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7 Conclusion of the thesis

In this thesis, we have investigated the chromosomal organization at various scales, particu-

larly focusing on the impact of DNA- associated proteins, molecular crowders, and confine-

ment. In the first half of the thesis, we have studied and analyzed the local morphological

changes due to non-specific DNA- binding proteins. With increasing density, such cross-

linkers fold the polymer leading to a coil- globule transition, along which the chromatin

displays morphological changes quantified in terms of formation of contacts, loops and zip-

pers. Having established the loop- formation on chromatin, in the second part of the thesis,

we introduced the feather-boa model, a coarse-grained polymer model for the whole chro-

mosome. Within this model, the chromosome is described as a backbone chain attached

to equispaced side-loops. We have shown that such a feather-boa model with big enough

side loops, spontaneously adopts a helical shape when confined within a cylindrical cell,

recapturing observed chromosome morphologies in rod-shaped bacteria, e.g., E. coli and

B. subtilis [12, 13]. We used this model to investigate the impact of cytosolic molecular

crowders on the organization of the bacterial chromosome. We found that the crowders can

segregate from the polymer longitudinally to stabilize the helicoid-shaped chromosome into

a nucleoid-like sub-volume of the cell, in the absence of any bounding membrane. Further,

crowders can assemble into a complementary helical organization with respect to the chro-

mosomal helix in cylindrical cells. This purely entropic effect provides a possible physical

explanation to similar organizations of ribosomes with respect to nucleoid, as observed in

E. coli bacteria [11]. In the following, we present a brief summary of the individual chapters

presented in this thesis.
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In chapter 1, we introduced the system of prokaryotic and eukaryotic chromosomes and

their cellular environment. We discussed chromosomal organization at various scales, and

the roles played by various DNA- associated proteins and local environment. We presented

simple polymer models utilized for the description of DNA or chromosome at various scales.

In chapter 2, we considered a self- avoiding polymer model of chromatin, segments of

which can get cross-linked by non- specific DNA binding proteins that diffuse in the envi-

ronment and undergo passive binding- unbinding kinematics. Increasing the concentration

of such cross-linkers shows chromatin compaction. Using numerical simulations and a mean

field model, we demonstrated that such compaction is a continuous coil- globule transition,

characterized by a unimodal probability distribution of end-to-end separation, diverging fluc-

tuations of chain extension at the transition, and a critical slowing down of the relaxation

dynamics of chromatin extension. Along the transition, the model chromatin shows mor-

phological transformations characterized by the formation of simple and higher-order loops,

inter-segment contacts, zippers, and changing scaling of sub- chain extensions. With the

folding of polymer, complex higher order loops form, however, simple loops always dominate

the local morphology with the maximum number appearing at the critical point.

In chapter 3, we replaced the effect of cross-linkers by an additional effective attraction be-

tween the chromatin segments. Increasing the relative strength of attraction with respect to

temperature leads to a continuous coil- globule transition. Across this transition, local mor-

phologies are again quantified in terms of contacts, loops, zipper, and sub-chain extension.

They show qualitative agreement with the observations in chapter 2.

In chapter 4, we introduced the feather- boa polymer model of bacterial chromosome.

Within a cylindrical confinement, like in E.coli bacteria, such a model chromosome sponta-

neously adopt a large scale helical organization beyond a threshold side-loop size. Along the

long axis of the cylinder, the local density of monomers showed a periodic oscillation, onset

of which coappeared with the helical organization.

In chapter 5, to mimic the impact of cytosolic crowding, we introduced non- additive
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crowders to the system of feather- boa polymer confined inside a cylindrical volume. We

found that the crowders and chromosome adopt complementary helical organization and

show out-of-phase density oscillations along the long axis of the cylinder. We further coarse-

grained the feather- boa polymer to an effective chain by replacing the side loops with an

additional Gaussian- core repulsion between backbone monomers. We probed the impact of

change in crowder size on the morphology of chromosome. For small crowders, the model

chromosome opens up and crowders get homogeneously distributed within the cell. Increas-

ing the crowder size first causes transverse segregation, leading to the complementary helical

organization of the chromosome and crowders. Further increase in crowder size leads to lon-

gitudinal segregation of crowders and the chromosome. In this regime, crowders accumulate

near the top and bottom of the cylinder compressing the chromosome in the central region

in a membrane-less sub-volume like in bacterial nucleoid. With further increase in crowder

size, the number of helical turns increases and the chromosome extension decreases reducing

the helical pitch.

In chapter 6, we investigated the impact of crowder density on the chromosomal mor-

phology. The smallest crowders that can penetrate any intra-chromosomal region does not

impact the chromosome shape significantly. On the other hand, increasing the density of

larger crowders can influence the relative organization. Increasing the crowder density causes

the segregation of monomers and crowders influencing the chromosomal morphology. Again,

we used the effective model replacing side-loops by the additional Gaussian- core repulsion

between backbone monomers. For intermediate crowder size, changing the crowder density

leads to transverse followed by longitudinal segregations and associated shape changes. The

change in helicoid shape is analyzed carefully using winding number and turning number.



Summary

The highly folded structure of chromosome involves DNA and associated proteins [1]. The
DNA chains having lengths ranging from millimeters (bacteria) to meters (mammals) are
organized inside micron sized cells in bacteria and nuclear volume in eukaryotic cells, re-
spectively. This requires a tremendous amount of compaction, concomitant with functional
organization of the chromosome to allow information processing in terms of gene expression,
regulation and DNA replication [1–3]. The chromosomal organization displays local loop
formation that involves passive binders or active loop extruders [4–8]. Apart from that,
strong confinement, and molecular crowding in the environment play important role in the
chromosomal organization [9–15].

In the first part of this thesis, we consider the impact of binder proteins on chromatin
morphology. We describe the chromatin as a self- avoiding chain, and assume an attractive
potential between the binders and monomers. Using molecular dynamics simulations in the
presence of a Langevin heat bath, we investigate the impact of increasing binder density to
find chromatin- folding. Using simulation results and a mean field theory we characterize
this as a continuous transition. Mediated by the attraction to the polymer, the binders show
local clustering and negative cross- correlation with monomer density. The local density
of binders is restricted above due to the inter- binder repulsion. At the transition point,
a finite size analysis suggests divergence of the polymer size fluctuations, relaxation time,
and susceptibility. Thus, near the transition point, a little change in the binder density
can generate significant change in the chromatin compaction, allowing a potentially useful
control mechanism for the cell.

Along the transition, the chromatin undergoes local morphological changes which we char-
acterize in terms of contact probabilities between chromatin segment, topological loops of
various orders, and zippering. The contact probability and subchain extension show be-
haviors similar to that in interphase human chromosomes [16, 17]. With increasing binder
density, the number of simple loops first increases to attain a maximum at the critical point,
and then decreases as higher- order loops proliferate. Concomitantly, the mean separation
between the first order loops first decreases to reach a minimum at the critical point, and
then increases as the polymer folds further. With increasing binder density, the probability
of higher order loops increases, but that of the simple loops dominate the local morphol-
ogy. The zipper fraction of the chain increases monotonically as the polymer folds. The
cross-linkers provide effective attraction between different segments of the model chromatin.
Replacing the cross-linkers with increasing inter-segment attraction shows similar coil- glob-
ule transition, and change in local structures.

Having established the local loop morphology, in the second part of the thesis, we con-
sider the feather-boa model, a coarse-grained model of the whole chromosome consisting of
polymeric loops attached to a backbone chain [18, 19]. Within a cylindrical confinement
as in rod-shaped bacteria like E. coli or B. subtilis, the model chromosome spontaneously
adopt a helical morphology beyond a threshold size of the side-loops. This reproduces the
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x Summary

observed helicoid shapes in bacterial chromosome, providing a physical mechanism behind
their emergence in different species [12, 13]. We use this model to investigate the joint effect
of molecular crowders and confinement on chromosomal organization. The cytosolic crow-
ders can be of various sizes. While the smallest ones can penetrate everywhere, relatively
larger crowders undergo spatial segregation with respect to the chromosome. We investigate
the impact of changing crowder size and density on the shape and size of the model chromo-
some. In order to do this systematically, we consider a further coarse- grained model of the
chromosome, replacing the side- loops of the feather- boa model by an additional Gaussian-
core repulsion between the backbone monomers [9, 10]. With increasing crowder-size, the
chromosome and crowders first segregate in the radial direction, followed by a longitudinal
segregation. The crowders localized near the top and bottom edges of the cylindrical confine-
ment, can compress the chromosome further within a sub-volume of the cell localizing it near
the cell center, as in bacterial nucleoid [12, 13]. The amount of such compression depends
on the crowder density, with higher density supporting a higher degree of compression. We
find that the radial segregation of crowders generates a complimentary helical localization
of them around the helical nucleoid. This is associated with an out-of-phase density modu-
lation of the chromosome and crowders along the cell length. Similar behavior has recently
been observed for ribosomes in live E. coli bacteria [11].

Thus, we present a study of the chromosomal organization at different length scales. First,
we explore the impact of cross-linker proteins on the chromatin folding and the related
changes in local morphology. In the second part, using a polymer- based model of the
whole bacterial chromosome, we present a systematic investigation of the impact of cytosolic
crowders within the cylindrical confinement of rod-shaped bacteria.



1 Introduction

This thesis presents a study of chromosomal organization at various scales, particularly fo-

cusing on the impact of DNA- associated proteins, molecular crowders, and confinement. In

the first half of the thesis, we present a study of how non- specific DNA binding proteins

lead to local morphological changes, e.g., forming loops and thereby folding the chromo-

some. In the second half of the thesis, we assume a looped structure of the chromosome

and demonstrate the impact of molecular crowding in the emergent shape, size and rela-

tive organization of the chromosome in confinement. The complex of DNA and associated

proteins constitute chromosomes, which are strongly compacted inside the cell nucleus, a

membrane-bound compartment, in eukaryotes, and form a membrane-less compact nucleoid

in prokaryotes like bacteria. In eukaryotes, chromosomes live in an environment of molecular

crowding of nucleoplasm inside the nuclear- membrane bound compartment. In bacteria the

nucleoid is stabilized in an environment of diverse molecular crowding of cytosol, confined

by the bacterial cell wall. In this chapter, we provide a brief description of chromosomes and

their environment, physical approaches towards describing them using polymer models, and

an outline of the thesis.

1.1 Eukaryotic and prokaryotic cells

The structural, functional and biological building block of all living organisms is the cell. One

of the simplest living organisms that can perform all basic biological processes independently,

e.g., metabolism to keep the cell alive, and cell divisions to hand down the genetic material,

are bacteria, prokaryotic cells that are devoid of membrane- bound organelles [1, 27]. On the
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6 Introduction

other hand, more complex multicellular organisms, e.g., animals and plants consist of trillions

of eukaryotic cells, which are distinguished from prokaryotes by the presence of a proper cell

nucleus, and membrane-bound organelles. All the cells have a protective outer layer that

consists of a cell membrane and, in some cases, cell wall. The cell membrane is mostly

made up of lipids, a phospholipid bilayer. The cell walls are present in most prokaryotes and

plants. Both eukaryotic and prokaryotic cells contain cytoplasm, a fluid dispersion made up

of cytosolic proteins and lipids, which in eukaryotes include long filaments like microtubules,

actin filaments and intermediate filaments [1].

In a eukaryotic cell, the nucleus is covered by a plasma membrane. The long deoxyri-

bonucleic acid (DNA) chains that contain the genetic information, are folded, compacted

and organized within the nucleus with the help of various DNA- associated proteins [28].

The inside environment of nucleus is made of a highly viscous nucleoplasm, which is a fluid

containing various proteins and macromolecules. The nuclear membrane separates the DNA

from rest of the cell. The typical size of eukaryotic cells may vary from 10− 100µm. While

typical size of nucleus lie within the range of 5− 8µm. In human cells, 23 pairs of chromo-

somes, each of which are made with a DNA of length ∼ 2m, are packed inside the nucleus

of diameter ∼ 5µm, which requires a minimum 104- fold folding of the DNA. Apart from

DNA, the other genetic component of the cell is the ribonucleic acid (RNA). They partici-

pate in various functions, including gene regulation and protein production. The messenger

RNA convey genetic information controlling protein synthesis in ribosomes, which are 25-

30 nm sized macromolecular machines made of RNA and protein complexes [29]. The protein

synthesis at ribosome proceeds by ribosomal RNA linking amino acids delivered by trans-

fer RNA. Ribosomal structure in eukaryotes and bacteria are quite similar with a slightly

smaller size of 20 nm.

The cytoplasm is composed of almost 80% water in which large numbers of proteins, lipid

molecules and ions float with typical concentration of various macromolecules being approxi-

mately 300 g/L [30, 31]. Several membrane bound organelles like mitochondria, endoplasmic
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reticulum, Golgi apparatus etc. float in the cytoplasm and serve specialized functions critical

for the survival of the cell. The major part of eukaryotic cytoplasm is its cytoskeleton, a

dynamic network of filaments, motor proteins and cross-linkers. In eukaryotes, cytoskeleton

consists of three kind of fibers - filamentous actin (F-actin), microtubules and intermediate

filaments. These semiflexible filaments are assembled and disassembled using monomeric

units at different parts of the cell, as required. F-actins are polymers made from globu-

lar actin (G-actin) subunits. The diameter of F-actin is ∼ 6 nm and is the thinnest of

all cytoskeletal filaments [32]. Microtubules have a hollow cylindrical structure made from

13 protofilaments, each of which is made from α-β tubulin dimers. The cylindrical structure

of microtubules has an inner radius of 18 nm and outer radius of 25 nm. The intermediate

filaments have a diameter ∼ 10 nm.

Different components of the cell preform different functions. For example, ribosomes syn-

thesize protein molecules which are the building blocks of cells. Various proteins work as

structural support units, provide chemical catalysis, and act as molecular motors which pro-

vide transportation of essential units inside the cell. For example, mitochondria performs

oxidation of sugar molecules to create ATP which serve as the energy currency of the cell.

Hence, it is called the power house of the cell. The endoplasmic reticulum packages the pro-

teins, and Golgi apparatus acts as a coordinator in these processes. The cytoskeleton provides

structural support to cell, facilitate motion and provide tracks for movement of molecular

motors which carry vesicles filled with cargo and other organelles [32]. The smaller F-actins

along with myosin motors form the actomyosin network that predominantly localize near

the cell cortex and around the nuclear membrane. They mediate cell motility. On the other

hand, the longer microtubule network maintains the cell size providing it rigidity, and plays

important role in chromosomal segregation during cell division. The cytoskeleton governs

the mechanical properties of the cell [33, 34], and displays active visco-elastic response [35].

The prokaryotic cells, on the other hand, lack membraneous organelles. They do not have

a separate nucleus. The prokaryotic chromosome floats in the cytosol of the cell [27, 36].
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Figure 1.1: Schematics of eukaryotic cell with major components on left and E. coli cell on
right. Figures are adopted from Ref. [20, 21].

However, the chromosome typically form a compact shape known as nucleoid which floats

in the viscous cytosol at the middle of the cell [3, 25]. An example of prokaryotes which

are studied extensively is the bacteria E. coli. It has a sphero-cylindrical cell with length

3-4µm and diameter 0.8µm. The chromosomal DNA in E. coli has a length of 1.6 mm

and is compacted a 103-fold into a nucleoid that occupies only about 1/4-th of the cell

volume. In the cytosol, various proteins molecules and other molecular machineries float

creating an enormously crowded environment [37–39]. The glass-like environment due to

large crowding density, strong polydispersity, and confinement gets fluidized by metabolic

activity [40]. Abundant in them are, ribosomes which have typical size ∼ 20 nm. Apart

from the nucleoid, bacteria contains a large number of small pieces of circular DNA called

plamids, some of which carry significant genetic information requiring precise replication

and segregation [41]. Bacterial cytosol contains homologues of all the cytoskeletal protein

filaments, e.g., tubulin homologs like FtsZ, TubZ, actin- homologues like ParM and MreB,

and intermediate filament homologues crescentin, FilP etc. [42, 43]. Bacterial cytosol do not

contain large scale complex networks unlike eukaryotes, and they lack cytoskeletal motor

proteins. However, the cytoskeletal filament homologues often perform similar functions
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(E)

Figure 1.2: DNA structure: (A) Attachment of sugar phosphate and base to form a nucleotide.
(B) Nucleotides string together to form a polynucleotide chain. (C) Two polynucleotides are held
together by hydrogen bonds between two-bases of individual nucleotides. A pair of bound bases is
called a base-pair (bp). (D) The two chains wrap around each other in a double-helix configuration
reducing the Van der Waals base-stacking energy. (E) Hydrogen bonds between an A-T and G-C
base pairs. Figures adopted from Ref. [1].

as in eukaryotes, for example, FtsZ forms Z-ring around which new cell wall forms during

cell- division. The bi-directional elongation of ParM proteins mediate segregation of large

plasmids [44].

1.2 DNA and its function

The double helix structure of DNA was determined from X-ray diffraction measurements

by Watson and Crick in 1953. The DNA molecule consists of two polynucleotide chains

running anti-parallel and wound around each other in a helical fashion [1, 28, 45]. Each
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chain is made from sequence of four types of nucleotides which serve as monomeric units (see

Fig.1.2). Each nucleotide is composed of three basic units- a five carbon sugar, a nitrogen

base, and one or more phosphate groups. The phosphate groups and the nitrogen base are

attached to a carbon-based sugar molecule. In DNA, deoxyribose is the sugar part and

the nitrogen bases can be one of the four possibilities – two purines adenine (A), guanine

(G), and two pyrimidines cytosine (C), and thymine (T) . The sugar and phosphate groups

attach to each other with covalent bonds in alternating fashion making a backbone of sugar-

phosphate repeats. To each sugar unit, one of the four bases are attached. The nucleotides

are represented by their base units. Hence, symbols A, T, G or C are used to denote a

nucleotide depending on its base unit. The two antiparallel chains of nucleotides are bound

to each other by hydrogen bonds between base units. The bondings are such that pyrimidines

bind to purines. The purines A and G are double-ring bases compared to the pyrimidines

G and C which are single ring bases. A Purine always bind to a pyrimidine forming a

complimentary base pair. The base A always bind to T with two bonds, and G bind to

C with three bonds. Spatially, the base pair always lie inside the double helix, while the

phosphate groups lie outside. The way in which sugar-phosphate units are linked together

in individual polynucleoid chains gives a notion of direction in the chain. One end of a chain

is called 3′ hydroxyl and the other end is called 5′ phosphate. In a DNA double- helix one

chain runs from 3′ to 5′, while the other chain runs anti-parallel to it from 5′ to 3′. The pitch

of the double-helix is ten base pair long. This is the length scale per turn. The separation

between the two anti-parallel strands are almost constant and remains around 2 nm. This

is the width of the DNA. Separation between two base pairs along the DNA is 0.34 nm. We

often use this base pair (bp) size as a unit of the measure of DNA length in this thesis.

Primary function of the the DNA is to carry genetic information in form of genes. Different

sequence of nucleotides A, T, G or C code different genetic information, like different sequence

of alphabets constructing different words. A gene is a region of DNA (nucleotide sequence)

which codes specific instruction for RNA molecules, which can be either messenger RNA
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(mRNA) or functional RNA. DNA lengths depend on the species, e.g., the nucleus of a

eukaryotic cell contains DNAs of length 3.2×109 bp (∼ 2 m). On the other hand, the E. coli

cell has a single circular DNA of length 4.6 × 106 bp (∼ 1.6 mm). In human DNA, about

30,000 genes have been identified [1]. The 103 fold smaller DNA of E. coli bacteria carries

around 4600 genes. The bacterial cells also contain small non-chromosomal DNA in the form

of plasmids. Synthesis of RNA from the DNA occurs via a process called transcription. A

chemical machinery called RNA polymerase, along with one or more transcription factors,

binds to the promoter region, opens up the DNA double helix into a transcription bubble,

reads out the nucleotide sequence of a gene and synthesizes a complimentary RNA strand

by adding RNA nucleotides. The process of protein production is modulated by several

mechanisms of gene regulation. This ranges from regulating transcriptional initiation, RNA

processing and even post-transcriptional modification of proteins. One physical mechanism

involves structural changes in the DNA organization. Strongly folded part of DNA has

lesser frequency of transcription, e.g., heterochromatin, the transcriptionally less active high

density regions of chromosome.

In the process of translation, messenger RNA (mRNA) is decoded by ribosome, building

polypeptide chains by assembling different kinds of amino acids. Twenty different kind of

amino acids strung in different sequence to form the protein molecules in live cells. The

polypeptides fold into active proteins that perform their functions in the cell. In bacteria,

translation occurs in cytosol as ribosomes bind to mRNAs. For functional efficiency, ribo-

somes gather near the nucleoid in bacteria. In eukaryotes, translation occurs in cytosol or

on the membrane of endoplasmic reticulum to which ribosomes bind.

1.3 Chromosome

As we discussed earlier, the DNA is compacted by tremendous amount - at least 104 times

for humans and 103 times for E. coli bacteria, to fit inside the cell. The nuclear or cellular



12 Introduction

confinement brings a major degree of compaction of DNA, however, its local organization is

largely achieved by various kind of packaging proteins which bind to DNA and organize it

in either passive or active manner [1–3, 14, 25, 46]. This complex of DNA and proteins form

the chromosome. The number and size of chromosomes greatly vary among different kind of

cells. For example, human cells have 23- pairs of chromosomes, while E. coli bacteria have

only one.

The amount of compaction of a chromosome in eukaryotic cells depends on the cell cycle.

It mainly consists of two stages, the interphase and the mitotic phase. In the interphase

the cell grows and gathers nutrients in Gap 1 (G1) phase, replicates its chromosomes in the

Synthesis (S) phase, and a rapid cell growth in the Gap 2 (G2) phase, as the cell prepares

for cell division. This is followed by a rapid cell division in mitosis. The sequence of events

in mitosis is divided into prophase, pro-metaphase, metaphase, anaphase, and telophase. In

the prophase, an early mitotic spindle is formed by the microtubules and centrosomes, as

each replicated and bound sister chromatid pair starts to segregate from others, still within

an intact nucleus. The nuclear membrane dissolves and sister chromatids get associated

with the microtubule spindle in pro-metaphase. The chromosomes get into most compact

configurations as they align around the mid-plane of the cell with the help of mitotic spindle

in the metaphase. It is only in metaphase, that the more tightly packed chromosomes become

normally visible under a light microscope. In anaphase, the daughter chromosomes segregate

under the pulling force from the spindle. Finally the segregation completes in telophase and

cytokinesis leads to formation of two daughter cells.

Visualization of chromosome in different stages of cell cycle has an interesting history.

During the later half of nineteenth century, mitotic chromosomes were stained and observed

under light microscopes [47, 48]. In the interphase, chromosomes spread out in the nu-

cleus and made it difficult to visualize any structure. By 1956, work of Tjio and Levan

clearly showed 46 human chromosomes during mitosis [49]. The current techniques of DNA
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Figure 1.3: A schematic diagram of for interphase chromosomes inside nucleus. Figure adopted
from Ref. [22].

visualization involves more sophisticated stainings, e.g., in using gene- specific (FISH) or as-

pecific (DAPI) fluorescence molecule tagging and using fluorescence microscopy or confocal

microscopy.

In early 1980s, the fluorescent in situ hybridization (FISH) technique was developed in

which a specific short sequence of DNA is used as a marker that identifies its complementary

nucleotide sequence on the chromosome. First, these probe DNA pieces are made fluorescent

by tagging them with specific fluorophores. The fluorophores are chemical compounds which

can be excited by light, so that they re-emit light at a longer wavelength. The fluorophore

tagging can be done with nick translation or polymerase chain reaction. In the second

step, an in situ hybridization is performed. To do that, both the probe DNA segment

and the chromosome are denatured, i.e, the double stranded helical segment is opened up

into single strands using heat or chemical treatment. Then, the probe DNA fragments

are mixed with chromosomal DNA. Consequently, the probe DNA fragments bind to their

complimentary nucleotide sequence of the chromosomal DNA with hydrogen bonds at specific

locations. This process is called molecular hybridization. The hybridized nucleotide sequence

which were marked with probe DNA fragments, emit lights of different colors depending on

the fluorophore used in tagging them. This is used in fluorescent microscopy or confocal
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microscopy for better resolution.

Each chromosome can be painted with different colors using such a technique. A particular

variant is known as multifluor FISH that makes different chromosome appear to be painted

with different color. In this method, a collection of DNA sequence that acts as a probe

is treated with fluorochromes that produce a single color. Afterwards hybridization with

chromosome is performed which lead to appearance of different chromosomes with different

colors. Using this technique it has been shown that the interphase chromosomes display

a territorial organization in which different chromosomes occupy different spatial location

inside the nucleus. Even pairs of homologous chromosomes are not generally located at the

same position [1, 50].

The more densely packed heterochromatins are transcriptionally less active, compared to

the normal euchromatins. Their predominantly peripheral localization [22] can be described

in terms of activity dependent segregation of chromosomes as shown in recent numerical

simulations [51]. A schematic diagram of nucleus encapsulating different chromosomes is

illustrated in Fig. 1.3. In this diagram the euchromatin is represented by thin blue lines,

and the heterochromatin by thick dark blue lines. The 46 chromosomes in human cells stay

inside the tiny confinement of the nucleus with a typical DNA- density ∼ 10 mg/mL [52].

In such a high concentration of polymer solution, repulsion between individual sub-chains

gets balanced by osmotic pressure by a sea of surrounding polymers [53]. As a result the

individual chains are expected to behave as ideal chains. Such an ideal chain scaling behavior

has been observed in FISH experiments for short DNA chains [54].

In contrast to eukaryotes, prokaryotic cells like bacteria have a single circular DNA which

carries most of the genetic information. As has been pointed out earlier, the 4.6 Mbp

(1.6 mm) long DNA in E. coli cell is compacted at least 1000 folds to form the nucleoid,

that occupies 1/4-th of the cell volume having length 2-4µm and diameter 0.8µm. Initially,

it was believed that the DNA is randomly organized inside bacterial cell. The compaction

of bacterial chromosome with the help of various proteins can be described in terms of an
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Figure 1.4: Experiments showing helical organization of chromosome in rod shaped bacteria.
(A) E. coli nucleoid is scanned along long axis of the cell (ii). (i) and (iii) show the helicoid shape
of the chromosome. Figure adopted from Ref. [12]. (B) B. subtilis chromosome shows helicoid
shape. Figure adopted from Ref. [13].

effective poor solvent environment [55]. High resolution microscopy over the last one decade

revealed the shape and size of the compacted nucleoid [12, 13, 56]. High resolution fluores-

cent microscopy of E. coli chromosomes reported a global helical organization of the nucleoid

that lacks definite handedness [12, 57]. In the bacterium B. subtilis, newly replicated DNA

was tagged with fluorescent DNA binding proteins (dNTP derivatives), which revealed he-

lical organization of chromosome [13]. Further, whole cell cryo-electron tomography of the

bacterium Bdellovibrio bacteriovorous suggests helical organization of the chromosome [58].

In E. coli, relaxing the cylindrical confinement of the cell leads to swelling of chromosome

away from the original helical organization. This suggests that the shape and size of con-

finement plays a crucial role in dictating the emergent morphology of the chromosome [9].

Another recent study shows that the ribosomes crowd around the E. coli chromosome dis-

playing modulating local densities along the long axis of the cell that are anti-correlated to

the local density modulation of the chromosome [11].

Further small scale resolution is achieved using electron microscopy, that uses an electron

beam instead of light, and magnetic coils instead of lens in performing the microscopy. To

obtain contrast, electron- dense heavy metal staining is performed. The much smaller wave-

lengths allows a million fold magnification, and achieve resolution up to 1 nm in tunneling

electron microscopy (TEM). The scanning electron microscopy (SEM) uses scattering from
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Figure 1.5: Electron micrograph of E. coli is shown with scale bar 1 µm. The light region
shows the chromosome and the dark spots the crowders. Figure adopted from Ref. [1].

beam focussed on the sample. Using SEM, it is possible to create 3D images, however TEM

works for 2D samples. Early electron microscopy of nucleoid revealed irregular organization

of nucleoid. However, later electron microscopy and fluorescence based light microscopy re-

vealed that the nucleoid occupies only a sub-volume of cell [11, 56, 59–61]. Fig. 1.5 shows an

electron microscopy image of E. coli. The light portion shows the chromosome while dark

dots show the crowders. It suggests that the crowders localize mostly near the two caps of

the sphero-cylindrical volume, however small fraction of them also exist and penetrate the

more central region primarily occupied by the nucleoid.

The chromosomal DNA in bacteria floats in the cytosol containing various kinds of crowder

molecules including proteins, ions and other macromolecules. One of the bigger protein

machineries are ribosome with typical size ∼ 20µm which has about 55000 copies in E. coli

cell [62–64]. In addition, almost 4600 copies of RNA polymerase (RNAPs) and about 221

copies of plasmids float in the cytosol [65]. The total number of proteins in E. coli cell

is ∼ 3,000,000-4,000,000 [66], of which a fraction acts as DNA binding proteins and the

rest as crowders. The overall steric repulsion from the crowders can potentially compress

the chromosome. The effect of the crowders on relative organization of the chromosome is

considered in the second half of this thesis.
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Figure 1.6: Hierarchical organization of eukaryotic chromosome from ds-DNA to mitotic chro-
mosome via formation of nucleosome and 30nm chromatin fiber. Figure adopted from Ref. [1].

1.3.1 Protein- DNA association in eukaryotic chromosomes

DNA binds to various proteins towards condensing eukaryotic chromosomes. These proteins

can have specific or non-specific affinity to DNA. The abundant proteins which generate

packaging of DNA at the smallest length scales are histone proteins of which about 60

million copies are found in a typical eukaryotic cell [1]. Histone is a class of proteins with

positive charge which allow them to bind with negatively charged DNA with electrostatic

interaction in non-specific fashion. Histone proteins are found in five types and are conserved

across all eukaryotic cells. There are also other non-histone proteins that can bind to DNA

in gene- specific or non-specific fashion.

The double stranded DNA of a 147 bp stretch gets wrapped around the disk shaped

octameric complex of histone proteins which contains two molecules of each histone proteins,

H2A, H2B, H3 and H4. This disk shaped protein complex has a diameter of 11 nm. The

147 bp of DNA segment wraps around it about 1.7 times in a left-handed coil. Together
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this unit is called a nucleosome (Fig. 1.6). Many nucleosomes form along the DNA, and

consecutive nucleosomes remain connected to each other by linker DNA [67, 68], which

can vary from few base-pairs up to 80 bp in length. This connected set of nucleosomes

form a bead-on-string structure with diameter 11 nm and is known as chromatin thread.

Such structures are observed in electron microscopy experiments as shown in Fig. 1.7(a1).

Formation of nucleosomes provide the first level of DNA compaction and reduces the chain

length to one-third of its original value. In the next level, neighboring nucleosomes are packed

together with the help of another histone protein H1 which is called the linker histone. It

is believed that this class of histones attract several nucleosomes in close spatial proximity

and arrange them in the form of a repeating array. Electron microscopy experiments reveal

such structures as is shown in Fig. 1.7(a2). This arrangement further compacts the DNA

and form the 30 nm chromatin fiber. Next level of packing involves formation of looped

structures by bringing together different segments of chromatin fiber. This looped structures

are compacted to form interphase chromosome. The biggest loops are observed during the

metaphase of cell division (Fig. 1.7(b)).

Major factors which facilitate such such loop formation are the DNA binding proteins

or their complexes, which attach to multiple DNA segments to bring them into spatial

proximity of each other, hence forming the loops [69]. Typical example involves transcription

factors which are a class of proteins that bind to DNA at specific locations during the

transcription. They are considered as major regulators of gene expression, impacting the

3D organization of chromosomes. They form loops on the chromatin while processing many

genes simultaneously. Particular example of franscription factors (TF) is CCCTC-binding

factor (CTCF), which binds to specific locations of DNA (three regular repeat of CCCTC

sequence). A study showed, two CTCF proteins can bind together to form a dimer [70], which

brings the DNA segments attached to them in spatial proximity forming loops [71]. However,

study also showes the possibility of CTCF multimer formation. Subsequent experimental

study reported evidence of genome-wide localization of CTCF with ring shaped cohesin
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Figure 1.7: (a1) Electron micrograph showing beads-on-string structure formed by nucleo-
somes [23]. Scale bar used is 30 nm. (a2) 30 nm fibre of chromatin [23]. Scale bar used is 50 nm.
(b) Part of Lamp brush chromosome X from Triturus carnifex after its attachment to a slide by
centrifugation, followed by fixation and silver staining [24]. Scale bar used is 10 µm.

protein complexes. Based on this, loop a extrusion mechanism was proposed, which suggest

that the cohesin proteins actively extrude the DNA loop like a motor, until it finds the

properly oriented CTCF attached to DNA which works as a stopper [6, 7, 72]. However, the

precise mechanism of this active loop extrusion process is yet to be fully established [22, 73].

Various kind of TFs, in addition, form complexes called Transcription factories, e.g., it

may consist of RNA polymerase, RNA, transcription factors and a protein core complex as

indicated in Fig. 1.8. The RNA polymerase reel the RNA molecule from one DNA strand.

Other proteins and complexes like activators, co-activators, which form the protein core com-

plex in transcription factory, provide assistance and regulation in the transcription process.

Evidence suggests, a single transcription factory can regulate many genes simultaneously,

which leads to co-localization of multiple genes forming chromatin loops as indicated in

Fig. 1.8). At a time, the number of transcription factories can vary from few hundred to

several thousands in a cell. For example, in human nucleus, cryo-section experiments suggest

that the number of transcription factories are about 10000. The size of each transcription

factory depends on the amount of RNA reeled, however, the typical size varies between

50-100 nm [74].
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Figure 1.8: Schematics for DNA- binding protein or protein- complexes (red bead) cross-linking
different chromatin segments (blue line) to form loops.

Experiments show plenty of evidence for chromatin loops. A spectacular example of loops

are observed in the lampbrush chromosomes (lbc) of large oocytes in many vertebrates and

invertebrates, as shown in Fig. 1.7(b). The open loops are of sister chromatids, they are

transcriptionally active, and held together by the compacted and transcriptionally inactive

chromomeres. Earlier electron microscopy of lysed human cells (HeLa) also showed evidence

of loops [75]. Recently, chromosome conformation capture (CCC) experiments and its Hi-C

variants show abundant number of chromatin loops in eukaryotic chromosomes [76–79]. In

fact, a particular experimental Hi-C study reported evidence of 10000 chromatin loops in

human cells [80].

Chromosome conformation capture (CCC) techniques are set of methods to quantify the

contact probability between DNA segments which may be separated contour-wise, however,

lie in spatial proximity of each other. There are three major steps: cross-linking the DNA

segments, digesting cross-linked DNA and ligation. First, formaldehyde is used to cross-

link the DNA segments which introduces permanent bond between those segments. Second,

DNA is cut into pieces with the help of restriction enzymes. Size of these DNA fragments

determine the resolution of method which are mainly determined by restriction enzymes

used in the process. Smaller fragments leads to better resolution of interaction frequency.

For example, restriction enzyme EcoR1 cut the DNA at the interval of 4 kbp yielding about



1.3 Chromosome 21

1 million DNA fragments in human nucleus. Third, ligation is performed in presence of T4

ligase, an enzyme that enables the binding of open ends of the cross-linked DNA strands. In

this process, ligation between cross-linked DNA fragments are preferred over other DNA se-

quences. Finally, different CCC technique use this data differently. In 3C, ligated fragments

are identified using polymearase chain reaction (PCR) with a known primer. This method

provides information about interaction frequency of single DNA segments. Hi-C, on the other

hand, uses a combination of high-throughput sequencing and paired end sequencing. In high-

throughput sequencing, base-pair sequence of ligated fragments are identified while in paired

end sequencing, the sequence belonging to small segments of each fragments are retrieved.

The pair of nucleotide sequence is aligned along the entire DNA sequence, hence identifying

the DNA sequence belonging to fragments involved in ligation. This allows one to deter-

mine all the pairwise interaction between different DNA fragments [16, 81–83]. With this

information, a contact map of genomic interaction is created. This experimental technique

allows one to find contact maps in all kinds of chromosomes, eukaryotic and prokaryotic.

1.3.2 Protein- DNA association in prokaryotic chromosomes

Unlike eukaryotic chromosomes, the prokaryotic chromosome lacks nucleosomes. Although,

they do have several histone homologues, e.g., the histone like nucleoid structuring (HNS)

proteins, H, H1, Hu, IHF etc. Bacterial cells have a single circular chromosomal DNA that

folds at least 1000 times to fit inside the cell. There are at least five major physical and

chemical forces which determine their organization. First, the confinement due to cell enve-

lope bring about a major degree of compaction. However, this is not enough as the nucleoid

occupies only 1/4-th of the cell volume, requiring further compaction. A second major com-

pacting mechanism is due to the 5% negative supercoiling of the DNA. The supercoiling is

maintained by activities of topoisomerases, transcription, and mucleoid associated proteins.

It warps and folds various segments of the chain leading hair-braid like structures known as

plectonemes [84]. Formation of plectonemes substantially decreases the effective size of the
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Figure 1.9: NAPs and SMC complexes can form loops via different mechanisms. Figure adopted
from Ref. [25].

chromosome. Third, simultaneous binding of DNA segments to DNA binding proteins forms

bridges and loops. A class of DNA-binding proteins called the nucleoid associated proteins

(NAPs) have dominant impact on organization of prokaryotic chromosome. Like histones

in eukaryotes, NAPs non-specifically attach to DNA, cross-linking, wrapping and bending

DNA segments (Fig.1.9). Impact of local structures on DNA formed due to NAPs, deter-

mines the global organization of chromosome at large scales [85]. Examples of NAPs are-

histone-homologues H-NS, HU, IHF (integration host factor), FIS (factor for inversion stim-

ulation). Apart from this, the structural maintenance of chromosome (SMC) complexes that

are an evolutionarily conserved family of protein complexes, including condensin, cohesin,

Smc5/6, and others, are also found in bacteria. They do perform loop extrusion (Fig.1.9) as

in eukaryotes [86, 87]. Fifth, the depletion effect due to cytosolic crowders can compress the

chromosome to the nucleoid sub-volume. In the rest following, we describe the interaction

of DNA with NAPs and SMCs in some further detail.

The H-NS are small proteins found typically in E. coli. A single H-NS can bind to multiple

DNA segments, in turn bridging or cross-linking them, which brings distant DNA segments
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close to each other spatially. As a result of cross-linking, loop structures emerge and vol-

ume of DNA-protein complex (chromosome) decrease. Experiments like single molecule and

atomic force microscopy have revealed cross-linking of different DNA segments by H-NS

proteins [46].

Another example of NAP is HU. Like H-NS, this is also small protein, of which approx-

imately 30000 units exist in a single bacterial cell. HU can attract DNA segments around

itself bending the DNA, showing some similarity to the action of histones proteins in eu-

karyotes [88, 89]. ChIP-Seq analysis in E. coli chromosome suggests, HU binds to DNA in

non-specific manner and due to its large number, it can wrap almost 10% of the DNA [90].

Cells lacking HU produce daughter cells lacking chromosome, suggesting a major role of HU

in chromosome segregation [91]. On the other hand, variants of HU with increased DNA

affinity over-compact the chromosome [92].

IHF or integration host factor, binds to specific DNA sequences and bends it by 160◦ [93].

This bend brings DNA segments close to each other, which helps in formation of DNA loops.

Similar to IHF, Fis also bends the DNA by ∼ 50− 90◦ [94]. The non-specific attachment of

Fis impacts transcription, replication and recombination.

Collectively, all the different kinds of NAPs and SMCs create DNA loops, which facilitate

in chromosome compaction and organization. Evidence of such chromosome loops have been

found in earlier electron microscopy (EM) experiments [26, 95–97] (see Fig. 1.10) and from

complimentary experiments like 3C, Hi-C, ChIP-seq etc. showing local contact formation

and interaction of DNA with proteins [98].

We have already discussed the EM, 3C and Hi-C methods. Before ending this section,

here we briefly outline the ChIP-seq method. The ChIP-sequencing (ChIP-seq) method de-

termines protein-DNA interaction. This technique uses combination of chromatin immuno-

precipitation (ChIP) and massively parallel DNA sequencing to identify DNA sequences

which bind to specific proteins. The technique involves mainly five steps. First, a cross-

linking between DNA and associated protein is performed using formaldehyde. Second,
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Figure 1.10: Electron micrograph shows presence of loops in E. coli chromosome. Scale bar is
500 nm. Figure adopted from Ref. [26]. The figure on the right hand side illustrates the looped
structures.

the chromatin is fragmented into DNA pieces below 500 bp. Third, in the ChIP process,

the cross-linked DNA-protein complex is augmented using antibody, followed by incubation

and centrifugation process. During immunoprecipitation, a removal of non-specific binding

sites are performed. In the forth step, cross-links between DNA and proteins are removed

and the protein- attached DNA fragments are recovered. Fifth, is the analysis step. Using

a massively parallel sequencing technique the gene positions of the protein-attached DNA

fragments are identified [99–101].

1.4 Polymer models of DNA and chromosome

Given the polymeric nature of DNA and chromosome, it is only natural to model them using

standard polymer physics [53, 102].

Freely jointed chain:

The simplest model of a polymer is an ideal chain with chain length L = Nb of N -bonds

each of length b connected as a freely jointed chain such that each bond can be at any
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random orientation with respect to its adjacent bond. This ensures that the orientation

of consecutive bonds are uncorrelated. The polymer configuration is defined by position

vectors {rn} = (r0, r1, . . . , rN) or alternatively with bond vectors {bn} = (b1,b2, . . . ,bN),

where bn = rn − rn−1, for all n = 1, 2, . . . , N . The distribution function of the polymer

configuration is given by

P({bn}) =
N∏
n=1

ψ(bn) (1.1)

where the distribution of the randomly oriented bond vector

ψ(b) =
1

4πb2
δ(|b| − b). (1.2)

This is independent of other bonds, and normalizes to
∫
dbnψ(bn) = 1. The end- to- end

vector of the chain is

r = rN − r0 =
N∑
n=1

bn. (1.3)

The random orientation of bond vectors ensure 〈bn〉 = 0, and therefore 〈r〉 = 0. However,

〈r2〉 has a finite value:

〈r2〉 =
∑
n,m

〈bn · bm〉 = Nb2 (1.4)

as the uncorrelated orientations ensure that 〈bn · bm〉 = b2δn,m.

Given the probability distribution of the configurations, one can derive the probability
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distribution of the end- to- end vector

P (r, N) =

∫ N∏
n=1

dbnP({bn}) δ
(

r−
N∑
n=1

bn

)

=
1

(2π)d

∫
dq

N∏
n=1

dbn e
iq·(r−∑N

n=1 bn)

N∏
n=1

ψ(bn)

=
1

(2π)d

∫
dqeiq·r

[∫
dbe−iq·bψ(b)

]N
(1.5)

In the second step, we used the Fourier representation of the Dirac-delta function and

Eq.(1.1). Using Eq.(1.2) in the last step the integration over the bond vector yields the

result [sin(qb)/qb]. In the large N limit, the integrand [sin(qb)/qb]N contributes if qb � 1,

where it can be approximated to [sin(qb)/qb]N ≈ (1 − q2b2/6)N ≈ exp(−Nq2b2/6). As a

result one finds a Gaussian integral in the last step of Eq.(1.5). Performing this integration,

the end- to- end distribution function in three dimensions

P (r, N) =

(
3

2πNb2

)3/2

exp

(
− 3r2

2Nb2

)
. (1.6)

This derivation is a special case of the more general central limit theorem [102]. The dis-

tribution agrees with the exact results 〈r〉 = 0 and 〈r2〉 = Nb2, but is strictly valid only

for small extensions |r| � Nb. It is interesting to note that the above distribution function

suggests a free energy βF (r, N) = − lnP (r, N) ∼ 3r2/2Nb2 where β = 1/kBT .

Gaussian Polymer:

Relaxing the bond-length constraint, one can use a simpler Gaussian polymer model with

bond vectors obeying the distribution

ψ(b) =

(
3

2πb2

)3/2

exp

(
−3b2

b2

)
(1.7)
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such that 〈b〉 = 0 and 〈b2〉 = b2. The probability distribution function for the chain

conformations is given by,

P({bn}) =
N∏
n=1

ψ(bn) =

(
3

2πb2

)3N/2

exp

(
−

N∑
n=1

3(rn − rn−1)2

2b2

)
(1.8)

This conformational distribution gives the same end- to- end distribution shown in Eq.(1.6).

In the continuum limit, the polymer is described by a space curve r(s). Replacing the

expression (rn−rn−1)/b by the partial derivative ∂r/∂s, the distribution function of polymer

conformations can be expressed as

P [r(s)] = const× exp

[
− 3

2b

∫ L

0

ds

(
∂r

∂s

)2
]

(1.9)

A mechanical model of beads connected by springs described by the Hamiltonian

H =
3 kBT

2b2

N∑
n=1

(rn − rn−1)2 (1.10)

obeys the Boltzmann distribution given in Eq.(1.8). Similarly, the Hamiltonian in the con-

tinuum limit

βH =
3

2b

∫ L

0

ds

(
∂r

∂s

)2

(1.11)

leads to the distribution in Eq.(1.9). In writing the above expression we used β = 1/kBT .

Self- avoiding polymer:

Unlike the ideal chain, real chains are self avoiding polymers in which different segments do

not cross each other. The first scaling theory describing its behavior is due to Flory. Within
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this scaling theory the free energy of the self avoiding chain can be written down as

βF ∼ r2

Nb2
+ bd

N2

rd
(1.12)

where r denotes the end- to- end separation. The first term accounts for entropic elasticity of

the ideal chain, and the second term is due to the local repulsion between different segments.

Minimizing the free energy with respect to r, one obtains the Flory scaling r ∼ bNν where

ν = 3/(d+ 2).

The Hamiltonian of an excluded volume chain was proposed by Edwards [103],

βH =
3

2b

∫ L

0

ds

(
∂r

∂s

)2

+
v0

2

∫ L

0

ds

∫ L

0

ds′δ [r(s)− r(s′)] , (1.13)

where the first term is the same as in ideal chain, and v0 in the second term sets the strength

of repulsion between different segments of the polymer. Edwards and Singh [103] proposed a

self-consistent field theory approach to determine the size of the self-avoiding polymer. The

result of this calculation agreed with Flory scaling.

In three dimensions, ν = 3/5 leads to a substantial swelling of chain compared to the ideal

polymer. Various polymeric models for chromosome has used a self-avoiding chain model

for the long DNA or chromatin [104–106].

1.4.1 Semi-flexible polymer:

To incorporate the bending rigidity of DNA or chromatin, for chains with intermediate

length scale, semiflexible polymers are considered [105]. The most commonly used model

for semiflexible polymers is the worm- like- chain (WLC) model. Within this model the

inextensible polymer is defined as a space curve r(s) such that the local tangent u(s) = ∂r/∂s

is a unit vector u2(s) = 1. The change in orientation u(s) along the polymer contour costs
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energy [107, 108],

βH =
κ

2

∫ L

0

(
∂u(s)

∂s

)2

ds (1.14)

where κ has the dimension of length and plays the role of bending rigidity. The tangent-

tangent correlation function shows an exponential decay 〈u(s) · u(s′)〉 = e−|s−s
′|/lp , where

lp = 2κ
d−1

represents the persistent length of the chain. In this expression d stands for the

embedding dimension of the polymer.

DNA is a negatively charged polymer. In ambient condition it shows a persistence length

lp ≈ 50 nm [109, 110]. The persistence length changes with changing concentration of counter

ions in the medium [111, 112]. At the smallest length scales, DNA behaves like a stiff polymer

and the local bending rigidity depends on the base pair sequence [113]. For chain lengths

comparable to lp, the bending rigidity dominates the statistics and mechanical properties.

Force- extension measurements on DNA show remarkable agreement with the WLC model

prediction [114–116]. The persistence length of the DNA used in the fit these results is

around 53 nm [109]. At largest length scales, the DNA shows behavior similar to flexible

chain [117–119].

Inside the cell, DNA interacts with proteins to form structures. For example, formation of

nucleosome leads to beads-on-string structure which further packs to form 30 nm fiber via

help of other protein. The complexities like constraints, crowding, aggregation of proteins

along the DNA contour can potentially impact the persistence length of chain. High reso-

lution in-situ fluorescence microscopy of budding yeast chromatin suggests, the 30 nm fibre

has persistence length in the range of 170-220 nm with mass density ∼ 110-150 bp/nm. This

leads to a packing of 7-10 nucleosomes per 11 nm turn in the fiber [120]. Simulation studies

of chromatin in certain contexts used semi-flexible polymer models [106, 121]. However,

longer chains L� lp are often considered as flexible chains of Kuhn segments b = 2lp [122].

Considering the DNA double helix as a fiber of diameter σ = 2.1 nm, the separation
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between the two strands of DNA, each bead of the polymer will contain only σ/0.34 ≈ 6.2 bp

of DNA. Within this picture, a persistence length of 50 nm translates to about 25 σ. Modeling

an E. coli chromosome of length L = 4.6 Mbp would already require a large number of degrees

of freedom containing N = L/σ = 7.5 × 105 beads. The coarse-grained models avoid this,

e.g., by modeling a chromatin fibre as a self-avoiding flexible chain consisting of beads that

stand for 10-12 closely packed nucleosomes containing 2-2.5 kbp DNA segments having a size

20-40 nm [17]. In this level of coarse-graining a 500 bead polymer stands for ∼ 1 Mbp chain.

The interaction between DNA and proteins can be considered by explicit consideration of

proteins, or using effective protein- mediated interaction between DNA segments [104–106].

We explore both these approaches in the first part of this thesis. In order to study the

impact of confinement and molecular crowding on the overall organization of a chromosome,

in the second part of the thesis, we consider a further coarse-grained feather-boa model of

chromosome incorporating the chromosomal loop structures [26, 80], the details of which

will be presented later.

1.5 Organization of the thesis

In chapter 2, we consider a self- avoiding polymer model for chromatin in the presence of

DNA- binding proteins. The binding proteins repel each other, however has an attractive

interaction with polymer beads. As a result, they (un-)bind (from) to the chain following

Boltzmann rates that depend on the short ranges interaction. We perform molecular dynam-

ics simulation to study the chromosome organization due to such binding proteins. Changing

the density of binding proteins lead to continuous coil-globule phase transition of the model

chromatin. The transition is described in terms a mean field model. The slow time scales

for chromosome organization is captured in terms of a linear stability analysis. Along the

transition, we analyze the morphological changes in terms of the formation of chromatin

loops, changes in inter-segment contacts and sub- chain extensions.
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The cross-linking of binder proteins with different segments of the chain can be viewed as

an effective attraction between chain segments. In chapter 3, we use self-avoiding polymer

model with a short ranged attractive tail in the interaction between chain segments. This

reproduced most of the observed phenomenology of folded chromosome. Using a hetero-

polymer variant of the model we demonstrate the formation of typical checker-board patterns

in the chromosome contact map. These two chapters show formation of loops as a mode of

chromosome compaction.

In what follows in this thesis, we focus on the organization of the whole chromosome using

a feather-boa model, which incorporates chromosomal loops in terms of side-loops attached

to a polymeric backbone, in a manner similar to the bottle-brush polymers. We use the

model, particularly, to study chromosomal organization in rod-like bacteria, e.g., E. coli. In

chapter 4, we introduce this model. Subjected to a cylindrical confinement the feather-boa

polymer show spontaneous helicity. In this chapter we show how such organization depends

on the relative size of the side loops with respect to the degree of confinement.

In the next two chapters we study the impact of cytosolic molecular crowders on the con-

fined chromosome. These crowders come in various size and density. In Chapter 5, we vary

the size of crowders. The smallest crowders can diffuse through the system almost freely, get-

ting distributed uniformly. On the other hand, with increase in size crowders get segregated

from the chromosome, first in the radial direction, and finally in the longitudinal direction.

For intermediate crowder sizes, the system shows a complementary helical organization of

chromosome and crowders. We study this problem in quantitative detail with the help of a

further coarse-graining of the chromosome model.

In chapter 6, we present a study of the impact of changing crowder density. Changing

the density of smallest crowders, that can penetrate the inter-filament gaps in the volume

occupied by the chromosome, does not impact the organization significantly. To capture the

polymeric nature of some of the larger crowders, we model them using effective Gaussian

core repulsion. Changing their density generates spatial segregation of the feather- boa
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chain from the crowders. The radial segregation is observed at a lower density, followed

by longitudinal segregation at high densities. The size of the chromosome as a function of

crowder density is obtained using a mean field argument. The molecular crowding impacts

the detail chromosomal organization, by changing its helicity analyzed in terms of winding

number, turn number and number of kinks.

Finally we conclude in Chapter 7.



2 Chromosomal compaction due to cross linkers: change in

morphology

As it has been discussed in the previous chapter, two major components of chromosome

are DNA and its associated proteins. The length of DNA varies between millimeters in

prokaryotes to meters in the eukaryotic cells. A typical example of the former is E. coli

bacteria, with a 1.6 mm (4.6 Mbp) long circular DNA packed inside a small cylindrical cell

of diameter 0.8µm and length 3 − 6µm. An example of the latter is a human cell, with

46 DNAs of around 2 meters length packed inside nucleus of diameter 10 − 20µm. The

DNA has to fold at least 103 times to fit inside such strong confinements. This enormous

compaction needs to allow efficient information processing in terms of gene expression and

regulation. The DNA associated proteins plays crucial role in such organization [1, 2, 14].

At the small length scales, eukaryotic DNA wraps around histone octomers forming a

”beads on a string” chromatin structure with connected set of nucleosomes [68]. The bacterial

cells have histone like nucleoid structuring (H-NS) proteins. Their dimers bind to DNA

nonspecifically to generate organizations at the smallest scale [46, 123]. The non-specific

binding is often mediated by the negative charge on DNA and the positive charges on these

proteins [1, 2]. The role of such passive nucleoid associated proteins (NAP) have been

discussed in some detail in the previous chapter.

The next higher-order structures are formed when two or more distant segments of the

chromatin fiber are brought in the spatial proximity of each other to form loops [80, 124–

128]. These are observed in all domains of life, in bacteria [129, 130], archea [131] and

eukaryotic cells [80, 132–134]. Such loops are often stabilized by protein cross-linkers [4,

33
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5, 135, 136]. Some earlier numerical and theoretical studies used explicit binders [104–

106, 121, 137, 138] or effective attraction between chromatin segments [139–141] to study

the resultant compaction and its impact. Apart from this, active extrusion of loops, e.g.,

with the help of cohesin and CTCF have also been observed [6, 7, 80, 133, 134, 142, 143].

Chromosomal loops were directly observed in electron microscopy [26, 95–97], and through

chromosome conformation capture experiments [16, 144, 145]. It is often observed that 3-D

spatial structure of the chromosome determines the biological function of the chromosome.

For example, contour- wise distant genes on the DNA contour are found to be in spatial

proximity of each other, which are all regulated by the same transcription factory [85, 146–

150].

In this chapter we use a homo-polymer model for chromatin fiber along with diffusible

attractive binders to extract some of the generic features of such protein mediated com-

paction. The resultant effective attraction between segments is expected to lead to a coil-

globule transition [53]. Earlier theories suggested first order or second order phase transi-

tion depending on parameter values [151–155]. A relatively recent numerical simulation and

mean field theory of semi-flexible chain in the presence of binding proteins showed first order

transition for stiff polymers and continuous transition for flexible polymers [105]. Another

mean field study including fluctuations of co-solvent density, suggested that the nature of

the coil-globule transition depends on polymer- co-solvent interaction. An attractive inter-

action between the polymer and co-solvent leads to a first order transition, while a repulsive

interaction between the two leads to a continuous transition [156].

In this chapter, we consider a self-avoiding polymer model for the chromatin fiber. The

binding proteins are modeled by explicit cross-linkers diffusing in the embedding 3-D space.

They have local aspecific attractive interaction with all the segments of the chromatin fiber.

Otherwise, the cross-linkers repel themselves with short range interaction. We observe, with

the increase in density of cross-linkers, the polymer collapses. In this regard, the first question

we ask is, what is the nature of the folding transition of polymer? Across the transition, we
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investigate how the local morphology of the polymer changes. We have quantified this in

terms of formation of loops, inter-segment contacts, and zippers. In addition, we also focus

on the behavior of cross-linker clusters.

The details of the model and numerical simulations are presented in section 2.1. The

simulation results regarding the coil-globule transition of the model chromatin along with

the clustering of chromatin-bound cross-linkers are discussed in section 2.2. The transition

and clustering are interpreted in terms of a mean field theory is presented in Sec. 2.2.6. In

this same section, the emergent time-scales associated with filament relaxation is interpreted

using a linear stability analysis. In Sec. 2.3, we characterize the local morphological changes

across the transition in terms of contacts, loops, and zippers. Finally, we conclude in Sec. 2.5,

presenting a discussion on experimentally verifiable predictions in terms of loop structures

and relaxation time scales.

2.1 Model

We use a self-avoiding flexible chain model of chromatin. The bead size is assumed to be

larger than the Kuhn length, twice the effective persistent length of a persistent chain [122].

The chain connectivity is maintained by finitely extensible nonlinear elastic (FENE) bonds

between consecutive beads,,

UFENE(ri+1,i) = −k
2
R2 ln[1− (ri+1,i/R)2]. (2.1)

Here, k and R fix the bond, and rij = |ri − rj| denotes separation between i-th and j-th

bead. The self avoidance between monomers is implimented by Weeks-Chandler-Anderson

potential [157],
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UWCA(rij) = 4ε[(σ/rij)
12 − (σ/rij)

6 + 0.25], for rij < 21/6σ

= 0 otherwise (2.2)

Thus the chain is defined by, [158],

U = [UWCA + UFENE]. (2.3)

The potential U is shown in Fig. 2.1. The repulsion between cross-linkers are modeled

through the same UWCA interaction. The energy and length scales are set by ε and σ

respectively. The FENE potential is set by k = 30.0 ε/σ2, R = 1.6σ.
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Figure 2.1: The WCA potential UWCA (see Eq. 2.2), and the FENE potential UFENE (see
Eq. 2.1) are plotted as a function of separation r, and shown in blue and red solid line respectively.
Together they define the self- avoiding chain (see Eq. 2.3) shown in black solid line. Parameter
values used are ε = 1, σ = 1 for WCA, and k = 30.0 ε/σ2, R = 1.6σ for FENE.

The interaction between cross-linkers and monomers is modeled through a truncated and

shifted Lennard-Jones potential,
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Ushift(r) = ULJ(r)− ULJ(rc) for r < rc

= 0 otherwise (2.4)

where ULJ(r) = 4εm[(σ/r)12 − (σ/r)6].

We set εm = 3.5 ε, and rc = 1.5σ. The potential is plotted in Fig. 2.2. The choice of εm

is stronger than the typical hydrogen bonds (1.2 kBT ) and provides better stability [159],

e.g, as for transcription factors [104]. However, allows equilibration through attachment-

detachment kinematics over the simulation time scales. The bond between a cross-linker

and a monomer is formed if they come within the range of attraction rc = 1.5σ. A single

cross-linker may bind to multiple monomers, capturing the presence of multiple DNA binding

domains in a number of regulatory proteins [104]..

Figure 2.2: Shifted and truncated Lennard-Jones potential Ushift(r) is plotted as a function of
separation r. The cut-off range rc = 1.5σ and depth of potential εm = 3.5 kBT is chosen.

The molecular dynamics simulations are performed using the standard velocity-Verlet

algorithm [160] using time step δt = 0.01τ , where τ = σ
√
m/ε is the characteristic time

scale. The mass of the particles are chosen to be m = 1. The temperature of the system
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Figure 2.3: Configurations of the model chromosome and cross-linkers at the transition point
φc = 1.57 × 10−3, where large structural fluctuations are observed. (a) A relatively compact
configuration. The chromatin filament is shown by blue monomers connected by bonds. The cross-
linkers attached to the chromatin are shown as red beads, while the freely diffusing cross-linkers
are shown as green beads. (b) A relatively open configuration of the model chromosome. (c) A
magnified portion of (b) showing a contact formation denoted by the aqua-green bar. Here two
monomers separated by a contour length s have come within the cutoff separation rc forming
contact. (d) A magnified portion of the chain in (a) shows loop formation by a polymer bound
cross-linker (red bead). The red bars from the red bead indicate the bonds that it forms with the
chromatin segments lying within the cutoff separation rc. The line with arrows identifies a simply
connected loop (for further details see Sec. 2.3.1). (e) Clusters of polymer bound cross-linkers as
seen in the configuration (a). For better visibility of cross-linkers, the chromatin is shown here as
a transparent chain. The thick dashed circle identifies one cluster of cross-linkers.

is kept constant at T = 1.0 ε/kB by using a Langevin thermostat [157] characterized by an

isotropic friction constant γ = 1/τ , as implemented by the ESPResSo molecular dynamics

package [161]. Similar methods have been successfully used earlier in simulation of polymers

in various contexts [162]. Note that the diffusion of a single bead over its size σ takes a time

γσ2/kBT , which is the same as the characteristic time τ .
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Unless stated otherwise, in this chapter, we consider a N = 256 bead chain. Its typical size

in absence of binders is given by the radius of gyration R0
g = (13.02 ± 2.65)σ. The largest

fluctuations in its end to end separation are restricted within 80σ. To avoid any possible

boundary effect, we perform simulations in a cubic volume of significantly bigger size with

sides of L = 200σ, and implement periodic boundary condition. We vary the total number

of cross-linkers from Nc = 0 to 6000 that changes the dimensionless cross-linker density from

φc = 4
3
πσ3Nc/L

3 = 0 to π× 10−3. The approach to equilibrium is followed over 106 τ , longer

than the longest time taken for equilibration near the transition point. The analyses are

performed over further runs of 106 − 107 τ . We also represent the cross- linker density by a

short notation φr = φc×103. The system size dependence is studied using a restricted set of

simulations, as simulating longer chains requires longer equilibration, larger simulation box

and larger number of cross-linkers, increasing the simulation time significantly.

A couple of representative equilibrium configurations are shown using VMD [163] in Fig.2.3

illustrating polymer contacts, loop formation, and clustering of cross-linkers.

2.2 Results

2.2.1 The valency of cross-linkers

Fig. 2.3 (a) and (b) clearly shows the cross-linkers used in the simulations are potentially

multivalent. Here the question we ask is how many monomers of the chain, a cross-linker

attaches to simultaneously? From the simulations, we identify the polymer bound cross-

linkers, count the number of monomers that lie within the range of attraction rc = 1.5σ

identifying the instantaneous valency of a cross-linker, and compute the histogram over

all the cross-linkers and time. This leads to the probability Πv of valency v, normalized

to
∑

v Πv = 1. The maximum of the probability indicates the typical valency of cross-

linkers at an ambient density φc (see Fig.2.4). At φc = 0.26× 10−3(4), 1.57× 10−3(2) and

3.14 × 10−3(◦), the peak occurs at 4, 5 and 6 respectively. Thus, as φc increases, the peak
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Figure 2.4: At the cross-linker density φr = φc × 103, Πv represents probability that a single
cross-linker binds to nv monomers of the polymer simultaneously.

shifts towards larger values. It means with increase of φc, a single cross-linker on an average

binds to more number of monomers of the chain. In the fully compact state, at the largest

φc, the typical valency we find is 6.

2.2.2 The coil-globule transition

The passive binders diffuse in three dimensions and attach to polymer segments following the

Boltzmann weight. They are multi-valent, typically cross-linking multiple polymer segments.

The probability of number of chromatin segments that a binder can cross-link simultane-

ously shows a maximum that increases from 4 to 6 as the average binder concentration is

increased (see Fig.-2.4). This range overlaps with the typical multiplicity of binding factors

like CTCF and transcription factories [104].

As different polymer segments start attaching to a cross-linker the local density of

monomers increases, generating a positive feedback recruiting more cross-linkers and as a

result localizing more monomers. Such a potentially runaway process gets stabilized, within

our model, due to the inter-binder repulsion that ensures the binder-clusters are spatially

extended. These clusters are identified using the clustering algorithm in Ref. [164], and the
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Figure 2.5: The coil-globule transition as a function of ambient cross-linker density φc, ex-
pressed in terms of φr = φc × 103. (a) The decease in mean radius of gyration of polymer 〈Rg〉
with φc, the data are shown by � with standard errors, captures a coil-globule transition. The blue
dashed line is a guide to eye. The mean field description predicts 〈Rg〉 = constant = 〈Rg〉(φc = 0)
at φ < φ∗c = 1.57 × 10−3. At higher densities, φc > φ∗c , simulation data for 〈Rg〉 fits well with
Eq.2.8 with fitting parameter u/v = 0.1. The two curves are shown by green solid lines. At the
transition point φ∗c , relative fluctuation of polymer size ∆Rg/Rg shows a maximum (inset (i)). The
equilibration of Rg with time t at two densities φc = 0.78 × 10−3, 2.6 × 10−3 are shown in inset
(ii). (b) Mean size of the polymer bound cluster of cross-linkers 〈Cs〉 increases with φc, the data are
shown by � with standard errors. The blue dashed line is a guide to eye. A fitting of the increase
in 〈Cs〉 at φc < φ∗c with Eq.2.11 is shown by the pink solid line. The fitting parameter A = 1.9.
The relative cluster size fluctuation ∆Cs/Cs shows a sharp maximum at the transition point φ∗c
(inset (i)). Inset (ii) shows how the instantaneous mean cluster size Cg equilibrates with time t at
two cross-linker densities φc = 0.78× 10−3, π × 10−3.

cluster-size is given by the total number of binders in a cluster. Concomitant with such

clustering, the polymer gets folded undergoing a coil-globule transition.

In Fig. 2.5(a), we have presented the transition in terms of decrease in mean radius of

gyration 〈Rg〉 of polymer with an increase in cross- linker density φc in the simulation box.

The data points (�), plotted with their respective standard error, are averaged over 106

equilibrium configurations. Assuming x1 represents the mean measured over x2 number of

data points, the corresponding standard error would be x1/
√
x2. In Fig. 2.5(a), the standard

error of data points are smaller than symbol size due to large number of measurements.

The solid (green) line shows the mean field prediction that we present in Sec. 2.2.6. The
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Figure 2.6: The increase in mean number of polymer-bound cross-linkers 〈na〉 with φr =
φc × 103. The data points shown in � are plotted with their respective standard errors and blue
dashed line is guide to eye. Inset shows relative fluctuation of na as a function of φr.

transition point, φ∗c = 1.57× 10−3, is characterized by a maximum in relative fluctuations of

the polymer size ∆Rg/Rg =
√
〈R2

g〉 − 〈Rg〉2/〈Rg〉, shown in the inset (i) of Fig. 2.5(a). The

equilibrations of Rg at two representative binder concentrations φc are illustrated in the inset

(ii). As we show in Fig. 2.12, the relative fluctuations ∆Rg/Rg near phase transition increases

with polymer size N , suggesting divergence in the thermodynamic limit, a characteristic of

continuous phase transitions. In Fig.2.3, the large fluctuations at the phase transition point

are further illustrated with the help of two representative conformations: a relatively compact

conformation in Fig.2.3(a), and a more open conformation in Fig.2.3(b).

The coil-globule transition occurs concomitantly with the formation of polymer-bound

cross-linker clusters. At a given instant, several disjoined clusters may form along the model

chromatin (see Fig.2.3(e) ). The cluster size 〈Cs〉 is the average number of binders con-

stituting the clusters. It grows significantly as φc approaches phase transition from be-

low (Fig. 2.5(b)). The linear stability estimate of cluster size, as discussed in Sec. 2.2.6,

is represented by the (pink) solid line in Fig. 2.5(b). The relative fluctuations in cluster

size ∆Cs/Cs =
√
〈C2

s 〉 − 〈Cs〉2/〈Cs〉 show a sharp maximum at the phase transition point

φ∗c (inset (i)). Equilibration of the mean cluster size Cg, instantaneous average over all
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clusters, at two φc values are shown in the inset(ii). Here we should reemphasize that the

stable equilibrium cluster sizes that we find at all cross-linker densities, are maintained by

the competition between monomer- cross-linker attraction, and the short ranged repulsion

between cross-linkers limiting the upper bound for cluster density.

The average number of cross-linkers attached to chain 〈na〉 are plotted as a function of φc

in Fig. 2.6. With increase in φc, 〈na〉 grows to finally saturate at largest cross- linker density.

Around the transition point, φ∗c , a sharp increase in 〈na〉 is observed. The inset shows relative

fluctuation of number of polymer-bound cross-linkers, ∆na/na =
√
〈n2

a〉 − 〈na〉2/〈na〉 as a

function of φc. ∆na/na decreases with increase in φc, however shows a plateau around

transition point φ∗c = 1.57 × 10−3. Note that 〈na〉 is always greater than 〈Cs〉, because all

the polymer-bound cross-linkers may not result into a cluster.

To characterize the nature of the coil-globule transition, we study the probability distri-

bution of the equilibrium radius of gyration P (Rg) across the transition. As is shown in

Fig. 2.7(a), the distribution remains unimodal at all values of cross-linker densities. This

clearly displays absence of metastable phase on the other side of the transition, characteris-

tic of the continuous transition. Moreover, the distribution has the largest variance at the

transition point φ∗c = 1.57 × 10−3. Note that this observation is in contrast to mean field

prediction of Ref. [156], while is in agreement with the numerical simulations in Ref. [105].

We also computed the probability distribution function of magnitude of end-to-end vector

r. In Fig.2.7(b), the probability distribution is plotted by the quantity P (r/RF ), where

RF = 〈r2〉1/2 =
√
〈r〉2 + Σ2 denote the Flory radius of chain. Here, Σ is the standard

deviation. Across the transition, P (r/RF ) show unimodal distribution.

Further, the analytic form of the distribution function can be written as, pN(r) = 1
RdF
fp(

r
RF

)

for σ << r << Nσ, with normalization
∫
pN(r)dr = 1. Assuming, x = r

RF
, the function

fp(x) in two opposite limits behave as, limx→0 fp(x) = exp(−xδ)f1(x) and limx→∞ fp(x) =

constant xg. One can capture the behavior of fp(x) in these two limits into a single function

p̃(x) = axg exp(−xδ). For the self avoiding chain, the scaling analysis suggests, g = γ−1
ν

and
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Figure 2.7: Probability distributions of the polymer radius of gyration, P (Rg) in (a), and end-
to-end separation P ( r

RF
) in (b) are plotted at different φr = φc × 103. Scale factor RF =

√
〈r2〉 is

the Flory radius. Function p̃(x) = 0.28x0.28 exp(−1.2x2.43) and g̃(x) = (3/2π)
3
2 exp(−3

2x
2), where

x = r
RF

.

δ = (1−ν)−1, that in 3-dimension leads to the value δ = 5
2

and g = 5
18

[53]. The distribution

function from our simulation P (x) at φc = 0 fits remarkably well with p̃(x) that leads to

δ = 2.43 and g = 0.28, nearly capturing the mean field behavior of self avoiding polymer

(green solid line in Fig. 2.7(b)). In addition, a function g̃(x) = (3/2π)
3
2 exp(−3

2
x2) agrees

with the simulation data in globule phase at φc = 2.6× 10−3 (red solid line in Fig. 2.7(b)).

The distribution of cross-linker cluster sizes P (Cs), on the other hand, shows clear bimodal-

ity in much of the φc range scanned across the transition (Fig.2.8), capturing coexistence

of clusters of small and large sizes. However, such clusters have similar densities and do

not suggest phase coexistence. In fact, as we show in Sec.2.2.6, the assumption of constant

particle density within clusters provides a good description of the growth of mean cluster

size through Eq.(2.11) (see Fig.2.5(b) ).

2.2.3 Dynamical analysis

The equilibrium dynamics in our system is characterized by following the evolution of the

radius of gyration Rg(t) and the total number of chromatin-bound cross-linkers na(t). This
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Figure 2.8: Probability distributions of the polymer bound cluster size of cross-linkers, P (Cs),
are plotted at different cross-linker densities φr = φc × 103. The coexistence of small and large
clusters are observed at densities φc ≥ 1.83× 10−3.
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Figure 2.9: The auto-correlation functions (a)CRg(t) of polymer radius of gyration Rg, and
(b)Cna(t) of the number of cross-linkers attached to the chain na, at three cross-linker densities
φr = φc × 103; t is expressed in unit of τ . Fitting them to exponential forms exp(−t/τc) gives
correlation time τc = τRg , τna for Rg and na respectively. Two such fittings are shown in each
plot by solid lines. The fitted correlation times are τRg = 7371 τ , τna = 5402 τ at φr = 1.57, and
τRg = 307 τ , τna = 720 τ at φr = π.

is done using the two-time normalized auto-correlation functions of the polymer radius

of gyration CRg(t) = 〈δRg(t)δRg(0)〉/〈δR2
g〉, and the total number of bound cross-linkers

Cna(t) = 〈δna(t)δna(0)〉/〈δn2
a〉, where δRg(t) = Rg(t) − 〈Rg〉 and δna(t) = na(t) − 〈na〉

denote instantaneous deviations of the two quantities around their respective mean values,

and 〈δR2
g〉, 〈δn2

a〉 represent the corresponding standard deviation of the data. We compute

respective CRg(t) and CRg(t) at various φc across the phase transition. In Fig. 2.9 (a) and
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(b), we show the correlation functions CRg(t) and Cna(t) at φc = 0.52 × 10−3 (blue dashed

line ), 1.57 × 10−3 (pink dashed line) and 3.14 × 10−3 (brown dashed line) respectively.

The correlations show approximate exponential decay exp(−t/τc) with correlation time τc

denoted by τRg for the polymer radius of gyration, and τna for the total number of polymer

bound cross-linkers. The fitted correlation times τRg and τna are plotted in Fig. 2.10 as a

function of φc. For our finite sized chain, the corresponding correlation times τc = τRg , τna

show sharp increase at φ∗c (Fig. 2.10), reminiscent of the critical slowing down [165]. As we

show below in Sec. 2.2.6, scaling analysis is used to get the analytic expression of relaxation

time given by Eq.( 2.12). The corresponding scaling form (1 − φc/φ∗c)−3/2, shown in solid

red line, agrees with data points for τRg and τna below the transition point (φc < φ∗c). Due

to visibility reasons, we have shifted the analytic expression (red solid line) by adding a

constant number.
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τ c
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Figure 2.10: The correlation times τc = τRg (◦), τna (�) are obtained from two-time correlations
of polymer radius of gyration Rg, and the total number of chromatin-bound cross-linkers na. They
reach their maximum values at the transition point φ∗c = 1.57 × 10−3, with φr = φc × 103. The
solid red line is a shifted plot of the scaling form (1− φc/φ∗c)−3/2 added to a constant background,
with the shift aimed at better visibility. .
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Figure 2.11: The negative values of the cross-correlation coefficient CRg ,na between fluctuations
in Rg and na show anti-correlation, with the amplitude maximizing at the transition point φ∗c =
1.57× 10−3. Here φr = φc × 103.

The fluctuations in na and Rg are anti-correlated in our system, because of the attrac-

tive interaction between the cross-linkers and monomers. The negative values of the cross-

correlation coefficient at equilibrium CRg ,na = (1/τp)
∫ τp dt〈δRg(t)δna(t)〉 quantifies this anti-

correlation. Remarkably, the amount of anti-correlation maximizes at the critical point φ∗c

signifying a large reduction in polymer size associated with a small increase of attached cross-

linkers, and vice versa (Fig. 2.11). At this point, the model chromatin morphology is most

susceptible to small variations in the number of attached cross-linkers. A living cell may

utilize this physical property for easy conformational reorganization, useful for providing

access to DNA-tracking enzymes in an otherwise folded chrmosome.

2.2.4 System size dependence at coil-globule transition

We performed simulations with various chain lengths N to check the system size dependence

on the coil-globule transition. We have considered chains of sizes N = 128, 256, 512 and 1024,

with corresponding box size large enough to nullify possible boundary effects. For the largest

system size, the number of cross-linkers considered are up to 80000. A continuous change

of 〈Rg〉 with cross-linker density φc = φr × 10−3 (Fig. 2.12) is observed across the various
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Figure 2.12: In (a) and (b) respectively, the scaled radius of gyration 〈Rg〉/R0
g and relative

fluctuations of radius of gyration ∆Rg/〈Rg〉 is plotted with respect to φr = φc × 103 for chain
lengths N = 128 (©), 256 (5), 512 (�), 1024 (4). R0

g is radius of gyration for the particular chain
in the absence of cross-linkers. In (c), the power law growth of correlation time at the transition
point τRg with increase of chain size N is represented. The dash-dotted line denotes τRg ∼ N9/4.

system sizes. The curves showing decrease of 〈Rg〉 with φc display sharper transitions with

increasing system sizes N . The relative fluctuations ∆Rg/Rg at the transition point increases

with system size N (Fig. 2.12(b)). The correlation time τRg characterizing fluctuations in

Rg at the transition point grow as the power law τRg ∼ N ζ with ζ ≈ 9/4 (Fig. 2.12(c)),

thus suggesting divergence in the thermodynamic limit. In Fig. 2.13, we show probability

distribution of radius of gyration P (Rg) for the largest system size N = 1024. Across the

transition, unimodal distribution is observed corroborating the continuous transition.

2.2.5 Clustering of cross-linkers

Till now, we have discussed the cluster size in terms of the number of cross-linkers in the

cluster. Here we consider the cluster size in terms of their spatial extension. Due to repulsion

between the cross-linkers, the clusters have spatial extension that we represent in terms

of their radius of gyration Rc
g. In Fig. 2.14(a), we plot change of 〈Rc

g〉 as a function of
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Figure 2.13: The probability distribution function for radius of gyration of the chain, P (Rg)
is plotted across the coil-globule transition for the chain size N = 1024.

φc = φr × 10−3 in the environment. 〈Rc
g〉 increases significantly as φc approaches phase

transition from below, a behavior similar to 〈Cs〉 (see Fig. 2.5(b)). At higher φc, saturation

in Rc
g is observed. The corresponding relative fluctuation ∆Rc

g/R
c
g is plotted as a function of

φc (shown in the inset). At the transition point φ∗c = 1.57×10−3, the relative fluctuation has

a maximum similar to previous measure of cluster size fluctuation ∆Cs/Cs ((see Fig. 2.5(b)

inset (i)). The corresponding probability distribution P (Rc
g) shows single peak at low φc,

however bimodal distribution at densities φc ≥ 1.83 × 10−3 (see Fig. 2.14(b)), a behavior

consistent with P (Cs) (see Fig. 2.8(b)).

2.2.6 Mean field description

In the view of above phenomenology, we present a mean field model in terms of two coupled

fields, the cross-linker density φc(r), and the deviation of monomer density due to cross-

linkers ρ(r) = ρm(r) − ρb. Here, bare monomer density is given as ρb = σ3N/(R0
g)

3, where

R0
g denotes the radius of gyration of the open chain in absence of cross-linkers, and ρm(r)

represents monomer density in the presence of cross-linkers (defined later). A fraction of

total cross-linkers are in polymer bound state φ(r), and the rest of them diffuse in space
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Figure 2.14: (a) The average radius of gyration of the polymer bound cross-linker clusters,
〈Rcg〉 increases with φr = φc×103. The data are shown by � with the corresponding standard error.
Blue dashed line is guide to eye. Inset (i) shows relative cluster size fluctuation ∆Rcg/R
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g plotted

against φr. (b) Corresponding probability distributions for mean cluster radius of gyration, P (Rcg)
is plotted at various φr across the transition.

constituting the detached fraction. We adopt the following free energy density [165],

βf =
1

2
u

(
1− φ

φ∗

)
ρ2 +

v

4
ρ4 +

κ

2
(∇ρ)2 +

1

2
wφ2. (2.5)

The direct repulsion between polymer segments and between cross-linkers are captured by

free energy costs uρ2/2 and wφ2/2 respectively. The bond formation between two polymeric

segments via cross-linker proteins is captured by the three body term ρ φ ρ with strength

−u/2φ∗. The quartic energy cost vρ4/4 is introduced to provide thermodynamic stabil-

ity. The coefficient κ in the gradient term adds free energy cost to the formation of sharp

interfaces in local monomer-density. The evolution of coupled fields are represented by [165],
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∂ρ

∂t
= Mρ∇2

[
u

(
1− φ

φ∗

)
ρ+ vρ3 − κ∇2ρ

]
∂φ

∂t
= Mφ∇2

[
− u

2φ∗
ρ2 + wφ

]
− r(φ− φ0), (2.6)

where, the second term in the right hand side of second equation accounts for the turnover

between attached and detached fraction of cross-linkers. Here, r = (ra + rd), φ0 = Ωφc

with Ω = ra /(ra + rd). The attachment and detachment rates, ra and rd respectively, are

determined by interactions between the particles and the detailed balance condition. The

coefficients Mρ and Mφ denote mobalities of the two conserved fields ρ and φ respectively.

A similar approach was used earlier in Ref. [106]. In the uniform equilibrium state φ = φ0,

and ρ = ρ0. Using φ0 = Ωφc and φ∗ = Ωφ∗c , if φc < φ∗c the solution ρ0 = 0 , else

ρ2
0 =

u

v

(φc − φ∗c)
φ∗c

. (2.7)

Chromosome size

The mean monomer density ρm = σ3N/〈Rg〉3 = ρ0 + ρb. As φc ≥ φ∗c , using Eq.(2.7) one

obtains

〈Rg〉 = R0
g

[
1 +N4/5

(
u

v

φc − φ∗c
φ∗c

)1/2
]−1/3

. (2.8)

This shows reasonable agreement with simulation results with fitting parameter u/v =

0.1 (Fig. 2.5(a)), as fluctuations are suppressed in the globule phase [154]. In the limit of

φc � φ∗c , 〈Rg〉 ≈ N1/3σ[(u/v)(φc−φ∗c)/φ∗c ]−1/6, i.e., an equilibrium globule with 〈Rg〉 ∼ N1/3σ

gets further compacted with cross-linker density as [(u/v)(φc − φ∗c)/φ
∗
c ]
−1/6. The solution

ρ0 = 0 at φc < φ∗c corresponds to an open chain following Flory scaling R0
g ≈ σN3/5. One

may include the bilinear coupling between the monomer and the cross-linker density fields.
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Considering such coupling and restricting the terms up to quadratic order gives

βf =
1

2
u ρ2 +

1

2
wφ2 − zρφ+

κ

2
(∇ρ)2.

This does not describe the phase transition, however, suggests a uniform mean field solution

ρ0 = zφ0/u = zΩφc/u. Thus, before the transition, mean radius of gyration is expected to

decrease with φc as 〈Rg〉 = R0
g[1 +N4/5(zΩ/u)φc]

−1/3.

Cluster size

As we have observed earlier, with an increase of cross-linkers density in the bulk, structures

start to grow in the form of cross- linker clusters which folds the polymer. An estimate

of the increase in the cluster size of the polymer-bound cross-linkers can be obtained by

performing linear stability analysis of Eq.(2.6) around a homogeneous state of ρ = ρ̄ and

φ = φ̄. To characterize the dynamics, we use small deviations about a homogeneous state

as, ρ = ρ̄+δρ(r), φ = φ̄+δφ(r). The dynamics in Eq.(2.6) for these small deviations become

∂tδρ = Dρ∇2δρ−Mρκ∇4δρ−Mρχ∇2δφ

∂tδφ = Dφ∇2δφ−Mφχ∇2δρ− r δφ,

where

Dρ = Mρu

[(
1− φ̄

φ∗

)
+ 3

v

u
ρ̄2

]
,

and Dφ = Mφw are the effective diffusion constants of the two components, and χ = uρ̄/φ∗

denote the strength of cross-coupling. In the above equations, the partial derivative with

respect to time t is represented as ∂t. Expressing time in units of inverse turnover rate,
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τu = 1/r and lengths in units of xu =
√
Mφw/r, one finds

∂τδρ = D0∇2
ξδρ−K∇4

ξδρ− C∇2
ξδφ

∂τδφ = ∇2
ξδφ− C ′∇2

ξδρ− δφ, (2.9)

with control parameters of the dynamics D0 = Dρ/Mφw, K = Mρ

M2
φ

κr
w2 , C = Mρ

Mφ

χ
w

, and

C ′ = χ
w

. The dimensionless time and length scales are denoted by τ = t/τu, and ξ = x/xu,

respectively.

Fourier transform of above equation leads to evolution of modes as matrix equations

∂τ (δρq, δφq) =M (δρq, δφq), where,

M =

−q2(D0 +Kq2) Cq2

C ′q2 −(q2 + 1)

 .

The eigenvalues of matrix M are given by

λ(q2) =
1

2

{
TrM±

√
(TrM)2 − 4 detM

}

As trace of this matrix

Tr.M = −q2(D0 +Kq2)− (q2 + 1) < 0,

the only way of having instability (one of the eigenvalues becomes positive) is if the deter-

minant

detM = q2(q2 + 1)(D0 +Kq2)− CC ′q4 < 0.

This last criterion leads to, CC ′ > F (q2), where F (q2) = (1 + 1
q2

)(D0 +Kq2). This will be

satisfied irrespective for any q2 if even the minimum of F (q2) obeys this inequality. One can
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easily show that F (q2) is minimized at q2
0 =

√
D0/K and F (q2

0) = (
√D0 +

√
K)2. Thus the

instability criterion becomes,

√
CC ′ > (

√
D0 +

√
K).

Here C and C ′ represent the coupling coefficients between evolution of the two fields ρ and

φ as given in Eq.(2.9). Following the inequality, one can find a minimal coupling strength χ

that is required to generate instability towards formation of cross-linker clusters,

χ >

√
κr

Mφ

+

√
uw

[(
1− φ̄

φ∗

)
+ 3

v

u
ρ̄2

]
.

Once this condition is satisfied, instability in the form of clustering of cross-linkers,

mediated by the attractive interaction with monomers, arise. The fastest growing mode

q0 = (D0/K)1/4 predicts the most unstable length scale `0/xu = 2π/q0 = 2π(K/D0)1/4,

which gives the mean extension of the polymer-bound clusters

`0 = 2π

Mφ
κw

ru

1(
1− φ̄

φ∗

)
+ 3 v

u
ρ̄2

1/4

. (2.10)

Assuming the constant density of the cross-linkers in the polymer-bound clusters, the

average cluster size behave like 〈Cs〉 ∼ `3
0, leading to

〈Cs〉 = A
[(

1− φc
φ∗c

)
+ 3

v

u
ρ̄2

]−3/4

. (2.11)

Replacing ρ̄ = (zΩ/u)φc, the dependence 〈Cs〉 = A[(1−φc/φ∗c+Bφ2
c)]
−3/4 reasonably captures

the growth of average cluster size in the numerical simulation with A = 1.9 and small enough

B = (3vz2Ω2/u3) such that Bφ2
c � 1, as the coil- globule transition is approached from below

(Fig. 2.5(b)).
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Time scale

The diverging time-scales observed in simulations can be undersood using the following

scaling argument based on Eq.(2.6). For this purpose, we use the length scale associated

with the unstable mode l0. Eq.(2.6) suggests a relaxation time τr ≈ (`2
0/Mρu)(1− φc/φ∗c)−1.

Using γφ2
c << 1 the realtion simplifies to

τr ≈
4π2

Mρu

(
Mφ

κw

ru

)1/2
[
1− φc

φ∗c

]−3/2

, (2.12)

suggesting a divergence of correlation times as (1−φc/φ∗c)−3/2 near the critical point. For

finite sized chains, while the time scales do not diverge, they show significant increase near

criticality (Fig.2.10). Added with a constant background, Eq. 2.12 provides a reasonable

description of the simulation results. As is shown in Fig. 2.12(c), the correlation time at

criticality increases with chain length with an approximate power law ∼ N9/4 indicating

divergence.

2.3 Local morphology

The binder mediated chromosomal compaction is associated with local morphological

changes. The cross-linking due to binders may cause loop formation. In chromosomes,

formation of such loops are expected to be highly complex, involving polydispersity of loop-

sizes. The cross-linkers may also form zipper between contiguous polymeric segments. These,

in turn, would enhance contact formation, and as a result modify subchain extensions. In

this section, we discuss the change in all of these three aspects along the phase transition

described above.
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ls

ds

o = 1 :

o = 2 :

o = 3 :

Figure 2.15: Schematics of loop topologies of order o: Polymer segments are indicated by blue
beads and polymer-bound cross-linkers are shown by red open circles. (a) Simply connected loops
of order o = 1. Two first order loops of size ls are separated by a gap of size ds. (b) Three examples
of o = 2 loops. In the first two cases, the second order loop has one o = 1 loop embedded inside.
The third case shows two embedded o = 1 loops. (c) Three examples of o = 3 loops. In the first
two cases, the third order loop has a o = 1 and a o = 2 loop embedded. The third case shows two
first order loops and a second order loop embedded inside the o = 3 loop.

2.3.1 Loops

We describe the possible loop-topologies with the help of Fig.2.15. The simply connected

loop is called the loop of first order o = 1. A simply connected, or, first order loop is formed

by a cross-linker binding two segments of the polymer in such a way that if one moves along

the chain from one such segment to the other, no other contact or cross-link is encountered

on the way. With removal of the cross-linker- bond stabilizing such a loop, the first order

loop itself disappears (Fig.2.15: o = 1). In the figure, 〈ls〉 and 〈ds〉 denote loop-size and gap-

size between such loops, respectively. In numerical evaluation of mean 〈ds〉 , all intermediate

higher order loops are disregarded.
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Figure 2.16: (a) Mean number of o-th order loops 〈no〉 as a function of density of cross-linkers
φr = φc × 103. Here 〈n1,2,3〉 denote the mean number of first, second and third order loops.
(b) Probability of o-th order loop Πo is plotted on semi-log scale, for various cross-linker densities
denoted in the labels. At φr = 3.14, the probability of higher order loops decays with an approxi-
mate Gaussian form exp(−o2/2g2) where the standard deviation g = 9.83 (solid brown line). For
φr = 1.04, the probability of higher order loops decays exponentially as exp(−o/ō) with ō = 1.45
(dashed blue line).

A higher order loop denoted by order o = n, embeds all possible lower order loops o =

1, . . . , (n− 1) within it. In Fig.2.15: o = 2, three examples of second order loops are shown.

In the first two examples removing one cross-linker reduces the second order loop to a first

order loop. In the third example of o = 2 loop, three bonds of a single cross-linker maintains

the loop, and with its removal the whole loop structure disappears. In Fig.2.15: o = 3 we

show three examples of third order loops. Note that the first order and higher order loops

identified here are related to the serial and parallel topologies described in Ref. [166]. As

it has been shown before, consideration of chromosomal loops is crucial in understanding of
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Figure 2.17: (a) Decrease of the mean size of first order loops 〈ls〉 and its fluctuations δls with
φr = φc × 103. (b) Non-monotonic variation of mean separation between first order loops 〈ds〉 and
its fluctuations δds with φr. Probability distributions of the size of first order loops P (ls) and gaps
between them P (ds) are plotted in (c) and (d) at φr = 0.26 (2), 1.57 (◦), π (4). At the transition
point φr = 1.57, P (ls) ∼ l−3.3

s , and P (ds) ∼ exp(−ds/λ) with λ = 13.8σ, shown by the solid
(brown) lines in (c) and (d) respectively.

its emergent behavior [9, 10, 18, 19]. In this chapter, we restrict ourselves to the relative

importance of different orders of loops in local chromosomal morphology.

In Fig.2.16(a) the mean number of loops 〈no〉 of order o = 1, 2, 3 are shown against the

cross-linker density φc. All through, 〈n1〉 remains larger than 〈no=2,3〉 corresponding to

higher order loops that show a sigmoidal dependence on φc. Interestingly, 〈n1〉 maximizes at

the phase transition point φ∗c . Thus at the critical point the local morphology of the model

chromosome is dominated by the first order loops.

Fig.2.16(b) shows the probability Πo of a loop to be of o-th order. At small cross-linker

densities φc < φ∗c , the probability of higher order loops fall exponentially as Πo = exp(−o/ō).

This behavior changes qualitatively after the coil-globule transition (φr = 1.57) to a Gaussian



2.3 Local morphology 59

profile exp(−o2/2g2), as is shown in Fig.2.16(b) .

Given that loop sizes could be measured from electron microscopy [26], we further an-

alyze the statistics of loop-sizes and inter-loop gaps corresponding to the first order loops

in Fig. 2.17. With increasing cross-linker density φc, the mean size of first order loops

〈ls〉 decreases (Fig. 2.17(a)), as their number increases (Fig.2.16(a)) reducing the mean

gap size 〈ds〉 (Fig.2.17(b)). However, increased φc stabilizes the loops, shown by decreased

fluctuation of loop-sizes δls =
√
〈l2s〉 − 〈ls〉2. The mean gap size 〈ds〉 and its fluctuation

δds =
√
〈d2
s〉 − 〈ds〉2 reach their minimum at the transition point φ∗c = 1.57× 10−3. The in-

crease in the inter-loop separation 〈ds〉 beyond this point is due to the increase in probability

of higher order loops in the local morphology of the model chromatin.

Fig.2.17(c) and (d) show the probability distributions of first order loop sizes P (ls), and

separation between consecutive first order loops P (ds), respectively. For all φc values, P (ls) ∼

l−µs , with µ increasing with φc in a sigmoidal fashion, giving µ = 3.3 at the critical point

φ∗c = 1.57 × 10−3. The power law distribution of P (ls) shows that their is no characteristic

loop size, and loops of all possible lengths are present. On the other hand, the gap size

distributions follow an approximate exponential form P (ds) ≈ (1/〈ds〉) exp(−ds/〈ds〉).

2.3.2 Zippering

The binders can also zipper different segments of the polymer. The inset of Fig.2.18 shows

one such zipper maintained by cross-linkers. The zipper fraction of a conformation is given

by Zp = (1/N)
∑

ξ,iN
ξ
i , where N ξ

i are the number of monomers involved in forming ξ-th

zipper, and N is the total number of monomers in the chain. Fig.2.18 shows variation

of ensemble averaged zippered fraction with the cross-linker density. The zipper fraction

increases non-linearly to saturate in the equilibrium globule phase to a value that remains

within 60% of the completely zippered filament 〈Zp〉 = 1. Near the critical point of the

coil-globule transition 〈Zp〉 ≈ 0.3, half the saturation value.
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Figure 2.18: (a) The zippered fraction of chain 〈Zp〉 as a function of cross- linker density
φr = φc × 103. (b) Schematics shows two contiguous segments containing N1 and N2 monomers
(blue beads) forming a zipper via binders (red beads). The corresponding zipper fraction is Zp =
(N1 +N2)/N .

2.3.3 Contact probability and map

Conformational fluctuations of a chain bring its contour- wise distant segments in the spatial

proximity of each other, even in the absence of cross-linkers. This leads to the formation

of contact between spatially close monomers. An example of such contact is shown in

Fig.2.3(c). Further, cross-linking of chain segments due to cross-linkers and the formation of

zippers augment the number of contacts in the polymer conformation. To analyze contact

formation from simulations one requires a finite cutoff length such that if two monomers fall

within such a separation they are defined to be in contact. In our simulations, we chose

a cut-off value rc = 1.5σ for this purpose. We have checked that our main results do not

depend on the precise choice of this length scale.

The contour wise separation between two monomers, s, defines the genomic distance

between chromatin segments. The contact probability Πc(s) is a mesure of two segmenst to

be in contact. In absence of cross-linkers, we get Πc(s) ∼ s−α with α ≈ 2.1, as expected for
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Figure 2.19: (a) Contact probability Πc(s) at different cross-linker densities φr = φc × 103.
They follow asymptotic power law profiles Πc(s) ∼ s−α is shown at all φc, with α being a function
of φc. (b) The decrease of asymptotic exponent α with increasing φr is related to the coil- globule
transition.

self- avoiding chains [53]. Even in the presence of cross-linkers, the asymptotic power law

persists with φc dependent α (see Fig. 2.19). At the critical point, φ∗c = 1.57 × 10−3, the

simulation results are consistent with α ≈ 1.1, a number that agrees well with the prediction

of the fractal globule model [17, 167]. It is interesting to note that α ≈ 1.1 is close to

the average exponent found across all human cell chromosomes, in the genomic distances

of 0.5-10 Mbp range [16, 17], and belongs to the range of exponents observed in individual

mammalian chromosomes [16, 104, 168]. At large φc values, after the completion of the

coil-globule transition, contact probabilities at large s plateaus to a constant, indicating

α = 0 . As a function of φc, the asymptotic exponent α reveals a continuous decrease (see

Fig. 2.19(b)), capturing the change in polymeric organization in the course of the coil-globule

transition.

In Fig.2.20 we present ensemble averaged contact maps over equilibrium configurations
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Figure 2.20: From left to right, the contact maps are shown at cross-linker densities φr =
1.31, 1.57, and 1.83. nm represents the monomer index along the chain contour. The color code
captures the contact frequency and is shown in log scale.

at different cross-linker densities. Such maps represent probability measures of two chro-

matin segments to be in spatial proximity. At small cross-linker density φc, the contour-wise

neighboring segments make frequent contacts with each other, as polymer adopt open con-

formations (Fig.2.20). This can be seen in the left map in the Fig.2.20, showing contacts

only near the diagonal region. At the coil-globule transition φc = φ∗c , the contact shows

emergence of local pattern, indicating enhanced probability of contour-wise well separated

segments to come into spatial proximity. In the compact phase at φc = 1.83 × 10−3, the

chromosomal contacts spread over the whole chromatin chain.

2.4 Extension of subchains

Here we consider the scaling behavior of subchain extensions, measured in terms of the

mean squared end to end distance 〈r2(s)〉 in subchains of contour length s. We observe

three different scaling behaviors across the coil-globule transition (see Fig. 2.21(a)).

A sub-chain inside a compact equilibrium globule is expected to behave like a random

walk due to strong screening of interaction by large monomeric density. Thus 〈r2(s)〉 ∼ s,

before the globule boundary is encountered. Multiple reflections from the globule boundary,

as s > 〈r2(s)〉 ∼ N2/3, fills the space inside the globule uniformly, so that it becomes equally

likely to find the other end of the subchain anywhere inside the globule, saturating 〈r2(s)〉 to a
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Figure 2.21: (a) The scaling behavior of end to end separation of subchain 〈r2(s)〉. The
dependence is shown at three cross-linker concentrations φr = φc × 103, before, at and after the
coil-globule transition. At low densities, 〈r2(s)〉 ∼ s6/5 follows Flory scaling (red solid line). At the
transition point φc = 1.57× 10−3, the asymptotic behavior of 〈r2(s)〉 ∼ s2/3 agrees with the fractal
globule estimate (blue dashed line). At the highest concentrations we find asymptotic plateauing,
a characteristic of equilibrium globule. (b) Schematic showing a subchain of contour size s has
spatial separation r(s).

constant. Thus in equilibrium globules 〈r2(s)〉 ∼ s up to s < N2/3, and saturates beyond that

length scale [17, 53]. The random loop model, with fixed probability of attraction between

monomers, shows all the features of equilibrium globule in final configurations [169, 170].

On the other hand, the fractal globule is space filling at all scales, such that 〈r2(s)〉 ∼

s2/3 [17, 167].

At small φc (= 0.26 × 10−3), we find a behavior typical of open chains, 〈r2(s)〉 ∼ s6/5,

that follows Flory scaling (see Fig. 2.21(a)). In the fully folded compact phase at high

φc (= π× 10−3), 〈r2(s)〉 shows plateauing at large s as in compact equilibrium globules, and

random loop models [17, 153, 169, 170]. Such plateauing was earlier related to folding of

chromosome into territories [146]. In the compact phase, the molecular cross-linkers may not

only pull different segments close to each other, by doing so, they may displace well separated

parts further away from each other [135], reflected in the eventual increase of 〈r2(s)〉 as s
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approaches the full length N , e.g., at highest φc. At the critical point, φ∗c (= 1.57 × 10−3),

simulation results for subchain extensions is consistent with 〈r2(s)〉 ∼ s2/3 as in fractal

globules [167]. This is close to the threshold-exponent predicted in [104] 〈r2(s)〉 ∼ s2ν

with ν = 0.39. Thus with increasing cross-linker density, the model chromatin morphology

changes from an open chain to compact equilibrium globule, via an intermediate fractal

globule behavior observed at the critical point. The sustenance of fractal globule like non-

equilibrium behavior at the critical point can be understood in terms of the super-slow

relaxation.

2.5 Conclusion and outlook

In summary, using an off-lattice model of self avoiding polymer and diffusing protein binders

cross-linking different segments of the chromatin fibre, we have presented an extensive char-

acterization of the continuous chromatin folding transition, and analyzed the associated

changes in chromatin morphology in terms of formation of loops, zippering and contacts.

The criticality is characterized by unimodal distributions, divergent fluctuations and critical

slowing down. The negative maximum in the cross-correlation between the number of at-

tached binders and chromosome size, at criticality, might be utilized by living cells for easy

switching between folded and open conformations, providing easy access to DNA-tracking

enzymes. This is suggestive of a possibility that chromosomes might be poised at critical-

ity [171], vindicated further by the similarity of the calculated contact probability at the

critical point with the average behavior of human chromosomes. Although the local chro-

matin morphology does show highly complex loop structures, at criticality, it is dominated

by simply connected loops.

Each coarse-grained chromatin bead in our model can be considered as 10 − 12 closely

packed nucleosomes containing around 2 − 2.5 kbp DNA-segments having a diameter σ ≈

20 − 40 nm [17, 172]. The dimensionless critical volume fraction φc is equivalent to a
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concentration [φ∗c/(4πσ
3/3)], which can be expressed in terms of molarity by dividing it

by the Avogadro number. This leads to the estimate of critical concentration between

∼ 60 nmol/l−470 nmol/l. The mean size of the first order loops observed at criticality trans-

lates to 4−7 kbp. The estimated ratio of this loop size and inter-loop gaps is 〈ls〉 : 〈ds〉 ≈ 1 : 5

at this concentration.

In the chromosomal environment having viscosity η, the dissipation constant γ = 3πησ.

As it has been observed, the nucleoplasm viscosity η felt by objects within the cell nucleus

depends on their size [173, 174]. Using the measured viscosity ∼ 10 Pa-s felt by solutes

having ∼ 10 nm size [174] for the σ = 20 nm beads, the characteristic time which is the same

as the time required to diffuse over the length-scale σ can be determined by using the relation

τ = γσ2/kBT = 0.2 s. Thus, the simulated correlation time τRg denoting chromosomal

relaxation over ∼ 0.5− 0.6 Mbp translates to ≈ 22 minutes at the critical point. While some

of our predictions appear to compare well with experiments, others involving cross-linker

clusters, relaxation time, and loop morphology are amenable to experimental verifications.

Here we should reemphasize that our study represents an average description of chromo-

somes using a coarse grained homopolymer model. This approach did not aim to distinguish

interaction between specific protein types and gene sequences. However, the Hi-C map of

chromosomes shows checkerboard pattern in the contact matrix at large genomic separation

revealing the presence of alternate A(active) and B(inactive) type compartments [16, 22, 175].

Transcriptionally active, gene rich and relatively less compact euchromatin is represented by

A type and less transcribed, highly compact heterochromatin is shown by B type compart-

ments respectively. On the other hand, Hi-C map at high resolution (genomic separation

. 1 Mbp) shows TADs of high contact frequency. Recent studies suggest, TADs are main-

tained by looping of chromatin where the base of majority of such loops are bound by CTCF

proteins and cohesin subunits [84, 176, 177]. Such a compartmental organization occurs due

to specific interaction between DNA and associated proteins leading to spatial separation of
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heterochromatin and euchromatin, and formation of TADs. Note that Hi-C maps for differ-

ent cell-types vary from each other. Apart from that, gene regulation depends on interaction

between promoters and their regulatory elements like enhancers, repressors and insulators.

Such specific interactions are mediated by transcription factors and other regulatory proteins

forming large loops of size thousands of nucleotides, leading to cell type specific chromatin

folding. Considering the sequence specific interaction between model chromatin and cross-

linkers can potentialy lead closer to experimentally observed chromosome organization.

It is known that various DNA associated proteins have finite number of DNA binding

domains. For example, binding multiplicity of CTCF proteins and HP1 with chromatin are

six and two respectively [104, 178–180]. However, the simple model presented in the current

chapter uses cross-linkers with a distribution of valency as a function of their density in the

environment. Having a range of valency is similar to that in real chromatin. However, in

the absence of specificity and heterogeneity of polymer, while our model provides a general

physical basis for local chromatin folding, in detail it cannot capture any specific contact

map, giving only an average picture. It is possible to incorporate such details within the

model we presented, and compare with particular Hi-C maps. This remains an interesting

future direction of study.



3 Chromosome compaction and morphologies due to

effective inter-segment attraction

In the previous chapter, using a self avoiding polymer model of chromatin, we studied the

coil- globe transition and associated morphological changes of chain due to DNA- binding

proteins. Such proteins are modeled as cross-linkers which can simultaneously bind to mul-

tiple chromatin segments generating an effective attraction between them. In the current

chapter, we replace the cross-linkers by introducing an additional local attractive tail in the

interaction between chromatin segments. We present a study of chromosome compaction

due to increasing attraction strength, and characterize the corresponding changes in local

morphology in terms of inter-segment contacts, loops, and zippering, as in the previous

chapter.

The effective attraction between polymer segments is known to lead to coil-globule tran-

sition [53, 122]. This transition has been studied in detail in polymer physics [181–184]. In

typical situations studied in polymers, such effective attraction might stem from changing sol-

vent quality, controlled by ionic concentration in the solvent, temperature, or pH [185, 186].

In a good solvent, polymer segments like to be in contact with solvent and experience an

effective repulsion between themselves. Consequently, the chain adopts an open coil config-

uration following the Flory scaling of extension R ∼ N3/5 as a function of the number of

segments N . This is significantly larger than the ideal chain. In contrast, in a poor solvent,

the polymer segments dislike to be in contact with solvent. This leads to an effective at-

traction between the polymer segments finally leading to a compact globule phase following

R ∼ N1/3, the size of which is significantly smaller than the ideal chain. With gradual change

67
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in the solvent quality, the coil-globule transition occurs through a competition between en-

tropy and energy at an intermediate point, called the θ point, at which the chain follows the

ideal polymer behavior R ∼ N1/2. In contrast, in the context of chromatin, protein binders

provide the effective attraction between different segments.

In this chapter, we consider a self- avoiding chain model for chromatin, considering an

additional local attraction between non- bonded monomers. To mimic the effect of increas-

ing cross-linker density, we increase the relative attraction between the polymer segments.

In the competition between energy and entropy, at higher strengths of attraction, energy

dominates to lead to a coil to globule transition. We compare this scenario with the other

possibility of varying the ambient temperature, keeping energy scales unchanged. We per-

form molecular dynamics simulations in the presence of Langevin heat bath to keep the

temperature constant. We find a continuous coil- globule transition, along which we analyze

the change in polymer morphology.

To this end, we first analyze the contact probability between polymer segments. At small

attraction strength between monomers, the contact probability show a power law decay with

an exponent consistent with the self- avoiding chain estimate. As the polymer folds, this

exponent monotonically reduces to vanish, capturing the polymer reorganization. At the

critical point, the exponent shows a value very close to the fractal-globule estimate. The

sub-chain extension follows a scaling behavior with an exponent capturing the Flory estimate

in the coil phase and a fractal-globule behavior at the critical point. The zipper fraction of

the chain monotonically increases as the polymer folds.

We further investigate the loop structures formed across the coil-globule transition. Topo-

logically, such loops can be either simple loops or complex higher order loops. The mean

number of simple or first order loops show a monotonic decrease as polymer folds. However,

the mean number of second and third order loops show initial increase followed by satura-

tion. In addition, the mean size of first order loops and its fluctuation decrease across the

phase transition. Apart from that, the mean separation between the first order loops, and
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its fluctuations increase monotonically. As the chromatin folds, the loop structures become

more and more complex, and the relative probability for the formation of higher order loops

increases.

At last, we focus on the contact map. Across the folding of polymer, contacts between

various segments spread over the whole chain. In the globule phase, such contacts fill approx-

imately all the map. However, using a homopolymer with the same local attraction between

any two segments, we do not find any territorial organization, observed in chromosomes. The

territorial organization appears due to inhomogeneous nature of the chromosome, with cross-

linkers attaching to specific gene sequences. This we capture by considering a hetero-polymer

model of chromatin, with differential interaction between different parts of the chain. As we

show, such a model displays a checker- board like pattern in the contact map typical of the

formation of topologically associating domains.

In Sec. 3.1, we describe the model and details of numerical simulation. In Sec. 3.2, we

discuss the simulation results about the phase transition of model chromatin. In Sec. 3.3,

we discuss local morphological changes along the coil- globule transition in terms of contacts

probability, loop structures, subchain extension, and contact map. Specifically, in Sec. 3.3.5,

we describe the heteropolymer model capturing formation of topologically associated do-

mains. Finally, we conclude this chapter in Sec. 3.4.

3.1 Model

The chromatin is modeled by self interacting polymer which is realized with a bead spring

model. Such a model assumes the consecutive beads of the polymer are connected by springs,

that we model as harmonic springs, with potential

UHarmonic(ri+1,i) = −k
2

(ri+1,i −R0)2, (3.1)
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where, k and R0 represent the bond parameters, and ri+1,i = |ri+1 − ri| denote separation

between consecutive monomers, where ri denotes the position vector of i-th monomer. Here,

β = 1/kBT , where kB is the Boltzmann constant and T denotes the temperature of the

heath bath. The form of the potential is plotted in Fig. 3.1(b). The interaction between

non-bonded beads of the polymer is given by a truncated and shifted Lennard-Jones potential

with attractive tail followed by a repulsive core. The potential is represented as,

Uljs(r) = (Ulj(r)− Ulj(rthr)), for r < rthr

= 0 otherwise, (3.2)

where, Ulj(r) = 4ε[(σ
r
)12 − (σ

r
)6] and rthr = 2.5σ. The unit of length is set by σ. We fix

R0 = 1.0σ. Let us first focus on the situation in which the temperature kBT is held constant.

This sets the unit of energy. The form of the shifted Lennard-Jones potential is shown in

Fig. 3.1(a) at different values of interaction strength ε. Thus, polymer is defined by the

Hamiltonian,

U(r) = Uljs(r) + UHarmonic(r). (3.3)

To study the folding transition of this chain, we perform molecular dynamics simulations

in the presence of Langevin heat bath. Accordingly, the stiffness for bond potential is given

by, k = 100.0 kBT/σ
2. The integrations are performed using the velocity-Verlet algorithm

with time step δt = 0.01τ , where τ = σ
√
m/kBT sets the unit of time. Mass of each

bead is chosen to be m = 1. The simulations are performed using the implementation of

the ESPResSo molecular dynamics package. To compare the results, we also perform an

independent set of simulations keeping the interaction strength ε constant, and vary the

temperature T . In this case ε sets the unit of energy, and as a result τ = σ
√
m/ε sets the

unit of time. We keep k = 100.0 ε/σ2 constant. We use a smaller time-step δt = 0.005 τ to
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Figure 3.1: (a) The Lenard-Jones potential, Uljs(r) is shown at different strength ε, with
rthr = 2.5σ. The lengths are expressed in units of σ. (b) The harmonic potential, UHarmonic(r) is
plotted with respect to r with R0 = 1.0σ and k = 100ε/σ2.

avoid bond breaking at higher temperatures in the latter case. The results are expressed in

terms of the relative strength βε = ε/kBT .

We consider a polymer consists of N = 256 monomers for all the simulations. In the

open extended state at βε = 0.1, the radius of gyration of the chain is given by R0
g =

(11.96± 2.41)σ. This limit of interaction strength βε represents the good solvent condition

allowing the coil state of the chain as a stable phase. The size of the cubic simulation box

is chosen as L = 46σ. This particular choice is larger than four times the radius of gyration

and more than the end-to-end separation for the chain in the coil state. To study the folding

behavior, first, we change our tuning parameter βε from 0.1 to 0.8 by varying ε, keeping

kBT constant. Secondly, we vary βε from 0.1 to 0.8 by changing the temperature T of heat

bath keeping ε constant. The equilibration run is performed over 106τ , much longer than

the longest relaxation time. The data is sampled over the next 106 − 107τ for analysis.
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Figure 3.2: From left to right, snapshots of polymer configurations are shown at βε = 0.1, 0.38
and 0.5 respectively.

3.2 Results

3.2.1 The coil-globule transition

Coupled to the heat bath, the chain mimicking the chromatin undergoes structural fluctu-

ations governed by Boltzmann rate. These thermal fluctuations can bring distant segments

along the chain in spatial proximity of each other. The spatially close monomers attract each

other depending on the depth of Lenard-Jones interaction as shown in 3.1(a). Probability of

finding two monomers at separation r is proportional to Boltzmann factor ∼ exp(−βUljs(r)).

At large βε, due to the formation of a deeper attractive well in the potential profile, this prob-

ability increases for separations within the range of attractive well of the potential r < rthr,

thus effectively forming a bound state by cross-linking the monomers. Changing the relative

attraction βε changes the effective excluded volume characterizing the interaction between

non-bonded monomers [122].

This can be seen using the Mayer function

f(r) = exp(−Uljs(r)/kBT )− 1. (3.4)

This function quantifies the difference between probabilities of finding particle at separation
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Figure 3.3: The Mayer function f(r) corresponding to the Lennard-Jones potential plotted
against separation the r, using kBT = 1 and ε = 1.

r and at very large separation (infinite) where interaction potential vanishes. For ε = kB and

T = 1.0/kB, f(r) is plotted in Fig. 3.3 as a function of r. It is interesting to note that for a

hard-core interaction Uhc(r) = ∞ for r ≤ σ and Uhc(r) = 0 otherwise, the Mayer function

f(r) = −1 for r < σ and f(r) = 0 otherwise. This allows one to express the excluded

volume around each hard-core particle as vhc := −4π
∫∞

0
f(r)r2dr = 4π

∫ σ
0
r2dr = (4/3)πσ3.

One can extend this notion to other potentials, e.g., Uljs. To that end, writing f(r) ≈ −1

for r ≤ σ, and f(r) ≈ −βUljs beyond that, one obtains a measure of an effective excluded

volume,

v := −4π

∫ ∞
0

f(r)r2dr

≈ 4π

∫ σ

0

r2dr +
4π

kBT

∫ ∞
σ

Uljs(r)r
2dr

≈
[
1− θ

T

]
4

3
πσ3 (3.5)

The first term is due to the effective hard core. The second term provides temperature



74
Chromosome compaction and morphologies due to effective inter-segment

attraction

dependence of v, in which

θ = − 3

σ3kB

∫ ∞
σ

Uljs(r)r
2dr (3.6)

In the range σ ≤ r <∞, the potential Uljs(r) is negative leading to a θ > 0. Thus,

v ≈ T − θ
T

vhc (3.7)

For a positive v, different segments of the polymer effectively repel each other supporting a

coil state. On the other hand, when v < 0, the segments attract each other preferring the

globule state. The value of v can be changed from positive to negative by either changing

the strength of the attractive potential ε changing θ, or changing the temperature T . For

T > θ, the repulsive core of the potential dominates leading to effective repulsion between

monomers characterized by v > 0. This the regime of good solvent. The behavior of the self-

avoiding polymer remains dominated by entropy. At T = θ, the transition point v = 0 due to

cancellation of the contribution from repulsive core and attractive well of potential Uljs(r).

This characterizes the θ solvent in which the polymer behaves like an ideal chain. Finally,

at T < θ, dominant contribution comes from the attractive well yielding effective attraction

between the monomers denoted by v < 0. This is the so called bad solvent regime, in which

polymer gets into the globule phase. The tuning parameter for v is the dimensionless ratio

θ/T .

In Fig. 3.2(a) we show the coil-globule transition in terms of the mean radius of gyration

〈Rg〉 of the chain with changing degree of relative inter-segment attraction βε = ε/kBT . The

large 〈Rg〉 near βε = 0.1 correspond to the open and unfolded coil state of the polymer. This

collapses to a globule state with small 〈Rg〉 at large βε & 0.5. The figure shows two sets of

data corresponding to change in ε and T separately.

As mentioned in the model section, in the first set of simulations, we varied ε fixing the

T . Secondly, we have fixed ε and varied T . The coil-globule transition is presented as a
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Figure 3.5: The average chain length 〈L〉 = (N − 1)〈b〉 is plotted against βε. The data points
in blue � and pink ◦ represent the variation of ε and T respectively.

variation of βε in Fig. 3.4(a) for both the cases. The size of the chain is measured in terms

of the average radius of gyration 〈Rg〉 scaled by mean bond length 〈b〉 of the chain. The

data points from the two set of simulations show good agreement and display a monotonic

decrease in the radius of gyration with increase in βε. Each data point in the plot is averaged

over 106 equilibrium configurations which are separated from each other by 102τ in time.

The corresponding standard errors are smaller than the symbol size
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is plotted for the same span of βε. Function p̃(x) = 0.28x0.28 exp(−1.2x2.43), where x = r
RF

.

Fig. 3.4(b) shows the relative fluctuation of radius of gyration, ∆Rg/Rg =√
〈R2

g〉 − 〈Rg〉2/〈Rg〉 as a function of βε. With increase in βε, it first increases, attains

a maximum and finally decreases. The value βε = βε∗ = 0.38 at which relative fluctuation

attains its maximum is identified as the phase transition point for both set of simulations.

In Fig. 3.5, we show the mean chain length L = (N − 1)〈b〉 of the polymer as a function

of βε, where 〈b〉 denotes the mean bond length. It is clear that increasing T impacts all

the relative energy scales, including the bond energy. Thus we find a significant increase

in bond length at higher temperatures. Although the change in ε impacts the non-bonded

potential alone, thereby leaving the mean bond length 〈b〉 relatively unchanged. The coil-

globule transition as shown in Fig. 3.4 is essentially the same for the two methods of changing

βε. Thus, from now on, we analyze the results obtained from the first set of simulations

performed at constant kBT and changing ε.

To characterize the order of the coil-globule transition, we investigate the probability

distribution function of polymer size, as in the previous chapter. The radius of gyration and

end-to-end separation are two equivalent measures of the size of the polymer. In Fig. 3.6(a),

the probability distribution of radius of gyration P (Rg) is shown across the phase transition.
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Figure 3.7: Subchain extension, 〈r2(s)〉 is plotted at three βε, before, after and at the critical
point. Flory scaling 〈r2(s)〉 ∼ s6/5 is shown for βε = 0.1 (solid red line). Around βε∗ = 0.38,
data follows scaling relation 〈r2(s)〉 ∼ s2/3 consistent with fractal globule estimate (shown in blue
dashed line). At βε = 0.5, typical characteristic of an equilibrium globe is observed.

From small to large βε, the uni-modal distribution of P (Rg) persists. At the phase transition

point, βε∗ = 0.38, the distribution turns out to be the widest.

The other measure of size used is the magnitude of end-to-end vector r. In Fig.3.6(b), the

probability distribution is plotted by the quantity P (r/RF ), where RF = 〈r2〉1/2 denotes the

Flory radius of the chain. The function p̃(x) = 0.28x0.28 exp(−1.2x2.43), with x = r
RF

denotes

the probability distribution of scaled end-to-end separation of self- avoiding chain [53]. We

plot it here to compare with P (r/RF ) at βε = 0.1 (coil phase). Across the coil globule

transition, the distribution P (r/RF ) remains unimodal. The absence of any metastable

maximum across the phase transition point βε = 0.38 is a signature of the absence of phase

coexistence, a characteristic of the continuous transition.
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3.3 Local morphologies

3.3.1 subchain extension

First, we analyze the sub-chain extension of the polymer. This was used in the previous

chapter. For the sake of completeness, we discuss it once again. The question we ask is, if

one considers a chain segment of contour length s, how the average extension 〈r2(s)〉 scales

with s? Here, we show this in Fig. 3.7 in three regimes of βε. At βε = 0.1, the sub-chain

extension shows 〈r2(s)〉 ∼ s2ν with ν = 3/5, in agreement with Flory scaling for self-avoiding

chains embedded in 3-D. The power law growth shown by red solid line is shifted for better

visibility. With increase of βε, the polymer folds and it is reflected by a decrease in ν. At

the critical point, βε = βε∗ = 0.38, the scaling of sub-chain extension 〈r2(s)〉 ∼ s2ν with

ν = 1/3, consistent with the fractal-globule picture [17, 187]. Further, at the largest βε, in

the globule phase, 〈r2(s)〉 shows an initial growth followed by saturation. Inside the core

of the globule, a large density of monomers screens the interaction causing the polymer to

behave like an ideal chain [187] so that 〈r2(s)〉 ∼ s is expected until the boundary of globule

is encountered. Multiple reflections from the globule boundary fill up the space uniformly

over a contour length s ∼ N2/3. Thus segments beyond this contour separation are equally

probable leading to the saturation in 〈r2(s)〉. The small increase at the end of plateauing of

〈r2(s)〉 at largest s is due to the fact that interactions does not only bring the contour-wise

distant segments close to each other, as a result it may effectively push far apart segments

along the contour further away from each other spatially. Experimental data from the FISH

technique for yeast chromosome marked at telomere and centromere display emergence of a

plateauing behavior similar to that of equilibrium globule [188, 189]. On the other hand, in

the span of large genomic separations s > 10 Mbp, human chromosome 4 shows resemblance

with ν = 0.32 [190, 191], consistent with our estimate at critical point. However, in many

cases, noise in the data makes it difficult to clearly differentiate the exponent values between

1/2 and 1/3 [189].
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Figure 3.8: (a) The contact probability Πc(s) is plotted for different values of βε, where s
represent separation along the polymer contour. The power law decay in the asymptotic limit
given by Πc(s) ∼ s−α, is shown at βε = 0.1 and 0.38. (b) The asymptotic decay exponent α is
plotted with respect to ε.

3.3.2 Contact analysis

Once the spatial separation between the contour-wise distant monomers of the chain is less

than a cutoff value rc = 1.5σ, we count a contact between chain segments. The results

remain qualitatively same with small variations of rc. Note that, the chosen value of rc is

smaller than the cutoff separation of Lenard-Jones potential (Uljs(r)), which is rthr = 2.5σ.

Thus, monomers participating in contacts always lie within the range of attraction of others.

Similar to the results in the previous chapter, the probability of contact formation decays

with power law Πc(s) ∼ s−α in the asymptotic limit (large s) (Fig.3.8). For the self avoiding

chain, earlier results predicted α = 2.1 [53], which compares well with our simulation results

at small βε = 0.1. As βε increases, the monomers of the chain start making frequent contacts

with each other, augmenting the value of exponnet α. At the critical point, βε∗ = 0.38, the

exponent α ∼ 1.1, consistent with the fractal-globule estimate [17, 187]. Interestingly, this

exponent is very close to what is measured for human chromosomes in the Hi-C experiments

over the genomic separation 0.5− 10 Mbp [17]. Further, in the large βε limit, in equilibrium

globule phase, contact probability develops a plateau in the asymptotic limit yielding α = 0.

In Fig. 3.8(b), the change of asymptotic decay exponent α is plotted with βε. The non-linear

decay in the exponent recaptures the coil-globule transition.
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Figure 3.9: Schematics of loop topologies of order o: The monomers of the polymer are shown
by blue beads. (a) The red arrow shows cut-off value of separation rc below which loop forms
between monomers. First order loops o = 1 are shown. The two first order loops with size ls are
separated from each other by distance ds along the contour. (b) Three schematics for second order
loops o = 2 are shown. (c) Three examples of third order loops o = 3 are shown.

3.3.3 Loop analysis

We further quantify the morphology of chain in terms of loop structures which are formed

due to contact between different monomers. In above, it is already discussed that thermal

motion and interaction facilitates contact formation between various different segments of

the chain. In the entire space of contacts between monomers, we apply specific criteria to

identify them as loops of various order. Schematics for such looped structures are presented

in Fig. 3.9. Loops can be simple first order loops or complex higher order loops. Simple

loops are defined as follows. Given that two different monomers of the chain make contact

with each other and if there are no other contacts during circulation from one end of the

contact towards the other end, it is identified as a first order loop o = 1. In Fig. 3.9, two

such first order loops o = 1 are shown having size ls and separation ds along the polymer

contour. Further, a second order loop, o = 2, necessarily embed one or more first order loop
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Figure 3.10: (a) The mean number of first, second and third order loops 〈n1,2,3〉 are plotted
with βε. (b) Probability Πo of higher order loops are plotted on semi-log scale at various βε. Here,
o represents the order of loops.

inside it. It means given a second order loop between two monomers, if one start circulation

from one end of the loop and move towards its other end, one must encounter at least one

first order loop. Three such examples are shown in Fig. 3.9 by o = 2. Further, a third order

loop, o = 3, embeds at least one second order and one first order loop inside as shown in the

figure. This definition can be extrapolated to the n-th order loop which embeds every lower

order loops from (n − 1)-th to o = 1. In comparison with previous chapter, there is subtle

difference in the identification of loops. In previous chapter, cross-linkers were necessary for

loop formation between monomers of self avoiding chain. In that context, all the contacts

could not form a loop, because fraction of them are due to thermal motion of chain. Contrary
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Figure 3.11: (a) The mean size of first order loops 〈ls〉 is plotted with βε. (b) Corresponding
fluctuation δls is plotted with βε.

to that, in the present case, any contact can be called a loop if it satisfies the criterion.

In Fig. 3.10 (a), the number of first, second and third order loops are plotted against

βε. With increase in βε, the average number of first order loops 〈n1〉 decrease in monotonic

fashion. This behavior is in contrast to previous chapter result which showed non- monotonic

behavior across the phase transition. Further, mean number of second and third order loops,

〈n2〉 and 〈n2〉 respectively, show initial increase that saturates with increase in βε. In the

globule phase, at βε = 0.5, 〈n2〉, 〈n3〉 remains very close to each other, slightly less than

〈n1〉. Despite its decreasing number, first order loops always dominate the loop structures.

Further, Fig. 3.10(b) shows probability Πo of loops of o-th order on the semi-log scale,

where o = 1, 2, 3, ..., (N − 1). The normalization ΣoΠo = 1 is followed in the numerical

evaluation. The plot shows monotonous decrease in Πo with respect to their order o. At

small βε, Πo decays very rapidly before the transition. As polymer folds, this decay slows

down leading to relatively higher order loops. In the equlibrium globule at βε = 0.5, we find

loops upto 42-th order.

Now, we analyze the average size of the first order loops 〈ls〉, plotted in Fig. 3.11(a). The

mean size of the first order loops decreases as polymer undergoes coil-globule transition. In

the open state of polymer at small βε, relatively large simple loops can form compared to
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Figure 3.12: (a) The average separation between first order loops 〈ds〉 is plotted against βε.
(b) Fluctuation of mean separation between first order loops, δds is plotted against βε.

collapsed state in which higher order contacts impede the formation of simple large loops.

Due to attractive interaction between the non-bonded monomers of the chain, the monomers

separated by small distance along the chain contour seems to constitute majority of the first

order loops causing small 〈ls〉 across the span of βε. In Fig. 3.11(b), the fluctuation in the

first order loop size, δls =
√
〈l2s〉 − 〈ls〉2 is plotted against βε. Like 〈ls〉, δls also decrease

monotonically across coil-globule transition. Reduced fluctuations connotes that the loops

are more stable in the globule phase. Further, in Fig. 3.12(a), we have plotted the mean

separation 〈ds〉 between the first order loops. With increase in βε, the mean separation 〈ds〉

show monotonous increases. As polymer folds, due to formation of higher order loops, the

separation between the first order loops increases. In Fig. 3.12(b), fluctuation in separation

δds =
√
〈d2
s〉 − 〈ds〉2 as a function of βε is plotted. It shows monotonic increase across

the coil- globule transition. The magnitude of mean separation 〈ds〉 and corresponding

fluctuation δds are of same order.

3.3.4 Zippering

The attractive interaction between monomers of the chain can zipper its various segments.

The quantification of zipper fraction on the chain is similar to previous chapter. It is given
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Figure 3.13: The zipper fraction, Zp of the chain is plotted versus βε.

by, Zp = Nz/N , where Nz is the total number of monomers participating in the zipper and

N is the total number of monomers in the chain. In Fig. 3.13, we have plotted the mean

zipper fraction Zp with increasing βε. As polymer folds, Zp increase monotonically in the

sigmoidal fashion. In the coil phase at βε = 0.1, Zp = 0.23, which increased to Zp = 0.35 at

the critical point and finally saturates to Zp = 0.67 at βε = 0.5 in the globule phase.

3.3.5 Contact maps

We present average contact probability measure between various monomers of the chain in

terms of contact maps. Such maps are shown in Fig. 3.14 at different βε. Here, averaging

is performed over 106 equilibrium conformation. Criterion for contact formation is same as

mentioned above, i.e, separation between the spatially close monomers must be less than

1.5σ. In the map, nm denotes the monomer index from 0 to N − 1, where N is the total

number of monomers in the chain. Each plot is associated with a color code quantifying the

contact probability. At small βε, only contour-wise neighboring monomers participate in the

contact formation. As polymer keeps on folding, contour-wise separated monomers also begin

to make contact with each other. Thus, at the critical point βε = 0.4, map shows percolation

of contacts for the countour-wise distant monomers compared to βε = 0.1. Further, in the
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Figure 3.14: Left to right, contact map is plotted for βε = 0.1, 0.38, 0.5 respectively. nm
represents the monomer index along the chain. For color coding, log scale has been used.

globule phase at βε = 0.5, the contacts proliferate to all the monomers of the chain filling

the entire map.

Our contact maps show uniform polymer organization across the coil- globule transition

due to homogeneous nature of interaction between the monomers. Contrary to that, the

Hi-C maps for various chromosomes exhibit checker board like pattern and topologically

associating domains (TADs) [6, 84, 175, 192]. Within such domains, chromosome interacts

more frequently compared to other parts of the chain, however checker board patters are due

to cross- interaction between the domains. Previous studies have opted for heterogeneous

sequence specific interaction along the chromatin with binder proteins which enabled them to

capture similar territorial structures in the contact map [104]. In the following, we introduce

a hetero- polymer model for chromatin to explore the effect of sequence specific interactions

between monomers of chain.

First, we compartmentalize our homo-polymer chain with N = 256 in four segments such

that each segment has 64 monomers. We have considered two kind of hetero-polymer models

for chromatin. Schematics of first is shown in Fig. 3.15(a), in which each segment consists of

monomers of certain type denoted by A, B or C. Each type is represented in different colors,

i.e., type A monomers are shown in blue, type B in red and type C in green. The monomer

index 0–63, 64–127, 128 to 191, and 192–255 denote segments consisting of monomer types

A, B, C and B respectively. The heterogeneity is realized by tuning the interaction within

and between different types, which is summarized in the following table.
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(a)

(b)

(c)

Figure 3.15: (a) Hetero-polymer consisting of total N = 256 monomers is compartmentalized
in four sectors, each consisting 64 monomers. Monomers are represented by type A,B and C, which
are shown in blue, red and green respectively. (b) Snapshot of the simulation is shown. (c) Contact
map at βε = 1.0 is shown.

type interaction

A-A LJ

A-B WCA

A-C WCA

B-B WCA

B-C WCA

C-C LJ
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(a)

(b)

(c)

Figure 3.16: (a) Hetero-polymer consisting of total N = 256 monomers is compartmentalized
in four sectors, each consisting 64 monomers. Monomers are represented by type A and B, which
are shown in blue and red respectively. (b) Snapshot of the simulation is shown. (c) Contact map
at βε = 1.0 is shown.

LJ stands for the Lennard-Jones potential with attractive tail, and WCA is abbreviation

for the purely repulsive Weeks-Chandler-Anderson potential [157]. For the Lennard-Jones

potential, we used the same form as mentioned in Eq. 3.2 with ε = kBT . The WCA potential
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is defined as,

UWCA = 4ε[(σ/r)12 − (σ/r)6 + 0.25], for r < 21/6σ

= 0 otherwise. (3.8)

For WCA, we use the strength ε = kBT . Here, LJ potential provides attraction between

monomers, and WCA potential imposes short range repulsion. All the other details of

simulation are the same as in our homo-polymer model. At equilibrium, parts of the chain

interacting through LJ potential, collapse. In Fig. 3.15(b), the snapshot of the simulation

shows, type A shown in blue beads and type C shown in green beads collapse separately to

local globules, separated by coils of B. To analyze the nature of contact formation between

the monomers of the chain, we sampled the data over 105 equilibrium configurations which

are separated from each other by 103τ in time. Inside each globule, monomers interact

frequently with each other compared to other parts of the chain. This gives rise the two

separate domain in the contact map, one for blue monomers and other for green monomers.

Apart from that, the other interactions are repulsive leading to small number of encounters

between the beads of other colors including the inter-color monomer encounter (red). The

well- separated rectangular regions of high contact probability are reminiscent of observed

topological domains in bacteria [193] and eukaryotes [80].

In the second hetero- polymer model, we compartmentalized the chain in a different fash-

ion, namely A,B,A,B as shown in Fig. 3.16(a). Again, Each sector consists of 64 monomers.

Monomers of type A and B are colored in blue and red respectively. The interaction is

summarized in following table.

type interaction

A-A LJ

A-B WCA

B-B WCA
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Parameters for Lennard-Jones (LJ) and Weeks-Chandler-Anderson (WCA) potential are

same as previous model. As a result of simulation, blue monomers in first and third sector

collapsed into one globule while the red monomers form self avoiding chain segments that

remain open 3.16(b). Due to collapse of monomers in first and third sector in one globule,

three square patches on the contact map appeared 3.16(c). The first patches on the diagonal

is due to frequent interaction of monomers in sector one (first blue sector) with index 0 to

63. The second patch along the diagonal is due to frequent interaction of monomers in sector

three (second blue sector) with index 128 to 191. The patches away from diagonal region

are due to cross interaction between blue monomers in first and third sector of the polymer.

The red monomers do not have frequent encounter between themselves as well as with blue

monomers, hence contacts between them are nearly absent in the map. The specificity of

the interaction leads to the compartmentalization which is manifested very clearly in the

contact map.

3.4 Conclusion

We have considered a biophysical model for chromatin fiber in terms of a self-avoiding

flexible polymer with effective inter-segment attraction. In the cell, chromatin fibers are

associated with proteins like NAPs, transcription factors etc, which form bridges between

chromatin segments. To capture such effective attraction, we introduced an attractive tail

between spatially non- neighboring monomers. Increasing the effective attraction between

chromatin segments led to continuous coil- globule transition. Along the transition, local

morphological changes of chromatin are analyzed in terms of contacts, loops and zippers. In

the coil phase, sub- chain extension and contact probability captures the behavior of self-

avoiding chain. However, at the critical point, they show results similar to average human

chromosome behavior at various genomic separation [17]. In the collapsed state, typical

equilibrium globule results are captured. The observed behavior of sub- chain extension and
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contact probability are consistent with that in the previous chapter.

The number of first order loops show monotonic decrease across the coil-globule transition.

Despite their decreasing number, the simple loops always dominate the loop topology in

consistence with previous chapter. The mean size of first order loops and its fluctuation

show monotonic decrease as the polymer folds. The separation between simple loops and its

fluctuation show monotonic increase along the phase transition. The mean number of second

and third order loops increases and saturates along the transition, a behavior consistent with

previous chapter. In addition, with folding of polymer, the probability of complex higher

order loops increase recapturing the behavior due to cross-linkers. The zipper fraction of

chain increase along the coil- globule transition, being qualitatively consistent with previous

chapter.

The contact maps show spreading of contacts as the polymer folds, however, the homo-

polymer model does not exhibit any territorial organization due to homogeneous nature

of interaction between chromatin segments. Capturing the sequence specific aspects of

chromatin DNA-binding protein interaction, our hetero- polymer models show formation

of domains like the topologically associated domains and the characteristic checker board

patterns, typical to Hi-C maps of various chromosomes [80, 193].
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In bacterial cells a long circular DNA and associated proteins constitute the chromosome.

The chromosomal structure is suspended in a crowded cytosolic fluid and forms a membrane-

less organelle called the nucleoid occupying a central sub-volume of the cell [194]. The

chromosome along with the cytosolic fluid and other components of the cell are confined by

cell envelope which for a large class of bacteria like E. coli or B. subtilis has a cylindrical

geometry. In E. coli bacteria, a 4.6 Mbp (1.6 mm) long negatively supercoiled circular DNA

forms the nucleoid which occupies a nucleoid subvolume of the cylindrical confinement of

the cell having diameter 0.8µm and length 2-4µm. The 1.6 mm long DNA has to fold about

103 times in order to fit inside the confinement [124, 126]. This huge compaction has to be

concomitant with functional organization of chromosome because the chromosome has to

express genes, regulate expression, and allow replication in order to survive [127].

There are at least four major physical and chemical mechanisms through which such com-

paction and organization are usually achieved [195, 196]. First, the cellular confinement

itself. However, it is not all. A fact that can be appreciated by noting that the nucleoid

only occupies a sub-volume of the cell, with a ratio of the nucleoid and cellular volume

being less than one-fourth [126]. Second, the DNA is almost 5% negatively supercoiled,

and this globally maintained, enzymatically controlled under-twisting results in warps and

folds of various segments of the chain leading to the folded hair-braid like structures known

as plectonemes [15]. Formation of plectonemes substantially decreases the effective size of

the chromosome. Electrostatic zippering of DNA segments also contributes to compaction.

91



92 Feather-boa model of bacterial chromosome

Third, simultaneous binding of nucleoid associated proteins (NAPs) at more than one loca-

tion along the genome form loops and compacts the structure [125–127, 129, 197]. Impact

of passive cross-linking has been discussed in the previous chapters. For the sake of com-

pleteness, we reiterate a few major points here. The NAPs are mainly of two categories:

non- specific like HU which binds to DNA without any bias, and specific like FIS which

binds to only a few target genetic sequences. The resultant loop formation leads to further

compaction of the chromosome. There are dedicated proteins that convert these looped

structures into topological associating domains [84, 127, 177, 198]. Further, structural

modification of chromosome (SMC) proteins can lead to active loop extrusion. In human

chromosomes, cohesin and CTCF protein complexes generate and maintain such loops [199].

In bacteria, the condensin SMC extrudes loops against barriers of RNA- polymerase or tran-

scription machinery [86]. Electron microscopy experiments on lysed E.coli chromosomes

showed a bell-shaped distribution of loops with the maximum close to 10-12 kbp [26]. This

suggests a typical loop size of 10-12 kbp. With the advent of chromosome conformation

capture (CCC) based techniques, it has been possible to directly probe the physiological

interaction frequencies between different gene segments in the chromosome [144, 145]. These

techniques allowed to form contact maps that exhibit probability of spatial contacts between

various gene- location along the genome and one can see the presence of TADs in form of

characteristic checker- board patterns on the 2-D map. Fourth, the depletion effect due to

molecular crowding generated by cytosolic components can potentially compact the chromo-

some [200–202]. Within an equilibrium picture, the overall entropy of a system consisting of

a polymer and molecular crowders increases by allowing more volume to the large degrees

of freedom of the crowders, effectively compressing the polymer [203, 204]. Such entropic

forces are expected to play an important role in chromosome compaction, and segregation

of the chromosome from protein crowders [11, 205–209].

The high resolution live- cell imaging experiments over the last decade revealed an emer-

gent helical organization of bacterial chromosome characterized by a few (3− 4) turns. It is
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ubiquitous in rod-shaped bacteria [9, 12, 13]. They exhibit a definite pitch to length ratio.

The helical shape of the nucleoid is closely related to the cylindrical cell- shape. Modifica-

tion of the cell shape by impeding the cell wall formation led to a change in the nucleoid

morphology [12]. Using an argument of optimal packing, it was shown that thick chains in

a cylinder pack best as a helical object [210]. A polymer model with local loop structures

while confined inside cylindrical confinement, showed emergent helical shape due to entropic

forces in confinement [18]. The impact of confinement on the chromosome size and shape

has been analyzed recently in growing bacteria [9, 10].

The effect of confinement on the size of polymer has long been appreciated in polymer

physics [53, 211]. The blob picture due to de Gennes suggests that once the confining di-

ameter D of the cylinder becomes smaller than the radius of gyration Rg of a self-avoiding

polymer of length L, it starts to behave like a connected array of blobs of size D. Within

the blob, the Flory scaling for free chain works, such that D ∼ n3/5 b assuming that each

blob contains n segments of size b. The total number of blobs are N/n. Thus the effec-

tive chain extension inside the confinement increases as (N/n)D ∼ D−2/3 with decreasing

D [53]. However, such a tube confined polymer does not display helical structures observed

in bacterial chromosome [12, 13].

The helical shape emerges due to the interplay of the local loop morphologies of the

chromosome, and the cylindrical confinement of the cell. In this chapter, we present the

feather-boa model of chromosome, a model similar to the bottle- brush polymer [212–214],

with polymeric loops attached to a backbone chain [18, 19]. Within this model, the entropic

repulsion between the side- loops generate an effective bending rigidity to the backbone over

micron length scales, much longer than the DNA persistence length. Further, the side-loops

gives rise to an effective thickening to the backbone. The enhanced stiffness and thickening

of the backbone can potentially lead to a helical shape to the cylinder- confined polymer [18].

In this chapter, within a given confinement, we study the impact of changing side loop size

on the chromosome morphology. As has been mentioned earlier, the cytosolic environment is
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fluidized by metabolic activity. We model this environment as a Langevin heat bath of free

flowing fluid maintaining a constant effective temperature. The helical shape of the model

chromosome emerges only beyond a threshold size of side loops.

4.1 Feather boa model : change in side loop size

Here we present a coarse-grained feather-boa model of the full chromosome. We define the

feather-boa chain as a self-avoiding polymer consisting of nb monomers in the backbone

attached to side loops of ns monomers. The linear chain of nb monomers constitute the

backbone of the feather boa chain. The real bacterial chromosome shows a distribution of

loop sizes, however, with a maximum corresponding to a typical loop size [26]. Within our

model, ns monomers of side-loops stand for this typical size. The total number of monomers

constituting the model chromosome is N = nb · (1 +ns). The bonds of the feather-boa chain

are maintained by the harmonic interaction,

Vb =
A

2
(di − σui)

2, (4.1)

where di = ri+1 − ri, with ri denoting the position of i-th bead. The self-avoidance is

incorporated via a short ranged WCA repulsion between the non-bonded monomers,

βV (rij) = 4ε[(σ/rij)
12 − (σ/rij)

6 + 0.25] (4.2)

for rij < 2
1
6σ and βV (rij) = 0 otherwise. Here rij = |ri,j| with ri,j = ri − rj the separation

vector between i-th and j-th monomers [157]. The length and the energy scales of the

problem are set by σ, and ε respectively, and together they set the time scale τ = σ
√

m
ε

.

We choose A = 100ε/σ2 to keep the bond- length fluctuations within 1%.

The cylindrical wall along with the top and bottom surfaces of the cylinder repel all the
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monomers with short range interaction

βVwall = 2πε

[
2

5

(
σ

riw

)10

−
(
σ

riw

)4

+
3

5

]
, (4.3)

when riw < σ and βVwall = 0 otherwise. Here, riw is the separation of i-th monomer

from the wall. The cylindrical confinement is realized with diameter D = 29.5σ and length

L = 50.74σ. We perform molecular dynamics simulations following velocity-Verlet algorithm

in the presence of a Langevin heat bath. The Langevin thermostat is characterized by an

isotropic friction constant γ = 1/τ fixing the temperature at T = 1.0ε/kB as implemented

by ESPReSo molecular dynamics package [161]. The numerical integrations are performed

choosing time steps of size δt = 0.005τ . The simulations are performed over 107 to 5 × 107

steps to equilibrate the feather-boa chain. For the analysis of equilibrium properties, data

are collected over further 104 configurations separated from each other by 5× 103τ .

We fix the number of monomers in the backbone, nb = 200 and vary the number of

monomers in the side loops ns as the tuning parameter. In Fig. 4.1, a few representative

equilibrium configurations are plotted for the feather- boa chain with side loop sizes ns =

4, 8, 12, 16, 20, 24, 32, 36 and 40, which corresponds to total number of monomers N =

1000, 1800, 2600, 3400, 4200, 5000, 6600, 7400 and 8200 respectively. The corresponding

monomer densities are ρmσ
3 = 0.03, 0.05, 0.07, 0.1, 0.12, 0.14, 0.19, 0.21 and 0.24. The

blue beads in Fig. 4.1 represent the backbone of the feather- boa chain and the green beads

denote the side loops. For small ns, the chain opts irregular shape, however, for ns ≥ 16,

clear helical organization of backbone monomers emerges. The helical morphology of the

backbone of feather-boa chain is quantified in the following.

4.1.1 Backbone helicity

The degree of helical organization of the chromosome can be quantified in terms of the

tangent-tangent correlation function 〈u(s) ·u(0)〉 of unit bond vectors ui along the backbone
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.1: Snapshots of the simulation at various ns are presented. The backbone
monomers are shown in blue and side loops are in green.(a)-(i), ns value correspond to
4, 8, 12, 16, 20, 24, 32, 36 and 40 in alphabetical order.

contour of the feather-boa chain separated by s = |i − j|σ (Fig.4.2). First, we project the

polymer configurations on the 2-dimensional radial plane of the cylinder denoted by xy-plane,

assuming z is along the long axis of cylinder. The unit tangent vector ui is calculated from

the position vectors of this projected configuration of consecutive beads in the chain. We

perform averaging over 104 equilibrated polymer configurations separated from each other

by 5× 103τ . We compute 〈u(s) ·u(0)〉 for various side loop sizes ns. For better visibility, we

show the correlation functions in two separate plots. In Fig. 4.2(a), the correlation functions

are shown for smaller ns, and in Fig. 4.2(b) the same is shown for larger ns. As we increase

ns beyond ns = 16, the configuration starts to adopt a helical shape captured by periodic
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Figure 4.2: The tangent-tangent correlation, 〈u(s) · u(0)〉 along the backbone of the chain is
shown where s represents the separation along the backbone. (a) shows plot at smaller ns compared
to (b).
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Figure 4.3: Structure factor S(q) for 〈u(s) · u(0)〉 is plotted against q. (a) shows the plot for
smaller ns values and (b) shows the same at larger ns values.

oscillations in the correlation function u(s) · u(0) with separation s. The periodicity of the

oscillation captures the helical pitch.

To quantify the number of turns in the backbone helix and the degree of helicity, we

compute the structure factor S(q) corresponding to tangent-tangent correlation functions

〈u(s) ·u(0)〉 at different ns, which are shown in Fig. 4.3. The structure factor is evaluated by

performing Fourier transform of the correlation function, S(q) =
∫ lb/2
−lb/2〈u(s) · u(0)〉eisqds. It
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shows a peak at q = qp corresponding to the turn number nt = qp as is displayed in Fig. 4.3(a)

and (b). The amplitude of S(q) at its maximum q = qp gives the degree of helicity, while the

width of the peak is a measure of the statistical dispersion of the structure. In Fig. 4.3(a),

increasing the side loop size (ns), leads to a shift in the peak position qp towards higher

values. At small ns (=8) the peak is at qp = 1, which increases to qp = 3 at ns = 16.

Following Fig. 4.3(a) and (b), we observe that for ns ≥ 16, the peak position remains at

qp = 3, which implies that the number of helical turns nt = 3 remains unchanged. These

three turns can be directly counted from the number of periodic oscillations in Fig.4.2 for

ns ≥ 16. This nt = 3 impliees a helical pitch λmax = lb/nt ≈ 66.33σ.

Note that the amplitude S(q = qp) increases with ns in a monotonic fashion for small

side loop sizes (ns ≤ 20) as shown in Fig. 4.3(a). At larger ns, the difference in amplitudes

diminishes and they almost overlap with each other (Fig. 4.3(b)). Thus the degree of helicity

increases with ns to saturate. The smallest value of ns at which we observe a clear peak in

S(q) is at ns = 16. In addition, a large difference between amplitudes S(qp) at ns = 12 and

16 captures the emergence of backbone helicity near ns = 16.

The above results establish that a threshold value of side loop size is necessary for the

formation of backbone helix. With the given parameter values for confinement and backbone

size, this value is ns = 16. In the model section, it is mentioned that all the monomers in the

feather- boa chain repel themselves with short range WCA potential. Due to this repulsion

between the side loop monomers, a resistance towards bending emerges on the backbone of

feather- boa chain, as a bent configuration leads to increase in the probability of overlap

between two side-loops. Smaller side loops can not provide enough repulsion thus lacks in

this emergent bending rigidity [18]. The effective bending rigidity becomes significant for

longer side loops. Moreover, the side loops connected to backbone have to pack inside the

cylinder impacting the conformational entropy of the feather-boa chain. The combination of

emergent bending rigidity over short contour separation, and packing energy cost over longer

contour separations lead to the observed helical organization of the feather-boa chain [18, 19].
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Figure 4.4: Center of mass for all the monomers are plotted at different ns. Plots are at ns
value, 4 (a),8 (b), 12 (c), 16 (d), 20 (e), 24 (f), 32 (g), 36 (h) and 40 (i) respectively.

4.1.2 Center of mass organization

To further analyze the emergent morphology of the model chromosome, in this section, we

consider the center of mass loci for all the monomers along the length of the cylindrical

confinement. For this purpose, we divide the cylinder into small disk-like bins of width 0.5σ

along its length which we assume to be along the z-direction. The xy-plane is perpendicular

to the long axis of the cylinder. Unless stated otherwise, we will use this convention and

binning procedure to compute the local properties of the feather-boa chain. The center

of mass of all the monomers, irrespective of whether they correspond to the backbone or

side-loops, is evaluated within each of these bins. Then, averaging is performed over the 104
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Figure 4.5: The correlation 〈t̂(z) · t̂(0)〉 of the xy− plane projected average center of mass
orientation of monomers are shown along the length of the cylinder. (a) shows the plots for smaller
ns values compared to (b).

equilibrated configurations as stated above. The resultant center of mass loci for monomers

of the feather- boa chain is shown in Fig. 4.4. The plots in (a)-(i) are at side loop size

ns = 4, 8, 12, 16, 20, 24, 32, 36 and 40, respectively, in alphabetical order. At small side loop

size (ns ≤ 8), the average center of mass loci show irregular organization which are shown

in Fig. 4.4 (a) and (b). With increase in ns, the center of mass loci start to organize into a

helical shape. At ns = 12, Fig. 4.4 (c) shows a weak helical organization of monomer center

of mass loci. For ns ≥ 16, helical organization of average center of mass loci emerges very

clearly.

To further quantify this organization of average center of mass loci of monomers, we

compute the tangent-tangent auto-correlation function along these loci. The center of mass

loci of each polymer configuration is first projected on the xy− plane. The tangent auto-

correlation 〈t̂(z) · t̂(0)〉 is computed along the projected loci, which is shown in Fig. 4.5.

Here z-denotes different bins along the long axis of the cylinder. The tangent t̂(z) is a 2d

unit vector calculated using center-of-mass loci in consecutive bins. The averaging 〈. . .〉 is

performed over all the equilibrated configurations. For better visibility, we present the

correlations in two separate figures. Fig.4.5(a) shows plots at small side loop size and
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Figure 4.6: Probability density of monomers is plotted along long axis of cylinder at various
ns.

Fig.4.5(b) shows them at relatively large ns. At small ns, the tangent auto-correlation does

not show any regular pattern which suggests random organization of the center of mass loci

of the polymer. This can be verified visually by inspecting Fig. 4.4 (a) and (b). Increasing

the side loop size to ns = 12 leads to emergence of periodic oscillations in 〈t̂(z) · t̂(0)〉 for the

first time. Corresponding to this particular ns value, the mean center of mass loci in Fig. 4.4

(c) shows a weak helical organization. Further increase in side loop size beyond ns ≥ 16

yields very clear periodic oscillations of the tangent auto-correlation function (Fig. 4.5 (a)

and (b)). This nice periodic oscillation suggests helical organization of center of mass loci

which can be observed in Fig. 4.4 (d-i).

4.1.3 Local monomer density

In this section, we analyze the spatial organization of the polymer in terms of the local

monomer density along the cylinder. In Fig. 4.6, we show the variation of mean probability

density 〈p(z)〉 of monomers belonging to the feather boa chain along the long axis of the

cylinder. To evaluate this quantity, we used the bins along the long axis of the cylinder,

as described in the previous section. The mean number density of monomers in each bin is



102 Feather-boa model of bacterial chromosome

calculated. ρ(z) represents this monomer density in a particular bin denoted by its position

z. Assuming a particular bin has n′ monomers in one configuration, then ρ(z) = n′/πD2l′/4.

Here, diameter of the cylinder and each bin is D = 29.5σ and the bin size is l′ = 0.5σ.

For any polymer configuration at a particular time,
∫ L

0
ρ(z)dz = N , where N is the total

number of monomers in the feather- boa chain. Here we have N = 8200. We perform the

averaging 〈ρ(z)〉 over equilibrated polymer configurations for all the bins along long axis

of cylinder, and define the normalized probability density 〈p(z)〉 = 〈ρ(z)〉/N . This yields

the the normalization,
∫ L

0
〈p(z)〉dz = 1. Like in previous sections, 104 equilibrated polymer

configurations are used for the evaluation of 〈p(z)〉. Fig. 4.6 shows, at small side loop size

(ns ≤ 8), 〈p(z)〉 has approximately constant value in the central region of cylinder, which

decreases to 0 as we approach towards the two caps of the cylinder (z = 0 and L = 50.74σ).

To increase configurational entropy, polymers avoid the wall. At smaller ns values, away from

the two caps, the density remains roughly uniform. At a larger ns, a density modulation

starts to appear. At further higher ns (≥ 20) we find nice periodic oscillations in 〈p(z)〉. A

comparison with the discussion of helical organization in previous sections show that this

onset of density modulation is associated with the emergence of helical organization of the

model chromosome.

4.2 Conclusion

In this chapter, we have investigated the impact of local loop structures on the chromosomal

organization of E. coli bacteria. We presented the feather-boa model, a coarse-grained model

of the bacterial chromosome as a self-avoiding chain dressed with side loops. We used a

cylindrical confinement to model the shape of rod-like bacterial cells, e.g., E. coli. Our study

showed that the combined effect of confinement and side-loops can explain the emergent

helical shape of bacterial nucleoid. The side-loops are known to produce an effective bending

stiffness in the local scale, and thickening of the polymer that potentially impacts the relative
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packing of the backbone [18]. Both the effects are expected to depend on the side loop size.

For a given cylindrical confinement, we varied the size of side loops and analyzed the emergent

shape of the confined feather-boa polymer. Our molecular dynamics simulations revealed, at

small side loop sizes the feather- boa chain remains randomly organized. Beyond a certain

threshold side loop size, the helical organization of backbone emerges spontaneously. This

helical organization persists with further increase in side loop size. The smaller side loop

sizes are unable to provide the necessary amount of bending rigidity and thickening of the

backbone required to stabilize the helical morphology. Not only the backbone of the feather-

boa chain, the local center of mass of monomers also shows the helical organization. The

helicity is further characterized in terms of tangent correlation functions, and corresponding

structure factors. The pitch of the helix, and the degree of helicity defined in terms of the

height of the structure factor at its peak, increase to saturate with increasing side-loop size.

Associated with the emergence of helicity, the monomer density shows periodic modulation

along the long axis of the cell. The amplitude of oscillation increases with the monomer

density brought about by increasing side-loop size. Here, we have shown the emergence of

helicity in a linear feather-boa chain, although the real bacterial chromosomes are made up

of circular DNA. Similar helical shape is observed even for a circular backbone chain of a

feather-boa polymer. We return to this point in the following chapters.

This chapter has shown that the generic loop structures of the chromosome along with

entropic repulsion, which are purely physical effects, can explain the emergent helical mor-

phology of chromosomes confined to cylindrical cells, e.g., in E coli and B. subtilis. In the

next two chapters, we study the impact of cytosolic crowding on chromosomal organization.



5 Impact of confinement and molecular crowders on

chromosome organization

In the previous chapter, we introduced the feather- boa model of bacterial chromosome in a

cylindrical confinement of rod-shaped cells like E. coli. We showed, beyond a certain thresh-

old size of the side loops, the feather-boa chain adopts a helical organization spontaneously.

In the current chapter, we study the impact of cytosloic crowding on such chromosomal

morphology, and the relative organization of chromosome and crowders. For the sake of

completeness, we start by describing the system under study.

In E. coli bacteria, a 4.6 Mbp (1.6 mm) long negatively supercoiled circular DNA and

associated binding proteins constitute the chromosome. The chromosomal structure is sus-

pended in a crowded cytosolic fluid and forms a membrane-less organelle called the nucleoid

occupying a central sub-volume of the cell [194]. The chromosome along with the cytosolic

fluid and other components of the cell are confined by a cell envelope which has a cylinder

geometry. In a typical wild type E.coli cell, the cell envelope produces cylindrical confine-

ment of diameter 0.8µm, and length 2-4µm. The 1.6 mm long DNA has to fold about 103

times in order to fit inside the confinement [12, 124, 126]. This huge compaction has to be

concomitant with the functional organization of chromosome because the chromosome has

to express genes, regulate the expression, and allow replication in order to survive [127].

There are at least four major physical and chemical mechanisms through which such

compaction and organization are usually achieved [195, 196]. First, the confinement itself.

However, it is not all. A fact that can be appreciated by noting that the nucleoid only

occupies a sub-volume of the cell, with a ratio of the nucleoid and cellular volume being

104
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[126]. Second, the DNA is almost 5% negatively supercoiled, and this under-twisting

results in warps and folds of various segments of the chain leading to the folded hair-braid

like structures known as plectonemes [15]. Formation of plectonemes substantially decreases

the effective size of the chromosome. Third, simultaneous binding of nucleoid associated

proteins (NAPs) at more than one location along the genome [125–127, 129, 197]. Impact of

such cross-linking has been discussed in the previous chapters. For the sake of completeness,

we reiterate a few major points here. The NAPs are mainly of two categories: non- specefic

like HU which binds to DNA without any bias, and specific like FIS which binds to only a

few target genetic sequences. The resultant loop formation leads to further compactification

of the chromosome. There are dedicated proteins which converts these looped structures

into topological associating domains [84, 127, 177, 198]. Further, structural modification

of chromosome (SMC) proteins can lead to active loop extrusion. In human chromosomes

cohesin and ctcf generate and maintain such loops [199]. In bacteria, the condensin SMC

extrudes loops against barriers of RNA- polymerase or transcription machinery [86]. Elec-

tron microscopy experiments on lysed E.coli chromosomes showed a bell-shaped distribution

of loops with a maximum close to 10-12 kbp. With the advent of chromosome conformation

capture (CCC) based techniques, it has been possible to directly probe the physiological

interaction frequencies between different gene segments in the chromosome [144, 145]. These

techniques allowed to form contact maps that exhibit probability of spatial contacts between

various gene- locations along the genome and one can see the presence of TADs in form of

characteristic checker- board patterns on the 2-D map. Fourth, the depletion effect due to

molecular crowding generated by cytosolic components can potentially compact the chromo-

some [200–202]. Within an equilibrium picture, the overall entropy of a system consisting of

a polymer and molecular crowders increases by allowing more volume to the large degrees

of freedom of the crowders, effectively compressing the polymer [203, 204]. Such entropic

forces are expected to play an important role in chromosome compaction, and segregation

of the chromosome from protein crowders [11, 205–209]. In equilibrium, however, depletion
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is known to drive the large molecules to a corner of the confining boundary. In contrast,

bacterial nucleoid floats at the center of the cell with molecular crowders locating mostly

near the cell envelop. Illustrating a reason for that is one of the goals of this chapter.

Recent experiments over the last decade showed an emergent helical organization of chro-

mosome characterized by a few turns is ubiquitous in rod-shaped bacteria [9, 12, 13]. They

exhibit a definite pitch to length ratio. The helical shape of the nucleoid is closely related to

the cylindrical cell- shape. Modification of the cell shape by impeding the cell wall formation

led to a change in the nucleoid morphology [12]. Using an argument of optimal packing, it

was shown that thick chains in a cylinder pack best as a helical object [210]. The feather-boa

model, a coarse-grained model of the chromosome as a bottle- brush like polymer, with poly-

meric loops attached to a backbone chain, has been proposed recently to describe observed

chromosomal morphologies in bacteria [18, 19]. The entropic repulsion between side- loops

provides an effective bending rigidity over micron length scales, much longer than the DNA

persistence length. This, along with the monomer packing, leads to the emergent helical

shape of the chromosome confined to a cylindrical volume of the bacteria [18]. The impact

of confinement on the chromosome size and shape has been analyzed recently in growing

bacteria that do not undergo cell division [9, 10].

Here, we assume the combined influence of confinement, and molecular crowding on chro-

mosomal organization, utilizing the feather-boa model of the chromosome where the side-

loops are assumed to be stabilized by proteins [18]. We focus on the question as to how the

cytosolic crowding impacts the chromosomal organization and relative positioning of crow-

ders with respect to the chromosome inside a cylindrical cell. Note that the poly-dispersed

and the highly crowded cytosolic environment remains fluidized by the strong metabolic

activity [40]. This allows us to model the cytosolic environment as a Langevin heat bath

maintaining an effective temperature.

In the current chapter, we assume non-additive crowders, that repel against the chromo-

some chain and confinement boundaries, but otherwise are considered non-interacting. We
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show, the center of mass of the chain along the cell length is organized in a helical fash-

ion. Intersetingly, the local center of mass of crowders along the cell- length adopt a helical

trajectory occupying positions complementary to the helical location of the chromosomal

helix. Associated with this, the crowders and monomers show density modulation along

the cell- length, with out-of-phase periodicities. This observation is reminiscent of a similar

complementary density modulation of ribosomes with respect to the chromosome in E.coli,

observed in recent experiments [11].

To probe deeper into the physical effects of molecular crowding on the formation of the he-

licoid morphology of chromosomes, and their size, we adopt a simulation-wise more tractable

model in which we further coarse-grain the feather-boa chain. The effect of the side loops is

mimicked by an additional Gaussian- core repulsion between the monomers of the backbone.

Under the cylindrical confinement, such polymers are also known to show emergent helical

morphology [10, 18, 19]. In Ref. [10], using a single crowder- size, longitudinal segregation of

crowders and chromosome has been shown. The crowders were expelled towards the two caps

of the cylinder, generating a compression that maintained a helicoid shape of the nucleoid,

even in the longest cells.

In the current chapter, we fix the length of the cylinder, the density of crowders, and probe

the impact of change in crowder size. We probe its impact on the relative organization of

crowders and the model chromosome. We show that, at small crowder size, the chromosome

spans the whole cell, and crowders remain uniformly distributed across its volume. As we

increase the crowder size, the chromosome starts to adopt a helical morphology, and crowders

organize into a complementary helix with respect to the chain. This happens via transverse

segregation between the chromosome and crowders. At a larger crowder size, due to strong

entropic repulsion, the chain expels the crowders longitudinally, to both the ends of the

cylinder in a symmetric fashion. This leads to full longitudinal segregation at large enough

crowder size. The full feather- boa model, and the effective coarse-grained model shares this

property of reciprocal helical organization of the local center of mass of the crowders with
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respect to the chromosome, along the cell length.

In the following, we present the details of our simulation study in two sections. In the

first section, the all-atom molecular dynamics simulation of the feather boa polymer in the

presence of crowders is presented. In the following section, we present the coarse-grained

model of the chromosome. We summarize the results in the respective sections.

5.1 Full feather boa model

The chromosome at its full length is modeled as feather-boa polymer. We define a feather-

boa chain as a flexible linear polymer that consists of nb monomers and every monomer in the

chain has a ring polymer attached to it which consists of ns monomers. The linear chain of

nb monomers constitute the backbone of the feather boa chain. The ring polymers attached

to the backbone chain represent the presence of loops in the chromosome which is observed

in experiments [26]. The total number of monomers in the chain equals nb(1 + ns). The

consecutive monomers of the feather-boa chain (backbone as well as side loops) are bound

by harmonic interaction,

Vb =
A

2
(di − σui)

2, (5.1)

where di = ri+1− ri, ri is position of i-th bead, and ui = di

|di| is the local tangent vector to

the chain. One of the monomer of a ring polymer is attached to a single backbone monomer

with same harmonic potential. All the monomers of the feather boa chain belonging to

backbone as well as side loops, repel each other with short range repulsion given by WCA

interaction,

βV (rij) = 4ε[(σ/rij)
12 − (σ/rij)

6 + 0.25], (5.2)
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for rij < 2
1
6σ and βV (rij) = 0 otherwise. rij is the separation between i-th and j-th

monomer and σ is the monomer diameter [157]. The length and the energy scale are set by

σ, ε, and together they set the time scale τ = σ
√

m
ε

. We chose parameters A = 100ε/σ2.

The number of monomers in the backbone nb = 200 and number of monomers in each side

loop ns = 40, which leads to total number of monomers in the feather-boa chain equal to

8200. The cylindrical confinement is realized with parameters, D = 29.5σ and L = 50.74σ,

where D and L is the diameter and length of the cylinder receptively. The cylinder wall

along with top and bottom surface (the caps at two ends of cylinder) repel all the monomers

with short range interaction,

βVwall(riw) = 2πε

[(
2

5

)(
σ

riw

)10

−
(
σ

riw

)4

+
3

5

]
, (5.3)

when riw < σ, and βVwall(riw) = 0 otherwise. Here, riw is the separation of the monomer from

the wall. This set of parameters yield the monomer packing fraction equal to approximately

0.24. Note that the details of the feather- boa chain and confinement are consistent with the

previous chapter. With the above parameters, molecular dynamics simulations are performed

using the velocity-Verlet scheme in the presence of a Langevin thermostat characterized by

isotropic friction coefficient γ = 1/τ fixing the temperature T = 1.0ε/kB. This entire scheme

is implemented by ESPResSo molecular dynamics package [161]. We conduct the numerical

integration using step-size δt = 0.005τ .

To perform the simulation, first, a feather boa chain in a very large cylinder is equilibrated

in the heat bath. Then, very slowly the cylinder diameter and length are reduced and equi-

libration is performed at each intermediate cylindrical confinement until target confinement

is achieved. After attainment of target confinement, the simulation is performed for further

107-5 × 107 steps to equilibrate the system. For the analysis of equilibrium properties, the

data is collected over the next 104 configurations with the gap of 5× 103τ in time.

The interplay between local effective stiffness in the backbone due to repulsion among
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Figure 5.1: The equilibrium configuration of the feather-boa chain with backbone length lb =
200σ and side loop size ls = 40σ. The backbone is shown in thick blue color and side loops are
shown in thin green line. The crowders are shown by red dots.

neighboring side loops and intrachain packing of monomers in the cylinder gave rise to the

helical organization of the backbone under cylindrical confinement [18]. In the previous

chapter, we have studied the impact of changing the side loop size of a feather- boa chain on

the local morphology. Here we fix the side loop size at ns = 40, and introduce the so-called

non-additive crowders inside the cylinder along with feather boa chain to capture the generic

impact of cytosolic crowding on chromosome organization.

5.1.1 Feather boa chain in a cylinder: a constant density of crowders

We introduce Nc = 3000 non-additive crowders in the system. The crowders do not in-

teract between themselves, however, repel the monomers of feather-boa chain with WCA

potential V (rij) and confinement walls with potential Vwall(riw). With the above-mentioned

parameters, we perform the molecular dynamics simulation.

In Fig. 5.1, a snapshot of equilibrium configuration is shown. The monomers in the

backbone of the feather-boa chain are represented by blue beads and the side loops are
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Figure 5.2: Complimentary helical organization of center-of-mass loci for monomers and crow-
ders are shown in blue and pink respectively. z- denote the long axis of cylinder and xy represent
a radial plane.

shown by green beads. The crowders are denoted by red dots. The snapshot clearly shows

the helical organization of the backbone in the presence of crowders. As discussed in the

previous section, this kind of helical organization of the backbone is observed in the absence

of crowders [18], perhaps the introduction of crowders with small density does not impact

the helical organization. Further, it seems the crowders are distributed homogeneously

throughout the cylinder, however in the following we probe any possible local organization

of them relative to model chromosome.

In Fig. 5.2, the mean center of mass orientation for model chromosome and the crowders

are shown in blue and pink lines respectively. Averaging for the respective center of mass

loci is performed over 104 equilibrium configurations separated from each other by 5× 103τ .

Similar to previous chapter, the bin size used for the local center of mass computation

is 0.5σ. The two loci show the complementary helical orientation of center-of-mass for

monomers and the crowders along the long axis (z) of the cylinder. To have a better view

of the respective center-of-mass for chromosome and the crowders, we show the scatter plot
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in Fig. 5.3(a). Along the long axis of the cylinder, around various xy-planes recognized by

their z values, we consider bins of size 0.5σ. In each bin, we calculate the center-of-mass of

all the monomers, and all the crowders. Afterward, we collect the respective center of mass

co-ordinates for monomers and the crowders over 104 configurations which are represented

by blue dots for monomers and red dots for crowders. In Fig. 5.3(a), scatter plots are shown

at z = 25σ, 28σ, 32σ along the long axis of cylinder. The arrows represent the separation

vector between monomer and crowder center-of-masses in that particular xy- plane. The

separation vector rotates around each other along the z-axis of the cylinder. It suggests that

the crowders organize themselves into the helical domain complementary to the feather-boa

backbone.

To quantify the complimentary helicity, we compute the tangent-tangent correlation which

is shown in Fig. 5.3(b). In Fig. 5.2, we have already shown the time average center of

mass loci for monomers and the crowders. We project the respective center of mass loci

for the monomers and the crowders on a xy−plane. Now, we calculate the auto-correlation

〈t̂(z)·t̂(0)〉 for corresponding unit vectors along that plane projected loci. The autocorrelation

function for monomer center of mass is shown in blue ◦. The periodic oscillation confirms

the helical organization of center-of-mass of monomers with a helical pitch ≈ 14.5σ. Next we

compute the cross-correlation function 〈t̂c(z) · t̂(0)〉 between plane projected center-of-mass

loci of monomers and the crowders. The cross-correlation function represented by green 2

shows out-of-phase periodic oscillation relative to 〈t̂(z) · t̂(0)〉 with the same helical pitch.

This establishes the fact that the center of mass orientations for monomers and the crowders

are organized in complementary helical fashion with respect to each other.

In Fig. 5.3(c), we have plotted the probability density profiles for the monomers and

crowders along the long axis of the cylinder in blue ◦ and red 2 respectively. Details of the

computation are defined in the previous chapter. They show out-of-phase density oscillation

along the long axis of the cylinder. Near the two ends of the cylinder, their density profiles

show opposite behavior, i.e, the crowders have the largest density while the monomer density



5.1 Full feather boa model 113

−6

0

6

−6 0 6

z = 25.0(a)

−6

0

6

−6 0 6

z = 28.0

−6

0

6

−6 0 6

z = 32.0

−1

0

1

0 12 24 36 48

(b)

0.5

3.0

5.5

0 12 24 36 48

(c)

y

x x x

〈t̂(
z
)·t̂

(0
)〉

z

〈p
(z
)〉
×

10
5

z

Figure 5.3: (a) Scatter plots of center-of-mass of monomers and crowders are shown in blue and
red dots respectively. The respective center-of-masses are computed at different xy−planes along
the long axis (z) of the cylinder, within a bin of size 0.5σ over 104 equilibrium configurations. The
arrow denotes relative orientation of crowder- centre of mass with respect to that of monomers.
It rotates along cell length. (b) The auto-correlation 〈t̂(z) · t̂(0)〉 of the xy plane- projected center
of mass orientation of monomers (blue ◦), and its cross-correlation with that of crowder center of
mass 〈t̂(z) · t̂(0)〉 (green 2) vary periodically with the length of cylinder. The periodicity gives the
helical pitch ≈ 14.5σ. The arrows on the 〈t̂(z) · t̂(0)〉 graph denote the longitudinal positions at
which the scatter plots are shown in (a). (c) Probability density of the monomers (◦) and crowders
(2) along the long axis of the cylinder.
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depletes to almost zero. This implies the crowders like to wet the wall similar to confined

fluid and monomers of the chain like to stay away from the wall. A similar kind of out-

of-phase modulation for chromosome and ribosome density has been observed in a recent

experiment in rod-shaped bacteria like E. coli [11].

Together, these results show that the emergent helicity of chromosomal morphology not

only is robust with respect to the introduction of crowders but moreover imprints itself on the

spatial distribution of the crowders. In the next section, we consider a more computation-

ally tractable coarse-grained model for feather-boa chain asking the similar morphological

questions.

5.2 The coarse-grained model

After quantifying the organizational and morphological details of model feather-boa chro-

mosome in presence of molecular crowders, we further explore the impact of the degree of

cytosolic crowding on chromosome morphology. To make this study computationally more

tractable, we coarse-grain the feather-boa chain to an effective chain replacing the impact

of side-loops by Gaussian core repulsion between the monomers of the backbone [9, 10, 18].

Strength and interaction range of Gaussian interaction depends on the radius of gyration of

side-loops. This additional repulsion between the monomers of backbone provides effective

soft thickening of monomers that allows the chain to behave like a soft tube yielding effective

bending stiffness along the backbone. Form of Gaussian-core interaction is given by,

Vgc(rij) = a exp[−r2
ij/2Σ2], (5.4)

with Σ2 = 2R2
g. Here, rij is the separation between i-th and the j-th monomer, and Rg is the

radius of gyration of each side loop. Rg = cn
3/5
s σ with c = 0.323, a number consistent with

earlier simulations is assumed [18, 215]. Note that, cutoff value beyond which Gaussian core

repulsion vanishes is considered as four times the width of potential. This is valid for all the
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Gaussian core potentials mentioned in this entire thesis. In this particular case, width is Σ.

We model E.coli chromosome with a circular feather-boa chain having nb monomers in the

backbone, and to each monomer, a side loop consisting of ns monomers is attached. The

backbone along with side loops is assumed to be realized by about 4× 104 monomers where

each monomer has diameter σ = 0.04 mm or 115 bp. We have considered each side loop

consisting of ns = 62 beads, representing 7.2 kbp of DNA that converts to 2.4 mm. The

backbone consists of nb = 636 beads which amounts to length 24.8 mm. Hence, the total

chain length enumerates to l = (nb + nb · ns)σ = 1.6mm, as for bacterial chromosome. Here,

we realize the presence of side loops with Gaussian core potential with following details.

The coarse-grained chain is considered inside a cylinder of the length of approximately

12.2 µm and diameter 1 µm. Such a long cell can be grown inside a confining channel under

specific biochemical and genetic control [9]. This large cell provides augmented possibilities

for the organization of model chromosomes and crowders. In the units of simulation, the

length of such cylinder is L = 320σ and diameter D = 26.67σ. The side loops has radius of

gyration Rg = cn
3/5
s σ = 0.14D which is very small compared to confining cylinder diameter.

Hence, the effective interaction between the side-loops can be modeled as that in bulk. The

strength of Gaussian repulsion between the interacting polymers depends on their topology.

For example, the two very long linear chains in bulk has repulsive strength 2 kBT [215]. On

the other hand, two circular chains repel themselves with strength in the range 2-6 kBT .

Inside the cell, the chromosome has loops as well as plectoneme like structures [15]. Hence, to

incorporate the possibilities of both, we have considered an intermediate value of a = 3kBT .

The monomers of the coarse-grained chain repel the confining walls of the cylinder with

short-range potential Vwall as described for the full feather-boa chain in the previous section.

In addition to Vwall, Gaussian core contribution Vgc(riw) mimics the effective repulsion of

side loops with cylinder walls. Form of Vgc(riw) is given as,

Vgc(riw) =
a

2
exp[−r2

iw/2Σ2]. (5.5)
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Here width Σ = Rg, and strength a/2 is considered. riw represent the separation of a

monomer with the walls of the cylinder. Further, the connectivity between the neighboring

monomers are maintained by a finitely extensible non-linear elastic (FENE) potential

VF (ri+1,i) = −(k/2) ln[1− (ri+1,i/R)2], (5.6)

where k = 30 and R = 1.5 [216]. Self-avoidance between monomers is captured by WCA

potential V (rij) mentioned in the previous section. To summarize the model, the neigh-

boring monomers are bound by FENE potential and the monomers (bonded as well as

non-bonded) in the interaction range repel themselves with WCA and soft core Gaussian

repulsion (V (rij) + Vgc(rij)). Further, the monomers of this coarse-grained chain repel the

confining wall with combined short-range potential Vwall(riw) and soft core Gaussian repul-

sion Vgc(riw).

To investigate the impact of cytosolic crowding on chromosome morphology, we introduce

the non-additive crowders inside the confinement along with the model chromosome. The

crowders are non-interacting between themselves and interact repulsively with the monomers

of the chain and the confining walls of the cylinder. The repulsive interaction between

crowders and the monomers of the chain has two contributions. First, short-range WCA

interaction given by V (rij). Second, soft core Gaussian repulsion with following form,

V c
gc(rij) = a exp[−r2

ij/2Σ2
c ]. (5.7)

Here, rij is the separation between i-th crowder and j-th monomer. a and Σc denote strength

and width of interaction. Σc can be considered as a measure of crowder size. Potential

V c
gc(rij) incorporates the effective interaction between side loops and the polymeric crowders

at the coarse-grained scale. We fix, a = 3kBT same as above. The repulsive interaction of

crowders with the wall also has two components. First is, short-range repulsion Vwall(riw) as

mentioned in the previous section. Second, soft core Gaussian interaction Vgc(riw), capturing



5.2 The coarse-grained model 117

Figure 5.4: (a) Snapshots of the simulations are shown at various Σc. Top to bottom Σc

denotes 2.0σ, 3.0σ, 3.5σ, and 4.0σ respectively. Cylinder length Lz = 12D is considered. (b)-
(c) The morphologies are analyzed using the projected tangent-tangent correlation 〈t̂(z) · t̂(0)〉 in
xy plane of the monomers (green ◦), and cross-correlation 〈t̂c(z) · t̂(0)〉 between monomers and
crowders (brown 2) are shown along the length of the cylinder. (b) Orientations are uncorrelated
at Σc = 2.0σ. (c) Complementary helicity is observed in terms of the out of phase oscillations of
the two correlations at Σc = 3.5σ.

the effect of polymeric crowders. To investigate the impact of this effectively large crowder

size, we consider a smaller number of crowders Nc = 2000. Molecular dynamics simulation

is performed using velocity-Verlet algorithm with step size δt = 0.01 τ . The temperature

of the heat bath is maintained by Langevin thermostat which fixes the temperature T =

1.0ε/kB [161]. As a proxy for varying the degree of cytosolic crowding, we chose the size of

crowder Σc. This governs to 0-th order the strength of induced depletion interaction [217]. In

the following, we thoroughly investigate the impact of crowder size Σc on local morphology

and relative organization of model chromosome and the crowders.

5.2.1 Impact of crowder size on organization

In Fig.5.4(a) snapshots of the simulation are shown at various crowders size Σc. Top to

bottom, as we increase Σc, an apparent change in the relative organization of the model

chromosome and the crowders is observed. When Σc is small, the crowders freely move and

are distributed inside the cylindrical confinement in a homogeneous fashion. Due to the

large cylinder length L = 12D, the chromosome opens up completely. As we increase the Σc,
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the crowder and the monomers of the chain start to fell the repulsion, thus begin to avoid

each other. Around Σc = 3σ, due to repulsion, the spatial separation between the crowders

and the chromosome becomes apparent. The crowders start to push the model chromosome

towards the helicoid shape. At Σc = 3.5σ, a clear complementary helical organization of

chromosome and the crowders is observed as shown in Fig.5.4(a). Further increase of Σc

leads to more compression of the chromosome due to crowders, thus increasing the local

monomeric density. This augmented local density of monomers expels the crowders towards

cap regions of the cylinder leading to longitudinal separation of monomers and the crowders

along the long axis of the cylinder. Consequently, the chromosome occupies the central

region and gets compressed by crowders which localize around both the cap regions.

5.2.2 Complimentary helicity

Around intermediate values of Σc, the complementary helical organization of crowders and

the chromosome is observed. The helicity for monomer center-of-mass orientation is quan-

tified in terms of tangent-tangent correlation function 〈t̂(z) · t̂(0)〉 along the plane projected

average center of mass loci of monomers of the chain. First, the average center of mass

loci of all the monomers is computed. The averaging for computation of center of mass

is performed over 104 equilibrium configurations separated from each other by 103τ . Then

the resulting mean loci are projected on the xy-plane assuming z being the long axis of the

cylinder. Afterwards computation of 〈t̂(z) · t̂(0)〉 is performed in the xy-plane. The compu-

tation scheme is similar to the previous section. Further, we calculate the mean center of

mass loci for crowders similar to monomers. Then, cross-correlation 〈t̂c(z) · t̂(0)〉 of plane

projected center of mass loci for the crowders and the monomers is computed. The two plots

at different Σc are shown in Fig. 5.4(b)-(c). At small Σc, we observe the correlation between

plane projected monomer center of mass loci (green ◦) and cross-correlation between plane

projected center of mass loci of monomers and the crowders (brown 2) do not show any

structures (see Fig. 5.4(b)). At intermediate value of crowder size Σc = 3.5σ, we see out
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Figure 5.5: (a) Transverse spatial segregation σ⊥ (◦) and the corresponding root mean squared
fluctuations δσ⊥ (2) as a function of crowder size Σc. (b) Change in the longitudinal separation σ‖
(◦) and the corresponding root mean squared fluctuations δσ‖ (2) with Σc.

of phase oscillation with the same periodicity between the two correlation functions which

implies the fact that center of mass for monomers and the crowders are organized in comple-

mentary helical fashion (see Fig. 5.4(c)). The two completely different behavior in Fig. 5.4

(b) and (c) illustrates the impact of crowder size on the organization of the chromosome and

the crowders. First of all, a minimal crowder size (Σc = 3σ) is required to generate enough

repulsion between crowders and the chromosome to nucleate the formation of a complemen-

tary helical organization of two. Further increase of crowder size, Σc ≥ 4σ, leads to full

longitudinal separation of crowders and the chromosome.

5.2.3 Transverse and longitudinal segregation

As we have observed, at small Σc, crowders were homogeneously distributed and the chro-

mosome remains structure-less. With the increase of Σc to intermediate values, the crowders

start to push the chain leading to transverse (radial) segregation of crowders and the chro-

mosome that results in the complementary helical organization of two. Further increase in
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Σc repels the chain strongly, hence augmenting the local monomeric density of chromosome.

Due to this, at large crowder size, we observe longitudinal segregation of crowders and the

chromosome along the long axis of the cylinder. The transverse and the longitudinal spatial

segregation are quantified in terms of the following order parameter.

σ‖,⊥ =

〈∣∣∣∣ρm − ρcρm + ρc

∣∣∣∣〉 .
The quantities σ‖,⊥ are the mean values of the expression on the right side measured

over respective bins. The cylinder is binned into transverse and longitudinal bins. During

the transverse binning, the cylinder is binned into co-axial 10 cylindrical shells. In the

longitudinal binning, similar to the previous section, we bin the cylinder into 120 consecutive

disks along the long axis of the cylinder. ρm,c represents the local density of the monomers

and the crowders within each bin respectively. The local densities are normalized by the

respective total number of monomers Nm and the crowders Nc.

To quantify the transverse spatial segregation of monomers and the crowders, we restrict

our calculation to the region of the cylinder where the chromosome resides. In that particular

spatial region, we compute σ⊥ and average it over 104 well-separated equilibrium configura-

tions. Similarly, the longitudinal separation between crowders and chromosome is quantified

by computing σ‖ and averaging it over same number of configurations. In Fig. 5.5, we have

presented the change of σ‖,⊥ with respect to crowder size Σc. In the disordered phase (low

Σc), σ‖,⊥ have small value, and with increase in Σc, as segregation sets in, the respective

order parameters monotonically increase. The respective fluctuations (root means square

deviations) are defined as, δσ‖,⊥ =
√
〈σ2
‖,⊥〉 − 〈σ‖,⊥〉2. They show little increase around

the cross-over points between the two different segregation regimes. The radial segregation

sets in around Σc = 2σ, which occurs before the onset of longitudinal segregation around

Σc = 3σ. At last, beyond Σc = 4σ, full macro-phase longitudinal segregation of chromosome

and the crowders is achieved.
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5.2.4 Change in helicity

An increase in crowder size causes the helical morphology of the chromosome. The change

in helicity is associated with two phenomena, e.g, spatial separation of crowders and the

chromosome, and the resultant compression of the chromosome by crowders. Both these

effects get augmented as we increase the Σc. We quantify the helical orientation of the

chromosome in terms of tangent-tangent correlation function 〈u(s)·u(0)〉 along the backbone

of chain. The separation along the chain contour is represented by s. We chose half the chain

length nbσ/2, the longest separation along the long axis of cylinder for the computation of

〈u(s) ·u(0)〉. To enumerate the number of turns in the helical chromosome, plane projected

tangent vectors along the backbone chain u(s) have been used. At small Σc, the chromosome
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Figure 5.7: Extension of chromosome along the long axis of cylinder R‖ is plotted against Σc.

remains open and the tangent-tangent correlation does not show any structures as shown in

Fig. 5.6(a). With increase in Σc, the helicity in the chromosome sets in which is manifested in

terms of periodic oscillations in the 〈u(s) ·u(0)〉. With further increase in Σc, the oscillation

in terms of amplitude and the number grows. The periodicity of the oscillation determines

the pitch of the chromosome helix. We compute the structure factor as, S(q) = 1
2Π

∫ lh
0
〈u(s) ·

u(0)〉eis·qds. Here, lh = nbσ/2 denote half the chromosome length and q is reciprocal to

length. S(q) shows a clear peak at q = qp that determines the total number of turns in the

helix by expression nt = 2qp (Fig. 5.6(b)). Factor of 2 is due to fact that we have calculated

the tangent-tangent correlation for half the chain length (nbσ/2) of circular chromosome.

In Fig. 5.6(c), we have shown the increase in nt as Σc increases. In the complimentary

helical organization, we have 6 turns in the chromosome helix which increase to 8 in the

full-longitudinally segregated regime.

5.2.5 Chromosome extension along long axis

In Fig. 5.7, we have shown the variation of chromosome extension along the long axis of the

cylinder while increasing the crowder size. As we have discussed earlier, increasing crowder

size Σc repels the chain with increasing strength pushing it to the center of the cylinder from
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both ends. Consequently, the extension of the model chromosome along the long axis of

the cylinder R‖, monotonically decreases with an increase in Σc. Initially, at small crowder

size (Σc ≤ 3σ) before the onset of formation of helicoid morphology of chromosome, the

reduction in size R‖ is small with the increase in Σc. In the regime where complimentary

helix of crowders and chromosome form, 3σ < Σc < 4σ, the reduction in chromosome size

R‖ occurs very sharply with increase in Σc. With further increase in Σc, decrease in R‖ slows

down.

5.3 Conclusion

In this chapter, we considered a coarse-grained model of the bacterial chromosome as a

feather-boa polymer. Under the cylinder confinement typical to an E.coli cell, we introduced

ideal gas like crowders to investigate the impact of cytosolic crowding on the organization

of chromosome. Crowders are non-interacting between themselves, however, they repel the

feather- boa chain with short-range interaction. Our molecular dynamics simulation revealed

such crowders do not impact the helical morphology of feather- boa chain which is reported

in the previous chapter. In fact, the center-of-mass orientation of crowders and chromosome

adopts a complementary helical organization. Due to this, their corresponding local densities

show out-of-phase periodic oscillation along the long axis of the cylinder. Such behavior is

similar to chromosomal and ribosomal density modulation observed in rod-shaped bacteria,

e.g., E.coli [11]. In addition, crowders and chromosomes show the opposite behavior at the

cell ends. The crowders wet the two caps of the cylinder however monomer density vanishes

there.

The cytosolic environment is populated with proteins (crowders) of various sizes. To

systematically investigate the impact of crowder size on morphology and size of the chromo-

some, we considered a computationally more tractable model. We coarse-grained a circular

feather- boa polymer by replacing the effects of side loops with Gaussian- core repulsion
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between monomers of its backbone. In the presence of small crowders, such a chromosome

opens up completely which is allowed by the long cylindrical cell. Such crowders remain

homogeneously distributed in the cellular volume. In the range of intermediate crowder size,

transverse (radial) segregation of chromosomes and crowders lead to the complementary he-

lical organization of two. Further increase in crowder size causes longitudinal segregation

along the long axis that leads to complete expulsion of crowders by helical chromosome to-

wards opposite cap regions of the cylinder in a symmetric fashion. Consequently, crowders

compress the chromosome to nucleoid like subvolume in the center of the cell. With the

increase in crowder size, chromosome extension along the long axis of the cylinder decreases

that lead to an increase in the number of helical turns in the chromosome morphology. The

current study illustrates the interesting physics due to interplay between crowding, confine-

ment and chromosome morphology.

In the next chapter, we will investigate the impact of crowder density on relative organi-

zation and size of model chromosome.



6 Impact of crowder density on the morphology of

bacterial chromosome

6.1 Introduction

In the previous chapter, we studied the impact of various sizes of molecular crowders in

the morphology of bacterial chromosome in rod-shaped bacteria. As we have seen, the

smallest crowders can penetrate all the cellular space irrespective of whether it is occupied

by chromosome or not. However, for larger crowders, with sizes larger than the mesh-size

in the chromosomal region, the molecular crowders cannot penetrate such zones. Thus they

undergo radial or longitudinal segregation with respect to the chromosome. As a result the

crowders further compacts the chromosome, and show interesting relative organization inside

the bacterial cell. In this chapter, we focus on the impact of the variation of crowder density

on the chromosome organization.

As has been discussed before, the bacterial chromosome of E. coli comprises of a 4.6 Mbp

(1.6 mm) long negatively supercolied circular DNA and associated proteins. It is suspended

in a crowded cytosol to form the nucleoid, a membrane-less organelle, occupying a central

sub-volume of the cell [194]. The cell envelop, which has a sphero- cylindrical geometry

confines the chromosome along with the cytosolic fluid and other components of the cell. A

typical wild type E. coli cell has a diameter of 0.8µm and length of 2-4µm. The long DNA

chain has to undergo a large compaction of minimum 103 fold. This requires a functional

organization as the DNA segments must be available for gene expression, regulation, and

125
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DNA replication [12, 124, 126, 127]. In the previous chapter, we have discussed about the

four major physical and chemical mechanisms through which such compaction and organi-

zation is usually achieved [195, 196]. The confinement due to cell envelope brings in a large

degree of compaction. However, this is not sufficient, as can be appreciated by recognizing

that the nucleoid only occupies 1
4
-th of the available cell volume [126]. Second, the negative

supercoiling of DNA yields folded hair-braid like structures known as plectonemes [15], which

greatly reduces the overall chromosome size [15]. Third, the impact of DNA- associated pro-

teins. For example, cross- linking of DNA segments by nucleoid associated proteins (NAPs)

brings in contour-wise separated genomic sequences in spatial proximit [125–127, 129, 197].

In addition, active loop extrusion by structural modification of chromosome (SMC) proteins

contributes to formation of large chromosomal loops [86]. Such loop formation leads to

further compaction of the chromosome. These loops are observed in electron microscopy

experiments [26], and using chromosome confirmation capture techniques and it Hi-C vari-

ants [144, 145]. Fourth, and the reason which is mostly relevant to the focus of this chapter,

is the depletion effect due to molecular crowders in the cytosol [200–202]. Earlier simulation

and experimental studies consisting of molecular crowders and polymer showed, compression

of the polymer allowing more space to crowders [203, 204]. Within an equilibrium picture,

this increases the overall entropy of the system. In equilibrium, depletion forces drive the

big molecules, e.g., the polymer towards the boundary of confinement. In contrast, bacterial

nucleoid floats at the center of the cell with molecular crowders locating mostly near the

cell envelop. In a living cell the molecular crowders are produced in a region around the

chromosome, thereby generating a density gradient maintaining the central location of the

nucleoid.

Experiments during the last decade showed a helical organization of the chromosome with

a few turn to be ubiquitous in live bacteria with cylindrical geometry [13]. The feather-

boa model of chromosome, with polymeric loops attached to a backbone chain, describes

chromosomal shape and size observed in bacteria [18, 19]. As has been shown recently, the
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presence of molecular crowders further compresses the chromosome to maintain its helicoid

shape even in long filamentous cells [9, 10].

In the previous chapter, we have investigated the combined influence of confinement, and

molecular crowding on chromosomal organization, utilizing both the full feather-boa model

of chromosome, and an effective coarse-grained model. We studied in detail the impact of

crowder size on the relative organization, keeping the number density of crowders unchanged.

While the small crowders permeate the whole cellular space without impacting the chromo-

some appreciably, at intermediate crowder size, we observed a remarkable complementary

helicity of crowder organization with respect to the helicoid shape of the chromosome. To

be consistent with the previous chapter, here we use the same cylindrical confinement and

molecular crowding to investigate the impact of crowder density, instead of the crowder size,

on the relative organization of chromosome and crowders. We stick to the model of non-

additive crowders that repel against the model chromosome and confinement boundaries,

but otherwise are considered an ideal gas.

The main results of this chapter are as follows. Within the full feather-boa model, the

chromosome is organized in a helical fashion along the long axis of the cylinder. For a range

of crowder densities, the crowder center of mass occupies spatial positions complimentary

to the local center of mass of chromosome, along the cell length. This is the complimentary

helical organization of the chrosomome and crowders. Associated with this, the crowders and

monomers show density modulations along the cell- length, with out- of- phase periodicities.

This observation is reminiscent of a similar out-of-phase density modulation of ribosomes

with respect to the chromosome in E. coli bacteria [11]. Further, to incorporate the polymeric

nature of the relatively longer protein crowders, we use an additional Gaussian- core repulsion

between the crowders and monomers and confinement. This additional repulsion enforces

an excess degree of segregation between the crowders and chromosome, and an additional

compressive force is generated on the chromosome causing further deformation.

To investigate the physical impact of the variation of crowder density on the size and shape
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of the chromosome in quantitative detail, we use a further coarse- graining of the chromosome

model. This is computationally less expensive in numerical simulations than the full feather-

boa chain. In this, the side loops of the feather-boa model are replaced by an additional

Gaussian- core repulsion between the monomers of backbone. As has been shown before,

this effective model captures the emergent helical morphology of the chromosome when

confined to a cylindrical cell [10, 18, 19]. In the previous chapter, changing the crowder size,

we have shown an onset of spatial segregation between crowders and chromosome. In an

intermediate range of crowder size, the transverse segregation of chromosome and crowders

led to a complimentary helical organization of the two. Further increase in crowder size led

to longitudinal segregation of the crowders and chromosome, with crowders localizing near

the caps compressing the chromosome to the center of the cell.

In this chapter, we fix the length and radius of the cylinder, and the size of the crowders

to a value at which the complimentary helicity is observed in the previous chapter, to probe

the impact of the change in crowder density. We investigate the resultant change in the

organization of crowders and the chromosome. At small density of crowders, in a long

enough cell, the chromosome opens up and the crowders get uniformly distributed across

cylindrical volume. As we increase the crowder density, the chromosome starts to adopt a

more compressed helical morphology, and crowders start to organize into a complimentary

helix with respect to the chromosome. This happens via a transverse segregation between the

chromosome and crowders. Further increase in crowder density leads to a strong compression

of the chromosome via a longitudinal segregation of the chromosome and crowders. In this

regime, the chromosome expels crowders to both the ends of cylinder along its long axis in

a symmetric fashion. The full feather-boa chain and the effective coarse grained model with

intermediate crowder densities share the property of reciprocal helical organization of the

local center of mass of the crowders with respect to the chromosome, along the cell length.

We characterize the change in helicity in terms of tangent- autocorrelation, winding number,

turning number and the number of kinks.
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In the following we present the models that we consider and results derived from them. In

Sec. 6.2 a full feather-boa chain is considered in the presence of non-additive crowders that

repel against the chain and the confinement with a local Weeks- Chandler- Anderson (WCA)

potential. Sec. 6.3 describes the impact of an additional Gaussian core repulsion associated

with the crowders, to incorporate the polymeric nature of the protein crowders up to the

simplest approximation. In Sec.6.4 we consider the coarse- grained chain to investigate the

impact of changing crowder density in greater detail. Finally we conclude summarizing our

main results in Sec. 6.5.

6.2 Feather boa model : change in crowder density

Here we consider the feather boa polymer under cylindrical confinement in the presence of

cytosolic crowders. The chain properties and confinement details are the same as mentioned

in the previous chapters. The feather-boa chain consists of a backbone of 200 monomers,

attached to side- loops of 40 monomers. This makes backbone length lb = 200σ and side

loop length ls = 40σ. The connectivity between the neighboring monomers is maintained by

harmonic potential,

Vb =
A

2
(di − σui)

2, (6.1)

where di = ri+1 − ri, ri is the position of i-th bead, and ui = di

|di| is the local tangent vector

to the chain. All the non-bonded monomers repel each- other with the short range WCA

potential,

βV (rij) = 4ε[(σ/rij)
12 − (σ/rij)

6 + 0.25] (6.2)

for rij < 2
1
6σ and βV (rij) = 0 otherwise. rij is the separation between i-th and j-th

monomer [157]. The length and the energy scales are set by σ, and ε respectively, and
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Figure 6.1: Snapshots of simulation are shown at various ρc. The backbone is shown in thick
blue colour and side loops are shown in thin green line. The crowders are shown by red dots. (a),
(b), (c), and (d) represents configurations at ρc = 0.01, 0.09, 0.17 and 0.24 respectively.

together they set the time scale τ = σ
√

m
ε

. We choose A = 100ε/σ2 to keep the bond-

length fluctuations within 1%.

The cylinder wall along with top and bottom surface (the caps at two ends of cylinder)

repel all the monomers with short range interaction

βVwall = 2πε

[
2

5

(
σ

riw

)10

−
(
σ

riw

)4

+
3

5

]
, (6.3)

when riw < σ and 0 otherwise. Here, riw is the separation of monomer from the wall. The

cylindrical confinement is realized with parameters, D = 29.5σ and L = 50.74σ, where D

and L is the diameter and length of the cylinder respectively. These set of parameters yields
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the monomer number density equal to approximately ρmσ
3 = 0.24. The form of all the

potential used in this section is consistent with previous chapters, that led to emergence of

spontaneous helicity in the cylinder- confined feather-boa model of chromosome.

To study the impact of molecular crowding due to cytosol, we consider the so-called

non-additive crowders along with fethar-boa chain. The crowders do not interact between

themselves but repel the monomers of the chain with short range WCA interaction V (rij),

where rij is the separation between i-th monomer and j-th crowder. Like monomers of the

chain, the wall-crowder interaction is short ranged repulsion given by Vwall(riw). We change

the number density, ρc = 4Nc/(πD
2L) of the crowders by changing the total number of

crowders Nc keeping the geometry unchanged.

We perform molecular dynamics simulations following velocity-Verlet algorithm in pres-

ence of Langevin heat bath. The Langevin thermostat is characterised by an isotropic friction

constant γ = 1/τ fixing the temperature at T = 1.0ε/kB as implemented by ESPReSo molec-

ular dynamics package [161]. For numerical integration is performed choosing time steps of

step-size δt = 0.005τ . The simulations are performed for 107 to 5× 107 steps to equilibrate

the feather-boa chain in absence of crowders. After that, the crowders are slowly introduced

and equilibration is performed over further 107 to 5× 107 steps. For the analysis of equilib-

rium properties, data are collected over further 104 configurations which are separated from

each other by 5× 103τ .

In Fig. 6.1, a few representative equilibrium configurations are plotted for a system with

number of crowders Nc = 500, 3000, 6000 and 8200 which corresponds to number density

ρcσ
3 = 0.01, 0.09, 0.17 and 0.24 in (a), (b), (c), and (d) respectively. The blue beads

representing the backbone of the feather-boa chain shows spontaneous organization into

helix at all the crowder densities considered here, as in Ref. [18]. The helical morphology of

the backbone of feather-boa chain is quantified in the following section.
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Figure 6.2: The tangent-tangent correlation, 〈u(s) · u(0)〉 along the backbone of the chain is
shown where s represents the separation along the backbone. (a) shows plot at smaller ρc compared
to (b).

6.2.1 Backbone helicity

The degree of helical morphology of the chromosome is quantified in terms of tangent-tangent

correlation function 〈u(s) · u(0)〉 of unit bond vectors along the backbone contour of the

feather-boa chain (Fig.6.2). The separation between contour segments along the backbone

is denoted by s = |i − j|σ, with i, j = 0, 1, 2...199. As mentioned above, the averaging is

performed over 104 equilibrium configurations separated from each other by 5 × 103τ . To

count the number of turns we use the radially projected tangent vector u(s). We compute

〈u(s)·u(0)〉 at various number densities ρc of crowders. For better visibility, we show them in

two plots. In Fig. 6.2(a), the correlation functions are shown for smaller ρc, and in Fig. 6.2(b)

the same is shown for larger ρc. Throughout the span of ρcσ
3 from 0.01 to 0.24, we find

periodic oscillations of correlation functions indicating helical morphology of the backbone.

The relative deformation at the largest density is long- lived and is maintained by enhanced

kinematic barrier.

In Fig. 6.3, structure factors S(q) corresponding to tangent-tangent correlations 〈u(s) ·

u(0)〉 are shown at different ρc. The structure factor is evaluated by performing Fourier

transform of correlation function, S(q) =
∫ lb/2
−lb/2〈u(s) · u(0)〉eisqds. It shows peak at q = qp
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Figure 6.3: Structure factor S(q) for 〈u(s) · u(0)〉 is plotted against q. (a) shows the plot for
smaller ρc values and (b) shows the same at larger ρc values.

corresponding to the turn number nt = qp at all ρc values shown in Fig. 6.3(a) and (b). All of

them shows nt = 3 leading to a helical pitch λmax = lb/nt. The three turns could be directly

counted from the number of periodic oscillations in Fig.6.2. The amplitude of S(q) at its

maximum q = qp represents the relative measure of the degree of helicity, while the width of

the peak is a measure of the statistical dispersion of the structure. The plots in Fig. 6.3(a)

and (b), show almost same amplitude and width which implies that the backbone helicity

does not change with changing density of crowders ρc. As we show later, in Sec. 6.3, this

feature depends on the size of the crowders. Consideration of polymeric nature of the protein

crowders, indeed, brings about significant modification of the chromosomal organization with

crowder density.

6.2.2 Center of mass organization

In this section, we consider the center of mass organization for all the monomers and crow-

ders along the length of the cylindrical confinement. For this purpose, we divide the cylinder

into small disk-like bins of height 0.5σ along it length. Center of mass of the monomers and

crowders are evaluated within these bins, and averaging is performed over 104 equilibrium

configurations. The z-direction represents the long axis of the cylinder, while the xy-plane is
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Figure 6.4: Center of mass for all the monomers and crowders are shown in blue and pink
respectively. Different plots are at ρcσ

3 value, 0.01 (a), 0.03 (b), 0.06 (c), 0.07 (d), 0.12 (e), 0.14
(f), 0.17 (g), 0.2 (h) and 0.24 (i) respectively.

in the radial direction. In Fig. 6.4, the mean center of mass position of monomers is shown in

blue and that for crowders is shown in pink. The plots in (a)-(i) are at crowder number den-

sities ρcσ
3 = 0.01, 0.03, 0.06, 0.07, 0.12, 0.14, 0.17, 0.2 and 0.24, respectively. They organize

spontaneously into complimentary helical fashion. For the ρcσ
3 ≤ 0.2, the complimentary

helical arrangement for monomers and the crowder center of mass appears very nice. This

nice organization gets disrupted partially at the highest density, ρc = 0.24, because of large

kinematic barrier.

Next, we quantify the complimentary helical organization of the monomer and crowder

center of mass in terms of tangent-tangent correlation along the respective mean center
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Figure 6.5: The correlation 〈t̂(z) · t̂(0)〉 of the xy− plane projected average center of mass
orientation of monomers (green #), and it’s cross-correlation 〈t̂c(z) · t̂(0)〉 with that of crowder
center of mass loci (brown 2) is plotted. Different plots are at ρcσ

3 value, 0.01 (a), 0.03 (b), 0.06
(c), 0.07 (d), 0.12 (e), 0.14 (f), 0.17 (g), 0.2 (h) and 0.24 (i) respectively.

of mass loci, and the cross-correlation of monomer center of mass with crowder center of

mass loci. For this purpose, we project the two sets of center of mass loci onto the xy-

plane. We use these to compute the tangent vectors t̂(z) and the corresponding tangent-

tangent correlation function 〈t̂(z) · t̂(0)〉. z here represents the location of unit vector along

the long axis of the cylinder. For the monomers, the auto-correlation function is shown

in Fig. 6.5(a)-(i) denotes by green #. This shows periodic oscillations capturing the helical

turns. Next, we consider the relative orientation vector of crowder center of mass with respect

to monomer center of mass t̂c(z) at different z-planes. We calculate the cross- correlation

〈t̂c(z)·t̂(0)〉, where t̂(0) denotes the unit vector between the monomer center of mass positions.

The cross-correlations at different crowder densities are shown in Fig. 6.5(a)-(i) denoted by

brown 2. The cross-correlations show out-of-phase oscillations compared to the tangent

auto-correlation functions in monomers. However, they share the same periodicity. This
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Figure 6.6: Probability density p(z) is plotted along the z axis of cylinder. The density for
monomers are denoted by monomers (crowders) green # (brown 2). (a)-(i), ρcσ

3 value corresponds
to 0.01, 0.03, 0.06, 0.07, 0.12, 0.14, 0.17, 0.2 and 0.24 in alphabetical order.

clearly establishes the fact that the center of mass loci for monomers and the crowders are

organized in a helical fashion complimentary to each other.

6.2.3 local probability density

Further, their local probability densities along the cylinder length shows periodic density

modulations. They share the same periodicity but oscillates out of phase, similar to the

behavior of tangent correlations established above. The crowders wet the two caps of the

cylinder. This is shown in terms of the maximum (minimum) in crowder (monomer) density

at the two caps at z = 0, L. The connectivity between the monomers, and possibility of

the polymer to explore more conformations if it stays away from the wall leads to the low

monomer density at the two caps. On the other hand, the hydrostatic pressure pushes a

layer of crowders on the wall, a behavior shared by confined simple liquids. The out- of-

phase oscillation of the two probability densities are observed at all densities of crowders

examined here.
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In this section we have investigated the impact of crowders on the morphology of full

feather-boa model of chromosome and relative organization of crowders with respect to

chromosome. The crowders have short range repulsion with chromosome which didn’t lead

to much deviation of chromosome morphology from the helical organization, with increasing

crowder density.

In the following section we consider the polymeric nature of the protein crowders within

the simplest approximation, and examine the effect of increasing their density on the feather-

boa chain.

6.3 Feather-boa chain : crowders with additional Gaussian- core

repulsion

The effective interaction between the center of mass of long polymers has a simple descrip-

tion in terms of an approximately Gaussian repulsion [215]. Although monomers of self-

avoiding chains cannot cross each- other, the center of mass can, by undergoing conforma-

tional changes while crossing each other. This effective potential or free energy is entirely

due to entropy of the participating chains. The strength of this potential is around 2kBT ,

and the range is defined by the radius of gyration of the polymers Rg. Instead of linear

chains, if one considers circular polymers, the strength of effective repulsion can be few

times larger [218]. To incorporate the polymer nature of protein crowders, in this section,

we assume an additional repulsion between the monomers and crowders:

Vgc(rij) = E0 exp[−r2
ij/2Σ2

c ]. (6.4)

Here the separation between particles is rij. The parameters E0 and Σc denote the strength

and range of the Gaussian core repulsion. We use Σc = σ, and consider E0 = 2kBT and

3kBT . Similarly an additional Gaussian core repulsion as in Eq.(6.4) is used between the

crowders and the walls, but with half the range. In all other terms, the polymer, crowder
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(a) (b) (c)
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(g) (h) (i)

Figure 6.7: Snapshots of the simulation at various parameter values are presented. The back-
bone monomers are shown in blue, side loops are in greed and the crowders by the red dots.
For Gaussian core interaction, E0 = 2kBT , Σ = σ are used. (a)-(i), ρcσ

3 value corresponds to
0.01, 0.03, 0.06, 0.07, 0.12, 0.14, 0.17, 0.2 and 0.24 in alphabetical order.

and confinement model remains exactly the same as in the previous section. We use this

model to explore the impact of changing crowder density ρc (Figures6.7, and 6.8). In the

figures, the backbone of the feather-boa chain is denoted in blue, and the side loops in green.

The crowders are shown in red. Clearly, in contrast to the results in the previous section, the

relatively larger size of the polymeric crowders show local segregation between chromosome

and crowders.

In Fig. 6.7, the snapshots of the simulation with E0 = 2kBT at various crowder density ρc

are presented. Similar plots with E0 = 3kBT are presented in Fig. 6.8. In this case, we observe

significant change in organization with increase in crowder density. The chromosome and
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Figure 6.8: Snapshots of the simulation at various parameter values are presented like Fig. 6.7.
For Gaussian core interaction, E0 = 3kBT , Σ = σ are used. (a)-(i), ρcσ

3 value corresponds to
0.01, 0.03, 0.06, 0.07, 0.12, 0.14, 0.17, 0.2 and 0.24 in alphabetical order.

crowders show mostly radial (transverse) segregation at lower densities, which transforms

into mostly longitudinal segregation as the density of crowders increase. A broad range of

densities show coexistence of both kind of segregations carrying strong hysteresis. In this

regime, the actual organization observed depends on the initial condition. Also, we find

organization in which crowders and chromosome get segregated in a partially longitudinal

and partially transverse manner.

In the following we investigate the impact of increasing crowder density in a more system-

atic manner, using a computationally more tractable coarse-grained model of the chromo-

some.
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6.4 Coarse-grained model

Here we consider a computationally more tractable model, in which we coarse-grain the the

feather-boa chain to an effective chain and investigate the impact of density of cytosolic

molecular crowders. The coarse-graining of the feather-boa chain is performed by replacing

the side loops with an additional Gaussian core repulsion between the monomers of the

backbone [10], as described in the previous chapter. Strength and interaction range for this

Gaussian interaction depends on topology of chain and radius of gyration of side-loops [215,

218]. The introduction of soft core Gaussian potential effectively thickens the backbone

to a soft tube, incorporating approximately the repulsive cloud of monomers due to side-

loops. The form of the Gaussian-core repulsion between backbone monomers is given by,

Vgc(rij) = E0 exp[−r2
ij/2Σ2], with Σ2 = 2R2

g. Here, rij denotes the separation between i-th

and the j-th monomer and Rg is the radius of gyration of each side loop, Rg = cn
3/5
s σ with

c = 0.323 and ns denoting the number of beads in the Feather-boa side loop [18].

The 4.6 Mbp (1.6 mm) circular genome of E. coli can be modeled as a circular feather-boa

chain with the backbone consisting of nb monomers, each of which is connected to a side loop

of ns monomers. A use of nb = 636 and ns = 62 gives a total chain length 39494σ. Comparing

it with the E. coli DNA gives an effective bead diameter σ ≈ 116 bp= 0.04µm. Recent

experiments utilized filamentous E. coli cells that grow up to about 30µm to investigate

the impact of confinement [9]. Here we consider the circular model chromosome inside a

cylindrical confinement corresponding to a cell- length of L = 12.8µm = 320σ and diameter

D = 1µm= 26.67σ. The side loops has radius of gyration Rg = cn
3/5
s σ = 0.14D in terms of

this cylinder diameter.

As described before, the effective interaction between self- avoiding polymers can be de-

scribed approximately in terms of a Gaussian core repulsion. However, the repulsion strength

depends on whether the chain is open or close, as well as on their topology. For long linear

chains in bulk, the repulsion strength is 2kBT , while for circular chains it varies from 2-6 kBT .
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We fix an intermediate value for strength E0 = 3kBT to account for loops as well as linear

chain- like plectoneme structures. In the interaction between the backbone monomers and

walls, we consider the thickening due to side- loops. Thus in addition to Vwall we use a Gaus-

sian core repulsion between the backbone monomers and walls, Vgc(riw) = E0
2

exp[−r2
iw/2Σ2]

with Σ2 = R2
g, i.e., half the strength and range with respect to the additional repulsion be-

tween the backbone monomers due to side- loops. Here, riw is the separation of the monomer

with the walls of the cylinder.

As before, we use non-additive crowders that does not interact between themselves, but

repel the chromosome with short range WCA potential and an additional Gaussian-core po-

tential, V c
gc(rij) = E0 exp[−r2

ij/2Σ2
c ], where rij is the separation between interacting crowder

and the monomer of the chain. We use E0 = 3kBT and Σc = 3.5σ and vary the number

density of crowders ρc = 4Nc/(πD
2L). We vary the density ρcσ

3 over an order of magnitude

from 0.002 to 0.04 by using the number of crowders Nc = 200, 400, 800, 1200, 1600, 2000,

2400, 2800, 3200, 3600, 4000, 4800, 5600, 6400, 7200. In the rest of this section we use the

ρcD
3 as a dimensionless measure of density.

We use molecular dynamics simulations performed using velocity-Verlet algorithm with

step size δt = 0.01 τ . The temperature of the heat bath is maintained by a Langevin

thermostat which fixes the temperature T = 1.0ε/kB, as implemented by the ESPResSo

package [161]. In the simulations, the configurations are equilibrated over 107τ and data is

gathered over next 2× 104 configurations at a separation of 103τ .

6.4.1 Impact of crowder densities on organization

In Fig. 6.9, snapshots of the equilibrated configurations are shown at various crowder densi-

ties. The red line represents the coarse-grained polymer and the non-additive crowders are

shown by blue beads. Fig. 6.9(a), shows the configurations at lower crowder densities. The

first snapshot from the top, at ρcD
3 = 42, displays an open conformation of the chromosome.

Due to small density (Nc = 400), the crowders get homogeneously distributed throughout
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(a) (b)

Figure 6.9: Snapshots of the simulation is presented. The chromosome is shown in red line
and crowders in blue dots. (a) Top to bottom, snapshots are shown at crowder densities ρcD

3 =
42, 85, 127, 170, 212, 255 and 297 respectively. (b) Top to bottom, snapshots are shown at densities
ρcD

3 = 339, 382, 424, 509, 594, 679 and 764 respectively.

the cylindrical cell and the chromosome opens up. At higher density, ρcD
3 = 85 and 127

(Nc = 800 and 1200) the figures show a onset of a weak helical organization of chromosome.

At ρcD
3 = 170, 212 and 255 the helical organization gets more pronounced, and we find

a remarkable longitudinal and radial segregation of chromosome and crowders. The longi-

tudinal segregation locating a higher density of crowders near the cylinder caps provide a

compressing pressure to stabilize the helical organization of the chromosome. The radially

segregated crowders at the mid- section of the cell organize into a distinctive helical shape,

running complementary to the chromosomal helix. Note that the complementary helicity

observed at density ρcD
3 = 212 correspond to the same observation at Σc = 3.5σ discussed

in the previous chapter. At further higher density, the chromosome gets more and more

compressed as the segregation becomes predominantly longitudinal. Note that the crossover

in segregation from a predominantly radial to a predominantly longitudinal with increasing

crowder density is in agreement with the prediction in Fig.6.14. Unlike in the previous chap-

ter, where we observed complete longitudinal segregation of crowders from the chromosomal
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Figure 6.10: The correlation 〈t̂(z) · t̂(0)〉 of the xy-plane projected average center of mass
orientation of monomers (green ◦), and it’s cross-correlation 〈t̂c(z) · t̂(0)〉 with that of crowder
center of mass loci (brown 2) is plotted. Different plots are at ρcD

3 value, 42 (a), 85 (b), 127 (c),
170 (d), 212 (e), 255 (f), 339 (g) respectively.

region, small number of crowders remain localized along a line along the long axis.

6.4.2 Complimentary helicity

In the intermediate range of crowder density (127 ≤ ρcD
3 ≤ 339), we found complimentary

helical organization of crowders and the chromosome. In this section, we quantify such

organization. For this purpose we consider disk-shaped bins along the long axis of the

cylinder, the z-axis. We find the center of mass position of the monomers and crowders in

each bin projected onto the radial xy-plane. The separation vector of these center of mass

positions in consecutive bins are used to obtain local tangent vectors t̂(z) for monomers and

t̂c(z) for crowders. We use them to calculate the autocorrelation function 〈t̂(z) · t̂(0)〉, and

the cross-correlation function 〈t̂c(z) · t̂(0)〉. The averaging in the correlations are performed

using 2× 104 equilibrated configurations. These correlations are shown in Fig. 6.10.
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Figure 6.11: (a) Measure of transverse spatial segregation of chromosome and crowders σ⊥ is
shown in pink ◦ along with corresponding root mean squared fluctuation δσ⊥ (blue 2) as a function
of ρcD

3. (b) Measure of longitudinal spatial segregation of chromosome and crowders σ‖ is shown
in pink ◦ along with corresponding root mean squared fluctuation δσ‖ (blue 2) as a function of
ρcD

3.

Fig. 6.10(a) show lack of structure at ρcD
3 = 42. At higher densities periodic oscillations in

the two correlations start to appear. These are most pronounced at ρcD
3 = 212, 255 as shown

in Fig. 6.10(e),(f). The out of phase oscillations in the two correlations in Fig. 6.10(c)-(g)

characterizes complementary helical organizations of the chromosome and crowders. Increase

of density beyond ρcD
3 = 339, leads to full longitudinal segregation of crowders and the

chromosome, where the complimentary helicity disappears.

6.4.3 Transverse and longitudinal segregation

As we have observed, at small ρcD
3, the crowders were homogeneously distributed and chro-

mosome opens up. At higher densities we find radial, followed by a longitudinal segregation

of the crowders and chromosome. These can be quantified in terms of the following measure:

σ‖,⊥ =

〈∣∣∣∣ρm − ρcρm + ρc

∣∣∣∣〉 .
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To compute the expressions σ‖,⊥, the cylinder is binned into longitudinal and transverse

sections. The binning procedure is the same as described in previous chapter. In transverse

binning, the cylindrical volume is binned into 10 co-axial cylindrical shells. In longitudinal

binning, we bin the cylinder into 120 consecutive disks along the long axis of cylinder. ρm,c

represent the local densities of the monomers and the crowders within each bin respectively.

The local densities are normalized by respective total number of monomers Nm and the

crowders Nc. For the computation of transverse segregation of monomers and crowders, we

restrict our calculation to the central region of cylinder where the chromosome is present. In

each bin, the quantity σ⊥ is calculated and averaging is performed over 2× 104 equilibrium

configurations. The longitudinal segregation is quantified using σ‖ in each longitudinal bin

and averaging it over the same number of equilibrium configurations.

In Fig. 6.11, we present the variation of σ‖,⊥ and there fluctuations δσ‖,⊥ =√
〈σ2
‖,⊥〉 − 〈σ‖,⊥〉2, with crowder density ρcD

3. The transverse segregation sets in at a low

density ρcD
3 ≈ 85 as can be seen by following σ⊥, which saturates by ρcD

3 ≈ 297. On the

other hand, the longitudinal segregation quantified by σ‖ start to set in around ρcD
3 ≈ 297

and saturates at a further higher density ρcD
3 ≈ 509. As σ‖,⊥ increases, their fluctuations

δσ‖,⊥ reduces to finally saturate as the segregation progresses.

6.4.4 Chromosome extension

Finally, we plot the chromosome extension along the cell length 〈R‖〉 with increasing ρcD
3

in Fig. 6.12. The extension in a configuration is calculated in terms of the longest separation

between monomers along the length of the cylinder. The averaging is performed over 2×104

equilibrium configurations. The longitudinal segregation of the crowders from chromosome

is present all through, although it becomes the dominant mechanism of segregation at higher

densities, ρcD
3 > 297. The compression due crowders segregated at the caps of the cylinder,

reduces 〈R‖〉 with increasing ρcD
3. In Eq.(6.15) we derived an approximate closed- form

expression for 〈R‖〉. Its dependence on crowder density has a form 〈R‖〉 ≈ A[
√
b2 + BρcD3−
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Figure 6.12: The mean extension of chromosome along cylinder length 〈R‖〉 is plotted against

ρcD
3. The fit to 〈R‖〉 ≈ A[

√
b2 + BρcD3 − b]/ρcD3 (Eq. 6.15) for ρcD

3 & 297, with A = 376.83,
B = 106.95 and b = 33.44, is shown by the red line.
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Figure 6.13: Components of radius of gyration of chromosome is plotted against ρcD
3. 〈R‖g〉 is

along long axis of cylinder and 〈R⊥g 〉 is along radial direction. The fit to 〈R‖g〉 ≈ A[
√
b2 + BρcD3−

b]/ρcD
3 (Eq. 6.15) for ρcD

3 & 297, with A = 214.27, B = 24.98 and b = 11.59, is shown by the red
line.
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b]/ρcD
3 (Eq.6.15 in the following section), a function which is fitted to the simulation data

in Fig. 6.12. This captures the behavior of the data after longitudinal segregation. The

change in slope at ρcD
3 corresponds to the crossover from predominantly radial segregation

at lower density to longitudinal segregation at higher densities.

6.4.5 Mean field description

Here we present a mean field description of the dependence of chromosome size on crowder

density, allowing the longitudinal and transverse segregation of the polymer and crowders.

Under longitudinal segregation the polymer gets squeezed along the cell length with the

extension R‖ decreasing with crowder density. When the polymer gets segregated from the

crowder in the radial direction, it polymer covers a fraction αD with α < 1 of the diameter

D of the cylindrical confinement.

Treating the chromosome as a self- avoiding chain in a cylindrical volume, its free energy

may be written down in terms of the de Gennes’ blob picture. Let the polymer occupy

a cylindrical space of diameter αD. It consists of N/g blobs where each blob contains g

monomers out of N available in the chain. Assuming the extension R‖, the free energy of

the chain is expressed as

βFc = A1

R2
‖

(N/g)α2D2
+B1

αD(N/g)2

R‖
.

The three-dimensional Flory scaling is maintained within a blob, g ∼ (αD)5/3. Using this

in the above expression we get,

βFc = A
R2
‖

N(αD)1/3
+B

N2

(αD)7/3R‖
,

=
a

2

R̄‖
2

α1/3
+

b

R̄‖α7/3
, (6.5)

where in writing the second line we used dimensionless extension R̄‖ := R‖/D, a = 2AD5/3/N
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and b = BN2/D10/3. In a system with constant diameter D and chain length N these

dimensionless parameters control the chain properties.

The volume occupied by chromosome is Cd(αD)2R‖, where the geometrical pre-factor

Cd = π/4 for cylinders and Cd = 1 for rectangular parallelepiped. Thus the volume available

to crowders

Vd = CdD
2(L− α2R‖) = CdD

3(L̄− α2R̄‖). (6.6)

This relation works in the limit of crowder size Σc � R‖, αD. For finite Σc the space

occupied by the chromosome will have its impact, Vc = Cd(αD+ Σc)
2(R‖+ Σc). As a result

the free volume modifies to

Vd = CdD
2L− Cd(αD + Σc)

2(R‖ + Σc)

= CdD
3
[
L̄− (α + Σ̄c)

2(R̄‖ + Σ̄c)
]
. (6.7)

This relation is valid only when R‖ + Σc < L and α + Σ̄c < 1, otherwise R‖ = L (α = 1).

The free energy of the non-additive crowders of size Σc can be written as

βFd = Nd

[
ln
NdΣ

3
c

Vd
− 1

]
, (6.8)

where, Nd = ρcCdD
2L. Let us express all lengths in the units of diameter D such that

βFd = CdL̄ρ̄c

[
ln

L̄ ρ̄cΣ̄
3
c

L̄− (α + Σ̄c)2(R̄‖ + Σ̄c)
− 1

]
(6.9)

where, L̄ = L/D, ρ̄c = ρcD
3, Σ̄c = Σc/D and R̄‖ = R‖/D.

For longitudinal segregation, we minimize the total free energy F` = Fc + Fd with respect
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Figure 6.14: Comparison of free energies βF` and βFt for longitudinal and transverse segre-
gation, respectively. We use dimensionless parameters a = 1.55, b = 82.47, c = 0.53 for a cell of
L = 12.0D.

to R̄‖ to obtain the force balance equation,

∂βF`
∂R‖

= a
R̄‖
α1/3

− b

α7/3R̄‖
2 + CdL̄ρ̄c

(α + Σ̄c)
2

[L̄− (α + Σ̄c)2(R̄‖ + Σ̄c)]
= 0. (6.10)

Similarly, for transverse segregation, we minimize Ft = Fc + Fd with respect to α to obtain,

∂βFt
∂α

= −1

6
aR̄‖

2
α−4/3 − 7b

3R̄‖
α−10/3 + 2CdL̄ρ̄c

(R̄‖ + Σ̄c)(α + Σ̄c)

[L̄− (α + Σ̄c)2(R̄‖ + Σ̄c)]
= 0. (6.11)

In the limit of Σ̄c � R̄‖, α The above two relations Eq.(6.10) and (6.11) get independent

of Σc. In general, equations (6.10) and (6.11) are to be solved simultaneously to obtain the

chromosome size in the longitudinal and transverse directions.

To simplify the exposition, we set (α + Σ̄c) = 1 in Equation (6.10), and R̄‖ + Σ̄c = L̄ in

Equation (6.11), separately, and define the corresponding free energies as longitudinal and

radial free energies, and compare. Thus for a given ρ̄c, we can use the above equations to

determine R̄‖(ρ̄c) and α(ρ̄c) respectively, and obtain the free energies in the longitudinal and
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radial sectors,

βF`(ρc) =
a

2
R̄‖

2
+

b

R̄‖
+ CdL̄ ρ̄c

[
ln

L̄ ρ̄cΣ̄
3
c

L̄− (R̄‖ + Σ̄c)
− 1

]
(6.12)

and

βFt(ρc) =
a

2

L̄2

α1/3
+

b

L̄α7/3
+ CdL̄ ρ̄c

[
ln

ρ̄cΣ̄
3
c

1− (α + Σ̄c)2
− 1

]
, (6.13)

respectively. A comparison between them can be used to determine if the segregation would

take place in a longitudinal or transverse fashion. For example, using dimensionless parame-

ters a = 1.55, b = 82.47, c = 0.53 for a cell of L = 12.0D, as in the coarse-grained simulations

in Fig.6.13. The plots of the two free energies βF`, βFt as a function of ρc minimized for R‖

and α respectively, are shown in Fig.6.14. Within the parameter regimes considered, F` < Ft

suggesting a longitudinal segregation between chromosome and crowders.

In the system showing longitudinal segregation of crowders and chromosome, one can find a

closed form expression of the decreasing chromosome size with crowder density by performing

the following approximation. In the limit of large N, Nd � 1, neglecting a ∼ 1/N , Eq.(6.10)

leads to a quadratic equation CdL̄ρ̄cR̄‖
2

+ bR̄‖ − b(L̄− Σ̄c) = 0. This equation has a closed

form solution

R̄‖ ≈
[√

b2 + 4bCdL̄(L̄− Σ̄c)ρ̄c − b
]
/2CdL̄ρ̄c. (6.14)

Assuming L̄� Σ̄c, the relation simplifies to

R̄‖ ≈
[√

b2 + 4bCdL̄2ρ̄c − b
]
/2CdL̄ρ̄c. (6.15)

This relation describes the variation of extensions R‖ and Rg
‖ as depicted in Fig.s 6.12 and

6.13 fairly well.
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Figure 6.15: The tangent-tangent correlation, 〈u(s) · u(0)〉 along the chain is shown where s
represents the separation along the chain contour. (a) shows plot at smaller ρcD

3 compared to (b).

In the limit of both long L or large Nd, this relation simplifies further to R‖ ∼ ρ−1/2,

indicating how the size of a nucleoid-like sub-volume is maintained by the crowders. Further,

in the limit ρc → 0, the first two terms in Eq.(6.10), along with α = 1, leads to the relation

(aR̄‖
3 − b)(L̄− R̄‖) = 0,

due to the first two terms. This gives R̄‖ = (b/a)1/3 leading to R‖ ∼ ND−2/3 the de-Gennes’

scaling form for long cylinders with L > R‖, and R‖ = L otherwise.

6.4.6 Change in helicity

To better quantify the change in helicity of the chromosome with increasing crowder den-

sity, we use the tangent vectors on the chromosome projected onto the transverse plane

u(s), where s denotes a position along the contour. We calculate the correlation function

〈u(s) · u(0)〉 averaged over the equilibrium configurations. The correlations are plotted up

to the longest separation on the circular chain, i.e., half the chain length nbσ/2 (Fig.6.15).

For better visibility, we plot the relatively low density ρcD
3 correlations in Fig.6.15(a). It
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Figure 6.16: The structure factor S(q) corresponding to 〈u(s) ·u(0)〉 is plotted. (a) shows plot
at smaller ρcD

3 compared to (b).

clearly shows the reduction in the oscillation period (helical pitch), and increase in the am-

plitude of oscillation (helicity) at higher density. However, beyond ρcD
3 = 339, the behavior

saturates (see Fig.6.15(b)).

Performing Fourier transform of the correlation function, we obtain the structure factor

S(q) =
∫ lb/2

0
〈u(s) ·u(0)〉eisqds (Fig.6.16). The location of the maximum determines the total

number of turns nt = 2qp for the circular chromosome. As is evident from Fig.6.16(a), the

number of turns nt increases with density ρcD
3, and the degree of helicity measured by S(qp)

also increases monotonically with density. The relative change of helicity with density slows

down as the crowder density increases above ρcD
3 = 339. In Fig.6.17 we show the variation

of nt with ρcD
3.

6.4.7 Winding number, turning number and kinks

The helical organization can be quantified in an alternative manner using the turning num-

ber. For this purpose we consider the two- dimensional (2d) projection of the polymer

conformation on the radial plane of the cylindrical cell. The winding number can be defined
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as [219],

ψN =
1

2π

N−1∑
i=0

[θi+1 − θi], (6.16)

where, the angle θi denotes the angle subtended by the i-th bond with x-axis, such that

the unit tangent vector on the bond can be expressed as ui = (cos θi, sin θi). In the above

expression ∆θi = [θi+1 − θi] gives the increment in angle between the consecutive bonds.

The quantity ψN can be both positive or negative depending on whether the local turns
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Figure 6.19: Chain configuration is shown at ρcD
3 = 764. (a) shows configuration in absence

of coarse-graining. (b)-(d) represents configuration for coarse-grain size nseg = 3, 6 and 12.

appear in anti- clockwise or clockwise directions. This accounts for both the gradual change

in angle, and steep change due to kinks. If along the chain the curve changes from clockwise

to anti-clockwise winding, the overall winding number may turn out to be vanishingly small

even after several turns. For example, the plot of the mean absolute value of winding number

〈|ψN |〉 as a function of crowder density ρcD
3 in Fig. 6.18 shows significantly smaller values

with respect to nt plotted in Fig. 6.17. Note that the winding number ψN is a real number,

unlike the integer nt obtained in the previous section by analyzing tangent correlations.

A closer look at instantaneous helical configurations of the circular chain reveals presence

of kinks stabilized by confinement and crowder density. Two most prominent kinks are

clearly observed near the two caps of the cylinder at z = 0, L in Fig.6.19(a). The kinks
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can be quantified by large change in angle between consecutive bonds |∆θi| = |θi+1 − θi|.

In semiflexible polymers having persistence lengths significantly longer than bond- length,

such kinks between consecutive bonds remain suppressed. In our model, however, the ef-

fective bending rigidity arises due to Gaussian core repulsion between backbone monomers.

Although it maintains an overall smooth structure, local large angle fluctuations are not

completely suppressed, and its amount depends on the crowder- density. At lower crowder

density one observes higher bond-angle fluctuations.

Thus it takes extra care to extract the mean turning number from the definition of winding

number in Eq.(6.16) within our model. We use a local coarse- graining to determine the

relative importance of kinks and turning number in the overall structure. In Fig.6.19(b)-(d)

the coarse- grained chain- conformation is shown using coarse- graining over nseg = 3, 6, and

12 beads. The N -bead chain is partitioned into N/nseg segments, and the center of mass

position of each segment along with bonds connecting them are plotted. Such a coarse-

graining allows us to integrate over fluctuations at the shortest length scales. However,

as can be seen from Fig.6.19(d), beyond a point, too large a segment size nseg obstructs

identification of the true morphology. Thus an intermediate coarse- graining over nseg = 6

appears to be best suited for the analysis of turning numbers and significant kinks.

We first present the analysis of average number of kinks 〈ζN〉 with varying nseg in Fig. 6.20.

For the original chain conformation, as well as the coarse- grained conformation, we define

a kink by large change in angle between consecutive bonds |∆θi| > π/2. In Fig. 6.20, we

show the density dependence of 〈ζN〉 for various choice of nseg = 1, 2, . . . , 6. The averaging

is done over 104 independent configurations. With increasing density ρcD
3, the number of

kinks decrease. The measure over all bonds of the original chain shows very large estimate

of 〈ζN〉 at small density, reflecting the large bond angle fluctuations. Increasing nseg, we

find that the results saturate as nseg approaches 6. This captures the kinks which survives

integration of fluctuations over the shortest length scales, and thus is a characteristic of the

model chromosome. At the largest crowder density, 〈ζN〉 saturates to 2 (Fig. 6.20).



156Impact of crowder density on the morphology of bacterial chromosome

2

10

50

200

42 222 402 582 762

〈ζ
N
〉

ρcD
3

nseg = 1
nseg = 2
nseg = 3
nseg = 4
nseg = 5
nseg = 6
nseg = 12

Figure 6.20: Average number of kinks is shown as a function of ρcD
3 in the semi-log plot for

different coarse- graining size nseg.

1

3

5

7

42 222 402 582 762

〈|Ψ̄
N
|〉

ρcD
3

nseg = 1
nseg = 3
nseg = 6
nseg = 12

Figure 6.21: Mean absolute turning number 〈|Ψ̄N |〉 is plotted against ρcD
3 at different coarse-

gaining size.



6.5 Conclusion and outlook 157

In calculating the turning number we account for the kinks. A direct application of

Eq.(6.16) for winding number in configurations containing kinks suppresses the total turning

number, by changing a clockwise turn into anti- clockwise. We use this expression to define

a turning number

Ψ̄N =
1

2π

N−2∑
i=0

sign×∆θi, (6.17)

where, the sign function switches between ±1 each time a kink is encountered. Fig.6.21

shows the increase in the turning number amplitude 〈|Ψ̄N |〉 as a function of crowder density

ρcD
3 for various coarse- graining segment size nseg. The results stop changing by nseg = 6.

The turning number increases with density to saturate to 〈|Ψ̄N |〉 ≈ 6 at the highest densities.

A comparison of this with the total number of turns nt obtained from tangent correlation

and structure factor, obtained in previous section shows discrepancy. In Fig. 6.17, the plot

of nt shows saturation to nt = 8, whereas here we see saturation of 〈|Ψ̄N |〉 to ≈ 6. The

discrepancy gets resolved once the saturation value for the number of kinks 〈ζN〉 = 2 is

accounted for, leading to nt ≈ 〈|Ψ̄N |〉 + 〈ζN〉. At high density, the number of kinks and

turning number together accounts for the turn number nt obtained from tangent- tangent

correlation. However, at low densities, the kink number remains significantly high due to

survival of strong bond- angle fluctuations, and thus 〈|Ψ̄N |〉+〈ζN〉 remains large with respect

to nt. The above analysis establishes the relative importance of turning number and kinks

in the helical morphology of the model chromosome.

6.5 Conclusion and outlook

In this chapter we have studied the impact of changing crowder density on chromosomal or-

ganization. We began by considering a feather- boa model of chromosome and non-additive

crowders inside a cylindrical confinement, to model the chromosome in bacterial cells like
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E. coli. The chromosome and crowder center of mass showed complementary helical or-

ganization along the cell length. This is related to out- of- phase density modulations of

the chromosome and crowders, a behavior recently observed in the relative organization of

ribosomes and chromosome in live E. coli [11]. However, due to the non-additive nature of

crowders with short- ranged WCA repulsion against the chromosome and walls, change in

crowder density does not produce any significant change in relative organization. Use of an

additional Gaussian core repulsion in the crowder- chromosome and crowder- wall repulsion,

to incorporate the polymeric nature of protein crowders, led to a stronger density depen-

dence of chromosomal organization. With increasing crowder density, we found a change

from predominantly radial to a predominantly longitudinal segregation of the crowders and

chromosome.

To investigate this dependence in quantitative detail, we used a computationally more

tractable model of the chromosome, replacing the side- loops of the feather-boa model by

additional Gaussian core repulsion between the monomers of the backbone. To model bac-

terial chromosome, we used a circular backbone in this section. As before, we used an

additional Gaussian core repulsion in the crowder- polymer and crowder- wall interaction.

We found a predominantly radial crowder- chromosome segregation at small crowder- densi-

ties, which crossed over to a predominantly longitudinal segregation between crowders and

polymer at high densities. The longitudinal segregation compresses the chromosome into

a central nucleoid- like structure. We presented a mean field description of the change in

chromosome size with crowder density. The radial segregation is associated with a comple-

mentary helical organization of the chromosome and crowders. The helical organization was

characterized using a tangent- tangent correlation function. An analysis using the winding

number, allowed us to quantify the continuous variation of turning number and kinks asso-

ciated with the change in helical configurations with crowder density. Our predictions are

amenable to experimental verifications in live bacteria, and possible soft matter experiments

involving polymers and colloidal crowders in confinement.
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We have used a minimal polymer-based model of chromosome to capture the main physical

processes involved in chromosome organization in bacteria. However, many other physical

and chemical specifics can potentially impact their organization. This includes− (1) In bac-

terial cells, the chromosome has a distribution of loops which reorganize in time during the

cellular processes such as replication, gene regulation, segregation etc [3, 25, 26, 97]. The as-

sumption of equispaced side loops of fixed size in the feather- boa model chromosome presents

an approximation to this distribution. (2) Bacterial chromosomes are organized into Mb-

sized macrodomains, ∼ 40-300 kb chromosomal interaction domains (CIDs) and ∼ 10 kb su-

percoil domains or topological domain [25, 26, 144, 193, 220–223]. The relationship between

such domains are not clearly established, however they are believed to be organized in a hier-

archial fashion. Within each domain, various DNA- loci interact more frequently compared

to DNA- loci of other domains. In E.coli, four macrodomains are observed- Ori, Ter, Left and

Right, with two less-structured DNA regions. MatP dimers bind to matS (13 bp long) sites

in the Ter macrodomain forming DNA- loops and compact the domain [224, 225]. Similar

class of proteins may organize other macrodomains. Further, Hi-C analysis of C.crescentus

and E.coli chromosome revealed the presence of ∼ 23 and ∼ 31 CIDs respectively [144, 193].

It is often observed that highly expressed genes play an important role in the formation of

CID boundaries. Furthermore, the macrodomains and CIDs contain supercoiled domains

within it [25, 96]. In E.coli, 400 supercoiled domains of ∼ 10 kb have been found [26]. Such

supercoiled domains are believed to be regulated by the DNA associated proteins and gene

expression. This kind of hierarchical organization of chromosome has not been considered

in our simple model. (3) In most of the rod shaped bacterial cells, Ori and Ter domains are

localized in the specific spatial regions. In C.crescentus, it is achieved by polar anchoring of

ParB:parS complex with PopZ proteins which localize along the cell poles and provide help

in DNA segregation [226–229]. In E.coli SMC protein complex MukBEF is required to main-

tain the left-ori-right conformation of chromosome [230]. Such specific mechanisms were not

considered in our model. (4) Transcription and translation are active processes using energy
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from ATP hydrolysis [1]. Consequently, the active force generation can impact the dynamical

organization of chromosome. Apart from that, the rate of transcription of highly expressed

genes, length of transcript and variation in local concetration of NAPs directly determine the

formation of chromosomal domains. Our simple model lack such details. (5) In E.coli cell,

4288 different types of proteins are observed [231]. In addition to that ribosomes, plasmids,

different form of RNA, and cytoskeletal filaments (Ftsz, Mreb, Filp etc.) are found which can

produce significant variance in the crowder size distribution [37–39, 41–43, 232, 233]. Unlike

this, in each of our study, we have assumed a single crowder size. Note that, small crowders

can produce deplection effect, however the large crowders undergo phase segregation with

respect to the chromosome. (6) The coupled translation and insertion of proteins into the

cell membrane by signal recognition particle SRP and Sec translocase lead to transertion

which are known to tether some stretch of DNA to the cell membrane [62, 234]. We did not

consider such associations. (7) In many bacteria, partitioning complex parABS facilitate

the chromosome segregation [226, 235, 236]. The parS sites are the DNA stretches located

near the origin of replication, to which protein complex ParB binds forming the nucleopro-

tein complex ParB:parS. ATP-bound proteins ParA form dynamic filaments along the cell,

whose ATPase activity is stimulated by ParB [237, 238]. A related study suggested, upon

binding to ParB:parS, dissociation of ParA molecules happens at the contact site leading

to shrinkage of filament away from the complex [239]. Such a filament has been proposed

to actively determine the movement of the newly replicated ParB:parS complex towards

the opposite cell pole via various mechanisms like Brownian motion, ”diffusion-rachet” and

”DNA relay” model [240–242]. We did not consider the impact of such active processes

in our model. (8) We did not consider the active cytoskeltal filaments (Ftsz, Mreb, ParM

etc.) explicitly. In bacteria, cytoskeltal proteins are known to play active role in shaping cell

wall, mediate cell division, and partitioning genetic material [42, 43, 243]. In E.coli, tubulin

homologe Ftsz is involved in cell division in co-ordination with MinDE system. MinD and

MinE oscillate along the long axis of the cell, inhibiting the polymerization of Ftsz ring.
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Their localization near the cell poles leads to cytokinetic ring formation at the middle of

the cell. The ring attaches to cell membrane and undergo constriction, allowing cell wall

synthesis and cell division. Actin homologue Mreb guides the cell wall synthesis that is vital

for maintainance of rod shaped morphology of the cell [244]. Similarly, ParM filaments grows

in bi-directional fashion causing the segregation of plasmids [44].

Many of these aspects can be added in our basic chromosome model, to study their impact.
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The highly folded structure of chromosome consists of DNA and associated proteins. At
the small length scales, DNA associates with Histone proteins to form chromatin. In
the first part of the thesis, using molecular dynamics simulation, we investigated the
impact of changing density of multi- valent binder proteins on chromatin morphology.
We model the chromatin as a self- avoiding chain, and assume an attractive potential
between  the  binders  (cross-linkers)  and  monomers.  The  increasing  binder  density
leads  to  chromatin-  folding,  a  continuous  coil-  globule  transition  mediated  by
clustering of binders. The prediction from a mean field model agrees reasonably well
with  the  simulation  results  for  the  folding  transition.  Along  the  transition,  the
chromatin undergoes local morphological changes which we characterize in terms of
contact probabilities, loops of various orders, and zippering.  
In  the second part  of  this thesis,  we focus on the impact  of
confinement and cytosolic crowding on the morphology of the
chromosome in rod- shaped bacteria as a whole. Motivated by
the observation of large loops in the chromosome, we consider
the feather-boa model of chromosome, consisting of polymeric
loops attached to a backbone chain. Molecular dynamics 
simulations of the feather-boa polymer subjected to cylindrical 
confinement describe the emergent helical organization 
of the chromosome observed in experiments. A further 
coarse-grained model  is used to probe the impact of 
cytosolic crowding more systematically.
Small crowders remain homogeneously distributed while the 
chromosome remains open. In the range of intermediate 
crowder sizes, a transverse segregation of the chromosome 
and crowders leads to a complimentary helical organization of 
the two. For even  larger size, crowders are completely 
expelled from the central region, leading to a longitudinal 
segregation along the long axis of cylinder.
 

Figure: Top shows decrease in 
radius of gyration with binder 
density. Bottom shows helical 
organization of feather boa chain in 
cylindrical confinement.
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