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SUMMARY

Quantum Entanglement, first perceived as a spooky action at a distance by Einstein, Rosen and

Podolosky (EPR) is an important resource in modern day Quantum Information Processing (QIP)

tasks. Arising form the Hilbert space structure of Quantum mechanics (QM), entanglement is im-

portant not only for its practical relevance in present quantum technologies but for its mathematical

structure in complex scenarios and significance from foundational perspective. Phenomena like Bell

nonlocality and Steering are due to the presence of entangled states. In the age of miniaturization of

technologies, it is highly desirable to understand the energetics of microscopic systems in quantum

regime, where quantum correlations like entanglement inevitably comes into the picture. Whether

these quantum effects limit our capability in controlling the system or they are actually advantageous

in different protocols is the question at stake. There are many examples, where quantum correlation

is exploited for better performance of a quantum thermodynamic protocol. This thesis aims to discuss

about these different uses of quantum entanglement in Bell nonlocality, in a QIP task and in Quantum

Thermodynamics.

In Bell Nonlocality, we are mainly interested in multipartite scenario involving three or more parties.

The area we investigated is based on a particular shortcoming of some well known Bell inequalities

for a class of entangled states. MABK inequalities were first constructed looking at the structure of

the GHZ state. Surprisingly, generalized GHZ states do not violate these inequalities for a certain pa-

rameter range. Not only that no correlation Bell inequality with two dichotomic measurement settings

per party is violated by the generalized GHZ states for odd number of qubits. There are correlation

Bell inequalities with more than two measurement settings per party that show violation for the entire

parameter range of generalized GHZ states. we have constructed a set of six Bell inequalities in the

minimal measurement scenario, such that they are violated by all three-qubit generalized GHZ states.

Moreover, the more entangled a generalized GHZ state is, the more will be the violation. We also

provide numerical evidence that at least one of these Bell inequalities is violated by a pure three-qubit

genuinely entangled state. These Bell inequalities can distinguish between separable, bi-separable

and genuinely entangled pure three-qubit states. We also generalize this set of inequalities to n-qubit

systems. One important fact of those inequalities was the scenario we considered, i.e three parties,

i



two dichotomic measurement settings for two parties and one dichotomic measurement for the re-

maining.

But our inequalities are not facet inequalities for the particular scenario we considered. So, the next

question we ask that what about the facet inequalities in this special scenario? We first explicitly

construct the facets of the local polytope for three qubits. We find only one nontrivial facet inequality

upto the relabeling of indices. With permutation of qubits, the number is three. Interestingly, this

facet inequality is equivalent to the lifted version of Bell-CHSH inequality for more parties. We then

showed that the facet inequalities are also violated by all generalized GHZ states and order them ac-

cording to their entanglement. We generalize the inequalities for n qubits and in each case there is

only one non-trivial facet inequality.

Next we introduce a new QIP task called Co-operative Quantum Key Distribution (CoQKD), where

secret key is established between two parties with the involvement of other parties. The other parties

act as the controller and supervisor of the whole procedure of key making between two parties such

that there is no possibility of cheating. We find the necessary multipartite resource state structure

for this new scheme. Along with GHZ states, we find some other states which are suitable for the

scheme. Three-qubit case is completely worked out and for more parties we also discuss the structure

of the states. After developing the CoQKD protocol with three qubit resource states, we show that

these states are also useful in the conference key distribution. Lastly, we discuss the usefulness of

entanglement in quantum thermodynamic scenario.

Role of entanglement is yet to be fully understood in Quantum Thermodynamics. We take the scenario

of quantum heat engines to shed some light in that direction. We consider the role of entanglement for

a single temperature quantum heat engine without feedback control, introduced recently by Talkner

and Kim [Phys. Rev. E 96, 022108 (2017)]. We take the working medium of the engine to be a 1-dim

Heisenberg model of two spins. We calculate the efficiency of the engine undergoing a cyclic process

at a single temperature and show that for a coupled working medium the efficiency can be higher than

that of an uncoupled one. By establishing a connection between the coupling and the entanglement

we show that entanglement indeed helps us to achieve the efficiency beyond the classical limit.
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CHAPTER 1

Introduction

Despite being invented more than a century, quantum mechanics still does not cease to surprise the

scientific community. Till date there is no experimental evidence which questions its validity and yet

from the foundational perspective there is a lot to understand. The mathematical formalism of quan-

tum mechanics is based on the abstract notion of Hilbert space, which opens up many plausible ways

to reconcile it with the physical reality, giving rise to intense debates and different interpretations of

quantum mechanics. In 1935, based on local causality, Einstein, Podolosky and Rosen (EPR) argued

that [1] quantum mechanics is not a complete theory to describe the laws of nature. According to their

viewpoint, statistical nature of quantum mechanics is due to the lack of our knowledge about the con-

cerned system. They introduced the concept of hidden variables, knowledge about which can restore

the realism and determinism in the theory. But, in 1964, in a seminal paper [2], John. S. Bell showed

that quantum mechanics is not compatible with any local hidden variable (LHV) theories. Due to this

work, largely ignored philosophical aspects of quantum mechanics got firmly rooted in mathematical

notions and a vast research field known as Bell nonlocality [3] was born. Recent loophole free tests

[4] of Bell inequalities have firmly established the fact that certain correlations of quantum states can-

not be explained by a LHV model. In the same year of EPR, Schrödinger elaborated on the proposal

of EPR and pioneered the idea of quantum Steering (a weaker notion of Bell nonlocality), which is

recently formalized [5] and investigated [6]. The phenomena of Bell Nonlocality and Steering are

due to the existence of entangled states in quantum mechanics. Entanglement [7] is a particular form

1



of correlations present in a composite quantum system. On one hand entanglement is necessary for

the revelation of the nonlocal correlations in quantum states, on the other hand entanglement can be

used as a useful resource in the field of quantum information [8], which started in 1970s and 1980s.

Manipulation, quantification and application of the properties of quantum states comprise the area of

quantum information. Study of quantum correlation [9, 10] is one of the potential areas to investigate

in QI theory. From the operational point of view, entanglement [7, 11] can be posed as a Quan-

tum Resource theory [12], where separable states are the free states, Local operation and classical

communication (LOCC) is the free operation and Entangled state is a resource state. Resource theo-

retic structure of entanglement enables one to quantify and manipulate entanglement in an organized

manner and develop new protocols. Entanglement can be used as a resource for different quantum

information processing tasks like teleportation [13], Quantum Key Distribution (QKD) [14], Secret

sharing [15] etc. Entanglement and nonlocality are two very different resources, though intimately

connected. Entanglement in a state does not always guarantee nonlocality. Werner state [16] is a very

well known example for this kind of situation. For certain parameter range, the state is entangled

but LHV model can be constructed for both projective measurements and POVM [17], implying that

the state is Bell local in that specified parameter range. If one goes beyond the normal Bell scenario

consisting of non-sequential measurements [18, 19, 20, 21] and a single copy of the state [22, 23],

nonlocality can be revealed for some states which allowed LHV model before. This phenomena is

termed as “Hidden Nonlocality”. Till now it is an open question in which framework (if there is any)

entanglement and nonlocality can be regarded as equivalent resources.

Other than in nonlocality and different information processing tasks, quantum correlation plays an

important role in Quantum Thermodynamics [24]. Thermodynamics is one of the oldest fields of

Physics, which has been profoundly successful. Laws of Thermodynamics were mainly empirical

and constructed for macroscopic systems. In present day, with the miniaturization of technology,

applicability of the thermodynamics to microscopic systems is a challenge both from theoretical and

practical viewpoint. Modifications and emergence of thermodynamics laws in the regime, where dy-

namics is governed by quantum mechanics is the premise of Quantum Thermodynamics. Peculiarity

in the energetics of small systems due to the quantum effects is manifold. How the quantum resources

can be used for the betterment of the performance of different thermodynamics protocols is yet to be

fully understood. There are many instances, where quantum correlations can be used in an advan-
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tageous way. Still, to understand fully the role of quantum effects in Quantum Thermodynamics

requires further studies.

This thesis is organized as follows. In this chapter, next few sections will be devoted to cover some

basics needed for the subsequent discussion. Specifically, in the next section, I discuss the basic

mathematical formalism of quantum mechanics. In section 1.2, different aspects of entanglement are

discussed. Section 1.3 gives an outline of Bell nonlocality. In the last section, I review some results

about the role of quantum correlations in Quantum Thermodynamics. After the preliminaries the

works are described in the next few chapters.

1.1 Basic formalism of Quantum Mechanics

Mathematical formalism of quantum mechanics is well established [25]. Basically it is a statistical

theory, whose predictions are probabilistic. But to interpret these probabilities and their connection to

the real world is still a debatable topic giving rise to the notorious questions, like the “Measurement

problem” [26], different interpretations of quantum mechanics, etc. I am not going into these philo-

sophical issues but rather briefly recapitulate the mathematical structure of quantum mechanics. It is

based on some postulates,

1. Preparation : In a physical experiment, the system under study is prepared in a quantum state

ρ. Mathematically, it is a positive (and trace-class) unit trace linear operator in a Hilbert space

H, ρ : H → H{ρ ≥ 0, T r[ρ] = 1}, and known as density matrix. In this thesis, we are

dealing with finite dimensional Hilbert space (let’s say of dimension d), which is isomorphic to

a Complex Euclidean space Cd. The dimension d of this Euclidean space is determined by the

system under study. For example, if the system is a spin-1/2 operator, the dimension is 2. We

denote the set of density matrices by Pd, s.t the state of the studied system ρ ∈ Pd. This set

is convex and compact, with the extreme points known as pure state. A state ρ is called a pure

state if ρ = |ψ〉 〈ψ|, for some vector |ψ〉 ∈ H.

2. Measurement : The most general measurement in QM is described by a set of positive operators

{Eα}, satisfying, 0 ≤ Eα ≤ 1 and
∑

αEα = 1. This set is known as Positive Operator Valued

Measure (POVM) and Eα’s are known as Effect operators. When, in addition EαEβ = δαβ ,
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they are the usual orthogonal projectors. For a given state ρ and a POVM {Eα}, if the mea-

surement outcomes are denoted by aα ∈ A (a nonempty and finite set), then the probability

for getting an outcome aα is calculated as, pα = Tr[ρEα]. Equivalently, a measurement can

be completely described by a set of measurement operators {Mα}, with M †
αMα = Eα. It is

important to note that coresponding to a particular POVM, there exists infinite set of mea-

surement operators, each connected by a unitary. For example, M ′
α = UαMα, satisfying

M ′†
αM

′
α = Eα, where Uα is a unitary operator. Now, given a set of measurement operators

{Mα}, if the state of the system before the measurement is |φ〉, then corresponding to the out-

come aα, the state of the system after measurement is, Mα|φ〉√
pα

or MαρφM
†
α

pα
, where ρφ = |φ〉 〈φ| and

pα = Tr[ρφM
†
αMα] = 〈φ|M †

αMα |φ〉 is the probability for getting the outcome aα. When Eα’s

are orthogonal projectors, from spectral decomposition theorem, one can associate a Hermitian

operator Ô =
∑

α aαEα, commonly known as an observable, with aα’s now to be the eigenval-

ues of Ô. The expectation value of the observable Ô is given by, 〈Ô〉 =
∑

α aαpα. Now, the

next question is, which decides that the probability structure in QM arises from the above rule,

known as the Born’s rule [27] and what guarantees that it is the unique way. Gleason’s theorem

[28] answers this question. It states that for a given Effect operator Eα, there is some density

matrix ρ, such that there is only one probability measure, which is given by the Born’s rule as

pα = Tr[ρEα]. This result was first given by Gleason for projective measurements, valid for

dimension three or more. Later, it was generalized [29] for POVM without any constraints in

dimension of the Hilbert space.

3. Dynamics : Time evolution of a closed quantum system ρ is described by a Unitary dy-

namics, specifically by the Liouville-Von Neumann equation : i~ρ̇(t) = [H, ρ], where H is

the Hamiltonian of the system. This is equivalent to the Schrödinger equation written for

pure states. The formal solution of this equation is, ρ(t2) = U(t2, t1)ρ(t1)U †(t2, t1), where,

U †(t2, t1)U(t2, t1) = 1. The unitary U is given by the solution of the equation, i~dU
dt

= HU .

4. Composite system : The Hilbert space of a composite quantum system H is obtained from the

tensor product of the Hilbert spaces of constituent systems asH = H1 ⊗H2 ⊗ ...⊗Hn.

This completes the building blocks of the mathematical formalism. Next, we discuss the entanglement

in a composite quantum system, which arises due to the last postulate mentioned above.
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1.2 Quantum Entanglement

The concept of quantum entanglement follows from the Hilbert space structure. For a composite

quantum system, a state ρ is entangled, if it can not be written in the following form,

ρ =
∑
i

piρ
A1
i ⊗ ρ

A2
i ⊗ ...⊗ ρ

An
i , (1.1)

where, A1, A2,...An denote the subsystems. If the state can be written in the above form, it is called

a separable state. A state of the form : ρ = ρA1
i ⊗ ρ

A2
i ⊗ ... ⊗ ρ

An
i , is known as product state. En-

tanglement, as a spooky action at a distance was first recognized by Einstein, Podolosky and Rosen

(EPR) in their famous EPR paper [1]. Schrödinger coined the term “Entanglement” [30] in 1935 by

calling it “Verschränkung”. In 1964, John. S. Bell showed that [2] entanglement is the reason behind

the incompatibility of some correlations in QM with LHV model. Along with these developments,

entanglement stands as a potential resource for many information processing tasks, that are impossi-

ble with classical correlations. Therefore, it is of utmost importance to understand the mathematical

structure of entanglement in greater detail. Characterization, quantification, manipulation and detec-

tion of entanglement seem to be the questions to be answered. This needs an operational point of

view to formalize the concepts, giving rise to the resource theory of entanglement [11]. A resource

theory [12] has a common structure consisting of three ingredients : Resource states, Free states and

Free operations. Resource states are the states which overcome the constraints posed by the free op-

erations that can not be lifted by the free states. In the case of entanglement theory, free operations

are the Local operation and classical communications (LOCC), free states are the separable states

and resource states are the Entangled states. The physical motivation behind the restricted operation

LOCC [31] is that the composite quantum system under study is distributed among many parties and

each party is restricted to manipulate his/her own system (LO) and communicate classically with the

other parties (CC). The states, which can be generated by the application of only LOCC operations

are the separable states and thus they are the free states in the resource theory of entanglement. Any

other states, which can not be prepared by LOCC only, are the entangled states and hence the resource

states. So, operationally entanglement is a sort of quantum correlation, which can not be created by

LOCC alone. This operational characterization of entanglement paves the way for its quantification.

There are two ways to quantify entanglement. One is from the perspective of state transformation via
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LOCC and the other is axiomatic quantification. I first discuss these briefly for a system comprising

of two subsystems. Then in the next subsection, I will discuss the scenario in multipartite settings.

1.2.1 Bipartite Scenario

First, we note some general properties of entanglement regardless the ways of its quantification.

• Separable states contain no entanglement. They are the free states. All non-separable states

contain some amount of entanglement and they are the resource states.

• Amount of entanglement in a state does not increase under LOCC and remains constant under

Local Unitary (LU) operations. Two states, which are connected via local unitaries contain

same amount of entanglement.

If, there is a notion for maximally entangled state, in the sense that all other states can be prepared

from this via LOCC, an ordering among the states according to their entanglement is obtained. In

bipartite settings, Bell states (and their LU equivalent states) serve the purpose of maximally entangled

state for d = 2. But, the notion of a unique maximally entangled state is absent in multipartite

scenario. Let’s first concentrate on the bipartite settings. Any state, LU equivalent to the state,

|ψmax〉 =
1√
d

d∑
i=1

|i〉 |i′〉 , (1.2)

is a maximally entangled state. Any state of dimension d can be prepared from this state determinis-

tically via LOCC operation only. As, LOCC does not increase the amount of entanglement in a state,

the state in Eq. (1.2) has the maximal amount of entanglement and hence it is a maximally entangled

state. So, this prompts the thought that, between two states ρ and σ, the state ρ is more entangled than

σ, if σ can be obtained from ρ via LOCC only. Nileson’s Majorisation criteria [32] gives a necessary

and sufficient criteria for deterministic LOCC inter-convertibility between two bipartite pure states.

Let’s say that two bipartite pure states are written in their Schmidt decomposed [8] form as,

|ψ1〉 =
1√
d

d∑
i=1

αi |iA〉 |iB〉 , and |ψ2〉 =
1√
d

d∑
i′=1

α′i |i′A〉 |i′B〉 , (1.3)
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where, αi’s and α′i’s are the Schmidt coefficients, such that, α1 ≥ α2 ≥ .... ≥ αd and α′1 ≥ α′2 ≥

.... ≥ α′d. Now, |ψ1〉 can be deterministically converted to |ψ2〉 via LOCC iff, for all 1 ≤ l ≤ d,

l∑
i=1

αi ≤
l∑

i=1

α′i. (1.4)

But, this Majorization criteria does not always hold for dimension d > 2, as there are incompara-

ble states in higher dimension such that neither of the states can be converted to another with unit

probability by LOCC. Vidal introduced [33, 34] a method for obtaining optimum probability for con-

verting one pure state to another, where deterministic transformation is not possible by LOCC. So,

we may think that if |ψ1〉 and |ψ2〉 are two incomparable states and probability of getting |ψ2〉 from

|ψ1〉, denoted by P (|ψ1〉 → |ψ2〉) is greater than the probability of getting |ψ1〉 from |ψ2〉, denoted

by P (|ψ2〉 → |ψ1〉), then |ψ1〉 is more entangled than |ψ2〉. But this intuition fails [33]. So, in the

single copy scenario, we only get some partial order among the states according to the entanglement

from the state transformation via LOCC. Situation changes in the many copy scenario. In the many

copy transformation scenario, there may arise two approaches : exact and asymptotically exact state

transformation. In exact case, we ask whether ρ⊗n → σ⊗m is perfectly attainable for a given finite

value of m and n. In the asymptotic regime, we consider the case where in the limit n → ∞ and

for fixed r = m/n, the output state goes arbitrarily close to σ⊗m. Now, exact state transformation

being too restrictive, the suitable approach is to allow some imperfection in the target state and in the

asymptotic limit this error becomes vanishingly small. In this asymptotic limit, a unique measure of

entanglement is obtained giving the entanglement order in all pure states. It is discussed below.

• Distillable Entanglement ED : It is the maximum rate at which input states ρ, can be converted

approximately to the two-qubit maximally entangled states via LOCC, such that asymptotically,

the transformation becomes arbitrarily precise. Formally, it is given by,

ED = sup
{
r : lim

n→∞

[
inf
Λ
D(Λ(ρ⊗n),Φ(2)⊗m)

]
= 0
}
, (1.5)

where, D(σ, η) is a suitable measure of distance between two quantum states σ and η, Λ(ρ⊗n)

denotes the LOCC transformation on n copies of the input state ρ, Φ(2) denotes a maximally

entangled state for two qubits, i.e., L.U equivalent to a Bell state, andm = rn. In the asymptotic

limit, i.e. when n→∞, the approximation in the output states become vanishingly small.
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• Entanglement Cost EC : It is the maximum rate at which, for a given state ρ, two-qubit max-

imally entangled states can be converted approximately to ρ, via LOCC, such that asymptoti-

cally, the transformation becomes arbitrarily precise. Formally, it is given by,

EC = sup
{
r : lim

n→∞

[
inf
Λ
D(ρ⊗n,Λ(Φ(2)⊗m))

]
= 0
}
, (1.6)

where all the notations are same as the before. From the definition, it is evident that EC is

defined by the reverse of the protocol, which defines ED.

The next question is whether these two measures are equal or not. For, bipartite pure state trans-

formations only this two measures are equal [7, 11] and equal to the Entropy of entanglement de-

fined as E(|φ〉 〈φ|) = S(TrA |φ〉 〈φ|) = S(TrB |φ〉 〈φ|) for a pure bipartite state |φ〉, where S(ρ) =

−Tr[ρ log ρ] is the Von-Neumann entropy [8] for the state ρ. So, in the asymptotic limit, for pure state

transformation only (i.e ρ is pure) via LOCC, transformations (one pure state to Bell state and then

Bell state to other pure state) becomes reversible and entropy of entanglement becomes the unique

currency to quantify the entanglement. But this reversibility is lost for mixed states and therefore there

is no unique measure of entanglement. This loss of reversibility in the mixed states is regarded as the

presence of inequivalent class of entanglement in asymptotic limit. An example of two asymptotically

inequivalent classes of entanglement for bipartite mixed states is Distillable and Bound entanglement.

This leads us to consider the axiomatic approach [7, 11] to quantify the entanglement besides the op-

erational approach. In this approach, a real valued function is defined to quantify the entanglement

of a quantum state such that the function obeys some basic rules. There are a number of measures

defined over the years in this approach. Let’s now formalize the concept. A entanglement measure is

a mapping from the density matrix to a positive real number : E : Pd → R+, such that it obeys the

following properties [7, 11, 35],

• E(ρ) = 0, if ρ is a separable quantum state.

• E(ρ) does not increase under LOCC operation. Sometimes, a stronger condition is employed :

E(ρ) ≥
∑

i piE(σi), i.e. E does not increase on average under LOCC.

• E(ρ) is normalized by requiring E(Φ(d)) = log2 d, where, Φ(d) is a maximally entangled state

for a bipartite system of d dimension.
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• E(ρ) reduces to the Entropy of Entanglement, when ρ is a pure state.

A function, E(ρ), which only obeys first three properties is called a Entanglement Monotone (does

not increase on average under LOCC) and which obeys all the four is called an Entanglement Measure

(does not increase under LOCC deterministically). Though, often in practice both terms are used in

similar footings. Along with the above properties, sometimes, other properties are imposed for cer-

tain measures, like, Additivity, Convexity and Continuity. In literature, there are many entanglement

measures and monotones proposed so far. I discuss some of these measures below. Note that, Distill-

able Entanglement (ED) and Entanglement cost (EC) are two entanglement measures from axiomatic

point of view also.

• Entanglement of FormationEF : For a mixed state ρ this measure [36] is obtained by the convex

roof extension of the measure Entropy of Entanglement for pure states. It is defined as,

EF = inf{
∑
i

piE(|φi〉 〈φi|)}, (1.7)

where, ρ =
∑

i pi |φi〉 〈φi| and E(|φi〉 〈φi|) denotes the Entropy of Entanglement for the pure

state |φi〉. It is an open question to decide whetherEF is additive or not. Due to the optimization

involved in the definition, EF is extremely hard to compute. For two-qubit scenario, a closed

form formula [36, 37, 38] is known for EF based on a quantity called Concurrence C [36, 37],

defined as,

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, λ1 ≥ λ2 ≥ λ3 ≥ λ4, (1.8)

where, λi’s are the square root of the eigenvalues of the operator ρσy ⊗ σyρ∗σy ⊗ σy, with ρ∗ as

the complex conjugate of ρ. Now, EF is written as,

EF = −
(1 +

√
1− C2

2

)
log2

(1 +
√

1− C2

2

)
−
(1−

√
1− C2

2

)
log2

(1−
√

1− C2

2

)
. (1.9)

EF is a monotonically increasing function of Concurrence. So, in literature Concurrence is

often used as a measure of entanglement for the simplification of analysis in two-qubit system.

For higher dimension there is no unique definition of Concurrence.

• Logarithmic NegativityEN : This measure is based on the negativity of the partial transposition
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of the density matrix ρ. It is defined as,

EN(ρ) = log2 ‖ρT‖, (1.10)

where, ρT denotes the partial transpose of ρ, with respect to one of the parties, and ‖A‖ =

Tr
√
A†A denotes the trace norm of the operator A. EN is additive but not convex. One of the

advantages to use this measure is that it is very easy to compute unlike EF .

After quantification of entanglement, the next question comes to the detection of entanglement. Given

a quantum state how to determine whether the state is Entangled or not is in general a difficult prob-

lem. There are many mathematical criteria [7, 39], which determine whether a known density matrix

is separable. One well known example is the PPT [40, 41] criterion, which states that in 2 ⊗ 2 and

2⊗3 dimension, a state ρ is separable iff it has Positive Partial Transpose (PPT). This criterion is only

necessary but not sufficient for higher dimension due to the existence of bound entangled states [42],

which are entangled but PPT making them not distillable. Like the PPT criterion, there are many other

separability criteria [7, 39] derived over the years. These criteria are all based on the fact that one

knows the density matrix and then does some operations on the state to determine separability. On the

other hand, to detect the entanglement in an unknown quantum state requires characterization in terms

of directly measured observables. Entanglement Witness [39] serves that purpose. An observableW

is called an Entanglement Witness, if Tr[ρW ] ≥ 0 for any separable state ρ and Tr[σW ] < 0, for at

least one state σ, which is entangled. Note that, there may be entangled states for which expectation

value of the operatorW gives positive value. But if for some state it gives negative value, then that

state is surely entangled. Existence of Entanglement Witness results from the hyperplane separation

theorem [43] for convex sets. Separable states form a convex set as a convex hull of product sets. This

allows to identify an operator called Witness operator for an entangled state, which lies outside the set

of separable states. Bell inequality is also one of the oldest tools to detect entanglement [44] in terms

of observable quantities, though it is not an optimal witness, due to the inequivalency of entanglement

and nonlocality.

1.2.2 Multipartite Scenario

With the increase in the number of parties, complexity increases both mathematically and practically.

In multipartite settings, there exists different forms of entanglement. For example, for a three partite
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system, there are three classes of states : Fully separable, Bi-separable and Genuinely Entangled state.

Generally, a state ρ of a n-partite system is called k-separable, if it can be written as,

ρ =
∑
i

piρ
A1 ⊗ ρA2

i ⊗ ...⊗ ρ
Ak
i , (1.11)

where,
∑

i pi = 1, and A1, A2,...Ak denotes one subsystem or a group of subsystems, such that total

number of subsystems in all these k groups is n. Regarding the operational quantification of Entangle-

ment in multipartite scenario, the crucial difference with bipartite scenario is that there is no unique

notion of a maximally entangled state in this settings. For example, following the bipartite scenario, a

natural choice for a maximally entangled state in three-qubit scenario would be a LU equivalent state

of a GHZ state ; |GHZ〉 ≡
√

1/2(|000〉 + |111〉). But, not all tripartite states can be obtained from

GHZ state deterministically by LOCC only. W state [45] ; |W 〉 =
√

1/3(|001〉 + |010〉 + |100〉) is

one of such states. One can not transform a GHZ state to a W state exactly by LOCC even with a

small probability. This gives rise to a new scheme of transformation called Stochastic Local Opera-

tions and Classical Communications (SLOCC), where state conversions are carried out via LOCC but

not deterministically. GHZ and W are the representatives of two SLOCC inequivalent classes [45]

called GHZ class and W class respectively. In tripartite scenario, there are six SLOCC inequivalent

classes, out of which the above mentioned two classes represent genuine three-partite entanglement.

Complexity increases with the number of parties. For four qubits and more there are infinitely many

[46, 47] SLOCC inequivalent classes. We can not compare entanglement in two different SLOCC

inequivalent classes like GHZ and W for three qubits. But also within same SLOCC class there is no

ordering and also no notion of maximally entangled state. Because, there is no state within a SLOCC

class, from which any state in that class can be obtained deterministically. Though in many situation,

different perspectives other than operational notion (LOCC inter-convertibility) are invoked to call

a state maximally entangled. For example, in three-qubit case, GHZ state is considered to be the

maximally entangled state in several aspects. Like, when one qubit is traced out, the two-qubit state

is maximally mixed, an maximally entangled two-qubit state shared between any two of the three

parties can be obtained from a GHZ state deterministically etc. So, one may wonder, what happens

in the asymptotic limit. Can an unambiguous ordering and a notion of maximally entangled state be

obtained? Unfortunately, there is no reversibility in state transformation even in the asymptotic limit

[11]. Unlike the bipartite scenario (for pure states), there are infinitely many inequivalent forms of
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entanglement in the asymptotic limit even for pure states. Nevertheless, there are many entanglement

measures constructed for multipartite states for different purposes. A common measure is average

of a certain bipartite entanglement measure over all the bi-partitions of a multipartite state. In my

subsequent discussions I will use this kind of measure taking Entanglement Entropy as the measure

of one bi-partition. These kind of measures are used to define the Maximally Multipartite Entangled

(MME) [48, 51] and Absolutely Maximally Entangled (AME) states [49, 50, 51]. MME are those

states, which maximize the average entanglement over all bipartitions and AME are those states for

which the reduced state is a maximally mixed state for any bi-partition. Another measure, widely

used for three-qubit pure states is three-tangle or residual tangle [52], defined as,

τ3 = τ(A : BC)− τ(A : B)− τ(A : C), (1.12)

where, the τ(X : Y ) denotes the square of Concurrence (C) in the bi-partition X − Y . Tangle is

zero for bi-separable states and W class, but is strictly positive for all states in GHZ class. Tangle

measure has been generalized to more than three parties in Ref. [53]. There also have been efforts [7,

54, 55] to generalize the Concurrence (C) for multipartite states. Like the bipartite scenario, the next

important task is to detect different types of entanglement for multipartite states. The characterization

of separability is naturally extended [56] in multipartite scenario. There are several other separability

criteria in literature [39]. Besides, due to the existence of different types of entanglement, witness

operators are constructed aiming to detect specific classes of entanglement. Like there are witness

operators constructed to detect [39] states within GHZ class. They can not be used to detect W class

states or biseparable states. These witness operators can be generalized [39] to more than three parties

using several construction procedures developed over the years.

1.2.3 QIP tasks using Entanglement as a resource

As already mentioned, there are several Quantum Information Processing (QIP) tasks which use en-

tanglement as a resource. I briefly discuss about some of these protocols relevant to this thesis.

Teleportation : Quantum teleportation, first put forward in a seminal paper [57] by Bennet et al.,

is a scheme, where one party sends an unknown quantum state to another spatially separated party.

For this protocol to be successful, the two parties called Alice (sender) and Bob (receiver) share a
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Bell state and they can classically communicate. Without the use of entanglement this task seems

formidable as Alice has to know the state to be sent. Then only she can communicate sufficient in-

formation to Bob, such that he can reproduce the state. But gaining information about an unknown

quantum state is not possible with a single copy. The best Bob can achieve with Alice’s information

is make a state which is not a perfect copy of the desired state but matches with it with a maxi-

mum fidelity of 2/3 on average. Now, this seemingly impossible task can be done perfectly with

the use of a shared Bell state between them. Let’s say that the state which has to be sent to Bob is

|ψ〉 ≡ α |0〉 + β |1〉 and the shared Bell state is |φ+〉 ≡
√

1/2 |00〉 +
√

1/2 |11〉. Total state can be

written as,

|Φ〉 ≡ 1√
2

[
(α |0〉+β |1〉)(|00〉+|11〉)

]
≡ 1√

2

[
α(|00〉 |0〉+|01〉 |1〉)+β(|10〉 |0〉+|11〉 |1〉)

]
. (1.13)

Alice now makes a joint measurement in the Bell basis on the first two qubits of the above state (one

from the state to be sent and other from the shared Bell state) in her possession. The Bell basis are

the four Bell states written below,

|φ+〉 ≡
√

1/2 |00〉+
√

1/2 |11〉 (1.14)

|φ−〉 ≡
√

1/2 |00〉 −
√

1/2 |11〉 (1.15)

|ψ+〉 ≡
√

1/2 |01〉+
√

1/2 |10〉 (1.16)

|ψ−〉 ≡
√

1/2 |01〉 −
√

1/2 |10〉 (1.17)

Using the expression of the Bell states, one can rewrite the state in Eq. (1.13) as,

|Φ〉 ≡ 1

2

[
(α |0〉+ β |1〉) |φ+〉+ (α |0〉 − β |1〉) |φ−〉+ (α |1〉+ β |0〉) |ψ+〉+ (α |1〉 − β |0〉) |ψ−〉

]
.

(1.18)

After measurement Alice projects her qubits to one of the Bell states and communicates the result to

Bob over a classical communication channel. Depending upon Alice’s information, Bob applies one

of the following four operations,

• If Alice projects to |φ+〉 〈φ+|, Bob applies 1.

• If Alice projects to |φ−〉 〈φ−|, Bob applies σz.
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• If Alice projects to |ψ+〉 〈ψ+|, Bob applies σx.

• If Alice projects to |ψ−〉 〈ψ−|, Bob applies iσy.

Suitable operation depending upon Alice’s classical information helps Bob to prepare the desired state

α |0〉 + β |1〉. This is the essence of quantum teleportation. Above protocol uses a maximally entan-

gled state as a resource. With a nonmaximally entangled state or a mixed entangled state, teleportation

can not be done with unit fidelity and unit probability, but it gives the advantage over the classical

limit 2/3, though some bound entangled state [58] can not achieve a fidelity better than the classical

fidelity 2/3. Recently, in Ref. [59], using a different benchmarking rather than the fidelity between

input and output states, authors have shown that all entangled states can demonstrate non-classical

teleportation. In experiment, quantum teleportation has been realized [60] using various technologies.

Dense Coding : In Dense coding [61] Alice wants to maximize the rate at which she can send classi-

cal information to Bob over a quantum channel (we assume it to be perfect, i.e no loss of information).

Without sharing entanglement, the best she can do is to send one classical bit per qubit. If they share

a Bell state between them like before, she can send two bits per qubit to Bob. Let’s say, they share the

Bell state |φ+〉 = 1√
2
(|00〉 + |11〉) between them. Now Alice performs one of the four operations on

her qubit converting the shared state to one of the four orthogonal Bell states.

• (1A ⊗ 1B) |φ+〉 = 1√
2
(|00〉+ |11〉) ≡ |φ+〉.

• (σx ⊗ 1B) |φ+〉 = 1√
2
(|01〉+ |10〉) ≡ |ψ+〉.

• (iσy ⊗ 1B) |φ+〉 = 1√
2
(|01〉 − |10〉) ≡ |ψ−〉.

• (σz ⊗ 1B) |φ+〉 = 1√
2
(|00〉 − |11〉) ≡ |φ−〉.

After performing the operation, Alice sends her qubit to Bob over a quantum channel. Upon receiving

Alice’s qubit, Bob can easily distinguish four states by measuring in Bell basis. If the four Bell states

are assigned to the bits 00, 01, 10, and 11 respectively, Bob gets two bits of classical information per

qubit successfully.

Quantum Key Distribution : Quantum Key Distribution (QKD) was pioneered by Bennet and Bras-

sard [62] in 1984. But this BB84 protocol does not use entanglement to establish a secure key. In
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1991, Ekert [14] proposed a protocol for QKD between two parties using Bell state and presented

the security analysis using the Bell-CHSH inequality. We discuss the Ekert’s protocol here. The

original protocol [14, 63] involves a Bell state shared between two parties. In the absence of an

eavesdropper, e.g. Eve, the protocol is reminiscent of the BB84 protocol. Two parties hold one

qubit each and agree on two sets of basis states in which they measure their own qubits randomly.

After the measurement step, they announce their choices of the bases. Those data are kept, where

the bases are matched and the rest are discarded. So, in half of the cases they get perfectly corre-

lated results and hence can construct a secure key. The secure key rate is 1/2 in this scenario. But

often in a practical scenario, the perfect correlation is not obtained, which indicates noise in the en-

tanglement channel or imperfect measurement or possibly Eve’s intervention. Alice and Bob use a

part of the matched data to determine the Quantum Bit Error Rate (QBER) and the remaing part is

used to build secure key after error correction and privacy amplification. To know Eve’s presence,

in the Ekert’s original protocol, Alice and Bob use one extra set of basis states each that helps in

testing the violation of Bell-CHSH inequality. If it is maximally violated then there is no eavesdrop-

per’s attack. Let the three measurement settings be (A1, A2, A3) for Alice and (B1, B2, B3) for Bob.

This gives rise to nine combinations of measurement operators. Alice’s the settings are : A1 = σx,

A2 = 1/
√

2(σx+σy) andA3 = σy. Whereas, Bob’s measurement settings are : B1 = 1/
√

2(σx+σy),

B2 = σy and B3 = 1/
√

2(−σx + σy). Two combinations used to make the secret key are (A2, B1)

and (A3, B2), because of perfect correlations in these two settings. Four combinations e.g (A1, B1),

(A1, B3), (A3, B1) and (A3, B3) are required to test the Bell violation. These particular measurement

settings give the maximal violation for a Bell state. Remaining combinations of the measurements

are discarded. So, in this case the key rate is 2/9 instead of 1/2. Over the years there are many gen-

eralization of QKD protocols [64] extending it to multipartite scenarios, device independent variants

and obviously implementing in experiments.

1.3 Bell Nonlocality

As already mentioned in the introduction that in 1964, John Bell [2] proved that any physical the-

ory satisfying the notion of local causality is incompatible with QM. In this section, I briefly discuss

the notion of local causality, what it means, and the construction of Bell inequality. Then I discuss

different Bell inequalities in bipartite and multipartite scenarios. First, I introduce the notion of Bell
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Figure 1.1: Bell experiment with two parties.

experiment. There are two spatially separated parties Alice and Bob, doing local measurements on

their respective systems. The measurements are labeled by the inputs x and y respectively. The out-

puts of their measurements are given by a and b. Local systems of Alice and Bob can be two quantum

entangled particles generated from a source S. The joint probability distribution p = {p(ab|xy)}

characterizing the Bell experiment is called correlations or behavior. We are interested only in these

correlations, anything else is a black box. These joint probability distributions are operational quan-

tities (experimentally reproducible) and we say that they denote a quantum “phenomena”. An onto-

logical model which is designed to reproduce the predictions of a quantum phenomena is called A

theory. The essence of Bell theorem is that it says certain theories are not compatible with a quantum

phenomena. Next section describes this incompatibility.

1.3.1 LHV Model

A theory consists of some ontic variables λ, also called hidden variables which are not accessed by

the experiment. The predictions of a quantum phenomena are reproduced by the joint probability

distributions of a theory dependent on the hidden variable λ as,

p(ab|xy) =

∫
Λ

q(λ)p(ab|xy, λ)dλ, (1.19)

where, the values of λ are picked from the set Λ with the probability distribution q(λ). In addition, we

assume that there is “free will” or measurement independence [65], which is expressed as q(λ|xy) =

q(λ) A theory is called Local (L) iff p(a|x, y, λ) = p(a|x, λ), and deterministic (D) iff p(ab|x, y, λ)’s

are either 0 or 1 [66]. A theory is said to satisfy Local Causality (LC) [66] if p(a|b, x, y, λ) = p(a|x, λ)

and p(b|a, x, y, λ) = p(b|y, λ). A theory is called factorizable, iff p(ab|xy, λ) = p(a|x, λ)p(b|y, λ).
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Mathematically LC is equivalent to factorizability. Local Determinism (LD) is stronger criteria than

LC or factorizability. LD implies LC but the converse is not true. We reserve the terminology Local

Hidden Variable (LHV) model, for a theory respecting LC.

• Bell’s Theorem : LHV model, a theory which satisfies LC or factorizability is not compatible

with some quantum phenomena, i.e. certain correlations in QM can not be decomposed as,

p(ab|xy) =

∫
Λ

q(λ)p(a|x, λ)p(b|y, λ)dλ. (1.20)

It can be shown that, a theory satisfying LC or factorizability satisfies Bell inequality.

As seen above, Bell’s theorem is obtained from some ontological criteria. But it can also be derived

under operational assumptions [67]. A phenomena is called no-signaling iff,

∑
b

p(ab|xy) =
∑
b

p(ab|xy′),∀a, x, y, y′∑
a

p(ab|xy) =
∑
a

p(ab|x′y),∀a, x, y, y′ (1.21)

Next, a phenomena is called Predictable iff, p(ab|xy)’s are either 0 or 1. Note that, No-signaling

and Predictivity are very similar to the Locality condition and Determinism, but the former notions

are in operational level and the later notions are in ontic level. In Ref. [67], authors showed that

No-signaling and Predictivity are sufficient to derive Bell inequalities, much like the Locality and

Determinism are sufficient (not necessary) to derive Bell inequalities.

1.3.2 Bell inequalities

The set of joint probabilities p(ab|xy) which satisfy the LC relation of Eq. (1.20) is called the set

of local correlations L. This set is closed, bounded, convex and forms a polytope. A polytope is a

generalization of polygons to any dimension. Mathematically, there are two equivalent definitions

[68] of a polytope: V representation and H representation. A V -polytope is the convex hull of a finite

set of points ∈ Rd, which are called vertices. A H polytope is an intersection of a finite number of

closed halfspaces in some Rd, which is bounded. So, a polytope is a set of finite number of points

P ⊆ Rd, which can be represented as either a V or a H polytope. The dimension of a polytope is

the dimension of its affine hull. The elements of p belong to the set of quantum correlations Q if,
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p(ab|xy) = Tr(ρABMa|x ⊗Mb|y), where Ma|x and Mb|y are POVM elements of corresponding mea-

surements. Set of quantum correlations is closed, bounded and convex, but it is not a polytope as there

are infinite number of extremal points. No-signaling correlations also form a polytope, which consist

of both local and nonlocal vertices. Both L and Q satisfy the no-signaling constraints, but there are

NS correlations which do not satisfy locality and also do not belong toQ. Any local behavior admits

a quantum description and hence belongs to Q. But there are quantum correlations which do not

belong to L. So, finally we have, L ⊂ Q ⊂ NS, which is shown in the Fig. (1.2). Though, the set

of quantum correlations is not so simple as it may appear from the schematic diagram. Recently, in

[69] authors have investigated the nontrivial geometry of set of quantum correlations. From hyper-

plane separation theorem [43], for each behavior p which is not the part of L or Q or NS , there is

a hyperplane that separates this p from the corresponding set. If the set is L then this is nothing but

a Bell inequality. This Bell inequality is also called facet Bell inequality. From the Fig. (1.2), it is

Figure 1.2: Schematic diagram of different type of correlations.

evident that a facet Bell inequality is the tight or optimal Bell inequality for a set of local correlations.

One can in principle construct Bell inequalities which are not facets of the local polytope, but these

would not be optimal in the sense that there may be some quantum correlations which are nonlocal

w.r.t a facet Bell inequality, but do not violate the non-optimal one. In literature [3], there are many

Bell inequalities which are useful for different purposes but they are not facet Bell inequalities. I now

give some well known examples of Bell inequalities.

Bipartite scenario : Perhaps the most famous example in bipartite settings is the Clauser-Horner-

Shimony-Holt (CHSH) inequality [70], which is the only nontrivial facet inequality for two parties
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and two dichotomic measurement settings per party. With the measurement settings A1, A2 at one

side and B1, B2 at the other side, it has a very simple structure as written below,

A1B1 + A1B2 + A2B1 − A2B2 ≤ 2. (1.22)

The left-hand side should be thought of as the expectation value of the observables. Maximum quan-

tum violation of this inequality is 2
√

2, which is known as the Tsirelson’s bound [71]. Bell states show

this maximal violation for specific measurement settings. For example, for the state 1√
2
(|00〉+ |11〉),

the expectation value of the Bell-CHSH operator in Eq. (1.22) is 2
√

2 for A1 = σx, A2 = σz,

B1 = 1√
2
(σx +σz), and B2 = 1√

2
(σx−σz). With the local unitary operators, one can find the suitable

measurement settings for the Bell states to achieve the maximal violation. Gisin showed that [72, 73]

any pure bipartite state of arbitrary dimension violates Bell-CHSH inequality for suitable measure-

ment settings. This is known as Gisin’s theorem. There have been many efforts [74, 75, 76, 77] from

different approaches to extend this theorem to multipartite scenario. In Ref. [78], authors provided

the optimal quantum violation of Bell-CHSH operator and the corresponding measurement settings

for a general two-qubit mixed state. Complexity increases with the increase in the dimensions of the

Hilbert spaces. For arbitrary dimension d and two measurement settings per party, Collins-Gisin-

Linden-Massar-Popescu (CGLMP) inequality [79] is notable. In Ref. [80] it was shown that CGLMP

inequality is also a facet Bell inequality. But astonishingly, states [81] that violate CGLMP inequality

maximally are not the maximally entangled states. Recently, Bell inequalities for arbitrary dimen-

sions and arbitrary measurement settings have been constructed [82], which give maximal violation

for maximally entangled state, but they are not facet inequalities as expected. There is a huge litera-

ture of Bell inequalities [3] both facet and non-facet constructed for various purposes.

Multipartite scenario : Multipartite scenario is more complex due to the presence of different types

of entanglement even in pure states. Like the famous Mermin-Ardehali-Belinskii-Klyshko (MABK)

inequalities [83, 84] were designed for GHZ states. GHZ state violate the inequalities maximally. But

it can not be used to guarantee that it certifies genuine entanglement, because bi-separable states also

violate the MABK inequalities. Svetlichny inequality [85] is a famous example of a Bell inequality

constructed for genuinely entangled three-qubit states. But the definition of genuine nonlocality used

by Svetlichny was stronger. A strictly weaker definition was introduced in Ref. [86]. Nonetheless, the
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equivalence of genuine tripartite entanglement and genuine tripartite nonlocality is an open question

[86] even for pure states. As there is no notion of maximally entangled states in multipartite scenario,

different Bell inequalities are constructed looking at different states. In Ref. [87] authors constructed

a Bell inequality, which is violated maximally by a four-qubit cluster state [88]. Depending upon

purposes people have constructed many variants of multipartite Bell inequalities. In Ref. [89] authors

constructed the set of correlation Bell inequalities for n parties and two dichotomic measurement per

party. These inequalities are also facet inequalities. Śliwa constructed [90] all facet Bell inequalities

for three parties and two dichotomic measurements per party. In [91] authors used the Bell inequal-

ities from [89] to show that W states are more robust against noise compared to the GHZ states. In

[92, 93] Bell inequalities were devised to discriminate between multipartite entangled states. There

are many such bell inequalities constructed for multipartite settings (with arbitrary dimension and

measurement settings also) [3] each designed for different purposes.

1.4 Entanglement in Quantum Thermodynamics

Quantum Thermodyanmics [94] is the study of thermodynamic properties of microscopic system,

specifically quantum systems. The laws of thermodynamics, originally formulated for macroscopic

systems require careful re-investigation in the quantum regime as the miniaturization of current tech-

nology demands. Emergence of thermodynamic laws from quantum dynamics gives a close corre-

spondence between two most successful physical theories. There are many facets [95] of Quantum

Thermodynamics, like foundations of statistical mechanics, thermalization, quantum heat machines,

information thermodynamics, open quantum system, and resource theory of thermodynamics. In

each of these areas, the distinguishing quantum effects like Coherence, quantum correlations play

important roles and yet to classify what is genuinely quantum [96] in Quantum Thermodynamics is a

difficult question. In this section, I will briefly discuss some developments in understanding the effect

of quantum correlation, specifically quantum entanglement in Quantum Thermodynamics. There are

varied scenarios and thermodynamic protocols, where quantum correlations are valuable resources.

Not only that, how the thermodynamic laws are getting modified or reformulated in the presence of

correlation is an important question to ask.
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1.4.1 Different forms of Quantum correlation

I have discussed Entanglement [7] and Bell nonlocality [3] that capture features of quantum correla-

tions. Bell Nonlocality is a stronger form of correlation than entanglement. Interestingly, separable

states also contain some kind of correlation, which is not entirely classical. Actually, there is no

unique way to define classical-quantum version. If one consider Local Causality (LC) as one way to

define classical correlations then Bell nonlocality characterizes non-classical correlations or genuinely

quantum correlation. Likewise, entanglement is the non-classical correlation with respect to LOCC.

More generally, information theoretic measures capture features of correlations that go beyond entan-

glement. Discord is one of such examples. The amount of correlation between two classical random

variables A and B is quantified by the mutual information I(A,B) [8, 97],

I(A,B) = H(A) +H(B)−H(A,B), (1.23)

where, H(X) is the Shanon entropy [97] of the probability distribution p(X) of the random variable

X . Quantum generalization of this quantity, written as I(A,B) = S(A) + S(B) − S(A,B), where

S(X), is the Von-Neumann entropy of a density matrix ρX . An equivalent form of mutual information

in Eq. (1.23) can be written in terms of the conditional entropy H(X|Y ) = H(X, Y ) − H(Y ), as

J(A,B) = H(A)−H(A|B). For classical random variables, I(A,B) = J(A,B). But for quantum

case, definition of conditional entropy is not unique. One way to define the quantum version S(A|B)

of the conditional entropy H(A|B) is to consider a set of POVM {Eb} on the subsystem B. The

conditional state of the subsystemA, after the measurement onB is given by, ρA|b = TrB(EbρAB)/pb,

where, pb = Tr(EbρAB) is the probability of the outcome b. Now, the quantum version of conditional

entropy is defined as S(A|B) = S(A) − S(A|{Eb}), where, S(A|{Eb}) =
∑

b pbS(ρA|b). Then one

defines [98, 99] for the state ρAB, conditional entropy J (A,B) = S(A)−max{Eb}S(A|{Eb}). And

unlike the classical case, J (A,B) and I(A,B) are not same. Indeed the difference between these

two is the quantifier of quantum correlation present in the state ρAB and is called discord D(A,B) =

I(A,B)−J (A,B) [100]. This difference is coming from the fact that quantum measurement disturbs

the state. If one state is such that it is perturbed by the measurement on side A and not on the side

B, then discord for this state is zero for measurement on B. Such states are called quantum-classical

or classical-quantum upon exchanging the role of A and B. A state is classical-quantum state iff

21



ρAB =
∑

i pi |i〉 〈i| ⊗ ρBi , where {|i〉} is an orthogonal set of vectors. This shows that in general

a separable state of the form ρAB =
∑

i piρ
A
i ⊗ ρBi contains non-zero quantum discord, a form of

quantum correlation which is weaker than entanglement. For pure states all forms of correlations

are manifested as entanglement. In literature [9, 10] there are various other measures to quantify the

genuine quantum correlation. Notable measures are Measurement-induced disturbance, Work-deficit,

Relative entropy of discord and dissonance, etc.

1.4.2 Thermodynamic laws and correlation

In macroscopic thermodynamics, the interaction between system and the environment (thermal bath)

is negligible [101] and they are like the isolated parts of a composite system. But when it comes

to quantum system the correlation between two systems (one is the concerned system and other is

the bath) becomes important. An uncorrelated state of systems A and B is given by the product

state ρA ⊗ ρB. But, if the total state can not be written in this form, the systems are correlated and

the conventional definitions of thermodynamic quantities like work, heat are no longer valid [101,

102, 103, 104]. The second law of thermodynamics tells that, the entropy of a subsystem can never

decrease. However, this thermodynamic arrow of time does not hold [105, 106, 107], if the system

and bath is initially correlated. Consequently, the laws of thermodynamics need a reformulation

through the redefinition of thrmodynamic quantities [102, 103, 104, 108] in the presence of quantum

correlation. Recently, experiment has also been performed [109] to observe this violation of classical

thermodynamics.

1.4.3 Correlation advantageous or not

As discussed above, quantum correlations give rise to some anomalous situations. But it can also be

helpful from operational and practical point of view. One of the most important aims of Thermody-

namics is extracting useful work from a system. Unification of seemingly different heat engines in

terms of efficiency started in early 19th century with Sadi Carnot [110]. From then onward, convert-

ing heat with increasing efficiency into useful work for practical and industrial purposes got a thrust.

With the advent of quantum heat engines [169] a lot of new possibilities came up. Using genuine

quantum effects for the betterment of engine’s performance started getting attention. Indeed, when

the working medium of a quantum engine constitutes more than one subsystems, correlations come
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into the play. The correlation include quantum effects beyond entanglement as captured by, e.g., dis-

cord. In Ref. [112], it was shown that quantum discord is an essential resource in a photo carnot

engine, as the efficiency can exceed the classical value exploiting the correlation. In other works like

in Ref. [113, 114, 115, 116, 117, 118, 119], quantum Otto engines and Carnot engines with corre-

lated (entanglement or discord can be present) working medium are shown to be more effective than

the uncorrelated ones in terms of work extraction and efficiency. In a recent work [120], quantum

Otto engine is designed with two qubits as the working medium, coupled to local and common baths,

which may be out of equilibrium. They showed a monotonic dependence of the extracted work on

discord and entanglement, establishing the advantage of quantum correlation. Another scenario one

can consider is the work extraction from a system isolated from thermal bath, and undergoing a cyclic

unitary process controlled externally. Maximum work extracted from the system in this situation is

called Ergotropy [121]. States, form which no work can be extracted are called passive states. A

state is passive [122] iff it commutes with the system Hamiltonian and its eigenvalues are arranged

from larger to smaller values with energy. A thermal state is obviously a passive state. But it has also

another property which is called completely passive. A state σ is completely passive iff σ⊗n is passive

[122] for the HamiltonianH = H1 +H2 + ...+Hn. The crucial thing that happens for this many copy

tarnsformation is that the Unitary can now be entangling. Indeed authors in Ref. [122] showed that

an entanglement generating unitary extracts more work than an independent one. Though subsequent

work [123] showed that entanglement generation is not necessary for optimal work extraction, but

there is a trade off. Generation of less entanglement leads to more number of required operations and

hence time. In Ref. [124], authors computed optimum extractable work from general entangled states,

separable states and states with a constant entropy. They showed that for small quantum ensembles

entanglement gives an advantage for work extraction but this advantage vanishes when the number

of systems in the ensemble is large. In this aspect, recently, it has been shown that [125] non-zero

quantum discord between the system and an ancilla helps to increase the ergotropy. In the regime

of Information Thermodynamics, entanglement can be used for the betterment of the performance

of Szilard engine [126, 127, 128], where one can extract work from a single temperature exploiting

the information. It was shown that [129, 130, 131, 132], entanglement between different subsystems,

like engine and bath or the engine and observer or two parts of engine can be used to extract work

beyond classical regime. In Ref. [133], authors showed that the engine can be driven only by quantum

discord. On the other hand in Ref. [134, 135] Thermodynamic perspective was used to quantify the
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quantum correlation. The difference between global and local work extraction using LOCC is named

as “work deficit”. For a pure state, this boils down exactly to the Distillable Entanglement of the state.

This shows an intimate connection between quantum correlation and quantum thermodynamics. Not

only that, there are works, where extracted work is used to detect the entanglement in the system. In

Ref. [136], authors showed that one can extract more work from a heat bath using entangled system

than using classically correlated systems. Extending that idea to tripartite scenario [137], a protocol

was devised to distinguish GHZ, W, and separable states in terms of work extraction using LOCC.

In a recent work [138], authors showed that bipartite Gaussian entanglement can be detected by the

amount of work extraction in a continuous variable Szilard engine. Despite the fact that, quantum

correlation is advantageous in work extraction in a varied scenarios, still a general consensus regard-

ing the advantages of quantum correlation in heat machines and other thermodynamic protocols does

not exist in a model independent way. Maximum works that have been done are suited for some par-

ticular models and settings. Moreover, the quantum-classical transition in quantum thermodynamics

and recognizing the genuine quantum effects [139] is another difficult problem to address.

1.5 Plan of the thesis

The thesis is arranged as following. In the second chapter, I discuss different aspects of the set of six

new Bell inequalities for three-qubit pure states. They are violated by all generalized GHZ states and

give rise to the special situation, e.g. n parties, two dichotomic measurements for two parties and one

for the rest. But they are not facet Bell inequalities in this scenario. In the next chapter, I introduce

the facet Bell inequalities for this scenario and discuss their properties. In the fourth chapter, I talk

about a new QIP protocol, which we name as Co-operative Quantum Key Distribution (CoQKD) and

introduce the multipartite resource states suitable for this scheme. We discuss the CoQKD protocol

and Conference key protocol with the new resource states. In the fifth chapter I discuss the role of

entanglement in a measurement driven quantum heat engine operating at single temperature. We show

that the presence of coupling in the working medium helps to increase the efficiency beyond classical

limit. In the last chapter I conclude.
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CHAPTER 2

New Bell inequalities for multi-qubit pure states

2.1 Introduction

Unlike a pure bipartite state, the relationship between Bell nonlocality and entanglement is far from

simple [140]. For three-qubit states, we will adopt following terminology. A state |ψ〉 is a pure

separable or product state if it can be written in the form |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉, a pure biseparable state

if it can be written as |ψ1〉 ⊗ |ψ23〉 or in other permutations and is genuinely entangled if it cannot be

written in a product form. Above classification is based on types of entanglement present in the state.

Idea of non-separability according to Bell locality comes from the inability of construction of a LHV

model for observed correlations. In this case, the quantum mechanical description is not presupposed.

For a system of three particles, if the joint probability can be written as,

P (a1, a2, a3) =

∫
dλρ(λ)P1(a1|A1, λ)P2(a2|A2, λ)P3(a3|A3, λ),

where, Pi(ai|Aiλ)(i = 1, 2, 3) is the probability of yielding the result ai, when a measurement Ai is

done on the particle with the local hidden variable λ, then the model is the well known LHV model.

The intermediate case is the hybrid local-nonlocal model, first considered by Svetlichny [85], where

there is an arbitrary nonlocal correlation between two of the three particles but only local correlations

between these two and the third particle. The last situation is genuine tripartite nonlocality, where
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three particles are allowed to share arbitrary correlations. Whereas Svetlichny’s inequality allowed

arbitrary nonlocal correlation between two parties, a more refined and strictly weaker definition of

genuine tripartite nonlocality was introduced in [86]. By analyzing the no-signalling polytope, they

found a set of 185 inequivalent facet inequalities and numerically conjectured that every genuine tri-

partite entangled states show violations within this set and hence they are also genuinely tripartite

nonlocal according to their definition.

In the case of three qubits, violation of Mermin-Ardehali-Belinskii-Klyshko (MABK) inequalities

[83, 141] gives sufficient criteria to distinguish separable states from entangled ones. But it is not

a necessary condition as there are states, which do no violate MABK inequalities but have genuine

tripartite entanglement [142]. Śliwa [90] constructed the Bell polytope i.e all tight Bell inequalities

for three parties and two dichotomic measuements per party, where Mermin inequality is one of the

facets. More precisely, in [142] it was shown that the n-qubit state, |ψ〉 = cosα |0...0〉+ sinα |1...1〉

(we will call it generalized GHZ state) would not violate MABK inequalities for sin 2α ≤ 1/
√

2N−1.

Furthermore, in [143] authors showed that generalized GHZ states within a specified parameter range

for odd number of qubits do not violate Werner-Wolf-Żukowski-Brukner (WWŻB) inequalities [89].

These inequalities form a complete set of correlation Bell inequalities for n parties, with two mea-

surement settings per party and two outcomes per measurement. Interestingly, tight Bell inequalities

can be constructed [144] for more than two measurement settings per party such that generalized

GHZ states violate these for the whole parameter range. So, the question naturally arises whether

one can construct some Bell inequalities with maximum two measurements per party such that the

problematic generalized GHZ state will violate them for the entire parameter range.

In this chapter, one of our motivations is to construct Bell inequalities [145] to answer this question

affirmatively. This is achieved by making different number of measurements on different qubits. It is

unlike other previous major inequalities. The second motivation is to attempt to link nonlocality with

the entanglement. We characterize nonlocality of a state by the maximum amount of violation of a

Bell inequality. Both notions of entanglement and nonlocality are fluid for multipartite states. There

exist a wide array of Bell inequalities, and multiple characterizations of entanglement. In this chap-

ter, we are able to link entanglement and nonlocality, for the class of generalized GHZ states. The

third motivation is to be able to discriminate between separable, biseparable, and genuinely entangled

pure states using Bell inequalities. In general, it is very difficult to discriminate between biseparable

and genuinely entangled states. MABK inequalities give a sufficient condition to distinguish them
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[140, 141, 146]. However as the condition is only sufficient but not a necessary one, biseparable and

genuinely entangled states cannot always be distinguished by means of these inequalities. Using our

Bell inequalities, one can always distinguish between separable, biseparable and genuinely entangled

three-qubit pure states from the pattern of their violations. We have also provided numerical evidence

that any pure entangled state will violate one or more inequalities from the set. Analytical proof is

difficult due to many parameters in the state and possible measurement settings. Our conjecture is

similar in spirit to a few previous works [86]. The discussion is organized as follows. In the next

section, we introduce a set of Bell inequalities for three-qubit states and discuss some of their prop-

erties. In the subsequent section, we prove a number of propositions for three-qubit states. We then

generalize these inequalities to the case of n qubits. The last section has conclusions.

2.2 A set of Bell inequalities

We consider a three-qubit system, with a qubit each with Alice, Bob and Charlie. In the Bell inequal-

ities that we introduce, two of the parties will make two measurements, while the third party will

make only one measurement. This third party can be either Alice, Bob, or Charlie. A general state

need not have any symmetry, therefore we will be considering a set of Bell inequalities, rather than

one inequality. The one measurement by one of the parties is necessary. We note that in the original

Bell inequality [2], one of the two parties makes only one measurement. We first list the set of six

inequalities, and later explain the motivation.

A1B1(C1 + C2) +B2(C1 − C2) ≤ 2, (2.1)

A1B1(C1 + C2) + A2(C1 − C2) ≤ 2, (2.2)

(B1 +B2)C1 + A1(B1 −B2)C2 ≤ 2, (2.3)

A1(B1 +B2) + A2(B1 −B2)C1 ≤ 2, (2.4)

(A1 + A2)B1 + (A1 − A2)B2C1 ≤ 2, (2.5)

(A1 + A2)C1 + (A1 − A2)B1C2 ≤ 2. (2.6)
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In this list, the left-hand side should be thought of as the expectation value of the observables. In

the first and third inequalities, Alice makes one measurement given by observable A1, Bob measures

the observables B1 and B2, and Charlie measures observables C1 and C2. These are dichotomic

observables, with values {−1, 1}. In the inequalities (2) and (6), Bob measures only one observable,

B1, while in the inequalities (4) and (5), Charlie measures only one observable, C1. Other parties

measure two observables. To find the maximal violation of these inequalities for a state, one has to

consider all possible measurements. Therefore, inequalities obtained by interchange of A1 and A2

will give identical maximal violation. Same will be true for other set of observables. Because of this,

we do not include such inequalities in our set. In quantum mechanics, the maximal value of these

Bell operators can be 2
√

2. This has been proved along the same line as the Tsirelson’s bound for

Bell-CHSH operator.

2.2.1 Quantum bound for the inequalities

We will obtain the bound for the first inequality and the analysis will be similar for others. Let us call

the corresponding Bell operator for the first inequality as,

B = A1B1(C1 + C2) +B2(C1 − C2) (2.7)

If we take the square of this expression we get,

B2 = 4I + A1[C1, C2][B1, B2]. (2.8)

Here, we have used A1
2 = B1

2 = B2
2 = C1

2 = C2
2 = I . We know that, for two bounded operators

X and Y ,

‖ [X, Y ] ‖≤ 2 ‖ X ‖‖ Y ‖, (2.9)

where, ”‖ ‖” is the sup norm of a bounded operator. Using this relation, we notice that the maximum

value will be obtained when B2 is 8I and hence ‖ B ‖≤ 2
√

2. This proves our claim.

28



2.2.2 Motivation behind the inequalities

To motivate these inequalities, our starting point will be the Bell-CHSH inequality. This inequality

reads as,A1B1+A1B2+A2B1−A2B2 ≤ 2, whereA1,A2 are the measurement observables for Alice,

B1, B2 are the measurement observables for Bob and 2 is the local-realistic value. Again in left-hand

side, expectation value is implicit. From Tsirelson’s bound [71], maximum value of this operator can

achieve for quantum states is 2
√

2. This value is achieved for the maximally entangled states - Bell

states. Let us consider the state |φ+〉 = 1√
2
(|00〉+ |11〉). This state is useful for generalization to GHZ

state. For a suitable choice of measurements, for example, A1 = σx, A2 = σz, B1 = 1/
√

2(σx + σz)

and B2 = 1/
√

2(σx−σz), we obtain the maximal violation of 2
√

2. For this choice of measurements,

the Bell-CHSH operator takes the form
√

2(σx ⊗ σx + σz ⊗ σz). The state |φ+〉 is its eigenstate with

eigenvalue 2
√

2 [147]. With local unitary transformations, we can find other forms of this operator,

of which other Bell states will be eigenstates with maximal eigenvalue. Now, we want to construct

an operator for three-qubit pure states such that, the GHZ state of three qubits will be the eigenstate

of this operator with highest eigenvalue. Like the Bell-CHSH operator, we can construct an operator

such that its maximum eigenvalue will be 2
√

2. The GHZ state, 1√
2
(|000〉 + |111〉), is the eigenstate

of the operator
√

2(σx ⊗ σx ⊗ σx + σz ⊗ σz ⊗ I) with eigenvalue 2
√

2. We can write other forms of

this operator where identity operator acts on other qubits. We clearly see that we have even number

of σz; here it is one fewer than the number of qubits. This suggests that we need to make only one

measurement on one of the qubits. With the help of this operator, we can construct the simplest set of

Bell inequalities. We need a set to take care of asymmetric situations. This set is given above. To look

at it from a different point of view, identity in one place of the aforementioned operator gives us hint

to construct non-correlation Bell inequality. Also from previous discussion, it is clear that to obtain

violations for all pure entangled states, correlation Bell inequalities are not enough. So, it seems that

non-correlation Bell inequalities may work. We show below by first considering generalized GHZ

states and then arbitrary three-qubit states that it is indeed true.

2.3 Three-qubit states

In this section, we will consider three different classes of states – product states, pure biseparable

states, and states with genuine tripartite entanglement. We will see how our inequalities can distin-
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Figure 2.1: Average Von Neumann entropy over the three bipartitions vs α2 plot.

guish these classes of states. In addition, we shall consider generalized GHZ states. Theses states

are symmetric under the permutation of particles; so we can pick any of the inequalities. All will be

violated in the same manner.

Proposition 1: All generalized GHZ states violate all six inequalities of this set.

Proof: Let’s consider the three-qubit generalized GHZ state, which is written as following,

|GGHZ〉 = α |000〉+ β |111〉 . (2.10)

These states have been problematic for different inequalities. However, as our Bell inequalities were

designed for GHZ states, all of these generalized GHZ states violate all our inequalities. In the

spirit of generalized Schmidt decomposition, we can take α and β to be real and positive numbers.

Quantification of entanglement in multipartite scenario is a messy business. Unlike pure bipartite

system, there is no unique measure of entanglement for multipartite states [11, 51]. One uses different

measures depending upon different purposes. Von Neumann entropy uniquely captures and quantify

the entanglement for a pure bipartite system in the asymptotic limit. For a pure multipartite state

one can use the average of Von Neumann entropy over each bipartition as a suitable measure of

multipartite entanglement [51]. For three-qubit pure state, there are three bipartitions namely, 1− 23,

2 − 31 and 3 − 12. Average of Von Neumann entropy for generalized GHZ state as defined in

equation (3.8) over these bipartitions is −α2 log2 α
2 − β2 log2 β

2. This is also the entropy for each

bipartition for these states as the states are symmetric. We have plotted this average entropy with α2

with α2 + β2 = 1, in figure (2.1). Since the states are symmetric under the permutations of particles,
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Figure 2.2: Maximum expectation value of the Bell operator for a generalized GHZ state vs α2 plot.

we can choose any Bell inequality from the set. We choose the inequality,

A1(B1 +B2) + A2(B1 −B2)C1 ≤ 2. (2.11)

Let us recall that the expectation value for the left-hand side is implicit. We choose the following

measurement settings, A1 = σz, A2 = σx, B1 = cos θσx + sin θσz, B2 = − cos θσx + sin θσz,

C1 = σx. For these measurement settings, the expectation value of the above Bell operator for the

generalized GHZ state is

〈GGHZ|A1(B1 +B2) + A2(B1 −B2)C1 |GGHZ〉 . (2.12)

Its value is 2[2αβ cos θ+ (α2 + β2) sin θ] = 2[2αβ cos θ+ sin θ]. Now, a sinφ+ b cosφ ≤
√
a2 + b2.

Therefore 〈GGHZ|A1(B1 +B2) +A2(B1−B2)C1 |GGHZ〉 is less than or equal to 2
√

1 + 4α2β2,

which is always greater than 2 for nonzero α, β and gives maximum value 2
√

2 for the conventional

GHZ state. The upper bound on the expectation value can be written as 2
√

1 + C2, where C2 = 4α2β2

is nothing but the tangle of the generalized GHZ state. The quantity C is also like concurrence for a

two-qubit bipartite state. We have also plotted the optimized expectation value of the Bell operator

with α2 in figure (2.2). From these two plots, it is clear that, the entanglement measure (average Von

Neumann entropy over the bipartitions) and the maximum amount of Bell violation for generalized

GHZ states are monotonically related to each other. In a different way, we can say that for the gener-

alized GHZ state, the expectation value of the Bell operator depends on the amount of entanglement.

The more is the entanglement of a state, the more Bell nonlocal it is. This concludes the proof. As
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discussed earlier, this is the class of states which was creating problem for MABK, Svetlichny and

moreover for all correlation Bell inequalities for a particular range of α and β. However, all states in

this class violate all the inequalities in our set.

Proposition 2: All biseparable pure three-qubit states violate exactly two inequalities within the

set and the amount of maximal violation are same for both.

Proof: This can be proved by observing the form of the inequalities. We can rewrite any bisepa-

rable state as an equivalent form of |0〉 (α |0〉 |0〉 + β |1〉 |1〉) by local unitary transformations. (We

can relabel qubits such that number ‘2’ and ‘3’ are entangled. This state is separable in 1− 23 bipar-

tition. So, those inequalities, which can explore the entanglement between the second and the third

qubit will be violated. For example, for the above mentioned state,A1B1(C1+C2)+B2(C1−C2) ≤ 2

will be violated, because a Bell-CHSH type operator for second and third qubits is embedded in this

operator. So, the amount of violation will be exactly same as in the case of two-qubit entangled state

and the Bell-CHSH operator. Not only this inequality, but there is another inequality within this set,

which will also be violated in this case. This inequality is, (B1 + B2)C2 + A1(B1 − B2)C1 ≤ 2.

So, there are two inequalities, which will be violated for a given pure biseparable state. Also, as all

the two operators have the same form (the Bell-CHSH form) in second and third particle, the amount

of maximal violations will be same in two cases. And the last important fact is that, no other states

(except biseparable pure states) will have same kind of violations, i.e exactly two violations of the

same maximal amount. This concludes the proof. Until now, we have considered special classes of

three-qubit states. One would like to show that any genuinely entangled tripartite state will violate one

of our inequalities. For this, we will be presenting numerical evidence, using a general parametrized

form of a three-qubit state.

Conjecture 3: For all genuine tripartite pure entangled states, we have violation within the set.

We do not have an analytical proof for this proposition. But we present supporting numerical evi-

dence. Any genuinely entangled three-qubit pure state can be written in a canonical form [148] with

six parameters. This form includes the GHZ and W class states [45] for three qubits. For bisepara-

ble pure states, we have already provided proof for the violation of inequalities within the set. The

32



canonical form of a general three-qubit state is,

|ψ〉 = λ0 |0〉 |0〉 |0〉+ λ1e
iφ |1〉 |0〉 |0〉+ λ2 |1〉 |0〉 |1〉+ λ3 |1〉 |1〉 |0〉+ λ4 |1〉 |1〉 |1〉 , (2.13)

where λi ≥ 0,
∑

i λi
2 = 1, λ0 6= 0, λ2 + λ4 6= 0, λ3 + λ4 6= 0 and φ ∈ [0, π]. We have randomly

generated 25,000 states and tested our set of Bell inequalities. The expectation value of a Bell operator

is optimized by considering all possible measurement settings for all observables. Starting from the

inequality (1) from the set, we continued with other inequalities one after one until all the generated

states violate one inequality from the set. Results are displayed in figures (2.3-2.7). At first, Bell

Figure 2.3: Optimum value of the Bell operator (1). Out of 25000 states, 297 states do not violate this
inequality. States which violate the inequality are shown by red points and those do not are shown by
blue points.

inequality (1) was tested for these randomly generated states and out of 25000 states, 297 states do

not violate this inequality, as shown in figure (2.3). Then using the inequality (2) with these 297

states, number of states which do not violate these first two inequalities was further reduced to 59

states, as shown in figure (2.4). Similarly, applying the other Bell inequalities from the proposed set

one by one the number of states showing no violation for those inequalities can be reduced to zero.

We have shown in figures (2.3-2.7), starting from 25000 random states, violation for each state has

been obtained using first five inequalities from the proposed set.

However, this random generation of states would not be setting any of the parameters as zero. But

we should consider those states also for numerical checking. So, we have generated 5000 states each

for 9 more classes of states, by setting some of the parameters as zero. These classes are obtained

as, only λ1 = 0, only λ2 = 0, only λ3 = 0, only λ4 = 0, only λ1, λ2 = 0, only λ1, λ3 = 0, only,

λ1, λ4 = 0, only, λ2, λ3 = 0, Only, λ1, λ2, λ3 = 0. For each of theses class, φ is arbitrary. We have
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Figure 2.4: Optimum value of the Bell operator (2). Out of 297 states, 59 states do not violate this
inequality. States which violate the inequality are shown by red points and those do not are shown by
blue points.

Figure 2.5: Optimum value of the Bell operator (3). Out of 59 states, 3 states do not violate this
inequality. States which violate the inequality are shown by red points and those do not are shown by
blue points.

taken 5000 random values of each parameter for each class and found violations within the set of 6

inequalities in each case. Based on this and the fact that all generalized GHZ class states violate each

inequality (already proved), we expect that this set can certify genuine pure tripartite entanglement.

To conclude the case of tripartite scenario, we have established that all generalized GHZ states vi-

olate all the inequalities within the set and with the help of propositions 1,2 and 3 one can always

distinguish between separable, biseparable and genuinely entangled pure states from the pattern of

their violations of inequalities from the set.
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Figure 2.6: Optimum value of the Bell operator (4). Out of 3 states, 2 states do not violate this
inequality. States which violate the inequality are shown by red points and those do not are shown by
blue points.

Figure 2.7: Optimum value of the Bell operator (5). Out of 2 states, all the states violate this inequal-
ity. So, there are 2 red points and no blue points.

2.4 Multi-qubit states

We have established that our set of inequalities are violated by any entangled three-qubit pure state.

We can generalize this set of inequalities to n-qubit states. This extension for multi-qubit scenario is

straight-forward. One will have to distinguish between two cases – odd number of qubits and even

number of qubits. Starting from the operator, of which GHZ state is an eigenstate, one can construct

different Bell inequalities. For even n, there will be a set of n inequalities; while for odd n, the

number will rise to n(n − 1). The set is larger for odd number of qubits, because we have choice of

making one measurement on any of n qubits; while in the case of even n, two measurements are made

on all qubits. Therefore, we have to construct different types of inequalities for even and odd number

of particles. We have already seen that the GHZ state of three qubits is eigenstate of the operator
√

2(σx ⊗ σx ⊗ σx + σz ⊗ σz ⊗ I) with the highest eigenvalue 2
√

2. This form of the operator can
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be generalized for any n-qubit GHZ state, when n is odd. n-qubit GHZ states is the eigenstate of the

operator
√

2(σx ⊗ σx ⊗ σx ⊗ · · · ⊗ σnthx + σz ⊗ σz ⊗ · · · ⊗ σ(n−1)th
z ⊗ I) with the highest eigenvalue

2
√

2. So, like the three-qubit case, we have to consider non-correlation Bell inequalities when n is

odd. The first two Bell inequalities (1) and (2) can be easily generalized for n-qubit pure states as,

A1A2A3A4A5..(An + A′n) + A′2A
′
3A
′
4A
′
5..(An − A′n) ≤ 2, (2.14)

and

A2A3A4A5..(An + A′n) + A1A
′
2A
′
3A
′
4A
′
5..(An − A′n) ≤ 2. (2.15)

Here, Ai and A′i are two dichotomic observable for ith party. In these inequalities, one measurement

has been made on first qubit. Similarly one can make single measurement on (n − 2) other qubits.

This will lead to (n − 1) inequalities. We can write n such (n − 1) inequalities with (Ai ± A′i) for

ith qubit, giving a set of total n(n− 1) inequalities. For three-qubit the number of inequalities in the

set is six. For finding maximal violation, we consider all allowed Ai and A′i, therefore their positions

in the inequalities can be interchanged. The above set of inequalities can be used to characterize the

entanglement of n-qubit states for odd n. In the case of generalized n-qubit GHZ states, any one

of these generalized inequalities is enough. One can show that for odd number of qubits these non-

correlation Bell inequalities are violated by all generalized GHZ states with maximum violation of

2
√

2 for the conventional GHZ state. The proof is similar to the three-qubit case. Situation changes

when one considers GHZ like states with even number of qubits. Because now, like the Bell states,

the conventional GHZ state of n qubits (n is even) is the eigenstate of the operator
√

2(σx⊗σx⊗σx⊗

· · ·⊗σnthx +σz⊗σz⊗· · ·⊗σ(n−1)th
z ⊗σz) with highest eigenvalue 2

√
2. This suggests that correlation

Bell inequalities are required in this case. For example, one can generalize the first correlation Bell

inequality as,

(A1 + A′1)A2A3A4A5..An + (A1 − A′1)A′2A
′
3A
′
4A
′
5..A

′
n ≤ 2. (2.16)

Similarly, n such inequalities with (Ai ± A′i) can be written. Again, among these correlation Bell

inequalities any one of them can be used for generalized GHZ states. The proof that any generalized

GHZ state with even number of qubits violates these inequalities can be carried along the same line

as for the three-qubit case. The fact that generalized GHZ states with even number of qubits violate a

correlation Bell inequality within the set of all correlation Bell inequalities [89] was known [143]. But
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it is important to note that, the correlation Bell inequality violated by the generalized GHZ state with

even number of qubits, may not be MABK inequalities. Here, we have introduced a set of correlation

Bell inequalities which must be violated by all generalized GHZ states with even number of qubits.

Like three-qubit states, one may expect that any n-qubit pure state for odd value of n will violate one

of the n(n− 1) inequalities like in (2.14) and (2.15), while for even n, one of the n inequalities like

in (2.16) will be violated.

Proposition 4: Multiqubit extension of the inequalities are violated by all multiqubit generalized

GHZ states.

Proof: Let’s consider the generalized n-qubit GHZ state

|GGHZ〉n = α |00.....00〉+ β |11.....11〉 . (2.17)

In this state, first term represents all n qubits in the ‘0’ state and the second term is for all n qubits in

the ‘1’ state. The proof follows exactly same steps as in the proposition 1. The result is also identical.

In the case of both even and odd n, the maximal violation would be 2
√

1 + C2, where C = 2αβ. For

the n-qubit GHZ state C = 1 and the maximal violation is 2
√

2.

2.5 Conclusion

We have presented a new set of six Bell inequalities. Separable three-qubit pure states do not violate

any of these inequalities and biseparable pure three-qubit states violate exactly two of them with same

maximal amount. A generalized GHZ state violates all the inequalities in the set, with conventional

GHZ state giving maximum amount of violation, which is 2
√

2. Furthermore, for this class of states,

our inequalities provide a link between nonlocality and entanglement. More entangled state will vi-

olate the inequalities more. We have also provided numerical evidence that any genuine tripartite

entangled pure state will give violation within this set.

A key point of this set of inequalities is that one will make only one measurement on one of the

qubits. For violation this measurement is necessary. It is similar to the original Bell inequality. It can
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also be used to distinguish between separable, biseparable and genuinely entangled pure three qubit

states. So this inequality can serve as a entanglement witness (considering the numerical conjecture)

for a three qubit pure state. From the measurement point of view it is very efficient. Because the sim-

plest way to determine whether a pure state is entangled is to measure the purities of the subsystems.

This will require atleast three measurement settings per party (single qubit tomography), where these

inequalities only require two measurements for two parties and only one for the rest.

One can also examine the three-qubit mixed states, where one may expect to find the phenomenon of

hidden nonlocality with respect to our set of inequalities. These inequalities have also been general-

ized for multiqubit scenario. Each of these inequalities will be violated by a generalized multiqubit

GHZ state. It is highly likely that a set of inequalities similar to three-qubit states can detect and

characterize the entanglement of multiqubit states. However in the absence of a parametrized form of

a pure entangled states beyond three-qubit case, we cannot do numerical analysis for the whole set.
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CHAPTER 3

Minimal scenario facet Bell inequalities

3.1 Introduction

In the previous chapter, we noted a particular limitation of Mermin-Ardehali-Belinskii-Klyshko (MABK)

[83] inequalities. Particularly, the n-qubit state, |ψ〉 = cosα |0...0〉 + sinα |1...1〉 (generalized GHZ

state) does not violate MABK inequalities [142] for sin 2α ≤ 1/
√

2N−1. Not only that in [89] all

correlation Bell inequalities were constructed for n qubits, and in [143] it was shown that again

generalized GHZ states do not violate those inequalities for the whole parameter range. As already

mentioned in the previous chapter that this drawback can be mended by considering alternative Bell

inequalities designed for different settings. Like in [144] authors have constructed multipartite tight

Bell inequalities for more than two measurement settings per party. In this extended scenario, they

showed that generalized GHZ states now violate the inequalities for the whole parameter range. But

if we restrict our-self to the scenario, where maximum two measurement settings are allowed per

party, then can we construct Bell inequalities, for which this shortcoming can be lifted? This was the

main motivation in the previous chapter based on our paper [145], where we constructed a set of six

inequalities each of which is violated by generalized GHZ states for the whole parameter range. Also

with the help of this set of inequalities we can distinguish between pure biseparable and pure gen-

uinely entangled states. This distinction can not also be done with MABK inequalities, as they give

only sufficient criteria [140, 141, 146] to distinguish them. These six inequalities could be obtained

39



from two inequalities after permutations of qubits. One important fact of those inequalities was the

scenario we considered, i.e three parties, two dichotomic measurement settings for two parties and

one dichotomic measurement for the remaining. But our inequalities were not facet inequalities for

this particular scenario. Question naturally arises what about the facet inequalities for this scenario.

Will they also circumvent the obstacle posed by the MABK inequalities regarding the violation in the

whole parameter range for generalized GHZ states and order them according to their entanglement?

Besides, construction of facet Bell inequalities in this scenario is itself very interesting, as it is the

minimal scenario, where one can generate facet Bell inequalities. We need minimum two parties per-

forming two dichotomic measurements, to have some nontrivial facet inequalities, also called facet

Bell inequalities. In literature, complete set of facet inequalities is known only for few cases [3]. Like,

for two parties with three dichotomic measurements per party, there are only two [149, 150] facet Bell

inequalities, but already for four measurement settings the complete set is not known [151]. In mul-

tipartite case, as already mentioned, the result of Sliwa [90] gives the set of all facet Bell inequalities

for three qubits, with two dichotomic measurement settings per party. But except this result, to my

knowledge there is no other scenario in multipartite settings, where the complete list is known. Even

for two parties, with two measurement settings per party but with more than two outcomes, complete

list of facet Bell inequalities is not known. To compute all the facet Bell inequalities for a given

scenario is a highly non-trivial task and many techniques are being developed in this direction [3].

We first explicitly construct [152] the facets of the local polytope for three qubits and find only one

nontrivial facet inequality upto the relabelling of indices. With permutation of qubits, the number

is three. Interestingly, this facet inequality is equivalent to the lifted version [153] of Bell-CHSH

inequality for more parties. This shows that to uncover the nonlocality of a three-qubit, or multiqubit

(as discussed below) system, one facet Bell inequality, and its permutations, may be enough. This

inequality involves multipartite correlations; so it explores multipartite nonlocality.

In this chapter, we have first constructed the facet Bell inequalities for three qubits explicitly and

found only one non-trivial facet upto the relabeling of indices. This facet inequality is equivalent to

the lifted Bell-CHSH inequality for more parties. We compare the results with that for other well

known inequalities. We have also considered a few noisy mixed states. We also constructed the facets

for four- and five-qubit cases for the same minimal measurement settings where, only two parties are

doing two dichotomic measurements and the remaining parties are doing one dichotomic measure-

ment each. For each of these four- and five-qubit scenarios, there is again only one non-trivial facet,
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upto the relabeling of indices, with similar structure as the three-qubit scenario. This is expected from

the result of the Ref. [153]. This observation enabled us to generalize our facet Bell inequality to

n-qubit systems. We show that generalized GHZ states of n qubits violate the facet inequality for the

whole parameter range.

The facet Bell inequality we obtained is not maximally violated by a maximally entangled state. The

notion of a maximally entangled state for a mutipartite state is not straightforward. However, for a

three-qubit system GHZ-state, for all practical purposes, can be considered to be maximally entan-

gled. We find that the facet Bell inequality of our scenario is not maximally violated by the GHZ-state.

The chapter is organized as follows. In the next section, we obtain facet Bell inequalities in the case

of three qubits for our minimal scenario. In Sections 3.3 to 3.6, we discuss various aspects of these

inequalities. In Section 3.7, we generalize the three-qubit facet Bell inequalities to multipartite case.

In the last section, we present our conclusions.

3.2 Facet Inequalities

In the first chapter, I have discussed about what a facet Bell inequality is. It is an optimal Bell

inequality with respect to the local polytope. So, it is always desirable to find facet Bell inequalities

for a set of local correlations. In literature, facet Bell inequalities have been constructed for many

scenarios [3], like for higher dimensions, different measurement settings, multipartite settings etc.

As we have seen, one of the important features of a local polytope is that only local correlations

are inside it. Quantum correlations are outside it. Therefore, quantum correlations are expected to

violate at least one of the facet inequalities of a given local polytope. From this point of view, it

is of value to consider a local polytope with smallest number of nontrivial facet inequalities. As

stated in the introduction, we first construct facet Bell inequalities for three parties, two dichotomic

measurements for two parties and one measurement for the rest. For this case we have a local polytope

with 17 vertices in V representation. By converting this V -representation to H-representation with

the software cdd [154] we obtained total 48 facet inequalities. Among 48 inequalities, 32 are just the

positivity conditions for probabilities. Remaining 16 inequalities are the variations of four non-trivial

facet inequalities. The four inequalities upto relabeling of indices are given below. In terms of the
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well known Bell-CHSH inequality, these four can be written more simply as,

−ICHSH − ICHSHC1 − 2C1 ≤ 2, (3.1)

ICHSH + ICHSHC1 − 2C1 ≤ 2, (3.2)

−ICHSH + ICHSHC1 + 2C1 ≤ 2, (3.3)

ICHSH − ICHSHC1 + 2C1 ≤ 2, (3.4)

where, ICHSH ≡ (−A2B2+A2B1+A1B2+A1B1). In this list, the left-hand side should be thought of

as the expectation value of the observables. But, these four inequalities are not in-equivalent. We can

see that if we make the interchange of the indices as, A1 → A2, A2 → −A1, B1 → B2, B2 → −B1 in

the first inequality ( Eq.(3.1)), then it goes to the second inequality (Eq.(3.2)). Similarly, one can see

that with this type of interchange all the above inequalities are equivalent. So, finally we have only

one inequality. We will choose the form of second inequality (if not mentioned) to do the rest of the

analysis. With no surprise this inequality is equivalent to the lifted version of Bell-CHSH inequality

(Eq. (2) of Ref. [153]) for more parties. Now other than Charlie, one can choose either Alice or Bob

doing one measurement and rest are doing two dichotomic measurements. For each case we get one

facet Bell inequality. In this way, there are three inequalities, where in our previous paper we had six

inequalities. These three inequalities are,

I1 = ICHSH + ICHSHA1 − 2A1 ≤ 2 (3.5)

I2 = ICHSH + ICHSHB1 − 2B1 ≤ 2 (3.6)

I3 = ICHSH + ICHSHC1 − 2C1 ≤ 2 (3.7)

It is easy to note that each of the above inequalities has the LHV lower bound -6. In the following,

we analyze these facet Bell inequalities for different purposes.

3.3 Three-Qubit generalized GHZ states

First, we show that with the facet Bell inequalities, we can again have violation for all generalized

GHZ states like our previous paper’s inequalities. Then we show that amount of violation of the

facet inequalities are in accordance with the amount of entanglement present in the generalized GHZ
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states, i.e more entangled a state is, more will be its violation. We will be using average Von Neumann

entropy over each bi-partition as a measure of entanglement. One can take any other measure, and

would get the same result. Let us consider the three-qubit generalized GHZ state,

|GGHZ〉 = α |000〉+ β |111〉 . (3.8)

Without loss of generality, for simplicity, we take α and β to be real and positive numbers, as the

method will be same even if they are complex. Average Von Neumann entropy for generalized GHZ

state as defined above over these bi-partitions is−α2 log2 α
2−β2 log2 β

2, which is also the entropy for

each bi-partition for these states. Now to see the Bell violation by these states for the facet inequality,

let’s take the facet inequality, IB = ICHSH + ICHSHC1 − 2C1 6 2. We choose A1 = σz, A2 = σx,

B1 = cos θσx + sin θσz, B2 = − cos θσx + sin θσz and C1 = σx. For the generalized GHZ state

|GGHZ〉 = α |000〉+ β |111〉, the expectation value of the operator IB is calculated to be,

〈GGHZ| IB |GGHZ〉 = 2 sin θ + 4αβ cos θ (3.9)

As, a sin θ+b cos θ 6
√
a2 + b2, we have 〈IB〉|GGHZ〉 6 2

√
1 + 4α2β2 = 2

√
1 + C, where C = 4α2β2

is nothing but the tangle [52] of the generalized GHZ state. The quantity C is also like concurrence

for a two-qubit bipartite state. Maximum is achieved when we choose sin θ = 1√
1+4α2β2

and cos θ =

2αβ√
1+4α2β2

. Therefore, it is obvious that as long as the state is entangled i.e α and β are not zero, the

generalized GHZ states will violate the facet Bell inequality. This proves our first claim. Now, from

this measurement setting, the maximum violation for the GHZ state is again 2
√

2. Numerically, we

have maximized the expectation value of the Bell operator for GHZ state and it is coming out to be

2
√

2. So, this is the optimal measurement settings for GHZ state. Interesting fact is that there are

many other states (not generalized GHZ states) which give violation greater than 2
√

2. Interestingly,

we have numerically checked that the generalized GHZ states do not violate the lower bound of the

inequalities. Even the GHZ state does not show the violation of the LHV lower bound, which is

-6. Next, if we plot the entanglement (as calculated above) and the amount of optimal violation of

the Bell inequality, we would get similar kind of plots such that they are monotonically related (see

[145] for more details and the plots). So, more entangled a generalized GHZ state is more will be the

violation of the facet Bell inequality. One question may now arise that for this particular measurement
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settings, we are getting the expression of optimal violation which is a monotonic function of C. If we

choose other measurement settings, will this type of relation emerge? To answer this question, let us

consider a general measurement settings as below,

A1 = sin θa1 cosφa1σx + sin θa1 sinφa1σy + cos θa1σz

A2 = sin θa2 cosφa2σx + sin θa2 sinφa2σy + cos θa2σz

B1 = sin θb1 cosφb1σx + sin θb1 sinφb1σy + cos θb1σz

B2 = sin θb2 cosφb2σx + sin θb2 sinφb2σy + cos θb2σz

C1 = cosφc1σx + sinφc1σy

With these measurement settings we get,

〈IB〉|GGHZ〉 = X + CY, (3.10)

whereX = cos θa2(cos θb1−cos θb2)+cos θa1(cos θb1+cos θb2), Y = cos(φa1+φb1+φc1) sin θa1 sin θb1+

cos(φa2+φb1+φc1) sin θa2 sin θb1+cos(φa1+φb2+φc1) sin θa1 sin θb2−cos(φa2+φb2+φc1) sin θa2 sin θb2

and C = 2αβ. From the above relation, it is clear that for fixed values of X and Y , the amount of

violation is again monotonic in C. So, no matter what the measurement settings, we will get more

violation for a more entangled state, as long as we use same measurement settings for the states.

3.3.1 Comparison with Mermin inequality

Mermin inequality [83] can also track the entanglement, i.e violation of Mermin inequality will be

more for more entangled generalized GHZ states. Mermin inequality is

IM = A1B1C2 + A1B2C1 + A2B1C1 − A2B2C2 ≤ 2. (3.11)
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In this case if we choose the same general measurement settings as described above with C2 =

cosφc2σx + sinφc2σy. The expectation value of the operator IM for the generalized GHZ state,

〈IM〉|GGHZ〉 = C
(

cos(φa1 + φb1 + φc2)sinθa1 sin θb1 cos(φa2 + φb1 + φc1) sin θa2 sin θb1 +

+ cos(φa1 + φb2 + φc1)sinθa1 sin θb2 −

cos(φa2 + φb2 + φc2)sinθa2 sin θb2

)
. (3.12)

So, expectation value of the Bell-Mermin operator is again a monotonic function of C. But the prob-

lem is that it does not show violation for the whole range of generalized GHZ states. So, for those

states which do not violate Mermin inequality, this relation between entanglement and nonlocality

has no meaning. But this relation can be used to measure the entanglement.

3.3.2 Comparison with Svetlichny inequality

Svetlichny first introduced [85] a definition of genuine tripartite nonlocality. Based on that definition

he gave an inequality to detect genuine tripartite nonlocality and was generalized for n parties in [140].

But Svetlichny inequality is not violated [155, 156] by some tripartite genuinely entangled states,

revealing that Svetlichny’s definition of genuine tripartite nonlocality is not equivalent to genuine

tripartite entanglement, but a bit stronger. A strictly weaker definition of genuine tripartite nonlocality

was given in [86], and the authors conjectured that every genuinely entangled tripartite pure state is

also genuinely nonlocal according to their definition. But, if some state violates Svetlichny inequality,

it must be a genuinely entangled state. This is not the case with Mermin inequality, as biseparable

state also violate the Mermin inequality. This is also true for our facet and previous inequalities.

They do not detect genuine entanglement, as biseparable states also violate them. But the class of

states [155, 156] for which the Svetlichny inequality is not violated, our facet inequality and also the

previous inequalities get violated. There are two classes of states which do not violate Svetlichny

inequality,

IS = A1D1C1 + A1D2C2 + A2D2C1 − A2D1C2 ≤ 4, (3.13)
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where D1 = B1 +B2 and D2 = B1 −B2. One class is generalized GHZ class and another class is,

|ψgs〉 = α |000〉+ β |11〉 (cosφ |0〉+ sinφ |1〉) (3.14)

For this class of states with the measurement settings chosen earlier, i.e A1 = σz, A2 = σx, B1 =

cos θσx + sin θσz, B2 = − cos θσx + sin θσz and C1 = σx, the expectation value of our facet operator,

〈IB〉|ψgs〉 = 4αβ cosφ(cos θ + sin θ) + 2(1 + β2 sin 2θ) sinφ− 2β2 sin 2θ ≤

2
[√

α2(β2 + β2 sin 2θ) + (1 + β2 sin 2θ)2 − β2 sin 2θ
]
. (3.15)

It is clear from the expression that for any α and β, above expectation value is always greater than two.

Therefore, our inequalities are also violated by those states, which do not Svetlichny inequality. Nev-

ertheless our previous and facet inequalities can not be used to detect genuine tripartite entanglement

just like Mermin inequality.

3.3.3 More Violation by a non-maximally entangled state

Unlike our previous inequalities, which are violated maximally by GHZ state by an amount 2
√

2,

our facet Bell inequalities are violated more by other genuinely entangled states. One very simple

example is W state. Numerically we have found that W state gives maximum violation of 3.105 for

the inequality, where Charlie makes one measurement. Obviously, there is no ordering of violation of

the facet Bell inequality according to the entanglement within W class. Like the state
√

1/6 |001〉 +√
3/6 |010〉 +

√
2/6 |001〉 has average entropy 0.856 and violation of 3.33. And

√
1/10 |001〉 +√

4/10 |010〉 +
√

5/10 |001〉 has average entropy 0.813 and violation 3.475. Also, the later state

violates (found numerically) the lower LHV bound but not the former as well as the W state. Not only

that, there are state within GHZ class, which violates the facet inequality more than the conventional

GHZ state. Like the state |ψ〉 =
√

22/50 |000〉 +
√

3/50 |100〉 +
√

2/50 |101〉 +
√

21/50 |110〉 +√
2/50 |111〉 has maximum expectation value 3.377 (found numerically) and also belongs to the GHZ

class. More interestingly, it also violates the lower LHV bound. For this state it is -7.02. Ordering

is valid only for generalized GHZ states, not for whole GHZ class and obviously W class. For three-

qubit systems, GHZ-state can be considered to be maximally entangled state in the sense that, the

subsystems are maximally mixed. Furthermore, for a number of communication protocols, the GHZ
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state is a task-oriented maximally entangled state [157]. But we see, that a facet Bell inequality

is not maximally violated by this state. Non facet inequalities like in reference [145] and Mermin

inequalities are violated maximally by the GHZ-state.

3.3.4 Three-qubit pure bi-separable states

The three facet Bell inequalities explore the entanglement of three types of bi-separable pure states

like our previous inequalities. For example, the state which is separable in 1 − 23 bi-partition will

violate that facet inequality, which can explore the entanglement between the second and the third

qubit. So in this case, the inequality Eqn.(3.5), i.e ICHSH + ICHSHA1 − 2A1 ≤ 2 will be violated.

Similarly, other two types of bi-separable states will violate other two inequalities. But we can not

distinguish between bi-separable and genuinely entangled pure states like our previous set of inequal-

ities. Because we had six inequalities for the previous paper and bi-separable state would violate

exactly two inequalities from the state with same amount of optimal violation. But in the case of facet

Bell inequalities bi-separable states will violate only one out of the three, and that optimal violation

may be exhibited by some genuinely entangled state also. So, by a violation, we can not say whether

it is for a bi-separable pure state or for a genuinely entangled pure state.

3.4 Violation for three-qubit genuinely entangled states

In the previous subsection, we have shown that any bi-separable pure state will violate one of our

three facet Bell inequalities, depending upon in which bi-partition they are separable. In this section,

we will investigate the case for genuinely entangled pure states. A genuinely entangled three-qubit

pure state can be written in a canonical form [148] with six parameters as,

|ψ〉 = λ0 |0〉 |0〉 |0〉+ λ1e
iφ |1〉 |0〉 |0〉+ λ2 |1〉 |0〉 |1〉+ λ3 |1〉 |1〉 |0〉+ λ4 |1〉 |1〉 |1〉 , (3.16)

where λi ≥ 0,
∑

i λi
2 = 1, λ0 6= 0, λ2 + λ4 6= 0, λ3 + λ4 6= 0 and φ ∈ [0, π]. As there are many

parameters involved (state parameters plus the parameters for the measurement operators), we don’t

have any analytical claim for three-qubit genuinely entangled pure states. But we do have numerical

evidence that all genuinely entangled pure states violates atleast one of the three inequalities listed

above. We have generated 25000 random states and checked the expectation value of the facet-Bell
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operator. We numerically optimized the expectation value by considering all possible measurement

settings and in each case we got a violation. In support of this we will provide some results for some

special cases of pure three-qubit states. In section 3.3, we have shown that all three inequalities are

violated for the whole range of generalized GHZ states. We consider another class of GHZ state, i.e.,

|ψ〉GG = sinα cos β |000〉+ sinα sin β |101〉+ cosα |111〉. We find the expectation value of all three

inequalities and then find out the maximum (IG = max[I1, I2, I3]) among them. We plot IG with β for

some values of α in Fig.(3.1). Fig.(3.1) shows that |ψ〉GG violate at least one of the three inequalities

α=π/2

α=π/3

α=π/4

α=π/5

α=π/6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
2.0

2.5

3.0

3.5

β

I G

Figure 3.1: Variation of IG with β, where IG = max[I1, I2, I3].

except for cases β = 0; α = π
2

and β = π
2

where the states are product states. Next, we consider

generalized W state of the form |ψ〉GW = sinα cos β |001〉 + sinα sin β |010〉 + cosα |100〉. Again

for this class of states we find out the maximum (IW = max[I1, I2, I3]) among the three inequalities.

In Fig.(3.2) we plot IW with β for some fixed values of α. From this figure it is evident that at least

α=π/2

α=π/3

α=π/4

α=π/5

α=π/6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
2.0
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3.0

3.5

β

I W

Figure 3.2: Variation of IW with β, where IW = max[I1, I2, I3].

one of the three inequalities is violated by the generalized W state |ψ〉GW except when β = 0; α = π
2

and β = π
2
; α = π

2
as they are product states.
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3.5 Quantum to classical ratio

In this section, we study quantum to classical ratio and compare our inequalities with the well-known

Mermin inequality. Quantum to classical ratio has a meaning in the sense that if quantum to classical

ratio is large then the inequality is better suitable for an experiment. In our case, we define the

quantum to classical ratio as I
2
, where I = max[I1, I2, I3]. For generalized GHZ state (|GGHZ〉 =

sin β |000〉+cos β |111〉) our inequalities are not as good as Mermin. However, there is one drawback

of Mermin inequality. It is not violated by the whole range of generalized GHZ state. In this sense our

inequalities are better than Mermin inequalities. In Fig.(3.4), we compare our results for generalized

Our

Mermin

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1.0
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1.6

1.8
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Figure 3.3: Variation of quantum to classical ratio with β for generalized GHZ state.

W state of the form |ψ〉GW = sinα cos β |001〉 + sinα sin β |010〉 + cosα |100〉, where we consider

the case α = π
4
. From this figure it is clear that our facet Bell inequalities are better than of Mermin

inequalities. Therefore, for experimental studies our inequalities are better.

Our

Mermin
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Figure 3.4: Variation of quantum to classical ratio with β for generalized W state with α = π
4
.
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3.6 Mixed state scenario

Mixed states present different challenges. There is a phenomenon of hidden nonlocality. We have

the modest goal to examine where the facet Bell inequalities of this paper may be more useful. We

consider a few noisy states, like noisy GHZ states, noisy W states with both white and colored noise,

to see whether any advantages are there for our facet Bell inequalities over the Mermin inequality for

mixed states. First we take a Werner like state for three qubits, which is GHZ state with white noise.

NoisyGHZ = p |GHZ〉 〈GHZ|+ (1− p)
8

1, (3.17)

The identity can be written as the sum of all orthogonal variants of GHZ state as written below,

1 = |ψ+
0 〉 〈ψ+

0 |+ |ψ−0 〉 〈ψ−0 |+ |ψ+
1 〉 〈ψ+

1 |+ |ψ−1 〉 〈ψ−1 |

+ |ψ+
2 〉 〈ψ+

2 |+ |ψ−2 〉 〈ψ−2 |+ |ψ+
3 〉 〈ψ+

3 |+ |ψ−3 〉 〈ψ−3 | (3.18)

and the expression of the orthogonal variants are as following,

|ψ+
0 〉 = |GHZ〉 =

√
1/2(|000〉+ |111〉) (3.19)

|ψ−0 〉 =
√

1/2(|000〉 − |111〉) (3.20)

|ψ+
1 〉 =

√
1/2(|010〉+ |101〉) (3.21)

|ψ−1 〉 =
√

1/2(|010〉 − |101〉) (3.22)

|ψ+
2 〉 =

√
1/2(|100〉+ |011〉) (3.23)

|ψ−2 〉 =
√

1/2(|100〉 − |011〉) (3.24)

|ψ+
3 〉 =

√
1/2(|110〉+ |001〉) (3.25)

|ψ−3 〉 =
√

1/2(|110〉 − |011〉). (3.26)

For this noisy GHZ state, we have numerically obtained the optimal expectation value of the facet

Bell operator for the whole range of p (0 ≤ p ≤ 1) and plotted them. The noisy GHZ states start

violating our facet Bell inequality after p = 0.71. Now, let us see what is the scenario for Mermin

inequality for the same noisy GHZ states. We see that for Mermin operator, the violation starts after
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Figure 3.5: Maximum expectation value of the our Bell operator and Mermin operator for a noisy
GHZ states vs p plot.

p = 0.51. So, for this noisy GHZ states, our facet Bell inequality presents no advantage. One of the

reasons for this is that, Mermin inequality is optimally constructed for GHZ states, giving a violation

4, whereas, our facet inequality gives only 2
√

2 for GHZ states. Let us now consider noisy W states
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Figure 3.6: Maximum expectation value of our Bell operator and the Mermin operator for a noisy
GHZ states vs p plot.

to analyze the same thing. We take,

NoisyW = p |W 〉 〈W |+ (1− p)
8

1 (3.27)

For this case, we see that nosy W states start to violate our facet Bell inequality after p = 0.70.

For Mermin inequality violation starts after p = 0.65. So, in this case also Mermin inequality gives

advantage over the our inequality, but as compared to the noisy GHZ state, the advantage is much

less. If we take colored noise and different noisy states, we can see that sometimes our inequality

has advantage over the Mermin. In the following we give a table listing the results we have obtained
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numerically. In the above table we have used the following notations for the states,

Minimum p for violation
States Facet Mermin

p |GHZ〉 〈GHZ|+ (1−p)
8
1 0.71 0.51

p |GGHZ3〉 〈GGHZ3|+ (1−p)
8
1 0.80 0.69

p |GGHZ2〉 〈GGHZ2|+ (1−p)
8
1 0.81 0.73

p |GGHZ1〉 〈GGHZ1|+ (1−p)
8
1 0.83 0.97

p |GHZ〉 〈GHZ|+ (1−p)
5
col 0.64 0.38

p |W 〉 〈W |+ (1−p)
8
1 0.70 0.65

p |W1〉 〈W1|+ (1−p)
8
1 0.61 0.68

Table 3.1: Noisy states and Bell violation

|GGHZ1〉 =
√

8/9 |000〉+
√

1/9 |111〉 (3.28)

|GGHZ2〉 =
√

25/29 |000〉+
√

4/29 |111〉 (3.29)

|GGHZ3〉 =
√

21/25 |000〉+
√

4/25 |111〉 (3.30)

col = |ψ+
0 〉 〈ψ+

0 |+ |ψ+
1 〉 〈ψ+

1 |

+ |ψ−1 〉 〈ψ−1 |+ |ψ+
2 〉 〈ψ+

2 |+ |ψ−2 〉 〈ψ−2 | (3.31)

|W 〉 =
√

1/3 |001〉+
√

1/3 |010〉+
√

1/3 |100〉 (3.32)

|W1〉 =
√

1/6 |001〉+
√

2/6 |010〉+
√

3/6 |100〉 . (3.33)

In the above, we have taken col to be colored noise and |GGHZ1〉, |GGHZ2〉, |GGHZ3〉 are gener-

alized GHZ states and |W1〉 is a W class state. Evidently, our inequality gives advantages for noisy

W states. For noisy GHZ states Mermin is better except for the cases starting from the close vicinity

of the parameter range θ = 15◦ i.e sin θ ∼ 0.25, where Mermin does not get violated. From the

table it is evident that when sin θ =
√

1/9 = 0.33, the noisy state violates Mermin when it is almost

pure. Obviously in those regions our inequality is advantageous, because they are violated for all

generalized GHZ states i.e GGHZ states. One can in principle check for other mixed states. We have

analyzed the noisy ones, because they are experimentally relevant. Whenever one tries to prepare a

GHZ or W state in lab, unavoidable noises add up, making the states noisy.
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3.7 Extension to multipartite scenario

In this section, we will be extending the previous facet inequalities to more than three parties. First,

we will be dealing with four-qubit scenario and then with five qubits. After that results will be

generalized for n qubits, where n ≥ 3. In all these scenarios we will be restricting our calculations

for the situations, where two parties are making two dichotomic measurements and rest are making

only one dichotomic measurement. For this particular scenario, we will find nontrivial facets of the

local polytope. Let’s start with four qubits.

3.7.1 Four-qubit scenario

For this case we have 35 vertices for the local polytope, where two parties are making two dichotomic

measurements and remaining two parties are making one dichotomic measurement each. We again

convert this V -representation of the polytope to theH-representation using the software cdd [154] and

obtain a total of 96 facets. Out of which 64 facets are just the positivity conditions on the probabilities.

So, we get 32 nontrivial facet inequalities. But, interestingly, these 32 inequalities are just the variants

of one single inequality, upto the relabelling of indices. So, like the three-qubit scenario, we again get

only one single inequality.

(−2 + A1(B1 +B2) + A2(B1 −B2))(1 + C1)(1 +D1) ≤ 0 (3.34)

All the 32 facet inequalities are equivalent to this inequality upto the relabelling of indices. The form

of this inequality is very similar to the inequality for the three-qubit case. Because one can write the

inequality given by the Eq. (3.7) as,

(−2 + A1(B1 +B2) + A2(B1 −B2))(1 + C1) ≤ 0,

which has the exactly similar structure like the four-qubit inequality except the extra party denoted by

D. Next we will explore whether five-qubit case has also the similar structure.
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3.7.2 Five qubits or more

In this case, again we have two parties performing two dichotomic measurements and the remaining

parties are performing only one dichotomic measurement. For this case, we have a total of 71 vertices.

Converting from the V representation to H representation for this local polytope, we obtain total

of 192 facets. Out of which, 128 inequalities are just the positivity conditions for the probabilities.

Remaining 64 inequalities again give only one non-trivial inequality upto the relabeling of the indices.

(−2 + A1(B1 +B2) + A2(B1 −B2))(1 + C1)(1 +D1)(1 + E1) ≤ 0 (3.35)

Again for five-qubit case also, we have the same structure of the inequality like three- and four-

qubit cases, with the addition of a new term for the party E. So, after exploring these three cases

extensively, we can generalize this structure to more qubits. For n number of qubits, we can generalize

the structure as,

(−2 + A1(A2 + A′2) + A′1(A2 − A′2))(1 + A3)(1 + A4)...(1 + An) ≤ 0, (3.36)

where A1 and A′1 are the two measurement choices for the party A1 and similarly for A2. If we just

expand this we will get,

(A1(A2+A′2)+A′1(A2−A′2))(1+A3)...(1+An)−(2A3+2A4+...2A3A4+...2A3A4..An) ≤ 2. (3.37)

So, the facet Bell inequalities have very simple and intuitive structure. Important point is that we

have only one facet Bell inequality in our minimal scenario for any number of qubits, which can

also be obtained by lifting [153] the Bell-CHSH inequality to n parties. This Bell inequality involves

multipartite correlations. We can permute the parties that make two dichomotic measurements to

obtain the complete set. We now show that all n-qubit generalized GHZ state violate this n-qubit

facet Bell inequality.

3.7.3 Violation by n-qubit GGHZ state

Here, we will show that the n-qubit facet Bell inequality for n qubits will be violated by the general-

ized GHZ states for the whole parameter range. To show this, we take the n-qubit generalized GHZ
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state to be, |GGHZn〉 = α |00..0n〉 + β |11..1n〉 and the similar measurement settings as the three-

qubit scenario, i.e we choose, A1 = σz, A′1 = σx, A2 = cos θσx + sin θσz, A′2 = − cos θσx + sin θσz

and all other measurement settings to be σx, i.e A3 = σx, A4 = σx,...An = σx. Now for these

measurement settings the expectation value of the facet-Bell operator given by the Eq. (3.37) is

(2 sin θ + 4αβ cos θ), which is exactly equal to the previously obtained expectation value for the

three-qubit scenario. So, the generalized GHZ state will violate the n-qubit facet inequality for all

the range of parameters, giving the maximum violation of 2
√

1 + 4α2β2 for the GHZ state for this

measurement settings.

3.8 Conclusion

In this chapter, we have considered a specific measurement scenario. This scenario may be thought of

as minimal scenario that involves multipartite correlations. In this scenario, there are two dichotomic

measurement settings for two parties and one dichotomic measurement setting for each of the remain-

ing parties. Interestingly, there is just one facet Bell inequality (up to permutation of parties) for n

qubits. This is the lifted version [153] of Bell-CHSH inequality. This is like the two-qubit scenario

where only Bell-CHSH inequality is the facet Bell inequality. This suggests that we need only one

facet Bell inequality that uses multipartite correlations to detect the nonlocality of a multipartite state.

This gives significant advantage over the other scenarios.

We first constructed facet Bell inequalities, in this scenario, for a three-qubit system. This was moti-

vated by our previous work [145] described in the last chapter. Then, we showed that the three facet

inequalities give similar advantages like our previous inequalities [145]. However, the facet Bell in-

equalities are now not violated maximally by the GHZ states, which can be considered as maximally

entangled three-qubit state. We then computed the facets for four and five qubits in the minimal sce-

nario. We found that each of these two cases again give only one non-trivial facet inequality upto the

relabeling of indices as expected from the results of the Ref. [153]. We then extended our results

to n parties and shown that the n-qubit facet Bell inequality is violated by all n-qubit generalized

GHZ states. We have compared minimal-scenario facet three-qubit inequalities with Mermin and

Svetlichny inequalities and also analyzed some cases of mixed states, including noisy GHZ and W

states. We have demarcated where these facet Bell inequalities present advantages. Inequalities in

this chapter can be tested experimentally as our previous ones [158].
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CHAPTER 4

Co-operative Quantum Key Distribution (CoQKD)

4.1 Introduction

Usefulness of entanglement as a resource in cryptography was demonstrated by Ekert [14] in a pro-

tocol. This protocol is an extension of the seminal BB84 protocol [62]. I have already discussed

the Ekert’s protocol in the first chapter. Since then many variants of this protocol have been proposed

[63, 64] using bipartite and multipartite entanglement. We are mainly interested in a variant of Ekert’s

protocol with multipartite entangled state, where we consider two scenarios. In the first scenario, a

key is established between two par- ties, say Alice and Bob, with other parties controlling this key

generation. This protocol of cooperative (controlled) QKD was introduced in the Ref. [159]. In the

second scenario, a key is established among all parties, so that there can be secret communication

among all of them. For the first case, the need for control may arise for a number of different rea-

sons. Some of them could be: i) one of the two parties may be dishonest, ii) one of the two parties

may be compromised by some eavesdropper, iii) the communication may be done only under some

supervision. In this protocol, the controller/supervisor determines the state that Alice and Bob can

share. This state can be a product state, a partially entangled state, or a maximally entangled state.

The nature of this state will determine if a key can be established or not, and what will be the key rate

and security. We mention the suitable resource states to carry out CoQKD and introduce a protocol

to implement the same. we also generalize the scheme for more than three parties. In the second
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scenario, the key, that is established among all parties, is known as conference key. Using the new

resource state we give a protocol to establish a conference key. We discuss the security of this key

using our Bell inequalities [145, 152] introduced in last two chapters. The chapter is organized as

follows. In Sections 4.2, 4.3, and 4.4 we cover the three qubit scenario in detail. Specifically, in the

section 4.2, we introduce the CoQKD protocol. Then, we discuss the CoQKD protocol using the new

resource states in the section 4.3. In the section 4.4, we show the generation of the conference key by

these states. In the section 5.2, we explore further for the suitable structure of states useful in CoQKD

beyond three qubits and in next section 5.3 we conclude.

4.2 CoQKD scheme

In this section, we illustrate the CoQKD protocol using three-qubit GHZ state. The goal of this new

protocol is to establish a secret key between two parties with the involvement of the other parties.

As discusses earlier, there could be multiple reasons for the involvement of other parties. One of the

parties with the final secret key is not trustworthy, and wants to disrupt the key creation. Specifically,

in the key forming procedure, the dishonest party can deliberately make false statements in the public

declaration rounds and affect the secret key. Moreover, he/she can be compromised by an external

attacker, such that they two collaborate to act dishonestly. If there is a supervisor who can control the

shared entangled state between the two parties and supervises the key generation then a party cannot

cheat or be compromised by any external eavesdropper. Specifically, the supervisor knows exactly

which state the two parties are sharing and what the optimal key rate should be. Here, by optimum

key rate we mean the maximum possible key rate possible with a given state between two parties

assuming no noise in the communication channel. If the parties report the controller/supervisor a

smaller key rate than the optimal, then there is a cheating involved and that run of the key generation

is discarded. The supervisor is also a controller. All the parties share a multipartite entangled state and

the controller does a measurement on his/her system to initiate the key generation process. There may

be more than one controller and one controller may have more than one qubit in his/her possession.

In this protocol, there are N (N ≥ 3) parties, among which N − 2 parties control the secret key

generation by two remaining parties, say Alice and Bob. To illustrate the protocol clearly, we consider

a simple scenario of three parties who share a three-qubit GHZ state, |GHZ〉 = 1√
2
(|000〉+ |111〉). If

the controller Charlie performs measurement on his qubit in Hadamard basis, then the collapsed state
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between Alice and Bob is a Bell state: |ψ±〉 = 1√
2
(|00〉 ± |11〉). Then Charlie publicly announces his

measurement basis such that, following the Ekert’s protocol, Alice and Bob can establish a perfect

secret key with optimal key rate between them, i. e. without any Quantum Bit Error rate (QBER).

After establishing the key, Alice and Bob both report the key rate to Charlie. If it is not optimal,

then Charlie knows that there has been a cheating. We assume here that the communication takes

place over a noiseless classical channel. Moreover, without the measurement performed by Charlie,

Alice and Bob can not establish a key, as their qubits are in maximally mixed state. So, Charlie also

supervises the starting of the key generation process, which allows him to control the whole process.

If Charlie makes a measurement in a basis other than the Hadamard basis, shared state between Alice

and Bob is not a Bell state, but a partially entangled state. With this state, perfect key generation with

optimal key rate would not be obtained. If the key rate reported to Charlie is less than the optimal

w.r.t the shared state between Alice and Bob, Charlie knows that there is a cheating involved and

that run of key making is discarded. Therefore, for a particular basis of Charlie, Alice and Bob can

Figure 4.1: CoQKD: Charlie, the controller supervises and initiates the secret key making procedure
shared between Alice and Bob.

establish a perfect secret key with optimal key rate, as the collapsed state between Alice and Bob is

a maximally entangled state. If Charlie performs the measurement in a general basis, the secret key

rate is not optimal. Advantage of this protocol is that Charlie can detect if there is a cheating involved

in the establishment of the secret key and also he can control the optimal key rate and QBER between

Alice and Bob. In the above illustration, we find that GHZ state can be used for maximal CoQKD,

i.e, the generation of a perfect secret key with optimal key rate. We also note that the states with

two maximally mixed marginals [160], are also suitable for maximal CoQKD. For three qubits if one

of the marginals is non-maximally mixed, we call it NMM-state, |NMM〉 (similarly, the MMN or

MNM). These are class of one parameter state and for a specific value of the parameter, these state

becomes the GHZ-state. Particularly, the GHZ state is MMM-state, |MMM〉 because its marginals
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are maximally mixed. Note that these four classes of states belong to the GHZ class states. Next,

we extend these protocols for four qubit states. For four qubits, there exist MMNN-states, MMMN-

states, or MMMM-states (like GHZ-state, or cluster state) for CoQKD. Two cases may arise, where

each party has one qubit each, or one of the parties have more than one qubit. We discuss this and the

further generalizations in subsequent sections.

4.3 CoQKD protocol with NMM state

In this section, we put forward a scheme for cooperative QKD using NMM-state written as following,

|NMM〉 =
√
p |0〉C |φ

+〉AB +
√

1− p |1〉C |φ
−〉AB . (4.1)

If p = 1/2, the state is LU equivalent to the GHZ state. The qubit Charlie holds is not maximally

mixed, where Alice and Bob holds the maximally mixed qubits. Now, depending upon the measure-

ment basis of Charlie, the collapsed state shared between Alice and Bob will be either maximally

entangled or partially entangled or product state. With maximally entangled state one can carry out

the Ekert’s protocol. But as in general the shared state between Alice and Bob is not a maximally

entangled state, we introduce a protocol which uses partially entangled state as the resource. To es-

tablish the protocol, we use the fact that given a non-maximally entangled two-qubit pure state, we can

always specify the measurement settings [78, 161] for which Bell-CHSH [70] inequality shows the

optimal violation. Now the steps are following. Charlie first publicly announces his choice of mea-

surement basis, such that Alice and Bob know the shared state between them. Suppose, the collapsed

state between Alice and Bob is |ψ〉 = α |00〉 + β |11〉. Then, Alice and Bob choose the following

three measurement settings each giving rise to nine combinations.

A1 = σz, A2 = cos θσz + sin θσx, A3 = σx,

B1 = cos θσz + sin θσx, B2 = σx, B3 = cos θσz − sin θσx,

where, cos θ = 1/
√

1 + 4α2β2. Like before, the combination (A2, B1) and (A3, B2) can be used to

generate the secret key and the combination (A1, B1), (A1, B3), (A3, B1) and (A3, B3) can give the

optimal Bell violation, which is 2
√

1 + 4α2β2. Remaining combinations are thrown out. So, if the
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Bell violation is less than the optimum value 2
√

1 + 4α2β2, Eve’s presence is detected. In the case of

a partially entangled state, perfect correlation are not obtained, which leads to nonzero QBER. After

the protocol, Alice and Bob inform Charlie about the key rate and QBER. If there is a discrepancy

between the expected QBER (and key rate) and reported QBER (and key rate), then Charlie knows

that there is a cheating and that run of secret key making is rejected. Moreover, without Charlie’s

measurement Alice and Bob can not establish a key, as their reduced state is a maximally mixed state.

So, the whole key making process is initiated and supervised by a controller Charlie and thus making

it more secure and trustworthy.

Remarks.– In the above, we see that if, the reduced density matrices of Alice and Bob have en-

tropy one from the beginning, then by making a measurement in a right basis Charlie can reduce the

state between Alice and Bob to a maximally entangled state. So, the question arises that, if the qubits

held by Alice and Bob do not have entropy one (i.e., maximally mixed) but less than one from the

beginning, can a measurement by Charlie make them maximally mixed? In the following, we show

that this is not possible. To show this, we start with the state of the form of Eq. (4.1). But this time

Charlie makes a measurement on a qubit, which has entropy one. Then we show that it is not possible

to increase the entropy of the qubit, which has entropy less than one. Considering the state in Eq.

(4.1), let us say, Charlie makes a measurement on the second qubit in the general basis given below,

|+n〉 =
|0〉+ n |1〉√

1 + |n|2
, |−n〉 =

−n∗ |0〉+ |1〉√
1 + |n|2

, (4.2)

where n ∈ C and 0 ≤ |n|2 ≤ 1. In terms of this basis, we can write the resource state as,

|NMM〉 = N/
√

2
[√

p |00〉+ n∗
√
p |01〉+

√
1− p |10〉 − n∗

√
1− p |11〉

]
|+〉

+N/
√

2
[
− n√p |00〉+

√
p |01〉 − n

√
1− p |10〉 −

√
1− p |11〉

]
|−〉 (4.3)

For two outcomes of Charlie’s measurement, the collapsed states between Alice and Bob are,

|φ+〉 =
√
p |0〉

[
N [|0〉+ n∗ |1〉]

]
+
√

1− p |1〉
[
N [|0〉 − n∗ |1〉]], (4.4)

|φ−〉 =
√
p |0〉

[
N [−n |0〉+ |1〉]

]
+
√

1− p |1〉
[
N [−n |0〉 − |1〉]]. (4.5)
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Probabilities of getting these collapsed states are 1/2 for each. It is evident from the expression that,

for the collapsed state to be a Bell state, we must have n = 1 and p = 1/2. This eventually makes the

starting state to be a GHZ state. Maximum entropy we can achieve for the qubit held by Bob is what

we had from the beginning and that can be attained when n = 1. This shows that we must have atleast

two qubits to have entropy one, on which measurements are not being done. We can do CoQKD with

a partially entangled state, but then key rate would not be maximal.

4.4 Conference QKD with NMM-state

In the previous section, we discussed the cooperative QKD scheme, where one party’s role was to

do the measurement and supervising the establishment of a secret key between the remaining two

parties. We discussed the structure of the states optimal for this scheme. In this section, we discuss

the protocol for establishing a secret key among all three parties, also called a conference key, with the

states introduced in the previous section. There are several conference key protocols using multipartite

entanglement [162, 163, 164, 165]. Here, we are closely following the scheme introduced in the

Ref. [163]. We show that one can generate conference key using the NMM-state with some non-

zero QBER. Before going to describe the protocol, first we note the following equivalences, without

invoking any local unitary,

√
1/2
[
|+x〉 |φ+〉+ |−x〉 |φ−〉

]
=
√

1/2(|000〉+ |111〉) =
√

1/2
[
|+y〉 |Φ−〉+ |−y〉 |Φ+〉

]
(4.6)

where, |+x〉 =
√

1/2(|0〉 + |1〉) and |−x〉 =
√

1/2(|0〉 − |1〉) are the eigenstates of σx, |+y〉 =√
1/2(|0〉+i |1〉) and |−y〉 =

√
1/2(|0〉−i |1〉) are the eigenstates of σy, |Φ+〉 =

√
1/2(|00〉+i |11〉)

and |Φ−〉 =
√

1/2(|00〉 − i |11〉). One can also show that,

|φ+〉 =
√

1/2(|+x〉 |+x〉+ |−x〉 |−x〉 =
√

1/2(|+y〉 |−y〉+ |−y〉 |+y〉). (4.7)

|Φ+〉 =
√

1/2(|+x〉 |+y〉+ |−x〉 |−y〉) =
√

1/2(|+y〉 |+x〉+ |−y〉 |−x〉), (4.8)

and similarly for |φ−〉 and |Φ−〉. Above equations show that whenever odd number of σx and

even number of σy are measured, one gets perfect correlations. This is because the GHZ state

is the simultaneous eigenstate of the stabilizer group containing eight elements, [164] which are

61



σx σx σx
+ + +
+ − −
− + −
− − +

σx σy σy
+ + −
+ − +
− + +
− − −

σy σx σy
+ + −
+ − +
− + +
− − −

σy σy σx
+ + −
+ − +
− + +
− − −

Table 4.1: Correlation and anti-correlation tables.

{III,XXX,ZZI, IZZ, ZIZ,−Y XY,−Y Y X,XY Y }. This observation is crucial for the protocol

of conference QKD. First, one of the party, say, Alice starts with a three-qubit GHZ-state and makes a

measurement on one qubit, either in σx or σy basis. Then, keeping that qubit she sends the rest of the

two qubits to Bob and Charlie, who in this protocol are partners of Alice, such that a conference key

is established among three of them. Then Bob and Charlie make measurements on their respective

qubits in σx or σy basis randomly. For the time being, we are not concerned with Eve’s presence.

Then all of them including Alice publicly announce their measurement basis choices. They keep the

data for which all of them measure σx or any two of them measure σy. They discard the remaining

data. As, their results are now perfectly correlated, they can generate a secret key. Out of eight set of

measurements, they keep four of them to generate the key. So, the key rate is 1/2.

Now, we consider the NMM-state. We take the starting form of the state to be |ψ〉 =
√
p |+x〉 |φ+〉+

√
1− p |−x〉 |φ−〉. As expected, we would not get perfect correlations; so QBER is not zero. We

calculate QBER for this kind of state. Before that, let us first write down the correlation and anti-

correlation tables. Note that the starting state, |ψ〉 is LU equivalent to the NMM-state. The state has

perfect correlations for three σx measurements. So, QBER is zero for this kind of correlation. Also,

when σx is measured on the first qubit, it is straightforward to see that,

√
p |+x〉 |φ+〉+

√
1− p |−x〉 |φ−〉 =√

p/2 |+x〉 (|+y〉 |−y〉+ |−y〉 |+y〉) +
√

(1− p)/2 |−x〉 (|+y〉 |+y〉+ |−y〉 |−y〉). (4.9)

So, for the the measurements XXX and XY Y , we have perfect correlations and hence zero QBER.

But, the other two measurements do not give perfect correlations. Now, QBER is defined as the

probability that they would obtain different outcomes even if the measurement basis states are same.

From the chart of correlation and anti-correlation it is evident that remaining two cases i.e., Y XY

and Y Y X give same QBER. Let us compute it for the first one. For the table of Y Y X , the QBER is
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given by,

Tr[(P y
+ ⊗ P

y
+ ⊗ P x

+)ρ] + Tr[(P y
+ ⊗ P

y
− ⊗ P x

−)ρ] (4.10)

+ Tr[(P y
− ⊗ P

y
+ ⊗ P x

−)ρ] + Tr[(P y
− ⊗ P

y
− ⊗ P x

+)ρ],

which comes out to be equal to 1/2(
√

1− p−√p)2 and same for the other table. we plot the QBER

with p and see that as expected, it is zero for GHZ-state. We see that the NMM-state is useful
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Figure 4.2: Variation of QBER with p

for conference QKD scheme, but with some non-zero QBER. The security of the secret key in the

presence of Eve can be analysed with the help of Bell inequalities. We assume that all the three

parties between whom the secret key is being established are trusted. It is only an outsider like Eve

who wants to jeopardize the protocol. The inequalities [145, 152] previously introduced are useful

to check the security of the QKD protocol, as these inequalities are violated by all generalized GHZ-

states, the property which is not shown by any correlation Bell inequalities with two measurement

choices per party. In the following, we show the protocol in which using the inequalities introduced

in [145], we can detect the presence of Eve. We take any inequality out of the set of six inequalities

constructed in [145], and see the violation by the NMM-state. We take the following inequality,

I = A1(B1 +B2) + A2(B1 −B2)C1 ≤ 2. (4.11)
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In the following we show that every NMM-state violates the inequality for the whole parameter range.

To show this, we choose the following measurement settings,

A1 = σz, A2 = σx (4.12)

B1 = cos θσx + sin θσz, B2 = − cos θσx + sin θσz

C1 = σx

These measurement settings are similar to the ones used in Ref. [145]. For these measurement set-

tings, the expectation value of the state |ψ〉 =
√
p |+x〉 |φ+〉+

√
1− p |−x〉 |φ−〉 is 〈I〉 = 4

√
p(1− p) cos θ+

2 sin θ. From α sin θ + β cos θ ≤
√
α2 + β2, it is evident that, 〈I〉 ≤ 2

√
1 + 4p(1− p). This shows

that the inequality gets always violated by the NMM-state and when p = 1/2 ( i.e. GHZ-state), the

violation is 2
√

2. Therefore, for cos θ = 1/
√

1 + 4p(1− p), the measurement settings we chose is

also the optimal measurement settings for the NMM-state. Next, we describe the protocol to detect

the presence of Eve. For this, in each round of the protocol, Alice chooses from three measurement

settings, Bob chooses from four measurement settings and Charlie chooses from three measurement

settings as following,

A1 = σx, A2 = σy, A3 = σz (4.13)

B1 = σx, B2 = σy,

B3 = cos θσx + sin θσz, B4 = − cos θσx + sin θσz.

C1 = σx, C2 = σy, C3 = I,

where, I is an Identity operator, and cos θ = 1/
√

1 + 4p(1− p). So, there are total 36 combinations,

out of which four combinations e.g. (A1, B1, C1), (A1, B2, C2), (A2, B1, C2) and (A2, B2, C1) are

used to make the key as described before. This gives the key rate of 1/9. Four combinations, e.g.

(A3, B3, C3), (A3, B4, C3), (A1, B3, C1) and (A1, B4, C1) are used to check the optimal violation for

the inequality in Eq. (4.11), which is 2
√

1 + 4p(1− p). So, if the expectation value for the inequality

is less than 2
√

1 + 4p(1− p), we can surely say that there is Eve’s intervention. Remaining 28

combinations are thrown away for the completion of the protocol.
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4.5 Resource structure for multipartite states (N ≥ 4)

In this section, we explore the resource state structure of four-qubit states that are suitable for maximal

CoQKD, i.e. CoQKD with maximal key rate (perfect key), for some particular measurement settings

by the controllers. In this scenario, there may arise two situations for cooperative QKD. In the first

case, there are four parties and each party has one qubit. Second case is when there are three parties

and one party (other than the sender and the receiver) has two qubits. We start with the first case.

4.5.1 Case I: Each party has one qubit

Secret key can be established between Alice and Bob, if after the measurements by Charlie and Den-

nis, they share a Bell state or its LU equivalent state.

Proposition-2 : Cooperative QKD is successful if, after the measurement by one party say Dennis, the

collapsed state between Alice, Bob and Charlie is LU equivalent
√

1/2
[
|0〉 |φ+〉+ |1〉 (1⊗U) |φ−〉

]
.

If (1⊗ U) |φ−〉 is orthonormal to |φ+〉, then it is LU equivalent to GHZ-state.

Proof : The proof follows from the Proposition-1 where we proved that for three qubits the structures

we presented, i.e. LU equivalent to GHZ or LU equivalent to
√

1/2
[
|0〉 |φ−〉 + |1〉 (1 ⊗ U) |φ+〉

]
,

such that (1⊗U) |φ−〉 is not orthonormal to |φ+〉 are necessary and sufficient for cooperative QKD to

be successful. Therefore, for four qubits, after the measurement by one party, the state must collapse

to one of these three-qubit states. The protocol can be generalized for multipartite entangled states

also. In analogy with the previous section there may arise three different type of structures for the

resource state as listed in the following,

|Φ1〉 =
1√
2

(|0〉4 ⊗ |g0〉321 + |1〉4 ⊗ |g1〉321). (4.14)

|Φ2〉 =
1√
2

(|0〉4 ⊗ |g0〉321 +
1√
2
|1〉4 ⊗ |ψ〉321). (4.15)

|Φ3〉 =
1√
2

(|0〉4 ⊗ |ψ〉321 +
1√
2
|1〉4 ⊗ |ψ

′〉321). (4.16)

where, |g0〉 is conventional GHZ-state and |g1〉 is LU equivalent to the former one, |ψ〉 and |ψ′〉

are the states as mentioned in Eq. (4.1) with different coefficients p. The subscripts denote the

65



order of the qubits which we follow throughout our discussion. Notice that, if |g0〉 is orthogonal to

|g1〉, then all the single qubit reduced density matrices of the resource state |Φ1〉 have entropy one,

otherwise, the reduced density matrix of the first qubit has entropy less than one, whereas all other

single qubit reduced density matrices have entropy one. For the state |Φ2〉, the single qubit reduced

density matrices for the last two qubits are maximally mixed, whereas the other qubits have reduced

density matrices with entropy less than one. And similarly the state |Φ3〉 has also the similar entropy

configuration as |Φ2〉. Therefore, given the entropy structures, we cannot distinguish between |Φ2〉

and |Φ3〉. To distinguish them, we need the collapsed states after the measurement by Dennis. �

To illustrate the above proposition, we find that the cluster states [88] belong to the first category

of states with all the single qubit reduced density matrices having entropy one. So, it is a suitable

resource state for cooperative QKD. Next example is the following state,

|R1〉 =
1

2
√

2

[
|0010〉+ |0100〉+ |0001〉 − |0111〉+ |1000〉+ |1100〉+ |1011〉 − |1111〉

]
.

This state has similar entropic structure like the first structure, where |g0〉 and |g1〉 are not orthogonal

as S(ρ4) ≈ .81 and S(ρi) = 1 for i = 1, 2, 3. Therefore, this state is also suitable for cooperative

QKD. For four-qubits, we see that two maximally-mixed single qubit reduced density matrices are

the minimum requirement. Therefore, for four-qubits, this criteria is also a necessary and sufficient

for successful cooperative QKD. Other possible structures are sufficient conditions. So, we can gen-

eralize it for any N -qubit entangled state with each one holding a single subsystem.

Proposition : For a successful cooperative QKD with maximal key rate, using a N -qubit entangled

state, with each party holding one qubit, the necessary and sufficient condition for the resource state

is that it has at least two maximally-mixed single qubits.

4.5.2 Case II: One party has more than one qubit

Let us now consider the second situation, where one party, e.g. Charlie, has two qubits in his pos-

session. We know that for CoQKD the state must be either NMM (necessary and sufficient) or GHZ

(sufficient) along the cut Charlie-(Alice and Bob). Now, Charlie holds two qubits, say first two qubits,

and makes measurement in the orthonormal computational basis :{|00〉 , |01〉 , |10〉 , |11〉}. We require

that after the joint measurement, the collapsed state between Alice and Bob is LU equivalent state to
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a Bell state. Therefore, the most general structure of the resource state is,

|Ψ〉 =
1

2
(|00〉 ⊗ |φ1〉+ |01〉 ⊗ |φ2〉+ |10〉 ⊗ |φ3〉+ |11〉 ⊗ |φ4〉), (4.17)

where, |φ1〉, |φ2〉, |φ3〉 and |φ4〉 are LU equivalent to Bell states, though not necessarily orthonormal

to each other. All states of the form of Eq. (4.14), Eq. (4.15) and Eq. (4.16) can be recast as Eq.

(4.17) and vice versa. It can be shown very easily, by observing that
√

1/2(|0〉 ⊗ |φ1〉 + |1〉 ⊗ |φ2〉)

and
√

1/2(|0〉 ⊗ |φ3〉 + |1〉 ⊗ |φ4〉) are the NMM states. So, |Ψ〉 has the similar structure like |Φ1〉,

|Φ2〉 and |Φ3〉. Therefore, the states which are useful for CoQKD as described in the case I, can also

be used as a resource in the present case II.

4.5.3 QBER for the state between Alice and Bob

As the structure of the resource states is similar for two scenarios, we can start with any of the above

written forms of the resource states. We choose the form of the state to be Eq. (4.17). First we start

with the scenario, when each party has one qubit with them. In this case there are two controllers

e.g. Charlie and Dennis. As before in the three-qubit scenario, collapsed state between Alice and Bob

depends upon the measurement basis chosen by the controllers.

Without the loss of generality, we consider that Dennis and Charlie choose to measure in the basis

given by Eq. (4.2). So after the measurement of Dennis, the collapsed state between Charlie, Alice

and Bob corresponding to the outcome |+〉, is given by,

|Ψ+
CAB〉 =

|0〉 (|φ1〉+ β |φ3〉) + |1〉 (|φ2〉+ β |φ4〉)√
2(1 + |β|2)

(4.18)

where β determines the measurement basis chosen by Denis and the probability that Dennis obtains

|+〉 outcome is 1/2. Thus the collapsed state is partially entangled three-qubit state. So there is non-

vanishing QBER in the protocol. It is to be noted that there is a collapsed state corresponding to the

measurement outcome |−〉 but the analysis is same as the present case. Now, Charlie would measure

in the general basis as before resulting a collapsed state between Alice and Bob. Corresponding to

the outcome |+〉, we find that the state is given by,

|Ψ+
AB〉 =

|φ1〉+ α |φ2〉+ β |φ3〉+ αβ |1〉 |φ4〉√
(1 + |α|2)(1 + |β|2)

, (4.19)
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where α is the measurement parameter of Charlie and Charlie obtains the outcome |+〉 with proba-

bility 1/2. Now, the collapsed state between Alice and Bob involves two parameters arising from the

measurement basis of Charlie and Dennis. We take these two parameters to be real. As the state is not

maximally entangled there is non-vanishing QBER even in the absence of any eavesdropper. When

|φ1〉, |φ2〉, |φ3〉 and |φ4〉 are four Bell states, we find the QBER of the protocol as given by,

Q1 =
β2

1 + β2
+

α2

1 + α2
(4.20)

There are two parameters in QBER which are controlled by Dennis and Charlie. The behavior of

QBER with respect to the measurement parameters are displayed in Fig. 4.3. We have plotted the

QBER with the parameter α, for different values of β’s. From the expression of QBER, it is evident

that plot with β for different α’s is similar. We can see from Eq. (4.18) and Eq. (4.19) that if Dennis
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Figure 4.3: Variation of QBER with α for different β’s.

and Charlie measure in the computational basis the collapsed states are three-qubit GHZ-state and Bell

state respectively. Therefore, we find vanishing QBER which can be seen in the above plot. Next,

we consider the second scenario, where there is one controller e.g. Charlie, who holds two qubits.

Charlie now can use an entangled basis for the measurement. We show that for the measurement in

entangled basis, the collapsed state between Alice and Bob is not a Bell state. For the resource state

in Eq. (4.17), Charlie performs a joint measurement using Generalized Bell Basis (GBS), written as,

|χ+
m〉 =

|00〉+m |11〉√
1 + |m|2

, |χ−m〉 =
m∗ |00〉 − |11〉√

1 + |m|2
,

|ζ+
m〉 =

|01〉+m |10〉√
1 + |m|2

, |ζ−m〉 =
m∗ |01〉 − |10〉√

1 + |m|2
, (4.21)
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Then, the collapsed state between Alice and Bob is given by,

|Ψ+
AB〉 =

|φ1〉+m |φ4〉√
1 +m2

, (4.22)

corresponding to the outcome |χ+
m〉, which occurs with probability 1/4. The collapsed state is partially

entangled state and as before we find QBER of the protocol,

Q2 =
m2

1 +m2
, (4.23)

where, we have consideredm as real. If Charlie measures in computational basis the collapsed state is

a Bell state which yields a vanishing bit error rate. We plot the QBER in this case with the parameter

m in Fig. 4.4.
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Figure 4.4: Variation of QBER with the parameter m.

4.6 Conclusion

We have considered the protocol for Co-operative QKD, where a secret key is established between

two parties with the control of other parties. The advantage of this protocol is that one or more parties

can supervise the secret key making, thus reducing the chance of cheating. For a given multipartite

state, it is not always obvious whether this state can be used for Co-operative QKD or Co-operative

teleportation. In this chapter, we have provided resource states for successful cooperative QKD,

i.e. Co-QKD with maximal key rate. The efficiency of the protocols depends on the choice of the

measurement basis by the controlling parties. We have explicitly shown the dependence of the key

rate of CoQKD protocol with Charlie’s choice of measurement basis. Efficiency of the protocol (key
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rate or fidelity) is controlled by Charlie. If he chooses a basis set wisely then the protocol can be

carried out maximally, i.e. maximal key rate or fidelity. For arbitrary choice of basis by Charlie,

the collapsed state between Alice and Bob is non-maximally entangled. We also introduce a novel

protocol for QKD with the non-maximally entangled state in the same line of Ekert’s protocol. Apart

from CoQKD, we have shown how to generate a conference key with the resource state. It turns out

that our recently introduced Bell inequalities can be used to determine the security of the conference

key protocol. We have also gone beyond three-qubit scenario, and constructed suitable resource states

for four-qubit states. We hope that our discussion would lead to experimental observations of these

cooperative schemes.
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CHAPTER 5

Measurement based quantum heat engine with coupled

working medium

5.1 Introduction

For a standard heat engine working cyclically between two heat baths of temperature T1 and T2

(T2 < T1), efficiency of the heat engine is upper bounded by η = 1 − T2/T1, the Carnot efficiency

[166]. Second law of thermodynamics puts this fundamental limitation on the extent of work that

can be converted from heat. The laws of thermodynamics are empirical and were first adopted for

classical macroscopic system. Naturally, the validity of the laws of thermodynamics are questionable

and subject to verification in the quantum regime. Moreover, quantum mechanics gives the dynamical

viewpoint of thermodynamics [167, 168], describing the emergence of thermodynamic laws from

quantum mechanics.

The idea of quantum heat engine first appeared in a paper by Scovil and Schulz-DuBois [169], where

the authors demonstrated that three level masers can be treated as a working medium for heat engines.

Today, study of heat engine in quantum domain is an active area of research both due to the gradual

miniaturization of current technology and its theoretical richness.

Within the quantum engines scenario, quantum analog of the classical heat engines [170, 171] and

many other generalizations [172, 173, 174, 175] have been studied. Analysis of finite power quantum
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heat engines also have a significant amount of literature, references [176, 177, 178, 179, 180, 181,

182] to name a few. With the onset of the quantum effects, many interesting phenomena like the

increase of efficiency beyond Carnot’s limit [112, 183, 184] may occure. Nevertheless in reference

[185], it was shown that if one accounts for the work cost to maintain the non-equilibrium reservoir,

Carnot’s limit can not be surprassed and hence not violating the second law of thermodynamics. Still,

understanding quantum thermodynamic machines [96] and the role of quantum effects in Quantum

Thermodynamics [24, 95] is far from fully understood. Where quantum effects set a limit to our ability

[186] for practical purposes and where we can actually use the quantum resources are still parts of

ongoing research field. The approach to resource theory of quantum thermodynamics [187] tells us

about the fundamental corrections to the laws of thermodynamics setting the limit to the performance

of quantum heat engines.

Previously it was shown that [114, 116] a quantum Otto engine with coupled working medium leads

to a higher efficiency than that of an uncoupled one. In addiion, in Information heat engine, e.g the

Szilard engine, where one can extract work from a single temperature [126, 127, 128, 133], exploiting

the information, it was shown that [129, 130, 131, 132] entanglement can be used to extract work

beyond the limit, which is possible using classical correlation only.

Recently, in Ref. [188], the authors have introduced a new kind of single temperature quantum heat

engine without feedback control. The essential part of the engine which replaces feedback is a non-

selective quantum measurement on the working medium, changing the energy of the system, and thus,

enabling one to extract useful work. This engine is much like a quantum Otto cycle [189, 190, 191,

192] with one thermalization stroke being replaced by a quantum non-selective measurement, whereas

in Maxwell’s demon and Szilard engine [126, 127] work is extracted from a single heat reservoir using

feedback control. Another version of Maxwell’s demon engine was introduced in [193, 194], where

without the presence of any thermal bath, work can be extracted using measurement and feedback

control. So, quantum measurment plays an important role in Quantum Thermodynamics. Energetic

cost for performing a measurement [195, 196, 197, 198, 199] and using the average energy change due

to the measurement for extracting useful work are two important facets of Quantum Thermodynamics.

In a subsequent work [200], the authors calculated the detailed fluctuation of work and heat in the

measurement driven single temperature heat engine without feedback and also considered the finite

power scenario. So, the next question that can be raised is whether quantum correlations play any

role in this particular type of heat engine. Can we use correlations to enhance the performance of
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this engine? In this chapter, we analyze the role of coupled working medium [201] in the single

temperature measurement driven quantum heat engine without feedback control [188]. Taking a

coupled one-dimensional Heisenberg model as the working medium, we show an advantage for the

efficiency over the uncoupled one. First, we start with a one-dimensional Heisenberg model of two

spin-1/2 particles and then generalize that for two spin-d particles, where d can take values of 1/2,

1, and 3/2. We note that, for different choices of non-selective measurements, the efficiency of the

heat engine changes. In addition, in the higher-dimensional scenario, another interesting feature is

observed: we can either extract work from the engine cycle or have to invest work to run the cycle

depending upon the spin configuration we choose. By judiciously choosing all the conditions, such

as measurement choices, coupling constant and the dimension of the Hilbert spaces, one can optimize

the engine performance, which is better than the uncoupled one in terms of efficiency.

The chapter is organized as follows. In the next section, we give a short introduction about the single

temperature measurement-based heat engine as introduced in the Ref. [188]. In sections 5.3 and 5.4,

we present our result for the coupled measurement based heat engine taking the working medium to

be the Heisenberg model of two spin half particles. In section 5.5 we consider the higher dimensional

scenario. In the next section (namely, section 5.6), we present an analysis of the global and local

work, and finally we conclude in section 5.7.

5.2 Single temperature measurement driven heat engine

In this section we briefly discuss the recently introduced measurement-based single temperature quan-

tum heat engine without feedback control [188]. It is very similar to the Otto cycle except for one

isochoric branch. One thermalization step is replaced by a non-selective quantum measurement. Now,

if it had been a classical system, in principle, there would be no subsequent effect of the measurement

on the system. But quantum mechanical system is generally disturbed by measurement and hence

average energy of the system changes. Judiciously choosing the measurement operators as discussed

in [188], we can extract work form this type of engine. We will now briefly describe the parts of the

engine cycle.

The working system of the heat engine has a Hamiltonian H(λ), which is a function of an external

control parameter λ. The system starts from a thermal state of temperature T . This can be achieved

with the help of a heat bath of temperature T , which is the only heat bath to be used throughout
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the action of the engine. The system is brought to the contact with the bath and let to thermalize.

After a long enough time when the system attains equilibrium thermal state, the heat bath is de-

tached and it gets ready for the first cycle of our heat engine. So, the initial state of the system is,

ρint = e−βH(λint)/Z =
∑

n(e−βEn(λint)/Z) |n(λint)〉 〈n(λint)|, where, Z =
∑

n e
−βEn(λint), while,

|n(λ)〉 and En(λ) are respectively the nth eigenstate and eigenvalue of the Hamiltonian H(λ). Now,

the engine strokes are as following,

First stroke : The first stroke of the cycle is an adiabatic compression process. The working sys-

tem is isolated from the heat bath and the Hamiltonian is changed quasi-statically from H(λint) to

H(λfin). For a system defined by a density matrix ρ and Hamiltonian H , its internal energy or

average energy is defined as U = Tr[ρH]. Change in internal energy is the sum of two contribu-

tions [24], one is heat, defined as dQ = Tr[Hdρ] and another is work, defined as dW = Tr[ρdH].

Though, this identification of heat and work is not always valid, especially in strong system bath

coupling [101, 202]. We will be considering the weak system bath coupling scenario, such that the

above definition is valid. Although, during a general adiabatic process, the state of the working

medium changes, for the model of engine cycle we consider in this paper, the state of the working

medium does not change throughout the adiabatic stroke. Hence, in the first stroke, change in the

internal energy of the system is, W1 = Tr[ρint(H(λfin) − H(λint))], which can also be written as,

W1 =
∑

n[En(λfin) − En(λint)]pn(λint), where pn(λint) = (e−βEn(λint)/Z). If this is positive then

this is the energy gained by the system. So, the average work extracted from this stroke is −W1.

Second stroke : Next stroke is the most crucial and special one, which involves a non-selective mea-

surement. A measurement [32] corresponding to an observable Ĝ can be described by a POVM,

{Gn}, where, Gn ≥ 0 are the POVM effects,
∑

nGn = 1 and Tr[ρGn] is the probability of getting

nth outcome denoted here as αn. If in addition the POVM elements satisfy GmGn = δmnGn, then

they are projectors and the observable Ĝ can be written as Ĝ =
∑

n αnGn (spectral value decom-

position), where αn’s are now the eigenvalues of Ĝ. Equivalently, measurement can be completely

described by a set of measurement operators {Mn}, with M †
nMn = Gn. As mentioned in the first

chapter, corresponding to a particular POVM, there exists infinite sets of measurement operators, each

connected by a unitary. Now, given a set of measurement operators {Mn}, if the state of the system

before the measurement is |φ〉, then corresponding to the nth outcome, the state of the system after
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measurement is, Mn|φ〉√
pn

or MnρφM
†
n

pn
, where ρφ = |φ〉 〈φ| and pn = Tr[ρφM

†
nMn] = 〈φ|M †

nMn |φ〉

is the probability of getting nth outcome. In a non-selective measurement i.e., if the outcomes of

the measurements is not recorded, then the state after measurement is
∑

nMnρφM
†
n. So, after the

first stroke, we do a non-selective measurement described by the measurement operators {Mα} on

the system state giving the post-measurement state as ρM =
∑

αMαρφM
†
α. Now, in this stroke, the

Hamiltonian of the system is unchanged at H(λfin). So, the average energy change of the system is

given by, QM = Tr[(ρM − ρint)H(λfin)], which is a reminiscent of heat can also be written as [188],

QM =
∑
m,n

[Em(λfin)− En(λfin)]Tm,npn(λint)

=
∑
n

〈n(λfin)|HM(λfin)−H(λint) |n(λfin)〉 pn(λint).

where, Tm,n =
∑

α | 〈n(λfin)|Mα |m(λfin)〉 |2, is the transition probability from a eigenstate la-

beled n before the measurement to an eigenstate labeled m after the measurement, and HM(λfin) =∑
αMαH(λfin)Mα. As shown in [188], QM is always positive implied by the properties of the tran-

sition matrix ; Tm,n = Tn,m and
∑

n Tm,n = 1. This fact will be illustrated more explicitly in the

next section. It is also noted that, whenever the Hamiltonian of the system does not commute with the

measurement operators, we get a nonzero QM .

Third stroke : This is the second adiabatic process, which is now a quasi-static expansion. The Hamil-

tonian H(λfin) is very slowly changed back to the initial Hamiltonian H(λint). Like the previous

adiabatic stroke, the average change in energy of the system is, W2 = Tr[ρM(H(λint) −H(λfin))],

as the state of the system is unchanged throughout the stroke. This is nothing but
∑

n[En(λint) −

En(λfin)]pMn , where, pMn = 〈n(λfin)| ρM |n(λfin)〉 =
∑

m pm(λint)Tm,n is the probability of finding

the nth eigenstate of H(λfin) in ρM . So, the work extracted form this adiabatic stroke is −W2, which

follows from the similar argument given in the description of the first stroke.

Fourth stroke : In this last stroke of the cycle, the system is brought into contact with the heat

bath of temperature T , while keeping the Hamiltonian fixed at H(λint) and allowed to thermal-

ize, until it goes back to the initial thermal state ρint. So, heat transfer for this stroke is given by,

QT = Tr[(ρint − ρM)H(λint)], as the Hamiltonian is fixed in this stroke. This can be written as,
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QT =
∑

nEn(λint)[pn(λint)− pMn ] and shown to be negative in [188]. This means that heat is going

to the heat bath from the working medium at this stage.

The signs of each of these quantities e.g. W1, QM , W2, and QT will be analyzed explicitly in the

next section in the case of coupled working medium. So, the whole cycle is like energy QM is taken

by the system, doing a work −(W1 + W2) and dumping energy QT to a heat bath. So, we have

QM +QT = −(W1 +W2), correctly depicting the first law of thermodynamics, i.e energy conserva-

tion. Efficiency of the heat engine is given as the ratio of extracted work−(W1+W2) over the average

energy change QM in the measurement stroke η = −(W1+W2)
QM

. Authors in the Ref. [188] showed that

the extracted work −(W1 + W2) is always positive, relying on the fact that work strokes are either

adiabatic expansion or compression of the working medium. But we will see in the next section that

for a coupled working medium their way of reasoning does not hold good and there can be instances

where −(W1 +W2) is negative.

5.3 Coupled single temperature measurement engine

In this section we will present an analysis of a coupled measurement-based single temperature heat

engine. We consider the working medium of the system to be a one dimensional Heisenberg model

of two particles with the following Hamiltonian,

H = 8J ~SA. ~SB + 2B(SzA + SzB). (5.1)

For two spin half particles, ~SA = ~SB = 1
2
~σ, where ~σ = (σx, σy, σz) are the Pauli matrices. So, in this

case, we can write the Hamiltonian as,

H = 2J(σx
A ⊗ σxB + σy

A ⊗ σyB + σz
A ⊗ σzB) +B(σz

A + σz
B), (5.2)

where, J is the coupling constant and B is the external magnetic field. The entanglement between

two qubits for this model has been studied in [203]. J > 0 and J < 0 cases correspond to the

anti-ferromagnetic and ferromagnetic interactions respectively. In this paper, we will be restricting

ourselves to the anti-ferromagnetic case only. Eigenvalues and eigenstates of this Hamiltonian are

listed in Table 5.1, where, |0〉 .=

1

0

 and |1〉 .=

0

1

 are the eigenstates of σz. First, we will be
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considering only qubit case, next d-dimensional cases will be considered. As described before, engine

cycle of the measurement based heat engine has four steps. First stroke of the cycle is an adiabatic

compression, where the Hamiltonian of the working system, as described above, is quasi-statically

changed from an initial parameter value to a final parameter value. External magnetic field B is the

parameter of the Hamiltonian here. It is changed quasi-statically from the initial value B1 to the final

value B2. As this process is done adiabatically, the state of the system remains in its instantaneous

eigenstate. At the beginning of the cycle, we take the working medium of the heat engine to be in a

thermal equilibrium state of temperature T . Thus here, ρint =
∑4

n=1 Pn |n(B, J)〉 〈n(B, J)|, where,

Pn = exp(−En/kBT )/Z, Z =
∑

n exp(−En/kBT ), E ′ns and corresponding |n(B, J)〉 are given in

Table 5.1. Then in the second stroke of the cycle, the Hamiltonian of the system is kept unaltered

Eigenvalues Eigenstates
2J + 2B = E4 |00〉 = |4(B, J)〉

2J = E3

√
1
2
(|10〉+ |01〉) = |3(B, J)〉

2J − 2B = E2 |11〉 = |2(B, J)〉
−6J = E1

√
1
2
(|10〉 − |01〉) = |1(B, J)〉

Table 5.1: SA = 1/2,SB = 1/2.

but a measurement of an observable is performed on the system. As, already discussed earlier, the

observable has to be non-commutative with the Hamiltonian to get a positive work output. In this

case we have a distributed system and we will see that the efficiency of the heat engine will depend

on the local measurements we are performing. Detail discussion will follow. Third stroke is again an

adiabatic process changing the external magnetic field B2 back to B1. The final stage of the cycle is

a thermalization step and in this stage the system is brought to contact with a heat bath of the starting

temperature T and let the system thermalize for a sufficiently long time, after which it again goes

back to the initial thermal equilibrium state. Now, as mentioned before, the initial state of the system

is a thermal state of temperature T ,

ρint =
4∑

n=1

Pn |n(B, J)〉 〈n(B, J)| , (5.3)

where, Pn = exp(En/kBT )/Z, Z =
∑

n exp(En/kBT ), En and |n(B, J)〉’s are the energy eigenval-

ues and eigenstates respectively as listed in the Table 5.1. From now on, we will be taking kBT = 1

throughout the paper. The energy eigenvalues and hence the probabilities Pn depend on the changing
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parameter which is external magnetic field B, but the eigenstates are independent of the parameter.

So, we will be writing the probabilities and the energy eigenvalues as a function of the parameter

B, like En(B) and Pn(B). Now, let us do the quantitative analysis of each stroke of the cycle. As

discussed in the previous section, the average work in the first adiabatic stroke is

W1 =
∑
n

[En(B2)− En(B1)]Pn(B1), (5.4)

as the state remains in its instantaneous eigenstate with same probability. For the system we consid-

ered and the initial thermal state of the system, we have,

W1 =
2(B1 −B2)(−1 + e4B1)

1 + e2B1(1 + e2B1 + e8J)
. (5.5)

Next comes the most important part of the engine cycle, which is the measurement part. We can

choose any arbitrary observable for measurement with only constraint that the observable must be

non-commuting with the Hamiltonian. For the time being we restrict ourselves to projective measure-

ments. In our case, for coupled measurement based heat engine, we take most general Von Neumann

measurement operators as,

M1 = |+a〉 〈+a| ⊗ |+b〉 〈+b| (5.6)

M2 = |+a〉 〈+a| ⊗ |−b〉 〈−b| (5.7)

M3 = |−a〉 〈−a| ⊗ |+b〉 〈+b| (5.8)

M4 = |−a〉 〈−a| ⊗ |−b〉 〈−b| , (5.9)

where, |+a〉 〈+a| and |−a〉 〈−a| are the eigenstate projectors for the observable ~σ.â for one party and

|+b〉 〈+b| and |−b〉 〈−b| are the eigenstate projectors for the observable ~σ.b̂ for the other. Now if the

initial state of the working medium is given by Eq. (5.3), then for a non-selective measurement given

by the above measurement operators, the post measurement state will be,

ρM =
4∑

k=1

MkρintMk. (5.10)
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Now, the transition probability is given by,

Tm,n =
∑
k

| 〈ψm|Mk |ψn〉 |2 ∀m,n ∈ {1, 2, 3, 4}, (5.11)

where, |ψm〉 and |ψn〉 denote the eigenstates of the Hamiltonian as written in the Table 5.1 and Mk’s

are the measurement operators written above. The average energy change of the system during this

measurement is,

QM =
∑
m,n

[En(B2)− Em(B1)]Tm,nPm(B1). (5.12)

Now, for the most general form of the measurement operators, the expressions will be quite compli-

cated. So, we will write the expressions for some special measurements. First case will be when ~σ.â

is σx and ~σ.b̂ is σz. For this case,

QM =
B2(−1 + e4B1)− 2[1 + e2B1(1 + e2B1 − 3e8J)]J

1 + e2B1(1 + e2B1 + e8J)
. (5.13)

For ~σ.â = σy and ~σ.b̂ = σz, the expression for the average change in energy remains the same.

Another case is when ~σ.â = σx and ~σ.b̂ = σy. In this scenario,

QM =
2B2(−1 + e4B1)− 2[1 + e2B1(1 + e2B1 − 3e8J)]J

1 + e2B1(1 + e2B1 + e8J)
. (5.14)

There are many other different choices of measurement operators, like both are measuring σx or σy or

σz etc. In each case, the expression for QM will change accordingly. This average energy change is

like heat in the conventional quantum heat engine. Now, the third step of the cycle is again a adiabatic

process, where the magnetic field B2 is changed back into B1 very slowly. For this part of the cycle,

the work done is,

W2 =
∑
n

[En(B1)− En(B2)]P ′n, (5.15)

where P ′n = 〈ψn| ρPM |ψn〉 =
∑

m Tm,nPm(B1) is the probability of getting nth eigenstate in the post

measurement state. When, ~σ.â = σx and ~σ.b̂ = σz, the expression of this work for our system is,

W2 =
(B1 −B2)(1− e4B1)

1 + e2B1(1 + e2B1 + e8J)
. (5.16)
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Last step of the cycle is to bring the system in contact with the heat bath of temperature T and let it

thermalize back to the initial thermal state ρint. Heat exchanged in this step is given by,

QT =
∑
n

En(B1)(Pn(B1)− P ′n). (5.17)

Again, for, ~σ.â = σx and ~σ.b̂ = σz, heat dumped into the heat bath in this last step is,

QT = −6J +
B1(1− e4B1) + 8(1 + e2B1 + e4B1)J

1 + e2B1(1 + e2B1 + e8J)
. (5.18)

So, as discussed in the previous section, the total work that can be obtained from the cycle is given by

the sum of the works that can be extracted in the first and third strokes. For ~σ.â = σx and ~σ.b̂ = σz,

total extracted work is given by,

Wt = −W = −(W1 +W2) =
(B1 −B2)(1− e4B1)

1 + e2B1(1 + e2B1 + e8J)
. (5.19)

The quantities we have calculated so far are global (from the perspective of two systems together),

i.e., global heat or global work or global energy change. In the next section we will discuss the global

efficiency of the heat engine. Also, the measurements we chose are all projective measurements. We

investigated some cases of POVM, namely the SIC POVM [204], and some other examples. But in

all the cases, we found that projective measurements are more effective so far as the efficiency is

concerned. So, we will be restricting ourselves with projective measurements only. A point to note

that, we have not optimized the engine over different projective measurements. We have chosen some

particular measurement settings and compared the coupled and uncoupled scenarios.

5.4 Efficiency of the heat engine, Global analysis

Now, we will evaluate the efficiency of the measurement based coupled heat engine and compare it

with the uncoupled one. Before doing that, it is necessary to determine the signs of the quantities QM

(Eq. (5.12)), QT (Eq. (5.17)), W1 (Eq. (5.4)) and W2 (Eq. (5.15)) for this coupled working medium.

The average energy change QM of the system during this measurement, given in Eq.(5.20) can also
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be written as [188],

QM =
1

2

∑
m,n

[En(B2)− Em(B1)]Tm,n(Pm(B1)− Pn(B1)). (5.20)

This is obtained by employing the properties of the transition matrix Tm,n : Tm,n = Tn,m and∑
m Tm,n = 1. From the fact that Tm,n ≥ 0 and the equilibrium occupation probability Pn for an

energy level En decreases with the increase of energy En, it turns out that QM ≥ 0. That means, in

the measurement step, heat enters into the working medium. Similarly, the expression for QT given

in Eq. (5.17) can be written as,

QT =
1

2

∑
n,m

(En(B1)− Em(B1))Tm,n(Pn(B1)− Pm(B1)). (5.21)

By the similar arguments made for QM , it is evident that QT ≤ 0, which means that, heat goes from

the working medium to the heat bath of temperature T at the last step of the cycle. Now to determine

the signs of W1 and W2, let’s first write down the alternative expression for the work done as was

done in Ref. [188].

W = −Wt =
1

2

∑
n,m

(∆f
m,n −∆i

m,n)Tm,n[Pm(B1)− Pn(B1)], (5.22)

where, ∆α
m,n denotes the difference between the m-th and n-th energy eigenvalues and is given by,

∆α
m,n ≡ Em(λα) − En(λα) , for α = i, f , λi = B1 and λf = B2. In Ref. [188], authors designed

the adiabatic strokes to be compression and expansion, in the sense that spacing between the energy

levels of the Hamiltonian either increases or decreases. Then they argued that for the compression

stroke, ∆f
m,n ≥ ∆i

m,n and as the canonical probability decreases monotonically with the increase of

energy, for ∆i
m,n > 0, Pm(B1) − Pn(B1) is negative. Together with the fact that Tm,n is positive,

we have every term of the above expression of W as non-positive and hence the total work extracted

Wt = −W is always positive and similarly for the expansion stroke. But for a coupled working

medium this argument does not hold good. In the presence of coupling J , the uniform increase or

decrease of spacing between the energy levels does not happen. For example, for the two spin-1/2

scenario, the energy eigenvalues are −6J , 2J − 2B, 2J , 2J + 2B, which are ordered from low to

high for J > 0. Throughout the paper we are considering the anti-ferromagnetic case i.e. J > 0, as
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stated earlier. Now energy difference between lowest two energy levels is 8J − 2B and highest two

energy levels is 2B. So, for a fixed J , with increasing B, spacing between lowest two energy levels

decreases, where, spacing between highest two energy level increases. So, as a whole, we can not say

that the adiabatic stroke is compression or expansion for the working medium and consequently the

line of reasoning like in Ref. [188] does not hold. We simply say that the work strokes are the first

and second adiabatic work strokes.

So whether the extracted work will be positive or negative would depend upon the structure of the

energy levels of the Hamiltonian. Let’s illustrate this taking the working medium to be a two spin-1/2

system. In Eq. (5.22), some terms are negative and some terms are positive. Sign of the total work
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Figure 5.1: (Color online) Work contributions (−Wmn) and total extracted work (−W ) vs J plot for
B2 > B1, with B2 = 4, B1 = 3.

will depend upon the positive and negative contributions of these terms. We denote each term of the

expression as Wmn = 1
2
(∆f

m,n−∆i
m,n)Tm,n[Pm(B1)−Pn(B1)] and note that Wmn = Wnm. We have

plotted different terms with the coupling constant J in Fig. 5.1. We notice that, −W12 (−W21) gives

negative contributions, −W14 (−W41), −W23 (−W32) give positive contributions and other terms are

zero. Consequently, the total work output is positive. We also plot the contributions for first and

second adiabatic work strokes in Fig. 5.2 and notice that, the contribution of the first work stroke

is positive, whereas contribution of the second work stroke is negative but their sum is positive and

hence we extract a positive work. Now, the above plots have been generated for the case B2 > B1

and we got the extracted work Wt to be positive. So, the next question is what happens for the other

scenario, i.e., when B2 < B1. It is important to note that, arguments behind QM ≥ 0 and QT ≤ 0

are independent of the choice of initial and final magnetic field B1 and B2 respectively. And indeed
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Figure 5.2: (Color online) −W1, −W2 and Wt vs J plot for B2 > B1, with B2 = 4, B1 = 3. Wt is
postive for two spin-1/2 particles.

for both B2 > B1 and B2 < B1, QM is always positive and QT is always negative. It is the extracted

work Wt, whose sign depends upon B1 and B2. From the Eq.(5.19), it is evident that, when B2 > B1,

we extract positive work i.e Wt ≥ 0 and when B2 < B1, extracted work is negative for all J . This

can be seen from the Fig. 5.2. This plot shows that when the values of B1 and B2 are interchanged,
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Figure 5.3: (Color online) Work contributions (−Wmn) and total extracted work (−W ) vs J plot for
B2 < B1, with B2 = 3, B1 = 4.

i.e., B1 = 4 and B2 = 3, the nature of the plots are just opposite to each other. From the definition of

efficiency as the ratio of total extracted work (Wt) over QM : η = Wt/QM , it is evident that efficiency

can be negative only if the extracted work Wt is negative, which means that we can not extract work

from the engine but have to do work to run it. We have seen that for B2 > B1, the extracted work

is positive. For the rest of the analysis we will stick to this scenario. From the expressions derived
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above, we can have different efficiencies depending upon the measurement choices. When ~σ.â is σz

and ~σ.b̂ is σx, we have,

η =
(B1 −B2)(1− e4B1)

B2(−1 + e4B1)− 2[1 + e2B1(1 + e2B1 − 3e8J)]J
. (5.23)

Thus the efficiency depends upon the coupling constant J , where, J = 0 corresponds to the uncoupled

scenario with efficiency (1− B1

B2
). As J increases, for a certain range of J , efficiency is also increased

over the uncoupled value. Expression for the efficiency remains same as in Eq. (5.23) for ~σ.â = σy

and ~σ.b̂ = σz, For, ~σ.â = σx and ~σ.b̂ = σy,

η =
(B1 −B2)(1− e4B1)

B2(−1 + e4B1)− [1 + e2B1(1 + e2B1 − 3e8J)]J
. (5.24)

Now, let us examine those cases when same observables are being measured on both sides, like

~σ.â = ~σ.b̂ = σz or σx or σy. When both the observables are σx, we have,

η =
(B1 −B2)(−1 + e4B1)

B2(1− e4B1) + (1 + e4B1 − 2e2B1+8J)J
. (5.25)

Exactly the same expression is obtained when both the observables are σy. When both the observables

are σz, the work contributions from two adiabatic branches are equal and opposite to each other.

Consequently, the total work done is zero and hence the efficiency is zero. After calculating the

efficiency for different measurement choices, we plot them in Fig. 5.4 together with,B1 = 3 andB2 =

4. Next, we are plotting the efficiency for a fixed observable σz on one side and varying the parameters

for the observable on the other side. We can write, ~σ.m̂ = sin θ cosφσx + sin θ sinφσy + cos θσz. In

this case we calculate the efficiency and it turns out to be independent of the parameter φ but depends

on θ. From the 3-d plot in Fig. 5.5 it is clear that when θ is π/2, the efficiency is optimum and it is

exactly equal to the case where σx is measured for one spin and σz is measured for the other. Our

results show that using non-zero coupling J , we can actually get an advantage over the no-coupling

scenario. We have argued that, for B2 > B1 the extracted work is positive and hence we get a positive

efficiency. Now we will show that for any B1, B2 (B1, B2 > 0) with B2 > B1, the efficiency of the

coupled engine can be greater than that of an uncoupled one, for a certain range of J . To show this
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Figure 5.4: (Color online) Efficiency vs J plot for different measurement choices for two spin-1/2
particles.

Figure 5.5: (Color online) Efficiency vs J plot for σz on one side and arbitrary observable (depends
upon θ) on other side.

we rewrite Eq. (5.23) as,

η =
(

1− B1

B2

)[ (−1 + e4B1)

(−1 + e4B1)− 2B2[1 + e2B1(1 + e2B1 − 3e8J)]J

]
. (5.26)

As already mentioned,
(

1 − B1

B2

)
is the efficiency of an uncoupled (J = 0) engine. From the above

expression it turns out that the efficiency will be greater than that of the uncoupled one if 2B2[1 +

e2B1(1 + e2B1 − 3e8J)]J > 0. This implies that,

e2B1(3e8J − e2B1 − 1) < 1. (5.27)
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From this inequality, it is evident that for any B1 > 0 (B2 can have any value greater than B1),

we always get a positive value for J , below which we get an advantage for the efficiency over the

uncoupled one. To give an example, let’s consider a small value of B1, e.g. B1 = 0.1. When

B1 = 0.1, we have to find the value of J for which the above inequality holds. Solving the Eq. (5.27)

for B1 = 0.1, one can show that when J < 0.00166 approximately, the efficiency will be greater than

that for the uncoupled one. For B1 = 0.1, and B2 = 4, the uncoupled efficiency is 0.975. Let’s take

J = 0.0014. For that we have η = 0.975011 for the same values of B1 and B2. So, the coupled

engine is still more efficient but it is in such a small region that can not be seen from the plot unless

the plot has a very fine scaling. With the increase in the value of B1 , the cutoff value of J , above

which the coupled engine is more efficient increases and less the value of the ratio of B1 over B2,

more is the efficiency of the engine. For the uncoupled efficiency more and more close to one, the

region in which there is an advantage of the coupled engine will be more and more narrow. But, in

principle, we always have the coupled engine as the more efficient one, compared to the uncoupled

one. Now, the entanglement of formation for the initial thermal state ρint is given by [203],

Ef = −
(1 +

√
1− C2

2

)
log2

(1 +
√

1− C2

2

)
−
(1−

√
1− C2

2

)
log2

(1−
√

1− C2

2

)
, (5.28)

where, C is the concurrence given by,

C = 0, if, e8J/kBT ≤ 3,

C = e8J/kBT−3
1+e−2B/kBT+e2B/kBT+e8J/kBT

, if, e8J/kBT > 3.

The above relations imply that whenever, J ≤ (kBT/3) loge 3, Concurrence C (and thereby Ef ) van-

ishes. Also, Ef is a monotonically increasing function of Concurrence. So, one can use Concurrence

as a measure of entanglement for the simplification of analysis. Whenever J ≥ (kBT/3) loge 3, the

thermal state has a non-zero entanglement. In the following we have plotted Concurrence and Effi-

ciency vs J in Fig. 5.6. Though the efficiency and the entanglement is not monotonically related,

the coupled engine is delivering more efficiency than an uncoupled one due to the correlation present

in the working medium. We can have the expressions for C as mentioned above when e8J/kBT ≥ 3,

which implies J ≥ 0.137 approximately, setting kBT = 1 as before. In the plot we started the range

of J from 0.15. For two spin-1/2 case J it is like another parameter but this parameter is closely

86



Efficiency

Concurrence

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

J

Figure 5.6: Concurrence and Efficiency vs J plot for two spin-1/2 particles.

connected to the entanglement of the state. In this respect, it is like the Otto cycle considered in

[114, 116], where coupled working medium harnesses more efficiency than that of an uncoupled one.

Also, from Fig. 5.4, it is evident that different measurement choices give different efficiencies for the

heat engine. Here, choosing σx and σz or σy and σz as measurement operators, we get the maximum

efficiency. So, judiciously choosing measurement operators is important for optimum performance of

the heat engine.

5.5 Higher Dimensional Case

In this section we are interested in the higher dimensional Heisenberg model as considered in [116],

where one spin half particle is coupled to a spin s particle. It will be interesting to observe the effect

of higher spin as an additional parameter along with the coupling constant. We have the following

Hamiltonian,

H = 8J ~SA. ~SB + 2B(SzA + SzB), (5.29)

where, ~SA = (SxA, S
y
A, S

z
A) and ~SB = (SxB, S

y
B, S

z
B) are two spin operators, J is coupling constant

and B is the external magnetic field. Two spin-1/2 case has already been discussed. Now, detailed

calculation will be carried out for SA/B = 1 and SA/B = 3/2. One can obviously go on to calculate

the cases for 2 and 5/2 and so on, but the essential points can be observed by studying the following

cases : SA/B = 1 and SA/B = 3/2. We first start with a spin-1/2 and a spin-1 operator, which is

an asymmetric case in the sense that the spins on two sides are different. We will call it symmetric

when two spins at two sides are same. We will deal the different cases one by one. We start with the
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asymmetric cases.

5.5.1 Asymmetric case

First we take SA = 1/2 and SB = 1. Spin operators for spin-1/2 particle are 1
2
~σ, where ~σ =

(σx, σy, σz) are the Pauli matrices. These spin operators for spin-1/2 particle form the fundamental

irreducible representation of SU(2). Spin operators for the spin 1 particle are the three dimensional

irreducible representation of SU(2). These are listed as following,

Sx =
1√
2


0 1 0

1 0 1

0 1 0

 , Sy =
1√
2


0 −i 0

i 0 −i

0 i 0

Sz =
1√
2


1 0 0

0 0 0

0 0 −1


With these spin matrices, the Eigenvalues and the eigenstates of the Hamiltonian given in Eq. (5.29)

are listed in Table 5.2, where, |0A〉
.
=

1

0

, |1A〉
.
=

0

1

, |0B〉
.
=


1

0

0

, |1B〉
.
=


0

1

0

 and

Eigenvalues Eigenstates

−B − 8J = E1 −
√

2
3
|0A2B〉+

√
1
3
|1A1B〉 = |ψ1〉

B − 8J = E2 −
√

1
3
|0A1B〉+

√
2
3
|1A0B〉 = |ψ2〉

−3B + 4J = E3 |1A2B〉 = |ψ3〉
−B + 4J = E4

√
1
3
|0A2B〉+

√
2
3
|1A1B〉 = |ψ4〉

B + 4J = E5

√
2
3
|0A1B〉+

√
1
3
|1A0B〉 = |ψ5〉

3B + 4J = E6 |0A0B〉 = |ψ6〉

Table 5.2: SA = 1/2,SB = 1

|2B〉
.
=


0

0

1

, are a set of basis vectors for the two and three dimensional Hilbert spaces respectively

and they are the eigenstates of Sz operator both for A and B side. Like in the previous cases, for the

measurement step of the engine cycle, we have a number of choices for the measurement operators

and we explored those options in the previous sections for the case of two spin-1/2 particles. Now,

for brevity, we will be considering one particular measurement setup and observe the effect of higher

spin, such that this spin can also be a controlling parameter for the efficiency. We choose the following
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set of measurement operators,

M1 = |0xA〉 〈0xA| ⊗ |0B〉 〈0B| ,M2 = |0xA〉 〈0xA| ⊗ |1B〉 〈1B|

M3 = |0xA〉 〈0xA| ⊗ |2B〉 〈2B| ,M4 = |1xA〉 〈1xA| ⊗ |0B〉 〈0B|

M5 = |1xA〉 〈1xA| ⊗ |1B〉 〈1B| ,M6 = |1xA〉 〈1xA| ⊗ |2B〉 〈2B| ,

where, |0xA〉 =
√

1/2[|0〉 + |1〉] and |1xA〉 =
√

1/2[|0〉 − |1〉] are the eigenstates of the operator Sx

for the spin-half particle A. In other words, we are doing measurement of the operator Sx on side A

for the spin-1/2 and measurement of the operator Sz on the side B for spin-1. In the plots (see Fig.

5.7, 5.8, 5.9) we compared different scenarios for the same measurement settings on the two sides.

By same measurement settings we mean that on the spin half side the measurement operators will

be the projectors constructed from the eigenstates of the operator Sx and on the higher spin side, it

will be the projectors of the eigenstates of Sz. For the above measurement operators, we calculate

the quantities like work, heat (during measurement process and thermalization step) and evaluate the

efficiency of the heat engine. The expression for the total work extracted for this case is,

Wt = −W = (B2−B1)(−1+e2B1 )(3+e2B1(4+3e2B1−e12J ))

3(1+e2B1)(1+e4B1+e2(B1+6J))
(5.30)

From the expression above, one can see that only B2 > B1 will not guarantee the positivity of Wt for

all J , unlike the previous case of two spin-1/2 particles. Specifically, the work extracted is negative

when 4 + 3e2B1 − e12J < 0. This was not the case for two spin-1/2 particles, where expression of

the extracted work was such that B2 > B1 always gives positive extracted work and B1 > B2 gives

negative extracted work. But in the present case, for B2 > B1, extracted work can be negative and

for B1 > B2, extracted work can be positive when, 4 + 3e2B1 − e12J < 0. As we will see further

that this is special for the asymmetric cases only. We first plot the efficiency and compare it with

the spin half scenario for B2 > B1, with same values of magnetic fields previously considered, i.e,

B1 = 3 and B2 = 4. We note that (Fig. 5.7) the efficiency for the spin-1 scenario can be higher than

that of spin half scenario for some range of non-zero values of J . For the uncoupled case, both the

engines give same efficiencies, which is 1− B1

B2
. Another point to note is that the efficiency can go to

negative for the spin 1 scenario. As discussed earlier, the negative efficiency comes entirely from the

negative extracted work, because QM is always positive also shown in the plots. Now, one can further
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Figure 5.7: (Color online) Efficiency vs J plot for SA = 1/2 and SB = 1.

analyze the work strokes and see which work stroke is contributing more for negative work. Like

before, the first adiabatic work stroke gives the positive work output whereas for second adiabatic

work stroke, we get negative work. The total extracted work Wt can now be negative starting from a

certain value of J as seen in Fig. 5.10 for B2 > B1, with B2 = 4 and B1 = 3, whereas QM is always

positive, as shown in Fig. 5.9. Now, one can further analyze the work strokes and see which work

SA=1/2, SB=1/2

SA=1/2, SB=1
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Figure 5.8: (Color online) Global work vs J plot for (SA = 1/2, SB = 1/2) and (SA = 1/2, SB = 1);
B2 = 4 and B1 = 3.

stroke is contributing more for negative work. From the Fig. 5.10, one can note that, as before, the

first adiabatic work stroke gives the positive work output, whereas, for second adiabatic work stroke,

we get negative work. If we take B1 > B2, the situation is reversed. We have shown the case of

B1 > B2, with B1 = 3 and B2 = 4, in Fig. 5.11. The plot is exactly opposite to the previous one with

B2 = 4 and B1 = 3 (see Fig. 5.10) So, in the range of J where the efficiency is negative, the situation
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Figure 5.9: (Color online) Average energy change QM during the measurement step vs J plot for
(SA = 1/2, SB = 1/2) and (SA = 1/2, SB = 1); B2 = 4 and B1 = 3.
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Figure 5.10: (Color online) −W1, −W2, Wt vs J plot for B2 > B1, with B2 = 4, B1 = 3. Here
SA = 1/2, SB = 1.

appears as follows : the average energy QM is entering to the working medium, Wt work is being

done and thereby heat QT goes into the heat bath of temperature T . In some sense one can associate

a refrigerator action for this negative work scenario. In a conventional quantum Otto refrigerator, the

system is first prepared in the thermal state with temperature corresponding to the cold bath. Then in

the first and third adiabatic strokes a total work W is added to the working medium. In the second

and fourth steps, Q2 heat is taken from the cold bath and Q1 heat is added to the hot heat bath and

eventually cooling the cold bath more. The co-efficient of performance (COP) for the refrigerator is

given as ηCOP = Q2/W . In our case QM is always positive and QT is always negative. That means
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Figure 5.11: (Color online) −W1, −W2, Wt vs J plot for B2 < B1, with B2 = 3, B1 = 4. Here
SA = 1/2, SB = 1.

we can consider a cold bath of effective temperature T2, such that, after the second stroke, we have,

QM = Tr[((ρeq(T,B2)− ρeq(T2, B2))H(B2)], (5.31)

where, ρeq(T ′, B) is the thermal state at temperature T ′ with the Hamiltonian H(B), given in Eq.

(5.29), where T ′ = (T, T2). Solving the above equation we can associate an effective temperature

T2 with QM . So, now one can read the cycle as transferring heat from the cold bath of temperature

T2 to hot bath of temperature T and for this, Wt work has to be done. This means that the COP

of this refrigerator action is QM/(−Wt). So, in order to get a positive work output we have to

judiciously choose the value of the coupling constant J , such that efficiency is not negative. Then

we will get an advantage for higher efficiency over the uncoupled one. Let’s now consider the next

asymmetric scenarios and see whether similar trend, i.e, increase in efficiency and occurrence of

negative efficiency is present or not. We start with the case where the spins on two sides are SA = 1/2,

SB = 3/2. For spin 3/2, we have the following spin operators,

Sx =
1

2



0
√

3 0 0
√

3 0 2 0

0 2 0
√

3

0 0
√

3 0


, Sy =

1

2



0 −i
√

3 0 0

i
√

3 0 −2i 0

0 2i 0 −i
√

3

0 0 i
√

3 0


Sz =

1

2



3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3


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The eigenvalues and eigenstates of the Hamiltonian in Eq. (5.29) are given in the Appendix in Table

5.3. Now, we choose the same kind of of measurement operators like the previous case, i.e., on the

spin-1/2 side we measure Sx and on the spin-3/2 side, Sz :

M1 = |0xA〉 〈0xA| ⊗ |0B〉 〈0B| ,M2 = |0xA〉 〈0xA| ⊗ |1B〉 〈1B|

M3 = |0xA〉 〈0xA| ⊗ |2B〉 〈2B| ,M4 = |0xA〉 〈0xA| ⊗ |3B〉 〈3B|

M5 = |1xA〉 〈1xA| ⊗ |0B〉 〈0B| ,M6 = |1xA〉 〈1xA| ⊗ |1B〉 〈1B|

M7 = |1xA〉 〈1xA| ⊗ |2B〉 〈2B| ,M8 = |1xA〉 〈1xA| ⊗ |3B〉 〈3B| ,

with |0xA〉 =
√

1/2(|0A〉 + |1A〉), |1xA〉 =
√

1/2(|0A〉 − |1A〉), and |0B〉, |1B〉, |2B〉, |3B〉 are the

eigenstates of SzB corresponding to the eigenvalues 3/2,1/2,-1/2,-3/2 respectively. We also consider

the scenario of SA = 1, SB = 3/2. For this case, the eigenvalues and eigenstates of the Hamiltonian

in Eq. (5.29) is given in Table 5.4 of the Appendix. Again, we take the same measurement choices

as before, i.e., measurement of Sx spin operator on the side A and Sz spin operator on the side B.

We calculate W , QM and the engine efficiency for each case. Like in the previous asymmetric case,

the condition, B2 > B1 does not guarantee the positivity of the extracted work Wt in both of present

cases. Starting from a certain value of J , Wt can be negative for B2 > B1 and positive for B1 > B2.

So, for asymmetric cases, B1 > B2 andB2 > B1, both the situations give rise to the extracted work to

be negative staring from certain ranges of J . We plot the efficiency of the heat engine for the aforesaid

three asymmetric cases together in Fig. 5.12 for B2 > B1 with B2 = 4 and B1 = 3. B1 > B2 case

can be calculated in the similar way.

We observe that for asymmetric situation, the efficiency goes to negative after a certain value of J .

Also, from Fig. 5.12, we can observe that as the difference of spins increases between the two sides,

the efficiency goes to more negative value. So, from these observations, it is clear that if the two

spins on both sides are not the same, then efficiency can be negative. Another interesting feature to

notice from the plot is that, within the range of J where efficiency is positive, higher differences of the

spin values give larger gain in efficiency over the uncoupled one. We have to take correct coupling

strength J , to have a higher but positive work output from these measurement-based coupled higher

spin coupled heat engines. As in the case of SA = 1/2 and SB = 1, we also plot the work done in two
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Figure 5.12: (Color online) Efficiency vs J plot for (SA = 1/2, SB = 1), (SA = 1/2, SB = 3/2) and
(SA = 1, SB = 3/2) ; B2 = 4 and B1 = 3.
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Figure 5.13: (Color online) −W1, −W2, Wt vs J plot for B2 > B1, with B2 = 4, B1 = 3. Here,
SA = 1/2, SB = 3/2.

adiabatic strokes for these two asymmetric cases in Fig. 5.13 and Fig. 5.14 and note that the negative

contribution in the extracted work is due to the second work stroke.

5.5.2 Symmetric case

In this section we consider the symmetric case. One particular characteristic to look at is whether the

efficiency gets negative for symmetric situation also. We already had one symmetric situation, namely,

the case of two spin-1/2 particles and there we had always positive efficiency. Let’s investigate the

case for higher spin symmetric situations. Three cases can arise for the symmetric scenario, if we

restrict ourselves upto spin-3/2. Among these, two spin-1/2 case has already been discussed at

the very beginning. Remaining two cases are the cases of two spin-1 and two spin-3/2 particles.
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Figure 5.14: (Color online) −W1, −W2, Wt vs J plot for B2 > B1, with B2 = 4, B1 = 3. Here,
SA = 1, SB = 3/2.

Eigenvalues and the eigenstates of the Hamiltonian Eq. (5.29) for these two cases are given in the

Tables 5.5 and 5.6 respectively in the Appendix. We take the same measurement settings as before,

i.e, measurement of Sx spin operator on the side A and Sz spin operator on the side B. We calculate

W , QM , and the engine efficiency for all these symmetric cases. Interestingly, for the symmetric

cases, for B2 > B1, we get the extracted work Wt = −W to be positive for all J and for B1 > B2,

Wt is negative for all J . This is exactly similar as in the case of two spin-1/2 particles (which is the

simplest example of a symmetric case). For two spin-1 particles, the expression for Wt is given by,

Wt = −W = p/q, where,

p = (B2−B1)(e4B1 − 1)(2 + e2B1 + 2e4B1 + e2(B1+8J)),

and, q = 1 + e2B1 + e4B1 + e6B1 + e8B1 + e4(B1+6J) + e2(B1+8J)(1 + e2B1 + e4B1).

From the above expression for Wt, it is evident that, whenever B2 > B1, we have the extracted

work to be positive and for B1 > B2, the extracted work is negative. Similar is the situation for

the other symmetric case, i.e., for two spin-3/2 particles. One can also analyze the contributions of

two adiabatic work strokes and find that sum of these two strokes gives rise to the extracted work a

positive quantity for B2 > B1. We plot the efficiency of the engine for all symmetric cases together

in Fig. 5.15 for B2 > B1, with B2 = 4 and B1 = 3. Given the fact that QM is always positive,

for symmetric case, we always get positive efficiency for B2 > B1. We also see that efficiency gets

higher with the increase of spin value, though the efficiency decreases faster for higher spins.
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Figure 5.15: (Color online) Efficiency vs J plot for (SA = 1/2, SB = 1/2), (SA = 1, SB = 1) and
(SA = 3/2, SB = 3/2)

So, from these observations we can conclude that for the asymmetric scenario, the work output is

not always positive. But for the symmetric scenario this is not the case. For this latter scenario, we

always get positive work output and hence positive efficiency for the heat engine. And also for higher

spin scenario, the efficiency is always greater (as long as it is positive for the asymmetric case) than

that of the two spin half case. So, along with the coupling J , spin also plays an important role for the

increase in efficiency for the measurement driven single temperature coupled heat engine.

5.6 Local vs. Global work

In this section we will briefly touch upon the status of ”local” and ”global” works and how they are

related. Till now we have been discussing the global aspect of the heat engine, i.e, global work output

or global efficiency, etc. Local work can be evaluated by the sum of local average energy change

during the measurement step and local heat exchange with the heat bath in the thermalization step for

the two spins. Let’s assume that before the measurement, total state of the system be ρint and after the

measurement it becomes ρM . We denote, ρAint = TrB(ρint) to be the reduced density matrix for the

subsystem A and ρBint = TrA(ρint) to be the reduced density matrix of subsystem B, and similarly

for the reduced states after the measurement. In the same way we can calculate the reduced density

matrix for the subsystems before and after the thermalization step. The local work outputs for the

96



subsystems are defined as [114, 116], wi = −(qi1 + qi2), where,

qi1 = Tr[(ρiM − ρiint)H i(B2)], i = A,B; (5.32)

qi2 = Tr[(ρiint − ρiM)H i(B1)], i = A,B. (5.33)

qi1 represents the average energy exchange for the subsystem A or B (i = A,B) for the measurement

step after the first adiabatic expansion and qi2 is the conventional heat exchange with the heat bath

in the last step, i.e., the thermalization step. H i(B1) and H i(B2) are the local Hamiltonians for the

subsystems (i = A,B) for external magnetic field B1 and B2 respectively. After the first adiabatic

expansion, the parameter of the Hamiltonian is changed from B1 to B2. In the next adiabatic stroke

the magnetic field is changed back to the initial value B1. So, the total local work done by the

two subsystems is w = wA + wB. Nevertheless, the validity of these definitions in the scenario of

measurement driven engine is under question as during the measurement stroke, the coupling between

the working medium and the apparatus is in general not weak. Moreover after the non-selective

measurement, the working medium is driven out of equilibrium, such that the state of the whole

working medium is no longer a thermal state. In Figures 5.16, 5.17 and 5.18, we have plotted the

local works and global works for three different spin combinations with same measurement settings

considered before (Sx on side A and Sz on side B). The plots show very interesting behavior. Unlike
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Figure 5.16: B2 > B1, with B2 = 4, B1 = 3. Here, SA = 1/2, SB = 1/2. Blue and black curve
have merged together.

the coupled quantum otto cycle [114, 116] sum of local works for the subsystems is not always equal

to the global work. The nature of the plots also change with the change of spin values. For two

spin half case, sum of the local works start from a negative value and goes upto zero, whereas for
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Figure 5.17: B2 > B1, with B2 = 4, B1 = 3. Here, SA = 1/2, SB = 1. Black, blue and green curve
have merged together.

local work for spin A

local work forr spin B

total local work

global work

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

J

W
o
rk

Figure 5.18: B2 > B1, with B2 = 4, B1 = 3. Here, SA = 1, SB = 1. Black and green curve have
merged together.

other two scenarios it starts with a positive value. Interestingly, local work for one subsystem is

zero for first two scenarios (Fig. 5.16 and 5.17). Moreover, except for the two spin half scenario,

local work for one subsystem exactly matches with the global work (atleast for the cases considered

here). As a result global work matches with the total local work for the second scenario (Fig. 5.17)

(black, blue and green curve have merged together). In contrast to the conventional quantum otto

cycle, the relationship between local and global works (assuming the above definition of local work)

is complex. This also opens up the avenue for suitable definition of local work, taking into account the

work cost for measurement, which demands a more detailed description of the engine cycle including

the measuring apparatus. This may be a potential future area to explore.

98



5.7 Conclusion

In this chapter we investigated the effect of coupled working medium in the measurement based single

temperature quantum heat engine without feedback. We considered here one dimensional Heisenberg

model of two spins and calculated the efficiency of the heat engine. We showed that when the coupling

constant J is non zero, i.e, the systems are correlated or entangled, the efficiency gets increased over

the uncoupled scenario, i.e., J = 0 case. So, interaction enhances the efficiency of this type of heat

engine also, as was seen for the coupled quantum Otto cycle [114, 116]. We also considered the higher

dimensional scenario, where the two spins are not only spin-1/2 but also 1 or 3/2. In these cases we

observed a very interesting situation which is absent in the conventional coupled quantum Otto engine

as well as in the case of uncoupled measurement driven heat engine. When the two spins of the two

subsystems are the same, we always got the work output, and hence the efficiency to be positive, which

means that we can extract work for this situation. But this is not true for the asymmetric situation. If

the spins for the two subsystems are different, we can get negative efficiency after a certain nonzero

value of the coupling constant, implying that we can not extract work, but have to invest work to run

the cycle. It is very much similar to the case of a refrigerator in the absence of cold reservoir, which is

replaced here by a measurement protocol. But as long as the efficiency is positive, it increases if we

take higher spin system. So, both coupling and dimension of the Hilbert space decide the efficiency

of the heat engine. Next, we considered the local work and global work for the engine cycle and their

relations. For two cases we observed that the local work has the extensive property, i.e., sum of local

works for two subsystems is equal to the global work. More specifically, for SA = 1/2, SB = 1/2

and SA = 1/2, SB = 1, total local work done by the two subsystems is exactly equal to the global

work output for the engine. But this does not hold good when SA = 1, SB = 1. In this case, local

work done by the systems is less than the global work output. Hence, extensive property does not

hold good in this case. A general formalism connecting global and local work may be an interesting

future investigation. Also, throughout the paper, we have focussed on the quasistatic regime for the

engine. In the Ref. [200], the authors considered the scenario of imperfect thermalization stroke and

analyzed the power of a single temperature measurement driven engine. So, the effect of a coupled

working medium on the power of this engine might be a good candidate for subsequent study.
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Appendix

We write down the tables for both symmetric and asymmetric situations listing all the eigenvalues

and eigenstates for the Hamiltonian in Eq. (5.29). First and third tables are for asymmetric cases,

whereas, second and fourth tables are for symmetric cases.

Eigenvalues Eigenstates

−2B − 10J −
√

3
2
|0A3B〉+ 1

2
|1A2B〉 = |ψ1〉

2B − 10J −1
2
|0A1B〉+

√
3
2
|1A0B〉 = |ψ2〉

−10J −
√

1
2
|0A2B〉+

√
1
2
|1A1B〉 = |ψ2〉

6J
√

1
2
|0A2B〉+

√
1
2
|1A1B〉 = |ψ4〉

−4B + 6J |1A3B〉 = |ψ5〉
−2B + 6J 1

2
|0A3B〉+

√
3
2
|1A2B〉 = |ψ6〉

2B + 6J
√

3
2
|0A1B〉+ 1

2
|1A0B〉 = |ψ7〉

4B + 6J |0A0B〉 = |ψ8〉

Table 5.3: SA = 1/2, SB = 3/2

Eigenvalues Eigenstates

−B − 20J
√

1
2
|0A3B〉 −

√
1
3
|1A2B〉+

√
1
6
|2A1B〉

B − 20J
√

1
6
|0A2B〉 −

√
1
3
|1A1B〉+

√
1
2
|2A0B〉

−3B − 8J −
√

3
5
|1A3B〉+

√
2
5
|2A2B〉

−B − 8J −
√

2
5
|0A3B〉 −

√
1
15
|1A2B〉+

√
8
15
|2A1B〉

B − 8J −
√

8
15
|0A2B〉+

√
1
15
|1A1B〉+

√
2
5
|2A0B〉

3B − 8J −2
5
|0A1B〉+

√
3
5
|1A0B〉

−3B + 12J
√

2
5
|1A3B〉+ 3

5
|2A2B〉

3B + 12J
√

3
5
|0A1B〉+

√
2
5
|1A0B〉

−5B + 12J |2A3B〉

−B + 12J
√

1
10
|0A3B〉+

√
3
5
|1A2B〉+

√
3
10
|2A1B〉

B + 12J
√

3
10
|0A2B〉+

√
3
5
|1A1B〉+

√
1
10
|2A1B〉

5B + 12J |0A0B〉

Table 5.4: SA = 1, SB = 3/2
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Eigenvalues Eigenstates

−2B − 8J −
√

1
2
|1A2B〉+ 1

2
|2A1B〉

2B − 8J −
√

1
2
|0A1B〉+

√
1
2
|1A0B〉

−4B + 8J |2A2B〉

−16J
√

1
3
|0A2B〉 −

√
1
3
|1A1B〉+

√
1
3
|2A0B〉

−8J −
√

1
2
|0A2B〉+

√
1
2
|2A0B〉

8J
√

1
6
|0A2B〉+

√
2
3
|1A1B〉+

√
1
6
|2A0B〉

4B + 8J |0A0B〉

−2B + 8J
√

1
2
|1A2B〉+

√
1
2
|2A1B〉

2B + 8J
√

1
2
|0A1B〉+

√
1
2
|1A0B〉

Table 5.5: SA = 1, SB = 1

Eigenvalues Eigenstates

−2B − 22J
√

3
10
|1A3B〉 −

√
2
5
|2A2B〉+

√
3
10
|3A1B〉

2B − 22J
√

3
10
|0A2B〉 −

√
2
5
|1A1B〉+

√
3
10
|2A0B〉

−4B − 6J −
√

1
2
|2A3B〉+

√
1
2
|3A2B〉

−2B − 6J −
√

1
2
|1A3B〉+

√
1
2
|3A1B〉

−6B + 18J |3A3B〉

2B − 6J −
√

1
2
|0A2B〉+

√
1
2
|2A0B〉

4B − 6J −
√

1
2
|0A1B〉+

√
1
2
|1A0B〉

−30J −1
2
|0A3B〉+ 1

2
|1A2B〉 − 1

2
|2A1B〉+ 1

2
|3A0B〉

−22J 3√
20
|0A3B〉 − 1√

20
|1A2B〉 − 1√

20
|2A1B〉+ 3√

20
|3A0B〉

−6J −1
2
|0A3B〉 − 1

2
|1A2B〉+ 1

2
|2A1B〉+ 1

2
|3A0B〉

18J 3√
20
|0A3B〉+ 1√

20
|1A2B〉+ 1√

20
|2A1B〉+ 3√

20
|3A0B〉

6B + 18J |0A0B〉

−4B + 18J
√

1
2
|2A3B〉+

√
1
2
|3A2B〉

−2B + 18J
√

1
5
|1A3B〉+

√
3
5
|2A2B〉+

√
1
5
|3A1B〉

2B + 18J
√

1
5
|0A2B〉+

√
3
5
|1A1B〉+

√
1
5
|2A0B〉

4B + 18J
√

1
2
|0A1B〉+

√
1
2
|1A0B〉

Table 5.6: SA = 3/2, SB = 3/2
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|0A/B〉
.
=

1

0

 and |1A/B〉
.
=

0

1

 are the eigenstates of SzA/B for spin-1/2 particle. |0A/B〉
.
=


1

0

0

, |1A/B〉
.
=


0

1

0

 and |2A/B〉
.
=


0

0

1

 are the eigenstates of SzA/B for spin-1 particle. |0A/B〉
.
=



1

0

0

0


, |1A/B〉

.
=



0

1

0

0


, |2A/B〉

.
=



0

0

1

0


and |3A/B〉

.
=



0

0

0

1


are the eigenstates of the operator SzA/B

for spin-3/2 particle.
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CHAPTER 6

Summary and Outlook

This thesis has been dedicated to study the manifestation of entanglement in different forms, start-

ing from the scenario of Bell nonlocality to Quantum Thermodynamics. Entanglement is one of the

important features that distinguishes quantum physics from classical realm. From the mathematical

structure of quantum mechanics it is easy to see how the entanglement comes into the picture. Physi-

cally it gives rise to nonlocal phenomena, which is very counter-intuitive and yet it is there. Quantum

information theory takes an operational point of view to see entanglement as a resource with respect

to Local Operations and Classical Communications (LOCC), in the sense that entanglement can not

be generated from separable states with LOCC only. Entangled states can be used in numerous QIP

processing tasks, which are otherwise impossible or less effective. On the other hand phenomena like

Bell Nonlocality and Quantum Steering are due to the existence of entangled states. Entanglement

is necessary but not sufficient to reveal these phenomena. Beside its importance in foundational sce-

nario, it is important to understand the role of entanglement in the energetics of microscopic systems,

due to the gradual miniaturization of current technologies. Mathematical structure of Entanglement

gets more and more complex with the increase of number of parties and so does the nonlocality. Con-

sequently, relation between them becomes intricate even for pure states.

We considered the problem of revelation of nonlocality of a certain class of multipartite entangled

states, called generalized GHZ states. There are no known correlation Bell inequalities that are vi-
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olated by these states (for a certain parameter range) in the minimal measurement scenario. We

presented a set of new Bell inequalities in the scenario of n parties, two dichotomic measurements for

two parties and only one for the rest. These inequalities are violated by all generalized GHZ states

of n qubits. We also explicitly construct the facet Bell inequalities in this new scenario and find that

they are the lifted version of Bell-CHSH inequality. These facet inequalities also show the violations

for all generalized GHZ states. Both set of inequalities are checked numerically to show violation for

any genuinely entangled three-qubit states. Moreover, the first set of Bell inequalities can distinguish

between separable, bi-separable and genuinely entangled three-qubit states.

We introduced a new QIP protocol, called Co-operative QKD (CoQKD) using multipartite entan-

gled state. CoQKD is a protocol, where two parties make a secret key under the supervision and

intervention of other parties such that no cheating takes place. We find the suitable resource states

for this protocol and introduce an implementable scheme for CoQKD in the same line of Ekert’s pro-

tocol. We also investigate the suitability of the resource states in conference key scenario. Next, to

investigate the role of entanglement in Quantum Thermodynamics we consider the direction of quan-

tum heat engine. Specifically, we take the working medium of a measurement based quantum heat

engine (without feedback) to be a coupled system of two spins. Then we show that coupling helps us

to achieve greater efficiency than the uncoupled one. As coupling is directly related to entanglement,

the advantageous role of entanglement is noteworthy in this case.

Lastly, to see the role of entanglement in other Thermodynamic protocols (in literature there are

already many works) is potential area to investigate. Understanding the trade-off between our funda-

mental limitations in quantum systems and the advantages of quantum resources needs more careful

studies. On the other hand to look at the other aspects of multipartite nonlocality, like genuine nonlo-

cality or subsystem nonlocality and their connections with entanglement are the areas worth to look

at. The area of hidden nonlocality in multipartite scenario has also a lot of unanswered questions.
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