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Summary

After the discovery of the scalar particle in 2012 at the LHC, measuring its various prop-

erties and couplings with other fermions, gauge bosons and itself have been one of the

major goals of the particle physics community. So far all these measurements are at par

with the predictions for the Standard Model Higgs boson within experimental uncertainty.

In this thesis, we have considered the production of various multiparticle final states with

at least one Higgs boson. To study the effect of new physics lying at some high-energy

scale at comparatively low energy scale, one often relies on the effective field theory (EFT)

frameworks. We have briefly reviewed linearly and non-linearly realized EFTs. As the

processes considered in this thesis have production channels which occur at one loop, we

have reviewed techniques for reduction of one loop tensor integral to scalar integrals. We

have discussed various sources of divergences in the scalar integrals. Interference effect

between various classes of diagrams have been explored which facilitates a better under-

standing of various features of cross sections and distributions. Uncertainty due to scale

variation has been studied. Effects of various anomalous couplings have been studied both

on the inclusive and differential cross sections.

In particular, in one of the chapters, we have studied the processes — pp→ hhh, hhγ ,

and hhZ, where focus was on the gluon-gluon (gg) fusion channel contribution, mediated

by heavy quarks in one loop. This channel occurs at NNLO in QCD coupling, αs. To

pp→ hhh, the main contribution comes from gg→ hhh, as the contribution of qq̄→ hhh

is negligible because of tiny Yukawa couplings of light quarks. The gg→ hhh channel is

xix



specially sensitive to anomalous trilinear Higgs coupling. Unlike pp→ hhh, for pp→ hhZ

production, qq̄ initiated tree level channel is not suppressed. At the LHC, qq̄ initiated

channel contributes much more than gg fusion channel. However, with increasing center-

of-mass energy, gluon flux at the colliders increases. At 100 TeV collider, the contribution

to hhZ production cross section from gg fusion channel becomes comparable to that from

qq̄ initiated channel. The gg→ hhZ shows some modest dependence on anomalous hZZ

coupling. Also, pp→ hhZ is important as it is background to pp→ hhh. The overall

amplitude for gg→ hhγ is zero, owing to Furry’s theorem. Next we consider pp→ VV h

processes, (V = γ,Z,W ). Here also we compare gg fusion channel to qq̄ initiated channel

contribution. We find that for some of the processes gg fusion channel is comparable

to NLO QCD correction to qq̄ initiated channel. Effect of various anomalous couplings

on these processes both at the cross section and distribution level have been considered.

Next, we consider hh and hhh production to explore the shape of the Higgs potential. We

show various salient features of different Higgs potentials models. We further find the

constraints on the trilinear and quartic Higgs boson couplings in these models assuming

some benchmark uncertainties in the cross section measurement.
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Chapter 1

Introduction

After a long search for the last missing particle of the Standard Model (SM), i.e., the Higgs

boson, in many previous colliders, finally in 2012, a particle of mass 125 GeV was discov-

ered at the Large Hadron Collider (LHC) [3, 4]. Although the initial discovery gave sig-

nificant hints, further verification was needed for it to be called the SM Higgs boson. The

subsequent measurements of its various properties such as spin, CP state, couplings with

other Standard model particles, especially top quark and vector bosons, probed through

various production and decays channels are also so far consistent with the SM predictions

within experimental uncertainties [5]. The discovery of this particle is a great triumph

for particle physics community, since it can theoretically explain the generation of masses

of weak gauge bosons via spontaneous breaking of gauge symmetry without sacrificing

renormalizibility. From a theoretical point of view, this is remarkable as while in a renor-

malizable theory where UV divergences can be absorbed in a finite number of parameters,

is strongly predictive, a non-renormalizable one does not have the same predictive power

since it needs an infinite number of parameters to tackle the divergences.

Historically, in 1957, Schwinger attempted to unify weak and electromagnetic interac-

tions by putting two vector boson fields of weak interaction and neutral field of electro-

magnetic interaction in the triplet of SU(2) [6]. At that time, there was no hint of neutral

current interaction. After that, in around 1960, the experimental data for non-leptonic de-
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cays of strange particles indicated the presence of at least another neutral massive vector

boson [7]. In 1961, Glashow formulated a model with SU(2)×U(1) symmetry for four

vector bosons comprising three vector bosons of weak interaction, and photon [8]. How-

ever, in this work, masses of weak gauge bosons had to be put in by hand. This breaks

the gauge symmetry, making the model non-renormalizable (as it is a non-abelian the-

ory). Subsequently, Weinberg (1967) and Salam (1968) showed that the masses of massive

gauge bosons can be accounted by using Higgs mechanism [9–13]. One can introduce a

complex scalar doublet. The gauge symmetry is spontaneously broken by giving a non-

zero vacuum expectation value to one of the components of this doublet [14,15]. Weinberg

speculated in his work that as the masses are generated by spontaneous symmetry break-

ing rather than by explicit breaking, his theory might be renormalizable. Later t’Hooft in

1971 proved that Glashow, Weinberg, and Salam (GWS) model of electroweak interaction

is indeed renormalizable [16, 17]. While the presence of charged weak current was known

from the mid 1930s, the first experimental evidence of weak neutral current came in 1973

from electron–anti-neutrino scattering [18]. This gave a boom to GWS model. Later, in

1983, massive electroweak bosons, W± and Z, were directly discovered by UA1 and UA2

collaborations [19–22].

Like the electroweak interaction, several decades of research culminated in the present

form of quantum chromodynamics (QCD), based on SU(3) color gauge symmetry. Histor-

ically, many new particles such as Kaons, Lamdba were discovered around 1950s, which

decay much more slowly than their production. To explain this property of various such

particles a new1 quantum number S, Strangeness, was introduced independently by Gell-

1Back then only isospin quantum number was used in the context of strong interaction.
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Mann [23], and Nakano and Nishijima [24] around 1953. This number is conserved during

the production of these strong particles, but not in their decay. In 1961, Gell-Mann [25,26]

and Ne’eman [27] independently found a way to organize these various strongly interacting

particles in a specific pattern (the eight fold way). The principle of eightfold way was also

used to organize the spin-3/2 baryons in a decuplet which led to the prediction of Omega

(Ω−) particle and its subsequent discovery in 1965. The eightfold way, in 1964, led to the

introduction of quark model independently by Gell-Mann [28] and Zweig [29, 30]. How-

ever, here the underlying symmetry was SU(3) flavor symmetry, not the SU(3) color sym-

metry. In the quark sector, the need for a new quantum number other than flavor was first

hinted in 1965 for the consistency of ∆++ and Ω− particle wave-functions [31–33]. Finally,

in 1973, Gell-Mann, Fritzsch, and Leutwyler formulated quantum chromodynamics based

on SUC(3), in which three color states of a quark and eight color states of the gluons were

considered [34]. The direct evidence of gluon was found later in 1979 in the observation of

three jets [35,36]. In 1968, in a deep inelastic scattering experiment at SLAC, the phenom-

ena of scaling was discovered. It could be understood using current algebra tools, as shown

by Bjorken [37], or using parton model which was later introduced by Feynman [38, 39].

Subsequent idenfication of partons with quarks, and discovery of scaling violation gave

strong support to QCD. The quantum chromodynamics (QCD) shows two important fea-

tures: color confinement which explains non-observation of free color particles and the

asymptotic freedom [40,41], i.e., the QCD coupling constant decreases asymptotically with

increase in energy scale. At high energy, this asymptotic freedom allows us to use pertur-

bation theory for QCD calculations. To compute, proton-proton collision cross section to

some final states, we must know parton distribution functions, i.e., probability distribution
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of quarks, antiquarks, and gluon with some fraction of proton’s momentum. Because of

lack of our proper understanding of low energy QCD, the parton distribution functions are

obtained by using experimental data. However, lattice QCD calculation has been partially

successful in calculating parton distribution functions. The evolution of parton distribu-

tion functions with energy scale is governed by Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) equation [42–44].

Although, the quark model in 1964 was based on three light quarks (u,d,s), later in

1970, Glashow, Iliopoulos, and Maiani used a fourth quark, charm, to explain vanishingly

small flavor changing neutral current [45]. Subsequently, in 1974, charm quark was dis-

covered in the bound state J/ψ (cc̄) [46,47]. The third generation quarks were also discov-

ered [48–50] in 1977 (b-quark) and in 1995 (t-quark). The existence of this generation was

important to incorporate CP violation in the quark sector as only two generations cannot

give CP violation [51]. Meanwhile, the third generation charged lepton (tau) was also an-

ticipated in 1971 [52] and was later discovered in 1975 [53]. Finally with the discovery of

the Higgs boson in 2012, all the particles of the SM are now discovered. In the SM, there

are nineteen2 free parameters which need to be fixed by experiments. These are six quarks

and three charged leptons masses, four Cabibbo-Kobayashi-Maskawa (CKM) parameters,

three electroweak parameters, mass of the Higgs boson, one strong coupling, and one strong

CP phase. Except the Higgs boson’s mass, all other parameters were known before 2012.

In 2012, with the discovery of the Higgs boson with 125 GeV mass, all the nineteen free

parameters of the SM are now fixed. All the couplings in the SM depend on these pa-

rameters only. The measurements of various couplings for various particle interactions at

2With the discovery of the neutrino masses, at least seven more parameters are needed.
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experiments are so far consistent with the SM theoretical predictions within experimental

uncertainty. Except some couplings involving Higgs boson, all other couplings are very

tightly constrained from various experiments at the LEP [54], the Tevatron [55], various

previous colliders, and more recently at the LHC.

As we have just seen, the SM of particle physics has been spectacularly successful in

explaining various phenomena. Various experiments and theoretical propositions moulded

the current form of the SM. Despite its rich history and successes, there are still many ques-

tions on which the standard model is completely silent. Some of these unresolved questions

include hierarchy problem, why three generations, strong CP problem, unification, matter-

antimatter asymmetry, dark matter, nature of neutrino mass and so on [56]. Various beyond

the standard model scenarios, such as Supersymmetry, Technicolor, 2HDM, Little Higgs

model, pseudo Goldstone models, Dilaton model, and a host of other models with larger

symmetry and field contents have been proposed to tackle these various questions [57].

The predictions of these models still have to be tested experimentally in order to validate

them as theory. Models with Supersymmetry are one class of models which have shown

potential to answer many of the unresolved questions. But so far no experimental evidence

has been found for these models, neither in terms of discovery of a new resonance nor by

observation of any new phenomena. The data collected so far at the LHC has only elevated

the lower bounds on the masses of supersymmetric particles [58]. Models like Technicolor

are seriously constrained after the discovery of the Higgs boson. Parameters of pseudo-

Goldstone model, little Higgs model, and others are also getting constrained. Getting some

signature to validate string theory at the LHC seems next to impossible.

In the absence of the discovery of any new resonance, model independent study of
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new physics are becoming important. The dimension-six (D=6) operators, even though

non-renormalizable, are being used to parametrize the effect of UV-complete arbitrary new

physics lying at a high energy scale at comparatively much lower scale3. In 1986, Buch-

muller and Wyler listed D=6 operators [59] which obey SUC(3)× SUL(2)×UY (1). Some

of the redundant operators in this list have been reported from time to time. Now, in the

literature, there is Warsaw basis [60], in which after using equations of motions and other

properties, it has been shown that there are only 59 D=6 operators if baryon number con-

servation is assumed. If this baryon number conservation is relaxed, there are 4 extra op-

erators. There are other bases, such as SILH basis [61], Higgs basis [62] etc. It is possible

to go from one basis to others using equation of motion and some identities. Depending on

the processes under consideration, one decides which basis to work on. The coefficients of

these operators, called Wilson coefficients, are getting constrained with the accumulation

of more and more data at the LHC. There is another EFT, called Higgs EFT, where elec-

troweak symmetry is non-linearly realized, and Higgs boson there appears as a singlet of

custodial symmetry. This EFT is more general and, thereby, less predictive than SMEFT.

In the absence of any new signal, precision study is another way to search for any

new physics effect. Only experimental precision is not enough, theoretical precision is

needed as well so that if some mismatch is found between experiment and theory, one

can claim that as an evidence for beyond the SM physics. Here comes the importance

of radiative corrections. Techniques for one-loop calculation are quite straightforward and

follow some standard steps. For one loop calculation, every scalar integral or tensor integral

3Fermi theory of beta decay is one such example of effective field theory parametrizing the effect of
UV-complete SM at energies much lower than the electroweak scale.
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of any rank, with any number of denominators, can be written in terms of only four basic

types of scalar integrals — box, triangle, bubble, and tadpole [63] — which are known as

master integrals of one-loop calculation. There are several ways in which one can perform

the reduction of tensor integrals to master scalar integrals — Passarino-Veltman technique,

Oldenburg-Vermaseren technique, OPP method etc. [64]. During the reduction of integrals

to the master scalar integrals, sometimes rational terms appear, which are an artifact of

dimensional regularization. There are several publicly available packages to perform the

reduction of tensor integrals, most of which are based on Passarino-Veltman Technique.

In our calculation, however, we have used an in-house package, OVReduce [65], which

is based on Oldenburg-Vermaseren technique [66]. For the computation of master scalar

integrals, we have used publicly available OneLOop package [67].

As already discussed, parameters of several beyond-the-standard-model (BSM) scenar-

ios are getting severely constrained with the accumulation of more and more data. In such

a scenario, rare processes and radiative corrections may provide hint for new physics when

experiments will reach certain level of accuracy. This thesis considers various production

channels of a few multi-boson final states including the Higgs boson. In particular, we

focus on gluon-gluon (gg) fusion channels, which occurs at one loop. At a pp collider with

the increase in the center-of-mass energy gluon-gluon flux also increases. For this reason,

at the future high energy colliders, gg fusion channel processes will play an important role.

In one of the chapters, we consider the production of hhh, hhZ, and hhγ . Our main fo-

cus is the gg fusion channel contribution to the production of these final states. We also

study new physics effects in these processes. The effect of various anomalous couplings,

inspired partly by dimension-six operators, have been discussed. In particular, we consider
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the modification of tt̄h, hhh, hhhh, hZZ, and hhZZ couplings. Out of these, the tt̄h and

hZZ couplings have already been constrained up to 10-20% at 1σ confidence level, [68].

But the rest are practically unconstrained. Although the effect of scaling of some of these

couplings on these processes have already been considered in the literature, we study the

effect of derivative couplings as well which have not been considered before.

The hhh production process is particularly important as it depends on quartic Higgs

boson coupling. The gluon-gluon fusion channel is the dominant production channel for

this process. The gg→ hhh process is specially sensitive to anomalous trilinear Higgs

boson coupling. The pp→ hhZ production has quark-antiquark (qq̄) initiated tree level

contribution. The gg fusion channel for this process is next-to-next-leading order (NNLO)

in αs. This gg fusion channel is important also because it is one of the processes which

contains hhZZ coupling. For the triangle diagrams in this channel, the presence of axial

vector current introduces anomaly if only one flavor of a generation is considered in the

loop. However, with all the flavors in a generation, the anomaly cancels. The NNLO

contribution can be similar to next-to-leading order (NLO) contribution at the LHC, and

significantly more at higher center-of-mass energy machines. For the gg→ hhZ process,

there is some modest dependence on anomalous hZZ couplings. The gg→ hhγ process

doesn’t occur at the LO, owing to Furry’s theorem [69].

In another chapter, we consider the production of γγh, γZh, ZZh, and W+W−h at the

LHC, HE-LHC (27 TeV), and FCC-hh (100 TeV) colliders. In the SM scenario, some of

them have already been considered before [70, 71]. However, we use different tensor re-

duction technique, different package for scalar integrals, and above all different philosophy

for the calculation. In addition, we examine various other aspects for these processes. Our

8



main focus is to estimate the gg fusion channel contributions to their production and com-

pare them with corresponding contributions from the qq̄ initiated channel. We compare

the contribution of gg fusion channel with NLO QCD correction to qq̄ initiated process

at FCC-hh collider. In gg→WWh process, Furry’s theorem does not work for diagrams

where both top and bottom quarks are present in the loop. In this channel, tt̄ threshold

effect can be seen at 350 GeV in the center-of-mass energy distribution. Here we have

adopted kappa framework to study the effect of anomalous couplings on these processes.

We consider the effect on both gg fusion and qq̄ initiated channels.

This thesis also discusses possibility of distinguishing various Higgs potential scenarios

at the hadron colliders and the effect of these scenarios on hh and hhh productions through

gg fusion channel [72]. After the discovery of the Higgs boson, next quests are to explore

its exact nature, electroweak symmetry breaking mechanisms, shape of the Higgs potential

and so on. Besides Landau-Ginzburg potential of the SM, there are various other existing

scenarios for the Higgs potential. Some of such new physics scenarios are — Elemen-

tary Higgs in which scaling of the SM Higgs boson coupling and SMEFT are considered,

Nambu-Goldstone model [73] which arises from strong dynamics at high scales, Coleman-

Weinberg Higgs [74], Tadpole-induced Higgs [75]. The Higgs potentials in these models

have very different trilinear and quartic Higgs boson couplings than the ones in the SM.

Despite having different couplings from the SM ones, these models are still allowed by

the data collected at the LHC. So far, the trilinear Higgs boson coupling is very weakly

constrained [76] and there is no constraint on quartic Higgs boson coupling. In order to

distinguish these various Higgs potential scenarios, we consider hh production via the gg

fusion channel at various colliders. Out of box and triangle diagrams in this channel, the
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trilinear Higgs boson vertex is present only in the triangle diagrams. As different Higgs

potential scenarios predict different trilinear Higgs boson couplings, hh production, being

dependent on it, is capable of distinguishing these scenarios. We have studied interference

between the box and triangle diagrams and discuss its effect on total and differential cross

sections. The triangle diagram, being an s-channel one, contributes significantly near the

threshold of hh production. Because of this, with some ph
T cut, the triangle contribution

decreases faster than other contributions to the cross section. In addition, we consider the

possibility of constraining trilinear Higgs boson coupling if cross section can be measured

with some benchmark accuracies.

The trilinear and quartic Higgs boson couplings decrease in pseudo-Goldstone models,

increase in Coleman-Higgs model, and become nearly zero in the tadpole-induced model.

Pseudo-Goldstone model, besides changing tt̄h coupling, introduces tt̄hh and tt̄hhh ver-

tices, and cross section for this model is found to be more than that in the SM for both

hh and hhh productions. The contribution of the new pure square and interference terms

arising because of these new vertices have been computed. Unlike pseudo-Goldstone mod-

els, in the tadpole-induced and Coleman-Higgs models neither tt̄h coupling changes from

the SM value nor new vertices are introduced. The tadpole-induced model has larger cross

section than that of SM. The Coleman-Higgs model on the other hand has smaller cross

section. All these different cross sections allow us to discriminate these models at 27 TeV

collider and even more at 100 TeV collider. However, as is also well-known, the gg→ hhh

process detection is very difficult — the cross section for this process in the SM is around

30 ab and 3000 ab at 14 TeV (LHC) and 100 TeV (FCC-hh) colliders, respectively. There

are a total fifty diagrams — twenty-four penta, eighteen box, and eight triangle diagrams (if

10



only top quark is considered in the loop). Out of these fifty diagrams, the quartic Higgs bo-

son coupling is present only in two (triangle) diagrams. Constraining quartic Higgs boson

coupling with some reasonable degree will be extremely challenging as the cross section

depends very mildly on it. Interference of various classes of diagrams has been discussed

in detail in order to discern dependence of various parts of the cross section on the quartic

Higgs boson coupling. In addition, we have shown how the quartic Higgs boson coupling

measurement will depend on some benchmark values of trilinear Higgs boson coupling.

The thesis is organized as follows. In Chapter 2, we discuss the SM and EFT scenarios.

In Chapter 3, we describe the techniques of one-loop calculation. The production of hhh

and hhV , where V = γ,Z via gluon fusion channel and the effect of different D=6 operators

have been discussed in chapter 4. Next, in chapter 5, we discuss production of di-vector

boson in association with a Higgs boson at various hadron colliders. In Chapter 6, we

describe various Higgs potential scenarios and possibility of distinguishing them at hadron

colliders. We also examine the possibility of measuring the self couplings of the Higgs

boson. Finally, in Chapter 7, we conclude this thesis.
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In the absence of any new signal at the LHC after the discovery of the Higgs boson,

model independent studies of new physics in the effective field theory (EFT) framework

are gaining importance for constraining parameters of the BSM scenarios. Our main goal

in this chapter is to give a brief overview of various EFT frameworks. An EFT frame-

work can be used to describe the effect of new physics lying at some high energy scale

at comparatively low energy where the experiment is performed. One drawback of EFTs

is that these are non-renormalizable. The heavy degrees of freedom of the new physics

can be integrated out when the physics at relatively low energy scale is being studied, and,

this way matching of parameters of BSM scenarios with parameters of EFT can be done.

In this way, the parameters of an EFT framework, known as Wilson coefficients, are con-

strained. This can be translated to obtain bounds on parameters of a host of BSM models.

In the SM, SU(2)L×U(1)Y symmetry is realized linearly. There are two types of EFTs

for electroweak sector — one, where SU(2)L×U(1)Y is linearly realized and other where

the symmetry is non-linearly realized. These two types of EFT frameworks are known as

SMEFT and HEFT1, respectively. Before discussing various EFT scenarios, we will briefly

summarize the SM.

2.1 SM

Our current understanding of strong and electroweak interactions is encapsulated in the

SM, which is based on the gauge group SUC(3)×SUL(2)×UY (1). There are six flavors of

quarks, three charged leptons and three neutrinos as matter fields in the SM. Moreover, each

1In the literature, the same word HEFT is also used in completely different context: to describe effective
Lagrangian for the Higgs processes with infinitely heavy top quark limit.
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of the six quarks has three color states. All the matter particles in the SM except neutrino

have both right and left chiral states, while a neutrino has only left chiral state2. Each of

the matter particle has antiparticle counterpart with opposite chirality. Thus anti-neutrino

has right chiral state only. The strong, weak, and electromagnetic interaction in the SM

are mediated by gauge bosons. There are 8 colored gluons (g) which mediate strong in-

teraction, two heavy charged bosons (W±) and one neutral boson (Z) which mediate weak

interaction, and one photon (γ) which mediates electromagnetic interaction. The strong

interaction is governed by SUC(3) gauge symmetry, where each color of a quark trans-

forms under fundamental representation and each colored gluon transforms in the adjoint

representation of the group. As the group is non-abelian, the gluons also interact with them-

selves. This is unlike electrodynamics where a photon does not interact with itself, being

governed by abelian group. While the weak charged bosons interact only with left-chiral

fermions3 in a doublet, the neutral weak boson, Z, interact with both left and right handed

fermions. The electromagnetic interactions between two charged particles is mediated by

photon, γ . In the SM, weak and electromagnetic interaction is unified in the gauge group

SUL(2)×UY (1) 4. The gauge bosons for these groups are W 1, W 2, W 3, and B. The first two

unphysical fields mix to give physical W±. The last two unphysical fields mix by Weinberg

angle to give Z and γ . This clarifies how W± interact with left handed fermions only, while

Z and γ can interact with both. Because of non-abelian nature, like gluons, electroweak

gauge bosons also interact among themselves. In the SM, SUL(2)×UY (1) gauge symme-

2Now neutrinos are known to have masses. Neutrinos can be either Dirac or Majorana type. Models
accommodating masses for Dirac type neutrinos include both chiral states.

3We will not separately talk about anti-fermions. It is implicit that whatever is true for fermions with
specific chirality is also true for anti-fermions with opposite chirality unless stated otherwise. The exception
occurs in the case of CP violation.

4The “L" in SUL(2) tells that only left-handed fermions form doublet.
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try is spontaneously broken to UQ(1) by introducing a Higgs doublet and giving one of its

component a non-zero vacuum expectation value. In the unbroken phase, the full standard

model Lagrangian can be written as

LSM = ∑
f∈ q,l

i f̄Lγ
µDµ fL + ∑

f∈ u,d,e
i f̄Rγ

µDµ fR

−1
4

Ga
µνGa µν − 1

4
W i

µνW i µν − 1
4

BµνB µν

+(DµH)†(DµH)−µ
2
HH†H−λ (H†H)2

+[yd q̄LHdR + yuq̄LH̃uR + yel̄LHeR +h.c.], (2.1)

where the covariant derivative is defined as Dµ = ∂µ − igSIW I − ig′Y B− igsT aGa, SI =

σ I/2 and T a = λ a/2. σ I and λ a are Pauli and Gell-Mann matrices, respectively. The

field strength tensors are defined5 as Ga
µν = ∂µGa

ν −∂νGa
µ +gs f abcGb

µGc
ν , W I

µν = ∂µW I
ν −

∂νW I
µ +gε IJKW J

µW K
ν and Bµν = ∂µBν−∂νBµ . The H̃i is defined as H̃i = εi jH∗j . In the dou-

blet form, this can be written as H̃ = iσ2H∗. While the left handed quarks and leptons form

doublet of SUL(2), that is, qL =
(

uL
dL

)
, lL =

(
νL
eL

)
, the right handed fermions, uR,dR,and eR

are singlet, i.e., they remain invariant under SUL(2) group transformation. Leptons and

Higgs fields are singlet under SU(3)C.

Various comments and physics emerging from the above Lagrangian are as follows:

• We have suppressed here the Dirac indices, color indices, and generation indices for

brevity.

• The operators in the first line of Eq. 2.1 express fermions’ kinetic term and their

interaction terms with gauge bosons.
5The sign in front of coupling constants in covariant derivative and field strength tensor are correlated.
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• The operators in the second line of Eq. 2.1, express gauge bosons kinetic term and

self interaction of non-abelian gauge fields, Ga
µ , W I

µ .

• The operators in the last two lines are related to Higgs sector in the standard model.

The first term in the third line describes kinetic term of Higgs boson and interactions

of Gauge boson with Higgs boson. It also generates mass of the weak gauge boson,

when one of the component of the Higgs doublet gets a non zero vacuum expectation

value.

• The last two terms in the third line is the Landau Ginzberg potential in the standard

model, minimization of which generates Higgs boson’s mass. µ2 is negative. After

symmetry breaking, the physical Higgs boson gets positive mass. Although the Higgs

boson is discovered in 2012, the trilinear Higgs boson coupling is experimentally so

far poorly constrained and there is practically no constraint on quartic Higgs boson

coupling.

• The operators in the last line generates mass for quarks and charged leptons after one

of the component of Higgs doublet gets vacuum expectation value (vev). In the SM,

masses of fermions and vev can be taken as free parameters. As these parameters are

fixed by experiments, one has prediction for the Yukawa couplings of fermions with

the Higgs boson. Currently, measured Yukawa coupling of top quark with the Higgs

boson is consistent with prediction of Standard model within 10-20% 1σ experimen-

tal uncertainty.

• We have not added the gauge fixing terms and Faddeev-Popov ghost, required for
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proper quantization of gauge fields. The Faddeev-Popov ghost is especially required

in non-abelian gauge theory.

• SIW I = 1√
2
S+W++ 1√

2
S−W−+ S3W 3, where S+ = S1 + iS2 = σ1+iσ2

2 =
(

0 1
0 0

)
and

S− = S1− iS2 = σ1−iσ2

2 =
(

0 0
1 0

)
, and W± = 1√

2
(W 1∓ iW 2), where W± are the phys-

ical weak charged boson fields.

• The CKM matrix did not appear in Eq. 2.1 since the Yukawa matrices have not been

diagonalized. By field rotations of up and down type quarks, Yukawa matrices can be

diagonalized. To diagonalize up and down type Yukawa matrices, up and down type

quark fields of both helicities need to be rotated by four different unitary matrices6.

These rotation matrices will disappear from the neutral current interaction. But in

the charge current interaction, the associated unitary matrices for left-chiral up and

down type quark fields will remain and give rise to CKM matrix.

• W 3 and B fields mix together to give the physical weak neutral field, Z, and photon

field A. They follow
(

W 3

B

)
=
(

cosθw sinθw
−sinθw cosθw

)(
Z
A

)
. Using these equations, gS3W 3 +

g′Y B can be written in the following form: (gcosθwS3−g′ sinθwY )Z+(gsinθwS3+

g′ cosθwY )A. We would like to identify (gsinθwS3 + g′ cosθwY )A as eQA, where

e is the magnitude of electric charge. We can assign values to weak Hypercharge

Y depending on fermionic fields. But once Hypercharge for one particle is arbi-

trarily assigned, because of the assumed universality of electroweak couplings other

hypercharges are also fixed. In the following we will see how this happens. The

left-handed fermions are put in doublet, and right handed ones remain as singlet.

6See Chapter. 20 of Peskin and Schroeder.
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The doublets are denoted by qL =
(

uL
dL

)
and lL =

(
νL
eL

)
. The corresponding Q for

them are
(

+ 2
3 0

0 − 1
3

)
and

(
0 0
0 −1

)
, respectively. Now using leptonic doublet, we get

the following two equations:

0 =
g
2

sinθw +g′ cosθw yl

−e =−g
2

sinθw +g′ cosθw yl, (2.2)

solving which we get e = gsinθw and e = −2g′ cosθw yl . Here we can assign any

value to yl , and if we wish, accordingly we can redefine g′. But for convenience, let

us take yl = −1
2 . This sets e = g′ cosθw. Now, the hypercharge of all the doublets

and singlets can be calculated assuming weak universality. Let’s find hypercharge of

quark doublet:

+
2
3

e =
g
2

sinθw +g′ cosθw yq

⇒+
2
3

e =
e
2
+ e yq

⇒+
2
3
=

1
2
+1 yq

⇒ yq =
1
6

As the S3 acting on right-chiral field gives zero, it is easy to see for right-chiral fields,

hypercharge is equal to their electric charge quantum number, i.e., yeR = −1,yuR =

+2
3 , and ydR =−1

3 . Similarly, it can be shown that yH =+1
2 and yH̃ =−1

2 .

• In the Eq. 2.2, there are five unknowns, namely e,θ ,g,g′, and yl . We have fixed
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yl to be −1
2 . So there are four unknowns. We can choose two to be independent

and express other two in terms of them. We will choose e and θ to be independent,

and express g and g′ in terms of them. So g = e
sinθw

and g′ = e
cosθw

. So, we can

use this to write (gcosθwS3− g′ sinθwY )Z = e
cosθw sinθw

(cos2 θwS3− sin2
θwY )Z =

e
cosθw sinθw

(
cos2 θwS3− sin2

θw(Q−S3)
)

Z = e
cosθw sinθw

(S3− sin2
θwQ)Z.

• When Higgs doublet gets a vev, i.e., 〈H〉0 = 1√
2

(
0
v
)
, W± and Z get masses, while

photon remains massless. This happens as S+〈H〉0 6= 0, S3〈H〉0 6= 0, and Q〈H〉0 = 0.

We say the symmetry is only partially broken by the vacuum, and it still possess

the UQ(1) symmetry. The full symmetry in the Lagrangian is still there, but hidden.

Using 〈H〉0 = 1√
2

(
0
v
)

in (DµH)†(DµH), we get masses for W± and Z as MW = gv
2

and MZ = ev
2cosθw sinθw

= gv
2cosθw

= MW
cosθw

. As the vacuum possesses UQ(1) symmetry,

i.e., Q〈H〉0 = 0, the photon remains massless.

• After the spontaneous breaking of electroweak symmetry by the non-zero vacuum

expectation value of the Higgs doublet, some parts of standard model Higgs sector

still possess a symmetry, known as custodial symmetry. This can be seen in the

Higgs potential where after one of the components of the Higgs doublet gets vev, the

associated SO(4) symmetry of the Higgs potential breaks to SO(3) symmetry, which

is locally isomorphic to SUV (2). However this symmetry is not obeyed by all the

operators in Higgs sector, as the fermion masses of the third generation are not same

and also because of weak Hypercharge couplings which does not allow masses of the

three weak vector bosons to be same. At the tree level, the ρ = MW
MZ cosθ

parameter is

equal to 1. At the loop level, however, it gets correction from fermionic sector where
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the custodial symmetry is broken because of unequal masses of the quarks in the

third generation. But because of the loop suppression, the correction is still small.

• There are nineteen free parameters in the SM — nine masses (six quark masses

and three lepton masses), three Euler angles, one CP phase, one strong coupling gs,

two electroweak coupling g and g′, vev v, mass of the Higgs boson mH (or quar-

tic Higgs boson couplings λ ), and strong CP phase δCP. Instead of g, g′, and v,

some electroweak precision observables can be used as input variables for predic-

tion of other observables. Two popular choices are (i) αe =
e2

4π
=

g2g′2

4π(g2 +g′2)
,

MZ =
√

g2 +g′2
v
2

, and GF =
1√
2v2

— known as α scheme and (ii) MW = g
v
2

,

MZ =
√

g2 +g′2
v
2

, and GF =
1√
2v2

— known as MW scheme. The α scheme is

widely used in the literature. One of the electroweak observable it predicts is MW and

is given by MW = gv
2 =

√
e2v2

4sin2
θw

=
√

παe√
2GF sin2

θw
= MZ√

2

√
1+
√

1− 2
√

2παe
GF M2

Z
, where

we have used sinθw =

√
1− M2

W
M2

Z
to solve for MW . Using experimental values for

αe,MZ, and GF, gives tree level MW mass as 80.94 GeV [77], while the experimental

results point to a mass of 80.363± 0.020 GeV [5]. Higher order correction reduce

the theoretical MW mass significantly and now the theoretical prediction is within

experimental uncertainty. There are many other electroweak observables which have

been used to validate the SM electroweak sector [5, 77] and constrain parameters of

new physics models.

• In the SM, neutrinos are massless and there is no right handed neutrino. If we con-

sider neutrino masses and mixing angles, at least seven more free parameters appear,

increasing the total number of free parameters from nineteen to twenty six. It is to be
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noted that inclusion of right handed neutrino in the SM does not give rise to any fun-

damental problem. The charged weak boson still interact with left-handed doublets

and does not interact with right handed neutrino as it is singlet under SUL(2). Since

neutrino were considered to be massless, in the original SM, one Yukawa coupling

was set to be zero. There are many ways to give masses to neutrino. One popular

choice for generating neutrino mass is seesaw mechanism.

In this brief summary, we could not provide many other details of SM. For an elaborate

pedagogical review of the SM, readers are referred to [78].

2.2 SMEFT

An effective field theory describing physics at energies much below the mass scale Λ of

new resonances can be parametrized as

Le f f = LSM +∑
i

c(5)i
Λ

Q(5)
i +∑

i

c(6)i
Λ2 Q(6)

i +∑
i

c(7)i
Λ3 Q(7)

i +∑
i

c(8)i
Λ4 Q(8)

i + ... (2.3)

where each QD
i is an operator of canonical dimension D satisfying SUC(3)× SUL(2)×

UY (1) symmetry and the parameters ci are known as Wilson coefficients. The coefficients

are dimensionless. All the operators are formed using the SM fields only. This EFT is

known as SMEFT where the electroweak symmetry is linearly realized. As already men-

tioned in the introduction of this chapter, the main goal of studying new physics in EFT

framework is to constrain parameters of EFT scenario, which later can be translated to ob-

tain bounds on the couplings and masses of a host of BSM scenarios whose resonances
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lie in much higher energy regime than where the EFT is being applied. As far as the

low-energy phenomenology with respect to the new physics energy scale, Λ, is concerned,

generally operators with larger dimension are more suppressed, unless because of some

symmetry, lower dimensional operators’ effect is smaller. The effect of a D-dimensional

operator at the energy scale v is suppressed by the factor ( v
Λ
)D−4 in comparison to SM

effects. There is only one operator in D=5, known as Weinberg operator, which gives

Majorana mass to neutrinos. All the odd-dimensional operators violate B-L symmetry.

Experiments searching for the B-L symmetry violating processes have put stringent con-

straints on the corresponding Wilson coefficients. So the leading new physics effects come

from D=6 operators, which is suppressed by (
v
Λ
)2 with respect to SM effects. We don’t

discuss further suppressed next even dimension (D=8) operators here. The D=5 operator,

and D=6 operators in various bases will be discussed in this section. The list of D=7 and

D=8 operators can be found in [79–81].

We start our discussion with D=5 dimensional operators. In D=5 canonical dimension,

there is actually only one operator which satisfies SUC(3)×SUL(2)×UY (1) symmetry. This

generates Majorana mass for neutrino, as well as mixing. This is also known as Weinberg

operator and is given by

Q(5) = (H̃†l)TC(H̃†l) (2.4)

where C is the Charge conjugation operator, given by C = iγ2γ0.

There are many bases in which one can study the effects of D=6 operators. In 2010,

in Ref. [60], it was shown for the first time that for one generation there are only 59 non-
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redundant set of operators if baryon number conservation is assumed. This basis is now

popularly known as Warsaw basis. Although there are 59 B-conserving operators, there are

76 real parameters — 53 CP-even and 23 CP-odd parameters. If one consider full-flavor

structure this number 76 balloons to 2499 [82]. One can choose any basis and the pre-

dictions for new physics effects should not depend on the choice of basis. By the use of

equation of motion, Bianchi identity, field redefinitions, integration by parts, Fierz trans-

formation, one can move from one basis to other. Warsaw basis [60], SILH basis [61, 83],

and Higgs basis [62] are the widely used bases. One meticulously chooses one basis over

other depending on the observables under study. In the following, we will discuss these

bases. We will write down all the operators in Warsaw basis in the following subsection.

Next, we will write the SILH basis operators and show the translations from Warsaw basis

to SILH basis. After that we will discuss the effective Lagrangian in mass eigenstate and

Higgs basis. At the end of the section, we will briefly discuss various other frameworks

people use for EFT studies.

2.2.1 Warsaw basis

In 1986, Buchmuller and Wyler listed 80 B-conserving D=6 operators [59] which obey

SUC(3)× SUL(2)×UY (1) symmetry. There were 16 bosonic, 35 two-fermionic and 29

four-fermionic Baryon number conserving operators. In 2010, in Ref. [60], it was shown

that there are actually 59 (=15+19+25) non-redundant operators. The numbers 15, 19,

and 25 correspond to number of bosonic, two-fermionic (bosonic-fermionic mixed), and

four-fermionic (only fermionic) operators, respectively. In what follows, we briefly discuss
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these 15+19+25 non-redundant B-conserving operators. In Ref. [59], one operator was

redundant in the bosonic sector, and this reduces down the number of bosonic operators

in it from 16 to 15. Out of 35 two-fermionic operators in [59], 16 have been shown to

be redundant using equation of motions, integration by parts, and Bianchi identity. In the

four-fermionic sector, it missed one operator. However, using Fierz transformation it has

been shown that 5 four-fermionic operators are redundant. This makes total number of

non-redundant B-conserving four-fermionic operator as 25. However, all this discussion is

for B-conserving operators. If the baryon number conservation is relaxed, the number 25

in the four-fermionic sector increases to 29.

Q CP-even Q̃ CP-odd
QH� ∂µ(H†H)∂ µ(H†H)

QHD (H†DµH)∗(H†DµH)

Q6 (H†H)3

QHG (H†H)Ga
µνGaµν Q̃HG̃ (H†H)G̃a

µνGaµν

QHB (H†H)BµνBµν Q̃HB̃ (H†H)B̃µνBµν

QHW (H†H)W I
µνW Iµν Q̃HW̃ (H†H)W̃ I

µνW Iµν

QHWB (H†τ IH)W I
µνBµν Q̃HW̃B (H†τ IH)W̃ I

µνBµν

Q3G f abcGa
µνGbνρGc

ρµ Q̃3G εabcG̃a
µνGbνρGc

ρµ

Q3W ε IJKW I
µνW JνρW K µ

ρ Q̃3W ε IJKW̃ I
µνW JνρW K µ

ρ

Table 2.1: Bosonic CP-even and CP-odd D=6 operators in Warsaw basis. There are 9
bosonic CP-even and 6 CP-odd operators. So, in the Warsaw basis there are 15 bosonic

operators. The dual tensor F̃µν is defined as
1
2

εµνρσ Fρσ .

In Tab. 2.1, we list all the fifteen bosonic operators in Warsaw basis. Out of fifteen

operators, nine are CP-even and six are CP-odd. The operator Q6 gives correction to Higgs

boson mass and to SM trilinear and quartic Higgs boson self couplings. Moreover, it in-

troduces penta and hexa Higgs boson couplings. It is to be noted that both QHD and QH�

contribute to the kinetic term. If we wish to have canonical kinetic term, we need to redefine

25



fields. Additionally, these operators contribute to the Higgs-Gauge boson couplings. Other

operators which can contribute to Higgs-Gauge boson couplings are QHG, QHB, QHW ,

QHWB. The operators Q3G and Q3W introduce many penta and hexa gauge bosons self

couplings. The Wilson coefficients for many of these operators are constrained using Elec-

troweak precision data from the LEP, Tevatron, and the LHC, and the Higgs data from the

LHC [84]. The effects of six CP-odd operators are also found to be interesting [85, 86].

In Tab. 2.2, there are 19 operators. Out of which, 8 contribute to vertex corrections, 3

contribute to the Yukawa correction and the rest 8 contribute to the dipole correction. Many

of these Wilson coefficients are well constrained [84, 87, 88]. 12 of these 19 operators are

not Hermitian and for them Hermitian conjugate terms need to be added. In Tab. 2.3, we

tabulate all the B-conserving four-fermionic operators. For only one generation, there are

25 of them. However for general flavor structure, the number of four fermionic operators

becomes very large. Many of the Wilson coefficients are well constrained [89, 90] and

will be further constrained with the accumulation of more data in the current experiments

or at future colliders. Five of 25 four-fermionic operators are not Hermitian and for them

Hermitian conjugate terms need to be added. This makes the total number of CP-odd

parameters to be 23, that is, 6 from bosonic operators, 12 from two-fermionic operators

and 5 from four-fermionic operators.
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Q Vertex Q̃ Yukawa Q̃ Dipole
QHl (l̄iγµ l j)(H†←→DµH) QeH (l̄iHe j)(H†H) QeB (l̄iσ µνHe j)Bµν

Q′Hl (l̄iσ kγµ l j)(H†σ k←→DµH) QdH (q̄iHd j)(H†H) QdB (q̄iσ
µνHd j)Bµν

QHq (q̄iγµq j)(H†←→DµH) QuH (q̄iH̃u j)(H†H) QuB (q̄iσ
µνH̃u j)Bµν

Q′Hq (q̄iσ
kγµq j)(H†σ k←→DµH) QeW (l̄iσ µντ IHe j)W I

µν

QHe (ēiγµe j)(H†←→DµH) QdW (q̄iσ
µντ IHd j)W I

µν

QHu (ūiγµu j)(H†←→DµH) QuW (q̄iσ
µντ IH̃u j)W I

µν

QHd (d̄iγµd j)(H†←→DµH) QdG (q̄iσ
µνT aHd j)Ga

µν

QHud (ūiγµd j)(H̃†←→DµH) QuG (q̄iσ
µνT aH̃u j)Ga

µν

Table 2.2: Two-fermionic operators. Here l,q are left-handed doublet and e,u,d are right
handed singlet of SU(2), respectively. There are 19 two-fermionic operators — 8 vertex, 3
Yukawa and 8 dipole operators. Moreover, Hermitian conjugates of QHud , all the Yukawa
operators, and all the Dipole operators need to be added.

Q (L̄L)(L̄L) Q (R̄R)(R̄R) Q (L̄L)(R̄R) Q (L̄R)(L̄R) and(L̄R)(R̄L)
Qll (l̄γµ l)(l̄γµ l) Qee (ēγµe)(ēγµe) Qle (l̄γµ l)(ēγµe) Qlequ (l̄ je)ε jk(q̄ku)
Qlq (l̄γµ l)(q̄γµq) Qeu (ēγµe)(ūγµu) Qlu (l̄γµ l)(ūγµu) Q′lequ (l̄ jσ µνe)ε jk(q̄kσµνu)
Qqq (q̄γµq)(q̄γµq) Qed (ēγµe)(d̄γµd) Qld (l̄γµ l)(d̄γµd) Qqdqu (q̄ jd)ε jk(q̄ku)
Q′lq (l̄γµσ il)(q̄γµσ iq) Quu (ūγµu)(ūγµu) Qqe (q̄γµq)(ēγµe) Q′qdqu (q̄ jσ µνd)ε jk(q̄kσµνu)
Q′qq (q̄γµσ iq)(q̄γµσ iq) Qud (ūγµu)(d̄γµd) Qqu (q̄γµq)(ūγµu) Qledq (l̄ je)(d̄q j)

Qdd (d̄γµd)(d̄γµd) Qqd (q̄γµq)(d̄γµd)
Q′ud (ūγµT au)(d̄γµT ad) Q′qu (q̄γµT aq)(ūγµT au)

Q′qd (q̄γµT aq)(d̄γµT ad)

Table 2.3: Four-fermionic operators. There are 25 B-conserving four-fermionic operators.
Hermitian conjugates of 5 operators in (L̄R)(L̄R) and (L̄R)(R̄L), i.e., the operators in the
last column need to be added.

In the next subsection, we will discuss the SILH basis.

2.2.2 SILH basis

Even though physical studies can be done in any complete basis, some studies are more

transparent in one basis than others. One can go from one basis to other using equation of

motion, integration by parts, field redefinition etc. For some studies of new physics effects,

the SILH basis [61,83] may be more suitable than the other bases. For example, when new
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physics sector has direct coupling with the Higgs boson but not with the SM fermions, it is

better to parametrize new physics effects in terms of purely bosonic operators containing

Higgs boson rather than in terms of two-fermionic operators. For studying Higgs physics,

the SILH basis can be sometimes more suitable than the Warsaw basis. In the following,

we tabulate the bosonic operators in the SILH basis. Many operators here are same as that

in the Warsaw basis.

O CP-even Õ CP-odd
OH ∂µ(H†H)∂ µ(H†H)

OT (H†←→DµH)(H†←→DµH)

O6 (H†H)3

Og (H†H)Ga
µνGa µν Õg (H†H)G̃a

µνGa µν

Oγ (H†H)BµνB µν Õγ (H†H)B̃µνB µν

OB (H†←→DµH)DνBµν

OHB (DµH†DνH)Bµν ÕHB (DµH†DνH)B̃µν

OW (H†σ i←→DµH)DνW i µν

OHW (DµH†σ iDνH)W i µν ÕHW (DµH†σ iDνH)W̃ i µν

O2G DµGa µνDρGa
ρν

O2B DµBµνDρBρν

O2W DµW i µνDρW i
ρν

O3G f abcGa
µνGb νρGc

ρµ Õ3G εabcG̃a
µνGb νρGc

ρµ

O3W ε i jkW i
µνW j νρW k

ρµ Õ3W ε i jkW̃ i
µνW j νρW k

ρµ

Table 2.4: Bosonic CP-even and CP-odd D=6 operators. There are 14 bosonic CP-even and
6 CP odd operators. In the Warsaw basis, however, there are 15 bosonic operators. Extra
5 bosonic operators here in SILH basis are traded off for 2 two-fermionic operator and 3
four-fermionic operators in the Warsaw basis. It is to be noted that first 7 operators and last
four operators are also present in the Warsaw basis. Only 4 bosonic operators in Warsaw
basis are replaced by 9 bosonic operators in SILH basis.

We do not tabulate the two-fermionic and four-fermionic operators in the SILH basis, as

they are same as that in the Warsaw basis with the exception that [QHl]11,[Q′Hl]11, [Qll]1122,

[Qll]1221, [Quu]3333 are absent by definition, in order to account for the fact that the number

of bosonic operators in SILH is more than that in Warsaw basis by number five. It is often
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convenient to express result from one basis to another. The translation between Warsaw

basis and SILH basis can be obtained using Rosetta package [91].

2.2.3 Effective Lagrangian of mass eigenstates

In all the bases discussed above, we have considered dimension six operators where SUC(3)×

SUL(2)×UY (1) symmetry is manifest. In order to connect these new operators to phe-

nomenology, we need to work with Lagrangian in terms of mass eigenstates after elec-

troweak symmetry breaking by the vacuum. The SUL(2)×UY (1) symmetry is still present

in a non-manifest way in the effective Lagrangian of the mass eigenstates. As redefining

fields and couplings do not change physics, one can use this to bring the Lagrangian in

more organized form which will, in turn, allow us to interpret the effect of new physics on

physical observables conveniently. The parameters in the mass eigenstate can be written as

the linear combination of Wilson coefficients in SILH basis, or Warsaw basis or any other

suitable basis, and these relations can be found in [62, 92].

This framework is also known as Beyond-the-Standard Model Characterization (BSM

C) [91]. Here we do not impose any relation between the parameters and this is why the

number of parameters here is more than that of SMEFT D=6 operator bases. Therefore, it

can be used to constrain some more general theory that do not reduce to SM EFT at low

energies. As we do not impose any relation between the parameters in this framework, this

cannot be called a basis for D=6 operators. In the following subsection, we are going to

discuss a framework where parameters are related so that it can be called a basis.
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2.2.4 Higgs basis

Although Wilson coefficients in Warsaw and SILH basis can be connected to the parameters

in the Lagrangian in the mass eigenstate basis, the relations are often complicated. That

is why sometimes another basis is used where observables can be directly connected to

Higgs physics. This basis is called Higgs basis [62] which is defined using a subset of

couplings in the mass eigenstate and the rest of the couplings in the mass-eigenstate are

considered dependent couplings, so that it can be called a basis. There are in total 2499

real couplings in any D=6 operator basis. However, a much smaller subset is relevant for

the Higgs physics. The four fermionic operators and three field tensor operators do not

enter in the Higgs physics. In addition, one can impose minimum flavor violation (where

CP-violation comes only from SM operators), CP-conservation, custodial symmetry etc.

However, one should not set any parameter to zero without an underlying symmetry. After

all these symmetries (without minimal flavor violation) and constraints from EWPT, the

total 2499 number of parameters get reduced to eleven bosonic and fifty-four fermionic

parameters [92]. The fifty-four fermionic parameters get reduced to six parameters with

minimal flavor violation. Out of these seventeen parameters, ten parameters are CP-even

and seven are CP-odd. If we assume CP-conservation in the Higgs sector, there are only

ten CP-even parameters relevant for Higgs physics.

2.2.5 Other frameworks

Besides Warsaw, SILH, Higgs basis, there are other bases in the literature, such as HISZ

basis [93]. These bases are completely equivalent. The Rosetta package [91] can translate
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one basis to another. The Higgs basis can be considered as an extension of κ-framework.

In this framework, one just scales existing Higgs boson couplings to fermions, bosons and

itself without changing or introducing any new Lorentz structure. Thus κ-framework is less

general than the Higgs basis even when a lot of symmetry restrictions are imposed in the

latter. So, while the results obtained in the Higgs basis may be translated to κ-framework

parameters, reverse is not generally true.

Instead of SMEFT, sometimes a more general framework, pseudo-observable [92, 94]

are used where they are defined as the form-factors parametrizing the amplitude of physical

processes subject to Lorentz invariance. These are more general than SMEFT as this does

not impose any relation between the Form factors, and therefore constraints on the pseudo-

observable can always be projected into the constraint of D=6 operator basis parameters

but the reverse is not true.

Another widely used framework is Higgs characterization [95], where Higgs boson

couplings to gauge boson and fermions are more general than the Higgs basis, or any other

D=6 basis, as this does not impose various relations between them as present in the Higgs

basis. But it is not completely general than the D=6 basis since it does not include many

other corrections to standard model Lagrangian predicted in the SMEFT.

2.3 HEFT

In the previous two sections, we have discussed SM and SMEFT where the Higgs boson,

along with three goldstone bosons, is part of SU(2)L doublet. However current experi-

ments still allow the scenarios where the Higgs boson is not necessarily part of a doublet.
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There are models, such as dilaton model, for which SMEFT is not an appropriate frame-

work for the description of low energy behaviour. To describe IR behaviour for these

models, another EFT framework, known as Higgs EFT framework (HEFT) [73,96–108], is

used. Here the symmetry is realized non-linearly. Custodial symmetry should be preserved

while constructing such effective Lagrangian. This symmetry further gets broken down by

the fermion mass splitting and hypercharge U(1)Y group. The Lagrangian for the HEFT

framework is parametrized as

L = ∑
f∈ q,l

i f̄Lγ
µDµ fL + ∑

f∈ u,d,e
i f̄Rγ

µDµ fR

−1
4

Ga
µνGa µν − 1

4
W i

µνW i µν − 1
4

BµνB µν

+(∂µh)†(∂ µh)−V (h)

+
v2

4
Tr[(DµU)†(DµU)](1+2a

h
v
+b

h2

v2 + ...)

−[∑
f

m f f̄L U (1+ c1
h
v
+ c2

h2

v2 + c3
h3

v3 + ...) fR +h.c.], (2.5)

where V(h), the Higgs potential, is given by

V (h) =
1
2

m2
hh2 +d3(

1
6

3m2
h

v
h3)+d4(

1
24

3m2
h

v2 h4)+ ... (2.6)

U is given by

U = exp(iφ a
σ

a/v) (2.7)

32



and DµU is given by

DµU = ∂µU + i
g
s
W I

µσ
IU− i

g′

2
BµUσ3 (2.8)

In the SM, a = 1, b = 1, c1 = 1,c2,3,... = 0, d3 = 1, d4 = 1. In Eq. 2.5, the first

two lines give rise to same couplings as that in SM, cf. Eq. 2.1. The term non-linear in

this EFT comes from the fact that the Goldstone bosons, φa, transform non-linearly under

the SU(2)L×U(1)Y . However, the Higgs field h, being a singlet of custodial symmetry,

remains invariant. This is in sharp contrast with the SM (or SMEFT), where Higgs doublet,

H, containing both the Goldstone bosons φa and Higgs field h, is a doublet of SU(2)L

and transform linearly under SU(2)L×U(1)Y . In HEFT, various Higgs couplings are not

related as the the Higgs field h is a singlet here. On the other hand, in the SMEFT at fixed

order, the various Higgs couplings are related as it is determined by the associated doublet

structure.

In this section, the EFT we have considered is known as electroweak chiral Lagrangian

including a light Higgs boson. In the literature, there have been studies without Higgs also.

The QCD chiral Lagrangian is analogous to Higgs less electroweak chiral Lagrangian.

Pions in the former Lagrangian are like Goldstone bosons in the latter. Recently, the

bounds on the parameters of HEFT in the current and future experiments have been ob-

tained in [109]. Higher order terms in HEFT is determined by loop expansion rather than

dimensional counting. Details about the organization of higher order terms in HEFT can

be found in [98, 99, 110]. For more details about the HEFT framework, one is referred

to [73, 96–108].
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Chapter 3

One loop calculation
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Precision calculations have been crucial for testing various features of the SM, con-

straining parameters of BSM models and others for past several decades. The tree level

results suffer from large scale uncertainty, and higher order calculations help reduce this

scale dependence. In this chapter, our goal is to give a brief introduction to techniques of

one loop calculation. In loop processes, the amplitude contains integrals with respect to un-

determined loop momentum. Some of these are tensor integrals and others are scalar inte-

grals. However, any tensor integral can be reduced to a set of scalar integrals, called master

integrals. The tensor integral reduction to master integrals can be done following any of the

several techniques: Passarino-Veltman technique, Oldenborg-Vermaseren technique, OPP

method and others. These master scalar integrals can be found in Ref [63,111]. As the loop

momentum can take arbitrarily large or small value, many of these scalar integrals contain

divergences. Another issue that loop calculation often suffers from is numerical instability

for certain phase space points both in scalar integral and tensor reduction formulae. This

chapter will discuss these reduction techniques, possible sources of divergences, numerical

instability, rational terms etc.

One loop amplitude can be reduced to four types of master scalar integrals as follows:

M oneloop = ∑
i

(
ai Ai

0

)
+∑

i, j

(
bi, j Bi, j

0

)
+ ∑

i, j,k

(
ci, j,k Ci, j,k

0

)
+ ∑

i, j,k,l

(
di, j,k,l Di, j,k,l

0

)
+R,
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where

Ai
0 =

∫ dDQ
(2π)D

1
di
, Bi, j

0 =
∫ dDQ

(2π)D
1

di d j
,

Ci, j,k
0 =

∫ dDQ
(2π)D

1
di d j dk

, Di, j,k,l
0 =

∫ dDQ
(2π)D

1
di d j dk dl

, (3.1)

where, dis, the denominator factors, are given by di = (Q+qi−1)
2−m2

i with qi = ∑
i
j=1 p j

and q0 = 0. R is the rational term which is an artifact of tensor reduction in dimensional

regularization.

This chapter is organized as follows. In the first section, we discuss the scalar integrals

and possible sources of divergences. Next we discuss various tensor reduction techniques

used for one loop calculations. After that, there will be some discussion on the rational

parts. At the end, we discuss various available tools for one loop calculation.

3.1 Scalar Integrals

The four types of master scalar integrals are tadpole, bubble, triangle, and box integrals.

Tadpole and bubble scalar integrals contain UV divergences if they are not scaleless (if

they are scaleless, in the dimensional regularization they can be shown to be zero). On the

other hand, triangle and box scalar integrals can only have infrared divergences if certain

conditions are satisfied. However, tensor triangle integral of rank more than two and tensor

box integral of rank more than four will also have UV divergence, which can easily be seen

from naive power counting. Infrared divergences are of two types — soft and collinear.

Both of these give single pole in dimensional regularization. However, if both soft and
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collinear divergences are present in the same diagram, double pole can also appear. These

scalar integrals can be solved using Feynman parameters trick. All the scalar integrals

have been solved in terms of Spence functions and logarithms by t’Hooft and Veltman

[63]. Nowadays, there are many packages to calculate scalar loop integrals — FF [66],

OneLOop [67], QCDloop [111], Collier [112] etc.

We define scalar integrals in D dimension in the following way:

ID
1 (m

2
1) =

µ4−D

iπD/2rΓ

∫
dDQ

1
Q2−m2

1 + iε
,

ID
2 (p2

1;m2
1,m

2
2) =

µ4−D

iπD/2rΓ

∫
dDQ

1
(Q2−m2

1 + iε)((Q+q1)2−m2
2 + iε)

,

ID
3 (p2

1, p2
2, p2

3;m2
1,m

2
2,m

2
3) =

µ4−D

iπD/2rΓ

×∫
dDQ

1
(Q2−m2

1 + iε)((Q+q1)2−m2
2 + iε)((Q+q2)2−m2

3 + iε)
,

ID
4 (p2

1, p2
2, p2

3, p2
4,(p1 + p2)

2,(p2 + p3)
2;m2

1,m
2
2,m

2
3,m

2
4) =

µ4−D

iπD/2rΓ

×∫
dDQ

1
(Q2−m2

1 + iε)((Q+q1)2−m2
2 + iε)((Q+q2)2−m2

3 + iε)((Q+q3)2−m2
4 + iε)

,

(3.2)

where qn ≡∑
n
i=1 pi and we do the integration using dimensional regularization. We use

D = 4− 2ε . µ is a scale with mass dimension one, which is introduced to maintain the

dimension of the integrals same as that in D=4 dimension. It is to be borne in mind that ε

in D = 4−2ε and ε in iε’s of Eq. 3.2 are different. The constant rΓ is given by

rΓ =
Γ2(1− ε)Γ(1+ ε)

Γ(1−2ε)
= 1− γε +

1
12

(6γ
2−π

2)ε2 +O(ε3), (3.3)
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where γ = 0.5772... , Euler-Mascheroni constant. Notice that Eq. 3.1 and Eq. 3.2 differ

by some overall factor. To obtain Eq. 3.1, which appears in the calculation of amplitude of

one-loop diagram, from Eq. 3.2, we need to multiply the latter equation by a factor irΓ

(4π)
D
2
=

i
(4π)2

rΓ

(4π)−ε =
i

(4π)2 (1−γε+O(ε2))(1+ε log4π+O(ε2))= i
(4π)2

(
1+ ε(−γ + log4π)+O(ε2)

)
.

Next, we will discuss divergence structure of the integrals in Eq. 3.2. Naive power

counting reveals that, under certain conditions, tadpole and bubble scalar integrals can give

only UV divergence, whereas triangle and box scalar integrals can give only IR divergence

1. Below we will first investigate sources of divergence in triangle and box integrals. Then

we will discuss UV divergence in tadpole and bubble integrals.

IR divergence

IR divergence can be collinear, or soft, or both. In first two cases, divergences appear as
1
ε

in dimensional regularization or as logarithm divergence in mass-regularization). However,

in the last case, i.e., in the overlapping region, divergence appear as
1
ε2 in dimensional reg-

ularization or as double log in mass regularization. Below we will discuss circumstances

when collinear or soft divergences [111, 113] can appear in a loop integration.

Collinear Divergence: When two massless internal lines meet with an external line with

zero virtuality, collinear divergence occurs.

1Bubble integral could give IR divergence when both the masses are zero. But in that case the integral is
scaleless and, thereby, can be shown to be identically zero in dimensional regularization. In this regulariza-
tion, the scaleless bubble integral becomes zero by the cancellation of UV and IR divergences.
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Q

p

Q+ p

Figure 3.1: Collinear divergence. The lines with Q are parts of loop. The line with only p is
external line. A dashed line signifies masslessness for lines in the loop and zero virtuality
(p2 = 0) for external lines.

Let’s investigate the loop integration for the Fig. 3.1

∫ dDQ
(Q2−m2

1)((Q+ p)2−m2
2)

(3.4)

In the region of loop momentum where Q = x p+δ⊥, where δ⊥ is a small number and

perpendicular to p, Eq. 3.4 becomes

∫ dDδ⊥
(x2 p2 +2xp ·δ⊥+δ 2

⊥−m2
1)((1+ x)2 p2 +2(1+ x)p ·δ⊥+δ 2

⊥−m2
2)

(3.5)

So, from the Eq. 3.5, we see that only collinear loop momentum with the external line

is not sufficient to give IR divergence. It is clear from the above expression if any of p2, m1,

and m2 is non-zero2, the integral is finite. When p2 = 0, m1 = 0, and m2 = 0, the denomi-

nator becomes δ 4
⊥ and loop integration gives logarithmic divergence (or

1
ε

in dimensional

regularization) in the region Q = x p+ δ⊥. As in addition to the above mentioned con-

ditions, this divergence can occur only when the loop momenta Q is parallel to external

momenta p, this infrared divergence is called collinear divergence. Notice for D > 4 di-

2x=0 with p2 = m2
2 6= 0 and m1 = 0 or x=-1 with p2 = m2

1 6= 0 and m2 = 0 can also give IR divergence.
But we will consider x = 0,−1 cases, where momentum of some of the massless internal line becomes zero,
separately.
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mension, IR divergence is not present in Eq. 3.5. Also not all Qs which are around x p give

divergence, only those Qs which make p ·δ zero give divergence (see Eq. 3.5). This shows

why if two massless internal lines meet with an external line of zero virtuality, there will be

collinear IR divergence at some region of loop integration.

Soft Divergence: When a massless particle is exchanged between two onshell particles,

soft divergence occurs.

Q

m1

p1

m1

Q+ p1

Q+ p1 + p2

m2

p2

m2

Figure 3.2: Soft divergence. The lines with Q are parts of loop. The lines with only p’s are
external lines. A dashed line signifies masslessness.

Let’s investigate the loop integration for the Fig. 3.2

∫ dDQ
(Q2−m2

1)((Q+ p1)2−m2
3)((Q+ p1 + p2)2−m2

2)
(3.6)

In the region of loop momentum where Q+ p1 = δ , where δ is a four vector with

vanishing magnitude, Eq. 3.6 becomes

∫ dDδ

(p2
1−2p1 ·δ +δ 2−m2

1)(δ
2−m2

3)(p2
2 +2p2 ·δ +δ 2−m2

2)
(3.7)

So, from the Eq. 3.7, it is evident that only zero-momentum transfer is not sufficient to

give IR divergence. If any of m3 = 0, p2
1 = m2

1, and p2
2 = m2

2 is not satisfied, the integral is
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finite. When m3 = 0, p2
1 = m2

1, and p2
2 = m2

2, the denominator becomes p1 ·δ ×δ 2× p2 ·δ .

As in addition to the above mentioned conditions, this divergence occurs only when the

momentum transfer between the two on-shell lines is Q+ p1 = δ ≈ 0, this divergence is

called soft divergence. This shows why when a massless particle is exchanged between

two on-shell particles, soft divergence occurs. Here as well, like the collinear divergence,

for D > 4, IR divergence does not occur.

Collinear-Soft Overlap: When both collinear and soft divergences are present in an inte-

gral, most of the time divergence appears as
1
ε2 in dimensional regularization or as double

log in mass regularization.

In the above, we have investigated the cases where IR divergences can occur. There are

six types of basic IR divergent triangle scalar integrals from which others can be obtained.

And for box integrals the number of IR divergent integrals is sixteen [111]. However, it has

been shown that infrared structure of box integrals can also be written in terms of triangle

integrals, which can be used as a powerful check for the correctness of the IR structure of

the scalar integrals [113].

UV divergence

Having discussed the IR divergence of triangle and box integrals in the previous subsection,

here we will discuss the UV divergences which, as already stated before, can come among

all the scalar integrals from tadpole and bubble integrals only. We will show below the di-
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vergence structure of these UV-divergent scalar integrals in the dimensional regularization.

The expressions [111] for tadpole and bubble integrals are given by, respectively,

ID=4−2ε

1 (m2
1) = m2

(
µ2

m2− iε

)ε{
1
ε
+1
}
+O(ε) (3.8)

ID=4−2ε

2 (s;m2
1,m

2
2) = µ

2ε

{
1
ε
+2− ln(s− iε)+ (3.9)

2

∑
i=1

[
γi ln(

γi−1
γi

)− ln(γi−1)
]}

+O(ε),

where γ1,2 are given by

γ1,2 =
s−m2

2 +m2
1±
√
(s−m2

2 +m2
1)

2−4s(m2
1− iε)

2s
(3.10)

From Eq. 3.10, one can understand a source of threshold effects. For illustration, let us

consider m1 = m2 = m. Then γ1,2 can be written as

γ1,2 =
s± s

√
1− 4(m2−iε)

s

2s
(3.11)

So from Eq. 3.11, we see that there is a discontinuity in γ1,2 when center-of-mass energy,

s, crosses 2m. This is the reason of tt̄ threshold effect, the effect of which will be discussed

in the distribution of some processes in one of the subsequent chapters.

3.2 Tensor Reduction

For reduction of tensor integral to scalar integrals, there are many techniques available.

Passarino-Veltman (PV) [64, 114] and Oldenborgh-Vermaseren (OV) [66] techniques are
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two traditional analytic techniques for tensor reduction, with the former being more popu-

lar. Another method, based on numerical technique, known as OPP method is widely used

nowadays for reduction of amplitude to scalar integrals [115–117]. In this method, instead

of reducing individual tensor integrals, as done in PV and OV method, reduction is done at

the integrand level using kinematical equations for integration momenta. Loop reduction

can also be done using unitarity cut method [118–123], but here one cannot reconstruct

full rational parts of the amplitude. In the following subsections, we are going to discuss

Passarino-Veltman technique, Oldenborg-Vermaseren technique, and OPP method. How-

ever, we will not discuss unitary cut method, for which readers are referred to [64] and

references therein.

3.2.1 Passarino Veltman Technique

In this reduction method, we basically write all possible tensor structures of an integral with

coefficients in front of them, known as form factors. Contracting both sides of the integral

with external momenta (or some combination of them) or metric tensor gives a system of

linear algebraic equations, solving which gives expressions for form factors. The next job

is to write numerators in terms of denominators so that the integrals can be reduced to a set

of scalar integrals. For illustration, we will show how tensor rank-one bubble integral can

be written in terms of scalar integrals.

Bµ =
∫ dDQ

(2π)D
Qµ

(Q2−m2)((Q+ p)2−m2)
(3.12)
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Lorentz covariance tells us that we can write Eq. 3.12 as follows

Bµ = pµB1 (3.13)

where B1 is the form factor, the expression for which we wish to find. Contracting

Eq. 3.13 with pµ , and using Eq. 3.12 for expression of Bµ , we have

B1 =
1
p2

∫ dDQ
(2π)D

Q · p
(Q2−m2)((Q+ p)2−m2)

(3.14)

=
1
p2

∫ dDQ
(2π)D

1
2{(Q+ p)2−Q2− p2}

(Q2−m2)((Q+ p)2−m2)
(3.15)

=
1

2p2

∫ dDQ
(2π)D

[
1

(Q2−m2)
− 1

((Q+ p)2−m2)

− p2

(Q2−m2)((Q+ p)2−m2)

]
(3.16)

=−1
2

∫ dDQ
(2π)D

1
(Q2−m2)((Q+ p)2−m2)

=−1
2

B0

This is how a tensor integral can be reduced to a scalar integral(s). Notice how the

first two terms in Eq. 3.16 get cancelled after shifting the integration variable in the latter.

One can reduce other tensor integrals of higher rank to master scalar integrals by solving a

system of linear equations found using the same trick of contraction with external momenta

or metric tensor. These can be found in Appendix. A.1. One can refer to the articles [114]

and [64] for further details.
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3.2.2 Oldenborg Vermaseren Technique

For the processes considered in this thesis, we have used Oldenborg-Vermaseren tech-

nique [66]. To discuss this tensor reduction technique, we need to first discuss van Neerven-

Vermaseren basis. Here we will give a brief introduction to this basis and reduction tech-

nique. For further details about this basis, one is referred to Appendix. A.

The generalized Kronecker delta for µ1µ2 and ν1ν2 is defined as:

δ
µ1µ2
ν1ν2 =

∣∣∣∣∣∣∣∣∣
δ

µ1
ν1 δ

µ1
ν2

δ
µ2
ν1 δ

µ2
ν2

∣∣∣∣∣∣∣∣∣= δ
µ1
ν1 δ

µ2
ν2 −δ

µ1
ν2 δ

µ2
ν1 ; (3.17)

δ
p1 p2
q1q2

= δ
µ1µ2
ν1ν2 p1µ1 p2µ2 qν1

1 qν2
2 . (3.18)

= (p1 ·q1)(p2 ·q2)− (p1 ·q2)(p2 ·q1) .

For any two linearly independent vectors q1 and q2, we can define two dual vectors

u1 and u2 such that ui · q j = δi j. Now if we write u1 = a1q1 + a2q2, then using this in

qi ·u1 = δi1, we will get a matrix equation for a1 and a2:

q1 ·q1 q1 ·q2

q2 ·q1 q2 ·q2


 a1

a2

=

 1

0

 .

The above 2× 2 matrix is known as Gram matrix of q1 and q2, and its determinant is known

as Gram determinant. Solving the matrix equation for a1 and a2, we will get uµ

1 =
δ

µ q2
q1q2

δ
q1q2
q1q2

. Similarly, uµ

2 =
δ

q1 µ

q1q2
δ

q1q2
q1q2

. u1 and u2 are known as van Neerven-Vermaseren basis vectors.
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Using above expressions of u1 and u2, it can be shown that

u1 ·u1 u1 ·u2

u1 ·u2 u2 ·u2

 =

q1 ·q1 q1 ·q2

q1 ·q2 q2 ·q2


−1

.

For m linearly independent vectors q1,q2,q3, ...,qm, we will similarly get uµ

1 =
δ

µ q2q3...qm
q1q2q3...qm

δ
q1q2q3...qm
q1q2q3...qm

,

and so on.

The projective tensor is defined as

ω
µ

ν =
δ

q1q2...qmµ

q1q2...qmν

δ
q1q2...qm
q1q2...qm

=

(
δ

µ

ν −
m

∑
i=1

uiνqµ

i

)
=

(
δ

µ

ν −
m

∑
i=1

uµ

i qiν

)
(3.19)

where ω
µ

ν can be shown to hold the following properties:

ω
µ

ν qiµ = ω
µ

ν qν
i = ω

µ

ν uiµ = ω
µ

ν uν
i = 0, ω

µ

ν ω
ν
ρ = ω

µ

ρ ,and ω
µ

µ = n−m (3.20)

Using the definition of ω
µ

ν (Eq. 3.19), we have δ
µ

ν =
(

∑
m
i=1 uµ

i qiν +ω
µ

ν

)
. Contracting

this with Qν on both sides, we have

Qµ =

(
m

∑
i=1

uµ

i Q ·qi +ω
µ

Q

)
, (3.21)

which is known as van Neerven-Vermaseren decomposition.

Now after having defined all the required definitions, let us see how one does use these

formulae to reduce tensor integrals to scalar. Let’s take example of tensor rank-one triangle
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integral:

Cµ =
∫ dDQ

(2π)D
Qµ

(Q2−m2)((Q+q1)2−m2)((Q+q2)2−m2)
(3.22)

Cµ =
∫ dDQ

(2π)D

(
∑

2
i=1 uµ

i Q ·qi +ω
µ

Q

)
(Q2−m2)((Q+q1)2−m2)((Q+q2)2−m2)

[using Eq. 3.21] (3.23)

=
∫ dDQ

(2π)D

(
∑

2
i=1 (u

µ

i )(Q ·qi)
)

(Q2−m2)((Q+q1)2−m2)((Q+q2)2−m2)

In the above, the part with ω
µ

Q gives zero (see Eq. 3.20) as the integration can depend

only on qµ

1 and qµ

2 . uµ

i is one of the sources of numerical instability. Other source of nu-

merical instability in one loop calculation is the master scalar integrals. In the above Q.qi

can be written as the denominator factors (see Eq. A.5 and Eq. A.16), which will facilitate

the reduction of tensor to scalar integrals. More detailed description of this technique can

be found in Appendix. A.

3.2.3 OPP Technique

Unlike the previous two methods where reduction is done for each individual one loop

tensor integral of any rank and any point3,4, in the OPP method [115], reduction is done at

the integrand level. In the following, we will outline the basic steps of the OPP method.

3An N-point integral has N number of denominators.
4Scalar integrals of more than four points can also be reduced to master scalar integrals (see Ap-

pendix. A.4).
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The integrand of any m-point one-loop amplitude can be written as

A(Q) =
N(Q)

D1D2 · · ·Dm
, (3.24)

where Di = (Q+qi−1)
2−m2

i , and q0 = 0, q1 = p1, and qi = ∑
i
j=1 p j. The numerator N(Q)

of the above equation can be written in the following form [124]

N(Q) =
m

∑
i0<i1<i2<i3

[d(i0i1i2i3)+ d̃(Q; i0i1i2i3)]
m

∏
i 6=i0,i1,i2,i3

Di

+
m

∑
i0<i1<i2

[c(i0i1i2)+ c̃(Q; i0i1i2)]
m

∏
i6=i0,i1,i2

Di

+
m

∑
i0<i1

[b(i0i1)+ b̃(Q; i0i1)]
m

∏
i6=i0,i1

Di

+
m

∑
i0

[a(i0)+ ã(Q; i0)]
m

∏
i 6=i0

Di

+[P̃(Q)]
m

∏
i

Di (3.25)

From the above expression, it is clear that (d, d̃), (c, c̃), (b, b̃), (a, ã) are the coeffi-

cients of box, triangle, bubble, and tadpole scalar integrals, respectively. The coefficients

with tilde, which depend on the loop momentum, are known as “spurious terms". The

spurious terms have been defined in such a way that they vanish upon integration over

dDQ. Although Q dependence of these terms are known [115, 124], there are still some Q-

independent coefficients in these which need to be obtained numerically. Although these

spurious terms vanish upon integration over dDQ, knowing them is essential to find d,

c, b, a. For m-point functions, the numbers of d, c, b, a coefficients (without spurious

terms) are mC4, mC3, mC2, and mC1, respectively. Therefore, for six-point one-loop ampli-
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tude, total number of these coefficients is equal to 6C4 +
6 C3 +

6 C2 +
6 C1=15+20+15+6

=56. For five-point and four-point one-loop amplitude, the number of coefficients are

5+10+10+5=30 and 1+4+6+4=15, respectively. In principle, for example, for five-

point one-loop amplitude, one could sample N(Q) at 30 different Q values which would

give 30 linear equations. By inverting the resultant 30× 30 matrix, one should be able to

find all the coefficients for a particular phase-space point and helicity configuration. How-

ever, instead of inverting this huge matrix, one could find solutions for these coefficients

d,c,b,a sequentially by choosing particular Q values. For example, for five-point one

loop amplitude, first line of Eq. 3.25 is given by d(1234)D5 +d(1235)D4 +d(1245)D3 +

d(1345)D2 + d(2345)D1 (we have not written spurious terms explicitly). By solving for

Qs which satisfy D1 = D2 = D3 = D4 = 0, we will have only d(1234)D5 + d̃(Q;1234)D5

on the right hand side of Eq. 3.25 (as each term in second line to last line of Eq. 3.25 has

at least one of the denominator factors which is zero). Because of the quadratic nature of

the equations D1 = D2 = D3 = D4 = 0, solving them gives two distinct values of Q. As

the Q dependence of the spurious terms are known, one can find d(1234) and d̃(1234) by

solving two equations found by putting two values of Q satisfying D1 = D2 = D3 = D4 = 0

in Eq. 3.25, where d̃(1234) is the unknown Q-independent coefficient in d̃(Q;1234). Other

box coefficients can be found in exactly similar manner. After all the box coefficients

(b, b̃) are known, triangle coefficients can be found by making three denominators zero.

For example, by making D1 = D2 = D3 = 0, we can find c(123) and c̃(123) using the box

coefficients (as now box coefficients appear in the equations for c(123) and c̃(123)), which

are just obtained in the previous step. This way, once the coefficients of higher point scalar

integrals are known, the coefficients of lower-point integrals can be found in exactly similar
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manner. We will not discuss how to find rational terms using OPP method, for which one

can refer to the original paper [115].

3.3 Rational terms

Rational terms, R, are artifacts of tensor reduction in dimensional regularization. During

tensor reduction, some form factors may have terms containing the dimension D (= 4−2ε)

in the coefficients of master scalar integral. The ε present in D multiplying with poles (1
ε

or 1
ε2 ) of master scalar integral generates these rational terms.

To illustrate this, let’s take the example of B00 in Bµν =B00gµν +B11qµqν . The formula

for the form factor B00 is given by (Eq. A.9)

B00 =
1

2(D−1)

(
A0(2)+2m2

1B0(1,2)− f1B1(1,2)
)

(3.26)

Both A0 and B0, being ultraviolet divergent integral, contain a 1
ε

pole (see appendix. B.1).

On the other hand, 1
D−1 can be approximated as 1

3(1+
2ε

3 )+O(ε2). When this ε multiplies

1
ε

pole of the scalar integrals, it generates a finite term which is known as rational term. It

is be noted that the constant term, log(4πe−γ), in master scalar integrals and rational terms

are not same. The former constant term originates from the loop integration in dimensional

regularization while the rational terms are the artifacts of reduction of tensor integrals in

dimensional regularization. Anomaly such as non-conservation of axial vector current for

the quantum theory can be shown to have connection with rational terms.
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3.4 Tools for one loop calculation

The one loop calculation is standardized to a high degree. Nowadays, many packages are

publicly available to calculate scalar and tensor integrals. Few such packages which use

Passarino-Veltman reduction technique are LoopTools [125], FeynCalc [126], Package-

X [127], HEPMath [128], and Collier [112] etc. The OPP method has been implemented in

the package CutTools [117]. To calculate the master scalar integral, packages like FF [66],

OneLOop [67], QCDloop [111], and Collier [112] etc are mainly used. However, in our

calculation, for tensor reduction we have used an in-house package, OVReduce [65], based

on Oldenburg-Vermaseren Technique, and for scalar integral computation we use OneLOop

package [67]. We have used FORM [129], a symbolic manipulator software, for finding

traces of γ matrices and for simplifying amplitude.
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Chapter 4

Production of hhh and hhV (V = γ , Z) at

the hadron colliders

In this chapter, we consider the production of two Higgs bosons in association with a gauge

boson or another Higgs boson at the hadron colliders. We compute the cross sections and

distributions for the pp→ hhh and hhZ processes within the standard model (cross section

for pp→ hhγ is zero by Furry’s theorem). In particular, we compute the contributions

from gluon-gluon (gg) fusion channel mediated via heavy quarks in the loop. It is the

leading order contribution to the pp→ hhh process. To the pp→ hhZ process, it is next-

to-next-to-leading-order (NNLO) contribution in the QCD coupling, αs. We also compare

this contribution to the next-to-leading-order (NLO) QCD contribution to this process. The

NNLO contribution (coming from gg fusion channel) can be comparable to the NLO contri-

bution (coming from quark-antiquark (qq̄) initiated channel) at the Large Hadron Collider

(LHC), and significantly more at higher center-of-mass energy machines. We also study

the effects of anomalous tt̄h,hhh,hhhh,hZZ, and hhZZ interactions in these processes. The

anomalous couplings can enhance the cross sections significantly. The gg→ hhh process is

specially sensitive to anomalous trilinear Higgs boson coupling. For the gg→ hhZ process,

there is some modest dependence on anomalous hZZ couplings.
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In the absence of discovery of any new resonance after the Higgs boson in 2012, another

way of exploring any possible new physics is to study rare processes and radiative correc-

tions to various leading order processes. At a hadron collider, as the center-of-mass energy

increases, so does gluon-gluon luminosity. Therefore, at the LHC and at future proba-

ble hadron colliders, the gg fusion processes would play important role. In this and the

following chapters, we will consider a few 2→ 3 processes that occur at one-loop level.

Many gg fusion 2→ 3 one-loop processes have been considered in the literature before.

Many authors have computed the contribution of the gg fusion processes on ‘multi-bosons

+jets’ [71,130–141]. These different calculations use different tensor reduction techniques,

different packages for computing scalar integrals, and overall different philosophy for the

computation. We use our own tensor-reduction code, and have developed a comprehensive

package for such calculations.

In this chapter, we have considered hhh,hhZ, and hhγ production at the LHC and var-

ious future colliders. Our main focus is at the contributions of gg fusion channel. To the

process pp→ hhh, the contribution of the qq̄ initiated channel is negligible because of

extremely small Yukawa couplings of light quarks with Higgs boson, and the most of the

contribution comes from the gg fusion channel. To the process pp→ hhZ, the leading

order tree level qq̄ initiated production channel contributes at the zeroth order and gg fu-

sion channel contributes at next-to-next-to-leading-order (NNLO) in QCD coupling, αS.

One can also compute next-to-leading-order (NLO) QCD corrections to the tree-level pro-

cess [142]. We compare this gg fusion channel contribution which occurs at NNLO in αs

with the LO and NLO contributions from qq̄ initiated channel. The gg fusion channel cross

section can be similar to the NLO QCD correction to the tree level process at the LHC
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and can be significantly more at the 100 TeV collider (FCC-hh). We also study various

interference effects in gg fusion channel.

The study of the production of hhh is important, as it is one of the very few processes

where quartic Higgs boson coupling is involved. This process may allow the direct mea-

surement of this coupling at future colliders. With the measurement of self couplings of

the Higgs boson, one can confirm the form of the Higgs potential. In addition to revealing

the exact form of the Higgs potential, this process might also help us know the dynam-

ics of electroweak symmetry breaking. As already mentioned, unlike the hhh production,

the process pp→ hhZ gets contribution from the tree-level processes. But here our focus

is on gg fusion channel. The production of gg→ hhZ is important, as it involves poorly

determined hhh and hhZZ couplings. It is also a background to hhh production.

We also consider possible modification of standard model interactions, mainly inspired

by D=6 operators in effective field theory. The gg→ hhh is specially sensitive to anomalous

trilinear Higgs boson coupling. The gg→ hhZ is sensitive to anomalous hZZ coupling.

The cross section for these processes in the SM have been reported before in [140] and

references therein. Although our work on the gg→ hhh process has some overlap with

[2, 143–147], our detailed study of gg→ hhZ process in the SM and beyond is new and

is presented for the first time in our paper [148], on which this chapter is based. In the

literature, hhh production is studied with only SM-like deviation of trilinear and quartic

Higgs boson couplings, whereas we have also studied the effect of derivative couplings for

these interactions. Moreover, earlier only CP-even tt̄h coupling was considered for hhh

production, whereas we have considered both CP-even and CP-odd couplings. Besides,

our approach towards new physics is more phenomenological. Similar approach is taken to
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study new physics effect in the gg→ hhZ process.

This chapter is organized as follows. In Sec. 4.1, we will discuss the Feynman diagrams

for the processes we have considered. In Sec. 4.2, the anomalous couplings and their

possible sources will be discussed. In Sec. 4.3, the calculation techniques and various

checks to verify the correctness of the code have been discussed. The numerical results are

discussed in Sec. 4.4. Finally, we summarize in Sec. 4.5.

4.1 Processes

The prototype Feynman diagrams for the gg fusion channels have been shown in Fig. 4.1

and Fig. 4.2. We do not need to numerically compute all the diagrams as some diagrams

give exactly same value as the others because of charge conjugation symmetry. This is

also known as (generalized) Furry’s theorem [69]. This (generalized) Furry’s theorem also

helps us remove some parts of amplitude if under charge conjugation it is exactly equal

in magnitude but opposite in sign. This way Furry’s theorem helps us reduce the compu-

tational load. In the loop we consider only quarks from the third generation only, as the

contributions from first two generations are extremely small owing to tiny Yukawa cou-

plings of light quarks with the Higgs boson. We do not need to write routines for all the

diagrams as we have divided the diagrams into various classes for which we write routines.

The amplitudes for all the diagrams can be obtained by using crossing, i.e., by exchanging

external legs in these routines.

For the gg→ hhh process, there are 24 pentagon, 18 box, and 8 triangle diagrams for

each quark in the loop. Out of these 24 pentagon diagrams, we need to numerically compute
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only 12 diagrams as each of these is exactly same in magnitude with one or another from the

other 12 diagrams. Amplitudes for these 12 diagrams can be obtained by permuting three

external Higgs bosons in two classes PENTA1 and PENTA2 (see Fig. 4.1), for which we

have written Fortran routines. Similarly, out of 18 box diagrams, we need to numerically

compute only 9 diagrams. Out of this 9 diagrams, six can be obtained from BOX1 class

and 3 diagrams can be obtained from BOX2 class. Similarly, out of 8 triangle diagrams,

only 4 diagrams need to be numerically computed; one comes from TRIANGLE1 class and

rest 3 come from TRIANGLE2 class. Note that there are some other diagrams at this order

which are identically zero because of color conservation. Mathematically, that comes from

Tr(λ a) = 0, where λ a is SU(3) generator.

Figure 4.1: Prototype Feynman diagram for gg→ hhh production.
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Figure 4.2: Prototype Feynman diagram for gg→ hhZ production.

Like the case of pp→ hhh, in the case of pp→ hhZ, there are 24 pentagon, 18 box,

and 8 triangle diagrams, but we need to numerically compute only 12 pentagon, 9 box,

and 4 triangle diagrams. Here the vector part of tt̄Z coupling does not contribute because

of Furry’s theorem. As mentioned for gg→ hhh, here also crossings have been used to

reduce number of routines. Various subclasses in each pentagon, box, and triangle category

have been shown in Fig. 4.2. Out of the 12 pentagon diagrams, each of PENTA1 and

PENTA2 give four diagrams, and each of PENTA3 and PENTA4 give two diagrams. In

the case of box diagrams, BOX1, BOX2, BOX3, and BOX4 prototype diagrams give 4, 2,

2, and 1 diagrams, respectively. In the class of triangle diagrams, each of TRIANGLE1

and TRIANGLE2 give one diagram, while TRIANGLE3 gives two diagrams. Feynman

diagrams in Fig. 4.1 and Fig. 4.2 have been made using JaxoDraw [149].

We have not shown gg→ hhγ channel diagrams which can be easily visualized by

replacing Z by γ in Fig. 4.2 wherever it is allowed, keeping in mind that γ does not couple
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with Higgs boson. The cross section for this channel is zero as for every diagram for this

process, there is an another diagram the amplitude of which is equal in magnitude but

opposite in sign, owing to Furry’s theorem. Also at the tree level, the production cross

section for hhγ is too small because of the extremely small Yukawa couplings of light

quarks with Higgs boson.

4.2 Anomalous couplings

As we discussed in the introduction of this chapter, in the absence of discovery of any

new resonance at the LHC, searching anomalous coupling is one of the ways to explore

new physics. We are mainly interested in the anomalous couplings of the Higgs boson

which would affect the processes under consideration, i.e., we consider the anomalous

coupling for tt̄h, hZZ, hhZZ, hhh, and hhhh interactions. The first two, i.e., tt̄h and hZZ are

already well constrained by the existing LHC data [5]. On the other hand, even though the

trilinear Higgs boson coupling is very weakly constrained [150, 151], there is practically

no experimental bounds on the other Higgs boson couplings. In the following, we consider

most general interaction Lagrangians for various Higgs related couplings.

4.2.1 Anomalous tt̄h coupling

So far the tt̄h coupling is constrained with an accuracy of 10-20% at 1σ level [5] and will

be further constrained after the analysis of run 2 data of LHC. The Lagrangian for tt̄h vertex

incorporating BSM physics can be parametrized as1

1We are only interested in modification of SM vertices and we are not concerned about the source of new
physics. The source may be dimension six operator or others. For example, some dimension six operators
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Lt̄th =−
mt

v
t̄
[
(1+κt)+ iκ̃tγ5

]
th. (4.1)

In the standard model, κt = κ̃t = 0. We have used the following bounds for κt and κ̃t :

−0.2≤ κt ≤ 0.2

−0.1≤ κ̃t ≤ 0.1 (4.2)

These anomalous couplings contribute significantly to both hhh and hhZ production via

gluon channel. However, it is to be noted that even in the presence of anomalous pseudo-

scalar coupling, κ̃t , the cross section for gg→ hhγ remains zero.

4.2.2 Anomalous hhh and hhhh couplings

Measuring trilinear and quartic Higgs boson couplings is one of the important tasks as

they will reveal actual shape of the Higgs potential. This may reveal information about

dynamics of electroweak symmetry breaking, strength of EW phase transition etc. Any

possible deviation from the SM Higgs boson couplings will give evidence of new physics.

However measuring these couplings are extremely difficult. We are going to discuss about

this in detail in one of the subsequent chapters which is based on the preprint [72]. The

Higgs boson self-interaction including anomalous couplings motivated from D=6 operators

allow tt̄hh coupling, which also modify tt̄h coupling. So, here our parametrization does not follow from D=6
operator. We are only interested to see some scaling effect and CP properties.
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can be expressed as:

Lhhh =−
3m2

h
v

(
1
6
(1+g(0)

3h ) h3 +
1

6m2
h

g(1)
3h h∂µh∂

µh

)
, (4.3)

Lhhhh =−
3m2

h
v2

(
1
24

(1+g(0)
4h ) h4 +

1
24m2

h
g(1)

4h h2
∂µh∂

µh

)
. (4.4)

In the SM, g(0)3h = g(0)4h = g(1)3h = g(1)4h = 0. Among the processes we have considered here,

the quartic Higgs boson coupling appear only in gg→ hhh, while the trilinear Higgs boson

coupling appear in both gg→ hhh,hhZ processes. So far trilinear Higgs boson coupling

is poorly constrained by studying hh production channel, whereas there is practically no

constraint on the quartic Higgs boson coupling as it appear only in processes with small

cross section. For the trilinear Higgs boson coupling, it may take a decade or more to put

any serious bound and for quartic Higgs boson coupling, it will take even further time as

it will require building higher energy future colliders with significant luminosity. In this

chapter, we vary these anomalous parameters in the range between -1.0 to 1.0 for the sake

of illustration.

4.2.3 Anomalous hZZ and hhZZ couplings

Like the Lagrangian for Higgs boson self couplings, here also the Lagrangian for hZZ

and hhZZ is motivated from D=6 operators in the SMEFT framework. Measuring these

couplings will be one of the goals of the LHC. The Lagrangian that we use to parametrize

these anomalous couplings, after the Higgs doublet gets a vev, is expressed as
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LhZZ =
gMZ

cW

{
1
2
(1+g(0)hZZ)hZµ Zµ−

1
4M2

Z
g(1)hZZhZµν Zµν−

1
M2

Z
g(2)hZZ hZν ∂µ Zµν

}
. (4.5)

LhhZZ =
gMZ

cW v

{
1
4
(1+g(0)hhZZ) hhZµ Zµ

}
. (4.6)

In the SM, g(0)hZZ = g(1)hZZ = g(2)hZZ = 0. The hZZ coupling is already present in other the

processes like pp→ hZ using which it is already well constrained. We use the following

bounds on the anomalous hZZ couplings parameters [152]

−0.10≤ g(0)hZZ ≤ 0.10

−0.09≤ g(1)hZZ ≤ 0.04

−0.07≤ g(1)hZZ ≤ 0.03 (4.7)

However, hhZZ coupling is poorly constrained as it appears mainly in processes in-

volving double Higgs boson production, which have relatively smaller cross section. In the

absence of any available bound for this coupling, we vary this parameter from -0.1 to 0.1.

All these anomalous interactions that we have considered are mainly motivated within

the framework of effective field theory where the new physics are parametrized by higher

dimensional operators. These operators are constructed out of the SM fields and respect

symmetries of the SM. A complete list of independent D=6 operators can be found here [59–

61] as discussed in Chapter 2. The anomalous couplings introduced above are related to

Wilson coefficients of these operators [93, 153–156].

The Feynman rules for the anomalous Higgs vertices are listed in appendix C.1. As we

shall see, in the allowed range of parameters values, the contribution of anomalous vertices
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can be significant in our processes.

4.3 Techniques and Checks

To find the cross section of a process, one needs to find the Feynman diagrams contributing

to the process. Sometime we find diagrams by hand and sometime we use FeynArts [157].

As the focus here is gg fusion channel processes which contain fermionic loop, we need to

calculate trace of γ matrices. This has been done using symbolic manipulator software FORM

[129]. After finding traces, there will be many integrals on undetermined loop momenta

— some of which will be tensor integrals and some will be scalar integrals. Some steps of

tensor integral reduction are done using FORM. After that amplitude is dumped in Fortran

format. We have used OneLOop package [67] to calculate the scalar integrals. To reduce the

tensor integrals to scalar integrals, we have used an in-house package, OVReduce, which is

based on Oldenborgh-Vermaseren technique [66].

After this much is done, we use crossing and Furry’s theorem to get the amplitude of all

the diagrams. Once the overall amplitude is obtained, utilizing Monte-Carlo integration,

we find the total and differential cross sections. To do phase-space integration, we have

used Advanced Monte Carlo Integration (AMCI) package, which is based on Parallel Virtual

Machine (PVM) Software.

Before proceeding further and producing results, it is crucial to check the correctness

of the code. We have checked gauge invariance (GI), IR cancellation, UV cancellation,

anomaly cancellation in order to be sure about the correctness of the code. Let’s discuss

the pentagon diagrams first. Numerically each pentagon diagram is found to be UV finite
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as is also expected from the naive power counting. GI test has been done by replacing the

polarization of any of the gluons by its momenta. The individual pentagon diagrams is not

gauge invariant. However, sum of all of them is found to be gauge invariant. There is no

infrared divergence as there are only top and bottom quark loops, and contribution from the

other quark loops is too small to be considered. As the process occurs via gg fusion channel

and leptons do not take part in QCD, leptons cannot be present in the loop. Here individual

box diagrams are also UV finite, since at most rank-two or rank-three tensor box integrals

can be there for gg→ hhh or gg→ hhZ, respectively. Here also like the pentagon case only

the sum of the box diagrams is found to be gauge invariant, not the individual ones. Each

triangle diagram is UV finite, despite the fact that there can be rank-two tensor integral. As

the one loop diagrams of gg→ hhh channel contributes at the leading order for the channel,

the overall amplitude at one loop for this channel cannot be UV divergent. Each triangle

diagram is also found to be gauge invariant. It is interesting to note that pentagon, box, and

triangle classes are separately gauge invariant. So it may be tempting to use only one class

of diagrams to calculate cross section. However as we will see this will lead to serious

errors as there is strong destructive interference between various classes of diagrams. So

calculating cross section for this process in the Higgs EFT2 will also produce wrong results

as that will be equivalent to considering triangle diagrams only.

For the gg→ hhZ, we have studied the diagrams considering γ5 in 4 dimension and

also using Larin’s prescription [158]. Both gave same results. All the things that we have

discussed for gg→ hhh hold true for this production process as well. Each triangle diagram

2Here Higgs EFT means effective interaction in the limit of heavy top mass, which is not to be confused
with the same name used in a different context where electroweak symmetry is non-linearly realized, as
discussed in Chapter. 2.
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is gauge invariant with respect to only one gluon in 4-D if we consider only one quark. If

clockwise diagram is gauge invariant with respect one gluon, the corresponding anticlock-

wise will be gauge invariant with respect to the other gluon only. As a matter of fact, all

triangle diagrams taken together in a class are not gauge invariant wrt either gluons. This

is because of quantum anomaly 3. But as we know if we take all the fermions in a gen-

eration the anomaly should go away, which we have also tested using our code, providing

further support for the correctness of our code. In D-dimension, however, diagrams with

the same overall coupling taken together are gauge invariant with respect to either gluons

for any particular quark in the loop. However, these are vector current conservations, the

axial vector current will still remain un-conserved if only one quark is considered.

While doing one loop calculation, code often suffers form numerical instability because

of vanishingly small gram determinants. As the number of such numerically unstable points

is too small, their contribution is not expected to be large. We therefore remove these

points by setting some suitable upper bound on the amplitude-squared. This upper bound

is chosen after finding out the possible values that amplitude-squared can have by running

the code. This upper bound is increased until we hit some unstable phase space points.

The cross section should remain stable and does not change even when this upper bound

is increased by several order of magnitudes. We have cross checked our results using a

more robust way of removing unstable points by employing gauge invariance check as the

unstable phase space points fail to satisfy this check.

3See Chapter. 19 of Peskin and Schroeder
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4.4 Numerical Results

We have used the following basic cuts for the computation of cross section and distribution:

ph,Z
T > 1 GeV,

|yh,Z|< 5.

The 1 GeV cut on the pT of Higgs boson and Z-boson is just to reduce the number

of numerically unstable points. The results for gluon fusion processes are obtained here

using CTEQ6l1 parton distribution functions [159]. We have used partonic center-of-mass

energy,
√

s, as the renormalization and factorization scale. Uncertainties in the results for

the variation of renormalization and factorization scale by a factor of 2 have also been

included.

4.4.1 The process pp→ hhh

We present cross sections for this process at 8 TeV, 13 TeV, 33 TeV, and 100 TeV colliders

in Table. 4.1. The cross section at the 13 TeV collider is 32 autobarn. So even at the end

of HL-LHC phase with 3 ab−1 data, there will be around 100 events. However, this is the

events number for hhh production. Branching of the final state Higgs boson in the decay

products will reduce the numbers further. So it is next to impossible to detect hhh at LHC.

At 100 TeV, the cross section is around 100 times larger. So with a benchmark 30 ab−1

data, there will be around 1 lakh events. It is to be noted that this cross section suffer from

large scale uncertainty (-22% to 32% at 13 TeV) because of the significant dependence of
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the strong coupling constant, αs, on the renormalization scale.

√
s [TeV] 8 13 33 100

σ hhh, LO
gg [ab] 7.0+34.6%

−24.0% 32.0+30.6%
−22.2% 330.8+23.8%

−18.4% 3121.1+17.4%
−14.1%

Table 4.1: pp→ hhh hadronic cross sections and corresponding scale uncertainties in the
SM at different collider center-of-mass energies.

In the Table. 4.2, we have shown the cross sections when either pentagon, or box, or tri-

angle type diagrams are considered. As discussed in the previous section, these categories

of diagrams are separately gauge invariant. However, all the diagrams in any particular

order must be considered. This is because there is large destructive interference between

the diagrams. For example if you would consider only triangle diagrams we would under-

estimate the cross section by an order, while inclusion of box or pentagon diagrams would

overestimate the cross section. For 13 TeV collider, we see that the total cross section is

about 32 ab, whereas penta, box, and triangle contribute 94, 53, and 3.5 ab, respectively.

Therefore, as already discussed in the previous section, if one computes the process using

Higgs effective field theory, which will give results same as the one for considering triangle

diagrams only, one would make an order of magnitude error.
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√
s [TeV] 8 13 33 100

σhhh
penta [ab] 22.1 94.4 916.4 8067.8

σhhh
box [ab] 12.9 53.6 502.5 4287.4

σhhh
triangle [ab] 0.8 3.5 32.1 270.8

σhhh
total [ab] 7.0 32.0 330.3 3121.3

Table 4.2: SM contributions of pentagon, box, and triangle diagrams to the total cross
section at different collider center-of-mass energies, displaying a destructive interference
effect.

In Fig. 4.3, we have plotted the contributions of various categories of diagrams with

respect to the pT of the leading Higgs boson at
√

s = 13 TeV and 100 TeV. We see that

the pentagon diagrams give harder Higgs bosons than the other categories of diagrams.

However, interference kills such events. The pT of the leading Higgs, considering all

diagrams, peaks between 130 GeV and 160 GeV.
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Figure 4.3: SM contribution of pentagon (blue), box (green), and triangle (violet) diagrams
to leading pT (h) distribution in gg→ hhh at 13 TeV (left) and 100 TeV (right) colliders.

69



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  50  100  150  200  250  300  350  400

√s = 13 TeV

dσ
/d

p T
 [a

b/
bi

n]

pT [GeV]

gg → hhh

pT(h1)
pT(h2)
pT(h3)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

√s = 13 TeV

dσ
/d

C
os

 θ
 [a

b/
bi

n]

Cos θij

gg → hhh

Cos θh1h2Cos θh1h3Cos θh2h3

 0

 1

 2

 3

 4

 5

 6

 7

 200  300  400  500  600  700

√s= 13 TeV

dσ
/d

M
 [a

b/
bi

n]

Mij [GeV]

gg → hhh

Mh1h2Mh1h3Mh2h3

 0

 0.5

 1

 1.5

 2

 2.5

 400  500  600  700  800  900  1000

√s = 13 TeV

dσ
/d

M
 [a

b/
bi

n]

Mh1h2h3
 [GeV]

gg → hhh

Mh1h2h3

Figure 4.4: Kinematic distributions for gg→ hhh in the SM at 13 TeV collider. These
plots are obtained after pT ordering the Higgs bosons. h1,h2, and h3 refer to the hardest,
second hardest, and third hardest Higgs bosons in pT , respectively.

In Fig. 4.4, we have plotted differential distributions with a number of kinematic vari-

ables involving the final state Higgs bosons. The final state Higgs bosons are distinguished

according to their pT . As would be expected leading pT Higgs boson is the hardest and it

peaks around 140-160 GeV. Softest pT Higgs boson peaks around 50 GeV. All the three

Higgs boson are produced centrally. While the leading and next-to-leading Higgs boson

are produced more back-to-back, the mass of the two of softer Higgs boson are produced

closer to each other. The masses of the two harder pT Higgs bosons peaks around 375 GeV,

while the peak for the two softer Higgs bosons is near the twice of Higgs boson mass. The

invariant mass of the three Higgs bosons peaks around 550 GeV. At higher center of mass

energy machines, the behavior of the distribution is largely same, so we have not provided
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separate plots for them.
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Figure 4.5:
σBSM

σSM
as function of various Higgs anomalous couplings affecting gg→ hhh

at 13 TeV.

In Fig. 4.5, we have displayed the ratio of cross section with anomalous coupling and

the cross section for the SM. We have plotted for the range of parameters mentioned in

Sec. 4.2, except for k̃t for which we doubled the range. As can be seen, the cross section

is not sensitive to pseudo-scalar tt̄h couplings, k̃t , and quartic Higgs boson coupling. The

cross section is symmetric for k̃t . The fact that it is not sensitive to anomalous quartic

Higgs boson coupling is obvious as three final state Higgs bosons coming out of fourth

Higgs boson makes the latter far off-shell, thereby making the contribution of the diagram

too small. We will discuss the effect of anomalous quartic Higgs boson coupling in one

of the subsequent chapter in more detail. The process is sensitive to the scaling of scalar

tt̄h coupling, kt , and cross section can change by a factor of 3-4. The cross section is also

sensitive to the sign of the anomalous coupling. It is also sensitive to the trilinear Higgs

boson coupling. While the cross section can change by a factor of 3 by change in the

scaling coupling, g(0)3h , it can change by an order of magnitude by the change of derivative

coupling, g(1)3h . From Fig. 4.6, we see that while the scaling of couplings changes low pT
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events more, the derivative coupling changes high pT events. Therefore, one can probe

both couplings by focusing on low pT region in one case and high pT region in another

case. We don’t show pT distribution for other Higgs bosons and mass distribution of two

and three Higgs bosons as they show more or less similar sensitivity.
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Figure 4.6: Normalized leading pT (h) distribution in gg→ hhh at 13 TeV for some bench-
mark values of anomalous trilinear Higgs boson coupling. In the lower panels R is defined
as the ratio of the distributions (dσ/d pT ) in BSM and in the SM.

We will now consider the possibility of observing the production of triple Higgs bosons,

hhh. As already mentioned, even at the end of HL-LHC phase, accumulating 3 ab−1 of

data, there will be only around 100 odd events for the SM. Obviously, the anomalous

trilinear Higgs boson coupling, if present in nature, can enhance this number by a factor of

3 to 8. Even with this enhancement, once we include branching fractions, kinematic cuts,

tagging, and other efficiencies, there will be too few events to be observable. However, at

100 TeV collider (FCC), the cross section increases by a factor of around 100. So with

an integrated luminosity of 30 ab−1, there will be a factor of 1000 enhancement in the

events number, which might be observable. The process pp→ hhh gives rise to various

signatures. There will be an irreducible background from ZZZ production and an array of

reducible background. The ZZZ production is around 136 fb which can be controlled if we
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consider branching fractions and construct Higgs boson masses. In the case of reducible

backgrounds, there will be top pair production with jets or vector boson, or multi vector

boson production with jets, or multi-jets. To tame these backgrounds, one may require

tagging of bottom and tau jets. The authors in [145] have studied the hhh→ bbbbγγ channel

and have shown that it will be difficult to detect the hhh signal. The studies of the channels

‘bbbbττ’ and ‘bbl+l− + 4 jets’ in [146] and [147], respectively, have also shown that it will

be extremely difficult to detect the signal using these channels. Therefore a modification

of the interactions that will enhance the signal significantly and improved search strategies

may be needed to detect hhh signal and thereafter put reasonable constraints on quartic

Higgs boson coupling. More on this can be found in one of subsequent chapters.

4.4.2 The process pp→ hhZ

Unlike pp→ hhh process, this process can occur at tree level. However, here our main fo-

cus will be on gg→ hhh process, which gives NNLO contribution in αs to pp→ hhh. In ad-

dition, we have estimated tree level and NLO QCD correction to it using MadGraph5_aMC@

NLO [159]. Interestingly, we will see that the NNLO QCD contribution is comparable to

NLO QCD correction at LHC. At 100 TeV collider, because of large gluon flux it becomes

comparable to even tree level results.
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√
s (TeV) 8 13 33 100

σ
hhZ,LO
gg [ab] 10.0+34.0%

−24.0% 42.3+30.9%
−21.4% 406.7+23.9%

−17.9% 3562.4+16.8%
−13.9%

σ
hhZ,LO
qq̄ [ab] 97.2+3.9%

−3.8% 236.7+1.3%
−1.5% 988.8+2.6%

−3.3% 4393.0+7.1%
−7.8%

σ
hhZ,NLO
qq̄ [ab] 122.0+1.7%

−1.6% 294.5+1.5%
−1.0% 1197.0+1.7%

−1.9% 4971.0+1.8%
−3.2%

R1 =
σ hhZ, LO

gg

σ
hhZ, LO
qq̄

0.10 0.18 0.41 0.81

R2 =
σ hhZ, LO

gg

σ
hhZ, NLO
qq̄

0.08 0.14 0.34 0.72

R3 =
σ hhZ, LO

gg

(σ hhZ, NLO
qq̄ −σ

hhZ, LO
qq̄ )

0.40 0.73 1.95 6.16

Table 4.3: A comparison of different perturbative orders in QCD coupling contributing to
pp→ hhZ hadronic cross section at

√
s = 8,13,33, and 100 TeV. We also calculate ratios

R1, R2, and R3 which quantify the gg fusion channel contribution with respect to the LO
and NLO qq̄ initiated channel contributions.

In Table. 4.3, we have shown the LO, NLO QCD, and NNLO QCD contributions to

these processes at various hadron colliders. We have used here CTEQ6l1 parton distribu-

tion for LO and NNLO and CTEQ6m for the NLO calculation [159]. For renormalization

and factorization scale, we have used
√

s for gg→ hhZ process, which occurs at NNLO

in αs, and sum of transverse mass for LO and NLO qq̄ initiated channel calculation (in

Madgraph5_aMC@NLO). Uncertainties are computed using other CTEQ6 parton distribution

and varying the scale by a factor of 2. At the 13 TeV and 100 TeV colliders, the LO cross

sections are 237 ab and 4393 ab, respectively. NLO corrections add nearly 24% and 13%,

respectively. However, NNLO corrections add nearly 18% and 81%. We see that NNLO

contribution approaches towards LO value. This is however not alarming as the NNLO con-
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tribution comes from gg fusion channel and there is large gluon flux at 100 TeV collider,

while leading order contribution comes from qq̄ initiated channel. The scale uncertainty for

the gg fusion channel is between -21% to 31%. As discussed before, the large uncertainty

is because of the strong dependence of αs on the scale. On the other hand, uncertainties

in the LO process is small, as these are electroweak processes. The total cross sections

including LO, NLO, and NNLO contribution are about 336 ab and 8533 ab for 13 TeV and

100 TeV colliders, respectively. These numbers lead to about 1k and 2.5 lakh events with

3 ab−1 and 30 ab−1 of data for the respective colliders.

√
s (TeV) 8 13 33 100

σhhZ
penta [ab] 30.8 148.1 1718.4 17694.0

σhhZ
box [ab] 73.1 434.7 7468.2 115747.2

σhhZ
triangle [ab] 78.4 475.6 8157.2 124273.1

σhhZ
total [ab] 10.0 42.3 406.4 3557.5

Table 4.4: SM contribution of pentagon, box, and triangle diagrams to the total cross sec-
tion in gg → hhZ at different collider center-of-mass energies, displaying a destructive
interference effect.

In Table. 4.4, we show the interference effect in gg→ hhZ process. Here, unlike gg→

hhh, contribution of pentagon diagram is least, while triangle and box contribute more or

less at the same order. However, there is strong destructive interference which leads to

much smaller total cross section. We see that at the 100 TeV collider, the total cross section

is 3560 ab, whereas penta, box, and triangle class contribute 17694 ab, 115747 ab, and
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124273 ab, respectively. In Fig. 4.7, we display the contributions of various categories

of diagrams with respect to pT of the leading Higgs boson. Here both box and triangle

diagrams contribute to high pT events, however interference kills these high pT events.

The pT distribution of the leading (in pT ) Higgs boson, after the interference, shifts to

lower values and peaks around 120 GeV.
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Figure 4.7: SM contribution of pentagon (blue), box (green) and triangle (violet) diagrams
to leading pT (h) distribution in gg→ hhZ at 13 TeV (left) and 100 TeV (right).

In Fig. 4.8, we have plotted a number of kinematic variables involving final state par-

ticles. The pT distribution of leading Higgs boson and Z boson is similar. As is expected,

pT of leading Higgs boson is more harder than next-to-leading Higgs boson. All the three

final state particles are produced centrally. While the leading (in pT ) Higgs boson and Z

boson are produced more back-to-back, the next-to-leading Higgs boson is produced more

along the leading Higgs boson than along Z boson. The invariant mass distribution of h1

and Z, Mh1Z , has harder tail than Mh1h2 and Mh2Z . The distribution of partonic center of

mass energy peaks around 500 GeV. At the higher center of mass energy colliders, these

distributions behave similarly.
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Figure 4.9: A comparison of normalized distributions for pT (h1) and pT (Z) due to gg→
hhZ and qq̄→ hhZ in the SM at 13 TeV.

In Fig. 4.9, we compare the gg(LO) and qq̄(LO and NLO) contributions in kinematic

distributions for pT (h1) and pT (Z). We see the gg fusion channel distribution is character-
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istically different from qq̄ initiated channel distribution. The gg fusion channel gives softer

events in pT (h1), whereas harder events for pT (Z). At 100 TeV machine, the behavior of

the distributions are similar. In Fig. 4.10, we show pT (h1) and pT (Z) distributions combin-

ing qq̄(NLO) and gg(LO) channels at 13 TeV and 100 TeV colliders. At 13 TeV, although

the gg fusion channel contributes total 14% with respect to the qq̄(NLO) channel contribu-

tion to cross section, in the distributions in some of the bins it contributes more than 20%.

Similarly, at 100 TeV collider, although the contribution of the gg fusion channel is 72%

with respect to qq̄(NLO) channel, in some of the bins it can be more than 100%.
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Figure 4.10: Combined gg→ hhZ(LO) + qq̄→ hhZ(NLO) contribution to pT (h1) and
pT (Z) distributions in the SM at 13 TeV and 100 TeV. Lower panels show the ratio of
qq̄(NLO)+gg(LO) and qq̄(NLO) for each of these distributions. The dashed straight line
in the lower panel of each plot refers to the same quantity at inclusive or total cross section
level (see R2 in Table 4.3).
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Figure 4.11:
σBSM

σSM
as a function of anomalous couplings of the Higgs boson in gg→ hhZ

at 13 TeV.

The process gg→ hhZ has four types of vertices involving Higgs boson— tt̄h, hhh,

hZZ, and hhZZ. In Fig. 4.11, we examine the sensitivity of production of hhZ through

gluon-gluon channel on anomalous couplings for these vertices. The cross section is mainly

sensitive to tt̄h and hZZ couplings. The cross section can double with allowed range of

some of these parameters. The cross section is symmetric for κ̃t and like gg→ hhh process,

this process is also not sensitive to it in the allowed range. We see that the hhh and hhZZ

couplings also do not play any significant role for the parameter range we have considered.

One of the derivative hZZ coupling, g(1)hZZ , also does not play any significant role.

 0.01

 0.03

 0.05

 0.07

(1
/σ

)*
(d

σ/
dp

T
) 

[1
/b

in
]

gg → hhZ

κt =-0.2

SM
κt =0.2

 0
 2
 4
 6
 8

 10

 0  50  100  150  200  250  300  350  400

√s = 13 TeV

R

pT(h1) [GeV]

 0.01

 0.03

 0.05

 0.07

(1
/σ

)*
(d

 σ
/d

p T
) 

[1
/b

in
]

gg → hhZ

κ~t =-0.1

SM

κ~t = 0.1

 0

 2

 0  50  100  150  200  250  300  350  400

√s = 13 TeV

R

pT(h1) [GeV]

Figure 4.12: Normalized leading pT (h) distribution in gg→ hhZ at 13 TeV for some
benchmark values of anomalous top Yukawa couplings.

In Fig. 4.12, 4.13, and 4.14, we show the effects of various anomalous coupling in the
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distribution of leading (in pT ) Higgs boson in this process. We find that both κt and κ̃t

lead to harder tail in comparison to SM prediction. The contribution to the cross section at

higher pT is significantly large for higher kt . Distribution for anomalous g(0)3h does not show

any special feature. For g(1)3h , there seems to be harder tail, especially for positive values.

As far as hZZ coupling is concerned, g(0)hZZ and g(2)hZZ couplings show similar features as for

anomalous κt . However, the effect of g(1)hZZ is negligible. The distribution for g(0)hhZZ shows

interesting feature. At higher pT , positive anomalous g(0)hhZZ coupling leads to harder tail,

while negative anomalous coupling leads to softer tail in comparison to the standard model

prediction. As the distributions for anomalous coupling show similar behavior at 100 TeV

collider, we do not provide separate plots for this collider.
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Figure 4.13: Normalized leading pT (h) distribution in gg→ hhZ at 13 TeV for some bench-
mark values of hhh anomalous couplings.
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Figure 4.14: Normalized leading pT (h) distribution in gg→ hhZ at 13 TeV for some
benchmark values of hZZ and hhZZ anomalous couplings.

In this chapter, our focus has been gg→ hhZ process. That is why we have presented

detailed results for this channel. One might be interested to know how sensitive is the

LO process to anomalous coupling. We have explored this using Madgraph_aMC@NLO. By

including anomalous vertices, we find that LO qq̄ initiated channel contribution is quite

sensitive to the anomalous derivative hZZ coupling. The cross section can increase by an

order of magnitude. The increase is more at higher center-of-mass energy. This is unlike

NNLO gg→ hhZ process.

The process pp→ hhZ is likely to be observed at the LHC. Considering up to NNLO

correction, the cross section is 336 ab at 13 TeV collider, which will lead to around 1000

events at the end of the high luminosity phase of the LHC. This process should be visible in
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various multilepton + jets signature. The main irreducible background ZZZ has the cross

section around 9.2 fb. But the Z → bb̄,ττ branching ratios are smaller by a factor of 2-3

as compared to Higgs boson decay. So by restricting number of jets in the signature, one

may be able to detect this process. To look for the evidence of any new physics one may

look at the tail of the pT distribution of the leading Higgs boson. Reducible backgrounds

can be tamed by flavor tagging of jets. Higher energy machines with high luminosity will

be suitable for the observation of this process.

4.5 Conclusion

In this chapter, we have considered the processes – pp→ hhh,hhγ , and hhZ. Our focus

was on the gg fusion channel contribution to them. The one-loop amplitude for the process

gg→ hhγ vanishes exactly due to Furry’s theorem. The process pp→ hhh is important

as it involves trilinear and quartic Higgs boson couplings, which are important to know

the exact form of the Higgs potential. A measurement of this process along with di-Higgs

boson production can help in achieving this. However, this process may be observed at the

LHC only if there exists large anomalous interactions. This process is specially sensitive

to trilinear Higgs boson couplings. It can be observed at large center-of-mass energy ma-

chines with high luminosity. It will be challenging though. The process pp→ hhZ may

be observable at the LHC after accumulation of 3 ab−1 integrated luminosity. The gg(LO)

contribution to this process is actually an NNLO contribution in αs, and due to a large

gluon flux it is 14% of the qq̄(NLO) contribution to the pp→ hhZ process at 13 TeV LHC.

In certain kinematic windows, gg(LO) contribution can be more than 20%. At a 100 TeV
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machine, the gg→ hhZ process can be as important as the qq̄→ hhZ process. This process

is important, as it involves hhh and hhZZ couplings and is a background to triple Higgs

bosons production. The effect of tt̄h and hZZ anomalous couplings are more significant in

the distributions than in the total cross section. This process can definitely be observed at

higher center-of-mass energy colliders, such as a 100 TeV machine, with enough integrated

luminosity.
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Chapter 5

Production of VVh (V = γ , Z, W) at the

hadron colliders

In this chapter, we consider the production of a Higgs boson in association with two elec-

troweak vector bosons at hadron colliders. In particular, we examine γγh, γZh, ZZh, and

W+W−h production at the LHC (14 TeV), HE-LHC (27 TeV), and FCC-hh (100 TeV) col-

liders. Our main focus is to estimate the gluon-gluon (gg) fusion channel contributions

to pp→ VV h (V = γ,Z,W ) processes and compare them with corresponding contribu-

tions arising from the quark-antiquark (qq̄) initiated channels. Technically, the leading

order gg fusion contribution to pp→ VV h cross section is an NNLO correction in strong

coupling parameter, αs. We find that in the gg fusion channel, W+W−h has the largest

cross section. However, relative contribution of gg fusion channel is more important for

the pp→ ZZh production. At the FCC-hh, gg→ ZZh contribution is comparable with the

NLO QCD correction to qq̄→ ZZh. We have also studied beyond the standard model ef-

fects in these processes using the κ-framework parameters κt ,κV , and κλ . We find that the

gg fusion channel processes ZZh and WWh have very mild dependence on κλ , but strong

dependence on κt and κV . The qq̄ initiated channel processes mainly depend on κV .

85



Contents

5.1 Gluon fusion diagrams for VV h . . . . . . . . . . . . . . . . . . . . . 89

5.2 BSM Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Calculation and Checks . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.1 The process pp→ ZZh . . . . . . . . . . . . . . . . . . . . . . 98

5.4.2 The process pp→WWh . . . . . . . . . . . . . . . . . . . . . 107

5.4.3 The process pp→ γZh . . . . . . . . . . . . . . . . . . . . . . 114

5.4.4 The process pp→ γγh . . . . . . . . . . . . . . . . . . . . . . 119

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

86



As discussed in the previous chapter, many of the couplings involving Higgs boson are

so far poorly constrained by experiments. One of the major goals of the LHC and other

proposed high energy colliders is to explore the Higgs sector of the SM and put constraints

on the couplings of the Higgs boson. Any possible deviations from the SM predictions will

be an evidence for the presence of new physics. Vector boson fusion and associated pro-

duction of Higgs boson can be used to put constraints on VV h coupling, while gluon-gluon

(gg) fusion channel production of a Higgs boson constraints tt̄h coupling [5]. Moreover,

the production of a Higgs boson in association with a top-quark pair provides direct con-

straints on the tt̄h coupling [160, 161]. So far Higgs self-couplings are not constrained

significantly. The trilinear Higgs coupling is being constrained using hh production at the

LHC [162–167]. However, serious bound may be put only at future HE-LHC (27 TeV).

The bound on the quartic Higgs coupling may only be possible at FCC-hh through hhh

production process. The hhVV coupling is also poorly constrained at the colliders [168].

In this chapter, we consider the production of ZZh, W+W−h, γZh, and γγh. As these pro-

cesses involve one or other poorly constrained or completely unconstrained Higgs boson

couplings, discovering these processes at the LHC may help us put some bounds on these

couplings. Moreover, these processes are also background to pp→ hh when one of the

Higgs bosons decays into γγ/γZ/ZZ∗/WW ∗ final states. The process pp→ ZZh is also a

background to pp→ hhh when two of the three Higgs bosons decay into bb̄ final states.

Although the dominant contributions to ZZh, W+W−h, γZh production come from tree

level quark-antiquark (qq̄) initiated diagrams and its NLO QCD correction, the LO gg fu-

sion channels, which is NNLO in αs, become important at a higher center-of-mass energy

collider. The production of ZZh and WWh have been studied in the past. Ref. [71] did the
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first study on W+W−h production via gg fusion channel. Subsequently, many works have

been done on ZZh and W+W−h production via gg fusion [70, 169]. NLO QCD correction

to the production of γZh has been computed in Ref. [170]. To the best of our knowledge,

the gg fusion channel contribution to this process has not been studied before. We are also

presenting for the first time the production of γγh via gg fusion channel. Although quite

small, this is the leading order process in pp→ γγh. In the literature, it has been shown

that bb̄ initiated process are important when precision is one of the main goals [70]. For

all the processes, barring pp→W+W−h process, our results include bb̄ initiated channel

contribution in five-flavor scheme at the LO and NLO order. For the NLO correction in the

bottom initiated channel for W+W−h production, technical problem relating to pole can-

cellation arises as some of the real diagrams have top resonance, which can decay to b and

W. This problem arises both in five flavor and four flavor schemes. In such cases, the top

propagator should be handled using special method [171–174]. Because of this technical

complication, we have presented only tree level bottom quark initiated channel contribu-

tion to W+W−h production separately and skipped the corresponding NLO contribution,

which we are planning to compute in future. The effect of anomalous coupling on the LO

W+W−h production and its detection in several channels have been studied in Ref. [175].

We study the effect of new physics on all the processes using a common BSM framework

— the κ framework [176, 177].

This chapter is organized as follows. In Sec. 5.1, we are going to discuss different

prototype diagrams for the processes under consideration. Sec. 5.2 discusses the model in-

dependent framework to study new physics. In Sec. 5.3, we describe calculation techniques

and various checks we have performed in order to verify the correctness of our code. In
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Sec. 5.4, we present numerical results for the production of ZZh, WWh, γZh, and γγh in

the SM and BSM scenarios. Finally, we summarize all the results in Sec. 5.5.

5.1 Gluon fusion diagrams for VV h

In this section, we discuss various diagrams for the production of VV h in the gg fusion

channel. The gg fusion contribution to pp→VV h occurs at one loop with quark circulating

in the loop. The classes of diagrams contributing to gg→ VV h processes are shown in

Fig. 5.1. For convenience, the diagrams contributing to gg→WWh process are shown

separately in Fig. 5.2. The Feynman diagrams have been made using Jaxodraw [149].

Unlike the previous chapter where we showed all the classes of diagrams for which we

had to write routines, here we show only classes which have different couplings. So here

number of routines needed will be more than the classes shown in Fig. 5.1 and Fig. 5.2. The

γγh process receives contribution only from the pentagon diagrams, while, γZh receives

contribution from both pentagon and box class of diagrams. In case of gg→ ZZh, WWh

processes, triangle class of diagrams also contribute. We have taken all quarks but the top-

quark as massless due to which only top-quark contribution is relevant in diagrams where

Higgs boson is directly attached to the quark loop. In the diagrams where Higgs boson

does not directly couple to quark loop, light quarks can also contribute.

The complete set of diagrams for each process can be obtained by permuting external

legs. In the Fig. 5.1, these permutations imply that for each quark, there are 24 diagrams

in pentagon topology, 6 diagrams in each box topology and 2 diagrams in each triangle

topology. In Fig. 5.2, the number of diagrams obtained from permutation are same as
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Figure 5.1: Different classes of diagrams for gg → VV h, V = γ,Z. In diagram (b), q
represents all quark flavors. Process gg→ γγh receives contribution only from (a) type
diagrams, while gg→ γZh gets contribution from both (a) and (b) type diagrams. In the
case of ZZh, all the diagrams contribute; the diagrams (b) and (f) cover the situation in
which h is attached to the other Z boson.

above with the exception that for Fig. 5.2 (a) and Fig. 5.2 (b) those are now the numbers for

each generation rather than each quark because of the presence of both quarks in the same

loop. When there is only one type of quark flavor in the loop, calculating only half of the

diagrams numerically is enough as other half are related to former via Furry’s theorem [69].

As numerical evaluation of these loop diagrams are computationally expensive and time

consuming, this observation leads to a significant simplification in the overall calculation.

This simplification, however, is not applicable to the WWh case, where flavor changing

interaction is involved in the quark loop. For example, see (a) and (b) in Fig. 5.2.

Thus, out of 24 pentagon diagrams (Fig. 5.1(a)) due to top-quark loop contributing to

γγH production, we need to numerically compute only 12 diagrams. Similarly, for the

process γZh, we numerically calculate only 12 pentagon diagrams (Fig. 5.1(a)) due to top-

quark loop and 3 box diagrams (Fig. 5.1(b)) for each quark flavor. In principle, 5 light
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W
+

W
−

Figure 5.2: Different classes of diagrams contributing to gg→WWh process. With respect
to ZZh, new classes of box and triangle diagrams appear due to ZWW coupling. In (a) and
(b), due to the flavor changing interaction of W with quarks, both the quark flavors of a
given generation enter in the loop. The diagrams (b), (g) and (i) cover the case when h is
attached to the other W boson.

quarks (u,d,c,s,b) and 1 heavy quark (t) contribute. The box class of diagram arises due to

ZZh coupling and has effective box topology of gg→ γZ∗ amplitude. Furry’s theorem, in

this case, implies that the axial vector coupling of Z boson with quark does not contribute

to gg→ γZh amplitude.

Like the process gg→ γZh, for gg→ ZZh amplitude, we numerically evaluate only 12

pentagon diagrams with top-quark in the loop (Fig. 5.1(a)). We numerically compute 6 box

diagrams with effective box topology of gg→ ZZ∗ amplitude for each quark flavor which

covers the possibilities of h coupling with any of the two external Z bosons (Fig. 5.1(b)).

Further, a new box type contribution arises which has effective box topology of gg→ hh∗

amplitude (Fig. 5.1(c)). Once again there are 3 such diagrams with only top-quark in the

loop, which are numerically evaluated. In addition to that, we numerically compute only

4 triangle diagrams with top-quark in the loop and having effective triangle topology of

gg→ h∗ amplitude (Fig. 5.1 (d), (e), (f)). In gg→ ZZh amplitude, the Furry’s theorem
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implies that the vector and axial vector coupling of Z boson with quarks can contribute at

the quadratic level only.

Among all VV h amplitudes, the structure of gg→WWh amplitude is the most complex.

Due to the involvement of flavor changing interactions in Fig. 5.2 (a) and (b), the Furry’s

theorem is not applicable to these diagrams. Therefore, 24 independent pentagon diagrams

contribute to WWh process for each generation of quarks. However, since we neglect

Higgs boson coupling with light quarks including the b quark, there are only 12 non-zero

pentagon diagrams. In Fig. 5.2 (b), all the three quark generations contribute. Taking into

account the possibility of Higgs boson coupling with any of the two external W bosons,

there are total 12 independent box diagrams of type (b) for each generation. In diagrams

(a) and (b), the axial vector coupling of W with quarks contributes at quadratic as well

as at linear level. Like in the ZZh process, we numerically compute 3 box diagrams of

type (c). Due to ZWW coupling a new box contribution of type (d) having effective box

topology of gg→ hZ∗ amplitude appears. Furry’s theorem for diagram (d) implies that the

vector coupling of Z with quarks does not contribute to the amplitude. The same explains

the absence of similar box diagram due to γWW coupling. As in case of the ZZh process,

we need to numerically evaluate 4 triangle diagrams with top-quark loop (Fig. 5.2 (e), (f),

(g)). Further, we need to numerically compute 3 triangle diagrams of new type for each

quark flavor with effective triangle topology of gg→ Z∗, once again due to ZWW coupling

(Fig. 5.2 (h), (i)). These triangle diagrams are anomalous and they can receive contribution

only from the third generation quarks as the bottom and top-quarks have very different

masses. This is indeed the case for (h) type diagrams. However, we find that (i) type

diagrams do not contribute. This is explained in the appendix of the paper [178] on which
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this chapter is based.

5.2 BSM Parametrization

Measuring the couplings of the Higgs boson with fermions, gauge bosons and with itself is

an important aspect of finding the signatures of new physics at colliders. With the help of

the data collected so far at the LHC, we now know couplings of the Higgs boson with top

quark with an accuracy of 10-20% and with vector bosons with an accuracy of 10% at 1σ

[5]. The Higgs boson self couplings, on the other hand, are practically unconstrained [76].

In this chapter, to study new physics effects in VV h processes, we work in kappa

framework [176, 177]. In this framework, only SM-like couplings get modified and no

new Lorentz structures or no new interaction vertices appear. The LHC experiments have

interpreted the data using this framework so far. The couplings of our interest are tt̄h,

VV h, hhh and VV hh. Out of these couplings, gg→ γγh is sensitive to only tt̄h coupling.

The VV h coupling affects all other processes. The couplings hhh and VV hh affect only

gg→VV h, V = Z,W processes.

The modification in these couplings due to new physics is implemented through scale

factor κi for various couplings of the Higgs boson in the SM. In kappa framework, there are

three such scale factors namely κt for Higgs boson coupling with top-quark, κV for Higgs

boson coupling with vector bosons (κZZh = κWWh = κV ) 1 and κλ for Higgs boson coupling

with itself. Since in the SM both VV h and VV hh couplings are related, the scaling of VV hh

is also parametrized by κV .

1Note that in the SM, the tree level interaction vertices hγγ and hγZ do not exist.
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The amplitudes for the gg fusion processes in terms of kappa framework parameters κt ,

κV , and κλ are expressed as:

M BSM(gg→ γγh) = κtM
SM
PEN (5.1)

M BSM(gg→ γZh) = κtM
SM
PEN +κV M SM

BX1
(5.2)

M BSM(gg→ ZZh) = κtM
SM
PEN +κV M SM

BX1
+κ

2
t κV M SM

BX2
+

κtκV κλ M SM
TR1

+κtκV M SM
TR2

+κtκ
2
V M SM

TR3
(5.3)

M BSM(gg→WWh) = κtM
SM
PEN +κV M SM

BX1
+κ

2
t κV M SM

BX2
+

κtM
SM
BX3

+κtκV κλ M SM
TR1

+κtκV M SM
TR2

+

κtκ
2
V M SM

TR3
+κV M SM

TR4
(5.4)

In the above, parts of the amplitudes M SM
i are related to diagram classes displayed in

Fig. 5.1 (Fig. 5.2 for WWh). Which amplitude corresponds to which diagram can be easily

identified by looking at κ-factors in front of the amplitude. Note that in WWh amplitude,

M SM
TR4

includes both (h) and (i) type diagrams of Fig. 5.2. This parametrization does not

affect the gauge invariance of the amplitudes with respect to the gluons as it will become

clear in the next section. The standard model prediction can be obtained by setting κt =

κV = κλ = 1. For non-SM values of BSM parameters, we can expect nontrivial interference

effects on inclusive and differential cross sections for ZZh and WWh processes.
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5.3 Calculation and Checks

Like in the previous chapter, here also the tensor reduction is done using semi-automated

in-house package OVReduce [65], based on Oldenborgh-Vermaseren Technique [66]. Trace

calculation and simplification of the amplitude is done using symbolic manipulation soft-

ware FORM [129]. Further, the one-loop master integrals here also are calculated numer-

ically using the OneLOop package [67]. To regulate ultraviolet (UV) and infrared (IR)

singularities of one-loop master integrals, we perform the calculation in 4−2ε space-time

dimensions. Since the couplings of Z and W bosons with quarks involve γ5, the trace

calculation needs special care. We have used 4-dimensional properties of γ5 in the calcula-

tion. This works because the SM is anomaly free. We have adopted Unitary gauge for the

calculation of the amplitudes.

As explained in the Section 5.1, the amplitude calculation for each process can be effi-

ciently organized using prototype amplitudes for each class of diagrams. The full amplitude

for each process is a function of external momenta and polarization vectors/helicities. Due

to huge expressions of the amplitudes, we calculate helicity amplitudes and the squaring of

the amplitude for each process is done numerically. The number of helicity amplitudes for

gg→ γγh, γZh, ZZh, WWh processes are 16, 24, 36, and 36, respectively.

There are a number of checks that we have performed to ascertain the correctness of

the amplitudes. We have checked that the amplitudes are separately UV and IR finite. In

4−2ε dimensions, these divergences appear as poles in 1/ε (for UV and IR) and 1/ε2 (for

IR only). Each pentagon diagram is UV finite, which is expected from the naive power
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counting. The individual box diagram is not UV finite, however, the full box amplitude, in

each class, is UV finite. The UV finiteness of triangle amplitudes holds for each diagram.

One-loop diagrams with all massive internal lines are IR finite, as expected. Thus, IR

finiteness check is relevant to the diagrams with massless quarks in the loop. This includes

box class of diagrams of Fig. 5.1(b) in γZh and ZZh. In WWh case, potentially IR divergent

diagrams include Fig. 5.2(a), (b), (h) and (i). Unlike UV, the IR finiteness holds for each

diagram [136].

We have also checked the gauge invariance of the amplitudes with respect to the external

gluons. For that, we numerically replace the gluon polarization vector εµ(p) by its four

momentum pµ and expect a gauge invariant amplitude to vanish. We find that the gauge

invariance check holds for each class of diagrams. This is expected because different box

and triangle topologies for each process arise due to the existence of various electroweak

couplings. This is a very strong check on the organization of our calculation for each

process using only a few prototype amplitudes. However, this check cannot verify relative

signs between different classes of diagrams. To verify relative signs, one needs to perform

gauge invariance check in electroweak theory which is a non-trivial task. We rather rely on

cross checking the calculation using different methods and tools. We have compared our

matrix element for each process with those calculated using MadLoop [159] and have found

an excellent agreement.

Numerical predictions for cross section and kinematic distributions are obtained us-

ing Monte Carlo techniques for phase space integration. We use AMCI [179] package for

Monte Carlo phase space integration which is based on VEGAS [180] algorithm and allows

parallelization of phase space point generation and matrix-element computation using PVM
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software [181].

5.4 Numerical Results

The cross section and kinematic distributions for pp→ VV h processes in the SM and in

BSM constitute the main results of this section. The numerical results are produced using

following basic selection cuts unless stated otherwise,

|ηγ |< 2.5, ∆Rγγ > 0.4, |yH,Z,W |< 5. (5.5)

The results for gg fusion processes are calculated using CT14LO parton distribution function

(PDF) and partonic center-of-mass energy (
√

ŝ) is chosen as common scale for renormal-

ization (µR) and factorization (µF ). The results are calculated for three different choices of

collider energies:
√

s = 14,27, and 100 TeV.

We compare the gg fusion channel contribution to pp→ VV h with contribution from

qq̄ initiated channels. The qq̄ initiated channel contribution is calculated at LO and NLO

in αs using MadGraph5_aMC@NLO [159]. The LO qq̄ initiated channel contributions are

pure electroweak processes and they do not depend on αs. For LO and NLO results, we

use CTEQ14LO and CT14NLO PDFs, respectively [182]. The scale choice is same as in gg

calculation. In both gg and qq̄ calculations, the scale uncertainties are estimated by varying

µR and µF independently by a factor of two. We quote only minimum and maximum

uncertainties thus obtained. In the literature, it has been shown that bb̄ initiated process

are important when precision is one of the main goals [70]. For all the processes, barring
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pp→WWh process, the results include bb̄ initiated channel contribution in five flavor

scheme at LO and NLO. For pp→WWh process, in five flavor scheme, we separately

present the contribution due to LO bb̄ initiated channel only, as in calculating the NLO

correction we encounter some technical issue regarding pole cancellation because of top

quark resonance. Coupling of b quark with Higgs boson is not ignored in the bb̄ initiated

channel.

Next, we study the BSM effect in these processes which as mentioned above is parametrized

in terms of κt , κV and κλ . To compare the relative importance of these couplings we vary

them independently by 10% about their SM values. We have organized results process by

process.

5.4.1 The process pp→ ZZh

Standard Model Predictions

The cross sections for ZZh production via various channels have been tabulated in Table 5.1

with the corresponding scale uncertainties. We compute the quantity R3 which represents

the ratio of gg fusion contribution to QCD NLO correction in the qq̄ channel2. The gg

fusion contribution becomes important at higher center-of-mass energy collider, as in this

case smaller partonic momentum fraction (x) are accessible, where gluon flux is signifi-

cantly large. The gg fusion contributions to ZZh at 14, 27, and 100 TeV colliders are 124

ab, 579 ab, and 7408 ab, respectively. The corresponding values of the LO qq̄ initiated

channel contributions are 2184, 5997, and 36830 ab, respectively3. The ratio, R3, is found
2Unlike the previous chapter, in this chapter we do not tabulate R1 and R2.
3bb̄ initiated channel contributions are included in here, which are 46 ab, 234 ab, and 4210 ab, respectively.

This has been done in five flavor scheme using Madgraph.
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to be 0.25, 0.4, and 1.05, respectively. As has been discussed above, this increase in ratio

R3 with collider energy is due to the large gluon flux.

In the gg fusion channel, the scale uncertainties of the total cross sections are in the

range of 20-30%. The uncertainty due to renormalization scale variation is more than that

due to factorization scale variation. The uncertainty for the renormalization scale variation

are nearly same for all the colliders. For all the colliders, contribution to total cross section

come from nearly same region of partonic center of mass energy of the process. In every

bin of this region, αs decreases by nearly same factor for the change in renormalization

scale. Therefore, uncertainty due to renormalization scale variation is nearly same for all

the colliders. However uncertainty for factorization scale variation is different for different

colliders. Change in factorization scale mainly causes change in parton distribution func-

tions. For different collider energies, different x regions, where x is partonic momentum

fraction, contribute to the process. As for different x regions change in parton distribution

function with factorization scale is different, uncertainty due to factorization scale variation

is different for different colliders. One interesting fact that we have noticed is that at 100

TeV collider with increase in factorization scale, the cross section increases, while at 14

TeV and 27 TeV colliders it decreases.
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√
s (TeV) σ

ZZh,LO
gg [ab] σ

ZZh,LO
qq̄ [ab] σ

ZZh,NLO
qq̄ [ab] R3 =

σ ZZh, LO
gg

(σ ZZh, NLO
qq̄ −σ

ZZh, LO
qq̄ )

14 124+28.2%
−21.0% 2184+0.2%

−0.6% 2710+1.4%
−1.0% 0.24

27 579+23.3%
−18.5% 5997+2.4%

−3.0% 7396+1.3%
−1.6% 0.41

100 7408+22%
−18% 36830+8.0%

−8.7% 43940+1.2%
−2.6% 1.04

Table 5.1: A comparison of different perturbative orders in QCD coupling contributing to
pp→ ZZh cross section at

√
s = 14, 27, and 100 TeV. The ratio R3 quantifies the gg fusion

channel contribution with respect to the NLO correction in qq̄ initiated process.
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Figure 5.3: SM contribution of pentagon (blue), box (green), triangle (gray) diagrams,
as well as their squared sum (black), interference (orange) and total (red) contribution to
partonic center-of-mass energy and pT (h) distributions in gg→ ZZh at 100 TeV collider
(FCC-hh). As can be seen, there is a strong destructive interference between the penta, box,
and triangle diagrams.

In the tree level qq̄ initiated channel, there is no QCD vertex. So here change in renor-

malization scale does not affect the cross section (as change in the electroweak coupling is

too small). But, the change in factorization scale can affect the cross section, and uncer-

tainty increases with collider energy. However, when NLO QCD correction is considered,

change in either of renormalization and factorization scales changes the cross section. Nev-

ertheless, the uncertainty in the cross section due to renormalization scale variation is small
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as NLO QCD correction is much smaller than the tree level results. The overall uncertainty

in this case is smaller than the LO case, which is as expected for higher order calculation.

The gg fusion channel uncertainties are more (∼ 20-30 %) as there α2
s appears as an overall

factor, whereas in qq̄ initiated channel only αs appears, that is even only in NLO correction

part which is smaller than the tree level result.

Interference of various diagrams plays a major role in gg→ ZZh production. In Fig. 5.3,

we have shown the M(ZZh) and pT (h) distributions for penta, box, triangle, sum of their

individual contributions, interference, and total at the 100 TeV collider (FCC-hh). As can

be seen, the box diagrams give the largest contribution, then comes the triangle contribution

and penta contributes the least. However because of the large destructive interference, the

total contribution is smaller by about a factor of five than the box contribution.
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Figure 5.4: Left: The top-quark contribution to box diagram of Fig. 1(b). Right: The effect
of excluding top-quark contribution from Fig. 1(b) to full amplitude. In the lower panel,
we have taken ratio of contributions without top and with top quark in Fig 1(b). While the
green histogram shows ratio for differential distributions, the black dashed line shows the
ratio for the cross sections.
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Figure 5.5: Kinematic distributions for gg→ ZZh in the SM at the 100 TeV collider.
These plots are made with the histogram data obtained after pT ordering of the Z bosons.
Z1 and Z2 refer to the hardest, and second hardest in pT , respectively.

We have found that the top-quark contribution in ggZZ∗-type box diagram is quite

significant despite the propagators suppression. This is due to the coupling of off-shell

longitudinal Z boson (effectively the Goldstone boson) with top-quark and it is proportional

to mt . We show the effect of excluding the top-quark contribution in ggZZ∗-type box

diagram (Fig.1(b)) on pT (h) distribution in Fig. 5.4. As we expect, excluding top-quark

contribution in ggZZ∗-type box diagram leads to non-unitary behavior in the full amplitude.
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Figure 5.6: The left figure shows the normalized distribution for pT (h) in gg and qq̄ initi-
ated process. In the top panel of the right figure, we show the distribution of qq̄ (NLO) +
gg (LO) and qq̄ (NLO) production with pT (h). The lower panel shows the ratio of them.

In Fig. 5.5, we have plotted pT distribution for leading pT (Z1), next-to-leading pT (Z2),
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and pT (h) in the left figure, and partonic center-of-mass energy distribution in the right

figure for the 100 TeV collider. The pT distributions for them peak around 100 GeV, 50

GeV, and 80 GeV, respectively.
√

ŝ distribution peaks around 400 GeV with the threshold

production energy around 300 GeV.
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Figure 5.7: tt̄ threshold effect for ZZh production via gg fusion channel. We have chosen
an arbitrary phase space point with

√
ŝ = 346 GeV and then vary mt from 160 GeV to 190

GeV. We see a sudden change in the slope of |M|2 plot around mt = 173 GeV.

In the left figure of Fig. 5.6, we see that the shape of pT distribution for Higgs boson in

gg fusion and qq̄ initiated process is nearly same at 100 TeV collider (FCC-hh). In the right

figure, in the top panel, distribution of NLO qq̄ + LO gg and NLO qq̄, and in the bottom

panel ratio of them have been displayed. In the bottom panel, R2 signifies the ratio of

differential cross section for LO gg fusion channel contribution to that of NLO qq̄ initiated

process. The dashed line shows the ratio of corresponding cross sections at inclusive level,

which is 0.17. At the tail of the distribution, we see the gg fusion channel contribution

becomes further important, but there differential cross section itself is quite small.

For gg→ ZZh production, unlike gg→WWh production which is going to be discussed

in the next section, we do not see any significant tt̄ threshold effect in M(ZZh) distribution,
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Fig. 5.5. However, for gg→ ZZh production, this effect can be seen at the amplitude level

if we choose a phase space point and vary mt . For this, we have chosen a phase space

point with center-of-mass energy,
√

ŝ equaling 346 GeV, and then vary mt from 160 GeV

to 190 GeV. When 2mt is less than
√

ŝ, the amplitude is real, but as soon as it crosses
√

ŝ,

it develops some imaginary parts which leads to some sudden change in the slope of the

matrix element square, |M|2, plot with mt , as can be seen in Fig. 5.7.

√
s (TeV) κi σ

ZZh,LO
gg [ab] σ

ZZh,LO
qq̄ [ab] σ

ZZh,NLO
qq̄ [ab] R3 =

σ ZZh, LO
gg

(σ ZZh, NLO
qq̄ −σ

ZZh, LO
qq̄ )

SM 7408 36830 43940 1.04

1.1 12426 [ 68%] 1.75
κt 36830 43940

0.9 6061 [-18%] 0.85
100 1.1 7313 [-1%] 36840 43980 1.02

κλ

0.9 7686 [ 4%] 36890 43920 1.09
1.1 10728 [ 45%] 44730 [ 21%] 53240 [ 21%] 1.26

κV
0.9 5333 [-28%] 29830 [-19%] 35630 [-19%] 0.92

Table 5.2: Effect of various anomalous couplings on ZZh production at the 100 TeV col-
lider. The production cross section of qq̄ initiated channel shows strong dependence on
κV coupling. The gg fusion channel shows strong dependence on κt and κV anomalous
couplings. The numbers in the square brackets show the percentage change in the cross
section from the SM value in the corresponding channel because of anomalous coupling.

Effect of Anomalous Couplings

After discussing the SM predictions, we now consider BSM effect for this process both

in gg fusion and qq̄ initiated channel. The qq̄ initiated channel depends mainly on κV .

For the bb̄ initiated channel, we have taken κb to be non-zero in order to see the effect of

anomalous values of κλ on the qq̄ initiated channel contribution 4. As can be seen from the

4For the gg fusion channel, we have taken κb to be zero, as the dependence on kλ will come mainly due
to the top-loop diagrams.
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Fig. 5.1, the gg channel depends on κt , κλ , and κV. We vary these κ’s by 10% from their

SM values. The results for these anomalous couplings have been tabulated in Tab. 5.2. The

gg fusion channel strongly depends on both κt and κV. In the gg fusion channel, ±10%

change in κt causes 68% and -18% change in the cross section, respectively. And ±10%

change in κV causes 45% and -28% change in the cross section, respectively. In the qq̄

channel, κV comes as an overall factor both for LO and NLO amplitude, and so the effect

of 10% change in κV causes around 20% change in the cross section. In the table, it can be

seen that the the dependence of qq̄ initiated channel contribution on κλ is milder than that

of gg fusion channel contribution.
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Figure 5.8: Effect of anomalous values of κt and κV on ZZh production via gg fusion chan-
nel. The left column shows normalized distribution, and right column shows distributions
and their ratio with the SM value.
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In Fig. 5.8, we display the distributions which show the effect of κt and κV in gg fusion

channel. We present distributions only for these two anomalous couplings since the cross

section shows strong dependence on them. In the top left figure, the shape remains more

or less same. The proportion of higher and lower pT Higgs boson increase slightly for

increase and decrease in κt , respectively. In the top right figure, we show the absolute

distribution in the top panel, while in the bottom panel we show the ratio of distribution

with anomalous coupling with that of the SM coupling. We see that in the bins around 400

GeV, this ratio is around 2 for κt = 1.1. In the lower row, we show the corresponding plots

for κV . In this case also, shape remains more or less same. In the bottom panel of the right

plot, at some of the bins, the ratio of distribution with κV = 1.1 with that of SM is around

1.5.

In Fig. 5.9, we show the effect of κV on the NLO qq̄ initiated channel. In the left figure,

we see that all the lines overlap, which is obvious since κV appears as an overall factor

in the amplitude for this channel because it is present in all the diagrams linearly. This

behavior is in sharp contrast with the case for the gg fusion channel where the distributions

do not overlap, since κV is present only in some specific diagrams. In the right figure, in

the top panel we show the distributions and in the bottom panel we show the ratio of the

distribution with the anomalous coupling to the distribution for the SM. It can be seen, in

all the bins the ratio is nearly same, 1.2 and 0.8 for kV = 1.1 and 0.9, respectively, which is

obvious since the differential cross section depends on k2
V as an overall factor.
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Figure 5.9: Effect of anomalous value of κV on NLO QCD ZZh production via qq̄ initiated
channel. We have not shown the effect of scaling of other couplings as their effect on the
total cross section is negligible.

5.4.2 The process pp→WWh

Standard Model Predictions

The cross sections for WWh production via different channels have been tabulated in

Tab. 5.3 with their scale uncertainties. The gg fusion channel contributions to WWh pro-

duction at 14, 27, and 100 TeV colliders are 290 ab, 1344 ab, and 17403 ab, respectively

(These numbers are roughly 2.3 times higher than ZZh cross sections). The correspond-

ing values of the LO qq̄ contribution are 8658, 23040, and 128000 ab, respectively5. The

ratio, R3, is found to be 0.15, 0.19, and 0.43, respectively. Unlike ZZh production, the

contribution of the gg fusion channel is relatively smaller.

5bb̄ initiated channel contributions are not included in here as we faced some technical issues for NLO cor-
rection, which arises because of top resonance in the real diagrams, which needs to be handled carefully. As
the LO bb̄ initiated process can be computed easily in Madgraph, we report cross section for LO bb̄ initiated
channel separately in here. In five flavor scheme, they are 287 ab, 1557 ab, and 25800 ab, respectively.
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√
s (TeV) σ

WWh,LO
gg [ab] σ

WWh,LO
qq̄ [ab] σ

WWh,NLO
qq̄ [ab] R3 =

σ WWh, LO
gg

(σ WWh, NLO
qq̄ −σ

WWh, LO
qq̄ )

14 290+27.6%
−21.0% 8658+0.3%

−0.7% 11220+1.5%
−1.1% 0.11

27 1344+22.5%
−18.8% 23040+2.1%

−2.7% 30090+1.7%
−1.8% 0.19

100 17403+20.6%
−17.8% 128000+7.5%

−8.1% 167300+2.0%
−3.3% 0.44

Table 5.3: A comparison of different perturbative orders in QCD coupling contributing to
pp→WWh hadronic cross section at

√
s = 14, 27, and 100 TeV. The ratio R3 quantifies

the gg fusion channel contribution with respect to the qq̄(LO) and qq̄(NLO) contributions.
qq̄ initiated channel results do not include bottom quark contribution.

As regards scale uncertainties, the gg→WWh channel cross section follow same pat-

tern as discussed in gg→ ZZh. For the qq̄ initiated channel also, our conclusions are same

as that for ZZh case.
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Figure 5.10: SM contribution of pentagon (blue), box(green), triangle (gray) diagrams,
as well as their square sum, interference and total contribution to partonic center-of-mass
energy and pT (h) distributions in gg→WWh at 100 TeV FCC-hh collider. As can be seen,
there is strong destructive interference between the penta, box, and triangle diagrams.

Like gg→ ZZh production case, interference of various diagrams plays a major role

in gg→WWh production as well. In Fig. 5.10, we have shown the M(WWh) and pT (h)

distributions for penta, box, triangle, sum of their individual contributions, interference,
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and total at the 100 TeV collider (FCC-hh). As can be seen, the individual box, triangle

and penta contribute from highest to lowest. The total contribution is much smaller than the

box contribution because of strong destructive interference effect which is shown by orange

line in the figure. Another important observation is that while box contributes significantly

at higher partonic center-of-mass energy, the contribution of total amplitude is very small

there.

without 3rd gen. in Fig. 2(b)

with 3rd gen. in Fig. 2(b)

0

2000

4000

6000

8000

10000

12000

14000

gg -> WWh (Fig. 2(b))

d
σ

d
p
T
[a
b
/b
in
]

s = 100 TeV

100 200 300 400 500 600 700 800 900 1000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

p
T
h (GeV)

R
a
ti
o

without 3rd gen. in Fig. 2(b)

with 3rd gen. in Fig. 2(b)

0

2000

4000

6000

8000

10000

12000

14000

gg -> WWh (ALL Classes)

d
σ

d
p
T
[a
b
/b
in
]

s = 100 TeV

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

p
T
h (GeV)

R
a
ti
o

Figure 5.11: Left: The third generation quark contribution to box diagram of Fig. 2(b).
Right: The effect of excluding third generation quark contribution from Fig. 2(b) to full
amplitude.

The gg→WWh amplitude also receives significant contribution from third generation

quarks via ggWW ∗ type box diagram. In Fig. 5.11, we show the effect of excluding the

third generation quark contribution from the ggWW ∗ type box diagram, on the pT (h) dis-

tribution. We can once again see that the third generation quark contribution in ggWW ∗

type box diagram is necessary for the unitarization of full amplitude.
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Figure 5.12: pT and M(WWh) distributions for gg→WWh in the SM at the 100 TeV
collider (FCC-hh). As expected, the pT distributions for W+ and W− fall on each other
as the process is a gg fusion one. A small peak can be seen at 350 GeV in the M(WWh)
distribution, which occurs due to tt̄ threshold effect.
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Figure 5.13: The left figure shows the normalized distribution for pT (h) in gg and qq̄
initiated process. In the top panel of the right figure, we show the distribution of qq̄ (NLO)+
gg (LO) and qq̄ (NLO) production with pT (h). The lower panel shows their ratio. Results
do not include contribution of bb̄ initiated process .

In the left figure of Fig. 5.12, we can see that the pT distribution of W+ and W− overlap

with each other, which is as expected in the case of gg fusion channel. The pT -distribution

peaks around 100 GeV, and we see the production cross section for very large pT Higgs

boson is more than that of W+ or W−. In the right figure of Fig. 5.12, the distribution

for center-of-mass energy has been shown, which peaks around 450 GeV. A smaller peak

around 350 GeV can be seen in this. This happens because of the tt̄ threshold effect.
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In the left figure of Fig. 5.13, the normalized pT distribution for Higgs boson in gg

fusion and qq̄ initiated processes have been shown for 100 TeV collider (FCC-hh). In

the right figure, in the top panel, distribution of qq̄ (NLO) + gg (LO) and qq̄ (NLO), and

in the bottom panel their ratio is displayed. The dashed straight line shows the ratio of

corresponding inclusive cross sections, which is 0.1. Once again, we find that gg fusion

channel contribution is more relevant in higher pT bins.
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Figure 5.14: tt̄ threshold effect for WWh via gg fusion channel. To show this effect, after
arbitrarily choosing a phase space point with

√
ŝ = 346 GeV, we vary mt from 160 GeV

to 190 GeV. We see a peak around mt = 173 GeV, which happens to be half of
√

ŝ for the
chosen phase space point.

In the Fig. 5.14, as in the case of ZZh process, we show the threshold effects for WWh

production via gg fusion channel at the amplitude level. These effects are more prominent

in this process than gg→ ZZh. This could be due to tbW vertex in the diagrams. Here

top-quark can go on-shell, leading to significant increase in the cross section. In the ZZh

case we had a slight change in the slope, while here we have a prominent peak. To show

this effect, we arbitrarily choose a phase space point with
√

ŝ = 346 GeV and then vary mt
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from 160 GeV to 190 GeV. In the total amplitude square, we see a peak around mt = 173

GeV, which happens to be half of
√

ŝ for the chosen phase space point.6

Effect of Anomalous Couplings

Next we focus on the effect of anomalous coupling on the total and differential cross sec-

tions. The qq̄ initiated channel depends on κV only. The gg fusion channel depends on

κt , κλ , and κV (see Fig. 5.2). We vary these κ’s by 10% from their SM values. The results

for these anomalous couplings have been shown in Tab. 5.4. While the gg fusion channel

shows mild dependence on anomalous κλ , it shows strong dependence on anomalous κt

and κV . In the gg fusion channel, ±10% change in κt causes 54% and -3% change in the

cross section, respectively, while ±10% change in κV causes 38% and -26% change in the

cross section, respectively. Like the case in qq̄→ ZZh, as in qq̄ initiated channel κ2
V comes

as an overall factor in the cross section, a 10% change in κV gives around 20% change in

the cross section of this channel.
6Here we have chosen a phase space point where effect is prominent. At some other phase space point,

effect may be milder or show up in a different way.
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√
s (TeV) κi σ

WWh,LO
gg [ab] σ

WWh,LO
qq̄ [ab] σ

WWh,NLO
qq̄ [ab] R3 =

σ WWh, LO
gg

(σ WWh, NLO
qq̄ −σ

WWh, LO
qq̄ )

SM 17403 128000 167300 0.44

1.1 26572 [ 54%] 0.68
κt 128000 167300

0.9 16868 [-3%] 0.43
100 1.1 16696 [-4%] 0.42

κλ 128000 167300
0.9 17708 [ 2%] 0.45
1.1 23970 [ 38%] 154900 [ 21%] 202500 [ 21%] 0.50

κV
0.9 12837 [-26%] 103700 [-19%] 135500 [-19%] 0.40

Table 5.4: Effect of various anomalous couplings on WWh production for the 100 TeV
collider. The production cross section via qq̄ initiated channel shows strong dependence on
κV only. The gg fusion channel shows strong dependence on κt and κV . The numbers in the
square brackets show percentage change in the cross section in BSM scenario with respect
to the SM value. qq̄ initiated channel results do not include bottom quark contribution.
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Figure 5.15: Effect of anomalous values of κt and κV on WWh production via gg fusion
channel. The left panel shows normalized distribution, and the right panel shows distribu-
tions and the ratio of the distributions to the SM distribution.
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In Fig. 5.15, we show the distributions which show the effect of κt and κV in gg fusion

channel. We do not show the distribution for anomalous κλ as its effect on cross section

is very small. In the left panel, we see the shape remains more or less same. In the top

parts of the plots in the right panel, we show the absolute distribution. In the bottom part

of the plots, we show the ratio of distribution for BSM scenario to that of the SM one. We

see that in the bins around 400 GeV, this ratio is around 1.5 for κt = 1.1 and κV = 1.1.

For κt = 0.9, the ratio remains close to 1 throughout all the bins and for κV = 0.9, it is in

the range 0.7–0.8. The effect of anomalous κV coupling on the distribution for qq̄ initiated

channel is similar to what has been discussed in qq̄→ ZZh channel.

5.4.3 The process pp→ γZh

Standard Model Predictions

The gg fusion contribution is very small for this process. As mentioned in Sec. 5.1, only

vector part of Z coupling to quarks contributes to the total cross section because of Furry’s

theorem. From Tab. 5.5, it can be seen that R3, which shows the ratio of gg fusion channel

contribution to NLO correction to qq̄ initiated channel, is at most 0.06 for 100 TeV collider,

and even smaller for HE-LHC (27 TeV) and LHC (14 TeV). We present results for two

cuts on pT of γ: 50 GeV and 100 GeV. It can be seen that with larger pγ

T , reduction in

qq̄ initiated channel is more than that in gg fusion channel. With pγ

T > 50 GeV, the gg

fusion contribution to γZH at 14, 27, and 100 TeV colliders are 4 ab, 16 ab, and 168 ab,

respectively. The corresponding values for the LO qq̄ initiated channel contribution are
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689, 1733, and 7498 ab, respectively7.

√
s (TeV) σ

γZh,LO
gg [ab] σ

γZh,LO
qq̄ [ab] σ

γZh,NLO
qq̄ [ab] R3 =

σ γZh, LO
gg

(σ γZh, NLO
qq̄ −σ

γZh, LO
qq̄ )

pγ

T pγ

T pγ

T pγ

T
> 50 GeV > 100 GeV > 50 GeV > 100 GeV > 50 GeV > 100 GeV > 50 GeV > 100 GeV

14 4.0+26%
−20% 1.8+27%

−21% 689+0%
−0.2% 225+1.2%

−1.4% 909+1.7%
−1.3% 295+1.8%

−1.5% 0.018 0.026

27 16+22%
−17% 8.1+22%

−17% 1773+3.0%
−3.6% 613+1.7%

−2.2% 2349+1.7%
−2.1% 853+1.8%

−1.8% 0.028 0.034

100 168+21%
−19% 93+23%

−15% 7498+8.8%
−9.4% 2749+7.2%

−7.8% 10430+2.2%
−3.8% 4106+2.7%

−3.8% 0.057 0.069

Table 5.5: A comparison of different perturbative orders in QCD coupling contributing
to pp→ γZh hadronic cross section at

√
s = 14, 27, and 100 TeV for two cuts on pγ

T and
|ηγ | < 2.5. We calculate ratio R3 which quantify the gg fusion channel contribution with
respect to the NLO correction in qq̄ initiated process. Contribution of bb̄ channel has also
been taken into account.

In Tab. 5.6, the effect of various pγ

T cuts in the gg fusion and qq̄ initiated channel has

been shown. As the cut on pγ

T increases, qq̄ initiated channel cross section decreases faster

than the gg fusion channel one. In going from 20 GeV to 100 GeV cut, the cross section of

gg fusion channel decreases by a factor of around 2.4, while in LO qq̄ channel, it decreases

by a factor of around 7.

cuts gg→ γZh [ab] qq̄→ γZh(LO) [ab] qq̄→ γZh(NLO) [ab]
pγ

T > 20 GeV 229 19870 25750
pγ

T > 30 GeV 204 13440 18000
pγ

T > 50 GeV 167 7589 10340
pγ

T > 100 GeV 95 2812 4072
pγ

T > 100 GeV,pZ,H
T > 50 GeV 68 2245 3255

Table 5.6: Cross sections for pp→ γZh production at the 100 TeV collider (FCC-hh). A
pseudo-rapidity cut of |ηγ | < 2.5 has been imposed. b quark contribution has also been
considered in these results.

In Fig. 5.16, we show the M(γZh) and pT (h) distributions for penta, box, sum of their

7bb̄ initiated channel contributions are included in here, which are 4.8 ab, 24.0 ab, and 251 ab, respectively.
This has been done in five-flavor scheme using Madgraph.
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individual contributions, their interference, and total at the 100 TeV collider. The inter-

ference effect is particularly interesting here. In some range of center-of-mass energy it is

constructive, at some other range it is destructive. The contribution of box diagrams is more

than that of the pentagon diagrams. Later, we will see because of this, dependence of cross

section on anomalous kV is more than anomalous kt . Since the ggγZ∗ type box amplitude

does not depend on the axial-vector coupling of the off-shell longitudinal Z-boson with the

quarks, the top-quark contribution is not very significant. This is shown in Fig. 5.17.

In Fig. 5.18, we have plotted pT distribution for final state particles in the left figure,

and partonic center-of-mass energy distribution in the right figure for the 100 TeV collider.

The pT distributions for them peak around 50–100 GeV.
√

ŝ distribution peaks around 400

GeV. Like the gg→ ZZh production case, we do not see any visible tt̄ threshold effect in

the partonic center-of-mass energy distribution.
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Figure 5.16: SM contribution of pentagon (blue) and box (green) diagrams, as well as
their square sum, interference, and total contribution to partonic center-of-mass energy and
pT (h) distributions in gg→ γZh at 100 TeV FCC-hh collider. The interference shows
an interesting effect. In 300 – 400 GeV range of partonic center-of-mass energy, it is
constructive, while it is destructive at energies higher than that. pγ

T > 50 GeV has been
imposed.
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Figure 5.17: Left: The top-quark contribution to box diagram of Fig. 1(b). Right: The
effect of excluding top-quark contribution from Fig. 1(b) to full amplitude.
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Figure 5.18: Kinematic distributions for gg→ γZh in the SM at 100 TeV. pγ

T > 50 GeV
has been imposed.

In Fig. 5.19, we show the tt̄ threshold effect for γZh production via gg fusion channel at

the amplitude level. However, like ZZh production case, the effect is too small to be visible

in the M(γZH) distribution, Fig. 5.18.
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Figure 5.19: tt̄ threshold effect for γZh production via gg fusion channel at the amplitude
level.

Effect of Anomalous Couplings

In this section, we discuss the effect of anomalous κt and κV . The gg fusion channel

shows very small dependence on anomalous κt , as it is present only in pentagon diagram

whose contribution is small (see Fig. 5.16). However, it strongly depends on κV , as the

box contribution is much more than the penta contribution. The results are tabulated in

Tab. 5.7. We do not show the effect of anomalous coupling on the distribution. However,

it can be understood qualitatively from the effect in the gg fusion channel using Eq. 5.2

and Fig. 5.16. For the qq̄ initiated channel, like the previous processes here also only κV

is relevant8. We do not show the effect of anomalous κV on the distribution of qq̄ initiated

channel as those are similar to what has been discussed for the previous two processes.

8As the bbh coupling is too small, its contribution will be tiny. Most of the bb̄ initiated channel contribu-
tion comes from the diagrams where Higgs boson is radiated off Z boson.
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√
s (TeV) κi σ

γZh,LO
gg [ab] σ

γZh,LO
qq̄ [ab] σ

γZh,NLO
qq̄ [ab] R3 =

σ γZh, LO
gg

(σ γZh, NLO
qq̄ −σ

γZh, LO
qq̄ )

SM 166 7498 10430 0.06

1.1 175 [ 5.4%] 0.06
100 κt 7498 10430

0.9 164 [-1.2%] 0.06
1.1 196 [ 18%] 9049 [ 21%] 12650 [ 21%] 0.05

κV
0.9 141 [-15%] 6138 [-18%] 8448 [-19%] 0.06

Table 5.7: Effect of various anomalous couplings on γZh production for the 100 TeV col-
lider. The effect of anomalous κt on gg fusion channel cross section is smaller than that of
anomalous κV . The qq̄ initiated channel does not depend on κt , as no diagram has this tt̄h
vertex. The numbers in the square brackets show percentage change in the cross section in
BSM scenario with respect to the SM value.

5.4.4 The process pp→ γγh

This process is important as it is a background to pp→ hh process when one Higgs boson

decays into a photon pair. To manage the background one usually looks at ‘γγbb̄’ final

state, instead of ‘bb̄bb̄’, as the signature of the double Higgs boson production.

Like γZh production, the cross sections for this process are small. But unlike γZh, gg

fusion process gives the dominant contribution to pp→ γγh process. We present results for

two cuts on pT of γs: 50 GeV and 100 GeV. With pγ

T > 50 GeV, the gg fusion contribution

to γγH at 14, 27, and 100 TeV colliders are 5.4 ab, 22 ab, and 220 ab, respectively. As far as

qq̄ initiated production is concerned, only bb̄ channel can produce γγh. However, this cross

section is quite small, owing to small bottom Yukawa coupling. The LO cross sections for

this bb̄ channel in five flavor scheme are 0.033 ab, 0.153 ab, and 1.4ab, respectively. The

results are tabulated in Tab. 5.8.
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Standard Model Predictions

√
s (TeV) σ

γγh,LO
gg [ab] σ

γγh,LO
qq̄ [ab] σ

γγh,NLO
qq̄ [ab]

pγ

T pγ

T pγ

T
> 50 GeV > 100 GeV > 50 GeV > 100 GeV > 50 GeV > 100 GeV

14 5.36+28%
−20% 2.98+28%

−20% 0.033+13%
−14% 0.0031+9%

−10% 0.046+5%
−6% 0.0039+4%

−5%

27 22.0+22%
−19% 13.0+22%

−18% 0.153+15%
−17% 0.0181+12%

−13% 0.234+5%
−7% 0.025+4%

−6%

100 220.1+27%
−21% 137.8+32%

−19% 1.4+20%
−20% 0.21+16%

−16% 2.25+5%
−8% 0.34+5%

−7%

Table 5.8: A comparison of different perturbative orders in QCD coupling contributing
to pp→ γγh hadronic cross section at

√
s = 14, 27, and 100 TeV for two cuts on pγ

T ,
|ηγ | < 2.5, and ∆Rγγ > 0.4. Unlike the previous processes, here we don’t show the ratio
(R3) of gg fusion channel contribution to NLO QCD correction in qq̄ initiated channel,
since the tree level contribution of the latter channel is too small in comparison to the
former one.

In Tab. 5.9, the effect of various pγ

T cuts in the gg fusion and qq̄ initiated channels has been

shown. As the cut on pγ

T increases, qq̄ initiated channel cross section decreases faster than

the gg fusion channel one. In going from 20 GeV to 100 GeV cut, the cross section of

gg fusion channel decreases by a factor of around 2.2, while in LO qq̄ initiated channel

decreases by a factor of around 57.

cuts gg→ γγh [ab] qq̄→ γγh(LO) [ab] qq̄→ γγh(NLO) [ab]
pγ

T > 20 GeV 245 10.8 16.9
pγ

T > 30 GeV 243 4.6 7.5
pγ

T > 50 GeV 222 1.4 2.2
pγ

T > 100 GeV 139 0.21 0.34
pγ

T > 100 GeV,pZ,H
T > 50 GeV 113 0.19 0.31

Table 5.9: Cross sections for pp→ γγh production at the 100 TeV collider (FCC-hh). A
pseudo-rapidity cut of |ηγ | < 2.5 and ∆Rγγ > 0.4 have been imposed. Only bottom quark
can contribute to the qq̄ initiated process. The cross section in this channel is too small,
owing to the tiny bottom Yukawa coupling.
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Figure 5.20: Kinematic distributions for gg→ γγh process in the SM at 100 TeV. These
plots have been made using histogram data obtained after pT ordering of two γs — γ1 and
γ2 refer to the hardest and second hardest in pT , respectively. pγ

T > 50 GeV and ∆Rγγ > 0.4
have been imposed.

Unlike the previous processes, there is no box or triangle diagrams in the gg fusion

channel. There are pentagon diagrams only. So here we do not have any interference

effect between various classes of diagrams, see Eq. 5.1. In Fig. 5.20, we have plotted pT

distribution for hardest γ , next-to-hardest γ , and h in the left figure, and partonic center-

of-mass energy distribution in the right figure for the 100 TeV collider (FCC-hh). The

pT distributions for them peak around 150 GeV, 90 GeV, and 70 GeV, respectively.
√

ŝ

distribution peaks around 475 GeV. Like the gg→ ZZh and gg→ γZh production cases, we

do not see any visible tt̄ threshold effect in the partonic center-of-mass energy distribution.

However, for illustration, in Fig. 5.21 we show the threshold effect for γγh production at

the amplitude level.
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Figure 5.21: tt̄ threshold effect for γγh production via gg fusion channel.

Effect of Anomalous Couplings

Let us consider first gg fusion channel. As there are only pentagon diagrams, in the cross

section expression, κ2
t is present as an overall factor. So a 10% change in κt will render an

obvious change of around 20% in the cross section, which we see in the Tab. 5.10. We do

not show the effect of this anomalous coupling on the distribution, as the cross section in

every bin will simply be scaled by same factor, κ2
t . For the qq̄ initiated process, the cross

section is too small. It depends on κb, which we do not change from the standard model

value.

√
s (TeV) κi σ

γγh,LO
gg [ab] σ

γγh,LO
qq̄ [ab] σ

γγh,NLO
qq̄ [ab]

100

SM 222.4 1.4 2.2

1.1 269.6 [ 21%]
κt 1.4 2.2

0.9 180.1 [-19%]

Table 5.10: Effect of various anomalous couplings on γγh production for the 100 TeV
collider. pγ

T > 50 GeV and ∆Rγγ > 0.4 have been imposed.
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5.5 Conclusion

In this chapter, we have considered production of VV h (γγh, γZh, ZZh, and WWh) at

proton-proton collider. Our main focus had been the gg fusion channel contribution, which

occurs at NNLO in αs. At 100 TeV, the cross sections for these processes via gg fusion

channel range from 0.2 fb to 17 fb, gg→WWh being the dominant one among all. As the

gg fusion channel contributes at NNLO in αs, its contribution is found to be smaller than qq̄

initiated channel contribution. We have compared the gg fusion channel contribution with

the fixed order NLO QCD correction to pp→ VV h in order to emphasize their relative

importance. We find, at 100 TeV collider, the contribution of gg fusion channel to ZZh

and WWh production is comparable to the fixed order QCD NLO correction to qq̄ initiated

channel. We have also studied production of γZh and γγh. The γZh production shows one

interesting feature: with pT cut on photon, qq̄ initiated channel contribution decreases faster

than the gg fusion channel contribution. For γγh production, the gg fusion channel can be

said to be only production channel, as the bb̄ initiated channel contribution is negligibly

small.

In addition to the SM results, effect of anomalous couplings for tt̄h, VV h, VV hh, and

hhh vertices have been studied in the kappa framework. A strong dependence on anomalous

κt and κV could be seen in the gg fusion channel, if the Feynman diagrams of the process

under consideration have the corresponding vertices. A 10% change in κt on the higher

side can enhance the ZZh and WWh cross sections by 68% and 54% respectively. Similar

change in κV enhances these cross sections by about 40%. The qq̄ initiated channel, on

123



the other hand, depends mainly on κV and its 10% variation changes the cross section by

20%. Another distinction is that in the gg fusion channel anomalous κt and κV changes

the shape of the distribution. But in the qq̄ initiated channel where κV is present in every

diagram linearly, the shape of the normalized distribution does not change as the differential

cross section in every bin gets scaled by same factor, κ2
V . We did not see any large effect

of anomalous trilinear Higgs boson coupling as it is present only in very small number

of diagrams whose contribution is small for gg→ ZZh and gg→WWh processes. The

dependence of the qq̄ initiated channel on this coupling is further smaller, owing to very

small Yukawa coupling of light quarks with the Higgs boson.
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Chapter 6

Phenomenology of Higgs Potential at Fu-

ture Colliders

After the discovery of the Higgs boson, one of the next goals of the colliders is to measure

self couplings of the Higgs boson. While the trilinear Higgs boson coupling is poorly con-

strained from analysis of data collected so far at LHC, no experimental study has yet been

carried out for the more difficult quartic Higgs boson coupling. The absence of practically

no reasonable experimental constraints on the Higgs boson self couplings, therefore, leave

the shape of the Higgs potential undetermined. There are various new physics scenarios,

such as elementary Higgs in SMEFT, Nambu-Goldstone Higgs, Coleman-Weinberg Higgs,

Tadpole-induced Higgs, which give rise to Higgs potentials different from the SM one. We

use double Higgs boson production to study these various models. We find the constraint

that can be put in trilinear Higgs boson couplings in the various models, assuming certain

accuracies in the cross section measurement. Next we use triple Higgs bosons production

at the 100 TeV collider to put constraint on quartic Higgs boson coupling in these models,

again assuming certain accuracies in the cross section measurement.
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After the discovery of the Higgs boson, one of the major goals is to determine the shape

of the Higgs potential. The SM Landau-Ginzburg potential is not the only Higgs potential

proposed so far. There are various models which predict quite different Higgs potential, and

till today these are valid models as although experimentally the parameters of those models

have been constrained, the models themselves are still feasible. In this chapter, we consider

various Higgs potential scenarios — namely, elementary Higgs boson in SMEFT, Nambu

Goldstone boson, Coleman-Weinberg Higgs boson, and Tadpole induced Higgs boson.

At the colliders, trilinear and quartic Higgs boson couplings can be directly measured

using hh and hhh production, respectively. So far the ATLAS and CMS collaborations

have been able to put only very loose bound on the trilinear Higgs boson coupling. It will

be quite challenging to tightly constraint the trilinear Higgs boson coupling even at the

end of the High-Luminosity LHC (HL-LHC). To constraint it properly, one will need high

energy colliders. To put direct constraint on the quartic Higgs boson coupling, we study

hhh production. The production cross section for hhh is very small. As hhh production has

not been investigated using data available at LHC, there is so far no experimental constraint

available for the quartic Higgs boson coupling. Observing hhh production and, thereafter,

constraining the quartic Higgs boson coupling to some reasonable degree will be difficult

even at the 100 TeV collider.

The various Higgs potentials, V (H), that we are going to consider have the following

analytic structure1:

1H denotes Higgs doublet, while h denotes physical Higgs boson.
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Elementary Higgs : −m2H†H +λ (H†H)2 +
c6λ

Λ2 (H†H)3,

Nambu−Goldstone Higgs : −asin2 (

√
H†H
f

)+bsin4 (

√
H†H
f

),

Coleman−Weinberg Higgs : λ (H†H)2 + ε(H†H)2 log(
H†H
µ2 ),

Tadpole− induced Higgs : −κ
3
√

H†H +m2H†H,

where f denotes the decay constant of the Nambu-Goldstone Higgs boson and µ de-

notes the renormalization scale in case EWSB is triggered by radiative corrections. m2, λ ,

c6, Λ, a, b , ε , κ are dimensionful or dimensionless parameters in one or other new physics

scenarios.

We study these various scenarios using gg→ hh and gg→ hhh processes at the high

luminosity LHC (HL-LHC), high energy LHC (HE-LHC), and 100 TeV hadron collider

(FCC-hh). The gg→ hh has been extensively studied in the literature for measuring trilinear

Higgs boson coupling [183–202], for probing tt̄hh coupling in the EFT framework [203–

205] and for studying many new physics scenarios [206–217]. In particular, the composite

Higgs models using this channel have been studied in [215–217]. However, we take a more

unified approach and consider a number of Higgs potential scenarios together. We examine

interference between various diagrams which give us better understanding of behavior of

cross sections and distributions with various parameters of these models. We find that

different scenarios of Higgs potential can be distinguished via measuring cross section of

hh production. We further consider the possibility of constraining the trilinear Higgs boson

coupling in these scenarios, assuming certain accuracies for the measured cross section.
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We also compute cross sections and distributions for the gg→ hhh process in different

Higgs potential scenarios. The process gg→ hhh was studied in [143] including the scal-

ing of SM Higgs boson couplings. It would not be easy to observe this process even at the

FCC-hh. The role of triple Higgs bosons production is to determine the shape of the Higgs

potential by measuring quartic Higgs boson coupling. We study various interference effects

between the diagrams for gg→ hhh process which helps us understand the dependence of

these terms on various couplings, including quartic Higgs boson coupling. As the depen-

dence of the cross section on the quartic Higgs boson coupling is too weak, it will be quite

difficult to extract it. In the composite Higgs model, the presence of tt̄hhh coupling further

complicates the extraction of it. Assuming that the triple Higgs bosons production cross

section can be measured to a certain accuracy at the FCC-hh, we also obtain the possible

bounds on quartic Higgs coupling and tt̄hhh coupling.

This chapter is organized as follows. In Sec. 6.1, we briefly discuss various scenarios

for Higgs potentials. In Sec. 6.2, we use double Higgs production to study different Higgs

potential scenarios and find the constraints on the trilinear Higgs boson coupling, assuming

certain uncertainty in the cross section measurement. In Sec. 6.3, we investigate triple

Higgs bosons production to probe quartic Higgs boson coupling and find the constraints on

this coupling in the various models, again assuming certain uncertainty in the cross section

measurement. Finally, in Sec. 6.4 we summarize our results.
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6.1 Various scenarios and relevant couplings

As discussed in the introduction of this chapter, we consider four new physics scenar-

ios — namely, the elementary Higgs in SMEFT, pseudo Nambu-Goldstone Higgs model,

Coleman-Weinberg Higgs model and Tadpole Higgs model. The operators in SMEFT are

constructed from SM field contents and respect the symmetries of the SM. The pseudo

Nambu-Goldstone Higgs arises from strong dynamics at some high energy scale. In the

Coleman-Weinberg Higgs model, electro-weak symmetry breaking is triggered by renor-

malization group running effects. In the tadpole induced Higgs, symmetry breaking is

triggered by tadpole Higgs. We study the various scenarios in the general effective field

theory framework, i.e., in HEFT, discussed in Sec. 2.3.

The most general Lagrangian, with the non-linearly realized symmetry can be written

as

L =
1
2
(∂µh)2−V (h)+

v2

4
Tr[(∂µU)†

∂
µU ]

(
1+2a

h
v
+b

h2

v2 + · · ·

)

− v√
2
(t̄L, b̄L)U

(
1+ c1

h
v
+ c2

h2

v2 + c3
h3

v3 + · · ·

) yttR

ybbR

+h.c. , (6.1)

where V(h) is given by

V (h) =
1
2

m2
hh2 +d3

(
m2

h
2v

)
h3 +d4

(
m2

h
8v2

)
h4 + · · · (6.2)

In this section, we collect all the relevant couplings for hh and hhh production for

various BSM scenarios in Table. 6.1. For details about the Higgs potentials arising from
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the various new physics scenarios, one is referred to the preprint [72], on which this chapter

is based. Below we just describe some specific assumptions that we have used to derive

these couplings in each of these scenarios:

• For the Elementary Higgs boson, we only include the O6 operator of SMEFT, i.e.,

(H†H)3, since all the other operators are (and will be further) constrained by preci-

sion Higgs boson coupling measurements. Here d3 and d4 are correlated as they both

arise from the same operator, O6.

• For the Nambu-Goldstone Higgs scenarios, we consider only two specific benchmark

models, MCH5+5 and CTH8+1. The 5+5 denotes both right handed and left handed

fermions transform under fundamental representation 5 of global SO(5) symmetry,

while 8+1 means left handed fermions transform under 8 and right handed ones are

singlet of global SO(8) symmetry. Values of non-linearity parameter, ξ , in these

models has been constrained to less than 0.1 by the precision hVV couplings. For

consistency, deviations of the other Higgs boson couplings caused by Higgs non-

linearity effects have also been considered. But we neglect the contribution of com-

posite states to Higgs boson couplings assuming all the composite particles are heavy

enough. For more about these models one is referred to [73, 218–222].

• For the Coleman-Weinberg Higgs scenario [74, 223–226], except the Higgs boson

self couplings d3 and d4, we take all other Higgs boson couplings to be same as SM

couplings, which can be achieved if extra scalar particles do not mix with the Higgs

boson after EWSB. At one loop order, the Higgs boson self couplings are found to

be d3 =
5
3

and d4 =
11
3

.

131



• For the Tadpole-induced Higgs scenarios [75, 227], we approximate d3 = d4 ≈ 0, as

they can be highly suppressed, though their exact value would depend on the self

couplings of the auxiliary scalar field.

c1 c2 c3 d3 d4

relevant couplings ht̄t hht̄t hhht̄t hhh hhhh
SM 1 0 0 1 1

SMEFT (with O6) 1 0 0 1+ c6
v2

Λ2 1+ c6
6v2

Λ2

MCH5+5 1− 3
2ξ −2ξ −2

3ξ 1− 3
2ξ 1− 25

3 ξ

CTH8+1 1− 1
2ξ −1

2ξ −1
6ξ 1− 3

2ξ 1− 25
3 ξ

CW Higgs (doublet) 1 0 0 5
3

11
3

Tadpole-induced Higgs ' 1 0 0 ' 0 ' 0

Table 6.1: Higgs boson couplings, defined in Eqs. (6.1) and (6.2), for the SM and different
BSM scenarios. Here ξ = v

f , where f is the scale of the new physics.

6.2 Double Higgs production

In this section, we use the double-Higgs production to study different Higgs scenarios. At a

high energy hadron collider, the gg fusion channel is the dominant production mechanism

for double Higgs boson production. As different Higgs potential scenarios predict differ-

ent trilinear couplings, hh production, being dependent on it, is capable of distinguishing

these scenarios. This process has been widely considered in the literature for validating

the SM cross section, measuring the Higgs trilinear coupling [183–199, 202] and the tt̄hh

coupling [205], to discriminate various NP scenarios [183–199, 202] etc. However, it will

not be seen at 5σ level even at the end of high luminosity phase of LHC if there is no new

physics.

The ATLAS and CMS Collaborations have been looking for the hh signal in the data
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collected so far at the LHC and have accordingly set upper limits on its production cross

section [162–167]. Both collaborations have also examined the prospects of detecting hh

signal at the high-luminosity LHC (HL-LHC) and the high-energy LHC (HE-LHC), re-

spectively [228, 229]. At the HL-LHC, without (with) systemic uncertainty, the signal can

be measured at 31% (40%) accuracy relative to the standard model prediction with the

significance 3.5σ (3σ ), and the trilinear Higgs boson coupling can be constrained in the

range−0.1 < λ

λSM
< 2.7 and 5.5 < λ

λSM
< 6.9 (−0.4 < λ

λSM
< 7.3). At the HE-LHC (27 TeV

with 15 ab−1 data), the signal can be measured at significance of 7.1σ and 11σ , without

systematic uncertainty, in the bb̄γγ and bb̄ττ channels, respectively [229]. A number of

the above studies have performed detailed background analysis with optimized cut-based

efficiency or with multivariate techniques. However in this chapter, we do not intent to

perform detailed signal-to-background analysis. Instead, we find new physics cross sec-

tions after primary cuts and find the constraints the can be put on the trilinear Higgs boson

coupling in the different Higgs scenarios, assuming some benchmark uncertainties in the

cross section measurement.

6.2.1 Cross Section and Distributions

In terms of parameters of HEFT as described in Eqs. (6.1) and (6.2), the total cross section

for gg→ hh can be written as

σ = c4
1 σ SM

b + c2
1d2

3 σ SM
t + c3

1d3 σ SM
bt + c2

2 σtt̄hh + c2
1c2 σb, tt̄hh + c1d3c2 σt, tt̄hh, (6.3)
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where we have six pieces of form factors: the first three pieces are from the box contribution

(σ SM
b ), the triangle contribution (σ SM

t ), and the interference of them (σ SM
bt ) for the SM-like

diagrams, respectively, and the rest come from the new triangle contribution (σtt̄hh), the

interference of new triangle with the SM-like box (σb, tt̄hh), the interference of new triangle

with the SM-like triangle (σt, tt̄hh). A representative set of diagrams for gg→ hh production

are given in the Fig. 6.1.

Figure 6.1: Different classes of diagrams for the hh production via gg fusion channel. The
third diagram occurs in models having tt̄hh vertex.

Methodology of the computation is same as discussed in the previous two chapters. We

use leading order CTEQ parton distribution functions, CT14llo [182], and renormaliza-

tion/factorization scale as
√

ŝ. Numerical value for each form factor is listed in Table 6.2

for the 14, 27, and 100 TeV proton-proton colliders. To suppress the large QCD back-

ground, one needs to apply a large cut on the transverse momentum (pT ) of the Higgs

boson . Therefore, the table also includes the cross sections with cut ph
T > 70 GeV. No fur-

ther kinematic cuts are considered here, as we are not doing detailed signal-to-background

study. As we see from Table 6.2, there is some interesting interference pattern between

different classes of diagrams. This pattern can help us to understand the dependence of

cross sections and distributions on various couplings. This will be discussed in more detail

in the next section. All these results are from leading order diagrams. The NLO QCD cor-

rections are large and can increase the cross section by about a factor of 1.7 [1]. However,
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our numerical results in this section do not include this factor.

Collider ph
T σ SM

b σ SM
t σ SM

bt σb, tt̄hh σt, tt̄hh σtt̄hh
14 TeV no cut 36.1 4.9 -23.8 -147.0 48.9 175.8

ph
T > 70 GeV 29.6 2.9 -17.1 -122.4 36.3 151.9

27 TeV no cut 149.2 18.9 -94.5 -618.9 197.92 777.0
ph

T > 70 GeV 124.1 11.6 -69.6 -524.5 151.1 684.5
100 TeV no cut 1607.6 184.3 -961.8 -6872 2077.3 9356

ph
T > 70 GeV 1370 118.8 -732 -5970 1645 8464

Table 6.2: Form factors as defined in Eq. (6.3) at the 14 TeV, 27 TeV, and 100 TeV proton-
proton colliders.

The cross sections for 14 TeV, 27 TeV, and 100 TeV colliders can be easily obtained

for all the models we are considering using Table. 6.1, Eq. 6.3, and Table 6.2. For the

14 TeV collider, the SM cross section for no cut and ph
T > 70 GeV are 17.2 fb and 15.4

fb, respectively. The corresponding values for the 27 TeV collider are 73.6 fb and 66.2

fb, respectively, which are about 4-5 times 14 TeV value. The cross sections at 100 TeV

collider are 830.1 fb and 756.8 fb, respectively, which are about 50 times the corresponding

quantity at 14 TeV collider. For the new physics scenarios, in what follows we will write

the cross section at 27 TeV collider only. At this collider, for no cut the cross sections for

Tadpole-induced Higgs model and Coleman-Weinberg model are 149.2 fb and 124.1 fb,

respectively, while with ph
T > 70 GeV they are 44.2 fb and 40.3 fb, respectively. For the

ξ = 0.05 benchmark value, for no cut the cross section for the MCH and CTH models are

97.7 fb and 79.9 fb, respectively, while with ph
T > 70 GeV they are 87.2 fb and 71.5 fb,

respectively. For the cross sections for these models at the 14 TeV and 100 TeV colliders,

one can use Table. 6.1, Eq. 6.3, and Table 6.2.
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Figure 6.2: Variation of the ratio of the new-physics cross section to that of the SM for
hh production with respect to the trilinear Higgs boson coupling d3 as in the fundamental
Higgs, Coleman-Weinberg Higgs and Tadpole-induced Higgs scenarios (upper row), and
with respect to the parameter ξ in Nambu-Goldstone Higgs scenario (lower row).

In Fig. 6.2, we display the ratio of the new physics cross section to the SM value in

various Higgs potential scenarios at the 14 TeV LHC and the 27 TeV HE-LHC, respectively.

In the top row of Fig. 6.2, we see that the ratio of the cross sections increases for negative

values and large positive values of d3. The reason for this feature of this plot will be

explained in the next subsection . The bottom row of the figure displays the ratio as a

function of the parameter ξ of Nambu-Goldstone Higgs scenario. While in the case of the

MCH model, the cross section ratio increases rapidly with increasing ξ , for CTH model the

increase is rather slow. These behaviors remain almost same for ph
T > 70 GeV cut as well.

The behavior of the cross section ratio in these models can be understood on the basis of
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interference pattern, as to be explained in the next section. In Fig. 6.3, this ratio is plotted

in a 2-d plot as a function of c2 and d3 couplings. In this figure, the ratios for the SM Higgs,

Coleman-Weinberg Higgs, and Tadpole-induced Higgs scenarios are marked.
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Figure 6.3: Cross section ratio σ/σSM as a function of c2 and d3; (a) without any cut,
and (b) with the only kinematic cut ph

T >70 GeV. The standard model cross sections, at
the 27 TeV HE-LHC collider, for the above mentioned two cuts are 73.6 fb and 66.2 fb,
respectively. For no cut the cross sections for Tadpole-induced Higgs model and Coleman-
Weinberg model are 149.2 fb and 124.1 fb, respectively, while with ph

T >70 GeV they are
44.2 fb and 40.3 fb, respectively. The magenta, blue, and cyan dots denote the ratios for
Tadpole-induced Higgs model, the SM, and Coleman-Weinberg model, respectively.

In Fig. 6.4, we display the normalized distribution for invariant mass M(hh) and ph
T at

the 14 TeV LHC and the 27 TeV HE-LHC. These distributions play role in determining

suitable kinematic cuts to reduce the backgrounds. The upper row of Fig. 6.4 shows the

normalized M(hh) distribution with a range of values of d3. The case of d3 = 3 shows

an interesting two-peak structure in the normalized M(hh) distribution, arising from the

competition between the contributions of triangle and box diagrams. We will come back to

this discussion in the next subsection, around Fig. 6.5.
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Figure 6.4: Normalized distributions for hh production via gg fusion channel against par-
tonic center of mass energy and pT of either Higgs. The case of d3 = 3 shows an interesting
feature, caused by the competition between the triangle and box diagram contributions, as
explained in the text, around Fig. 6.5.

6.2.2 Interference Effects

As shown in Fig. 6.1, the trilinear Higgs boson coupling is present only in triangle dia-

grams. But as the box and triangle diagrams interfere, the trilinear Higgs boson coupling’s

contribution to the cross section depends also on the box amplitude, and the interference is

destructive. In the Table 6.2, we observe that for the SM couplings, d3 = 1, the pure box
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contribution is large, the pure triangle contribution is small, and the interference contribu-

tion is large and negative, i.e. destructive. This leads to the small total cross section of

pp→ hh. Some of the new Higgs potential scenarios would allow large deviations of the

Higgs boson couplings, and the cross section and distributions will change significantly.

Moreover2, the Nambu-Goldstone Higgs scenario also predicts non-zero tt̄hh coupling due

to Higgs non-linearity, and there is correlation between the tt̄hh and tt̄h couplings [230].

Because of this new tt̄hh interaction, two new triangle diagrams appear. These diagrams

interfere with the triangle diagram containing trilinear Higgs boson coupling destructively,

and with box diagram constructively. This happens as in this scenario the tt̄hh coupling has

a negative sign relative to tt̄h coupling (see Table. 6.1).

Interference effects without tt̄hh

Let us first consider scenarios without the tt̄hh vertex. As can be seen from Eq. (6.3), the

pure triangle contribution depends quadratically and the interference term depends linearly

on d3. However, the pure box contribution does not depend on d3. For the negative d3,

the cross section keeps on increasing with increasing magnitude of d3, cf. Fig. 6.2, as

both σ SM
t and σ SM

bt contributions increase. For positive d3, however, the cross section first

decreases and then keeps on increasing after reaching some threshold value of d3, as first

σ SM
bt dominates which decreases the cross section, then σ SM

t dominates which increases the

cross section. This explains the feature found in the upper row of Fig. 6.2.

2In elementary Higgs scenario, tt̄hh can also be induced via integrating out heavy particles. Here for
simplicity, we take the tt̄h coupling and the hVV to be same as the SM ones, which eliminates the tt̄hh
coupling.
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Figure 6.5: Contribution of various classes of diagrams and their interference to the M(hh)
distribution of hh production for d3 = 1 and d3 = 3. The triangle diagrams contribution
and interference (negative) term get scaled by 9 and 3, respectively, when we go to d3 = 3
from d3 = 1. However, as “bx" does not depend on d3, it remains the same. The peak of
the total distribution gets shifted to left with increase in d3 as the triangle diagram, being a
s-channel one, contributes significantly near the threshold of hh production.

To understand the feature found in Fig. 6.4, let us examine the contribution from each

class of Feynman diagrams and their interference to the M(hh) distribution. As shown in

Fig. 6.5, the triangle diagram mostly contributes near the Higgs pair threshold, while the

box diagram mainly contributes to the threshold of the top pair system. As d3 increases, the

contribution of the triangle diagram to the M(hh) and Ph
T distributions increases and even-

tually exceeds the box diagram when d3 becomes very large. For d3 = 3, both the triangle

and box diagrams are sizeable, which, together with their interference effect, result in the

two peaks in the M(hh) and Ph
T distributions. Moreover, as we increase the minimum cut

of the pT variable of the Higgs boson, which is to suppress large QCD background further,

the relative contribution of the pure triangle diagrams decreases more than the interference

and the pure box term, which can be seen in Table 6.2. In particular, with the ph
T > 70 GeV

cut on the final state Higgs bosons within the SM, the pure triangle contribution decreases
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by a factor of around 1.7, the magnitude of interference term by 1.4, and the pure box term

by 1.2. This explains why, in Fig. 6.2, the minimum of the curves, where the pure triangle

contribution starts to dominate over interference term, shifts to the right with increase in ph
T

cut. For the SM, since the triangle contribution is small, the reduction in the total cross sec-

tion is not that significant with the increase in the minimum ph
T , and the total contribution

decreases by a factor of 1.1 only. However, for larger positive d3 values, because of the cut,

the pure triangle contribution cannot dominate over the negative interference as much as it

used to do before applying the cut. Thus for a large d3 value, imposition of some minimum

ph
T reduces the associated cross section by some factor which is more than that for the SM

case. For instance, for d3 = 10, the total cross section is 288.9 fb with no pT cut; it reduces

to 150.8 fb when a pT > 70 GeV cut is applied, i.e. a reduction by a factor of 1.9, whereas

in the SM this factor is only 1.1. The cross section for any d3, before and after cuts, can

easily be obtained from Table 6.2.

At the 14 TeV HL-LHC, the number of events for double-Higgs production is not large.

Thus, in the case of the most promising final state signature ‘bb̄γγ’, one can only have few

tens of events, which only put very loose constraints on d3. Nevertheless, the cross sections

at the 27 TeV HE-LHC are about 5−6 times larger than that at the LHC. Therefore, even

for the rare decay signature of ‘bb̄γγ’, one could have significant bound, and d3 value can be

determined within around 20% [229]. At this 27 TeV machine, there is a distinct possibility

of distinguishing different Higgs potential models.

141



Interference effects with tt̄hh

In the MCH and CTH models of Nambu-Goldstone Higgs scenario, in addition to the

appearance of new tt̄hh vertex, the existing vertices involving Higgs boson (in the SM),

namely tt̄h and hhh, also get modified, as can be seen in Table 6.1. In Ref. [230], a global

fit on the MCH and CTH parameters was performed by using the available data from the

LHC Run-2 phase. The 95% CL limit on ξ is obtained to be ξ < 0.1 for the MCH5 model.

In our study, we will vary ξ up to 0.1.
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Figure 6.6: Variation of different pieces of Eq. 6.3 with ξ in MCH and CTH models at
14 TeV collider. The Magenta line (which shows the effect of tt̄hh) crosses the blue line
(which shows the effect of tt̄h and hhh coupling) around ξ = 0.06.

Fig. 6.2 shows the variation of the cross section with the parameter ξ . The rate of in-

crease of the cross section in the MCH model is significantly larger than the CTH model.

In both models, trilinear Higgs coupling is the same because of the universal form of the

Higgs potential, but the tt̄h and tt̄hh couplings are different due to different fermion em-
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beddings. From Table 6.2, we see that in the MCH model, the value of (σb, tt̄hh−σt, tt̄hh)

is larger by a factor of four than that in the CTH model. Also, the value of σtt̄hh in MCH

model is larger by a factor of 16 than in the CTH model. This term does not contribute

much when ξ is as small as 0.01 because of the ξ 2 scaling. It contributes significantly for

ξ = 0.1 in the MCH model, while its contribution is still small in the CTH model. This

explains the difference in the rate of increase of the cross section in the MCH model and

the CTH model. Another feature found in Fig. 6.2 is that the rate of increase of the cross

sections of the MCH and CTH models does not change noticeably with the ph
T cut. Next,

in Fig. 6.6, we show the importance of the tt̄hh coupling for increasing the cross section as

a function of ξ . As the ξ increases, even though the contribution of the SM-like diagrams

decreases, the total cross section increases due to the dominance of the tt̄hh contribution,

most noticeably in the MCH model.

6.2.3 constraints on d3 in various models

In this subsection, we study the possible constraints on the trilinear Higgs boson couplings

in different models. We have considered two benchmark values of 1σ uncertainties in

the cross section measurement — 10% and 20%. In Fig. 6.7, for these two benchmark

uncertainties in the cross section measurement, we show the constraints that can be put on

d3 for d3 = 1, d3 = 2, and d3 =
5
3 (CW Higgs model). We find for d3 = 1 and d3 = 2 the

range to be 0.86 < d̃3/d3 < 1.15∪ 4.83 < d̃3/d3 < 5.12 (0.73 < d̃3/d3 < 1.31∪ 4.67 <

d̃3/d3 < 5.25) and 0.94 < d̃3/d3 < 1.07∪ 1.92 < d̃3/d3 < 2.06 (0.88 < d̃3/d3 < 1.16∪

1.83 < d̃3/d3 < 2.11) if the accuracy is 10% (20%), respectively.
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Figure 6.7: Constraints on the scaling d̃3/d3 if the cross section can be measured up to
10% and 20% accuracy, respectively. Here, d̃3 denotes the scaled d3 value.
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Figure 6.8: Constraints on c̃2/c2 and d̃3/d3 if the cross section can be measured up to 10%
and 20% accuracy, respectively, in the MCH and CTH models. Here, c̃2 and d̃3 denote the
scaled c2 and d3 values, respectively.

In Fig. 6.8, at the 27 TeV HE-LHC, assuming the 1σ accuracy is 10% and 20% we

show the parameter space of general effective couplings c2 and d3 (with fixed c1) that can

be constrained by the double-Higgs production. The scaling factors of the trilinear Higgs

boson coupling and the contact tt̄hh coupling are denoted as the ratio d̃3/d3 and c̃2/c2,

respectively. Compared to the MCH model, the constrained regions in the CTH model are

steeper. This happens as with the scaling of c2, the cross section change in CTH model is

slower than in MCH model, since c2 in CTH model is smaller than that in the MCH model,

cf. Table. 6.1. Overall, we see that the 27 TeV HE-LHC can already set strict bounds on

these Higgs boson couplings.
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6.3 Triple Higgs production

In this section, we investigate the possibility to measure the quartic Higgs boson coupling,

d4, in various scenarios by using gg→ hhh process. This process can help in a better

understanding of the shape of the Higgs potential.

As discussed in the literature [143–148, 231, 232], measuring the quartic Higgs boson

coupling in the triple Higgs bosons production channel is not easy even at the 100 TeV

hadron collider. This is because the signal of triple Higgs bosons production pp→ hhh is

too small in comparison to its backgrounds. Even worse, the contribution of the quartic

Higgs boson coupling is over-shadowed by other couplings. This is because, the quartic

Higgs boson coupling appears in a very few diagrams which make very small contribution

to the total cross section. The quartic Higgs boson coupling can be constrained only in the

ranges of [−20,30] (at the 2σ CL) by triple Higgs bosons production at the 100 TeV hadron

collider with 30 ab−1 integrated luminosity [231]. In another approach, there have been

attempts to measure trilinear and quartic Higgs boson couplings indirectly using higher

order loop corrections [197,233,234]. These indirect searches put quite loose bound on the

quartic Higgs boson coupling at future colliders, such as the double Higgs production at the

future linear collider (ILC). A partial list of other related studies is included as Refs. [235–

237].

At the hadron colliders with increase in center-of-mass energy, gluon flux increases.

We calculate gg→ hhh cross sections with general parametrization of new physics effects

in different scenarios at 100 TeV collider. We consider five scenarios: Independent scaling
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of SM trilinear and quartic Higgs boson couplings, the SMEFT models with correlated tri-

linear and quartic Higgs boson coupling, the Nambu-Goldstone Higgs, Coleman-Weinberg

Higgs and Tadpole-induced Higgs models. We shall first compute and discuss cross sec-

tions and distributions in these models, then we estimate how well the quartic Higgs boson

coupling can be measured, assuming other couplings are already determined by other ex-

periments. It is expected that one could determine the tt̄h coupling, trilinear Higgs boson

coupling, and tt̄hh coupling more precisely before measuring the quartic Higgs boson cou-

pling.

Figure 6.9: Different classes of diagrams for hhh production in the SM.

Figure 6.10: New diagrams for hhh production in the presence of tt̄hh and tt̄hhh vertices.

6.3.1 Cross Section and Distributions

As shown in Fig. 6.9, there are several basic classes of Feynman diagrams contributing to

the process gg→ hhh, i.e. the pentagon class diagrams, box class diagrams, and triangle
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class diagrams. In the pentagon class diagrams, there is no Higgs boson self coupling; the

main coupling is tt̄h coupling. In the box class diagrams, trilinear Higgs boson coupling

plays the major role. Only the triangle class diagrams have dependence on both the trilinear

and quartic Higgs boson couplings. However, only few triangle diagrams depend on the

quartic Higgs boson coupling 3. Besides, the relative contribution of the triangle class

diagrams is comparatively small. Because of this, the process gg→ hhh is only moderately

sensitive to quartic Higgs boson coupling. The cross section could change significantly

only with large modification in the quartic Higgs boson coupling. However, for some

specific range of trilinear Higgs boson coupling, the cross section can vary substantially

with quartic Higgs boson coupling.

Furthermore, as shown in Fig. 6.10, several new diagrams would appear if additional

tt̄hh and tt̄hhh couplings are non-zero. This scenario is realized explicitly, e.g. in the

Nambu-Goldstone Higgs case, because of the Higgs non-linearity. In these scenarios, there

is strong connection between the tt̄h coupling with tt̄hh and tt̄hhh couplings. As we will

see, for the nonlinear parameter of ξ ∼ 0.1, the diagrams with tt̄hh and tt̄hhh couplings

make very large contribution, which renders it more complicated to extract out the quartic

Higgs boson coupling.

In the process of pp→ hhh, there is strong destructive interference between different

classes of diagrams. Interference between pentagon, box, and triangle diagrams plays a cru-

cial role in dictating the cross section and distributions. Before we discuss the interference

pattern and the extraction of quartic Higgs boson coupling, we first obtain the contribution

3To be specific, for each quark flavor in the loop, there are 24 pentagon class diagrams, 18 box class dia-
grams, and 8 triangle class diagrams. Out of these 50 diagrams, only two triangle diagrams have dependence
on quartic Higgs boson coupling.

147



of each class of diagrams and their interferences to the total cross section. To be specific,

the total cross section is

σ = c6
1σ SM

p + c4
1d2

3σ SM
b + c2

1d4
3σ SM

3t + c2
1d2

4σ SM
4t + c5

1d3σ SM
p,b + c4

1d2
3σ SM

p,3t + c4
1d4 σ SM

p,4t +

c3
1d3

3σ SM
b,3t + c3

1d3d4σ SM
b,4t + c2

1d2
3d4σ SM

3t,4t

+
(

c4
1c2σp,b−2t2h + c3

1d3c2σb,b−2t2h + c2
1d2

3c2σ3t,b−2t2h + c2
1d4c2σ4t,b−2t2h + c2

1c2
2σb−2t2h+

c3
1c2d3σp, t−2t2h + c2

1c2d2
3σb, t−2t2h + c1c2d3

3σ3t, t−2t2h +

c1c2d3d4σ4t, t−2t2h + c1c2
2d3σb−2t2h,t−2t2h + c2

2d2
3σt−2t2h

)
+
(

c3
1c3σp, t−2t3h + c2

1d3c3σb, t−2t3h + c1d2
3c3σ3t, t−2t3h+

c1d4c3σ4t, t−2t3h + c1c2c3σb−2t2h,t−2t3h + c2d3c3σt−2t2h,t−2t3h + c2
3 σt−2t3h

)
, (6.4)

where individual contributions of the diagrams are separated, and one can explicitly read

off their dependence on Higgs boson couplings.

Parts
ph

T Parts
ph

T Parts
ph

T
no_cut > 70GeV no_cut > 70GeV no_cut > 70GeV

σSM
p 7777 3526 σp,b−2t2h -41310 -20509 σp, t−2t3h -9702 -13422

σSM
b 4113 1542 σb,b−2t2h 39685 19693 σb, t−2t3h -35207 - 19578

σSM
3t 92.2 26.0 σ3t,b−2t2h -3960 -1558 σ3t, t−2t3h 5829 3034

σSM
4t 46.57 22.52 σ4t,b−2t2h - 3164 -1628 σ4t, t−2t3h 6131 4067

σSM
p,b -8026 -2873 σb−2t2h 130729 85499 σb−2t2h,t−2t3h -228538 -159601

σSM
p,3t 381.5 7.5 σp, t−2t2h 1363 -1719 σt−2t2h,t−2t3h 148590 104409

σSM
p,4t 133.5 -49.5 σb, t−2t2h -13626 -5906 σt−2t3h 443606 377483

σSM
b,3t -985 -298 σ3t, t−2t2h 2412 976

σSM
b,4t -673.3 -266 σ4t, t−2t2h 1943 1011

σSM
3t,4t 121.5 45.0 σb−2t2h,t−2t2h -66447 -36259

σt−2t2h 21774 12329

Table 6.3: Numerical values of various terms of Eq. 6.4 at the 100 TeV hadron collider.

We carry out the calculation in the same way discussed for the previous processes. Here

we do not include the higher order QCD correction, which may lead to a K-factor (the ratio

of higher order to LO cross section) of about 2 [2]. Due to the extremely small cross section
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of this process 4 and the large QCD backgrounds, we only present results at the 100 TeV

hadron collider. Basic pT cuts are also implemented for each Higgs boson in the final state.

At the 100 TeV collider, the SM cross sections for no cut and pT > 70 GeV cut are 2987

ab and 1710 ab, respectively. For easy comparison, we summarize the total cross sections

of double and triple Higgs bosons productions for the SM in Fig. 6.11 at the 14 TeV LHC,

the 27 TeV HE-LHC and the 100 TeV hadron collider.
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Figure 6.11: We summarize the total cross sections of the pp→ hh and pp→ hhh for the
SM at the 14 TeV LHC, the 27 TeV HE-LHC and the 100 TeV hadron collider, respectively.
The blue lines denote the cross sections without cut, and the red lines denote the ones with
rudimentary cuts. Here we do not include the QCD K factors, which are known as around
1.7 [1] for pp→ hh and around 2 [2] for pp→ hhh, respectively.

At the 100 TeV collider, for no cut the cross sections for Tadpole-induced Higgs model

and Coleman-Weinberg model are 7796 ab and 1272 ab, while with ph
T > 70 GeV they are

4To be specific, the total cross section is about 44 ab at the 14 TeV LHC, and is only about 218 ab at the
27 TeV HE-LHC, respectively.
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3579 ab and 836 ab, respectively. For the ξ = 0.05 benchmark value, for no cut the cross

section for the MCH and CTH models are 5033 ab and 3479 ab, while with ph
T > 70 GeV

they are 3302 ab and 2057 ab, respectively.

Based on these numerical values, we display the cross sections in the (d3,d4) parameter

plane in Fig. 6.12 and the ξ dependence in Fig. 6.13, for different new physics scenarios,

with or without including the contact tt̄hh and tt̄hhh couplings. Fig. 6.12 shows the total

cross section σ as a function of the trilinear and quartic Higgs boson couplings, i.e. d3 and

d4. We see there is significant increase in the cross section for zero or negative d3. This

is because, then the largest negative interference term between box and pentagon diagrams

σ SM
p,b, either vanishes or becomes positive. There is only marginal increase in the cross

section for zero or negative value of d4. In this figure, we also mark the SM, the Coleman-

Weinberg Higgs scenario, the Tadpole-induced Higgs scenario by blue, cyan, and magenta

dots, respectively. However, since the Pseudo-Goldstone boson models has additional tt̄hh

and tt̄hhh couplings, and also different tt̄h coupling than the SM one, they cannot be marked

in this figure. The orange line denotes the SMEFT, which considers nonzero O6 ∼ (H†H)3

operator besides the SM operators. The pseudo Nambu-Goldstone Higgs boson scenario

is presented in Fig. 6.13, where all the Higgs boson couplings, and so the cross section,

depend on the nonlinear parameter ξ . To be concrete, we consider two specific models, i.e.

MCH and CTH models, and results are shown in Fig. 6.13. Compared to MCH, the cross

section of the CTH remains close to the SM prediction (for the case of ξ = 0).
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Figure 6.12: Cross section ratio σ/σSM for the scaling of trilinear and quartic Higgs boson
couplings for various cuts. At the 100 TeV collider, the standard model cross section for
no-cut and pT > 70 GeV cut are 2987 ab and 1710 ab, respectively. The blue, cyan, and
magenta dots denote the SM, CW Higgs and Tadpole-induced Higgs model, respectively.
The orange dashed line denotes the SMEFT (with non-vanishing O6) for d3 in the range of
[5/6,2.5].

To complete the discussion in this section, we present several basic distributions. In

Fig. 6.14, we show the invariant mass, M(hhh), distribution for various d3 and d4 values,

and the normalized plots to examine the modification of the shape of the distributions. We

observe contrasting behavior near the threshold of triple Higgs bosons production. Near

threshold, in the case of negative and zero value of d3, there is increase in the cross section,

while it decreases for positive values of d3. The behavior is opposite in the case of d4. Most

of the increase is for smaller values of the invariant mass of triple Higgs bosons system,

up to about 700 GeV, and it is near the threshold where the triangle diagram with quartic

Higgs boson coupling is important.
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Figure 6.13: Cross section ratio with parameter ξ in the Minimal Composite Higgs (MCH)
and Composite Twin Higgs (CTH) Models at the 100 TeV collider (FCC-hh).

d3= 3

d3= 2

d3= 1

d3= 0

d3= -10.05

0.1

gg -> hhh

d
σ
/σ

d4=1s = 100 TeV

no cut

300 400 500 600 700 800

0.5
1

5
10

M(h1h2h3) (GeV)

d
σ
/d
σ

S
M

d4= 3

d4= 2

d4= 1

d4= 0

d4= -10.05

0.1

gg -> hhh

d
σ
/σ

d3=1s = 100 TeV

no cut

300 400 500 600 700 800
0.6

0.8

1.0

1.2

1.4

1.6

M(h1h2h3) (GeV)

d
σ
/d
σ

S
M

MCH;ξ=0.1

Tadpole Higgs

d3=4;d4=1

MCH;ξ=0.05

CTH;ξ=0.1

CTH;ξ=0.05

d3=2;d4=0

SM

d3=2;d4=1

d3=3;d4=13

CW Higgs

d3=2;d4=7

0.00

0.02

0.04

0.06

0.08

gg -> hhh

d
σ
/σ

no cut
s = 100 TeV

500 700 900 1100 1300 1500
0

2

4

6

8

M(h1h2h3) (GeV)

d
σ
/d
σ

S
M

Figure 6.14: Distributions with partonic center-of-mass energy M(hhh) for hhh production
via gg fusion channel with different benchmark values of d3 and d4 at the 100 TeV collider.
No cut on pT of Higgs bosons has been imposed.

6.3.2 Interference Effects

In this section, we investigate the interference patterns for the process of triple Higgs bosons

production pp→ hhh, for better understanding of variation of total cross section in different

Higgs scenarios.

Interference without tt̄hh or tt̄hhh

Let us first consider the cases without the tt̄hh and tt̄hhh couplings. There are 10 relevant

terms for this case, as can be seen in Eq. (6.4). The first four terms are always positive,
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and the rest of the six terms are interference terms and can be either positive or negative.

It is worth reiterating the fact that the d4 dependence of the cross section also depends on

trilinear Higgs boson coupling d3. As shown in the left figure of Fig. 6.15, with d4 the cross

section first decreases and then increases within the shown range−1 < d3 < 6. In addition,

we show the variation of cross section, as the green band, with the quartic Higgs boson

coupling d4 varying within 0 < d4 < 10. In the right figure of Fig. 6.15, we explicitly see

the variation of σ/σSM with d4, while d3 is fixed. Although it is theoretically less plausible

for a large d3, e.g. d3 = 6, hinted by vacuum stability, we still include this possibility here.

In that case, the cross section only moderately varies with change in d4 . Hence, there will

be degeneracy in d4 determination if d3 is around 5 to 6.
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Figure 6.15: Variation of Cross section ratio σ/σSM with d3 and d4 at a 100 TeV collider.
In the left figure, we see a band for d4 in the range [0,10]. In the right figure, variation with
d4 for fixed d3 is shown. The standard model cross section for no cut and ph

T > 70 GeV cut
are 2987 ab and 1710 ab, respectively.

Interference with tt̄hh and tt̄hhh

In this subsection, we discuss new physics scenarios in which the tt̄hh and tt̄hhh are non-

vanishing, e.g. the Nambu-Goldstone Higgs scenario, and investigate the interference terms

involving these couplings in detail. In this scenario, all the Higgs boson couplings are

correlated to the parameter ξ due to Higgs non-linearity.
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Figure 6.16: Cross section [in ab] with parameter ξ in the Minimum Composite Higgs
Model (MCH) and the Composite Twin Higgs Model (CTH). The magenta line shows the
effect of tt̄hh coupling. In MCH model, it exceeds the “SM-like" effect (σSM

Mod) around
ξ = 0.05. The blue line shows the effect of tt̄hhh coupling, which includes interference
(which is negative for the shown range of ξ ) of tt̄hhh with tt̄hh as well.

In the Fig. 6.16, we show the interference effect of the tt̄hh and tt̄hhh couplings in two

specific pseudo Nambu-Goldstone Higgs models, namely the MCH and CTH models. As

expected, in the case of CTH model, the contribution of these coupling to the cross section

is small, except at large ξ value, where it is also not that significant. However, in the case of

MCH model, both the tt̄hh and tt̄hhh couplings play important role. At larger value of ξ , the

significant increase in the cross section is induced by these couplings. As ξ increases, the

contribution (σSM
Mod) of SM-like diagrams decreases due to smaller tt̄h, d3,and d4 couplings,

but the contributions of diagrams with tt̄hh and tt̄hhh couplings increase.

In Fig. 6.17, the variation of ratios of the cross sections of MCH and CTH models to the

SM value with ξ are depicted. The green band shows variation of the ratios due to scaling

of the quartic Higgs boson coupling, denoted by d̃4/d4. We see the variation due to quartic
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Higgs boson coupling scaling decreases with larger values of the parameter ξ ; the dashed

line is for d4 = 1.
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Figure 6.17: Variation of the ratio of cross sections of MCH and CTH models to the SM
value with ξ and d̃4/d4 at the 100 TeV proton-proton collider. The bands are obtained by
varying d̃4/d4 in the range of [0,10] for the MCH and CTH models. The standard model
cross section for no cut and ph

T > 70 GeV cut are 2987 ab and 1710 ab, respectively.

6.3.3 Constraints on d4 in various models

As discussed before, double Higgs production channel will be able to distinguish various

Higgs potential scenarios. The motivation for studying hhh production is to determine

quartic Higgs boson couplings. It is a daunting task even at 100 TeV (FCC-hh) collider.

There are several signal-to-background studies to observe the pp→ hhh process at the 100

TeV collider. In the literature [232], it has been shown that the most promising signature to

observe hhh production has one of the Higgs boson decaying into two photons, while the

other two Higgs bosons each decay into a pair of bottom jets. The signal-to-background

ratio gets worse and worse with lesser number of b-tagged jet events, as then background

increases by order of magnitude than the signal. By recasting signal-to-background studies

available in the literature [232], we find that to observe hhh signal within 30% accuracy at
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1σ in the SM, the required luminosity is around 50 ab−1 [72].

We show the constraints which can be put on the quartic Higgs boson coupling if the

cross section can be measured with 10% and 20% accuracies. We consider the SM (d3 =

1,d4 = 1), an arbitrarily chosen example of scaled trilinear Higgs boson coupling (d3 =

2,d4 = 1), an arbitrarily chosen example of the SMEFT (d3 = 2,d4 = 7) 5, and the Coleman-

Weinberg Higgs case with (d3 = 5/3,d4 = 11/3) as the benchmark scenarios. For all these

benchmark scenarios, the constraints on the scaling of quartic Higgs coupling have been

shown in Fig. 6.18. Furthermore, as for MCH and CTH models c2 and d3 are expected

to be constrained in hh productions, the allowed parameter space for c3 and d4 have been

shown in Fig. 6.19.

Here, some comments about the constraints are in order for the SM and New Physics

scenarios:

• For the SM, the scaling factor is constrained to be within the range of 0.3 < d̃4/d4 <

1.82∪ 10.13 < d̃4/d4 < 11.66 (0 < d̃4/d4 < 2.85∪ 9.10 < d̃4/d4 < 12.28), if the

accuracy is 10% (20%).

• For an arbitrary choosen trilinear and quartic Higgs couplings, the bound on the

quartic Higgs boson coupling will be generally quite loose, unless cross sections

can be measured with better than 10% accuracy. However, as shown in Fig. 6.15,

the bounds on the quartic coupling d4 could be tight when the trilinear coupling

d3 ' 2−3, since in this case the gg→ hhh production cross section shows sizeable

variation with d4.
5Note in SMEFT, under the assumption that the contributions of all the other operators are negligible, if

d3 = 2, d4 has to be 7 (See Table. 6.1)

156



scaling

10% accur

20% accur

0 2 4 6 8 10 12 14
0

1000

2000

3000

4000

5000

6000

7000
gg -> hhh

d4̃ /d4

σ
(a
b
)

p
T

h > 70 GeV

d3=1; d4=1

scaling

10% accur

20% accur

0 5 10 15
0

1000

2000

3000

4000

5000

6000

7000
gg -> hhh

d4̃ /d4

σ
(a
b
)

p
T

h > 70 GeV

d3=2; d4=1

scaling

10% accur

20% accur

0.6 0.8 1.0 1.2 1.4 1.6 1.8
0

500

1000

1500

2000
gg -> hhh

d4̃ /d4

σ
(a
b
)

p
T

h > 70 GeV

d3=2; d4=7

scaling

10% accur

20% accur

0 1 2 3 4
0

1000

2000

3000

4000

5000

6000

7000
gg -> hhh

d4̃ /d4

σ
(a
b
)

p
T

h > 70 GeV

CW Higgs

Figure 6.18: Constraints on d̃4/d4 in various new physics models, when the cross section
can be measured up to 10% and 20% accuracy, respectively. The parameter d̃4/d4 scales
the quartic Higgs boson coupling in a given model.

• For the Coleman-Weinberg Higgs, the bound on the quartic Higgs boson coupling d4

is relatively tight. This happens as the Higgs trilinear coupling is 5/3, which is near

d3 = 2, for which the cross section shows significant dependence on d4.

• For the Nambu-Goldstone Higgs, as can be seen in Fig. 6.19, the scaling factor c̃3/c3

could be constrained within the order of 10, but d̃4/d4 could only be constrained to

the order of much larger than 10.

• For the Tadpole-induced Higgs, because the Higgs trilinear coupling d3 could be

highly suppressed, the dependence on the quartic Higgs boson coupling d4 is very

weak (see Fig. 6.12). On top of this, as d4 is also suppressed in this scenario, only

very large scaling factor d̃4/d4 is effective for changing the total cross section. This
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makes the precision determination of d4 very difficult in this scenario.
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Figure 6.19: Constraints on c̃3/c3 and d̃4/d4 if the cross section can be measured up to
10% and 20% accuracy, respectively, in the MCH and CTH models.

6.4 Conclusion

After the discovery of Higgs boson, although many of its properties have been measured at

the colliders, the true shape of the Higgs potential is still unknown. Various beyond the SM

scenarios, such as elementary Higgs within SMEFT, pseudo-Goldstone Higgs model, CW

Higgs model, Tadpole-induced Higgs, predict Higgs potentials different from the SM. In

order to know the exact Higgs potential, we will need to know trilinear and quartic Higgs

boson couplings. Even at the end of high luminosity phase of LHC, the trilinear Higgs
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boson coupling will not be tightly constrained. However at the 27 TeV HE-LHC collider,

this coupling can be well measured. We investigate various Higgs potential models by

studying hh production. We compute interference between various class of diagrams to

understand various features of cross sections and distributions. Based on the cross section

measurement of hh production with some benchmark uncertainties, we calculate the bounds

that can be put on the trilinear Higgs boson coupling of these models. The presence of tt̄hh

coupling in Pseudo-Goldstone models makes it difficult to extract trilinear Higgs boson

coupling in this model.

Detecting the production of hhh is extremely difficult even at a 100 TeV collider. This

is one of the processes where quartic Higgs coupling can be measured. However, probing

the quartic Higgs boson coupling is not easy as the process depends on this coupling very

weakly. The various interference terms have been computed, which help us understand

dependence of the cross sections and distributions on the various couplings, including the

quartic Higgs boson coupling. Pseudo-Goldstone model introduces tt̄hhh coupling in ad-

dition to tt̄hh coupling, which complicates the process of extracting quartic Higgs boson

coupling further. Constraints on quartic Higgs boson coupling, assuming certain accuracies

for the cross section measurement have been obtained.
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Chapter 7

Conclusions

In this thesis, we have explored many aspects of the SM and new physics scenarios at the

colliders by considering various processes. In these processes, we had at least one Higgs

boson in the final state. After the introduction, in the second chapter, we have reviewed

the SM and various EFT scenarios. We have reviewed both EFT scenarios — SMEFT and

HEFT where electroweak symmetry are realized linearly and non-linearly, respectively.

In the third chapter, we reviewed one-loop calculation, describing various tensor reduc-

tion techniques, sources of divergences in the scalar integrals etc. The next three chapters

describe the work done. In the fourth chapter, we considered the following processes –

pp→ hhh,hhγ , and hhZ. Our focus was on the gluon-gluon (gg) fusion channel contribu-

tion to these processes. The one-loop amplitude for the gg→ hhγ process vanishes exactly.

To pp→ hhh, the dominant production channel is gg→ hhh, the contribution of qq̄→ hhh

is negligible. The gg→ hhh process is important as it involves both trilinear and quartic

Higgs boson couplings. A measurement of this process along with di-Higgs production

can help in determining the form of the Higgs potential. The process may be observable

only if there exist anomalous interactions. This process is specially sensitive to trilinear

Higgs boson coupling. This process can be observed at large center-of-mass energy ma-

chines with high luminosity. It will be challenging though. On the other hand, the process

pp→ hhZ may be observable at the LHC after accumulation of 3 ab−1 of integrated lu-
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minosity. The gg(LO) contribution to this process is actually an NNLO contribution in αs,

and due to a large gluon flux, it is 14% of the qq̄(NLO) contribution to pp→ hhZ at 13 TeV

LHC. At a 100 TeV machine, gg→ hhZ can be as important as qq̄→ hhZ. This process

is important, as it involves hhh and hhZZ couplings and is a background to triple Higgs

bosons production. The effect of tt̄h and hZZ anomalous couplings are more significant in

the distributions than in the total cross section.

In the fifth chapter, we have considered four processes: production of ZZh, WWh, γZh,

and γγh at proton-proton colliders. Here also, we have compared the gg fusion channel

contribution with the fixed order (FO) NLO QCD correction to pp→ VV h. We find, at

100 TeV collider, the contribution of gg→ ZZh production channel to ZZh production is

as important as the fixed order QCD NLO correction to qq̄ initiated channel. At 100 TeV

collider, gg→WWh channel cross section is around half the FO NLO QCD correction to

qq̄ initiated channel. However, gg→ γZh channel contribution is around 5% of FO NLO

QCD correction in qq̄ initiated channel. For γγh production, gg fusion channel can be said

to be only production channel, as the bb̄ initiated process contribution is negligibly small.

The interference between various classes of diagrams shows many interesting features.

We have shown that removing the top quark (or third generation quarks) from box type

diagrams of effective topology gg→ VV ∗ will lead to erroneous results. Besides, com-

puting cross sections values at LHC, HE-LHC, and FCC-hh, we have obtained kinematic

distributions for these processes at the FCC-hh in the gg fusion channel. The tt̄ threshold

effect can be seen in invariant mass distribution of gg→WWh channel. However, for the

other processes via gg fusion channel, this effect is not visible in the distribution.

In addition to the SM results, effect of anomalous couplings for tt̄h, VV h, VV hh, and
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hhh vertices have been studied in the kappa framework. A strong dependence on anomalous

κt and κV could be seen in the gg fusion channel, if the Feynman diagrams of the process

under consideration have the corresponding vertices. A 10% change in κt or κV in the

positive side can enhance the ZZh and WWh cross sections in the range 40-70%. The qq̄

initiated channel, on the other hand, depends mainly on κV and its 10% variation changes

the cross section by 20%. Also while in gg fusion channel, κt and κV change the shape

of the distribution, in qq̄ initiated channel, κV cannot change the shape as it is present in

every diagram linearly. We did not see any large effect of anomalous trilinear Higgs boson

coupling as it is present only in a very small number of diagrams whose contribution is

small for gg→ ZZh and gg→WWh processes. The dependence of the qq̄ initiated channel

on this coupling is also negligibly small owing to very small Yukawa coupling of light

quarks with the Higgs boson.

In the sixth chapter, we have studied the possibility of exploring the true shape of

the Higgs potential. Various beyond the SM scenarios, such as elementary Higgs within

SMEFT, pseudo-Goldstone Higgs model, CW Higgs model, Tadpole-induced Higgs, pre-

dict different Higgs potentials. In order to know exact Higgs potential, we will need to

know trilinear and quartic Higgs boson couplings. Even at the end of high luminosity

phase of the LHC, the trilinear Higgs boson coupling will not be tightly constrained. How-

ever at the 27 TeV HE-LHC collider, this coupling can be well constrained. Based on the

cross section measurement of hh production with some benchmark uncertainties, we calcu-

late the bounds that can be put on the trilinear Higgs boson coupling of these models. The

presence of tt̄hh coupling in pseudo-Goldstone models makes it difficult to extract trilinear

Higgs boson coupling in this model. Detecting the hhh signal is extremely difficult even at

163



a 100 TeV collider. Probing the quartic Higgs boson coupling is even more difficult as the

process depends on this coupling very weakly. The various interference terms have been

computed, which help us understand dependence of those terms on the various couplings,

including the quartic Higgs boson coupling. Pseudo-Goldstone model introduces tt̄hhh

coupling in addition to tt̄hh coupling, which complicates the process of extracting quar-

tic Higgs boson coupling further. Constraints on quartic Higgs boson coupling, assuming

certain accuracies for the cross section measurement, have been obtained.

In summary, in this thesis, we have studied production of some final states which in-

clude at least one Higgs boson, where gg fusion at one loop is one of the production chan-

nels. We have studied the cross sections, distributions, scale variation effect, interference

between diagrams, effect of anomalous couplings on the cross sections and distributions

etc. We compare the contribution of gg fusion channel to those of LO qq̄ initiated channel

and NLO QCD correction to it. We have also explored the possibility of distinguishing

various Higgs potential scenarios by studying hh production channel. In addition, we have

explored hhh production to study the possibility of measuring quartic Higgs boson cou-

pling. Interference between various classes of diagrams have been studied in detail which

help us understand dependence of these interference terms on various couplings. In addi-

tion, we have shown how the dependence of cross section on quartic Higgs boson coupling

is more for some specific range of trilinear Higgs boson coupling. We have also shown the

various constraints that can be put on the trilinear and quartic Higgs boson couplings for

some benchmark uncertainties in the cross section measurement at the future colliders.
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Appendix A

A.1 Tensor reductions in Passarino-Veltman technique

A.1.1 Bubble integral

We will start by setting up notations for tensor integrals:

B0(q; i, j) =
∫ dDQ

(Q2−m2
i )((Q+q)2−m2

j)

Bµ(q; i, j) =
∫ dDQ Qµ

(Q2−m2
i )((Q+q)2−m2

j)

Bµν(q; i, j) =
∫ dDQ QµQν

(Q2−m2
i )((Q+q)2−m2

j)
(A.1)

Let us define denominator factor: Ni = ((Q+qi−1)
2−m2

i ) with qi = ∑
i
j=1 p j and q0 =

0.1

We will exemplify the reduction of tensor bubble integral using the following integral2

1Here we use a new notation Ni for denominator factor rather than di, used in Chapter. 3.
2Sometimes we will use (1,2) instead of (q1;1,2) when compact notation is required. Note we will use

(2,3) notation only for (q2− q1;2,3), which we will get after shifting the integration variable of associated
integral by −q1, that is Q→ Q−q1.

167



Bµ(q1;1,2) =
∫ dDQ Qµ

N1N2

Bµν(q1;1,2) =
∫ dDQ QµQν

N1N2

(A.2)

As after the loop integration the tensor structure should be intact, we can write Eq. A.2

in the following way

Bµ(1,2) =
∫ dDQ Qµ

N1N2
= B1 qµ

1 (A.3)

Bµν(1,2) =
∫ dDQ QµQν

N1N2
= B00gµν +B11 qµ

1 qν
1 (A.4)

Before proceeding further, let us derive one formula that we will use frequently in the

rest of the section

Q ·q1 =
1
2
((Q+q1)

2−Q2−q2
1)

=
1
2
( (Q+q1)

2−m2
2− (Q2−m2

1)+(m2
2−m2

1−q2
1))

=
1
2
(N2−N1 + f1) (A.5)

where f1 = (m2
2−m2

1−q2
1).

We are going to denote the scalar integrals as A0,B0,C0,D0. The strategy that we are

going to adopt to find B1,B00,and B11 in Eq. A.3 and Eq. A.4 is as follows. To find B1 of

Eq. A.3, we will contract q1µ on both sides of this equation. Then the left hand side can be

written in terms of A0 and B0 only. Hence B1 can be written in terms of A0 and B0 (see this

does not work for q2 = 0) . However, in Eq. A.4, there are two unknowns (B00 and B11)
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in the RHS. Therefore, we need two equations, in order to solve them. We will contract

Eq. A.4 with q1µ and gµν , and that will provide two equations. In the LHS, we will have

all the scalars after using some identities and Eq. A.3. So, like B1, B00, and B11 can also be

written in terms of A0 and B0.

rank-one bubble integral

Eq. A.3 is given by:

B1 qµ

1 =
∫ dDQ Qµ

N1N2

⇒ B1 q1 ·q1 =
∫ dDQ Q ·q1

N1N2
[contracting with q1µ on bothsides]

=
∫ dDQ

1
2
(N2−N1 + f1)

N1N2
[using Eq. A.5]

=
1
2

∫
dDQ

(
1

N1
− 1

N2
+

f1

N1N2

)
=

1
2
(
A0(1)−A0(2)+ f1 B0(1,2)

)
⇒ B1 =

1
2q2

1

(
A0(1)−A0(2)+ f1 B0(1,2)

)
. (A.6)

Thus, Eq. A.6 gives B1 of Eq. A.3 in terms of scalar tadpole and scalar bubble integrals.

See A0(1) and A0(2) will not cancel unless m1 = m2 even if we shift momentum for A0(2).

rank-two bubble integral

Our next task is to find B00 and B11 of Eq. A.4. We will get two equations by contracting

A.4 with q1µ and gµν . Contracting q1µ with A.4 gives
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B00 qν
1 +B11 q1 ·q1 qν

1 =
∫ dDQ Q ·q1Qν

N1N2

=
∫ dDQ

1
2
(N2−N1 + f1)Qν

N1N2
[using Eq. A.5]

=
1
2

∫
dDQ

(
Qν

N1
− Qν

N2
+

f1 Qν

N1N2

)
=

1
2

∫
dDQ

(
−Qν

N2
+

f1 Qν

N1N2

)
[as

∫
dDQ

Qν

N1
= 0]

=
1
2

∫
dDQ

(
−
(Q+q1)

ν −qν
1

N2
+

f1 Qν

N1N2

)

=
1
2

∫
dDQ

(
qν

1
N2

+
f1 Qν

N1N2

)
[as

∫
dDQ

(Q+q1)
ν

N2
= 0]

=
1
2
(
qν

1 A0(2)+ f1Bν(1,2)
)

=
1
2
(
qν

1 A0(2)+ f1B1(1,2) qν
1
)

[using Eq. A.3]

⇒ B00 +B11 q1 ·q1 =
1
2
(
A0(2)+ f1B1(1,2)

)
(A.7)

In the above equation, Eq. A.7, the RHS entirely depends on the scalar integrals as

B1(1,2) depends on scalar integrals only (see Eq. A.6).

Now we multiply gµν on both sides of A.4. We get

B00 D +B11 q1 ·q1 =
∫ dDQ Q2

N1N2

=
∫ dDQ (N1 +m2

1)

N1N2

=
∫

dDQ

(
1

N2
+

m2
1

N1N2

)

=
(

A0(2)+m2
1B0(1,2)

)
⇒ B00 D +B11 q1 ·q1 =

(
A0(2)+m2

1B0(1,2)
)

(A.8)
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Solving Eq. A.7 and Eq. A.8, we get

B00(D−1) =
1
2

(
A0(2)+2m2

1B0(1,2)− f1B1(1,2)
)

⇒ B00 =
1

2(D−1)

(
A0(2)+2m2

1B0(1,2)− f1B1(1,2)
)
. (A.9)

Using Eq. A.7 and Eq. A.9, we have

B11 =
1

2q2
1

(
A0(2)+ f1B1(1,2)−2B00

)
(A.10)

A.1.2 Triangle integrals

Here we will describe reduction of tensor triangle integrals using Passarino-Veltman tech-

nique

Cµ(1,2,3) =
∫ dDQ Qµ

N1N2N3
=C1 qµ

1 +C2 qµ

2 (A.11)

Cµν(1,2,3) =
∫ dDQ QµQν

N1N2N3
=C00 gµν +C11 qµ

1 qν
1 +C12 qµ

1 qν
2 +C21 qµ

2 qν
1 +C22 qµ

2 qν
2

(A.12)

Cµνσ (1,2,3) =
∫ dDQ QµQνQσ

N1N2N3
=C001 g[µνqσ ]

1 +C002 g[µνqσ ]
2 +

C111 qµ

1 qν
1 qσ

1 +C112 qµ

1 qν
1 qσ

2 +C121 qµ

1 qν
2 qσ

1 +C122 qµ

1 qν
2 qσ

2 +

C211 qµ

2 qν
1 qσ

1 +C212 qµ

2 qν
1 qσ

2 +C221 qµ

2 qν
2 qσ

1 +C222 qµ

2 qν
2 qσ

2 (A.13)

where g[µνqσ ]
1 = gµνqσ

1 + gµσ qν
1 + gσνqµ

1 , and as interchange of indices should not

change integrals, we have C12 = C21, C112 = C121 = C211 and C221 = C212 = C122. Note
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here we are using the abbreviated form (1,2,3) for (q1,q2;1,2,3)3.

rank-one triangle integral

To find C1 and C2 in terms of scalar integral, we take dot products of Eq. A.11 with q1

and q2. This will give following matrix equationq1 ·q1 q1 ·q2

q2 ·q1 q2 ·q2


C1

C2

=

q1µCµ(1,2,3)

q2µCµ(1,2,3)



⇒ G2(q1,q2)

C1

C2

=

q1µCµ(1,2,3)

q2µCµ(1,2,3)



⇒

C1

C2

= G−1
2 (q1,q2)

q1µCµ(1,2,3)

q2µCµ(1,2,3)

 (A.14)

Where G2 is the 2×2 gram matrix. This is the source of numerical instability when its

determinant becomes zero.

Let us now calculate q1µCµ(1,2,3) and q2µCµ(1,2,3) one by one

q1µCµ(1,2,3) =
∫ dDQ Q ·q1

N1N2N3

=
∫ dDQ

1
2
(N2−N1 + f1)

N1N2N3
[using Eq. A.5]

=
1
2

∫
dDQ

(
1

N1N3
− 1

N2N3
+

f1

N1N2N3

)
⇒ q1µCµ(1,2,3) =

1
2
(
B0(q2;1,3)−B0(q2−q1;2,3)+ f1C0(1,2,3)

)
, (A.15)

3However we will not use (2,3,4) when N2N3N4 is at the denominator. We will use (2,3,4) only for
(q2−q1, q3−q1; 2,3,4), that is only after shifting the integration variable by −q1.
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where B0(q2;1,3)=
∫ dDQ

(Q2−m2
1)((Q+q2)2−m2

3)
and B0(q2−q1;2,3)=

∫ dDQ
(Q2−m2

2)((Q+q2−q1)2−m2
3)

.

The last integral has been found in this form after the replacement Q→Q−q1 in the second

integral4.

Before calculating q2µCµ(1,2,3), let us calculate Q ·q2 in terms of denominators

Q ·q2 =
1
2
((Q+q2)

2−Q2−q2
2)

=
1
2
( (Q+q2)

2−m2
3− (Q2−m2

1)+(m2
3−m2

1−q2
2))

=
1
2
(N3−N1 + f2), (A.16)

where f2 = (m2
3−m2

1−q2
2).

Following similar steps as in the derivation of Eq. A.15, we have

q2µCµ(1,2,3) =
1
2
(
B0(q1;1,2)−B0(q2−q1;2,3)+ f2C0(1,2,3)

)
, (A.17)

So using Eq. A.15 and Eq. A.17 in Eq. A.14, we can find C1 and C2 of Eq. A.11.

rank-two triangle integral

There are five unknowns in Eq. A.125. We contract Eq. A.12 with q1µ , q2µ , and gµν

which will give five equations6

4For scalar integral, unlike tensor integral, this shifting is not going to produce more integrals as there is
no Q dependence on the numerator. Hence for scalar integral, to use (2,3), basically there is no need to care
about shifting.

5Actually four as C12 =C21
6Actually four as one of the equation is dependent. However we will solve the unknowns with these

five equations and verify whether C12 =C21 or not, which will provide a way of checking the correctness of
calculation.
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Contracting q1µ and q2µ on both sides of Eq. A.12,

(C11 q1 ·q1 +C21 q1 ·q2 +C00)qν
1 +(C12 q1 ·q1 +C22 q1 ·q2 )qν

2 = q1µCµν(1,2,3),

(A.18)

(C11 q2 ·q1 +C21 q2 ·q2 )qν
1 +(C12 q2 ·q1 +C22 q2 ·q2 +C00)qν

2 = q2µCµν(1,2,3).

(A.19)

Our next task is to calculate q1µCµν(1,2,3) and q2µCµν(1,2,3):

q1µCµν(1,2,3) =
∫ dDQ Q ·q1Qν

N1N2N3

=
∫ dDQ

1
2
(N2−N1 + f1)Qν

N1N2N3
[using Eq. A.5]

=
1
2

∫
dDQ

(
Qν

N1N3
− Qν

N2N3
+

f1Qν

N1N2N3

)
=

1
2
(
Bν(q2;1,3)−Bν(q2−q1;2,3)+qν

1 B0(q2−q1;2,3)+ f1Cν(1,2,3)
)

=
1
2
(
B1(q2;1,3) qν

2 −B1(q2−q1;2,3) (q2−q1)
ν

+qν
1 B0(q2−q1;2,3)+ f1(C1qν

1 +C2qν
2 )
)

[using Eq. A.3]

=
1
2

((
f1C1 +B0(q2−q1;2,3)+B1(q2−q1;2,3)

)
qν

1

+
(

f1C2−B1(q2−q1;2,3)+B1(q2;1,3)
)

qν
2

)
⇒ q1µCµν(1,2,3) =

1
2

((
f1C1 +B0(2,3)+B1(2,3)

)
qν

1 +
(

f1C2−B1(2,3)+B1(1,3)
)

qν
2

)
(A.20)
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Now we calculate q2µCµν(1,2,3);

q2µCµν(1,2,3) =
∫ dDQ Q ·q2Qν

N1N2N3

=
∫ dDQ

1
2
(N3−N1 + f2)Qν

N1N2N3
[using Eq. A.16]

=
1
2

∫
dDQ

(
Qν

N1N2
− Qν

N2N3
+

f1Qν

N1N2N3

)
=

1
2
(
Bν(q1;1,2)−Bν(q2−q1;2,3)+qν

1 B0(q2−q1;2,3)+ f2Cν(1,2,3)
)

=
1
2
(
B1(q1;1,2) qν

1 −B1(q2−q1;2,3) (q2−q1)
ν

+qν
1 B0(q2−q1;2,3)+ f2(C1qν

1 +C2qν
2 )
)

[using Eq. A.3]

=
1
2

((
f2C1 +B0(q2−q1;2,3)+B1(q2−q1;2,3)+B1(q1;1,2)

)
qν

1

+
(

f2C2−B1(q2−q1;2,3)
)

qν
2

)
⇒ q2µCµν(1,2,3) =

1
2

((
f2C1 +B0(2,3)+B1(2,3)+B1(1,2)

)
qν

1 +
(

f2C2−B1(2,3)
)

qν
2

)
(A.21)

Using Eq. A.20 and Eq. A.21 in Eq. A.18 and Eq. A.19, respectively, we have following

equations

⇒

C11

C21

= G−1
2 (q1,q2)


1
2
(

f1C1 +B0(2,3)+B1(2,3)−2C00
)

1
2
(

f2C1 +B0(2,3)+B1(2,3)+B1(1,2)
)
 (A.22)

⇒

C12

C22

= G−1
2 (q1,q2)


1
2
(

f1C2−B1(2,3)+B1(1,3)
)

1
2
(

f2C2−B1(2,3)−2C00
)
 (A.23)
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Now the only task is to find C00. For that we contract Eq. A.12 with gµν ,

C00 D+C11 q1 ·q1 +C12 q1 ·q2 +C21 q2 ·q1 +C22 q2 ·q2 =
∫ dDQ Q ·Q

N1N2N3

⇒C00 D+C11 q1 ·q1 +C21 q1 ·q2 +C12 q2 ·q1 +C22 q2 ·q2 =
∫ dDQ (N1 +m2

1)

N1N2N3

=
∫

dDQ

(
1

N2N3
+

m2
1

N1N2N3

)

=
(

B0(2,3)+m2
1C0(1,2,3)

)

⇒C00 D+
1
2
(

f1C1 +B0(2,3)+B1(2,3)−2C00
)
+

1
2
(

f2C2−B1(2,3)−2C00
)

=
(

B0(2,3)+m2
1C0(1,2,3)

)
[using Eq. A.22 and Eq. A.23]

⇒C00 (D−2) =
1
2

(
B0(2,3)+2m2

1C0(1,2,3)− f1C1− f2C2

)
⇒ C00 =

1
2(D−2)

(
B0(2,3)+2m2

1C0(1,2,3)− f1C1− f2C2

)
(A.24)

In the above expression, as discussed before, we have interchangeably used the short-

hand (1,3) for (q2;1,3) and (2,3) for (q2− q1;2,3) whenever further compact notation

was required.

rank-three triangle integral

We contract Eq. A.13 with q1µ and q2ν , and this gives all the 10 equations required to

solve for 10 unknowns C001, C002, C111, C112, C121, C122, C211, C212, C221, and C222 .7

7As C112 = C121 = C211 and C221 = C212 = C122, there are actually 6 unknowns. So four of the ten
equations must be dependent. But we solve for 10 unknowns anyway as it gives a way of checking correctness
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The RHS of Eq. A.13 is

C001(gµνqσ
1 +gµσ qν

1 +gνσ qµ

1 )+C002(gµνqσ
2 +gµσ qν

2 +gνσ qµ

2 )+

qµ

1 (C111qν
1 qσ

1 +C112qν
1 qσ

2 +C121qν
2 qσ

1 +C122qν
2 qσ

2 )+

qµ

2 (C211qν
1 qσ

1 +C212qν
1 qσ

2 +C221qν
2 qσ

1 +C222qν
2 qσ

2 ) (A.25)

After contracting with q1µ it becomes

C001(qν
1 qσ

1 +qν
1 qσ

1 +gνσ q1 ·q1)+C002(qν
1 qσ

2 +qν
2 qσ

1 +gνσ q1 ·q2)+

q1 ·q1(C111qν
1 qσ

1 +C112qν
1 qσ

2 +C121qν
2 qσ

1 +C122qν
2 qσ

2 )+

q1 ·q2(C211qν
1 qσ

1 +C212qν
1 qσ

2 +C221qν
2 qσ

1 +C222qν
2 qσ

2 )

=

(q1 ·q1C001 +q1 ·q2C002)gνσ+

(q1 ·q1C111 +q1 ·q2C211 +2C001)qν
1 qσ

1 +(q1 ·q1C112 +q1 ·q2C212 +C002)qν
1 qσ

2 +

(q1 ·q1C121 +q1 ·q2C221 + C002)qν
2 qσ

1 +(q1 ·q1C122 +q1 ·q2C222 )qν
2 qσ

2 (A.26)

Similarly, contracting Eq.A.25 with q2µ gives

of the calculation.
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C001(qν
2 qσ

1 +qν
1 qσ

2 +gνσ q2 ·q1)+C002(qν
2 qσ

2 +qν
2 qσ

2 +gνσ q2 ·q2)+

q2 ·q1(C111qν
1 qσ

1 +C112qν
1 qσ

2 +C121qν
2 qσ

1 +C122qν
2 qσ

2 )+

q2 ·q2(C211qν
1 qσ

1 +C212qν
1 qσ

2 +C221qν
2 qσ

1 +C222qν
2 qσ

2 )

=

(q2 ·q1C001 +q2 ·q2C002)gνσ+

(q2 ·q1C111 +q2 ·q2C211 )qν
1 qσ

1 +(q2 ·q1C112 +q2 ·q2C212 + C001)qν
1 qσ

2 +

(q2 ·q1C121 +q2 ·q2C221 +C001)qν
2 qσ

1 +(q2 ·q1C122 +q2 ·q2C222 +2C002)qν
2 qσ

2 (A.27)

Here we will contract LHS of Eq. A.13 with q1µ and q2µ respectively,

q1µCµνσ (1,2,3)

=
∫ dDQ Q ·q1QνQσ

N1N2N3

=
∫ dDQ

1
2
(N2−N1 + f1)QνQσ

N1N2N3
[using Eq. A.5]

=
1
2

∫
dDQ

(
QνQσ

N1N3
− QνQσ

N2N3
+

f1QνQσ

N1N2N3

)
=

1
2
(
Bνσ (q2;1,3)−Bνσ (q2−q1;2,3)+qν

1 Bσ (q2−q1;2,3)

+qσ
1 Bν(q2−q1;2,3)−qν

1 qσ
1 B0(q2−q1;2,3)+ f1Cνσ (1,3,3)

)
=

1
2
(
gνσ B00(1,3)+qν

2 qσ
2 B11(1,3)−gνσ B00(2,3)− (q2−q1)

ν(q2−q1)
σ B11(2,3)

+qν
1 (q2−q1)

σ B1(2,3)+qσ
1 (q2−q1)

νB1(2,3)−qν
1 qσ

1 B0(2,3)

+ f1(C00 gνσ +C11 qν
1 qσ

1 +C12 qν
1 qσ

2 +C21 qν
2 qσ

1 +C22 qν
2 qσ

2 )
)

[using Eq. A.3,Eq. A.4, and Eq. A.12]
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=
1
2
(
(B00(1,3)−B00(2,3)+ f1C00)gνσ

+(−B11(2,3)−2B1(2,3)−B0(2,3)+ f1C11)qν
1 qσ

1

+(B11(2,3)+B1(2,3)+ f1C12)qν
1 qσ

2

+(B11(2,3)+B1(2,3)+ f1C21)qν
2 qσ

1

+ (B11(1,3)−B11(2,3)+ f1C22)qν
2 qσ

2
)

(A.28)

q2µCµνσ (1,2,3)

=
∫ dDQ Q ·q2QνQσ

N1N2N3

=
∫ dDQ

1
2
(N3−N1 + f2)QνQσ

N1N2N3
[using Eq. A.16]

=
1
2

∫
dDQ

(
QνQσ

N1N2
− QνQσ

N2N3
+

f2QνQσ

N1N2N3

)
=

1
2
(
Bνσ (q1;1,2)−Bνσ (q2−q1;2,3)+qν

1 Bσ (q2−q1;2,3)

+qσ
1 Bν(q2−q1;2,3)−qν

1 qσ
1 B0(q2−q1;2,3)+ f2Cνσ (1,2,3)

)
=

1
2
(
gνσ B00(1,2)+qν

1 qσ
1 B11(1,2)−gνσ B00(2,3)− (q2−q1)

ν(q2−q1)
σ B11(2,3)

+qν
1 (q2−q1)

σ B1(2,3)+qσ
1 (q2−q1)

νB1(2,3)−qν
1 qσ

1 B0(2,3)

+ f2(C00 gνσ +C11 qν
1 qσ

1 +C12 qν
1 qσ

2 +C21 qν
2 qσ

1 +C22 qν
2 qσ

2 )
)

[using Eq. A.3,Eq. A.4, and Eq. A.12]

=
1
2
(
(B00(1,2)−B00(2,3)+ f2C00)gνσ

+(B11(1,2)−B11(2,3)−2B1(2,3)−B0(2,3)+ f2C11)qν
1 qσ

1

+(B11(2,3)+B1(2,3)+ f2C12)qν
1 qσ

2

+(B11(2,3)+B1(2,3)+ f2C21)qν
2 qσ

1
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+ (B11(2,3)+ f2C22)qν
2 qσ

2
)

(A.29)

Equating Eq. A.26 with Eq. A.28 and Eq. A.27 with Eq. A.29, we have following five

equations: C001

C002

= G−1
2 (q1,q2)


1
2
(
B00(1,3)−B00(2,3)+ f1C00

)
1
2
(
B00(1,2)−B00(2,3)+ f2C00

)
 (A.30)

C111

C211

= G−1
2 (q1,q2)


1
2
(
−B11(2,3)−2B1(2,3)−B0(2,3)+ f1C11−2C001

)
1
2
(
B11(1,2)−B11(2,3)−2B1(2,3)−B0(2,3)+ f2C11

)


(A.31)

C112

C212

= G−1
2 (q1,q2)


1
2
(
B11(2,3)+B1(2,3)+ f1C12−C002

)
1
2
(
B11(2,3)+B1(2,3)+ f2C12−C001

)
 (A.32)

C121

C221

= G−1
2 (q1,q2)


1
2
(
B11(2,3)+B1(2,3)+ f1C21−C002

)
1
2
(
B11(2,3)+B1(2,3)+ f2C21−C001

)
 (A.33)

C122

C222

= G−1
2 (q1,q2)


1
2
(
B11(1,3)−B11(2,3)+ f1C22

)
1
2
(
B11(2,3)+ f2C22−2C002

)
 (A.34)

The above five equations Eq. A.30–Eq. A.34 determine all the coefficients of Eq. A.13.
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We see that Eq. A.32 and Eq. A.33 are same. B1,B00,B11,C00,C11,C12,C21, and C22 can

be found from Eq. A.6, Eq. A.9, Eq. A.10, Eq. A.24, Eq. A.22, and Eq. A.23.

A.1.3 Box integrals

Next we will describe reduction for tensor box integrals using the Passarino-Veltman tech-

nique.

Dµ(1,2,3,4) =
∫ dDQ Qµ

N1N2N3N4
= D1 qµ

1 +D2 qµ

2 +D3 qµ

3 (A.35)

Dµν(1,2,3,4) =
∫ dDQ QµQν

N1N2N3N4
= D00 gµν +D11 qµ

1 qν
1 +D12 qµ

1 qν
2 +D13 qµ

1 qν
3

+D21 qµ

2 qν
1 +D22 qµ

2 qν
2 +D23 qµ

2 qν
3

+D31 qµ

3 qν
1 +D32 qµ

3 qν
2 +D33 qµ

3 qν
3 (A.36)

Dµνσ (1,2,3,4) =
∫ dDQ QµQνQσ

N1N2N3N4
=

D001 g[µν qσ ]
1 +D002 g[µν qσ ]

2 +D003 g[µν qσ ]
3 +

qµ

1 (D111 qν
1 qσ

1 +D112 qν
1 qσ

2 +D113 qν
1 qσ

3 +D121 qν
2 qσ

1 +D122 qν
2 qσ

2 +D123 qν
2 qσ

3 +D131 qν
3 qσ

1 +D132 qν
3 qσ

2 +D133 qν
3 qσ

3 )+

qµ

2 (D211 qν
1 qσ

1 +D212 qν
1 qσ

2 +D213 qν
1 qσ

3 +D221 qν
2 qσ

1 +D222 qν
2 qσ

2 +D223 qν
2 qσ

3 +D231 qν
3 qσ

1 +D232 qν
3 qσ

2 +D233 qν
3 qσ

3 )+

qµ

3 (D311 qν
1 qσ

1 +D312 qν
1 qσ

2 +D313 qν
1 qσ

3 +D321 qν
2 qσ

1 +D322 qν
2 qσ

2 +D323 qν
2 qσ

3 +D331 qν
3 qσ

1 +D332 qν
3 qσ

2 +D333 qν
3 qσ

3 )

(A.37)

Dµνσρ(1,2,3,4) =
∫ dDQ QµQνQσ Qρ

N1N2N3N4
=

D0000 g[µνgσρ]+
3

∑
i, j=1

D00i j g[µνqσ
i qρ]

j +
3

∑
i, j,k,l=1

Di jkl qµ

i qν
j qσ

i qρ

j , (A.38)
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where Ni = (Q+ qi−1)
2−m2

i with q0 = 0. Also qi = ∑
i
j=1 p j, where p j are the external

momenta. Here we will find only D1,D2, and D3 and for the rest we will make some

remarks.

Besides Eq. A.5 and Eq. A.16, we will need the following identity

Q ·q3 =
1
2
((Q+q3)

2−Q2−q2
3)

=
1
2
( (Q+q3)

2−m2
4− (Q2−m2

1)+(m2
4−m2

1−q2
3))

=
1
2
(N4−N1 + f3), (A.39)

where f2 = (m2
4−m2

1−q2
3).

rank-one box integral

Contracting Eq. A.35 with q1, q2 and q3 gives
q1 ·q1 q1 ·q2 q1 ·q3

q2 ·q1 q2 ·q2 q2 ·q3

q3 ·q1 q3 ·q2 q3 ·q3




D1

D2

D3


=


q1µDµ(1,2,3,4)

q2µDµ(1,2,3,4)

q3µDµ(1,2,3,4)



⇒ G3(q1,q2,q3)


D1

D2

D3


=


q1µDµ(1,2,3,4)

q2µDµ(1,2,3,4)

q3µDµ(1,2,3,4)


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⇒


D1

D2

D3


= G−1

3 (q1,q2,q3)


q1µDµ(1,2,3,4)

q2µDµ(1,2,3,4)

q3µDµ(1,2,3,4)


(A.40)

where G3(q1,q2,q3) is the 3×3 gram matrix. Below we will calculate q1µDµ(1,2,3,4),

q2µDµ(1,2,3,4), and q3µDµ(1,2,3,4) one by one:

q1µDµ(1,2,3,4) =
∫ dDQ Q ·q1

N1N2N3N4

=
∫ dDQ

1
2
(N2−N1 + f1)

N1N2N3N4
[using Eq. A.5]

=
1
2

∫
dDQ

(
1

N1N3N4
− 1

N2N3N4
+

f1

N1N2N3N4

)
⇒ q1µDµ(1,2,3,4) =

1
2
(
C0(q2,q3;1,3,4)−C0(q2−q1,q3−q1;2,3,4)+ f1D0(1,2,3,4)

)
,

(A.41)

where C0(q2,q3;1,3,4)=
∫ dDQ

(Q2−m2
1)((Q+q2)2−m2

3)((Q+q3)2−m2
4)

and C0(q2−q1,q3−q1;2,3,4)=∫ dDQ
(Q2−m2

2)((Q+q2−q1)2−m2
3)((Q+q3−q1)2−m2

4)
. The second term of Eq. A.41 is found in this form

after the replacement Q→ Q−q1.
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q2µDµ(1,2,3,4) =
∫ dDQ Q ·q2

N1N2N3N4

=
∫ dDQ

1
2
(N3−N1 + f2)

N1N2N3N4
[using Eq. A.16]

=
1
2

∫
dDQ

(
1

N1N2N4
− 1

N2N3N4
+

f1

N1N2N3N4

)
⇒ q2µDµ(1,2,3,4) =

1
2
(
C0(q1,q3;1,2,4)−C0(q2−q1,q3−q1;2,3,4)+ f2D0(1,2,3,4)

)
,

(A.42)

q3µDµ(1,2,3,4) =
∫ dDQ Q ·q3

N1N2N3N4

=
∫ dDQ

1
2
(N4−N1 + f3)

N1N2N3N4
[using Eq. A.39]

=
1
2

∫
dDQ

(
1

N1N2N3
− 1

N2N3N4
+

f1

N1N2N3N4

)
⇒ q3µDµ(1,2,3,4) =

1
2
(
C0(q1,q2;1,2,3)−C0(q2−q1,q3−q1;2,3,4)+ f3D0(1,2,3,4)

)
,

(A.43)

rank-two box integral

We will not explicitly show the reduction for rank-two box integral. We will make

some general statements and give some information using which the correctness of the

calculation can be checked.

There are ten unknowns – D00,D11,D12,D13,D21,D22,D23,D31,D32,D33. By contract-

ing Eq. A.36 with q1µ , q2µ , and q3µ , and thereafter comparing coefficient of qν
1 , qν

2 and qν
3 ,

we will have nine equations. Three equations coming from comparing qν
1 (or qν

2 or qν
3 ) co-
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efficients can be written as a matrix equation using Gram matrix G3(q1,q2,q3). So we will

have three such matrix equations for
(

D11
D21
D31

)
,
(

D12
D22
D32

)
and

(
D13
D23
D33

)
. D00 can be obtained by

contracting Eq. A.36 with gµν and using three appropriate equations in the nine equations

just discussed (it follows similar steps as in the derivation of C00). Out of the ten unknowns

only seven are independent because of the following identities: D12 = D21, D13 = D31, and

D23 = D32, which follows from the fact that the integral is symmetric under the interchange

of the indices µ and ν .

rank-three box integral

There are 30 unknowns in the right hand side of Eq. A.37. Contracting this with any of

q1µ , q2µ , and q3µ , will give a tensor structure present in the RHS of Eq. A.36. So comparing

these tensor structure on both side will give 10 equations for each of the contraction with

q1µ , q2µ , and q3µ . So in total there will be 30 equations. These can be written as 10 ma-

trix equations using Gram matrix G3(q1,q2,q3). The vectors that need to be solved are —(
D001
D002
D003

)
,
(

D111
D211
D311

)
,
(

D112
D212
D312

)
,
(

D113
D213
D313

)
,
(

D121
D221
D321

)
,
(

D122
D222
D322

)
,
(

D123
D223
D323

)
,
(

D131
D231
D331

)
,
(

D132
D232
D332

)
,
(

D133
D233
D333

)
.

Out of these 30 unknowns only 13 are independent because of the following relations —

D112 = D121 = D211, D113 = D131 = D311, D221 = D212 = D122, D223 = D232 = D322,

D331 = D313 = D133, D332 = D323 = D233, D123 = D132 = D213 = D231 = D312 = D321.

These relations follow from symmetry of the integrals under the interchange of the indices.

We have just seen that out of the 30 equations, only 13 equations are independent. But, as

already mentioned for other similar cases, we solve for all the unknowns, and later it can

be used to check correctness of the solutions.

rank-four box integral
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There are 91 (=1+9+81) unknowns in the right hand side of Eq. A.38. Contracting

this with any of q1µ , q2µ , and q3µ , will give a tensor structure present in the RHS of

Eq. A.37. So each contraction will give 30 equations, totaling 90 equations. To find

D0000 we can contract with gµν . However there are only 22 (=1+6+15) independent co-

efficients. In the first category, we have D0000 (1). In the second category we have:

D0011 (1), D0012 (2), D0013 (2), D0022 (1), D0023 (2), D0033 (1). In the last category

we have: D1111 (1), D2222 (1), D3333 (1), D1112 (4), D1113 (4), D2221 (4), D2223 (4),

D3331 (4), D3332 (4), D1123 (12),D2213 (12),D3312 (12), D1122 (6),D1133 (6),D2233 (6).

The numbers in the parentheses signify that there are that many objects with equal value

because of symmetry of the integral under the interchange of indices. For example, we

have D1112 = D1121 = D1211 = D2111, that is why we have written D1112 (4). The numbers

in the parenthesis if added up in each category will give 1, 9, and 81, respectively. We

have not shown the solution explicitly, as it will take too much space to write all of them

here. However this can be done using some symbolic manipulator software like Form or

Mathematica.

A.2 van Neerven-Vermaseren basis

In the next section, we will present Oldenborg-Vermaseren technique for tensor integral

reduction. Before that, here we shall discuss various properties of van Neerven-Vermaseren

basis, as that is going to be used in the reduction there. Some of this material has already

been discussed in § 3.2.2. There, we defined the generalized Kronecker delta δ
µ1µ2
ν1ν2 . Here

we will discuss these in more detail and will provide the explicit proofs. We start from
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δ
µ1µ2µ3
ν1ν2ν3 and then generalize it for n-dimension.

The Kronecker delta for µ1µ2µ3 and ν1ν2ν3 is defined as:

δ
µ1µ2µ3
ν1ν2ν3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

δ
µ1
ν1 δ

µ1
ν2 δ

µ1
ν3

δ
µ2
ν1 δ

µ2
ν2 δ

µ2
ν3

δ
µ3
ν1 δ

µ3
ν2 δ

µ3
ν3

∣∣∣∣∣∣∣∣∣∣∣∣∣
= δ

µ1
ν1 δ

µ2µ3
ν2ν3 −δ

µ1
ν2 δ

µ2µ3
ν1ν3 +δ

µ1
ν3 δ

µ2µ3
ν1ν2 (A.44)

= δ
µ1
ν1 δ

µ2µ3
ν2ν3 −δ

µ2
ν1 δ

µ1µ3
ν2ν3 +δ

µ3
ν1 δ

µ1µ2
ν2ν3 (A.45)

We can, now, generalize this formula for m upper and lower indices

δ
µ1µ2µ3...µm
ν1ν2ν3 ...νm = δ

µ1
ν1 δ

µ2µ3...µm
ν2ν3 ...νm −δ

µ1
ν2 δ

µ2µ3...µm
ν1ν3 ...νm +δ

µ1
ν3 δ

µ2µ3...µm
ν1ν2 ...νm − ...+(−1)(1+m)

δ
µ1
νm δ

µ2µ3...µm
ν1ν2 ...νm−1

(A.46)

δ
µ1µ2µ3...µm
ν1ν2ν3 ...νm = δ

µ1
ν1 δ

µ2µ3...µm
ν2ν3 ...νm −δ

µ2
ν1 δ

µ1µ3...µm
ν2ν3 ...νm +δ

µ3
ν1 δ

µ1µ2...µm
ν2ν3 ...νm − ...+(−1)(m+1)

δ
µm
ν1 δ

µ1µ2...µm−1
ν2ν3 ...νm

(A.47)

From the property of determinant, we can see that this generalized Kronecker delta is

completely antisymmetric under the interchange of any two upper (or lower) indices. Here

we have presented the determinant with the subscripts of indices of µ’s as row numbers

and of ν’s as column numbers. But it could also be written in the other way around as from

the property of determinant we can interchange rows and columns.

For m linearly independent vectors q1,q2,q3, ...,qm, let us define the following dual

vectors :uµ

1 =
δ

µq2q3...qm
q1q2q3...qm

δ
q1q2q3...qm
q1q2q3...qm

, uµ

2 =
δ

q1µq3...qm
q1q2q3...qm

δ
q1q2q3...qm
q1q2q3...qm

, ..., uµ
m =

δ
q1q2q3...µ
q1q2q3...qm

δ
q1q2q3...qm
q1q2q3...qm

. It follows from the defi-

nition of u vectors that ui ·q j = δi j.
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Before proceeding further let us observe the following: δ
µ
q1 = δ

µ

α qα
1 = qµ

1 and δ
q1
ν =

δ α
ν q1α = q1ν . Again gµνqµ

1 = q1ν . Therefore gµνδ
µ
q1 = δ

q1
ν .

Therefore covariant u vectors can be found as follows: gµνuµ

1 = gµν

δ
µq2q3...qm
q1q2q3...qm

δ
q1q2q3...qm
q1q2q3...qm

=
δ

q1q2q3...qm
νq2q3...qm

δ
q1q2q3...qm
q1q2q3...qm

=

u1ν , gµνuµ

2 = gµν

δ
q1µq3...qm
q1q2q3...qm

δ
q1q2q3...qm
q1q2q3...qm

=
δ

q1q2q3...qm
q1νq3...qm

δ
q1q2q3...qm
q1q2q3...qm

= u2ν , ..., gµνuµ
m = gµν

δ
q1q2q3...µ
q1q2q3...qm

δ
q1q2q3...qm
q1q2q3...qm

=
δ

q1q2q3...qm
q1q2q3...ν

δ
q1q2q3...qm
q1q2q3...qm

=

umν .

It is to be noted that the number of independent vectors, m, can not be greater than the

dimension D, i.e., m ≤ D. The physical space is defined by these m independent vectors

and has the dimensionality m. The transverse space has dimensionality D−m.

We can define projective tensor as

ω
µ

ν =
δ

q1q2...qmµ

q1q2...qmν

δ
q1q2...qm
q1q2...qm

(A.48)

ω
µ

ν can be written in the following way

ω
µ

ν =
δ

q1q2...qmµ

q1q2...qmν

δ
q1q2...qm
q1q2...qm

=
(−1)(2m)δ

µq1q2...qm
νq1q2...qm

δ
q1q2...qm
q1q2...qm

[using antisymmetry property] (A.49)

=
1

δ
q1q2...qm
q1q2...qm

(
δ

µ

ν δ
q1q2...qm
q1q2...qm

−δ
µ
q1

δ
q1q2...qm
νq2...qm +δ

µ
q2

δ
q1q2...qm
νq1...qm − ...+(−1)(1+m+1)

δ
µ
qm

δ
q1q2...qm
νq1...qm−1

)
[using Eq. A.46]

=
1

δ
q1q2...qm
q1q2...qm

(
δ

µ

ν δ
q1q2...qm
q1q2...qm

−δ
µ
q1

δ
q1q2...qm
νq2...qm −δ

µ
q2

δ
q1q2...qm
q1ν ...qm − ...

+(−1)(1+m+1)(−1)(m−1)
δ

µ
qm

δ
q1q2...qm
q1...qm−1ν

)
=
(

δ
µ

ν −δ
µ
q1

u1ν −δ
µ
q2

u2ν − ...−δ
µ
qm

umν

)
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=
(

δ
µ

ν −qµ

1 u1ν −qµ

2 u2ν − ...−qµ
mumν

)
⇒ ω

µ

ν =

(
δ

µ

ν −
m

∑
i=1

qµ

i uiν

)
(A.50)

Alternatively, ω
µ

ν can be written in the following way

ω
µ

ν =
(−1)(2m)δ

µq1q2...qm
νq1q2...qm

δ
q1q2...qm
q1q2...qm

[using Eq. A.49]

=
1

δ
q1q2...qm
q1q2...qm

(
δ

µ

ν δ
q1q2...qm
q1q2...qm

−δ
q1
ν δ

µq2...qm
q1q2...qm

+δ
q2
ν δ

µq1...qm
q1q2...qm

− ...+(−1)(1+m+1)
δ

qm
ν δ

µq1...qm−1
q1q2...qm

)
[using Eq. A.47]

=
1

δ
q1q2...qm
q1q2...qm

(
δ

µ

ν δ
q1q2...qm
q1q2...qm

−δ
q1
ν δ

µq2...qm
q1q2...qm

−δ
q2
ν δ

q1µ...qm
q1q2...qm

− ...

+(−1)(1+m+1)(−1)(m−1)
δ

qm
ν δ

q1...qm−1µ
q1q2...qm

)
=
(

δ
µ

ν −δ
q1
ν uµ

1 −δ
q2
ν uµ

2 − ...−δ
qm
ν uµ

m

)
=
(

δ
µ

ν −q1νuµ

1 −q2νuµ

2 − ...−qmνuµ
m

)
⇒ ω

µ

ν =

(
δ

µ

ν −
m

∑
i=1

qiνuµ

i

)
(A.51)

ω
µ

ν holds these properties:

ω
µ

ν qν
j = ω

µ

ν u jµ = 0 [using Eq.A.50 and qi ·uj = δij] (A.52)

ω
µ

ν q jµ
= ω

µ

ν uν
j = 0 [using Eq.A.51 and qi ·uj = δij] (A.53)
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ω
µ

ν ω
ν
ρ = (δ

µ

ν −qiνuµ

i )(δ
ν
ρ −q jρuν

j ) [using Eq.A.51]

= (δ
µ

ν δ
ν
ρ −δ

µ

ν q jρuν
j −qiνuµ

i δ
ν
ρ +qiνuµ

i q jρuν
j )

= (δ
µ

ρ −q jρuµ

j −qiρuµ

i +qiνuν
j uµ

i q jρ)

=
(

δ
µ

ρ −2qiρuµ

i +(qi ·u j)u
µ

i q jρ

)
=
(

δ
µ

ρ −2qiρuµ

i +uµ

i qiρ

)
[using qi ·uj = δij]

=
(

δ
µ

ρ −qiρuµ

i

)
⇒ ω

µ

ν ω
ν
ρ = ω

µ

ρ (A.54)

ω
µ

µ = (δ
µ

µ −
m

∑
i=1

qiµuµ

i )

= (D−
m

∑
i=1

δii)

⇒ ω
µ

µ = (D−m) (A.55)

Using Eq. A.51 for ω
µ

ν , we have δ
µ

ν =
(

∑
m
i=1 uµ

i qiν +ω
µ

ν

)
. So, contracting both sides

of this with Qν , we have 8

Qµ =

(
m

∑
i=1

uµ

i Q ·qi +ω
µ

Q

)
, (A.56)

which is known as van Neerven Vermaseren decomposition .

We are now to ready explain the Oldenborg-Vermaseren reduction technique.

8If we need Qν , we will choose Eq. A.50 as that has ∑
m
i=1 uiν qµ

i which would give Q ·qi, the most sought
after object in tensor reduction, when contracted with Qµ on both sides.
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A.3 Tensor integral reduction using Oldenborg-Vermaseren

Technique

We will start from box integrals as has been done in the original paper Ref. [66].

A.3.1 Box integrals

There are three independent vectors q1, q2, and q3 for the box integrals. So dimension of

the physical space is 3 and transverse space is D−3, which is 1 for D=4 dimension. Using

Eq. A.56, here Q can be written as

Qµ =

(
3

∑
i=1

uµ

i Q ·qi +ω
µ

Q

)
, (A.57)

where the dual vectors are given by uµ

1 =
δ

µq2q3
q1q2q3

δ
q1q2q3
q1q2q3

, uµ

2 =
δ

q1µq3
q1q2q3

δ
q1q2q3
q1q2q3

, uµ

3 =
δ

q1q2µ
q1q2q3

δ
q1q2q3
q1q2q3

. The projec-

tive tensor is given by ω
µ

ν =
δ

q1q2q3µ

q1q2q3ν

δ
q1q2q3
q1q2q3

.

We will rewrite Eq. A.57 in the following notation in order to shorten the expression

Qµ = Y µ

3 +ω
µ

Q , (A.58)

where Y µ

3 = ∑
3
i=1 uµ

i Q ·qi. Note that Y here is same as P in Eq. (100) of Ref. [66]. It can
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be also be written in another way

Y µ

3 = Q ·q1
δ

µq2q3
q1q2q3

δ
q1q2q3
q1q2q3

+Q ·q2
δ

q1µq3
q1q2q3

δ
q1q2q3
q1q2q3

+Q ·q3
δ

q1q2µ
q1q2q3

δ
q1q2q3
q1q2q3

=
1

δ
q1q2q3
q1q2q3

(
Q ·q1δ

µq2q3
q1q2q3

+Q ·q2δ
q1µq3
q1q2q3

+Q ·q3δ
q1q2µ
q1q2q3

)
=

1
δ

q1q2q3
q1q2q3

(
δ

q1
Q δ

µq2q3
q1q2q3

+δ
q2
Q δ

q1µq3
q1q2q3

+δ
q3
Q δ

q1q2µ
q1q2q3

)
=

1
δ

q1q2q3
q1q2q3

(
δ

q1
Q δ

µq2q3
q1q2q3

+δ
q2
Q δ

q1µq3
q1q2q3

+δ
q3
Q δ

q1q2µ
q1q2q3

)
=

1
δ

q1q2q3
q1q2q3

(
δ

q1
Q

1
2
(q2α q3β −q3α q2β )δ

µαβ
q1q2q3

+ δ
q2
Q

1
2
(q1α q3β −q3α q1β )δ

αµβ
q1q2q3

+δ
q3
Q

1
2
(q1α q2β −q2α q1β )δ

αβ µ
q1q2q3

)
=

1
2δ

q1q2q3
q1q2q3

(
δ

q1
Q δ

q2q3
αβ
−δ

q2
Q δ

q1q3
αβ

+δ
q3
Q δ

q1q2
αβ

)
δ

µαβ
q1q2q3

⇒ Y µ

3 =
1

2δ
q1q2q3
q1q2q3

δ
q1q2q3
Qαβ

δ
µαβ
q1q2q3

. (A.59)

In Eq. A.57, we will replace Q.qi in terms of denominator factors and fi using Eq. A.5,

Eq. A.16 and Eq. A.39. Instead of fi’s, we will sometime use 2s1 · qi so that we can use

Eq. A.59 like shorthand for the expression of Y µ

3 , where s1 is a vector which obeys these

relations s2
1 = m2

1, (s1 +q1)
2 = m2

2, (s1 +q2)
2 = m2

3, and (s1 +q3)
2 = m2

4. 9

9This s1 has been used so that compact expression for Y can be written. This is not same as loop momen-
tum Q as that can take any value, while s1 can take only fixed value so that it obeys these relations.
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So Y3 can be written as

Y µ

3 =
3

∑
i=1

uµ

i Q ·qi

=
3

∑
i=1

uµ

i
1
2
(Ni+1−N1 + fi) [using Eq. A.5,Eq. A.16, and Eq. A.39]

=
3

∑
i=1

uµ

i
1
2
(Ni+1−N1 + fi) [using Eq. A.5,Eq. A.16, and Eq. A.39]

⇒ Y µ

3 =
1
2

3

∑
i=1

uµ

i fi +
1
2
(N4 uµ

3 +N3 uµ

2 +N2 uµ

1 )−
1
2

N1(u
µ

3 +uµ

2 +uµ

1 ) (A.60)

In the above we could write 1
2 ∑

3
i=1 uµ

i fi =∑
3
i=1 uis1.qi =

1
2

δ
q1q2q3
q1q2q3

δ
q1q2q3
s1αβ

δ
µαβ
q1q2q3 as well.10

But Eq. A.60 in its current form is also okay as far as the tensor reduction is concerned.

In the following, we will frequently use Eq. A.58, the structure in RHS of Eq. A.60 and

projective tensor wµ

ν ’s properties Eq. A.52, Eq. A.53, Eq. A.54, and Eq. A.55.

rank-one Box integral

Dµ(1,2,3,4) =
∫ dDQ Qµ

N1N2N3N4

=
∫ dDQ (Y µ

3 +wµ

Q)

N1N2N3N4
[using Eq. A.58]

=
∫ dDQ Y µ

3
N1N2N3N4

+wµ

α

∫ dDQ Qα

N1N2N3N4

=
∫ dDQ Y µ

3
N1N2N3N4

+wµ

α(D1 qα
1 +D2 qα

2 +D3 qα
3 )︸ ︷︷ ︸

=0 [see Eq. A.52]

[see Eq. A.35]

=
∫ dDQ Y µ

3
N1N2N3N4

(A.61)

As Y µ

3 has a term without any Q dependence, and N1, N2, N3, N4 (see Eq. A.60), we

10The last equality can be found following the same procedure as in Eq. A.59 using s1 instead of Q.
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can write the Eq. A.61 in terms of box and triangle scalar integrals, as was also found in

the Passarino-Veltman technique in Eq. A.40. If we decompose the deltas, here we should

get exactly what we got in the Passarino-Veltman technique. But computing these deltas

directly is more suitable to handle numerical instability problem as that ensures less num-

ber of cancellation between scalar integrals which are also potential source of a numerical

instability besides the dual vectors [66].

rank-two Box integral

Here we will use underline notation to mean integration over loop momenta. For ex-

ample, Dµν(1,2,3,4) =
∫ dDQ QµQν

N1N2N3N4
= QµQν .

QµQν = Qµ(Y ν
3 +wν

Q)

= QµY ν
3 +Qµwν

Q

= QµY ν
3 +Y µ

3 wν
Q +wµ

Qwν
Q (A.62)

Let’s start from Y µ

3 wν
Q

Y µ

3 wν
Q =

1
2

(
3

∑
i=1

uµ

i fi +(N4 uµ

3 +N3 uµ

2 +N2 uµ

1 )−N1(u
µ

3 +uµ

2 +uµ

1 )

)
wν

Q

=
1
2

(
3

∑
i=1

uµ

i fiDα(1,2,3,4)+(uµ

3 Cα(1,2,3)+uµ

2 Cα(1,2,4)+ uµ

1 Cα(1,3,4))

−(uµ

3 +uµ

2 +uµ

1 )(C
α(2,3,4)−qα

1 C0(2,3,4))
)

wν
α

⇒ Y µ

3 wν
Q = 0 (A.63)

The last line follows from the tensor structure of rank-one tensors (see Eq. A.35, Eq. A.11)
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and using property of projective tensor (see Eq. A.52). As the last derivation did not depend

on µ and ν (alternatively, interchanging µ and ν in Eq. A.63), we have Y ν
3 wµ

Q = 0.

Now we will evaluate wµ

Qwν
Q in Eq. A.62,

wµ

Qwν
Q = wµ

α1wν
α2Qα1Qα2

= wµ

α1wν
α2Qα1Qα2 [as wµ

α1 and wν
α2 do not depend on Q]

= wµ

α1wν
α2Dα1α2

= wµ

α1wν
α2D00 gα1α2 [using Eq. A.36 and Eq. A.52]

= D00wµ

α1wα1ν

= D00wµ

α1wα1
σ gσν

⇒ wµ

Qwν
Q = D00wµν (A.64)

So, using Eq. A.58 and Eq. A.64, Eq. A.62 can be written as

QµQν = QµY ν
3 +D00wµν (A.65)

Although D00 as found in Passarino-Veltman technique could be used, but everything

is expressed here in terms of Y and hence we will determine it also in terms of Y.
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We will start from Eq. A.65

QµQν = QµY ν
3 +D00wµν

⇒ QµQν = Y µ

3 Y ν
3 +D00wµν [as wµ

QYν
3 = 0 (see Eq. A.63)]

⇒ QµQµ = Y µ

3 Y3µ +D00wµ

µ [contracting with gµν ]

⇒ Q2 = Y 2
3 +D00(D−3)

⇒ D00 =
1

D−3
Q2−Y 2

3 (A.66)

So Eq. A.65 can be written as

QµQν = QµY ν
3 +

wµν

D−3
Q2−Y 2

3 (A.67)

Using Eq. A.60, we can write QµY ν
3 in terms of rank-one box integral and four rank-

one triangle integrals. In one of the triangle integrals in which N1 is not present in the

denominator, the loop momentum Q needs to be shifted so that the standard reduction

formula can be used. Then all these integrals can be written in terms of master scalar

integrals.

Now we will find Q2−Y 2
3 . Let’s first find Q2 first,
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Q2 =
∫ dDQ Q2

N1N2N3N4

=
∫ dDQ

(
N1 +m2

1

)
N1N2N3N4

=
∫ dDQ

(
N1 +δ

s1
s1

)
N1N2N3N4

=
∫ dDQ

N2N3N4
+
∫ dDQ δ

s1
s1

N1N2N3N4

(A.68)

Next we will find Y 2
3 ,

Y 2
3 =

∫ dDQ Y 2
3

N1N2N3N4

=
∫ dDQ Y3µY µ

3
N1N2N3N4

=
∫ dDQ Y3µ

1
2

(
∑

3
i=1 uµ

i fi +(N4 uµ

3 +N3 uµ

2 +N2 uµ

1 )−N1(u
µ

3 +uµ

2 +uµ

1 )
)

N1N2N3N4

=
1
2
(

3

∑
i=1

uµ

i fi)
∫ dDQ Y3µ

N1N2N3N4
+

1
2

∫ dDQ Y3µ(N4 uµ

3 +N3 uµ

2 +N2 uµ

1 )

N1N2N3N4

− 1
2

∫ dDQ Y3µN1(u
µ

3 +uµ

2 +uµ

1 )

N1N2N3N4

=
1
2
(

3

∑
i=1

uµ

i fi)
∫ dDQ Y3µ

N1N2N3N4
+

1
2

∫ dDQ Qµ(N4 uµ

3 +N3 uµ

2 +N2 uµ

1 )

N1N2N3N4

− 1
2

∫ dDQ QµN1(u
µ

3 +uµ

2 +uµ

1 )

N1N2N3N4
[as Y3µ = Qµ −wQ

µ and wQ
µ uµ

i = 0]

(A.69)

Let’s calculate second part of the above equation
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∫ dDQ Qµ(N4 uµ

3 +N3 uµ

2 +N2 uµ

1 )

N1N2N3N4

= uµ

3

∫ dDQ Qµ

N1N2N3
+uµ

2

∫ dDQ Qµ

N1N2N4
+uµ

1

∫ dDQ Qµ

N1N3N4

= uµ

3 Cµ(q1,q2;1,2,3)+uµ

2 Cµ(q1,q3;1,2,4)+uµ

1 Cµ(q2,q3;1,3,4)

= uµ

3
(
C1(1,2,3)q1µ +C2(1,2,3)q2µ

)
+uµ

2
(
C1(1,2,4)q1µ +C2(1,2,4)q3µ

)
+uµ

1
(
C1(1,3,4)q2µ +C2(1,3,4)q3µ

)
= 0 [as ui ·qj = δij] (A.70)

Let’s calculate third part of Eq. A.69

∫ dDQ QµN1(u
µ

3 +uµ

2 +uµ

1 )

N1N2N3N4

=
∫ dDQ Qµ(u

µ

3 +uµ

2 +uµ

1 )

N2N3N4

=
∫ dDQ (Qµ −q1µ)(u

µ

3 +uµ

2 +uµ

1 )

(Q2−m2
2)((Q+q2−q1)2−m2

3)((Q+q3−q1)2−m2
4)

=
∫ dDQ (Qµ −q1µ)(u

µ

3 +uµ

2 +uµ

1 )

(Q2−m2
2)((Q+q2−q1)2−m2

3)((Q+q3−q1)2−m2
4)

=
∫ dDQ Qµ(u

µ

3 +uµ

2 +uµ

1 )

(Q2−m2
2)((Q+q2−q1)2−m2

3)((Q+q3−q1)2−m2
4)

−
∫ dDQ

(Q2−m2
2)((Q+q2−q1)2−m2

3)((Q+q3−q1)2−m2
4)

[as ui ·qj = δij]

=Cµ(q2−q1,q3−q1;2,3,4)(uµ

3 +uµ

2 +uµ

1 )

−
∫ dDQ

N2N3N4
[shifting Q in the last integral by +q1]

=
(
C1(2,3,4)(q2µ −q1µ)+C2(2,3,4)(q3µ −q1µ)

)
(uµ

3 +uµ

2 +uµ

1 )−
∫ dDQ

N2N3N4

=
(
C1(2,3,4)(1−1)+C2(2,3,4)(1−1)

)
(uµ

3 +uµ

2 +uµ

1 )−
∫ dDQ

N2N3N4
[as ui ·qj = δij]

= (0)(uµ

3 +uµ

2 +uµ

1 )−
∫ dDQ

N2N3N4
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=−
∫ dDQ

N2N3N4

(A.71)

So using Eq.A.70 and Eq.A.71, Eq. A.69 becomes

Y 2
3

=
1
2
(

3

∑
i=1

uµ

i fi)
∫ dDQ Y3µ

N1N2N3N4
+

1
2

∫ dDQ
N2N3N4

=
1
2
(

3

∑
i=1

uµ

i fi)
∫ dDQ1

2

(
∑

3
j=1 u jµ f j +(N4 u3µ +N3 u2µ +N2 u1µ)−N1(u3µ +u2µ +u1µ)

)
N1N2N3N4

+
1
2

∫ dDQ
N2N3N4

= (
3

∑
i=1

uµ

i s1 ·qi)×

∫ dDQ
(

∑
3
j=1 u jµs1 ·q j +

1
2(N4 u3µ +N3 u2µ +N2 u1µ)− 1

2N1(u3µ +u2µ +u1µ)
)

N1N2N3N4

+
1
2

∫ dDQ
N2N3N4

[as fi = 2s1 ·qi]

=
∫

dDQ
(s1 ·qi)(s1 ·q j u j ·ui)

N1N2N3N4
+

1
2

∫
dDQ

(s1 ·qi)(ui ·u3)

N1N2N3
+

1
2

∫
dDQ

(s1 ·qi)(ui ·u2)

N1N2N4

+
1
2

∫
dDQ

(s1 ·qi)(ui ·u1)

N1N3N4
− 1

2

∫
dDQ

(s1 ·qi)(ui ·u3 +ui ·u2 +ui ·u1) −1
N2N3N4

(A.72)

So using Eq. A.68 and Eq. A.72, we can write

Q2−Y 2
3

=
∫

dDQ
δ

s1
s1 − (s1 ·qi)(s1 ·q j u j ·ui)

N1N2N3N4
− 1

2

∫
dDQ

(s1 ·qi)(ui ·u3)

N1N2N3
− 1

2

∫
dDQ

(s1 ·qi)(ui ·u2)

N1N2N4

− 1
2

∫
dDQ

(s1 ·qi)(ui ·u1)

N1N3N4
+

1
2

∫
dDQ

(s1 ·qi)(ui ·u3 +ui ·u2 +ui ·u1) +1
N2N3N4

(A.73)
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Before calculating Eq. A.73, let us derive dot product of dual vectors

u1 ·u1 = uµ

1 u1µ

= uµ

1
δ

q1q2q3
µq2q3

∆3

=
uµ

1
(
q1µδ

q2q3
q2q3 −q2µδ

q1q3
q2q3 +q3µδ

q1q2
q2q3

)
∆3

=
δ

q2q3
q2q3

∆3

Similarly u2 · u1 = −
δ

q1q3
q2q3
∆3

and u3 · u1 =
δ

q1q2
q2q3
∆3

. u2 · u2 = uµ

2
δ

q1q2q3
q1µq3

∆3
=

δ
q1q3
q1q3
∆3

and u3 · u2 =

−δ
q1q2
q1q3
∆3

. u3 ·u3 = uµ

3
δ

q1q2q3
q1q2µ

∆3
=

δ
q1q2
q1q2
∆3

. So dual vectors are neither orthogonal nor normalized.

The same is true for q1,q2,q3.

After having calculated the dot products of dual vectors, let’s compute the numerators

of Eq. A.73,

(s1 ·qi)(ui ·u3)

= s1 ·q1 u1 ·u3 + s1 ·q2 u2 ·u3 ++s1 ·q3 u3 ·u3

= s1 ·q1
δ

q1q2
q2q3

∆3
+ s1 ·q2 (−

δ
q1q2
q1q3

∆3
)+ s1 ·q3

δ
q1q2
q1q2

∆3

=
δ

s1
q1 δ

q1q2
q2q3

∆3
−

δ
s1
q2 δ

q1q2
q1q3

∆3
+

δ
s1
q3 δ

q1q2
q1q2

∆3

=
δ

s1q1q2
q1q2q3

∆3

Similarly,

(s1 ·qi)(ui ·u2) =−
δ

s1
q1 δ

q1q3
q2q3

∆3
+

δ
s1
q2 δ

q1q3
q1q3

∆3
−

δ
s1
q3 δ

q1q3
q1q2

∆3
=−

δ
s1q1q3
q1q2q3

∆3
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and

(s1 ·qi)(ui ·u1) =
δ

s1
q1 δ

q2q3
q2q3

∆3
−

δ
s1
q2 δ

q2q32
q1q3

∆3
+

δ
s1
q3 δ

q2q3
q1q2

∆3
=

δ
s1q2q3
q1q2q3

∆3

Using above equations, we have

δ
s1
s1
− (s1 ·qi)(s1 ·q j u j ·ui)

= δ
s1
s1
− (s1 ·q1)(s1 ·q j u j ·u1)− (s1 ·q2)(s1 ·q j u j ·u2)− (s1 ·q3)(s1 ·q j u j ·u3)

=
δ

s1
s1 ∆3− (s1 ·q1)δ

s1q2q3
q1q2q3 +(s1 ·q2)δ

s1q1q3
q1q2q3 − (s1 ·q3)δ

s1q1q2
q1q2q3

∆3

=
δ

s1
s1 δ

q1q2q3
q1q2q3 −δ

q1
s1 δ

s1q2q3
q1q2q3 +δ

q2
s1 δ

s1q1q3
q1q2q3 −δ

q3
s1 δ

s1q1q2
q1q2q3

∆3

=
δ

s1q1q2q3
s1q1q2q3

∆3
(A.74)

Similarly,

(s1 ·qi)(ui ·u3 +ui ·u2 +ui ·u1) +1

=
δ

s1q1q2
q1q2q3

∆3
−

δ
s1q1q3
q1q2q3

∆3
+

δ
s1q2q3
q1q2q3

∆3
+1

=
δ

s1q1q2
q1q2q3 −δ

s1q1q3
q1q2q3 +δ

s1q2q3
q1q2q3 +∆3

∆3

=
−δ

s1q1(q3−q2)
q1q2q3 +δ

(s1+q1)q2q3
q1q2q3

∆3

=
−δ

s1q1(q3−q2)
q1q2q3 +δ

s2q2q3
q1q2q3

∆3
[where s2 = s1 +q1]

=
δ

s2q2q3
q1q2q3 −δ

s1q1(q3−q2)
q1q2q3

∆3
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Using all the above expressions in Eq. A.73, we have

Q2−Y 2
3

=
∫

dDQ
δ

s1
s1 − (s1 ·qi)(s1 ·q j u j ·ui)

N1N2N3N4
− 1

2

∫
dDQ

(s1 ·qi)(ui ·u3)

N1N2N3
− 1

2

∫
dDQ

(s1 ·qi)(ui ·u2)

N1N2N4

− 1
2

∫
dDQ

(s1 ·qi)(ui ·u1)

N1N3N4
+

1
2

∫
dDQ

(s1 ·qi)(ui ·u3 +ui ·u2 +ui ·u1) +1
N2N3N4

=
1

∆3

∫
dDQ

δ
s1q1q2q3
s1q1q2q3

N1N2N3N4
− 1

2∆3

∫
dDQ

δ
s1q1q2
q1q2q3

N1N2N3
+

1
2∆3

∫
dDQ

δ
s1q1q3
q1q2q3

N1N2N4

− 1
2∆3

∫
dDQ

δ
s1q2q3
q1q2q3

N1N3N4
+

1
2∆3

∫
dDQ

δ
s2q2q3
q1q2q3 −δ

s1q1(q3−q2)
q1q2q3

N2N3N4
(A.75)

So, all the terms in Eq. A.67 can be reduced to scalar integrals.

rank-three Box integral

QµQνQσ = QµQν(Y σ
3 +wσ

Q)

= QµQνY σ
3 +QµQνwσ

Q

= QµQνY σ
3 +Y µ

3 Y ν
3 wσ

Q +Y µ

3 wν
Qwσ

Q +Y νwµ

Qwσ
Q +wµ

Qwν
Qwσ

Q (A.76)

In the above equation Y µ

3 Y ν
3 wσ

Q and wµ

Qwν
Qwσ

Q are zero. To show it for Y µ

3 Y ν
3 wσ

Q, we can

use qi ·Quiµ and u j ·Qq jν for Y µ

3 and Y ν
3 , respectively. The resulting three rank box integral

must be zero as projective tensor, w, either contracts with qi or ui. Showing wµ

Qwν
Qwσ

Q = 0

is very easy as at least one projective tensor contracts with qi’s.

So Eq. A.76 becomes

QµQνQσ = QµQνY σ
3 +Y µ

3 wν
Qwσ

Q +Y ν
3 wµ

Qwσ
Q (A.77)
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We evaluate Y µ

3 wν
Qwσ

Q

Y µ

3 wν
Qwσ

Q = qµ

i uiα1wν
α2wσ

α3Qα1Qα2Qα3

= qµ

i uiα1wν
α2wσ

α3Qα1Qα2Qα3

= qµ

i uiα1wν
α2wσ

α3D00 jg[α1α2qα3]
j

= qµ

i uiα1wν
α2wσ

α3(D001gα2α3qα1
1 +D002gα2α3qα1

2 +D003gα2α3qα1
3 ) [as wν

ui
= 0]

= wν
α2wσ

α3gα2α3(D001qµ

1 +D002qµ

2 +D003qµ

3 ) [as ui ·qj = δij]

= wνσ (D001qµ

1 +D002qµ

2 +D003qµ

3 ) (A.78)

Using above, we can write Eq. A.77 as

QµQνQσ = QµQνY σ
3 +wνσ (D001qµ

1 +D002qµ

2 +D003qµ

3 )

+wµσ (D001qν
1 +D002qν

2 +D003qν
3 ) (A.79)

We want to replace the unknown D00i in terms of integrals. For that we contract ν and

σ in the above equation

QµQ2 = QµQνY3ν +wνν(D001qµ

1 +D002qµ

2 +D003qµ

3 ) [as wµνqiν = 0]

⇒ QµQ2 = QµQνY3ν +(D−3)(D001qµ

1 +D002qµ

2 +D003qµ

3 ) [as wµνqiν = 0]

⇒ (Y µ

3 +wµ

Q)Q
2 = Qµ(Y ν

3 +wν
Q)Y3ν +(D−3)(D001qµ

1 +D002qµ

2 +D003qµ

3 )

⇒ Y µ

3 Q2 = QµY ν
3 Y3ν +(D−3)(D001qµ

1 +D002qµ

2 +D003qµ

3 )

[as Yν
3 wνQ = qi ·Quν

i wνQ = 0 and wµ

QQ2 = wµ

Q(N1 +m2
1) = 0]
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⇒ Y µ

3 Q2 = Y µ

3 Y ν
3 Y3ν +(D−3)(D001qµ

1 +D002qµ

2 +D003qµ

3 )

[as wµ

QYν
3 Y3ν = 0 as Yµ

3 Yν
3 wσ

Q = 0]

So, we have (D001qµ

1 +D002qµ

2 +D003qµ

3 ) =
1

D−3Y µ

3 (Q2−Y 2
3 ). Using this in Eq. A.79,

we have

QµQνQσ = QµQνY σ
3 +wνσ 1

D−3
Y µ

3 (Q2−Y 2
3 )+wµσ 1

D−3
Y ν

3 (Q2−Y 2
3 ) (A.80)

The reduction of the first part of RHS of Eq. A.80 is straightforward. We use Eq. A.60

for Y σ . Then we will have rank-two four-point and rank-two three-point functions, the

expressions for which can be used to reduce it further. The reduction of the second part

and third part follows exactly same procedure. Let’s take second part for illustration. When

A.60 is used for Y µ

3 , we will have four-point integrals and three-point integrals with Q2−Y 2
3

in the numerator for of them. For four-point integral we can use Eq. A.75. For three-point

integrals, it is better to have Q2−Y 2
2 in the numerator, where Y2 plays the same role for

triangle integrals as what Y3 plays for box integrals.

∫
dDQ

Q2−Y 2
3

N1N2N3
=
∫

dDQ
w3QQ

N1N2N3
[Squaring Qµ = Yµ

3 +wµ

3 and noting Yµ

3 w3µ = 0]

=
∫

dDQ
w3α1α2Qα1Qα2

N1N2N3

= w3α1α2C00(q1,q2;1,2,3)gα1α2

= (D−3)C00(q1,q2;1,2,3)

C00(q1,q2;1,2,3) =
1

(D−3)

∫
dDQ

Q2−Y 2
3

N1N2N3
(A.81)
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Following the same way as above for Y2 in place of Y3, we have

∫
dDQ

Q2−Y 2
2

N1N2N3
=
∫

dDQ
w2QQ

N1N2N3
[Squaring Qµ = Yµ

2 +wµ

2 and noting Yµ

2 w2µ = 0]

=
∫

dDQ
w2α1α2Qα1Qα2

N1N2N3

= w2α1α2C00(q1,q2;1,2,3)gα1α2

= (D−2)C00(q1,q2;1,2,3)

C00(q1,q2;1,2,3) =
1

(D−2)

∫
dDQ

Q2−Y 2
2

N1N2N3
(A.82)

Equating C00(q1,q2;1,2,3) of Eq. A.81 and Eq. A.82, we have

1
(D−3)

∫
dDQ

Q2−Y 2
3

N1N2N3
=

1
(D−2)

∫
dDQ

Q2−Y 2
2

N1N2N3

⇒
∫

dDQ
Q2−Y 2

3
N1N2N3

=
D−3
D−2

∫
dDQ

Q2−Y 2
2

N1N2N3
(A.83)

This completes reduction of three rank four point function. The reduction of four rank

four point function does not require any new technique. It can be derived using the same

tricks we have used so far. Reduction of lower point integrals are also similar. Details can

be found in Ref. [66].

A.4 Reduction of five point and higher point functions

For five-point function, we will have q1,q2,q3,and q4. For reduction of more than five

point functions also, the number of basis vectors will again be four. This is because of the

fact that we are doing the reduction in four dimension and hence there are only four inde-
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pendent vectors. For example for 7-point functions we will have q1,q2,q3,q4,q5,and q6.

We can choose any four vectors from these six vectors to define our basis. Let’s work with

q1,q2,q3,and q4. In all these cases, the dimension of the physical space is 4 and that of

transverse space is 0.

Here wµ

ν =
δ

q1q2q3q4µ

q1q2q3q4ν

δ
q1q2q3q4
q1q2q3q4

= 0 which follows from the anti-symmetry under the interchange

of any two indices and in four dimension the indices can take only four values.

Again wµ

ν = δ
µ

ν −uµ

i qiν = δ
µ

ν −qµ

i uiν . So, δ
µ

ν = uµ

i qiν = qµ

i uiν . Therefore, Qµ can be

written as Qµ = uµ

i qi ·Q = qµ

i ui ·Q = Y µ

4 .

This Y4 can be written in terms of denominator factors

Y µ

4 = uµ

i qi ·Q

=
1
2

4

∑
i=1

uµ

i fi +
1
2
(N5 uµ

4 +N4 uµ

3 +N3 uµ

2 +N2 uµ

1 )−
1
2

N1(u
µ

4 +uµ

3 +uµ

2 +uµ

1 ) (A.84)

So using Eq. A.84, rank-one five-point function can be written as one five-point scalar

function and five four-point scalar functions with different denominator factors. Similarly,

for rank-two five-point functions, we can replace one of the Q in the numerator by the above

Y4. We will have one rank-one five-point functions and five rank-one four-point functions

with different denominator factors. We can use appropriate formula to further reduce these

tensor integrals to scalar integrals. This way we can reduce five-rank five-point functions as

well, where using one Y4 we will have one rank-four five-point functions and five rank-four

four-point functions with different denominator factors.

For the reduction of more than five point functions also, we can use Y4. As for example

for six point function, Y5 is not well defined as ui would be ui =
0
0 if we would have taken
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five basis vectors q1,q2,q3,q4 and q5 in four dimension. So we need to use Y4 for five-

and higher-point functions. In this case also, rank-one six-point function can be written as

one six-point scalar function and five five-point scalar functions with different denominator

factors. Similarly other higher-rank tensors can be reduced following the same procedure.

So after all these, only task remaining will be to perform the reduction of scalar integral of

more than four points to master scalar integrals. Below we discuss reduction of five- and

higher-point scalar function.

higher-point scalar function

For five-point function, we will start from Qµ = uµ

i qi ·Q = qµ

j u j ·Q.

Q2 = ui ·q jqi ·Qu j ·Q

⇒ N1 +m2
1 = qi ·Qui ·Q [using ui ·qj = δij]

=
1
2

4

∑
i=1

(Ni+1−N1 + fi)ui ·Q

=
1
2

(
4

∑
i=1

Ni+1ui ·Q−N1

4

∑
i=1

ui ·Q+
4

∑
i=1

fiui ·Q

)

⇒ m2
1 =

1
2

(
4

∑
i=1

Ni+1ui ·Q−N1(2+
4

∑
i=1

ui ·Q)

+
4

∑
i=1

fiui ·
4

∑
j=1

u jq j ·Q


[using Qµ = uµ

j qj ·Q]

=
1
2

(
4

∑
i=1

Ni+1ui ·Q−N1(2+
4

∑
i=1

ui ·Q)

+
1
2

4

∑
i=1

fiui ·
4

∑
j=1

u j(N j+1−N1 + f j)


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⇒ m2
1−

1
4

4

∑
i, j=1

fiui ·u j f j =
1
2

(
4

∑
i=1

Ni+1ui ·Q−N1(2+
4

∑
i=1

ui ·Q)

+
1
2

4

∑
i=1

fiui ·
4

∑
j=1

u j(N j+1−N1)


So we have

1 =
1

2(m2
1−

1
4 ∑

4
i, j=1 fi f jui ·u j)

× 4

∑
i=1

Ni+1ui ·Q−N1(2+
4

∑
i=1

ui ·Q)+
1
2

4

∑
i, j=1

fiui ·u j(N j+1−N1)

 (A.85)

So multiplying denominator factors with Eq. A.85 and integrating over loop momen-

tum, we will get formula for scalar integration of five or more point functions. For the

five-point scalar integral, the first two terms in the RHS of Eq. A.85 simplify a lot and five-

point scalar integral can be easily reduced to four-point scalar integrals without having to

use reduction of rank-one four-point functions for the first two terms. We will investigate

them below.

The first part is given by

∫ dDQNi+1ui ·Q
N1N2N3N4N5

=
∫ dDQu1 ·Q

N1N3N4N5
+
∫ dDQu2 ·Q

N1N2N4N5
+
∫ dDQu3 ·Q

N1N2N3N5
+
∫ dDQu4 ·Q

N1N2N3N4

= u1µ(D1qµ

2 +D2qµ

3 +D3qµ

4 )+
∫ dDQu2 ·Q

N1N2N4N5
+
∫ dDQu3 ·Q

N1N2N3N5
+
∫ dDQu4 ·Q

N1N2N3N4

= 0+
∫ dDQu2 ·Q

N1N2N4N5
+
∫ dDQu3 ·Q

N1N2N3N5
+
∫ dDQu4 ·Q

N1N2N3N4
[as ui ·qj = δij]

= 0 [other integrals are also zero as ui ·qj = δij]
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The second part is given by

∫ dDQN1(2+∑
4
i=1 ui ·Q)

N1N2N3N4N5

=
∫ dDQ(2+∑

4
i=1 ui ·Q)

N2N3N4N5

=
∫ dDQ(2+∑

4
i=1 ui · (Q−q1)

(Q2−m2
2)((Q+q2−q1)2−m2

3)((Q+q3−q1)2−m2
4)((Q+q4−q1)2−m2

5)

=
∫ dDQ(1+∑

4
i=1 ui ·Q)

(Q2−m2
2)((Q+q2−q1)2−m2

3)((Q+q3−q1)2−m2
4)((Q+q4−q1)2−m2

5)

[as ui ·qj = δij]

=
∫ dDQ

(Q2−m2
2)((Q+q2−q1)2−m2

3)((Q+q3−q1)2−m2
4)((Q+q4−q1)2−m2

5)

+
4

∑
i=1

ui · (D1(q2−q1)
µ +D2(q3−q1)

µ +D3(q4−q1)
µ)

=
∫ dDQ

N2N3N4N5
+(D1(1−1)+D2(1−1)+D3(1−1)) [as ui ·qj = δij]

=
∫ dDQ

N2N3N4N5

The third term in Eq. A.85 does not have any Q dependence in the numerator, so it

trivially becomes four-point scalar integral. Thus the five-point scalar integral can be re-

duced to four-point scalar integrals without having to use reduction of rank-one four-point

functions.

However for six or more point scalar integral, for the first two terms in the RHS after

multiplying the denominator factors, we need to use reduction of rank-one tensor integral of

one less point function. For the third term, we need to use reduction of scalar integral of one

less point function. For example, for the six-point scalar integral, we need to use reduction

formula for rank-one five-point function for the first two terms and for the third term we
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need reduction for five-point scalar integrals of various denominator factors. Similarly for

seven-point scalar integral, we need to use reduction for rank-one six-point function for

the first two terms and for the third term, we need reduction of six-point scalar integrals of

various denominator factors. Other higher point scalar integrals can be reduced in exactly

similar manner.
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Appendix B

Miscellaneous

B.1 Loop Integrations

In this appendix, we list some formulae which frequently appear during loop integrations.

Feynman parameters can be used to combine denominator factors

1
D1D2 · · ·Dn

=
∫ 1

0
dx1dx2 · · ·dxnδ (∑xi−1)

(n−1)!
[x1D1 + x2D2 + · · ·+ xnDn]n

(B.1)

The denominator [x1D1 + x2D2 + · · ·+ xnDn] can be written as Q2−∆+ iε after a shift

of integration variable under the integration over
∫

dDQ.

The following formula, which can be derived using wick rotation, appears frequently

in one loop calculation:

∫ dDQ
(2π)D

1
(Q2−∆)n =

(−1)ni

(4π)
D
2

Γ(n− D
2 )

Γ(n)

(
1
∆

)(n−D
2 )

(B.2)

Two expansions of Γ containing singularity, which appear in one loop scalar integral

calculation:

Γ(ε) =
1
ε
− γ +O(ε) (B.3)

Γ(−n+ ε) =
(−1)n

n!

(
1
ε
− γ +

n

∑
i=1

1
i
+O(ε)

)
(B.4)
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The following expansion is frequently needed in one-loop calculation

xε = eloge(xε ) = e(εlogex) = 1+ εlogex+O(ε2) (B.5)

Eq. B.2 diverges only for n = 1,2. These two n values appear in tadpole and bubble

scalar integrals, respectively. For other values of n, D=4 can be set from the beginning.

Some rearranging can be done in Eq. B.2 in order to separate divergent parts and finite

parts as follows

∫ dDQ
(2π)D

1
(Q2−∆)n =

(−1)ni

(4π)
D
2

Γ(n− D
2 )

Γ(n)

(
1
∆

)(n−D
2 )

=
(−1)ni

(4π)2−(2−D
2 )

Γ(n−2+2− D
2 )

Γ(n)

(
1
∆

)(n−2+2−D
2 )

=
i

(4π)2
(−1)n∆(2−n)

Γ(n)

(
4π

∆

)(2−D
2 )

Γ(n−2+2− D
2
)

=
i

(4π)2
(−1)n∆(2−n)

Γ(n)

(
4π

∆

)ε

Γ(n−2+ ε) [using D = 4−2ε]

(B.6)

For n=1, Eq. B.6 becomes

∫ dDQ
(2π)D

1
(Q2−∆)

=
i

(4π)2
(−1)∆
Γ(1)

(
4π

∆

)ε

Γ(−1+ ε)

=
i

(4π)2
(−1)∆
Γ(1)

(
1+ ε log(

4π

∆
)+O(ε2)

)
(−1)

1

(
1
ε
− γ +1+O(ε)

)
=

i
(4π)2

(−1)∆
Γ(1)

(
1+ ε log(

4π

∆
)+O(ε2)

)
(−1)

1

(
1
ε
− γ +1+O(ε)

)
=

i
(4π)2

(−1)∆
Γ(1)

(−1)
1

(
1
ε
− γ +1+ log(

4π

∆
)+O(ε)

)
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=
i

(4π)2 ∆

(
1
ε
− γ +1+ log(

4π

∆
)+O(ε)

)
(B.7)

For n=2, Eq. B.6 becomes

∫ dDQ
(2π)D

1
(Q2−∆)2

=
i

(4π)2
1

Γ(2)

(
4π

∆

)ε

Γ(ε)

=
i

(4π)2
1

Γ(2)

(
1+ ε log(

4π

∆
)+O(ε2)

)(
1
ε
− γ +O(ε)

)
=

i
(4π)2

1
Γ(2)

(
1+ ε log(

4π

∆
)+O(ε2)

)(
1
ε
− γ +O(ε)

)
=

i
(4π)2

1
Γ(2)

(
1
ε
− γ + log(

4π

∆
)+O(ε)

)
=

i
(4π)2

(
1
ε
− γ + log(

4π

∆
)+O(ε)

)
(B.8)

The ∆ contains the Feynman parameters, which need to be integrated over. It is to be

noted that ∆ in Eq. B.7 or Eq. B.8 will be dictated by the denominator of the Eq. B.1.

All the master integrals regularized in dimensional regularization for ultraviolet, in-

frared, or collinear divergences with D = 4−2ε can be found in [111].

B.2 Running of QCD coupling constant

The running of coupling constant is dictated by beta function of the underlying theory. The

beta function is defined as

β (g) =
∂g

∂ lnµ
(B.9)
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where µ is the scale and g is the coupling constant which runs with the energy scale.

The QCD beta function, β (g), at one loop is given by

β (g) = b0
g3

16π2 (B.10)

where b0 is defined as −(11− 2n f
3 ).

Using Eq. B.10 and Eq. B.9, we have

∂g
∂ lnµ

= b0
g3

16π2

⇒ ∂g
g3 = b0

1
16π2 ∂ ln µ

⇒ 1
−2g2 = b0

1
16π2 ln µ + const

⇒ 1
α

=−b0
1

2π
ln µ + const

⇒ 1
α
− 1

α0
=−b0

1
2π

ln
µ

µ0

⇒ α =
α0

1−α0b0
1

2π
ln µ

µ0

(B.11)

B.3 Hadronic Cross-section

The cross section for production of final states { f} in the collision of two hadrons A and B

is given by

σAB→{ f} = ∑
i, j

∫
dx1dx2dt̂ fi/A(x1,Q2

F) f j/B(x2,Q2
F)

dσ̂i j→{ f}(x1,x2,QR,QF)

dt̂
,

where i, j are partons inside the hadrons. x1,x2 are the partonic momentum fractions. QR

and QF are the renormalization and factorization scales. f 1,2 are parton distribution func-
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tions, and σ̂i j→{ f}, the partonic cross section, is given by

dσ̂i j→{ f} =
1

(2Ei)(2E j)|vi− v j|
dΠ|M |2 (B.12)

In the last line, dΠ, the Lorentz invariant phase space, is given by

dΠ =

∏
f

d3 pF

(2π)3
1

2E f

 (2π)4
δ

4(pi + p j−∑
f

p f )

B.4 Polarization

Massless spin-1 particle

The x and y polarizations of a massless spin-1 particle with momentum ~p along z-

direction can be written as

εx =



0

sign of pz

0

0


and εy =



0

0

1

0


.

For general momentum ~p not confined only along z-direction, its two x and y polariza-
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tions can be written as

εx =



0

px pz
pT |~p|

py pz
pT |~p|

− pT
|~p|


and εy =



0

− pz
pT

py
pT

0


,

where pT =
√

p2
x + p2

y .

Massive spin-1 particle

For massive spin-1 particle of mass m, its polarizations can be written as

εx =



0

px pz
pT |~p|

py pz
pT |~p|

− pT
|~p|


, εy =



0

− pz
pT

py
pT

0


, and εz =



|~p|
m

pxE
pT m

pyE
pT m

pzE
pT m


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Appendix C

C.1 Feynman Rules for Chapter-IV

t

t

h = −imt
v

{
(1+κt)+ iκ̃tγ5

}

h

h

h

k1

k3

k2

= −i3m2
h

v

{
(1+g(0)

3h ) − g(1)3h
3m2

h
∑

3
i< j ki · k j

}

h

h

hh

k1

k3

k2k4
= −i3m2

h
v2

{
(1+g(0)

4h )− g(1)4h
6m2

h
∑

4
i< j ki · k j

}

Zα

Zβ

h

k1

k2

= i
gMZ

cW

{
gαβ (1+g(0)hZZ)+

g(1)hZZ

M2
Z

[gαβ (k1 · k2)− kα
2 kβ

1 ] +

g(2)hZZ

M2
Z

[gαβ (k2
1 + k2

2)− (kα
1 kβ

1 + kα
2 kβ

2 )]

}
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Zα

Zβ

h

h

= i
gMZ

cW v

{
gαβ (1+g(0)hhZZ)

}
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