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SUMMARY
Study of topological phases of matter has remained a central interest in modern condensed mat-

ter physics community for the last decade oweing to its own merit. The remarkable discoveries of

graphene and topological insulator has boosted the invetigation in various other topological systems

and two dimentional (2D) materials. Along this direction, many monolayer materials namely silicene,

phosphorene, borophene, dichalcogenides etc. have been predicted theoretically exhibiting topologi-

cal phases. Theye have been successfully synthesied on different substrates in experiments. Numer-

ous novel topological phases e.g. topological superconductor, Weyl semimetal, Dirac semimetal etc.

have also attracted immense interest both in theory and experiments not only from fundamental point

of view but for their possible application in spintronics and topological quantum computation. Very

recent addition, in this direction, is the discovery of higher order phases i.e., higher order topological

insulator and superconductor. Few of them have recently been synthesized in various experimental

setups.

Transport signatures have played a crucial role to probe and distinguish the novel topological

phases in various systems for a long time. Presence of any bound states, either in topological or

trivial system, have also been predicted by studying various transport phenomena namely electrical

and thermal conductance, shot noise, Joshephson current etc. Moreover, transport measurement can

also indicate any topological phase transition that takes place in the system. Major part of the present

thesis is devoted to study the transport signature of various novel topological phases and Majorana

zero mode in hybrid junctions of low dimentional systems (2D spin-orbit coupled Dirac materials

and 1D nanowire) using scattering matrix formalism. A part of the thesis also discusses the magnetic

exchange interaction in monolayer of anisotropic Dirac material- borophene.

Silicene, a 2D allotrope of silicon, has Dirac-like band structure which is predicted to be tunable by

an external electric field applied perpendicular to the silicene sheet. This tunable band gap arises due

to the presence of spin-orbit coupling. This enables the possibility of realizing a rich variety of topo-

logical phases and Majorana fermion in it under suitable circumstances. This 2D material has been

grown experimentally by successful deposition of silicene sheet on silver substrate. Our objective was

to explore the transport properties of various hybrid junction of this new generation Dirac materials.
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In this direction, the properties of thermal conductance in a normal-insulator-superconductor (NIS)

junction of silicene have been studied for both thin and thick barrier limit of the insulating region.

While thermal conductance, in this kind of junction of Dirac materials, displays the conventional ex-

ponential dependence on temperature, it manifests a nontrivial oscillatory dependence on the strength

of the barrier region. We have explored the tunability of the thermal conductance by the interplay

betwen external electric field and the induced superconducting gap. Moreover, the effect of doping

concentration on thermal conductance has also been discussed. In the thin barrier limit, the period of

oscillation of the thermal conductance as a function of the barrier strength comes out to be π/2 when

doping concentration in the normal silicene region is small. On the other hand, the period gradually

converts to π with the enhancement of the doping concentration. Such change of periodicity of the

thermal response with doping can be a possible probe to identify the crossover from specular to retro

Andreev reflection in Dirac materials. In the thick barrier limit, thermal conductance exhibits oscilla-

tory behavior as a function of barrier thickness d and barrier height V0 while the period of oscillation

becomes V0 dependent. However, amplitude of the oscillations, unlike in tunneling conductance,

gradually decays with the increase of barrier thickness for arbitrary height V0 in the highly doped

regime. We have discussed experimental relevance of our findings.

Adiabatic quantum pumping is a transport phenomenon in which low-frequency periodic modu-

lations of at least two system parameters with a phase difference lead to a zero bias finite dc current

in meso- and nanoscale systems. Such zero-bias current is a consequence of the time variation of

the parameters of the quantum system which explicitly breaks time-reversal symmetry. We have

theoretically investigated the phenomena of adiabatic quantum charge pumping through a normal-

insulator-superconductor-insulator-normal (NISIN) setup of silicene within the scattering matrix for-

malism. Assuming thin barrier limit of the insulating region, we have considered the strength of the

two barriers (χ1 and χ2) as the pumping parameters in the adiabatic regime. Within this geometry,

we have obtained crossed Andreev reflection (CAR) with probability unity in the χ1-χ2 plane without

the unwanted concomitant elastic cotunneling (CT). Tunability of the band gap at the Dirac point by

appyling an external electric field perpendicular to the silicene sheet and variation of the chemical po-

tential at the normal silicene region, open up the possibility of achieving novel perfect CAR process

through our setup. This resonant behavior arises periodically in the plane of the barrier strengths. The

behavior of the pumped charge through the NISIN structure as a function of the pumping strength

ii



and angles of the incident electrons have been analyzed. We have predicted that almost quantized

pumped charge can be obtained through our geometry when the pumping contour encloses the CAR

or transmission resonance in the pumping parameter space. We have mentioned possible experimen-

tal feasibility of our theoretical predictions.

Majorana zero mode, in condensed matter system, is an emmergent quasi-particle of self-conjugate

nature and is predicted to be building block of fault tolerant topological quantum computation. Topo-

logical superconductor, in 3D (2D), supports this zero energy Majorana modes at its vortex (edge).

Zero bias peak (ZBP) in the differential conductance in hybrid superconductor-semiconductor sys-

tems as an indirect signature of Majorana zero modes was earlier predicted theoretically and then

confirmed experimentally. We have looked into the transport properties of a quasi one dimensional

ferromagnet-noncentrosymmetric superconductor (F-NCS) junction using scattering matrix formal-

ism. We have shown that the relative orientation of the stoner field (h̃) in the ferromagnetic lead

and the d vector of the superconductor acts like a on-off switch for the zero bias conductance of the

device. In the regime, where triplet pairing amplitude dominates over the singlet counterpart (topo-

logical phase), a pair of Majorana zero modes appear at each end of the superconducting part of the

nanowire. The presence of the two kinds of pairing gaps gives rise to a pair of Majorana modes

instead of a lone one at each end. When h̃ is parallel or anti-parallel to the d vector, transport gets

completely blocked due to blockage in pairing while, when h̃ and d are perpendicular to each other,

the zero energy two terminal differential conductance spectra exhibits sharp transition from 4e2/h to

2e2/h as the magnetization strength in the lead becomes larger than the chemical potential indicating

the spin selective coupling of pair of Majorana zero modes to the lead. For a canted angle between h̃

and d, a zero bias dip emmerges out instead of a peak, in the tunneling conductance giving birth to a

possible novel probe of the zero modes in the transport measurements.

Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction is an indirect exchange coupling

between two magnetic impurities being mediated by the conduction electrons of the host material.

Since the RKKY exchange interaction is directly related to the susceptibility of the host material, it

has been used as a probe in electronic systems. We have theoretically investigated the indirect sig-

natures of the tilted anisotropic Dirac cones on RKKY exchange interaction in 8-Pmmn borophene,

a two dimensional polymorph of boron atoms. The 8-Pmmn borophene is one of the most recent
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2D polymorph of boron atoms, which has been predicted to host tilted Dirac cones where the tilting

direction around the Dirac cones are opposite to each other. Unlike the case of isotropic non-tilted

Dirac material-graphene, here we have observed that the tilting of the Dirac cones exhibits a signifi-

cant impact on the RKKY exchange interaction in terms of the suppression of oscillation frequency.

The reason can be attributed to the behavior of the Fermi level and the corresponding density of states

with respect to the tilting parameter. When the two impurities are located perpendicular to the tilt

axis, interference between the Dirac fermions from different valleys do not contribute to the oscilla-

tion frequency and the period of oscillation increases as one enhances the value of the tilt parameter.

This change of oscillation frequency may be a possible way to indirectly probe the degree of tilting

of the Dirac cone present in anisotropic Dirac materials such as 8-Pmmn borophene. On the other

hand, for the separation of the two impurities being along the tilt axis, interference among the Dirac

cones plays a dominant role in determining the period of oscillation and the tilt parameter exhibits

a negligible effect on the corresponding period. We have derived the direction dependent analytical

expressions of the RKKY exchange interaction, in terms of Meijer G-function. Behavior of RKKY

exchange interaction is also investigated numerically for two spatially separated magnetic impurities

in the x-y plane of the 2D borophene sheet.

We have concluded the thesis with a summary and possible future directions.
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CHAPTER 1

2D Dirac Materials

1.1 Introduction

Graphene, till date, is the most well known two dimensional (2D) Dirac material [7]. The remarkable

discovery of Graphene took place in 2004 by Novoselov and Geim [8]. A year later, topological in-

sulator was predicted in Graphene by Kane and Mele [9], but it was later realised that the spin-orbit

coupling, which is mandatory to realize QSHE, is too small to get any reasonable signature of the

same in experiments. Topological insulator, with insulating bulk and conducting counter propagat-

ing edges, was predicted theoretically in 2006 by Bernevig, Hughes and Zhang in HgTe quantum

well [10, 11] and was later experimentally verified by König et al. in 2007 [12].

Along this direction, many monolayer materials namely silicene [13], phosphorene [14], borophene [15],

transition metal dichalcogenides [16] etc. have been predicted theoretically exhibiting topological

phases [17, 18, 19, 20]. They have been successfully synthesized on different substrates in experi-

ments [21, 22, 23, 24]. Numerous novel topological phases e.g. topological superconductor, Weyl

semimetal, Dirac semimetal etc. have also attracted immense interest both in theory and experiments

not only from fundamental point of view but for their possible applications in various sectors ranging

from spintronics [25] to topological quantum computation [26].

We begin with discussing basic properties of graphene in Sec. 1.2. Then we discuss the model
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Hamiltonian of silicene, its topological properties alongwith the experimental evidence of silicene in

Sec. 1.3. We then present basic features of borophene and its experimental evidence in Sec. 1.4.

1.2 Graphene

Graphene can be described by the simplest tight-binding model on a honeycomb lattice [5],

Ĥ0 = −t
∑
〈i,j〉α

c†iαcjα, (1.1)

where c†iα (ciα) creates (annihilates) an electron with spin orientation α =↑↓ at site i on sublattice

A (equivalently for sublattice B); 〈i, j〉 runs over all the nearest neighbor hopping sites, and t is the

hopping amplitude. Graphene lattice structure is demonstrated in Fig. 1.1(a) .

We can rewrite Eq. (1.1) in momentum space as

Ĥ0 = t
∑
α

∫
d2k

(
c†Aα, c

†
Bα

) 0 f (k)

f ∗ (k) 0


 cAα

cBα

 (1.2)

with

f (k) = e−iaky/
√

3 + 2eiaky/2
√

3 cos
akx
2
. (1.3)

Here, a is the lattice constant. The energy spectrum, obtained from this Hamiltonian, is

E (k) = t

√
1 + 4 cos

akx
2

cos

√
3aky
2

+ 4 cos2
akx
2
. (1.4)

The spectrum is depicted in Fig. 1.1(b). From Eq.(1.4), we can see that the band gap closes at the Kη

point defined by

Kη =
1

a

(
η

4π

3
, 0

)
with η = ±. (1.5)

The K+ and K− points are sometimes referred as K and K ′ points, respectively. We are particularly

interested in deriving the relevant low energy effective Hamiltonian of graphene near its Fermi energy.

We see that the dispersion relation is linear for ki ' 0 i.e., near the Fermi energy. The cones are thus

called the Dirac cones and the points where the band gap closes as Dirac points .
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(a) (b)(b)

A
B

Figure 1.1: Graphene lattice structure is presented in panel (a). A and B sublattices are shown by
blue and red circles respectively. Band spectrum of graphene is depicted in panel (b).

In the close vicinity of the Kη point, the Hamiltonian can be approximated by

Ĥη =
∑
α

∫
d2k(cη†Aα, c

η†
Bα)Hα

η

 cηAα

cηBα

 , (1.6)

with

Hα
η = ~vF

 0 ηkx + iky

ηkx − iky 0

 = ~vF (ηkxτx − kyτy) (1.7)

where τ = (τx, τy, τz) is the Pauli matrix which acts on the sublattice space, and vF =
√

3
2~ at is the

Fermi velocity. The dispersion relation is linear for ki ' 0. Hs
η is mentioned as the Dirac Hamiltonian

at the Dirac point Kη.

1.3 Silicene

The silicon analog of graphene was first mentioned in 1994 in a theoretical study by Takeda and

Shiraishi [27] and later it was reinvestigated by Guzman-Verri et al. in 2007, who coined the term

‘silicene’ [28]. The basic features of silicene is similar to that of graphene. The two differences

that leads silicene essentially different from graphene are the presence of the spin-orbit interaction,

which makes silicene a topological insulator[29], and its buckled structure with a layer separation

between the two sublattices. This freedom allows one to generate a potential difference between the

two sublattices by applying an external electric field perpendicular to the silicene sheet [30].
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A

B
2

(a)

(b)

Figure 1.2: Schematic drawing of the lattice structure of silicene. Slightly canted top view is presented
in panel (a) and the front view is shown in panel (b). Two types of sublattices are shown by blue (A)
and red (B) circles which do not lie in the same plane thus giving rise to the buckled structure. The
latter is prominent in the lower panel.

Spin-orbit coupling (SOC) term that couples electron with spin degrees of freedom can be written

as,

Hso =
~

4m2
0c

2
(∇V × ~p) · ~α = − ~

4m2
0c

2

(
~F × ~p

)
· ~α, (1.8)

where V is the potential energy, ~F is the force, ~p is momentum, ~σ is the vector of Pauli matrices, ~ is

Plank’s constant, c is velocity of light, and m0 denotes the mass of a free electron.

The nearest neighbor (NN) SOC, in graphene comes out to be zero due to its mirror symmetry

with respective to an arbitrary bond, while the next nearest neighbor (NNN) SOC can be nonzero.

However, the value of the NNN SOC is small and can be taken to be zero for all practical purposes. In

case of silicene, the nearest neighbour SOC is zero (following the same mirror symmetry argument),

while the NNN SOC is nonzero. This SOC has two components : parallel and perpendicular to the

plane according to the two components of the electric field force. The perpendicular component arises

because of the buckling structure i.e., sublattices A and B being noncoplanar.

The force parallel with the plane gives rise to the parallel component of SOC term in Silicene
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which reads

Hso1 = iγ2

(
~F‖ × ~dij

)
· ~α ≡ it2νijαz. (1.9)

where νij =
~di×~dj
|~di×~dj |

, ~di and ~dj are two nearest bonds connecting the next nearest neighbor ~dij . Here,

γ2 and t2 are undetermined parameters.

The second component of SOC comes from the force perpendicular to the plane and is given by

Hso2 = iγ1

(
~σ × ~d0

ij

)
· F⊥~ez ≡ it1µij

(
~σ × ~d0

ij

)
z
, (1.10)

where ~d0
ij = ~dij/|~dij|, γ1 and t1 are undetermined parameters, µij = ±1 for the A (B) sublattice.

When external electric field Ez is applied perpendicular to silicene, the tight-binding Hamiltonian

with NN and NNN hopping can be written as

H = −t
∑
<i,j>α

ĉ†iα ĉjα + i
λSO

3
√

3

∑
<<i,j>>αβ

νij ĉ
†
iασ

z
αβ ĉjβ

−i2
3
λR

∑
<<i,j>>αβ

µij ĉ
†
iα(~σ × d̂ij)

z

αβ ĉjβ

+el
∑
iα

ζiE
i
z ĉ
†
iα ĉiα − µ

∑
iα

ĉ†iα ĉiα . (1.11)

The operator ĉ†iα creates an electron at site i with spin polarization α while the operator ĉiα anni-

hilates it. The first term describes the nearest-neighbor hopping of amplitude t on honeycomb lattice,

where < i, j > denotes the nearest-neighbor sites. The second term is for the effective SOC with

λSO ∼ 4 meV [30], where ~σ = (σx, σy, σz) is the pauli spin matrices. This is the first component of

SOC mentioned above. The sum << i, j >> is over the next nearest-neighboring sites. The third

term is the Rashba SOC of amplitude λR arising from perpendicular component of the electric field

force. The fourth term represents the staggered sublattice potential, where ζi = ±1 for the A(B) sites.

This Hamiltonian describes the basic features of germanene and stanene as well whereas the main dif-

ference lies in the fact that Rashba SOC is in these two materials are strong compared to silicene and

hence can’t be neglected as we did for silicene. It is worth to note that, the Hamiltonian written above

for silicene is similar to the famous Kane-Mele model [9] where they considered both mirror sym-

metry conserved spin-orbit interaction and mirror symmetry broken Rashba like spin-orbit interaction.
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t(eV) vF a(Å) λSO (meV) λR (meV) `(Å) θ (degree)
Graphene 2.8 9.8 2.46 10−3 0 0 90
Silicene 1.6 5.5 3.86 3.9 0.7 0.23 101.7
Germanene 1.3 4.6 4.02 43 10.7 0.33 106.5
Stanene 1.3 4.9 4.70 43 9.5 0.33 107.1

Table 1.1: The system parameters obtained from first principle calculation, characterizing graphene,
silicene, germanene and stanene are presented. Here, vF is in the unit of 105m/s, ` is the buckle height
and θ is the bond angle. This table is adapted from Ref. [5, 6].

Here also we are interested to obtain the low-energy effective Hamiltonain near the Fermi energy,

which is constructed similar to the case of graphene. Rewriting the Hamiltonian (1.11) in the form of

(1.6), we obtain the Dirac Hamiltonian which is given by

Hs
η =

 ∆η
α ~vF(ηkx + iky)

~vF(ηkx − iky) −∆η
α

 , (1.12)

where

∆η
α = `Ez − ηαλSO ≡ `(Ez − ηαEcr), (1.13)

and

Ecr ≡ λSO/`. (1.14)

The term ∆η
α can be termed as the Dirac mass. We have shown the derivation of the low energy effec-

tive Hamiltonian of Silicene from the full lattice Hamiltonian in Appendix A. The energy spectrum is

found to be

E (k) = ±
√

(~vFk)2 + (∆η
α)2. (1.15)

The band structure of silicene is shown in Fig. 1.3(a). The band gap, near the Dirac point Kη, is

given by 2|∆η
α| = 2`|Ez − ηαEcr|. In Fig. 1.3(b), we demonstrate the low-energy nature of the band

structure near the Dirac point. One can notice the hexagonal Brillouin zone (BZ) and the Dirac like

dispersion near the Fermi level. Although the BZ has six corners, only two of them are inequivalent

which are marked by K and K ′ .

Note that, the band gap is tunable by controlling external electric field Ez as shown in Fig. 1.4.

The gap is open in absence of electric field. As |Ez| increases, the gap becomes smaller, and it closes

at Ez = ηαEcr. In this situation, silicene is semimetallic akin to graphene. With the further enhance-
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(a)

 

K
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KK/

(b)

Figure 1.3: The band dispersion of a monolayer silicene is shown as a function of kx and ky in panel
(a). The band dispersion near the Fermi energy is presented in panel (b) where low energy effective
band dispersion exhibits Dirac like nature. There are six corners of the Brillouin zone and the two
inequivalent points K and K ′ are indicated.

ment of |Ez|, the gap opens again. This feature signifies the bulk-boundary correspondance. Fig. 1.4

dictates the electric field tunability of the topological phase transition.

Band gap

  QSH 
Insulator in

su
la

to
r

in
su

la
to

r

Figure 1.4: Band gap is shown as a function of electric field. Topological phase transition takes place
from quantum spin hall insulating phase to band insulating phase with the rise the Ez. Ecr is the
critical electric field at which the band gap closes.

To better understand the topological phase transition and the boundary edge modes that appear

in monolayer silicene, we demonstrate nanoribbon bandstructure in Fig.(1.5). The band structure is

shown as a function of momentum along x direction while in the other direction we have taken finite

size (Ny = 40). We see that in absence of the electric field i.e., Ez = 0, nanoribbon posses edge states
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and the system is in topological insulating phase. This feature is depicted in Fig. 1.5(a) where counter

propagating edge modes are clearly visible. As Ez increases, the band gap decreases and gets closed

for Ez = Ecr. The edge state vanishes for electric field crossing critical value which is demonstrated

in Fig. 1.5(b).

There are other possible way to control band gap in silicene namely by photo-irradiation [31],

antiferromagnetic exchange interaction etc [5]. We neglect those effects and only consider the effect

of perpendicular electric field to understand the topological phase transition for simplicity.

(a)

2.0 2.5 3.0 3.5 4.0 4.5

-0.5

0.0

0.5

kx

E (b)
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Figure 1.5: Band structure of Silicene nanoribbon is depicted. The chosen parameters are : λSO = 0.4;
(a) Ez=0 and (b) Ez=0.5 . All of them are normalized with the hopping parameter t. The edge
states are clearly visible in (a) indicating the topological insulating phase while they are absent in (b)
characterizing the band insulating phase.

1.3.1 Chern number and Topological phase transition

We now present the Chern number which is a topological invarient being used to distinguish different

phases that may appear in 2D Dirac materials. For any Bloch state |ψ(k)〉 we can define a “gauge

potential” in the momentum space by

Aj(k) = −i
〈
ψ(k)| ∂

∂kj
|ψ(k)

〉
(1.16)

which is known as the Berry connection. Subsequently using Stokes theorem, we can define the Berry

curvature F (k) which is given by

F (k) =
∂

∂kx
Ay(k)− ∂

∂ky
Ax (k) . (1.17)
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F (k) is analogous to the magnetic field in momentum space. The Chern number can now be obtained

by integrating the Berry curvature F (k).

C =
1

2π

∫
d2k F (k) . (1.18)

We now calculate the Berry curvature, with the Hamiltonian of Eq. (1.12) for each valley, which

is given by

F η
s (k) = −η ∆η

α

2
(

(~vFk)2 + (∆η
α)2
)3/2

. (1.19)

Corresponding Chern number is found to be

Cηα = −η
2

sgn(∆η
α), (1.20)

The Chern number is quantized and is given by Cηα = ±1
2
. This quantization does not depend on

deformation of the band structure provided that the band-gap is not zero. The Chern number is integer

when the Berry curvature is integrated over a closed region (first Brillouin zone). Here we consider

a continuum model where the integral is over all momenta ranging from 0 to∞. The region close to

the Dirac point contributes 1/2 of the total contribution to the Chern number. Thus we obtain only

half integer value of the Chern number.

It changes its sign when the Dirac mass ∆η
α changes its sign, which obviously goes through van-

ishing of the band gap. This quantity, thus, is a topological charge and the insulating phase is in-

dexed by a set of four Chern numbers Cηα which can be used to construct the total Chern number C,

the spin Chern number Cs[32, 33, 34], the valley Chern number[35, 17] and the spin-valley Chern

number[36, 5], in the following way

C = CK↑ + CK′↑ + CK↓ + CK′↓ , (1.21)

Cs =
1

2
(CK↑ + CK′↑ − CK↓ − CK

′

↓ ), (1.22)

Cv = CK↑ − CK
′

↑ + CK↓ − CK
′

↓ , (1.23)

Csv =
1

2
(CK↑ − CK

′

↑ − CK↓ + CK′↓ ). (1.24)
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It is worth to note that, the valley Chern number and the spin-valley Chern number are meaningfull

only in case of Dirac theory and they are ill defined in the tight-binding model. A topological phase

transition takes place depending on the sign change of the Dirac mass ∆η
α. This motivates one to

study silicene as a electric field tunable topological insulator.

1.3.2 Experimental Evidence of Silicene

There is no solid phase of silicon similar to graphite. Hence, pure 2D silicene layers cannot be gen-

erated by exfoliation methods as initially was successfully done in the case of graphene [8]. More

sophisticated and advanced methods have been used for the growth and synthesis of silicene.

In this direction, Vogt et al. have studied one-atom-thick Si sheets formed on the Ag(111) sur-

face [1] under ultrahigh vacuum conditions. Si was deposited by evaporation from a Si source, and the

Ag sample was kept at temperatures between≈ 220–260◦ C. Omicron VT-STM with an electrochem-

ically etched tungsten tip was used for scanning tunneling microscope (STM) measurements which

were performed at room temperature in constant-current mode. Angular-resolved photoelectron spec-

troscopy (ARPES) measurements were also carried out to study the electron-energy distribution .

obtain a similar 2D Si structure. Note that the pure
Agð111Þ-ð1� 1Þ surface can mimic a honeycomblike ap-
pearance in STM caused by a tip-induced contrast reversal,
which looks very similar to the STM images reported by
Lalmi et al. [12]. Since any chemical analysis is missing,
e.g., by Auger-electron spectroscopy, we believe that the
measurements presented by Lalmi et al. refer to clean
Ag(111) only. A clear proof for the existence of 2D silicene
layers, supported by complementary experimental evi-
dence, has therefore not yet been presented.

In our work, we have studied one-atom-thick Si sheets
formed on the Ag(111) surface. Clean and well-ordered
Ag(111) surfaces were prepared by Arþ bombardment
(1.5 kV, 5� 10�5 mbar) and subsequent annealing at
� 530 �C for 30 min. of (111)-oriented Ag single crystals
under ultrahigh vacuum conditions. Si was deposited by
evaporation from a Si source consisting of a directly heated
Si-wafer piece, while the Ag sample was kept at tempera-
tures between � 220–260 �C. STM measurements were
performed at room temperature in constant-current mode
using an Omicron VT-STM with an electrochemically
etched tungsten tip. All images were drift corrected and
calibrated with respect to the well-known Agð111Þ-ð1� 1Þ
surface. Angular-resolved photoelectron spectroscopy
(ARPES) measurements were carried out at the
ANTARES and VUV beam lines of the synchrotron radia-
tion facilities SOLEIL (Paris, France) and ELETTRA
(Trieste, Italy), equipped with hemispherical energy ana-
lyzers (Scienta). Electron-energy distribution curves were

recorded along the ��- �K direction of the Ag surface

Brillouin zone (BZ) through the Si �K= �K0 point of the
(4�4) Si adlayer. According to the relative orientation of
the Ag (1� 1) unit cell and the (4� 4) Si adlayer, the Si �K

point is located at 3=4 of the Ag ��- �K distance. The theo-
retical data are based on DFTas implemented in the Vienna
ab initio simulation package (VASP) within the framework
of the projector augmented wave method [14–18].
Exchange-correlation interactions are included within the
generalized gradient approximation in the Perdew-Burker-
Ernzerhof form [19]. The electron-ion interaction is de-
scribed by the projector augmented wave method in its
implementation by Kresse and Joubert [20]. A plane-
wave energy cutoff of 250 eV was used for all calculations
and is found to be sufficient for this system. The bulk lattice
constant of 0.4175 nm was found for Ag by using a k-point
mesh of (10� 10� 10). The slab supercell approach with
periodic boundaries is employed to model the surface with
the Brillouin-zone sampling based on the technique de-
vised byMonkhorst and Pack [21]. The slab consists of five
layers of Ag(111), each containing 16 atoms. In all our
calculations we used a k-points mesh of (3� 3� 1). To
confirm the accuracy of our DFT calculation, we also
converged a layer of freestanding silicene giving a buckling
of 0.044 nm and an Si bond angle of 116.5�. The results are
in agreement with previous results [9].

The growth mode of the Si adlayer was determined by
measuring the area ratio between the Si 2p core level and
the Ag 4d band emission as a function of the Si deposition
time [Fig. 1(a)]. Clearly, the Si=Ag area ratio changes
linearly, indicating an initial 2D growth behavior with a
corresponding deposition rate of 1 monolayer=hr (ML=hr).
After the incremental deposition steps, a (4� 4) symmetry
with respect to the bare unreconstructed Agð111Þ-ð1� 1Þ
surface can be observed by low-energy electron diffraction
(LEED) with increasingly intense and sharp diffraction
spots [Fig. 1(b)]. The STM topograph in Fig. 2(a) shows
the Si adlayer after a deposition of approximately 1 ML.
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FIG. 1 (color). Growth of Si on Agð111Þ-ð1� 1Þ. (a) Area
ratio between the Si 2p and Ag 4d core level emission as a
function of the Si deposition time. (b) (4� 4) LEED pattern
(27 eV) after deposition of � 1 ML of Si at a temperature of
220 �C. [The circles indicate the (0; 1

4), (0;
1
2), and (0; 3

4) spots;

integer order spots are outside the screen].
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FIG. 2 (color). (a) Filled-states STM image of the 2D Si layer
on Agð111Þ-ð1� 1Þ (Ubias ¼ �1:3 V, I ¼ 0:35 nA). Clearly
visible is the honeycomblike structure. (b) Line profile along
the dashed white line indicated in (a). The dark centers in the
STM micrograph are separated by 1.14 nm, corresponding to
4 times the Ag(111) lattice constant, in agreement with the
(4� 4) symmetry. (c) High-resolution STM topograph
(3� 3 nm, Ubias ¼ �1:3 V, I ¼ 0:35 nA) of the Si adlayer.
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Figure 1.6: (a) Filled-states STM image of a 2D Si layer deposited on silver substrate [Ag(111)]
where honeycomblike structure is clearly visible. (b) Line profile, along the dashed white line shown
in panel (a), indicating the buckled structure. (c) High-resolution STM topograph of the Si layer
exhibiting the honeycomb structure. This figure is adapted from Ref. [1]
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Filled-states STM image of the Silicene layer is shown in Fig. 1.6(a), while the line profile along

the dashed white line given in Fig. 1.6(a) is depicted in Fig. 1.6(b). It reveals that the dark centers

in the STM micrograph have distance of 1.14 nm on average which is 4 times the surface Ag(111)

lattice constant, and thus corresponds to the (4 × 4) symmetry. Buckled nature of silicene is clearly

visible in Fig. 1.6(b). The high resolution STM image shown in Fig. 1.6(c) is measured at a sample

bias of Ubias = −1.3V . The 2D Si adlayer gives rise to triangular structures, each of which consists of

three bright protrusions and they are separated by 0.4 nm with respect to each other. These triangles

are situated hexagonally around the dark centers, which are separated by 4 Ag lattice constants. STM

images have been recorded at other sample biases giving rise to the same outcome.

The image reveals an Si adlayer covering the surface
terraces with a honeycomb appearance. This structure
could be prepared reproducibly for different Si deposition
amounts: For smaller amounts of Si (< 1 ML), the forma-
tion of smaller 2D Si islands is observed, which grow
bigger with increasing deposition and finally cover the
Ag(111) terraces completely (width � 100–150 nm) ob-
served in the STM scanning range. This result is in good
agreement with the 2D growth mode. Line profiles (not
shown) measured across the edge of an Si island on the
Ag(111) surface reveal a height for the Si layer of approxi-
mately 0.1 nm, indicating the formation of a one-atom-
thick 2D adlayer. However, the determined height might be
underestimated since the tunneling conditions on the Si
layer and the pure Ag surface are quite different. In order to
validate the exact alignment of the 2D Si lattice vectors
with respect to the ones of anAgð111Þ-ð1� 1Þ surface, two
STM images were recorded directly, one after the other,
within the same surface area, where an incomplete 2D Si
island and the pure Ag(111) surface were next to one
another. Note that in both cases different tunneling con-
ditions had to be chosen in order to obtain a good atomic
resolution, i.e., Ubias � �0:2 V, I � 2:00 nA for Ag(111)
and Ubias � �1:4 V, I � 0:3 nA for Si. The obtained
Ag½1�10� direction is indicated in Fig. 2(a).

The line profile in Fig. 2(b) was recorded along the line
indicated in the STM image in Fig. 2(a). It shows that the
dark centers in the STM micrograph are separated by an
average value of 1.14 nm, corresponding to 4 times the
surface Ag(111) lattice constant, in very good agreement
with the (4� 4) symmetry observed by LEED. The high-
resolution STM image in Fig. 2(c) taken at a sample bias of
Ubias ¼ �1:3 V shows that the 2D Si adlayer gives rise to
triangular structures, each consisting of three bright pro-
trusions, separated by 0.4 nm with respect to each other.
These triangles are arranged hexagonally around the dark
centers, which are separated by 4 Ag lattice constants.
STM images recorded at other sample biases, ranging
from Ubias ¼ �1:4 to �0:5 V and at þ0:6 V, give rise to
the same appearance, indicating that the STM image is
probably dominated by geometric rather than electronic
effects.

ARPES data recorded at a photon energy of h� ¼
126 eV along the Ag ��- �K direction through the Si �K point
in the right image of Fig. 3(a) identify a downward-
dispersing conical branch of the honeycomb Si bands.

Such bands were observed at different Si �K= �K0points of
the surface BZ but not on the initial Ag(111) surface
[shown in the left image of Fig. 3(a)]. A comparable
dispersion is found in an energy range of �5 eV around
h� ¼ 126 eV and for a photon energy of h� ¼ 78 eV as in
the case of Si nanoribbons on Ag(110) [5]. The dispersion
is similar to the one for graphene, pointing toward the
existence of Dirac fermions in the silicene band. The linear
dispersion can be described by E ¼ @vFk, where vF is the

Fermi velocity. From the linear dispersion in Fig. 3(b),
we obtain a Fermi velocity for the silicene layer of vF ¼
1:3� 106 ms�1, comparable to the one found for graphene
[22]. Similar to graphene, only a single dispersing branch

of the ‘‘Dirac cone’’ is visible in the horizontal ��- �K
direction [Fig. 3(b) red arrow] due to a photoemission
interference effect [22]. The apex of the Si cone is approxi-
mately 0.3 eV below the Fermi level. Since the �� cone
could not be detected, it can only be assumed that the gap
opening between the � and �� bands amounts to approxi-
mately 0.6 eV, as found similarly for Si nanoribbons on
Ag(110) [5]. Freestanding silicene is expected to have a
zero gap; however, the opening of the gap could result from
an interaction with the Ag(111) substrate, an effect already
observed for graphene [23].
Our data therefore show concordantly that the (4� 4) Si

adlayer in fact refers to a 2D silicene layer that is formed on
the Ag(111) surface. Figure 4 shows how the STM image
can be explained by such a single silicene sheet. At the top,
Fig. 4(a) shows the bare Ag(111) surface, and Fig. 4(b)
shows the 2D Si adlayer. This STM image is explained by a
2D honeycomb silicene sheet if the pure Si layer (bottom
right) is placed on top of the Ag(111) surface (gray spheres)
in such a way that (3� 3) silicene unit cells coincide with a
(4� 4) Agð111Þ-ð1� 1Þ area. In this case, the Si atoms are
located either on top of Ag atoms (large orange spheres) or
between Ag atoms (small orange spheres). In STM images
[Fig. 4(b)] only the on-top atoms are visible, leading to the
same triangular arrangement as depicted in the model
[Fig. 4(c)], forming a (4� 4) coincidence cell in agreement
with the LEED observations. From the STM image, the
in-plane Si-Si distance can be determined from the distance

D of the dark centers in Fig. 2(c) according to a ¼
D=ð3 ffiffiffi

3
p Þ. In this way, we obtain an average Si-Si distance

-3.0

-2.0

-1.0

0

1.01.0 0.80.8 1.41.4 1.21.2

0.3 eV

k (Å )||
-1

E =F

siSi

k (Å )||
-1

BZSi BZAg

Ag

Si

Si

(b)(a)

FIG. 3 (color). (a) ARPES intensity map for the clean Ag
surface (left) and after formation of the 2D Si adlayer (right),
taken along the Ag ��- �K direction through the silicene �Kðh� ¼
126 eVÞ. (b) Brillouin-zone (BZ) scheme of the 2D Si layer with
respect to the Agð111Þ-ð1� 1Þ surface. The red arrow indicates
the ARPES measurement direction.
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Figure 1.7: ARPES intensity map along the Ag Γ-K direction for the clean Ag surface in shown in
left panel whereas after formation of the 2D Si adlayer is given in the right panel. (b) Brillouin-zone
(BZ) of the 2D Si layer with respect to the Ag(111)-(1× 1) surface is shown. The red arrow dictates
the ARPES measurement direction. This figure is adapted from Ref.[1] .

ARPES data recorded at a photon energy of hν = 126eV is depicted in Fig. 1.7(a) which iden-

tify a Dirac like linear dispersion of honeycomb Si bands (right figure). This dispersion is similar to

that of graphene, indicating the existence of Dirac fermions in silicene. The linear dispersion can be

described by E ∝ ~vFk, where vF is the Fermi velocity. The Fermi velocity for the silicene layer is

found to be of 1.3 × 106m/s , which is comparable to the graphene Fermi velocity. Similar to the

case of graphene, only a single dispersing branch of the “Dirac cone” is visible in the Γ̄− K̄ direction

[Fig. 1.7(b) red arrow] which can be attributed to a photoemission interference effect. Left image of

Fig. 1.7(a) is the ARPES result for clean Ag surface i.e., before the deposition of Si and this does not
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show any Dirac like dispersion. The direction along which the ARPES measurement is done is shown

in Fig. 1.7(b) where Brillouin zone of 2D Silicene is demonstrated.

Silicene sheet has been grown on other substrate as well e.g. Fleurence et al. have reported the

formation of two-dimensional epitaxial silicene through surface segregation on zirconium diboride

thin films grown on Si wafers [37]. They have confirmed the presence of buckling in silicene. How-

ever, they have obtained a buckling induced band gap opening at the Γ point which may also originate

from the electronic coupling with the substrate.

1.4 Borophene

A thin layer of boron atoms called borophene is one of the latest addition to the famility of Dirac ma-

terials. As Boron has one less electron than carbon, it’s honeycomb structure is unstable. However,

stabilization is possible by adding extra boron atoms in the honeycomb lattice. First principle calcu-

lations have predicted that depending on the arrangements of the extra boron atoms, various stable

monolayer-boron structures, such as α sheet, β sheet, are possible [15, 23, 38]. One of the most stable

predicted structure among these is 8-Pmmn borophene.

The Pmmn space group is generated by the translations of the vectors (a, 0, 0), (0, b, 0), and

(0, 0, c) (the latter is not present for the two-dimensional structure), inversion I, reflection σv, rotation

C2, and the n-glide plane consisting of the (a/2, b/2, 0) translation and the z → −z reflection. Here,

a, b, c are the lattice spacings. We do not consider the spin-orbit coupling which may be present

in the material. The Hilbert space is then split into two subspaces of the n-symmetric and the n-

antisymmetric wave functions. Then the Hamiltonian H(kx, ky), which follows the Pmmn space

group symmetry, can be written in the block-diagonal form with the blocks HS and HA. The Bloch

waves corresponding to both the subspaces then correspond to the smaller effective unit cell and

doubled first Brillouin zone .

8-Pmmn borophene has 8 atoms per unit cell. There is another possible structure obeying Pmmn

space group symmetry : 2-Pmmn borophene, which has 2 atoms per unit cell. We are interested only

in the former one as this hosts Dirac fermions. There are two inequivalent atoms in the lattice of

8-Pmmn borophene which are termed, using the terminology of Ref. [39], as : inner atoms and

ridge atoms. These two kinds of atoms are not situated on the same plane and thus borophene is

12
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Figure 1.8: Schematic sketch of the lattice structure of 8-Pmmn borophene. Big blue (dark gray)
circles and small red (light gray) circles indicate two types of nonequivalent atoms BR (ridge atom)
and BI (inner atom) respectively. Upper panel dictates the frontview of borophene lattice structure.
The unit cell, comprising of 8 atoms, is shown by dashed black rectangle. Lower panel presents the
sideview of borophene lattice structure.
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not flat 2D like graphene. The lattice is identified by the following parameters [40]: a = 0.452

nm, b = 0.326 nm, and the coordinates of two inequivalent atoms are (a/2, 0.247b, 0.109 nm) (ridge

atom) and (0.185a, b/2, 0.040 nm) (inner atom), and the coordinates of other atoms are obtained via

proper symmetry operations.

The resulting tight-binding model, which is a 16 band model (originating from 8 atoms), yields

good agreement with the first principle Density Functional Theory (DFT) results of [39]. The result-

ing energy dispersion near the Fermi energy exhibits tilted anisotropic Dirac cone like structure at

kD = (0, kD) and −kD, where kD = 0.290× 2π/b [40].

A low energy effective Hamiltonian for 8-Pmmn borophene has been recently put forwarded by

Zabolotskiy and Lozovic [41] using symmetry consideration. A general low energy two band effective

Hamiltonian for 2D Dirac materials associated with the anisotropic Dirac cone can be written as (near

the Dirac points q = ±kD)

HD = ξ(vxσxqx + vyσyqy + vtσ0qy) , (1.25)

where σx, σy are the Pauli matrices in the atomic basis and σ0 is a 2 × 2 unit matrix. We have

chosen ~ = 1. Here, ξ = ±1 is the valley index and vi (i = x, y) correspond to the velocities along

ith direction, while vt denotes the velocity scale associated with the tilted Dirac cones. Note that the

tilting is along the y-direction. The different velocity parameters are given by {vx, vy} = {0.86, 0.69}

and vt = 0.32 in units of 106 m/sec [39, 41]. The major differences of this Hamiltonian from that of

graphene (given in Eq.1.7) is the presence of the tilting term i.e., vtσ0qy and assymetry in the Fermi

velocities along x and y directions. The corresponding energy dispersion is given by [42]

E(qx,qy) = qyvt ±
√
q2
xv

2
x + q2

yv
2
y. (1.26)

The Fermi energy has been set at charge neutrality point i.e., at the Dirac point. The band structure

near the Dirac point q = qD is shown in Fig. 6.1. The band is tilted only along y direction and is

symmetric along the x axis which can be understood from Eq. (1.26). The band dispersion around

the other valley q = −qD has opposite chirality i.e., along the y axis, bands are oppositely tilted. It

is important to note that the tilting breaks particle-hole symmetry in borophene [39, 41].
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Figure 1.9: A tilted, anisotropic Dirac cone of 8-Pmmn borophene, in the close vicinity of Dirac
point qD, is shown in the qx-qy plane.

1.4.1 Experimental Evidence of Borophene

In recent years several monolayer boron structures have been experimentally realized on silver sub-

strate [Ag(111)] following their theoretical predictions. In this direction, Manix et al. [43] synthe-

sized atomically thin and crystalline sheets of boron atom on silver substrate under ultrahigh-vacuum

conditions using solid boron atomic source. In situ scanning tunneling microscopy (STM) images

have shown the growth of planar structures with anisotropic behavior, which is consistent with first-

principles calculation. They have further verified the planar, chemically distinct, and atomically thin

nature of these sheets using characterization techniques. Scanning tunneling spectroscopy revealed

that borophene sheets are metallic with highly anisotropic electronic properties which was predicted

earlier theoretically.

Feng et al. have confirmed that two-dimensional boron sheets can be grown epitaxially on a

Ag(111) substrate [44]. They have observed two kinds of boron sheet, a β12 sheet and a χ3 sheet

by scanning tunnelling microscopy. Both of them are shown to exhibit a triangular lattice but with

different arrangements of periodic holes.

In another work, Feng et al. have investigated the electronic structure of β12 phase of a monolayer

boron sheet both theoretically and experimentally [2]. The β12-sheet, the lone phase found from low-

energy electron diffraction (LEED) measurement, exhibits a rectangular structure which is different

from the hexagonal structure of Ag(111) but they have obtained sub-domains with three equivalent

domains which are related by 120◦ rotations. A schematic scetch of the BZ of Ag(111) with the three
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domain orientations is depicted in Fig. 1.10 where the measured Fermi surface is also shown. The

band structure from the monolayer sheet exhibits solo Fermi pocket centered at the S point of the

β12-sheet and a couple of Fermi pockets centered at the M point of Ag(111), as shown by the red and

black arrows, respectively. Note that, S and M points are the high symmetry points as depicted in

Fig. 1.10(a).

Similar Dirac cone states in a rectangular lattice have also
recently been proposed in a graphene superlattice [45].
When the β12 sheet is placed on a Ag(111) substrate, a

long-range modulation arising from the lattice mismatch
gives rise to a moiré pattern, as shown in Fig. S4 [30]. As the
interaction of the boron layer andAg(111) substrate is weak,
the β12 sheet remains largely intact and themoiré pattern can
be explained by a modulated charge distribution on the
surface [25]. The long-rangemodulation yields an electronic
perturbation; in our TB model, we simulate this effect by
varying the on-site energy over a superlattice period of
nax ×may, whereax × ay is the original unit cell [Fig. 1(b)].
The Dirac cones of the superlattice are folded onto the Γ
point when n is a multiple of three, and are further split into
pairs in the Γ-Y direction when the sublattice symmetry is
broken while retaining the inversion symmetry [Figs. 1(c)
and 2(g)]. The Dirac cones will split in the Γ-X direction
when the inversion symmetry is also broken [30]. The
splitting of the Dirac cones has also been confirmed by our

first-principles calculations considering the periodic pertur-
bation [Fig. S2(b)]. From Fig. 2(g), the split Dirac cones are
nonconcentric, which is different from the Rashba-type
splitting of the Dirac cones in graphene [46,47].
To confirm these intriguing properties of the β12 sheet,

we have performed high-resolution ARPES to directly
measure its band structure. The sample was prepared by
evaporating pure boron onto a Ag(111) substrate [30].
From LEED measurements [Fig. S4(a)], we found that
there is only one phase, the β12 sheet. As the β12 sheet has a
rectangular structure, different from the hexagonal structure
of Ag(111), there exist domains with three equivalent
orientations related by 120° rotations. A schematic drawing
of the BZ of Ag(111) with the three domain orientations is
shown in Fig. 3(a), together with the measured Fermi
surface. Because the coverage of boron was less than one
monolayer in the experiments, there were some areas of
bare Ag(111) surface. As a result, the Shockley surface
state and bulk sp band of Ag(111) were clearly observed,

FIG. 3. Band structures of the β12 sheet on Ag(111). (a) The Fermi surface of the β12 sheet on Ag(111). The black, green, and blue
rectangles indicate the BZ of three equivalent domains; the grey hexagon indicates the BZ of Ag(111). The black and red arrows indicate
the bands of the boron layer. The surface state (SS) and bulk sp band of Ag(111) are also observed because the coverage of boron is less
than 1 ML. The pink lines indicate cuts 1–3 where the ARPES intensity plots in (c)–(f) were measured. (b) CECs derived from the
second-derivative energy distribution curves measured in the black dotted rectangle in (a). EF in the figure corresponds to the Fermi
level. All the data in (a) and (b) were measured with p polarized light. (c) ARPES intensity plot measured along cut 1 with s polarized
light. (d)–(f) ARPES intensity plots measured with p polarized light along cut 1 to cut 3, respectively. The yellow dashed lines indicate
the Dirac cones (DC). All the ARPES data in (a)–(f) were measured with a photon energy of 80 eV. (g) Schematic drawing of the Dirac
cones according to our experimental results. (h) Relaxed structure model of the β12 sheet on Ag(111) from our first-principles
calculations. The orange and blue balls indicate the B and Ag atoms, respectively. (i) and (j) Calculated PDOS of B atoms and Ag atoms,
respectively. (k) Calculated band structure along cut 1.
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Similar Dirac cone states in a rectangular lattice have also
recently been proposed in a graphene superlattice [45].
When the β12 sheet is placed on a Ag(111) substrate, a

long-range modulation arising from the lattice mismatch
gives rise to a moiré pattern, as shown in Fig. S4 [30]. As the
interaction of the boron layer andAg(111) substrate is weak,
the β12 sheet remains largely intact and themoiré pattern can
be explained by a modulated charge distribution on the
surface [25]. The long-rangemodulation yields an electronic
perturbation; in our TB model, we simulate this effect by
varying the on-site energy over a superlattice period of
nax ×may, whereax × ay is the original unit cell [Fig. 1(b)].
The Dirac cones of the superlattice are folded onto the Γ
point when n is a multiple of three, and are further split into
pairs in the Γ-Y direction when the sublattice symmetry is
broken while retaining the inversion symmetry [Figs. 1(c)
and 2(g)]. The Dirac cones will split in the Γ-X direction
when the inversion symmetry is also broken [30]. The
splitting of the Dirac cones has also been confirmed by our

first-principles calculations considering the periodic pertur-
bation [Fig. S2(b)]. From Fig. 2(g), the split Dirac cones are
nonconcentric, which is different from the Rashba-type
splitting of the Dirac cones in graphene [46,47].
To confirm these intriguing properties of the β12 sheet,

we have performed high-resolution ARPES to directly
measure its band structure. The sample was prepared by
evaporating pure boron onto a Ag(111) substrate [30].
From LEED measurements [Fig. S4(a)], we found that
there is only one phase, the β12 sheet. As the β12 sheet has a
rectangular structure, different from the hexagonal structure
of Ag(111), there exist domains with three equivalent
orientations related by 120° rotations. A schematic drawing
of the BZ of Ag(111) with the three domain orientations is
shown in Fig. 3(a), together with the measured Fermi
surface. Because the coverage of boron was less than one
monolayer in the experiments, there were some areas of
bare Ag(111) surface. As a result, the Shockley surface
state and bulk sp band of Ag(111) were clearly observed,

FIG. 3. Band structures of the β12 sheet on Ag(111). (a) The Fermi surface of the β12 sheet on Ag(111). The black, green, and blue
rectangles indicate the BZ of three equivalent domains; the grey hexagon indicates the BZ of Ag(111). The black and red arrows indicate
the bands of the boron layer. The surface state (SS) and bulk sp band of Ag(111) are also observed because the coverage of boron is less
than 1 ML. The pink lines indicate cuts 1–3 where the ARPES intensity plots in (c)–(f) were measured. (b) CECs derived from the
second-derivative energy distribution curves measured in the black dotted rectangle in (a). EF in the figure corresponds to the Fermi
level. All the data in (a) and (b) were measured with p polarized light. (c) ARPES intensity plot measured along cut 1 with s polarized
light. (d)–(f) ARPES intensity plots measured with p polarized light along cut 1 to cut 3, respectively. The yellow dashed lines indicate
the Dirac cones (DC). All the ARPES data in (a)–(f) were measured with a photon energy of 80 eV. (g) Schematic drawing of the Dirac
cones according to our experimental results. (h) Relaxed structure model of the β12 sheet on Ag(111) from our first-principles
calculations. The orange and blue balls indicate the B and Ag atoms, respectively. (i) and (j) Calculated PDOS of B atoms and Ag atoms,
respectively. (k) Calculated band structure along cut 1.
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(a) (b) (c) (d)(a) (b) (c) (d) (e)

Figure 1.10: (a) The Fermi surface of the β12-boron sheet on Ag(111) is illustrated. The black, green,
and blue rectangles refer to the BZ of three equivalent domains, while the BZ of Ag(111) is shown
by grey hexagon. The black and red arrows indicate the bands of the boron layer. The surface state
(SS) and bulk sp band of Ag(111) are visible. The pink lines refer to the cuts 1− 3 where the ARPES
intensity plots in (b)-(e) were measured. (b) ARPES intensity plot measured along cut 1 is shown
using s polarized light. (c)-(e) ARPES intensity plots measured with p polarized light along cut 1 to
cut 3, respectively. The Dirac cones (DC) are visible which are indicated by the yellow dashed lines.
All the ARPES data in (a)-(e) corresponds to a photon energy of 80 eV. This figure is adapted from
Ref.[2]

The band structure measured via ARPES technique along different directions in the momentum

space (the purple lines in Fig. 1.10) is shown in Figs. 1.10(c-f). Polarized light with its electric field

being parallel to the plane of incidence is denoted as p-polarized, while light whose electric field is

perpendicular to the plane of incidence is termed as s-polarized. Both s and p polarized light have been

used to investigate the nature of the band structure. In general, the s-polarized light mainly probes

the in-plane px and py orbitals, whereas the p-polarized light probes both the in-plane (px and py)

and the out-of-plane (pz) orbitals. The measurements of cut 1 using p polarized light [Fig. 1.10(c)]

exhibit a Dirac cone of boron sheet as well as the bulk sp band of Ag(111). There is no energy

gap (within the limit of experimental resolution) at the Dirac point which signals the nature of the

quasiparticles being massless Dirac fermions and the sheet to be semi-metallic. The Fermi velocities

calculated from Fig. 1.10(c) are approximately 9.24 × 105 m/s and 1.06 × 106 m/s for the left and
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right branches of the Dirac cone, respectively. While these values are close to the Fermi velocity of

graphene (∼ 1.0×106 m/s), the difference arises due to the anisotropy of the Dirac cones which is also

predicted theoretically [41]. In Fig. 1.10(d), the band structure along the K-M-K direction is shown

where a pair of Dirac cones are visible (shown by the yellow dashed lines) although due to limitation

of the experimental configuration the one on the right side is not fully visible. The band structure

along the Γ-M is shown in Fig. 1.10(e). However, ARPES measurement shows that s polarized light

does not produce any Dirac like dispersion as can be seen from Fig. 1.10(b).
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CHAPTER 2

Majorana Zero Mode in 1D Systems

2.1 Introduction

Dirac equation is a relativistic wave equation derived by Paul Dirac in 1928. This celebrated equation,

which combined special theory of relativity with quantum mechanics, is given by

i~
∂

∂t
Ψ = HDiracΨ = (cα.p + βmc2)Ψ. (2.1)

where, α and β do not commute. Dirac proposed the following form of the 4×4 matrices:

αi ≡ σx ⊗ σi =

 0 σi

σi 0

 , β ≡ σz ⊗ I =

 I 0

0 −I

 (2.2)

where σi are the Pauli matrices. This equation can also be written in Lorentz covariant form using 4

component gamma matrices γµ ≡ (β; βα) :

(iγµ∂µ −m)Ψ = 0. (2.3)

with the standard notation ∂µ ≡ ∂
∂xµ

and considering ~ = c = 1. The gamma matrices follow the

Clifford algebra {γµ, γν} = 2ηµν , where ηµν is the Minkowski metric.
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In 1937, Majorana [45] considered the following set of purely imaginary gamma matrices: γ̃0 =

σ2 ⊗ σ1, γ̃1 = iσ1 ⊗ I,γ̃2 = iσ3 ⊗ I and γ̃3 = iσ2 ⊗ σ2 in the Dirac equation. Consequently the

equation Eq.( 2.3) becomes:

(iγ̃µ∂µ −mc)Ψ̃ = 0. (2.4)

which leads to the condition on the field :

Ψ̃ = Ψ̃∗. (2.5)

This implies that the particles, which follow Majorana equation ( 2.4), are their self conjugate i.e.,

they are their own anti-particle. For more than 60 years, this elusive particle is hunted by different

communities of high energy physics : elementary particle physics, nuclear physics, astrophysics, and

cosmology. For the last few years search for Majorana reaches a new territory : condensed matter

physics [46].

In condensed matter physics, Majorana fermions are not elementary particles, rather they are

emergent quasiparticles. Moreover, they don’t follow the usual fermionic statistics; rather they sat-

isfy non-abelian exchange statistics [26, 47]. Thus, they are non-abelian anyons : particle exchanges

are non-trivial operations which do not commute in general. This is fundamentally different from

other types of particle where an exchange operation merely multiplys the wavefunction by +1 (for

bosons) or -1 (for fermions) or eiφ (for abelian anyons). Furthermore, a Majorana fermion is in a

sense half of a normal fermion, meaning that a fermionic state can be obtained as a superposition

of two of them. We term it as ‘Majorana zero mode’ (MZM) instead of calling it a fermion and the

reason behind calling it a ‘zero mode’ becomes clear in the next section.

Being its own antiparticle means that a MZM must be an equal superposition of an electron and

a hole state. It is, thus, obvious to hunt for such excitations in superconductors, where the wavefunc-

tions of Boguliubov quasiparticles have equal portion of an electron and a hole component due to

the particle-hole symmetry. In second quantized language, the annihilation operator of a Boguliubov

quasiparticle in the natural s-wave superconductor has the form b = uc†↑ + vc↓, where cσ annihilates

a fermion with spin orientation σ =↑, ↓. Here u and v are in general momentum dependent but for
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this discussion, momentum is irrelevant here and therefore omitted for simplicity. The operator b can

never be written in the form of a Hermitian operator due to the different spins of c and c†. We can

write annihilation operator for MZM, following Hermitian condition, as : γ = uc†σ + u∗cσ and there-

fore the creation operator, γ† = γ. The major difference from the s-wave Boguliubov quasiparticle

operator is that the MZM have equal spin projections. Such equal spin pairing do not occur in most

types of naturally found superconductors and were first predicted to occur in the ν = 5/2 fractional

quantum Hall state [48].

The search for MZMs took a big step forward in 2008 with the seminal paper by Fu and Kane [49]

where they showed that px ± ipy-wave-like pairing can be engineered in the surface states of a strong

topological insulator when brought into close proximity to a s-wave superconductor and a ferro-

magnetic insulator (giving rise to proximity-induced superconductivity [50, 51] in the surface of a

topological insulator). The necessary ingredient is the strong spin-orbit coupling of the topological

insulator which leads to the band splitting with momentum-dependent spin directions. When the

topological insulator is coupled to a magnetic insulator, the unwanted Kramer’s degeneracy is lifted

by the induced Zeeman splitting and an effectively spinless regime can be achieved. After a couple

of years, two remarkable works by Lutchyn et al. and Oreg et al. [52, 53] proposed a realistic way

to obtain MZMs in one dimensional (1D) semiconducting nanowires which we discuss in Sec. 2.3 in

details. There have also been proposals to create MZMs in magnetic spin chain on top of a s-wave

superconductor [54].

We first discuss Kitaev toy model for Majorana states in a spinless p-wave superconductor in

Sec. 2.2. Then we discuss realistic model and present the results for hunt of MZM in 1D systems

in Sec. 2.3. The experimental detection of MZM, till date, based on 1D semiconductor nanowire is

summarized in Sec. 2.4.
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2.2 Majorana zero mode in Kitaev Chain

Kitaev in his seminal paper [55] considered a 1D tight-binding chain with p-wave superconducting

pairing. The Hamiltonian of the lattice chain is given by

Hchain = −µ
N∑
i=1

ni −
N−1∑
i=1

(
tc†ici+1 + ∆cici+1 + h.c.

)
, (2.6)

where h.c. refers to hermitian conjugate, µ is the chemical potential, ci(c
†
i ) is the electron annihilation

(creation) operator for site i, and ni = c†ici is the corresponding number operator. Here ∆ and t

denote the superconducting pairing gap and nearest neighbour hopping respectively. The chemical

potential µ is assumed to be homogeneous throughout the chain. For simplicity, the superconducting

phase φ can be taken to be zero, such that ∆ = |∆|. The time-reversal symmetry (T ) is broken in

Eq. (2.6) since only one kind of the spin projection is considered, i.e., effectively spinless electrons

are considered in the model (the spin label is thus omitted). Note that, the superconducting pairing

is non-standard since it couples electrons with the same spin (whereas in standard s-wave pairing,

electron couples only with opposite spin projection). Moreover, electrons are paired only with the

neighboring sites in contrast to the s-wave pairing which is onsite.

We now rewrite Eq. (2.6) in terms of Majorana operators. Fermionic operators can always be

decomposed as a linear combination of two Majorana operators :

ci =
1

2
(γi,1 + iγi,2) , (2.7)

c†i =
1

2
(γi,1 − iγi,2) , (2.8)

where γi,1 and γi,2 are two Majorana operators on lattice site i. By inverting the above equations, we

obtain

γi,1 = c†i + ci, (2.9)

γi,2 = i
(
c†i − ci

)
, (2.10)

Hence, these Majorana operatos are hermitian as expected. Figure 2.1 shows a schematic sketch

of Kitaev’s chain with Majorana decomposition. The upper panel dictates that two Majoranas are
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coupled on each site to form a fermion operator as given by Eq. (2.7). These new Majorana operators

satisfy the following algebra:

{γi,1, γj,1} = 2δij, {γi,1, γj,2} = 0 (2.11)

γi = γ†i , γ2
i = 1 (2.12)

Writing Eq. (2.6) in terms of the Majorana operators, we obtain

Hchain = −µ
2

N∑
i=1

(1 + iγi,2γi,1)− i

2

N−1∑
i=1

[(∆ + t)γi,2γi+1,1 + (∆− t)γi,1γi+1,2]. (2.13)

Figure 2.1: Schematic sketch of Kitaev’s 1D p-wave superconducting tight binding chain. Upper
panel refers to the trivial phase of the Kitaev chain where two Majoranas are coupled on each site
to form fermion operator. Lower panel describes topological phase of the Kitaev chain in which
Majoranas couple each other from adjacent sites and form normal fermions. This leaves one unpaired
Majorana at each end of the chain.

In the regime, µ < 0 and t = ∆ = 0, the chain resides in the topologically trivial phase. In this

limit, the only surviving term is the coupling between Majorana modes γi,1 and γi,2 at the same lattice

site as shown in the upper panel of Fig. 2.1. Clearly the spectrum is gapped since introducing an extra

spinless fermion into the chain costs a finite energy |µ|. It is important to note that the system remains

in trivial phase even when the parameters are away from this fine-tuned limit provided that the gap

persists.

The other limit is especially interesting when µ = 0, t = ∆, where topological phase can be

achieved. In this case, the Hamiltonian becomes

Hchain = −it
N−1∑
i=1

γi,2γi+1,1. (2.14)
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Here two Majorana operators from the adjacent sites couple to form a normal fermion and thus leaving

behind one unpaired Majorana at each end of the chain. We can construct a new fermion operator, c̃i,

by combining Majorana operators from neighboring sites

c̃i = (γi+1,1 + iγi,2)/2. (2.15)

This pairing is shown in the lower panel of Fig. 2.1. In terms of these new fermion operators we can

rewrite Eq. (2.13) as

Hchain = 2t
N−1∑
i=1

c̃†i c̃i. (2.16)

The sum is over N − 1 electrons and the energy cost of adding an electron is 2t. The Majorana

operators γN,2 and γ1,1, which are situated at the two ends of the chain, are completely missing from

Eq. (2.14)! We can now form a single fermionic non-local state composed from these two ‘unpaired’

Majorana modes as

c̃M = (γN,2 + iγ1,1)/2. (2.17)

This is a highly non-local fermionic state since γN,2 and γ1,1 are localized at the opposite ends of

the chain. Moreover, since this fermionic operator is absent from the Hamiltonian, occupying the

corresponding state does not cost any energy. In “normal” superconductors the ground state is non-

degenerate and consists of a superposition of even number of particle states (condensate of Cooper

pairs), while odd number of quasiparticles are allowed in the Hamiltonian (2.6) without any extra en-

ergy cost. The ground state, therefore, is two-fold degenerate corresponding to having an even or odd

number of total electrons in the superconductor. This even or oddness, also termed as parity, refers

to the eigenvalue of the number operator of the zero-energy fermion, nM = c̃†M c̃M = 1(0) for odd

(even) parity.

Although we have considered limiting case ∆ = t and µ = 0, it can be shown that the MZMs

remain unpaired at the end of the chain as long as the chemical potential lies within the gap (|µ| <

2t) [55] . In the general case, the MZMs are not completely localized only at the two ends of the

chain, rather they decay exponentially away from the edges. The overlap of these unpaired Majorana

23



wavefunctions results in a splitting between the degenerate states by an energy that scales as e−L/ξ,

where L is the length of the chain and ξ is the coherence length. So, the MZMs remain prestine at

zero energy only if the wire is long enough such that their overlap is negligible.

2.3 Majorana zero mode in one dimensional semiconducting nanowire

Although Kitaev’s ingenious idea was a big step to find MZMs in condensed matter systems especially

in 1D wires, the toy model was hard to realize in experimental setups due to unavailability of natural

p-wave superconductors. Two seminal works by Lutchyn et al. [52] and Oreg et al. [53] showed

that it is indeed possible to engineer the topological superconducting phase in 1D nanowire system

(mimicing Kitaev’s toy model) by judiciously combining three naturally available ingredients: 1D

wire with strong spin-orbit coupling, a standard s-wave superconductor, and an external magnetic

field. Figure 2.2 dictates the schematic sketch of the model with the required ingrdients mentioned

before. Thus, the model Hamiltonian for the wire reads

H = Hwire +H∆ (2.18)

Hwire =

∫
dxψ†σ

(
− ∂2

x

2m
− µ− iασy∂x + hσz

)
ψσ (2.19)

H∆ =

∫
dx∆(ψ↑ψ↓ +H.c.). (2.20)

x

z y

B

G

S-wave superconductor

Figure 2.2: Schematic sketch of a 1D spin–orbit coupled nanowire (dark grey) in close proximity to
a s-wave superconductor. Big arrows indicate perpendicularly applied magnetic field B. The back
gates (grey) are connected to control the chemical potential in the nanowire.

Here ψ†σ creats an electron with effective mass m, chemical potential µ, and spin σ in the wire. α
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refers to the strength of the spin-orbit coupling in the wire; and h denotes the Zeeman energy orig-

inated from a magnetic field applied along the z axis whereas the wire lies along the x axis. The

precise direction of spin-orbit coupling and magnetic field axes are unimportant provided they are

perpendicular to each other as well as to the wire direction. For realistic situation, one can con-

ceive Hwire to be described by an electron-doped semiconducting nanowire such as InAs/InSb with

strong Rashba like spin-orbit coupling [56]. The pairing term H∆ refers to the proximity effect of

the s-wave superconductor on the wire. The chemical potential (onsite energy) of the wire is con-

trolled by a set of gate electrodes (see Fig. 2.2). The wire is assumed to be long enough such that

the size quantization can be ignored along the wire direction so that MZM do not overlap with each

other and thin enough that the 1D subbands are well separated compared to the relevant energy scales.

First we consider ∆ = 0 case and examine the Hamiltonian Hwire. In absence of any spin-orbit

coupling and magnetic field i.e., α = h = 0, the electrons exhibit parabolic dispersion (E ∝ k2)

having spin degeneracy. With spin-orbit coupling, parabolic bands get shifted depending on their spin

orientation along the axis of the spin–orbit field as shown by the blue and red parabolas in Fig. 2.3(a).

The ‘spinless’ regime is not possible here; the spectrum always supports an even number of pairs of

Fermi points for any Fermi energy. As the magnetic field is turned on, Zeeman gap pops up at k = 0

which splits the bands and the corresponding band energies are given by

ε±(k) =
k2

2m
− µ±

√
(αk)2 + h2 (2.21)

These bands are depicted by the solid black curves in Fig. 2.3(b). When the Fermi level resides within

this magnetic field-induced gap (µ shown in the figure), the effective ‘spinless’ regime in the wire can

be obtained.

Now we switch on proximity induced superconductivity i.e., ∆ > 0 and investigate the resulting

band structure. To intuitively understand the underlying physics, we project out the upper unoccupied

band and only consider the lower, which is legitimate for ∆� h. The spins of electrons in the lower

band (which is of our interest) are partially polarised because of competition between spin-orbit cou-

pling and the magnetic field. It is important to note that, without the momentum dependence of the

spin direction, it is impossible to induce superconductivity by proximity with a s-wave superconduc-

tor because the s-wave pairing only couples the electrons with oppsoite spins. The spin orientations
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(a) (b)EE

Figure 2.3: Band dispersion is shown for the rashba nanowire in absence of the magnetic field (red and
blue curves in (a)) and in presence of the magnetic field (black curves in (b)). The chemical potential
is indiacted by the dashed black line and when it lies within the magnetic field-induced Zeeman gap
at k = 0, the wire appears ‘spinless’. ∆ refers to the proximity induced superconducting gap in the
wire.

are shown by blue and red arrow in Fig. 2.3(b). With the enhancement of the magnetic field, the gap

between the bands increases which helps in orienting the spins of the electrons in the same direction

and effectively ‘spinless’ regime can be achieved similar to the Kitaev’s toy model. A strong mag-

netic field, nonetheless, is not suitable as it hinders superconducting pairing to be induced and this

is why a fine-tuning among the parameters is required. In proximity to the superconductor, electrons

living near kF and −kF get coupled which gives rise to effective p-wave pairing because of ‘spinless’

character. When ∆ is weak compared to h, the wire hosts topological superconducting state which

can be connected smoothly to the weak-pairing phase of Kitaev’s toy model [55, 57].

The presence of superconductivity, because of particle-hole symmetry, doubles the number of

bands as shown in Fig. 2.4. We analyze various gaps that open up for ∆ 6= 0 as a result of the

pairings in Eq. (2.24). The gaps near k = 0 and near the Fermi momenta are denoted as ∆0 and ∆F ,

respectively. The BdG spectrum of the system becomes (see Fig. 2.4)

E2
±(k) = (

~2k2

2m
− µ)2 + α2k2 + h2 + ∆2 ± 2

√
h2∆2 + (

~2k2

2m
− µ)2(h2 + α2k2). (2.22)

∆0 is cruical to understand the emergence of topological superconductivity. There are two kinds

of gapping mechanisms at low momentum (near k = 0) namely h and ∆. Due to their competition,
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E E
(a) (b)

Figure 2.4: Bogoliubov-de Gennes spectrum of the Rashba nanowire. (a) ∆ = 0: electron (solid
lines) and hole (dashed lines) bands cross each other at finite energies (interband crossings) and at the
Fermi energy (intraband crossings). (b) A finite ∆ 6= 0 leads to both intraband and interband pairings,
Eq. (2.24), and open a gap ∆F at the Fermi points kF , and modify the Zeeman gap at k = 0. This gap
∆0 is determined by the competition between h and ∆. This gap closes and reopens with the increase
of h, giving rise to a topological phase transition.

the gap ∆0 can be closed, which is an indication of a topological phase transition. There is a critical

Zeeman field

hc ≡
√

∆2 + µ2, (2.23)

for which the low momentum gap ∆0 vanishes. When h > hc, the gap reopens again but is now

Zeeman-dominated and the system becomes a topological superconductor. The other gap ∆F , in con-

trast to ∆0, never closes and, for strong spin-orbit coupling, remains roughly constant ∆F ∼ ∆. The

phase diagram of the nanowire is shown in Fig. 2.5.

The appearance of topological superconductivity in the Rashba nanowire can be intuitively under-

stood by writing the Hamiltonian in helical basis. By projecting out the upper band and considering

only one band (lower one), we obtain s-wave pairing term in the helical basis as:

H =

∫
dk

(2π)

∆p
−

2
{ψ†−(k)ψ†−(−k) +H.c.}
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with the emergent gap

∆p
−(k) =

iαk∆

2
√
h2 + α2k2

. (2.24)

h/

Topological

Trivial

Figure 2.5: Phase diagram of the proximitized nanowire which becomes a one-dimensional topologi-
cal superconductor for h >

√
µ2 + ∆2.

This indicates that even in the proximity to a conventional s-wave pairing, the projection of the

pairing onto the helical bands gives rise to an effective p-wave pairing which is of intraband nature

in this case. We have given a detailed derivation of this emmergent p-wave pairing in Appendix B.

Actually, when both upper and lower bands are taken into account, effective pairing, in the helical

bands, consists of both s-wave (interband pairing) as well as p-wave (intraband pairing) components.

Similar physics appears in case of three dimensional topological insulator in close proximity to s-

wave superconductor where Fu and Kane showed that px + ipy like pairing emmerges out, giving rise

to Majorana mode at the vortex core [49].

2.4 Experimental Signature of Majorana zero mode

Till date, there has been many sucssesful experiments that could infer the existance of MZM in Rashba

nanowire. Upsurge activity from experimetal side came after the prediction of MZM in Rashba

nanowire by Lutchyn et al. and Oreg et al. in 2010. Clear and direct probes of MZM have been

carried out in three different classes of experiments : tunneing experiment, Josephson current mea-
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surement and interferometry. We shall only focus on the outcome of tunneing experiments.

This platform of rashba nanowire has attracted enormous attention mainly because all the neces-

sary ingredients : nanowire with strong spin orbit coupling, superconductor and magnetic field are

easily available in present day laboratories. In the topological superconducting phase, as described

earlier, MZM appears at each end of the wire. Emmergence of such zero modes takes place with the

concomitant topological phase transition. The observation of the closing and reopening of the bulk

bandgap is a strong evidence of the topological phase transition.

InAs [58] and InSb nanowires [59] have strong spin-orbit interaction of strength αR = 10 meVnm

and αR = 20 meVnm respectively which helps in shifting the bands of different spins. They also

posses large g factor of g ≈ 15 and g ≈ 50 respectively[58, 59]. When this nanowire is kept in close

proximity to an s-wave superconductor, the large g-factors allow for weak magnetic field to open a

relatively large Zeeman gap which drive the wire into a topological superconductor hosting MZMs.

The strong spin-orbit coupling is shown to enforce the topological superconducting state to possess a

relatively large gap which remains robust against disorder [60].

The first succsessful experiment in the direction of probing the transport signal of MZM was re-

ported by Mourik et al. [3]. They used an InSb semiconductor quasi-one-dimensional wire with

strong spin-orbit coupling which is partially deposited on a silicon substrate and kept in contact

with superconducting (niobium titanium nitride) and normal metal electrodes as demosnstrated in

Fig. 2.6(a).

A tunnel barrier is created in the nanowire by applying a negative voltage to the narrow area (tun-

nel barrier) in between normal (N) and superconducting (S) part of the nanowire. This tunnel barrier

further localize the zero mode at the wire ends and preventsthe Majorana wave-functions to leak into

the normal side. A bias voltage is applied externally between the N and S contacts and it drops almost

completely across the tunnel barrier. The differential conductance dI/dV at voltage V and current I,

in this setup, is proportional to the density of states at energy E = eV measured from Fermi level.

Magnetic field dependent dI/dV vs V is shown in Fig. 2.6(b) for increasing B fields in 10 mT steps

from 0 to 490 mT. The two peaks at±250 meV signify the peaks in the quasi-particle density of states
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We use InSb nanowires (15), which are
known to have strong spin-orbit interaction and
a large g factor (16). From our earlier quantum-
dot experiments, we extract a spin-orbit length
lso ≈ 200 nm corresponding to a Rashba param-
eter a ≈ 0.2 eV·Å (17). This translates to a spin-
orbit energy scale a2m*/(2ħ2) ≈ 50 meV (m* =
0.015me is the effective electron mass in InSb,
me is the bare electron mass, and ħ is Planck’s
constant h divided by 2p). Importantly, the g
factor in bulk InSb is very large (g ≈ 50), yield-
ing EZ/B ≈ 1.5 meV/T. As shown below, we find
an induced superconducting gap D ≈ 250 meV.
Thus, for m = 0, we expect to enter the topo-
logical phase for B ~ 0.15 T where EZ starts to
exceed D. The energy gap of the topological
superconductor is estimated to be a few kelvin
(17), if we assume a ballistic nanowire. The
topological gap is substantially reduced in a dis-
ordered wire (18, 19). We have measured mean
free paths of ~300 nm in our wires (15), implying
a quasi-ballistic regime in micrometer-long wires.
With these numbers, we expect Majorana zero-
energy states to become observable below 1 K
and around 0.15 T.

A typical sample is shown in Fig. 1B.We first
fabricate a pattern of narrow (50-nm) and wider
(300-nm) gates on a silicon substrate (20). The
gates are covered by a thin Si3N4 dielectric be-
fore we randomly deposit InSb nanowires. Next,
we electrically contact those nanowires that
have landed properly relative to the gates. The
lower contact in Fig. 1B fully covers the bottom
part of the nanowire. We have designed the up-
per contact to only cover half of the top part of
the nanowire, avoiding complete screening of
the underlying gates. This allows us to change
the Fermi energy in the section of the nanowire
(NW) with induced superconductivity. We have
used either a normal (N) or superconducting (S)
material for the lower and upper contacts, re-
sulting in three sample variations: (i) N-NW-S,
(ii) N-NW-N, and (iii) S-NW-S. Here, we dis-
cuss our main results on the N-NW-S devices,
whereas the other two types, serving as control
devices, are described in (20).

To perform spectroscopy on the induced su-
perconductor, we created a tunnel barrier in the
nanowire by applying a negative voltage to a
narrow gate (dark green area in Fig. 1, B and C).
A bias voltage applied externally between the N
and S contacts drops almost completely across
the tunnel barrier. In this setup, the differential
conductance dI/dV at voltage V and current I is
proportional to the density of states at energy E =
eV (where e is the charge on the electron) relative
to the zero-energy dashed line in Fig. 1C. Figure
1D shows an example taken at B = 0. The two
peaks at T250 meV correspond to the peaks in the
quasi-particle density of states of the induced
superconductor, providing a value for the in-
duced gap, D ≈ 250 meV. We generally find a
finite dI/dV in between these gap edges. We ob-
serve pairs of resonances with energies symmetric
around zero bias superimposed on nonresonant

currents throughout the gap region. Symmetric
resonances likely originate from Andreev bound
states (21, 22), whereas nonresonant current in-
dicates that the proximity gap has not fully de-
veloped (23).

Figure 2 summarizes our main result. Figure
2A shows a set of dI/dV-versus-V traces taken at

increasingB fields in 10-mTsteps from 0 (bottom
trace) to 490 mT (top trace), offset for clarity. We
again observe the gap edges at T250 meV. When
we apply a B field between ~100 and ~400 mT
along the nanowire axis, we observe a peak at
V= 0. The peak has an amplitude up to ~0.05·2e2/h
and is clearly discernible from the background
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Fig. 1. (A) Outline of theoretical proposals. (Top) Conceptual device layout with a semiconducting
nanowire in proximity to an s-wave superconductor. An external B field is aligned parallel to the wire.
The Rashba spin-orbit interaction is indicated as an effective magnetic field, Bso, pointing perpendicular
to the nanowire. The red stars indicate the expected locations of a Majorana pair. (Bottom) Energy, E,
versus momentum, k, for a 1D wire with Rashba spin-orbit interaction, which shifts the spin-down band
(blue) to the left and the spin-up band (red) to the right. Blue and red parabolas are for B = 0; black
curves are for B ≠ 0, illustrating the formation of a gap near k = 0 of size Ez (m is the Fermi energy with
m = 0 defined at the crossing of parabolas at k = 0). The superconductor induces pairing between states
of opposite momentum and opposite spin, creating a gap of size D. (B) Implemented version of the-
oretical proposals. Scanning electron microscope image of the device with normal (N) and super-
conducting (S) contacts. The S contact only covers the right part of the nanowire. The underlying gates,
numbered 1 to 4, are covered with a dielectric. [Note that gate 1 connects two gates, and gate 4
connects four narrow gates; see (C).] (C) (Top) Schematic of our device. (Bottom) illustration of energy
states. The green rectangle indicates the tunnel barrier separating the normal part of the nanowire on
the left from the wire section with induced superconducting gap, D. [In (B), the barrier gate is also
shown in green.] An external voltage, V, applied between N and S drops across the tunnel barrier. Red
stars again indicate the idealized locations of the Majorana pair. Only the left Majorana is probed in
this experiment. (D) Example of differential conductance, dI/dV, versus V at B = 0 and 65 mK, serving
as a spectroscopic measurement on the density of states in the nanowire region below the
superconductor. Data are from device 1. The two large peaks, separated by 2D, correspond to the quasi-
particle singularities above the induced gap. Two smaller subgap peaks, indicated by arrows, likely
correspond to Andreev bound states located symmetrically around zero energy. Measurements are
performed in dilution refrigerators with the use of the standard low-frequency lock-in technique
(frequency = 77 Hz, excitation = 3 mV) in the four-terminal (devices 1 and 3) or two-terminal (device 2)
current-voltage geometry.
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conductance. Above ~400 mT, we observe a pair
of peaks. The color panel in Fig. 2B provides an
overview of states and gaps in the plane of energy
and B field from –0.5 to 1 T. The observed sym-
metry around B = 0 is typical for all of our data

sets, demonstrating reproducibility and the ab-
sence of hysteresis. We indicate the gap edges
with horizontal green dashed lines (highlighted
only for B < 0). A pair of resonances crosses
zero energy at ~0.65 Twith a slope on the order

of EZ (highlighted by orange dotted lines). We
have followed these resonances up to high bias
voltages in (20) and identified them as Andreev
states bound within the gap of the bulk NbTiN
superconducting electrodes (~2 meV). In con-
trast, the ZBP sticks to zero energy over a range
of DB ~ 300mTcentered around ~250mT. Again
at ~400 mT, we observe two peaks located at
symmetric, finite biases.

To identify the origin of these ZBPs, we need
to consider various options including the Kondo
effect, Andreev bound states, weak antilocal-
ization, and reflectionless tunneling versus a
conjecture of Majorana bound states. ZBPs due
to the Kondo effect (24) or Andreev states bound
to s-wave superconductors (25) can occur at
finite B; however, with changing B, these peaks
then split and move to finite energy. A Kondo
resonance moves with 2EZ (24), which is easy to
dismiss as the origin for our ZBP because of the
large g factor in InSb. (Note that even a Kondo
effect from an impurity with g = 2 would be dis-
cernible.) Reflectionless tunneling is an enhance-
ment of Andreev reflection by time-reversed
paths in a diffusive normal region (26). As in
the case of weak antilocalization, the resulting
ZBP is maximal at B = 0 and disappears when
B is increased; see also (20). We thus conclude
that the above options for a ZBP do not provide
natural explanations for our observations. We
are not aware of any mechanism that could ex-
plain our observations, besides the conjecture of
a Majorana.

To further investigate the zero-biasness of
our peak, we measured gate voltage depend-
ences. Figure 3A shows a color panel with volt-
age sweeps on gate 2. The main observation is
the occurrence of two opposite types of behav-
ior. First, we observe peaks in the density of
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Fig. 2. Magnetic field–dependent spectroscopy. (A) dI/dV versus V at 70 mK
taken at different B fields (from 0 to 490 mT in 10-mT steps; traces are offset
for clarity, except for the lowest trace at B = 0). Data are from device 1.
Arrows indicate the induced gap peaks. (B) Color-scale plot of dI/dV versus V

and B. The ZBP is highlighted by a dashed oval; green dashed lines indicate
the gap edges. At ~0.6 T, a non-Majorana state is crossing zero bias with a
slope equal to ~3 meV/T (indicated by sloped yellow dotted lines). Traces in
(A) are extracted from (B).
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and 60 mK. Andreev bound states cross through zero bias, for example, near –5 V (yellow dotted lines).
The ZBP is visible from –10 to ~5 V (although in this color setting, it is not equally visible everywhere).
Split peaks are observed in the range of 7.5 to 10 V (20). In (B) and (C), we compare voltage sweeps on
gate 4 for 0 and 200 mT with the ZBP absent and present, respectively. Temperature is 50 mK. [Note
that in (C) the peak extends all the way to –10 V (19).] (D) Temperature dependence. dI/dV versus V at
150 mT. Traces have an offset for clarity (except for the lowest trace) and are taken at different
temperatures (from bottom to top: 60, 100, 125, 150, 175, 200, 225, 250, and 300 mK). dI/dV outside
the ZBP at V = 100 meV is 0.12 T 0.01·2e2/h for all temperatures. A FWHM of 20 meV is measured
between the arrows. All data in this figure are from device 1.
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(a) (b)

Figure 2.6: (a): Experimental set up of the semiconductor-superconductor heterostructure is shown.
(b): Magnetic field–dependent dI/dV is measured as a function bias voltage V at temperature 70 mK
for magnetic fields ranging from 0 to 490 mT in 10-mT steps. This figure is adapted from Ref. [3]

of the superconducting wire. The induced gap in the wire, thus, is ∆ ≈ 250meV .

When electron arising from normal side is reflected as a hole (process called Andreev reflection),

the conductance is given by G = (2e2/h)TA, where the factor of 2 appears because the Andreev re-

flection of an electron into a hole doubles the current and TA is the Andreev reflection probability [61].

K. T. Law et al. showed that the Majorana induced Andreev reflection is always of unit proability and

thus tunneling conductance dI/dV at zero energy is 0 (2e2/h) depending on absence (presence) of

Majorana state at the end of superconducting region [62]. Furthermore, this zero bias conductance is

independent of the precise tunnelling strength. The Majorana nature of this perfect Andreev reflection

is a direct consequence of the well-known Majorana symmetry property where particle is same as its

own antiparticle.

When magnetic field strength is between ∼ 100 and 400 mT along the nanowire axis, a peak has

been observed at V = 0. The peak has an amplitude up to ∼ 0.05 × 2e2/h which is much lower

compared to the theoretical prediction of 2e2/h at zero temperature. This discrepancy was suspected

as a result of thermal averaging, but this suspection is ruled out when the peak width exceeds the ther-

mal broadening (∼ 3.5kBT ). Other averaging mechanisms, such as dissipation [63], have been taken

into consideration where the main source of dissipation is ‘soft gap’ problem which is the presence of

finite quasiparticle density-of-states within the superconducting gap. Substantial improvement could

be achieved in hardening the gap by enhancing the quality of materials, eliminating the possible dis-
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order, smoothening the interface between the wire and the superconductor [64, 65], and better control

during device processing [66, 67].

Several groups have reported the experimental observations of zero-bias peak at non-zero mag-

netic field revealing the existence of Majorana bound states [58, 68, 69]. The obtained ZBP in

transport measurement, however, were also predicted to be mimicked by other effects, such as owing

to Kondo physics [70], smooth confinement [71, 72], weak antilocalization [73], disorder [74, 75],

parity crossings of Andreev levels [76].

Investigation of concrete evidence of MZM in nanowire has been, thus, carried out extensively

by various groups [77, 78, 79]. Addressing all the dissipation and disorder issues mentioned above,

very recently, Zhang et al. have reported the quantized zero bias conductance peak in semiconductor-

superconductor heterostructure [4]. A micrograph of a fabricated device and schematic of the mea-

surement set-up is shown in Fig. 2.7(a) where an InSb nanowire is partially covered by a thin super-

conducting aluminium shell to create superconducting portion. The tunnel-gates are used to induce

and control a tunnel barrier in segment between the normal and superconducting regime. The chem-

ical potential in the region covered with Al can be tuned by using super-gates connected to that

segment.

The magnetic field dependancy of dI/dV is depicted in Fig. 2.7(b). The ZBP remains quantized

with the value 2e2/h for a considerable value of magnetic field B which indicates the robustnace of

ZBP against the applied B field. Experimental outcome matches qualitatively with theoretical predic-

tion which is shown in Fig. 2.7(d). ‘Soft gap’ problem still sustains as can be seen in Fig. 2.7(c) left

panel and is denoted by the black curve. ZBP attains its maximum value of 2e2/h for B = 0.88T

which matches with the theory [see right panel of Fig. 2.7(c)] to a considerable extent.

This seminal paper has also shown the tunnel-gate voltage dependance of the ZBP. It is clear

from Fig. 2.8(a) and (b) that the tunneling conductance is almost robust for tunnel gate voltage being

−8.0 or more positive when bias voltage V = 0. However, for more negative tunnel-gate voltage,

ZBP gets splitted and dI/dV approaches zero which can be attributed to the overlap of Majorana

wavefunctions [72]. The above-gap conductance measured at V = 0.2 meV varies with tunnel-gate

voltage as shown in Fig. 2.8(c) which is expected as this transport is carried by quasi-particles above
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where dI/dV does reflect the density-of-states, displays a hard gap 
(also shown in Extended Data Fig. 4, where the gap remains hard in a  
magnetic field). For further understanding, we use experimental 
parameters in a theoretical Majorana nanowire model28 (see Methods 
for more information). Figure 1d shows a simulation with two line-cuts 
shown in Fig. 1c (right panel). Besides the ZBP, other discrete sub-gap 
states are visible, which are due to the finite wire length. Such discrete 
lines are only faintly resolved in the experimental panels of Fig. 1b. 
Overall, we find good qualitative agreement between the experimental 
and simulation panels in Fig. 1b and d. An exact quantitative agreement 
is not feasible, as the precise experimental values for the parameters 
going into the theory (for example, chemical potential, tunnel coupling, 
Zeeman splitting or spin–orbit coupling) are unknown for our hybrid 
wire–superconductor structure.

Next, we fix B at 0.8 T and investigate the robustness of the quantized 
ZBP against variations in transmission by varying the voltage on the 
tunnel-gate. Figure 2a shows dI/dV while varying V and tunnel-gate 
voltage. Figure 2b shows that the ZBP height remains close to the 
quantized value. Importantly, the above-gap conductance measured 
at |​V|​ =​ 0.2 meV varies by more than 50% (Fig. 2c and d), implying 
that the transmission is changing considerably over this range while the 
ZBP remains quantized. The minor conductance switches in Fig. 2a–c  
are due to unstable jumps of trapped charges in the surroundings.

Figure 2d (red curves) shows several line-cuts of the quantized ZBP. 
The extracted height and width are plotted in Fig. 2e (upper panel) 
as a function of above-gap conductance GN =​ T ×​ e2/h where T is the 
transmission probability for a spin-resolved channel. Although the ZBP 

width does change with GN, the quantized height remains unaffected. 
Note that the ZBP width ranges from about 50 μ​eV to about 100 μ​eV, 
which is significantly wider than the thermal width of approximately 
6 μ​eV at 20 mK. The ZBP width is thus broadened by tunnel coupling, 
instead of thermal broadening, fulfilling a necessary condition to 
observe a quantized Majorana peak. In Extended Data Fig. 2, we show 
that in the low-transmission regime in which thermal broadening 
dominates over tunnel broadening, the ZBP height drops below 2e2/h 
(as explained in refs 15–18). The robustness of the ZBP quantization 
to a variation in the tunnel barrier is an important finding of our work.

A more negative tunnel-gate voltage (<​−​8 V) eventually splits the 
ZBP, which may be explained by an overlapping of the two localized 
Majorana wavefunctions from the two wire ends. The tunnel-gate 
not only tunes the transmission of the barrier but also influences the 
potential profile in the proximitized wire part near the tunnel barrier. 
A more negative gate voltage effectively pushes the nearby Majorana 
mode away, towards the remote Majorana on the other end of the wire, 
thus reducing the length of the effective topological wire. This leads to 
the wavefunction overlap between the two Majorana modes, causing  
the ZBP to split16 (black curves in Fig. 2d). This splitting is also  
captured in our simulations shown in Fig. 2f, where we have checked 
that the splitting originates from Majorana wavefunction overlap. Note 
that the simulated ZBP height (red curve in middle panel in Fig. 2f)  
remains close to the 2e2/h plateau over a large range, whereas the 
above-gap conductance (black curve in lower panel in Fig. 2f) changes 
substantially. Also, the height and width dependence in the simulation 
is in qualitative agreement with our experimental observation (Fig. 2e). 
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Figure 1 | Quantized Majorana zero-bias peak. a, False-colour scanning 
electron micrograph of device A (upper panel) and its schematics (lower 
panel). Side gates and contacts are Cr/Au (10 nm/100 nm). The Al shell 
thickness is approximately 10 nm. The substrate is p-doped Si, acting 
as a global back-gate, covered by 285 nm SiO2. The two tunnel-gates 
are shorted externally, as are the two super-gates. Scale bar, 500 nm. 
b, Magnetic field dependence of the quantized ZBP in device A with 
the zero-bias line-cut in the lower panel. Magnetic field direction 
is aligned with the nanowire axis for all measurements. Super-gate 
(tunnel-gate) voltage is fixed at −​6.5 V (−​7.7 V), while the back-gate is 

kept grounded. Temperature is 20 mK unless specified. c, Comparison 
between experiment and theory. Left (right) panel shows the vertical 
line-cuts from b (d) at 0 T and 0.88 T (1.07 meV). d, Majorana simulation 
of device A, assuming chemical potential μ =​ 0.3 meV, tunnel barrier 
length (LTG =​ 10 nm), with height ETG =​ 8 meV, and the superconductor–
semiconductor coupling is 0.6 meV. See Methods for further information. 
A small dissipation broadening term (about 30 mK) is introduced for all 
simulations to account for the averaging effect from finite temperature and 
small lock-in excitation voltage (8 μ​V).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Figure 2.7: Scanning electron micrograph of the experimental device is shown in upper panel and its
schematic sketch in lower panel of (a). The two tunnel-gates are shorted externally, as are the two
super-gates. (b) Magnetic field dependence of the quantized ZBP is depicted in upper panel while the
line cut along the zero-bias is presented in the lower panel. Magnetic field direction is aligned with
the nanowire axis for all measurements. Super-gate and tunnel-gate voltages are fixed at −6.5V and
−7.7V respectively, while the back-gate is kept grounded. Measurement is carried out at 20 mK. (c)
Comparison between experiment and theory is shown : left (right) panel dictates the vertical line-cuts
from b (d) at 0 T and 0.88 T (1.07 meV). (d) Theoretical results of dI/dV obtained from simulation
is shown, with chemical potential µ = 0.3 meV. This figure is adapted from Ref. [4] .
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the superconducting gap. All of these observations match very well with the results from theoretical

side which are shown in Fig. 2.8(d). They have also varied chemical potential, super-gate voltage

and temperature, and have established the robustness of MZM against all of these parameters (local

perturbations).LetterRESEARCH
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To complete the comparison, we show in Fig. 2g the simulated line-cuts 
of several quantized ZBPs (red curves) and split peaks (black curves), 
consistent with the experimental data in Fig. 2d.

Pushing Majorana modes towards each other is one mechanism for 
splitting. Another way is by changing the chemical potential through the 
transition from a topological to a trivial phase8,9—the quantum phase 
transition from the trivial to the topological phase can equivalently  
be caused by tuning either the Zeeman energy (that is, the magnetic 
field) or the chemical potential. Splitting at the phase transition occurs 
because the Majorana wavefunctions start to spread out over the entire 
wire length. For long wires, the transition is abrupt, whereas in shorter 
wires a smooth transition is expected26. We investigate the dependence 
of the quantized ZBP on chemical potential by varying the voltage on 
the super-gate. Figure 3a shows a nearly quantized ZBP that remains 
non-split over a large range in the super-gate voltage. More positive 
voltage applied to the super-gates corresponds to a higher chemical 
potential, and eventually we find a ZBP splitting (around −​5 V or more 
positive) and consequently a suppression of the zero-bias conductance 
below the quantized value. Although the relation between the gate  
voltage and chemical potential is unknown in our devices, this splitting  
suggests a transition to the trivial phase caused by a tuning of the  
chemical potential induced by the changing super-gate voltage.

In a lower B field and different gate settings (Fig. 3b), the splitting 
of the quantized ZBP shows oscillatory behaviour as a function of the 
super-gate voltage. The five line-cuts on the right panel highlight this 

back-and-forth behaviour between quantized and suppressed ZBPs. 
Notably, the ZBP height comes back up to the quantized value and 
does not cross through it.

We find similar behaviour in the theoretical simulations of Fig. 3c. In 
these simulations, we have confirmed that for the chosen parameters, 
the Majorana wavefunctions oscillate in their overlap, thus giving rise 
to the back-and-forth behaviour of quantized and split ZBPs29. In the  
experiment, it may also be that non-homogeneity, possibly somewhere in 
the middle of the wire, causes overlap of Majorana wavefunctions. Again, 
we note that the conversion from gate voltage to chemical potential  
is unknown, preventing a direct quantitative comparison between 
experiment and simulation.

To demonstrate the reproducibility of ZBP quantization, we show 
in Fig. 4a the quantized ZBP data from a second device. In this second 
device, the length of the proximitized section is about 0.9 μ​m, which is 
about 0.3 μ​m shorter than in the previous device. The quantized ZBP 
plateau is indicated by the region between the two green dashed lines 
in Fig. 4b (red curve). This second device allows transmission of more 
than one channel through the tunnel barrier, which we deduce from 
the above-gap conductance value (Fig. 4b, lower panel, black curve) 
exceeding e2/h for tunnel-gate voltages higher than about −​0.55 V. 
Correspondingly, the zero-bias conductance can now exceed 2e2/h  
(Fig. 4b, middle panel) for such an open tunnel barrier5. Tunnelling 
through the second channel in the barrier region results in an additional 
background conductance, thus leading to the zero-bias conductance 
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Figure 2 | Quantized Majorana conductance plateau. a, Tunnel-gate 
dependence of the quantized ZBP at B =​ 0.8 T. Super-gate (back-gate) 
voltage is fixed at −​6.5 V (0 V). b, c, Horizontal line-cuts from a, showing 
zero-bias conductance and above-gap conductance, respectively. The 
zero-bias conductance shows a quantized plateau. d, Several vertical 
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several simulation curves in f. f, Majorana simulation of the tunnel-gate 
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the barrier height decreases from 2.1 meV to 0. g, Vertical line-cuts from f 
show the quantized ZBP (red) and split peaks (black).
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  d

Figure 2.8: (a) : Tunnel-gate dependence of the quantized ZBP at B=0.8T while super-gate and
back-gate voltages are fixed at -6.5V and 0V , respectively. (b), (c) : Horizontal line-cuts from (a),
revealing zero-bias conductance and above-gap conductance, respectively. The zero-bias conductance
shows a quantized plateau for a range of tunnel-gate voltage. (d) : Theoretical results using Majorana
simulation is shown describing the tunnel-gate dependence of dI/dV. The Zeeman field is chosen at
0.8 meV and chemical potential at 0.6 meV. This figure is adapted from Ref. [4] .

There is finite possibility of arising Andreev bound state (ABS) near the tunnel barrier region,

which can mimic the ZBP of 2e2/h in tunnelling conductance as predicted by Liu et al. [80]. How-

ever, these trivial ABS are not robust against tunnel-gate voltage as confirmed by Zhang et al. [4].

They concluded that while the temperature alone cannot differentiate the MZM origin from ABS,

a stable quantized tunnel-conductance plateau which is robust against variations in all gate voltages

and magnetic field strength, can be an unique identification of a topological MZM in tunnelling spec-

troscopy. Although the search for smoking gun signal of MZM is still under active research pathway.
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CHAPTER 3

Thermal Conductance in Superconducting Hybrid Junction of

Silicene

3.1 Chapter Summary

We have explored the the properties of thermal conductance in a normal-insulator-superconductor

(NIS) junction of silicene for both thin and thick barrier limit of the insulating region. While thermal

conductance, in this kind of junction of Dirac materials, displays the conventional exponential depen-

dence on temperature, it manifests a nontrivial oscillatory dependence on the strength of the barrier

region. We have explored the tunability of the thermal conductance by the interplay betwen external

electric field and the induced superconducting gap. Moreover, the effect of doping concentration on

thermal conductance has also been discussed. In the thin barrier limit, the period of oscillation of the

thermal conductance as a function of the barrier strength comes out to be π/2 when doping concentra-

tion in the normal silicene region is small. On the other hand, the period gradually converts to π with

the enhancement of the doping concentration. Such change of periodicity of the thermal response

with doping can be a possible probe to identify the crossover from specular to retro Andreev reflec-

tion in Dirac materials. In the thick barrier limit, thermal conductance exhibits oscillatory behavior as

a function of barrier thickness d and barrier height V0 while the period of oscillation becomes V0 de-

pendent. However, amplitude of the oscillations, unlike in tunneling conductance, gradually decays
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with the increase of barrier thickness for arbitrary height V0 in the highly doped regime. We have

discussed experimental relevance of our findings.
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3.2 Introduction

With the discovery of graphene [81, 7] and topological insulator [82, 83], the study of Dirac fermions

in condensed matter systems has become one of the most active field of reseach over the last decade.

The low energy band spectrum of these materials exhibits massless Dirac equation. Hence, relativistic

electronic band structure leads to upsurge research interest in terms of possible application as well as

fundamental physics point of view.

In recent years, a silicon analogue of graphene, silicene [6, 13, 5, 84] consisting of a monolayer

honeycomb structure of silicon atoms, has attracted an immense amount of research interest both

theoretically [5, 6] and experimentally [21, 85, 1, 86]. This two-dimensional (2D) material has been

grown experimentally by successful deposition of silicene sheet on silver substrate [21, 85, 1]. Also

the interest in silicene soared due to the possibility of its various future applications ranging from

spintronics [87, 88, 89, 90, 91], valleytronics [92, 17, 93, 94, 95] to silicon based transistor [96] at

room temperature.

Very recently, it has been reported that low energy excitations in silicene follows relativistic Dirac

equation akin to graphene [5, 30]. In fact, silicene shares almost all remarkable properties with

graphene viz. hexagonal honeycomb structure, Dirac cones etc. However, due to large ionic radius

of silicon atom, contrary to graphene, silicene does not possess a planar structure, rather it has a

periodically buckled structure. Not only that, silicene has spin-orbit coupling (∼ 1.55 meV) [6]

which is significantly large compared to Graphene. Consequently, a band gap appears at the Dirac

points K and K′ resulting Dirac fermions to be massive. Due to the buckled structure the two sub-

lattices in silicene respond differently to an externally applied electric field which can tune the band

gap at the Dirac points [97, 98, 30]. Such tunability opens up the possibility to undergo a topological

phase transition from topologically non-trivial state to a trivial state depending on whether the applied

electric field is less or more than the critical value at which the band gap closes. Thus a rich varity of

topological phases can be realised in silicene [29, 99, 92, 18, 100] under suitable circumstances.

On the other hand, proximity induced superconductivity in Dirac materials has attracted a great

deal of attention in recent times [101, 82]. Very recently superconducting proximity effect in silicene

has been investigated in Ref. [102] in which the authors have theoretically studied the behavior of

electrical conductance in a normal-superconductor (NS) junction of silicene. Up to now, no exper-
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iment has been carried out in the context of proximity effect in silicene. On the other hand, heat

transport in Dirac systems [103, 104] and superconducting hybrid structures also has become an ac-

tive field of research over the past decade [105, 106, 107]. Thermal conductance (TC) has been

investigated in graphene based hybrid junctions in Ref. [108, 109, 110, 111] where due to low-energy

relativistic nature of Dirac fermions in graphene, TC exhibits oscillatory behavior with respect to the

barrier strength. Such oscillatory behavior of TC is in sharp contrast to that of the conventional NS

junction [112, 113] where TC decays with the barrier strength. However, study of TC in silicene based

normal-insulator-superconductor (NIS) hybrid junction is still unexplored to the best of our knowl-

edge. The extra tunability of the band gap by an external electric field also allows one to control the

TC by the same. Also, TC in silicene NIS junction for both thin and thick (arbitrary barrier thickness)

insulating barrier limit with different doping concentrations is worth to explore.

Motivated by the above mentioned facts, in this chapter, we discuss TC in silicene NIS junction

for both thin and thick insulating barrier as well as with various doping concentration in the nor-

mal silicene regime. In our analysis, we consider only the electronic part of the TC and neglect the

phonon contribution at low temperature. We find that TC has an exponential dependance on temper-

ature which is due to the s-wave symmetry of the superconductor. As the thermal transport is carried

by the low-energy Dirac fermions like graphene, TC is shown to be oscillatory as a function of barrier

strength. In moderate doped regime, where chemical potential is of the same order of band gap at the

Dirac points, TC shows non-trivial nature due to interplay of chemical potenial, gap and temperature.

TC is also controllable by the external electric field applied perpendicular to the silicene sheet. The

period of oscillations of TC as a function of barrier strength depend on the doping concentration. In

the thin barrier limit, the period of oscillation changes from π/2 to π as we go across from undoped to

highly doped regime. In the thick barrier limit, oscillations persist in TC as a function of barrier thick-

ness and barrier height but the period and amplitude of oscillations become functions of the barrier

height. More strikingly, amplitude of oscillations of TC diminishes after a certain barrier thickness

and height in the highly doped regime which is in contrast to the tunneling conductance [114].

The remainder of the chapter is organised as follows. In Sec. 3.3, we describe our model and

method. Sec. 3.4 is devoted to the thin barrier regime where results are presented for three different

doping concentrations. Features of the thick barrier limit are discussed in Sec. 3.5. Finally, we

summerize and conclude in Sec. 3.6.
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3.3 Model and Method

We consider a monolayer of silicene consisting of two sublattices A and B. Two sublattice planes are

separted by a distance 2l due to the buckled structure. When an electric field is applied perpendic-

ular to the silicene sheet, a staggered potential is generated between the two sublattices A and B as

discussed earlier.

SS

d

x
y G

IN

Figure 3.1: A schematic sketch of our silicene NIS set-up. Silicene sheet with hexagonal lattice
structure is deposited on a substrate (orange, light grey). Here N indicates the normal region, I
denotes the insulating barrier region of width d (grey). A bulk superconducting material denoted by
S (light grey) is placed in close proximity to the silicene sheet to induce superconductivity in it. A
gate (blue, light grey) is connected to the silicene sheet to tune the chemical potential (doping) in the
normal region. The magenta (light grey) line indicates the direction of the heat transport in response
to a temperature gradient δT between the normal and the superconducting side.

The low energy effective Hamiltonian of silicene, which is derived from lattice Hamiltonian in the

Appendix A, near the Dirac points kη, η = ±1 reads [30]

Hη = ~vf (ηkxτ̂x − ky τ̂ y) + (elEz − ησλSO)τ̂ z − µ1̂ . (3.1)

where vf is the fermi velocity of the electrons, µ is the chemical potential and Ez is the external

electric field. η = ±1 corresponds to the K and K′ valley. In Eq. (3.1), σ is the spin index and τ̂

correspond to the Pauli matrices in the sublattice space and 1̂ is the 2× 2 identity operator.

In this chapter we consider a normal-insulator-superconductor (NIS) set-up of silicene in x − y

plane as depicted in Fig. 3.1 with normal region (N) being in x ≤ −d. The insulating region (I)

with width d has −d ≤ x ≤ 0 while the superconducting region (S) occupies x ≥ 0 for all y. The

insulating region has a barrier potential which can be implemented by an external gate voltage. Also

the chemical potential can be tuned by a gate voltage connected to the silicene sheet (see. Fig. 3.1).

Superconductivity in silicene is induced via the proximity effect of a bulk s-wave superconductor

placed close to the silicene sheet in the region x ≥ 0.
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Silicene NIS junction can be described by the Dirac Bogoliubov-de Gennes (DBdG) equation of

the form [102]

 Ĥη ∆1̂

∆†1̂ −Ĥη

Ψ = EΨ . (3.2)

where E is the excitation energy, ∆ is the proximity induced superconducting pairing gap and Hη

is given by Eq.(3.1). Here we have assumed that the induced superconducting pairing gap does not

have spatial structure inside the superconducting region i.e., ∆(x) = ∆ for x ≥ 0 while ∆(x) = 0 for

x < 0. The schematic band diagram of the silicene NIS set-up is shown in Fig. 3.2. In silicene, the

pairing occurs between η = 1, σ = 1 and η = −1, σ = −1 as well as η = 1, σ = −1 and η = −1,

σ = 1 for a s-wave superconductor.

Solving Eq.(3.2) we find the wave functions in three different regions. The wave functions for the

electrons and holes moving in ±x direction in normal silicene region reads

ψeN
± =

1

A



±ηke1e±iηαe
τe1

1

0

0


exp[i(±ke1xx+ ke1yy)] ,

ψhN
± =

1

B



0

0

∓ηkh1 e±iηαh
τh1

1


exp[i(±kh1xx+ kh1yy)] . (3.3)

where the normalization factors are given by A =
√

2(E+µN )
τe1

, B =
√

2(E−µN )

τh1
and

k
e(h)
1 =

√(
k
e(h)
1x

)2

+
(
k
e(h)
1y

)2

, (3.4)
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k
e(h)
1x =

√
(E±µN)2 − (elEz − ησλSO)2 −

(
k
e(h)
1y

)2

. (3.5)

τ
e(h)
1 = E±µN∓(elEz − ησλSO) . (3.6)

Here µN is the chemical potential in the normal silicene region.

Due to translational invariance in the y-direction, corresponding momentum k
e(h)
1y is conserved.

The angle of incidence αe and the Andreev reflection (AR) angle αh are related via the relation

kh1 sin(αh) = ke1 sin(αe) . (3.7)

AR is a process where electron is converted as a hole at the interface. For the rest of the chapter,

we have denoted the band gap (elEz − λSO)/∆ at K valley by λ and the gap (elEz + λSO)/∆ at K′

valley by λ′. In the Insulating region wave functions can be found from normal region wave functions

(Eq.(3.3)) by replacing µN → µN − V0.

In the superconducting region the wave functions of DBdG quasiparticles are given by,

ψeS =
1√
2



u1

ηu1e
iηθe

u2

ηu2e
iηθe


exp[(iµS − κ)x+ iqeyy] ,

ψhS =
1√
2



u2

−ηu2e
−iηθh

u1

−ηu1e
−iηθe


exp[(−iµS − κ)x+ iqhyy] . (3.8)

Here, u1(2) =
[

1
2
±
√
E2−∆2

2E

] 1
2

and κ =
√

∆2 − E2. The transmission angles for electron-like and
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Figure 3.2: A schematic band diagram of our silicene NIS geometry. While in the normal (N)
silicene and superconducting (S) silicene region both K and K′ valleys are depicted, in the insulating
(I) barrier region only K valley is shown for simplicity. Blue solid line indicates conduction band
while valence bands are represented by the red dashed lines. Dot-dashed line and dot-dot-dashed line
represent µN = 0 and µN = 100∆ respectively.

hole-like quasi-particles are given by,

qα sin θα = ke1 sinαe . (3.9)

for α = e, h. The quasiparticle momentums can be written as

qe(h) = µS ±
√
E2 −∆2 . (3.10)

where µS = µN + U0 and U0 is the gate potential applied in the superconducting region to tune the

Fermi surface mismatch. The requirement for the mean-field treatment of superconductivity is that

µS � ∆ [115, 101].

We consider electrons with energy E incident at the interface of our NIS junction of a silicene

sheet. Considering both normal reflection and Andreev reflection from the interface, we can write the

wave functions in three different regions of the junction as
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ΨN = ψeN
+ + rψeN

− + rAψ
h
N
− ,

ΨI = pψeI
+ + qψeI

− +mψhI
+ + nψhI

− ,

ΨS = teψ
e
S + thψ

h
S . (3.11)

where r and rA are the amplitudes of normal reflection and Andreev reflection (AR) in the N

region respectively. te and th denote the amplitudes of transmitted electron like and hole like quasi-

particles in the S region. Using boundary conditions at the two interfaces, we can write

ΨN |x=−d = ΨI |x=−d, ΨI |x=0 = ΨS|x=0 . (3.12)

From these equations we can find the reflection and AR amplitudes r and rA, required for eval-

uating the electronic contribution of TC. For the NIS junction, normalized thermal conductance κ is

given by [116, 108]

κ =

∫ ∞
0

∫ π
2

−π
2

dEdαe

[
1−Re −Rh

cos(αh)

cos(αe)

]

cos(αe)

[
E2

4T 2 cosh2( E
2T

)

]
. (3.13)

Here, Re and Rh are reflection and AR probability respectively. From current conservation, we

obtain [102]

Re = |r|2 ,

Rh =
kh1x
ke1x

[
2(E + µN)(E − µN − λ)

|ηkh1x − ike1y |2 + (E − µN − λ)2

]
|rA|2 . (3.14)

The derivation of Eq.(3.13) using BTK formalism [61] is given in the Appendix C.
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3.4 Thin barrier

In this section, we present our numerical results based on Eq.(3.13) for the thin barrier limit. In this

particular limit of insulating barrier, we consider d→ 0 and V0 →∞, such that keId, k
h
I d→ χ where

keI , k
h
I are the electron and hole momentum inside the insulating barrier respectively. χ is defined as

the barrier strength of the insulating region. Such limit has been considered before in Ref. [117, 118]

for the analysis of tunneling conductance in graphene and silicene.

We take U0 to be very large compared to the superconducting pairing potential ∆. For simplicity,

we consider θe = 0 and θh = 0 in Eq.(4.10) and Eq.(3.10). Due to significant chemical potential

imbalance between the normal and superconducting sides, there is a large mismatch of Fermi wave-

lengths in these two sides resulting in interesting behavior in TC.

Before proceeding to present our numerical results, here we illustrate whether both valleys con-

tribute to TC at all doping conentrations or not. For silicene, the band gap at K′ valley satisfies

λ′ � µN/∆ for the undoped and moderately doped regime. In general, doping concentration can be

controlled by applying external gate voltage in silicene. Consequently, K′ valley does not contribute

to TC in these two regimes. Nevertheless, in highly doped regime, µN ∼ 100∆ which is much larger

than both the band gaps λ and λ′ at K and K′ valley respectively (see Fig. 3.2). Hence, we consider

contribution for both the valleys while calculating TC for the highly doped regime. Therefore, we can

write κ = κK + κK′ in this case. On the other hand, κ = κK for the undoped and moderately doped

regime.

3.4.1 Undoped regime (µN = 0)

In this subsection we present our results when the normal region of the silicene sheet is undoped i.e.,

µN = 0. In Fig. 3.3((a)-(d)) we show the behavior of TC as a function of T/Tc for λ ranging from

0 to 0.8. In silicene λ can be tuned by just the external electric field Ez. We choose various barrier

strengths. Here, Tc is the transition temperature of the superconducting silicene. The exponential fall

of TC (κ) when the temperature is below the transition temperature Tc results because of spherical

symmetry of the s-wave superconductor [108]. This behavior is similar to that of conventional no-
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Figure 3.3: Thermal conductance is shown as a function of temperature T/TC with U = 100∆ and
λ ranging from 0 to 0.8 for the undoped regime (µN = 0).
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Figure 3.4: Thermal conductance is depicted as a function of the barrier strength χ with U = 100∆
and λ ranging from 0 to 0.8 for the undoped regime (µN = 0). Blue (solid), magenta (dotted), green
(dashed), red (dash-dotted) and orange (dash-dot-dotted) curves indicate λ values 0.0, 0.2, 0.4, 0.6
and 0.8 respectively.
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mal metal-superconductor junction [113]. As we increase λ by suitably adjusting the perpendicular

electric field Ez, TC decreases monotonically. As λ i.e., band gap increases, the available propagat-

ing states through which thermal transport takes place reduces and as a consequence TC decreases

monotonically with λ. However, as carriers with all energies contribute to the thermal transport,

quantitative value of κ is hardly affected by change of band gap at Dirac points which is less than the

induced superconducting gap in magnitude. This we can see from formula of κ (see Eq.(3.13)).

In Fig. 3.4((a)-(d)) we demonstrate the bahavior of TC with respect to the barrier strength χ. We

choose different temperatures below the transition temperature Tc. TC exhibits a periodic behavior

with periodicity π/2 as shown in Fig. 3.4. Such periodic behavior of TC is entirely different from

conventional NS junction where TC always decays with the barrier strength. This periodic behavior

is also the manifestation of Dirac fermions in silicene.

The oscillatory behavior of the conductance can be understood as the following way : nonrela-

tivistic free electrons with energy E passing through a potential barrier V are described by the wave

function of the form eikx where k ∼
√
E − V . ForE < V , the wave function decreases exponentially

inside the barrier. On the contrary, relativistic free electrons have a dispersion k ∼ (E − V ) and the

corresponding wave functions do not decay inside the barrier region for arbitrary large potential bar-

rier. Instead, the transmittance across the junction displays an oscillatory behavior as a function of the

energy of incident particle E. In general, for the kinetic energy of a free electron being given by kα

leads to a complex momentum k ∼ (E−V )1/α inside the tunneling barrier region and hence the wave

function has exponentially damped oscillatory behavior. Only relativistic massless fermions whose

kinetic energy is directly proportional to the momentum are unique in a sense that their momentum

is real inside the barrier region. Therefore, the undamped oscillatory behavior at subgap energies is a

direct manifestation of the presence of relativistic low-energy Dirac fermions.

When temperature T is very small compared to Tc, the quantitative value of κ is vanishingly small

which can also be seen from Fig. 3.3 focusing at small T/Tc region. Also, the π/2 periodicity of TC is

independent of T/Tc value. Moreover, for the µN = 0 regime, the major contribution in TC originates

from the unusual specular Andreev reflection (SAR) [115] process due to the pecularity of 2D Dirac

systems. When a hole is reflected back along the path of the incident electron the process is known as
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retro Andreev reflection. On the other hand, the process is called specular Andreev reflection when

the refected path of hole follows mirror like reflection from the interface. This unusual process of

specular Andreev reflection was first predicted in graphene by Beenakker [115] and experimentally

verified recently by Efetov et al. [119]. In general, in SAR process, an electron in the conduction

band is reflected as a hole in the valence band while in the usual case of RAR, electron and hole both

lie in the conduction band. Thus, for the undoped regime, electron from conduction band is always

reflected from valence band and thus transport in the junction occurs primarily due to SAR process.

Effect of λ is more prominent near the transition temperature Tc because superconducting gap

decreases as T → Tc resulting the band gap in the normal region to overcome the superconducting

pairing gap. As a result normal reflection probability enhances rusulting in reduction in κ. Note that,

the maxima of the peaks of κ for different λ are same for T = 0.15Tc which is unique behavior at

very low temperature (T � Tc). On the contrary, peak heights of κ gets reduced due to the evanescent

modes as long as T approaches Tc.

The oscillatory behavior of the TC can be explained as follows. Nonrelativistic free electrons with

energy E incident on a potential barrier with height V0 are described by an exponentially decaying

(non-oscillatory) wave function inside the barrier region if E < V0, since the dispersion relation

is k ∼ √E − V0. On the contrary, relativistic free electrons satisfies a dispersion k ∼ (E − V0),

consequesntly corresponding wave functions do not decay inside the barrier region [120]. Instead,

the transmittance of the junction displays an oscillatory behavior as a function of the strength of the

barrier. Hence, the undamped oscillatory behavior of TC at T < Tc is a direct manifestation of the

relativistic low-energy Dirac fermions in silicene.

3.4.2 Moderately doped regime (µN 6= 0)

In this subsection, we present our results for the moderate doping case where chemical potential in

the normal part of the silicene sheet is 0.5∆. This regime is qualitatively different from the undoped

one because the doping concentration has now almost same order of magnitude with λ. So it is inter-

esting to analyse whether non-trivial behavior of TC emerges out due to the interplay between doping

and band gap at the two valleys. In Fig. 3.5((a)-(d)), TC is shown as a function of temperature with
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Figure 3.5: Thermal conductance is shown as a function of temperature T/TC with U = 100∆ and
λ ranging from 0 to 0.8 for moderate doping (µN = 0.5∆).
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Figure 3.6: We show the thermal conductance as a function of the barrier strength χ with U = 100∆
and λ ranging from 0 to 0.8 for moderate doping (µN = 0.5∆). Specification of λ is same as in
Fig. 3.4.
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different λ and for various barrier strength χ. The striking difference from the undoped case is that κ

does not show monotonic behavior with λ. When T � Tc, κ decreases with increasing λ value by Ez

from 0 to 0.4. Then κ further increases as λ crosses µN value. At temperaure close to Tc, κ decreases

monotonically with increasing λ similar to the undoped case. Note that, κ decreases in the T � Tc

regime due to the evanescent modes present between the energy range |µN − λ| to |µN + λ|. Then κ

start increasing in the subgapped regime when µN ∼ λ resulting in the non-monotonic behavior. As

long as T → Tc it again decreases due to the silicene band gap like the µN = 0 case.

Transition from non-monotonic to monotonic behavior of TC takes place at T ∼ 0.6Tc indepen-

dent of χ value. This non-monotonic characteristics is more promiment in Fig. 3.6((a)-(b)) where

oscillatory nature of κ with barrier strength is presented for different values of T/Tc. For a fixed

T/Tc, such non-monotonic characteristics of κ can be tuned by the external electric field Ez which

is unique in silicene. Here also the periodicity of oscillations remains π/2 independent of tempera-

ture and contribution in κ originates from both specular Andreev reflection (SAR) and retro Andreev

reflection (RAR).

3.4.3 Highly doped regime (µN ∼ 100∆)

Here in this subsection we present the features of TC while normal portion of silicene is highly doped

(µN ∼ 100∆). In this case the mean-field condition: µN+U � ∆ [115] can be satisfied by assuming

U � ∆ or taking U � ∆ as before. Former one does not exhibit any Fermi surface mismatch

between the normal and superconducting regions. On the other hand, the latter one contributes to

large density mismatch between the two sides. We have numerically calculated κ for U = 0 � µN ,

U = 100∆ ' µN and U = 10000∆ � µN regime. The corresponding results are presented

in Fig. 3.7 and Fig. 3.8. Here also, similar to the undoped and moderately doped regime, κ has

exponential dependance on temperature which is a universal feature in thermal transport. The only

difference from the previous two cases lies in the fact that we consider the separate contribution of

both the valleys K and K′ when µN � ∆ (see Fig. 3.2).

From analytical expressions of the superconducting wave functions (see Eq.(4.10) and Eq.(3.10)),

we notice that the change in wave functions due to the variation of λ and λ′ is negligible because

µN ∼ 100∆� λ, λ′. Hence, in this regime κ comes out to be independent of the applied electric field
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Ez which is depicted in Fig. 3.7. The corresponding behavior is independent of U also. Nevertheless,

the quantitative value of κ is enhanced by a factor of “2” compared to the previous two cases due to

the contribution coming from both the valleys.

The oscillatory behavior of TC with respect to the barrier strength χ persists in the highly doped

regime as well (see Fig. 3.8((a)-(d))). However, now the periodicity changes with theU value. As long

as U � µN , period remains π/2 but it increases gradually to π as U decreases towards U � µN . Both

for U = 0 and U = 100∆, periodicity of κ remains same at π but the spread of the curve decreases

as U decreases as depicted in Fig. 3.8(a,c). This change of behavior with variation of U can be

qualitatively understood from Fermi surface mismatch between the normal and superconducting sides.

For large Fermi wavelengths mismatch between the normal and superconducting regions, period of

oscillations remains π/2 which is similar to the undoped and moderately doped regimes. However, as

the Fermi wavelengths mismatch becomes vanishingly small in the highly doped regime, periodicity

of oscillation converts to π. Here also, λ as well as λ′ have neglizible effect on the thermal transport

as µN is the dominant energy scale in this particular regime. Similar periodicity of π in the behavior

of tunneling conductance in graphene for the highly doped regime was reported earlier in Ref. [117].

Note that, for the highly doped regime, major contribution in κ originates from the retro AR in

contrast to SAR in the undoped regime. Also the periodicity of κ changes from π/2 to π as long as

U u µN . Such change of periodicity with doping, in the behavior of thermal conductance in the thin

barrier limit, can be an indirect way to identify the crossover from SAR to retro AR in Dirac materials.

Although, it is not apparent to compute separately the individual contribution of retro AR and SAR

to κ when µN 6= 0. This is because within our scattering matrix formalism we have to average over

all values of energy (see Eq.(3.13)). Hence, the change of periodicity of κ from π/2 to π may not

be a strong justification (smoking gun signal) for the crossover phenomenon from SAR to retro AR

as the periodicity again can change from π to π/2 due to Fermi wavelengths mismatch between the

normal and superconducting regions even if µN ∼ 100∆ where the major contribution to κ arising

from retro AR (see Fig. 3.8(b)). However, to observe the latter change, one has to enhance the doping

concentration in the superconducting side also.
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Figure 3.7: Thermal conductance is shown as a function of temperature T/TC with λ ranging from
0 to 0.8 and λ′ ranging from 40 to 40.8 for the highly doped (µN ∼ 100∆) regime.
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3.5 Thick barrier

In this section we examine TC in the thick barrier limit where we consider a barrier of width d

and height V0. The height of the barrier can be tuned by applying an additional gate voltage in the

insulating region [114]. We emphasize on the role being played by the barrier height V0 as well as

thickness d. We show κ manifests osscillatory behavior with respect to both d and V0. However,

the period of oscillation is no longer universal as in the thin barrier limit but beocmes a function of

applied voltage V0 and width d. Similar feature is found earlier in graphene NIS junction [114] where

tunneling conductance is shown to have oscillation whose period depends on V0.

Note that, in the thick barrier limit, extended BTK formalism [61] is valid for our model of NIS

junction if d ≤ ξ where ξ = ~vF/π∆ which is the phase coherence length in the superconducting

side. Fermi wavelength is given by, λF = 2π/kF where kF = µN/~vF being the Fermi wave vector.

So λF and ξ are related by, λF = 2π2∆ ξ/µN . We notice that undoped regime is not valid in the

thick barrier limit becuase Fermi wavelength diverges in that regime. In the moderately doped regime,

choosing µN = 0.5∆ as before, we obtain d/λF ≤ 1/4π2 ∼ 0.025.

3.5.1 Moderately doped regime (µN 6= 0)

When the doping concentration is moderate (µN = 0.5∆) in the normal silicene regime, TC exhibits

similar features as in the thin barrier limit. Here we illustrate the behavior of TC as a function of

barrier height V0 and thickness d in Fig. 3.9 and Fig. 3.10 for λ = 0.3 and λ = 0.7 respectively. We

note the following features. (i) When d → 0, TC is unaffected by the barrier height V0. This is true

for arbitray bandgap λ as we can see from Fig. 3.9 and Fig. 3.10. Nonetheless, V0 affects TC as d

increases. Qualitatively we understand that as U is chosen to be large ∼ 100∆, small barrier height

V0 has negligible effect on TC. (ii) As barrier height dominates U , TC exhibits oscillatory behavior

as a function of d and such oscillation persists even for very large values of V0. Similarly oscillation

is present as V0 changes even for d ∼ 0.025λF . However, the period of oscillation does not show

any universal periodicity of π/2 like in the thin barrier case. The period of oscillation of κ depends

on both d and V0. Similar feature was found earlier in case of tunneling conductance in graphene

NIS junction [114]. (iii) The external electric field Ez does not change the qualitative behavior of κ

as shown in Fig. 3.9 and Fig. 3.10. Although it changes the quantitative value of κ. As λ increases

by tuning Ez, TC reduces monotonically with both d and V0 similar to the thin barrier case when
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Figure 3.9: Plot of thermal conductance as a function of the barrier height V0 and barrier thickness d
for T/Tc = 0.8, λ = 0.3, U = 100∆ and µN = 0.5∆.
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Figure 3.10: Thermal conductance is shown as a function of the barrier height V0 and barrier thick-
ness d. Here λ = 0.7 and the value of the other parameters are chosen to be the same as in Fig. 3.9.
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3.5.2 Highly doped regime (µN ∼ 100)

Here, we present the behavior of TC as a function of d and V0 with high doping concentration where

µN ∼ 100∆. We choose U = 0 only. Hence, there is no Fermi wavelength mismatch between

the normal and superconducting side of the silicene sheet. Thus the effect of applied gate voltage

V0 across the insulating region can be investigated prominently in this regime due to U = 0. Also,

as we have already pointed out in thin barrier limit that λ and λ′ has negligible effect on κ when

µN/∆� λ, λ′, hence we consider λ = 0 and λ′ = 40.

Fig. 3.11 represents TC as a function of d and V0 for λ = 0 and T/Tc = 0.8. We choose V0 value

to be much larger than µN in order to investigate the effect of applied gate voltage or barrier height

on TC. We note that κ exhibits oscillation with respect to V0 even for very small barrier thickness d.

The period of these oscillations is entirely dependent on V0. As mentioned earlier, such oscillations

of κ at very small d does not appear at moderate doping concentration unless and until V0 exceeds U .

Note that, the enhancement in the quantitative value of κ compared to the previous case arises due to

both K and K′ valley contribution. Also in the highly doped regime, the amplitudes of oscillations

of κ decay after a certain value of barrier thickness (d ∼ 0.4λF ) for arbitrary barrier height V0. This

can be understood from the Fermi wave-length mismatch between the barrier and the normal silicene

region for high value of d and V0. This feature of TC is in sharp contrast to the tunneling conductance

in graphene which is oscillatory for arbitrary d and V0 [114].

3.6 Summary and conclusions

To summerize, in this chapter, we investigate thermal conductance κ by Dirac fermions in silicene

NIS junction where superconductivity is induced in silciene sheet via the proximity effect. We study

the behavior of TC in this set-up both for thin and thick insulating barrier limit. We show that TC

exhibits π/2 periodic oscillation with respect to the barrier strength in thin barrier limit for undoped

(µN = 0) and moderately doped (0 < µN ≤ ∆) regime where the Fermi surface mismatch between

the normal and superconducting sides is significant. The oscillation becomes π periodic as a function

of barrier strength in the highly doped (µN � ∆) regime where Fermi surfaces in the two sides

are almost aligned. This change of periodicity (π/2 to π) in thermal response with the variation

of doping concentration can be an indirect probe to identify the crossover from SAR to retro AR.

56



3.0

3.5

4.0

4.5

5.0

Figure 3.11: Thermal conductance is depicted as a function of barrier height V0 and thickness d with
λ = 0, λ′ = 40, U = 0 and T/Tc = 0.8 for the highly doped (µN ∼ 100∆) regime.

Nonetheless, TC shows conventional exponential dependence on temperature independent of doping

concentration and barrier characteristics. The external electric field reduces TC monotonically in

the undoped regime. However, a non-trivial interplay between band gap at Dirac points and doping

concentration appears in the moderately doped case. Consequently, electric field can tune TC in the

later regime. On the other hand, electric field has negligible effect on TC when µN/∆� λ.

In the thick barrier limit, oscillation of TC persists both as a fucntion of barrier thickness d as well

as barrier height V0. The latter can be tuned by an additional gate voltage appled at the insulating

region. However, we show that the periodicity of TC no longer remains constant, rather becomes

functions of both d and V0. Also after a certain barrier thickness (d ∼ 0.4λF ), amplitude of oscillations

in TC decays for arbitrary V0 in the highly doped regime.

In our analysis, we consider only the electronic contribution in TC and neglect the phonon con-

tribution at small temperatures (T < Tc). Very recently, nanoscale control of phonon excitation in

graphene has been reported [121]. Hence, such nanoscale control of phonon excitation in silicene and

the effect of electron-phonon interaction on TC will be presented elsewhere.

As far as experimental realization of our silicene NIS set up is concerned, superconductivity in
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silicene can be induced by s-wave superconductor like Al [122, 123]. In recent years, proximity

induced superconductivity has been observed in other 2D materials such as graphene [122, 123, 124]

and transition metal dichalcogenides [125]. Once such superconducting proximity effect is realized

in silicene, fabrication of silicene NIS junction can be feasible. Typical spin-orbit energy in silicene

is λSO ∼ 4 meV while the buckling parameter l ≈ 0.23 Å [6, 5]. Considering Ref. [122], typical

induced superconducting gap in silicene would be ∼ 0.2 meV. For such induced gap, choosing

µN ∼ 100∆ ∼ 20 meV, we obtain λF ∼ 130 nm. Hence, a barrier of thickness ∼ 10 − 15 nm

may be considered as thin barrier and the gate voltage V0 ∼ 500 meV can therefore meet the demands

of our silicene NIS setup. For the thick barrier limit, thickness can be varied arbitrarily (satisfying

d ≤ λF ∼ 100 nm), with the gate voltage V0 ∼ 100− 200 meV.

However, the effects of external electric field might not be visible in the above regime as envisaged

by our theoretical calculation. To realize non-trivial effects due to the electric field on TC, chemical

potential in the normal silicene region can be µN ∼ 80 − 120 µeV and the external electric field Ez

can be within the range Ez ∼ 170 − 180 eV/µm. In this moderately doped regime (0 < µN ≤ ∆),

the criterion for d and V0 can be similar to the highly doped regime as mentioned before.

Note that, in our analysis, we have considered a bulk silicene material following Ref. [102]. The

bulk-boundary correspondence has not been taken into account within our scattering matrix formalism

where the effect of edge mode can’t be taken into account. So, we cannot distinguish between the

topological phase or the band insulating phase within our formalism even if we tune the electric field

Ez in our calculation. Hence, in our analysis, the contribution in the thermal conductance is arising

from the bulk states only.

We expect our results to be analogous to the recently discovered 2D materials like germenene,

stanene [126, 127]. Although the effect of Rashba SOC λR in these materials can be more impor-

tant than silicene [6, 5]. For silicene, λR is small compared to λSO [30]. The low energy spectrum

of silicene is independent of λR only at the Dirac point [30]. Inclusion of small λR breaks the spin

symmetry and spin is no longer a good quantum number. Qualitatively, from scattering point of view,

presence of small λR introduces spin flip scattering processes from the normal-superconductor (NS)

interface. Apart from spin conserving reflection and AR processes, the reflection and AR processes

with spin flip also contribute to κ. Nevertheless, as λR is small, the amplitudes of those additional

scattering processes will also be small. Hence, after averaging over all the energy values while com-

puting κ, the contribution arising from these two extra scattering processes on the resulting thermal
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conductance will be vanishingly small. Thus, to our expectation, the qualitative feature of κ as a

function of T/Tc or χ will remain similar even one includes small λR into account.
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CHAPTER 4

Quantum Charge Pumping in Superconducting Hybrid Junction

of Silicene

4.1 Chapter Summary

Adiabatic quantum pumping is a transport phenomenon in which low-frequency periodic modula-

tions of at least two system parameters with a phase difference lead to a zero bias finite dc current

in meso- and nanoscale systems. Such zero-bias current is a consequence of the time variation of

the parameters of the quantum system which explicitly breaks time-reversal symmetry. We have

theoretically investigated the phenomena of adiabatic quantum charge pumping through a normal-

insulator-superconductor-insulator-normal (NISIN) setup of silicene within the scattering matrix for-

malism. Assuming thin barrier limit of the insulating region, we have considered the strength of the

two barriers (χ1 and χ2) as the pumping parameters in the adiabatic regime. Within this geometry,

we have obtained crossed Andreev reflection (CAR) with probability unity in the χ1-χ2 plane without

the unwanted concomitant elastic cotunneling (CT). Tunability of the band gap at the Dirac point by

appyling an external electric field perpendicular to the silicene sheet and variation of the chemical po-

tential at the normal silicene region, open up the possibility of achieving novel perfect CAR process

through our setup. This resonant behavior arises periodically in the plane of the barrier strengths. The

behavior of the pumped charge through the NISIN structure as a function of the pumping strength
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and angles of the incident electrons have been analyzed. We have predicted that almost quantized

pumped charge can be obtained through our geometry when the pumping contour encloses the CAR

or transmission resonance in the pumping parameter space. We have mentioned possible experimental

feasibility of our theoretical predictions.
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4.2 Introduction

In recent years, a close cousin to graphene [81, 7], silicene [6, 13, 5, 84, 128, 21, 85, 1, 86] consist-

ing of a monolayer honeycomb structure of silicon atoms, has attracted a lot of research interest in

condensed matter community due to its unique Dirac like band structure which allows one to realize

a rich varity of topological phases [29, 99, 92, 18, 100, 129] and Majorana fermion [100] in it under

suitable circumstances. Moreover, this band structure is shown to be tunable by an external electric

field applied perpendicular to the silicene sheet [98, 30]. Dirac fermions, in turn, becomes massive

at the two valleys K and K′ in this material. These properties have enable silicene to be a promising

candidate for realizing spintronics [87, 89, 90, 88, 91], valleytronics [92, 17, 94, 95] devices as well

as silicon based transistor [96] at room temperature.

An intriguing phenomenon occurs in case of a normal metal-superconductor material-normal

metal (NSN) junction in which an electron incident from one of the normal metal leads forms a

pair with another electron from the other normal metal lead and enters into the superconductor form-

ing a Cooper pair. Such non-local process is called crossed Andreev reflection (CAR) [130, 131]

whose signature has been verified in various experiments [132, 133, 134]. From the practical point of

view, superconducting hybrid structures can be designed by placing a bulk superconducting material

in close proximity to a normal metal system [132, 133] and superconducting correlation is actually

induced into the non superconducting region via the proximity effect. Very recently, superconducting

proximity effect in silicene has been investigated theoretically in Ref.[102, 135, 118]. Although, up to

now, no experiment has been put forwarded in the context of proximity effect in silicene. In Ref.[102],

a unique possibility of acquiring pure crossed Andreev reflection (CAR) without any contamina-

tion from normal transmission/co-tunneling (CT) has been reported in normal-superconductor-normal

(NSN) junction of silicene where elastic cotunneling as well as Andreev reflection can be suppressed

to zero by properly tuning the chemical potential and band gap at the two normal sides. However,

in such NSN junction, maximum value of CAR probability does not reach 100% because normal

reflection does not vanish. This naturally motivates us to study a normal-insulator-superconductor-

insulator-normal (NISIN) junction of silicene and explore whether incorporating an insulating barrier

at each NS interface can give rise to resonant CAR in such setup. CAR can be used to produce non

62



local entangled electron pairs [136, 137] and thus obtaining 100% CAR process in engineered system

has been searched for a long time.

On the other hand, adiabatic quantum pumping, is a transport phenomena in which low-frequency

periodic modulations of at least two system parameters [138, 139, 140, 141] with a phase difference

lead to a zero bias finite dc current in meso and nanoscale systems. Such zero-bias current is obtained

as a consequence of the time variation of the parameters of the quantum system, which explicitly

breaks time-reversal symmetry [142, 143, 144]. It is necessary to break time-reversal symmetry in or-

der to get net pumped charge, but it is not a sufficient condition. Indeed, in order to obtain a finite net

pumped charge, parity or spatial symmetry must also be broken. Finally, to reach the adiabatic limit,

the required condition to satisfy is that the period T of the oscillatory driving signals has to be much

larger than the dwell time τdwell ' L/vF of the electrons inside the scattering region of length L, i.e.,

, T = 2π/ω � τdwell [140]. In this limit, the pumped charge in a unit cycle becomes independent of

the pumping frequency. This is referred to as “adiabatic quantum charge pumping” [140].

During the past decades, quantum charge and spin pumping has been studied extensively in meso-

scopic setups including quantum dots and quantum wires both at the theoretical [145, 145, 146, 147,

142, 143, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159] as well as experimental [160,

161, 162, 163, 164, 165] level with focus on both the adiabatic and nonadiabatic regime. In recent

times, quantum pumping has been explored in Dirac systems like graphene [157, 166, 156, 144, 167]

and topological insulator [168, 169]. However, the possible quantization of pumped charge [170]

during a cycle through non-interacting open quantum systems has been investigated so far based on

the resonant transmission process [171, 149, 144, 172]. In more recent times, quantized behavior

of pumped charge has been predicted in superconducting wires with Majorana fermions [173], frac-

tional fermions [172] and topological insulators in enlarged parameter spaces [174]. Although, till

date, quantum pumping phenomena through resonant CAR process has not been investigated to the

best of our knowledge.

Motivated by the above mentioned facts, in this chapter, we study adiabatic quantum charge pump-

ing either through resonant CAR process or resonant transmission process, under suitable circum-

stances, in silicene NISIN junction [175]. We model our pump setup within the scattering matrix
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formalism [139, 140] and consider the strength of the two barriers (in the thin barrier limit) as our

pumping parameters. We show that CAR probability can be unity in the pumping parameter space.

Moreover, resonant CAR is periodic in the pumping parameter space due to the relativistic nature of

the Dirac fermions. Similar periodicity is present, in case of resonant tunneling process as well, under

suitable condition. Adiabatic quantum pumping through these processes, with the modulation of two

barrier strengths, can lead to large pumped charge from one reservoir to the other. We investigate the

nature of pumped charge through NISIN structure as a function of the pumping strength and angle

of incidence of incoming electrons choosing different types of pumping contours (circular, elliptic,

lemniscate [172] etc.).

The remainder of the chapter is organized as follows. In Sec. 4.3, we describe our pump setup

based on the silicene NISIN junction and the formula for computing pumped charge within the scat-

tering matrix framework. Sec. 4.4 is devoted to the numerical results obtained for the pumped charge

as a function of various parameters of the systems. Finally, we summarize our results and conclude

in Sec. 4.5.

4.3 Model and Method

In this section we describe our quantum pump setup in which we consider a normal-insulator-superconductor-

insulator-normal (NISIN) structure of silicene in x− y plane as depicted in Fig. 4.1. Here, the super-

conducting region being located between 0 < x < L, while the insulating barriers are situated on its

left, −d < x < 0, and on its right, L < x < L + d. The normal region of silicene occupies at the

extreme left i.e., , x < −d and extreme right ends, x > L + d. Here, superconductivity is assumed

to be induced in the silicene sheet via the proximity effect, where a bulk s-wave superconductor is

placed in close proximity to the sheet in the region 0 < x < L. The two insulating regions in silicene

have gate tunable barriers of strength χ1 and χ2 in the thin barrier limit [135, 176]. Two additional

gate voltages G1 and G2 can tune the chemical potential in the left and right normal silicene regions

respectively.

The silicene NISIN junction can be described by the Dirac Bogoliubov-de Gennes (DBdG) equa-

tion of the form [102, 135]
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 Ĥη̃ ∆1̂

∆†1̂ −Ĥη̃

Ψ = EΨ . (4.1)

where E is the excitation energy, ∆ is the proximity induced superconducting pairing gap. The

Hamiltonian Hη̃ describes the low energy physics close to each K and K′ Dirac points and reads

as [30]

Hη̃ = ~vf (η̃kxτ̂x − ky τ̂ y) + (elEz − η̃σλSO)τ̂ z − µ1̂ . (4.2)

where vf is the Fermi velocity of the electrons, µ is the chemical potential, λSO is the spin-orbit

term and Ez is the external electric field applied perpendicular to the silicene sheet. Here η̃ = ±1

denotes the K and K′ valley. In Eq. (4.2), σ is the spin index and τ̂ correspond to the Pauli matrices

acting on the sub-lattices A and B where 1̂ is the 2× 2 identity operator.
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Figure 4.1: A schematic sketch of our silicene NISIN set-up. Silicene sheet with hexagonal lattice
structure is deposited on a substrate (orange, light grey). Here N indicates the normal region, I de-
notes the thin insulating barrier region (grey, light grey). A bulk superconducting material of length
L, denoted by S (pink, light grey), is placed in close proximity to the silicene sheet to induce super-
conducting correlation in it. Two gates G1 and G2 (dark green, dark grey) are connected to the two
normal regions (N) of the silicene sheet to tune the chemical potential (doping) there. Two extra gates
(blue and red, light grey) indicated by χ1 and χ2 are symbolically denoted to modulate the barrier
strengths.

The potential energy term elEz in the low energy Hamiltonian Hη̃ originates due to the buckled

structure of silicene in which the A and B sublattices are non-coplanar (separated by a distance of

length l) and therefore acquire a potential difference when an external electric field Ez is applied

perpendicular to the plane. It turns out that at a critical electric fieldEc
z = λSO/el, the band gap at each

of the valleys become zero with the gapless modes of one of the valley being up-spin polarized and
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the other being down-spin polarised [98, 30]. Away from the critical field, the bands (corresponding

to Hη̃) at each of the valleys K and K′ split into two conduction and valence bands with the band gap

being |elEz − η̃σλSO|. Note that, in silicene, the pairing occurs between η̃ = 1, σ = 1 and η̃ = −1,

σ = −1 as well as η̃ = 1, σ = −1 and η̃ = −1, σ = 1 for a s-wave superconductor.

Here we set up the equations to analyze the quantum pumping phenomena through our NISIN

structure. Solving Eq.(4.1) we find the wave functions in three different regions. The wave functions

for the electrons (e) and holes (h) moving in ±x direction in left or right normal silicene region N

reads

ψe±Nm =
1

A



±η̃ke1me±iη̃αem
τe1m

1

0

0


exp[i(±ke1xmx+ ke1yy)] ,

ψh±Nm =
1

B



0

0

∓η̃kh1me±iη̃αhm
τh1m

1


exp[i(±kh1xmx+ kh1yy)] . (4.3)

where the indexm = L/R stands for the left or right normal silicene region and we use this symbol

for the rest of the chapter. In Eq.(4.3) the normalization factors are given by A =
√

2(E+µm)
τe1m

, B =√
2(E−µm)

τh1m
and

k
e(h)
1m =

√(
k
e(h)
1xm

)2

+
(
k
e(h)
1y

)2

, (4.4)

k
e(h)
1xm =

√
(E±µm)2 − (elEzm − η̃σλSO)2 −

(
k
e(h)
1y

)2

. (4.5)
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τ
e(h)
1m = E±µm∓(elEzm − η̃σλSO) . (4.6)

Here µm indicates the chemical potential in the left (µL) or right (µR) normal silicene region. E

is the energy of the incident particle.

Due to the translational invariance in the y-direction, corresponding momentum k
e(h)
1y is conserved.

Hence, the angle of incidence αem and the Andreev reflection (AR) angle αhm are related via the

relation

kh1m sin(αhm) = ke1m sin(αem) . (4.7)

In the insulating region I , the corresponding wave functions can be inferred from normal re-

gion wave functions (Eq.(4.3)) by replacing µm → µm − V0(V ′0) where V0 and V ′0 are the applied

gate voltages at the left and right insulating regions respectively. We define dimensionless barrier

strengths [135, 176] χ1 = V0d/~vF and χ2 = V ′0d/~vF which we use as pumping parameters for

our analysis. Here d is the width of the insulating barriers assumed to be the same for both of them.
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Figure 4.2: A schematic sketch of the band structure of our silicene NISIN setup is depicted. For the
normal regions of silicene (N ) as well as superconducting (S) silicene region, both K and K′ valleys
are presented. In contrast, only K valley is shown for both the insulating regions (I) for simplicity.
Conduction band is denoted by CB while the valence bands are marked as VB. At the left normal
silicene side, the chemical potential is kept at the bottom of the CB (µL = 5∆, dashed line) while at
the right normal silicene side, the chemical potential is set at the top of the valance band (µR = −5∆,
dashed line) to obtain resonant CAR process.
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In the superconducting region S, the wave functions of DBdG quasiparticles are given by,

ψe±S =
1√
2



u1

±η̃u1e
iη̃θe

u2

±η̃u2e
iη̃θe


exp[±(iµS − κ)x+ iqeyy] ,

ψh∓S =
1√
2



u2

∓η̃u2e
−iη̃θh

u1

∓η̃u1e
−iη̃θe


exp[±(−iµS − κ)x+ iqhyy] . (4.8)

Here the coherence factors are given by,

u1(2) =
[1

2
±
√
E2 −∆2

2E

] 1
2
and κ =

√
∆2 − E2. (4.9)

As before, the translational invariance along the y direction relates the transmission angles for the

electron-like and hole-like quasi-particles via the following relation given by,

qβ sin θβ = ke1m sinαem . (4.10)

for β = e, h. The quasi-particle momentum can be written as

qe(h) = µS ±
√
E2 −∆2 . (4.11)

where µS = µm + U0, and U0 is the gate potential applied to the superconducting region in order to

tune the Fermi wave-length mismatch [115] between the normal and superconducting regions. The

requirement for the mean-field treatment of superconductivity is justified in our model as we have

taken µS � ∆ [115, 101] throughout our calculation.

We consider electrons with energy E incident from the left normal region of the silicene sheet in

the subgapped regime (E < ∆). Considering normal reflection, Andreev reflection, cotunneling (nor-

mal transmission) and crossed Andreev reflection from the interface, we can write the wave functions

in five different regions of the junction as
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ΨL
N = ψe+NL + reψ

e−
NL + rAψ

h−
NL ,

ΨL
I = p1ψ

e+
IL + q1ψ

e−
IL +m1ψ

h+
IL + n1ψ

h−
IL ,

ΨS = t1ψ
e+
S + t2ψ

e−
S + t3ψ

h+
S + t4ψ

h−
S ,

ΨR
I = p2ψ

e+
IR + q2ψ

e−
IR +m2ψ

h+
IR + n2ψ

h−
IR ,

ΨR
N = teψ

e+
NR + tAψ

h+
NR . (4.12)

where re, rA, te, tA correspond to the amplitudes of normal reflection, AR, transmission and

CAR in the N silicene regions, respectively. The transmission amplitudes t1, t2, t3 and t4 denote the

electron like and hole like quasi-particles in the S region. Using the boundary conditions at the four

interfaces, we can write

ΨL
N |x=−d = ΨL

I |x=−d, ΨL
I |x=0 = ΨS|x=0 ,

ΨS|x=L = ΨR
I |x=L, ΨR

I |x=L+d = ΨR
N |x=L+d . (4.13)

which yields a set of sixteen linearly independent equations. Solving these equations numerically,

we obtain re, rA, te, tA which are required for the computation of pumped charge through our setup.

In order to carry out our analysis for the pumped charge in silicene NISIN structure, we choose

the two dimensionless insulating barrier strengths χ1 and χ2 as our pumping parameters. They evolve

in time either as (off-set circular contours)

χ1 = χ0 + P cos(ωt− η) ,

χ2 = χ0 + P cos(ωt+ η) , (4.14)

or as (“lemniscate” contours),

69



χ1 = χ10 + PL

(
cos θ cosωt− 1

2
sin θ sin 2ωt

)
/(1 + sin2 ωt) ,

χ2 = χ20 + PL

(
cos θ cosωt+

1

2
sin θ sin 2ωt

)
/(1 + sin2 ωt) , (4.15)

respectively. In the circular contours χ0 and in the lemniscate contours χ10 , χ20 correspond to the

mean value of the amplitude respectively, around which the two pumping parameters are modulated

with time. P and PL are called the pumping strengths for the two types of contours respectively.

Furthermore, 2η and θ represent the phase offset between the two pumping signals for the circular and

lemniscate contours, respectively. Here ω is the frequency of oscillation of the pumping parameters.

We, in our analysis, only consider the adiabatic limit of quantum pumping where time period of

the pumping parameters T = 2π/ω is much longer than the dwell time τdwell ' L/vF of the Dirac

fermions inside the proximity induced superconducting region.

To calculate the pumped charge, we employ Brouwer’s formula [140] which relies on the knowl-

edge of the parametric derivatives of the S-matrix elements. Following Ref.[177], S-matrix for the

NISIN structure of silicene for an incident electron with energy E, can be written as

S =



|re|eiγe |rA|eiγh |te|eiδe |tA|eiδh

|rA|eiγh |re|eiγe |tA|eiδh |te|eiδe

|te|eiδe |tA|eiδh |re|eiγe |rA|eiγh

|tA|eiδh |te|eiδe |rA|eiγh |re|eiγe


, (4.16)

We write here the complex S-matrix elements Sij in polar form, with modulus and phase explicitly

shown, since the phase is going to play a major role in the determination of the pumped charge. For

a single channel S-matrix, the formula for the pumped charge becomes [177]

Q =
e

2π

∫ T

0

dt[ − |rA|2(γ̇h cosαhL + γ̇e cosαeL)

− |tA|2(δ̇h cosαhR + γ̇e cosαeL)

+ |te|2(δ̇e cosαeR − γ̇e cosαeL)

+ γ̇e cosαeL] , (4.17)
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The derivation of this working formula following Ref. [140] is given in Appendix D . Here, we

have redefined the complex scattering amplitudes rA and tA to satisfy the conservation of probability

current [102]. On the other hand, the other two scattering amplitudes re and te remain unchanged.

Hence, the redefined scattering probabilities |rA|2 and |tA|2 become

|rA|2 ≡
kh1x
ke1x

[
2(E + µL)(E − µL − λL)

|ηkh1x − ike1y |2 + (E − µL − λL)2

]
|rA|2 ,

|tA|2 ≡
kh1x
ke1x

[
(E + µL)

(E − µR)

]
|tA|2 . (4.18)

Furthermore, γe, γh, δe, δh are the phases of redefined re, rA, te and tA respectively. Here, αeL, αeR

correspond to the incident and transmitted angles of electrons while αhL, αhR represent the reflected

and transmitted angles of holes respectively. Note that, if αeL = 0, then the last term of Eq.(4.17)

consisting of the time derivative of reflection phase is called “topological part” [152] while the rest is

termed as “dissipative part” [152]. The last term is called “topological” becuase for αeL = 0, it has

to return to itself after the full period. Hence, the only possible change in γe in a period can be integer

multiples of 2π i.e., γe(T ) → γe(0) + 2πn. On the other hand, the rest of the terms in Eq.(4.17) are

together called “dissipative” since their cumulative contribution prevents the perfect quantization of

pumped charge.

4.4 Numerical Results

In this section we present and discuss our numerical results for the pumped charge based on Eq.(4.17).

The quantum mechanical scattering amplitudes are all functions of the incident electron energy E,

length of the superconducting silicene regionL, the strengths χ1, χ2 of the two thin insulating barriers,

chemical potential µm (m = L/R) of the left and right normal silicene region, external electric field

Ezm (m = L/R) and spin orbit coupling λSO. We denote the band gaps at the left and right normal

silicene side as 2λL and 2λR respectively (see Fig. 4.2) where λm = (elEzm − η̃σλSO). In addition,

we have set ~ = 1 throughout our analysis.

For clarity, we divide this section into two subsections. In the first one, we discuss quantum

pumping via resonant CAR process with unit probability in the χ1-χ2 plane. The second one is

devoted to the discussion of the same via the perfect transmission/CT process.
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4.4.1 Pumping via CAR in the χ1-χ2 plane

Silicene is a material where a large value of non-local CAR process can be obtained due to its unique

band structure [102]. The band gaps and Fermi level (chemical potential) in silicene can be tuned by

applying electric fields only. By tuning the both, very recently, Linder et al. in Ref.[102] showed

that one can completely block elastic cotunneling in silicene NSN junction in the subgapped regime.

Consequently, pure CAR process is possible for a broad range of energies. However, maximum

probability of CAR found in Ref.[102] was ∼ 96.2% while the rest was normal reflection probability.
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Figure 4.3: The plot shows the variation of the normal reflection phase γe and CAR phase δh, with
time t, along a chosen pumping contour in the χ1 - χ2 plane.

The probability of non-local CAR process can be enhanced to unity (100%) (see Fig. 4.4) by

introducing two insulating barriers at each NS interfaces. We have considered µL = 5∆, µR = −5∆

and λL = λR = 5∆ which reflects the fact that the Fermi level touches the bottom of the conduction

band in the left normal silicene side while it touches the top of the valance band in right normal silicene

side. This is illustrated in Fig. 4.2. The superconducting silicene side is doped with µS = 20∆ to

satisfy mean field condition for superconductivity µS � ∆ [102]. The band gaps λL and λR at the

two normal sides can be adjusted by the external electric field Ezm (m=L/R). The chosen value of the

band gaps and doping levels permits one to neglect the contribution from the other valley (K′) which

has much higher band gap compared to the other energy scales in the system (see Fig. 4.2). Under

such circumstances, we obtain pure CAR in this setup choosing length of the superconducting side,
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L = 2.1ξ (ξ = ~vF/π∆ is the phase coherence length of the superconductor) and incident electron

energy, E = 0.9∆. Note that, for our analysis, we choose the same parameter values as used in

Ref.[102].

The reason behind obtaining pure CAR process in our NISIN set-up is as follows. As there is

a band gap 2λL = 2(elEzL − η̃σλSO) > ∆ in the left normal silicene side, probability for AR to

take place is vanishingly small [102, 176]. On the other hand, 2λR = 2(elEzR − η̃σλSO) is the

energy gap between the conduction band and valance band in the right (R) normal silicene region as

illustrated in Fig. 2. Moreover, the chemical potential µR in the right (R) normal silicene is chosen

to be at the top of the valence band. Hence, only hole states are available in the right normal side.

Therefore, an electron incident from the conduction band of the left normal silicene region encounters

a gap and unavailability of electronic states to tunnel into the right normal region which essentially

block the co-tunneling (CT) probability. Hence, the only possible scattering processes remain are

normal reflection and CAR. This allows our system to possess completely pure CAR process with

probability one in χ1 − χ2 plane as shown in Fig. 4.4. These resonant CAR peaks are π/2 periodic

in nature and they appear in pairs. Such periodic nature and the fact that resonaces appear in pairs,

affect the pumped charge behavior which will be discussed later. The oscillatory behavior of the CAR

resonance can be explained as follows. Non-relativistic free electrons with energy E incident on a

potential barrier with height V0 are described by an exponentially decaying (non-oscillatory) wave

function inside the barrier region if E < V0, since the dispersion relation is k ∼ √E − V0. On the

contrary, relativistic free electrons satisfies a dispersion k ∼ (E − V0), consequently corresponding

wave functions do not decay inside the barrier region [120, 117, 135]. Instead, the transmittance of

the junction displays an oscillatory behavior as a function of the strength of the barrier. Hence, the

undamped oscillatory behavior of CAR is a direct manifestation of the relativistic low-energy Dirac

fermions in silicene. The periodicity depends on the Fermi wave-length mismatch between the normal

and superconducting region [135, 176].

Note that, the Fermi energy (chemical potential) need neither necessarily exactly touch valance

band maxima or conduction band minima nor they need to have same magnitude at the two normal

regions to obtain resonant CAR. A small deviation, from the numerical values that we have taken,

also leads to the resonant CAR probability to take place within the subgapped regime. Previously,

possibility of obtaining CAR was also reported in p-n junction of graphene [178] at a specific value

of the parameters. However, a small deviation from that leads to CT along with CAR contaminating
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that possibility.

As phases of the scattering amplitudes play a major role in the determination of the pumped

charge, we show the behavior of phases of normal reflection and CAR amplitudes (γe and δh respec-

tively) as a function of time for one full cycle in Fig. 4.3. We observe that both γe and δh exhibit four

abrupt jumps for a full period of time (along a chosen contour). These jumps play a significant role

in determining the pumped charge which we emphasis later. In addition, throughout our analysis, we

have considered incident electrons to be normal to the interface i.e., αeL = 0 for simplicity. Later

for completeness, we demonstrate angle dependence of the pumped charge.
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Figure 4.4: Plot of CAR probability |tA|2 in χ1-χ2 plane. The contours a1, a2 represents η = π/4
and P = 1.51, P = 3.35 respectively. On the other hand, the contours a3, a4 are for η = π/6 and
P = 1.82, P = 4.56 respectively. The value of the other parameters are chosen to be L = 2.1ξ,
E = 0.9∆, ω = 1, χ0 = 1.7, µL = 5∆, µR = −5∆, µS = 20∆ and λL = λR = 5∆.

Under such scenario where the only possible scattering processes are normal reflection and CAR,

Eq.(4.17) simplifies to

Q =
e

2π

∫ T

0

dt[ − |tA|2(δ̇h cosαhR + γ̇e cosαeL)

+ γ̇e cosαeL] , (4.19)

The behavior of pumped charge Q as a function of the pumping strength P is shown in Fig. 4.5
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Figure 4.5: The pumped charge Q in units of the electron charge e, for pumping in the χ1-χ2 plane,
is shown as a function of the pumping strength P for circular and elliptic contours. The value of the
other parameters are chosen to be the same as mentioned in Fig. 4.4.

for η = π/4, π/6 which correspond to circular and elliptic contour respectively. The features of

Q, depicted in Fig. 4.5, can be understood from the behavior of CAR probability |tA|2 in the χ1-χ2

plane. For small values of P , pumped charge Q becomes vanishingly small in magnitude as the

pumping contours do not enclose any |tA|2 = 1 point. When a pumping contour encloses one of

the resonant peaks of |tA|2, topological part of the pumped charge gives rise to ne (n is the winding

number) due to the integration around a singular point. At this point the reflection phase γe becomes

ill-defined. However, the dissipative part nullifies the topological part resulting in small values of

Q (see Eq.(4.17)) for both η = π/4, π/6. On the other hand, when a contour encloses both |tA|2

resonances, the relative integration direction around the two singular points plays an important role.

Namely, when two resonances are enclosed in a path with the same orientation, then the two contri-

butions have opposite sign and tend to cancel each other. For e.g. when η = π/4 (black circular

contours a1 and a2), the pumped charge is zero for P = 1.51 (see Fig. 4.5) as the contour a1 encloses

both the peaks resulting in zero pumped charge. Similar feature was found in case of resonant trans-

mission in Ref.[171, 149, 153, 172] where pumped charge was found to be zero when the pumping

contour encloses both the resonances. Q approaches almost quantized value 2e for P = 3.35 and the

corresponding contour a2 encloses even number of resonance pairs in the same orientation. Hence the

topological part of pumped charge is almost zero and the contribution to Q arises from the dissipative
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part. The large contribution from the dissipative part arises due to the total drop of the CAR phase

δh by a factor of 4π during its time evolution along the contour a2 (see Fig. 4.3). Similarly, when

η = π/6, Q is zero at P = 1.82 which corresponds to the a3 contour which encloses four peaks (two

pairs) in total, resulting in zero contribution from the topological part. On the other hand, pumped

charge reaches its maximum when P = 4.56 (a4 contour) where also the entire contribution origi-

nates from the dissipative part (see Fig. 4.5). Pumped charge Q exceeds the value +2e as pumping

strength P increases (see Fig. 4.5) for both η = π/4 and π/6. Physically, the contribution of the

dissipative part in pumped charge increases non-monotonically with the pumping strength. Hence, as

the pumping contour encloses more number of pairs of resonant CAR peaks, due to the enhancement

of dissipative part, pumped charge can exceed +2e with further increase of P . Pumped charge can

change sign depending on the sense of enclosing of the resonances i.e., whether it is clock-wise or

anti-clockwise.
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Figure 4.6: Plot of CAR probability |tA|2 along with lemniscate contours are shown in the χ1-χ2

plane. The contours b1, b2 represents θ = π/4 and the contours corresponding to θ = π/3 are b3, b4.
We have chosen the mean values χ10 = 1.69 and χ20 = 1.75. The value of the other parameters are
chosen to be the same as mentioned in Fig. 4.4.

The behavior of pumped chargeQwith respect to the pumping strength PL for lemniscate contours

with θ = π/4 and π/3 is presented in Fig. 4.7 and the corresponding contours are shown in Fig. 4.6.

The pumped charge is small for small values of PL where the contribution from topological part is
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Figure 4.7: Pumped chargeQ in unit of electon charge e, for pumping in the χ1-χ2 plane, is shown as
a function of the pumping strength PL for the lemniscate contours. All other parameters are identical
to those used in Fig. 4.4.

cancelled by the dissipative part. As PL increases, the corresponding pumping contour encloses both

the |tA|2 peaks within opposite integration orientations and as a consequence, the two contributions

for the pumped charge sum up. This is exactly the reason that motivates us to choose the lemniscate

contours. However, the dissipative part effectively reduces the total pumped charge. Such feature

arises for lemniscate contours of the type b1 and b3. Moreover, we observe that the pumped charge

becomes zero for PL = 2.06 at θ = π/4, where both the bubbles of the b2 contour enclose two |tA|2

peaks from the two adjacent resonances in the χ1-χ2 plane and hence their combined contribution

to pumped charge get cancelled for each bubble separately. The qualitative behavior of Q remains

similar for θ = π/3 where maximum value of Q is achieved when each bubble of the lemniscate

contour of type b4 encloses odd number of resonance pairs while Q tends to zero as even number of

pairs are enclosed by each bubble of the contour.

4.4.2 Pumping via transmission/CT in the χ1-χ2 plane

In this subsection we present our numerical results for the adiabatic quantum pumping through pure

CT i.e., resonant transmission process. The latter can be achieved by tuning the Fermi level (chemical

potential) at the bottom of the conduction band in both the normal silicene regions (see Fig. 4.2). The

numerical values of all the parameters are identical to those used before except now µR = 5∆,
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L = 2.2 ξ and E = 0.93∆.
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Figure 4.8: The variation of the normal reflection phase γe and transmission phase δe, with time t, is
shown along a chosen pumping contour in the χ1 - χ2 plane.

As before, due to the presence of a gap (2λL > ∆) in the left normal side, AR is forbidden while

CAR cannot take place because of the unavailability of the hole states in the right normal region in

the low energy limit. An incident electron thus only encounters two scattering processes which are

normal reflection and transmission. The presence of insulating barriers between the NS interfaces

allows both these scattering probabilities to be oscillatory as a function of the dimensionless barrier

strengths χ1 and χ2 which is depicted in Fig. 4.9.

In this regime, as AR and CAR probabilities are always zero, hence Eq.(4.17) reduces to

Q =
e

2π

∫ T

0

dt[|te|2(δ̇e cosαeR − γ̇e cosαeL)

+ γ̇e cosαeL] , (4.20)

In Fig. 4.10, pumped charge Q is presented as a function of pumping strength P for η = π/4

(circular contour) and π/6 (elliptic contour). To understand the behavior of the pumped charge,

we also investigate the transmission probability |te|2 in χ1 − χ2 plane (see Fig. 4.9). We observe

qualitatively similar features of the pumped charge as depicted in the previous subsection. Here also

topological part of pumped charge becomes zero when pumping contour encloses even number of
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Figure 4.9: Transmission probability |te|2 along with circular and elliptic contours are shown in χ1-
χ2 plane. The contours c1, c2 represent η = π/4 and P = 1.5, P = 3.34 respectively. On the other
hand, the contours c3, c4 correspond to η = π/6 and P = 1.55, P = 4.65 respectively. The value of
the other parameters are chosen to be L = 2.2ξ, E = 0.93∆, ω = 1, χ0 = 1.7, µL = 5∆, µR = 5∆,
µS = 20∆ and λL = λR = 5∆.

0 1 2 3 4 5 6
P

-1

-0.5

0

0.5

Q

η = π/4

η = π/6

Figure 4.10: Pumped charge Q in unit of electron charge e, for pumping in the χ1-χ2 plane, is shown
as a function of the pumping strength P for the circular and elliptic contours. We choose the same
values of the other parameters as mentioned in Fig. 4.9.
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resonance pairs in the same orientation. Finite contribution from dissipative part, in Q, emerges due

to the total jump of the transmission phase δe by a factor of 2π during its time evolution along the

contour c2 (see Fig. 4.8). On the other hand, for contour c1, dissipative part vanishes because over a

full period of time, reflection and transmission phases γe and δe respectively cancell each other (see

Eq.(4.20)). Although, Q approaches to −e for pumping via resonant CT process compared to 2e via

the resonant CAR process.
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Figure 4.11: Transmission probability |te|2 together with different lemniscate contours are shown
in the χ1-χ2 plane. The contours d1, d2 represents θ = π/4 and the contours d3, d4 corresponds to
θ = π/3. We choose the values of χ10 and χ20 as χ10 = χ20 = 1.68. All other parameters are identical
to those used in Fig. 4.9.

In Fig. 4.12, we show the behavior of pumped charge Q as a function of the pumping strength

PL with lemniscate contours. To understand the corresponding behavior of Q, we also show |te|2 in

the χ1-χ2 plane along with different lemniscate contours (see Fig. 4.11). Here also the features of Q

remains similar as previous subsection for both θ = π/4 and π/3.

As we mention earlier, the above mentioned results are valid for normal incidence of the incoming

electron i.e., αeL = 0. Here, we explore the dependence of the pumped charge on the angle of inci-

dent electrons. In Fig. 4.13, pumped charge Q as a function of incident angle αeL is presented when

either CAR probability |tA|2 or transmission probability |te|2 is enclosed by the circular pumping
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Figure 4.12: Pumped charge Q, in unit of electron charge e, is depicted as a function of the pumping
strength PL for the lemniscate contours. All other parameters are identical to those used in Fig. 4.9.
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Figure 4.13: Pumped charge Q, in unit of electron charge e, is shown as a function of the incident
angle αeL for both µR = −5∆ and µR = 5∆. Here we choose η = π/4, P = 3.35 for µR = −5∆
and P = 3.34 for µR = 5∆ respectively.
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contour. The αeL dependence is shown upto the critical angle αc. Above αc, AR and CAR processes

cannot take place [115]. Rather, normal reflection is the dominating scattering mechanism above αc.

It is evident from Fig. 4.13 that as the angle of incidence αeL increases, Q decreases monotonically

for enclosing |tA|2 or |te|2 in either cases. The reason can be attributed to the fact that both |tA|2 and

|te|2 in the two different scenarios, acquire the maximum value at normal incidence i.e., αeL = 0

and decreases slowly with the increase of αeL. Also, for 0 < αeL < αc, normal reflection probability

|re|2 also contributes to Eq.(4.17) and the interplay between all the quantum mechanical amplitudes

and their phases results in smaller value of pumped charge. Note that, in case of pumping via CAR

resonance process in χ1 − χ2 plane, Q approaches zero as αeL proceeds towards αc. However, Q is

finite even at αc in case of pumping via resonant transmission in the same parameter space, This is

because at αc, |tA|2 vanishes while |te|2 still has small probability which gives rise to small pumped

charge arising from the dissipative part (see Eq.(4.20)).

4.5 Summary and conclusions

To summarize, in this chapter, we have investigated the possibility of enhancing the CAR probability

|tA|2 in silicene NSN set up by introducing thin insulating barrier [135, 176] I at each NS interface.

We show that, for electrons with normal incidence, resonant CAR can be obtained in our setup by

tuning the band gap in both the normal silicene regions by applying an external electric field as well

as adjusting the chemical potential by additional gate voltages. We also show that |tA|2 is periodic

in χ1-χ2 plane due to relativistic nature of Dirac fermions. On the other hand, it is also possible

to attain transmission probability |te|2 of magnitude unity in silicene NISIN junction under suitable

circumstances. Owing to Dirac nature of particles, |te|2 also exhibits periodic behavior in the space

of barrier strengths χ1 and χ2.

We then explore adiabatic quantum charge pumping through our NISIN setup and show that the

behavior of pumped charge as a function of the pumping strength P is closely related to the features

of CAR probability |tA|2 or transmission probability |te|2 in the pumping parameter space. For elec-

trons with normal incidence, large pumped charge with value close to Q ∼ 2e can be obtained when

particular circular or elliptic pumping contour encloses the resonant CAR in χ1-χ2 plane. Although

the major contribution to Q, in this case, arises from the dissipative part. On the other hand, large

pumped charge can also be obtained with lemniscate contour when odd number of |tA|2 peaks are
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enclosed by each of its bubble. In contrast, pumped charge approaches to Q ∼ −e when various

pumping contours enclose |te|2 resonance in the same parameter space. However, pumped charge

decreases monotonically as we increase the angle of incidence of the incoming electron. In experi-

mental situation, the measurable quantity should be the angle averaged pumped charge analogous to

angle averaged conductance [179]. From our analysis, we expect that the qualitative nature of angle

averaged pumped charge as a function of the pumping strength will remain similar to the αeL = 0

case. Although the quantitative value ofQ will be smaller than the angle resolved case asQ decreases

monotonically with αeL.

Note that, our calculation is valid for zero temperature. Nevertheless, in our case, temperature Tp

must be smaller than the proximity induced superconducting gap ∆. We expect that the qualitative

features of our results for the pumped charge will survive in the presence of low temperatures. For

non-zero yet small temperatures, Tp � ∆, the pairs of resonant peaks in the parameters space will

have a slight broadening due to thermal smearing. Therefore, we believe that the qualitative features

of pumped charge Q with respect to the pumping strength P will still be captured in our model.

Although there can be quantitative change inQ. On the other hand, if Tp > ∆, then CAR process from

the interface will decay and pumped charge will become vanishingly small due to thermal fluctuation.

As far as practical realization of our silicene NISIN quantum pumping set up is concerned, su-

perconductivity in silicene may be possible to induce by proximity coupled to a s-wave supercon-

ductor for e.g. Al, NbSe2 analogous to graphene [122, 123, 179]. Once such proximity induced

superconductivity in silicene is realized, fabrication of silicene NISIN junction can be feasible. The

strength of the two oscillating barriers can be possible to tune by applying a.c gate voltages. Typi-

cal spin-orbit energy in silicene is λSO ∼ 4 meV and the buckling parameter is l ≈ 0.23 Å [6, 5].

Considering Ref. [122, 124], typical proximity induced superconducting gap in silicene would be

∆ ∼ 0.2 meV. For such induced superconducting gap, chemical potential is µS ∼ 20∆ ∼ 4 meV

and we obtain ξ ∼ 580 nm and length of the superconducting region L ∼ 1.2 µm. Hence, an in-

sulating barrier of thickness d ∼ 10 − 20 nm may be considered as thin barrier and the gate voltage

V0 ∼ 500 meV can therefore justify the needs of our model [135]. To achieve both the resonances,

λL = λR = 5∆ ∼ 1 meV which can be tuned by an external electric field EzL = EzR ∼ 200 V/µm.

For both resonant processes, typical dwell time of the electrons inside the superconducting region is

∼ 2.2 fs while the time period of the oscillating barriers is T ∼ 30 ps and the corresponding frequency

of modulation parameters turns out to be∼ 230 GHz. Thus the dwell time τdwell is much smaller than
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the time period T of the modulation parameters, hence satisfying the adiabatic condition of quantum

pump. Pumped current through our setup should be in the range of ∼ 10 − 15 nA which can be

measurable in modern day experiment.
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CHAPTER 5

Majorana Zero Modes in Mixed Singlet and Triplet

Superconducting Nanowire

5.1 Chapter Summary

Majorana zero mode, in condensed matter system, is an emmergent quasi-particle of self-conjugate

nature and is predicted to be building block of fault tolerant topological quantum computation. Topo-

logical superconductor, in 3D (2D), supports this zero energy Majorana modes at its vortex (edge). We

have studied the transport properties of a quasi one dimensional (1D) ferromagnet-noncentrosymmetric

superconductor (F-NCS) junction using scattering matrix formalism. We have shown that the relative

orientation of the stoner field (h̃) in the ferromagnetic lead and the d vector of the superconductor

acts like a on-off switch for the zero bias conductance of the device. In the regime, where triplet

pairing amplitude dominates over the singlet counterpart (topological phase), a pair of Majorana zero

modes appear at each end of the superconducting part of the nanowire. The presence of the two kinds

of pairing gaps gives rise to a pair of Majorana modes instead of a lone one at each end. When h̃

is parallel or anti-parallel to the d vector, transport gets completely blocked due to blockage in pair-

ing while, when h̃ and d are perpendicular to each other, the zero energy two terminal differential

conductance spectra exhibits sharp transition from 4e2/h to 2e2/h as the magnetization strength in

the lead becomes larger than the chemical potential indicating the spin selective coupling of pair of
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Majorana zero modes to the lead. For a canted angle between h̃ and d, a zero bias dip emmerges

out instead of a peak, in the tunneling conductance giving birth to a possible novel probe of the zero

modes in the transport measurements.
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5.2 Introduction

Localized Majorana zero modes (MZMs) that appear at the end of one dimensional topological

superconductor are anticipated to be the building blocks of future topological quantum comput-

ers [55, 26, 57, 180, 181]. Theoretical proposals [53, 52] to engineer such a topological super-

conductor from a semiconducting nanowire (NW) with Rashba spin-orbit coupling have stimulated

a lot of recent exciting experiments (mentioned in Chapter 2) towards realizing this exotic phase

hosting Majorana zero mode (MZM). The zero bias peak (ZBP) in the differential conductance was

predicted [182, 62, 183, 184] in hybrid superconductor-semiconductor systems. However, the earler

experimental findings [3, 58, 68, 69] were largely debated because of the possibility of ZBP appear-

ing from coalescing Andreev levels [71], Kondo physics [70, 69], weak antilocalization [73], disor-

der [185] or multi band effects [75] etc. With the improved devices, more recent experiments [77,

186, 79] reveal more convincing signatures of MZMs. Nevertheless, the topological origin of ZBP

is not ensured as the ZBP appearing from Andreev bound levels also mimic those of MZMs [80]

and it is hard to distinguish them. Hence, newer probes of MZMs beyond ZBP is of great impor-

tance [187, 188, 189].

Noncentrosymmetric superconductors (NCS) [190, 191] are a class of superconductors in which

inversion symmetry is broken. From theoretical perspective, the main interest is the fact that the lack

of inversion symmetry results in the violation of the usual classification of superconductors into even-

parity, spin singlet states and odd-parity, spin triplet states. The absence of inversion symmetry allows

mixing between spin singlet and spin triplet pairs. As a result, the superconducting pairing can have

a mixture of singlet and triplet states which do not break any additional symmetries of the system e.g.

time reversal symmetry [192]. Physical origin of the parity mixing can be attributed to the presence

of Rashba like antisymmetric spin-orbit coupling in the system which splits the Fermi surface and

removes the spin degeneracy of electrons. The Fermi surface splitting can originate a mixing of spin-

singlet and spin-triplet states in the superconducting condensate. There are many superconductors

whose crystal structure lacks inversion centre and can be classified as noncentrosymmetric supercon-

ductors. Some of the examples are : CePt3Si [193], Mo3Al2C [194], BiPd [195] etc.; and in gen-

eral CeTX3 series where T=transition metal, X=group IV element (e.g. CeRhSi3, CeIrSi3) [196].
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From experimental point of view, thermal conductivity at low temperature [197], penetration depth

measurement indicating power law behavior [198, 199], spin susceptibility measurement [200], point

contact Andreev reflection (PCAR) spectroscopy [195] have been carried out to confirm the presence

of both singlet and triplet type pairing structure in these materials.

In this chapter, we show that it is possible to use a ferromagnetic lead for probing MZM hosted

in NCS [201]. Earlier zero energy peak in transport accross normal-metal-NCS junction was re-

ported [202, 203] without establishing it’s connection to the MZM. Effect of such zero energy peak

in transport and shot noise phenomena across normal metal-NCS-normal metal has also been investi-

gated [204, 205] without focusing on Majorana zero mode. Here we investigate the properties of two-

terminal conductance of a quasi one dimensional ferromagnet-superconductor (FS) junction where the

superconductor lacks inversion symmetry. We employ extended Blonder-Tinkham-Klapwijk (BTK)

formalism [61] for our analysis. We show that in the topological phase, when triplet pairing dominates

over the singlet one, the two terminal differential conductance at zero bias exhibits a sharp transition

from 4e2/h to 2e2/h as the magnetization strength becomes larger than the chemical potential in the

lead. We also observe a spin selective coupling of the ferromagnetic lead to the pair of MZMs as

a function of the magnetization of the ferromagnet, with respect to the d vector in the topological

regime.

The remainder of the chapter is organized as follows. In Sec. 5.3, we describe the model and

briefly discuss the method. Sec. 5.4 is devoted for explaining our numerical results. Finally, we

summarize our results and conclude in Sec. 5.5.

5.3 Model and Method

In Fig. 5.1, we present the schematic of our proposed FS set-up in which a part of the quasi one-

dimensional (1D) NW is placed in close proximity to a ferromagnet and rest to a bulk superconducting

material with broken inversion symmetry. Here ferromagnetism and superconductivity are induced in

the NW via the proximity effect. It is assumed that both the strength and the direction of the induced

magnetization vector in the NW can be controlled via the bulk ferromagnet [206]. The engineered FS

structure is attached to a normal metal lead (not shown). The gate voltages (denoted by G) can tune
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Figure 5.1: Schematic of our FS setup in which a quasi 1D NW (dark gray) is placed in close prox-
imity to a ferromagnet F (light blue, light gray) and a bulk inversion symmetry broken superconductor
S (brown, gray). Superconductivity is induced in the NW via the proximity effect. The gates G (ma-
roon, light gray) control the chemical potential in different regions of the NW. A reservoir is attached
with ferromagnetic portion of the nanaowire and is denoted by N . A δ-function barrier is symboli-
cally depicted by the light green (light gray) rectangular barrier at the FS interface. Two pair of MZMs
are shown by green (light gray) and dark blue (gray) circles at each end of the superconducting part
of the NW.

the chemical potential in differnt parts of the NW.

We choose the x-axis along the axis of the NW. The interface of F and S regions of the NW is

taken at x = 0 for simplicity. We consider an insulating barrier at the FS interface which is modeled

by a δ-function potential given as V (x) = (~2kF/m)Zδ(x) where kF is the Fermi wave vector in the

lead, m denotes electron mass and Z is the dimensionless barrier strength. Chemical potential in F

and S regions are µ and µ+ U respectively where U is extra gate potential in the S region to tune the

Fermi energy mismatch.

In the superconducting region, which is composed of both singlet and triplet pairing states, the

pairing potential ∆̂(k) (2×2 matrix), in general, can be written as ∆̂(k) = i[∆s(k)σ̂0+
∑3

j=1 dj(k)σ̂j]σ̂2e
iφ [192].

Here, σ̂1,2,3 are Pauli spin matrices operating on spin space and φ is the superconducting phase.

Throughout our analysis, we consider only the mean-field value of ∆s(k) i.e., ∆s(k) = ∆s. In con-

trast, the triplet pairing potential is characterized by an odd vector function as d(k) = −d(−k).

Following Burset et al. [203], we consider the chiral triplet state of the form, d(k) = ∆p
kx+iχky
|k| ẑ =

∆pe
iχθẑ , where ∆p is the non-negative amplitude of the triplet pairing potential and χ = ± denotes

opposite chiralities. Here, χ determines the orientation of the angular momentum of the Cooper pairs

and θ represents the relative phase between the singlet and triplet pairing states. The superconducting

pairing preserves time reversal symmetry (TRS) either for θ = nπ or for θ = nπ/2, with n = 0, 1, ... .

For 1D case, depending on the value of θ, the Hamiltonian can be categorized to either in class C,
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class D, or class DIII, according to the Altland-Zirnbauer symmetry classification [207, 208]. For the

case with θ = 0, the Hamiltonian belongs to the nontrivial DIII symmetry class if ∆p > ∆s [209].

With this simplification, paring potential now takes the form, ∆̂(k) = i[∆sσ̂0 + ∆pe
iχθσ̂3]σ̂2e

iφ.

The FS junction can be described by the Bogoliubov-deGennes (BdG) equations as, H(k)Ψ(k) =

εΨ(k) where the Hamiltonian H(k) can be written as



E(k)− h̃ cosψ −h̃ sinψ e−iφF 0 ∆+

−h̃ sinψ eiφF E(k) + h̃ cosψ −∆− 0

0 ∆∗− −E(−k) + h̃ cosψ +h̃ sinψ e−iφF

∆∗+ 0 h̃ sinψ eiφF −E(−k)− h̃ cosψ


with E(k) = k2/2− µ and ∆± = [∆s ±∆pe

iχθ]eiφ .
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Figure 5.2: The behavior of reflection and SFAR scattering probabilities are shown as a function of
incident electron energy (normalized by (∆p + ∆s)) for two different angle of magnetization ψ of the
ferromagnet. The value of the other parameters are chosen as h̃ = 1, µ = 0, ∆s = 0, ∆p = 1, Z = 4
and U = 15.

We consider the band energy E(±k) of the NW as E(±kx) for a particular choice of ky in the

quasi 1D limit. We assume a situation where the transverse confining potential and the chemical

potential in the NW are tuned such that only the lowest sub-band is participating (ky = 0 mode) in

transport and hence θ = 0. θ 6= 0 corresponds to different symmetry class. It is assumed that the
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band energies for the electrons moving to the left and right are equal to each other. We define right

movers by θ+ = θ and left movers by θ− = π − θ which reduces to θ+ = 0 and θ− = π in our

case. The effective pairing potential depends on different spin channels as well as the direction of

motion. Right movers with spin ↑ and ↓ are effected by the pairing potential ∆+(θ+) and −∆−(θ+)

respectively while left movers sense ∆+(θ−) and −∆−(θ−) corresponding to ↑ and ↓ spin channels

respectively [203, 204].

The magnetization vector in the ferromagnetic region is considered to be

h̃ = h̃{sinψ cosφF , sinψ sinφF , cosψ} (5.1)

Here, h̃ is the strength of the magnetization vector and ψ, φF are the polar and azimuthal orientation

angle respectively. In the F region (x < 0), ∆± = 0. On the other hand, in the superconducting side

(x > 0), h̃ = 0. Wave functions inside the F region are given by

Ψe
F↑ = {e−iφF cosψ/2, sinψ/2, 0, 0}T ,

Ψe
F↓ = {−e−iφF sinψ/2, cosψ/2, 0, 0}T ,

Ψh
F↑ = {0, 0, eiφF cosψ/2, sinψ/2}T ,

Ψh
F↓ = {0, 0,−eiφF sinψ/2, cosψ/2}T . (5.2)

For an incoming electron with spin σ, total wavefunction in F region becomes,

ΨF = Ψe
Fσ e

ikeFσx + rσσΨe
Fσ e

−ikeFσx + rσ,−σΨe
F−σ e

−ikeF−σx + rAσσΨh
Fσ e

ikhFσx + rAσ−σΨh
F−σ e

ikhF−σx.

(5.3)

Here rAσ−σ and rAσσ denote the amplitudes for the conventional Andreev reflection (AR) and spin-

flip Andreev reflection (SFAR) while rσσ and rσ−σ correspond to the normal and spin flip reflection

amplitudes respectively.
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Figure 5.3: The behavior of differential conductance G (in unit of e2/h) is displayed in the plane of
incident electron energy (ε) and angle of magnetization (ψ). The values of the other parameters are
chosen to be the same as mentioned in Fig. 5.2. Here, black dashed and white dotted lines correspond
to the behavior of the same for ψ = π/4 and ψ = 0 respectively i.e., they highlight G for Fig. 5.2.
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Figure 5.4: The features of differential conductance G (in unit of e2/h), at ε = 0, is demonstrated in
h̃−∆p plane in panel (a) and h̃−ψ plane in panel (b). We choose the values of the other parameters
as ψ = π/2, µ = 1, ∆s = 1−∆p, Z = 4, U = 15 for panel (a) and µ = 1, ∆s = 0, ∆p = 1, Z = 4,
U = 15 for panel (b).

92



On the other hand, the wave-function inside the S region can be written as,

ΨS = c1 e
ikeS↑x{u↑(θ+)eiφS , 0, 0, η∗↑(θ+)v↑(θ+)}T

+c2 e
ikeS↓x{0, u↓(θ+)eiφS , η∗↓(θ+)v↓(θ+), 0}T

+d1 e
−ikhS↑x{η∗↑(θ−)v↑(θ−), 0, 0, u↑(θ−)e−iφS}T

+d2 e
−ikhS↓x{0, η∗↓(θ−)v↓(θ−), u↓(θ−)e−iφS , 0}T . (5.4)

with ησ(θα) = sσ∆σ(θα)/|∆σ(θα)|, sσ = (−1)σ−1 where σ = ± denotes the ↑, ↓ spin channels

and α = ± indicates the direction of motion. Momenta inside the F and S regions are given by:

k
e/h
Fσ =

√
2(±ε+ µ+ σh) and ke/hSσ =

√
2(µ+ U)± 2

√
ε2 − |∆σ|2 respectively. Electron and hole

components of the wave functions are given by

uσ(θα) =
1√
2

(1 +

√
ε2 − |∆σ(θα)|2

ε
) (5.5)

vσ(θα) =
1√
2

(1−

√
ε2 − |∆σ(θα)|2

ε
) (5.6)

Now employing the appropriate boundary conditions, we find all the quantum mechanical scat-

tering amplitudes from the FS interface. At zero temperature, following the BTK formalism [61], the

differential conductance is given by,

G = G0

∑
σ=↑,↓

(1 +RA
σ,σ +RA

σ,−σ −Rσ,σ −Rσ,−σ) (5.7)

where G0 = 2e2

h
D(θ) is the normal state conductance and D(θ) = 4 cos2 θ/(Z2 + 4 cos2 θ) [203,

204]. Here, Rσ,±σ(RA
σ,±σ) are the reflection (AR) probability with conserved and flipped spin.

5.4 Results

The behavior of the scattering probabilities are shown in Fig. 5.2 as a function of the energy of the

incident electron in the subgapped regime. Here, the ferromagnet part of the NW is effectively in the

half-metalic regime as h̃� µ. For simplicity, we have also chosen φF = 0 throughout our analysis.

For ψ = 0, incoming electron spin is parallel to the d vector of the superconductor. This configu-
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ration hinders the possibility of cooper pairing and therefore only possible process is normal reflection

from the FS interface. Hence, the conductance vanishes in the subgapped regime. For ψ 6= 0, SFAR

probability increases due to the dominance of p-wave pairing in the topological regime (∆p > ∆s).

Note that, the general condition for gap closing is ∆s = ∆p cos θ which reduces to ∆s = ∆p in

our case. On the other hand, for ψ = π/4, an anti-resonance in SFAR probability is clearly visible

in Fig. 5.2 at energy ε ∼ 0.3 in the topological regime. This anti-resonance can be attributed to an

interesting interference between different spin channels when ψ = π/4. A simple derivation is given

in the Appendix E to understand the appearance of the anti-resonance. Furthermore, in this parameter

regime for any value of ψ, AR and spin flip reflections are prohibited due to the absence of other spin

channel in the half metallic limit.

In Fig. 5.3, we show the behavior of differential conductance G (in unit of e2/h) in the plane of

incident electron energy (ε) and polarization angle ψ. We observe that G vanishes when incident elec-

tron spin is parallel (anti parallel) to the d vector i.e., ψ = 0 (ψ = π). This is consistent with the slice

of Fig. 5.3, denoted by the white dotted line and also depicted in Fig. 5.2. On the other hand, G reaches

at its maximum value 2e2/h, at ε = 0, when the polarization of the ferromagnet is perpendicular to

the d vector of the superconductor i.e., ψ = ±π/2. This occurs as SFAR due to triplet cooper pairing

becomes maximum with this orientation. This is indicative of a single MZM contributing resonantly

to transport. Note that, a pair of MZMs appear at the two ends of the superconductor in the topolog-

ical phase and above observation implies that only a specific linear combination of pair of MZMs is

allowed to couple resonantly to the F region due to the spin selection rule while the other combination

remains decoupled. Such SFAR induced by MZM was earlier studied theoretically [210] and recently

confirmed experimentally [211]. Furthermore, when the incident electron energy is comparable to the

superconducting gap (ε ∼ 1), reflection process dominates over AR. Hence, G becomes vanishingly

small and independent of ψ as can be seen from Fig. 5.3. We also observe that the conductance peak

splits as we move away from ε = 0, for a wide range of ψ (see the highlighted black dashed line in

Fig. 5.3). The ferromagnetic lead acts like a time-reversal breaking boundary perturbation to the pair

of MZMs leading to their hybridization and hence resulting in split peaks.

The features of differential conductanceG (in unit of e2/h), at ε = 0, is demonstrated in Fig. 5.4(a)

in ∆p−h̃ plane for ψ = π/2. Note that, when h̃ = 0 and ∆p > ∆s (topological regime), G is

4e2/h indicating two MZMs originating from the two different bands [203] contributing resonantly

to conductance. On the other hand, when h̃ > µ i.e., spin polarized regime and ∆p > ∆s, G is
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2e2/h indicating the fact that only one MZM participating in transport. Also, in the regime ∆p > ∆s,

G manifests a sharp transition from 4e2/h to 2e2/h with the variation of h̃ i.e., depending on the

availibility of the spin channels. At ε = 0, transport is being carried out solely by the subgapped

MZMs and hence this sharp transition of G indicates the spin selective coupling of MZM to the

ferromagnetic lead which is one of the main result of this chapter. Furthermore, in the trivial regime

(∆s > ∆p), singlet cooper pairing is not possible owing to the blockage of one spin channel (h̃ > µ)

and as a consequence G vanishes. However, in the regime h̃ < µ, due to the availibility of both spin

channels, normal AR gives rise to non-zero G.

The sensitivity of zero energy conductance on polarization angle ψ, in the topological supercon-

ducting regime, can be seen from Fig. 5.4(b). When the electron spin is perpendicular to the d vector

i.e., ψ = π/2, G is 2e2/h for the entire h̃ > µ regime due spin selective coupling to one MZM.

Around h̃ = µ, G starts gradually increasing from 2e2/h and finally reaches 4e2/h for h̃ = 0 i.e.,

both MZMs are resonantly coupled to the lead. With the variation of ψ from π/2 (towards 0 or π),

probability of SFAR decreases and hence G decreases monotonically and becomes zero when ψ = 0

and h̃ > µ. Hence, such spin dependent coupling of MZM, in the ∆p > ∆s regime, explicitly depends

on the polarization strength h̃ of the F regime and angle of magnetization ψ.

5.5 Summary and Conclusions

To summarize, in this chapter, we study two terminal differential conductance of a quasi 1D FS junc-

tion where the superconductor consists of mixed singlet and triplet pairings. When the superconduct-

ing part of the NW becomes topological and h̃ is parallel (anti-parallel) to d vector (ψ = 0(ψ = π)),

transport is blocked through the junction due to the absence of SFAR. On the other hand, when h̃ is

perpendicular to d (ψ = π/2) differential conductance splits away from ε = 0 due to time-reversal

breaking boundary perturbation. Moreover, zero energy conductance spectra exhibits sharp transi-

tion from 4e2/h to 2e2/h when h̃ > µ i.e., , as we move into the polarized regime. Such transition

between quantized conductances at zero bias demonstrates an efficient spin dependent coupling to a

single MZM from the pair of MZMs, using a ferromagnetic lead.

In systems having proximity induced conventional superconductivity (s wave), to realize MZMs

at the two ends of a one-dimensional NW, the required ingredients are spin-orbit coupling in the NW

and a magnetic field perpendicular to the spin-orbit field direction. The applied magnetic field and
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the chemical potential have to be tuned appropriately to achieve topological phase in the NW [3, 58].

On the other hand, in our setup, we require neither spin-orbit coupling nor a Zeeman gap to achieve

topological phase hosting MZMs at each end of the superconducting part of the NW. Essentially, the

relative magnitude of the intrinsic spin singlet and triplet pairings of the unconventional superconduc-

tor gives rise to the topological phase hosting pair of MZMs at the ends of the superconducting part

of the NW. This motivates us to consider an inversion symmetry broken NCS type superconductor

with mixed singlet and triplet pairings [191] to study our model. The strength of the Stoner field h̃

in the ferromagnetic probe can be thought of as an efficient way to control time reversal breaking

boundary perturbation, which leads to sharp transition of zero-bias differential conductance from the

quantized value of 4e2/h to 2e2/h when the Stoner field h̃ in the ferromagnetic and the d vector of

the superconductor are kept mutually perpendicular to each other.

As far as practical realization of our model is concerned, a NW may be possible to fabricate in

close proximity to a ferromagnet for e.g. EuO and NCS superconductor for e.g. Mo3Al2C, BiPd

etc. [194, 195]. To validate our model, the orientation of the ~d vector of the spin-triplet component

to be changed according to the direction of transport. Hence, the transport signatures (differential

conductanceG) must be measured in the plane orthogonal to the axis along which inversion symmetry

broken spin-orbit coupling is present.
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CHAPTER 6

RKKY Exchange Interaction in 8-Pmmn Borophene

6.1 Chapter Summary

Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction is an indirect exchange coupling be-

tween two magnetic impurities being mediated by the conduction electrons of the host material. We

have theoretically investigated the indirect signatures of the tilted anisotropic Dirac cones via RKKY

exchange interaction in 8-Pmmn borophene. The latter is a two dimensional polymorph of boron

atoms. The 8-Pmmn borophene is one of the most recent 2D polymorph of boron atoms, which has

been predicted to host tilted Dirac cones where the tilting direction around the Dirac cones are op-

posite to each other. Unlike the case of isotropic non-tilted Dirac material-graphene, here we have

observed that the tilting of the Dirac cones exhibits a significant impact on the RKKY exchange in-

teraction in terms of the suppression of oscillation frequency. The reason can be attributed to the

behavior of the Fermi level and the corresponding density of states with respect to the tilting pa-

rameter. When the two impurities are located perpendicular to the tilt axis, interference between the

Dirac fermions from different valleys do not contribute to the oscillation frequency and the period

of oscillation increases as one enhances the value of the tilt parameter. This change of oscillation

frequency may be a possible way to indirectly probe the degree of tilting of the Dirac cone present

in anisotropic Dirac materials such as 8-Pmmn borophene. On the other hand, for the separation of

the two impurities being along the tilt axis, interference among the Dirac cones plays a dominant
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role in determining the period of oscillation and the tilt parameter exhibits a negligible effect on the

corresponding period. We have derived the direction dependent analytical expressions of the RKKY

exchange interaction, in terms of Meijer G-function. Behavior of RKKY exchange interaction is also

investigated numerically for two spatially separated magnetic impurities in the x− y plane of the 2D

borophene sheet.
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6.2 Introduction

With the advent of graphene [212, 7], monolayer materials with similar band structure have been

under active consideration from the theoretical and experimental research point of view owing to

their future application in nanoelectronics. Along this direction, a thin layer of boron atoms called

borophene is the latest addition to the famility of Dirac materials. Having one less electron than

carbon, boron’s honeycomb structure is unstable. However, it can be stabilized by adding extra boron

atoms in the honeycomb lattice. First principle calculations have predicted that depending on the

arrangements of the extra boron atoms, various stable monolayer-boron structures, such as α sheet,

β sheet, are possible [15, 23, 38]. In recent times, Mannix et al. reported a stable striped phase and

a metastable homogeneous phase in two-dimensional (2D) boron silver substrate [43] while Feng et

al. has experimentally confirmed the presence of Dirac fermions in this phase, named β12 sheet [2].

The 8-Pmmn borophene is one of the most recent 2D polymorph of boron atoms, which is predicted

to host tilted Dirac cones [40]. In the community, it is an interesting question to investigate how to

probe this degree of tilting.

The RKKY exchange interaction [213, 214, 215] is an indirect exchange coupling between two

magnetic impurities being mediated by the conduction electrons of the host material. Since the RKKY

exchange interaction is directly related to the susceptibility of the host material, it can be used as

a probe to an electronic system. In recemt times, the physics of RKKY exchange interaction has

been widely investigated in a variety of Dirac materials such as graphene [216, 217, 218, 219, 220,

221, 222], silicene [223], phosphorene [224, 225], topological insulator [226, 227, 228, 229], Dirac

semimetal [230, 231] etc.

Formally, the magnitude of the RKKY exchange interaction is anticipated to be severely influ-

enced by the position of the Fermi level and the corresponding density of states (DOS) in any host ma-

terial. In this context, the tilting of the Dirac cone can modify DOS as well as Fermi level [223, 232]

near the Dirac point in anisotropic Dirac materials. Hence, the features of the RKKY interaction can

carry the signatures of the tilting nature of the Dirac cones. This issue has not been addressed so far

to the best of our knowledge.

In this chapter, we explore the consequences of the tilted and anisotropic Dirac cones on the

RKKY exchange interaction, considering 8-Pmmn borophene as a host material [233]. We obtain
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semi-analytical results of the RKKY exchange interaction for two different spatial separation of the

magnetic impurities: two impuries are located perpendicular to the tilt axis and parallel to the tilt

axis. For the former case, interference between the Dirac fermions from different valleys do not

contribute to the oscillation frequency and the period of oscillation increases as one enhances the

value of the tilt parameter. This change of oscillation frequency may be a possible way to probe the

degree of tilting of the Dirac cone present in anisotropic Dirac materials such as 8-Pmmn borophene.

On the other hand, for the separation of the two impurities being along the tilt axis (along the y axis),

interference among the Dirac cones plays a dominant role in determining the period of oscillation

and tilting parameter exhibits negligible effect on the corresponding period. We also demonstrate the

role of tilted and anistropic Dirac cone on Fermi level which in turn influences the RKKY exchange

interaction. Behavior of RKKY exchange interaction is also investigated numerically for two spatially

separated magnetic impurities in the x-y plane of the 2D borophene sheet.

The remainder of the chapter is structured as follows. In Sec. 6.3, we describe the model Hamil-

tonian for our setup and present a brief outline of the Green’s function formalism to obtain the RKKY

exchange interaction. The behavior of RKKY interaction, as a function of distance between the two

magnetic impurities as well as tilting parameter, for different alignements of the impurities is pre-

sented in Sec. 6.4. Finally, we summarize our results and conclude in Sec. 6.5.

6.3 Model and Method

We begin with a general low energy two band effective Hamiltonian for 2D Dirac materials associated

with anisotropic Dirac cone, which can be written as (near the Dirac points q = ±qD)

HD = ξ(vxσxqx + vyσyqy + vtσ0qy) , (6.1)

where σx, σy are the Pauli matrices in the atomic basis and σ0 is a unit matrix. We have chosen ~ = 1.

Here, ξ = ±1 is the valley index and vi (i = x, y) corresponds to the velocities along ith direction,

while vt denotes the velocity scale associated with the tilted Dirac cones. Note that the tilting lies

along the y-direction. The different velocity parameters are given by {vx, vy} = {0.86, 0.69} and
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vt = 0.32 in units of 106 m/sec [39, 41]. The above Hamiltonian can be further written as

HD = ξ[vtσ0qy + vF (σxq̃x + σy q̃y)] , (6.2)

where vF =
√
vxvy. The new renormalized momentum operators are given by q̃x =

√
vx
vy
qx and

q̃y =
√

vy
vx
qy which satisfy the usual quantum mechanical commutation relation [q̃x, q̃y] = 0 and

[x̃, q̃x] = i, [ỹ, q̃y] = i provided x̃ =
√

vy
vx
x and ỹ =

√
vx
vy
y . The corresponding energy dispersion is

given by [42]

E(q̃x, q̃y) = ξvt

√
vx
vy
q̃y + λvF | q̃ | . (6.3)

Here, λ = ± denotes band index. However, as we restrict ourself in the n-doped regime (con-

duction band), therefore λ is always positive in our analysis. The band structure near the Dirac point

q = qD is shown in Fig. 6.1(a). The band dispersion around the other valley q = −qD has opposite

chirality i.e., tilting lies along the opposite direction. It is important to note that the tilting breaks

particle-hole symmetry in borophene [39, 41].

Before proceeding further, we briefly examine how the tilting of the Dirac cones affects the Fermi

energy and density of states (DOS). The Fermi energy (EF ) and DOS (ρ(E)) in a material, associated

with tilted and anisotropic Dirac cone, depend on the tilting parameter vt in the following way

EF (vt) = E
(0)
F

(
1− v2

t

v2
F

) 3
2
, (6.4)

ρ(E, vt) = ρ(0)(E)
(

1− v2
t

v2
F

)− 3
2
, (6.5)

where E(0)
F and ρ(0)(E) are the Fermi level and the DOS of a non-tilted isotropic Dirac material-i.e.,

graphene, respectively and vF =
√
vxvy as mentioned earlier. Note that, with the enhancement of the

tilting parameter vt, the Fermi level decreases monotonically. On the other hand, DOS gets enhanced

with vt and the corresponding behavior of that, following the low energy spectrum (Eq.(6.3)), is

shown as a function of energy in Fig. 6.1(b). At the Dirac point, ρ(E) vanishes and increases linearly

with energy similar to graphene [234, 235]. Impact of these phenomena on the period of oscillation

of RKKY exchange interaction is explained in the next section.

Now we briefly discuss the theoretical formalism for investigating the RKKY exchange interaction

in 2D electronic system. We consider two magnetic impurities (localized spins) at two different lattice
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Figure 6.1: (a) A tilted, anisotropic Dirac cone of 8-Pmmn borophene, in the vicinity of Dirac point
kD, is shown in the qx-qy plane. (b) The behavior of DOS (in arbitrary unit) is demonstrated near the
Dirac point for different values of the tilt parameter vt.
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sites of the bulk 2D borophene sheet. The interaction term between the localized spins (Si) and the

conduction electron spins (si) is given by the Kondo Hamiltonian

Hint = J(S1 · s1 + S2 · s2) , (6.6)

where J is the bare exchange coupling strength. The microscopic origin of such model renders to An-

derson impurity model [236, 237]. Using second order perturbation theory, the exchange interaction

energy between the two localized spins can be written in the Heisenberg form as

E(r) = Jαβ(r)S1 · S2 , (6.7)

where α, β indicate the atomic indices and r is the distance between the two impurities. Thus, the

RKKY exchange interaction strength Jαβ(r) is given by

Jαβ(r) =
J2~2

4
χαβ(0, r) . (6.8)

where χαβ(0, r) is the susceptibility.

For a spin-degenerate system, susceptibility can be written in terms of the unperturbed retarded

Green’s functions as [221]

χ(r1, r2) = − 2

π

∫ EF

−∞
dE Im[G

(0)
αβ(r1, r2, E)G

(0)
βα(r2, r1, E)] , (6.9)

To compute the susceptibility, which is directly proportional to RKKY exchange intercation, we need

to evaluate the zeroth-order real space Green’s functions. Since in the large distance, contribution to χ

arises mainly from small momenta, one can extend the momentum cutoff to∞ to obtain the real space

Green’s functions via the Fourier transform. We compute them in the linear band approximation and

obtain

G
(0)
αβ(R, 0, E) =

1

ΩBZ

∫
d2k eik·RG

(0)
αβ(k, E)

=
1

ΩBZ

∫
d2q̃ eiq̃·R[eiK·RG

(0)
αβ(q̃ + K, E)

+ eiK
′·RG

(0)
αβ(q̃ + K′, E)] , (6.10)
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where the integration is performed over the entire Brillouin zone ΩBZ . Here, q̃ = (q̃x, q̃y) is small

momentum in the vicinity of the Dirac points, where the linear Dirac spectrum is valid. As dq̃xdq̃y =

dqxdqy, we can replace q̃ by q without loss of generality.

We have also used the notation (x, y) in place of (x̃, ỹ). The factor
√

vx
vy

in Eq.(6.3) has now

been included in the tilting parameter vt for simplicity. The unperturbed momentum space Green’s

function is given by,

G
(0)
αβ(k, E) = (E + iη −HD)−1

=
1

D

E + iη − ξvtqy (qx − iqy)vF
(qx + iqy)vF E + iη − ξvtqy

 , (6.11)

with D = (E + iη − ξvtqy)2 − v2
F q

2, vF =
√
vxvy. Here, ξ = ±1 indicates the two Dirac points K

and K′.

6.4 Results

In this section we present our analytical as well as numerical results for different locations of the

two magnetic impurities inside the bulk of the 2D borophene sheet. In general, it is a formidable

task to obtain the analytical expressions for the susceptibility when the two impurities are arbitrarily

located in the x-y plane. However, we manage to obtain the analytical form of RKKY exchange

interaction for the two special cases: (A) when the two impurities are located perpendicular to the

tilt axis and (B) parallel to the tilt axis. The schematic of the orientation of the impurities in the

borophene lattice are shown in Fig.(6.2) . Here, we clarify our notations used for our analysis: χ11

denotes the susceptibility for the impurities being on same type of atoms and χ12 for the different

types of atoms (one on ridge atom and the other on inner atom (see Fig. 6.2)). It is worthwhile to

mention that when the impurities are on different atoms, they cannot be exactly along x or y axis.

However, such small off-axis deviation along the tilt axis (y axis) or perpendicular to it (x axis), does

not change our results qualitatively, in the continum limit.

Note that, RKKY exchange interaction strength is directly proportional to the susceptibility (see

Eq.(6.8)). Hence, we express the susceptibility as a measure of RKKY interaction strength in units

of J2~2/4. Also, we normalize the distance between the two magnetic impurities by corresponding
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lattice parameters i.e., Rx/a→ Rx and Ry/b→ Ry.

y

x

Figure 6.2: Schematic of the lattice structure of 8-Pmmn borophene. Big blue (dark gray) circles
and small red (light gray) circles distinct two types of nonequivalent atoms BR (ridge atom) and BI

(inner atom) respectively. The unit cell, comprising of 8 atoms, is shown by dashed black rectangle.
Magnetic impurities are schematically shown by golden (light gray) and dark green (dark gray) ar-
rows. Bottom (golden) arrows are aligned perpendicular to the tilt axis (x axis) while the left arrows
(golden and dark green) are located along the tilt axis (y axis) inside the 2D sheet.

6.4.1 Impurities are located perpendicular to the tilt axis

When the two magnetic impurities reside perpendicular to the tilt axis (on the same atoms) of bulk

borophene, the integral in Eq.(6.10) can be computed analytically for Ry = 0. This configuration has

been indicated by golden arrows in Fig. 6.2. In this case, the zeroth-order real space Green’s function

reads as

G
(0)
11 (Rx, 0, E)

=
1

ΩBZ

∫
dqx dqy

(E + iη − vtqyξ)eiqxRx
(E + iη − vtqyξ)2 − v2

F (q2
x + q2

y)

=
−2πE

vF

(v2
F − 2v2

t )

(v2
F − v2

t )
3
2

K0(−iα̃)(eiK·R + eiK
′·R) , (6.12)

with α̃ = ERx/
√
v2
F − v2

t . Here, K0(x) are the modified Bessel function of first kind. In Ap-
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pendix F, we provide the results of some standard integrals involving Bessel function which have

been used throughout the calculation. Expressing the modified Bessel function in terms of Bessel and

Neumann function, we obtain

Im[G
(0)
11 (Rx, 0, E)G

(0)
11 (0, Rx, E)] =

4π2E2

Ω2
BZ

v2
F

(v2
F − v2

t )
3

×Im[(K0(−iα̃))]2(2 + 2 cos{(Kx −K
′

x)Rx}) . (6.13)

Henceforth, following the works of Saremi [216] and Sherafati et al. [220, 221], we separate the

integration limit :
∫ EF
−∞ =

∫ 0

−∞+
∫ EF

0
. The first integral indicates the valence electrons (undoped

case) and the second one is for the conduction electrons. While the latter integral involves Meijer G-

function, former one does not converge. Following the standard procedure given in Ref. [216, 221],

the integrand can be multiplied by a cutoff function f(α̃, α̃0)=exp (−α̃/α̃0). Then one can perform

the integral and takes limit α̃0 →∞ at the end so that f(α̃, α̃0) → 1. Thus, we arrive at the following

form of the susceptibility:

χ11 =
1

πR3
x

v2
F

(v2
F − v2

t )
3
2

[1 + cos{(Kx −K ′x)Rx}]

×
[

1

16
− k

′
FRx

2
√
π
M(k

′

FRx)

]
, (6.14)

where, k′F = EF/
√
v2
F − v2

t and M(k
′
FRx)=G 2,0

1,3

(
3
2

1,1,1,− 1
2

∣∣∣ k′F 2
R2
x

)
is the Meijer G-function. We

have considered the first Brillouin zone area as Ω = 4π2/ab. Tilted anisotropic Dirac points are at

~qD = (0, qD) and −~qD, qD = 0.29 × 2π
b

[41]. It is interesting to note that in case of borophene, the

oscillatory factor [1 + cos{(Kx−K ′x)Rx}] = 2. Hence, the interference terms between the two Dirac

points do not contribute to the RKKY exchange interaction which is evident from Eq.(6.14).

In Fig. 6.3, we demonstrate the behavior of susceptibility χ11 (when impurities are on the same

atom) as a function of the distance Rx between the two magnetic impurities and tilt parameter vt.

The change in the periodicity of χ11, with the enhancement of tilting parameter vt, is evident from

Fig. 6.3(a).

This feature can be understood from Eq.(6.14) in which the Meijer G-function is the entire source

of the oscillation. As the period of oscillation is inversly proportional to the argument k′FRx, it

scales with vt as τ(vt) = τ(0)/(1 − x2), where x = vt/vF and τ(0) is the period of non-tilted and
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isotropic Dirac cone i.e., graphene. As the tilting parameter increases, period of oscillation increases

monotonically. In the vt → 0 limit, τ(vt) comes back to the untilted period τ(vt = 0) as expected. On

the other hand, for vt → vF , the period diverges indicating flatness of exchange interaction. Hence,

the internal band structure itself influences the RKKY exchange (Friedel oscillation) due to tilting and

may be a way to probe the degree of tilting in anisotropic 2D Dirac materials. This is also one of the

main results of this chapter.

(a) (b)

(c) (d)

Rx Rx

vt vt

vt = 0.0

vt = 0.2
vt = 0.4

vt = 0.0
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Figure 6.3: The behavior of the suscepibilities χ11 and χ12 is shown as a function of Rx in panels (a)
and (b), and as a function of vt in panels (c) and (d) respectively. We choose the other parameters as
vF = 1.0, Ry = 0, E(0)

F = 0.5. Black dashed line indicates the null susceptibility.

We also observe that there is a reduction in the amplitude of χ11 as vt increases (see Fig. 6.3(a)).

The reason can be attributed to the presence of vanishingly small density of states near the Dirac point

and lowering of Fermi level with the rise of tilting parameter vt. Furthermore, we explore the long

distance and very short distance limit of RKKY exchange interaction which can be figured out from

the asympototic behavior of Meijer G-function. Using the standard tables [238, 239] and following

Ref. [221], we obtain

lim
y→0

M(y) =
4y2[1− 3γ − 3 ln(y/2)]

9
√
π

, (6.15)

lim
y→∞

M(y) =
[2 cos(2y) + 8y sin(2y)− π]

8
√
πy

, (6.16)
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where γ ≈ 0.577 is the Euler-Mascheroni constant. Therefore, we obtain the following form of the

RKKY exchange interation in the long distance limit (k′FRx � 1) as

lim
k
′
FRx→∞

χ11(Rx) =
χL11

R3
x

[π − cos(2k
′

FRx)

−4k
′

FRx sin(2k
′

FRx)] , (6.17)

where χL11 = v2
F/8π

2(v2
F −v2

t )
3/2. On the other hand, our analytical results for the short distance limit

(k′FRx � 1) reads

lim
k
′
FRx→0

χ11(Rx) =
χS11

R3
x

[
1− 32(k

′
FRx)

3

9π

(1− 3γ − 3 ln(k
′

FRx/2))

]
. (6.18)

where χS11 = v2
F/16π(v2

F − v2
t )

3
2 .

Here we present the results for the magnetic impurities located on different atoms. One can obtain

the Green’s function extending the momentum cutoff to∞ as

G
(0)
12 (Rx, 0, E)

=
1

ΩBZ

∫
dqx dqy

(qx − iqy)eiqxRx
(E + iη − vtqyξ)2 − v2

F (q2
x + q2

y)

= − 2πE

ΩBZ(v2
F − 2v2

t )
K1(−iα̃)(eiK·R + eiK

′·R)

− 2iξvtπE

ΩBZ(v2
F − 2v2

t )
3
2

K0(−iα̃)(eiK·R − eiK′·R) (6.19)

Similar to χ11, the integrand is multiplied by a cutoff function to evaluate the energy integral of the

valence electrons. Finally we obtain

χ12 = − 1

2πR3
x

√
v2
F − v2

t

(
− 3

16
− k

′
FRx

2
√
π
M̃(k

′

FRx)

)
×[1 + cos{(Kx −K ′x)Rx}]

− v2
t

2πR3
x(v

2
F − v2

t )
3
2

(
1

16
− k

′
FRx

2
√
π
M(k

′

FRx)

)
×[1− cos{Kx −K ′x)Rx}] , (6.20)
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where M̃(k
′
FRx) = G 2,1

2,4

(
1
2
, 3
2

1,2,0,− 1
2

∣∣∣ k′F 2
R2
x

)
. In Eq.(6.20), the second term vanishes for borophene

(Kx = K ′x = 0), while in the first term, again the interference between the anisotropic Dirac cones

does not contribute to the RKKY oscillations. Note that, both χ11 and χ12 recover the similar form of

graphene [221, 220] in the limit : vt = 0, vx = vy = vF .

Behavior of χ12, as a function of Rx and vt, is depicted in Fig. 6.3(b). Here also the period of

oscillation increases with the increment of vt, similar to χ11. This feature can be understood from

Eq.(6.20) where the argument of Meijer G-function is proportional to vt. We also explore the long

distance (k′FRx � 1) and short distance (k′FRx � 1) limit of χ12 employing asymptotic behavior of

Meijer G-function. We find,

lim
y→0

M̃(y) =
2y2

3
√
π
, (6.21)

lim
y→∞

M̃(y) =
[3π − 10 cos(2y)− 8y sin(2y)]

8
√
πy

. (6.22)

Employing the above limits, we obtain the following analytical forms of RKKY exchange interaction

as

lim
k
′
FRx→∞

χ12(Rx) =
χL12

R3
x

[3π − 5 cos(2k
′

FRx)

−4k
′

FRx sin(2k
′

FRx)] , (6.23)

lim
k
′
FRx→0

χ12(Rx) =
χS12

R3
x

[
1 +

16(k
′
FRx)

3

9π

]
, (6.24)

with χL12 = 1/8π2
√
v2
F − v2

t and χS12 = 3/16π
√
v2
F − v2

t .

The oscillatory behavior of χ11 and χ12 as a function of vt is clearly visible from Figs. 6.3[(c)-(d)].

They exhibit similar features for χ11 and χ12 with the variation of vt as in both cases the period of

oscillation depends on the tilting parameter. It is evident that due to R−3
x dependency (see Eq.(6.14)

and Eq.(6.20)), amplitude of both χ11 and χ12 become vanishingly small as one gradually enhances

the distance between the two magnetic impurities.

It is important to note that, even without the tilting parameter, the Fermi surface is anisotropic

due to the anisotropy in Fermi velocities (vx 6= vy). Effect of this anisotropy, in the absence of tilting

(vt = 0), on RKKY exchange interaction is presented in Fig. 6.4. It is evident that the effect of such

simple anisotropic Fermi surface on susceptibility (χ11 and χ12) is negligibly small. This may be a
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possible way to distinguish between these two kind of anisotropies (vt = 0 and vt 6= 0) by measuring

the RKKY interaction.

Rx Rx

(a) (b)
�
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�

3
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10
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vx = vy

Figure 6.4: The behavior of the suscepibilities χ11 and χ12 are illustrated as a function of Rx with
vt = 0 for both anisotropic Fermi velocities and isotropic counterpart in panel (a) and (b) respectively.
The value of the other parameters are chosen as Ry = 0, E(0)

F = 0.5.

6.4.2 Impurities are aligned parallel to the tilt axis

Here, we present the analytical form of the susceptibility in the limit Rx → 0 i.e., when the two

magnetic impurities are situated along the tilt axis. This has been illustrated by golden and dark green

arrows in Fig. 6.2. We proceed in the similar way as in the previous subsection and obtain

χ11 = − 1

πR3
yvF

∫ zF

−∞
dzz2

[
− cos

(
KyRy −

vt
vF
z

)2

J0(z)Y0(z)

+
v2
t

v2
F

sin

(
KyRy −

vt
vF
z

)2

J1(z)Y1(z)

]
, (6.25)

where, z = EvFRy/(v
2
F − v2

t ) and zF = EFvFRy/(v
2
F − v2

t ).

χ12 = − 1

πR3
yvF

∫ zF

−∞
dzz2

[
cos

(
KyRy −

vt
vF
z

)2

J1(z)Y1(z)

− v
2
t

v2
F

sin

(
KyRy −

vt
vF
z

)2

J0(z)Y0(z)

]
. (6.26)

The explicit analytical form of both χ11 and χ12, after performing the integration over energy, are

very messy and not possible to write in a compact form. Rather, we present our results for them in

Fig. 6.5 both as a function of Ry and vt. We note that Fig. 6.5(a) is almost identical to Fig. 6.5(b) and

Fig. 6.5(c) is to Fig. 6.5(d). This feature can be attributed to the fact that the Hamiltonian is written
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in two atomic basis (two sublattice indices) of borophene (tilted Graphene), which do not couple

directly to the magnetic moments. Such feature is in complete contrast to the case of topological

insulator [226, 228] in which the actual spin degree of freedom of the surface states directly couples

to the impurity spin moment.

(a) (b)
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Figure 6.5: The behavior of the suscepibilities χ11 and χ12 is illustrated as a function of Ry in panels
(a) and (b), and as a function of vt in panels (c) and (d) respectively. The value of the other parameters
are chosen as vF = 1.0, Rx = 0, E(0)

F = 0.5.

We observe that the period of oscillation is almost constant with vt, as can be seen from Fig 6.5(c).

In this particular limit of Rx → 0, the interference among the Dirac fermions from different Dirac

points in the Brillouin zone plays a crucial rule in determining the oscillatory nature of RKKY ex-

change interaction. From Eqs.[(6.25)-(6.26)], one can note that the period of oscillation depends both

on Ky and vt. As the tilting angles (velocity) lie in opposite directions for the two Dirac points K

and K
′ , the effect of tilting on RKKY exchange interaction, nullifies each other due to destructive

interference. Hence, the period of oscillation does not vary with the enhancement of vt. The latter

behavior indicates that the interference between the anisotropic Dirac cones dominates over the effect

of Fermi level in determining the overall period of oscillation. Nevertheless, the amplitude of RKKY

oscillation decreases with the degree of tilting vt due to the lowering of the Fermi level (see Eq.(6.5)).

Although DOS increases with the tilting parameter, however near the Dirac points DOS is negligbly

small and hence it contributes negligibly in determining the amplitude of oscillation, especially in the
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Figure 6.6: The behavior of the susceptibilities χ11 and χ12 are depicted as a function of Rx in panels
(a) and (b) respectively. The value of the other parameters are chosen as vF = 1.0, E(0)

F = 0.5,
Ry = 5 in panel (a) and Ry = 2 in panel (b).

long distance limit where only small momenta are important. The presence of interfence among the

Dirac points enhances the oscillation frequency of both χ11 and χ12 compared to the previous case

(see Figs. 6.3[(a)-(b)]). Also, the oscillatory behavior of RKKY exchange with enhanced frequency

as a function of vt, is clearly visible from Fig. 6.5(c) and Fig. 6.5(d).

6.4.3 Impurities are located in the x-y plane

In this subsection, we present our numerical results when the two magnetic impurities are placed

at arbitrary positions in the x-y plane of the bulk 2D borophene sheet i.e., Rx 6= 0 and Ry 6= 0.

In this case, it is not possible to obtain any kind of analytical form of the susceptibility. Hence, we

compute the real space Green’s function by numerically integrating over momenta and energy degrees

of freedom. The corresponding results for χ11 and χ12 are illustrated as a function of Rx for different

values of the tilting parameter vt with Ry = 5 in Fig. 6.6(a) and Ry = 2 in Fig. 6.6(b) respectively.

It is apparent from Fig. 6.6(a) (when two magnetic impurities are placed on same atoms in the x-y
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plane) that the oscillations appear very rapidly as a function of Rx and manifest weak dependence

on the values of vt. These high frequency rapid oscillations emerge due to the interference between

the two Dirac cones. This has been reported earlier for other 2D Dirac systems [218, 220, 224]. The

competition between the enhancement of DOS and reduction of Fermi energy with tilting parameter

(see Eq.(6.5)), for arbitrarily placed impurities, results in the non-monotonic variation of amplitude

of oscillation as a function of vt in the short and intermediate distance scale. This feature can be

seen from Fig. 6.6(a). However for large distance between the two impurities, only small momenta

contribute to the RKKY exchange interaction and hence lowering of the Fermi level controls the

amplitude, resulting in monotonic decrease of χ11 with tilting.

The behavior of the spin density oscillations, for two magnetic impurities placed on different

atomic sites in the x-y plane, is shown in Fig. 6.6(b) choosingRy = 2. There is one notable difference

between Fig 6.6(a) and Fig. 6.6(b) is that in Fig 6.6(a), the oscillatory behavior associated with an

envelope of the amplitude is prominent while in Fig. 6.6(b) the period is larger. As the period of

oscillation is inversely proportional to the distance, for very small distance, envelope of amplitude of

the RKKY exchange interaction decays (period becomes large) while the oscillations are prominent

for larger distances. Moreover, for the small separation of the impurities, χ12 exhibits non monotonic

behavior with vt. On the other hand, for large distance (Rx > 5) χ12 decreases monotonically with

the tilting parameter vt which can again be attributed to the effect of tilting on the Fermi level and

DOS.

6.5 Summary and Conclusions

To summarize, in this chapter, we have explored the effect of the tilted and anisotropic Dirac cones on

the RKKY exchange interaction in the bulk of a 8-Pmmn borophene. We observe that the tilting of the

Dirac cones, for specific orientation of the impurities, manifests itself with the significant reduction in

the RKKY exchange interaction oscillation frequency. This feature can be an indirect signature of the

degree of tilting present in tilted and anisotropic Dirac cone. We present our analytical expressions

for the susceptibility, in terms of Meijer G-function, which is directly proportional to the exchange

interaction strength. We consider two special cases: when two magnetic impurities are located per-

pendicular to the tilt axis (x axis) and along the tilt axis (y axis). In the former case, interference

between the Dirac cones does not contribute to the Friedel oscillations and the period of oscillation
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increases with tilting parameter. In contrast, for the impurities being along the tilt axis, interference

among the Dirac cones plays the dominant role in determining the period of oscillation while the

tilting parameter exhibits negligible contribution. Moreover, due to opposite orientation of tilting of

the Dirac cones at the inequivalent Dirac points, the effect of tilting originating from each Dirac point

on RKKY exchange interaction nullifies each other when the impurities reside along the tilt axis.

However, the amplitude of oscillation decreases with the tilting parameter because of lowering of the

Fermi level. We also separate out the effect of simple anisotropy (vx 6= vy) on RKKY exchange inter-

action in absence of tilting (vt = 0) and show that such anisotropy in Fermi surface exhibits negligible

effect on the response function in case of borophene. For arbitrarily placed magnetic impurities in

the x-y plane (neither along nor perpendicular to the tilt axis), we evaluate our results numerically

and show rapid oscillations (beating pattern) in susceptibility due to the interference between the two

Dirac cones and subdominant effects arising from the tilt parameter.

As far as practical realization of our results are concerned, it may be possible to deposit magnetic

adatoms such as Co or Fe on bulk borophene to study RKKY exchange interaction in it. However,

these adatoms consist of outermost s electrons, besides the d electrons that act as essential magnetic

moments, which can modify the exchange interaction. Moreover, one has to be careful such that

the band structure does not get modified significantly by these impurities. Nevertheless, a simple

molecule possessing localized magnetic moments which interact via host material atoms and does not

alter the bulk band structure, can be deposited on 8-Pmmn borophene and may be a possible testbed

for our theoretical predictions.

Throughout this chapter we have discussed RKKY exchange interaction in 8-Pmmn Borophene

due to the presence of external magnetic impurities. There is another phenomena that takes place

when a magnetic impurity is placed in a metallic host : the Kondo effect [240] which is a many-body

phenomena where the scattering of conduction electrons in a metal, lying near the Fermi level, due

to the magnetic impurities results in a characteristic change of electrical resistivity with temperature.

The Kondo temperature TK is defined by the energy scale below which the local magnetic moment

of a magnetic impurity is screened by the conduction electron spins of the metal. When multiple

impurities are present in the metal, the Kondo effect competes with RKKY interaction. Doniac [241]

pointed out the difference in their scaling with the antiferromagnetic coupling J as TK ∼ e−1/J and

JRKKY ∼ J2 (for weak coupling J). There exists a critical point J = JC where TK = JRKKY . For

weak coupling limit i.e., in the limit of J < JC , RKKY interaction becomes dominant [242].
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Although we have focused on RKKY exchange interaction in 8-Pmmn Borophene as our host

material, qualitatively the results should be similar for any other 2D materials having tilted Dirac

cone for e.g. tilted graphene, organic conductor α-(BEDT− TTF)2I3 [42, 243] etc. Then χ11 and

χ12 would refer to the measure of RKKY exchange interaction (in units of J~2/4) corresponding to

impurities being placed on same sublattices and different sublattices respectively.

Here, we emphasize that 8-Pmmn borophene is ideally not a coplanar 2D Dirac material. Rather,

it has a finite thickness due to the two kinds of atoms being non-coplanar. However, only those atoms

located in a hexagonal manner in a buckled structure contribute to the formation of Dirac cones [39].

Therefore, the finite thickness which we have neglected in our analysis, should manifests negligible

effect on the RKKY exchange interaction.
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CHAPTER 7

Summary and Outlooks

In this chapter, we summarize the outcome of the thesis and discuss possible extensions of the works

which are still unexplored. This thesis has been devoted to study various transport properties and

magnetic exchange properties of several 2D Dirac materials and Majorana nanowire. Investigation of

newly discovered 2D materials namely Silicene, Borophene etc. has attracted immense interest among

experimentalists as well as theoreticians due to their possible application in diverse areas ranging from

topological quantum computation to spintronics. Topological phases have been predicted in Silicene:

a new generation of 2D materials. Therefore various transport properties such as thermal transport,

quantum pumping are important not only for a better understanding of the materials but also to unravel

the possible applications.

In this direction, in chapter 3, we have investigated thermal conductance κ by Dirac fermions in

silicene NIS junction where superconductivity is induced in silicene sheet via the proximity effect.

We study the behavior of TC in this set-up both for thin and thick insulating barrier limits. We show

that TC exhibits π/2 periodic oscillation with respect to the barrier strength in thin barrier limit for

undoped (µN = 0) and moderately doped (0 < µN ≤ ∆) regime where the Fermi surface mismatch

between the normal and superconducting sides is significant. The oscillation becomes π periodic as

a function of barrier strength in the highly doped (µN � ∆) regime where Fermi surfaces in the two

sides are almost aligned. This change of periodicity (π/2 to π) in thermal response with the variation

of doping concentration can be an indirect probe to identify the crossover from SAR to retro AR.
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Nonetheless, TC shows conventional exponential dependence on temperature independent of doping

concentration and barrier characteristics. The external electric field reduces TC monotonically in

the undoped regime. However, a non-trivial interplay between band gap at Dirac points and doping

concentration appears in the moderately doped case. Consequently, electric field can tune TC in the

later regime. On the other hand, electric field has a negligible effect on TC when µN/∆ � λ. In

the thick barrier limit, oscillation of TC persists both as a function of barrier thickness d as well as

barrier height V0. The latter can be tuned by an additional gate voltage applied at the insulating region.

However, we show that the periodicity of TC no longer remains constant, rather becomes functions

of both d and V0. Also after a certain barrier thickness (d ∼ 0.4λF ), the amplitude of oscillations in

TC decays for arbitrary V0 in the highly doped regime.

In chapter 4, we have investigated the possibility of enhancing the CAR probability |tA|2 in sil-

icene NSN set up by introducing thin insulating barrier I at each NS interface. It is shown that,

for electrons with normal incidence, resonant CAR can be obtained in our setup by tuning the band

gap in both the normal silicene regions by applying an external electric field as well as adjusting the

chemical potential by additional gate voltages. We also show that |tA|2 is periodic in χ1-χ2 plane due

to relativistic nature of Dirac fermions. On the other hand, it is also possible to attain transmission

probability |te|2 of magnitude unity in silicene NISIN junction under suitable circumstances. Owing

to Dirac nature of particles, |te|2 also exhibits periodic behavior in the space of barrier strengths χ1

and χ2. We then explored adiabatic quantum charge pumping through our NISIN setup and show

that the behavior of pumped charge as a function of the pumping strength P is closely related to the

features of CAR probability |tA|2 or transmission probability |te|2 in the pumping parameter space.

For electrons with normal incidence, large pumped charge with value close toQ ∼ 2e can be obtained

when particular circular or elliptic pumping contour encloses the resonant CAR in χ1-χ2 plane. Al-

though the major contribution to Q, in this case, arises from the dissipative part. On the other hand,

large pumped charge can also be obtained with lemniscate contour when odd number of |tA|2 peaks

are enclosed by each of its bubble. In contrast, pumped charge approaches to Q ∼ −e when various

pumping contours enclose |te|2 resonance in the same parameter space. However, pumped charge

decreases monotonically as we increase the angle of incidence of the incoming electron. In exper-

imental situation, the measurable quantity should be the angle averaged pumped charge analogous

to angle averaged conductance. From our analysis, we expect that the qualitative nature of angle

averaged pumped charge as a function of the pumping strength will remain similar to the αeL = 0
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case. Although the quantitative value ofQ will be smaller than the angle resolved case asQ decreases

monotonically with αeL.

In chapter 5, we have studied two terminal differential conductance of a quasi 1D FS junction

where the superconductor consists of mixed singlet and triplet pairings. When the superconducting

part of the NW becomes topological and h̃ is parallel (anti-parallel) to d vector (ψ = 0(ψ = π)),

transport is blocked through the junction due to the absence of SFAR. On the other hand, when h̃ is

perpendicular to d (ψ = π/2) differential conductance splits away from ε = 0 due to time-reversal

breaking boundary perturbation. Moreover, zero energy conductance spectra exhibits sharp transition

from 4e2/h to 2e2/h when h̃ > µ i.e., , as we move into the polarized regime. Such transition

between quantized conductances at zero bias demonstrates an efficient spin dependent coupling to a

single MZM from the pair of MZMs, using a ferromagnetic lead.

In chapter 6, we have explored the effect of the tilted and anisotropic Dirac cones on the RKKY

exchange interaction in the bulk of an 8-Pmmn borophene. We observe that the tilting of the Dirac

cones, for a specific orientation of the impurities, manifests itself with a significant reduction in the

RKKY exchange interaction oscillation frequency. This feature can be an indirect signature of the

degree of tilting present in tilted and anisotropic Dirac cone. We present our analytical expressions

for the susceptibility, in terms of Meijer G-function, which is directly proportional to the exchange

interaction strength. We consider two special cases: when two magnetic impurities are located per-

pendicular to the tilt axis (x axis) and along the tilt axis (y axis). In the former case, interference

between the Dirac cones does not contribute to the Friedel oscillations and the period of oscillation

increases with the tilting parameter. In contrast, for the impurities being along the tilt axis, interfer-

ence among the Dirac cones plays the dominant role in determining the period of oscillation while

the tilting parameter exhibits negligible contribution. Moreover, due to the opposite orientation of

the tilting of the Dirac cones at the inequivalent Dirac points, the effect of tilting originating from

each Dirac point on RKKY exchange interaction nullifies each other when the impurities reside along

the tilt axis. However, the amplitude of oscillation decreases with the tilting parameter because of

the lowering of the Fermi level. We also separate out the effect of simple anisotropy (vx 6= vy) on

RKKY exchange interaction in absence of tilting (vt = 0) and show that such anisotropy in the Fermi

surface exhibits negligible effect on the response function in case of borophene. For arbitrarily placed

magnetic impurities in the x-y plane (neither along nor perpendicular to the tilt axis), we evaluate our

results numerically and show rapid oscillations (beating pattern) in susceptibility due to the interfer-
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ence between the two Dirac cones and subdominant effects arising from the tilt parameter.

Spin transport without concomitant charge counterpart is a topic of extensive research due to its

own merit of having applications in spintronics. Adiabatic spin pumping, in this direction, has been

proposed in normal metal-ferromagnet (NF) junction [244] using magnetization dynamics. Such

novel spin pumping can be interesting to investigate in silicene and explore the connection between

topological phase transition and possibility of pure spin pumping. One can also naively expect to

have moderate spin pumping in ferromagnet-insulator-superconductor-insulator-ferromagnet (FISIF)

junction of silicene in the polarised regime of the ferromagnetic region.

On the other hand, sureshot distinction of Majorana mode from other possible trivial zero mode

is still lacking. Various heterostructure composed of the non-centrosymmetric superconductor which

host Majorana modes in the topological phase can be studied to explore the possibility of the desired

distinction.
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APPENDIX A

Appendix for Chapter 1

A.1 Derivation of low energy effective Hamiltonian of Silicene

We begin with the lattice Hamiltonian given by Eq.(1.8):

H = −t
∑
<i,j>α

ĉ†iα ĉjα + i
λSO

3
√

3

∑
<<i,j>>αβ

νij ĉ
†
iασ

z
αβ ĉjβ

−i2
3
λR

∑
<<i,j>>αβ

µij ĉ
†
iα(~σ × d̂ij)

z

αβ ĉjβ

+el
∑
iα

ζiE
i
z ĉ
†
iα ĉiα − µ

∑
iα

ĉ†iα ĉiα . (A.1)

We now proceed to show the derivation of the low energy effective Hamiltonian. The lattice

structure is shown below

Figure A.1: Nearest neighbor and next nearest neighbor coupling are shown in silicene lattice.
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We write down the nearest-neighbor (n.n) vectors δA,Bi and next nearest neighbour (n.n.n) vectors

ai for both sublattices. Note that, the n.n.n vectors are the same for both sublattices while the n.n

vectors are different. The n.n are :

δA1 = (0,
a√
3
, az), δ

A
2 = (

a

2
,− a√

3
, az), δ

A
3 = (−a

2
,− a√

3
, az),

δB1 = (0,− a√
3
,−az), δA2 = (−a

2
,
a√
3
,−az), δA3 = (

a

2
,
a√
3
,−az),

and the n.n.n vectors are:

a1 = (a, 0, 0), a2 =
a

2
(1,
√

3, 0), a3 =
a

2
(−1,

√
3, 0),

a4 = (−a, 0, 0), a5 =
a

2
(−1,−

√
3, 0), a6 =

a

2
(1,−

√
3, 0). (A.2)

The az component is small compared to ax, ay and hence neglected in the following calculation for

simplicity. We also do not consider Rashba term in the Hamiltonian anymore, as λR is small com-

pared to λSO and do not alter the physics near the Dirac points.

We now write the Hamiltonian in momentum space by Fourier-transforming the real space Hamil-

tonian and obtain

H = −t
∑

k,δA,α

A†kαBkαe
−ikδA − t

∑
k,δB,α

B†kαAkαe
−ikδB

+
iλSO

3
√

3

∑
α,β,a,k

(νAa e
−ikaA†kασ

z
αβAkβ + (νBa )e−ikaB†kασ

z
αβBkβ) (A.3)

+ (elEz − µ)
∑
kσ

A†kσAkσ − (elEz + µ)
∑
kσ

B†kσBkσ (A.4)

where we have used:

νAa1
= νAa3

= νAa5
= −νAa2

= −νAa4
= −νAa6

= 1,

νBa1
= νBa3

= νBa5
= −νBa2

= −νBa4
= −νBa6

= −1. (A.5)

123



The summations over the n.n and n.n.n vectors can be obtained as :

γk ≡∑
δA
e−ikδ

A
=
(∑
δB
e−ikδ

B
)∗

= e−iaky/
√

3 + 2eiaky/2
√

3 cos(akx
2

),

θk ≡
∑
a

νAa e
−ika = −∑

a

νBa e
−ika = −2i[sin(akx)− 2 sin(akx/2) cos(

√
3aky/2)]. (A.6)

We are interested in understanding the physics near the Dirac points in the BZ which are K± =

(±4π
3a
, 0). Therefore, we expand the Hamiltonian for small k around these Dirac points by chosing

kx → kx ± 4π
3a

and ky → ky. For small kx and ky, we can assume kxa � 1, kya � 1 and only take

terms first order in k. Hence we obtain :

γK±+k =

√
3a

2
(±kx + iky), θK±+k = ∓3

√
3i. (A.7)

We now define the Fermi velocity vF =
√

3a
2

and choose our basis as ψ = {Akα, Bkα}T . We can

write the Hamiltonian in this basis as :

Hs
η =

 ∆η
α ~vF(ηkx + iky)

~vF(ηkx − iky) −∆η
α

 , (A.8)

This corresponds to Eq.(1.12) in the main text.
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APPENDIX B

Appendix for Chapter 2

B.1 Full Rashba Hamiltonian in the helical basis

In this appendix, we show that the Hamiltonian for the Rashba spin-orbit coupled nanowire in prox-

imity to a s-wave superconductor, H0 + Hsc given by Eq. (2.18), when written in the helical basis,

gives rise to an effective p-wave like pairing. We closely follow the seminal paper by Alicea [245]

and Cayao thesis [246].

ψ(k) = φ−(k)ψ−(k) + φ+(k)ψ+(k) , (B.1)

where ψ± annihilates states in the upper/lower bands and φ± are the respective normalized wavefunc-

tions which are written as column vector having two spinor components

φ+(k) =

φ↑+(k)

φ↓+(k)

 =
1√
2

+γk

1

 , (B.2)

and

φ−(k) =

φ↑−(k)

φ↓−(k)

 =
1√
2

−γk
1

 , (B.3)

where γk = (iαk+B)√
B2+α2k2

. Writing ψ(k) as a two component column vector in the form
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φ+(k) =

φ↑+(k)

φ↓+(k)

 (B.4)

The Eq.(B.1) now becomes

ψ↑(k) =
1√
2

[−γkψ−(k) + γkψ+(k)] ,

ψ↓(k) =
1√
2

[ψ−(k) + ψ+(k)] ,

(B.5)

We now proceed to rewrite the terms of the full Hamiltonian given by Eq.(2.18) in the helical

basis given in Eq. (B.5).

Kinetic term

The kinetic Hamiltonian is given by,

Hkin =

∫
dx
[
ψ†↑(x) [ξk]ψ↑ + ψ†↓(x) [ξk]ψ↓

]
, (B.6)

where ξk = ~2k2/2m− µ . Using Eqs. (B.5), we write each of the terms in the new basis

ψ†↑ψ↑ =
1

2

[
ψ†−(k)ψ−(k) + ψ†+(k)ψ+(k)− ψ†+(k)ψ−(k)− ψ†−(k)ψ+(k)

]
,

ψ†↓ψ↓ =
1

2

[
ψ†−(k)ψ−(k) + ψ†+(k)ψ+(k) + ψ†+(k)ψ−(k) + ψ†−(k)ψ+(k)

]
,

(B.7)

We have used : γ†kγk = |γk|2 = 1. Now Eq. (B.6) becomes,

Hkin =

∫
dx ξk

[
ψ†−(k)ψ−(k) + ψ†+(k)ψ+(k)

]
. (B.8)

Spin-orbit term

The spin-orbit coupling term in the Hamiltonian Eq. (2.19) is

Hsoc = (iαk)

∫
dx
[
ψ†↑ ψ↓ − ψ†↓ ψ↑

]
. (B.9)
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Using Eqs. (B.5), we can write

ψ†↑ψ↓ =
1

2

[
−γ†kψ†−(k)ψ−(k) + γ†kψ

†
+(k)ψ−(k)− γ†kψ†−(k)ψ+(k) + γ†kψ

†
+(k)ψ+(k)

]
ψ†↓ψ↑ =

1

2

[
−γkψ†−(k)ψ−(k)− γkψ†+(k)ψ−(k) + γkψ

†
−(k)ψ+(k) + γkψ

†
+(k)ψ+(k)

]
.

(B.10)

Therefore, we obtain

HSO =
iαk

2

∫
dx
[
(γk − γ†k)ψ†−(k)ψ−(k) + (k)(γ†k − γk)ψ†+ψ+(k)

+ (γ†k + γk)ψ
†
+(k)ψ−(k)− (γ†k + γk)ψ

†
−(k)ψ+(k)

]
.

(B.11)

Zeeman term

The Zeeman term in the Hamiltonian given by Eq. (2.19) reads,

Hz = B

∫
dx
[
ψ†↑ ψ↓ + ψ†↓ ψ↑

]
. (B.12)

Using Eq. (B.10), we get

HZ =
B

2

∫
dx
[
− (γk + γ†k)ψ

†
−(k)ψ−(k) + (γ†k + γk)ψ

†
+(k)ψ+(k)

+ (γ†k − γk)ψ†+(k)ψ−(k)− (k)(γ†k − γk)ψ†−ψ+(k)
]
.

(B.13)

Kinetic, spin-orbit and Zeeman terms

We now add up all the three terms we have obtained so far and write

Hkin +HSO +HZ =

∫
dx

2

{
ψ†−(k)

[
iαk(γk − γ†k)−B(γk + γ†k) + 2ξk

]
ψ−(k)

+ ψ†+(k)
[
iαk(γ†k − γk) +B(γ†k + γk) + 2ξk

]
ψ+(k)

+ ψ†+(k)
[
iαk(γ†k + γk) +B(γ†k − γk)

]
ψ−(k)

+ ψ†−(k)
[
− iαk(γ†k + γk)−B(γ†k − γk)

]
ψ+(k)

}
.

(B.14)
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Using the form of γk = B+iαk√
B2+α2k2

, we get the following relations:

γ†k − γk =
−2iαk√
B2 + α2k2

γ†k + γk =
2B√

B2 + α2k2
,

(B.15)

Using these relations, we can write

Hkin +HSO +HZ =

∫
dx
[
ε+(k)ψ†+(k)ψ+(k) + ε−(k)ψ†−(k)ψ−(k)

]
, (B.16)

where εk,± = ξ ±
√
B2 + α2k2

Superconducting term

The superconducting term in the Hamiltonian given by Eq. (2.20) is

Hsc =
1

2

∫
dx
{

∆
[
ψ†↑(k)ψ†↓(−k)− ψ†↓(−k)ψ†↑(k)

]
+ h.c

}
, (B.17)

We have used fermion anti-commutation relations

{
ψ†↑(k), ψ†↓(−k)

}
= 0 . (B.18)

Now, the elements ofHsc in the helical basis becomes

ψ†↑(k)ψ†↓(−k) =
1

2

[
− γ†kψ†−(k)ψ†−(−k) + γ†kψ

†
+(k)ψ†−(−k)− γ†kψ†−(k)ψ†+(−k) + γ†kψ

†
+(k)ψ†+(−k)

]
,

ψ†↓(−k)ψ†↑(k) =
1

2

[
− γ†kψ†−(−k)ψ†−(k)− γ†kψ†+(−k)ψ†−(k) + γ†kψ

†
−(−k)ψ†+(k) + γ†kψ

†
+(−k)ψ†+(k)

]
(B.19)

Hence we can write

ψ†↑(k)ψ†↓(−k)− ψ†↓(−k)ψ†↑(k) =

1

2

[
− γ†kψ†−(k)ψ†−(−k) + γ†kψ

†
+(k)ψ†−(−k)− γ†kψ†−(k)ψ†+(−k) + γ†kψ

†
+(k)ψ†+(−k)

+ γ†kψ
†
−(−k)ψ†−(k) + γ†kψ

†
+(−k)ψ†−(k)− γ†kψ†−(−k)ψ†+(k)− γ†kψ†+(−k)ψ†+(k)

]
.

(B.20)
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There are four combinations of the operators ψ± and in the following we separate them out and

evaluate them individualy as :

[
ψ†↑(k)ψ†↓(−k)− ψ†↓(−k)ψ†↑(k)

]
−−

=
1

2

[
− γ†kψ†−(k)ψ†−(−k) + γ†kψ

†
−(−k)ψ†−(k)

]
= γ†k

1

2

[
− ψ†−(k)ψ†−(−k) + γ†−kψ

†
−(k)ψ†−(−k)

]
=

1

2

[
− γ†k + γ†−k

]
ψ†−(k)ψ†−(−k) ,

(B.21)

where in the second term of the second equality, we have substituted k by −k. Similarly we find the

other terms as

[
ψ†↑(k)ψ†↓(−k)− ψ†↓(−k)ψ†↑(k)

]
++

==
1

2

[
γ†k − γ†−k

]
ψ†+(k)ψ†+(−k) (B.22)

and

[
ψ†↑(k)ψ†↓(−k)− ψ†↓(−k)ψ†↑(k)

]
+−,−+

=
1

2

[
γ†kψ

†
+(k)ψ†−(−k) + γ†kψ

†
+(−k)ψ†−(k)− γ†kψ†−(k)ψ†+(−k)− γ†kψ†−(−k)ψ†+(k)

]
,

=
1

2

[
2ψ†+(k)ψ†−(−k)γ†k + 2ψ†+(−k)ψ†−(k)γ†k

]
=
[
γ†k + γ†−k

]
ψ†+(k)ψ†−(−k) ,

(B.23)

We have used fermionic anti-commutation relation, {ψ†α, ψ†β} = 0 in the second equality, and in in

the second term of the fourth equality we have substituted k by −k as before.

We now obtain the following combination of γk :

−γ†k + γ†−k =
2iαk√

B2 + α2k2
, (B.24)

γ†k − γ†−k = − 2iαk√
B2 + α2k2

, (B.25)

γ†k + γ†−k =
2B√

B2 + α2k2
. (B.26)
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and thus the superconducting term becomes,

Hsc =
1

2

∫
dx

{[
iαk∆√
B2 + α2k2

]
ψ†−(k)ψ†−(−k)

+

[ −iαk∆√
B2 + α2k2

]
ψ†+(k)ψ†+(−k)

+

[
2B∆√

B2 + α2k2

]
ψ†+(k)ψ†−(−k) + h.c

}
.

(B.27)

So, both intra and interband pairings have appeared in Eq. (B.27). If we negelect the upper band

and only consider the lower one, we get back the superconducting Hamiltonian given in Eq.(2.24)

after Fourier transforming the first term of Eq. (B.27).
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APPENDIX C

Appendix for Chapter 3

C.1 Derivation of the thermal conductance formula

Here we present the outline of the derivation of the formula for tehrmal conductance (electronic

contribution only). We closely follow the well-known BTK formalism[61], to derive the same in

N-I-S junction. Tunneling conductance in NS junction is given by :

dI

dV
= G =

G0

2

∫ π
2

−π
2

(1 + |r(eV )|2 − |rA(eV )|2 ) cos(α)dα (C.1)

where r(eV ) and rA(eV ) denote the reflection and Andreev reflection probability respectively, at

bias V applied in the normal side of the junction. α is the angle of incidence from normal side and

the factor 1
2

arises due to the integration over the angular range from −π
2

to π
2
. G0 is the ballistic

conductance of metallic system, and N(eV ) denotes the number of available channels for a sample.

G0 is constant for small bias voltage i.e., eV � EF where EF is the Fermi energy. This BTK formula

is derived at zero temperature.

We now consider the following situation : normal side is kept at temperature TN = T − δT/2

and the superconducting side is kept at temperature TS = T + δT/2. We assume, in our formulation,

δT, V � T , where T is the average temperature in the junction. Therefore, a small thermal gradient
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δT is applied across the junction for thermal transport to take place.

Energy distribution of electrons that propagate from the normal metal to the NS interface is the

equilibrium Fermi distribution shifted by eV : f→(E) = f(E − eV ). Electrons moving from the

NS interface to the normal metal side, are produced in three processes : (i) electrons are reflected

from the interface with probability B; (ii) holes are Andreev reflected as electrons with probability A;

and (iii) quasiparticles coming from the superconductor are transmitted into the normal side with the

probability (1− A− B). The energy distribution of the electrons moving into the normal metal side

from NS interface is, thus, given by

f←(E) = A(E)[1− f→(−E)] +B(E)f→(E) + [1− A(E)−B(E)]f(E) (C.2)

The heat current that flows from the normal metal into the superconductor (in one transverse

mode) can be writen as

jNS =

∫
dE(E − eV )(f→ − f←)

=

∫ ∞
−∞

dE [1−B(E)]fN(E − eV )− A(E)fN(E + eV )− [1− A(E)−B(E)]fS(E)

We expand the Fermi distribution, for small bias voltage and small temperature gradient, in the

following way

fN = fTN (E − eV ) = fT (E)− eV ∂f

∂E
+
EδT

2T

∂f

∂T
(C.3)

fS = fTS(E) = fT (E)− EδT

2T

∂f

∂T
(C.4)

We now substitute Eq.(C.4) in Eq. (C.3) and obtain :

jNS =

∫ ∞
−∞

dE(E − eV )[1− A(E)−B(E)]f(E) (C.5)

Taking derivative with respect to temperature, we find the normalized thermal conductance across the

junction as

132



κ =

∫ ∞
−∞

dE[1− A(E)−B(E)]
E2

4T 2 cosh( E
2kBT

)2
(C.6)

where, we have used

f =
1

1 + e−βE

∂f

∂T
=

eβE

(1 + eβE)2

E

kBT 2
(C.7)

We have approximated E − eV ≈ E in the final expression to obtain κ as no external bias has been

applied. Now, the incoming electrons can have any angle of incidence and hence we have to average

over the angle of incident electrons : α. We also have to keep in mind that the hole reflection angle

αh can be different from αe and finally we obtain the required formula :

κ =

∫ ∞
0

∫ π
2

−π
2

dEdαe

[
1−Re −Rh

cos(αh)

cos(αe)

]

cos(αe)

[
E2

4T 2 cosh2( E
2T

)

]
. (C.8)

This is the formula used in the main text [see Eq.(4.13)]. Note that, the temperature gradient δT is

small and thus we expect that phonos will not be excited in the system. Therefore, we consider only

the electronic contribution to the thermal conductance (TC).
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APPENDIX D

Appendix for Chapter 4

D.1 Derivation of the formula for pumped charge

An electron pump converts a periodic modulation of its characteristics, in absence of any bias voltage,

into a time-independent electric current which is termed as ‘pump current’. Some example of these

characteristics are the charge on the device, the location of a scatterer, the magnetic flux threading

the sample, gate voltage etc. Brouwer in his seminal paper[140], considered a parametric electron

pump through an open system via a scattering approach. He formulated the pumped current in terms

of the scattering matrix S(χ1, χ2) where χ1 and χ2 are pumping parameters. We closely follow the

derivation of pumped current given by Brouwer in Ref. [140].

The system under consideration is shown schematically in Fig. which consists of a quantum dot

being coupled to two electron reservoirs (left and right) by ballistic point contacts. The two electron

reservoirs are kept at the same chemical potential so that there is no net current from left reservoir to

the right. There are two external parameters χ1(t) and χ2(t) of the dot which are varied periodically

as shown in Fig. D.1a. Büttiker, Thomas, and Prêtre [139] calculated the emissivity that can be trans-

ferred by the infinitesimal change of two parameters.

For a small and slow harmonic variation of the parameter, χ(t) = χ0 + δχωe
iωt, the charge δQ(l)
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(a)

(b)

Figure D.1: (a) Schematic of an electron pump device. (b) Area enclosed by the periodic modulation
of the parameters χ1(t) and χ2(t). This figure is adapted from Ref.??.

entering the cavity through contact l (l = 1, 2) can be written as

δQ(l, ω) = e
dn(l)

dχ
δχω , (D.1)

dn(l)

dχ
=

1

2π

∑
β

∑
α∈l

Im
∂Sαβ
∂χ

S∗αβ. (D.2)

Sαβ are the scattering matrix elements where the index α is summed from 1 to N for the contact

1 and from N + 1 to 2N for the contact 2. The quantity dn(l)/dχ is called the emissivity into contact

l [139]. The Eq. (D.2) is valid to first order in the frequency ω. After Fourier transformation we can

obtain :

δQ(l, t) = e
dn(l)

dχ
δχ(t). (D.3)

For a simultaneous small variation of two parameters χ1 and χ2, the emitted charge δQ(l, t) through

contact l reads (l = 1, 2)

δQ(l, t) = e
dn(l)

dχ1

δχ1(t) + e
dn(l)

dχ2

δχ2(t). (D.4)

Now, we find the emmitted charge when both the parameters χ1 and χ2 are varied by finite amount.

The total charge emitted through contact l in one period τ = 2π/ω is found to be [140] :

Q(l, τ) = e

∫ τ

0

dt

(
dn(l)

dχ1

dχ1

dt
+
dn(l)

dχ2

dχ2

dt

)
. (D.5)

where dn(l)
dχl

are given by Eq.(D.2). In one full period, the pair of parameters χ1(t) and χ2(t) forms a

closed path in the (χ1, χ2) parameter space, as shown in Fig. D.1(b). This formula does not give quan-
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tized pumped charge as Coulomb blockade is lifted and the system is well coupled with the reservoirs.

S-matrix for the NISIN structure of silicene as given in Eq. (4.16) reads

S =



|re|eiγe |rA|eiγh |te|eiδe |tA|eiδh

|rA|eiγh |re|eiγe |tA|eiδh |te|eiδe

|te|eiδe |tA|eiδh |re|eiγe |rA|eiγh

|tA|eiδh |te|eiδe |rA|eiγh |re|eiγe


, (D.6)

Using Eq.(D.5), we can write

Q(τ) =
e

2π

∫ τ

0

dt
∑
i=1,2

[dχi
dt

∑
β

∑
α∈l

Im
∂Sαβ
∂χi

S∗αβ (D.7)

We use the following relation : Im(∂S11

∂χ1
S∗11) = ∂t

∂χ1
Im(∂S11

∂t
S∗11) and obtain

Q(τ) =
e

π

∫ τ

0

dt
[
{Im(

∂S11

∂t
S∗11) + Im(

∂S12

∂t
S∗12)

+Im(
∂S13

∂t
S∗13) + Im(

∂S14

∂t
S∗14)}

We now substitute the elements of the S matrix given by Eq.(D.6) in Eq.(D.8) and obtain

Q =
e

2π

∫ T

0

dt[ − |rA|2(γ̇h cosαhL + γ̇e cosαeL)

− |tA|2(δ̇h cosαhR + γ̇e cosαeL)

+ |te|2(δ̇e cosαeR − γ̇e cosαeL)

+ γ̇e cosαeL] , (D.8)

This is our working formula to obtain pumped charge. For normal incidence i.e., αeL = 0, the last

term of Eq.(D.8) consisting of the time derivative of reflection phase (γe) is called “topological part

while the rest is termed as “dissipative part”. The last term is “topological” becuase this term does not

depend on scattering process amplitudes and for αeL = 0, the possible change in this term γ̇e in a full

period can be integer multiples of 2π. On the other hand, the rest of the terms in Eq.(4.17) are together

termed as “dissipative” because their cumulative contribution prevents the perfect quantization of
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pumped charge. This formula indicates that quantization of pumped charge is still possible in open

quantum system.
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APPENDIX E

Appendix for Chapter 5

E.1 Anti-resonance in tunneling conductance of Majorana nanowire

We here demonstrate the some analytical understanding in support of the anti-resonance shown in

Fig.3 of Chapter 5. The analytical expressions of the scattering amplitudes are far from being simple.

To get the clear picture of the anti-resonance of SFAR, we separated the spin space and particle-hole

space to obtain the mixing in spin space and particle-hole space separately.

We write the wave functions in the most simple form :
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ψe↑ = |e↑ >=



a

b

0

0


, ψe↓ = |e↓ >=



−b

a

0

0


,

ψh↑ = |h↑ >=



0

0

a

b


, ψh↓ = |h↓ >=



0

0

−b

a



ψeS↑ = |e1 >=



α1

0

0

β1


, ψeS↓ = |e2 >=



0

α2

β2

0


,

ψhS↑ = |h1 >=



−β2

0

0

α2


, ψhS↓ = |h2 >=



0

−β1

α1

0


where a = cos(ψ

2
), b = sin(ψ

2
)

α1 = u↑(θ) =

√
1
2

+

√
ε2−(∆2

p+∆2
s+2∆p∆s cos θ)

2ε

α2 = u↓(θ) =

√
1
2

+

√
ε2−(∆2

p+∆2
s−2∆p∆s cos θ)

2ε
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β1 = η∗↑(θ)v↑(θ)

= ∆s+∆p e−iθ√
∆2
s+∆2

p+2∆p∆s cos θ

√
1
2
−
√
ε2−(∆2

p+∆2
s+2∆p∆s cos θ)

2ε

β2 = η∗↓(θ)v↓(θ)

= ∆s−∆p e−iθ√
∆2
s+∆2

p−2∆p∆s cos θ

√
1
2
−
√
ε2−(∆2

p+∆2
s−2∆p∆s cos θ)

2ε

Now we write this Bogoliubov transformation coefficients in terms of mixing angles θ1 and θ2 in

the particle-hole space in the following manner:

α1 = cos θ1, α2 = cos θ2

β1 = sin θ1, β2 = sin θ2

we have intentionally neglected any phase factor in β which do not affect the scattering amplitudes in

our calculation.

The Nambu basis is chosen as (u↑, u↓, v↑, v↓)T . So the 4-component spinors in F region can be

written as a direct product of two 2-component spinor in particle-hole space and spin space. Hence,

|e↑ >= a|1 > +b|2 > , |e↓ >= −b|1 > +a|2 >

|h↑ >= a|3 > +b|4 > , |h↓ >= −b|3 > +a|4 >

|e1 >= α1|1 > +β1|4 > , |e2 >= α2|2 > +β2|3 >

|h1 >= −β2|1 > +α2|4 > , |h2 >= −β1|2 > +α1|3 >

Here, |1 >, |2 >, |3 >, |4 > are the basis vectors in 4 dimension. It is important to note that

“a” and “b” are the mixing in the spin space while “α1,2” and “β1,2” are the mixing in the particle

hole space. So there are totally 3 angles: ψ inside ferromagnet, θ1 andθ2 inside superconductor. The

remainder work is to find all the four scattering amplitudes in terms of these angles which will help

in understanding the novel anti-resonance.
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It is worth mentioning that spinors inside superconductor can not be written as a direct product of

two 2-component spinors because of particle-hole symmetry. Following Burset et al [203] we change

the basis from (u↑, u↓, v↑, v↓)T to (u↑, v↓, u↓, v↑)T which makes it possible to write the wavefunc-

tions as a direct product of two 2-component spinors.

Now, using continuity of wavefunction i.e ψF (x = 0) = ψS(x = 0) we get,

|e↑ > +r↑↑|e↑ > +r↑↓|e↓ > +rA↑↑|h↑ > +rA↑↓|h↓ >

= c1|e1 > +c2|e2 > +d1|h1 > +d2|h2 > (E.1)

Multiplying Eq. (E.1) by < 1|, < 2|, < 3|, < 4| from left, we obtain 4 equations:

(1 + r↑↑)(a× 1)− r↑↓(b× 1) = c1(1× α1)− d1(1× β2)

(1 + r↑↑)(b× 1) + r↑↓(a× 1) = c2(1× α2)− d2(1× β1)

rA↑↑(a× 1)− rA↑↓(b× 1) = c2(1× β2) + d2(1× α1)

rA↑↑(b× 1) + rA↑↓(a× 1) = c1(1× β1) + d1(1× α2)

From the continuity of the derivatives i.e dψS
dx
|x=0 − dψF

dx
|x=0 = kFZψF (x = 0), we obtain

i(qec1|e1 > +qec2|e2 > −qhd1|h1 > −qhd2|h2 >)

− i(ke↑(1− r↑↑)|e↑ > −ke↓r↑↓|e↓ > +kh↑r
A
↑↑|h↑ > +kh↓r

A
↑↓|h↓ >)

= kFZ{(1 + r↑↑)|e↑ > +r↑↓|e↓ > +rA↑↑|h↑ > +rA↑↓|h↓ >} (E.2)

Similarly as above, multiplying Eq. (E.2) by < 1|, < 2|, < 3|, < 4| from left, we obtain 4

equations:

(with Z = 0 i.e no barrier case for simplicity)
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qec1(1× α1) + qhd1(1× β2) = ke↑(1− r↑↑)(a× 1) + ke↓r↑↓(b× 1)

qec2(1× α2) + qhd2(1× β1) = ke↑(1− r↑↑)(b× 1)− ke↓r↑↓(a× 1)

qec2(1× β2)− qhd2(1× α1) = kh↑r
A
↑↑(a× 1)− kh↓rA↑↓(b× 1)

qec1(1× β1)− qhd1(1× α2) = kh↑r
A
↑↑(b× 1) + kh↓r

A
↑↓(a× 1)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

ϵ

Figure E.1: “LHS” of Eq. (E.3) is drawn as a function of ε. Parameters used are: h̃ = 1, µ = 0, ∆p =
1.0, ∆s = 0.0, U = 15, ψ = π/2, θ = 0

From these 8 equations, we obtain the following form of SFAR:

rA↑↑ = {16ke↑(qe + qh){(ke↓ + qe)(kh↓ + qh) cos θ1 cos θ2

+(kh↓ − qe)(ke↓ − qh) sin θ1 sin θ2} sinψ sin (θ1 + θ2)}/D

where denominator D is a large exression. Vanishing of rA↑↑ gives,

tan θ1 tan θ2 +
(ke↓ + qe)(kh↓ + qh)

(kh↓ − qe)(ke↓ − qh)
= 0 (E.3)

Behaviour of “LHS” of Eq. (E.3) as a function of ε is shown in Fig. E.1 where we see that for the

particular energy ε ' 0.47, Eq. (E.3) is satisfied and rA↑↑ vanishes.
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APPENDIX F

Appendix for Chapter 6

F.1 Some Useful Integrations

∫ ∞
−∞

dx
eix√
α2 − x2

= −2iK0(−iα)∫ ∞
−∞

dx
xeix√
α2 − x2

= −2iαK1(−iα)∫ ∞
0

dzf(
z

z0
)z2J0(z)Y0(z) =

1

16∫ ∞
0

dzf(
z

z0
)z2J1(z)Y1(z) = − 3

16∫ y

0

dzz2J0(z)Y0(z) = − y

2
√
π
M(y)∫ y

0

dzz2J1(z)Y1(z) = − y

2
√
π
M̃(y)

(F.1)

where, f( z
z0

)→ 1 as z
z0
→∞.

M(y) = G 2,0
1,3

(
3
2

1,1,1,− 1
2

∣∣∣ y2
)

and M̃(y) = G 2,1
2,4

(
1
2
, 3
2

1,2,0,− 1
2

∣∣∣ y2
)

are the Meijer G-function.
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[25] Igor Žutić, Jaroslav Fabian, and S Das Sarma. Spintronics: Fundamentals and applications.

Rev. Mod. Phys., 76(2):323, 2004.

[26] Chetan Nayak, Steven H Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma. Non-

abelian anyons and topological quantum computation. Rev.Mod. Phys., 80(3):1083, 2008.

[27] Kyozaburo Takeda and Kenji Shiraishi. Theoretical possibility of stage corrugation in si and

ge analogs of graphite. Phys. Rev. B, 50(20):14916, 1994.

[28] Gian G Guzmán-Verri and LC Lew Yan Voon. Electronic structure of silicon-based nanostruc-

tures. Phys. Rev. B, 76(7):075131, 2007.

[29] C. C. Liu, W. Feng, and Y. Yao. Quantum spin hall effect in silicene and two-dimensional

germanium. Phys. Rev. Lett., 107:076802, August 2011.

146



[30] Motohiko Ezawa. A topological insulator and helical zero mode in silicene under an inhomo-

geneous electric field. New J. Phys., 14(3):033003, 2012.

[31] Motohiko Ezawa. Photoinduced topological phase transition and a single dirac-cone state in

silicene. Phys. Rev. Lett., 110(2):026603, 2013.

[32] Emil Prodan. Robustness of the spin-chern number. Phys. Rev. B, 80(12):125327, 2009.

[33] DN Sheng, ZY Weng, L Sheng, and FDM Haldane. Quantum spin-hall effect and topologically

invariant chern numbers. Phys. Rev. Lett., 97(3):036808, 2006.

[34] L Sheng, DN Sheng, CS Ting, and FDM Haldane. Nondissipative spin hall effect via quantized

edge transport. Phys. Rev. Lett., 95(13):136602, 2005.

[35] Fan Zhang, Allan H MacDonald, and Eugene J Mele. Valley chern numbers and bound-

ary modes in gapped bilayer graphene. Proceedings of the National Academy of Sciences,

110(26):10546–10551, 2013.

[36] Motohiko Ezawa. Topological kirchhoff law and bulk-edge correspondence for valley chern

and spin-valley chern numbers. Phys. Rev. B, 88(16):161406, 2013.

[37] Antoine Fleurence, Rainer Friedlein, Taisuke Ozaki, Hiroyuki Kawai, Ying Wang, and Yukiko

Yamada-Takamura. Experimental evidence for epitaxial silicene on diboride thin films. Phys.

Rev. Lett., 108(24):245501, 2012.

[38] Evgeni S Penev, Somnath Bhowmick, Arta Sadrzadeh, and Boris I Yakobson. Polymorphism

of two-dimensional boron. Nano Lett., 12(5):2441–2445, 2012.

[39] Alejandro Lopez-Bezanilla and Peter B Littlewood. Electronic properties of 8- pmmn

borophene. Phys. Rev. B, 93(24):241405, 2016.

[40] Xiang-Feng Zhou, Xiao Dong, Artem R Oganov, Qiang Zhu, Yongjun Tian, and Hui-Tian

Wang. Semimetallic two-dimensional boron allotrope with massless dirac fermions. Phys.

Rev. Lett., 112(8):085502, 2014.

[41] AD Zabolotskiy and Yu E Lozovik. Strain-induced pseudomagnetic field in the dirac semimetal

borophene. Phys. Rev. B, 94(16):165403, 2016.

147



[42] MO Goerbig, J-N Fuchs, G Montambaux, and F Piéchon. Tilted anisotropic dirac cones in
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