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Synopsis

The atomic nucleus is a strongly interacting many-body quantum mechanical sys-

tem that exhibits a fascinating variety of shape and excitation modes, starting from

spherical to super deformed and from single particle excitation to collective excita-

tion like vibration and rotation of nucleus as a whole. The study of nuclear structure

attempts to elucidate the unified mechanism by which these rich patterns of behav-

ior emerge from a common underlying strong nuclear force between the nucleons.

Nucleons are the building blocks of the nucleus. It is the nature of nucleon-nucleon

interaction, that decides the each and every characteristic of a nucleus. Nuclear

structure is a consequence of the nuclear interaction. A thorough study of the nu-

clear structure gives prerequisite information about the interaction of a nucleon with

another nucleon. Not only the study of a finite nucleus but also the study of an in-

finite nuclear matter (INM) system like neutron star has attracted nuclear physicists

and many information can be accumulated from the study of INM. A neutron star is

a very complex and dense system. It also provides a well-riched laboratory to test the

nuclear theory under extreme condition of density and asymmetry, which can not be

created in a terrestrial laboratory. Our primary aim is to study nuclear structure for

both finite and infinite nuclear matter. In the present thesis, we explore both finite

nuclei and neutron star structure using relativistic mean field (RMF) formalism.

In finite nuclear structure physics, the magic number has a special place. The

magic combinations of protons and neutrons give the extra stability to the nucleus

in comparison with the neighboring one. We have searched a magic combination of

protons and neutrons in the super heavy region. We found the proton number Z= 120

and corresponding neutron number N=182/184 [1] can be a possible combination of

the next magic numbers beyond 208Pb in the super heavy region. We have shown that

our newly developed non-relativistic interaction, simple effective interaction (SEI )

along relativistic RMF model with various parameter sets predict similar results. Our

prediction of magic combination based on the various signature of the magic nuclei

like the sharp decrease in the two-neutron separation energy S2n and two-proton
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separation energy S2p - energy, zero pairing gaps ∆n and ∆p and the large gap in

protons and neutrons single particle energy levels. All the evidences show a clear

signature of the presence of magic number at Z= 120 and N= 182 or 184 [1].

In recent years with the advent of the radio active ion beam (RBI) facility drip-line

and super-heavy nuclei are on the spot light. We have studied the collective excitation

of drip-line and super-heavy nuclei. As we know that nucleus is a many-body quantum

system, collective excitation happens quite often instead of single particle excitation.

In collective excitation, nucleons are excited collectively ( all protons and neutrons

excited together ) instead of single particle excitation. There are various types of col-

lective excitation present like Isoscalar giant monopole resonance (ISGMR) , isovector

giant dipole resonance (IVGDR), isovector giant monopole resonance (IVGMR) etc

. ISGMR and IVGDR play very important role in nuclear structure physics. Both

are known as the squeezing mode of vibration. In ISGMR the protons and neutrons

vibrate in the same phase to each other. Either both the proton and neutron Fermi

sphere expand or compress at the same time. It is related to the incompressibility of

a nucleus [2]. From the finite nuclear incompressibility, we can calculate the infinite

nuclear matter incompressibility (K∞) by leptodermous expansion [2]. In the lepto-

dermous expansion, the finite nuclear incompressibility (KA) can be expanded into

various terms like volume, surface and asymmetry as :

KA = K∞ +KsA
−1/3 +KcurvA

−2/3 +Kτ
(N − Z)2

A2
+KcZ

2A−4/3. (0.1)

Volume term of the finite nuclear incompressibility gives the value of K∞, which

has a very imperative role in deciding the nature of the equation of state (EOS).

Softness and stiffness of an EOS are decided by its K∞ value. Usually higher K∞

corresponds to the stiff EOS, while low K∞ gives soft EOS. In other words, K∞

controls the curvature of EOS at saturation density. But incompressibility is not

a directly measurable quantity. In experiment, we measured excitation energy of

ISGMR, which can be related to the incompressibility of finite nucleus by the formula

:

Ex = ~
√

AKA

m < r2 >
. (0.2)
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There is also another method to calculate K∞ from KA. Theoretical strength func-

tion distribution is calculated with the microscopic model like random phase approx-

imation (RPA) with various parameter sets. The K∞ of the parameter set which

reproduces the experimental strength distribution exactly is considered as the right

K∞ value.

We have calculated the incompressibility (KA) and the excitation energy of the

dripline and super heavy nuclei [3]. The collective excitation like ISGMR is a smooth

function of the mass number (A). So we can apply semiclassical approximation like

relativistic Thomas-Fermi (RTF) and extended Thomas-Fermi (RETF) approxima-

tion [4] to study the excitation energy as well as the incompressibility of the finite

nucleus. In the present thesis, we have applied RETF approximation along with the

constrained and scaling approximation to calculate excitation energy (Ex) of ISGMR.

In order to compare the excitation energy of macroscopic model with the microscopic

model, three average energy are defined : constrained energy (
√

m1

m−1
) , centroid en-

ergy (m1

m0
) and scaling energy (

√
m3

m1
). We focused to calculate the constrained and

scaling energy. The constrained energy is calculated by minimizing the constrained

energy functional (H− λQ), where Q is the excitation operator and λ is the param-

eter. In scaling approach, we scaled the density and solved the scaled equation of

motion to calculate the restoring force :

CM =

[
∂2

∂λ2

∫
d(λr)

Hλ(r)

λ3

]
λ=1

. (0.3)

The restoring force and incompressibility are connected by the formula

Ex =

√
CM
BM

, (0.4)

where Cm is the restoring force and BM is the mass parameter. In relativistic case,

mass parameter is defined like

BM =

∫
Hr2dr (0.5)

and in the non-relativistic case BM
nr = mA < r2 >.

Along with the constrained method developed in the recent past, we have de-

veloped also a different constrained technique, which is based on the Taylor series

expansion around the equilibrium. As we know that the giant resonance can be
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viewed as a small amplitude vibration of density or shape around the equilibrium,

we can expand the constrained energy functional around the equilibrium in Taylor

series. We have applied the new method to calculate the excitation energies of both

ISGMR and IVGDR. We have compared our results with other theoretical models like

random phase approximation (RPA). Our results well matched with other theoretical

calculations as well as experimental data.

Apart from the drip-line and super-heavy region the medium-heavy nuclei (A∼100)

have also very crucial in the study of giant resonance. In recent years, softness of Sn

isotopes have gained a lot of attention for nuclear theorists. The excitation energy

of isoscalar giant monopole resonance of Sn series (Sn112−124) shows a low value with

respect to the experimental excitation energy, whereas excitation energy of 208Pb and

90Zr well matched with the experimental data. Now the question arises why Sn is so

floppy ? Lots of literature have been devoted to explain this softness of Sn isotopes.

But still, it is an open problem. We have discussed this problem within our RETF

formalism. We elaborately discussed the contribution of various terms of RMF La-

grangian [5]. A large number of nonlinear relativistic force parameters are used in

these calculations. We find that a parameter set is capable of reproducing the exper-

imental monopole energy of Sn isotopes when its nuclear matter compressibility lies

within 210-230 MeV, however, it fails to reproduce the GMR energy of other nuclei.

That means, simultaneously a parameter set cannot reproduce the GMR values of Sn

and other nuclei.

The nuclear force is the central theme of the nuclear physics ever since from the

starting point (1932: discovery of neutron). It is the aim of every nuclear physicist to

understand the atomic nuclei on the basis of bare nucleon-nucleon interaction. The

interaction between the nucleon is the strong interaction in nature, so in principle, one

should use quantum chromo dynamics (QCD) to study the atomic nuclei. But it is

not easy to use QCD starting from quark interaction to calculate various properties

of nucleus. In fact, we can not use perturbative formalism like QCD approach in

a case of nuclear physics due to the energy range involved. In this energy range,

the QCD coupling constants become large so the perturbative approach is not valid.

In nuclear physics, it is a tradition to use nucleons as the degrees of freedom and

massive bosons are exchanged between the nucleon to generate the nuclear force.
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Patra et al. have calculated nucleon-nucleon potential starting from the effective

RMF Lagrangian. This is known as the R3Y interaction [6]. We have used this R3Y

interaction to calculate various properties of finite nuclei. We have also introduced

a new cross-coupling of omega meson into the interaction and analyzed its effects on

the finite and infinite nuclear system. We found that self-interacting ω-meson term

has a significant influence on the finite as well as an infinite nuclear system. A strong

but an attractive components of nuclear force is generated due to ω4 term at very

short distance (r<0.2 fm) [7]. We have applied R3Y as well as the M3Y interaction

to obtain the folding potential to study the (p, γ) and (p, n) types of reaction for

proton-rich nuclei. These proton-rich nuclei are very less in number but has great

astrophysical implication to study r- and p- processes. Effects of linear and non-linear

interaction terms of RMF Langrangian on s-factor calculation is discussed [8]. We

have shown that the non-linear σ meson coupling has strong effect on the S-factor

calculation on the p-nuclei.

After discussion of various aspects of finite nuclear structure, we shifted our at-

tention to the infinite nuclear matter, which is a hypothetical system of an infinite

number of nucleons interacting through nuclear force only (uncharged), having infi-

nite volume (no surface). Due to the heavy mass, the contribution of δ-meson has

been neglected for many years in RMF theory. But in a neutron star, a highly asym-

metric and dense system, we can not overlook the contribution of δ-meson. It affects

the transport properties of asymmetric nuclear matter in a significant way. Using the

effective field theory approach, like RMF, we discussed the dominance of isovector-

scalar δ-meson on the neutron stars as well as hyperon star [9]. From simplification

point of view, we started with an assumption that neutron star is a static and un-

charged body, constituted with a maximum number of neutrons and little amount of

proton and electrons, which are necessary for the β-equilibrium. Then extended our

investigation to a more realistic situation, where a neutron can rotate with hyperon at

the core of the star. Neutron star is a system of degenerate fermions, so simple ener-

getic consideration implies the presence of hyperon in the high density (9-10 times of

ρ0) environment of a neutron star. Further the time scale associated with the neutron

star is much larger than the time scale associated with the weak interaction, which

favors the production of hyperons inside the neutron star. However, in the standard
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picture, the inclusion of hyperon degrees of freedom leads a considerable softening of

EOS, which consequently leads a maximum allowed the mass of neutron star lower

than the current observation. So there is no question of hesitance to re-investigate the

EOS of neutron star with new degrees of freedom in different physical condition. We

focused on the effects of δ-meson on : (a) static proton-neutron and hyperon star. (b)

rotating proton-neutron and hyperon star. All the calculation have done with RMF

formalism with G2+δ parameter set. G2 is considered as one of the efficient parame-

ter set, where maximum number of interactions have been taken care. We have added

an extra δ-degrees of freedom with existing σ, ω and ρ-mesons. It is not conceptually

right to vary the δ-meson strength (gδ) as a free parameter to see the effects of the

δ-meson on the nuclear system. Due to the isovector nature of both ρ and δ-meson,

they contribute to the isovector channel simultaneously. It is customary to take into

account the contribution of ρ-meson, while discussing the effects of the δ-meson [10].

There are various procedure to fit gρ and gδ to see the effects. We have adopted two of

them. In one case, the gρ and gδ are fitted in such way a that the symmetry energy of

the original G2 parameter (36.4 MeV) remain fixed and in another case the coupling

constants are adjusted to fix the binding energy and charge radius of finite nucleus

fixed. We calculated the maximum allowed mass of the neutron start with these pairs

of gρ and gδ. With the inclusion of δ-meson, the maximum allowed mass value of mass

for proton-neutron star increases due to the stiff equation of state at higher density.

Results are same for both rotating and static case. Quantitatively we get maximum

mass of static and rotating proton-neutron star ∼ 2 M� and ∼2.4 M� respectively in

G2 +δ parameter, which are close to the current observations. But in hyperon star,

maximum mass decreases with the inclusion of δ-meson, this is due to the increase

of strangeness in the system. The δ-meson interaction affects the production yield

of hyperon and hyperon produced at a lower density than in non-δ-system. To see

a consistent effects of δ-meson on the nuclear system, the more appropriate way to

form a parameter set by reshuffling all the parameters and readjusting with various

finite and infinite nuclear matter properties. Work in this direction is in progress.
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Chapter 1

Introduction

Nuclear Physics has been providing a platform to test all four types of basic inter-

actions unlike to any other branch of physics. It is not an easy task to deal with

nuclear physics because it needs a sound knowledge in all four fundamental interac-

tions starting from the electromagnetic interaction between protons of finite nuclei

to gravitational interaction in the case of the neutron star, which can be viewed as

a big nucleus. The most mysterious and puzzling thing in nuclear physics is the

nucleon-nucleon (N-N) interaction, which has consumed maximum manpower to fix

its nature, but still a debatable subject. In 1911, Rutherford [1] discovered nucleus

from the famous α-particle scattering experiment. Factual nature of a nucleus came

to known after the discovery of neutron by James Chadwick in 1932. A nucleus con-

sists of protons and neutrons, both the individuals are known as nucleon. Nucleons

are the quanta of the nucleus. In 1935 Yukawa purposed the meson theory [2, 3] of

nuclear force. According to this theory, nucleons interact with each other through

the exchange of mesons. The nuclear force is similar to the Van der Waals force

between atoms and molecules. Both Van der Waals and Nuclear forces are residual

forces of fundamental interaction. The former one is the residual interaction of elec-

tromagnetic interaction, while later one is same as the strong interaction. In some

sense, nuclear force is not a fundamental force rather it is the residual interaction

of strong interaction between the quarks. In principle, we can study the interaction

between two nucleons starting from the interaction between the quarks, which are

the constituent particles of nucleons. But for practical purpose, it is very difficult
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to deal with a theory starting from quark -quark interaction i.e. QCD (Quantum

Chromo Dynamics). In the QCD level, things become very complicated to study the

properties of finite and infinite nuclear systems. So in nuclear, physics it is customary

to use effective mean filed theories, like SHF ( Skyrme Hartree-Fock ), RMF (Rela-

tivistic Mean Field), DBHF (Dirac- Bruckner Hartree Fock ). In effective theories,

the total interaction is not the sum of all possible two-body interactions but each

nucleon feels as if it moves in a common (mean) potential/ field generated by rest

of the nucleons. Suppose in a nucleus there are A number of nucleons then every

nucleon will feel a mean field generated by A-1 number of nucleons. Basically, there

are two types of effective theories mostly adopted in nuclear physics. In one case

nucleons are treated like non-relativistic particles (SHF, Gogny) [4–6] and in other

case nucleons are treated like relativistic particles (RMF) [7–9]. In the non-relativistic

case nucleon’s motion are governed by Schrodinger equation (SC), while in the case

of relativistic one nucleons motion are governed by Dirac equation . There are some

merits of relativistic formalism over the non-relativistic formalism. Relativistic for-

malism is one step ahead of non-relativistic formalism. In relativistic formalism, we

deal with Dirac equations, so the spin-orbit interaction comes in a more natural way

unlike to the non-relativistic model. No extra parameter is used to fit the spin-orbit

interaction term. In relativistic mechanics, there is the presence of both positive and

negative energy solution. We avoid the negative solution by assuming Dirac no sea

approximation.

1.1 Effective Theory

Self-consistent models are efficacious tools for the investigation of the nuclear struc-

ture and low energy dynamics. Mean field models are based on the effective energy-

density functional theory. Interaction between nucleons is formulated in terms of

density dependent Lagrangian. Energy- density functional contains many free param-

eters whose values are fitted to reproduce empirical and experimental data. Theses

parameters are fitted based on the constraints related with

• Experimental data on the static properties of the finite nucleus ( Binding energy

and charge radius ).
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• Characteristic properties of the nuclear matter ( saturation density, binding

energy per nucleon at saturation density, symmetry energy).

• Excitation of giant monopole and dipole resonances.

• Observational information of the neutron star and supernovae ( mass and radius

of the neutron star).

1.2 Non relativistic self consistent theory

Basically, there are two types of non-relativistic theories widely used , one is zero

range Skryme Hartree-Fock (SHF) and other is finite range Gogny interaction. In

both the cases, basic assumption is that nucleons are moving at a speed much less

than the speed of light. This assumption is validated taking into account the average

binding energy per nucleon in an nucleus is ∼ 8 MeV comparing with the mass of the

nucleon ∼938 MeV. So no relativistic formalism is needed. In Skryme Hartree Fock

approach the effective potential between the nucleons can be written as the sum of

two bodies and three bodies interactions. That is

Veff =
∑
ij

Vij
(2) +

∑
ijk

Vijk
(3), (1.1)

where Vij and Vijk are two body and three body interactions respectively. It is a

tedious work to deal with 3-body and many-body interactions. Thus for the practical

purpose, the leading order interaction i.e the 2-body and for very specific case the

3-body is sufficient. In short range expansion of two body interaction. The Skyrme

energy functional can be written as

E =
1

2
t0

[
(1 +

x0

2
)ρ2 − (x0 +

1

2
)
∑
q

ρq
2] + t1

[[
(1 +

x1

2
)

][
ρτ +

3

4
(∆ρ)2

]
− (x1 +

1

2
)
∑
q

[
ρqτq +

3

4
(∆ρq)

2

]]
+
t2
4

(1 +
x2

2
)

[
ρτ − 1

4
(∆ρ)2

]
+ (

x2

2
+

1

2
)
∑
q

[
ρqτq −

1

4
(∆ρ)2

]
− 1

16
(t1x1 + t2x2)J2 +

1

16
(t1 − t2)

∑
q

Jq
2

+
1

12
t3ρ

γ

[
(1 +

x3

2
)ρ2 − (x3 +

1

2
)
∑
q

ρq
2

]
+

1

2
W0(J∆ρ+

∑
q

Jq∆ρq). (1.2)
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The terms proportional to ρ2 represent two body attractive potential. It is counter

balanced by the terms proportional to the ργ+2, which are the repulsive terms. These

two terms counter balance each other and give saturation properties of nuclear force.

The terms proportional to the ρτ give kinetic energy contribution. The surface term

(∆ρ)2 is essential for finite nuclei. Spin-orbit interaction has also a vital role in finite

nuclei, which is represented by J∆ρ.

• ρ = Local baryon density

• τ = Kinetic energy density of the baryon

• J= Spin-orbit density

In the Skyrme energy functional there are both T=0 ( isoscalar ) and T=1 (isovec-

tor) part. The densities without subscript represent isoscalar part and densities with

subscript q represent isovector part.

1.3 Relativistic self consistent theory

Fundamentally RMF is different from SHF and Gogny, by including the relativistic

effects in the formalism. In simple words, one can say RMF is nothing but the

relativistic generalization of non-relativistic mean field formalism. Unlike SHF, the

RMF is a finite range interaction. Nucleons are interact with each other through the

exchange of various effective mesons-like σ-, ω-, ρ- and δ- mesons. In nature, there

are so many effective mesons are present, but why few of them are taken into account

? This is due to the symmetry of nuclear potential. Except the symmetry, there

are some meson’s contribution are excluded due to their heavy masses and negligible

contributions. They do not give any significant contribution neither qualitatively nor

quantitatively for the improvement of the model, except the mathematical complexity.

So it is wise to take the minimal set of mesons, which can describe the nucleon-nucleon

interaction up to a desired level. In our work we have taken σ-, ω- and ρ- mesons in

most of cases. δ-meson is also added in some cases. The starting point of the RMF

theory is the nucleon-meson interacting Hamiltonian, which is given by
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H =
∑
i

ϕ†i

[
− i~α · ~∇

]
ϕi︸ ︷︷ ︸

a

+
∑
i

ϕ†iβm
∗ϕi︸ ︷︷ ︸

b

+
∑
i

ϕ†igvV ϕi︸ ︷︷ ︸
c

+
∑
i

ϕ†i
1

2
gρRτ3ϕi︸ ︷︷ ︸
d

+
1

2
eA(1 + τ3)ϕi︸ ︷︷ ︸

e

+
1

2

[
(~∇φ)2 +m2

sφ
2
]

︸ ︷︷ ︸
f

− 1

2

[
(~∇V )2 +m2

vV
2
]

︸ ︷︷ ︸
g

− 1

2

[
(~∇R)2 +m2

ρR
2
]

︸ ︷︷ ︸
h

− 1

2

(
~∇A
)2

︸ ︷︷ ︸
i

− ζ0

24
g4
vV

4︸ ︷︷ ︸
j

+
1

3
bφ3 +

1

4
cφ4︸ ︷︷ ︸

k

−ΛV g
2
vgρ

2R2V 2︸ ︷︷ ︸
l

(1.3)

The meaning of the terms in the Hamiltonian are as follow:

• a: The kinetic energy contribution of the nucleons.

• b: Rest energy of the nucleon plus interaction between the nucleons and sigma

meson.

• c,d: Interaction between the omega and rho-mesons with nucleons respectively.

• e: Interaction of photon with the proton.

• f,g, h: Free meson contribution of σ, ω, and ρ-meson respectively. First term

represents the kinetic part and second term is the rest energy part for each case.

• i: Kinetic energy contribution of the photon. Rest energy part is zero because

of zero rest mass.

• j,k: Self coupling of the ω and σ-mesons respectively.

• l: Cross coupling between the ω and ρ-mesons.

1.4 Drip-line and Super heavy nuclei

Both drip-lines and super-heavy regions are most venerable areas of nuclear physics.

Many exotic phenomena can be found in these areas of landscape. Physics inside light

nuclei is not exactly same as in super-heavy nuclei. As the nuclear force is density

depended, it changes with number of nucleons. There are lots of discrepancy in the

drip-line and β- stable nuclei. The experimental and theoretical investigations of
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nuclei far from the valley of β- stability is the main aim of modern nuclear structural

research. Radio active ion beam (RIB) facilities have disclosed a wealth of structural

phenomena in exotic nuclei having the extreme value of N/Z ratio. The super-heavy

and drip-line nuclei regions involve many exotic and anomalous phenomena like

• Halo Nucleus

• Neutron skin

• Quenching of the shell effect in neutron-rich nuclei and the resulting deformation

• New magic number (N, Z)

• Shape co-existence

• Ground-state proton radioactive

• Synthesis of the heavy-element

• Onset of the exotic collective modes.

New upgraded experimental facilities will improve and extend our understanding of

physics of nuclei up to drip-line and super-heavy region. With the modern technology,

we can find out the exact location of proton and neutron drip-line and possible to

synthesis of super heavy nuclei having a longer life time so that spectroscopy of the

nuclei can also be studied. More new important information will be accumulated on

masses, life times and reaction cross-sections, which are urgently needed in astrophys-

ical calculations for better understanding of nuclear process occurring in the universe.

Proton-rich nuclei play a vital role in understanding the astrophysical process like r-

and p- process ( rapid neutron capture process and rapid proton capture process).

Unraveling of the physics of drip-line and super-heavy regions not only due to

the lack of experimental up-gradation, but also the lack of the proper theoretical

understanding. All most all theoretical models converge in the light nuclei and β-

stable region with acceptable error. But if we start the journey towards the drip-line

and super-heavy region they diverge with an unacceptable difference. In drip line

region the exotic phenomena mainly due to (a) pronounced effects of the coupling

between bound state and particle continuum (while in the β stable nuclei system
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is mostly bound state ) (b) weak binding energy of outer most neutron (c) region

of neutron halo with very diffuse neutron density (d ) major modification in shell

structure. The vital problem of theoretical investigation in the drip-line region is the

closeness of Fermi level to the particle continuum. Self-consistent theories (relativistic

and non-relativistic ) can describe the coupling between the bound state and particle

continuum. But both relativistic and non-relativistic lead to a huge discrepancy in the

drip-line region, while they move in hand to hand in the β− stability line. Particularly

in the way they describe spin-orbit are very different from each other and its iso-spin

dependence also. This is due to the fitting of the parameter, which mostly belongs

to the β- stability region.

In general, A > 210 is considered as super-heavy region in the nuclear chart.

The most challenged task in the super heavy nuclear physics is its production in

the laboratory or available in nature. Its reaction cross-section goes inversely with

atomic number in the super heavy region. Most of the super heavy elements have a

half-life in the order of few µ-seconds, which is too small to characterize its chemical

and structural properties. This is the main reason of worried for a nuclear physicists

to find a combination of Z and N, which gives element with an appreciable half-life

in nuclear scale. Due to the lack of technical up-gradation, experimentalists always

depend upon the theoretical confirmation. Theorists also face compulsion due to the

diverge behavior of the various models. They always face problem to conclude with an

unique combination of N and Z. Condition become more worst, when a model with

different parameter sets lead different conclusion. Basic reason of this is the non-

transparent nature of nuclear force, which is a fundamental problem in the nuclear

physics for all time. Then the validity and applicability of the different nuclear force

and the model becomes a debatable subject, which consumed maximum man power

in the nuclear theory.

In the present thesis, we are particularly concerned about nuclear structure. Nu-

clear structure is the result of an interplay between the surface tension and elector-

magnetic interaction between protons. Surface tension originates from nuclear force

between the nucleons and tries to maintain a spherical shape, while Coulomb force

provokes the nucleus to be deformed. Most of the heaviest elements were found in

three ” heavy elements factories ”: Lawrence Berkely Laboratory in Berkely, Joint
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Institute for Nuclear Research (JINR), Dubuna (Russia) and GSI near Darmstadt,

Germany. Probably the first theoretical prediction of the super heavy element was by

Nilson et.al [10] with the help of liquid drop model plus Strutinsky shell correction,and

the prediction was Z=114 and N=184. The magic number Z=118 was predicted in

earliest macro-microscopic calculation [11] and later confirmed in [7, 12]. The fully

microscopic approaches predict the proton shell closure at Z=120 [13], Z=126, or

Z= 114,120 126 [14] depending upon the chosen nucleon-nucleon interaction in mean

field theories. The neutron magic number N=184 is almost firmly predicted by dif-

ferent theoretical models. With the advent of radioactive ion beam(RIB) facilities,

last twenty years have remained as a golden era for heavy elements production. New

super-heavy elements are now produced with both cold and hot combination of collid-

ing nuclei. The heaviest yet discovered element is Z=118 , synthesized in hot fusion

reaction of 48Ca beam and 248Cf is the heaviest available target, which has been

used in this Z=118 [15]. Thus to get super heavy (SH) elements with Z > 118 fu-

sion reaction, one should be processed to heavier than 48Ca projectile ( 50Ti, 54Cr).

The corresponding cross-section for the production of elements Z=119 and Z=120

are predicted to be smaller by about two order of magnitude as compared 48Ca- in-

duced fusion reaction. Another limitation of the fusion reaction (both hot and cold

) for producing SH elements consists in the fact that they lead to neutron deficient

isotopes having rather a short lifetime. In Chapter 2, we discuss the prediction of

magic number at Z=120 and N=182/184 with our new non-relativistic SEI model

and compared with other theoretical calculations.

1.5 Giant resonances

Giant resonance is a collective vibration in which the protons and neutrons vibrate

in a collective manner instead of single particle vibration. In microscopic formalism,

it can be viewed as a coherent superposition of particle-hole excitation. Macroscopic

formalism describes it as a vibration of shape and density of nucleus around the

equilibrium shape and density. On the basis of their quantum numbers like multi-

polarity (L), spin (S) and isospin (T), giant resonances can be divided like isoscalar

giant monopole resonance ( ISGMR), isovector giant monopole resonance(IVGMR),
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isovector giant dipole resonance (IVGDR) etc. . . . Some of the resonances like ISGMR

and IVGDR are crucial in the nuclear structure physics. ISGMR is also refereed as

the breathing mode of oscillation. In ISGMR the proton and neutron vibrate in

a phase to each other, either they are expanding or compressing. It is a density

oscillation just like human breathing, expansion, and compression of the nucleus. In

another word, it corresponds to the radial oscillation, in which the radius oscillates

around the equilibrium radius. It has a small amplitude of vibration, only 1-2 % of

the original radius. As it is related to breathing mode, the excitation energy of the

ISGMR gives a way to calculate the incomprehensibility (K ) of the finite nucleus and

consequently the incompressibility of infinite nuclear matter (K∞). Infinite nuclear

matter incompressibility is a key quantity in the calculation of equation of state (EOS)

of a neutron star. In IVGDR, the protons and neutrons vibrate in opposite phase to

each other. It related to the symmetry energy of a nuclear system, which is another

most important quantity to calculate the EOS of a neutron star. In the present thesis,

we have developed a slightly different formalism to calculate the excitation energy Ex

of ISGMR and IVGDR. Our formalism is based on constrained method calculation.

This constrained formalism is based on Taylor series expansion, which is different from

the constrained Hartree-Fock formalism, where we have to minimize the constrained

Hartree-Fock constrained Hamiltonian. Generally, we defined three mean energy like

constrained energy (
√

m1

m−1
), centroid energy (m1

m0
) and scaling energy (

√
m3

m1
). We will

discuss more the excitation energy and incomprehensibility in Chapter IV.

1.6 Infinite Nuclear matter (INM)

The universe contains a remarkable wide variety of atomic nuclei with the mass num-

ber up to A∼250. There are many interesting properties, which differentiate these

nuclei from each other, while there is also a powerful set of systematic trend and gen-

eral properties that provide an important and useful frame work for understanding

the basic structure of nuclei. We can classified the properties of nucleus mainly into

two categories: local and global properties. These global properties are well studied

with the help of a hypothetical system i.e., infinite nuclear matter (INM). Properties

of this system do not depends on the local parameters like a number of the nucleon

9



Figure 1.1: Various electric and magnetic giant resonance, which classified on the

basis of their multi polarity(L), spin (s)and isospin(T) quantum number.
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and structure of the nucleus. We can define the INM as ” it is a hypothetical inter-

acting system of infinite number of nucleons, with no surface effect and in an absence

of Coulomb interaction”. The nucleons interact through strong interaction only. As

we are considering A→∞ , so there must not be any boundary (zero surface effect).

Then a common question arises ”How can we address the infinite nuclear matter”?

For that, we have to attribute some properties to the infinite nuclear matter. These

are (a) saturation density (ρ0 ) (b) binding energy per particle at saturation den-

sity (E/A) (c) symmetry energy (J) (d) L-coefficient (e) incompressibility (K∞). In

semi-empirical mass formula, the binding energy per particle of a finite nucleus can

be written as

E/A = aV︸︷︷︸
Global (bulk)

− as
A1/3

− ac
Z(Z − 1)

A2/3
− asym

(N − Z)2

A2
± δ︸ ︷︷ ︸

local

(1.4)

Here av, as, ac and asym carry their usual meaning of volume, surface, Coulomb and

symmetry coefficient respectively. In binding energy per particle expression, first term

is independent of A, which represent the bulk properties and same for all nucleus.

Second part differentiate nucleus from each other. The first term (volume ) represents

the INM properties with the condition of symmetric nuclear matter (N=Z). Thus we

will get rid of the asymmetry and Coulomb terms. The surface contribution goes on

decreasing in comparison with the volume term with an increase of the mass number

and Coulomb term is switched off by definition. The pairing term can be neglected,

which is very small in comparison to the volume term. So finally binding energy

expression of INM left with av term, which has value av ∼ −16MeV .

Another characteristic property of the INM is the saturation density, which has a

typical value of ρ0 = 0.16fm−3. It is the maximum density, which can be achieved

inside the finite nuclei. In other words , one can say, it is not possible to go beyond

this density under the nuclear force only. This property is the bi-product of the short

range repulsive nature of the nucleon-nucleon interaction. We can not compress the

nuclear system after certain limit due to its repulsive nature at short range. We need

some other force to increase the density of a nuclear system. This is the gravity which

helps the system of the neutron star to increase 9-10 time of the saturation density.

INM is a homogeneous and isotropic infinite system, the position of the nucleons

do not depend only the relative distance between the nucleon matter. Due to the
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homogeneity nature, we can write the nucleon wave function as plane wave function

eikx. The particle density is obtained by the sum over all the occupied state inside

the phase space volume (2π)3.

ρ =
N

V
=
∑
K,λ

ψk,λ
∗(~r)ψk,λ(~r)→

γ

(2π)3

∫
d3Kn(~k) (1.5)

Here γ is the degeneracy factor, which has value γ = 4 for the symmetric nuclear

matter (N=Z ) and γ = 2 for the pure neutron matter. The nuclear matter symmetry

energy Esym(ρ) is an essential tool to characterize the isospin dependent part of the

equation of state (EOS) of the asymmetric nuclear matter. Knowledge about the

symmetry energy is unavoidable in understanding many aspects of the nuclear physics

and astrophysics [16–18]. The symmetry energy of the nuclear matter can be defined

as the difference between the energies of pure neutron matter and symmetric nuclear

matter as function of the density. Energy density can be function of density and

asymmetry of the system E(ρ, α = N−Z
A

).

E(ρ, α) = E(ρ, 0) + S(ρ)α2 +O(α4) + ....... (1.6)

S(ρ) =
1

2

∂2E(ρ, α)

∂α2

∣∣∣∣
α=0

= Sv +
P0

ρs2
(ρ− ρs) +

∆K

18ρs2
(ρ− ρs)2 + ....... (1.7)

Sv is the infinite nuclear matter symmetry energy, whose empirical value lies 30±5

MeV.

Another most important quantity of the infinite nuclear matter is its incomressibil-

ity (K∞). The nuclear matter incompressibility (K∞) is the measure of the stiffness

of the equation of state (EOS). It can be calculated from the curvature of the EOS

at saturation density. K∞ puts a stringent constraint on the theoretical description

of effective nuclear interaction and density dependence of the nuclear interaction.

The correct value of the infinite nuclear matter incompressibility (K∞) is a debatable

subject in the current scenario. It has been remained a long standing technique to

constraint the K∞ with the help of isoscalar giant monopole resonance [19]. There

are two ways to calculate the infinite nuclear matter incompressibility (K∞). One
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is the direct way, in which the monopole excitation energy is calculated for heavy

nucleus with different nucleon-nucleon interaction and the correct nucleon-nucleon

interaction is pointed out which gives the exact excitation energy. With this nucleon-

nucleon interaction, the incompressibility of infinite nuclear matter is calculated. The

second method is little indirect, first, the monopole excitation energy of different nu-

clei is measured and the incompressibility of finite nuclei is calculated by the formula

EA =

√[
~2KA
m〈r2〉

]
. Like the semi-empirical mass formula, the finite nuclear incom-

pressibility can be expanded in terms of volume, surface, asymmetry and Coulomb

expression.

KA = KV +KsA
−1/3 +KcA

−2/3 + [Kδv +KδsA
−1/3]δ2 +Kcoul

Z2

A4/3
+ ...... (1.8)

In the limit of infinite nuclear matter (A → ∞ ) all other terms go to zero

except KV . So KV gives the infinite nuclear matter incompressibility (K∞). The

various coefficient in the expression (1.8) can estimated from the chisqaure fitting

with the experimental data. But there is a huge uncertainty in the value of K∞ due

to very limited number of excitation energy data. It is also model sensitive quantity.

In current scenario both the relativistic and non-relativistic formalism come to a

conclusion with a value of 240 ± 20 of K∞. There is various application of the

concept of infinite nuclear matter in understanding nuclear physics and astronuclear

physics, mainly the physics of the neutron star.

1.7 Neutron Star

A neutron star is probably the densest object found in the visible universe, which

has the density around 9-10 time the density of the infinite nuclear matter (density

of infinite nuclear matter ρ0 ≈ 0.16fm−3). Neutron star is the compact remnants of

a massive star after it undergoes core collapse. During lifetime of a star, a hydro-

dynamical equilibrium is maintained between the radiation pressure created from the

fusion process, which is outward and the gravitational attraction towards the core of

the star. Fusion process starts with the fusion of hydrogen to form Helium with a

huge amount of energy production. This process continues till the production of 56Fe,
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after which it become an endothermic process and not favorable for further processed.

With the absence of the outward pressure gravity, contract and core collapse starts.

Fate of a star after core collapse usually decided by the mass of the star before the

core collapse. The star whose mass below 4M� become the white dwarf after the core

collapse. Neutron stars and black hole are believed to originate from a more massive

star. However, the dividing line between those stars that from neutron star and those

that form a black hole is very uncertain because the final stage of the evolution of

massive star are poorly understood. The formation of neutron star from a massive

star is in the mass range 4 − 10M� and assume that all star with masses greater

than 10M� end up as a black hole. One should not misunderstood from the name

”Neutron star”, that is composed of the only neutron. Neutron star derive their name

from the predominance of neutrons in their interior, following the mutual elimination

of electron and proton by inverse β-process. Neutron star composed of neutrons,

protons and electrons. One can simply shows that ne : np : nn = 1 : 1 : 8 in the limit

of very large density is a trivial consequence of charge neutrality, β- equilibrium and

extremely relativistic degeneracy. Due to the high density, there is the probability

of production of strange baryon (hyperon ). It is also assumed that quarks become

unconfined due to extremely high density in the inner core of the neutron star.

1.8 Hyperon Star

As we know that neutron star is one of the most dense object of the universe. Neutron

star has a core of density 9-10 times denser than the saturation density (0.16fm−3).

This high density is the main cause of the many anomalous physics inside the neutron

star. As the density increases, new hadronic degree of freedom may appear in addition

to the neutron and proton. One such degree of freedom is hyperon, baryon with

strangeness quantum number. We can not deny the presence of hyperon inside the

core of neutron star. So we need to study the EOS and mass-radius profile of the

hyperon star for complete knowledge of the neutron structure. In Chapter V we will

discuss about the effect on EOS with inclusion of the baryon octet.
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1.9 Plan of the thesis

In this thesis we have outlined the structural properties of finite and infinite nuclear

matter. The thesis is organized as follows:

1.9.1 In chapter 2

We have discussed the magic number in the super heavy region. The familiar magic

numbers Z= 2, 8, 20, 28, 50, 82 and N= 2, 8, 20, 28, 50, 82, 126 in the light and

medium heavy region. However the magic number in super heavy region beyond

208Pb is not clear. Magic number has a great importance in the nuclear structure

physics. It is a basic assumption that both proton and neutron double magic nuclei

are spherical. In this chapter we will discuss the prediction of magic number with help

two proton and neutron separation energy, ∆n and ∆p gaps, single particle energy

levels and chemical potential. All the calculation have done with both relativistic

(RMF) and non-relativistic (SEI) formalism.

1.9.2 In chapter 3

In this chapter, we will discuss about the excitation energy of the isoscalar giant

monopole resonance (ISGMR) energy. Excitation energy of ISGMR provides a crucial

tool to calculate infinite nuclear matter (INM) incompressibility (K∞). This K∞ has

a major role in the EOS of infinite nuclear matter. So (K∞) plays an imperative

role in both structure of finite and neutron star. The study of nuclear structure

physics will remain incomplete without the study of giant resonance excitation. In

this chapter, we have discussed only one type of resonance i.e., ISGMR. Mostly we

discussed the excitation energy of ISGMR in super-heavy region. In recent years the

excitation energy measurement reveals the softness behavior of the Sn isotopes. Last

part of this chapter is dedicated to explain the softness of Sn nuclei in our formalism,

relativistic extended Thomas-Fermi the (RETF) formalism.
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1.9.3 In chapter 4

This chapter is fully dedicated to develop a new formalism to calculate the giant

resonance excitation energy of nucleus. Here we have developed a new technique

based on Taylor series expansion to calculate the constrained energy (E1 =
√

m1

m1
)

for isoscalar giant monopole resonance (ISGMR) and isovector giant dipole resonance

(IVDGR). We have given a comprehensive analysis of our new model and compared

with other theoretical model as well as with the experimental data.

1.9.4 In chapter 5

In this chapter, the effects of nucleon-nucleon interaction on the finite and infinite

nuclear system are discussed. All the results are obtained with R3Y interaction,

which was purpose recently by our group. The effects of self-interaction of ω meson

on various properties of nuclear system is also extensively discussed.

1.9.5 In chapter 6

We have investigated the cross-section and astrophysical S-factor for the proton rich

nuclei in the mass range A∼100-120, using the R3Y and density dependent M3Y

interaction. The effect of self-interaction of σ and ω meson are also discussed exten-

sively.

1.9.6 In chapter 7

After the discussion of finite nuclear structure, we move forward to the infinite nuclear

matter. The best example of INM is neutron star. We have calculated mass-radius

profile of the neutron star using Tollmann-Volkoff- Oppenhimer (TOV) equation.

The EOS for the TOV equation has taken from the RMF formalism with an extra

degree of freedom δ -meson, which generally never included in the most of the RMF

interaction. We have analyzed the effect of δ-meson on the EOS of both neutron and

hyperon stars. Both static and rotating systems have been taken into consideration.
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Chapter 2

Double shell closure in the

super-heavy region

Magic number is one of the most important tool to study the nuclear structure. Magic

numbers in the β-stability regions are well known but in the drip-line and super heavy

area it is still a debatable subject. Various theoretical models proposed different com-

bination of protons and neutrons as magic combinations. In this chapter, an attempt

to search for spherical double shell closure nuclei beyond Z=82, N=126 is discussed.

We have used the non-relativistic (SEI) and relativistic (RMF) calculations for our

analysis. This will help us to reduce the theoretical uncertainty in the prediction

of magic number. Here the calculations and results are based on a newly developed

approach entitled simple effective interaction (SEI) and well known RMF formal-

ism . Our results predict the combination of magic nucleus occurs at N=182 and

Z=114,120,126. All possible evidence for the occurrence of magic nuclei is discussed

systematically.

2.1 Introduction

Starting from the discovery of nucleus, the formation of new element is an interesting

topic in Nuclear Physics. So far the synthesis of heaviest element in laboratory is

Z=118 in the hot fusion reaction process at JINR Dubna [20, 21]. The possibility of

the existence (synthesis) of these super-heavy elements is mainly due to the attractive
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shell corrections against the destructive Coulomb repulsion. Although atomic number

Z=114 was predicted to be the next magic number after Z=82 and neutron number

N=184, recently attention has shifted to the nucleus Z=120 with N=182/184 [14,

22, 23]. The experimental discovery of the super-heavy elements also support this

prediction to some extent. Thus, the synthesis of Z=120 is in full swing at the

worlds’ most laboratories like, Dubna (Russia), RIKEN (Japan), GSI (Germany).

Using cold fusion reaction, elements from Z = 107 − 112 are synthesized at

GSI [24–30]. At the production time of Z = 112 nucleus at GSI, the fusion cross

section was extremely small (1 pb) [28], which led to the conclusion that reaching

still heavier elements will be very difficult by this process. The element Z=113 was

also synthesized in cold-fusion reaction at RIKEN with a very low cross section ∼ 0.03

pb [31] confirming the limitation of cold-fusion synthesis. To overcome this problem

in hot fusion evaporation reaction with deformed actinide targets and neutron-rich

doubly magic spherical projectile like 48Ca are used in the production of super-heavy

nuclei Z = 112− 118 at Dubna [32–37].

It is thus a matter of challenge for every theoretical prediction in nuclear physics

to find suitable combination of proton and neutron, which gives double closure shell

nuclei beyond 208Pb and will be the next element of epicenter for experimental syn-

thesis. Our aim is to look for a suitable combination of proton and neutron in such a

way that the resultant combination will be the next magic nucleus after 208Pb. This

work is not new, but a revisit of our earlier prediction with in a new simple effective

interaction (SEI). The SEI interaction is recently developed in Ref. [38] and given a

parameter set which is consistent with both nuclear matter and finite nuclei. Here,

we have used this SEI interaction. A systematic investigation of the nuclear structure

is done and reconfirmed the double closed nucleus as Z=120 with N=182/184.

This chapter is organized as follows: In Sec. 2.2, the theoretical formalism of the

SEI is presented. The procedures for numerical calculations to estimate the binding

energy and root mean square radii are outlined. The results and discussions are

given in Sec.2.3. The characteristics of magic structure of nucleus using two neutron

separation energy, pairing gap of proton and neutron are analyzed for super-heavy

region. In this section stability of such nuclei are also studied in terms of the chemical

potentials. Finally summary and concluding remarks are given in Sec. 2.4.
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2.2 The Theoretical Framework

2.2.1 Simple Effective Interaction

The present formalism is based on a simple way to make a consistent parametrization

for both finite nucleus and infinite nuclear matter with a momentum dependence

finite range term of conventional form, such as Yukawa, Gaussian or exponential to

the standard Skyrme interaction [38–40]. We have used the technique of Refs. [38–40]

considering a Gaussian term as the momentum dependence finite range interaction

which simulate the effect of Gogny type interaction [6, 41]. Then it is applied to

nuclear equation of state as well as to finite nuclei through out the periodic table [38].

The Hartree-Fock (HF) formalism is adopted to calculate the wave-function of the

nuclear system which then used to evaluate the nuclear observable, such as binding

energy, root mean square radii etc. The detail formalism and numerical procedure can

be found in [38]. The form of the simple effective interaction (SEI) is given by [38]:

veff (r) = t0(1 + x0Pσ)δ(r) + t3(1 + x3Pσ)

(
ρ(R)

1 + bρ(R)

)γ
δ(r)

+ (W +BPσ −HPτ −MPσPτ ) f(r)

+iW0(σi + σj)(k
′ × δ(ri + rj)k). (2.1)

Where, f(r) is the functional form of the finite range interaction containing a single

range parameter α. The finite range Gaussian form is given as f(r) = e−r
2/α2

. The

other terms having their usual meaning [38]. To prevent the supra luminous behavior

of the nuclear matter, the usual value of b [42–45] is taken. There are 11-parameters

in the interaction, namely t0, x0, t3, x3, b, W , B, H, M , γ and α. The expression

for energy density, single particle energy and other relevant quantities are obtained

from Eq. ( 2.1) for Gaussian f(r) defined in Ref. [38]. The numerical values of the

parameter set, SEI and RMF(NL3) are given in Table 2.1.

2.2.2 Relativistic mean field (RMF) formalism

The starting point of the RMF theory is the basic Lagrangian containing nucleons

interacting with σ−, ω− and ρ−meson fields. The photon field Aµ is included to take

care of the Coulomb interaction of protons. The relativistic mean field Lagrangian
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Table 2.1: The value of interaction parameters for simple effective interaction (SEI)

and RMF (NL3) [33] sets and their nuclear matter properties at saturation.

SEI RMF (NL3)

γ 1
2

M (MeV) 939

b (fm3) 0.5914 mσ (MeV) 508.1941

t0 (MeV fm3) 437.0 mω (MeV) 782.6010

x0 0.6 mρ(MeV) 7630.0

t3 (MeV fm3(γ+1)) 9955.2 gσ 10.2169

x3 -0.1180 gω 12.8675

W (MeV) -589.09 gρ 8.9488

B (MeV) 130.36 g2 (fm−1) -10.4307

H (MeV) -272.42 g3 28.8851

M (MeV) -192.16

α (fm) 0.7596

W0 (MeV) 115.0

Nuclear matter

ρo (fm−3) 0.157 ρo (fm−3) 0.148

e(ρ0) (MeV) -16.0 e(ρ0) (MeV) -16.24

Es (MeV) 35.0 Es (MeV) 37.4

K0 (MeV) 245 K0 (MeV) 271.5
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density is expressed as [46,47],

L = ψi{iγµ∂µ −M}ψi +
1

2
∂µσ∂µσ −

1

2
m2
σσ

2 − gσψiψiσ −
1

4
ΩµνΩµν +

1

2
m2
wV

µVµ

− gwψiγ
µψiVµ −

1

4
~Bµν . ~Bµν +

1

2
m2
ρ
~Rµ. ~Rµ − gρψiγµ~τψi. ~Rµ − 1

2
m2
δδ

2 + gδψiδ~τψi.

(2.2)

Here M, mσ, mω and mρ are the masses for nucleon, σ-, ω- and ρ-mesons and ψ is the

Dirac spinor. The field for the σ-meson is denoted by σ, ω-meson by Vµ and ρ-meson

by Rµ. The parameters gs, gω, gρ and e2/4π=1/137 are the coupling constants for the

σ, ω, ρ-mesons and photon respectively. g2 and g3 are the self-interaction coupling

constants for σ mesons. By using the classical variational principle we obtain the

field equations for the nucleons and mesons. A static solution is obtained from the

equations of motion to describe the ground state properties of nuclei. The set of

nonlinear coupled equations are solved self-consistently [48]. The total energy of the

system is given by

Etotal = Epart + Eσ + Eω + Eρ + Ec + Epair + Ec.m., (2.3)

where Epart is the sum of the single particle energies of the nucleons and Eσ, Eω, Eρ,

Ec, Epair, Ecm are the contributions of the meson fields, the Coulomb field, pairing

energy and the center-of-mass motion correction energy, respectively. We have used

the well known NL3 parameter set [49] in our calculations for RMF formalism.

2.2.3 Pairing Correlation

To take care of the pairing correlation for open shell nuclei the constant gap, BCS-

approach is used in our calculations. The pairing energy expression is written as

Epair = −G

[∑
i>0

uivi

]2

, (2.4)

with G is the pairing force constant. The quantities v2
i and u2

i = 1 − v2
i are the

occupation probabilities [50–52]. The variational approach with respect to v2
i gives

the BCS equation

2εiuivi −4(u2
i − v2

i ) = 0, (2.5)
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using 4 = G
∑

i>0 uivi. The occupation number is defined as

ni = v2
i =

1

2

[
1− εi − λ√

(εi − λ)2 +42

]
. (2.6)

The chemical potentials λn and λp are determined by the particle number for

protons and neutrons. The pairing energy is computed as Epair = −4
∑

i>0 uivi. For

a particular value of 4 and G, the pairing energy Epair diverges if it is extended to

an infinite configuration space. In fact, in all realistic calculations with finite range

forces, 4 decreases with state for large momenta near the Fermi surface. In the

present case, we assume equal pairing gap for all states | α >=| nljm > near the

Fermi surface. We use a pairing window, where the equations are extended up to the

level εi − λ ≤ 2(41A1/3). The factor 2 has been determined so as to reproduce the

pairing correlation energy for neutrons in 118Sn using Gogny force [6, 50,51].

2.3 Results and Discussions

The quasi local Density Functional Theory (DFT) is used in this work, which is

similar to the one used by Hoffman and Lenske in Ref. [29]. The total energy is

nothing but the sum of the energy density contribution from different components of

the interaction along with spin-orbit and Coulomb term. The energy density H0 for

SEI set can be expressed as

H0 =
~2

2m
(τn + τp) +HNucl

d +HNucl
exch +HSO +HCoul. (2.7)

From this effective Hamiltonian H̃ we obtain the quasi local energy functional as:

ε0

[
ρQL

]
=

∫
H0d

3R. (2.8)

The equations solved self-consistently to get the solution for nucleonic system. Here

we have taken only spherical solution for both RMF and SEI.

2.3.1 Ground state binding energy

The main objective of the present study is to find the double shell closure in the

superheavy valley. In this context, we have concentrated on few observable such as
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Table 2.2: The binding energy (BE) obtained from SEI calculation is compared with

the RMF(NL3) [33], finite range droplet model (FRDM) [39] and with experimental

data of some of the known super-heavy nuclei. The BE is in MeV.

Element BE

SEI RMF(NL3) FRDM Expt.

258Md 1896.19 1897.70 1911.53 1911.69

258Rf 1884.95 1890.86 1905.25 1904.69

261Rf 1906.38 1911.04 1924.28 1923.93

259Db 1886.94 1894.58 1907.00 1906.33

260Db 1894.31 1901.4 1913.34 1912.82#

260Sg 1888.62 1897.9 1909.90 1909.07

261Sg 1896.17 1905.02 1916.27 1915.68

264Hs 1906.86 1915.5 1927.62 1926.77

265Hs 1914.59 1922.9 1934.40 1933.50

269Ds 1932.81 1941.21 1952.06 1950.290

285Fl 2029.41 2039.19 2044.12 2040.03#

286Fl 2036.74 2046.17 2051.59 2047.474#

287Fl 2043.36 2052.50 2057.65 2053.19#

288Fl 2050.14 2058.73 2065.01 2060.64#

289Fl 2056.80 2064.87 2071.04 2066.06#
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Figure 2.1: The ground state densities with SEI for 208Pb, 298114, 304120 and 310126

are compared with the RMF(NL3) results.

separation energy S2n, chemical potential µn, single-particle levels En,p and pairing

energy Epair. Before going to this unknown region (super-heavy valley), it is impor-

tant to test our model for known nuclei, which are experimentally and theoretically

well established. We calculate the binding energy of few known super-heavy nuclei

using SEI. The obtained results are compared with RMF, finite-Range-Droplet-Model

(FRDM) [53] and experimental data [54] in Table 2.2. The # marks in the experi-

mental column are for the extrapolated data from Ref [54]. From the table, we find

that the SEI and NL3 results are slightly overestimated to the experimental values.

A close observation of the table shows the superiority of FRDM over SEI or NL3

for lighter masses of the super-heavy nuclei. In contrast to the lighter region, the

SEI predicts better results for heavier isotopes. For example, binding energy of 289Fl

is 2056.80 MeV in SEI, whereas the values are 2064.87, 2071.04 and 2066.06 MeV

in RMF(NL3), FRDM and experiment (or systematic), respectively. Based on this

trend, one can expect that the prediction of SEI gives us better insight about the

magic structures of super-heavy nuclei in heavier mass region, which is the main

objective of this present investigation.

24



104 112 120 128 136 144
5

10

15

20

SEI
NL3
EXP

160 180 200 220 240 260
0

5

10

15

20

160 180 200 220 240 260

0

5

10

15

20

160 180 200 220 240 260
0

5

10

15

20

Z=82

Z=120 Z=126

Z=114
S

2n
(M

eV
)

N

Figure 2.2: The two neutron separation energy obtained from NL3 and SEI for 208Pb,

298114, 304120 and 310126.

2.3.2 Density distribution of Neutrons and Protons

After convinced with the binding energy of the super-heavy nuclei, we present the

density distribution of protons and neutrons in Fig. 2.1. The densities are compared

with the RMF(NL3) calculations. In general, the RMF and SEI densities are almost

similar with each other. However, a proper inspection reveals that the SEI densities

slightly over estimate the RMF(NL3) densities. This overestimation is mostly at the

middle region of the nucleus. The humps at the central region for both the densities

show shell effect for all nuclei shown in the figure.

2.3.3 Two neutron separation energy and location of closed

shell

From the binding energy, we have calculated the two neutron separation energy using

the relation S2n(N,Z) = BE(N,Z)−BE(N −2, Z). The S2n for all the four isotopic

chains are shown in Fig. 2.2 as a function of neutron numbers. In case of Pb isotopes,

the sudden decrease of S2n at neutron number N=126, is the well known neutron

magic number for the largest known Z=82 magic nucleus. The analysis is extended

to the recently predicted proton magic numbers like Z=114, 120 and 126, which are
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Figure 2.3: The calculated pairing gap of neutron 4n with SEI for the isotopic series

Z=82, 114, 120 and 126 are compared with the NL3 results.

currently under scrutiny for their confirmation.

It is important to mention that, the next proton magic number beyond Z=82

would be Z=126 considering the traditional proton and neutron magic numbers for

known closed shell nuclei [55, 56]. However, several microscopic calculations [57–62]

suggest a shift of this number to 114. One of the cause of the shift is the Coulomb

effect on the spherical single particle levels. The use of shell correction by V. M.

Strutinsky [63] to the liquid-drop calculation of binding energy (BE) opens a more

satisfactory exploration towards the search of double closed nucleus beyond 208Pb.

Using this approach, Z=114 is supported to be the proton magic after 82 [64–67],

which was regarded as the magic number in the super-heavy valley [68] with N=184

as the corresponding neutron magic number. However, the recent relativistic mean

field calculations using various force parameters [69], predict Z=120 as the next magic

number with N=172/182 as the neutron closed shell. Contrary to all these predic-

tions, some non-relativistic calculations reported Z=126 as the next magic proton

in the super-heavy valley. The microscopic calculations using Skyrme Hartree-Fock

formalism predict N=182 as the next neutron closed shell after N=126, which differs

by 2 unit from other predictions [69].

Analyzing the S2n energy for the isotopic chain of Z=82, 114, 120 and 126, the

sharp fall of S2n at N=126 is a clear evidence of magic combination of Z=82 and
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Figure 2.4: (a)The pairing gap of proton 4p with SEI for the isotopic series Z=82,

114, 120 and 126 compared with the NL3 results.

N=126. Our newly developed SEI model and previously existing NL3 follow the

same trend as experiment. But whenever we analyzed the plots of Z=114, 120 and

126, we find a slight difference in these two models (SEI and RMF). In RMF(NL3),

when we go from one magic neutron number to the next one, the S2n energy suddenly

decreases to a lower value, which reflect in Fig. 2.2. In SEI, the S2n energy follows

same pattern but the magnitude of decreseness some how less.

2.3.4 Pairing gaps and pairing energy

Another important quantity, which helps us to locate the closed shell is the pairing

gaps of proton and neutron in a constant force BCS calculation. Here, we calculate

the pairing gap for the isotopic chain of Z=82, 114, 120 and 126 and locate the

minimum values of 4n and 4p. The results are depicted in Figs. 2.3 and 2.4 and

also compared with the RMF(NL3) force. It is well known that NL3 force satisfies

this criteria for the location of magicity [23, 69]. Although, SEI overestimates the

paring gaps of 4n, 4p, the trend for both NL3 and SEI are found to be similar.

Consistence with NL3 results as well as with earlier calculations with a variety of

force parameters, our present SEI reproduces minima at N=182/184 and Z=120 and

to some extent at Z=114.
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Figure 2.5: The pairing energy as a function of neutron number for Z=82, 114, 120

and 126 with SEI and NL3 forces.

To see the trend of pairing energy Epair at the discussed neutron number N=184,

we plot Epair as a function of neutron number N in Fig. 2.5. Surprisingly, we get almost

zero pairing energy at N=126 for Z=82 isotopic case. The formalism is extended to

Z=114, 120 and 126 cases. We find minimum or zero Epair at N=182/184 confirming

the earlier predictions of this neutron magic number at N =182/184 [69].Qualitatively,

the SEI interaction follows the trend of RMF(NL3) as shown in Fig. 2.5, but fails

when we have a quantitative estimation. For example, the 4n or Epair at N=182/184

is minimum but has a finite value unlike to the NL3 prediction, which has zero value.

As a matter of fact, the validity of pairing scheme to this region of nuclei may not

be 100 % applicable. The improvement of pairing is needed to keep the value of 4n

and 4p zero at the appropriate magic number.

2.3.5 Chemical energy and stability

The stability of an element not only depends on its binding energy and shell structure,

but also very much affected by the chemical potential µ. For a bound nucleus, both

the chemical potentials of protons µp and neutrons µn must be negative. To realize

the relative stability from chemical point of view, we have plotted µp and µn with
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Figure 2.6: Systematic of chemical energy µn and µp as a function of neutron number

for Z=82, 114, 120 and 126 with SEI and NL3 sets.

neutron number in Fig. 2.6. The results are also compared with the µ−value of

NL3 set. In both the cases, we find similar chemical potential. In some previous

papers it is suggested that we can take N=172 as magic number for neutron. But

our SEI model shows that the combination Z=120 and N=172 is strictly not allowed.

Because in this case µp = 0.69 MeV, which gives proton instability. However NL3

result shows this combination is a loosely bound system having µn = −1.240 MeV

and µp = −7.007 MeV. Although the BE/A curve shows a local maximum at Z=114

and N=172 in SEI model, we can not take this as a stable system because of 4n

and 4p value, which does not show any signature of stability. The SEI model gives a

clear picture that the isotope 302120 can be a suitable combination for the next double

closed nucleus. One can justify it by analysis of BE/A data of 302120. For example

BE/A = 7.007 MeV which create a local maxima in its neighbor-hood for 302120. In

the same time, the optimum negative value of chemical potential energies of µnand

µp gives a sign of maximum stability. A similar analysis of numerical data for µp of

isotopes of Z=126 shows that there is no reason of taking Z=126 and N=182/184 as

a stable combination. This is because of the positive value of µp (1.36) MeV.
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Figure 2.7: The single particle energy levels for 304120 with NL3 and SEI parametriza-

tion.

2.3.6 Single particle energy

The single particle energies for 304120 with NL3 and SEI for proton and neutron are

shown in Fig. 2.7. The single particle solutions are obtained without including the

pairing correlation into account to intact the degeneracy of the levels. The calculation

of single particle energies of SEI with pairing shows that the degeneracy of the energy

levels are not invariant. The basic cause of this discrepancy is the over estimation of

our pairing strength in SEI model which may be an interesting analysis for pairing

in future. The filling up single particle energy levels for neutrons in SEI with pairing

is different from that of without pairing. The energy levels without pairing are given

by [178] (3d3/2)4, (4s1/2)2 while the same with pairing are [178] (3d3/2)3, (4s1/2)1,

(1j11/2)2. That means an empty orbital is created at 4s1/2 and occupied in 1j11/2.

We have also analyzed the single particle levels for 302120, which is not given in the

figure. From the anatomy of single particle energies for neutron and proton εn and εp,

we find large gaps at neutron number N=184 and proton number Z=120. The value

of neutron gap at N=184 is 1.949 MeV and that of proton is 1.275 MeV for the last

occupied and first unoccupied nucleon. On the other hand the neutron and proton

gap for 302120 are respectively ∼ 0.6 and ∼ 1.663MeV . The above data say the

energy gaps for the neutron and proton in 304120 are greater than the gap in 302120.

This give us an indication to take the combination N=184 and Z=120 as the next
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magic nucleus. From the analysis of single particle energy level of 304120 with NL3

parameter set one can see the neutron and proton gaps are 1.4503 MeV and 2.1781

MeV respectively for the last occupied and first unoccupied nucleon.The RMF(NL3)

and SEI data are comparable with each other.

2.4 Summary and Conclusions

In summery, we have calculated the binding energy, S2n energy, single particle levels,

pairing gaps and chemical potential, in the isotopic chain of Z=82, 114, 120 and

126. All our calculations are done in the frame work of SEI interaction. We have

compared our results with standard RMF (NL3) parameter. Over all discussion and

analysis of all possible evidences of shell closure property show that, one can take

Z=120 and N=182 as the next magic combination beyond Z = 82 and N = 126,

which is different from Skyrme, Gogny and RMF(NL3) by two unit. However on the

basis of single particle energy levels, the preferred gap is at N=184 which is consistent

with these (Skyrme, Gogny and RMF) force parameters. This happens due to the

overestimation of pairing strength.
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Chapter 3

Monopole resonance in drip-line

and super heavy region.

In last chapter we discussed the magic properties of the super heavy and drip-line nu-

clei, which is prominently based on single particle nature of the nuclear system. Like

the single particle state, the collective states are also equally responsible for the struc-

ture of the finite nucleus. Many information about the nuclear structure can be ob-

tained from the collective excitation like the giant monopole, dipole, and quadrupole

oscillations. Out of all collective excitation, isoscalar monopole and isovector dipole

are most important for the nuclear structure physics. These are also known as the

squeezing mode of oscillation. In isoscalar monopole resonance (ISGMR) the protons

and neutrons vibrate in a phase to each other. It is also known as the breathing mode

of oscillation. This collective mode is related to the incompressibility of finite nuclear

system and using leptodermous expansion one can get the information about the in-

finite nuclear matter incompressibility (K∞) from the finite one. K∞ is one of the

fundamental properties of the equation of state, which decides the mass and radius of

the neutron star. The general assumption is that a heavy finite nuclear system has a

great resembles with the infinite nuclear matter. So the study of the incompressibil-

ity and excitation energy of heavy and drip line nuclei become important. We study

the isoscalar giant monopole resonance for drip-lines and super heavy nuclei in the

framework of relativistic mean field theory with a scaling approach. The well-known

extended Thomas-Fermi approximation in the nonlinear σ- the ω model is used to
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estimate the giant monopole excitation energy for some selected light spherical nuclei

starting from the region of a proton to neutron drip-lines. The application is extended

to the super heavy region for Z=114 and 120, which are predicted by several models

as the next proton magic numbers beyond Z=82. We compared the excitation energy

obtained by four successful force parameters NL1, NL3, NL3∗, and FSUGold.

3.1 Introduction

The study of nuclei far away from the drip-lines has a current research interest due

to their very different properties from nuclei at the β−stability valley. New proper-

ties of these nuclei like the soft giant resonance, change of magic number, halo and

skin structures, and new decay modes stimulate strongly research using radioactive

ion beams (RIB) [70, 71]. On the other hand, super heavy nuclei which are on the

stability line, but extremely unstable due to excessive Coulomb repulsion, attract

much theoretical attention for their resemblance to the highly asymmetric nuclear

matter limit [68,72]. These nuclei possess a large amount of collective excitation and

their study along an isotopic chain is more informative for the structural evaluation

of astrophysical objects like neutron stars [73]. Also, the nuclear symmetry energy,

and consequently the proton to neutron ratio, are crucial factors in constructing the

equation of state (EOS) for asymmetric nuclear matter [74].

The incompressibility KA of a nuclear system depends on its neutron-proton asym-

metry. It is also well known that the EOS of a highly asymmetric and dense object

like a neutron star is substantially influenced by its incompressibility. Although the

incompressibility at various asymmetries is an important quantity, it is not a direct

experimental observable. Thus, one has to determine the KA from a linked exper-

imental quantity (which is directly or indirectly related to KA) like isoscalar giant

monopole resonance (ISGMR) [75,76]. The ISGMR is a well-defined experimental ob-

servable, which can be measured precisely through various experimental techniques.

The drip-lines and super heavy nuclei are vulnerable and unstable in nature, because

of the presence of excess neutrons and large number of protons, respectively. Thus, it

is instructive to know the giant monopole resonance, incompressibility modulus, and

other related quantities for both drip-lines and super heavy nuclei. In this context,
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our aim is to study the giant monopole excitation energy and the incompressibility

of finite nuclei near the drip-line [71] as well as for recently discussed super heavy

nuclei with proton numbers Z=114 and 120, which are predicted to be the next magic

numbers beyond Z=82 with various models [23, 77]. In addition, the calculations of

Refs. [78, 79] suggest that these nuclei possess spherical ground state or low-lying

spherical excited solutions. More specifically, we aimed to study the following within

the frame-work of an extended relativistic Thomas-Fermi approximation:

• How the isoscalar excitation energy and the finite nuclear incompressibility vary

in an isotopic chain in drip-lines and super heavy nuclei within a well-tested

model like the relativistic extended Thomas-Fermi approximation using scaling

and constrained approaches which were developed by some of us recently [80,81].

• A comparative study of ISGMR obtained with various parameter sets, origi-

nated from several interactions, such as NL1, NL3, NL3∗, and FSUGold for the

same drip-lines and super heavy nuclei. The large variation in nuclear matter

incompressibility starting from K∞ ∼ 211.7− 271.76 MeV will give us an idea

about the prediction of ISGMR with different values of K∞.

• The resonance widths Σ, which are mostly the difference between the scaling

and constraint excitation energies are analyzed in the isotopic chains of light

and super heavy nuclei.

• The relation between the finite nuclear incompressibility with the infinite nu-

clear matter values in various force parameter sets are looked for.

• Finally, We applied the scaling and constrained method for Cd and Sn isotopes

and compared with the excitation energy with moments ratio
√

m3

m1
and

√
m1

m−1

obtained from multipole-decomposition analysis (MCA).

In relativistic mean field (RMF) formalism, the NL1 parameter set [82] has been

considered for a long time to be one of the best interactions to predict the experimental

observable. The excessively large value of the asymmetry coefficient J ∼ 43.6 MeV

brings into question the accuracy of the prediction of neutron radius near the drip-

line. As a result, the discovery of the NL3 parameter set [49] complements the
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limitations of the NL1 force and evaluates the ground state properties of finite nuclei

in excellent agreement with experiment [49,83–87]. It reproduces the proton or charge

radius rch precisely along with the ground state binding energy. Unfortunately, the

experimental data for neutron radius has a large error bar [88], which covers most

of the prediction of all relativistic and non-relativistic models [89]. The FSUGold

parameter set [90,91] reproduces the ISGMR pretty well with the experimental data

for 90Zr and 208Pb. There is also a possibility to solve the problem of the uncertainty

in neutron radius [92] using this interaction. The NL3∗ force parametrization [93] is

claimed to be an improved version of NL3 to reproduce the experimental observable.

We used all these forces and made a comparison of their predictive power for various

experimental data. Then we selected NL3 as a suitable parameter set for our further

investigations for ISGMR and related quantities. This chapter is organized as follows:

In section 3.2, we outline in brief the formalism used in the present work. In section

3.3, we discuss our results for the ground state properties and isoscalar giant monopole

resonance (ISGMR) for drip-lines and super heavy nuclei. The isoscalar monopole

excitation energy Ex and the incompressibility modulus of finite nuclei KA are also

analyzed. We give the summary and concluding remarks in section 3.6

3.2 The Formalism

We use the principle of scale invariant to obtain the virial theorem for the relativistic

mean field theory in the relativistic Thomas–Fermi (RTF) and relativistic extended

Thomas-Fermi (RETF) approximations [80, 94–98]. Although the scaling and con-

strained calculations are not new, the present technique was developed first by Patra

et al [80] and not much has been explored for various regions of the periodic chart.

Thus, it is interesting to apply the model specially for drip-lines and super heavy

nuclei. The calculations will explore the region ranging from Z=8 to Z=114, 120,

where we can simulate the properties of neutron matter from the neutron-rich finite

nuclei. For this purpose, we compute moments and average excitation energies of

the isoscalar giant monopole resonance (ISGMR) through scaling and constrained

self-consistent calculations for the ground state.
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The detailed formalism of the scaling method is given in Refs. [80, 81]. For com-

pleteness, we have outlined briefly some of the essential expressions which are needed

for the present purpose. We have worked with the non-linear Lagrangian of Boguta

and Bodmer [99] to include the many-body correlation which arises from the non-

linear terms of the σ−meson self-interaction [100] for a nuclear many-body system.

The nuclear matter incompressibility K∞ is also reduced dramatically by the intro-

duction of these terms, which motivate us to work with this non-linear Lagrangian.

We have also included the self-coupling of the vector ω−meson (aV 4) and the cross-

coupling of the ω− and ρ−mesons ΛR2V 2 in the Lagrangian. The terms aV 4 and

ΛR2V 2 are very important in the equations of state [87] and symmetry energy [90]

for nuclear systems. The relativistic mean field Hamiltonian for a nucleon-meson

interacting system is written as [80]:

H =
∑
i

ϕ†i

[
− i~α · ~∇+ βm∗ + gvV +

1

2
gρRτ3 +

1

2
eA(1 + τ3)

]
ϕi +

1

2

[
(~∇φ)2 +m2

sφ
2
]

+
1

3
bφ3 +

1

4
cφ4 − 1

2

[
(~∇V )2 +m2

vV
2
]
− 1

2

[
(~∇R)2 +m2

ρR
2
]
− 1

2

(
~∇A
)2

+ aV 4

+ ΛR2V 2. (3.1)

All the terms in the above Hamiltonian represent their usual meaning, which have

already discussed in the chapter 2. Here we have added two new coupling constants,

one is self-coupling of the vector meson ω and other is the cross-coupling of the ω and

ρ−meson, which are represented by a = ζ0
24
gv

4, and Λ = ΛV gρ
2gv

2, respectively. By

using the classical variational principle we obtain the field equations for the nucleons

and mesons. In semi-classical approximation all the terms containg single particle

wave-function converted to their corresponding density form and the above Hamilto-

nian can written in term of density as:

H = E + gvV ρ+ gρRρ3 + eAρp +Hf , (3.2)

where

E =
∑
i

ϕ†i

[
− i~α · ~∇+ βm∗

]
ϕi = E0 + E2, (3.3)

ρs =
∑
i

ϕ†iϕ = ρs0 + ρs2, (3.4)
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ρ =
∑
i

ϕ̄iϕ, (3.5)

ρ3 =
1

2

∑
i

ϕ†iτ3ϕi, (3.6)

and Hf is the free part of the Hamiltonian, contains the free meson contribution.

E2 and ρs2 correspond to the ~2 correction to the energy and scalar density, respec-

tively. These terms are considered as the extension of Thomas-Fermi approximation

and known as the extended Thomas-Fermi (ETF) approach. In Thomas-Fermi ap-

proach, the density is considered as locally constant ( only depends on the position

co-ordinate) but in extended Thoms-Fermi approach, the density contains the terms,

which are function of position as well as the derivative at that point. This ETF is

considered as one step forward to TF approach to explain the real nuclear system,

where the variation of density takes place on the surface of a finite nucleus. The

complete expression for these quantities is found in [80,81]. The total density ρ is the

sum of the proton ρp and neutron ρn densities. The semi-classical ground-state meson

fields are obtained by solving the Euler-Lagrange equations δH/δρq = µq (q = n, p).

(∆−m2
s)φ = −gsρs + bφ2 + cφ3, (3.7)

(∆−m2
v)V = −gvρ− 4aV 4 − 2ΛR2V, (3.8)

(∆−m2
ρ)R = −gρρ3 − 2ΛRV 2, (3.9)

∆A = −eρp. (3.10)

The above field equations are solved self-consistently in an iterative method. The

pairing correlation is not included in the evaluation of the equilibrium properties

including the monopole excitation energy. The Thomas-Fermi approach is a semi-

classical approximation and pairing correlation has a minor role in giant resonance.
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It is shown in [101,102] that the pairing has a marginal effect on the ISGMR energy,

and only for open- shell nuclei. As far as pairing correlation is concerned, it is a

quantal effect and can be included in a semi-classical calculation as an average, as

is adopted in semi-empirical mass formula. In Ref. [102], perturbative calculation on

top of a semi-classical approach is done, and it suggests that pairing correlation is

not important in such approaches like relativistic Thomas-Fermi (RTF) or relativis-

tic extended Thomas-Fermi (REFT) approximations. In our present calculations,

the scalar density (ρs) and energy density (E) are calculated using RTF and RETF

formalism. The RETF is the ~2 correction to the RTF, where the gradient of den-

sity is taken into account. This term of the density takes care of the variation of

the density and involves more of the surface properties. Now transforming the term

(5V )2 + m2
vV

2 into V (−∆ +mv
2)V = −gvV ρ (similarly for other fields), we can

write the Hamiltonian as

H = E+
1

2
gsφρ

eff
s +

1

3
bφ3 +

1

4
cφ4 +

1

2
gvV ρ+

1

2
gρRρ3 +

1

2
eAρp−aV 4−ΛR2V 2,

(3.11)

with

ρeffs = gsρs − bφ2 − cφ3. (3.12)

In order to study the monopole vibration of the nucleus, we have scaled the baryon

density [80]. The normalized form of the scaled baryon density is given by

ρλ (r) = λ3ρ (λr) , (3.13)

where λ is the collective co-ordinate associated with the monopole vibration. The

other quantities are scaled like

KFqλ =
[
3π2ρqλ (r)

] 1
3 = λKFq (λr) , (3.14)

m̃∗λ(r) = m− gsφλ(r)m∗λ(r) ≡ λm̃∗(λr), (3.15)

where m̃∗∗ carries implicit dependence of λ apart from the parametric dependence of

λr.

Eλ(r) ≡ λ4Ẽ(λr) = λ4[Ẽ0(λr) + Ẽ2(λr)], (3.16)
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ρsλ(r) ≡ λ3ρ̃s(λr). (3.17)

Similarly, the φ, V , R and Coulomb fields are scaled due to the self-consistency

Eq. 3.7-3.10 . But the φ field can not be scaled simply like the density and momentum,

because its source term contains the φ field itself. Putting in all of the scaled variables

one can get the scaled Hamiltonian:

Hλ

λ3
= λẼ +

1

2
gsφλρ̃

eff
s +

1

3

b

λ3
φ3
λ +

1

4

c

λ3
φλ

4 +
1

2
gvVλρ+

1

2
gρRλρ3 +

1

2
eAλρp − a

Vλ
4

λ3

− Λ

λ3
Rλ

2Vλ
2. (3.18)

We know ρ̃s = ∂Ẽ
∂m̃∗ , ∂Ẽ

∂λ
= ∂Ẽ

∂m̃∗
∂m̃∗

∂λ
= ρs

∂m̃∗

∂λ
, and

∂m∗
λ

∂λ
= λ∂m̃

∗

∂λ
+ m̃∗ = −gs ∂φλ∂λ . Here

we are interested in calculating the monopole excitation energy, which is defined as

Es =
√

Cm
Bm

, where Cm is the restoring force and Bm is the mass parameter. In our

calculations, Cm is obtained from the double derivative of the scaled energy with

respect to the scaled co-ordinate λ at λ = 1 [80]. The first derivative is given by[
∂

∂λ

∫
dλr
Hλ (r)

λ3

]
λ=1

=

∫
dλr

[
Ẽ − m̃∗ρ̃s −

1

2
gsρ̃s

eff ∂φλ
∂λ

+
1

2
gsφλ

∂ρ̃s
eff

∂λ
− b

λ4
φλ

3

−3

4

c

λ4
φλ

4 +
1

2
gρρ3

∂Rλ

∂λ
+

1

2
gvρ

∂Vλ
∂λ

+
1

2
eρp

∂Aλ
∂λ
− 4a

vλ
3

λ3

∂Vλ
∂λ

+ 3a
Vλ

4

λ4
+

3Λ

λ4
Rλ

2Vλ
2

−2Λ

λ3
Rλ

2Vλ
∂Vλ
∂λ
− 2Λ

λ3
RλVλ

2∂Rλ

∂λ

]
λ=1

. (3.19)

Now consider the field equation for the omega field

(
4−mv

2
)
V = −gvρ− 4aV 3 − 2ΛR2V. (3.20)

The scaled equation is(
4u −

mv
2

λ2

)
Vλ = −λgvρ−

4aVλ
3

λ2
− 2Λ

λ2
Rλ

2Vλ, (3.21)

where u = λr. Taking the first derivative with respect to λ, we have(
4u −

mv
2

λ2

)
∂Vλ
∂λ

= −gvρ−
12aVλ

2

λ2

∂Vλ
∂λ

+
8aVλ

3

λ3
− 2mv

2Vλ
λ3

+ 4
Λ

λ3
Rλ

2Vλ

−4
Λ

λ2
RλVλ

∂Rλ

∂λ
− 2

Λ

λ2
Rλ

2∂Vλ
∂λ

. (3.22)

Multiplying Vλ on both the sides and integrating, one can get
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∫
d(λr)

∂Vλ
∂λ

(
4u −

mv
2

λ2

)
Vλ =

∫
dλr

[
− gvρVλ −

12aVλ
3

λ2

∂Vλ
∂λ

+
8aVλ

4

λ3
− 2mv

2Vλ
2

λ3

+4
Λ

λ3
Rλ

2Vλ
2 − 4

Λ

λ2
RλVλ

2∂Rλ

∂λ
− 2

Λ

λ2
Rλ

2∂Vλ
∂λ

Vλ

]
.

(3.23)

Putting the field equation for omega field in the above equation, we get

∫
dr

[
1

2
ρgv

∂Vλ
∂λ
− 4aVλ

3

λ3

∂Vλ
∂λ

]
λ=1

=

∫
dr

[
gvVλρ

2λ
− 4aVλ

3

λ4
+
mv

2Vλ
2

λ4
− 2

Λ

λ4
Rλ

2Vλ
2

+ 2
Λ

λ3
RλVλ

2∂Rλ

∂λ

]
λ=1

. (3.24)

Now, consider the field equation for R field, where we have

(∆−m2
ρ)R = −gρρ3 − 2ΛRV 2. (3.25)

By scaling the whole equation with the scaling parameter λ, we get the scaled equation

as:

(∆u −
m2
ρ

λ2
)Rλ = −gρλρ3 − 2

ΛRλVλ
2

λ2
. (3.26)

From the first and second derivative with respect to λ and using a similar procedure

for ω−field, one can get the following equation

(∆u −
mρ

2

λ2
)
∂Rλ

∂λ
= −gρρ3 − 2Rλ

mρ
2

λ3
+ 4

Λ

λ3
Vλ

2Rλ − 4
Λ

λ3
RλVλ

∂Vλ
∂λ
− 2

Λ

λ2
Vλ

2∂Rλ

∂λ
.

(3.27)

Substituting the relation of Eq.( 3.9) in ( 3.27) at λ = 1, we get,∫
drgρ

1

2
ρ3
∂Rλ

∂λ

∣∣∣∣
λ=1

=

∫
dr

[
1

2λ
gρρ3Rλ +

Rλ
2mρ

2

λ4
+ 2

Λ

λ4
Rλ

2Vλ
∂Vλ
∂λ
− 2

Λ

λ4
Vλ

2Rλ
2

]
λ=1

.

(3.28)

With the help of this expression, Eq.(3.19) becomes[
∂

∂λ

∫
(dλr)

Hλ (r)

λ3

]
λ=1

=

∫
dλr

[
Ẽ − m̃∗ρs −

1

2
gsρ̃s

eff ∂φλ
∂λ

+
1

2
gsφλ

∂ρ̃s
eff

∂λ

− b

λ4
φλ

3 − 3

4

c

λ4
φλ

4 + gρρ3
1

2λ
Rλ + gvρ

1

2λ
Vλ + eρp

1

2

∂Aλ
∂λ
− avλ

3

λ4
+
mv

2Vλ
2

λ4

+
mρ

2

λ4
Rλ

2 − Λ

λ4
Rλ

2Vλ
2

]
λ=1

. (3.29)
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Again, differentiating w.r.t λ and substituting λ = 1, the restoring force Cm

becomes:

Cm =

[
∂2

∂λ2

∫
dλr
Hλ (r)

λ3

]
λ=1

=

∫
dλr

[
− m̃∗∂ρ̃s

∂λ
− 1

2
gsρ̃s

eff ∂
2φλ
∂λ2

+
1

2
gsφλ

∂2ρ̃s
eff

∂λ2

+4
b

λ5
φλ

3 + 3
c

λ5
φλ

4 − 3

λ4

(
bφλ

2 + cφλ
3
) ∂φλ
∂λ

+
1

2λ
gρρ3

∂Rλ

∂λ
+

2

λ4
mρ

2Rλ
∂Rλ

∂λ

− 2Λ

λ4

(
RλVλ

2∂Rλ

∂λ

)
+Rλ

2Vλ
∂Vλ
∂λ

+
4Λ

λ5
Rλ

2Vλ
2 +

1

2
eρp

∂2Aλ
∂λ2

− gvVλρ

2λ2

+

[
gvρ

2λ
− 4aVλ

3

λ4
+ 2

mv
2Vλ
λ4

]
∂Vλ
∂λ

+
4aVλ

4

λ5
− 4

mv
2V 2

λ

λ5
− 4

mρ
2R2

λ

λ5

]
λ=1

. (3.30)

The ω−meson field equation (3.24) at λ = 1 can be written as∫
dr

[
1

2
gvρ− 4aV 3

]
∂Vλ
∂λ

∣∣∣∣
λ=1

=

∫
dr

[
gvV ρ

2
− 4aV 3 +mv

2V 2 − 2ΛR2V 2 + 2ΛRV 2∂Rλ

∂λ

]
λ=1

.

(3.31)

Now consider the scaled equation for the sigma field,(
4u −

ms
2

λ2

)
φλ = −λgsρ̃seff . (3.32)

The double derivative of Eq.(3.32) with respect to λ is given by:(
4u −

ms
2

λ2

)
∂2φλ
∂λ2

= −2gs
∂ρ̃s

eff

∂λ
− 2

ms
2

λ3

∂φλ
∂λ

+
6ms

2

λ4
φλ − gsλ

∂2ρ̃eff

∂λ2
. (3.33)

Multiplying by φλ and then integrating both sides, we get

∫
dr

[
− 1

2
gsρ̃s

eff ∂
2φλ
∂λ2

]
+

1

2
gsφλρ̃s

eff ∂
2ρ̃s

eff

∂λ2
=

∫
dr

[
− gsφ

∂ρ̃s
eff

∂λ
− 2ms

2φ
∂φλ
∂λ

+ 3ms
2φ2

]
,

(3.34)

where

−gs
∂ρ̃eff

∂λ

∣∣∣∣
λ=1

= −gsφ
∂ρ̃s
∂λ

∣∣∣∣
λ=1

− 3(bφ2 + cφ3)− 2
(
2bφ+ 3cφ2

) ∂φλ
∂λ

∣∣∣∣
λ=1

. (3.35)

Substituting the value of the scaled parameter λ = 1, the restoring force Cm can

be written as:
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Cm =

[
∂2

∂λ2

∫
dλr
Hλ (r)

λ3

]
λ=1

=

∫
dr

[
− m̃∗∂ρ̃s

∂λ

∣∣∣∣
λ=1

− 1

2
gsρ̃s

eff ∂
2φλ
∂λ2

∣∣∣∣
λ=1

+
1

2
gsφ

∂2ρ̃s
eff

∂λ2

∣∣∣∣
λ=1

+ 4bφ3 + 3cφ4

− 3
(
bφ2 + cφ3

) ∂φλ
∂λ

∣∣∣∣
λ=1

+
1

2
gρρ3

∂Rλ

∂λ

∣∣∣∣
λ=1

+ 2mρ
2R
∂Rλ

∂λ

∣∣∣∣
λ=1

− 2Λ

λ4
(RV 2∂Vλ

∂λ

∣∣∣∣
λ=1

+R2V
∂Rλ

∂λ

∣∣∣∣
λ=1

) + 4ΛR2V 2 +
1

2
eρp

∂2Aλ
∂λ2

∣∣∣∣
λ=1

− gvV ρ

2
+
(gvρ

2
− 4aV 3 + 2mv

2V
)

∂Vλ
∂λ

∣∣∣∣
λ=1

+ 4aV − 4mv
2V 2 − 4mρ

2R2

]
. (3.36)

We put ∂2A
∂λ2

= 0, as the photon has zero mass. Finally, substituting Eqs. (3.28),(3.31

), (3.34), (3.35) into Eq. (3.36) and rearranging the terms, one can get the following

expression for the restoring force

Cm =

∫
dr

[
−m∂ρ̃s

∂λ
+ 3

(
ms

2φ2 +
1

3
bφ3 −mv

2V 2 −mρ
2R2

)
− (2ms

2φ+ bφ2)
∂φλ
∂λ

+ 2mv
2V

∂Vλ
∂λ

+ 2mρ
2R
∂Rλ

∂λ

]
λ=1

. (3.37)

The mass parameter Bm of the monopole vibration can be expressed as the double

derivative of the scaled energy with the collective velocity λ̇ as

Bm =

∫
drU(r)2H, (3.38)

where U(r) is the displacement field, which can be determined from the relation

between collective velocity λ̇ and velocity of the moving frame,

U(r) =
1

ρ(r)r2

∫
dr′ρT(r′)r′

2
, (3.39)

where ρT is the transition density defined as

ρT (r) =
∂ρλ(r)

∂λ

∣∣∣∣
λ=1

= 3ρ(r) + r
∂ρ(r)

∂r
. (3.40)

Taking U(r) = r the relativistic mass parameter can be written as:

Bm =

∫
drr2H. (3.41)

Similarly in the non-relativistic limit, the mass parameter is defined as

Bm
nr =

∫
drr2mρ. (3.42)
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The scaled energy in terms of the moments of the strength function can be written as

Em
s =

√
m3

m1
. The expressions for m3 and m1 can be found in [76]. In simple classical

approximation the scaling excitation energy can be written Es
x =

√
Cm
BM

.

Along with the scaling calculation, the monopole vibration can also be studied

with a constrained approach [76, 103–106]. In the constrained method, one has to

minimize the constrained energy functional:∫
dr
[
H− ηr2ρ

]
= E(η)− η

∫
drr2ρ, (3.43)

with respect to the variation of densities and meson fields. Here η is the constrained

parameter. The densities, field and energy obtained from the solution of the above

constrained equation ( Eq. 3.43 ) are the function of parameter η. The rms radius

of the nucleus is given in terms of the parameter η:

Rη =

[
1

A

∫
drr2ρ

]1/2

, (3.44)

where A is the mass number of the nucleus. We are assuming that the parameter η

is very small, so E(η) can be expanded around η=0, which corresponds to the ground

state energy of the nucleus and R0 gives the rms radius of the nucleus in ground state.

The expansion of E(η) around η = 0 is given by:

E(η) = E(0) +R0
∂E(η)

∂η

∣∣∣∣
η=0

+R0
∂E(η)

∂η

∣∣∣∣
η=0

. (3.45)

The second order derivative of the expansion gives the effective incompressibility of

finite nucleus and it is defined as :

KA
c =

1

A
R0
∂2E(η)

∂η2

∣∣∣∣
η=0

. (3.46)

We can calculate the incompressibility using this simple formula. In classical approx-

imation the average constraint excitation energy is given by : Ex
c =

√
AKA

c

Bcm
, where

Bc
m is the mass parameter. The expression for the mass parameter both in relativistic

and non-relativistic are given in Eq. ( 3.41) and Eq. ( 3.42), respectively. Again, in

the sum rule approach constrained excitation energy can be expressed as the ratio of

moments of strength distribution. Constrained energy is defined as : Ec
x =

√
m1

m−1
,

where m1 and m−1 are the energy weighted and inverse energy weighted moments,
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respectively. m−1 is interpreted as the polarizability of the system ie. nothing but

the measure of energy changed due to excitation of the nucleus. Expression for the

m−1 is given by :

m−1 = −A
2

∂Rη
2

∂η

∣∣∣∣
η=0

=
1

2

∂2E(η)

∂η2

∣∣∣∣
η=0

. (3.47)

One can estimate m−1 by calculating first derivative of Rη
2 with respect to η or second

derivative of E(η) with respect to the η. We have calculated m−1 using both 5-point

and 3-point formula. m1 is proportional to the mass parameter, which can expressed

as : m1 = 2
m
A < r2 >= 2

m2BM
nr. From the inequality relations satisfied by the

moments of the strength distribution, we get m1

m−1
≤ m3

m1
. This implies that the scaling

energy gives the upper limit of the resonance, while the constrained energy gives the

lower limit of the resonance spectra. The resonance width [76,107] is defined as:

Σ =

√
(Em

s)2 − (Em
c)2 =

√
(
m3

m1

)2 − (
m1

m−1

)2. (3.48)

3.3 Results and Discussions

3.3.1 Force parameters of relativistic mean field formalism

First of all, we examined the predictive power of various parameter sets. In this con-

text we selected NL1 as a successful past set, and a few recently used forces like NL3,

NL3∗, and FSUGold with varying incompressibilities as shown in Table 4.1 (lower

part of the table). The ground state observable obtained by these forces are depicted

in Table 4.1. Along with the relativistic extended Thomas-Fermi (RETF) results, the

relativistic Hartree values are also compared with the experimental data [108, 109].

The calculated RMF results obtained by all the force parameters considered in the

present thesis are very close to the experimental data [108, 109]. A detailed anal-

ysis of the binding energy and charge radius clearly show that NL1 and FSUGold

have superior predictive power for 16O in RMF level. The advantage of FSUGold

decreases with increased mass number of the nucleus. Although the predictive power

of the relatively old NL1 set is very good for binding energy, it has a large asymmetry

coefficient J , which may mislead the prediction in unknown territories, like the neu-

tron drip-line or super heavy regions. The RETF prediction of binding energy and
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Table 3.1: The calculated binding BE and charge radius rch obtained from relativistic

extended Thomas-Fermi (RETF) approximation is compared with relativistic Hartree

(with various parameter sets) and experimental results [108, 109].The RETF results

are given in the parentheses. The empirical values [19, 110] of nuclear matter satu-

ration density ρ0, binding energy per nucleon BE/A, incompressibility modulus K,

asymmetry parameter J , and ratio of effective mass to the nucleon mass M∗/M are

given in the lower part of the table. Energies are in MeV and radii are in fm.

Nucleus Set BE (calc.) BE (Expt.) rch (calc.) rch (Expt.)
16O NL1 127.2(118.7) 127.6 2.772(2.636) 2.699

NL3 128.7(120.8) 2.718(2.591)

NL3∗ 128.1(119.5) 2.724(2.603)

FSUGold 127.4(117.8) 2.674(2.572)
40Ca NL1 342.3(344.783) 342.0 3.501(3.371) 3.478

NL3 341.6(346.2) 3.470(3.343)

NL3∗ 341.5(344.2) 3.470(3.349)

FSUGold 340.8(342.2) 3.429(3.327)
48Ca NL1 412.7(419.5) 416.0 3.501(3.445) 3.477

NL3 414.6(422.6) 3.472(3.426)

NL3∗ 413.5(420.3) 3.469(3.429)

FSUGold 411.2(418.0) 3.456(3.418)
90Zr NL1 784.3(801.1) 783.9 4.284(4.232) 4.269

NL3 781.4(801.7) 4.273(4.219)

NL3∗ 781.6(798.7) 4.267(4.219)

FSUGold 778.8(797.3) 4.257(4.214)
116Sn NL1 989.5(1013.7) 988.7 4.625(4.583) 4.625

NL3 985.4(1014.6) 4.617(4.571)

NL3∗ 986.4(1011.0) 4.609(4.569)

FSUGold 984.4(1010.7) 4.611(4.569)
208Pb NL1 1638.1(1653.7) 1636.4 5.536(5.564) 5.501

NL3 1636.9(1661.2) 5.522(5.541)

NL3∗ 1636.5(1655.2) 5.512(5.538)

FSUGold 1636.2(1661.4) 5.532(5.541)

Set NL1 NL3 NL3∗ FSUGold empirical

ρ0 0.154 0.150 0.148 0.148 0.17

E/A 16.43 16.31 16.30 16.30 15.68

K 211.7 271.76 258.27 230.0 210± 30

J 43.6 38.68 37.4 32.597 32± 2

M∗/M 0.57 0.594 0.60 0.61 0.6
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charge radius (numbers in the parenthesis) is very poor with the experimental data as

compared to the RMF calculations. However, for relatively heavy masses, the RETF

results can be used within acceptable error. In general, taking into account the bind-

ing energy BE and root mean square charge radius rch, one may prefer to use either

of the NL3 or NL3∗ parametrization. Before accepting NL3 or NL3∗ as the working

parameter set for our further calculations, in Table 4.2, we have given the excitation

energy of some selective nuclei both in light and super heavy regions with various

parameter sets for some further verification. The isoscalar giant monopole energies

Es and Ec are evaluated using both scaling and constraint calculations, respectively.

The forces like NL1, NL3, Nl3∗ and FSUGold have a wide range of incompressibility

K∞ starting from 211.7 to 271.7 MeV (see Table 4.1). Because of the large variation

in K∞ of these sets, we expect various values of Es and Ec with different parametriza-

tion. From Table 4.2, it is noticed that the calculated results for 16O and 40Ca differ

substantially from the data. Again this deviation of calculated results continues de-

creasing with increasing mass number, irrespective of the parameter set. This may

be due to the use of semi-classical approximations like Thomas-Fermi and extended

Thomas-Fermi. In these approaches, quantal corrections are averaged out. When we

are going from light to the heavy and then super heavy nuclei, the surface correction

decreases appreciably. Consequently, the contribution to monopole excitation energy

decreases with mass number A. In column 11, 12 and 13 of Table 4.2, the differences

in Ex obtained from various parameter sets are given, namely, 41 is the difference

in monopole excitation energy obtained by NL3 and NL3∗. Similarly, 42 and 43

are the ISGMR difference with (NL3∗, FSUGold) and (NL3, FSUGold), respectively.

The values of 41, 42 or 43 go on decreasing with increasing mass number of the

nucleus without depending on the parameter used. In other words, we may reach the

same conclusion in the super heavy region irrespective of the parameter set. However,

it is always better to use a successful parameter set to explore an unknown territory.

In this context, it is safer to choose the NL3 force for our further exploration. The

second observation is also apparent from the Table. It is commonly believed that

mostly the incompressibility of the force parameter affects the excitation energy of

ISGMR of the nucleus. That means, forces having different K∞ have different excita-

tion energy for the same nucleus. For example, 208Pb has excitation energy 14.58 and
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Table 3.2: The results of isoscalar giant monopole resonance with various parameter

sets for some known nuclei are compared with recent experimental data [111]. The

calculations are done with relativistic extended Thomas-Fermi (RETF) approxima-

tion using both scaling and constrained schemes. The values of ∆1, ∆2, and ∆3 are

obtained by subtracting the results of (NL3, NL3∗), (NL3∗, FSUGold), and (NL3,

FSUGold), respectively. The monopole excitation energies with scaling Es and con-

strained Ec are in MeV.

Nucleus NL1 NL3 NL3∗ FSUGold Expt. ∆1 ∆2 ∆3

Es Ec Es Ec Es Ec Es Ec

16O 23.31 21.75 27.83 25.97 26.86 25.20 26.97 25.17 21.13±0.49 0.97 0.11 0.86

40Ca 20.61 19.77 24.01 23.16 23.32 22.48 22.98 22.30 19.20±0.40 0.69 0.43 1.03

48Ca 19.51 18.67 22.69 21.73 22.01 21.11 21.72 20.88 19.90±0.20 0.68 0.29 0.97

90Zr 16.91 16.41 19.53 19.03 18.97 18.50 18.60 18.21 17.89± 0.20 0.56 0.37 0.97

110Sn 15.97 15.50 18.42 17.94 17.90 17.44 17.52 17.13 0.52 0.38 0.90

112Sn 15.87 15.39 18.29 17.81 17.78 17.32 17.42 17.02 16.1±0.10 0.51 0.36 0.86

114Sn 15.76 15.28 18.16 17.67 17.65 17.18 17.31 16.90 15.9±0.10 0.51 0.34 0.85

116Sn 15.63 15.19 18.02 17.52 17.51 17.04 17.19 16.77 15.80±0.10 0.51 0.32 0.83

118Sn 15.51 15.03 17.87 17.36 17.37 16.89 17.07 16.63 15.6±0.10 0.50 0.30 0.80

120Sn 15.38 14.90 17.72 17.20 17.22 16.73 16.94 16.49 15.4±0.20 0.50 0.28 0.78

122Sn 15.24 14.76 17.56 17.03 17.07 16.57 16.81 16.34 15.0±0.20 0.49 0.24 0.77

124Sn 15.11 14.61 17.40 16.85 16.91 16.40 16.67 16.19 14.80±0.20 0.48 0.24 0.72

208Pb 12.69 12.11 14.58 13.91 14.18 13.55 14.04 13.44 14.17±0.28 0.40 0.14 0.54

286114 11.32 10.60 13.00 12.14 12.64 11.83 12.55 11.79 0.36 0.09 0.45

298114 11.05 10.31 12.68 11.80 12.33 11.50 12.29 11.53 0.35 0.04 0.37

292120 11.28 10.53 12.96 12.07 12.60 11.76 12.48 11.69 0.36 0.12 0.27

304120 11.04 10.28 12.67 11.77 12.33 11.47 12.25 11.47 0.34 0.08 0.42
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Table 3.3: The predicted proton and neutron drip-lines PDL and NDL for O, Ca, Ni,

Sn, Pb, Z=114, and Z=120 in relativistic mean field formalism (RMF) with various

parameter sets are compared with experimental (wherever available) and Finite Range

Droplet Model (FRDM) predictions [112].

Nucleus RMF FRDM Expt. [108]

NL1 NL3 NL3∗ FSUGold

PDL NDL PDL NDL PDL NDL PDL NDL PDL NDL PDL NDL

O 12 29 13 30 12 30 12 27 12 26 12 28#

Ca 34 69 33 71 34 71 34 66 30 73 35# 58 #

Ni 49 94 50 98 50 98 51 94 46 99 48 79

Sn 99 165 100 172 100 172 99 1 64 94 169 99# 138#

Pb 178 275 180 281 180 280 179 269 175 273 178 220#

114 267 375 271 392 274 390 271 376 269 339 285# 289#

120 285 376 288 414 288 410 289 396 287 339 - -

14.04 MeV with NL3 and FSUGold, respectively. Although, the ground state binding

energy of 208Pb, either with Hartree (RMF) or REFT approximation matches well

with NL3 and FSUGold parameter sets (see Table 4.1), their ISGMR differ by 0.54

MeV, which is quite substantial.The reason behind this difference in Es with various

parameter sets is not yet clear. As we have stated, the incompressibility K∞ is not

the only controlling key to tune the monopole excitation energy. A lot of effort has

been devoted to show that the ISGMR excitation energy can be altered by modifying

other variables of the force parameter like effective mass M∗ and the symmetry en-

ergy coefficient a4 [113]. Thus, the relation EM =
√

KA
M<r2>

needs modification with

the inclusion of some other variables including the nuclear matter incompressibility,

where < r2 > is the rms matter radius and M the mass of the nucleon. Actually, it is

a long running debate and not yet clear, and the factors responsible for the ISGMR

are invite more work in this direction.
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3.3.2 Proton and neutron drip-lines

In Table 4.3 we have shown the proton and neutron drip-lines (PDL and NDL) for

various parameter sets. The neutron (or proton) drip-line of an isotope is defined when

the neutron (or proton) separation energy Sn (or Sp) ≤ 0, where Sn = BE(N,Z) −
BE(N−1, Z) or Sp = BE(N,Z)−BE(N,Z−1) with BE(N,Z) is the binding energy

of a nucleus with N neutron and Z proton. From the table, it is seen that all the

interactions predict almost similar proton and neutron drip-lines. If one compares the

drip-lines of NL3 and NL3∗, then their predictions are almost identical, explicitly for

lighter mass nuclei. Thus, the location of the drip-line with various forces does not

depend on its nuclear matter incompressibility or asymmetry coefficient. For example,

the asymmetry coefficient J = 43.6 MeV and K∞ = 211.7 MeV for the NL1 set and

these are 38.68 and 271.76 MeV in the NL3 parametrization. The corresponding

proton drip-lines for O isotopes are 12 and 13, and the neutron drip-lines are 29 and

30, respectively. Similar effects are noticed for other isotopes of the considered nuclei

(see Table 4.3).

3.3.3 Isoscalar giant monopole resonance

It is well understood that the ISGMR has a direct relation to the incompressibility

of nuclear matter, which decides the softness or stiffness of an equation of state [19].

This EOS also estimates the structure of neutron stars, such as mass and radius.

Thus, the ISGMR is an intrinsic property of finite nuclei as well as nuclear equations

of state and needed to be determined to shine some light into nuclear properties. The

excitation energies of ISGMR for O, Ca, Ni, Sn, Pb, Z=114, and Z=120 isotopic series

are given in Figs. 3.1 and 3.2. The results are calculated by using both constrained

and scaling approaches in the isotopic chain, starting from proton to neutron drip-

lines. We use the relation Es
m =

√
AKs

A

Bm
with the mass parameter Bm =

∫
drr2H. The

figure shows that excitation energy obtained from scaling calculation is always greater

than the constrained value. The difference between the monopole excitation of scaling

and constrained calculations, generally gives the resonance width Σ = 1
2

√
E2

3 − E2
1 ,

with E3 =
√

m3

m1
and E1 =

√
m1

m1
in terms of the ratios of the integral moments

mk =
∫∞

0
dωωKS(ω) of the random phase approximation (RPA) strength function
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O, Ca, Ni, and Sn isotopes from proton to neutron drip-lines as a function of mass

number.
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S(ω) [95]. It is also equivalent to m1 = 2
m
A < r2 > and from dielectric theorem, we

have m−1 = −1
2
A(

∂R2
η

∂η
)

∣∣∣∣
η=0

.

Now consider Fig. 3.1, where the excitation energies of giant isoscalar monopole

resonance Ex for lighter mass nuclei are plotted. For Z=8 the excitation energy

decreases towards both the proton (A=12, Ex
s= 22.51 MeV) and neutron drip-lines

(A=26, Ex
s =21.22 MeV). Excitation energy has a maximum value near N=Z (here

it is a double closed isotope with Z=8, N=8, Ex
s= 27.83 MeV). Similar trend is

followed in the isotopic chain of Ca with Z=20. We find the maximum excitation

energy at 40Ca (Ex
s = 24.07 MeV), whereas Ex

s is found to be smaller both in the

proton (A=34, Ex = 23.31 MeV) and neutron drip-lines (A=71, Ex
s = 16.80 MeV).

However, the trends are different for isotopic chains of higher Z like Z=50, 82, 114, and

120. In these series of nuclei, the excitation energy monotonically decreases starting

from proton drip-line to neutron drip-line. For example, 180Pb and 280Pb are the

proton and neutron drip nuclei having excitation energy Ex = 15.63 and Ex = 11.45

MeV, respectively. Fig. 3.2 shows clearly the monotonic decrease of excitation energy

for super heavy nuclei. This discrepancy between super heavy and light nuclei may be

due to the Coulomb interaction and the large value of isospin difference. For lighter

values of Z, the proton drip-line occurs at a combination of proton and neutron

where the neutron number is less than or near to the proton number. But for higher

Z nuclei, the proton drip-line is exhibited at a larger isospin. As the excitation energy

of a nucleus is a collective property, it varies smoothly with its mass number, which is

also reflected in the figures. Consider the isotopic chain of Z=50: the drip-line nucleus

(A=100) has excitation energy 18.84 MeV and the neutron drip nucleus A=171 has

Ex = 13.39 MeV. The difference in excitation energy between these two isotopes is

5.32 MeV. This difference in proton and neutron drip nuclei is 4.31 MeV for Z=82 and

is 2.37 MeV in Z=114. In summary, for higher Z nuclei, the variation of excitation

energy in an isotopic chain is less than for a lighter Z nucleus. Again, by comparing

with the empirical formula of Ex = CA−1/3, our predictions show similar variation

throughout the isotopic chains. Empirically, the value of C is found to be 80 [114].

However, if we select C = 70− 80 for lighter mass isotopes and C = 80− 86 for the

super heavy region, then that fits well with our results, which are slightly different

than C=80 obtained by fitting the data for stable nuclei [114].
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Table 3.4: The calculated excitation energies in the RETF formalism with FSUGold

parameter set are compared with other theoretical formalisms and experimental data

[75,115,116].

NucleusFormalism (parameter)Excitation energy

16O RPA(FSUGold) 23.09

CRMF(FSUGold) 22.89

RETF(FSUGold) 25.17

Expt. 21.13±0.49

40Ca RPA(FSUGold) 20.67

CRMF(FSUGold) 20.67

RETF(FSUGold) 22.30

Expt. 19.18±0.37

90Zr RPA(FSUGold) 17.44

CRMF(FSUGold) 17.70

RETF(FSUGold) 18.21

Expt. 17.89±0.20

208Pb RPA(FSUGold) 13.76

CRMF(FSUGold) 13.50

RETF(FSUGold) 13.44

Pairing+MEM 14.0

Expt. 13.5±0.1

204Pb RETF(FSUGold) 13.6

Pairing+MEM 13.4

Expt. 13.7±0.1

206Pb RETF(FSUGold) 13.51

Pairing+ MEM 13.4

Expt. 13.6±0.1
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In table 3.4, we have shown the results obtained in the RETF formalism with the

FSUGold parameter set and compared with other predictions like the random phase

approximation (RPA) and constrained relativistic mean filed (CRMF) [117]. The ex-

perimental data are also given, where ever available, for comparison. A comparative

study of these results shows that for light nuclei such as 16O, the RPA and CRMF

give better results than the semi-classical RETF approximation. For example, the

difference between the excitation energies of 16O in the RPA and RETF formalism is

∼ 2 MeV and it is only 0.1 MeV for 208Pb. This implies, for heavy nuclei, that the

RETF gives comparable results with RPA and CRMF. On the other hand, the RETF

results obtained by constrained calculation are within the experimental error bar. In

RETF, the quantal correction is averaged out. Thus, the RETF result of monopole

excitation energy differs from the RPA prediction for light nuclei, where quantal cor-

rection has a significant role in structural properties. In heavy nuclei, the number of

nucleons are larger, so the quantal and semi-classical approaches are almost similar.

This could be a reason for the accuracy of application of semi-classical calculation to

heavy mass nuclei. We have also compared our results with Pairing+MEM (mutually

enhanced magicity) [118] and experimental data [119] for Pb isotopes. The Pair-

ing+MEM theory says that a magic nucleus like 208Pb has a little higher excitation

energy than its neighboring isotopes. But recent experimental data are not in favor

of the manifestation of such an effect. Our theoretical results also come to the same

conclusion.

There is no direct way to calculate Σ in the scaling or constrained method as in

RPA. If we compare the excitation energy obtained from scaling calculations with the

non-relativistic RPA result, then it is evident that the scaling gives the upper limit of

the energy response function. On the other hand, the constrained calculation predicts

the lower limit [76]. As a result, the resonance width Σ is obtained from the root mean

square difference of Es
x and Ec

x. We have plotted Σ for the light nuclei in Fig. 3.3

and for super heavy in Fig. 3.4. For lighter nuclei, Σ is larger both in the proton and

neutron drip-lines. As one proceeds from proton to neutron drip-line, the value of Σ

decreases up to a zero isospin combination (N=Z or double closed) and then increases.

For example, Σ= 10.92, 5.0 and 8.9 MeV for 12O, 16O, and 26O, respectively. Similar

trends are also followed by the medium nuclei Z=20, 28, and 50 isotopic chains. This
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conclusion can be drawn from the results of the excitation energy also (see Figs. 3.1

and 3.2), i.e., the difference between the scaling and constrained excitation energies

are more in proton and neutron drip-lines as compared to the Z=N region. The value

of Σ in an isotopic chain depends very much on the proton number. It is clear from the

isotopic chains of Σ for O, Ca, Ni, Sn, Pb, and Z=114, 120. All of the considered series

have their own behavior and show various trends. Generally, for lighter elements, it

decreases initially to some extent and again increases monotonically. On the other

hand, for heavier nuclei like Pb, Z=114, or Z=120 this characteristic of Σ differs with

different mass number and can be seen in Fig. 3.4.

3.3.4 Incompressibility of finite nuclei

The nuclear matter incompressibilityK∞ is a key quantity in the study of the equation

of state. It is the second derivative of the energy functional with respect to density

at the saturation and is defined as K∞ = 9ρ0
∂2E
∂ρ2
|ρ=ρ0 , which has a fixed value for a

particular force parametrization. It is well understood that a largerK∞ of a parameter
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set gives a stiff EOS and produces a massive neutron star. It has also a direct

relation to the asymmetry energy coefficient J of the parameter set [48]. In the limit

A approaches infinitely large, the finite nucleus can be approximated to an infinite

nuclear matter system (N=Z for symmetry and N 6= Z for asymmetry matter). Thus,

it is instructive to study the nature of the incompressibility of a finite nucleus KA in

the isotopic chain of super heavy nuclei. Here, we calculate the KA as a function of

mass number for the light nuclei considered in the present study (O, Ca, Ni, Sn) and

then extend the calculations to Pb, Z=114 and Z=120 in the super heavy region. Our

calculated results are shown in Figs. 3.5 and 3.6. The incompressibility of finite nuclei

follows the same trend as the excitation energy. For light nuclei, the incompressibility

has a small value for the proton and neutron drip-lines, whereas it is maximum in

the neighborhood of double closed combinations.

It can be easily understood from Fig. 3.5 that, at some particular proton to neu-

tron combination, the KA is high, i.e., at this combination of N and Z, the nucleus

is more incompressible. In other words, the larger the incompressibility of a nucleus,

the more compressible it will be. Here, it is worthy to mention that the nuclear
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system becomes less compressible near both the neutron and proton drip-lines. This

is because of the instability originating from the repulsive part of the nuclear force,

revealing a large neutron-proton ratio, which progressively increases with the neu-

tron/proton number in the isotope without much affecting the density [120]. Similar

to the excitation energy, it is found that KA obtained by the scaling method is always

higher than the constrained calculation. The decrease in incompressibility near the

drip-line regions is more prominent in constrained calculation than the scaling results.

From leptodermous expansion [19], we can get some basic ideas about this decrease

in the vicinity of drip-lines. The expression for finite nucleus incompressibility can

be written as

KA = K∞ +KSurA
− 1

3 +KτI
2 +KCoulZ

2A−
4
3 , (3.49)

where I = N−Z
A

. The coefficient Kτ is negative, so incompressibility decreases with

N − Z. For the Ca chain, the incompressibilities obtained by scaling and constrained

calculations are compared with the Hartree-Fock plus RPA results [19] in Fig. 3.5.

From Fig. 3.5, one can see that KA evaluated by the semi-classical approximation

deviates from RPA results for lighter isotopes, contrary to the excellent matching for

the heavier Ca nuclei. This is because of the exclusion of the quantal correction in the

semi-classical formalism. For higher mass nuclei, this correction becomes negligible

and compares to the RPA predictions. This result is depicted in Fig. 3.6 for Pb and

super heavy chain of nuclei. Here the results show completely different trends than

for the lighter series. The incompressibility has a higher value in the vicinity of the

proton drip-line and decreases monotonically towards the neutron drip-line. Because,

for high Z-series, the proton drip-line appears at a greater value of N in contrast to

the lighter mass region. Again, the incompressibility decreases with neutron number

from the proton to neutron drip-lines. Finally, we would like to see the trend of

KA with nuclear matter incompressibility for various force parameters and also with

the size of a nucleus which can reach the infinite nuclear matter limit. For this we

choose 286,298114, 292,304120, and 40Ca as the selected candidates as shown in Fig.

3.7. Although, the super heavy nuclei approach the nuclear matter limit, we can not

reproduce the K∞ from KA. This may be due to the asymmetry needed to form a

bound nucleus, which is the reason for the deviation. That means the asymmetry
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I of KA and K∞ differs significantly (where I = N−Z
N+Z

), which is the main source of

deviation of KA from K∞. Also, this deviation arises due to the surface contribution

of the finite nuclei. For a quantitative estimation, we have calculated the Ks
A for

different force parameters having various K∞ at saturation. We find almost a linear

variation of Ks
A with K∞ for the considered nuclei as shown in Fig. 3.7. For Ca

isotopes also we find variation similar in nature, but with smaller KA than the super

heavy nuclei.

3.4 Application of scaling and constrained formal-

ism to Sn isotopes

In this part of the chapter, we applied the scaling and constrained formalism to anal-

yse the anamolous nature of Sn Isotopes. In the previous section, we have discussed

the excitation energy and incompressibility of super heavy and drip line nuclei. The

recent experiment on the isotopic chain of Sn isotopes indicates the mismatch be-

tween the theoretical prediction and the experimental data of the excitation energy

of isoscalar giant monopole resonance energy. This problem is addressed in the name

of ” why the tin nucleus is so floppy ?”. So theoretical physicists are now more

interested in the medium heavy region (A∼100). In this section the excitation en-

ergy and the incompressibility isotopes of Cd and Sn nuclei are discussed, within

the framework of relativistic Thomas-Fermi and relativistic extended Thomas-Fermi

approximations. A large number of non-linear relativistic force parameters are used

in the calculations that a parameter set is capable of reproducing the experimental

monopole energy of Sn isotopes, when its nuclear matter incompressibility lies within

210− 230 MeV, however, it fails to reproduce the GMR energy of other nuclei. That

means, simultaneously a parameter set can not reproduce the GMR values of Sn and

other nuclei.

Incompressibility of nuclear matter, also knows as compression modulus K∞ has

a special interest in nuclear and astro-nuclear physics, because of its fundamental

role in guiding the equation of state (EOS) of nuclear matter. The K∞ can not be

measured by any experimental technique directly, rather it depends indirectly on the
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experimental measurement of isoscalar giant monopole resonance (ISGMR) for its

confirmation [19]. This fact enriches the demand of correct measurement of excita-

tion energy of ISGMR. The relativistic parameter with random phase approximation

(RPA) constraints the range of the incompressibility 270 ± 10 MeV [49, 121] for nu-

clear matter. Similarly, the non-relativistic formalism with Hartree-Fock (HF) plus

RPA allows the acceptable range of incompressibility 210 − 220 MeV, which is less

than the relativistic one. It is believed that the part of this discrepancy in the accept-

able range of compressional modulus comes from the diverse behavior of the density

dependence of symmetry energy in relativistic and non-relativistic formalism [122].

Recently, both the formalism come to a general agreement on the value of nuclear

matter incompressibility i.e., K∞ = 240± 10 MeV [90,123,124]. But the new exper-

iment on Sn isotopic series i.e., 112Sn−124Sn rises the question ”why Tin is so fluffy

?” [125–127]. This question indicates toward the correct theoretical investigation of

incompressibility. Thus, it is worthy to investigate the incompressibility in various

theoretical formalisms. Most of the relativistic and non-relativistic models reproduce

the strength distribution very well for medium and heavy nuclei, like 90Zr and 208Pb,

respectively. But at the same time it overestimates the excitation energy of Sn around

1 MeV. This low value of excitation energy demands lower value of nuclear matter

incompressibility. Till date, lots of effort have been devoted to solve this problem like

inclusion of pairing effect [128–134], mutually enhanced magicity (MEM) etc. [118].

But the pairing effect reduces the theoretical excitation energy only by 150 KeV in

Sn isotopic series, which may not be sufficient to overcome the puzzle. Similarly, new

experimental data are not in favor of MEM effect [119]. Measurement on excitation

energy of 204,206,208Pb shows that the MEM effect should rule out in manifestation of

stiffness of the Sn isotopes. Here, we use the relativistic Thomas-Fermi (RTF) and

relativistic extended Thomas-Fermi (RETF) [135–139] with scaling and constraint

approaches in the frame-work of non-linear σ − ω model [99].

3.5 Analysis of Sn results

We calculate the GMR energy using both the scaling and constraint methods in

the frame-work of relativistic extended Thomas-Fermi approximation using various
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Figure 3.8: The isoscalar giant monopole excitation energy obtained by scaling

method with various parameter sets are compared with experimental data of
√

m3

m1

and
√

m1

m−1
for Cd and Sn isotopes [125, 126]. The upper and lower panels are

√
m3

m1

and
√

m1

m−1
, respectively.

parameter sets for Cd and Sn nuclei and compared with the excitation energy with

moments ratio (m3/m1)1/2 and (m1/m−1)1/2 obtained from multipole-decomposition

analysis (MDA).

The basic reason to take a number of parameter sets is that the infinite nuclear

matter incompressibility of these forces cover a wide range of values. For example, NL-

SH has incompressibility 399 MeV, while that of NL1 is 210 MeV. From MDA analysis,

we get different moments ratio, such as m3/m1, m0/m1 and m1/m−1. These ratios

are connected to scaling, centroid and constraint energies, respectively. In Fig. 3.8,

we have shown the (m3/m1)1/2 and (m1/m−1)1/2 ratio for isotopic chains of Cd and

Sn. The results are also compared with experimental data obtained from Research

Center for Nuclear Physics (RCNP) [125,126]. From the figures, it is cleared that the

experimental values lie between the results obtained from FUSG (FSUGold) and NL1
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Figure 3.9: (a) The variation of giant monopole excitation energy Ex with mass

number A for Sn isotopes, (b) the scaling monopole excitation energy within RETF

and RTF formalisms compared with the experimental moments ratio
√
m3/m1 [119],

(c) variation of the difference of giant monopole excitation energy obtained from

RETF and RTF (4E = RETF − RTF ) formalisms with various parameter sets for

Sn isotopic chain, (d) moments ratio
√
m3/m1 for Sn isotopes obtained with NL3+ΛV

is compared with NL3, QRPA(T5) and experimental data.
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Table 3.5: Moments ratio for Sn isotopes using RETF approximation with FSUGold

and NL1 sets are compared with QRPA(T6) predictions [140].

Nucleus (m3/m1)1/2(MeV) (m1/m−1)1/2(MeV)

QRPA RETF RETF Expt. QRPA RETF RETF Expt.

(T6) (FSUG) (NL1) T6) (FSUG) (NL1)

112Sn 17.3 17.42 15.86 16.7 17.0 17.2 15.39 16.1

114Sn 17.2 17.32 15.75 16.5 16.9 16.9 15.28 15.9

116Sn 17.1 17.19 15.63 16.3 16.8 16.77 15.15 15.7

118Sn 17.0 17.07 15.51 16.3 16.6 16.63 15.03 15.6

120Sn 16.9 16.94 15.38 16.2 16.5 16.44 14.89 15.5

122Sn 16.8 16.81 15.24 15.9 16.4 16.34 14.75 15.2

124Sn 16.7 16.67 15.1 15.8 16.2 16.19 14.6 15.1

force parameters. If one compares the experimental and theoretical results for 208Pb,

the FSUG set gives better results among all. For example, the experimental data and

theoretical result for monopole energies are 14.17±0.1 and 14.04 MeV, respectively.

From this, one could conclude that the infinite nuclear matter incompressibility lies

nearer to that of FSUG (230.28 MeV) parametrization. But experimental result on

ISGMR in RCNP shows that the predictive power of FUSG is not good enough for

the excitation energy of Sn isotopes. This observation is not only confined to RCNP

data, but also persists in the more sophisticated RPA. In Table 3.5, we have given

the results for QRPA(T6), RETF(FSUG) and RETF(NL1). The experimental data

are also given to compare all these theoretical results.

The infinite nuclear matter incompressibility K∞ with T6 parameter set [140] is

236 MeV and that of FSUG is 230.28 MeV. The similarity in incompressibility (small

difference of 6 MeV in K∞) may be a reason for their prediction in equal value of

GMR. The table shows that, there is only 0.1 MeV difference in QRPA(T6) and

RETF(FSUG) results in the GMR values for 112Sn−116Sn isotopes, but the results

exactly match for the 118Sn−124Sn isotopes. This implies that for relatively higher

mass nuclei, both the QRPA(T6) and RETF(FSUG) results are almost similar. If

some one consider the experimental values of Sn isotopic series, then QRPA(T5) gives
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Table 3.6: Moments ratio
√
m1/m−1 for Pb isotopes within RETF is compared with

pairing+ MEM results and experimental data.

Nuclear Mass (m1/m−1)1/2 (MeV) Σ(MeV)

pairing+MEM our work Expt. our work Expt.

204Pb 13.4 13.6 13.7±0.1 2.02 3.3±0.2

206Pb 13.4 13.51 13.6±0.1 2.03 2.8±0.2

208Pb 14.0 13.44 13.5±0.1 2.03 3.3±0.2

better result. For example, experimental value of (m3/m1)1/2 for 112Sn is 16.7± 0.2

MeV and that for QRPA(T5) is 16.6 MeV. It is shown by V. Tselyaev et al. [140]

that the T5 parameter set with K∞ = 202 MeV, better explains the excitation energy

of Sn isotopes, but fails to predict the excitation energy of 208Pb. The experimental

data of ISGMR energies for 90Zr and 114Sn lies in between the calculated values of

T5 and T6 forces. In brief, we can say that the RPA analysis predicts the symmetric

nuclear matter incompressibility within K∞ = 202− 236 MeV and our semi-classical

calculation gives it in the range 210− 230 MeV. These two predictions almost agree

with each other in the acceptable limit.

In Table 3.6, we have displayed the data obtained from a recent experiment [119]

and compared our results. Column two of the table is also devoted to the result ob-

tained from pairing plus MEM effect [118]. The data show clearly that our formalism

(RETF) predicts the excitation energy more accurately than the result obtained by

Pairing+ MEM prediction for Pb isotopes. For example, the difference between the

pairing+MEM result and experimental observation is 0.3 MeV for 204Pb, which is

away from the experimental error. It is only 0.1 MeV (within the error bar) in RETF

calculation. This trend also follows for 206Pb and 208Pb. As it is mentioned earlier,

we have not included the pairing correlation externally, yet the result is good enough

in comparison with MEM+pairing as pairing has a marginal role for the calculation

of collective excitation. Fig. 3.5(a) shows the variation of excitation energy with mass

number A for Sn isotopes. This results can also be treated as the monopole excitation

energy Ex with proton-neutron asymmetry (I = N−Z
N+Z

). The graph shows that the

variation of monopole excitation energy Ex with both NL3 and FSUGold are follow-

ing similar pattern as experimental one with a different magnitude. In Fig. 3.5(b),
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we have compared our results obtained from RETF(NL3) and RTF(NL3) with the

experimental data for Sn isotopes. The graph shows that there is only a small dif-

ference (∼ 0.2 MeV) in scaling monopole energies obtained with RETF and RTF

calculations. Interestingly, the RETF correction is additive to the RTF result instead

of softening the excitation energy of Sn isotopes. To see the behavior of different

parametrization, we have plotted Fig. 3.5(c), where it has shown the difference of√
m3/m1 obtained with RETF and RTF results (4E = RETF − RTF ) for vari-

ous parameter sets. For all sets, except NL1, we find 4E as positive. Thus, it is a

challenging task to entangle the term which is the responsible factor to determine the

sign of RETF-RTF. Surprisingly, for most of the parameter sets, RTF is more towards

experimental data. In spite of this, one cannot says anything about the qualitative

behavior of RETF. Because, the variation of the density at the surface taken care by

the RETF formalism, which is essential. One more interesting observation is that,

when one investigate the variation of 4E in the isotopic chain of Sn, it remains al-

most constant for all the parameter sets, except FSUGold. In this context, FSUGold

behaves differently.

Variation of RETF-RTF with neutron-proton asymmetry for FSUGold set shows

some possible correlation of RETF with the symmetry energy, which is absent in all

other parameter sets. Now it is essential to know, in which respect the FSUGold pa-

rameter set is different from other. The one-to-one interaction terms for NL3, NL2,

NL1 and NL-SH have similar couplings. However, the FSUGold is different from the

above parameters in two aspects, i.e., two new coupling constants are added. One

corresponds to the self-interaction of ω and other one corresponds to the isoscalar-

isovector meson coupling. It is known that self-interaction of ω is responsible for

softening the EOS [87,141] and the isoscalar-isovector coupling takes care the soften-

ing of symmetric nuclear matter [142]. The unique behavior shown by the FSUGold

parametrization may be due to the following three reasons:

1. introduction of isoscalar-isovector meson coupling ΛV ,

2. introduction of self-coupling of ω−meson,

3. or simultaneous introduction of both these two terms with refitting of parameter

set with new constraint.
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In order to discuss the first possibility, we plotted NL3+ΛV (0.03) in Fig. 3.5(d). The

graph shows that there is no difference between NL3 and NL3+ΛV , except the later

set predicts a more positive RETF-RTF. It is well known that, the addition of ΛV

coupling, i.e., NL3+ΛV (0.03) gives a softer symmetry energy [143]. This implies that,

models with softer energy have greater difference in RETF and RTF. At a particular

proton-neutron asymmetry, RETF-RTF has a larger value for a model with softer

symmetry energy. This observation is not conclusive, because all the parameter sets

do not follow this type of behavior. Quantitatively, the change of RETF-RTF in the

Sn isotopic series is about 70% with FSUGold force, while this is only 20 − 30% in

NL3 and other parameter sets.

In Table 3.7, we have listed the ρ−meson contribution to the total binding energy.

From the analysis of our results, we find that only ρ−contribution to the total binding

energy change much more than other quantity, when one goes from RTF to RETF.

But this change is more prominent in FSUGold parameter set than other sets like NL1,

NL2, NL3 and NL-SH. Simple assumption says that the absent of ΛV coupling may be

the reason for this behavior in rest of the parameter sets. But we have checked for the

parameter NL3+ΛV , which does not follow the assumption. This also shows similar

behavior like other sets. In Table 3.8, we have given the results for FSUGold, NL3+ΛV

and NL1. The data show a huge difference of monopole excitation energy in RETF

and RTF with FSUGold parameter set. For example, the ρ−meson contribution to

the GMR in RETF for 112Sn is 21.85 MeV, while in RTF it is only 0.00467 MeV.

However, this difference is nominal in NL3+ΛV parameter set, i.e., it is only 0.48

MeV. Similarly, this value is 1.18 MeV in NL1 set. The contribution of ρ−meson

to total energy comes from two terms: (i) one from ΛVR
2V 2 and other (ii) from

ρ2. We have explicitly shown that contribution comes from ΛVR
2V 2 makes a huge

difference between the GMR obtained from RETF and RTF formalisms. This type of

contribution does not appear from NL3+ΛV . For example, in 112Sn the contribution

of ΛVR
2V 2 with RETF formalism is -6.0878 MeV, while with RTF formalism is -5.055

MeV.

The above discussion gives us significant signature that the contribution of ΛV

may be responsible for this anomalous behavior. But an immediate question arises,

why NL3+ΛV parameter set does not show such type of effects, inspite of having
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Table 3.7: Contribution of the ρ−meson to the total binding energy in the RTF

and RETF approximations with FSUGold, NL1 and NL3+ΛV parameter set. RETF

represent ρ meson contribution to total energy from R2 term and RETFΛV represent

contribution from the ΛvR
2V 2.

Nucleus FSUGold NL3(0.03) NL1

RETF RETFΛV RTFΛV RTF RETF RTF RETF RTF

112Sn 21.85 -6.66 -0.00130 0.00467 20.60 20.12 17.91 16.73

114Sn 28.72 -8.64 -0.00202 0.00664 27.11 26.48 23.51 22.00

116Sn 36.42 -10.83 -0.00248 0.00829 34.40 33.62 29.73 27.90

118Sn 44.87 -13.23 -0.00298 0.01013 42.42 41.499 36.52 34.37

120Sn 54.04 -15.82 -0.00353 0.01213 51.13 50.05 43.84 41.37

122Sn 63.88 -18.58 -0.00411 0.01429 60.48 59.24 51.63 48.85

124Sn 74.33 -21.49 -0.00473 0.01660 70.43 69.03 59.84 56.76

ΛVR
2V 2 term. This may be due to the procedure in which ΛVR

2V 2 term is interpreted

in these two parameter sets. In NL3+ΛV (0.03), the ΛVR
2V 2 term is not added

independently. The ΛV and gρ are interdependent to each other to fix the binding

energy and difference in neutron and proton rms radii Rn-Rp. But in FSUGold, ΛV

coupling constant is incorporate independently to reproduce the nuclear observable.

In Table 3.8, we have listed the incompressibility of some of the selected nuclei

in scaling SKA and constraint CKA calculations. This results are compared with

Table 3.8: SKA and CKA are incompressibility for finite nuclei obtained from scaling

and constraint methods, respectively are compared with the values obtained from the

equation of state (EOS).

Nucleus NL3 FSUGold

SK Ck EOSK SK CK EOSK

208Pb 164.11 149.96 145 147.37 134.57 138.42

116Sn 164.64 155.39 131.57 147.11 139.71 127.64

40P 136.70 110.43 105 123.40 100.36 102.53

40Ca 145.32 134.47 105 130.93 123.15 102.53
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the computed values obtained from the equation of state (EOS) model. To evaluate

the incompressibility from the EOS, we have followed the procedure as discussed in

Refs. [144, 145]. M. Centelles et al. [144], parametrized the density for finite nucleus

as ρA = ρ0 − ρ0/(1 + c ∗ A1/3) and obtained the asymmetry coefficient asym of the

nucleus with mass A from the EOS at this particular density. Here also, we have

used the same parametric form of the density and obtained the incompressibility for

finite nucleus from the EOS. For example, ρA = 0.099 for A = 208 in FSUGold

parameter set, and the calculated incompressibility is ∼ 145 MeV at this particular

density. We have also calculated the incompressibility independently in Thomas-

Fermi and extended Thomas-Fermi using scaling and constraint calculations, which

are 161 MeV and 146.1 MeV, respectively.

3.6 Summary and Conclusions

In summary, we have calculated the isoscalar giant monopole resonance for O, Ca,

Ni, Sn, Pb, Z=114, and Z=120 isotopic series starting from the proton to the neutron

drip-lines. We used four successful parameter sets, NL1, NL3, NL3*, and FSUGold,

with a wide range of incompressibility starting from 211.7 MeV to 271.76 MeV to

see the dependency of the ISGMR on K∞. Also, we have analyzed the predictions of

ISGMR with these forces, which originate from various interactions and found that

whatever may be their origin, the differences in ISGMR predicted by them are found

to be marginal in the super heavy region. A recently developed scaling approach in

a relativistic mean field theory is used. A simple, but accurate constrained approxi-

mation is also performed to evaluate the isoscalar giant monopole excitation energy.

From the scaling and constrained ISGMR excitation energies, we have evaluated the

resonance width Σ for the whole isotopic series. This is obtained by taking the root

mean square difference of Es
x and Ec

x. The value of Es
x is always higher than the

constrained result Ec
x. In a sum rule approach, the Es

x can be compared with the

higher and Ec
x as the lower limit of the resonance width. In general, we found an

increasing trend of Σ for both the light and super heavy regions near the proton and

neutron drip-lines. The magnitude of Σ is predicted to be a minimum in the vicinity

of N=Z or in the neighborhood of a double closed nucleus and it is a maximum for
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highly asymmetric systems. We have also estimated the incompressibility of finite

nuclei. For some specific cases, the incompressibility modulus is compared with the

nuclear matter incompressibility and found a linear variation among them. It is also

concluded that the nucleus becomes less compressible with the increase of neutron

or proton number in an isotopic chain. Thus neutron-rich matter, like neutron stars

as well as drip-line nuclei, are less compressible than normal nuclei. In case of finite

drip-line nuclei, the nucleus is incompressible, although it possess a normal density.

In brief, we analyzed the predictive power of various force parameters, like NL1, NL2,

NL3, Nl-SH and FSUGold in the frame-work of relativistic Thomas-Fermi and rel-

ativistic extended Thomas-Fermi approaches for giant monopole excitation energy

of Sn-isotopes. Then the calculation is extended to some other relevant nuclei. The

analysis shows that Thomas-Fermi approximation gives comparable results with pair-

ing+MEM data. It exactly reproduces the experimental data for Sn isotopes, when

the incompressibility of the force parameter is within 210− 230 MeV, however, fails

to reproduce the GMR data for other nuclei within the same accuracy.

We have qualitatively analyzed the difference in GMR energies RETF-RTF using

RETF and RTF formalisms in various force parameters. The FSUGold parameter

set shows different behavior from all other forces. Also, extended our calculations of

monopole excitation energy for Sn isotopes with a force parametrization having softer

symmetry energy (NL3+ ΛV ). The excitation energy decreases with the increase

of proton-neutron asymmetry agreeing with the experimental trend. In conclusion,

after all these thorough analysis, it seems that the softening of Sn isotopes is an open

problem for nuclear theory and more work in this direction are needed.
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Chapter 4

Perturbative constrained

calculation of excitation energy of

ISGMR and IVGDR in

semiclassical RMF theory.

In last two chapter, we have extensively discussed the isoscalar giant monopole res-

onances in super heavy and medium-heavy nuclei. Semi-classical approximation like

RTF and RETF are used, which are proved very successful to calculate the collec-

tive excitation. We have used constrained and scaling calculations for the excitation

energy of ISGMR. In this chapter, we discuss a new constrained calculation, which

we have developed to calculate the excitation energy of both ISGMR and IVGDR.

From the theoretical point of view both the old and new constrained calculations are

different from each other, but gives similar results. In old constrained calculation,

we minimize the constrained energy functional with a constrained parameter λ. We

get a different value of constrained energy with a different value of λ and double

derivative of constrained energy with respect to λ gives the constrained excitation

energy. The new constrained calculation based on the perturbative approaches, in

which we expand the energy functional in Taylor series around equilibrium state. We

calculated the excitation energy for some spherical (or double closed ) nuclei, where

the experimental data are available.
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4.1 Introduction

The nuclear matter incompressibility (K∞) is a measure of stiffness of the equation of

state (EOS). It can be calculated from the curvature of the EOS around the satura-

tion density (ρ0). This quantity is important in nuclear physics because it is related

to many properties of finite nuclei (such as radii, masses and giant resonances), the

dynamics of heavy-ion collisions, neutron stars and supernovae collapses [19, 146].

As K∞ is not an observable, its value must be deduced from a measurable quan-

tity. In this respect, an important source of information on K∞ is provided by the

measurements of compression modes, such as the isoscalar giant monopole resonance

(ISGMR), in finite nuclei, in particular in 208Pb. An accepted value K∞ = 240± 20

MeV, predicted by the majority of mean field models, extracted from different analysis

of experimental data and theoretical calculation [147].

On the other hand, the existence of strong resonances in the photo-absorption cross

sections was established almost seventy years ago [148] and theoretically explained

few years later [149,150]. These resonances, identified with the isovector giant dipole

resonance (IVGDR), are correlated via the electrical polarizability with the neutron

skin thickness of neutron rich nuclei and with the properties of the nuclear symmetry

energy around saturation [151,152].

The ISGMR and IVGMR can be understood as small amplitude oscillations, which

are the responses of the nucleus to an external field generated by electromagnetic or

hadronic probes. The standard theory to deal with these oscillations is the random-

phase approximation (RPA), which allows to study microscopically giant resonances.

The key output provided by the RPA calculations is the strength distribution SQ(E)

associated to a given excitation operator Q. If SQ(E) is concentrated in a narrow

region of the energy spectrum, which is usually the case of the ISGMR and IVGMR

at least for heavy stable nuclei, the knowledge of few low energy weighted moments of

SQ(E) (sum rules) allows to estimate the average excitation energy of the resonances.

In some particular cases it is possible to express some odd sum rules in a compact form

involving only ground-state properties, which avoids the calculation of the strength

distribution [76]. However, the full quantal calculation of these sum rules is still

complicated because the exact ground-state is, in general, unknown. Introducing
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additional approximations, some sum rules can be calculated in a rather simple way,

as for instance the cubic energy weighted sum rule, which can be computed by using

the scaling method [19,76,153] or the inverse energy weighed sum rule, which can be

obtained through constrained Hartree-Fock (HF) calculations [19,153–155].

The theoretical study of giant resonances in the relativistic domain has been usu-

ally done through relativistic RPA (RRPA) calculations. The RRPA approximation

corresponds to the small amplitude limit of the time-dependent relativistic mean

field (RMF) theory [156–158]. On the other hand the time-dependent theory has

also been directly used to study the isovector dipole [159] as well as the isoscalar

and isovector quadrupole [159] and monopole [160] oscillations. As difference with

the non-relativistic case, the sum rule theorems, which relate different moments of

the RRPA strength with ground-state properties computed at RMF level, have not

been proved in the relativistic domain [117]. There are few relativistic constrained

calculations available in the literature [103–105, 117, 158]. In Ref. [158] the results

of constrained RMF calculations of the m−1 sum rule were compared with the cor-

responding RRPA values and it was suggested that the RRPA m−1 moment could

be estimated from a RMF calculation. More recently, in Ref. [117], this suggestion

was carefully analyzed for several nuclei along the periodic table using two different

RMF parameter sets. It was found an excellent agreement between the average en-

ergies of ISGMR obtained through RMF constrained calculation and extracted from

RRPA results. In Ref. [81] the scaling approach to the isoscalar giant monopole

and quadrupole resonances in relativistic Thomas-Fermi (RTF) theory [161,162] was

discussed in detail. It was found that the semi-classical average excitation energies re-

produced well the RRPA results. In the same reference the excitation energies of the

ISGMR were also calculated performing RTF constrained calculations finding good

agreement with the constrained RMF results of Ref. [105]. As a conclusion, these

results together with the conjecture of Ref. [158] points out that the scaling method

and constrained calculations using the semi-classical RTF energy density functional

may be a very efficient and simplified way to estimate the average excitation energy of

some giant resonances. Although the constrained RTF approach has been used in [81]

to compute the average excitation energy of the ISGMR, in this chapter we want to

use a new constrained method applied together with the RTF approach, which is able
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to study not only the ISGMR but also the IVGDR. This new constrained calculation

is based on a Taylor series expansion of the constrained energy density functional

around the equilibrium. In Section 4.2 we outline the general formalism to calculate

excitation energy of ISGMR and ISVGDR. In Section 4.3 we discussed the applica-

tion of relativistic Thomas-Fermi approximation to calculate the energy and particle

density. Section 4.4 is dedicated to the explanation of perturbative approches to

calculate the excitation energy of ISGMR and ISVGDR. Results of our new method

with old one are given in section 4.5 and concluded in section 4.6.

4.2 Formalism

The strength distribution associated to an excitation operator Q is defined as

SQ(E) =
∑
n6=0

|〈n|Q|0〉|2δ(E − En), (4.1)

where |0〉 and |n〉 are the ground and excited eigenstates, respectively, of the exact

Hamiltonian H = T + V and En is the excitation energy.

The energy weighted moments, also known as sum rules, are defined as

mk =

∫ ∞
0

EkSQ(E)dE =
∑
n6=0

En
K |〈n|Q|0〉|2, (4.2)

which allow to estimate the average excitation energy as

ẼK =

√
mk

mk−2

. (4.3)

In this work we concentrate in the study of the Ẽ1 average energy to estimate the

excitation of the ISGMR and the IVGDR. A very useful approximation arises when

the exact energy eigenstates of the Hamiltonian H in (4.1) is replaced by the one-

hole-one particle ( 1p1h) RPA ones. In this case it is possible to show that some

sum rules, in particular m1 and m−1, can be exactly obtained by replacing the RPA

ground-state by the uncorrelated Hartree-Fock (HF) or by performing constrained HF

calculations (see [76] for more details). In the monopole case, the energy weighted

sum rule m1 is almost a model independent quantity and according to the Thouless

theorem it is given by

m1 =
∑
n

En|〈n|
A∑
i=1

|0〉|2 = 2A
~2

m
〈r2〉. (4.4)
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For the isovector dipole, the previous simple approach provided in Eq.(4.4) does

not hold good because the excitation operator Q does not commute, in general, with

the potential part V of the Hamiltonian. In the isovector case the full calculation of

the m1 sum rule is complicated and usually this moment is factorized as

m1 = m1
0(1 + κ), (4.5)

where m1
0 is the sum rule computed assuming [Q, V ] = 0 and κ is the so-called

enhancement factor. In the dipole case, the m1
0 is given by the kinetic Thomas-

Reiche-Kuhn (TRK) term and therefore, the full energy weighted sum rule reads as

m1 =
~2

2m

NZ

A
(1 + κ). (4.6)

For relativistic model the TRK enhancement factor in nuclear matter is given by [163]

κ(kF ) =
m√

m∗2 + kF
2
− 1, (4.7)

where kF the Fermi momentum. Notice that in nuclear matter κ is a function of

kF . In order to estimate the average enhancement factor in finite nuclei, we use (4.7)

together with a local density approximation:

κ =
1

A

∫
κ(kF )ρ(r)dr, (4.8)

where the local Fermi momentum kF is related to the finite nucleus density by kF (r) =

(3π2ρ(r))1/3.

To obtain the inverse energy-weighted sum rule, we take into account the fact that

this sum rule computed at 1p1h RPA level, according to the dielectric theorem, can

also be obtained from a constrained HF calculation performed with the Hamiltonian

H + λQ, where H is the Hamiltonian that describe the nucleus and Q the one-body

excitation operator as

m−1 =
∑
n

|〈n|Q|0〉|2

En
=

1

2

∂〈λ|Q|λ〉
∂λ

∣∣∣∣
λ=0

=
1

2

∂2〈λ|H|λ〉
∂λ2

∣∣∣∣
λ=0

, (4.9)

where |λ〉 is the HF ground state of the constrained Hamiltonian H + λQ.
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4.3 Relativistic Thomas-Fermi approximation

In this work we describe the average excitation energy of ISGMR and IVGDR by

using Thomas-Fermi approximation to the RMF theory discussed in early litera-

ture [80, 81, 161, 162] . A reason for using semi-classical technique is to study giant

resonances is the fact that these oscillations are strong collective motion where shell

effects have only a marginal impact [81, 164]. In the linear RMF model nucleons

interact via the exchange of the effective σ, ω and ρ mesons [8]. However, due to the

high incompressibility K∞ predicted by this model, self-interactions of the σ meson,

through non-linear terms, have been introduced in the formalism to reduce K∞ to a

more realistic value [99]. The starting point of the semi-classical RMF theory is the

nucleon-nucleon interacting effective Lagrangian density, which can be written as

H = E + gvV ρ+ gρRρ3 + eAρp +Hf , (4.10)

where ρ = ρn + ρp is the baryon density, ρ3 = (ρp− ρn)/2 is the isovector density and

E the nucleon energy density, which at RTF level can be written as [80,81,161,162]

E =
∑
q

1

8π2
[kFqε

3
Fq + k3

FqεFq −m
∗4kFq + εFq

m∗
]. (4.11)

For each kind of nucleon (q = n, p), the local Fermi momentum kFq and energy

εFq are defined as

kFq = (3π2ρq)
1/3 ; εFq =

√
k2
Fq

+m∗2. (4.12)

In Eq. (4.10), Hf stands for the free contribution of the meson fields φ, V and R,

associated to the σ, ω and ρ mesons, and for the Coulomb field A. This contribution

reads

Hf =
1

2

[
(~∇φ)2 +m2

sφ
2
]

+
1

3
bφ3 +

1

4
cφ4 − 1

2

[
(~∇V )2 +m2

vV
2
]

− 1

2

[
(~∇R)2 +m2

ρR
2
]
− 1

2

(
~∇A
)2

, (4.13)

where ms, mv and mρ are the masses of the mesons and m∗, entering in Eqs.(4.11)

and (4.12, is the nucleon effective mass defined by m∗ = m− gsφ. In these equations

gs, gv, gρ and e are the coupling constants for the σ, ω and ρ mesons and for the

photon, respectively. In Eq.(4.13) b and c stand for the coupling constants associated
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to the σ meson non-linear terms. These self-interactions of the σ− meson generates

analogous effect of three body interaction due to its off-shell meson couplings. These

self-interactions are also essential for the saturation properties of infinite nuclear

matter [165–167].

The semi-classical ground-state densities and meson fields are obtained by solving

the variational equations derived from the energy density (4.10) constrained by the

condition of fixed neutron (N) and proton (Z) numbers, which read

εFn + gvV −
1

2
gρR− µn = 0, (4.14)

εFp + gvV +
1

2
gρR + eA− µp = 0, (4.15)

∆V −mv
2V + gvρ = 0, (4.16)

∆R−mρ
2R + gρρ3 = 0, (4.17)

∆φ−m2
sφ+ gsρs − bφ2 − cφ3 = 0, (4.18)

and

∆A+ eρp = 0. (4.19)

In Eqs.(4.14) and (4.15) µn and µp are the neutron and proton chemical potentials,

respectively, introduced to ensure the right N and Z values. In Eq.(4.18) ρs is the

semi-classical scalar density given by

ρs =
∂E
∂m∗

=
∑
q

m∗

2π2
[kFqεFq −m∗

2kFq + εFq
m∗

]. (4.20)
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4.4 The constrained perturbative approach

We apply now the constrained method to estimate the excitation energy of the ISGMR

and IVGDR. In the semi-classical context one has to minimize the constrained energy

density functional [81]∫
[H− µnρn − µpρp − λQ]dr = E(λ)− λ < Q > . (4.21)

In previous studies of the ISGMR using the constrained method [81, 117, 164]

one minimizes Eq. (4.21) for several values of λ and then computes numerically

the derivatives respect to λ, which define the m−1 sum rule (see Eq.(4.9)) , using

three- or five-point formulas. This technique may also be applied, in principle, to

estimate the excitation energy of the IVGDR using a deformed code. We present

here an alternative route which avoids the explicit use of deformation. Keeping in

mind that the derivatives respect to the parameter λ in Eq.(4.9) are computed at

λ = 0, we expand the constrained energy density functional (4.21) around equilibrium

in powers of λ up to quadratic terms, which according to Eq.(4.9), is needed to

compute the m−1 sum rule. To this end, we write the nuclear densities and meson

fields as the sum of the unperturbed solutions, obtained by solving self-consistently

Eqs.(4.14)-(4.20), plus a perturbative contribution, which is linear in λ and has the

same angular dependence as the excitation operator Q. Notice that, as far as the right

number of particles is obtained by the unperturbed density, the additional constraint∫
δρn(r)dr =

∫
δρp(r)dr = 0 must be imposed. This can be achieved by introducing

additional contributions to the neutron and proton chemical potentials, δµn and δµp,

respectively, which are also linear in the parameter λ.

The independent term of the constrained energy functional (4.21) in powers of

λ is just the unperturbed energy E0 of the ground-state of the nucleus. The linear

term in λ are proportional to the equation of motion of the the unperturbed problem

Eqs.(4.14)-(4.20), while the quadratic contribution provides the set of equations of

motion corresponding to the pertubative part to the nuclear densities and meson

fields by applying the variations principle. According to Eq. 4.9, m−1 sum rule is

given by one half of the second derivative of the constrained energy with respect to

the parameter λ. At this point two important comments are in order. First, the

equations of motion of the perturbative part of the nuclear densities and fields can
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also be obtained by performing a second order variation with respect to the densities

and fields in the equations of motion of the unperturbed problem, Eqs. (4.14)-(4.20).

Second, by replacing the solutions of the perturbative contribution to densities and

fields in the second derivative of the energy density functional respect to the parameter

λ, one can recast this expression as one half of the first derivative of the excitation

operator Q respect to λ, in agreement with Eq.(4.9). These two comments point out

that this perturbative approach to the calculation of the m−1 sum rule is properly

formulated. We will now apply this perturbative constrained method to estimate the

excitation energies of the ISGMR and IVGDR.

4.4.1 Isoscalar giant monopole resonance

The ISGMR is a collective excitation in which proton and neutron vibrate in a phase

to each other. It corresponds to the radial oscillation of nucleus around its equilibrium

radius. In order to calculate excitation energy we write the excitation operator as

Q = r2− < r2 >0, where< r2 >0
1/2

is the rms radius computed using the unperturbed

equilibrium density ρ0. We apply the constrained perturbative method by writing the

perturbative nuclear densities and fields as λδρn, λδρp, λδV0 , λδφ, λδR and λδA. Due

to the spherical symmetry of the problem, we shall also introduce the corrections λδµn

and λδµp to the neutron and proton chemical potentials. With all these ingredients
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we expand Eq. (4.21) up to order λ2 obtaining

Ẽ =

∫
dr

[
H0 + λ

[(
ε0Fn + gvV

0 − 1

2
gρR

0

)
δρn

+

(
ε0Fp + gvV

0 +
1

2
gρR

0 + eA0

)
δρp +

(
∆A0 + eρ0

p

)
δA

+

(
∆V 0 −mv

2V 0 + gvρ
0

)
δV +

(
∆R0 −mρ

2R0 + gρρ
0
3

)
δR

−
(

∆φ−ms
2φ0 + gsρ

0
s − bφ02 − cφ03

)
δφ

]
+

λ2

2

[(
∂ε0Fn
∂ρ0

n

δρn − gs
∂ε0Fn
∂m∗0

δφ+ gvδV −
1

2
gρδR

)
δρn

+

(
∂ε0Fp
∂ρ0

p

δρp − gs
∂ε0Fp
∂m∗0

δφ+ eδA+ gvδV +
1

2
gρδR

)
δρp

+

(
gvδρ+ ∆δV −m2

vδV

)
δV +

(
gρδρ3 + ∆δR−m2

ρδR

)
δR

+

(
eδρp + ∆δA

)
δA+

((
gs

2 ∂ρ0
s

∂m∗0
+ 2bφ0 + 3cφ02

)
δφ

− gs
∂ε0Fn
∂m∗0

δρn − gs
∂ε0Fp
∂m∗0

δρp −∆δφ+m2
sδφ

)
δφ

]
− µ0

nρ
0
n − µ0

pρ
0
p −

(
µ0
n + λδµn

)
λδρn −

(
µ0
p + λδµp

)
λδρp

− λ(r2− < r2 >0)(δρn + δρp)

]
. (4.22)

In the above equation the superscript 0 indicates quantities which are calculated

using the unperturbed densities and fields. The linear contributions of the perturba-

tive components of densities and fields in Eq.(4.22) vanish, because their prefactors are

just the motion equations of the unperturbed densities and fields Eqs.(4.14)-(4.20),

which are zero for the self-consistent solutions. Therefore, the constrained energy

Eq.(4.21) becomes a quadratic function of the perturbative corrections to the nuclear

densities and meson fields, from where the motion equations for δρn, δρp,δV , δR, δA
and δφ are easily obtained:

∂ε0Fn
∂ρ0

n

δρn − gs
∂ε0Fn
∂m∗0

δφ+ gvδV −
1

2
gρδR− δµ̃n − r2 = 0, (4.23)

∂ε0Fp
∂ρ0

p

δρp − gs
∂ε0Fp
∂m∗0

δφ+ eδA+ gvδV +
1

2
gρδR− δµ̃p − r2 = 0, (4.24)
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gvδρ+ ∆δV −m2
vδV = 0, (4.25)

gρδρ3 + ∆δR−m2
ρδR = 0, (4.26)

(eδρp + ∆δA = 0, (4.27)

and (
gs

2 ∂ρ0
s

∂m∗0
+ 2bφ0 + 3cφ02

)
δφ− gs

∂ε0Fn
∂m∗0

δρn − gs
∂ε0Fp
∂m∗0

δρp −∆δφ+m2
sδφ = 0.

(4.28)

In Eqs.(4.23) and (4.24) δµ̃q = δµq− < r2 >0 (q = n, p). The self-consistent

solution of the set of equations Eqs.(4.23)-(4.24) gives the perturbed neutron and

proton densities, δρn and δρp, respectively, as well as the corrections to the fields δV

,δφ, δR and δA, where δn and δp are the transition densities. The m−1 sum rule is

given by the second order derivative of the semi-classical energy E(λ) (see Eq.(4.21))

with respect to the parameter λ. Combining Eq.(4.22) with the motion equations

(4.23)-(4.24) for the perturbative nuclear densities and meson and photon fields are

easily obtained

m−1 =

∫ (
δµ̃nδρn + δµ̃pδρp + r2δρ

)
dr, (4.29)

where δρ = δρn + δρp. Taking into account the constraint
∫
δρqdr = 0, we get the

final form of the m−1,

m−1 =

∫
r2δρdr. (4.30)

In order to solve the motion equations (4.23)-(4.24) for the perturbative correc-

tions to the nuclear densities and meson fields we need to know, in the ISGMR

case, the corrections to the neutron and proton chemical potentials. To this end we
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first isolate these in equations δρn and δρp and next, using explicitly the constraints∫
δρndr =

∫
δρpdr = 0, we obtain after little algebra the corrections δµ̃n and δµ̃p as

δµ̃n =

∫
k0
Fn

[
ε0Fn

(
gvδV − 1

2
gρδR− r2

)
−m0∗gsδφ

]
dr∫

k0
Fn
ε0Fndr

, (4.31)

and

δµ̃p =

∫
k0
Fp

[
ε0Fp

(
gvδV + 1

2
gρδR + eδA− r2

)
−m0∗gsδφ

]
dr∫

k0
Fp
ε0Fpdr

. (4.32)

The self-consistent solution of the coupled equations (4.23)-(4.24) allows to obtain the

perturbative contribution to the nuclear densities and fields. From Eq.(4.30) one can

obtain the inverse energy weighted sum rule m−1, which combined with the m1 sum

rule given by Eq.(4.4) provides an estimate of the excitation energy of the ISGMR

given by E1 =
√
m1/m−1.

4.4.2 Isovector giant dipole resonance

In case of IVGDR protons and neutrons vibrate in opposite phase to each other in

such a way that the center of mass of the whole system remains unchange. This

constraint is introduced through the excitation operator Q = z− < z >= rY10(Ω),

where < z > is the z-coordinate of the center of mass of the nucleus. As in the case of

ISGMR, we write the neutron and proton densities as the sum of unperturbed solution

plus a perturbative term, which follows the geometry of the excitation operator, i.e.

ρn(r) = ρ0
n(r)+λδρn(r)Y10(Ω) and ρp(r) = ρ0

p(r)+λδρp(r)Y10(Ω). With this choice of

the nuclear densities the right normalization of neutrons and protons is ensured and,

consequently, the corrections δµn and δµp to the corresponding chemical potentials

is not needed in the case of the IVGDR. Using this parametrization of the nuclear

densities we compute now the expectation values of the dipole operator Q defined

before. It is easy to show that

< z >=

∫ (
ρn(r) + ρp(r)

)
rY10(Ω)dr

=
1

A

∫
r3(δρn(r) + δρp(r))dr =

N

A
< z >n +

Z

A
< z >p, (4.33)
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and

< Q >=

∫ (
ρp(r)− ρn(r)

)(
rY10(Ω)− < z >

)
)dr

= 2

[
N

A

∫
r3δρp(r)dr −

Z

A

∫
r3δρn(r)dr

]
=

2NZ

A

(
< z >p − < z >n

)
. (4.34)

We assume, as in the ISGMR case, that the fields also split into an unperturbed

part plus a corrective contribution that follows the excitation field, i.e. V = V 0 +

λδV Y10, R = R0 + λδRY10, A = A0 + λδAY10 and φ = φ0 + λδφY10. Therefore,

one can write the energy density functional (4.21) in powers of λ and derive from

this expansion the motion equations of the nuclear densities and fields, as we have

done in the case of ISGMR starting from Eq.(4.22). However, as we have pointed

out before, it is also possible derive the variational equations for δρn, δρp, δV , δR, δφ

and δA expanding the motion equations associated to the constrained energy density

functional (4.21). In case of the IVGDR, these equations for the meson and photon

fields are formally given by Eqs.(4.16)-(4.19), keeping in mind, however, that in this

case densities and fields are, the ones associated to the constrained problem. The

variations equations for neutron and proton are

εFn + gvV −
1

2
gρR− µn + λrY10

N

A
= 0, (4.35)

and

εFp + gvV +
1

2
gρR + eA− µp − λrY10

N

A
= 0, (4.36)

which correspond to Eqs.(4.14) and (4.15) modified by the contribution of the excita-

tion field. Expanding the densities and fields in these variations equations in powers

of λ, the independent term gives the motion equations of unperturbed densities and

fields and the linear terms in λY10 correspond to the variations equations for the

perturbations of densities and fields, which read

∂ε0Fn
∂ρ0

n

δρn − gs
∂ε0Fn
∂m∗0

δφ+ gvδV −
1

2
gρδR +

Z

A
r = 0, (4.37)

∂ε0Fp
∂ρ0

p

δρp − gs
∂ε0Fp
∂m∗0

δφ+ eδA+ gvδV +
1

2
gρδR−

N

A
r = 0, (4.38)
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gvδρY10 + ∆(δV Y10)−m2
vδV Y10 = 0, (4.39)

gρδρ3Y 10 + ∆(δRY10)−m2
ρδRY10 = 0, (4.40)

(eδρpY10 + ∆(δAY10) = 0, (4.41)

and

(
gs

2 ∂ρ0
s

∂m∗0
+ 2bφ0 + 3cφ02

)
δφY10 − gs

∂ε0Fn
∂m∗0

δρnY10

− gs
∂ε0Fp
∂m∗0

δρpY10 −∆(δφY10) +m2
sδφY10 = 0. (4.42)

As in the case of ISGMR, we can also calculate the m−1 sum rule for the IVGDR

from the second order derivative of the constrained energy with respect to the λ,

which after little algebra and taking into account Eqs.(4.37)-(4.42) become

m−1 =
∂2E

∂λ2
.

∫
r3dr

[
N

A
δρp −

Z

A
δρn

]
. (4.43)

4.5 Results and Discussions

Before going to discussions of the predictions of our model and compare with the

results obtained applying another theoretical models as well as with the experimental

data, we outline briefly our numerical procedure to estimate semi-classically the IS-

GMR and IVGDR excitation energies in finite nuclei. First, and assuming spherical

symmetry, we compute for each nucleus the unperturbed densities and fields by solv-

ing self-consistently the set of equations (4.14)-(4.20). using the so-called imaginary

time-step method [168–170]. and these unperturbed values we can be use to compute

the m1 sum rules given by Eqs.(4.4) and (4.6), for the ISGMR and IVGDR, respec-

tively. Next, we solve iteratively the sets of coupled linear equations (4.23)-(4.27) for

the ISGMR and (4.37)-(4.42) for the IVGDR, which allow to obtain the perturbative
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Table 4.1: Excitation energy of the ISGMR in MeV of some spherical nuclei cal-

culated as
√
m1/m−1 using the NL3 model. Ec(RTF − P ) is the estimte of the

present work, Ec(RETF ) is the RETF result computed as in Ref. [81],Ec(RMF )

and Ec(RPA) are the constrained Hartree and RPA results, respectively, reported

in [117].

Nucleus Ec(RTF − P ) Ec(RETF ) Ec(RMF ) Ec(RPA) Expt.

16O 26.26 25.98 23.34 23.35 21.13±0.49

40Ca 22.89 23.20 21.55 21.57 19.18±0.37

90Zr 18.74 19.08 18.58 18.55 17.89±0.20

116Sn 17.29 17.57 16.98 17.06 16.07±0.12

144Sm 16.05 16.33 16.08 16.16 15.39±0.28

208Pb 13.84 13.91 14.07 14.10 14.17±0.28

corrections to the nuclear densities and meson and photon fields. Finally the m−1 sum

rules can be obtained through Eqs.(4.30) and (4.43) for the ISGMR and IVGDR, re-

spectively. All these calculations are performed at RTF level paying special attention

to the convergence of the m−1 sum rule. The convergence of this quantity actually

depends on the size of the box where the calculations are performed as well as on the

number of iterations used in the unperturbed calculation.

Experimental information about the excitation energy of the ISGMR in medium

and heavy nuclei is obtained from inelastic scattering of α particles measured at

forward angles [75,115,171,172]. As a first application of our perturbative constrained

approach developed in previous sections, we compute the excitation energy of the

ISGMR for several nuclei which value is experimentally known [75,115,171,172] using

the RMF NL3 parametrization [49]. Although the sum rule approach, which assumes

a well defined peak, for light nuclei may be questionable, we display in table 4.1 our

semi-classical RTF estimate of the excitation energy of ISGMR of the nuclei 16O, 40Ca,

90Zr, 116Sn, 144Sm and 208Pb calculated with our perturbative constrained approach.

In the same table we also show the constrained values obtained using the Relativistic

Extended Thomas-Fermi Approach (RETF), which includes ~2 corrections, computed

as described in Ref. [81] together with the corresponding experimental values. For
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Table 4.2: Excitation energy of the IVGDR in MeV of some spherical nuclei calcu-

lated as
√
m1/m−1 using the NL3 model. Ec(RTF −P ) is the estimte of the present

work and E(RPA) are the RPA results reported in [173].

Nucleus Ec(RTF − P ) Ec(RPA) Expt. [174]

16O 22.05 21.1 22.3-24

40Ca 19.90 19.57 19.8±0.5

90Zr 17.18 17.19 16.5±0.2

116Sn 16.25 15.77 15.7±0.2

208Pb 13.54 13.16 13.3±0.1

Table 4.3: Semi-classical m−1 sum rule in fm2 MeV−1 of some spherical nuclei

computed as explained in this work (RTF − P ) and using the DM approach (4.44)

((RTF −LDM) input). All these calculation are performed with the NL3 parameter

set.

Nucleus m−1(RTF − P ) m−1(RTF −DM)

16O 0.219 0.192

40Ca 0.699 0.657

68Ni 1.499 1.403

90Zr 2.130 2.076

116Sn 3.061 3.012

120Sn 3.250 3.173

208Pb 7.685 7.256
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a sake of completeness, we also display in the same table the constrained Hartree

and RPA values of these excitation energies reported in Ref. [117]. From this table

some comments are in order. First, as we mentioned previously, the constrained

Hartree predictions of the excitation energy of the ISGMR practically concides with

the values extracted from RRPA calculations, which numerically proves the conjecture

of Ref. [158]. Second, as it was pointed out in [81], the importance of the ~2 corrections

in the excitation energy of the ISGMR is actually small as it can be seen from the

comparison between the RTF and RETF results. Third, the excitation energies of the

ISGMR decreases with increasing mass number, as expected, in both semi-classical

and quantal (constrained Hartree and RRPA) predictions. However, the slope is

larger for the semi-classical than for the quaintly estimates. For light and medium

nuclei the semi-classical values overestimate the quantal ones while the opposite is

true for 208Pb, which is the heaviest nucleus considered in this work.

The experimental values of the excitation energies of the IVGDR basically come

from the analysis of the measured photo-absorption cross sections as mentioned before

[175]. From a theoretical point of view there are many studies of the IVGDR at

RPA and RRPA levels using different mean field models in both non-relativistic and

relativistic frames [176]. However, from long ago the IVGDR has also been analyzed

from a semi-classical point of view. Let us mention in this respect the estimate of the

m−1 sum rule on the basis of the Droplet Model (DM) [177] reported more than thirty

years ago. More recently, the excitation energies of the IVGDR has been estimated

using the scaling method [178,179] and performing constrained calculations [179]. In

table 4.2 we display our constrained perturbative estimate of the excitation energy of

some selected spherical even-even nuclei computed with the NL3 parameter set [49]

as well as the RRPA predictions obtained with the same NL3 model [180] and the

experimental values extracted from Ref. [174]. From this table it can be seen that

our semi-classical RTF estimate reproduce remarkably well the RRPA values and the

experimental data. This result point out, as discussed in earlier literature [177–179],

that semi-classical approaches, as the constrained perturbative RTF method discussed

in this work, are well suited for describing also the average excitation energy of the

IVGDR due to the fact that shell corrections in this collective oscillation are, actually,

small [177].
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As mentioned before, the m−1 sum rule can also be estimated in the framework

of the LDM as [177]

m−1 =
A < r2 >

48J

(
1 +

15

4A1/3

J

Q

)
, (4.44)

where
√
< r2 > stands for the mass rms radius, J for the symmetry energy and Q is

the so-called surface stiffness coefficient. This coefficient Q is obtained from a semi-

classical RTF calculation in semi-infinite nuclear matter as explained in Ref. [97] and

its corresponding value is J/Q=1.46. The DM estimates of the m−1 sum rule at RTF

level for several nuclei are reported in table 4.3. To obtain these values, in addition to

the J/Q ratio and the symmetry energy of the NL3 model (J =37.40 MeV), we also

use in Eq.(4.44) the < r2 > value obtained from a self-consistent RTF calculation for

each considered nucleus. From table 4.3 we see that the semi-classical DM and the

perturbative constrained RTF estimates of the m−1 sum rule are in a good agreement.

Our RTF predictions of m−1 are also in good agreement with the values, computed

semi-classically with the Skyrme Skm∗ force, displayed in Table V of [179]. For

example, m−1 values of 0.215, 0.682, 2.054 and 7.047 fm2 MeV−1 are reported in this

reference for the nuclei 16O, 40Ca,90Zr and 208Pb, respectively. In the same reference

the experimental values of the m−1 sum rule, obtained as the integral up to the pion

threshold of the measured total nuclear photoabsortion cross section [177], are also

reported in the same Table V. These experimental values, 0.215±0.004, 0.682±0.016

and 7.35±0.51 fm2MeV−1 for 16O, 40Ca and 208Pb, respectively, are in harmony with

our semi-classical predictions reported in table 4.3. However, I should be pointed

out that recent measurements of the electric polarizability in 208Pb, 120Sn and 68Ni

give a smaller experimental value for the m−1 sum rule [152].

4.6 Summary and outlook

We have estimated the average excitation energy of the isoscalar monopole and isovec-

tor dipole giant resonances for several nuclei within a semiclassical sum rule approach

in the relativistic mean field framework with the NL3 parameter set. We are aware

that a sum rule approach only gives information about some selected moments of

the RRPA strength function and that in this approach a precise prediction of the
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excitation energy of the reasonance is only possible if the strength is concentrated

in a single peak, which is the usual scenario for medium and heavy nuclei but not

for light nuclei where the resonance broadens and fragments. The m1 sum rules are

evaluated at RPA level using the semi-classical expectation values calculated with the

relativistic Thomas-Fermi approximation . The m−1 sum rule is obtained through a

new constrained perturbative calculation also within the relativistic Thomas-Fermi

theory. In this calculation the nuclear densities and meson and photon fields are

splitted into a part corresponding to the unperturbed solution plus a perturbative

correction, chosen in such a way that it follows the excitation field. The energy den-

sity corresponding to the constrained problem is expanded up to quadratic terms in

these perturbations. The application of the variational principle to this energy density

allows to obtain the equations of motion of the perturbative corrections to nuclear

densities and fields. With this simple semi-classical method the average excitation

energies of the isoscalar monopole and isovector dipole giant resonances is estimated

reasonably well as compared with the more fundamental but also more cumbersome

relativistic RPA calculations. The differences between both calculations are basically

due to shell effects and are less than 5% in medium and hevay nuclei where the sum

rule can be considered more confidently. This result is in agreement with previous

findings in earlier literature pointing out that shell effects have little impact on the

average excitation energies of the giant resonances studied in this chapter. Our con-

strained perturbative approach has been obtained at relativistic Thomas-Fermi level,

therefore, it seems reasonable, to improve it by including the ~2 corrections which

give a more realistic calculation at the nuclear surface. As far as our method is able

to describe collective oscillations with excitation operators without spherical symme-

try, as the isovector dipole, it seems also appealing to apply our method to another

isoscalar and isovector oscillations of higher multipolarities.
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Chapter 5

Effects of self interacting ω-meson

on finite and infinite nuclear

system.

The most mysterious and the debatable subject in nuclear physics is the nucleon-

nucleon interaction. A lots of theories have been proposed for the nucleon-nucleon

interaction but still it is not clear. The nucleon-nucleon interaction affects the nuclear

structure in a more prominent way. So without the study of the nucleon -nucleon

interaction nuclear structure will remain incomplete. In this chapter, a detailed study

is made for the nucleon-nucleon interaction based on relativistic mean field theory

in which the potential is explicitly expressed in terms of masses and the coupling

constants of the meson fields. An unified treatment for self-coupling of isoscalar-

scalar σ−, isoscalar-vector ω-mesons and their coupling constants are given in an

analytic form. The present investigation is focused on the effects of self-interacting

higher order σ and ω fields on nuclear properties. An attempt is made to explain

the many-body effects by higher order couplings σ− and ω−fields, which generally

occurs in the high-density region. Both infinite nuclear matter and the finite nuclear

properties are included in the present study to observe the behavior and sensitivity

of this self-interacting terms.
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5.1 Introduction

The Nucleon-Nucleon (NN) interaction has been investigated for over half a cen-

tury [2]. Probably this is a long standing question in history of nuclear physics.

In fact, describing the nuclear properties in terms of the interactions between the

nucleon pair is indeed the main goal for nuclear physicists. The NN-interaction in

terms of mediated mesons was put forwarded by Yukawa [2] in 1935. Although the

meson theory is not fundamental from the QCD point of view, it has improved our

understanding of the nuclear forces as well as highlighted some good quantitative

results [181, 182]. The modern theory of NN potential in term of particle exchanges

was made possible by the development of quantum field theory [182]. However, at

low-energy, one can assume that the interactions are instantaneous and therefore the

concept of interaction potential becomes useful. The derivation of a potential through

particle exchange is important to understand the nuclear force as well as structural

properties.

Now-a-days, there are number of developments in the nuclear theory by introduc-

ing quark and gluon in connection with the NN-potential [183, 184]. These models

give the fundamental understanding of NN interaction at present. Here, we are not

addressing all these rich and long standing problems about NN-potential. Our aim is

to highlight some basic features of the NN-interactions arising from relativistic mean

field (RMF) Lagrangian [185–188]. The behavior of this potential gives an idea about

the saturation properties of nuclear force at high density limit.

This chapter is organized as follows. In Section 5.2, we briefly discuss the theoret-

ical formalism of NN-interaction based on relativistic mean field (RMF) theory. The

general forms of the NN potentials are expressed in the coordinate space (r-space) in

term of masses and coupling constants of the force parameters. In Section 5.3, we

review the effects of modified term in the Lagrangian and their effects on the finite

nuclei and in infinite nuclear matter. In Section 5.4, we make few comments about

the current form of the NN-interaction to saturation condition of nuclear systems.
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5.2 Theoretical frameworks

The nuclear potential in relativistic mean field (RMF) is possible via various mesons

interaction with nucleons. The linear relativistic mean field (RMF) Lagrangian den-

sity for a nucleon-meson many-body system [7,8, 189,190] is given as:

L = ψi{iγµ∂µ −M}ψi +
1

2
∂µσ∂µσ −

1

2
m2
σσ

2 − gsψiψiσ

−1

4
ΩµνΩµν +

1

2
m2
wV

µVµ − gwψiγµψiVµ −
1

4
~Bµν . ~Bµν

+
1

2
m2
ρ
~Rµ. ~Rµ − gρψiγµ~τψi. ~Rµ − 1

4
F µνFµν

−eψiγµ
(1− τ3i)

2
ψiAµ. (5.1)

If, we neglect the ρ− meson, it corresponds to the Walecka model in its original

form [8, 189]. From the above relativistic Lagrangian, we obtain the field equations

for the nucleons and mesons as,(
−iα.5+β(M + gσσ) + gωω + gρτ3ρ3)ψi = εiψi, (5.2)

(−52 +m2
σ)σ(r) = −gσρs(r), (5.3)

(−52 +m2
ω)V (r) = gωρ(r), (5.4)

(−52 +m2
ρ)ρ(r) = gρρ3(r). (5.5)

In the limit of one-meson exchange and mean-field (the fields are replaced by their

expectation values or c-number), for a heavy and static baryonic medium, the solution

of single nucleon-nucleon potential for scalar (σ) and vector (ω, ρ) fields are given

by [190,191],

Vσ(r) = − g
2
σ

4π

e−mσr

r
, (5.6)

and

Vω(r) = +
g2
ω

4π

e−mωr

r
, Vρ(r) = +

g2
ρ

4π

e−mρr

r
. (5.7)
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The total effective nucleon-nucleon potential is obtained from the scalar and vector

parts of the meson fields. This can be expressed as [185],

veff (r) = Vω + Vρ + Vσ =
g2
ω

4π

e−mωr

r
+
g2
ρ

4π

e−mρr

r

− g
2
σ

4π

e−mσr

r
. (5.8)

5.2.1 Non-linear case

The Lagrangian density in the above Eq. 5.1 contains only linear coupling terms,

which is able to give a qualitative description of the nuclear system [190, 191]. The

essential nuclear matter properties like incompressibility and the surface properties

of finite nuclei cannot be reproduced quantitatively within this linear model. The

suppression of the two-body interactions within a nucleus in favor of the interaction

of each nucleon with the average nucleon density, means that the non-linearity acts

as a smoothing mechanism and hence leads in the direction of the one-body potential

and shell structure [99,141,192,193]. The replacement of mass term 1
2
m2
σσ

2 of σ field

by U(σ) and 1
2
m2
ωV

µVµ of ω field by U(ω). This can be expressed as

U(σ) =
1

2
m2
σσ

2 +
1

3
g2σ

3 +
1

4
g3σ

4, (5.9)

U(ω) =
1

2
m2
ωVµV

µ +
1

4
c3(VµV

µ)2. (5.10)

The terms on the right hand side of Eqs.( 5.9)- (5.10), except the first term, from

the non-linear self coupling of the σ and ω mesons, respectively [99, 141]. Here, the

non-linear parameter g2 and g3 due to σ− fields are adjusted to the surface properties

of finite nuclei [194,195]. In general most of the successful fits like NL1 and NL3 sets

yield, the +ve and −ve signs for g2 and g3, respectively. The negative value of g3

is a serious problem in quantum field theory and responsible for the divergence of a

solution in the lighter mass region of periodic table i.e. for higher density region. As,

we are dealing within the mean field level and with normal nuclear matter density, the

corresponding σ field is very small and the −ve value of g3 is still allowed [194, 196].

Again, c3 = 1
6
ζ0 is the non-linear coupling constant for self-interacting ω-mesons.

With the addition of the non-linear terms in the Eqs. ( 5.9)- (5.10) to the Lagrangian,
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the field equations for σ and ω- fields (in Eq.5.6-5.7 ) are modified as:

(−52 +m2
σ)σ(r) = −gσρs(r)− g2rσ

2(r)− g3σ
3(r),

(−52 +m2
ω)V (r) = gωρ(r)− c3W

3(r). (5.11)

Here, W (r) = gωV0(r) is the non-linear self-interacting ω-fields. Because of the great

difficulty in solving the above nonlinear differential equations, it is essential to have

a variational principle for the estimation of the energies [194,195]. In the static case,

the negative sign of the third term in the Lagrangian is computed with the correct

source function and an arbitrary trial wave function. The limit on the energy has

a stationary value equal to the proper energy when the trial wave-function is in the

infinitesimal neighborhood of the correct one. Now, the solution for the modified σ

and ω fields are given as [194]

Vσ = − g
2
σ

4π

e−mσr

r
+
g2

2

4π
r
e−2mσr

r
+
g2

3

4π

e−3mσr

r
,

Vω =
g2
ω

4π

e−mωr

r
− c2

3

4π

e−3mωr

r2
. (5.12)

The new NN-interaction analogous to M3Y form and is able to improve the incom-

pressibility and deformation of the finite nuclei results [196]. In addition to this, the

non-linear self coupling of the σ and ω-mesons help to generate the repulsive and at-

tractive part of the NN potential at long and at short distance, respectively to satisfy

the saturation properties (Coester-band problem) [197]. We are dealing with two type

of mesons, one is scalar (σ) and other is vector (ω). The range of their interactions

are also different due to their different masses. Consider the case of σ−meson, where

the range of interaction is ∼ ~
mσc

fm. In this range the attractive part of the potential

comes from the exchange of the σ−meson. The density dependent many-body effect

demands a repulsive part in this region. This is given by the self interacting terms

like σ3 and σ4 [165]. A suitable adjustment of the parameter able to reproduces the

proper potential satisfying the Coester band problem. Generally, the exchange of

ω−meson gives the repulsive potential in the short-range part of the hard core re-

gion. Diametrically, opposite phenomenon is also occurs in case of ω−meson coupling.

Contrary to the non-linearity of σ−meson nature, the self-coupling of ω−meson gives
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an attractive component at very short distance (∼ 0.2 fm) of the nuclear potential.

The non-linear terms also generate the most discussed 3−body interaction [165]. The

modified effective nucleon-nucleon interaction is defined as [185]:

veff (r) = Vω + Vρ + Vσ

=
g2
ω

4π

e−mωr

r
+
g2
ρ

4π

e−mρr

r
− g2

σ

4π

e−mσr

r

+
g2

2

4π
r
e−2mσr

r
+
g2

3

4π

e−3mσr

r
− c2

3

4π

e−3mωr

r
. (5.13)

5.3 Results and Discussions

The Eq. ( 5.13) shows that the effective NN-potential in terms of the well known

inbuilt RMF theory parameters of σ, ω and ρ meson fields. Here, we have used RMF

(NL3) force parameter along with varying c3 for ω-self interactions to determine the

nuclear properties. The values of the parameters for NL3-force are listed in Table 5.1.

Although, the ω4 term is already there in the FSU-Gold parameter [90, 198], here

we are interested to see the effect of non-linear self coupling of ω meson. Thus, we

have added the self-interaction of ω with coupling constant c3 on top of NL3 set and

observed the possible effects.

First of all, we have calculated the NN-potential for linear and non-linear cases

using Eq. 5.8 and 5.13, respectively. The obtained results for each cases are shown

in Fig. 5.1. From the figure, it is clear that without taking the non-linear coupling for

RMF (NL3), one cannot reproduce a better NN-potential. In other word, the depth

of the potential for linear and non-linear are ∼ 150 MeV and 50 MeV, respectively.

Thus, the magnitude of the depth for linear case is not reasonable to fit the NN-data.

Again, considering the values of c3, there is no significant change in the total nucleon-

nucleon potential. For example, the NN-potential does not change at all for c3 ' ±
0.6, which can be seen from Fig. 5.1.

Further, we have calculated the individual contribution of meson fields to the

NN-potential in particular case of σ and ω-mesons. In case of σ-field, we have cal-

culated the linear and non-linear contributions separately, and combined to get the

total σ-potential as shown in Fig. 5.2. From the figure, one can find the non-linear

self-interacting terms in the σ-field play an important role (contributing a repulsive
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Figure 5.1: The effective NN interaction potentials as a function of distance r from

Eq. 5.6- 5.12 for NL3 parameter set.
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Figure 5.2: The contribution of σ-potential from linear, non-linear and total as a

function of distance r for NL3 parameter set.
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function of distance r for for NL3 parameter set.

interaction) in the attractive part of the σ−meson domain, giving rise to a repul-

sive potential complementing the 3-body effect of the nuclear force in the total NN-

potential [194]. The linear and non-linear contribution of the ω-field at various c3 are

shown in Fig. 5.3. The important feature in this figure is that the linear term give

an infinitely large repulsive barrier at ∼ 0.5 fm, in which range, the influence of the

non-linear term of the ω−meson is zero. However, this non-linear terms is extremely

active at very short distance (∼ 0.2 fm), which can be seen from the figure.

That means, mostly the (i) linear term of the σ− meson is responsible for the

attractive part of the nuclear force (nuclear binding energy) (ii) the non-linear terms

are responsible for the repulsive part of the nuclear force at long distance, which

simulate the 3-body interaction of the nuclear force [194], which also help to explain

the Coester band problem. (iii) similarly, the linear term of the ω− meson is restraint

for the repulsive part of the nuclear force (known as hard core) and (iv) the non-linear

self-coupling of the ω− meson (1
4
c3VµV

µ) is responsible for the attractive part in the

very shortest (∼ 0.2fm) region of the NN-potential. It is worthy to mention that the

values of these constants are different for different forces of RMF theory. Hence, the
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Figure 5.4: The energy per particle of symmetric nuclear matter as a function of

baryon density for various values of c3.

NN-potential somewhat change a little bit in magnitude by taking different forces,

but the nature of the potential remains unchanged.

5.3.1 Energy density and Pressure density

In the present work, we study the effect of the additional term on top of the NL3 force

parameter to the Lagrangian [49], which comes from the self-interaction of the vector

fields with c3 as it is done in the Refs. [90,198–200]. The inclusion of this term is not

new, it is already taken into account for different forces of RMF and effective field

theory motivated relativistic mean field theory (E-RMF). Here, our aims is to see the

effect of c3 to the nuclear system and the contribution to the attractive part of the hard

core of NN-potential. We have solved the mean field equations self-consistently and

estimated the energy and pressure density as a function of baryon density. The NL3

parameter set along with the additional c3 is used in the calculations [199,200]. The

obtained results for different values of c3 are shown in Figs. 5.4 and 5.5, respectively.

From the figure, it is clearly identify that the −ve value of c3 gives the stiff equation of

state (EOS), meanwhile the +ve value shows the soft EOS. It is to be noted that mass
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Figure 5.5: The pressure density of symmetric nuclear matter as a function of baryon

density for various values of c3.

Table 5.1: The values of mσ, mω, mρ (in MeV) and gσ, gω, gρ for RMF (NL3) force,

along with the self-interacting ω− field with coupling constant c3 .

set mσ mω mρ gσ gω gρ g2(fm−1) g3 c3

NL3 508.194 782.5 763.0 08.31 13.18 6.37 -10.4307 -28.8851 0.0±0.6

and radius of the neutron star depends on the softness and stiffness of EOS. Here,

in our investigation, we observed that the softening of the EOS depends on the non-

linear coupling of the ω− meson [90, 193]. The recent measurement of Demorest et.

al. [201] put a new direction that the NL3 force needs slightly softer EOS. However,

when we deals with G2 (E-RMF) model, the results of Ref. [202] demands a slightly

stiffer EOS. This implies that, the value of c3 should be fixed according to solve the

above discussed problem.
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5.3.2 Binding energy, Excitation energy and Compressibility

To see the sensitivity of c3 on the finite nuclei, we calculated the binding energy (BE),

giant monopole excitation energy (Ex) for 40Ca and 208Pb nuclei as representative

cases as a function of c3. The excitation energy and incompressibility are calculated

by scaling method within the framework of extended Thomas-Fermi approximation.

The obtained results are shown in upper and lower panel of the Fig. 5.6 and 5.7.

The experimental and empirical data are also displaced for comparison.

From the figure, one observes a systematic variation of binding energy by employ-

ing the isoscalar-vector selfcoupling parameter c3. For example, the binding energy

monotonically changes for all values of c3. When c3 = 0, the NL3 set reproduces

the original binding energies for both 40Ca and 208Pb, which are fitted with the data

while constructing the force parameters. As soon as the self-coupling constant is non-

zero, the calculated BE deviates from the data, because of the influence of c3. Again,

analyzing the excitation energy, we find reasonable match of Ex with the observation

(lower panel of Fig. 5.7). These values of Ex remain almost constant for a wide

range of c3 (∼ 2 to ∼1), beyond which Ex increases drastically for positive value only.

Further, we analyze the variation of compressibility modulus with c3 for 40Ca and

208Pb (upper panel of Fig. 5.7). We include both positive and negative values of c3

(2 to +2) to know the effects on the sign of c3. Similar to the monopole excitation

energy, we find that the compressibility modulus does not change with the increase

of c3 up to some optimum value. The empirical (nuclear matter compressibility mod-

ulus K∞) data of K∞
emp = 210 ± 30 MeV and the nuclear matter incompressibility

for NL3 set (271.76 MeV) are given in the figure to have an idea about the bridge

between the nuclear matter limit for finite nuclei. In general, these two values along

with the finite nuclei compressibility modulus gives an overall estimation about a

possible link among them in finite nuclei and nuclear matter limit. It is interesting

to notice that although we get a stiff equation of state with negative value of c3 for

infinite nuclear matter system, this behavior does not appear in finite nuclei, i.e. the

KA and Ex do not change with sign of c3. May be the density with which we deal in

the finite nucleus is responsible for this discrepancy. However, KA and Ex increase

substantially after certain value of c3, i.e. the finite nucleus becomes too much softer

at about c3 ∼1.0 resulting a larger incompressibility.
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5.4 Summary and Conclusions

In summary, we analyzed the effects of the non-linear self-coupling of the σ−scalar

and ω−vector mesons. At long range, i.e., more than 0.5 fm, the self coupling of the

σ−meson gives a repulsive component contrary to the attractive part of the linear

term. This repulsive nature of the nuclear potential originated from the nonlinear

terms of the σ−meson couplings simulate the 3-body force. This 3-body force is

mostly responsible to solve the Coester band problem in RMF formalism. On the

other hand, at extremely short distance, the nonlinear term of the ω−meson cou-

pling gives a strongly attractive potential for both positive and negative value of

c3. This short range distance is about 0.2fm, beyond (more than 0.2 fm) which the

vector−meson interaction itself shows a strong repulsion due to its linear interaction

of the ω−meson and responsible for the saturation of nuclear force. Thus, one con-

clude that the effects of the vector self-coupling is crucial for the attractive nature

of the nuclear force at the extremly short range region and should be taken in equal

footing while constructing the force parameter in relativistic field theory.
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Chapter 6

Effects of NN potentials on p

nuclides in the A∼100-120 region

In the previous chapter, we discussed the effects of self-interacting ω -meson (ω4)

coupling on various properties starting from the binding energy of finite nucleus to

equation of state of the infinite nuclear matter. A special attention was given on

the effect of ω4 coupling on newly proposed R3Y nucleon-nucleon potential. In this

chapter, we will discuss some more applications of our proposed nucleon-nucleon

interaction, R3Y in the calculation of astrophysical S-factor. Microscopic optical

potentials for low energy proton reactions have been obtained by folding density

dependent M3Y and R3Y interaction derived from nuclear matter calculation with

densities from mean field approach to study astrophysically important proton-rich

nuclei in mass 100-120 region. We compare S factors for low-energy (p, γ) reactions

with available experimental data and further calculate astrophysical reaction rates

for (p, γ) and (p, n) reactions using both R3Y and M3Y interaction. Along with the

linear R3Y interaction, we choose some nonlinear R3Y (NR3Y) interactions from

RMF calculation and folded them with corresponding RMF densities to reproduce

experimental S factor values in this mass region. Impact of the non-linearity of NR3Y

interaction on S-factor of proton rich nuclei is discussed in detail.
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Figure 6.1: Comparison of charge density from our calculation with Fourier- Bessel

analysis of experimental electron scattering data [203]

6.1 Introduction

In nature 35 nuclei, commonly termed as p nuclei, can be found on the proton-rich

side of the nuclear landscape ranging between 74Se to 196Hg. As they are neutron

deficit, the astrophysical reactions involved in the synthesis of these elements do not

correspond to the slow(s) or fast(r) neutron capture processes. It mainly includes

reactions such as proton capture, charge exchange and photo-disintegration. One can

find a detailed study related to the p process in standard text books [for example,

Illiadis [204]] and reviews [205].

The natural abundances for p nuclei are very low in the order of 0.01% to 1%. In

general, the calculation of isotopic abundances require a network calculation typically

involving 2000 nuclei and approximately 20000 reaction and decay channels and one

major problem with this p network is that most of the nuclei involved in the reaction

network are very shortly lived. As a consequence, it is very difficult to track the p pro-

cess nucleosynthesis network experimentally. However, recent radioactive ion beam

facilities are giving new prospects, still we are far away from measuring astrophysical

reaction rates for the main reactions involved in the p process. Thus, one often has

to depend on theoretical models to study these reactions. These type of calculations
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acutely exploit the Hauser-Feshbach formalism where the optical model potential, in

a local or a global form, is a key ingredient. Rauscher et.al. substantially calculated

astrophysical reaction rates and cross sections in a global approach [206]. They fur-

ther made a comment that the statistical model calculations may be improved by

using locally tuned parameterization.

Here, we perform a fully microscopic calculation. The framework is based on

microscopic optical model utilizing the theoretical density profile of a nucleus. In

presence of a stable target, electron scattering experiment can be performed to avail

nuclear charge density distribution data. However, in absence of a stable target,

theory remains a sole guide to describe the density. Therefore, in this work we

employ relativistic mean field (RMF) approach to extract the density information

of a nucleus. This has the advantage of extending it to unknown mass regions. In

some earlier works [207–211], this method has been used to study low energy proton

reactions in the A ∼ 55-100 region. Therefore we use this method in A ∼ 100-120

region as an extension of previous works.

The non-linearity in the scalar field [186, 212] in a RMF theory has been proved

very successful in reproducing various observable like nuclear ground state including

nuclear matter properties and the surface phenomena like proton radioactivity etc. In

this chapter, we intend to study the effects of microscopic optical potentials obtained

from nonlinear NN interactions also in addition to the conventional linear NN in-

teractions in the A∼ 100-120 region. We concentrate mainly on the region relevant

to the p network and therefore mainly proton rich and stability region of the nuclear

landscape is our main concern.

6.2 Procedure

The RMF approach has successfully explained various features of stable and exotic

nuclei like ground state binding energy, radius, deformation, spin-orbit splitting, neu-

tron halo etc. [7, 8, 163, 213, 214]. The RMF theory is nothing but the relativistic

generalization of the non-relativistic effective theory like Skyrme and Gogny. This

theory does the same job, what the non-relativistic theory can do, with an additional

guarantee that it works in a better way in high density region [215]. We have used
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the RMF formalism in both direct and indirect way. Directly we have calculated

the nuclear density, which is an essential quantity to calculate the optical potential.

Indirectly we used RMF Lagrangian to derive NN interactions also along with the

phenomenologically availed NN interaction model. Here we have used different types

of NN interactions, namely the density dependent M3Y interaction (DDM3Y) and

nonlinear R3Y interactions(NR3Y). The concept of the NR3Y was originally devel-

oped from basic idea of the RMF formalism [216] and will be discussed later in this

section.

In order to calculate the nuclear density, different forms of Lagrangian densities

can be used from RMF approach. The chosen form of the interaction Lagrangian

density is given by

Lint = ψ̄

[
gσφ−

(
gωVµ +

gρ
2
τ.bµ +

e

2
(1 + τ3)Aµ

)
γµ

]
ψ − g2

3
φ3 − g3

4
φ4 +

ξ

4
(VµV

µ)2

+ Λ(Rµ.R
µ)(VµV

µ). (6.1)

The values of gσ, gρ and gω are the coupling constants for sigma, rho, and omega

mesons respectively, given in Table 6.1. The coupling constants for nonlinear terms

of sigma are g2 and g3, that for omega meson is given by ξ and Λ denotes the cross

coupling strength between rho and omega meson.

For example, in case of FSUGold parameter set [90], one can see that, apart

from the usual nucleon-meson interaction terms, it contains two additional nonlinear

meson-meson self interaction terms including isoscalar (ω) meson self interactions, and

mixed isoscalar-isovector (ω2R2) coupling, whose main aim is to softening the equation

of state (EOS) of symmetric nuclear matter. As a result, the new parameterization

becomes more effective in reproducing quite a few nuclear collective modes, namely

the breathing modes in 90Zr and 208Pb, and the isovector giant dipole resonance in

208Pb [90].

Again there are many other parameter sets in RMF which are different from each

other in various ways like inclusion of new interaction or different value of masses

and coupling constants of the mesons etc. For the comparison and better analysis we

have included different parameter sets (NL3, TM1) as it is a matter of great concern

to check their credibility in astrophysical prediction. Therefore, for the astrophysical

calculations we have used nuclear densities from different sets of parameters like
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NL3 and TM1 and folded them with corresponding NN interactions respectively.

In case of DDM3Y interaction, which is not obtained from the RMF theory, we

folded it with RMF density obtained from FSUGold. This FSUGold folded DDM3Y

interaction have been used in earlier works [207–211] and successfully reproduced

some astrophysically important cross sections and reaction rates in A ∼ 55-100 region.

Therefore, it will be interesting to see the behavior of such potential in A ∼ 100-120

region.

Typically, a microscopic optical model potential is obtained by folding an effective

interaction, derived either from the nuclear matter calculation, in the local density

approximation, i.e. by substituting the nuclear matter density with the density dis-

tribution of the finite nucleus (for example DDM3Y), or directly by folding different

R3Y interactions using different sets of parameters from RMF with corresponding

density distributions. The folded potential therefore takes the form

V (E, ~R) =

∫
ρ(~r′)veff (r, ρ, E) ~dr′, (6.2)

with ~r = ~r′− ~R in fm. These effective interactions (veff (r, ρ, E)) are described below

in more details.

The density dependent M3Y (DDM3Y) interaction [217] is obtained from a finite

range energy independent G-matrix elements of the Reid potential by adding a zero

range energy dependent pseudo-potential and introducing a density dependent factor.

The interaction is given by

veff (r) = tM3Y (r, E)g(ρ). (6.3)

Here veff (r) is a function of r, ρ and E, where E is the incident energy and ρ, the

nuclear density. The tM3Y interaction is defines as

tM3Y = 7999
e−4r

4r
− 2134

e−2.5r

2.5r
+ J00(E)δ(r) (6.4)

with the zero range pseudo potential J00(E) given by,

J00(E) = −276

(
1− 0.005

E

A

)
MeVfm3 (6.5)
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and g(ρ) is the density dependent factor expressed as,

g(ρ) = C(1− bρ2/3), (6.6)

with C = 2.07 and b = 1.624 fm2 [217].

In 2014, Sahu et.al. [186] introduced a simple form of nonlinear self-coupling of

the scalar meson field and suggested a new NN potential from relativistic mean

field theory (RMFT) analogous to the M3Y interaction. Rather than using usual

phenomenological prescriptions, the authors derived the microscopic NN interac-

tion from the RMF Lagrangian. Starting with the nonlinear relativistic mean field

Lagrangian density for a nucleon-meson many-body system they solved the nuclear

system under the mean-field approximation using the Lagrangian and obtained the

field equations for the nucleons and mesons. It is necessary here to mention that

the authors [186] had taken the nonlinear part of the scalar meson σ proportional to

σ3 and σ4 in account. Finally for a normal nuclear medium the resultant effective

nucleon-nucleon interaction, obtained from the summation of the scalar and vector

meson fields takes the form. 1

veff (r) =
g2
ω

4π

e−mωr

r
+
g2
ρ

4π

e−mρr

r
− g2

σ

4π

e−mσr

r
(6.7)

+
g2

2

4π
re−2mσr +

g2
3

4π

e−3mσr

r
− ξ2

4π

e−3mωr

r

+J00(E)δ(r).

Here mσ, mρ, mω are the masses of sigma, rho, and omega mesons respectively,

whereas the zero range pseudo potential J00(E) is given in Eqs.(6.5).

Using NL3 parameters from Table 6.1, Eqs. (6.7) becomes [186]

veff (r) = 10395
e−3.97r

4r
+ 1257

e−3.87r

4r
− 6554

e−2.58r

4r
(6.8)

+6830r
e−5.15r

4
+ 52384

e−7.73r

4r
+ J00(E)δ(r).

1There is a typographical error in the expression of veff in Sahu et.al [186] and the corrected

form is given in this thesis.
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Table 6.1: Model parameters for the Lagrangian FSUGold [90], NL3 [49] and TM1

[87].

FSUGold NL3 TM1

M (MeV) 939 939 938

mσ (MeV) 491.500 508.194 511.198

mω (MeV) 782.500 782.501 783.000

mρ (MeV) 763.000 763.000 770.000

gσ 10.592 10.2170 10.0290

gω 14.298 12.8680 12.6140

gρ 11.767 4.4740 4.6320

g2 (fm−1) -4.2380 -10.4310 -7.2330

g3 -49.8050 -28.8850 0.6180

ξ 2.0460 - 71.3070

Λ 0.0300 - -

The authors of Ref. [186] denoted this NN interaction potential as NR3Y(NL3).

Further, putting parameter sets from TM1 (Table 6.1), one can obtain veff for

NR3Y(TM1).

Since the DDM3Y folded potential described above do not include any spin-orbit

term, the spin-orbit potential from the Scheerbaum prescription [218] has been cou-

pled with the phenomenological complex potential depths λvso and λwso . The spin-

orbit potential is given by

U so
n(p)(r) = (λvso + iλwso)

1

r

d

dr
(
2

3
ρp(n) +

1

3
ρn(p)). (6.9)

The depths are functions of energy, given by

λvso = 130 exp(−0.013E) + 40,

and

λwso = −0.2(E − 20),

where E is in MeV. These standard values have been used in the present work. How-

ever, in case of nonlinearNN folded potentials from RMF (NR3Y(NL3), NR3Y(TM1)),
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Table 6.2: Calculated binding energy per nucleon (B.E/A) [219] and charge radii

rch [220] for some selected p nuclei compared with experimental values.

B.E./A(MeV) rch(fm)

FSUGold TM1 NL3 Exp FSUGold TM1 NL3 Exp

102Pd 8.480 8.537 8.572 8.580 4.460 4.476 4.483 4.483

106Cd 8.494 8.518 8.532 8.539 4.525 4.535 4.535 4.538

108Cd 8.498 8.529 8.537 8.550 4.537 4.549 4.552 4.558

113In 8.507 8.461 8.523 8.523 4.480 4.575 4.588 4.601

112Sn 8.514 8.520 8.502 8.514 4.595 4.598 4.594 4.594

114Sn 8.534 8.526 8.490 8.523 4.636 4.611 4.662 4.610

115Sn 8.530 8.527 8.494 8.514 4.607 4.611 4.617 4.615

120Te 8.461 8.461 8.460 8.477 4.682 4.688 4.735 4.704

one need not require to add spin-orbit term from outside, as it is contained within

the RMF [186].

Finally reaction cross-sections and astrophysical reaction rates are calculated in

the Hauser-Feshbach formalism using the computer package TALYS1.2 [221].

6.3 Results and discussions

For simplicity, this section is divided in three subsections. In the Sec. 6.3.1, results

from RMF calculations are given. We will concentrate on the reaction cross-sections

and astrophysical S factors in the Sec. 6.3.2. Furthermore, results for reaction rates

for astrophysically important nuclei are provided. Sec. 6.3.3 is devoted to the effects

of different NN potentials in this mass region.

6.3.1 RMF calculations

In some earlier works [207–211], FSUGold has been proved to be successful in repro-

ducing experimentally obtained binding energy, charge radius and charge density data

in the A∼55-100 region. Again in 1997, NL3 parameter set had been introduced by
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Lalazissis et.al [49] with a aim to provide a better description not only for the prop-

erties of stable nuclei but also for those far from the β stability line and during last

two decades, this parameter set successfully reproduces binding energy, charge radius

etc. for various elements throughout the periodic table [49, 222]. In order to confirm

the applicability of RMF calculations in A∼100-120 region, in Table 6.2, we compare

nuclear binding energy per nucleon and charge radii of p nuclei in the concerned mass

region with different sets of parameters of RMF formalism with existing experimental

data [219, 220]. We find that, in most cases, our calculations with different sets of

parameters match quite well with the experimental data. In Fig. 6.1 charge density

from our calculations are compared with existing electron scattering data [203] for

Pd isotopes and here also, the agreement is well enough to confirm the credibility of

RMF models in this mass region.

6.3.2 Astrophysical S factor and reaction rates

In the present case, our calculations, being more microscopic, are more restricting. In

general, phenomenological models are usually fine-tuned for nuclei near the stability

valley, but not very successful in describing elements near the proton and neutron rich

regions. Microscopic models, in contrary, can be extended to the drip line regions and

therefore, this method can be used to study the reaction rates of nuclei involved in p

process nucleosynthesis network (∼ 2000 nuclei are present in the total p network).

However, only a few number of stable p nuclides are available in nature that can be

accessed by the experiment and therefore we are restricted to those nuclei for the

purpose of comparison.

Let us first take the case of DDM3Y folded potential. As a first test of the

optical model potential, we have calculated elastic proton scattering at low energies

where experimental data are available. As the elastic scattering process involves the

same incoming and outgoing channel for the optical model, it is expected to provide

the easiest way to constrain various parameters involved in the calculation. Here

we are mainly interested in the energy region between 2-8 MeV as the astrophysical

important Gamow window lies within this energy range in the concerned mass region.

However, scattering experiments are very difficult at such low energies, because the

cross sections are extremely small, and hence no experimental data are available.
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Figure 6.2: Experimental and calculated cross sections for elastic proton scattering

at 9.7 MeV proton energy.

Therefore we have compared the cross sections from our calculations with the lowest

energy experimental data available in the literature.

In Fig. 6.2, we present the result of our calculation with DDM3Y folded potential

for 120Sn with available experimental data [223]. To fit the experimental data, at

first, the folded DDM3Y potential is multiplied by factors 0.3 and 0.7 to obtain the

real and imaginary parts of the optical potential, respectively. However better fits for

individual reactions can be possible by varying different parameters. But if the present

calculation has to be extended to an unknown mass region, this approach is clearly

inadequate. Therefore, we have refrained from fitting individual reactions. A detailed

description of these normalizing constants are available in references [207–211].

Yet, the astrophysical reaction rates depend on the proper choice of the level

density and the E1 gamma strength. Therefore, we have calculated all of our results

with microscopic level densities in Hartree-Fock (HF) and Hartree-Fock-Bogoliubov

(HFB) methods, calculated for TALYS database by Goriley and Hilaire [221, 224]

on the basis of Hartree-Fock calculations [225] . We have also compared our results

using phenomenological level densities from a constant-temperature Fermi gas model,
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a back-shifted Fermi gas model, and a generalized super-fluid model from TALYS. All

these model parameters can be availed from TALYS database. We find that the cross

sections are very sensitive to the level density parameters. We therefore analyzed, in

most of the cases, the HF level densities fit the experimental data better in this mass

region. Again, for E1 gamma strength functions, results derived from HF + BCS and

HFB calculations, available in the TALYS database, are employed. In this case also,

the results for HF+BCS calculations describe the experimental data reasonably well

and we present our results for that approach only.

We now calculate some (p, γ) cross sections relevant to p nuclei in A∼100-120

region, where experimental data are available. At such low energies, reaction cross-

section varies rapidly making comparison between theory and experiment rather dif-

ficult. Therefore the usual practice in low-energy nuclear reaction is to compare

another key observable, viz. the S factor. It can be expressed as [208]

S(E) = Eσ(E)e2πη, (6.10)

where E is the energy in center of mass frame in keV, which factorises out the pre-

exponential low energy dependence of reaction cross-section σ(E), and η indicates

the Sommerfeld parameter with

2πη = 31.29ZpZt

√
µ

E
. (6.11)

The factor exp(2πη) is inversely proportional to the transmission probability

through the Coulomb barrier with zero angular momentum(s-wave) and therefore

removes exponential low energy dependence of σ(E). Here σ(E) is in barn, Zp and Zt

are the charge numbers of the projectile and the target, respectively and µ is the re-

duced mass (in amu) of the composite system. This S factor varies much slowly than

reaction cross-sections and for this reason, we calculate this quantity and compare it

with experimentally obtained values.

In Figs. 6.3-6.5 we present the results of some of our calculations with folded

DDM3Y potential for Pd, Cd and Sn isotopes, respectively, along with the correspond-

ing experimental results. The experimental values for 102Pd are from Ref. [226](red

point) and [227](blue cross), 106,108Cd from Gy. Gyürky et.al [228] and 112Sn from
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Figure 6.5: S factors extracted from theory compared with experimental measure-

ments for for 112Sn.
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Ref. [229].In case of 102Pd in Fig. 6.3, theoretical prediction is in a good agreement,

mainly in the low energy regime, with the experimental data from Ref. [227] but

under estimates the data obtained from the Ref. [226]. In Ref. [226], an activation

technique was used in which gamma rays from decays of the reaction products were

detected off-line by two hyper-pure germanium detectors in a low background envi-

ronment, whereas in Ref. [227], cross-section measurements have been carried out at

the cyclotron and Van de Graaff accelerator by irradiation of thin sample layers and

subsequent counting of the induced activity. However, we can not comment on the

individual merits of these experiments.

In case of 106,108Cd (in Fig. 6.4), one can find that the agreement of theory with

experimental values are good enough, however there is a slight over estimation for

108Cd in the low energy regime. In case of 112Sn in Fig. 6.5, our calculation follows

the experiment in a fairly good fashion.

The success of this microscopic optical potential (DDM3Y interaction folded with

FSUGold density) in reproducing S-factor data for the above p nuclei leads us to

calculate reaction rates of some astrophysically important reactions. In Fig. 6.6,

we compare (p, γ) reaction rates for some important p nuclei with NONSMOKER

rates [206] obtained from statistical model calculation with a global approach. Again

in Fig. 6.7, reaction rates for charge exchange reactions (p, n) for some nuclei, however

not astrophysically significant enough, in this mass region are compared with existing

NONSMOKER calculations. One can see that the present calculation is very similar

to the NONSMOKER values in almost all cases. Therefore, it is expected that all

the results can also be reproduced with commonly used NONSMOKER rates.

In the remaining part, we mainly concentrate on the effects of optical potentials

obtained by folding nonlinear interactions from RMF (NR3Y). In Fig. 6.8, S factors

for 120Te obtained from NR3Y(NL3) and NR3Y (TM1) potentials are compared with

the experimental data taken from Ref. [230]. The S- factor with DDM3Y interaction

folded with FSUGold density is also given for comparison.

One can see that our calculation with folded DDM3Y potential shows a very

nice agreement with experimental values throughout the energy range. In contrary,

in case of NR3Y(NL3) folded potential, there is a wide deviation of the theory with

experimental data after 6 MeV whereas the TM1 folded potential NR3Y(TM1) shows
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For other details, see the text.
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Figure 6.9: (Color online) Effective interaction potential for 120Te.

a decrease in S factor value around 6 MeV energy unlike the NR3Y(NL3) case.

The rapid drop of S factor values with increasing energy actually takes place due to

the increasing contribution of higher angular momentum channels (l>0). Therefore,

if the center of mass energy Ec.m. becomes larger than the Coulomb barrier for a

specific set of nucleon-nucleus reaction (Ec.m. >Ec), as a result the S factor will

decrease rapidly with the growth of energy (Ec.m.) [231]. In the next subsection, we

illustrate this physics in detail and show how this phenomenon is associated with

different form of potentials.

6.3.3 Optical potentials and effects of non-linearity

We now interpret the above results (for example, see Figs. 6.8) with help of the

microscopic potentials obtained from different N − N interactions. In Fig. 6.9,

the effective NN interaction potentials (in MeV) are plotted with the radius r (fm)

for 120Te. The DDM3Y interaction, being dependent on the density, is different for

different elements of the periodic table, whereas in contrary, other interactions remain

unaltered for different elements. In Fig. 6.9 different forms of NN interactions are
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Figure 6.10: (Color online) Real central part of folded potentials and Coulomb po-

tential for 7 MeV proton(Lab) incident on 120Te

given. We find that the curves from DDM3Y and NR3Y(NL3) interactions generated

from two different formalisms show almost similar trend.

A graphical representation of microscopic potentials for 120Te after folding the

interactions is represented in Fig. 6.10. Here the real central part of the optical po-

tential is plotted with the radius. In the figure, one can see that the DDM3Y folded

potential provides an attractive potential whereas in case of NR3Y(NL3) folded po-

tential, the repulsive part overpowers the attractive part, as well as the Coulomb part

of the potential. As a result, the resultant repulsive barrier becomes greater than

the Coulomb barrier almost upto a range for a nuclear reaction to occur. Therefore

the penetrability of the higher angular momentum channels get reduced and as a

obvious consequence, the desirable sharp drop in S factor (Fig. 6.8) has not been

achieved. In case of TM1 folded potential, we can see that the effective contribu-

tion of the optical potential is attractive in nature similar to the DDM3Y potential

and therefore, the Coulomb energy serves as the only repulsive barrier. As a result

the penetration probability for higher angular momentum channels becomes higher

than that of the NR3Y(NL3) case. This reason is replicated as a drop of S factor

121



values at higher energies in Fig. 6.8. In case of the imaginary part of the potential,

the curves follow exactly the similar trend as that of the real part, i.e., apart from

NR3Y(NL3) potential, rest of them gives attractive contribution. One can explain

the above scenario from the numerical value of the nonlinear coupling constant g3

of TM1 parameter set, as given in Table 6.1, which is much less than that of the

NL3 parameter set. Therefore it can be understood that with decreasing values of

the nonlinear coupling constants g2 and g3, the repulsive component of the optical

potential also gets reduced and one point is attained when only the effect of Coulomb

barrier remains as a dominating repulsive contributor and we will get patterns like

TM1, DDM3Y as shown in Fig. 6.10 and we can find the expected drop of S factor

at higher energies due to the opening of higher angular momentum channels. So from

the above observations we can comment that there should be an upper cut-off for the

coupling constants values of the nonlinear components.

6.4 Summary

To summarize, cross section for low energy (p, γ) reactions for a number of p nuclei

in A∼100-120 region have been calculated using microscopic optical model poten-

tial with the Hauser Feshbach reaction code TALYS. Mainly, microscopic potential

is obtained by folding DDM3Y interaction with densities from RMF approach. As-

trophysical reaction rates for (p, γ) and (p, n) reactions are compared with standard

NONSMOKER results. Finally, the effect of microscopic optical potential obtained

by folding nonlinear NR3Y(NL3) and NR3Y(TM1) interactions with corresponding

RMF densities are employed to fit the experimental S factor data for 120Te. The

reason of the deviation of theoretical prediction with nonlinear NR3Y(NL3) potential

from experiment at higher energies has been discussed and finally we made a com-

ment on magnitude of the coupling terms of the nonlinear components that an upper

cut-off for g2 and g3 should be fixed to get proper repulsive component of the NN

interaction.
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Chapter 7

Effects of hyperon on both static

and rotating neutron star

In last few chapters, we discussed the structure of finite nuclei by using relativistic

as well as non-relativistic formalisms. Along with the finite nuclear system, an infi-

nite nuclear system also plays very crucial role in understanding the nucleon-nucleon

interaction and hence the nuclear structure. In this chapter, we have discussed the

structure of the neutron star, which is a perfect example of the infinite nuclear matter

system. Particularly , we study the effects of isovector-scalar (δ)-meson on neutron

and hyperon stars. Influence of δ-meson on both static and rotating stars are dis-

cussed. The δ-meson in a neutron star consisting of protons, neutrons, and electrons

makes the equations of state stiffer at a higher density and consequently increases the

maximum mass of the star. But induction of δ-meson in the hyperon star decreases

the maximum mass. This is due to the early evolution of hyperons in the presence of

δ-meson.

7.1 Introduction

Neutron star is a venerable candidate to discuss the physics at high density. We can

not create such a high density in a terrestrial laboratory, so a neutron star is and

the only object, which can provide much information on high-density nature of the

matter [232, 233]. But it is not an easy task to deal with the neutron star for it’s
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complex nature, as all the four fundamental forces (strong, weak, gravitational and

electromagnetic) are active. High gravitational field makes mandatory to use gen-

eral theory of relativity for the study of neutron star structure. Equations of states

(EOS) are the sole ingredient that must be supplied to the equation of stellar struc-

ture, Tolman-Oppenheimer-Volkoff (TOV) equation, whose output is the mass-radius

profile of the dense neutron star. In this case, the nuclear EOS plays an intimate role

in deciding the mass-radius of a neutron star. Its indispensable importance attracts

the attention of physicists to have an anatomy of the interactions Lagrangian. As the

name suggests, a neutron star is not completely made up neutrons, a small fraction of

protons and electrons are also present, which is the consequence of the β−equilibrium

and charge neutrality condition [234]. Also, the presence of exotic degrees of freedom

like hyperons and kaons can not be ignored in such high dense matter. It is one

among the most asymmetric and dense nuclear object in nature.

From last three decades [235, 236], the relativistic mean field (RMF) approxima-

tion, generalized by Walecka [8] and later on developed by Boguta and Bodmer [99]

is one amongst the most reliable theory to deal with the infinite nuclear matter and

finite nuclei. The original RMF formalism starts with an effective Lagrangian, whose

degrees of freedom are nucleons, σ−, ω−, ρ− and π−mesons. To reproduce proper

experimental observable, it is extended to the self-interaction of σ−meson. Recently,

all other self- and crossed interactions including the baryon octet are also introduced

keeping in view the extra-ordinary condition of the system, such as highly asymmet-

ric system or extremely high- density medium [237]. Since the RMF formalism is

an effective nucleons-mesons model, the coupling constants for both nucleon-meson

and hyperon-meson are fitted to reproduce the properties of selected nuclei and in-

finite nuclear matter properties [8, 99, 238, 239]. In this case, it is improper to use

the parameters obtained from the free nucleon-nucleon scattering data. The param-

eters, with proper relativistic kinematics and with the mesons and their properties

are already known or fixed from the properties of a small number of finite nuclei,

the method gives excellent results not only for spherical nuclei but also well-known

deformed cases. The same force parametrization can be used both for β−stable and

β−unstable nuclei through-out the periodic table [49,193,240,241].
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The importance of the self- and crossed- interactions are significant for some spe-

cific properties of nuclei/nuclear-matter in certain conditions. For example, self-

interaction of σ-meson takes care the reduction of nuclear matter incompressibility

K∞ from an unacceptable high value of K∞ ∼ 600 MeV to a reasonable number of

∼ 270 MeV [99,141], while the self-interaction of vector meson ω soften the equations

of states [90, 193]. Thus, it is imperative to include all the mesons and their possi-

ble interactions with nucleons and hyperons, self- and crossed terms in the effective

Lagrangian density. However, it is not necessary to do so, because of the symme-

try reason and their heavy masses [242]. For example, to keep the spin-isospin and

parity symmetry in the ground state, the contribution of π−meson is ignored [243]

and also the effect of heavier mesons are neglected for their negligible contribution.

Taking into this argument, in many versions of the RMF formalism, the inclusion of

isovector-scalar (δ) meson is neglected due to its small contribution. But recently it

is seen [244–249] that the endowment of the δ-meson goes on increasing with density

and asymmetry of the nuclear system. Thus, it will be impossible for us to justify the

abandon of δ−meson both conceptually and practically, while considering the high

asymmetry and dense nuclear systems, like the neutron star and relativistic heavy

ion collision. Recent observation of neutron star like PSR J1614-2230 with mass of

(1.97±0.04)M� [201] and the PSR J0348+0432 with mass of (2.01±0.04)M� [250] re-

open the challenge in the dense matter physics. The heavy mass of PSR J0348+0432

(M=2.01±0.04M�) forces the nuclear theorists to re-think the composition and in-

teraction inside the neutron star. Therefore, it is important to establish the effects

of the δ-meson and all possible interactions of other mesons for such compact and

asymmetry system.

The paper is organized as follows: In Sec. 7.2, we have outlined a brief theoretical

formalism. The necessary steps of the RMF model and the inclusion of δ−meson is

explained. The results and discussions are devoted in Sec. 7.3. Here, we have at-

tempted to explain the effects of δ-meson on the nuclear matter system like hyperon

and proton-neutron stars. This analysis is done for both static and rotating neutron

and neutron-hyperon stars. In this calculations, the E-RMF Lagrangian (G2 parame-

ter set) is used to take care of all possible self- and crossed interactions [251]. On top

of the G2 Lagrangian, the δ−meson interaction is added to take care of the isovector
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channel. The concluding remarks are given in section 7.4.

7.2 Theoretical formalism

From last one decade a lot of work have been done to emphasize the role of δ−meson

on both finite and infinite nuclear matter [252–255]. It is seen that the contribution of

δ-meson to the symmetry energy is negative [256]. To fix the symmetry energy around

the empirical value (∼30 MeV ) we need a large coupling constant of the ρ−meson

(gρ) value in the absence of the gδ. The proton and neutron effective masses split

due to inclusion of δ-meson and consequently it affects the transport properties of

neutron star [246]. The addition of δ-meson not only modify the property of infinite

nuclear matter, but also enhances the spin-orbit splitting in the finite nuclei [252]. A

lot of mysteries are present in the effects of δ-meson till date. The motivation of the

present chapter is to study such information. It is to be noted that both the ρ− and

δ−mesons correspond to the isospin asymmetry, and a careful precaution is essential

while fixing the δ-meson coupling in the interaction.

The effective field theory and naturalness of the parameter are described in [251,

257–260]. The Lagrangian is consistent with underlying symmetries of the QCD.

The G2 parameter is motivated by E-RMF theory. The terms of the Lagrangian

are taken into account up to 4th order in meson-baryon coupling. For the study

of isovector channel, we have introduced the isovector-scalar δ-meson. The baryon-

meson interaction is given by [237]:

L =
∑
B
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The co-variant derivative Dµ is defined as:

Dµ = ∂µ + igωωµ + igρI3τ
aρaµ, (7.2)

where Ra
µν and Ωµν are field tensors and defined as follow

Ra
µν = ∂µρ

a
ν − ∂νρaµ + gρεabcρ

b
µρ

c
ν , (7.3)

Ωµν = ∂µων − ∂νωµ. (7.4)

Here, σ, ω , ρ and δ are the sigma, omega, rho and delta meson fields, respectively

and in real calculation, we ignore the non-abelian term from the ρ−field. All symbols

are carrying their own usual meaning [237,244].

The Lagrangian equation for different mesons are given by [237]:
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m2
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3 = g2
δρ

s
3B, (7.8)

with ρs3B = ρsp − ρsn, ρsp and ρsn are scalar densities for the proton and neutron,

respectively. The total scalar density is expressed as the sum of the proton and

neutron densities ρsB = ρsp + ρsn, which is given by

ρsi =
2

(2π)3

∫ ki

0

M∗
i d

3k

E∗i
, i = p, n (7.9)

and the vector (baryon) density

ρB =
2

(2π)3

∫ ki

0

d3k, (7.10)
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where, E∗i = (k2
i + M∗2

i )1/2 is the effective energy, ki is the Fermi momentum of the

baryons. M∗
p and M∗

n are the proton and neutron effective masses written as

M∗
p = Mp − gσσ0 − gδδ3 (7.11)

M∗
n = Mn − gσσ0 + gδδ

3, (7.12)

which are solved self-consistently. I3 is the third component of isospin projection and

B stands for baryon octet. The energy and pressure density depends on the effective

mass M∗
B of the system, which first needed to solve these self-consistent equations

and obtained the fields for mesons. Using the Einstein’s energy-momentum tensor,

the total energy and pressure density are given as [237]:
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where Pl and εl are lepton’s pressure and energy density, respectively.

7.3 Results and discussions

Before going to the discussions of our results, we give a brief description of the pa-

rameter fitting procedure for gρ and gδ. As it is commonly known, the symmetric

energy Esym, is an important quantity to select the equation of states. This value
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of Esym determines the structure of both static and rotating neutron stars. On the

other hand, an arbitrary combination of gρ and gδ with a fixed value of Es can affect

the ground state properties of finite nuclei. Thus, to have a clear picture on the effect

of gδ on hyperon star structure, we have chosen two different prescriptions for the se-

lection of gδ in our present calculations. (1) In the first method, we have constructed

various sets of gρ and gδ keeping Es fixed. Here, all the other parameters of G2 set

are remained unchanged. The G2 set and the combination of gρ and gδ are displayed

in Table 7.1. (2) In the second procedure, we have chosen the gρ, gδ pairs keeping the

binding energy constant (experimental binding energy) for finite nuclei. The values

of these gρ and gδ are given in Table 7.3 with other properties of infinite nuclear

matter. It is worthy to re-emphasized here that we are not looking for a full-fledged

parameter set including the δ−meson coupling, but our aim in this paper is to study

the effects of δ−meson coupling on hyperon star and the production of baryon octet.

Therefore, after splitting the gρ coupling constant into two parts (gρ, gδ) using the

first prescription, the results on hyperon star along with the neutron star structures

both for static and rotating cases under β−equilibrium condition are discussed in the

subsequent subsections 7.3.2, 7.3.3, 7.3.4, 7.3.5 and 7.3.6. In Sec. IV, we follow the

second procedure to get the (gρ, gδ) pairs and applied these to some selective cases.

7.3.1 Parametrization of gρ and gδ with constant symmetry

energy

It is important to fix gδ value to see the effects of the δ-meson. The isovector channels

in RMF theory come to exist through both the ρ− and δ−mesons couplings. While

considering the effects of the δ-meson, we have to take the ρ-meson into account.

Since both the isovector channels are related to isospin, one can not optimize the

gδ coupling independently. Here, we have followed a more reliable procedure by

fixing the symmetry energy Esym with adjusting simultaneously different values of gρ

and gδ [246]. In general, for most of the non-relativistic formalism, the symmetry

energy Esym is around 30-33 MeV. However, in some specific parametrization like

GS4, Esym =12.83 MeV and for PRC45 set it is 51.01 MeV [261, 262]. On the

other hand, in non-linear, density-dependent and point-coupling relativistic mean
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Figure 7.1: Variation of gρ and gδ at a constant value of symmetry energy Esym = 36.4

MeV for both nuclear and neutron matter.

field forces, the Esym varies from 26.1 to 44.0 MeV. Here we have used the well known

G2 parametrization, which has a moderate symmetry energy Esym = 36.4 MeV. It

is to be noted that the symmetry energy plays a crucial role both in finite nuclei

and in the equation of state, which include the neutron distribution radius in the

nucleus and the mass and radius of a neutron star, respectively. For a smaller value

of Esym, both the relativistic and non-relativistic forces predict a smaller neutron

star mass contrary to the recent observation of about 2M�. A detail variation of

symmetry energies for Skyrme effective interaction and non-linear relativistic mean

field formalism is available in Refs. [261, 262]. Recently, a large number of papers

have been devoted to Esym for a definite value, but till it is under active discussions.

As it is mentioned earlier, we have added gδ on top of the G2 parameter set.

Thus, the symmetry energy of G2 parameter Esym = 36.4 MeV is kept constant at

the time of re-shuffling gρ and gδ. It is to be noted that, we do not want to change the

value of Esym of the original G2 parameter set with the addition of δ-meson. The G2

parameters and the gδ and gδ combinations are displayed in Table 7.1. The nuclear

matter properties are also listed in the table (middle panel). For a particular

value of Esym = 36.4 MeV, the variation of gρ and gδ are plotted in Fig. 7.1. From

130



Table 7.1: The parameters for G2 set are in the upper panel of the Table. The

nuclear matter saturation properties are in the middle panel and various gρ and gδ

combinations are in the lower panel, keeping symmetry energy Esym = 36.4 MeV

fixed.
mn = 939.0 MeV mσ = 520.206 MeV mω = 782.0 MeV mρ = 770.0 MeV mδ = 980.0 MeV Λ= 0.0 ζ0 = 2.642 ηρ = 0.39

gσ = 10.5088 gω = 12.7864 gρ = 9.5108 gδ = 0.0 k3 = 3.2376 k4 = 0.6939 η1 = 0.65 η2 = 0.11

ρ0 = 0.153fm−3 E/A = -16.07 MeV K∞ = 215 MeV Esym = 36.4 MeV m∗n/mn = 0.664

(gρ, gδ) (9.510, 0.0) (9.612, 1.0) (9.973, 2.0) (10.550, 3.0) (11.307, 4.0) (12.212, 5.0) (13.234, 6.0) (14.349, 7.0)

Table 7.2: Binding energy (MeV) and charge radius (fm) are calculated with various

combination of gρ and gδ in G2+δ. The results are compared with experimental

data [263].
(gρ,gδ) (9.510, 0.0) (9.612, 1.0) (9.973, 2.0) (10.550, 3.0) (11.307, 4.0) (12.212, 5.0) (13.234, 6.0) (14.349, 7.0)

Nucleus Theory Expt.

16O (BE) 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.2 127.6

rch 2.718 2.718 2.718 2.718 2.718 2.717 2.717 2.716 2.699

40 Ca (BE) 341.1 341.1 341.1 341.1 341.1 341.1 341.1 341.1 342.0

rch 3.453 3.453 3.453 3.453 3.452 3.451 3.450 3.449 3.4776

48Ca (BE) 416.0 415.8 415.2 414.1 412.6 410.7 408.4 405.7 416.0

rch 3.440 3.439 3.438 3.437 3.435 3.432 3.430 3.427 3.477

56Ni (BE) 480.4 480.3 480.3 480.3 480.3 480.3 480.3 480.2 484.0

rch 3.730 3.730 3.730 3.730 3.730 3.730 3.730 3.724

58Ni (BE) 497.2 497.2 497.1 497.0 496.9 496.7 496.5 496.3 506.5

rch 3.765 3.765 3.763 3.762 3.761 3.758 3.756 3.753 3.775

90Zr (BE) 781.6 781.2 780.6 779.4 777.9 775.9 773.6 770.8 783.9

rch 4.238 4.238 4.237 4.235 4.233 4.230 4.228 4.225 4.269

116Sn (BE) 981.2 980.7 979.4 977.2 974.1 970.2 965.6 960.3 988.7

rch 4.604 4.603 4.601 4.598 4.594 4.589 4.584 4.579 4.625

118Sn (BE) 997.6 997.1 995.4 992.7 989.0 984.3 978.7 972.2 1004.9

rch 4.620 4.619 4.617 4.613 4.610 4.604 4.599 4.594 4.639

120Sn (BE) 1013.9 1013.2 1011.2 1008.0 1003.5 998.0 991.3 983.8 1020.5

rch 4.627 4.626 4.624 4.620 4.616 4.610 4.605 4.600 4.652

208Pb (BE) 1633.3 1631.4 1625.7 1616.2 1603.0 1586.4 1566.4 1543.5 1636.4

rch 5.499 5.498 5.497 5.494 5.492 5.489 5.487 5.485 5.501
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Table 7.3: Mass and radius of the neutron star are calculated at different values of

gρ and gδ keeping binding energy of 208Pb (1633.296 MeV) constant. The calculated

results of Esym, Lsym and Ksym are for nuclear matter at different combinations of

(gρ, gδ) pairs.

(gρ, gδ)
M
M�

Radius (Km) Esym (MeV) Lsym (MeV) Ksym (MeV)

(9.510, 0.0) 1.980 11.230 36.4 101.0 -7.58

(9.588, 1.746) 1.993 11.246 35.3 98.3 -0.60

(9.896, 3.543) 1.997 11.262 31.7 90.2 20.90

(10.518, 5.742) 2.004 11.294 23.8 72.5 67.07

(11.774, 8.834) 2.018 11.510 6.35 30.6 169.03

Fig. 7.1, it is clear that as the gδ increases the gρ value also increases, almost linearly,

to fix the symmetry energy unchanged. This implies that ρ− and δ-mesons have

opposite effect on Esym contribution, i.e., the δ-meson has negative contribution of

the symmetry energy contrary to the positive contribution of ρ-meson.

We feel that it is instructive to check the finite nuclear properties with these

combinations of gρ and gδ. We have tabulated the binding energy and charge radius

of some spherical nucleus in Table 7.2. From the table, it is clear that binding energy

for asymmetric nucleus goes on decreasing with increasing δ−meson and decreasing

ρ−meson couplings. However, it is well understood that the scalar δ−meson gives a

positive contribution to the binding energy. Thus, the binding energy of asymmetric

nuclei should go on increasing with gδ contrary to the observation seen in Table

7.2. This happens, because of the simultaneous change of (gρ, gδ) pair to keep the

constant symmetry energy, i.e., gρ is decreasing and gδ is increasing. As a result, the

contribution of ρ− meson, which is negative to the binding energy dominates over

the δ−meson effect on binding energy. But in case of symmetric nucleus, like 16O

etc. the effects of both ρ− and δ−mesons are absent due to iso-spin symmetry. A

further inspection of Table 7.2 reveals a slight change in binding energy and charge

radius even for symmetric nuclei because of the slight different in density distribution

of protons and neutrons, although it is small.
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Figure 7.2: Various meson fields are obtained from the RMF theory with G2 + gδ

and NL3 parameter sets. The σ− meson field Vσ and ω−meson field Vω from G2 + gδ

calculations are compared with the results of DBHF theory [264] and NL3 set.

7.3.2 Fields of σ, ω, ρ and δ mesons

The fields of the meson play a crucial role to construct the nuclear potential, which

is the deciding factor for all type of calculations in the relativistic mean field model.

In Fig. 7.2, we have plotted various meson fields included in the present calculations,

such as σ, ω, ρ and δ with gδ on top of G2 parameter set (G2 + gδ). It is obvious

that Vσ and Vω are opposite to each other, which is also reflected in the figure. This

means, the positive value of Vω gives a strong repulsion, which is compensated by

the strongly attractive potential of the σ−meson field Vσ. The nature of the curves

for Vσ and Vω are almost similar except the sign. The magnitude of Vσ and Vω looks

almost equal. However, in real (it is not clearly visible in the curve, because of

the scale), the value of Vσ is slightly larger than Vω, which keeps the overall nuclear

potential strongly attractive. The attractive Vσ and repulsive Vω potentials combinely

give the saturation properties of the nuclear force. It is worthy to mention that the
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contributions of self-interaction terms are taken care both in Vσ and Vω, which are the

key quantities to solve the Coester band problem [186] and the explanation of quark-

gluon-plasma (QGP) formation within the relativistic mean field formalism [265].

The self-interaction of the σ−meson gives a repulsive force at long range part of the

nuclear potential, which is equivalent to the 3-body interaction and responsible for

the saturation properties of nuclear force. The calculated results of Vσ and Vω are

compared with the results obtained from DBHF theory with Bonn-A potential [264]

and NL3 [49] force.

Fig. 7.2 clearly shows that in the low density region (density ρB ∼ 2ρ0) both RMF

and DBHF theories well matched. But as it increases beyond density ρB ∼ 2ρ0 (ρ0

is the nuclear saturation density) both the calculations deviate from each other. The

possible reason may be the fitting procedure of parameters in Bonn-A potential is

up to 2 − 3 times of saturation density ρ0, beyond that the DBHF data are simple

extrapolation of the DBHF theory. Again, the Vω and Vσ fields of NL3 are very

different from G2 + δ results. The Vω for NL3 follows a linear path contrary to the

results of G2 + δ and Bonn-A. This could be due to the absence of self- and crossed

couplings in NL3 set. The contribution of both ρ− and δ− mesons correspond to

the isovector channel. The δ−meson gives different effective masses for proton and

neutron, because of their opposite iso-spin of the third component. The nuclear

potential generated by the ρ− and δ−mesons are also shown in Fig 7.2. We noticed

that although their contributions are small, but non-negligible. These non-zero values

of Vρ and Vδ to the nuclear potential has a significant consequence, mostly in compact

dense object like neutron or hyperon stars, which will be discussed later in this paper.

7.3.3 Energy per particle and pressure density

The energy and pressure densities as a function of baryonic density ρB are known as

equations of states (EOS). These quantities are the key ingredients to describe the

structure of neutron/hyperon stars. To see the sensitivity of the EOS, we have plotted

energy per particle (E/ρB −M) as a function of density for pure neutron matter in

Fig 7.3. Each curve corresponds to a particular combination of gδ and gρ (taken

from Table 7.1), which reproduce the symmetry energy Esym = 36.4 MeV without

destabilizing other parameters of G2 set. The green line represents for gδ = 0, i.e.,

134



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

50

100

150

200

250

300

350

(9.510,0.0)

(9.607,1.0)

(9.957,2.0)

(10.513,3.0)

(11.246,4.0)

(12.125,5.0)

(13.121,6.0)

(14.208,7.0)

ρ
Β
(fm

-3
)

(E
/ρ

Β
 −

 Μ
)(

M
eV

)

 N
eu

tr
o
n
 M

at
te

r

N
u
cl

ea
r 

M
at

te
r(g

ρ
, g

δ
)

Figure 7.3: (Color online) Variation of binding energy per particle with density at

various gρ and gδ.

with pure G2 parameter set. Both the binding energy per particle as well as the

pressure density increase with the value of gδ. This process continues till the value of

gδ reaches, at which E/ρB−M equals the nuclear matter binding energy per particle.

An unphysical situation arises beyond this value of gδ because the binding energy of

the neutron matter will be greater than E/ρB−M for the symmetric nuclear matter.

In the case of G2+δ parametrization, this limiting value of gδ reaches at gδ= 0.7, after

which we do not get a convergence solution in our calculations.

In Fig 7.4 we have plotted the variation of energy and pressure densities as a

function of ρB/ρ0 for different combinations of gρ and gδ. The enlarge version of

energy density in the sub-saturation region is shown in panel (c) of the figure. Similar

to other parameter sets of RMF formalism, the G2+δ set also deviates from the

experimental data. It is to be recalled here that special attentions are needed to

construct nucleon-nucleon interaction to fit the data at sub-saturation density. For

example, the potentials of Friedman and Pandharipande [266], Baldo-Maieron [267],
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Figure 7.4: Variation of energy per particle (panel (a)) and pressure density (panel

(b)) with ρB/ρ0 at different values of gρ and gδ. The enlarged version of energy per

particle for sub-saturation region is in panel (c). The results of other theoretical

models like Baldo-Maieron [267], DDHF [268], Firedman [266] and AFDMC [269] are

also given for comparison.
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DDHF [268] and AFDMC [269] are designed to fit the data in this region. The

three-body effect also can not be ignored in this sub-saturation region of the density

[270]. Although, the non-linear interactions fulfilled this demand to some extent

[165, 186, 265], like Coester band problem [197], till some further modification of the

couplings are needed. In this regard, the relativistic mean field calculations with

density dependent meson-nucleon coupling [271] and constraining the RMF models

of the nuclear matter equation of state at low densities [272] are some of the attempts.

The mean field approximation is also a major limitation in the region of sub-saturation

density. This is because, the assumption of classical meson field is not a proper

approximation in this region to reproduce precisely the data. In higher density region,

most of the RMF forces reproduces the experimental data quite well and the predictive

power of these forces for finite nuclei is in excellent agreement both for β−stable and

β−unstable nuclei. The energy and pressure densities with G2 set reproduce the

experimental data satisfactorily [273]. The variation of pressure density as a function

of ρB is shown in panel (b) of Fig. 4, which passes inside the stiff flow data at higher

density [274]. Also, the δ−meson coupling has significant effect in supersaturation

density than the sub-saturation region. All the EOS with different gρ and gδ remain

inside the stiff flow data (Fig. 4, panel (b)). In the present investigation, we are more

concerned for highly dense neutron and hyperon stars, which are considered to be

super-saturated nuclear objects.

7.3.4 Stellar properties of static and rotating neutron stars

The β-equilibrium and charge neutrality are two important conditions to justify the

structural composition of the neutron/hyperon stars. Both these conditions force the

stars to have ∼90% of neutron and ∼10% proton. With the inclusion of baryons, the

β−equilibrium conditions between chemical potentials for different particles:

µp = µΣ+ = µn − µe,

µn = µΣ0 = µΞ0 = µn,

µΣ− = µΞ− = µn + µe,

µµ = µe,

(7.15)
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and the charge neutrality condition is satisfied by

np + nΣ+ = ne + nµ− + nΣ− + nΞ− . (7.16)

To calculate the mass and radius profile of the static (non-rotating) and spherical

neutron star, we solve the general relativity Tolmann-Oppenheimer-Volkov (TOV)

[275] equations which are written as:

dP (r)

dr
= −G

c2

[E(r) + P (r)][M(r) + 4πr3P (r)
c2

]

r2(1− 2GM(r)
c2r

)
(7.17)

and

dM(r)

dr
=

4πr2E(r)

c2
, (7.18)

with G as the gravitational constant, E(r) as the energy density, P (r) as the pressure

density and M(r) as the gravitational mass inside radius r. We have used c=1. For

a given EOS, these equations can be integrated from the origin as an initial value

problem for a given choice of the central density Ec(r). The value of r (= R) at which

the pressure vanish defines the surface of the star. In order to understand the effect

of δ−meson coupling on neutron star structure, we must also look, what happens

to massive objects as they rotate and how this affects the space-time around them.

For this, we use the code written by Stergioulas [276] based on Komastu, Eriguchi,

and Hachisu (KEH) method (fast rotation) [277,278] to construct mass-radius of the

uniform rotating star. One should note that the maximum mass of a static star is

less than the rotating stars. Because, when the massive objects rotate they flatten

at their poles. The forces of rotation, namely the effective centrifugal force, pulls the

mass farthest from the center further out, creating the equatorial bulge. This pull

away from the center will, in part, counteract gravity, allowing the star to be able to

support more mass than its non-rotating star.

We know that the core of neutron stars contain hyperons at very high density

(∼7-8 ρ0) matter. As it is mentioned before, with the presence of baryons, the EOS

becomes softer and stellar properties will change. The maximum mass of hyperon

star decreases about 10-20% depending on the choice of the meson-hyperon coupling

constants. The hyperon couplings are expressed as the ratio between the meson-

hyperon and meson-nucleon couplings as:

χσ =
gY σ
gNσ

, χω =
gY ω
gNω

, χρ =
gY ρ
gNρ

, χδ =
gY δ
gNδ

. (7.19)
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Figure 7.5: (Color online) The mass-radius profile for static star with different

parametrization like G2 [251], NL3 [49], NL3* [93], NL-SH [241], FSU [90]and

FSU2 [279]. (a) is for proton-neutron star and (b) is for the hyperon star. The

maximum mass M and the corresponding radius obtained by various parameter sets

are given in the parenthesis.
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In the present calculations, we have taken χσ = χρ = χδ = 0.6104 and χω = 0.6666

[280]. One can find similar calculations for stellar mass in Refs. [281–283]. Now we

present the star properties like mass and radius in Figs. 7.5 and 7.6. In Fig. 7.5

we have plotted the mass-radius profile for the proton-neutron star as well as for the

hyperon star using a wide variation of parameter sets starting from the old parameter

like NL-SH [241] to the new set of FSU2 [279]. The mass-radius profile varies to a great

extend over the choice of the parameter. For example, in FSU parameter set [90], the

maximum possible mass of the proton-neutron star is ∼ 1.75 M�, while the maximum

possible mass for the NL3 set [49] is ∼ 2.8 M�. These results are shown in the left

panel of the Fig. 7.5, while right panel shows the same things for the hyperon star

(the maximum mass and the corresponding radius for different forces are given in the

parenthesis).

7.3.5 Effects of δ−meson on static and rotating stars

The main aim of this paper is to understand the effects of δ-meson on neutron stars

both with and without hyperons. Fig. 7.6 represent the mass-radius profiles for non-

rotating and rotating stars taking into account the presence of with and without

hyperons. These profiles are shown for various combinations of gρ and gδ (see Table

7.1), which we have obtained by fitting the symmetry energy Esym of pure nuclear

matter. Analyzing the graphs, we notice a slight change in the maximum mass

with gδ value. That means, the mass of the star goes on decreasing with an increase

value of the δ-meson coupling in hyperon star. A further inspection of the results

reveals that, although the δ-meson coupling has a nominal effects on the maximum

mass of the proto-neutron stars, we get an asymptotic increase in the mass. This

asymptotic nature of the curves is more prominent in presence of hyperons inside the

stars. Similar phenomena are also observed in case of rotating stars.

The empirical formula for the relation between maximum frequency fmax with

mass of the neutron star for a given EOS is given as [284,285]

fmax ≈ 1.22KHz
√
M static

max /M�(Rstatic
max /10Km)−3/2, (7.20)

where M static
max =maximum static mass and Rstatic

max =maximum allowed radius for a neu-

tron star. In actual, the neutron stars have a wide range of frequencies due to the
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fluid of the stars oscillate in various modes [286]. Among them, the most important

modes are the first pressure mode (pI-mode) and the fundamental mode of the fluid

oscillation (f-mode). The empirical formula for the frequencies of these two modes

are ff = (0.79± 0.09) + (33± 2)
√
M/R3 and fp = 1/M(−1.5± 0.8) + (79± 4)M/R,

respectively, where M and f in Km and KHz. The above two relations are obtained

by using a wide sample of EOSs [286].

In the present calculations, we assume the frequency of the rotating neutron star is

within the Keplerian frequency limit. At this limit the spin frequency of the neutron

star is equal to the orbital frequency for (along a circular path on the equator of the

NS) [284]. If the orbital frequency for > fK (Kepler frequency), then the hydrostatic

equilibrium of the NS does not hold good. To make it clear, the Kepler frequency as

a function of NS mass is shown in Fig. 7 with and without considering hyperon into

account. The results of Fig. 7 is obtained from the RNS code and the expression

for the Keplarian frequency, i.e. the maximum frequency obtained from the general

theory of relativity can be found in Refs. [276, 287]. In this figure, the variation of

fK is shown as a function of M/M� with various combinations of gρ and gδ which we

have already fixed (see Table 1). We noticed a finite effect of gρ and gδ variation on

the mass and Keplerian frequency of the pure neutron and hyperon stars.

For a quite some time pulsar B1937+21 with frequency 642 Hz was considered

as the fasted spinning NS. However, Hessels et. al. [288] found even more faster

spinning NS pulsar J1748-2446ad at frequency 716.356 Hz. This NS has a mass of

0.14M� companion. It is difficult to obtain 0.14M� from the equation of state at

supra-nuclear densities. Our calculations suggest that if pulsar has a mass less than

1.4M� than the larger density slope of the symmetry energy at saturation would

be excluded. If we consider the neutron star mass to be greater than 2.0M� and

hyperons are present in it, then the star mass will be 1.6M�, within the pulsar XTE

J1739285 NS [289].

Here, we analyzed the effects of δ−meson coupling on neutron and hyperon stars.

We observed that, the mass of the star decreases when hyperons are included in the

calculations, as a result, the maximum mass of the star with G2+δ set become much

less than 2M�, the latest observation of a massive neutron star. In summary, the

following possibilities are in order:

143



(i) Since the mass obtained without hyperon for static case is ∼ 2M�, in this

situation one do not need to reduce the mass any more by adding hyperons into it.

This can be justify by assuming that in massive neutron star, there is no hyperon. The

absence of hyperons in massive neutron star may not be a convincing explanation,

because of the highly dense matter in the core of the NS, which favor the production

of hyperon. (ii) The rotation of a NS increases the maximum allowed mass. On the

other hand, the inclusion of hyperon deceases the mass. In the present case, even if

consider the rotation of the star, it is not sufficient to get the maximum mass∼ 2M�

(see Fig. 6(d)). (iii) The 3rd possibility is the effect of δ−meson coupling, which may

increase the mass of the hyperon star after its insertion into the model. Although,

its effect is finite, it is not sufficient to increase the hyperon mass to two solar unit.

Thus, the addition of δ−meson may not be sufficient to explain the heavier mass of

the NS. (iv) Probably, the fourth possibility may be the most acceptable explanation

in which we suggest for the modification of the EOS, such that after the addition of

hyperon, the mass of the static neutron-hyperon star will be∼ 2M�. In particular, the

hyperon-meson coupling should be re-investigated to get a proper coupling constants,

which allowed the maximum mass∼ 2M� with hyperon. Work in this direction is in

progress [290].

7.3.6 Effects of δ−meson on baryon production

Finally, we want to see the effects of δ−meson coupling on the particle production

for the whole baryonic family at various densities in nuclear matter system. The

Fermi energy of both proton and neutron increases with density for their Fermionic

nature. After a certain density, the Fermi energy of the nucleon exceeded the rest mass

energy of the nucleon (∼1000 MeV), and strange particles (Σ,Λ,Ξ) are produced. As

a result, the equations of state of the star becomes soft and gives a smaller star mass

compare to the neutron star containing only protons, neutrons and electrons. The

decrease in star mass in the presence of whole baryon octet can be understood from

the analysis of Fig. 7.8. From the figure, it is clear that δ-meson has a great impact on

the production of hyperons. The inclusion of δ−meson accelerate the strange particle

production. For example, the evolution of Σ− takes place at density ρB = 1.75ρ0

in absence of δ−meson. However, it produces at ρB = 1.67ρ0 when δ−meson is
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Figure 7.9: (Color online) Mass and radius profile of hyperon star with G2+δ param-

eter set, but with different meson-hyperon coupling of Ref. [281].

there in the system. Similarly, analyzing the evolution of other baryons, we notice

that although the early production of baryons in the presence of δ−meson is not in

a definite proportion to each other, in each case the yield is faster. A significant

shifting towards lower density is maximum for heaviest hyperon (Ξ0) and minimum

for nucleon (see Fig. 7.8). For example, Ξ− evolves at ρB = 6.5 ρ0 for a non-δ system

and ρB∼5.0 ρ0 for medium when δ−meson is included. Thus, the δ−coupling has a

sizable impact on the production of hyperons like Ξ−,Ξ0 and Σ+.

7.3.7 Fitting of gρ and gδ with fixed binding energy and charge

radius

In previous sub-sections we have seen the effects of (gρ, gδ) pair with a constant

symmetry energy on the maximum mass and radius of the neutron and hyperon

stars. The effects of the (gρ, gδ) pairs are not prominent on the star structure in this
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method. On the other hand, it affects the bulk properties, like binding energy and

root mean square radius considerably for asymmetric finite nucleus. In Table 7.2, we

have given the mass and charge radius for some of the selected nuclei. Although, all

the combination of gρ and gδ are fixed at a constant symmetry energy, the binding

of 208Pb differ by 90 MeV in the first and last combination of gρ and gδ. In this

sub-section, we would like to change the strategy to select the (gρ, gδ) pairs. Here, we

have followed the second procedure as we have discussed in the previous sub-section,

i.e., we find the values of gρ and gδ by adjusting the binding energy and charge radius

of 208Pb. Once we get the (gρ, gδ), we used the pair for the calculations of other

nuclei of Table 7.2. Surprisingly, the outcome of binding energy and charge radius

matches pretty well with the original calculations. The gρ and gδ combination along

with the corresponding mass and radius of a neutron star is given in the Table 7.3.

From the table it is clear that these combinations are also not affecting much to the

maximum mass and radius of the neutron star. However, the Esym, Lsym and Ksym

calculated from the corresponding (gρ, gδ) combinations for nuclear matter changes

a lot (See Table 7.3). We used the hyperon-meson coupling constants of Ref. [281]

to evaluate the hyperon star structure. The calculated results for static and rotating

hyperon star are plotted in Fig. 7.9. The maximum mass increases and the radius

decreases slightly with the addition of δ−meson to the star system.

7.4 Summary and Conclusions

In summary, using the effective field theory approach, we discussed the effects of

isovector scalar meson on hyperon star. The inclusion of δ-meson with G2 parameter

set, we have investigated the static and rotating stellar properties of neutron star

with hyperons. We fitted the parameters and see the variation of gρ and gδ at a

constant symmetry energy for both the nuclear and neutron matter. We also used

these (gρ, gδ) pairs to finite nuclei and find a large change in binding energy for

asymmetric nuclei. Then we re-fitted the (gρ, gδ) pairs keeping binding energy and

charge radius fixed for 208Pb and tested the effects for some selected nuclei and able

to reproduced the data similar to the original G2 set. With the help of G2+δ model,

for static and rotating stars without hyperon core, we get the maximum mass of
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∼2M� and ∼2.4M�, respectively. This prediction of masses is in agreement with

the recent observation of M ∼2M� of the stars. However, with hyperon core the

maximum mass obtained are ∼1.4M� and ∼1.6M� for static and rotating hyperon

stars, respectively. In addition, we have also calculated the production of whole

baryon octet with variation in density. We find that the particle fraction changes a

lot in the presence of δ−meson coupling. When there is δ−meson in the system the

evolution of baryons are faster compare to a non-δ system. This effect is significant

for heavier masses and minimum for lighter baryon. Hence, one can conclude that

the yield of baryon/hyperons depends very much on the mesons couplings. One

important information is drawn from the present calculations is that the effect of gδ

is just opposite to the effect of gρ. As a consequence, many long standing anomaly,

such as the comparable radii of 40Ca and 48Ca be resolved by adjusting the (gρ, gδ)

pairs properly. Keeping in view the importance of δ−meson coupling and the reverse

nature of gρ and gδ, it is necessary to get a new parameter set including proper values

of gδ and gρ, and the work is under progress.
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Chapter 8

Summary and Conclusions

The relativistic mean field formalism provides a common platform to study both the

finite and infinite nuclear matter systems. Its relativistic nature defined a pathway

from the less dense finite nuclear system to highly dense neutron star. We studied

various aspects of finite nuclear structure like magicity of proton and neutron number

and collective excitation like giant resonance and the nucleon-nucleon interaction .

For the infinite nuclear system, we applied RMF to study the mass and radius of

the neutron star. In brief, we have applied RMF formalism to study both finite and

infinite nuclear systems.

Recently the advent of radioactive ion beam (RIB) facility inspires the nuclear

physicists to look forward to the structure of drip-lines and super-heavy nuclei more

seriously. Nuclei away from the β-stability lines are far different from the nuclei on

the β-stability line. In Ch. 2, we have calculated BE, S2n energy, single particle

levels, pairing gaps and chemical potential, in the isotopic chain of Z = 82, 114, 120

and 126. All our calculations are done in the framework of non-relativistic SEI and

relativistic RMF interactions. We have compared our results with FRDM and other

theoretical predictions. Overall, the discussions and analysis of all possible evidence

of shell closure property with SEI interaction and RMF show that one can take Z =

120 and N = 182 or 184 as the next magic combination beyond Z = 82 and N = 126,

which is consistent with other theoretical models.

Not only the single particle properties, which are discussed in first part of the

thesis but also the collective excitation plays an important role in nuclear structure
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physics. In Ch.3, we have calculated the excitation energy of isoscalar giant monopole

resonance and incompressibility for O, Ca, Ni, Sn, Pb, Z=114, and Z=120 isotopic

series starting from proton to neutron drip lines. We used four successful parameter

sets, NL1, NL3, NL3*, and FSUGold, with a wide range of nuclear matter incom-

pressibility starting from 211.7 MeV to 271.76 MeV to see the dependency of the

ISGMR on K∞. Also, we have analyzed the predictions of ISGMR with these forces,

which originate from various interactions and found that whatever may be the pa-

rameter set, the differences in excitation energy ISGMR predicted by them are found

to be marginal in the super heavy region. A recently developed scaling approach in

a relativistic mean field theory is used. A simple, but accurately constrained approx-

imation is also performed to evaluate the isoscalar giant monopole excitation energy.

From the scaling and constrained ISGMR excitation energies, we have evaluated the

resonance width Σ for the whole isotopic series. This is obtained by taking the root

mean square difference of Es
x and Ec

x . The value of Es
xis always higher than the

constrained result Ec
x . In a sum rule approach, the Es

x can be compared with the

higher and Ec
x as the lower limit of the resonance width. In general, we found an

increasing trend of resonance width Σ for both the light and super heavy regions near

the proton and neutron drip lines. The magnitude of Σ is predicted to be minimum

in the vicinity of N=Z or in the neighborhood of a double closed nucleus and it is

maximum for highly asymmetric system. In the present thesis, we have also estimated

the incompressibility of finite nuclei. For some specific cases, the incompressibility

is compared with the nuclear matter incompressibility and found a linear variation

among them. It is also concluded that the nucleus becomes less compressible with

the increase of neutron or proton number in an isotopic chain. Thus neutron-rich

matter, like neutron star as well as drip-line nuclei, are less compressible than normal

nuclei. In the case of exotic (drip-line nuclei) system, the nucleus is incompressible,

although it possesses a normal density.

The recent experiment on isoscalar monopole excitation in the isotopic chain of

the Sn isotopes indicates a new problem in the medium heavy mass range (A∼ 100).

In the second part of Ch. 3, we analyzed the predictive power of various force param-

eters, like NL1, NL2, NL3, Nl-SH and FSUG in the framework of RTF and RETF
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approaches for giant monopole excitation energy of Sn-isotopes. Then the calcula-

tion is extended to some other relevant nuclei in the mass range A∼100. The anal-

ysis shows that relativistic Thomas-Fermi and extended relativistic Thomas-Fermi

approximation give comparable results with pairing+MEM prediction. It can be ex-

actly reproduced the experimental data for Sn isotopes, when the incompressibility

of the force parameter is within 210-230 MeV, however, fails to reproduce the GMR

data for other nuclei within the same accuracy. We have qualitatively analyzed the

difference in GMR energies (4EGMR=RETF-RTF) using RETF and RTF formalisms

in various force parameters. The FSUGold parameter set shows different behavior

from all other forces. Also, we extended our calculations for monopole excitation

energy of Sn isotopes with a force parametrization having softer symmetry energy

(NL3 + ΛV ). The excitation energy decreases with the increase of proton-neutron

asymmetry agreeing with the experimental trend. In conclusion, after all, from these

thorough analyses, it seems that the softening of Sn isotopes is an open problem in

nuclear theory and more work in this direction is needed. In Ch. 4 we discussed

about the new constrained caiculation developed by us. This new method is based

on the Taylor series expansion. Although this method is very simple, it gives reason-

able results which are comparable with other microscopic calculation like RRPA. For

simplicity, we applied the constrained method to Thomas-Fermi approximation. But

this method can be extended to extended Thomas-Fermi approach without loosing

any generality.

Nucleon-Nucleon interaction has a very crucial role in the nuclear structure as well

as the other branch of nuclear physics. So it is important to study more about the

nucleon-nucleon interaction and its effects on various properties of the nuclear system.

In Ch. 5, we extensively discussed a new approach R3Y, for the N-N interaction,

which is first suggested by Patra et at. We have added a new self-interacting ω

meson contribution to this new formalism and checked its contribution to finite and

infinite nuclear matter system. In Ch. 6, we used the density dependent M3Y and

R3Y to study the p-γ reaction for the proton-rich nuclei. We have folded the M3Y

and R3Y interaction with RMF densities to obtain the cross-section of p-γ reaction.

From the cross-section of these reaction, we can study the astrophysical- S factor,

which is important in the study of the r-process of nuclear synthesis.
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In Ch. 7, using the effective field theory approach, we discussed the effects of

isovector scalar meson on hyperon star with the inclusion of δ-meson with G2 pa-

rameter set and then investigated the static and rotating stellar properties of neutron

star with hyperons. We fitted the parameters and see the variation of gρ and gδ

at a constant symmetry energy for both the nuclear and neutron matter. We also

used these (gρ, gδ) pairs to finite nuclei and find a large change in binding energy

for asymmetric nuclei. Then we re-fitted the (gρ, gδ) pairs keeping binding energy

and charge radius fixed for 208Pb and tested the effects for some selected nuclei and

able to reproduce the data similar to the original G2 set. With the help of the G2+δ

model, for static and rotating stars without hyperon core, we get the maximum mass

of ∼2M� and ∼2.4M�, respectively. This prediction of masses is in agreement with

the recent observation of M ∼2M� of the stars. However, with hyperon core the

maximum masses obtained are ∼1.4M� and ∼1.6M� for static and rotating hyperon

stars, respectively. In addition, we have also calculated the production of whole

baryon octet with variation in density. We find that the particle fraction changes a

lot in the presence of δ−meson coupling. When there is δ−meson in the system the

evolution of baryons is faster compared to a non-δ system. This effect is significant

for heavier masses and minimum for lighter baryon. Hence, one can conclude that

the yield of baryon/hyperons depends very much on the mesons couplings. One im-

portant information is drawn from the present calculations is that the effect of gδ is

just opposite to the effect of gρ. As a consequence, many long-standing anomalies,

such as the comparable radii of 40Ca and 48Ca can be resolved by adjusting the (gρ,

gδ) pairs properly. Keeping in view the importance of δ−meson coupling and the

reverse nature of gρ and gδ with each other, it is necessary to get a new parameter

set including proper values of gδ and gρ, and the work is in progress.
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[98] M. Centelles, X. Viñas, M. Barranco, N. Ohtsuka, A. Faessler, Dao T. Khoa
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