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Synopsis

In 1935 Einstein, Podolsky and Rosen [1] described a spooky feature of quantum me-

chanics in their famous EPR paper. Later Schrödinger [2] coined the name for this feature

as entanglement. This feature restricts a global state of a composite system from being

written as a product of the states of individual subsystems. In quantum mechanics en-

tanglement is one of the key features which differentiates between quantum and classical

world. Moreover, it has been found to be a very useful resource for many information pro-

cessing tasks, such as teleportation, remote state preparation, quantum cryptography, super-

dense coding [19] etc. There also exist an extensive amount of literature on entanglement

from the foundational perspective of quantum mechanics. Therefore, the quantification and

characterization of entanglement is one of the interesting problems in quantum information

theory. Quantification and characterization of entanglement is unambiguous for pure bipar-

tite state, but not for the mixed states. Entanglement of any pure bipartite state is uniquely

captured by the entropy of entanglement in the asymptotic limit [5]. But this is not true for

mixed states. There is no unique quantification of entanglement for this case and a num-

ber of entanglement measures and monotones [19] have been constructed over the years.

Situation gets worse for multipartite scenario, both for pure and mixed states. Even for

pure multipartite states there is no unique quantification of entanglement. There exist in-

finitely many inequivalent entanglement classes. Therefore, the study on characterization

and quantification of entanglement is of great importance.

Quantum coherence is also a fundamental concept in quantum mechanics. It is just the

linear superposition of quantum states. Unlike entanglement, coherence can be defined for

a single system. Interestingly in a multi-party system coherence is the indispensable part

and is the essence of entanglement. Recent developments in the field of quantum infor-

mation and computation suggest that coherence can be a very useful resource for quantum

computing, quantum algorithm, quantum metrology, quantum thermodynamics [111]etc.

Coherence also plays a very crucial role in the field of quantum biology [37]. Therefore,

the study of quantum coherence is of immense importance. Recently, there has been a lot of
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research to understand the coherence from the resource theory perspective. Resource the-

ory tells us what can be achieved from a system by using some allowed operations which

can not create coherence. However, the concept of such allowed operations or incoherent

operations is not unique. There exist many classes of incoherent operations in the literature.

Therefore, a study of such incoherent operations will be very useful for the resource theory

of coherence. Moreover, coherence like every other resource is very fragile to the effect

of the environment. Therefore, it is important to characterize coherence in the presence of

environment.

This thesis is mostly focused on the characterization and quantification of two main

resources in quantum information processing – quantum entanglement and quantum coher-

ence.

In 1964, Bell established that any realistic interpretation of quantum theory is bound

to be nonlocal [7]. He established this by means of an inequality which is violated by the

singlet state of a pair of qubits. Later it was shown that any entangled pure two-qubit state

will violate this inequality [8]. From here we can draw two conclusions – that entangle-

ment is the main ingredient for the nonlocal phenomena in quantum mechanics and Bell

inequality can serve as one of the potential way to detect entanglement. However, the situ-

ation gets worse for mix states. As there exist mixed entangled states which do not violate

this inequality. Therefore, violation of Bell inequality is sufficient criteria to detect entan-

glement but not a necessary one. The Bell violation of entangled two-qubit pure states only

depends on the entanglement. But for a mixed state only entanglement and purity are not

enough to characterize Bell violation. As a mixed state contains many other parameters. So

a state with large entanglement and purity can have smaller optimal Bell value. Recently

Mendonça et. al. [9] showed that the whole entanglement and purity region of two-qubit

states can be covered by two-qubit X-states. Hence, to explore the Bell inequality violation

for mixed states, we can consider the two-qubit X-states. We have showed that optimal Bell

value increases monotonically with the increment of entanglement and purity. Moreover,

we explicitly show that optimal Bell value changes monotonically with respect to other

parameters even when the entanglement and the purity of the states remain fixed. From

this we may conclude that these parameters reflects some nonlocal classical or quantum
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properties of the state.

Apart from qubits, entanglement in higher dimensional systems is important from both

fundamental and practical point of view. Higher dimensional entanglement provides impor-

tant advantages in quantum communication than the conventional qubit entanglement. It

provides much better security against eavesdropping in cryptography [18]; it can be used to

increase the channel-capacity via superdense-coding [11] and is more robust against envi-

ronmental noise [12] than the conventional two-qubit entanglement. However, for practical

applications of these protocols, experimental preparation, detection and quantification of

higher dimensional entangled state is of crucial importance. The violation of Bell-type

inequalities can detect the presence of entanglement in such systems. Hence, we study

local-realistic inequalities, Bell-type inequalities, for bipartite pure states of finite dimen-

sional quantum systems – qudits. There are a number of proposed Bell-type inequalities for

such systems. Our interest is in relating the value of Bell-type inequality function with a

measure of entanglement. Interestingly, we find that one of these inequalities, the Son-Lee-

Kim (SLK) inequality [13], can be used to measure entanglement of a pure bipartite qudit

state and a class of mixed two-qudit states. Unlike the majority of earlier schemes in this

direction, where number of observables needed to measure the entanglement increases with

the dimension of the subsystems [14], this method needs only four observables. We also

discuss the experimental feasibility of this scheme. It turns out that current experimental

set ups can be used to measure the entanglement using our scheme.

We have derived two finite trigonometric sums which are required to get a relation

between Bell-SLK function and entanglement. To the best of our knowledge, these two

sums do not exist in any mathematics handbook or literature. Later we computed many

more trigonometric sums like these; it is an active research area in mathematics. These

sums may contain various powers of one or more trigonometric functions. Sums with one

trigonometric function are known, however sums with products of trigonometric functions

can get complicated and may not have a simple expressions in a number of cases. We

obtain a number of such sums using method of residues.

The characterization of entanglement in multipartite scenario is far complex than the

bipartite case. We can not even define a unique maximally-entangled multipartite state and
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there exist many inequivalent forms of entanglement. From the resource theory point of

view of entanglement, two entangled states are said to be equivalent if they can be ob-

tained from each other with certainty with respect to LOCC (local operation and classical

communication) [15]. For a single copy, two states are LOCC equivalent if and only if

they are related by LU (local unitary) [16]. But in the single copy restriction, even two

bipartite pure states are not typically related by LU. To evade this difficulty, the LOCC op-

eration, through which the conversion of entangled states is considered is slightly loosened.

One now considers the conversion of states through stochastic local operation and classical

communication (SLOCC), i.e. two entangled states are converted to each other by means

of LOCC but with a non-vanishing probability of success [16]. For three-qubit pure states,

there exist a total of six SLOCC inequivalent classes: separable, three biseparable and two

genuinely entangled (GHZ and W). In general it is very difficult to characterize and distin-

guish different classes from each other. Employing the Pauli matrices, we have constructed

a set of operators, which can be used to distinguish six inequivalent classes of entanglement

under SLOCC for three-qubit pure states [54]. These operators have very simple structure

and can be implemented in an experiment to distinguish the types of entanglement present

in a state. We show that the measurement of only one operator is sufficient to distinguish

GHZ class from rest of the classes. It is also shown that it is possible to detect and clas-

sify other classes by performing a small number of measurements. We also show how

to construct such observables in any basis. Furthermore, we consider a few mixed states

to investigate the usefulness of our operators. Furthermore, we consider the teleportation

scheme of Lee et. al. [18] and show that the partial tangles and hence teleportation fidelity

can be measured. We have also shown that these partial tangles can also be used to classify

genuinely entangled state, biseparable state and separable state.

Like quantum entanglement, as discussed above, coherence is also a very fundamental

concept. The quantum coherence like other quantum resources is also fragile in the pres-

ence of noisy environment. The interaction of quantum systems with environment have

been extensively studied using different models, in particular using noisy channels. Char-

acterizing all these channels and their effect on various physical resources are vital. These

channels are also important to construct resource theoretic aspect of coherence. Therefore,
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it would be really interesting to characterize the channels using the notion of coherence.

We define the coherence of quantum channels using the Choi-Jamiołlkowski (C-J) iso-

morphism [19]. C-J isomorphism also known as channel state duality is the corresponds

between a quantum channel and a quantum state. It says that for every quantum channel,

there exists a unique quantum state. The relation between the coherence and the purity of

the channel respects a duality relation. It characterizes the allowed values of coherence

when the channel has certain purity. This duality has been depicted via the Coherence-

Purity diagrams. In particular, we study the quantum coherence of the unital and non-

unital qubit channels and find out the allowed region of coherence for a fixed purity. We

also study coherence of different incoherent channels, namely, incoherent operation (IO),

strictly incoherent operation (SIO), physical incoherent operation (PIO) etc. Interestingly,

we find that the allowed region for different incoherent operations maintains the relation

PIO ⊂ SIO ⊂ IO. Interestingly, different kinds of qubit channels can be distinguished

using the Coherence-Purity diagram. We also prove a complementarity relation between

the relative entropy of coherence [111] and the Holevo quantity [61] of the quantum chan-

nel. This suggests that the coherence and the Holevo quantity of the channels cannot be

arbitrarily large at the same time.

To summarize, a two-qubit mixed state contains many parameters. We have shown

that optimal Bell value not only depends on the purity and entanglement but also on other

parameters. We have provided a scheme to measure higher dimensional entanglement. We

have constructed some observable which can be useful to distinguish different classes of

entanglement presents in a three qubit pure state. Using C-J isomorphism we have defined

the coherence of the channels. Coherence-purity diagram can be useful to distinguish two

different qubit channels.
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Chapter 1

Introduction

Quantum entanglement is one of the most nonclassical manifestations of quantum mechan-

ics. It was discovered after a few years of the birth of quantum mechanics. Since then it

has been puzzling feature of quantum mechanics. In 1935, Einstein, Podolsky and Rosen

illustrated a counter-intuitive prediction of quantum mechanics about composite systems

in their famous thought experiment known as EPR paradox [1]. They showed that quan-

tum mechanical description of the physical reality by the wave function is not complete.

Surprised by this fact, Einstein called it a spooky feature of quantum mechanics. Later

Schrödinger [2] used the term entanglement to describe this spooky feature of quantum

mechanics. In the EPR paper, the authors invoked realism and assigned values to the phys-

ical quantities prior to the measurement. Later, in 1964 Bell [3] formalized the idea of the

EPR paper in terms of local hidden variable model and showed that entanglement does not

allow such possibility.

Apart from foundational importance of quantum entanglement, it has been considered

as one of the most valuable resource in quantum information science. It plays a pivotal role

in many interesting discoveries such as quantum cryptography [4], teleportation [5], super-

dense coding [6], quantum error correction codes [7, 8] etc. Recent developments in the

field of quantum information science suggest that entanglement is a new quantum resource

for those tasks which cannot be achieved by a classical resource. Therefore, quantifica-

tion and characterization of quantum entanglement are the basic requirements in quantum

information theory.
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On the other side, quantum coherence is also at the heart of the quantum mechan-

ics. Quantum coherence or the coherent superposition of states is one of the most fun-

damental features of quantum mechanics which differentiates quantum world from the

classical world. Interestingly coherence is the main underlying notion of quantum inter-

ference and quantum entanglement. The early approach to quantify coherence came in

2006 by Åberg [9] who considered the superposition of orthogonal quantum states. After

that an extensive amount of research have been carried out to quantify and characterize

coherence [10]. Like entanglement, coherence is also a very crucial resource in quantum

computing [11], quantum algorithm [12], quantum metrology [13], quantum thermody-

namics [14] and even in quantum biology [15]. Therefore a study of characterization of

quantum coherence is also very important in quantum information theory.

1.1 Entanglement

1.1.1 Bipartite Entanglement

In entanglement theory one of the most basic and important question is which states are

entangled. We don’t have a complete answer to that. However, we have the answer to this

question up to some extent. As an example, any bipartite pure state |ψ〉AB in the Hilbert

space H = HA ⊗ HB is entangled iff it cannot be written as a product of the state of the

two subsystems or mathematically

|ψ〉AB 6= |φ〉A ⊗ |ξ〉B. (1.1)

In general, |ψ〉AB can be written in a orthonormal product basis as follows

|ψ〉AB =

dA∑
i=1

dB∑
j=1

cij|ai〉A ⊗ |bj〉B, (1.2)

where dA and dB represents the dimension of the system A and B respectively, coefficients

cij could be complex and are the elements of a matrix C. |ai〉A and |bj〉B correspond to the

basises of the systems A and B respectively. The state |ψ〉AB will be product if the rank

of the matrix C is 1. Singular value decomposition theorem assures that one can always
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diagonalize the matrix C by applying proper local unitary transformation. Hence, we can

write

|ψ〉AB =
r∑
i=1

ci|ei〉A ⊗ |fi〉B, (1.3)

where r = min[dA, dB], ci’s are strictly positive and are known as Schmidt coefficients [16].

|ei〉A and |fi〉B are the Schmidt basis of the systems A and B respectively. The Schmidt

rank r is equal to either of the ranks of the reduced density matrices ρA = TrB[|ψ〉AB〈ψ|],

ρB = TrA[|ψ〉AB〈ψ|]. The state |ψ〉AB will be entangled if r > 1, otherwise it is a product

state. Thus, in a pure bipartite state, the rank of the reduced density matrices can tell us

whether the state is entangled.

But in a real life experiment, we cannot avoid the noise and as a result, we deal with

a mixed state rather than a pure state. A bipartite mixed state ρAB in Hilbert space H =

HA ⊗HB is entangled if it cannot be written as

ρAB =
∑
i

piρ
A
i ⊗ ρBi , (1.4)

where pi > 0 and
∑

i pi = 1. For a finite dimensional Hilbert space one can choose ρAi

and ρBi to be pure. In general, it is a very difficult problem to decide whether a state ρAB is

entangled or not. There exist many approaches to detect entanglement in literature [17]. In

the subsection below, we will provide a very brief description about some of them.

1.1.1.1 Separability criteria

A. Positive partial transpose Positive partial transpose criteria (PPT) also known as

Peres-Horodecki criteria [18, 19], is sufficient to detect entanglement. Any general state

ρAB can be written as

ρAB =
∑
i,j,k,l

pijkl|i〉〈j| ⊗ |k〉〈l|. (1.5)

Its partial transpose with respect to the subsystem B is

ρTBAB =
∑
i,j,k,l

pijkl|i〉〈j| ⊗ (|k〉〈l|)T =
∑
i,j,k,l

pijkl|i〉〈j| ⊗ |l〉〈k|, (1.6)

where T represents the transpose operation. If the matrix ρTBAB is not positive then the state

ρAB is entangled. For a 2⊗ 2 or 2⊗ 3 system, Horodecki et. al. [19] have shown that it is

3



a necessary and sufficient criteria to detect entanglement. However, if the dimension of the

composite system is more than six, then the positivity of ρTBAB does not guarantee that the

state is separable. As there exist some PPT states which are entangled [20, 21].

B. Positive but not completely positive maps A positive linear map Λp on a given

Hilbert space H takes a positive operator to another positive operator and can be math-

ematically represented as

Λp : O(H)→ O(H),Λp(ρ) = ρ′ > 0, for all ρ > 0. (1.7)

But if the system ρ is statistically correlated to another system and we are applying positive

map Λp on ρ then we must consider the action of the map In⊗Λp on the composite system.

Here In represents the nth dimensional identity operator. The action of the map In ⊗ Λp is

positive for all values of n if Λp is completely positive. Complete positivity is required for

entangled bipartite states. If the system is separable then positive maps are enough. From

here we can provide a necessary and sufficient condition of separability which state that a

state ρAB is separable if (I⊗ Λp)ρAB > 0 for all positive map Λp [19]. In the PPT criteria

transpose map is positive map but not a completely positive map. Hence, positive maps are

useful to detect entanglement.

C. Reduction criteria A reduction map Λr can be represented as

Λr(ρ) = I(Trρ)− ρ. (1.8)

It can be easily verified that reduction map is positive but not completely positive [17]. The

reduction criteria for separability [22, 23] is a necessary condition and states that a state

ρAB is separable if (IA ⊗ Λr
B)ρAB > 0, i.e. following condition will be satisfied

ρA ⊗ IB − ρAB > 0, (1.9)

where ρA is the reduced density matrix of ρAB. The reduction criteria is weaker than the

PPT criteria as reduction map is decomposable [23]. However, this map plays an important

role in entanglement distillation [23].
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D. Extended reduction criteria This criteria is a modification of the reduction criteria

on the even dimensional Hilbert space. There exist antisymmetric unitary operations, UT =

−U , such that the corresponding antiunitary map U(·)TU † maps any pure state to another

state which is orthogonal to the previous one [24, 25]. Hence, the action of this map on ρ

can be expressed as

Λer(ρ) = Λr(ρ)− U(ρ)TU †. (1.10)

This map is positive but not completely positive [24]. Separability criteria using this map

can be stated as (I ⊗ Λer
B ) > 0 if the state ρAB is separable. As it is a nondecomposable

map, it can detect a very weak entangled state, so called PPT entangled state [26].

E. Range criteria Range criteria state that if a state ρAB is separable, then there exists a

set of product vectors {|φAi 〉 ⊗ |ψBi 〉}, which spans the range of ρAB and the set {|φAi 〉 ⊗

|ψBi 〉∗} spans the range of ρTBAB [20]. Here the complex conjugation ‘∗’ is taken in the same

basis in which the partial transpose operation has been performed. This criteria is useful

to detect some of the PPT entangled states or bound entangled states [20]. Unextendible

product basis (UPB) is an interesting example of range criteria to find PPT entangled states

[27, 28]. A set SUPB of orthonormal product vectors in H = HA ⊗HB form UPB if there

exists no product vector which is orthogonal to all of them. Consider a subspace VUPB,

which is spanned by the vectors in SUPB. As there are no orthogonal product vectors in

VUPB, therefore, any vector in V⊥UPB is entangled. As a result, using range criteria, we can

assert that any mixed state with a support in V⊥UPB is entangled. Therefore, the idea of UPB

gives a procedure to construct PPT entangled states.

F. Matrix realignment criteria Matrix realignment criteria or computable cross norm

criteria is another strong criteria which is based on a linear contraction on product states

[29–31]. It has been shown useful in detecting some PPT entangled states [29, 30]. The

matrix realignment map R on a state ρAB can be defined as 〈m|〈µ|R(%AB)|n〉|ν〉 ≡

〈m|〈n|%AB|ν〉|µ〉, where 〈m|〈µ|R(%AB)|n〉|ν〉 represents the elements of the matrixR(ρAB).

If a state ρAB is separable then ‖R(ρAB)‖1 6 1, where ‖ · ‖1 represents the trace norm and
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is defined as ‖X‖1 = Tr
√
XX†. Matrix realignment criteria is a special case of linear con-

traction criteria. Linear contraction criteria states that if a map Λl satisfies ‖Λl[|ψA〉〈ψA| ⊗

|φB〉〈φB|]‖1 6 1 for all product states |ψA〉〈ψA|⊗|φB〉〈φB|, then we have ‖Λl(ρAB)‖1 6 1

for any separable state ρAB.

G. Entanglement witness An entanglement witness operator is a bounded Hermitian

operator which is designed to detect entanglement. For every entangled state σAB, there

exists an entanglement witness operatorW such that Tr(WσAB) < 0 and Tr(WρAB) > 0

for all separable states ρAB [19,32]. We can state this other way as well – If Tr(WρAB) > 0

for any entanglement witness operatorW satisfying Tr(W|ψA〉〈ψA| ⊗ |φB〉〈φB|) > 0 for

all product states |ψA〉〈ψA| ⊗ |φB〉〈φB|, then the state ρAB is separable.

H. Bell type inequalities Bell type inequalities [3] are one of the experimental way to de-

tect entanglement. A connection between Bell type inequalities and entanglement witness

operator was first considered by Tehral [33]. But in general the connection between them

is very complex as Bell inequality not only detect entanglement but also nonlocality of the

state. Later in this chapter, we will discuss about Bell type inequalities in more details.

1.1.1.2 Quantification of entanglement

The idea of quantifying entanglement came from quantum communication task such as

teleportation [5]. With a two-qubit maximally entangled state we can teleport a single qubit

state. However, if the two-qubit state is not maximally entangled, then faithful teleportation

is not possible. Nevertheless, one can still do faithful teleportation if he/she possesses many

copies of two-qubit non-maximally entangled states. The rate of this faithful teleportation

will depend on how many maximally entangled states we can obtain from those copies

of non-maximally entangled states. This idea introduces two measures of entanglement –

entanglement cost and distillable entanglement.

A. Entanglement cost Entanglement cost quantifies the number of ebits (ebit corre-

sponds to the amount of entanglement contained in a Bell state |φ+〉 = 1√
2
[|00〉 + |11〉])
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that are required to prepare a copy of state by local operation and classical communication

(LOCC) [34, 35]. We will introduce LOCC in a greater detail later in this chapter. Let’s

say Alice and Bob start from m copies of Bell state (|φ+〉⊗m) and after applying LOCC

operations get n copies of state ρ (ρ⊗n). Then the rate of this protocol is r = m
n

. How-

ever, in general it is impossible to perform this protocol exactly. Therefore, we consider

|φ+〉⊗m ≈ ρ⊗n and check the quality of this approximation by measuring trace distance. Fi-

nally the entanglement cost is the infimum of all possible rates such that the approximation

is very good. The entanglement cost can be defined mathematically as [34, 35]

EC(ρ) = inf{r : lim
n→∞

[inf
Λ
‖ρ⊗n − Λ(|φ+〉⊗m)‖1] = 0}, (1.11)

where Λ represents the LOCC operation.

B. Distillable entanglement Distillable entanglement [36, 37] is just the dual of the en-

tanglement cost. It quantifies the number of ebits that can be obtained from a single copy

of a state. The formal mathematical definition of distillable entanglement is [37]

ED(ρ) = sup{r : lim
n→∞

[inf
Λ
‖Λ(ρ⊗n)− |φ+〉⊗m‖1] = 0}. (1.12)

The two measures we have described above are task dependent. Hence, they require some

optimization over some protocols. Generally these are very hard to perform. Therefore, it is

always better to define measures which are independent of tasks. These measures are some

function of states and must obey some basic postulates. A good entanglement measure

must satisfy the following postulates [38–41]–

• For any separable state ρAB, we must have E(ρAB) = 0.

• The measure of entanglement remains invariant under any local unitary operation.

Hence, E(σAB) = E([UA ⊗ UB]σAB[U †A ⊗ U
†
B]).

• E should not increase under LOCC. Therefore, E(Λ(σAB)) 6 E(σAB), where Λ

represents a LOCC operation.
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• For pure state E gives the value of von-Neumann entropy of reduced density matri-

ces. E(|ψAB〉) = S(TrB|ψAB〉〈ψAB|) = S(TrA|ψAB〉〈ψAB|), where S represents the

von-Neumann entropy.

• For a maximally entangled state |Φ〉+AB, E(|Φ〉+AB) = log2(d), where d is the dimen-

sion of the Hilbert space.

• Entanglement measure is a convex function. Most known existing entanglement

measures are convex.

The quantifiers that we will describe below may not satisfy all the conditions. But to be an

entanglement quantifier, they must satisfy the first three postulates stated above.

C. Distance measure An entanglement measure based on distance quantifies the mini-

mum possible distance between the entangled states and the set of separable states. Intu-

itively, the closer you go to the set of separable states, less entangled it will be. Mathemat-

ically it can be represented as [38, 39]

Edis(ρ) = inf
σ∈S
D(ρ, σ), (1.13)

where we are measuring the distance of the ρ from the set (S) of separable states σ. Vedral

and Plenio [39] showed that Bures distance and relative entropy of entanglement satisfy

the necessary conditions (first three postulates) required to be an entanglement measure.

Entanglement measure based on Bures distance can be written as

EB(ρ) = inf
σ∈S

[
2− 2

√
F (ρ, σ)

]
, (1.14)

where F (ρ, σ) = [Tr(
√√

ρσ
√
ρ)]2, is the fidelity [42, 43]. On the other hand, the relative

entropy of entanglement is defined as

ER(ρ) = inf
σ∈S

S(ρ|σ) = inf
σ∈S

Trρ(log2 ρ− log2 σ). (1.15)

D. Entanglement of formation Entanglement of formation (EF ) [44] is a convex roof

measure, i.e., one first start with an entanglement measure for pure states and then extends
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it for mixed states by convex roof [45]. EF can be defined as

EF (ρAB) = inf
{pj ,|ψj〉AB}

∑
j

pjS
(
TrB[|ψj〉AB〈ψj|]

)
, (1.16)

where S is the von-Neumann entropy and the infimum is taken over all the pure state

decomposition {pj, |ψj〉AB}, such that ρAB =
∑

j pj|ψj〉AB〈ψj|.

E. Schmidt number The Schmidt rank can also be extended to the mixed state case by

convex roof extension and can be defined as [33, 46]

r(ρAB) = min{max
j

[r(|ψj〉AB)]}, (1.17)

where minimization is taken over all the pure state decompositions of ρAB and r(|ψj〉AB)

represents the Schmidt rank for the corresponding pure state.

F. Concurrence Concurrence was first introduced by Hill and Wootters [47] for two-

qubit pure states. Later Wootters [48] extended it to two-qubit mixed states by convex roof

extension. The compact definition of concurrence is

C(ρAB) = max(0, λ1 − λ2 − λ3 − λ4). (1.18)

λ′is here are in descending order and the eigenvalues of the matrix
√√

ρABρ̃AB
√
ρAB,

where ρ̃AB = (σy ⊗ σy)ρ∗AB(σy ⊗ σy). σ corresponds to the Pauli matrices and ‘∗’ denotes

the conjugate. For a pure state |ψ〉AB, the concurrence is C(|ψ〉AB) =
√

2(1− Trρ2
A),

where ρA is the reduced density matrix of |ψ〉AB. Concurrence can be extended for higher

dimension as [49, 50]

C(|ψ〉AB) =
√
〈ψ|ψ〉AB − Trρ2

A, (1.19)

where ρA is the subsystem density matrix. Mintert et. al. [51] has derived a strong lower

bound for its convex roof extension.

G. Negativity Negativity [52,53] is another measure of entanglement and is very easy to

compute. Negativity of a two-qudit state ρAB is defined as

N (ρAB) =
‖ρTB‖1 − 1

d− 1
, (1.20)
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where ρTB is the partial transpose of the state ρAB with respect to the subsystem B and

d represents the dimension of the system. Logarithmic negativity is another version of

negativity and can be defined as [53]

EN(ρAB) = log2 ‖ρTB‖1. (1.21)

It gives the upper bound for the distillable entanglement [53].

1.1.2 Multipartite entanglement

The entanglement is far richer and complex in multipartite system than the usual bipartite

entanglement. Unlike bipartite entanglement, not only there exist fully separable states and

fully entangled states, but also there exists the concept of many partial separable states.

1.1.2.1 Separability

A. Full separability A multipartite state ρA1···An of n subsystems on the Hilbert space

H = HA1 ⊗ · · ·HAn is fully separable iff it can be written as [17, 54]

ρA1···An =
∑
i

piρ
i
A1
⊗ · · · ⊗ ρiAn . (1.22)

Like the bipartite case full separability remains preserved under the fully separable opera-

tion of the form
∑

i ζ
i
1 ⊗ · · · ⊗ ζ in, i.e.,

ρA1···An →
∑

i ζ
i
1 ⊗ · · · ⊗ ζ inρA1···An(ζ i1 ⊗ · · · ⊗ ζ in)†

Tr
[∑

i ζ
i
1 ⊗ · · · ⊗ ζ inρA1···An(ζ i1 ⊗ · · · ⊗ ζ in)†

] . (1.23)

B. Partial separability As we have already mentioned above, there exists many forms of

partial separability in the multipartite entangled system. Here we will discuss about them

very briefly.

1. Separability with respect to partitions: In a n-partite system let’s consider a partition

{I1, I2, · · · , Ik}, where Ii corresponds to the disjoint subsets of the set of indices

I = {1, 2, · · · , n} (∪kl=1Il = I). Then the n-partite state is separable with respect to

the above mentioned partition if and only if [17]

ρA1···An =
∑
i

piρ
i
1 ⊗ · · · ⊗ ρik. (1.24)

10



Therefore, there exists several separability condition with respect to many different

partitions. To make it more simple, we arrange a n-partite system in k 6 n groups,

i.e., we choose a k-partition. If we now consider each group as a single party, then

it may happen that the n-partite state is separable with respect to this partition. It is

interesting to note that n-partite state is k-separable irrespective of the case that the

individual group may be entangled.

2. Semiseparability: A state ρA1···An in Hibert space H = HA1 ⊗ · · ·HAn is semisep-

arable iff it is separable under all 1 versus n − 1 partitions, i.e., {I1 = {k}, I2 =

{1, · · · , k − 1, k + 1, · · · , n}} where 1 6 k 6 n [17].

3. s-partite entanglement: There also exists a notion of at most s-partite entanglement.

It can be defined as follows: A multipartite state ρA1···An of n parties is at most s-

partite entangled if it is a mixture of all such states which are separable with respect

to some partition {I1, · · · , Ik}, such that the cardinality of all Ii is less than s [55].

1.1.2.2 Characterization of separability

A. Case of pure state A pure multipartite state |Ψ〉A1···An of n subsystems is fully sepa-

rable or n-partite separable if and only if

|Ψ〉A1···An = |ψ〉A1 ⊗ · · · ⊗ |ψ〉An . (1.25)

In bipartite case the entanglement of pure states can be characterized by the condition,

whether the reduced density matrix is mixed or not. However, in this case the violation of

this condition for one bipartite partition does not guarantee that the state is n-partite entan-

gled or fully entangled or genuinely entangled. We need to consider all the bipartite parti-

tions of the state |Ψ〉A1···An and then check whether the reduced density matrices are mixed

or not. If they are mixed for all the bipartite partitions then the state |Ψ〉A1···An is genuinely

entangled. Hence, there does not exist any cut in which the state is product. This diffi-

culty of characterization arises due to the fact that a pure multipartite state admits Schmidt

decomposition very rarely [56]. Furthermore, one can classify genuinely entangled pure

states into different non-comparable entanglement classes by means of stochastic LOCC

(SLOCC) [57, 58]. There also exist partially separable and partially entangled state [17].
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B. Case of mixed state The full characterization of entanglement for multipartite states

is much much complicated than the bipartite case. However, for some cases we do have a

generalization of bipartite separability criteria to the multipartite scenario.

I. Positive but not completely positive maps The separability criteria for a bipartite

system by positive but not completely positive maps can be generalized to a multipartite

scenario in a very natural way [59]. Consider a positive but not completely positive map

Λp
A2···An : O(HA2 ⊗ · · · ⊗ HAn) → O(HA1), such that they are positive on product state,

i.e., Λp
A2···An(|ψ〉A2〈ψ| ⊗ · · · ⊗ |ψ〉An〈ψ|) > 0. Then a necessary and sufficient separability

criteria for a multipartite state ρA1···An is [59]

(IA1 ⊗ Λp
A2···An)ρA1···An > 0, for all Λp

A2···An : O(HA2 ⊗ · · · ⊗ HAn)→ O(HA1), (1.26)

where IA1 is the identity operator for the A1 subsystem. This criteria provides a full sepa-

rability of the multipartite system. A positive map which is positive on product states may

be written as a product of positive maps [17]. However, there exists some positive maps

which are positive on product state but cannot be written as a product of positive maps. It

has been shown that these maps are useful to detect some semiseparable states [44, 59].

II Entanglement witness Choi-Jamiołlkowski isomorphism [60–62] gives us a way

to connect a positive, but not completely positive maps to the entanglement witness in the

bipartite case, i.e., W = (I ⊗ Λp)|Φ+〉〈Φ+|, where |Φ+〉 = 1√
d

∑
i |iAiB〉. This idea can

also be generalized to the multipartite scenario as well [17]. Hence, we can state that a

multipartite state ρA1···An is separable if Tr(WρA1···An) > 0 for all W . This is also a full

separability criteria for the multipartite state.

1.1.2.3 Entanglement quantification

Some entanglement measures from the bipartite scenario can be generalized to the multi-

partite case in a very natural way. As an example, relative entropy of entanglement can

be generalized by taking a suitable set of separable states instead of set of bipartite sep-

arable states. For instance, if we consider the set of fully separable states, then it cannot

distinguish between genuinely entangled states and several cases of bipartite entanglement.

However, genuinely entanglement characterization is still possible if one considers the set
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of states which has no more than k-partite entanglement (1 6 k 6 n) [38]. As mul-

tipartite entanglement is far more complex than the bipartite entanglement, hence many

more parameters are required to characterize it. Therefore, many new measures for pure

multipartite states have been introduced recently [17].

A. Tangle Tangle was first introduced in [63], in the context of distributed entanglement,

to quantify the amount of three-way entanglement in a three-qubit state. For a pure state

it can be interpreted as residual entanglement, which is not captured by two-way entangle-

ment between the qubits. It was also shown to be an entanglement monotone [57]. The

tangle is defined as

τ = C2
A(BC) − C2

AB − C2
AC , (1.27)

where CAB and CAC denote the concurrence [50] of the entangled state between the qubits

A and B and between the qubits A and C respectively. The concurrence CA(BC) refers

to the entanglement of qubit A with the joint state of qubits B and C. Tangle is nonzero

only for the genuinely entangled state. However, there exists genuinely entangled states for

which tangle is zero, in particular for W-class of states [17]. A possible generalization of

tangle to the other multiparty scenarios has been defined by the method of hyperdeterminant

[64] and also a possible extension to mixed state by convex roof has been considered by

Lohmayer et. al. in [65].

B. Schmidt measure Schmidt measure was the first measure of multipartite entangle-

ment introduced by Eisert and Briegel [66]. This measure quantifies the minimum number

of product basis required to write a state and can be mathematically expressed as

ES(|ψ〉A1···An) = min
r

log2 r, (1.28)

where r is the number of terms in a particular expansion of the state |ψ〉A1···An in terms of

product basis. As an example, for three qubit GHZ state |ψ〉GHZ = 1√
2
(|000〉 + |111〉),

Schmidt measure gives 1 as minimum of r is 2. This measure is zero only for fully prod-

uct state. Therefore, this measure cannot distinguish between genuine entanglement and

bipartite entanglement.
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C. Measure based on normal forms In the context of classification of multipartite en-

tangled states, Verstraete et. al. [67] in 2003 introduced an interesting class of entanglement

measure based on normal forms. They considered a homogeneous function of state f which

is invariant under SLOCC of determinant 1, i.e.,

f(ΛA1 ⊗ · · · ⊗ ΛAn|ψ〉A1···An) = f(|ψ〉A1···An), (1.29)

where det ΛAi = 1. Then the measure based on the function f is an entanglement mono-

tone.

D. Hyperdeterminant Miyake [64] was first to notice that hyperdeterminants can de-

scribe genuine multipartite entanglement and moreover they satisfy monotonicity [68].

Hyperdeterminant can be considered as the generalization of concurrence and tangle. For

example, concurrence is the modulus of determinant which is hyperdeterminant of first or-

der and tangle is a special case of second order hyperdeterminant. It has been shown that

hyperdeterminant of higher orders are also entanglement monotone [68]. Recently Levay

derived a compact form of hyperdeterminant for four qubit states [69].

E. Geometric measure Geometric measure was introduced by Barnum and Linden in

2001 and can be expressed as [70]

Ek
g (|ψ〉) = 1− Λk(|ψ〉), (1.30)

where Λk(|ψ〉) = sup|φ〉∈Sk |〈φ|ψ〉|
2. Here Sk represents the set of k-separable states.

F. Concurrence type measure In literature there exists many attempts to generalize con-

currence to multipartite states. A significant generalization to the even number of qubits

has been derived by Wong and Christensen [71]. Their concurrence measure is represented

by 〈ψ∗|σ⊗ny |ψ〉, where ‘∗’ denotes the complex conjugate. This approach was generalized

further by Osterloh and Siewert [72] using antilinear operations.

1.1.3 LOCC and SLOCC

In an entanglement theory, we mainly deal with three basic points –
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1. Characterization: Decide which states are entangled.

2. Manipulation : Which kind of operations are allowed.

3. Quantify : Order the states according to their entanglement.

The most successful approach to describe the entanglement properties of bipartite and

multipartite pure states is concerned with the study of equivalence relations under cer-

tain classes of allowed operations, for example local unitaries (LU), local operations and

classical communication (LOCC) [8, 17] or stochastic local operations and classical com-

munication (SLOCC) [17, 57]. The basic idea behind LOCC is that one party performs

some local operation on his/her subsystem and communicates the outcome classically to

other parties. In the next step, other parties perform some local operation depending on

the measurement outcome of previous parties and the process will continue until the task

they want to achieve. Suppose there are two states |ψ〉 and |φ〉 such that we can obtain

|φ〉 from |ψ〉 by LOCC operation. Then we can say that |ψ〉 is as useful as |φ〉 or in other

way we can say that entanglement of |ψ〉 is equal or greater than that of |φ〉. It provides

an operational ordering on the set of entangled states. It is that entanglement cannot in-

crease under LOCC. The study of deterministic state transformations under LOCC was

started by Popescu and Lo [73]. A major approach to this deterministic LOCC convert-

ibility uses the square of the Schmidt coefficients and is due to the work of Nielson [74].

Nielson majorization criteria provides the necessary and sufficient condition for determin-

istic LOCC inter-convertibility between two bipartite pure states. It states that a pure

state |ψ〉AB =
∑

i

√
pi|iAiB〉

(√
p1 > · · · > √pd

)
can be deterministically converted

to |φ〉AB =
∑

i

√
qi|i′Ai′B〉

(√
q1 > · · · >

√
qd
)
, iff for all k ∈ {1, · · · , d}

k∑
i=1

pi 6
k∑
i=i

qi, (1.31)

where pi and qi are square of the Schmidt coefficients. Nielson majorization criteria only

provides some partial ordering on the set of entangled states. The reversible conversion,

i.e., |ψ〉AB ↔ |φ〉AB is possible iff the Schmidt coefficients of both states are equal. More-

over, there exist incomparable states (for d > 2), neither of which can be considered as

more entangled than another. This irreversibility can be overcome if we consider many

15



copies of state (asymptotic limit) instead of a single copy [75]. However, the situation gets

worse in multipartite case as in general there is no Schmidt decomposition of states. More-

over, LOCC operation does not provide us a crystal clear picture about the different types

of entanglement in a multipartite state. Further more, in a single copy restriction, two pure

states can be transformed into each other under LOCC if and only if they are connected

by LU [76]. However, even in a bipartite case two pure states are not typically related

by LU. To overcome this difficulty, the LOCC operation, through which the conversion of

entangled states is considered is slightly loosened. One now considers the conversion of

states through stochastic LOCC (SLOCC), i.e. two entangled states are converted to each

other by means of LOCC but with a non-vanishing probability of success [57]. Since, all

bipartite pure states are SLOCC equivalent, there exists only a single class. But in a multi-

partite state, there exists infinitely many inequivalent SLOCC classes. The entanglement is

not comparable in two different SLOCC inequivalent classes [57, 58].

1.2 Bell inequality

Bell inequality or Bell nonlocality is considered as one of the most profound discovery in

the history of physics. In 1964, Bell discussed the famous EPR paradox in [1] and showed

that the predictions of quantum mechanics are not compatible with the theory of local hid-

den variable [3]. The discovery of Bell opened a new direction in the field of quantum

information science. Ever since the discovery of Bell’s theorem, a zoo of Bell inequalities

have been proposed [77]. In this section, we will provide a very brief overview of some

of them. In a typical Bell test, a source prepares two particles and sends to two distant

observers Alice and Bob. Alice and Bob may randomly perform some measurement on

their system from a set of possible measurements {x} and {y} respectively. After the mea-

surement, they find outcomes {a} and {b} respectively. The occurrence of these outcomes

for a specific measurement setting can be described by a probability distribution p(ab|xy).

If our theory is described by a local hidden variable model, then [3, 77]

p(ab|xy) =

∫
dλq(λ)p(a|x, λ)p(b|y, λ), (1.32)
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where λ represents some hidden variable with the distribution q(λ). Now let’s consider an

experiment, where Alice and Bob are measuring two dichotomic observables, i.e., x, y ∈

{0, 1} and a, b ∈ {0, 1}. Then the correlation 〈axby〉 =
∑

a,b(−1)abp(ab|xy). If our theory

satisfy local hidden variable model described in Eq. (1.32), then we must have

〈a0b0〉+ 〈a0b1〉+ 〈a1b0〉 − 〈a1b1〉 6 2. (1.33)

This is known as CHSH inequality [78] which is another version of the original Bell in-

equality [3]. Now one can verify that the prediction of quantum mechanics for some ex-

periments involving entangled particles is inconsistent with the decomposition given in Eq.

(1.32). As an example, a singlet pair of spin half particles violates this inequality. The

violation of this inequality guarantees the presence of entanglement. It can be shown in a

very simple way. A two-qubit separable state can be written as

ρAB =
∑
λ

pλρ
A
λ ⊗ ρBλ . (1.34)

Now the correlations obtained after performing local measurements on A and B can be

expressed as

p(ab|xy) = Tr
[∑

λ

pλ(ρ
A
λ ⊗ ρBλ )(Πa|x ⊗ Πb|y)

]
=

∑
λ

pλTr[ρAλΠa|x]Tr[ρBλ Πb|y]

=
∑
λ

pλp(a|x, λ)p(b|y, λ), (1.35)

which is exactly same as the local hidden variable model we have described in Eq. (1.32).

Therefore, we can see the fact that the presence of nonlocal correlations in the system im-

plies the presence of entanglement. Since the discovery of Bell’s theorem, many Bell test

experiments have been carried out and they supported the predictions of quantum mechan-

ics over local hidden variable model. The first experiment in this direction was performed

by Freedman and Clauser in 1972 [79]. They showed violation of CH type inequality

(another version of CHSH inequality proposed by Clauser and Horne [80]), using the po-

larisation of photon pairs. After that a series of experiment have been conducted on CHSH

inequality by Aspect et al. [81], Tittel et al. [82], etc. Although these experiments validate
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the fact that quantum mechanics is incompatible with any local hidden variable model, still

there exists a lot of conceptual difficulties (loophole in Bell test) [77] about the implemen-

tation of the Bell type experiment. Very recently some experiments has been carried out

which closes all the loopholes in a Bell test [83–85]. But here we are not going to discuss

about that.

Bell’s inequality can also be described by the space constructed by the vectors of the

measurement outcomes [77, 86]. In a local hidden variable model the set of outcomes

for different measurements are predetermined and form a convex polytope as shown in

Fig. 1.1. In the polytope, the extremal points represents the predetermined measurement

outcome. The convex combination of these points constructs a polytope. The region inside

the polytope corresponds to the validity of local hidden variable model. Every facet of the

polytope corresponds to a boundary that divides the probability space in two halves and can

be represented as an inequality. Most of the facets are the positivity of the probabilities and

are trivial. Some nontrivial facets correspond to the tight Bell inequalities. The language of

polytope gives us a way to draw a line between local hidden variable theory and quantum

correlations. In chapter 2, we will discuss in a greater detail about the construction of

polytope for the CHSH case.

Figure 1.1: A schematic diagram of Bell polytope. The inside region corresponds to local

realistic (LR) model.

After the discovery of Bell’s theorem, there has been many generalization of Bell in-

equality in different directions, like two-qudit, multi-qubit etc. There exist many inequali-

ties for a two-qudit system in the literature. Among them the most well known inequality
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is the Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality [87], which is in some

sense the generalization of the CHSH inequality to two-qudit case. In CGLMP test, two

distant parties may choose from two measurements with d outcomes. CGLMP inequality

can be expressed as

IC =

[d/2]−1∑
α=0

(
1− 2α

d− 1

)[
P (A1 = B1 + α) + P (B1 = A2 + α + 1) +

P (A2 = B2 + α) + P (B2 = A1 + α)−

P (A1 = B1 − α− 1)− P (B1 = A2 − α)−

P (A2 = B2 − α− 1)− P (B2 = A1 − α− 1)
]

6 2, (1.36)

where P (Aa = Bb + α) =
∑d−1

k=0 P (Aa = j, Bb = j + αmod d), represents the joint

probability of measurements Aa and Bb with outcomes that differ by α. Masanes showed

that CGLMP inequality is also a tight Bell inequality [88]. However, it does not show

maximum violation for a maximally entangled state [89]. Recently, Son et al. proposed

a generic Bell inequality and its variant for two-qudit systems which is known as SLK

inequality [90]. Unlike CGLMP inequality, SLK inequality gives maximum violation for a

maximally entangled state [91]. However, this inequality is not tight [91]. We will discuss

SLK inequality in detail in chapter 3.

1.3 Quantum steering

In 1935, Schrödinger [2] introduced the idea of quantum steering in order to describe the

incompleteness of quantum mechanics in the EPR paper [1]. He described it as an ability

of Alice to affect the state of Bob’s by applying suitable local measurements on her system.

Recently, the concept of steering has been properly formulated in terms of some task by

Wiseman et al. [92]. Quantum steering can be observed when one of the party does some

suitable local measurements on a part of entangled system. In this sense steering scenario

can be considered as somehow in between a Bell test [3, 77] and standard entanglement

test [17]. Now we will describe the bipartite steering scenario as introduced by Wiseman

19



et al. [92]. Consider a bipartite state ρAB shared between two distant observers Alice and

Bob. Alice performs a set of measurements (denoted by x ∈ {0, 1, · · · ,m − 1}) on her

local subsystem and obtain an outcome from the set a ∈ {0, 1, · · · , n − 1}. As a result,

Bob’s state will collapse to ρa|x with probability p(a|x) if Alice performs the measurement

x and obtain an outcome a. One can completely characterize this steering scenario by the

set of unnormalized conditional states on Bob’s side {σa|x}, where σa|x = p(a|x)ρa|x, often

called an unnormalized assemblage. According to quantum mechanics, each elements of

the assemblage can be obtained as

σa|x = Tr[(Ma|x ⊗ I)ρAB], (1.37)

where
∑

aMa|x = I for all x and Ma|x > 0 for all a, x. Now the state ρAB is steerable from

Alice to Bob if the assemblage {σa|x} does not have a local hidden state (LHS) model [92].

A LHS model can be described as following – A source (let’s say Alice) sends a state ρλ

corresponding to a classical variable λ to another party, let’s say Bob. Depending on the

classical random variable λ, Alice decides to perform measurement x. Then, the variable

λ instructs Alice’s measurement device to give an output a with probability p(a|x, λ). Fur-

ther, we consider the random classical variable λ which follows a distribution µ(λ). So, the

final assemblage on Bob’s side can be written as [92]

σa|x =
∑
λ

µ(λ)p(a|x, λ)ρλ. (1.38)

Therefore, in the above scenario an assemblage will demonstrate steering if it cannot be

described in terms of a LHS model as given in Eq. (1.38). Wiseman et al. showed that the

steerable states are a strict subset of the entangled states and a superset of Bell nonlocal

states [92]. Hence, the steerability of a state confirms the presence of entanglement in

the system. For a pure two-qubit state these three sets are same [92]. It is important to

note that quantum steering is asymmetric in nature. It means there exists some entangled

state for which the state is steerable from Alice to Bob, but not steerable from Bob to

Alice [93,94]. Since the formulation of quantum steering by Wiseman et al., many steering

criteria have been introduced [95–100]. But most of them are not necessary and sufficient

criteria for steering. Recently, Cavalcanti et al. proposed a steering inequality which is
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necessary and sufficient condition for steering [97]. Alice and Bob both can perform two

dichotomic measurements A1, A2 and B1, B2 on their respective subsystems. Moreover,

the measurements of the steered party (in this case Bob) are mutually unbiased. In this

scenario they proposed a inequality [97]√
〈(A1 + A2)B1〉2 + 〈(A1 + A2)B2〉2 +

√
〈(A1 − A2)B1〉2 + 〈(A1 − A2)B2〉2 6 2.

(1.39)

The violation of this inequality suggest that the state is steerable form Alice to Bob. This

inequality is analogues to the CHSH inequality [78]. Apart from this, there exist several lin-

ear steering inequalities in the literature [100] and some of them have been tested recently

in the experiment.

Conventional bipartite steering have also been extended to the multipartite scenario

[100–102]. Here we will discuss steering scenarios in tripartite case. Consider a tripartite

state ρABC shared among Alice, Bob and Charlie. In this case, we can generalize the

bipartite steering in this two following ways –

• Let’s say Alice on her local subsystem performs some measurements x and obtains

an outcome a. As a result of that the joint system of Bob and Charlie will collapse

to some conditional state. In this scenario the unnormalized assemblage {σBCa|x } pos-

sessed by Bob and Charlie can be written as

σBCa|x = Tr[(Ma|x ⊗ I⊗ I)ρABC ]. (1.40)

In this steering scenario one can analyze {σBCa|x } whether it can be decomposed in

terms of any LHS model.

• Another possible generalization is that Alice and Bob both perform some measure-

ments on their respective subsystems. Then, one can analyze the unnormalized as-

semblage jointly prepare by Alice and Bob for Charlie. In this case the unnormalized

assemblage can be obtain as

σCab|xy = Tr[(Ma|x ⊗Mb|y ⊗ I)ρABC ]. (1.41)

Similarly, one can generalize the steering scenario for more than three parties by consider-

ing all such asymmetric network scenarios.
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1.4 Quantum channel

The most general quantum operation Ω which maps a density matrix ρ to another density

matrix ρ′ can be represented as

ρ′ =
Ω(ρ)

Tr[Ω(ρ)]
, (1.42)

where Tr[Ω(ρ)] 6 1. The action of such trace non-increasing completely positive operation

can also be represented as [103]

Λ(ρ) =
∑
i

KiρK
†
i , (1.43)

where Ki’s are the Kraus operators and satisfies
∑

iK
†
iKi 6 1. If the operation Ω is trace

preserving, i.e.,
∑

iK
†
iKi = 1, then Ω represents a quantum channel. We denote this

representation as the Kraus representation of the channel (KROC).

For the qubit case, the action of a qubit channel Ω can also be completely characterized

by a 3 × 3 real matrix M and a 3-dimensional vector ~τ [62, 104, 105]. An arbitrary qubit

is expressed as ρ = 1
2
(I + ~r · ~σ), where ~r is the 3-dimensional Bloch vector. The action of

qubit channel Ω on ρ is described in following way:

(1, ~r′)T = ΛΩ(1, ~r)T , (1.44)

where ΛΩ represents a real 4 × 4 matrix and T denotes transposition. The most general

form of ΛΩ for complete positivity can be written as

ΛΩ =

1 01×3

~τ M

 . (1.45)

where, ~τ ∈ R is a vector and M is a 3×3 a real matrix. It leads to the affine transformation

of the Bloch vector, i.e., ~r′ = M~r + ~τ . Up to some local unitary equivalence, any qubit

channel can be written as

ΛΩ =


1 0 0 0

τx λx 0 0

τy 0 λy 0

τz 0 0 λz

 , (1.46)
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where λ’s are the (signed) singular values of the matrix M and τ ’s represents the shift of

the coordinates [62, 104]. The above representation of a qubit channel Ω is known as the

affine representation of the channel (AROC).

1.5 Choi-Jamiołlkowski

Choi-Jamiołkowski isomorphism [60–62] permits one to associate a complete positive and

trace preserving (CPTP) map Ω to a density matrix of composite system AB with B being

the auxiliary system of same dimension as A. The prescription is:

ρAB = Ω⊗ IB(|Ψ〉AB〈Ψ|), (1.47)

where |Ψ〉AB is a maximally entangled state. It states that for every quantum state there is

a unique quantum operation. It is also known as the channel-state duality.

1.6 Coherence

Quantum coherence is a fundamental concept in quantum mechanics. It arises due to the

superposition principle [9]. Recently, much attention has been paid to define a proper

measure of quantum coherence [106–109]. As coherence is a basis dependent quantity, we

should first fix a particular basis. Let {|i〉} (i = 1 . . . d) be a basis in a d-dimensional Hilbert

spaceHd. The density matrices which are diagonal in this basis are called incoherent states.

The structure of these density matrices are as follows

δ =
d∑
i=1

δi|i〉〈i|, (1.48)

where
∑d

i=1 δi = 1. For more than one party, the coherence can be studied in a basis

which is the tensor product of local basis states of each subsystem and then a multipartite

incoherent state is defined as the convex combination of those incoherent product states

[110, 111].
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1.6.1 Incoherent operation

Resource theory of coherence tells us what can be achieved from a system by using some

allowed operations which cannot create coherence from an incoherent state. However, the

concept of such allowed operations or incoherent operations are not unique. There exist

many classes of incoherent operations in the literature [10]. Here we will briefly discuss

about some important incoherent operations which have been introduced in the different

resource theoretic perspectives of the quantum coherence.

A. Maximally Incoherent operation (MIO) An incoherent operation Φ is MIO iff Φ[δ] ∈

I, for all incoherent states δ, i.e., MIO preserves the set of incoherent states. This is the

largest set of operations which preserve incoherence [9].

B. Incoherent operation (IO) In Ref. [106], a smaller and relevant class of incoherent

operations was introduced. An incoherent operation or quantum channel Φ with Kraus

decomposition {Ki} is IO iff KiδK
†
i

Tr[KiδK
†
i ]
∈ I for all i and δ ∈ I. Here, the Kraus operators

of IO may be expressed as

Ki =
d−1∑
j=0

cij|fi(j)〉〈j|, (1.49)

where fi : {0, 1, .., d − 1} 7→ {0, 1, .., d − 1} and d is the dimension of the Hilbert space.

Note that coherence cannot be generated, even probabilistically, from incoherent states due

to the action of this quantum channel.

The above two incoherent operations are defined in terms of their inability to create

coherence. One can add further desirable restriction to the set of free operations. One such

constraint is that the operations will be unable to use the coherence of the input state.

C. Strictly Incoherent operation (SIO) A quantum channel Φ is SIO iff its Kraus oper-

ators {Ki} individually commutes with dephasing, i.e., 4(KiδK
†
i ) = Ki4(δ)K†i , where

4 is dephasing operation [114, 117] defined as 4(ρ) =
∑

i〈i|ρ|i〉|i〉〈i|. This condition

makes fi one-to-one, i.e., fi becomes permutation, πi in Eq.(1.49). Thus, SIO admits the

set {Ki} as well as K†i are also incoherent. This indicates that the SIOs are not capable
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of using coherence of initial input states [117]. However, the above mentioned operations

cannot be implemented by introducing an incoherent environment and a global unitary

operation. This observation led one to introduce physically motivated incoherent opera-

tions [107, 118].

D. Physical Incoherent operation (PIO) A PIO is obtained through a class of noncoher-

ence generating operations on a primary (A) and an ancillary system (B) [107,118]. A gen-

eral PIO operation consist of an unitary operation UAB on the state ρA of system A and the

incoherent state ρB of system B, followed by a general incoherent projective measurement

on system B. The PIO admits following Kraus decomposition Ki =
∑

j e
iθj |πi(j)〉〈j|Pi

and their convex combinations. The πi are permutations and {Pi} is an complete set of

orthogonal incoherent projectors [107]. Orthogonal incoherent projectors are those which

does not introduce any coherence in the system after measurement. The PIOs are imple-

mentable using the aforementioned method and additionally it allows incoherent measure-

ments in environment and classical post-selection on the outcomes.

It is evident now that the MIO is the largest set of incoherent operations, and others

are strict subset of it. The nontrivial relationship can be depicted in the following way

[107, 109, 118, 119]

PIO ⊂ SIO ⊂ IO ⊂MIO. (1.50)

A special subset of PIO is considered and discussed in [120]. These are very important in

the sense that they preserve coherence of the input states.

E. Coherence preserving operation (CPO) A quantum channel Φ is CPO [120] iff it

keeps the coherence of a state invariant, i.e., C(Φ[ρ]) = C(ρ), where C is an arbitrary

coherence measure. The Kraus operator of CPO is expressed as K =
∑

i e
iθi |π(i)〉〈i|.

F. Genuinely Incoherent operation (GIO) A quantum channel Φ is GIO [109] iff Φ[δ] =

δ, i.e., all incoherent states are fixed points for the channel. Therefore, GIO does not allow

transformation between any incoherent states. All Kraus operators for this operation are
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diagonal in the incoherent basis.

G. Fully Incoherent operation (FIO) A quantum operation is fully incoherent if and

only if all Kraus operators are incoherent and have the same form [109]. Kraus operators

are incoherent means, KiδK
†
i is an incoherent state as well for all i. This means that only

pure incoherent states are free in this resource theory.

1.6.2 Quantification of coherence

The very first approach to quantify coherence came in 2006 by Åberg [9]. Very recently

considering coherence as a resource Baumgratz et. al. have provided a rigorous frame-

work to quantify coherence [106]. Any proper quantifier of the coherence must satisfy the

following conditions [9, 106, 112]

(A1) C(δ) = 0, where δ ∈ I and I is the set of incoherent states. Hence, for any quantum

state C(ρ) > 0.

(A2) It should not increase under any incoherent operation, i.e., C(ρ) > C(Φ[ρ]), where

Φ[ρ] is any incoherent operation.

(A3) C(ρ) is nonincreasing under selective measurements on average,C(ρ) >
∑

i qiC(ρi),

where qi = Tr(KiρK
†
i ) and ρi = KiρK

†
i /qi for all i with

∑
iK
†
iKi = I and

KiIK†i ∈ I. Ki’s are the Kraus operators.

(A4) C(ρ) does not increase under mixing of quantum states,
∑

i piC(ρi) > C(
∑

i piρi),

with ρ =
∑

i piρi.

Now we will introduce some relevant coherence quantifier which has been introduced in

the literature very recently.

A. Distillable coherence Distillable coherence borrows the same idea as used to quantify

distillable entanglement. It quantifies the number of maximally coherent state |Ψ〉 can be

obtained from a copy of a given state ρ via incoherent operations. In the asymptotic limit
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it can be expressed as [113, 114]

Cd(ρ) = sup{r : lim
n→∞

(inf
Λ
‖Λ(ρ⊗n)− |Ψ〉〈Ψ|⊗m‖1) = 0}, (1.51)

where Λ corresponds to incoherent operation, r = m
n

is the rate of getting m copies of

maximally coherent state from n copies of a given state ρ via incoherent operation and

supremum is taken over all such possible r.

B. Coherence cost Coherence cost quantifies the number of maximally coherent state |Ψ〉

are required to prepare a copy of a state and can be expressed mathematically as [113,114]

Cc(ρ) = inf{r : lim
n→∞

(inf
Λ
‖ρ⊗n − Λ(|Ψ〉〈Ψ|⊗m)‖1) = 0}, (1.52)

where infimum is taken over all possible r and Λ represents the incoherent operation.

C. Distance based quantifier A distance based quantifier can be defined as the minimum

distance between the given state ρ and the set of incoherent states σ. It can be expressed

as [106]

CD(ρ) = min
σ∈I
D(ρ, σ), (1.53)

where D is the distance. In the following we will introduce some quantifier based on

distance.

1. l1-norm of coherence: For l1-norm of coherence the distance is measured using the

concept of matrix norm (in a vector space of matrices, vector norm corresponds to

matrix norm). l1-norm of coherence can be defined as [106]

Cl1(ρ) = min
σ∈I
‖ρ− σ‖l1 =

∑
i 6=j

|ρi,j|, (1.54)

where ρi,j = 〈i|ρ|j〉.

2. Relative entropy of coherence: In this case the distance is defined by the relative

entropy between two states. It can be expressed as [106]

Cr(ρ) = min
σ∈I

S(ρ|σ) = min
σ∈I

Trρ(log2 ρ− log2 σ). (1.55)
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Moreover, the relative entropy of coherence is equal to the distillable coherence

[106, 114, 115]. Therefore, both of them can be expressed as a very simple com-

pact expression

Cr(ρ) = Cd(ρ) = S(ρD)− S(ρ), (1.56)

where ρD is the matrix constructed from ρ by removing all the off-diagonal elements

3. Geometric coherence: Geometric coherence is defined as [111]

Cg(ρ) = 1−max
σ∈I

F (ρ, σ) = min
σ∈I

[1− F (ρ, σ)], (1.57)

where F (ρ, σ) = [Tr(
√√

ρσ
√
ρ)]2, is the fidelity [42, 43] between the states ρ and

σ.

D. Coherence of formation Coherence of formation is a convex roof measure, i.e., given

a coherence quantifier for all pure states one can extend it for mixed states by means of

convex roof extension. Coherence of formation comes from the convex roof extension of

distillable coherence for pure states. It can be expressed as [113, 114]

Cf (ρ) = inf
{pi,|ψi〉}

piS
(
∆(|ψi〉〈ψi|)

)
(1.58)

where ∆ is the dephasing operator which removes all the off-diagonal elements in a den-

sity matrix and infimum is taken over all the pure state ensembles {pi, |ψi〉} of ρ =∑
i pi|ψi〉〈ψi|.

E. Coherence concurrence Coherence concurrence is another convex roof extension of

l1-norm of coherence. It can be expressed as [116]

Cco(ρ) = inf
{pi,|ψi〉}

piCl1(|ψi〉〈ψi|), (1.59)

where infimum is taken over all the pure state decompositions of ρ =
∑

i pi|ψi〉〈ψi|.

1.7 Outline of the thesis

In this thesis, we have mainly discussed the characterization of two main resources in

quantum information theory – entanglement and coherence. In this section, we give a very

brief overview of our findings.

28



In the second chapter, we consider the characterization of the non-local properties of

two-qubit states. Firstly, we discuss Bell-CHSH violation and its dependence on entan-

glement for pure states. For pure two-qubit states Bell-CHSH violation only depends on

entanglement. However, for a mixed two-qubit states the situation is rather complex, as

a mixed two-qubit state can be characterized by many parameters. Taking a two-qubit X-

state, we show that non-local properties not only depends on purity and concurrence, but

also depends on other functions of state parameters.

In the third chapter, we give an experimental scheme to measure entanglement (as char-

acterized by negativity) for a two-qudit system. For this purpose, we use SLK-Bell inequal-

ity. For a particular measurement setting, we obtain a relation between Bell-SLK function

and negativity for two-qudit pure states. It provides an operational way to detect and mea-

sure entanglement. Furthermore, we discuss our scheme for some classes of mixed states.

We also discuss experimental feasibility of our scheme.

In the fourth chapter, we provide a way to completely characterize six SLOCC classes

of three-qubit pure states. We construct a few observables to separate these classes from

one another. We will show that the measurement of only one observable is enough to

separate the GHZ class from rest of the classes. Taking a few classes of mixed states, we

also discuss the usefulness of these observables. Furthermore, we discuss a teleportation

protocol and show that these observables can be related to the teleportation fidelity.

In the fifth chapter, we discuss a possible connection between coherence and steering

for three-qubit states. In this chapter, we discuss a steering scenario where the state of

one party, Alice, can be steered only by the joint effort of the two other parties, Bob and

Charlie. Moreover, we construct some coherence steerability criteria to detect these kind

of states.

In the final chapter, we have characterized the coherence of quantum channels using

C-J isomorphism. For a fixed purity, we find out the allowed range of coherence and

depict them in coherence-purity diagrams. We characterize coherence of unital, non-unital,

incoherent and other well-known qubit channels. Coherence-purity diagrams may be useful

to distinguish different qubit channels, like unital and non-unital. Furthermore, we discuss

a complementarity relation between Holevo quantity and coherence of channels. Finally,
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we summarize.
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Chapter 2

Two-qubit entanglement and optimal

Bell-CHSH value

In 1964, Bell formulated the idea of EPR paper in terms of local hidden variable model and

proved that quantum mechanics cannot be described by any local hidden variable model

[3]. Bell established this by means of an inequality, famously known as Bell inequality,

which shows violation for a singlet state of two qubits [3, 78]. Later, it was shown that

some other states also violate this inequality and thus forbid a local-realistic description

for them. All these led to a very natural question – whether this contradiction between

quantum theory and local realism is typical or it is restricted to some very special cases.

The answer to this question came in 1991 when Gisin [121] showed that any pure entangled

state of a bipartite system violates a version of Bell’s inequality, popularly known as the

Clauser-Horne-Shimony-Holt (CHSH) inequality [78]. From here we can highlight that

entanglement is the main essence of nonlocality in quantum mechanics and Bell inequality

serves as an operational way to detect it. However, the situation is far from simple for a

mixed two-qubit state. Since there exist entangled states which do not violate Bell-CHSH

inequality [77]. Hence, Bell inequality is a sufficient condition for entanglement detection,

but not a necessary one.
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2.1 Bell-CHSH Inequality

In a typical Bell experiment, a source prepares an entangled state of two particles and

send them to two spatially separated distant observers Alice and Bob. Alice and Bob both

can measure two dichotomic observables X ∈ {1, 2} and Y ∈ {1, 2} with outcomes

A ∈ {0, 1} and B ∈ {0, 1} respectively. The values assigned to X , Y , A and B are

required to distinguish different possibilities and are purely conventional. For many runs

of this experiment we will get a probability distribution P (AB|XY ) and from that we

can calculate the expectation value 〈AXBY 〉 =
∑

A,B(−1)ABP (AB|XY ), for a given

measurement choice of X and Y . Now if this probability distribution satisfies a local

hidden variable model then one can show that

IB = |〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉| 6 2, (2.1)

which is known as Bell-CHSH inequality [78].

2.1.1 Bell-CHSH Polytope

Mathematically, a polytope consist of some facets and some vertices. In fact the facets of

a certain polytope corresponds to Bell inequalities [86]. A polytope can be represented

uniquely by providing either the vertices or facets. In usual Bell-CHSH scenario, we have

two parties, two measurements and two outcomes, illustrated as (2, 2, 2) scenario. In a Bell

experiment, we measure the joint outcome probabilities P (AB|XY ). The whole scenario

can be characterized by sixteen joint probabilities. These probabilities satisfy normalization

condition ∑
A,B=0,1

P (AB|XY ) = 1 for all X, Y = 1, 2, (2.2)

and no-signalling condition

P (A|X) ≡
∑
B=0,1

P (AB|XY ) = 1 for all A = 0, 1 andX, Y = 1, 2,

P (B|Y ) ≡
∑
A=0,1

P (AB|XY ) = 1 for all B = 0, 1 andX, Y = 1, 2. (2.3)

There are four normalization constraints and twelve no-signaling constraints. However,

these constraints are not all independent. Using normalization constraints we can reduce
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the no-signaling conditions by four. Therefore, there will be a total of eight independent

constraints. These eight constraints will reduce the joint probabilities space to eight from

sixteen. This probability space can be represented as

P = [P (A1), P (A2), P (B1), P (B2), P (A1B1), P (A1B2), P (A2B1), P (A2B2)], (2.4)

where P (AX) = P (0|X), P (BY ) = P (0|Y ) and P (AXBY ) = P (00|XY ). As A1, A2, B1

and B2 can take two different values 0 and 1, there will be sixteen different points in the

above said probability space. By connecting these points we can construct a local polytope,

known as Bell-CHSH polytope [86]. The Bell-CHSH polytope is eight dimensional and

described by sixteen vertices. Description of polytope in terms of vertices known as V-

representation. One can find the facets of this polytope from V-representation by using a

standard algorithm [122]. There will be twenty four facets as follows,

P (AiBj) > 0, i = 1, 2 and j = 1, 2, (2.5)

−P (Ai) + P (AiBj) 6 0, i = 1, 2 and j = 1, 2, (2.6)

−P (Bj) + P (AiBj) 6 0, i = 1, 2 and j = 1, 2, (2.7)

P (Ai) + P (Bj)− P (AiBj) 6 1, i = 1, 2 and j = 1, 2, (2.8)

P (A1) + P (B2)− P (A1B1)− P (A1B2) + P (A2B1)− P (A2B2) 6 1, (2.9)

P (A1) + P (B1)− P (A1B1)− P (A1B2)− P (A2B1) + P (A2B2) 6 1, (2.10)

P (A2) + P (B2) + P (A1B1)− P (A1B2)− P (A2B1)− P (A2B2) 6 1, (2.11)

P (A2) + P (B1)− P (A1B1) + P (A1B2)− P (A2B1)− P (A2B2) 6 1, (2.12)

−P (A1)− P (B2) + P (A1B1) + P (A1B2)− P (A2B1) + P (A2B2) 6 0, (2.13)

−P (A1)− P (B1) + P (A1B1) + P (A1B2) + P (A2B1)− P (A2B2) 6 0, (2.14)

−P (A2)− P (B2)− P (A1B1) + P (A1B2) + P (A2B1) + P (A2B2) 6 0, (2.15)

−P (A2)− P (B1) + P (A1B1)− P (A1B2) + P (A2B1) + P (A2B2) 6 0. (2.16)

First sixteen inequalities are trivial, as they are the positivity condition of probabilities.

The last eight inequalities are the famous CH inequalities [80] and are equivalent to Bell-

CHSH inequalities [78]. Furthermore, these eight inequalities can be combined to a single

inequality. If we interchange indices B1 ↔ B2 then we can get Eq. (2.9) and Eq. (2.13)
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from Eq. (2.10) and Eq. (2.14) respectively. Similarly we can get others from Eq. (2.10)

and Eq. (2.14). Therefore, we can write these eight inequalities as a single inequality

1 > P (A1) + P (B1)− P (A1B1)− P (A1B2)− P (A2B1) + P (A2B2) > 0. (2.17)

In the next subsection we will show the equivalency between Bell-CHSH inequality and

CH inequality.

2.1.2 Equivalency of Bell-CHSH and CH

Let’s consider the Bell-CHSH inequality [78]

− 2 6 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 6 2. (2.18)

The expectation value of A1B1 is

〈A1B1〉 = P (00|A1B1)− P (01|A1B1)− P (10|A1B1) + P (11|A1B1). (2.19)

We can write P (01|A1B1) as

P (01|A1B1) = P (00|A1B1) + P (01|A1B1)− P (00|A1B1)

= P (0|A1)− P (00|A1B1). (2.20)

Similarly

P (10|A1B1) = P (0|B1)− P (00|A1B1). (2.21)

P (11|A1B1) = 1−
(
P (00|A1B1) + P (01|A1B1) + P (10|A1B1)

)
= 1− P (00|A1B1)− P (0|A1) + P (00|A1B1)− P (0|B1)

+P (00|A1B1)

= 1− P (0|A1)− P (0|B1) + P (00|A1B1). (2.22)

Using (2.20), (2.21) and (2.22) in (2.19) we get,

〈A1B1〉 = 4P (00|A1B1)− 2P (0|A1)− 2P (0|B1) + 1. (2.23)
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Similarly we can find

〈A1B2〉 = 4P (00|A1B2)− 2P (0|A1)− 2P (0|B2) + 1, (2.24)

〈A2B1〉 = 4P (00|A2B1)− 2P (0|A2)− 2P (0|B1) + 1 and (2.25)

〈A2B2〉 = 4P (00|A2B2)− 2P (0|A2)− 2P (0|B2) + 1. (2.26)

Bell-CHSH inequality given in Eq. (2.18) can be written as

−2 6 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 6 2

−2 6 4
[
P (00|A1B1) + P (00|A1B2) + P (00|A2B1)− P (00|A2B2)

]
−4P (0|A1)− 4P (0|B1) + 2 6 2

−4 6 4
[
P (00|A1B1) + P (00|A1B2) + P (00|A2B1)− P (00|A2B2)

]
−4P (0|A1)− 4P (0|B1) 6 0

1 > P (0|A1) + P (0|B1)− P (00|A1B1)− P (00|A1B2)

−P (00|A2B1) + P (00|A2B2) > 0. (2.27)

Equation (2.27) is same as given in (2.17). Hence, we proved the equivalency of Bell-

CHSH inequality and CH inequality.

2.1.3 Tsirelson Bound

Bell-CHSH inequality implies that a value of IB more than two corresponds to violation

of local-realism. Now one may ask: is there any upper limit to the correlations between

distant events imposed by quantum mechanics? Tsirelson showed that indeed there is an

upper limit of 2
√

2 imposed by quantum mechanics [123]. We can see this as follows.

Squaring the Bell-CHSH operator in (2.1) we get

I2
B = 4 + [A1, A2][B1, B2]. (2.28)

For any bounded operator the following relation will hold

||[A,B]|| 6 ||AB||+ ||BA|| 6 2||A||||B||, (2.29)
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where || · || represents the trace norm. As ||A|| 6 1 and ||B|| 6 1, we find

|IB| 6 2
√

2. (2.30)

Quantum mechanics does not allow any larger violation than this. However, Popesu and

Rohrlich formulated a correlation, known as PR box which can give |IB| = 4 [124]. It

demonstrates that we can construct a theory which respect no-signalling principle but vio-

lates quantum mechanics. But till now we have not seen this kind of correlation in nature.

2.2 Measurement settings and Bell-CHSH operator value

In this section, we will discuss the importance of measurement settings for the violation of

Bell-CHSH inequality. As we will see at the end of the section, if we do not choose wisely

the measurement settings then even a maximally entangled state leads to no violation. In the

following subsections, we will consider a few measurement settings and the corresponding

Bell-CHSH value.

2.2.1 Setting 1

The Bell-CHSH function is

IB = A1B1 + A1B2 + A2B1 − A2B2. (2.31)

Let’s consider the measurement settings A1 = σx, A2 = σy, B1 = 1√
2
(σx + σy) and B2 =

1√
2
(σx − σy). We will calculate the Bell-CHSH operator for a non maximally entangled

state

|ψ〉 = c0|00〉+ c1|11〉, (2.32)

where ci’s are the Schmidt coefficients and
∑

i c
2
i = 1. Bell-CHSH value for this state is

〈ψ|IB|ψ〉 = 〈IB〉|ψ〉 = 2
√

2C, (2.33)

where C = 2c0c1 is the concurrence [47, 48] of the state. One can always get this result

if the measurement settings are chosen perpendicular to the basis of the state. To verify
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this we take a state in arbitrary direction as |ψn〉 = c0|n̂+n̂+〉 + c1|n̂−n̂−〉, where n̂ =

sin θ cosφî+ sin θ sinφĵ + cos θk̂. |n̂+〉 and |n̂−〉 are defined as follows

|n̂+〉 =

 cos θ
2

eiφ sin θ
2

 and |n̂−〉 =

e−iφ sin θ
2

− cos θ
2

 . (2.34)

As the measurement plane must be perpendicular to the state we choose two other unit

vectors m̂1 = cos θ cosφî+ cos θ sinφĵ − sin θk̂ and m̂2 = − sinφî+ cosφĵ, such that n̂,

m̂1 and m̂2 are perpendicular to each other. We consider the measurement settings as

A1 = m̂1 · ~σ, A2 = m̂2 · ~σ, (2.35)

B1 =
1√
2

(m̂1 · ~σ + m̂2 · ~σ) and (2.36)

B2 =
1√
2

(m̂1 · ~σ − m̂2 · ~σ). (2.37)

The effect of the operators n̂ · ~σ, m̂1 · ~σ and m̂2 · ~σ on the basis state |n̂+〉 and |n̂−〉 can be

described as

n̂ · ~σ|n̂+〉 = |n̂+〉, n̂ · ~σ|n̂−〉 = |n̂−〉, (2.38)

m̂1 · ~σ|n̂+〉 = |n̂−〉, m̂1 · ~σ|n̂−〉 = |n̂+〉, (2.39)

m̂2 · ~σ|n̂+〉 = i|n̂−〉, m̂2 · ~σ|n̂−〉 = −i|n̂+〉. (2.40)

Using (2.38-2.40) we obtain the expectation value of the Bell-CHSH operator for the state

|ψn〉 as

〈IB〉|ψn〉 = 4
√

2c0c1 = 2
√

2C. (2.41)

Therefore, for two-qubit pure states, we will always obtained maximum violation for max-

imally entangled state if the measurement settings are perpendicular to the state vector. But

this result is not optimal. As we can see the state which have C < 1√
2

will not show any

violation. Although this kind of measurement setting does not give optimal violation of

CHSH inequality, but is useful to measure entanglement of the state.

2.2.2 Setting 2

Now consider another measurement settings as follows

A1 = σz, A2 = σx, B1 =
1√
2

(σz + σx) and B2 =
1√
2

(σz − σx). (2.42)
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For these measurement setting the expectation value of the Bell-CHSH operator for the

state |ψ〉 given in Eq. (2.32) is

〈IB〉|ψ〉 =
√

2(1 + C). (2.43)

Similarly as in the previous case we can find this relation for an arbitrary state |ψn〉 =

c0|n̂+n̂+〉+ c1|n̂−n̂−〉. Here we have to use the measurement settings in the following way

A1 = n̂ · ~σ, A2 = m̂ · ~σ, (2.44)

B1 =
1√
2

(n̂ · ~σ + m̂ · ~σ) and (2.45)

B2 =
1√
2

(n̂ · ~σ − m̂ · ~σ), (2.46)

where n̂ and m̂ are perpendicular to each other. Again doing similar kind of calculation

one can check that the expectation value of Bell-CHSH operator for these measurement

settings with |ψn〉 is

〈IB〉|ψn〉 =
√

2(1 + C). (2.47)

In this case also maximally entangled state gives maximum violation. However, this is not

an optimal settings for any non maximally entangle state. Since we will not find violation

until C >
√

2− 1. Here also one can easily find the entanglement of state experimentally.

2.2.3 Setting 3

Let’s consider another measurement settings

A1 = σz, A2 = σx, B1 = cosχσz + sinχσx and B2 = cosχσz − sinχσx, (2.48)

where cosχ = 1√
1+C2 . The expectation value of the Bell-CHSH operator for these settings

is

〈IB〉|ψ〉 = 2
√

1 + C2. (2.49)

We can easily generalize this as done in the previous cases. In this case we have to consider

the measurement settings as follows [125]

A1 = n̂ · ~σ, A2 = m̂ · ~σ, (2.50)

B1 = cosχn̂ · ~σ + sinχm̂ · ~σ and (2.51)

B2 = cosχn̂ · ~σ − sinχm̂ · ~σ, (2.52)
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where n̂ and m̂ are perpendicular to each other. After doing a similar kind of calculation

we find

〈IB〉|ψn〉 = 2
√

1 + C2. (2.53)

From Eq. (2.53) it is clear that we will get violation as soon as C 6= 0. C = 0 means the

state is not entangled. For this measurement settings any entangled two-qubit pure state will

show violation. These settings are useful to get optimal violation for any non maximally

entangled pure state. But these are not experimentally realizable, as you need to know the

χ which depends on the state parameter. From an experimental point of view these settings

are not useful to measure the entanglement of an unknown state.

2.2.4 Most General Setting

So far we have seen that the measurement setting are in the plane or perpendicular plane

of the state vector. Here we will consider a most general measurement setting as follows

A1 = σx sin θ1 cosφ1+σy sin θ1 sinφ1+σz cos θ1,A2 = σx sin θ2 cosφ2+σy sin θ2 sinφ2+

σz cos θ2 and B1 = σx sin θ3 cosφ3 + σy sin θ3 sinφ3 + σz cos θ3, B2 = σx sin θ4 cosφ4 +

σy sin θ4 sinφ4 + σz cos θ4. For this measurement setting the expectation value of the Bell-

CHSH operator for the state |ψ〉 = c0|00〉+ c1|11〉 is

〈IB〉|ψ〉 = cos θ1(cos θ2 + cos θ4) + cos θ3(cos θ2 − cos θ4) +

C
[

sin θ1

(
sin θ2 cos(φ1 + φ2) + sin θ4 cos(φ1 + φ4)

)
+ sin θ3

(
sin θ2 cos(φ2 + φ3)− sin θ4 cos(φ3 + φ4)

)]
. (2.54)

We rewrite Eq. (2.54) as 〈IB〉|ψ〉 = K + CG, where

K = cos θ1(cos θ2 + cos θ4) + cos θ3(cos θ2 − cos θ4) and (2.55)

G = sin θ1

(
sin θ2 cos(φ1 + φ2) + sin θ4 cos(φ1 + φ4)

)
+ sin θ3

(
sin θ2 cos(φ2 + φ3)− sin θ4 cos(φ3 + φ4)

)
. (2.56)

One can check thatK is always less than or equal to 2. We will see violation only if the term

G contribute. Hence, it means that a product state will not show any violation. Interestingly

we can always measure entanglement from these kind of measurement settings. We see
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that for a pure state the Bell-CHSH operator value only depend on the entanglement of

the state. However, since the value of Bell-CHSH operator depends on the measurement

settings, we would be able to find settings for which even a less entangled state would

show a greater violation than a maximal entangled state. Lets take a entangled state of

concurrence C = 0.5. For this state we get 〈IB〉|ψ〉 ≈ 2.234 for the measurement settings

θ1 = π
18

, θ2 = π
18

, θ3 = 5π
18

, θ4 = 5π
18

, φ1 = 0, φ2 = π, φ3 = π and φ4 = 0. We

can find a measurement settings for which a maximally entangled state i.e., C = 1 will

give less violation. As an example for the measurement settings θ1 = 4π
9

, θ2 = 17π
18

,

θ3 = 16π
18

, θ4 = π
18

, φ1 = 0, φ2 = 0, φ3 = π
18

and φ4 = 13π
9

we get 〈IB〉|ψ〉 ≈ 2.05,

which is very less than the previous example. It is interesting to note that we can even find

measurement settings for which a maximally entangled state will not show any violation.

We are providing two examples here. i) We will get I = 0.5 for the measurement settings

θ1 = 5π
6

, θ2 = 4π
9

, θ3 = 4π
9

, θ4 = 17π
18

, φ1 = 0, φ2 = π
9
, φ3 = π and φ4 = 14π

9
. ii) I = 1.1 for

the measurement settings θ1 = 8π
9

, θ2 = 7π
9

, θ3 = 13π
18

, θ4 = 8π
9

, φ1 = 0, φ2 = 0, φ3 = 8π
9

and φ4 = 13π
9

. We can find many measurement settings for which maximally entangled

state will not show any violation. Hence, to show Bell-CHSH violation entanglement as

well as measurement settings are both very important.

2.3 Optimal Bell-CHSH violation

In the previous subsection we have discussed the importance of measurement settings for

the Bell-CHSH operator value. However, given a state what is the maximum value of the

Bell-CHSH operator and which measurement settings will provide that optimal value is an

important question. Horodecki et. al. [126] in 1995 provided the answer to this question. In

this section we will give a derivation of their proof for the maximum Bell-CHSH operator

value for a two-qubit state ρ and the corresponding measurement settings. A two-qubit

state ρ can be represented in Hilbert-Schmidt basis as

ρ =
1

4

(
I ⊗ I + r · σ ⊗ I + I ⊗ s · σ +

3∑
n,m=1

tnmσn ⊗ σm
)
, (2.57)
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where I stands for identity operator, σn are the Pauli matrices, r and s are vectors in three

dimension. tnm = Tr(ρσn ⊗ σm) form a real matrix which is denoted by Tρ. Using Tr(ρ2),

one can get
3∑
i=1

(
r2
i + s2

i

)
+

3∑
n,m=1

t2nm ≤ 3, (2.58)

where the equality is achieved for pure states. The operator associated with the Bell-CHSH

inequality can be written as

IB = a · σ ⊗ (b + b′) · σ + a′ · σ ⊗ (b− b′) · σ, (2.59)

where a, a′,b,b′ are unit vectors in R3. As Tr(σi) = 0, we get

〈I〉ρ = Tr(ρS) (2.60)

=
1

4
Tr
[(∑

n,m

tnmσn ⊗ σm
)(

a · σ ⊗ (b + b′) · σ + a′ · σ ⊗ (b− b′) · σ
)]
.

After doing a few step of calculation and using Tr(σ2
i ) = 2, we find

〈I〉ρ =
3∑

n,m=1

tnman(b+ b′)m +
3∑

n,m=1

tnman
′(b− b′)m

=
(

a, Tρ(b + b′)
)

+
(

a′, Tρ(b− b′)
)
. (2.61)

We introduce a pair of mutual orthogonal vector such as

b + b′ = 2 cosχc; b− b′ = 2 sinχc′, (2.62)

where χ ∈ [0, π
2
] and c, c′ are the unit vectors. Hence, max〈I〉ρ will take the form

max〈I〉ρ = max 2
[
(a, Tρc) cosχ+ (a′, Tρc′) sinχ

]
. (2.63)

The maximal value of (a, Tρc) is ‖ Tρc ‖ obtained when a is chosen parallel to Tρc. Simi-

larly for the second term. By choosing a and a′ in this way, we get

max〈I〉ρ = max 2
(

cosχ ‖ Tρc ‖ + sinχ ‖ Tρc′ ‖
)
. (2.64)

As, max(cosχx + sinχy) =
√
x2 + y2 when we choose cosχ =

x√
x2 + y2

and sinχ =

y√
x2 + y2

, we obtain

max〈I〉ρ = max 2

√
‖ Tρc ‖2 + ‖ Tρc′ ‖2, (2.65)

41



where, ‖ Tρc ‖2 =
(
c, TρtTρc

)
and TρtTρ is a positive orthogonal matrix. Here t represents

transposition. We can maximize Eq. (2.65) by choosing c and c′ as the two eigenvectors

corresponding to two largest eigenvalues of the matrix TρtTρ. Therefore, the maximum

value of Bell-CHSH operator with von-Neumann measurements on a generic two-qubit

state ρ is

max〈I〉ρ = 2
√
λ1 + λ2, (2.66)

where λ1 and λ2 are the two largest eigenvalues of the orthogonal matrix TρtTρ [126].

2.4 Mixed state

So far we have seen that the optimal Bell-CHSH value (expectation value of Bell-CHSH

operator) for pure state just depend on a single parameter concurrence which is a measure

of entanglement. But for mixed state the situation is not that simple. There are many

parameters which characterize a mixed state. It is a general consensus that the nonlocal

feature of a mixed state can be characterized by purity and entanglement. But here in this

section we will show that not only these two are required but also it depends on other

functions of state parameters as well. Recently Mendonça et. al. have shown that a two-

qubit X-state can cover all purity and concurrence region in a concurrence-purity diagram

of two-qubit state [127]. So rather than taking a most general mix state we choose X-state

to characterize its optimal Bell-CHSH value with purity, concurrence and other functions

of state parameters of X-state. Recently in [128], author have studied teleportation fidelity

with respect to purity, concurrence and other functions of state parameters of two-qubit

X-state.
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X-state

Rank 1 (x = H, y = 0,A = 0) or (x = 0, y = G,B = 0)

Rank 2 (x < H, y = 0,A = 0) or (x = 0, y < G,B = 0) or

(x = H, y = G,AB > 0)

Rank 3 (x < H, y = G,A > 0) or (x = H, y < G,B > 0)

Rank 4 (x < H, y < G,AB > 0)

Table 2.1: Parameterization of two-qubit X-state for different rank

2.4.1 Two-qubit X-state

In [127], Mendonça et. al. proposed a parametric from of two-qubit X-state which can be

represented as

ρAB =


cos2 θ 0 0

√
xeiµ

0 sin2 θ cos2 φ
√
yeiν 0

0
√
ye−iν sin2 θ sin2 φ cos2 ψ 0

√
xe−iµ 0 0 sin2 θ sin2 φ sin2 ψ

 . (2.67)

Here x, y ≥ 0, µ, ν ∈ [0, 2π] and θ, φ, ψ ∈ [0, π
2
]. However, we need two further conditions

to make it a valid density matrix. Eq. (2.67) will be a valid density matrix if x ∈ [0,H] and

y ∈ [0,G], whereH = sin2 θ cos2 θ sin2 φ sin2 ψ and G = sin4 θ cos2 φ sin2 φ cos2 ψ. These

two condition will make sure that the matrix in Eq. (2.67) is positive semidefinite. The

rank of X-state depends on the restriction on these parameters as specified in [127]. Table

(1.1) gives the parameter specification for different rank of two-qubit X-state.

Here the definition of A and B are as follows A = sin2 θ(1 − sin2 φ sin2 ψ) and B =

1−A. The purity and concurrence of a two-qubit X-state given in Eq. (2.67) are [127]

P = 1− 2
(
AB + G − y +H− x

)
and (2.68)

C = 2 max
[√
x−
√
G,√y −

√
H
]
. (2.69)

Now one can find out the optimal Bell-CHSH value by finding the eigenvalues of the or-

thogonal matrix (TρAB)tTρAB . For our future convenience we will represent this orthogonal
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matrix by T . The eigenvalues of T are 4(
√
x−√y)2, 4(

√
x+
√
y)2 and (cos2 θ−e sin2 θ)2,

where e = cos2 φ+cos 2ψ sin2 φ. The largest between first and third eigenvalue will decide

the optimal Bell-CHSH value of the X-state. The details characterization of optimal Bell-

CHSH value for two-qubit X-state of different ranks are as follows. Note that rank-one

state corresponds to pure state. As we have already discussed about pure state scenario in

a greater detail, we will start with rank-two X-state.

2.4.1.1 Rank-two X-state

First kind Rank-two X-state of first kind can be parameterized by (x < H, y = 0,A =

0). A = 0 corresponds to two solution as follows, θ = 0 or φ = ψ = π
2
. But the first one

is not possible due to the following fact. For θ = 0, H = 0 and hence x < H = 0. But by

definition x is positive. So this is not a valid solution. Now for the other solution, we have

P = 1 + 2x− 2 sin2 θ + 2 sin4 θ and (2.70)

C = 2
√
x. (2.71)

Eigenvalues of the T matrix are 1, 4x and 4x. As x < H = sin2 θ cos2 θ ≤ 1
4
. So the

optimal Bell-CHSH value is

B = 2
√
M, (2.72)

whereM = 1 + 4x is the sum of the two largest eigenvalues of the matrix T . Using Eq.

(2.71) one can show that B = 2
√

1 + C2. Hence, as soon as the state is entangled, we will

get Bell-CHSH violation. This relation is similar to the optimal Bell-CHSH violation of a

pure state as given in Eq. (2.53).

Second kind (x = 0, y < G,B = 0) represents the rank-two X-state of second kind.

Here B = 0 also provides two solution, θ = π
2
, φ = 0 and θ = π

2
, ψ = 0. But again the

following argument will show that the first solution is not possible. For θ = π
2

and φ = 0

G = 0, which makes y negative. This is not possible as by definition y is positive. Using

the other solution we find

P = 1 + 2y − 2 sin2 φ cos2 φ and (2.73)

C = 2
√
y. (2.74)
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The eigenvalues of the T matrix are 1, 4y and 4y. Again one can easily check that the

maximum value of G is 1
4

and hence, y < 1
4
. Therefore, optimal Bell-CHSH value is

B = 2
√
M, (2.75)

whereM = 1 + 4y. Eq. (2.75) can be written as B = 2
√

1 + C2 and this is similar to the

first kind.

Third kind Rank-two X-state of third kind can be represented as (x = H, y = G,AB >

0). If we choose x > y then

P = 1 + 2r sin2 θ + 2r2 sin4 θ and (2.76)

C = 2
√
x− 2

√
y, (2.77)

where r = −1 + sin2 φ sin2 ψ. Here the eigenvalues of the matrix T are 4(
√
x − √y)2,

4(
√
x +
√
y)2 and (cos2 θ − e sin2 θ)2. For this we will get two choices of optimal Bell

value. For the first choice we choose 4(
√
x−√y)2 > (cos2 θ − e sin2 θ)2. For this choice

M = 4(
√
x−√y)2 + 4(

√
x+
√
y)2. Using Eq. (2.77) we can show that

B = 2
√
M = 2

√
C2 + (C + 4

√
y)2. (2.78)

For the other choice, i.e., 4(
√
x−√y)2 < (cos2 θ − e sin2 θ)2, we have

M = 4(
√
x+
√
y)2 + (cos2 θ − e sin2 θ)2. (2.79)

We get sin2 θ = −1±
√

2P−1
2r

by solving the Eq. (2.76) for sin2 θ. Using this and Eq. (2.77)

in Eq. (2.79) we get

M = (C + 4
√
y)2 +

(
1− (1 + e)

−1±
√

2P − 1

2r

)2

. (2.80)

As 2r = −(1 + e) we obtain

B = 2
√
M = 2

√
(C + 4

√
y)2 + 2P − 1. (2.81)

From this expression it is clear that by keeping C and y fixed one can increase B with purity.

For the other case i.e., by keeping P and y fixed one can increase B with C as well. This
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can be easily verified by looking at the Fig.4.2 and Fig.4.3. In this regard it is different from

the pure state case. There optimal Bell-CHSH value only depend on the entanglement. But

here it depends not only on entanglement but also on other function of state parameters.

Here we will provide one interesting example. Consider a state with y = 0.001, P = 0.7

and C = 0.65. For this state we get maximum optimal Bell-CHSH value B ≈ 2.03014,

with θ ≈ 0.67795, φ ≈ 0.84216 and ψ ≈ 1.36286. Now lets consider another state with

y = 0.001, P = 0.8 and C = 0.6. This will give maximum optimal Bell-CHSH value

B ≈ 2.12395 with θ ≈ 0.53695, φ ≈ 0.89259 and ψ ≈ 1.32081. Hence a less entangled

state with more purity can give more optimal Bell-CHSH value. Similar kind of situation

has been discussed taking teleportation fidelity in [128]. Now, when y > x then we will

get a similar kind of trend only differences are C = 2
√
y − 2

√
x and in the expression of

B, y will be replaced by x.
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Figure 2.1: Variation of optimal Bell-

CHSH value with purity for C = 0.45

and y = 0.001 for rank-two X-state of

third kind.
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Figure 2.2: Variation of optimal Bell-

CHSH value with concurrence for

P = 0.85 and y = 0.001 for rank-two

X-state of third kind.

2.4.1.2 Rank-three X-state

First kind Rank-three X-state of first kind can be represented as (x < H, y = G,A > 0).

The purity of this kind of X-state is

P = 1 + 2x− 2 sin2 θ + 2d sin4 θ, (2.82)
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where d = 1 − sin2 φ sin2 ψ + sin4 φ sin4 ψ. Now lets consider x > y. Hence, H > x >

y = G. So the concurrence of this kind of state is

C = 2(
√
x−
√
G) = 2(

√
x− f sin2 θ), (2.83)

where f = cosφ sinφ cosψ. Suppose 4(
√
x − √y)2 > (cos2 θ − e sin2 θ)2 then M =

4(
√
x+
√
y)2 + 4(

√
x−√y)2 and B = 2

√
M = 2

√
C2 + (C + 4

√
y)2. Now for the other

choice, i.e.,4(
√
x−√y)2 < (cos2 θ − e sin2 θ)2, we haveM = 4(

√
x+
√
y)2 + (cos2 θ −

e sin2 θ)2. Now using C = 2(
√
x− f sin2 θ), we get

M = (C + 4f sin2 θ)2 + (1− (1 + e) sin2 θ)2. (2.84)

Replacing x by (C
2

+ f sin2 θ)2 in purity expression given in Eq. (2.82) and solving for

sin2 θ we get

sin2 θ = K1(C,P , d, f) =
(1− Cf)±

√
(1− Cf)2 − (f 2 + d)(C2 + 2− 2P)

2(f 2 + d)
. (2.85)

As minimum value of (1 + e) is zero, so to achieve optimal Bell-CHSH value Eq. (2.84)

suggest to take minus sign in the expression of sin2 θ. Finally we find

B = 2
√
M = 2

√[
C + 4fK1(C,P , d, f)

]2
+
[
1− (1 + e)K1(C,P , d, f)

]2
. (2.86)

From the above expression it is implicit that with fixed value of C, d, e and f , B increases

with P , as K1(C,P , d, f) decreases with P . We will show this behavior graphically for a

fixed value of φ = π
3

and ψ = π
2
. For this φ and ψ, d = 13

16
, e = −1

2
and f = 0. We

plot B with purity for a fixed concurrence; it increases with purity as shown in Fig.2.3.

Furthermore, if we plot B with concurrence for a fixed purity, we observe in Fig.2.4 that

it increases with concurrence also. We see that Eq. (2.86) contains few more functions of

state parameters except P and C. In this regard we will describe an interesting example.

Consider a state with P = 0.85, C = 0.45, φ = π
3

and ψ = π
2

will give B ≈ 2.06449. This

value of φ and ψ corresponds to d = 13
16

, e = −1
2

and f = 0. Now lets choose another

state with P = 0.8, C = 0.4, φ = π
2

and ψ = 11π
25

. For this state we get d ≈ 0.96612,

e ≈ −0.92978, f = 0 and B ≈ 2.13232. From these two state we can conclude that

the state with less entanglement and purity, still gives much better optimal Bell-CHSH
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value. The other state parameters φ and ψ or functions of state parameters d, e and f are

also equally important for the optimal Bell-CHSH value. The ranges of d, e and f are as

follows

3

4
6 d < 1, (2.87)

−1 < e < 1, and (2.88)

0 6 f <
1

2
. (2.89)

Note that d, e and f are functions of state parameter φ and ψ. So they can not be varied

independently. As the optimal Bell-CHSH value depends on these other functions of state

parameters so we plot the variation of B with e and f in Fig.2.5 and Fig.2.6 respectively.

Fig.2.5 and Fig.2.6 suggest that B decreases with e and increases with f respectively. From

here we may say that the increment of e some how increases classicality in the system.
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Figure 2.3: Variation of optimal Bell-

CHSH value with purity for C = 0.45,

d = 13
16

, e = −1
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and f = 0 for rank-

three X-state of first kind.
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Figure 2.4: Variation of optimal Bell-

CHSH value with concurrence for

P = 0.85, d = 13
16

, e = −1
2

and f = 0

for rank-three X-state of first kind.

Now when y > x, the concurrence will be

C = 2(
√
y −
√
H) = 2(

√
y − f ′ sin θ cos θ), (2.90)

where f ′ = sinφ sinψ. If we choose 4(
√
y −
√
x)2 > (cos2 θ − e sin2 θ)2 then using Eq.

(2.90) we get

B = 2
√
M = 2

√
2
[
(C + 2f ′ sin θ cos θ)2 + 4x

]
. (2.91)
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Figure 2.6: Variation of optimal Bell-

CHSH value with f for P = 0.85,

C = 0.45 and e = −2
3

for rank-three

X-state of first kind.

In the other situation i.e., when 4(
√
y −
√
x)2 < (cos2 θ − e sin2 θ)2, we have

M = (C + 2f ′ sin θ cos θ + 2
√
x)2 + (1− (1 + e) sin2 θ)2. (2.92)

Now solving Eq. (2.82) for sin2 θ we get

sin2 θ = K2(P , x, d) =
1±

√
1− 2d(1 + 2x− P)

2d
. (2.93)

Finally we get

B = 2
√
M

= 2
[(
C + 2f ′

√
K2(P , x, d)

√
1−K2(P , x, d) + 2

√
x
)2

+[
1− (1 + e)K2(P , x, d)

]2] 1
2
. (2.94)

Here also for optimal Bell-CHSH value we will again take minus sign in the expression

of K2(P , x, d). For both these above cases we will get similar kind of trend as we have

already shown graphically before for third-rank X-state of first kind.

Second kind Rank-three second kind two-qubit X-state can be represented by (x =

H, y < G,B > 0). Purity of the state is

P = 1 + 2y − 2t sin2 θ + 2u sin4 θ, (2.95)
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where t = 1−sin2 φ sin2 ψ and u = 1+sin4 φ sin4 ψ−cos2 φ cos2 ψ sin2 φ−2 sin2 φ sin2 ψ.

Let’s consider the situation x > y. As x = H > y, concurrence should be

C = 2(
√
x−
√
G) = 2(

√
x− f sin2 θ). (2.96)

Again if we consider 4(
√
x−√y)2 > (cos2 θ − e sin2 θ)2 and using Eq. (2.96) we have

M = 4(
√
x+
√
y)2 + 4(

√
x−√y)2

= (C + 2f sin2 θ + 2
√
y)2 + (C + 2f sin2 θ − 2

√
y)2. (2.97)

Solving the Eq. (2.95) for sin2 θ we get

sin2 θ = K3(P , y, t, u) =
t±
√
t2 − 2u(1 + 2y − P)

2u
. (2.98)

Using this in Eq. (2.97), we get the optimal Bell-CHSH value (Again we have to choose

minus sign in K3(P , y, t, u) for optimal Bell-CHSH value)

B = 2
√
M = 2

√
2
([
C + 2fK3(P , y, t, u)

]2
+ 4y

)
. (2.99)

Now for the other case i.e., 4(
√
x−√y)2 < (cos2 θ − e sin2 θ)2, we have

M = 4(
√
x+
√
y)2 +

(
1− (1 + e) sin2 θ

)2

= (C + 2f sin2 θ + 2
√
y)2 +

(
1− (1 + e) sin2 θ

)2
. (2.100)

Finally we find

B = 2
√
M

= 2

√[
C + 2fK3(P , y, t, u) + 2

√
y
]2

+
[
1− (1 + e)K3(P , y, t, u)

]2
.

(2.101)

Now let’s consider the other situation when y > x. In this case we have G > y > x = H

and hence

C = 2(
√
y −
√
H) = 2(

√
y −
√
x) = 2(

√
y − f ′ sin θ cos θ). (2.102)

Considering 4(
√
y −
√
x)2 > (cos2 θ − e sin2 θ)2, we haveM = 4(

√
y −
√
x)2 + 4(

√
y +

√
x)2 = C2 + (C + 4

√
x)2. Optimal Bell-CHSH value is

B = 2
√
M = 2

√
C2 + (C + 4

√
x)2. (2.103)
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Now if 4(
√
y −
√
x)2 < (cos2 θ − e sin2 θ)2 and using 2

√
y = C + 2

√
x we get

M = (C + 4
√
x)2 +

[
1− (1 + e) sin2 θ

]2
. (2.104)

Replacing y by (C
2

+
√
x)2 in Eq. (2.95) and solving for sin2 θ we find

sin2 θ = K4(P , C, x, t, u) =
t±
√
t2 − u(2 + C2 + 4C

√
x+ 4x2 − 2P)

2u
. (2.105)

For optimal Bell-CHSH value again we have to take the minus sign in the above expression

and the optimal Bell-CHSH value is

B = 2
√
M = 2

√
(C + 4

√
x)2 +

[
1− (1 + e)K4(P , C, x, t, u)

]2
. (2.106)

2.4.1.3 Rank-four X-state

X-state of fourth rank can be parameterized by (x < H, y < G,AB > 0). Here purity is

P = 1 + 2x+ 2y − 2 sin2 θ + 2g sin4 θ, (2.107)

where g = 1
64

(53 + 4 cos 2φ + 7 cos 4φ + 8 cos 4ψ sin4 φ). Now let’s consider x > y and
√
x −
√
G =

√
x − f sin2 θ >

√
y −
√
H =

√
y − f ′ sin θ cos θ. So in this situation

concurrence is

C = 2(
√
x− f sin2 θ). (2.108)

Again among the three eigenvalues if we take 4(
√
x − √y)2 > (cos2 θ − e sin2 θ)2, then

using Eq. (2.108) we get

M = 4(
√
x−√y)2 + 4(

√
x+
√
y)2

= (C + 2f sin2 θ − 2
√
y)2 + (C + 2f sin2 θ + 2

√
y)2. (2.109)

Replacing x in the purity equation given in Eq. (2.107) by (C
2

+ f sin2 θ)2 and solving for

sin2 θ we get

sin2 θ = K5(P , C, y, g, f)

=
1− Cf ±

√
(1− Cf)2 − (g + f 2)(2− 2P + C2 + 4y)

2(g + f 2)
. (2.110)
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Hence the optimal Bell-CHSH value is

B = 2
√
M = 2

√
2
([
C + 2fK5(P , C, y, g, f)

]2
+ 4y

)
. (2.111)

For optimal Bell-CHSH value again we have to choose minus sign in K5(P , C, y, g, f).

Now if we consider the other situation i.e., 4(
√
x − √y)2 < (cos2 θ − e sin2 θ)2, then by

using Eq. (2.108) we get

M = 4(
√
x+
√
y)2 +

(
1− (1 + e) sin2 θ

)2

= (C + 2f sin2 θ + 2
√
y)2 +

(
1− (1 + e) sin2 θ

)2
. (2.112)

In this case optimal Bell-CHSH value is

B = 2
√
M

= 2

√[
C + 2fK5(P , C, y, g, f) + 2

√
y
]2

+
[
1− (1 + e)K5(P , C, y, g, f)

]2
.

(2.113)

For this case we have plotted optimal Bell-CHSH value with purity and concurrence keep-

ing other parameters constant. Again Fig.2.7 and Fig.2.8 suggest that optimal Bell-CHSH

value changes monotonically with purity and concurrence respectively. Now consider the
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Figure 2.7: Variation of optimal Bell-

CHSH value with purity for C = 0.4,

y = 0.002, g = 45
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, f = 1
4

and e = 1
4

for rank-four X-state.
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Figure 2.8: Variation of optimal Bell-

CHSH value with concurrence for

P = 0.7, y = 0.002, g = 45
64

, f = 1
4

and e = 1
4

for rank-four X-state.

situation when
√
x −
√
G =

√
x − f sin2 θ <

√
y −
√
H =

√
y − f ′ sin θ cos θ. Here
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concurrence will be

C = 2(
√
y − f ′ sin θ cos θ). (2.114)

Again if we consider 4(
√
x−√y)2 > (cos2 θ − e sin2 θ)2 and using Eq. (2.114) we get

M = 4(
√
x−√y)2 + 4(

√
x+
√
y)2

= (C + 2f ′ sin θ cos θ + 2
√
x)2 + (C + 2f ′ sin θ cos θ − 2

√
x)2. (2.115)

Now substituting y from Eq. (2.114) in Eq. (2.107) we find

1−P + 2x+
C2

2
+ 2Cf ′ sin θ cos θ+ 2f ′2 sin2 θ cos2 θ− 2 sin2 θ+ 2g sin4 θ = 0 (2.116)

As there is cos θ terms present in the above equation so we will get a fourth order equation

of sin2 θ. For now we are skipping this part, as we will tackle similar scenario in the next

case when y > x.

Consider the situation y > x and
√
x −
√
G =

√
x − f sin2 θ >

√
y −
√
H =

√
y −

f ′ sin θ cos θ. So in this situation concurrence is

C = 2(
√
x− f sin2 θ). (2.117)

We have already discussed similar scenario in greater detail in the case of x > y. So we will

just write the final optimal Bell-CHSH value for the two cases. In first case we consider

4(
√
y −
√
x)2 > (cos2 θ − e sin2 θ)2 and the optimal Bell-CHSH value is

B = 2
√
M = 2

√
2
([
C + 2fK5(P , C, y, g, f)

]2
+ 4y

)
. (2.118)

For the other case i.e., when 4(
√
y −
√
x)2 < (cos2 θ − e sin2 θ)2, we have

B = 2
√
M

= 2

√[
C + 2fK5(P , C, y, g, f) + 2

√
y
]2

+
[
1− (1 + e)K5(P , C, y, g, f)

]2
.

(2.119)

Now we will consider the other value of concurrence that is

C = 2(
√
y − f ′ sin θ cos θ). (2.120)
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In this situation if we replace y by (C
2

+ f ′ sin θ cos θ) in the purity equation given in Eq.

(2.107) we will get a fourth order equation of sin2 θ as follows

α2 sin8 θ + 2αβ sin6 θ +
(
β2 + 2α

(
1 + 2x+

C2

2
− P

)
+ 4C2f ′2

)
sin4 θ

+
(

2β
(
1 + 2x+

C2

2
− P

)
− 4C2f ′2

)
sin2 θ +

(
1 + 2x+

C2

2
− P

)2
= 0,

where α = 2g− 2f ′2 and β = 2f ′2− 2. In principle by solving the above equation we will

get four solutions and from there we can find out optimal Bell-CHSH value. As the solution

is very complicated, so we just plot Fig.2.9 and Fig.2.10 which shows that optimal Bell-

CHSH value changes monotonically with purity and concurrence keeping other parameters

fixed.
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Figure 2.9: Variation of optimal Bell-

CHSH value with purity for C = 0.4,

x = 0.001, g = 1
128

(103 + 6
√

2), f ′ =
1
2

sin π
8

and e = 1
8
(6 +

√
2) for rank-

four X-state.
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Figure 2.10: Variation of optimal Bell-

CHSH value with concurrence for

P = 0.65, x = 0.001, g = 45
64

,

f ′ = 1
2
√

2
and e = 3

4
for rank-four X-

state.

2.5 Discussion

Bell-CHSH inequality is one of the operational ways to detect two-qubit entanglement. Not

only entanglement, but measurement settings are equally important to show a violation of

Bell-CHSH inequality. The Bell-CHSH value of a pure two-qubit state only depends on the

entanglement. But for a mixed state the situation is far more complex. We have shown that
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purity and concurrence are not enough, but we also need other functions of state parameters

to characterize the optimal Bell-CHSH value. We have shown that optimal Bell-CHSH

value changes monotonically with these extra functions of state parameters. Hence, these

functions may correspond to some nonlocal classical or quantum properties of the state.
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Chapter 3

Higher-dimensional entanglement and

Bell-SLK function

Entanglement in higher dimensional systems is important from both fundamental and prac-

tical point of view. Higher dimensional entanglement is much more propitious in quan-

tum communication than the conventional two-qubit entanglement. It provides more secu-

rity against eavesdropping in cryptography [129]; it can be used to increase the channel-

capacity via superdense coding [130], and is more robust against environmental noise [131]

than the conventional two-qubit entanglement. However, for practical applications of these

protocols, experimental preparation, detection and quantification of higher dimensional en-

tangled state is of crucial importance. The violation of Bell-type inequalities can detect the

presence of entanglement in such systems. Therefore, Bell-type inequalities in higher di-

mensional system have generated much interest in recent years [87, 90, 132–137]. One of

the approaches to obtain Bell-type inequality in higher dimension employs a projection of

multilevel down to dichotomic one [121, 132]. But sometimes it is also important to know

whether it enables to probe genuine high-dimensionality or not [87, 90, 138]. In 2002,

Collins, Gisin, Linden, Massar, and Popescu introduced [87] an inequality (henceforth will

be referred to as CGLMP inequality) which is known to be the only tight inequality [88] for

higher dimensional systems. But, this inequality is not maximally violated by a maximally

entangled state of such systems [89]. Interestingly, in 2006, Son, Lee and Kim introduced

another set of Bell-type inequalities for qudit systems (hereafter, the SLK inequality) [90]
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which is maximally violated for a maximally entangled two-qudit state. In the case of

two-qubit entangled states, as discussed in chapter 2, there exist measurement settings for

which value of the Bell-CHSH operator increases with the entanglement of the state. In this

chapter, we will show that for a particular measurement setting, the value of the Bell-SLK

function increases with the entanglement of the pure bipartite entangled states. Therefore,

Bell-SLK function gives us a way to quantify the amount of entanglement present in a two-

qudit pure state. Moreover, we will show that it can also quantify entanglement for some

classes of mixed states.

3.1 The Bell-SLK inequality and negativity

In the Bell-SLK test, two far separated observers Alice and Bob, can independently choose

one of the two observables denoted by A1, A2 for Alice and B1, B2 for Bob. Note that with

each hermitian observable H , we can associate a unitary operator U by the simple relation

U = exp(iH). We take U as an unitary observable here. This simple correspondence will

make mathematics simple rather than changing any physics. Measurement outcomes of the

observables are elements of the set, V = {1, ω, · · · , ωd−1}, where ω = exp (2πi/d). In a

variant of Bell-SLK inequality [133], the Bell-SLK function, ISLK , is given by

ISLK =
1√
2

d−1∑
n=1

(
ω−n/4Cn

1,1 + ω−3n/4Cn
2,1 + ωn/4Cn

1,2 + ω−n/4Cn
2,2

)
+ c.c., (3.1)

ω = exp(2πi/d), c.c. is for complex conjugate, Cn
a,b = 〈AnaBn

b 〉. The assumption of local-

realism implies ISLK ≤ Imax
SLK (LR), where Imax

SLK (LR) = 1√
2

(
3 cot π

4d
− cot 3π

4d

)
− 2
√

2

[133]. It is remarkable to note that we can write a Bell function either in correlation space

or in joint probability space. Both forms are connected by a simple Fourier transform

[91, 133]. As an example, we have a Bell function in correlation space

IB =
∑
a,b

d−1∑
n=0

ζab(n)Cn
a,b, (3.2)
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where the zeroth order correlation has no meaning and we can choose
∑

a,b ζab(0) = 0.

Then we can write Eq. (3.2) in joint probability space as

IB =
∑
a,b

d−1∑
α=0

fab(α)P (Aa = Bb + α), (3.3)

where the sum inside the probability is modulo d sum and the coefficients ζab(n) and fab(α)

are connected by simple Fourier transform in the following way [91, 133]

fab(α) =
1

d

d−1∑
n=0

ζab(n)ωnα, and (3.4)

ζab(n) =
1

d

d−1∑
α=0

fab(α)ω−nα. (3.5)

By using above Fourier transformation, we write Bell-SLK function in joint probability

space as [91, 133]

ISLK =
d−1∑
α=0

f(α)[P (A1 = B1 + α) + P (B1 = A2 + α + 1) + P (A2 = B2 + α)

+P (B2 = A1 + α)], (3.6)

where sums inside the probabilities are modulo d sums, and

f(α) =
1√
2

(
cot[

π

d
(α +

1

4
)]− 1

)
. (3.7)

We now calculate the value of the Bell-SLK function for an arbitrary pure two-qudit

state |ψ〉 =
∑

i ci|ii〉 and for the measurement settings originally given in [139]. The

nondegenerate eigenvectors of the operators Âa, a = 1, 2, and B̂b, b = 1, 2, are respectively

|k〉A,a =
1√
d

d−1∑
j=0

ω(k+δa)j|j〉 and (3.8)

|l〉B,b =
1√
d

d−1∑
j=0

ω(−l+εb)j|j〉, (3.9)

where δ1 = 0, δ2 = 1/2, ε1 = 1/4 and ε2 = −1/4. The joint probabilities in (3.6) can be
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calculated as

P (A1 = B1 + α) =
1

d

d−1∑
p,q=0

cpcqω
(α+1/4)(p−q), (3.10)

P (B1 = A2 + α + 1) =
1

d

d−1∑
p,q=0

cpcqω
−(α+1/4)(p−q), (3.11)

P (A2 = B2 + α) =
1

d

d−1∑
p,q=0

cpcqω
(α+1/4)(p−q) and (3.12)

P (B2 = A1 + α) =
1

d

d−1∑
p,q=0

cpcqω
−(α+1/4)(p−q). (3.13)

Putting these probabilities in (3.6), we get

ISLK =
4

d

d−1∑
α=0

f(α)
d−1∑
p,q=0

cpcqω
(α+1/4)(p−q). (3.14)

From the identity
d−1∑
k=0

(−1)k cot(2k+1
4d

)π = d [140], we can obtain another identity

d−1∑
k=0

cot(
4k + 1

4d
)π = d. (3.15)

Therefore, we get
d−1∑
α=0

f(α) = 0. We can then rewrite (3.14) as

ISLK =
4

d

d−1∑
α=0

f(α)
∑
p 6=q
p>q

2cpcq cos
(2π

d
(α +

1

4
)(p− q)

)

=
4

d

d−1∑
α=0

1√
2

(
cot[

π

d
(α +

1

4
)]− 1

)∑
p 6=q
p>q

2cpcq cos
(2π

d
(α +

1

4
)(p− q)

)
.(3.16)

To evaluate it further, we now need to find following two sums

d−1∑
α=0

cos
(2πm

d
(α +

1

4
)
)
, (3.17)

and
d−1∑
α=0

cos
(2πm

d
(α +

1

4
)
)

cot
(π
d

(α +
1

4
)
)
, (3.18)
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where we have replaced p − q by m (an integer). Using trigonometrical identity in [141],

we obtain

d−1∑
α=0

cos
(2πm

d
(α +

1

4
)
)

= cos
(πm

2d
+

(d− 1)πm

d

)
sin πm cosec

πm

d

= 0, (3.19)

i.e, the first sum (3.17) is equal to zero. Now we will describe two theorems which will be

required to calculate (3.18).

Before going to the theorems we will introduce some mathematical expansions, which will

be useful to prove these two theorems. We will use the expansion

1

tez − 1
=
∞∑
ν=0

Aν(t)

ν!
zν , (3.20)

where Aν(t) is a function of t and t 6= 1. The functions Aν(t) can be written in terms of

the so-called “Apostol-Bernoulli numbers” Bν(0, t) [142]. In fact

Aν(t) =
Bν+1(0, t)

ν + 1
. (3.21)

The first few terms are A0(t) = 1
t−1

, A1(t) = −t
(t−1)2 , A2(t) = t+t2

(t−1)3 and A3(t) =

−(t+4t2+t3)
(t−1)4 . We will also need to expand cotangent in a power series

cot(πw) =
∞∑
j=0

Cjπ
2j−1w2j−1, (3.22)

where w satisfies 0 < |w| < π and

Cj =
(−1)j22jB2j

(2j)!
, (3.23)

whereBj are the well known “Bernoulli Numbers”. The first few Cj are C0 = 1, C1 = −1
3
,

C2 = − 1
45

and C3 = − 2
945

. In our case, we need the expansion

cot(πz + πb) =
∞∑
j=0

Cjπ
2j−1(z − 1 + b)2j−1, (3.24)
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with the condition 0 < |z − 1 + b| < π. We will now give proof of two theorems.

Theorem 1: If m,n and d denote positive integers with m < d and b /∈ Z/d, then

en(d,m) =
d−1∑
j=0

cos

(
2πmj

d

)
cotn

(
πj

d
+ πb

)
= −

∑
iµ+ν+12µ+νm

µ

µ!

dν+1

ν!

(
t1Aν(t2)− (−1)µ+νt′1Aν(t

′
2)
)

D(j1, j2, . . . , jn). (3.25)

Here the sum is over all nonnegative integers j1,. . .,jn, µ and ν such that 2j1 + · · ·+ 2jn +

µ + ν = n − 1. We also have t1 = e−2πimb, t2 = e−2πidb, t′1 = e2πimb and t′2 = e2πidb;

here b /∈ Z/d so that the trigonometric sum is well defined. Z represents the set of integers.

Furthermore,

D(j1, j2, . . . , jn) =
n∏
r=1

Cjr . (3.26)

Proof : We choose contour CR as a positively oriented indented rectangle with vertices at

±iR and 1± iR. The contour has two semicircular indentations of radius ε (R > ε) to the

left of both 0 and 1 [143]. Let us take the complex function as

g1(z) =
e2πimz cotn(πz + πb)

e2πidz − 1
− e−2πimz cotn(πz + πb)

e−2πidz − 1
(3.27)

and consider 1
2πi

∫
C
g1(z)dz. Since g1(z) has period 1, the integrals along the indented

vertical sides of CR cancel. Since we have taken m < d, g1(z) tends to zero uniformly

for 0 6 x 6 1 as |y| → ∞. Hence, 1
2πi

∫
C
g1(z)dz = 0. We can now calculate the

contour integral using Cauchy’s residue theorem. The function g1(z) has poles at a number

of points. To start with, g1(z) has a simple pole at z = 0, with residue

Res(g1, 0) =
1

πid
cotn(bπ). (3.28)

The function g1(z) also has simple poles at z = j
d
, with 1 6 j 6 d− 1. The corresponding

residues at these points are

Res
(
g1,

j

d

)
=

1

πid
cos

(
2πmj

d

)
cotn

(
πj

d
+ πb

)
. (3.29)
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In addition the function g1(z) has a pole of order n at z = −b + 1. Using equations (3.20)

and (3.24), we can write

g1(z) = t1

∞∑
µ=0

(2πim)µ

µ!
(z + b− 1)µ

(
∞∑
j=0

Cjπ
2j−1(z − 1 + b)2j−1

)n

×
∞∑
ν=0

(2πid)ν

ν!
Aν(t2)(z + b− 1)ν

−t′1
∞∑
µ=0

(−2πim)µ

µ!
(z + b− 1)µ

(
∞∑
j=0

Cjπ
2j−1(z − 1 + b)2j−1

)n

×
∞∑
ν=0

(−2πid)ν

ν!
Aν(t

′
2)(z + b− 1)ν . (3.30)

Then after few steps of straightforward calculation, one can show that,

Res(g1,−b+ 1) =
∑

iµ+ν2µ+νm
µ

µ!

dν

ν!

(t1
π
Aν(t2)− (−1)µ+ν t

′
1

π
Aν(t

′
2)
)
D(j1, j2, . . . , jn).

(3.31)

Here the sum is over all nonnegative integers j1,. . .,jn, µ and ν such that 2j1 + · · ·+ 2jn +

µ + ν = n − 1. Using (3.28), (3.29), (3.31) and applying residue theorem we can obtain

the sum (3.25).

Corollary 1: Let m and d be positive integers such that m < d and b /∈ Z/d. Then

e1(d,m) =
d−1∑
j=0

cos

(
2πmj

d

)
cot

(
πj

d
+ πb

)
= d cos[(2m− d)bπ] cosec(bdπ). (3.32)

Proof : Put n = 1 in Theorem 1. Using the values A0(t) and C0, one can easily find this.

Theorem 2: Let m,n and d denote positive integers with m < d and b /∈ Z/d. Then

hn(d,m) = −
∑

iµ+ν2µ+νm
µ

µ!

dν+1

ν!

(
t1Aν(t2) + (−1)µ+νt′1Aν(t

′
2)
)

D(j1, j2, . . . , jn). (3.33)

We have already defined all the terms and conditions in Theorem 1. Here

hn(d,m) =
d−1∑
j=1

sin

(
2πmj

d

)
cotn

(
πj

d
+ πb

)
. (3.34)
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Proof : Our contour will be the same as in Theorem 1. Let us take the complex function as

g2(z) =
e2πimz cotn(πz + πb)

e2πidz − 1
+

e−2πimz cotn(πz + πb)

e−2πidz − 1
(3.35)

and consider 1
2πi

∫
C
g2(z)dz. As before,

∫
C
g2(z)dz = 0. The pole structure of this function

is same as in Theorem 1. However, this time residue is zero at z = 0, so we take the sum

from j = 1. Since, sinx vanishes at x = 0, we can take the sum from j = 0. The function

g2(z) has simple poles at z = j
d
, with 1 6 j 6 d− 1. The corresponding residues at these

points are

Res
(
g2,

j

d

)
=

1

πd
sin

(
2πmj

d

)
cotn

(
πj

d
+ πb

)
. (3.36)

The function g2(z) also has a pole of order n at z = −b+ 1. Using (3.20) and (3.24), as in

the case of last theorem, we can obtain after a few steps of straight forward calculation,

Res(g2,−b+ 1) =
∑

iµ+ν2µ+νm
µ

µ!

dν

ν!

(t1
π
Aν(t2) + (−1)µ+ν t

′
1

π
Aν(t

′
2)
)
D(j1, j2, . . . , jn).

(3.37)

Using (3.36), (3.37) and applying residue theorem we can easily obtain (3.33).

Corollary 2: Let m and d be positive integers such that m < d and b /∈ Z/d. Then

h1(d,m) =
d−1∑
j=1

sin

(
2πmj

d

)
cot

(
πj

d
+ πb

)
= −d sin[(2m− d)bπ] cosec(bdπ). (3.38)

Proof : Put n = 1 in Theorem 2. Using the values A0(t) and C0, we can obtain this.

Using above two corollaries and sum and difference formula for cosines, we find.

d−1∑
α=0

cos
(2πm

d
(α +

1

4
)
)

cot
(π
d

(α +
1

4
)
)

= d. (3.39)

This sum is remarkably simple. We note that the value of this sum is independent of m.

This is crucial in relating the value of the Bell-SLK function and entanglement. Eqs. (3.7),

(3.16), (3.19) and (3.39) together imply

ISLK = 4
√

2
∑
p 6=q
p>q

cpcq. (3.40)
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This sum is proportional to the negativity of the state. The negativity, N , for a two-qudit

pure state is defined as [52, 53]

N =
∑
p 6=q
p>q

cpcq
2

d− 1
. (3.41)

Using this, we finally get

ISLK = 2
√

2(d− 1)N . (3.42)

Thus, we obtain an interesting relation between negativity and the value of the Bell-SLK

function for a particular measurement setting. Value of this function is zero for product

states whereas it increases linearly with the negativity for pure entangled states (In d = 2,

the Bell-SLK inequality reduces to familiar Bell-CHSH inequality [78], so this relation

holds for CHSH inequality also). This gives a way to measure the entanglement of a pure

two-qudit entangled state. Hence, the entanglement of a pure two-qudit state can be calcu-

lated by measuring the Bell-SLK function for the measurement setting given in (3.8–3.9).

3.2 Case of Mixed States

For bipartite mixed states the situation is more complicated, as we have already seen in the

case of two-qubit mixed states in the second chapter. In general, it is a formidable task

to find a relation between Bell-SLK function and negativity for a two-qudit mixed state.

However, here we will describe a relation between Bell-SLK function and negativity for

some special classes of mixed states.

3.2.1 Isotropic States

For a two-qudit system, isotropic states are convex mixtures of the maximally entangled

state,

|Ψ+〉 =
1√
d

d−1∑
j=0

|jj〉, (3.43)

with a maximally mixed state I = IA ⊗ IB/d2, where I is a identity matrix. These states

can be written as

ρF =
1− F
d2 − 1

(
I− |Ψ+〉〈Ψ+|

)
+ F |Ψ+〉〈Ψ+|, (3.44)

64



where F is the fidelity of ρF and |Ψ+〉 satisfying 0 6 F 6 1. These states are separable

for F 6 1/d [23, 144].

In the following, we calculate the Bell-SLK function for these states. The Bell-SLK

function ISLK (given in Eq. (3.6)) consists of four probabilities. Here, we calculate one of

the probabilities, P (A1 = B1 + α), other probabilities can be calculated similarly.

P (A1 = B1 + α) = Tr
[
P̂ (A1 = B1 + α)ρF

]
=

1− F
d2 − 1

Tr
[
P̂ (A1 = B1 + α)I

]
+
d2F − 1

d2 − 1
Tr
[
P̂ (A1 = B1 + α)|Ψ+〉〈Ψ+|

]
, (3.45)

where P̂ (A1 = B1 + α) stands for appropriate projector. The first part of the above sum

can be calculated as

Tr
[
P̂ (A1 = B1 + α)I

]
=

1

d2

∑
i,j,p,q,l,m,n

ω(l+α)(i−j)ω(−l+1/4)(p−q)

×〈m|i〉〈j|m〉〈n|p〉〈q|n〉

= d, (3.46)

whereas the second part as

Tr
[
P̂ (A1 = B1 + α)|Ψ+〉〈Ψ+|

]
= 〈Ψ+|P̂ (A1 = B1 + α)|Ψ+〉

=
1

d3

∑
i,j,l,r,s,p,q

ω(l+α)(r−s)ω(−l+1/4)(p−q)

×〈i|r〉〈i|p〉〈s|j〉〈q|j〉

=
1

d2

∑
i,j

ω(α+1/4)(i−j). (3.47)

The other three joint probabilities when calculated, come out to be equal to the probability

calculated above. The Bell-SLK function, ISLK can now be obtained, by putting for these

probabilities in Eq. (3.6), as:

ISLK =

(
1− F
d2 − 1

)
4d

d−1∑
α=0

f(α) +

(
d2F − 1

d2 − 1

)
4

d2

d−1∑
i,j,α=0

f(α)ω(α+1/4)(i−j). (3.48)

Using the fact that
d−1∑
α=0

f(α) = 0, the Bell-SLK function reads
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ISLK =

(
d2F − 1

d2 − 1

)
4

d2

d−1∑
i,j,α=0

f(α)ω(α+1/4)(i−j). (3.49)

Proceeding now in a manner similar as in the previous section, we get the Bell-SLK func-

tion as

ISLK =
2
√

2

d+ 1
(d2F − 1). (3.50)

The negativity N (ρF ) for isotropic states (with some normalization) can be calculated as

N (ρF ) =

0, F 6 1/d,

dF−1
d−1

, 1/d 6 F 6 1.

(3.51)

Using Eq.(3.51) in Eq. (3.50), we can be rewrite the later equation to read as

ISLK =


2
√

2
d+1

(d2F − 1), F 6 1/d,

2
√

2
d+1

(
(d− 1)(dN (ρF ) + 1)

)
, 1/d 6 F 6 1.

(3.52)

Thus, we get an interesting relation between the Bell-SLK function and the negativity for

isotropic states. It can easily be checked that for F 6 1/d, i.e. for the separable isotropic

states, the value of the Bell-SLK function is upper bounded by the 2
√

2
d+1

(d − 1). A value

larger than this bound, immediately suggests that the isotropic states undergoing the said

Bell-SLK measurements are entangled and their value of the Bell-SLK function increases

with entanglement.

3.2.2 Maximally Entangled state through a noisy channel

In this subsection, we will consider another class of mixed states that are obtained when

particles in a maximally entangled state pass through noisy channels. This is often a real

laboratory situation. Let’s say a party prepares a maximally entangled state and sends it to

two distant parties by some noisy channels. The state will no longer be a pure state. Since

we can compute negativity for a mixed state, we can explore the relationship between

negativity and the value of the Bell-SLK function. We can also find how robust is the

measure of entanglement of a pure state using the Bell-SLK function. We will study this

situation in d = 3 taking two well known channels – the amplitude damping and the phase

damping channels.
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A. Amplitude damping Let us consider a maximally entangled state |ψ〉 = 1√
3
(|00〉 +

|11〉 + |22〉). Two qutrits are sent to distant parties through amplitude damping channels.

For a qutrit, amplitude damping channel can be represented in terms of Kraus operators

as [145]

K0 =


1 0 0

0
√

1− p 0

0 0
√

1− p

, K1 =


0
√
p 0

0 0 0

0 0 0

 and K2 =


0 0

√
p

0 0 0

0 0 0

,

where p is the channel parameter. For simplicity we take same channel on both sides.

We find that, without noise, the value of ISLK is 5.657 and negativity is N = 1. At

90% purity (purity varies with the channel parameter, p) ISLK = 5.359 and negativity is

N = 0.922. So the value of negativity is about 8% lower. However, it turns out that there is

still a relationship between the value of the Bell-SLK function and entanglement for such

states. From the value of the Bell-SLK function we can infer the entanglement of the state

in terms of negativity. This is clear from Figure3.1 that looking at the ISLK curve, we can

find state’s negativity at any purity.
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Figure 3.1: Change in the Bell-SLK function and negativity with purity for a maximally

entangled two-qutrit state passed through the amplitude damping channel.

B. Phase damping Let us now consider the case when the two qutrits in a maximally

entangled state pass through phase damping channels separately. The Kraus operators for

the phase damping channel are [145]
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K0 =
√

1− p


1 0 0

0 1 0

0 0 1

 and K1 =
√
p


1 0 0

0 ω 0

0 0 ω2

,

where ω = e
2πi
3 and p is the channel parameter. We do the same analysis as for the am-

plitude damping channel. At 90% purity ISLK = 5.209 and N = 0.922. Both values

decrease by about 8%, as compared to the starting pure state. However, as before, from

Figure3.2, we notice an interesting relationship between entanglement and the value of the

Bell-SLK function. If we measure the ISLK value for the state, we can easily determine the

entanglement of the state in terms of negativity.
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Figure 3.2: Change in the Bell-SLK function and negativity with purity for a maximally

entangled two-qutrit state passed through the phase damping channel.

3.3 An Experimental scheme

Interestingly, this Bell-SLK test can be performed in laboratories with the present day’s

technology [134,135]. One technique to encode a state of a qudit is to use the orbital angu-

lar momentum (OAM) states of photons [146]. Higher dimensional bipartite entanglement

is generated through spontaneous parametric down conversion (SPDC) [134,147]. In [134],

Dada et al. have employed the same measurement setting as in Eq. (3.8) to obtain the vio-

lation of CGLMP inequality for bipartite qudit systems with dimensions up to twelve. One

can use the same experimental set up to measure the Bell-SLK function (instead of the

CGLMP function as done in [134]) in order to find the amount of entanglement present in
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a pure bipartite state. In this case, four observables are to be measured. However, in this

experimental set up, the measurement of each observable requires (d − 1) experimental

settings. The number of settings varies linearly with respect to the dimension d. In princi-

ple, it might be possible to reduce the number of settings to measure an observable with d

outcomes. In [135], Lo et al. employ a different experimental set up. They simulate qudits

using multiple pairs of polarization-entangled photons. They also measure four observ-

ables with (d− 1) experimental settings for each observable and demonstrate the violation

of CGLMP inequality up to d = 16. Though violation of the CGLMP inequality can de-

tect the presence of entanglement, but this violation cannot be used to measure the amount

of entanglement present in the bipartite state, at least, for the employed setting. This is

because, for these settings, CGLMP inequality is not maximally violated for a maximally

entangled state of two qudits [89]. It is also known [89] that CGLMP inequality is violated

maximally by a partially entangled state. Therefore, it is unlikely that CGLMP function

measurement can help in measuring the amount of entanglement in a two-qudit state. As

is known, the choice of measurement setting is important. There are measurement settings,

for which even maximally entangled state may not violate an inequality. One of the key

mathematical reason for the relation (3.42) to exist is that the sum (3.39) is independent of

m. In the case of CGLMP inequality, the function f(α) is different, therefore a different

sum occurs. That sum is not independent of m. Therefore, such a relation does not exist

for the CGLMP inequality. However, the measurement of the Bell-SLK function can help

us in finding the amount of entanglement in a pure two-qudit state.

3.4 Advantage of Bell-SLK test

The widely adopted method for measuring entanglement of a state is the quantum state

tomographic reconstruction [148]. In this method, a complete set of observables is mea-

sured on the system to reconstruct its state and thus to calculate the entanglement. Though,

successfully implemented for lower-dimensional systems [149], this method is not suitable

for systems of higher dimension. This is because the number of observables to be mea-

sured increases dramatically with the dimension of the system [150]. However, there are
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suggestions to characterize the state with less number of observables, but most of these

methods are for two-qubit systems [151]. For higher dimensional systems, the alternative

suggestions, though reduces the number of observables (in comparison to the traditional

tomography), but the number is still high and increases with the dimension of the subsys-

tems [152]. In case of bipartite systems, the number of measurements needed is of the

order of d4 (d is dimension of each subsystem). If a priori, it is known that the state is pure,

then we need only 2(d2 − 1) measurements to reconstruct the state [153]. Moreover, the

implementation of these observables in an experiment is also an issue to be taken proper

consideration [154]. The measurement of the Bell-SLK function can be a method to mea-

sure entanglement of a pure bipartite state. Unlike the earlier schemes where number of

observables needed depends on dimension of subsystems, this scheme needs measurement

of only four observables to calculate the entanglement of any pure bipartite state. Moreover,

this new scheme can be implemented in laboratories with the existing technology.

3.5 Discussion

Bell-SLK inequality can be useful in measuring the entanglement present in two-qudit sys-

tems. This also addresses an important question in entanglement theory: How to measure

amount of entanglement in a bipartite state experimentally? In the earlier methods for mea-

suring entanglement, the required number of observables increases with dimension of the

subsystems. In contrast, the scheme presented here requires only four observables to be

measured to find the amount of entanglement present in a bipartite pure state. The scheme

also works for a class of bipartite mixed qudit states – isotropic states. Furthermore, for

the case of mixed states which are obtained after applying phase or amplitude damping

channels on maximally entangled two qutrits, one can also measure entanglement, as char-

acterized by negativity. Most importantly, Bell-SLK test can be easily performed with the

current day technology.
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Chapter 4

Three-qubit pure state and SLOCC

classes

Quantification and characterization of entanglement is unambiguous for pure bipartite state,

but not for mixed bipartite states [17, 37]. In the spirit of resource theory of entangle-

ment [37, 39], two entangled states are said to be equivalent if they can be obtained from

each other with certainty with respect to LOCC (local operation and classical commu-

nication). Entanglement of any pure bipartite state is uniquely captured by the entropy of

entanglement in the asymptotic limit [155]. But this is not true for mixed states. There is no

unique quantification of entanglement for this case and a number of entanglement measures

and monotones [17] have been proposed over the years. Situation gets worse for multipar-

tite scenario, both for pure and mixed states. One can straightforwardly extend some of

the entanglement measures and monotones constructed for bipartite systems to multipartite

scenario, but there is no unique quantification of entanglement in multipartite scenario even

for pure states. We can not even define a unique maximally entangled multipartite state and

there are many inequivalent forms of entanglement [76, 156]. As an example, for a three-

qubit pure state, there exist six SLOCC inequivalent classes of entanglement: separable,

three bi-separable and two genuinely entangled (GHZ and W) [57]. In general it is very

difficult to characterize and distinguish different classes from each other. For three-qubit

pure states analytical characterization is present in literature using local entropies and the

concept of tangle [57]. But from an experimental point of view these are not realizable. In a
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very recent work [157], a proposed set of Bell inequalities can distinguish separable, bisep-

arable and genuine entanglement for pure three-qubit states by the pattern of violations

of the Bell inequalities within the set. In another work, Zhao et.al. [158] have provided

the necessary and sufficient conditions to classify the separable, biseparable and genuine

entangled state. But both these work did not succeed in distinguishing the GHZ-type and

W-type states, which fall under the category of genuinely entangled states. In this chapter,

we will construct some operators, which can distinguish six classes of entanglement for

pure three-qubit states. Moreover, they are easily implementable in an experiment.

4.1 Tangle and its observable measure

Any three-qubit pure state can be written in the canonical form [159, 160],

|ψ〉 = λ0|000〉+ λ1e
iθ|100〉+ λ2|101〉+ λ3|110〉+ λ4|111〉, (4.1)

where λi > 0,
∑

i λ
2
i = 1, θ ∈ [0, π] and {|0〉, |1〉} denote the basis of Alice’s, Bob’s and

Charlie’s Hilbert space. The tangle for the state |ψ〉 given in (4.1) is found to be

τψ = 4λ2
0λ

2
4. (4.2)

The tangle as given in (4.2) may be measured experimentally, since we can write it as the

expectation value of the operator

O = 2(σx ⊗ σx ⊗ σx), (4.3)

with respect to the state |ψ〉. The operator O, given in (4.3), can be obtained by suitably

choosing the unit vectors in Mermin operator, which is defined as [161, 162]

BM = â1.~σ ⊗ â2.~σ ⊗ â3.~σ − â1.~σ ⊗ b̂2.~σ ⊗ b̂3.~σ −

b̂1.~σ ⊗ â2.~σ ⊗ b̂3.~σ − b̂1.~σ ⊗ b̂2.~σ ⊗ â3.~σ, (4.4)

where âj , bj (j = 1, 2, 3) are the measurement direction for the jth party and ~σ =

(σx, σy, σz) are the usual Pauli matrices. By choosing the unit vectors as â1 = (1, 0, 0),

â2 = (1, 0, 0), â3 = (1, 0, 0), b̂1 = (−1, 0, 0), b̂2 = (1, 0, 0) and b̂3 = (1, 0, 0), we can
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construct the operator O. The expectation value of the operator O in the state |ψ〉 is given

by

〈O〉ψ = 〈ψ|O|ψ〉 = 4λ0λ4 = 2
√
τψ. (4.5)

From this, it is clear that by measuring the expectation value of O, one can easily calculate

the value of the tangle.

4.2 Classification of three-qubit pure states

In this section, we will show how to classify six different classes of three-qubit pure states.

It is known that tangle is nonzero only for GHZ class [57]; it is zero for other five classes.

So using (4.5) one can separate GHZ class from other five classes. Since it is not possible

to distinguish zero tangle classes of three-qubit pure states with a single quantity τψ, so we

need to define other observables. To fulfill our aim, let us consider two quantities P and Q,

which can be defined as

P = 〈ψ|O1|ψ〉〈ψ|O2|ψ〉 = 〈O1〉ψ〈O2〉ψ, (4.6)

and

Q = 〈O1〉ψ + 〈O2〉ψ + 〈O3〉ψ. (4.7)

The operators O1, O2 and O3 are given by

O1 = 2(σx ⊗ σx ⊗ σz), (4.8)

O2 = 2(σx ⊗ σz ⊗ σx) (4.9)

and

O3 = 2(σz ⊗ σx ⊗ σx). (4.10)

The operatorO1 given in (4.8) can be obtained from the Mermin operator (4.4) by choosing

the unit vectors as â1 = (1, 0, 0), â2 = (1, 0, 0), â3 = (0, 0, 1), b̂1 = (−1, 0, 0), b̂2 =

(1, 0, 0) and b̂3 = (0, 0, 1). One can find operator O2 given in (4.9) by choosing the unit

vectors as â1 = (1, 0, 0), â2 = (0, 0, 1), â3 = (1, 0, 0), b̂1 = (−1, 0, 0), b̂2 = (0, 0, 1) and

b̂3 = (1, 0, 0). Similarly operator O3 given in (4.10) can be obtained by choosing the unit
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vectors as â1 = (0, 0, 1), â2 = (1, 0, 0), â3 = (1, 0, 0), b̂1 = (0, 0,−1), b̂2 = (1, 0, 0) and

b̂3 = (1, 0, 0). The expectation value of the operators O1, O2 and O3 with respect to the

state |ψ〉 are as follows,

〈O1〉ψ = 4λ0λ3,

〈O2〉ψ = 4λ0λ2 and

〈O3〉ψ = −4(λ2λ3 + λ1λ4 cos θ). (4.11)

Therefore, using (4.11), we can obtain P and Q as

P = 16λ2
0λ2λ3 and

Q = 4
(
λ0λ3 + λ0λ2 − (λ2λ3 + λ1λ4 cos θ)

)
. (4.12)

We are now in a position to classify zero tangle three-qubit pure states based on the expec-

tation values of the operators O1,O2,O3 and the two quantities P and Q.

Theorem 1: Any three-qubit state belongs to the W class if,

(i)τψ = 0,

(ii)P 6= 0. (4.13)

Proof : Using parametrization (4.1), any three-qubit pure state, which is inW class can

be written as [57, 160],

|ψ〉W = λ0|000〉+ λ1|100〉+ λ2|101〉+ λ3|110〉. (4.14)

As there is no λ4, so from (4.2) it is clear that τψW = 0. From (4.12) one can find P =

16λ2
0λ2λ3 6= 0 and Q = 4(λ0λ3 + λ0λ2 − λ2λ3) 6= 0.

We will deduce the conditions by which it is possible to distinguish three biseparable

classes.
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Lemma 1 : Any three-qubit state is biseparable in 1 and 23 bipartition if

(i)τψ = 0,

(ii)〈O1〉ψ = 0,

(iii)〈O2〉ψ = 0 and

(iv)〈O3〉ψ 6= 0. (4.15)

Proof : Any pure three-qubit state which is biseparable in 1 and 23 bipartition, can be

written as |0〉(α|00〉 + β|11〉), upto some local unitary transformation []. Canonical form

of three-qubit pure states as written in (4.1) will have the aforesaid biseparable form if all

the λi’s except λ1 and λ4 are zero. Hence, the state belonging to 1 and 23 bipartition can

be written in terms of λi’s as

|ψ〉1|23 = |1〉(λ1|00〉+ λ4|11〉). (4.16)

As λ0 = 0, the tangle is zero for this class of state. From (4.11) we notice that,

〈O1〉ψ = 0, 〈O2〉ψ = 0 and 〈O3〉ψ = −4λ1λ4. Hence, P = 0 and Q 6= 0.

Lemma 2 : Any three-qubit state is biseparable in 12 and 3 bipartition if,

(i)τψ = 0,

(ii)〈O1〉ψ 6= 0,

(iii)〈O2〉ψ = 0 and

(iv)〈O3〉ψ = 0. (4.17)

Proof : The state, which belongs to 12 and 3 bipartition can be written as

|ψ〉12|3 = (λ0|00〉+ λ3|11〉)|0〉. (4.18)

The tangle is zero as λ4 = 0. Using (4.11) we can infer that 〈O1〉ψ = 4λ0λ3, 〈O2〉ψ = 0

and 〈O3〉ψ = 0. Therefore, P = 0 and Q 6= 0.
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Lemma 3 : Any three-qubit state is biseparable in 13 and 2 bipartition if

(i)τψ = 0,

(ii)〈O1〉ψ = 0,

(iii)〈O2〉ψ 6= 0 and

(iv)〈O3〉ψ = 0. (4.19)

Proof : The state belongs to 13 and 2 bipartition can be written as

|ψ〉13|2 = λ0|000〉+ λ2|101〉. (4.20)

The tangle is zero as λ4 = 0. The expectation values of the operators O1, O2 and O3 in

this state are as follows 〈O1〉ψ = 0, 〈O2〉ψ = 4λ0λ2 and 〈O3〉ψ = 0. Therefore, P = 0 and

Q 6= 0.

We can now use these lemmas to prove the following theorem.

Theorem 2: Any three-qubit pure state is biseparable if,

(i)τψ = 0,

(ii)P = 0 and

(iii)Q 6= 0. (4.21)

Proof : From the above lemmas, it is clear that for a biseparable state, either 〈O1〉ψ = 0,

or 〈O2〉ψ = 0. As P is the product of these two expectation values, therefore P = 0 for

any biseparable three-qubit pure state. The quantity Q is the sum of the expectation values

of the operators O1, O2 and O3, and according to the above three lemmas, at least one is

nonzero. Therefore Q 6= 0. This proves the theorem.

Theorem 3: Any three-qubit state is separable if

(i)τψ = 0,

(ii)P = 0 and

(iii)Q = 0. (4.22)
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Proof : Any separable three-qubit pure state can be written as |0〉|0〉|0〉, after applying

some appropriate local unitary operation. For this state τψ, P and Q all are zero. That

completes the proof.

From the above theorems and lemmas we can classify all the classes of three-qubit pure

states. Moreover, as these observables only contain Pauli matrices, they can be measured in

experiments. We note that there is some arbitrariness in the definition of P . Above proofs

will go through, even if we would have have defined P as a product of the expectation

values of operators “O2 and O3”, or “O1 and O3”, instead of operators “O1 and O2”. A

pictorial depiction of this characterization has been given in the Fig. 4.1.

Figure 4.1: Pictorial depiction of the classification of three-qubit pure state.
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4.3 Local unitary equivalence with computational basis

In the previous section the entire characterization has been carried out by writing the state

in the canonical form and the corresponding operators in the corresponding basis. So, if

we are given a state in any other basis, will the analysis still hold? The fact, that any three-

qubit pure state can be written down in the canonical form is an existence proof that in

principle one can always apply some local unitary operators to convert a state from any

basis, in particular computational basis, to canonical-form basis and vice-versa. We will

now argue that these theorems will hold in any basis with suitably transformed operators.

We have to find the particular local unitary operation that connect two sets of basis vectors

and write those operator in that basis. Let us consider that we are given a three-qubit pure

state : |ψ〉 =
1∑

i,j,k=0

tijk|ijk〉 in computational basis. Now, given this state, we can in

principle always transform it to the canonical form [163]. Only requirement is that one has

to judiciously choose the local unitary operators. Following two examples will clarify this

issue. Suppose, we have been given a state in computational basis:

|ψ〉c =
1

2
(|000〉c + |011〉c + |100〉c + |111〉c), (4.23)

where c represents that the state is in computational basis. Clearly the given state is not

in canonical form. But it can be converted to one having the canonical form using local

unitaries. For that we have to follow the prescription mentioned by Acı́n et. al. in [163].

Doing the necessary calculations we have found that the unitary operators that have to act

on the first, second and third qubits are,

U1 =
1√
2

−1 1

1 1

 , U2 =

1 0

0 1

 and U3 =

1 0

0 1

 . (4.24)

Then by applying the operator U = U1⊗U2⊗U3 on |ψ〉c, we get the state in the canonical-

form basis as

|ψ〉a =
1√
2

(|100〉a + |111〉a), (4.25)

where, a denotes that the state is in the canonical-form basis Now we can calculate the

expectation values of those operators given in the previous sections. We will find that

〈O〉ψa = 0, 〈O1〉ψa = 0, 〈O2〉ψa = 0 and 〈O3〉ψa = −2. So the state is biseparable in
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1 and 23 bipartition. Now to verify this result in computational basis we have to rotate

these observables by inverse of U . U−1 = U † = U1 ⊗ U2 ⊗ U3 = U . The transformed

observables are Ot = UOU †, O1t = UO1U
†, O2t = UO2U

† and O3t = UO3U
†. If

we calculate the expectation values of thees operator on state |ψ〉c, we find 〈Ot〉ψc = 0,

〈O1t〉ψc = 0, 〈O2t〉ψc = 0 and 〈O3t〉ψc = −2. Hence, the state is 1|23 biseparable.

Let us consider another state in computational basis :

|φ〉c =
1√
3

(eiθ|000〉c + |011〉c − |100〉c). (4.26)

To transform it in Acı́n’s canonical form following local unitaries are required

U1 =

0 −1

1 0

 , U2 =

1 0

0 1

 and U3 =

1 0

0 1

 . (4.27)

Hence, U = U1⊗ U2⊗ U3. Applying this operator to the state, we can get the final state

as,

|φ〉a =
1√
3

(|000〉a + eiθ|100〉a + |111〉a). (4.28)

For this state, we find that 〈O〉φa = 4
3
, 〈O1〉φa = 0, 〈O2〉φa = 0 and 〈O3〉φa = −4 cos θ

3
.

So the state is in GHZ class. Now to get these results in computational basis we rotate

these observables by U−1 = U † = U1† ⊗ U2 ⊗ U3 = UI . Similarly, we transform these

observables by UI , as shown in previous example. Now we find that 〈Ot〉φc = 4
3
, 〈O1t〉φc =

0, 〈O2t〉φc = 0 and 〈O3t〉φc = −4 cos θ
3

. Hence, the results are consistent. In the examples

above, it was important to know the state to determine suitable unitary transformations.

4.4 Case of mixed states

The case of mixed states is more involved. There is no closed from of tangle. But one

can find a lower bound on the tangle for a three-qubit mixed state. For a mixed state

C2
A(BC) = 2(1− Trρ2

A) is no longer valid. Here ρA is the density matrix of a subsystem of

the three-qubit state ρ. Instead we have to consider the convex roof optimization of all the

pure states as follows

C2
A(BC)(ρ) = inf

pi,|ψi〉

∑
i

piC
2
A(BC)(|ψi〉), (4.29)
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where ρ =
∑

i pi|ψi〉〈ψi|. But it is a formidable task. Instead of finding this, one can find a

lower bound on C2
A(BC)(ρ) easily. It has been shown in [164] that this lower bound is given

as – C2
A(BC)(ρ)|LB = 2(Trρ2 − Trρ2

A). By substituting this in the expression of tangle in

Eq. (1.27), one can find the lower bound on tangle. However, this τLB(ρ) is not always

invariant under the permutation of A, B and C. Hence, for the case of mixed states, it is

reasonable to use the average over all the permutations of A, B and C and calculate τLB(ρ)

as follows [164, 165]

τ̄LB =
1

6

∑
{ABC}

(
C2
A(BC)|LB − C2

AB − C2
AC

)
. (4.30)

Let’s take an example of a mixed state which is a mixture of a GHZ state and a W state

ρ = p|GHZ〉〈GHZ|+ (1− p)|W 〉〈W |. (4.31)

For this state we compare graphically the observable measure of tangle for pure state, i.e.
〈O〉2

4
with the lower bound of tangle as given in Eq. (4.30). As p increases, the state becomes

τLB

<O>2/4

0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p

Figure 4.2: Comparison between lower bound of tangle (τ̄LB) and 〈O〉
2

4
with the variation

of p for the state given in Eq. (4.31).

more pure and the values of (τ̄LB) and 〈O〉
2

4
approach each other. In [165], Farı́as et. al.

considered a very interesting class of three-qubit mixed states which can be obtained as

follows. First they prepare a two-qubit Bell state |φ+〉AB = 1√
2
(|00〉 + |11〉). Then they

let the second qubit interact with the environment. The interaction can be described by a
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phase damping channel

|0〉B|0〉E → |0〉B|0〉E (4.32)

|1〉B|0〉E →
√

1− p|1〉B|0〉E +
√
p|0〉B|1〉E, (4.33)

where p is the channel parameter. This phase damping interaction prepares a tripartite state,

|φ〉ABE =
1√
2

(
|000〉+

√
1− p|110〉+

√
p|111〉

)
, (4.34)

where initially the environment state is |0〉. In [165], authors experimentally prepared this

kind of state with some purity. We can represent it by adding some white noise with |φ〉ABE
as

ρ = m|φ〉ABE〈φ|+
1−m

8
I, (4.35)

where I is the eight dimensional identity matrix. For purity equals to 0.92 or m ≈ 0.95,

we compare numerically the tangle measure for pure state, i.e., 〈O〉
2

4
with the lower bound

of tangle. From the FIG. 4.3, we see that 〈O〉
2

4
, i.e., the measure of tangle is just above the

value of lower bound of tangle. Similar results can be obtained for any other class of mixed

state as well.

τLB

<O>2/4
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p

Figure 4.3: Comparison between lower bound of tangle (τ̄LB) and 〈O〉
2

4
with the variation

of p.
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4.5 Experimental measure of fidelity for a teleportation

scheme

In this section, we will discuss a teleportation scheme using a three-qubit pure state as stud-

ied earlier in [166]. The teleportation scheme is as follows: Let us consider a three-qubit

pure entangled state shared by three parties i, j and k. We make an orthogonal measure-

ment on the kth qubit and consider the joint state of the system i and j. Using this joint

state as a resource state, one can teleport a single qubit state. The faithfulness of this tele-

portation scheme depends on the single qubit measurement on kth qubit and the compound

state of the system i and j. In [166], authors introduced a new quantity called partial tangle,

which is defined as,

τij =
√
C2
i(jk) − C2

ik, i 6= j 6= k and i, j, k = 1, 2, 3. (4.36)

The partial tangles for the state given in (4.1) are

τ12 = 2λ0

√
λ2

3 + λ2
4,

τ23 = 2
√
λ2

0λ
2
4 + λ2

1λ
2
4 + λ2

2λ
2
3 − 2λ1λ2λ3λ4 cos θ,

τ31 = 2λ0

√
λ2

2 + λ2
4. (4.37)

They showed that these partial tangles are related to singlet fraction fk and maximum tele-

portation fidelity Fk. Here index k just indicates that the measurement is done on the kth

qubit. The relation is as follows,

τij = 3Fk − 2 = 2fk − 1. (4.38)

We will now provide the explicit relationship between the partial tangles and the ex-

pectation value of the operators O, O1, O2, O4 and O5. The operators O4 and O5 will be

defined in this section. Since partial tangle is related with singlet fraction and teleporta-

tion fidelity, we may measure the teleportation fidelity experimentally for the teleportation

scheme given in [166].

Let us define two new operators as

O4 = 2(σz ⊗ σy ⊗ σy),

O5 = 2(σz ⊗ σy ⊗ σx). (4.39)
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Operator O4 given in (4.39) can be obtained from the Mermin operator (4.4) by choosing

the unit vectors as â1 = (0, 0, 1), â2 = (0, 1, 0), â3 = (0, 1, 0), b̂1 = (0, 0,−1), b̂2 =

(0, 1, 0) and b̂3 = (0, 1, 0). Similarly O5 can be obtained by choosing the unit vectors as

â1 = (0, 0, 1), â2 = (0, 1, 0), â3 = (1, 0, 0), b̂1 = (0, 0,−1), b̂2 = (0, 1, 0) and b̂3 =

(1, 0, 0).

The expectation value of the above observables for the state in (4.1) are

〈O4〉ψ = −4(λ2λ3 − λ1λ4 cos θ),

〈O5〉ψ = 4λ1λ4 sin θ. (4.40)

After a few steps of calculation, we can show that,

τ12 =
1

2

√
〈O〉2ψ + 〈O1〉2ψ = 3F3 − 2,

τ23 =
1

2

√
〈O〉2ψ + 〈O4〉2ψ + 〈O5〉2ψ = 3F1 − 2,

τ31 =
1

2

√
〈O〉2ψ + 〈O2〉2ψ = 3F2 − 2. (4.41)

We note that the operators O, O1, O2, O4 and O5 are observables and hence their expec-

tation values are measurable quantities. Since the teleportation fidelities are related with

some functions of these expectation values as shown in (4.41), so we can say that the

teleportation fidelities for the teleportation scheme described in [166] may be measured

experimentally.

From (4.40) and (4.41), we can draw following conclusions:

1. If all the partial tangles are equal to zero then the state is a separable one. This is

because the expectation value of O4 and O5 are also zero for a separable state.

2. If at least one partial tangle is equal to zero, then the three-qubit state is a biseparable

state.

3. If each partial tangle is not equal to zero then the state is a three-qubit genuine entan-

gled state.
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Lemma 4: Any pure three-qubit genuinely entangled state is useful in the teleportation

scheme of [166].

Proof : Three-qubit genuinely entangled states consist of GHZ-class and W-class. We

will prove the proposition by taking these two classes separately. The relation in (4.38) can

be written as

Fk =
2

3
+
τij
3
. (4.42)

Case-I: For GHZ-class states, τij > 0.This can be compared for If τij > 0, Fk > 2
3

[167].

Therefore the resource state consisting of qubits i and j is suitable for teleportation. In this

case, the partial tangle is nonzero and so 〈O〉ψ is also nonzero. Hence, from (4.41), it is

clear that τij > 0. Therefore, Fk is always greater than 2
3
.

Case-II: For W-class states, τij = 0 and hence 〈O〉ψ = 0. Therefore, for these class of

states, the equations (4.41) reduces to

τ12 =
1

2
〈O1〉ψ,

τ23 =
1

2

√
〈O4〉2ψ + 〈O5〉2ψ,

τ31 =
1

2
〈O2〉ψ. (4.43)

From (4.6) it can be seen that 4τ12τ31 = P . For W-class states, τ12 6= 0 and τ31 6= 0 as

P 6= 0. Hence, F3 and F2 are greater than 2
3
. Thus it remains to see the remaining partial

tangle τ23, which is related with 〈O4〉ψ and 〈O5〉ψ. From equation (4.12), for W-class

states, λ0, λ2 and λ3 can not be zero simultaneously. Equation (4.39) ensures that 〈O4〉ψ is

nonzero. Therefore, τ23 6= 0 and F1 is greater than 2
3
. Thus for the teleportation scheme

of [166], all states in W-class are useful for teleportation. This completes the proof.

4.6 Discussion

For a three-qubit pure state, there exist six SLOCC incomparable classes of entanglement.

In general it is very difficult to distinguish them from each other. In this chapter, we have
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discussed a feasible way to distinguish them from one another. Employing Pauli matrices,

we have constructed observables which are useful to distinguish these classes from each

other. Most importantly these operators can be easily measured in an experiment. Re-

cently, there has been an experiment [168] which distinguishes these six SLOCC classes

based on the proposals in this chapter. Although theses operators are constructed in the

canonical-form basis, a suitably transformed set of operators will work in any basis. In

this sense, results in this chapter are independent of the choice of the basis. However, the

construction of suitable transformations may require the knowledge about the state. We

have also considered a few mixed states and showed graphically that the measure of tangle

for pure states approaches minimum value of the tangle as the state becomes more pure. In

the one class of mixed states, that we considered, the measure of tangle is just above the

lower bound on tangle. This is because the purity of the states is quite high. In another

case, the measure of tangle approaches the lower bound, as the state becomes more pure.

This shows that the measure of tangle works quite well for some classes of mixed state.

Also we have shown that the operators defined here can be used to measure the fidelity of

a teleportation scheme introduced in [166].
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Chapter 5

Polygamous nature of quantum steering

in three-qubit

Quantum mechanical correlations offer many surprises whenever one digs into the theory

to understand its nature and differences from the classical world. Some examples include

correlations arising from entanglement [17], Bell non-locality [1,3,80], contextuality [169,

170], coherence [106] and steering [92]. Such correlations have the unique and surprising

property of being monogamous [171–174]. Correlations between certain parties are said

to be monogamous if they diminish when shared among more additional parties. A simple

example is illustrated by Bell-CHSH inequality [173]: Two parties Alice and Bob share

non-local correlations and are able to violate the Bell inequality. If the state of Alice is

also entangled with a third party Charlie, the non-local correlations between Alice and Bob

diminish as the correlations between Alice and Charlie increase. It is therefore implied

that the Bell-CHSH correlations are monogamous. Monogamy of correlations has been

extensively studied and has found widespread applications in information theoretic tasks

like key distribution [175, 176]. While it is well known that steering is monogamous [177,

178], a major aspect of it has not been addressed yet. Steering at its core is asymmetric and

although it’s monogamous from one side, the nature of correlations from the other side is

yet to be studied.

Consider a scenario, where three parties Alice, Bob and Charlie share an entangled state

ρabc. From monogamy of steerability [177, 178], if Alice can steer Bob, she cannot steer
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Charlie and vice-versa. The idea originates from the resource theory of quantum correla-

tions like entanglement [17, 179]. However, the question we will address in this chapter is

to check whether there exist states for which a particular party (say Alice) cannot be steered

independently either by Bob or Charlie but only if they steer together. The scenario is op-

posite of what is generally considered to show monogamous nature of quantum steering.

In this chapter, we provide a detailed analysis of quantum steering in such a scenario. We

identify a set of states for which Alice can share a polygamous relationship with Bob and

Charlie and also lay down the foundation for identifying the complete set of such states.

5.1 Two-qubit steering criteria and coherence

Recently, a steering criteria for a two-qubit system has been derived using the coherence of

the steered party [180, 181]. In this section we provide a very brief summary of that. Let’s

consider a single qubit system in the state ρ = 1
2
(I + ~n · ~σ), where ~σ = (σx, σy, σz) and ~n

is a vector in R3. The coherence (quantified by l1-norm) of ρ in the basis of Pauli matrix σi

(the basis in which σi is diagonal) is

Ci(ρ) =
√
n2
j + n2

k, (5.1)

where i 6= j 6= k and i, j, k ∈ {x, y, z}. Mondal et. al. have shown that the sum of the

coherence calculated in three different basis is upper bounded by
√

6 [180], i.e.,

Cx(ρ) + Cy(ρ) + Cz(ρ) =
∑
i=x,y,z

Ci(ρ) 6
√

6. (5.2)

Hence, for a single qubit system this inequality can be treated as a coherence complemen-

tarity relation.

Now let’s consider a bipartite steering scenario. Bob prepares an entangled state ρAB of

joint systems A and B. He keeps the system B with himself and transmits the system

A to Alice. Bob’s task is to convince Alice that he can steer her system. To do that

Bob performs some projective measurement in the eigenbasis of {σx, σy, σz}. After the

measurement Bob sends the measurement basis (σi) and the outcome (a ∈ {0, 1}) to

Alice. As a result Alice’s state will collapse to the conditional state ρA|Πai with probability
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p(ρA|Πai ) = Tr[(I⊗ Πa
i )ρAB]. Now Alice will measure coherence in two other basis on his

conditional state. Using this one can derive a following coherence steerability criteria [180]

1

2

∑
i,j,a

p(ρA|Πaj 6=i)C(ρA|Πaj 6=i) >
√

6, (5.3)

which states that if 1
2

∑
i,j,a p(ρA|Πaj 6=i)C(ρA|Πaj 6=i) is more than

√
6, then Alice’s qubit state

is steerable by Bob. Therefore, the violation of the inequality given in Eq. (5.2) by the

conditional states of Alice suggests that no single system description is possible for Alice

and hence, the state ρAB is steerable from Bob to Alice.

5.2 Polygamous steering

Since we are solely interested in a subset of states for which Alice cannot be steered indi-

vidually by Bob or Charlie but only by their joint efforts in a tripartite scenario, we start

with a tripartite state ρabc prepared by Bob (or Charlie). Bob sends the subsystem A to Al-

ice and C to Charlie. Since Alice does not believe Bob or Charlie, she asks them to perform

a set of measurements and send her the outcomes. Based on the measurement outcomes,

she computes the coherence of her conditional states. We show that there exist states ρabc

for which Alice is steerable if and only if Bob and Charlie make an effort together but

not otherwise. To find such a set of states {S(A ← B : C)}, we first find out a set of

states {S(A ← B,C)} for which Alice is steerable by Bob and Charlie together as well

as individually. We then compute the union of set of states {S(A ← B)} ∪ {S(A ← C)}

for which Alice is steerable by Bob and Charlie individually. Our set of interest is the

difference of the above two sets, i.e., Si ≡ S(A← B,C) \ {S(A← B) ∪ S(A← C)}.

We now explicitly find out a set of states, which exhibit polygamous nature of quantum

steering. First, we focus on to single out the first set {S(A ← B,C)} (set I). Alice will

be convinced that her state is entangled if her system A cannot be written by a local hidden

state (LHS) model

ρBCbc =
∑
λ

P(λ)P(b, c|B,C, λ)ρQA(λ), (5.4)

where {P(λ), ρQA(λ)} represents an ensemble of pre-existing local hidden states of Alice
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and P(b, c|B,C, λ) is Bob and Charlie’s joint stochastic map to convince Alice by prepar-

ing a state ρBCbc . P(λ) forms a valid probability distribution such that
∑

λP(λ) = 1. The

joint probability distribution on such states can be written as,

P(ai, bj, ck) =
∑
λ

P(λ)P(bj, ck|λ)PQ(ai|λ), (5.5)

where P(ai, bj, ck) represents the probability to obtain outcome a for the measurement of

observables chosen from the set {Ai} by Alice, outcome b for the measurement of observ-

ables chosen from the set {Bj} by Bob and outcome c for the measurement of observables

chosen from the set {Ck} by Charlie.

We consider a tripartite state ρabc distributed between Alice (A), Bob (B) and Charlie

(C). Alice asks Bob and Charlie to perform projective measurements on their respective

systems (B) and (C) on stated bases. We consider Bob and Charlie to perform projec-

tive measurements in Pauli eigenbases (or in general on a set of mutually unbiased bases)

and communicate the results to Alice. Upon receiving the results, Alice measures coher-

ences on her conditional states with respect to her Pauli eigenbases (or a mutually unbiased

bases). The choice of basis will be based on the measurement results from Bob and Charlie.

It can be seen that Bob, together with Charlie can steer the state of Alice if at least one of

the following steering inequality is violated –∑
i 6=k,j,b,c

p(ρA|ΠbiΠcj)Ck(ρA|ΠbiΠcj) 6 6ε, (5.6)∑
i,j 6=k,b,c

p(ρA|ΠbiΠcj)Ck(ρA|ΠbiΠcj) 6 6ε, (5.7)∑
i=j=k,b,c

p(ρA|ΠbiΠcj)Ck(ρA|ΠbiΠcj) 6 ε, (5.8)∑
i=j 6=k,b,c

p(ρA|ΠbiΠcj)Ck(ρA|ΠbiΠcj) 6 2ε, (5.9)∑
i 6=j=k,b,c

p(ρA|ΠbiΠcj)Ck(ρA|ΠbiΠcj) 6 2ε, (5.10)∑
i=k 6=j,b,c

p(ρA|ΠbiΠcj)Ck(ρA|ΠbiΠcj) 6 2ε, (5.11)

where ε =
√

6.

Now, to prove the criteria (5.6), we consider that the conditional states of Alice have a
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local hidden state model as given in Eq. (5.4), i.e., ρA|ΠbiΠcj ≡
ρBC

Πb
i
Πc
j

p(ρBC
Πb
i
Πc
j

)
. Thus,

∑
i 6=k,j,b,c

p
(
ρBCΠbiΠ

c
j

)
Ck

( ρBC
ΠbiΠ

c
j

p(ρBC
ΠbiΠ

c
j
)

)

=
∑

i 6=k,j,b,c

p
(
ρBCΠbiΠ

c
j

)
Ck

(∑
λP(λ)P(b, c|Πb

iΠ
c
j, λ)ρQA(λ)

p(ρBC
ΠbiΠ

c
j
)

)

6
∑

i 6=k,j,b,c,λ

p
(
ρBCΠbiΠ

c
j

)P(λ)P(b, c|Πb
iΠ

c
j, λ)

p(ρBC
ΠbiΠ

c
j
)

Ck

(
ρQA(λ)

)
=

∑
i 6=k,j,b,c,λ

P(λ)P(b, c|Πb
iΠ

c
j, λ)Ck

(
ρQA(λ)

)
=

∑
k,j,c,λ

2P(λ)P(c|Πc
j, λ)Ck

(
ρQA(λ)

)
6

∑
j,c,λ

2P(λ)P(c|Πc
j, λ)ε = 6ε.

Now we focus on to single out the second set (set II), i.e., S(A ← B) ∪ S(A ←

C)}. This is the union of sets of states for which Alice (A) can be steered individually by

Bob (B) and Charlie (C). In this case, Alice ignores the results sent by one party while

acknowledging the other. A set of steering inequalities in this two-qubit scenario, where

Alice ignores the results of Charlie, can be constructed as [180, 181]∑
i=k,b

p(ρA|Πbi )Ck(ρA|Πbi ) 6 ε, (5.12)∑
i 6=k,b

p(ρA|Πbi )Ck(ρA|Πbi ) 6 2ε (5.13)

and similarly, when Alice ignores the results of Bob, can be expressed as∑
j=k,c

p(ρA|Πcj)Ck(ρA|Πcj) 6 ε, and (5.14)∑
j 6=k,c

p(ρA|Πcj)Ck(ρA|Πcj) 6 2ε. (5.15)

We denote all local unitary equivalent inequalities of Eqs. (5.8) as the first set and Eqs. (5.12)-

(5.15) as the second set of inequalities. It is our aim to look for a set of states which violate

at least one of the first set but not the second set of inequalities. This would ensure that the

state of Alice can only be steered by Bob and Charlie together but not individually.
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It is well known fact that a state is deemed steerable if a steering inequality is violated.

However, the converse is not always true. Thus, there is no definite way to single out the

set of such unsteerable states as is required in the two-qubit scenario to define the set of our

interest (Si). To overcome this issue, we need to use the tightest steering inequalities with

semi-definite programming and the free will to choose the bases. However, one may start

with the set of states for which bi-partite entanglements i.e., EAB and EAC are zero. For

such states, by definition, Alice cannot be steered in the two-qubit scenarios.

For example, we consider a genuine entangled state such as a generalized GHZ state

|ψ〉 = α|000〉+
√

1− α2|111〉, (5.16)

where 0 ≤ α ≤ 1. For the state, it can be shown that no inequality from the second set

is violated. This is due to the fact that the entanglement between Alice-Bob (EAB) and

Alice-Charlie (EAC) are zero for GHZ states. On the other hand, all the inequalities in the

first set are violated for a certain range of α. Inequality given in Eq.(5.8) gives violation

for the maximum range of α than the others. Therefore, we have only shown its variation

in Fig. 5.1.

Figure 5.1: Plot of left hand side of Eq. (5.8) considering Pauli bases with respect to

arbitrary reference frame vs α for generalized GHZ state in Eq. (5.16). For this range of α,

inequality (5.8) shows violation.

In this regard, a non-trivial example would beW state, i.e., |ψ〉W = 1√
3
(|001〉+ |010〉+

|100〉), for which (EAB) and (EAC) are non-zero. For this state inequalities of the set I are
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violated but not of set II . In set I first inequality gives a value of 15.6835, which is greater

than 6
√

6 ≈ 14.6969. Second one gives 15.6835 which is also greater than 6
√

6 ≈ 14.6969.

Third one is violated by 2.86603 which is greater than
√

6 ≈ 2.4495. Fourth one give

5.4664 which is again more than 2
√

6 ≈ 4.8989. Fifth and sixth one give 5.69936 which

is also more than 2
√

6 ≈ 4.8989. Now we examine the second set for W state. After

tracing out Charlie, the concurrence of the reduced density matrix of Alice and Bob is 2
3
.

First one give 1.84424, which is less than
√

6 ≈ 2.4495. For second one we get 3.54606

which is again less than 2
√

6 ≈ 4.8989. Now after tracing out Bob, the concurrence of

reduced density matrix of Alice and Charlie is again 2
3
. Third one give 1.84424 which is

less than
√

6 ≈ 2.4495. The final one give 3.54606 which is again less than 2
√

6 ≈ 4.8989.

Therefore, we see thatW state does not violate the inequalities in the second set, though the

reduced density matrix possesses some entanglement after tracing out one party. However,

if we consider a generalized W state of the form |ψ〉GW = 1
5
|001〉 +

√
3
5
|010〉 + 3

5
|100〉,

then this state gives violation for set I and set II both. In set I , first inequality gives

a value of 17.4464, which is greater than 6
√

6 ≈ 14.6969. Second one gives 14.5289

which is less than 6
√

6 ≈ 14.6969. Third one is violated by 2.92952 which is greater than
√

6 ≈ 2.4495. Fourth one gives 5.79661 which is more than 2
√

6 ≈ 4.8989. Fifth and sixth

one give 5.88952 which is also more than 2
√

6 ≈ 4.8989. Now we will see what happens

for the second set for this generalized W state. After tracing out Charlie, the concurrence

between Alice and Bob is 0.93. In the second set, first one gives 2.82029, which is greater

than
√

6 ≈ 2.4495. For second one, we get 5.64058 which is more than 2
√

6 ≈ 4.8989.

Now tracing out Bob, the concurrence between Alice and Charlie is 6
25

. Third one gives

0.893575 which is less than
√

6 ≈ 2.4495. The final one gives 1.77809 which is again less

than 2
√

6 ≈ 4.8989. Hence, using these two examples, we can emphasize that to violate

inequality from the second set, the concurrence of the reduced density matrix has to be

more than some specific value.
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5.3 Discussion

In this chapter, we have exploited the asymmetric nature of quantum steering and shown

the existence of polygamous nature of quantum non-locality, a unique property observed

so far only in quantum steering. A recipe has been provided to find the set of polygamous

steering states for three-qubit systems. We find that GHZ and W states are good examples

of polygamous states.
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Chapter 6

Coherence of quantum channels

The quantum coherence like other quantum resources is also fragile in the presence of noisy

environment. The interaction of quantum systems with environment have been extensively

studied using different models, in particular using noisy channels [16]. Characterizing all

these channels and their effect on various physical resources are vital [16, 105]. These

channels are also important to construct resource theoretic aspect of coherence. Here, in

this chapter, we consider a reverse question. Can we associate coherence with a quantum

channel? We define the coherence of quantum channels using the Choi-Jamiołkowski (C-J)

isomorphism [60–62]. In this chapter, we consider the unital as well as non-unital qubit

channels [62, 104, 105]. We compute their coherence and purity analytically. Using the

coherence-purity (CoPu) diagrams, we find that it may be possible to distinguish unital

channels and non-unital channels. The resource theory of coherence require two impor-

tant elements – free states and free operations [10, 106]. Free states are those which have

no coherence in a given reference basis. Free operations do not create any coherence and

are known as incoherent operations. Depending on the restrictions (physical requirement),

there exist different types of incoherent operations. The largest set of incoherent operations

contains Maximally Incoherent Operations (MIO) [9]. The other candidates are Incoherent

Operations (IO) [106], Strictly Incoherent Operations (SIO) [114, 117], Physical Incoher-

ent Operations (PIO) [107] etc. There are many other free operations in the literature like

Fully Incoherent Operations (FIO), Genuine Incoherent Operations (GIO) etc [10, 109]. It

is an important task to understand these operations and distinguish them. In this chapter,
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we aim to distinguish these operations using CoPu diagrams. Furthermore, we also con-

sider the class of coherence non-generating qubit channels (CNC) as well as the channels

to create maximal coherence (CMC). CNC is the bigger set in comparison to all incoherent

operations [109]. We also consider other known qubit channels like the class of Pauli chan-

nels, degradable and anti-degradable channels, amplitude damping channels, depolarizing

channels, and homogenization channels and show that they might be distinguished using

CoPu diagrams.

6.1 C-J Isomorphism and coherence of a channel

C-J isomorphism or channel state duality can be represented as [60–62]

ρAB = Φ⊗ IB(|Ψ〉AB〈Ψ|), (6.1)

where |Ψ〉AB is a maximally entangled state and Φ corresponds to a quantum channel. As

there is one to one map between the state and the channel, the coherence of the final state

ρAB can represent the coherence of the quantum channel. Hence, coherence of the channel

Φ is

Cl1(Φ) = Cl1(ρAB). (6.2)

In this chapter we will only consider qubit channels. For qubit channels, without loss of

generality, we will consider the singlet state as the two-qubit maximally entangled state.

The canonical form of singlet state is

|Ψ〉AB〈Ψ| =
1

4
(I⊗ I−

3∑
i=1

σi ⊗ σi), (6.3)

where σi (i = 1, 2, 3) are the Pauli matrices. Coherence of a state depends on the reference

basis used to write it. Here throughout the chapter, we will use computational basis as the

reference basis.

6.2 Coherence of the channels

Here we investigate the coherence of the unital as well as non-unital channels. According

to C-J isomorphism, the coherence of the channels is equivalent to the coherence of the
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transformed singlet state. Hence, the channel coherence and its other properties can easily

be evaluated. In this section, we will mainly follow the affine representation of the channel

(AROC) as described in Sec. 1.4, chapter 1.

6.2.1 Coherence of Unital Channels

Unital qubit channels are those which do not change the maximally mixed state, I/2. They

satisfy,
∑

iK
†
iKi = I =

∑
iKiK

†
i . From the section 1.4 in chapter 1, it is clear that the set

of unital channels can be represented as a three-parametric family of completely positive

maps. Now if we apply the C-J map on the state given in (6.3), then the final state will be

ρAB =
1

4

(
I⊗ I− ~λ · (~σ ⊗ ~σ)

)
. (6.4)

The positivity of the eigenvalues of ρAB will ensure the complete positivity of the unital

map. Let us define qij = 1 + (−1)iλx + (−1)i+jλy + (−1)jλz with i, j = 0, 1, where qij

are the four eigenvalues of the density matrix ρAB. Therefore, the positivity constraints on

the unital channels are [105]

qij ≥ 0. (6.5)

Using the l1-norm, the coherence of the unital channel is given by

Cl1 =
1

2

(
|λx + λy|+ |λx − λy|

)
. (6.6)

Note that the coherence does not depend on λz. It implies that many isocoherence planes

will lie along λz axis. This is the consequence of the choice of reference basis. The

coherence of unital channel will reach its maximum value 1 when we have λx = λy = ±1

or λx = −λy = ±1. The purity, as defined by P = Tr[ρ2], of the unital channel is given by

P =
1

4
(1 + |~λ|2). (6.7)

It is well known that the unital channels form a tetrahedron with unitary operators in its

vertices [182]. The state ρAB has the same geometrical picture. Bell states sits on the four

extremal points of the tetrahedron [182]. From eq. (6.7) it is clear that |~λ|2 = 4P − 1.

Values of λi lie on the surface of sphere with the radius 4P − 1 centered at the point

λx = λy = λz = 0. The channels with the same purity form a sphere. Therefore, there

may exist quantum channels with different coherence but the same purity (see Fig.6.1).
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Figure 6.1: The figure depicts the allowed region of coherence as measured by the l1-norm

for unital (region inside red curve) and non-unital (region inside black curve) channels, re-

spectively for the allowed purity range. The CoPu diagram shows that the channels outside

the overlap region are non-unital and can be exactly distinguished from unital ones. The

purity for these channels, P ∈ [1
4
, 1].

6.2.2 Coherence of Non-unital Channels

The non-unital qubit channels are characterized by six parameters as shown in the section

1.4 in chapter 1. The Choi matrix corresponding to the non-unital channels is given by

ρAB =
1

4

(
(I + ~τ · ~σ)⊗ I− ~λ · (~σ ⊗ ~σ)

)
. (6.8)

The positivity of the non-unital channel is guaranteed by ρAB ≥ 0. Let us define τ =‖ ~τ ‖

and n̂ = ~τ
τ
. Then the non-unital map is positive iff

qij ≥ 0 and τ 2 ≤ u−
√
u2 − q, (6.9)

where u = 1−
∑
λ2
i + 2

∑
λ2
in

2
i and q =

∏
qij [105].

The coherence of the non-unital channel is given by

Cl1 =
1

2

(
|λx + λy|+ |λx − λy|+ 2

√
τ 2
x + τ 2

y

)
. (6.10)
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Note that the coherence is independent of both λz and τz. Hence, some isocoherence planes

will lie on the λz and τz planes. The purity for the channel is given by

P =
1

4
(1 + |~λ|2 + |~τ |2). (6.11)

Eq. (6.11) can be written as |~λ|2 + |~τ |2 = 4P − 1. It is clear, as before, that for a fixed

purity, the values of parameters characterizing non-unital channels lie on the surface of a

sphere. By fixing purity we can get the allowed regions of coherence as is shown in the

Fig.6.1.

Observation 1: If the coherence of the channel is more than 1, then it is non unital. One

can easily see this from Fig. 6.1. Hence, CoPu diagrams can help us distinguishing between

unital and non unital channels for some region.

Observation 2: Unital channel cannot create coherence in the subsystem A whereas the

non-unital channel can.

It can be easily checked by looking at the density matrix of the subsystem A after

the operation of the channel on the state (6.3). For unital and non-unital channel density

matrices of subsystem A are respectively

ρuA =
1

2
I and ρnuA =

1

2

 1 + τz τx − iτy
τx + iτy 1− τz

 . (6.12)

where ρuA = Tr[Φu
A ⊗ IB(|Ψ〉AB〈Ψ|)] and ρnuA = Tr[Φnu

A ⊗ IB(|Ψ〉AB〈Ψ|)]. Note that the

non-unital channels with ~τ = (0, 0, τz), cannot create coherence in subsystem A.

If we look closely at Eq.(6.10) and Eq.(6.12), it is clear that the coherence of the nonuni-

tal channel can exactly be decomposed into the coherence of unital channel plus the coher-

ence induced in the subsystem A by the nonunital channel, i.e.,

Cl1(Φnu) = Cl1(Φu) + Cl1(ρnuA ). (6.13)

Also the Eq.(6.13) tells that Cl1(Φnu) ≥ Cl1(Φu). The Eq.(6.13) has been depicted in

Fig.6.2. Plot shows that the minimum coherence of nonunital channels are exactly equal to

the coherence induced in the subsystem A.

Proposition 1: All coherence breaking channels have zero coherence.

Proof. A quantum channel is called coherence breaking channel if it maps any state to an
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Figure 6.2: The channel coherence (Cl1(ρAB)) vs coherence induced in the subsystem A

(Cl1(ρA)) plot for nonunital qubit channels. The red curve depicts the nonunital channels

which has maximum coherence for a given subsystem coherence whereas blue one rep-

resents the nonunital channels with minimum coherence. Plot shows that the minimum

channel coherence is exactly equal to the coherence induced in the subsystem A.

incoherent state [183]. This fact directly imply the above proposition.1. As an example,

one can consider the case of qubit channels. For coherence breaking qubit channels, the

ΛΦ should take the following form [183]

ΛΦ =


1 0 0 0

0 0 0 0

0 0 0 0

τz 0 0 λz

 .

Applying this channel on the state (6.3), one can show that Choi matrix is

1

4


1 + τz − λz 0 0 0

0 1 + τz + λz 0 0

0 0 1− τz + λz 0

0 0 0 1− τz − λz

 .

Clearly, we get an incoherent Choi matrix.
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6.3 Coherence of incoherent channels

Like entanglement the concept of free operations or incoherent operations in resource the-

ory of coherence is not unique. There exists many concepts of incoherent operations from

the resource theory perspective of coherence. We have already discussed about different

incoherent operations in chapter 1. Here we will discuss about the coherence of the inco-

herent channels using C-J isomorphism.

The following Kraus representations are the possible FIOs for single qubits [109]
a1 b1

0 0

 ,

a2 b2

0 0

 ;


 0 0

a1 b1

 ,

 0 0

a2 b2

 ;


 0 d1

c1 0

 ,

 0 d2

c2 0

 ;


c1 0

0 d1

 ,

c2 0

0 d2

 ; (6.14)

where |a1|2 + |b1|2 = 1 = |a2|2 + |b2|2 and a1b
∗
1 + a2b

∗
2 = 0 = b1a

∗
1 + b2a

∗
2, and |c1|2 +

|c2|2 = 1 = |d1|2 + |d2|2. From Eq. (6.14) one can easily check that all the matrices of

a Kraus representations have the same form. As an example, the first two matrices have

nonzero entries only in the first row. The last one is the GIO for the qubit case. Note

that first two FIOs have zero coherence. The coherence and purity of last two FIOs are

Cl1 = |d1c
∗
1 + d2c

∗
2| and P = 1

2
(1 + C2

l1
). Hence, we have the relation 2P − C2

l1
= 1 with

P ∈ [1
2
, 1].

According to the Ref. [184], any qubit incoherent operation (IO) admits a decompo-

sition with at most five Kraus operators. A canonical choice of Kraus operators for IO

is 
a1 b1

0 0

 ,

 0 0

a2 b2

 ,

a3 0

0 b3

 ,

 0 b4

a4 0

 ,

a5 0

0 0

 , (6.15)

where one can choose ai ∈ R while bi ∈ C. Further,
∑5

i=1 a
2
i =

∑4
j=1 |bj|2 = 1 and

a1b1 + a2b2 = 0 holds. The coherence and purity of IOs are Cl1 =
∑4

i=1 ai|bi| and P =

1
2
[1 − µ(1 − µ) − κ(1 − κ) +

∑4
i=1 a

2
i |bi|2], respectively, where µ = (a2

2 + a2
4) and κ =

(|b1|2 + |b4|2).
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Similarly, Ref. [184] shows that the canonical set of Kraus operators for SIO is
a1 0

0 b1

 ,

 0 b2

a2 0

 ,

a3 0

0 0

 ,

 0 0

a4 0

 , (6.16)

where ai ∈ R and
∑4

i=1 a
2
i =

∑2
j=1 |bj|2 = 1 holds. The coherence and purity of SIOs are

Cl1 = a1|b1| + a2|b2| and P = 1
2
[1 − ν(1 − ν) + |b1|2|b2|2 +

∑2
i=1 a

2
i |bi|2], respectively,

with ν = (a2
1 + a2

3).

The CoPu diagrams in Fig.(6.3) show that SIOs are subset of IOs. Note that all of the

purity range is not allowed for both SIOs and IOs.

Observtion 3: It is possible to distinguish between SIO and IO for some regions of CoPu

diagram in Fig. 6.3. According to the Ref. [184,185], if one considers state transformation

by incoherent operations, qubit SIOs and IOs are equivalent. However, the above observa-

tion tells us the opposite behavior.
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Figure 6.3: The allowed coherence-vs-purity region for IO (region inside black curve) and

SIO (region inside red curve) respectively. Coherence of the channels is measured by l1-

norm. The figure depicts the well known phenomenon that SIO ⊂ IO. Moreover, channels

outside the overlap region are IO and can be easily distinguished from the SIO.
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The Kraus representation of all possible single qubit PIOs are given by [185]
eiθ1 0

0 0

 ,

0 0

0 eiθ2

 ;


 0 0

eiφ2 0

 ,

0 eiφ1

0 0

 ;


eiθ1 0

0 0

 ,

0 eiφ1

0 0

 ;


 0 0

eiφ2 0

 ,

0 0

0 eiθ2

 ; (6.17)


eiθ1 0

0 eiθ2

 ;


 0 eiφ1

eiφ2 0

 , (6.18)

where first four PIOs are the coherence breaking channels and have zero coherence in both

KROC and AROC, and the last two PIOs are the all possible single qubit CPOs and have

unit coherence and unit purity in KROC. As the coherence of PIO is either zero or one

hence, we establish a well known fact that PIO ⊂ SIO ⊂ IO.

Although we have expected that the coherence of the incoherent channels will be zero,

it turns out to be not so. However, we draw the following observation from the incoherent

channels considered in this section.

Observation 4: All qubit incoherent channels which are either unital or nonunital, cannot

create coherence in the subsystem ‘A’ of its Choi matrix. It can easily be verified from the

Table 6.1.

Proof. Here we will try to prove the Observation.4 for IO, SIO and PIO. If we consider the

Kraus decomposition of IO as given in Eq.(1.49), then its Choi matrix will be

ρAB =
1

d

∑
i

Ki ⊗ I

(∑
lm

|ll〉〈mm|

)
K†i ⊗ I,

=
1

d

∑
cijc

∗
it|fi(j)〉〈j|l〉〈m|t〉〈fi(t)| ⊗ |l〉〈m|,

=
1

d

∑
cijc

∗
it|fi(j)〉〈fi(t)| ⊗ |l〉〈m|δjlδmt,

=
1

d

∑
cilc
∗
it|fi(l)l〉〈fi(t)t|.

Now the reduced density matrix of the subsystem A is

ρA =
1

d

∑
cilc
∗
it|fi(l)〉〈fi(t)| ⊗ 〈n|l〉〈t|n〉,

=
1

d

∑
cilc
∗
il|fi(l)〉〈fi(l)|. (6.19)
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Therefore, ρA is incoherent for IO. This also guarantees that ρA will be incoherent for SIO

and PIO. Although we do not have direct proof for other type of incoherent operations, the

following Table. 6.1 confirms that the Observation.4 is also true at least for single qubit

FIO and GIO.

This observation says that the nonunital channels which has ~τ = {0, 0, τz} qualifies as

potential candidates for incoherent operations (see Table 6.1).

Coherence of

Channels ρAB ρA τz

IO [0, 1] 0 *

SIO [0, 1] 0 *

PIO (CPO) 0 (1) 0 *

FIO (GIO) #([0, 1]) 0 # (0)

Table 6.1: Table shows that all qubit incoherent operations have zero coherence in ρA(=

TrA[ρAB]). The ∗ denotes that the corresponding channels are in general nonunital. The

# for FIOs indicates that the channels which have zero coherence (in Choi matrix) are

nonunital otherwise they are unital.

6.3.1 Coherence Non-Generating Channel (CNC)

A CPTP map, Φ which does not generate quantum coherence from an incoherent state is

known as the coherence non-generating channel [186], i.e., Φ[I] ⊂ I. The incoherent

operations are strict subset of these channels. These channels are different from the set

of incoherent operations in the sense that the monotonicity of coherence may break under

these operations while acting on one subsystem [186].

Proposition 2: For general qubit CNC channels, 0 ≤ Cl1 ≤
√

2.

Proof. A full rank qubit channel is CNC iff it admits following two Kraus decompositions
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[186]. The first one is

K1 =

eiη cos θ cosφ 0

− sin θ sinφ eiξ cosφ

 ,

K2 =

 sin θ cosφ eiξ sinφ

e−iη cos θ sinφ 0

 ,

where θ, φ, ξ, η ∈ R. Notice that K1 and K2 may not individually be incoherent but

K1(·)K†1 + K2(·)K†2 can be if sinφ cosφ sin θ cos θ = 0. Therefore, CNC channels may

not be incoherent.

The coherence and purity of the above channel are given by Cl1 = cos θ+ | sin θ sin 2φ|

and P = 1
8
(5+cos 2θ+2 cos2 θ cos 4φ), respectively. The incoherent condition will always

guarantee that the coherence will be less than or equal to 1. Otherwise, the coherence of

CNC can be 0 ≤ Cl1 ≤
√

2. The coherence will reach its maximum at θ = π
4

= φ.

The other CNC channel is given by

K1 =

cos θ 0

0 eiχ cosφ

 and K2 =

 0 sinφ

eiχ sin θ 0

 .

This channel is an incoherent channel. The coherence and purity of this CNC channel

is Cl1 = cos θ cosφ + | sin θ sinφ| and P = 1
16

(10 + cos 4θ + 4 cos 2θ cos 2φ + cos 4φ),

respectively and 0 ≤ Cl1 ≤ 1.

The Fig. (6.4) shows allowed range of all CNC channels. It is clear that allowed region

of incoherent CNCs is inside the region of all CNCs. From the CoPu diagrams it is clear

that for these channels, purity ranges from 1
2

to 1.

6.4 Coherence of other known qubit channels

In this section we will consider some known qubit channels and find its l1-norm coherence.

We will investigate whether these channels can be characterized by its coherence and pu-

rity.

Channel to obtain maximum coherence (CMC): The maximum value of the l1-norm co-

herence for two qubit system is 3. This value is achieved by the state | + +〉, where
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Figure 6.4: The allowed coherence-vs-purity region for CMC and CNC. The region inside

the red curve is for CNC and if the CNCs are incoherent then its coherence lie in the region

between black curves. The region between upper black line (y = 1 -line) and blue curves

is for CMCs. Note that for all these channels P ∈ [1
2
, 1].

|+〉 = 1√
2
(|0〉 + |1〉). Hence, its obvious to search for a qubit channel which will reach

this value.

Proposition 3: For general two qubit CMC channels, 1 6 Cl1 6 3.

Proof. The channel which may reach this value admits the following Kraus decomposition

K1 =
1√
2

 cos θ1 e−iφ1 sin θ1

eiφ1 sin θ1 − cos θ1

 ,

K2 =
1√
2

 cos θ2 e−iφ2 sin θ2

eiφ2 sin θ2 − cos θ2

 .

The coherence and purity of the channel is

Cl1 =
1

4

(
2 + ς +

∑
j=±

gj + fj

)
,

P =
1

16
(11 + 3 cos 2θ1 cos 2θ2 + ς + `21 + `12), (6.20)

where g± = |e±2iφ1 sin2 θ1 + e±2iφ2 sin2 θ2|, f± = 2|e±iφ1 sin 2θ1 + e±iφ2 sin 2θ2|, ς =

cos 2θ1 + cos 2θ2 and `mn = 4 cosm(φ1 − φ1) sinm nθ1 sinm nθ2. The coherence of the
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channel will reach its maximum, i.e., Cl1 = 3 for θ1 = π
4

= θ2 and φ1 = φ2. In fact, the

coherence of this channel obeys 1 ≤ Cl1 ≤ 3 which is confirmed by the CoPu diagram (see

Fig. (6.4)). Therefore, CMC channel either increases or unalters the coherence of the state.

Moreover, this channel can be considered as coherence generating channel.

Figure 6.5: Plot of the l1-norm coherence of degradable (red regions) and anti-degradable

channels (blue regions) with the parameters θ and φ. It depicts that the whole region is

completely covered and degradable channels lie in the range 1√
2
≤ Cl1 ≤ 1.

A family of qubit channels: A family of qubit channels can be described by two Kraus

operators in σz basis as [187]

K1 =

cos θ 0

0 cosφ

 and K2 =

 0 sinφ

sin θ 0

 , (6.21)

where θ, φ ∈ [0, π]. In AROC, the channel is described by λx = cos(φ−θ), λy = cos(φ+θ),

λz = (cos 2φ + cos 2θ)/2, τx = τy = 0 and τz = (cos 2θ − cos 2φ)/2. The coherence and

purity of the channel are Cl1 = cos θ cosφ+ | sin θ sinφ| and P = 1
2

+ 1
8
(cos 2φ+ cos 2θ)2.

We know that a CPTP map can be described as a unitary coupling with the external

environment. If a CPTP map Φ changes a state ρS to ρ′S , then it can be represented as

ρ′S = Φ(ρS) = TrE[USE(ρS ⊗ ωE)U †SE], (6.22)

where USE is the unitary coupling between the system and the environment E and ωE is a

fixed state of E. In this process environment state also changes to ω′E . A CPTP map can
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also be represented as operator sum representation as in Eq. (1.43). The final environment

state can be found from the initial system state ρ by using the complementary channel Φ′

of Φ as

ω′E = Φ′(ρS) = TrS[USE(ρS ⊗ ωE)U †SE]. (6.23)

A map Φ is called degradable if there exists a third map Ω such that Φ′ = ΩΦ and Ω takes

the state ρ′S to ω′E [187]. Similarly a map is antidegradable if there exist a Ω such that

Φ = ΩΦ′ and which take the final environment state ω′E to ρ′S [187]. More details can

be found in the reference [187]. The channel represented in Eq. (6.21) is degradable for
cos 2θ
cos 2φ

≥ 0, otherwise anti-degradable [187], see Fig.(6.5). The Fig.(6.5) shows that the

coherence of degradable channel satisfies 1√
2
≤ Cl1 ≤ 1. The CoPu diagram in Fig.(6.7)

also confirms this observation.

Observation 5: If the channel in Eq.(6.21) is anti-degradable then its coherence be always

less than 1√
2
.

For cos 2θ = 1 and cos 2φ = 2η−1, it describes the amplitude damping (AD) channels

with damping rate η. The coherence and purity of AD channels are Cl1 =
√
η and P =

1
2
(1 + C4

l1
) respectively. Equivalently, Cl1 = 4

√
2P − 1. As it is a non-unital channel, the

CoPu diagram for this channel is shown in Fig.(6.7).

If sin θ = ± sinφ, the above channel becomes unital. Specifically, for θ = φ, the

channel becomes a bit flip channel but for θ = −φ, it is a bit-phase flip channel. The

coherence and purity of both bit flip and bit-phase flip channels are Cl1 = cos(2θ) and

P = 1
4
(1 + 2C2

l1
) respectively or equivalently, 2P − C2

l1
= 1

2
, with P ∈ [1

4
, 3

4
]. The

above channel will unitarily transform to a phase flip channel (decoherence channel) if we

multiply the Kraus operators with Hadamard gate [187]. All the Pauli channels are unital

channels. Thus, the CoPu diagrams of these channels can be depicted inside the CoPu

diagram of general unital channels (see Fig. (6.6)).

Qubit Decoherence, Depolarization and Homogenization channels: The decoherence,

depolarization and homogenization are nonunitary channels and form Markovian semi-

group [182].

The decoherence is a process in which the off-diagonal terms of the density matrix of

a quantum system are continuously suppressed in time, i.e., ρ → ρt→∞ = diag(ρ). The
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Figure 6.6: Figure depicts the coherence vs purity curve for unital channels. The red curve

depicts the decoherence channels which coincides with the lower boundary of CoPu curve

of unital channels. The green curve represents the depolarizing channels and the orange

one is for the bit flip as well as bit-phase flip channels.

decoherence channel is described by λx = λy = e−
t
T and λz = 1. This channel is a unital

channel. The coherence and purity of this channel are given by

Cl1 = e−
t
T and P =

1

2
(1 + C2

l1
) (6.24)

respectively. Now we have 2P − C2
l1

= 1. As P ∈ [1
2
, 1], the decoherence channels will

represent the minimum coherence boundary of unital channels. The CoPu diagram for this

channel is in Fig.(6.6).

Observation 6: For the qubit decoherence channels, the concurrence and the l1-norm co-

herence are same.

The above observation can be easily verified as the concurrence of the decoherence channel

is e−
t
T [182].

The depolarizing channel with noise parameter p transmits an input qubit perfectly with

probability 1− p and outputs the completely mixed state with probability p, i.e., ρ→ ρf =

(1 − p)ρ + pI/2. The depolarization channel is described as λx = λy = λz = e−
t
T . This
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channel is also a unital channel. The coherence and purity of this channel are

Cl1 = e−
t
T and P =

1

4
(1 + 3C2

l1
), (6.25)

respectively. Therefore, 4P − 3C2
l1

= 1, with P ∈ [1
4
, 1]. This restriction is represented in

CoPu diagram (see Fig.(6.6)).

The homogenization is an evolution that transforms the whole Bloch sphere into a single

point, i.e., it is a contractive map with the fixed point (the stationary state of the dynamics).

This map is described by λx = λy = e
− t
T2 , λz = e

− t
T1 , τx = τy = 0 and τz = ω(1− e

− t
T1 ),

where the parameters, ω is the purity of the final state, T1 is the decay time, T2 is the

decoherence time. It is a non-unital process. The coherence and the purity of this channel

are

Cl1 = e
− t
T2 and P =

1

4
[1 + e

− 2t
T1 + 2e

− 2t
T2 + ω2(1− e

− t
T1 )2], (6.26)

respectively. For ω = 1 and T2 = 2T1, we have the relation between the coherence and

purity as given by Cl1 = 4
√

2P − 1. Some CoPu diagrams of this channel are shown in Fig.

(6.7).

6.5 Relative Entropy of Coherence and Holevo quantity

Here, we find a complimentarity relation between the relative entropy of coherence and the

Holevo quantity of the channel. Recently, there has been an attempt to find such relation

involving quantum coherence and the information processing quantities like superdense

coding capacity, teleportation fidelity etc [188]. In fact, in Ref. [189], authors try to relate

the Holevo quantity with the loss of coherence due to the projective measurement in one of

the subsystems of an arbitrary bipartite density matrix.

The Holevo quantity is lower bound to the classical capacity of the quantum chan-

nel. In fact, the Holevo quantity is exactly equal to the classical capacity for all entan-

glement breaking channels, depolarizing channels and qubit unital channels. Let us define

the Holevo quantity, χ. Let Alice encode the information of an random variable X in an

quantum ensemble {px, ρx} and sends it to Bob through a quantum channel. In order to

extract the information about X , Bob will perform positive operator valued measurement
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Figure 6.7: Figure depicts the coherence vs purity curve for non-unital channels. The

green region represents the anti-degradable channels whereas the yellow region shows the

degradable ones. The lower boundary of these two channels coincides with the red curve

which represents the amplitude damping channels. The blue, orange, red and the purple

curve represents the homogenization channels for T2 = T1, 2T2 = T1, T2 = 2T1 and

T2 = 5T1 respectively with ω = 1. Note that the T2 = 2T1 curve coincides with AD curve.

(POVM) on the received state and record the outcomes which is another random variable

Y . Then we have the following inequality

I(X : Y ) ≤ S(
∑
x

pxρx)−
∑
x

pxS(ρx), (6.27)

where S(ρX) −
∑

x pxS(ρx) = χ, the Holevo quantity []. It gives the upper bound to the

accessible information about X by Bob.

The classical correlations [190] and the Holevo quantity are related concepts [191]. A

bipartite state will have classical correlations if after application of rank one POVM (i.e.,

entanglement breaking operation) on one of the parties will transform the state to either

classical-quantum (CQ) or quantum classical (QC) states [191]. The classical correlations
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[190] of a quantum state ρSA is given by,

J = sup
Πj

[
S(ρS)−

∑
j

pjS(ρS|ΠAj )

]
, (6.28)

where ρS|ΠAj are the post measurement states with probability pi due to the application of

projective measurements ({Πj}) on the part A of the Choi matrix ρSA. Application of

projective measurements on the A, the average post measurement state will be of the form

of QC state, i.e.,

ρQC =
∑
i

piρ
i
Q ⊗ |i〉〈i|C , (6.29)

where ρi are not orthogonal. Therefore, the classical correlations of the state ρSA should

be equivalent to the maximum possible mutual information of ρQC , i.e., J = I(ρQC) =

S(
∑

i piρi) −
∑

i piS(ρi), therefore, the classical correlations is nothing but the Holevo

quantity. Hence, the Holevo quantity of a channel is equal to the classical correlations of

its Choi matrix [191].

The classical correlation, i.e., the Holevo quantity is bounded by the relation χ(Φ) 6

log d. This observation leads us to derive a complementarity between the relative entropy

of coherence and the Holevo quantity of a channel.

Theorem – The complementarity relation between the Holevo quantity and the channel

coherence is given by

Cr(Φ) + χ(Φ) 6 2 log d, (6.30)

where d is the dimension of the system B(A).

Proof. Under state-channel duality, we have [60–62]

ρAB = (Φ⊗ I)|Ψ〉AB〈Ψ| ≡ Φ(|Ψ〉AB). (6.31)

The relative entropy of coherence for ρAB is defined in the basis {|µi〉|i〉}, where {|µ〉}

is eigen basis of ρA and {|i〉} is the basis in which a rank one projective measurement is

performed on B. Therefore, we have

Cr(ρAB) = S(ρDAB)− S(ρAB). (6.32)
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The Holevo quantity or the classical correlation is given by

χ(Φ) = J(ρAB) = S(ρA) + S(ρDB)− S(ρDAB), (6.33)

where S(ρDAB) =
∑

i(I⊗ Πi)ρAB(I⊗ Πi) with Πi = |i〉〈i|. Thus we have

Cr(ρAB) + χ(Φ) = S(ρA) + S(ρDB)− S(ρAB). (6.34)

Using the triangle inequality for S(ρAB), i.e., S(ρAB) ≥ S(ρA)− S(ρB), and the fact that

S(ρB) ≤ log d and S(ρDB) ≤ log d, we have

Cr(ρAB) + χ(Φ) ≤ 2 log d. (6.35)

Hence the proof.

The above relation shows that the more coherence a channel has, the less will be its

Holevo quantity.

6.6 Discussion

The significance of this chapter is three fold: Choi-Jamiołkowski isomorphism allows us to

associate a density matrix with a channel. The purity and coherence of this density matrix

can be fruitfully associated with the channel. Using CoPu diagrams it may be possible

to distinguish different qubit channels. Distinguishing the channels using CoPu diagrams

depicts the inter-relation between purity and the coherence of the channels. It has a broader

meaning also, e.g., given a purity one may not find a channel which has certain amount

of coherence. These relations between coherence and purity show deeper restriction on

available coherent channel.

If we look closely, we find that the purity and coherence satisfy the following equation

in some of the cases, i.e.,

$P − ϕC2
l1 = 1, (6.36)

where $,ϕ ∈ R.

We can rewrite this as, (√
$

ϕ

√
P
)2

− (Cl1)2 =

(
1
√
ϕ

)2

. (6.37)
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This expression can have an interesting interpretation. We can think of scaled
√
P as

time component, and coherence as the spatial component of a vector in two-dimensional

Minkowski space. This vector is timelike.

Boundaries of light cone are given by the following relation(
Cl1√
P

)2

=
$

ϕ
. (6.38)

In general, Cl1√P ≤ ±
√

$
ϕ

. Physically, this means that the allowed regions in CoPu diagrams

are restricted by the above relation. The values are further constrained by (6.37) and lie

inside hyperbolas within the above light cone boundaries.

Secondly, the CoPu diagram can help us in distinguishing different qubit channels, e.g.,

the unital and nonunital, the incoherent channels, degradable and antidegradable, Pauli

channels, etc. These studies unveil very interesting properties of these channels. For ex-

ample, we find that the qubit incoherent channels can either be unital or nonunital with

~τ = {0, 0, τz}. We also find that all coherence breaking channels has zero coherence.

However, this is not usually true for entanglement breaking channels. We observe that the

coherence preserving qubit channels have unit coherence.

Thirdly, we find a complimentarity relation between relative entropy of coherence and

the Holevo quantity of the channel. It says that if channel has more coherence, the Holevo

quantity of the channel will be restricted. Naturally, this relation is very much important in

quantum information processing tasks.

Although the main focus of this chapter is to study the single qubit coherence, it will

be interesting to extend these results to higher dimensional systems. There are many indi-

cations in this chapter how one might be able to do it.
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Summary

In this thesis, we have studied characterization and quantification of entanglement and

coherence in a bipartite and multipartite scenario. Here we give a brief summary of each

chapter.

In the introduction chapter, we have briefly surveyed the existing literature about the

characterization and quantification of entanglement and coherence.

For a two-qubit pure state characterization and quantification of entanglement is well

understood. However, this is not the case for a two-qubit mixed state. The violation of

Bell inequality guarantees the presence of entanglement in a system. Optimal Bell-CHSH

value for a two-qubit pure state only depends on entanglement. However, this is not the

case for a two-qubit mixed state. It is a common consensus that optimal Bell-CHSH value

for a two-qubit mixed state can be characterized by purity and entanglement. In the second

chapter we have illustrated that purity and concurrence (a measure of entanglement) are

not good enough to characterize optimal Bell-CHSH value. We required other functions of

state parameters to completely characterize optimal Bell-CHSH value.

In the third chapter, we have proposed a possible way to quantify entanglement in a

two-qudit system. To do this we have used Bell-SLK inequality. For a two-qudit pure

state we have found a nice relation between Bell-SLK function and entanglement as char-

acterized by negativity. This relation provides an operational way to detect and measure

entanglement. Moreover, we have shown that this scheme can be useful to quantify and

measure entanglement of some classes of mixed states. The proposed scheme is not only

experimentally feasible but is also superior to the conventional schemes like state tomog-

raphy.

In the next chapter, we have discussed the classification of six SLOCC classes of three-

qubit pure states. Using Pauli matrices we have constructed a few observables which can

completely distinguish these classes from each other. As these operators are constructed

from Pauli matrices and have a very simple structure, they are easily implementable in an

experiment. Moreover, we have provided a method to construct these observables in any
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basis. We have also discussed the usefulness of these observables for some classes of three-

qubit mixed states. By considering the teleportaion scheme of Lee et. al [166], we have

also shown that the teleportation fidelity can be measured using these observables.

In the fifth chapter, we have explored the possible connection between coherence and

steering in a three-qubit state. We have discussed a three-qubit steering scenario where

Alice cannot be steered independently either by Bob or Charlie but rather only if they

steer together. Using coherence of steered party, we have constructed some coherence

steerability criterias which are useful to identify such set of states.

In the final chapter, we have defined coherence of a quantum channel using Choi-

Jamiołlkowski isomorphism. For a fixed purity we find out the allowed range of coherence

and plotted them in coherence-purity diagram. Using coherence-purity diagram, one can

distinguish quiet a few qubit channels. Moreover, we have also discussed coherence of

different incoherent channels. From coherence purity diagram we can verify a well-known

fact about different incoherent operations, i.e., PIO ⊂ SIO ⊂ IO. Furthermore, we

have derived a complementarity relation between relative entropy of coherence and Holevo

quantity of the channel.
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