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Summary

One of the important element in gauge-gravity duality is the interpretation of the extra ra-

dial direction in the bulk as the inverse energy scale of the boundary field theory. The ra-

dial evolution of the bulk fields share many features with the renormalization group (RG)

flow of the boundary field theory. One of the beautiful fact about the RG flow is that one

can always define a c-function which monotonically decreases along the RG flow from

the UV fixed point to the IR fixed point and becomes equal to the central charges of the

corresponding CFT at the fixed points. Based on the holographic dictionary people have

constructed the c-function using the dual metric and proved the monotonicity property us-

ing the null energy condition. Here we have constructed such an holographic c-function

using the thermodynamics of the causal horizon. We take an empty AdS5 black brane

geometry and construct the c−function as the Bekenstein-Hawking entropy density of the
spacelike slices of the future bulk light cone of a boundary point. The UV value of the

c−function is aUV and then it decreases monotonically to zero at the curvature singularity.

In field theory, logarithmic entanglement negativity is an entanglement measure for mixed

states. In two dimensions we have shown that the negativity has the same UV and IR limit

as our holographic c− function. So it could be potential candidate for our c−function. We

have also discussed another important application of the holography in the thesis. It is

known that the linearized Einstein’s equation around the pure AdS can be obtained from

the constraint ΔS = Δ 〈H〉, known as the first law of entanglement, on the boundary CFT.

The corresponding dual state in the boundary CFT is the vacuum state around which the

linear perturbation is taken. We revisit this question, in the context of AdS3/CFT2, with

the state of the boundary CFT2 as a thermal state. The corresponding dual geometry is

a planar BTZ black hole. By considering the linearized perturbation around this black

brane we show that Einstein’s equation follows from the first law of entanglement. In the

last part of the thesis we study the stability properties of the extremal black holes. We

also study the leading order late time decay tails of massless scalar perturbations outside

x



an extreme Reissner-Nordström black hole. We first consider initial perturbations with

generic regular behaviour across the horizon on characteristic surfaces and present decay

results at timelike infinity, near future null infinity, and near the future horizon. Along

the way, using the inversion symmetry of the extreme Reissner-Nordström spacetime, we

relate the higher multipole Aretakis and Newman-Penrose constants for a massless scalar

in this background.

xi



Chapter 1

Introduction

1.1 Black Hole Thermodynamics: A Hint of Holography

The idea of holography in quantum theory of gravity has emerged from the physics of

black hole thermodynamics. Bekenstein [1] in 1972 proposed that a black hole has an en-

tropy proportional to its horizon area. Later Hawking [3] showed that the proportionality

constant is actually 1
4
in Planck units. The fact that entropy of a black hole is proportional

to its horizon area implies that when gravitational interaction is considered there is a rad-

ical reduction in the degrees of freedom of the system. To understand this circle of ideas

better, let us consider a quantum system in a three dimensional space with volume V and

boundary area A. Let us discretize the space with the Planck length (lP) as the smallest

length scale. For concreteness let us assume that the quantum system under consideration

consists of spin 1/2 particles with two degrees of freedom at each lattice site with lattice

spacing lP. The total number of independent quantum states Ω, the system can have, is

2V/l3P . Thus the entropy is given by the Boltzman formula, S = lnΩ = V
l3P
ln 21. Thus

we see that the entropy, which is a count of the degrees of freedom of a local quantum

system, grows with the volume. But from the spherical entropy bound [5], we know that,

1We have set the Boltzman constant kB = 1
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when gravitational interaction is taken into account, the entropy of a system in a region

with boundary area A, must satisfy the inequality S ≤ A
4
. The bound is saturated when the

region is completely occupied by a black hole. Thus as soon as we incorporate gravity

into the picture we are in a conflict. The conflict can be solved in the following way. Most

of the states of the quantum system in the region with volume V will have the energy

so large that they will eventually form a black hole giving an entropy proportional to its

horizon area. Thus there was an over-counting of the degrees of freedom for our lattice

system. Hence from the above analysis we learnt that whenever gravity is strong the total

number of degrees of freedom of a system in a region with a boundary is always propor-

tional to the boundary area not the volume of the region. Based on these observations ’t

Hooft [6] and Susskind [5] proposed that quantum theory gravity should be holographic,

i.e., the physics of a gravitational system in some region can be described by a theory

living on the boundary of that region with no more than one degree of freedom per Planck

area. The Anti-de Sitter-space/Conformal Field Theory (AdS/CFT) [109] correspondence

is the concrete realization of this holographic principle.

1.2 AdS/CFT Correspondence

Let us start by describing Anti de-Sitter (AdS) space-time geometrically. AdS spacetime

is a maximally symmetric solution of Einstein’s equation with negative cosmological con-

stant. The isometry group of AdSd+1 is S O(2, d) which is also the symmetry group of any

d-dimensional conformal field theory. In the Poincare coordinates the metric of AdSd+1

can be written as,

ds2 = L2
AdS

−dt2 +
∑d−1

i=1 dx2i + dz2

z2
, 0 < z < ∞ (1.1)

where LAdS is the AdS-radius. The (conformal) boundary of AdS is located at z = 0 and

the boundary coordinates are given by (t, xi). The coordinate z is also known as the radial

2



coordinate of AdS. In the Poincare coordinates the induced metric on the boundary z = 0

is given by the Minkowski metric ημν = diag(− + +......+). Let us now state the AdS/CFT

correspondence.

According to the AdS/CFT correspondence or the gauge - gravity duality, any quantum

theory of gravity on AdSd+1 is holographically dual to a d-dimensional conformal quan-

tum field theory (CFT) living on the (conformal) boundary of AdSd+1. One of the most

well studied examples of AdS/CFT correspondence is between the N = 4 super Yang-

Mills theory in four dimensions and type-IIB string theory on AdS5 × S 5 with Ramond-

Ramond self-dual five form flux. In the ’t hooft large-Nc and large λ = g2
Y MNc limit 2 ,

the correspondence simplifies drastically and the bulk dual theory is effectively given by

type-IIB supergravity. This is called the (Einstein) gravity limit and all the results of this

thesis are obtained in this limit. Now we would like to emphasise that the existence of the

gravity limit does not necessarily mean that the dual CFT is a gauge theory. For example,

in the AdS3/CFT2 correspondence the bulk dual theory reduces to classical gravity when

the central charge of the dual CFT2 is large
3. In the rest of the thesis we will assume that

in the boundary field theory such a limit has already been taken so that the bulk theory is

given by classical Einstein gravity.

1.3 Holographic Renormalization Group Flow

An exact equivalence between two theories implies that one should be able to extract the

information of the one theory from the other. A precise recipe was given to compute the

correlation functions of the large N conformal field theory from the classical supergravity

on AdS 5 × S 5 [110]. One of the interesting features of the gauge/gravity duality is the

ultraviolet/infrared (UV/IR) connection. In the quantum field theory the correlation func-

2Here Nc is the rank of the gauge group S U(Nc) and λ = g2
Y MNc is the ’t hooft coupling.

3The central charge of the dual theory is given by c =
3LAdS

2lpl
where lpl is the Planck length in the bulk.

Therefore c >> 1 implies the classical limit LAdS >> lpl.
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tions suffer from UV divergences. The UV/IR connection of the gauge/gravity duality

means that the UV divergences of the field theory are related to IR divergences of the

gravity theory. On the gravity side the IR divergences arise due to the infinite volume of

the AdS space-time. One of the nice things about AdS gravity is that the IR divergences

can be regulated by adding counterterms to the bulk action which are all localized near the

boundary of AdS and also local in the boundary direction. Hence the IR counterterms can

also be thought of as the countertems in the dual field theory which regulate the UV diver-

gence. The method of holographic renormalization is how to renormalize the field theory

correlation functions by dealing with the IR divergences of the gravity theory. Although

the full correlation function depends on the dynamics of the boundary field theory, but

renormalization of the UV divergences does not depend on the IR physics. In the gravity

side the corresponding statement is that only near boundary analysis is enough to control

the IR divergences.

In order to have an intuitive picture of the holographic RG flow it will be useful to have

the Wilsonian picture in mind. In the Wilsonian picture one starts with a Lagrangian

whose parameters are defined at some high energy scale Λ which is assumed to be much

larger than the energy scale and masses of our interest. Now as we integrate over the high

energy degrees of freedom, new interactions appear which renormalize the bare values of

the parameters in the Lagrangian. This gives rise to a flow in the space of all possible

couplings and this is known as the renormalization group flow. Conformal field theories

appear as the fixed points of the renormalization group flow. Now suppose we start from a

CFT defined at the UV and deform it by adding various operators to the Lagrangian. The

operators whose coupling constants grow as we move towards the IR are called relevant.

If the coupling constant decreases then the operator is called irrelevant and the rest of the

operators are called marginal. Now suppose some of the operators in the UV are relevant

and as a result we reach a fixed point in the IR described by a new CFT. In this context,

one of the most beautiful results of quantum field theory is the Zamolodchikov c-theorem

in (1 + 1) dimensions [7]. This theorem states that along the RG flow one can define
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a function which decreases monotonically from the UV to the IR and whose values at

the fixed points are given by the central charges of the UV and the IR CFTs. Since then

there are many attempts to extend the c-theorem in higher dimensions. This resulted in

F-theorem [13] in three dimensions and a-theorem [9] in four dimensions.

1.3.1 Gravity Description of Field Theory RG Flow

The holographic description of the RG flow of boundary field theories has been exten-

sively studied in the literature [20–25, 29–32]. In this subsection we will briefly review

the basic ideas [33]. Let us take a d + 1-dimensional Einstein’s gravity coupled to a

bulk scalar field φ. The potential V(φ) is chosen to have one or more critical points, i.e.,

∂V(φ)

∂φ

∣∣∣
φ=φi

crit.

= 0. At each critical point the solution of our model becomes AdSd+1 geom-

etry of radius Li
crit

with constant scalar field φi
crit.

. Away from the critical points we need

more general solutions with d−dimensional Poincare isometry as the dual field theory has

Poincare symmetry in d−dimensions. The most general ansatz is

ds2 = e2A(r)ημνdxμdxν + dr2

φ = φ(r) (1.2)

This is known as domain wall solution [33]. r represents the radial coordinate and xμ’s

are the d transverse coordinates. By manipulating Einstein’s equation one can get the

following equation for the scale factor A(r):

A′′(r) =
1

d − 1

(
T t

t − T r
r
)
= − 1

d − 1

(
φ′(r)

)2
(1.3)

where ′ denotes derivative with respect to r. Thus for our system we have A′′(r) ≤ 0. At

each critical point φ becomes trivial and we have A(r) = r
Li
crit

+a0. The integration constant

a0 can be absorbed by rescaling xμ. If we change the radial coordinate as z = Li
crit

e
− r

Li
crit we

get equation (1.1). Thus AdS d+1 geometries are the critical solutions of our gravity-scalar

5



field system.

Near the maximum of the potential the mass of the scalar fluctuation satisfies m2 < 0.

From the AdS/CFT correspondence we know that the scalar fluctuation in the bulk is dual

to a scalar operator of the boundary CFT with scaling dimension Δ = 1
2

(
d +

√
d2 + 4m2

)
.

Now from the boundary asymptotics (r → ∞ behavior) of the scalar fluctuation and

using the AdS/CFT dictionary one can show that there is a term in the boundary QFT

Lagrangian which is proportional to
∫

dd�x OΔ(�x) φ̄, where φ̄ is the boundary value of the

domain wall scalar field. Thus the boundary CFT is deformed by a scalar operator of

dimension Δ with coupling φ̄. If 0 > m2 > −d2
4
, then d > Δ > d

2
, and the boundary

field theory is described by a relevant deformation of UV CFT. Near the minimum of

the potential we have m2 > 0 so Δ > d. This critical point can be reached for large

negative values of r and the field theory is described by an irrelavent deformation of IR

CFT. Thus we see that domain wall geometries interpolate between two critical points,

i.e., they approach the boundary region of an AdS space with scale LUV as r → ∞ and

the deep interior of another AdS with scale LIR as r → −∞. Such geometries are dual

to field theories with RG flow with the AdSUV and AdSIR being dual to the UV and IR

CFTs. Now one can define [24]

a(r) ≡ πd/2

Γ(d/2) (lPA′(r))d−1
(1.4)

a′(r) = − (d − 1)πd/2

Γ(d/2)ld−1
P A′(r)d

A′′(r) ≥ 0 (1.5)

where in the second line we have used equation (1.3). In the more general case when

gravity is coupled to more general matter fields using the null energy energy condition

T t
t − T r

r ≤ 0 one can show that A′′(r) ≤ 0. Thus for the domain wall geometry interpo-

lating between two AdS spaces with radius of curvatures LUV and LIR, a monotonically

decreasing c−function a(r) can be constructed holographically [20–25] using the metric

components. For even d, aUV and aIR indeed match with the A-type trace anomaly of the

dual CFT stress tensor in a curved background.
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There is an alternative way to construct the holographic c−function using the causal hori-
zon of the domain wall geometry [27, 28]. A causal horizon is the boundary of the

past(future) of any timelike curve of infinite proper length in the future(past) direction.

The second law of causal horizon thermodynamics states that the area of (past)future

causal horizon does not (increase)decrease [34, 35]. Using this monotonicity property

one can construct a holographic c−function [27, 28] as the Bekenstein-Hawking entropy

density associated with the causal horizon. This concept also generalizes the notion of the

Zamolodchikov’s c−theorem. This will be discussed in great detail in the present thesis.

1.4 Information Theory and Holography

Quantum information theory has been playing a very important role in understanding the

fundamental issues of quantum field theory as well as quantum gravity. The different mea-

sures of the quantum entanglement, e.g. entanglement entropy, relative entropy etc, have

seen wide range of applications in both of these fields. For example the entanglement en-

tropy has been used extensively to prove the higher dimensional c−theorem [19, 38]. Re-

cently they have also found importance in the context of holographic duality. For example

the holographic formula for entanglement entropy proposed by Ryu and Takayanagi [39],

has been used to prove the holographic c-theorem [24]. Thus the holographic c−function
constructed from the metric components of the dual geometry has an interpretation in

terms of the entanglement entropy of a subsystem of the boundary field theory. We will

show in this thesis that when the holographic CFT is in a thermal state the holographic

c-function [26] that we have constructed using the causal horizon thermodynamics can

not be interpreted in terms of the entanglement entropy of the boundary field theory. Our

holographic c−function has the finite UV limit proportional to the central charge of the

UV CFT, then it monotonically decreases and goes to 0 in the deep IR [26]. The entan-

glement entropy of the boundary field theory has the finite UV limit which matches with

our holographic c−function but it does not go to 0 in the IR limit [38]. The reason be-

7



ing that when the temperature of the field theory is high, entanglement entropy mixes the

quantum entanglement with the classical counterpart [38]. Thus it fails to capture the pure

quantum correlation between the two subsystems at finite temperature. Being unable to

identify our holographic c−function with the entanglement entropy of the boundary field

theory we will move to another entanglement measure known as the logarithmic entan-

glement negativity which is used to measure the entanglement between two subsystems in

a mixed state [43–45,51–55]. Let us consider a two dimensional CFT living on an infinite

line at finite temperature T = β−1. The entanglement negativity for a single interval of

length L is given by [52]

E =
c
2
ln

[ β
πa

sinh
(πL
β

)]
− πcL

2β
+ f (e−

2πL
β ) + 2 ln c 1

2
(1.6)

where a is the short distance cutoff, c is the central charge of the CFT and c 1
2
is a constant.

f (x) is a universal scaling function which depends on the full operator content of the

CFT such that f (1) = 0 and f (0) = constant. Now one can define the renormalized

entanglement negativity as, ER = L d
dL

∣∣∣
β
E. Using (1.6) we can see that the UV(β >> L)

and IR(a << β << L) limits of ER are given by c
2
and 0 respectively. In four dimensions

we expect the same things to happen in the UV limit as the structure of the UV divergences

of the negativity is the same as that of entanglement entropy in the same dimension [54].

In the IR limit, we can expect the negativity to go to 0 given that there is a finite correlation

length of order β. Thus if it satisfies the monotonicity condition it could be a potential

candidate for our holographic c−function. We discuss these in detail in section 2.4.1.

There is another important application of the entanglement entropy in the context of

AdS/CFT correspondence. For a linearized perturbation around a fixed state of a quantum

field theory the entanglement entropy, S of a spatial region satisfies the relation

ΔS = Δ 〈H〉 (1.7)

8



known as the first law of entanglement [112–114], where H is the modular Hamiltonian

associated with that region. For a holographic CFT, the entanglement entropy (S ) associ-

ated with a spatial region (A) can be computed using the Ryu-Takayanagi formula [39],

S A =
Length(γA)

4GN
, (1.8)

where γA is a space-like geodesic in the bulk homologous to A, and GN is Newton’s

constant. When the spacetime is not static, one needs to use its covariant generalization

[40]. The modular Hamiltonian (HA) is defined in terms of the reduced density matrix

σA associated with a spatial region A as, σA = e−βH

Tr(e−βH)
, where β is the inverse of the

temperature. Modular Hamiltonian in general is a non-local operator and thus hard to

compute. However there are certain special cases where it can be expressed as the integral

of some local operator. For example, let us consider the ground state of a CFT living in a

d+1 dimensional Minkowski spacetime. In this case, the modular Hamiltonian associated

with a ball-shaped region A of radius R can be written as [129]

HA = 2π

∫
A

dd x
R2 − r2

2R
T 00(x) (1.9)

where T 00(x) is the time-time component of the stress energy tensor and r is the radial

coordinate from the center of the ball shaped region A. The boundary stress tensor

can be found from the asymptotic form of the asymptotically AdS (AAdS) bulk met-

ric [130–132]. Now if we perturb the initial state of a holographic CFT and the dual

geometry corresponding to the perturbed state is an AAdS geometry then both sides of

(1.7) can be computed using the holographic dictionary. Considering perturbations around

pure AdS and using the holographic tool it was shown [112–114] that to linear order in

the perturbation the first law of entanglement is satisfied. In [112, 113] it was also shown

that Einstein’s equation linearized around pure AdS do follow from the first law of en-

tanglement. In chapter 3 of this thesis we will extend this result. We take the thermal

state of a holographic CFT as the fixed reference state in 1 + 1 dimensions and perturb it

9



infinitesimally. We will show that for metric components of the dual geometry satisfying

the linearized Einstein’s equations, the first law of entanglement holds. Then we go the

other direction, i.e, we show that the first law of entanglement fixes the metric uniquely if

we demand that it holds in all frames of reference [115].

1.5 Extremal Black Holes

Black holes are the solutions of the Einstein’s equation of general relativity with the grav-

itational attraction so large that even light can’t escape from it. Black holes are character-

ized by their macroscopic parameters like mass (M), charge (Q) and angular momentum

(J). Classically a black hole is surrounded by an event horizon, nothing can go to the

outside of the evnt horizon. Quantum mechanically this picture gets modified and it was

shown that black holes do radiate with a definite temperature and entropy [3, 4]. Let us

consider a non-rotating black hole with mass M and charge Q. To get a physically sen-

sible definition of temperature and entropy for this black hole we must have M2 ≥ Q2.

This bound is known as the BPS bound. When this bound is saturated, i.e., M = |Q| the
temperature of the black hole vanishes and thus emits no Hawking radiation. These black

holes are called extremal black holes. For rotating extremal black holes with angular mo-

mentum J we also have M =
√|J|. Extremal black holes play an important role in the

literature of string theory, e.g., supersymmetric extremal black holes have been used to

give a microscopic explanation [145] of the Bekenstein-Hawking entropy formula. Thus

it is important to ask whether they are stable classically.

1.6 Are Extremal Black Holes Stable?

The fact that supersymmetric extremal black holes saturate the BPS bound and minimizes

the energy does not imply their classical stability. For example, the classical stability of

10



Minkowski spacetime does not follow from the positive energy theorem. Thus to study the

stability problem of extremal black holes one first needs to understand the problem of dy-

namics for Einstein’s equation which is formulated as Cauchy problem. Formulating the

Cauchy problem is not an easy task in general theory of relativity as the notion of global

hyperbolicity is not clear. Choquet-Bruhat [146] and Choquet-Bruhat-Geroch [147] first

formulated the well-posed Cauchy problem for the vacuum Einstein’s equation. Using the

language provided by them one can then study the dynamical stability problem for any

spacetime, i.e. the solution of Einstein’s equation. We are interested in the stability anal-

ysis of extremal black holes. So the question that we are going to ask is whether a small

perturbation changes the parameters of an extremal black hole by a small amount such that

the modified parameters still belong to the same family of black holes. All the extremal

black holes against all kind of perturbations are unstable in this sense [160,164–166]. We

will only study the scalar perturbation on an extremal Reissner-Nordström (RN) black

hole [163] in this thesis.

An Outline of the Thesis

In chapter 2 of the thesis we will study various aspects of the holographic RG flow in

the holographic set up and relate it to the quantum entanglement in the boundary theory.

We take an empty AdS5 black brane and construct a c-function using the causal horizon

thermodynamics of the black brane and generalized the notion of the c-theorem. We

will discuss the renormalized entanglement negativity (REN), which is a measure for the

entanglement of the mixed state of the boundary CFT and show that it shares similar

properties with our generalized c-function in the UV and IR limit.

In chapter 3 We will discuss using the holographic tool how the quantum entanglement

in the boundary theory imposes constraint on the bulk geometry. we take the thermal

state of a holographic CFT in 1 + 1 dimensions as the fixed reference state and perturb

11



it infinitesimally. The change in the entanglement entropy and the modular Hamiltonian

of a spatial region will satisfy the first law of entanglement. Based on the holographic

dictionary we then compute each side of this relation using metric components of the

dual geometry. We show that for metric components of the dual geometry satisfying the

linearized Einstein’s equations, the first law of entanglement holds. Then we go the other

direction, i.e, we show that the first law of entanglement fixes the metric uniquely if we

demand that it holds in all frames of reference. We end this chapter by discussing possible

future directions.

In chapter 4 of the thesis we will study the stability analysis of extremal black holes. First

we will present a detail introduction on late time perturbations of black holes and Aretakis

instability for the extremal black holes. Then we reproduce and extend some of the pre-

vious results on late time perturbations of extreme RN black hole, including the exact co-

efficient, using rather simple Fourier methods. Along the way, using the Couch-Torrence

symmetry, we also relate higher multipole Aretakis and Newman-Penrose constants for a

massless scalar in an extreme RN black hole background. We conclude this chapter with

a summary and possible future directions.

12



Chapter 2

Generalized Holographic c-Theorem

and Entanglement Negativity

2.1 Introduction

In AdS-CFT black brane is a thermal state of the boundary conformal field theory living

on the Minkowski space-time. This is not a relevant deformation of the CFT Hamiltonian

and there is no renormalization group flow in the ordinary sense. Therefore the question

of the existence of a c-function, in the sense of Zamolodchikov [7–9], does not naturally

arise in this situation. Moreover Zamolodchikov c-function is constant at a fixed point and

independent of the state of the CFT. The purpose of this chapter is to point out that AdS-

CFT duality and the thermodynamic nature of classical gravity allows us to introduce a

generalized notion of c-function, at least for large-N theories with classical gravity dual.

This generalized c-function cannot be interpreted as an off-shell central charge. Rather it

can be interpreted as a measure of quantum entanglement that exists at different energy

scales in the given state. We will construct this c-function holographically when the CFT

is in thermal state and the gravity dual is an empty black brane geometry. We focus on

four dimensional field theories only. Our choice of the thermal state is motivated by the
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fact that the gravity dual has a curvature singularity and the Lorentz invariance is broken

everywhere except near the UV boundary of AdS. So it can teach us some lessons about

RG-flow interpretation of more general geometries.

Throughout this chapter we will assume that the bulk theory is Einstein gravity

coupled minimally to a set of matter fields.

2.2 Holographic View

The holographic picture is based on the fact that the gravity dual of c-theorem is the

second law of causal horizon thermodynamics in asymptotically AdS spaces [27, 28]. In

a nutshell, second law for causal horizons say that if we consider the future bulk light-

cone of a boundary point then the expansion of the null geodesic generators of the light-

cone is negative [34, 35]. Now one can assign Bekenstein-Hawking entropy to the causal

horizon. The fact that the expansion is negative then implies that as we move away from

the boundary the entropy density decreases monotonically. This is essentially holographic

c-theorem [20–25] if we specialize to a domain-wall geometry. The bulk future light-

cone interpolates between the UV-AdS and the IR-AdS and the monotonically decreasing

Bekenstein-Hawking entropy density gives the holographic c-function [27, 28].

If we focus on domain-wall geometry then the second law has the interpretation of holo-

graphic c-theorem. But what about other asymptotically AdS (AAdS) geometries ? Sec-

ond law of causal horizon thermodynamics holds in any AAdS geometry and in fact holo-

graphic RG [23] applies to any such setup. It has been argued that the holographic RG in

the bulk is dual to the Wilsonian RG in the boundary [29–32]. So is it possible to associate

a notion of irreversibility to any classical AAdS geometry ? It seems that the existence

of second law for classical gravity allows us to do precisely this thing. In the field theory

side its interpretation will require us to generalize the concept of Zamolodchikov-type

c-function. We will have almost nothing to say on it in this chapter.
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To gain some experience with such generalized c-functions we will work out a reasonably

simple but interesting example of empty black brane geometry in AdS5
1. It has curvature

singularity hidden behind the black brane horizon and the geometry is not Lorentz invari-

ant except near the AdS5 boundary. The c-function we construct is just the Bekenstein-

Hawking entropy density of a causal horizon in the black brane geometry [27, 28]. The

causal horizon originates at some point of the AdS boundary and terminates at the curva-

ture singularity. Nothing depends on the choice of the boundary point where the causal

horizon originates because of space-time translation invariance. Second law guarantees

that our function monotonically decreases as we move away from the boundary along the

null geodesic generators of the causal horizon. We will see that the c-function monotoni-

cally decreases from aUV to zero at the curvature singularity.

2.3 Calculation and Results

The causal horizon is just the future bulk light-cone of a boundary point Figure 2.1. We

take the boundary point, p, to have coordinates, xμ = z = 0.

The metric of the five-dimensional black brane is,

ds2 =
1

z2
[
− (1 − z4)dt2 +

dz2

1 − z4
+ d�x2

]
(2.1)

Here we have set the AdS radius to 1. Our job is to construct the ingoing null geodesics

in this geometry which originate from the boundary point p.

Let us define the ingoing Eddington-Finkelstein coordinate as, v = t + z∗ where z∗ =

1
2
tan−1 z + 1

4
log

(
1+z
1−z

)
, so that the metric takes the form

1Construction of holographic c-function by viewing the black brane background as RG flow, was also

considered in [63–65]. c-function for attractor flows were considered in [86].
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Figure 2.1: Penrose diagram of the maximally extended AdS5 black brane [67]. We have

shown only the radial null geodesic coming out from the boundary point p. Other non-
radial null geodesics from p are not shown here. In this chapter we do not need the setup

of the two sided black brane. We have drawn it for the sake of completeness.

ds2 =
1

z2
[
− (1 − z4)dv2 − 2dvdz + d�x2

]
(2.2)

There is no singularity at the horizon, z = 1, and so we can follow the null geodesics all

the way to the curvature singularity at, z = ∞. Since we want to find out the null geodesics

we can as well work with the conformally transformed metric 2 given by,

ds̃2 = −(1 − z4)dv2 − 2dvdz + d�x2 (2.3)

Let λ denote the affine parameter along a null geodesic in the conformally transformed

2Null geodesics are invariant under conformal transformation of the metric. In other words if g and g′
are two conformally related metrics then the null geodesics of g and g′ are the same. What changes under

the conformal transformation is the parametrization of a specific null geodesic. For example if xμ(α) is an
affinely parametrized null geodesic in metric g, then xμ(α) is also a null geodesic for the conformally related

metric g′, but α is not necessarily an affine parameter in the new metric g′. For a detailed derivation and

explanation of this fact please see [89].
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metric ds̃2. 3

So we have,

g̃AB
dxA

dλ
dxB

dλ
= 0 (2.4)

We also have four conserved charges corresponding to the translations in v and the xi’s.

−(1 − z4)
dv
dλ

= −E +
dz
dλ
,

dxi

dλ
= −pi,

(2.5)

where i = 1, 2, 3. E and �p are the conserved charges along a null geodesic. Here we are

assuming that the affine parameter λ increases as we move away from the boundary at

z = 0. We will be working with the future bulk light-cone of the boundary point p and so

with our convention for the affine parameter, dt
dλ ≥ 0. So E ≥ 0.

Now using (2.4) and (2.5) we get,

( dz
dλ

)2
= E2 − p2(1 − z4) (2.6)

So we can see that the null geodesics which can reach the boundary point must satisfy the

constraint, E2 − p2 ≥ 0. This constraint together with the constraint E ≥ 0, allow us to

parametrize the conserved charges as,

3We could not solve the equation for z(λ) by using the affine parameter corresponding to the original

geometry. But this does not affect the physics. This is just a change in scheme. It will of course be better to

solve this in terms of the original affine parameter.
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E = α cosh η

pi = α sinh η n̂i
(2.7)

where α > 0, 0 ≤ η ≤ ∞ and n̂ is a unit vector in R3. Now it is easy to see that α is

redundant because it can be absorbed by an affine reparametrization, λ → αλ. Therefore

we will set α = 1.

So the equation for z simplifies to,

dz
dλ

=

√
1 + z4 sinh4 η (2.8)

We have chosen the positive root because our convention is dz
dλ ≥ 0. So we can write,

λ =

∫ z

0

dz′√
1 + z′4 sinh2 η

(2.9)

where the boundary condition, z(0) = 0 has been imposed.

The solution of this equation is, 4

z2(λ) =
1

sinh η

1 − cn(2λ
√
sinh η, 1/

√
2)

1 + cn(2λ
√
sinh η, 1/

√
2)

(2.10)

where cn is one of the Jacobian elliptic functions. Its properties are well studied although

a closed form expression in terms of elementary functions does not exist.

Given the solution for z(λ) we can in principle determine v(λ) from (2.5), but we were

unable to do so in any convenient way. In any case the complete set of solutions can be

4We are using the convention of Gradshteyn and Ryzhik. In Mathematica, 1√
2
in the argument of cn

should be replaced by 1
2
.
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written as,

z(λ, η) =

√√
1

sinh η

1 − cn(2λ
√
sinh η, 1/

√
2)

1 + cn(2λ
√
sinh η, 1/

√
2)

v(λ, η) =
∫ λ

0

dλ′F(λ′, η)

xi(λ, η, n̂i) = −λ sinh η n̂i

(2.11)

where we have defined,

F(λ, η) = sinh2 η
(1 + cn)2 cosh η − √

2
√
1 + cn2(1 + cn)

(1 + cn)2 sinh2 η − (1 − cn)2
(2.12)

and cn ≡ cn(2λ
√
sinh η, 1√

2
). We have imposed boundary conditions such that, z(0, η) =

v(0, η) = xi(0, η, n̂i) = 0 for all values of η and n̂i. This corresponds to the fact that the

null geodesics are all coming out of the point p with coordinates xi = v = z = 0. Note

that v = t at the boundary z = 0.

For any fixed values of η and ni, the above equation (2.11) reduces to the equation of the

null geodesic parametrised by the affine parameter λ and coming out of the fixed boundary

point p(xi = t = z = 0). As we vary η and ni, we scan over all the geodesics coming out of

the point p. All these null geodesics form a null hyper surface whose parametric equation

is given by (2.11). The intrinsic coordinates on the null hyper surface are (λ, η, n̂i). (η, n̂i)

are comoving coordinates along a null geodesic parametrised by λ. This null hyper surface

is the sought for bulk future light-cone or the past causal horizon of the point p.

Our next job is to find out the induced metric on the null-hypersurface (2.11). To find out

the induced metric we have to use the original black brane metric (2.1). Using this we

get,
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ds2ind =
1

z2
[
− (1 − z4)

(∂v
∂η

)2 − 2
∂v
∂η

∂z
∂η

+ λ2 cosh2 η
]
dη2 +

1

z2
λ2 sinh2 ηdΩ2

2 (2.13)

where dΩ2
2 is the metric of a unit two-sphere parametrised by n̂i. The induced metric is

degenerate as it should be because (2.11) is a null-hypersurface. (2.13) is the metric on a

λ = constant space-like slice of the causal horizon (2.11), parametrised by the coordinates

(η, n̂i).

The volume form can be written as,

dVind = c(λ, η) dVH3 (2.14)

where we have defined,

c(λ, η) =
λ2

z3

√[
− (1 − z4)

(∂v
∂η

)2 − 2
∂v
∂η

∂z
∂η

+ λ2 cosh2 η
]

(2.15)

dVH3 is the volume form on a unit three dimensional hyperbolic space given by,

ds2H3 = dη2 + sinh2 ηdΩ2
2

dVH3 = sinh2 η sin θdηdθdφ
(2.16)

where we have parametrised n̂i as (sin θ cos φ, sin θ sin φ, cos θ). The fact that c is a func-

tion only of λ and η is a consequence of the rotational symmetry of the metric. In the

more standard domain-wall geometry c is function only of λ because of the Lorentz in-

variance of the metric. In the black brane geometry Lorentz invariance is broken down to

the spatial rotation group and so the η dependence is non-trivial.

Now second law for causal horizons is the statement that,
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∂

∂λ

∣∣∣∣
η
c(λ, η) ≤ 0 (2.17)

Here we have used the fact that dVH3 is a comoving volume element and η is a comoving

coordinate i.e, η is constant along a null geodesic generator of the causal horizon.

The Bekenstein-Hawking entropy density associated to the volume element dVind is,

dS BH =
dVind

4GN
=

c(λ, η)
4GN

dVH3 (2.18)

We can put in the AdS radius L by replacing dVind → L3dVind. This gives,

dS BH =
dVind

4GN
=

L3

4GN
c(λ, η)dVH3 (2.19)

So our c-function is,

cη(λ) =
L3

4GN
c(λ, η) (2.20)

We get a family of c-functions parametrised by η Figure 2.2. We check in the appendix

using perturbation theory for small λ that c(λ, η) → 1 as λ → 0 for all values of η i.e,

c(0, η) = 1. It will be true for any AAdS geometry, not just the black brane. Note that

λ = 0 is the AdS boundary and λ increases as we move away from the boundary along

the null geodesics. So for any fixed value of η the c-function cη(λ) starts at the UV value

aUV and decreases monotonically as a result of the second law (2.17). It turns out that

in the case of the black brane the c-function becomes zero at the curvature singularity

for all values of η. So for black brane in five dimensions, the c-function monotonically

decreases from the UV central charge to zero at the curvature singularity. It does not show

any characteristic behavior while crossing the black brane horizon.
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Figure 2.2: We have plotted the c-function for three different values of η. All of them

start at the UV value aUV(= cUV) and monotonically decreases to zero at the curvature

singularity. The values of λ at the singularity for different values of η can be obtained

from (2.9) by setting z = ∞. Of course from a physical point of view going to the

singularity with GR is meaningless. But if we forget about any stringy physics for the

time being, then as a classical theory GR holds everywhere except at the singularity.

We would like to emphasise that the fact that we have obtained a family of c-functions

parametrized by η, instead of just one, is no cause for concern. c-function is not unique.

For example in two dimensions one can construct the standard Zamolodchikov c-function

[7] and also the entanglement entropy c-function due to Casini and Huerta [9]. It is known

that they are not the same, but they both monotonically interpolate between the UV and

the IR central charges. In fact if we can construct one c-function then we can construct an

infinite family all of which contain the same physical information [8].

The plot of the c-function in Figure 2.2 shows that it is not stationary at the singularity.

This is not a problem because strictly speaking the function is not analytic there. We do

not know how to extend the function beyond the singularity. But the fact that it is zero at

the singularity shows that the flow comes to an end at the singularity. The c-function is

an element of area of the causal horizon and so it is positive semidefinite by construction.

So the flow saturates the lower bound at the singularity. This is similar to what sometimes
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happens in case of the c-function constructed out of entanglement entropy. For example

in three dimensions, the entropic c-function for a massive scalar is not stationary at the

UV fixed point [58]. This is attributed to the fact that a scalar field with negative mass

squared is pathological and the entropic c-function knows about that [62]. Also another is

that in our case the geometry is not Lorentz-invariant anywhere except near the boundary

and so our standard intuition about c-function may need some modification.

Before we conclude we would like to mention an important point. In Einstein gravity

one cannot really distinguish between the a and c central charges. In order to do that

one has to include higher-derivative terms in the bulk gravity action. In the presence of

higher derivative terms instead of Bekenstein-Hawking entropy we have to use the entropy

expression which satisfies the second law in the bulk and reduces to the Wald entropy

when evaluated on a Killing horizon [89]. If we do this we will recover the a-charge at

the asymptotic UV boundary as was shown in [28]. That means the a-function will start

decreasing from aUV . The important point is the fate of this a-charge in the deep IR i.e,

when the causal horizon reaches the singularity. We expect it to go to zero because the

thermal state has a finite correlation length even in the presence of the higher-derivative

terms, but proving this in general seems to be a complicated thing.

2.4 Towards A Physical Interpretation

Empty black brane in AdS is dual to a thermal state of the boundary CFT [36]. This is

not a relevant deformation of the CFT Hamiltonian and there is no renormalization group

flow in the ordinary sense. So it is unlikely that the holographic c-function is an off-shell

central charge. To make further progress, it will be useful to take note of the fact that a

thermal state is effectively massive with a gap set by the temperature. There is a finite

correlation length of the order of inverse temperature. The IR behavior of the holographic

c-function that we have constructed shows the presence of this effective mass gap. It
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is monotonically decreasing from the central charge of the UV-CFT, aUV , to zero at the

curvature singularity which is in the deep IR and space-time ends there. Therefore the

causal-horizon c-function faithfully quantifies the amount of pure quantum correlation or

the effective number of "quantum degrees of freedom" that exists at different scales in the

thermal state.

Can this be related to renormalized entanglement entropy in the boundary theory ? First

of all space-like slices of the causal horizon are not in general extremal surfaces in the

bulk [39]. In the field theory side, suppose we consider a ball in R3 of radius R. This is

our subsystem for which we want to compute the renormalized entanglement entropy [38]

when the field theory is in the thermal state. Since the the theory is scale invariant the

renormalized entanglement entropy will have the functional form S REE(RT ), where T is

the temperature. It is known that as T → 0, S REE → aUV [38]. This matches with the

behavior of our c-function in the same limit. In the opposite limit of T → ∞ on the other

hand the renormalized entanglement entropy S REE is nonzero and dominated by thermal

entropy of the system [38]. This does not match with the behavior of the c-function. This

is not surprising because entanglement entropy is not an entanglement measure in a mixed

state. In the high temperature limit it is contaminated by classical correlations and fails

to capture the quantum part, which should go to zero. On the contrary the behavior of the

causal horizon c-function shows that it is sensitive only to quantum correlations. Is there

a candidate for such a quantity in the field theory ?

2.4.1 Is Finite Temperature Entanglement Negativity A Generalized

c-function ?

As we have discussed entanglement entropy at finite temperature is not a candidate for

this generalized c-function because it is not an entanglement measure in a mixed state.

One such measure which can be calculated in field theory is entanglement negativity

[43–45, 51–55]. Entanglement negativity was studied from a holographic point of view
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in [53], but to the best of our knowledge a geometric prescription of computing this in

gravity does not exist so far.

Entanglement negativity at finite temperature in a two dimensional CFT was computed

in [52] 5 . They calculated this for a single interval of length L when the total system lives

on an infinite line and the temperature is T = β−1. In this case the answer is given by,

E =
c
2
ln

[ β
πa

sinh
(πL
β

)]
− πcL

2β
+ f (e−

2πL
β ) + 2 ln c 1

2
(2.21)

where a is the short distance cutoff, c is the central charge of the CFT and c 1
2
is a constant.

f (x) is a universal scaling function which depends on the full operator content of the CFT

such that f (1) = 0 and f (0) =constant. Given this we can calculate its value in the UV

and the IR. UV is the region where β >> L and we get,

EUV =
c
2
ln

L
a
+ 2 ln c 1

2
(2.22)

which is the correct zero temperature result. Similarly in the IR, a << β << L and we

get,

EIR =
c
2
ln

β

2πa
+ f (0) + 2 ln c 1

2
(2.23)

So in the IR this becomes a non-universal constant independent of the length L of the

subsystem [52]. The second term in (2.21) is very important in the high temperature limit

because it cancels the contribution to the negativity which is extensive in L. This is the

principal difference from entanglement entropy which is useful for us. Now if we define

a renormalized negativity, ER, just like renormalized entanglement entropy [18, 38], as,

5See also [51].
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ER = L
d

dL

∣∣∣∣
β
E (2.24)

then we get,

ER(UV) =
c
2

ER(IR) = 0

(2.25)

ER is a UV-finite quantity. Therefore we can see that the renormalized entanglement

negativity at least satisfies the asymptotic conditions, i.e, in the UV it is given by the

central charge of the theory and in the IR this is zero. The reason that it is going to zero

in the IR or in the high temperature limit is that it is an entanglement measure and at very

high temperature quantum entanglement goes to zero because the system should crossover

to a classical one [52] . This is a non-trivial constraint. Anything that is sensitive to

classical correlations may fail to satisfy the IR-condition. Therefore the question is does

it satisfy the monotonicity condition, i.e,

T
d

dT

∣∣∣∣
L
ER ≤ 0 ? (2.26)

If this condition is satisfied then it is a generalized c-function. In four dimensions we ex-

pect the same thing to happen in the UV. We have to compute the logarithmic negativity

for a ball of radius R when the field theory is in a thermal state with temperature T . The

structure of the UV divergences of the negativity is the same as that of entanglement en-

tropy in the same dimension [54]. So if we apply the Liu-Mezei operator then we will get

a UV finite quantity. The main question is what happens in the IR. Does the renormalized

negativity go to zero ? This will be the case if negativity becomes independent of the size

of the ball in the high temperature limit. This is a reasonable thing to expect given that
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there is a finite correlation length of order β. So we expect the same thing to happen but

we cannot prove this right now. It will be fascinating to prove the monotonicity of the

negativity at least in two dimensions.

In the large c limit we expect some simplifications [56]. In fact negativity in the large

c limit was considered in [55]. Their calculation was for the vacuum sector of the CFT.

It will be fascinating to extend the calculation to the thermal state using technology of

[55, 56].

Before we end this section we would like to emphasize that we are not saying that the

causal horizon entropy density is computing some entanglement measure in a thermal

state. That may turn out to be the case but our calculation does not show that. What we

can infer from this is the existence of such a monotonic function in field theory which is

most likely an entanglement measure. In two dimensional CFT we have shown a potential

candidate for this. Causal horizon entropy density represents that quantity in the bulk but

perhaps in a different choice of scheme. So numerically they can be different but they will

have the same physical content just like in more conventional c-theorem.

2.4.2 Black Hole Singularity From Loss Of quantum correlation

There is a different aspect to this problem. Our results can be thought of as a realization

of the paradigm that space-time is built out of entanglement [69], but in a different set-

ting. In the IR there is no quantum correlation or entanglement because of the effective

mass gap in the thermal state. In the bulk our holographic c-function is monotonically

decreasing and nonzero everywhere except at the curvature singularity. The curvature

singularity is the end of space-time and represents the extreme IR of the dual field theory.

Therefore the behavior of our c-function correlates the two facts : loss of quantum corre-

lation/entanglement in the IR field theory and the end of geometry which in this case is

the formation of curvature singularity behind the horizon. In fact this is one of our main
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motivations for interpreting the c-function as an effective bulk measure of quantum corre-

lation or quantum entanglement between the field theory degrees of freedom at different

scales.

There is another thing which we would like to point out is that since the causal hori-

zon goes behind the black brane horizon and reaches the singularity, the holographic

c-function is affected by things behind the horizon. Therefore the corresponding bound-

ary c-function knows something about physics behind the horizon. If it turns out that

the entanglement negativity indeed satisfies the monotonicity condition then this function

will have some information about the interior. 6 At infinite temperature when the nega-

tivity is zero we are on the singularity because there is no quantum entanglement . As we

lower the temperature we are moving away from the singularity but space-time is still very

curved because there is only a very small amount of entanglement. So high temperature

expansion is an expansion around the singularity. This is a difficult expansion because

negativity depends on the full operator content of the theory, but this may be a virtue of

the function for many purposes.

In [66–68] behind the horizon physics was explored using the analytically continued cor-

relation functions in the CFT. The entanglement negativity (or any candidate thermal

c-function) does not seem to have any simple expression in terms of thermal correlators.

It is a highly non-local object. It will be interesting to see if there are more fine-grained

characterisations of RG-flow which can tell us about the physics behind the horizon.

2.4.3 An Infalling Observer ?

Let us now go back to the issue of irreversibility associated to a particular geometry. In

a black hole geometry there is a natural notion of irreversibility, which is crossing the

6We would like to clarify that we are not talking about a two-sided eternal AdS black hole. We have

in mind a black hole, at sufficiently late time, which has formed out of collapsing matter and so the other

part of the geometry does not exist. We are making the approximation of a thermal state because the CFT

correlators at sufficiently late time are well approximated by thermal correlators.

28



horizon or falling into the the black hole. Anything that goes into the black hole does not

come out. Nothing comes out of the black hole singularity. How is that irreversibility

encoded in the field theory ? This is a very difficult question and so we will only try

to make a guess. First of all, our c-function does not show any particular sharp feature

which can be used to predict the existence of horizon. 7 So a natural guess will be

that this is a quantity which is associated with an infalling observer. In GR an infalling

observer does not see anything special happening while crossing the horizon. So let us

make the assumption that the RG-flow or coarse-graining of the thermal state of the CFT

describes an infalling observer. We cannot make this statement more precise right now.

This assumption together with the fact that this coarse-graining is an irreversible process

due to the existence of the c-theorem seem to imply that the observer can never come

out of the black hole. The coarse graining starts in the UV when the observer is near the

AdS boundary. As we lower the energy scale the observer moves deeper into the bulk.

In the extreme IR when the c-function hits zero the observer hits the singularity. This

is consistent with the fact that our holographic c-function reaches zero at the curvature

singularity. Things cannot come out of the black hole singularity because in the field

theory there is no unitary RG-flow which starts at c = 0 and go to c = aUV . This is

forbidden by c-theorem 8. No unitary RG-flow can start at c = 0 because along the RG-

flow c has to decrease. So in RG-time there is an ordering in which the c = 0 theory

always lives in the future. This is also the ordering of time for the infalling observer for

whom the black hole singularity is always in the future. This is not quantitative and many

things need to be checked before one can say anything conclusive, but at least it is clear

that the existence of the c-theorem imposes an ordering among different scales in the field

theory which, it looks like, can be translated to the bulk under certain assumption and

does not immediately produce a contradiction.

7We do not know how this picture will change if there is a firewall.
8We have in mind the generalization of the c-theorem to the thermal state. We have proved such a

theorem only in the bulk.
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2.4.4 Tensor Network

There is another reason to suspect that this may be a correct interpretation. This is related

to the tensor network representation of the thermofield double of a scale invariant theory

after time evolution. This representation was proposed by Hartman and Maldacena [77].

In this picture the tensor network has a scale-invariant UV region and a gapped IR re-

gion. The gapped region arises due to the effective mass gap of the thermal state and this

represents the interior of the black brane. This resonates well with the behavior of our

holographic c-function because it shows the extreme thinning of the "effective number of

degrees of freedom" near the curvature singularity. A better understanding of this will

probably require a more covariant formulation of tensor network ideas. Overall, it seems

that MERA [78, 79] might be a proper framework to think about such generalized holo-

graphic c-functions. The function we have constructed measures the quantum correlation

that exists at different scales in the thermal density matrix. MERA does a coarse-graining

of the wave function and the generalized c-theorem seems to be associated to the irre-

versibility of that coarse graining procedure.
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Chapter 3

Linearized Einstein’s Equation Around

Pure BTZ from Entanglement

Thermodynamics

3.1 Introduction

After the realization of a connection between gravity and thermodynamics [2, 4, 105]

various attempts have been made to understand gravitational dynamics from horizon ther-

modynamics [106–108]. The discovery of AdS/CFT correspondence [109, 111] led to

the new idea that the dynamics of spacetime can be understood from some sort of entan-

glement between the degrees of freedom of the boundary CFT [112–114, 116–121]. See

also [69, 70, 122]. In this chapter, following [112–114], we explore this idea further.

Linear perturbations around a fixed reference state in the continuum field theory satisfy

the first law of entanglement, ΔS = Δ 〈H〉 [112–114], where S is the entanglement en-

tropy of a spatial region and H is the modular Hamiltonian associated with that region. In

the AdS/CFT framework, each side of this first law can be computed using the dual geom-
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etry. In [112, 114], the vacuum of a holographic CFT, with corresponding dual geometry

pure AdS, was chosen as a fixed reference state. Considering perturbations around pure

AdS, [112, 114] calculated ΔS and Δ 〈H〉 hologrpahically and showed that to linear or-

der in the perturbation the first law of entanglement is satisfied, while inclusion of higher

order contributions gives the constraint Δ 〈H〉 ≥ ΔS [112, 114]1. In [112, 113] linear per-

turbations were considered and it was shown that Einstein’s equations linearized around

pure AdS do follow from the first law of entanglement, thus showing their equivalence at

first order.

In this chapter, we take the thermal state of a holographic CFT as the fixed reference state

and perturb it infinitesimally. The change in the entanglement entropy and the modular

Hamiltonian of a spatial region will satisfy the first law of entanglement. Based on the

holographic dictionary we then compute each side of this relation using metric compo-

nents of the dual geometry. We show that for metric components of the dual geometry

satisfying the linearized Einstein’s equations, the first law of entanglement holds. Then

we go the other direction, i.e, we show that the first law of entanglement fixes the metric

uniquely if we demand that it holds in all frames of reference.

Entanglement entropy for a holographic field theory can be computed by applying Ryu-

Takayanagi formula [39] and its covariant generalization [40]. See also [128] for some

useful discussions on holographic enetanglement entropy in case of warped AdS3 ge-

ometries. Computing modular Hamiltonian in the field theory side is not an easy task.

There are only few cases where it can be expressed as the integral of some local quantity,

mainly the stress tensor [104, 129]. The modular Hamiltonian for a spatial interval of a

two dimensional CFT at finite temperature was calculated in [129]. Using the holographic

dictionary one can obtain the boundary stress tensor from the asymptotic behavior of the

metric components [130–132], which can then be used to compute modular Hamiltonian.

See also [133–135] for relevant discussions on holographic stress tensor.

1For related discussions one can also see, e.g, [123–127]
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Figure 3.1: Spatial region A defined on a constant time slice t = t0 of d−dimensional

Minkowski spacetime R1,d−1. AC, the compliment of A, denotes the rest of the spacetime.

σA denotes the reduced density matrix defined for this spatial region A, where σ is a state

(represented as a density matrix) of a QFT defined on R1,d−1.

3.2 First Law of Entanglement ΔS = Δ 〈H〉

In this section we briefly review the first law of entanglement. Relative entropy quantifies

distinguishability between two states of a quantum field theory in the same Hilbert space

[136]2. Let us consider a d-dimensional Minkowski spacetime R1,d−1. Also consider a

spatial region A on a fixed time slice t = t0 on this spacetime.

Let density matrices σ and ρ define two states of a QFT defined on R1,d−1. Then the

relative entropy of ρ with respect to σ for the spatial region A is defined as

S A(ρA|σA) = − Tr(ρA logσA) − S A(ρA)

= Tr(ρA log ρA) − Tr(ρA logσA), (3.1)

where ρA and σA are the reduced density matrices associated with the spatial region A.

Choose σ as the reference state. With the definitions of entanglement entropy of a region

A, S A(ρA) = −Tr(ρA log ρA), and of the modular Hamiltonian associated with that region,

2For relative entropy of excited states in two dimensional CFT see [137,138].
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HA = − logσA, one can rewrite (3.1) as

S A(ρA|σA) = Δ 〈HA〉 − ΔS A, (3.2)

where

ΔS A = S A(ρA) − S A(σA), (3.3)

and

Δ 〈HA〉 = Tr(ρAHA) − Tr(σAHA). (3.4)

It has the nice positivity property that S A(ρA|σA) ≥ 0 with the inequality saturated if and

only if ρA = σA. Using this property one can show easily that for ρA very close to σA

the relative entropy vanishes at linear order of perturbation giving rise to the constraint

[112, 114]

ΔS = Δ 〈H〉 . (3.5)

This is known as the first law of entanglement.

Below, we will be interested in the entanglement entropy of a single spatial interval A =

(−R,+R) for a holographic state of a CFT in 1+1-dimensions. We choose the initial

holographic state to be a thermal state with temperature T = 1
2π
. In this case the modular

Hamiltonian is given by [104,139]3

HA =
4π

sinhR

∫ +R

−R
dx

[
sinh

(R + x
2

)
sinh

(R − x
2

)]
T00(x, t) (3.6)

where T00(x, t) is the time-time component of the field theory stress tensor.

3We thank David Blanco for poiting out reference [139] to us.
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Figure 3.2: Spatial region A ≡ (−R,R) on a fixed time slice t = t0 of the boundary

spacetime R1,1. Our modular Hamiltonian (3.6) is defined for this region in a thermal

state of a CFT with temperature T = 1/2π.

3.3 Holographic Computation of ΔS and Δ 〈H〉

We consider a thermal state of 1+1-dimensional holographic CFT with temperature T =

1
2π

as a fixed reference state. We know that the dual geometry of a thermal state of a

holographic CFT is a black hole in AdS. In 2+1 bulk dimensions, it is the BTZ black

hole. We would consider the BTZ black brane instead of black hole because the field

theory is defined on R1,1. The static BTZ black brane metric is4 [140]

ds2 =
1

z2

[
dz2

1 − z2
− (1 − z2)dt2 + dx2

]
(3.7)

Here we have set the AdS radius of curvature, LAdS = 1. With this convention one can

check that the inverse temperature of this black brane is β = 2π.

3.3.1 Holographic Computation of ΔS

Let us consider a spatial interval A = (−R,+R) at a fixed time t = t0 in the boundary

spacetime R1,1. The entanglement entropy of this interval can be computed using the

Ryu-Takayanagi formula [39]:

S A =
Length(γA)

4GN
, (3.8)

4Our convention is that we use indices K, L for the three bulk coordinates {z, t, x} and indices μ, ν for
two boundary coordinates {t, x}.
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Figure 3.3: Pictorial representation of the Ryu-Takayanagi proposal. Area of the minimal

area curve, i.e., length of the geodesic, γA gives the holographic entanglement entropy for

the spatial region A in the boundary.

where γA is a geodesic in the bulk homologous to A, and GN is Newton’s constant. When

the spacetime is not static, one needs to use its covariant generalization [40]. We will deal

with that in the case of boosted black brane.

Let us now concentrate on our specific situation. The equation for the geodesic, with

prescribed boundary conditions t = t0 = 0, z = 0, x = ±R, is

z2 cosh2 R + cosh2 x = cosh2 R. (3.9)

Performing a coordinate transformation to Fefferman-Graham(FG) coordinates [141],

z2 =
(
1 +

z̃2

4

)−2
z̃2, (3.10)

we can write down the metric (3.7) as

ds2 =
1

z̃2

⎡⎢⎢⎢⎢⎢⎣dz̃2 −
(
1 − z̃2

4

)2
dt2 +

(
1 +

z̃2

4

)2
dx2

⎤⎥⎥⎥⎥⎥⎦ . (3.11)

The advantage of writing down any asymptotically AdS spacetime in this coordinate is to

identify the boundary stress tensor easily using the holographic prescription [130, 132].

One can easily check that in case of pure BTZ (3.11), the boundary stress tensor has the

non-vanishing components Ttt = Txx =
1

16πGN
.
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In terms of FG coordinates, the extremal surface equation (3.9) transforms as

z̃2(
1 + z̃2

4

)2 = cosh2 R − cosh2 x
cosh2 R

⇒ z̃2 = 4
coshR − cosh x
coshR + cosh x

. (3.12)

We can treat x as the intrinsic coordinate on the geodesic. The induced metric on the

geodesic before perturbation is

g(0)
xx = G(0)

KL
dxK

dx
dxL

dx
, (3.13)

where G(0)
KL are the metric components of pure BTZ (3.11). The length functional is

A =

∫ +R

−R
dx

√
g(0)

xx . (3.14)

Now we add some pure metric perturbation to the BTZ metric (3.11)5. Any such pertur-

bation in the FG coordinates can be written as

ds2 =
1

z̃2

⎡⎢⎢⎢⎢⎢⎣dz̃2 −
(
1 − z̃2

4

)2
dt2 +

(
1 +

z̃2

4

)2
dx2 + z̃2Hμν(z̃, x, t)dxμdxν

⎤⎥⎥⎥⎥⎥⎦ (3.15)

From now on (in the case of static BTZ black brane) everything will be done in FG

coordinates so we will drop the ˜ sign over z̃ and simply write z.

To linear order in perturbation Hμν(z, x, t), the change in the length functional (3.14) is

ΔA =

∫
dx

1

2

√
g(0)g(0)xxδgxx,

=
1

sinh 2R

∫
dx[sinh(R + x) sinh(R − x)]Hxx(z(x), x, t). (3.16)

5Linear perturbations around BTZ black brane were also considered in [142] and the first order correc-

tion to holographic entanglement entropy was calculated. They have also discussed the dynamics of the

shift of holographic entanglement entropy.
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Hence to first order in the perturbation, the change in the entanglement entropy is

ΔŜ A =

∫
dx[sinh(R + x) sinh(R − x)]Hxx(z(x), x, t). (3.17)

Here ΔŜ A = 4GN sinh(2R)ΔS A.

3.3.2 Holographic Computation of Δ 〈H〉

Equation (3.6) gives the modular Hamiltonian for a spatial interval A = (−R,+R) of a

thermal state with temperature T = 1
2π
. If we perturb this state infinitesimally, the change

in the modular Hamiltonian is

Δ 〈HA〉 = 4π

sinhR

∫ +R

−R
dx

[
sinh

(R + x
2

)
sinh

(R − x
2

)]
Δ 〈T00(x, t)〉 , (3.18)

where Δ 〈T00(x, t)〉 is the change in the expectation value of the time-time component of

the field theory stress tensor due to infinitesimal perturbations.

We have already mentioned that the boundary stress tensor can be found from the asymp-

totic form of the asymptotically AdS bulk metric. From [130–132] we know that for a

d + 1-dimensional asymptotically AdS bulk metric written in FG coordinates,

ds2 =
1

z2
[
dz2 + ημνdxμdxν + zdgμν(z, x)dxμdxν

]
, (3.19)

the boundary stress tensor can be found from the following asymptotic relation,

〈
Tμν(x)

〉
=

d
16πGN

gμν(z = 0, x). (3.20)

Using the formula in our case, we have

〈
Tμν(x, t)

〉
=

1

8πGN

(
1

2
+ Hμν(z = 0, x, t)

)
, (3.21)
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where 1
16πGN

is the background boundary stress tensor. Hence the change in the modular

Hamiltonian is

Δ
〈
ĤA

〉
= 4 coshR

∫ +R

−R
dx

[
sinh

(R + x
2

)
sinh

(R − x
2

)]
Htt(x, t) (3.22)

where Δ
〈
ĤA

〉
= 4GN sinh(2R)Δ 〈HA〉.

3.4 Proof That Einstein’s Equations Imply ΔS = Δ 〈H〉

We now have the expressions for both ΔS and Δ 〈H〉 to linear order in the bulk pertur-

bation. In this section we will show that the solutions of linearized Einstein’s equations

satisfy the relation ΔS = Δ 〈H〉.

In d + 1-dimensions with a cosmological constant Λ = − d(d−1)
2L2

AdS

, Einstein’s equations read

(recall that we have set LAdS = 1)

RAB − 1

2
GAB(R + d(d − 1)) = 0. (3.23)

Using the metric (3.15) to linear order in Hμν, different components of equations (3.23)

(with d = 2) read

32zHtt(z, x, t) − (4 − z2)
[
−(12 + z2)∂zHtt(z, x, t) − z(4 − z2)∂2z Htt(z, x, t)

]
= 0

(3.24)

−32zHxx(z, x, t) + (4 + z2)
[
(12 − z2)∂zHxx(z, x, t) + z(4 + z2)∂2z Hxx(z, x, t)

]
= 0

(3.25)

(48 + z4)∂zHtx(z, x, t) + z(16 − z4)∂2z Htx(z, x, t) = 0

(3.26)
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−2(4 − z2)2∂tHtx(z, x, t) + 2(16 + z4)∂xHtt − z(16 − z4) ∂z (∂tHtx(z, x, t) − ∂xHtt(z, x, t)) = 0

(3.27)

2(4 + z2)2∂xHtx(z, x, t) − 2(16 + z4)∂tHxx − z(16 − z4) ∂z (∂tHxx(z, x, t) − ∂xHtx(z, x, t)) = 0

(3.28)

−2(4 + z2)2Htt(z, x, t) + 2(4 − z2)2Hxx(z, x, t) + z
[
16z∂2t Hxx(z, x, t)

−32z∂t∂xHtx(z, x, t) + 16z∂2xHtt(z, x, t) − (16 − z4)∂zHtt(z, x, t) +(16 − z4)∂zHxx(z, x, t)
]

= 0

(3.29)

Setting z = 0 in (3.29) one can see that

− Htt(z = 0, x, t) + Hxx(z = 0, x, t) = 0. (3.30)

This holds because the boundary theory is a conformal field theory and (3.30) is the

tracelessness condition of the boundary field theory stress tensor. Now demanding the

smoothness condition at z = 0 and using (3.30) one arrives at the following solutions for

the perturbations:

Htt(z, x, t) = (4 − z2)H(x, t), (3.31)

Hxx(z, x, t) = (4 + z2)H(x, t), (3.32)

Htx(z, x, t) = h(t, x) (3.33)

with h(x, t) and H(x, t) restricted by the conditions,

∂th(x, t) = 4∂xH(x, t), (3.34)

∂xh(x, t) = 4∂tH(x, t), (3.35)

(∂2t − ∂2x)H(x, t) = 0 (3.36)
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Now we consider the expressions for ΔŜ A and Δ
〈
ĤA

〉
.

ΔŜ A =

∫ R

−R
dx sinh(R + x) sinh(R − x)Hxx(z, x, t0)

=

∫ R

−R
dx sinh(R + x) sinh(R − x)(4 + z2)H(x, t0)

= 16 coshR
∫ +R

−R
dx sinh

(R + x
2

)
sinh

(R − x
2

)
H(x, t0) (3.37)

and

Δ〈ĤA| =〉 4 coshR
∫ R

−R
dx sinh

(R + x
2

)
sinh

(R − x
2

)

× Htt(0, x, t0)

= 16 coshR
∫ R

−R
dx sinh

(R + x
2

)
sinh

(R − x
2

)
H(x, t0) (3.38)

Comparing (3.37) and (3.38) we see that indeed ΔS A = Δ 〈HA〉.

3.5 Proof That First Law of Entanglement Implies Ein-

stein’s Equations

In this section we go the other direction. We will show that the constraint (3.5) with

the boundary condition (3.21) fixes the metric uniquely. We would follow the strategy

of [112] for the proof .

Let HEE
μν be the metric that solves Einstein’s equations (3.24 − 3.29) with the boundary

conditions (3.21). We will show that there is no metric other than HEE
μν with the boundary

conditions (3.21) which satisfies the same relation (3.5). Suppose we have another metric

Hμν satisfying (3.5) with the same boundary condition (3.21). We will show that

Δμν(z, x, t) ≡ HEE
μν − Hμν = 0, (3.39)
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for all z. Just by demanding that both the metrics satisfy the same boundary condition, we

already have

Δμν(0, x, t) = 0. (3.40)

Hence (3.22) tells us that

Δ(Δ 〈HA〉) = 0. (3.41)

Now the constraint (3.5) together with the expression (3.17) tells us that in a fixed frame

of reference (say, the t = t0 frame) we have

0 =

∫
dxΔxx(z(x), x + x0, t0)[sinh(R + x) sinh(R − x)]. (3.42)

In the integral (3.42) we have shifted the origin from x = 0 to x = x0. Now we expand

Δμν as

Δμν(z(x), x + x0, t0) =
∞∑

n=0

znΔ(n)
μν (x + x0, t0)

=
∑
n,m

zn x2m

(2m)!
∂2m

x Δ(n)
μν (x0, t0). (3.43)

Equation (3.42) thus becomes

∑
n,m

1

(2m)!
∂2m

x Δ(n)
xx (t0, x0)

∫ +R

−R
dx[znx2m sinh(R + x) sinh(R − x)] = 0. (3.44)

Substituting for z from the expression (3.12) and performing some simplifications, we

finally get ∑
n,m

2n+1

(2m)!
∂2m

x Δ(n)
xx (t0, x0)In,m(R) = 0, (3.45)

where we write

In,m =

∫ R

0

dx
[
x2m(coshR + cosh x)−

n
2+1(coshR − cosh x)

n
2+1

]
. (3.46)

We now need to expand (3.45) in powers of R and set each coefficient to zero to see what
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constraints do they impose on Δxx(t0, x0). Thus expanding (3.45) around R = 0, we get

∑
n,m, j

2n+1

(2m)!
∂2m

x Δ(n)
xx (t0, x0)

Rj

j!

[
∂

j
RIn,m(R)

]
R=0

= 0. (3.47)

Vanishing of the RJ+3−th term requires

∑
n,m

2n+1

(2m)!
∂2m

x Δ(n)
xx (t0, x0)

[
∂J+3

R In,m(R)
]

R=0
= 0 (3.48)

The LHS of (3.48) contains a summation over n, m for a fixed J. In appendix B.1 we

explicitly show that for both odd and even J (for odd J numerical analysis is presented in

appendix B.1), all the terms in the summation vanish except when n ≤ J. For n = J, we

have m = 0 and for n < J, we need m � 0 (Please see appendix B.1 for details). The last

non-vanishing term in the summation (3.48) with a fixed J is n = J, m = 0. This term can

be expressed as a linear combination of the lower order terms which establishes the result

that

Δ(J)
xx (t0, x0) = 0 (3.49)

for J = 0, 1, 2, · · ·

Having shown that the entanglement first law fixes the solution to linearized Einstein’s

equations in the rest frame, we now consider a boosted frame and try to repeat the analysis

above. Consider then the boosted BTZ black brane. The coordinate transformations to go

from the static BTZ black brane to the boosted BTZ black brane are

t = γ(t′ − βx′), (3.50)

x = γ(x′ − βt′). (3.51)

Here β, γ have their usual meanings from the special theory of relativity. The metric of
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the boosted black brane is given by

ds2 =
1

z2

[
dz2

1 − z2
+ (−1 + γ2z2)dt′2 + (1 + β2γ2z2)dx′2 − 2βγ2z2dt′dx′

]
, (3.52)

Notice that here, z denotes the original radial coordinate and not the FG coordinate z̃.

Below, we will explicitly write z̃ for the FG coordinate. We need to solve the spacelike

geodesic equations in this geometry with boundary conditions z = 0, t = 0, x = ±R.

Working in the geometry (3.52) with these boundary conditions is equivalent to working

in the geometry (3.7) with the following boundary conditions

z = 0, t = −βγR, x = γR,

z = 0, t = βγR, x = −γR. (3.53)

Hence we will solve for the spacelike geodesics with metric (3.7) and boundary condi-

tions (3.53). Let s be the proper length along the geodesic. Then we have the following

equations for the spacelike geodesics

1

z2

⎡⎢⎢⎢⎢⎣ 1

1 − z2

(
dz
ds

)2
− (1 − z2)

(
dt
ds

)2
+

(
dx
ds

)2⎤⎥⎥⎥⎥⎦ = 1, (3.54)

1

z2

[
dx
ds

]
= p, (3.55)

− 1

z2

[
(1 − z2)

(
dt
ds

)]
= e, (3.56)

where p and e are two constants of motion along the geodesic. We want to write down the

geodesic in a parametric form z = z(x), t = t(x). Hence we write down the above three

equations in the following form

pz
dz
dx

=
√
1 − (1 − e2 + p2)z2 + p2z4 , (3.57)

dt
dx

= − e
p(1 − z2)

. (3.58)
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With the prescribed boundary conditions (3.53), the solutions are

tanh(γR) tanh t + tanh(βγR) tanh x = 0, (3.59)

and

cosh2(γR)z2 +
[
1 − sinh2(βγR)

sinh2(γR)

]
cosh2 x

=

[
1 − sinh2(βγR)

sinh2(γR)

]
cosh2(γR). (3.60)

In terms of the FG coordinates, (3.60) becomes

z̃2 = 4
cosh(γR) −

√
(1 − r) cosh2(γR) + r cosh2 x

cosh(γR) +
√
(1 − r) cosh2(γR) + r cosh2 x

, (3.61)

where

r =
[
1 − sinh2(βγR)

sinh2(γR)

]
.

The induced metric on the spacelike geodesic is

ds2ind =
sinh2(2γR)

[cosh(2γR) − cosh(2x)]2
dx2. (3.62)

Change in the geodesic length is

ΔA =

∫ +γR

−γR
dx

sinh(γR + x) sinh(γR − x)
sinh(2γR)

⎡⎢⎢⎢⎢⎣
(

dt
dx

)2
Htt + 2

(
dt
dx

)
Htx + Hxx

⎤⎥⎥⎥⎥⎦ .

An argument similar to that leading to (3.42) gives the following equation for the boosted

case

∫ +γR

−γR
dx sinh(γR + x) sinh(γR − x)

⎡⎢⎢⎢⎢⎣
(

dt
dx

)2
Δtt + 2

(
dt
dx

)
Δtx + Δxx

⎤⎥⎥⎥⎥⎦ = 0. (3.63)

Now assuming that Δμν(z, x, t) is an analytic function, we can expand it in the following
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form

Δμν(z̃, t + t0, x+x0) =
∞∑

n=0

z̃nΔ(n)
μν (t + t0, x + x0)

=

∞∑
n=0

z̃n

⎡⎢⎢⎢⎢⎢⎢⎣
∑
mt ,mx

∂mt
t ∂

mx
x Δ

(n)
μν (t0, x0)

mt!mx!

⎤⎥⎥⎥⎥⎥⎥⎦ tmt xmx =
∑

n,mt ,mx

Bn,mt ,mx
μν z̃ntmt xmx . (3.64)

(3.63) then becomes

∑
n,mt ,mx

[
Bn,mt ,mx

tt In,mt ,mx
tt (R) + Bn,mt ,mx

tx In,mt ,mx
tx (R) + Bn,mt ,mx

xx In,mt ,mx
xx (R)

]
= 0, (3.65)

where

In,mt ,mx
tt (γR) =

∫ +γR

−γR
dxxmx[sinh(γR + x) sinh(γR − x)]z̃ntmt

(
dt
dx

)2
, (3.66)

In,mt ,mx
tx (γR) = 2

∫ +γR

−γR
dxxmx[sinh(γR + x) sinh(γR − x)]z̃ntmt

(
dt
dx

)
, (3.67)

In,mt ,mx
xx (γR) =

∫ +γR

−γR
dxxmx[sinh(γR + x) sinh(γR − x)]z̃ntmt . (3.68)

We now use the same technique of expanding around R = 0 as before, but the calculation

is difficult even for even integer n. One can examine term by term the expansion series

(3.65) and check which coefficients in a particular term are non zero. In the appendix B.1

we discuss the first few terms. Working in this manner we finally arrive, apart from some

constant factors, at the following equations

Δ(0)
xx − 2βΔ(0)

tx + β2Δ(0)
tt = 0

Δ(1)
xx − 2βΔ(1)

tx + β2Δ(1)
tt = 0

Δ(2)
xx − 2βΔ(2)

tx + β2Δ(2)
tt = 0 (3.69)

...

One can take any arbitrary value of n and check that the pattern should be the same,

although for high values of n computations become difficult. Now (3.69) is a polynomial
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in β and the coefficients of each βk must vanish individually. From the coefficients of β0,

we get:

Δ(n)
xx = 0, (3.70)

from the coefficients of β:

Δ
(n)
tx = 0, (3.71)

and from the coefficients of β2:

Δ
(n)
tt = 0, (3.72)

where n = 0, 1, 2, . . .

Thus we have shown that (3.39) is true for all z. Note that we have assumed that Δμν(z, x, t)

is an analytic function.

3.6 Discussion

In this chapter we have shown that linearized Einstein’s equations around the BTZ black

brane can be obtained from the first law of entanglement thermodynamics, ΔS = Δ 〈H〉,
where the reference state was taken to be a thermal state of the CFT which is dual to

the black brane. It would be interesting to check if non-linear Einstein’s equations can

be obtained from some constraints on the entanglenemnt entropy of the thermal state of

boundary CFT as well. In particular, in [143] the vacuum state of the boundary CFT was

perturbed by some scalar primary or stress tensor operators and it was shown that for

such excited states, up to second order in the perturbation, the entanglement entropy of

all ball-shaped regions can be obtained using the covariant prescription for holographic

entanglement entropy from the corresponding dual geometries. It was shown that the

corresponding dual spacetimes must satisfy Einstein’s equations up to second order in the

perturbation around AdS. It would be interesting to extend their work for the thermal state

of holographic CFTs.
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One of the important points we would like to emphasize is that the Einstein equations that

we have derived hold outside the horizon. This is because the spacelike geodesics used

to compute the entanglement entropy do not see the region behind the horizon. It will

be very interesting if a similar method can be used to prove Einstein’s equations behind

the horizon. It seems that generalization of this method to the two-sided eternal BTZ

black hole may give us some insights into the derivation of Einstein’s equations behind

the horizon.

It would also be interesting to check it for higher dimensional black holes and also at

non-linear order. We have only considered the metric perturbations in the bulk such that

only the boundary stress tensor has a non-trivial expectation value. One can also consider

other excitations as well, e.g., turning on scalar field in the bulk where the scalar operator

will acquire non-trivial expectation values in the boundary theory.
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Chapter 4

Late Time Perturbations of Extremal

Black Holes and Aretakis Instability

4.1 Introduction

More than 45 years ago, Price [148], in his seminal analysis, showed that when a Schwarzschild

black hole is perturbed by a massless scalar field, at late times the perturbation typically

decays as an inverse power in the Schwarzschild coordinate t. Price’s law has been rig-

orously proved in the mathematical general relativity literature by Dafermos and Rod-

nianski [149, 150]. This is a key result, as the problem of late time asymptotics for

solutions to the wave equation finds important applications in the study of black hole

stability [151–153] and the dynamics of black hole interiors [154–156]. The late time

asymptotics to wave equations on extreme black holes have attracted exceptional interest

in the last few years.

The problem of late time decay of a scalar perturbation in four-dimensional extreme

Reissner-Nordström black hole was first analysed by Bičák [157]. He observed that the

effective potential for a massless scalar in an extreme Reissner-Nordström black hole has
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the same asymptotic form near the horizon as near infinity. Couch and Torrence [158]

later showed that not only the effective potential has the same asymptotic form, it is in

fact symmetric under r∗ going to −r∗, where r∗ is the tortoise coordinate for the extreme

Reissner-Nordström metric. This surprising symmetry allows one to relate scattering dy-

namics near the horizon to the asymptotic region. This symmetry adds several novel fea-

tures to the late time dynamics of a massless scalar field in an extreme Reissner-Nordström

black hole background compared to a Schwarzschild black hole. This richness is one of

the reasons that several authors have studied this problem [159–162].

Another reason the problem has attracted attention in the last few years is that Aretakis

[164–167] has shown that a massless scalar has an instability at the future horizon of an

extreme Reissner-Nordström black hole. More precisely, Aretakis showed that a massless

scalar field decays at late time on and outside the future horizon, however, generically on

the horizon its first radial derivative does not decay. This implies an instability. Since the

first radial derivative of the scalar decays away from the horizon but not on the horizon, it

follows that the second-derivative must blow up at late times on the horizon. The Aretakis

instability was studied numerically in detail in [160]. They found excellent agreement

with Aretakis’ results. Using the Couch-Torrence symmetry, the Aretakis instability has

been related to the similar growth in the behaviour of the derivatives of the massless

scalar field at null infinity [160, 168]. Motivated by these developments, more recently,

Ori and Sela [161, 162] have re-analysed analytically the problem of late time decay of

scalar perturbations outside an extreme Reissner-Nordström black hole along the lines of

Price’s analysis. These questions are currently being explored in the mathematical general

relativity literature [169–171] as well.

In this chapter we revisit this problem. While the previous authors [159–162] have anal-

ysed the problem in the time domain, we analyse the problem in the frequency domain.

Our analysis brings a different perspective. We reproduce and extend some of the previ-

ous results. Using the Couch-Torrence symmetry, an initial data with regular behaviour
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across the horizon on the v := t + r∗ = 0 surface can be mapped to an initial data on the

u := t − r∗ = 0 surface. Analysing this inverted initial data, Sela [162] has argued that

there is a contribution to the late time tail in an extreme Reissner-Nordström background

that is not due to the curvature of the spacetime. This contribution can be obtained from a

flat space analysis of the inverted initial data. We first reproduce these results, including

the exact coefficients, using rather simple Fourier methods.

Application of the frequency domain Green’s function technique requires knowing initial

data on a t = const surface. Obtaining a precise relationship between characteristic initial

data specified on u = 0 and v = 0 null surfaces and initial data specified on a t = const

Cauchy surface is a difficult problem. However, to the extent the above mentioned flat

space analysis is valid, it can be easily done. We use the solution of the flat space wave

equation to obtain the correct fall off on the t = 0 surface near spatial infinity. To this,

we add a sub-leading term (slower fall-off) proportional to the “initial static moment” and

compute its contribution to the late time tail. This contribution arises due to backscattering

from the weakly curved asymptotic region of the spacetime.

Along the way, using the Couch-Torrence symmetry [158], we also relate higher multi-

pole Aretakis and Newman-Penrose constants [172] for a massless scalar in an extreme

Reissner-Nordström black hole background.

The rest of the chapter is organised as follows. In section 4.2 we review various interesting

features that this problem has, namely, the Couch-Torrence symmetry and the construc-

tion of Aretakis and Newman-Penrose constants. In section 4.3 we analyse the late time

dynamics of a massless scalar in the frequency domain. We end with a brief summary and

a discussion of open problems in section 4.4.
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4.2 Massless scalar in 4d extreme Reissner-Nordström

spacetime

The massless scalar wave equation in a 4d extreme Reissner-Nordström spacetime has a

number of rich features. In this section we review some of these features. Along the way,

we relate higher multipole Aretakis and Newman-Penrose constants.

4.2.1 Couch-Torrence discrete conformal isometry

The extreme Reissner-Nordström solution has a discrete conformal isometry [158]. A

similar discrete conformal isometry also exists for the extreme D1-D5 string and for

the extreme D3 brane; see comments and references in [173] and for recent discussions

see [174, 175]. We will use this symmetry in an important way in later sections, so we

start with a brief review of this symmetry following [160, 168]. In static coordinates the

extreme Reissner-Nordström metric takes the form,

ds2 = −
(
1 − M

r

)2
dt2 +

(
1 − M

r

)−2
dr2 + r2dΩ2, (4.1)

where r is the area radial coordinate and dΩ2 is the line element of the unit 2-sphere. The

Couch-Torrence symmetry is

T : (t, r, θ, ϕ)→
(
t,M +

M2

r − M
, θ, ϕ

)
. (4.2)

It has number of interesting properties. It is an involution, i.e., T 2 = 1. Its pull-back on

the Reissner-Nordström metric acts by a conformal transformation

T∗(g) = Ω2g, where Ω =
M

r − M
. (4.3)
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On the tortoise coordinate r∗ defined by

r∗ = r − M + 2M log
( |r − M|

M

)
− M2

r − M
, (4.4)

so that dr∗
dr =

(
1 − M

r

)−2
, it acts as T : r∗ → −r∗. This last property implies that it inter-

changes the ingoing and the outgoing Eddington-Finkelstein coordinates:

ingoing: v = t + r∗, outgoing: u = t − r∗, T : u ↔ v. (4.5)

Since the Ricci scalar of the extreme Reissner-Nordström metric vanishes, the confor-

mally covariant operator is simply the box operator:

Lg = �g − 1
6

R = �g. (4.6)

Recall that under a conformal transformation g̃ab = ω2gab, (see e.g., Wald’s Appendix D,

discussion around equation (D.13) [89]),

Lω2g(ω−1Φ) = ω−3Lg(Φ) = ω−3�gΦ. (4.7)

Moreover, from tensor transformation properties, it follows that

LT∗(g)(T∗(Φ)) = T∗(Lg(Φ)). (4.8)

Combining the two in the following way, it follows that if �gΦ = 0, then

0 = �gΦ = T∗(Lg(Φ)) = LT∗(g)(T∗(Φ)) = LΩ2g(Ω−1Ω(T∗(Φ)) = Ω−3�g(ΩT∗(Φ)). (4.9)

That is, if Φ is a solution then,

Φ̃ = ΩT∗(Φ) (4.10)
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is also a solution. We will use mapping (4.10) to map solutions near the horizon to solu-

tions near future null infinity and vice versa.

4.2.2 Aretakis constants, Newman-Penrose constants, and initial static

moments

We now briefly review the construction of Aretakis and Newman-Penrose constants in an

extreme Reissner-Nordström background, and relate them via the Couch-Torrence sym-

metry (4.10).

Previous studies have related Aretakis and Newman-Penrose constants for l = 0 modes

[160, 168, 175]. To the best of our knowledge, details for the l � 0 have not been written

out. In this subsection we write out those details explicitly.

In ingoing Eddington-Finkelstein coordinates the extreme Reissner-Nordström metric is

ds2 = −
(
1 − M

r

)2
dv2 + 2dvdr + r2dΩ2. (4.11)

Expanding the scalar in spherical harmonics in ingoing Eddington-Finkelstein coordinates

as

Φ(v, r, θ, ϕ) =
∑
lm

φl(v, r)Ylm(θ, ϕ), (4.12)

we get equations for the mode functions φl(v, r),

2r∂v∂r(rφl) + ∂r((r − M)2∂rφl) − l(l + 1)φl = 0. (4.13)

Applying ∂l
r on this equation, we see that

Al[φl] =
Ml

(l + 1)!
∂l

r[r∂r(rφl)]
∣∣∣∣∣
r=M

(4.14)

is conserved, i.e., independent of v along the horizon. These constants are called Aretakis
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constants. For a solution of the wave equation of the form near the horizon

φl(v, r) =
1
r

∞∑
k=0

ck(v)
( r

M
− 1

)k
(4.15)

the Aretakis constants are [161,162]

Al = cl+1 +
l

l + 1
cl. (4.16)

Note the factor of 1
r in equation (4.15).

In outgoing Eddington-Finkelstein coordinates the extreme Reissner-Nordström metric is

ds2 = −
(
1 − M

r

)2
du2 − 2dudr + r2dΩ2. (4.17)

Expanding the scalar in spherical harmonics in these coordinates as

Φ(u, r, θ, ϕ) =
∑
lm

φl(u, r)Ylm(θ, ϕ), (4.18)

we get equations for the mode functions

− 2r∂u∂r(rφl) + ∂r((r − M)2∂rφl) − l(l + 1)φl = 0. (4.19)

We now construct the Newman-Penrose constants. Consider the solution of the wave

equation near infinity of the form

φl(u, r) =
1
r

∞∑
k=0

dk(u)
(M

r

)k

. (4.20)

Inserting this expansion into equation (4.19) and looking at successive inverse powers of r

gives equations that can be expressed concisely in terms of matrices, whose components

are labelled by indices i, j = 0, . . . , l. We label the components of the vector d by di,
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i = 0, . . . , l, and the (l + 1)-dimensional vectors d+ and c+ have respective components

(d+)i = di+1 and (c+)i = ci+1. We obtain

MNlḋ+ = [ 12 l(l + 1) − Pl]d, (4.21)

where Nl is the diagonal matrix of natural numbers with components (Nl)i j = (i+1)δi j and

Pl is a lower-triangular matrix with components (Pl)i j =
1
2 i(i+1)δi j−i2δi, j+1+

1
2 i(i−1)δi, j+2,

and over-dots denote u-derivatives. We can diagonalize Pl as

Pl = LlTlL−1l , (4.22)

where Tl is the diagonal matrix of triangular numbers, (Tl)i j =
1
2 i(i + 1)δi j, and Ll is the

lower-triangular Pascal matrix (see, e.g., [176])

(Ll)i j =

(
i
j

)
, (4.23)

whose inverse is

(L−1l )i j = (−1)i+ j

(
i
j

)
. (4.24)

It follows that

ML−1l Nlḋ+ = [ 12 l(l + 1) − Tl]L−1l d, (4.25)

whose last component implies conservation of

Nl =
1

l + 1

l+1∑
i=1

(−1)l+i−1i
(

l
i − 1

)
di, (4.26)

at null infinity, i.e., ∂uNl = 0. These are examples of Newman-Penrose constants.

How are these constants related to Aretakis constants? Recall that, applying the map-

ping (4.10), we can construct a solution near null infinity from a given solution near the
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horizon. Let us apply this mapping on the solution of the form (4.15) to get

φl =
M

r − M

(
M +

M2

r − M

)−1 (
c0(u) + c1(u)

( M
r − M

)
+ c2(u)

( M
r − M

)2
+ . . .

)
(4.27)

=
1
r

(
c0 + c1

M
r
+ (c1 + c2)

(M
r

)2
+ (c1 + 2c2 + c3)

(M
r

)3
+ . . .

)
. (4.28)

Expanding this solution in inverse powers of r, we find the coefficients in (4.20) to be

d+ = Llc+. (4.29)

Then we have

MQlċ+ = [ 12 l(l + 1) − Tl]L−1l d, (4.30)

where

Ql = L−1l NlLl, (4.31)

has components (Ql)i j = (i+1)δi j+ iδi−1, j. The Newman-Penrose constant Nl arising from

the last component of (4.25) and equivalently (4.30) is expressed in terms of ci as

Nl = cl+1 +
l

l + 1
cl, (4.32)

which is nothing but the Aretakis constant Al, cf. (4.16).

The diagonalizations (4.22) and (4.31) are straightforwardly proved using induction on l,

by checking that the columns of Ll and L−1l are eigenvectors of Pl and Ql respectively. As

an explicit example, the Pascal matrices for l = 4 are

L4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, L−14 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
−1 1 0 0 0
1 −2 1 0 0
−1 3 −3 1 0
1 −4 6 −4 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.33)
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which diagonalize

P4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
−1 1 0 0 0
1 −4 3 0 0
0 3 −9 6 0
0 0 6 −16 10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Q4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
1 2 0 0 0
0 2 3 0 0
0 0 3 4 0
0 0 0 4 5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.34)

whose corresponding diagonal matrices T4 and N4 are simply their diagonal entries. The

Newman-Penrose constant is

N4 =
1
5(L

−1
4 N4d+)4 = 1

5 (d1 − 8d2 + 18d3 − 16d4 + 5d5). (4.35)

The term static moment is often used in the literature [148] to discuss time independent

solutions of the wave equations. In the static coordinates, the mode expansion,

Φ =
1
r

∑
lm

ψl(t, r)Ylm(θ, ϕ), (4.36)

results in the equations

[∂2r∗ − ∂2t ]ψl = Vl(r)ψl, (4.37)

with potential Vl(r)

Vl(r) =
(
1 − M

r

)2 [
2M
r3

(
1 − M

r

)
+

l(l + 1)
r2

]
. (4.38)

This equation has two time independent solutions

ψl = r(r − M)l, (4.39)

and

ψl =
r

(r − M)l+1
. (4.40)
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Under the mapping (4.10) one static solution goes to the other (up to normalisation):

Φ̃ = ΩT∗
[
Φ(t, r, θ, ϕ) = (r − M)lYlm

]
=

M2l+1

(r − M)l+1
Ylm. (4.41)

4.3 Late time behavior of scalar perturbation

We are now in position to analyse the problem of late time decay of scalar field outside

the horizon in an extreme Reissner-Nordström background.

4.3.1 Late time tails for non-compact initial data in flat space

We first reproduce some of the key results of Ori [161] and Sela [162] from a rela-

tively simple Fourier analysis. In the next subsection we look at the contributions due

to backscattering from the weakly curved asymptotic region.

To begin with, we are interested in the characteristic initial value of the field ψl specified

at two intersecting null surfaces, u = 0 and v = 0, for equation (4.37). The initial data is

thus composed of two functions

ψv
l (v) = ψl(u = 0, v), ψu

l (u) = ψl(u, v = 0). (4.42)

See figure 4.1. Due to the linearity of the problem, we can analyse the two functions ψu
l (u)

and ψv
l (v) separately. More precisely, we can split the characteristic initial value problem

into two parts: (i) non-vanishing data on the u = 0 surface ψv
l (v) = ψl(u = 0, v), along with

vanishing data on the v = 0 surface ψu
l (u) = 0, (ii) non-vanishing data on the v = 0 surface

ψu
l (u) = ψl(u, v = 0), along with vanishing data on the u = 0 surface ψv

l (v) = 0. We can

analyse the two parts separately and add the late time behaviour to obtain the final answer.

In the following, this is how we will think of the evolution problem. For extreme Reissner-

Nordström this logic has been employed by several authors in the past [159, 161,162].
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i0

J +

u
=
0

v
=
0

i+

H+

Figure 4.1: Initial data for the characteristic initial value problem for a scalar field in an
extreme Reissner-Nordström black hole background. The initial data is composed of two
functions ψv

l (v) = ψl(u = 0, v) and ψu
l (u) = ψl(u, v = 0).

Sela [162] considered initial data of “compact support” — an initial data for which the

function ψv
l (v) vanishes beyond a certain value of v. In his analysis, the function ψu

l (u) is

taken to be supported near the event horizon r = M. Furthermore, this function is taken

to admit a Taylor expansion near r = M as

ψu
l (u) = c0 + c1

( r
M
− 1

)
+ c2

( r
M
− 1

)2
+ . . . , (4.43)

where r is to be thought of as function of u on the v = 0 surface. We also take our initial

data of this form for the function ψu
l (u). For the function ψ

v
l (v) we consider a slightly more

general behaviour than considered in [162]. We allow for an initial static moment, i.e., as

r → ∞ the function ψv
l (v) is taken to behave as

ψv
l (v) = d̂l

Rl

rl + compactly supported data, (4.44)

where, now, r is to be thought of as function of v on the u = 0 surface, and R is an arbitrary

scale we have introduced. The coefficient d̂l is called the static moment.
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For the initial data on the u = 0 surface, it is believed that the late time tail arises due to

backscattering from the weakly curved asymptotic region [148, 177, 178]. The tail does

not depend on the exact nature of the central object. For compactly supported initial data

the solution at late times decays as t−2l−3 and for initial data with an initial static moment

it decays as d̂lt−2l−2 [148].

For the function ψu
l (u), following [159, 161, 162], we use the Couch-Torrence symmetry

to map the problem from near the horizon to near infinity. The problem near infinity can

be analysed again using the well developed techniques mentioned above. The map of the

initial data is (4.2):

ψv
l (v) = c0 + c1

( M
r − M

)
+ . . . + cl

( M
r − M

)l

+ cl+1

( M
r − M

)l+1

+ . . . (4.45)

where now r is to be regarded as a function of v along the u = 0 surface. Expanding in

powers of r results in an expansion

ψv
l (v) = ĉ0 + ĉ1

R
r
+ ĉ2

R2

r2
+ . . . + ĉl

Rl

rl + ĉl+1
Rl+1

rl+1 + . . . . (4.46)

In this expansion there is a term that decays as the static moment. There are terms that de-

cay more slowly than the static moment and there are also terms that decay more quickly

than the static moment. The coefficients ĉk receive contributions from cm, m ≤ k.

Again using linearity of the problem, the effective problem that we need to analyse is

therefore,

ψv
l (v) = ĉ0+ĉ1

R
r
+ĉ2

R2

r2
+. . .+(ĉl+d̂l)

Rl

rl +ĉl+1
Rl+1

rl+1 +. . .+compactly supported data, (4.47)

with ψu
l (u) = 0. Generically, if the Aretakis and the Newman-Penrose constants are non-

zero, the coefficients of 1
rl and 1

rl+1 would be non-zero in equation (4.47).

Sela [162], building upon the work of Barack [179], argued that for the initial data of

61



the form (4.47), there is a contribution to the late time in an extreme Reissner-Nordström

background that is not due to the curvature of the spacetime. The term ĉl+1
Rl+1

rl+1 in the

expansion of the data (4.47) results in a leading order tail as it disperses in flat space.1 We

reproduce Sela’s results from a relatively simple Fourier analysis.

The Fourier transform of the field ψl(t, r),

ψl(ω, r) =
∫ ∞

−∞
eiωtψl(t, r)dt, (4.48)

satisfies the equation (
−ω2 − ∂2r +

l(l + 1)
r2

)
ψl(ω, r) = 0. (4.49)

The general solution to this equation is

ψl(ω, r) = A(ω)
√

rJl+1/2(ωr) + B(ω)
√

rYl+1/2(ωr). (4.50)

To obtain regular solutions at r = 0 we must set B(ω) = 0. Thus, we get

ψl(ω, r) = A(ω)
√

rJl+1/2(ωr). (4.51)

The solution in the time domain is simply the inverse Fourier transform,

ψl(t, r) =
1
2π

√
r
∫ ∞

−∞
A(ω)Jl+1/2(ωr)e−iωtdω. (4.52)

If we know the function A(ω), we can do this integral and would know the full solution

for the field ψl(t, r), in particular its late time behaviour. Due to linearity of the problem

we can consider each term in the expansion (4.47) separately.

To determine A(ω) corresponding to the r−k term, we use the fact that the initial data

1In some sense, this result is the “Couch-Torrence dual” of the results of section 4 of [160], where they
have obtained such tails from a purely AdS2 × S2 analysis. AdS2 × S2 is conformal to flat space, and the
massless scalar wave equation is conformally invariant.
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behaves as ĉk
Rk

rk on the u = 0 surface. We make the ansatz A(ω) = 2πA0 ω
p to get from

(4.52)

ψl(t, r) = A0
√

r
∫ ∞

−∞
ωpJl+1/2(ωr)e−iωtdω (4.53)

= 2 A0
√

r ei(p+l+1/2) π2

∫ ∞

0
ωp Jl+1/2(ωr) cos

[
(p + l + 1/2)

π

2
+ ωt

]
dω,(4.54)

where we have used the appropriate symmetry property of Jl+1/2(ωr) under ω to −ω to

convert the integral to one along the positive ω axis. This last integral can be easily done

using the identity (6.699-1) or (6.699-2) of Gradshteyn and Ryzhik [180].

Matching the resulting answer at u = 0 with

ψl(u = 0, r) = ĉk
Rk

rk , (4.55)

gives

p = k − 1/2, (4.56)

and fixes the constant A0. Substituting the constant A0 in terms of ĉk gives a final answer

ψl(t, r) = − ĉkRk2k+1Γ(k + 1)
π(2l + 1)!!

sin(kπ) Γ(l − k + 1)

rl+1 t−(k+l+1) F
(
l + k + 2

2
,

l + k + 1
2

; l +
3
2
;

r2

t2

)
, (4.57)

where F(a, b; c; z) is the standard hypergeometric function. For k ≤ l this expression

vanishes due to the sin(kπ) factor. However, for k ≥ l + 1, the Γ(l − k + 1) factor develops

a pole that exactly cancels with the zero of the sin function and gives a finite result. At

timelike infinity, i.e., in the limit t 	 r, (4.57) becomes

ψl(t, r) ∼ − ĉkRk2k+1Γ(k + 1)
π(2l + 1)!!

sin(kπ) Γ(l − k + 1) rl+1 t−(k+l+1). (4.58)

63



The leading contribution to the late time tail comes from k = l + 1. We get

ψ(t, r|t 	 r) ∼ 2ĉl+1Rl+1(−1)l+1(4r)l+1
[(l + 1)!]2

(2l + 2)!
t−(2l+2). (4.59)

This expression matches with Sela’s equation (6.18), including the pre-factors.

We can use solution (4.57) to obtain the tail behaviour near future null infinity. In order

to achieve the limit, we must take r → ∞ together with u := t − r finite, i.e., u � r. The

leading contribution to the tail comes once again from k = l + 1. In this limit we find,

using equation (9.131-2) of Gradshteyn and Ryzhik [180],

ψl(t, r|u � r) ∼ 2l+2ĉl+1Rl+1(−1)l+1 [(l + 1)!]2

(2l + 2)!
u−l−1. (4.60)

This expression matches with Sela’s equation (6.11), including the pre-factors, provided

we relate our u to Sela’s retarded time us: us = u/2.

Setting k = l + 1, equation (4.57) simplifies to

ψl(t, r) = 2ĉl+1Rl+1 [(l + 1)!]2

(2l + 2)!
(−1)l+1(4r)l+1

(
1 − r2

t2

)−l−1
t−2l−2. (4.61)

We can use solution (4.61) to obtain the fall off behaviour at spatial infinity,

ψl(t = 0, r) ∼ 22l+3ĉl+1Rl+1 [(l + 1)!]2

(2l + 2)!
r−l−1, (4.62)

together with ∂tψl(t = 0, r) = 0.

There are other contributions to the t−(2l+2) late time tail. They arise due to backscattering

from the curvature of spacetime. For initial data (4.47), these contributions come from

r−k terms for k < l + 1. It is expected that they should decay as

(pre-factor) Ml+1−kĉkt−(2l+2). (4.63)
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We look at a related problem for k = l in the next subsection.

4.3.2 Contributions due to asymptotic curvature of spacetime

Equation (4.62) can be interpreted as initial data on the t = 0 surface in the extreme

Reissner-Nordström background; see figure 4.2. We conclude that for an initial data on

the t = 0 surface with r−l−1
∗ decay near spatial infinity, there is a contribution to a t−2l−2 tail

at late times. This contribution is due to decay of a massless scalar field in flat space, not

due to backscattering from the curvature of the spacetime. More precisely, if

ψl(t = 0, r) = μl+1Rl+1r−l−1
∗ , (4.64)

then the late time tail is

ψ(t, r∗|t 	 r∗ 	 M) ∼ (−1)l+12−l−1μl+1Rl+1(r∗)l+1t−(2l+2), (4.65)

and

ψl(t, r|u � r∗) ∼ (−1)l+12−2l−2μl+1Rl+1u−l−1. (4.66)

From our discussion above, it is clear that such an initial data generically will have a non-

zero Newman-Penrose constant, and its Couch-Torrence reflection will have a non-zero

Aretakis constant.

Now we address the question of if, in addition to (4.64), there is an r−l
∗ term present at

the t = 0 surface near spatial infinity, how does it contribute to the late time tail? The

contribution arises due to backscattering from the curvature of spacetime. If the initial

data has non-zero static moment, such a term would be present.

To compute this contribution, fortunately, we do not need to do much. Since it is believed

that the late time tail arises due to backscattering from the weakly curved asymptotic

region [148,177,178], this computation is exactly the same as in the Schwarzschild back-
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i0

J +

i+

H+

t = 0

Figure 4.2: Time-symmetric initial data for a scalar field in an extreme Reissner-
Nordström black hole background. The initial data consists of a function specified on
the t = 0 surface. ∂tψl(t = 0, r) is taken to be zero.

ground.

We very briefly review the Green’s function approach to late time tails following [181]

and supplement it with a discussion for an extended source of the type:

ψl(t = 0, r) = μlRlr−l
∗ . (4.67)

The retarded Green’s function for the wave operator appearing in (4.37) satisfies

[
∂2t − ∂2r∗ + V(r∗)

]
G(r∗, r′∗; t) = δ(t) δ(r∗ − r′∗) (4.68)

with the boundary condition

G(r∗, r′∗; t) = 0, for t < 0. (4.69)

We are interested in analysing the Green’s function in the frequency domain. Therefore,
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we do a Fourier transform via

G̃(r∗, r′∗;ω) =
∫ ∞

0
G(r∗, r′∗; t) eiωt dt. (4.70)

The range of the r∗ coordinate for black hole spacetimes is −∞ to ∞. In the frequency

domain the solutions to the wave equations we are interested in should satisfy outgoing

boundary conditions at infinity, and ingoing boundary conditions at the horizon. In terms

of the r∗ coordinate, these become

ψ̃l(r∗, ω)→ eiωr∗ as r∗ → ∞, (4.71)

ψ̃l(r∗, ω)→ e−iωr∗ as r∗ → −∞. (4.72)

The Fourier transform of the Green’s function G̃(r∗, r′∗;ω) satisfies

[
−ω2 − ∂2r∗ + V(r∗)

]
G̃(r∗, r′∗;ω) = 0, (4.73)

and is analytic in the upper half plane. Now recall that for a second order ODE with ho-

mogeneous boundary conditions, the Green’s function can be uniquely constructed simply

using two auxiliary functions f (r∗, ω) and g(r∗, ω), where f (r∗, ω) satisfies the left bound-

ary condition and g(r∗, ω) satisfies the right boundary condition. We adopt normalisations

such that

g(r∗, ω)→ eiωr∗ as r∗ → ∞, (4.74)

f (r∗, ω)→ e−iωr∗ as r∗ → −∞. (4.75)

Then the Green’s function is given by

G̃(r∗, r′∗;ω) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
f (r∗,ω)g(r′∗,ω)

W(ω) , if r∗ < r′∗

f (r′∗,ω)g(r∗,ω)
W(ω) , if r∗ > r′∗

(4.76)
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where W(ω) is the Wronskian of the two solutions f (r∗, ω) and g(r∗, ω): W(ω) = g∂r∗ f −
f∂r∗g. The Wronskian is independent of r∗. The late time tails come from the branch cut

along the negative imaginary axis of the Green’s function G̃(r∗, r′∗;ω) in the complex ω

place [182].

Andersson [181] has presented a very clear computation of the branch cut of the Green’s

function in the low-frequency asymptotic expansion using some results from [183]. In-

stead of reviewing those details here, we simply write equation (40) of that reference

(which has a typo of an overall minus sign) [181]:

GC(r∗, r′∗, t) = −2πiM
√

r∗r′∗

∫ −i∞

0
ω Jl+1/2(ωr∗) Jl+1/2(ωr′∗) e−iωtdω. (4.77)

The late time solution using this Green’s function is simply (see e.g., equation (7.3.5)

of [184] or [182])

ψC
l (r∗, t) =

∫ ∞

0
GC(r∗, r′∗, t) ∂tψ0(r′∗, 0) dr′∗ −

∫ ∞

0
∂tGC(r∗, r′∗, t) ψ0(r′∗) dr′∗, (4.78)

where we have implicitly used the fact that the leading contribution only comes from

the asymptotic region, and our non-compact initial data has support only in the r∗ 	 M

asymptotic region.

Inserting initial data (4.67) together with ∂tψ0(r∗, 0) = 0 in equation (4.78), we get

ψl(r∗, t) = 2πμlRlM
√

r∗

∫ −i∞

0
dωω2 e−iωt Jl+1/2(ωr∗)

∫ ∞

0
dr′∗ r′∗

−l+1/2 Jl+1/2(ωr′∗). (4.79)

We can evaluate the second integral in equation (4.79) using identity (6.561-14) of Grad-

shteyn and Ryzhik [180] to get

ψl(r∗, t) =
2
√
2π

(2l − 1)!!
μlRlM

√
r∗

∫ −i∞

0
ωl+1/2 e−iωt Jl+1/2(ωr∗) dω. (4.80)
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To compute the tail at timelike infinity, we approximate ωr∗ � 1 to get

ψl(t, r∗|t 	 r∗ 	 M) ∼ 4μlRlMrl+1
∗

(2l − 1)!!(2l + 1)!!

∫ −i∞

0
ω2l+1 e−iωt dω (4.81)

= (−1)l+14μlRlM
(2l)!!

(2l − 1)!!
rl+1
∗ t−2l−2. (4.82)

This expression can be compared with equation (69) of reference [185] and equations IV-

1 and IV-2 of reference [186]. In those papers, computations are done differently, and in

different contexts.

To compute the tail near null infinity, we approximate ωr∗ 	 1. A similar calculation

then gives

ψl(t, r∗) ∼ (−1)l+12μlRlM
l!

(2l − 1)!!
u−l−1. (4.83)

This expression can be compared with equation (68) of reference [185].

Equations (4.82) and (4.83) are contributions proportional to μlM to the late time tails in

an extreme Reissner-Nordström black hole background.

4.4 Discussion

In this chapter we have revisited the study of the leading order late time decay tails for

massless scalar perturbations outside an extreme Reissner-Nordström black hole. While

previous studies have analysed this problem in the time domain, we analysed the problem

in the frequency domain. A systematic time domain analysis was reported by Sela [162].2

Sela’s analysis is quite involved. The merit of our work lies in its simplicity. We are able

to obtain most of the key results of Sela’s analysis, including all pre-factors, using rather

straightforward Fourier methods.

We find that initial perturbations with generic regular behaviour across the horizon decays

2For electromagnetic and gravitational perturbations see [160,187].
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at late times as t−2l−2 near timelike infinity (t 	 r∗). It decays as u−l−1 near future null

infinity. The inversion map (4.10) maps the decay behaviour near future null infinity to

the decay behaviour v−l−1 near the horizon.

For initial data of the form (4.47) at the u = 0 surface, there are other contributions to the

t−(2l+2) late time tail. They arise due to backscattering from the curvature of spacetime,

from terms r−k for k < l + 1. These contributions should go as

(pre-factor) Ml+1−kĉkt−(2l+2). (4.84)

We have not addressed these contributions in this chapter. For k = l we considered a

related problem with initial data on the t = 0 surface of the form (4.67) near spatial

infinity. It corresponds to a term proportional to the static moment. Equations (4.82) and

(4.83) are the contributions to the late time tails due to these terms. From the Couch-

Torrence symmetry, it follows that such a term, if present near the bifurcation surface,

will contribute to the v−l−1 tail near the horizon. It seems likely that the iterative scheme

of [179] can be adopted in the frequency domain to compute tail contributions from k < l

terms.

In section 4.2 using the Couch-Torrence symmetry we also related higher multipole Are-

takis and Newman-Penrose constants for a massless scalar in an extreme Reissner-Nordström

black hole background. Although a number of relations involving Pascal matrices are

known in the literature, the identities (4.22) and (4.31) seem to be new. We used these

matrix relations to explain relations of functions, but from a mathematical perspective it

would be more interesting to turn the logic around. Namely, one could seek interpreta-

tions, e.g., through combinatorics or functional methods, of these and more general matrix

relations.

All of our analysis is only valid in the asymptotic regions, either near infinity or near the

horizon |r∗| 	 M. We have not attempted to compute the correct radial dependence of the
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coefficient of the tail in full generality. From general results in the literature, we do expect

the correct radial dependence of the tail at timelike infinfity to be the static solution to the

extreme Reissner-Nordström potential [148, 161, 162], cf. (4.40)

r
M

( r
M
− 1

)−l−1
(4.85)

with a constant pre-factor. We expect that the constant pre-factor gets contributions from

the Newman-Penrose constant as well as from the Aretakis constant. This has been ob-

served in numerical simulations [160]. The proportionality to the Aretakis constant is

briefly discussed in [161,162], but details have not been presented. Together with the sug-

gestion of references [160, 188] that “initial static moments” are more precisely thought

of as initial data with non-zero Newman-Penrose constants, it is natural to conjecture that

the total tail coefficient is proportional to the sum of (appropriately normalised) Aretakis

and Newman-Penrose constants. It will be interesting to understand this circle of ideas

better in the future.

In a series of papers Casals, Gralla, and Zimmerman [189–191] have analyzed the Are-

takis instability and related questions in the frequency domain. They have obtained late

time decay results on and off the horizon from the AdS2 perspective. Their analysis is

restricted to perturbations with vanishing Aretakis constants. When adapted to an ex-

treme Reissner-Nordström black hole, and extended to perturbations with non-vanishing

Aretakis constants, their analysis could be compared to ours through the Couch-Torrence

duality. It will be useful to relate our work to their work in detail. It will be very inter-

esting to reproduce the late time tails from a microscopic CFT analysis for extreme black

holes.

In a recent paper [192], Camps, Hadar, and Manton studied moduli space scattering of

two extreme Reissner-Nordström black holes. They obtained the asymptotic gravitational

radiation field wave-form at “moderately” late times, when the two black holes have not

merged. They found that the asymptotic radiation field exhibits a quadrupolar late time
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tail of the form t−2l−2 for l = 2. It will be interesting to understand how their results relate

to our analysis. We hope to report on some of these problems in our future work.
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Appendix A

Appendix for Chapter 2

A.1 Perturbation Near λ→ 0

We have

z2(λ, η) sinh η =
1 − cn(2λ

√
sinh η, 1/

√
2)

1 + cn(2λ
√
sinh η, 1/

√
2)

⇒ z(λ, η) = λ +
sinh2 η
10

λ5 +
sinh4 η
120

λ9 (A.1)

where we have kept terms upto order λ9. Thus we get the solution for v(η, λ) as

v(λ, η) = (−1 + cosh η)λ − 2
5
sinh4(η/2)λ5 − 1

45
((−7 + 3 cosh η) sinh6 η/2)λ9 (A.2)

Using these solutions and the solutions for xi we get
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c(λ, η) = 1 − sinh η4

75
λ8 + ......... (A.3)

Thus

∂c
∂λ

∣∣∣∣
η
= −8 sinh η

4

75
λ7 ≤ 0

c(0, η) = 1
(A.4)
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Appendix B

Appendix for Chapter 3

B.1 Analysis to show that Δ(n)
μν (t0, x0) = 0 for all n

The j-th derivative of In,m(R) (3.46) gives

∂
j
RIn,m(R) =

j−1∑
i=0

∂
j−i−1
R

(
∂i

R fn,m(x,R)|x=R

)
+

∫ R

0
∂

j
R fn,m(x,R)dx (B.1)

where

fn,m(x,R) = x2m(coshR + cosh x)−
n
2+1(coshR − cosh x)

n
2+1. (B.2)

Thus from (3.48) we have

∑
n,m

2n+1

(2m)!
∂2m

x Δ(n)
xx (t0, x0)

⎡⎢⎢⎢⎢⎢⎣
J+2∑
i=0

∂J−i+2
R

(
∂i

R fn,m(x,R)|x=R

)⎤⎥⎥⎥⎥⎥⎦
R=0

= 0. (B.3)

First we will show that Δxx = 0 for even integers. For odd integers, we check it numeri-

cally below. Writing 2l for the even integer n, and simplifying a bit, we get

J+1∑
l=0

∑
m

(l + 1)! 2l

(2m)!
∂2m

x Δ(2l)
xx (t0, x0)C

J,l,m(R = 0) = 0, (B.4)
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where

CJ,l,m(R = 0) =
[
∂J−(l−1)

R

(
R2m cosh1−l R sinh1+l R

)]
R=0

. (B.5)

Notice that we have restricted l to range from 0 to J + 1. This is because the terms with

l > J + 1 all vanish at x = R. Now, (B.4) can be written as

∑
l

(l + 1)!2lΔ(2l)
xx (t0, x0)C

J,l,0(R = 0) = −
∑
l,m�0

(l + 1)! 2l

(2m)!
∂2m

x Δ(2l)
xx (t0, x0)C

J,l,m(R = 0). (B.6)

Setting J = 0, we get

Δ(0)
xx (t0, x0) = 0. (B.7)

J = 2 gives

Δ(2)
xx (t0, x0) = − 1

2
Δ(0)

xx (t0, x0) +
3
8
∂2xΔ

(0)
xx (t0, x0),

⇒ Δ(2)
xx (t0, x0) = 0. (B.8)

J = 4 gives

Δ(4)
xx (t0, x0) = − 2

9
Δ(2)

xx (t0, x0) +
1
3
∂2xΔ

(2)
xx (t0, x0)

− 1
9
Δ(0)

xx (t0, x0) +
5
18
∂2xΔ

(0)
xx (t0, x0)

+
5

144
∂4xΔ

(0)
xx (t0, x0)

⇒ Δ(4)
xx (t0, x0) = 0 (B.9)

Let’s check it for J = 2N. It is easy to see that for all l ≥ N + 1 the coefficients C are zero

for all m. For l = N

C2N,N,0(R = 0) = [∂N+1
R (cosh1−N R sinh1+N R)]R=0

= (N + 1)! (B.10)
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So the last non vanishing term in the l series in (B.6) with m = 0 is Δ(2N)
xx (t0, x0) and with

m � 0 it will be a lower order term. Now notice that this term is a linear combination of

all the lower order terms and their derivatives, which are zero. Hence Δ(2N)
xx (t0, x0) is also

zero for N = 0, 1, . . . .

Numerical analysis for odd n

Consider the expansion (3.47):

∑
n,m, j

2n+1

(2m)!
∂2m

x Δ(n)
xx (t, x0)R

jC j
n,m(0) = 0, (B.11)

where

C j
n,m(0) =

1
j!

[
∂

j
RIn,m(R)

]
R=0

.

We have already seen that the first two terms in this series do not give any constraint

and that the terms with odd powers of R (i.e, odd j) impose constraints on even n. Thus

one should expect that terms with alternative powers of R (i.e, even j) should impose

constraints on odd n. Let us check the term of order R4. Using numerics one can see that

the coefficient C4
n,m(0) is zero for all n,m except for n = 1,m = 0. The relevant plots are

shown in figure B.1.

At order R6, there are three non-zero coefficients, namely, C6
3,0,C

6
1,0,C

6
1,1. This implies that

Δ
(3)
xx (t0, x0) can be written in terms of Δ(1)

xx (t0, x0) and ∂2xΔ
(1)
xx (t0, x0), and hence Δ(3)

xx (t0, x0) is

also 0. Figure B.2 shows the behavior of coefficients at R = 0.

At order R8, there are several non-zero coefficients which are shown in figure B.3. From

the plot, one can deduce that Δ(5)(t0, x0) can be written as a linear combination of the lower

order terms and their derivatives, and hence is 0.

From this pattern, we conclude that in general the higher order coefficients can be written
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in terms of lower order coefficients. This means that

Δ(n)
xx (t0, x0) = 0

for all n.

Figure B.1: C4
n,m vs R for different values

of n and m.
Figure B.2: C6

n,m vs R for different values
of n and m.

Figure B.3: C8
n,m vs R for different values of n and m.

These figures show for a particular j what coefficients C j
n,m are non-zero as R → 0.

Some numerical computations for boosted black brane:

Here we have plotted different coefficients of R4-th and R5-th terms in the expansion series

(3.65) around R = 0. They are denoted by C4
μν and C5

μν respectively.

Figures B.4, B.5 and B.6 show that all the coefficients of R4-th term are zero as R → 0

except when n = 1 and mt = mx = 0 which give the first equation in (3.69) with β = 0.5.

Similarly for R5-th term the only non-zero coefficient with maximum value of n as R → 0
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Figure B.4: C4
xx vs R for different values

of n, mt and mx.
Figure B.5: C4

tx vs R for different values
of n, mt and mx.

Figure B.6: C4
tt vs R for different values

of n, mt and mx.
Figure B.7: C5

xx vs R for different values
of n, mt and mx.

Figure B.8: C5
tx vs R for different values

of n, mt and mx.
Figure B.9: C5

tt vs R for different values
of n, mt and mx.

is n = 2 and mt = mx = 0. This can be expressed as a linear combination of the terms

with lower values of n which are already zero. These give the second equation in (3.69).

79



Bibliography

[1] J. D. Bekenstein, “Black holes and the second law,” Nuovo Cim. Lett. bf 4

(1972) 737 .

[2] J. D. Bekenstein, “Black Holes and Entropy,” Phys. Rev. D 7 (1973) 2333 .

[3] S. W. Hawking, “Black hole explosions,” Nature 248 (1974) 30 .

[4] S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys. 43,

199 (1975).

[5] L. Susskind, “The World as a Hologram,” J. Math. Phys. 36 (1995) 6377 ,

hep-th/9409089.

[6] G. ’t. Hooft, “Dimensional Reduction in Quantum Gravity,” gr-qc/9310026.

[7] A. B. Zamolodchikov, “Irreversibility of the Flux of the Renormalization Group in

a 2D Field Theory,” JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43

(1986) 565], [INSPIRE].

[8] A. Cappelli, D. Friedan and J. I. Latorre, “C theorem and spectral representation,”

Nucl. Phys. B 352, 616 (1991).

[9] J. L. Cardy, “Is There a c Theorem in Four-Dimensions?,” Phys. Lett. B 215

(1988) 749.

[10] H. Osborn, “Derivation of a Four-dimensional c Theorem,” Phys. Lett. B 222

(1989) 97.

80



[11] Z. Komargodski and A. Schwimmer, “On Renormalization Group Flows in Four

Dimensions,” JHEP 1112 (2011) 099, [arXiv:1107.3987 [hep-th]].

[12] Z. Komargodski, “The Constraints of Conformal Symmetry on RG Flows,” JHEP

1207, 069 (2012), [arXiv:1112.4538 [hep-th]].

[13] D. L. Jafferis, I. R. Klebanov, S. S. Pufu and B. R. Safdi, “Towards the

F-Theorem: N=2 Field Theories on the Three-Sphere,” JHEP 1106, 102 (2011),

[arXiv:1103.1181 [hep-th]].

[14] I. Affleck and A. W. W. Ludwig, “Universal noninteger ’ground state degeneracy’

in critical quantum systems,” Phys. Rev. Lett. 67, 161 (1991).

[15] D. Friedan and A. Konechny, “On the boundary entropy of one-dimensional

quantum systems at low temperature,” Phys. Rev. Lett. 93, 030402 (2004),

[hep-th/0312197].

[16] K. Jensen and A. O’Bannon, “A Constraint on Defect and Boundary

Renormalization Group Flows,” Phys. Rev. Lett. 116, 091601 (2016),

arXiv:1509.02160 [hep-th].

[17] J. Kaplan and J. Wang, “An Effective Theory for Holographic RG Flows,” JHEP

1502, 056 (2015), [arXiv:1406.4152 [hep-th]].

[18] H. Casini and M. Huerta, “A Finite entanglement entropy and the c-theorem,”

Phys. Lett. B 600, 142 (2004), [hep-th/0405111].

[19] H. Casini and M. Huerta, “On the RG running of the entanglement entropy of a

circle,” Phys. Rev. D 85, 125016 (2012), [arXiv:1202.5650 [hep-th]].

[20] E. T. Akhmedov, “A Remark on the AdS / CFT correspondence and the

renormalization group flow,” Phys. Lett. B 442, 152 (1998), [hep-th/9806217].

81



[21] D. Z. Freedman, S. S. Gubser, K. Pilch and N. P. Warner, “Renormalization group

flows from holography supersymmetry and a c theorem,” Adv. Theor. Math. Phys.

3, 363 (1999), [hep-th/9904017].

[22] L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, “Novel local CFT and exact

results on perturbations of N=4 superYang Mills from AdS dynamics,” JHEP

9812, 022 (1998), [hep-th/9810126].

[23] J. de Boer, E. P. Verlinde and H. L. Verlinde, “On the holographic renormalization

group,” JHEP 0008, 003 (2000), [hep-th/9912012].

[24] R. C. Myers and A. Sinha, “Holographic c-theorems in arbitrary dimensions,”

JHEP 1101, 125 (2011), [arXiv:1011.5819 [hep-th]].

[25] R. C. Myers and A. Sinha, “Seeing a c-theorem with holography,” Phys. Rev. D

82, 046006 (2010), [arXiv:1006.1263 [hep-th]].

[26] S. Banerjee and P. Paul, “Black Hole Singularity, Generalized (Holographic)

c-Theorem and Entanglement Negativity,” JHEP 1702 (2017) 043,

[arXiv:1512.02232[hep-th]].

[27] S. Banerjee, “RG Flow and Thermodynamics of Causal Horizons in AdS,” JHEP

1510, 098 (2015), [arXiv:1508.01343 [hep-th]].

[28] S. Banerjee and A. Bhattacharyya, “RG Flow and Thermodynamics of Causal

Horizons in Higher-Derivative AdS Gravity,” JHEP 05, 126 (2016),

arXiv:1509.08475 [hep-th].

[29] I. Heemskerk and J. Polchinski, “Holographic and Wilsonian Renormalization

Groups,” JHEP 1106, 031 (2011), [arXiv:1010.1264 [hep-th]].

[30] T. Faulkner, H. Liu and M. Rangamani, “Integrating out geometry: Holographic

Wilsonian RG and the membrane paradigm,” JHEP 1108, 051 (2011),

[arXiv:1010.4036 [hep-th]].

82



[31] D. Elander, H. Isono and G. Mandal, “Holographic Wilsonian flows and emergent

fermions in extremal charged black holes,” JHEP 1111, 155 (2011),

[arXiv:1109.3366 [hep-th]].

[32] D. Radicevic, “Connecting the Holographic and Wilsonian Renormalization

Groups,” JHEP 1112, 023 (2011), [arXiv:1105.5825 [hep-th]].

[33] E. D’Hoker and D. Z. Frredman, “Supersymmetric Gauge Theories and the

AdS/CFT Correspondence,” arXiv:hep-th/0201253.

[34] G. W. Gibbons and S. W. Hawking, “Cosmological Event Horizons,

Thermodynamics, and Particle Creation,” Phys. Rev. D 15, 2738 (1977).

[35] T. Jacobson and R. Parentani, “Horizon entropy,” Found. Phys. 33 (2003) 323,

[gr-qc/0302099].

[36] E. Witten, "Anti-de Sitter space, thermal phase transition, and confinement in

gauge theories,” Adv. Theor. Math. Phys. 2, 505 (1998), [hep-th/9803131].

[37] J. M. Maldacena, “Eternal black holes in anti-de Sitter,” JHEP 0304, 021 (2003),

[hep-th/0106112].

[38] H. Liu and M. Mezei, “A Refinement of entanglement entropy and the number of

degrees of freedom,” JHEP 1304 (2013) 162, [arXiv:1202.2070 [hep-th]].

[39] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from

AdS/CFT,” Phys. Rev. Lett. 96, 181602 (2006), [hep-th/0603001].

[40] V. E. Hubeny, M. Rangamani and T. Takayanagi, “A Covariant holographic

entanglement entropy proposal,” JHEP 0707, 062 (2007), [arXiv:0705.0016

[hep-th]].

[41] V. E. Hubeny, M. Rangamani and E. Tonni, “Global properties of causal wedges

in asymptotically AdS spacetimes,” JHEP 1310, 059 (2013), [arXiv:1306.4324

[hep-th]].

83



[42] V. E. Hubeny and M. Rangamani, “Causal Holographic Information,” JHEP 1206,

114 (2012), [arXiv:1204.1698 [hep-th]].

[43] G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A

65, 032314 (2002)

[44] G. Vidal, “Entanglement monotones,” J. Mod. Opt. 47, 355 (2000),

[quant-ph/9807077].

[45] P. Calabrese, J. Cardy and E. Tonni, “Entanglement negativity in quantum field

theory,” Phys. Rev. Lett. 109, 130502 (2012), [arXiv:1206.3092

[cond-mat.stat-mech]].

[46] P. Calabrese, J. Cardy and E. Tonni, “Entanglement negativity in extended

systems: A field theoretical approach,” J. Stat. Mech. 1302, P02008 (2013),

[arXiv:1210.5359 [cond-mat.stat-mech]].

[47] P. Calabrese, L. Tagliacozzo and E. Tonni, “Entanglement negativity in the critical

Ising chain,” J. Stat. Mech. 1305, P05002 (2013), [arXiv:1302.1113

[cond-mat.stat-mech]].

[48] V. Alba, “Entanglement negativity and conformal field theory: a Monte Carlo

study,” J. Stat. Mech. 1305, P05013 (2013), [arXiv:1302.1110

[cond-mat.stat-mech]].

[49] A. Coser, E. Tonni and P. Calabrese, “Partial transpose of two disjoint blocks in

XY spin chains,” J. Stat. Mech. 1508, no. 8, P08005 (2015), [arXiv:1503.09114

[cond-mat.stat-mech]].

[50] A. Coser, E. Tonni and P. Calabrese, “Towards entanglement negativity of two

disjoint intervals for a one dimensional free fermion,” arXiv:1508.00811

[cond-mat.stat-mech].

84



[51] V. Eisler and Z. Zimboras, " Entanglement negativity in the harmonic chain out of

equilibrium, " New J. Phys. 16 (2014) 123020, arXiv: 1406.5474

[cond-mat.stat-mech]

[52] P. Calabrese, J. Cardy and E. Tonni, “Finite temperature entanglement negativity

in conformal field theory,” J. Phys. A 48, no. 1, 015006 (2015), [arXiv:1408.3043

[cond-mat.stat-mech]].

[53] M. Rangamani and M. Rota, “Comments on Entanglement Negativity in

Holographic Field Theories,” JHEP 1410, 60 (2014), [arXiv:1406.6989 [hep-th]].

[54] E. Perlmutter, M. Rangamani and M. Rota, “Central Charges and the Sign of

Entanglement in 4D Conformal Field Theories,” Phys. Rev. Lett. 115, no. 17,

171601 (2015), [arXiv:1506.01679 [hep-th]].

[55] M. Kulaxizi, A. Parnachev and G. Policastro, “Conformal Blocks and Negativity

at Large Central Charge,” JHEP 1409, 010 (2014), [arXiv:1407.0324 [hep-th]].

[56] T. Faulkner, “The Entanglement Renyi Entropies of Disjoint Intervals in

AdS/CFT,” arXiv:1303.7221 [hep-th].

[57] T. Hartman, “Entanglement Entropy at Large Central Charge,” arXiv:1303.6955

[hep-th].

[58] I. R. Klebanov, T. Nishioka, S. S. Pufu and B. R. Safdi, “Is Renormalized

Entanglement Entropy Stationary at RG Fixed Points?,” JHEP 1210, 058 (2012),

[arXiv:1207.3360 [hep-th]].

[59] T. Nishioka, “Relevant Perturbation of Entanglement Entropy and Stationarity,”

Phys. Rev. D 90, no. 4, 045006 (2014), [arXiv:1405.3650 [hep-th]].

[60] S. Banerjee, Y. Nakaguchi and T. Nishioka, “Renormalized Entanglement Entropy

on Cylinder,” JHEP 03, 048 (2016), arXiv:1508.00979 [hep-th].

85



[61] H. Casini and M. Huerta, “Entanglement and alpha entropies for a massive scalar

field in two dimensions,” J. Stat. Mech. 0512, P12012 (2005),

[cond-mat/0511014].

[62] H. Casini, M. Huerta, R. C. Myers and A. Yale, “Mutual information and the

F-theorem,” JHEP 1510, 003 (2015), [arXiv:1506.06195 [hep-th]].

[63] M. F. Paulos, “Holographic phase space: c-functions and black holes as

renormalization group flows,” JHEP 1105, 043 (2011), [arXiv:1101.5993

[hep-th]].

[64] S. Cremonini and X. Dong, “Constraints on renormalization group flows from

holographic entanglement entropy,” Phys. Rev. D 89, no. 6, 065041 (2014),

[arXiv:1311.3307 [hep-th]].

[65] J. T. Liu and Z. Zhao, “Holographic Lifshitz flows and the null energy condition,”

arXiv:1206.1047 [hep-th].

[66] P. Kraus, H. Ooguri and S. Shenker, “Inside the horizon with AdS / CFT,” Phys.

Rev. D 67, 124022 (2003), [hep-th/0212277].

[67] L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, “The Black hole singularity

in AdS / CFT,” JHEP 0402, 014 (2004), [hep-th/0306170].

[68] G. Festuccia and H. Liu, “Excursions beyond the horizon: Black hole singularities

in Yang-Mills theories. I.,” JHEP 0604, 044 (2006), [hep-th/0506202].

[69] M. Van Raamsdonk, “Building up spacetime with quantum entanglement,” Gen.

Rel. Grav. 42, 2323 (2010), [arXiv:1005.3035 [hep-th]].

[70] M. Van Raamsdonk, “Comments on quantum gravity and entanglement,”

arXiv:0907.2939 [hep-th].

[71] J. Maldacena and L. Susskind, “Cool horizons for entangled black holes,” Fortsch.

Phys. 61, 781 (2013), [arXiv:1306.0533 [hep-th]].

86



[72] S. H. Shenker and D. Stanford, “Black holes and the butterfly effect,” JHEP 1403,

067 (2014), [arXiv:1306.0622 [hep-th]].

[73] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, “Black Holes:

Complementarity or Firewalls?,” JHEP 1302, 062 (2013), [arXiv:1207.3123

[hep-th]].

[74] A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, “An Apologia for

Firewalls,” JHEP 1309, 018 (2013), [arXiv:1304.6483 [hep-th]].

[75] S. L. Braunstein, S. Pirandola and K. ?yczkowski, “Better Late than Never:

Information Retrieval from Black Holes,” Phys. Rev. Lett. 110, no. 10, 101301

(2013), [arXiv:0907.1190 [quant-ph]].

[76] K. Papadodimas and S. Raju, “An Infalling Observer in AdS/CFT,” JHEP 1310,

212 (2013), [arXiv:1211.6767 [hep-th]].

[77] T. Hartman and J. Maldacena, “Time Evolution of Entanglement Entropy from

Black Hole Interiors,” JHEP 1305, 014 (2013), [arXiv:1303.1080 [hep-th]].

[78] G. Vidal, “Entanglement Renormalization,” Phys. Rev. Lett. 99, no. 22, 220405

(2007), [cond-mat/0512165].

[79] B. Swingle, “Constructing holographic spacetimes using entanglement

renormalization,” arXiv:1209.3304 [hep-th].

[80] B. Swingle, “Entanglement Renormalization and Holography,” Phys. Rev. D 86,

065007 (2012), [arXiv:0905.1317 [cond-mat.str-el]].

[81] F. Verstraete, J. I. Cirac, J. I. Latorre, E. Rico and M. M. Wolf, “Renormalization

group transformations on quantum states,” , Phys. Rev. Lett. 94, 140601 (2005)

[quant-ph/0410227].

87



[82] M. Nozaki, S. Ryu and T. Takayanagi, “Holographic Geometry of Entanglement

Renormalization in Quantum Field Theories,” JHEP 1210, 193 (2012),

[arXiv:1208.3469 [hep-th]].

[83] Evenbly, G. and Vidal, G., "Tensor Network Renormalization Yields the

Multiscale Entanglement Renormalization Ansatz," Phys. Rev. Lett. 115, 200401

(2015), arXiv:1502.05385 [cond-mat.str-el]

[84] B. Czech, G. Evenbly, L. Lamprou, S. McCandlish, X. L. Qi, J. Sully and

G. Vidal, “Tensor network quotient takes the vacuum to the thermal state,” Phys.

Rev. B 94, 085101 (2016), arXiv:1510.07637 [cond-mat.str-el].

[85] R. M. Wald, General relativity, University of Chicago Press, 1984,

doi:10.7208/chicago/9780226870373.001.0001.

[86] K. Goldstein, R. P. Jena, G. Mandal and S. P. Trivedi, “A C-function for

non-supersymmetric attractors,” JHEP 0602, 053 (2006), [hep-th/0512138].

[87] S. Kachru, N. Kundu, A. Saha, R. Samanta and S. P. Trivedi, “Interpolating from

Bianchi Attractors to Lifshitz and AdS Spacetimes,” JHEP 1403, 074 (2014),

[arXiv:1310.5740 [hep-th]].

[88] A. Bhattacharyya, S. S. Haque, V. Jejjala, S. Nampuri and A. Veliz-Osorio,

“Attractive holographic c-functions,” JHEP 1411, 138 (2014), [arXiv:1407.0469

[hep-th]].

[89] R. M. Wald, “Black hole entropy is the Noether charge,” Phys. Rev. D 48 (1993)

3427, [gr-qc/9307038].

[90] T. Jacobson, G. Kang and R. C. Myers, “On black hole entropy,” Phys. Rev. D 49,

6587 (1994), [gr-qc/9312023].

88



[91] V. Iyer and R. M. Wald, “Some properties of Noether charge and a proposal for

dynamical black hole entropy,” Phys. Rev. D 50, 846 (1994),

[arXiv:gr-qc/9403028].

[92] T. Jacobson and R. C. Myers, “Black hole entropy and higher curvature

interactions,” Phys. Rev. Lett. 70, 3684 (1993), [hep-th/9305016].

[93] T. Jacobson, G. Kang, R. C. Myers, “Increase of black hole entropy in higher

curvature gravity,” Phys. Rev. D52, 3518-3528 (1995), [gr-qc/9503020].

[94] S. Sarkar and A. C. Wall, “Generalized second law at linear order for actions that

are functions of Lovelock densities,” Phys. Rev. D88, 044017 (2013),

[arXiv:1306.1623 [gr-qc]].

[95] X. Dong, “Holographic Entanglement Entropy for General Higher Derivative

Gravity,” JHEP 1401, 044 (2014), [arXiv:1310.5713 [hep-th]].

[96] J. Camps, “Generalized entropy and higher derivative Gravity,” JHEP 1403, 070

(2014), [arXiv:1310.6659 [hep-th]].

[97] S. Bhattacharjee, S. Sarkar and A. Wall, “The holographic entropy increases in

quadratic curvature gravity,” Phys. Rev. D92, 064006 (2015), arXiv:1504.04706

[gr-qc].

[98] A. C. Wall, “A Second Law for Higher Curvature Gravity,” arXiv:1504.08040

[gr-qc].

[99] S. Bhattacharjee, A. Bhattacharyya, S. Sarkar and A. Sinha, “Entropy functionals

and c-theorems from the second law,” arXiv:1508.01658 [hep-th].

[100] A. Bhattacharyya, M. Sharma and A. Sinha, “On generalized gravitational

entropy, squashed cones and holography,” JHEP 1401, 021 (2014),

[arXiv:1308.5748 [hep-th]].

89



A. Bhattacharyya, A. Kaviraj and A. Sinha, “Entanglement entropy in higher

derivative holography,” JHEP 1308, 012 (2013), [arXiv:1305.6694 [hep-th]].

A. Bhattacharyya and M. Sharma, “On entanglement entropy functionals in higher

derivative gravity theories,” JHEP 1410, 130 (2014), [arXiv:1405.3511 [hep-th]].

[101] D. V. Fursaev, A. Patrushev and S. N. Solodukhin, “Distributional Geometry of

Squashed Cones,” Phys. Rev. D 88, no. 4, 044054 (2013), [arXiv:1306.4000

[hep-th]].

[102] J. de Boer, M. Kulaxizi and A. Parnachev, “Holographic Entanglement Entropy in

Lovelock Gravities,” JHEP 1107, 109 (2011), [arXiv:1101.5781 [hep-th]].

[103] L. Y. Hung, R. C. Myers and M. Smolkin, “On Holographic Entanglement

Entropy and Higher Curvature Gravity,” JHEP 1104, 025 (2011),

[arXiv:1101.5813 [hep-th]].

[104] J. Cardy and E. Tonni, “Entanglement Hamiltonians in two-dimensional

conformal field theory,” J.Stat.Mech (2016) 123103, [arXiv:1608.01283

[cond-mat.stat-mech]].

[105] J. M. Bardeen, B. Carter, and S. W. Hawking, “The Four Laws of Black Hole

Mechanics,” Commun. Math. Phys. 31, 161 (1973).

[106] T. Jacobson, “Thermodynamics of Space-time: The Einstein Equation of State,”

Phys. Rev. Lett. 75, 1260 (1995), [gr-qc/9504004].

[107] T. Padmanabhan, “Thermodynamical Aspects of Gravity: New insights,” Rept.

Prog. Phys. 73 046901 (2010), [arXiv: 0911.5004 [gr-qc]].

[108] E. P. Verlinde, “On the Origin of Gravity and the Laws of Newton,” JHEP 1104,

029 (2011), [arXiv:1001.0785[hep-th]].

90



[109] J. M. Maldacena, “The Large N Limit of Superconformal Field Theories and

Supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998), [Int. J. Theor. Phys. 38,

1113 (1999)], [arXiv:hep-th/9711200].

[110] E. Witten, “Anti-de Sitter space and holography,“ Adv. Theor. Math. Phys. 2

(1998) 253, hep-th/9802150.

[111] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N Field

Theories, String Theory and Gravity,” Phys. Rept. 323, 183 (2000),

[arXiv:hep-th/9905111].

[112] N. Lashkari, M. B. McDermott, M. V. Raamsdonk, “Gravitational Dynamics

From Entanglement “Thermodynamics”,” JHEP 1404, 195 (2014),

[arXiv:1308.3716 [hep-th]].

[113] T. Faulkner, M. Guica, T. Hartman, R. C. Myers, M. V. Raamsdonk, “Gravitation

from entanglement in holographic CFTs,” JHEP 1403, 051 (2014),

[arXiv:1312.7856[hep-th]].

[114] D. D. Blanco, H. Casini, L. Y. Hung, R. C. Myers, “Relative Entropy and

Holography,” JHEP 1308, 060 (2014), [arXiv:1305.3182 [hep-th]].

[115] P. Paul and P. Roy, “Linearized Einstein’s Equations around pure BTZ from

Entanglement Thermodynamics,” [arXiv:1803.06484[hep-th]].

[116] A. J. Speranza, “Entanglement Entropy of Excited States in Conformal

Perturbation Theory and the Einstein Equation,” JHEP 04 (2016) 105,

[arXiv:1602.01380].

[117] B. Mosk, “Holographic Equivalence Between the First Law of Entanglement

Entropy and the Linearized Gravitational Equations,” Phys. Rev. D 94 (2016)

126001, [arXiv:1608.06292].

91



[118] B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, “Equivalent

Equations of Motion for Gravity and Entropy,” JHEP 02 (2017) 004,

[arXiv:1608.06282].

[119] B. Swingle and M. V. Raamsdonk, “Universality of Gravity from Entanglement,”

arXiv:1405.2933.

[120] T. Jacobson, “Entanglement Equilibrium and the Einstein Equation,” Phys. Rev.

Lett. 116 (2016) no. 20, 201101, [arXiv:1505.04753].

[121] Xian-Hui Ge, Bin Wang, “Quantum computational complexity, Einstein’s

equations and accelerated expansion of the Universe,” JCAP 1802 (2018) no.02,

047, [arXiv:1708.06811 [hep-th]].

[122] M. V. Raamsdonk, “Lectures on Gravity and Entanglement,”

arXiv:1609.00026[hep-th].

[123] J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, “Thermodynamical

Property of Entanglement Entropy for Excited States,” Phys. Rev. Lett. 110, no.

9, 091602 (2013), [arXiv:1212.1164[hep-th]].

[124] M. Nozaki, T. Numasawa, and T. Takayanagi, “Holographic Local Quenches and

Entanglement Density,” JHEP 1308 102 (2013), [arXiv:1302.5703 [hep-th]].

[125] M. Nozaki, T. Numasawa, A. Prudenziati, T. Takayanagi, “Dynamics of

Entanglement Entropy from Einstein Equation,” Phys. Rev. D 88 (2013) no. 2,

026012, [arXiv:1304.7100 [hep-th]].

[126] D. Allahbakhshi, M. Alishahiha and A. Naseh, “Entanglement

Thermodynamics,” JHEP 1308 (2013) 102, [arXiv: 1305.2728 [hep-th]].

[127] G. Wong, I. Klich, L. A. Pando Zayas and D. Vaman, “Entanglement Temperature

and Entanglement Entropy of Excited States,” JHEP 1312 (2013) 020,

[arXiv:1305.3291 [hep-th]].

92



[128] I. Bakhmatov, N. S. Deger, J. Gutowski, E. Ó. Colgáin, H. Yavartanoo, “Calibrated

Entanglement Entropy,” JHEP 07 (2017) 117, [arXiv:1705.08319 [hep-th]]

[129] H. Casini, M. Huerta, R. C. Myers, “Towards a derivation of holographic

entanglement entropy,” JHEP 1105, 036 (2016), [arXiv:1102.0440[hep-th]].

[130] R. C. Myers, “Stress tensors and Casimir energies in the AdS/CFT

correspondence,” Phys. Rev. D 60, 046002 (1999), [hep-th/9903203].

[131] K. Skenderis, “Lecture Notes on Holographic Renormalization,”

Class.Quant.Grav. 19 (2002) 5849-5876, [arXiv:hep-th/0209067]

[132] S. de Haro, K. Skenderis, S. N. Solodukhin, “Holographic Reconstruction of

Spacetime and Renormalization in the AdS/CFT Correspondence,” Commun.

Math. Phys. 217, 595 (2001), [hep-th/0002230].

[133] J. Erdmenger and H. Osborn, “Conserved Currents and the Energy Momentum

Tensor in Conformally Invariant Theories for General Dimensions,” Nucl. Phys.

B 483 (1997) 431, [hep-th/9605009].

[134] V. Balasubramanian and P. kraus, “A Stress Tensor For Anti-de Sitter Gravity,”

Commun. Math. Phys. 208 (1999) 413-428, [hep-th/9902121].

[135] K. Skenderis, “Asymptotically Anti-de Sitter Spacetimes and Their Stress Energy

Tensor,” Int. J. Mod. Phys. A16 (2001) 740-749, [hep-th/0010138].

[136] V. Vedral, “Introduction to quantum information science,” Oxford University

Press, New York (2006).

[137] G. Sárosi and T. Ugajin,“Relative Entropy of Excited States in Two Dimensional

Conformal Field Theories,” JHEP 1607 (2016) 114, [arXiv:1603.03057[hep-th]]

[138] M.M. Sheikh-Jabbari and H. Yavartanoo, “Excitation Entanglement Entropy in 2d

Conformal Field Theories,” Phys. Rev. D 94, 126006 (2016), [arXiv:1605.00341

[hep-th]]

93



[139] T. Hartman and N. Afkhami-Jeddi, “Speed Limits for Entanglement,”

arXiv:1512.02695 [hep-th].
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