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Synopsis

The spontaneous symmetry breaking (SSB) phase transitions and the hydrody-

namic equations are some of the most important tools of statistical physics which are

extensively used, irrespective of the energy scale of the system, from condensed matter

physics to the high energy physics. In the condensed matter physics, ferromagnetism,

superfluidity, superconductivity, etc., correspond to spontaneous symmetry broken

phases. In the high energy physics also the whole evolution of the Universe is affected

by such kind of phase transitions. The GUT phase transition, at the energy scale of

1015 GeV , and the electroweak phase transition, at the energy of about 100 GeV are

the examples of SSB phase transition in the early Universe. The confining transition,

from quark-gluon plasma (QGP) phase of QCD to the hadronic phase, is a cross-over

transition. All these transitions lead to interesting stages during the evolution of the

Universe. Similarly, hydrodynamics is also used in almost every branch of physics.

The description of the flow of water, and evolution of the cosmic plasma during early

stages of the Universe, both are governed by hydrodynamics equations, although for-

mer is a non-relativistic system while latter is a relativistic system, and equation of

state for both the systems are quite different. In this thesis we discuss SSB phase

transition of the superfluid systems, and hydrodynamics & magneto-hydrodynamics

evolution of QCD matter in relativistic heavy-ion collision experiments.

The concepts of topology are also very extensively used in many branches of

physics. There are many physical situations where topology plays a very important

role, e.g., Aharonov-Bohm effect, topological phase transitions, QCD instanton pro-

cesses, Skyrmion picture of baryons in linear sigma model, Berry phase, superfluid

vortices, flux tubes in superconductor, and cosmic strings, domain walls, monopoles in

the early Universe etc.. In this thesis we are interested in topological defects, mainly

in the formation of topological vortices during superfluid transition. We study the

formation of vortices in the 4He system, and QCD matter at high baryon density.

There are many ways by which a topological defect can form. In this thesis

we are interested in the formation of the topological defects during the SSB phase

transitions. If the order parameter space of a system is topologically non-trivial,

then topological defects can exist in the physical space [1], and a symmetry breaking

phase transition can lead to the formation of topological defects. The formation of
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these defects during a phase transition is described by the Kibble mechanism which

has been tested experimentally [2]. In the case of superfluid transitions this lead to

the formation of topological vortices. These vortices have important implications in

the condensed matter as well for neutron star physics. The most important property

of superfluid vortices, which makes these defects different from the topological de-

fects in other systems, is the rotation of superfluid components about these vortices.

This property of rotation arises due to the quantum nature of superfluidity and due

to the non-trivial order parameter field configuration about the superfluid vortex.

Therefore these vortices carry (quantized) angular momentum and are protected by

topology. The appearance of superfluid vortices in the superfluid phase makes this

phase qualitatively distinct from the normal fluid.

The search of the quark-gluon plasma and its possible probes in the relativistic

heavy-ion collisions is one of the exciting area of research. Although the zero chemical

potential quark-gluon plasma phase is of interest for the early Universe, quark-gluon

plasma at finite chemical potential contains very rich physics and is of tremendous

interest for the physics of neutron star. There are several exiting phases of Quantum

Chromodynamics (QCD) possible in this regime of high baryon density at sufficiently

low temperatures. The physics of BCS theory is directly applicable in this regime

and formation of Cooper pairs, both, in the confined phase and deconfined phase lead

to the emergence of superfluidity and superconductivity in the QCD matter. These

phases play a very important role in the dynamics, like glitches, and cooling process

of neutron star.

In the low energy heavy-ion collisions if any superfluid phase of QCD arises, via

spontaneous symmetry breaking phase transitions, then it affects the hydrodynamics

evolution of the system due to the formation of topological vortices [3]. In such an

energy regime there is a strong possibility that, in the case of non-central collisions, the

formed medium may get rotation due to surface tension. Therefore in such situation

the superfluid phase transition will occur in the presence of a rotation. This is a

similar situation as occurs in the case of neutron star superfluid transition, as in

that case also neutron superfluid transition occurs in the presence of rotation of

the star. In the condensed matter system, such as 4He, superfluid transitions in

the presence of rotation is routinely studied experimentally. The formation of these
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vortices during the phase transition is governed by the Kibble Mechanism. The Kibble

mechanism predicts the equal formation probabilities of defects and anti-defects [2].

But the above phase transitions, in the presence of rotation, requires a biasing in the

formation of vortices over anti-vortices or vise-versa. In this thesis, we address this

issue for superfluid 4He transition by modifying the Kibble mechanism in the presence

of such external influence so that it can account for the required biases, see Ref. [4].

As discuss above, this has important applications for the case of neutron star and

heavy-ion collision physics. Note that there are other situations where such kind of

modification in the Kibble mechanism is required, for example, formation of flux-tubes

during the superconducting transition in the presence of magnetic field, and formation

of baryons (Skyrmions) at finite chemical potential during chiral transition in linear-

sigma model, requires more number of one kind of topological object than other one

(note that the baryon production is restricted by the baryon number conservation,

see Ref. [5]). All these issues can be handled by modifying the main ingredients of

the Kibble mechanism which are the domain structure and the geodesic rule. In this

thesis, we propose such kind of modification for the case of superfluid transition in

the presence of a rotation which lead to the biasing in the formation of topological

vortices [4]. If such a modification of the domain structure and geodesic rule is

confirmed in the experiments then one can extend such approach to the other systems

also.

The spontaneous symmetry breaking occurs when the ground state of the theory

does not follow the full symmetry of the Lagrangian or Hamiltonian. To discuss the

finite temperature phase transition of a system in the high energy physics, we use the

effective potential of the system at the finite temperature, and the free energy den-

sity in the condensed matter. A phase transition leads to the formation of correlation

domains in the physical space. The Kibble mechanism utilizes a picture of domain

formation during the phase transition and describe how the topological defects form

during the SSB phase transition [2]. Topological defects are the locations in the phys-

ical space where the order parameter field becomes singular (ill defined) [1]. This

singularity is topologically protected and can not be removed by local deformation

of the order parameter field configuration. The order parameter configuration corre-

sponds to the mapping from the physical space to the order parameter space which
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forms shrinkable/non-shrinkable loops. There can be many different kind of mappings

from the physical space to the order parameter space which are distinguished by the

winding number (for superfluid 4He case) and are characterized by the homotopy

classes of the loops. These homotopy mappings form a group structure under the

combination law of homotopy classes, which is known as the fundamental group. If

this fundamental group is non-trivial for an order parameter space of the system, i.e.

if it is not isomorphic to the trivial group (consisting of only the identity element),

then this ensures that in the physical space topological vortices or line defects will

exist [1].

The main physics of the Kibble mechanism lies in the formation of a domain

structure, where all domains are considered to be independent and have random or-

der parameter values, while in each domain order parameter field is considered to be

uniform (with small fluctuations). The second, very important consideration of the

Kibble mechanism is the way the order parameter field interpolates in between two

successive domains. The order parameter field interpolates in between two successive

domains such that it traverses the shortest path on the order parameter space, usually

known as the geodesic rule [2]. Both these ingredients of the Kibble mechanism, the

uniform domain structure and the geodesic rule, are based on the free energy mini-

mization of the system and therefore considered to be naturally valid assumptions.

For U(1) SSB phase transitions, the Kibble mechanism predicts the probability of

formation of topological vortices in the two space dimension to be 1/4 per domain if

three domains meet at a point, while ∼ 1/3 per domain if four domains meet at a

point. The formation probabilities of both defects and anti-defects on an average are

equal in this mechanism.

In this thesis we are interested in the formation of superfluid vortices during the

superfluid transitions. Superfluidity arises when a bulk of bosonic gas or Cooper

pairs near the Fermi surface, undergoes Bose-Einstein condensation. The bosons in

the condensate (superfluid components) flow in space without loosing their energy

and momentum. The superfluid component is described by the multi-particle wave

function. The quantum probability current for this wave function ultimately gives a

macroscopic motion to the superfluid with a curl free velocity profile. This special

property of the superfluid, which arises due to its quantum nature, makes its motion
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highly restrictive and does not allow any rotation below a critical angular velocity of

the vessel. Above the critical velocity, superfluid start rotating by following a curl

free velocity profile given by, ~v = 1
r
θ̂, in region away from the center of vessel. All

these facts can be explained by the energy minimization of the system, see Ref. [6].

This is the nucleation of a vortex at the center of the vessel. When one increases the

angular velocity of the vessel further, more number of vortices start nucleating and

form a (rotating) vortex-lattice. This method of generation of the superfluid vortices

is completely different from the Kibble mechanics. In the former case, vortices arises

when the system is already in the superfluid phase while in the Kibble mechanism,

vortices arise during the normal to superfluid transition. In this thesis, we address

the issue that how superfluid vortices will form if the superfluid transition occurs in

the presence of a rotation. The rotation of the vessel will lead to the formation of

more number of vortices than anti-vortices. The standard Kibble mechanism can not

capture this feature, it predicts the formation of defects and anti-defects with equal

probabilities.

In this thesis, we have proposed a modification of the Kibble mechanism which ac-

counts for such biases in the formation of topological vortices. For this, we considered

that, during the transition from normal to superfluid, the momentum carried by the

normal fluid component gets transferred to the superfluid such that the curl free prop-

erty of the superfluid remains satisfied in a given domain, and angular momentum

of the whole system remain conserved. This induces a systematic order parameter

variation inside each domain. We have taken the variation of the order parameter

inside each domain such that the free energy of the system is minimized. The free

energy density for superfluid transition in the presence of a rotation is given by, see

Ref. [4],

f ′ = α|Ψ|2 +
β

2
|Ψ|4 +

~2

2m
Ψ2

0|~∇θ|2 − Ωρsr
~
m
|~∇θ|, (0.1)

where α and β are phenomenological coefficients, m is the mass of 4He atom, Ω is

the angular velocity of the vessel, and ρs is the superfluid mass density. Ψ = Ψ0e
iθ is

the wave function of superfluid condensate. For temperatures less than the superfluid

transition temperature, α < 0 and we determine the local value of condensate density

Ψ0 by minimizing the free energy neglecting the rotation. With constant superfluid
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density Ψ0, we minimize this free energy density with respect to |~∇θ| and get,

|~∇θ|bias =
mΩr

~
. (0.2)

This shows that the equilibrium configuration of Ψ requires a non-zero value of |~∇θ|
in the presence of rotation. (Note, for the non-rotating case, we get θ = constant,

as is assumed inside a domain in the conventional Kibble mechanism.) Note that

|~∇θ|bias is proportional to the distance from the origin. Therefore larger r domains

will have more variation of order parameter than the lower one. Eventually, this gives

the biasing in the formation of the vortices over anti-vortices. We also see, again by

minimization of the free energy, that geodesic rule also gets modified. Even if we have

larger path variation on the order parameter space to connect two successive domains,

such variation may be allowed supporting the formation of vortices over anti-vortices.

With all these features, we performed the simulation in two dimension and got a

systematic bias in the formation of vortices over anti-vortices with the increasing

angular velocity of the vessel. We also see that the correlation in the formation of

vortices and anti-vortices get suppressed with the angular velocity. The probabilities

of the formation of vortices and anti-vortices also increase, but differently, with the

angular velocity of the vessel, see Ref. [4].

To summarize this part of the thesis, we have proposed a modification in the

conventional Kibble mechanism for the situation of production of topological defects

when physical situation requires excess of winding of one sign over the opposite ones.

We have considered the case of formation of vortices for superfluid 4He system when

the transition is carried out in a rotating vessel. As our results show, this biased

formation of defects can strongly affect the estimates of net defect density. Also,

these studies may be crucial in discussing the predictions relating to defect-anti-defect

correlations. The modified Kibble mechanism we presented here has very specific

predictions about net defect number which shows a clear pattern of larger fluctuations

(about mean value governed by the net rotation) compared to the conventional Kibble

prediction. This can be easily tested in experiments. Further, even the average net

defect number deviates from the number obtained from energetics considerations,

especially for low values of Ω. This implies that exactly at the time of transition, a

different net defect number will be formed on the average, which will slowly evolve
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to a value obtained from energetic considerations, see Ref. [4].

In our other study in this thesis, we consider the possibility of the superfluid

phases of QCD in heavy-ion collision experiments. QCD has mainly two superfluid

phases, one is in the confined phase, which is the neutron superfluid for which we have

performed UrQMD (Ultra-relativistic Quantum Molecular Dynamics) simulations to

check whether such phase is possible in the low energy heavy-ion collision experiment.

We get that temperature and the baryon density are very close to the neutron super-

fluid transition point and conclude that such superfluid phase may be possible if one

collides neutron rich nuclei, such as 238U92, at sufficiently low energy, ∼ 50A MeV .

The other superfluid phase of QCD lies in the deconfined phase which is known as the

color-flavor locked (CFL) phase, see Ref. [7]. The symmetry breaking pattern from

QGP to CFL phase is, SU(3)c×SU(3)L×SU(3)R×U(1)B → SU(3)c+L+R×Z2. This

symmetry breaking arises due to the formation and Bose-Einstein condensation of the

quark-quark Cooper pairs near the Fermi surface. The quark-quark anti-symmetric

color combination have attractive interaction and therefore only this combination of

the quarks can form the Cooper pairs and condense near the Fermi surface. Therefore

ground state of this phase becomes colored thereby breaking color gauge symmetry

of the QCD Lagrangian. These pairs also break chiral symmetry of the theory, but in

different ways from quark-antiquark pairs in the usual chiral transition. This phase

is a superfluid phase because quark-quark pairs also break U(1)B global symmetry

to Z2. This symmetry breaking makes the order parameter space of this system

topologically non-trivial and thus, in this phase topological vortices can exist. This

phase is supposed to occur at very high chemical potential regime, about 1500 MeV

baryon chemical potential (500 MeV quark chemical so that with respect to this,

masses of all three quarks u, d, and s can be neglected) and at temperature lower

than about 50 MeV . Though there is not much hope that such a phase can arise in

heavy-ion collisions, in our work, we consider the possibility of both the superfluid

phases of QCD in heavy-ion collision experiments. The method for the detection of

these phases which we propose, in this thesis, is universal for both the phase, i.e.,

appearance of the superfluid vortices when the superfluid medium forms. This gen-

erates a local rotation in the medium which affects the hydrodynamic evolution at

least at the initial stages and may be detected in the experiment by its effect on the
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flow pattern [3].

The energy momentum conservation for the ideal hydrodynamics is given by,

∂µT
µν = 0; T µν = (ρ+ p)uµuν − pηµν , (0.3)

where ρ and p are the energy density and pressure of the fluid which are related by

the equation of state of the fluid, we assume the ideal gas equation of state ρ = 3p,

uµ is the 4-velocity of the fluid and ηµν is the Minkowski tensor, which here we

have taken ηµν = diag(1,−1,−1,−1). For the hydrodynamic evolution of the fluid,

we need initial energy density profile, which in this work we have considered to be

a woods-saxon distribution. To account for the fluctuations, we put few Gaussian

of small width on the top of this woods-saxon distribution. We have taken, in the

superfluid phase, the initial velocity profile of a superfluid vortex or vortices. To

account for the linear momentum conservation, when superfluid vortices form, normal

components also start rotating about the vortex in the opposite direction, this leads to

the generation of a strong elliptic flow (a hydrodynamic quantity which characterizes

the momentum anisotropy of the fluid evolution) see Ref. [3]. Using hydrodynamic

simulations, we show that vortices can qualitatively affect the power spectrum of flow

fluctuations, e.g. elliptic flow. Even if the plasma region in the transverse plane

is isotropic, a strong elliptic flow can be generated due to formation of superfluid

vortices. We also see that in the presence of pair of vortices, the power spectrum

of flow can show differences in the power of even and odd flow coefficients. In the

case of non-central collisions we have negative value of elliptic flow, arising due to

specific configuration of vortex pairs. This can give unambiguous signal for superfluid

transition resulting in vortices, allowing for check of defect formation theories in a

relativistic quantum field theory system, and the detection of superfluid phases of

QCD. Detection of nucleonic superfluid vortices in low energy heavy-ion collisions will

give opportunity for laboratory controlled study of their properties, providing crucial

inputs for the physics of pulsars. We also study the possibility of formation of neutron

superfluidity in the low energy heavy-ion collisions. We see that it is a good possibility

to have neutron superfluidity in the this experiment at the sufficiently low energy

collisions of neutron rich nuclei. The detection of these in laboratory experiments

will strengthen our understanding of pulsar dynamics. The signals we have discussed
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show qualitatively new features in flow anisotropies signaling the presence of vortices

and the underlying superfluid phase in the evolving plasma. These qualitative features

are expected to be almost model independent, solely arising from the vortex velocity

fields.

One of the most important probes of the medium formation in the heavy-ion

collisions is the elliptic flow which characterizes the momentum anisotropy of the

medium evolution. By fitting the elliptic flow from the experiment data in the viscous

hydrodynamics simulations, one is able to extract out the viscosity of the quark-gluon

plasma. The determination of the viscosity depends upon the various parameters of

the simulation, e.g. initial energy density, thermalization time, equation of state, etc.

In heavy-ion collisions due to the opposite motion of nuclei, magnetic field also get

generated. Its survival until the formation of the thermal medium and its effects on

the medium dynamics is an exciting area of research. In this thesis, by performing

the magneto-hydrodynamics simulations, we show that the magnetic field can affect

the fluid dynamics in heavy-ion collisions. In particular, it changes the elliptic flow

depending upon the impact parameter of the collisions. We also study other possible

effects of magnetic field on the fluid dynamics and back effect of dynamics of fluid on

the magnetic field evolution, see Ref. [8].

In this work we have generated the initial energy density profile by using the

Glauber model. We use optical Glauber model for smooth profile and Glauber Monte

Carlo for energy density profile with fluctuations. We have generated the initial

magnetic field, by doing the Lorentz transformation for velocities of nuclei along ±z-

axis, on the rest frame electric field of a uniformly charged nuclei. We have calculated

the magnetic field at the thermalization time and assumed that it gets trapped in

the fluid due to medium conductivity. The conservation of total energy momentum

tensor (for QGP as well as the magnetic field) is given by [8],

∂αT
αβ = 0; Tαβ = (ρ+ pg + |b|2)uαuβ − bαbβ + (pg +

|b|2

2
)ηαβ, (0.4)

where ρ and pg are the energy density and pressure of the fluid which are related by

the equation state of the fluid, we assume the ideal gas equation of state ρ = 3p, uα is

the 4-velocity of the fluid and ηαβ is the Minkowski tensor, which here we have taken
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ηαβ = diag(−1, 1, 1, 1). The Maxwell’s equations are,

∂α(uαbβ − bαuβ) = 0. (0.5)

Here the 4-vector bα is related to the magnetic field ~B and fluid velocity by, bα =

γ[~v. ~B,
~B
γ2 + ~v(~v. ~B)], where γ is the Lorentz factor for velocity ~v and we have |b|2 ≡

bαbα = | ~B|2
γ2 + (~v. ~B)2 . In this work, we carry out relativistic magnetohydrodynamics

(RMHD) simulations to study the effects of this magnetic field on the evolution of

the plasma using above equations and study resulting flow fluctuations in the ideal

RMHD limit. We have demonstrated qualitatively new effects on the flow pattern of

QGP in the presence of initial magnetic field. These qualitative patterns may be able

to provide clear signal for the presence of strong magnetic field during early stages

of the evolution, though actual value of magnetic field etc. will depend on more

reliable numerical estimates of the numbers. Our results show that magnetic field

leads to enhancement in elliptic flow for small impact parameters while it suppresses

the elliptic flow for large impact parameters (which may provide a signal for initial

stage magnetic field). This result on the enhancement of elliptic flow in the presence

of magnetic field confirms earlier expectation in Refs. [4, 6]. At the same time our

simulation also points out that the effects of magnetic field on elliptic flow are much

more complex than envisaged in simple arguments of Ref. [4], as in some situations

one finds decrease in the elliptic flow. This may resolve the discrepancy between the

results of Refs. [4, 6] and Ref. [7] (see, also Refs. [19, 20]). The strong suppression of

elliptic flow for large impact parameters can provide a signal for strong magnetic field

at initial stages. Interestingly, we find that magnetic field in localized regions can

temporarily increase in time as evolving plasma energy density fluctuations lead to

reorganization of magnetic flux. This can have important effects on chiral magnetic

effect. Magnetic field has non-trivial effects on the power spectrum of flow fluctua-

tions. For very strong magnetic field case one sees a pattern of even-odd difference

in the power spectrum of flow coefficients arising from reflection symmetry about the

magnetic field direction if initial state fluctuations are not dominant. We discuss the

situation of nontrivial magnetic field configurations arising from collision of deformed

nuclei and show that it can lead to anomalous elliptic flow. Special (crossed body-

body) configurations of deformed nuclei collision can lead to presence of quadrupolar
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magnetic field which can have very important effects on the rapidity dependence of

transverse expansion (similar to beam focusing from quadrupole fields in accelerators),

see Ref. [8].

The deformed nucleus collisions in relativistic heavy-ion collisions leads to even

more interesting possibilities related with the shape anisotropy of the plasma in the

transverse plane and the direction of magnetic field. The dependence of the elliptic

flow on the impact parameter, in the body-body collisions (where impact parameter

is along the semi-major axis of both the nuclei), with and without magnetic field,

becomes dramatically different from the spherical nucleus collisions case [14].

We have performed RMHD simulations for the case of deformed nucleus-nucleus

collisions for the case of Uranium nuclei. We have generated the initial energy density

by Glauber model, and magnetic field profile (following Ref. [15]) appropriate for

Uranium-Uranium collisions. We have performed the RMHD simulations for the

body-body collisions. Due to deformation of the nuclei, even in the zero impact

parameter case there is spatial anisotropy in the plasma such that the semi-major

axis of the ellipse lies along the x-axis therefore we get negative elliptic flow; in this

case there is no magnetic field present. When we increase the impact parameter by a

small amount, magnetic field gets generated along the y-axis (semi-minor axis of the

plasma), due to which, overall magnitude of the elliptic flow gets suppressed. When

we increase the impact parameter further at a particular impact parameter, plasma

region becomes isotropic in the transverse plane. For such case ideal hydrodynamics

gives zero value of the elliptic flow, but due to presence of the magnetic field in the

fluid in this case, we get non zero elliptic flow showing that magnetic field itself can

generate momentum anisotropy in the plasma. When we increase impact parameter

further, the situation becomes similar as in the case of the spherical nuclei collisions

and we first get enhancement and then suppression in the elliptic flow [14].
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Chapter 1

Introduction

Though the motivation of the development of quantum mechanics came from the

particle nature of electromagnetic radiation (photon), there is no prescription avail-

able in quantum mechanics, by which one can quantize the electromagnetic field [1].

The formal description of particle creation and annihilation is also not available in

quantum mechanics [1]. The quantum field theory takes care of all these issues in a

very systematic way. In the quantum field theory, there are prescriptions by which

field can be quantized which creates multi-particle states. There are loop diagrams,

which arise due to quantum nature of the theory. Such loop processes generally have

divergences. To take care of these divergences regularization and renormalization

prescription are followed.

The effective potential of a theory incorporates all possible quantum corrections,

arising from the interaction, on the top of the classical potential [2]. Due to the quan-

tum corrections (loop diagrams), the classical potential can get modified qualitatively.

The vacuum energy density and vacuum expectation value, both get modified due to

such quantum corrections. The effective potential provides the actual ground state

of the theory and its symmetries. Hence effective potential plays a very important

role in the study of spontaneous symmetry breaking. The field configuration obtained

by minimizing the effective potential, gives translation and Lorentz invariant vacuum

state of the theory.

In spontaneous symmetry breaking, ground state of the theory does not follow

the full symmetry of the Lagrangian. This phenomena happens only if ground state
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has some degeneracy, in which system chooses one particular ground state sponta-

neously. There are numerous examples where ground state only breaks part of the

full symmetry group G of the Lagrangian and remains invariant under the subgroup

H of the full symmetry group G. For example, in the case of para-magnetic to ferro-

magnetic transition, magnetization density breaks SO(3) symmetry of the theory,

but remains invariant under SO(2) transformations. Similarly, in the case of chiral

transition of QCD, 〈ψ̄ψ〉 chiral condensate breaks SU(2)V ⊗SU(2)A symmetry of the

theory to SU(2)V subgroup. In the electro-weak phase transition, SU(2)L ⊗ U(1)Y

breaks to U(1)e.m.. In superconducting transitions, Cooper pair condensate breaks

U(1)e.m. gauge symmetry to Z2 symmetry. There are also systems where the sym-

metry group G is completely broken (to trivial group). The 4He superfluid system is

the simplest example where Bose condensation of helium atoms breaks U(1) global

symmetry completely.

The spontaneous symmetry breaking phase transition happens in the many-body

system where statistical field theory or thermal field theory is used. The effective

potential at finite temperature and/or finite density describes such kind of phase

transition, and plays similar role in the field theoretical system as played by free

energy density in the Ginzburg-Landau theory in a condensed matter system. The

spontaneous symmetry breaking in general is not necessarily associated with a phase

transitions and can happen even in non-equilibrium systems also. The quantum field

theoretical systems at T = 0 and µ = 0 usually allows such kind of possibility. In

this thesis we will focus on the spontaneous symmetry breaking (SSB) for a thermal

(many-body) system. This is known as the SSB phase transitions. The phase tran-

sitions in condensed matter systems is described by the Taylor’s series expansion of

free energy density in terms of the order parameter field. Writing free energy density

in such a way captures phenomenological aspects of the phase transition dynamics.

This is known as the Ginzburg-Landau theory of phase transitions. In high-energy

physics effective potential at finite temperature or finite density is calculated from

the first principle, which describes the symmetry breaking phase transition in the

quantum field theoretical systems.

A system undergoes phase transition, when at a given value of state variable,
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e.g. at a particular temperature, the partition function of the system becomes non-

analytical. Generally, a phase transition is characterized by an order parameter, which

distinguishes two phases by taking non-zero value in the symmetry broken phase (also

known as the ordered phase) and zero value in the other (disordered phase). In the

case of first order phase transition, free energy density or effective potential has a

metastable state. Due to this, dynamics of this phase transition is quite different

from the continuous phase transition, in which case there is no metastable state. In

the case of a first order phase transition, order parameter changes discontinuously

to a non-zero value from the zero value at the transition point (by changing the

temperature). In the case of continuous phase transition order parameter changes

continuously from zero value to the non-zero value in the ordered phase. The contin-

uous phase transition encounters critical point, where correlation length of the system

becomes divergent. In the critical or Ginzburg region, the effect of thermal fluctua-

tions (kBT ) are strong and due to this, there is no possibility of having ordering, even

though the symmetry remains broken in this region. Below the Ginzburg temperature,

where fluctuations become suppressed in a correlated volume, the ordering establishes

and domain structure forms - as happens in the case of ferromagnetic systems. In the

case of first order phase transition, there is no critical region. In this case, just below

the transition temperature, bubbles of ordered phase nucleate in the background of

disordered phase. If the size a bubble is bigger than the critical size, then bubble

grows in size and fill up nearby space with ordered phase. Ultimately whole space is

filled up with the phase of ordered phase in both kinds of phase transitions. In Chap-

ter 3 we discuss that due to random variation of order parameter in these domains

or bubbles, when they meet at a junction point there is a possibility of formation of

topological defect. The kind of defects formed during the phase transition, depends

upon the order parameter space of the theory and spatial dimensions of the system,

see Chapter 2.

As we have mentioned, in the case of spontaneous symmetry breaking, ground

state does not remain invariant under full symmetry transformations in G as followed

by Lagrangian of the theory. However, in the case of explicit symmetry breaking,

symmetry breaks at the Lagrangian level itself. In such situation, no SSB phase

transition occurs. In the absence of a genuine phase transition, the system undergoes,
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the so called cross-over transition. The best example is the Heisenberg model in the

presence of (external) magnetic field term. This term breaks SO(3) symmetry to

SO(2) explicitly. Similarly in the chiral model, masses of u and d quarks break chiral

symmetry explicitly.

Now, we briefly discuss about the hydrodynamics description of thermal systems.

The long wavelength dynamics of a thermal medium is governed by the hydrodynamic

(fluid dynamic) equations. The ideal hydrodynamic description of system demands

(at least) local thermodynamic equilibrium. The hydrodynamics describes, if there

are pressure variations in the system, then along the pressure gradient, there will be

a flow of fluid elements. To have full ideal hydrodynamics description of a system,

the macroscopic length and time scale of the fluid evolution should be much greater

than the microscopic length scale (mean free path) and (interaction) time scale of the

system, such that the local thermodynamic equilibrium remains maintained through-

out the evolution of the fluid. In such situation, one can define local thermodynamic

quantities, such as energy density, pressure, temperature etc. at each space-time

points. The hydrodynamic description requires equation of state of the system also.

This requirement arises because number of independent variables are more in hydro-

dynamics equations than the number of equations. Since equation of state of a system

depends upon the microscopic interactions of its constituents, therefore only at this

place, the actual property of the system enters in the ideal hydrodynamics equations,

and gives quantitatively different evolution for different systems. More specifically,

fluid velocity in hydrodynamic description is directly related with the sound speed in

the medium, which varies from system to system. But it should be noted that, the

overall hydrodynamics description does not depends upon whether constituents of the

fluid elements are quantum or classical in nature. The hydrodynamics equation re-

quires relativistic description, if either fluid elements are relativistic or its constituents

are relativistic particles. The formalism of the relativistic hydrodynamics has been

discussed in Chapter 6 and its application in the context of relativistic heavy-ion

collision is discussed in the Chapter 8.

The spontaneous symmetry breaking (SSB) phase transitions and the hydrody-

namic equations are some of the most important tools of statistical physics which

are extensively used, irrespective of the energy scale of the system, from condensed

4



matter physics to the high energy physics. In the condensed matter physics, ferro-

magnetism, superfluidity, superconductivity, etc., arise due to spontaneous symmetry

breaking phase transitions. In the high energy physics also the whole evolution of the

Universe is affected by such kind of phase transitions. The GUT phase transition, at

the energy scale of 1015 GeV , and the electroweak phase transition, at the energy of

about 100 GeV are the examples of SSB phase transition in the early Universe. The

confining transition, from quark-gluon plasma (QGP) phase of QCD to the hadronic

phase, is a cross-over transition. All these transitions lead to interesting stages during

the evolution of the Universe. Similarly, hydrodynamics is also used in almost every

branch of physics. The description of the flow of water, and evolution of the cosmic

plasma during early stages of the Universe, both are governed by hydrodynamics

equations, although former is a non-relativistic system while latter is a relativistic

system, and equation of state for both the systems are quite different also. In this

thesis we discuss SSB phase transition of the superfluid systems, and hydrodynamics

& magneto-hydrodynamics evolution of QCD matter in relativistic heavy-ion collision

experiments.

The concepts of topology are also very extensively used in many branches of

physics. There are many physical situations where topology plays a very important

role, e.g., Aharonov-Bohm effect, topological phase transitions, QCD instanton pro-

cesses, Skyrmion picture of baryons in the linear-sigma model, Berry phase, superfluid

vortices, flux tubes in superconductor, and cosmic strings, domain walls, monopoles

in the early Universe etc. The main essence of the topology is in the continuity,

specifically, continuous deformations of a map. This is explored in much more detail

in Chapter 2. In this thesis we are interested in topological defects, mainly in the for-

mation of topological vortices during superfluid transition. We study the formation

of vortices in the 4He system, and in QCD matter at high baryon density.

Topological defects are the locations in the physical space where the order param-

eter field becomes singular (ill defined) [3]. This singularity is topologically protected

and can not be removed by local deformation of the order parameter field config-

uration. The order parameter configuration corresponds to the mapping from the

physical space to the order parameter space which forms shrinkable/non-shrinkable

loops. There can be many different kind of mappings from the physical space to the
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order parameter space which are distinguished by the winding number (for superfluid

4He case) and are characterized by the homotopy classes of the loops. These homo-

topy mappings form a group structure under the combination law of homotopy classes,

which is known as the fundamental group. If this fundamental group is non-trivial

for an order parameter space of the system, i.e. if it is not isomorphic to the trivial

group (consisting of only the identity element), then this ensures that in the physical

space topological vortices or line defects will exist [3]. For the detail discussion see

Chapter 2.

There are many ways by which a topological defect can form. In this thesis we

are interested in the formation of the topological defects during the SSB phase transi-

tions. This, we have explored in detail in Chapter 3. If the order parameter space of

a system is topologically non-trivial, then topological defects can exist in the physical

space [3], and a symmetry breaking phase transition can lead to the formation of topo-

logical defects. The formation of these defects during a phase transition is described

by the Kibble mechanism [4], which is very well tested experimentally. A phase tran-

sition leads to the formation of correlation domains in the physical space. The Kibble

mechanism utilizes a picture of domain formation during the phase transition and de-

scribes how topological defects form during the SSB phase transition [4], see Chapter

3 also. In the case of superfluid transitions this leads to the formation of topologi-

cal vortices. These vortices have important implications in the condensed matter as

well for neutron star physics. The most important property of superfluid vortices,

which makes these defects different from the topological defects in other systems, is

the rotation of superfluid components about these vortices. This property of rotation

arises due to the quantum nature of superfluidity and due to the non-trivial order

parameter field configuration about the superfluid vortex. Therefore these vortices

carry (quantized) angular momentum and are protected by topology. The appearance

of superfluid vortices in the superfluid phase makes this phase qualitatively distinct

from the normal fluid. This also we have discussed in Chapter 3.

The search of the quark-gluon plasma and its possible probes in the relativistic

heavy-ion collisions is one of the exciting area of research. Although, the zero chemical

potential quark-gluon plasma phase is of interest for the early Universe, quark-gluon

plasma at finite chemical potential contains very rich physics and is of tremendous
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interest for the physics of neutron star. There are several exiting phases of Quantum

Chromodynamics (QCD) possible in this regime of high baryon density at sufficiently

low temperatures. The physics of BCS theory is directly applicable in this regime

and formation of Cooper pairs, both, in the confined phase and deconfined phase lead

to the emergence of superfluidity and superconductivity in the QCD matter. These

phases play a very important role in the dynamics, like glitches, and cooling process

of a neutron star. The Quantum Chromodynamics (QCD) and its phases, specially

superfluid phases, has been discussed in Chapter 5.

In the low energy heavy-ion collisions, if any superfluid phase of QCD arises via

spontaneous symmetry breaking phase transitions, then it affects the hydrodynam-

ics evolution of the system due to the formation of topological vortices [5]. This we

discuss in Chapter 9 in detail. In such an energy regime, there is a strong possibility

that, in the case of non-central collisions, the formed medium may get rotation due

to surface tension. Therefore in such situation the superfluid phase transition will

occur in the presence of a rotation. This is a similar situation as occurs in the case of

neutron star superfluid transition, as in that case also neutron superfluid transition

occurs in the presence of rotation of the star. In the condensed matter system, such

as 4He, superfluid transitions in the presence of rotation is routinely studied exper-

imentally. The formation of these vortices during the phase transition is governed

by the Kibble mechanism, which predicts the equal formation probabilities of defects

and anti-defects [4]. However the above phase transitions, in the presence of rotation,

requires a biasing in the formation of vortices over anti-vortices or vise-versa. In this

thesis, we address this issue for superfluid 4He transition by modifying the Kibble

mechanism in the presence of such external influence, so that it can account for the

required biases, see Ref. [6] and Chapter 4. As discussed above, this has important

implications in the case of neutron star and heavy-ion collision physics. Note that

there are other situations where such kind of modification in the Kibble mechanism

is required. For example, formation of flux-tubes during the superconducting tran-

sition in the presence of magnetic field, and formation of baryons (Skyrmions) at

finite chemical potential during chiral transition in the linear-sigma model, requires

more number of one kind of topological object than other one (note that the baryon

production is restricted by the baryon number conservation, see Ref. [7]). All these
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issues can be handled by modifying the main ingredients of the Kibble mechanism

which are the domain structure and the geodesic rule. In Chapter 4, we have dis-

cussed such kind of modification for the case of superfluid transition in the presence

of a rotation which lead to the biasing in the formation of topological vortices [6].

If such a modification of the domain structure and geodesic rule is confirmed in the

experiments then one can extend such approach to the other systems also.

One of the works presented in this thesis relates to formation of superfluid vortices

in 4He system in a rotating vessel. This is presented in Chapter 4. It is well known

fact that when one increases the angular velocity of the vessel containing superfluid,

a (rotating) vortex-lattice forms. This method of generation of the superfluid vortices

is completely different from the Kibble mechanics. In the former case, vortices arises

when the system is already in the superfluid phase while in the Kibble mechanism,

vortices arise during the normal to superfluid transition. In Chapter 4, we address

the issue that how superfluid vortices will form if the superfluid transition occurs in

the presence of a rotation. The rotation of the vessel will lead to the formation of

more number of vortices than anti-vortices. The standard Kibble mechanism can not

capture this feature. In fact, it predicts equal formation probabilities of defects and

anti-defects. In Chapter 4, we have proposed a modification of the Kibble mechanism

which accounts for biases in the formation of topological vortices during the superfluid

transition in the presence of rotation.

Another work discussed in this thesis relates to the possibility of detecting su-

perfluid phases of QCD in the heavy-ion collision experiments. This is presented in

Chapter 9. We also investigate whether neutron superfluidity is possible in the low

energy heavy-ion collisions. For this we have performed ultra-relativistic quantum

molecular dynamics (UrQMD) simulations. Though there is not much hope that

color-flavor locked (CFL) phase, which is also a superfluid phase of QCD, can arise

in heavy-ion collisions. In our work, we have considered the possibility of both the

superfluid phases of QCD (neutron superfluid and CFL) in heavy-ion collision exper-

iments. The method for the detection of these phases, which we propose in Chapter

9, is universal for both the phase, i.e., appearance of the superfluid vortices when

the superfluid medium forms. This generates a local rotation in the medium which

affects the hydrodynamic evolution at least at the initial stages and may be detected
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in the experiment by its effect on the flow pattern [5].

One of the most important probes of the medium formation in the heavy-ion

collisions is the elliptic flow which characterizes the momentum anisotropy of the

medium evolution. By fitting the elliptic flow with the experiment data in the viscous

hydrodynamics simulations, one is able to extract out the viscosity of the quark-gluon

plasma. The determination of the viscosity depends upon the various parameters of

the simulation, e.g. initial energy density, thermalization time, equation of state, etc.

In heavy-ion collisions due to the opposite motion of nuclei, magnetic field also get

generated. Its survival until the formation of the thermal medium, and its effects on

the medium dynamics is an exciting area of research. In Chapter 10, by performing

the magneto-hydrodynamics simulations, we show that the magnetic field can affect

the fluid evolution in heavy-ion collisions. In particular, it changes the elliptic flow

depending upon the impact parameter of the collisions. We also study other possible

effects of magnetic field on the fluid dynamics and effect of dynamics of fluid on the

magnetic field strength at the center of the system, see Ref. [8].

The deformed nucleus collisions in relativistic heavy-ion collisions leads to even

more interesting possibilities related with the shape anisotropy of the plasma in the

transverse plane and the direction of magnetic field. The dependence of the elliptic

flow on the impact parameter, in the body-body collisions (where impact parameter

is along the semi-major axis of both the nuclei), with and without magnetic field,

becomes dramatically different from the spherical nucleus collisions case [9]. We have

discussed this also in Chapter 10.

Chapters in this thesis are organized in the following manner. In Chapter 2,

starting by motivating the study of topology and discussing some basic notions of

topology, we discuss the order parameter space for various systems. We also discuss

the coset space for a medium in the symmetry broken phase (coset space of a system is

homeomorphic to the order parameter space [3]). Then we discuss topological defects

and first homotopy group for the classification of line-like defects.

Chapter 3 is devoted to the Kibble mechanism, superfluidity and a very brief

discussion on the vortex model and its experiment study. In Chapter 4, we have

proposed a modification of the Kibble mechanism which accounts for the biases in

the formation of topological vortices during the superfluid transition in the presence
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of rotation.

Chapter 5 is dedicated for a brief review of Quantum Chromodynamics (QCD) and

its phases. In this chapter by introducing QCD and its formal description, we discuss

its global symmetries. Then we introduce very briefly QCD at finite temperature

and discuss, by showing Lattice results, the QCD phase transition at zero chemical

potential. Then we discuss the superfluid phases of QCD. Here we introduce color-

flavor locked phase and neutron superfluid phase. Finally we discuss the QCD phase

diagram.

Chapter 6 and Chapter 7 are devoted for formal theory of ideal relativistic hydro-

dynamics and magneto-hydrodynamics. In Chapter 8, we introduce the physics of

heavy-ion collisions (HIC). Here we discuss about various stages of the system evolu-

tion in HIC and possible probes for the medium formation. Then we have discussed

the application of ideal relativistic hydrodynamics for heavy-ion collisions, and dis-

cuss a very important probe for the medium formation in the experiment, which is

the elliptic flow. We discuss the Fourier analysis of the azimuthal particle momentum

distribution function in HIC. We end this chapter by discussing about the production

of magnetic field in HIC and its effects in the system evolution in this experiments.

In Chapter 9, we propose the possibility of neutron superfluidity in low energy

HIC experiments and discuss if any of the superfluid phase arise in such experiment

then how to detect it. We propose the probe for the appearance of the superfluidity

in the HIC experiments via discussing the hydrodynamic evolution of the system in

the presence of superfluid vortices.

In Chapter 10, we have discussed ideal relativistic magneto-hydrodynamics sim-

ulations and have given results in the context of HIC experiments. We show that

presence of magnetic field can change the elliptic flow qualitatively. We see the en-

hancement in the elliptic flow at low impact parameter regime, while there is strong

suppression in the elliptic flow at high impact parameter regime. By showing our

other results, we end the chapter with our extension of this work in the case of de-

formed nucleus collision, where we have shown our preliminary results for such case.

Finally, we summarize the thesis in Chapter 11.
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Chapter 2

Basics of Topology, Homotopy

Theory, Order Parameter Spaces,

and Topological Defects

Topology deals with continuous functions, the continuous deformation of maps from

one topological space to other, and also deformation of topological spaces into each

other. Topology is the generalization of Euclidean geometry where there is no distinc-

tion between spaces which can be continuously deformed to each other. So topology

does not distinguish between a circle and a square but it distinguishes a sphere and a

torus. Spaces which are continuous deformable to each other are called Homeomor-

phic.

One of the example in which continuous deformation plays a very important role

is the Cauchy’s residue theorem discussed in [1]. In the complex plane a line integral

of a meromorphic function from one point to the other is independent from the path

chosen for the integration until and unless it does not cross any pole. If there is

no pole in the region, continuous deformation of the path is allowed and integration

remains independent of the path chosen. If a path crosses a pole then integration

value gets changed in accordance with the Cauchy’s residue theorem.

We give one example which can provide an understanding of the concept of topolog-

ical invariance. Consider a disc B2 (a two dimensional bounded space) and consider
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Figure 2.1: Left figure shows the vector field v(x) drawn from boundary point x

to f(x) (interior of B2). Right figure shows that a continuous deformation of the

boundary can not change the index of vector field v(x), hence index of a vector field

is a topologically invariant quantity. Figure has been taken from Ref. [1].

a function f(x) which maps points from B2 into itself, with the condition that bound-

ary of B2 always get mapped to the interior of B2. Let us consider a vector v(x)

pointing from x to f(x) as shown in the left Fig.2.1,

v(x) = x− f(x),

where x are the boundary points of B2 and function f(x) maps boundary points x

of B2 into its interior. With this definition of v(x), if points x are rotated by 2π

about the center, then it is certain that v(x) will also rotate by 2π about the center.

It implies that that v(x) has index one (winding number one), which is an integer

number. The index of a field configuration is a topologically invariant quantity. To

verify the topological invariance of an index, let us continuously deform the boundary

of B2 as shown by dotted loop in the right Fig.2.1. One can check that under this

deformation, the index of vector field v(x) does not change, therefore the index of a

vector field is a topologically invariant quantity. If continuous deformations cannot

change the index of a field configuration, then the field configuration is known as a

topologically invariant configuration.
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2.1 Basic Notions of Topology

In this section, by following the discussion from Ref. [1], we discuss few basic defini-

tions which are useful in the discussion of topological defects. A topological space is a

set on which continuity of a function is defined. The exact definition of a topological

space is as follow [1] :

A set A along with a finite or infinite collection of subsets of A, U = {Aα} forms a

topological space, if the collections U satisfies following conditions:

a) φ ∈ U , A ∈ U
b) Any finite or infinite subcollection {Cα} of the Aα has the property that

⋃
Cα ∈ U

c) Any finite subcollection {Cα1 , ..., Cαn} of the Aα has the property that
⋂
Cαi ∈ U

If the above conditions are satisfied, then A and U form a topological space (A, U),

and the subsets Aα are called open sets. The choice of U satisfying above conditions

is said to give a topology to A.

We give an example in which a setAmay or may not form topological space depending

upon the collection U . Let us take a set A = {1, 2, 3, 4}, it does not form a topo-

logical space for the collection U = {φ,A, {1, 2}, {2, 3}}, because second and third

conditions are not satisfied. On the other hand, if we take U = {φ,A, {1, 2}, {3, 4}},
then one can check that this collection of subsets gives topology to A. Subsets {1, 2}
and {3, 4} are called open sets.

Continuous Function: Consider a function f defining a map from topological space

(A,UA) to topological space (B,UB). f is said to be continuous if under the map, the

inverse image of any open set in (B,UB) is an open set in (A,UA) [1].

According to the definition, function f is continuous if and only if the inverse mapping

from topological space (B,UB) to (A,UA) maps open sets to the open set. It can be

seen, that this definition reduces to the conventional ε-δ definition for continuous and
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discontinuous functions defined on real line R. For a discontinuous function, inverse

map of an open set, which lies about the discontinuous branch of the function f , does

not remain an open set.

The purpose of the topological spaces is to describe continuity of functions. The

above definition of topological space is an appropriate mathematical structure to dis-

cuss the continuity or discontinuity of a function. Continuity of a function completely

depends upon the topology associate with a set; a discontinuous function may become

continuous from one topology to other. For example if we consider a collection of all

2n subsets of a given set A with n number of elements (the power set of A, P(A)),

then in the topological space (A, P (A)) each and every function will become contin-

uous. This is called the discrete topology of A. This is not a useful topology because

every function is continuous in this space. Similarly, for a given set A, collection

U = {φ,A} give the topology to A, but it is too restrictive as almost every function

become discontinuous. This is called the indiscrete or trivial topology.

Here we list some basic definitions which may be used in the discussion of topo-

logical defects.

Neighbourhoods: For a topological space (A,UA), N is a neighbourhood of a point

x ∈ A, ifN is a subset ofA which also contains some open setsAα to which x belongs.

Closed Sets: Any subset X of A is said to be closed if complement of X (denoted

by A−X ) is an open set. φ and A both are open sets as well as closed sets as both

are complements of each other.

Closure of a Set: Consider a collection of closed sets {Fα}, such that each Fα con-

tains a set U . Then the
⋂
Fα is called closure of set U and denoted by U . For a real

line R, if U = (a, b) then U = [a, b], a close set.

Interior and Boundary: The interior of a set U is the union of all open subsets of

U . Let us take open subsets of U to be Oα, then interior of U is U0 =
⋃
αOα. For

example if U is a closed set B2 of unit radius in R2, then U0, the interior, will be

x2 + y2 < 1.
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The boundary of set U is the complement of the interior of the closure of U , i.e.

the boundary b(U) = U − U0. So in the above example b(U) is x2 + y2 = 1; a circle

is the boundary of B2.

Cover and Compactness: Consider a collection of sets F = {Fα}. If union of

these sets, i.e.
⋃
Fα contains a set U , then F is said to be the cover of U . If all the

sets Fα are open sets, then the cover F is called an open cover of U .

For a give set U , there can be many open covers. If for every open cover F with⋃
Fα ⊃ U , there exist a finite subcovering {Fα1 , ..., Fαn} of U such that Fα1

⋃
Fα2 ...

⋃
Fαn

⊃ U , then set U is called compact.

In R2, all the sets with infinite area are non-compact, as although one can get

open cover of the set such that union of them contain the infinite area which the

given set has (in fact equal to the area of set), but no finite subcollection can exist

which can give infinite area of the given set, and therefore can not cover the set. So

to have finite subcovering, the area of the set should be finite and also the set should

be closed. So a set is compact if it is bounded and closed. For example open set B2

on R2 is non-compact because not all open cover of B2 has a finite subcovering of

B2; but closed set B2 is compact.

Connectedness: A set A is said to be connected, if it cannot be written in terms

of completely disjoint peaces (with empty intersection), i.e. a connected set A can

not be written as A = A1

⋃
A2, where A1 and A2 both are open and A1

⋂
A2 = φ;

otherwise the set is called disconnected.

Homeomorphism: Homeomorphism divides topological spaces into equivalence classes.

Two topological spaces are said to be homeomorphic if there exist a continuous map

α which maps one space into the other, and its inverse α−1 also exists which is also

a continuous map. Homeomorphic spaces are continuously deformable to each other

and lie in the same equivalency class. Two non-homeomorphic spaces belong to dif-

ferent equivalency classes. Homeomorphism between two topological spaces A and B
is defined as,

α : A → B
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where α is a continuous map such that α−1 also exist and is a continuous map.

Therefore if A is homeomorphic to B then reverse is also true. If there are three

topological spaces and first is homeomorphic to second and second is homeomorphic

to third then first will also be homeomorphic to third. As A is homeomorphic to A,

we see that homeomorphism is an equivalence relation.

If A and B are homeomorphic topological spaces, then if A is compact then B
has to be compact and if A is connected then B has to be connected. Therefore

compactness and connectedness are topological invariants.

Dimension of Rn is a topological invariant number ; there can not be a continuous

function which can map Rn to Rm, where n 6= m. Therefore spaces Rn and Rm,

with n 6= m, are not homeomorphic.

Homotopy of Maps: Let us consider two continuous maps from topological space

A to B,

α1 : A → B
α2 : A → B.

α1 and α2 are said to be homotopic to each other if they can be continuously deformed

to each other. This means there exist a continuous map F :

F : A× [0, 1]→ B

such that F satisfies

F(x, 0) = α1(x)

F(x, 1) = α2(x).

Therefore for t ∈ [0, 1], F(x, t) varies such that when t varies from 0 to 1, F(x, t)

continuously deforms from α1 to α2. It is easy to see that homotopy is an equiva-

lence relation. Therefore homotopy divides maps into different equivalence classes.

While homeomorphism generates equivalence classes of topological spaces, homotopy

generates equivalence classes of continuously deformable maps.

Equivalence classes generated by homotopy are themselves unchanged by contin-

uous deformation of topological spaces, i.e. homeomorphic topological spaces have the
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same homotopy equivalence classes. Therefore homotopy equivalence classes are topo-

logical invariants for pair of spaces A and B. No continuous maps (deformation) is

possible which can map one homotopy equivalence class to the other. This shows that

there is topological obstruction between different equivalence classes which leads to

topological invariants of homotopy equivalence classes.

Simply Connected Space: A topological space is called simply connected if any

closed path or loop can be shrinkable on the space. For example, R2 − {0} is not a

simply connected space, while R3 − {0} is.

Relative Topology: Suppose A′ is a subset of a topological space A. If the open

sets of A are {Aα}, then A′ is called relative topology of A′ to A, if open sets {A′α}
of A′ are intersections of Aα and A′, i.e. {A′α} = {Aα

⋂
A′}.

2.2 Order Parameter and Order Parameter Spaces

As we have discussed in the Chapter 1, a phase transition from one phase to the

other is described by Landau-Ginzburg theory, where free energy density is written

in terms of a power series of order parameter field. An order parameter characterizes

two distinct phases by having non-trivial (non-zero) value in one of the phase, while

being zero in the other phase. In the case of spontaneous symmetry breaking phase

transitions, order parameter takes non-zero value in the symmetry broken phase; sym-

metry broken phase being known as the ordered medium. In an ordered medium order

parameter field, say f(r), is defined at every point and can vary in space continu-

ously (except where topological defects are present as discussed latter). The possible

values of order parameter constitute a space known as the order parameter space (or

manifold of internal states) [2].

An ordered medium is characterized by a continuous order parameter field which

has its well defined value at every points in the space (apart from location of any

possible topological defect). Typically, in condensed matter system, order param-

eter fields arise after coarse-graining of some microscopic degrees of freedom. For

example, in the case of magnetic systems, microscopic constituents are spins, while
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order parameter field for this medium is taken to be magnetization density which

is the coarse-grained field of these microscopic constituents. In the construction of

order parameter space, for most of the cases, all possible orientation of microscopic

constituents are used. Though we should emphasize that each point on the order

parameter space corresponds to a local average of these microscopic variables. Note

that the length scale of the variation of an order parameter field and microscopic

variables are completely different. Below we present few examples of order parameter

and order parameter spaces:

1. Planar Spins: In this system, spin vectors are restricted to a plane therefore

the order parameter field (magnetization) is a vector of fixed magnitude lying in a

plane. Since all possible orientations of the order parameter field are parameterized

by an angle between 0 to 2π, therefore the order parameter space here is a circle S1.

2. Superfluid Helium-4: The superfluid phase arises due to Bose-Einstein conden-

sation, which has a non-zero condensate density. The order parameter field, which

characterizes this phase is a complex scalar field ψ = ψ0e
iθ(r) with a fixed magnitude

ψ0, where |ψ0|2 is the condensate density and 0 ≤ θ ≤ 2π. Therefore order parameter

space for this system is a circle S1 in the complex plane.

3. Ordinary Spins: In this case, spin vectors can take any possible 3-dimensional

orientation, therefore order parameter, which is the magnetization density with fixed

magnitude, also can have any possible orientation in 3-dimensional space. The order

parameter space for this system is therefore the surface of 2-sphere S2.

4. Superconductor: For conventional BCS superconductors, order parameter field

is also characterized by a complex scalar field. This is the field of the condensate

of cooper-pairs which also break U(1) symmetry as in the case of superfluid (though

here it is local gauge symmetry). Here U(1) local symmetry breaks to Z2. Therefore,

the order parameter space in this case is a circle with opposite points are identified,

i.e. S1/Z2. This space is homeomorphic to a circle, therefore in this case also the

order parameter space is a circle S1.
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5. Nematic Liquid Crystals: This system consists of a collection of long ellipsoidal

molecules which can locally align in the symmetry broken phase. These molecules

have orientation like an ordinary spin vector but without any arrowhead. Thus the

order parameter space for this system is a surface of 2-sphere with diametrically op-

posite points identified, i.e. S2/Z2. This space is known as the real projective plane

RP 2 which is a non-orientable manifold.

For more examples of order parameter and spaces, see Ref. [2].

2.2.1 Coset space and order parameter space

Let G be a group and H a subgroup of G. Let g ∈ G and hi ∈ H. Then set of

all elements ghi is called the coset of H (left coset), denoted by symbol gH. It can

be shown that, if g1 and g2 are two distinct elements of G then cosets g1H and g2H

are always either completely identical or completely disjoint sets. The space of these

cosets is called coset space and denoted by the symbol G/H [2].

In the case of spontaneous symmetry breaking, G is the symmetry group of the La-

grangian or Hamiltonian, while H (subgroup of G) is the symmetry group (remaining

symmetry) of the ground state after the symmetry breaking. Under the transforma-

tion of H, a specific value f of the order parameter does not change, therefore H in

this case is called the isotropy subgroup corresponding to f . Note that g transforms f

into a different order parameter value if g /∈ H. It has been shown in Ref. [2] that the

coset space G/H is homeomorphic to the vacuum manifold or the order parameter

space of the theory. As we have discussed above, two homeomorphic spaces have

the same homotopy equivalence classes (homeomorphism does not change homotopy

classes), therefore homotopy equivalence classes of the coset space and of the order

parameter space are the same.

For example, in the case of planar spin and superfluid SO(2) and U(1) symmetries

break completely. Therefore in both the cases isotropy subgroup H is the identity.

Therefore coset space G/H in both the cases is the group manifold of SO(2) and U(1)

which is a circle S1. In the case of ordinary spin in 3-dimensions, SO(3) symmetry

breaks to SO(2), therefore coset space G/H in this case is SO(3)/SO(2) which is a

surface of 2-sphere S2.
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2.3 Topological Defects

Topological defects are the order parameter field configurations, of topological origin,

which can not be removed by local deformation of the field configuration. To remove

it, the field configuration has to be changed globally (which costs energy, scaled with

the system size). The defect regions are singular regions where order parameter

field has singularity (ill defined). The gradient term of the order parameter field,

present in the free energy of the theory, becomes divergent at defect location, and it

is energetically more favorable that order parameter field leave the vacuum manifold

(and become zero at the center of defect). Because of this, defects region have higher

energy than the background. The zero magnitude value of the order parameter field

corresponds to symmetry restored phase, and that is why it is called a defect, which

is topologically protected, and hence topological defect.

We follow the discussion from Ref. [2] to describe the topological defects by consid-

ering a simple example of planar spin system in two dimensional space, where order

parameter is a vector s(x, y) of unit magnitude in a plane. The order parameter

space of this system is a circle S1. We will argue, by just following the argument

of continuity, that for a given field configuration s(x, y), on a hypothetical circle of

radius d about a point P , one can predict that whether the field value somewhere

inside the circle is singular or not.

Let us consider one of the order parameter field configurations given in Fig.2.2

on a (hypothetical) circle about point P with radius d. By traversing on the circle

in the counterclockwise direction, if the mapped field configuration from physical

space to order parameter space (S1) also changes in the counterclockwise direction,

then, by convention, we count it as a positive variation, while if it changes in the

clockwise direction on S1, we count it as a negative variation. Now since field s(x, y)

is continuous and single valued on the circle, therefore in traversing a full close path

on circle, the variation in the field has to be integral multiple of 2π, i.e. 2πn, where

n = 0, 1, 2, ... . The integer n is known as the winding number of the topological defect.

For a given non-trivial field configuration (with non-zero winding number) on the

circle, to discuss whether there is any singularity at point P or not, we continuously

21



Figure 2.2: Figures show different winding number order parameter field configura-

tions in the physical space. To realize the winding number, traverse counterclockwise

about the center of configuration and observe in which direction field is changing on

the order parameter space, and how many times field configuration wraps up around

the order parameter space S1. Figure has been taken from Ref. [2].

shrink the circle to a smaller radius. Since the deformation is continuous, therefore

the total variation of field on the new circle will also remain invariant and it still

will have the same winding number n. As the net winding number can not change

even if we shrink the circle to a very small radius, therefore the gradient of field on

the smaller circle will become very large. Therefore by the continuous shrinking of

circle, when we reach at the point P , derivative of order parameter field becomes

singular. Hence we conclude that if there is a non-trivial winding configuration of

order parameter field about a point P in the physical space, then there will be a

singular point somewhere inside this configuration which is a topological defect.

For n = 0 case also, it is possible that by pinching the field configuration one

can achieve singularity at P . But this singularity always can be removed by local

continuous deformation of field without affecting outer field configuration. In this

sense n = 0 singularity is said to be removable or topologically unstable, while n 6= 0

singularity as a topologically stable singularity.

Now we discuss the mapping of the field configuration from physical space to

the order parameter space and discuss the existence of the topological defects in the

physical space on the basis of continuity of mappings in the order parameter space.
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Figure 2.3: (a) shows the orientation of order parameter field at point (x, y) in the

physicals space.(b) shows the mapping s(x, y) of the order parameter field to the order

parameter space. This mapping is represented by a point on the order parameter space

with the same angle θ as in the physical space. Figure has been taken from Ref. [2].

First we define the mapping by saying that the order parameter field in the physical

space has some orientation (direction of the spin vector) which is mapped to the

order parameter space to a point by following the orientation of the field in physical

space. This defines s(x, y) as a mapping from physical space to order parameter

space, see Fig. 2.3. We are interested in the mapping from a circle in the physical

space, on which we want to investigate winding of field configuration around a point,

to the order parameter space for the existence of a topological defect. The order

parameter field on the circle in physical space get mapped either to a loop or to a

point in the order parameter space. The key statement is, if this loop is shrinkable on

the order parameter space, then on the circle in physical space, order parameter field

configuration will have zero winding and therefore there will not be a stable topological

defect in the region inside this circle, while if the loop in the order parameter space is

not shrinkable, then on the circle in the physical space, field configuration will have a

non-trivial winding and hence inside the region of the circle there will be a topological

defect, see Fig. 2.4 in this regard.

The winding number n is determined by the number of times a non-trivial loop

in the order parameter space wraps up around the order parameter space. Positive

and negative windings, by convention, are defined by counterclockwise and clockwise

wrapping, respectively. If two mappings (loops) are deformable to each other then

they are called homotopic to each other and they give same kind of topological defect in
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Figure 2.4: In all the cases left figures show the field configuration in the physical space

and right show corresponding mapping of these configurations in the order parameter

space.(a) Shows the mapping of a uniform field configuration into the order parameter

space.(b) Shows mapping of spatially varying order parameter field configuration into

the order parameter space which clearly has n = 0 winding configuration.(c) shows

winding number 2 configuration. Figure has been taken from Ref. [2].
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the physical space. In other words, we can say that if we can construct a continuous

family of mappings, ht(x, y) between two maps s1(x, y) and s2(x, y) in the order

parameter space (mapping from the circle in physical space to order parameter space),

such that h0(x, y) = s1(x, y) and h1(x, y) = s2(x, y), where t ∈ [0, 1], then s1(x, y)

and s2(x, y) are said to be homotopic maps ; ht(x, y) is called the homotopy between

two maps which is continuous in both (x, y) and t.

The statement, that a shrinkable loop in the order parameter space corresponds

to a unstable singularity in the physical space, can be understood by considering a

map by using the polar coordinates s(r, θ), where r can play a role of parameter t

of the homotopy discussed above. Suppose we have a field configuration such that

at the larger value of r there is no winding of this configuration on the circle, but

there is a singularity at the origin. When we decrease the r, it will generate a family

of homotopic maps to the previous map (with larger r), therefore new map will also

have the same winding number (because deformation is continuous in r as in the

analogous parameter t of homotopy), which is zero in this case. Even if we reach very

close to the origin winding number still will be zero because of the fact that all the

maps are homotopic and hence this singularity can not have any non-trivial winding

of field configuration at any r, therefore it can be removed by local deformations. In

the similar way we can show that if the field configuration has a non-trivial winding

around a point in a large radius circle, then it will also have the same winding in a

circle of infinitesimally small radius about the origin; this shows that there will be a

stable singularity at the origin which is a topological defect.

Now we discuss the homotopy equivalence classes of defects. Here we mention

that different field configurations with the same winding number in the core region of

singularity (around a point P ) can be continuously deformed to each other such that

they become identical. We can see this in Fig. 2.5, where a continuous deformation

of the field configuration in the core region of one defect is shown to become the

same as the core configuration of the other defect, where both the defects have the

same winding number. The different winding number field configurations do not have

this feature. Thus for the same winding configurations there is no topological barrier

for going from one configuration to other, while for different winding configurations
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Figure 2.5: (a) and (b) are winding number one field configurations. (c) shows after

performing a continuous deformation of (b) field configuration in the core region, one

can achieve (a) configuration, while outer region still have configuration of (b). Figure

has been taken from Ref. [2].

there is a topological barrier, and therefore by performing local continuous deforma-

tion, one can not achieve different winding number configurations. This shows that

corresponding loops in the order parameter space form equivalence classes. In a given

equivalence class, two loops can be continuously deform to each other, while in dif-

ferent classes they can not. These classes are called homotopy equivalence classes

which classifies the singularities in physical space for a given order parameter space.

Singularities in the same class are called topologically equivalent.

We have seen that the winding number is a topological conserved number. If we

have two nearby topological defects with winding number n and m, then a circle

encircling both the defects will have winding number n+m. In this regard, it is also

possible that winding number n and m defects can merge into a single defect with

winding number n + m. This is shown in Fig. 2.6 where two topological defects,

both with winding number one, merge into a single defects with winding number two.

This can be in the reverse also; single higher winding defect can split into multiple

defects with lower winding number by preserving the initial winding. Defects (winding
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Figure 2.6: (a) shows two nearby topological defects with winding number +1. (b)

shows that defect configuration in (a) is topologically equivalent to a single defect with

winding number +2. Figure has been taken from Ref. [2].

number +n) and anti-defects (winding number −n) can annihilate to each other to a

singularity free configuration and vice-versa. This feature shows a group-theoretical

structure of the classification of defects, which we discuss in the next section.

The classification scheme of defects depends upon the structure of the order pa-

rameter space. If we consider ordinary spin in 3-dimensions instead of planar spin,

then in this case order parameter space is a surface of 2-sphere. It can be shown

that the topological defects what we have discussed above are unstable in this space

because every loop in this space is shrinkable. Note that for a 3-dimensional sys-

tem, a wrapped balloon on the surface of 2-sphere is not shrinkable. This leads to the

monopole defects in the physical space. Therefore the defect classification differs from

one order parameter space to other (non-homeomorphic) order parameter space.

2.4 Homotopy Theory

Homotopy theory provides a classification of topological defects in the ordered media.

It also gives a systematic description for crossing of two topological line defects. If for
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a given order parameter space homotopy group is non-trivial, it will have an important

consequence in the physical space in terms of existence of topological defects. For

example, if fundamental group of the order parameter space is non-trivial it ensures

the existence of the line defects in 3-dimensions and point defects in 2-dimensions.

First we discuss the fundamental group (also known as first homotopy group), then we

briefly discuss about the higher homotopy groups and list possible topological defects

and objects for a given order parameter space.

2.4.1 The Fundamental Group

In the last section we have discussed the classification of defects in 2-dimensional space

for a planar spin for which order parameter space is S1. In general, there is no reason

to restrict ourselves to 2-dimension and for a specific order parameter space; in fact,

different media can have different spatial dimensions and order parameter spaces.

In general, one can classify the topological defects in any spatial dimensions with

the study of equivalence classes of maps from physical space to the order parameter

space. As we have discussed that within a given homotopy equivalence class, loops

in order parameter space can be continuously deformed to each other, while maps

belonging to different homotopy equivalence classes can not be deformed into each

other. This introduces the notion of topological barrier (topological invariants) and

some kind of discreteness which is known as the winding number associated with each

equivalence class. These equivalence classes form a group structure, which we discuss

below, called homotopy group. The combination law of two defects is associated with

the combination law of elements of the homotopy group. The fundamental group is

the first homotopy group; first homotopy means we study the group of equivalence

classes whose elements are the one dimensional loops. For higher dimensional surfaces

in order parameter space, we have higher homotopy groups accordingly.

First we begin by considering loops which have a common point in the order pa-

rameter space and show that equivalences classes of these loops form a group structure

known as based homotopy group. Then we discuss that, if the order parameter space

is path connected, then no point in this space is special and the choice of one point

over the other in this space do not change the group structure and hence this group is

associated with the order parameter space overall. A path connected space is a space
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in which any two points can be continuously joined by a path lying in the order pa-

rameter space. Mathematically, if there are two points x and y in the order parameter

space then there is a continuous mapping f which maps interval [0, 1] into the order

parameter space(f : [0, 1] → S; S is the order parameter space) such that f(0) = x

and f(1) = y. Note that the consideration of path connected order parameter space

does not loose the generality of our next discussions, as even in the case when order

parameter space has disjoint pieces (in terms of path connectedness), the field con-

figuration at a circle in the physical space is always mapped into a path connected

part of the order parameter space, and for that our entire following discussion will go

through. Note that if two different maps from the physical space to the order param-

eter space lie in two disjoint pieces of the order parameter space then they belong to

different equivalence classes, and therefore there is no homotopy between these two

maps [2].

A. Fundamental Group at a point

In this section we discuss the homotopy between loops which have one point

common in the order parameter space. The common point is called the base point

and the homotopy between loops at the base point is called the based homotopy. The

based homotopy of loops form a group structure for a given order parameter space

known as based homotopy group. In the next section we discuss that in the path

connected order parameter space, no point is special and each based homotopy group

(discussed below) are isomorphic. The homotopy without any base point is known as

free homotopy.

Let us begin by defining a loop at a base point x. A loop at base point x can be

describe by a continuous maps f(z) which maps the interval [0, 1] (0 ≤ z ≤ 1) from

physical space to the order parameter space such that f(0) = f(1) = x. Note that

the increase in z in the physical space is represented by direction of arrow on the loop

in the order parameter space.

The homotopy between the two continuous maps f and g which have common

base point x is describe by a family of continuous maps (both in t and z) ht(z)

(ht(z) : [0, 1]× [0, 1]→ S) such that h0(z) = f and h1(z) = g and also ht(0) = x and

ht(1) = x. In Fig.2.7 the based homotopy between family of loops has been shown.
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Figure 2.7: Figure shows the based homotopy between family of loops. Figure has

been taken from Ref. [2].

Now, to describe the group-theoretical structure, we first discuss the combination

law. We here note that it is difficult to parameterize the combination of two loops.

This difficulty arises because of too much restrictive condition put by above parame-

terization than required. Let us discuss one possible parameterization of combination

of two loops,

f ◦ g(z) = f(2z), 0 ≤ z ≤ 1
2
;

= g(2z − 1), 1
2
≤ z ≤ 1.

In this parameterization, at z = 1
2
, loops always has to reach at the base point x.

This is an unnecessary restrictive constraint, since we know that loop f ◦ g(z) is

homotopic to a loop which start and end at x and has the same winding number as

of the combination of loops f and g. Also, there is a serious problem related with

the associative law with the above parameterization for combination law. This kind

of parameterization does not follow the associative law.

Therefore we do not consider the combination law of two loops (which gives more

restrictive condition than required). Instead of the combination of loops, we consider

combination of equivalence classes (at x). This is appropriate for the formation of

group structure of equivalence classes at x. This consideration is quite natural since

the equivalence classes are the one which characterize topological defects.
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Figure 2.8: Figure shows the combination of two loops f and g following the definition

of combination of equivalence classes. Since in this definition there is no any issue

of parametrization, therefore this definition allows the homotopy in between the loop

[f ] ◦ [g] in (a) and loop [f ◦ g] in (c). Figure has been taken from Ref. [2].

We represent a homotopic equivalence class at x by [f ], where f is a loop in

the equivalence class [f ] and a representative of it. We now define combination law

(product) of two equivalence classes by,

[f ] ◦ [g] = [f ◦ g].

This combination law is independent from the representative of the classes [f ] and

[g]; if f ∼ f ′ and g ∼ g′ then [f ◦ g] ∼ [f ′ ◦ g′] (∼ represents homotopic to at x).

This definition of combination law is also independent from any parametrization.

Fig.2.8 shows the combination of two loops f and g following the above definition.

In the above definition, there is no any issue of parametrization, and therefore above

definition allows the homotopy in between the loop [f ] ◦ [g] in Fig.2.8(a) and loop

[f ◦ g] in Fig.2.8(c).

With the above combination law of homotopy classes at base point x, we can now

discuss the group-theoretical structure of homotopy classes. Homotopy classes at the

base point x of an order parameter space S form a group which is known as the

fundamental group at point x, and written as π1(S, x). To verify the group structure

of homotopy classes, our first observation is that the combination law given above
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satisfies closure property, as [f ] ◦ [g] = [f ◦ g], which is also a homotopy class of maps

from physical space to the order parameter space.

If we consider one representative loop, say f, g, h, from each classes [f ], [g], [h],

then they satisfy associative law because, f ◦
(
g ◦ h

)
and

(
f ◦ g

)
◦ h are only differ-

ent in their parametrization, and such parametrization does not affect the homotopy

between two maps. So these maps belong to same homotopy class, and hence homo-

topy classes satisfy associative law [f ] ◦
(

[g] ◦ [h]
)

=
(

[f ] ◦ [g]
)
◦ [h] under the given

combination law.

There is always a map e(z) exist which can map the field configuration in the

physical space to a point x in the order parameter space. This map is known as the

constant map. There can also be maps whose image can be shrink to a point x. All

these maps are homotopic to the constant maps and form a homotopy class [e]. The

combination law of [e] with the other homotopy class, say [f ], simply follows,

[e] ◦ [f ] = [f ] ◦ [e] = [f ],

and therefore [e] is the identity element in the set of homotopy classes.

Suppose f−1 is a loop at x in the order parameter space (here we are representing

map f by its image) which traverses in the opposite direction to the loop f , therefore

its paramterization is,

f−1(z) = f(1− z), 0 ≤ z ≤ 1.

Now if loops f and g are homotopic loops then it can be shown that f−1 and g−1

are also homotopic to each other and therefore they also form a homotopic class such

that,

[f ]−1 = [f−1].

Now to show that [f ]−1 is an inverse of [f ], it is easy to verify that loop f−1◦f = f◦f−1

is homotopic to a constant map at x which is obvious as f−1 traverses in the opposite

direction to f , so combination of these two is shrinkable to a point. This homotopy

can be represented in the parameter form as,

ht(z) = f(2zt), 0 ≤ z ≤ 1
2
;

= f(2t(1− z)), 1
2
≤ z ≤ 1.
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Therefore [f ]−1 ◦ [f ] = [f ] ◦ [f ]−1 = [e]; inverse of each homotopy class exists.

This shows that homotopy classes of loops at x in the order parameter space S

form a group which is denoted by π1(S, x) and is called fundamental group or first

homotopy group. Subscript 1 denotes that fundamental group is a group of homotopic

maps of one dimensional surface (loops) from physical space to the order parameter

space. There can be mapping of higher dimensional surfaces also which form higher

homotopy groups, πn(S, x), where n > 1.

B. Fundamental Group of a path connected space

Now we discuss the isomorphism between fundamental groups based at two dif-

ferent points in the order parameter space. As we are considering path connected

order parameter space, therefore there is always a path which can connect any two

points in the order parameter space. This allows to construct loop at any point in

the order parameter space for a given loop at a base point, say y, see Fig. 2.9. In

fact, all homotopic loops at y remain homotopic loops at other base point in the

order parameter space under the mapping shown in Fig. 2.9; this mapping preserves

homotopy classes. This mapping also preserves the group theoretical structure of the

based fundamental group at y, in particular the combination law. This brings a one

to one correspondence between fundamental groups at different base points in the

path connected order parameter space. This correspondence between fundamental

groups at different base points is a path isomorphism between the based fundamental

groups. Thus only one based fundamental group is good enough to give an appro-

priate classification of topological defects for a given path connected order parameter

space.

For an abelian fundamental group, all paths uniquely define the isomorphism

between two based fundamental groups, see Ref. [2]. Thus, in the case of abelian

fundamental group, there is always path independent correspondence in between two

based loops in the order parameter space. In the case of non-abelian fundamental

group it is not true. But still all fundamental groups, including non-abelian, are path

isomorphic. The reason is that two different paths which connect the loops at different

base points only differ by inner automorphism (path dependent mappings always can

be connected through inner automorphism between them), and inner automorphism
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Figure 2.9: (a) shows two points x and y in the order parameter space, at point y

there is a loop f . (b) since order parameter space is assumed to be path connected,

therefore there will be always a path c which connects points x and y. (c) shows that

c ◦ f ◦ c−1 is a loop at x, which establishes the isomorphism between fundamental

group at y and x. Figure has been taken from Ref. [2].

does not change the conjugacy class of the group, see details in Ref. [2]. Here we note

that most of the order parameter spaces of physical systems have abelian fundamen-

tal group. Bi-axial nematic liquid crystal is an example where one gets non-abelian

fundamental group.

C. Fundamental Group and free homotopic classes

To identify topological defects in the physical space, one takes mapping of order

parameter field configurations on a hypothetical circle (of varying radius about a

point) into the order parameter space. This does not require that all possible map-

pings around that region should have a common fixed point (base point) in the order

parameter space. This mapping is free from any such kind of restriction and therefore

topological defects actually should be characterized by freely homotopic loops, not by

based homotopy.

When the restriction of base point is released then two loops f and g which lie at

the same point, say x, are said to be free homotpic maps if they belong to the same
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conjugacy class of the group π1(S, x), i.e. if they are related by a relation f ∼ bgb−1.

On the other hand if two loops do not lie at the same point, then there will be always

a path c(z) which can connect these two points. It should be noted that g is always

freely homotopic to cgc−1, and therefore if f is homotopic to cgc−1 (at the same

point), i.e. f ∼ cgc−1, then f and g are said to be freely homotopic to each other

(although at different points).

Equivalently we can say that a loop f at x is freely homotopic to loop g at y if

and only if there is a path isomorphism c(z) between homotopy class [f ] of based

fundamental group π1(S, x) and homotopy class [g] of π1(S, y). There can be many

paths which can establish path isomorphism between these two homotopy classes.

The set of all such path isomorphisms establishes a unique connection between the

conjugacy classes of based fundamental groups at x and y such that it only rearrange

the elements (loops) within a conjugacy class, without changing elements from one

conjugacy class to other. Therefore classes of freely homotopic loops are labeled by

conjugacy classes of fundamental group π1(S).

In the case of abelian fundamental group, each conjugacy class of the group con-

sists only one element. Therefore line defects in the physical space has one to one

correspondence with each element of the fundamental group (with appropriate wind-

ing number). Therefore fundamental group completely characterizes the topological

defects. Two defects which belong to distinct elements of the group, can not con-

tinuously deform to each other by local deformation. The product of two non-trivial

elements of the fundamental group gives a new element of the group (this loop will be

freely homotopic to the combination of original pair of loops) which corresponds to

different winding number defect in the physical space. This shows how two different

winding number defects get combined to give a new kind of defect in the physical

space, and vice-versa. We conclude that for media with the abelian fundamental

group, when pair of defects combined, the byproduct of these two will have the wind-

ing number by simply addition of winding numbers of the original pair of defects.

In the case of media which has non-abelian fundamental group, a defect is charac-

terized by the conjugacy classes of the fundamental group (classes of freely homotopic

loops) and therefore the combination of the conjugacy classes gives a new conjugacy

class (conjugacy class multiplication) which characterizes a new defect in the physical
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space; byproduct of combination of the pair of defects.

D. Examples

Fundamental group for order parameter space S1 (for planar spin and superfluid)

contains elements of homotopy classes which are characterized by winding number

n. Combination of two homotopy classes with winding number n and m, gives a

homotopy class with winding number n + m and this combination is commutative,

therefore fundamental group of S1 is an abelian group, and is isomorphic to additive

group of integers Z. Therefore, π1(S1) = Z. If the order parameter space is a surface

of 2-sphere, all loops are shrinkable to a point in this space, therefore fundamental

group of S2 only contains one element, identity, which for an additive group is repre-

sented by 0. Therefore, π1(S2) = 0. This implies that no line defects are possible for

a media which has order parameter space S2.

If the fundamental group of a connected space is trivial (contains only identity),

then the space is said to be simply connected space. S2 is a simply connected space

while S1 is not.

Summary and some important points:

1. Coset space and order parameter space: All possible values of order pa-

rameter form a space known as the order parameter space. In the case of spontaneous

symmetry breaking, if G is the symmetry group of the Lagrangian or Hamiltonian

and H is the isotropy subgroup of G for a given value of order parameter, then coset

space, G/H, is identified as the order parameter space or the vacuum manifold of the

theory, as both spaces are homeomorphic to each other.

For example, in the case of planar spin and superfluid 4He, respectively, SO(2)

and U(1) symmetries break completely in the ordered phase. Therefore in both the

cases isotropy subgroup H is an identity. Therefore coset space G/H in both cases is

the group manifold of SO(2) and U(1) which is a circle S1. In the case of ordinary

spin in 3-dimensions, SO(3) symmetry breaks to SO(2), therefore coset space G/H

in this case is SO(3)/SO(2) which is a surface of 2-sphere S2.
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2. Meaning of topological defects: A topological defect corresponds to a singular-

ity of the order parameter field in the physical space which is topologically protected

- it can not be removed by local continuous deformation of the field configuration.

A line topological defect arises due to non-trivial order parameter field configuration

around a point in the physical space, which is characterized by a topological number

known as winding number in the order parameter space. The mapping of this non-

trivial field configuration in the order parameter space forms a non-shrinkable loop.

Hence this is related with the non-trivial property of the order parameter space, which

is characterized by the first homotopy group of the order parameter space.

3. Homotopy group and the dimensions of topological defects:

a) For a disconnected order parameter space, zeroth-homotopy group π0(S) is non-

trivial. For example in the case of Ising-model, order parameter space is z2, which is

a disconnected space. In such a case, surface defects exist called domain wall defects.

π0(S) 6= 0 =⇒ Domain wall/surface defects can exist.

b) If the first homotopy group, i.e. fundamental group, of the order parameter space

is non-trivial, e.g. in the case of circle S1 order parameter space (planar spin and

superfluid), then line defects (string defects) can exist. In the case of superfluid

system these are called superfluid vortices and in the case of superconductor they are

called flux tube defects.

π1(S) 6= 0 =⇒ String/line defects can exist.

c) If the second homotopy group is non-trivial for an order parameter space (as in

the case of S2), then a point defects can exist.

π2(S) 6= 0 =⇒ Monopole/point defects can exist.

d) If third homotopy group of the order parameter space is non-trivial, then a topo-

logical object can exist in the physical space, called Skyrmion, which also can be

characterized by a winding number.

π3(S) 6= 0 =⇒ Skyrmion, a topological object can exist.
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For example, in the case of linear-sigma model order parameter space is S3, which

has non-trivial third homotopy group. In the linear-sigma model skyrmions are iden-

tified with the Baryons. These objects are realized by a stereographic projection of S3

to R3. Skyrmions are the compact objects which only contains the gradient energy

of the Lagrangian density or free energy density of the system.

Skyrmions can also exit in the lower space dimension. For example in the case of

ordinary spin system, order parameter space is S2 for which second homotopy group

is non-trivial. In this case, therefore, a mapping from S2 to compactified R2 (if the

physical space is of two dimension) gives skyrmions in the two dimension called baby

skyrmions. Similarly, mapping from S1, for which π1(S) is non-trivial, to compactified

R1 gives skyrmions in one dimension.
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Chapter 3

Kibble Mechanism and

Superfluidity

3.1 Topological Defects in Physical System

In the last chapter, we have discussed that topological defects are locations in the

physical space where order parameter field becomes singular (ill defined) and this

singularity can not be removed by a continuous local deformation and therefore is

topologically protected. In a given phase of the physical system, free energy of the

system should be minimized. Let us consider the U(1) global theory, where in the

symmetry broken phase, order parameter space is a circle which is parameterized by

a phase θ. The order parameter field is a complex field, φ = φ0e
iθ with magnitude φ0.

In the equilibrium, order parameter field takes its value such that the free energy of

the system gets minimized. The lowest free energy is obtained, when magnitude of

the field |φ| = φ0 lies on the vacuum manifold (a circle in our case). As we mentioned,

at the location of topological defect, derivative of the order parameter (in this case

phase θ) becomes singular. In such situation, to keep the energy density of the system

finite, it is energetically favorable that order parameter field leave the minimum of

the free energy or potential. By the consideration of the energetics, magnitude of

order parameter field decreases towards the location of defect and vanishes at the

exact location of the defect. This can be understood by considering the free energy
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density, as an example,

f = |~∇φ|2 − α|φ|2 + β|φ|4 = φ2
0|~∇θ|2 + |~∇φ0|2 − α|φ|2 + β|φ|4 (3.1)

Here α, β are the phenomenological constants. The first two terms on right hand side

are the gradient energy term of field φ. As we mentioned that in the equilibrium φ0

is spatially fixed, therefore one can ignore second gradient energy term in the region

away from topological defect. In the near region of a topological defect, |~∇φ0| becomes

non-zero by the energetics arguments, which we discuss now. When one approaches

towards the singular point of the field configuration, |~∇θ| increases. At the exact the

location of topological vortex, if we keep φ0 uniform in space, |~∇θ| diverges. Therefore

it is energetically favorable that field leave the order parameter space and reduces its

magnitude towards the location of defect such that φ2
0|~∇θ|2 term remain finite. At the

exact location, where |~∇θ| could be singular, φ0 becomes 0, giving finite energy to the

system. The cost of this is that, at location of defect, free energy or potential energy

becomes higher compared to the defect free region. Due to this reason, topological

defect configurations contain higher energy with respect to rest of the region in the

physical space. Since order parameter field is zero at the location of defect, therefore

location of defect corresponds to the symmetry restored phase. In fact, topological

vortices/strings have a core of size of the order of correlation length of the system.

The core of a defect can be effectively considered as the symmetry restored phase.

For example, the core of a superfluid vortex contains normal fluid. Thus, in a physical

system, there is no actual singularity in the full order parameter field, even though

topological defect form. In the location where there is a topological defect, the order

parameter field climbs up the hill of the potential or free energy and becomes zero

from non-zero value of outer region, see Fig. 3.1.

3.2 Kibble Mechanism

Now we discuss how these topological defects can form during a spontaneous symme-

try breaking (SSB) transition due to a domain structure. This is usually known as

Kibble mechanism [1] which explains the formation of any kind of topological defect

or topological object during a SSB transition. Although the Kibble mechanism for
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Figure 3.1: Figure shows the core field profile of a topological vortex. Towards the

core, magnitude of the field gradually decreases to suppress the dominance of gradient

energy of θ field in this region.

the formation of topological defects is quite general (even applicable to domain struc-

ture arising from causally disconnected regions), here we will discuss this mechanism

in the context of phase transition.

The Kibble mechanism is a very general mechanism for the formation of topologi-

cal defects during any kind of phase transition, first order as well as continuous phase

transitions. In the Fig. 3.2 the dynamics of a first order phase transition has been

shown. In the first order phase transition, due to the presence of meta-stable state

in the effective potential or free energy density, system may stay for a while in this

state. Thermal fluctuations or quantum mechanical tunneling through barrier lead

to nucleation of ordered phase (true minimum state) in the background of disordered

phase. Since these bubbles corresponds to the phase of ordered phase, therefore has

lesser free energy and therefore grow in size with time (bubble of size lesser than a

critical size shrinks). These bubbles coalesce with each other and by this, phase tran-

sition is completed, and whole space is filled up with ordered phase, except locations

where topological defects form.

Let us again consider the U(1) symmetry breaking (first order) phase transition.

In this case the order parameter space is a circle which is parameterized by a phase

θ. When these bubbles form, there can not be any correlation between any two
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Figure 3.2: Figure shows the dynamics of a first order phase transition. In the

first order phase transition, bubbles of ordered phase (arrow region) form in the

background of disordered phase (shaded region).

bubbles, and therefore the phase value θ in a bubble is completely independent from

the other one. This fact is one of the main ingredient of the Kibble mechanism for

the formation of topological defects, which assumes that θ values vary randomly from

one bubble to the other. One more important point is that, within a bubble, since

order parameter field is correlated, and since free energy density or effective potential

(in fact, the gradient energy term) gets minimized if θ does not have any spatial

variation, therefore in each bubble θ can be considered to be uniform.

The second ingredient of the Kibble mechanism lies in the fact that, since the value

of θ is completely arbitrary between two bubbles, therefore when two bubbles meet, in

the intermediate region somehow field has to vary such that θ value of first bubble get

connected with the other one. The way field interpolates in the intermediate region

is governed by the geodesic rule. This rule, again, comes from the fact that total free

energy density of the system has to be minimized, and again, in this case also, gradient

energy arising due to field variation has to be minimized. As we have considered U(1)

symmetry breaking, therefore order parameter space is a circle. Therefore there will

be always two paths on this order parameter space by which field can uniformly

interpolate in the intermediate region, see Fig.3.3. The geodesic rule says that in the

intermediate region field traverses such that it traces the shortest path on the order
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Figure 3.3: Left figure shows the situation when two bubbles, with random phase

θ, meet in a region. In the intermediate region, θ can vary in two possible ways.

The geodesic rule tells that those θ variation will be preferable whose mapping on

the order parameter space traces the shortest path (right figure). Such shortest path

minimizes the free energy of the system.

parameter space. It is clear that this gives the lesser gradient energy and therefore

should be favored by a system, see Fig. 3.3. If we consider first bubble in the right

hand side in the physical space with phase θ1 and the second bubble in the left hand

side with phase θ2, then there can be two possibilities. First, if θ2 − θ1 > 0, then

according to the geodesic rule, in the intermediate region, clockwise variation of θ is

preferred if θ2 − θ1 > π. Second, if θ2 − θ1 < 0, then anti-clockwise variation of θ is

preferred if θ2 − θ1 < −π.

If three or four bubbles meet at a point such that they can create a non-trivial

winding of field configuration, then at that point topological defect of that winding

number forms. Both ingredients of Kibble mechanism, discussed above, determine

the formation probability of topological defects. Kibble mechanism predicts a unique

probability of formation of defects. In the 2+1 dimensions, when three bubbles meet

at a point, then one can calculate the formation probability of topological vortices as

follows.

Let us consider three bubbles with phase θ1, θ2, and θ3 meeting at a point, and

their position ordering in the physical space is also in the same manner (as written the

ordering of phase values) as one moves in anti-clockwise direction around the point

(where they meet). Since all these bubbles are independent from each other, therefore

phase values will be independent and can have any value on the order parameter space

44



Figure 3.4: Figure shows, if θ1 and θ2 of 1st and 2nd bubbles are given, then what will

be the possible range of phase, θ3, of 3rd bubble, such that a non-trivial winding can

form around the meeting point.

from 0 to 2π. Let us consider the situation shown in the Fig. 3.4 where θ1 and θ2

has been specified on the order parameter space. For the given values of θ1 and θ2,

according to the geodesic rule, to have a non-trivial winding, phase θ3 should have

value in the range, θ1 + π < θ3 < θ2 + π (note that this range of θ3, to have non-

trivial winding, is coming due to the consideration of the geodesic rule). For given

values of θ1 and θ2, the range of θ3, say ∆θ3, for which there can be a non-trivial

winding, may have any value ranging from 0 to π. Therefore average value of this

range will be π/2. Now, since θ3 can take any value in between 0 to 2π, therefore the

probability for formation of topological vortices or anti-vortices is (π/2)
2π

= 1
4

per three

bubble junction. For a triangular lattice, number of bubbles is the same as number of

junction. So we can conclude that probability of formation of vortices or anti-vortices

is 1
4

per bubble. This is the probability of formation of topological vortices when

three bubbles meet at a point. In the case, if four bubbles meet at a point, then due

to complexity of the problem, it is difficult to estimate probability of formation of

topological vortices analytically. In such case even winding number two defects can

form. Simulations show that the formation probability of vortices and anti-vortices

in this case is about 1
3

per bubble which is higher than the case when three bubbles

meet.
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Figure 3.5: Figure shows the experimental result of ∆n distribution for three different

values of N . Figure has been taken from Ref. [3].

Figure 3.6: Figure shows that when three domains labeled A, B, and C meet at

a point P such that they can create a +1 defect, then there is zero probability of

having +1 defect at nearby point Q with any phase value in domain D, while there

is still 1/4 probability of having −1 defect at this point. This shows that there is

correlation between the formation of defects and anti-defects. Figure has been taken

from the Ref. [2].
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The probabilities of formation of topological vortices and anti-vortices are ex-

actly equal in the Kibble mechanism and therefore there is no preference of one over

the other. But, since the formation of topological defects in the Kibble mechanism

is a statistical process, therefore in the finite size system, in a single event (phase

transition), there can be a mismatch in the formation of number of vortices and

anti-vortices. When one performs sufficiently large number of such events, then the

difference between vortices and anti-vortices ∆n follows a Gaussian distribution of

width σ, centered at zero value. The zero mean value of the Gaussian distribution

shows that there is no biasing in the formation of topological defects and anti-defects.

Even, if one considers a single event, and divide the whole physical system into sub-

regions, and calculates the ∆n for each sub-region, then in this case also, ∆n follows

a Gaussian distribution, see Fig. 3.5. The width of this distribution, which we will

discuss below, comes out σ ∝ N1/4, where N is the average number of vortices + anti-

vortices in sub-regions. We know that, for a random process, width of the probability

distribution follows 1/2 power law, while here we get 1/4 power law. This reflects

the fact that the formation of vortices and anti-vortices are not completely random.

In fact, there is a correlation in the formation of vortices and anti-vortices [2, 3] in

the sense that, if a vortex forms, then there is a higher probability that in the nearby

region an anti-vortex will form (while lesser probability for formation a vortex in the

nearby region). This is shown in the Fig. 3.6 for the triangular lattice case. Therefore,

due to this correlation (which reduces the randomness), Gaussian width σ, instead of

1/2, follows 1/4 power law.

Let us consider a finite square sub-region in the physical space. The side of the

square is L and area is A = L2. At the boundary of this square, there will be total

4(L
ξ
− 1) bubbles (or domains) of diameter ξ. In the case of L � ξ, one can neglect

1 with respect to L/ξ. Therefore at the boundary of each square, there will be 4L
ξ

number of bubbles. According to Kibble mechanism, phase θ varies randomly from

one domain to other (only consider the domains which lie on the boundary of the

sub-region). The maximum random variation of θ from one domain to other can be

±π, while minimum variation can be 0. Therefore, on an average, from one domain to

other, there can be ±π/2 random variation of θ. Thus, this is a random walk problem

of phase θ with step size ±π/2 (note that this random walk of phase θ ultimately
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gives ∆n for the given sub-region). In this random walk, the total number of steps,

say N ′, will be the total number of domains at the boundary. The probability of right

step (+π/2 variation) and left step (−π/2 variation) is equal, p = q = 1/2. Therefore,

Gaussian width (of ∆n distribution) for such random walker can be obtained by the

relation, σ =
√
N ′pq =

√
L
ξ
. Therefore Gaussian width, in this case, goes as, σ ∝ A1/4

(A = L2). Now if we consider a uniform defect density in the area covered by the

sub-region, then A ∝ N , where N is the total number of defects+anti-defects in that

sub-region. This gives the σ ∝ N1/4. We again emphasize that, the exponent 1/4

shows that there is a correlation between the formation of defect and anti-defects in

the Kibble mechanism which suppresses the randomness from 1/2 to 1/4 value. In

general, σ can be defined by,

σ = CNν , (3.2)

where, C = 0.71 is obtained from numerical simulations for square domains (square

lattice), and ν = 1/4 is the theoretically predicted value by the Kibble mechanism.

In Ref. [3], value of ν is observed in the liquid crystal experiment. The observed value

of ν in this experiment is ν = 0.26± 0.11 which is very close to the theoretical value

0.25. In the experiment [3], authors plotted the distribution of ∆n. The observed ∆n

follows the Gaussian distribution,

f(∆n) ∝ e−
(∆n−∆n)2

2σ2 , (3.3)

which is shown in the Fig. 3.5.

In the case of continuous phase transition, due to absence of meta-stable state,

order parameter field always remain in the minimum free energy state. Therefore, in

this phase transition, whole space is filled up with domains of ordered phase (without

any background of disordered phase), see Fig. 3.7. At the junction of three or four

domains, depending upon phase values, topological defects can form. The arguments

of the Kibble mechanism for the production of topological defects are exactly same

in this case also, as discussed in the case of first order phase transition. The domain

picture and geodesic rule are completely valid and probability of formation of defects

and the physics of ∆n distribution are also same. The only difference here is that the

size of domains depend upon the rate of the phase transition. Note that the size of

domains decide the defect density arising during the phase transition. Therefore in
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Correlation length

Figure 3.7: Figure shows the dynamics of a continuous phase transition. In the

continuous phase transition, whole space is filled up with domains of ordered phase.

Small circles show the junction where topological defects have formed.

this case, rate of phase transition decides what will be the topological defect density

form during the transition. This physics was explored by Zurek [4], and this mech-

anism for production of topological defects in continuous transition is known as the

Kibble-Zurek mechanism.

In Ref. [1], Kibble mentioned that, in the case of continuous transition, since in

the critical region (also known as Ginzburg region), thermal fluctuations dominate,

so within a domain phase θ never gets settled to a single minimum of the potential

(or free energy density). In fact, in the critical region, with time, θ always fluctuates

from one minimum to other. Due to this, within a correlated domain well defined

phase θ does not exist (in the critical region, ordering never gets establish, although

the symmetry breaks). Hence there is no formation of well defined topological defects

in the critical region. When temperature reaches a sufficiently low value such that

thermal fluctuations get suppressed and depth of the potential-minimum becomes

sufficiently large, that total energy required to flip phase θ in a correlated volume

starts dominating over the thermal energy present at that temperature, then below

this temperature effect of fluctuations becomes sub-dominant and ordering inside do-

mains gets establish. The temperature below which ordering establishes is known

as the Ginzburg temperature TG, and the correlation length at this temperature is

49



known as the Ginzburg correlation length ξG. One can determine the Ginzburg tem-

perature by equating free energy in a correlation volume and thermal energy at that

temperature [1],

ξ3∆f = kBTG, (3.4)

where kB is the Boltzmann constant.

One should note that the argument presented above is valid, if the rate of phase

transition is extremely slow so that, order parameter field gets sufficient time to settle

to its equilibrium configuration. Such phase transition is known as the equilibrium

phase transition. This picture will not be valid if the rate of transition is faster than

the correlation time τ . The correlation time τ is the timescale, which decides, in

how much time, a fluctuation in field can be sensed by a whole correlated volume,

which can be obtained by dividing correlation length by speed of propagation of

information. At the critical point, correlation length diverges and in the critical

region its value is very large, generally decreasing with temperature following specific

power law. In the context of cosmology, an information may propagate with the

speed of light, while in a thermal system the speed of propagation of information

is governed by the appropriate speed for relevant degrees of freedom. Therefore

correlation time becomes very large in the critical region. Therefore it is clear that

if the transition rate is faster than the correlation time, then any fluctuation will

not get sufficient time to propagate in the whole correlation volume and remain

frozen during the phase transition. Such phase transition is considered to be quench

transition (non-equilibrium phase transition). Therefore, in such situation, domain

size will not be the actual correlation length at that temperature, but it depends

upon the initial temperature Ti of the system from where transition is performed.

Below the critical point, phase θ chooses a random value within a domain (of size

decided by the correlation length at temperature Ti). Due to fast dynamics of phase

transition, this phase remain frozen in the domain, and ultimately give the defect

density (different from the standard Kibble mechanism) [4, 5].
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3.3 Superfluidity and Superfluid Vortices

Superfluidity arises when a bulk of bosonic particles, or Cooper pairs near the Fermi

surface, form Bose-Einstein condensate. The particles, which participate in the con-

densation, move in space without loosing their energy and momentum. Because of

this reason, superfluid has zero viscosity. As we know, Bose-Einstein condensation

can be described by spontaneous symmetry breaking phase transition. In the case of

4He system (and in many other systems also), superfluidity arises when U(1) global

symmetry spontaneously breaks. In such case, supefluid phase is characterized by a

complex order parameter field. In the case of U(1) symmetry breaking order param-

eter space is a circle S1 which is parameterized by an angle θ, and order parameter

field in this case is a complex scalar field, φ = φ0e
iθ. As we have discussed in Chapter

2, the fundamental group for S1 order parameter space is isomorphic to the additive

group of integers Z, i.e., π1(S1) = Z. This implies that topological vortices can

exist in such system. These are superfluid vortices. Such kind of superfluid vortices

exist in 4He system, in neutron superfluid phase inside neutron star, and also, in the

color-flavor locked phase of QCD.

Superfluid component is characterized by multi-particle condensate wave function,

Ψ = Ψ0e
iθ, (3.5)

where |Ψ0|2 = n0 is the number density of superfluid components. A spatial variation

of phase θ provides the motion to superfluid. The quantum probability current for

this wave function ultimately gives a macroscopic motion of superfluid with a curl free

velocity profile. This can be seen by relating macroscopic current density n0~vs with

probability current density (~/m)n0
~∇θ of the above wave function [6], where m is the

mass of constituent of condensate. This gives the velocity of superfluid component,

~vs =
~
m
~∇θ. (3.6)

This clearly shows that superfluid flow is a potential flow (curl free), since,

~∇× ~vs = 0. (3.7)

This special property of the superfluid, which arises due to its quantum nature, makes

its motion highly restrictive and does not allow it to rotate below a critical angular
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velocity ωcr under a (external) rotation of the vessel [6],

ωcr =
~

mR2
log
(R
a

)
, (3.8)

where R is the radius of the vessel, and a is the length scale of the order of atomic

distances which still allows for statistical treatment of the system on that length

scale. However, it can be shown by energetics arguments [6] that above the critical

angular velocity, superfluid start rotating by following a curl free velocity profile given

by, ~v = 1
r
θ̂, in region away from the center of the vessel. This is the nucleation of

a superfluid vortex at the center of the vessel. As we have mentioned in the first

section of this Chapter, in the core of a superfluid vortex, to minimize gradient

energy density, n0 decreases (fraction of normal component increases). Therefore

exactly at the center of a superfluid vortex there is no divergent flow of superfluid,

as no superfluid component exist at the center of a superfluid vortex. When one

increases the angular velocity of the vessel further, more number of vortices start

nucleating and form a (rotating) vortex-lattice. This is known as the vortex model

for superfluid system in a rotating vessel. It predicts that at large angular velocity ω

of the vessel, number of vortices increases with ω as [7],

N = mR2ω/~. (3.9)

In 1967, Hess and Fairbank [8] performed experiment for the verification of vortex

model discussed above. To check this model they performed superfluid transition in

the presence of rotation. For a given angular velocity of the vessel, they measured

angular momentum of the superfluid arising due to the formation of vortices during

the superfluid transitions. A superfluid vortex has a quantized angular momentum,

so when one increases the angular velocity of vessel, angular momentum of the su-

perfluid increases discontinuously. Fig.3.8 shows the results of Hess and Fairbank

experiment. In the plot, along y-axis, measured value of angular momentum of su-

perfluid with respect to angular velocity of vessel has been plotted. Dashed-dotted

plot corresponds to the angular momentum of a classical fluid. Solid lines correspond

to the prediction of vortex model. Data points are experiment results. Although this

experiment gives a good support to the vortex model, there are some data points

which show some discrepancy also from the vortex model. This discrepancy could be
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Figure 3.8: Figure shows the experimental result of angular momentum measure-

ment of superfluid component during superfluid transition in a rotating vessel.

L0 = Nh~ρs/ρ and ω0 = ~/mR2, where Nh is the total number of helium atoms.

Figure has been taken from Ref. [8].

arising because during the superfluid phase transition, there is no guarantee that one

gets exact number of vortices as predicted by the vortex model. As we have discussed

that topological defects during a phase transition are formed via the Kibble mecha-

nism. Therefore such superfluid phase transitions will be dominated by the Kibble

distribution of vortex as discussed in the last section. This fact may be responsible

for such kind of discrepancy observed in the experiment. For detail discussion on this

issue see next Chapter.
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Chapter 4

Formation of Topological Vortices

during Superfluid Transition in a

Rotating Vessel

Formation of topological defects during symmetry breaking phase transitions via

the Kibble mechanism is extensively used in systems ranging from condensed matter

physics to the early stages of the universe. Kibble mechanism uses topological argu-

ments and predicts equal probabilities for the formation of defects and anti-defects.

Certain situations, however, require a net bias in the production of defects (or antide-

fects) during the transition, for example, superfluid transition in a rotating vessel,

or flux tubes formation in a superconducting transition in the presence of external

magnetic field. In this chapter we present a modified Kibble mechanism for a specific

system, 4He superfluid transition in a rotating vessel, which can produce the required

bias of vortices over antivortices. Our results make distinctive predictions which can

be tested in superfluid 4He experiments. These results also have important impli-

cations for superfluid phase transitions in rotating neutron stars and also for any

superfluid phases of QCD arising in the non-central low energy heavy-ion collision

experiment due to an overall rotation. Results discussed in this chapter have been

presented in Ref. [1].
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4.1 Introduction and Motivation of the Work

Topological defects arise in a wide range of systems ranging from condensed mat-

ter physics to the early stages of the universe. Formation of these defects during

symmetry breaking transitions has been a very active area of research, especially in

last few decades, bringing out important interconnections between condensed matter

physics and particle physics. Indeed, the first detailed theory of formation of topo-

logical defects via a domain structure arising during a phase transition was proposed

by Kibble [4] in the context of early universe. It was proposed by Zurek that certain

aspects of Kibble mechanism can be tested in superfluid helium systems [3]. It is

now well recognized that the basic physical picture of the Kibble mechanism applies

equally well to any symmetry breaking transition [4, 5] thereby providing the pos-

sibility of testing the predictions of Kibble mechanism in various condensed matter

systems, see refs. [6–10]. It is particularly important to note that the basic mech-

anism has many universal predictions making it possible to use condensed matter

experiments to carry out rigorous experimental tests of these predictions made for

cosmic defects [9, 10]. Defect formation in continuous transitions raises important

issues due to critical slowing down. The Kibble-Zurek mechanism incorporates these

aspects and leads to specific predictions of the dependence of defect densities on the

rate of transition etc. [3, 4].

Basic physics of Kibble mechanism lies in the formation of a domain structure dur-

ing a phase transition where order parameter field varies randomly from one domain to

another. Individual domains represent correlation regions where order parameter field

is taken to be uniform. Another important physical input in the Kibble mechanism

is the assumption of smallest variation of the order parameter field in between the

two adjacent domains (the so called geodesic rule). With these two physical inputs,

a geometrical picture emerges for the physical region undergoing phase transition,

and straightforward topological arguments can be used to calculate the probability of

formation of defects and anti-defects. It is important to note that the probability of

defect formation in the Kibble mechanism is calculated per correlation domain and it

is a universal prediction. Indeed, utilizing this universality, defect formation probabil-

ity for Kibble mechanism was experimentally tested in liquid crystal experiments [8]
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for a first order transition case where correlation domains could be directly identi-

fied as bubbles of the nematic phase nucleating in the background of isotropic phase.

However, for a continuous transition, direct identification of correlation domains is

not possible. Further, here effects of critical slowing down introduce dependence of

relevant correlation length on the rate of transition [4]. The Kibble-Zurek mechanism

incorporates these non-trivial aspects of phase transition dynamics for the case of

continuous phase transitions in prediction of defect density [3, 4]. We now note that

for the cases under consideration, these topological calculations give equal probability

for the formation of defects and anti-defects. Of course this is on the average, and

there can be excess of defects or antidefects in a given event of phase transition. Kib-

ble mechanism leads to important predictions about the typical value of this excess

which, for the case of U(1) vortices in 2 space dimensions is found to be proportional

to N1/4 where N is the total number of defects plus antidefects [10].

There are many physical situations which require a net excess of defects or anti-

defects (i.e. a non-zero value of the average net defect number) in a phase transition

due to external conditions. For example, formation of flux tubes in type II super-

conductors in the presence of external magnetic field will lead to a net excess of flux

tubes oriented along the direction of external field. Similarly, a 4He system under-

going a superfluid transition in a rotating vessel will lead to a net excess of vortices.

Along with these excess defects (or anti-defects), there will also be a random network

of defects/antidefects resulting from domain structure via the conventional Kibble

mechanism. Normally, the net defect formation (e.g. superfluid vortex formation in a

rotating vessel) is studied using arguments of energetics [11,12]. But the formation of

superfluid vortices in a rotating vessel during the superfluid transition also includes

contribution from a non-equilibrium defect production process (via the Kibble mech-

anism) due to which number of formed vortices during the transition can deviate from

the vortex model prediction.

In 1967, Hess and Fairbank [14] performed superfluid transitions in a rotating ves-

sel to verify the Landau’s irrotational theory of superfluid [15] and Onsager-Feynman

vortex model [12]. According to this theory, superfluid component does not rotate if

containing vessel rotates with angular velocity smaller than a critical value Ωcr. A

single superfluid vortex nucleates if vessel rotates with angular velocity larger than
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a critical value Ωcr and number of vortices increases with Ω which follow some equi-

librium configuration [12]. For experimental verification, Hess and Fairbank [14]

performed superfluid transition in the presence of rotation from very low value of

Ω < Ωcr to some higher values. They concluded from the measurement that there

is no rotation of superfluid components below Ωcr. They observed that at higher

value of Ω superfluid components have angular momentum and follows the trend

of vortex model. At that time Kibble mechanism (1976 [4]) was not available and

Zurek’ proposal (1985 [3]) for the applicability of this mechanism for the superfluid

transition was not present. After the Zurek’s proposal Kibble mechanism was tested

for superfluid transition in the absence of rotation [6]. Although Hess and Fairbank

experiment showed that superfluidity follows Onsager-Feynman vortex model, they

also got very strong deviation from the expectation of vortex model, e.g. just above

the critical angular velocity they got unexpectedly opposite rotation (antivortex) of

superfluid component which can not be explained by the vortex model, similarly,

with little higher angular velocity they didn’t get expected number of vortices as

predicted by vortex model. Their results clearly show that for vortices formation

during phase transition energetics arguments (vortex model) can not be applicable,

but other mechanism has to be proposed. Hess and Fairbank themselves mentioned

in their paper that the discrepancy in their results from vortex model may be coming

due to departure from the equilibrium for which Onsager-Feynman vortex model is

not applicable.

Kibble mechanism is the mechanism for production of topological defects during a

phase transition and one may expect its applicability even in the presence of rotation

also with some modifications. Kibble mechanism without any rotation of the vessel,

for superfluid transition is very well tested [6]. It predicts that vortex and antivortex

formation is completely statistical, and if one performs phase transition sufficiently

large number of times then on an average one gets equal number of vortices and

antivortices (see Fig.10.1). Hess and Fairbank also took few number of events for

their experiment but this number may not be good enough for a good statistics to

get exact average value and may be because of this reason they got antivortex and

other deviations from the vortex model. In this chapter we present the modified

Kibble mechanism in the presence of rotation of the vessel and show that distribution
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of defects follows gaussian distribution in this case also (see Fig.10.1) which may be

able to address the discrepancy of vortices in Hess and Fairbank experiment. As we

elaborate below, in the presence of external influence (rotation of initial fluid here, or

external field for superconductor) the basic physics of Kibble mechanism needs to be

modified.

Two most important ingredients of Kibble mechanism are, existence of correla-

tion domains inside which the order parameter is taken to be uniform, while the order

parameter varies randomly from one domain to another, and the geodesic rule which

says that the order parameter variation in between two domains is along the short-

est path in the order parameter space. (We mention that the geodesic rule becomes

ambiguous for the case of superconductors as discussed in [13]. This makes our con-

siderations of the present paper non-trivial for superconductors, we will present it in a

follow up work.) We will show below that to get a net excess of defects or antidefects

in the presence of external influence (e.g. rotating vessel) both of these aspects of

Kibble mechanism need to be modified; a given domain can no longer represent uni-

form value of the order parameter, rather each domain will have certain systematic

variation of the order parameter field originating from the external influence. Fur-

ther, the same external influence also affects the geodesic rule. In certain situations,

the variation of order parameter in between two adjacent domains may trace a longer

path on the vacuum manifold in apparent violation of the geodesic rule. We will

show that this modified Kibble mechanism leads to reasonable predictions of a net

excess of defects, along with a random network of defects/antidefects. Interestingly,

it shows very systematic deviations for the random component of the excess of defects

or antidefects from the Kibble prediction of N1/4. We find that this excess becomes

larger with larger external bias. This is an important prediction of the biased Kibble

mechanism proposed here, and can be tested in experiments. This fluctuation in the

net excess of defects resulting from the phase transition, on top of the average net

defect number arising from the rotation may account for the experimental results of

Hess and Fairbank [14] for superfluid transition in a rotating vessel where deviations

from the energetics based net vortex number (at times even negative vortex number)

were found.
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4.2 Description of the System

Superfluid component is characterized by a multi-particle condensate wave function,

Ψ = Ψ0e
iθ, where Ψ2

0 gives number density of superfluid component. The superfluid

velocity is given by ~vs = ~
m
~∇θ, where m is the mass of 4He atom. We use the

expression for the free energy of the superfluid system in the presence of rotation

[11, 16] as F ′ = F − ~L.~Ω, where F is the free energy for superfluid without rotation

and ~L = ρs
∫

(~r × ~vs)d
2x is the angular momentum of the superfluid (in the plane

perpendicular to the axis of rotation) just after the phase transition generated due to

external rotation (ρs = mΨ2
0 is the mass density), ~Ω being the angular velocity of the

vessel containing superfluid. Here we are assuming that part of normal component

which undergoes superfluid condensation carries same angular momentum as before

the transition. (Though, it may be possible that only a fraction of the momentum of

the normal fluid part which is condensing is carried over to the superfluid momentum.

Effects of this possibility on our analysis requires a further study. One can determine

the value of this fraction experimentally using a rotating annulus of the kind suggested

in ref. [3].) In two spatial dimensions, free energy density is given by,

f ′ = f − ρs(~r × ~vs).~Ω, (4.1)

where f is the free energy density of superfluid without any rotation. We thus get [4],

f ′ = α|Ψ|2 +
β

2
|Ψ|4 +

~2

2m
Ψ2

0|~∇θ|2 − Ωρsr
~
m
|~∇θ|, (4.2)

where α and β are phenomenological coefficients. For temperatures less than the su-

perfluid transition temperature, α < 0 and we determine the local value of condensate

density Ψ0 by minimizing the free energy neglecting the rotation. (One can discuss

the effect of rotation on Ψ0, even far away from vortices, especially in presence of

boundaries. We keep analysis of this issue for future discussions.) With constant

superfluid density Ψ0, we minimize this free energy density with respect to |~∇θ| and

get,

|~∇θ|bias =
mΩr

~
. (4.3)

This shows that the equilibrium configuration of Ψ requires a non-zero value of |~∇θ|
in the presence of rotation. (Note, for the non-rotating case, we get θ = constant,
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as is assumed inside a domain in the conventional Kibble mechanism.) Note that

|~∇θ|bias is proportional to the distance from the origin, this will play an important

role for the biasing in the production of vortices over antivortices as we will see below.

4.2.1 The domain structure in the presence of rotation

One of the main ingredients of Kibble mechanism is the randomness of the condensate

phase θ from one correlated domain to other. As we have discussed, for superfluid

phase transition in the presence of rotation, order parameter θ cannot be uniform

inside any domain, it must vary systematically inside each domain. In this modified

domain picture we still use the fact that all domains are independent from each other

and have completely random θ value at the center of domain. (This type of picture

was invoked in an earlier work by some of us where biased Skyrmion production due

to non-zero baryon chemical potential was studied via a modified Kibble mechanism

for a toy model in 1+1 dimensions [17].) Further, the order parameter variation inside

domain has to be such that it preserve the curl free motion of superfluid. As we have

mentioned, here we are assuming that part of normal components which undergoes

superfluid condensation carries the same angular momentum as before the transition,

and we know that normal components follow rigid-body rotation with velocity given

by ~vn = Ωrθ̂ which has non-zero curl. With transition to the superfluid phase, we

model the domain structure in the presence of initial rotation such that curl free

property of superfluid does not get violated inside a domain. We assume that only

on the circular arc within a given domain, drawn using the center of the vessel and

passing through the center of that domain has superfluid velocity as that was of

normal component before the transition. This will give the gradient of θ on that arc

to be the same as given by Eq.(4.3). We can see this by relating velocity of superfluid

components with normal components on the circular arc, i.e., vs = vn, which gives

|~∇θ|bias = mΩr
~ , which is the same as earlier obtained by minimizing the free energy

density. It means that larger r domain will have more variation in θ than the domains

with smaller r. As we will see, this is precisely the feature that will cause the biasing

in the formation of vortices over antivortices.

Now as there is no initial radial flow, we don’t expect any radial superflow inside

a domain also. This means that θ will be uniform in the radial direction inside
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each domain. With these considerations, we obtain well defined values of θ at every

point of a domain. We note that inside a given domain, gradient of θ decreases with

increase in r, this domain structure provides curl free motion of superfluid. So with

this, for the rotation of the initial normal component whose velocity increases with r,

after becoming superfluid, the velocity becomes 1/r dependent inside a given domain.

This can be viewed as the effect of superfluid transition on the velocity profile inside

a given correlation domain. Since with all this, outer domains have stronger variation

of θ (see Eq. 4.3), therefore, for the anti-clockwise rotation of vessel, we should get

more number of vortices than anti-vortices. This bias will depend upon Ω, system

size (r dependence) and also correlation length ξ (large values of ξ will give more ∆θ

inside a domain). Below we will see that biasing will also depend on the inter-domain

separation due to modified geodesic rule.

4.2.2 The geodesic rule in the presence of rotation

We now consider the effect of the rotation on the geodesic rule, the way phase θ

interpolates in between two adjacent domains. Conventional Kibble mechanism as-

sumes the geodesic rule which states that θ in between two adjacent domains traces

the shortest path on the vacuum manifold. Physical motivation for this rule comes

from minimizing the free energy in the inter-domain region. (As we mentioned, for

gauge case, as for a superconductor, phase variation between two different points is a

gauge degree of freedom and has no physical significance like gradient energy. Hence

assumption of geodesic rule for gauge case raises conceptual issues, see ref. [13].) One

should note that this conventional geodesic rule does not require specification of how

large the inter-domain region actually is. However, we will see that for the biased

case, the physical extent of the inter-domain region becomes an important parameter.

We will still follow the physical consideration of minimizing the net free energy in the

inter-domain region.

For the inter-domain region also we assume that at the center of this region, the

superfluid velocity is the same as the velocity of the initial normal fluid component.

For geodesic rule only the gradient terms of free energy density are important, so by

ignoring |Ψ| terms from the free energy density we have,
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f ′ = a|~∇θ|2 − b|~∇θ|, (4.4)

where a = ~2

2m
Ψ2

0 and b = Ωρsr
~
m

. We are interested in gradient in the direction of

shortest distance between boundaries of two successive domains. So in this direction

gradient can be written as |~∇θ| = (θ2−θ1)/d, where θ1 and θ2 are the order parameter

values at the boundary of 1st and 2nd domain respectively when we traverse, in the

physical space, from right to left (anti-clockwise path) and d is the shortest distance

between two successive domains. Now we have to determine path for which free

energy density gets minimized. There are two possible paths on the order parameter

space. If θ2 > θ1, for anti-clockwise path free energy density,

f ′1 = a(θ2 − θ1)2/d2 − b(θ2 − θ1)/d (4.5)

and for clockwise path,

f ′2 = a(θ2 − θ1 − 2π)2/d2 − b(θ2 − θ1 − 2π)/d. (4.6)

Out of these two paths, one of the path will have lower free energy density. Clockwise

path will be preferable if condition, f ′2 − f ′1 < 0 get satisfied, which gives, θ2 − θ1 >

bd/(2a) + π. Putting values of a and b, we get,

(θ2 − θ1) > d|~∇θ|bias + π, (4.7)

which is more restrictive condition to have clockwise path on order parameter space

than the case when there is no rotation.

Now, if θ2 < θ1, free energy density f ′1 given by Eq.(4.5) will be for clockwise path.

For anti-clockwise path free energy density will be,

f ′2 = a(θ2 − θ1 + 2π)2/d2 − b(θ2 − θ1 + 2π)/d. (4.8)

Now in this case, condition f ′2 − f ′1 < 0 will be for anti-clockwise variation on the

order parameter space, which gives,

θ2 − θ1 < d|~∇θ|bias − π, (4.9)
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which is more supportive condition to have anti-clockwise variation of θ than without

any rotation. Thus, in both the cases, rotation of vessel supports anti-clockwise

variation of θ on the order parameter space over clockwise variation even though

the path is longer. This shows that rotation generates biasing in the geodesic rule

also. These modified geodesic rules (Eq.(4.7) and Eq.(4.9)) will also contribute in the

biasing of vortices formation over antivortices, along with modified domain structure.

Note that for Eq.(4.7) and Eq.(4.9), we have considered that the variation of θ is along

the direction of initial flow. If θ variation is considered along a different direction,

then suitable projection of |~∇θ|bias should be taken.

4.3 System parameters and Simulation details

We consider a cylindrical vessel of radius R = 40µm, and study formation of vortices

in an essentially two dimensions system. We have taken such a small vessel because

of computational limitations. Note that effective two dimensions requires that the

height of the cylinder should be small (i.e. not too large compared to the correlation

length). This will avoid string bending and formation of string loops which has to be

handled in a full three-dimensional simulation. Certainly, it will be very interesting

to see the effects of rotating cylinder in the formation of strings (including string

loops) in a full three-dimensional simulations and we plan to investigate it in future.

We have taken temperature of the system below the Ginzburg regime. The critical

temperature Tc and the Ginzburg temperature TG for He II system is (Ref. [16]) 2.17K

and 2.16K respectively. The correlation length for this system is given by Ref. [3],

ξ = ξ0ε
−ν , (4.10)

where ξ0 = 4Å, ε = (Tc − T )/Tc, ν = 2/3. With this expression, the Ginzburg

correlation length ξG (correlation length at T = TG) for this system can be calculated

to be 144Å. As ordered domain structure only can form temperature below TG,

therefore we have taken correlation length ξ of the system 140Å smaller than ξG. We

have taken inter-domain distance d = 10Å (as a sample value, we will discuss the effect

varying d on our results). We have considered anti-clockwise rotational of the vessel

with angular velocity Ωẑ. The critical angular velocity for this system, for production
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of vortices by energetics argument, will be Ωcr = ~
mR2 log(R/ξ) ∼= 78 rad s−1 (note

that radius of the vessel is very small giving very large Ωcr).

For our two-dimensional simulation, we take a square lattice with the correlated

domains centered at the lattice points. Domains are assumed to be square with side

ξ so that lattice constant is (ξ + d) with d being the inter-domain separation as

mentioned above. We have performed simulation only in the first quadrant of the

vessel. So the numbers we get should be multiplied by 4 to get the total number

of vortices for the whole vessel. Our focus will be on the probability of vortices per

domain. (Note that even for the whole system, the center of the vessel is within

a domain so cannot accommodate a vortex at that point.) We take the lattice to

start from non-zero coordinates (excluding the x and y axes). For winding number

calculations (to locate vortices) we have excluded plaquette which touch the boundary

of the vessel.

The essential physics of the Kibble mechanism is implemented by taking random θ

value at each lattice points (i.e. at the center of domains). We know from the Eq.(4.3)

the gradient of θ at the circular arc, passing through the center of the domain. By

knowing the value of θ at the center of the domain, and gradient of θ on this arc,

we can determine θ at each point on the arc. With this, by using the fact that there

is no flow in the radial direction, so θ is uniform in this direction, we obtain phase

value at the domain boundaries which lie on the side of lattice. We also use modified

geodesic rule Eq.(4.7) and Eq.(4.9) for variation of θ in the inter-domain region. To

implement this rule, as we mentioned, we assume that at the center-point of inter-

domain region (which is the middle point of a link) superfluid has same velocity as

was of normal components before the transition (given by Eq.(4.3)). We project this

velocity along the direction of lattice side to get ~∇θ along the lattice side. With

this, and knowing the values of θ at domain boundaries, we implement the modified

geodesic rule Eq.(4.7) and Eq.(4.9) to know θ variation in that region. With all this,

we calculate winding in each plaquette. Depending upon the winding, at the center

of a plaquette we obtain vortex or antivortex.
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4.4 Results of Simulation

Now we present the results of our simulation. We consider different values of the

angular velocity Ω, and for each Ω we generate 5000 events for defect formation to

get good statistics of vortex-anti-vortex production. Fig.10.1 shows the distribution

of net defect number ∆n (= defect number − anti-defect number) for 5000 events.

The left plot shows the distribution without any rotation of vessel (Ω = 0), we get

standard distribution as predicted by the Kibble mechanism. This distribution follows

Gaussian distribution f(∆n) = ae−
(∆n−∆n)2

2σ2 . By fitting the distribution, we obtain

the parameters of this Gaussian as: a = 656.40, ∆n ∼= 0, σ = 30.46 (we have taken

bin width 10 with error bars on the plot taken as [f(∆n)]1/2 for each bin value).

Important point to note is that center of Gaussian ∆n has zero value which is the

standard prediction of Kibble mechanism; no biasing in the formation of vortices and

antivortices (on the average). We obtained average total number of defects from the

simulation to be N = 1857948. Kibble mechanism makes an important prediction of

relation between σ and N Ref. [10], σ = CNν , where value of C for square domains

is 0.71. The exponent ν is universal and its theoretical value is ν = 1/4 for the

present case. From the obtained value of σ and N with simulation, we derive value of

ν = 0.2604, which is quite close to the theoretical value 0.25 and matches well with

the experimental value of ν = 0.26±0.11 obtained for liquid crystal case, see ref. [10].

The right (red) plot in Fig.1 gives the distribution of ∆n for the case of vor-

tex formation during superfluid transition in a rotating vessel with angular velocity

103 rad s−1. We see that in this case also we get a Gaussian distribution but shifted

with the mean value ∆n = 25, which clearly shows that there is a biasing in the

formation of vortices over antivortices. For the whole cylinder, we thus expect to get

on an average more than 100 vortices over antivortices in the vessel. This bias in

the net value of ∆n occurs here because of the modification in the domain structure

and geodesic rule in the presence of rotation. Thus our proposed modification of the

Kibble mechanism, with modified domain structure along with the modified geodesic

rule, is able to accommodate the expected bias in the net value of ∆n due to the

rotation of the vessel.

Table 4.1 shows the obtained values of ∆n, σ, and N from simulations at different
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Figure 4.1: Distribution of vortices − antivortices. Left (and black in right) plot

shows the case without any rotation of the vessel (Ω = 0) giving the mean value

of Gaussian distribution, ∆n = 0. Right plot corresponds to the case with angular

velocity of the vessel Ω = 103 rad s−1 showing that ∆n gets shifted from zero to value

25, showing a net biasing in formation of vortices over antivortices. As we simulate

only a quadrant, the full vessel will give value of net ∆n of about 100.

Ω values; note that for each Ω we have generated 5000 events and performed simula-

tions. Values of ν is obtained from the relation σ = CNν , C = 0.71. It is very clear

that with Ω all the other quantities are increasing.

Fig.10.2 shows the dependence of ∆n on Ω (axes are in log-log scale). This plot

clearly shows that ∆n linearly increases with Ω with slope 0.024. Slope will be about

0.1 (4 times higher) for the full cylindrical vessel. As shown in Table 4.1, for Ω = 0 we

find ∆n = 0.0 as expected from the usual Kibble mechanism. However, the straight

line fit in Fig.1 does not pass through the origin (0,0) of the plot, instead it gives

∆n ' 1.0 for Ω = 0. The best fit line is given by ∆n = 0.024Ω + 1.0. For full

vessel this would mean ∆n ' 4 at Ω = 0. This is clearly due to fluctuations in the

simulation results for finite number of runs. With the plot in Fig.2, at the critical

angular velocity Ωcr (' 78 rad s−1 as mentioned earlier) we will have on an average

net 12 vortices (for the whole vessel). Note when number of vortices is calculated

using only energetics arguments in the vortex model, we expect a single vortex at

the critical angular velocity. However, just after the superfluid transition, number

of vortices also gets contributions from the Kibble mechanism (suitably modified as
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Table 4.1: Effect of rotation on the formation of vortices

Ω ∆n σ N ν

0 0.0 30.46 1857948 0.2604

103 25.29±0.44 30.41±0.44 1858005 0.26029

104 250.20±0.26 30.90±0.26 1858003 0.2614

105 2492.88±0.30 31.42±0.30 1858010 0.26255

5× 105 12466.9±0.36 31.77±0.35 1858031 0.26332

106 24932.8±0.34 35.81±0.32 1858136 0.27161

107 240603.±4.96 43.47±0.35 2745682 0.27753

proposed here) whose contributions have a Gaussian spread with σ as given in Table

4.1. Thus the final value of ∆n will be expected to deviate from the vortex model

prediction in general. It is still interesting to ask that with proper incorporation of

the Kibble vortices, what is the new critical angular velocity at which one expects

to get ∆n = 1. With our results, angular velocity of the vessel will be smaller than

a different critical velocity, say, ΩKibble, which also depends on system parameters

system size, the inter-domain separation d, etc. It is very interesting to study the

behavior of ΩKibble in comparison to Ωcr and we plan to study this in future. Especially

interesting will be to investigate the dependence of our results on the parameter d.

For a first order transition, with a simple situation of nucleation of a large density of

critical bubbles (almost at close packing) the value of d will be given by 2× the bubble

wall thickness (while ξ corresponds to the bubble diameter). By considering different

experimental situations, the ratio d/ξ can be varied and its effects on various results,

especially on ΩKibble can be studied. For a second order transition such a study will

be more complicated. In view of these issues, it is clear that a proper interpretation

of Hess and Fairbank experiment [14] requires a more detailed analysis. Measurement

of average number of vortices in experiment with sufficiently large number of events

for superfluid transition with angular velocity just below Ωcr may give a good test

for the model here we propose. A non-zero value of angular momentum of superfluid

below Ωcr will give a solid support for this model. It will also show that there is a

critical angular velocity Ωkibble which is different from Ωcr for the phase transition in

the presence of rotation.
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Figure 4.2: Variation of ∆n with Ω in Log-Log scale. This plot shows that ∆n linearly

depends on Ω with slope 0.024. Slope will be about 0.1 if simulation perform in full

cylinder.

As mentioned above, the best fit line for results in Table 4.1 gives ∆n = 0.1Ω

(ignoring the intercept, hence for large Ω). This matches very well with the vortex

model prediction which gives n ' 2πR2mΩ/h ' 0.1Ω (Ref. [16]). This is expected as

for very large Ω, number of vortices should be dominated by the effects of rotation.

We again mention that our results depend on various parameters, such as ξ, d etc.

Thus one needs to study whether this agreement with the vortex model prediction

(for large Ω) is valid in general.

We emphasize that the free energy of individual defects plays no role in the Kibble

mechanism (even with the modifications we propose). Still, with our incorporation

of initial rotation of the normal fluid (and its some fraction getting transferred to

the superfluid flow after the transition) at least some part, if not all, of the ”rotation

induced vortices” have been included in this proposed modified Kibble mechanism.

This point will be particularly important for small rotations where very few vortices

are expected from energetics arguments. This modified Kibble mechanism gives defect

density right after the transition which will evolve in time, and approach the density

expected using equilibrium free energy arguments. Thus, if the (modified) Kibble

mechanism gives lesser number of net produced vortices then with time, more number

of vortices will get produced and ultimately in the equilibrium, system will have n
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number of vortices as predicted by the vortex model using energetics arguments. It

is also interesting to study the distribution of vortices and antivortices as a function

of distance from center in our model. The equilibrium distribution is uniform but as

mentioned above, the distribution right after the transition may be different due to

non-equilibrium contributions from the (modified) Kibble mechanism. A non-uniform

initial distribution will have very important implications for the case of neutron stars

where migration of vortices to achieve uniform (equilibrium) distribution will lead to

change in moment of inertia of the neutron star (as in the model discussed in [18]).

This requires large statistics and this study is underway.

Fig. 10.3 shows that the width of the Gaussian σ increases with Ω (slowly initially

but strongly for large values of Ω). σ represent randomness in the formation of

vortices and anti-vortices. If formation of vortices and antivortices is completely

uncorrelated then value of σ goes like ∼ N1/2; width of Binomial distribution. But

there is a correlation between production of defect and anti-defects in the Kibble

mechanism (Ref. [10]) causing suppression in randomness and hence σ ∼ N1/4. By

writing σ ∼ N ν we see from the Table 4.1, that ν increases with Ω showing that

correlation between production of vortices and antivortices is getting suppressed with

Ω. We also fit the dependence of σ on Ω. A reasonable fit for σ as a function of

Ω is obtained by σ = aΩp + b where fitted values of parameters are found to be

a = 0.004±0.006, p = 0.51±0.10, b = 30.30±0.65. Even though value of a is entirely

dominated by error, this fit does suggest a systematic variation of σ with Ω with

exponent p ' 0.5. We plan to carry out a systematic study of this result and increase

of ν with Ω in future.

Fig.10.5-Fig.10.7 presents results for a single event for the number of defects per

domain, i.e., probability of formation of defects. Fig.10.5 shows probability of forma-

tion of single winding defects and anti-defects as a function of Ω. We note that both

probabilities increase with Ω, with winding +1 defect probability increasing faster

than the probability for winding −1 (anti-defects), reflecting biasing in the formation

of defects over anti-defects.

Fig.10.6 shows probability of formation of winding two defects and anti-defects as

a function of Ω. We find an increase in the formation probabilities of winding number

two defects and anti-defects as a function of Ω. Probabilities for both the cases become
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Figure 4.3: This plot shows that gaussian width changes with Ω and follow 1/2 power

law dependence. Both the axes are in the Log-Log scale.
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Figure 4.4: Plot shows probability of formation of single winding defects and anti-

defects as a function of Ω. Probabilities for both the cases changes differently with Ω

and causing biasing in the formation of defects over anti-defects.
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Figure 4.5: Plot shows probability of formation of winding two defects and anti-defects

as a function of Ω. Probabilities for both the cases become non-zero at Ω > 2× 106

rad s−1 and changes differently with Ω and also causing biasing in the formation

of defects over anti-defects. Winding number two defects are unstable in superfluid

systems and split into two single winding defects and enhance single winding defects

formation probabilities.

non-zero at Ω > 2×106 rad s−1 and changes differently with Ω, again reflecting biasing

in the formation of defects over anti-defects. It is well known fact that winding number

two defects are unstable in superfluid systems and split into two single winding defects

eventually enhancing single winding defects formation probabilities.

We note that while increase of vortex formation probability is expected as a func-

tion of increasing angular velocity, it may appear puzzling why anti-defect probability

also increases with the rotation. The explanation for this may lie in the correlation of

defects and antidefects which is an important and non-trivial prediction of the Kib-

ble mechanism. As we see from Table 4.1, the defect-antidefect correlation exponent

ν, while increasing slightly with angular velocity to a value of about 0.28, still re-

mains far below the value of 0.5 for uncorrelated case. Thus, while vortex probability

increases naturally with the rotation, the underlying domain structure forces larger

probability of formation of anti-vortices close to vortices for winding number 1 as well

as for winding number 2 case. (Basically from the fact that positive winding across

two domains appears as anti-winding for the neighboring region.)
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Figure 4.6: Plot shows the total formation probability of topological defects in the

system with Ω (including winding number two and three defects with appropriate

their weight in probability of single winding defects). Winding number three defects

appear at Ω = 107 rad s−1.

Fig.10.7 shows the total formation probability of topological defects in the system

with Ω. Here we have included winding number two and three defects with their

weight two and three respectively in probability of single winding defects formation

as these defects are not stable and split into winding one defects. Winding number

three defects appear at Ω = 107 rad s−1. The total defect number (defects + anti-

defects) probability increases with Ω as expected.

We have also checked the effects of varying the inter-domain separation d on our

results. For Ω = 106, increase of d from d = 2Å to d = 40Å increases probabilities

for winding one defect as well as antidefect by about 15 %. Change in winding two

defect probabilities is very small and dominated by fluctuations. For Ω ≤ 105 the

change in probabilities is very small and dominated by fluctuations. The effect of d

on various probabilities is a complex issue and we plan to study it systematically in

future.

Experimental tests of our predictions based on this modified Kibble mechanism

will lend strong support to the whole underlying picture of the Kibble mechanism

which is adaptable for varying experimental conditions such as biased formation of

flux tubes in superconductors in the presence of external field etc. We mention here
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an important aspect of vortex formation in superfluids via the Kibble mechanism

which is not present for other types of topological defects (as emphasized in our ear-

lier work [5]). We mentioned above that we assume that part of normal component

which undergoes superfluid condensation carries the same angular momentum as it

had before the transition (along an arc at the center of the domain). This just re-

flects the local conservation of linear momentum during the superfluid transition on

that arc. However, even if there was no initial motion of the fluid, still during phase

transition, spontaneous generation of flow of the superfluid will arise simply from the

spatial variation of the condensate phase. Indeed, it is this (random) phase variation

from one domain to another which leads to formation of vortex network and hence

spontaneous generation of superflow. What happens then to local linear momentum

conservation? Basically, some fraction of (4He) atoms form the superfluid condensate

during the transition and develop momentum due to the non-zero gradient of the

phase of the condensate. The only possibility is that the remaining fraction of atoms

(which form the normal component of fluid in the two-fluid picture) develop opposite

linear momentum so that the momentum is locally conserved. (Here we avoid con-

ceptual question of an ideal instantaneous quench to almost zero temperature where

there is no normal component left). This means that there is no net momentum flow

anywhere right after the transition. For superfluid transition in a rotating vessel,

same consideration will apply to the normal component in a domain in regions away

from the central arc as in those regions superflow will in general not match with the

initial flow due to rotation implying generation of extra counterbalancing normal flow

component. Note, this argument is quite different from the conventional argument of

net angular momentum conservation for Kibble superfluid vortices where one knows

that spontaneous generation of net rotation of the superfluid has to be counter bal-

anced by the opposite rotation of the vessel containing the superfluid [3]. Here, we are

arguing for local linear momentum conservation which implies generation of complex

flow pattern for normal component depending on the generation of spontaneous part

of the superflow during the transition. The final picture is then that, the original

rotation of the normal fluid (before the transition) is simply transferred to the rota-

tion of the superfluid which, via our modified Kibble mechanism, accounts for the net

bias of vortices over anti-vortices. At the same time generation of extra vortices and
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anti-vortices via the random domain formation (via the Kibble mechanism) leads to

extra local superfluid circulation in the system which will be accompanied by opposite

circulation being generated in the normal component of the fluid (to balance the mo-

mentum conservation). To incorporate both these contributions accurately, one must

carry out simulations of the transition with a two fluid picture in a rotating vessel.

These consideration must be incorporated for any experimental test of the Kibble

mechanism (either the conventional one, or the modified one presented here). It is

possible that a due consideration of this spontaneously generated counterbalancing

flow of the normal fluid may improve agreement of the results of various superfluid

helium experiments with the Kibble mechanism. We plan to carry out a detailed

investigation of this issue in a future work.

4.5 Conclusions

In conclusion, we have proposed a modification of the conventional Kibble mecha-

nism for the situation of production of topological defects when physical situation

requires excess of windings of one sign over the opposite ones. We have considered

the case of formation of vortices for superfluid 4He system when the transition is

carried out in a rotating vessel. As our results show, this biased formation of defects

can strongly affect the estimates of net defect density. Also, these studies may be

crucial in discussing the predictions relating to defect-anti-defect correlations. The

modified Kibble mechanism we presented here has very specific predictions about net

defect number which shows a clear pattern of larger fluctuations (about mean value

governed by the net rotation) compared to the conventional Kibble prediction. This

can be easily tested in experiments. Further, even the average net defect number

deviates from the number obtained from energetics considerations, especially for low

values of Ω. This implies that exactly at the time of transition, a different net defect

number will be formed on the average, which will slowly evolve to a value obtained

from energetics considerations. These considerations can be extended for the case

of flux tube formation in superconductors (with appropriate modifications for the

gauged case), and we hope to present it in a future work. Such a modified Kibble

mechanism is also needed to study formation of baryons at finite chemical potential
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in the framework of chiral sigma model where baryons appear as Skyrmions which

are topological solitons (extending our earlier work on 1+1 D Skyrmion formation to

3+1 D [17]). Our results will have implications for superfluid transition in rotating

neutron stars (where phase transition induced density fluctuations could be detected

by observing pulsar signal changes, as proposed by some of us [18]). In an earlier

work [5], we considered the possibility of superfluid phases of QCD, e.g. neutron su-

perfluid and color-flavor-locked phase, in low energy heavy-ion collisions and showed

that this will lead to production of few vortices via the (conventional) Kibble mecha-

nism which can strongly affect the hydrodynamical evolution of the system and can

be detected by measuring flow fluctuations. For low energy non-central collisions su-

perfluid phase transition is likely to happen in the presence of an overall rotation of

the plasma region. Resulting vortex production for such a case must be studied by a

modified Kibble mechanism, as we have proposed here.
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Chapter 5

Quantum Chromodynamics and its

Phases

The experiments of proton-proton and electron-proton collisions, with very high en-

ergies, revealed many unexpected fact about the substructure of proton and showed

that the proton is a very complicated object which has a very rich internal structure

in terms of its constituents, named partons. From the observation of distribution of

outgoing particles in the experiments, it was realized that partons are almost free

inside the proton and incapable of exchanging very high momentum through strong

interaction in the high energy collisions. From electron-proton collisions, a very im-

portant result came out which is known as the Bjorken scaling of deep inelastic cross

section. This shows that the cross section only depends on the fraction of longitudinal

momentum carried by partons but not on the momentum transfer by the electron (or

energy of the collisions) [1]. This implies that, an electromagnetic probe sees same

structure of proton irrespective of the momentum transfer. Note that the interaction

time scale of partons inside a proton is of the order of inverse of protons mass. This

time scale is much larger than the electron - proton scattering time in the high energy

experiment. It was observed that, during such short scattering time, partons behave

almost freely inside proton. Partons have stronger interaction on a longer time scale.

This picture of free partons inside proton, during a short scattering time, raises

a very fundamental question in the quantum field theory. Quantum field theory

allows interaction of partons by virtual particle exchange in a very arbitrary small
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time duration with arbitrarily high momentum, see Ref. [1]. The question arose,

which thing is stopping for the large momentum transfer between partons during

the scattering time. Latter, it was realized that non-abelian gauge theories have

asymptotic freedom, which means, large-momentum-transfer or short-time processes

lead to lesser interaction between the particles. This feature of non-abelian gauge

theory can address the above issue and therefore it was realized that underlying theory

of partons interaction should be a non-abelian gauge theory. In the non-abelian gauge

theory of strong interaction, interactions between partons happen through vector

bosons exchange, named gluons, which also carry charge allowing self interaction

between them. This feature is not available in QED where photons (vector boson of

the theory) do not carry any charge and hence don’t interact with other photons.

Experimental investigation of the interaction of partons through vector bosons

(which carry charges) supports the non-abelian character of the strong interaction.

The underlying theory of strong interaction is named Quantum Chromodynamics

(QCD). The vector bosons in this theory are called gluons which carry charges named

color charges. The self interaction among gluons through color charge is responsible

for the QCD asymptotic freedom at high energy and due to that perturbative quan-

tum field theoretical techniques can be used for the determination of scattering cross

section of a process. At low momentum transfer or for a longer time process, interac-

tion among partons become very strong and due to this, perturbation theory breaks

down.

The fundamental particles, which participate in the strong interaction, are quarks,

anti-quarks and gluons. There are many possible bound states of quarks, some of them

are three quark (fermion) states, e.g. proton, neutron, etc., called as baryons, while

others are quark - anti-quark (boson) states, e.g. pion, called as mesons. Quarks

remain confined inside baryons and mesons (collectively called as hadrons). In the

experiments only hadrons are observed; an isolated quark never appears.

We now discuss the original reason for introducing the color quantum number in

the quark model. The physical properties of ∆++ particle shows that it consists of

three identical u quarks, where all the quarks, in uuu bound state, have to lie in

the ground state in a symmetric state to satisfy the property of ∆++. But, this

clearly violates the Fermi statistics. Also, other unavoidable question can arise that
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why qq, q̄q̄ or q particles are not seen in nature. To handle these issues another

quantum number associated with quarks was introduced known as the color quantum

numbers, red (r), green (g), blue(b). This quantum number distinguishes all three u

quarks in ∆++ and protect the violation of Fermi statistics. Thus, by this, quarks

form the bound state not due to electromagnetic interaction (in ∆++ all quarks have

same e.m. charge) but due to color (strong) interaction. As isolated quarks are not

seen, the notion of color confinement was introduced. Quarks combine in such a

way that only colorless (white), or more precisely, color singlet (invariant under the

rotation transformation in r,g,b space) hadrons form. This disallows the possibility

of qq, q̄q̄ or q states in the nature, see Ref. [2]. All hadrons are color singlet objects.

Anti-quarks have color antired (r̄), antigreen (ḡ), and antiblue (b̄). For the detail

discussion on the combination of colors to the color singlet object, see Ref. [2]. The

bound state of quarks arises due to color exchange through gluons (vector boson of

the strong interaction) which also carry color charge due to the non-abelian nature

of QCD. There can be nine gluons which have bicolor charges (in linear combination

of colors), rr̄, rḡ, rb̄, gr̄, gḡ, gb̄, br̄, bḡ, and bb̄. Out of nine gluon states, rr̄+ gḡ + bb̄

state is color singlet and therefore can not have its role in the color interaction. So in

the theory of QCD, there are eight gluons which lead to the quark interaction. The

SU(3) theory has exactly same number of generators, and therefore can account for

eight gluons. Thus, theory of strong interaction can be described by SU(3) gauge

theory which is known as the QCD. Note that since gluons also carry the color charge,

therefore they can interact with themselves, which lead to a very important feature

of QCD discussed below.

The fact that gluons have color charges gives a completely different polarizability

of QCD vacuum from the QED. We know that electric charge of an electron is screened

by vacuum polarization; electron-positron cloud around a test electron is generated in

such a way that, positrons remain closer to test electron via electric attraction. Due

to this, in the long distance measurement, charge of test electron shows lesser value.

Towards the shorter distance, test charge increases. In the case of QCD also, around

a color charge, vaccum becomes polarized and quark - anti-quark pairs distribute such

that they color screen the color charge of quark (like electric charge in QED), but since

gluons also carry charges, and can self interact themselves, therefore they also form
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a cloud of gluons around the color charge such that, instead of screening they create

anti-screening of color charge; for example if test quark has red color, then around

this, due to gluons cloud, an effective distribution of red color forms. For QCD, the

effect of anti-screening dominates over any other kind of screening effects created by

quark - anti-quark pairs. Therefore, in the long distance, color charge strongly gets

enhanced due to such gluonic distribution. QCD vacuum, therefore is a paramagnetic

medium (QED vacuum is a dielectric medium). Towards the shorter distance, color

charge of quark reduces. This is the reason that, at sufficiently short distance or high

energies, two quarks interact weakly (because they have lesser effective color charge

in this regime), this feature of QCD is known as the asymptotic freedom. Note that

in the thermal medium (in the quark-gluon plasma) the property of anti-screening

goes away and charges only have Debye screening like in the case of QED plasma.

If one tries to pull apart quark - anti-quark pair, the interaction strength between

them becomes stronger and stronger with increasing distance. Since gluons can in-

teract with themselves, therefore with the distance, the color field between the pair

squeezes in the transverse direction of stretching, and by this, behaves as a string

of fixed string tension. When we pull further the string, it breaks into two pieces

of strings (hadrons) of smaller length with the production of one more pair of quark

- anti-quark. This is the reason, no isolated quark can be found in nature. This is

known as the color confinement.

All hadrons are color singlet object but when they are brought sufficiently close to

each other, quark of one hadron start seeing quark of other hadron. This interaction

is responsible for the binding of neutron and protons into nuclei.

5.1 Quantum Chromodynamics (QCD)

The demand of local gauge invariance of the Lagrangian provides interactions between

fermions with vector gauge bosons. QED is one of such local gauge theory which is

invariant under transformation of fermion and photon field at each space-time points.

This theory is an abelian gauge theory which is very well tested experimentally. This

suggests that the local gauge invariance is a fundamental principle of the nature and

leads to a specific form of the Lagrangian. We have discussed that gluons have color
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charge and hence can self interact with themselves. Quarks come in three colors

which form three dimensional color vector space. Therefore the quark field forms a

triplet state (ψr ψg ψb) which transforms with the 3× 3 matrices, where ψ is a Dirac

field for quarks. These transformation matrices form a group, known as color SU(3)c

group. The QCD Lagrangian is invariant under this group. SU(3)c group has total

8 generators, therefore local gauge invariance of the theory requires 8 vector fields.

These are the gluons, responsible for the strong interaction.

Lagrangian density of QCD, following local gauge invariance under SU(3)c, is

given by [3],

L =
6∑

f=1

Ψ̄f

(
iγµDµ −mf

)
Ψf −

1

4
F a
µνF

µν
a , (5.1)

where Ψ is the 3× 1 matrix of the quark field containing three color quantum states

red, green, blue of quark, which is the triplet of SU(3)c,

Ψ =


ψr

ψg

ψb

 .

The label f in Ψf corresponds to flavor of quarks. There are 6 quarks in nature, up

(u), down (d), charm (c), strange (s), top (t), and bottom (b). Masses (mf ) of all the

quarks are vastly different and till now there is no physical understanding of why this

is so. γµ are the Gamma-matrices. Dµ is called the covariant derivative which acts

on the color triplet of the quark field. Local gauge invariance of Lagrangian density

leads the form of covariant derivative,

Dµ = ∂µ − igAaµta, (5.2)

where g is the dimensionless coupling constant of QCD. Aaµ represent eight gauge

fields, i.e. gluon fields, with a = 1, .., 8 corresponding to eight generators ta (Hermitian

matrices) of SU(3)c algebra. The gluon fields form octet of SU(3)c. These generators

are in the fundamental (irreducible) representation of the SU(3)c algebra, i.e. come

in 3× 3 matrices. These generators satisfy the following commutation relation,

[ta, tb] = ifabct
c, (5.3)

and normalization condition,

tr(tatb) =
1

2
δab, (5.4)
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where fabc are the structure constants which are anti-symmetric in its indices. The

structure constants, which have non-zero values, are [3],

f123 = 1,

f147 = −f156 = f246 = f257 = f345 = −f367 = 1/2,

f458 = f678 =
√

3/2.

ta are 3× 3 matrices and equal to 1
2
λa, where λa are the Gell-Mann matrices, see the

Ref. [3] for the form of these matrices.

To incorporate the dynamics of gauge field, field strength tensor is introduced

in the Lagrangian. In the case of non-abelian theory, field strength tensor contains

quadratic term of gauge fields,

F a
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν , (5.5)

This expression of field strength tensor can also be written in a simpler form by

introducing Aµ ≡ taAaµ and Fµν ≡ taF a
µν ,

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ]. (5.6)

This clearly shows that in QCD, gluons can interact with each other (Lagrangian of

QCD contains cubic and quartic terms of gauge field). This is what makes the theory

asymptotically free. The color electric field and color magnetic field can be written

as,

Ei = F i0, Bi = −1

2
εijkF

jk, (5.7)

where εijk is the third rank Levi-Civita tensor. The equation of motion of quark field

and gluon field can be obtained from the QCD Lagrangian,

(iγµDµ −m)Ψ = 0, (5.8)

[Dν , F
νµ] = gjµ, (5.9)

where jµ = tajµa and jµa = Ψ̄γµtaΨ. The element of SU(3)c, under which QCD

Lagrangian is invariant, is given by, U(x) = exp
(
− iθa(x)ta

)
. The transformation of

quark field and gluonic field under SU(3)c is given by,

Ψ(x)→ U(x)Ψ(x), gAµ(x)→ U(x)
(
gAµ(x)− i∂µ

)
U †(x), (5.10)
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Under these transformation, QCD Lagrangian is invariant. Under SU(3)c transfor-

mation covariant derivative of the quark field transforms in the same way as the quark

field. In the abelian gauge theory, field strength tensor F µν is invariant under gauge

transformation, but in the non-abelian case, Fµν ≡ taF a
µν is not invariant under the

gauge transformation. The gauge transformations of Fµν and Dµ are,

Fµν(x)→ U(x)Fµν(x)U †(x), Dµ(x)Ψ(x)→ U(x)Dµ(x)Ψ(x)U †(x). (5.11)

Note that quark field comes in a triplet, therefore transforms under irreducible (fun-

damental) representation of SU(3)c, i.e. transformation elements are 3× 3 matrices.

But gluonic field forms an octet, therefore transforms by 8 × 8 matrices, which is

known as the adjoint representation of SU(3)c algebra [1, 3].

To get the description in terms of particles and their interactions allowed by

quantum theory, one needs to quantize the QCD Lagrangian. There are mainly two

methods by which one can quantize the fields, one is the canonical quantization and

the other is the Feynman Path integral method. The popular one is the Feynman

path integral method, in which one writes the transition amplitude from vacuum to

vacuum from −∞ to +∞ time. This incorporates all possible quantum effects in the

theory, by considering all possible paths of fields from initial configuration state to

the final configuration state. This transition amplitude is the generating functional

of the full Green’s function (all possible diagrams). We are mainly interested in the

connected diagrams, which can be easily obtained by taking logarithms of generating

functional. Finally, one particle irreducible diagrams (1PI diagrams) are obtained by

calculating the Legendre transform of logarithms of generating functional (connected

diagrams). This is known as the effective action of the theory.

In the evaluation of the generating functional, one problem arises due to presence

of infinite number of possible paths which are connected by gauge transformation.

All such paths contribute the same amount in the generating functional, and because

of this, generating functional become divergent. To avoid this problem, gauge fixing

is performed, so that only one representative point of a gauge orbit (in one orbit,

all gauge fields are connected through the gauge transformation) is taken into ac-

count. The famous technique for the gauge fixing is the Faddeev - Popov method.

Finally, after gauge fixing, a modified generating functional and Lagrangian density
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of the theory is obtained, which is written with the introduction of new field variables,

known as ghost and anti-ghost field. Although, this new Lagrangian density is not

gauge invariant (classical gauge invariant), but it is invariant under the BRST trans-

formation (quantum gauge invariant). With all this, generating functional can be

evaluated which generates all possible diagrams. As we mentioned, one is interested

in the connected 1PI diagrams, which control the divergence structure of the theory.

For detail discussion see Refs. [1, 3].

To regulate the ultraviolet divergences in the loop integrals, a momentum cut-off

scale is introduced. This makes scattering amplitude finite, but cut-off dependent. To

make experimentally measured quantities cut-off independent, one renormalizes the

theory by adding some extra counter terms in the bare Lagrangian. By this, the bare

parameters of the Lagrangian get redefined such that the generating functional of the

theory remain independent from the momentum cut-off scale. With this, quantities

like coupling constant change with the energy scale κ (at which the divergences are

renormalized) by the following the flow equation [3],

κ
∂g

∂κ
= β, (5.12)

where β can be calculated in the small g limit. β depends upon g, by following a

series expansion,

β(g) = −β0g
3 − β1g

5 + ... (5.13)

where,

β0 =
1

(4π)2

(
11− 2

3
Nf

)
, β1 =

1

(4π)4

(
102− 38

3
Nf

)
. (5.14)

It should be noted that for Nf ≤ 8, both β0 and β1 are positive numbers. If 8 <

Nf ≤ 16, β1 becomes negative, but β0 still remain positive. For Nf > 16, both β0

and β1 become negative. We know that there are six quarks in nature, so for this,

β is negative, which indicates that with increasing momentum cut-off scale, strong

interaction coupling decreases. One can obtain the fine structure constant of the

strong interaction, αs = g2/4π, in terms of β0 and β1 as,

αs(κ) =
1

4πβ0ln(κ2/Λ2
QCD)

[
1− β1

β2
0

ln(ln(κ2/Λ2
QCD))

ln(κ2/Λ2
QCD)

+ ...

]
, (5.15)

which shows that when κ increases, αs decreases. ΛQCD, called QCD scale parameter,

is determined by experimentally which has value ∼ 200 MeV . It is independent from
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Figure 5.1: Figure shows the running of QCD coupling constant with the energy scale

κ. The points on the plot is from the various experiments. Running of QCD coupling

constant clearly shows that QCD is a asymptotically free theory. Figure has been

taken from the Ref. [3].

κ. Fig. 5.1 shows the dependence of αs on κ; data points are experimental measured

values. This shows that QCD is an asymptotically free theory. This asymptotic free-

dom arises due to the non-abelian nature (and hence due to self-interaction between

gauge (gluonic) field). Due to the same reason gluons in the QCD vacuum anti-screen

a color charge, which makes the QCD vacuum a paramagnetic medium, see Ref. [3].

In the presence of matter (at finite temperature), this anti-screening goes away. That

is the reason why quark-gluon plasma exhibits the screening of the color interaction,

just like QED plasma does for the electromagnetic interaction [3].

Chiral symmetry in QCD : As we have discussed, QCD Lagrangian is invariant

under the local SU(3)c gauge transformation. Now we discuss that QCD also has

some global symmetries, the chiral symmetry is one of them [3]. Let us consider the

QCD Lagrangian density, without the kinetic term of gauge field,

L =
6∑

f=1

Ψ̄f

(
iγµDµ −mf

)
Ψf . (5.16)
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The current quark mass of u and d quarks are mu,md ∼ 5 − 10 MeV . The masses

of the strange and charm quarks are ms ∼ 95 MeV , mc ∼ 1.3 GeV , respectively; the

masses of top and bottom quarks are much higher than the masses of these quarks. In

the comparison with the QCD scale ΛQCD ∼ 200 MeV , in an approximation, one can

neglect the masses of u and d quark, while in a poor approximation one neglects the

mass of the s quark also, with respect to QCD scale. Let us consider mu ' md ' 0,

then we can write the QCD Lagrangian density as,

L = ψ̄
(
iγµDµ

)
ψ +

6∑
f=3

Ψ̄f

(
iγµDµ −mf

)
Ψf , (5.17)

where,

ψ =

Ψu

Ψd

 , ψ̄ =
(

Ψ̄uΨ̄d

)
, Ψu,d =


ψr

ψg

ψb

 .

One can project ψu and ψd fields into their left and right chiral components as,

ψ
L

=
1

2
(1− γ5)ψ, ψ

R
=

1

2
(1 + γ5)ψ, (5.18)

where,

ψ
L

=

Ψu
L

Ψd
L

 , ψ
R

=

Ψu
R

Ψd
R

 ,

and γ5 = iγ0γ1γ2γ3. γ5 anti-commutes with the other Dirac’s matrices, {γ5, γ
µ} = 0.

In the Weyl representation, γ5 =diag(−I, I). It is a hermitian matrix, γ†5 = γ5. In

terms of ψ
L

and ψ
R

one can write the first term of Eq. 5.17 as,

Lu,d = ψ̄
L

(
iγµDµ

)
ψ
L

+ ψ̄
R

(
iγµDµ

)
ψ
R
, (5.19)

where ψ̄
L

= ψ†
L
γ0 = 1

2
ψ†(1 − γ5)γ0 = 1

2
ψ̄(1 + γ5) and ψ̄

R
= 1

2
ψ̄(1 − γ5). The above

equation shows that in the zero mass limit, the left chiral part and the right chiral

part completely get decoupled and their equation of motion are also independent.

This is known as the chiral symmetry. Note that in the presence of the mass term

mψ̄ψ = mψ̄
R
ψ
L

+ mψ̄
L
ψ
R

, left and right chirality are not decoupled, and therefore

mass term breaks the chiral symmetry.

The Lagrangian density in Eq. 5.19 is invariant under the separate unitary trans-

formations of ψ
L

and ψ
R

fields. The symmetry group of this Lagrangian density is
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SU(2)
L
× SU(2)

R
whose elements transform the u and d quark fields as,

ψ
L
→ e−i

1
2
τaθa

Lψ
L
, ψ

R
→ e−i

1
2
τaθa

Rψ
R

(5.20)

ψ̄
L
→ ψ̄

L
ei

1
2
τaθa

L , ψ̄
R
→ ψ̄

R
ei

1
2
τaθa

R (5.21)

These are the global transformations which acts independently on the ψ
L

and ψ
R

fields. Under these transformations the Lagrangian 5.19 is invariant. This is known

as the chiral symmetry which arises in the mass zero limit.

The chiral symmetry can also be realized by directly looking the first term of the

QCD Lagrangian Eq. 5.17,

Lu,d = ψ̄
(
iγµDµ

)
ψ, (5.22)

This Lagrangian density is invariant under the transformations of SU(2)
V
×SU(2)

A
,

ψ → e−i
1
2
τaθa

V ψ, ψ → e−i
1
2
τaθa

A
γ5ψ, (5.23)

ψ̄ → ψ̄ei
1
2
τaθa

V , ψ̄ → ψ̄e−i
1
2
τaθa

A
γ5 . (5.24)

The symmetry associated with the SU(2)
V

transformations is called the vector or

isospin symmetry, while with the SU(2)
A

transformations is called the axial sym-

metry. Note that both the chiral symmetry transformations, mentioned above, are

equivalent, since the groups, SU(2)
L
× SU(2)

R
and SU(2)

V
× SU(2)

A
, are isomor-

phic to each other. If the chiral symmetry of QCD is followed by its ground state,

then this must be reflected in the hadronic multiplet structure. But, in the hadronic

spectrum, in the consideration of mu ' md, we only see the isospin SU(2)
V

sym-

metry, where three pions form isospin-1 multiplet structure. Thus, we conclude

that SU(2)
L
× SU(2)

R
∼ SU(2)

V
× SU(2)

A
chiral symmetry should be sponta-

neously broken by the QCD ground state with remaining SU(2)
V

isospin symme-

try. The ground state breaks three generators, therefore according to the Gold-

stone’s theorem, three massless Goldstone’s bosons arise which are three pions in this

case. These pions acquire their masses due to the explicitly breaking of the chiral

symmetry due to non-zero current quark mass of u and d quarks. If we consider

mu ' md ' ms ' 0, then the QCD Lagrangian density for these flavors show the

chiral symmetry, SU(3)
L
× SU(3)

R
∼ SU(3)

V
× SU(3)

A
, which get broken by the

ground state, with remaining isospin SU(3)
V

symmetry, where there will be eight

Goldstone’s bosons associated with the eight broken generators.
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5.2 QCD at Finite Temperature

To describe thermodynamic phases of QCD, finite temperature field theory (or many

body field theory) is required. Here, we briefly introduce this subject by following the

discussion from the Refs. [3–5]. We discuss the phases of QCD, basically transition

from thermal gas of hadrons to the quark-gluon plasma by showing the Lattice QCD

results. The quark-gluon plasma (QGP) phase is expected to arise due to asymp-

totic freedom of QCD interaction at sufficient high energies or very short distances.

Therefore it was expected that the plasma of quarks, anti-quarks and gluons should

be weakly coupled, but this was not the case when observed in the experiment. The

experiment data have showed that the produced plasma at the relativistic heavy-ion

collider (RHIC) is strongly interacting and behaves almost like a perfect fluid.

In the low energy or long distance limit, a plasma of hadrons is formed. Since

strong interaction, by nature, is a short range, therefore as distance increases, interac-

tions among the hadrons are expected to decrease. These hadrons form a phase which

is known as the ideal hadron gas. These phases of QCD (hadron gas and QGP) can

arise at finite temperature (T 6= 0, µ = 0), at finite chemical potential (T = 0, µ 6= 0)

or the case when both are non-zero (T 6= 0, µ 6= 0). The quantum field theory (T = 0

and µ = 0) describes the interaction among particles in the vacuum. The transi-

tion amplitude from vacuum to vacuum gives the generating functional for the QCD

processes in the Feynman path integral formalism,

Z =

∫
DAaµ(x)DΨ̄(x)DΨ(x)ei

∫
d4xL[Aaµ,Ψ̄,Ψ]. (5.25)

In the saddle point approximation, the most contribution in the generating func-

tional comes from the field configurations of (Aaµ(x), Ψ̄(x),Ψ(x)) which satisfies the

classical Euler-Lagrange equation of motion of the QCD Lagrangian. The other field

configurations of (Aaµ(x), Ψ̄(x),Ψ(x)) around the classical one also contribute in the

generating functional which incorporate all possible QCD quantum processes (loop

diagrams). Note that fermion fields Ψ̄(x) and Ψ(x)) are Grassmann variables which

satisfy anti-commutation relations, e.g. {Ψ(x1),Ψ(x2)} = 0 and {Ψ̄(x1), Ψ̄(x2)} = 0.

To describe the equilibrium properties of the strongly interacting quarks, anti-

quarks and gluons one needs to write the grand canonical partition function for this

system. Note that here we are avoiding the discussion of QCD at finite chemical
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potential. From the computational point of view, this system faces a problem known

as QCD sign problem, which disallow the computation of partition function in the

lattice simulation. For discussion on the QCD sign problem see Ref. [4]. (We mention

that, in the perturbative regime, it is possible to perform the thermal field theory

calculations at finite chemical potential). From the quantum statistical mechanics,

the partition function for the grand canonical ensemble is given by,

Z = tr(e−βĤ) =
∑
n

〈n|e−βĤ |n〉, (5.26)

where β = 1/T , where T is the temperature of the system, Ĥ is the Hamiltonian of

the theory and |n〉 forms a complete set of basis.

Let us consider transition amplitude from state |ni〉 at time ti to state |nf〉 at

time tf [3],

Knfni(tf , ti) = 〈nf |eiĤ(tf−ti)|ni〉. (5.27)

The form of the partition function has similarity with the transition amplitude if one

takes initial and final state same, i.e. |nf〉 → |ni〉, and replaces tf − ti → iβ.

To write the transition amplitude in the form of the path integral (as written

above the generating function for QCD theory), one needs to compactify the time

axis t such that it varies from 0 to tf − ti. Then, from the above analogy, to obtain

the generating functional at finite temperature, one also replaces t→ iτ everywhere,

such that imaginary time τ varies from 0 to β. Note that τ is not the time coordinate

here, although it looks analogous to the time axis. In fact, in the thermal equilibrium

all the state variables are time independent. So variation of τ from 0 to β is nothing

to do with the time evolution or temperature change. This is just a method by

which one can perform calculation for the partition function. We do the following

replacements in the generating functional to get the partition function for the field

theoretical system,

xµ → (xµ)E = (x, τ = −it), ∂µ → (∂µ)E = (∇, ∂τ = i∂t),

γµ → (γµ)E = (γi, γ4 = −iγ0), Aaµ → (Aaµ)E = (Aai ,Aa4 = −iAa0),

With these replacements, QCD Lagragian density L is replaced by the Euclidean

Lagrangian density LE. With all this, the partition function for the quark-gluon
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plasma at zero chemical potential in terms of Euclidean Lagrangian density LE is

given by,

Z =

∫
DAaµ(x, τ)DΨ̄(x, τ)DΨ(x, τ)e−

∫ β
0 dτ

∫
d3xLE [Aaµ,Ψ̄,Ψ]. (5.28)

The replacements of time coordinates of various variables restrict the allowed field

configurations. The gluon field configurations which follow periodic boundary condi-

tion, and Grassmann fermion fields which follow anti-periodic boundary conditions,

are allowed, i.e., Aaµ(x, τ) = Aaµ(x, τ + β) and Ψ(x, τ) = −Ψ(x, τ + β) etc. These

restrictions come because of invariance of partition function under the cyclic permu-

tations of fields Aaµ, Ψ̄,Ψ inside the trace, see Eq. 5.26.

The thermal equilibrium ensemble average <Ô> = tr(e−βĤÔ) of any observable

Ô[Aaµ, Ψ̄,Ψ] can be calculated by,

<Ô> =

∫
DAaµ(x, τ)DΨ̄(x, τ)DΨ(x, τ)O[Aaµ, Ψ̄,Ψ]e−

∫ β
0 dτ

∫
d3xLE [Aaµ,Ψ̄,Ψ]∫

DAaµ(x, τ)DΨ̄(x, τ)DΨ(x, τ)e−
∫ β
0 dτ

∫
d3xLE [Aaµ,Ψ̄,Ψ]

. (5.29)

5.3 QCD Phase Transitions

To describe a phase transition from one phase to the other, one requires an order

parameter which has its magnitude zero in one phase and non-zero in the other

phase. For the QCD transition two order parameters can be defined, which char-

acterizes/distinguishes hadronic and QGP phases. One is obtained by the thermal

expectation value of the Polyakov loop operator,

L =
1

3
tr

(
Peig

∫ β
0 A4(x,τ)dτ

)
, (5.30)

i.e. 〈L〉, which characterizes QCD confinement-deconfinement transition, where A4 =

Aa4 λ
a

2
and P stands for the path ordering in time direction. The other one is the ther-

mal expectation value of chiral condensate Ψ̄(x)Ψ(x), i.e. 〈Ψ̄Ψ〉, which characterizes

the QCD chiral transition.

The exponent in the Polyakov loop operator is a gauge dependent field, but

Polyakov loop operator itself is a gauge independent operator (due to presence of

trace and periodic boundary condition of Aa4). To make Aa4 field τ -independent one

chooses a gauge such that τ -dependence goes away. Therefore the exponent becomes

ig
∫ β

0
A4(x, τ)dτ = igβAa4(x)λ

a

2
. Now, one can put a test heavy quark at x, in the
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medium of gauge field Aaµ(y), and calculate its interaction with the medium (Lint is

in the Euclidean space),

Hint = −Lint =
4∑

µ=1

∫
d3yJaµ(y)Aaµ(y), (5.31)

where Euclidean four color current density for this quark is given by, Jaµ(y) =

−ig λa
2
δ(y − x)(1, 0, 0, 0). Therefore,

Hint = −
∫
d3yJa4 (y)Aa4(y) = −igAa4(x)

λa

2
. (5.32)

With this result, the exponent in the Polyakov loop operator can be written as

eigβA
a
4(x)λ

a

2 = e−βHint . So, if the thermal expectation value of the Polyakov loop

operator 〈L〉 becomes zero, the energy of the free quark becomes infinite, which indi-

cates that the pure gluon medium is in the confined state which does not allow the

existence of a free quark. On the other hand if thermal expectation value 〈L〉 is not

zero, then the energy of the free quark will be finite and the medium will be in the

deconfined phase. Therefore 〈L〉 properly distinguishes the two phases and therefore

can be treated as an order parameter of the confinement - deconfinement transitions.

〈L〉 for the pure gluon theory (without any quark and anti-quark) shows a sudden

jump in its value at the transition temperature, which indicates that, the transition

is of first order. It gets a non-zero value in the deconfined phase and zero in the

confined phase. At finite temperature, the system allows for a Z3 symmetry (center

of SU(3)c), which corresponds to twist in the gauge transformation in time direction.

This Z3 symmetry is spontaneously broken in the deconfined phase (due to non-zero

value of 〈L〉), while it is restored in the confined phase. In the deconfined phase,

vacuum becomes 3-fold degenerate, and form a disconnected order parameter space.

For this space, zeroth-homotopy group is non-trivial and therefore topological domain

walls (Z3 wall) can exist in the deconfined gluonic medium. In the presence of quark

and anti-quark fields, this symmetry is explicitly broken and transition becomes cross-

over. The Lattice QCD result for the confinement-deconfinement transition at zero

chemical potential has been shown in the left of the Fig. 5.2. At low temperature the

value of 〈L〉 is very small. It rises very quickly near the transition temperature and

become saturated at higher temperatures. This behavior of 〈L〉 indicates that there is

cross-over transition from confined phase to the deconfined phase. The derivative of
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Figure 5.2: Figure shows a strong temperature dependence of the thermal expectation

value of the Polyakov loop operator 〈L〉 and 〈Ψ̄Ψ〉 where both the expectation values

are independent from x due to translational invariance of the medium. The temper-

ature derivative of these thermal expectation values provides the the peak position

where cross-over transition happens and in both the cases, location of the peak lie at

the same temperature. Here β is different parameter β = 6/g2 which is monotonically

related with the temperature. Figure has been taken from Ref. [4]

this with respect to temperature (in the figure β plays the role of temperature) shows

a peak at a point, which indicates the exact value of the transition temperature.

In the case of chiral transition, in the QGP phase, constituent quark mass (effective

mass of quark generated due to chiral transition) vanishes. The current quark mass

of u and d are small (5 − 10 MeV ) compare to QCD scale so that one can neglect

their masses. The right of the Fig. 5.2 shows the Lattice QCD result for the chiral

transition. In the high temperature regime, 〈Ψ̄Ψ〉 condensate approaches zero value

which indicates that chiral symmetry gets restored in this phase. Near the transition

temperature, chiral condensate 〈Ψ̄Ψ〉 changes very quickly to a higher value and

symmetry gets broken in this phase. This symmetry breaking provides 1 GeV masses

to protons and neutrons by generating an effective masses of u and d quarks (also s

quark) in the medium, which is known as the constituent quark mass. If masses of all

three quarks (u, d, and s) are considered to be zero, then in such situation the chiral

transition is a first order symmetry breaking phase transition [6]. However, if one
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considers the actual masses of all three quarks, then the chiral transition becomes

a cross-over transition [6], which is shown in right in the Fig.5.2. Due to explicit

symmetry breaking of QCD in presence of quark masses, pions (also other Goldstone

bosons) become pseudo Goldstone boson with the small mass ∼ 140 MeV . In the

figure the derivative of the chiral condensate with respect to the temperature shows

a peak, and the position of the peak matches with the confinement-deconfinement

transition temperature which indicates that both the transition happen at the same

temperature.

The deconfinement transition leads to the liberation of large number of gluons

and quarks - anti-quarks and results in the quark-gluon plasma. The chiral symmetry

restoration transition leads to small dynamical masses (smaller than the transition

temperature) of the u, d and s quarks which makes their production cross section

larger and therefore these quarks get produced in a bulk amount and form an equili-

brated plasma.

Fig. 5.3 shows the Lattice results which indicates that required energy density to

achieve QGP is larger than ∼ 1 GeV/fm3. As number of degrees of freedom of the

deconfined plasma is very large compared to confined phase, therefore to have QGP,

required energy density is also very large. The transition temperature for the hadron

to QGP transition is ∼ 170 MeV . It is clear from the plot that at the transition

temperature, the rise in the energy density is very fast. From the calculation of

grand canonical ensemble of massless gas of quarks and gluons, the energy density is

εSB =
(
gb+

7
8
gf
)
π2

30
T 4, where gb is the bosonic degree of freedom, here it is 2(helicity)×

8(color)=16 gluon degrees of freedom and gf is the fermionic degrees of freedom, here

it is 2(spin)×3(color)×3(flavor)×2(q + q̄)=36 massless quark and antiquark degrees

of freedom. This is known as Stefan-Boltzmann limit which is also indicated in the

figure by the right arrow. This limit, within the given range of temperature, is not

achieved by QGP in lattice calculations.
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Figure 5.3: Figure shows the increase in the energy density with increasing tempera-

ture from the confined phase to the deconfined phase which happens due to increase

in the degrees of freedom in the deconfined phase. Blue plot corresponds to the three

flavor case where we have more degrees of freedom and hence higher energy density,

while red plot corresponds to two flavor case and therefore has lower energy density.

In both the cases masses of the quarks has been taken mq
T

= 0.4. Blue plot corre-

sponds to the case when mass of strange quark is considered to be mq
T

= 1 keeping

mass of u and d same. Energy density in this case matches with the 2 flavor case

at lower T value, while at higher T , it approaches to 3 flavor case. The transition

temperature for QGP phase is obtained ∼ 170 MeV and energy density, required to

have QGP, is comes out in the same order as in the core of a proton ∼ 1 GeV/fm3.

Figure has been taken from Ref. [4]
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5.4 Superfluid Phases of QCD

5.4.1 Color-flavor Locked (CFL) Phase

As we have discussed, QCD is an asymptotically free theory. Therefore at sufficiently

high baryon density, quarks can not remain bound inside hadrons and form deconfined

phase of QCD. If the temperature of the system is sufficiently low, i.e. T � µ
B

, then

quarks form a degenerate Fermi liquid. At non-zero baryon densities, more number

of quarks exist in the system than anti-quarks. Therefore in such systems, interac-

tions among the quarks are more relevant for deciding the physical properties of the

system. According to the BCS theory, to form Cooper pairs near the Fermi surface,

an attractive interaction (irrespective of the strength of interaction, even incredibly

weaker interaction gives bound state) between particles is required. A pair of par-

ticles, having attractive interaction near the Fermi surface, reduces the free energy

of the system. Therefore system strongly supports the formation of more and more

number of Copper pairs near the Fermi surface. These Cooper pairs Bose condense

and give rise to charged or uncharged superfluidity (depending upon the charge state

of the cooper pairs). The charged superfluidity is known as the superconductivity.

At very high densities, near the Fermi surface quarks are almost free, so the pertur-

bative calculations can be performed [7]. The quark-quark pairs can have both, anti-

symmetric and symmetric color combinations, which form triplet and sextet states,

respectively, as 3⊗ 3 = 3∗ ⊕ 6. The quark-quark anti-symmetric color combinations(
(rg − gr)/

√
2, (gb− bg)/

√
2, (br − rb)/

√
2,
)

has attractive interaction through one

gluon exchange [8]. Therefore near the Fermi surface in the anti-symmetric color

combination, quarks form Cooper-pairs and Bose condensate. Since this combina-

tion of quarks is not color singlet, therefore the condensate breaks the color gauge

symmetry of the QCD Lagrangian. Since these phases of QCD breaks color gauge

symmetry of QCD Lagrangian, that is the reason, these phases are called color su-

perconductor. Since quarks have many degrees of freedom, spin, flavor, and color,

therefore depending upon the quark-quark Cooper pair combinations, several kind of

color superconducting phases are possible. Since such superconducting phases break

color gauge symmetry spontaneously, therefore in these phases gauge bosons of the

theory, which are gluons, become massive and give rise to color Meissner effects.
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At very high baryon chemical potential ∼ 1500 MeV (quark chemical potential

∼ 500 MeV ), Fermi energy of the system becomes so high that, with respect to this,

one can neglect the effect of masses of u, d, s quarks in medium [7]. In this regime

u, d, s quarks can be considered on the same footing. In this regime all three quarks

have their common Fermi momenta. Therefore all the spin-color-flavor combinations

of Cooper pairs occur just above the (same) Fermi momenta in such a high density

regime, and conventional zero momentum spin-less BCS Cooper pairs form. This

phase of QCD is known as the color-flavor locked (CFL) phase in which all eight

gluons become massive.

The quark-quark pair condensate is characterized in the gauge-variant way. The

quark-quark pairing is given by the ground state expectation value of quark-quark

two-point function. In the CFL phase, it is given by [7],

〈ψαi Cγ5ψ
β
j 〉 ∝ ∆

CFL
(κ+ 1)δαi δ

β
j + ∆

CFL
(κ− 1)δαj δ

β
i

= ∆
CFL

εαβAεijA + ∆
CFL

κ(δαi δ
β
j + δαj δ

β
i ).

(5.33)

Here ψ is the quark field operator. This expression has all possible combinations of

quark-quark interactions including symmetric combinations (second term in second

line in the equation) which have repulsive interaction. Since repulsive part of quark-

quark interaction is not of interest for Cooper pairs formation, therefore we ignore the

κ term in the last line of the above expression. In the above expression, C is the Dirac

charge conjugation matrix which is given by C = iγ2γ0. Here ∆
CFL

is the CFL gap

parameter. α, β are color indices which range over red, green, blue (r, g, b) 1-3 indices,

and i, j are flavor indices which range over up, down, strange (u, d, s) 1-3 indices. Here

the combinations of quarks has been taken such that they form parity-even (quark-

quark pair with equal and opposite momenta) and spin-singlet (so that gap remain

isotropic in momentum space) state. Since Dirac structure Cγ5 is a Lorentz singlet,

therefore total state is anti-symmetric in the spinor Dirac indices (spinor Dirac indices

are not written here). This implies that color-flavor combinations should be in the

symmetric state. As we have mentioned that only anti-symmetric color combinations

of quarks have attractive interaction therefore flavor combinations should also be anti-

symmetric such that color-flavor state form a symmetric state. Note that momentum

zero and spin-less quark combination implies that quarks which are participating in

the formation of a Cooper pair will have same chirality (quark masses are considered

98



to be zero).

The above combinations of quarks near the Fermi surface breaks the symmetry of

the (zero mass) QCD Lagrangian (this symmetry is also followed by the quark-gluon

plasma phase). The symmetry breaking pattern from QGP to CFL phase is,

SU(3)c × SU(3)L × SU(3)R × U(1)B → SU(3)c+L+R ×Z2. (5.34)

It is clear from the combinations of the quarks that they are colored objects. Therefore

when such combinations condense in the ground state, it breaks the color gauge

symmetry of the QCD Lagrangian. Due to this condensation, all eight gluons become

massive in the CFL phase, which gives rise the color Meissner effect. This phase also

breaks the chiral symmetry of the QCD Lagrangian but in a different way as broken

by the 〈ψ̄ψ〉 condensate in the QGP to hadron chiral transition. In the Eq.5.33,

Kronecker deltas mix color and flavor indices, therefore only under the equal and

opposite global SU(3) rotation in color and flavor (vector transformation) spaces,

the condensate remains invariant, and by this way, a global SU(3)c+L+R symmetry

survive in this phase. Therefore, since in this phase, pairing of quarks show invariance

under locked transformation of color and flavor basis (SU(3)c+L+R), that is the reason

why this phase is called color-flavor locked phase. This phase breaks the color and

axial symmetry of QCD Lagrangian.

In the CFL phase, the global baryon number U(1)B symmetry breaks to discrete

Z2 symmetry. Because of this reason, CFL phase is a superfluid phase of QCD. The

order parameter for a superfluid phase should be a gauge invariant quantity (should

be color and electric charge neutral). Therefore to characterize superfluidity in the

CFL phase, gauge invariant six-quarks order parameter is used, which has color and

flavor structure of two Λ baryons, 〈ΛΛ〉, where Λ = εabcεijkψ
a
i ψ

b
jψ

c
k. Due to breaking

of U(1)B symmetry, a massless Goldstone mode arises in this phase which governs

the dynamics of superfluid. Since in this phase U(1)B breaks to Z2, therefore coset

space (order parameter space) of this phase is U(1)/Z2 which is homeomorphic to a

circle S1. As we know that S1 order parameter space has non-trivial fundamental

group, i.e. π1(S1) = Z. Therefore in this phase, string like defects can exist, which

are superfluid vortices. There are studies which show that, the superfluid vortex

in CFL phase is energetically unfavorable (in some parametric regime) compared to
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well-separated triplets of semi-superfluid color flux tubes [9], therefore it decays into

three such semi-superfluid color flux tubes [10].

In the medium, quark’s effective (constituent) masses are density dependent,

which is expected to decrease with increasing density of the medium [7]. For the

discussion, we ignore the effective masses of u and d quarks. At relatively lower

densities, effective mass of strange quark shows its effect in the pairing with the u

and d quarks. At a given baryon chemical potential, due to presence of larger mass

of strange quark, the Fermi momenta of s quark gets a different value from Fermi

momenta of u and d quarks. Therefore, BCS pairing between s and u,d quarks with

equal and opposite momenta, implies that strange quark can not lie near its Fermi

momenta. Such kind of BCS Cooper pairing costs energy and therefore Cooper pairs

feel stress in such cases. Such stress becomes more and more stronger (with respect to

gap parameter ∆) as baryon density decreases. At sufficiently lower baryon density

CFL pairing disappears. In this regime, some exotic, non-BCS, paring of quarks still

may be possible which can give even more exotic phase of QCD. However, the BCS

paring between u and d quarks still can be possible in lower densities which leads to

a different kind of phase known as the 2SC phase (two flavor superconducting phase)

in the QCD phase diagram [7].

5.4.2 Neutron Superfluidity

Just after the BCS theory for metal superconductivity was proposed, N.N. Bogoliubov

in 1958 and A.B. Migdal in 1959 proposed that neutron and proton also can form

Cooper pairs through nucleon-nucleon potential (residual of strong interaction) near

the Fermi surface in the nuclear-matter (inside nuclei and in a neutron star), and give

rise to uncharged and charged superfluidity, respectively. Such superfluidity arises in

the inner crust region and in the core of a neutron star. In the inner crust, density

varies from 0.16×10−3 fm−3 to 0.16 fm−3. This density region of the star belong to the

neutron drip line, where protons capture electron and produce neutrino and neutron.

With a very large number of production of neutrons, these neutrons can not remain

bound inside nuclei and come out from nuclei and form a degenerate Fermi liquid

(usually temperature remain very low inside neutron star). In this density range,

neutrons feel the attractive part of the long range nucleon-nucleon potential, therefore
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Figure 5.4: Figure shows the cross-sectional view of a typical neutron star. This

figure shows the density range in which different superfluid phases of neutron and

superconducting phase of protons lies. Figure has been taken from Ref. [11].

form Cooper pairs near the Fermi surface and Bose condensate. In such density

regime neutron star has 1S0 neutron superfluidity. At higher density regime (in the

core of star), star has 3P2 neutron superfluidity, since in this density regime repulsive

part of the nucleon-nucleon potential makes 1S0 state unstable, and instead of this,

calculations support to have 3P2 pairing. In this density region, protons and neutron

both become free from nuclei. Protons also form Cooper pairs in 1S0 channel and give

rise to proton superconductivity, see Fig.5.4. The transition temperature for these

superfluids are model dependent (depending upon the potential used). Therefore

there are wide range of superfluid transition temperatures are possible. Estimates for

transition temperature vary from 0.2 MeV to 5 MeV.

Since neutron star contains free state of nuclei, protons, and electrons, when it

rotates it radiates electromagnetic radiation and looses its total energy. Due to this,

a rotating neutron star slows down with time, see Fig.5.5. Apart from this, It is

also observed that angular velocity of neutron star suddenly gets increased, and this

happens periodically, see Fig.5.5. This phenomena is known as glitches. Such periodic

glitches can not be satisfactorily explained by any other model except superfluidity

and superfluid vortices. The glitches, therefore give a very strong support to have

neutron superfluidity and superfluid vortices inside neutron star. The explanation

of such phenomena is as follows. Due to the rotation of neutron star, in the inner
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Figure 5.5: Figure shows the observation of periodic change in the angular velocity

(glitches) of a neutron star in time. Figure has been taken from Ref. [11].

crust and core region, a superfluid vortex lattice forms. Note that superfluid vortex

contains angular momentum (superfluid component rotates around each superfluid

vortex). Now, though the angular velocity of a neutron star decreases with time due

to electromagnetic radiation, but since it contains neutron superfluid, and superfluid

has the property that it does not transfer its energy and momentum to other part of

the system, therefore superfluid part of the star continue to rotate with its original

angular velocity. The time reaches when the system becomes energetically highly

unstable. It is more favorable that, a bunch of superfluid vortices get depin from the

boundary of inner crust and core, and transfer its angular momentum to the outer

crust. This gives rise the glitches phenomena. Again, with time, vortex lattice forms,

and by this, such phenomena repeatedly occurs. The explanation of this phenomena

has a unique requirement which is only satisfied by superfluid and superfluid vortex.

Therefore periodic glitches are the strongest support to have neutron superfluidity

and superfluid vortices inside a neutron star. The post-glitch exponential relaxation

can also be explained by the two fluid model (normal fluid + superfluid), at least

qualitatively [11]. Other models also use the presence of superfluidity inside neutron

star to fit the data. Presence of neutron superfluidity also affects cooling of neutron

star [11].
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Figure 5.6: Figure shows the QCD phase diagram. Along y-axis we have temperature

while along x-axis we have baryon chemical potential. Figure has been taken from

Ref. [7]

QCD Phase Diagram

We end this chapter by briefly discussing the QCD phase diagram. From Fig.5.6, it is

clear that QCD has very rich phase structure. At very high temperature and baryon

density due to asymptotic freedom of QCD, quarks become deconfined from hadrons

and form a medium which is known as the quark-gluon plasma (QGP). To have QGP,

energy density of a system should be higher than 1 GeV/fm3. Below this density, we

have confined phase of QCD which are hadrons. The confined phase QCD itself has

very reach phase structure. In the hadronic phase, there is gas to liquid first order

phase boundary which ends at a critical point. At sufficiently low temperature there

is possibility to have neutron superfluidity and proton superconductivity. There is

also a first order phase boundary present from hadronic phase to the QGP phase

at finite chemical potential which ends at the critical point of QCD. At very low

chemical potential, there is a cross-over transition from hadron to QGP. Heavy-ion

collision experiments at RHIC and LHC probe the QCD phase diagram in this regime,

where system produced in these experiments encounter cross-over transition from
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QGP to hadrons. At extremely high baryon density and sufficiently low temperature

we have various color superconducting phases of QCD. Existence of such phases may

be possibly inside a neutron star.
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Chapter 6

Hydrodynamics: Formalism

6.1 Relativistic Ideal Hydrodynamics

Hydrodynamic description of a system requires (at least) local thermodynamic equi-

librium, i.e., mean free path of two successive collisions should be sufficiently smaller

than the typical size of the local region. Hydrodynamic description does not depend

upon the nature of the constituents of fluid element, whether constituents are classi-

cal or quantum, but it depends on the equation of state, a thermodynamic property

of the system, which depends upon their underlying microscopic interactions Ref. [1].

The requirement of local thermodynamic equilibrium allows to describe the system

with its local thermodynamic variables, e.g. energy density ε, pressure P , tempera-

ture T , entropy density s, etc. These variables can vary in space, which is against

the global thermodynamic equilibrium, and hence there can be presence of flow in the

system. The assumption of local thermodynamic equilibrium is the ideal hydrody-

namic approximation where there is no transfer of momentum between two nearby

fluid elements (no heat conduction and viscosity). This kind of fluid is called ideal

fluid or inviscid fluid. For an ideal fluid there is no entropy production and therefore

its evolution is known as isentropic Ref. [1]. The ideal hydrodynamics gives a good

description of the quark-gluon plasma produced in relativistic heavy-ion collisions.

Relativistic hydrodynamics is needed when either fluid velocity is relativistic or its

constituents are relativistic particles Ref. [2]. To discuss the formalism of relativistic

hydrodynamics, we begin by defining fluid element, its four velocity, fluid local rest
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frame, and the energy-momentum tensor.

Fluid element: is a part of the system where one can assume the local thermo-

dynamic equilibrium. A fluid element contains sufficiently large number of particles

such that there is sufficient interactions among particles and statistical average makes

sense. In a fluid element, particles have very small mean free path compared to the

size of fluid element.

Fluid four velocity: in the laboratory frame, in the four vector notation is defined

as,

uµ = γ(1, ~v), γ =
1√

1− ~v2
, (6.1)

where ~v is the three velocity of fluid element in the laboratory frame which is, in

general, function of (t, x, y, z); fluid velocity is also called collective velocity. We will

be working in the natural units with ~ = c = 1. In this chapter, We will follow the

Minkowski metric gµν = (1,−1,−1,−1). We can easily see with the definition of uµ

and gµν that,

uµuµ = 1. (6.2)

Fluid rest frame: is defined as a frame in which fluid element under consideration

is at rest; its momentum and hence its three velocity ~v is equal to zero. Therefore

in the fluid rest frame, four velocity is given by uµ = (1, 0). All the thermodynamic

quantities, e.g. energy density ε, pressure P , number density n, etc., associated with

the fluid element are defined in the rest frame of fluid and they are Lorentz scalars

by construction Ref. [1]. In the fluid rest frame, all the properties of the fluid element

are isotropic which gives a specific structure to energy momentum tensor discussed

below.

Energy-momentum tensor T µν: is a rank-2 contravariant tensor, whose elements

are functions of local fluid variables ε, P , ~v and have their physical meaning as [1],

i) T 00 ≡ energy density of the fluid element.

ii) T 0i ≡ momentum density along i-axis.

iii) T i0 ≡ energy flux along i-axis.

iv) T ij ≡ jth component of momentum flux along i-axis.

The momentum flux T ij is usually called the pressure tensor P ij. T µν is a conserved
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quantity which follows the energy-momentum conservation laws,

∂µT
µν = 0. (6.3)

Along with energy-momentum, there can be more conserved quantities (conserved

charges) present in the system, e.g., baryon number. So we have another conservation

equation as,

∂µN
µ = 0, Nµ = nuµ, (6.4)

where N0 = nγ, n is the baryon density in the fluid rest frame and ~N = nγ~v is the

baryon flux. In the local rest frame the isotropic property of the fluid element (in the

inviscid hydrodynamics) demands that the baryon flux should vanish in this frame

(otherwise the directionality of such flow destroy local equilibrium). This is not true

in the case of dissipative hydrodynamics where the baryon flux can be non-zero even

in the fluid rest frame.

In the ideal or inviscid hydrodynamics, there is no heat exchange between two

nearby fluid elements, therefore entropy is also conserved in this fluid. Therefore

the evolution of inviscid hydrodynamics is an isentropic process (adiabatic process),

which follows the local entropy conservation equation,

∂µs
µ = 0, sµ = suµ, (6.5)

where s is entropy density in the fluid rest frame.

With all these definitions, we can now construct the energy-momentum tensor

in the laboratory frame. We first write T µν in the fluid local rest frame, where the

isotropy property of the fluid element demands that all off-diagonal components of

T µν should be zero. Thus in the fluid rest frame, momentum density T 0i and energy

flux T i0 becomes zero, and pressure tensor becomes diagonal, i.e. P ij = Pδij, where

P is the thermodynamic pressure. Therefore in the fluid rest frame, T µν is given by,

T µνLRF =


ε 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P


In the fluid rest frame, baryon 4-current and entropy 4-currents are given by,
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Nµ
LRF =



n

0

0

0

0


; sµLRF =



s

0

0

0

0


.

To obtain T µν in the laboratory frame one can do Lorentz transformation of T µνLRF

and obtain, T µν = Λµ
αΛν

βT
αβ
LRF , where Λ is the Lorentz transformation matrix. But

here we adopt the trick used in the Ref. [3]. As T µν is a double rank tensor it can only

be a function of uµ and gµν . Therefore T µν in the laboratory frame can be written

uniquely as,

T µν = c1u
µuν + c2g

µν , (6.6)

where c1 and c2 are unknown coefficients which we have to determine. Similarly in

the laboratory frame Nµ and sµ can be written as,

Nµ = c3u
µ, sµ = c4u

µ. (6.7)

So from the above equations in the fluid local rest frame, where uµ = (1, 0, 0, 0) we

have,

T µνLRF =


c1 + c2 0 0 0

0 −c2 0 0

0 0 −c2 0

0 0 0 −c2



Nµ
LRF =



c3

0

0

0

0


; sµLRF =



c4

0

0

0

0


.

From the previous expressions, we know the form of T µνLRF , N
µ
LRF , and sµLRF in the

local rest frame. Therefore we get, c1 + c2 = ε,−c2 = P, c3 = n, c4 = s. By putting

these coefficients in the Eq.(6.6) we get T µν in the laboratory frame as,

T µν = (ε+ P )uµuν − Pgµν . (6.8)
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Similarly in the laboratory frame Nµ and sµ are,

Nµ = nuµ, sµ = suµ. (6.9)

Therefore all the conservation equations in the inviscid hydrodynamics are,

∂µT
µν = 0, ∂µN

µ = 0, ∂µs
µ = 0. (6.10)

Eqs.(6.8),(6.9) and (6.10) are the ideal hydrodynamics equations. With the use of

equation of state (relation between ε and P ) the above equations become close system

of equations in the sense that number of independent variables present in the equations

become equal to number of available equations to determine them.

T µν obtained above is a symmetric tensor. The component T 0i has physical mean-

ing of momentum density along i-axis can be understood by writing its form from

Eq.(6.8) by keeping only term in the first order in velocity, T 0i = (ε + P )vi which

has the form of momentum density in the non-relativistic system, ρvi (ρ is the mass

density). In the non-relativistic system pressure P � ε, therefore pressure does not

contribute in the inertia. But in the relativistic system, pressure is comparable to the

energy density of the fluid, therefore inertia of the fluid in the relativistic system is

given by (ε+ P ) [1].

To write Eqs.(6.8),(6.9) and (6.10) in a convenient form, we introduce two index

tensor which is a projection operator,

∆µν = gµν − uµuν . (6.11)

This operator is perpendicular to the fluid four velocity since,

uµ∆µν = 0. (6.12)

Also it has the property that ∆µα∆ν
α = ∆µν . From the expression of T µν , it can be

deduced that,

ε = uµuνT µν , P = −1

3
∆µνT

µν . (6.13)

Now we define derivative called co-moving or convective derivative (derivative acting

along the motion of the fluid)

D = uµ∂µ. (6.14)
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Four divergence is defined as,

Θ = ∂µu
µ (6.15)

and let ∇µ = ∆α
µ∂α. With these definitions we can write our conservation equations

by using identity uν∂µT
µν = 0,

Dε+ (ε+ P )Θ = 0. (6.16)

This equation is known as the cooling equation. By using identity ∆α
µ∂νT

µν = 0, we

get,

(ε+ P )Duα −∇αP = 0, (6.17)

which is known as the Euler’s equations. The baryon number and entropy conserva-

tion equations can be written in the form,

Dn+ nΘ = 0, Ds+ sΘ = 0. (6.18)

Sound wave: Let us consider a fluid with uniform energy density ε0 and pressure

P0. Consider a small perturbation on the top of the energy density and pressure, δε

and δP , given by [1],

ε(t, x, y, z) = ε0 + δε(t, x, y, z), P (t, x, y, z) = P0 + δP (t, x, y, z). (6.19)

The sound speed is the speed by which small perturbations propagate in a uniform

fluid which is at rest. For the evolution of this perturbation, we use linearized form

of equation ∂µT
µν = 0 by keeping only linear terms in δε, δP and ~v. Therefore from

Eqs.(6.8) and (6.10) we have,

∂ε

∂t
+ ~∇.((ε+ P )~v) = 0,

∂

∂t
((ε+ P )~v) + ~∇P = ~0. (6.20)

Writing for small perturbation in the uniform fluid, we get,

∂(δε)

∂t
+ (ε0 + P0)~∇.~v = 0, (ε0 + P0)

∂~v

∂t
+ ~∇(δP ) = ~0, (6.21)

where we have neglected second order terms in the perturbations. Now, the velocity

of sound is define as,

cs =

(
∂P

∂ε

)1/2

, (6.22)
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which is inversely related to the compressibility of the fluid; smaller sound speed

corresponds to the softer equation of state. Therefore in the above equations using

δP = c2
sδε and eliminating ~v we get,

∂2(δε)

∂t2
− c2

s∆(δε) = 0, (6.23)

which is a wave equation in 3+1 dimensions showing that any arbitrary perturbation

in uniform ideal fluid propagates with the sound speed cs.

In Chapter 8 we discuss application of the inviscid hydrodynamic equations in the

evolution of quark-gluon plasma in relativistic heavy-ion collisions.

6.2 Discussion on Dissipative hydrodynamics

It is inevitable fact that every fluid has dissipation and because of that it is neces-

sity to incorporate dissipation in the hydrodynamics equations. We will discuss its

consequence in the assumption of the local thermodynamic equilibrium and on the

structure of T µν . From the kinetic theory of gases the coefficient of viscosity η is

given by [4],

η ≈ 1

3

∑
i

(n〈p〉λ)i, (6.24)

where ni is the density of i-th quanta which transports an average momenta 〈p〉i
to a nearby fluid cell in a length scale λi. According to the uncertainty principle,

these quanta can not be localized within a distance shorter than 〈p〉−1. Therefore

the momentum exchange length scale will always be greater than this value, i.e.

λ & 〈p〉−1. This sets a lower bound on η as,

η &
1

3
n, (6.25)

where n =
∑

i ni, total density of all the quanta present in the fluid cell. It is very

clear from the above equation that the lower bound on η is independent from the

detailed dynamics of the system. Another lower bound on η comes due to the fact

that λ can not be shorter than inter-particle distance, which implies, λ & n−1/3. This

gives,

η &
1

3
〈p〉n2/3. (6.26)
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Eq.(6.25) and (6.26) show that every system has a non-zero viscosity. These two

lower bounds for the uniform energy density ε ∼ 〈p〉n (massless case) will be equal if

n = ε3/4, which gives,

η &
1

3
ε3/4 (6.27)

For QGP at zero chemical potential (µ = 0), energy density and temperature are

related by ε = 12.2 T 4 (for 2-flavor case). After substituting this in the above equation

we get lower bound on η for QGP,

η & 2T 3. (6.28)

QGP in heavy-ion collisions might be the hottest system in the present universe

which has temperature, 200-600 MeV (depending upon RHIC and LHC Expts.). So

it means that QGP has very high viscosity, but it also has very high entropy density

in relativistic heavy-ion collisions which also goes with temperature as s = 16.3 T 3

(for 2-flavor case). Therefore η/s ratio for QGP can be very small. The observations

show that QGP has the lowest η/s ratio ever observed for any system, see Fig.(6.1)

(Ref. [5]). AdS/CFT correspondence also sets a lower bound on the η/s ratio for the

strongly coupled Super-Yang-Mills theory, which is η/s & 1/4π, see Ref. [6].

When in the system dissipation is present, it is not possible to justify local ther-

modynamic equilibrium due to continuous momentum exchange in between nearby

fluid elements [3]. As we have discussed, every fluid has dissipation, therefore as-

sumption of local thermodynamics equilibrium is a strongly restrictive consideration.

Even if there is no motion in fluid, because of inhomogeneity in the energy density,

momentum exchange takes place (heat flow) which makes momentum distribution of

particles in the fluid elements anisotropic. Also, we have already mentioned that a

moving fluid always has some viscous effects. Therefore all these effects disturb the

local thermodynamic equilibrium and assumption of ideal hydrodynamics will not be

valid any more. However, to develop formalism for the dissipative hydrodynamics one

assumes that momentum exchange is sufficiently small that one can (at least) define

local thermodynamic quantities.

In the dissipative hydrodynamics, due to presence of dissipation and hence absence

of isotropic property in the fluid rest frame, T µν of the system is no longer diagonal.

And also in this case, in the fluid rest frame baryon current can be non-zero. Therefore
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Figure 6.1: Figure shows the η/s ratio with the temperature for different systems. It

clearly shows that η/s ratio for QCD matter is lowest. Figure has been taken from

the Ref. [5].

to account for the dissipation, dissipative currents τµν and nµ are added in the ideal

T µν and Nµ, respectively, such that new T µν and Nµ follow the conservation laws,

∂µT
µν = 0, ∂µN

µ = 0, (6.29)

where,

T µν = (ε+ P )uµuν − Pgµν + τµν , (6.30)

Nµ = nuµ + nµ, (6.31)

where τµν is a symmetric tensor. In this case total entropy of the system is not

conserved due to dissipation, therefore condition ∂µs
µ ≥ 0 is imposed on the fluid.

For the review on dissipative hydrodynamics we refer to reader Refs. [3, 7].
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Chapter 7

Ideal Magneto-hydrodynamics:

Formalism

In the previous chapter we studied the dynamics of a fluid in the local thermodynamic

equilibrium in the absence of any kind of force. In the presence of force, dynamics of

the fluid gets modified. Viscous force is an internal force which reduces the velocity

gradient, via momentum transfer, between two nearby layers of fluid and affects the

dynamics of the fluid. In astrophysics and cosmology gravitational force, an external

force, very strongly affects the dynamics of the fluid. If the constituents of fluid

elements are charge particles then dynamics of fluid is affected by the electromagnetic

field present in it. We know when a conductor passes through a non-uniform magnetic

field, magnetic field exerts force on it (Lenz’s law) and opposes its motion. Similarly

when a conducting fluid moves in the presence of magnetic field, it feels force and

hence its dynamics gets modified; the dynamics of the fluid affects the magnetic field

in back also. The dynamics of the fluid is not only affected by electromagnetic field if

constituents of fluid elements are charge particles, but if fluid is polarizable (electric

or magnetic) then also electromagnetic field affects its dynamics through interaction.

Electromagnetic field also changes the thermodynamic pressure of the fluid and makes

the sound speed direction dependent in the fluid causing its anisotropic evolution.

In this thesis, we will consider charge neutral conducting fluid. We work in the

framework of ideal approximations where in the fluid, viscosity, thermal conduction

remain absent throughout its evolution and electric conductivity of the fluid σ is
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infinity. This is called ideal magneto-hydrodynamics approximation. First we briefly

discuss the non-relativistic version of ideal MHD fluid and then move to the relativistic

covariant form of ideal MHD equations. We use flat metric of space-time. Note that

like in the case of ideal hydrodynamics, in the ideal MHD fluid also the length and

time scale of evolution of the fluid always remain sufficiently larger than microscopic

length scale (mean free path) and interaction time scale. So the length scale and time

scale of any charge current in the fluid must be much smaller than the typical length

and time scale of the evolution of the fluid; so no macroscopic current is allowed in

the fluid.

The medium response to the electromagnetic field, e.g. polarizability or perme-

ability, affect the strength of electromagnetic field. In vacuum there is no difference

between electric field and electric displacement vector, and similarly between mag-

netic induction and magnetic field. But in medium these fields differ from each other

and this difference comes completely due to response of the system. These properties

of system also decide the dynamics of electromagnetic field, e.g. electric conductiv-

ity of the plasma determines time scale of diffusion of magnetic field in the fluid.

Maxwell’s equations for electromagnetic fields in a medium in three dimensions are

given by [1],

~∇. ~B = 0, ~∇× ~E = −1

c

∂ ~B

∂t
, (7.1)

~∇. ~D = 4πρ, ~∇× ~H =
4π

c
~J +

1

c

∂ ~D

∂t
, (7.2)

where, ~E is the electric field, ~D is the electric displacement, ~B is the magnetic in-

duction, ~H is the magnetic field, ρ is the electric charge density, and ~j is the electric

current. ~D = ε ~E, ~B = µ ~H, where ε is the electric permittivity and µ is the magnetic

permeability.

7.1 Non-relativistic Ideal Magneto-hydrodynamics

Equations

Ideal magneto-hydrodynamics (MHD) deals with the combined system of magnetic

field and fluid. In MHD, fluid elements consist of charged particles, however, each fluid
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element is locally charge neutral. Therefore no electric charge separation is allowed

in the ideal MHD fluid. In the fluid, magnetic field exerts force on charge particles.

By maintaining charge neutrality of the fluid-elements, fluid as a whole moves under

the influence of magnetic field, and modifies the field also. Because ideal MHD fluid

has infinite electrical conductivity, therefore due to presence of unlimited number of

freely moving charge particles, electric field does not survive in the ideal MHD fluid.

Now, we write the non-relativistic ideal magneto-hydrodynamics equations follow-

ing Ref. [2]. First ideal MHD equation is the Gauss law for magnetism in medium,

~∇. ~H = 0. (7.3)

Using the Ohm’s law in the moving frame ~j = σ( ~E + ~v × ~B/c) (relation between

the current and the electromagnetic field in a moving homogeneous conductor); by

ignoring displacement current with respect to electric current in the Maxwell’s equa-

tion (second equation of Eq.7.2); and by using second equations of Eqs.7.1,7.2, with

infinite electric conductivity σ → ∞ of the fluid (considering permeability µ = 1 for

whole fluid), we get [2],

∂ ~H

∂t
= ~∇× (~v × ~H). (7.4)

This equation shows that magnetic field lines of force move with the fluid element

and never decay and remain frozen in the infinite conducting fluid; but the strength

of the magnetic field may change if the volume of the fluid element changes. The

equation of continuity is given by,

∂~ρ

∂t
+ ~∇.(ρ~v) = 0, (7.5)

where ρ is the fluid density. Navier-Stokes (Euler) equation in the presence of mag-

netic force is given by,

∂~v

∂t
+ (~v.~∇)~v = −1

ρ
~∇P − 1

4πρ
( ~H × (~∇× ~H)). (7.6)

To solve the all independent variables, equation of state of the fluid is required,

P = P (ρ, T ), (7.7)

where P and T are pressure and temperature of the fluid. Because the ideal MHD

evolution does not have dissipation therefore the process is adiabatic and therefore
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entropy is a conserved quantity,

∂~s

∂t
+ (~v.~∇)~s = 0, (7.8)

where s is the entropy per unit mass of the fluid. Eqs. 7.3, 7.4,7.5,7.6,7.7, and 7.8

are form the system of the ideal magneto-hydrodynamics equations.

We mention that due to presence of magnetic field in the fluid, momentum flux

density tensor, energy density (hence pressure), energy flux density get modified,

see [2] for detail. In the ideal MHD fluid, electric displacement current is neglected.

From the Ohm’s law, the infinite conductivity of the fluid implies that, ~E = −~v× ~H/c
(since conduction current is finite). Therefore using these facts and Eq.7.6 one gets

condition on magnetic field H2 � ρc2 [2].

Let us consider a homogeneous ideal fluid in the presence of a uniform magnetic

field. We are interested in the evolution of a small disturbance in this fluid. Due to

this disturbance, Magnetic field, fluid density, pressure get perturbed while velocity

of the fluid becomes non-zero, from the zero, equilibrium value. These perturbations

are small enough in the magnitude such that one can neglect the higher order term in

these perturbations. For the evolution of these perturbations only four equations of

the ideal magneto-hydrodynamics, Eqs. 7.3, 7.4, 7.5, and 7.6 are relevant. If we look

for the solution of the plane wave of these perturbations, exp[i(~k.~r − ωt)], then the

Eq. 7.3 and 7.4 shows that the wave vector ~k is always perpendicular to the direction

of the perturbation in the magnetic field, Ref. [2]. Now, depending upon the direction

of wave vector and the fluid velocity there are three kinds of waves are possible in the

MHD fluid, Ref. [2].

If the fluid motion is perpendicular to the magnetic field, then since field lines

are frozen in the fluid, therefore due to the motion of the fluid, field lines also get

stretched in the perpendicular direction with the fluid. Due to this motion field lines

feel tension and try to restore it previous configuration. These two motions generate

a transverse wave in the direction of magnetic field; the wave vector becomes parallel

to the magnetic field, i.e., ~k‖ ~H. This transverse wave in the fluid is known as the

Alfvén wave with group velocity given by,

~cA =
~H√
4πρ

. (7.9)
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In the MHD fluid, there are two kinds of magnetosonic waves are present, fast and

slow magnetosonic waves. Depending upon the direction of the wave vector, one of

the wave becomes non-zero. If the wave vector is along the direction of magnetic

field, i.e., ~k‖ ~H, then the slow magnetosonic wave becomes non-zero. The speed of

this wave is the same as the usual hydrodynamics wave in the fluid which is given by,

c‖ = cs =

(
∂P

∂ρ

)1/2

. (7.10)

While if the wave vector is perpendicular to the magnetic field, i.e., ~k⊥ ~H, then the

fast magnetosonic wave becomes non-zero. The speed of this wave is higher than the

slow magnetosonic wave and given by,

c⊥ =
√
c2
s + c2

A. (7.11)

Note that both the magnetosonic waves are independent from the direction of the

fluid motion. If the direction of wave vector is arbitrary with the magnetic field then

all three kinds of waves can be present in the fluid.

In Ref. [2], it has been shown that for an arbitrary perturbation (not necessarily

small), if the magnetic field is uniform in the fluid, say along y-axis, then the fluid

acceleration along the x-axis becomes stronger compare to the ideal hydrodynamics

due to the change in the equation of state (and hence larger sound speed) in this

direction,

∂vx
∂t

+ vx
∂vx
∂x

= −1

ρ

∂

∂x

(
P +

b2

8π
ρ2

)
, (7.12)

where b = H/ρ is a constant number for a homogeneous fluid. This equation looks

like an Euler’s equation for the ideal fluid dynamics, only difference here is the change

in the equation of sate, P = P (ρ) to a new equation of state in the x-direction arising

due to the magnetic field (in the y-direction), i.e., P ∗(ρ) = P (ρ)+b2ρ2/8π. Therefore

the velocity of sound in this case is higher from the ideal hydrodynamics case,

c∗ =

√√√√(∂P ∗
∂ρ

)
=

√
c2
s +

b2

4π
ρ =

√
c2
s +

H2

4πρ
=
√
c2
s + c2

A. (7.13)

This result can play a very important role in the evolution of the fluid produced in

relativistic heavy-ion collisions, see Chapters 8 and 10 in this regard.
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7.2 Relativistic Ideal Magneto-hydrodynamics Equa-

tions

As we mentioned earlier, whenever either fluid elements or constituents of fluid el-

ements are relativistic, we have to deal with the relativistic formalism of hydrody-

namic equations. Here we discuss the covariant form of relativistic ideal magneto-

hydrodynamics (RMHD) equations. We follow the derivation of RMHD equations

from the Refs. [1, 3].

To study the effect of electromagnetic field on the dynamics of conducting fluid,

energy momentum tensor Tαβ of the system is required. As electromagnetic field

also carries energy and momentum, therefore the form of Tαβ used in the previous

chapter will get modified in the present case. In the presence of electromagnetic

field, form of Tαβ strongly depends upon the thermodynamic properties of the fluid

under study. Here we consider a simple picture of the system by assuming ideal

MHD approximations. Our goal is to derive Tαβ, which follows energy-momentum

conservation law,

∂αT
αβ = 0 (7.14)

for a polarizable medium. We begin by defining some known electromagnetic quan-

tities. The electromagnetic field-strength tensor is define as,

Fαβ = ∂αAβ − ∂βAα, (7.15)

where Aα is the electromagnetic four-potential; Aα = (φ, ~A). The dual field-strength

tensor is given by,

=αβ =
1

2
εαβγδFγδ, (7.16)

where εαβγδ is anti-symmetric fourth-rank Levi-Civita tensor. The inhomogeneous

Maxwell’s equations in vacuum,

∂αF
αβ = 4πJβ, (7.17)

where Jα is four vector electric charge current, satisfying conservation law ∂αJ
α = 0,

where Jα = (ρe,~j); ρe is electric charge density and ~j = ρe~v is the current density of

(dilute) charge distribution. The homogeneous Maxwell’s equations in vacuum,

∂α=αβ = 0. (7.18)
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Here we are working in the natural units, therefore c=1.

In a polarizable medium, the electromagnetic field get modified. In a conductor,

electric charge current density ~j also get modified. In the medium, vectors ~P , ~M and

~jc defined by, Ref. [1],

4π ~P = ~D − ~E, 4π ~M = ~B − ~H, ~jc = ~j − ρe~v, (7.19)

where these vectors are the polarization, the magnetization and the conduction cur-

rent respectively. These vectors arise due to medium effect which have their values

depending upon the type of media, and vanish in the vacuum or in a media whose

internal structure does not get affected by electromagnetic field. In the medium

field-strength tensor get replaced as,

Fαβ(E,B) −→ Iαβ(D,H), (7.20)

where Iαβ is the electromagnetic induction tensor; D and H are electric displacement

and magnetic field vectors respectively. (Note that there is a huge confusion in the

name of ~B and ~H fields. Traditionally, in most of the literature, vector ~B is named

as the magnetic induction field and ~H as the magnetic field, although former is the

magnetic field in the vacuum while latter in the medium. We also follow the tradi-

tional name of these two fields to avoid any kind of confusion.) The matrix form of

all these tensors are as follow,

Fαβ =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 ,

Iαβ =


0 −D1 −D2 −D3

D1 0 −H3 H2

D2 H3 0 −H1

D3 −H2 H1 0

 ,

=αβ =


0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0

 .
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Therefore Maxwell’s equations in an electrically charged, non-conducting, but polar-

izable media is given by,

∂αI
αβ = 4πJβ, ∂α=αβ = 0, (7.21)

where Jα is charge current in the media. For electrically neutral (ρe = 0), non-

conducting (~jc = 0), but polarizable ( ~E 6= ~D and ~B 6= ~H) media Jα = (0, 0),

and first equation will also become homogeneous. For conducting media with finite

conductivity, an applied electric field on the fluid generates microscopic conduction

(drift) current ~jc of charge particles in the background of the macroscopic motion of

the fluid. For this case it become difficult to define actual electromagnetic field and

tensor inside the media because of accumulation of charge particles at the interface

between media and hole (vacuum inside media), and the prescription followed to

define fields in the media breakdown (for detailed discussion see Ref. [1]). But from

the microscopic description of the media, it is possible to define the electromagnetic

field and tensor in the conducting media also and it can be shown that the Eq.(7.21)

remains valid, Refs. [1, 4], with ρe = 0 inside the media. The polarization tensor can

be constructed with the Fαβ and Iαβ as,

4πPαβ = Fαβ − Iαβ, (7.22)

where

Pαβ =


0 −P1 −P2 −P3

P1 0 −M3 M2

P2 M3 0 −M1

P3 −M2 M1 0

 .

Electromagnetic field carries energy momentum tensor in the vacuum. It is quite

obvious that when one applies an electromagnetic field on a distribution of freely mov-

ing charge particles (called charge dust cloud), its dynamics get affected by electro-

magnetic field. It can be shown that the energy-momentum tensor for this charge dis-

tribution, without considering electromagnetic part, can not be conserved, but when

added with the other factors coming from the electromagnetic part, then the total

energy-momentum tensor is conserved. This extra factors are the energy-momentum

tensor of the electromagnetic field in the vacuum, which is given by,

Tαβem =
1

4π
[Fα
γ F

βγ − 1

4
FγδF

γδηαβ], (7.23)
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while the energy-momentum tensor for charge distribution Tαβd is given by (pres-

sure=0),

Tαβd = ρmv
αvβ, (7.24)

where ρm is the mass density of charge particles. Both Tαβd and Tαβem are symmetric

double rank tensors. So total energy-momentum tensor of the system is,

Tαβ = Tαβd + Tαβem , (7.25)

where energy-momentum conservation law is,

∂αT
αβ = 0. (7.26)

So in the presence of electromagnetic field energy-momentum tensor of the system

get modified and electromagnetic field also become part of the system and contribute

in the Tαβ.

In the last chapter we have given the physical interpretation of components Tαβ

for fluid without electromagnetic field. The components of Tαβem also have the same

physical meaning but in terms of electromagnetic variables,

i) T 00
em ≡ energy density εem = 1

8π
(E2 +B2).

ii) T 0i
em ≡ momentum density along i-axis, Si/c2 = Si = 1

4π
( ~E × ~B)i.

iii) T i0em ≡ energy flux along i-axis, Si.

iv) T ijem ≡ flux of jth component of momenta along i-axis, 1
4π

[EiEj+BiBj− 1
2
δij(E2 +

B2)],

where ~S is known as the Poynting vector and T ijem as the Maxwell stress tensor.

The total energy-momentum tensor of a system should be conserved, therefore in

the medium also, it is expected that the energy-momentum tensor (fluid+electromagnetic

field) remain conserved. The difference comes due to the medium response to the

electromagnetic field which modifies this field. The energy-momentum tensor for

electromagnetic part Tαβem in the medium is given by [1, 3],

Tαβem =
1

4π
[Fα
γ I

βγ − 1

4
FγδI

γδηαβ]. (7.27)

We know the energy-momentum tensor for the thermalized matter field (now including

pressure) is given by,

Tαβf = (ε+ P )uαuβ + Pηαβ. (7.28)
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Note that here we use metric ηαβ =diag(−1, 1, 1, 1), therefore sign before the last

term is different from previous chapter. We will see that the total energy-momentum

tensor for a fluid interacting with electromagnetic fields is not just Tαβ = Tαβf +Tαβem ,

but more kind of tensors arise, these extra tensors will go away when we take the

ideal MHD approximation, i.e., σ → ∞, and consider the electric and magnetic

susceptibility to be uniform in the medium. Ultimately we get the energy-momentum

conservation law for the ideal MHD fluid as,

∂αT
αβ = 0. (7.29)

These equations governs the dynamics of an ideal relativistic magnetized fluid. Note

that as happen in the case of hydrodynamics, all physical variables, e.g. Tαβf , nα and

sα, flow along the direction of fluid velocity uα; in this case also, including Tαβem , all

physical variables flow along the direction of fluid. An equilibrium state is a steady

state of both, matter as well as electromagnetic field, Ref. [1].

Fαβ and Iαβ can be decomposed with respect to uα, and new vectors and tensors

can be defined as [1, 3],

Eα ≡ Fαβuβ, Bαβ ≡ Fαβ − 2u[αEβ], (7.30)

Dα ≡ Iαβuβ, Hαβ ≡ Iαβ − 2u[αDβ], (7.31)

where, [αβ] is anti-symmetrization with respect to indices α, β. Since Fαβ and Iαβ

are anti-symmetric tensors, therefore contraction with uαuβ of these tensors give zero,

Ref. [1]. This shows that vectors defined above, Eα and Dα, are orthogonal to the

four-velocity uα. In the rest frame of the fluid, Eα = ( ~E, 0), Dα = ( ~D, 0), Bαβ = Fαβ

without electric field, andHαβ = Iαβ without electric displacement. Therefore Eα and

Dα represent electric field and electric displacement, while Bαβ and Hαβ represent

magnetic induction and magnetic field in the fluid rest frame. Bαβ and Hαβ are

anti-symmetric tensors.

Using the analogy with Eq.(7.19), in the medium, relation between Eα and Dα,

and in between Bαβ and Hαβ are given by defining new vector and tensor,

Dα = Eα + 4πPα, Bαβ = Hαβ + 4πMαβ, (7.32)

where,

Pα = −Pαβuβ, Mαβ = Pαβ + 2u[αP β], (7.33)
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where, Pαβ is the polarization tensor as defined in Eq.(7.22). In the fluid rest frame

Pα = (~P , 0) is the polarization vector, and Mαβ = Pαβ without ~P . So Pα and Mαβ

defined the electric polarization and magnetization of the fluid in the rest frame. The

linear constitutive relations of the material is given by [1],

Pα = κ(ρ, T )Eα, Mαβ = χ(ρ, T )Bαβ, (7.34)

where, the parameters κ and χ are electric and magnetic susceptibility respectively.

ρ is the conserved charge or mass density (in the relativistic system it corresponds to

the baryon density) and T is the absolute temperature of the system. Therefore we

have,

Dα = (1 + 4πk)Eα, Hαβ = (1− 4πχ)Bαβ. (7.35)

By imposing the local thermodynamic equilibrium on the system, Dixon in Ref. [1]

showed that there are four kind of energy-momentum tensor present in the magnetized

fluid which add up to give total energy-momentum tensor of the fluid. Dixon used

the fact that for a perfect fluid, in the equilibrium state, entropy production is zero,

i.e. ∂αs
α = 0, where sα = suα. By writing the entropy flux, sα, as function of Tαβ,

ρα, Fαβ and Iαβ, Dixon obtained the form of the total energy-momentum tensor for

the fluid interacting with the electromagnetic field,

Tαβ = Tαβ1 + Tαβ2 + Tαβ3 + Tαβ4 , (7.36)

which follows the conservation law,

∂αT
αβ = 0, (7.37)

(Note that Dixon in Ref. [1] has taken a polarizable non-conducting charged medium

with finite charge density ρe for the development of the formalism to derive Tαβ. We

are interested in the Tαβ for a polarizable conductor. For this, only difference is in the

presence of conduction current ~jc. We assume that the whole formalism goes through

for a conducting fluid also as assumed by Anile in Ref. [3].) where,

Tαβ1 = (ε+ pg)u
αuβ + pgη

αβ, (7.38)

is the usual energy-momentum tensor for the matter part. pg is the thermal pressure

of the fluid.

Tαβ2 =
1

2
T

(
∂κ

∂T
E2 +

∂χ

∂T
B2

)
uαuβ − 1

2
ρ

(
∂κ

∂ρ
E2 +

∂χ

∂ρ
B2

)
(ηαβ + uαuβ), (7.39)
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where E2 = EαEα and B2 = 1
2
BαβBαβ.

Tαβ3 =
1

2π
F [α
γ I

µ]γuµu
β, (7.40)

and

Tαβ4 =
1

4π
[Fα
γ I

βγ − 1

4
FγδI

γδηαβ]. (7.41)

In Tαβ, Tαβ1 has the contribution, which depends upon the fluid property mostly.

Successively fluid-property dependent contributions decreases from Tαβ1 to Tαβ4 in the

Tαβ and electromagnetic field contribution increases. Tαβ4 is the Minkowski tensor

(proposed by Minkowski in 1908) and Tαβ3 +Tαβ4 is the Abraham tensor (proposed by

Abraham in 1909) which give the contribution of electromagnetic field to the medium.

The forms of these tensors are independent from the property of the medium. Note

that Tαβ, Tαβ1 and Tαβ2 are symmetric tensors, but Tαβ3 and Tαβ4 are not. However,

Tαβ3 + Tαβ4 is a symmetric tensor known as the explicitly symmetric tensor.

Consider the charge 4-current in the conductor which can be decomposed in terms

of four-velocity uα and conduction current jα,

Jα = ρeu
α + jα,

such that jαuα = 0; jα and uα are orthogonal vectors and ρe = −Jαuα is the proper

charge density. Assuming linear constitutive relation between jα and Eα (Ohm’s

law),

jα = σαβEβ, (7.42)

where σαβ is the conductivity tensor. Generally, in the presence of magnetic field

conductivity tensor becomes anisotropic and depends upon density, temperature and

magnetic field in the fluid, Ref. [3]. We assume that magnetic field is sufficiently weak

such that there is no non-diagonal terms present in the conductivity tensor. With

this assumption we have,

σαβ = σ(ρ, T )ηαβ. (7.43)

Now, in the ideal MHD approximation, σ → ∞ ⇒ Eα = 0 from the Eq.(7.42). So

there is no electric field present in the ideal MHD fluid. This occurs because in the

infinite conducting fluid an unlimited number of freely moving charge particles remain

present, so if there is any electric field arises in the fluid, these charge particles move
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in such a way that the field disappears. By taking σ →∞ (i.e. Eα = 0) in Eq.(7.35),

we get Dα = 0. Therefore by Eq.(7.31) we have Iαβuβ = 0, and hence from Eq.(7.40)

it is clear that Tαβ3 becomes zero in the ideal RMHD fluid. Also, from Eqs.(7.30) and

(7.31) we get Bαβ = Fαβ and Hαβ = Iαβ, therefore by using Eq.(7.35) we get,

Iαβ = (1− 4πχ)Fαβ. (7.44)

This can be written in terms of µ, the magnetic permeability of the media as,

Iαβ =
1

µ
Fαβ. (7.45)

For simplicity we assume that κ and χ are uniform in space and independent from

density and temperature. Therefore in such case Tαβ2 becomes zero. The approxima-

tions which we have taken here may not be true for the quark-gluon plasma produced

in relativistic heavy-ion collisions; the system in which we are interested. This plasma

has very strong variation in energy density and temperature (may be the strongest

in the present universe). The electric conductivity of this plasma is finite and varies

with the temperature. κ and χ may also have variation with energy density and

temperature. But considering the real situation may make system mathematically as

well as numerically very difficult. Therefore we continue with these approximations.

We now introduce magnetic induction four-vector as,

Bα =
1

2
εαβγδu

βF γδ, (7.46)

where εαβγδ is the Levi-Civita anti-symmetric fourth rank tensor. Since Eα = 0 in

the ideal RMHD fluid, therefore from Eq.(7.30),

Fαβuβ = 0. (7.47)

Let us calculate the quantity εαµνσBαuµ,

εαµνσBαuµ =
1

2
εαµνσεαβγδu

βF γδuµ. (7.48)

Using the property of the Levi-Civita tensor,

εi1...ikik+1...inε
i1...ikjk+1...jn = k!δ

jk+1...jn
ik+1...in

,
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where,

δ
jk+1...jn
ik+1...in

=

∣∣∣∣∣∣∣∣
δ
jk+1

ik+1
· · · δ

jk+1

in
...

. . .
...

δjnik+1
· · · δjnin

∣∣∣∣∣∣∣∣ .
We get,

εαµνσεαβγδ = δµβ(δνγδ
σ
δ − δνδ δσγ )− δµγ (δνβδ

σ
δ − δνδ δσβ) + δµδ (δνβδ

σ
γ − δνγδσβ).

Using this identity in Eq.(7.48), last four terms give zero due to Eq.(7.47) and the

first two terms by using uβu
β = −1 and F νσ = −F σν give,

εαµνσBαuµ = 1
2
(uβu

βF νσ − uβuβF σν) = −F νσ.

Therefore,

F νσ = −εαµνσBαuµ. (7.49)

Using the Eqs.(7.45, 7.46, and 7.49) in Eq.(7.41), we get,

4πµTαβem = −BαBβ +
1

2
BσB

σηαβ +BσB
σuαuβ. (7.50)

By introducing the vector, bα = 1
4πµ

Bα, one gets total energy-momentum tensor for

ideal RMHD fluid as,

Tαβ = (ε+ pg + |b|2)uαuβ − bαbβ + (pg +
|b|2

2
)ηαβ. (7.51)

By substitution of Fαβ from Eq.(7.49) in terms of Bα in the homogeneous Maxwell’s

equations and taking the dual (multiplying by εαµβγ) one gets,

∂α(uαbβ − uβbα) = 0. (7.52)

The inhomogeneous Maxwell’s equation can be used for the calculation of the charge

current for a given bα [3].

If the constituents of fluid elements are non-relativistic particles (though the fluid

velocity is relativistic), then during the fluid evolution mass number remain con-

served. But if constituents of the fluid elements are relativistic, then mass number

may get change, therefore only baryon number conservation condition can be imposed

on the fluid evolution. Thus the equations of relativistic magneto-fluid dynamics are

as follow:
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The mass / baryon number conservation equation :

∂α(ρuα) = 0 or ∂α(nuα) = 0, (7.53)

The energy-momentum conservation equation :

∂α

(
(ε+ pg + |b|2)uαuβ − bαbβ + (pg +

|b|2

2
)ηαβ

)
= 0, (7.54)

The Maxwell’s equations :

∂α(uαbβ − uβbα) = 0, (7.55)

where fluid four velocity is given by uα = γ(1, ~v). Minkowski metric is ηαβ =diag(−1, 1, 1, 1).

We need equation of state (EoS) to solve these equation ε ≡ ε(pg). The four-vector

bα is related with the magnetic field and fluid velocity by, Ref. [5],

bα = γ

(
~v. ~B,

~B

γ2
+ ~v(~v. ~B)

)
, (7.56)

with this uαb
α = 0. Therefore,

|b|2= bαbα =
| ~B|2

γ2
+ (~v. ~B)2. (7.57)

From Eq.7.54 it is clear that in the ideal MHD fluid the total pressure of the plasma

is not just pg, but sum of thermal pressure pg and magnetic pressure |b|
2

2
; p = pg + |b|2

2
.

Therefore,

p = pg +
| ~B|2

2γ2
+

(~v. ~B)2

2
. (7.58)

In the Chapter 10, by following the Ref. [5], we discuss method for solving ideal

RMHD equations.
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Chapter 8

Heavy-Ion Collisions and Initial

Magnetic Field

8.1 Introduction

In the Big Bang cosmology, from the Planck epoch to a few microsecond, the energy

density of the Universe was so high that quarks, anti-quarks and gluons (basically

color degrees of freedom) could not be remain in the bound state of hadrons. These

color degrees of freedom remained present in the early Universe, and by interacting

among themselves could form a thermal medium. This plasma of quarks, anti-quarks

and gluons is known as the quark-gluon plasma (QGP) which survived up to the time

∼ 10−6 sec, at which the temperature of the Universe was about 170 MeV . Below

this temperature these colored objects become confined inside hadrons, and become

color singlet object by forming bound state. The possibility of thermal medium of

quarks, anti-quarks and gluons in the early Universe up to time scale of 1 µs is due to

the fact that QCD at that energy scale has interaction time scale ∼ 1 fm (10−23 sec),

which is much shorter than time scale in which Universe evolved from the Planck

epoch ∼ 1 µs, therefore this time is sufficient to have enough interaction between

these particles to form a thermal medium.

In the present day Universe, a deconfined phase of the quark and gluon may

exist in the core of a compact object, like neutron star. The quark-gluon plasma in

these objects arises due to high compression of baryonic matter due to gravitational
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attraction. Therefore quark-gluon plasma phase in this system has finite baryon

chemical potential (more number of baryons over anti-baryons).

The CMBR power spectrum corresponds to the era of the Universe when its age

was about 300000 years. On the basis of the measurement of CMBR power spectrum,

there are many predictions regarding the evolution of the Universe before this time,

e.g. inflation etc. But the soup of quark-gluon plasma, which was existed much before

the CMBR decoupling, remain hidden behind the present observation reach and there

is no clue from the CMBR measurement about the actual physical property of this

plasma. The same problem remains with the QGP inside a neutron star, where there

is no direct way to study the physical properties of the QGP (even its existence is

questionable inside the neutron star). Therefore to produce the quark-gluon plasma

and study its physics, there seems no way other than colliding two heavy nuclei

with relativistic energies. The purpose of the relativistic heavy-ion collision at RHIC

(the Relativistic Heavy Ion Collider, since 2000) and heavy-ion collision at LHC (the

Large Hadron Collider at CERN, since 2008) is to recreate the condition of the early

Universe when its age was less than few microsecond. In these kinds of experiments,

it is possible to have a thermal medium of quarks, anti-quarks and gluons, as it is

expected that, the total time duration of system which remain in the deconfined state

is larger (∼ 10 fm) than the QCD interaction time scale (∼ 1 fm). In such kind

of experiments local thermalization may occur in time lesser than 1 fm, and energy

density can be much higher than the critical energy density (1 GeV/fm3) to form

the quark-gluon plasma.

In relativistic heavy-ion collider experiments two opposite moving nuclei (along ±
z-axis) are collided with relativistic energies. RHIC and LHC experiments are carried

out to perform such kind of collisions and produce the hottest medium in the present

Universe. FAIR and NICA are also upcoming facilities with relatively lower energy of

collision and are motivated to create a very high baryon density medium and study

its physical properties. This kind of medium is expected to exist inside a neutron

star. The main goal of all these experiments to investigate QCD phase diagram and

study physical properties of QCD matter in various conditions.
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Figure 8.1: Figure shows the overlapping of two nuclei in the transverse plane in the

non-central collision. Figure has been taken from the Ref. [1].

8.2 Various stages of Relativistic Heavy-ion Colli-

sions and Probes of Quark-gluon Plasma

First we describe some important terminology used in the context of heavy-ion colli-

sions (HIC). The HIC experiments are performed either by two similar nuclei, called

as symmetric collision, or with the different nuclei, the asymmetric collisions. Usu-

ally lighter nuclei is called the projectile and heavier nuclei as target, while in the

case of symmetric collisions, any one of the two nuclei can be given any name. From

the center of the target to the projectile, hypothetical vector drawn in the plane per-

pendicular to the motion is called the impact parameter vector and its magnitude is

called impact parameter. For the central collisions impact parameter is almost zero,

while it is non-zero in the case of non-central collisions. Impact parameter vector

and longitudinal axis (z-axis) form a plane known as the reaction plane. In Fig.8.1

we have shown the situation for the non-central collisions in the transverse plane

(xy-plane).

Fig.8.2 shows the successive stages of relativistic heavy-ion collisions. At rela-

tivistic energy, due to huge Lorentz contraction, width of nuclei in the longitudinal

direction gets contracted with the large γ factor. But due to presence of low momen-

tum (∼ 200 MeV ) wee partons inside protons and neutrons, width of nuclei never

gets contracted below 1 fm. In the very high energy collisions, due to asymptotic
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Figure 8.2: Figure shows the successive stages of relativistic heavy-ion collisions.

Figure has been taken from Ref. [2]

freedom of QCD, nuclei cross through each other with relativistic speed without much

interacting, therefore a very less amount of initial matter gets stopped in the overlap

region. In such an energy regime, nuclei become almost transparent to each other

because of asymptotic freedom. Only a small interaction among nuclei stores energy

in the intermediate region, which further creates particles, mainly partons. These

particles scatter elastically and inelastically with each other due to very high parton

density, which is absent in the case of pp collisions. Therefore it is expected that in

the heavy-ion collision experiment, in a time less than ∼ 1 fm, partons get thermal-

ized and form quark-gluon plasma (initial energy density at RHIC and LHC is much

higher than the critical energy density required to have QGP).

The hydrodynamics description of a system is only possible if the mean free path

and the time scale of the interaction among the particles are much smaller than the

system size and the time scale of the evolution of the system, respectively. The system

of particles produced in the relativistic heavy-ion collisions satisfies both of these

criteria. Bjorken (Ref. [3]) estimated the mean free path of partons ∼ 0.1− 0.01 fm,

which is much smaller than the typical size of the system ∼ 10 fm. Similarly, QCD

interaction time scale is ∼ 1 fm and the QGP system is expected to last for at least

∼ 10 fm time. This indicates that local thermodynamic equilibrium is justified and

the hydrodynamic description of the system is possible. This supports the formation
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of a thermalized medium of quarks, anti-quarks and gluon in relativistic heavy-ion

collisions.

In the relatively low energy collisions, plasma forms at finite chemical potential. At

these energies baryon stopping cross-section is higher, due to which, a good fraction

of initial baryons are stopped in the interaction region, thereby forming QGP or

hadronic matter at finite chemical potential. The study of this system is useful in the

context of neutron star physics.

After achieving local thermodynamic equilibrium, system expands very fast hy-

drodynamically as the central pressure of the plasma is much higher than the vacuum

outside. This decreases the central energy density of the plasma, and eventually QGP

to hadron cross-over transition occurs. As the hadronic phase has lesser degrees of

freedom than the QGP phase, from the QGP to hadronic phase entropy density of the

system decreases by a very large amount in a small range of temperature. Since the

total entropy of a system can not decrease, therefore to compensate this, volume of

the system has to increase very fast by keeping temperature approximately constant,

such that total entropy remain conserved [4]. Since the increment in the volume takes

some time, therefore system spends a significant amount of time near the transition

temperature [4]. When the transition is over, in the hadronic phase not much growth

in the expansion rate occurs, because speed of sound in the hadronic phase is much

smaller than in the QGP, and fluid acceleration is directly related to the sound speed

in the fluid. All these features are expected to be detected in the experiment.

After the hadronization, system continues to expand with relatively slower rate

by maintaining thermodynamic equilibrium. At a certain stage it becomes so dilute

that the mean free path of hadrons becomes comparable to the system size, and lo-

cal thermodynamic equilibrium is destroyed. This stage is known as the thermal of

kinetic freeze-out. Before reaching this stage, hadrons scatter among themselves elas-

tically and inelastically. Since inelastic cross section is only small fraction of the total

cross-section, therefore these process get stopped much before the elastic scattering

processes. Since only inelastic collision can change the species of hadrons, therefore

this kind of chemical composition changing processes stop much before the thermal

freeze-out. This stage of the evolution of the system where chemical composition of

hadronic species freezes is known as the chemical freeze-out. After this stage hadrons
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only scatter elastically and maintain thermal equilibrium. One more component plays

important role in maintaining of the thermal equilibrium in this stage is the resonance

process in which two hadrons by combining form a shortly lived resonance state which

subsequently, again decays into the parent hadrons. This is also treated as the elastic

process. As mentioned earlier, at the stage where even this elastic scattering get

stopped is known as the thermal or kinetic freeze-out. After this no scattering hap-

pen and hadrons come out directly to the detectors with specific momenta. With

the hadronic momentum distribution, people analyse what happened during the evo-

lution of the system and determine its various stages and physical properties of the

quark-gluon plasma and its transition to the hadronic phase. Thus, heavy-ion col-

lision experiments probe confinement transition. The final hadronic spectra, which

comes out to the detectors, is blue shifted due to hydrodynamic expansion and show

higher temperature (than the actual temperature of the system in the rest frame of

the plasma). This blue shift in the spectra is compensated by production of soft pions

due to resonance decay process (these soft pions show relatively lower temperature

than the temperature of blue shifted parent hadrons), see Ref. [4].

Now we discuss various signals in the relativistic heavy-ion collisions which mainly

probe the presence of the medium and have dependence on the properties of the

medium, e.g whether it is a deconfined medium or confined medium etc. At the

very early stage of the collision it is more probable to have hard particles (either

large mass or large transverse momentum pT � 1 GeV particles) because according

to the uncertainty principle, time required for production of these particles is short.

The time scale for the production of hard particles from uncertainty principle is τ ∼
1/
√
Q2, where Q2 is the momentum transfer, which is of the order of p2

T � 1 GeV 2,

see Ref. [4]. Therefore hard partons dominate in the very early stage of the collision

and play a very important role in the study of the whole evolution of the system.

These hard partons can produce jets of high-pT by fragmentation. If such jets get

produced at the edge of the system and one one part of the jet moves inward then it

has to travel about 10 fm distance (this is transverse size of the system in the central

collisions). During this period of motion of such a jet, soft partons get thermalized,

expand eventually hydrodynamically, hadronizing, and then freezing-out. All this

evolution of the system can be probed by such jets due to the momentum exchange
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with the soft particles. By this process, jet looses its energy. This energy loss is

proportional to density of the medium times the scattering cross section between

the probe and the medium constituents, integrated along the probes trajectory, see

Ref. [4]. This process is known as jet quenching which probes the properties of the

medium formed in relativistic HIC.

There are various channels for the fragmentation of these hard particles. One of

the fragmentation mode is the cc̄ (J/ψ) production. These mesons can be produced

at the early stages of both relativistic heavy-ion as well as in the pp collisions. The

difference is that, in the relativistic heavy-ion collisions due to medium effect, these

mesons can melt due to the Debye screening in the medium. This happens because

QGP medium screens the color force between the constituents of cc̄ and these pairs

melt. Eventually, after hadronization, they form other hadrons (open charm). This

is known as J/ψ suppression.

At the very early stage of the collision, direct photons and lepton-antilepton pairs

(known as dileptons) are also produced. The production cross-section of photons is

proportional to the fine structure constant of the electromagnetic interaction, αe = 1
137

which is very small. However, once these photons get created they have the interaction

cross-section with the medium also of the same order and therefore come out of the

medium directly without much interacting. Their detection gives very important

information about the momentum-distribution of partons at the early stages. The

photons/dileptons can be created in both stages, early stage as well during expansion

of the thermal medium. However, the probability of production of photons at late

stage is very less [4].

An important effect of the formation of thermal medium is the development of

the momentum anisotropy in the plasma in the case of non-central collisions. This is

expected to be absent in the pp collisions where produced particles come out without

much subsequent collisions and therefore there is no chance of formation of thermal

medium. (Though recently collective effects have been seen in high multiplicity pp

collisions at LHC). In relativistic HIC (at RHIC) it has been experimentally observed

a momentum anisotropy in the system evolution in the transverse plane in the case

of non-central collisions which signals the formation of thermal medium at a certain

stage. The hydrodynamic description of system, which requires local thermodynamic
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equilibrium, can naturally explain the origin of this momentum anisotropy. Hydrody-

namics explains that, the spatial anisotropy present in the plasma in the non-central

collision leads to different pressure gradients in different direction in the transverse

plane causing stronger flow in the direction where pressure gradient is more. This can

generate the elliptic flow, which is explained by hydrodynamics where an elliptical

spatial anisotropy present in the plasma ultimately transfers to the observed momen-

tum anisotropy. We will discuss this in the next section in more detail. Important

point is that hydrodynamics requires local thermodynamic equilibrium and hence

medium formation. Therefore elliptic flow is a signal of the equilibrated medium

formation in relativistic HIC. As we have discussed, the energy density produced in

the relativistic HIC is much higher that the critical energy density for the formation

of QGP, and also, elliptic flow depends upon the equation of state of the medium

which is very different for QGP and hadrons. Therefore the observation of elliptic

flow determines which kind of thermal medium has formed after the collision. The

observed value of elliptic flow supports the formation of the quark-gluon plasma in

relativistic heavy-ion collision experiments.

Another important probe for the QGP formation in the relativistic HIC is the

strangeness enhancement which is highly suppressed in the pp collision case. This

happens due to the chiral symmetry restoration in the QGP phase which makes the

dynamical mass of the strange quark lighter. Because of this, its production cross-

section becomes significantly large in this medium (compared to much heavier strange

hadrons). Thus the strange partons are produced abundantly in the QGP phase and

chemical equilibrate with the other lighter partons.

8.3 Inviscid Relativistic Hydrodynamics For Heavy-

Ion Collision and Elliptic Flow

The hydrodynamic description of a system requires initial values of the energy den-

sity and fluid velocity at each space points. Hydrodynamic equations are first order

differential equation which can only be solved if the initial conditions are given along

with the equation of state of the plasma. These initial conditions are given at the
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thermalization time, say at proper time τ0 < 1 fm. For the initial energy density in

the relativistic HIC there are many models are available, the most popular models

are Glauber model, Ref. [5], and the color-glass-condensate, Ref. [6, 7]. First, we dis-

cuss the Glauber model by which one can generate the initial energy density profile

for the plasma which undergoes hydrodynamic expansion in the relativistic heavy-

ion collisions. The other method to produce initial energy density is the color glass

condensate for which one can follow Refs. [6, 7].

We take the z-axis, the longitudinal axis, to be along the motion of the nuclei, and

therefore xy-plane forms the transverse plane. We choose x-axis along the impact pa-

rameter vector. The xz-plane is known as the reaction plane. We consider the starting

time for the collision as t = 0 at the position z = 0. This is the stage of complete

overlap of the two nuclei. At the very initial stage due to large Lorentz contraction

along the z-axis, z-width of the system is very small compare to the transverse size

(diameter of the nuclei for the central collisions).

Optical Glauber Model : In the Glauber model the initial energy or entropy den-

sity is parameterized in two dimension (transverse plane) by the geometry of the

collisions. In the optical Glauber method, the density distribution of nucleons inside

incoming nuclei is considered to be Woods-Saxon distribution. Let us denote the

two nuclei by A and B, therefore the Woods-Saxon profile of density distribution of

nucleons inside incoming nuclei is given by,

ρA,B(r) =
ρ0

e(r−RA,B)/ξ + 1
, (8.1)

where, ρ0 = 0.16 fm−3 is the normal nuclear density at the center of nuclei, r is the

radial coordinate, RA,B is the radius of nuclei (1.2(mass number)1/3 fm) and ξ is the

skin thickness of the nuclei. The nuclear thickness function along the z-axis in the

transverse plane is given by,

TA,B(x, y) =

∫ ∞
−∞

dzρA,B(x, y, z). (8.2)

The transverse energy density deposited after the collision is the function of TA,B and
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is determined by the expression [5, 8],

e(x, y, b) = K

[
TA(x+ b/2, y)

(
1−

(
1− σTB(x− b/2, y)

B

)B)

+TB(x− b/2, y)

(
1−

(
1− σTA(x+ b/2, y)

A

)A)]
,

(8.3)

where, K is a phenomenological parameter which is set so that the experimentally

observed rapidity density of charged hadrons with the centrality of the collisions is

reproduce, Ref. [5, 8]. σ is the total inelastic nucleon-nucleon cross section at the

given collision energy. This gives the initial energy density in the transverse plane.

For the energy density profile along the z-axis, a Woods-Saxon profile which satis-

fies the geometry of the collision along z-axis is used with proper Lorentz contraction.

Monte Carlo Glauber Model : This model is also based on the geometry of the

collision, but in this method, unlike the optical Glauber, individual nucleon-nucleon

collisions are considered for the energy deposition, Ref. [9]. First, inside the incoming

nuclei, nucleons are randomly distributed following the Woods-Saxon probability dis-

tribution. Depending upon the interaction cross-section, an effective area of nucleons

during the collisions is considered. The effective diameter of the nucleons during the

collisions is taken as d =
√
σ/π. The locations at which the effective area of individ-

ual nucleons of target overlap in the transverse plane with the nucleons of projectile,

Gaussian distribution of energy density with certain height and width is put by hand.

These individual Gaussians, representing individual nucleon-nucleon collisions, which

add up to give the total deposited energy density by the passing of two nuclei through

each other. In the z-direction the distribution is taken by considering these randomly

distributed individual Gaussians following Woods-Saxon distribution with appropri-

ate Lorentz contraction. The energy density profile generated with this method can

capture all possible fluctuations present in the relativistic HIC experiments.

In the relativistic HIC, since the thermalization time is expected to be short, it

may be a good approximation to take the initial transverse flow velocity to be zero,

i.e., vx = vy = 0. It can be justified on the basis that the partons produced just after

the collision should have isotropic momentum distribution, therefore initially there

should not be a preferred direction of the flow in the transverse plane [1].
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According to the Bjorken picture, Ref. [3], in the longitudinal direction fluid ve-

locity linearly increases with z, i.e., vz = z/t, where t is the time in the laboratory

frame. We will see that this velocity profile is only valid for the case when the cen-

tral rapidity distribution dN
dY

vs. Y is completely flat. However, it is not completely

true, in fact Bjorken picture is valid only approximately (valid up to a proportion-

ality factor). The Bjorken velocity profile is the boost-invariant velocity profile; i.e.

under the Lorentz transformation of z, t and vz, all these variables get transformed

as z′ = γ(z − vt), t′ = γ(t − v
c2
z), and v′z = (vz − v)/(1 − v

c2
vz) by preserving the

velocity profile invariant, i.e., in the new frame also v′z = z′/t′.

With the spacetime rapidity ηs = 1
2

ln
(
t+z
t−z

)
, and the fluid rapidity Y = 1

2
ln
(
p0+pz
p0−pz

)
(fluid 4-momenta pµ = (p0, px, py, pz), where pz = vzp0), Bjorken prescription vz = z/t

translates into Y = ηs, i.e. the fluid rapidity equals the spacetime rapidity. Using

proper time τ =
√
t2 − z2, one gets t = τ cosh ηs, z = τ sinh ηs, vz = tanhY .

As we have discussed, for the hydrodynamic description of the system, we need

initial conditions for energy density or entropy density. Here for the analytic estimate

and for the sake of simplicity we assume that initial energy density or entropy density

profile of the system as a Gaussian distribution as taken in Ref. [1],

s(x, y) ∝ exp

(
− x2

2σ2
x

− y2

2σ2
y

− η2
s

2σ2
η

)
, (8.4)

where σx and σy are the widths of the transverse distribution. In the case of non-

central collisions, as we have considered the x-axis along the impact parameter vector,

therefore σx < σy, while in the case of central collisions both widths are equal. ση is

a dimensionless parameter, representing the width of the distribution along rapidity.

ση can be estimated by using the fact that particle multiplicity is proportional to the

entropy [1].

At very early stage of the system evolution, longitudinal expansion dominates over

the transverse expansion, therefore in the time shorter than t� σx/cs, σy/cs, Ref. [1],

one can use 1 + 1 dimensional hydrodynamic evolution of the plasma (here cs is the

sound velocity in the plasma given by cs = (∂P/∂ε)1/2). Time greater than this,

transverse expansion starts dominating and system undergoes full 3 + 1 dimensional

hydrodynamic expansion.

Now we discuss with the given initial conditions how ideal hydrodynamics explains
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the flow. The energy-momentum tensor for the inviscid hydrodynamics is given by,

T µν = (ε+ P )uµuν − Pgµν , (8.5)

where gµν ≡ diag(1,-1,-1,-1) is the Minskowski metric tensor. The 4-velocity of fluid

element uµ is given by,

u0 =
1√

1− ~v2
, ~u =

~v√
1− ~v2

. (8.6)

The energy-momentum conservation equations are,

∂µT
µν = 0. (8.7)

Longitudinal expansion and cooling : First we will consider the situation when

the Bjorken picture is valid throughout plasma evolution, this requires ση →∞. Then

we discuss how Bjorken picture gets modified for finite ση. We consider the evolution

of the plasma near z = 0 with fluid velocity vz ' 0. In Eqs.8.5,8.7 by taking ν = 3,

to the first order in velocity, we have,

∂

∂t
((ε+ P )vz) +

∂

∂z
P = 0. (8.8)

Since initial fluid velocity is very small near z = 0 and remain very small in infinites-

imal time dt, therefore the initial acceleration,

∂vz
∂t

= − 1

(ε+ P )

∂P

∂z
= − 1

(ε+ P )

∂ε

∂z

∂P

∂ε
. (8.9)

Now since the ideal hydrodynamics evolution is an adiabatic evolution therefore total

entropy of the system is conserved, i.e. dS = 0, which implies that d(sV ) = 0, where s

is the entropy density. This gives, for the isentropic process, ds
s

= −dV
V

. From the first

law of thermodynamics dU = −PdV + TdS, since dS = 0, therefore d(εV ) = −PdV ,

which implies that, dε
(ε+P )

= −dV
V

. Therefore for the isentropic process,

ds

s
= d(ln s) =

dε

(ε+ P )
. (8.10)

By using above expression and the definition of the sound, Eq.8.9 can be written as,

∂vz
∂t

= −c2
s

∂(ln s)

∂z
. (8.11)
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Thus it is clear from this equation that if the entropy density varies with z, then

fluid will accelerate, and near z = 0, fluid velocity will increase and deviate from

the Bjorken velocity profile. Now we rewrite the above equation in the τ , ηs and Y

coordinates. Near z = 0, vz ≈ Y , dt ≈ dτ , dz ≈ τdηs, therefore

∂Y

∂τ
= −c

2
s

τ

∂(ln s)

∂ηs
. (8.12)

Therefore to have the Bjorken picture throughout the system evolution, the condition
∂(ln s)
∂ηs

= 0 must satisfy, which implies that ση →∞. This corresponds to a flat rapidity

spectra. If ση is finite then the above equation gives,

∂Y

∂τ
=
c2
s

τ

ηs
ση
. (8.13)

When we integrate this equation from proper time τ0 to τ with the Bjorken’s initial

condition Y = ηs, we get,

Y (τ) =

(
1 +

c2
s ln(τ/τ0)

σ2
η

)
ηs (8.14)

This shows that even if the rapidity distribution is not completely flat, Bjorken picture

can be valid up to an proportionality factor. Since with increasing energy, rapidity

distribution becomes more and more flatter. Therefore the Bjorken picture becomes

more and more valid with the increasing energy of the collision.

Now we discuss the longitudinal cooling, baryon number density and entropy

density changes with time in the Bjorken picture in 1+1 dimension. Let us consider

ν = 0 in Eqs.8.5,8.7. We get,

∂ε

∂t
+
∂((ε+ P )vz)

∂z
= 0. (8.15)

We are interested in the evolution of energy density at z = 0, therefore fluid velocity

vz = z/t will be zero at z = 0. Since ∂vz/∂z = 1/t, therefore under these conditions

above equation becomes,
∂ε

∂t
+
ε+ P

t
= 0. (8.16)

Now let us use the ideal gas equation of state (EoS) for the QGP, i.e, P = ε/3. The

above equation gives,

ε ∝ t−4/3. (8.17)
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This shows that at z = 0, energy density of plasma with ideal gas EoS in 1+1

dimension in the Bjorken scenario decreases with time as t−4/3. Since ε ∝ T 4, where

T is the temperature, therefore T ∝ t−1/3. Now if we consider the baryon number

conservation equation and the entropy conservation equation,

∂µ(nuµ) = 0, ∂µs
µ = 0, (8.18)

and perform same kind of calculation in the Bjorken picture, we get,

∂n

∂t
+
n

t
= 0,

∂s

∂t
+
s

t
= 0. (8.19)

This gives nt = constant and st = constant, which shows that baryon density and

entropy density both decrease with t−1. This is expected, as in 1+1 dimension volume

of the system increases as t.

Transverse expansion : As done earlier, we now take ν = 1, 2 in Eqs.8.5,8.7, and

consider first order terms in velocities. We get (at z = 0),

∂

∂t
((ε+ P )vx) +

∂

∂x
P = 0, (8.20)

∂

∂t
((ε+ P )vy) +

∂

∂y
P = 0. (8.21)

Again, since initial fluid velocity is zero and very small in time dt, therefore initial

acceleration of fluid at z = 0 is given by,

∂vx
∂t

= − 1

(ε+ P )

∂P

∂x
, (8.22)

∂vy
∂t

= − 1

(ε+ P )

∂P

∂y
. (8.23)

Again, by using the fact that ideal hydrodynamics evolution is an adiabatic process

so the total entropy is conserved and by using the definition of speed of sound we get,

∂vx
∂t

= −c2
s

∂(ln s)

∂x
, (8.24)

∂vy
∂t

= −c2
s

∂(ln s)

∂y
. (8.25)

Therefore for the given entropy density profile, the obtained transverse velocity for

small t is,

vx =
c2
sx

σ2
x

t, (8.26)
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Figure 8.3: Figure shows how spatial distribution of energy density affects the mo-

mentum distribution of plasma evolution in the transverse plane.

vy =
c2
sy

σ2
y

t. (8.27)

Here first we should note that fluid velocity is directly related with the sound speed.

This fact plays a very important in the evolution of the fluid, since the sound speed

is related with the EoS which dictates the property of the fluid. The dependence of

the fluid velocity on sound speed plays a very important role in the MHD fluid where

sound speed is direction dependent in this fluid and leads to the anisotropic evolution

of the plasma depending upon the direction of magnetic field. Now, since σx < σy

for the non-central collisions, therefore vx > vy which shows that spatial anisotropy

present in the plasma leads to momentum anisotropy in the hydrodynamic evolution.

This happens due to presence of larger pressure gradient along x-axis than along y-

axis in non-central collisions. The left part of Fig.8.3 shows the initial energy density

created with the optical Glauber method for the cases of central collision (up) and

non-central collision (down). This shows that in the case of central collision plasma
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region has isotropic distribution of energy density while in the case of non-central col-

lisions there is a spatial anisotropy present in the plasma. Right part of Fig.8.3 shows

that due to presence of different initial conditions, plasma evolution for the central

collision (up) and non-central collision (down) is different. In the case of non-central

collision, there is a momentum anisotropy in the plasma evolution.

Elliptic Flow : To quantify the momentum anisotropy, one introduces the ellip-

tic flow which can be defined in various ways. Note that in the detector freeze-out

hadrons reach which carry this momentum anisotropy. So the particle distribution

function is needed for the full characterization of this anisotropy. However, Here

we only discuss at the level of hydrodynamics evolution which is the main cause of

the momentum anisotropy. Here we discuss two hydrodynamic variables which can

characterize the momentum anisotropy,

εp =
T xx − T yy

T xx + T yy
=

v2
x − v2

y

v2
x + v2

y + 1
2γ2

, (8.28)

and

v2 =
T 0x − T 0y

T 0x + T 0y
=
vx − vy
vx + vy

, (8.29)

where we have used the EoS, ε = 3P , to get the finial expression of εp. Both these

variables are measure of momentum anisotropy. In the case of non-central collision,

one gets vx > vy, so both the variables become non-zero, while in the case of central

collisions both are zero. The difference is that former depends upon the EoS, while

latter does not. Also the time evolution of former and latter is different. v2 gets a

sudden jump as soon as the flow develops, while εp varies smoothly with time. This

can be seen as follows: let us consider the time at which a flow just has developed, in

this case both vx and vy will be very small. Let us consider, as an example, vx = 2vy.

Then the above expressions for both the quantities for very small initial velocity,

γ ≈ 1, gives,

εp =
3

5 + 1
2γ2v2

y

≈ 6v2
y, (8.30)

which is very small number and hence εp varies with time smoothly, while

v2 =
1

3
, (8.31)
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Figure 8.4: v2 for charged particles in Au Au collisions at
√
s = 200 GeV, compared

to hydrodynamic model for various viscosity ratios η/s. Figure has been taken from

Ref. [10].

which is independent from the initial small values of flow velocity and has sudden

jump. Although both the quantities have different character, both are measure of

the momentum anisotropy which arises due to elliptic shape of the plasma in the

non-central collisions and therefore are called elliptic flow.

As shown in Fig.8.4 the ideal hydrodynamics can explain experimental data very

well on the qualitative ground. But it does not fit the data exactly, because QGP

has non-zero η/s. It has been argued that due to quantum uncertainty principle,

there is a lower bound on η/s. AdS/CFT also sets a lower bound on viscosity as

η/s ≥ 1/4π ∼ 0.08 for certain Super-Yang-Mills theory. So to fit the data, viscous

Hydrodynamics is required. The best fitting gives the value of η/s of QGP. It is clear

from the figure that viscosity in the fluid reduces the elliptic flow by reducing velocity

gradient.

Although the left Figure in Fig.8.4 satisfies the lower bound, right does not. The

reason may be that in the simulation in Ref. [10], Glauber initial condition has been

used and magnitude of elliptic flow depends upon initial energy density profile. When

one uses color glass condensate initial condition, then there is no violation of the lower

bound of η/s, see Ref. [11] and Fig.8.5. In fact, magnitude of elliptic flow depends

upon initial energy density (CGC or Glauber), viscosity of QGP, EoS, etc. In the

Chapter 10 of this thesis, we will see that elliptic flow also depends upon the strength
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Figure 8.5: v2 from experimental data fitted using initial conditions by the color

glass condensate model in the viscous hydrodynamics. Figure has been taken from

Ref. [11].

and profile of the initial magnetic field in the plasma.

8.4 Fourier Analysis for Flow in Heavy-Ion Colli-

sions

Firstly, here we summarize the above discussion, and discuss the Fourier analysis

of transverse momentum distribution. In relativistic heavy-ion collision experiments

two heavy nuclei collide with very high energy and pass through each other (direction

of motion of nuclei is along ±z-axis). In the overlap region, partons get produced,

which through sufficient interactions thermalize locally, due to which system under-

goes hydrodynamic expansion. Impact parameter vector is a vector drawn from the

center of target to projectile center in the plane transverse to the beam axis (i.e. in

the xy-plane). Impact parameter vector and z-axis form a plane is known as the re-

action plane. We take x-axis along the impact parameter vector and therefore y-axis

is perpendicular to the reaction plane.

For the central (head on) collisions, impact parameter is zero. So if we don’t

consider the fluctuations in the initial energy density profile, because of isotropic

pressure gradient, plasma expands isotropically following hydrodynamic evolution.
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In the case of non-central collisions, impact parameter is non-zero and there is a

spatial anisotropy in the plasma of the elliptical shape. As in this case, there is more

pressure gradient along x-axis compared to y-axis, therefore fluid will accelerate more

along x-axis than y-axis. This kind of flow is generated because of initial elliptical

shape of the plasma that is why this is called the elliptic flow.

In the presence of fluctuations energy density distribution of the plasma has ran-

dom components and can generate very complicated kind of flow. To study such kind

of complicated flow, the Fourier analysis of the transverse momentum distribution is

performed Ref. [12]. For the analysis, we first construct an azimuthal (or transverse)

distribution function. In heavy-ion collision, experimentalist observe hadrons and

their momenta. So they construct azimuthal distribution function by using hadron

momentum distribution. But in our work we have not performed simulations until

the freeze-out, therefore we construct azimuthal distribution function with the help

of fluid momenta.

We solve ideal hydrodynamics equations ∂µT
µν = 0 (see Chapter 6), where ideal

energy-momentum tensor is given by, T µν = (ε + P )uµuν − Pgµν . Here gµν =

(1,−1,−1,−1) is the Minkowski metric, uµ = γ(1, ~v) is fluid 4-velocity, ε is the

local energy density, P is the local pressure of the plasma, and last two are related

by the equation of state. After solving energy-momentum conservation equations, we

have all the components of T µν . T 0i components of T µν are the momentum density

along i-th direction. Let us call pi = T 0i.

We divide our transverse plane into small angular bins and calculate average

momenta in each bin which gives us p(φ). We also calculate average momenta in

the whole transverse plane, say p̄. By this, we construct our azimuthal distribution

function r(φ) = δp
p̄

= p(φ)−p̄
p̄

, which can be written as a Fourier series as follows:

r(φ) =
δp

p̄
=
x0

2π
+
∞∑
n=1

[xn cos(nφ) + yn sin(nφ)], (8.32)

where,

xn =
1

π

∫ 2π

0

r(φ) cos(nφ) dφ, (8.33)

yn =
1

π

∫ 2π

0

r(φ) sin(nφ) dφ. (8.34)
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A non-zero value of xn and yn indicates n-th type of flow, which is characterized by

the magnitude vrmsn = vn =
√
x2
n + y2

n, and the direction ψn, where 0 ≤ ψn < 2π/n.

Here xn = vn cos(nψn) and yn = vn sin(nψn). Therefore the azimuthal distribution

function in terms of vn and ψn is given by,

r(φ) =
v0

2π
+

1

π

∞∑
n=1

vn cos[n(φ− ψn)] (8.35)

If there is no flow anisotropy, all higher coefficients become zero and only x0 or v0

remain non-zero. The first flow coefficient v1 is known as the directed flow which

becomes non-zero if there is a flow along a particular direction in the plasma. The

direction of directed flow is given by ψ1. The second flow coefficient v2 is known as

the elliptic flow which becomes non-zero if therefore is equal and opposite directional

flow present in the plasma. The direction of elliptic flow is characterized by the angle

ψ2 and ψ2 + π. Similarly, the third flow coefficient v3 is known as the triangular flow

which becomes non-zero if there is equal amount of flow present in plasma in three

directions with angles ψ3, ψ3 + 2π
3

, and ψ3 + 4π
3

. Similarly, higher flow coefficients can

be present in the plasma.

In the case of central collisions if there are no fluctuations present in the plasma

then the plasma region will be completely azimuthal symmetric and in that case

evolution of the plasma will be isotropic, therefore r(φ) becomes independent of φ

and all flow coefficients become zero except v0. But if the fluctuations are present in

the plasma then all flow coefficients become non-zero.

In the case of non-central collisions if there are no fluctuations present, plasma

region will have a reflection symmetry. Because of this, generated flow also have a

reflection symmetry, which makes only even flow coefficients non-zero. Therefore if

in the plasma a reflection symmetry is present, then one expects even-odd separation

in the power of flow coefficients. In the presence of fluctuations, reflection symmetry

in plasma is suppressed, due to which all the flow coefficients become non-zero and

the even-odd separation in the flow coefficients is washed out.

In the following chapters we see that even if the plasma is azimuthal symmetric

due to presence of vortices or magnetic field, flow becomes such that it can generate an

even-odd separation in the flow coefficients. In both the cases, vortices and magnetic

field, a strong elliptic flow gets generated which drives other even harmonics and
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gives rise to even-odd separation. Of course due to fluctuations, this separation gets

suppressed. The main conclusion of these results can be summarized as follows:

If the plasma evolution has a reflection symmetry, then irrespective of the cause of

this symmetry, there always be an even-odd separation in the flow coefficients.

8.5 Magnetic Field in Heavy-Ion Collisions

As we have discussed, in the relativistic HIC experiment two heavy nuclei collide with

each other and produce particles which after interaction form a thermal medium. As

the nuclei is made of protons and neutrons, due to its motion, magnetic field get

produced around the individual nuclei. In the case of central collisions, if we consider

the uniform charge distribution of protons inside nuclei, the magnetic field generated

by one nuclei exactly gets canceled by the magnetic field of the other nuclei in the

z = 0 plane, therefore no magnetic field will be present there. But if we consider

the actual charge distribution inside a nuclei which may not be uniform due to the

random positions of protons inside nuclei (following Woods-Saxon distribution), then

in the case of central collision also magnetic field can be generated. However, this

magnetic field is completely arbitrary and if one performs the event average over

it, then the net magnetic field and its effects may not seen. In the Fig. 8.6 we

have shown the magnetic field in the central collision, where we have considered

the position coordinates of protons randomly inside the nuclei (following Woods-

Saxon distribution). Since the distribution of protons in both the nuclei is completely

independent, therefore magnetic field generated by both the nuclei do not get canceled

in general. Left plot is the magnetic field at the earlier time while right plot is for

the magnetic field at some late time, which is clearly smoother than the left one.

In the case of non-central collisions, because of the asymmetry in the collisions,

even if we consider the uniform charge distribution inside nuclei, strong magnetic field

arises (mainly due to spectators) in the region where plasma forms. The direction

of this magnetic field is perpendicular to the reaction plane (along y-axis) at x = 0

plane, and the magnitude of this magnetic field is the strongest at the center of the

system. The magnitude of magnetic field at the center can be as high as ∼ 1015 Tesla

(∼ 0.1 GeV2) at LHC energies [13]. This magnitude is 104 times stronger than the
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Figure 8.6: The magnetic field is generated in the central collision by considering

random distribution of protons inside nuclei following Woods-Saxon distribution. The

left plot is at the earlier time and right is at the latter time. The magnitude of

magnetic field is proportional to the length of the vector in the plot. We are not

giving here any number since our purpose is to show a qualitative profile of magnetic

field in the central collision.

magnetic field present in a Magnetar. In the Fig. 8.7 the situation of the non-central

collision has been shown. Left figure shows how a magnetic field can be generated due

to the motion of two nuclei in the HIC experiments. The direction of the magnetic

field, where plasma forms, is along the y-axis and significantly strong. The right plot

shows the whole magnetic field profile in the case of non-central collision in the z = 0

plane. This plot has been generated by considering the uniform charge distribution

inside the nuclei.

The magnetic field generated by a charge particle moving along z-axis in vacuum

with speed v is given by [15],

~H =
eγ

4π

v|~b− ~b′|φ̂
(|~b− ~b′|+γ2(vt− z)2)

3
2

, (8.36)

where e is the electric charge of the particle, ~b is the observation point and ~b′ is the

location of the particle from the origin in the transverse plane. This expression can

be obtained by solving Maxwell’s equations or by doing Lorentz transformation of the

electric field from the rest frame of the particle to the moving frame. If we consider a

uniform charge distribution inside each nuclei, i.e., charge density, ρ(r′) = Z/(4
3
πR3

A),
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Figure 8.7: The left figure shows how magnetic field can be generated in the HIC

experiments due to motion of two nuclei. Figure has been taken from Ref. [14]. Right

figure shows the profile of the magnetic field in the z = 0 plane.

then the magnetic field generated by moving nuclei in HIC can be calculated by the

expression, Ref. [15],

~HNuclei =

∫
~Hρ(r′)d3r′, (8.37)

where RA is the radius of the nuclei. The total magnetic field in HIC arising from

both moving nuclei can be calculated by adding magnetic fields due to the individual

nuclei, see Ref. [15].

The important point here is that the strength of the magnetic field is proportional

to the Lorentz γ factor, so when energy of the collision increases, the strength of the

produced magnetic field also increases. But the Lorentz γ factor is also present in

front of the time factor in the denominator in the above expression, therefore with

the increasing γ factor, strength of the magnetic field also decreases very fast with

time. On the other hand, in the low energy collisions the strength of the initial

magnetic field is relatively weaker but it decreases with relatively slower rate also.

This time decaying magnetic field can be protected if the conducting medium forms

very quickly. From the Maxwell’s equations we know that, in a medium, a time

varying magnetic field generates an electric field, which induces an electric current in

the medium which again generate the magnetic field in the same direction. Because

of this, the decay rate of the magnetic field gets suppressed in a conducting medium.

If the conductivity of the medium is high then due to the above process magnetic

154



field decays very slowly in the medium. If the conductivity of the medium is infinite

then magnetic field never decays and remains frozen in the medium.

Now let us see how a magnetic field changes with time in a conducting medium

(Ref. [16]). We see that if the conductivity of the fluid is finite then the magnetic

field lines diffuse in the medium with certain diffusion time while if the conductivity

of the medium is infinite then magnetic field lines never decay and remain frozen in

the medium. Let us consider an electrically neutral, conducting fluid in the presence

of magnetic field. In a high conductivity fluid, electric field is almost zero due to

availability of large number of free charges in the medium. The Ohm’s law in the rest

frame of the fluid is given by,

~J = σ ~E, (8.38)

where σ is the electrical conductivity of the medium. This shows that if the medium

has infinite conductivity, then in the rest frame of the fluid, there is no electric

field. Now, Maxwell’s equations is given by (ignoring displacement current in a good

conducting medium),

~∇× ~E +
∂ ~B

∂t
= 0, (8.39)

~∇× ~B = 4π ~J. (8.40)

Using Maxwell’s equation and Ohm’s law we get,

∂ ~B

∂t
=

1

4πσ
∇2 ~B. (8.41)

This is a diffusion equation, which shows that in a medium with finite conductivity,

an initial magnetic field gets diffused in a diffusion time (obtained by solving above

diffusion equation),

τ = 4πσL2. (8.42)

where L is the characteristic length of the spatial variation of ~B. In Chapter 10 we

have estimated the diffusion time (in different unit system) for QGP in relativistic

HIC, which we find to be less than 1 fm. Note that this time should be counted after

the formation of thermal medium in HIC. Up to the thermalization time a significant

amount of the initial magnetic field already decays in the vacuum. The above equation

also shows that if the conductivity of the medium is infinite then magnetic field never

decays in the medium. It remains frozen and moves with the medium. Since within
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Figure 8.8: Calculations have been performed at z = 0 with γ = 100. Left figure

shows the time evolution of the magnetic field at the center created by a point unit

charge in vacuum (blue) and in the medium of conductivity σ = 5.8 MeV (red).

Here |~b| = 0 and |~b′| = 7.4 fm. Right figure shows the time dependence of the

electromagnetic field created due to the motion of two nuclei with impact parameter

7 fm in HIC experiment. The solid line shows the time variation of Hy at x = y = 0;

the dashed line for Hx and dashed-dotted line for Ey at x = y = 1 fm. Figures has

been taken from the Ref. [15].

the diffusion time magnetic field lines does not decay much, therefore within this time

interval, the ideal MHD approximation can be considered for the fluid evolution.

In Ref. [15], by considering the presence of a finite conducting medium of con-

ductivity σ = 5.8 MeV , it has been shown that time decay of magnetic field in the

medium is much slower than in the vacuum. Fig. 8.8 shows that a time varying

magnetic field decays with the slower rate in medium compared to the vacuum. Cal-

culations have been performed at z = 0 with γ = 100. Left figure shows the time

evolution of the magnetic field at the center created by a point unit charge in vacuum

(blue) and in the medium of conductivity σ = 5.8 MeV (red). Here |~b| = 0 and

|~b′| = 7.4 fm. Right figure shows the time dependence of the electromagnetic field

created due to the motion of two nuclei with impact parameter 7 fm in HIC experi-

ment. The solid line shows the time variation of Hy at x = y = 0; the dashed line for

Hx and dashed-dotted line for Ey at x = y = 1 fm.

In relativistic heavy-ion collisions, medium forms at thermalization time τ0 < 1 fm

in the presence of time varying magnetic field. The thermalization time may also get
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modified due to presence of the magnetic field. Although charged particles remain

present from the very beginning of the collision, but since at this stage system remain

out of equilibrium, therefore system does not have the conductivity of a thermalized

QGP medium. After the formation of the thermal medium, the time decay of mag-

netic field gets slower down. A quick thermalization and large conductivity of the

plasma may protect magnetic field (of high magnitude) from decay.

In heavy-ion collisions, temperature of the medium varies strongly from center

of the plasma with value, ∼ 200 − 300 MeV to zero value outside in vacuum. The

conductivity is a function of temperature. The Lattice simulation results for the

QGP gives σQGP = 0.04T . Therefore conductivity should also vary in space in such

a medium. For the sake of simplicity, in Chapter 10, we have considered the fluid

in HIC as an ideal RMHD fluid, which has infinite electric conductivity everywhere,

spatially as well as temporally.

Now we discuss the effect of magnetic field on the medium evolution. First we

discuss that if we consider the ideal RMHD fluid evolution of the medium in relativis-

tic HIC, how its evolution differs from the ideal hydrodynamic evolution. We find

that the presence of magnetic field can enhance the elliptic flow. We know that the

ideal hydrodynamics has only one kind of longitudinal (pressure) sound wave, speed

of which is given by,

cs =

(
∂p

∂ε

)1/2

. (8.43)

In this case EoS of the whole fluid is isotropic (although equation of state can be a

function of temperature itself), therefore cs is isotropic in the ideal hydrodynamics. In

ideal RMHD fluid, different kinds of waves are possible as discussed in the last chapter.

Consider fluid motion perpendicular to the magnetic field direction. Since field lines

remain frozen in the ideal RMHD fluid, therefore due to perpendicular motion of the

fluid, magnetic lines get deformed as shown in the Fig.8.9. This bending of magnetic

lines cost energy, magnetic lines feel tension, and try to become straight again. Due

to this, EoS perpendicular to magnetic field becomes stiffer and hence sound speed

becomes larger in this direction. As we have discussed in the ideal hydrodynamics

case, and also have seen in the last chapter in the case ideal MHD fluid, that fluid

velocity is directly related with the sound speed of the fluid in the direction of the
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Figure 8.9: Figures show the evolution of an ideal RMHD fluid in relativistic HIC.

Due to the expansion of the fluid along x-axis, magnetic field lines get bend in the

right figure.

fluid motion, therefore along the x-axis (if we consider uniform magnetic field along

y-axis), fluid velocity get enhanced, therefore from the expression of the elliptic flow

we can see that its magnitude gets enhanced due to this. Therefore magnetic field in

the fluid can enhance the elliptic flow, see Ref. [17].

In Ref. [18], the effect of a strong magnetic field, which can probe the topology

of QCD vacuum structure in the context of relativistic HIC, has been discussed.

We know that QCD has infinite degenerate vacua. Each vacuum is characterized

by different winding number associated with the gauge field configurations. As in

Chapter 2 we have discussed that there is a topological barrier when one tries to go

from one winding number configuration to the other; i.e. no continuous deformation

is possible which can change one winding number configuration to the other. But

quantum physics allows the quantum tunneling between different winding number

vacua mediated by the instanton process. Because there is an energy barrier, given in

term of F µν between two vacua, therefore during the instanton process F µν becomes

non-zero. Further, instanton configurations have non-zero value of F µνF̃µν , with the

winding number associated with the instanton being given by integral of F µνF̃µν .

Now, we know by the chiral anomaly that for zero mass fermions, if F µνF̃µν becomes

non-zero, then depending upon the sign of the winding number of the instanton, one

chirality prefers over the other in the system. In relativistic HIC, at the stage when
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magnetic field is very strong, i.e. eB � p2 (p is momentum of particle), spin of the

positive charge particles align along the magnetic field direction while spin of the

negative charge particles align opposite to the magnetic field. Now if an instanton

process occurs in the system then due to this, system will have a chirality imbalance.

To have correct chiral particles in the system, particles flip their momentum [18].

Thus by this, there will be more number of one chiral particles than the other. This

leads to the motion of the positive and negative charge particles in the opposite

direction in the line of magnetic field, i.e. perpendicular to the reaction plane. This

causes a charge separation. Therefore it is expected that in HIC experiment, in the

detectors there should be accumulation of opposite charges in the opposite direction,

perpendicular to the reaction plane. This is known as the chiral magnetic effect.
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Chapter 9

Superfluid Phases of QCD in

Heavy-ion Collisions

Topological defects arise in a variety of systems, e.g. vortices in superfluid helium to

cosmic strings in the early universe. There is an indirect evidence of neutron super-

fluid vortices from glitches in pulsars. One also expects that topological defects may

arise in various high baryon density phases of quantum chromodynamics (QCD), e.g.

superfluid topological vortices in the color flavor locked (CFL) phase. Though vastly

different in energy/length scales, there are universal features, e.g. in the formation of

all these defects. Utilizing this universality, in this chapter, we investigate the pos-

sibility of detecting these topological superfluid vortices in laboratory experiments,

namely heavy-ion collisions. Using hydrodynamic simulations, we show that vortices

can qualitatively affect the power spectrum of flow fluctuations. This can give un-

ambiguous signal for superfluid transition resulting in vortices, allowing for check of

defect formation theories in a relativistic quantum field theory system, and the de-

tection of superfluid phases of QCD. Detection of nucleonic superfluid vortices in low

energy heavy-ion collisions will give opportunity for laboratory controlled study of

their properties, providing crucial inputs for the physics of pulsars. Results discussed

in this chapter have been presented in Ref. [1].
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9.1 Introduction

Topological defects are typically associated with symmetry breaking phase transitions.

Due to their topological nature, they display various universal properties, especially

in their formation mechanism and evolution. This has led to experimental studies of

defect formation in a range of low energy condensed matter systems, e.g., superfluid

helium, superconductors, liquid crystals etc. [2,3] which have utilized this universality

and have provided experimental checks on different aspects of the theory of cosmic

defect formation, usually known as the Kibble mechanism [4]. However, it is clearly

desirable to experimentally test these theories also in a relativistic quantum field

theory system for a more direct correspondence with the theory of cosmic strings and

other cosmic defects.

We address this possibility in this chapter and focus on heavy-ion collision (HIC)

experiments. One of the main aims of these experiments is to probe the QCD phase

diagram which shows very rich features, especially in the regime of high baryon density

and low temperatures. FAIR and NICA are upcoming facilities for HIC, dedicated

to the investigation of high baryon density phases of QCD. Exotic partonic phases

e.g. two flavor color superconducting (2SC) phase, crystalline color superconducting

phase, color flavor locked (CFL) phase, [5] etc. are possible at very high baryon

density. Transitions to these phases is associated with complex symmetry breaking

patterns allowing for a very rich variety of topological defects in different phases.

Even at moderately low baryon densities, nucleon superfluidity (neutron superfluidity

and proton superconductivity) arises. The CFL phase occurs at very high baryon

densities, with baryon densities at least an order of magnitude higher than the nuclear

saturation density (ρ0), and temperatures up to about 50 MeV, whereas nucleonic

superfluidity occurs at much lower densities, of order (10−3−1)ρ0, and temperatures as

low as 0.3 MeV. Interestingly, this entire vast range of densities and temperatures may

be accessible at the facilities such a FAIR and NICA. As we noted above, irrespective

of the energy scale, universality of defect formation allows us to infer reasonably model

independent predictions about qualitative effects arising from vortex formation from

these different phase transitions.

In the present day universe, superfluid phases of nucleons are expected to exist
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inside neutron stars [6] and resulting vortices are supposed to be responsible for the

phenomenon of glitches [7]. No such observational support exists yet for the high

density phases of QCD (e.g. CFL phase) in any astrophysical object. In an earlier

paper, some of us have proposed the detection of such phase transitions by studying

density fluctuations arising from topological defect formation and its effects on pulsar

timings and gravitational wave emission [8, 9].

All of the HIC investigations in the literature probing the high baryon density

regime of QCD have focused primarily on signals related to the quark-hadron tran-

sition. We propose a somewhat different line of focus at these experiments. Some

of these exotic high baryon density partonic phases also have superfluidity. For ex-

ample, the CFL phase corresponds to the spontaneous symmetry breaking pattern,

SU(3)color × SU(3)L × SU(3)R × U(1)B → SU(3)color+L+R × Z2. Superfluidity arises

from spontaneous breaking of U(1)B to Z2 as the diquark condensate for the CFL

phase is not invariant under U(1)B baryon number transformations. This is also

expected in somewhat lower density phases (where effects of heavier strange quark

become important) such as the CFL+K0 phase [10]. In HIC, if any of these phases

arise, a superfluid transition will inevitably lead to production of superfluid vortices

via the Kibble mechanism [4].

Similarly, for relatively lower energy heavy-ion collisions, the hot nucleonic system

formed in the collisions may undergo transition to nucleonic superfluid phase as it

expands and cools. This will again lead to the formation of nucleonic superfluid

vortices via the Kibble mechanism. Note, these are precisely the same vortices which

are believed to play crucial role in pulsar glitches, though there they form due to

rotation of the neutron star. As we will discuss later, universality of defect formation

in the Kibble mechanism tells that defect density of order one will be produced

per correlation domain [4]. (For a second order transition, critical slowing down

can affect defect formation in important ways, and is described by the Kibble-Zurek

mechanism [2].)

It is immediately obvious that the most dramatic effect of presence of any vortices

will be on the resulting flow pattern. We carry out detailed simulations of development

of flow in the presence of vortices and study qualitative changes in the flow pattern.

164



9.2 Kibble mechanism, vortex formation and local

linear momentum conservation

We briefly recall the basic physics of the Kibble mechanism which originates from the

formation of a sort of domain structure during a phase transition. The order parame-

ter field (superfluid condensate in this case) is correlated (hence can be approximately

taken to be uniform) inside a domain while it varies randomly from one domain to an-

other. Such a picture of domains is very natural for a first order transition via bubble

nucleation with each bubble being an independent domain. Even for a second order

transition, correlation length size regions correspond to such domains. For a super-

fluid transition, the phase of the order parameter varies randomly from one domain

to another (the magnitude of the order parameter being fixed by the temperature).

As the gradient of the phase directly correspond to superfluid velocity, spontaneous

generation of flow is inevitable in a phase transition. Further, at the junction of sev-

eral domains one can find non-zero circulation of flow if the order parameter phase

winds non-trivially around the junction. These are superfluid vortices. This picture

of formation of vortices is actually very general and applies to the formation of all

types of topological defects in symmetry breaking transitions.

However, spontaneous formation of superfluid vortices via Kibble mechanism in

a transition from normal to superfluid phase has certain non-trivial aspects which

are not present in the formation of other types of topological defects. During phase

transition, the spontaneous generation of flow of the superfluid, as mentioned above,

is not allowed by local linear momentum conservation. Basically, some fraction of

atoms (e.g. 4He atoms) form the superfluid condensate during the transition and

develop momentum due to the non-zero gradient of the phase of the condensate. The

only possibility is that the remaining fraction of atoms (which form the normal com-

ponent of fluid in the two-fluid picture) develop opposite linear momentum so that

the momentum is locally conserved. This means that even though order parameter

phase gradients are present across different domains generating superfluid flow across

different domain junctions, there is no net momentum flow anywhere in the begin-

ning. Note, this argument is somewhat different from the conventional argument of

angular momentum conservation for Kibble superfluid vortices where one knows that
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spontaneous generation of net rotation of the superfluid has to be counter balanced

by the opposite rotation of the vessel containing the superfluid. Here, we are arguing

for local linear momentum conservation.

The immediate implication of this local linear momentum conservation is that the

initial velocity profile for the normal fluid around each vortex formed via the Kib-

ble mechanism should be exactly the same as the velocity profile of the superfluid

velocity profile (as determined by the local momentum conservation at the time of

vortex formation, depending on relative fraction of the normal fluid and the super-

fluid). The momentum balance is being achieved locally here, simply by the normal

component of fluid recoiling to balance the local momentum generated for the super-

fluid component. So, basically, some particles fall into a quantum state with non-zero

momentum, which, for an isolated system, is only possible when other particles in

that part of the system develop equal and opposite momentum. The final picture

is then that, spontaneous generation of vortex via the Kibble mechanism leading to

superfluid circulation in such a system will be accompanied by opposite circulation

being generated in the normal component of the fluid (to balance the momentum

conservation).

We mention here an important implication of the above discussion. In standard

application of the Kibble mechanism for superfluid 4He transition one expects a dense

network of superfluid vortices which should be detectable in experiments. However,

above arguments show that at the time of formation, superflow and normal flow have

opposite flows, so experimental detection may become very complicated. As normal

flow will be expected to change in time due to viscous effects one may expect easier

detection at later times. However, the vortex network itself evolves and coarsens

rapidly in time, thus complicating inference regarding Kibble estimate of vortex for-

mation. In conclusion, counter balancing normal fluid flow which necessarily arises

in Kibble mechanism must be accounted for when comparing theoretical predictions

with data. We plan to carry out a detailed investigation of this issue in a future work.

166



9.3 Hydrodynamical simulation of flow fluctuations

with vortices

We will first focus on superfluid transitions in the high baryon density partonic phase

of QCD and later comment on the possibility of low baryon density nucleonic super-

fluid phase transition. We carry out hydrodynamical simulations of the evolution of

a partonic system in the presence of vortices using a two-fluid picture of superfluid.

We also consider a range of values for the density fraction of superfluid to normal

fluid and study its effect on the signals. The two fluids are evolved, as in our earlier

simulations [11], with Woods-Saxon profile of energy density with and without addi-

tional density fluctuations (though it does not appear to have crucial effects on our

results). It is known that various high baryon density partonic phases (QGP, 2SC,

CFL etc.) do not differ much in energy density and pressure [5]. Thus, we evolve the

superfluid component with the same equation of state as the normal fluid, which is

taken simply to be an ideal gas of quarks and gluons at temperature T and quark

chemical potential µq with the energy density ε given as (for two light flavors) [12],

ε =
6

π2

(
7π4

60
T 4 +

π2

2
T 2µ2

q +
1

4
µ4
q

)
+

8π2

15
T 4, (9.1)

with pressure P = ε/3. Note, as our interest is only in discussing the hydrodynamics

in the partonic phase (and not in the quark-hadron transition), we do not include the

bag constant. The energy-momentum tensor is taken to have the perfect fluid form,

T µν = (ε+ P )uµuν − Pgµν , (9.2)

where uµ is the fluid four-velocity. The hydrodynamical evolution is carried out using

the equations, ∂µT
µν = 0. Note that we do not need to use conservation equation

for the baryon current as our interest is only in flow pattern requiring knowledge of

ε and P and the ideal gas equation of state relating P and ε does not involve µq.

The simulation is carried out using a 3+1 dimensional code with leapfrog algorithm

of 2nd order accuracy. For various simulation details we refer to the earlier work [11].

The initial energy density profile for both fluid components (normal fluid as well as

superfluid) is taken as a Woods-Saxon background of radius 3.0 fm with skin width

of 0.3 fm (with appropriate fractions of energy density). We take the initial central
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energy density ε0 with temperature T0 = 25 MeV and µq = 500 MeV as representative

values [5]. Initial random fluctuations are incorporated in terms of 10 randomly placed

Gaussian of half-width 0.8 fm, added to the background energy density, with central

amplitude taken to be 0.4ε0.

The initial velocity profile is determined by the fluid rotation around the vortices.

For the superfluid part, The magnitude of the fluid rotational velocity at distance r

from the vortex center is taken as

v(r) = v0
r

ξ
(r ≤ ξ); v(r) = v0

ξ

r
(r > ξ). (9.3)

Here ξ is the coherence length. For CFL vortex, estimates in ref. [6] give v0 = 1/(2µqξ)

and the coherence length is given by

ξ ' 0.26

(
100MeV

Tc

)(
1− T

Tc

)−1/2

fm. (9.4)

As we mentioned above, exactly at the time of formation of the vortex, the velocity

profile of the normal component will be opposite, having exactly the same form as

that of the superfluid vortex, but with a magnitude appropriate for the fraction of the

normal fluid. So, for the normal fluid, the initial velocity profile is taken to be exactly

the same as given by Eqn.(9.3), but with v0 having opposite sign, and suitably scaled

for local momentum conservation depending on superfluid density fraction. This will

remain as correct profile if the normal fluid has very low viscosity (note, QGP at RHIC

energies has low viscosity). However, if the viscosity is significant, then this velocity

profile will not be sustained due to differential rotation, and will change in time. We

have accounted for this possibility also by considering admixture of velocity profile

for viscous fluid with a velocity profile v(r) ∝ r at different times (even though we use

inviscid hydrodynamics). We find that this does not affect the qualitative features of

our results at all, except that with large fraction of this viscous velocity profile one

also gets a non-zero directed flow in the presence of vortices.

We take value of superfluid transition temperature Tc = 50 MeV [6]. For the

initial central temperature T0 = 25 MeV, resulting values of ξ = 0.7 fm and v0 = 0.3

(we take c = 1). (Note, even though we use 2-flavor equation of state, we use the

estimates of the vortex velocity profile for the CFL phase for order of magnitude

estimates.)
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Formation of vortices in superfluid transition will be in accordance with the Kibble

mechanism as we discussed above. We will not actually simulate the Kibble mech-

anism here as our interest is not in getting a statistical network of defects. Rather,

we want to see effect of a couple of vortices on the resulting flow pattern. As we

will see below, for the size of QGP region expected here, the number of superfluid

vortices expected here is of order 1. We do not simulate coupled dynamics of normal

and superfluid components. Instead, we evolve the two components using separate

conservation equations for the two energy momentum tensors. This allows us to sim-

ulate a delayed superfluid transition. This models the situation when initial partonic

system has too high a temperature (but with appropriate baryon density) to be in

the superfluid phase, though it is still in the QGP phase, and subsequent expansion

and cooling leads to crossing the phase boundary to the superfluid phase. Also, for

the case of nucleon superfluidity (to be discussed below), initial high temperatures

will lead to normal nucleonic phase, and only at late stages of expansion superfluid

phase may arise. In a coupled fluid dynamics, this cannot be achieved as one always

has a normal fluid as well as a superfluid component.

For observational signatures, we focus on the power spectrum of flow fluctuations.

In a series of papers some of us have demonstrated that just like the power spectrum

of CMBR, in HIC also the power spectrum of flow fluctuations has valuable infor-

mation about the initial state fluctuations of the plasma [13, 14]. We will calculate

the power spectrum of flow fluctuations and study the information contained in the

power spectrum about the initial vortex induced velocity fields. We focus on the

central rapidity region (focusing on a thin slab of width 2 fm in z direction at z = 0)

and study the angular anisotropy of the fractional fluctuation in the transverse fluid

momentum, δp(φ)/pav, where φ is the azimuthal angle, pav is the angular average

of the transverse fluid momentum, and δp(φ) = p(φ) − pav. This fluid momentum

anisotropy is eventually observed as momentum anisotropy of the hadrons which are

finally detected. The power spectrum of flow fluctuations is obtained by calculating

the root mean square values vrmsn of the nth Fourier coefficient vn of the momentum

anisotropy δp(φ)/pav. We use lab fixed coordinates, so event averaged value of vn is

zero.
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We use standard Kibble mechanism, as described above, to estimate the probabil-

ity of vortex formation. In the CFL phase, superfluidity corresponds to spontaneous

breaking of U(1) symmetry (just like the case for superfluid 4He, though for 4He case

U(1) is completely broken while for the CFL phase, U(1) breaks to Z2). In two space

dimensions, this leads to probability 1/4 for the formation of a vortex (V) or antivor-

tex (AV) per correlation domain [4]. For the azimuthal momentum anisotropy in the

central rapidity region, the relevant velocity field is essentially two-dimensional. With

the correlation length of order 1 fm, and the plasma region which we are taking to

have a radius of 3 fm, we expect number of superfluid vortices to be about 2. For

definiteness, we will consider cases of 1 vortex, and a V-V pair and a V-AV pair.

The locations of these are taken to be randomly distributed in the plasma region. To

have clear signals, we have taken definite orientations for the vortices. We consider

vortices either pointing along z axis (with random locations) or pointing along x axis

(passing through the origin).

9.4 Results of the simulation

We now present results of the simulations. Fig. 9.1 shows the effect of vortices on

the flow power spectrum for a central collision at τ − τ0 = 1.68 fm, (with τ0 = 1.0

fm). We mention that with our numerical code, fluid evolution becomes unstable for

large times, especially in with complex flow pattern with high velocities, hence we

show the results at relatively shorter times. However, these qualitative signals will be

expected to survive even for longer times, though with possibly smaller magnitudes.

As such these will apply to situations of early freezeout, e.g. for smaller nuclei, or

for peripheral collisions. Fig. 9.1 shows plots of vrmsn for the cases of no vortex, one

vortex, a V-V pair, and a V-AV pair. In all cases, vortices are taken along the z axis

with random positions. Noteworthy is a large value of the elliptic flow for the V-AV

case (even though this is a central collision). For all cases with vortices we find that

the elliptic flow is very large initially (see, also, Fig. 9.2). This is clearly seen in

the inset of Fig. 9.1 for the V-AV case which also shows the dependence of elliptic

flow on superfluid fraction and its time evolution. This can be detected by its effects

on photon or dilepton elliptic flow [15] which is sensitive to flow effects at very early

170



stages.
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Figure 9.1: Power spectrum at τ − τ0 = 1.68 fm for central collision. Different plots

show the power spectrum for the cases of no vortex, single vortex, a V-V pair, and a

V-AV pair. Inset shows dependence of elliptic flow at different times on the superfluid

fraction for the V-AV case showing very large initial elliptic flow.

Fig. 9.2 shows the time evolution of the power spectrum for the case with a V-V

pair (we find similar results for V-AV case as well). Note difference in the power

for even and odd Fourier coefficients at earlier times. (Such a qualitatively different

pattern in HIC has only been predicted in the presence of strong magnetic field, as

reported in ref. [16]). This result also has interesting implications for the CMBR

power spectrum. It is known that low l modes of CMBR power spectrum also show

difference in even-odd modes [17]. It is possible that this feature may be indicative of

the presence of a magnetic field, or presence of some vorticity during the very early

stages of the inflation.

Fig. 9.3 presents the case of non-central collisions. Here we consider an ellipsoidal

shape for the plasma region as appropriate for a non-central collision with semi-

minor axis along the x-axis, and initial spatial eccentricity = 0.6. Here we plot v2 for

a single event (not the rms value), for two cases, a V-AV pair pointing in z direction

and located on the x-axis at x = ±1.5fm respectively, and the other case with a
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Figure 9.2: Time evolution of the power spectrum for the case with a V-V pair

showing the difference in the power for even and odd Fourier coefficients for early

times.

single vortex lying along the x-axis. Both cases show strongly negative elliptic flow

at initial stages. Fig. 9.3 also shows large (negative) values of v4 for both these cases

which arises from vortex induced elliptic flow being in the orthogonal direction to

the shape induced elliptic flow. These large values of negative elliptic flow as well

as v4 may be observed if the freezeout occurs at early times (in smaller systems, or

in peripheral collisions) and should also leave imprints on other observables such as

on v2 for photons [15]. Note that negative elliptic flow can arise in relatively low

energy HIC due to squeeze-out effects [18]. However, for low energy collisions (as we

discuss below for nucleonic superfluidity), a vortex induced negative elliptic flow is

completely uncorrelated to the elliptic shape of the event (which can be inferred from

independent observables), hence can be distinguished from the squeeze-out effect.

Further, at higher energies (where CFL phase may be expect to arise), no squeeze-

out is expected, so a negative elliptic flow can signal vortex formation.

We have also carried out all the simulations with a delay of up to 1 fm in the onset

of superfluid transition (following our modeling of the two fluid picture as explained

above). The results remain essentially unchanged with various plots showing changes
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of order only few percent.
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Figure 9.3: Plot of v2 and v4 for non-central collisions for a V-AV pair along z axis,

and a single vortex along the x axis, showing negative elliptic flow at initial stages as

well as large (negative) values of v4.

9.5 Nucleonic superfluidity for low energy colli-

sions

We now discuss the possibility of detecting nucleonic superfluidity in HIC. Though

neutron superfluid condensate is expected to exist inside several nuclei, these sys-

tems are typically too small to demonstrate bulk superfluid phase and its associated

superfluid vortices, as are expected inside a neutron star. Calculations for neutron

stars show that nucleonic superfluidity is expected in range of densities from 10−3ρ0

(for 1S0 pairing of neutrons) to few times ρ0 (for 3P2 −3 F2 pairing). The critical

temperature can range from 0.2 MeV to 5 MeV (depending on the nuclear potential

used [19, 20]). Temperatures and densities of this order are easily reached in HIC at

relatively low energies. For example, at the FOPI-facility at GSI Darmstadt, tem-

peratures of about 17 MeV (with ρ ∼ 0.4ρ0) were reported in Au-Au collisions at
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150 MeV/nucleon lab energy [21]. Temperatures of order 4-5 MeV were reported in

Au-Au collisions at E/A = 50 MeV, at heavy-ion synchrotron SIS [22]. Thus temper-

atures/densities appropriate for the transition to the nucleonic superfluid phase can

easily be reached in HIC. Universality of defect formation implies that the qualitative

aspects of our results in this paper (for the CFL phase) will continue to hold even in

this lower density regime. FAIR and NICA are ideal facilities for probing even this

low energy regime with detectors suitable for measurements with which flow power

spectrum analysis can be performed. Detection of signals as discussed in this paper

can provide a clean detection of nucleonic superfluid vortices. It is worth emphasiz-

ing the importance of focused experiments for creating a nucleonic system of several

fm size which can accommodate nucleonic superfluid vortices. Direct experimental

evidence of these vortices and controlled studies of their properties can provide a firm

basis for our understanding of neutron stars. This is all the more important in view

of the fact that gravitational waves from rotating neutron stars and their collisions

will be thoroughly probed by LIGO and upcoming gravitational wave detectors.

UrQMD Analysis for possibility of Neutron Super-

fluidity in low energy Heavy-ion Collisions

Ultra-relativistic quantum molecular dynamics model (UrQMD) [24, 25] is a mi-

croscopic description of relativistic heavy-ion collisions (HIC), which uses N-body

transport theory and evolves the system from initial stage to freeze-out time in 8N -

dimensional phase space, where 6N degrees of freedom corresponds to configuration-

and momentum-space and rest 2N , time and energy of each particles. Two-body

elastic and inelastic collisions, and many-body resonance decay are ingredients for

changing momenta and particles species in this model. UrQMD is applicable from

several MeV to several TeV per nucleon laboratory energies. At low energies (
√
s < 5

GeV) it deals with phenomenology of hadronic interactions by considering hadrons,

their excited states and resonances. At higher energies (
√
s > 5 GeV) it incorpo-

rates string mechanism for hadronic interaction, string excitation and its subsequent

fragmentation into multiple hadrons.
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We use urqmd-3.3p2 model [24] to generate 10000 events at different times for

238
92 U-238

92 U central collisions with lab. energy 50A MeV. In our simulations, we have

ignored the deformation of Uranium nuclei, and considered it as a spherical nuclei. For

our simulations, we have considered such a low energy and heavy nuclei because we are

looking for the possibility of neutron superfluidity in the overlap region where plasma

forms, and to have neutron suerfluidity baryon density must be higher than 0.16×10−3

fm−3 and temperature must be lower than few MeV (transition temperature is model

dependent), which only can be possible by colliding a neutron rich nuclei with low

energy.

We start our analysis from time 20 fm by considering only nucleons (only protons

& neutrons) (because we are interested in the temperature and density of nucleon

system). For the fluid description of the system, one should have at least local

thermodynamic equilibrium (LTE). To check LTE, usually one takes, either cubical

or spherical cell around the center of the system. Firstly, to check equilibrium, we

consider cubical cell of volume 4×4×4 fm3 centered around the center of mass of the

system (i.e. at the origin). We follow the same procedure for checking equilibrium

in the cell as followed in Ref. [25]. First, we check whether velocity distributions

dN
dvi

(vs. vi), follow Maxwell-Boltzman (MB) velocity distribution, exp(−mNv
2
i /2T ),

and overlap with each other or not. If these distributions overlap with each other,

i.e. if momentum is isotropic, then LTE can be possible in this cell. Here dN is

the number of nucleons in the velocity bin dvi, where vi is the velocity of individual

nucleons in i ≡ (x, y, z) direction, mN is mass of nucleons, T is the temperature of

the cell. We find that in this cell, 20 fm time is too short to achieve LTE. At this

time, transverse and longitudinal MB velocity distributions do not overlap with each

other (even, longitudinal velocity distribution does not follow MB distribution at this

time), see Fig. 9.4. Full equilibrium is achieved in a cubical cell of volume 6× 6× 6

fm3 at 150 fm time, where all velocity components completely overlap with each other

and follow MB velocity distribution, see Fig. 9.4. We get, on an average, 7.5 nucleons

inside the cell, which gives the nucleon density about 3.5× 10−2 fm−3 which is more

than 200 times larger than the required density to have neutron superfluidity (note

that we have only considered protons and neutrons, consideration of other baryons

will give even more baryon density).
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Figure 9.4: Figures show velocity distribution of all three components of velocity of

nucleons (protons and neutrons) at different times. At t = 150 fm we see the complete

overlap of velocity distribution which indicates that, in the cubical cell of 6 fm size,

local thermodynamic equilibrium is possible.

At 150 fm time, in this cell, the momentum spectrum of nucleons, i.e. dN
d3p

vs. (E−
m), follows Fermi-Dirac distribution (may be fitted with the Boltzman distribution

also),
dN

d3p
=

1

4π

dN

pEdE
=

a

exp(E−µB
T

) + 1
, (9.5)

where µB is the baryon chemical potential. By fitting, we obtain the temperature of

the cell to be about 9.7 MeV. This indicates the presence of thermodynamic equilib-

rium in the cell, see Fig. 9.5.

Although the temperature of the cell is higher than the required temperature

to have neutron superfluidity, but it is not much higher and gives a hint that in

the heavy-ion collision experiments it might be possible that one can achieve the

appropriate condition to have neutron superfluidity. The detailed analysis for such
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Figure 9.5: Figure shows particle momentum distribution, dN
d3p

vs. (E −m) at time

150 fm in the 6 fm cell. We have fitted it with the Fermi-Dirac distribution function

(though it may be fitted with the Boltzman distribution function). By fitting we

obtain the temperature of the cell to be about 9.7 MeV.

situation is under investigation which we will present it in future.

9.6 Conclusions

We conclude by pointing out the importance of searching for the superfluid vortices

during transition to high baryon density QCD phases, or to nucleonic superfluid

phase, at FAIR and NICA. Due to universal features of vortex (topological defect)

formation, these vortices directly probe the symmetry breaking pattern of the phase

transition providing very useful information about the QCD phase diagram. Various

high density phases of QCD such as CFL phase etc. are associated with definite

symmetry breaking patterns leading to different topological defects. Detection of

defects thus directly probes precise nature of symmetry breaking transition occurring

in the system. In this sense, this technique has advantage over other observational

signatures which depend on equation of state etc. as those quantities can be strongly

model dependent (in contrast to the symmetry patterns which are the most universal

features of any phase transition). In this context we mention that there has been

study of stability of CFL vortices etc. and it is found that for certain parameter
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range these vortices may be unstable [23]. Even for the unstable case, typical decay

time for the vortices will be expected to be at least of order few fm which, though very

short time for astrophysical relevance, should be long enough time for these vortices

to leave their observational signature in heavy-ion collisions.

It is hard to overemphasize the importance of detecting nucleonic superfluid phase

and associated vortices in these experiments which have capability of providing a con-

trolled experimental investigation of the properties of these vortices and associated

phases. Till date, there is no direct experimental observation of nucleonic super-

fluid vortices, though they provide probably the most accurate explanations of pulsar

glitches. Thus detection of these in laboratory experiments will strengthen our un-

derstanding of pulsar dynamics. The signals we have discussed show qualitatively

new features in flow anisotropies signaling the presence of vortices and the underly-

ing superfluid phase in the evolving plasma. These qualitative features are expected

to be almost model independent, solely arising from the vortex velocity fields. We

mention that one has to properly account for the effects due to jets, resonance decays

etc. to properly account for genuine hydrodynamic flow fluctuations. We hope to

address these issues in a future work. Also, we have not included error bars in our

plots to avoid overcrowding of the plots. The number of events was chosen suitably

large (100 events) so that the main qualitative features of the plot are above any

statistical fluctuations. (Our focus is mainly on the qualitative patterns of the plots,

in the spirit of the universal features of topological vortices forming at varying energy

scales, and not on precise numerical value.) As we mentioned, due to universality of

defect formation, similar signals are expected from nucleonic superfluid vortices which

can arise in low energy HIC providing direct experimental access to the physics of

pulsars.

In our UrQMD analysis we obtain the nucleon density more than 200 times larger

than the required baryon density, and the temperature of such system comes out to be

9.7 MeV which is not much higher than that required to have neutron superfluidity.

It gives a good hint about the possibility of neutron superfluidity in the low energy

heavy-ion collision experiments. More dedicated and appropriate analysis may give

even lower temperature which can reveal the possibility to have neutron superfluidity

in heavy-ion collisions.
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Chapter 10

Magneto-hydrodynamic

Simulations for Relativistic

Heavy-ion Collisions

Very strong magnetic fields can arise in non-central heavy-ion collisions at ultrarela-

tivistic energies, which may not decay quickly in a conducting plasma. We carry out

relativistic magnetohydrodynamics (RMHD) simulations to study the effects of this

magnetic field on the evolution of the plasma and on resulting flow fluctuations in

the ideal RMHD limit. Our results show that magnetic field leads to enhancement in

elliptic flow for small impact parameters while it suppresses it for large impact pa-

rameters (which may provide a signal for initial stage magnetic field). Interestingly,

we find that magnetic field in localized regions can temporarily increase in time as

evolving plasma energy density fluctuations lead to reorganization of magnetic flux.

This can have important effects on chiral magnetic effect. Magnetic field has non-

trivial effects on the power spectrum of flow fluctuations. For very strong magnetic

field case one sees a pattern of even-odd difference in the power spectrum of flow co-

efficients arising from reflection symmetry about the magnetic field direction if initial

state fluctuations are not dominant. We discuss the situation of nontrivial magnetic

field configurations arising from collision of deformed nuclei and show that it can lead

to anomalous elliptic flow. Special (crossed body-body) configurations of deformed

nuclei collision can lead to presence of quadrupolar magnetic field which can have
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very important effects on the rapidity dependence of transverse expansion (similar

to beam focusing from quadrupole fields in accelerators). Results discussed in this

chapter have been presented in Ref. [1].

10.1 Introduction

Extensive efforts have focused on the discovery of the quark-gluon plasma (QGP)

phase of QCD in relativistic heavy-ion collision experiments (RHICE). There is mount-

ing evidence that QGP phase is created in these experiments. It is no more possible

to explain the wealth of experimental data at RHIC and LHC without assuming a

transient phase of QGP. While it is certainly desirable to have smoking gun signal

for QGP, it is also an appropriate stage for the exploration of the rich spectrum of

physics unfolded by the (most likely) presence of this transient stage of QGP in rel-

ativistic heavy-ion collisions. Search for exciting possibilities like the critical point

in the QCD phase diagram, possible exotic high baryon density phases (in upcoming

facilities FAIR and NICA) are some of these directions.

An entire new line of explorations has been initiated in recent years by the very

exciting possibility that in relativistic heavy-ion collision experiments extremely high

magnetic fields are expected to arise, especially in non-central collisions. During ear-

liest stages, magnetic field in the plasma can be of order 1015 Tesla (few m2
π), which is

several orders of magnitude larger than the magnetic field even in magnetars. Such a

strong magnetic field in QGP will lead to important effects. Much of the discussion in

literature has focused on the exciting possibility of observing CP violation effects [2].

Relevant effects are generally known as chiral magnetic effect and more recently dis-

cussed chiral vortical effect. Along with such effects, there are many other important

consequences of the magnetic field for QGP evolution. Some of us had earlier utilized

the fact that an important effect of the presence of magnetic fields in the plasma will

be to lead to variations in velocities of different types of waves in the plasma [4]. In

particular the group velocity varies with the angle between the wave vector and the

direction of the magnetic field. Its obvious effect will be to qualitatively modify the

development of anisotropic flow. In ref. [4], it was argued that the flow coefficients

can be significantly affected by these effects, in particular, the presence of magnetic
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field can lead to enhancement in the elliptic flow coefficient v2 by almost 30%. As

pointed out in ref. [4], it raises the interesting possibility of whether a larger value of

η/s can be accommodated by RHIC data when these effects are incorporated using

full magnetohydrodynamical simulations. This possibility can be viewed as either

leading to the QGP η/s being higher than the AdS/CFT bound, or in the context of

results in ref. [5] which suggested crossing the AdS/CFT bound, to restore the bound

when proper effects of magnetic field are incorporated. The issue of magnetic field

dependence of elliptic flow was discussed by Tuchin [6] (including viscous effects as

well) with results in agreement with [4].

The arguments in ref. [4] utilized directional dependence of sound velocity in the

presence of magnetic field and modeled its effect on development of elliptic flow. Those

results were not based on any magnetohydrodynamical simulation. In this chapter, we

have carried out detailed relativistic magnetohydrodynamics simulations. We indeed

confirm the results in [4,6] that elliptic flow can increase in the presence of magnetic

field. However, our results show that the dependence of v2 on magnetic field is much

more complex than assumed in these earlier works, with several factors at play. In

certain situations (e.g. for small impact parameters) the magnetic field enhances the

elliptic flow, while in a different situation (large impact parameter), magnetic field

suppresses the elliptic flow. These underlying factors are important to understand

(especially in view of other recent relativistic magnetohydrodynamics simulations [7]

where it was found that magnetic field has no effect on elliptic flow, in contrast to the

results in [4, 6]). Along with the effect on elliptic flow, we will demonstrate several

other important effects of magnetic field showing how flow evolution is qualitatively

affected. These effects are important as they show that an understanding of flow

pattern is not complete without including effects of magnetic field in the early stages

of plasma evolution.

Another important reason to focus on different qualitative effects of magnetic field

on flow evolution is that it can provide signal for the presence of strong magnetic field

during early stages of the plasma evolution. It must be emphasized that although

for the earliest stage of collision, magnetic field can be calculated with reasonably

accurate approximations, its evolution even in immediately successive stages is poorly

understood. All the important effects of the magnetic field, such as chiral magnetic
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effect as well as various effects on flow pattern as we have discussed here (and in [4,6])

require that reasonably strong magnetic field survives for at least several fm proper

time. Earlier it was thought that magnetic field rapidly decays after the collision. It

is strong for a very short time, essentially the passing time of the Lorentz contracted

nuclei (∼ 0.2 fm for RHIC energies). Subsequently it rapidly decays [3, 8]. In such

a situation the effect of magnetic field on flow evolution as well effects such as chiral

magnetic effect will be strongly suppressed as time scale for the development of flow

and for charge separation (for latter effects) is several fm. Similar situation is expected

at higher energies, e.g. at LHC.

It was later pointed out by Tuchin [9] that magnetic field does not decay very

rapidly due to induced currents arising from rapidly decreasing external magnetic

field. In fact, the magnetic field satisfies a diffusion equation with the diffusion

constant equal to 1/(σµ) where µ is the magnetic permeability and σ is the electrical

conductivity [10, 11]. With µ ∼ 1 and σ ' 0.04T (= 0.04 fm−1 for T ' 200 MeV)

from refs. [12], one finds that the time scale τ over which the magnetic field remains

reasonably strong [9] over length scale L is, τ ' L2σ/4. For L = 6− 10 fm, we get τ

less than 1 fm. Indeed, one sees that magnetic field decreases fast initially, though at

later times matter effects become more important slowing down decrease of magnetic

field significantly [13]. For higher temperatures σ will be larger increasing the value of

τ . σ is also expected to increase due to the effects of magnetic field in the plasma [14],

further increasing the value of τ .

Even if one takes this optimistic picture that due to non-zero conductivity of QGP,

magnetic field doe not decay extremely rapidly, and may survive for significant time

scales, the self-consistency of this picture can be questioned due to uncertainties of

the initial non-equilibrium stages of the parton system. Initially there is no plasma,

so no conductivity. If the parton system is assumed to have the QGP conductivity

during its formation stages, question arises as to how magnetic field can penetrate

the conducting plasma. For simplicity consider the plasma (say during early stage

for less than 1 fm lab time) to be a thick disk of nuclear diameter and thickness of

1-2 fm. If the plasma was static then one could just consider the penetration depth

δ ∼ (µσω)−1/2 where ω is the angular frequency of electromagnetic wave. Initial

magnetic field, being a narrow pulse of time duration t ' 0.2 fm (typically the width
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of Lorentz contracted Nuclei, for RHIC energies), can be taken to have ω ' 30 fm−1.

This gives the penetration depth of order 1 fm (note it was mistakenly written as 3

fm in ref. [4]). In such a situation, though magnetic field cannot penetrate from the

perimeter of the disc (nuclear radius being about 6-7 fm), it may be able to penetrate

significantly in the interior from the longitudinal direction (from both sides), with

disk thickness being only about 1 fm. In such a situation, the picture of magnetic

field diffusing through the entire region of the plasma with typical length scale of

several fm, and lasting with a value close to the high initial peak values for time

scales of several fm, may be self consistent.

However, the plasma is not static in the longitudinal direction. Far from it, the

plasma is relativistically expanding in the longitudinal direction. The above argument

of penetration depth cannot be applied to a conducting plasma which is relativistically

expanding. The conclusion being that if the plasma is taken to be conducting from

the very beginning, we do not know how much fraction of the original magnetic

field penetrates the plasma. Only that fraction can then be assumed to follow the

diffusion equation as in ref. [9] and survive for few fm time scale. A proper treatment

of the problem will require treatment of the early parton system as a non-equilibrium

system, whose response to ambient magnetic field then needs to be estimated. As the

plasma equilibrates, it will develop conductivity as appropriate for the QGP phase,

and one needs to determine how much magnetic field is trapped in the conducting

plasma. Its subsequent evolution then can be followed as in ref. [9].

Having stated all these issues, we will take a simple path. We will assume, for

simplicity, that strong magnetic field exists inside the plasma. The strength of mag-

netic field will be estimated close to its peak value, and will be assumed to survive

in the plasma for the duration of evolution we carry out evolving according to the

equations of relativistic magnetohydrodynamics (RMHD). We assume ideal RMHD

with infinite conductivity, so magnetic field lines are frozen in the plasma. Due to our

computer limitations (for our 3+1 dimensional simulations), we are only able to con-

sider small lattice, hence evolve for short times up to about 3 fm (to avoid boundary

effects). This being a rather short time, our assumption of ideal MHD may not be

very inappropriate. Our focus in the chapter is mainly on the qualitative aspects of

results, and not on actual numbers. We are not claiming to give numbers which can
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be compared to the experimental data. Rather we demonstrate qualitative patterns

of flow evolution, which one can look for in the experiments. Primary emphasis being

on these being signals of the presence of strong magnetic field during early stages of

plasma evolution.

The chapter is organized in the following manner. In Sec.II, we briefly review the

formalism we have adopted for the relativistic MHD simulation from ref. [15]. Sec.III

presents details of our numerical simulation. In Sec.IV we first discuss the issue of

effect of magnetic field on elliptic flow (in view of conflicting conclusions in [4, 6, 7]).

Sec.V presents results of the simulations which show that magnetic field can lead to

qualitatively new effects. Sec.VI presents conclusions and discussions.

10.2 The Formalism

We here provide a brief summary of the formalism we have followed for our relativistic

magnetohydrodynamical (RMHD) simulations. For this we have followed ref. [15] and

for the benefit of the reader we provide essential steps from that ref. in the following.

We will be assuming zero baryon chemical potential situation so there will not be any

baryon number conservation equation. Equations for ideal RMHD for the evolution

of fluid and magnetic field are as follows.

Conservation of total energy momentum tensor (for QGP as well as the magnetic

field) is given by

∂α[(ρ+ pg + |b|2)uαuβ − bαbβ + (pg +
|b|2

2
)ηαβ] = 0, (10.1)

where we have used perfect fluid form for the QGP energy-momentum tensor,

T µν = (ρ+ pg)u
µuν + pgη

µν . (10.2)

Maxwell’s equations are

∂α(uαbβ − bαuβ) = 0. (10.3)

Here ρ and pg are the energy density and pressure of QGP which we assume to

be related by an ideal gas equation of state, pg = ρ
3
. uα is the four-velocity with
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uαuα = −1. Four-vector bα is related to the magnetic field ~B as,

bα = γ[~v. ~B,
~B

γ2
+ ~v(~v. ~B)]. (10.4)

γ is the Lorentz factor for velocity ~v and we have following normalizations

uαbα = 0, and |b|2 ≡ bαbα =
| ~B|2

γ2
+ (~v. ~B)2. (10.5)

For numerical simulation, the above equations are cast in the following form

∂U

∂t
+
∑
k

∂F k

∂xk
= 0. (10.6)

This is the evolution equation for the vector U where

U = (mx,my,mz, Bx, By, Bz, E), (10.7)

where

mk = [ρhγ2 + | ~B|2]vk − (~v. ~B)Bk, (10.8)

and

E = ρhγ2 − pg +
| ~B|2

2
+
v2| ~B|2 − (~v. ~B)2

2
. (10.9)

h is the specific enthalpy (4pg/3 with the ideal gas equation of state we are using

for QGP) and F k are the fluxes in Eqn.(10.6) along directions xk ≡ (x, y, z) given as

follows.

F x =



mxvx −Bx
bx
γ

+ p

myvx −Bx
by
γ

mzvx −Bx
bz
γ

0

Byvx −Bxvy

Bzvx −Bxvz

mx


. (10.10)

Similar expressions hold for F y and F z by appropriate replacement of indices.

Here p = pg + |b|2
2

is the total pressure. Evolution is carried out using Eqn.(10.6) for

the vector U from which the independent variables (pg, ~v, ~B) have to be extracted.

For this we define W = ρhγ2 and S = ~m. ~B. With this we can write,

187



E = W − pg + (1− 1

2γ2
)| ~B|2 − S2

2W 2
, (10.11)

|m|2 = (W + | ~B|2)2(1− 1

γ2
)− S2

W 2
(2W + | ~B|2). (10.12)

This equation is used to express γ as a function of W and known variables ~m, ~B,

and hence S (from the knowledge of vector U).

γ =

(
1− S2(2W + | ~B|2) + |m|2W 2

(W + | ~B|2)2W 2

)−1/2

. (10.13)

With the ideal gas equation of state we have pg = W
4γ2 . Eqn.(10.9) then can be

entirely written in terms of unknown quantity W and other known quantities ~B, S

and E as follows

f(W ) ≡ W − pg + (1− 1

2γ2
)| ~B|2 − S2

2W 2
− E = 0. (10.14)

We solve this equation using Newton-Raphson method to get W using expressions

for various derivatives as in ref. [15]. (Except for one derivative, we obtain dpg/dW

using the equation pg = W
4γ2 for our choice of equation of state. This expression

differs from the expression in ref. [15].). From the value of W thus obtained, γ can

be calculated using Eqn.(10.13). With this, we get value of pg. Equation for mk

(Eqn.(10.8)) can then be used to obtain velocity components vk. This completes

the procedure of recovery of independent variables from time evolved vector U . For

further details, we refer to ref. [15].

10.3 Details of Numerical Simulation

We have developed a 3+1 dimensional code and use lattice of size 200 × 200 × 200

(and in some cases, for example for power spectrum for very strong magnetic field

case, to get averages over several events we use smaller lattice 150× 150× 150). For

evolution we use leapfrog algorithm of 2nd order accuracy. Due to small size of the

lattice (due to computer limitations) we are able to evolve only for times up to 3

fm to avoid boundary effects. In some cases we evolve for shorter times as we will

mention for the respective cases.
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Glauber like initial conditions are used for the initial energy density profile where

a nucleus-nucleus collision is viewed as a sequence of independent binary nucleon-

nucleon collisions [16]. The enhancement of v2 is studied using smooth Glauber

initial conditions in the X-Y plane. The parameters are tuned to an initial central

temperature of 160 - 180 MeV assuming energy density of ideal gas of quarks and

gluons for the two flavor case with zero chemical potential. A smooth Woods-Saxon

profile is used along z-axis with extent equal to the extent of the colliding region along

Y-axis. While studying the other effects like flux re-organisation, any possibility of

vorticity generation, and the power spectrum, we use Glauber Monte Carlo initial

conditions with parameters tuned to obtain the desired temperature range of 160 -

180 MeV. We distribute the energy density from the collision of participants along z-

axis following a Gaussian distribution. As we mentioned above, ideal gas equation of

state is used for QGP. We also add a constant background energy density of about 1%

of the maximum initial energy density of the plasma, it gave better stability for the

simulation, especially in the presence of fluctuations. (This energy density addition

is not needed due to any instability of the program. Our algorithm of extracting

the primitive variable does not work effectively when magnetic field energy density

is much larger than the plasma density, as was noted in ref.6 also. Hence a non-zero

energy density is used in the outer region. Such a small energy density should not

affect any results strongly. Indeed, it is hard to argue that surroundings of the QGP

region do not have some small energy density.) For some of the results, we have

neglected fluctuations and have used Glauber optical initial conditions along the x-y

plane. This is done so that one can isolate the effects of magnetic field on the specific

features of plasma evolution. Fluctuations lead to magnetic flux rearrangement which

makes evolution highly complex, as we will demonstrate in the section on results. So,

in the presence of fluctuations it becomes hard to associate specific patterns of flow

with the magnetic field. Certainly, for experimental comparison one will need to

combine all the effects together, and make special efforts to identify specific regimes

of collision energy, nuclear size, centrality etc. to enhance the effects due to magnetic

field. When we present results we specify where fluctuations are included and where

not.

For the initial configuration of magnetic field we have used several methods. For
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most of the results we use magnetic field produced by two oppositely moving uniformly

charged spheres (representing colliding nuclei), in vacuum, with appropriate Lorentz

gamma factor [11, 13]. This neglects modifications due to participants, but that is

not expected to be very significant. This works fine with the range of magnetic

fields expected in relativistic heavy-ion collisions, though we restrict our simulation

to lower energy collisions about
√
s = 20 GeV. For most of the simulations below,

the magnetic field profile is obtained in this manner. We typically give two sets

of results, labeled by Btime which is the time at which the magnetic field profile is

calculated after the collision. We use Btime = 0.4 fm and 0.6 fm. Smaller value

gives larger value of the magnetic field, but may not be very realistic in view of

finite conductivity of the plasma. If we use very large Lorentz gamma factor, then

the magnetic field is sharply peaked at receding (Lorentz contracted) nuclei, and our

3+1 dimensional simulation is not able to run for reasonable times, especially in the

presence of fluctuations. For some cases just to show some interesting effects (e.g.

systematic difference in the power of even-odd flow coefficients) we needed to use

very high magnetic fields (of order 15 m2
π). Such large magnetic field are completely

unrealistic here, and we use this value only to show how completely new effects may

arise for very large magnetic field. The simulation with realistic magnetic field profile

develops instabilities, primarily because in this case magnetic field energy density is

much larger than the plasma density everywhere. Such difficulties have been noticed

in other simulations as well [7] where it is mentioned that the numerical code was not

able to handle configurations where the magnetic pressure is much larger than the

thermal pressure, which typically is the case in regions outside the plasma region. To

avoid these difficulties, for the large magnetic field case, we use a simpler profile for

magnetic field where the profile in the (x-z) plane is chosen to be proportional to the

energy density profile in the (x-z) plane at y = 0 obtained from the Glauber Monte

Carlo like procedure as described above. z axis is the collision axis and the impact

parameter is along the x axis, with resulting magnetic field pointing along the y axis.

The peak value of the magnetic field is chosen by hand. The magnetic field is then

taken to be constant along the y axis, as consistent with Gauss’ law. Clearly this

magnetic field profile is not realistic along the y axis, but is only used to illustrate

special effects of magnetic field on plasma evolution. The possibility remains that
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large magnetic fields may not be very unrealistic for example for deformed nucleus

case.

We mention here that for low energy collisions with
√
s = 20 GeV it is not appro-

priate to work with the simple zero chemical potential ideal relativistic gas equation

of state which we have used. Also, at such low energies, chemical potential is sizeable

and one cannot ignore baryon current. We use these approximations (simple equation

of state and zero chemical potential) for simplicity, just as we have used ideal MHD

equations for the evolution of the plasma. Our aim in this work is not to give definite

numbers which can be compared with the experiments. Rather we look for basic

physics for new effects. These qualitative patterns will not be expected to depend on

the presence (or absence) of baryon current, or on the exact nature of the equation

of state, though the numerical values will certainly depend on the factors. We thus

expect that the qualitative patterns we find and the basic physics of new phenomena

we discuss, will apply from low energy collisions (e.g. at FAIR and NICA) to high

energy collisions at LHC.

As the simulation is carried out using (x,y,z) coordinates, with complete 3-dimensional

profile for the initial energy density and magnetic field, we incorporate longitudinal

expansion by assuming a maximum value of the velocity (of 0.7) at maximum z value

for the Lorentz contracted energy density profile. (Note that this maximum velocity

represents the velocity of the equilibrated plasma, and not that of the receding nu-

clei.) For intermediate distances, velocity is assumed to vary linearly as appropriate

for Bjorken scaling. We use the lab time coordinate for time evolution. For the initial

energy density profile, we first assume energy density profile as appropriate for an

initial constant proper time hypersurface, evolving locally by longitudinal Bjorken

scaling law, and then transform it to the constant lab time. This neglects nonlinear

effects of inhomogeneities on evolution for a very short proper time period (the initial

time for the beginning of plasma evolution), but should not be important for later

time evolution. All our results are for the central rapidity region with unit rapidity

window (suitably translated to ∆z). This further makes our results reasonably reli-

able as the difference between the proper time and lab time are significant only for

larger rapidities. Due to limitation of lattice size we have only considered small nu-

cleus, copper in our case. Even for that, we have taken the radius to vary from about
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3 fm to 4.5 fm (depending on consideration of fluctuations etc.). We again empha-

size that the spirit of our work here is to demonstrate various important qualitative

patterns in the flow in the presence of magnetic fields, rather than precise numbers.

10.4 Effect of Magnetic Field on Elliptic Flow

Before we present results of our simulations for different aspects of flow evolution,

including the elliptic flow, we discuss previous results in the literature regarding

effects of magnetic field on elliptic flow. In an earlier paper [4], some of us had argued

that magnetic field can lead to enhancement of elliptic flow by up to about 30%.

We first briefly recall physical arguments for such an enhancement as discussed in

ref. [4]. Basic argument in [4] relied on the the effects of an external magnetic field on

sound waves in QGP produced in RHICE. For relativistic magnetohydrodynamics,

the waves which are relevant for the case of discussion of flow are the magnetosonic

waves as they involve density perturbations. Phase velocities for these waves are given

by [17]

vph = vphn = n(
1

2
[(ρ0h0/ω0)c2

s + v2
A])1/2(1 + δ cos2 θ ± a)1/2. (10.15)

Here + and − signs correspond to the fast and slow magnetosonic waves respec-

tively, vA = B0/
√
ω0 is the Alfvén speed, and δ and a are defined below. Mean local

values of various quantities are denoted by subscript o and θ is the angle between the

magnetic field and n.

a2 = (1 + δ cos2 θ)2 − σ cos2 θ, (10.16)

δ =
c2
sv

2
A

[(ρ0h0/ω0)c2
s + v2

A]
, σ =

4c2
sv

2
A

[(ρ0h0/ω0)c2
s + v2

A]2
. (10.17)

(Note, σ is defined above, and should not be confused with the conductivity as

used above.) For propagation of density perturbations, as relevant for the evolution of

flow anisotropies, the relevant wave velocity is the group velocity for the magnetosonic

waves,
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vgr = vph

[
n± t

[σ ∓ 2δ(a± (1 + δ cos2 θ))] sin θ cos θ

2(1 + δ cos2 θ ± a)a

]
. (10.18)

Here t = [(B0/B0) × n] × n, and again the upper and lower signs (± or ∓)

correspond to the fast and the slow magnetosonic waves respectively. For a given

magnetic field B0, the direction of n can be varied to generate group velocities of

these waves in different directions. Fig. 10.1 shows a typical situation of various

vectors in Eq.(10.18) expected in RHICE. It is important to note that the direction

of vgr depends on the relative factors multiplying n and t in Eq.(10.18). This in turn

depends on properties of the plasma like energy density. Thus due to the presence

of spatial gradients in RHICE, especially due to initial state fluctuations, even along

a fixed azimuthal direction, we expect the direction of vgr to keep varying with the

radial distance. This can lead to the development of very complex flow patterns. This

raises a very interesting possibly of generation of vorticity in the plasma entirely from

the effect of magnetic field. We are not able to fully explore this possibility as yet

due to our limitation of relatively small time evolution of the plasma. (Vorticity will

be expected to arise at later times when the flow pattern gets significantly twisted

due to magnetic field effects.) Any such vorticity will have important implications,

especially in view of chiral vortical effect.

y

B

n

t

vgr

x

Figure 10.1: A typical situation expected in relativistic heavy-ion collisions with the

magnetic field pointing in the y direction. The direction of the group velocity vgr is

obtained from n and t via Eq.(10.18). (figure taken from ref. [4]).
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The effect of magnetic field on propagation of sound waves here comes from an

effective magnetic pressure arising from the freezing of magnetic field lines in the

plasma in the magnetohydrodynamics limit. The distortions of magnetic field lines in

the presence of density perturbations cost energy leading to an extra contribution to

pressure from the presence of magnetic field. This is what is responsible for increasing

the effective sound speed as given above. The estimate of the effect of magnetic field on

elliptic flow in ref. [4] was based on the fact that the flow coefficients are proportional

to the sound velocity [18], which now becomes dependent on the directions of the

magnetic field and that of the phase velocity. This directly affects the flow pattern

and hence elliptic flow.

We mention that these arguments are rather crude. Elliptic flow is a complex phe-

nomenon and cannot be directly related to the anisotropy of the stiffness of equation

of state and resulting sound velocity. Our intention here is to point out the under-

lying physics of the phenomena and why one may expect an increased elliptic flow

from the presence of magnetic field. A more detailed analysis of the effects of mag-

netic field on elliptic flow was carried out by Tuchin in [6] with results in agreement

with the estimates of [4]. Later, in the section of results we will present results of

our numerical simulation where again magnetic field is found to enhance elliptic flow.

However, quite different results are reported in a recent numerical RMHD simulations

where magnetic field was found to have no effect on elliptic flow [7]. It is important

to understand possible reasons for the discrepancies between these different works.

For this purpose we have carried out simulations to study elliptic flow evolution with

different values of impact parameters which lead to different types of magnetic field

profiles. Our conclusion is that in the end the effects of magnetic field on flow pat-

tern has many complex features. The picture used in [4] was indeed too simplistic

where the magnetic field dependent sound speed was directly assumed to affect the

elliptic flow. In fact quite opposite arguments could be given using Lenz’s law from

which one expects that induced magnetic fields will always oppose the change which

causes magnetic flux changes. Basically this should imply that expansion along x axis

should be suppressed as this leads to decrease in magnetic flux, while expansion along

y axis should not be affected, thereby decreasing elliptic flow. The actual situation is

much more complex. For example, Lenz’s law argument does not distinguish between
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uniform expansion along x axis and the distortion of a localized plasma by trans-

verse expansion. The latter leads to distortion of field lines, and not just decrease in

magnetic flux, which has implications for extra pressure, and hence on sound waves.

Some of the complexities have been discussed recently in refs. [19, 20], though exact

time dependence used for magnetic field in ref. [20] seems difficult to justify, (also for

the Gaussian profile of the magnetic field in the x-y plane in ref. [19], one needs to

ensure that Gauss’ law is satisfied.)

As we will see later, net effect of magnetic field on elliptic flow depends very

sensitively on the profile of magnetic field in relation to the profile of plasma energy

density. When magnetic field is entirely localized within the plasma, we typically

find enhancement of elliptic flow, in accordance with the physical arguments in [4].

However, when the magnetic field profile extends significantly beyond the plasma

profile, plasma expansion seems to be hindered by the squeezing of external field lines,

thereby suppressing elliptic flow. Presence of initial state fluctuations introduces extra

complications due to flux re-arrangements, as we will discuss below. It is possible

that a combination of such effects may be responsible for discrepancies between these

various results on the expected magnetic field dependence of elliptic flow.

10.5 Results

We now present results of our simulations. As we mentioned, due to small lattice size,

we are able to consider evolution for a maximum of only 3 fm time to avoid boundary

effects. We first present results for elliptic flow.

10.5.1 Magnetic field dependence of elliptic flow

We carry out simulations with different impact parameters and calculate elliptic flow

with magnetic field and without magnetic field. The latter is calculated by repeating

the same simulation, but with magnetic field switched off.

First we present results for the conventional momentum anisotropy defined as

εp = Txx−T yy
Txx+T yy

. We calculate εp at different times with and without magnetic field.

Fig. 10.2 shows these plots. As expected, εp increases gradually with time. However,
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we see that εp in the presence of magnetic field increases more rapidly, clearly show-

ing enhancement of momentum anisotropy due to magnetic field (for this choice of

parameters, in particular, with impact parameter of 4 fm).

 0
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Figure 10.2: Effect of magnetic field on build up of momentum anisotropy εp, showing

clear enhancement of εp with magnetic field, for this set of parameters, in particular

for impact parameter of 4 fm.

Though this expression for momentum anisotropy represents the expected de-

velopment of momentum anisotropy, we will not use this definition of momentum

anisotropy. Instead, we will use Fourier expansion of the following normalized mo-

mentum anisotropy

f(φ) =
∆p(φ)

p̄
=
p(φ)− p̄

p̄
(10.19)

v2 is taken to be the 2nd Fourier coefficient in the Fourier series expansion of

f(φ). Here p(φ) is the fluid momentum in a bin at azimuthal angle φ calculated from

momentum components of the energy momentum tensor, i.e. from T x0 and T y0, inte-

grating over the plasma volume in the central rapidity region of unit rapidity width.

We believe that the expression for v2 obtained from Eqn.(10.19) is more appropriate

as it directly gives the momentum anisotropy as measured in the experiment, rather

than expected momentum anisotropy ε defined in terms of T xx and T yy. Interest-

ingly, this definition of v2 has a specific advantage over εp. As Fig. 10.2 shows, εp
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increases gradually, and becomes sizeable only after significant time (in Fig. 10.2 at

t = 3 fm). So, to study effects of magnetic field on momentum anisotropy in various

conditions, it requires running simulation every time upto significant time. In con-

trast, the definition in Eqn.(10.19) gives a value of v2 which has a large value right

from the beginning (after first few time steps), it very slowly changes afterwards due

to evolving shape of the plasma region. This may appear surprising, but there is a

simple physical explanation for this behavior. Consider a definition of v2 = Tx0−T y0

Tx0+T y0 .

(It is simple to see that the arguments given for this v2 apply to the definition of v2

obtained from Fourier expansion of f(φ) in Eqn.(10.19).) One can see from the form

of QGP energy-momentum tensor (Eqn.(10.2)) that for small velocities (at initial

times), this v2 equals vx−vy
vx+vy

. With initial fluid velocity directly proportional to the

pressure gradient (as one can see from Euler’s equation, see, e.g. [18]), we see that v2

captures complete information about spatial anisotropy right from the beginning. It

does not depend on the magnitude of the velocity, but only on the fractional difference

in vx and vy. As long as the fluid acceleration remains roughly constant, the value

of v2 above will remain roughly the same. essentially, the velocities (both vx, and

vy, hence also fluid momenta) will simply increase with time. End result will be that

time will not play much role for this definition of v2. Same argument applies to f(φ)

in Eqn.(10.19) and v2 obtained from its Fourier expansion. That is the reason we

find that v2 assumes a large, roughly constant value right from the beginning stages,

and starts changing later only with changes in the spatial anisotropy (and effects of

fluctuations etc.). In contrast, the usual definition of momentum anisotropy εp is

equal to (again, for small velocities at initial times)
v2
x−v2

y

v2
x+v2

y+ 1
2γ2

with the equation of

state ρ = 3pg. This value increases from zero smoothly to finite value due to extra

factor of 1
2γ2 in the denominator as velocity magnitude increases in time. This is why

we see εp in Fig. 10.2 gradually increasing in time (for both cases, with and without

magnetic field). For our case, v2 in Eqn.(10.19) increases rapidly to a finite value

simply because at the first stage itself the acceleration of the fluid (and hence the

instantaneous velocity) completely originates from the anisotropy of pressure gradi-

ent arising from the spatial anisotropy. We find little change in the value of v2 for

significant initial time (of order 2-3 fm), and after that it evolves primarily because of

the changes in the spatial anisotropy, as expected. Thus, we believe it is much more
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appropriate to use the expression for v2 obtained from Eqn.(10.19) rather than the

usual one based on T xx and T yy. This also helped us in collecting results for many

runs with different impact parameters, with and without magnetic field, as the initial

v2 was itself found to be close to the time evolved value of v2 up to several fm time.

Fig. 10.3 shows the effect of magnetic field on elliptic flow. Top figure in Fig. 10.3

shows the plot of v2(B)/v2(0) vs. the impact parameter. We see clear enhancement

in v2 due to magnetic field which reaches a peak value at the impact parameter

of about 3 fm, decreasing subsequently. Interestingly, for large impact parameter

(near about 6.5 fm) there is no effect of magnetic field on v2 and for larger impact

parameters, magnetic field actually leads to suppression of v2, with suppression being

strong for impact parameter of 8 fm. The bottom figure in Fig. 10.3 shows the

behavior of v2 for the cases of without magnetic field (solid, red curve) and with

magnetic field (dashed and dotted curves) separately, clearly showing that for large

impact parameters, magnetic field strongly suppresses the elliptic flow. This is despite

the fact that the magnetic field is monotonically increasing function of the impact

parameter almost for the entire range considered, as can be seen in Fig. 10.4, with

only slight decrease for the case Btime = 0.4 fm (that cannot account for the decrease

of v2(B) which is seen for both values of Btime = 0.4 and 0.6 fm). We will discuss

below the physical reasons for this behavior which will also explain the discrepancies

in the results of refs. [4,6] and ref. [7]. In all the figures, we typically give two curves

labeled by Btime which is the time at which the magnetic field profile is calculated

after the collision. Smaller value of Btime gives larger value of the magnetic field, but

may not be very realistic in view of finite conductivity of the plasma.

We have studied the reason for this non-trivial behavior of magnetic field depen-

dence of elliptic flow and it appears to originate from the differences in the profiles of

magnetic field vs. the energy density profile. For smaller values of impact parame-

ters, the magnetic field profile is reasonably confined while the plasma density profile

extends for larger regions. This is the regime where arguments in [4, 6] seem to be

valid and enhancement of v2 is seen in the presence of magnetic field. This situation

is shown in Fig. 10.5 which shows the initial profile of the magnetic field as well as

the initial energy density profile for impact parameter of 1 fm.
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Figure 10.3: Top figure shows the plot of v2(B)/v2(0) vs the impact parameter. The

ratio peaks at the impact parameter of about 3 fm, decreasing afterwards, and actually

becomes less than 1 (meaning suppression of elliptic flow due to magnetic field) for

large impact parameters. Bottom figure shows the plots of v2 for the cases of without

magnetic field (solid,red, curve) and with magnetic field (dashed and dotted curves)

separately, clearly showing that for large impact parameters, magnetic field strongly

suppresses the elliptic flow.
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Note that magnetic field almost monotonically increases with the impact parameter.
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Figure 10.5: Left figure shows the initial plasma energy density profile for impact

parameter of 1 fm. Right figure shows the initial magnetic field profile for the same

case. Note that for this small value of impact parameter, plasma extends well beyond

the region along x-axis where magnetic field is significant. Here and in Fig. 10.6 we

show the y component of the magnetic field (in the units of m2
π, the energy density

in the units of MeV/fm3).

Quite opposite profiles are seen in Fig. 10.6 which shows initial profiles for mag-

netic field and energy density for a large impact parameter of 7 fm. (For both Figs.

10.5,10.6 we have used Btime = 0.4 fm.) Extension of significant strength of magnetic

field profile beyond the plasma profile along x axis (semi-minor axis of the elliptical

QGP shape) squeezes plasma expansion in x-direction as magnetic field lines in the

outer regions offer stiffness against distortion. This seems to be the cause of decrease

in v2(B)/v2(0) for larger impact parameters. This is especially demonstrated by the

very strong decrease in v2(B) for impact parameter beyond 7 fm in the bottom figure

in Fig. 10.3. (Note in this context, that simulations in [7], where no effect of magnetic

field was found on the elliptic flow, were carried out for Au-Au collisions with large

impact parameter.).

Our conclusion of this investigation is that the effect of magnetic field on elliptic

flow is quite complex. There are several physical effects at play here, from anisotropic

sound speed due to magnetic field direction (which tends to increase elliptic flow),

to Lenz’s law which suppresses plasma expansion in the regime of external magnetic

field (which tends to suppress elliptic flow). Net effect on the elliptic flow depends
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Figure 10.6: Left figure shows the initial plasma energy density profile for impact

parameter of 7 fm. Right figure shows the initial magnetic field profile for the same

case. Note that for this large value of impact parameter, the two profiles show opposite

behavior compared to Fig. 10.5. Here we see that the magnetic field profile extends

beyond the region along x-axis compared to the plasma energy density profile.

on which factors dominate. We are not attempting to provide a definitive answer

to the discrepancies between different results for v2(B)/v2(0) in the literature, but

pointing out possible factors which may be responsible for this. Nonetheless, the

strong suppression of elliptic flow in the presence of magnetic field for large impact

parameters may provide a signal for the presence of strong magnetic field during early

stages of plasma evolutions.

10.5.2 Magnetic flux re-arrangement due to fluctuations

One usually expects that magnetic field decreases as plasma evolves. It is indeed

true at an average level. However we know that the plasma has strong initial state

fluctuations in the energy density. As fluctuations evolve, the dynamics of magnetic

flux lines (which are mostly frozen in the plasma) become very complex. It is clearly

possible that in some region plasma expansion dilutes the magnetic flux, while due

to energy density inhomogeneities, the neighboring region may get concentration of

magnetic flux, thereby locally increasing the magnetic field. We find that indeed

this happens. Fig. 10.7 shows the plot of central magnetic field for two different

cases. The thin curve (with stars) shows the case for Gaussian width of 0.3 fm for
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the energy deposition in each binary collision in Glauber Monte Carlo, while the

thick curve (with solid squares) represents the case of Gaussian width of 0.4 fm,

thereby representing a much smoother background for the plasma. We see that for

this smoother plasma case, the magnetic field roughly monotonically decreases with

time (after a very little initial increase, again due to relatively small fluctuations)

as expected. However, for the case of smaller Gaussian width, representing stronger

fluctuations, the magnetic field initially increases significantly almost by about 10%,

and eventually decreases. This is only a sample case, and it is clear that for stronger

fluctuations, one may expect even stronger temporary increase of the magnetic field

during plasma evolution. This can have important consequences for effects like chiral

magnetic effect and chiral vortical effect (with a possibility that complex flow pattern

arising from magnetic field in the presence of fluctuations can in principle lead to

generation of vortices). These effects strongly depend on the presence of topological

charge density (for chiral magnetic effect) and vorticity (for chiral vortical effect).

These quantities are reasonably localized, and if the magnetic field in these relevant

regions tends to increase in time (for some time) it can lead to strong enhancement of

these effects compared to the usual expectation based on decreasing magnetic field.
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Figure 10.7: Plot of central magnetic field in the presence of fluctuations and for

relatively smoother plasma back ground. We see that for the smoother case, the

magnetic field monotonically decreases as expected. However, for the case of stronger

fluctuations, the magnetic field initially increases, and eventually decreases.
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10.5.3 Effects of magnetic field on the power spectrum of

flow fluctuations

We now consider the effects of magnetic field on the power spectrum of flow fluctua-

tions. Power spectrum of flow fluctuations for a large number of flow coefficients can

be a very valuable source for investigating early stages of plasma evolution [21]. The

reason for departure from conventional focus on only first few even flow coefficients

was the recognition that initial state fluctuations contribute to development of all flow

coefficients (including the odd ones) even for a central collisions. Many subsequent

investigations confirmed this expectation [22] and indeed now one routinely measures

odd coefficients (e.g. the triangular flow coefficient v3) and there have also been sev-

eral investigations of power spectrum of flow coefficients upto a large value of n of

about 10-12. From the discussion above it is obvious that magnetic field will affect

the power spectrum in non-trivial manner. Indeed, it was an earlier calculation of

effects of primordial magnetic field on CMBR power spectrum [23] which prompted

some of us to explore the possibility of magnetic field effects on the power spectrum

of flow fluctuations in RHICE [4].

We use same methods for calculating flow anisotropies as in our earlier work [21].

vn denotes the nth Fourier coefficient of the resulting momentum anisotropy in δp/p.

We do not calculate the average values of the flow coefficients vn, instead we calculate

root-mean square values of the flow coefficients vrmsn . Further, these calculations are

performed in a lab fixed frame, without any reference to the event planes of different

events. Average values of vn are zero due to random orientations of different events.

As vrmsn will have necessarily non-zero values, physically useful information will be

contained in the non-trivial shape of the power spectrum (i.e. the plot of vrmsn vs.

n). We show below in Fig. 10.8 the effects of magnetic field on the power spectrum

calculated after time evolution of about 2 fm. These results are for realistic magnetic

field for the collision energy considered here (
√
s = 20 GeV) for copper nuclei with

central field strength of 0.1 m2
π and 0.4 m2

π corresponding to Btime = 0.6 and 0.4 fm

respectively (with initial state fluctuations). (For the results for the power spectrum

calculations, we have taken initial longitudinal velocity of the plasma to be zero for

the stability of the program in the presence of strong fluctuations.) As we can see, the

203



effects of magnetic field are very tiny, though they are clearly present. As we will see

below, the effects of magnetic field are not seen prominently here due to the effects of

fluctuations being dominant for the power spectrum. Limited particle statistics may

make it very difficult to observe such tiny effects.
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Figure 10.8: Plot of vrmsn with and without magnetic field. Even though magnetic

field affects the power spectrum, its effects are very tiny here for the magnetic field

considered here (0.1 and 0.4 m2
π).

As we mentioned in the Introduction, it is of great importance to find signals which

can indicate the presence of strong magnetic field during the initial stages. Fig. 10.8

shows possible effects of magnetic field, though the effects are very insignificant for

these low magnetic fields (for much larger field appropriate for large values of
√
s,

e.g. at LHC, these effects may become significant. We are not able to carry out

simulations for such large values of
√
s at present.) Further, the effects seen in Fig.

10.8 do not show any qualitatively distinct pattern for the power spectrum. We

show qualitatively different result below for very strong magnetic fields. We consider

magnetic field strength to be 5m2
π and 15m2

π. These values are completely unrealistic

here (unless unexpected things happen, say for deformed nuclei), and we use these

only to show how completely new effects can arise for very large magnetic field. As

we mentioned in Sect.III, for large magnetic fields, requiring large Lorentz gamma

factor, the realistic magnetic field profile (as used for Fig. 10.8) causes problems

with simulation. Thus for these cases (for Figs. 10.9,10.10,10.11 below), we use a
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simpler profile for magnetic field where the profile in the (x-z) plane is chosen to be

proportional to the energy density profile in the (x-z) plane at y = 0. The peak value of

the magnetic field is chosen by hand. The magnetic field is then taken to be constant

along the y axis, as consistent with the Gauss’s law. Fig. 10.9 and Fig. 10.10 below

show the power spectrum for magnetic field of strength 5m2
π and 15m2

π respectively.

As these are runs for very strong magnetic field, simulation could be carried out only

for relatively short time of 0.6 fm. We see strong pattern of different powers in even

and odd vrmsn coefficients. This is expected from the reflection symmetry about the

magnetic field direction if initial state fluctuations are not dominant. Note that for

5m2
π case, even-odd pattern is seen for only first few flow coefficients as fluctuation

effects wash out the effect for larger vn for the event average over 10 events. For

15m2
π case the magnetic field is very strong and fluctuation effects are not able to

wash out the even-odd pattern arising from the magnetic field. This is a qualitatively

distinct result and can give unambiguous signal for the presence of strong magnetic

field during early stages.
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Figure 10.9: Plot of vrmsn for magnetic field with strength 5m2
π. Even-odd power

difference is seen in first few flow coefficients as fluctuations wash out the effect for

large vns.

The reason one needs very strong magnetic field is that although magnetic field

tends to develop clear pattern of even-odd power difference, there are strong effects

of initial state fluctuations on the power spectrum. The final power spectrum is a
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signal for the presence of any unexpected strong initial magnetic field.

combined effect of the two patterns. Strong magnetic field is needed to dominate over

the effects of fluctuations in Fig. 10.9,10.10. To illustrate this, we show in Fig. 10.11

flow fluctuations for a smooth isotropic plasma region (without any fluctuations) in

the presence of magnetic field. We now take a more reasonable value of magnetic

field strength equal to m2
π. Due to smaller magnetic field and smooth plasma profile,

the evolution could be run up to 3 fm time (after which boundary effects could not

be neglected). We see that strong even-odd power difference is present in the power

spectrum.

We mention that such even-odd power difference can arise due to presence of

vortices also during early plasma evolution, as demonstrated in our earlier work [24].

Thus, we may conclude that even-odd difference in the power spectrum indicates

either strong magnetic field or presence of vortices in the initial plasma. (We know

that to some extent the effect of magnetic field in a plasma is similar to the presence

of vortices as the Lorentz force due to magnetic field has similar form as the Coriolis

force in the presence of vortices.) This result also has interesting implications for the

CMBR power spectrum. It is known that low l modes of CMBR power spectrum also

show possible difference in even-odd modes [25]. It is possible that this feature may
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Figure 10.11: Plot of vrmsn for magnetic field with strength m2
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of magnetic field.

be indicative of the presence of a magnetic field, or presence of some vorticity, during

the very early stages of the inflation.

10.5.4 Anomalous elliptic flow for deformed nucleus

Collision of deformed nuclei opens up entirely new range of possibilities for heavy-ion

collisions. This is especially true when considering possible magnetic field configu-

rations for a given shape of plasma. For non-central collisions of spherical nuclei,

one is constrained to consider the magnetic field pointing along the semi-major axis

of the elliptical QGP region. (Though due to fluctuations, deviations from this will

happen but roughly the picture remains the same.) For deformed nuclei, entirely new

possibilities can arise. As an example, Fig. 10.12 shows ellipsoidal nuclei, with longer

axes of both along the y axis, with impact parameter also along the y axis. As one

can see from Fig. 10.12, different impact parameters can lead to following anomalous

magnetic field configurations (in the sense that they cannot arise for spherical nuclei).

a) QGP region being elliptical in shape but the magnetic field pointing along the

semi-minor axis, x-axis in this case as seen in Fig. 10.12a.
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b) QGP region being roughly spherical, but still strong magnetic field is present

due to strong components coming from spectators, as seen in Fig. 10.12b.

(a) (b)

x

y

x

y

B B

Figure 10.12: (a) shows the situation of the case when the QGP region is elliptical

in shape but the magnetic field points along the semi-minor axis. (b) shows the case

when the QGP region is roughly spherical, but still strong magnetic field is present

due to strong components coming from spectators.

With the physics of effects of magnetic field as described above, one can imme-

diately guess what to expect in both these cases. For (a) we expect suppression of

elliptic flow as the magnetic field induced anisotropy leads to larger momentum flow-

ing in the direction of semi-major axis of the elliptical QGP shape, even though the

usual fluid pressure gradient develops larger flow along the semi-minor axis. This

leads to strong suppression of elliptic flow due to this anomalous magnetic field. (For

very strong magnetic field the net v2 may even be completely dominated by the mag-

netic field, leading to negative elliptic flow.) For (b) one would have expected no

elliptic flow for the smooth plasma profile considered here, (non-zero v2 may only

arise from any fluctuations), as the QGP is roughly isotropic. However, the presence

of strong magnetic field introduces anisotropic pressure, leading to development of

non-zero v2, even though QGP region is spherical. Figs. 10.13,10.14 confirm these

expectations. Again, the anomalous elliptic flow in these situations may provide a

signal for initial stage magnetic field.

Note that here we are not simulating collision of deformed nuclei. We use the

plasma profile for Fig. 10.12a and Fig. 10.12b by using collisions of spherical nuclei

(copper) with non-zero and zero impact parameter respectively. But for the magnetic

field we calculate the magnetic field as in Sects.5A and 5B, rotate it along the x axis,

and use that for the evolution of the above plasma profiles. This, in some sense,
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models different situations of collisions of deformed nuclei as in Fig. 10.12a,b. A full

simulation for deformed nuclei is presently under investigation and will be presented

in a future work.

10.5.5 Quadrupole magnetic field from deformed nucleus

A very interesting possibility arises when considering collision of deformed nuclei.

Consider again ellipsoidal nuclei with long axes in the transverse plane (as in the

above), but now in crossed configuration. Fig. 10.15 shows this crossed configuration

for Uranium nucleus with the semi-minor and semi-major axes being about 6.7 fm and

8.7 fm respectively. Magnetic field is calculated at time of 0.4 fm after the collision

for
√
s = 20 GeV. It is clear that while the resulting QGP region is roughly isotropic

(possibly with strong v4 component), spectators will generate quadrupolar magnetic

field as one can see from Fig. 10.16 showing the magnetic field lines for this crossed

configuration of colliding nuclei. (Magnetic field here has been calculated by extend-

ing the calculation of Sec.V A,B for the case of deformed nucleus, Uranium in this

case. We calculate magnetic field from uniformly charged ellipsoidal nuclei [11, 26],

oppositely moving, with appropriate Lorentz transformations.) This raises very im-

portant possibilities. Quadrupolar field will itself contribute to v4, thereby affecting

final value of v4 of the plasma. Further, quadrupolar field will tend to focus plasma

motion along the longitudinal direction, thereby affecting Bjorken longitudinal ex-

pansion itself. For charged plasma with finite conductivity one may expect charge

separation in the transverse direction as a function of rapidity, while a focusing effect

should be seen along the beam axis for the plasma. This should lead to suppression of

transverse flow at non-zero rapidity. Further, if focusing is strong, it may lead to hot

extended regions along the longitudinal axis. This requires a detailed investigation of

plasma dynamics with such a crossed configuration collision of deformed nuclei prop-

erly represented in Glauber Monte Carlo. This is under study and will be presented

in a future work.
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Figure 10.15: Crossed configuration of collision of deformed nuclei. Note that the

overlap region will be reasonably isotropic, with possibly strong v4 component. Im-

portantly now there are four spectator parts whose motion should lead to quadrupolar

magnetic field configuration.
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Figure 10.16: Magnetic field configuration arising from collision of crossed deformed

nuclei (Uranium) as in Fig. 10.15. Quadrupolar nature of the field is clear.
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10.6 MHD Simulations for Deformed Nuclei

Results discussed above in this Chapter have been presented in ref. [1]. We have briefly

discussed above the case of deformed nuclei and the new possibilities which arise from

considering such collisions. As we mentioned, the results for deformed nucleus case,

in ref. [1], were modeled using the magnetic field calculated from the non-central

collision of spherical nuclei, but considering plasma shape, in first case, elliptical

with semi-minor axis along y-axis and in the second case, circularly symmetric in the

transverse plane. The results for elliptic for these two cases are shown in Fig.10.13

and Fig.10.14 respectively. These configurations of magnetic field and plasma region

were chosen to model the specific magnetic field configurations expected for different

orientations of colliding deformed nuclei, see Fig. 10.12.

In this sub-section, we present results of ongoing work for deformed nuclei case

where we have carried out full simulations of deformed nucleus-nucleus collision using

Glauber model initial condition. For these results, deformed nuclei geometry (with

ellipsoidal shape) has been incorporated in the Glauber model so that with different

choices of orientations of colliding Uranium nuclei, correct distribution of initial en-

ergy density is obtained. The magnetic field is again calculated (as above) starting

with the electric fields of ellipsoidal nuclei in their rest frames and Lorentz transform-

ing to the center of mass frame. We have carried out MHD simulations, with lattice

spacing 0.2 fm, for Uranium-Uranium collision at
√
s = 20 GeV.

Fig. 10.17 presents results for the effects of magnetic field on elliptic flow for body-

body collision of Uranium nuclei. The behavior of the plot is qualitatively similar to

the plot shown in right of Fig. 10.3 for spherical nuclei case, but there are important

differences. Recall Fig. 10.12, where it has been shown that in the case of body-body

collision, at low impact parameter regime, magnetic field will be along semi-minor

axis of the plasma region (in the case of spherical nuclei magnetic field is always along

the semi-major axis). Without the magnetic field, in such case, usual hydrodynamics

gives negative elliptic flow as shown with the solid (red) curve in the Fig. 10.17.

But, as we argued that magnetic field can enhance the sound speed in perpendicular

direction, therefore it should suppress the negative elliptic flow, which is clear from

the Fig. 10.17 that dotted (blue) curve is going from above the solid (red) curve
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(see the modeling in Fig. 10.13 in this regard). It also should be noted from the Fig.

10.17 that at impact parameter about 7 fm, solid (red) curve has zero value of elliptic

flow, which corresponds to the circularly symmetric plasma region in the transverse

plane. But in this case magnetic field is also present (spectators are present see Fig.

10.12b) and due to this elliptic flow becomes non-zero, shows that magnetic field can

generate momentum anisotropy in the plasma (see the modeling in Fig. 10.14 in this

regard). At higher impact parameter also, there is a qualitative difference in between

Fig.10.3b and Fig.10.17. Note that in Fig.10.3b, magnetic field induced enhancement

of v2 survives up to a value of impact parameter where v2 reaches its maximum. In

contrast, in Fig.10.17, v2 with magnetic field becomes less than v2 without magnetic

field much before that point.

10.7 Conclusions

We have demonstrated qualitatively new effects on the flow pattern of QGP in the

presence of initial magnetic field. As we emphasized, due to various limitations of our

simulation, we are not in a position to provide numbers which can be compared to

experimental data. Our intention is to show possibilities of new physical phenomena

which one can try to look for in experiments. These qualitative patterns may be
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able to provide clear signal for the presence of strong magnetic field during early

stages of the evolution, though actual value of magnetic field etc. will depend on

more reliable numerical estimates of the numbers. Among our results one of the

results shows that due to flux re-arrangement arising from evolving fluctuations, there

may be local regions where magnetic field increases for some time (before it starts

decreasing finally). If topological charges or vortices are also present in that region,

it can lead to enhancement of chiral magnetic/vortical effects. We see very complex

patterns of twisting flow developing due to magnetic field effects in the presence

of fluctuations. For strong fluctuations and strong magnetic field, it seems entirely

possible that localized vorticity may get generated at later times which we are not

able to study due to limitations of our simulation. Our result on enhancement of

elliptic flow in the presence of magnetic field confirms earlier expectation in refs.

[4, 6]. At the same time our simulation also points out that the effects of magnetic

field on elliptic flow are much more complex than envisaged in simple arguments

of ref. [4]. In fact in some situations one finds decrease in the elliptic flow. This

may resolve the discrepancy between the results of ref. [4, 6] and ref. [7] (see, also

refs. [19, 20]). The strong suppression of elliptic flow for large impact parameters

can provide a signal for initial stage strong magnetic field. (For this it is needed to

have observations extended for very large impact parameters, to distinguish from the

suppression from usual hydrodynamics resulting from decreased plasma pressure at

large impact parameters.) We show non-trivial effects of magnetic field on the power

spectrum of flow fluctuations. The strongest form of this effect being in the form of

even-odd power difference in the flow power spectrum for strong magnetic fields which

can be a very clean signal for strong magnetic field, or vortices [24], in RHICE. (At the

same time, it can have important implications for the low l modes for CMBR power

spectrum.) Our results for deformed nuclei provide possibilities of anomalous elliptic

flow, which can be used to detect the magnetic field in such collisions. It points to a

very interesting possibility of generating a quadrupolar magnetic field configuration

which can have focusing effect on plasma in the longitudinal direction (along with a

possibility of charge separation in the transverse direction.) These possibilities are

under investigation at present and will be presented in a future work.
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Chapter 11

Summary

In this thesis, by introducing the concept of topological spaces and topological defects

we have discussed how topological defects can form during a SSB phase transitions.

The mechanism by which these defects form is known as the Kibble mechanism which

predicts the equal formation probabilities of defects and anti-defects. However, in

this thesis, we have discussed that there are some situations where one requires some

modification in the Kibble mechanism which can account for biasing in the formation

of topological objects over anti-objects and vice versa. We have considered the case of

superfluid transition in the presence of rotation and ask what will be the vortex and

anti-vortex formation probabilities in such a situation. In this work, we have proposed

a modification in the conventional Kibble mechanism for the situation of production of

topological defects when physical situation requires excess of winding of one sign over

the opposite ones. We have considered the case of formation of vortices for superfluid

4He system when the transition is carried out in a rotating vessel. As our results show,

this biased formation of defects can strongly affect the estimates of net defect density.

Also, these studies may be crucial in discussing the predictions relating to defect-anti-

defect correlations. The modified Kibble mechanism we presented in this thesis has

very specific predictions about net defect number which shows a clear pattern of

larger fluctuations (about mean value governed by the net rotation) compared to the

conventional Kibble prediction. This can be easily tested in experiments. Further,

even the average net defect number deviates from the number obtained from energetics

considerations, especially for low values of Ω. This implies that exactly at the time
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of transition, a different net defect number will be formed on the average, which will

slowly evolve to a value obtained from energetics considerations.

After above discussion, we have introduced the theory of strong interaction known

as Quantum Chromodyanmics (QCD). By introducing QCD and its symmetry proper-

ties we have discussed QCD at finite temperature and discussed its phase transitions.

We show the Lattice QCD results and discuss the possibility of quark-gluon plasma

phase. We also discuss other high baryon density superfluid phases of QCD. These

are color-flavor locked phase and neutron superfluid phase. We also have discussed

that topological vortices may be possible in these superfluid phases.

By discussing the formalism of ideal hydrodynamics and magneto-hydrodynamics,

we finally introduce the physics of heavy-ion collisions. We introduce a very important

hydrodynamic quantity known as the elliptic flow, which is one of the probes of the

equilibrated medium formation in heavy-ion collision experiments. We also discuss

the effect of magnetic field on the elliptic flow in heavy-ion collisions.

We then consider the possibility of superfluid phases of QCD in low energy heavy-

ion collision and discuss that appearance of these phases leads to formation of super-

fluid vortices via Kibble mechanism which generate local circulation in the fluid and

affect its hydrodynamic evolution. Then we have discussed that to account for the

linear momentum conservation, when superfluid vortices form, normal components

also start rotating about the vortex in the opposite direction, this leads to the gener-

ation of a strong elliptic flow. Using hydrodynamic simulations, we show that vortices

can qualitatively affect the power spectrum of flow fluctuations. Even if the plasma

region in the transverse plane is isotropic, a strong elliptic flow can be generated due

to the formation of superfluid vortices. We also see that in the presence of pair of

vortices, the power spectrum of flow can show differences in the power of even and

odd flow coefficients. In the case of non-central collisions we can have negative value

of elliptic flow, arising due to specific configuration of vortex/pair of vortices. All this

can give unambiguous signal for superfluid transition resulting in vortices, allowing

for check of defect formation theories in a relativistic quantum field theory system,

and the detection of superfluid phases of QCD. Detection of nucleonic superfluid vor-

tices in low energy heavy-ion collisions will give opportunity for laboratory controlled

study of their properties, providing crucial inputs for the physics of pulsars. We also
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study the possibility of formation of neutron superfluidity in the low energy heavy-ion

collisions. We see that there is a good possibility to have neutron superfluidity in this

sufficiently low energy collisions of neutron rich nuclei. For this, we have performed

the UrQMD simulations. Our result shows that in the case of Uranium-Uranium

collisions (by ignoring deformation of nuclei) at 50 MeV, the condition reached in the

central cell (center of the system) is very close to the normal to superfluid transition

point (though detail investigations are required). The detection of these in laboratory

experiments will strengthen our understanding of pulsar dynamics. The signals we

have discussed show qualitatively new features in flow anisotropies signaling the pres-

ence of vortices and the underlying superfluid phase in the evolving plasma. These

qualitative features are expected to be almost model independent, solely arising from

the vortex velocity fields.

In the next part of our work, we have performed magneto-hydrodynamic simula-

tions for relativistic heavy-ion collisions and have studies the effects of magnetic field

on the flow fluctuations. We have calculated the magnetic field at the thermalization

time and assumed that it gets trapped in the fluid due to medium conductivity. In

this work, we carry out relativistic magnetohydrodynamics (RMHD) simulations to

study the effects of this magnetic field on the evolution of the plasma using ideal

RMHD equations and study resulting flow fluctuations. We have demonstrated qual-

itatively new effects on the flow pattern of QGP in the presence of initial magnetic

field. These qualitative patterns may be able to provide clear signal for the presence

of strong magnetic field during early stages of the evolution, though actual value of

magnetic field etc. will depend on more reliable numerical estimates of the numbers.

Our results show that magnetic field leads to enhancement in elliptic flow for small

impact parameters while it suppresses the elliptic flow for large impact parameters

(which may provide a signal for initial stage magnetic field). This result on the

enhancement of elliptic flow in the presence of magnetic field confirms earlier expec-

tation in Refs. [1,2]. At the same time our simulation also points out that the effects

of magnetic field on elliptic flow are much more complex than envisaged in simple

arguments of Ref. [1], as in some situations one finds decrease in the elliptic flow.

This may resolve the discrepancy between the results of Refs. [1, 2] and Ref. [3] (see,

also Refs. [4, 5]). The strong suppression of elliptic flow for large impact parameters
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can provide a signal for strong magnetic field at initial stages. Interestingly, we find

that magnetic field in localized regions can temporarily increase in time as evolving

plasma energy density fluctuations lead to reorganization of magnetic flux. This can

have important effects on chiral magnetic effect. Magnetic field has non-trivial ef-

fects on the power spectrum of flow fluctuations. For very strong magnetic field case

one sees a pattern of even-odd difference in the power spectrum of flow coefficients

arising from reflection symmetry about the magnetic field direction if initial state

fluctuations are not dominant. We discuss the situation of nontrivial magnetic field

configurations arising from collision of deformed nuclei and show that it can lead to

anomalous elliptic flow. Special (crossed body-body) configurations of deformed nu-

clei collision can lead to presence of quadrupolar magnetic field which can have very

important effects on the rapidity dependence of transverse expansion.

We have performed RMHD simulations for the case of deformed nucleus-nucleus

collisions for the case of Uranium nuclei. We have generated the initial energy density

by Glauber model, and magnetic field profile appropriate for Uranium-Uranium colli-

sions. We have performed the RMHD simulations for the body-body collisions. Due

to deformation of the nuclei, even in the zero impact parameter case there is spatial

anisotropy in the plasma such that the semi-major axis of the ellipse lies along the

x-axis therefore we get negative elliptic flow; in this case there is no magnetic field

present. When we increase the impact parameter by a small amount, magnetic field

gets generated along the y-axis (semi-minor axis of the plasma), due to this, overall

magnitude of the elliptic flow gets suppressed. When we increase the impact parame-

ter further, at a particular impact parameter, plasma region becomes isotropic in the

transverse plane. For such case, ideal hydrodynamics gives zero value of the elliptic

flow while due to presence of the magnetic field we get non zero elliptic flow showing

that magnetic field itself can generate momentum anisotropy in the plasma. When

we increase impact parameter further, the situation becomes similar as in the case of

the spherical nuclei collisions and we first get enhancement and then suppression in

the elliptic flow with increasing impact parameter.
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