special case specified below eq. (2.17) can be calculated analytically, for

example, by generalizing the method given for time-independent steady state in [69].
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Also, the work distribution for a system starting from equilibrium and trapped in a

harmonic potential of time-dependent stiffness constant has been studied in [70]. It

would be interesting to see whether this procedure can be generalized to deduce the

steady state distributions of different thermodynamic quantities for the heat engine

considered in section 2.5.
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Chapter 3

Single Particle Stochastic Heat

Engine
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3.1 Introduction

Motivated by the recent experimental observation on micro-size heat engines [66],

we have performed an extensive analysis of single particle stochastic heat engine.

We showed that nano-scale heat engine operate on different principles than their

macroscopic counterpart.

Thermodynamic heat engines convert heat into useful work. They work cyclically

between two thermal reservoirs kept at different temperatures Tl and Th (Th > Tl).

The second law of thermodynamics restricts their efficiency to the Carnot limit [1],

ηC = 1 − Tl

Th
. However, this efficiency can only be achieved in the quasistatic limit

where transitions between thermodynamic states occur infinitesimally slowly and

hence the power output vanishes. Curzon and Ahlborn (C-A) [71] showed that for

finite time endoreversible heat engines, efficiency at maximum power is given by

ηCA = 1−
√

Tl

Th
. As yet there is no consensus on this result ( [30, 72, 73, 74, 75]).

With the advances in nano-technology, a few-micrometer-sized Stirling heat en-

gine has been experimentally realized [66]. This microscopic heat engine operates

in conditions where typical changes in their energies are of the order of the thermal

energy per degree of freedom [38]. An appropriate theoretical framework to deal

with these systems has been developed during the past decades within the context of

stochastic thermodynamics [11, 12, 76, 77, 78]. This formalism of stochastic energet-

ics provides a method to calculate work, heat and entropy even for a single particle

along a microscopic trajectory. One can obtain average quantities after averaging

over respective ensembles. The averaged thermodynamic quantities, work and en-

tropy, obey second law. Using this formulation various single particle heat engines

have been studied in the literature [72, 79, 80, 14, 52]. Fluctuation relations for heat

engines (FRHE) [51, 81, 82] operating in a time periodic steady state (TPSS) have

recently been obtained [81]. FRHE are in the form of equality and Carnot’s inequality

for efficiency ηc follows as a direct consequence of this theorem.
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In this chapter we have studied in detail a simple model for a stochastic heat

engine described by Langevin equation. Both underdamped and overdamped regimes

are explored and qualitative differences are pointed out. We emphasize on fluctuations

of thermodynamic variables including the engine efficiency. We show that fluctuations

dominate the mean values even in quasistatic regime. Therefore in such situations

one needs to study the full probability distribution of the physical variable for the

proper analysis of the system.

In section 3.2, we describe the model of our system and the protocol. In section

3.3, we obtain analytical results for relevant average thermodynamic quantities in the

quasistatic regime for the underdamped case. In section 3.4, engine with finite time

cycle in the inertial regime is studied numerically, in detail. The system driven by

time asymmetric cycles and various other model systems are also explored. We have

verified FRHE in this section. Sections 3.5 and 3.6 are devoted to the analytical and

numerical studies of the system in the overdamped limit. Finally, we conclude in

section 3.7. Each section is self contained.

3.2 The Model

The single particle stochastic heat engine consists of a Brownian particle having

position x and velocity v at time t, confined in a one dimensional harmonic trap. The

stiffness of the trap k(t) varies periodically in time as shown in figure 3.1. For the

underdamped case, the equation of motion for the particle is given by [7, 83]

mv̇ = −γv − k(t)x +
√

γTξ(t). (3.1)

In overdamped limit the equation reduces to

γẋ = −k(t)x +
√

γTξ(t). (3.2)
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In our further analysis, we set mass of the particle m, the Boltzmann constant

kB and the frictional coefficient γ to be unity. T is the temperature of the thermal

bath. All physical parameters are made dimensionless. The noise is Gaussian with

zero mean, 〈ξ(t)〉 = 0 and is delta correlated, 〈ξ(t1)ξ(t2)〉 = 2δ(t1 − t2). The internal

energies of the particle in the underdamped and the overdamped limit are given by

u(x, v) = 1
2
k(t)x2 + 1

2
mv2 and u(x) = 1

2
k(t)x2, respectively.

0
0

a

τ
t

k(t)

Figure 3.1: Stochastic heat engine in a harmonic potential: the time dependence of
our periodically driven stiffness constant (protocol) k(t) for the full cycle (0 ≤ t ≤ τ).

Operation of the system consists of four steps - two isotherms and two adiabatics.

In the first step, the system undergoes an isothermal expansion, during which it is

connected to a hot bath at temperature Th and the stiffness constant is varied linearly

with time as

k(t) = a

(

1− t

τ

)

= k1(t), (3.3)

for 0 < t < τ/2. Here τ is the period of the cycle and a is the initial value of

the stiffness constant. In the second step, the potential undergoes an instantaneous

expansion (adiabatic) by decreasing the stiffness constant from a/2 to a/4. As the

process is instantaneous the distribution before and after expansion will not change

and heat absorption will be zero. In the third step, the system is connected to a cold

bath with lower temperature Tl and isothermal compression of the trap is carried out
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Tl

Th

1

2

3

4

Figure 3.2: Schematic representation for a cyclic process of stochastic heat engine
operating between two reservoirs kept at temperatures Th and Tl. The cycle consists
of two isothermal steps and two adiabatic steps according to the time varying protocol
k(t). The blue line denotes a one dimensional potential V(x,t) and the filled region
denote the corresponding steady state distribution.

by changing the stiffness as

k(t) = a
t

2τ
= k2(t), (3.4)

for τ/2 < t < τ . In the last step, we carry out instantaneous adiabatic compression

by varying the stiffness constant from a/2 to a and simultaneously connecting the

system to the hot bath. This cycle is then repeated . The time dependence of the

protocol is given in figure 3.1 and a schematic representation of the system within a

cycle at its various stages is depicted in figure 3.2.

The described protocol differs from those used in earlier studies. In the experi-

mental set up [66] two adiabatic steps are absent. Work optimized protocol is used

by Schmiedl and Seifert [72] whereas the protocol based on the concept of shortcut

to adiabaticity is used by Tu [80]. However, their emphasis is on the possible corre-

lation between efficiency at maximum power and C-A bound. Our main motivation,

namely to study the fluctuation of physical quantities, is different from earlier studies
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as mentioned in the introduction.

3.3 Underdamped quasistatic limit

In this section, we analytically calculate the average thermodynamic quantities of our

model system in the quasistatic limit. In this limit, the duration of the protocol is

much larger than all the relevant time scales, including the relaxation time. Hence

as protocol is changed, the system immediately adjusts to the equilibrium state cor-

responding to the value of protocol at that instant. First, we calculate the average

work done on the particle in all the four steps of a cycle and the heat absorbed by it

in the first isothermal step. Finally, we calculate efficiency in the quasistatic limit.

In the first isothermal process, average work done on the particle is the same as

the free energy change (∆Fh) before and after the expansion, i.e.,

W1 = ∆Fh =
Th

2
ln

k1(τ/2)

k1(τ)
=

Th

2
ln

1

2
. (3.5)

At t = τ/2, the system is in equilibrium with the bath at Th with stiffness constant

a/2. The second step being instantaneous, no heat will be dissipated and the phase

space distribution remains unaltered. Correspondingly the average work done on the

particle is equal to the change in its internal energy:

W2 = N1

∫ ∞

−∞

dxdv
(a

4
− a

2

) x2

2
e
− ax2

4Th
− v2

2Th

= −Th

4
, (3.6)

where N1 = 1
2πTh

√

a
2
, is the normalization constant. Similarly in the third step (i.e.,

isothermal compression step) the average work done on the particle in the quasistatic
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limit is

W3 = ∆Fl =
Tl

2
ln

k2(τ)

k2(τ/2)
=

Tl

2
ln 2. (3.7)

The average work done in the last step (i.e., second adiabatic step) is given as

W4 = N2

∫ ∞

−∞

dxdv(a− a

2
)
x2

2
e
− ax2

4Tl
− v2

2Tl

=
Tl

2
, (3.8)

with N2 = 1
2πTl

√

a
2
. Hence, the average total work done in the full cycle of the heat

engine in the quasistatic process is

Wtot = W1 + W2 + W3 + W4

=
Th

2
ln

1

2
− Th

4
+

Tl

2
ln 2 +

Tl

2
. (3.9)

To obtain the heat absorption in the first step (i.e., isothermal expansion), we calcu-

late the average change of internal energy and use the first law. During this process,

the particle stays in contact with hot bath at temperature Th. However, it is to be

noted that at time t = 0−, the system was in contact with low temperature bath

at Tl, whereas at t = 0+ the system is in contact with hot bath at Th. Thus the

system has to relax into new equilibrium after sudden change in temperature. The

time taken for this relaxation process is assumed to be negligible compared to the

cycle time τ . This relaxation leads to an additional heat flow which accounts for the

change in the internal energy during the relaxation process. One can readily obtain

the internal energy at t = 0+ as 3Tl/2 while after the relaxation it is Th. Hence, the

average internal energy change in the first step is

∆U1 = Th −
3Tl

2
. (3.10)
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Now using the first law, the average heat absorption from the hot bath for the

first step is

−Q1 = ∆U1 −W1 = Th −
3Tl

2
− Th

2
ln

1

2
. (3.11)

Hence efficiency of the engine for the underdamped case in the quasistatic limit is

given by

η̄q =
−Wtot

−Q1
= −

Th

2
ln 1

2
− Th

4
+ Tl

2
ln 2 + Tl

2

Th − 3Tl

2
− Th

2
ln 1

2

= −Th ln 1
2
− Th

2
+ Tl ln 2 + Tl

2Th − 3Tl − Th ln 1
2

. (3.12)

Here we would like to emphasize that η̄ is defined ignoring fluctuations and the

subscript q denotes the quasistatic limit. We will show later that fluctuations play

an important role even in the quasistatic regime. Work done during the cycle w and

heat absorbed during the first step q1 are fluctuating quantities. Stochastic efficiency

is defined as η = w
q1

[52] and hence its average 〈η〉 = 〈 w
q1
〉 is not the same as η̄ = 〈w〉

〈q1〉

which is given in eq.(3.12) for quasistatic limit. This will be discussed in detail in

subsequent sections. In our notation, the thermodynamic quantities are denoted by

capital letters only for quasistatic limit, whereas, small letters are used to denote

those quantities for finite time cycles.

According to our convention negative work done on the system implies extraction

of work; while, negative heat means that heat enters into the system. It is important

to note from eq.(3.11) that in quasistatic limit heat flows from the bath to the system

provided

2Th − 3Tl − Th ln
1

2
≥ 0

⇒ Tl

Th
≤ 2 + ln 2

3
= 0.898 (3.13)
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and similarly from eq.(3.9) work can be extracted from the system if

Th ln
1

2
− Th

2
+ Tl ln 2 + Tl ≤ 0

⇒ Tl

Th
≤ 0.5 + ln 2

1 + ln 2
= 0.705. (3.14)

Therefore, in quasistatic regime our model system operates in three different modes

of operation depending on the ratio of the temperatures of the thermal baths. First,

when 0 < Tl

Th
≤ 0.705 is maintained, work can be extracted and heat is absorbed

from hot bath and it acts as an engine. Second, when 0.705 ≤ Tl

Th
≤ 0.898 is set,

heat is absorbed from the bath but we cannot extract work. And finally when we

have Tl

Th
≥ 0.898 neither heat is absorbed nor the work is extracted. In this case work

done on the system heats up the hot bath. Therefore, there is a particular regime

in parameter space where the system act as an engine. This is in contrast to the

Carnot engine which works for arbitrary temperature difference between two baths.

The above mentioned condition is only valid in the quasistatic limit. For finite time

cycle the operational condition for heat engine depends on cycle time apart from Th

and Tl, which will be shown in our simulation. Our exact expression of Wtot and Q1

are in complete agreement with our numerical results in the quasistatic limit. Thus

these analytical calculations act as a check for our numerical simulation.

3.4 finite cycle time engine in inertial regime

For finite-cycle-time we study our system numerically. When the Langevin system is

driven periodically it is known that after initial transients, the system will settle down

to a TPSS. The joint probability distribution Pss(x, v, t) of position and velocity of

the particle is periodic in time, i.e., Pss(x, v, t) = Pss(x, v, t + τ).

For numerical simulations we evolve our system with a time periodic protocol (as

shown in figure 3.1. We have used Heun’s method for integrating the basic Langevin
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equation [84] with time step dt = 0.0002. We make sure that the system is in the

TPSS by going beyond the initial transient regime. We then consider at least 105

cycles of operations and physical quantities are averaged over all these cycles. For

rest of the paper we keep m, a, γ fixed at m = 1.0, a = 5.0, γ = 1.0.

We now make use of the concepts of stochastic energetics [11, 12, 76, 77, 78] to

calculate work, heat and internal energy for a given trajectory. The thermodynamic

work done on the particle during first part of the cycle, in each computational step

dt, is given by

dw1(ti) =
∂u1(ti)

∂k1(ti)
k̇1(ti)dt. (3.15)

with u1(ti) = 1
2
k1(ti)x

2(ti) + 1
2
v2(ti) and ti = i.dt. Now, w1 =

∑N
i=0 dw1(ti) where

N = τ
2dt

. The internal energy is a thermodynamic state function and hence its

change during the isothermal process is given by du1 = 1
2
k1(τ/2)x2(τ/2)+ 1

2
v2(τ/2)−

1
2
k1(0)x2(0) − 1

2
v2(0). The heat absorption by the bath is q1 = w1 − du1 using the

first law of thermodynamics. The second step which is adiabatic is instantaneous and

hence the particle does not get any chance to evolve. Thus work done is only instan-

taneous change in internal energy, i.e., w2 = 1
2
[k2(τ/2) − k1(τ/2)]x2(τ/2). Similarly,

for step three, work done is given by

dw3(ti) =
∂u2(ti)

∂k2(ti)
k̇2(ti)dt (3.16)

and w3 =
∑2N

i=N dw3(ti); internal energy change du2 = 1
2
k2(τ)x2(τ) + 1

2
v2(τ) −

1
2
k2(τ/2)x2(τ/2) − 1

2
v2(τ/2) ; and heat delivered to the cold bath is q2 = w3 − du2.

For the last adiabatic process, work done on the particle is w4 = 1
2
[k1(0)−k2(τ)]x2(τ).

The total work done on the system in a cycle is w = w1 + w2 + w3 + w4. It should be

noted that each wi (i=1,2,3,4) is a fluctuating quantity and their values depend on a

particular phase space trajectory.

60



 0.1

 1

 10

 1  10  100

T
h

τ

Engine

〈  q1〉<0 ,  〈  w 〉>0

〈  q1〉>0 ,  〈  w 〉>0

Figure 3.3: Phase diagram for different Th and τ but for fixed Tl = 0.1.

In figure 3.3, we have shown the phase diagram of the operation of our system.

Here we have varied Th and cycle time τ keeping Tl fixed at 0.1. There are three

distinct regimes. The system acts as an engine when 〈w〉 < 0 and 〈q1〉 < 0. The

angular bracket 〈.〉 indicates average over several realizations. In the other two regimes

the system ceases to work as a heat engine altogether( 〈w〉 > 0). For 〈w〉 > 0 we have

two distinct domains with 〈q1〉 < 0 and 〈q1〉 > 0. The latter implies work is done on

the system which heats up the hot bath. In the large cycle time limit numerical results

are consistent with our analytical predictions made in last section. We re-emphasize

that the system works as a heat engine provided there is a minimal difference between

Th and Tl which depends on cycle time τ and other physical parameters. From the

Phase diagram it is apparent that, as we decrease τ for fixed Th, there exists a lower

bound below which the system does not perform as an engine, as it only consumes

work.

In figure 3.4, we have plotted 〈w〉, 〈q1〉 and 〈q2〉 with respect to cycle time τ . We

have fixed Th = 0.5 and Tl = 0.1 for all subsequent figures. Starting from zero, 〈w〉

initially increases and reaches a peak value. Then it starts decreasing and finally

saturates to a negative value ( -0.214), which is close to our theoretical result (from

61



-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  10  20  30  40  50  60  70

〈 w
 〉 

, 
〈 q

1
 〉 

, 
〈 q

2
 〉

τ

〈  w 〉
〈  q1 〉
〈  q2 〉

Figure 3.4: Variation of〈w〉, 〈q1〉 and 〈q2〉 with cycle time τ .

eq.(3.9)). The work can be extracted in the region where it becomes negative. As we

increase cycle time, 〈q1〉 changes dramatically. It has a positive region sandwiched

between two negative regions. When 〈q1〉 > 0 heat is released to the hot bath while

work is done on the particle. In the quasistatic limit it saturates at the theoretical

value -0.523(from eq.(3.11)). In contrast to 〈q1〉, 〈q2〉 is always positive, i.e., heat is

always released to the cold bath. Internal energy being a state function, 〈∆u〉 is zero

over a cycle in TPSS and hence 〈w〉 = 〈q1〉+ 〈q2〉. Using the saturation value of 〈w〉

and 〈q1〉 we immediately get 〈q2〉 to be equal to 0.310 which is close to our numerical

result.

We now study the nature of stochastic efficiency η and engine power p = −w
τ

as

a function of cycle time. The engine is in TPSS where probability distributions of

system variables are periodic in time. However, for a given realization of a cycle, state

of the system (position and velocity) does not come back to its initial state. Thus

for each cycle thermodynamic quantities will depend on the particular microscopic

trajectory and hence w, q1, q2, η and p are all fluctuating quantities from cycle to

cycle. The average efficiency is defined as 〈η〉 = 〈 w
q1
〉. Due to fluctuation in w and

q1, it is to be noted that 〈η〉 = 〈 w
q1
〉 6= 〈w〉

〈q1〉
= η̄. Fluctuation theorems [51, 81, 82] put
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stringent condition on 〈w〉
〈q1〉

which is bounded by the Carnot efficiency i.e., 〈w〉
〈q1〉
≤ 1− Tl

Th
.

However, no such bound exist for 〈η〉 [82].
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Figure 3.5: Variation of 〈η〉 and η̄ with cycle time τ .The doted blue line denotes the
quasistatic limit for η̄.

The first law for any microscopic realization of cycle can be written as

w = ∆u + q1 + q2. (3.17)

The change in the internal energy ∆u is unbounded. It is zero only on the average.

Similarly q1, q2 and w take values in the range (−∞,∞) but are constrained by first

law. Hence it is not surprising that η can take values between −∞ to ∞.

In figure 3.5 we have plotted efficiencies 〈η〉 and η̄ as a function of cycle time.

Initially for small τ , our system doesn’t work as an engine. Due to large dissipation

work cannot be extracted (〈w〉 ≥ 0). In this regime, efficiency is negative. On further

increasing τ , efficiency becomes positive and it monotonically increases. For large

τ , 〈η〉 and η̄ saturate. The saturation value for η̄ is 0.41 which can be obtained

analytically in quasistatic regime. In general 〈η〉 6= η̄. We find both 〈η〉 and η̄ are

less than the Carnot efficiency ηc = 0.8.

In figure 3.6, average power 〈p〉 is plotted as a function of τ . There is a negative
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region for low cycle time. Beyond the critical value of τ ≃ 3.0, power becomes positive

and exhibits a peak and finally tends to zero in the large τ limit. The efficiencies

〈η〉 and η̄ at maximum power are given by 0.16 and 0.25 respectively. Both of these

values are less than ηCA = 0.554.
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Figure 3.7: Distribution of w for different cycle times (τ=0.7, 7.0, 70.0).

As mentioned earlier, physical quantities q1, w and η are strongly fluctuating

variables. To study these fluctuations we focus on probability distribution of these

quantities P (q1), P (w) and P (η). In figures 3.7, 3.8 and 3.9 we have plotted them
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for three different time periods. For τ = 0.7, distribution of w and q1 are sharply

peaked around zero with 〈w〉 = 0.005, 〈q1〉 = −0.065. As we increase the cycle

time P (w) and P (q1) become broad, asymmetric and shift towards negative side.

For large negative value of arguments the distributions exhibit long tail. For large

positive values of w and q1 the distribution falls off exponentially or faster [85]. The

trajectory responsible for positive values are atypical and sometimes referred to as

transient second law violating trajectories [17, 86, 42]. Strong fluctuations in heat

and work persist even in the quasistatic limit(τ = 70). These fluctuations in work

are mainly attributed to two adiabatic processes, while fluctuations of q1 result from

relaxation process when the system, in contact with low temperature bath, is brought

in direct contact with high temperature reservoir.
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Figure 3.8: Distribution of q1 for different cycle times.

For τ = 0.7, 〈η〉 is negative (-0.26). The distribution P (η) is asymmetric and

there is a broad shoulder on the negative side. As we increase τ , distribution shifts

towards positive side. It is not surprising to see the finite weight for values η < 0

and η > 1 [82]. Moreover, we have noticed (see inset of figure(3.9)) that the tail of

P (η) decays as a power law (ηα) for several decades. The exponent α depends on

the system and protocol parameters (e.g., τ ) and are given in figure captions. It is
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not clear whether this power extends indefnitely for large values of η. However, given

our numerical data we can calculate variance which is finite. As we increase the cycle

time the standard deviation of η (ση), becomes smaller. However, it remains larger

compared to mean values. For example, 〈η〉 = 0.161 and corresponding ση = 1.32 at

τ = 7.0 and 〈η〉 = 0.406 whereas ση = 1.11 for τ = 70.0. We would like to emphasize

that mean is dominated by fluctuations even in the quasistatic regime. Any physical

quantity with relative variance larger than one, is referred to as non-self averaging

quantity. For such cases mean ceases to be a good physical variable and one has to

resort to the analysis for full probability distribution. This is one of our main result.

Non-self averaging quantities arises mainly in physics of quenched disordered systems.

Note that, η becomes positive if both w and q1 are positive or both of them are

negative. η becomes negative when w and q1 have opposite signs. In order to have a

better understanding of our system we have plotted the joint distributions of w and

q1 for different τ in figure 3.10. For a given cycle, the system acts as an engine when

both w and q1 are negative i.e, in the third quadrant of the plot. Using our numerical
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Figure 3.10: Joint distribution of w and q1 for different τ . In a) τ = 0.7, in b)
τ = 7.0, in c) τ = 70.

results we have calculated the ratio of the total number of realizations falling in the

third quadrant to the total number of realizations. These fractions for τ = 0.7, 7.0

and 70.0 are calculated to be 0.226, 0.583 and 0.858, respectively. It is clear from this

that for large cycle times the reliability of the system working as an engine increases.

Though we observe that even in quasistatic regime there are realizations for which

the system does not act as an engine. This is due to strong fluctuations in work and

heat as discussed earlier. In the following table we have sumarized our numerical

results for a comparision.

Table 3.1: For Underdamped case

Cycle time 〈w〉 〈q1〉 〈p〉 η̄ 〈η〉 ση acts as
engine

0.7 0.005 -0.065 -0.007 -0.074 -0.260 2.09 22.6%
7.0 -0.095 -0.375 0.014 0.254 0.161 1.32 58.3 %
70.0 -0.201 -0.508 0.003 0.395 0.406 1.11 85.8 %

In TPSS the joint probability density Pss(x, v, t) is periodic in time: Pss(x, v, t +

τ)= Pss(x, v, t). For simplicity we write Pss(x, v, t) = e−φ(x,v,t). From the definition

of stochastic entropy [27,13,87] of the system Ssys, the change in the system entropy

for a trajectory over a cycle is given by ∆Ssys = ∆φ = φ(x2, v2, τ) − φ(x1, v1, 0)
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where (x1, v1) and (x2, v2) are the initial and final phase space points for a particular

realization of the cycle. To calculate ∆φ we evaluate Pss(x, v, 0) at the initial point

of the cycle which also coincide at the end point t = τ . In figure 3.11 we have plotted

joint phase space distribution at TPSS for three different values of τ = 0.7, 7.0 and

70.0. We see that for τ = 0.7 and τ = 7.0 phase space distributions are not symmetric

and there exist strong correlation between x and v which was ignored in the earlier

literature [80]. Only in the large τ limit the distribution becomes symmetric (see

figure 3.11c). The cross-correlation between position and velocity disappears and the

distribution Pss(x, v) becomes uncorrelated Gaussian in the quasistatic limit. Due to

correlation, the width of the distribution become larger as we decrease cycle time τ .
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Figure 3.11: Initial phase space distribution at different cycle times τ . In a)τ = 0.7,
in b) τ = 7.0, in c)τ = 70. The asymmetric position of red broken line along the
major axis of the elliptical Gaussian distribution for lower values of τ (=0.7 and 7.0)
indicates nonzero 〈xv〉. This correlation becomes zero for larger τ (=70), where the
position of the major axis also becomes symmetric.

Recently, FRHE in TPSS has been derived [81]. It extends the total entropy

production fluctuation theorem of Seifert [27,13,88] applied to heat engine. The total

entropy production ∆Stot over a cycle is a stochastic variable and in our present case

is given by

∆Stot = ∆φ +
q1

Th
+

q2

Tl
. (3.18)
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Using the first law (eq.3.17)

∆Stot = ∆φ +
q1

Th
+

w − q1 −∆u

Tl
. (3.19)

The second law which is valid on average, can be stated as 〈∆Stot〉 ≥ 0. In TPSS,

〈∆u〉 = 〈∆φ〉 = 0, which implies η̄ = 〈w〉
〈q1〉
≤ 1 − Tl

Th
= ηc. Thus the second law

puts the constraint on efficiency which is defined as 〈w〉
〈q1〉

. It should be noted that

this constraint is valid for any finite time cycle in TPSS, unlike the Carnot which is

valid for macroscopic engines in the quasistatic regime. However, it does not put any

constraint on the average efficiency (〈 w
q1
〉). The fluctuation theorem for heat engine

replaces the inequality relation of the second law by the equality relation, namely [81],
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Figure 3.12: Distribution of the internal energy change in one cycle for underdamped
steady state for τ=7.0.

〈e−∆Stot〉 = 〈e−(∆φ+
q1
Th

+
w−q1−∆u

Tl
)〉 = 1 (3.20)

eq.(3.20) is FRHE in TPSS. By calculating all the relevant stochastic variables w, q1,

∆φ, ∆u over all trajectories for finite τ we have verified eq.(3.20) in the TPSS. We

have obtained the value to be 0.96 for τ = 7.0, which is well within our numerical
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.

accuracy. We would like to emphasize that, in eq.(3.20), four stochastic variables

appear in the exponent. Small changes in these values affect the exponential function

by a large amount. Given this fact, our observed value of 〈e−∆Stot〉 is quite satisfactory.

For the same parameter value τ = 7.0, in figure 3.12 we have plotted the prob-

ability distribution, P (∆u), as a function of ∆u. In figure 3.13, we have plotted

the probability distribution of change of system entropy P (∆φ) and total entropy

P (∆Stot) as a function of their arguments. It is clear that as u and φ are state func-

tions, P (∆u) and P (∆φ) are symmetric with zero mean. However, the distribution

P (∆Stot) is asymmetric with a long tail for positive large ∆Stot. There is also a finite

weight towards negative ∆Stot. This contribution arises due to transient second law

violating periodic cycles [17, 42]. However, 〈∆Stot〉 remains positive as demanded by

the second law.

Till now we concentrated on symmetric cycle, i.e., equal contact times of the

system with hot and cold bath. Naturally, the question arises what will happen

if the cycle is time asymmetric. To the best of our knowledge this question has
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not been addressed in earlier literature. If the contact time of one bath is different

from that of the other, it can affect work output, heat dissipation to each bath,

power and efficiency. However, in the quasistatic limit there should not be any effect

of this asymmetry. This is clear from figure 3.14 that the average work, for three

different asymmetric cycles, asymptotically approach each other in the quasistatic
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limit. In the non-quasistatic limit, work extracted by the engine for asymmetric

cycles is small compared to symmetric cycle. From figure 3.15 it is seen that 〈η〉 is

lower for asymmetrical cycles. The inset shows even in quasistatic limit 〈η〉 6= η̄ for

τh : τl = 3 : 1. We have verified separately that asymmetry also decreases the power.

Thus asymmetry in the cycle degrades the performance characteristics of the engine.

We now briefly compare the nature of power and efficiency of our system when

the confining potential is different. We have taken the confining potential 1
2
k(t)xn

with n=2,4,6. For n=4,6 the confining potentials are referred to as hard potential.

The equilibrium distributions for hard potentials are no longer Gaussian and hence

in the quasistatic limit, the average work, heat dissipation etc., will be different from

those for the harmonic potential.
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Figure 3.16: Variation of 〈η〉 with τ for different types of potentials.

In figure 3.16 and 3.17 we have plotted 〈η〉 and 〈p〉 as a function of cycle time for

different potentials. Average efficiency 〈η〉 for large τ decreases as potential becomes

harder and thereby degrading the performance. 〈η〉 saturates at the higher value of

τ (not shown in the figure). From figure 3.17 we observe that harder the potential

smaller will be the critical time τ above which the system acts as an engine. For

large cycle time the power decreases as the potential becomes harder. However, we

72



-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0  2  4  6  8  10  12  14  16

〈 p
〉

τ

x
2

x
4

x
6

Figure 3.17: Variation of power 〈p〉 with τ for different types of potentials.

see clearly that there are three values of efficiencies 〈η〉 and η̄ at maximum power

0.16, 0.10, 0.08 and 0.25, 0.16, 0.13 for n=2,4,6 respectively. It is apparent that

the efficiency at maximum power is model dependent and decreases as the potential

becomes harder. Even the saturation value is different and it is lower for harder

potential. Clearly, these two figures indicate that operational characteristics of our

system are model dependent. Thus we do not expect any universal relation involving

only the average efficiency at maximum power and temperatures of the reservoirs.

So far we have studied our system in detail in the underdamped regime which is a

general case. From now on we restrict to the overdamped regime and highlight some

qualitative differences.

3.5 Overdamped quasistatic case

In the overdamped limit, dynamics of the system follows Langevin eq.(3.2), where

inertial effects are ignored. This approximation is valid when the time steps of the

observation are much larger than m/γ. The internal energy of the system is given

only in terms of potential energy. For this case equilibrium distribution of a particle
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in a static harmonic potential is given by Peq(x) = Ne
− kx2

2kBT from which one can

easily obtain the free energy. The analytical calculation for average thermodynamic

quantities in quasistatic limit are similar to the underdamped case. The total average

work done on the particle during the entire cycle is given by as

Wtot = ∆Fh + W2 + ∆Fl + W4

=
Th

2
ln

1

2
− Th

4
+

Tl

2
ln 2 +

Tl

2
. (3.21)

Interestingly, the expression for Wtot remains the same as for the case of the inertial

system discussed earlier and the system extracts work provided Tl

Th
< 0.705. Using

same arguments similar to the underdamped case and keeping in mind only the fact

that there is only one phase space variable, namely position, the average internal

energy change in the overdamped limit in the first step can be expressed as

∆U1 =
Th

2
− Tl. (3.22)

Using the first law the average heat absorption from the hot bath during the first

step is

−Q1 = ∆U1 −∆Fh =
Th

2
− Tl −

Th

2
ln

1

2
. (3.23)

The expression for efficiency in the overdamped case is

η̄q =
−Wtot

−Q1
= −

Th

2
ln 1

2
− Th

4
+ Tl

2
ln 2 + Tl

2
Th

2
− Tl − Th

2
ln 1

2

, (3.24)

which is different from the earlier case. In quasistatic limit, from eq.(3.23) heat flows

from the bath to the system provided Tl

Th
< 1+ln 2

2
= 0.846. This ratio Tl

Th
differs from

that obtained for the underdamped case. From Eqs.(3.21) and (3.23), the system acts

as an engine for the same condition ( Tl

Th
< 0.705) as for the underdamped case. A
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finite temperature difference between hot and cold bath is required so that the system

can act as a heat engine.
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Figure 3.18: Phase diagram for different Th and τ but for fixed Tl = 0.1.

3.6 finite cycle time engine in the Overdamped

regime

Analysis for finite time cycle is carried out by numerical methods as discussed earlier.

For a better understanding in the overdamped regime, all the parameters have been

kept same as in the underdamped case. In figure 3.18, we have plotted the phase dia-

gram for the overdamped case keeping Tl fixed at 0.1. For large τ ( quasistatic limit)

we observe, from phase diagram, that the system operates as a heat engine provided

Th is greater than a critical value. This critical value is close to the theoretical value

of 0.142 obtained from the bounds determined in quasistatic calculation. The phase

diagram shows a qualitative difference from the underdamped phase diagram (figure

3.3). The system always acts as an engine in τ → 0 limit provided we are above a

critical value of Th, which is not the case for the underdamped engine. This is clear

from figure 3.19, where we have plotted average work done on the system 〈w〉 and
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average heat released to each bath with 〈q1〉 and 〈q2〉 as a function of τ . Note that the

observed anomalous part for 〈w〉 and 〈q1〉 in the underdamped case for small τ regime

is absent in this regime. The quantities 〈w〉, 〈q1〉 and 〈q2〉 show monotonic behavior

and saturate at large cycle time to their analytical limits -0.214, -0.324 and 0.110,

respectively. Unlike the underdamped case here, 〈w〉 and 〈q1〉 are always negative.
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Figure 3.19: Variation of 〈w〉, 〈q1〉 and 〈q2〉 with cycle time τ .
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Figure 3.20: Variation of 〈η〉 and η̄ with cycle time τ . The doted blue line denotes
the quasistatic limit for η̄.

In figure 3.20 we have plotted the average of efficiency 〈η〉 and η̄ as a function

of τ . Both the efficiencies increase monotonically from zero and saturate for large τ .
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Figure 3.21: Variation of 〈p〉 with cycle time τ .

The saturation value of η̄ is close to the theoretically predicted value of 0.660. The

saturation value of 〈η〉 is found numerically to be 0.571 which is much less than the

corresponding value of η̄. Both these values are less than the Carnot value ηc = 0.8.

It is clear that 〈η〉 6= η̄ due to the strong correlation between fluctuating variables w

and q1 for all τ .

From figure 3.21, we see that power exhibits a sharp peak at τ = 0.8. Correspond-

ing efficiencies 〈η〉 and η̄ at maximum power are equal to 0.11 and 0.51 which are less

than the C-A result (ηCA = 0.554).

To study the nature of fluctuations in the overdamped regime we have plotted the

distribution P (w), P (q1) and P (η) in figures 3.22, 3.23 and 3.24 respectively. The

qualitative nature of the distributions of P (w) and P (q1) remain the same for different

values of τ as in the underdamped case. The fluctuations are smaller compared to the

underdamped case. The distribution P (η) shows a double peak behavior for τ = 0.7

with 〈η〉 = 0.086 and standard deviation ση = 1.688. For τ = 7.0, 〈η〉 = 0.496 and

ση = 1.287. For τ = 70, 〈η〉 = 0.571 and ση = 1.234. We observe that even in the

quasistatic regime, fluctuations of η dominate over the mean value. Thus η is a non

self averaging quantity. We have also seen that the fraction of the realizations for
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Figure 3.22: Distribution of w for different cycle times in the overdamped case.

which the system acts as an engine, increases with cycle time τ . Numerical values

for these fractions are 0.488, 0.817 and 0.861, for τ = 0.7, 7.0 and 70.0, respectively.

Hence, finite fraction of realization does not act as an engine even in quasistatic limit.

Similar to the underdamped case, the reliability of the system to act as an engine

increases with τ . We sumarize our numerical results in the following table:

Table 3.2: For Overdamped case
Cycle time 〈w〉 〈q1〉 〈p〉 η̄ 〈η〉 ση acts as

engine

0.7 -0.064 -0.131 0.092 0.493 0.086 1.688 48.8 %
7.0 -0.190 -0.302 0.027 0.631 0.496 1.287 81.7 %
70.0 -0.210 -0.319 0.003 0.658 0.571 1.234 86.1 %

Finally, we discuss the performance characteristics of our system in the over-

damped regime using an experimental protocol [66]. The experimental protocol con-

sists of only two steps, in which the two adiabatic steps of figure 3.1 are absent. In

the quasistatic regime the system acts as an engine for any temperature difference

and there is no bound on Th unlike our four step protocol [66]. This suggests that the

phase diagram will depend on the nature of protocol as well as on system parameters

and is not unique. As discussed earlier, most of the work fluctuations specially in
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Figure 3.23: Distribution of q1 for different cycle times in the overdamped case.

quasistatic regime arise from two adiabatic steps. In the absence of these two steps,

we have observed in our simulation that in the quasistatic regime, work distribution

P (w) is sharply peaked like a delta function at W = −1
2
(Th − Tl) ln 2 (analytical

result) [66]. However, fluctuations in q1 persist even in the quasistatic regime as a

result of the relaxation process that follows when the system, in contact with the cold

bath, is brought in direct contact with high temperature reservoir. The distribution of

stochastic efficiency P (η) exhibits a qualitative differences. It has almost zero weight

for η < 0 in large τ limit and shows a broad double peak feature which is confined

in the region 0 < η < 1. Beyond η > 1 a long tail is observed. For τ = 70 we have

numerically calculated 〈η〉 = 0.579 and ση = 0.903. Even for this protocol we notice

that fluctuations dominates over the mean value.

3.7 Summary

We summarise our results in this section. We have carried out an extensive analysis

of a single particle stochastic heat engine by manipulating a Brownian particle in a

harmonic trap with a periodically time dependent stiffness constant as a protocol.
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The cycle consists of two isothermal steps and two adiabatic steps similar to that of

Carnot engine. The proposed model is studied taking into account both the inertial

and overdamped Langevin equations. Thermodynamic quantities, defined over mi-

croscopic phase space trajectory of our system, fluctuate from one cycle of operation

to another. Their magnitude depends on the trajectory of the particle during the

cycle. This is done by using the methods of stochastic energetics. Average value

of thermodynamic quantities and their distribution functions have been calculated

numerically in TPSS. Analytical results of average thermodynamic quantities have

been obtained in the quasistatic regime. These results are consistent with the cor-

responding numerical results. We have reported several new results which were not

addressed in earlier literature.

The full phase diagram for operation of a system is given in both inertial and high

friction regime. They differ from each other qualitatively. In both cases it is also

shown that system acts as an engine provided the temperature difference is greater

than a critical value (unlike Carnot engine). This critical value depends on system
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parameters and is consistent with analytical results in quasistatic limit. Moreover,

for fixed bath temperatures and system parameters there should be a critical cycle

time above which the system acts as an engine.

The mean of the stochastic efficiency is dominated by its fluctuations (〈η〉 < ση)

even in quasistatic regime, making the efficiency a non-self averaging quantity. This

implies that in such a situation mean is not a good physical variable and one must

study the behaviour of full probability distributions which in all our cases contain

power law behaviour in their tails with varied exponents. This is one of our main

result. We have also shown that η̄ = 〈w〉
〈q1〉
6= 〈 w

q1
〉 = 〈η〉.

Our analysis of model dependence of finite cycle time clearly rules out any simple

universal relation ( e.g., ηCA = 1 −
√

Tl

Th
.) between efficiency at maximum power

and temperature of the baths. Time asymmetric periodic protocol makes engine less

efficient. Only in the quasistatic regime time asymmetry does not play any role.

For given cycle time there are several realizations which do not work as a heat

engine. These are referred to as transient second law violating trajectories. Number

of these realizations decreases as we increase τ . The fractions of realisations following

second law with corresponding τ are reported earlier sections both in underdamped

and overdamped regimes. Thus for large cycle time the reliability of the system work-

ing as an engine increases. Persistence of these realizations even in quasistatic regime

can be attributed to the fluctuation of heat and work distributions. Fluctuations

in work are mainly attributed to two adiabatic processes connecting two isotherms,

while fluctuations of q1 result from the relaxation of the system, when brought in

direct contact with high temperature reservoir from low temperature bath.

We have shown that in TPSS Pss(x, v, t) exhibit strong correlation between vari-

ables x and v in small cycle time limit. However, it becomes uncorrelated as we

approach quasistatic limit. For analytical simplicity it had been generally assumed

in earlier literature that there is no correlation between x and v in Pss(x, v, t) (see for
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example [80]).

In the inertial regime we have also verified the recently proposed fluctuation the-

orems for heat engines in a TPSS. Our results are amenable to experimental verifica-

tions.
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Chapter 4

Quantum JE with multiple

measurement and feedback
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4.1 Introduction

In this chapter we derive the Jarzynski equality (JE) for an isolated quantum system

for three different cases: (i) for unitay evolution with no intermediate measurements,

(ii) with intermediate measurements of arbitrary observables being performed, and

(iii) with intermediate measurements whose outcomes are used to modify the external

protocol (feedback). We find that the JE remains unaffected in the second case, but

gets modified in the third case where the mutual information between the measured

values with the actual eigenvalues must be incorporated into the relation.

In earlier chapters we have already introduced fluctuation theorems [20,21,23,28,

29]. One of the pioneering works was due to Jarzynski [23], who had derived a relation

between the nonquilibrium work performed on a system to change in its equilibrium

free energy. Let us consider a system that is initially at canonical equilibrium with

a heat bath at inverse temperature β = 1
kBT

. Subsequently an external perturbation

λ(t), called protocol, is applied to the system that takes it out of equilibrium. At

time t = τ , the process is terminated when the parameter value reaches λ(τ). The

work W done on the system will in general vary for different phase space trajectories,

owing to the randomness of the initial state and thermal fluctuations due to coupling

with the environment during the evolution. The Jarzynski equality (JE) states that,

〈e−βW 〉 = e−β∆F . (4.1)

Here, the angular brackets denote ensemble averaging over a large number of repeti-

tions of the experiment. ∆F ≡ F (λ(τ))−F (λ(0)) is the difference in the equilibrium

free energy of the system between the final and the initial states. The JE has been ex-

tended to quantum domain [44] in presence of measurement [89] and feedback [90,91].

JE in presence of feedback has also been verified experimentally [92]. Quantum feed-

backs are important in nanosytems or mesoscopic systems and can be applied to
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produce the cooling of nanomechanical resonators and atoms [93, 94].

In this chapter we derive quantum extended JE with multiple measurements and

feedback for an isolated system. Our treatment is based on path probability in state

space for each realization as opposed to formal approach dealing with projection

operator and density matrices [90, 91]. All the results are simple extensions of the

theorems for fixed protocol, and the latter in turn depends on the principle of micro-

scopic reversibility. It may be noted that only with the choice of von Neumann type

measurements, corresponding to the measurement operator Πj ≡ |j〉〈j|, the earlier

approaches reduce to the present approach. Here, |j〉 is an eigenstate of the measured

observable.

For the quantum case to obtain the work values, we perform measurement (von

Neumann type) of system energies (or Hamiltonian H(t)) at the beginning and end of

protocol. The measured energy eigenvalues are denoted by Ei0(λ(0)) and Eiτ (λ(τ))

and corresponding instantaneous eigenstates by |i0〉 and |iτ 〉 respectively. The work

done on the system by changing external protocol λ(t) is given by

W = Eiτ (λ(τ))−Ei0(λ(0)). (4.2)

W is a realization dependent random variable. Initially the system is brought into

contact with large reservoir at temperature T, thereby allowing the system to equi-

librate. Subsequently the system is decoupled from the bath and the system evolves

unitarily with a given Hamiltonian H(t). Our treatment closely follows [95] wherein

Hamiltonian derivation of JE under feedback control is derived for classical case.

Probability of system being in state |i0〉 is given by

p(i0) =
e−βEi0

(λ(0))

Z0
. (4.3)
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The partition function is defined as

Z0 =
∑

i0

e−βEi0
(λ(0)). (4.4)

Between measurements, the system undergoes unitary evolution with an operator U

given by

Uλ(t2, t1) = T exp

(

− i

~

∫ t2

t1

H(t, λ(t))dt

)

, (4.5)

where T denotes time ordering and H(t) is the system Hamiltonian. The probability

of the system initially in the state |i0〉 to be found in state |iτ 〉 at time τ is given by

P (iτ |i0) = |〈iτ |Uλ(τ, 0)|i0〉|2. (4.6)

Thus the joint probability of state being in |i0〉 and |iτ 〉 is

P (iτ , i0) = P (iτ |i0)p(i0) (Bayes’ theorem) (4.7)

In section 4.2, we rederive the JE for a quantum particle to make the chapter self

consistent. In section 4.3, we derive the same with measurements of arbitrary ob-

servables being performed in-between. In section 4.4, we derive the extended JE for

a system with the protocol being monitored by a feedback control that changes the

protocol according to the outcomes of the measurements performed. In section 4.5

generalized JE involving efficacy parameter is derived.

4.2 Jarzynski Equality

For deriving JE we need to calculate 〈e−βW 〉 which is given by

〈e−βW 〉 =
∑

iτ ,i0

e−βW P (iτ , i0). (4.8)
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Substituting the expression for realization dependent work (eq.(4.2)) and joint prob-

ability P (iτ , i0) (eq.(4.7)) and using eq.(4.3) and eq.(4.6) we get

〈e−βW 〉 =
∑

i0,iτ

e−β(Eiτ (λ(τ))−Ei0
(λ(0))|〈iτ |Uλ(τ, 0)|i0〉|2

e−βEi0
(λ(0))

Z0

=
∑

i0,iτ

e−βEiτ (λ(τ))

Z0
〈iτ |Uλ(τ, 0)|i0〉〈i0|U †

λ(τ, 0)|iτ〉. (4.9)

Making use of completeness relation
∑

i0
|i0〉〈i0| = 1 and normalization condition

〈iτ |iτ 〉 = 1 and unitarity of evolution, U †
λUλ = 1, we have,

〈e−βW 〉 =
∑

iτ

e−βEiτ (λ(τ))

Z0
=

Zτ

Z0
= e−β∆F . (4.10)

where, Zτ =
∑

iτ
e−βEiτ (λ(τ)), is the partition function of the system with the control

parameter held fixed at λ(τ) and ∆F = ln Z0

Zτ
is the equilibrium free energy difference

between final and initial states. This is the quantum version of the JE [44]. Using

Jensen’s inequality, we retrieve the second law from the above relation:

〈W 〉 ≥ ∆F, (4.11)

implying second law is valid for average W although for some individual realizations,

W can be less than ∆F .

4.3 JE in presence of measurement

This time, one intermediate measurement (of arbitrary observables, not necessarily

the Hamiltonian) at time t1 has been carried out but the entire protocol λ(t) is

predetermined. At time t1 the state collapses to one of the eigenstates of the measured

observable, say |i1〉, after which it evolves according to the unitary operator Uλ(τ, t1)

up to the final time τ . It is to be noted that the projective measurements result in
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collapse of the system state to one of the eigenstates and leads to decoherence and

dephasing. If along two paths, intermediate measurements are performed, then the

interference between alternative paths disappear and quantum effects are suppressed.

Hence in presence of measurement, path probabilities in state space obeys simple

classical probability rules. For example, the path probability is simply the product of

the transition probabilities between subsequent measured states. However, it may be

noted that quantum mechanics enters through the explicit calculation of transition

probabilities between states. The joint probability of the state trajectory is

P (iτ , i1, i0) = p(iτ |i1)p(i1|i0)p(i0) (4.12)

= |〈iτ |Uλy1
(τ, t1)|i1〉|2|〈i1|Uλ(t1, 0)|i0〉|2p(i0). (4.13)

Then,

〈e−βW 〉 =
∑

iτ ,i1,i0

e−βW P (iτ , i1, i0).

using eq.(4.2), eq.(4.13) and eq.(4.3)

〈e−βW 〉 =
∑

i0,i1,iτ

e−β(Eiτ (λ(τ))−Ei0
(λ(0))|〈i1|Uλ(t1, 0)|i0〉|2|〈iτ |Uλ(τ, t1)|i1〉|2

e−βEi0
(λ(0))

Z0

=
∑

i0,i1,iτ

e−βEiτ (λ(τ))

Z0
〈i1|Uλ(t1, 0)|i0〉〈i0|U †

λ(t1, 0)|i1〉|〈iτ |Uλ(τ, t1)|i1〉|2

=
∑

i1,iτ

e−βEiτ (λ(τ))

Z0
〈iτ |Uλ(τ, t1)|i1〉〈i1|U †

λ(τ, t1)|iτ 〉

=
∑

iτ

e−βEiτ (λ(τ))

Z0
=

Zτ

Z0
= e−β∆F . (4.14)

In the above simplification we have used completeness relation, normalization con-

dition and unitarity of Uλ as in section 4.2. Thus, we find that the JE remains

unaffected even if measurements are performed on the system in-between (0, τ). The

above treatment can be readily generalized to the case of multiple measurements
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(see appendix A). Even though the form of JE is not altered in the presence of

measurements, the statistics of the work performed on the system changes (strongly

influenced by measurements). This is due to the fact that path probabilities for a

given value of work are modified in presence of measurements. This is clearly illus-

trated in [96], wherein work distribution has been calculated for the Landau-Zener

model in presence of measurement.

4.4 Extended JE in presence of feedback

The extended JE in presence of feedback has been given by Sagawa and Ueda for both

the classical [45, 95] and the quantum [91] cases. Feedback means that system will

be controlled by the the measurement output. After each measurement, the protocol

is changed accordingly. Suppose initial protocol was λ(t); at time t1 a measurement

of some observable A is performed on the system and outcome y1 is obtained. We

then modify our protocol from λ0(t) to λy1
(t) and evolve the system up to time τ .

We assume that the intermediate measurements can involve errors that are purely

classical in nature. The error probability is given by p(y1|i1), where |i1〉 is the actual

collapsed eigenstate of A. The final value of the protocol λy1
(τ) depends on y1 and

hence equilibrium free energy at the end of the protocol depends on y1. The mutual

information between actual state |i1〉 and measured value y1 is

I = ln
p(y1|i1)
p(y1)

. (4.15)

Here, p(y1) is the probability density of the outcome y1. The mutual information

I quantifies a change in uncertainty about the state of the system upon making

measurement [97]. Note that I can be positive or negative for a given realization;

however, 〈I〉 is always positive. The probability of the state trajectory |i0〉 → |i1〉 →
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|iτ 〉 with single measurement is

P (iτ , i1, i0, y1) = p(iτ |i1)p(y1|i1)p(i1|i0)p(i0)

= |〈iτ |Uλy1
(τ, t1)|i1〉|2p(y1|i1)|〈i1|Uλ(t1, 0)|i0〉|2p(i0). (4.16)

Now we have,

〈e−β(W−∆F )−I〉 =

∫

dy1

∑

iτ ,i1,i0

P (iτ , i1, i0, y1)e
−β(W−∆F (y1))−I . (4.17)

Substituting the expressions of joint probability P (iτ , i1, i0, y1) (eq.(4.16)), work W

(eq.(4.2)), Free energy difference ∆F = Z0

Zτ (y1)
, and mutual information I (eq.(4.15))

and simplifying we get

〈e−β(W−∆F )−I〉

=

∫

dy1

∑

iτ ,i1,i0

|〈iτ |Uλy1
(τ, t1)|i1〉|2|〈i1|Uλ(t1, 0)|i0〉|2p(y1)

e−βEiτ (λy1
(τ))

Zτ (y)

=

∫

dy1

∑

iτ ,i1,i0

|〈iτ |Uλy1
(τ, t1)|i1〉|2〈i1|Uλ(t1, 0)|i0〉〈i0|U †

λ(t1, 0)|i1〉p(y1)
e−βEiτ (λy1

(τ))

Zτ (y)

=

∫

dy1

∑

iτ ,i1

|〈iτ |Uλy1
(τ, t1)|i1〉|2p(y1)

e−βEiτ (λy1
(τ))

Zτ (y)

=

∫

dy1

∑

iτ ,i1

〈iτ |Uλy1
(τ, t1)|i1〉〈i1|U †

λy1

(τ, t1)|iτ 〉p(y1)
e−βEiτ (λy1

(τ))

Zτ (y)

=

∫

dy1p(y1)
∑

iτ

e−βEiτ (λy1
(τ))

Zτ (y)

=

∫

dy1p(y1) = 1. (4.18)

In second and fourth step, the modulus squared terms have been rewritten in ex-

panded form and completeness relation is used. The above relation (4.18) constitutes

the extended JE in the presence of information. Using Jensen’s inequality, one arrives
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at the generalized version of the second law in presence of feedback:

〈W 〉 ≥ 〈∆F 〉 − kBT 〈I〉, (4.19)

where the average mutual entropy 〈I〉 is always non-negative on account of being a

relative entropy [43]. Thus, the lower bound of the mean work done on the system can

be lowered by a term that is proportional to the average of the mutual information.

In other words, with the help of an efficiently designed feedback, we can extract more

work from the system. The above treatment can be readily extended to the case of

multiple measurements between (0,τ) not necessarily at equal intervals of time. This

is given in appendix B.

4.5 Generalized JE and efficacy parameter in pres-

ence of feedback

The efficacy parameter γ [45,95,90] provides a measure of how efficiently our feedback

is able to extract work from the system. It is defined as

γ ≡ 〈e−β(W−∆F )〉 =

∫

dy1

∑

iτ ,i1,i0

P (iτ , i1, i0, y1)e
−β(W−∆F ). (4.20)

Here we have assumed single intermediate measurement. Substituting the expres-

sions of joint probability P (iτ , i1, i0, y1) (eq.(4.16)), work W (eq.(4.2)), Free energy

difference ∆F = Z0

Zτ (y1)
, and information I (eq.(4.15)), we get

91



〈e−β(W−∆F )〉

=

∫

dy1

∑

iτ ,i1,i0

|〈iτ |Uλy1
(τ, t1)|i1〉|2|〈i1|Uλ(t1, 0)|i0〉|2p(y1|i1)

e−βEiτ (λy1
(τ))

Zτ(y)

=

∫

dy1

∑

iτ ,i1,i0

|〈iτ |Uλy1
(τ, t1)|i1〉|2〈i1|Uλ(t1, 0)|i0〉〈i0|U †

λ(t1, 0)|i1〉p(y1|i1)
e−βEiτ (λy1

(τ))

Zτ (y)

=

∫

dy1

∑

iτ ,i1

|〈iτ |Uλy1
(τ, t1)|i1〉|2p(y1|i1)

e−βEiτ (λy1
(τ))

Zτ (y)
. (4.21)

For further calculations we need to take into account time reversed path. For this

we introduce time reversal operator Θ with the properties Θ† = Θ and Θ†Θ = 1. Let

|i∗0〉 denote the time reversed state of |i0〉, i.e, |i∗0〉 = Θ|i0〉. It follows [47]

ΘUλy1
(τ, t1)Θ

† = Uλ†
y1

(τ̃ , t̃1), (4.22)

where t̃ = τ − t, i.e, the time calculated along reverse process. We assume time-

reversibility of measurements, p(y∗
1|i∗1) = p(y1|i1) [90], y∗

1 being the time reversed

value of y1. As i∗ and i have one to one correspondence, the summation over i1, iτ is

equivalent to that over i∗1, i∗τ . We get

〈e−β(W−∆F )〉 =

∫

dy1

∑

i∗τ ,i∗
1

|〈iτ |Θ†ΘUλy1
(τ, t1)Θ

†Θ|i1〉|2p(y1|i1)
e−βEiτ (λy1

(τ))

Zτ(y)

=

∫

dy1

∑

i∗τ ,i∗
1

|〈i∗τ |Uλ†
y1

(τ̃ , t̃1)|i∗1〉|2p(y∗
1|i∗1)

e−βEiτ (λy1
(τ))

Zτ (y)

=

∫

dy1

∑

i∗τ ,i∗
1

|〈i∗1|U †

λ†
y1

(τ̃ , t̃1)|i∗τ 〉|2p(y∗
1|i∗1)

e−βEiτ (λy1
(τ))

Zτ (y)

=

∫

dy1

∑

i∗τ ,i∗
1

|〈i∗1|Uλ†
y1

(t̃1, τ̃ )|i∗τ 〉|2p(y∗
1|i∗1)

e−βEiτ (λy1
(τ))

Zτ (y)

=

∫

dy1

∑

i∗τ ,i∗
1

Pλ†
y1

(i∗1|i∗τ )p(y∗
1|i∗1)P (iτ ). (4.23)
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where

Pλ†
y1

(i∗1|i∗τ ) = |〈i∗1|Uλ†
y1

(t̃1, τ̃)|i∗τ 〉|2, (4.24)

is the conditional probability of time reversed trajectory from state |i∗τ 〉 to |i∗1〉. We

also have

P (i∗τ ) = P (iτ ) =
e−βEiτ (λy1

(τ))

Zτ (y1)
, (4.25)

which is the initial probability distribution of the time reversed process with fixed

protocol λ†
y1

(τ). Substituting eq.(4.25) in eq.(4.23) and using Bayes’ theorem we get

γ = 〈e−β(W−∆F )〉 =

∫

dy1

∑

i∗
1

p(y∗
1|i∗1)Pλ†

y1

(i∗1) =

∫

dy1Pλ†
y1

(y∗
1). (4.26)

The physical meaning of the efficacy parameter is apparent now: it is the total prob-

ability of observing time-reversed outcomes along time-reversed protocols. Thus ex-

pression for the efficacy parameter remains the same as in the classical case. For

multiple measurements, efficacy parameter is given by γ =
∫

dy1 · · · dynPλ†(y∗
1 · · · y∗

n).

The derivation is simple and we are not reproducing it here.

4.6 Conclusion

In conclusion we have shown that the quantum extension of JE with multiple mea-

surements and measurement accompanied feedback and quantum efficacy parameter

retain same expressions as in the classical case. This is mainly due to performed

measurements being of von Neumann projective type accompanied by classical er-

rors, and system being isolated. In next chapter we will shown that in quantum case,

entropy production fluctuation theorems retain the same form as in the classical case

with measurement and feedback.
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Chapter 5

Generalized entropy production

FTs for quantum systems
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5.1 Introduction

Based on trajectory dependent path probability formalism in state space, in this

chapter we derive generalized entropy production fluctuation relations for a quantum

system in the presence of measurement and feedback. We have obtained these results

for three different cases: (i) the system is evolving in isolation from its surroundings;

(ii) the system being weakly coupled to a heat bath; and (iii) system in contact with

reservoir using quantum Crooks fluctuation theorem. The obtained entropy produc-

tion fluctuation theorems retain the same form as in the classical case. The inequality

of second law of thermodynamics gets modified in the presence of information. These

fluctuation theorems are robust against intermediate measurements of any observable

performed with respect to von Neumann projective measurements as well as weak or

positive operator valued measurements.

In 2005 Seifert introduced a general Fluctuation theorem (FT) [27,13] which con-

tains the Jarzynski [23] and the Crooks [28, 29] theorems as special cases. It relates

the probability of a phase space trajectory along the forward process to that along

the reverse process. We have already introduced these theorems in detail in the in-

troduction. In the following, we mention them just for recapitulation. The integral

fluctuation theorem (IFT) for total entropy production [13] states that

〈e−∆stot〉 = 1. (5.1)

where ∆Stot is the total entropy production along a given trajectory. If the system is

in steady state, one can also obtain detailed entropy production fluctuation theorem

(DFT), namely

p(∆Stot)

p(−∆Stot)
= e∆Stot. (5.2)
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The IFT follows directly from the DFT. Using Jensen’s inequality in eq.(5.1) we get

〈∆Stot〉 ≥ 0. (5.3)

This is a statement of second law of thermodynamics, expressed in the form of in-

equality for the average change in total entropy.

If the systems are driven by the feedback controlled protocols, which in turn

depend on the measurement outcomes of the state of the system at intermediate

times (information gain), then IFT gets modified a form [47]

〈e−∆Stot−I〉 = 1, (5.4)

where I is the mutual information which quantifies the change in uncertainty of

state of the system upon making measurements. Application of Jensen’s inequality

generalizes second law for total entropy production:

〈∆Stot〉 ≥ −〈I〉. (5.5)

The average mutual information 〈I〉, is always non negative [43]. Thus the average

entropy change can be made negative by feedback control, and the lower bound is

given by −〈I〉. There are few attempts to extend the IFT (eq.(5.1)) to the quantum

domain [31,32,98]. In our present work we extend the IFT for ∆Stot to quantum sys-

tems, in presence of multiple measurements and feedback. We assume that measure-

ment procedure involves errors that are classical in nature. We show the robustness

of FTs against intermediate measurements of any system observable (both von Neu-

mann projective measurements or generalized positive operator valued measurements

(POVM)).

We obtain these theorems for three different cases: (i) the system evolves in
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isolation from its surroundings; (ii) it is weakly coupled to a heat bath; and (iii)

evolution of system coupled to heat bath is modelled in terms of work steps and heat

steps following closely the treatment given Ref [65] and is described in section 5.4. Our

treatment is based on path probability in state space. The measurement is assumed

to be von Neumann type, i.e, projective measurement which results in the collapse of

system state to one of the eigenstates of the corresponding observable. Case (i) namely

isolated quantum system is discussed in detail. DFT is obtained for various different

situations, i.e., (a) system evolving unitarily, (b) in the presence of measurement

and feedback, and finally (c) in the presence of intermediate measurements, of any

observables of the system. The IFT follows from DFT. For cases (ii) and (iii) we have

derived generalized IFT. In the appendix, we have given a proof of IFT in presence of

weak measurements. In passing, we note that all the extended quantum FTs retain

the same form as their classical counterparts.

5.2 Isolated quantum system

5.2.1 Unitary evolution

In this section we consider an isolated quantum system given by Hamiltonian H(λ(t)),

where λ(t) is some external time dependent protocol. To clarify our notation and for

completeness we rederive DFT for this system following the treatment of ref [32].

Initially at time t=0 energy measurement is performed and system is found to be in

eigenstate |i0〉, with energy eigenvalue E0. It then evolves unitarily from time 0 to τ

under the protocol λ(t). The energy measurement at final time τ is performed and

system is found to be at state |iτ 〉 with energy eigenvalue Eτ . If the initial probability

density of the state |i0〉 is p(i0) then the joint probability of |i0〉 and |iτ 〉 (forward
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state trajectory) is given by

PF (iτ , i0) = p(iτ |i0)p(i0)

= |〈iτ |Uλ(τ, 0)|i0〉|2p(i0), (5.6)

where Uλ(t2, t1) denotes the unitary evolution operator for given λ(t) from time t1 to

time t2. It is defined as

Uλ(t2, t1) = T exp

(

− i

~

∫ t2

t1

H(λ(t))dt

)

. (5.7)

Here, T denotes time ordering.

The system entropy is defined as S(t) = − ln p(it). As the system is isolated there

is no generation of heat, i.e, Q=0. It leads the total change in entropy production

∆Stot during the evolution from time 0 to τ is equal to the change in system entropy

alone.

∆Stot = − ln
p(iτ )

p(i0)
, (5.8)

where p(iτ ) is the final probability of state |iτ 〉 at time τ . The probability density

PF (∆Stot) for the forward path is by definition

PF (∆Stot) =
∑

iτ ,i0

δ

(

∆Stot + ln
p(iτ )

p(i0)

)

PF (iτ , i0)

=
∑

iτ ,i0

δ

(

∆Stot + ln
p(iτ )

p(i0)

)

p(iτ |i0)p(i0). (5.9)

We now introduce time reversal operator Θ. The time reversed state of |i〉 is defined

as |̃i〉 = Θ|i〉. It can be readily shown that [47]

p(i2|i1) = |〈i2|Uλ(t2, t1)|i1〉|2 = |〈̃i1|Uλ†(t̃1, t̃2)|̃i2〉|2 = p(̃i1 |̃i2). (5.10)
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where t̃ = τ − t and λ†(t̃) = λ(τ − t) is the time reversed protocol of λ(t). The

evolution of the system from given time reversed state Θ|i2〉 to the time-reversed state

Θ|i1〉, under the time reversed protocol λ†(t), is given by the conditional probability

p(̃i1 |̃i2). We consider the initial distribution of reverse trajectory to be equal to the

final distribution of forward trajectory

p(̃iτ ) = p(iτ ). (5.11)

The states |i〉 and |̃i〉 have one-to-one correspondence. Multiplying and dividing by

p(iτ ) in the summand in eq.(5.9) and using (5.10) and (5.11), we get

PF (∆Stot) =
∑

iτ ,i0

δ

(

∆Stot + ln
p(iτ )

p(i0)

)

p(̃i0|̃iτ )p(̃iτ )
p(i0)

p(iτ )

=
∑

iτ ,i0

δ

(

∆Stot + ln
p(iτ )

p(i0)

)

p(̃i0|̃iτ )p(̃iτ )e
∆Stot

= e∆Stot

∑

iτ ,i0

δ

(

∆Stot + ln
p(̃iτ )

p(̃i0)

)

p(̃i0|̃iτ )p(̃iτ )

= e∆Stot

∑

iτ ,i0

δ

(

∆Stot − ln
p(̃i0)

p(̃iτ )

)

PR(̃iτ , ĩ0)

= e∆StotPR(−∆Stot). (5.12)

To arrive at this result we have used eq.(5.8) in the second step and eq.(5.11) in

third step. PR(̃iτ , ĩ0) is the joint probability of the corresponding states in the reverse

direction. If the ∆Stot is the total entropy change for forward path then the total

entropy change in the corresponding reverse path is −∆Stot. It follows from the fact

that p(̃iτ ) and p(̃i0) is the initial and final probability distribution of state in the time

reversed process because of unitary evolution. The eq.(5.12) can be written in the

form

PF (∆Stot)

PR(−∆Stot)
= e∆Stot. (5.13)
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This is the detailed fluctuation theorem for change in total entropy, extended to the

quantum regime. Simple cross multiplication followed by integration over ∆Stot leads

to the integral form of the above theorem:

〈e−∆Stot〉 = 1. (5.14)

5.2.2 Isolated quantum system with feedback

So far we have been dealing with a predetermined protocol, also known as open

loop feedback. Often to increase the efficiency of a physical process ( eg. engines at

nanoscale, molecular motor etc.), we need to perform intermediate measurements and

change the protocol as per the outcomes of these measurements [93,94,99,100,45,46,

101,97]. Such a process is known as closed loop feedback. Let the system evolve under

some external protocol λ0(t), from its initial energy eigenstate |i0〉 measured at time

t0. At time t1, we perform a measurement of some arbitrary observable and system

collapses to state |i1〉. We assume that measurement process leading to information

gain involves classical errors. Here y1 is the measured outcome with a probability

p(y1|i1), while system’s actual state is |i1〉. Depending on the value of y1 the protocol

is changed to λy1
(t). Under this new protocol the system evolves unitarily up to time

t2 where another measurement is performed and so on. This process terminates at

time τ when the system collapses to its final energy eigenvalue |iτ 〉. We should note

that initial and final measurements are energy measurements. The joint probability

of the corresponding state trajectory for n number of intermediate measurements

y1, y2, · · · yn at times t1, t2, · · · tn respectively is [47]

PF (iτ , .., i1, i0, yn, .., y1) = p(iτ |in) · · ·p(y2|i2)p(i2|i1)p(y1|i1)p(i1|i0)p(i0)

= |〈iτ |Uλyn
(τ, t1)|in〉|2...p(y2|i2)|〈i2|Uλy1

(t2, t1)|i1〉|2p(y1|i1)

× |〈i1|Uλ0
(t1, 0)|i0〉|2p(i0). (5.15)
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It may be noted that the joint probability of path is expressed using classical proba-

bility rules. This is because we perform projective measurement on the system which

collapses to one of the eigenvalues of the measured observables [47, 102]. As a con-

sequence, it wipes out the previous memory of evolution and the post-measurement

evolution becomes uncorrelated to the pre-measurement evolution. Thus if one per-

forms intermediate measurements along two paths, the interference effects between

the two paths disappear and the quantum effects are suppressed. Hence in the pres-

ence of measurement, path probability in state space obeys classical probability rules,

and is given by product of transition probability of paths between consecutive mea-

surements. However, it may be noted that quantum mechanics enters through the

explicit calculation of transition probability between two consecutive states.

To generate the reverse trajectory of a path in state space given in eq.(5.15), we

first choose one of the forward protocols with probability p(yn · · · , y2, y1), and then

blindly time reverse the protocol. We perform measurements at the appropriate times

along reverse path to allow the state to collapse to the corresponding time-reversed

eigenstates. We do not use these measurements to perform any feedback to respect

causality [97]. Then the expression for the joint probability of reverse trajectory is

given by

PR(̃iτ · · · , ĩ0, yn, .., y1) = p(̃iN |̃iτ ) · · ·p(̃i0 |̃i1)p(iτ )p(yn · · · , y1). (5.16)

The mutual information gain due to measurements between the measured values and

the actual value is defined as [47, 97]

I = ln
p(yn|in)...p(y2|i2)p(y1|i1)

p(yn · · · , y2, y1)
. (5.17)

We now calculate the joint probability density PF (∆Stot, I) of the entropy production
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and I along the forward path, which is

PF (∆Stot, I) =

∫

dyn · · · dy1

∑

iτ ··· ,i1,i0

δ

(

∆Stot + ln
p(iτ )

p(i0)

)

δ (I − I(in, .., i1, yn, .., y1))

× PF (iτ , .., i1, i0, yn, .., y1)

=

∫

dyn · · · dy1

∑

iτ ··· ,i1,i0

δ

(

∆Stot + ln
p(iτ )

p(i0)

)

δ (I − I(in, .., i1, yn, .., y1))

× p(iτ |in) · · · p(y2|i2)p(i2|i1)p(y1|i1)p(i1|i0)p(i0)

=

∫

dyn · · · dy1

∑

iτ ··· ,i1,i0

δ

(

∆Stot + ln
p(iτ )

p(i0)

)

δ (I − I(in, .., i1, yn, .., y1))

× p(̃iN |̃iτ ) · · ·p(̃i0 |̃i1)p(iτ )p(yn · · · , y1)e
∆Stot+I

=

∫

dyn · · · dy1

∑

iτ ··· ,i1,i0

δ

(

∆Stot + ln
p(iτ )

p(i0)

)

δ (I − I(in, .., i1, yn, .., y1))

× PR(̃iτ · · · , ĩ0, yn, .., y1)e
∆Stot+I

= e∆Stot+I

∫

dyn · · ·dy1

∑

iτ ··· ,i1,i0

δ

(

∆Stot + ln
p(iτ )

p(i0)

)

× δ (I − I(in, .., i1, yn, .., y1)) PR(̃iτ · · · , ĩ0, yn, .., y1)

= e∆Stot+IPR(−∆Stot, I). (5.18)

In deriving above result we have made use eq.(5.15), (5.16), (5.17). The path variable

I(in, .., i1, yn, .., y1) is given by eq. (5.17), and I denotes its value. It is important

to note that the probability density function PR(−∆Stot, I) gives the probability of

reverse trajectories along which the entropy chage is −∆Stot and whose corresponding

forward trajectory has the mutual information I between its measured outcomes and

actual states. Once again, the initial and final distributions of states along forward

trajectory get interchanged in the reverse trajectory because of unitary evolution

between measurements. Along the reverse trajectory the change in total entropy is
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−∆Stot. Thus we obtain the DFT

PF (∆Stot, I)
PR(−∆Stot, I)

= e∆Stot+I . (5.19)

From the above equation the extended version of IFT and second law, eqs. (5.4) and

(5.5) can be readily obtained as discussed in earlier subsection.

5.2.3 Isolated system under multiple measurements

In this subsection we restrict ourselves on the influence of intermediate measurements

of arbitrary observables on the statistics of ∆Stot. To this end we do not involve any

feedback. Following closely the discussions in section (5.2.2), of path probability in

state space is given by

P (iτ , .., i1, i0) = p(iτ |in) · · · p(i2|i1)p(i1|i0)p(i0)

= |〈iτ |Uλyn
(τ, t1)|in〉|2...|〈i2|Uλy1

(t2, t1)|i1〉|2|〈i1|Uλ0
(t1, 0)|i0〉|2p(i0).

(5.20)

From preceding section we now calculate the probability density PF (∆Stot) of the

total entropy change along forward path

PF (∆Stot) =
∑

iτ ··· ,i1,i0

δ

(

∆Stot + ln
p(iτ )

p(i0)

)

P (iτ , .., i1, i0)

=
∑

iτ ··· ,i1,i0

δ

(

∆Stot + ln
p(iτ )

p(i0)

)

p(iτ |in) · · · p(i2|i1)p(i1|i0)p(i0)

=
∑

iτ ··· ,i1,i0

δ

(

∆Stot + ln
p(iτ )

p(i0)

)

p(̃iN |̃iτ ) · · ·p(̃i0 |̃i1)p(iτ )e
∆Stot

=
∑

iτ ··· ,i1,i0

δ

(

∆Stot + ln
p(iτ )

p(i0)

)

PR(̃iτ · · · , ĩ0)e∆Stot

= e∆Stot

∑

iτ ··· ,i1,i0

δ

(

∆Stot + ln
p(iτ )

p(i0)

)

PR(̃iτ · · · , ĩ0), (5.21)
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where PR(̃iτ · · · , ĩ0) is the probability of reverse path. The DFT for ∆Stot follows

from the above equation:

PF (∆Stot)

PR(−∆Stot)
= e∆Stot. (5.22)

We observe from eq.(5.22) the robustness of this FT against intermediate measure-

ments [89,44]. It retains the same form as in the classical case. The path probability,

however, gets modified in presence of measurements and statistics of ∆Stot is strongly

influenced by the intermediate measurements. In the next section we derive IFT in

presence of feedback for a quantum system coupled weakly to a bath. In the appendix,

we have shown that the IFT for ∆Stot is also robust against weak or generalized in-

termediate measurements.

5.3 Weakly coupled quantum system

Consider a driven system which is weakly coupled to a bath. The total Hamiltonian

will be

H(λ(t)) = HS(λ(t)) + HB + HSB. (5.23)

The external time dependent drive λ(t) only affects the system Hamiltonian HS(λ(t))

while the bath Hamiltonian HB and interaction Hamiltonian HSB are time indepen-

dent. As the system is weakly coupled it is assumed that HSB is negligibly small

compared to HS(λ(t)) and HB. Initially the super-system (system+bath) is coupled

to a large reservoir of inverse temperature β [44,34]. At time t = 0 the large reservoir

is decoupled from the super-system. Hence initially the super-system will be in a

canonical distribution,

ρ(λ0) =
e−βH(λ(0))

Y (λ(0))
, (5.24)

where Y (λ(0)) = Tr e−βH(λ(0)). The system and the bath Hamiltonians commute with

each other, hence we can measure simultaneously the energy eigenstates for system as
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well as bath. At t=0, the measured energy eigenvalues of system and bath are denoted

by ES
0 and EB

0 , respectively. We perform N number of intermediate measurements

of some arbitrary observable at time t1, t2 · · · tN between time 0 to τ . Initially the

protocol was λ0(t). At t1 the measured output is y1, while its actual state is i1, with

probability p(y1|i1). Now the protocol is changed to λy1
(t) and system evolves up

to time t2 . Again measurement is performed and protocol is changed according to

the output at intermediate times and so on. Finally at t=τ joint measurement is

performed on system and bath Hamiltonians, and the measured eigenvalues are ES
τ

and EB
τ , respectively. The system-reservoir interaction energy can be neglected in

the presence of weak coupling. Hence during the evolution process from time t = 0 to

t = τ for a single realization the change in the internal energy of the system is given

by [34]

∆U = ES
τ −ES

0 (5.25)

and the heat dissipated to the bath is

Q = EB
τ − EB

0 . (5.26)

If i0 and iτ denote initial and final system energy eigenstates, then system entropy

change is

∆Ssys = − ln
p(iτ )

p(i0)
, (5.27)

and the total entropy change is

∆Stot = ∆Ssys + ∆SB = − ln
p(iτ )

p(i0)
+

Q

T
, (5.28)
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where T is the temperature of the bath. The mutual information between the state

trajectory {i1, i2, · · · , iN} and the measurement trajectory {y1, y2, · · · yN} is

I ≡ ln

[

p(y1|i1) · · · p(yN |iN)

P (y1, · · · , yN)

]

. (5.29)

Denoting initial and final states of the bath by α0 and ατ , it can written from micro-

scopic reversibility [45, 97]

p(iτ , ατ |i0, α0) = p(̃i0, α̃0|̃iτ , α̃τ ). (5.30)

where p(iτ , ατ |i0, α0) is the total transition probability for system and reservoir to

evolve from state |i0, α0〉 to |iτ , ατ 〉 under the full Hamiltonian. Here |̃i, α̃〉 ≡ Θ|i, α〉

is the time-reversed state of |i, α〉. To generate the reverse trajectory, proper causal

protocol has to be used which has been discussed in section 5.2.2. Thus the forward

and the reverse path probabilities of trajectories are respectively given by

PF (A→ B) = p(iτ , ατ |iN , αN) · · ·p(y1|i1)p(i1, α1|i0, α0)p(i0, α0), (5.31)

PR(A← B) = p(̃i0, α̃0 |̃i1, α̃1) · · ·p(̃iN , α̃N |̃iτ , α̃τ )p(̃iτ , α̃τ )p(y1, y2, · · · yN). (5.32)

The notations A and B denote initial and final values of the forward protocol, respec-

tively. For reverse trajectory we have chosen the outcome of the forward trajectory

with probability p(y1, y2, · · · yN) and have blindly reversed the protocol, but perform-

ing measurements (without any feedback) at appropriate time instants. From (5.31)
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and (5.32) we get

PF (A→ B)

PR(A← B)
=

p(iτ , ατ |iN , αN) · · · p(y1|i1)p(i1, α1|i0, α0)p(i0, α0)

p(̃i0, α̃0|̃i1, α̃1) · · ·p(̃iN , α̃N |̃iτ , α̃τ)p(̃iτ , α̃τ )p(y1, y2, · · · yN)

=
p(yN |iN) · · · p(y1|i1)

P (y1, · · · , yN)

p(i0, α0)

p(̃iτ , α̃τ )

= eI p(i0)p(α0)

p(̃iτ )p(α̃τ )

. (5.33)

In arriving at (5.33), we have used microreversibility (5.30) and we have assumed that

the system and the bath are weakly coupled. The joint probability of system and bath

states is approximated as a product of individual state probabilities. Correction to

this factorized initial state is at least of second order in system-bath interaction, and

therefore they can be neglected in the limit of weak coupling. The bath probability

can be considered canonical with inverse temperature β. This leads to

PF (A→ B)

PR(A← B)
= eI e∆Ssys

e−βEB
0 /ZB

e−βEB
τ /ZB

= eI e∆SsyseQ/T = e∆Stot+I . (5.34)

A simple cross multiplication and integration over paths gives the extended IFT.

It may be noted that in our framework we can also obtain the DFT, provided the

system either begins and ends in equilibrium or in the same nonequilibrium steady

state [29]. In the next section, we prove the same IFT for ∆Stot by means of the

method developed in [65] by using the quantum mechanical generalization of the

Crooks fluctuation theorem.
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5.4 IFT using quantum Crooks fluctuation theo-

rem

We consider the system to be coupled to a bath, but there is no assumption made in

regard to the strength of the coupling. Each time step in the entire evolution is divided

into two substeps. In first substep the protocol is changed while in second, protocol

is kept fixed and system relaxes by dissipation of heat. The total evolution is divided

into N steps. Each step starts at tn and ends at tn+1, where n = 0, 1, 2, · · ·N − 1. We

closely follow the treatment in [65].

For a quantum adiabatic process the protocol changes slowly and the system re-

mains in same eigenstate in the work step. However, in the present case the work

step is almost instantaneous and the process is non adiabatic. As a consequence the

eigenstates before and after work step may be different. The system starts to evolve

under a predetermined protocol λ0. For simplicity, let us consider the observable

measured at intermediate times to be the Hamiltonian itself. It can be readily gener-

alized to the case of other observables. We consider that the feedback is applied at the

beginning of the each work step and we change the protocol subsequently according

to the result obtained from the measurement, as discussed earlier. The conditional

probability p(yn−1|in−1) denotes that the measured outcome is yn−1 while the actual

collapsed state is |in−1, λn−1〉, at the beginning of the nth work step. Within the ket

notation, in−1 represents the state of the system and λn−1 is the value of the control

parameter. After the measurement of tn−1, the protocol is changed to λn(yn−1) from

λn−1(yn−2). During the work step, the system evolves unitarily from tn−1 to t′n−1,

where it is measured to be in state |i′n−1, λn〉. The time taken in the work substep is

considered to be too small for the system to relax. In the nth heat step, the system

relaxes from state |i′n−1, λn〉 to |in, λn〉. Therefore, the path followed by the system

in state space of the measured eigenstates from state |i0, λ0 = A〉 to |iτ , λτ = B〉
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is represented as |i0, λ0〉 → |i′0, λ1〉 → |i1, λ1〉 → |i′1, λ2〉 → · · · → |iN−1, λN−1〉 →

|i′N−1, λN〉 → |iN , λN〉. Let E(in, λn) be the energy eigenvalue of state |in, λn〉. By

adding the contributions from all the work steps, the total work done on the system

is given by

W =

N−1
∑

n=0

[E(i′n, λn+1)−E(in, λn)] , (5.35)

while heat dissipated into the bath is

Q = −
N−1
∑

n=0

[E(in+1, λn+1)−E(i′n, λn+1)] . (5.36)

The change in internal energy of the system along the trajectory is

∆E = Q + W = E(iN , λN)− E(i0, λ0). (5.37)

As before, the mutual information is

I = ln
p(yn|in)...p(y2|i2)p(y1|i1)

p(yn · · · , y2, y1)
. (5.38)

The forward and the reverse path probabilities are respectively given by

PF (A→ B)

= p(i0, λ0)
N−1
∏

n=0

p(yn|in)pF (|in, λn〉 → |i′n, λn+1〉) pF (|i′n, λn+1〉 → |in+1, λn+1〉).

(5.39)
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and

PR(A← B)

= p(iN , λN)p(yn · · · , y1)

N−1
∏

n=0

pR(|̃in, λn〉 ← |̃i′n, λn+1〉)pR(|̃i′n, λn+1〉 ← |̃in+1, λn+1〉).

(5.40)

As mentioned earlier, during the work step, the system can be regarded as an iso-

lated quantum system and evolution is completely determined by the time-dependent

Hamiltonian HS(λ(t)). Thus the evolution is unitary. Microscopic reversibility for

work step gives [65]

pF (|in, λn〉 → |i′n, λn+1〉) = pR(|̃in, λn〉 ← |̃i′n, λn+1〉). (5.41)

The heat steps or relaxation steps are assumed to be microscopically reversible

and obey the local detailed balance for all the fixed values of the external parameter

λ. The detailed balance condition in relaxation substep implies

PF (|i′n, λn+1〉 → |in+1, λn+1〉)
PR(|̃i′n, λn+1〉 ← |̃in+1, λn+1〉)

= exp[−β(En+1, λn+1 − E(i′n, λn+1)]. (5.42)

Using above two equations we get

PF (A→ B)

PR(A← B)

=
p(yn|in)...p(y2|i2)p(y1|i1)

p(yn · · · , y2, y1)

p(i0, λ0)

p(iN , λN)

N−1
∏

0

exp[−β(En+1, λn+1 − E(i′n, λn+1)]. (5.43)

The total entropy change along the trajectory, ∆Stot = ∆S +∆SB , which is a trajec-

tory dependent random variable, where ∆S ≡ − ln P (iN ,λN )
P (i0,λ0)

is the change in system

entropy, and ∆SB ≡ Q/T is the entropy change of the bath, along a single trajectory.
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Using (5.36) and (5.38), eq. (5.43) simplifies to

PF (A→ B)

PR(A← B)
= eI e∆SsyseQ/T = e∆Stot+I (5.44)

This immediately leads to the generalized integral fluctuation theorem for total en-

tropy change, in the presence of measurement and feedback. In the above derivation,

we have taken measurements for feedback at the beginning of the work steps for

simplicity. These measurements can be performed at any time in-between the work

steps. The result will not be affected. It would only make the notations more compli-

cated and would not provide any new physical insight. Feedback cannot be performed

within the heat step which be definition requires protocol to be held constant.

As in case (ii), the DFT for ∆Stot can be obtained if the initial and final distri-

butions are in the equilibrium or in the same nonequilibrium steady state [29].

5.5 Conclusions

Based on the path probability formulation in state space, we have derived generalized

total entropy production fluctuation theorems for quantum systems in presence of

measurement and feedback, for three different cases. They retain the same form as

in classical case. The second law of thermodynamics gets modified in the presence

of information and feedback (eq. (5.5)). For isolated quantum system with feed-

back, we have derived the generalized DFT for the total entropy. For this case DFT

retains the same form in presence of multiple measurements of any system observ-

able, thus showing the robustness of these fluctuation theorems against measurements

(von Neumann type or generalized measurements (for generaliged measurement see

appendix C)). For the case (ii) of a weakly coupled quantum system under feedback,

we have derived the extended IFT for total entropy. In case (iii), we have derived

the extended IFT for ∆Stot, using the quantum Crooks fluctuation theorem, where
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quantum trajectory is characterized by a sequence of alternating work and heat steps.

IFT is valid for any initial arbitrary state of a system. DFT in cases (ii) and (iii) can

be obtained only when the system either begins or ends in equilibrium or remains in

the same nonequilibrium steady state. By using our approach, the generalized DFT

can be proved, but we have not provided the details. The derivation of the robust-

ness of the fluctuation theorems against intermediate measurements is given only for

case (i), namely, for the isolated quantum system. Following the same treatment, the

robustness of fluctuation theorems can be readily demonstrated for cases (ii) and (iii)

as well.

In conclusion, we have generalized total entropy production fluctuation theorem

in presence of feedback to the quantum domain using three different approaches.
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Chapter 6

FTs in inhomogeneous media

under coarse graining
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6.1 Introduction

In this chapter we compare the fluctuation relations for work and entropy in un-

derdamped and overdamped systems, when the friction coefficient of the medium is

space-dependent. We find that these relations remain unaffected in both cases. We

have restricted ourselves to Stratonovich discretization scheme for the overdamped

case.

The Crooks Fluctuation theorem (CFT) for heat [28, 29] relates the ratio of the

probabilities of forward trajectory and the corresponding reverse trajectory for given

initial states and is given by

P [X|x0]

P̃ [X̃|xτ ]
= eβQ. (6.1)

Here, X is the short form of the phase space trajectory along the forward process

x0, x1, ..., xτ generated by the protocol λ(t). xi represents the phase space point at

time ti. X̃ is the corresponding reverse trajectory generated by the time reversed

protocol λ(τ − t), where τ is the time of observation. x0 is a given initial state of

the forward process. The reverse process begins from the state x̃τ , which is the time-

reversal of the final state xτ of the forward process. Using CFT, several other theorems

like the Jarzynski equality and entropy production FT, can be easily derived [28,29].

In this chapter, we study the validity of these FTs in the presence of coarse-

graining, when we transform the underdamped Langevin equation to the overdamped

one, in the limit of high friction. We find that a prominent difference in the analysis

is observed between the overdamped (coarse-grained) and the underdamped systems,

when the friction coefficient is space-dependent [103,104,105,106]. It should be noted

that space-dependent friction does not alter the equilibrium state. However, Langevin

dynamics of the system gets modified especially for the overdamped case. There

are several physical systems wherein friction is space-dependent (see [106] and the

references therein).
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6.2 Crooks theorem in presence of space-dependent

friction

In the presence of space-dependent friction γ(x), the equation of motion of the un-

derdamped system of mass m moving in a time-dependent potential U(x, t) is given

by

mv̇ = −γ(x)v − U ′(x, t) +
√

2γ(x)Tξ(t). (6.2)

Note that the above equation contains multiplicative noise term. Here, T is the

temperature of the bath, while ξ(t) is the delta-correlated Gaussian noise with zero

mean: 〈ξ(t)〉 = 0; 〈ξ(t)ξ(t′)〉 = δ(t − t′). The overhead dot denotes time-derivative,

whereas prime represents space derivative. Eq. (6.2) has been derived microscopically

by invoking system and bath coupling [104, 105]. It is shown that the high damping

limit of eq. (6.2) is not equivalent to ignoring only inertial term [103, 104, 105, 106].

The detailed treatment leads to an extra term that is crucial for system to reach

equilibrium state in absence of time-dependent perturbations (see eq. 6.19 below).

Roughly speaking, this happens in the overdamped case because the random forces

ξ(t) appear as delta-function pulses that cause jumps in x. It then becomes unclear

what value of x must be provided in the argument of the function g, because the

value of the position at the time the delta-peak appears becomes undefined [6]. It

does not converge to a unique value even in the limit of small time step ∆t. In

fact, we can plug in any value of position in-between x(t) (position before the jump)

and x(t + ∆t) (position after the jump). These different values of position lead to

different discretization schemes. The case is simpler in case of underdamped Langevin

equation. There, the jumps are caused in the velocities, while the position is a much

smoother variable (being an integral over the velocities). In other words, it does not

feel the noise as delta peaks, but instead as a more well-behaved function. In that

case, in the limit of small ∆t, the argument of g is given by the unambiguous value
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x(t). Thus, in this case, an update in the values of x and v will be unique in each

time step.

Let us now check the validity of CFT in both the underdamped and overdamped

cases.

6.2.1 Underdamped case

At first we want to calculate the ratio of path probabilities between forward and

reverse process. In a given process, let the evolution of the system in phase space be

denoted by the phase space trajectory X(t) ≡ {x0, x1, · · · , xτ}. Here, xk represents

the phase point at time t = tk. In general, the phase point includes both the position

and the velocity coordinates of the system. In the overdamped case, however, it

would consist of the position coordinate only. Now, a given path X(t), for a given

initial point x0, would be fully determined if the sequence of noise terms for the

entire time of observation is available ( this happens because there is no unambiguity

in either the positions or the velocities, while updating their values by using the

underdamped Langevin equation, as discussed above): ξ ≡ {ξ0, ξ1, · · · , ξτ−1}. The

probability distribution of ξk is given by

P (ξk) ∝ e−ξ2

k
dt/2. (6.3)

Therefore, the probability of obtaining the sequence ξ will be [26, 107]

P [ξ(t)] ∝ exp

[

−1

2

∫ τ

0

ξ2(t)dt

]

. (6.4)

Now, from the probability P [ξ(t)] of the path ξ(t) in noise space, we can obtain the

probability P [X(t)|x0]. These two probability functionals are related by the Jacobian
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| ∂ξ
∂x
|. Thus, we can as well write [26]

P [X(t)|x0] ∝ exp

[

−1

2

∫ τ

0

ξ2(t)dt

]

, (6.5)

where the proportionality constant is different from that in eq. (6.4). In eq. (6.5),

we then substitute the expression for ξ(t) from the Langevin equation (eq.(6.2)):

P [X(t)|x0] ∝ exp

[

−1

4

∫ τ

0

dt
(mv̇ + U ′(x, t) + γ(x)v)2

γ(x)T

]

. (6.6)

For the reverse process, v → −v, but the Jacobian is same. The ratio of probability

of the forward to the reverse path can be readily shown to be [26, 108]

P [X(t)|x0]

P̃ [X̃(t)|x̃τ ]

=
exp

[

−
∫ τ
0 dt(mv̇ + U ′(x, t) + γ(x)v)2/4γ(x)T

]

exp
[

−
∫ τ
0 dt(mv̇ + U ′(x, t)− γ(x)v)2/4γ(x)T

]

= exp

[

−
∫ τ

0
dt

4mγ(x)v̇v + 4U ′(x, t)γ(x)v

4γ(x)T

]

= exp

[

−β

∫ τ

0
dt
(

mv̇v + U ′(x, t)v
)

]

= eβQ, (6.7)

where Q is the heat dissipated by the system into the bath, defined as

Q ≡
∫ τ

0

{γ(x)v −
√

2γ(x)Tξ(t)}v dt

= −
∫ τ

0

{mv̇ + U ′(x, t)} v dt. (6.8)

This definition follow from the stochastic energetics developed by Sekimoto [12, 11]

from the definition of first Law using Langevin dynamics. Eq.(6.7) is the celebrated

CFT, from which several FT follow.
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6.2.2 Integral and detailed fluctuation theorems

We have,

P [X(t)|x0]

P̃ [X̃(t)|x̃τ ]
= eβQ, (6.9)

where Q is the heat dissipated, as obtained from the first law. Multiplying by the

ratio of the initial equilibrium distributions, for forward and reverse processes, namely

by p0(x0)/p1(xτ ), we get [28]

P [X(t)|x0]p0(x0)

P̃ [X̃(t)|x̃τ ]p1(xτ )
=

P [X]

P̃ [X̃]
= eβQ · e

−βE0

Z(λ0)
· Z(λτ )

e−βEτ

= eβ(Q+∆E−∆F ) = eβ(W−∆F ). (6.10)

We have used the expression for equilibrium initial distribution p0(x0) = e−βE0

Z(λ0)

and p1(xτ ) = e−βEτ

Z(λτ )
. Here, ∆E ≡ Eτ − E0, and we have made use of the relation

Z = e−βF , between the partition function and the free energy. Z(λ0) and Z(λτ ) are

the partition functions corresponding to the protocol values at the initial time and

the final time, respectively. In the final step, the first law for the work done on the

system, W = Q+∆E, has been invoked. The above relation can be readily converted

to the Crooks work theorem [29], given by

P (W )

P̃ (−W )
= eβ(W−∆F ). (6.11)

Here, P (W ) is the probability of work done W on the system in the forward process.

P̃ (−W ) is the probability of W amount of work extracted from the system in the

reverse process. By cross-multiplication and integration over W , we get the Jarzynski

equality [23]:
〈

e−βW
〉

= e−β∆F . (6.12)

If the initial distributions for the forward and reverse processes are not equilibrium
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ones and p1(xτ ) is the solution of the Fokker-Planck Equation at the final time τ of

the forward process, we get, instead of eq. (6.10), the relation [27, 13]

P [X]

P̃ [X̃]
= eβQ+ln(p0(x0)/p1(xτ )) = e∆stot. (6.13)

We then arrive at the relations for change of total entropy ∆stot which is nothing

but sum of change of system entropy ∆ssys = ln(p0(x0)/p1(xτ )) (in the units of

Boltzmann constant kB) and entropy production in the bath sB = βQ.

∆stot = ln(p0(x0)/p1(xτ )) + βQ. (6.14)

From eq.(6.13) integral fluctuation theorem follows, which hold for all times, namely,

〈

e−∆stot
〉

= 1. (6.15)

From the integral forms of the fluctuation theorems, given by eqs. (6.12) and

(6.15), using Jensen’s inequality we easily obtain the second law inequalities [23, 13]

〈W 〉 ≥ ∆F ; (6.16)

〈∆stot〉 ≥ 0. (6.17)

Thus, in the underdamped limit second law retains same form for a system in pres-

ence of space-dependent friction. This completes our treatment for some FTs in the

underdamped case for a particle moving in space dependent friction.

Above exact FTs do not give any information about probability distribution of

work (P (W )), entropy P (∆stot) etc. These distributions depend crucially on the

specific problem being investigated.

Here, we study these distributions for the case of driven particle in harmonic
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Figure 6.1: Transient work distribution for underdamped case
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Figure 6.2: Transient work distribution for underdamped case with space dependent
friction

trap. Apart from verifying FTs we also see how the space dependent friction modifies

the distribution of (P (W )), and P (∆stot) as compared to the particle moving in a

space independent frictional coefficient γ (which is the space average of γ(x)). The
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underdamped Langevin equation is given by

mv̇ = −γ(x)v − kx + A sin(ωt) +
√

2γ(x)Tξ(t). (6.18)

A sin(ωt) is driven sinusoidal force of frequency ω and amplitude A. For this model

analytical solution can be obtained for space independent case only for both over-

damped and underdamped case [109, 110].

For simplicity in our study, we restrict ourselves to two cases of space dependent

friction (i) γ(x) = γ = constant (ii) γ(x) = γ + c tanh(αx)

In figure 6.1 we have plotted the transient work distribution obtained after driv-

ing a system for one-fourth of a cycle for forward (P (W )) and corresponding reverse

(P̃ (−W )) protocol. Initially the system is equilibrated at appropriate initial values

of protocol for forward and reverse process. In all our simulations, we have used the

Heun’s method of numerical integration [84], and have generated ∼ 105 realizations.

Implementing the Heun’s method tantamounts to using the Stratonovich discretiza-

tion scheme [111]. Henceforth we have used all the quantities in dimensionless form

and taken k=1, m=1 and γ = 1. For case (i), both distributions are Gaussian na-

ture, and they cross each other at ∆F = −0.044, which is the free energy difference

over one-fourth cycle. This is obtained numerically from
〈

e−βW
〉

= e−β∆F , while

theoretically we have ∆F = −0.045. This is well within our numerical accuracy.

In figgure 6.2 we have plotted the same for space dependent friction γ(x) = 1.0 +

0.9 tanh(20x). Here the distributions are non-Gaussian but the crossing point is same

as in space independent case. This is because the equilibrium distribution remain

same in both cases.

In figure 6.3 we have plotted distribution of total entropy production of a driven

Brownian particle confined in a harmonic trap for one-fourth cycle. Here the un-

derlying dynamics is underdamped and we find that the distribution is Gaussian for
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Figure 6.3: Distribution for total entropy production for underdamped dynamics

space independent case, while it is non-Gaussian for space dependent case. If we take

particle to be initially equilibrated at different temperature T = 0.1 and then con-

nected instantaneously to the given bath of temperature T = 0.3, and driven by same

external force (i.e, for athermal case), we find that the distribution of total entropy

production is non-Gaussian even for space independent case. This is consistent with

the results in [88]. Numerically we find 〈e−∆stot〉 = 1.002 which is well within our

numerical accuracy. In all these distributions, we find that there is a finite weight

for realizations having W < ∆F and ∆stot < 0, although the mean values follow the

second law inequalities. These realizations are called transient second Law violating

trajectories. This finite weight is necessary to satisfy the fluctuation theorems [42].

After establishing the well known FTs in the underdamped case, we turn our at-

tention to the overdamped dynamics of the particle, in a space-dependent frictional

medium. Going to the overdamped regime implies coarse-graining. Instead of evo-

lution in full phase space (coordinates and momenta), we restrict the evolution of

the system to the position space only. This is equivalent to ignoring the information

122



contained in the velocity variables.

6.2.3 Overdamped case

The treatment of overdamped case is more subtle and a proper methodology must

be followed (see appendix D ). In order to obtain a unique Fokker-Planck equation

(which is needed for a unique equilibrium distribution), the overdamped Langevin

equation must be modified, depending on the discretization process that is being

used. It can be written as

ẋ = f(x, t) + g(x)ξ(t)

= −Γ(x)U ′(x, t) + (1− α)g(x)g′(x) + g(x)ξ(t).

(6.19)

For detail we refer to [106]. Such ambiguity of discretization process does not arises

in the underdamped case as discussed in detail in [6, 112]. Here, g(x) =
√

2TΓ(x) =
√

2T/γ(x). α ∈ [0, 1]. α = 0 for Ito convention, while α = 1/2 and α = 1 for

Stratonovich and and isothermal conventions, respectively. In earlier literature [103],

the underdamped Langevin equation in a Stratonovich prescription is derived. In

[106], it has been shown that for all values of α, the same equilibrium distribution is

obtained for a given value of the protocol. Now we closely follow the treatment given

in [106]. From eq.(6.19), the path probability for a single trajectory in position space

can be shown to be given by

P [X(t)|x0] ∼ e−S[X], (6.20)

where

S[X] =

∫ τ

0

dt

(

1

2g2
[ẋ− f(x, t) + αgg′]2 + αf ′(x, t)

)

. (6.21)
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Using f(x, t) = −U ′(x, t)Γ(x) + (1− α)g(x)g′(x), we get

S[X] =

∫ τ

0

dt

(

1

2g2
[ẋ + U ′Γ + (2α− 1)gg′]2

+α[−U ′′Γ− U ′Γ′ + (1− α)(gg′′ + g′2)]
)

. (6.22)

For reverse path, (see eq. (22) of [113],1) one has to replace ẋ→ −ẋ, and α→ 1−α.

Thus the action for reverse path is given by,

S̃[X̃] =

∫ τ

0

dt

(

1

2g2
[−ẋ− f(x, t) + (1− α)gg′]2 + (1− α)f ′(x, t)

)

. (6.23)

Once again, substituting f(x, t) = −U ′(x, t)Γ(x) + αg(x)g′(x), we get

S̃[X̃] =

∫ τ

0

dt

(

1

2g2
[−ẋ + U ′Γ− (2α− 1)gg′]2

+(1− α)[−U ′′Γ− U ′Γ′ + α(gg′′ + g′2)]
)

. (6.24)

However we restrict our analysis to α = 1/2, i.e, Stratonovich discretization scheme.

For this we have

S[X] =

∫ τ

0

dt

(

1

2g2
[ẋ + U ′Γ]2 +

1

2

[

−U ′′Γ− U ′Γ′ +
1

2
(gg′′ + g′2)

])

. (6.25)

Similarly,

S̃[X̃] =

∫ τ

0

dt

(

1

2g2
[−ẋ + U ′Γ]2 +

1

2
[−U ′′Γ− U ′Γ′ +

1

2
(gg′′ + g′2)]

)

. (6.26)

1However, note that in our case (see appendix D), the equilibrium distribution is independent of
discretization scheme, unlike in [113]
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Thus, the path ratio become simply

P [X|x0]

P̃ [X̃|xτ ]
= eS̃[X̃]−S[X]

= exp

[

−
∫ τ

0

dt ẋU ′

]

= eβQ, (6.27)

where Q ≡ −
∫ τ

0
dtẋU ′(x, t). Thus, under Stratonovich scheme, the Crooks fluctu-

ation theorem for trajectories remains unaffected in the overdamped regime, even

in the presence of multiplicative noise. Since the Stratonovich scheme is considered

to be the physically correct one for a Brownian particle in a heat bath [6], we may

conclude that all the fluctuation theorems retain their forms as in the underdamped

case 2.
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Figure 6.4: Transient work distribution for overdamped case with space-independent
friction

As in the underdamped case we study the nature of probability distribution for

2The above reasoning is correct for systems where the noise is not exactly delta-correlated, but
has a very short correlation time. Now if we take the limit of correlation time going to zero, we
get the Fokker-Planck equation that corresponds to the Stratonovich discretization scheme. As is
evident, this is the case with most stochastic systems in nature.
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Figure 6.5: Transient work distribution for overdamped case with space dependent
friction

work and entropy for simple model of driven harmonic oscillator for both space in-

dependent and space dependent case and verifying FTs numerically using Heun’s

method (which is equivalent to following Stratonovich description as discussed ear-

lier). The corresponding Langevin equation is given by

γ(x)ẋ = −kx + A sin(ωt)− γ′(x)

2γ(x)
T +

√

2γ(x)T ξ(t). (6.28)

In figure 6.4 and figure 6.5, we have plotted the transient work distributions for

forward and reverse processes, for space-independent and space-dependent friction,

respectively. The functional form of γ(x) are same as studied in underdamped case.

All the units are in dimensionless form and we take k = 1, γ = 1. We find that

the distributions are Gaussian for space independent case while for space dependent

it is non-Gaussian. But, the crossing point is same. From
〈

e−βW
〉

= e−β∆F , the

numerically obtained free energy difference ∆F = −0.045, which is equal to the

theoretical value, thus reassuring that space dependent friction does not alter the
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equilibrium distribution.
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Figure 6.6: Distribution for total entropy production for overdamped dynamics

In figure 6.6 we have plotted the distribution of total entropy production for the

overdamped particle. We found that for space independent case the distribution is

Gaussian. This is true only if initial distribution is the thermal one. We have veri-

fied separately that for initial nonequilibrium distribution, P (∆stot) is non Gaussian.

But for space dependent case P (∆stot) is non-Gaussian even initial equilibrium dis-

tribution. Numerically we find 〈e−∆stot〉 = 1.002 which is well within our numerical

accuracy.

6.3 Definition of heat in overdamped case

We can, following Sekimoto [11], derive the expression for dissipated heat using the

overdamped Langevin dynamics (substituting α = 1/2 in eq. (6.19)):

ẋ = −Γ(x)U ′(x, t) +
1

2
g(x)g′(x) + g(x)ξ(t). (6.29)
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We found that microscopic reversibility gives (see eq. (6.27))

Q = −
∫ τ

0

dt ẋU ′(x, t). (6.30)

The above two equations then give

Q =

∫ τ

0

dt
ẋ

Γ(x)

[

ẋ− 1

2
g(x)g′(x)− g(x)ξ(t)

]

=

∫ τ

0

dt ẋ

[

γ(x)ẋ +
γ′(x)T

2γ(x)
−
√

2γ(x)T ξ(t)

]

=

∫ τ

0

dt ẋ[γ(x)ẋ−
√

2γ(x)T ξ(t)] +
T

2
ln

γ(xτ )

γ(x0)

= Qconv +
T

2
ln

γ(xτ )

γ(x0)
, (6.31)

where Qconv is the conventional definition of heat. We thus get an extra boundary

term in the definition, which assigns the logarithm of
√

γ(x) with the physical meaning

of an entropy term. The presence of this term implies that if the particle begins from

a given position x0 with a small friction coefficient, then it dissipates more heat into

the bath if it travels to a position xτ with a greater friction coefficient.

6.4 Conclusion

In this work, we have considered the validity of FTs in presence of space-dependent

friction, for both underdamped and overdamped limit. We find that, although no

conceptual difficulties arise when the system is underdamped, the derivation of the

FTs are more involved for overdamped system. In latter case, where we have dealt

with the Stratonovich scheme of discretization, the Langevin equation contains extra

terms and although Crooks theorem remains valid, the definition of heat gets altered.

Thus, we conclude that the FTs remain valid for the case of dynamics of a particle

in space dependent frictional medium, even under coarse graining, i.e, reducing the
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description of the system of two phase space variable (x,v,underdamped case), to a

single phase space variable (x, overdamped case).

As an illustration, we have analyzed the nature of P (∆stot) and P (W ) for the

simple case of a driven harmonic oscillator in presence of space dependent friction,

both in underdamped and the overdamped regime (in Stratonovich prescription).

Distributions for constant friction are compared with that of a particle moving in a

space dependent frictional medium. Moreover, several FTs have been verified. This

model system is amenable to experimental verification [109].
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Chapter 7

The effect of confinement on SR in

continuous bistable systems
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7.1 Introduction

Using the input energy per cycle as a quantifier of stochastic resonance (SR), we show

that SR is observed in superharmonic (hard) potentials. However, it is not observed

in subharmonic (soft) potentials, even though the potential is bistable. These results

are consistent with recent observations based on amplitude of average position as a

quantifier. In both soft and hard potentials, we observe resonance phenomenon as a

function of the driving frequency. The nature of probability distributions of average

work are qualitatively different for soft and hard potentials.

SR is an exclusively nonlinear phenomenon where the combined effect of the noise

and the nonlinearity gives rise to an enhanced response of the system at a particular

frequency of an external periodic drive. It has been found to be of fundamental

importance not only in physics [59,60,61,62] but also in biological systems, from the

mechanoreceptor cells in crayfish to the functioning of sensory neurons in humans.

This is in sharp contrast to the general trend of a noise to cause the effect of a signal

to fade. A typical model used to study this behaviour consists of a bistable potential

in which a Brownian particle is present. The particle is in contact with a thermal bath

of temperature T . This system is driven by a periodic drive with a given frequency,

f(t) = A sin ωt. Now, the initial system without the drive has an intrinsic escape rate

of going from one minimum of the potential (V (x)) to the other. This is given by the

Kramers escape rate [7, 4]:

rK = Ce−β∆V , (7.1)

where β ≡ 1/kBT , kB being the Boltzmann Constant, C is a constant that depends

on the system parameters, and ∆V is the barrier height (height difference between

the minimum and the maximum of V (x)). The escape time will then be given by the

inverse of the escape rate: τK = r−1
K . As the external periodic drive is switched on,

in general its time period τω will not be in synchronization with the escape time of
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the particle over the barrier. However, if the noise strength or temperature is varied,

at a certain value of temperature, τω will be exactly equal to 2τK . Now we will

have proper synchronization of the dynamics: when the right well becomes deeper

compared to the left well, the particle hops into the right well with a high probability,

and vice versa. Under this condition, the system absorbs maximum energy from the

drive. This phenomenon is termed as stochastic resonance. Various quantifiers of

SR have been proposed in literature [59]: signal-to-noise ratio (SNR), hysteresis loop

area (HLA), spectral power amplification (SPA), position amplitude of the particle

(x̄), phase lag of the response with the external drive (φ̄), etc. In [63], a relation has

been derived between SNR, HLA and SPA which is given by:

SNR× HLA = −π2A4ω

4kBT
SPA (7.2)

The above relation shows that some of the above quantifiers are related to each

other. We observe that a similar relation is present that connects the quantifiers mean

thermodynamic work, x̄ and φ̄, and as a result the three cannot act as independent

quantifiers of SR.

In the present work we use the mean input energy per drive period as a quantifier

for SR [64, 114, 115, 77]. As a function of noise strength, we observe suppression of

SR in soft potentials and distinct peak signifying SR in hard potentials.

Since it has been established that SR is a bonafide resonance it should show

maximum in the quantifiers as a function of drive frequency as well. Interestingly,

whereas the mean input energy per period, 〈W 〉, shows peaking behaviour, the average

amplitude, x does not. As opposed to the behaviour of 〈W 〉 as a function of noise

strength, for soft and hard potentials, its behaviour with frequency is same for both

kinds of potentials. In particular, 〈W 〉 shows peaking behaviour and x̄ decreases

monotonically as a function of frequency for both hard and soft potentials. We further
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investigate the probability distributions of work for various temperatures [115,77], for

both hard and soft potentials, and point out the qualitative differences between the

nature of these distributions.

7.2 The system

We consider a Brownian particle described by the overdamped Langevin equation:

γẋ = −V ′(x) + f(t) + ξ(t), (7.3)

where V ′(x) = ∂V (x)
∂x

, ξ(t) is Gaussian distributed white noise having the properties

〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2γkBTδ(t− t′), γ being the viscous drag in the medium.

The strength of the noise is described by the thermal energy kBT . The expression

for the bistable potential is given by [116]

V (x) = e−x2

+ k
|x|q
q

, (7.4)

where the parameter k has been set equal to 0.2 throughout the manuscript, which

sets the barrier height at approximately ∆V = 0.67 (all variables are dimensionless).

The parameter q is used to modulate the steepness of the walls of the potential. In

other words, as q is increased, the slope of the potential wall increases as shown in

figure 7.1, so that the particle is more confined in-between the two minima. The

external drive is given by f(t) = A sin ωt.

If we plot the amplitude of mean position as a function of temperature, i.e., x̄(T )

vs T , then the resonance gets suppressed when q ≤ 2. Analytically, this follows

from the following approximate expression for 〈x〉 in the nonequilibrium steady state
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Figure 7.1: The shapes of the potential for different values of q, with k = 0.2.

(where the intrawell dynamics has been ignored) [59]:

〈x(t)〉 = x̄ sin(ωt− φ̄), (7.5)

where

x̄(T ) =
A〈x2〉0

T

2rK
√

4r2
K + ω2

. (7.6)

φ̄(T ) = tan−1

(

ω

2rK

)

. (7.7)

Here, the angular brackets 〈· · ·〉 represent ensemble averaging over a large number of

phase space trajectories. 〈x2〉0 is the variance of the position of the particle in absence

of any drive, i.e., subjected to the unperturbed potential. rK is the Kramers escape

rate whose expression is given by [7, 4]

rK =

(

γ
√

V ′′(xm).|V ′′(0)|
2π

)

e−β∆V , (7.8)

where±xm and 0 are the positions of the minima and of the maximum of the potential,

∆V is the barrier height, and V ′′ is double derivative of the potential function with
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respect to x.

It can then be shown from (7.6) that as T →∞, the behaviour of the amplitude

of mean position is given by [116]

lim
T→∞

x̄(T ) ∼ T 2/q−1. (7.9)

Now it can easily be seen that if q > 2, then x̄(T ) goes to zero for large T . Of course,

as T → 0, x̄ → 0 as well, because the particle hardly deviates from its equilibrium

position (for details refer to [116]). This means that there must be a maximum in-

between these two limits - a signal for resonance. However, if q < 2, the particle

travels large distances away from the minima, so that the x̄ grows monotonically

with temperature, and stochastic resonance is not observed. The case q = 2 is the

marginal case.

Following stochastic energetics [12], the thermodynamic work done on the system

is given by

W =

∫ τ

0

∂V (x, t)

∂t
dt = −

∫ τ

0

x(t)
df(t)

dt
dt, (7.10)

where V (x, t) = V (x)− xf(t). The average work done over time τ is

〈W 〉 = −
∫ τ

0

〈x(t)〉df(t)

dt
dt.

Now, using the approximate expression for 〈x(t)〉 (eq. (7.5)), we get

〈W 〉 = −
∫ τ

0

〈x(t)〉ḟ(t)dt

= −Aω

∫ τ

0

x̄ sin(ωt− φ̄) cos ωtdt

= A
2π

τ
x̄ sin φ̄

τ

2

= Aπx̄ sin φ̄. (7.11)
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Thus, we have arrived at a relation that connects three of the proposed quantifiers

of SR: 〈W 〉, x̄ and φ̄. Plugging in the expressions for x̄(T ) (eq. (7.6)) and φ̄(T )

(eq.(7.7)), we find

〈W 〉 =
2πA2〈x2〉0 ωrK

T (4r2
K + ω2)

. (7.12)

Eq. (7.12) predicts SR as a function of temperature. Later on we use this to

analyze our numerical results.
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Figure 7.2: Average work as a function of temperature for A = 0.1 and ν = 0.02 for
different values of q. SR is observed for all values of q excepting q = 1.5.

7.3 Results and discussions

The plots of average thermodynamic work done on the particle by the drive per period

τω have been shown, for different values of the parameter q in figure 7.2. These plots

have been obtained numerically by using the Heun’s method [84]. We have ignored the

initial transients and have evaluated the work over many cycles (∼ 105) using a single

long trajectory of the particle. We find that the plots qualitatively show the same

features as shown by the position amplitude with temperature [116]. The parameters

used have been given in the figure captions. At very low temperature, the particle
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can see only a single well, the barrier height being too large for it to cross. Thus, only

intrawell dynamics is dominant under this condition and as a result the work done on

the particle is very small and goes to zero as T → 0. At the other extreme, T →∞,

the barrier becomes negligible compared to the thermal energy of the particle. Now

the random motion of the particle becomes so large that the synchronization gets

washed away. This happens only for strong confining potential with q > 2. Thus for

the hard potentials, we get a clear resonance peak. Moreover, our numerical result

shows that the temperature at which SR peak occurs is consistent with the condition

τω = 2τK .

However, for values of q ≤ 2, the particle travels far from the left(right) of

left(right) minimum and takes a long time to return. So it is expected that the

distribution of passage time above the barrier will be very broad, so that the mean

passage time ceases to be a good variable, being dominated by a large dispersion.

As a result, the synchronization condition of escape rate with drive period is never

satisfied. Thus these plots do not show the characteristic maxima of SR.

In figure 7.3, the numerically obtained plot for 〈W 〉 vs T has been compared for

the superharmonic potential with q = 6 with the following two analytical expressions

for average work in steady state that are commonly used in the literature [116]:

〈W1〉 =
2πA2〈x2〉0

T

ωrK

4r2
K + ω2

. (7.13a)

〈W2〉 =
2πA2x2

m

T

ωrK

4r2
K + ω2

. (7.13b)

In the expression for 〈W2〉, we have replaced 〈x2〉0 by x2
m, where xm is the position

of the minimum of the potential. However, from the figure we find that 〈W1〉 matches

the simulated curve reasonably well, whereas 〈W2〉 deviates by a larger extent. This

can be understood as follows [116]. In the derivation of the expression for 〈W2〉, one
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Figure 7.3: Comparison of temperature dependence of 〈W 〉 obtained numerically
with the analytical results. 〈W1〉 (the smooth solid line) is the expression obtained
by taking into account the temperature dependence of the variance in position of
the particle, 〈x2〉0. 〈W2〉 (the smooth dashed line) is the expression for average work
obtained with the variance replaced by x2

m. The curve labelled 〈W 〉 is the numerically
generated one.

assumes that we are dealing with a strictly two-state system, where the particle’s

position distribution is the summation of two delta functions. x2
m then becomes

the variance of the distribution having two δ-functions equidistant from the origin:

〈xm − 0〉2 = x2
m. Evidently, at any finite temperature the above distribution will

be incorrect, owing to the softness of the double well potential. Thus, we need to

incorporate into our expression the temperature dependence of the variance in particle

position, which has been done in deriving the expression for 〈W1〉.

Previously the phase lag φ̄ of the response with drive (eq. (7.5)) has been used

to detect stochastic resonance [118]. The variation of φ̄ with temperature has been

shown in figure 7.4. We find that the curves for q = 2, 4 and 6 show prominent

maxima, whereas the curve for q = 1.5 monotonically increases from zero and then

saturates to an upper limit. Systems exhibiting SR show a peak in the phase lag φ̄ as

a function of noise strength. However, the optimum value of noise intensity at which

peak occurs does not coincide with SR peak for different quantifiers. The bell-shaped
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Figure 7.4: Phase difference φ̄ between drive and response, as a function of bath
temperature. The peak in the curve becomes less distinct as the value of q is lowered.

dependence reflects the competition between hopping and intrawell dynamics [59].

However, for q = 1.5, we do not see a bell-shaped curve, implying no clear-cut time

scale separation between hopping and intrawell motion.
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Figure 7.5: Average work as a function of frequency for A = 0.1 and T = 0.3 for
different values of q. SR is observed for all values of q.

We now study the SR quantifiers 〈W 〉 and x̄ as a function of frequency of drive.

The major difference between x̄ and 〈W 〉 as quantifiers is observed as a function

of frequency of external drive. In figure 7.5 we have plotted the mean work versus
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Figure 7.6: position amplitude as a function of frequency for different values of q.
The monotonic decrease in x̄ is apparent.

driving frequency. Whereas 〈W 〉 shows a peak for all values of q (figure 7.5), x̄

decreases monotonically with frequency for any value of q (see eq. (7.6)), as can be

seen in figure 7.6. It may be emphasized here that the general trends of 〈W 〉 and x̄

as a function of ω do not depend on the nature of the confining potential. This is in

contrast to the behaviour of 〈W 〉 and x̄ as a function of temperature, which crucially

depends on the softness of V (x).

Computing the derivative of 〈W 〉 with respect to ω from the expression (7.12), we

find the maximum to occur precisely at ω = 2rK :

∂〈W 〉
∂ω

∣

∣

∣

∣

ωmax

= 0 ⇒ ωmax = 2rK . (7.14)

However, the proper condition for synchronization is

τω = 2τK ⇒ ωSR = πrK . (7.15)

On calculating the escape rate for the superharmonic (q = 4) potential at T = 0.3,

we find rK ≈ 0.03. Figure 7.5 shows the peak to occur at ω ≈ 0.06 ≈ 2rK , consistent
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with eq. (7.14).
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Figure 7.7: Comparison of frequency dependence of 〈W 〉 obtained numerically with
the analytical results. 〈W1〉 (the smooth solid line) is the expression obtained by
taking into account the variance in position of the particle, 〈x2〉0, at the fixed tem-
perature T = 0.3. 〈W2〉 (the smooth dashed line) is the expression for average work
obtained with the variance replaced by x2

m. The curve labelled 〈W 〉 is the numerically
generated one.

In figure 7.7, the numerically obtained plot for 〈W 〉 vs ω is compared with the

analytical expressions (7.13a) and (7.13b). For this we have used the superharmonic

potential with q = 6. We observe that the analytical expression using eq. (7.13a)

fits better compared to (7.13b), the reason being the same as explained earlier in the

context of figure (7.3). Now we turn our attention to the power applied to the system.

In figure 7.8, we have plotted the power applied to the system by the drive versus

the drive frequency. We find that for all values of q, the curves are monotonically

increasing. From figure 7.2 (scaling the y-axis by the constant parameter ω), we

observe that the average power exhibits peak for q > 2 as a function of temperature.

Thus, power cannot be used as a quantifier of bona fide SR [117] for q > 2.

In figure 7.9, we have plotted the real time trajectory of the particle at T = 0.3

(around SR for q=4). In (a), because of subharmonic potential, the particle travels

large distances away from the minima and spends more time in the wings of the
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Figure 7.9: (a) Position as a function of time for a given trajectory is shown, for the
q = 1.5 potential. We find that the particle travels large distances from either minima
due to softer confinement. (b) Similar plot for q = 4. The hard confinement effectively
contains the particle in a smaller region, and the motion is more synchronized.

potential (x > xm or x < −xm) over a duration of many cycles of the applied force

without passing over the barrier. This is clear from the figure. Thus, the question of

synchronization between the applied force and particle hopping does not arise, hence

the absence of SR. On the other hand, in (b), the superharmonic potential (q = 4)

helps in more efficient confinement of the particle so that the proper synchronization

between the drive and the particle trajectory is attained.

In figure 7.10, we show how the work distribution P (W ) changes as a function

142



 0

 5

 10

 15

 20

 25

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

P
(W

)

W

T=0.1

(a)

 0

 2

 4

 6

 8

 10

 12

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

P
(W

)

W

T=0.2

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

P
(W

)

W

T=0.3

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

P
(W

)

W

T=0.8

(d)

Figure 7.10: Work distributions at different temperatures for q=4. Other parameters
are A = 0.1 and ν = 0.02.
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Figure 7.11: Work distributions at different temperatures for q=1.5. Other parame-
ters are A = 0.1 and ν = 0.02.
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of T for the superharmonic potential with q = 4. At small temperature (T = 0.1,

figure 7.10 (a)), the particle sees only a single well, the barrier height being too large

for it to cross. Thus the work done is entirely due to intrawell dynamics and the

distribution is almost Gaussian. Occasional excursion of the particle into the other

well is clearly reflected as a small hump at higher values of W . As T increases,

interwell dynamics starts playing dominant role and hence the distribution becomes

broader (figures 7.10 (b) and (c)). Additional peak appears towards right mainly

due to the interwell motion. A third peak also appears in the negative side. For

large values of temperature beyond SR point, the dynamics is dominated by interwell

motion and P (W ) tends towards a Gaussian distribution (figure 7.10 (d)).

The probability distribution for work has finite weight for negative values of W .

These negative values correspond to the trajectories where the particle moves against

the perturbing ac field over a cycle. The existence of finite weight for negative work

values is essential to satisfy the recently discovered fluctuation theorems.

In figure 7.11, we have plotted the variations in the work distribution with tem-

perature, for the subharmonic potential (q = 1.5). This time, however, we do not

find the appearance of prominent double and multiple peaked distribution as was

observed for the superharmonic potential. This is because the particles travel higher

distances during intrawell as well as interwell motion, which gives rise to work values

varying over a wide range. Moreover there is no clear-cut time scale separation be-

tween intrawell and interwell motion.Thus the two distinct peaks that were observed

for q = 4 have got merged in q = 1.5 case.

7.4 Discussion and conclusions

In this chapter, we have studied the phenomenon of stochastic resonance in a bistable

potential, using the mean input energy per cycle (or the mean work done per cycle)
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〈W 〉 as a quantifier of resonance. We find that the system exhibits SR as a function

of temperature for q > 2, but does not show SR for subharmonic potentials. This

behaviour is further verified by studying the phase lag φ̄. Thus bistability is nec-

essary but not sufficient condition for the observation of stochastic resonance. This

result is consistent with the findings in [116]. However, in both the superharmonic

and subharmonic potentials, the work exhibits resonance peak whereas the average

amplitude of mean position decreases monotonically as a function of frequency. This

is quite different from the trends of 〈W 〉 and x̄ as a function of temperature, which

is sensitive to the nature of the confining potential. We have shown that the average

power delivered to the system is not a good quantifier for bonafide resonance [117].

Our further investigation reveals qualitative differences in the nature of distributions

for hard and soft potentials.
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Chapter 8

Conclusions
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Non-equilibrium processes are common in nature, but a general framework to

understand them is lacking as compared to equilibrium systems. Recent development

in the field of non-equilibrium statistical mechanics, had led for the discovery of

fluctuation theorems (FT), which are exact equalities that are valid even when the

system of interest is driven far away from equilibrium. For such a non-equilibrium

system, the statistical distribution of thermodynamic quantities such as work, entropy

etc. exhibit universal relations. These thermodynamic quantities have now been

generalized to a single trajectory of system evolving in phase space. They are random

variables depending on the phase space trajectory (stochastic thermodynamics). In

this thesis we have mainly focused on the extensions of FTs to different scenarios and

effects of thermal fluctuations on small system in different model systems.

We have generalized the fluctuation relation for heat engines (FRHE) to time-

periodic steady states, which leads to the generalized Carnot’s theorem. The FRHE

in different limits results in Seifert’s theorem and the generalized exchange fluctuation

theorem. Our FRHE has been verified numerically in a simple realistic heat engine.

We have carried out an extensive analysis of a single particle stochastic heat

engine by manipulating a Brownian particle in a harmonic trap with a periodically

time dependent stiffness constant as a protocol. The cycle consists of two isothermal

steps and two adiabatic steps similar to that of Carnot engine. The proposed model

is studied taking into account both the inertial and overdamped Langevin equations.

We have observed thermodynamic quantities, defined over microscopic phase space

trajectory of our system, fluctuate from one cycle of operation to another in time

periodic steady states. Our analytical results of average thermodynamic quantities

in the quasistatic regime are consistent with the corresponding numerical results. We

have reported several new results which were not addressed in earlier literature.

The full phase diagram for operation of a system is given for both inertial and high

friction regime. It is found that they differ from each other qualitatively. In both cases
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it is also shown that, unlike Carnot engine, system acts as an engine provided the

temperature difference is greater than a critical value. The mean of the stochastic

efficiency is dominated by its fluctuations (〈η〉 < ση) even in quasistatic regime,

making the efficiency a non-self averaging quantity. This is one of our main result.

We have also shown that η̄ = 〈w〉
〈q1〉
6= 〈 w

q1
〉 = 〈η〉. Our analysis of model dependence of

finite cycle time clearly rules out any simple universal relation between efficiency at

maximum power and temperature of the baths. We have also found time asymmetric

periodic protocol makes engine less efficient. For given cycle time there are several

realizations which do not work as a heat engine. The fraction of such realisations

decreases as we increase τ . Thus for large cycle time the reliability of the system

working as an engine increases.

Based on the path probability formulation of state space, we have extended Jarzyn-

sky equality to quantum regime with multiple measurements and accompanying feed-

back. The quantum efficacy parameter retain same expressions as in the classical

case. We have also derived generalized total entropy production FTs for quantum

systems in presence of measurement and feedback, for three different cases. The

second law of thermodynamics gets modified in the presence of information and feed-

back. For isolated quantum system with feedback, we have derived the generalized

detailed fluctuation theorem (DFT) for the total entropy. The DFT retains the same

form in presence of multiple measurements of any system observables, thus showing

the robustness of these fluctuation theorems against measurements (von Neumann

type or generalized measurements). The integral fluctuation theorem is valid for any

initial arbitrary state of a system. However, DFT can be obtained only when the

system either begins or ends in equilibrium or remains in the same nonequilibrium

steady state.

The validity of FTs in presence of space-dependent friction is considered for both

underdamped and overdamped limit. We find that, although no conceptual difficulties
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arise when the system is underdamped, the derivation of the FTs are more involved

for overdamped system. In latter case, where we have dealt with the Stratonovich

scheme of discretization, the Langevin equation contains extra terms and the defini-

tion of heat gets modified. However, Crooks theorem remains unaltered. Thus, we

conclude that the FTs remain valid for the case of dynamics of a particle in space de-

pendent frictional medium, even under coarse graining. We have analyzed the nature

of P (∆stot) and P (W ) for the simple case of a driven harmonic oscillator in presence

of space dependent friction, both in underdamped and the overdamped regime (in

Stratonovich prescription) numerically and verified the FTs.

We have also studied the phenomenon of stochastic resonance(SR) in a bistable

potential, using the mean input energy per cycle (or the mean work done per cycle)

〈W 〉 as a quantifier of resonance. We find that the system exhibits SR as a function

of temperature for superharmonic potentials, but does not show SR for subharmonic

potentials. This behavior is further verified by studying the phase lag φ̄. Thus

bistability is necessary but not sufficient condition for the observation of stochastic

resonance. However, in both the superharmonic and subharmonic potentials, we have

observed resonance phenomenon as a function of driving frequency. We have shown

that the average power delivered to the system is not a good quantifier for bonafide

resonance. Our investigation reveals qualitative differences in the nature of work

distributions for hard and soft potentials.
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Appendix A

JE in presence of multiple

measurements

We consider n number of intermediate measurements of any observable being

performed at time t1, t2, ...., tn and the system collapses to its corresponding eigenstate

at |i1〉, |i2〉, ...|in〉 respectively. Here we have considered the system evolves with the

predetermined protocol λ(t). The probability of the corresponding state trajectory

P (iτ , ....i2, i1, i0) = p(iτ |in)...p(i2|i1)p(i1|i0)p(i0)

= |〈iτ |Uλ(τ, tn)|in〉|2...|〈i2|Uλ(t2, t1)|i1〉|2|〈i1|Uλ(t1, 0)|i0〉|2p(i0)

(A.1)

〈e−βW 〉

=
∑

i0,i1,...,iτ

e−β(Eiτ (λ(τ))−Ei0
(λ(0)))P (iτ , ....i2, i1, i0)

=
∑

i0,i1,...,iτ

e−β(Eiτ (λ(τ))−Ei0
(λ(0))|〈iτ |Uλ(τ, tn)|in〉|2...|〈i2|Uλ(t2, t1)|i1〉|2

× |〈i1|Uλ(t1, 0)|i0〉|2p(i0). (A.2)

Using completeness and normalization of eigenstates |i0〉, |i1〉, ...|in〉 and unitarity of

evolution, we get after simplification
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〈e−βW 〉 =
∑

iτ

e−βEiτ (λ(τ))

Z0

=
Zτ

Z0

= e−β∆F . (A.3)

Thus JE retain the same classical form even in presence of multiple measurements.
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Appendix B

Multiple measurement and

feedback

Let the outcome of measurement values at time t1, t2, ..., tn is y1, y2, ..., yn with a

classical measurement error p(y1|i1), p(y2|i2) , ..., p(yn|in) respectively when actual

intermediate states are |i1〉, |i2〉 · · · |in〉. The state |i0〉 and |iτ 〉 are observed

projected eigenstates of energy observable in the beginning and end of the protocol.

The total path probability can be expressed as

P (iτ , .., i1, i0, yn, .., y1) = |〈iτ |Uλyn
(τ, t1)|in〉|2...p(y2|i2)|〈i2|Uλ1

(t2, t1)|i1〉|2p(y1|i1)

×|〈i1|Uλ(t1, 0)|i0〉|2p(i0).

(B.1)

Now,

〈e−β(W−∆F )−I〉 =

∫

dyn, .., dy1

∑

iτ ,..,i1,i0

P (iτ , .., i1, i0, yn, .., y1)e
−β(W−∆F )−I . (B.2)

Substituting value of work W (eq.(4.2)), mutual information I = ln p(yn|in)...p(y2|i2)p(y1|i1)
p(yn,...y2,y1)

,

Free energy difference ∆F = Z0

Zτ (yn)
, and simplifying we get
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〈e−β(W−∆F )−I〉

=

∫

dyn · · · dy1

∑

iτ ,..,i1,i0

|〈iτ |Uλyn
(τ, t1)|in〉|2...|〈i2|Uλ1

(t2, t1)|i1〉|2|〈i1|Uλ(t1, 0)|i0〉|2

× p(yn, ..., y2, y1)
e−βEiτ (λyn (τ))

Zτ (yn)
,

=

∫

dyn · · · dy1p(yn, ..., y2, y1)
∑

iτ

e−βEiτ (λyn (τ))

Zτ (yn)
,

=

∫

dyn · · · dy1p(yn...y2, y1) = 1. (B.3)
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Appendix C

Isolated system under weak

measurements

In this appendix we derive IFT for ∆Stot under weak measurement (POVM), as op-

posed to projective von Neumann type measurements considered in sec.5.2.1. We

follow the mathametical treatment given in [96]. For simplicity we consider only one

weak measurement is performed at intermediate time. The genaralization to multi-

ple weak measurements is straight forward. Consider an isolated quantum system

is controlled externally through time dependent protocol λ(t). Initially at t = 0 en-

ergy measurement is performed and the system is found to be in state |n, 0〉 with

probability density pn. The density matrix becomes

ρn(0+) =
Π0

nρ0Π
0
n

pn
(C.1)

where ρ0 is the density matrix of the system before measurement and Π0
n denotes

von Neumann projective measurement operator and pn = Tr Π0
nρ0. The system then

evolves unitarily up to time t1 and a weak measurement is performed and we get the

density matrix

ρn(t+1 ) =
∑

r

MrUλ(t1, 0)ρn(0+)U †
λ(t1, 0)M †

r . (C.2)

Mr is the weak measurement operator with property
∑

r MrM
†
r = 1. The system

undergoes further unitarily evolution and finally the projective measurement is per-

formed and the system is found to be in state |m, τ〉 at time τ . The conditional
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probability Pλ(m, τ |n, 0) for system initially in state |n, 0〉 and finally in state |m, τ〉
is given by

Pλ(m, τ |n, 0) = Tr Πf
mUλ(τ, t1)ρn(t+1 )U †

λ(τ, t1). (C.3)

Thus the probability of the change in total entropy,

∆Stot = − ln pm + ln pn, (C.4)

for a given pre-determined protocol λ(t) is

Pλ(∆Stot) =
∑

m,n

δ(∆Stot + ln pm − ln pn)Pλ(m, τ |n, 0)pn. (C.5)

where pm is the probability of the system to stay at the end of protocol at final time

τ . The Fourier Transform of this probability is

Gλ(u) =

∫

d∆StotPλ(∆Stot)e
iu∆Stot. (C.6)

Substituting the expression for Pλ(∆Stot) from eq.(C.5) and using eqs.(C.3),(C.2),(C.1)

we get

Gλ(u) =
∑

m,n,r

eiu(− ln pm+ln pn)Tr Πf
mUλ(τ, t1)MrUλ(t1, 0)Π0

nρ0Π
0
nU †

λ(t1, 0)M †
r U

†
λ(τ, t1)

=
∑

m,n,r

Tr Πf
me−iu lnρf Uλ(τ, t1)MrUλ(t1, 0)Π0

ne
iu lnρ0ρ0U

†
λ(t1, 0)M †

r U
†
λ(τ, t1)

=
∑

r

Tr e−iu ln ρf Uλ(τ, t1)MrUλ(t1, 0)eiu lnρ0ρ0U
†
λ(t1, 0)M †

rU
†
λ(τ, t1)

=
∑

r

Tr U †
λ(t1, 0)M †

rU
†
λ(τ, t1)e

−iu ln ρf Uλ(τ, t1)MrUλ(t1, 0)eiu lnρ0ρ0

(C.7)

ρf is the final density matrix which is diagonal in the energy basis. In the second

step we have used the completeness relation
∑

m Πf
m = 1 and

∑

n Π0
n = 1 for the

projective operator. Substituting u = i, for the Fourier Transform variable, we get
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from eq.(C.6) Gλ(i) = 〈e−∆Stot〉 and hence

〈e−∆Stot〉 =
∑

r

Tr U †
λ(t1, 0)M †

r U
†
λ(τ, t1)e

ln ρf Uλ(τ, t1)MrUλ(t1, 0)e− lnρ0ρ0

=
∑

r

Tr U †
λ(t1, 0)M †

r U
†
λ(τ, t1)e

ln ρf Uλ(τ, t1)MrUλ(t1, 0)

=
∑

r

Tr Uλ(τ, t1)MrUλ(t1, 0)U †
λ(t1, 0)M †

r U
†
λ(τ, t1)e

ln ρf

=
∑

r

Tr Uλ(τ, t1)MrM
†
r U

†
λ(τ, t1)e

ln ρf

= Tr Uλ(τ, t1)U
†
λ(τ, t1)e

ln ρf

= Tr eln ρf = Tr ρf = 1. (C.8)

In the second line , we make use of e− ln ρ0ρ0 = 1, while the cyclic property of trace is

used in the third line. operator identity
∑

r MrM
†
r = 1 is used in fourth step.

We have proved that the IFT holds in the same form as in eq.(5.1) under intermedi-

ate weak measurements. This can be readily generalized to the multiple intermediate

weak measurements, which corroborates the robustness of fluctuation theorems under

weak or generalized measurements.
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Appendix D

Space dependent friction in

overdamped limit

The general form of overdamped Langevin equation is

ẋ = −Γ(x)
∂V (x)

∂x
+ f1(x) + g(x)ξ(t) = f(x) + g(x)ξ(t), (D.1)

where Γ(x) = 1
γ(x)

and g2(x) = 2Γ(x)kBT . Note that one extra term f1(x) is added

into the ordinary overdamped equation. This extra term arises due to the correlations

of noise with the state dependent diffusion constant. In the following, this term will

be determined. Now, integrating between t and t + ∆t one can obtain,

x(t + ∆t)− x(t) ≡ ∆x(t + ∆t) =

∫ t+∆t

t

ds{f [x(s)] + g[x(s)]ξ(s)}. (D.2)

Since, ξ(s) is not continuous, we define

∫ t+∆t

t

dsg[x(s)]ξ(s) = g[(1− α)x(t) + αx(t + ∆t)]

∫ t+∆t

t

dsξ(s), (D.3)

where α ∈ [0, 1]. Now, one can rewrite

(1−α)x(t) + αx(t + ∆t) = x(t) + α(x(t + ∆t)− x(t)) = x(t) + α∆x(t + ∆t)). (D.4)
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Setting x(t) = x0, we can write as ∆t→ 0

∆x = f [x0 + α∆x]∆t + g[x0 + α∆x]

∫ t+∆t

t

dsξ(s). (D.5)

Expanding upto the first order of ∆t, one can obtain

∆x ≈ f(x0)∆t + {g(x0) + α∆xg′(x0)}
∫ t+∆t

t

dsξ(s)

= f(x0)∆t + g(x0)

∫ t+∆t

t

dsξ(s)

+αg′(x0)

[

f(x0)∆t + {g(x0) + α∆xg′(x0)}
∫ t+∆t

t

ds′ξ(s′)

]
∫ t+∆t

t

dsξ(s)

⇒ 〈∆x〉 = f(x0)∆t + αg(x0)g
′(x0)

∫ t+∆t

t

ds′
∫ t+∆t

t

ds〈ξ(s)ξ(s′)〉+ O(∆x∆t)

≈ f(x0)∆t + αg(x0)g
′(x0)∆t. (D.6)

From (D.5) one can also gets

(∆x)2 =

[

f(x0)∆t + {g(x0) + α∆x g′(x0)}
∫ t+∆t

t

dsξ(s)

]2

⇒ 〈(∆x)2〉 ≈
[

g2(x0) + 2α∆x g(x0)g
′(x0)

]

∫ t+∆t

t

ds

∫ t+∆t

t

ds′〈ξ(s)ξ(s′)〉

=
[

g2(x0) + 2α∆x g(x0)g
′(x0)

]

∆t

≈ g2(x0)∆t (D.7)

Let us now derive the Fokker Planck equation corresponding to the general Langevin

equation (D.1). The Chapman-Kolmogorov equation for Markov processes simply

determines the probability of the particle that can reach x in time t + ∆t from any

other point x0 at time t and is given by

P (x, t + ∆t) =

∫

dx0 P (x, t + ∆t|x, t)P (x0, t). (D.8)
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Now, from the basic definition of the probability

P (x, t + ∆t|x, t)

= 〈δ[x− x(t + ∆t)]〉x0,t

= δ(x− x0)− 〈∆x〉 ∂

∂x
δ(x− x0) +

1

2
〈(δx)2〉 ∂2

∂x2
δ(x− x0) + . . . (D.9)

In second line we made a Taylor expansion. Using this one can write

P (x, t + ∆t)

=

∫

dx0

[

δ(x− x0)− 〈∆x〉 ∂

∂x
δ(x− x0) +

1

2
〈(δx)2〉 ∂2

∂x2
δ(x− x0) + . . .

]

P (x0, t)

= P (x, t)−
∫

dx0〈∆x〉{ ∂

∂x
δ(x− x0)}P (x0, t) +

1

2

∫

dx0〈(δx)2〉{ ∂2

∂x2
δ(x− x0)}P (x0, t)

= P (x, t)−
∫

dx0 [f(x0)∆t + αg(x0)g
′(x0)∆t] { ∂

∂x
δ(x− x0)}P (x0, t)

+
1

2

∫

dx0

[

g2(x0)∆t
]

{ ∂2

∂x2
δ(x− x0)}P (x0, t)

= P (x, t)− ∂

∂x

∫

dx0 [f(x0)∆t + αg(x0)g
′(x0)∆t] δ(x− x0)P (x0, t)

+
∂2

∂x2

1

2

∫

dx0

[

g2(x0)∆t
]

δ(x− x0)P (x0, t). (D.10)

Thus from the definition

∂P (x, t)

∂t
=

P (x, t + ∆t)− P (x, t)

∆t
, (D.11)

we get the Fokker-Planck equation

∂P (x, t)

∂t
= − ∂

∂x
{[f(x) + αg(x)g′(x)] P (x, t)}+

1

2

∂2

∂x2
{g2(x)P (x, t)}. (D.12)

If we put the expression of f(x) into the above equation,we get

∂P (x, t)

∂t
=

∂

∂x

([

Γ(x)V ′(x)− f1(x) + (1− α)g(x)g′(x) +
1

2
g2(x)

∂

∂x

]

P (x, t)

)

(D.13)

160



For a system in equilibrium, the distribution must be canonical and must follow

P (x, t) ∼ e−βH where β is the inverse temperature and H is the corresponding Hamil-

tonian. Then in equilibrium

∂

∂x

([

Γ(x)V ′(x)− f1(x) + (1− α)g(x)g′(x) +
1

2
g2(x)

∂

∂x

]

P (x, t)

)

= 0

⇒
[

Γ(x)V ′(x)− f1(x) + (1− α)g(x)g′(x) +
1

2
g2(x)

∂

∂x

]

P (x, t) = C

⇒ 1

2
g2(x)

∂

∂x
P (x, t) + [Γ(x)V ′(x)− f1(x) + (1− α)g(x)g′(x)] P (x, t) = C

⇒ ∂P (x, t)

∂x
+

2

g2(x)
[Γ(x)V ′(x)− f1(x) + (1− α)g(x)g′(x)] P (x, t) =

2C

g2(x)

⇒ ∂P (x, t)

∂x
+ λ(x)P (x, t) =

2C

g2(x)
.

(D.14)

The integrating factor of the above equation is exp[
∫

λ(x)dx]. Now to fulfill the

criterion for equilibrium distribution, we must have

∫

λ(x)dx = βV (x)⇒ λ(x) = βV ′(x). (D.15)

which implies

g2(x) = 2kBTΓ(x) (D.16)

f1(x) = (1− α)g(x)g′(x) = (1− α)kBTΓ′(x) (D.17)

Now, Putting the expression of f1(x), the general overdamped equation become:

ẋ = −Γ(x)V ′(x) + (1− α)kBTΓ′(x) + g(x)ξ(t) (D.18)

Substituting γ(x) = 1
Γ(x)

and using the expression of g(x) and rearranging we get

γ(x)ẋ = −V ′(x)− (1− α)kBT
γ′(x)

γ(x)
+
√

2kBTγ(x)ξ(t). (D.19)
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For Forward evolution we already have

∫ t+∆t

t

dsg[x(s)]ξ(s) = g[(1− α)x(t) + αx(t + ∆t)]

∫ t+∆t

t

dsξ(s). (D.20)

Now the backward evolution can be simply obtained by changing the initial and final

integral limits (for normal integrals
∫ b

a
= −

∫ a

b
). However as the integral is Wiener

integrals we can write for backward evolution with variable x̄ as

∫ t

t+∆t

dsg[x̄(s)]ξ(s) = g[(1− α)x̄(t + ∆t) + αx̄(t)]

∫ t

t++∆t

dsξ(s)

= g[αx̄(t) + (1− α)x̄(t + ∆t)]

∫ t

t++∆t

dsξ(s). (D.21)

Therefore, the backward evolution for the space dependent friction is characterized

by

x(t)→ x̄(t) = x(−t)

α↔ (1− α). (D.22)
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