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Synopsis

In this thesis, we will mainly focus on two important traits of composite quantum sys-
tems – quantum entanglement and quantum correlations that go beyond entanglement
(QCsbE), and their applications in some quantum information processing (QIP) tasks.
There exists many aspects of QCsbE in literature. We will mainly talk about information
theoretic measure, quantum discord and its one particular generalization for multiparticle
systems.

The detection and the quantification of the quantum entanglement in a quantum state are
of immense importance. This is due to their importance in many quantum information
processing (QIP) tasks as well as unravelling the true nature of such states. There exist
several detection and quantification methods for quantum entanglement in literature. For
pure bipartite state entanglement is properly quantifiable. Although we have some knowl-
edge about entanglement of mixed bipartite states, but things are not straightforward here.
Conclusive detection methods exists for 2 ⊗ 2 and 2(3) ⊗ 3(2) states only. Furthermore,
there does not exist any unique measure for mixed bipartite entanglement beyond two
qubit systems. Different ways of characterizing entanglement exist in this case. These
measures are usually very hard to compute in general. Situation becomes even worse
when multipartite entangled states are considered. In this case, no universal detection
and quantification technique exist. Entanglement witness is a good tool to detect entan-
glement in arbitrary entangled states, but its construction depends on the class of states
one is detecting. Even the notion of maximally entangled states becomes murky here;
it depends on the measure one is considering. We provide another detection method of
bipartite entanglement using a modified form of quantum covariance. The detection pro-
cedure involves measurement of two local observables of the type O1⊗ I and I⊗O2. By
construction it will be able to detect bipartite arbitrary dimensional entanglement. Also
this detection procedure is experimentally feasible in present day.

The measure, quantum discord is very hard to compute in general and there exist analyt-
ical expressions for a few classes of states. Note that discord reduces to von-Neumann
entropy for pure bipartite states. Moreover, it is non-zero for separable states which make
it questionable whether it is a measure of quantum correlations in usual sense. It can even
increase under local operations. Then one can ask the following question. Does discord
captures quantum entanglement only? The answer is not straight forward and is negative.
It doesn’t capture quantum entanglement only. It captures local quantumness also. Let
me be clear what is local quantumness in this context. It is like local superposition (our
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idea is nonlocal superposition gives rise to entanglement type correlation) – eg., consider
the discordant separable state, 1

2
(|00〉〈00| + | + +〉〈+ + |) (|+〉 = 1√

2
(|0〉 + |1〉)), the

state has local superposition in any basis, one cannot mask its superposition. Hence, we
can conclude that the discord captures local quantumness also. This idea is supported
by some illustrations where we have specifically shown that the discord depends on local
quantumness parameter – a parameter which is responsible for local superposition.

Originally discord was defined for bipartite systems using the quantum generalization
of classical mutual information. They used the notion that mutual information captures
correlations between two random variables. Hence, quantum version may capture total
correlations in a bipartite state. It should be noted that there are different equivalent ex-
pressions of classical mutual information which become distinct in quantum regime. This
is because their exist no unique definition of quantum conditional entropy. If we analog-
ically extend the classical definition to quantum regime, it can be negative for entangled
states. It was shown that the negativity of conditional entropy can be resolved if we con-
sider measurement on the subsystem on which the conditional is there. The idea was:
To gain information about the subsystem one has to perform measurement. If we per-
form such a measurement in place of conditioning, the equivalent expressions of classical
mutual information become distinct when it is generalized to quantum case. This differ-
ence is actually called the quantum discord. In this sense quantum discord is supposed
to capture quantumness of correlations in the state. The conditional version of mutual
information is considered as a measure of classical correlations noticing its resemblance
with Holevo quantity.

This raises many important questions. Does quantum discord put a clear boundary be-
tween classical and quantum world? Then immediately one can ask: Is quantum gener-
alization of classical mutual information physically motivated? We know these general-
izations are based on analogy – it doesn’t come from the theory itself unlike its classical
counterpart. Can we consider quantum mutual information as a measure of total correla-
tions? It has been extensively discussed in the literature. It has been argued that quantum
mutual information may capture total correlations. However, it is not clear if it does. Also
there exists several definitions of multiparticle mutual information which may differ even
when no conditional entropies are involved. This makes it even more difficult to general-
ize. Moreover, the notion of classical correlations in quantum state is not clear from their
definition.

In this thesis, we have generalized the idea of quantum discord to multi-qubit systems.
We adopt the Venn diagram approach to define the classical mutual information which
is then generalized to quantum case. Its classical version is also known as interaction
information. We didn’t assume that this version of mutual information captures total
correlations of the multi-qubit state to begin with. Using chain rule of mutual information,
one can obtain many other expressions of mutual information. All these expressions differ
from each other in quantum regime. Thus we can define many inequivalent expressions
of quantum discord like quantities which we call dissensions. These quantities capture
some form of quantumness of the multi-qubit states. We illustrate this fact with some
multi-qubit states. The analysis reveals that one can characterize the states if appropriate
vectors of these measures are considered.

To qualify as a measure of correlations a quantity should satisfy some properties listed

xii



in. One drawback of our measures is that it can be negative for some states. However, it
may not be a drawback as classical mutual information can also be negative. We find that
our method not only gives some signatures of quantum correlations present in the multi-
qubit states but also it characterizes the states. Use of a vector measure to characterize
the quantumness of the state helps us. It characterizes the nonlocal and local quantum
resources of the state more completely. So, we argue that one number is not sufficient,
and one needs a set of numbers to characterize the quantumness of a state.
Another important question is whether quantum states are useful in some tasks unlike
classical one or in improving performance of some existing classical tasks? This basic
and important question started the field of the quantum information science. The dis-
covery of BB84 protocol, quantum teleportation, quantum algorithm have had immense
impact on the development of the subject itself. The teleportation was the first protocol
where correlations like entanglement was utilized as a resource. Teleportation is a quan-
tum information processing task which enables two spatially separated parties to com-
municate quantum information (quantum states) if they share an entangled state between
them. Then naturally one can ask: Which entangled states will be useful for teleportation?
This question is very much related to the query: Can every entangled state be used as a
resource for faithful teleportation (teleportation with unit fidelity and unit probability)?
It depends on their structure of entanglement. The performance of an entangled state in
teleportation is decided by the quantity teleportation fidelity. For two-qubit systems there
is conclusive relation between entanglement and teleportation fidelity but this is not the
case for arbitrary dimensional states. In this thesis, we have tried to answer this query
to some extent. We have established a relation between teleportation fidelity and con-
currence monotones (Monotones are the one of the ways to characterize entanglement of
higher dimensional systems.) for upto Schmidt rank 3 states. We have shown that how
much quantum entanglement is needed for a two-qudit entangled state to be useful as a
resource for teleportation.
To create multipartite entangled states researchers often invoke entanglement swapping.
Entanglement swapping is a process in which two remote parties become entangled though
initially they were not. Using such protocol one can create a quantum network (QNet).
We considered such a qubit-network and studied their entanglement properties as well
as the teleportation fidelity and superdense coding capacity. We showed that how much
classical and quantum information can be sent through such a network.
It would be very interesting to see what properties of a state are captured by QCsbE. One
possible way is to analize its usefulness in some QIP tasks. There are some proposals that
it may be the key factor in the speedup of performance of the DQC1 model. Also in state
merging protocol, it is related to the cost of the performance of the task. It is not obvious
most of the times what role QCsbE is playing in such protocols. In this respect more
studies are indeed needed. We have studied broadcasting of quantum correlations in two
qubit states to shed some light on this issue. We showed that under unital channel, there
will be no-optimal broadcasting of the quantum discord unlike entanglement whereas one
can have task oriented broadcasting for both the discord and the entanglement. Moreover,
under non-unital channel the meaning of optimal broadcasting is not clear . Therefore,
for any kind of local and nonlocal universal or state dependent cloning machines, the
optimal broadcasting of QCsbE is impossible and thus it indicates that the entanglement
and QCsbE are two distinct notions of correlations in quantum states. In another work ,

xiii



Synopsis

we have shown that better we clone (delete) a state, more difficult it will be to bring the
state back to its original form by the process of deleting (cloning). This analysis gives
new kind of two complementarity relations between the quantum correlations generated
during the processes – (a) cloning→ deletion and (b) deletion→ cloning. Such a study
may be useful in designing quantum recycle bin in future.
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Chapter 1

Introduction

“Quantum mechanics is old but new: because it is still developing.” – Lev
Vaidman @Patna 2015

Quantum mechanics is the most complete description of the nature so far but that does not
exclude any possibility of finding other description which can replace quantum mechan-
ics. Formulation of quantum mechanics is based on some axioms and rules [1]. These
axioms and rules are not solely physically motivated like the axioms of special theory
of relativity [2]. However, the beauty of quantum mechanics lies in its description of
the behaviour of microscopic systems. Most of these descriptions can be experimentally
verified, which establishes it as valid science1.

Due to many facets of the quantum mechanics, understanding it clearly is an immense
task. Many bizarre effects have been observed by the physicists throughout the history
of development of quantum mechanics. One such characteristic of quantum mechanics is
quantum correlations (QCs) [3]. This phenomenon is observed in quantum world when
two or more parties are involved in the system.

One of the basic problems in quantum physics is to understand the nature of correla-
tions present between different particles in a composite system. The existence of non-
factorizable states play important role in the existence of many exotic features of quantum
information theory. In the last decade, various measures of correlations [3, 4] have been
introduced. It is believed that none of these measures can alone be sufficient to describe
all the facets of quantum correlations. However, each of these measures unveils some
aspects of quantum correlations.

Entanglement [3] is the key concept which alters the notion of reality in the microscopic
system. Not only that, it is also responsible for the metamorphosis of the meaning of
correlation as we move from classical systems to quantum systems. For pure states
the situation is quite comprehensible as entanglement describes all about the correlation
present. However, the situation is not so clear in the case of mixed states. In the case
of mixed states, because of certain issues, researchers began to have a hunch that there

1“[Quantum mechanics] describes nature as absurd from the point of view of common sense. And yet it
fully agrees with experiment. So I hope you can accept nature as She is - absurd.”–Richard Feynman
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1 Introduction

might be something beyond the entanglement that actually quantifies the amount of cor-
relation present in the system. Recently, many measures have been proposed to quantify
the amount of correlation present in a mixed state [3, 4]. These measures have a unique
feature that all of them seem to predict the presence of quantum correlation beyond the
domain of entanglement. However, the nature of these correlation, as one goes beyond
the entanglement, is far from understood.

Before moving to quantum correlations, we will discuss some elements of classical and
quantum information sciences in the following sections.

1.1 Entropy and information – classical case

Classical information theory [5] deals with how much information2 one can encode in a
set of random variables. The smallest unit of information one can encode in is bit. In his
seminal work [6], Shannon proposed a measure of information, called entropy.

1.1.1 Shannon entropy

Consider a random variable X . Shannon showed that if X takes value x with probability
px then the information content in the random variable is

H(X) = −
∑
x

px log2 px. (1.1)

Consider events like unbiased single coin tossing, double coin tossing and rolling of dice.
The entropy of these events are respectively 1, 2 and log2 6. The physical interpretation of
Shannon entropy is given by data compression. Given a set of data, the limit upto which
one can compress it is its entropy. Note that if pi = 0, an event which does not occur
should not contribute to the entropy i.e., 0 log2 0 = 0. Mathematically, limx→0 x log2 x =
0.

1.1.2 Relative entropy

Relative entropy captures the closeness3 between two probability distributions. Let us
consider two probability distributions, p(x) and q(x) then the relative entropy between
them is

H(p(x) ‖ q(x)) =
∑
x

p(x) log2

p(x)

q(x)
= −H(X)−

∑
x

p(x) log2 q(x), (1.2)

with−0 log2 0 = 0 and−p(x) log2 0 = +∞ if p(x) > 0. Relative entropy is non-negative
i.e., H(p(x) ‖ q(x)) ≥ 0 with equality iff p(x) = q(x), ∀x. The importance of relative

2The knowledge you don’t have, you gain it – is information, e.g., “The sun rises in the east” is not a
information whereas “Tomorrow, there will be snowfall in Delhi” is.

3Relative entropy captures distance between two probability distributions but it is not a metric as it is not
symmetric. Intuitively, the uncertainty discrepancy in mistaking a fair dice to be unfair is not the same
as the opposite situation.
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1.1 Entropy and information – classical case

H(Y)H(X)

H(Y|X)H(X|Y)

I(X:Y)

Figure 1.1: Venn diagram: The red lined circle depicts the information (uncertainty) about
X i.e., H(X) and black one H(Y ) for Y . The conditional entropies H(X|Y )
&H(Y |X) show how much information we can still get if we have the knowl-
edge about Y and X respectively. The middle inner space contains the com-
mon information about both X and Y , this information is called mutual infor-
mation.

entropy is that one can derive a number of other entropic quantities as a special case of it.
For example, suppose p(x) is a probability distribution of X (X is a random variable with
d outcomes) and q(x) = 1

d
, the uniform probability distribution over those d outcomes.

Then
H(p(x) ‖ 1

d
) = log2 d−H(X), (1.3)

which can be rewritten using the non-negative property of relative entropy as H(X) ≤
log2 d with equality iff X is also a uniform distribution.

1.1.3 Joint entropy, conditional entropy and mutual information

Let us consider two random variables X and Y which have joint probability distribution
p(x, y) then joint information (uncertainty) can be defined as

H(X, Y ) = −
∑
x,y

p(x, y) log2 p(x, y). (1.4)

Here, H(X, Y ) is called the joint entropy. Now, if someone knows the uncertainty (in-
formation) in one random variable (say, Y ) then the uncertainty of the other variable (X)
may be affected. This is characterized by

H(X|Y ) = H(X, Y )−H(Y ), (1.5)

where H(X|Y ) is the conditional entropy. If the two random variables are correlated
(here by correlation, we mean ‘knowing one will diminish the uncertainty of other) then
H(X|Y ) ≤ H(X), where equality holds if they are disjoint distributions (see Fig 1.1).
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Hence, in the presence of correlation H(X, Y ) ≤ H(X) + H(Y ) (again equality holds
for two disjoint random variables). This inequality4 can be rewritten as H(X) +H(Y )−
H(X, Y ) ≥ 0. Naturally, the l.h.s of the inequality is used for the correlation measure
between two random variables and is termed as mutual information, i.e.,

I(X : Y ) = H(X) +H(Y )−H(X, Y ). (1.6)

In the Venn deiagram (see Fig 1.1), the overlap region is the mutual information, I(X :
Y ). Using Eqn.(1.5), one can have different equivalent expressions for mutual infor-
mation which we will discuss in detail later. All these quantities are very important in
developing classical information theory. Mutual information quantifies the correlations
between two random variables, capacity of quantum channel etc. In the later part of this
thesis, we will discuss possible generalization of these quantities in quantum domain and
their usefulness.

1.2 Entropy and information – quantum case

R. Feynman and D. Deutsch realized the advantages of any finite machines which obey
the laws of quantum mechanics in computing over a classical computer. The BB84 proto-
col improved the secrecy in key distribution protocols [7]. Scientist also found the power
of quantum principles in communication science. Bennett et al introduced quantum tele-
portation [8], superdense coding [9] etc., where they utilized the power of entangled states
to show the advantages of these protocols over its classical counterparts. Thus scientists
realized the power of quantum systems in information science, computational physics,
communication science, cryptography [10], to name a few. Hence, the journey of “Quan-
tum Information Science (QIS)” [11] started.

In QIS, the quantum mechanical systems are the resource. Holevo showed that to encode
n bits of classical information one requires at least n bits classical resources [12]. Due
to superposition principle, quantum mechanical systems are supposed to have a better
encoding efficiency than their classical counterparts. This is the one of the motivations
in developing QIS. However, we will not discuss the history of development of QIS here.
We will quickly introduce some of the properties of quantum states before discussing few
important elements of QIP.

1.2.1 Quantum states and density matrix formalism

In QIP, analogous to a bit we have a qubit. It is a pure two-level quantum state. Like
classical bits 0 and 1, one can have quantum systems in |0〉 and |1〉 states, which form
a single-particle basis in two dimensional Hilbert space. It is usually called as computa-
tional basis. Hence, mathematical expression for qubit (|ψ〉) is,

|ψ〉 = α|0〉+ β|0〉, (1.7)

4The inequality, H(X,Y ) ≤ H(X) +H(Y ) is called subadditivity of Shannon entropy and can easily be
derived from relative entropy, H(p(x, y) ‖ p(x)p(y)) ≥ 0.
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1.2 Entropy and information – quantum case

Source

Stern- Gerlach
Apparatus

a b+

ρ

Figure 1.2: Experimental preparation of mixed states: The experimental set up for prepar-
ing single-particle mixed states is depicted here. Source emits particles in
superposition state, a| ↑〉 + b| ↓〉, which goes through the Stern-Gerlach ap-
paratus. As a result spin up | ↑〉 particles go through the upper path and
spin down | ↑〉 through the down path. Instead of putting a screen if we
put a container and collect the particles which come out of the Stern-Gerlach
apparatus we will not be able to tell which one is in spin up and which
one is in spin down. Therefore, the particles will end up in a mixed state,
ρ = |a|2| ↑〉〈↑ |+ |b|2| ↓〉〈↓ |.

where α, β ∈ C and |α|2 + |β|2 = 1. Infinite number of bases are possible even in two
dimensional Hilbert space and so infinite number of pure single qubit representations.
These different basis are unitarily connected to each other.

Like single-particle quantum states, the multiparticle pure qubit states can be expressed
in 2⊗ 2⊗ ....⊗ 2 dimensional Hilbert space as

|ψ〉n =
∑

i1,i2,...,in

αi1i2,...,in|i1, i2, ..., in〉, (1.8)

where n > 1 is the number of particles and ij can take the value 0 or 1 (in principle you
can set any basis for the particles and the corresponding indices will take the value as
the two levels). These pure single-particle and multiparticle superposition states are very
difficult to prepare and even harder to preserve. So, in practice we always end up with
mixed states. All these can be generalized for d dimensional Hilbert space.

Unlike the pure states, we don’t have complete knowledge about the mixed states. In
quantum mechanics, mixed states are usually represented by density matrices. Let us
consider an ensemble of particles in states {|φi〉}. If all the particles are in the same state
then the ensemble can be expressed by pure states. If pi is the probability to find the ith

particle in the state |φi〉, then the ensemble is represented by density matrix as,

ρ =
∑
i

pi|φi〉〈φi|. (1.9)

A valid density matrix should satisfy the following properties, (a) ρ is Hermitian i.e.,
ρ† = ρ (b) ρ is semi-positive i.e., ρ ≥ 0, (c) Tr[ρ] = 1, normalization condition and (d)
Tr[ρ2] ≤ 1, equality holds iff ρ is pure.
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How can one prepare a mixed state? One can prepare a mixed state by just classically
mixing two or more pure states (see the Fig.(1.2)). In case of entangled pure states, the
reduced density matrices of the subsystems are generally mixed states. Any mixed state
can be expressed as a convex combination of pure states. But these decompositions for
mixed states are not unique in general. There can be infinite numbers of them. For
example, consider the density matrix ρmix = p1ρ1 + p2ρ2 + p3ρ3 + p4ρ4, where ρi may be
pure states and

∑
i pi = 1. Now it can be re-expressed in the following ways

ρmix = (p1 + p2)
p1ρ1 + p2ρ2

p1 + p2

+ (p3 + p4)
p3ρ3 + p4ρ4

p3 + p4

= q1η1 + q2η2, or,

ρmix = (p1 + p3)
p1ρ1 + p3ρ3

p1 + p3

+ (p2 + p4)
p2ρ2 + p4ρ4

p2 + p4

= r1χ1 + r2χ2, (1.10)

where q1 = p1+p2, q2 = p3+p4, r1 = p1+p3, r2 = p2+p4, η1 = p1ρ1+p2ρ2

p1+p2
, η2 = p3ρ3+p4ρ4

p3+p4
,

χ1 = p1ρ1+p3ρ3

p1+p3
, and χ2 = p2ρ2+p4ρ4

p2+p4
. Here, the states ηi and χj are generally mixed states

which have infinitely many pure state decompositions also. This tells us how complicated
it is to characterize a mixed state.

Bloch sphere – Any single qubit can be geometrically represented by a Bloch sphere
(see Fig.(1.3)) which is a unit sphere in polar coordinate (r, θ, φ). This is because most
general pure qubit |ψ〉 can be written as |ψ〉 = cos θ

2
|0〉 + eiϕ sin θ

2
|1〉. In Bloch repre-

sentation, one can easily visualize the effects of quantum operations on single qubit. If
we apply 1

2
[I2 + (−1)aσz] (a = 0, 1) operations on the qubit |ψ〉, either one will end up

with state |0〉 (with probability cos2 θ
2
) or with |1〉 (with probability sin2 θ

2
). Here, Ik is the

identity matrix of order k and {σi; i = x, y, z} are Pauli matrices. Most general state of
single qubit is

ρ =
1

2
(I + ~σ.~r), (1.11)

where ~r is called Bloch vector with constraint r =‖ ~r ‖≤ 1 with equality only holds
for pure qubits. However, this beautiful representation is painfully limited to single qubit
systems as there is no known generalization for multiqubit systems let alone higher di-
mensional systems.

1.2.2 Quantum entropies and mutual information

What is the information in QIS? We have already discussed that quantum mechanical
systems are main resource in QIS. Because of the quantum superposition principle, an
unknown pure qubit state, |ψ〉 = cos θ

2
|0〉 + eiϕ sin θ

2
|1〉 apparently possesses infinite

amount of information as θ can be any point on the Bloch sphere (Number of points on
unit sphere is infinite.). But to gain the information one needs to measure (which gives
either outcome |0〉 or |1〉) and that yields one bit (classical bit) of information. The main
issue becomes that although we can superpose many data to process in quantum computer
but what amount of information we can extract from it.
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x

y

z

r

1

0

ψ

ρ
θ

φ

Figure 1.3: Bloch sphere: Geometric representation of single qubit states. The qubit |ψ〉
is the superposition of |0〉 and |1〉 which is at the surface of the sphere where
all the pure single qubit states live. ρ represents a generic mixed single qubit
which is inside the sphere with ‖ ~r ‖< 1 and I2 being maximally mixed state
lives at the centre of sphere.

1.2.2.1 Von Neumann entropy

In the same spirit as Shannon entropy, Von Neumann defined the quantum entropy (pop-
ularly known as Von Neumann entropy) with density matrix ρ replacing probability dis-
tribution as

S(ρ) = −Tr[ρ log2 ρ]. (1.12)

If λi are the eigenvalues of ρ then the Von Neumann entropy is S(ρ) =
∑

i λi log2 λi.
The Von Neumann entropy captures the uncertainty5 in the state ρ. For example, Von
Neumann entropy of the state ρ = p|0〉〈0| + (1 − p)|1〉〈1| is H2(p), where H2(x) =
−x log2 x − (1 − x) log2(1 − x). Like Shannon data compression theory, Schumacher
gave quantum data compression theory which says that given quantum data, the limit upto
which one can compress it is determined by its Von Neumann entropy. It gives physical
meaning to Von Neumann entropy.

1.2.2.2 Quantum relative entropy

Let ρ and σ are two quantum density matrices, then the quantum relative entropy between
two is

S(ρ ‖ σ) = Tr[ρ log2 ρ]− Tr[ρ log2 σ]. (1.13)

Note that the relative entropy is defined to be +∞ if the kernel of σ has non-trivial in-
tersection with the support of ρ, and is finite otherwise. The quantum relative entropy is
non-negative i.e., S(ρ ‖ σ) ≥ 0. Again this is not a good metric as it is not symmetric in
ρ and σ.

5It is the information we don’t know about the preparation of ρ.
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1.2.2.3 Quantum conditional entropy and quantum mutual information

In analogy to the classical case, one can define quantum joint entropy, quantum con-
ditional entropy and quantum mutual information. If ρAB is the density matrix of the
joint system AB, then the quantum joint entropy is S(A,B) = −Tr[ρAB log2 ρAB]. One
can prove sub-additivity of Von Neumann entropy using quantum relative entropy i.e.,
S(A,B) ≤ S(A) + S(B). Here, S(A) and S(B) are the Von Neumann entropy of
the subsystems, A (ρA = TrB[ρAB]) and B (ρB = TrA[ρAB]). Here, TrB operation
means we are ignoring the subsystem B completely. One can translate this inequality as
S(A) + S(B)− S(A,B) ≥ 0. The quantum mutual information is then defined as

Iq(A : B) = S(A) + S(B)− S(A,B). (1.14)

By definition, the quantum mutual information should capture the total correlations be-
tween quantum sub-systems6.

In the same spirit as classical conditional entropy, one can in analogy define quantum
conditional entropy as

S(A|B) = S(A,B)− S(A). (1.15)

Can the inequality, S(A,B) ≥ S(A) hold?7 For the state 1√
2
(|00〉+ |11〉), S(A|B) = −1,

which means S(A|B) may not be always positive. There are many works in the literature
about what could this negative value of quantum conditional entropy mean [13–17]. In
the work [16], authors found that the more an observer knows about the system, the less it
costs to erase it. They have argued it by noticing that if the quantum conditional entropy
between the system and the memory (it is with the observer) is negative then the cost
of erasing the system is negative.8 In another work [17], authors were addressing the
question, “If two parties A and B share a quantum state ρAB and party B wants to learn
about the system A, then how much information party A has to send him?” They found
that the partial information required to be sent to B is S(A|B). If the two parties are
correlated then quantum conditional entropy can be negative. Hence, B can obtain the
information about the systemA by only using classical communication withA. Moreover,
the negative conditional entropy givesB the ability to receive future quantum information
for free. Like in quantum teleportation, if two parties share an correlated state one party
can gain quantum information just by receiving classical communication from other.

Using Eqn.(1.15), one can derive other expressions of quantum mutual informations.
These expressions of mutual information are not equivalent, unlike their classical coun-
terpart. This discrepancy was then interpreted by many physicists [4], and thus evolved a
new area of quantum information theory.

Note that the quantum mutual information can exceed entire uncertainty of the individual

6This statement is really debatable, it is yet to be established whether it captures total correlations. Many
papers in the literature exist about this debate. We will discuss some of it in the later part of this thesis.

7As in the case of two random variables, X and Y , intuitively, one cannot be more uncertain aboutX than
he is about joint state of X and Y i.e., H(X) ≤ H(X,Y ).

8In quantum regime, it is the violation of the Landauer’s erasure principle. An observer (memory) can
extract work from a system while erasing it, thus by cooling the environment if the observer (memory)
is strongly correlated with the system.
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1.3 Quantum correlations

subsystems i.e.,
Iq(A : B) ≤ 2 min[S(A), S(B)]. (1.16)

This is precisely because of the negativity of conditional entropy for quantum entangled
states and thus forbidden for classical case where classical mutual information cannot
exceed entire uncertainty of the source ensemble, i.e., I(A : B) ≤ min[H(A), H(B)].

1.3 Quantum correlations

Superposition in quantum theory has been the resource for quantum information theory.
As it was argued earlier that apparently a single qubit potentially contains infinite amount
of information. Let us think about the information a multiparticle state can posses if they
are superposed with each other. Harnessing this power is the primary goal of quantum
computation and information. Let us consider a two-qubit pure state

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉, (1.17)

where α, β, γ & δ ∈ C and |α|2 + |β|2 + |γ|2 + |δ|2 = 1. Let us examine the properties of
this two particle state. If one parameter has value 1, then the state becomes ∼ |χ〉 ⊗ |φ〉,
otherwise the state may not be written in this form. The states which satisfy this property
are called product states. These states contain no correlations at all.

In the classical world, we have a clear perspective on ‘correlation’, e.g. ‘due to draught
in West Bengal, the price of rice may rise in India’. The statement clearly states the
correlation between two events. So, two objects/events are correlated means they are
connected in such a way, the change in one will effect the other. In quantum world,
situation is a bit messy. It is also not clear what we mean by ‘correlations’ in quantum
regime. Clearly, one will interpret it as that on doing something on one particle, one will
observe some change in the other. In quantum framework what do we mean by ‘doing
something’? Maybe measuring some properties, or evolving the system of the particle or,
maybe applying local operations. Here we have to be specific about the operations which
we will perform.

A quantum state (more than one particle) can possess different types of quantum correla-
tions. These correlations may be responsible for nonlocality [18], steering [19], non-zero
entanglement [3] and non-zero discord [4]. Here lies the difficulty of describing corre-
lations present in a quantum state. On top of that a quantum state can posses classical
correlations also. What we mean by all these? By ‘nonlocality’ we mean mostly Bell
nonlocality [20,21]. Consider a situation where Alice and Bob share a quantum state. Al-
ice and Bob make two dichotomic measurements on their parts which are {A1, A2} and
{B1, B2} respectively. If their measurement outcomes violate the following inequality
i.e.

|〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉| ≤ 2, (1.18)

which is the famous Bell-CHSH inequality [21], then the state is nonlocal i.e., it posses
Bell nonlocality. Here 〈X〉 = Tr[Xρ]. Violation of this inequality within quantum regime
sufficiently means that the state is both steerable and entangled.
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Nonlocality

Steering

Entanglement

QCsbE

Figure 1.4: Correlation hierarchy: Pictorial depiction of quantum correlations present in
a multiparticle quantum state.

Now, in the case of steering the role of Alice and Bob are different. If we say using
the shared state Alice can steer Bob, then it is called Alice to Bob steering i.e., it is an
asymmetric phenomenon. Alice will make measurement on her particle and by doing that
she can remotely change (i.e., steer) the state of Bob’s subsystem in such a way that would
be impossible if their systems were only classically correlated. That means if a state is
steerable, then it is ‘sufficiently’ entangled.

Entanglement is weaker than the steering and nonlocality. Here, one has to trust both
parties to be quantum. Mathematically, if a state ρAB is entangled, then it cannot be
expressed as

∑
i piρ

i
A ⊗ ρiB where ρiA(B) is a pure state for subsystem A(B). A non-

entangled state i.e., a separable state is the convex sum of product states. An entangle state
may or may not violate Bell inequality i.e., entanglement can emerge from local-realistic
model [22, 23]. But recently, Buscemi [24] established that all entangled state might
display some kind of nonlocality (Note that his notion of nonlocality may not resemble
with the Bell type). The connection between entanglement and nonlocality is not well
understood, although some regards it as different sides of same coin [25–27]. Many
works are available in the literature regarding this issue [28–31].

The discord is a measure of ‘quantum correlations that go beyond entanglement’ (QCsbE)
(see Fig.(1.4)) because separable states also have non-zero discord values. And exactly
for this reasons it is still debatable whether it is a correlation measure or not. And on top
of that it not a LOCC (local operations and classical communications) [32] monotone.

We know that if a composite state violates Bell-CHSH inequality then it is entangled and
steerable but reverse is not true [25, 28]. For example, consider the Werner state

ρw =
1− p

4
I4 + p|ψ−〉〈ψ−|, (1.19)

where |ψ−〉 = 1√
2
(|01〉 − |10〉). The state is entangled iff p > 1

3
, steerable p > 1

2
and Bell

nonlocal for p > 1√
2
. However, it has been argued that all the entangled states show some

form of nonlocality [24, 26].
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1.3 Quantum correlations

1.3.1 Quantum entanglement

If a multiparticle state (density matrix) can be represented by the convex sum of product
states, then the state is said to be separable state, i.e., if ρ12...n is a separable state then
ρ12...n =

∑
i pi⊗nj=1ρ

i
j , where⊗nj=1ρ

i
j is a product state. Otherwise, the state is entangled.

Let us consider two-particle scenario with Hilbert spaceHA⊗HB. The state |ψ〉A⊗|φ〉B
is a product state with no correlation. However, |ψ1〉A ⊗ |φ1〉B + |ψ2〉A ⊗ |φ2〉B (linear
combination of two-particle states with proper normalization) is in general an entangled
state. Now two important questions immediately follow – a) How to test entanglement
of a given state? and b) Given an entangled state, how much entanglement is there in the
state? Detection and quantification of entanglement [33] are important from the perspec-
tive of resource theory [3]. What do we mean by that is, whether an entangled state is
useful for some specific tasks which otherwise is impossible using classical states or have
advantages over classical resource. Quantum teleporation [8] and superdense coding [9]
are two such examples.

The detection and quantification of entanglement are somehow settled (not well-settled!)
in the case of two-qubit arbitrary states – which we will elaborate later. First we have
to understand why ‘the entangled states’ are so important in the first place. No-cloning
theorem [34] forbids the perfect copying of an unknown quantum state – which is a diver-
sion from known classical theory. But one can ask, “Can one send an unknown state to
a remote place?” Yes, it is possible – the ‘quantum teleportation’. In teleportation if one
uses an entangled state then only using maximum two-bits of classical communication
one can send an unknown qubit faithfully [35]. There is no need to send the state itself.
It provides extra security also. There are many aspects of entangled states, we will give
some essence about some of them later. Let us now discuss the cases of two-particle and
multiparticle systems.

1.3.1.1 Detection of entanglement: Two-particle systems

Before going into more complex systems, let us introduce simple two-particle systems in
H2
A ⊗ H2

B – two qubits. A general two-qubit state (density matrix) can be expressed in
canonical form as

ρAB =
1

4

(
I4 + ~σ.~r ⊗ I2 + I2 ⊗ ~σ.~s+

3∑
i,j=1

tijσi ⊗ σj
)
, (1.20)

where ~r and ~s are local Bloch vectors of party A and B respectively. The 3 × 3 matrix
T = [tij] is the correlation matrix and for ρAB to be a valid density matrix, we should have∑3

i=1(r2
i + s2

i ) +
∑3

ij=1 t
2
ij ≤ 3. One can easily prove that the state (1.20) is a product

state if tij = risj but it is not a necessary condition. There are many such conditions by
which one can easily detect its separability. We will introduce some of them.

A. Peres-Horodecki criteria – In the seminal papers [36, 37], Peres & Horodecki dis-
covered that a separable state under partial transposition operations remains a valid state
whereas an entangled state does not. Under partial transposition, the entangled state trans-
forms to a matrix which has negative eigen values. Let ρAB be a bipartite state, then its
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partial transposition is defined as ρTmµ,nν = ρmν,nµ and

ρmµ,nν = 〈em| 〈fµ|ρ|en〉 |fν〉 , (1.21)

where |em〉 (|fµ〉) denote the orthonormal basis in the Hilbert space of the first (second)
subsystem of the composite system. Hence, if at least one of the eigenvalues of a partially
transposed density operator for a bipartite state, turns out to be negative then we can say
that the state is inseparable. This criteria is necessary and sufficient for the systems in the
Hilbert space dimensions 2 ⊗ 2 and 2 ⊗ 3. This criteria fails for the higher dimensional
systems because of the presence of ‘bound entangled states’9 [38]. Then how do we
detect higher dimensional entanglement? The experimental way to detect any bipartite
entanglement is via ‘entanglement witness’ [39].

B. Entanglement witness – To construct a witness operator [40–42], one uses the fact
that the convex sum of separable states is a separable state i.e., the state space of separable
state is convex. Not only that it is also a compact set. Therefore, one can find a hyperplane
which will separate an entangle state from a separable state (see the Fig.1.5). From the
figure it is clear that a particular witness will be able to detect a class of entangled states –
hence it is a state dependent witness. Given an unknown state, witnessing its entanglement
is a hard problem.

An observable, W will be an entanglement witness if

Tr[Wρsep] ≥ 0 ∀ separable states (ρsep) and
Tr[Wρent] < 0 for at least one entangle state (ρent) (1.22)

hold. So, if one measures Tr[Wρ] < 0, the state ρ is entangled for sure and the entangle-
ment of the state is detected by the witness W . The fact that all the witness operators are
experimentally measurable makes them very useful tool for detecting entangled states.
Note that the operators have also a clear geometrical meaning. It is well-known that the
expectation value of the observable depends linearly on the state and hence the set of
states with Tr[Wρ] = 0 lives in a hyperplane in the set of all states, separating the whole
set into two parts. The parts where Tr[Wρ] > 0 lies all the separable states, the other part
with Tr[Wρ] < 0 is the set of states detected by the witness W .

C. Schmidt rank – The most general bipartite pure states can be expressed as |ψ〉AB =∑dA−1,dB−1
i,j=0 αij|ij〉, where dA(dB) is the Hilbert space dimension of subsystem A(B).

This state can be re-expressed by using ‘singular value decomposition’ in some other
basis in the same Hilbert space as

|ψ〉AB =

min[dA−1,dB−1]∑
`=0

√
λ`|``〉. (1.23)

This decomposition is called Schmidt decomposition [43] and λ`s are Schmidt coeffi-
cients which are real and positive with

∑
` λ` = 1. The number of non-zero Schmidt

9The states which become negative after application of partial transposition are called negative partial
transposition states i.e., NPT states and which remain positive are positive partial transposition states,
in short PPT states. In higher dimension (above 2⊗ 2 & 2⊗ 3), some PPT states are also entangled but
they are not distillable. We call these states bound entangled states.
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ρent

ρsep

ρent

ρent

W

W

Figure 1.5: Entanglement witness: All the separable states are in the ellipsoid. The W s
(red and black) are two witness operators which can detect the entangled states
(red & green) and (black & green) respectively. From the figure it is obvious
that the witness operators are oblivious to some entangled states.

coefficients of a pure state is called its Schmidt rank (SR(|ψ〉)). Iff SR(|ψ〉) = 1, then
the state is separable otherwise entangled.

For a bipartite mixed state ρAB =
∑

i pi|ψi〉〈ψi| in finite dimension, the Schmidt rank is
defined as [44] SR(ρAB) = inf{pi,|ψi〉} supi SR(|ψi〉) where, the infimum is taken over
all the pure state decompositions. But finding Schmidt rank in this way is very difficult
due to the optimization. Note that for more than two-party case, there exists no unique
Schmidt decomposition and hence, this method loses its importance [45, 46].

1.3.1.2 Quantification of entanglement: Two-particle systems

Given a state the question we were posing: is it entangled? Now we will investigate, given
an entangled state how much entanglement is there – quantification of entanglement. It
has importance in many applications where entanglement is a resource or to improve the
performance of protocols. For example, in the case of quantum teleporation where entan-
glement is the resource. The quantification of entanglement has direct connection with
one more aspect ‘given an entangled state, how much entanglement we can extract from
it’ — distillation of entanglement. Now to compare entanglement of two states, we usu-
ally compare them in terms of their performance/utility in a protocol where entanglement
is the main resource. For example, in quantum teleportation using a Bell state one can
faithfully teleport unknown single qubit pure state. Now take the other entangled states
like |ψ〉 = α|00〉 + β|11〉 (α, β ∈ C and |α|2 + |β|2 = 1), the teleportation will be inex-
act. The states which give exact teleportation have unit entanglement and entanglement
of other states will be less than that.

Another intuition will be, given n pure states like |ψ〉 = α|00〉 + β|11〉, can we distil
m(< n) Bell states ( 1√

2
[|00〉+ |11〉])? The allowed transformation will be local operations

and classical communications (LOCC) which will not increase the entanglement of the
total system. Bennett et al. [47] showed that m = nS(ρA), where ρA is the subsystem of
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A. Then the quantification of entanglement of |ψ〉 is then

E(|ψ〉) =
m

n
= S(ρA) (1.24)

in the unit of a maximally entangled state (Bell state). This idea is closely related with
entanglement distillation [48, 49]. Now what about the reverse process, “How many Bell
states are required to prepare a pure entangled state?” This idea is popularly termed as
‘Entanglement of Formation’ (EOF) [48, 50]. Before going into all these measures, we
would list some properties which a good measure of entanglement [3] (E(ρ)) should have.
These are

1. E(ρ) = 0 for all separable states.

2. It is invariant under Local Unitary (LU) i.e., E(ρ) = E(ρLU), where ρLU is the state
after application of local unitary on ρ.

3. Under LOCC entanglement must not increase i.e., E(ρ) ≥ E(ρLOCC) i.e., E(ρ) is
monotone under LOCC.

4. (a) Additivity, i.e.,E(ρ⊗σ) = E(ρ)+E(σ) and (b) partial additivity i.e.,E(ρ⊗n) =
nE(ρ).

5. Convexity, i.e., E(
∑

i piρi) ≤
∑

i piE(ρi) for the mixed state ρmix =
∑

i piρi with∑
i pi = 1,.

6. Continuity10, i.e., if 〈ψ⊗n|ρn|ψ⊗n〉 → 1 for n→∞, then 1
n
|E(|ψ⊗n〉)−E(ρn)| →

0.

Out of 6, first three postulates are the most important in the resource theoretic perspective,
all others are needed but are not necessary. One good example of entanglement measure
which satisfies all the above properties is squashed entanglement [51–53], but notoriously
hard to compute. We will introduce some of the well known entanglement measures,
namely, Von Neumann entropy, negativity [54], entanglement of formation, concurrence
[50, 55], and concurrence monotones [56] which are relevant in this thesis.

A. Von Neumann entropy – It is a measure of entanglement for pure entangled states.
It is well known that von Neumann entropy captures the uncertainty in a quantum state
(which one can call as preparation uncertainty also). Consider the Bell state 1√

2
(|00〉 +

|11〉). The state has zero Von Neumann entropy but its individual part has maximal en-
tropy i.e., one. This property was used to characterize the entanglement of the bipartite
states. As a whole we know the preparation of bipartite entangled states, but about indi-
vidual parts we have less knowledge. The more entangled a state is, the less knowledge
we have about its parts. Hence, Von Neumann entropy of individual systems is a good
measure of entanglement of the pure entangled states. The Von Neumann entropy also
satisfies the three main properties to be a good measure.

Consider a pure bipartite state in the Schmidt decomposition form |ψd〉 =
∑

i

√
λi|ii〉

in d ⊗ d, then the reduced density matrix of the state is ρA(B) =
∑

i λi|i〉〈i| and hence
the Von Neumann entropy, S(ρA(B)) = −

∑
i λi log2 λi. If λr = 1, then S(ρA(B)) = 0

10It tells us that if two states are close to each other then so are their entanglements per particle pair in a
particular entanglement measure.
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1.3 Quantum correlations

i.e., product state and if λi = 1
d

(∀i) then S(ρA(B)) = log2 d which is the maximum.
The state with S(ρA(B)) = log2 d are called maximally entangled states, e.g., Bell states
{|ψ±〉 = 1√

2
(|00〉 ± |11〉), |φ±〉 = 1√

2
(|01〉 ± |10〉)}.

B. Negativity – Negativity [54, 57] quantifies how strongly the partial transpose of a
density operator fails to become positive. The negativity, N(ρAB), of a bipartite state ρAB
in d ⊗ d, is defined as the absolute value of the sum of the negative eigenvalues of ρTAAB,
where partial transposition is applied on particle A, i.e.,

N(ρAB) =
1

d− 1
(||ρTAAB||1 − 1), (1.25)

where ||X||1 is called trace-norm of X and it is defined as ||X||1 = Tr[
√
X†X]. The two

main advantages of this measure are: It is very easy to compute and it is convex. But
it is not additive, although one can consider logarithmic negativity [58] i.e., EN(ρAB) =
log2[||ρTAAB||1] which is additive but not convex. For all NPT states, a non-zero negativity
implies that the state is entangled and distillable, whereas a vanishing logarithm negativity
implies that the state may be separable. By construction, for 2⊗ 2 and 2⊗ 3 dimensional
Hilbert space, it is if and only if condition.

Hence, in this case the main goal is to find the negative eigenvalues of the partial trans-
posed states. Then what is the situation beyond 2 ⊗ 2 and 2 ⊗ 3 dimensions. In a recent
work [59], S. Rana has found that for m ⊗ n dimensional state, it’s partial transposition
can have at most (m − 1)(n − 1) number of negative eigenvalues. And not only that he
also showed that all the eigenvalues of the partial transposed matrix of any m⊗ n dimen-
sional states must always lie within [−1

2
, 1] [59]. However, many issues are still open in

this case.

C. Entanglement of Formation (EoF) – It is defined as the convex roof extension11

of Von Neumann entropy of entanglement [50] i.e.,

EF (ρAB) = inf
pi,|ψi〉

∑
i

piE(|ψi〉), (1.26)

where infimum is taken over all possible pure state decomposition of ρAB and E(|ψi〉) =
S(ρiA). These optimizations are very hard to compute. As we were discussing, physically
it says how many singlets one needs to create a single copy of the state. Another important
aspect of EoF is that it is not additive [60].

D. Concurrence – Concurrence for pure state is the overlap between the state and its
‘spin flipped version’. While calculating EoF for mixed state Wootters and Hill [50, 55]
found that EoF is the monotonic function of concurrence (C) i.e.,

EF (ρAB) = E(C(ρAB)), (1.27)

11Convex roof extension: Let g be a continuous real function on the space of pure states ΩP , this function
can be extended to the space of mixed states in the following way. Let Ω be the convex (and compact)
set of normalized density operators. A state ρ ∈ Ω can be written as a convex combination ρ =

∑
i piρi,

where ρi ∈ ΩP are pure states, are the extremal points of Ω. Then the real function G : Ω → R is a
convex roof extension of g : ΩP → R if G coincides with g on ΩP and G(ρ) := inf

∑
i pigi, where

minimization is taken over all pure state decomposition of ρ.
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where E(C) = H2(1+
√

1−C2

2
). Hence, the concurrence itself can also be regarded as an

entanglement measure. Moreover, the relation is true only for 2⊗ 2 only i.e., the physical
meaning of concurrence in higher dimension is not so clear [61]. The concurrence for
two-qubit mixed state, ρAB is defined as

C(ρAB) = max[0, µ1 − (µ2 + µ3 + µ4)], (1.28)

where µi’s are the eigenvalues (in decreasing order) of the matrix R =
√√

ρρ̃
√
ρ with

ρ̃ = (σ2 ⊗ σ2)ρ∗(σ2 ⊗ σ2) and complex conjugation (∗) is in the standard basis. This
measure is not additive.

This measure for pure two-qubit state reduces to C(ψ) = |〈ψ|ψ̃〉|, where |ψ̃〉 = (σ2 ⊗
σ2)|ψ∗〉. It can also be expressed as C(|ψAB〉) =

√
2(1− Tr[ρ2

A]). These results can be
extended for arbitrary dimensional states [62,63] and for multiparticle states [64–67]. For
d⊗ d dimensional pure states, the concurrence is defined as C(|ψd〉) =

√
2d
d−1

∑
i<j λiλj ,

where λi are Schmidt coefficients. If the state is of Schmidt rank r, then its maximal
entanglement will be

√
d(r−1)
r(d−1)

, for asymptotic case d → ∞, the maximal value is
√

r−1
r

,

and for d = r the maximal value is 1. For mixed d ⊗ d states ρd =
∑

i pi|ψid〉〈ψid|, it
can be generalized using convex roof extension i.e., C(ρd) = inf

∑
i piC(|ψid〉), where

minimization is taken over all possible pure state decompositions. Performing this min-
imization is very hard but some lower bounds have been derived in [66, 67] generalizing
the actual Wootters formula in higher dimensions.

E. Concurrence monotone – In the seminal work [68], G. Vidal developed the theory
of entanglement monotone. In that work, he addresses a question aspect that if we have
access to the finite number of bipartite entangled states then how one can characterize
how good a resource it is. For a bipartite system in d⊗ d dimensions, Vidal introduced a
set of entanglement monotones [56] i.e.,

Ek(|ψd〉) =
d−1∑
i=k

λi, k ∈ (0, d− 1), (1.29)

where λ0 ≥ λ1 ≥ · · · ≥ λd−1 are the Schmidt coefficients of the state |ψd〉. The en-
tanglement monotones (Eq.1.29) play an important role in the transformation of states
under LOCC [56,69,70]. All these monotones are also important for their distinct role in
some particular information processing tasks. For example, E2 = 1 − λ0 quantifies the
possibilities of faithful teleportation using partial entangled states [56, 71].

Many such entanglement monotones can be constructed for entangled states. But question
will be then whether they are important for characterizing resources for some protocols.
One such monotone was introduced to study the remote entanglement distribution (RED)
in a quantum network [71, 72]. They are called concurrence monotones [71–73] and for
d⊗ d bipartite pure state |ψd〉,

Ck(|ψd〉) =

(
Sk(λ0, λ1, ....., λd−1)

Sk(
1
d
, 1
d
, ...., 1

d
)

) 1
k

,
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1.3 Quantum correlations

where, Sk is kth elementary symmetric function of λk, the Schmidt’s coefficients. S1(λ) =∑
i λi, S2(λ) =

∑
i<j λiλj , S3(λ) =

∑
i<j<k λiλjλk, ..., and Sd(λ) =

∏
i λi. If we

carefully look at the C2, it is just the bipartite concurrence. Note that these monotones do
not play any role in transformation of states under LOCC [69,70]. For the bipartite mixed
state ρd =

∑
i pi|ψid〉〈ψid|, using the convex roof extension, the concurrence monotone

can be generalized to
Ck(ρd) = inf

∑
i

piCk(|ψid〉), (1.30)

where minimization is taken over all decomposition of ρd.

F. Squashed entanglement – For bipartite state ρAB, squashed entanglement [53,74]
is defined as

Esq(ρAB) =
1

2
inf
ρABC

Iq(A : B|C),

where ρABC is such that ρAB = TrC [ρABC ] and the conditional mutual information, Iq(A :
B|C) = S(A,C)+S(B,C)−S(A)−S(A,B,C). It is an additive measure which satisfies
all the properties that one entangle measure should have. However, computing it is a NP
hard problem.

1.3.1.3 Detection of entanglement: Multiparticle scenario

In the case of multiparticle systems, there are huge complexities in finding a good de-
tection method and a good measure of entanglement. Many unique features arise and
addressing all in one is very difficult. For example, how one will define separability here?
Then we have to address the biseparability, triseparability etc and finally the fully sep-
arability opposite of which is the existence of genuine multiparticle entanglement [75].
The sharing of entanglement is also important here. There is a restriction on that, which
is popularly known as monogamy of entanglement [76]. It leads to the frustration in the
systems. Also the meaning of maximally entangled states also becomes dicey here. We
really don’t know how to characterize them. Many researchers have tried to address the
question and many intriguing features have been unravelled. The ‘absolutely maximally
entangled states’ [77, 78], ‘task oriented maximally entangled states’ [79] etc. are some
of them.

Over the past few years, there have been many attempts to characterize entanglement
of the multiparticle systems [80]. Some have extended the idea of entanglement wit-
ness to witness the entanglement of the multiparticle states [33]. Others extended the
idea of Von Neumann entropy of subsystems where they have considered the vector type
entropic measure to characterize maximally, absolutely maximally entangled states. Re-
cently, there have been some attempts to use the idea of concurrence for multiparticle
systems – where the lower bound of the quantity has been considered. In this context, we
will discuss some important concepts like entanglement witness, entropy vector method,
concurrence, and monogamy of entanglement.

Entanglement witness – We know that we need specific witness operator to detect
entanglement of specific class of states. In multiparticle case, there are many such classes.
For pure three-qubit states, there are two well known witnesses i.e., WGHZ and W3 which
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E

S
FS

W
W

e
s

Figure 1.6: Multiqubit states: The pictorial view of multiqubit states: entangled states (E),
separable states (S) and fully separable states (FS). The straight lines are the
entanglement witnesses, W e will witness entangled states and W s separates
out the fully separable states.

detect the GHZ states and genuine three-particle entangled states including the W-states
[81] respectively. Any witness operator can be cast into the following form

W = αI− |ψ〉〈ψ|, (1.31)

where α is the overlap between state |ψ〉 and the biseparable state or the fully separable
state (see Fig.1.6) [3]12. The value of α for GHZ witness is 3

4
which is exactly the overlap

between GHZ state and W-state. Hence if the fidelity of GHZ witness is larger than 3
4

then one can faithfully conclude that the state is in GHZ class. The calculation of α is
crucial and depends on which class of states one wants to exclude. The calculation of α is
straightforward if one takes into consideration of biseparable states only. This is because
α is given by just the square of maximal Schmidt coefficient over all bipartitions [82,83].

For more than three qubit pure entangled states, the standard procedure is to follow the
above method of calculating the required overlap α and for many well known classes of
states, the value of α is known. For graph states, the value of α is 1

2
when biseparable

states are considered. Hence, the witness will be WGn = 1
2
I−|Gn〉〈Gn| for any n particle

graph state |Gn〉 [84].

1.3.1.4 Quantification of entanglement: Multiparticle scenario

A. Von Neumann entropy vector – In case of pure bipartite systems, the Von Neu-
mann entropy of one of the subsystems is enough to characterize the entanglement of the
total system. But for multiparticle systems, it is not the case [78]. For example, let us
consider the state |0〉 ⊗ |ψ+〉. The entropies of three subsystems are 0, 1 and 1. Thus to
characterize the entanglement of pure tri-partite systems one need at least three such num-

12A k-separable pure state is defined as |ψ〉12...n = |φ〉1 ⊗ |φ〉1 ⊗ · · · · · · · · · ⊗ |φ〉k ⊗ |φ〉n−k, where
1 ≤ k ≤ n with |φ〉n−k is n− k partite non-separable state.

18



1.3 Quantum correlations

bers. Therefore, to characterize the entanglement of multi-qubit states one needs several13

numbers of bipartition entropies.

In this context, one has to remember that to characterize the maximally entangled state
one needs more numbers. The notion of maximally entangled states is not so clear in
multiparticle scenario. Hence, the idea of absolutely maximally entangled states (AMES)
came into the picture. Let us first define an AMES state. ‘A multiparticle state with
maximal possible subsystem entropies’ is called AMES. In the case of three qubits, GHZ
state is the AMES with subsystem entropies being 1 which is the maximum possible. For
four qubit case there exists no AME. Later, in this section we will discuss this notion in
more detail.

B. Concurrence – A generalization of bipartite concurrence was discussed in [63, 64].
They derived the concurrence for pure n-particle arbitrary dimensional systems

C(|ψ〉12..n) = 21−n
2

√
(2n − 2)− (

∑
α

Tr[ρ2
α]), (1.32)

where α denotes all different possible reduced density matrices of the state |ψ〉12..n. Note
that there are

(
n
n1

)
number of ρα which can be obtained by tracing over n1 different subsys-

tems. This measure is zero for fully separable states. It was later shown that this quantity
can be experimentally measurable by recasting it using one factorizable observable while
one has access to only two copies of the state [65]. The only drawback of this measure is
that it gives maximal value for GHZ state which is not thought to be maximally entangled
state for more than three-particle systems. To extend it for mixed states one needs to use
the convex roof extension method i.e., C(ρ12...n) = inf

∑
i piC(|ψ〉12..n), where the infi-

mum is taken over all possible pure state decomposition of mixed state ρ12...n. Performing
this optimization is NP hard.

To bypass this optimization problem, many researchers have calculated the upper and
lower bound on the concurrence of mixed n-particle systems. In [66], authors gave a lower
bound using the Wootters method generalizing it for multiparticle systems. In another
work [67], authors have directly derived a lower bound to the concurrence defined above
by just manipulating the subsystems.

C. Monogamy of entanglement – Sharing of entanglement between parties cannot
be arbitrary. In the seminal paper Coffman, Kundu and Wootters found out that there is
a restriction on sharing of entanglement between parties – which is popularly known as
monogamy of entanglement or CKW inequality [76]. They derived the relation for three
qubit systems and using the concurrence. Let |ψ〉ABC be a three-qubit system then the
inequality reads

C2
A|BC ≥ C2

A|B + C2
A|C , (1.33)

where CX|Y is the concurrence of the bipartition X|Y . This relation means if the entan-
glement between the subsystems A and B is maximal i.e., unity, then there should not

13For n-particle systems one can have
(
n
k

)
numbers of potential bipartition of the type k|n−k, where k can

be atmost
⌊
n
2

⌋
(the floor function b·c is introduced to take care of odd and even n). Hence, the number

of subsystem entropies required to characterize the entanglement of the system are
∑

k

(
n
k

)
. Out of this

number of entropies many will be repetitive, i.e., actual number will be smaller.
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be any entanglement between A and C. This relation was then generalized to n-qubit
systems which is C2

1|23...n ≥
∑n

i=2 C
2
1|i [85]. The relation is a generic feature of entangled

states and using this relation one can define a proper entanglement measure called tangle.
The tangle for a three-qubit system is called the three-tangle [76]. The three-tangle [86]
for a pure three-qubit system is defined as τ(|ψ〉ABC) = C2

A|BC − (C2
A|B + C2

A|C).

The CKW type relations have been derived for many other entangled measures like squashed
entanglement [87], negativity [88], etc., and not only that many new type of monogamy
inequality have been discovered recently [89, 90]. These inequalities tell us that the en-
tanglement shared between the parties in a multiparticle systems are restrictive and gives
rise to a new phenomenon – frustration.

1.3.1.5 Multiparticle entangled states

An arbitrary bipartite pure entangled state in arbitrary dimension can be expressed as

|ψ〉AB =
∑
i,j

Cij|ij〉, (1.34)

where C = [Cij] in general is neither unitary nor Hermitian. The state can be a max-
imally entangled state iff its reduced density matrix, ρA = TrB[ρAB] = C†C = 1

d
I

or vice versa. If there exist two maximally entangled states |ψ〉max and |φ〉max, then
|ψ〉max = UA ⊗ UB|φ〉max i.e., maximally entangled states are same upto some local uni-
tary transformations. Note that if the state |ψ〉AB is a maximally entangled state then UA
should be equal to 1√

d
C. Broadly, there exists two distinct classes – the isotropic states

and the Werner states. All U ⊗ U∗ invariant states have two fixed points – I and the
projector P+. These states are called isotropic states [91] and are expressed as

ρiso = αI + βP+, (1.35)

where α+β = 1 and P+ = 1√
d

∑
i |ii〉〈ii|. These states are either separable or distillable,

no bound entanglement exists here. The U ⊗U invariant states have two fixed points also
– I and the swap operator V . These states are called Werner state [22] and are expressed
as

ρwer = αI + βV, (1.36)

V (|φ〉⊗ |χ〉) = |χ〉⊗ |φ〉. In this class bound entangled states may exist. In case of 2⊗ 2
dimensional states, isotropic states and Werner states are equivalent.

In the case of multiparticle systems, the classification of states require a detailed analysis
and we still don’t know the complete picture. Here, we will discuss properties of some
important states using which we will gain some information about their diversity. There
are some important notions regarding the maximally(?) entangled states in multiparticle
systems (n > 2) [92]. The maximally entangled states (MES), absolutely maximally en-
tangled states (AMES), and task oriented maximally entangled states (TOMES) to name
a few. All these states are genuine entangled states [93].

A. MES and AMES – Maximally entangled states are the pure n-particle states where
single party subsystems are in maximally mixed states. Hence, in this case the entropy
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of the single party will be log2 d, where d is the Hilbert space dimension of that part.
The above one is a not a satisfactory definition of maximally entangled states. The more
appropriate one will be: A n partite state |ψ〉n =

∑
i1,i2,...,in

Ci1i2...in|i1, i2, ..., in〉, is called
absolutely maximally entangled state iff C = [Ci1i2...in ] is a perfect tensor14 [78]. This
means that for all AMES states the entropy of all possible subsystems (single-particle,
two-particle, ... etc) will be maximum possible entropy i.e., log2 d, 2 log2 d, ... etc.

In three-qubit case, GHZ state (|g3〉 = 1√
2
(|000〉 + |111〉)) is the maximally entangled

state and also AMES. But when the four-qubit systems are considered the situation is not
clear. For four-qubit case, there exists no AMES states. In this respect we will investigate
the all possible subsystem entropies of the important states,

|g4〉 =
1√
2

(|0000〉+ |1111〉),

|W 〉 =
1

2
(|0001〉+ |0010〉+ |0100〉+ |1000〉),

|S1〉 =
1

2
(|0000〉+ |0101〉+ |1000〉+ |1110〉),

|S2〉 =
1

2
(|0000〉+ |1011〉+ |1101〉+ |1110〉),

|HS〉 =
1√
6

(|0011〉+ |1100〉+ ω(|0101〉+ |1010〉) + ω2(|0110〉+ |1001〉)),

|C4〉 =
1

2
(|0000〉+ |0011〉+ |1100〉 − |1111〉),

|L〉 =
1

2
√

3
((1 + ω)(|0000〉+ |1111〉) + (1− ω)(|0011〉+ |1100〉)

+ω2(|0101〉+ |0110〉+ |1001〉+ |1010〉)),

|B4〉 =
1

2
√

2
(|0110〉+ |1011〉+ i(|0010〉+ |1111〉) + (1 + i)(|0101〉+ |1000〉)),

|Y C〉 =
1

2
√

2
(|0000〉 − |0011〉 − |0101〉+ |0110〉+ |1001〉+ |1010〉+ |1100〉+ |1111〉),

|HD〉 =
1√
6

(|1000〉+ |0100〉+ |0010〉+ |0001〉+
√

2|1111〉), (1.37)

where ω = e
2iπ
3 . From Table (1.1), it is clear that all the states listed above are highly

entangled states yet none of them satisfy the criteria to be the AMES [78]. This way of
characterizing the multiparticle states might reveal more information about their structure
and the nature of their entanglement [80]. Note that the states |HS〉 and |HD〉 have same
subsystem purities as measured by Tr[ρ2] but have different subsystem entropies [78]. We
will now explain the notion of task oriented maximally entangled states (TOMES) in the
context of three and four qubit states.

B. TOMES – In [79], authors noticed that the notion of maximally entangled states for
bipartite pure entangled systems is unique but in case of multiparticle systems there is
no clear evidence of such notion. This is because every entanglement measures for pure

14If C is a perfect tensor, then it will be multiunitary according to all possible permutations.

21



1 Introduction

ES

All multipartite states

TOMES GMES

AMES

FSS

Figure 1.7: Pure multiqubit states: The picture depicts hypothetical distribution of multi-
partite states: the fully separable states (FSS), the multiparticle entangled
states (ES), genuine multiparticle entangled states (GMES), task oriented
maximally entangled states (TOMES), and absolutely maximally entangled
states (AMES). Notice that TOMES can contain even some k-separable mul-
tiparticle states while it may not include all GMES and even some AMES.

bipartite systems behave similarly whereas for multiparticle systems, this is not the case.
Hence, the notion of maximally entangled multiparticle states may not be universal. There
may exist maximally entangled states with respect to some multiparticle entangled mea-
sure, but such a state may not be suitable for most tasks that one may envision.

They defined the TOMES for some specific tasks like quantum teleportation [8], super-
dense coding [9], quantum cryptography [7, 10, 94], secret sharing [95], telecloning [96],
and or, violating Bell inequalities [18], violating steering equalities and inequalities [19],
etc. If the multiparticle state is useful in performing such tasks maximally then the state
is called the TOMES with respect to that specific task. Then they considered teleportation
and superdense coding for illustrating their notion for n-qubit states.

An n-qubit state would allow one to teleport an unknown arbitrary n
2
-qubit state faithfully

(i.e., with unit fidelity and probability), when n is even and n−1
2

-qubit state, when n is odd.
A n-qubit state would allow one to transmit maximally n-bits of information by sending
n
2

qubits when n is even and n+1
2

qubits when n is odd [97]. For example, the four qubit
GHZ-state (see Eq.(1.37)) is not a TOMES in the context of teleportation because one
cannot teleport an unknown arbitrary two-qubit state. Furthermore, using four qubit GHZ-
state, although one can transmit 2 bits by sending 1 qubit and 3 bits by sending two qubits,
one cannot transmit 4 bits by sending 2 qubits from Alice to Bob [98]. Therefore, the state
is not suitable for the maximal superdense coding also. The subclass of three qubit W-
state given in [99], |W 〉 = 1√

2+2n
(|001〉+

√
n|010〉+

√
n+ 1|001〉) is suitable for maximal

teleportation of unknown 1 qubit state as well as suitable for sending maximal 3 bits by
sending two qubits from Alice to Bob for some specific bipartitions not all bipartions will
serve the perpose of maximal superdense coding. As in the definition of TOMES, this
type of restriction is not there, therefore, the state is a TOMES with respect to the tasks of
teleportation and superdense coding [79]. Note that the product state |φ+〉 ⊗ |0〉 can also
be useful for maximal superdense coding for specific bipartition [79].

For four qubit systems, the prototype states, |C4〉 and |Y C〉 are the TOMES with respect
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to the tasks of teleportation and superdense coding, but GHZ-state, |g4〉 and |HS〉 are not.
Also if we consider quantum secret sharing then the states |g4〉, |C4〉, and |Y C〉 can be
TOMES while |HS〉 cannot (for these states, see Eq.(1.37)).

Therefore, the nature of entanglement of multi-qubit systems are very diverse and not
easy at all to explain by one approach (e.g. see the Fig.(1.7)). For example, we know that
there exist multi-qubit AMES for 5, 6-qubit systems and it is numerically verified that
there does not exist AMES for 7-qubit systems. Also, for n ≥ 8 qubits, there exists no
AMES [78]. This complexity increases if higher dimensional states are considered. Note
that in this context we never talked about the mixed states. In general, the mixed states
are notoriously complex to characterize.

states S(ρ1) S(ρ2) S(ρ3) S(ρ4) S(ρ12) S(ρ13) S(ρ14)
|g4〉 1 1 1 1 1 1 1
|W 〉 0.81 0.81 0.81 0.81 1 1 1
|S1〉 0.81 1 0.81 0.81 1.5 1.22 1.22
|S2〉 0.81 1 1 1 1.5 1.5 1.5
|HS〉 1 1 1 1 1.79 1.79 1.79
|C4〉 1 1 1 1 1 2 2
|L〉 1 1 1 1 1.58 1.58 1.58
|HD〉 1 1 1 1 1.58 1.58 1.58
|B4〉 1 1 1 1 1.6 1.6 2
|Y C〉 1 1 1 1 2 2 1

Table 1.1: Entropy structure: The table depicts the all possible subsystem entropies of the
states given in Eq.(1.37).

1.3.2 Total, classical, and quantum correlations

Intuitively, a quantum state may posses two types of correlations – quantum correlations
and classical correlations [100, 101]. The intuition is very straight forward – consider a
classical state, ρcl = p|00〉〈00| + (1 − p)|11〉〈11|. The state ρcl can also be expressed
in terms of joint probability Pab. Any state which can be written as

∑
a,b pab|ab〉〈ab| is

called classically correlated state if {|ab〉} form a product basis. The state has no quantum
correlations at all. Whereas the state of the form ρq = p|00〉〈00| + (1 − p)| + +〉〈+ + |
which is a mixture of non-orthogonal parts, can possess quantum correlations as well as
classical correlations.

To capture total correlations in a quantum state, the quantifier T (ρ) should posses few
requirements [102]

1. T (ρ) = 0 for product states.

2. T (ρ) ≥ 0, i.e., positive always.

3. T (ρ) is invariant under local unitary.

4. T (ρ) is non-increasing under local operations.
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Note that the classical correlation and quantum correlation quantifier should also satisfy
the above criteria. Having set such criteria, one can now look for the suitable quantifier
for total correlations. In classical information theory mutual information captures the cor-
relations between two random variables. It was then argued that quantum generalizations
of mutual information might be a good quantifier of total correlations [103]. But it is not
the case in general [104]. We will argue it clearly in the next part of this section.

In 1989, Bernett and Phoenix introduced the quantum version of Pearson’s coefficients15

(which they termed as index of correlation as the measure of total correlations in the
quantum states [105]. Later, many authors introduced distance based measures for total
correlations, like distance between the bonafide state ρ and the closest product state ρpro
i.e., T (ρ) = inf ||ρ − ρpro||p, where ||.||p is the Scattern-p norm, or relative entropy be-
tween the states i.e., T (ρ) = inf S(ρ||ρpro). All the above quantifier are hard to compute
analytically and become more and more difficult with the increase in the number of par-
ticles. After minimization the quantifier, the relative entropy becomes a particular form
of mutual information in qubit case [106]. Hence it is worth studying quantum mutual
information in more details and investigate whether it is a good candidate to capture total
correlations.

1.3.2.1 Quantum mutual information and total correlations

Quantum mutual information might capture total correlations in a quantum state. But
problem is that there are many different inequivalent forms of quantum mutual informa-
tion while generalizing them from classically equivalent expressions. Before going into
the discussion we will collect all those forms of mutual informations which might be
the potential quantifier of total correlations. For bipartite case, the relative entropy type
quantifier and Venn diagram approach mutual information coincide with each other, i.e.,
inf{σA,σB} S(ρAB||σA ⊗ σB) ≡ Iq(A : B) = S(A) + S(B) − S(A,B), where σA(B)

may not be the marginals for most general case16 [106]. Moreover, the bipartite quantum
mutual information satisfies all the properties of total correlations measure listed above.

In the case of bipartite systems, the quantum generalization of mutual information in
terms of Von Neumann entropy is Iq(A : B) = S(A) + S(B) − S(A,B). Many argu-
ments and numerical findings exist in literature to support the idea that quantum mutual
information is a good quantifier of total correlations. Which are

1. Classical mutual information captures all the correlations between two random vari-
ables. Being a straight forward generalization from classical one, quantum mutual
information should capture total correlations in a state.

2. Groisman et al. [107] showed that the amount of randomness required to erase all
the correlations in a quantum state is exactly equal to its mutual information. This

15Quantum version of Pearson’s coefficients for the observables OA and OB is defined as TOAOB
=

Cov(OA,OB)√
Var(OA)

√
Var(OB)

. where Cov(OA,OB) = Tr[ρOA ⊗ OB ] − Tr[ρAOA] Tr[ρBOB ] and Var(O) =

Tr[O2ρ]− (Tr[Oρ])2.
16If one considers relative Rènyi and Tsallis entropies instead of relative Von Neumann one.
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1.3 Quantum correlations

gives the operational justification to Landaurer erasure principle [108].

3. If Alice shares a maximally entangled state 1√
2
(|01〉 + |10〉) with Bob, then by

manipulating her part and sending the qubit to Bob, she can communicate 2 bits of
information to him – which is called superdense coding [9]. As 1 qubit count for the
encoding of 1 bit of classical communication, the additional communication power
is related to the negative conditional entropy [13,15]. Also, the mutual information
of the maximally entangled state is 2.

4. The above fact is supported by Schumacher and Westmoreland further: For a one-
time-pad cryptographic communication system if one uses a bipartite quantum state
as the key, then the maximum amount of information that can be sent securely is
the quantum mutual information of the state [109].

These arguments and facts support bipartite quantum mutual information as a good quan-
tifier of total correlations. Note that there is no direct proof of this fact unlike its classical
counterpart. These arguments may not be true for multiparticle quantum systems. Before
delving deeper in the discussions we will try to define and quantify classical correlations
in a quantum state.

1.3.2.2 Classical correlations in a quantum state

In classical word, intuitively we know what we mean by classical correlations. In case
of two random variables, we calculate the Pearson’s coefficient (CX,Y = CY,X) (or co-
variance)17 to find the correlation between them. If Pearson coefficient is +ve then it
implies the correlation between them and if −ve, it is the anti-correlation. Another im-
portant measure in classical information science is mutual information, I(X : Y ) =
H(X) +H(Y )−H(X, Y ) which captures all possible correlations (obviously classical)
between two random variables. This is possibly more general in the sense that Shan-
non entropy, H(X) captures all possible moments while in Pearson coefficients it is only
second order. Although quantum generalization of mutual information is often used as
the quantifier of total correlations, quantum version of Pearson’s coefficients involve the
quantum observables and quantum state. It is not well established as a good quantifier
of correlations in quantum states [e.g. see [110]]. Hence, we will not discuss Pearson’s
coefficient further.

Given all this background we can now focus on classical correlations in a quantum state.
For example, the state ρcc = 1

2
(|00〉〈00|+ |11〉〈11|) has maximal classical correlations in

it. The mutual information of the state, ρcc = 1 is 1. Now if we take the state p|00〉〈00|+
(1 − p)|11〉〈11|, the classical correlations in it is H2(p). H2(p) = 1 if p = 1

2
. Hence,

the classical correlations in a quantum state depends on the classical mixing parameter
p in some sense. For example, the equal mixture of two Bell states (|φ+〉 & |φ−〉 or
|ψ+〉 & |ψ−〉) are the maximally classical correlated state. Although it is too early to say

17For two random variables X and Y , the Pearson’s coefficient is defined as CX,Y = Cov(XY )√
Var(X)

√
Var(Y )

,

where Cov(X,Y ) = E(XY )− E(X)E(X) is the covariance and Var(X) = E(X2)− [E(X)]2 is the
variance with E(·) as the expectation value.
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that the classical correlations in a quantum state is due to our lack of knowledge about
their preparations, it may be the case. If indeed this is the case then a pure quantum
state may not contain any classical correlation at all. But Groiseman et al. [107] argued
that a maximally entangled state contains maximal amount of classical correlation. Their
argument goes like: in order to erase the information content in |ψ+〉, Alice flip a unbiased
coin and if head comes she does nothing on her qubit and if tail comes she performs
σz. In this whole process, Bob will not do anything on his part. Then the final state
is 1

2
(|ψ+〉〈ψ+| + |ψ−〉〈ψ−|) = 1

2
(|00〉〈00| + |11〉〈11|), which contains 1 bit of classical

information. But in order to do so they are introducing 1 bit of classicality (noise) in the
state already through the random operation.

According to Modi [101], “A state is said to be classically correlated if and only if it
can be fully determined without disturbing it with the aid of local measurements and
classical communication". According to him, a classically correlated states should be
diagonal in an orthonormal product basis. The general structure for these type of states are∑

a,b pab|ab〉〈ab|, where {|ab〉} forms an orthogonal product basis. It has been argued that
the separable states are the shadows of classical states [111–113]. For a separable state ρ
∈Ha⊗Hb, there exists always a classical state χ in larger Hilbert spaceKa⊗Ha⊗Hb⊗Kb
such that ρ = TrKa,Kb [χ].

Before concluding anything about the classical correlations, quantum correlations and
total correlations in quantum states, let us review some of the existing literature regarding
these.

1.3.2.3 Classical correlations and conditional quantum mutual information

In 2001, Henderson & Vedral [100] tried to split the total correlations in a state into classi-
cal and quantum one consistently. They argued that the quantum generalization of mutual
information may capture total correlations of the state like its classical counterparts. They
also considered relative entropy of entanglement as a measure of quantum correlations.
This intuition they got from the definition of mutual information which captures the dis-
tance between the state and its marginals i.e., Iq(A : B) = S(ρAB||ρA⊗ρB), so as relative
entropy of entanglement is the minimum distance of the state from its nearest separable
state, i.e., ERE(ρAB) = infσAB S(ρAB||σAB) [114, 115]. Hence, ERE(ρAB) ≤ Iq(A : B)
in general. According to them a classical correlation measure, (C`(ρ)), should satisfy the
following properties: – (i) C`(ρ) = 0 for product state, (ii) it is invariant under local uni-
tary operations, (iii) it is non-increasing under local operations, and (iv) for pure state, it
is just equal to the entropy of the subsystem, like the quantum correlations (here entan-
glement). Then they suggest a measure which satisfy all these criterion and the proposed
measure is

C`B(ρAB) = max
πBi

[S(A)−
∑
i

piS(A|πBi )], (1.38)

where S(A|{πBi }) = S(ρA|πBi ) with ρA|πBi =
πBi ρAB(πBi )†

pi
(where pi = Tr(πBi ρAB) is

the probability of obtaining the ith outcome). Here, S(A|{πBi }) is the Von Neumann
entropy of the qubit A, when the POVM is applied on B and the measurement result is i.
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1.3 Quantum correlations

Alternatively,
C`A(ρAB) = max

πAi

[S(B)−
∑
i

piS(B|πAi )], (1.39)

where measurement is performed on subsystemA. Then they conjectured thatC`B(ρAB) =
C`A(ρAB) if S(A) = S(B). But we know this is not true in general. The measure is the
generalized version of the classical mutual information, I(A : B) = H(A) − H(A|B)
in the quantum regime. Moreover, the quantity is similar to the Holevo bound18 which
measures the capacity of quantum states for classical communication. They used three
examples to illustrate the measure of classical correlations. First, they considered the
state,

ρ1
AB = p|φ+〉〈φ+|+ (1− p)|φ−〉〈φ−|, (1.40)

where |φ±〉 = 1√
2
(|00〉 ± |11〉) and 1

2
≤ p ≤ 1. For the state, the mutual information

is Iq(A : B) = 2 − H2(p), relative entropy of entanglement, ERE(ρ1
AB) = 1 − H2(p),

and classical correlations, C`A(ρ1
AB) = C`B(ρ1

AB) = 1 = C`(ρ
1
AB). Therefore, in this

case Iq(A : B) = ERE(ρ1
AB) + C`(ρ

1
AB). Note that C`(ρ1

AB) ≥ ERE(ρ1
AB). Next, they

considered the Werner state

ρwAB =
1− p

4
I4 + p|φ+〉〈φ+|, (1.41)

with 1
2
≤ p ≤ 1. The mutual information for the state is given by Iq(A : B) = 2−H2(f)+

(1−f) log2 3 and relative entropy of entanglement is ERE(ρwAB) = 1−H2(f), where f =
3p+1

4
. As the state is symmetric, its classical correlations will beC`A(ρwAB) = C`B(ρwAB) =

C`(ρ
w
AB). They numerically showed that in this case C`(ρwAB) + ERE(ρwAB) < Iq(A : B)

and interestingly C`(ρwAB) ≥ ERE(ρwAB). This may indicate that the mutual information
may not be a good measure of total correlations, or the correlations are not additive at all.
They noticed that in asymptotic limit measurements on many copies might yield larger
value of classical correlations as classical correlations are superadditive i.e., C`(ρ⊗ ρ) ≥
2C`(ρ), while relative entropy of entanglement is subadditive i.e.,ERE(ρ⊗ρ) ≤ 2ERE(ρ)
and total correlation measure, mutual information is additive, i.e., Iq(ρ ⊗ ρ) = 2Iq(ρ).
Also they raised the question whether C`(ρ) ≤ Iq(A : B) is true in general. Then they
provided another possible measure of classical correlations which is based on relative
entropy, C`RE(ρAB) = S(σ∗AB||ρA⊗ ρB), where σ∗AB is the closest separable state to ρAB.
For the state ρ1

AB, C`RE(ρ1
AB) = 1 = C`(ρ

1
AB), for the state (this is their third example)

ρqAB = p|00〉〈00| + (1 − p)| + +〉〈+ + | (where |+〉 = 1√
2
(|0〉 + |1〉)), C`RE(ρ1

AB) =

Iq(A : B). For Werner state, C`RE(ρwAB) = 0.2075 ∀p ∈ {1
2
, 1}, therefore for smaller

values of p, C`RE(ρwAB) > ERE(ρwAB), but for higher values C`RE(ρwAB) < ERE(ρwAB). So,
in general Iq(A : B) > C`RE(ρwAB) +ERE(ρwAB). It is also unclear whether C`RE(ρAB) is
non-increasing under local operations.

18Let say, Alice has the random variableX which can take value xwith probability px. She encodesX in an
quantum ensemble {pi, ρi} and sends to Bob. Now, Bob can extract information aboutX by performing
POVM operations {EY } on the ensemble. He denotes the classical outcomes as Y . Therefore, the
accessible information for Bob is the maximum possible mutual information I(X : Y ) which is upper
bounded by Holevo bound (or popularly known as Holevo χ quantity), i.e., I(X : Y ) ≤ χ({pi, ρi}),
where χ({pi, ρi}) = S(

∑
i piρi)−

∑
i piS(ρi).
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1.3.2.4 Quantum discord

The quantum discord was introduced by Olivier and Zurek (2002) [116] as a measure
of the “quantumness of correlations”. It is defined in terms of the mutual information.
Classically, the mutual information is a measure of common information in two random
variables. Therefore, it was natural to generalize it to the quantum domain and express
quantum correlation in terms of this object. As discussed before, however, the definition
of the mutual information in quantum domain is not straightforward. This is because there
are more than one classical expressions to define the mutual information. These differ-
ent expressions admit different generalizations. In the quantum discord, this difference
is used to characterize the quantum correlations. Classically, one can write the mutual
information in two alternate ways,

J(X : Y ) = H(X)−H(X|Y ), and
I(X : Y ) = H(X) +H(Y )−H(X, Y ). (1.42)

HereH(X), H(X, Y ) andH(X|Y ) are the entropy, joint entropy, and conditional entropy
for the random variables X and Y . The Joint entropy and conditional entropy are related
by the chain rule, H(X|Y ) = H(X, Y )−H(Y ).

These expressions for the entropies can be generalized to the quantum domain by sub-
stituting random variables by density matrices and Shannon entropies by Von Neumann
entropies. For example, H(X) → S(ρX) = −Tr[ρ log2(ρ)]. The generalization of the
mutual information will also involve the generalization of the conditional entropy. They
used the generalization as suggest in the Ref [100]. Using this generalization to the quan-
tum domain, one gets for the state ρXY ,

Iq(X : Y ) = S(X) + S(Y )− S(X, Y )

Jq(X : Y ) = S(X)− S(X|{πYi }). (1.43)

where S(X|{πYi }) =
∑

i piS(ρX|πYi ) with ρX|πYi =
πYi ρXY π

Y
i

pi
(where pi = Tr(πYi ρXY )

is the probability of obtaining the ith outcome). Here, S(X|{πYi }) is the Von Neumann
entropy of the qubit X , when the one dimensional projective measurement is done on Y .
The quantum discord function is then defined as,

D(X : Y ) = Iq(X : Y )− Jq(X : Y ) = S(Y )− S(X, Y ) + S(X|{πYi }) (1.44)

This is to be minimized over the set of all one dimensional projectors {πYi }. We shall
call D(X : Y ) as discord function and its minimum value as the quantum discord i.e.,
δY = max{πYi }D(X : Y ). The states for which the quantum discord vanishes are of the
form

ρcq =
∑
i

pi|i〉〈i| ⊗ ρi, (1.45)

where {|i〉} form a orthogonal basis. These types of states are called classical-quantum
states. Therefore, the separability criteria and vanishing discord criteria are different, e.g.
for Werner state, discord is non-zero for p > 0 while the state is separable for p ≤ 1

3
. This

means separable states may contain quantum correlations too.
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1.3 Quantum correlations

Notice that the quantity, the quantum mutual information with conditional entropy, J(X :
Y ) is related with the measure of classical correlations [100], i.e.,

C`Y (ρXY ) = max
{πYi }

Jq(X : Y ). (1.46)

Hence, the quantum discord is equivalent to the difference of ‘total correlations−classical
correlations’ i.e.,

δY = Iq(X : Y )− C`Y (ρXY ). (1.47)

So, quantum discord can be a good quantifier of quantum correlations in a quantum state.

It is evident that the discord function is not symmetric inX and Y . In the above definition,
we are making a measurement on the system Y . Let us call it Y -discord. Similarly, we can
defineX-discord, when the measurement is made on the systemX , D(Y : X) = S(X)−
S(X, Y ) + S(Y |{πXi }). Here S(Y |{πXi } is defined in the same way as S(X|{πYi }). For
a bipartite state, X-discord and Y -discord may have different values. They will have
identical values when the state is symmetric in X and Y . But, they are always non-
negative. For a pure bipartite state, both discords reduce to the Von Neumann entropy.
Note that calculating discord is a NP hard problem [117].

This discovery got much attentions immediately for its simplicity and tremendous im-
plications. It opens up once again the discussions of total correlations and splitting it
into quantum and classical one. Many tried to generalize these results for multiparticle
states [118–122], Gaussian states [123,124], higher dimensional states [125,126] but there
are still some issues. Geometric approach was also employed to characterize the quantum
correlations in the state – this quantity is popularly known as geometric discord [127].

1.3.2.5 Correlations and work extraction

Oppenheim et al. [128] argued that the correlations captured by quantum mutual infor-
mation in a bipartite quantum state can be split into two parts – the classical correlations
and quantum correlations. In case of a pure bipartite state |ψ〉AB, these two give equal
contributions to mutual information i.e., both are equal to the entropy of a subsystem
– S(ρA(B)) bits. Hence, as a conjecture, they put forward that mutual information is a
measure of total correlations. These arguments were supported by introducing local and
nonlocal information which are complimentary in nature. Locally accessible information
is called local information [129–131] and the information which is required to perform
tasks which have no classical counterpart is called nonlocal information [132]. They de-
fined these quantities in terms of work extractions from a bipartite state. Given a bipartite
state one can extract total work, Wt from the state using a subclass of LOCC operations,
CLOCC19. We know total extractable work from the state ρAB is

Wt = log2 dAB − S(ρAB), (1.48)

19We know that purer the state is the more work can be extracted from it locally. Hence simply introduction
of pure ancilla may increase the extraction of work. Here, we will consider those LOCC operations
which will not increase the number of particles of the systems. These operations, they termed as close
LOCC (CLOCC) operations, e.g. local unitary operations, sending particle through dephasing channel.
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where dAB is the total Hilbert space dimension of the state. According to them the to-
tal information content of the system is It = Wt. Now if one extracts work from the
subsystems {ρA = TrB[ρAB], ρB}, then the total extractable work is

Wl = log2 d
′
A − S(ρ′A) + log2 d

′
B − S(ρ′B), (1.49)

where the ‘prime’ signifies that in the process of localizing the information, CLOCC
operations were applied on ρAB which transformed to ρ′AB. This work is equivalent to
the localizable information (Il) i.e., Il = Wl. The state will be classically correlated if
It = Il. If we subtract the localizable information from the total, the remaining one is the
nonlocal information which in turn is nothing but the work deficit [128, 132] i.e.,

4q = It − Il. (1.50)

The quantity It can be identified with the mutual information I . Although this analysis
is true for pure entangled states, for mixed bipartite states the quantity 4q exceeds the
entanglement and is recognised as a measure of quantum correlations beyond entangle-
ment [133]. They observed that local and nonlocal information taken together is equal
to the mutual information. We quote them here, “It is natural to suppose that the best
defined information is the one defined operationally". Operationally, local and nonlocal
information are useful in two complimentary processes – 1) to perform physical work, and
2) to perform useful logical quantum work (teleportation) respectively. Later, Horodecki
et al. [128, 129] further investigated the above formalism and established that the work
deficit is equivalent to entanglement for pure state but in general it identifies with the
QCsbE [133]. They also defined two new concepts, quantum deficit and classical deficit
to capture the quantum correlations and the classical correlations respectively. The quan-
tum deficit is the difference between total (It) and localizable information (Il) and the
classical deficit is defined as the difference between the localizable information (Il) and
the local information of the initial state (ILO), where ILO = log2 dAB − S(ρA) − S(ρB),
i.e.,

4cl = Il − ILO. (1.51)

Hence, intuitively, I = 4q +4cl. Then, they asked the question: Can quantum correla-
tions be more than classical one? As two deficits sum up to the total correlations (quantum
mutual information), can we distribute them arbitrarily? For pure state it is not the case,
i.e., they both are equal to half of the mutual information. This implies that in the case
of a pure state quantum correlations never exceeds classical one. But for mixed states,
we have no conclusive proof why the quantum correlations will be less than the classical
correlations. Note that according to [134] classical deficit can increase under local oper-
ations and hence does not qualify as a measure of classical correlations. Moreover, this
analysis can easily be extended for multiparticle systems.

1.3.2.6 Erasing correlations – new perspective

In an operational approach, Groisman et al. [107] showed that the two-qubit maximally
entangled states |ψ+〉 contains 1 bit of classical and 1 bit of quantum correlations. They
defined these correlations in terms of work (or, noise) required to erase the correlations
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in the state. For total correlations, they considered total work as a quantifier i.e., we have
to erase the total correlations completely. In order to erase correlations, they considered
a special type of operations – introduction of noise in the state by local operations. Let
Alice and Bob share an entangled state |ψ+〉 = 1√

2
(|00〉 + |11〉). Now suppose Alice

wants to erase the entanglement of the state. She will be able to do this by introducing 1
bit of randomness or noise in the state: she can apply one of the two local unitaries I and
σ3 on her qubit with equal probability. With this operations the state becomes

ρer1 =
1

2
(|ψ+〉〈ψ+|+ |ψ−〉〈ψ−|), (1.52)

where |ψ−〉 = 1√
2
(|00〉 − |11〉). This state has no entanglement as it is equivalent to the

classically correlated state

ρcl =
1

2
(|00〉〈00|+ |11〉〈11|). (1.53)

Despite that its entanglement is gone, the state now contains 1 bit of classical correlations.
To erase this correlations, Alice will apply random bit flip (i.e., applying either I or σ1 at
random). The operations will bring the state to

ρer2 =
1

4
IA ⊗ IB. (1.54)

This state contains no correlations at all. Hence, they concluded that the maximally en-
tangled state contains total 2 bits of correlations – 1 bit classical and 1 bit quantum. Later,
they theorised that the total cost of erasing is equivalent to the quantum mutual informa-
tion Iq(A : B) of the state i.e., we need Iq(A : B) bits of noise to erase total amount of
correlations in the state. For example, notice that the quantum mutual information of the
state |ψ+〉 is 2 which is exactly equal to the amount of noise/randomness needed to erase
the total correlations. Therefore, mutual information can be a good quantifier of total
correlations for quantum states. They further introduced multiparticle quantum mutual
information Iq(A1 : A2 : ... : An) =

∑
i S(Ai) − S(A1, A2, ..., An) which may capture

total correlations in a multiparticle state.

1.3.2.7 Do all entanglement measures qualify as consistent measure of
quantum correlations?

Li and Luo [103] examined whether the existing entanglement measures like the distill-
able entanglement [47–49], the entanglement of formation [50], the entanglement cost20

[135], the squashed entanglement, and the relative entropy of entanglement [114, 115]
qualify as a good measure of quantum correlations when we consider quantum mu-
tual information as a measure of total correlations. They noticed that any pure two-
qubit entangled state contains Iq(A : B) bits information, e.g., as already we know
Iq(|ψ+〉〈ψ+|) = 2 bits. Although it is not yet clear how to separate quantum correla-

20It is a dual measure to the entanglement of distillation. Entanglement cost is an entanglement measure
that quantifies how many maximally entangled states are required to prepare a copy of a state using only
LOCC operations.
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tions from classical one but we can gain some insight about them using the following
argument. In case of maximally entangled state we know that it has 1 bit of entanglement
in it. In this context many authors thought that it will be a paradox if we think that the
maximally entangled state has only quantum correlations [13, 15, 107, 129]. Below we
will list their arguments –

1. In superdense coding, Alice can communicate 2 bits of classical information to Bob
by just applying local operations on her qubit if they share a maximally entangled
state.

2. In a maximally entangled state, the rest one bit of information (apart from its entan-
glement) is related to the negative conditional entropy [13, 15]. According to them
this negative information is giving the power to Alice to perform jobs which are
impossible classically.

3. Groisman et al. showed that for a maximally entangled state, 2 bits of mutual
information is equal to the 1 bit of quantum correlations + 1 bit of classical corre-
lations [107].

4. Horodecki et al [129] gave same argument as Groisman et al but said that these two
correlations are complementary to each other making them harder to utilize at the
same time i.e., 2 is not equal to 1 + 1 rather it is equal to either 1 or 1.

For pure bipartite states, the above arguments can be generalized easily i.e., it will con-
tain E(|ψ〉〈ψ|) = S(TrB[|ψ〉〈ψ|]) bits of quantum correlations and I − E(|ψ〉〈ψ|) =
S(TrB[|ψ〉〈ψ|]) bits of classical correlations – i.e., it contains equal amount of both the
correlations. Then what about mixed states? Can the relation

Iq(ρ) = C`(ρ) +Q(ρ), (1.55)

hold? (Here C`(ρ) is the classical correlations and Q(ρ) quantum correlations in the state
ρ.) Since, the classical mixedness increases the classical correlations, and the mixing
generally decreases the quantum correlations, it is plausible to assume that C`(ρ) ≥ Q(ρ)
[103]. This argument is also supported by the authors [103]. They argued that a quantum
state may contain classical correlations without any quantum one but not vice versa. Then
from Eq.(1.55), we can intuitively postulate that

Q(ρ) ≤ 1

2
Iq(ρ). (1.56)

According to them quantum mutual information is a well-established measure of total
correlations in a quantum state. They are assuming it from the earlier literature that we
have discussed in this section. On top of that they assume,

“For any quantum state the classical correlation should not be less than the
quantum one".

The justifications are

1. For pure states, the amount of classical correlations is equal to quantum one.

2. For mixed states, it is intuitive that with the increase of mixedness in a state its
classicality will increase and its quantumness will reduce. Importantly if a pure
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state which has equal quantum and classical correlations, becomes more and more
mixed, its classicality will dominate over quantum one.

3. According to them, the separable states contain only classical correlations.

The above assumption was first considered by Henderson and Vedral [100] and later con-
jectured by Groisman et al [107]. Then, they considered a bunch of quantum correlations
(Here, they took it as same as entanglement.) measures to see whether they satisfy the
above assumption. The distillable entanglement and the squashed entanglement satisfy
the Eq.(1.56) and the relative entropy of entanglement and entanglement cost satisfy the
relation Q(ρ) ≤ Iq(ρ), hence are the good measures of quantum correlations. The distill-
able entanglement and the squashed entanglement are the better measures as they satisfy
the assumption also. Although in some cases entanglement cost satisfy the Eq.(1.56) but
in general it is not true. But the entanglement of formation does not satisfy any of the
Eq.(1.56) or Q(ρ) ≤ Iq(ρ), it may exceed total correlations also. Hence it is not a good
measure of quantum correlations although it has a clear physical meaning. It was con-
jectured that the entanglement of formation is additive on tensor product [136, 137] and
hence will coincide with entanglement cost [138]. However, if it is true then this may
lead to contradictions. Later, it was shown that the entanglement of formation is not ad-
ditive [60]. However, it has been argued that the regularized version of entanglement of
formation is equal to the entanglement cost [138].

1.3.2.8 Does mutual information capture all possible correlations?

In the work [104], the author reasoned that the quantum generalization of mutual informa-
tion may not capture all types of correlations in the quantum states. Mainly in the context
of classical states, he illustrated that the mutual information was not able to capture all
possible classical correlations. Then he further suggested that a known information theo-
retic quantity might capture the total correlations in the quantum states. He observed that
the assumptions

1. Total correlations, T (ρAB) = Iq(ρAB).

2. T (ρAB) = C`(ρAB) +Q(ρAB).

3. C`(ρAB) ≥ Q(ρAB).

are contradicted by some results in the literature. For example,

• The statements (1) and (2) cannot be true simultaneously, if we measure quantum
correlations by relative entropy of entanglement and classical one by a measure
based on the maximum information that could be extracted from one system by
making a POVM measurement on the other one [100].

• If one assumes that entanglement of formation is a measure of quantum correla-
tion then for some states Q(ρAB) ≥ 1

2
Iq(ρAB). Therefore, if statements (2) and (3)

hold then T (ρAB) ≥ Iq(ρAB) [103]. For certain states, the quantum correlations
measured by entanglement of formation may even exceed the quantum mutual in-
formation, i.e., Q(ρAB) ≥ Iq(ρAB) [103].

• Moreover it is very evident that if one considers entanglement of formation as a
measure of quantum correlations and if statements (1) and (2) hold then C`(ρAB) ≤
Q(ρAB) [103, 139].
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Author then argued that the mutual information might not be a measure of total correla-
tions as it could not accommodate the physically motivated and well established measures
of quantum correlations (quantum entanglement). Moreover, if the statement (1) is true
indeed then for classically correlated quantum states

T (ρAB) = C`(ρAB) = Iq(ρAB). (1.57)

But according to him, for some classically correlated states this is not the case, mutual
information alone might not capture all correlations in the states. For example, consider
the state

ρABcl = p|00〉〈00|+ (1− p)|11〉〈11|, (1.58)

where 0 ≤ p ≤ 1. Suppose Alice measures observableOA = a1|0〉〈0|+a2|1〉〈1| and gets
the outcome ai, then the post measurement the system state will be ρABi = 1

pAi
(|i〉〈i| ⊗

I)ρABcl (|i〉〈i| ⊗ I), where pAi = Tr[(|i〉〈i|)ρA]. Next, Bob will measure OB = b1|0〉〈0| +
b2|1〉〈1|, then the conditional probability that the Bob’s outcome will be bj given that
Alice’s is ai, is pB|Aj|i = Tr[(I⊗ |j〉〈j|)ρABi ] and the joint probability pABij of measurement
outcome ai and bj is given by pABij = Tr[(|i〉〈i| ⊗ |j〉〈j|)ρABcl ]. It can be shown that

pB|A = [p
B|A
j|i ] =

[
1 0
0 1

]
and pAB = pABij =

[
p 0
0 1− p

]
, (1.59)

with pA = pB = (p, 1 − p). One can see that random variables A and B (with alphabet
A = {a1, a2} and B = {b1, b2} respectively) are not independent and thus there exists
classical correlations between them. Now, mutual information of that is just equivalent to
the mutual information between the random variables A and B, which is

I(A : B) =
∑
i,j

pABij log2

(
pABij
pAi p

B
j

)
= H2(p). (1.60)

Therefore, the classical correlation of the state can be arbitrarily small as measured by
quantum mutual information as p ∈ {0, 1} though the state is perfectly correlated in the
information theoretic sense (see Eq.(1.59)). If the measurement outcome of Alice is ai
then Bob’s will be bi i.e., B is one-to-one function of A – which reflects the correlations
between the two random variables. Therefore, mutual information may not be a good
quantifier for total quantum correlations. Note that mutual information I(A : B) does
not capture all the correlations between random variables A and B, except for p = 1

2
.

We know that Alice has a priori uncertainty about the measurement outcome of OB
which is given by H(B) = −

∑
j p

B
j log2 p

B
j . If the measurement outcome of OA is

ai, then the uncertainty about the measurement outcome of OB will reduce to H(B|A =

ai) = −
∑

j p
B|A
j|i log2 p

B|A
j|i . Therefore, the information she gain about the measurement

outcome of OB due to the measurement outcome of OA is H(B) − H(B|A = ai).
Hence, the average gain of information about the measurement outcome of OB due to
the knowledge of the measurement outcome of OA is

∑
i p

A
i (H(B) −H(B|A = ai)) =

H(B)−H(B|A) = I(A : B), which can be arbitrarily small. Thus it is clear that classical
mutual information does not capture classical correlations between two random variables,
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rather it captures mutual dependency between them. Then what is the information theo-
retic measure of correlations between two random variables? He took the known quantity
Ĩ(A : B) = I(A:B)

H(A)
[5] as a measure of correlations between two random variables which

satisfies the required properties21 to be one. For example, the correlations, Ĩ(A : B) = 1
(notice that pA = pB and I(A : B) = H(A)), which is independent of p and clearly
describes the perfect correlations between A and B. If the probability mass functions are
not equal for both the random variables, then the above definition can be extended [5] to

Ĩ(A : B) = max

[
I(A : B)

H(A)
,
I(A : B)

H(B)

]
=

I(A : B)

min[H(A), H(B)]
. (1.61)

It was pointed out that this quantity is symmetric and lies between 0 and 1 – 0 value
depicts no correlations while 1 for perfect correlations between A and B. Let us consider

|ψ〉 =
√
α|00〉+

√
1− αeiφ|11〉, (1.62)

where 0 ≤ α ≤ 1 and φ is the phase. If we calculate the probability mass functions,
joint probabilities and conditional probabilities for the same measurement observables
(OA and OB) performed by Alice and Bob, then from Eq.(1.61) one can show that the
state |ψ〉 has perfect correlations ∀ (α and φ). One can generalize, by analogy, Eq.(1.61)
to quantum regime by just replacing Shannon entropy with Von Neumann entropy, i.e.,
the total correlation measure for quantum states is

T (ρAB) =
Iq(ρAB)

min[S(ρA), S(ρB)]
. (1.63)

The Eq.(1.63) tells us that the total correlations of the state |ψ〉 is 2 ∀ (α and φ), which
may not contradict the earlier results by Goisman [107], because to erase the correlations
of two maximally entangled states may require different amount of randomness. For
instance, to erase the correlations in the state ρABcl one needs 1 bit of randomness if p = 1

2
,

and 2 bits if p 6= 1
2
.

1.3.2.9 Correlations and uncertainties

In [140], Luo discussed the possible decomposition of total uncertainty in a general state
in terms of pure quantum and classical uncertainties. He showed that indeed the total
uncertainty measured by variance can be split into two such distinct parts, i.e., total un-
certainty = classical part + quantum part. Let us consider the following decomposition
of state ρ and observable OA

Var(OA)ρ = Cu(ρ,OA) +Qu(ρ,OA), (1.64)

where Cu(ρ,OA) is the classical part of uncertainty and Qu(ρ,OA) is the quantum part.
These uncertainties should have the following properties

21Properties of Ĩ(A : B): – (i) Ĩ(A : B) = Ĩ(B : A), (ii) 0 ≤ Ĩ(A : B) ≤ 1, (iii) Ĩ(A : B) = 0 if A and
B are totally independent, and (iv) Ĩ(A : B) = 1 if A and B are perfectly correlated.
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• Qu(ρ,OA) should not increase under classical mixing of states i.e., for the mixed
state ρm =

∑
i piρi, where ρi are pure states and

∑
i pi = 1, Qu(

∑
i piρ,OA) ≤∑

i piQu(ρ,OA) whereas Cu(
∑

i piρ,OA) ≥
∑

i piCu(ρ,OA).

• If ρ is pure then Qu(ρ,OA) = Var(OA)ρ and Cu(ρ,OA) = 0 because there is no
classical mixing.

• If [ρ,OA] = 0, then Qu(ρ,OA) = 0 and Cu(ρ,OA) = Var(OA)ρ. In this case
we can work in the eigenbasis of ρ and OA. In this basis both the state and the
observable are classical.

For quantum part of uncertainty, he chose the square root quantum Fisher information
[141] and proposed a new quantity which will serve as the measure of classical uncertainty
i.e.,

Qu(ρ,OA) = −1

2
Tr[
√
ρ,OA]2 and Cu(ρ,OA) = Tr[

√
ρOA0

√
ρOA0 ], (1.65)

where OA0 = OA − Tr[ρOA]. It is clear that all these quantities can be measured experi-
mentally [142, 143]. These two quantities satisfy the following properties also –

1. Under unitary operations U , Qu(UρU
†, UOAU †) = Qu(ρ,OA).

2. Qu(ρ1 ⊗ ρ2,OA1 ⊗ I + I⊗OA2) = Qu(ρ1,OA1) +Qu(ρ2,OA2).

3. Qu(ρ,OA1 ⊗ I) ≥ Qu(ρ1,OA1), where ρ1 = Tr2[ρ].

All these properties also hold for Cu(ρ,OA) with the inequality reversed. For illustration
let us consider following two states

ρp = |ψ〉〈ψ| and ρm =
1

N

∑
i1,i2

|i1i2〉〈i1i2|, (1.66)

where |ψ〉 = 1√
N

∑
i1,i2
|i1i2〉 and {|i1〉} and {|i1〉} form orthogonal bases. Let us con-

sider two observables O1 =
∑

i1
αi|i1〉〈i1| and O2 =

∑
i2
βi|i2〉〈i2|. Then the uncertain-

ties of observable O = O1 ⊗O2 are

Qu(ρp,O) = Var(O)ρm =
1

N

∑
i

α2
iβ

2
i −

(∑
i

αiβi

)2
 & Cu(ρp,O) = 0,

Qu(ρm,O) = 0 & Cu(ρp,O) = Var(O)ρm =
1

N

∑
i

α2
iβ

2
i −

(∑
i

αiβi

)2
 .

The formalism is giving more information about the states which the conventional vari-
ance cannot. Taking together quantum and classical uncertainties as two dimensional
vector quantity, {Qu(ρ,OA), Cu(ρ,OA)} one can get more information about a quantum
state.

From this perspective, he defined two new correlations measures, measure of classical
and quantum correlations, directly motivated from the idea of classical and quantum un-
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certainties. The classical and quantum correlation measures are

Q(OA,OB)ρ = Tr[ρO†A0
OB0 ]− Tr[

√
ρO†A0

√
ρOA0 ],

and C`(OA,OB)ρ = Tr[
√
ρO†A0

√
ρOB0 ]. (1.67)

Hence,Q(OA,OB)ρ+C`(OA,OB)ρ = Cov(OA,OB)ρ, where Cov(OA,OB)ρ = Tr[ρO†A0
OB0 ].

Here conventional covariance seems to capture total correlations in the state ρ. How
good are these measures? Let us consider the same states, ρp and ρm and observables,
OA = O1 ⊗ I and OB = I⊗O2. Then

Q(OA,OB)ρp = Cov(OA,OB)ρp =
1

N

∑
i

(αi − ᾱ)(βi − β̄) & C`(OA,OB)ρp = 0,

C`(OA,OB)ρm = Cov(OA,OB)ρm =
1

N

∑
i

(αi − ᾱ)(βi − β̄) & Q(OA,OB)ρm = 0,

where ᾱ = 1
N

∑
i αi and β̄ = 1

N

∑
i βi. Hence, classical correlations and quantum cor-

relations distinguish the states ρp and ρm, while the conventional covariance fails to do
so. As ρm is a classical state it only has classical correlations whereas the pure quantum
state ρm has only quantum correlations. Note that to capture correlations the observables
should be of the form OA = O1 ⊗ I and OB = I ⊗ O2 i.e., locally applied to the sub-
systems and have less than unit norm. To capture entanglement like correlations author
introduced another quantity Ẽ(ρ) = supOA,OB Q(OA,OB)ρ, where supremum is taken
over all possible OA = O1 ⊗ I and OB = I ⊗ O2. Therefore, Q(OA,OB)ρ may capture
correlations beyond entanglement [4]. This idea then was perused by the author and his
collaborator in their next work, where they have established that these type of measures
may capture quantum correlations in a quantum state [144].

1.3.2.10 Measurement induced disturbance and correlations

Entanglement and quantumness are two distinct fundamental features of the quantum
theory. While the entanglement arises from superposition, the quantumness is due to the
noncommutativity of operators representing the states, the observables and the measure-
ments. As these two ideas are closely intertwined, it is sometimes difficult to separate
them out. While for pure states both the ideas can be identical, it become quite complex
when mixed states are considered.

Luo in [145], tried to address this issue through the concept of measurement induced
disturbance (MID). He employed a simple idea: ‘In classical theory, measurements can
reveal properties of the systems without disturbing it. But for quantum systems, mea-
surements necessarily disturb it. If a state can be measured locally by some projective
measurements without disturbing it, then the state is a classical state’. Let ρAB be a bi-
partite state and {πAi } and {πBj } are complete projective measurements for the particles
A and B respectively. Then after measurements, the state ρAB changes to

Π(ρAB) =
∑
ij

πAi ⊗ πBj ρABπAi ⊗ πBj . (1.68)
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Therefore, if Π(ρAB) = ρAB, then ρAB is a classical state. It can be proved that if ρAB is
classical then its reduced density matrices are ρA =

∑
i piπ

A
i and ρB =

∑
i piπ

B
i . Which

implies that the classical state can always be expressed as

ρCAB =
∑
ij

pijπ
A
i ⊗ πBj . (1.69)

It means [ρCAB, π
A
i ⊗ πBj ] = 0. Moreover, pi =

∑
j pij and pj =

∑
i pij . From these

findings one can easily conclude that a classical-quantum state can be re-expressed as
ρCQAB =

∑
i piπ

A
i ⊗ ρiB, where ρiB are local non-orthogonal states for B.

Then he asked, which measurement will induce the closest classical state to the original
quantum state while keeping the reduced states invariant? This lead him to define a quan-
tity which can capture the quantum correlations of the original state. One such quantity
is

QD(ρAB) = inf
Π
D(ρAB||Π(ρAB)), (1.70)

where D(·||·) may be any suitable distance on quantum states.

If we accept quantum mutual information, Iq(A : B) = S(A) + S(B) − S(A,B) as a
measure of total correlations in a quantum state, then one can define another quantity

Q(ρAB) = Iq(A : B)− Iq(Π(ρAB)), (1.71)

where Iq(Π(ρAB)) captures the total correlations in the classical state Π(ρAB) and thus
Iq(Π(ρAB)) quantifies the total classical correlations in the state ρAB. Therefore, naturally
Q(ρAB) captures the quantum correlations in ρAB. Note that Q(ρAB) is symmetric in
parties. For pure bipartite states it reduces to the Von Neumann entropy of the subsystems,
and is invariant under local unitary transformations i.e., Q(U1 ⊗ U2ρU

†
1 ⊗ U

†
2) = Q(ρ).

It is shown that MID is non zero for classical states also [146]. In the [147], this problem
was addressed by invoking optimization over general local measurements (POVMs) i.e.,
Q′(ρAB) = Iq(A : B) − max{EA⊗EB} I

q(Π(ρAB)). Note that a mathematically similar
quantity as given in Eq. (1.71), was also introduced in [148] under the name deficit, which
is different from work deficit.

1.3.2.11 Relative entropic approach

Modi et al. [118] discussed the problem of separating total correlations into classical
correlations, dissonance, and entanglement using the relative entropy of distance in case
of multiparticle quantum systems. They introduced the new concept of dissonance, which
together with entanglement roughly sum up to quantum correlations. In other words,
‘dissonance is the quantum correlations without entanglement’. The relative entropic
measures for total correlations, classical correlations, quantum discord, entanglement,
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and dissonance for the multiparticle state ρ are respectively,

T (ρ) = inf
πρ
S(ρ||πρ) (Total correlations), (1.72)

C`(ρ) = inf
πρ
S(χρ||πρ) (Classical correlations), (1.73)

Q(ρ) = inf
χρ
S(ρ||χρ) (Quantum correlations), (1.74)

E(ρ) = inf
σρ
S(ρ||σρ) (Quantum entanglement), (1.75)

L(ρ) = inf
χρ
S(σρ||χρ) (Quantum dissonance), (1.76)

where πρ, χρ, and σρ are the closest product, classical, and separable states respectively
to the state ρ. Now to compute these correlation one has to compute these states from the
initial states ρ. According to them the closest product state to ρ is⊗ni ρi, where ρi is the ith

subsystem of the state. In this case the total correlations reduces to the mutual information
Iq(A1 : A2 : ... : An) =

∑
i S(Ai) − S(A1, A2, ..., An) [107]. And the closest classical

state to ρ is given by
χρ =

∑
~k

|~k〉〈~k|ρ|~k〉〈~k| (1.77)

where {|~k〉} forms the eigen basis for χρ. Note that the definition of entanglement mea-
sure is just the relative entropy of entanglement. As set of all separable states (within the
Hilbert space of ρ) are convex and compact (see, e.g. [149]), one can find the closest sep-
arable state to ρ and compute E(ρ) by employing convex optimization techniques (see,
e.g. [150]). The measure E(ρ) is called the relative entropy of entanglement [115]. Also
the definition of quantum correlations here is somewhat similar to the information theo-
retic discord [116], only difference is here we consider the projective measurement only.
From Fig.(1.8), it is easy to visualize that the correlations may give following additive
relations,

T (ρ) = Q(ρ) + C`(χρ)− ωρ and T (σ) = L(σ) + C`(χσ)− ωσ, (1.78)

where ωρ = S(πρ||πχρ). Now the important question is: How do quantum correla-
tions, entanglement, dissonance, and classical correlations compare to the total corre-
lations. To illustrate these they took following examples. For Bell-diagonal states, ρb =∑

i λi|ψbi 〉〈ψbi |, where λi are ordered in non-increasing size and |ψbi 〉 are four Bell states,
the correlations are subadditive i.e., T (ρb) ≥ E(ρb) + L + C`. It was earlier shown that
the closest separable state to a bipartite entangle state is a classical state [151]. Hence, it
leads to a additive relation for pure entangled states, T (ρ) = E(ρ) + C`(χρ). Is it also
true for multiparticle states? Consider the W-state, |W 〉 = 1√

3
(|001〉 + |010〉 + |100〉).

For W-state, we get subadditivity relation, i.e., T (|W 〉〈W |) > E(|W 〉〈W |) +L+C` and
in this case Q < E + L. To shed further light into the matter, they considered cluster
state, |C4〉 = N (|0 + 0+〉+ |1 + 1+〉+ |1− 0−〉+ |0− 1−〉). For this state surprisingly
the additive relation, T = E + C` holds. Hence, on the basis of these illustration they
conjectured that the subadditivity relation, T ≥ E + L + C` may hold for multiparticle
states.
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Figure 1.8: Correlations in quantum states: In the figure an arrow, i → j, indicates j is
the closest state to i as measured by the relative entropy S(i||j). The states,
ρ, σ, χ, and π represent the entangled states, separable states, classical states,
and product states. The distances are entanglement (E), quantum correlations
that go beyond entanglement (QC), classical correlations (CC), total correla-
tions (TC), and dissonance (To separate it out from QC of entangled states we
coloured it differently.). The quantities ωρ and ωσ will be helpful to prove the
additivity of the correlations.

1.3.2.12 Correlations and multiparticle states

Generalizing the concept of bipartite correlations to multiparticle case is complex and
challenging. The structure of the multiparticle states is often not clear. Another challenge
is to handle the mixed states. However, many authors have tried to generalize the con-
cept to multiparticle states and address the unique phenomenon of genuine multiparticle
correlations for multiparticle states.

In [152], authors proposed a set of criteria which every measure of genuine multiparticle
correlations, G(ρ) should satisfy:

1. G(ρ) ≥ 0 ∀ quantum states ρ.

2. G(ρ) = 0 for bi-product states i.e., ρi ⊗ ρī.
3. G(ρ) is invariant under local unitary operations i.e., G(⊗iUiρ⊗i U †i ) = G(ρ).

4. G(ρ⊗ σL) = G(ρ), where σL = ⊗iσiL is a auxillary state.

5. G(ρ) is non-increasing under local operations i.e., G(EL(ρ)) = G(ρ), where EL =
⊗iE iL is local CPTP quantum operations.

They also proposed a measure in terms of cumulants of the n-particle states. A n-qubit
state can be expressed in canonical form as

ρ12..n =
1

2n

3∑
µ1,µ2,...,µn=0

aµ1,µ2,...,µn ⊗n`=1 σµ` , (1.79)

where aµ1,µ2,...,µn = Tr[ρ ⊗n`=1 σµ` ] with the condition Tr[ρ] = 1. Here the quantity
Ti1,i2,...,in = Tr[ρ⊗n`=1 σi` ] are the correlations (they are usually called correlation coeffi-
cients) with i` ∈ {1, 2, 3}. For such a n-party density matrix ρ12..n, its cumulant is defined
as

CM(ρ12..n) = ρ12..n − ρ̃12..n, (1.80)
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where ρ̃12..n is the pseudo-n party density matrix constructed in such a way that ρ12..n =
ρs1ρs2 +CM(ρ12..n). Here, {s1, s2} is a partition of correlations, Tn. For this construction,
if the state is product state i.e., ρ12..n = ρs1ρs2 , then CM(ρ12..n) = 0. Then a measure of
genuine multiparticle correlations is

GM(ρ12..n) =
1

2
Tr[|CM(ρ12..n)|], (1.81)

where |X| =
√
X†X . With some illustrations, authors claimed that this measure satisfies

most of the above criteria. But it is not the case in general for general multiparticle mixed
states.

Later, D. Kaszlikowski et al. [153,154] showed that such a quantification is not sufficient
as the state

ρncW =
1

2
(|W 〉〈W |+ |W̄ 〉〈W̄ |), (1.82)

where |W 〉 = 1√
n
(|00...01〉 + |00...10〉 + · · · · · · · · · + |10...00〉 is a n-qubit W -state and

|W̄ 〉 = σ⊗n1 |W 〉, has vanishing correlation coefficients and cumulant for odd n yet con-
tains genuine quantum correlations. Hence, they conclude that the cumulant or corre-
lations [105] cannot quantify genuine quantum correlations in a state faithfully. They
further suggested that the zero value of correlation coefficients (it is equivalent to co-
variance if we consider traceless operators) is a signature of lack of genuine classical
correlations present in the state. Hence the existence of genuine multiparticle corre-
lation without the genuine classical correlations in case of ρncW . They argued that if
Cov(O1,O2, ...,On) = Tr[ρO1 ⊗ O2 ⊗ ... ⊗ On] (here Oi are traceless observables)
is non-zero then state contains non-zero genuine classical correlations. Z. Walczak [155]
proved that it is not true in general. According to the author the state ρncW has genuine
classical correlations because the measurement outcomes ofO1,O2, ...,On are not inde-
pendent for all possible combination of them although the covariance is zero. Hence
pointing out a wellknown fact that if the measurement outcomes of {O1,O2, ...,On} are
independent then Cov(O1,O2, ...,On) = 0 but the converse is not true. Recently, it was
observed that for such a state quantum entanglement has non-zero value although the state
has vanishing correlation coefficients [156].

The above conclusions raise many questions. Bennett et al. [110] postulated three condi-
tions which a good measure of genuine multiparticle correlations should satisfy:

• If a n-partite state does not contain genuine n-partite correlations then adding one
more party in product state will also have no genuine n + 1-partite quantum corre-
lations.

• G(ρ) = 0⇒G(ΛL(ρ)) = 0, where ΛL = ⊗iΛi
L are local trace-nonincreasing oper-

ations containing general local quantum operations and unanimous postselection.

• G(ρ) = 0⇒ G(ρsplit) = 0, ρsplit is the same state ρ but with the systems of some
parties split into more parties, i.e., splitting subsystems into more parties should not
create genuine multiparticle correlations.

It turns out that the cumulant and covariance don’t satisfy all the above postulates and
hence don’t qualify as a measure of genuine multiparticle correlations. In this context,
authors proposed a new measure of genuine multiparticle classical correlations using the
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concept of classical deficit. The idea is: “If parties can extract more work with CLOCC
(CC across any bipartite cut) than with CLOCC, and without sending CC across at least
one cut, then the state has genuine multiparticle classical correlations". The calculations
indicates that the state in Eq.(1.82) has non-zero genuine classical correlations for n = 3,
confirming the claim of Walczak [155].

In another work, Giorgi et al. [157] have discussed a possible route to generalize the con-
cept of information theoretic measures [116] to genuine correlation measures. They em-
ployed the relative entropic type measures to capture genuine tripartite total, classical and
quantum correlations. They noticed that mutual information T (ρABC) = S(ρABC ||ρA ⊗
ρB ⊗ ρC) = S(A) + S(B) + S(C) − S(A,B,C) is a well define measure to capture
the total correlations in the state ρABC . Then they define tripartite classical correlation
measures implementing the result of [118],

C`(ρABC) = max
π
`1
j ,π

`3
i ,

[S(`1) + S(`2)− S(`1|{π`3i })− S(`2|{π`1j , π
`3
i })], (1.83)

where S(`1|{π`3i }) is defined in the subsection.(1.3.2.4) and S(`2|{π`1j , π
`3
i }) is defined in

the same way but the POVM will be applied locally on the subsystems `1 and `3. Notice
that the quantity C`(ρABC) captures the distance between the closest classical state to
the state ρABC and its product state [118]. Hence the tripartite discord can be defined as
Q(ρABC) = T (ρABC)−C`(ρABC) which might capture quantum correlations in the state.
Moreover to capture the genuine correlations in tripartite state they defined the following
quantities

T (3) = T (ρABC)− T (2) (Genuine total correlations), (1.84)

C
(3)
` = C`(ρABC)− C(2)

` (Genuine classical correlations), (1.85)
Q(3) = Q(ρABC)−Q(2) (Genuine quantum correlations), (1.86)

where T (2) is the maximum among the bipartite mutual information i.e., T (2) = max[Iq(A :

B), Iq(A : C), Iq(B : C)] and C
(2)
` = max[C`(ρAB), C`(ρAC), C`(ρBC)] and Q(2) =

min[Q(ρAB), Q(ρAC), Q(ρBC)]. Here T (3) is defined as T (3) = inf[S(ρABC ||ρij ⊗ ρk)]
i.e., it is the shortest distance to a state with no tripartite correlations. Hence, if T (3) = 0

means state is ρij ⊗ ρk. Generally for pure n-particle states the relation C(n)
` = Q(n) =

1
2
T (n) holds. However note that all these correlation measures don’t satisfy all the postu-

lates proposed by Bennett et al. [110].

1.3.2.13 Quantum secrecy monotones and correlations in multiparticle
states

In [158], Cerf et al. introduced the concept of quantum secrecy monotones in the con-
text of quantum cryptography [159], to detect the shared secret correlations between the
parties. These secrecy monotones are considered as the possible quantum generalizations
of the multi-variate classical mutual information. For n-partite states, one of the secrecy
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monotone is

Iqs (A1 : ... : An) =
n∑
i=1

S(A1, ..., Ai−1, Ai+1, ..., An)− (n− 1)S(A1, ..., An). (1.87)

In literature, the classical version is known as dual total correlation, or binding infor-
mation. Note that for n = 2, Iqs (A1 : A2) = S(A1) + S(A2) − S(A1, A2). Important
point is the secrecy monotone defined here is non-zero always. Later, the above quantity
is proposed as the measure of total correlations in the multiparticle states and termed as
operational quantum mutual information [160].

In [160], Kumar pointed out some important differences between the secrecy monotones
and the relative entropy mutual information, Iq(A1 : A2 : ... : An) =

∑
i S(Ai) −

S(A1, A2, ..., An) and the quantum version of interaction information. The interaction in-
formation is a direct generalization of classical mutual information for multivariate clas-
sical systems using venn-diagram approach and is defined as for quantum case, Iq0(A1 :
A2 : ... : An) =

∑n
p=1(−1)p−1

∑n
{lp} S(Al1 , Al2 , .., Alp), where {lp} in the sum denotes

l1 < l2 < l3... < lp and li varies from 1 to n. Most generalizations of mutual infor-
mation are positive except the quantum interaction information. In the Table.(1.2), the
comparison between the interaction information Iq0 and the secrecy monotone Iqs has been
illustrated. While Iq0 can be negative, the Iqs is always positive. It can also be shown
that for pure multiparticle states, Iqs = Iq [159, 160]. For mixed state this is not the case
in general. Hence, the secrecy monotone can be treated as a measure of total correla-
tions [160, 161].

Kumar [160] defined the measures of quantum correlations (quantum discord) using the
secrecy monotones, for the three-particle state ρABC ,

δA(ρABC) = Iqs (A : B : C)−max
ΦA

Iqs (ΦA(ρABC)),

δAB(ρABC) = Iqs (A : B : C)−max
ΦAB

Iqs (ΦAB(ρABC)),

δABC(ρABC) = Iqs (A : B : C)− max
ΦABC

Iqs (ΦABC(ρABC)), (1.88)

where ΦX(ρABC) =
∑

i Φ
i
XρABCΦi

X (X ∈ {A,AB,ABC}) and Φi
A = πAi ⊗ I ⊗ I,

Φi
AB = πAi ⊗πBi ⊗I, and Φi

ABC = πAi ⊗πBi ⊗πCi . Here, πi are all possible one dimensional
local projectors and Iqs (ΦX(ρABC)) depicts the secrecy monotone of the conditional state
ΦX(ρABC). Notice that the quantity δABC(ρABC) is a symmetric quantity. Then he plot-
ted the three correlation measures in Eq.(1.88) for the three qubit GHZ-state and W-state
mixed with white noise (1

8
I) and observed that δA ≤ δAB ≤ δABC , i.e., quantum cor-

relations increases when measurements are performed on larger number of subsystems.
This is in contradiction with the notion of classical correlations because measurement on
more subsystems should yield larger value of classical correlations and hence less quan-
tum correlations. So, the quantity Iqs (ΦX(ρABC)) may not qualify as measure of classical
correlations. However, the same situation also occur if one employs relative entropy based
quantum mutual information. Then it is a serious question whether this is the usual feature
of secrecy monotone and relative entropy based quantum mutual information.
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State I0 Is State Ic Is
|g2〉 2 2 |D1

3〉 0 2.75
|g3〉 0 3 |D1

4〉 0.49 3.25
|g4〉 2 4 |D2

4〉 0.49 4
|C4〉 -2 4 |As〉 0 4.75

Table 1.2: Iq0 vs Iqs : Values of interaction information Iq0 and secrecy monotone Iqs
for the states, GHZ state, |gn〉 = 1√

2
(|0〉⊗n + |1〉⊗n), Dicke state, |Dr

n〉 =

N
∑
P P [|0〉⊗n−r|1〉⊗r], cluster state, |C4〉 = 1

2
(|0000〉 + |0011〉 + |1100〉 −

|1111〉), and totally asymmetric three qutrit state |As〉 = 1√
6
(|123〉 − |132〉 +

|231〉− |213〉+ |312〉− |321〉), where P denotes all possible permutations and
N is the normalization. While for pure states, Iqs is equivalent to the relative
entropy quantum mutual informations, for mixed state they may differ. (This
table is directly taken from A. Kumar’s paper.)

1.4 Applications of quantum correlations

One may asks, “What is the importance of the correlated states?” The discovery of
many quantum information processing (QIP) tasks demonstrate the power of correlated
states [162]. Quantum teleportation is one of the first QIP protocols, discovered by Ben-
nett et al. They showed that one can send an unknown quantum state to a remote party
if they share an entangled state [8]. Remote state preparation [163, 164], superdense
coding [9], quantum secret sharing [95], quantum key distribution [159], bit commit-
ment [165], quantum state merging [17] etc. to name a few, are the QIP protocols which
use entanglement as a resource for the success of the protocols. We will discuss some of
them in the following subsections.

While there are many protocols in existence where there is clear evidence of importance
of entangled states, for QCsbE, it is not the case. While analysing the role of quan-
tum correlations in deterministic quantum computation with single qubit (DQC1) model,
it was found that entanglement generated during the process is very negligible but the
presence of QCsbE is significant [166]. This gave some physical importance of QCsbE.
Later, researchers discovered that in protocols like remote state preparation [167–169],
state merging [170] where QCsbE plays some significant role. Before discussing all these
we will revisit some elements of quantum gates.

Quantum gates – Quantum gates are the building blocks of quantum circuits. These
gates are mostly represented by unitary matrices. For example, for qubit systems, the X ,
Y and Z gates are nothing but three Pauli matrices i.e., σ1, σ2 and σ3. The Hadamard gate
(H) is represented by the matrix

H =
1√
2

[
1 1
1 −1

]
.

The Hadamard gate applied on |0〉 will transform it to 1√
2
(|0〉 + |1〉) i.e., it introduces

rotation of π about the axis 1√
2
(x̂ + ŷ). The operation of H gate is: |i〉 → (−1)i|i〉 +

|1 − i〉. The Hadamard gate is useful in creating superposition of single qubits. One
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important gate, the controlled NOT (CNOT) gate acts on two qubits. It is a global gate
and can create entanglement. The operation of CNOT gate is: |i〉|j〉 → |i〉|i+ j mod 2〉.
The another important gate is control-U (C − U ) gate which maps |0〉|j〉 → |0〉|j〉 but
|1〉|j〉 → |1〉(U |j〉). Importantly, these gates are very useful in simulating multiqubit
unitary operations [171].

1.4.1 Teleportation

Teleportation is one of the first QIP protocols where one can see the importance of quan-
tum entanglement. It was discovered by Bennett et al. [8, 172]. The protocol enables
one to send an unknown quantum state to a distant party if they share an entangled state.
Two parties, Alice and Bob share an entangled state (Bell state) and live in distant places.
Alice wants to send an unknown state |ψ〉 = α|0〉+ β|1〉 to Bob. To do so, She will make
joint measurement on her qubit and the unknown qubit in Bell basis and send the mea-
surement outcome to Bob through classical channel. Upon receiving the message, Bob
will make appropriate unitary operations on his qubit to retrieve the state |ψ〉. Hence, the
protocol utilizes ‘1 ebit of entanglement + 2 bits of classical communication’ to send ‘1
qubit’ [35].

Here, we have considered the perfect scenario where one can perfectly teleport an qubit
– this is called perfect teleportation. If the shared state is not a maximally entangled or is
a mixed entangled state then we may have imperfect or probabilistic teleportation [173].
The performance of an entangled state as teleportation resource is usually captured by its
singlet fraction (f ) which is defined as

f(ρAB) = max
U
〈ψ+|U †ρABU |ψ+〉, (1.89)

where U = UA ⊗ UB are local unitary operations and ψ+ is maximally entangled state.
This quantity tells us how close a entangled state is to the set of maximally entangled
states in the same Hilbert space. Whether a quantum state is perfectly teleported or not
is captured by the quantity called teleportation fidelity i.e., F (ρAB) = |〈ψ|φ〉|, where |ψ〉
is intended as a message but instead |φ〉 is recovered. These two quantities are closely
related, for d ⊗ d resource states F = df+1

d+1
[174]. For perfect teleportation F = 1.

Using a separable state one can reach upto F = 2
d+1

, i.e., f = 1
d
, which Bob can achieve

just by random guessing + some classical communication [175]. But for entangled state
2
d+1
≤ F ≤ 1.

1.4.2 Superdense coding

Like quantum teleporation, superdense coding was discovered by Bennett et al. [9]. The
protocol uses entanglement as a resource. Here, a third party Eve prepares an entangled
state (Bell state for perfect superdense coding) and sends one qubit to Alice and Bob
each. Now Alice can send two bits to Bob. Alice has the four possible classical messages
{00, 01, 10, 11}. Alice will apply local operations {I2, X, Z,XZ} on her qubit according
to the message she wants to communicate to Bob (see Fig.1.10), e.g. she will do nothing
(I2) if the message is 00, she will applyX-gate if the message is 01 etc. Then she will send
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Bell 
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Figure 1.9: Quantum teleporation: The figure shows the schematic view of teleportation.
The parties Alice and Bob initially share an entangled state. In order to send
an unknown state |ψ〉 to Bob, Alice will make measurement in Bell basis
jointly on her qubit and the unknown quantum state and send the measurement
outcome (CC) to Bob. Bob then makes suitable operation on his qubit to
retrieve |ψ〉.

her qubit to Bob. Now Bob will possess two qubits. Bob will apply suitable procedure to
retrieve the message that Alice intended to send.

Now, if we carefully analyse the figure, we can explain it in details. Eve prepares a Bell
state 1√

2
(|00〉+|11〉). Then Alice and Bob will acquire one qubit each from Eve. After ap-

plying the local operations (accordingly) on her qubit, Alice will send the qubit to Bob via
a quantum channel (ideal). Now Bob will have either of the state according to Alice’s mes-
sage 00 : 1√

2
(|00〉+|11〉); 01 : 1√

2
(|10〉+|01〉); 10 : 1√

2
(|00〉−|11〉)&11 : 1√

2
(|10〉−|01〉).

This is the problem of state discrimination. Bob will apply a suitable state discrimination
protocol to figure out what is the state after Alice’s encryption i.e., the classical message.
In the Fig.(1.10), he uses the CNOT-gate then Hadamard H and measurement in compu-
tational basis to know the message. Hence in order to communicate ‘2 bits of classical
informations we need ‘1 ebit of entanglement + 1 qubit of communication’ [98].

If the shared state is not a maximally entangled state, then what amount of classical com-
munication will be possible? For a non-maximally or a mixed entangled state, the amount
of classical communications will be smaller. It is captured by the quantity, the ‘superdense
coding capacity’ [176] which is defined as

C(ρAB) = log2 dA + S(ρA)− S(ρAB) bits, (1.90)

where the amount log2 dA bits is the classical limit. Here dA is the Hilbert space dimension
of subsystemA. Hence, the quantum advantage is S(ρA)−S(ρAB) bits i.e., the−S(A|B).
More state is entangled more will be the quantum advantage.

1.4.3 Quantum secret sharing

Secret sharing is a procedure in which a secret is splitted into several parts and shared
among different parties such that no subset of it is sufficient to read the secret, but the
entire set is. Classically, there are many ways to do it but none of these are very efficient
in detecting the presence of an eavesdropper/dishonest party, while the sharing of secret
is going on. But in quantum regime, this is not the case, one will be able to detect if an
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CNOT gate

(i)

Figure 1.10: Superdense coding: The figure shows the schematic view of superdense cod-
ing. This QIP enables Alice to send two bits of classical information to Bob
by sending just one qubit. Eve prepares a two qubit entangled state and sends
one qubit of the state to Alice and Bob each. Alice will encode her classical
bits by applying quantum operations, and send her qubit to Bob. Then Bob
will decode the message.

eavesdropper tries to sabotage the message. Mainly two types of secret sharing protocols
are available in quantum world – splitting of the message and teleportation type [95,177].

In 1999, Hillery et al. introduced the idea of secret sharing using three particle quantum
entangled states [95]. Later, Karlsson et al. studied the same protocol using two-particle
entangled states [178]. The main idea is: A dealer Alice wants to send a message to
Bob and Charlie but she suspects one of them is dishonest and does not know which
one. She will split the message into two and sends one part to each of them so that
to retrieve the message both have to collaborate. Let Alice has access to a two qubit
entangled state. Now she will encode her message in the state by just locally applying
some quantum operations and then she sends one particle each to Bob and Charlie. Now
Bob and Charlie will retrieve the secret collaborating between themselves. In another
work [179], authors discussed another protocol where Alice, Bob and Charlie initially
share an entangled state. First Alice does single qubit measurement on her qubit in order
to encode the secret and sends the qubit to Bob. Now Bob and Charlie’s job will be to
retrieve the secret collaboratively. Bob will make two-qubit measurement and sends the
outcome to Charlie so that he will be able to read the message.

Hillery et al. [95] also discussed another protocol where Alice wants to send a qubit state
to Charlie introducing another party Bob, without his help Charlie will not be able to re-
trieve the message. In this case Alice, Bob and Charlie share an entangled state (at least
three-particle state) to begin with. Then Alice makes a measurement jointly on her mes-
sage qubit and the particle from the entangled state. According to Alice’s measurement
outcomes, Bob and Charlie’s state will collapse into an entangled state which will contain
the information about the message (see the Fig.(1.11)). At this point nobody will be able
to retrieve the message alone. If Bob makes measurement on his particle and sends the
outcome to Charlie, then he can retrieve it.

Gottesman [180] developed the theory of quantum secret sharing where he has discussed
sharing of both the classical (e.g. see the ref. [9]) and quantum secret using quantum
resource state. Basically security of all these protocols depends on the entanglement of
the states. But recently, there are many studies where authors have discussed quantum
secret sharing protocols which need no quantum entanglement (e.g. see [181]). These
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Alice

Bob

Charlie
Charlie

Bob

Alice

s

Figure 1.11: Quantum secret sharing: Here Alice, Bob and Charlie share an entangle
state. In order to send the quantum message, Alice will make joint mea-
surement on her qubit from the state and the message qubit s and send the
measurement outcomes to the receiver Charlie. Charlie will retrieve the mes-
sage by some local operations on his qubit with the help of Bob. Notice that
Charlie and Bob end up with entangled state which contains the information
about the secret s.

protocols are easily implementable as we can avoid practical hazards of creating and
moreover of preserving and handling of entangled states [162].

1.4.4 Quantum recycle bin

Impossibility of perfect deleting [182] prevents from building perfect quantum recycle
bin. In classical world, a recycle bin is a set of operations which will enable one to store
deleted information in a virtual place called trash and one can retrieve the information,
if needs be, at a later time from the trash. In classical world, information can be deleted
perfectly and one can retrieve it perfectly from trash also. But this is not the case in
quantum world. Let us consider the case where one wants to delete (erase the information
in) the state |ψ〉 = α|0〉 + β|1〉. But one should be able to retrieve the state after some
point of time if needs be. Then a ideal chain of operations for the quantum recycle bin
will be

|ψ〉R(|b〉) delete/eraze−−−−−−−→ |b〉R(|ψ〉) (1.91)

R(|ψ〉)|b〉 Ur−−−−−−−→ |ψ〉R(|b〉), (1.92)

where R(|b〉) is a quantum trash state with blank state |b〉 inside it and Ur is suitable
reverse operations acting on both the trash and the blank state to restore the quantum state
from the trash.

An practical quantum recycle bin can be implemented in following two ways –

1. First apply deleting operations on the quantum state to bring it into the trash state. If
one wants to delete it permanently just apply partial trace on the trash (assuming one
will have multiple copies of trash states). Now, if it is required to restore the state
from trash at a later time, a reverse operations will be applied on the joint state of
blank and trash state. Question is: What will be the reverse operations? Technically
after applying deletion on the state in presence of trash state make them correlated
(as one can apply only imperfect deletion [183, 184]) – hence the performance of
quantum recycle bin will depend on the fidelity of deletion [185]. Therefore, it

48



1.4 Applications of quantum correlations

delete

Trash

Recover

Trash

(a) (b)

Figure 1.12: Hypothetical quantum recycle bin: A two step processes depicts the quantum
recycle bin. (a) The quantum information (black dot) is deleted by using
standard quantum deleter/eraser. Now trash contains the information. To
recover it one should use suitable recovery operations which will restore the
information. Here quantum information is synonymous to quantum states.

is difficult to choose the appropriate reverse operations. Some kind of controlled
SWAP operations22 are needed to restore the state.

2. One can erase superposition of the quantum state (e.g. see the [186] and references
within) such that it becomes either |0〉 or |1〉 – which is nothing but a classical bits
and apply classical deletion (sending) operations to send them to trash. Now if one
needs to get back the state, it will be difficult to get back the desired superposition –
unless trash has the memory of their exact superposition parameter. Here, trash state
should keep the memory of the exact basis states and their superposition parameter
to be an ideal recycle bin. It has been shown that to erase the quantum state one
can SWAP the state with the blank state and then trash the original state into the
environment [182]. This whole operation can equivalently be thought as erasure.
However, the operation is irreversible.

1.4.5 DQC1

In 1998, Knill and Laflamme introduced the a deterministic quantum computation with
one quantum bit (DQC1) model where they showed if one qubit was in non-maximally
mixed state while rest are in maximally mixed state then one can achieve an exponen-
tial improvement in efficiency over the classical computers for some limited number of
tasks [187]. This started to throw doubt on entanglement being responsible for all quan-
tum speedups, since a computer register which is so mixed as to have only one non-
maximally qubit is unlikely to be entangled [188]. The inception of QCsbE showed the
fact that entanglement does not account for all non-classical correlation, even separable
states contains some form of quantum correlations. Soon after this work, Laflamme et
al., [189] gave some intuition that the QCsbE may be connected with the performance of
DQC1 model. Later Datta et al., put this argument firmly [166]. Here, we will discuss the
role of QCsbE behind the performance of DQC1 model that in turn gives some physical
ground for QCsbE. The model is for estimating the trace of a unitary matrix. The model
uses two resources – an ancilla ρA = 1

2
(I2 + µσz) with purity µ and a register of n qubits

22A SWAP operation (V ) is defined as V (|ψ〉 ⊗ |φ〉) = |φ〉 ⊗ |ψ〉.
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Figure 1.13: DQC1 model: The picture depicts the famous DQC1 model with n-qubit
maximally mixed state and an ancilla of purity µ. Measuring σx and σy on
the ancilla will return real and imaginary parts of Tr[U ].

in maximally mixed state, ρB = 1
2n
In. They are initially in product state ρi = ρA⊗ ρB. A

Hadamard gate (H) is applied on ancilla first, followed by a global control-U operation.
Then the spin measurements (σx & σy) are made on the ancilla. From the outcome one
can retrieve the value of trace of the unitary matrix U (see the Fig.1.13).

The output state, before the spin measurement in the basis of ancilla is

ρf =
1

2n+1

[
In µU †

µU In

]
. (1.93)

The reduced density matrix for ancilla is

ρfA =
1

2

[
1 µTr[U †]

µTr[U ] 1

]
. (1.94)

It then immediately follows that measuring σx and σy will return the real and imaginary
part of Tr[U ], i.e., 〈σx〉ρfA = µRe[Tr[U ]] and 〈σy〉ρfA = µIm[Tr[U ]]. It is evident that the
efficiency of the protocol solely depends on the the polarization of the ancilla qubit, not
on the dimensionality of unitary matrix. One can investigate the discord content of the
final state state ρf in the bipartition ancilla and register which is given by [166] (see the
Fig.(1.14))

D(A|B)DQC1 = 2−H(
1− µ

2
)− log2 `+ − `− log2 e, (1.95)

where H(x) = −x log2 x − (1 − x) log2(1 − x) and `± = 1 ±
√

1− µ2. If µ = 1,
then D(A|B)DQC1 = 2− log2 e, a constant fraction of maximal possible value of discord.
Therefore discord scales like the efficiency of the model. This is the first quantitative
evidence that QCsbE play a part in the speedup associated with a quantum algorithm
[166].

1.4.6 Entanglement swapping and RED

Entanglement swapping [190, 191] is a protocol by which two remote parties can get en-
tangled even if they initially don’t share any entanglement. In entanglement swapping
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Figure 1.14: The figure shows how correlations generated in DQC1 model depend on the
initial polarization (µ) of the ancilla qubit.

protocol, at least three parties are involved. In Fig.(1.15-a), we consider a simple swap-
ping protocol. Initially two entangled states |ψ〉12 & |ψ〉12 are shared between the nodes
(1, 2) and (3, 4) respectively. The particle 1 is with first party, particle 2 & 3 with second
party and 4 with third party. Now second party will make Bell measurement on his/her
two particles and communicate the outcome to the other parties. Irrespective of the mea-
surement outcome, the other two parties will become entangled i.e., node 1 and 4 will
become entangled although they share no entanglement initially. This process is called
entanglement swapping if the initial shared states have same entanglement.

In general a distribution of bipartite entangled states between any two nodes will include
states that do not have the same entanglement; thus we name this general process remote
entanglement distribution (RED). The entanglement swapping with partially entangled
states is a particular class of remote entanglement distribution protocols [72]. In case of
mixed state RED, the second party will apply LOCC [72].

In quantum information science creating entangled multiparticle systems have great im-
portance. But creating and maintaining them in lab have many practical issues. But,
in [192], authors showed that one can create higher multi-particle states from lower parti-
cle states (see Fig.(1.15-b )). Consider two n-particle GHZ states, 1√

2

∑1
i=0 |i · · · i〉, if any

party makes Bell measurement jointly on two particles one each from the two states, then
the resultant states are – a 2(n− 1)-particle state and a two-particle state. So, finally one
can create more particle state from two less particle states. This way one can introduce
more states to create a single multiparticle state which may possess more particle. These
states will later be useful in some multiparticle QIP protocols [193].

1.4.7 Broadcasting of quantum correlations

Classical theory permits perfect broadcasting (copy and send) of information, whereas
this is not the case for quantum world. It is what demarcates the boundary between two
[194]. However, one can have imperfect broadcasting of quantum information. Quantum
broadcasting is a protocol by which one can create two or more copies of lesser correlated
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Figure 1.15: Entanglement swapping: It is a pictorial depiction of entanglement swap-
ping. In (a) three nodes are involved where 2nd node possessing particles 2
& 3 makes measurement to entangle the remotely separated nodes 1 and 3.
In (b), from a three qubit and two two-qubit states one can produce one four-
qubit and one three-qubit states. In this way one can produce more particle
entangled states from fewer particle entangled states.

states from a correlated state. Let us consider a correlated state ρ12 shared between parties
A and B. Now we apply local cloning operations [195], Ucl on each particles. As a result,
a four-particle state will be created (here we will ignore the machine states and ancillas)
i.e., ρ1324. The local states created with party A and B are {ρ13, ρ24} respectively and
two shared less correlated nonlocal states are {ρ13, ρ24} (see the Fig.(1.16)). To broadcast
optimally the correlations in the created nonlocal states, the local states must have some
minimum correlations in them.

The protocol was first described for quantum correlations like entanglement which is non-
local in nature [196, 197]. For broadcasting of entanglement they used Pares-Horodecki
criteria to check in which range the local states are not entangled. And that range is
supposed to be the range of broadcasting. It is obvious that the better the cloner is, the
broader will be the broadcasting range [198, 199].

We know that there exist QCsbE. Recently, many researchers have shown that the corre-
lations in a single bipartite state can be locally or unilocally broadcasted if and only if
the states are classical (i.e., having classical correlations) or classical-quantum respec-
tively [200–203].

This protocol is enabling parties to share more entangled/correlated states between them
only through local operations. Obviously, this procedure is very important for those pro-
cessing tasks where small amount of entanglement/correlations is/are required. Here there
is no need to prepare the state directly. However, loss of correlations must be counted dur-
ing the process [199].

1.5 Plan of the thesis

The plan of the thesis is as follows. In the chapter 2, we discuss the quantum correlations
in two-qubit systems. We will argue that the information theoretic measure of QCsbE,
quantum discord captures local and nonlocal quantumness. The local quantumness is like
local superposition and nonlocal quantumness is synonymous with the quantum entangle-
ment. We argue that because of the presence of local quantumness, QCsbE increases un-
der local noise. We generalize this idea to n-qubit systems in chapter 3. There exist atleast
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1 2
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Figure 1.16: Broadcasting: In the broadcasting of correlations from a single two-particle
state (ρ12), two two-particle less correlated states are created. For that pur-
pose one uses local cloning operations Ucl on each particles. As a result
two less correlated nonlocal {ρ14, ρ23} and two local {ρ13, ρ24} two-particle
states are created. As we are interested in nonlocal states, we will simply
ignore (trace out) the local states.

three possible generalizations of the bivariate mutual information to multi-variables. Out
of three, the interaction information has been generalized using the Venn diagram ap-
proach. We have discussed the generalization of the mutual information to quantum sys-
tems. We use the quantum version of interaction information for n-qubit systems to define
discord type quantities which we call as dissensions. We consider two tracks approach to
quantify the quantumness in a multi-qubit system. The Track-I generalization is discord
type, while the Track-II generalization is based on all possible measurements. We give
expressions for these generalization for n-qubit systems, and explore some of their prop-
erties. We consider a vector of dissensions – which we call as dissension vector. We also
consider a set of three-qubit and four-qubit states to illustrate the usefulness of the dissen-
sion vector. We argue that our approach is useful in revealing quantumness in multi-qubit
systems.

As an application of entanglement, we discuss the usefulness of two-qudit rank three
entangled states in quantum teleportation in chapter 4. Due to the presence of bound en-
tangled states, negativity sometimes fails in detecting such states. We have established
relations between concurrence monotones and teleportation fidelity. These relations will
tell whether a state will be useful in teleportation. We have considered a two-qutrit rank
two mixed state to illustrate our results. In the next chapter, we consider RED (remote
entanglement distribution) network and show how much classical as well as quantum in-
formation one can send through the network. We establish the relation between the tele-
portation fidelities and superdense coding capacities of final and initial states to address
this issue. Next, we will discuss two applications of QCsbE.

In chapter 6, we study the correlations generations in the processes of “cloning then delet-
ing" and “deleting then cloning" of quantum states. We showed that the better one clone
(delete) a state, the more difficult it will be to bring the state back to its original form by
the reverse process. In chapter 7, we examine whether one can broadcast QCsbE opti-
mally. We argue that it is not possible under both unital and non-unital channel. However,
one can have task oriented broadcasting for QCsbE. Moreover, we argue that if one ap-
plies 1 → n (n >> 2) cloning machines, then there may arise a possibility of optimal
broadcasting of QCsbE under unital channel. Finally, we conclude.
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Chapter 2

Local, nonlocal quantumness, and quantum discord

2.1 Introduction

There are two aspects of the quantum mechanical formalism that play important role in
quantum information processing. The one aspect may be referred to as nonlocal quantum-
ness. This is due to superposition of the states of two or more particles. We will refer it as
nonlocal superposition. This nonlocal superposition leads to entanglement [3]. We will
call the other aspect as local quantumness. The local quantumness appears due to local
superposition of the states. Every extant correlation measures which is non-zero for sepa-
rable states will show such quantumness [204]. For the sake of illustration and simplicity,
we will focus here on the information theoretic measure – quantum discord [100, 116].
Here, in this chapter, we demonstrate that such quantities probe not only the nonlocal
quantumness but also the local quantumness. That is the prime reason why such mea-
sures are non-zero for mixed states even when there is no entanglement present in the
system.

The organization of the chapter is as follows. In the section 2.2, we discuss the notion of
quantum covariance to characterize the correlations. In the section 2.3, we give a brief in-
troduction to the quantum discord vector. In the section 2.4, we discuss the phenomenon
of local and nonlocal quantumness. In the section 2.5, we consider few states to exem-
plify the difference between the classical and separable states in the context of local and
nonlocal quantumness. In the section 2.6, we introduce the parametric representation of
local and nonlocal quantumness and show that the discord function depends on both of
them. Finally, we conclude in the last section.

2.2 Quantum Covariance

The covariance for a bipartite state ρXY is defined as

Cov(ρXY ,OX ,OY ) = TrXY(ρXYOXOY)− TrX(ρXOX)TrY(ρYOY), (2.1)
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2 Local, nonlocal quantumness, and quantum discord

where OX and OY are observables acting on the part X and Y respectively. Unlike
its classical counterpart, this covariance is not a measure of quantum entanglement (or
quantum correlations). However, we can use it to detect quantum correlations. (See
also the discussion below about nonlocal quantumness.) Using the intuitive meaning of
quantum correlation, one can argue that a bipartite pure state has no quantum correlations,
if the covariance vanishes for any two arbitrary observables X and Y . Clearly, covariance
vanishes for the product states ρXY = ρX ⊗ ρY . Here ρX and ρY are reduced density
matrices. For a mixed state, one can minimize the magnitude of quantum covariance
over all possible decompositions. We can then define covariance for the system with the
density matrix ρXY =

∑
i piρ

i
XY as

Λ(ρXY ) = min
∑
i

pi|Cov(ρiXY ,OX ,OY )|. (2.2)

Here ρXY is a convex combination of ρiXY . To avoid the negative value of covariance, we
have considered its magnitude. In case the Λ(ρXY ,OX ,OY ) is non-zero, then the state
will have quantum correlations.

Lemma 2.1 For all bipartite two-qubit separable states, Λ(ρXY ) = 0.

Proof: Here we can use the fact that (a) all the separable states can be decomposed in
terms of product states and (b) for product states Λ = 0.

Hence the lemma (2.1) is important to identify bipartite correlated states.

2.3 Quantum discord vector

For a bipartite quantum states, X-discord and Y -discord may have different values. They
will have identical values when the state is symmetric in X and Y . But, they are always
non-negative. When one of the discord is zero, then the state would be separable. How-
ever it still may not be completely classical state and may exhibit quantum behaviour.
For the state to be completely classical, both discords must vanish. As we shall see be-
low, there exist states for which only one of these discords is zero. Therefore, for the
complete characterization of the quantumness, one should know both discords. For our
convenience, we define a vector quantity, ~δ, which is an array containing both discord as,

~δ(ρXY ) = {δ(X : Y ), δ(Y : X)}. (2.3)

where δ(X : Y ) and δ(Y : X) are the X-discord and Y -discord respectively after mini-
mization over measurement parameters.

Observation 2.2 A two-qubit state is either classically correlated or is a product state iff
~δ = ~0.

In the literature, there exit witness operators for discord (cf. [205, 206]) but we will not
discuss them here. Observation (2.2) is enough for our analysis and it also gives us infor-
mation about the structure of the states.
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2.4 Quantumness – local and nonlocal

2.4 Quantumness – local and nonlocal

A state of a bipartite quantum system may exhibit nonclassical behaviour due to either
the local superposition (“local quantumness”) or due to the nonlocal superposition, i.e.
entanglement, (“nonlocal quantumness”). Usually, one is more concerned about the en-
tanglement and its characterization and quantification – in part due to its mysterious nature
and to use it as a resource. However, local quantumness can also be important if we can
exploit the superposition as a resource in general. It is the superposition, local or nonlocal,
that gives advantage in many quantum information processing protocols.

In the case of quantum discord, therefore we have D(X : Y ) = D(ϕL(X : Y ), ϕNL(X :
Y )) where ϕL(X : Y ) characterizes the local quantumness, and ϕNL(X : Y ) character-
izes the nonlocal quantumness of the state. We don’t know yet if D(X : Y ) = D(ϕL(X :
Y ) + D(ϕNL(X : Y ). Their properties are – 1) both ϕL(X : Y ) and ϕNL(X : Y )
are invariant under local unitary operation; 2) ϕL(X : Y ) may increase under local op-
erations, but ϕNL(X : Y ) would not; 3) under global operations, D(X : Y ) may in-
crease or decrease; 4) if the state is separable then D(X : Y ) = D(ϕL(X : Y )) and
D(X : Y ) = D(ϕL(X : Y ), ϕNL(X : Y )) for an entangled state. We now discuss these
features of a quantum state in a bit more detail.

2.4.1 Local Quantumness

A bipartite separable quantum state may not have entanglement, but it is a quantum state
and can exhibit quantum features. This quantum feature may be called as the local quan-
tumness. What we mean by local quantumness can be seen by following three examples.
Consider the density operators

ρa = |+ +〉〈+ + |,
ρb = p |+ +〉〈+ + | + (1− p) | − −〉〈− − |,
ρc = q |+ +〉〈+ + | + (1− q) |00〉〈00|, (2.4)

where |±〉 = 1√
2
(|0〉 ± |1〉). The state ρa is a pure quantum state with no entanglement.

Now one can argue that this state shows local quantumness. However, this local quantum-
ness can be masked in the case of a pure product state. If we make a local measurement
on the particle ‘A’ in Hadamard basis, we will get the particle in the state |+〉 with unit
probability and the state would not change after the measurement. So, the local quantum-
ness may not apparent. However, if we make a measurement in the computational basis
{|0〉, |1〉}, then the particle ‘A’ can be found in any of the computational basis state with
equal probability and the state would change after the measurement. This can be easily
seen if we think of the state as a local superposition of the computational basis states. The
state ρb is what is known as classical mixed state. Its behavior will be similar to ρa with
respect to the measurements. We can mask its local quantumness. The state ρc is also a
separable state. However, in this state we cannot mask the local quantumness, irrespec-
tive of the measurement basis. This is because one particle state is not orthogonal and the
state in one of mixture component can be written in terms of the superposition of the state
in the other component and the rest of the measurement basis. Therefore, irrespective of
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2 Local, nonlocal quantumness, and quantum discord

the measurement basis, local quantumness (local superposition) cannot be hidden. So, we
see that a separable state which is not completely classical, will have local superposition
which can be exploited. This is what has been showing up as a resource in the case of, eg,
the model deterministic quantum computational with one quantum bit (DQC1) [166,187].

Lemma 2.3 A two qubit state ρXY has only local quantumness iff Λ(ρXY ) = 0 and
~δ(ρXY ) 6= ~0.

Proof: The proof follows from the observations (a) for all two-qubit separable states
Λ(ρAB) = 0 and, (b) only for product states, or, classical states ~δ(ρXY ) = ~0.

2.4.1.1 Local noise can enhance Discord

Since discord probes also local quantumness, therefore it can even increase by local op-
erations. However, the local operation should be such that it changes the relative local
quantumness of the mixture components. Quantum noise can be a good candidate for
such a local operation. However standard local noise such as bit flip and phase flip noise
cannot change discord, because no relative local superposition is introduced. In Ref [207],
a set of Krass operators are given which can convert a classical mixed state, like ρ1, given
below in Eq. (2.5), to a classical-quantum mixed state, like ρ2 or ρ3, given below. This
local noise can convert one separable state to another separable state, but not to an en-
tangled state. This noise is only changing the local quantumness properties of a bipartite
state.

2.4.2 Nonlocal Quantumness

In this paper, we shall mean the existence of quantum correlations in a state as equiva-
lent to the state showing “nonlocal quantumness”. It will also be synonymous with the
existence of entanglement. If there is a system made of two subsystems, and there are
quantum correlations, then the properties of the one subsystem, say A, would depend on
the properties of the other subsystem, say B. The states of the subsystems are interde-
pendent. This is the intuitive meaning of correlations. One can give a criteria for a pure
bipartite state to possess quantum correlations. This criteria can then be generalized to a
mixed state. This has been discussed in the section II.

Observation 2.4 A two qubit state ρXY has nonlocal quantumness iff Λ(ρXY ) 6= 0.

This just follows from the lemma (2.1).

We have discussed above the quantumness of a state goes beyond entanglement. We sug-
gest that discord characterizes the quantumness of a state. This quantumness has both
local and nonlocal components. A separable state can have local quantumness, but no
nonlocal quantumness. An individual system may also show quantum, i.e., non-classical
behaviour. So quantum behaviour of any system encompasses quantumness due to corre-
lation and quantumness of an individual system in the absence of correlation. Essence of
the local quantumness is due to the superposition property of the state of a subsystem of
a composite system. We can visualize the classification of bipartite states as in Fig.(2.1).
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2.5 Simple Examples

Separable states

Classical states

Entangled
states

Figure 2.1: The large ellipse represents all two-qubit states. The small ellipse represents
all separable states (i.e., Λ = 0). The lines represent set of product states (end
points of the lines) and classical states (in different basis). The point where
the lines meet is the maximally mixed state. The outer annular space contains
all entangled or, nonlocal states (i.e., Λ 6= 0 & ~δ 6= ~0), inner ellipse (except
the lines) contains all separable states with local quantumness (i.e., Λ = 0 &
~δ 6= ~0 ) and line depicts all product states and classical states (Λ = 0 & ~δ = ~0).

2.5 Simple Examples

2.5.1 Separable and Classical States

In order to exemplify our argument, we consider separable mixtures and examine the
discord function for them. In the mixed state domain, a state is said to be separable if
it can be expressed as convex combination of product states. So, in principle a product
state is a separable state while the converse is not always true. Therefore, separable states
do not possess entanglement. However, as is known, not all separable states have zero
discord. As a paradigm, we start with following mixed states,

ρ1 = p |00〉〈00| + (1− p) |11〉〈11|,
ρ2 = p |+ +〉〈+ + | + (1− p) |0−〉〈0− |,
ρ3 = p |+ +〉〈+ + | + (1− p) | − 0〉〈−0|,
ρ4 = p |+ +〉〈+ + | + (1− p) |00〉〈00|, (2.5)

where |±〉 = 1√
2
(|0〉 ± |1〉) are the Hadamard states. These density matrices represent

four different categories of separable states. Neither of these states have entanglement.
However, these states differ in important ways. ρ1 belongs to the category of completely
classical states. ρ2 and ρ3 are not completely classical, because, in the mixture, the states
of only one of the particles are orthogonal. In the case of ρ1, both X-discord and Y -
discord are zero. For ρ2, X-discord is zero, while for ρ3, Y -discord is zero. For ρ4, both
discords are non-zero. If we make a measurement in computational basis, then the discord
function is nonzero for ρ1 and ρ2. But we have to minimize the discord function to obtain
the discord, the discord is zero for ρ1, but not for ρ2. For ρ1, the discord function is zero
in the Hadamard basis. This is the basis formed out of the states, of which the ρ1 is a
mixture. In this basis conditional entropy is zero, while entropies of the individual and
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2 Local, nonlocal quantumness, and quantum discord

(i) (ii)

Figure 2.2: Dependence of X-Discord function on measurement basis with classical mix-
ing parameter p = 0.5 for (i) ρ1 and (ii) ρ4.

composite system cancel. These facts are illustrated in Figs.(2.2 and 2.3), where discord
functions are plotted as a function of the angle θ that characterizes the measurement basis.
In these plots, DX = D(Y : X) and DY = D(X : Y ).

This is in accordance with the fact that while the density operator ρ1 represents a classical
mixture, i.e., a mixture of orthogonal states, the density mixture ρ4 represents a mixture
of non-orthogonal states. In the case of ρ4, unlike ρ1, states in one of the component,
|+〉 is a linear superposition of the computational basis states {|0〉, |1〉}. This is the case
of local superposition. Therefore, the discord is non-zero for ρ4 because it also probes
local quantumness (apart from nonlocal quantumness due to entanglement). One can
say that a mixture of non-orthogonal separable state has local quantumness, i.e., local
superposition, which cannot be washed away by writing down another decomposition of
the density matrix.

2.5.2 Werner State

In this subsection, we show the importance of local quantumness for non vanishing value
of the quantum discord with the aid of the Werner state. This state is given by

ρw = (1− p) I
4

+ p |Φ+〉〈Φ+|, (2.6)

where, |Φ+〉 = 1√
2
(|00〉 + |11〉) is a Bell state, I is the identity operator and p is the

classical mixing parameter. Naively, one may think that this state is not separable and has
quantum correlations for all values of classical mixing parameter p. However, it is known
that this state is not entangled when p < 1

3
(using Peres-Horodecki criterion [36,37], e.g.,).

It is also known that this state (pseudo pure state) is useful for information processing.
If we look at the plot of the discord and the concurrence in the Fig.(2.4), we see that
concurrence is zero, when the state is not entangled, but the discord is non-zero.
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(i) (ii)

Figure 2.3: Dependence of (i) X-Discord and (ii) Y -Discord functions on measurement
basis with classical mixing parameter p = 0.5 for ρ2. For ρ3 the X-Discord
and Y -Discord are interchanged.

At this point we ask this question: Does it necessarily mean that Werner state has quantum
correlations that, in some sense, go beyond entanglement ? We claim that the answer to
this question is no. Our argument is that one can always rewrite Werner state in such
a way that this state is a valid mixture of non-orthogonal states whenever p < 1

3
[148].

Therefore the discord is nothing but just revealing the local quantumness. Rewriting the
Werner state in that form, we have

ρw = (1− 3p)
I
4

+
p

2
(|+ +〉〈+ + | + | − −〉〈− − | + |00〉〈00|

+ |11〉〈11| + |+̃−̃〉〈+̃−̃| + |−̃+̃|〉〈|−̃+̃|),
(2.7)

where |±̃〉 = 1√
2
(|0〉±i|1〉). This is a valid density operator when p ≤ 1

3
. This is precisely

the region of p, where Werner state is not entangled. Since 〈+|0〉 6= 0 and 〈+|+̃〉 6= 0, this
state is a mixture of separable non-orthogonal states; so it is expected to have non-zero
discord due to local quantumness.

2.6 Generalized Werner State: A comparative analysis of
Entanglement and Discord

In this section we generalize the Werner state to investigate the interdependence of local
quantumness, nonlocal quantumness and classical mixedness by parametrization of each
of these quantities. The major thrust of our claim lies in this part where we are able to see
that the measures of entanglement like concurrence are independent of local quantumness,
where as discord is a function of all these quantities. The generalized Werner state is
defined as

ρGW = (1− p) I
4

+ p |Φ+
nk〉〈Φ

+
nk|, (2.8)

where, |Φ+
nk〉 = Nnk (|+〉n|+〉n + k|−〉n|−〉n) , |+〉n = N (|0〉 + n|1〉) and |−〉n =

N (−n∗|0〉 + |1〉). Here Nnk and N are normalization constants. We can think of n as
a local superposition parameter; k as a nonlocal superposition parameter and p as the
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(i) (ii)

Figure 2.4: (i) Quantum discord (D) and (ii) Concurrence (C) for the Werner State as a
function of the classical mixing parameter p.

classical mixing parameter. We note that this state becomes a separable state as k → 0.
Furthermore, there is no local superposition as n → 0. To study the behavior of the
state with respect to these parameters, we compute concurrence and discord for this state.
To see how the discord and concurrence change as we vary p, n and k, in the following
Figs.(2.5, 2.6, and 2.7), we have plotted these functions. In the Fig.(2.5), we have plotted
concurrence for two different values of p as a function of the parameters n and k. We
observe that concurrence is independent of the local superposition parameter n. It is
important because discord depends on n. It is expected that measures of entanglement
are independent of local superposition parameter (n), while the measures of correlations
which claim to go beyond entanglement will depend on it. Coming back to these, we see
that concurrence vanishes when mixing is small and the state is not entangled. It is also
noteworthy to see that larger the value of p, larger is the concurrence. Concurrence also
vanishes when nonlocal superposition parameter is small. In other words, if one is small
then other has to be large for the state to be entangled. In fact, we find that this generalized
Werner state is entangled, i.e., the concurrence is non-zero when

p >
(1 + k2)

(1 + k2 + 4k)
. (2.9)

This requirement is independent of n. And it reduces to familiar condition p > 1
3

for the
Werner state (n = 0, k = 1) in order that it is entangled.

Let us now see how discord varies with respect to changes in p, n and k. Similar to
the concurrence, the discord is plotted in Figs.(2.6 and 2.7). With the increase of the
value of mixing parameter, the value of discord increases. Even for very small values of
mixing, when there is expected to be no entanglement, the discord is non-zero. When
there is no local superposition, i.e., n = 0, the discord value increases as mixing becomes
stronger. The value also increases, as the value of nonlocal parameter k increases, i.e.,
entangled component of the mixture becomes more entangled, as expected. When there
is no nonlocal superposition, i.e., k = 0, and the mixture is separable, the discord is
non-zero. Its value increases, as the mixing parameter increases, or local quantumness
becomes stronger. Here important point is that the concurrence is independent of the
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(i) (ii)

Figure 2.5: Variation of concurrence (C) for the Generalized Werner State with local su-
perposition parameter n and nonlocal superposition parameter k for the two
values of classical mixing parameter (i) for p = 0.4 and (ii) p = 0.9.

local superposition parameter n, while the discord increases with an increase in the value
of n.

2.7 Conclusion

We have proposed that quantum discord (and other similar measures) as a measure of
quantum correlations for a bipartite system contains both the local and the nonlocal quan-
tumness. A quantum states with nonzero value of discord does not mean existence of
quantum correlations beyond entanglement. In the absence of entanglement, there can
be local quantumness that can make the discord nonzero. We have illustrated our pro-
posal using a generalized Werner state to demonstrate the interplay of local quantumness,
nonlocal quantumness, and classical mixedness by computing concurrence and quantum
discord. To characterize the quantumness of a state, one also needs to compute both
X-discord and Y -discord. Both discords have to be zero to mask the local quantumness.

We hope the present findings will help in understanding the nature of quantumness that
goes beyond entanglement.
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Figure 2.6: Variation of quantum discord (D) for the Generalized Werner State with local
superposition parameter n and nonlocal superposition parameter k for the two
values of classical mixing parameter (i) for p = 0.2 and (ii) p = 0.9.

(i) (ii)

Figure 2.7: Quantum discord (D) for the Generalized Werner State (i) for k = 0 as a func-
tion of p and n and (ii) for n = 0 as a function of p and k.
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Chapter 3

Quantumness vectors for multi-qubit systems

3.1 Introduction

It has recently been argued that the quantum discord, and similar information theoretic
measures, actually not only quantifies entanglement, i.e., nonlocal quantumness but also
local quantumness [204]. For example, it the presence of local quantumness, which leads
to increase in discord by applying certain kinds of local noise [207]. It is still to be estab-
lished that a state with zero entanglement and non-zero discord can act as a resource for a
nonlocal task. In this sense, the phrase “quantum correlations beyond entanglement” may
be a misnomer. However information theoretic measures like discord do seem to charac-
terize quantum properties of a state beyond entanglement, in particular local quantumness.
Such measures appear to characterize the quantum properties of a state more completely.
Therefore, it will be useful to generalize the measures like quantum discord to multiparti-
cle systems. There have been several attempts in this direction [4,118,122,157]. We will
use multivariate mutual information for our generalization.

One important point that we emphasize in this chapter is the usefulness of a vector-like
quantity to characterize and quantify the quantumness of a state [208]. The correlations
in mixed states of a system, or even pure states of a multiparticle system are multifaceted.
They can not be characterized by just one number. We first illustrate it by consider-
ing two-qubit mixed states. We introduce a quantumness vector for characterizing these
mixed states. This idea is then extended to multiparticle states. For generalization of
quantum discord to n-qubit case, we use multivariate mutual information [122]. Classi-
cally this mutual information characterizes genuine multivariate correlations in n random
variables. It is based on a Venn-diagram type approach. There exist many expressions
for this n-variable mutual information, all of which are same classically but differ when
conditional entropies are generalized to quantum level. For a multiparticle system, one
can make measurement on one-particle, or on more than one-particle to probe the differ-
ent aspects of the quantum correlations. This would lead to multiple quantities that can
eventually characterize the correlations present in the system. Some such physical quan-
tities, called “quantum dissension", were introduced in our previous work [122]. Here we
extend the notion of dissension to two different tracks. In the first track we proceed in the
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usual way by which quantum discord was defined as difference of classical information
from total amount of information present in the system. Then we extend the definition to
multiparticle case. In the second approach we extend the notion of quantum correlation
from the perspective of quantifying the maximum amount of correlation induced in the
system as a result of measurement. All possible measurements are included. In each track,
to characterize multiparticle correlations we will have n − 1 quantities based on (n − 1)
types of measurements we can have. For example, in the tripartite case, in each track we
shall have two quantities that will characterize the correlations. Interestingly, these values
can be negative because a measurement on a subsystem can enhance the correlations in
the rest of the system. This approach emphasizes the fact that a single quantity alone is
not sufficient to characterize the quantum properties of a state. This paves the way of
defining quantum correlation as a vector quantity.

The organization of the chapter is as follows. In section 3.2, we discuss classical mutual
information and its extension to quantum regime. In section 3.3, we discuss correlations
and quantumness. In section 3.4, we extend the notion of discord along two different
tracks and give expressions for dissension vectors for n-qubit case. In section 3.5, we
analyze these measures with examples for two, three, and four-qubit cases. In sections
3.6 and 3.7, we address a few related issues. Finally we conclude in section 3.8.

3.2 Mutual information and its generalization to Quantum
regime

Let us consider two random variables X and Y . The common information that they
possess is characterized by mutual information

I(X : Y ) = H(X) +H(Y )−H(X, Y ), (3.1)

where H(X) is Shannon entropy of X and H(X, Y ) is the joint entropy. There are many
uses of mutual information. Our interest is in its ability to capture correlations between
two probability distributions. Using chain rule, one can express mutual information also
as,

I(X : Y ) = H(X)−H(X|Y ),

= H(Y )−H(Y |X),

= H(X, Y )− (H(X|Y ) +H(Y |X)), (3.2)

where H(X|Y ) = H(X, Y )−H(X) is the conditional entropy.

In quantum regime, mutual information is written in terms of Von Neumann entropy of
density matrices. Intuitively this quantity solely should measure the correlations between
two subsystems of a bipartite density matrix. But in reality it does not. It is sometimes
suggested that the mutual information quantifies the total correlations of a bipartite system
[107]. However, in general what it characterizes about the state is somewhat elusive
[103,104]. Also the generalization of this quantity to quantum regime leads to many new
features and complexities. One way of generalization is that of replacing the probability
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distributions with density matrices and another is using relative entropy, i.e., for a bipartite
state ρxy,

Iq(X : Y ) = S(X) + S(Y )− S(X, Y ),

= S(ρXY ‖ ρX ⊗ ρY ), (3.3)

where S(X) = −Tr(ρX log2 ρX) represents Von Neumann entropy and S(ρ ‖ σ) =
Tr ρ(log2 ρ− log2 σ) is relative entropy.

3.2.1 Quantum conditional entropy and mutual information

The generalization of Eq. (3.2) for the bipartite quantum state ρXY are,

IqY (X : Y ) = S(X)− S(X|Y ),

IqX(X : Y ) = S(Y )− S(Y |X),

Iqa(X : Y ) = S(X, Y )− (S(X|Y ) + S(Y |X)), (3.4)

where S(X|Y ) is the quantum conditional entropy. If we directly extend the classical
conditional entropy expression to quantum domain, then S(X|Y ) = S(X, Y ) − S(Y ),
which is negative for pure entangled state. This negativity of conditional entropy was
explained in the references [13–17]. However, there is an alternate view which says that
to know a state we have to make a measurement [100]. This is then the meaning of
“conditional". So, conditional entropy can also be expressed as,

S(X|Y ) =
∑
i

piS(ρX|πYi ), (3.5)

where ρX|πYi = 1
pi

TrY (I2 ⊗ πYi )ρXY (I2 ⊗ πYi ) with pi = Tr(I2 ⊗ πYi )ρXY (I2 ⊗ πYi ). Ip
is the identity matrix of order p and {πYi ; i = 1, 2} are, in general, the rank one positive
operator valued measure (POVM) on part Y .

3.2.2 Multiparticle mutual information

Our goal in this paper is to examine multiparticle systems. So we need a generalization
of the bipartite mutual information to a multiparticle situation. We will use the usual
generalization based on Venn diagram approach. In this approach, three variable mutual
information for three variables X , Y and Z is defined as

I0(X : Y : Z) = I(X : Y )− I(X : Y |Z), (3.6)

where I(X : Y |Z) = H(X|Z)+H(Y |Z)−H(X, Y |Z) is conditional mutual information
[5]. This can be immediately generalized to n-variate mutual information. Using chain
rules, this generalization will lead to the multivariate mutual information as,

I0(x1 : x2 : ... : xn) =
n∑
p=1

(−1)p−1

n∑
{lp}

H(xl1 , xl2 , ..., xlp). (3.7)
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3 Quantumness vectors for multi-qubit systems

In literature, this quantity is also known as the ‘interaction information. By analogy, one
can write the multiparticle mutual information of the state ρx1x2..xn as,

Iq0(x1 : x2 : ... : xn) =
n∑
p=1

(−1)p−1

n∑
{lp}

S(xl1 , xl2 , .., xlp), (3.8)

where {lp} in the sum denotes l1 < l2 < l3... < lp and li varies from 1 to n. This
generalization has not been explored much. In this paper, we will use this generalization
and define a vector type correlation measure to characterize and quantify multiparticle
correlations.

However, there exist at least two more mutual information like quantities in literature.
First one is known as ‘total correlation’. The total correlation for three variables is

I(X : Y : Z) = I(X : Y ) + I(XY : Z), (3.9)

where I(XY : Z) = I(X : Z) + I(Y : Z|X). This quantity can be generalized for
multi-variables i.e.,

I(x1 : x2 : ... : xn) =
n∑
i=1

H(xi)−H(x1, x2, ..., xn). (3.10)

This can easily be generalized to quantum regime for the state ρx1x2...xn

Iq(x1 : x2 : ... : xn) =
n∑
p=1

S(xi)− S(x1, x2, ..., xn)

= S(ρx1,x2,...,xn ‖ ⊗ni=1ρxi). (3.11)

The second line of the Eq.(3.11) shows that it is a distance between the state and tensor
products of its marginals. This generalization has been used in literature [107] to capture
total correlations in a multiparticle quantum state. Note that the above generalization is
always positive.

Another possible quantity is the ‘dual total correlation’, or ‘binding information’ or, some-
time known as ‘secrecy monotone’ [158]. For three random variables it is expressed as

Is(X : Y : Z) = I(X : Y Z) + I(Y : Z|X), (3.12)

where I(X : Y Z) = I(X : Y ) + I(X : Z|Y ). The above quantity can be generalized for
multi-variables i.e.,

Is(x1 : x2 : ... : xn) =
n∑
i=1

H(x1, ..., xi−1, xi+1, ..., xn)− (n− 1)H(x1, ..., xn). (3.13)

This quantity can easily be extended to the quantum state, ρx1x2...xn

Iqs (x1 : x2 : ... : xn) =
n∑
i=1

S(x1, ..., xi−1, xi+1, ..., xn)− (n− 1)S(x1, ..., xn). (3.14)
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(X:Y:Z)

I(X:Y|Z)

I(Y:Z|X)

I(X:Z|Y)

H(X|Y,Z)
H(Y|X,Z)

H(Z|X,Y)

0I

Figure 3.1: Venn diagram: The information theoretic quantities for three random vari-
ables, X , Y , and Z. The total correlation, I(X : Y : Z) = Is(X : Y :
Z) + I0(X : Y : Z), and the binding information, Is(X : Y : Z) = I(X :
Y |Z) + I(X : Z|Y ) + I(Y : Z|X) + I0(X : Y : Z), where I0(X : Y : Z) is
the interaction information.

Note that the above quantity is also always positive [160] and for pure states Iq(x1 : x2 :
... : xn) = Iqs (x1 : x2 : ... : xn). This quantity has been used in literature for capturing
correlations in a quantum state [160] and to detect the shared secret correlations between
the parties [158]. The total correlation, Iq(x1 : x2 : ... : xn) and the binding information,
Iqs (x1 : x2 : ... : xn) are monotones under LOCC (local operation and classical com-
munication) [158]. Moreover, the Eqs.(3.8, 3.11 and 3.14) reduce to Iq(x1 : x2). The
Fig.(3.1) depicts the relations between the possible generalizations of multivariate mutual
information. These relations may not hold for quantum case. From the diagram, it is clear
that only I0 characterizes genuine multipartite correlations. Other two generalizations, I
and Is also contain bipartite correlations. We are using generalization of I0 to quantum
domain.

3.2.3 Can Mutual Information be negative?

One feature of the multivariate mutual information, as given by Venn diagram approach,
is that it can be negative. Sometimes, it is considered a negative aspect of this approach.
However, as we will see, the negative value characterizes a very special type of corre-
lations. For this we consider mutual information [5] of three variables X , Y and Z, as
given in Eq.(3.6). In this definition, both I(X : Y ) and I(X : Y |Z) are non-negative,
but I(X : Y : Z) can be negative, when I(X : Y ) < I(X : Y |Z). This situation will
occur when knowing Z enhances the correlation between X and Y . Let us take a well
known example of ’modulo 2 addition (⊕) of two binary random variables (XOR-gate)’.
Suppose, X ⊕ Y = Z. If X and Y are independent then I(X : Y ) = 0. However, once
we know the value of Z, knowing the value of X uniquely determines the value of Y .
Hence the knowledge of Z enhances the correlation between X and Y , i.e., I(X : Y |Z)
is non-zero. This implies when I(X : Y : Z) is negative, it captures certain aspect of the
correlations among the variables X , Y and Z.
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3 Quantumness vectors for multi-qubit systems

The generalization of Eq. (3.6) in the quantum regime, for the state ρXY Z is

Iq0(X : Y : Z) = Iq(X : Y )− Iq(X : Y |Z), (3.15)

where Iq(X : Y |Z) = S(X|Z)+S(Y |Z)−S(XY |Z) is conditional mutual information.
Let us consider the case of a three-qubit GHZ state |g3〉 = 1√

2
(|000〉+ |111〉). If we trace

out any one qubit from the state then the reduced density matrix is a mixture of product
states, i.e., ρr = 1

2
(|00〉〈00| + |11〉〈11|). For this state, the mutual information is Iq(X :

Y ) = 1. Next, we have to compute Iq(X : Y |Z) for ρg3 = |g3〉〈g3|. Its value will depend
on the measurement basis. We know S(XY |Z) = 0 in any measurement basis but other
two terms S(X|Z) and S(Y |Z) depend on the measurement basis. If we do measurement
in computational basis {|0〉, |1〉} on qubit Z, the conditional mutual information Iq(X :
Y |Z) = 0 because both S(X|Z) and S(Y |Z) are zero. So the total mutual information
is Iq0(X : Y : Z) = 1, i.e., positive. It is not surprising because the state of remaining
two qubits, after measurement on one qubit, does not have enhanced entanglement. But
if we do measurement on one qubit, say Z, in Hadamard basis {|+〉, |−〉}, the mutual
information, Iq(X : Y |Z) = 2, which means, total mutual information is Iq0(X : Y :
Z) = −1, i.e., negative. This is expected, since now the state of two qubits XY is a
Bell state; so measurement on Z qubit has enhanced the entanglement in XY subsystem.
The essence of this discussion is that in both classical and quantum regime multivariate
mutual information can be negative, characterizing a special type of correlations.

3.3 Correlations and Quantumness

Whether a quantum state (of more than one particle) has correlations or not, is often far
from obvious. This is because the meaning of the word ‘correlation’, as often used in
literature, is quite fluid. We know the meaning of correlation in classical world but in the
case of a quantum state there are classicality and quantumness. This makes the nature
of correlations very complex. If we take the intuitive meaning of correlations [3], then
quantum correlations are nonlocal in nature, and can be taken as due to entanglement of
the state only. They exist due to the nonlocal quantumness of a state. A state can also have
classical correlations [100] and local quantumness [122]. When we speak of quantumness
of a state, it can be local or nonlocal in character. Information theoretic measures like
quantum discord, and its generalization like dissension, characterize and quantify both
types of quantumness. Next we emphasize the need of a vector measure to characterize
the quantumness of a state. We then expand on local and nonlocal quantumness.

3.3.1 Quantum Discord: Is one number sufficient?

In the reference [100,116], authors have given a way of quantifying quantum correlations
present in bipartite two-qubit states through quantum discord. To do so they used different
generalizations of the mutual information to quantum regime. Let us consider the bipartite
state ρxy. Then using Eqs. (3.3 and 3.4), the discord is defined in the following way,

δj(ρxy) = inf
πj
{Iq0(x : y)− Ij(i : j)}, (3.16)
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3.3 Correlations and Quantumness

where Ij(i : j) = S(i)− S(i|j) with {i, j; i 6= j} = x, y. Obviously the above definition
is not symmetric in the parties. When j = y, it is usual discord and for j = x it is δx(ρxy).
Sometimes one of the discords is zero even when other is nonzero. If we take that the
quantum discord captures ‘quantumness’ present in a state, it is quite clear that we need
both the discords to know the exact quantumness of the state.

One can define ‘another discord’ as,

δa(ρxy) = inf
{πx,πy}

{Iq0(x : y)− Ia(x : y)}. (3.17)

This definition is symmetric in the parties. This quantity is nothing but the sum of the two
discords δx(ρxy) and δy(ρxy).

Let us compute the above quantities in the following examples. For this purpose we
introduce a vector-type quantity {δx, δy} instead of using δx and δy separately. It is a
quantumness vector – discord vector.

(E1) Product and classical states: Consider two-qubit states

ρp = |+ +〉〈+ + |,

ρc =
1

2
(|00〉〈00|+ |11〉〈11|). (3.18)

Here, |±〉 = 1√
2
(|0〉+ |1〉). These states are purely classical and the values are {δx, δy} =

{0, 0}, δa = 0.

(E2) Classical-quantum (CQ)/quantum-classical (QC) states: We now consider two types
of states, one classical-quantum state and other quantum-classical state

ρcq =
1

2
(|+ +〉〈+ + |+ | − 0〉〈−0|),

ρqc =
1

2
(|+ +〉〈+ + |+ |0−〉〈0− |). (3.19)

The values are {δx(ρcq), δy(ρcq)} = {0, 0.2}, δa(ρcq) = 0.2 and {δx(ρqc), δy(ρqc)} =
{0.2, 0.0}, δa(ρqc) = 0.2. We clearly see, that to characterize ρcq and ρqc completely, we
need discord vector. δa is same for both the states.

(E3) Separable quantum-quantum (QQ) states: A QQ-state is

ρqq =
1

2
(|00〉〈00|+ |+ +〉〈+ + |). (3.20)

For this state, {δx(ρqq), δx(ρqq)} = {0.15, 0.15}, δa(ρqq) = 0.3.

(E4) Pure entangle states: A pure entangle state is

|g2〉 =
1√
2

(|00〉+ |11〉). (3.21)

For this state, {δx(ρg2), δx(ρg2)} = {0.15, 0.15}, δa(ρg2) = 0.3, where ρg2 = |g2〉〈g2|.
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3 Quantumness vectors for multi-qubit systems

The above vector type quantification of correlation reveals more information about the
correlation of a state than δx or δy alone.

3.4 Dissension vectors

From the discussion of the last section, it is clear that a vector-type correlation measure is
better in describing the quantum properties of a state. Using multivariate mutual informa-
tion, we will now generalize the quantum discord to n-qubit system, calling it dissension.
We will introduce two types of quantumness vectors – called dissension vectors.
Let us consider a state ρx1x2...xn in Hilbert space H2 ⊗ H2 ⊗ ... ⊗ H2 where xi qubit is
with ith party. The mutual information for this state is

Iq0(x1 : x2 : ... : xn) =
n∑
p=1

(−1)p−1

n∑
{lp}

S(xl1 , xl2 , .., xlp), (3.22)

where {lp} in the sum denotes l1 < l2 < l3... < lp. Using chain rule, we can now
introduce conditional entropies. These conditional entropies are to be understood in terms
of measurements. In this way, one can introduce one party, two party, ......, (n − 1)-
party measurements in the above expression of mutual information (see Eq.(3.22)) and
each leads one to a expression for new mutual information. When more than one party
is involved, joint measurement is to be implemented. Following reference [122], one
can have mutual information with all possible conditionals which we called Track-II type
definition, but following [100,116] one can have mutual information with smaller number
of conditionals which we call Track-I (or discord track) definition of mutual information.

3.4.1 Track-I

Let us consider the most general situation where we have state ρx1x2...xn with n number of
qubits. On the basis of m-party joint measurement (One can employ local measurements
simultaneously.), we will have (n − 1) expressions for mutual information {I1

m(x1 : x2 :
... : xn);m = 1, 2, ..., (n− 1)},

I1
m(x1 : x2 : ... : xn) =

m−1∑
k=1

(−1)k−1

n∑
{lk}

S(xl1 , xl2 , .., xlk)

+ (−1)m−1
∑

{km−1};k1=2

S(x1, xk1 , ..., xkm−1)

+
n∑

p=m+1

(−1)p−1

n∑
{lp}

S(xl1 , .., xlp−m|xlp−m+1 , .., xlp), (3.23)

where S(xl1 , .., xlp−m |xlp−m+1 , .., xlp) denotes conditional entropy where joint measure-
ment are to be done on parties xlp−m+1 , .., xlp . We can define dissension function, D1

m =
(−1)n(Iq0 − I1

m), and then the dissension,

δ1
m = inf

πm
[(−1)n(Iq0 − I1

m)], (3.24)

72



3.4 Dissension vectors

where minimization is done over m-party measurement. The expressions of mutual infor-
mation in Eq.(3.23) are not symmetric under interchange of parties. For example, if we
take m = 1, I1

1 can have n number of different expressions which are very different from
one another. In Eq. (3.23), if we put m = 1, we can have one type of I1

1 ; let us name it
I1
xn . Now exchanging xn with x1, x2, ....., xn−1 respectively one can have others. So we

have n number of δ1
1 . We label them as δ1

xp = (−1)n(Iq0 − Ixp); p = 1, 2, ..., n. This leads
us to define dissension vector

~δ1
1 = {δ1

xp ; p = 1, 2, ..., n}. (3.25)

In this way with some particular choice of entries one can have n− 1 vectors i.e., ~δ1
i ; i =

1, 2, ..., (n− 1).

3.4.2 Track II

Next we extend the definitions of mutual information in this track for all possible m
party conditionals and we have the expression for mutual information i.e., I2

m;m =
1, 2, ...., (n− 1),

I2
m = fm

 n−1∑
{km−1};k1=2

{S(x1, xk1 , ..., xkm−1 , xkm−1+1)− S(x2|x1, xkn−m+2 , ..., xn−1, xn)

− S(xkm−1+1|x1, xk1 , ..., xkm−1)}+ · · ·+ S(x1, x2, xkn−m+2 , xkn−m+3 , ..., xn−1, xn)
]

+
m−1∑
k=1

fk

n∑
{lk}

S(xl1 , xl2 , .., xlk) +
n∑

p=m+1

fp

n∑
{lp}

S(xl1 , .., xlp−m|xlp−m+1 , .., xlp), (3.26)

where the function, fk = (−1)k−1. The dissension function in this track is defined as
D2
m = (−1)n(Iq0 − I2

m). Therefore, the dissensions are

δ2
m = inf

πm
[(−1)n(Iq0 − I2

m)]. (3.27)

If we interchange parties, the mutual information in the Eq. (3.26) will not remain same
except for m = (n − 1). For example if we consider m = 1 in the Eq. (3.26), we will
get one I2

1 ; let us call it as I2
xn . Now interchanging xn with x1, x2, ...., xn−1 respectively

we will get others. In this way, we will have n numbers of δ2
1 . If we label them as

δ2
xp = (−1)n(Iq0 − I2

xp); p = 1, 2, ..., n, we have dissension vector

~δ2
1 = {δ2

xp ; p = 1, 2, ..., n}. (3.28)

With some particular choice of entries one can have n−2 vectors i.e., ~δ2
i ; i = 1, 2, ..., (n−

2) and one symmetric quantity δ2
n−1 which we call dissension vectors in Track-II.

Now, we have defined the “dissension function” Dt
m, where m is for ‘on how many qubit

measurements are done’ and t is for the ‘track you are taking’. All the dissension functions
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can be expressed in terms of ‘usual discord’ as,

D1
m =

n∑
p=m+1

(−1)n+p

n∑
{lp}

D(xl1 , ..., xlp−m : xlp−m+1 ...xlp),

D2
m =

n∑
p=m+1

(−1)n+p

n∑
{lp}

D(xl1 , ..., xlp−m : xlp−m+1 ...xlp)

+ (−1)2n+1

 n∑
(ln)

D(xl1 , ..., xln−m : xln−m+1 ...xln)

− D(x1, ..., xn−m : xn−m+1...xn)] , (3.29)

where (ln) is abbreviation of l1, l2, ..., ln with each term taking any values from 1 to n.
Note that the quantity, D(X : Y ) = Iq(X : Y )− IY (X : Y ) is the bipartite discord func-
tion. Hence, one may get different dissensions just by computing the bipartite discords.

3.5 Simple illustrations

In this section, we will present our numerical results for a set of two-qubit, three-qubit,
and four-qubit states. It will illustrate the usefulness of the discord and dissension vectors.
We will consider track-I and track-II dissension vectors, as defined in the last section. We
will see that both tracks are most of the time useful.

3.5.1 Two-qubit states

Correlation (or, quantumness) present in a bipartite two-qubit system have been explored
extensively in literature. Discord was one of them, Our modified vectorial approach will
capture the complete quantumness of the states. We have already discussed the quantum-
ness properties by finding the discord vectors for several states in section 3.3. Here, we
consider the Wener state,

ρwer =
(1− p)

4
I4 + pρg2 . (3.30)

The Fig.(3.2) depicts the behaviour of the dissension vectors of the states in Eq. (3.30).
The plot of dissension vectors, δ1

x and δ1
y shows that it contains both local and nonlocal

quantumness because for p ≤ 1
3
, the Werner state is separable.

3.5.2 Three-qubit states

The dissension vectors for three qubit states in track-I are,

~δ1
1 = {δ1

1k; k = x, y, z} and ~δ1
2 = {δ1

2k; k = x, y, z},

where δ1
1k = I1

1k − I
q
0 and δ1

2k = I1
2k − I

q
0 with I1

1k = S(i)− (S(i|j) + S(i|k) + S(j|k)) +
S(ij|k) and I1

2k = S(i) + S(j) + S(k)− (S(ik) + S(jk)) + S(k|ij). And Iq0 = S(x) +
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Figure 3.2: The figure shows how the ~δ1
1 (For Werner state, δ1

x = δ1
y .) behaves as a function

of mixing parameter p for the Werner state, ρwer.

S(y) + S(z) − (S(x, y) + S(x, z) + S(y, z)) + S(x, y, z). The mutual information I1
1k

is not symmetric in {i, j, k; (i 6= j 6= k)} i.e., interchanging i, j, or k one can get many
expressions but all will give the same value after the maximization over measurement. So
there will be three inequivalent expression for I1

1k. And similarly for I1
2k.

In track-II, the dissension vectors are,

~δ2
1 = {δ2

1k; k = x, y, z}, and δ2
2,

where δ2
1k = I2

1k − I
q
0 and δ2

2 = I2 − Iq0 with I2
1k = S(ij)− (S(i|j) + S(j|i) + S(i|k) +

S(j|k)) + S(ij|k) and I2 = S(x) + S(y) + S(z) + (S(x|yz) + S(y|xz) + S(z|xy)) −
2S(x, y, z). The mutual information I1k can have many forms for a fixed k but after
maximization on measurement those expression give same result. The quantity, δ2

2 is the
equal to

∑
k δ

1
2k i.e., symmetric discord.

To see the usefulness of these vectors, let us consider the following three-qubit states. For
convenience we will divide the states in following categories:

I) Product states: We consider here a simple product state i.e.,

ρpro = |000〉〈000|. (3.31)

This state has no quantum and classical correlations (see the tables (3.1 and 3.2)).

II) Classical states: A generic example of classical state in {|0〉, |1〉} basis is

ρccc =
1

2
(|000〉〈000|+ |111〉〈111|). (3.32)

The non-zero dissension vectors for this state are ~δ1
1 in track-I and ~δ2

1 in track-II. These
are given in the tables (3.1 and 3.2).
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III) Separable states: We have picked up some important separable states for illustration.
These three different states represent three different structures. The states are

ρccq =
1

2
(|00+〉〈00 + |+ |110〉〈110|),

ρqqc =
1

2
(|+ +0〉〈+ + 0|+ |001〉〈001|),

ρqqq =
1

2
(|+ ++〉〈+ + +|+ |000〉〈000|), (3.33)

where |+〉 = 1√
2
(|0〉 + |1〉). These separable states have one or more parts as quantum.

We can also write down states ρqcc, ρcqc with structure similar to the first state of (see,
Eq.(3.33)). Also, the states ρcqq, ρqcq have structure similar to that of ρqqc. The ‘quan-
tumness’ in these states is ‘local quantumness’. The non-zero dissension vectors (see the
tables (3.1 and 3.2)) of these states are ~δ1

1 in track-I and ~δ2
1 in track-II, but have different

values than that of classical states.
IV) Pure entangled states: Here, we take two examples of pure entangled states and one
pure biseparable one. The states are

|g3〉 =
1√
2

(|000〉+ |111〉),

|ψ〉ipjk = |0〉i|g2〉jk, where i 6= j 6= k ∈ (x, y, z)

|w〉 =
1√
3

(|100〉+ |010〉+ |001〉). (3.34)

Out of these states |ψ〉ipjk are biseparable states of the structure 1|23, 2|13 and 3|12. For
a specific bipartition, these states are product states, but if three parties share the state
then two parties will be entangled with each other while the third one will be completely
separable with the rest. The GHZ state |g3〉 is a maximally entangled state. The W-state,
|w〉, belongs to a different class. The dissension vectors for these states are given in tables
(3.1 and 3.2), which characterize the state very well.
V) Mixed entangled states: In this category, we consider two types of states, one bisep-
arable and other mixed entangled. The biseparable states are

ρcxpyz =
1

2
(|0ψ+〉〈0ψ+|+ |1φ+〉〈1φ+|),

ρqxpyz =
1

2
(|+ ψ+〉〈+ψ+|+ |0φ+〉〈0φ+|),

ρm =
1

2
(|+ ψ+〉〈+ψ+|+ |φ+0〉〈φ+0|), (3.35)

where |ψ+〉 = 1√
2
(|00〉+ |11〉) and |φ+〉 = 1√

2
(|01〉+ |10〉).

The mixed entangled states are

ρwg = (1− p)ρw + pρg3 ,

ρwwc = (1− p)ρwc + pρw,

ρwer =
(1− p)

8
I + pρg3 , (3.36)
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where |wc〉 = 1√
3
(|011〉 + |101〉 + |110〉). Out of these states, ρwer is the Werner state in

three qubit scenario.

State ~δ1
1

~δ1
2

ρpro {0, 0, 0} {0, 0, 0}
ρccc {−2,−2,−2} {0, 0, 0}
ρccq {−1.2,−1.2,−1.6} {0, 0, 0}
ρcqc {−1.2,−1.6,−1.2} {0, 0, 0}
ρqcc {−1.6,−1.2,−1.2} {0, 0, 0}
ρqqc {−0.99,−0.99,−0.78} {0, 0, 0.22}
ρqcq {−0.99,−0.78,−0.99} {0, 0.22, 0}
ρcqq {−0.78,−0.99,−0.99} {0.22, 0, 0}
ρqqq {−0.67,−0.67,−0.67} {0.15, 0.15, 0.15}
ρg3 {−2,−2,−2} {1, 1, 1}
ρxpyz {−1, 0, 0} {0, 1, 1}
ρypxz {0,−1, 0} {1, 0, 1}
ρzpxy {0, 0,−1} {1, 1, 0}
ρcxpyz {−1, 0, 0} {0, 1, 1}
ρqxpyz {−0.71, 0, 0} {0, 0.6, 0.6}
ρm {−0.26,−0.03,−0.26} {0.52, 0.8, 0.52}
ρw {−1.08,−1.08,−1.08} {0.92, 0.92, 0.92}

Table 3.1: Track-I dissension vectors for a few three-qubit states. Here, ρg3 = |g3〉〈g3|,
ρw = |w〉〈w|, ρwc = |wc〉〈wc|, and ρipjk = |ψ〉〈ψ|ipjk (see Eq.(3.34)).

State ~δ2
1

~δ2
2

ρpro {0, 0, 0} 0
ρccc {−3,−3,−3} 0
ρccq {−1.8,−1.8,−2.6} 0
ρcqc {−1.8,−2.6,−1.8} 0
ρqcc {−2.6,−1.8,−1.8} 0
ρqqc {−1.6,−1.6,−1.17} 0.22
ρqcq {−1.6,−1.17,−1.6} 0.22
ρcqq {−1.17,−1.6,−1.6} 0.22
ρqqq {−1.06,−1.06,−1.06} 0.45
ρg3 {−3,−3,−3} 3
ρxpyz {−2, 0, 0} 2
ρypxz {0,−2, 0} 2
ρzpxy {0, 0,−2} 2
ρcxpyz {−2, 0, 0} 2

ρqxpyz {−1.8, 0, 0} 1.2
ρm {−0.66,−0.15,−0.66} 1.84
ρw {−1.75,−1.75,−1.75} 2.76

Table 3.2: Track-II dissension vectors for a few three-qubit states.
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Figure 3.3: The figure shows how the dissension vectors behave as a function of mixing
parameter p for the three qubit mixed states ρgw, ρwwc and ρwer. The subfigures
[(i) − (iii)] depict the behaviour of the dissensions for the state ρgw, [(iv) −
(vi)] for ρwwc and [(vii)− (ix)] for ρwer where subfigures (i), (iv) and (vii)

depict ~δ1
1; (ii), (v) and (vii) depict ~δ1

2 and (iii), (vi) and (ix) depict ~δ2
1 . (Note

that we have plotted one of the elements from each dissension vectors. This is
because within a vector each elements are same as the states are symmetric.)

The tables (3.1 and 3.2) and Fig.(6.7) show that using the dissension vectors one can
clearly distinguish each state from the rest.

3.5.3 Four-qubit states

In case of four-qubit system, there are three dissension vectors, in track-I and two vectors
and one symmetric discord in track-II. The exact form of these vectors in track-I are,

~δ1
1 = {δ1

1l; l = x, y, z, w}, ~δ1
2 = {δ1

2l; l = x, y, z, w} and ~δ1
3 = {δ1

3l; l = x, y, z, w},

where δ1
1l = Iq0 − I1

1l, δ
1
2l = Iq0 − I1

2l and δ1
3l = Iq0 − I1

3l with I1
1l, I

1
2l and I1

3l are con-
ditional mutual informations with conditionals on one qubit, two qubits and three qubits
respectively and Iq0 is mutual information of a four-qubit states without conditional. Now
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3.5 Simple illustrations

consider I1
1l, for fixed l, we have three different qubits (i, j, k). Permuting them one can

have many inequivalent expressions but on maximization over measurement they will give
same value. Same goes for I1

2l and I1
3l.

In track-II the dissension vectors are,

~δ2
1 = {δ2

1l; k = x, y, z, w}, ~δ2
2 = {δ2

2l; l = x, y, z, w} and δ2
3,

where δ2
1l = Iq0 − I2

1l, δ
2
2l = Iq0 − I2

2l and δ2
3l = Iq0 − I2

3l with I2
1l, I

2
2l and I2

3l are conditional
mutual informations with conditionals (all possible) on one qubit, two qubits and three
qubits respectively and Iq0 is mutual information of a four-qubit states without conditional.
Now consider I2

1l, for fixed l, we have three different qubits (i, j, k). Permuting them on
can have many inequivalent expressions but on maximization over measurement they will
give same value. Same goes for I2

2l. And δ2
3l is symmetric discord i.e.,

∑
l δ

1
2l.

With the above dissension vectors, we will quantify the quantumness present in certain
classes of states. We consider the following categories:

I) Product states: A multiqubit state is said to be a product state if it can be expressed
in the form ρ = ⊗ni ρi, where ρi are single qubit pure states. For our convenience we are
taking ρpro = |ψ〉〈ψ|pro, where |ψ〉pro = |0000〉 as a prototype product state. From tables
(3.3 and 3.4), we can see that the dissension vectors for the state is a null vector i.e., ~0.

II) Classical states: A multiqubit classical state can be expressed as ρ =
∑2

j=1 pj ⊗ni ρ
j
i ,

where ρji are single qubit pure states and ρki is orthogonal to ρ`i . Note, it is not necessary
that all the component qubits should be same, it can be different as long as they consti-
tute orthogonal sets. A simple example of this type of state is ρcl = 1

2
(|0000〉〈0000| +

|1111〉〈1111|). From tables (3.3 and 3.4), we notice that only non-zero dissension vectors
are ~δ1

2 (track-I) and ~δ2
2 (track-II).

III) Separable states: Here, we consider separable states which have the form ρ =∑
j pj ⊗ni ρ

j
i with restriction that some part will be quantum. Here by quantum, we mean

that there will be some local superposition in that part i.e., Tr[ρki .ρ
`
i ] 6= 0 for k 6= `. These

can be of four types e.g.,

ρcccq =
1

2
(|000+〉〈000 + |+ |1110〉〈1110|),

ρqqcc =
1

2
(|+ +00〉〈+ + 00|+ |0011〉〈0011|),

ρqqqc =
1

2
(|+ + + 0〉〈+ + +0|+ |0001〉〈0001|),

ρqqqq =
1

2
(|+ + + +〉〈+ + + + |+ |0000〉〈0000|),

(3.37)

where |+〉 = 1√
2
(|0〉+ |1〉). Depending on the position of the ‘q’ and ‘c’ in the first three

states, one can have many different states. Again one can replace |+〉 with more general
state |n〉 = 1√

1+|n|2
(|0〉 + n|1〉) with n ∈ C. Some asymmetry can be introduced just by

assigning different n values for different parts in the last three states.
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3 Quantumness vectors for multi-qubit systems

The dissension vectors in track-I and track-II reveal their correlation contents as well as
their identity, e.g., by looking at their dissension vectors one can easily identify the struc-
ture of these states separately. One can see the numerical values of the vectors ~δ1

1 , ~δ1
2 and

~δ1
3 in table (3.3) and ~δ2

1 , ~δ2
2 and ~δ2

3 in table (3.4). These two tracks are revealing the same
type of information for these states.

IV) Pure entangled states: Here, we will consider three famous states, GHZ state |ψ〉g4 ,
W-state |w〉 and Omega-state |Ω〉 i.e.,

|ψ〉g4 =
1√
2

(|0000〉+ |1111〉),

|w〉 =
1

2
(|1000〉+ |0100〉+ |0010〉+ |0001〉),

|Ω〉 =
1√
2

(|0ψ+0〉+ |1ψ−1〉), (3.38)

where |ψ±〉 = 1√
2
(|00〉 ± |11〉). Out of these states, |Ω〉 is particularly robust state. The

dissension vectors in tables (3.3 and 3.4), indicates that these states are different from
each other.

V) Mixed entangled states: In this category, we consider two states, Werner state, ρwer
and mixture of W-state and GHZ state, ρwg, i.e.,

ρwer =
(1− p)

16
I + pρg4 ,

ρwg = (1− p)ρw + pρg4 . (3.39)

The dissension vectors are plotted in Fig.(3.4). The plots show how the vectors are chang-
ing with mixing parameter p.

If we introduce some noise (colored or white) in a state, what will be the behaviour of its
dissension vectors? To study it, we have picked up the state |Ω〉. After introduction of
noises, the states will look like,

ρwh =
(1− p)

16
I + pρΩ,

ρcol = (1− p)|0000〉〈0000|+ pρΩ, (3.40)

where ρwh & ρcol are the Omega-states mixed with white and colored noises respectively.
In Fig.(3.5), we observe that white noise has less affect on almost all dissension vectors.
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3.5 Simple illustrations

State ~δ1
1

~δ1
2

~δ1
3

ρg4 {1, 1, 1, 1} {−3,−3,−3,−3} {1, 1, 1, 1}
ρpro {0, 0, 0, 0} {0, 0, 0, 0} {0, 0, 0, 0}
ρcccc {0, 0, 0, 0} {−3,−3,−3,−3} {0, 0, 0, 0}
ρqqqq {0.35, 0.35, 0.35, 0.35} {−1.35,−1.35,−1.35,−1.35} {0.11, 0.11, 0.11, 0.11}
ρcccq {0.2, 0.2, 0, 0.2} {−3,−3,−2.6,−1.8} {0, 0, 0, 0}
ρccqc {0.2, 0, 0.2, 0.2} {−3,−2.6,−1.8,−3} {0, 0, 0, 0}
ρcqcc {0, 0.2, 0.2, 0.2} {−2.6,−1.8,−3,−3} {0, 0, 0, 0}
ρqccc {0.2, 0.2, 0.2, 0} {−1.8,−3,−3,−2.6} {0, 0, 0, 0}
ρccqq {0.35, 0.14, 0.14, 0.35} {−2.8,−2.4,−1.6,−1.8} {0, 0, 0, 0}
ρcqcq {0.14, 0.35, 0.2, 0.35} {−2.4,−1.8,−2.4,−1.8} {0, 0, 0, 0}
ρcqqc {0.14, 0.14, 0.35, 0.35} {−2.4,−1.6,−1.8,−2.8} {0, 0, 0, 0}
ρqcqc {0.35, 0.2, 0.35, 0.14} {−1.8,−2.4,−1.8,−2.4} {0, 0, 0, 0}
ρqccq {0.35, 0.35, 0.14, 0.14} {−1.8,−2.8,−2.4,−1.6} {0, 0, 0, 0}
ρqqcc {0.14, 0.35, 0.35, 0.14} {−1.6,−1.8,−2.8,−2.4} {0, 0, 0, 0}
ρcqqq {0.26, 0.26, 0.26, 0.46} {−2.1,−1.5,−1.5,−1.7} {0.18, 0, 0, 0}
ρqcqq {0.46, 0.26, 0.26, 0.26} {−1.7,−2.1,−1.5,−1.5} {0, 0.18, 0, 0}
ρqqcq {0.26, 0.46, 0.26, 0.26} {−1.5,−1.7,−2.1,−1.5} {0, 0, 0.18, 0}
ρqqqc {0.26, 0.26, 0.46, 0.26} {−1.5,−1.5,−1.7,−2.1} {0, 0, 0, 0, 0.18}
ρw {0.88, 0.88, 0.88, 0.88} {−1.75,−1.75,−1.75,−1.75} {0.81, 0.81, 0.81, 0.81}
ρΩ {−2,−2,−2,−2} {−5,−5,−5,−5} {1, 1, 1, 1}

Table 3.3: Track-I dissension vectors for a few four-qubit states. Here, ρg4 = |g4〉〈g4|,
ρw = |w〉〈w| and ρΩ = |Ω〉〈Ω|.
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Figure 3.4: The figure shows how the dissension vectors behave as a function of mixing
parameter, p for the four qubit states ρwer and ρgw. The subfigures [(i)− (v)]
depict the behaviour of the dissensions for the state, ρwer and [(vi)− (x)] for
ρgw where subfigures (i) and (vi) depict ~δ1

1; (ii) and (vii) depict ~δ1
2; (iii) and

(viii) depict ~δ1
3; (iv) and (ix) depict ~δ2

1 and (v) and (x) depict ~δ2
2 . (Note that

we have plotted one of the elements from each dissension vectors. This is
because within a vector each elements are same as the states are symmetric.)

State ~δ2
1

~δ2
2

~δ2
3

ρg4 {1, 1, 1, 1} {−6,−6,−6,−6} 4
ρpro {0, 0, 0, 0} {0, 0, 0, 0} 0
ρcccc {0, 0, 0, 0} {−6,−6,−6,−6} 0
ρqqqq {0.5, 0.5, 0.5, 0.5} {−3.35,−3.35,−3.35,−3.35} 0.44
ρcccq {0.2, 0.2, 0.2, 0.2} {−6,−6,−5.6,−4.8} 0
ρccqc {0.2, 0.2, 0.2, 0.2} {−6,−5.6,−4.8,−6} 0
ρcqcc {0.2, 0.2, 0.2, 0.2} {−5.6,−4.8,−6,−6} 0
ρqccc {0.2, 0.2, 0.2, 0.2} {−4.8,−6,−6,−5.6} 0
ρccqq {0.35, 0.29, 0.35, 0.35} {−5.6,−5.2,−4.4,−4.6} 0
ρcqcq {0.35, 0.35, 0.35, 0.35} {−5.2,−4.6,−5.2,−4.6} 0
ρcqqc {0.29, 0.35, 0.35, 0.35} {−5.2,−4.4,−4.6,−5.6} 0
ρqcqc {0.35, 0.35, 0.35, 0.35} {−4.6,−5.2,−4.6,−5.2} 0
ρqccq {0.35, 0.35, 0.29, 0.35} {−4.6,−5.6,−5.2,−4.4} 0
ρqqcc {0.35, 0.35, 0.35, 0.29} {−4.2,−4.6,−5.6,−5.2} 0
ρcqqq {0.4, 0.4, 0.46, 0.46} {−4.56,−3.92,−3.92,−4.14} 0.18
ρqcqq {0.46, 0.4, 0.4, 0.46} {−4.14,−4.56,−3.92,−3.92} 0.18
ρqqcq {0.46, 0.46, 0.4, 0.4} {−3.92,−4.14,−4.56,−3.92} 0.18
ρqqqc {0.4, 0.46, 0.46, 0.4} {−3.92,−3.92,−4.14,−4.56} 0.18
ρw {1.3, 1.3, 1.3, 1.3} {−4.75,−4.75,−4.75,−4.75} 3.24
ρΩ {−2,−2,−2,−2} {−10,−10,−10,−10} 4

Table 3.4: Track-II dissension vectors for a few four-qubit states.
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Figure 3.5: The figure shows how the dissension vectors behave as a function of mix-
ing parameter, p for the four-qubit state, ρΩ when exposed with colored (red
dashed line), and white noise (black solid line). The subfigures [(i)− (v)] de-
pict the behaviour of the dissension with subfigures (i) depicts ~δ1

1; (ii) depicts
~δ1

2; (iii) depicts ~δ1
3; (iv) depicts ~δ2

1 and (v) depicts ~δ2
2 . (Note that we have plot-

ted one of the elements from each dissension vectors. This is because within
a vector each elements are same as the state is symmetric.)

3.5.4 Why track-II is required?

Consider the states

|ψ〉ipjkl = |0〉|g3〉,

ρcipjkl =
1

2
(|0g3〉〈0g3|+ |1g3〉〈1g3|),

ρqipjkl =
1

2
(|0g3〉〈0g3|+ |+ g3〉〈+g3|), (3.41)

where (i, j, k, l) can take any of (x, y, z, w) but i 6= j 6= k 6= l. The values of dissension
vectors for the above states (see, Eq.(3.41)) in track-I and track-II are in tables (3.5 and
3.6). We notice that for all the states (see, Eq.(3.41)) dissension vectors are equal except
~δ2

2 . In particular, let us look at the states ρxpyzw = |ψ〉〈ψ|xpyzw, ρcxpyzw, and ρqxpyzw. For these
states, all track-I dissension vectors are identical. Only one vector in track-II is different
(see, table (3.6)). That’s why we need all the tracks to charactarise the quantumness
present in a state.
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State ~δ1
1

~δ1
2

~δ1
3

ρxpyzw {−1, 0, 0, 0} {0,−3,−3,−2} {0, 1, 1, 1}
ρypxzw {0,−1, 0, 0} {−2, 0,−3,−3} {1, 0, 1, 1}
ρzpxyw {0, 0,−1, 0} {−3,−2, 0,−3} {1, 1, 0, 1}
ρwpxyz {0, 0, 0,−1} {−3,−3,−2, 0} {1, 1, 1, 0}
ρcxpyzw {−1, 0, 0, 0} {0,−3,−3,−2} {0, 1, 1, 1}
ρcypxzw {0,−1, 0, 0} {−2, 0,−3,−3} {1, 0, 1, 1}
ρczpxyw {0, 0,−1, 0} {−3,−2, 0,−3} {1, 1, 0, 1}
ρcwpxyz {0, 0, 0,−1} {−3,−3,−2, 0} {1, 1, 1, 0}
ρqxpyzw {−1, 0, 0, 0} {0,−3,−3,−2} {0, 1, 1, 1}
ρqypxzw {0,−1, 0, 0} {−2, 0,−3,−3} {1, 0, 1, 1}
ρqzpxyw {0, 0,−1, 0} {−3,−2, 0,−3} {1, 1, 0, 1}
ρqwpxyz {0, 0, 0,−1} {−3,−3,−2, 0} {1, 1, 1, 0}

Table 3.5: Track-I dissension vectors for a few specific four qubit states. The table shows
that one will not be able to distinguish the states from the dissension vectors.

State ~δ2
1

~δ2
2

~δ2
3

ρxpyzw {−1, 0, 0, 0} {−3,−6,−6,−5} 3
ρypxzw {0,−1, 0, 0} {−5,−3,−6,−6} 3
ρzpxyw {0, 0,−1, 0} {−6,−5,−3,−6} 3
ρwpxyz {0, 0, 0,−1} {−6,−6,−5,−3} 3
ρcxpyzw {−1, 0, 0, 0} {−6,−7,−7,−6} 3
ρcypxzw {0,−1, 0, 0} {−6,−6,−7,−7} 3
ρczpxyw {0, 0,−1, 0} {−7,−6,−6,−7} 3
ρcwpxyz {0, 0, 0,−1} {−7,−7,−6,−6} 3

ρqxpyzw {−1, 0, 0, 0} {−4.8,−6.6,−6.6,−5.6} 3
ρqypxzw {0,−1, 0, 0} {−5.6,−4.8,−6.6,−6.6} 3
ρqzpxyw {0, 0,−1, 0} {−6.6,−5.6,−4.8,−6.6} 3
ρqwpxyz {0, 0, 0,−1} {−6.6,−6.6,−5.6,−4.8} 3

Table 3.6: Track-II dissension vectors for a few specific four qubit states. The table shows
that one will be able to distinguish the states from the dissension vectors.

3.6 Behaviour of quantumness under local noise

For almost all quantum processing devices, effect of noise is inevitable. This leads us to
examine the behaviour of our dissension vector under local noise. From a property of a
measure of quantum correlations, e.g. Q, for the bipartite state ρ12,

Q(ρ12) ≥ Q(Λ12[ρ12]), (3.42)

where Λ12 = Λ1 ⊗ Λ2 are local channels. Under global operations, the situation may be
different. One can create or increase entanglement under such operations.

It is evident that our measures are also affected by the local noise. In this respect we can
define two important classes of channels- a unital/semiclassical channel Λu/sc is defined as
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Figure 3.6: The figure depicts the behaviour of the “dissension vectors” of ρcl under non-
unital channel parameter n. Here, the non-unital channel (Λnu) is applied on
the first qubit. The dissension vectors, ~δ1

1 (blue dashed line), ~δ1
2 (red solid

line), and ~δ2
1 (black solid line) are nonzero for finite value of n. (Note that we

have plotted one of the elements from each dissension vectors. This is because
within a vector each elements are same.)

Λu/sc(
I
2
) = I

2
while for a non-unital channel Λnu, Λnu(

I
2
) 6= I

2
. Streltsov et al. [207] have

shown that a local quantum channel acting on a single qubit can create ‘quantumness’ in a
multiqubit system iff it is neither semiclassical nor unital. This results holds for the dissen-
sion vector also. In our vector type measure, at least one of the elements will be affected.
For example, let us consider a classical state ρcl = 1

2
(|0000〉〈0000|+ |1111〉〈1111|). Now,

application of non-unital channel {E1 = |0〉〈0|,E2 = |n〉〈1|} with |n〉 = 1
1+n2 (|0〉+n|1〉)

(n ∈ C) on any subsystem will make the state non-classical and will have non-zero ele-
ment in the vector (see, Fig.(3.6)).

3.7 Average quantumness of multiqubit states

A vector measure characterizes a state in a fine-grained manner. Sometime, one may be
interested in average correlation properties. For some quantum tasks, average properties
may be relevant. For such tasks, two states with different vector measures, but same
‘average’ properties may both be suitable. Therefore, in this section, we consider average
of the dissension vectors. We will investigate if our measures are good in characterizing
the states if we take average in a particular dissension quantity. Let us define the average
dissension quantities,

〈δ`1〉 =
1

n

n∑
k=1

δ`1k, (3.43)

where ` = 1, 2 denotes the track in which we are calculating them. Similarly, we can
have different quantities like {〈δ`i 〉; i = 1, 2, ..., n− 1}, except the quantity, δ2

n−1 which is
a symmetric quantity and sum of all bipartite discord. Here, we will illustrate these mea-
sures particularly for some three qubit states. As expected, once we look at the average
properties, some states cannot be distinguished (see, tables (3.7 and 3.7). For example
ρccq, ρcqc, and ρqcc have same average quantumness.
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3 Quantumness vectors for multi-qubit systems

State 〈δ1
1〉 〈δ1

2〉
ρg3 −2 1
ρipjk −1

3
2
3

ρpro 0 0
ρccc −2 0
ρccq −4

3
0

ρqqc −0.92 0.07
ρqqq −0.67 0.15
ρcipjk −1

3
2
3

ρqxpyz −0.24 0.4
ρw −1.08 0.92

Table 3.7: Track-I average dissensions
for few three-qubit states.

State 〈δ2
1〉 δ2

2

ρg3 −3 3
ρipjk −2

3
2

ρpro 0 0
ρccc −3 0
ρccq −2.06 0
ρqqc −1.46 0.22
ρqqq −1.06 0.45
ρcxpyz −2

3
2

ρqxpyz −0.6} 1.2
ρw −1.75 2.76

Table 3.8: Track-II average dissensions
for few three-qubit states.

3.8 Conclusion

By considering the quantum discord as a measure of the quantumness of a two-qubit state,
we argued that a vector quantity does a better job in characterizing a state. We generalized
the discord to n-qubit systems – dissension. It is based on n-variable mutual information.
We argued that though multivariate mutual information can be negative, it may not be a
drawback. For a n-qubit state, one can introduce (n− 1) vector measures to characterize
the state. We considered two tracks of these measures for a two-qubit, three-qubit, and
four-qubit systems. We showed how various classes of states can be distinguished and
characterized using these measures. More work is still required to understand these mea-
sures and how useful they are beyond what we have considered. For example: Can they
characterize the resources of a state better for a specific task?.
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Chapter 4

Quantum teleportation in d⊗ d: A special case

4.1 Introduction

For two-qutrit Schmidt rank two states, there exist bound entangled states [209]. Which
means all the states in 3 ⊗ 3 may not be useful in teleportation. Although, the entangled
states with Schmidt rank three would, presumably, be useful for teleportation. Hence, it
is very hard in general to find which states in d⊗ d are useful for teleportation, specially
the low rank (Schmidt rank) states. We know, in general, negativity [36, 37, 210] fails
to distinguish separable states from PPT entangled states, that is, bound entangled states.
However, this difficulty can be overcome by the use of convex-roof extension of negativ-
ity (CREN) [211]. We have shown that sometimes it may also fail to detect which state is
useful for teleportation. Hence, we choose concurrence monotones [71, 73] to character-
ize the entanglement of the state. Concurrence monotones have added advantage that it
depends on the rank of the states and can usually able to determine the rank of the state.
Also, sometime a number of quantities have advantages in characterizing entanglement
of the higher dimensional states.

We establish various relations between teleportation fidelity and concurrence monotones
depending upon the Schmidt rank of the states [212]. These relations and bounds help
us to answer the above issues. Given an arbitrary two-qudit state with Schmidt rank upto
three, we showed that one can predict its utility as a resource for teleportation. We quan-
tify the amount of entanglement present in the resource state to find out the bounds within
which these states can be useful for teleportation. Our results are obtained for arbitrary
dimensional bipartite states with at most three non vanishing Schmidt coefficients. We
implement our results to detect mixed states useful for teleportation.

The chapter is planned as follows. In Section 4.2, we study the relation between negativ-
ity and teleportation fidelity for pure as well as mixed systems. Based on our conclusions
from Section 4.2, we establish a relation between singlet fraction and different concur-
rence monotones for arbitrary dimensional pure two qudit system with a maximum of
three Schmidt coefficients in Section 4.3. Then we study the bounds of teleportation fi-
delity and the monotones for two special cases, i) arbitrary dimensional bipartite states
with two Schmidt coefficients, and ii) arbitrary dimensional bipartite statse with three
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4 Quantum teleportation in d⊗ d: A special case

Schmidt coefficients. In section 4.4, we illustrate our results. Finally, we conclude in
section 4.5.

4.2 Relation between negativity and teleportation fidelity for
d⊗ d systems

4.2.1 Pure Systems

Let HA and HB be two Hilbert spaces each with dimension d. In d⊗ d system, any pure
state |ψ〉 can be expressed as |ψ〉 =

∑d
i=1

√
λj|j〉|j〉. The negativity of the state |ψ〉 is

defined as

N(|ψ〉) =
2

d− 1

∑
i<j

√
λiλj. (4.1)

The singlet fraction for any pure state in d⊗ d system is given by

f(|ψ〉) =
1

d

(
d∑
i=1

√
λi

)2

. (4.2)

The relation between negativity and singlet fraction is given by [174]

N(|ψ〉) =
df(|ψ〉)− 1

d− 1
. (4.3)

In terms of teleportation fidelity, Eq. (4.3) reduces to

F (|ψ〉) =
2

d+ 1
+

(d− 1)N(|ψ〉)
d+ 1

. (4.4)

Therefore, it follows that every entangled pure state in a d ⊗ d system is useful for tele-
portation.

4.2.2 Mixed Systems

A bipartite mixed state described can be described by the density operator ρ

ρ =
∑
i

pi|ψi〉〈ψi|. (4.5)

The negativity of the mixed state ρ can be extended from the pure state by means of
convex roof, that is, convex-roof extended negativity (CREN) [211]:

N(ρ) = min
{pi,|ψi〉}

∑
i

piN(|ψi〉). (4.6)
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4.3 Relation between singlet fraction and concurrence monotones for d⊗d systems with Schmidt rank three

The upper bound of the negativity of the mixed state ρ can be expressed in terms of the
singlet fraction as

N(ρ) = min
{pi,|ψi〉}

∑
i

piN(|ψi〉)

≤
∑
i

piN(|ψi〉) =
d

d− 1

∑
i

pif(|ψi〉)−
1

d− 1
. (4.7)

In terms of teleportation fidelity, the bound on negativity is

N(ρ) ≤ d+ 1

d− 1

∑
i

piF (|ψi〉)−
2

d− 1
. (4.8)

The above inequality (4.8) measures the upper bound of entanglement contained in the
mixed state ρ. From this, it is clear that CREN detects both PPT bound entangled states as
well as states useful for teleportation. However, it is not clear how to distinguish between
these two classes of states. Further, there exists a strong conjecture in the literature [209]
that all PPT entangled states, in 3⊗ 3 systems, have Schmidt rank two. This motivates us
to develop measures capable of identifying states useful for teleportation and dependent
on the Schmidt number.

4.3 Relation between singlet fraction and concurrence
monotones for d⊗ d systems with Schmidt rank three

In this section we obtain an explicit relation that will connect entanglement monotones
with singlet fraction for a two qudit system of arbitrary dimension. We obtain results in
d⊗ d systems with two and three non zero Schmidt coefficients.

4.3.1 Pure two qudit systems

Let us consider a bipartite d⊗ d system in which three Schmidt coefficients are non zero.
Without any loss of generality we assume that the first three Schmidt coefficients are non
zero. Any pure two qudit system with three non zero Schmidt coefficients λ1, λ2 and λ3

can be written in Schmidt decomposition form as, |ψd〉 =
√
λ1|00〉+

√
λ2|11〉+

√
λ3|22〉,

with the Schmidt coefficients summing to one, i.e., λ1 + λ2 + λ3 = 1. To quantify
the amount of entanglement in |ψd〉 we consider two different concurrence monotones
C2(|ψd〉) and C3(|ψd〉) which can be defined as [71],

C2(|ψd〉) =

√
2d

d− 1
(λ1λ2 + λ2λ3 + λ1λ3), (4.9)

C3(|ψd〉) =

(
6d2

(d− 1)(d− 2)

) 1
3

(λ1λ2λ3)
1
3 . (4.10)
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4 Quantum teleportation in d⊗ d: A special case

We note that for a Schmidt rank two state, C3(|ψd〉) = 0 but C2(|ψd〉) 6= 0. Now the
singlet fraction f(|ψd〉) for |ψd〉 can also be expressed in terms of Schmidt coefficients
[91] as

f(|ψd〉) =
1

d

(√
λ1 +

√
λ2 +

√
λ3

)2

. (4.11)

Expanding the the right hand side part of Eq.(4.11) and using λ1 + λ2 + λ3 = 1, we get

√
λ1λ2 +

√
λ2λ3 +

√
λ1λ3 =

df(|ψd〉)− 1

2
. (4.12)

Also, we have the following identity

λ1λ2 + λ2λ3 + λ1λ3 = (
√
λ1λ2 +

√
λ2λ3 +

√
λ1λ3)2 − 2

√
λ1λ2λ3

√
df(|ψd〉).(4.13)

Using (4.9), (4.10), (4.11), (4.12) and (4.13) we have

(C2(|ψd〉))2 =
d3

2(d− 1)

(
f(|ψd〉)− 1

d

)2

− `d(C3(|ψd〉))
3
2

√
f(|ψd〉). (4.14)

where, `d = 4
d−1

√
d(d−1)(d−2)

6

This establishes the required relationship between the concurrence monotones C2(|ψd〉)
and C3(|ψd)〉 with the singlet fraction f(|ψd〉) for a pure two qudit system |ψd〉 with three
non vanishing Schmidt coefficients.

Next, we will consider separately the cases of states of Schmidt ranks two and three,
respectively.

4.3.1.1 States with Schmidt rank two

When one of the Schmidt coefficients (say, λ3) is zero, i.e., C3(|ψd〉) = 0, from Eq.
(4.14), we have

C2(|ψd〉) =

√
d3

2(d− 1)

(
f(|ψd〉)− 1

d

)
, (4.15)

where, f(|ψd〉) denotes the singlet fraction of Schmidt rank two state, and f(|ψd〉) > 1
d
.

If F (|ψd〉) denotes the teleportation fidelity of Schmidt rank two states, then C2(|ψd〉) can
be expressed in terms of F (|ψd〉) as

C2(|ψd〉) =

√
d3

2(d− 1)

[
(d+ 1)F (|ψd〉)− 2

d

]
. (4.16)

This establishes the relation between the entanglement monotone and teleportation fidelity
of Schmidt rank two states. If the state |ψd〉 has Schmidt number two and useful for
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4.3 Relation between singlet fraction and concurrence monotones for d⊗d systems with Schmidt rank three

teleportation, then we have [44]

1

d
< f(|ψd〉) ≤ 2

d
. (4.17)

Eq. (4.17) can be recast in terms of teleportation fidelity as

2

d+ 1
< F (|ψd〉) ≤ 3

d+ 1
. (4.18)

Using Eq. (4.18), C2(|ψd〉) can be seen to be bounded as

0 < C2(|ψd〉) ≤

√
d

2(d− 1)
. (4.19)

When the amount of entanglement lies in the above range we can use the state for telepor-
tation. This quantifies the entanglement required for teleportation for a pure qudit state
with two non-vanishing Schmidt coefficients.

4.3.1.2 States with Schmidt rank three

Next we take up sates where none of the three Schmidt coefficients are zero, i.e.,C3(|ψd〉) 6=
0.

Using the well known result of arithmetic mean (AM) being greater than or equal to
geometric mean (GM) on three real quantities

√
λ1λ2,

√
λ1λ3 and

√
λ2λ3, we have

√
λ1λ2 +

√
λ1λ3 +

√
λ1λ3

3
≥
(
λ1λ2λ3

) 1
3
. (4.20)

Using Eqs. (4.10), and (4.12), we have

f(|ψd〉) ≥ 6

d

[((d− 1)(d− 2)

6d2

) 1
3
C3(|ψd〉)

]
+

1

d
. (4.21)

Since, the singlet fraction f(|ψd〉) attains its maximum value unity at λ1 = λ2 = λ3 = 1
d
,

we have

6

d

[((d− 1)(d− 2)

6d2

) 1
3
C3(|ψd〉)

]
+

1

d
≤ f(|ψd〉) ≤ 1. (4.22)

In terms of teleportation fidelity F (|ψd〉), the above inequality can be expressed as

2

d+ 1
+

6

d+ 1

((d− 1)(d− 2)

6d2

) 1
3
C3(|ψd〉) ≤ F (|ψd〉) ≤ 1. (4.23)

Hence, pure entangled states with C3(|ψd〉) satisfying Eq. (4.23) and teleportation fidelity
F (|ψd〉) > 2

d+1
are Schmidt rank three states useful for teleportation.
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4 Quantum teleportation in d⊗ d: A special case

4.3.2 Mixed two qudit systems

In this section we would like to answer the following questions : (i) What is the minimum
amount of entanglement needed to perform teleportation with the mixed d⊗ d states with
Schmidt rank two? (ii) What is the minimum amount of entanglement needed to perform
teleportation with the mixed d⊗ d state with Schmidt rank three?

Let us consider a mixed qudit state described by the density operator ρ =
∑n

i=1 piρi,
where

∑n
i=1 pi = 1 and ρi (= |ψdi 〉〈ψdi |) are composite pure states. The singlet fraction

f(ρ) of the state ρ is defined as f(ρ) = maxU〈ψ+|U †⊗IρU⊗I|ψ+〉,whereU is the unitary
matrix, I is the identity matrix and |ψ+〉 = 1√

d

∑d−1
k=0 |kk〉 represents a pure maximally

entangled state.

The entanglement measure C2(|ψd〉) and C3(|ψd〉) given in Eqs. (4.9) and (4.10) for pure
states can also be defined for a mixed state ρ as

C2(ρ) = min
n∑
i=1

piC2(ρi), and C3(ρ) = min
n∑
i=1

piC3(ρi). (4.24)

Here the minimum is taken over all pure state decompositions of ρ. Now one may won-
der whether, like concurrence monotones, the singlet fraction f(ρ) also have the same
property [213], i.e.,

f(ρ) = min
∑

pif(ρi), (4.25)

where the minimum is taken over all decomposition of ρ. Unfortunately, the answer is no.

4.3.2.1 Two qudit mixed state with Schmidt rank two

From Eq. (4.14), C2(ρi) for any bipartite pure qudit state with Schmidt rank two ρi whose
f(ρi) = 1

d
, i.e., for states not useful for teleportation, we have

C2(ρi) = 0. (4.26)

In general for any bipartite pure qudit state with Schmidt rank two ρi useful for teleporta-
tion, the entanglement C2 is

C2(ρi) =

√
d3

2(d− 1)

(
f(ρi)−

1

d

)
. (4.27)

Using Eqs. (4.24) and (4.27), we have

C2(ρ) = min
∑
i

pi

√
d3

2(d− 1)

(
f(ρi)−

1

d

)

≤
∑
i

pi

√
d3

2(d− 1)

(
f(ρi)−

1

d

)
<

√
d

2(d− 1)
, (4.28)

92



4.4 An example of two qutrit mixed states with Schmidt rank two

where the last inequality follows from an application of Eq.(4.17). Hence, if the mixed
state ρ with Schmidt rank two in a d⊗ d system is useful for teleportation then

0 < C2(ρ) <

√
d

2(d− 1)
. (4.29)

4.3.2.2 Two qudit mixed state with Schmidt rank three

Using, once again, the result of arithmetic mean (AM) being greater than or equal to
geometric mean (GM) on three real quantities λ1λ2, λ1λ3 and λ2λ3 and Eqs. (4.9), (4.10)
we obtain the following bound on C3(ρ) for two qudit mixed states with Schmidt rank
three:

0 < C3(ρ) <
[d(d− 1)

6

] 1
6 1

(d− 2)1/3
. (4.30)

Comparing Eqs. (4.30) and (4.29), we can see that if the entanglement lies in the range√
d

2(d−1)
to
[
d(d−1)

6

] 1
6 1

(d−2)1/3 it can be concluded that the state is of Schmidt rank three.

4.4 An example of two qutrit mixed states with Schmidt rank
two

We consider a two qutrit mixed state with Schmidt rank two given by

ρm3 =
5p

p+ 2
ρc +

2(1− 2p)

p+ 2
|φ〉〈φ|; 0 ≤ p ≤ 1

2
, (4.31)

where, ρc = 1
2
(|χ0〉〈χ0| + |χ1〉〈χ1|). This decomposition for state ρf is optimal. Here,

|χ0〉 and |χ1〉 are of the form |χ0〉 =
√

3
5
|ψ〉 +

√
2
5
|φ〉 and |χ1〉 =

√
3
5
|ψ〉 −

√
2
5
|φ〉,

respectively, and the states |ψ〉, |φ〉 are given by, |ψ〉 = 1√
3
(|00〉 + |11〉 − e

iπ
3 |22〉) and

|φ〉 = 1√
2
(|00〉+ |11〉). Also, p is the classical probability of mixing. For the above state,

C2 (see Eq. (4.28)) becomes

C2(ρm3) =
3
√

3

2

(
min

∑
i

pif(ρi)

)
−
√

3

2

=
3
√

3

2

(
min
{p}

[
1 + p

2 + p

])
−
√

3

2

=

√
3

4
; for p = 0. (4.32)

In this calculation we have used the appropriate maximally entangled basis given in [214].
From Eqs. (4.32) and (4.19), it can be seen that the state (in Eq. (4.31)) is useful for
teleportation.

93



4 Quantum teleportation in d⊗ d: A special case

4.5 Conclusion

We have made a study of entanglement of teleportation for arbitrary d ⊗ d dimensional
states having Schmidt rank upto three. We found that there is a simple relation between
negativity and teleportation fidelity for pure states but for mixed states, an upper bound
was obtained for negativity in terms of teleportation fidelity using convex-roof extension
negativity (CREN). The existence of a strong conjecture in the literature concerning all
PPT entangled states, in 3 ⊗ 3 systems, having Schmidt rank two, motivated us to de-
velop measures capable of identifying states useful for teleportation and dependent on the
Schmidt number. This enabled a classification of entanglement as a function of telepor-
tation fidelity, the “Entanglement of Teleportation”. These results were then extended to
mixed two qudit states, which we illustrated on specific examples of a two qutrit mixed
state with Schmidt rank two. This work thus brings into focus the utility of studying
higher dimensional entangled states using measures like “Entanglement of Teleportation”
along with negativity.
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Chapter 5

Teleportation and super dense coding in RED

5.1 Introduction

In classical information theory we have seen networking plays a key role in sending in-
formation from one node to a distant node. In quantum networking one of the most
challenging problem is to know how much classical and quantum information one can
send from one node to a distant node which are not initially entangled. In this work we
claim to provide a solution to this problem by finding out the teleportation fidelity and
super dense coding capacity of the remotely prepared state in terms of teleportation fi-
delities and super dense coding capacities of the resource states. In particular, we find out
these relations in the context of the entanglement distribution between distant nodes by
the standard swapping of the entangled resource states [215]. But before that we find such
relations involving the amount of entanglement of the resource states with the final state in
terms of two different measures of entanglement namely concurrence [50,55,62,216] and
entanglement entropy. Then by using these relations we establish the relations involving
the teleportation fidelity and super dense coding capacity of the entangled channels that
can be produced with remote entanglement distribution (RED) protocols [72].

The organization of the chapter is as follows. In section 5.2, we start with two pure
entangled resource states shared by three parties and obtain the relations involving the
concurrences of the resource states with the final state obtained in the process of RED by
swapping. In section 5.3, we extend our results where we have more than two resource
states and three parties. In section 5.4, we provide strong results connecting the tele-
portation fidelity and super dense coding capability of the resource states with the state
engineered by the process of entanglement swapping. Finally we conclude in section 5.5.

5.2 Study of enatnglement (concurence) RED

In this section, we consider the most simplest situation where Alice and Bob share a
pure entangled state |ψ〉12 between them. Similarly, Bob and Charlie also share another
entangled state |ψ〉23 between them. This is equivalent of saying, we have entanglement
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between the nodes 1 and 2 as well as between the nodes 2 and 3. Our aim is to establish
the entanglement between the remote nodes 1 and 3 which are not initially entangled.
We adopt the procedure of entanglement swapping to carry out the remote entanglement
distribution between the nodes 1 and 3. In order to swap the entanglement, Bob carries
out measurement on his qubits which are at the node 2. Interestingly, we find an important
relationship between the concurrences of the entangled states before and after swapping.
The most remarkable aspect of this relationship is that this tells us about the amount
of entanglement that can be created in a remote entanglement distribution (RED) via
swapping.

5.2.1 For two qubit pure states

In this subsection we start with two entangled resource states in 2⊗ 2 dimensions. These
states are given by |ψ〉12 =

∑
i,j aij|ij〉 and |ψ〉23 =

∑
p,q bpq|pq〉 respectively. Here,

aij, bpq ∈ C (i, j, p, q = 0, 1) are the probability amplitudes satisfying the normalization
conditions

∑
ij a

2
ij = 1 and

∑
pq b

2
pq = 1. We consider a situation, where we take into

account a general measurement strategy. Here, Bob carries out measurement in a non-
maximally Bell-type entangled basis given by the basis vectors, |φrhG 〉 = 1√

Brh

∑1
t=0 e

πIrtRrh
t |t〉|t⊕

h〉, where Brh =
∑

t(R
rh
t )2 and the coefficients Rrh

j are defined as

Rrh
j =


n if (r, h, j) = (0, 0, 1) or (1, 0, 0),
m if (r, h, j) = (0, 1, 1) or (1, 1, 0),
1 otherwise.

(5.1)

Here the indices n,m(∈ C) are the entangling parameters and 0 ≤ (n,m) ≤ 1. And t⊕h
means the sum of t and h modulo 2. Now according to general measurements done by
Bob on his qubits, we have four possible states between the nodes 1 and 3 at Alice and
Charlie’s locations respectively. These four possible states based on Bob’s measurement
outcomes |φrhG 〉 (r, h = 0, 1) are given by,

|χrh〉13 =
1√
Mrh

1∑
i,q=0

(
1∑
j=0

e−IπrjRrh
j aijbj⊕h,q)|iq〉13. (5.2)

The modulo sum j ⊕ h represents the sum of j and h modulo 2 and the normalization
factors are given by Mrh =

∑1
i,q=0(

∑1
j=0 e

−IπrjRrh
j aijbj⊕h,q)

2. Interestingly, here we
obtain an important relation between the concurrences of the initial and final states,

C(|χrh〉13) =
Frh

2Mrh

C(|ψ〉12)C(|ψ〉23), (5.3)

where the coefficients Frh are given by,

Frh =

{
n if (r, h) = (0, 0) or (1, 0),
m if (r, h) = (0, 1) or (1, 1).

(5.4)

This relation (5.3) shows that we can always determine the amount of entanglement to be
created between the unentangled nodes depending upon the choice of the resource states.
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5.2.2 For two qudit pure states

In this subsection we extend our result to the situation where we have entangled states in
d⊗d dimension instead of states in 2⊗2 dimension. If we know the state properly then we
can always rewrite it in the Schmidt decomposed form. If we have a pure two-qudit state
in the form |ψ〉 =

∑d−1
i,j=0 aij|ij〉 where

∑d−1
i,j=0 a

2
ij = 1, then the Schmidt decomposition

form for this state will be |ψ〉 =
∑d−1

ĩ=0
λĩ |̃ĩi〉, where

∑d−1
ĩ=0

λ2
ĩ

= 1 and λĩ are real and
non-negative, and {|̃i〉} is an orthonormal basis of the corresponding Hilbert space. The
concurrence for two-qudit state |ψ〉 can be written in the form [50, 62]

C(|ψ〉) =

√√√√ 2d

d− 1
(

d−1∑
ĩ,j̃=0(̃i<j̃)

λ2
ĩ
λ2
ĩ
). (5.5)

For d = 2, this equation reduces to C = 2 | λ0λ1 |.

Let us consider a two-qudit pure state shared by parties Alice and Bob |ψ〉12 =
∑d−1

i=0 λi|ii〉
and Bob and Charlie shares the pure two-qudit state |ψ〉23 =

∑d−1
j=0 µj|jj〉, where

∑d−1
i=0 λ

2
i =

1 =
∑d−1

j=0 µ
2
j . In other words, |ψ〉12 is the entanglement shared between the nodes 1 and

2, whereas |ψ〉23 is the entanglement between the nodes 2 and 3. Now Bob carries out
Bell measurements on his qudits. These basis vectors on which the Bell measurements
are carried out are given by,

|φrh〉 =
1√
d

d−1∑
t=0

e
2πIrt
d |t〉|t⊕ h〉, (5.6)

where t ⊕ h means the sum of t and h modulo d. The indices r and h can take integer
values between 0 and d− 1. We can revert the above equation to obtain

|ij〉 =
1√
d

d−1∑
r,h=0

e
−2πIjr

d δi,i⊕h|φrh〉. (5.7)

Hence, the combined state of Alice, Bob and Charlie is

|Φ〉1223 = |ψ〉12 ⊗ |ψ〉23

=
d−1∑
i=0

d−1∑
j=0

λiµj|ij〉13|ij〉22

=
1√
d

d−1∑
i,j

d−1∑
r,h

e
−2πIrj

d λiµj|ij〉13δj,i⊕h|φrh〉22

=
1√
d

d−1∑
i,r,h

e
−2πIrj

d λiµi⊕h|i, i⊕ h〉13|φrh〉22. (5.8)

According to measurement outcomes |φrh〉22 on Bob’s side, the states created between
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5 Teleportation and super dense coding in RED

the nodes 1 and 3 are given by

|χrh〉13 =
1√
Nrh

d−1∑
i=0

e
−2πIrj

d λiµi⊕h|i, i⊕ h〉13 (5.9)

where Nrh =
∑d−1

i=0 λ
2
iµ

2
i⊕h are normalization factors. We can construct unitary operators

of the form Ust =
∑d−1

r=0 e
2πisr
d |r〉〈r ⊕ t| which can transform states in Eq.(5.9) into its

diagonal form. Hence, the concurrence of the final two-qudit state is given by,

C(|χrh〉13) =
1

Nrh

√√√√ 2d

d− 1
(
d−1∑
i<f

(λ2
iλ

2
f )(µ

2
i⊕hµ

2
f⊕h)). (5.10)

To understand the terms in Eq.(5.10) we have to split it in the following way

d−1∑
i<f

(λ2
iλ

2
f )(µ

2
i⊕hµ

2
f⊕h) =

d−1∑
i<f

λ2
iλ

2
f

d−1∑
i<f

µ2
i⊕hµ

2
f⊕h −

d−1∑
i<f

(λ2
iλ

2
f

d−1∑
l<m

Θif
lmµ

2
l⊕hµ

2
m⊕h),(5.11)

where function Θif
lm is defined as

Θif
lm =

{
1 if (l,m) 6= (i, f) for d ≥ 3,
0 if (l,m) = (i, f) or d ≤ 2.

(5.12)

It is evident that in case of d ⊗ d dimensions, we have no direct relationship as we have
obtained in the multiqubit case. However we consider a special situation where we have
only two non-vanishing Schmidt coefficients, then we have the concurrence of the state
|ψ〉 as

Cij(|ψ〉) =

√
2d

d− 1
(λiλj). (5.13)

The Cij are the concurrences of |ψ〉, when two of the Schmidt coefficients are present
only. Then we have the relation with the concurrences of the initial and final entangled
states as

C2(|χrh〉13) =
(d− 1)

2dN2
rh

[C2(|ψ〉12)C2(|ψ〉23)−Kh
d ], (5.14)

where Kh
d =

∑d−1
i<f (C2

if (|ψ〉12)
∑d−1

l<m Θif
lmC

2
l⊕h,m⊕h(|ψ〉23)) is a term that depends on

dimension d and Kq
2 = 0 only when d = 2. Hence for d = 2, Eq.(5.14) becomes

C(|χpq〉13) =
1

2Nrh

C(|ψ〉12)C(|ψ〉23). (5.15)

This relation involving the concurrences also reflects that the amount of entanglement that
can be created between the remote nodes is solely a function of the amount of entangle-
ment of the resource states.
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5.3 Study of concurrence in RED: Multiparty scenario

Figure 5.1: In this Figure entanglement swapping is done with simultaneous measure-
ments (A) and sequential measurements (B). Here g number of measurements
M1,M2, ....,Mg are carried out simultaneously (A) and sequentially (B) at
the nodes (2, 3, 4, ..., g + 1) to obtain an entangled state between the first and
last node (i.e., 1, g + 2)).

5.3 Study of concurrence in RED: Multiparty scenario

Let us assume that we have (g+ 1) entangled states in 2⊗2 dimensions with g+ 2 nodes.
In order to obtain an entangled state between 1st and last node we carry out g number
of entanglement swappings. We separately study two different types of measurement
strategies in the entire swapping procedure. First of all we consider the case where we
carry out simultaneous measurement in a non maximally entangled basis in each of these
intermediate nodes to obtain an entangled state between the qubits in the first and the last
node. Secondly, we consider sequential measurements to create successive entanglements
between the nodes (1, 3), (1, 4) and finally between the nodes (1, g + 2). In each of these
cases we obtain the extension of the relationships involving the concurrences of initial
and final entangled states.

5.3.1 Simultaneous and sequential measurement

In this subsection we start with (g + 1) entangled states in the most general form, |ψ〉 =∑1
ik,jk=0 aikjk |ikjk〉, where k denotes the index for the number of entangled states and

varies from 0 to g. Here for a fixed k, aikjk denotes the corresponding coefficients of
the given entangled state. Then we create an entangled state between the qubits at the
nodes 1 and g + 2 by entanglement swapping. In other words we carry out simultaneous
measurements M1,M2, ....,Mg at the nodes 2, 3, 4, ...., g + 1 respectively to obtain an
entangled state between the qubits at the nodes 1 and g + 2 or we carry out measure-
ments M1,M2, ....,Mg one after the other to create successive entanglement between
the pair of nodes (1, 3), (1, 4), ..., (1, g + 2) respectively [see Fig.(5.1)]. After evaluating
the concurrences for the initial states and final state we find them to be related by,

C(|χr1h1,...,rghg〉1(g+2)) =
Πg
i=1Frihi

2gMr1h1,...,rghg

C(|ψ〉12)C(|ψ〉23) · · · C(|ψ〉(g+1)(g+2)). (5.16)
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5 Teleportation and super dense coding in RED

Here the indices r and h take the values 0 and 1 and the subscript i(= 1, 2, ..., g) de-
notes the number of measurements that have taken place. The normalization factors are
given by Mr1h1,...,rghg =

∑1
i0,jg=0(

∑1
j1,j2,...,jg−1=0 e

−Iπr1j0e−Iπr2j1 ....e−Iπrgjg−1Rr1h1
j0

Rr2h2
j1

...R
rghg
jg−1

ai0j0aj0⊕h1j1aj1⊕h2j2 ...ajg−1⊕hgjg)
2. The superscripts ri, hi ∈ [0, 1], i = 1, 2, ..., g

comes from the measurement of g parties (i.e., if their measurement results are |φr1h1〉 ⊗
|φr2h2〉 ⊗ .... ⊗ |φrghg〉 = ⊗gi=1|φrihi〉). The resultant states obtained after swapping are
given by,

|χr1h1,...,rghg〉1(g+2) =
1√

Mr1h1,...,rghg

∑
i0,jg

(
∑

j1,j2,...,jg−1

e−Iπr1j0e−Iπr2j1 ...e−Iπrgjg−1Rr1h1
j0

Rr2h2
j1

...R
rghg
jg−1

ai0j0aj0⊕h1j1aj1⊕h2j2 ...ajg−1⊕hgjg)|i0, jg〉1(g+2).

The coefficients, Frihi and Rrihi
ji

are defined as

Frihi =

{
n if (ri, hi) = (0, 0) or (1, 0),
m if (ri, hi) = (0, 1) or (1, 1),

(5.17)

Rrihi
ji

=


n if (ri, hi, ji) = (0, 0, 1) or (1, 0, 0),
m if (ri, hi, ji) = (0, 1, 1) or (1, 1, 0),
1 otherwise.

(5.18)

5.4 Teleportation fidelity and superdense coding capacity in
RED

In this section, we have obtained the relations for teleportation fidelity and super dense
coding capacity of a remotely prepared entangled states with that of the resource states.
These relations are very much important and relevant in the context of quantum network-
ing. A quantum network, is a collection of nodes interconnected by entangled states that
allow sharing of resources and information. Here we ask the question that in an quantum
network what is the amount of quantum information and classical information one can
send between the initial and final nodes. We find that indeed there are certain relations,
which determine the amount of information one can send from the initial and final node
after creating an entangled state between the initial and final node through the process of
remote entanglement distribution (RED). In particular, we showed that how the teleporta-
tion capability of a remotely prepared state is linked up with the fidelity of teleportation
of the initial resource states. Similarly, we analyzed the super dense coding capacity of
the remotely prepared state in terms of the capacity of the initial entangled states. In other
words, these analysis both in the case of teleportation and super dense coding shows that
the amount of information both quantum and classical one can send between two unen-
tangled nodes is dependent on the choice of resource states. These results may be useful
in determining the path in an arbitrary quantum network through which we can send max-
imal possible quantum information between any two unentangled nodes.
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5.4 Teleportation fidelity and superdense coding capacity in RED

5.4.1 Study on teleportation fidelity in RED

Let us begin with very simplistic situation where there are two parties Alice, Bob share
an entangled state |ψ〉12 =

∑1
i,j=0 aij|ij〉 between them, where as Bob and Charlie share

another state |ψ〉23 =
∑1

p,q=0 bpq|pq〉. This is equivalent of saying that we have considered
the parties and nodes to be synonymous, then |ψ〉12 and |ψ〉23 are the respective entangled
states between the nodes (1, 2) and (2, 3). We then propose the following theorem con-
necting the teleportation capability of the resource states with that of the entangled state
obtained between the non connected nodes as a result of swapping.

Theorem 5.1 For the initial resource states written in the form |ψ〉12 =
∑1

i,j=0 aij|ij〉
and |ψ〉23 =

∑1
p,q=0 bpq|pq〉, the teleportation fidelities of the initial states and final

state |χrh〉13 obtained after the measurement in the general basis |φrhG 〉, are related by,
3F (|χrh〉13) − 2 = Fpq

2Mpq
[3F (|ψ〉12) − 2][3F (|ψ〉23) − 2], where Fpq is a function of the

measurement parameters, Mpq are the normalization constants and (r, h) are the indices
to denote the measurement outcomes.

Proof: We can write fidelities of initial resource states and final remotely prepared state
as F (|ψ〉12) = 1

3
(2 + C(|ψ〉12)), F (|ψ〉23) = 1

3
(2 + C(|ψ〉23)) and F (|χrh〉13) = 1

3
(2 +

C(|χrh〉13)) respectively, then just by substituting the values of concurrences in terms of
teleportation fidelities in Eq.(5.3) one can have the relation concerning teleportation fi-
delities of the initial resource states with the final remotely prepared state.
This gives the more generalized version of the expression relating the teleportation fideli-
ties of thee initial resource states with the final remotely prepared states.

Then we consider a complicated situation where we have (g + 1) entangled states dis-
tributed among hypothetical parties in g + 2 nodes. These entangled states are shared
between consecutive nodes. We consider two types of measurement namely simultaneous
and consecutive measurements M1,M2, ....,Mg at g number of nodes [see Fig.(5.1)].
As we have seen in the previous section that both of these measurements create entan-
glement between the first and final node. Here we prove a theorem, quite analogous to
previous theorems relating the teleportation capability of the resource states with the final
state obtained as a result of swapping in the process of remote entanglement distribution
(RED).

Theorem 5.2 If we start with (g + 1) entangled states in the most general form, |ψ〉12,
|ψ〉23, ...., |ψ〉(g+1)(g+2), between the nodes (1, 2), (2, 3), ....(g + 1, g + 2) with respective
teleportation fidelities F (|ψ〉12), F (|ψ〉23), ..., F (|ψ〉(g+1)(g+2)), then the teleportation fi-
delity of the state |χr1h1,...,rghg〉1(g+2) is given by

3F (|χr1h1,...,rghg〉1,(g+2))− 2 =

g∏
i=1

Frihi

2gMr1h1,...,rghg

[3F (|ψ〉12)− 2] [3F (|ψ〉23)− 2]

...
[
3F (|ψ〉(g+1)(g+2))− 2

]
(5.19)
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Proof: Just by substituting the values of the concurrences in terms of the teleportation
fidelities in the Eq.(5.16) we finally obtain the relation involving the teleportation fidelities
of the initial resource states with the final remotely prepared state.

5.4.2 Study on superdense coding capacity in RED

It is quite well known that if we have a maximally entangled state in Hd ⊗ Hd as our
resource, then we can send 2 log2 d bits of classical information. In the asymptotic case,
we know one can send log2 d + S(ρ) amount of bit when one considers non-maximally
entangled state as resource [176]. It had been seen that the number of classical bits one
can transmit using a non-maximally entangled state in Hd ⊗ Hd as a resource is (1 +
λ0

d
d−1

) log2 d, where λ0 is the smallest Schmidt coefficient. However, when the state is
maximally entangled in its subspace then one can send up to 2 log2(d − 1) bits [217]. In
particular, super dense coding capacity (see Eq.(1.90)) for pure states, is given by,

C(ρAB) = log2 d+ S(ρB) = log2 d+ E(ρAB), (5.20)

where, E(ρAB) is the entanglement entropy of the pure state ρAB.

In this subsection we find how the super dense coding capacities of the resource states are
related with the super dense coding capacity of the entangled state obtained as a result
of entanglement swapping. Here, we consider only the simplest situation where we have
two resource states at our disposal and we want to send classical information from one
node to another which are not initially entangled. Let us once again begin with a situation
where two parties Alice, Bob sharing an entangled state |ψ〉12 =

∑
i λi|ii〉 between them,

where as Bob and Charlie share another state |ψ〉23 =
∑

j µj|jj〉 ( where λi, µj , (i, j =

0, 1, ..., d) are the Schmidt coefficients, satisfying
∑

i λ
2
i = 1,

∑
j µ

2
j = 1) with each other.

Then Bob carries out the Bell state measurement on his qubits at the node 2 and according
to measurement outcomes |φrh〉22 on Bob’s side, the resultant entangled pairs generated
between the nodes 1 and 3 are |χrh〉13 (given in Eq.(5.9)). The entanglement entropy of
these states are given by,

E(|χrh〉13) = − 1

Nrh

∑
i

λ2
iµ

2
i⊕h log2

[
λ2
iµ

2
i⊕h

Nrh

]
. (5.21)

Then there arises three situations depending upon the choice of the Schmidt coefficients
of the resource states.

Case I: First of all we consider the case when both the resource states are maximally
entangled i.e., when all the Schmidt coefficients are equal to 1√

d
. Then the super dense

coding capacity of the resource state is related with the super dense coding capacity of
the remotely prepared entangled states |χrh〉13 (where r, h are the indices indicating the
measurement outcomes ) as, C(|χrh〉13) = C(|ψ〉12) = C(|ψ〉23) = C(say). Hence if we
have a network consisting of g + 1 number of maximally entangled states then the super
dense coding capacity of final state between the nodes 1 and g + 2 [see Fig.(5.1)] will be,

C(|χrh〉1,(g+2)) = C, (5.22)
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where, C = C(|ψ〉12) = C(|ψ〉23) = ... = C(|ψ〉(g+1),(g+2)).

Case II: In this particular case we consider the situation when one of the entangled state
is maximally entangled and the rest is non maximally entangled i.e λi = 1√

d
, µj 6= 1√

d
,

then we have, C(|χrh〉13) = C(|ψ〉23) = C2(say) and if λi 6= 1√
d
, µj = 1√

d
, then we

have, C(|χrh〉13) = C(|ψ〉12) = C1(say). Now if we consider a network consisting of
g + 1 number of entangled bipartite qudit states out of which n number of states are non-
maximally entangled and g+1−n number of states are maximally entangled then for the
strategies in Fig.(5.1), the super dense coding capacity of final state between the nodes 1
and g + 2 will be,

C(|χrh〉1,(g+2)) < Cmax
p , (5.23)

where, Cmax
p is the maximum out of n number of super dense coding capacities [Cp; p =

1, 2, 3, ...., n ] of non-maximally entangled pure two-qudit resource states.

Case III: Finally, we consider the case when both the entangled states are not maximally
entangled i.e λi 6= 1√

d
, µj 6= 1√

d
, then the super dense coding capacity of the swapped

state is given by, C(|χrh〉13) < max[C1, C2]. And hence easily we can write for a network
consisting of g + 1 number of non-maximally entangled pure two-qudit states, the super
dense coding capacity of the final state (as a result of the strategies in Fig.(5.1)) between
the nodes 1 and g + 2 will be,

C(|χrh〉1,(g+2)) < Cmax
i , (5.24)

where, Cmax
i is the maximum out of g + 1 number of super dense coding capacities [Ci;

i = 1, 2, 3, ...., (g + 1) ] of non-maximally entangled pure two-qudit resource states.

5.5 Conclusion

In a nutshell, here in this chapter, we established an important relationship connecting the
fidelities of teleportation of the resource states with the fidelity of the final state obtained
as a result of entanglement swapping. Similarly, we also connected the super dense cod-
ing capacities of the resource states with that of the final state. All these relations are
very much important and relevant in the context of quantum networking. These relations
actually determine the amount of information both classical and quantum, one can send
from one node to a desired node in a quantum network. In other words, in an arbitrary
network when two nodes are not connected, our result shows how much information both
quantum and classical can be sent from one node to other. In fact the amount of transfer-
able information depends on the capacities of the inter connecting entangled resources.
Depending upon the inter connecting entangled resources, we can choose the optimal path
in a quantum network to send the maximal possible information.
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Chapter 6

Correlations generated in cloning and deletion

6.1 Introduction

In quantum information theory the no-cloning theorem plays a fundamental role [34,218,
219]. This theorem states how nature prevents us from amplifying an unknown quantum
state. However, in principle it is always possible to construct a quantum cloning ma-
chine that replicates an unknown quantum state approximately [34,195,220–232]. These
approximate quantum cloning machines can be of two types. One is a state-dependent
quantum cloning machine, for example, the Wootters-Zurek (WZ) quantum cloning ma-
chine, whose copying quality depends on the input state [34,197,220,232]. The other type
is a universal quantum copying machine, for example, the Buzek-Hillery (BH) quantum
cloning machine [195], whose copying quality remains the same for all input states. In ad-
dition, the performance of the universal BH quantum cloning machine is, on the average,
better than that of the state-dependent WZ cloning machine. The fidelity of cloning of the
BH universal quantum copying machine is 5

6
- the optimal fidelity for the universal quan-

tum cloning machines [220, 233]. Although it is impossible to copy a state perfectly, one
can probabilistically clone a quantum state, secretly chosen from a certain set of linearly
independent states [229, 234]. Also, it is possible to have linear superposition of multiple
clones and obtain a probabilistic cloning machine as a special case of the former [235].
Quantum deletion [182] on the other hand, is about the impossibility of deleting an ar-
bitrary quantum state. More specifically, it states that the linearity of quantum theory
precludes deleting an unknown quantum state from two identical copies in either a re-
versible or an irreversible manner. The principle behind quantum deletion will be clearer,
if we compare the deletion operation with the Landauer erasure operation [236]. Erasure
of classical or quantum information cannot be performed reversibly. The erasure prin-
ciple says that a single copy of some classical information can be erased at the cost of
some energy. Thermodynamically, it is an irreversible operation. In quantum theory the
erasure of a single unknown state is considered as swapping it with some standard state
and then trashing it into the environment. In contrast, quantum deletion [182] is more of
reversible ‘uncopying’ of an unknown quantum state. It has been shown that in addition
to the linear structure of quantum mechanics, other principles like unitarity, nosignalling,
incomparability and conservation of entanglement are not congruous to the concept of
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perfect deletion [69, 237–240]. However, if one tries to delete an unknown quantum state
probabilistically, then it is possible with a success probability of less than unity [241].
It has also been shown that using these probabilistic deletion machines one cannot send
superluminal signals probabilistically [242]. Since perfect deletion is not possible, it is
interesting to see whether one can delete an unknown state imperfectly. Researchers have
devised various approximate deletion machines. These deletion machines are either state
dependent or state independent [185, 243–247]. Recent explorations have revealed that
one can construct a universal quantum deletion machine [244], and its fidelity can be
further enhanced by the application of suitable unitary transformation [245]. These dele-
tion machines can have various applications in quantum information theory [248–250].
However, the optimal quantum deletion machine has not been found yet.

At this point one might ask an important question whether quantum correlations are re-
sponsible for our inability to produce high fidelity states in the approximate cloning or
deleting a quantum state? Note that initially there are no correlations between the input
states. This is because they are the individual systems which are in a product state. How-
ever, at the output port we always obtain a combined state, which is usually correlated.
A priori, it is not clear whether this correlations play an important role in deciding the fi-
delity of cloning and in deleting an unknown quantum state. In order to find an answer to
this question, we consider a particular type of cloning machine, the BH cloning machine,
and try to quantify the amount of correlations present in the mixed two qubit output state.
Similarly, for the deletion operation we consider a state-dependent quantum deleting ma-
chine to find out the correlations in the output modes. The basic motivation is to see how
the correlations regulates the fidelity of the cloning and deletion processes. We find that
the more the output modes are correlated the less is the fidelity in either cases. In other
words, the process of cloning and deletion will be more perfect if the output modes are
poorly correlated, i.e., the correlations generated in the processes of cloning and deletion
behave in complimentary way [184].

The problem of complementarity or mutually exclusive aspects of quantum phenomena
arose with the birth of quantum mechanics, soon after, Heisenberg discovered the un-
certainty principle for the momentum and the position [251–253]. A year later, Bohr
proposed the concept of complementarity [254, 255]. Even in the domain of quantum
information theory, the idea of complementarity is not new, as some authors have shown
that there does exist the complementarity between the local and nonlocal information of
quantum systems [128]. In this work we observe a new kind of complementarity in terms
of successive correlations generated in the system when a state undergoes deletion after
the cloning or the cloning after the deletion.

We quantify the correlations in the cloning and deleting processes with three different kind
of measures to make this observation more precise. These measures are (i) negativity [54],
(ii) quantum discord [100, 116, 256] and (iii) geometric discord [127]. Each of them
represents three different classes of measures. We would like to see how generic the
complementarity is for cloning and deleting if we use different measures of quantum
correlations.

The chapter is organized in the following manner. In section 6.2, we provide a short
introduction to the geometric discord. In section 6.3, we analyse the correlations content
of the output of the Buzek-Hillery quantum cloning machine. We also analyse how the
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correlations content of the output modes plays a pivotal role in determining the fidelity of
cloning. In section 6.4, we study the standard approximate deleting machine to obtain a
correspondence between the fidelity of deletion and the amount of correlations generated
in the process. In section 6.5, we obtain a new kind of complementarity relation between
the correlations generated in the system for the process of successive cloning and deletion,
and also for the case when we clone the state after deletion. This complementarity gives
a new bounds to the total correlations generated in the context of quantum correlation
measures. Finally, we conclude in section 6.6.

6.2 Quantum correlations beyond entanglement: Geometric
discord

It had been argued that the difficulty experienced in calculating quantum discord can
be minimized, for a general two-qubit state, by defining its geometrical version [127].
Distance-based discord is defined as the minimal distance between a quantum state and
all other states with zero discord [127, 257, 258]. It is similar to the geometric measure
of quantum entanglement [82]. It is well known that almost all (entangled or separable)
states are disturbed by the measurement. However, there are certain states which are
invariant under the measurement performed on the sub-system A. These states are the so
called classical-quantum (CQ) states. A CQ density matrix is of the form

ρ =
∑
i

pi|i〉〈i| ⊗ ρi, (6.1)

where pi is a probability distribution, {|i〉} is an orthonormal set of vectors for A and ρi
are the elements of B. A classical-quantum state is not affected by a measurement on A
in any case. One can show that the state ρ is of zero-discord if and only if there exists a
von Neumann measurement {Πk = |ψk〉〈ψk|} such that [166]∑

k

(Πk ⊗ IB)ρ(Πk ⊗ IB) = ρ. (6.2)

It had been seen in Ref. [127], that these two states in Eq.(6.1) and (6.2) are identical. Let
S be the set consisting of all classical–quantum two qubit states, and let us assume that χ
is a generic element of this set. Then the geometric discord DG of an arbitrary two-qubit
state ρAB is given by the distance between the state ρAB and the closest classical-quantum
state. Geometric discord has been introduced as

DG(ρAB) = 2 min
χ∈S
||ρAB − χ||22, (6.3)

where the coefficient 2 on the right hand side is the normalization factor and ||X−Y ||2 =
Tr(X−Y )2 is the square norm in the Hilbert-Schmidt space. For the geometric discord of
the state ρAB to have a nice closed form, one needs to express the state in terms of the Pauli
matrices (σ1, σ2, σ3) as ρAB = 1

4
(I4+

∑3
i=1 xiσi⊗I2+

∑3
j=1 yjI2⊗σj+

∑3
i,j=1 tijσi⊗σj),

where tij = Tr[ρ(σi ⊗ σj)], In is the identity matrix of order n, ~x = {xi}, ~y = {yi}
represent the three-dimensional Bloch column vectors and t = [tij] is the correlation
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6 Correlations generated in cloning and deletion

matrix. Then, we can rewrite the geometric discord as [259]

DG(ρAB) =
1

2
(‖~x‖2

2 + ‖t‖2
2 − 4kmax) = 2Tr[S]− 2kmax, (6.4)

with kmax being the largest eigenvalue of the matrix S = 1
4
(~x~xT + ttT) where ‘T’ denotes

transposition. There are other approaches to define the geometric discord, however we
focus only on the above presented one.

6.3 Analysis of the correlations content of the output of
Buzek-Hillery copying machine

In this section we consider the universal Buzek-Hillery cloning machine and quantify
the correlations present in the output copies of the Buzek-Hillery cloning machine [195].
But before that we give a short description of the Buzek-Hillery cloning machine. We
recall that the action of the Buzek-Hillery quantum cloning machine [195] is given by the
transformations

|0〉a|0〉b|Q〉x −→ |00〉ab|Q0〉x + [|01〉ab + |10〉ab]|Y0〉x,
|1〉a|0〉b|Q〉x −→ |11〉ab|Q1〉x + [|01〉ab + |10〉ab]|Y1〉x, (6.5)

where a, b and x denote qubits corresponding to input state port, blank state port and
the machine state port. The unitarity and the orthogonality of the cloning transformation
demand the following conditions to be satisfied:

〈Qi|Qi〉x + 2〈Yi|Yi〉x = 1 & 〈Y0|Y1〉x = 〈Y1|Y0〉x = 0 (i = 0, 1). (6.6)

Here, we assume the machine state vectors |Yi〉x and |Qi〉x to be mutually orthogonal.
This is also true for the state vectors {|Q0〉, |Q1〉}.
The unknown quantum state which is to be cloned is given by

|ψ〉 = α|0〉+ β|1〉, (6.7)

where α, β are complex numbers satisfying, |α|2 + |β|2 = 1. After using the cloning
transformation (6.5) on the quantum state and then tracing out the machine state, the
reduced density operator describing the two qubit output modes of the original and the
cloned state is given by

ρcloneab = (1− 2ξ)(α2|00〉ab〈00|+ β2|11〉ab〈11|) +
αβ√

2
(1− 2ξ)(|00〉ab〈ψ+|

+ |ψ+〉ab〈00|+ |ψ+〉ab〈11|+ |11〉ab〈ψ+|) + 2ξ|ψ+〉ab〈ψ+|,
(6.8)

where we have used the following notations 〈Y0|Y0〉x = 〈Y1|Y1〉x = ξ, 〈Y0|Q1〉x =
〈Q0|Y1〉x = 〈Q1|Y0〉x = 〈Y1|Q0〉x = η

2
, |ψ+〉 = 1√

2
(|01〉 + |10〉). Here, η = 1 − 2ξ

with ξ being the machine parameter determining the nature of the cloning transforma-
tions. The output state ρcloneab is of prime importance as we will investigate the amount of
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Figure 6.1: The plot shows how the correlation measure negativity (∆clone
N ), vary with the

input parameter α and the fidelity of cloning Fcl.

correlations present in it. Cloning fidelity is given by the overlap between the real output
state ρcloneb with the desired output state |ψ〉. It can be seen that that the cloning fidelity
Fcl = Tr[ρcloneb |ψ〉〈ψ|] = 1 − ξ is dependent on the machine parameter ξ. It has been
shown that the BH cloning machine should satisfy the inequality η ≤ 2(ξ − 2ξ2)

1
2 . The

relation η = 1− 2ξ reduces the inequality η ≤ 2(ξ − 2ξ2)
1
2 to the inequality 1

6
≤ ξ ≤ 1

2
.

Henceforth, we study the different measures of quantum correlations in this range of the
machine parameter to see how it behaves with the cloning fidelity. The amount of corre-
lations generated in the process of cloning is given by the difference between the amount
of correlations in the output modes and the amount of correlations in the same two modes
before the application of cloning operations. We will denote this difference of correlations
as ∆clone

K = K(ρfinalab )−K(ρinitialab ), for a correlation measure K(ρab). Here we compute
three different correlation measures, namely (i) negativity (N ), (ii) discord (D) and (iii)
geometric discord (DG) for both the initial input state (ρinitialab ) and the final output state
(ρfinalab ). Since the Buzek-Hillary cloning machine we start with product states, the re-
spective differences ∆clone

N ,∆clone
D and ∆clone

DG of correlations are nothing but the amount
of correlations N(ρfinalab ), D(ρfinalab ) and DG(ρfinalab ) in the output modes. Our first mo-
tivation is to see how these different measures of correlation behave with the fidelity of
cloning. For this purpose, we first express these different measures of the correlation
∆clone
N ,∆clone

D and ∆clone
DG in terms of the fidelity Fcl of cloning. We rewrite these measures

as a function of a variable like the fidelity of cloning Fcl and input state parameter α. The
expression for ∆clone

N is given by

∆clone
N =

1

2

[
2

{
g1 +

1

2
g2f1

} 1
2

+ {g1 + g2f2}
1
2 + {g1 + g2f3}

1
2 − 1

]
, (6.9)

where f1 = |α|2β2, f2 = (1 + 1
2
|α|2 − α∗2)β2, f3 = |α|2(|α|2 + 1

2
β2) (here, |.| denotes

absolute value and ∗ the complex conjugation), g1 = (Fcl − 1)2 and g2 = (2Fcl − 1)2.
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6 Correlations generated in cloning and deletion

Figure 6.2: The plot shows how the correlation measure discord (∆clone
D ) vary with the

input parameter α and the fidelity of cloning Fcl.

Similarly, the expression for ∆clone
D is given by

∆clone
D = H2(Fcl) +mH2(X+)− nH2(Y+), (6.10)

where H2(x) = −x log2 x − (1 − x) log2(1 − x), X+ = 1
2
(1 + 1

m
{1 + C+}

1
2 ), Y+ =

1
2
(1 + 1

n
{4 + Fcl(7 − 5Fcl) + C−}

1
2 ), C± = Fcl[−2 − 10α2 + Fcl(1 + 8α2)] ± 3α2,

m = n− 1, and n = α2 + (1− 2α2)Fcl.

Lastly, the corresponding expression for the geometric discord is given by

∆clone
DG = 2(λ+ λ+ + λ− −max[λ, λ+, λ−]), (6.11)

where λ = (1 − Fcl)
2, λ± = 1

2
(3.5 − 9Fcl + 6F 2

cl ±
√
p− α2β2q), (here p = 2.25 −

15Fcl + 37F 2
cl − 40F 3

cl + 16F 4
cl and q = 5− 36Fcl + 96F 2

cl − 112F 3
cl + 48F 4

cl).

To have a better insight, we plot these expressions ∆clone
N ,∆clone

D and ∆clone
DG of the corre-

lations generated in terms of the fidelity Fcl of cloning and the input state parameter α in
the Figs.(6.1, 6.2 & 6.3). Since ξ lies in the range 1

6
≤ ξ ≤ 1

2
, we have the range of the

fidelity 1
2
≤ Fcl ≤ 5

6
and the range of the input parameter α from 0 to 1. In Figs.(6.1,

6.2 & 6.3), we find that the more correlated are states, the less is the fidelity of cloning.
In other words, when we have a cloning machine that performs better, the joint output
mode will be poorly correlated. Altogether, these plots indicate that the amount of cor-
relations generated in the process of cloning plays a vital role in determining the fidelity
of cloning. As is evident from these figures, the more the amount of correlations present
in the original and the cloned copy in the output, the more difficult it is to copy the infor-
mation of the original copy in the blank state, because the information gets hidden in the
correlations between the copies. Though we have considered a particular type of cloning
machine to illustrate this phenomenon, we believe that this phenomenon is independent of
the transformation we choose, and is true in general for the process of imperfect quantum
cloning.
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Figure 6.3: The plot shows how the correlation measure geometric discord (∆clone
DG ) vary

with the input parameter α and the fidelity of cloning Fcl.

6.4 Analysis of the correlations content of the output of a
state-dependent deleting machine

In this section we analyze the correlations generated in the process of quantum deletion
which can be thought of as the opposite procedure of quantum cloning. As an example,
we consider a state-dependent quantum deletion machine and study the amount of cor-
relations present in the output modes. As in the previous section, we wish to determine
the role of quantum correlations in regulating the fidelity of deletion. In order to do that,
we consider three different correlation measures and indeed we see that the physical find-
ing is no different from the cloning. The action of a state-dependent deleting machine as
mentioned in reference [185, 260] is given by the unitary operation

|ψ〉A|ψ〉B|A〉C → α2|0〉A|0〉B|A0〉C + β2|1〉A|0〉B|A1〉C +
√

2αβ|ψ+〉AB|A〉C , (6.12)

where we start with two copies of the unknown state |ψ〉 with the purpose of deleting
one copy against the other. Here |A〉C is the initial state of the ancilla, |A0〉C and |A1〉C
are the final states of the ancilla. Moreover, the unitarity of the transformation demands
the states |A〉, |A0〉 and |A1〉 to be orthogonal to each other. After the application of the
deletion transformation given in (6.12) on two copies of |ψ〉, the output reduced density
matrix of these two modes takes the form

ρdelab = |α|4|00〉〈00|+ |β|4|10〉〈10|+ 2|α|2|β|2|ψ+〉〈ψ+|, (6.13)

where |ψ+〉 = 1√
2
(|01〉 + |10〉). The fidelity of the deletion for this machine is given

by Fdel = 1 − |α|2|β|2. By expressing the input parameter |α|2 in terms of fidelity Fdel
we have |α|2 = 1

2
(1 ±

√
4Fdel − 3). However the feasible solution for |α|2 is 1

2
(1 −√

4Fdel − 3). Based on the range of |α|2 we find that Fdel satisfies the relation 3
4
≤

Fdel < 1. This is also consistent with the fact that if we are given two copies of an
unknown qubit, and we perform optimal measurement on both the copies, then we can

111



6 Correlations generated in cloning and deletion
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Figure 6.4: The figure shows how the correlation measure negativity (∆del
N ) vary with the

fidelity of deletion (Fdel).

estimate the state with a fidelity 3/4 [227] which is also the lower bound of the deletion
machine. In a similar way, we define the amount of correlations generated in the process
of deletion. This is given by the difference between the amount of correlations in the
output modes after the process of deletion, and the amount of correlations in those two
modes before the application of the deletion operation. We denote this difference of
correlations for any correlation measure K(ρab) as ∆del

K = K(ρfinalab ) − K(ρinitialab ). We
compute various correlation measures for both the initial input states and the final output
states. Since we start with product states having no initial correlation, the amount of
correlations generated in the process of deletion is the same as the amount of correlations
between the output modes. We denote these correlations for three different measures
(i) negativity (N ), (ii) discord (D) and (iii) geometric discord (DG) by the notations
∆del
N ,∆del

D and ∆del
DG, respectively. The expression for ∆del

N is given by

∆del
N =

1

2

[
(1− a)

4
{(1 + a)2 + 1}

1
2 + (2− a)(1 + a)− 1

]
, (6.14)

where a =
√

4Fdel − 3. Similarly, the expression for ∆del
D is given by

∆del
D =

(
6

5

)2 [
H2(c) +H2(T+)− h(T 2

+)− h(S+, S−)
]
, (6.15)

where h(x, y) = −x log2 x − y log2 y, h(x) = −x log2 x, c = 1
2Fdel

(a + 1), S± = 1
4
(3 −

2Fdel + a± {14− 2a+ 4Fdel(a+ 5Fdel − 8)} 1
2 ) and T+ = 1

2
(1− a).

Lastly, the corresponding expression for the geometric discord is given by

∆del
DG = 2(λ0 + 2λ1 −max[λ0, λ1]), (6.16)

where, λ0 = 1
4
[l2− + l2+], λ1 = K2

+, a =
√

4Fdel − 3, l± = K− ± K+ − 1 and K± =
1
2
(1− a){1± 1

2
(a− 1)}.
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Figure 6.5: The figure shows how the correlation measure discord (∆del
D ) vary with the

fidelity of deletion (Fdel).

Now, our aim is to see how correlations generated in the process controls the fidelity of
achieving it. For this, we plot these measures with respect to the fidelity of deletion Fdel
in Figs.(6.4, 6.5 & 6.6). These figures show that the amount of correlations generated
in the process varies inversely with the efficiency of carrying out the deletion process
successfully. This is very similar to the behavior that we have observed in the process of
cloning. Our conjecture is that this is independent of the machine we select. This agrees
with our physical intuition that the amount of information not available for the deletion
process is hidden in the correlations between the two modes.

6.5 Concatenation of Cloning and Deletion – Correlation
Complementarity

In this section, we consider the successive action of cloning and deletion on an arbitrary
quantum state to see that the total amount of correlations generated as a result of these two
processes is bounded. Here also we find that a similar thing happens even in the opposite
case where cloning is followed by the deletion. These bounds actually show a new aspect
of quantum correlations, i.e., the “complementarity". We analytically obtain these bounds
for different measures and exemplify for a particular measure with the help of cloning and
deletion machines.

6.5.1 Deleting imperfect cloned copies

In this subsection, we consider the case where we start with the state to be cloned along
with a blank state. The initial state is a product state having no correlation at all. After the
cloning operation these two states are no longer uncorrelated and they are given by joint
density matrix ρfinalab . The amount of correlations generated in the process of cloning
for a given correlation measure K is given by ∆clone

K = K(ρfinalab ) − K(|ψ〉 ⊗ |Σ〉).
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0.80 0.85 0.90 0.95 1.00
Fdel

0.05

0.10

0.15

0.20

0.25

DDG
del

Figure 6.6: The figure shows how the correlation measure geometric discord (∆del
DG) vary

with the fidelity of deletion (Fdel).

Since the initial states are product states, we have K(|ψ〉 ⊗ |Σ〉) = 0 and consequently
∆clone
K = K(ρfinalab ). K being any correlation measure, is bounded by its maximum and

minimum values Kmax and Kmin respectively. Now if we delete these imperfect cloned
copies in order to get back to its original product form |ψ〉 ⊗ |Σ〉, we get a new combined
state ρ′ab at the output mode. Then the amount of correlations generated in the process is
given by ∆del

K = K(ρ′ab) − K(ρfinalab ) for a particular correlation measure K. It can be
seen that by combining the correlations generated in the cloning and deleting process we
have

∆clone
K + ∆del

K = K(ρ′ab). (6.17)

Since the correlation measure K is always bounded by its maximum value Kmax for any
arbitrary state, we have

∆clone
K + ∆del

K ≤ Kmax. (6.18)

Thus, for the different correlation measures like negativity (N ), discord (D) and geometric
discord (DG) we have various bounds for the correlations as given below

∆clone
N + ∆del

N ≤
1

2
,

∆clone
D + ∆del

D ≤ 1,

∆clone
DG + ∆del

DG ≤ 1, (6.19)

respectively. These bounds together tell us about an intriguing property of quantum corre-
lations which is “ complementarity”. The amount of correlations generated in the process
of cloning is complementary to the amount of correlations generated in the process of
deletion. Thus, we can say that when the amount of correlations generated in the cloning
process is more (less), the amount of correlations for the deletion process is less (more).
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The above result can be stated differently: it tells us that the better we clone the worse we
delete. Thus, our conjecture is that this complementarity is not only true for the correla-
tions generated but also true for the fidelity of achieving the cloning and deletion process
successively.

6.5.1.1 Complementarity for 1→ 2 cloning, 2→ 1 deleting

Next we exemplify our result with the help of a particular cloning and deleting trans-
formation in the context of a specific correlation measure such as the geometric discord
(DG). We start with an arbitrary quantum state |ψ〉 and a blank state |Σ〉 initially in the
product state. Then, we apply the universal Buzek-Hillery quantum cloning machine de-
fined by the transformations (6.5) on |ψ〉 and on the output of BH copying machine we
apply the deletion operations defined by

|0〉|0〉|Q0〉 → |0〉|0〉|A0〉, |1〉|1〉|Q1〉 → |1〉|0〉|A1〉,
(|0〉|1〉+ |1〉|0〉)|Yi〉 → (|0〉|1〉+ |1〉|0〉)|Yi〉 (i = 0, 1), (6.20)

to obtain the final output state [243, 260]

ρ′ab =
1

1 + 2ξ
(α2|00〉〈00|+ β2|10〉〈10|+ 2ξ|ψ+〉〈ψ+|), (6.21)

where |ψ+〉 = 1√
2
(|01〉+ |10〉) and 〈Ai|Yi〉 = 0. The fidelity of deleting imperfect cloned

copies is given by F3 = 1+ξ
1+2ξ

[243] and it ranges from 3
4

to 7
8
. The total correlations

generated in the successive process of cloning and deletion is given by the sum of the
respective correlations

∆T
DG = ∆clone

DG + ∆del
DG = DG(ρ′ab). (6.22)

The expression for the ∆T
DG, i.e., DG(ρ′ab) is given by

∆T
DG = 2(λ0 + 2λ1 −max[λ0, λ1]), (6.23)

where λ0 = 1
2

+
√

2α4(1− 2F3)2 + 2α2F3(1− 2F3)− F3(1− F3) and λ1 = (1− F3)2.

Thus, we see that the total correlations generated in the process is given by the correlation
content of the final state, and that it is bounded by its maximum value. Since we adopt
geometric discord as a measure of correlation, the total correlations content is bounded by
one, i.e., ∆T

DG < 1. In Fig.(6.7) we plot the total correlations with respect to the machine
parameter ξ and the input state parameter α and clearly find that this is always bounded
by its maximum value one.

6.5.1.2 Complementarity for 1→ N cloning, N→ M deleting

Next we extend our result to a more general situation, where we first createN copies from
a single copy with the help of a “1 7→ N”-cloning machine. Then we use a “N 7→ M
(N > M ) ”deleting machine to produceM distorted copies of the input state at the output
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Figure 6.7: The figure shows how the total correlations (∆T
DG) for the scheme “1→ 2

cloning then 2→ 1 deleting”, which varies with the input parameter α and the
fidelity of deletion F3.

port. First of all, we apply “1 7→ N” Cloning machine on an arbitary input state |ψ〉.
We use the result of Gisin and Massar who first generalized the Buzek-Hillery’s 1 7→ 2
cloning machine to M ′ 7→ N (M ′ < N ) [226]. Now for M ′ = 1, the unitary operator (U )
for 1 7→ N cloning machine is given by

U |0〉|R〉 =
N−1∑
j=0

αj|χ(N, j)〉|Rj〉, U |1〉|R〉 =
N−1∑
j=0

αN−1−j|χ(N, j + 1)〉|Rj〉, (6.24)

where R denotes initial combined state of the copying machine and (N−1) blank copies.
Here Rj are orthonormalized internal states of the quantum cloning machine. Here, αj =√

2(N − j)/N(N + 1) and we have denoted |χ(N, j)〉 = |(N−j)0, j1〉 as the symmetric
and normalized state. After “1 7→ N”-cloning operation is over, we use the ouput of
cloning machine as an input to a “N 7→M” deleting machine . The action of the deleting
machine is given by the transformations [185, 260],

|0〉⊗N |R0〉 7→ |0〉⊗N |A0〉, |χ(N, j)〉|Rj〉 7→ |χ(N, j)〉|Rj〉, j 6= 0,

|1〉⊗N |RN−1〉 7→ |1〉⊗M |0〉⊗(N−M)|A1〉, (6.25)

where |A0〉, |A1〉 are machine states at the output port of the deleting machine. Combining
these two machine, the complete transformation of |ψ〉 is given by

|ψ〉 7→ β

[
N−2∑
j=0

αN−1−j|(N − 1− j)0, (j + 1)1〉 ⊗Rj + α0|M1(N −M)0〉 ⊗ A1

]

+ α

[
α0|N0〉 ⊗ A0 +

N−1∑
j=1

αj|(N − j)0, j1〉 ⊗Rj

]
, (6.26)
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where 〈Ai|Rj〉 = 0, 〈Ai|Aj〉 = δij , 〈Ri|Rj〉 = δij (δij is Kronecker delta). The density
matrix at the output port after tracing out the machine states is given by

ρ = α2

[
α2

0|N0〉〈N0|+
N−1∑
j=1

α2
j |χ(N, j)〉〈χ(N, j)|

]

+ β2

[
N−2∑
j=0

α2
N−1−j|χ(N, j + 1)〉〈χ(N, j + 1)|+ α2

0|χ(N,N −M)〉〈χ(N,N −M)|

]
+

∑
i,j

αiαN−1−j(αβ
∗|χ(N, i)〉〈χ(N, j + 1)|+ α∗β|χ(N, j + 1)〉〈χ(N, i)|)δij. (6.27)

After tracing out rest of modes, the reduced density matrix of the first mode is is given by

ρa =
N−1∑
i=0

ϑ(N − i, i)α2
i |0〉〈0|+

N−1∑
i=0

ϑ(i, N − i)α2
i |1〉〈1|,

where ϑ(x, y) = x
N
C(N, x)α2 + y

N
C(N, y)β2 and C(x, y) = x!

y!(x−y)!
.

Since, we know that for a multiqubit state, there is no unique way to quantify quantum
correlations present in the state. For that reason we have taken a simple approach and have
considered bipartite discord as a measure of quantum correlations. The bipartite discord
of the N -qubit state ρ1,...,N (for the partition (i, ī)) is defined as,

D(i|̄i) = min
Πīj

{S(ρī) + S(ρi|̄i)− S(ρ1,...,N)}, (6.28)

where S(ρi|̄i) =
∑

j pjS(ρi|j) is the average of the entropies of states ρi|j = 1
pj

Trī[(Ii ⊗
Πīj)ρ1,...,N(Ii⊗Πīj)] with corresponding probability pj = Tr[(Ii⊗Πīj)ρ1,...,N(Ii⊗Πīj)].
Here Πīj ’s are all possible (N−1) qubits projective measurement operators. The bipartite
discord given in Eq.(6.28) is to be minimized over all possible projective measurements
Πīj . In this paper we have performed projective measurements upto three qubits. For
single qubit measurement we have used the measurement bases given in [100, 116]. For
two and three qubit measurements we have followed the reference [122]. The bipartite
discord (see Eq.(6.28)) is not symmetric under the exchange of qubit. So, the average
correlations present in the N -qubit state is given by,

δ(ρ1,...,N) =
1

N

N∑
i=1

D(i|̄i). (6.29)

So the total correlations generated in this process is ∆T
δ = ∆clone

δ + ∆del
δ = δ(ρ). In

Fig.(6.8), we have plotted the total correlations ∆T
δ generated during cloning and deleting

against the input state parameter (α) to show the complementary nature of correlations
production in this two processes, i.e., ∆clone

δ + ∆del
δ ≤ 1. In the figure, we have looked for

the correlations generated in each of the dual processes: (a) 1 7→ 3 cloning then 3 7→ 1
deleting, (b) 1 7→ 3 cloning then 3 7→ 2 deleting, (c) 1 7→ 4 cloning then 4 7→ 1 deleting,
(d) 1 7→ 4 cloning then 4 7→ 2 deleting and (e) 1 7→ 4 cloning then 4 7→ 3 deleting. It
is evident from the figure itself, that the total correlations generated as a consequence of
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Figure 6.8: Quantum correlations ∆T
δ versus input state parameter α for the processes (a)

1 7→ 3 cloning then 3 7→ 1 deleting (•), (b) 1 7→ 3 cloning then 3 7→ 2 deleting
(�), (c) 1 7→ 4 cloning then 4 7→ 1 deleting (�), (d) 1 7→ 4 cloning then 4 7→ 2
deleting (N) and (e) 1 7→ 4 cloning then 4 7→ 3 deleting (H).

dual processes in each of these cases is bounded. Thus even in a most general setting
of multiple qubits the correlations generated in each of cloning and deleting process are
complementary in nature.

6.5.2 Cloning of imperfect deleted copies

In this subsection we carry out the reverse process where we perform deleting first and
then clone the imperfect deleted copies. We start with two identical copies of an unknown
quantum state |ψ〉. Initially, there is no correlation between these two states as they are in
the product form. Consequently, we can write the correlation content of these states for a
given correlation measure K as K(|ψ〉 ⊗ |ψ〉) = 0. However, after the deletion operation
they are no longer uncorrelated. Instead, we obtain a correlated two qubit state ρdelab . The
amount of correlations generated in the process of deletion is given by the difference of
the correlations of the final and the initial states, i.e., ∆del

K = K(ρdelab ) −K(|ψ〉 ⊗ |ψ〉) =
K(ρdelab ). Next, we apply the cloning transformations on the combined state ρdelab in order to
get back to the initial identical copies of the state |ψ〉. However, due to the imperfectness
of the process we get a mixed state ρdelclone at the output port. The amount of correlations
generated in the process is given by the difference of the correlations of the states ρdelab and
ρdelclone, i.e., ∆clone

K = K(ρdelclone)−K(ρdelab ). The total correlations generated in the process
of cloning and deletion is given by

∆del
K + ∆clone

K = K(ρdelclone). (6.30)

Since for a given correlation measure K the correlations of a particular state is always
bounded by its maximum and minimum value Kmax and Kmin, we will get back the same
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bound on the total correlations generated, i.e.,

∆del
K + ∆clone

K ≤ Kmax, (6.31)

irrespective of whether we delete and then clone or we clone first and then delete. This
once again establishes the same complementarity in terms of the correlations generated
in the process of cloning and deletion. The complementarity of quantum correlations are
independent of whether we apply cloning or deletion first.

6.5.2.1 Complementarity for 2→ 1 deleting, 1→ 2 cloning

Next, we give an example of the complementarity phenomenon in this case with the help
of a particular deleting and cloning machine in the context of a specific correlation mea-
sure, namely geometric discord (DG). Here we start with two identical copies of the state
|ψ〉 and we apply the quantum deletion machine defined in Eq.(6.12) which results in a
two qubit state ρdelab (see Eq.(6.13)). Then, we apply BH cloning operation on the state ρdelab
which will give us two output states as ρaa′ = Trb[(UBH ⊗ I)(ρdelab |0〉a′〈0|)(UBH ⊗ I)†]
and ρbb′ = Tra[(I ⊗ UBH)(ρdelab |0〉b′〈0|)(I ⊗ UBH)†]. The density operators ρaa′ and ρbb′
are given by

ρaa′ = (1− 2ξ)(α2|00〉〈00|+ β2|11〉〈11|) + 2ξ|ψ+〉〈ψ+|, and
ρbb′ = (1− 2ξ){(1− α2β2)|00〉〈00|+ α2β2|11〉〈11|}+ 2ξ|ψ+〉〈ψ+|. (6.32)

The total correlations generated in the successive process of deletion and cloning is given
by the sum of the respective correlations. Here, we obtain the total correlations in terms
of the measure geometric discord (DG) as

∆T
DG = ∆del

DG + ∆clone
DG = DG(ρdelclone). (6.33)

In this case ρdelclone are {ρaa′ , ρbb′}. Hence, the total correlations for the state ρaa′ is given
by

∆T
DG = 2(λ0 + 2λ1 −max[λ0, λ1]), (6.34)

where λ0 = 1
4
[L2 + (L− 2ξ)2], λ1 = ξ2 and L = (1− 2ξ)(α2 − β2).

Similarly, for ρbb′ we find

∆T
DG = 2(λ0 + 2λ1 −max[λ0, λ1]), (6.35)

where λ0 = 1
4
[J2 + (1− 4ξ)2], λ1 = ξ2 and J = (1− 2ξ)(1− 2α2β2).

As in the previous process, here too the total correlations are given by the correlations of
the final state. In Figs.(6.9 & 6.10), we plot the total correlations ∆T

DG against the input
parameter α to find that this is always bounded by its maximum value one, i.e., ∆T

DG ≤ 1.
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6 Correlations generated in cloning and deletion

Figure 6.9: The figure shows how the total correlations (∆T
DG) of Eq.(6.34) for the scheme

“2→ 1 deleting then 1 → 2 cloning” varies with input parameter α and the
cloning machine parameter ξ.

6.5.2.2 Complementarity for N→ 1 deleting, 1→ M cloning

Further we move on to much more general setting where we start with the application of
“N 7→ 1” deleting machine on N copies of the state |ψ〉 to produce a distorted state at the
output port. Let say, at the output port we will have the state ρdela1,..,aN

after tracing out the
machine states, where a1 is the ’undeleted mode’ and a2, .., aN are the ’deleted modes’. In
the next step, we take the state (ρdelai ; ai 6= a1) of ρdela1,..,aN

as an input to “1 7→M” cloning
process. Initially, after applying N 7→ 1 deleting machine (6.25) on the state |ψ〉⊗N we
will have ρdela1,a2,...,aN

as

ρdela1,..,aN
= β2N |1(N − 1)0〉〈1(N − 1)0|+

N−1∑
k=0

g(k)$(k)|χ(N, k)〉〈χ(N, k)|, (6.36)

where $(k) = C(N − k, k)α2(N−k)β2k and g(k) = 2 iff k = 0 otherwise g(k) = 1. Then
the reduced density matrix (ρdelai ; ai 6= a1) of the state in Eq.(6.36) is given by,

ρdelai = η0|0〉〈0|+ η1|1〉〈1|, (6.37)

where η0 and η1 are

η0 =
N−1∑
i=0

(N − i)
N

$(i) +$(N), & η1 =
N−1∑
i=1

iC(N, i)

NC(N − i, i)
$(i), (6.38)
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6.6 Conclusions

Figure 6.10: The figure shows how the total correlations (∆T
DG) of Eq.(6.35) for the

scheme “2→ 1 deleting then 1 → 2 cloning” varies with input parameter
α and the cloning machine parameter ξ.

respectively. Now the state ρdelai (in Eq.6.37) is taken as input to 1 7→M cloning machine.
After the overall dual transformation the final reduced density matrix is,

ρf = η0

M−1∑
j=0

α2
j |χ(M, j)〉〈χ(M, j)|+ η1

M−1∑
j=0

α2
M−1−j|χ(M, j + 1)〉〈χ(M, j + 1)|.(6.39)

Finally, the reduced density matrix at first mode is given by,

ρaf =
M−1∑
j=0

ϑ̄(M − j, j)α2
j |0〉〈0|+

M−1∑
j=0

ϑ̄(j,M − j)α2
j |1〉〈1| (6.40)

where ϑ̄(x, y) = x
M
C(M,x)η0 + y

M
C(M, y)η1. Here also, we use bipartite quantum

discord to quantify multiqubit quantum correlations in the dual physical process. The total
correlations generated in this process is ∆T

δ = ∆del
δ + ∆clone

δ = δ(ρf ). In Fig.(6.11) we
once again have plotted the total correlations ∆T

δ generated in the dual physical process of
deletion followed by cloning against the state parameter α of the input state |ψ〉. We have
considered several cases and interestingly plots which show that the total correlations are
always bounded. More precisely, the correlations generated in individual processes are
complementary in nature, i.e., ∆del

δ + ∆clone
δ ≤ 1.

6.6 Conclusions

Complementarity is a fundamental feature of the quantum world which manifests in the
dual physical nature of quantum particles. In this chapter, we have shown a new kind of
complementarity between two different physical processes such as approximate quantum
cloning and the deleting. We have shown that there is a relationship between quantum cor-
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Figure 6.11: Quantum correlations ∆T
δ varses input state parameter α for the processes

(a) 3 7→ 1 deleting then 1 7→ 2 cloning (�), (b) 3 7→ 1 deleting then 1 7→ 3
cloning (•) , (c) 4 7→ 1 deleting then 1 7→ 2 cloning (�), (d) 4 7→ 1 deleting
then 1 7→ 3 cloning (N) and (e) 4 7→ 1 deleting then 1 7→ 4 cloning (H).

relations generated in the process of cloning and deleting and the fidelity of the process in
question. This has been illustrated using various measures of quantum correlations such as
the geometric discord (DG), entropic quantum discord (D) and negativity (N ). To bring
out the generic nature of the complementarity, we have chosen three different classes of
measure and irrespective of these measures we find that fidelity decreases with increase
of correlations for both the processes of cloning and deletion. This is well exhibited in
terms of the amount of correlations generated in the successive processes of cloning and
deletion (and vice versa). Moreover, we have witnessed an important property of quan-
tum correlations called ”complementarity" property in dual physical processes. We have
shown that the total correlations change in the cloning and the deleting is bounded by the
maximum value of the measure of quantum correlations. We have illustrated complemen-
tarity for a particular choice of cloning and deleting machine as well as for a particular
measure of correlations. We believe that this phenomenon is true for all classes of cor-
relation measures and is independent of the choice of measure. It will be interesting to
see if other quantum correlations display some complementary behavior in dual physical
processes.
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Chapter 7

Broadcasting of quantum correlations

7.1 Introduction

Quantum entanglement [3] is one of the key factor for deciding the fidelity of QCMs
[184]. Atleast in the context of quantum information processing, purer the entangle-
ment, more valuable is the given two qubit state. Therefore, extraction of pure quantum
entanglement from a partially entangled state is considered to be an important task. Con-
sequently, there have been a lot of work on purification procedures by many researchers
over the last few years showing how one can compress the amount of quantum entangle-
ment locally [47, 261]. The possibility of compression of quantum correlations naturally
raises the question if the opposite i.e. decompression of correlations is realizable or not?
Many researchers have answered this query using the process known as “Broadcasting
of Inseparability" [196–198]. This question becomes important when there is an exi-
gency in increasing the number of available entangled pairs rather than the purity of it. In
simple sense, broadcasting here refers to local or nonlocal copying of quantum correla-
tions [196, 245].

In general, the term broadcasting can be used in different contexts. Classical theory per-
mits broadcasting of information, however that is not the case for all states in quantum
theory. Cloning and broadcasting principles demarcate the boundary between classical
and quantum worlds. In this context, Barnum et al. were the first to show that non-
commuting mixed states do not meet the criteria of broadcasting [194].

It is impossible to have a process which will perfectly copy (clone and broadcast) an
arbitrary quantum state [34,194,196]. By referring to perfect broadcasting of correlations
we mean that the correlations in a two qubit state ρab are locally broadcastable if there
exist two operations, Σa: S(Ha)→ S(Ha1 ⊗Ha2) and Σb: S(Hb)→ S(Hb1 ⊗Hb2) such
that Iq(ρa1b1) = Iq(ρa2b2) = Iq(ρab). Here, Iq(ρab) is the quantum mutual information,
ρa1a2b1b2 := Σa⊗Σb(ρab) and ρaibi := Traībī(ρ

a1a2b1b2) [201]. Quite recently, many authors
showed that correlations in a single bipartite state can be locally or unilocally broadcast if
and only if the states are classical (i.e. having classical correlations) or classical-quantum
respectively [200–203].
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7 Broadcasting of quantum correlations

In the previous cases, one generally discussed about broadcasting of a general quantum
state or perfect broadcasting of correlations. But when we refer broadcasting of an en-
tangled state, we generally talk about creating more pairs of lesser entangled states from
a given entangled state where Iq(ρa1b1) and Iq(ρa2b2) are less than Iq(ρab). This is done
via the application of local cloning operation on each qubit of the given entangled state,
or sometimes by applying global cloning operations on the total input entangled state
itself [196, 198, 221]. Bandyopadhyay et al. [198] showed that only UQCMs having fi-
delity over 1

2
(1 + 1√

3
) can broadcast entanglement and further that entanglement in the

input state is optimally broadcast only if the quantum cloners used for local copying are
optimal. However, the fact that if local cloners are used then broadcasting of entanglement
into more than two entangled pairs is impossible. Ghiu et al. addressed the question of
broadcasting of entanglement by using local universal optimal asymmetric Pauli cloning
machines. They presented that if one employs symmetric cloners instead of asymmet-
ric ones, then only optimal broadcasting of inseparability is achievable [262]. In other
works, authors investigated the problem of secretly broadcasting of three-qubit entangled
state between two distant partners with universal quantum cloning machine and then the
result is generalized to generate secret entanglement among three parties [245].

In this chapter, we mainly investigate the problem of broadcasting of quantum correlations
(QCs) [199]. Traditionally, by QCs we refer to entanglement. First part of our study is
about broadcasting of quantum entanglement for general two qubit mixed states. For the
first time in the existing research on broadcasting, we provide the broadcasting range for
general two qubit state in terms of Bloch vectors. To do this we apply the Buzek-Hillery
(B-H) QCM, both locally and nonlocally. We separately provide broadcasting ranges
for Werner-like and Bell-diagonal states as illustration. In the second part of our work,
while exploring the possibility of broadcasting of quantum correlations that go beyond
entanglement (QCsbE), remarkably we find that it is impossible to broadcast optimally
such correlations with the help of any local or nonlocal cloners. We analytically prove
this by first taking the B-H state dependent and independent cloners and then by logically
extending our result for the other cloners as well. This is indeed one such result which
highlights how fundamentally two approaches, QCsbE and entanglement, are different.
However, we can broadcast QCsbE if we relax the optimality conditions.

In section 7.2, we first introduce the quantum cloning machines, more specifically the
state independent and dependent versions of B-H cloners, which we will later use for
our local as well as nonlocal cloning processes. In section 7.3, we define broadcasting
of entanglement via local cloning operations as well as nonlocal cloning operation and
then obtain the generalized optimal broadcasting range for any two qubit state in terms
of Bloch vectors. In each of the two above cases, we exemplify our results for two types
of mixed states: namely the Werner-like and the Bell-diagonal states. In section 7.4,
we give the definition for broadcasting of QCsbE and explicitly discuss the possibilities
and impossibilities of such broadcasting. Lastly, in section 7.5, we conclude with a small
conjecture by which broadcasting of correlations beyond entanglement might be possible.
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7.2 Quantum cloning machines beyond No-cloning theorem

Quantum cloning transformations can be viewed as a completely positive (CP) trace pre-
serving map between two quantum systems, supported by an ancilla [220, 232]. In this
section, we briefly describe the Buzek-Hillery (B-H) QCM which we will later use for
analysing the possibility and impossibility of broadcasting of entanglement as well as
correlations beyond entanglement respectively.

B-H cloning machine (Ubh) is a M -dimensional quantum copying transformation acting
on a state |Ψi〉a0

(i = 1, ..., M ). This state is to be copied on a blank state |0〉a1
. The

copier is initially prepared in state |X〉x which subsequently get transformed into another
set of state vectors |Xii〉x and |Yij〉x as a result of application of the cloner. Here a0,
a1 and x represent the input, blank and machine qubits respectively. In this case, these
transformed state vectors belong to the orthonormal basis set in theM -dimensional space.
The transformation scheme Ubh is given by [221],

Ubh |Ψi〉a0
|0〉a1

|X〉x → c |Ψi〉a0
|Ψi〉a1

|Xii〉x + d
M∑
j 6=i

∣∣Ψ+
ij

〉
a0a1
|Yij〉x , (7.1)

where i, j = {1, ...,M},
∣∣Ψ+

ij

〉
a0a1

= |Ψi〉a0
|Ψj〉a1

+ |Ψj〉a0
|Ψi〉a1

, and the coefficients c
and d are real.

7.2.1 State independent cloning transformations

An optimal state independent version of the B-H cloner (Ubhsi) can be obtained from
Eq.(7.1) by imposing the unitarity and normalization conditions which give rise to the
following constraints,

〈Xii|Xii〉 = 〈Yij|Yij〉 = 〈Xii|Yji〉 = 1, (7.2)

when 〈Xii|Yij〉 = 〈Yji|Yij〉 = 〈Xii|Xjj〉 = 0, with i 6= j and c2 = 2
M+1

, d2 = 1
2(M+1)

.
Here, we consider M = 2m where m is the number of qubits in a given quantum register.
In the above transformation, by demanding the independence of the scaling (shrinking)
property on input state parameters it is ensured that the quality of the cloning (fidelity of
the output copies) doesn’t depend on the input state [220, 221].

7.2.1.1 Local state independent cloner

The above optimal cloner Ubhsi with M = 2 becomes a local copier (U l
bhsi). From

Eq. (7.2) it can be easily observed that the corresponding values of coefficients c and

d become
√

2
3

and
√

1
6

respectively. By substituting these values of the coefficients in
Eq. (7.1), we can obtain the optimal state independent cloner which can be used for local
copying purposes [196].
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7 Broadcasting of quantum correlations

7.2.1.2 Nonlocal state independent cloner

When M = 4 the above optimal cloner Ubhsi becomes a nonlocal copier (Unl
bhsi). Then

the corresponding values of the coefficients c and d in Eq. (7.2) become
√

2
5

and
√

1
10

respectively. By substituting these coefficients in Ubh given by Eq. (7.1), we can obtain
the optimal state independent cloner used for nonlocal copying purposes [221].

7.2.2 State dependent cloning transformations

The B-H state dependent cloner (Ubhsd) was developed from this B-H state independent
cloning transformation (Ubhsi), given in Eq. (7.1) with Ubh = Ubhsi, by relaxing the uni-
versality condition: ∂D

∂<inp>
= 0; where < inp > represents all the parameters of the input

state. The distortion D describes the distance between the input and output states of the
cloner [197].

With c = d = 1, the unitarity constraints on the B-H cloning transformation in Eq. (7.1)
give rise to the following conditions on the output states, which are no longer necessarily
orthonormal,

〈Xii|Xii〉+
M∑
j 6=i

2 〈Yij|Yij〉 = 1, 〈Yij|Ykl〉 = 0 (7.3)

where i 6= j and ij 6= kl for i, j, k, l = {1, ...,M}. We assume that, 〈Xii|Yjk〉 = µ
2
,

〈Yij|Yij〉 = λ, 〈Xii|Xjj〉 = 〈Xii|Yij〉 = 0, where again i 6= j for i, j, k = {1, ...,M};
µ and λ are the machine parameters. By equating the dependence of the distortion D on
the machine parameter λ to zero, in each of the cases, we can calculate the value of λ for
which the B-H state dependent cloners become optimal with respect to that ensemble of
input states.

7.2.2.1 Local state dependent cloner

For the case of a local state dependent cloner (U l
bhsd), the distortion D is Dab = Tr[ρ

(out)
ab −

ρ
(id)
a ⊗ ρ

(id)
b ]2. If |ψ(id)

a(b)〉 = α|0〉a(b) + β|1〉a(b) be an arbitrary pure state of one qubit in
mode “a” or “b”, where α, β represents the input state parameters with α2 + β2 = 1

being the normalization condition; then ρ(id)
a = |ψ(id)

a 〉〈ψ(id)
a | and ρ(id)

b = |ψ(id)
b 〉〈ψ

(id)
b |

represents output modes in case of an ideal copy. However, in a more realistic situation
when cloning fidelity is non-ideal then the output state of the cloner is given by ρ(out)

ab .
Solving the equation ∂Da

∂α2 = 0, where Da = Tr[ρ
(out)
a − ρ(id)

a ]2; with ρ(out)
a = Trb[ρ

(out)
ab ],

we can derive the relation between the parameters λ and µ. It turns out to be µ = 1− 2λ.
So the permitted range of λ is bounded by {0, 1

2
} in this case. However, it can be noted

that here the value λ = 1
6

is restricted, since for such values it reduces to the B-H optimal
state independent local cloner U l

bhsi and consequently looses the input state dependence
property.
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7.2.2.2 Nonlocal state dependent cloner

For the case of a nonlocal state dependent cloner (Unl
bhsd), the distortion D is Dabcd =

Tr[ρ
(out)
abcd − ρ

(id)
ab ⊗ ρ

(id)
cd ]2. If |φ(id)

ab(cd)〉 = α|00〉ab(cd) + β|11〉ab(cd) be the non-maximally

entangled state of two qubits in mode “ab” or “cd”; then ρ
(id)
ab = |ψ(id)

ab 〉〈ψ
(id)
ab | and

ρ
(id)
cd = |ψ(id)

cd 〉〈ψ
(id)
cd | represents output modes in case of an ideal copy. However, in a

more realistic situtation when cloning fidelity is non-ideal then the output state of the
cloner is given by ρ(out)

abcd . Solving the equation ∂Dab
∂α2 = 0, where Dab = Tr[ρ

(out)
ab − ρ(id)

ab ]2;
with ρ(out)

ab = Trc,d[ρ
(out)
abcd ], we can derive the relation between the parameters λ and µ.

Here, it turns out to be µ = 1 − 4λ. So the permitted range of λ is bounded by {0, 1
4
} in

this case. However, it can be noted that the value λ = 1
10

is restricted, since for such val-
ues it reduces to the B-H optimal state independent nonlocal cloner Unl

bhsi thereby loosing
the input state dependence property.

7.3 Broadcasting of Quantum Entanglement

In this section, we consider broadcasting of quantum entanglement (inseparability) with
the help of both local and nonlocal cloning operations. Let us begin with a situation where
we have two distant parties A and B and they share a two qubit mixed state ρ12 which can
be canonically expressed as [233]:

ρ12 =
1

4
[I4 +

3∑
i=1

(xiσi ⊗ I2 + yiI2 ⊗ σi) +
3∑

i,j=1

tijσi ⊗ σj] = {~x, ~y, T} (say), (7.4)

where xi = Tr[ρ12(σi ⊗ I2)], yi = Tr[ρ12(I2 ⊗ σi)] and tij = Tr[ρ12(σi ⊗ σj)] with
[σi; i = {1, 2, 3}] are 2 ⊗ 2 Pauli matrices and In is the identity matrix of order n. And
~x = {x1, x2, x3}, ~y = {y1, y2, y3} are Bloch column vectors and T = [tij] is the
correlation matrix.

In order to test the separability as well as inseparability for the bipartite states, we gen-
erally use Peres-Horodecki criteria [36, 37]. This is a necessary and sufficient condition
for detection of entanglement for bipartite systems with dimension 2⊗ 2 and 2⊗ 3. The
criteria can be equivalently expressed by the condition that at least one of the two deter-
minants

W3 =

∣∣∣∣∣∣
ρ00,00 ρ01,00 ρ00,10

ρ00,01 ρ01,01 ρ00,11

ρ10,00 ρ11,00 ρ10,10

∣∣∣∣∣∣ , W4 =

∣∣∣∣∣∣∣∣
ρ00,00 ρ01,00 ρ00,10 ρ01,10

ρ00,01 ρ01,01 ρ00,11 ρ01,11

ρ10,00 ρ11,00 ρ10,10 ρ11,10

ρ10,01 ρ11,01 ρ10,11 ρ11,11

∣∣∣∣∣∣∣∣ (7.5)

is negative; with W2 =

∣∣∣∣ρ00,00 ρ01,00

ρ00,01 ρ01,01

∣∣∣∣ being simultaneously non-negative, then the state

ρ is inseparable. Where ρmµ,nν are the matrix elements of bipartite state ρ.
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Figure 7.1: The figure shows the broadcasting of the state ρ12 into ρ̃14 and ρ̃23 through
application of local cloning unitaries U1 and U2 on both sides.

7.3.1 Broadcasting of entanglement via local and nonlocal cloning
operations

Local cloning: Each of the parties now individually apply a local copying operation on
their own qubit i.e., U1⊗U2 to produce the state ρ̃1234. The B-H state independent symmet-
ric optimal cloning transformation (U l

bhsi) used for local copying is obtained by putting

M = 2 in Eq. (7.1) with c =
√

2
3

and d =
√

1
6
. The corresponding basis vectors are

|Ψ1〉 = |0〉 and |Ψ2〉 = |1〉. After we obtain the composite system ρ̃1234, we trace out
the qubits 2, 4 and 1, 3 to obtain the local output states ρ̃13(= Tr24[U1 ⊗ U2(ρ12)]) on
A’s side and ρ̃24(= Tr13[U1 ⊗ U2(ρ12)]) on B’s side respectively. Similarly, after tracing
out the local output states from the composite system, we have the nonlocal output states
ρ̃14(= Tr23[U1 ⊗ U2(ρ12)]) and ρ̃23(= Tr14[U1 ⊗ U2(ρ12)]) [see FIG. (7.1)].

Nonlocal cloning: Here, the basic idea is that the entire state ρ12 (given in Eq. (7.4)) is
in the same lab and the intention is to have more than one copy of it. In that process, we
apply a global unitary operation U12 to produce ρ̃1234. The B-H state independent optimal
cloning transformation (Unl

bhsi) used for nonlocal copying is obtained by substituting M =

4 in Eq. (7.1) with c =
√

2
5

and d =
√

1
10

. In this case, the corresponding basis vectors
are |Ψ1〉 = |00〉, |Ψ2〉 = |01〉, |Ψ3〉 = |10〉 and |Ψ4〉 = |11〉. Once we have the composite
system ρ̃1234, we trace out the qubits 3 and 4 to obtain the output state ρ̃12(= Tr34[U12ρ12])
or the qubits 1 and 2 to obtain ρ̃34(= Tr12[U12ρ12]). Next, proceeding in similar manner,
we obtain the remaining states ρ̃13(= Tr24[U12ρ12]) and ρ̃24(= Tr13[U12ρ12]) by tracing
out the qubits 2, 4 and 1, 3 from ρ̃1234 respectively. We could have also chosen the diagonal
pairs (ρ̃14 & ρ̃23) instead of choosing the pairs: ρ̃12 & ρ̃34 as our desired pairs. However,
we refrain ourselves from choosing the pairs ρ̃13 & ρ̃24 as the desired pairs [221] [see
FIG. (7.2)]. In principle, to broadcast the amount of entanglement between the desired
pairs (1, 4)/(1, 2) and (2, 3)/(1, 4) we just maximize the entanglement between the output
pairs, regardless of the states between (1, 3) and (2, 4). However, for optimal broadcasting
of entanglement across parties we require to minimize the amount of entanglement within
parties. This is because the total amount of entanglement (E) produced is the sum of
the entanglement within parties (El) and the entanglement across the parties (Enl), i.e
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Figure 7.2: The figure shows the broadcasting of the state ρ12 into ρ̃12 and ρ̃34 through
application of a nonlocal (global) cloning unitary U12.

E = El + Enl. The amount of entanglement (E) is strictly less or equal to the total
entanglement of the input state. To maximize Enl, we must have El = 0. In other words,
for optimal broadcasting we should have no entanglement between the qubits (1, 3) and
(2, 4).

Definition 2.1: An entangled state ρ12 is said to be broadcast after the application of local
cloning operation (U1 ⊗ U2), if for some values of the input state parameters, the states
{ρ̃14, ρ̃23} are inseparable.

Definition 2.2: An entangled state ρ12 is said to be broadcast after the application of
nonlocal cloning operation (U12), if for some values of the input state parameters, the
desired output states {ρ̃12, ρ̃34} are entangled.

Definition 2.3: An entangled state ρ12 is said to be broadcast optimally after the applica-
tion of local cloning operation (U1⊗U2), if for some values of the input state parameters,
the states {ρ̃14, ρ̃23} are inseparable and the states {ρ̃13, ρ̃24} are separable.

Definition 2.4: An entangled state ρ12 is said to be broadcast optimally after the appli-
cation of nonlocal cloning operation (U12), if for some values of the input state param-
eters, the desired output states {ρ̃12, ρ̃34} are entangled, and the remaining output states
{ρ̃13(= Tr24[U12ρ12]), ρ̃24(= Tr13[U12ρ12])} are separable.

If we consider the non-optimal broadcasting then the broadcasting range will increase
whereas for optimal one the broadcasting range will be small. Let us consider a general
pure two-qubit state in Schmidt form |ψ12〉 =

√
λ|00〉〈00| +

√
1− λ|11〉〈11|, where λ

is Schmidt coefficient and 0 ≤ λ ≤ 1. Now if we apply B-H local cloning operation
(U1⊗U2) on this state, the local output states will only be separable when L− < λ < L+,
where L± = 1

16
(8±
√

39) [196] and hence it is the optimal broadcasting range. If we relax
the optimality condition i.e., El 6= 0 then we can easily conclude that the broadcasting of
entanglement may be possible for greater range of λ. The same analysis is applicable for
nonlocal cloning and same type of feature will appear. Next, we will discuss the optimal
broadcasting of entanglement [196] in detail.

129



7 Broadcasting of quantum correlations

7.3.2 Optimal broadcasting of entanglement via local cloning

In this subsection, we deal with the problem of broadcasting of quantum entanglement by
using local cloning transformation.

The local output states ρ̃13 on A’s side and ρ̃24 on B’s side respectively and are given in
canonical representation by,

ρ̃13 =

{
2

3
~x,

2

3
~x,

1

3
I3

}
, & ρ̃24 =

{
2

3
~y,

2

3
~y,

1

3
I3

}
, (7.6)

where ~x, ~y are the Bloch vectors of the initial state ρ12.

Next, we apply Peres-Horodecki criterion to investigate whether these local output states
on either side of these two parties are separable or not. After evaluating determinants
W2, W3 and W4 (as given in Eq. (7.5)) we obtain a range involving input state parameters
within which the local outputs, ρ̃13 and ρ̃24, are separable. These ranges for ρ̃13 and ρ̃24

are

0 ≤ ‖~x‖ ≤ 3

4
& ‖~x‖ ≤ 1 + x3 + x2

3,

0 ≤ ‖~y‖ ≤ 3

4
& ‖~y‖ ≤ 1 + y3 + y2

3 (7.7)

respectively. Here ‖~a‖ = Tr
(
a†a
)

with † denoting the Hermitian conjugate.

We have the nonlocal output states ρ̃14 and ρ̃23 as

ρ̃14 = ρ̃23 =

{
2

3
~x,

2

3
~y,

4

9
T

}
, (7.8)

where ~x, ~y are the Bloch vectors and T is the correlation matrix of the initial state ρ12.

Again with the help of Peres-Horodecki criterion we find out the condition under which
the nonlocal output states will be inseparable. This condition for inseparability of the
states ρ̃14 and ρ̃23 involving input state parameters is given as,(

W l
3 < 0 or W l

4 < 0
)

and W l
2 > 0. (7.9)

Here the explicit expressions ofW l
2,W l

3 andW l
4 are given by Eqs. (A-1), (A-2) and (A-3)

in Appendix-1.

Now combining these two ranges determining the separability of the local states given by
Eq. (7.7) and inseparability of the nonlocal states given by Eq. (7.9), we obtain the range
for broadcasting of entanglement.

To exemplify our above study with a local cloner, we next consider two different classes
of mixed entangled states, namely: (a) werner-like states [263] and (b) Bell-diagonal
states [264] and then separately analyse their broadcasting ranges.
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7.3 Broadcasting of Quantum Entanglement

7.3.2.1 Example 2.1: Werner-like States

First of all, we consider the example of werner-like states. These states can more formally
be expressed as,

ρw12 = {~xw, ~xw, Tw} , (7.10)

where ~xw = {0, 0, p (α2 − β2)} is the Bloch vector and the correlation matrix is Tw =
diag(2pαβ,−2pαβ, p) with the condition α2 + β2 = 1 and 0 6 p 6 1. (Please note
that whenever we use M = diag(., ., .), we mean M is a diagonal matrix with diagonal
elements given inside the first bracket.)

The local output states obtained after applying cloning operation on both the qubits 1 and
2 are given by,

ρ̃13 = ρ̃24 =

{
2

3
~xw,

2

3
~xw,

1

3
I3

}
, (7.11)

where ~xw is the Bloch vector of the state ρw12.

From Peres-Horodecki theorem, if follows that by using Eq. (7.5) the local output states
will be separable if either of the following two conditions are satisfied,

0 6 p 6

√
3

2
& 0 6 α2 6 1, Or,

√
3

2
< p 6 1 &

2p−
√

3

4p
6 α2 6

√
3 + 2p

4p
. (7.12)

Similarly after cloning, we have the nonlocal output states as,

ρ̃14 = ρ̃23 =
{

2
3
~xw, 2

3
~xw, 4

9
Tw
}
, (7.13)

where ~xw is Bloch vector and Tw is the correlation matrix of the state ρw12.

Using Peres-Horodecki theorem, the inseparability range of these nonlocal output states
turn out to be,

3

4
< p ≤ 1 & N− < α2 < N+, (7.14)

where N± = 1
16
{8± (48− 81

p2 + 72
p

)
1
2}. On merging this inseparable zone along with the

separable zone given by Eq. (7.12) we discover that the broadcasting range is exactly same
as the inseparability range given by Eq. (7.14). In FIG. 7.3, we depict this broadcastable
zone (given by Eq. (7.14)) among the allowed region of input state parameters p and α.

7.3.2.2 Example 2.2: Bell-diagonal States

Here our initial resources are Bell-diagonal states to the local cloner which can be for-
mally expressed as,

ρb12 =
{
~0,~0, T b

}
, (7.15)
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7 Broadcasting of quantum correlations

Figure 7.3: The figure illustates the states which can be used for broadcasting of entangle-
ment via local cloning out of the total input state space of werner-like states
ρw12.

where ~0 is the Bloch vector which is a null vector and the correlation matrix is T b =
diag(c1, c2, c3) with −1 6 ci 6 1.

The above input Bell-diagonal state can be rewritten as [264], ρb12 =
∑

m,n λmn |γmn〉 〈γmn|
where the four Bell states |γmn〉 ≡ (|0, n〉+ (−1)m |1, 1⊕ n〉) /

√
2 represents the eigen-

states of ρb12 with eigenvalues,

λmn =
1

4

[
1 + (−1)mc1 − (−1)(m+n)c2 + (−1)nc3

]
.

Also, for ρb12 to be a valid density operator, its eigenvalues have to be positive, i.e. λmn >
0.

Once again by applying local cloning and tracing out the qubits we get the local output
states as:

ρ̃13 = ρ̃24 =

{
~0,~0,

1

3
I3

}
. (7.16)

It turns out that for these local output states both W3 as well as W4 given by Eq. (7.5) are
non-negative and independent of the input state parameters (ci’s). Hence, ρ̃13 and ρ̃24 will
always remain separable.
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7.3 Broadcasting of Quantum Entanglement

On the other hand, the nonlocal outputs are given by,

ρ̃14 = ρ̃23 =

{
~0,~0,

4

9
T b
}
, (7.17)

where T b is the correlation matrix of the state ρb12.

The inseparability range for these nonlocal output states of the input Bell-diagonal state
ρb12 in terms of ci’s, is given by

−1 ≤ c1 < −
1

4
&
(
γ < −9

4
or

9

2
− c− < c2 ≤ 1

)
Or,

1

4
< c1 ≤ 1 & (c− < c2 ≤ 1 or − 1 ≤ c2 < c+) , (7.18)

along with the condition that λmn > 0, where c± = ∓9
4
± (c1 ± c3) and γ = Tr(T b). It is

evident that the broadcasting range of the Bell-diagonal state is same as the inseparability
range in Eq. (7.18) since the local output states in this case are always separable.

In FIG. 7.4, we depict the above broadcastable zone (given by Eq. (7.18)) within the
permissible region of the input state parameters, specified by the 3-tuple (c1, c2, c3) from
Eq. (7.15). Now for−1 6 ci 6 1, where i = {1, 2, 3}, the condition that ρ12 is necessarily
a positive operator, i.e. λmn > 0, results in giving a tetrahedral geometrical representation
of Bell-diagonal states T whose four vertices are the four Bell states or the eigenstates
|γmn〉. The separable part within the geometry of Bell-diagonal states T comes out to be
an octahedron O which is specified by the relation |c1|+|c2|+|c3| 6 1 or λmn 6 1

2
. Within

the tetrahedron T , the four entangled (inseparable) zones lie outside the octahedron O ,
one from each vertex of T with the value of λmn being greatest at the vertex points for
each of them [264]. Interestingly, we discover that the broadcastable zone procured by
using the above broadcasting condition in Eq. (7.18) turns out to be cones C s, fitting as
small caps on these entangled zones of the tetrahedron T . It is also consistent with the
fact that the maximally entangled states |γmn〉 lie at the vertices of T , so the broadcastable
regions start from those and vanish on the way towards the separable part O . This is
because the amount of entanglement keeps decreasing in the same direction. In other
words, the states beyond the conic regions (C s) lack the amount of initial entanglement
required to be able to broadcast the same by local cloning operations. It is interesting to
observe that if ci = −1 then cj = ck and if ci = 1 then cj = −ck where for each case
−1 6 cj (ck) < −5

8
or 5

8
< cj (ck) 6 1 with i 6= j 6= k and i, j, k = {1, 2, 3}. This

happens due to the symmetry of the Bell-diagonal states and that of the conic broadcasting
zones as depicted in FIG. 7.4. For the same reason, we also find that the four C s or the
conic zones grow symmetrically and uniformly from ci’s = −1 (1) and ceases to exist for
any value equal or beyond −5

8
(5

8
).

7.3.3 Optimal broadcasting of entanglement via nonlocal cloning

In this subsection, we reconsider the problem of broadcasting of entanglement but this
time by using nonlocal cloning transformation.
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7 Broadcasting of quantum correlations

Figure 7.4: The figure illustates the broadcastable region obtained using local cloning op-
erations within the geometry of Bell-diagonal states ρb12. The translucent tetra-
hedron T hosts the Bell states |γmn〉 at the vertex tuples (-1,-1,-1), (1,1,-1),
(1,-1,1) and (-1,1,1) from each of which a (brown) cone C emerges marking
the broadcastable zones. The (black) octahedron O in the middle of the tetra-
hedron T depicts the separable region within the Bell-diagonal state space.

The obtained nonlocal output states ρ̃12 and ρ̃34 are identical and they can be represented
as,

ρ̃12 = ρ̃34 =

{
3

5
~x,

3

5
~y,

3

5
T

}
(7.19)

where ~x, ~y are the Bloch vectors and T is the correlation matrix of the state ρ12.

We apply the Peres-Horodecki criteria to find out the condition on input state parameters
under which the above output states (ρ̃12 and ρ̃34) will be inseparable. This condition of
inseparability turns out to be,

W nl
3 < 0 or W nl

4 < 0 & W nl
2 > 0, (7.20)

where the explicit expressions of W nl
2 , W nl

3 and W nl
4 are given by Eqs. (A-5), (A-6) and

(A-7) in Appendix-2.
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Next, the remaining states ρ̃13 and ρ̃24 are given by,

ρ̃13 =
{

3
5
~x, 3

5
~x, 1

5
I3

}
, & ρ̃24 =

{
3
5
~y, 3

5
~y, 1

5
I3

}
(7.21)

where, ~x and ~y are the Bloch vectors of the state ρ12.

Similarly, here also we apply the Peres-Horodecki criterion to see whether these output
states are separable or not. After evaluating determinants W2, W3 and W4 (as given in
Eq. (7.5)) we obtain a range involving input state parameters for which the output states,
ρ̃13 and ρ̃24, are separable. This range is given by,

0 ≤ ‖~x‖ ≤ 8

9
& ‖~x‖ − x2

3 ≤
4

3
(1 + x3),

0 ≤ ‖~y‖ ≤ 8

9
& ‖~y‖ − y2

3 ≤
4

3
(1 + y3) (7.22)

respectively.

Now, clubbing the two ranges given by Eq. (7.20) and Eq. (7.22), we obtain the range for
broadcasting of entanglement for ρ12 via nonlocal copying.

Next, in order to exemplify our study with nonlocal cloner we look into the broadcasting
ranges of two different classes of input states: (a) Werner-like states [263] and (b) Bell-
diagonal states [264].

7.3.3.1 Example 3.1: Werner-Like State

Quite similar to the previous section, here we reconsider the class of werner-like states
given earlier by Eq. (7.10) and apply nonlocal cloning operation on it.

After cloning, the desired output states are given by,

ρ̃12 = ρ̃34 =

{
3

5
~xw,

3

5
~xw,

3

5
Tw
}
, (7.23)

where, ~xw is the Bloch vector and Tw is the correlation matrix of the state ρw12. The
inseparability range for these states is given by,

5

9
< p 6 1 and H− < α2 < H+, (7.24)

where H± = 1
2
± { 1

144p
(27p2 + 30p− 25)} 1

2 . The remaining output states are given by,

ρ̃13 = ρ̃24 =

{
3

5
~xw,

3

5
~xw,

1

5
I3

}
, (7.25)

where ~xw is the Bloch vector of the state ρw12. These output states will be separable if
either of the following two conditions are satisfied,

0 6 p 6 d& (0 6 α2 6 ξ−, or ξ+ < α2 6 1),

Or, 0 6 p 6 1 & ξ− < α2 6 ξ+, (7.26)
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7 Broadcasting of quantum correlations

Figure 7.5: The figure illustates the states which can be used for broadcasting of entan-
glement via nonlocal cloning out of the total input state space of werner-like
states ρw12.

where d =
√

8
9(1−2α2)2 ξ± = 1

6
(3± 2

√
2)

After merging the separability and inseparability conditions given by Eq. (7.26) and
Eq. (7.24) respectively, the broadcasting range of the werner-like state turns out to be
same as the inseparability range and is thus given by Eq. (7.24).
In FIG. 7.5, we demarcate this broadcastable zone, given by Eq. (7.24), amidst the pre-
scribed region of input state space.

7.3.3.2 Example 3.2: Bell-diagonal states

In this example, we once again consider the Bell-diagonal states (given earlier by Eq. (7.15))
as our initial entangled state.
Once the nonlocal cloner is applied to it we have the desired output states as,

ρ̃12 = ρ̃34 =

{
~0,~0,

3

5
T b
}
, (7.27)

where T b is the the correlation matrix of the state ρb12.
The inseparability range of the desired output states is given by,

(6c1 − 3γ + 5)(3γ − 6c3 − 5)(3γ − 6c2 − 5)(3γ + 5) < 0

Or, (3c3 + 5) ((5− 3c3)2 − 9(c1 − c2)2) < 0 (7.28)
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where γ = Tr(T b) along with the condition that λmn > 0 from the positivity of input
density operator ρ12.

The remaining output states are given by,

ρ̃13 = ρ̃24 =

{
~0,~0,

1

5
I3

}
. (7.29)

These output states are independent of the input state parameter (ci’s) and will be always
separable since for them theW3 andW4 from Eq. (7.5) comes out to be a positive number.
Hence, the broadcasting range of the Bell-diagonal state is same as the inseparability
range as given in Eq. (7.28).

Quite analogous to our geometric analysis in local copying case of the broadcasting region
of Bell-diagonal state, in FIG. 7.6, we depict the above broadcastable zone (given by
Eq. (7.28)) among the allowed region of the input state parameters, specified by the 3-
tuple (c1, c2, c3) from Eq. (7.15). Similarly as in the case with local cloners, here also
we notice that if ci = −1 then cj = ck and if ci = 1 then cj = −ck where for each case
−1 6 cj (ck) < −1

3
or 1

3
< cj (ck) 6 1 with i 6= j 6= k and i, j, k = {1, 2, 3}. This

happens due to the symmetry of the Bell-diagonal states and that of the conic broadcasting
zones as depicted in FIG. 7.6. For the same reason, we also find that the four C s or the
conic zones grow symmetrically and uniformly from ci’s = −1 (1) and ceases to exist for
any value equal or beyond −1

3
(1

3
).

Interestingly, here we find for the above two cases that the use of a nonlocal cloner despite
being difficult to implement gives us a much wider broadcasting range for entanglement.
In nonlocal cloning of entanglement, the bipartite system as a whole gets entangled with
a single cloning machine, whereas in local cloning each individual subsystem separately
gets entangled with a cloning machine. A larger amount of entanglement transfer to
the machine takes place in the local cloning case. So indeed it is not surprising that
nonlocal cloning will produce a wider range for broadcasting of entanglement than the
local cloning [198].

7.4 Broadcasting of Quantum Correlations Beyond
Entanglement

In this section, we consider broadcasting of quantum correlations which go beyond the
notion of entanglement. Here, we analyse the possibility of creating more number of
lesser correlated quantum states from an intial quantum state having correlations using
cloning operations. Here, we use geometric discord [127] particularly to quantify the
amount of QCsbE present in between a pair of qubits although our results hold for any
measures of discord (QCsbE). However, the whole analysis is not limited to gemetric
discord only.

It is well known that geometric discord (GD) can increase under local unitary e.g., under a
simple channel Λ: ρ→ ρ⊗ σ, i.e., a channel which introduces an ancilla only [265,266].
In order to overcome this, it was suggested that we can use different distance measures
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Figure 7.6: The figure illustates the broadcastable region obtained using nonlocal cloning
operations within the geometry of Bell-diagonal states ρb12. The translucent
tetrahedron T hosts the Bell states |γmn〉 at the vertex tuples (-1,-1,-1), (1,1,-
1), (1,-1,1) and (-1,1,1) from each of which a (brown) cone C ′ emerges mark-
ing the broadcastable zones. The (black) octahedron O in the middle of the
tetrahedron T depicts the separable region within the Bell-diagonal state
space. Interestingly enough, by the use of nonlocal cloner we find that the
height broadcastable conic regions have increased considerably compared to
that obtained in FIG. 7.4 with local cloners.

(norms) which will overcome this shortcoming [267–269]. Although information theo-
retic discord is invariant under local unitary, in general QCsbE are not monotone under
any local operations [4, 207]. According to Streltsov et al. [207]: A local quantum chan-
nel acting on a single qubit can create QCsbE in a multiqubit system if and only if it is
not unital.

Hence, we discuss the broadcasting of QCsbE under two types of channel a) unital chan-
nel (Λu): I→ I and b) non-unital channel Λnu: I 9 I. We will call this type of operations
on the bonafied states as ‘processing’: ‘pre-pocessing’ (applying the channel on the input
state before broadcasting) or ‘post-processing’ (applying the channel on the output states
after broadcasting).
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7.4.1 Definition of broadcasting of QCsbE via. local and nonlocal cloning
operations

Here, we define what we mean by the broadcasting of QCs by using state independent
(optimal) and state dependent B-H cloning machines. These cloning machines are applied
both locally and nonlocally.

The scenario of broadcasting of QCsbE is similar to that of broadcasting of entanglement
(see Fig. (7.1 & 7.2)). Let Q be the total amount of QCsbE produced as a result of both
local or non local cloning and the sum of the QCsbE within parties (Ql) and the QCsbE
across the parties (Qnl) then Q = Ql +Qnl. To maximize Qnl, we must have Ql = 0.

Definition 3.3.1: A quantum correlated state ρ12 is said to be broadcast after the applica-
tion of local cloning operation (U1⊗U2), if for some values of the input state parameters,
the amount of QCsbE for the states {ρ̃14, ρ̃23} are non-vanishing.

Definition 3.3.2: A quantum correlated state ρ12 is said to be broadcast after the applica-
tion of nonlocal cloning operation (U12), if for some values of the input state parameters,
the QCsbE for the states {ρ̃12, ρ̃34} are non-vanishing.

Definition 3.3.3: A quantum correlated state ρ12 is said to be optimally broadcast after
the application of local cloning operation (U1 ⊗ U2), if for some values of the input state
parameters, the QCsbE for the states {ρ̃14, ρ̃23} are non-vanishing and for the states {ρ̃13,
ρ̃24}, the amount of QCsbE are zero.

Definition 3.3.4: A quantum correlated state ρ12 is said to be optimally broadcast after
the application of nonlocal cloning operation (U12), if for some values of the input state
parameters, the QCsbE for the states {ρ̃12, ρ̃34} are non-vanishing whereas for the states
{ρ̃13, ρ̃24}, the QCsbE are zero.

7.4.2 Optimal Broadcasting of QCsbE via. local and nonlocal cloning
operations under unital channel (Λu)

In this subsection, we investigate the problem of broadcasting of QCsbE by using state
independent (optimal) and state dependent B-H cloning machines under the unital channel
(Λu). These cloning machines are applied both locally and nonlocally. As QCsbE are
non-incrasing under Λu, it is evident that we need not to mention it everytime.

7.4.2.1 Broadcasting of correlations using Buzek-Hillery (B-H) local
cloners

Here we use B-H state independent optimal (U l
bhsi) and state dependent (U l

bhsd) cloning
operation locally (given by Eq. (7.1)) and we find that it is possible to broadcast QCsbE by
such methods but contrary to the broadcasting of entanglement, we will not have optimal
one.

Theorem 7.1 Given a two qubit general mixed state ρ12 and B-H local cloning trans-
formations (state independent optimal U l

bhsi or state dependent U l
bhsd), it is impossible

to broadcast the QCsbE optimally within ρ12 into two lesser quantum correlated states:
{ρ̃14, ρ̃23}.
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7 Broadcasting of quantum correlations

Proof: When B-H state dependent cloning transformation U l
bhsd (given by Eq. (7.1)) is

applied locally to clone the qubits ‘1 → 3’ and ‘2 → 4’ of an input most general mixed
quantum state ρ12, then we have the local output states as, ρ̃13 = {µ~x, µ~x, T sdl } and ρ̃24 =
{µ~y, µ~y, T sdl }; where T sdl = diag(2λ, 2λ, 1 − 4λ) and the nonlocal output states, ρ̃14 =
ρ̃23 = {µ~x, µ~y, µT}. Here µ = 1−2λ; ~x and ~y represent the Bloch vectors and T denotes
the correlation matrix of the input state ρ12. The GDDG, calculated using Eq. (6.4), of the
local output states are given by DG(ρ̃13) = 1

2
(1 + µ2‖~x‖ − 8λ+ 20λ2) and DG(ρ̃24) =

1
2

(1 + µ2‖~y‖ − 8λ+ 20λ2) which always remains non-vanishing for 0 6 λ 6 1
2
. This is

because the minima of DG(ρ̃13) and DG(ρ̃24) come out to be Dmin
G = w

2
− 2

5
at λ = 1

5
;

where w = 1 + µ2‖~x‖ or w = 1 + µ2‖~y‖, giving w > 1 and ensuring always that
Dmin
G > 0.

Hence we will never have optimal broadcasting of QCsbE although it is possible that we
can have task oriented one.

7.4.2.2 Broadcasting of correlations using Buzek-Hillery (B-H) nonlocal
cloners

In this approach, we use symmetric B-H state independent optimal (Unl
bhsi) as well as state

dependent (Unl
bhsd) nonlocal cloning operations (given by Eq. (7.1)) and we find that, here

also it is possible to broadcast QCsbE by such approaches but not the optimal one.

Theorem 7.2 Given a two qubit general mixed state ρ12 and B-H nonlocal cloning trans-
formations (state independent optimal Unl

bhsi or state dependent Unl
bhsd), it is impossible

to broadcast the QCsbE optimally within ρ12 into two lesser quantum correlated states:
{ρ̃12, ρ̃34}.

Proof: When B-H state dependent nonlocal cloning transformationUnl
bhsd (given by Eq. (7.1))

is applied to clone the qubits 1 & 2 of an input most general mixed two qubit state ρ12

(given in Eq. (7.4)), then we have the output states, ρ̃13 = {µ~x, µ~x, T sdnl } and ρ̃24 =
{µ~y, µ~y, T sdnl }; where T sdnl = diag(2λ, 2λ, 1 − 8λ) and the desired output states, ρ̃12 =
ρ̃34 = {µ~x, µ~y, µ T}; where µ = 1 − 4λ. Here ~x as well as ~y represent the Bloch vec-
tors and T denotes the correlation matrix of the input state. The GD DG, calculated using
Eq. (6.4), of the local output states are given by: DG(ρ̃13) = 1

2
(1 + µ2‖~x‖ − 16λ+ 68λ2)

and DG(ρ̃24) = 1
2

(1 + µ2‖~y‖ − 16λ+ 68λ2) which always remains non-vanishing for
0 6 λ 6 1

4
. This is because the minima of DG(ρ̃13) and DG(ρ̃24) come out to be

Dmin
G = 1+5w

34+8w
at λ = 2+w

17+4w
; where w = ‖~x‖ or w = ‖~y‖, giving 0 6 w 6 1 and en-

suring always that Dmin
G > 0. Hence we will never have optimal broadcasting of QCsbE

although it is possible that we can have task oriented one.

Now moving beyond the realms of the above theorems, we claim that if in the case of B-H
state independent optimal cloners, when applied locally or nonlocally, we are unable to
broadcast the QCsbE optimally then no other state independent deterministic cloner can
do so. It is mainly because of the recent result by Sazim et al. that for a given input
state, the outputs of an optimal cloner are least correlated since as the fidelity of cloning
increases the correlations transfer to the machine state also grows [184]. Again in 2003,
Ghiu et al. showed that entanglement is optimally broadcast and maximal fidelities of
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the two final entangled states are obtained only when symmetric cloning machines are
applied [262]. So by combining the above two results by Sazim et al and Ghiu et al.,
we can logically infer that even asymmetric Pauli cloning machines will be unable to
broadcast QCsbE optimally since for those also the local outputs will always possess
non-vanishing GD [184, 262]. This enables us to comprehensively conclude that optimal
broadcasting of QCsbE for any two qubit state via cloning operations is impossible.

7.4.3 Optimal Broadcasting of QCsbE via. local and nonlocal cloning
operations under Nonunital channel (Λnu)

In this subsection, we will discuss the possibilities and impossibilities of broadcasting
QCsbE under non-unital channel (Λnu). Here many situations can occur depending on the
free will of the parties: a) pre-possesing the state with unital channel & post-processing
with non-unital channel, b) pre-processing with non-unital channel & post-processing
with unital channel, and c) pre- & post-procesing with nonunital channel. All these situ-
ations are equivalent in the sense that QCsbE can increase under Λnu.

It is also evident that we can have task oriented broadcasting of QCsbE and can increase
the QCsbE of the broadcasted states if needed. And conceptually the notion of optimal
broadcasting of QCsbE is not clear as we can have quantum correlated broadcast states
although we start with totally classical correlated states.

7.5 Conclusion

In literature, generalized approaches exist for purification or compression of entanglement
procedures but no such generalization exists for broadcasting (decompression) of entan-
glement via cloning operations [196,270]. Such a study can aid in discovering operational
meaning of quantifying the amount of entanglement [3]. In a nutshell, in this chapter, we
present a holistic picture of broadcasting of quantum entanglement via cloning from any
input two qubit state. We explicitly provide a set of ranges in terms of input state pa-
rameters for a most general representation of two qubit states for which broadcasting of
entanglement will be possible. We exemplify our generalized results by examining them
for two class of states: (a) Werner-like and (b) Bell-diagonal. We perform this study with
both type of cloning techniques, local and nonlocal, to examine how the range of broad-
casting increases under nonlocal cloning operations. Thereafter, we focus on the question
whether broadcasting of QCsbE via cloning operations is possible or not. Contrary to
the broadcasting of entanglement, we find that it is impossible to broadcast such QCsbE
optimally via cloning operations, whether local or nonlocal, from a given quantum me-
chanically correlated pair to two lesser correlated pairs. But we can have task oriented
broadcasting for QCsbE. We also explicitly reason out why the local outputs from cloner
(state dependent or state independent) will never possess vanishing QCsbE which is im-
perative to broadcast QCsbE. However, we can intuitively conjecture that if one tries to
broadcast QCsbE to more than two pairs, say N pairs, from an initial two qubit state then
for some N > 2 pairs there is possibility of success in broadcasting such correlations
optimally. This is because the nonlocal outputs become unentangled when 1 → 3 and
1 → 7 pairs are generated by the optimal local and nonlocal cloners respectively, which
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7 Broadcasting of quantum correlations

hints that the QCsbE in the output states decreases as more pairs are produced by the
cloner [198].

Our findings brings out a fundamental difference between the correlation defined from
the perspective of entanglement and the correlation measure which claims to go beyond
entanglement.

142



7.5 Conclusion

Appendix-1: Inseparability range of nonlocal outputs obtained
using local cloners

In this part, we evaluate the determinants W2, W3 and W4 (as given in Eq. (7.5)) of the
Peres-Horodecki criterion for the states ρ̃14 and ρ̃23 given by Eq. (7.8), and denote them
as W l

2, W l
3 and W l

4 respectively. The mathematical expressions of these determinants are
given as follow,

W l
2 = − 1

64

[
4

3∑
i=1

(−1)δ3i (t3i + 3yi)
2 + 9 (2x3 + 3)2

]
, (A-1)

W l
3 =

1

36

[
t33

(
3∑
i=1

t2i3 +
2∑
i=1

t23i −
2∑
i,j

t2ij

)
− 9

4

{
t33Υt + 3

3∑
i=1

(ti3xi + t3iyi)

}

+
3

2

{
3

(
Ω −

2∑
i=1

{
2ti3xiy3 −

2∑
j=1

(tijxjyi − tiixjyj)

})
−

3∑
j=1

g3Γj

}

+3
2∑
i 6=j

{
(tii − tjj)Φi + (tij − tji)Φj + Φ̃it33

}
+ 2

2∑
i,j

tijti3t3j

]
+ Lf , (A-2)

W l
4 =

1

68

[
K2 + 64(4Ω −Υt) +

2

9

{
1

2
Ξt −

2∑
i,j

3∑
p=j+1,q=i+1

(t2ijt
2
qp − 4tijtiptqjtqp)

+
3∑
j=1

3,j∑
p=j+1,q

Sqt
2
1jt

2
pq + 4

{
Π −

3∑
i<j

(
xixj

3∑
p=1

tiptjp + yiyj

3∑
p=1

tpitpj

)}

+
2∑
i=1

t22it
2
3i +

2∑
i>j

3∑
p=j+1

t2ijt
2
ip +

9

4

3∑
p=1

3∑
i,j

{
(−1)δpixp + (−1)δpjyp

}
t2ij

}]
, (A-3)

where δ is the determinant of correlation matrix T of the initial state ρ12, Φi = xit3i +
yiti3, Υt =

∑3
ij=1 t

2
ij , Ω =

∑3
ij=1 tijxiyj , Π =

∑3
ij=1 xiyj

∑3
p 6=i,j (tjitpp − tjptpi) Ξt =∑3

ij=1 t
4
ij , Φ̃i = xiti3 + yit3i, Γj =

∑2
i=1{t2ij − x3t

2
3j − y3t

2
j3}, Lf = 1

66 (36 + 26Lδ),
Lδ = 2δ+ 3g33 + 9

4
L5, g3 = (x3 + y3), L1 = γ+− 2(x2

3 + y2
3), L2 = 9

4
(t33 + γ+− 2x3y3),

L3 = x3 + y3(γ− + 9
4
), L4 = −L2 + 3

2
L3, L5 = t33L1 + L4, g33 = (g3 + 3

2
)C33,

Sq = (−1)1−δjq , γ± = ‖~x‖ ± ‖~y‖, K1 = γ2
− + 9

4
γ+, K2 = 38 + 64K1 + 8

9
δ and δij is

the kronekar delta. Here ‖~a‖ = Tr
(
a†a
)

with † denoting the Hermitian conjugate. These
nonlocal outputs ρ̃14 and ρ̃23 will be inseparable when,

W l
3 < 0 or W l

4 < 0 and W l
2 > 0. (A-4)
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Appendix-2: Inseparability range of desired outputs obtained
using nonlocal cloners

Here, we again evaluate the determinants W2, W3 and W4 (as given in Eq. (7.5)) of the
Peres-Horodecki criterion for the states ρ̃12 and ρ̃34 given by Eq. (7.19), and denote them
as W nl

2 , W nl
3 and W nl

4 respectively. The mathematical expressions of these determinants
turn out to be the following,

W nl
2 =

1

202

[
5(5 + 6x3)− 9

(
3∑
i=1

{t23i + yi (2t3i + yi)} − x2
3

)]
, (A-5)

W nl
3 =

9

203

[
f4 −

{
`−

3∑
i=1

(ti3 + xi)
2 + `+

2∑
i,j,k,l

S+tijtkl + 3
2∑
i,j

[t2ij − (xi − ti3)2]

−6

(
2∑
i=1

{
(xiti2 + yit2i) + xi(t1it3i − t2it3i) + κi

2∑
j=1

[tijtj3t3j + xiyi(tii − t2i)]

}

+
2∑
i 6=j

tij(ti3 + t3j) +
2∑
i,j

(−1)δijy1tijtj3

)}
+ f33

3∑
i=1

(t3i + yi)
2

]
, (A-6)

W nl
4 =

1

204

[
f5 − 18Υ`

t + 34

(
3∑
i,j

3∑
k,l

Sδt
2
ijt

2
lk + 8

2∑
i,j

3∑
k=i+1,l=j+1

tijtiltkjtkl

)

+324

{
3∑
l=2

Il + 2

(
3∑
i,j

xiyjC
t
ij −

2∑
i

3∑
j 6=i,k

(tiktjkxixj + tkitkjyiyj)

)}]
, (A-7)

where Υ`
t =

∑3
ij=1 `ijt

2
ij , Il =

∑3
i=1 x

2
l (t

2
1i−t2li)+y2

l (t
2
i1−t2il), f33 = 3(x3 +y3 +t33)−5,

f3 = 1
9
(5 + 3x3)2, S+ = (−1)i+j+k+l, f4 = 6y3C

t
33 − f3f33, κi = (−1)i+1, f5 =

1080(Ω − δ)− 275, Sδ = (−1)1−max(δil,δjk), `± = 5± 3t33 + 3x3, Ct
ij is the co-factor of

tij in correlation matrix T , and `ij are elements of coefficient matrix [`ij] =
(

43 25 25
25 7 7
7 7 7

)
.

These desired output states ρ̃12 and ρ̃34 will be inseparable when,

W nl
3 < 0 or W nl

4 < 0 and W nl
2 > 0. (A-8)

144



Summary

In this thesis, we have discussed a possible way of characterizing correlations in a multi-
particle quantum state. To do so, we briefly investigated what actually the existing QCsbE
measure, quantum discord captures in a two-qubit state. We have shown that discord ac-
tually captures local and nonlocal quantumness in the state. By local quantumness, we
mean local superposition and nonlocal quantumness is synonymous to the quantum en-
tanglement. We have illustrated this with the help of simple examples. We have also
argued that due to the presence of local quantumness, local noise of certain types can
enhance quantum discord. We have taken generalized Werner state to illustrate that while
entanglement measure, concurrence, does not depend on local quantumness parameter,
the quantum discord does. This makes quantum discord nonzero in the absence of entan-
glement. In the case of multiparticle systems, we extend this notion of quantum discord
to characterize its quantumness. In order to do so, we generalize classical multivariate
mutual information (Venn diagram type) to quantum regime. Then, we define multi-qubit
discord type quantities – the dissensions. We show that these dissensions are required to
reveal the total quantumness of a multi-qubit states. Moreover, our analysis emphasizes
that a single quantity alone is not sufficient to characterize quantum properties of a state.

To give operational meaning to QCsbE, we have presented two applications where QCsbE
have a role to play. We have shown that the better we clone (delete) a state, the more
difficult it will be to bring the state back to its original form by the reverse process. This
result shows that one cannot arbitrary have successive cloning and deleting or vice versa.
This result may in future help in developing quantum recycle bin. Then, we investigated
the possibility of broadcasting of QCsbE. We find that it is impossible to broadcast QCsbE
optimally. However, one may have task oriented broadcasting.

We have discussed the possibilities of optimal and task oriented broadcasting of entan-
glement. Interestingly, we found that under both local and nonlocal cloning operations,
it is possible to have task oriented broadcasting of the entanglement. We have also dis-
cussed the teleportation capability of low rank two-qudit entangled states. Using the
relations between concurrence monotones and teleportation fidelity, one can characterize
such states. Also, we have discussed how much classical and quantum information one
can send through a quantum network.

We hope that our explorations regarding the characterization of quantum correlations will
be useful in understanding the nature of multi-particle states.
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[77] Dardo Goyeneche and Karol Życzkowski. Genuinely multipartite entangled states
and orthogonal arrays. Phys. Rev. A, 90:022316, Aug 2014.

[78] Dardo Goyeneche, Daniel Alsina, José I. Latorre, Arnau Riera, and Karol Ży-
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