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CHAPTER 5

Conclusion

In this thesis, using pseudo-spin formalism we analyze a strongly correlated proton network sys-

tem, namely, squaric acid (H2SQ). To explore the system analytically, we map our system to a suitable

quantum spin-1/2 system. Then using techniques such as pCUT and quantum Monte Carlo, we deter-

mine the spectrum in both low and high-fields. We also distinguish each phase and obtain the phase

diagram at both zero and finite-temperatures and fields. The model Hamiltonian we use in this the-

sis is the extended version of Ising lattice gauge theory in (2+1) dimensions. The additional terms

account for the intramolecular coupling and dipole-dipole interaction consisting of next next-nearest

neighbor interactions. The motivation for such modeling historically comes from the vertex-based

models [75]. The gauge term may be understood to be originated primarily because of the interaction

mediated by the π-electrons in C4O4 by the rearrangement of π-bonds. Further details describing the

possible mechanism, and the effective vertex model can be found in Ref. [75].

First, we analyze the model within the classical limit where the quantum spins are replaced by the

classical vectors. Using the quench mean-field approximation we obtain the classical ground states in
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each regime corresponding to the cases of the presence and absence of dipole-dipole interaction. We

find that in the absence of dipole-dipole interaction strength, the system remains disordered, that is to

say, there exists a macroscopic set of classical ground states connected by a gauge transformation (in

quantum version). Within the degenerate manifold, each configuration corresponding to a symmet-

ric arrangement of H2SQ was shown to be connected to other ground states using a non-local gauge

transformation. The contours covering the gauge-transformation operators are given in the form of

closed loops. The classical groundstate can also be thought of as the dimer-coverings on the lattice.

With each dimer representing a pair of antiparallel spins. When the dimer-decomposition is done

systematically throughout the lattice, one can notice that there is the natural formation of loops and

the flipping of those loops lead to another groundstate within the same manifold. It may be noted that

especially, each degenerate configuration could be a symmetric arrangement of the crystal that could

be detected in the inelastic Raman scattering experiments. Nevertheless, the obtained set of classical

groundstates is now analyzed for their stability under the quantum fluctuations where the individual

protons are subjected to the external field (pressure in experiments) increasing the tunneling rate of

protons. At sufficiently large fields one can understand that the tunneling is of so high rate (1THz)

that the proton mean-position is at the center of the double-well potential. When every proton is in

this state, this phase usually corresponds to the high-field conventional paraelectric phase.

Nevertheless, in the absence of dipole-dipole interaction when the field term accounting for such

quantum fluctuations was turned on, it is shown to exhibit that for finite-fields there is no lifting of the

degeneracy. That is to say, there is no quantum order-disorder phenomenon taking place. This can be

attributed to the fact that for small-fields, the model Hamiltonian was shown to map to non-interacting

anyons of kitaev’s toric code model and that the interactions among the anyons may be required to

the lifting of such degeneracy in our model. Our spin-wave (quantum fluctuations around classical

ground states) in the high-field limit also showed a closing of one-quasi particle magnon gap at the

critical boundary, besides, not only the gap closes but also we see that a quadratic nature of disper-
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sion being entering into linear behavior corresponding to the antiferroelectric phase as the strength of

dipole-dipole interaction is increased. Moreover, the order of the phase transition is understood to be

of second-order.

Next, we calculate the the effect of quantum fluctuations on the classical groundstates in the

low-field as well, our results show that the nature of dispersion in the antiferroelectric phase being

anti-symmetric around the high-symmetry point of X . Importantly, the spectrum was found to be

gapped for all values of couplings considered. This shows that the nature of excitations might corre-

spond to the robust nature of the AFE phase. We also found that the spectrum is different for fourfold

global orientations of dipole-moments within the AFE phase. The dispersion for the case of dipole

orientations along two orthogonal directions shows a minimum at X-high symmetry point. While

the dipoles pointing along the other unit vector spanning the lattice shows a minimum at M -high

symmetry point. We suggest that the difference in the spectrum around the X-high symmetry point

could well be detected in experiments. Lastly, to improve our results on the critical points obtained

from the linear-spin wave results, we consider the system in high-field limit and perform a continuous

unitary transformation to diagonalize the many-body Hamiltonian in the particle conserving number

operator basis. It may be noted that the low-field limit is shown to have an inequidistant spectrum

thereby limiting our study to the cases of high-field. However, it was that when the gauge coupling

strength J0 is equal to J1 the system maps exactly to the TCM but with a qualitative difference in the

nature of excitations. Since we have an additional interaction (J1) that may restrict the movement of

gauge excitations (or charge excitations) in our model.

Next, we move on to analyzing the system under finite-temperatures. Specifically, we are inter-

ested in understanding the role of quantum fluctuations together with the thermal fluctuations on the

above-mentioned groundstates. It is interesting to see because not all the ice-rule states carry the same

energy and that the temperature might lift the states to higher excited states and while the field may

be thought of as a barrier connecting the degenerate set of groundstates. We use a stochastic series
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quantum Monte Carlo technique and perform a simulation with both the quantum and thermal fluctu-

ations turned on in the system. However, simulating the system using the existing percolation-based

algorithm for such a diverging degenerate system found to be inefficient. We, therefore, improvise

a loop algorithm that we already found in the form of dimer-coverings. We see that the algorithm

naturally avoids any apparent spin-freezing. The efficiency of the algorithm to other similar systems

was also estimated elsewhere. Nevertheless, we see that when the system is subjected to these around

a particular contour of temperature and field values, it is shown to host three distinguished phases, 1)

the AFE phase at lower temperatures (and fields) 2) an intermediate liquid-like state (at intermediate

fields and temperatures) 3) the conventional paraelectric phase (at higher fields). The existence of

a liquid-like state has been found by estimating the order parameter that detects the local ice-rule

ordering. Moreover, the IS manifests itself by an anomalous peak in the specific heat that vanishes

with the system size. To locate the critical point, we also estimate the binder cumulant. From the

analysis of order-parameters, specific heat, and binder points, we see that the system first undergoes

a second-order phase transition to a liquid-like intermediate state upon increasing the temperatures

and pressures. Later, for larger temperatures, the IS states crossovers to the conventional paraelectric

phase without accounting for any phase transition that is a characteristic of a disorderedness of the IS

liquid-like state.

Later, using the above-mentioned analysis we also chart the phase diagram in the T−K plane, our

results for the critical boundary showed to be linear for small field and temperature values. However,

the linear behavior starts deviating for large fields. It may be noted that the linear critical boundary is

in agreement with the experiments. However, we note that there exists a discrepancy as the linearity is

maintained throughout the boundary in the T −K plane in experiments in contrast to our results. We

believe that the linearity of the critical boundary might depend on the interlayer coupling. Indeed, in

the follow-up of this work, we consider the interlayer coupling in our simulations. However, we use

the imaginary-time Monte Carlo method to tackle the complexity of the 4D model Hamiltonian where
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we map the current 3D Hamiltonian including the interlayer coupling to a classical Hamiltonian with

just Ising variables on the 4D Hamiltonian, we use a similar algorithm as in the case of 2D version

carried in the stochastic series expansion method. However, besides those, we use a Swendsen-Wang

type cluster algorithm along the imaginary-time direction. Using the same order parameters as used

in the 2D case, our results for the current model with additional interlayer coupling showed that

when the interlayer coupling considered is of antiferromagnetic type, we see that the quasi-2D layers

still host the AFE phase at lower temperatures, however with a difference that when the strength of

the interlayer coupling is increased we see that the intermediate liquid-like state starts disappearing.

Contrastingly, when an FM nature of interlayer is coupling is considered both the AFE phase and

intermediate liquid-like phase are shown to be extended for higher fields and temperatures, unlike the

antiferromagnet case. Additionally, we also consider the disorder case where we see that both the

phase seem to disappear when the strength of interlayer coupling in this case increased. This is also

confirmed from the specific heat curves, where the anomalous peak is shown to vanish in the disor-

der case. Not only this, but we also determine the dipole-dipole imaginary-time correlation function

and found that the deconfined phase shown to vanish regardless of the nature of interlayer coupling.

Based on this we conclude that the AFM type coupling could be more plausible comparing with the

experimental results. However, despite these, the linearity of the critical boundary in the T −P plane

couldn’t be reproduced. We believe that the discrepancy might be due to the transverse nature of the

model. Most of the transverse field models are shown for such avalanche critical boundary at large

fields. We conclude that this thesis has offered scope of understanding the H-bond systems and their

phase transitional aspects based on pseudo-spin formalism. However, there there is a much bigger

scope for improvements as far as the exploring of the squaric acid using the Hamiltonian consid-

ered. For example, a more rigorous estimation of dispersion and dynamical structure factor in the

disordered dipole case could be an important direction of investigation from the experimental point

of view. A more rigorous calculation of pCUT also could provide more understanding of the material
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in the low-field regime. Moreover, density functional analysis for the realistic paramater space of the

exchange interaction strengths are needed as far as squaric acid is concerned. Also, from the numer-

ical perspective, a more efficient algorithm in the case of finite dipole-dipole interactions are to be

important addition of the present study. A possible future endeavors include the mean-field treatment

of the gauge term decomposed into pairs of two-body interactions. For example, the dimer covering

on lattice found in low-field can be effectively used to decouple the four-body Ising gauge term within

the Schwinger-boson formalism.
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SUMMARY

Hydrogen-bond (H-bond) systems are quite ubiquitous, particularly in organic compounds. Tra-

ditionally, they are well-known for their dielectric properties coming from the spontaneous ferroelec-

tricity they exhibit below the curie temperature, Tc [1, 2, 3, 4, 5]. Some of them are also very light

in weight and could be made easily portable [6]. Technologically, they are one of the alternatives to

non-volatile random access memory (FeRAM) devices currently in the market. H-bond compounds

can be abundantly found in the universe ranging from as small as DNA to water to as big as Saturn.

Nevertheless, these systems are also of fundamental interest especially from the condensed matter

physics perspective that arises from the quantum nature of protons [6, 7]. A very immediate applica-

tion of this leads to an inherent relation between the H-bond and the quantum spin-1/2 systems since

the configuration of protons can be mapped to pseudo-spin-1/2 variables replacing the protons. In

this dissertation, we use such a pseudo-spin formalism to estimate various physical quantities of a

well-known H-bond system, namely, squaric acid.

While the focus of this decade is on quantum magnetism, the studies on the H-bond crystals were

as old as the study of magnetic materials which dates back to the early 1940s. Bernal and Fowler

had first shown that the configuration of protons in some of these systems were found to satisfy Ice-

rules (analogous to two-in two-out in spin-ice) [8]. It is now understood that the ice-rules states are

the lowest energy configurations in many H-bond systems. The strong ferroelectric nature arising in

these strongly correlated proton systems is an outcome of such ice-rule ordering [3, 5]. There have

been vast interests in these materials in trying to understand the material properties both from techno-

logical and scientific perspectives. Since these systems could serve us in realizing the quantum effects

at a macroscopic scale. Also as an alternative in understanding several exotic phenomena related to

quantum spin-1/2 systems that include spin-ices, spin-liquids with fractionalized excitations [9, 10]
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to name a few.

Recently, one of the most looked out H-bond system from the fundamental physics point of view

is the squaric acid crystal with stoichiometric formula H2C4O4 (also abbreviated as H2SQ with SQ

being referred to square shape of the C4O4 molecules [11]). It is known that the crystal structure

of H2SQ is a quasi-2D stacked layered monoclinic below the critical temperature Tc ≈ 371K [11].

Moreover, below Tc, it was found to have ordered (antiferroelectric) configuration of protons. In the

ordered phase, each proton is located on either side of the double-well potential minima ofO−O ions

causing local ferroelectricity [12]. That is to say, the maximum probability of locating the proton is

in one of the double-well minima. For temperatures above Tc, it is at the center of the H-bond, caus-

ing local paraelectricity [12]. It may be noted that the driving thermodynamic parameters to cause

local ferroelectricity and paraelectricity at each site are the temperature and pressure. In this disser-

tation, we try to understand the proton’s several ordering and its implications under quantum (field

or pressure in experiments) and thermal fluctuations (temperature). Broadly, we find various phases

characterized by proper order parameters where we estimate accurate critical-points (or boundaries)

using pseudo-spin formalism. Below, we briefly summarize the works carried in this dissertation.

First, we study (analytically) a model Hamiltonian that is used to describe H2SQ and whose dy-

namics is governed by (i) a gauge-invariant (Z2) four-spin plaquette interaction (J0), (ii) Ising-like

intramolecular interaction (J1), (iii) a dipole-dipole interaction (J2), and (iv) an external transverse

Zeeman field K. We restrict our discussion to the case where (J0 > J1 > J2), while K can be taken

arbitrarily. The model described by J0 andK (Ising lattice gauge theory in (2+1) dimensions (ILGT))

is well-known to host a deconfined phase. The application of an external magnetic field (given by a

strength K) drives the deconfined phase to a confined phase (CDT). We first perform the mean-field

calculations to obtain and identify groundstate (classical) configurations and determine the value of
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Kc for which such a transition happens when the intramolecular interaction term (J1) is turned on.

The other set of groundstates are obtained by identifying a gauge-transformation connecting all these

groundstates. Further, we find that the role of J1 is to stabilize the deconfined phase by reducing

the classical groundstate degeneracy. Moreover, all the groundstates without the dipole-dipole inter-

action term in the low-field limit were found and are represented as singlet pairs or dimers whose

z-component projections of spins are anti-aligned to satisfy the restricted ice-rule. Our mean-field

results indicate that the classical groundstate remains degenerate extending for finite small values of

K. However, in the presence of the dipole-dipole term J2, we see that the local degeneracy is lifted

to yield fourfold globally ordered (antiferroelectric) groundstate that is independent of system size.

We give the exact expression of degeneracies in all the regimes under the low-field limit. Later, we

perform the spin-wave analysis by investigating the role of quantum fluctuations over these large set

of classical degenerate groundstate for J2 = 0 and also for the case of globally ordered groundstate

for J2 6= 0. We find that at the quadratic level the local degeneracy is not at all removed and no order

from disorder phenomenon was observed unlike the classically driven order-disorder case [7]. That

is, all the set of classical groundstates were found to be stable even when a finite but small on-site

perturbation is turned on, consistent with the mean-field findings. Indeed, we have shown that there

exists a macroscopic number of conserved quantities that enable a gauge transformation among the

degenerate groundstate manifold causing this absence of order-disorder phenomenon.

For finite J2, the spin-wave (SW) dispersion over the fourfold globally ordered groundstates were,

in general, found to be gapped, quadratic, and asymmetric (around X and R high-symmetry points)

for all values of K. However, when an SW analysis was performed in the low-field limit and for

J2 6= 0, although we see that the dispersion is generally symmetric and quadratic in nature, yet there

are certain parameter regimes where the spectrum becomes gapless and linear. This happens partic-

ularly near the phase boundary of the ferroelectric to paraelectric phase transition (FT). It may be
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appropriate to mention that the true quantum ground state for J2 = 0 is a nontrivial one due to the

presence of extensive degeneracy in this regime. However, the spin-wave analysis for J2 6= 0 is ex-

pected to be more realistic given that quantum groundstate is an ordered state. To improve the earlier

results based on spin-wave analysis, we have performed perturbative calculations based on Continu-

ous Unitary Transformations (pCUT) to analyze the system in the large field limit (K � J0, J1, J2).

In this limit, the ground state consists of all spins aligned along x-direction with single spin-flip ex-

citations. We estimate the one-particle gap in this limit and compare it with the spin-wave results

obtained earlier. Though the pCUT analysis has improved the estimation of groundstate energy and

one-particle gap as determined by spin-wave analysis, the closeness of results in the two different

approaches seems to point out that the results are realistic in this limit. Our study also predicts the

nature of excitations for finite J2 and in the high-field limit. Finally, the model was discussed to show

the dual mapping of ILGT to Kitaev’s toric code model (TCM) also for the case of J1 turned on.

Until now, we have studied the effect of an external field (K) upon the various classical ground-

state. We understand that the field,K, acts as a barrier connecting these degenerate groundstate driven

by quantum fluctuations. Contrastingly, temperature helps in randomizing these barriers by populat-

ing the higher excited states that violate ice-rule and thereby destroying the quantum groundstate. In

the subsequent work, we study the finite-temperature (T ) and field (K) phase diagram (T −K plane)

of proton’s several orderings of H2SQ crystal using quantum Monte Carlo (QMC) [13]. In other

words, we aim at understanding the intricate connection between the quantum (field) and thermal

(temperature) fluctuations upon the classical groundstate or the ice-rule states. Using an improvised

loop algorithm within the stochastic series expansion (SSE) quantum Monte Carlo method, for finite

but small values of J2, we find two distinct phases as we increase the temperature and magnetic-

field [13]. One of the phases is the
∏

f , the phase with long-range ferroelectric order (low-T and

low-K) followed by an intermediate state with strong local correlations, that is, a quantum liquid-like
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state
∏

ql. We see that the transition to
∏

f manifests a very small anomalous peak in the specific heat

with a strong dependence of critical temperature on the strength of dipole-dipole interaction. The

presence of this small peak is attributed to the absence of macroscopic degeneracy in the presence of

dipole-dipole interaction and re-entrance of such degeneracy to some extent at small temperatures and

fields [13] due to the competition between the locally degenerate ice-rule term, J1, and the globally

ordered term, J2.

In all the above-mentioned analyses, we have considered a geometry that did not take into ac-

count the stacked layered configuration of the H2SQ crystal, that is, the interlayer coupling was ig-

nored validated by earlier experiments. In the last work, we study a model Hamiltonian for H2SQ

using the Suzuki-Trotter (imaginary-time) path integral Monte Carlo method. The 2D version of the

same model Hamiltonian (a Z2 gauge-invariant one describing the ice-rule-dominated physics) was

earlier studied and was shown to host an (i) deconfined, (ii) antiferroelectric, and an (iii) intermediate-

liquid-like phase. Here, in our 3D version, we introduce an additional interaction along the interlayers

where we consider all the possible scenarios of the nature of the interlayer coupling constant, J3 (An-

tiferromagnetic (AFM), Ferromagnetic (FM), and Disordered) to analyze our model. Our results

primarily show a strong dependence of the underlying phases with the nature of interlayer coupling,

and a moderate dependence of it with the strength of J3 compared to the intralayer dipole-dipole inter-

action strength J2. Our results on the dynamic structure factor also reveal features corroborating the

existence of an intermediate-liquid-like state with the appearance of two length-scales in the dynamic

structure factor. We conclude that the AFM coupling nature of J3 could be more close to experiments

as we observe a robust anomalous peak in the specific heat curves and at the temperatures near the

re-entrance point of the quantum liquid-like state.
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CHAPTER 1

Squaric acid crystal

1.1 Introduction

Hydrogen bond (H-bond) systems are arguably one of the most fundamental systems one may ever

encounter in their daily life. They are responsible for a wide range of phenomena seen in nature.

For example, 1D molecular bridges consisting of several water molecules are fundamental to pro-

ton transfer processes in enzyme catalysis [14] and membrane water channels [15]. The mechanism

of such concerted proton transfers is of great biological interest [16]. Similarly, water molecules

confined inside carbon nanotubes have been investigated as an ideal model system of proton conduc-

tion along water wires [17, 18], and the presence of tunneling-assisted concerted proton tunneling

between molecules in cyclic water hexamers in ice has recently been demonstrated both experimen-

tally [19] and theoretically. However, they display numerous puzzling properties, notable ones include

the anomalous boiling and freezing point, abnormal viscosities, unusual density of water at 4◦C, the

negative expansion coefficient of water-ice to name a few. Most of the anomalous properties are as-

sociated with materials having the H-bonds. It is believed that the characteristic role of the quantum
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nature of protons in these materials may be responsible for the anomalous properties. Furthermore,

it is of fundamental interest in understanding the implications of the quantum nature of protons from

a condensed matter physics perspective. Specifically, from the perspective of the ferroelectric state

arising due to order-disorder phenomenon of protons taking place in many H-bond solids when the

temperature (and (or) pressure) is lowered. There are various applications of organic ferroelectrics

in technology in the form of actuators, sensors, (FeRAM), in digital circuits like FeFET’s. And re-

cently, in designing new electrically ordered materials by thorough maneuvering of the molecular

structures (crystals) where the H-bonds can be purposefully segregated. There are also diverse tech-

nological applications of these materials that display polarized ordering of charges that make them be

also used in ceramic capacitors, pyroelectric detectors, piezoelectric transducers, and sonars [20]. H-

bond materials are also vastly researched keeping in view of the possible realization of new kinds of

functionality, for example, multiferroics, and with the discovery of the ferroelectricity beyond room

temperature [21] it has only drawn more attention both from the theory and experimental point of

view.

The quantum nature of protons can serve as a basis for realizing quantum effects at a macro-

scopic scale [1, 2, 22]. Primarily, several phenomena emerging from the quantum nature such as

localization-delocalization, zero-point motion, quantum tunneling are pivotal to the comprehension

of the properties of these materials. It is believed that the zero-point motion of protons could play a

vital role in structural phase transition due to its coupling with the lattice degrees of freedom. The-

oretically, to study the phase transitional aspects and other physically measurable properties, one

generally maps the position of the hydrogen (protons) ions to pseudo-spin variables. In other words,

the phenomenology used to describe the physical properties concerning the phase transitional aspects

in some of the H-bond systems are based on the pseudo-spin modeling. And depending on the prop-

erties of the particular material, for example, geometry, the shape of the double-well potential, the

nature of proton-proton interactions, and other secondary interactions (e.g: molecular field) one may
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usually map the configurational dynamics of proton (H-bond) system into a suitable quantum spin

system, for example, a spin ice-system [23].

Basic difference between the proton and spin systems

The microscopic difference between the proton and the spin systems is that the former exhibits a

symmetry-breaking phenomenon in the crystal structure, for example, monoclinic to tetragonal. That

is to say, usually, a change in symmetry associated with the corresponding space group is observed.

Not only that sometimes a change in the symmetry (structure) is also accompanied by the transition

from the ordered ((anti)ferroelectric (AFE)) phase of protons to the disordered phase (paraelectric

(PE)). Also, the ordering of protons usually requires collective displacements of atoms to accomplish

the symmetry breaking. However, on the other hand, the spin systems only require certain strong

spin-spin exchange interactions between the moments located on lattice sites (or edges) to undergo a

magnetic phase transition without any structural change.

Squaric acid

One of the H-bonded system that we study in this thesis is the squaric acid. The stoichiometric

formula for squaric acid is H2C4O4. The crystal structure of squaric acid consists of simple planar

C4O4 groups bonded via H-bonds to four neighboring C4O4 molecules in the layered ac-plane per-

pendicular to the b-axis (also known by unique axis, i.e, hkl(010) or the plane perpendicular to the

quasi-2D geometry). The schematic arrangement of planar C4O4 molecules within a layer is shown

in Fig. 1.2. The corresponding H-bonding parameters at 121◦C above the transition temperatures

Tc ∼ 100◦C are H − O = 1.536(5)Å, O − O = 2.548(2)Å, O − H = 1.014(4)Å. The H-bond

bond angle is O − H · · · O = 176.2(6) [11]. Similarly, below the transition temperatures they are,

O−O = 2.554Å andH · · ·O = 1.034Å, theO−H · · ·O H-bond angle is 177.5◦ [24]. On an average,

the bond lengths within the C4O4 unit are C − C 1.500Å, C = O 1.229Å, C − O 1.288Å & 1.462Å

and C = C 1.414Å [24]. Because of the small differences in the bond lengths of C-C bonds within
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C4O4 molecule the geometrical arrangement is not a perfect square. However, since the differences

in them are relatively small (∼ 0.05Å) compared to the absolute values of bond-lengths we, there-

fore, for most of the theoretical purposes approximate it to be a perfect square. For this purposes, the

squaric acid is also referred to as H2SQ (SQ referring to the square arrangement of C4O4) more often

than H2C4O4. For simplicity, hereby, we use the shorthand abbreviation, H2SQ, to refer to squaric

acid untill stated explicitly.

Basic understanding of H2SQ

H2SQ has recently become a matter of interest simply because of its planar geometry, striking

similarities with water-ice and also for the presence of first-order phase transition. Pioneered by Sam-

muelsen and Semmingsen, early x-ray and neutron scattering [25] studies have revealed the crystal

structure of H2C4O4 where it is at first known to undergo a second-order antiferroelectric structural

phase transition about 100◦C at a normal pressure of one atm. Though the transition was initially

believed to be of second-order, the subsequent studies re-established it to be of first-order [26, 27],

largely due to the discontinuities observed in the order parameters [28, 29, 30, 31, 32, 33]. More-

over, the 1H NMR spectroscopy on H2SQ showed both the displacive [34, 35, 36, 37] as well as

order-disorder features present at the transition temperature, Tc [38]. An unusual S-shaped variation

of interatomic distance versus temperature was observed. Since at the transition point the material is

seen to undergo a continuous distortive structural change accompanied by a magnetic transition, for

this reason, this phase transition is sometimes also referred to as antiferrodistortive or antiferroelas-

tic transition. Furthermore, the lower temperature phase is recognized to be a monoclinic one with

P21/m associated space-group symmetry while the high-temperature phase is of tetragonal structure

with an approximate four-fold rotational and screw symmetry (w.r.t axes parallel to the unique axis,

i.e, the hkl(010) plane) belonging to I4/m symmetric space group [39, 40].
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Quasi-2D structure

Low values in the critical exponent of the order parameter (fi = 0.14 & 0.17) of H2SQ observed in

the experiments of the optical birefringence [39, 29] and neutron scattering [41] showed to manifest

a characteristic of two-dimensional transition as mentioned early [42]. For this reason we at first

consider only the quasi-2D structure ignoring the weak interlayer coupling. Furthermore, it is widely

believed that the nature of protons in H2SQ has a strong effect on the order parameters [39, 40]

that indicate a possible 2D transition. For instance, a large variation in transition temperatures upon

deuteration is observed, which is known as the Ubbelohde effect [43, 44] and is observed only within

the intraplane region. It is believed that more understanding of the quasi-2D structure may come

from the microscopic details regarding the origin of geometrical isotope effect [45, 46], though it

may be challenging, yet it could very well be helpful to decipher the role of strong proton-proton

correlations. Nonetheless, from the perception of displacements of protons, the H2SQ is inferred to

be comprising of planar 2D antiferroelectric layers (proton ordering) stacked alternately along the

unique axis (b-axis) below the critical temperature [40]. The details regarding the 3D-structure of

H2SQ are dedicated in chapter 4.

Temperature-pressure studies

As indicated, the zero-point motion of protons in H2SQ within the ac-plane (intraplane) play a

crucial role in understanding the distortive phase transition as already mentioned. A further hint of

the possibility of proton tunneling and it’s role in such distortive phase transition may also be un-

derstood from the Raman-scattering [25, 39, 47, 48, 49], second harmonic generation [50], neutron-

diffraction [51], experiments such as thermogravimetry and differential scanning calorimetry [52]

and most significantly from the pressure-temperature related studies. Since O − H · · · O being the

most mechanically weakest bond, upon the application of external pressure to H2SQ it is expected

that the pressure will significantly affect the phase transition. Indeed, the effect of pressure on tran-
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sition temperatures up to 1.4 GPa [12] were reported and were shown to greatly alter the transition

temperatures (Tc). For instance, high-pressure measurements by Nelmes et al on the crystal structure

using x-ray diffraction (up to 4.7 GPa) and neutron diffraction (up to 3 GPa) [53] revealed that the

H2SQ undergoes a monoclinic to tetragonal transition at the critical pressure of Pc = 0.75 GPa and

at room temperature (a pressure-induced phase transition) [53]. Moreover, the transition temperature

was found to linearly vary with anisotropic pressure (uniaxial stress along the unique axis perpen-

dicular to the ac-plane) to 0.7 GPa with corresponding slope dTc/dp = −106 K GPa−1 [54], which

is unusually much larger than the observed value for KDP. In addition, the dielectric properties [55]

and elastic constants studied up to 2 Kbar [49] for H2SQ showed a large anomaly in strain along

both the ac- and b-axis. Similarly, the stress dependence of shear-type rigid layer mode [56] were

studied to show that the temperature and stress have the same effects for the acoustic mode in the

low-temperature phase as that of the optical mode in the disordered phase. It may be noted that all

these studies recognized the tunneling motion of protons and strongly suggests to have an impact of

it in the phase transition.

Raman spectra

Other experimental results include the comparison of infrared spectra with that of Raman spec-

tra [57]. It was found that the vibrational Davydov splitting was high for the external modes coming

from the interlayer interaction, while it was small for the internal modes of the C4O4 molecule [57].

Based on this, it was suggested that the interactions between the interlayers acts only between the

H-bonds of adjacent layers and that is highly localized in the regions near the H-bonds. We use this

result for modeling the interlayer interaction and understand the role of different types of interlayer

coupling on phase transition in chapter 4.

Similarly, vibrational [36, 58] and infrared studies [59, 60] have suggested not only that the H2SQ

exhibits strong H-bond nature, the H-bonds in H2SQ could also add more stability giving such a com-
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pact 2D structure. It was found that the molecular structure of C4O4 in both the ordered and disordered

phases were essentially the same [61]. It is because the lattice vibrations were observed to obey selec-

tion rules in both phases while on the other hand the intramolecular vibrations were seen not obeying

the selection rules [61] in the high-temperature (or pressure) phase. Moreover, in Raman-scattering

experiments except for the 83 cm−1 not every line that existed in the low-temperature monoclinic

phase continued to be present in the high-temperature disordered phase. It was suggested that the

lines that strictly correspond to the symmetry exists in the ordered phase but remains forbidden in the

tetragonal phase. Combinedly, all the mentioned results only indicate that the local arrangement of

C4O4 molecules still possess the low-temperature symmetry carrying to the disordered phase. This is

also favored by the conclusions drawn from the contemporary neutron scattering experiments [48].

Possibility of double phase transition in H2SQ

Besides, reports were suggesting that the H2SQ could undergo a double phase transition, the

second phase transition being a locally ordered state with strong molecular-correlations at higher

temperatures much above Tc = 371K. It was observed that sharp features of short-range ordering

were seen in the measurements of high-resolution Neutron Magnetic Resonance (NMR) along with

17O Nuclear Quadrupole Resonance (NQR) spectrometry at temperatures much above antiferrodis-

tortive phase transition [62, 63]. Further heating to higher temperatures almost believed to lead to a

phase transition at about 420K coming from the measurements of 1H NMR on H2SQ crystals [64].

However, this is not favored by the Raman-scattering analysis [64], as there were no [52] substantial

evidences found regarding the second phase transition near 420K [64]. Instead, it was suggested

that it is the molecular symmetry (m− C1h) that persisted till 473K with the thermal decomposition

temperature of H2SQ crystal around 566K [65]. More details of this will get clear from chapter 3

where (within our model) we show that there may be only single phase transition to locally ordered

strong correlated phase followed by conventional paraelectric phase via a smooth crossover transition.
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Proton-proton interaction probe

Analysis on the proton-proton exchange interaction in H2SQ showed that the critical index, β =

0.14, is significantly lower than the obtained value from mean-field approximation, i.e, 0.5 [66].

Based on this discrepancy, it is understood that the interactions might be of short range [66]. More-

over, a mechanism involving the double bond configurations of the molecule was adjudged. The

chemical composition (alternating single and double bonds) is understood to make the π electrons

itinerant within each C4O4 molecule such that the information about the proton position is transmit-

ted through the C4O4 residue from oxygen to oxygen [66]. Such interaction was believed to be of

the range of a molecule exchange interaction, due to electron wave function overlap, thereby disre-

garding the secondary (weak) dipolar interactions. Thus, the interaction of protons can be understood

mediated by the C4O4 molecules.

1.1.1 Theoretical proceedings

Here in this section, we discuss few important theoretical works that have been used earlier. Each

work discussed here eventually lead to a model that we consider in this thesis. To start with, early

theoretical works include a simplistic atomic model of harmonic oscillators used to explain the iso-

tope effect of KH2PO4 [23]. It was showed that the ferroelectric transition could only happen if

the strength of dipole-dipole interactions between various proton displaced dipoles (transformed into

frequencies) is greater than the tunneling rate of the protons in the low energy levels of vibrational

degrees of freedom [23]. Based on that, the temperature dependence of the spontaneous polarization

was obtained predicting the existence of Tc below which the (anti)ferroelectric phase transition oc-

curs [5]. Similarly, other studies include the transverse-field pseudo-spin Ising model where a bound

for transition temperature in between 200◦C and 600◦C was first predicted. [67]

Next, to explain the same isotope effect Tokunaga and Matsubara [4] introduced the models sim-

ilar to Slater’s [1] and R.Blinc’s [23] theory, but with a supposition that the ferroelectric ordering in
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this material is presumably of the collective coordination of the displacement of ions, the interactions

between protons and oxygen ions, and the proton tunneling. In other words, they have considered a

model that is not purely a pseudo-spin model but the spins are coupled to phonon degrees of freedom.

The theory aimed to explain the discrepancy of no or minimal Isotope effect in spontaneous polariza-

tion [68]. In a similar way, when a bilinear coupling between the displacements of the electron shell

of the neighboring P4O4 molecules and the proton tunneling motion was considered. It was showed

that nonlinear aspects of polarization arise in the crystal [69] due to such coupling with lattice degrees

of freedom.

Apart from the other theories, Hydrostatic pressure studies were also used to explain the Isotope

effect in H2SQ by collecting the Tc under numerous pressures and with uniaxial stress applied in the

direction perpendicular to the 2D layers. It was showed that when the distance (2RH) for H2SQ is

stretched to 2RD of its deuterated version, the transition temperature THc of H2SQ were observed to

coincide with TDc of D2SQ. Moreover, the Isotope effect upon deuteration observed that the slopes

of the transition curves in the T − P plane didn’t alter much for the protonated and deuterated ver-

sions [48]. Nevertheless, hydrostatic pressure studies are also being investigated actively, for instance,

it is worth mentioning that there are recent studies related to the hydrostatic pressure dependence of

water-ice where the authors in Ref. [70] using quantum simulations have shown a thermal phase tran-

sition happening in the water-ice induced by high pressures (∼10GPa). The study draws motivation

from various perspectives such as the modeling of compressed ice in the interiors of stars and the

evolution of solar planets (e.g: Uranus and Neptune) and exoplanets and so on. It may be noted that

hydrostatic studies always favored the order-disordered mechanism of ferroelectric phase transition.

Role of geometry

To probe the role of geometry in H2SQ, again an atomic model comprising of kinetic and potential

energy terms consisting of two oxygens atoms and a hydrogen was considered. The hydrogen in

O−H · · ·H was assumed to interact through the interatomic potential of the three-particle system [7].
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Following early results, the model was expanded to include the quantum effects of the proton by a

modified interatomic Morse potential. It was found that the effect of geometry is largely prevalent in

a narrow range of the interatomic distances RO−O (R1 < RO−O < R2) [7]. That is, the regions where

tunneling motion is seen in the domain of (R1, R2) were identified. In other words, a quantification

was made on the dependence of tunneling motions of protons (deuterons) on the interatomic distances.

Order-disorder transition

Organic H2SQ is notable not only for its (anti)ferroelectric properties but also for its light weight-

ness and eco-friendly nature. After the quantum nature of proton motion in a double-well potential

was established [23, 7] by investigating the observed anomalies in infrared and NMR spectroscopy,

subsequently, the collective motions of protons were studied [71, 4]. Following this, a theory of phase

transition in terms of an effective Hamiltonian was formulated [4], which includes dipole-dipole

interaction. In general, many theories with different mechanisms have been put forward trying to ex-

plain the above-mentioned properties, of all the prominent ones which have been gaining significance

since then is based on the order-disorder phenomenon. A good description of the order-disorder type

phase transition on ferroelectric and antiferroelectric phases can be found in Ref. [5]. Besides, sev-

eral experimental observations regarding the (anti)ferroelectric properties were also explored in other

H-bonded ferroelectrics [22, 2, 72, 73].

Early studies also incorporated the lattice distortion effects into the order-disorder mechanism to

explain the thermal antiferrodistortive phase transition within the mean-field approximation. Physical

properties like dielectric susceptibility, specific heat [32], the elastic constant of the lattice were shown

to be in qualitative agreement with the experiments. It may be noted that only in order-disorder-based

theories, one usually maps a proton system to a pseudo-spin system with a thumb rule that the num-

ber of double-well minima for a proton placed at a given site, i, should be equal to the sum of the

expectation value of Sz of pseudo-spin operator of S. With regards to this, the most widely used

pseudo-spin models are the transverse field Ising model (TFIM), frustrated TFIM with nearest, next
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nearest, next next nearest-neighbor interactions, etc. However, in this thesis, instead of a TFIM-

like model, a Hamiltonian consisting of Z2 gauge-invariant interactions (four-body) accounting for

the ice-rules (IR) is investigated. In brief, the motivation to consider such a four-body Hamiltonian

comes from the cooperative rearrangement of proton configuration within a unit molecule. In the

following paragraphs, we discuss the early important theories in a systematic order.

Remarkable improvement of results on H2SQ were seen when strongly coupled lattice-distortions [74,

42, 7] are included in pseudo-spin (e,g: TFIM models) modelling. The complete model with these

lattice-distortions included was shown to be in reasonable agreement with the experimental findings.

However, despite the improvements, few discrepancies between theory and experiments were found

as far as the anomalous parts of the elastic and the dielectric constant are concerned [74, 42]. Based

on that, there was a suggestion of a four-spin cluster theory in further improving the results [42, 75,

76] and an attempt was made to unify all the possible mechanisms [77]. Moreover, a simple analysis

using the TFIM model showed that the exchange coupling though might not be the exact microscopic

origin mimicking the proton system yet it could well explain the isotope effect [7].

Similarly, the presence of characteristic twofold structures below the transition temperatures,

Tc [42] was explained in a mean-field approximation where it is shown that only by including the

antiferroelectric interlayer interaction, the quasi-two-dimensional proton network in H2SQ may ex-

hibit a phase transition of first or second-order. The order of phase transition was observed to be

strictly dependant on the model parameters [42]. The reason for such strict dependence may arise

from the strong proton correlations within the quasi-2D layers. Moreover, within the pseudo-spin

model, the higher value of Tc in H2SQ was attributed to the fact that the rearrangement in proton

configuration may lead to the larger increase in energies in the electronic structure of C4O4. It was

also suggested that the low values of entropy at transition temperature, very low dependence of tem-

perature with dielectric constant above Tc and the steep decrease in elastic constant and the dielectric

constant just below Tc may be closely related to the unusual nature of transition at Tc in H2SQ.
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The importance of tunneling motion of protons in H2SQ

There is a major difference between the H2SQ and the rest of the H-bond materials. This has

to do with the observed values of slopes of the temperature-pressure dependence curve dTc/dp for

the proton and deuterated versions. The values are not close to zero, i.e, the changes in dTc/dp are

close to zero for H2SQ. While it is very different for KH2PO4 with the corresponding changes around

dT Pc /dp = −46 to dTDc /dp = −24K/GPa for protonated and deuterated versions. This along with

the large Isotope effect in Tc together made to infer that the tunneling motion of proton may not be

necessary. As the large differences in the H-bond distances were presumed to be sufficient to explain

it. However, Matsushita made a note on Isotope effect in H-bond crystals [7]. A graph was plotted

for the empirical relation between RO−H and RO−O of many H-bond crystals with a restriction on

H-bond angle, i.e, 〈O − H · · · O〉170◦. Then a theory was described to explain the characteristic

behavior of the distribution of these interatomic distances with a 1D Morse potential containing the

features of double-well potential. Within the model the theory established the relation of interatomic

distances versus transition temperatures, Tc. A detailed description of the correlation between O−O

and the O −H distance distribution was given. Moreover, a systematic comparison of the tunneling

motions and the effect on the equilibrium positions of proton and deuteron as a function of R/r0

was made. This concludes the early theoretical works, with an idea that tunneling motion is crucial

in determining the phase transition in H2SQ, and one cannot avoid the order-disorder mechanism to

provide the platform in explaining the quantum phase transition occurring in H2SQ.

Tautomerism

First-principle calculations could offer different perspectives in knowing the underlying interac-

tions in H2SQ. It may be noted that the proton-proton interactions may be primarily mediated by the

alternating double-bonds in C4O4 by the process of π delocalization and the cooperative rearrange-

ment of protons [21], also known as Tautomerism. The tautomerism helps the polarized molecules
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(C4O4) to reorient themselves with four possible global orientations for a dipole, i.e, with symme-

try of four-fold [21]. The (anti)ferroelectricity could then be achieved by the transfer of protons in

a single-component molecule through this mechanism of tautomerism. Indeed, when the sponta-

neous polarization and hysteresis were measured, it was founnd to have very large dipole moments.

The following controlled yet spontaneous way of inducing ferroelectricity leads to exhibit the highest

spontaneous polarization (20 µC cm−2) despite of its small molecular size [21]. This could have been

only possible by the tautomerism mechanism. Accurate measurements of polarization were obtained

from the the state of art first principle ab intio calculations using the Berry phase formalism rather

than the conventional way of the vector sum of the dipoles. The detailed analysis of the above room

temperature ferroelectricity and the mechanism of the efficient topological π switching (tautomerism)

in the organic crystal-like H2SQ can be found in Ref. [21].

Abinitio calculations

To probe parameter independent analysis of the phase transition, ab initio calculations [78, 79,

80, 81] were performed for H2SQ. It was found that the AFE to FE phase transition can take place by

varying the applied electric field E [82]. It is reported that with the help of an external electric field,

the direction of the local polarization vector can be aligned in a total of eight distinct directions. Of

them, two metastable ferroelectric phases have been identified along with their crystal structures [82].

Consistent with the previous studies [21], the largest spontaneous polarization has been obtained

which is relatively higher than the organic ferroelectrics known till today [82]. Electric polarization

amplitudes of the FE-α and FE-β phases were indirectly estimated to be 16.4 and 23.2µC/cm2,

respectively, based on the experimental AFE structure [11] since the detailed crystal structures of

FE phases were not determined. Such high values of polarization amplitudes are now believed to

be originating from the mechanism of the rearrangement of π electron delocalization and concerted

proton transfer/displacements. The estimated value for the FE-α phase was shown to be in reasonable

agreement with the experimental value of 10.5µC/cm2 [21]. It highlighted the shortcomings of the

13



point charge model.

The path integral molecular dynamics (PIMD) simulations employed with Density Functional

Theory (DFT), nuclear quantum effects coming from the neighboring O-atoms [79, 78, 83] were

estimated. The proton transfer barrier obtained by various density functional is evaluated and found

that the best agreement was obtained for vdW-DF2 functional. The use of the same functions in PIMD

simulations revealed a very large influence of nuclear quantum effects [79, 78]. In other words,

cooperative proton tunneling along H-bonding chains was found to be facilitated by synchronous

quantum tunneling of several protons for short simulation times. The early results are successful in

explaining the isotope effect, i.e, ∆Tc > 150K. Yet it is reported that the absolute Tc values which

are significantly lower than experimental results could not be accounted for. Similarly, the nature of

the phase transition was found to be continuous instead of first order [79].

1D Molecular chain model

In the absence of any prototypical microscopic modeling of H2SQ the models comprising of

1D molecular chain coupled weakly along the intraplane and interplane directions were found to be

efficient. For instance, using the weakly coupled one-dimensional Ising chains and by fitting the ex-

change interaction parameters with the experimentally obtained results of the molecular correlations

it was shown that the transition temperature is around 412K. The closeness of the calculated Tc with

that of 371K was highlighted. It was also found that the correlations lengths vary anomalously with

temperature. Likewise, a model having two orthogonal interpenetrating H-bonding chains in H2SQ

effectively described by decoupled chains of 1D were introduced [79, 78, 83]. The significance of

this model is that the generalization could be done to more complex H-bond structures. However,

one may note that the realistic simulations for few H-bond ferroelectrics are challenging for several

reasons. First, an accurate theoretical description is needed that describes the H-bonds between the

molecules, the proton transfer barriers, and, in many cases, weak Van der Waals bonding between

molecules or layers of the material. Second, to explain the collective nature of proton ordering in
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H2SQ it is suggested to use extended simulation cells containing several molecular units along the

H-bonding directions [78, 83]. Third, thermal and nuclear quantum effects such as tunneling and

zero-point motion must be taken into account. This has to do with the finite-temperature phase transi-

tion and the quantum mechanical nature of the proton. A more complete description of the theoretical

approach employed and tests performed to establish its accuracy is given in the Ref. [78, 83].

1.1.2 Significance of studying H2SQ

Finally, we note that the systems with ice-rule constraints are shown to exhibit no long-range or-

dering (LRO) down to zero-temperature, with ionic defects similar to the magnetic monopoles being

the elementary excitations [73, 84, 85, 86, 87]. The ice-rules generally leads to frustration in the sys-

tem where all the configurations in the low-energy sector are degenerate, this was discussed early by

Pauling in the early 1930s [88]. While the quantum effects of the water-ice and spin-ice still attract

interest, recent studies on water-ice systems have revealed an interesting phenomenon of coherent

quantum tunneling in the low temperatures leading to U(1) quantum spin-liquid like groundtstate

with fractionalized spinon and gauge field excitations [84, 73, 85, 86, 87, 10].

Earlier works [72] include the investigation of finite-temperature phase diagram in the T − P

plane. It was shown that a phase transition from the AFE (antiferroelectric) to PE (paraelectric) phase

occurs. The paraelectric phase is sustained at zero-temperature above some critical pressure Pc. In

this thesis, we use a model Hamitonian that was recently been gaining importance. Chern et al [89]

have studied a similar model Hamiltonian for such a system and obtained a phase diagram numeri-

cally using the quantum Monte Carlo (QMC) technique at zero-temperature. The model Hamiltonian

at zeroth order consists of a quartic spin (on a plaquette) interaction with a strength J0. The quartic

interactions were also considered in the relevant XXZ models as well [90]. When the Hamiltonian

is studied in the presence of a magnetic field characterized by the parameter K, the system shows a

confinement-deconfinement phase transition. There is also a proposal for the detection of the decon-
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fined charges to verify certain lattice gauge theories [91]. Nevertheless, the complete model includes a

next-nearest neighbor Ising-type interaction with strength J1 and a dipole-dipole interaction J2 < J1.

Usually, the presence of J2 causes the ferroelectricity in these materials. The model was shown to

exhibit both confinement-deconfinement transition (CDT) and ferroelectric quantum phase transition

(FT) for an appropriate set of parameters of the model Hamiltonian. The details of it are discussed in

chapter 2.

1.2 Phenomenology of pseudo-spin formalism

In the previous section 1.1, we have mentioned the mapping between pseudo-spins and the pro-

ton tunneling in H-bond systems. Here, we describe the formalism which later becomes useful to

understand in mapping it to the suitable quantum spin systems for H2SQ, for example, Ising gauge

theories. It is to be noted that, throughout this dissertation, we use pseudo-spin formalism as our

basis of analytical and computational method to investigate various of H2SQ. As indicated in the

previous subsection, the mapping is not new to H2SQ, it has been previously formulated to study the

ferroelectric properties of other H-bonded organics as well. Inspired by vertex-based models [92, 93,

94, 95, 96], KH2PO4 was one of the earlier system studied by a simple TFIM with the kinetic term

proportional to σzi σ
z
j mimicking the configurational energy of two protons located at site i, j. The

term mapping may be understood as the mapping (from spatial (protons) to magnetic moment (spin)

degrees of freedom) of their respective energies, i.e, for H-bonded solids the configurational energy

caused by the local ordering of protons (~P = q~d, where ~P is the dipole (displacement) vector of the

proton) [97, 98] is equivalently and effectively described by exchange interaction of σz variables in

the pseudo-spin language with the Ising-type interaction∝ σiσj . It may be appropriate to note that the

initial studies were based on the quantum version of the ball-spring model with vibrational energies

linking to the energies of the proton motion. Nevertheless, here the dipole moment vectors (displaced
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Figure 1.1: Schematic diagram showing the mapping between the protons in a double-well potential
of O − O bond and the pseudo-spin 1/2 variables. The notation and sign convention of the spins are
described below in sec. 1.3

protons) could be understood as σz’s with the interaction of proton-proton now being represented as

the interaction between two spin-1/2’s. It is to be noted that the mapping mechanism provided is not

an exact mathematical transformation and may not have been possible without the quantum nature

of the proton. The key aspect to be aware of is that because of the fundamental equivalence in the

quantum mechanical behavior of protons and spins, it is understood that there is no loss of generality

in such mapping. That is to say, similar physics could also be realized with the pseudo-spin formal-

ism [74, 42], but with a difference in the observables that are to be estimated in the calculations.

Nevertheless, many theories that now describe H-bond solids are based on pseudo-spin formalism.

For KH2PO4, the energetics of protons may be effectively described as,

H = −J0

∑
〈ij〉

σzi σ
z
j −K

∑
i

σxi , (1.1)

a simple TFIM model with J0, the interaction strength proportional to the dipole-dipole energy typ-

ically in the units of meV . The field term (K) is accounted for the fact that the tunneling of the

protons between the double-well potential is now represented by the non-commuting operator, σx,

responsible for quantum fluctuations in the system. Intuitively, it may be thought of imparting the

quantum fluctuations whose action is to flip the dipole (local ferroelectricity) created by the H-bond.

The crucial aspect in designing an effective pseudo-spin Hamiltonian comes from the nature of the

kinetic term that is the exchange coupling, which is dictated by the physical properties of the material,

specifically related to its geometry, structure, and underlying fundamental interactions. Intriguingly,
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this simple model was successful in describing the quantum order-disorder phenomenon in KH2PO4

in the late 1980s by Matshushita et al. This was also one of the early theories which studied phase

transition in H-bonded organics. Following this, many later studies had come up with more complex

interactions covering various H-bond solids. Most of the theories were based on pseudo-spin formal-

ism that have been constructed from the vertex-models with a restriction on each vertex. Specifically

at each vertex the ordering is not random but is subjected to satisfy the ice-rules (exactly two hy-

drogen ions approach oxygen out of four hydrogen ions [1, 88, 99, 100, 101]). The constraint that

is analogous to the well-known two-in and two-out configurations in spin-ice pyrochlores and other

frustrated systems [102]. However, these ice-rules dictate the phenomenology of order-disorder tran-

sition in H-bond solids.

Out of all, studies on H2SQ crystal are primarily important because of its ordered proton config-

urations and also for the underlying physics that is strongly favored to be due to the order-disorder

phenomenon mechanism specific to H2SQ. This may be naively understood to be because of the

ice-rule states that are being obeyed in these materials could be lifted to give an ordered state by

dipole-dipole interactions around the vacuum, as mentioned in section 1.1. H2SQ is one of the very

few organics which possess such property. In the next section 1.3, we discuss the details of the inter-

actions in the H2SQ crystal and give its suitable Hamiltonian.

1.3 Quantum pseudo-spin model for squaric acid

In the previous section 1.2, we have discussed the mapping of a H-bonded system to a rele-

vant quantum spin-1/2 system given the basic underlying proton-proton interactions with KH2PO4 as

the example. Here we discuss the construction of a model Hamiltonian describing the dynamics of

proton-proton interactions in H2SQ using the same rules of the formalism. However unlike KH2PO4

the nature of proton-proton interactions are much diverse in H2SQ, this has to do with the C=C π-

bond nature of the the C4O4 molecules. It is believed that the interactions between the protons within
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Figure 1.2: Illustration of part of a layer in H2SQ crystal, the blue dots represent the protons and
the small pink circles represent the oxygen atoms forming a quasi-2D configuration of the H-bond
network, one of the C4O4 molecular unit is shown and labeled. The dashed brown lines show the
physical lattice and the solid cyan lines form the lattice on which the model is built on. The indices
shown represent the corresponding spins as shown in Eq. (1.3).

a C4O4 molecule is mediated by this π-bond realizing the potential ferroelectricity at lower temper-

atures and lower pressures and the ice-rule type physics. The model of H2SQ is motivated by the

experimental realization of ferroelectricity and the vertex-based model [99, 75]. For elaborate details

regarding the vertex-modeling of the present system, the reader may refer to Ref. [99, 75].

Since in a ferroelectric state all the molecules have the same configuration of protons surround-

ing it, i.e, two neighboring protons are nearer to the molecule, as a consequence, a C=C double

bond is established between the C-atoms close to the protons. Following this mechanism, one may

simply assume that the interaction of protons is mediated by the C=C double bond within the ground-

state at low-T and P , i.e, the ferroelectric state with neighboring protons in the same state (closer

to C4O4) [75]. With this in hand, one may now construct the higher excited states starting with the

obtained groundstate. At an instant, if one proton closer to C4O4 is tunneled to farther (flipping the

pseudo-spin) the change in total energy is now 2E ′ (E ′ > 0) as shown in Fig. 1.3. The molecule

acquires a net negative charge and the energy of the state is higher as it does not satisfy the local

ice-rules. Using similar arguments one may construct all the other higher excited states with a rule
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2 a

2 b
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State Energy
(arb units)

Configurations

3

E
′′′

E
′

E
′′

4 a,b

Figure 1.3: Schematic diagram showing all possible states and their corresponding energies that arise
due to proton-proton correlations in the H2SQ. The model used is a vertex-based model and the
local states are shown in the column of configurations. The blue (red) dots represent the spin-up
(spin-down) degrees of freedom.

that one has to construct states subsequently starting with an ordered state as mentioned above. All

the configurations and their corresponding energies are charted out in Fig. 1.3.

The next question that arises is to what degree the proton-proton correlations seems to exist. It is

shown in Ref. [99] that the protonic configuration of a layer could be imagined to be built up by inde-

pendent orthogonal and parallel linear Ising spin chains. Consider a fully ordered layer, in which all

molecules are in the same groundtstate, and assume that one certain proton is shifted from a molecule

to its neighbor (Fig. 1.3). By this process, one configuration with three close protons (state 2 a) and

one configuration with one close proton (state 2 b) is generated. The energy of the three molecules in

Fig. 1.4 then is 2E ′. Assume that in the next step a proton is shifted from the configuration 2 a to the
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neighboring molecule (Fig. 1.4). As a consequence, molecules are generated off the types 2 a, 2 b, 3

and the total energy of the configuration is 2E ′+E ′′. Since the energy of state 3 is higher than that of

the groundstate, i.e, E ′′ > 0, this energy is larger than that of the preceding configuration. Clearly, the

latter configuration could be reached from a fully ordered groundstate only via the first configuration.

It is reasonable to assume that the second configuration, as well as all other configurations with higher

energy, are thermally not populated to any substantial extent. Thus, disregarding these higher excited

states one is left with a model of linear chains. Violations of the ice-rule give rise to excited states

(ionic defects). Whereas the lowest excited state may be considered as an excited state realized within

some chain by the higher states interactions are realized within the linear chains as well as between

orthogonal linear chains. In the schematic representation of Fig. 1.4, the chains are parallel to the

diagonals of the squares. Since the lowest excited defect configuration is given by molecules in the

configurations 2 a, 2 b we may assume for our model that defect states occur only within the chains

without influencing protons of other chains. Consequently, we may look at the molecular planes as a

network of independent linear Ising spin chains oriented along with two orthogonal directions in the

crystal. By J1 we denote the interaction between neighboring protons in the chains. Although the

present argument starts from the fully ordered groundstate it is expected to apply approximately also

to the region above Tc because the strong in-plane ice-rule type interactions give rise to a considerable

in-plane order also in this temperature region. A more quantitative information of the linear spin chain

Ising model can be derived from the vertex models discussed [75]. One then associates a pseudo-spin

variable σi = ±1 to each proton bond between the C4O4 molecules. Consequently the states of the

protons on a given molecule C4O4 are denoted by the pseudo-spin variables σz1 , σz2 , σz3 , σz4 where the

subscripts label the spins in the order shown in Fig. 1.2. The sign of the spin vector σzi is defined to

be positive if its projection is positive on some arbitrary but fixed coordinate system. So for example

the state 4 a in Fig. 1.3 may be given by σz1 = + 1, σz2 = -1, σz3 = -1, σz4 = + 1. The energy E(α) of a
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step 1

step 2

Figure 1.4: I, Referring to the ice-rule configuration of the corresponding pseudo-spin system and for
proton system where the net dipole moment of the molecule is finite, P x = 1, P y = 0. II, Showing
one of the ice-rule configurations but the net dipole-moment here is zero, P x = 0, P y = 0. III, Same
but with non-zero dipole moment and neither pointing along x nor y, P x = 0.5, P y = 0.5.

vertex at a lattice site α, then can be written as [75],

E(α) = −J0σ
z
1σ

z
2σ

z
3σ

z
4 − J1(σz1σ

z
3 + σz2σ

z
4)− J ′(σz1σz2 − σz2σz3 + σz3σ

z
4 + σz4σ

z
1), (1.2)

where J1 = (4E ′ − (E ′′ + E ′′′))/8., J2 = (E ′′+E ′′′)/8, J3 = (E ′′ − E ′′′)/8, Thus, E is determined

by nearest and next-nearest neighbor two spin interactions and by four spin interactions. The total

energy of the lattice is then simply given byH =
∑N

i=1 E(i).

1.3.1 Ice Rules: The Ising gauge J0 and the Intramolecular coupling J1

It is worth mentioning again that the early trends included the studies which considered the pro-

ton system strongly coupled to the lattice distortions, i.e, the phonons, to study the order-disorder
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phenomena of the (anti)ferroelastic behavior below an (anti)ferrodistortive transition. However, later

the same results of (anti)ferroelectric transition were shown even without considering such phonons-

protons coupling, the realization in the theory comes from the phase diagram in the T − P plane.

The common aspect in all such models is that the groundstate is highly degenerate with each config-

uration representing a disordered copy of the proton system satisfying the ice-rules. This motivates

us to consider one such Hamiltonian incorporating all the ice-rule states as its zeroth-order dynam-

ics and is given by the Eq. (1.3) . The Hamiltonian is the straightforward extension of the equation

(Eq. (1.2)) from the preceeding section. It is known that the Hamiltonian described by the Ising gauge

term alone has a structure with 16 different configurations per plaquette (Fig. 1.3). Importantly, the

configurations are shown in Fig. 1.3 and in the first row of Fig. 1.3 refers to the configurations with

two-up and two-down configurations, i.e, the ice-rules, while the second row in Fig. 1.3 refers to the

non-ice-rule state but also a groundstate (classical) in the Ising lattice gauge theory (ILGT). This is

not the desired one because we need only those states which satisfy the ice-rules and simultaneously

also as our lowest energy states of H2SQ. The non-ice-rule states refers to excited states with ionic

defects. The distinct aspect of the H2SQ is that this is naturally rectified by the intramolecular cou-

pling term in the system which removes this ambiguity of removing certain non-ice-rule states as our

lowest energy states. This question is addressed in details in the chapter 2. For brevity, the Fig. 1.3

shows the excited state which is a ionic defect since the net charge of the molecule is not zero. Nev-

ertheless, till now, we were able to model our H2SQ system concerning the ice-rule properties. In the

next section 1.3.2, we discuss our model concerning the dipole-dipole interaction (J2) which explain

the ferroelectric properties.

1.3.2 The dipole-dipole interaction

Until now we have discussed the modeling of H2SQ involving the terms J0, J1, and J ′. In Fig. 1.3 for

J ′ = 0 the lowest energy state is given by state 1. This is a state where all the molecules can be in any
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one of the four given local ordered states (see bottom row in Fig. 1.3). In otherwords, we have a set of

randomly oriented dipoles spanning the entire lattice. It is natural to think that the interaction between

the dipoles is inevitable. Indeed, to realize a antiferroelectric ordering in H2SQ, reasonably one could

argue that a minimal model also accounts for the dipole-dipole interaction regardless of the strength

of it. We will see later in chapter 2 that indeed a very small J2 is enough to drive the order-disorder

transition in the system. However, this is not the case always as we shall see later in chapter 3. This

establishes our model with J0 being the Ising gauge term accounting to the 16 possible configuration

of proton within a plaquette which along with J1 imposes the restricted ice-rules with each having

only finite dipole moment and finally J2 describing the physics of dipole-dipole interactions.

It may be appropriate to mention that there are other possible models explaining the same ice-rule

dominant physics in H2SQ. For example, Ishizuka et al [103] has used the complex TFIM model with

multiple interactions, J1, J2, and J3 where the couplings are given along the nearest, next-nearest

neighbor and next next-nearest interaction on a square lattice as a model to describe the H2SQ. Note

that the spins within this model are located on the lattice sites. Similarly, in 2014, Chern et al [89] has

used the model explained above in Eq. (1.2) [99] except for the nearest neighbor diagonal hopping,

J ′, that has been not taken into account. This is an extended version of ILGT in (2+1) dimensions

but with additional interaction J1 and J2. Here the spins are located on the edges of the dual lattice as

shown in Fig. 1.2. In this thesis, we use the Hamiltonian as used in Ref. [89] as a model to analyze the

H2SQ system. We now write the Hamiltonian and discuss the phenomenology of the dipole-dipole

term derived from the properties of H2SQ, and is given by,

H = H0 +H1 +H2, (1.3)

where H0, H1 and H2 are respectively given by

H0 = J0

∑
p

σz1σ
z
2σ

z
3σ

z
4 −K

∑
i

σxi , (1.4)

24



H1 = J1

∑
p

(σz1σ
z
3 + σz2σ

z
4), (1.5)

H2 = −J2

∑
〈AB〉

~PA · ~PB, (1.6)

where σα,i s are the Pauli matrices, PA and PB are the dipole moment vectors of molecule A and B

(see Fig. 1.2) respectively and the components of them are defined as follows,

P(A,B)x = (±)
1

4
(σz1 + σz2 − σz3 − σz4), (1.7)

P(A,B)y = (±)
1

4
(σz2 + σz3 − σz1 − σz4), (1.8)

where (+) is for molecule A and (-) is for molecule B. The summation of indices p runs over all the

plaquettes of the dual lattice (red) and i runs over all the spins in the dual lattice and 〈AB〉 indicates

the nearest neighbor dipole-dipole interaction.

1.4 Overview

We have started with a brief introduction on the significance of H-bonded systems and the moti-

vation of studying H2SQ followed by the early experimental details revealing the crystal structure and

the associated intertwined (structural and charge) phase transition. Numerous experimental works

regarding the microscopic details of the phase transition were presented. For instance, a brief dis-

cussion on coherent and incoherent Raman scattering, infrared spectra, and x-ray diffraction studies

from various authors was presented. It is known that the crystal structure of H2SQ can be understood

of stacked quasi-2D layers with weakly coupled interplane interactions of Van der Waals type. As

a consequence of ice-rules dynamics, strong intraplane proton-proton correlations are believed to be

inherently present. In the low-temperature or pressure, the ordering of protons within the intraplane

network was experimentally found to be antiferroelectric and while the 2D layers were stacked anti-
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ferroelectrically along the unique-axis. We briefed that the studies established the nature of the phase

transition to be of the first-order and the corresponding symmetry in the respective phases being iden-

tified. Another interesting aspect of H2SQ was also discussed regarding the case of double phase

transition with the second one occurring above the first, however, it is later found to be a crossover as

suggested by the NMR and NQR experiments. Theoretically, this is also favored by one of our early

studies [13]. The details of which are presented in chapter 4.

Despite going through a discontinuous phase transition the core molecular structure of the C4O4

was found to remain intact as observed in the Raman scattering experiments. And the only change

observed was in the rearrangement of C4O4 molecules, the protons, and the lattice parameters such

as the interatomic spacings, unit cell dimensions, etc. The temperature-pressure related studies have

been presented to show that the interatomic spacing decreases with the increase of external pressure.

This in turn makes the proton having a higher tunneling rate with a mean position at the center of the

H-bond, which is a paraelectric phase. Nevertheless, following the early experimental works on the

Isotope effect of H2SQ, several possible mechanisms such as tunneling motion of protons, a coupling

of it with lattice distortions were taken into account to explain the phase transition. Indeed, both the

displacive [34, 35, 36, 37] and order-disorder features were seen present as analyzed from the NMR

spectroscopy and infrared studies. However, the first-principles calculations suggest to be favoring

more of order-disorder type [5, 31, 26].

Later, followed by experimental details of earlier studies, all the important theoretical works try-

ing to explain the known experimental results were briefly presented. Although it seems no concrete

conclusion could be made about the exact possible mechanism describing the physics of H2SQ, one

may favor the order-disorder mechanism for its range of applicability and the success of it and more

specifically being favored from the ab-initio calculations [82, 79, 78]. Specifically, looking from the

perspective of anomalous properties, it may be noted that the phenomenon of order-disorder transi-

tion are purely based on the pseudo-spin formalism of spins but with a constraint, that is, Ice-rules
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imposed on the pseudo-spins. Although, it has remarkable success when the distortion effects are

also included, yet on the other hand the recent results based on pure pseudo-spin models predicting

the existence of ferroelectric phase transition and the quantum paraelectric state fascinated to explore

H2SQ along the mechanism of order-disorder phenomenon where a pure pseudo-spin model is ana-

lyzed disregarding the phonon coupling. Indeed, the dielectric properties, the correlation lengths in

the (anti)ferroelectric phase estimated by quantum Monte Carlo were closely matched with experi-

mental findings [89]. Finally, based on the mechanism of proton rearrangement and given the ice-rule

type dynamics in the crystal and the phenomenology involving various configurations of ice-rules,

a theory similar to the Ising lattice gauge theory (ILGT) in (2+1) dimensions and the basic details

of each term coming from the experiments were presented and discussed. In this thesis, we use this

extended version of ILGT to arrive at all our results.

Briefly, in the upcoming chapters, we first present the model and the methods and describe our

results obtained for the zero-temperature calculations using various methods using the Hamiltonian

in Eq. (1.3). Later, In chapter 3, we present the detailed method of QMC and present the various

physical quantities calculated in our finite temperature (and field) analysis. The phase diagram was

also presented and discussed in detail. And in chapter 4, using the Suzuki-Trotter path integral Monte

Carlo method, we simulate the extended 3D model of the Hamiltonian Eq. (1.3) with the newly in-

troduced interlayer coupling constant as the independent parameter. Within the realm of linear-spin

wave theory, we estimate the off-diagonal xx correlation function for a 2D version of Hamiltonian.
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CHAPTER 2

Classical groundstates, symmetry, and excitations

2.1 Classical model

We consider the minimal model satisfying the phenomenological ice-rules with various competing

interactions that include the Ising gauge term J0, intramolecular term J1, and dipole-dipole coupling

J2. All the diagonal interactions reflect the strong proton-proton correlations that are in play in squaric

acid crystal. Here, we discuss the classical groundstates obtained from the mean-field analysis of the

model Hamiltonian given by Eq. (1.3). Glancing at the Hamiltonian one can naively identify the

classical groundstates, however, the same cannot be understood when a magnetic field, K, is turned

on. In other words, we are interested in finding the disorder-order (if any) phenomenon associated

with the given Hamiltonian upon applying the field K. For this, the quantum spin-1/2 system given

by the Pauli matrix σαi ε SU(2) will be now replaced by classical spin system Sαi belonging to SO(3)

group. Later, we perform the spin-wave calculations on the groundstates. The Hamiltonian can be
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rewritten as,

H0 = −1

4
J0

∑
〈ii1i2i3〉

Szi1S
z
i2
Szi3S

z
i4
−K

∑
i

Sxi (2.1)

H1 =
1

2
J1

∑
p

(Sz1S
z
3 + Sz2S

z
4) (2.2)

H2 = −1

2
J2

∑
〈AB〉

~PA · ~PB (2.3)

where Sα,i s are the classical spins, the coefficients 1/4, 1/2 are accounted for double-counting since a

given spin is linked to two subplaquettes (A,B), and also each plaquette accounts for two horizontal

and vertical links. Therefore, while doing a summation over single spin sites we encounter the gauge

term four times after expanding the summation for the finite lattice as in Eq. (2.1). The PA and PB are

the dipole moment vectors of molecule A and B respectively and the components of them are defined

as follows (see Fig. 1.2),

P(A,B)x = (±)
1

4
(Sz1 + Sz2 − Sz3 − Sz4) (2.4)

P(A,B)y = (±)
1

4
(Sz2 + Sz3 − Sz1 − Sz4) (2.5)

where (+) is for molecule A and (-) is for molecule B. Note that the sign convention used here is not

unique. The summation of indices p runs over all the plaquettes of the dual lattice (red) and i runs

over all the spins in the dual lattice and 〈AB〉 indicates the nearest neighbor dipole-dipole interaction.

The parameter space of the HamiltonianH is three-dimensional with J0 being the largest followed

by J1 and J2 in magnitude. While K can be varied. The J0(> 0) gives rise to Z2 gauge-invariance

and the intermolecular coupling term J1 gives rise to the ice-rules. Let us briefly discuss the conse-

quences of various terms in the above Hamiltonians. The first terms in H0 can easily be satisfied by

suitably aligning spins along the± z-axis such that each plaquette exactly contains an even number of

up-spins and even number of down spins. The groundstate manifold of the first term consists of two
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subsets. A square plaquette can have all four spins up (or down) or it might have exactly two spins up

and two down spins. The first configuration is termed as parallel configuration (PC) and the second

one is known as ice-rule configuration (IRC). If one considers a torus having Nx and Ny plaquette in

x and y direction respectively then there are D = 2NxNy degenerate groundstates for the first terms in

the Hamiltonian which implies an entropy density per plaquette is 4. However, for a variant model on

a square lattice, the IRC degeneracy has been exactly worked out [104] and is equal to (3/2)1.5 per

spin. Nevertheless, here the J1 terms remove the parallel configurations in a plaquette and make the

ice-rule configurations the true groundstate configurations. One interesting question that one might be

interested in is whether, in the absence of J1, the quantum fluctuation selects one of those (PC, IRC)

as the true groundstate manifold. One can consider the parallel configuration as the defect in ice-rule

configurations. The spin-wave theory suggests that there is no removal of groundstate degeneracy

between ice-rule and non-ice-rule configurations. The external field, that is, K brings in frustration

in the tendency to align along the ± z-direction. As large K, all the spins are eventually aligned

along the x-directions. One of our motivations to understand the classical version of the model was

to investigate these transitions from a highly degenerate classical configuration to an ordered phase

where spins are along the x-axis. The terms in H1 and H2 bring in additional complexity mainly by

lifting the groundstate degeneracy generated by the first term in H partially. The effect of the H1 term

on the groundstate degeneracy has already been discussed. The dipole-dipole interaction represented

by H2 eventually removes all local degeneracy causing a ferroelectric alignment of electric dipoles

associated with each plaquette. However, there are four global degenerate states in this case which

will be discussed later in detail [3]
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2.2 Mean-field analysis

Generally, for classical Heisenberg-type interactions, one resorts to Luttinger-Tisza method [105]

to find the classical groundstates. However, the limitation of this approach is confined to only Bravais

lattices, though for non-Bravais lattices, it may give important leads to possible groundstate spin

configurations [106]. The presence of four-spin interactions limits us from using such analytical

methods. Owing to this reason, we examine numerically the groundstate spin configurations. We

notice that the Hamiltonian can be rewritten in the following form [107]: H =
∑

i h
z
iS

z
i + hxi S

x
i ,

where for a given spin component Sαi , hαi denotes the local field component along α axis. The

minimum energy configuration of spins is then obtained by aligning the Sαi to the negative α axis.

Usually, one starts from a random configuration of [Sαi ,0] yielding a configurations of [hαi ,0] and a

total energy E[Sαi , 0].The distribution [hαi ,0] yields a new configuration of spins [Sαi ,1] and new total

energy of the system E[Sαi , 1]. In the above, the index “0′′ or “1′′ denotes the steps in numerical

iterations. We continue this process until E[Sαi , n] ≡ E[Sαi , n + 1] (see Fig. 2.3 for a schematic

understanding). We have performed numerical simulations over a lattice of dimension 256× 256 and

checked for sufficient initial configurations. Noticeably, we have found that the groundstate has a

one-to-one corresponds to the groundstate configurations of the first terms of H0. Importantly, the

only difference is that the spins have now a finite and constant component of Sxi , which changes as a

function of K [108]. Since the calculations are strictly done for the zero-temperature case and given

that the system is closed, thus minimizing free energy is equal to minimizing the total energy of the

system. Therefore, the saddle point can be found simply by ∂E[Sα, n]/∂Sαi (α = x, y) = 0. Then the

mean-field equations governing the groundstate dynamics are given by,

Hmf =
∑
i

−1

4
J0

∑
i

(Szi1S
z
i2
Szi3 + Szi4S

z
i5
Szi6)S

z
i

+
1

2
J1

∑
p

(Szi1 + Szi5)S
z
i −

J2

4s

4∑
j=1

(
P x
Bj

+ P y
Bj

+ P x
Aj

+ P y
Aj

)
Szi
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Figure 2.1: a) Lattice showing the plaquette indices Aα, Bα(α = 1, 2, 3, 4) used as the convention
for Eqs. (2.13) - (2.14). This is exactly the cluster size whose local molecular fields influences the
orientation of spin i. The indices represent the spins with which the spin i is interacting.

−K
∑
i

Sxi ,

=
∑
i

−J0

4

(
(Szi1S

z
i2
Szi3 + Szi4S

z
i5
Szi6)

+
J1

2
(Szi1 + Szi5)−

J2

4s

4∑
j=1

(P x
Bj

+ P y
Bj

+ P x
Aj

+ P y
Aj

)
Szi −K

∑
i

Sxi

=
∑
i

(
− J0

4

[
(Szi1S

z
i2
Szi3 + Szi4S

z
i5
Szi6)

+
J1

2
(Szi1 + Szi5)−

J2

16s

4∑
j=1

(P x
Bj

+ P y
Bj

+ P x
Aj

+ P y
Aj

]
Szi −KSxi

)
, (2.6)

We can rewrite the above equation in the following form,

Hmf =
∑
i

(
hziS

z
i −KSxi

)
(2.7)

=
∑
i

(
hziS

z
i + hxi S

x
i

)
, (2.8)

With the mean-field parameters, hz,xi , at each site i can be identfied clearly as,

hz[Szi , n] = −J0

4

[
(Szi1S

z
i2
Szi3 + Szi4S

z
i5
Szi6)

+
J1

2
(Szi1 + Szi5)−

J2

16s

4∑
j=1

(P x
Bj

+ P y
Bj

+ P x
Aj

+ P y
Aj

]
. (2.9)
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N N

Figure 2.2: (Color online) The distribution of N spins over all θ values. The left panel figure corre-
sponds to the case of low-field mean-field results obtained for a system of 256× 256 lattice. We can
see from the figure that, the relative orientations λi cos(θi) fall on two vertical lines. One correponds
to negative z-projection and the other with a positive projection.

By expanding the dipole terms, P x,y
Aj ,Bj

, we obtain the mean-field expression completely expressed in

terms of spins which the ith spin is interacting with,

hz[Szi , n] =
∑
�∈i

(
J0

4s3
Szi1S

z
i2
Szi3 +

J1

2s
Szi2

)
+
J2

8s

(
(Szi5 − Szi ) + (Szi11 − Szi13) +

(Szi2 − Szi22) + (Szi36 − Szi34)− (Szl5 − Szl )− (Szl11 − Szl13)− (Szl2 − Szl22)−

(Szl36 − Szl34)
)
, (2.10)

hx[Sxi , n] = −K. (2.11)

Where iα’s indices correspond to the neighboring spins which the ith spin is interacting with. In

practice, one first performs the spin projection along z and x and then followed by the energy mini-

mization by reorienting these projections angles (θi’s) along the fields hx,z. One may have to be also

extra cautious in determining these mean-field equations as any given spin is linked to two different

subplaquettes A,B. Indeed, the summation in the first term within the brackets is performed over

these two subplaquettes for which the given spin (i) belongs to. The local fields, hx,z and the spin

components satisfy the usual normalized relations, hi = [(hzi )
2 + (hxi )

2)]
0.5

, Si = [(Szi )2 + (Sxi )2]0.5
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such that the total energy of the system now is simply given by the innerproduct,

E[Si, n] =
∑
i

~hi · ~Si. (2.12)

with the decomposition, the energy (2.10) can be represented by E[Sαi , n] =
∑

i h
α
i S

α
i . However, In

terms of the dipole-dipole terms P x,y the same Eq. (2.10) can be rearranged as,

hz[Szi , n] =
∑
�∈i

(−J0

4s3
Szi1S

z
i2
Szi3 +

J1

2s
Szi2

)
− J2

4s

4∑
j=1

(
P x
Bj

+ P y
Bj

+ P x
Aj

+ P y
Aj

)
. (2.13)

It is to be noted that due to the existence of different modes of polarization, for example, x, y, we,

therefore, have two inequivalent links, that is, the spins located on the horizontal and vertical links

respectively. The equations given so far are valid for spins on the horizontal links, with a slight

variation the similar equation for the spins on vertical links are given as,

hz[Szi , n] =
∑
�∈i

(
J0

4s3
Szi1S

z
i2
Szi3 +

J1

2s
Szi2

)
+
J2

4s

4∑
j=1

(
P y
Bj

+ P x
Aj
− P x

Bj
− P y

Aj

)
. (2.14)

Now, to proceed further one has to minimize the energy E[Si, n], generally, this is done by reori-

enting these spins along these fields hx,z. The flowchart describing the method is shown in Fig. 2.3.

Next, we solve these equations on a parallel environment using openMP for system sizes (Lx =

64, 96, 128, 256). The basis states were obtained for various K-values, following which the quantities

of interest like groundstate energy is obtained. In the next section, we discuss in detail the ground-

states obtained from our analysis. Later, based on the arguments of the mean-field ansatz we extend

our analysis to conclude true quantum groundstates for the model without dipole-dipole interaction,

J2 = 0 and for nearly zero magnetic field strength K. These are particularly important because this

enables the use of gauge-transformation that connects various degenerate groundstates of the Hamil-

tonian.
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Input: Random
configuration of spins

Yes

Determine new spin
configuration for 'i '

Orient spin 'i'
along this
local field

Calculate local
fields hx,z for spin 'i'

Final spin
configurations

Do loop over all
spins

Select one spin at
random

Iterate

Figure 2.3: Flowchart showing the conceptual implementation of mean-field method on a computer.

2.2.1 Groundstates

The groundstate energy is strictly characterized by the parameter θi, the classical spin projection

angle. From the above mean-field analysis an affirmation of the groundstates is confirmed and in

conjunction with the arguments based on the Lagrange multiplier method, the groundstate for the

Hamiltonian, in general, can be represented by a dimer form as,

~Si = S(λi cos θez + sin θex), (2.15)

Where λi could be ±1 in tune with the groundstate configurations of H0 for K = 0. We do not

consider a component along sy due to the classical nature of spins where the interactions are only

given in terms of z with no y-component interactions. This argument is valid only in the classical

case. The value of θ depends on K, J1, and J2. For K = 0, we have θ = 0. This θ takes the role of

our order parameter. From the mean-field ansatz represented by Eq. (2.10), the groundstate energy of
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J2/J0=0.60, J1/J0=0.45

J2/J0=0.80, J1/J0=0.60
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Figure 2.4: Variation of the parameters, that is, staggered magnetization per site mc (Left) and
polarization moment P (Right) per plaquette as a function of magnetic field K is shown for different
parameter regimes and for multiple relative strengths of J1 and J2. a) mc is calculated for the case
where J2 = 0 and b) polarization for J2 6= 0. The system size used for this computation is 96×96.

the system can be written as follows:

Ecl = −1

2
J0S

4N cos4 θ − J1S
2N cos2 θ −KSN sin θ − 2J2S

2N cos2 θ. (2.16)

Minimizing Ecl with respect to θ, we obtain θC . This groundstate energy has been compared with the

Ex = −KN , which denotes the energy corresponding to the state where all spins are aligned along

x-direction. For a given J0, J1, J2, there exists a Kc such that if K ≤ Kc then Ecl < Ex(θC) with

θC ≤ π/2. Fig. 2.5 shows the numerically obtained values of θC in K − J1 plane for various values

of J2. As evident from Fig. 2.5, the value of Kc linearly increases with J1, which is expected. As one

increases the values of J2, Kc further takes higher values.

To consolidate our results we also estimate the quantities which may be thought of as order

parameters in the classical system that are used to distinguish the paraelectric phase from that of the

long range-ordered phase. But here the bigger motive is to see the effect of the role of absolute values
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Figure 2.5: Contour plot of θC in the K − J1 plane for various values of J2. The red region denotes
an ordered phase where all the spins align in x-direction. Various other shaded regions (except red)
denote a disordered phase where the z components of spins are disordered.

of J1, J2 on Kc. The expression for staggered magnetization is mc = 1
Ns

∑
i(−1)iSzi . Similarly, for

P = 2
Ns

∑
i(−1)iP x

i . From the Fig. 2.4(a), we can observe that the variation of mc is continuous and

the spacing of Kc for J1/J0 = 0.75 to 1.0 is the same as that of the values 1.25 and 1.5. Similar

behaviour can be seen for polarization as shown in Fig. 2.4(b) in the finite dipole-dipole coupling

case for J2/J0 = 0.60, J1/J0 = 0.45, J2/J0 = 0.80, J1/J0 = 0.60, J2/J0 = 1.0, J1/J0 = 0.75,

J2/J0 = 1.20, J1/J0 = 0.9.

Let us summarize our results for classical groundstate configurations. For all the parameter val-

ues, there is a θC for K ≤ Kc that defines the groundstate configurations according to Eq. (2.16).

The groundstate has finite degeneracy in the presence of J0, J1. For J1 = J2 = 0, the degeneracy is

2NxNy+1 and for J2 = 0, the degeneracy is 2Nx+Ny . For both J1 and J2 nonzero, the degeneracy is

reduced to four as described in Fig. 2.8. For large K > Kc, all the spins get aligned along the x-axis

corresponding to θC = π/2. Now we are in a position to discuss the relative stability of the ground-

state spin configurations against the quantum fluctuation as prescribed by the linear spin-wave theory.

Our specific interest is to search for a possible order-disorder driven lifting of groundstate degeneracy

in the absence of dipole-dipole interaction. In the presence of dipole-dipole interaction, we are inter-

ested to find the nature of low-lying excitations as the manifestation of competing ferromagnetic and

antiferromagnetic ordering in orthogonal direction for various values of the external field.
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2.3 Gauge Symmetry and degeneracy

In this section, we elaborately discuss the groundstate degeneracy counting due to the first term of

the Hamiltonian given in Eq. (2.1). There are eight groundstate configurations for a single plaquette

term among the possible sixteen states. However, once we start filling the neighboring plaquettes,

it imposes constraints on the number of possible states for a given plaquette. However, a complete

understanding of such enumeration is possible in this case. To give proof, for simplicity, we first

consider a 4×4 system with periodic boundary conditions in both directions and show explicitly

that the groundstate degeneracy is 24×4+1. In Fig. 2.6 we have shown counting of the groundstate

degeneracy for a 4×4 system in two different ways of satisfying the groundstate configuration for

each plaquette. On the left, we start the counting from the extreme left down the corner and proceed

toward the right toward the down right corner. The number of ways in which a given plaquette can

be filled to comply with the groundstate constraint is mentioned inside the plaquette itself. Next, we

move one row up and again start from the extreme left plaquette. This procedure is repeated until

all the plaquettes are filled up according to the groundstate constraint. The total number of states is

X=217. On the right, we show another way of counting and reaching the same number as explained

in the caption of Fig. 2.6. We mention that to count the number of ways in which a given plaquette

can be filled up (once its neighboring plaquettes are already filled up), we need to take into account

the following observations.

1. If for a given plaquette, all the spins are available, there are eight possible ways to fill that

plaquette.

2. If one spin of a given plaquette is already determined, then only four possible ways are left.

3. If two spins of a given plaquette are already determined, only two choices are left.

4. If three sides of a given plaquette are determined, only one choice is left.
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If we denote by Si,j the number of ways a given plaquette (i, j) can be filled up, then we have for the

above procedure:

S1,1 = 8, Sj,1 = 4(1 < j < Nx), SNx,1 = 2, (2.17)

Sj,2 = 4(1 < j < Ny), (2.18)

Si,j = 2(1 < i(j) < Nx(Ny)), (2.19)

S1,Ny = 2, Si,Ny = 1(1 < i ≤ Nx). (2.20)

The total degeneracy D could be found by the product of all Si,j . A straightforward calculation

yieldsD = 2×2Nx+Ny . We notice that this estimation does not depend upon the thermodynamic limit

and is valid for any small system with periodic boundary conditions. In the right panel of Fig. 2.6, we

showed a different way of filling up states in a 4 × 4 square lattice. We start filling diagonally from

right to left. The blue numerals show the sequences of filling up the plaquette terms and the black

numerals show the number of ways one can fill up a given plaquette. The plaquettes with no numerals

are automatically filled up to their neighboring plaquettes. It is very easy to find an explicit expression

for this way of counting as given in Eq. (2.17) to Eq. (2.20) and we leave it as an exercise to the

interested reader. It may be noted that this way of counting fails to yield the groundstate degeneracy

for ice-rule configurations as, without all up or down spin configurations, there is an unequal number

of choices once two sides of a given plaquette are filled up. The existence of 2NxNy+1 number of

degenerate states can be easily understood by the presence of the many conserved quantities which

form a closed group G. The members of the group are constructed as follows. At each vertex of a

square lattice, one can define a quantity Ai =
∏
σxj , where the index “j” runs through the four links

connected to that vertex “i”. One can check that anyAi and any arbitrary product of any number ofAi

commutes with the J0 term in the Hamiltonian. However, due to the constraint
∏Ai, all the Ai’s are

not independent. This leaves us a total of
∑

m
(NxNy−1)Cm = 2NxNy−1 independent group elements.
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this limit, we have performed spin wave approximations over
classical ground states. Though we can not expect to reach
the true quantum ground states, we think that the spin-wave
fluctuations give a reasonable estimate towards that. However,
a more in depth study is needed for exploring the nature of
true ground states and unfortunately PCUT can not be applied
in this regime. On the other hand, the spin-wave analysis for
J2 �= 0 is expected to be more realistic given that quantum
ground state is an ordered state. To give more meaning to
our study, we have applied PCUT to analyze the system in
the large field limit (K 	 J0, J1, J2) where the ground state
consists of all spins aligned along x direction with single
spin-flip excitations. Though the PCUT analysis has improved
the estimation of ground-state energy and one-particle gap as
determined by spin-wave analysis, the closeness of results in
the two different approaches seems to point out that the results
are realistic in this limit. Our study also predicts the nature
excitations as shown in Fig. 10 for finite J2. However, one
needs to perform a DFT study to confirm the exact values of
parameters needed to fit the experiment. To complete, we have
also briefly discussed the limit where K � J0 and showed
its connection to the toric code model [33,34]. We hope that
our work will motivate future theoretical studies as well as
experiments in these materials.
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APPENDIX

In this appendix, we elaborate on the ground-state degen-
eracy counting due to the first term of the Hamiltonian given
in Eq. (2). There are eight ground-state configurations for
a single plaquette term among the possible sixteen states.
However, once we start filling the neighboring plaquettes,
it imposes constraints on the number of possible states for
a given plaquette. However, a complete understanding of
such enumeration is possible in this case. To give a proof,
for simplicity, we first consider a 4×4 system with periodic
boundary conditions in both directions and show explic-
itly that the ground-state degeneracy is 24×4+1. In Fig. 11,
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FIG. 11. On the top left, we have shown the number of ways a
given plaquette for a 4×4 square lattice can be filled up to satisfy the
ground-state constraint. (Right) We have shown a different way of
counting as explained in the text.

we have shown counting of the ground-state degeneracy
for a 4×4 system in two different ways of satisfying the
ground-state configuration for each plaquette. In the left, we
start the counting from the extreme left down corner and
proceed toward the right toward the down right corner. The
number of ways in which a given plaquette can be filled to
comply with the ground-state constraint is mentioned inside
the plaquette itself. Next, we move one row up and again start
from the extreme left plaquette. This procedure is repeated
until all the plaquettes are filled up according to the ground-
state constraint. The total number of states are X = 217. In the
right, we show another way of counting and reaching the same
number as explained in the caption of Fig. 11. We mention that
to count the number of ways in which a given plaquette can
be filled up (once its neighboring plaquettes are already filled
up), we need to take into account the following observations.
(1) If for a given plaquette, all the spins are available, there are
eight possible ways to fill that plaquette. (2) If one spin of a
given plaquette is already determined, then only four possible
ways are left. (3) If two spins of a given plaquette are already
determined, only two choices are left. (4) If three sides of a
given plaquette are determined, only one choice is left.

If we denote by Si,j the number of ways a given plaquette
(i, j ) can be filled up, then we have for the above procedure:

S1,1 = 8, Sj,1 = 4(1 < j < Nx ), SNx,1 = 2, (A1)

Sj,2 = 4(1 < j < Ny ), (A2)

Si,j = 2(1 < i(j ) < Nx(Ny)), (A3)

S1,Ny
= 2, Si,Ny

= 1(1 < i � Nx ). (A4)

The total degeneracy D could be found by the product of
all Si,j . A straightforward calculation yields D = 2×2NxNy .
We notice that this estimation does not depend on the ther-
modynamic limit and it is valid for any small system with
periodic boundary conditions. In the right panel of Fig. 11,
we showed a different way of filling up states in a 4×4 square
lattice. We start filling diagonally from right to left. The blue
numerals show the sequences of filling up the plaquette terms
and the black numerals show the number of ways one can
fill up a given plaquette. The plaquettes with no numerals
are automatically filled up to their neighboring plaquettes.
It is very easy to find an explicit expression for this way of
counting as given in Eq. (A1) to Eq. (A4) and we leave it
as an exercise to the interested reader. It may be noted that
this way of counting fails to yield the ground-state degeneracy
for ice-rule configurations as without the all up or down spin
configurations, there are unequal number of choices once two
sides of a given plaquette are filled up.

The existence of 2NxNy+1 number of degenerate states can
be easily understood by the presence of the many conserved
quantities which form a closed group G. The members of the
group are constructed as follows. At each vertex of square
lattice, one can define a quantity Ai = ∏

σx
j , where the index

“j” runs through the four links connected to that vertex “i.”
One can check that any Ai and any arbitrary product of any
number of Ai commutes with the J0 term in the Hamiltonian.
However, due to the constraint

∏
Ai , all the Ai’s are not

224425-11

Figure 2.6: On the top left, we have shown the number of ways a given plaquette for a 4 × 4 square
lattice can be filled up to satisfy the groundstate constraint. (Right) We have shown a different way of
counting as explained in the text.

Apart from this, two independent global Wilson loop operators commute with the above-mentioned

group element. They are called Γh =
∏
σyhi and Γν =

∏
σyνi . Here, hi runs over all the vertical links

along x-direction. The vertical links are chosen from the opposite sides of squares of a given row.

Similarly, vi runs over all the horizontal links along y-direction. As before, the horizontal links are

chosen from the opposite sides of squares of a given column. Though there are Nx and Ny number of

horizontal and vertical lines, only one on each of these lines in a given direction yields an independent

group element. Taking into these two global conserved quantities, we end up with a total number of

2NxNy+1 conserve quantities.

Similarly, one can calculate degeneracy for finite J1 but with J2 = 0. One can easily find the

rules for the number of ways a plaquette can be filled up. The rules for counting the number of ways a

given plaquette can be filled in is the following. For example, if all the sides of a square are available,

then it can be filled up in four ways. Once a given side of a plaquette is determined, there are only

two choices left to be filled up. If the two adjacent sides of the square are filled up, then only one

choice is available, however, if the opposite sides of the square are filled in, there exist two choices.

One can easily find that [by having similar Eq. (2.17) to Eq. (2.20)] the degeneracy for finite J1 is

2Nx+Ny . The fact that there exists a 2Nx+Ny number of degenerate states in the presence of J1 can be

understood by similar consideration of conserved quantities in the presence of only the J0 term. Ai’s
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no longer remain conserved in the presence of J1 term, however, Γh and Γν remain conserved. Apart

from this, Γh/ν , constructed parallel to the horizontal or vertical direction becomes independent thus

making it a total of 2Nx+Ny conserved quantities. This explains the degeneracy of 2Nx+Ny .

2.4 Spin-wave excitations

We notice that, in general, spins are quantized in an arbitrary direction (as evident from classical

analysis), which we call the local axis represented by x′/z′. The global axis will be represented by

x/y. Any spin has the following decomposition:

~Sr = exSxr + ezSzr . (2.21)

Here, the index “r” indicates the position of a given site. Now, we perform an orthogonal coordi-

nate transformation (from x, y, z to x′, y′, z′) around y axis such that one axis of the new coordinate

system gets aligned along the local moment direction at every site:

Sxr = Sx
′

r cosλiθC − Sz
′

r sinλiθC , (2.22)

Szr = Sx
′

r sinλiθC + Sz
′

r cosλiθC . (2.23)

The expressions for S ′x/z in terms of the bosonic operators are given below:

Sx
′

r = s− a†rar, Sz
′

r =
√
s/2(a†r + ar). (2.24)

We have specifically chosen the above representation as our interest is to investigate the phase

boundary where the spins align mostly along x-direction, where a†r and ar represent the creation and

annihilation operators of a magnon at site r.
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2.4.1 High-field limit, K � J0, J1, J2 & θ0 = π/2

The groundstate in this limit is a trivial one with all the spins pointing towards the x. To obtain

the magnon-spectrum and to check the stability of the classical groundstates, the Holstein-primakoff

transformation (2.24) is substituted into the Hamiltonian 2.1 with the groundstate (all oriented along

x-direction) now being explicitly embedded into it. The Hamiltonian now reads as,

Hsw =
∑
�

[
− J0

√
s/2

4[ (
a†i + ai

)(
a†i1 + ai1

)(
a†i2 + ai2

)(
a†i3 + ai3

) ]
+J1

√
s/2

2[ (
a†i + ai

)(
a†i1 + ai1

)
+
(
a†i2 + ai2

)(
a†i3 + ai3

) ]]
(2.25)

−J2

16

∑
〈AB〉

√
s/2

2
[
((ai + a†i ) + (ai1 + a†i1)− (ai2 + a†i2)− (ai3 + a†i3))A

×((ai + a†i ) + (ai3 + a†i3)− (ai2 + a†i2)− (ai1 + a†i1))B

]
−K

∑
i

(s− a†iai).

(2.26)

Expanding the above Eq. (2.25), we get,

Hsw =
∑
i

[
− J0

√
s/2

4[
(ai1ai2ai3a

†
i + aiai2ai3a

†
i1

+ ai2ai3a
†
ia
†
i1

+aiai1ai3a
†
i2

+ ai1ai3a
†
ia
†
i2

+ aiai3a
†
i1
a†i2 +

ai3a
†
ia
†
i1
a†i2 + aiai1ai2a

†
i3

+ ai1ai2a
†
ia
†
i3

+ aiai2a
†
i1
a†i3

+ai2a
†
ia
†
i1
a†i3 + aiai1a

†
i2
a†i3 + ai1a

†
ia
†
i2
a†i3

+aia
†
i1
a†i2a

†
i3

+ a†ia
†
i1
a†i2a

†
i3

+ aiai1ai2ai3)
]]

+J1

∑
i

(√
s/2

2
ai1a

†
i + aia

†
i1

+ a†ia
†
i1

+ ai3a
†
i2

+ ai2a
†
i3

+ a†i2a
†
i3

+ aiai1 + ai2ai3

)
−J2

16

∑
〈AB〉

√
s/2

2
[
((ai + a†i ) + (ai1 + a†i1)− (ai2 + a†i2)− (ai3 + a†i3))A

×((ai + a†i ) + (ai3 + a†i3)− (ai2 + a†i2)− (ai1 + a†i1))B

]
−K

∑
i

(s− a†iai), (2.27)
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where the braces in the J2 term, ()A(B), denotes the four links/indices on plaquettes A(B) as defined

by the polarization P x(y)
A(B). At this point, one may either mean-field decompose the four-body interac-

tion term (for example, aiaja
†
kal) into the following two: 〈aiaj〉a†kal + aiaj〈a†kal〉 − 〈aiaj〉〈a†kal〉 +

· · · + all possible decompositions, however, here we only consider the bilinear terms and do not pur-

sue the other direction. With the virtue of that, clearly the J0 accounts to all four-body interaction

terms. And in the linear spin-wave theory approximation, the J0 terms clearly does not enter into

the calculations of the stability of ground state in the high-field limit. Therefore, in this limit, the J0

term can be regarded as secondary interaction. The Hamiltonian in this approximation scheme can be

given as,

Hsw =
∑
i

J1

√
s/2

2
(ai1a

†
i + aia

†
i1

+ a†ia
†
i1

+ ai3a
†
i2

+ ai2a
†
i3

+ a†i2a
†
i3

+ aiai1 + ai2ai3)

−J2

16

∑
〈AB〉

√
s/2

2
[
((ai + a†i ) + (ai1 + a†i1)− (ai2 + a†i2)− (ai3 + a†i3))A (2.28)

×((ai + a†i ) + (ai3 + a†i3)− (ai2 + a†i2)− (ai1 + a†i1))B

]
−K

∑
i

(s− a†iai).

Next, since in the high-field case we see the translational invariance of the spin-configurations, we

then can Fourier transform the ai variables to ak as ai = 1
N

∑
~k

a~k exp(−i~k · ~r), substituting the trans-

formed boson operators into the above equation yields a Hamiltonian of various orders in a. Within the

linear regime we neglect the higher order terms beyond the order 2, that is,O ∼ a1a
†
2a3a

†
4, a1a

†
2a
†
4, · · · .

The Hamiltonian then is given by,

Hsw =
∑
i

∑
k

J1

√
s/2

2(
ai1a

†
ie

ik·ri1−ik·ri + aia
†
i1
eik·ri−ik·ri1 + a†ia

†
i1
e−ik·ri−ik·ri1

+ai3a
†
i2
eik·ri3−ik·ri2 + ai2a

†
i3
eik·ri2−ik·ri3

+a†i2a
†
i3
e−ik·ri2−ik·ri3 + aiai1e

ik·ri+ik·ri1 + ai2ai3e
ik·ri2+ik·ri3

)
−J2

16

∑
〈AB〉

√
s/2

2
a†ie
−ik·ri − a†i1e−ik·ri1 − a†i2e−ik·ri2

+a†i3e
−ik·ri3 + aie

ik·ri − ai1eik·ri1 − ai2eik·ri2 + ai3e
ik·ri3 . (2.29)
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Figure 2.7: Plot showing the dispersion in the high-field case where quadratic behavior slowly con-
verges to a linear behavior at the second-order critical line given by K = 2sJ1 + 21

8
sJ2. The various

symmetry point used in the above figure is as follows: Γ = (0, 0), X = (π, 0), M = (π, π), and
R = (0, π). The same convention applies to all plots used in this dissertation.

Using the identity
∑
i

ei(k−q)·ri = δk,q, the above Eq. (2.29) can be transformed to,

Hsw = N
∑
k

[
ξkaka

†
k +

γk
2

(aka−k + a†−ka
†
k)

]
+ C0 +O(a3) +O(a4), (2.30)

where C0 = KSN and is the classical energy upon which the first term has the information of the

first excited state dispersion in k-space, and ξk = γk +K − SJ2
8

, and

γk =
−s
4

[
J2(2p2

k − 1)− 4(J1 + J2)pk
]
, (2.31)

where pk = cos(kx+ky) cos(kx−ky). Now, the Hamiltonian is easily diagonalizable and upon doing

that we obtain the eigen energies regarding the magnon spectra as given by,

Ek =
√
ξ2
k − γ2

k. (2.32)

In the Fig. 2.7 we show the spectrum plotted for parameters J1 = 0.2, K = 1.0 and varying

J2 from 0.1 to 0.5. To qualitatively decipher the linearity seen in the dispersion curves obtained for
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J2 = 8/21 we expand the spectrum around the minima, that is, X (or R) high-symmetry point. We

consider the following decomposition (kx = −π/2 + δx, ky = π/2 + δy). Replacing the following

Eqs. (2.32) and expanding the terms γk, pk. We obtain,

ξk = −1

2
J2s cos2 (δx − δy) cos2 (δx + δy)− J1s cos (δx − δy) cos (δx + δy)

−J2s cos (δx − δy) cos (δx + δy) +
J2s

4
+K − sJ2

8
, (2.33)

similarly,

γk = −1

2
J2s cos2 (δx − δy) cos2 (δx + δy)− J1s cos (δx − δy) cos (δx + δy)

−J2s cos (δx − δy) cos (δx + δy) +
J2s

4
,

pk = − cos (δx − δy) cos (δx + δy) , (2.34)

substituting the above equations into the spectrum (Eq. (2.32)),

Eδx,δy = (−1

4
s
(
J2

(
2 cos2 (δx − δy) cos2 (δx + δy)− 1

)
+ 4 (J1 + J2) cos (δx − δy) cos (δx + δy)

)
+K − sJ2

8
)2 − 1

16
s2(J2

(
2 cos2 (δx − δy) cos2 (δx + δy)− 1

)
+4 (J1 + J2) cos (δx − δy) cos (δx + δy))

2. (2.35)

Since, δx, δy are small, therefore, cos(a) ≈ 1 − a2/2 can be approximated. Substituting this

approximation along with the smallness of δ (such that O ∼ δ4 are neglected) in the above equation

and simplifying further yields,

Eδx,δy = K̃
1/2
1

√
K̃2 + 4(J1 + 2J2)|δ2

x + δ2
y|2, (2.36)

46



which can be simply rewritten as,

E~δ = K̃
1/2
1

√
K̃2 + 4(J1 + 2J2)|~δ|2. (2.37)

Here, K̃1 = K − sJ2
8

, K̃2 = (K − 2sJ1 − 21
8
sJ2). With this Eq. (2.37) one can see that for all the

values of J1,2, K the spectrum remains gapped with low-energy quadratic behavior in the dispersion

curves except at the second-order transition point as obtained by Kc = 2sJ1 + 21/8J2. The spectrum

at this point becomes linear and gapless, indicating a possibility to find the groundstate for higher J2

which is the antiferroelectric case. This also shows that the transition for smaller values of J2 the sys-

tem behaves quite differently from the one with relatively higher values of J2. This can be attributed

to the fact that the gapped spectrum is implicative of the degeneracy in the groundstate manifold in the

absence of dipole-dipole interaction J2, with the excitations being gapped and discrete. When J2 is

increased and approaches the antiferroelectric ordered state, the spin-wave spectrum becomes linear

and gapless as expected. And as one increases the value of J2 further we see that the K̃2 changes

to negative in the sign where the spectrum becomes imaginary (2.37). The same can be deciphered

from the Fig. 2.7 shown in dotted lines near the X(R) high-symmetry points where there are no

states available with the gap ∆(k) being undefined. It is to be noted that for sufficiently large J2 one

needs to perform the SW analysis on a different groundstate. In the next section, we calculate the SW

spectrum in the low-field in the ordered ferroelectric case.

2.4.2 Low-field limit, J2 = 0 & J1 � K

The approach in this limit is different from that of the above analysis. This is due to the fact that

for small fields and for J2 = 0, the groundstate is exponentially degenerate. Since the translational

invariance, in general, is lost we, therefore, employ a slightly variant approach away from the Fourier

transform. We stick to the real space and perform the calculations based on the dynamic matrix for-

malism to check the stability of each degenerate groundstate explicitly. Whether or not the degeneracy
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Figure 2.8: One of the four degenerate groundstates that exists for finite J2 is shown in the above
figure. The red dots represent up spins and the blue dots represent down spins. Taking the mid
points of the lower left square as the origin, the position of up spins and down spins can be written as
~Rup = −ẽy + m1ã + n1b̃, ~Rdown = −ex + m2~a + n2

~b where ~a = ex/2 − ey/2, b = −ex/2 + ey/2
. The second degenerate groundstate is obtained by up↔ down transformation. The third and fourth
groundstates could be obtained by rotating the spin configurations of first and second by π/2.

is being lifted at the linear order is a matter of importance as the higher orders may give a clue of the

possible mechanism of the strong interactions of the quasi-particles in the low-energy scale. More-

over, the quantum order-disorder phenomenon is crucial in determining the physics of the Hamiltonian

for the pure quantum version if the degeneracy is lifted. We note that this is also a case where the

degenerate groundstate is a state with randomly oriented dipoles with each molecule/plaquette being

oriented either along ±x or ±y. The dynamic matrix is generally given by [109, 110],

i
∂ψ

∂t
= [ψ,H] = Dψ, (2.38)

where the fields ψ is given by,

ψ† ≡ [a†1 a†2 · · · a†N a1 a2 · · · aN ]. (2.39)
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From the Hamiltonian in Eq. (2.1) the above expression for dynamical matrix D can be found as,

Hlf =
∑
i

J0s
4

4

(
cos4(θ)λiλi1λi2λi3S

z
i S

z
i1
Szi2S

z
i3

+ sin4(θ)Sxi S
x
i1
Sxi2S

x
i3

+ sin(θ) cos3(θ)λiλi1λi2S
x
i3
Szi S

z
i1
Szi2

+ sin(θ) cos3(θ)λiλi1λi3S
x
i2
Szi S

z
i1
Szi3 + sin(θ) cos3(θ)λiλi2λi3S

x
i1
Szi S

z
i2
Szi3

+ sin(θ) cos3(θ)λi1λi2λi3S
x
i S

z
i1
Szi2S

z
i3

+ sin2(θ) cos2(θ)λiλi1S
x
i2
Sxi3S

z
i S

z
i1

+ sin2(θ) cos2(θ)λiλi2S
x
i1
Sxi3S

z
i S

z
i2

+ sin2(θ) cos2(θ)λi1λi2S
x
i S

x
i3
Szi1S

z
i2

+ sin2(θ) cos2(θ)λiλi3S
x
i1
Sxi2S

z
i S

z
i3

+ sin2(θ) cos2(θ)λi1λi3S
x
i S

x
i2
Szi1S

z
i3

+ sin2(θ) cos2(θ)λi2λi3S
x
i S

x
i1
Szi2S

z
i3

+ sin3(θ) cos(θ)λiS
x
i1
Sxi2S

x
i3
Szi + sin3(θ) cos(θ)λi1S

x
i S

x
i2
Sxi3S

z
i1

+ sin3(θ) cos(θ)λi2S
x
i S

x
i1
Sxi3S

z
i2

+ sin3(θ) cos(θ)λi3S
x
i S

x
i1
Sxi2S

z
i3

)
∑
i

J1s
2

2

(
cos2(θ)λiλi2S

z
i S

z
i2

+ cos2(θ)λi1λi3S
z
i1
Szi3 + sin2(θ)Sxi S

x
i2

+ sin2(θ)Sxi1S
x
i3

+ sin(θ) cos(θ)λiS
x
i2
Szi + sin(θ) cos(θ)λi1S

x
i3
Szi1 + sin(θ) cos(θ)λi2S

x
i S

z
i2

+ sin(θ) cos(θ)λi3S
x
i1
Szi3
)

+
∑
iAB

J2s

16

(
SziAS

z
iBi
λiAλiB cos2(θ)− SziA1

SziBi
λiBλiA1

cos2(θ)− SziA2
SziBi

λiBλiA2
cos2(θ)

+SziA3
SziBi

λiBλiA3
cos2(θ)− SziASziB1

λiAλiB1
cos2(θ) + SziA1

SziB1
λiA1

λiB1
cos2(θ)

+SziA2
SziB1

λiA2
λiB1

cos2(θ)− SziA3
SziB1

λiA3
λiB1

cos2(θ)

−SziASziB2
λiAλiB2

cos2(θ) + SziA1
SziB2

λiA1
λiB2

cos2(θ)

+SziA2
SziB2

λiA2
λiB2

cos2(θ)− SziA3
SziB2

λiA3
λiB2

cos2(θ)

+SziAS
z
iB3
λiAλiB3

cos2(θ)− SziA1
SziB3

λiA1
λiB3

cos2(θ)− SziA2
SziB3

λiA2
λiB3

cos2(θ)

+SziA3
SziB3

λiA3
λiB3

cos2(θ)− sin(θ)SxiB1
SziAλiA cos(θ)− sin(θ)SxiB2

SziAλiA cos(θ)

+ sin(θ)SxiB3
SziAλiA cos(θ) + sin(θ)SxiBi

SziAλiA cos(θ) + sin(θ)SxiAS
z
iBi
λiB cos(θ)

− sin(θ)SxiA1
SziBi

λiB cos(θ)− sin(θ)SxiA2
SziBi

λiB cos(θ)

+ sin(θ)SxiA3
SziBi

λiB cos(θ) + sin(θ)SxiB1
SziA1

λiA1
cos(θ) + sin(θ)SxiB2

SziA1
λiA1

cos(θ)

− sin(θ)SxiB3
SziA1

λiA1
cos(θ)− sin(θ)SxiBi

SziA1
λiA1

cos(θ)
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+ sin(θ)SxiB1
SziA2

λiA2
cos(θ) + sin(θ)SxiB2

SziA2
λiA2

cos(θ)

− sin(θ)SxiB3
SziA2

λiA2
cos(θ)− sin(θ)SxiBi

SziA2
λiA2

cos(θ)− sin(θ)SxiB1
SziA3

λiA3
cos(θ)

− sin(θ)SxiB2
SziA3

λiA3
cos(θ) + sin(θ)SxiB3

SziA3
λiA3

cos(θ)

+ sin(θ)SxiBi
SziA3

λiA3
cos(θ)

− sin(θ)SxiAS
z
iB1
λiB1

cos(θ) + sin(θ)SxiA1
SziB1

λiB1
cos(θ) + sin(θ)SxiA2

SziB1
λiB1

cos(θ)

− sin(θ)SxiA3
SziB1

λiB1
cos(θ)− sin(θ)SxiAS

z
iB2
λiB2

cos(θ) + sin(θ)SxiA1
SziB2

λiB2
cos(θ)

+ sin(θ)SxiA2
SziB2

λiB2
cos(θ)− sin(θ)SxiA3

SziB2
λiB2

cos(θ)

+ sin(θ)SxiAS
z
iB3
λiB3

cos(θ)− sin(θ)SxiA1
SziB3

λiB3
cos(θ)− sin(θ)SxiA2

SziB3
λiB3

cos(θ)

+ sin(θ)SxiA3
SziB3

λiB3
cos(θ)− sin2(θ)SxiAS

x
iB1

+ sin2(θ)SxiA1
SxiB1

+

sin2(θ)SxiA2
SxiB1
− sin2(θ)SxiA3

SxiB1
− sin2(θ)SxiAS

x
iB2

+ sin2(θ)SxiA1
SxiB2

+ sin2(θ)SxiA2
SxiB2
− sin2(θ)SxiA3

SxiB2
+ sin2(θ)SxiAS

x
iB3
− sin2(θ)SxiA1

SxiB3

− sin2(θ)SxiA2
SxiB3

+ sin2(θ)SxiA3
SxiB3

+ sin2(θ)SxiAS
x
iBi
− sin2(θ)SxiA1

SxiBi

− sin2(θ)SxiA2
SxiBi

+ sin2(θ)SxiA3
SxiBi

)
. (2.40)

Here, we have rotated the local z-orientation of spins onto the global coordinate system Sx,z ′ (see

Eqs. (2.23)). For simplicity, we drop the symbol ′ in the above Eq. (2.40). Now, we can transform the

current Hamiltonian into a bosonic one using the HP transformation (see Eq. (2.24)). After performing

this, we note that the Eq. (2.40) is too long to be given here, instead we give it in Appendix A. In the

commutator given in Eq. (2.38) only those terms contribute which the bosonic operator (or the spin)

is interacting with. Therefore, after performing the calculations by neglecting higher-order terms

(O ∼ aa†aa) we obtain the simple relation for the elements of the dynamic matrix, D as,

Dii = 2J0s
3 cos4 θ + 2J1s cos2 θ +K sin θ, (2.41)

Dij = −λiλjJ0
s3

2
sin2 θ cos2 θ + δ

sJ1

2
sin2 θ, (2.42)
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here the coefficients λ′is are the coefficients obtained from the mean-field analysis as given in Eq. (2.15).

And δ = 1 if i, j are associated to same plaquette and are either along one of the two orthogonal direc-

tion in the lattice spanned by n1, n2, else δ = 0. Now, diagonalizing the dynamic matrix containing

the information of the energies of the excited states, we obtain the gap equal to 0.4581(4) for J0 = 1,

J1 = 0.2, K = 0.2, and θ = 0.06691(5), the value is very close to the one obtained from the spin-

wave analysis done for the globally ordered ferroelectric groundstate (see Fig. 2.8). This is possible

because the groundstates (groundstate) for J2 6= 0 are subsets of the groundstate for the case J2 = 0

as detailed in Fig. 2.8. We explicitly check the same for all the degenerate groundstates on a 4×4 lat-

tice. Our results showed the same value of gap for all the 256 ground states considered, indicating that

there is no lifting of degeneracy upon switching on-field K. Precisely, the action of the symmetry op-

erator inverses the signs of λi, consistent with the groundstate constraint that the spin-wave spectrum

remains unchanged. A possible physical interpretation is that a coherent spin-flip or proton-tunneling

process associated with each vertex of the plaquette. In a real system, this should correspond to a

certain symmetry of the local potential profile created on the bonds associated with each vertex. One

simple way to understand this is that as the potentials are not purely one dimensional (as viewed

idealistically) but three dimensional, it creates a constraint that the motion of one proton affects the

other coherently across the vertex of the effective lattice. However, to get an exact understanding,

one needs to perform an ab initio study, which is beyond the scope of the present thesis. Though

the above calculation is done for small values of the field and in the quadratic approximation, we

think our results are valid in higher-order (for example, quadratic order) as suggested by the effective

Hamiltonian formulation in Sec. 2.6.

2.4.3 Low-field case, J2 6= 0

Untill now we have performed SW calculations in high-field limit and to some extent in low-

field for the degenerate case. Here, using the same HP transformation, we perform the same around
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the groundstates that are ordered antiferroelectrically along ±x or ±y. As mentioned earlier one

can represent the ferroelectric case as a case of ordered dimer configurations, the Hamiltonian after

substituting Eqs. (2.24) into Eq. (2.1), we get,

Hferro
lf =

∑
�

[
− J0 ×

((λ1 cos θ(s− a†1a1) +
√
s/2 sin θ(a†1 + a1))(λ2 cos θ(s− a†2a2) +

√
s/2 sin θ(a†2 + a2))

(λ3 cos θ(s− a†3a3) +
√
s/2 sin θ(a†3 + a3))(λ4 cos θ(s− a†4a4) +

√
s/2 sin θ(a†4 + a4)) +

J1((λ1 cos θ(s− a†1a1) +
√
s/2 sin θ(a†1 + a1))(λ3 cos θ(s− a†3a3) +

√
s/2 sin θ(a†3 + a3))

+(λ2 cos θ(s− a†2a2) +
√
s/2 sin θ(a†2 + a2))(λ4 cos θ(s− a†4a4) +

√
s/2 sin θ(a†4 + a4))

]
−

J2

16

∑
〈AB〉

[
(λ1 cos θ(s− a†1a1) +

√
s/2 sin θ(a†1 + a1)) + λ2 cos θ(s− a†2a2) +

√
s/2 sin θ(a†2 + a2))

−λ3 cos θ(s− a†3a3) +
√
s/2 sin θ(a†3 + a3))− λ4 cos θ(s− a†4a4) +

√
s/2 sin θ(a†4 + a4))A

×(λ1 cos θ(s− a†1a1) +
√
s/2 sin θ(a†1 + a1)) + λ4 cos θ(s− a†4a4) +

√
s/2 sin θ(a†4 + a4))

−λ2 cos θ(s− a†2a2) +
√
s/2 sin θ(a†2 + a2))− λ3 cos θ(s− a†3a3) +

√
s/2 sin θ(a†3 + a3))B

]
.

(2.43)

Since the antiferroelectric is a subset of groundstate for J0, thus we see that λ1λ2λ3λ4 = 1,

whereas the product involving two site λ’s do vary depending upon which global drection the dipoles

are pointing to. However, using the Fourier transform and considering only the terms upto quadratic

level in a’s, we get,

Hi = N
∑
k

[
εka
†
kak +

γ̃i,k
2

(a†k †−k +aka−k)

]
−1

2
J0s

4NC4
θ − (J1 + 2J2)s2NC2

θ , (2.44)
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Figure 2.9: Spin-wave dispersion in the low-field limit of K in the ordered antiferroelectric phase.
The upper right panel (b) shows the spectrum for the first and second degenerate ground states as
mentioned in Fig. 2.8. Similarly, the lower right panel (c) shows the spectrum for the third and
fourth groundstates. The upper (a) and lower left columns (d) show the variations of the spectrum for
different values of J2.

where εk and γ̃i,k are given by,

εk = γk + 2s3J0C4
θ + 2sJ1C2

θ −
J2s

s
S2
θ , (2.45)

γ̃i,k = S2
θ

[
γk + s3J0C2

θ [2χiqk + pk]. (2.46)

Here, the index i in the Hamiltonian refers to four degenerate groundstates as described in Fig. 2.8.

χi can take values 1(-1) for i = 1, 2(3, 4), and the pk is defined as in Eq. (2.34), qk = sin kx sin ky, and

the terms Cθ and Sθ stand for cos θ and sin θ, respectively. Following the earlier analysis of expanding

the gap around the minima, X, we find that the spectrum is gapped and quadratic for all values of K
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and J2, and the expression for the gap reads as,

∆k = ζ0

√
ζ1 + ζ2ρ2, (2.47)

where,

ζ0 = 2s3

(
J0C4

θ0
+
J̃12

s2
C2
θ0
− J2

16s2
S2
θ0

)
0.5, (2.48)

ζ1 = 2J1

(
sC2

θ0
− s

2
S2
θ0

)
+ 8s3J0C4

θ0

−(2χ+ 1)
s3J0

2
C2
θ0
S2
θ0
− 15s

8
J2S2

θ0
, (2.49)

ζ2 =
S2
θ0

2

[
4s(J1 + 3J2) + 2s3χJ0C2

θ0

]
. (2.50)

In the above J̃12 = J1 + 2J2, C2
θ0

= cos θ0, and S2
θ0

= sin θ0. Here the only relevant constant is

ζ1 which is to be solved numerically and simultaneously with the equation that minimizes the total

energy given in Eq. (2.16). The results for few parameter values are shown in Fig. 2.9 where one finds

the quadratic variation of dispersion. Also, the dispersion is asymmetric around M which shows that

the low-energy bosonic excitation is directional. In the left of Fig. 2.9, the spectrum is plotted for

different values of J2 where the variation of it is seen to be equidistant as we vary J2 uniformly.

Contrasting to the results of the high-field limit is that the degeneracy of gap minimum found at X

and R points is removed for small values of K. Thus the gap difference, ∆ = ∆X −∆R, where ∆X

and ∆X is the gap at X and R points respectively which are important quantities can be measured

experimentally.

2.5 Dual mapping to Kitaev-model

In section 2.4.2, we have mentioned the absence of any quantum (field K) order-disorder phe-

nomenon in the system. We saw that at least for few orders of magnetic field and within the realm
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of LSWT, the degeneracy is never lifted. Here, we show a connection to the findings and corroborate

the same by mapping the present Hamiltonian (Eq. (1.3)) to the toric code model (TCM) [111] in the

low-field limit J0 � K and J1,2 = 0. We use a simple perturbative approach and apply an additional

magnetic field along the transverse direction y such that ky � J0. We show that the model can be

mapped to the non-interacting anyon model. We switch from Sz/x variable to σz/x without any loss

of generality:

H = −J0

∑
�

σz1σ
z
2σ

z
3σ

z
4 −Kx

∑
i

σxi −Ky

∑
i

σyi . (2.51)

Where Kx, Ky are the transverse fields and σα’s are the Pauli matrices. Now, consider the following

SO(2) transformation: σxi = cos θσx
′
i − sin θσy

′

i and σyi = sin θσx
′
i + cos θσy

′

i . Substituting these

equations into the above Hamiltonian, the transverse field part of it gets transformed into:

−
∑
i

(
σx
′

i [Ky sin θ +Kx cos θ] + σy
′

i [Kx sin θ −Ky cos θ]

)
. (2.52)

Since, θ being a parameter of choice, we can let take any contour. Specifically, we choose the

contour tan θ = Ky
Kx

such that the second term including the σy
′

i vanishes. The model then reduces to

a simple transverse field model with the gauge term, and is given by,

H = −J0

∑
�

σz
′

1 σ
z′

2 σ
z′

3 σ
z′

4 −K ′x
∑
i

σx
′

i , (2.53)

where K ′x = Kx/ cos θ. We now use the standard perturbation theory to arrive at the first nontrivial

correction at fourth order. The effective Hamiltonian at that order can be found by using the formula:

H(4)
eff = P(H1D)3H1P , (2.54)

D = − 1− P
H0 − E0

, (2.55)
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Figure 2.10: Schematic depiction of Eq. (2.57). The thick bar (−) denotes the action of σx operator
on that site. The sequence of action of σxi operators on the lattice as per the Eq. (2.62)

where, P =
∏
�

1
2
(1 +�) is the groundstate projection operator, the symbol, �, represents the short-

hand notation for the plaquette term, σz1σ
z
2σ

z
3σ

z
4 , that is, the elementary interaction on a unit square

plaquette, and H1 is the perturbed Hamiltonian, here, the transverse field term. After expanding all

the terms, we find,

H(4)
eff = −

∏
�

1

2
(1 +�)

(
Kx

∑
i

σxi
)(1−∏� 1

2
(1 +�)

H0 − E0

)(
Kx

∑
j

σxj
)(1−∏� 1

2
(1 +�)

H0 − E0

)

(
Kx

∑
k

σxk
)(1−∏� 1

2
(1 +�)

H0 − E0

)(
Kx

∑
l

σxl
)∏

�

1

2
(1 +�). (2.56)

Using the commutation relation {σxi , σzj} = 2δij , and moving the P operator to the right of the

equation with the help of the Eq PD = 0, the only contributing term can be given by,

H(4)
eff = −K4

x

∑
{+}

∑
+

[
σxα

(
1

H0 − E0

)
σxβ

(
1

H0 − E0

)
σxγ

(
1

H0 − E0

)

×σxδ
∏
�

1

2
(1 +�)

]
. (2.57)

Where α, β, γ, δ represent the indices of spins located on the four edges of a vertex + (see

Fig. 2.10). The indice {+} sums over the terms one can arrive at the same effective Hamiltonian in 4!

different ways at every site +. But this comes with different prefactor after the action of (H0−E0)−1

term, one such sequence is depicted in Fig. 2.10. One can also understand from the permutations and

combinations coming from the rearrangement of σxα, σβ , σxγ , σxδ spins. Next, using the orthonormality
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relation 〈n|m〉 = δmn and inserting the completeness relation,
∑
n

|n〉〈n)| = 1 (where n is no. of

quasi-particle (qp) excitations represented in second quantization notation in accord with pCUT) at

appropriate locations, the equation simplifies to,

H(4)
eff = −K4

x

∑
{+}

∑
+

[
σxα

(
1

H0 − E0

)
(
∑
p

|p〉〈p|)σxβ

(
1

H0 − E0

)

×(
∑
q

|q〉〈q|)σxγ

(
1

H0 − E0

)
(
∑
r

|r〉〈r|)σxδ
[∏

�

1

2
(1 +�)

]
(
∑
s

|s〉〈s|)
]
. (2.58)

After the action of the (H0 − E0)−1 operator on the n-qp number basis, we get,

H(4)
eff = −K4

x

∑
{+}

∑
+

[
σxα

(
1

H0 − E0

)(∑
p

|p〉〈p|
)
σxβ

(
1

H0 − E0

)

×
(∑

q

|q〉〈q|
)
σxγ

(
1

H0 − E0

)(∑
r

|r〉〈r|
)
σxδ |0〉〈0|

]
. (2.59)

Since,
[∏

�

1
2
(1 +�)

]
(
∑
s

|s〉〈s|) = |0〉〈0|, we get,

H(4)
eff = −K4

x

∑
{+}

∑
+

[
σxα

(∑
p

1

Ep − E0

|p〉〈p|
)
σxβ

(∑
q

1

Eq − E0

|q〉〈q|
)

×σxγ
(∑

r

1

Er − E0

|r〉〈r|
)
σxδ |0〉〈0|

]
. (2.60)

Next, rearranging the scalars 〈p|σxβ|q〉, we get,

H(4)
eff = −K4

x

∑
{+}

∑
+

[
σxα

(∑
p,q,r

〈p|σxβ|q〉
Ep − E0

〈q|σxγ |r〉
Eq − E0

〈r|σxδ |0〉
Er − E0

|p〉〈0|
]
. (2.61)

Clearly, the two channels of non-zero contributing combination of the matrix elements is given

by,

〈p|σxβ|q〉〈q|σxγ |r〉〈r|σxδ |0〉 ∼ 〈2|σxβ|2〉〈2|σxγ |2〉〈2|σxδ |0〉 (channel 1) (2.62)
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〈2|σxβ|4〉〈4|σxγ |2〉〈2|σxδ |0〉 (channel 2). (2.63)

One knows that the cost of creating two gauge charges can be given from all the 4! combinations

as,

∼ 4

[
4×

(
1

2J0 ∗ 2J0 ∗ 2J0

)
+ 2×

(
1

2J0 ∗ 4J0 ∗ 2J0

)]
. (2.64)

The outer prefactor ‘4’ comes from the fact that the initial excitation can be created at any of the

four sites. Within the brackets the prefactor of the first (second) are due to the four (two) different

ways of creation and annihilation of excitations around the vertex, +, through channel 1(2) Eq. (2.62)

respectively. The next step is very straightforward where the Eq. (2.66) can be effectively described

as,

H(4)
eff = − 5K4

x

16J3
0

∑
+

[
|0〉〈0|

[
σxασ

x
βσ

x
γσ

x
δ

]
|0〉〈0|

]
. (2.65)

Comparing with the standard theory of Brillouin-Wigner form, PH4
effP , we get the correction at the

fourth order as,

H(4)
eff = − 5K4

x

16J3
0

∑
+

[
σxασ

x
βσ

x
γσ

x
δ

]
. (2.66)

This proves the result and establishes the connection between lattice the model here and the toric

code model. Note that the result for the Kitaev model differs from the present case where we get a

coefficient of 1/16 in the former case as opposed to 5/16 in the latter.
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2.6 Perturbative Continuous unitary transformations

Introduction

The Hamiltonian as represented by Eq. (1.3) and the following equations represent a quantum

interacting spin system, which is not generally solvable exactly. Generally, one follows various ana-

lytical schemes depending on their interest in a specific aspect of the model or the suitability of the

model to the method itself. For example, for a one-dimensional nearest-neighbor interacting spin

system, the Jordan-Wigner transformation [112] is a very good starting point for analytical solutions.

For two-dimensional and higher-dimensional systems, slave fermion/boson methods are applied in

general, and often mean-field approximations are followed [113]. Though there are exceptions, for

example, the Kitaev model [114, 115], which represents an exactly solvable model even in three

dimensions [116]. As mentioned before, in this section, we use pCUT [117, 118, 119, 120, 121] (per-

turbative continuous unitary transformation) in our model whenever applicable. We are motivated by

the fact that, unlike slave boson/fermion formalism, we do not have to use mean-field approxima-

tions, which often do not represent the true groundstates. On the other hand, few properties like the

gap and one-particle spectrum can be calculated to a very high order of perturbations as shown in

previous studies [111]. Another important aspect of pCUT is the sequential derivations of effective

Hamiltonian at higher-order within a given particle sector. The prerequisite of applicability of pCUT

is the equidistant spectrum, which we have in the limit K � J0, J1, J2 where the groundstate is given

by the spins aligned along the x axis and excitations are given by spin-flip excitations. We use pCUT

to obtain an accurate measure of the one-particle gap and one-particle dispersion and compute the

effective Hamiltonian up to reasonably high order. We compare our results of the gap with previous

Monte Carlo studies [89] and find a very good comparison. Our one-particle dispersion should also be

useful to verify the low-energy excitations beyond spin-wave approximations. Before we start the ap-

plication of pCUT, we first map the spin- Hamiltonian as given in Eq. (1.1) onto the effective bosonic
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operator formalism. Since the groundstate in the high-field limit is where all the spins are aligned

along x-axis, we, therefore, transform our global z-basis along with the groundstate orientation of

spin as given in Eq. (2.23) (with θC replaced by π/2) and subsequently use Eq. (2.24). The resulting

Hamiltonian has quadratic and as well as quartic interaction, which amounts to an interacting Hamil-

tonian. We aim to transform the resulting Hamiltonian to a unitarily equivalent Hamiltonian, Heff,

through a unitary transformation. Specifically, we follow Ref [121] where the block-band diagonality

of the Hamiltonian is preserved with the choice of quasiparticle (QP) conserving infinitesimal gen-

erator η(l) given by Wegner. We request the reader to follow the Ref. [117, 118, 119, 120, 121] for

further pedagogical review.

Basics

As we are interested in the spectrum and the phase diagram that can be analyzed from the DLog-

Pade analysis of one-particle gap, we, therefore, approach the same from the high-field limit. Since

in this limit, the spectrum is trivially equidistant with magnonic excitations. The results are obtained

up to order 6 beyond which as we will see problems persisting with RAM limit arise which thus limit

our perturbative expansion.

The method of pCUT is based on the unitary transformation of Hamiltonian on a quasi-particle

number basis as a low-energy effective field theory of a many-body system described by the quasi-

particles. Insightful physics can be understood with the help of a quasi-particle picture, especially in

the low-energy limit. Within the precision limits (of the 10−5), one may approach the perturbative

expansion of CUT’s in the qp-basis where one benefits by performing the pCUT to higher orders.

However, for very high precisions non-perturbative expansion seems to be an inevitable choice for a

qualitative scenario. Here in the following section we introduce the pCUT method and discuss the

main ideas and methodology shortly and rationally. Noticingly, for the current Hamiltonian (1.3) we

will show that even order six is indeed sufficient to arrive at the qualitative results where we compare
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with the lower orders results systematically. Interested readers may refer to Ref. [122, 123, 124, 125,

126] for indepth discussions on pCUT.

We start with the basic notations useful for the discussions comprising quasi-particles states. Let

Q be the quasi-particle number operator for the eigenbasis {|n〉}, while n ∈ N and |n〉 denotes an

n-particle state:

Q|n〉 = n|n〉. (2.67)

With the above equation, we usually require the creation (or annihilation) operators Tm = T †−m (where

m ∈ N) that alters the local number of quasi-particles in a state by m:

Tm|n〉 =


|n+m〉, for m+ n ≥ 0,

0, for m+ n < 0,

following which a very important correspondence can be drawn and given below as,

[Q, Tm] = mTm, (2.68)

this can be verified by acting the operators in the eigenbasis of Q. A more compact way of represent-

ing the Tm operators can be given by a compact k-tuple indice, mi ∈ Z as given by,

m = (m1,m2,m3, ....,mk), (2.69)

|m| = k, (2.70)

M(m) =
k∑
i=1

mi. (2.71)
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Then the notation for T (m) operators goes as follows:

T (m) = Tm1Tm2Tm3 ...Tmk . (2.72)

Using this, the Eq. (2.68) can be generalized to:

[Q, T (m)] =
k∑
i=1

miT (m) = M(m)T(m). (2.73)

2.6.1 Continuous unitary transformation

As far as the diagonalization method is concerned, most often, when we are dealing with a many-

body Hamiltonian, there is a very strict limit in sizes of the systems limited up to few spins (e.g:

4×4). Thus, the motivation of using the pCUT is to diagonalize the Hamiltonian in the unitarily

(particle conserving) transformed basis thereby decoupling the particle sub-spaces. This enables us

faster calculations saving enormous time and memory. It can be easily noted that in the particle con-

serving basis the Hamiltonian is given in the block-band diagonal form [121]. At times, perturbative

expansion can be a powerful tool especially when the spectrum is equidistant even in cases where the

perturbing parameter (or unperturbed) is complex with multiple parameters [127]. In that case, one

can reach up to very high orders of expansion. However, the most significant aspect of the pCUT’s

is that the results are valid even in the thermodynamic limit (N → ∞). Wegner [121, 120] initially

proposed the idea of continuous unitary transformation (CUT) which has been successfully tested on

a 1D n-orbital model in the thermodynamic limit. Similar works have been carried in high-energy

physics through an optimized perturbation theory [122].

Usually, CUT’s can be approximated by an infinite sequence of discrete unitary transformations.

Nevertheless, one can conveniently parametrize the same transformation by a parameter ‘l’ that runs
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from 0 to∞ such that,

H(l = 0) = H, (2.74)

H(l > 0) = U(l)H(0)U †(l), (2.75)

here, H is the untransformed (or original Hamiltonian) and U(l) is the unitary transformation which

at present is not explicitly given. One can formulate the flow equations by differentiating both the

sides of Eq. (2.74) as follows:

d

dl
H(l) =

[
d

dl
U(l)

]
H(0)U †(l) + U(l)H(0)

[
d

dl
U †(l)

]
(2.76)

=

[
d

dl
U(l)

]
U †(l)H(l) +H(l)U(l)

[
d

dl
U †(l)

]
(2.77)

= [η(l), H(l)], (2.78)

η(l) = [
d

dl
U(l)]U †(l) = −U(l)[

d

dl
U †(l)], (2.79)

we have used the identity U †(l)U(l) = 1 in the second line. Note that at this point one is free to

choose a generator η(l) of his choice depending on the problem but with a constraint of antihermiticity

coming due to the Eq. (2.77). Nonetheless, usually one is desired to have a block-band diagonal form

Hamiltonian under l→∞ limit. The effective Hamiltonian should be obtained as follows:

Heff = lim
l→∞

H(l), (2.80)

where Heff conserves the total number of quasi-particles. In order to have the Hamiltonian in a block-

band diagonal structure we require the following condition:

[Q,Heff] = 0. (2.81)
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Because of Eq. (2.78), one probable option for the generator is

η(l) = [Q,H(l)]. (2.82)

Unless the right-hand side of Eq. (2.82) don’t vanish, H(l) is subjugated to Eq. (2.78). In case

the RHS equals to zero, there is a stop of flow equation where the H(l) converges to its l → ∞

limit. This choice of generator was initially proposed by Mielke [124] and generalized by Knetter

and Uhrig [118]. The generator also preserves block diagonality of the initial Hamiltonian. The

generalized generator is given by its matrix elements as:

ηij(l) = sgn(qi,i − qj,j)hij(l) =



hij(l), for qi,i > qj,j,

−hij(l), for qi,i < qj,j,

0, for qi,i = qj,j

(2.83)

where hij(l), ηij(l) are the corresponding elements of a matrix of η(l), and H(l) in the eigenbasis of

Q and qi,i is the total number of particles currently in the state |i〉.

To get the final flow equations in the form of coupled differential equations, Eq. (2.78) can be

discretized which can be iteratively solved under certain approximations [121, 128, 129, 130, 131].

This establishes the CUT on the Hamiltonian. Note that the coefficients are obtained once before the

start of calculations of groundstate and n-qp gap, and are specific to the problem considered.

2.7 pCUT flow equations

Most general representation of perturbation can be given by

H = H0 + λV, (2.84)
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where the spectrum of H0 is known beforehand, and V denotes perturbation term with λ defining

the strength of the perturbation. At this point, it should be noted that the perturbative approach is

not unique and there are more than a couple of methods to arrive at the perturbative solutions of

the flow equations. For instance, a series ansatz can be invoked directly to solve the flow equations

numerically, e.g: Runge-Kutta methods [132]. Our emphasis, however, will be on the other approach

that becomes the pCUT method and which is apt for the problem of magnonic dispersion at high-field

limits. Nevertheless, there are few constraints as far as the applicability of pCUT is concerned. The

following conditions must be satisfied in order for a pCUT transformation to be applied:

(i) Unpertubed HamiltonianH0 must have a spectrum that is discrete and also bounded from

below.

That is to say, H0 can be given by a matrix with finite or semi-infinite dimensions. Regarding

notational purposes, the quantized energy levels (discrete) are labeled by εi(i ∈ N) where the

elementary excitations energies are given by ∆εi = εi − ε0.

(ii) The unperturbed spectrum should be equidistant, in other words, there should exist ∆ε

so that in general underlying excitation can be simply given as

∆εi = ni∆ε, (2.85)

where ni ∈ N. It is useful to set ∆ε = 1 such that the energy required to excite the elementary

is equal to the number of quasi-particles. In the purview of the discussion, H0 now exactly

becomes the number of qp, Q itself, defined in Eq. (2.67).

(iii) The number of states the perturbation V can connect is bounded and is represented by

the sum at zeroth order as

V =
m=+N∑
m=−N

Tm, (2.86)
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the Tm alters the quasi-particle number in the system by m, as shown in Eq. (2.6).

Despite the constraints mentioned above regarding the applicability of pCUT’s, yet one still finds

numerous models where the pCUT’s are successfully applied. Few examples include the arena of

low-dimensional quantum magnets including the frustrated systems, spin-ladder, supersolids, nuclear

physics as well as stabilizer codes and also cluster Hamiltonians including topologically-ordered spin

models [108, 111, 119, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142], to name a few.

Following the approaches of Knetter, Uhrig, and Stein [118, 123] we curtail the problem con-

sisting of flow equations to the one of a differential equations system that are highly coupled. Then

a generic numeric algorithm to obtain the solution recursively is briefed. The details regarding the

algorithm and implementation details are given in Appendix A. Given the nature of commutation al-

gebra of the generator Eq. (2.78), a more familiar ansatz regarding the Hamiltonian that consists of

the flow-dependent part, viz. V (l) is given by:

V (l) =
∞∑
k=1

λk−1
∑
|m|=k

F (l; m)T (m). (2.87)

While the first sum runs over the order of perturbation the second one is performed covering all

combinations of k-tuples ofmi ≤ N whereN ∈ N. The undetermined function F (l; m) are evaluated

as following. We regard the matrix elements of H(l) in the eigenbasis of quasi-particle conserving

part, that is, Q as,

〈ni|H(l)|nj〉 = 〈ni|Q+ λV (l)|nj〉 = qi,j + λνi,j, (2.88)

〈ni|T (m)|nj〉 = ti,j(m). (2.89)
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Since Q is diagonal in the |n〉 basis, we therefore dont see any ’l’ dependence of it. Using the

Eqs. (2.88) and Eq. (2.83), the η(l) can be expanded in T operators as,

〈ni|η(l)|ηj〉 = ηi,j(l) (2.90)

= sgn(qi,i − qj,j)(qi,j + λνi,j(l)) (2.91)

= sgn(qi,i − qj,j)λνi,j(l) (2.92)

=
∞∑
k=1

λk
∑
|m|=k

F (l; m)sgn(qi,i − qj,j)ti,j(m). (2.93)

In Eq. (2.92) we invoke theQ operators diagonal property. With the help of Eq. (2.81) we can simplify

the above equation further by removing the unperturbed Hamiltonian within the generator:

M(m)T (m) = [Q, T (m)], (2.94)

M(m)ti,j(m) = [Q, T (m)]i,j (2.95)

= (qi,i − qj,j)ti,j(m), (2.96)

sgn[M(m)]ti,j(m) = sgn(qi,i − qj,j)ti,j(m). (2.97)

Using Eq. (2.93) and Eq. (2.97), the generator can be given by:

η(l) =
∞∑
k=1

λk
∑
|m|=k

F (l; m)sgn(M(m))T (m). (2.98)

Substituting the solution for η(l), and the ansatz solution of V (l) in the flow Eq. (2.78), ( s
sl
Q = 0):

d

dl
H(l) = λ

d

dl
V (l) (2.99)

= λ[η(l), V (l)]− [Q, η(l)] (2.100)

= λ[η(l), V (l)]−
∞∑
k=1

λk
∑
|m|=k

F (l; m)sgn(M(m)) [Q, T (m)].︸ ︷︷ ︸
M(m)T (m)

. (2.101)

67



m1 m2

(m1) (m2, ...,mk)
(m1,m2) (m3, ...,mk)

...
...

(m1, ...,mk−1) (mk)

Next, we put the ansatz Eq. (2.87) solution of V (l), and sorting the RHS in ascending order of λ of

Eq. (2.99)

∞∑
k=1

∑
|m|=k

d

dl
F (l; m)T (m) =

∑
k1,k2
|m1|=k1
|m2|=k2

λk1+k2F (l; m1)F (l; m2)sgn[M(m1)][T (m1), T (m2)]

−
∑
k

|m|=k

λkF (l; m)|M(m)|T (m). (2.102)

The algebraic functions F (l; m) can be evaluated over coupled differential equations by matching

coefficients in Eq. (2.101) and Eq. (2.102):

d

dl
F (l; m) = −|M(m)F (l; m) +∑

{m1,m2}=m
|m|=2

(sgn[M(m1)]− sgn[M(m2)])F (l; m1)F (l; m2). (2.103)

The summation in the last term of the above equation runs through all possible partitions of {m1,m2} =

m, along with the constraint |m| = k can be given by: To make the equation look neater, we do the

following simple rotation:

F (l; m) = exp−|M(m)|l f(l; m). (2.104)

We then get,

d

dl
f(l; m) =

∑
{m1,m2}=m
|m|≥2

exp (|M(m)| − |M(m1)| − |M(m2)|)l

sgn[M(m1)]− sgn[M(m2)]f(l; m1)f(l; m2). (2.105)
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The flow equations are highly recursive and let us evaluate the coefficients f(l; m), with |m| = k,

starting with functions evaluated for all |m| < k with the following initial conditions from V (0) as:

F (0; m) =


1, for |m| = 1 and m ∈ {0,±1,±, ...,±N},

0, else.

(2.106)

As our interest lies in →∞ limit, for the matter of convenience it is better to introduce the coefficients

C(m) such that:

C(m) = liml→∞F (l; m). (2.107)

Now, once the coefficients are evaluated according to the Eq. (2.105), the effective Hamiltonian in the

particle (quasi) conserving basis can be exactly given by taking the limit l→∞ as:

lim
l→∞

H(l) = Heff = Q+
∞∑
k=1

∑
m=k

M(m)=0

C(m)T (m). (2.108)

It should be noted that the only surviving coefficients of the function F are the ones that satisfy the

condition of a fixed total number of quasi-particles in the system, and the functions are given in the

exponential form with a negative exponent that is proportional to l (such as e−1/2l). We can see that

the term vanishes in the l→∞ limit. This also proves the effective Hamiltonian being block-diagonal

in the quasi-particle number basis. We notice that the coefficients c(m) do not depend on the problem

at sight. Though the exact number of coefficients that contribute to the problem can strictly depend

on the perturbed Hamiltonian, the coefficients themselves are not. For example, 3rd order process

in the groundstate sector, 〈0|T−2T0T2|0〉, has the coefficient C−202 that is constant regardless of the

Hamiltonians. Whether or not such a coefficient appears in the process is decoded by the perturbing

Hamiltonian. However, if one has a Hamiltonian that does not meet the 3-point criteria mentioned
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in section 2.7, one may employ an alternate approach as developed by Krull et al [132] where the

constraints are not necessary to be invoked with the Heff can be evaluated numerically for every new

problem. This has to do with the equidistant nature of the spectrum. However, in the next section, we

review the linked-cluster theorem used to compute the physical quantities on a computer.

2.7.1 Series expansions on finite graphs

pCUT’s are famous for their one of the strong properties that the results obtained are valid even

in the thermodynamic limit. It may be noted that this is not the only the case with short-ranged

perturbation when the quasi-particle excitations created are local in real space but also can be gen-

eralized to long-range interactions [143, 144, 145, 146]. However, if the effective Hamiltonian is

given in terms of summation over elementary interactions of short-range type, a following powerful

scheme of evaluating the physical quantities on a finite-lattice or graphs emerges, that is, the linked-

cluster expansions. Here we shall briefly describe the recipes of one of the series expansion methods

implemented in our calculations. Nevertheless, interested readers can resort to various literature on

the means of evaluating groundstate energy, n-particle dispersions (usually it is one or two-particle),

and the green functions. For details regarding the linked-cluster expansion derivation and its smooth

emergence from pCUT is given in Appendix A, here we discuss the implementation details of the

series expansion method used in our calculations [125, 119, 147].

To tackle the linked-cluster calculations of a given quantity based on the merits and demerits of

the problem considered, there are three various cluster expansion methods. They are:

(i) Linked-cluster expansion

Also known as the white graph expansion method. It is enough to identify and perform calcu-

lations on certain irreducible topological graphs embedding the lattice. Contributions coming

from the various topological cluster as well their corresponding embedding numbers have to

be determined. The task of determining the embedding numbers can be performed efficiently
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by invoking the pegs in holes algorithm proposed by Oitmaa et al [148]. After that, the pertur-

bation expansion of P is obtained by a proper summation of results with their corresponding

embedding numbers using Eq. (2.110). Though the following method reduces memory usage

and time considerably, the method might still become challenging when the number of relevant

topological graphs increase exponentially depending on the problem.

(ii) Single periodic cluster

In an earlier time, this method has been used extensively because of the simplicity it offers.

Another advantage of this method is that a generic code can be used without the prior needs

of any particular model. This generic code can produce all possible graphs automatically ren-

dering a great advantage to the users. One generally has less work to do when dealing with

this method. The only precaution, however, one has to take care of is the minimal size of the

lattice, which should be large enough that the finite-size effects do not surface. The minimal

size of the lattice does strictly depend on the lattice structure, the effective Hamiltonian, and the

perturbation order. This approach has its advantages and disadvantages. However, apart from

its success, it suffers from certain shortcomings such as the number of intermediate terms that

might go beyond reach thereby limiting the perturbation order. It is still the very simplest one

to implement on a computer and one doesn’t need to identify the set of irreducible topological

graphs.

(iii) Finite-lattice method

An approach that has its roots in both the above methods. It has been developed by Neef and

Enting [149] for square lattice for specific models such as the classical Ising model. Later,

Dusuel [147] et al has generalized the methods to quantum systems. Within its applicabil-

ity, this is the most efficient and optimized method in the current scenario. The fundamental
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concept that defines the method is that one has to consider only subcluster Cm×n with m × n

sites. Crucially, the embedding numbers can be found algebraically here without much effort.

The total number of topological graphs is also drastically reduced. From the Eqs. (2.109) and

Eq. (2.110) we get,

P (Γ)/N =
∑
m≤n

L(Γ, Cm×n)W (Cm×n), (2.109)

W (Cm×n) = P (Cm×n)−
∑
m′≤m
n′<n

∑
m′<m
n′=n

W (Cm′×n′), (2.110)

the summation in the second term runs through all m′ and n′ such that Cm′×n′ can be embedded in

Cm×n with Cm′×n′ 6= Cm×n. For a square sized cluster, the lattice constant in Eq. (2.110) is equal to

one, while the rectangular lattice it is two. The number of embeddings Nemb of a rectangular cluster

Cm×n in a square lattice. Usually,

Nemb =


2mn, ifm 6= n,

m2, ifm = n.

(2.111)

Then the lattice constant can be simply obtained by the relation: Nemb/mn. It can be noted that the

Eq. (2.109) and (2.110) are completely valid in the thermodynamic limit. Nevertheless, in computer

simulations, a finite-order maximal m and n can be found such that the above sums become limited.

Usually, it is limited by the perturbation order. Then appropriate summation has to be performed

to obtain the final result for the extensive quantity, P . However, details regarding this method and

implementations on quantum systems such as the Toric code model in a field. Other geometries have

also been explored for example the triangular lattices [150]. Attempts have been made to extend the

approach to higher dimensions [151]. With this, we end the discussion on the methodology of pCUT.

In the next section, we discuss some of the results obtained using the pCUT in various limits.
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Figure 2.11: (Color Online) The left column shows a cartoon picture of a process where the action of
T2(4) [red(blue)] upon the groundstate of 0-quasiparticle (QP) subspace produces 2-QP (above) and
4-QP (below). The right column shows a simple connection of the perturbing parameters connecting
the different QP levels of the unperturbed Hamiltonian.

2.8 Results

2.8.1 pCUT in High-field limit K � J0,1

In this case, the Hamiltonian boils down to:

Hx = −K
∑
i

σxi , (2.112)

here, i is summed over all individual spins, and we know the groundstate is the one where all spins

are aligned along x, that is, | ↑↑ · · · ↑〉x with equidistant magnonic spectrum. Thus we rotate the

basis to incorporate the z-axis along the field direction K. The system satisfies the criteria (i) and

(ii) of sec. 2.7. We then perturb the system with J0,1,2 operators rotated into the optimal basis. We

know the total cost of energy to flip a spin is proportional to 2K. We then perform calculations of

the groundstate and one-particle dispersion, however, before that we give away the expressions for

creation (or annihilation) operators. The derivation goes by substituting the representation Eqs. (2.24)

and Eq. (2.23) with θC = π/2 into the Hamiltonian (1.3). Then collecting the terms that are propor-
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tional to local creation (or annihilation) of quasi-particles, the exact expressions can be found as:

T0 = J0

∑
�

[a1a2a
†
3a
†
4 + a1a

†
2a3a

†
4 + a1a

†
2a
†
3a4 + h.c]

+ J1

∑
�

[a1a
†
3 + a2a

†
4 + h.c]

+
J2

8

∑
〈AB〉

[a2a
†
4 + a3a

†
7 + a1a

†
5 + a2a

†
6 − a3a

†
7 − a1a

†
7 − a4a

†
6 + h.c], (2.113)

T2 = J0

∑
�

[a†1a2a
†
3a
†
4 + a†1a

†
2a3a

†
4 + a†1a

†
2a
†
3a4 + a1a

†
2a
†
3a
†
4]

+ J1

∑
�

[a†1a
†
3 + a†2a

†
4]

+
J2

8

∑
〈AB〉

[a†2a
†
4 + a†3a

†
7 + a†1a

†
5 + a†2a

†
6 − a†3a†7 − a†1a†7 − a†4a†6], (2.114)

T4 = J0

∑
�

[a†1a
†
2a
†
3a
†
4]. (2.115)

In the above expression, the parameters J0, J1, and J2 are now reduced constants where the S prefactor

from the HP transfromation (2.24) is absorbed into the exchange constants as follows: J0 → J0
S2

4
,

J1,2 → S
2

and the numbering scheme is according to Fig. 1.2. The conjugate operators (T †) can be

found from the simple relation: T †n = T−n. We present the calculation of groundstate energy on the

finite lattice up to 1st order, here the effective Hamiltonian in the optimal basis is given as:

H0
eff = −NK + 2KQ, (2.116)

H1
eff = T0. (2.117)

Here N is the number of spins in the lattice (single lattice method), Q is the operator as described

in sec. 2.81. To normalize the unperturbed energy that is required to flip one particle, we set the

magnetic field K = 1/2. Given the operator structure Eq. (2.116) we now perform the groundstate

energy by making a substitution of Q = 0 as:

e
(0)
0 = −K = −1

2
. (2.118)
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(a) (b)

Figure 2.12: (a) Example showing the connected four-plaquette graph on a square lattice for a lo-
cal Hamiltonian, where each plaquette excitation is produced by a single spin-flip operator. This is
shown for the case of low-field limit, where the excitations are the elementary plaquettes with gauge
charges carrying the charge of −1. Note that the excitations are produced in pairs (in low-field limit
only) with plaquettes adjacent to each other [this relates to n = 2 in (2.109) ]. (b) Various subgraphs
corresponding to the cluster in (a). Individually subgraphs containing no less than two sites, because
n = 2.

Similarly, at first order, we can compute the matrix elements as follow:

〈3× 3|T0|3× 3〉 = −1

8
J2

0 −
1

2
J2

1 . (2.119)

Some of the processes come from the gauge term J0 and some from the intramolecular coupling term

J1. However, it is to be noted that the term with only gauge term J0 can be mapped to a transverse

field Ising system [152] with the couplings of both the models being inversely related. The strong

coupling of one system maps on to the weak coupling in the dual model and vice versa. The fact

that the number of effective operators usually in the high-field makes the computations limited to

effectively lower orders. A valid argument makes up the fact that due to better convergence of the gap

even at order 6 it is reasonable to consider the following limit, especially when the low field-limit is

quite complex. The implementation tools and the tools to analyze the one-particle gap especially the

DLog-Pade approximants are given in Appendix A.

All the effective operators for Hamiltonian (1.3) are now obtained, and once the flow equation

coefficients Cm are calculated electronically, we then substitute them correspondingly and evaluate
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the groundstate and one particle sector according to the equation:

E0 = 〈0|Heff|0〉, (2.120)

ω(k) = 〈k|Heffk〉 − E0. (2.121)

Here the momentum carrying the information of the lattice is given by, |k〉 =
√

2/N
∑
j

exp i~k.rj|j〉

where j is the lattice site and rj is the relative position vector of site j. The origin of the coordinate

system is set on the lattice site number 0. So any hopping’s position vector is relatively given from

this origin site ’0’. The groundstate energy and the one particle gap which can be found at Γ-point in

the given limit is found to be as:

e0 =
1

2
− 1

8
J2

0 −
1

384
J4

0 −
41

393216
J6

0 −

1

2
J2

1 −
1

2
J0J

2
1 −

9

32
J2

0J
2
1 −

3

16
J3

0J
2
1 −

47525

442368
J4

0J
2
1

−1

8
J4

1 −
1

2
J0J

4
1 −

32957

32768
J2

0J
4
1 −

61

512
J6

1 , (2.122)

∆(Γ) = 1− 1

2
J2

0 +
3

32
J4

0 −
1711

27468
J6

0 + 2J0J1 + 2J1

−1

8
J2

0J1 −
3

4
J3

0J1 +
67

576
J4

0J1 +
8131

13824
J5

0J1

−3

4
J2

0J
2
1 −

7

2
J3

0J
2
1 −

111013

36864
J4

0J
2
1 + J0J

3
1 +

317

128
J2

0J
3
1

−13361

4608
J3

0J
3
1 −

10207

3072
J2

0J
4
1 +

79

128
J0J

5
1 . (2.123)

A standard analysis for the gap ∆ using DLog-Pade approximants for different parameters values

of J1 and our calculation confirms that, indeed, the phase transition of CDT in J1 − K plane for

J2 = 0 is of second-order consistent with the Ref. [89] as shown in Fig. 2.14, where we presented the

phase diagram from confined to deconfined phase transition in K − J1 plane. The phase boundary

is obtained from the one-particle dispersion equation. We used cumulative DLog-Pade approximants
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Figure 2.13: Spectrum as obtained from pCUT up to sixth order. The black line is the result obtained
from spin-wave calculations. (Bottom) Zoomed spectrum around X points (extended very little to-
ward the left to Γ point and at right to M point). We also present plots obtained at a different order of
pCUT for a J1 = 0.5, which shows that they are converging.

(Dlog-Pade[2,3] and Dlog-Pade[3,2]) to obtain the phase diagram because the order of expansion is

relatively lower. It may be mentioned that for J1 = 0 the Hamiltonian is a (2+1) quantum Ising gauge

Hamiltonian [89] with critical point located at Kc = 0.325, here noticeably, for J1 = 0, the obtained

value is 0.3506(8). The closeness of the Kc obtained from pCUT to that of the value obtained in

QMC entails the success of pCUT for this system. Note that when J1 = 0, J0 does not become a

free parameter (J0 = 16) where J0 itself becomes the tuning parameter. The small inaccuracy in the

critical value is due to the relatively low order of expansion. Remember that the Ising gauge term J0

does not even appear in spin-wave calculations at quadratic order, unlike the present case where the

J0 term is safely incorporated by pCUT at all orders. In Fig. 2.13, we have plotted the dispersion as

obtained from pCUT and compared it with the spin-wave spectrum obtained earlier, which matches

each other very well to leading order. We conclude this section with the observation that the one-
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Figure 2.14: The above figure shows the phase boundary between confined and deconfined phases
as obtained by the DLog-Pade[2,3] approximate analysis of pCUT at order six as derived by the
expansion series given in Eq. (2.123) for the gap. The blue line is a linear fit of the data.

particle excitation spectrum as obtained in pCUT agrees well with the spin-wave spectrum obtained

in Sec. 2.4. Moreover, the gap obtained in pCUT smoothly vanishes along the phase transition line

signifying the transition as a second-order phenomenon.

2.8.2 pCUT application: High-field limit K � J0,1 & J2 6= 0

In this section, we present the results of groundstate energy per spin and the one-particle dispersion

for J2 = 0. We could perform it in fourth-order as the number of intermediate states increases

due to the non-local nature of dipole-dipole interaction. Nevertheless, the obtained expression helps

determine its critical behavior qualitatively. As in the above case, the groundstate is the state where all

the spins are oriented along the field direction and the single-spin flips are the elementary excitations

with 2K cost of energy, hence setting K = 1/2 we obtain the groundstate energy and one-particle

dispersion as
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Table 2.1: The operators Tn acting on the real space unit lattice is shown above. However, not all but
only a few possible states are mentioned as represented by · · · . The first column from left is the input
state and the action of T0, T2, and T4 are shown in the corresponding column under the respective
operators. For T0, it is column 1 and so on. Here, each process has different matrix elements as
evident from the different exchange coupling strengths present in the perturbing Hamiltonian, that is,
J0, J2 and J3. Note that the operators like T1 and T3 do not contribute as the structure of perturbing
Hamiltonian don’t contain such terms.
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Figure 2.15: (Left) One-particle dispersion as obtained from pCUT. The above results are also com-
pared with the spin-wave spectrum (the black plot). The additional peaks and the shifting of the
minima around the X and R high-symmetry points in the pCUT results suggest the appearance of
paraelectric ordering [89] by broken symmetry in the presence of finite J2. Note that the additional
peaks were not observed in the spin-wave calculation. (Right) The paraelectric to ferroelectric phase
transition critical line extended over the J2 > 0 region is shown above. It is evident as we increase
the value of J2 , the magnitude of the critical line for Kc also increases, which suggests that the
dipole-dipole interaction extends the deconfined phase of J1 to a ferroelectric phase for finite J2.
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−3

2
J0J1J

2
2 −

155

64
J2

1J
2
2 −

15

32
J3

2 −
9

16
J0J

3
2 −

207

64
J1J

3
2 −

2859

2048
J4

2 . (2.124)

Similarly, the computation on one-particle yields:

∆ = 1 + 2J1 −
1

2
J2

0 +
3

32
J4

0 + 2J0J1 −
1

8
J2

0J1 −
3

4
J3

0J1

−3

4
J2

0J
2
1 + J0J

3
1 + J0J2 −

3

8
J3

0J2 + J1J2 +
5

2
J0J1J2

+
105

64
J2

0J1J2 +
3

4
J2

1J2 + 3J0J
2
1J2 +

1

2
J3

1J2

+
11

8
J2

2 +
41

16
J0J

2
2 −

29

128
J2

0J
2
2 +

45

16
J1J

2
2

+
233

16
J0J1J

2
2 +

71

8
J2

1J
2
2 +

9

4
J3

2 +
297

32
J0J

3
2

535

32
J1J

3
2 +

553

64
J4

2 . (2.125)

In the present case, due to the increasing demand for computing power, we could only perform pCUT

up to fourth order, however, we still find that the gap vanishes here as well within some parameter

range. However, this is fully consistent with the fact that switching on J2 triggers a ferroelectric

phase as obtained in the previous study [89], which has excitations as a single dipole changing its

orientation costing a finite gap. Nevertheless, for brevity, we have tried to solve Eq. (2.125) for ∆=

0 to obtain the value of Kc near the phase transition. The ferroelectric phase transition critical line

extended over the J2 > 0 region is obtained suggesting a second-order phase transition. In the right

panel of Fig. 2.15, we have shown the phase boundary extended in the J2 − K plane for various

values of J1. The numerics attached with the plots denote the orders of pCUT calculation. Within

the pCUT limit of the parameter value J2, the magnitude of the critical line for Kc suggests that the

dipole-dipole interaction is a weak interaction which only extends the deconfined phase of J1 to a

ferroelectric phase for finite J2 as obtained for finite J2. Note that for the present case of J2 = 0,

the standard extrapolation schemes were not used due to the low order of expansion comparably. De-

spite the low order, the convergence is quite good suggesting pCUT is effective when the parameter
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strength J2 is comparatively smaller than the Ising gauge term and K, J0. Also, in Fig. 2.15, we have

plotted the dispersion as obtained from pCUT. We see that additional peaks appear in the dispersion

when compared to spin-wave dispersion. One important contrasting difference from the previous case

is that the difference between the spin-wave theory and pCUT are quite significant, this may be due

to the strong magnon-magnon interactions which are quite evident from the nature of dipole-dipole

interaction, as it contains the next next nearest neighbor Ising type interactions. And the additional

peaks signify the emergence of the paraelectric phase, which is a consequence of the symmetry break-

ing phenomenon manifested in the system. Our results for gap and one-particle dispersion will have

experimental consequences and can be verified. As of now, we have given an extensive account of the

Hamiltonian in Eq. (1.3) where K � J0.

2.9 Chapter summary

To summarize, in this chapter, we have performed an extensive analytical study of a model H2SQ

system. Our work builds on the model proposed earlier [89, 99]. To start with, we have mentioned

the various terms in the Hamiltonian and their physical origin. At the zeroth level, the model Hamil-

tonian has only a plaquette term that harbors a deconfined phase. The application of an external

magnetic field (given by a strength K) drives the deconfined phase to a confined phase. We have

determined the value of Kc for which such a transition happens. The role of intramolecular coupling

J1 and dipole-dipole interaction J2 on such a transition has been investigated. We have shown that

the role of J1 and J2 is to stabilize the deconfined phase by reducing the degeneracy. A groundstate

without the dipole-dipole interaction term in the low-field case was found and can be represented as

a singlet pair or dimers whose z-component projections of spins are anti-aligned to satisfy the re-

stricted ice rules. Thus the classical groundstate remains degenerate for small values of K as shown

by mean-field ansatz. In the presence of the dipole-dipole term J2, the local degeneracy is removed

to yield four degenerate groundstates with global symmetry independent of system size. Then the
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role of quantum fluctuations has been investigated over these large classical degenerate groundstates

for J2 = 0. Noticeably, we have found that at the quadratic level the local degeneracy is not at all

removed and there is no order from disorder phenomena unlike the classically driven order-disorder

case [42]. We have shown that there exists a macroscopic number of conserved quantities which

enables a gauge transformation among the degenerate groundstate manifolds causing this absence of

order-disorder phenomena. For finite J2, we have found the spin-wave dispersion for the four global

degenerate groundstates and found that, in general, the spectrum is gapped and quadratic for small

values of K, except for certain parameters where the spectrum becomes gapless and linear. This hap-

pens particularly near the phase boundary of the confinement to the deconfinement phase transition.

Our formula for the spin-wave dispersion and measure of the gap will be useful for future experi-

ments. It may be pertinent to mention that the true quantum groundstate for J2 = 0 is a nontrivial

one due to its frustrated nature of the interaction. As a first step, at this limit, we have performed

spin-wave approximations over classical groundstates. Though we can not expect to reach the true

quantum groundstates, we think that the spin-wave fluctuations give us a reasonable estimate towards

that. However, a more in-depth study is needed for exploring the nature of true groundstates, and un-

fortunately, as we have seen pCUT cannot be applied in this regime. On the other hand, the spin-wave

analysis for J2 = 0 is expected to be more realistic given that the quantum groundstate is ordered.

To give more meaning to our study, we have applied pCUT to analyze the system in the large field

limit (KJ0, J1, J2) where the groundstate consists of all spins aligned along x-direction with single

spin-flip excitations. Though the pCUT analysis has improved the estimation of groundstate energy

and one-particle gap as determined by spin-wave analysis, the closeness of results in the two different

approaches seems to point out that the results are realistic in this limit. Our study also predicts the

nature excitations as shown in Fig. 2.15 for finite J2. However, one needs to perform a DFT study to

confirm the exact values of parameters needed to fit the experiment. To complete, we have also briefly

discussed the limit where K � J0 and showed its inherent connection to the toric code model [115,
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114] at the fourth-order of perturbation.
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CHAPTER 3

Finite temperature analysis on quasi-2D squaric acid

3.1 Introduction

This chapter discusses in detail the finite-temperature phase diagram and the details of the asso-

ciated quantum phase transition using the stochastic series expansion (hereafter referred to as SSE)

quantum Monte Carlo (QMC) method. A robust numerical recipe in exploring the equilibrium prop-

erties of strongly correlated quantum systems that are analytically otherwise inefficient to solve. In

the previous chapter, we have found and analyzed the lowest energy Ising states that contribute to

the groundstate properties of the H2SQ. A zero-temperature phase diagram was then obtained. Here,

we extend our analysis to obtain a finite-temperature and finite-field phase diagram investigating

the role of both the quantum and thermal fluctuations upon the obtained lowest energy Ising states.

Specifically, we are interested to understand the intricate connection between the entropy arising from

the degeneracy of ice-rules and the fluctuations in them caused by temperatures (or fields) as men-

tioned. However, simulating the current Hamiltonian is non-trivial. Even with the absence of any

sign problem, as we shall see even ferromagnetic multispin interactions do pose a challenge in sam-
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pling the configuration space. Before discussing the results, we briefly describe the method of SSE

and algorithms previously used [153] for transverse field models and the problems percolation-based

decomposition of the Hamiltonian approach suffers. With the discussion of it, we then improvise a

new way of decomposing the gauge term in the Hamiltonian which helps in naturally avoiding the

spin freezing at lower temperatures and fields for J1,2 = 0. Using this newly improvised algorithm

and sophisticated parallel tempering technique (for faster equilibration) we then describe the interplay

of the thermal and quantum fluctuations on the Ice-rules dominant physics in H2SQ system and the

critical phenomenon associated with it by estimating the properties specific to the H-bonded systems,

especially of H2SQ. Interested readers may refer to Ref [154, 155, 156, 157] for a detailed analysis

of the SSE QMC method from a broader perspective. In the next subsequent section, we will discuss

about the derivation of the formalism of SSE QMC [158].

3.2 SSE representation of the partition function

The pivotal step in determining the SSE Quantum Monte Carlo method is based on expansion of

the Hamiltonian of a quantum lattice spin system with it’s exponential part of the partition-function

being rewritten in powers of (βH) as,

Z = Tr(e−βH) =
∞∑
n=0

(−β)n

n!
Tr(Hn), (3.1)

where β = 1/(kBT ) is the temperature inverse. Now, the Hamiltonian H can be broken down into

bond(b) or plaquette(�) operators as follows:

H = −
∑
b(�)

Hb(�) −
∑
i

Hi, (3.2)

the elementary bond (plaquette) operators b(�) labels the two (multi)-spins (say b = (i, j)) bond

(plaquette) connecting the sites i and (i, j, k, ...) containing in a single unit bond (plaquette). Note the
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minus sign that is conventionally followed in the SSE method. For instance, the bond (plaquette) term

can be Hb = σzi σ
z
j (σz1σ

z
2σ

z
3σ

z
4 of the gauge term). In our case, we have divided the diagonal operators

decomposed in the form of elementary bonds (plaquette) interactions Hb(�), while the off-diagonal

operators are decomposed as elementary non-interacting sites, that is,Hi.

Once the Hamiltonian is completely decomposed into such elementary interaction fashion, It is useful

to rewrite the term under the trace(Eq. (3.1)) in power series of Hamiltonian as,

Hn ≡ (−
∑
�

H� −
∑
i

Hi)
n =

∑
Sn

(−1)n
n∏
i=1

Hαi , (3.3)

where {Sn} represents the set of operator string Sn consisting of the sequences(that is products) of

operators including diagonal(H�) and off-diagonal(Hi) operators. The terms arises by expanding

out the sum in Eq. (3.3): Sn = {[α1], [α2], [α3], · · · [αn]} with αi denoting the label of various types

of commuting(�) or non-commuting(i) operators. By writing the trace operation in Eq. (3.1) in the

computation basis |α〉 = |Sz1 , Sz2 , · · · , SzN〉 of tensor product states of eigenstates of Szi , we collect for

the partition function sum where the equation reads as,

Z =
∞∑
n

(−β)n

n!

∑
{Sn}

∑
{α}
〈α|(−1)n

n∏
i=1

Hai |α〉, (3.4)

here, both the sums involved can run over all sequences of operators {Sn} and all basis states {|α〉}

respectively. We have deliberately decomposed the Hamiltonian H with a minus sign such that it

cancels with the minus sign infront of inverse temperature (β).

Above all, one must choose the plaquette operators such that Hai’s action on |α〉, that is, a given

basis state returns multiple of some other state (basis) |β〉

Hai |α〉 ∝ |β〉, (3.5)
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that isn’t a superposition of states. A mark on the nomenclature: In the equation |α1〉 = Hai|α〉

we say that Hai propagates the initial state |α〉 to the state |α1〉. The direction which the operator

string Sn expands is called as the imaginary-time or propagation direction, in correspondence to the

Feynmann’s formalism of path integrals in statistical mechanics to which the SSE formalism is very

nearly associated. It is helpful to define the states that are propagated along the imaginary-time and

that are normalized |α(p)〉 as attained after the application of the first p plaquette operators in the

operator sequence as:

|α(p)〉 ∝
p∏
i=1

Haiα(0)〉. (3.6)

Next, if the trace operation in Eq. (3.4) can be calculated analytically, the partition function, Z , then

can be rewritten as a summation of computable weights as,

Z =
∞∑
n=0

∑
{Sn}

W (Sn), (3.7)

here, W (Sn) is the relative probability (weight) of creating a sequence, Sn, and the evaluation of ex-

pectation value happens by sampling over all sequences. In the year 1992, Handscomb [159] was the

first to propose such a new Monte Carlo scheme, which, however, the original scheme was exclusively

suited to the ferromagnet coupling of Heisenberg model [159, 160] as well as a few other systems. It

can be seen that in almost every case the trace operation in Eq. (3.4) could not be estimated analyt-

ically. It is, therefore, necessary to importance sample in addition over a basis of states {|α〉}. This

way leads us to the broader scheme generalizing Handscomb’s initial method. This is currently the

most extensively applicable Stochastic Series Expansion (SSE) scheme [161, 155]. One may notice

that with this generalizing scheme of sampling over basis states, the method nearly draws parallels

with the approach of path integral continuous imaginary-time in an analytically exact way [162, 163].
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To conclude, the SSE style of depicting the partition function is

Z =
∞∑
n=0

∑
{|α〉}
w(α, Sn) (3.8)

=
∑
{C}
w(C), (3.9)

while configuration’s weight

w(α, Sn) =
βn

n!

n∏
p=1

〈α(p)|Hlp |α(p− 1)〉, (3.10)

is given by the product of matrix elements of all the plaquette (bond) operators in the operator se-

quence, Sn. In the current Monte Carlo simulation in practice one needs to sample over effective

configuration space {C} of tensor products between the space of operator strings, {Sn}, and the

set of initial spin states {|α} = {|Sz1(0), Sz2(0), ...., SzN(0)〉} at propagation step p = 0, that is,

{C} = {Sn} ⊗ {|α〉}. A central property of the above formalism is that, running the simulation

from an initial state |α〉, the sequence consisting of operators, Sn, describes purely a sequence of con-

figurations |α1〉, α2〉,... everything associated to the computational basis, and so that |α1〉 = Ha1|α〉,

|α2〉 = Ha2 |α1〉,... Consequently, the spin states that are propagated not necessarily be stored since

this knowledge is superfluous. Moreover, the weights w(α, Sn) = ...〈α2|Ha2|α1〉〈α1|Ha1|α〉 can be

evaluated easily as products of matrix elements of plaquette (bond) operators consisting only spins

the perturbing elementary Hamiltonian contains.

3.3 SSE Monte Carlo Update procedure

Before going to the sampling scheme used in SSE, we need to note that the memory for any

numerical simulation is finite and thus one may have to trim the series expansion in the operator

string Sn to some upper cutoff length, say nmax ≡ L ∼ Nβ. Usually, the typical size of n depends on
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the Hamiltonian and the temperature with lower ones having the higher cutoff lengths. The error of

truncation vanishes exponentially with nmax. This can be understood from the expression of specific

heat as well, Cv = −β2 ∂
∂β
〈E〉 = 〈n2〉 − 〈n〉2− 〈n〉. We know that when T → 0, Cv should approach

zero. Then from the above relation of specific heat we have 〈n2〉− 〈n〉2 = 〈n〉, in words, the variance

of n is 〈n〉 so that the variation of distribution decays exponentially above some order n ∼ Nβ.

The fixed length scheme can be simply understood from the perspective of operator strings of same

size L each, where we imbed a total of L− n identity operators at random locations into the operator

sequence such that the total length now is extended to length L. The position of the identity operators

at L − n locations in the ‘n’ length operator sequence is entirely stochastic. Thus the configuration

space is enhanced. However, the equivalent operator strings SL of n(SL) that can be generated by

simple permutations of the identities in the operator strings can be given as L!
n(SL)!(L−n(SL))

. The

numerator comes by permuting the L operators which then has to be divided by a factor n(SL)! by

taking into consideration that permutation of non-trivial operators is strictly rejected and by (L −

n(SL))! permutation of identities does not alter the sequence. Therefore, one divides by this factors

to return to the initial size of the configurational space and arrive at

Z =
∑
SL

∑
|α〉

βn(SL)

n(SL)!

n(SL)!(L − n(SL))!

L!
〈α|

L∏
i=1

Hai |α〉 (3.11)

=
∑
SL

∑
|α〉

βn(SL)

L!
(L − n(SL))!〈α|

L∏
i=1

Hai |α〉. (3.12)

Here the summation involving {SL}, takes all permutable strings of operators with repetitions. Within

the sequence, equivalent strings of operator that has the same sequence of non-trivial operators are

also included. The cut-off length L that is determined for a given temperature and size of the system

is adjusted during the equilibration time of the simulation until it converges to a large enough value

appropriate to the system in hand.
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3.3.1 SSE Sampling

In a way to efficiently sample the partition function in Eq. (3.4) we need to change a bit on the

operator sequence SL and the input trial (initial) state |α〉 ≡ |α(0)〉 which is stored. We note that

the modifications made in stored states are dependent, since a change in the operator string affects

the states propagating along the imaginary-time thus also affecting the input state. Every update is

required to satisfy some configurational conditions for the emerging latest configuration to have a

weight that is non-zero. One should note that the sum involved in the partition function in Eq. (3.4) is

nothing but a trace operation that constraints to have periodic boundary conditions in imaginary-time

direction and therefore the condition |α(0)〉 = |α(L)〉. Consider the Hamiltonian in our case:

H =
∑
�

H� +
∑
i

Hi, (3.13)

H� = −J0A� + J1B� − J2

∑
B

~P� · ~PB, (3.14)

Hi = −Kσxi . (3.15)

A useful way of decomposing the current Hamiltonian is:

H0 = 1 Identity operator, (3.16)

H� = J0 − J0σ
z
1σ

z
2σ

z
3σ

z
4 plaquette operator, (3.17)

H1
� = J1 − J1(σz1σ

z
3 + σz2σ

z
4) J1 bond operator, (3.18)

H+
i,j = J2 − J2(σzi σ

z
i ) bond operator with + sign before J2, (3.19)

H−i,j = −J2 + J2(σzi σ
z
i ) bond operator with minus sign before J2. (3.20)

Note the artificial induction of the constants J0, J1, and J0 into the Hamiltonian to make the matrix

element positive definite.

1. Diagonal update: During each operator sequence step p, if there is no diagonal operator al-
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Diagonal update: Cumulative probability

ready inserted, then using the acceptance probability given in Eq. (3.21) a decision is made

whether or not to insert a diagonal operator into the operator string SL. On the other hand, if an

operator (diagonal) is already present then again using the removal probability (see Eq. 3.21)

a decision is made [See Fig. 3.1] whether or not to remove it. The following update changes

the total number of non-trivial operators in the operator string, that is, the expansion order n,

and thus the energy of the system also gets changed, since the energy of the SSE configuration

is E = −〈n〉/β. However, the initial |α(p − 1)〉 is not changed (See Fig. 3.1). The associated

Metropolis acceptance probabilities for insertion and removal of a diagonal operator obtained

by dividing the weights of a configuration before and after the insertion (or removal) is given

by:

P (1→ Hγi) = min(1,

∑wnew

wnew
) = min(1,

β(NK + 2|Ji|)
L − n ), (3.21)

P (Hγi → 1) = min(1,
wnew∑wnew

) = min(1,
L − n+ 1

β(NK + 2|Ji|)
). (3.22)

Here, γi refers to the Hamiltonian operator types as mentioned in Eqs. (3.16) such that γ0 cor-

responds to identity operator and so on. Note that, the corresponding change in the expansion

order n→ n±1 leads to a contribution of a prefactor β± (L−n±1)!
(L−n)!

multiplying the ratio between

the matrix element one of the identity operator H0 and the coefficient given in the denomina-

tor (3.21) of the non-zero matrix elements. It is to be noted that the probabilities do not depend

on the propagated state |α(p)〉. Once all the probabilities of the corresponding operators have
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p = 0

p = 1

p = 2

p = 3

Figure 3.1: (a-c) The cumulative probabilities that are to be compared with a random number r for
the insertion or removal of diagonal operators. The below panel shows the schematic of multibranch
cluster update on a 2D lattice. The upward direction(p = 0, 1, 2...) is the imaginary-time direction
where the state at p = 0 is evolved into |α(p)〉. Note the diagonal operators showed (red color
plaquettes) and the off-diagonal operators represented as squares.

been identified, we insert them based on the cumulative probability: Pj =
j∑
0

Pj/
Nt∑
0

Pj , where

Nt is the number of operator types present in the decomposed Hamiltonian.

2. Off-diagonal update: This is an update where in contrast to a diagonal update, the expan-

sion order, n, do not get changed, rather an exchange between the operator types occurs (i.e

from identity to the one the γi operators and so on) during equilibration. To be precise, the

diagonal operators which have been inserted in the diagonal update (above), are converted into

off-diagonal operators utilizing a loop or cluster update, which may also modify the initial state

|α(0)〉 and thus the magnetization in the SSE configuration. For systems with Heisenberg inter-

actions, the loop updates are the only way to deal with them as they are one of the few updates

that change the topology of the imaginary-time evolution without changing the magnetization

which is and should be conserved in Heisenberg systems. Now, the removal of a diagonal
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operator does not need any condition to be satisfied, however, for the insertion of a diagonal

operator, a criterion based on the positivity of the matrix element w� needs to be fulfilled. For

example, consider the Hamiltonian with only the gauge term J0, we then get the matrix ele-

ment w� = 〈σz1(p+ 1)σz2(p+ 1)σz3(p+ 1)σz4(p+ 1)〉|H�|〈σz1(p)σz2(p)σz3(p)σz4(p)〉 to be either

2J0 or 0 making them positive and usable as relative probabilities in the importance sampling

scheme. Therefore, the diagonal operator H� can only be inserted at a plaquette that satisfy the

constraint of σz1(p)σz2(p)σz3(p)σz4(p) = 1 for J0 > 0. Similarly, if we include the J1 term the

insertion probabilities get modified accordingly.

3.4 Percolation based multibranch cluster update

This is an off-diagonal update which is followed by the diagonal update. From the Eqs. (1.3)

and (3.16) one might realize that there are various ways of performing the off-diagonal update, where

the constant operators, H0 ≡ 1 and spin-flip operators, Hi = σxi , are exchanged. In this process, no

change in the expansion order, n, is while the initial state |α(0)〉 could get updated resulting in a net

change in magnetization without changing the energy E = −〈n〉/β (since n doesn’t get changed).

One of the simplest ways of replacing the identity and the flipping operators (such as transverse

fields) is the local update, where a cluster is restrained to individual sites and extends only in the

imaginary-time, however, this approach suffers from critical slowing near the quantum critical points

with long autocorrelation times. Therefore, we directly stick to the discussion on the non-local up-

dates, that is, the cluster updates. It is a well-known fact that cluster algorithms usually fasten Monte

Carlo dynamics with relatively much shorter autocorrelation times than the local updates, particularly

near the critical boundaries where critical slowing is typical.

The superiority of the cluster updates can be understood from the proper analytical observation,

that is, from the Fortuin-Kasteleyn transformation. A mapping from the ferromagnetic Potts model

to a corresponding bond percolation problem (see [164] for detailed review) was first performed. It
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may be noted that the resulting configurations from the percolation models after every sweep is inde-

pendent of the previous configurations, thus making simulation very efficient with the autocorrelation

times that are exactly zero.

The characteristic principle involved in the construction of the multibranch cluster is that the

cluster is usually randomly shaped in space and imaginary-times. And the weight of the new configu-

ration obtained after flipping every spin in the cluster must be non-zero to maintain detailed balance.

In schematic Fig. 3.1 examples of cluster formation with certain shape is shown. However, a resulting

configuration with non-zero weight is obtained only when all the spins connected to the plaquette

(bond) are flipped simultaneously with corresponding vertex weights given according to Eq. (3.16).

This results in clusters extending both along the spatial and propagation direction. Particular branches

of the cluster are stopped when it encounters an off-diagonal (flipping) or constant operators. The final

cluster formation rules are depicted in Fig. 3.2(a-c)): An entrance leg of an incoming cluster branch

entering into a vertex is shown by a dashed arrow; each one spins is flipped dictated by the rules

shown in Fig. 3.2(a-c)); finally, outgoing arrows in Fig. 3.2(a)) depict new cluster branches. Requisite

to the cluster formation is the linked vertex list (doubly or multiply) [157, 153], which couples the

legs of vertices across imaginary-time. Interested readers can further refer to Ref. [153] for a quick

review on the SSE implementation and Sect. 3.3.1 for a representative example of how one number

of the vertex legs in a computer simulation stored as linked lists. Nevertheless, the construction of a

cluster can be elucidated in the following steps. Initializing a cluster involved picking one of the legs

of the n non-trivial vertices in the operator string SL at random with the corresponding spin of the

entrance leg that is to be flipped. At this step, depending on the type of vertex to which the leg is con-

nected different necessary operation is to be taken. For example, if the legs are connected to a vertex

consisting of a diagonal operator, then the cluster extends to at all legs of the vertex (see Fig. 3.2(a)).

In other words, this means that except for the current leg, all the other legs emanating from the vertex

are put onto a stack that is to be picked later serially as new entrance legs. On the other hand, if the
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entrance leg is connected to a constant or the vertex containing the off-diagonal operator, in that case

only the spin corresponding to the entrance leg is flipped. Because of this a change from H0 to Hi,

and vice versa is seen. Further, there are no additional legs to be added to the cluster at this point

resulting in a termination of the cluster branch. This way, all the legs in the stack are processed until

none is remaining in the stack. At this point, the cluster formation gets terminated and is complete.

In Sec. 3.5 particulars for a systematic application of the multibranch cluster update are provided for

a case that does not consider a longitudinal field (coupling to Szi ) where a cluster is always flipped

since no net change in the configurational weight is seen: because, the matrix element of the Ising

plaquette (bond) operators does not depend on the absolute orientation of the spins and is not affected

when both the spins are flipped simultaneously, on the other hand, the weight corresponding to the

matrix elements of the constant and transverse (spin-flip) operators are both equal to K and therefore

exchanging among them do not change the weight.

It may be noted that, in contrast to the loop update of Sec. 3.5, the cluster formation is entirely

deterministic given the operator sequence. This makes it easier to construct all the clusters spanning

the entire lattice of spatial and imaginary-time and also flipping each cluster independently of prob-

ability 1/2, as in the classical version of Swendsen-Wang (SW) algorithm [165]. Moreover, in the

classical limit [165] of K = 0 where M number of imaginary-time slices collapse to a single time

slice, the current cluster construction rules just coincide with the classical SW algorithm. Each cluster

as said is to be flipped randomly and this can be decided even before the construction of the cluster.

In any case, even if a decision of cluster was made not to flip, the cluster construction should continue

fully so that a marking of visited vertex legs can be made for future construction of new entrance

legs corresponding to a new cluster. One may also analyze the distribution of cluster sizes, where the

cluster size is defined as the number of legs nlegs = n2−leg + n4−leg that belong to a cluster.

The quantum cluster only changes the initial state |α(0)〉 whenever a cluster branch winds around

the boundary in imaginary-time. Also, to identify branches winding the imaginary-times, one may
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Figure 3.2: (Left) Schematic representation of the quantum cluster off-diagonal update for a chain of
five spins. In the left columns, a cluster shown in the red cluster is flipped to a configuration shown
in the right column. The entire lattice can be decomposed into sets of disjoint clusters that have to be
flipped deterministically. Note that the configuration weights before and after flipping are essentially
the same, therefore, they have to be flipped with a probability of 1/2. The cluster construction is
shown also ensures the constraint of periodic boundary conditions in the imaginary-time direction is
obeyed. (Right) Distinct vertices that could be encountered during the cluster update as represented
by the Eq. (3.16).

mark the direction of the cluster growth along the linked vertex list as ”up” or ”down”. Then, the

winding branch corresponds to an increase (decrease) of the leg numbers when going ”down” (”up”).

Finally, a single Monte Carlo step (MCS) consists of a full sweep of diagonal updates, followed

by the off-diagonal update involving the construction of linked vertex list and an SW type quantum-

cluster update. Where in quantum cluster update all clusters are constructed and flipped with heat-bath

probability 1/2. And, free spins that do not belong to any cluster can be flipped with probability 1/2.

Unfortunately, the percolation-based approach becomes inefficient significantly due to the diverg-

ing degeneracy (with system size) that is carrying with the gauge-term, J0. The approach suffers

critically from the slowing down and therefore a loss of ergodicity is seen. The problem in the current

method has to do with the plaquette term J0 where we flip all the spins in a plaquette once the corre-

sponding operator is encountered in the multicluster branch. However, we see below that a smart way

of approaching the current system is to decompose the gauge term further into two parts. The details

of which will be explained in the next section. More details regarding this can be found in Ref. [164].
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(A) For J = 0= 0 (B) For J21,2

Figure 3.3: Schematic showing the natural formation of loops after decomposing the Hamiltonian
into a set of dimers covering the entire lattice. Each dimer is connected to a neighboring dimer until it
meets the initial one forming a loop. Different colors of the loop corresponding to different Swendsen-
Wang clusters that need to be flipped independently with probability 1/2. Notice the contours of the
loop for J1 6= 0 case (Fig. (B)), they are nothing but the non-local gauge operators found in chapter 2.
However, it may be noted that depending on the Hamiltonian one has to incorporate accordingly the
contours that will lead to an efficient sampling scheme.

Figure 3.4: The left panel shows the results of total energy per spin versus temperature as calculated
from SSE QMC (blue) using the unimproved quantum cluster update, and also from the Exact diago-
nalization analysis (purple). The discrepancy between them can be seen at lower temperatures. In the
right panel, we show that this discrepancy is removed after the improvisation of the quantum cluster
algorithm briefly discussed in sec. 3.5.

3.5 Plaquette based quantum-cluster update

Earlier methods relied on constructing the clusters based on a link-decomposition of Hamiltonian

found to be inefficient [164], despite being tried in various forms by constructing the clusters along

τ -dimension (imaginary-time). Nevertheless, here we use a variant of a recently developed micro-

canonical cluster algorithm (quantum cluster update) where it uses the plaquette decomposition of the

Hamiltonian within the framework of stochastic series expansion (SSE) pioneered by Sandvik and
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others [153, 166, 167, 168, 169, 170, 171, 164, 161]. Clusters are constructed based on a plaquette

percolation process with the the notion of premarked motifs which act as a flag in determining how

it connects the legs of all diagonal plaquette operators ’living on’ various planes of imaginary-time

direction. Once all clusters are constructed, each can be independently flipped with probability 1/2

within a Swendsen-Wang type implementation. Here in the present study, we have employed and

improvised an algorithm within the stochastic series expansion Monte Carlo method [164]. Readers

interested in the details regarding the efficiency and performance of the algorithm compared to the

percolation-based algorithm can find here [164] for an ’odd’ Ising gauge Hamiltonian with antiferro-

magnetic Ising exchange term. The major difference in the design of the algorithm is that the choice

of premarked motifs differ for each system with complicated interactions or frustration, where intu-

ition or little prior knowledge of the equilibrium ensemble is a bonus for improving the algorithm

further, this is also where we had implemented our idea to investigate the Hamiltonian we considered.

Since three distinct regions are corresponding to three different parameters J0, J1, J2, we thus

identify different premarked motifs choice as shown in Fig. 3.5. In Fig. 3.5(a), we provide the cartoon

picture of pre-marked motif for a general plaquette four-body interaction signified by finite J0 and

J1,2 = 0. In Fig. 3.5(a), we show a privileged single site premarked motifs. It is easy to find that four

such choices are corresponding to four sites in a given plaquette. In Fig. 3.5(b) and (c), we represent

in the pink shaded region, the sites whose spins are to be flipped. They all correspond to the single

site premarked motif described in Fig. 3.5(a) and (d), we represent the choice of having two sites as

the preferred premarked motifs. There are two such choices.

For J1 6= 0, J2 = 0, the only choice of premarked motifs are shown in Fig. 3.5(d) where two

frustrated bonds (only those with one parallel to the other) are required to be on each plaquette which

corresponds to eigenvalue 4J0 + 4J1, while configurations with four or zero frustrated bonds have

eigenvalue zero and hence corresponding plaquette operators do not appear in the operator string.

Our choice of the motif in the J2 6= 0 case also consists of two privileged diagonal sites among the
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Figure 3.5: Various choices of cluster decomposition rule for premarked motifs are shown in (a)-(d).
In (e) and (f) we show the distributions of parallel and anti-parallel bonds corresponding to the above
choices. The zigzag lines indicate the bonds consisting pair of antiparallel spins, the frustrated bonds,
and unfrustrated bonds correspond to solid lines.

four that make up a spatial plaquette as in Fig. 3.5(d). Thus each spatial plaquette has two distinct

possible motifs. The motif on a given spatial plaquette determines the cluster decomposition of pla-

quette operators at that location in the following way: if only one frustrated bond touches the two

privileged site, the four legs corresponding to these two sites are assigned to a priori different cluster,

and the other four legs make up the other cluster. If the privileged site is touched by two or zero

frustrated bonds, then the four legs corresponding to the privileged site and its diagonally opposite

site are assigned to one cluster, and the other four legs are assigned to a different cluster (which could

in principle merge with the other cluster at a future step in the cluster construction).

We observe that in the case of J1 = 0 there is no apparent spin-freezing thus making the algorithm

much more efficient in this regime. However, despite improvising the sophisticated algorithm to work

in the case J1 6= 0, we see some apparent spin freezing at low temperatures, and hence to avoid that

we also invoke the replica-exchange method with temperatures ranging from 0.05 to 1.0. We use

system sizes varying from L = 24 to 32 (N = 2L2) with a standard 1×107 iterations for equilibration

and 1 × 107 for measurements. Results are divided into six bins to estimate statistical errors by the

variance among the bins.
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Figure 3.6: (Left) The match between the configurational energies after convergence between exact
diagonalization technique and the current SSE method after using the improvised algorithm as dis-
cussed in Sec. 3.5. (Right) The correlations function C(r) calculated as a function of r by equally
averaging over all the classical groundstates for zero and finite transverse fields.

3.6 Physical Quantities: Probing the liquid-like state

Given the wide scope of our model which might host different phases depending on the relative

magnitude of the model parameter and temperature as well, we introduce the relevant parameters in

detail. This will help us to identify each phase as well as to distinguish from each other without

ambiguity. At very high temperature T > Ji, one generally expects a paraelectric phase where the

dipole moments associated with each plaquette are disordered. The paraelectric to ferroelectric phase

transition (due to dipole-dipole interaction term J2) as we lower the temperature is characterized by

the order parameter P which is nothing but the electronic polarization and the associated susceptibility

χP . They are defined as below,

P =
1

N
[|S(0, π)|2 + |S(π, 0)|2]1/2, (3.23)
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χP
N

= β[〈P 2〉 − 〈P 〉2], (3.24)

where S(k) is the static spin-structure factor given by

S(k) =
1

N

N∑
i,j

Szi S
z
j exp(−k · rij). (3.25)

To locate the critical temperature associated with this paraelectric to the ferroelectric phase tran-

sition, we use the Binder Cumulant analysis, where the Binder parameter QP [172] is given as

QP =

(
1− 〈P 4〉

8〈P 2〉2
)
. (3.26)

Apart from the presence of paraelectric and ferroelectric phases, at low temperatures, and for small

values of J2, the dipole-dipole interaction strength, the groundstate is dominated by states determined

by J0 and J1. In this situation, the groundstate manifold is dictated by the states which satisfy the

local ’ice-rules’. In a quantum mechanical sense, this is a quantum liquid state. To distinguish this

state from the usual paraelectric states, we need to define an order parameter that can successfully

establish the presence of this state which should differentiate it from the usual paraelectric phase and

ferroelectric phase. To this end, we define the parameter ρ which detects the local ice-rules state on a

plaquette, i.e, the partially disordered locally-correlated liquid-like paraelectric phase,

ρ =
1

N

∑
p

I(p), (3.27)

where I(p) → 1, if the given plaquette P is in one of the local four-fold degenerate ice-rule states

with finite-molecular polarizations or finite-dipole moment and similarly I(p) → −1/3 otherwise.

The details regarding the assigning of the particular values for ρ� are detailed in chapter 4. To further

corroborate the results of phase transition and crossover points we also estimate the susceptibility
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corresponding to ρ by calculating their fluctuations as given by,

χP
N

= β[〈ρ2〉 − 〈ρ〉2], (3.28)

where the crossover from the disordered but correlated dipoles into a paraelectric phase can as well

be detected in the specific heat measurements as shown in Fig. 3.7(e)-(f) We know from the earlier

studies [173, 174] that the presence of dipole-dipole interaction (the J2 term in the Hamiltonian in

equation (3.13) induces a ferroelectric order. In the absence of J2, the groundstate is highly degen-

erate. The degeneracy for J1 = 0 is exponential though with J1 it is proportional to the peripheral

size of the system. On the other hand, the global ferroelectric order is fourfold degenerate. Thus we

see that the effect of temperature on the system might be very intricate due to the energy cost for low

energy excitations due to competing interactions as well as due to the degeneracy of the groundstate

manifold for each parameter. This necessitates examining the order parameter P and ρ both. Interest-

ingly we find that they do not follow each other as we increase the temperature. Correspondingly, the

susceptibility also shows contrasting behavior. We first discuss the temperature dependence of P and

ρ followed by the corresponding susceptibility.

3.6.1 Temperature dependence of P and ρ

The general behavior as evident from the QMC simulation suggests that as we turn on the tem-

perature the ferroelectric order parameter denoted by P sharply decreases for a very small value of

temperature. However, this decrease seems to be a two steps process. We call the first phase of

decrease of P as the quantum liquid states and the higher temperature counterpart as a usual para-

electric phase. The P shows a shoulder like a hump at the transition from quantum liquid-like states

to paraelectric states. In Fig. 3.7(a) and (b), we have shown the variation of P in blue points for

J0 = 1.0, J1 = 0.5, J2 = 0.020, 0.024. The presence of quantum liquid-like states is apparent from

the temperature variation of ρ as presented in blue points in Fig. 3.7(c) and (d). We observe that ρ
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Figure 3.7: In panel (a) and (b) the red points and the blue points show the plot for χP and P .
Similarly, in (c) and (d), we present ρ and χρ by red and blue points respectively. In (e) and (f),
specific heat divided by temperature (C/T ) has been shown. Binder parameter has been shown in
panel (g) and (h). In all the plot, various points denote different system size as shown. All the results
are calculated along the contour K/T = tan(θ) where θ = π/6. For a detailed description of the
above, we refer to Sec. 3.6. The parameter values used in the figures are J0 = 1.0, J1 = 0.5 with
J2 = 0.020 for left panel and J2 = 0.024 for right panel.

is almost constant throughout this quantum liquid-like state and decreases monotonically when the

system yields to a paraelectric state. Thus the order parameter P and ρ suggest that as we increase
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Figure 3.8: In the upper panel we show the temperature dependence of order parameter and ice-
rule parameter ρ by the orange and green points respectively. The corresponding susceptibility has
been plotted in the lower panel with the same color convention as the upper plane. Note that in the
above 2D plot each graph denotes a specific line in the T −K plane. Each line is represented by the
corresponding slope of the line θ. For the details of the plot refer to the text in Sec 3.6.

the temperature from zero, the system starts from the ferroelectric phase, moves to an intermediate

quantum-liquid-like state, and finally reaches a pare-electric phase. In the upper panel of Fig. 3.8 we

have shown by orange and green points more plots for the behavior of P and ρ respectively for various

values of θ in the T −K plane. It shows that for large values of θ, P and ρ decreases more rapidly

than the small values of θ. This indicates that pressure and temperature have the opposite effect on the

system. The pressure denoted byK tends to stabilize the ferromagnetic and the intermediate quantum

liquid-like state.
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3.6.2 Susceptibility χP and χρ and specific heat C/T

The susceptibility obtained due to P is shown in Fig. 3.7(a) and (b) by red points which shows

a jump at the transition from ferroelectric phase to quantum liquid-like states. This suggests that

ferroelectricity is almost destroyed at this transition. However the susceptibility corresponding to

ρ, that is χρ, shows a very interesting feature. Initially, it is almost zero, increases very slowly

until the temperature reaches near the transition from quantum liquid-like states to the paraelectric

states. At this transition the χρ jumps at a higher value and remain almost constant up to a certain

temperature which we call Tρ and after this, χρ decreases monotonically. The specific heat at a very

large temperature shows monotonically decreasing behavior characteristic to the usual paraelectric

phase but at low temperature, it shows two peaks of different magnitude as denoted in Fig. 3.7(e)

and (f). The largest peak appears at the transition of quantum liquid-like state and we denote this

temperature by T ?C/T . However, the sharp nature of the peak indicates a possible order-disorder

phenomenon where the degeneracy seems to be uplifted to some extent. Below this temperature

specific heat shows another small peak at where the P starts to decrease from the initial constant

value for small T . The peak height of this smaller one tends to decrease with the increase of system

size as denoted in the inset of Fig. 3.7. In the lower panel Fig. 3.8, we have shown the behavior of χP

and χρ for various values of θ in the T −K plane in orange and green plots respectively. It shows that

for large values of θ, P and ρ have sharper peaks and also they decrease more rapidly compared to the

small values of θ. It suggests that the stability of the intermediate liquid-like the state is enhanced by

increasing theK/T ratio. This may be attributed to the fact that the increase ofK results in enhancing

the bandwidth of the system resulting in decreasing the thermal effect.

3.6.3 Binder cumulant and critical temperature

In the foregoing discussion, we have already introduced the two critical temperatures. The largest

one is the T ?χρ which is signified by the step-like jump from almost zero values of χρ to a higher
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value. Below this temperature, we observed another critical temperature signified by the largest jump

in the specific heat at the transition to the paraelectric phase from the quantum liquid-like state. This

temperature is denoted by T ?C/T . Our analysis for the Binder cumulant as shown in Fig. 3.7(g,h) shows

that the actual phase transition is very near to the T ?C/T and we denote this temperature as Tc. As for

as our numerical results and analysis are concerned, Tc = 0.56(47) and 0.56(03). for J2 = 0.020 and

0.030 respectively. The corresponding T ?C/T is obtained as 0.060(03) and 0.61(40) respectively.

3.6.4 Phase diagram

The numerical results presented above suggest the presence of three phases as we increase the

temperature. The first one is the ferroelectric phase which survives for very small temperatures and

extends up to Tc as obtained from Binder cumulant. We call this phase
∏

f . The jump in the specific

heat signified by TC/T is a little higher than the Tc. Above the Tc there is a presence of a complex

quantum liquid-like state which extends up to some critical temperature Tχρ . This phase is very in-

triguing as long as the behavior of the order parameter is concerned and we call this phase as
∏

ql.

After Tχρ , the normal paraelectric phase develops with no residual quantum correlation between the

dipole moments. The above three critical temperatures defined above depend on the values of J and

theK. It is instructive to present the above three phases in a contour plot in the T−K plane and this is

presented in Fig. 3.9. The results are shown for different J2 strengths in the T −K plane. For the case

where J2 = 0 the system shows a crossover transition from quasi macroscopic degenerate liquid-like

state to a completely disordered state, with the crossover temperatures shifting to higher temperatures

with J1 as expected. However, even for J2 very small, the system orders ferroelectrically (the region

below Tc, orange circles), the region between the Tc and Tχρ belongs to the liquid-like state.

It is interesting to note that the scaling behavior of the critical boundary shows unique character-

istics, the boundary does not extend into the liquid-like region rapidly but rather slowly indicating

that the dependence of Tc with J2 is complex with a lower dynamic exponent than the model having
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Figure 3.9: Phase diagram showing the critical and crossover points, the Figs. (a)-(c) correspond to
the values J2 = 0.020, J2 = 0.024, J2 = 0.028 respectively. The orange dots indicate the critical
points for Ferro to liquid-like transition obtained from the binder analysis, green triangles indicate the
cross over points TC/T obtained from the C/T curve, while the red squares indicate the Tχρ obtained
from χρ.

only two-body interactions [103]. Another aspect is that the ratio of thermal energy (Tc) to that of

J2 is also less. We believe that the colossal enhancement of Tc with J2 is related to the lifting of

quasi macroscopic degeneracy. The above finding could be confirmed by experiment in conjunction

108



−2π

−π

0

π

−2π −π 0 π 2π
−2π

−π

0

π

−2π −π 0 π 2π
−2π

−π

0

π

−2π −π 0 π 2π

q y

qx

(a)

q y

qx

q y

qx

(a) (b) (c)

S(k,ω)

0

0.5

1.0

1.5

2.0

2.5

Figure 3.10: The static structure factor S(k) calculated in three different parameter regimes. The
subfigure (a) is estimated for the completely disordered case of J1,2 = 0, while (b) is estimated for
the case of disordered dipole when J1 is finite with J2 still zero. Finally, subfigure (c) is estimated for
a global ordered case of ferroelectric ordering in the lattice.

with a first principle study yielding an estimation of the parameter of the model Hamiltonian. It is

interesting to note that all the phase transitions that we observe are not of first-order but rather like

second-order especially the transition from
∏

f to
∏

ql. On the other hand, the transition from
∏

ql

to
∏

p is a smooth crossover. The phase
∏

ql and
∏

f suggests quite an interesting behavior of ρ

and C/T . Let us begin with
∏

f first. At T = 0, the system is in a ferroelectric state with global

groundstate degeneracy of four. As we increase the temperature, the ferroelectric order parameter P

decreases rapidly but ρ remains constant and besides, we observe a small peak in C/T . This suggests

that the global ferroelectric order reduces into the domain of ferroelectric clusters and also includes

the presence of other states not contributing to P but consistent with ice rules. The possibility of

the presence of these additional states explains the small peaks in C/T which also decreases as we

increase the system size. As far as the phase
∏

ql is concerned, we observe the steady decrease of the

ice rule order parameter ρ which suggests that the excitations now include the non-ice rule states as

expected. However, the quantum correlation is not lost completely until the critical temperature Tχρ

is reached.
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3.6.5 Static structure factor

To have a basic understanding of the Hamiltonian, we also estimate the static structure factor

(SSF) in our Monte Carlo calculations. We note that to calculate any spin-spin correlation function,

the operator loop in SSE have to go twice. Making the problem intractable. If we have a Hamiltonian

with uniform J0, J1, J2 one may invoke the translational invariance. So, the SSF can be estimated by,

Szz(~k) =
∑
i,j

σzi σ
j exp(i~k(·Ri −Rj),

=
∑
i,j

σzi exp(i~k(·Ri)σ
j exp(ik̃(−Rj),

=
∑
i

σzi exp(i~k(·Ri)
∑
j

σj exp(ik̃(−Rj),

=

∣∣∣∣∑
i

σzi exp(i~k(·Ri)

∣∣∣∣2.
(3.29)

Now, the computational cost to estimate the SSF is reduced from N2 operations to N . We plot the

results of it in Fig. 3.10. The Fig. 3.10(a) is obtained for the values of J1,2 = 0, we see that the

SSF is distributed all over the momenta in kx − ky plane. And the system can take any momenta.

This is possible when the system does not show any order. Because in a disordered state, many

degenerate configurations with no translational invariance overlap to give such widely distributed

momentum. However, when we turn on J1, we see four lines crossing at four points corresponding to

the M−high symmetry point (specifically at (−π, π), (π, π), (π,−π), (−π,−π)). The lines indicate

that the Szz quasi-particles can still have finite correlations corresponding to a disordered case but

with a degeneracy lesser than the case of J1 = 0 (Fig. 3.10(a)). Now, when a finite J2 is turned on,

the system has only four possible states (see Fig. 3.10(c)). This also testifies the results obtained in

chapter 2 that the J2 interaction breaks the symmetry that is present in the cases of J2 = 0 with a

diverging degeneracy.
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3.7 Chapter summary

We have considered a model where at zeroth order there is a four-spin Ising gauge like the inter-

action of protons in the pseudo-spin formalism. Earlier results on the model showed that the system

hosts a deconfined phase for J2 = 0 [173] at zero temperature. We use the model here to extend the

phase diagram along the finite temperature axis. Our results show ice-rule-dominated strong proton-

proton correlations to be the main physics of the system. Motivated by experiments and the previous

studies, the phase diagram in the T −K plane suggests that the qualitative shape of the critical bound-

ary Tc is closer to a linear behavior for small field strength consistent with the experimental results [32,

29, 62], though at large pressure, Tc and T does not behave linearly in contrast to experimental results

where one finds a complete linear behavior for all ranges of applied pressure. Another aspect that we

find in our study is the difference between Tc and T which remains constant throughout all pressure

ranges, which to our opinion is a remarkable success of our study. However, our results indicate a

possible second-order phase transition in contrast to experiments. This deviation with experiments

might be reconciled by considering the interlayer coupling or more complicated couplings to lattice

distortions, which are neglected in our model. The temperature dependence of the interaction pa-

rameter can not be ruled out as well. The anomalous specific heat peak at low temperature in the

ferroelectric phase is due to the formation of a cluster of ferroelectric domains. The height of the

peak reduces with the increase of system size suggesting that for a small system, the domain size is

comparable to the system itself. The fact that the height of this anomalous peak as well as the critical

temperature depends on the strength of dipole-dipole interaction renders the squaric acid system an

interesting system for experimental confirmation of the same.

Another important aspect is the nature of the phase diagram in the T − K plane which is linear

for small and intermediate values of K and for large values of K it becomes elliptical. We think the

distinct feature of our results shows that a four-spin interaction at the zeroth order is more realistic.
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Also in the present model, the dependence of degeneracy of groundstate manifold is different from

the two-spin Hamiltonian. For example, at the zeroth order, four spin interaction includes non-ice rule

states as well (all spin-up and all spin-down in a given plaquette) ice-rule states. The diagonal Ising-

like interaction reduces the macroscopic groundstate degeneracy to be proportional linearly to the

system dimension. However, for the two-body case, the degeneracy is still macroscopic. We believe

that this might be the reason that the present study is more closure to the experimental realization.

To summarize, we have studied the finite-temperature phase diagram of proton dynamics of the

squaric acid system. The study offers a unique opportunity to examine the competition between quan-

tum fluctuation and thermal fluctuation and the effect of the intricate groundstate degeneracy of such

a system. The model Hamiltonian we considered involves a four-spin interaction which renders the

present study an interesting one because of successfully solving the model as well as to qualitatively

reproduce the experimental findings.

In our endeavor to study such a Hamiltonian in Eq. (1.3) involving four-spin interaction, we used

SSE quantum Monte Carlo involving an improvised version of loop update algorithm which effi-

ciently overcomes the problem of ergodic sampling in some parameter regimes. Our theoretical study

successfully detected the quantum liquid-like intermediate state before the appearance of the conven-

tional paraelectric state as we increase the temperature. The ferroelectric state which exists before

the liquid-like quantum state is characterized by its colossal dependence of Tc concerning J2, the

dipole-dipole interaction. In the intermediate liquid-like state, the local correlations governing the

ice-rule constraints are still valid to a large extent. While the experimental phase diagram in the

T −K plane, the phase transition shows a linear behavior for all K, we find the linear behavior for

small and intermediate values of K. Thus though our results fall short of full experimental confirma-

tion, still it is quite an improvement concerning the earlier theoretical study so far. Also, the phase

transition from the ferroelectric phase to a quantum liquid-like state is sharper which reasserts that

the model is considered here is more practical as far as the squaric acid system is concerned. For
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further improvement of our results, a first-principle calculation would be helpful to establish the cor-

rect Hamiltonian as well as fixing the realistic parameters. In addition to this, the interlayer coupling

should be considered to fill the gap between the theoretical and experimental studies.
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CHAPTER 4

Role of interlayer coupling

In the previous chapter, we have presented the quantum and thermal effects on H2SQ considering

the quasi-2D nature of the material. Here, in this chapter, we focus on the realistic nature of the

material considering the interlayer coupling between the 2D layers placed one above the another with

the adjacent ones slightly displaced alternatively along the plane parallel to the layers. An aspect

concerning squaric acid is the role of interlayer coupling. Earlier experimental results have revealed

low values of the critical exponent for order parameter (fi= 0.17 and 0.14) as obtained from the mea-

surements of the optical birefringence [39] and of the neutron scattering [41] respectively. Based

on the analysis of the critical exponent, it was shown that H2SQ exhibits a characteristic of a two-

dimensional transition. Despite this fact, the thing however to be noticed that it is still not clear as

to how the layers have been stacked antiferroelectrically. In other words, the nature and the role of

interlayer coupling are not addressed rigorously. Also, theoretically, the three-dimensional nature of

the material was not strictly accounted for as far as the squaric acid is concerned.

An important insight about the interlayer coupling comes from the experiment by Nakashima et
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al [57] suggesting that the interlayer interaction acts between the hydrogen bonds of adjacent layers

and is localized in the region near the H-bonds. Following this, a theory has been put-forth [175, 75]

suggesting that the interlayer coupling may be a reason for such high Tc and for a phase transition to

happen. Put together, as to what role the interlayer coupling may play in phase transition is still an

open question. In this chapter, we present some elementary analysis regarding the interlayer coupling

on H2SQ.

4.1 3D-Model Hamiltonian

It is already mentioned in the introduction that the crystal structure of H2SQ consists of quasi-2D

layers stacked one above the other with each alternating layer displaced slightly along the horizontal

direction (see Fig. 4.1(a)). It is also known that despite its 3D structure, the material predominantly

manifests its two-dimensional behavior. Specifically, low values of the critical exponent for order pa-

rameter (fi= 0.17 and 0.14) obtained respectively from measurements of the optical birefringence [39]

and of the neutron scattering [41], were found to have a characteristic of a two-dimensional transition.

This poses a question as to how the layers have been stacked antiferroelectrically and what might be

the role of interlayer coupling. However, from the experiments of Nakashima et al, [57] one thing we

know is that the interlayer interaction acts only between the hydrogen bonds of adjacent layers and

is localized in the region near the H-bonds. Following this, a theory has been put-forth suggesting

that the interlayer coupling may be the reason for high transition temperatures, Tc, and for a phase

transition to happen [176] in H2SQ.

Most of the theories that have been put forward were based on the order-disorder mechanism dic-

tating the ice-rules type physics in the low-temperature monoclinic phase. It may be noted that the

order-disorder mechanism could be best explained by mapping the proton system to a quantum spin

system comprising pseudo-spins. Here, the protons are represented by pseudo-spin variables corre-
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sponding to a suitable quantum spin Hamiltonian. Within the model, when only the quasi-2D nature

was taken into account, the material was shown to host three different phases. As indicated, they

are, 1) Antiferroelectric (AFE), 2) Quantum liquid-like (intermediate-liquid-like), and 3) Deconfined

phase.

Apart from the fact that in a given layer, the dipoles (molecular polarization) are antiferroelec-

trically ordered, it is also known that the layers that are stacked are also of antiferroelectric order

along the interlayer axis [6]. Due to this fact, one may believe that the interlayer interaction to be of

antiferromagnetic. However, in the present work, we show that even in cases that include disorder or

ferromagnet, the material could support antiferroelectrically stacked configurations. Besides, the dis-

tortion of lattice at the critical point also could point out the non-uniformity of the interlayer coupling.

We, therefore, consider the non-uniform nature of interlayer coupling J3 in our simulations and ana-

lyze the effect of interlayer on the quasi-2D phases. We use the pseudo-spin formalism and employ

the discrete version of the path-integral continuous-time quantum Monte Carlo technique to arrive at

our results [177]. To distinguish three different phases, we estimate various quantities such as the

order parameters similar to what has been used in chapter 3, i.e, the order parameter describing anti-

ferroelectric phase (P ), the ice-rule order parameter ρ, and the imaginary-time correlation function cτ

as a function of the transverse field, K. We believe that the study of interlayer coupling is important

as a sufficient interlayer interaction strength could lead to concerted proton tunneling between the in-

terlayers dictating an alternative physics. The complete 3D Hamiltonian with the interlayer coupling

is given by,

H = −J0

∑
�

Â� + J1

∑
�

B̂� − J2

∑
〈AB〉

~̂PA · ~̂PB

+J3

∑
L,i

σzL,iσ
z
L+1,i −K

∑
i

σxi , (4.1)

H = H2D + J3

∑
L,i

σzL,iσ
z
L+1,i. (4.2)
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In the above Â� = σz1σ
z
2σ

z
3σ

z
4 , the indices 1,2,3,4 correspond to the indices of four spins on

the links (green lines in Fig. 4.2) of a given plaquette (�) taken counterclockwise starting from the

lower horizontal link(−) (see Fig. 4.2). The indices 1, 3, and 2, 4 are designated to be diagonally

opposite to each other. Similarly, B̂� = (σz1σ
z
3 + σz2σ

z
4). P̂ x

A,B = ±1
4
(σz1 + σz4 − σz2 − σz3), P̂ y

A,B =

±1
4
(σz1 +σz2−σz3−σz4) are the dipole-moment vectors for A, B subplaquettes as illustrated in Fig. 4.2.

As revealed in experiments, we note that the 2D layers are not stacked exactly one above the other,

indeed a finite shear displacement is seen alternatively among the adjacent layers (see Fig. 4.2(a)-

(c)). However, as the interlayer interaction is located near the H-bonds, we, therefore, consider the J3

interaction to be of short-range (adjacent layers) composed of simple two-spin Ising interactions.

We here consider the coupling J0 as the largest among all the couplings as before. And until

stated explicitly, for all the simulations carried throughout this work, we fix the value of J0 equal to

1. We note that the absolute value of the couplings doesn’t qualitatively change the results obtained,

since it is the relative coupling strengths that are important for a qualitative description. The four

competing local interactions in Eq. (4.2) except the Zeeman term are associated with different proton

dynamics (see sec. 1.3 for more details). There are eight degenerate ice-rule configurations with

the lowest energy within a plaquette. Some of the ice-rule states have finite molecular polarization

and some have zero molecular polarization. It may be noted that the model described by the strong

coupling term J0 alone and the external field Kx is nothing but the simple quantum Ising gauge

theory in (2+1) dimensions [89]. This theory is well-known to have a local Z2 symmetry and the

degeneracy scales exactly equal to 2Nx+Ny+1 [174]. Also, it is shown that the addition of Ising-type

intramolecular interaction given by J1 extends the deconfined phase along the J1 axis. The J2 term

in Eq. (4.2) denotes a dipole-dipole interactions between two sub-plaquettes A and B as shown in

Fig. 4.1. The physical origin of dipole-dipole interactions arises naturally when the local ground-state

or the zeroth-order electrostatic energy is perturbed by the vibrational modes of the ”SQ” molecules.

Experimentally the existence of dipole-dipole interaction is indirectly confirmed by the existence
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Figure 4.1: A 3D view of Squaric Acid crystal lattice showing two intermediate layers coupled
through the Ising exchange coupling J3 shown with the arrow in cyan color. The small colored
dots (blue) mimic the protons while the compound C4O4 form a quasi-2D layered configuration with
protons placed on the edges of a square lattice. The coloring of protons represents a different state
of the local proton ordering which in the pseudo-spin language is |↑〉, |↓〉. Each square plaquette
is occupied by exactly one square molecule where Ice rules are conserved by the gauge and Ising
coupling, J0, J1.

of ferroelectric states. This dipole-dipole interaction yields a global stripe ordering with four-fold

degeneracy [174].

4.2 Path integral formulation of partition function

We can decompose the Hamiltonian in Eq. (4.2) and (4.2) into two parts, convieniently separating

off-diagonal and diagonal operators as,

H3D = HD +HOD, (4.3)

here, HD is the Hamiltonian comprising of diagonal operators in Sz-basis, that is, the J0, J1,

J2 operators and also the interlayer coupling J3. The HOD is the off-diagonal operator, that is, the

magnetic field −K∑
i

σxi . We have thus separated H3D into two parts, each of which consists of
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commuting terms such that the relation [HD, HOD] 6= 0 holds true. Then the partition function for the

model can be written as,

Z = Tr exp {βH3D} =
∑
{σ}
〈σ| exp {−βH3D}|σ〉 =

∑
{σ}
〈σ| exp {−β(HD +HOD)}|σ〉. (4.4)

Now, following the Suzuki-Trotter decomposition [178], we rewrite the exponential operator as a

product of many terms, each with a small prefactor β/M in front ofH3D, that is,

exp {−βH3D} =

(
exp {(−β/M)H3D}

)M
=

(
exp {−∆τH3D}

)M
, (4.5)

with a (large) integer number (called the Trotter number)M , and ∆τ = β/M . The Suzuki-

Trotter decomposition now consists in approximating the exponential of H , expressed in terms of

the two non-commuting pieces H3D = HD + HOD, by a product of exponentials. While many such

decompositions are possible, the most commonly used approximations (also employed beyond QMC

methods) are

exp (−∆τH3D) = exp (−∆τ(HD +HOD)) =



exp (−∆τHD) exp(∆τHOD) +O(∆2),

exp (−∆τHOD/2) exp(∆τHD) exp (−∆τHOD/2)

+O(∆3).

(4.6)

Where the errors are also proportional to the commutator [HD, HOD]. Using either of the two

approximations in Eq. (4.5), we obtain

Z = Tr(e(βH3D)),

= Tr(e(−∆τHD)e(∆τHOD)︸ ︷︷ ︸
M

e(−∆τHD)e(∆τHOD)︸ ︷︷ ︸
M−1

... e(−∆τHD)e(∆τHOD)︸ ︷︷ ︸
1

) +O(∆2). (4.7)
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When using the second-order approximation from Eq. (4.6), the final expression is obvious. How-

ever, when using the third-order approximation, one actually obtains the same final expression, due

to the cyclic invariance of the trace, which can be used to move the extreme left exponential to the

very right, and then coalesce every other two consecutive terms. This also shows, that the systematic

error in Z actually scales as M∆τ 3 ∝ ∆τ 2, even when using the second-order approximation, where

one might have expected an O(∆τ) error in the final expression. Now, consider a basis of the Hilbert

space, e.g., in terms of the local eigenstates of Szi , which we write as,

|σ1〉 = | ↑↑↑ ... ↑〉,

|σ2〉 = | ↑↑↑ ... ↓〉,

...

|σ2N 〉 = | ↓↓↓ ... ↓〉. (4.8)

Since this forms a complete set of basis, we obtain a completeness relation:

∑
σ

|σ〉〈σ| = 1, (4.9)

where |σ〉〈σ| is a projection operator onto the basis state |σ〉. Using the above basis, we can thus

express the partition function as

Z =
∑
σ0

〈σ0|e−βH3D |σ0〉 (4.10)

=
∑
σ0

〈σ0| lim
M→∞

(e(−∆τHD)e(−∆τHOD)︸ ︷︷ ︸
M

e(−∆τHD)e(−∆τHOD)︸ ︷︷ ︸
M−1

... e(−∆τHD)e(−∆τHOD)︸ ︷︷ ︸
1

)|σ0〉 (4.11)

= lim
M→∞

∑
σ0

〈σ0|(e(−∆τHD)e(−∆τHOD)...e(−∆τHD)

(∑
σ1

|σ1〉〈σ1|
)
e(−∆τHOD))|σ0〉 (4.12)

= lim
M→∞

∑
σ0

∑
σ1

〈σ0|(e(−∆τHD)...

(∑
σ2

|σ2〉〈σ1|
)
e(−∆τHOD))|σ1〉〈σ1|e−∆τHOD |σ0〉 (4.13)

= lim
M→∞

∑
σ0,σ1,σ2

〈σ0|e−∆τHDe−∆τHOD ...

(∑
σ3

|σ3〉〈σ3|
)
e−∆τHOD |σ2〉〈σ2|e−∆τHD |σ1〉 ×
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〈σ1|e−∆τHOD |σ0〉. (4.14)

In the above summations, we have used the associative property of limit function, we have also

added a (superscript) label to distinguish the basis sets that arise from the trace (|σ0〉) and from the

various inserted partitions of unity (|σ1〉, |σ2〉, and |σ3〉). Continuing this way, we eventually arrive at

the following expression:

Z = lim
M→∞

∑
{σi}
〈σ0|e−∆τHD |σ2M−1〉︸ ︷︷ ︸

2M

〈σ2M−1|e−∆τHOD |σ2M−2〉︸ ︷︷ ︸
2M−1

〈σ2M−2|e−∆τHD |σ2M−3〉︸ ︷︷ ︸
2M−2

· · ·

· · · 〈σ3|e−∆τHOD |σ2〉︸ ︷︷ ︸
3

〈σ2|e−∆τHD |σ1〉︸ ︷︷ ︸
2

〈σ1|e−∆τHOD |σ0〉︸ ︷︷ ︸
1

, (4.15)

This representation of Z is referred to as the “Suzuki-Trotter decomposition”. Furthermore, since

HD and HOD each consists of commuting parts, we find that

e∆τHD =
∏
i

e∆τHDi = e∆τHD1e∆τHD2 ...e
∆τHDND , (4.16)

e∆τHOD =
∏
i

e∆τHODi = e∆τHOD1e∆τHOD2 ...e
∆τHODNOD , (4.17)

and thus in the Suzuki-Trotter decomposition each exponential expression factorizes into exponen-

tials for the plaquette (site) Hamiltonians for diagonal (off-diagonal) operators. One can represent

a given contribution to Z graphically, as is shown for a specific example with N = 6, and M = 3

in Fig. 4.2. This two-dimensional picture appears like a space-time picture of spins propagating in

discrete steps from the initial configuration |σ0〉 to |σ1〉,..., and finally from |σ2M−1〉 back to |σ0〉,

since the configurations on the first and the last step are equal. This pictorial illustration also explains

why the underlying partitioning of the Hamiltonian is often referred to as the “checkerboard decom-

position”.

An important thing to notice is that at this point we have two possible ways of sampling Z

(Eq. (4.15)) within a Monte Carlo scheme. One is directly sampling the Eq. (4.15) without any further
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Figure 4.2: Schematic showing the propagation direction for case of N = 6 spins and a Trotter dimen-
sion of M = 3. K ′x denotes the couplng between the imaginary-time slices (see Eq. (4.14)).

simplification, and the other involves proceeding further in deriving an effective actions describing

the same physics as the quantum Hamiltonian but with cost of extended configuration space along

the imaginary-time direction, here it is the Trotter direction M . Next we proceed onto obtaining the

effective classical action for our Hamiltonian in a path integral representation useful for sampling.

The approximation in the exponential can be made to an exact expression by taking the following

limit as follows:

exp (−∆τH3D)M =

[
exp (−∆τ(HD +HOD))

]M
= lim

M→∞

[
exp (−∆τHD) exp(∆τHOD)

]M
.(4.18)

(4.19)

Now, the diagonal part of the Hamiltonian is also given as,:

e−∆τHD |σi〉 = e
−∆τ
(
−J0

∑
�

σz1σ
z
2σ
z
3σ
z
4+J1

∑
�

(σz1σ
z
3+σz2σ

z
4)−J2

∑
〈AB〉

P̂A·P̂B−
∑
L
J3(L)σzLσ

z
L+1

)
|σi〉 (4.20)

= e
−∆τ
(
−J0

∑
�

S1S2S3S4+J1
∑
�

(S1S3+S2S4)−J2
∑
〈AB〉

PA·PB−
∑
L
J3(L)SLSL+1)

|σi〉 (4.21)

= e−∆τEDi |σi〉, (4.22)
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where EDi is the configurational energy of any given configuration that is one among the states in

Eq. (4.8). In such scenario the energy of the state is trivially given in terms of the eigenvalue as

EDi = −J0

∑
�
S1S2S3S4 + J1

∑
�

(S1S3 + S2S4) − J2

∑
〈AB〉

PA · PB −
∑
L

J3(L)SLSL+1, here the Si

are the eigenvalues of the σzi operator acting at site i, the partition function in Eq. (4.15) then can be

simplified to,

Z = lim
M→∞

∑
{σi}

e−∆τED0δ0,2M−1︸ ︷︷ ︸
2M

〈σ2M−1|e−∆τHOD |σ2M−2〉︸ ︷︷ ︸
2M−1

e−∆τED2M−2δ2M−2,2M−3︸ ︷︷ ︸
2M−2

...

... 〈σ3|e−∆τHOD |σ2〉︸ ︷︷ ︸
3

e−∆τED1δ2,1︸ ︷︷ ︸
2

〈σ1|e−∆τHOD |σ0〉︸ ︷︷ ︸
1

, (4.23)

further, summing the delta functions and replacing the dummy indices in the sum with i by i−1 leads

to,

Z = lim
M→∞

∑
{σi}

([ M∏
k=1

e−∆τEDk

]
〈σ0|e−∆τHOD |σM−1〉︸ ︷︷ ︸

M

...... 〈σ1|e−∆τHOD |σ0〉︸ ︷︷ ︸
1

)
. (4.24)

Now, one is left with the terms consisting of off-diagonal operators to evaluate, that is,

〈σk|e−∆τHOD |σk−1〉 ≡ 〈σk|e
−∆τ [−K∑

j
σxj ]

|σk−1〉 (4.25)

≡
N∏
i=1

〈Ski |e∆τKσxi |sk−1
i 〉 (4.26)

=
N∏
i=1

[
sinh (∆τK)δSki ,−S

k−1
i

+ cosh (∆τK)δSki ,S
k−1
i

]
(4.27)

=
N∏
i=1

([
1

2
sinh (2∆τK)

]1/2

e
1
2

log [coth (∆τK)]Ski S
k−1
i

)
. (4.28)

Substituting Eq. (4.28) into the Eq. (4.24) we obtain the partition function in the familiar repre-

sentation of Feynmann path integral formalism and for that matter the following method is sometimes

also called as imaginary-time Monte Carlo. Nevertheless, the simplified Eq. (4.24) after the substitu-
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tion can be rewritten as,

Z = lim
M→∞

∑
{σi}

( M∏
k=1

[
e−∆τEDk

N∏
i=1

[
1

2
sinh (2∆τK)

]1/2

e
1
2

log [coth (∆τK)]Ski S
k−1
i

])
(4.29)

= lim
M→∞

CM
∑
{σi}

( M∏
k=1

[
e−∆τEDk

N∏
i=1

e
1
2

log [coth (∆τK)]Ski S
k−1
i

])
(4.30)

= lim
M→∞

CM
∑
{σi}

( M∏
k=1

[
e−∆τEDke

N∑
i=1

1
2

log [coth (∆τK)]Ski S
k−1
i

])
(4.31)

= lim
M→∞

CM
∑
{σi}

( M∏
k=1

[
e
−∆τEDk+

N∑
i=1

1
2

log [coth (∆τK)]Ski S
k−1
i

])
(4.32)

= lim
M→∞

CM
∑
{σi}

(
e−βHeff

)
, (4.33)

here, in the second step, the constant CM is pulled out of summation and is given as CM =

[
1
2

sinh

(2∆τK)

]N/2
. Since the scalars commute, the third step involves the exponential being merged into

one. The Eq. (4.32) is the important equation used in the importance-sampling. The Eq. 4.33 can be

compared to the Euclidean path integral approach
(
Z =

∫
eiS[x]Dx. Where S[x] is the classical action

being summed over all possible classical paths Dx in the Euclidean space-time
)

after performing a

Wick rotation it = τ . Followed by the transformation τ/~ → β, the path integral then becomes

the partition function as Z ∼ e−βS . Therefore, the term inside the exponential must be equal to the

negative of the classical action Heff divided by inverse temperatures, and upto an irrelevant constant

the expression for effective Hamiltonian is given by,

Heff =
S

β
=

M∑
k=1

[
∆τ

β
EDk −

N∑
i=1

1

2β
log [coth (∆τK)]Ski S

k−1
i

]
, (4.34)

where we have successfully converted a quantum Hamiltonian into a classical theory but at the ex-

pense of compromising an addition of extended configurational space with the inclusion of imaginary-

time dimension. Effectively the quantum system (SU(2)) with N spins is transformed into the clas-

sical system (SO(3)) with M × N spins. Note the periodic boundary condition along the “discrete
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imaginary-time” axis similar to the SSE QMC approach discussed in chapter 3. The Eq. (4.34) is

quite general to a broad range of models that has off-diagonal operator acting on a single site such

as the transverse field models with no other off-diagonal operators. The diagonal part (EDi) however

strictly depends on the model considered. It is to be noted that to reduce the error due to discretiza-

tion of the Trotter index ∆τ , one may take a continuous limit even before the Importance sampling

to arrive at a robust continuous-time Monte Carlo scheme which however is not the motivation here

as the discrete imaginary-time scheme paves easy access to the correlation function that is very much

equivalent to the Matsubara imaginary-time approach. However, in practice one may tend to obtain

better-converged results and reduce the error if the Trotter number M is chosen sufficiently large.

Typically one uses the Trotter number proportional to system size and the inverse temperature. We do

follow the same in our simulation, however, we see that the results tend to converge much smoothly

up to the third decimal after M = 400. In the next section, we discuss the details of sampling the

effective classical action obtained as in Eq. (4.34).

4.3 Observables

For a diagonal operator (Sz-basis), the ensemble average seems to be simply an average over

all configurations including the extended configuration space spanned by the Trotter dimension M .

However, the case of off-diagonal operators are different as we shall see below. We start with the

same expression of partition function with an general operator (O) expression as,

〈Ô〉 =
Tr(Ôe(−βH3D))

Tr(e(−βH3D))
(4.35)

= lim
M→∞

∑
{σi}

M∏
k=1

e−∆τEDk

N,M∏
i,k

〈σki |e(∆τKσxi )|σk+1
i 〉, (4.36)
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where we have used the expression as already derived in Eq. (4.14). Now, it is convienient to introduce

a probability measure on the N ×M Ising spins,

µ({σ}) =
1

ZM
e(−βẼ({σ}))

N∏
i=1

w({σ}), (4.37)

ZM =
∑
{σ}

e(−βẼ({σ}))
N∏
i=1

w({σ}), (4.38)

so that the normalization constant ZM becomes the partition function Z in the limit M → ∞. We

have also for simplicity redefined our energy expression as,

Ẽ({σ}) =
1

M

M∑
k=1

ED({σk}), (4.39)

which is nothing but the average of the classical energy on various Trotter intervals, and

w(σ) =
M∏
k=1

〈σk|e∆τKσx|σk+1〉 =
M∏
k=1

(
cosh(∆τK)δσk,σk+1 + sinh(∆τK)δσk,−σk+1

)
, (4.40)

where w(σ) is the coefficient obtained from the interaction (ferromagnetic) along the imaginary time

axis because of the flipping operator σx. Then the ensemble average of an observableO in this scheme

can be obtained from the Eq. (4.35) as follows:

〈O〉 =
∑
{σ}

µ({σ})〈σ
k|Oe(−∆τH3D)|σk+1〉
〈σk|e(−∆τH3D)|σk+1〉 , (4.41)

here the Trotter index ’k’ is arbitrary as the product containing the k is already hidden in the Eq. (4.37).

This is possible only when there is cyclic invariance such as in the current scenario where the operator

O can be moved inside the trace. Now the Eq. (4.41) can be further simplified for the operators
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diagonal in the Sz−basis and can be given as,

〈O〉 =
∑
{σ}

µ({σ})O(σk) =
∑
{σ}

µ({σ}) 1

M

M∑
k=1

O(σk). (4.42)

Similarly the expression for non-diagonal observable such as the transverse magnetization 〈σxi 〉 can

be obtained as,

〈σxi 〉 =
∑
{σ}

µ({σ}) 1

M

M∑
k=1

〈σk|σxi e(−∆τH3D)|σk+1〉
〈σk|e(−∆τH3D)|σk+1〉 (4.43)

=
∑
{σ}

µ({σ}) 1

M

M∑
k=1

(
tanh(∆τK)

)σki σk+1
i

. (4.44)

4.4 Discrete-time loop and cluster algorithms

One of the biggest advantages of transforming the quantum Hamiltonian into the classical one

is that we can now invoke powerful classical cluster (loop) algorithms that are already in the litera-

ture, for example, the Swendsen-Wang [165] updates. The other motive is to run parallel tempering

straightforwardly with the transition probability simply given by,

P (i→ i+ 1) ∼ exp

(
(βi − βi+1)(Ei − Ei+1)

)
. (4.45)

We note that the parallel tempering in SSE involves numerous MPI child processes to be invoked

parallelly, as the intervals between two adjacent inverse temperatures βi should be very small since

the probability of acceptance of a move is ∝ (βi/βi+1)ni+1/ni and typically this number is very small

( 10−2) if the intervals are not close enough. Therefore, mapping to a classical Hamiltonian gives an

advantage in regards to parallel tempering algorithm by reducing the number of cores usage.

We use similar algorithms as in the SSE case discussed in chapter 3. However, a bit of modification

in the implementation is needed as the imaginary-time slices in the present Monte Carlo scheme
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involve a fictional ferromagnetic interaction (J3) among the adjacent layers. Noticeably, we identify

that the energy landscape of the current Hamiltonian with such a large parameter space is not smooth,

and we observe similar deviation of physical quantities at low temperatures (and or fields) due to

apparent spin percolation and thereby freezing. Therefore, we invoke multiple cluster algorithms

working together and simultaneously each satisfying the detailed balance principle. We first list out

all the algorithms used for our case,

1. Swendsen-Wang: Along the imaginary-time direction we employ the Swendsen-Wang (SW)

cluster algorithm [165] as the interaction between the layers are of nearest neighbor and include

a ferromagnetic coupling. We know that whenever one encounters a ferromagnetic interaction

of Ising spins, the probability of adding a bond (plaquette) connecting two adjacent spins i and

i+ 1 (i, j, k, l) to the SW cluster is Pb = 1− exp(−2βJb(Jijkl)), see Ref. [165]. This way one

identifies all the clusters spanning the lattice (along the world-line). SW algorithm is renowned

for its rejection free nature and its ability to suppress the critical slowing down.

2. Heat-bath update: Following the above step, once all the clusters are identified, we flip each

of them with their corresponding heat-bath weights given by the neighboring spins surrounding

the cluster with the following probability P = 1/(1 + exp(−2β)).

3. Loop-flip update: This is purely a loop algorithm applied on one particular Trotter slice (or

one world-line) and contains spins only within the spatial dimension of that particular slice. We

note that the rules governing the identification of clusters are the same as in the case of SSE

where the loops are formed connecting all the diagonal spins (or the spins that are interacting

by J1). For example, the loop-chain of spins along the x-direction starting from spin i, and then

i + lx, i + 2lx,... with periodic boundary conditions until one again encounters the site i. Here

lx is the lattice dimension along x.

4. Modified loop-flip algorithm: Same as above, but here the loops are formed at one particular
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quasi-2D slice of H2SQ and all the spins connected accordingly just above the considered slice

along the interlayer dimension are flipped. Also, other ways of implementing a similar algo-

rithm are, instead of flipping all the spins along the interlayer axis, one can flip the spins at one

quasi-2D slice with a Metropolis update proportional to its Boltzmann weight.

5. Parallel tempering: This is completely a local update but works on the principle of exchang-

ing configurations of neighboring temperatures ranging from anywhere between 0, βc, where

βc is the cut-off temperature one considers in the simulation. Typically, at first, till the tem-

peratures where spin freezing is not visibly observed can be taken as the cut-off temperatures

for exchanging. As mentioned the probability of transition for such exchanges is given simply

as: P (i → i + 1) = exp

(
(βi − βi+1)(Ei − Ei+1)

)
where i and i + 1 corresponds to nearest

neighbour indices of configurations with βi and βi+1 inverse temperatures respectively.

Implementing these algorithms listed above comply with the rules of detailed balance and can be

used anytime. The actual motive of implementing these algorithms in the simulation comes from the

efficiency of them. And for faster convergence and better results, we use the trick of QMC which is

to give a better trial state as the input. Though this is not an effective way of implementing a rigorous

unbiased simulation, yet the present case offers such a scenario as the ground state for the quasi-2D

case has been exactly known. Using this we give an input trial state obtained from the previous results

on the quasi-2D lattice with ferroelectric ground states for J2 6= 0 and disordered state J2 = 0. To

testify our results we perform another individual simulation which is fed with the final state obtained

from the mean-field analysis for Kx = 0 including the interlayer coupling. We match the results for

energy with exact diagonalization to further validate our results. In the next section, we discuss the

details of some of the above algorithms that are very useful in most of the H-bonded systems with

ice-rule physics.

In an earlier study [13], we have investigated dipole-dipole induced phase transition for a quasi-

2D H2SQ crystal not accounting the interlayer interaction, J3, that is, J3 = 0. The study showed the
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presence of a ferroelectric phase at lower temperatures (and fields), a quantum paraelectric phase (or

the liquid-like intermediate phase with finite-molecular polarization) at intermediate ranges of tem-

peratures (and fields), and the conventional paraelectric phase at higher temperatures. We note that

the ferroelectric phase corresponds to the long-range ordered dipole moments, and the quantum para-

electric (QP) phase containing molecules (subplaquettes) having finite dipole moments but are in one

of the ice-rule states. We note that the QP phase continues to survive to a large range of temperatures

(and field) indicating quantum coherence at a small length scale.

As evident from Fig. 4.1 in the absence of J3, the ice-rule configuration or dipole-dipole inter-

action within a 2D layer are independent of each other (layers). However, when J3 is turned on, a

certain correlation between the ice-rule allowed states in adjacent 2D layers comes to exist.

4.4.1 Details of implementation procedure

Here we briefly outline the method and the details of implementation of the imaginary-time quan-

tum Monte Carlo technique. We use the discretized version of the continuous time QMC algorithm

developed by Nakamura [177]. Using the Suzuki-Trotter decomposition scheme [178], the cur-

rent three-dimensional quantum Hamiltonian is mapped on to an effective four-dimensional classical

Hamiltonian with the additional fourth dimension extended along the imaginary-time (Trotter) axis τ

where the effective classical action is given by,

S =
∑
p

(
− βJ0

M

∑
�

A�,p +
βJ1

M

∑
�

B�,p −
βJ2

M

∑
〈AB〉

~PAp · ~PBp +
βJ3

M

∑
〈Lp〉

σL,pσL+1,p

−K ′
∑
i

σi,pσi,p+1

)
, (4.46)

where at each Trotter index p the operators initially of the form Â� are mapped to A�,p. Note

that the quantum spins are now replaced by their classical Ising variables, for instance, A�,p =

σ1,pσ2,pσ3,pσ4,p and similarly the same is applied for all the remaining operators in the original Hamil-
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tonian (Eq. (4.2)). Here, M is the cut-off length along Trotter axes and is fixed at the start of the

simulation, while β is the inverse temperature and K ′ = −1
2

ln coth(βK/M) is the effective coupling

(FM) along the newly added Trotter dimension τ .

We adopt the heat-bath algorithm along the spatial-axes and the Swendsen-Wang cluster update

is applied in the imaginary-time direction. However, the case for J2 = 0 is highly degenerate at

smaller-fields, and to avoid apparent spin-freezing and to speed-up the relaxation process we employ

the variant of the loop-flip update algorithm [179]. The loops are formed at a particular imaginary

time slice along the vertical or horizontal chain of spins and are flipped all at once and overall Trotter

slices to maintain detailed balance. We note that for the case of J2 6= 0 the loops are flipped with

probability proportional to their Boltzmann weight since they are no more Iso-energetic though they

form the subset of the restricted ice-rules. We consider systems sizes up to N = 12 × 12 × 8 block

of spatial spins comprising the 3D lattice and the number of Trotter slices are fixed up to M = 1000.

About ∼ 105 Monte Carlo steps (MCS) were used for equilibration and 5 × 105 were used for mea-

surements. Binning analyses were done by dividing results into six bins where statistical errors are

estimated.

As we are interested in analyzing the system under both the quantum (fields) and thermal (temper-

ature) fluctuations we, therefore, vary both the parameters taken along the contour that is parametrized

by θ, such that θ = tan−1(Kβ). For small inverse temperatures, the system is subjected to strong

thermal fluctuations and vice-versa. We now proceed to the next section 4.5 describing the details of

physical quantities that will be estimated using the QMC simulations briefed here.

4.5 Physical quantities

We divide the cases based on the limiting ratios of J2 and J3. For the case J1 ≫ J2, we measure

the gauge-invariant dipole-dipole correlation function cτ [89] averaged over all molecules along the
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imaginary-time direction. The correlation function cτ characterizing the deconfined phase is given by,

cτ =
1

N

∑
i

〈P x(i, 0)P x(i, τ)〉, (4.47)

where, τ denotes the imaginary-time index, N being the number of molecules/plaquettes. The cor-

relation function contains terms that are gauge-invariant and is used to characterize the deconfined

phase. For small J2 other parameters of the Wilson-loop operator form could also be used to dis-

tinguish the corresponding strong-coupling limit and weak-coupling limit (within the deconfined

regime) where the correlation function follows perimeter and area-law respectively [152]. However,

for J2,3 = 0, the minimal Wilson-loop one can consider in spatial direction is the plaquette operator

P = σz1σ
z
2σ

z
3σ

z
4 and the corresponding correlation would describe confinement-deconfinement transi-

tion. Taking advantage of the gauge-fixing along the temporal axes to be one, the dipole-dipole corre-

lation cτ along the imaginary-time axis is now gauge-invariant making us evaluate the non-vanishing

correlation function cτ . Next, for finite J2 we measure the order parameter P along with the associ-

ated susceptibility given by χzz which characterizes the global ferroelectric ordering developed by the

dipole-dipole interaction term. To concretize our results we also measure the off-diagonal expecta-

tion value of the magnetization along the transverse-field, mx along with the associated susceptibility

χxx = ∂mx
∂K

,

P =
1

N
[| S(0, π) |2 + | S(π, 0) |2]1/2 (4.48)

χP
N

= β

[
〈P 2〉 − 〈P 2〉

]
, (4.49)

where S(k) is the static spin-structure factor given by

S(k) =
1

N

N∑
i,j

Szi S
z
j exp (−k · rij), (4.50)
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Figure 4.3: Illustration of the ice-rule (shown in (a)) and the non-ice-rule states (shown in (b)) for the
current Hamiltonian.

here, rij is the relative vector between ith and j th spin on the lattice. We also measure parameter ρ

which detects an ice-rule state locally and gives information about the amount of disordered dipole

configurations in general. This along with P becomes crucial in understanding the local ordering of

the protons. The relation for ρ is given as,

ρ̃� =


1, if � ε ice-rule,

−1/3, otherwise,

& ρ =
∑
�

ρ̃�, (4.51)

here, ρ� probes the ordering in each plaquette such that ρ� is equal to 1 if the local ordering in each

plaquette is in any one of the four possible states with finite dipole moments as shown in Fig. 4.3(a).

The values of ρ assigning to states belonging to two different sectors is to distinguish the states that

obey ice-rules locally at each individual plaquette from the states that do not. This can be understood

as follow:

1. There are four configurations which satisfy the ice-rules and that have finite dipole-moment.

So, we fix the value of ρ̃� to be equal to 1, that is,
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ρ̃� = 1, if in any one of the four ice-rule states shown in Fig. 4.3(a). (4.52)

Now, by this assignment, we are leftover with 12 other configurations that do not satisfy the ice-rules

constraint. Since 4 out of 16 satisfy the constraint, therefore the total value that can be assigned for

these states can be given as

ρ̃� ∼ 4 : (16− 4) = 4 : 12. (4.53)

Since, they do not obey the ice-rules, they were also assigned a negative value. That is,

ρ̃� = −4 : 12 = −1/3. (4.54)

In simulations, for example, one can consider the chart shown in Fig. 1.4 with state 1 and energy

-1. The four states that we are discussing correspond to the four states represented in the lowest panel

of the figure in sec. 1.3 of chapter 1.1. Numerically what this means is that suppose on a 4× 4 lattice,

we have at each plaquette the configuration one among the eight states (ice-rule and non-ice-rule)

states and also the other eight obtainable by the spins in each state. Let’s say at plaquette indexed 1

has a configuration shown in Fig. 4.3(a), that means ρ�1 = 1, similarly, at plaquette number 2 we

have a configuration that is one among the Fig. 4.3(b), then the ρ�2 = −1/3, similarly one iterates

till the last plaquette of the lattice. Then to obtain the total configurational ordering we sum the ρ�’s

to obtain the parameter ρ, very similar to any other local order parameter such as magnetization, here

one can understand that z-component spin σ̂i is similar to the ρ�i . Although the parameters, ρ, and P

would suffice in detecting any global ordering especially antiferroelectric it is useful to estimate other

parameters such as uniform susceptibility and the correlation function. Finally, to locate the critical
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points accurately, we estimate the Binder cumulant which is given by [172],

Q =
1

2

(
1− 〈P 4〉

3〈P 2〉2

)
. (4.55)

4.6 Results

4.6.1 Mean-field and spin-wave analysis

To get an understanding of the role of interlayer coupling classically we here provide the analysis

of classical groundstates. Later, the obtained groundstates are used to investigate their behavior under

quantum fluctuations (field). Following Ref. [174], we notice that the 3D-model Hamiltonian can also

be rewritten in the following form: H =
∑
i

(hziS
z
i + hxi S

x
i ), where for a given spin component Sαi , hαi

denotes the local-field component along α axis. The minimum energy configuration of spins is then

obtained by aligning Sαi to the negative α axis. Usually, one starts from a random configuration of

[Sαi,0] yielding a configurations of [hαi,0] and a total energy E[Si,0]. The distribution [hαi,0] yields a new

configuration of spins and new total energy of the system E[Sαi,1]. In the above, the index “0” or “1”

denotes the steps in numerical iterations. We continue this process until E[Si,n]≡ E[Si,n+1]. We have

performed numerical simulations over a lattice of dimension 256 × 256 and checked for sufficient

initial configurations. Noticeably, we have found that the ground state has a one-to- one corresponds

to the ground-state configurations of the quasi-2D configurations. The only difference is that the spins

have now a finite and constant value of Sxi , which changes as a function of K, and other parameters

similar to what has been found for the Kitaev model in the presence of transverse magnetic field in an

earlier study [108, 174]. Thus the ground-state configurations can be written as,

~Si = S(λi cos θez + sin θex), (4.56)
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where λi could be ±1 in tune with the groundstate configurations of H0 for K = 0. The equilibrium

configuration, that is, the value of θeq depends on K, J1, J2, and J3. For K = 0, we have θ = 0

but λ’s can still take either ±1. The θ plays the role of order parameter. From the mean-field ansatz

represented by Eq. (4.56), the groundstate energy of the system can be written as follows:

Ecl = −1

2
J0S

4N cos4 θ − J1S
2N cos2 θ

−KSN sin θ − 2J2S
2N cos2 θ − J3NS

2 cos2 θ. (4.57)

Minimizing Ecl with respect to θ, we obtain θC , which minimizes the groundstate energy Ecl(θC).

This groundstate energy has been compared with the Ex = −KN , which denotes the energy corre-

sponding to the state where all spins are aligned along x-direction. For a given J0, J1, J2, there exists

a Kc such that if K ≤ Kc then Ecl < Ex(θC) with θC ≤ π/2. One can numerically solve for θC and

obtain the classical phase diagram [174]. However, we are interested in the spin-wave spectrum both

in low and high-fields. In the next section, we use the so obtained classical groundstates upon which

we perform a Holstein-Primakoff (HP) transformation. For all the parameter values, there is a θC

for K ≤ Kc that defines the groundstate configuration according to Eq. (4.56). The groundstate has

finite degeneracy in the presence of J0, J1, and J2 even when including interlayer coupling J3. For

finite interlayer coupling, that is, J3 > 0 J1 = J2 = 0, the degeneracy is still 2NxNy+1 and for J2 = 0,

the degeneracy is 2Nx+Ny . For both J1 and J2 nonzero, the degeneracy is reduced to four as in the

case of 2D case [174]. For large K > Kc, all the spins get aligned along the x-axis corresponding

to θC = π/2. Even upon the introduction of J3, the frustration is still there because not all the bonds

can be satisfied (for example where a disordered interlayer coupling J3 is considered). In the disorder

case, even with a small strength, we see that the degeneracy is completely lifted. In the other two

cases, that is, FM (AFM), we see that the quasi-2D configurations get extended along the interlayer

with z-projections of spins in one layer aligned (anti-aligned) alternatively. However, the degeneracy

in these cases is not lifted and in fact, we see that the degeneracy is the same as before in the quasi-2D
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case. This is seen in the simulations where the specific heat shows an anomalous peak whose height

is proportional to this degeneracy.

4.6.2 Linear spin-wave theory

The classical groundstates obtained is strictly dependent on θ, that is, the local axis represented

by x′(z′). One may have to rotate the axis to the global coordinate system x(z). Hence, any spin can

be decomposed as follows:

~Sr = ~exSxr +~ezSzr . (4.58)

Here r represents the positions of a given site. Since the interactions are decomposed along x and

z axes, we therefore, perform an orthogonal coordinate transformation (from x, z to x′, z′) around

y-axis such that one axis of our new coordinate system gets aligned along the local moment direction

at every site:

Sx
r = Sx′

r cosλiθ − Sz′

r sinλiθ, (4.59)

Sz
r = Sx′

r sinλiθ + Sz′

r cosλiθ. (4.60)

The expressions for S ′x/z in terms of the bosonic operators are given below:

Sx′

r = s− a†rar, Sz′

r =
√
s/2(a†r + ar). (4.61)

We have specifically chosen the above representation as our interest is to investigate the phase

boundary where the spins align mostly along x direction, where a†r and ar represent the creation and

annihilation operators of a magnon at site r.
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Figure 4.4: Plot showing the dispersion in the high-field case where quadratic behavior slowly con-
verges to a linear behavior at the second-order critical line given by K = 2sJ1 + 21

8
sJ2 + 2s|J3|. The

spectrum is plotted for various values of J2, the rest of the parameters used in plot (a) are: J3 = 0,
K = 0.5, J1 = 0.5, J0 = 1.0. Similarly for plot (b), J3 = 0.2, K = 0.5, J1 = 0.5, J0 = 1.0. And
for plot (c), J3 = 0.8, K = 0.5, J1 = 0.5, , J0 = 1.0. The various symmetry point used in the above
figure is as follows: Γ = (0, 0, 0), R = (π, π, π), X = (0, π, 0), and M = (π, π, 0).

4.6.3 High-field limit, K � J0, J1, J2 & θ0 = π/2

The groundstate in this limit is a trivial one with all the spins pointing towards the x-axis. To

obtain the magnon-spectrum and to check the stability of the classical groundstates, the Holstein-

Primakoff transformation Eq. (4.61) is substituted into the classical version of the Hamiltonian 4.2

with the groundstate Eq. (4.56) now being explicitly embedded into it. Since in the high-field case

we invoke the translation invariance of the spin-configurations, we then can Fourier transform the ai

variables to ak as ai = 1
N

∑
~k a~k exp(−i~k · ~r), substituting the transformed boson operators into the

above equation yields a Hamiltonian of various orders in a. Within the linear regime we neglect the

higher order terms beyond the order 2, the Hamiltonian then is given by,

H = N
∑
k

[
ξkaka

†
k +

γk
2

(aka−k + a†ka
†
k)

]
+ C0 +O(a3) +O(a4), (4.62)
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where C0 = KSN and is the classical energy upon which the terms within the bracket has the

information of the first dispersion in k-space, given by ξk. The ξk and γk is given below as,

ξk = γk +K − SJ2

8
, (4.63)

γk =
−s
4

[
J2(2p2

k − 1)− 4(J1 + J2)pk + 4|J3| cos(kz)
]
, (4.64)

where pk = cos(kx+ky) cos(kx−ky). Now, the Hamiltonian is easily diagonalizable and upon doing

that we obtain the eigen energies of the magnon spectra as given by,

Ek =
√
ξ2
k − γ2

k. (4.65)

In the Fig. 4.4 we show the spectrum plotted for parameters J1 = 0.2, K = 1.0 and varying

J2 from 0.1 to 0.5. To qualitatively decipher the linearity seen in the dispersion curves obtained for

J2 = 8/21 we find the spectrum by extracting the low-energy behavior around the minima, that is,

X (or R) high-symmetry point. We consider the following approximation (kx = −π/2 + δx, ky =

π/2 + δy, kz = π+ δz) around R. Substituting these in Eq. (4.65) and expanding the terms γk, pk, we

get,

E~δ = K̃
1/2
1

√
K̃2 + 4(J1 + 2J2 + |J3|)|~δ|2, (4.66)

here, K̃1 = K − sJ2
8

, K̃2 = (K − 2sJ1 − 21
8
sJ2 + 2s|J3|). From the Eq. (4.66) we can see that for all

the values of J1,2, K the spectrum remains gapped with low-energy quadratic behavior in the disper-

sion curves except at the second-order transition point as obtained by Kc = 2sJ1 + 21/8J2 + 2s|J3|.

The spectrum at this point becomes linear and gapless, indicating a possible signature of with the

underlying features of the groundstate for higher J2, which is the antiferroelectric case. This also

shows that the transition for smaller values of J2 the system behaves quite differently from the one
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with relatively higher values of J2. This can be attributed to the fact that the gapped spectrum is pro-

tecting the degeneracy in the groundstate manifold in the absence of dipole-dipole interaction J2, with

the excitations being gapped and discrete. When J2 is increased and approaches the antiferroelectric

ordered state, the spin-wave spectrum becomes linear and gapless as expected. And as one increases

the value of J2 further we see that the K̃2 changes to negative in sign where the spectrum becomes

imaginary (4.66). The same can be deciphered from the Fig. 4.4 shown in dotted lines near the X(R)

high-symmetry points where there are no states available with the gap ∆(k) being undefined. It is to

be noted that for sufficiently large J2 one needs to perform the SW analysis on a different groundstate.

Importantly, from Eq. 4.66, we can see that the spin-wave velocity is independent of the nature of the

coupling. Since,

∂(E~δ)

∂~δ
∝ |J3

~δ|K̃1/2
1

√
K̃2 + 4(J1 + 2J2 + |J3|)|~δ|2. (4.67)

The indistinguishability of the spin-wave velocity can be understood as follows: Let us consider

a single layer, in a ground state of J0, where each plaquette can take up to 8 different configurations

with the same energy (four of them are shown in Fig. 4.3(a)). Now, if we pick any one of the eight

states we see there exists one high-energy (from the rest of the seven states) state that appears at

finite temperatures or fields. And, six of the low-energy choice where the system can exist at low-

temperatures (from the remaining six other choices). Similarly, we do the same analysis for the

AFM case and we see the same number of choices are available even for that case. That is even for

AFM coupling there exists six low-energy choices and one high-energy choice the system can exist.

Hence, we note that this choice of states is independent of the nature of the coupling, i.e, it does not

distinguish whether the coupling is AFM or FM. This is reflected in the spin-wave spectrum and thus

we obtain identical spin-wave velocity.
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Figure 4.5: Illustration of a possible groundstate candidate in the regimes where J2 = 0 (b) and
J2 6= 0 (a).

4.6.4 Imaginary-time quantum Monte Carlo

First, we consider the confinement-deconfinement transition (CDT) where J2 = 0. We vary the

external field for various interlayer couplings, and calculate the imaginary-time correlation cτ as a

function of τ , as shown in Fig. 4.6. Similarly, in the next section, we provide the results for the order

parameter P, ρ and specific heat C for J2 6= 0 where the material is believed to host the AFM phase.

4.6.5 Confinement-deconfinement transition

In Fig. 4.6(a-b), we plot log cτ versus τ for various values of field strengths. The plots are shown

for J3 where the coupling is taken as disordered type. We see that when the field strength is below

a critical field of Kc = 1.63 (Fig. 4.6), the log cτ curve starts deviating from the power law decay

(a behavior corresponding to a deconfined phase [89]). The functional form we fit is given by cτ =

r−n exp r/r0 (here, n ∼ 0.61), that is, a behavior intermediate between a power law and exponential

decay. We distinguish both phases by the fact that in the paraelectric phase the behavior one expects
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Figure 4.6: Plots showing the variation of the correlation function cτ along the imaginary-time axis
as estimated for different values of field strength. J0 = J1 = 1.0 is used in all the figures here. (a)
Corresponds to the case where the strength of the interlayer coupling J3 = 0.1 with a critical value of
Kc = 1.63. Similarly, (b) for J3 = 0.3. We see that the correlation function decays according to the
power-law for low-field values, that is, for K = 0.6, 0.7 (K < Kc = 0.94) and then an exponential
decay for K = 1.0, 1.1, 1.2 (K > Kc).

is purely exponential decay (cases where K = 2.0, 2.1, 2.2 in Fig. 4.6(a)). Similarly, in Fig. 4.6(b)

where the strength of J3 is now higher and is equal to 0.3, we see the function cτ shows a lesser amount

of long-range correlation for K = 0.6, 0.7 (K < Kc) decaying slowly away from the power-law ∼

1/rη−d/2+ν compared to Fig. 4.6(a). This may be due to the reason that the quantum fluctuations in

higher dimensions are much more pronounced leading to such a behavior. However, intutively, when

the field strength is further increased we see that the cτ deviates more and more away from the power-

law (see the blue dot curve in Fig. 4.6) as it decays according to the exponential law corresponding

to a confined phase. The critical point for J3 = 0.1 is Kc = 1.63 and similarly for J3 = 0.3 is

Kc = 0.94.
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Figure 4.7: The variation of the order parameter P ((a), (e), (i)), the ice-rule detecting parameter ρ ((b),
(f), (j)) and their corresponding susceptibilities χP ((a), (e), (i)) and and χρ ((b), (f), (j)) as a function
of temperature (and field) are shown for different lattice dimensions. Similarly, the specific heat over
temperature, C/T is shown in (c), (g), (k) ppanels. Finally, the uniform magnetic susceptibility is
shown in (d), (h), (l) correspondingly. The variation of all the parameters are estimated for three cases
as labeled along the vertical axis, that is, AFM (antiferromagnet), FM (ferromagnet), Disorder. All
the plots include the same, θ, that is, θ = π/6. The values used in each of the cases are: J1 = 0.5,
J2 = 0.04, J3 = 0.4 with 8, 10, 12 lattice dimensions used along the interlayer axis, while we fix
12× 12 as the intralayer dimensions.

4.6.6 Antiferroelectric phase transition

Antiferromagnet coupling: In Fig. 4.7(a-d) order parameters P, ρ and corresponding susceptibil-

ities χP , χρ, C, χs, QP are plotted against K. Note that not only the temperature is varied but also

the field as dictated by the relation K = T tan θ. So, when a certain temperature value is mentioned,

it is to be understood that the corresponding temperature value is K = T tan θ. Here for Fig. 4.7

θ is adjusted to π/6. We see that the P has a maximum value of 1 till the temperature of 0.3, in-

dicating an antiferroelectric order. As the temperature is increased further, the P shows a plateau
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Figure 4.8: (Color Online) Variation of the order parameter P and the ice-rule parameter ρ ver-
sus field (temperature) are shown for different cases of J3. The interlayer coupling values used are
J3 = 0.1, 0.4, 0.8 in the increasing trend of the color contrast of respective parameters (e.g: orange
color corresponds to P and the increase in J3 can be seen from the least to the highest contrast). a)
Corresponds to the variation with AFM, b) FM and c) disordered interlayer couplings

behavior for intermediate temperatures (around K ∼ 0.2 to 0.33) before vanishing to a conventional

paraelectric state (K > 1). The plateau behavior can be identified as an intermediate state with strong

quantum fluctuations [13, 103]. This is because the order parameter P gets vanished around these

temperatures while the ice-rule parameter ρ continues to show a constant value of ρ = 1 till the tem-

peratures of K = 1.1. So the region of temperatures where the P vanishes to the temperature where

the value of ρ starts decreasing from 1 should correspond to a state which satisfies ice-rules. Also,

these states should carry a zero net dipole-moment (molecular polarization). This is only possible

when each plaquette has a finite dipole moment (molecular polarization) but is randomly oriented
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with respect to the neighboring plaquettes. The illustration of such a state can be understood from

Fig. 4.5(b) where one possible groundstate is shown. The other states can be obtained by a gauge

transformation which is already discussed in chapter 2. Similarly, the values for susceptibility, χP

also corroborate the same as a peak around 0.25 seems to suggest a possible second-order transition

at Kc = 1.70(15), 1.85(27), 2.04(35) for J3 = 0.2, 0.3, 0.4 respectively. Note that the scaling of

parameters P, ρ shows a uniform behavior as we vary the linear size of the system from Lx = 8 to

Lx = 12. For Lx = 8, the plateau is steeper than that for Lx =12. This is intuitive, as the higher sizes

are understood to have fewer fluctuations with stable configurations.

Specific heat, C (see Fig. 4.7(c)), also shows a small anomalous peak similar to the behavior ob-

served with no interlayer coupling. The susceptibility obtained due to P is shown in Fig. 4.7(a) and (b)

by light red colored points which shows a jump at the transition from ferroelectric phase to quantum

liquid-like states. This suggests that ferroelectricity is almost destroyed at this transition. However

the susceptibility corresponding to ρ, that is χρ is initially at lower temperatures it is almost zero,

which gradually increases until the temperature reaches near the transition from quantum liquid-like

states to the paraelectric states. At this transition the χρ jumps at a higher value and remain almost

constant up to a certain temperature which we call Tχρ and after this, χρ decreases monotonically. The

specific heat at a very large temperature shows monotonically decreasing behavior characteristic to

the usual paraelectric phase but at low temperature, it shows two peaks of different magnitude as seen

in Fig. 4.7(c). The largest peak appears at the transition of quantum liquid-like state and we denote

this temperature by T ?C/T . However, the sharp nature of the peak indicates a possible order-disorder

phenomenon where the degeneracy seems to be uplifted to some extent. Below this temperature spe-

cific heat shows another small peak at where the P starts to decrease from the initial constant value

for small T . This may be attributed to the fact that the increase of K results in more quantum fluctu-

ations.

In Fig. 4.7(d), we plot the results for uniform susceptibility averaged over a single layer show an
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antiferromagnetic-like order along the orthogonal unit axes spanning the lattice. This shows that as

the system size increases the peak height reduces and only vanishes in the thermodynamic limit.

Ferromagnet coupling: Similar to the AFM case, the results are shown accordingly in Fig. 4.7(e-

h). Here also the order parameter P shows a value close to 1 at low temperatures (and temperatures)

indicating an antiferroelectric phase. But unlike the AFM case, as we increase the temperatures fur-

ther the intermediate liquid-like state seems to extend to much larger temperatures compared to the

AFM case, indeed the intermediate-liquid-like extends from values of 0.3 to 1.2. This can be un-

derstood that because of FM type coupling, one expects a lesser amount of quantum fluctuations

(compared to AFM and disordered case) across the interlayers. This trend is followed similarly by

susceptibility since it shows a peak around the same value of K around 0.25. This is because we

have used the same values of interlayer strength with just opposite signs and thus the peak around the

same temperatures.

Specific heat curves plotted in Fig. 4.7(g) show that cross-over temperatures have slightly shifted

to higher temperature values compared to the AFM case (see Fig. 4.7(c)). This is in favor of the find-

ing that the intermediate state extends to much larger temperatures in the curves of order parameter

P . The common aspect in AFM and FM case is about the peak at low temperatures (∼ 0.3). The

peak values are the same in both cases, unlike the peak appearing at higher temperatures. Which for

the FM case is sharper than the AFM case. This may seem to suggest that a possible order-disorder

phenomenon taking place driven by thermal energy.

Disordered coupling: In this case, we see that P shows a behavior that is very close to the AFM

and unlike the FM case. The only difference that we see is in the specific heat curves. We observe that

the anomalous peak almost vanishes and also the crossover peak at later temperatures gets broader

than the rest of the two cases. This strongly suggests that the disorder completely lifts the degen-

eracy and there is no re-entrance of the intermediate-liquid-like as such. The values of the specific

heat curves are intermediate to that of AFM and FM. In all the cases, the variation of χs is antiferro-
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magnetic. Though for the disorder the antiferromagnetic nature is slightly perturbed (see Fig. 4.7(i-l)).

Variation with the interlayer interaction strength

Antiferromagnet coupling: We also plot the behavior of P and ρ for various values of J3. In

Fig. 4.8(a), we have shown the variation of χP and χρ for J3=(0.1, 0.4, 0.8) in orange and navy blue

colored points respectively. For large values of J3 = 0.8, P and ρ have sharper peaks and decrease

more rapidly compared to the case of small values of J3. This could be due to the lowered stability of

the intermediate liquid-like state as the coupling strength J3 is increased. Also, though the plateau is

diminishing, the value of P at low temperatures remains the same for all the cases of coupling. The

AFE phase under the AFM type coupling is stable while for the intermediate liquid-like state this is

not the case.

Ferromagnet coupling: In the Fig. 4.8(b), clearly the plateau region in order parameter P extends

to much larger temperatures as the coupling is increased. This is in contrast to the AFM case. When

the value of J3 is equal to 0.1, the intermediate liquid-like state extends from T = 0.42 to T = 0.94.

When J3 = 0.4, it extends from T = 0.45 to T = 1.4. And for J3 = 0.8, it is much higher. The

reason could be because of the lesser quantum fluctuations in the FM case. Nevertheless, the order

parameter P still shows a value of 1 for all the values of coupling strength, J3. This is similar to the

AFM case.

Disordered coupling: In the Fig. 4.8(c), when the value of J3 is small, i.e, 0.1, the variation

of order parameter resembles slightly that of AFM and FM case. The plateau region extends from

T = 0.25 to T = 0.75. But when J3 is increased to 0.4, we see that the intermediate liquid-like state

only extends from T = 0.25 to 0.6. Similarly, when J3 = 0.8, comparable to the energies of the

intraplane interactions, the order parameter P has a lower value at lower temperatures. Also, there

is no plateau behavior, instead, the abrupt vanishing of P is seen. This could be understood because

of more quantum fluctuations induced by disorder type. However, for lower values of interlayer cou-
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Figure 4.9: Phase diagram in TK plane for both the cases, that is, AFM (Fig. (a)-(c)) and similarly
for FM (Fig. (d)-(f)). In each row starting from the left (Fig. (a)), the cases correspond to J3 =
0.1, 0.3, 0.6 of interlayer coupling strength. The labels I, II, III indicate the AFE phase, Intermediate
liquid-like phase and conventional paraelectric phase respectively.

pling, even the disordered type coupling hosts both an AFE and intermediate liquid-like state. The

variation of ice-rule parameter ρ is used to show that there exists an intermediate state with finite-

molecular polarization since the value of ρ close to 1 indicates that the entire lattice is in an ice-rule

state (apart from statistical fluctuations) and any deviation from it indicates a non-ice-rule state.

Phase diagram

Antiferromagnet coupling: In Fig. 4.9 (top row), we plot the critical points in the T −K plane as

obtained from the the Binder cumulant (see Eq. (4.55)). We also plot the peak values of the specific

heat curve (TC) and the peak in the susceptibility of ice rule order parameter Tχρ . For the AFM case,

the corresponding values are given in Table 4.10. Clearly, the values the gap between Tc and TC (or

Tχρ) is decreasing with the strength of J3.

149



(a)J3=0.1

K Tc TC Tχρ

0.1 0.67 1.25 1.28

0.2 0.63 1.21 1.24

0.3 0.6 1.15 1.2

0.4 0.57 1. 1.08

0.5 0.51 0.85 0.93

0.6 0.43 0.7 0.75

(b)J3=0.4

K Tc TC Tχρ

0.1 0.65 0.97 1.08

0.2 0.62 0.93 1.03

0.3 0.6 0.85 0.99

0.4 0.54 0.77 0.87

0.5 0.49 0.69 0.75

0.6 0.43 0.6 0.66

(c)J3=0.8

K Tc TC Tχρ

0.1 0.52 1.5 1.55

0.2 0.5 1.46 1.51

0.3 0.46 1.41 1.45

0.4 0.4 1.27 1.33

0.5 0.34 1.05 1.1

0.6 0.27 0.83 0.88

Figure 4.10: Table showing the critical points (Tc) and the points where the specific heat C and the
susceptibility Tχρ peaks. (a) For J3 = 0.1 value of FM type coupling, (b) for J3 = 0.4, (c) for
J3 = 0.8.

Ferromagnet coupling: In Fig. 4.9 (bottom row), we plot the critical points in the T −K plane as

obtained from the the Binder cumulant (see Eq. (4.55)). We also plot the peak values of the specific

heat curve (TC) and the peak in the susceptibility of ice rule order parameter Tχρ . For the AFM case,

the corresponding values are given in Table 4.10. Clearly, the values the gap between Tc and TC (or

Tχρ) is increasing with the strength of J3.

4.6.7 Dynamic structure factor

As mentioned, an earlier study that has not accounted for the interlayer coupling has shown three

distinct phases as mentioned [103, 13]. Here, we numerically perform simple linear-spin wave dy-

namic structure calculations on a real space lattice over the classical ground states of the respective

phases identified in a quasi-2D version. We do it on a quasi-2D structure because the interlayer

coupling is shown to alter the critical points where the qualitative behavior is not changed. So, the

dynamic structure factor can be qualitatively extrapolated from quasi-2D results when an interlayer

coupling is introduced for the 3D case. Nevertheless, we note that the present study offers scope to get

the low-lying excitations (that can be experimentally tractable) above the classical ground states [174].

Crucial information regarding the degree of fluctuations in the ice-rule physics could also be the best

probed to validate certain underlying theories [89]. We know that in organic ferroelectrics each sym-

metric arrangement of the molecule posses an associated vibrational mode with it. We, therefore,

expect that the amount of frustration mandated by its symmetry can be observed experimentally in
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Figure 4.11: The dynamic structure factor, Sxx(k, ω) within the realm of Real-space linear spin-wave
theory (RS-LSWT) calculated for weak interlayer coupling limit. In all the plots, we fix the value of
J0 = 1. a) For the parameters J1 = 1.0, J2 = 0, Kx = 0.3. b) For J1 = 1.0, J2 = 0.019, Kx = 0.3.
Similarly, c) For J1 = 1.0, J2 = 0.3, Kx = 0.2. Here, Γ ≡ (0, 0), M ≡ (π, π), X ≡ (0, π)

the non-resonant Raman-scattering.

The brief details on the method and implementation of RS-LSWT are given in Appendix B.

Fig. 4.11 shows the xx dynamical correlation function Sxx(k, ω) plotted for three different regimes

under small magnetic fields. In Fig. 4.11(a), we see two bands, one of them is a flat one (no disper-

sion, see Fig. 4.11(a) at ω ∼ 0.36(7)) and the other with a dispersion. The flat band can be understood

to be the excitations corresponding to the conserved quantities with a non-local gauge symmetry (as

discussed in chapter 3). Within the linear-spin wave theory probing the excitations under the classical

ground states, the gauge operator can be decomposed into non-interacting pairs of correlators, for ex-

ample, σz1σ
z
2σ

z
3σ

z
4 ∼ σx

′
1 σ

x′
2 +σx

′
3 σ

x′
4 + · · · in the transformed coordinates. Since, for J2 = 0, the terms

σx1σ
x
2 will yield a dispersive term like cos k and since the further configurations along the unit vectors

are independent, we see a sin k behavior is also likely possible. Therefore, ending with the net result

being non-dispersive. Even if one considers a mean-field theory extension to the present scenario

we might still see a similar flat band, because these terms do not vanish. Note that the minimum of

the spectrum is at multiple k-points, i.e, ω ∼ 0.28 from M to Γ points. This could also reflect the

underlying symmetry in the system.

Similarly, the optical mode that we see from Γ to X and X to M in Fig. 4.11(a) could be asso-

ciated to the excitations of the correlators of the form σx
′

1 σ
x′
2 + σx

′
3 σ

x′
4 + · · · coming from the gauge

operators and as well as the intramolecular interaction term. The decomposition can be understood
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like all the possible dimer coverings on a plaquette spanning the entire lattice. So then the excitations

should correspond to these dimers. Now the reason for the appearance of the optical mode can be

understood from ice-rule constraint. Since the configurations along the unit vector that spans the lat-

tice are not completely independent. We expect that the net superposition of the spin-waves should

be non-dispersive. That is why we see optical modes when only one component is varied (kx from Γ

to X or ky from X to M ). But when both the components are varied we see that the net result is flat

(from M to Γ). When J2 is turned on, due to the global ordering being established, we see that the

excitations of these dimer coverings have a definite spectrum of the form cos kx or sin ky. We thus

see no flat band behavior in Fig. 4.11(a).

4.7 Chapter summary

We have simulated a three-dimensional model of squaric acid crystal considering the interlayer

interaction (J3) of protons that were not rigorously accounted earlier. We use the pseudo-spin formal-

ism and introduce an additional interlayer interaction (J3) of the Ising type. We aim at understanding

the role played by the nature of the J3 and the strength of it on the phases that have been found for

quasi-2D case. Motivated by earlier works [42], in the present work, we use three different types of

interlayer coupling (AFM, FM, Disorder). Our QMC analysis reveals interesting results for small J2

strengths. Similar to the quasi-2D case [103, 13], we observe an intermediate-state appearing (around

T ∼ 0.3) where the order parameter, P , is found to exhibit a plateau behavior that vanishes with

the system size. This is not the scenario for all the types of couplings considered. From Fig. 4.8(a),

for an AFM case of interlayer coupling, we see that the AFE stacked configuration of layers seems

to be more robust (see Fig. 4.7) as the value of P (∼ 1) at low temperatures does not change even

when J3 is increased. Since the quantum fluctuations in the AFM case has more pronounced quantum

fluctuations, therefore, the intermediate liquid-like states is found to vanish as the strength of J3 is in-
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creased (see Fig. 4.8. The plateau starts getting narrowed and then disappears for large J3). Secondly,

when we consider the FM type of J3, we observe that not only does the AFE stacked configuration is

found to exist for large J3 (J3 < 1.0), but also the intermediate state was shown to extend to larger

temperatures (and fields). In contrast to the AFM coupling of J3, the anomalous peak seen at lower

temperatures in the specific-heat curves is shown to have lesser entropy. As the peak height is lesser

than in the case of AFM. We know that the entropy (S ∝ ln(C/T )). Therefore, the higher the peak

the more degeneracy the system possesses. Nevertheless, in the last case of disordered coupling, we

see neither of the AFE nor intermediate liquid-like state is shown to exist beyond a disorder strength

of J3 = 0.4. This is intuitive because the disorder case accounts for a large degree of quantum fluctu-

ations compared to AFM and FM resulting in such behavior.

We note that previous studies [13, 103] has investigated the finite-temperature phase diagram in a

related model with two body interactions [103] followed by a four-spin model [13, 89] motivated by

the earlier studies [99]. Though it is known that the interlayer interaction is a weak one, some studies

have reported that in H2SQ interlayer interaction is more likely AFM in nature. Here, in the present

work, we show that AFM type J3 has a more robust anomalous peak compared to the others. And the

stability of the intermediate state strictly depends on the strength. While this is the scenario for AFM,

the FM coupling also hosts the AFE phase, but with the exception that unlike the AFM coupling the

intermediate state extends to larger temperatures and pressures as the strength of J3 is increased.

Further, apart from the ground state properties and static susceptibilities, to probe the nature of

excitations that can be experimentally verified, we also calculate the dynamic structure factor in our

calculations. We use a real-space linear spin-wave theory to obtain the spectrum. We see that the

characteristic behavior of the deconfined phase can be seen in Fig. 4.11(a) when J1,2 are absent. That

is, apart from the flat spectrum in Fig. 4.11(a) the spectrum is highly asymmetric around the X,M

high symmetry point. This is expected because in the deconfined phase the system along the two

orthogonal directions has an independent configuration. The configuration along the unit vector x is
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independent of configuration along y. Due to this fact, we see that the spectrum until the M−high

symmetry point is broader while the spectrum from M to Γ is flat. This explains the deconfined char-

acteristic. Next, once we put the finite J1 with small J2, we see that a small deviation from the flat

spectrum from M to Γ is seen. This is because the small J2 is responsible for a global ordering in

the system. And in the global ordering case, the ordering along the two orthogonal vectors spanning

the lattice is no more independent. This can be further corroborated from the Fig. 4.11(c) when the

J2 is further increased a sinusoidal behavior in the spectrum is seen. We know that any ordering in

the system manifests in the form of ∼ cos(~k) or sin(~k). This explains the dynamic structure factor in

three important regimes.
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APPENDIX A

Scheme for Extrapolation

Generally, perturbative series expansions are mostly well respected in the low-field regime or

for small perturbing parameter strengths. To make a good approximation to higher fields or higher

perturbing values, it is often useful to ascribe to extrapolation methods. Any finite series can be

extrapolated to capture the analytic properties in the regimes where the perturbative approach deviates.

Earlier, Domb and Sykes [180] used the extrapolation methods to obtain dynamical critical exponents

using perturbative series. Similarly, various other robust methods have been introduced in the 1970s

gained popularity is the one by Guttmann [181]. Often it seems there is no specific extrapolation

method that works to all other perturbative series, it is up to us to determine which gives better

convergence. Here, we briefly describe the method of Pade and DLog-Pade approximant that have

been and are been used in the current pCUT methods and have been successfully applied in the past

for similar problems.

Consider a function analytical over all regions of its domain, say, f(x). The Taylor expansion at
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order N around x = 0 is given by,

SN(x) =
N∑
i=0

aix
i. (A.1)

Now we can introduce the function P [L(x),M(x)] that extrapolates the series SN(x) by a rational

functions which is nothing but the Pade approximant, defined as

P [L(x),M(x)] =
PL(x)

QM(x)
, (A.2)

here, the polynomials PL(x) and QM(x) are of degree L and M respectively. They can be given as,

PL(x) =
L∑
i=0

pix
i,

QM(x) =
M∑
i=0

qix
i. (A.3)

Here on the polynomial are notated by without the explicit x-dependence. The series expansion

of the Pade approximant P [L,M ] at prder N must be equivalent to SN . Now, by comparing the

coefficients on both sides leads to set of N linear equations for pi, qi and ai, with a unique solution for

L + M ≤ N . In our context, the coefficients ai can be exactly found. While in the perturbative limit

the Pade approximants are, by construction, very close to f(x), for large L and M they are expected

to give a better representation of f(x) than the bare series, even though P [L,M ] can have upto M

poles in the complex plane, which are usually spurious pole.

If f(x) is a quantity with an algebraic divergence at the critical point xc, then,

lim
x→xc

f(x) = A(xc − x)−θ, (A.4)
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it is useful to approximate its logarithmic derivative as,

d

dx
ln [f(x)] =

f ′(x)

f(x)
= lim

x→xc

θ

xc − x
. (A.5)

With this trick, a Pade extrapolation of the LHS in Eq. (A.5) can be used to approximate the critical

point xc through its poles and the critical exponent θ through its residues. Generally, a DlogP [L,M ]

yields up to M pole-residue pairs. To identify a physical pole one needs to have a basic knowledge

about the system at hand. However, here we are interested in real-values functions f(x) with positive

x. If the approximant DlogP [L,M ](or P [L,M ]) features real poles close to the origin than the phys-

ical singularity, it is then a defective pole. One needs to be cautious when dealing with Pade analysis

where the spurious poles appearance can lead to an apprehension of false converge. One good way to

check the validity of the real nature of poles, one needs to perform consistently a Pade approximant

analysis from smaller series to higher series (as high as possible). If the poles converge smoothly

with no new information, then one may account for it to be the real pole. However, in practice, it is

safer and easier to gather results from all approximants DlogP [L,M ] with L + M ≤ N − 1 in a so

called Pade table and try to find sequences of stable approximations to estimate the accuracy of the

extrapolation. Often the best approximants are [L− 1, L], [L,L] and [L,L− 1].

There are other versions of Pade approximations that have been generalized in different ways, a

certain class of generations known under the name differential approximants (DA) and others that

have been generalized by Guttmann and Joyce by adding a higher derivative of f(x) can be found in

Ref. [182]. Interested reader for further extrapolation methods used in the pCUT methods can refer

to Ref. [183, 184, 185, 186]. In our present analysis, we have used only a simple DLog-pade approx-

imation to arrive at our results. We, therefore, give the technical analysis that has been rigorously

solved in Mathematica, the gap ∆ was estimated and is presented term by term in the next subsection.
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A.1 pCUT calculated dispersion in high-field limit & J2 = 0
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A.2 pCUT calculated dispersion in high-field limit & J2 6= 0
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2
0

1024
+

129

64
J4

1 cos(6kx + 6ky)J
2
0 −

J2
0

2
+ 2J4

1J0 −
101J3

2J0

128
+ 2J2

1J0 −
77

32
J1J

2
2J0 +

J2
2J0

4
− 53

32
J2

1J2J0 + J1J2J0 +
31

64
J3

2 cos(2kx)J0 +

25

16
J1J

2
2 cos(2kx)J0 −

1

4
J2

2 cos(2kx)J0 +
19

16
J2

1J2 cos(2kx)J0 −

167



1

2
J1J2 cos(2kx)J0 +

19

256
J3

2 cos(4kx)J0 +
19

128
J1J

2
2 cos(4kx)J0 +

67

256
J3

2 cos(kx − 3ky)J0 +
67

128
J1J

2
2 cos(kx − 3ky)J0 +

3

8
J3

2 cos(2kx − 2ky)J0 +

3

4
J1J

2
2 cos(2kx − 2ky)J0 +

43

64
J3

2 cos(kx − ky)J0 +
43

32
J1J

2
2 cos(kx − ky)J0 −

1

2
J2

2 cos(kx − ky)J0 − J1J2 cos(kx − ky)J0 +
67

256
J3

2 cos(3kx − ky)J0 +

67

128
J1J

2
2 cos(3kx − ky)J0 +

31

64
J3

2 cos(2ky)J0 +
25

16
J1J

2
2 cos(2ky)J0 −

1

4
J2

2 cos(2ky)J0 +

19

16
J2

1J2 cos(2ky)J0 −
1

2
J1J2 cos(2ky)J0 +

19

256
J3

2 cos(4ky)J0 +

19

128
J1J

2
2 cos(4ky)J0 −

5

2
J5

1 cos(kx + ky)J0 − 2J3
1 cos(kx + ky)J0 +

7

16
J3

2 cos(kx + ky)J0 +
5

4
J1J

2
2 cos(kx + ky)J0 −

5

2
J2

2 cos(kx + ky)J0 +

2J1 cos(kx + ky)J0 +
9

8
J2

1J2 cos(kx + ky)J0 −
7

2
J1J2 cos(kx + ky)J0 +

2J2 cos(kx + ky)J0 +
73

256
J0J

3
2 cos(3kx + ky) +

111

128
J0J1J

2
2 cos(3kx + ky)−

1

4
J2

2 cos(3kx + ky)J0 +
19

32
J2

1J2 cos(3kx + ky)J0 −
1

2
J1J2 cos(3kx + ky)J0 +

7

256
J3

2 cos(5kx + ky)J0 +
7

128
J1J

2
2 cos(5kx + ky)J0 + 3J4

1 cos(2kx + 2ky)J0 +

1

2
J3

2 cos(2kx + 2ky)J0 − 2J2
1 cos(2kx + 2ky)J0 +

45

32
J1J

2
2 cos(2kx + 2ky)J0 −

J2
2 cos(2kx + 2ky)J0 +

13

16
J2

1J2 cos(2kx + 2ky)J0 −

4J1J2 cos(2kx + 2ky)J0 +
47

256
J3

2 cos(4kx + 2ky)J0 +

75

128
J1J

2
2 cos(4kx + 2ky)J0 +

7

16
J2

1J2 cos(4kx + 2ky)J0 +
73

256
J3

2 cos(kx + 3ky)J0 +
111

128
J1J

2
2 cos(kx + 3ky)J0 −

1

4
J2

2 cos(kx + 3ky)J0 +
19

32
J2

1J2 cos(kx + 3ky)J0 −
1

2
J1J2 cos(kx + 3ky)J0 +

4J5
1 cos(3kx + 3ky)J0 − 5J4

1 cos(3kx + 3ky)J0 + 6J3
1 cos(3kx + 3ky)J0 +

29

64
J3

2 cos(3kx + 3ky)J0 − 2J2
1 cos(3kx + 3ky)J0 +

57

32
J1J

2
2 cos(3kx + 3ky)J0 −

1

2
J2

2 cos(3kx + 3ky)J0 +
21

8
J2

1J2 cos(3kx + 3ky)J0 − J1J2 cos(3kx + 3ky)J0 +

7

128
J3

2 cos(5kx + 3ky)J0 +
7

64
J1J

2
2 cos(5kx + 3ky)J0 +

47

256
J3

2 cos(2kx + 4ky)J0 +
75

128
J1J

2
2 cos(2kx + 4ky)J0 +

7

16
J2

1J2 cos(2kx + 4ky)J0 −

168



5J4
1 cos(4kx + 4ky)J0 +

7

32
J3

2 cos(4kx + 4ky)J0 +
7

8
J1J

2
2 cos(4kx + 4ky)J0 +

7

8
J2

1J2 cos(4kx + 4ky)J0 +
7

256
J3

2 cos(kx + 5ky)J0 +
7

128
J1J

2
2 cos(kx + 5ky)J0 +

7

128
J3

2 cos(3kx + 5ky)J0 +
7

64
J1J

2
2 cos(3kx + 5ky)J0 + 4J5

1 cos(5kx + 5ky)J0 +

3J4
1 cos(5kx + 5ky)J0 +

7

128
J3

2 cos(5kx + 5ky)J0 +
7

64
J1J

2
2 cos(5kx + 5ky)J0 +

J6
1

4
+
J4

1

4
+

241J4
2

64
+ 10J1J

3
2 −

21J3
2

16
+ J2

1 +

119J2
1J

2
2

16
− 3J1J

2
2 +

J2
2

2
+K +

J3
1J2

2
−

3J2
1J2

2
+ J1J2 −

15

32
J4

2 cos(2kx)−
43

32
J1J

3
2 cos(2kx) +

13

32
J3

2 cos(2kx)−
5

4
J2

1J
2
2 cos(2kx) +

9

8
J1J

2
2 cos(2kx)−

3

8
J2

2 cos(2kx)−
1

4
J3

1J2 cos(2kx) +
3

4
J2

1J2 cos(2kx)−

1

2
J1J2 cos(2kx) +

1

2
J2 cos(2kx)−

561

512
J4

2 cos(4kx)−

89

32
J1J

3
2 cos(4kx) +

21

64
J3

2 cos(4kx)−
59

32
J2

1J
2
2 cos(4kx) +

3

8
J1J

2
2 cos(4kx)−

1

16
J2

2 cos(4kx)−
15

64
J4

2 cos(6kx)−

15

64
J1J

3
2 cos(6kx) +

1

64
J3

2 cos(6kx)−
5J4

2 cos(8kx)

1024
−

5

256
J4

2 cos(kx − 7ky)−
25

512
J4

2 cos(2kx − 6ky)−
105

256
J4

2 cos(kx − 5ky)−

35

64
J1J

3
2 cos(kx − 5ky) +

3

64
J3

2 cos(kx − 5ky)−

5

64
J4

2 cos(3kx − 5ky)−
135

256
J4

2 cos(2kx − 4ky)−
25

32
J1J

3
2 cos(2kx − 4ky) +

3

32
J3

2 cos(2kx − 4ky)−
95

512
J4

2 cos(4kx − 4ky)−
79

64
J4

2 cos(kx − 3ky)−

191

64
J1J

3
2 cos(kx − 3ky) +

15

32
J3

2 cos(kx − 3ky)−
29

16
J2

1J
2
2 cos(kx − 3ky) +

3

4
J1J

2
2 cos(kx − 3ky)−

1

8
J2

2 cos(kx − 3ky)−
75

64
J4

2 cos(3kx − 3ky)−

15

8
J1J

3
2 cos(3kx − 3ky) +

7

32
J3

2 cos(3kx − 3ky)−
5

64
J4

2 cos(5kx − 3ky)−

157

64
J4

2 cos(2kx − 2ky)−
51

8
J1J

3
2 cos(2kx − 2ky) +

15

16
J3

2 cos(2kx − 2ky)−

9

2
J2

1J
2
2 cos(2kx − 2ky) +

3

2
J1J

2
2 cos(2kx − 2ky)−

3

8
J2

2 cos(2kx − 2ky)−

135

256
J4

2 cos(4kx − 2ky)−
25

32
J1J

3
2 cos(4kx − 2ky) +

3

32
J3

2 cos(4kx − 2ky)−

169



25

512
J4

2 cos(6kx − 2ky)−
59

64
J4

2 cos(kx − ky)−
15

8
J1J

3
2 cos(kx − ky) +

29

32
J3

2 cos(kx − ky)−
3

2
J2

1J
2
2 cos(kx − ky) +

3

2
J1J

2
2 cos(kx − ky)−

J2
2 cos(kx − ky)− J3

1J2 cos(kx − ky)− 3J4
1 cos(5kx + 5ky)J0 +

2J1J2 cos(kx − ky) + J2 cos(kx − ky)−

79

64
J4

2 cos(3kx − ky)−
191

64
J1J

3
2 cos(3kx − ky) +

15

32
J3

2 cos(3kx − ky)−

29

16
J2

1J
2
2 cos(3kx − ky) +

3

4
J1J

2
2 cos(3kx − ky)−

1

8
J2

2 cos(3kx − ky)−

105

256
J4

2 cos(5kx − ky)−
35

64
J1J

3
2 cos(5kx − ky) +

3

64
J3

2 cos(5kx − ky)−

5

256
J4

2 cos(7kx − ky)−
15

32
J4

2 cos(2ky)−
43

32
J1J

3
2 cos(2ky) +

13

32
J3

2 cos(2ky)−
5

4
J2

1J
2
2 cos(2ky) +

9

8
J1J

2
2 cos(2ky)−

3

8
J2

2 cos(2ky)−
1

4
J3

1J2 cos(2ky) +
3

4
J2

1J2 cos(2ky)−

1

2
J1J2 cos(2ky) +

1

2
J2 cos(2ky)−

561

512
J4

2 cos(4ky)−

89

32
J1J

3
2 cos(4ky) +

21

64
J3

2 cos(4ky)−
59

32
J2

1J
2
2 cos(4ky) +

3

8
J1J

2
2 cos(4ky)−

1

16
J2

2 cos(4ky)−
15

64
J4

2 cos(6ky)−
15

64
J1J

3
2 cos(6ky) +

1

64
J3

2 cos(6ky)−

5J4
2 cos(8ky)

1024
− 1

2
J5

1 cos(kx + ky)−
13

64
J4

2 cos(kx + ky)− J3
1 cos(kx + ky) +

93

32
J1J

3
2 cos(kx + ky) +

1

2
J3

2 cos(kx + ky) +
23

4
J2

1J
2
2 cos(kx + ky)−

3

4
J1J

2
2 cos(kx + ky)− J2

2 cos(kx + ky) + 2J1 cos(kx + ky) + 2J3
1J2 cos(kx + ky)−

3J2
1J2 cos(kx + ky)− J1J2 cos(kx + ky) + 2J2 cos(kx + ky)−

85

64
J4

2 cos(3kx + ky)−
27

8
J1J

3
2 cos(3kx + ky) +

45

64
J3

2 cos(3kx + ky)−

25

8
J2

1J
2
2 cos(3kx + ky) +

3

2
J1J

2
2 cos(3kx + ky)−

3

8
J2

2 cos(3kx + ky)−

3

2
J3

1J2 cos(3kx + ky) +
3

4
J2

1J2 cos(3kx + ky)−
1

2
J1J2 cos(3kx + ky)−

215

256
J4

2 cos(5kx + ky)−
15

8
J1J

3
2 cos(5kx + ky) +

3

16
J3

2 cos(5kx + ky)−

15

16
J2

1J
2
2 cos(5kx + ky) +

3

16
J1J

2
2 cos(5kx + ky)−

25

256
J4

2 cos(7kx + ky)−

5

64
J1J

3
2 cos(7kx + ky)− 2J6

1 cos(2kx + 2ky) +
7

4
J5

1 cos(2kx + 2ky)−

170



1

4
J4

1 cos(2kx + 2ky)−
61

64
J4

2 cos(2kx + 2ky) + J3
1 cos(2kx + 2ky)−

43

16
J1J

3
2 cos(2kx + 2ky) +

23

32
J3

2 cos(2kx + 2ky)− 2J2
1 cos(2kx + 2ky)−

11

16
J2

1J
2
2 cos(2kx + 2ky) +

3

2
J1J

2
2 cos(2kx + 2ky)−

3

4
J2

2 cos(2kx + 2ky) + 4J3
1J2 cos(2kx + 2ky)− 2J1J2 cos(2kx + 2ky) +

J2 cos(2kx + 2ky)−
321

256
J4

2 cos(4kx + 2ky)−
59

16
J1J

3
2 cos(4kx + 2ky) +

15

32
J3

2 cos(4kx + 2ky)−
59

16
J2

1J
2
2 cos(4kx + 2ky) +

9

8
J1J

2
2 cos(4kx + 2ky)−

1

8
J2

2 cos(4kx + 2ky)−
5

4
J3

1J2 cos(4kx + 2ky) +
3

4
J2

1J2 cos(4kx + 2ky)−

235

512
J4

2 cos(6kx + 2ky)−
15

16
J1J

3
2 cos(6kx + 2ky) +

3

64
J3

2 cos(6kx + 2ky)−

15

32
J2

1J
2
2 cos(6kx + 2ky)−

5

256
J4

2 cos(8kx + 2ky)−
85

64
J4

2 cos(kx + 3ky)−

27

8
J1J

3
2 cos(kx + 3ky) +

45

64
J3

2 cos(kx + 3ky)−
25

8
J2

1J
2
2 cos(kx + 3ky) +

3

2
J1J

2
2 cos(kx + 3ky)−

3

8
J2

2 cos(kx + 3ky)−
3

2
J3

1J2 cos(kx + 3ky) +

3

4
J2

1J2 cos(kx + 3ky)−
1

2
J1J2 cos(kx + 3ky)−

5

4
J5

1 cos(3kx + 3ky)−

1341

512
J4

2 cos(3kx + 3ky) + J3
1 cos(3kx + 3ky)−

205

32
J1J

3
2 cos(3kx + 3ky) +

39

32
J3

2 cos(3kx + 3ky)−

9

2
J2

1J
2
2 cos(3kx + 3ky) +

21

8
J1J

2
2 cos(3kx + 3ky)−

5

8
J2

2 cos(3kx + 3ky)−

1

2
J3

1J2 cos(3kx + 3ky) + 3J2
1J2 cos(3kx + 3ky)− J1J2 cos(3kx + 3ky)−

15

16
J4

2 cos(5kx + 3ky)−
165

64
J1J

3
2 cos(5kx + 3ky) +

9

32
J3

2 cos(5kx + 3ky)−
45

16
J2

1J
2
2 cos(5kx + 3ky) +

3

8
J1J

2
2 cos(5kx + 3ky)−

5

4
J3

1J2 cos(5kx + 3ky)−
105

512
J4

2 cos(7kx + 3ky)−
15

64
J1J

3
2 cos(7kx + 3ky)−

321

256
J4

2 cos(2kx + 4ky)−
59

16
J1J

3
2 cos(2kx + 4ky) +

15

32
J3

2 cos(2kx + 4ky)−

59

16
J2

1J
2
2 cos(2kx + 4ky) +

9

8
J1J

2
2 cos(2kx + 4ky)−

1

8
J2

2 cos(2kx + 4ky)−

5

4
J3

1J2 cos(2kx + 4ky) +
3

4
J2

1J2 cos(2kx + 4ky) +
7

2
J6

1 cos(4kx + 4ky)−

5

4
J5

1 cos(4kx + 4ky)−
1

4
J4

1 cos(4kx + 4ky)−
531

256
J4

2 cos(4kx + 4ky)−

171



193

32
J1J

3
2 cos(4kx + 4ky) +

3

4
J3

2 cos(4kx + 4ky)−
13

2
J2

1J
2
2 cos(4kx + 4ky) +

15

8
J1J

2
2 cos(4kx + 4ky)− 5J3

1J2 cos(4kx + 4ky) +
3

2
J2

1J2 cos(4kx + 4ky)−

145

256
J4

2 cos(6kx + 4ky)−

45

32
J1J

3
2 cos(6kx + 4ky)−

15

16
J2

1J
2
2 cos(6kx + 4ky)−

215

256
J4

2 cos(kx + 5ky)−

15

8
J1J

3
2 cos(kx + 5ky) +

3

16
J3

2 cos(kx + 5ky)−
15

16
J2

1J
2
2 cos(kx + 5ky) +

3

16
J1J

2
2 cos(kx + 5ky)−

15

16
J4

2 cos(3kx + 5ky)−
165

64
J1J

3
2 cos(3kx + 5ky) +

9

32
J3

2 cos(3kx + 5ky)−
45

16
J2

1J
2
2 cos(3kx + 5ky) +

3

8
J1J

2
2 cos(3kx + 5ky)−

5

4
J3

1J2 cos(3kx + 5ky) +
7

4
J5

1 cos(5kx + 5ky)−
185

128
J4

2 cos(5kx + 5ky)−

125

32
J1J

3
2 cos(5kx + 5ky)−

75

16
J2

1J
2
2 cos(5kx + 5ky)−

5

2
J3

1J2 cos(5kx + 5ky)−

235

512
J4

2 cos(2kx + 6ky)−
15

16
J1J

3
2 cos(2kx + 6ky) +

3

64
J3

2 cos(2kx + 6ky)−

15

32
J2

1J
2
2 cos(2kx + 6ky)−

145

256
J4

2 cos(4kx + 6ky)−
45

32
J1J

3
2 cos(4kx + 6ky)−

15

16
J2

1J
2
2 cos(4kx + 6ky)− 2J6

1 cos(6kx + 6ky)−
25

256
J4

2 cos(kx + 7ky)−

5

64
J1J

3
2 cos(kx + 7ky)−

105

512
J4

2 cos(3kx + 7ky)−
15

64
J1J

3
2 cos(3kx + 7ky)−

5

256
J4

2 cos(2kx + 8ky). (A.7)

A.3 Derivation of the spin-wave Hamiltonian in low-field regime

We continue the derivation of Hamiltonian under the low-field limit starting from Eq. (A.8). This

is a case where J2 is finite and the groundstate in this regime is a global ordered (anti)ferroelectric

state. The Eq. (A.8) is given by,

Hferro
lf =

∑
�

[
− J0 ×

((λ1 cos θ(s− a†1a1) +
√
s/2 sin θ(a†1 + a1))(λ2 cos θ(s− a†2a2) +

√
s/2 sin θ(a†2 + a2))

(λ3 cos θ(s− a†3a3) +
√
s/2 sin θ(a†3 + a3))(λ4 cos θ(s− a†4a4) +

√
s/2 sin θ(a†4 + a4)) +

172



J1((λ1 cos θ(s− a†1a1) +
√
s/2 sin θ(a†1 + a1))(λ3 cos θ(s− a†3a3) +

√
s/2 sin θ(a†3 + a3))

+(λ2 cos θ(s− a†2a2) +
√
s/2 sin θ(a†2 + a2))(λ4 cos θ(s− a†4a4) +

√
s/2 sin θ(a†4 + a4))

]
−

J2

16

∑
〈AB〉

[
(λ1 cos θ(s− a†1a1) +

√
s/2 sin θ(a†1 + a1)) + λ2 cos θ(s− a†2a2) +

√
s/2 sin θ(a†2 + a2))

−λ3 cos θ(s− a†3a3) +
√
s/2 sin θ(a†3 + a3))− λ4 cos θ(s− a†4a4) +

√
s/2 sin θ(a†4 + a4))A

×(λ1 cos θ(s− a†1a1) +
√
s/2 sin θ(a†1 + a1)) + λ4 cos θ(s− a†4a4) +

√
s/2 sin θ(a†4 + a4))

−λ2 cos θ(s− a†2a2) +
√
s/2 sin θ(a†2 + a2))− λ3 cos θ(s− a†3a3) +

√
s/2 sin θ(a†3 + a3))B

]
,

(A.8)

s4λiλi1λi2λi3 cos4(θ)− s3aiλiλi1λi2λi3a
†
i cos4(θ)− s3ai1λiλi1λi2λi3a

†
i1

cos4(θ) +

s2aiai1λiλi1λi2λi3a
†
ia
†
i1

cos4(θ)− s3ai2λiλi1λi2λi3a
†
i2

cos4(θ) +

s2aiai2λiλi1λi2λi3a
†
ia
†
i2

cos4(θ) + s2ai1ai2λiλi1λi2λi3a
†
i1
a†i2 cos4(θ)−

saiai1ai2λiλi1λi2λi3a
†
ia
†
i1
a†i2 cos4(θ)− s3ai3λiλi1λi2λi3a

†
i3

cos4(θ) +

s2aiai3λiλi1λi2λi3a
†
ia
†
i3

cos4(θ) + s2ai1ai3λiλi1λi2λi3a
†
i1
a†i3 cos4(θ)−

saiai1ai3λiλi1λi2λi3a
†
ia
†
i1
a†i3 cos4(θ) + s2ai2ai3λiλi1λi2λi3a

†
i2
a†i3 cos4(θ)−

saiai2ai3λiλi1λi2λi3a
†
ia
†
i2
a†i3 cos4(θ)− sai1ai2ai3λiλi1λi2λi3a†i1a

†
i2
a†i3 cos4(θ) +

aiai1ai2ai3λiλi1λi2λi3a
†
ia
†
i1
a†i2a

†
i3

cos4(θ) +
s7/2 sin(θ)ai3λiλi1λi2 cos3(θ)√

2
+

s7/2 sin(θ)ai2λiλi1λi3 cos3(θ)√
2

+
s7/2 sin(θ)ai1λiλi2λi3 cos3(θ)√

2
+

s7/2 sin(θ)aiλi1λi2λi3 cos3(θ)√
2

− s5/2 sin(θ)aiai3λiλi1λi2a
†
i cos3(θ)√

2
−

s5/2 sin(θ)aiai2λiλi1λi3a
†
i cos3(θ)√

2
− s5/2 sin(θ)aiai1λiλi2λi3a

†
i cos3(θ)√

2
+

s7/2 sin(θ)λi1λi2λi3a
†
i cos3(θ)√

2
− s5/2 sin(θ)ai1ai3λiλi1λi2a

†
i1

cos3(θ)√
2

−

s5/2 sin(θ)ai1ai2λiλi1λi3a
†
i1

cos3(θ)√
2

+
s7/2 sin(θ)λiλi2λi3a

†
i1

cos3(θ)√
2

−

s5/2 sin(θ)aiai1λi1λi2λi3a
†
i1

cos3(θ)√
2

+
s3/2 sin(θ)aiai1ai3λiλi1λi2a

†
ia
†
i1

cos3(θ)√
2

+

s3/2 sin(θ)aiai1ai2λiλi1λi3a
†
ia
†
i1

cos3(θ)√
2

− s5/2 sin(θ)aiλiλi2λi3a
†
ia
†
i1

cos3(θ)√
2

−

s5/2 sin(θ)ai1λi1λi2λi3a
†
ia
†
i1

cos3(θ)√
2

− s5/2 sin(θ)ai2ai3λiλi1λi2a
†
i2

cos3(θ)√
2

+

s7/2 sin(θ)λiλi1λi3a
†
i2

cos3(θ)√
2

− s5/2 sin(θ)ai1ai2λiλi2λi3a
†
i2

cos3(θ)√
2

−

s5/2 sin(θ)aiai2λi1λi2λi3a
†
i2

cos3(θ)√
2

+
s3/2 sin(θ)aiai2ai3λiλi1λi2a

†
ia
†
i2

cos3(θ)√
2

−
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s5/2 sin(θ)aiλiλi1λi3a
†
ia
†
i2

cos3(θ)√
2

+
s3/2 sin(θ)aiai1ai2λiλi2λi3a

†
ia
†
i2

cos3(θ)√
2

−

s5/2 sin(θ)ai2λi1λi2λi3a
†
ia
†
i2

cos3(θ)√
2

+
s3/2 sin(θ)ai1ai2ai3λiλi1λi2a

†
i1
a†i2 cos3(θ)√

2
−

s5/2 sin(θ)ai1λiλi1λi3a
†
i1
a†i2 cos3(θ)√

2
− s5/2 sin(θ)ai2λiλi2λi3a

†
i1
a†i2 cos3(θ)√

2
+

s3/2 sin(θ)aiai1ai2λi1λi2λi3a
†
i1
a†i2 cos3(θ)√

2
−
√
s sin(θ)aiai1ai2ai3λiλi1λi2a

†
ia
†
i1
a†i2 cos3(θ)√

2
+

s3/2 sin(θ)aiai1λiλi1λi3a
†
ia
†
i1
a†i2 cos3(θ)√

2
+
s3/2 sin(θ)aiai2λiλi2λi3a

†
ia
†
i1
a†i2 cos3(θ)√

2
+

s3/2 sin(θ)ai1ai2λi1λi2λi3a
†
ia
†
i1
a†i2 cos3(θ)√

2
+
s7/2 sin(θ)λiλi1λi2a

†
i3

cos3(θ)√
2

−

s5/2 sin(θ)ai2ai3λiλi1λi3a
†
i3

cos3(θ)√
2

− s5/2 sin(θ)ai1ai3λiλi2λi3a
†
i3

cos3(θ)√
2

−

s5/2 sin(θ)aiai3λi1λi2λi3a
†
i3

cos3(θ)√
2

− s5/2 sin(θ)aiλiλi1λi2a
†
ia
†
i3

cos3(θ)√
2

+

s3/2 sin(θ)aiai2ai3λiλi1λi3a
†
ia
†
i3

cos3(θ)√
2

+
s3/2 sin(θ)aiai1ai3λiλi2λi3a

†
ia
†
i3

cos3(θ)√
2

−

s5/2 sin(θ)ai3λi1λi2λi3a
†
ia
†
i3

cos3(θ)√
2

− s5/2 sin(θ)ai1λiλi1λi2a
†
i1
a†i3 cos3(θ)√

2
+

s3/2 sin(θ)ai1ai2ai3λiλi1λi3a
†
i1
a†i3 cos3(θ)√

2
− s5/2 sin(θ)ai3λiλi2λi3a

†
i1
a†i3 cos3(θ)√

2
+

s3/2 sin(θ)aiai1ai3λi1λi2λi3a
†
i1
a†i3 cos3(θ)√

2
+
s3/2 sin(θ)aiai1λiλi1λi2a

†
ia
†
i1
a†i3 cos3(θ)√

2
−

√
s sin(θ)aiai1ai2ai3λiλi1λi3a

†
ia
†
i1
a†i3 cos3(θ)√

2
+
s3/2 sin(θ)aiai3λiλi2λi3a

†
ia
†
i1
a†i3 cos3(θ)√

2
+

s3/2 sin(θ)ai1ai3λi1λi2λi3a
†
ia
†
i1
a†i3 cos3(θ)√

2
− s5/2 sin(θ)ai2λiλi1λi2a

†
i2
a†i3 cos3(θ)√

2
−

s5/2 sin(θ)ai3λiλi1λi3a
†
i2
a†i3 cos3(θ)√

2
+
s3/2 sin(θ)ai1ai2ai3λiλi2λi3a

†
i2
a†i3 cos3(θ)√

2
+

s3/2 sin(θ)aiai2ai3λi1λi2λi3a
†
i2
a†i3 cos3(θ)√

2
+
s3/2 sin(θ)aiai2λiλi1λi2a

†
ia
†
i2
a†i3 cos3(θ)√

2
+

s3/2 sin(θ)aiai3λiλi1λi3a
†
ia
†
i2
a†i3 cos3(θ)√

2
−
√
s sin(θ)aiai1ai2ai3λiλi2λi3a

†
ia
†
i2
a†i3 cos3(θ)√

2
+

s3/2 sin(θ)ai2ai3λi1λi2λi3a
†
ia
†
i2
a†i3 cos3(θ)√

2
+
s3/2 sin(θ)ai1ai2λiλi1λi2a

†
i1
a†i2a

†
i3

cos3(θ)√
2

+

s3/2 sin(θ)ai1ai3λiλi1λi3a
†
i1
a†i2a

†
i3

cos3(θ)√
2

+
s3/2 sin(θ)ai2ai3λiλi2λi3a

†
i1
a†i2a

†
i3

cos3(θ)√
2

−
√
s sin(θ)aiai1ai2ai3λi1λi2λi3a

†
i1
a†i2a

†
i3

cos3(θ)√
2

−
√
s sin(θ)aiai1ai2λiλi1λi2a

†
ia
†
i1
a†i2a

†
i3

cos3(θ)√
2

−
√
s sin(θ)aiai1ai3λiλi1λi3a

†
ia
†
i1
a†i2a

†
i3

cos3(θ)√
2

−
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√
s sin(θ)aiai2ai3λiλi2λi3a

†
ia
†
i1
a†i2a

†
i3

cos3(θ)√
2

−
√
s sin(θ)ai1ai2ai3λi1λi2λi3a

†
ia
†
i1
a†i2a

†
i3

cos3(θ)√
2

+
1

2
s3 sin2(θ)ai2ai3λiλi1 cos2(θ) +

1

2
s3 sin2(θ)ai1ai3λiλi2 cos2(θ) +

1

2
s3 sin2(θ)aiai3λi1λi2 cos2(θ) +

1

2
s3 sin2(θ)ai1ai2λiλi3 cos2(θ) +

1

2
s3 sin2(θ)aiai2λi1λi3 cos2(θ) +

1

2
s3 sin2(θ)aiai1λi2λi3 cos2(θ)− 1

2
s2 sin2(θ)aiai2ai3λiλi1a

†
i cos2(θ)−

1

2
s2 sin2(θ)aiai1ai3λiλi2a

†
i cos2(θ) +

1

2
s3 sin2(θ)ai3λi1λi2a

†
i cos2(θ)−

1

2
s2 sin2(θ)aiai1ai2λiλi3a

†
i cos2(θ) +

1

2
s3 sin2(θ)ai2λi1λi3a

†
i cos2(θ) +

1

2
s3 sin2(θ)ai1λi2λi3a

†
i cos2(θ)− 1

2
s2 sin2(θ)ai1ai2ai3λiλi1a

†
i1

cos2(θ) +

1

2
s3 sin2(θ)ai3λiλi2a

†
i1

cos2(θ)− 1

2
s2 sin2(θ)aiai1ai3λi1λi2a

†
i1

cos2(θ) +

1

2
s3 sin2(θ)ai2λiλi3a

†
i1

cos2(θ)− 1

2
s2 sin2(θ)aiai1ai2λi1λi3a

†
i1

cos2(θ) +

1

2
s3 sin2(θ)aiλi2λi3a

†
i1

cos2(θ) +
1

2
s sin2(θ)aiai1ai2ai3λiλi1a

†
ia
†
i1

cos2(θ)−
1

2
s2 sin2(θ)aiai3λiλi2a

†
ia
†
i1

cos2(θ)− 1

2
s2 sin2(θ)ai1ai3λi1λi2a

†
ia
†
i1

cos2(θ)−
1

2
s2 sin2(θ)aiai2λiλi3a

†
ia
†
i1

cos2(θ)− 1

2
s2 sin2(θ)ai1ai2λi1λi3a

†
ia
†
i1

cos2(θ) +

1

2
s3 sin2(θ)λi2λi3a

†
ia
†
i1

cos2(θ) +
1

2
s3 sin2(θ)ai3λiλi1a

†
i2

cos2(θ)−
1

2
s2 sin2(θ)ai1ai2ai3λiλi2a

†
i2

cos2(θ)− 1

2
s2 sin2(θ)aiai2ai3λi1λi2a

†
i2

cos2(θ) +

1

2
s3 sin2(θ)ai1λiλi3a

†
i2

cos2(θ) +
1

2
s3 sin2(θ)aiλi1λi3a

†
i2

cos2(θ)−
1

2
s2 sin2(θ)aiai1ai2λi2λi3a

†
i2

cos2(θ)− 1

2
s2 sin2(θ)aiai3λiλi1a

†
ia
†
i2

cos2(θ) +

1

2
s sin2(θ)aiai1ai2ai3λiλi2a

†
ia
†
i2

cos2(θ)− 1

2
s2 sin2(θ)ai2ai3λi1λi2a

†
ia
†
i2

cos2(θ)−
1

2
s2 sin2(θ)aiai1λiλi3a

†
ia
†
i2

cos2(θ) +
1

2
s3 sin2(θ)λi1λi3a

†
ia
†
i2

cos2(θ)−
1

2
s2 sin2(θ)ai1ai2λi2λi3a

†
ia
†
i2

cos2(θ)− 1

2
s2 sin2(θ)ai1ai3λiλi1a

†
i1
a†i2 cos2(θ)−

1

2
s2 sin2(θ)ai2ai3λiλi2a

†
i1
a†i2 cos2(θ) +

1

2
s sin2(θ)aiai1ai2ai3λi1λi2a

†
i1
a†i2 cos2(θ) +

1

2
s3 sin2(θ)λiλi3a

†
i1
a†i2 cos2(θ)− 1

2
s2 sin2(θ)aiai1λi1λi3a

†
i1
a†i2 cos2(θ)−

1

2
s2 sin2(θ)aiai2λi2λi3a

†
i1
a†i2 cos2(θ) +

1

2
s sin2(θ)aiai1ai3λiλi1a

†
ia
†
i1
a†i2 cos2(θ) +

1

2
s sin2(θ)aiai2ai3λiλi2a

†
ia
†
i1
a†i2 cos2(θ) +

1

2
s sin2(θ)ai1ai2ai3λi1λi2a

†
ia
†
i1
a†i2 cos2(θ)−

1

2
s2 sin2(θ)aiλiλi3a

†
ia
†
i1
a†i2 cos2(θ)− 1

2
s2 sin2(θ)ai1λi1λi3a

†
ia
†
i1
a†i2 cos2(θ)−

1

2
s2 sin2(θ)ai2λi2λi3a

†
ia
†
i1
a†i2 cos2(θ) +

1

2
s3 sin2(θ)ai2λiλi1a

†
i3

cos2(θ) +

1

2
s3 sin2(θ)ai1λiλi2a

†
i3

cos2(θ) +
1

2
s3 sin2(θ)aiλi1λi2a

†
i3

cos2(θ)−
1

2
s2 sin2(θ)ai1ai2ai3λiλi3a

†
i3

cos2(θ)− 1

2
s2 sin2(θ)aiai2ai3λi1λi3a

†
i3

cos2(θ)−
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1

2
s2 sin2(θ)aiai1ai3λi2λi3a

†
i3

cos2(θ)− 1

2
s2 sin2(θ)aiai2λiλi1a

†
ia
†
i3

cos2(θ)−
1

2
s2 sin2(θ)aiai1λiλi2a

†
ia
†
i3

cos2(θ) +
1

2
s3 sin2(θ)λi1λi2a

†
ia
†
i3

cos2(θ) +

1

2
s sin2(θ)aiai1ai2ai3λiλi3a

†
ia
†
i3

cos2(θ)− 1

2
s2 sin2(θ)ai2ai3λi1λi3a

†
ia
†
i3

cos2(θ)−
1

2
s2 sin2(θ)ai1ai3λi2λi3a

†
ia
†
i3

cos2(θ)− 1

2
s2 sin2(θ)ai1ai2λiλi1a

†
i1
a†i3 cos2(θ) +

1

2
s3 sin2(θ)λiλi2a

†
i1
a†i3 cos2(θ)− 1

2
s2 sin2(θ)aiai1λi1λi2a

†
i1
a†i3 cos2(θ)−

1

2
s2 sin2(θ)ai2ai3λiλi3a

†
i1
a†i3 cos2(θ) +

1

2
s sin2(θ)aiai1ai2ai3λi1λi3a

†
i1
a†i3 cos2(θ)−

1

2
s2 sin2(θ)aiai3λi2λi3a

†
i1
a†i3 cos2(θ) +

1

2
s sin2(θ)aiai1ai2λiλi1a

†
ia
†
i1
a†i3 cos2(θ)−

1

2
s2 sin2(θ)aiλiλi2a

†
ia
†
i1
a†i3 cos2(θ)− 1

2
s2 sin2(θ)ai1λi1λi2a

†
ia
†
i1
a†i3 cos2(θ) +

1

2
s sin2(θ)aiai2ai3λiλi3a

†
ia
†
i1
a†i3 cos2(θ) +

1

2
s sin2(θ)ai1ai2ai3λi1λi3a

†
ia
†
i1
a†i3 cos2(θ)−

1

2
s2 sin2(θ)ai3λi2λi3a

†
ia
†
i1
a†i3 cos2(θ) +

1

2
s3 sin2(θ)λiλi1a

†
i2
a†i3 cos2(θ)−

1

2
s2 sin2(θ)ai1ai2λiλi2a

†
i2
a†i3 cos2(θ)− 1

2
s2 sin2(θ)aiai2λi1λi2a

†
i2
a†i3 cos2(θ)−

1

2
s2 sin2(θ)ai1ai3λiλi3a

†
i2
a†i3 cos2(θ)− 1

2
s2 sin2(θ)aiai3λi1λi3a

†
i2
a†i3 cos2(θ) +

1

2
s sin2(θ)aiai1ai2ai3λi2λi3a

†
i2
a†i3 cos2(θ)− 1

2
s2 sin2(θ)aiλiλi1a

†
ia
†
i2
a†i3 cos2(θ) +

1

2
s sin2(θ)aiai1ai2λiλi2a

†
ia
†
i2
a†i3 cos2(θ)− 1

2
s2 sin2(θ)ai2λi1λi2a

†
ia
†
i2
a†i3 cos2(θ) +

1

2
s sin2(θ)aiai1ai3λiλi3a

†
ia
†
i2
a†i3 cos2(θ)− 1

2
s2 sin2(θ)ai3λi1λi3a

†
ia
†
i2
a†i3 cos2(θ) +

1

2
s sin2(θ)ai1ai2ai3λi2λi3a

†
ia
†
i2
a†i3 cos2(θ)− 1

2
s2 sin2(θ)ai1λiλi1a

†
i1
a†i2a

†
i3

cos2(θ)−
1

2
s2 sin2(θ)ai2λiλi2a

†
i1
a†i2a

†
i3

cos2(θ) +
1

2
s sin2(θ)aiai1ai2λi1λi2a

†
i1
a†i2a

†
i3

cos2(θ)−
1

2
s2 sin2(θ)ai3λiλi3a

†
i1
a†i2a

†
i3

cos2(θ) +
1

2
s sin2(θ)aiai1ai3λi1λi3a

†
i1
a†i2a

†
i3

cos2(θ) +

1

2
s sin2(θ)aiai2ai3λi2λi3a

†
i1
a†i2a

†
i3

cos2(θ) +
1

2
s sin2(θ)aiai1λiλi1a

†
ia
†
i1
a†i2a

†
i3

cos2(θ) +

1

2
s sin2(θ)aiai2λiλi2a

†
ia
†
i1
a†i2a

†
i3

cos2(θ) +
1

2
s sin2(θ)ai1ai2λi1λi2a

†
ia
†
i1
a†i2a

†
i3

cos2(θ) +

1

2
s sin2(θ)aiai3λiλi3a

†
ia
†
i1
a†i2a

†
i3

cos2(θ) +
1

2
s sin2(θ)ai1ai3λi1λi3a

†
ia
†
i1
a†i2a

†
i3

cos2(θ) +

1

2
s sin2(θ)ai2ai3λi2λi3a

†
ia
†
i1
a†i2a

†
i3

cos2(θ) +
s5/2 sin3(θ)ai1ai2ai3λi cos(θ)

2
√

2
+

s5/2 sin3(θ)aiai2ai3λi1 cos(θ)

2
√

2
+
s5/2 sin3(θ)aiai1ai3λi2 cos(θ)

2
√

2
+

s5/2 sin3(θ)aiai1ai2λi3 cos(θ)

2
√

2
− s3/2 sin3(θ)aiai1ai2ai3λia

†
i cos(θ)

2
√

2
+

s5/2 sin3(θ)ai2ai3λi1a
†
i cos(θ)

2
√

2
+
s5/2 sin3(θ)ai1ai3λi2a

†
i cos(θ)

2
√

2
+

s5/2 sin3(θ)ai1ai2λi3a
†
i cos(θ)

2
√

2
+
s5/2 sin3(θ)ai2ai3λia

†
i1

cos(θ)

2
√

2
−

s3/2 sin3(θ)aiai1ai2ai3λi1a
†
i1

cos(θ)

2
√

2
+
s5/2 sin3(θ)aiai3λi2a

†
i1

cos(θ)

2
√

2
+
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s5/2 sin3(θ)aiai2λi3a
†
i1

cos(θ)

2
√

2
− s3/2 sin3(θ)aiai2ai3λia

†
ia
†
i1

cos(θ)

2
√

2
−

s3/2 sin3(θ)ai1ai2ai3λi1a
†
ia
†
i1

cos(θ)

2
√

2
+
s5/2 sin3(θ)ai3λi2a

†
ia
†
i1

cos(θ)

2
√

2
+

s5/2 sin3(θ)ai2λi3a
†
ia
†
i1

cos(θ)

2
√

2
+
s5/2 sin3(θ)ai1ai3λia

†
i2

cos(θ)

2
√

2
+

s5/2 sin3(θ)aiai3λi1a
†
i2

cos(θ)

2
√

2
− s3/2 sin3(θ)aiai1ai2ai3λi2a

†
i2

cos(θ)

2
√

2
+

s5/2 sin3(θ)aiai1λi3a
†
i2

cos(θ)

2
√

2
− s3/2 sin3(θ)aiai1ai3λia

†
ia
†
i2

cos(θ)

2
√

2
+

s5/2 sin3(θ)ai3λi1a
†
ia
†
i2

cos(θ)

2
√

2
− s3/2 sin3(θ)ai1ai2ai3λi2a

†
ia
†
i2

cos(θ)

2
√

2
+

s5/2 sin3(θ)ai1λi3a
†
ia
†
i2

cos(θ)

2
√

2
+
s5/2 sin3(θ)ai3λia

†
i1
a†i2 cos(θ)

2
√

2
−

s3/2 sin3(θ)aiai1ai3λi1a
†
i1
a†i2 cos(θ)

2
√

2
− s3/2 sin3(θ)aiai2ai3λi2a

†
i1
a†i2 cos(θ)

2
√

2
+

s5/2 sin3(θ)aiλi3a
†
i1
a†i2 cos(θ)

2
√

2
− s3/2 sin3(θ)aiai3λia

†
ia
†
i1
a†i2 cos(θ)

2
√

2
−

s3/2 sin3(θ)ai1ai3λi1a
†
ia
†
i1
a†i2 cos(θ)

2
√

2
− s3/2 sin3(θ)ai2ai3λi2a

†
ia
†
i1
a†i2 cos(θ)

2
√

2
+

s5/2 sin3(θ)λi3a
†
ia
†
i1
a†i2 cos(θ)

2
√

2
+
s5/2 sin3(θ)ai1ai2λia

†
i3

cos(θ)

2
√

2
+

s5/2 sin3(θ)aiai2λi1a
†
i3

cos(θ)

2
√

2
+
s5/2 sin3(θ)aiai1λi2a

†
i3

cos(θ)

2
√

2
−

s3/2 sin3(θ)aiai1ai2ai3λi3a
†
i3

cos(θ)

2
√

2
− s3/2 sin3(θ)aiai1ai2λia

†
ia
†
i3

cos(θ)

2
√

2
+

s5/2 sin3(θ)ai2λi1a
†
ia
†
i3

cos(θ)

2
√

2
+
s5/2 sin3(θ)ai1λi2a

†
ia
†
i3

cos(θ)

2
√

2
−

s3/2 sin3(θ)ai1ai2ai3λi3a
†
ia
†
i3

cos(θ)

2
√

2
+
s5/2 sin3(θ)ai2λia

†
i1
a†i3 cos(θ)

2
√

2
−

s3/2 sin3(θ)aiai1ai2λi1a
†
i1
a†i3 cos(θ)

2
√

2
+
s5/2 sin3(θ)aiλi2a

†
i1
a†i3 cos(θ)

2
√

2
−

s3/2 sin3(θ)aiai2ai3λi3a
†
i1
a†i3 cos(θ)

2
√

2
− s3/2 sin3(θ)aiai2λia

†
ia
†
i1
a†i3 cos(θ)

2
√

2
−

s3/2 sin3(θ)ai1ai2λi1a
†
ia
†
i1
a†i3 cos(θ)

2
√

2
+
s5/2 sin3(θ)λi2a

†
ia
†
i1
a†i3 cos(θ)

2
√

2
−

s3/2 sin3(θ)ai2ai3λi3a
†
ia
†
i1
a†i3 cos(θ)

2
√

2
+
s5/2 sin3(θ)ai1λia

†
i2
a†i3 cos(θ)

2
√

2
+

s5/2 sin3(θ)aiλi1a
†
i2
a†i3 cos(θ)

2
√

2
− s3/2 sin3(θ)aiai1ai2λi2a

†
i2
a†i3 cos(θ)

2
√

2
−

s3/2 sin3(θ)aiai1ai3λi3a
†
i2
a†i3 cos(θ)

2
√

2
− s3/2 sin3(θ)aiai1λia

†
ia
†
i2
a†i3 cos(θ)

2
√

2
+

s5/2 sin3(θ)λi1a
†
ia
†
i2
a†i3 cos(θ)

2
√

2
− s3/2 sin3(θ)ai1ai2λi2a

†
ia
†
i2
a†i3 cos(θ)

2
√

2
−
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s3/2 sin3(θ)ai1ai3λi3a
†
ia
†
i2
a†i3 cos(θ)

2
√

2
+
s5/2 sin3(θ)λia

†
i1
a†i2a

†
i3

cos(θ)

2
√

2
−

s3/2 sin3(θ)aiai1λi1a
†
i1
a†i2a

†
i3

cos(θ)

2
√

2
− s3/2 sin3(θ)aiai2λi2a

†
i1
a†i2a

†
i3

cos(θ)

2
√

2
−

s3/2 sin3(θ)aiai3λi3a
†
i1
a†i2a

†
i3

cos(θ)

2
√

2
− s3/2 sin3(θ)aiλia

†
ia
†
i1
a†i2a

†
i3

cos(θ)

2
√

2
−

s3/2 sin3(θ)ai1λi1a
†
ia
†
i1
a†i2a

†
i3

cos(θ)

2
√

2
− s3/2 sin3(θ)ai2λi2a

†
ia
†
i1
a†i2a

†
i3

cos(θ)

2
√

2
−

s3/2 sin3(θ)ai3λi3a
†
ia
†
i1
a†i2a

†
i3

cos(θ)

2
√

2
+

1

4
s2 sin4(θ)aiai1ai2ai3 +

1

4
s2 sin4(θ)ai1ai2ai3a

†
i +

1

4
s2 sin4(θ)aiai2ai3a

†
i1

+
1

4
s2 sin4(θ)ai2ai3a

†
ia
†
i1

+
1

4
s2 sin4(θ)aiai1ai3a

†
i2

+

1

4
s2 sin4(θ)ai1ai3a

†
ia
†
i2

+
1

4
s2 sin4(θ)aiai3a

†
i1
a†i2 +

1

4
s2 sin4(θ)ai3a

†
ia
†
i1
a†i2 +

1

4
s2 sin4(θ)aiai1ai2a

†
i3

+
1

4
s2 sin4(θ)ai1ai2a

†
ia
†
i3

+
1

4
s2 sin4(θ)aiai2a

†
i1
a†i3 +

1

4
s2 sin4(θ)ai2a

†
ia
†
i1
a†i3 +

1

4
s2 sin4(θ)aiai1a

†
i2
a†i3 +

1

4
s2 sin4(θ)ai1a

†
ia
†
i2
a†i3 +

1

4
s2 sin4(θ)aia

†
i1
a†i2a

†
i3

+
1

4
s2 sin4(θ)a†ia

†
i1
a†i2a

†
i3

+
∑
i

J1

2

(
s2λiλi2 cos2(θ) + s2λi1λi3 cos2(θ)− saiλiλi2a†i cos2(θ)

−sai1λi1λi3a†i1 cos2(θ)− sai2λiλi2a†i2 cos2(θ) + aiai2λiλi2a
†
ia
†
i2

cos2(θ)

−sai3λi1λi3a†i3 cos2(θ) + ai1ai3λi1λi3a
†
i1
a†i3 cos2(θ)

+
s3/2 sin(θ)ai2λi cos(θ)√

2
+
s3/2 sin(θ)ai3λi1 cos(θ)√

2

+
s3/2 sin(θ)aiλi2 cos(θ)√

2
+
s3/2 sin(θ)ai1λi3 cos(θ)√

2
−
√
s sin(θ)aiai2λia

†
i cos(θ)√

2

+
s3/2 sin(θ)λi2a

†
i cos(θ)√

2
−
√
s sin(θ)ai1ai3λi1a

†
i1

cos(θ)√
2

+
s3/2 sin(θ)λi3a

†
i1

cos(θ)√
2

+
s3/2 sin(θ)λia

†
i2

cos(θ)√
2

−
√
s sin(θ)aiai2λi2a

†
i2

cos(θ)√
2

−
√
s sin(θ)aiλia

†
ia
†
i2

cos(θ)√
2

−
√
s sin(θ)ai2λi2a

†
ia
†
i2

cos(θ)√
2

+
s3/2 sin(θ)λi1a

†
i3

cos(θ)√
2

−
√
s sin(θ)ai1ai3λi3a

†
i3

cos(θ)√
2

−
√
s sin(θ)ai1λi1a

†
i1
a†i3 cos(θ)√

2

−
√
s sin(θ)ai3λi3a

†
i1
a†i3 cos(θ)√

2
+

1

2
s sin2(θ)aiai2

+
1

2
s sin2(θ)ai1ai3 +

1

2
s sin2(θ)ai2a

†
i +

1

2
s sin2(θ)ai3a

†
i1
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+
1

2
s sin2(θ)aia

†
i2

+
1

2
s sin2(θ)a†ia

†
i2

+
1

2
s sin2(θ)ai1a

†
i3

+
1

2
s sin2(θ)a†i1a

†
i3

)
(A.9)

+
∑
i〈AB〉

J2

16

(
1

2
s sin2(θ)aiAaiBc

2 − 1

2
s sin2(θ)aiBaiA1

c2 − 1

2
s sin2(θ)aiBaiA2

c2 +

1

2
s sin2(θ)aiBaiA3

c2 − 1

2
s sin(θ)aiAaiB1

c2 +
1

2
s sin(θ)aiA1

aiB1
c2 +

1

2
s sin(θ)aiA2

aiB1
c2 −

1

2
s sin(θ)aiA3

aiB1
c2− 1

2
s sin2(θ)aiAaiB2

c2 +
1

2
s sin2(θ)aiA1

aiB2
c2 +

1

2
s sin2(θ)aiA2

aiB2
c2−

1

2
s sin2(θ)aiA3

aiB2
c2+

1

2
s sin2(θ)aiAaiB3

c2− 1

2
s sin2(θ)aiA1

aiB3
c2− 1

2
s sin2(θ)aiA2

aiB3
c2+

1

2
s sin2(θ)aiA3

aiB3
c2 +

1

2
s sin2(θ)aiBa

†
iA
c2 − 1

2
s sin(θ)aiB1

a†iAc
2 − 1

2
s sin2(θ)aiB2

a†iAc
2 +

1

2
s sin2(θ)aiB3

a†iAc
2 −
√
s cos(θ) sin(θ)aiAaiBλiAa

†
iA
c2

√
2

+

√
s cos(θ)aiAaiB1

λiAa
†
iA
c2

√
2

+
√
s cos(θ) sin(θ)aiAaiB2

λiAa
†
iA
c2

√
2

−
√
s cos(θ) sin(θ)aiAaiB3

λiAa
†
iA
c2

√
2

+
√
s cos(θ) sin(θ)aiAaiBλiA1

a†iAc
2

√
2

−
√
s cos(θ)aiAaiB1

λiA1
a†iAc

2

√
2

−
√
s cos(θ) sin(θ)aiAaiB2

λiA1
a†iAc

2

√
2

+

√
s cos(θ) sin(θ)aiAaiB3

λiA1
a†iAc

2

√
2

+
√
s cos(θ) sin(θ)aiAaiBλiA2

a†iAc
2

√
2

−
√
s cos(θ)aiAaiB1

λiA2
a†iAc

2

√
2

−
√
s cos(θ) sin(θ)aiAaiB2

λiA2
a†iAc

2

√
2

+

√
s cos(θ) sin(θ)aiAaiB3

λiA2
a†iAc

2

√
2

−
√
s cos(θ) sin(θ)aiAaiBλiA3

a†iAc
2

√
2

+

√
s cos(θ)aiAaiB1

λiA3
a†iAc

2

√
2

+
√
s cos(θ) sin(θ)aiAaiB2

λiA3
a†iAc

2

√
2

−
√
s cos(θ) sin(θ)aiAaiB3

λiA3
a†iAc

2

√
2

+

1

2
s sin2(θ)aiAa

†
iB
c2 − 1

2
s sin2(θ)aiA1

a†iBc
2 − 1

2
s sin2(θ)aiA2

a†iBc
2 +

1

2
s sin2(θ)aiA3

a†iBc
2 −

√
s cos(θ) sin(θ)aiAaiBλiBa

†
iB
c2

√
2

+

√
s cos(θ) sin(θ)aiBaiA1

λiBa
†
iB
c2

√
2

+
√
s cos(θ) sin(θ)aiBaiA2

λiBa
†
iB
c2

√
2

−
√
s cos(θ) sin(θ)aiBaiA3

λiBa
†
iB
c2

√
2

+

1

2
s sin2(θ)a†iAa

†
iB
c2 −

√
s cos(θ) sin(θ)aiAλiAa

†
iA
a†iBc

2

√
2

−
√
s cos(θ) sin(θ)aiBλiBa

†
iA
a†iBc

2

√
2

+ cos2(θ)aiAaiBλiAλiBa
†
iA
a†iBc

2 +
√
s cos(θ) sin(θ)aiAλiA1

a†iAa
†
iB
c2

√
2

− cos2(θ)aiAaiBλiBλiA1
a†iAa

†
iB
c2 +

√
s cos(θ) sin(θ)aiAλiA2

a†iAa
†
iB
c2

√
2

− cos2(θ)aiAaiBλiBλiA2
a†iAa

†
iB
c2 −
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√
s cos(θ) sin(θ)aiAλiA3

a†iAa
†
iB
c2

√
2

+cos2(θ)aiAaiBλiBλiA3
a†iAa

†
iB
c2− 1

2
s sin2(θ)aiBa

†
iA1
c2 +

1

2
s sin(θ)aiB1

a†iA1
c2 +

1

2
s sin2(θ)aiB2

a†iA1
c2− 1

2
s sin2(θ)aiB3

a†iA1
c2− 1

2
s sin2(θ)a†iBa

†
iA1
c2 +

√
s cos(θ) sin(θ)aiBλiBa

†
iB
a†iA1

c2

√
2

− 1

2
s sin2(θ)aiBa

†
iA2
c2 +

1

2
s sin(θ)aiB1

a†iA2
c2 +

1

2
s sin2(θ)aiB2

a†iA2
c2 − 1

2
s sin2(θ)aiB3

a†iA2
c2 − 1

2
s sin2(θ)a†iBa

†
iA2
c2 +

√
s cos(θ) sin(θ)aiBλiBa

†
iB
a†iA2

c2

√
2

+
1

2
s sin2(θ)aiBa

†
iA3
c2 − 1

2
s sin(θ)aiB1

a†iA3
c2 −

1

2
s sin2(θ)aiB2

a†iA3
c2 +

1

2
s sin2(θ)aiB3

a†iA3
c2 +

1

2
s sin2(θ)a†iBa

†
iA3
c2 −

√
s cos(θ) sin(θ)aiBλiBa

†
iB
a†iA3

c2

√
2

− 1

2
s sin(θ)aiAa

†
iB1
c2 +

1

2
s sin(θ)aiA1

a†iB1
c2 +

1

2
s sin(θ)aiA2

a†iB1
c2 − 1

2
s sin(θ)aiA3

a†iB1
c2 +

√
s cos(θ) sin(θ)aiAaiB1

λiB1
a†iB1

c2

√
2

−
√
s cos(θ) sin(θ)aiA1

aiB1
λiB1

a†iB1
c2

√
2

−
√
s cos(θ) sin(θ)aiA2

aiB1
λiB1

a†iB1
c2

√
2

+
√
s cos(θ) sin(θ)aiA3

aiB1
λiB1

a†iB1
c2

√
2

− 1

2
s sin(θ)a†iAa

†
iB1
c2 +

√
s cos(θ)aiAλiAa

†
iA
a†iB1

c2

√
2

−
√
s cos(θ)aiAλiA1

a†iAa
†
iB1
c2

√
2

−
√
s cos(θ)aiAλiA2

a†iAa
†
iB1
c2

√
2

+

√
s cos(θ)aiAλiA3

a†iAa
†
iB1
c2

√
2

+
√
s cos(θ) sin(θ)aiB1

λiB1
a†iAa

†
iB1
c2

√
2

− cos2(θ)aiAaiB1
λiAλiB1

a†iAa
†
iB1
c2 +

cos2(θ)aiAaiB1
λiA1

λiB1
a†iAa

†
iB1
c2 + cos2(θ)aiAaiB1

λiA2
λiB1

a†iAa
†
iB1
c2 −

cos2(θ)aiAaiB1
λiA3

λiB1
a†iAa

†
iB1
c2 +

1

2
s sin(θ)a†iA1

a†iB1
c2 −

√
s cos(θ) sin(θ)aiB1

λiB1
a†iA1

a†iB1
c2

√
2

+
1

2
s sin(θ)a†iA2

a†iB1
c2 −

√
s cos(θ) sin(θ)aiB1

λiB1
a†iA2

a†iB1
c2

√
2

− 1

2
s sin(θ)a†iA3

a†iB1
c2 +

√
s cos(θ) sin(θ)aiB1

λiB1
a†iA3

a†iB1
c2

√
2

− 1

2
s sin2(θ)aiAa

†
iB2
c2 +

1

2
s sin2(θ)aiA1

a†iB2
c2 +

1

2
s sin2(θ)aiA2

a†iB2
c2 − 1

2
s sin2(θ)aiA3

a†iB2
c2 +

√
s cos(θ) sin(θ)aiAaiB2

λiB2
a†iB2

c2

√
2

−
√
s cos(θ) sin(θ)aiA1

aiB2
λiB2

a†iB2
c2

√
2

−
√
s cos(θ) sin(θ)aiA2

aiB2
λiB2

a†iB2
c2

√
2

+
√
s cos(θ) sin(θ)aiA3

aiB2
λiB2

a†iB2
c2

√
2

− 1

2
s sin2(θ)a†iAa

†
iB2
c2 +

√
s cos(θ) sin(θ)aiAλiAa

†
iA
a†iB2

c2

√
2

−
√
s cos(θ) sin(θ)aiAλiA1

a†iAa
†
iB2
c2

√
2

−
√
s cos(θ) sin(θ)aiAλiA2

a†iAa
†
iB2
c2

√
2

+

√
s cos(θ) sin(θ)aiAλiA3

a†iAa
†
iB2
c2

√
2

+
√
s cos(θ) sin(θ)aiB2

λiB2
a†iAa

†
iB2
c2

√
2

− cos2(θ)aiAaiB2
λiAλiB2

a†iAa
†
iB2
c2 +
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cos2(θ)aiAaiB2
λiA1

λiB2
a†iAa

†
iB2
c2 + cos2(θ)aiAaiB2

λiA2
λiB2

a†iAa
†
iB2
c2 −

cos2(θ)aiAaiB2
λiA3

λiB2
a†iAa

†
iB2
c2 +

1

2
s sin2(θ)a†iA1

a†iB2
c2 −

√
s cos(θ) sin(θ)aiB2

λiB2
a†iA1

a†iB2
c2

√
2

+
1

2
s sin2(θ)a†iA2

a†iB2
c2 −

√
s cos(θ) sin(θ)aiB2

λiB2
a†iA2

a†iB2
c2

√
2

− 1

2
s sin2(θ)a†iA3

a†iB2
c2 +

√
s cos(θ) sin(θ)aiB2

λiB2
a†iA3

a†iB2
c2

√
2

+
1

2
s sin2(θ)aiAa

†
iB3
c2 − 1

2
s sin2(θ)aiA1

a†iB3
c2 −

1

2
s sin2(θ)aiA2

a†iB3
c2 +

1

2
s sin2(θ)aiA3

a†iB3
c2 −

√
s cos(θ) sin(θ)aiAaiB3

λiB3
a†iB3

c2

√
2

+
√
s cos(θ) sin(θ)aiA1

aiB3
λiB3

a†iB3
c2

√
2

+

√
s cos(θ) sin(θ)aiA2

aiB3
λiB3

a†iB3
c2

√
2

−
√
s cos(θ) sin(θ)aiA3

aiB3
λiB3

a†iB3
c2

√
2

+
1

2
s sin2(θ)a†iAa

†
iB3
c2 −

√
s cos(θ) sin(θ)aiAλiAa

†
iA
a†iB3

c2

√
2

+

√
s cos(θ) sin(θ)aiAλiA1

a†iAa
†
iB3
c2

√
2

+
√
s cos(θ) sin(θ)aiAλiA2

a†iAa
†
iB3
c2

√
2

−
√
s cos(θ) sin(θ)aiAλiA3

a†iAa
†
iB3
c2

√
2

−
√
s cos(θ) sin(θ)aiB3

λiB3
a†iAa

†
iB3
c2

√
2

+ cos2(θ)aiAaiB3
λiAλiB3

a†iAa
†
iB3
c2 −

cos2(θ)aiAaiB3
λiA1

λiB3
a†iAa

†
iB3
c2 − cos2(θ)aiAaiB3

λiA2
λiB3

a†iAa
†
iB3
c2 +

cos2(θ)aiAaiB3
λiA3

λiB3
a†iAa

†
iB3
c2 − 1

2
s sin2(θ)a†iA1

a†iB3
c2 +

√
s cos(θ) sin(θ)aiB3

λiB3
a†iA1

a†iB3
c2

√
2

− 1

2
s sin2(θ)a†iA2

a†iB3
c2 +

√
s cos(θ) sin(θ)aiB3

λiB3
a†iA2

a†iB3
c2

√
2

+
1

2
s sin2(θ)a†iA3

a†iB3
c2 −

√
s cos(θ) sin(θ)aiB3

λiB3
a†iA3

a†iB3
c2

√
2

+
s3/2 cos(θ) sin(θ)aiBλiAc√

2
−
s3/2 cos(θ)aiB1

λiAc√
2

−
s3/2 cos(θ) sin(θ)aiB2

λiAc√
2

+
s3/2 cos(θ) sin(θ)aiB3

λiAc√
2

+
s3/2 cos(θ) sin(θ)aiAλiBc√

2
−

s3/2 cos(θ) sin(θ)aiA1
λiBc√

2
−
s3/2 cos(θ) sin(θ)aiA2

λiBc√
2

+
s3/2 cos(θ) sin(θ)aiA3

λiBc√
2

−
s3/2 cos(θ) sin(θ)aiBλiA1

c√
2

+
s3/2 cos(θ)aiB1

λiA1
c√

2
+
s3/2 cos(θ) sin(θ)aiB2

λiA1
c√

2
−

s3/2 cos(θ) sin(θ)aiB3
λiA1

c√
2

−
s3/2 cos(θ) sin(θ)aiBλiA2

c√
2

+
s3/2 cos(θ)aiB1

λiA2
c√

2
+

s3/2 cos(θ) sin(θ)aiB2
λiA2

c√
2

−
s3/2 cos(θ) sin(θ)aiB3

λiA2
c√

2
+
s3/2 cos(θ) sin(θ)aiBλiA3

c√
2

−
s3/2 cos(θ)aiB1

λiA3
c√

2
−
s3/2 cos(θ) sin(θ)aiB2

λiA3
c√

2
+
s3/2 cos(θ) sin(θ)aiB3

λiA3
c√

2
−

s3/2 cos(θ) sin(θ)aiAλiB1
c√

2
+
s3/2 cos(θ) sin(θ)aiA1

λiB1
c√

2
+
s3/2 cos(θ) sin(θ)aiA2

λiB1
c√

2
−
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s3/2 cos(θ) sin(θ)aiA3
λiB1

c√
2

−
s3/2 cos(θ) sin(θ)aiAλiB2

c√
2

+
s3/2 cos(θ) sin(θ)aiA1

λiB2
c√

2
+

s3/2 cos(θ) sin(θ)aiA2
λiB2

c√
2

−
s3/2 cos(θ) sin(θ)aiA3

λiB2
c√

2
+
s3/2 cos(θ) sin(θ)aiAλiB3

c√
2

−
s3/2 cos(θ) sin(θ)aiA1

λiB3
c√

2
−
s3/2 cos(θ) sin(θ)aiA2

λiB3
c√

2
+
s3/2 cos(θ) sin(θ)aiA3

λiB3
c√

2
+

s3/2 cos(θ) sin(θ)λiBa
†
iA
c√

2
− s cos2(θ)aiAλiAλiBa

†
iA
c+ s cos2(θ)aiAλiBλiA1

a†iAc+

s cos2(θ)aiAλiBλiA2
a†iAc− s cos2(θ)aiAλiBλiA3

a†iAc−
s3/2 cos(θ) sin(θ)λiB1

a†iAc√
2

+

s cos2(θ)aiAλiAλiB1
a†iAc− s cos2(θ)aiAλiA1

λiB1
a†iAc− s cos2(θ)aiAλiA2

λiB1
a†iAc+

s cos2(θ)aiAλiA3
λiB1

a†iAc−
s3/2 cos(θ) sin(θ)λiB2

a†iAc√
2

+ s cos2(θ)aiAλiAλiB2
a†iAc−

s cos2(θ)aiAλiA1
λiB2

a†iAc− s cos2(θ)aiAλiA2
λiB2

a†iAc+ s cos2(θ)aiAλiA3
λiB2

a†iAc+

s3/2 cos(θ) sin(θ)λiB3
a†iAc√

2
− s cos2(θ)aiAλiAλiB3

a†iAc+ s cos2(θ)aiAλiA1
λiB3

a†iAc+

s cos2(θ)aiAλiA2
λiB3

a†iAc− s cos2(θ)aiAλiA3
λiB3

a†iAc+
s3/2 cos(θ) sin(θ)λiAa

†
iB
c√

2
−

s cos2(θ)aiBλiAλiBa
†
iB
c−

s3/2 cos(θ) sin(θ)λiA1
a†iBc√

2
+ s cos2(θ)aiBλiBλiA1

a†iBc−

s3/2 cos(θ) sin(θ)λiA2
a†iBc√

2
+ s cos2(θ)aiBλiBλiA2

a†iBc+
s3/2 cos(θ) sin(θ)λiA3

a†iBc√
2

−

s cos2(θ)aiBλiBλiA3
a†iBc−

s3/2 cos(θ) sin(θ)λiBa
†
iA1
c

√
2

+
s3/2 cos(θ) sin(θ)λiB1

a†iA1
c

√
2

+

s3/2 cos(θ) sin(θ)λiB2
a†iA1

c
√

2
−
s3/2 cos(θ) sin(θ)λiB3

a†iA1
c

√
2

−
s3/2 cos(θ) sin(θ)λiBa

†
iA2
c

√
2

+

s3/2 cos(θ) sin(θ)λiB1
a†iA2

c
√

2
+
s3/2 cos(θ) sin(θ)λiB2

a†iA2
c

√
2

−
s3/2 cos(θ) sin(θ)λiB3

a†iA2
c

√
2

+

s3/2 cos(θ) sin(θ)λiBa
†
iA3
c

√
2

−
s3/2 cos(θ) sin(θ)λiB1

a†iA3
c

√
2

−
s3/2 cos(θ) sin(θ)λiB2

a†iA3
c

√
2

+

s3/2 cos(θ) sin(θ)λiB3
a†iA3

c
√

2
−
s3/2 cos(θ)λiAa

†
iB1
c

√
2

+
s3/2 cos(θ)λiA1

a†iB1
c

√
2

+

s3/2 cos(θ)λiA2
a†iB1

c
√

2
−
s3/2 cos(θ)λiA3

a†iB1
c

√
2

+ s cos2(θ)aiB1
λiAλiB1

a†iB1
c−

s cos2(θ)aiB1
λiA1

λiB1
a†iB1

c− s cos2(θ)aiB1
λiA2

λiB1
a†iB1

c+ s cos2(θ)aiB1
λiA3

λiB1
a†iB1

c−
s3/2 cos(θ) sin(θ)λiAa

†
iB2
c

√
2

+
s3/2 cos(θ) sin(θ)λiA1

a†iB2
c

√
2

+
s3/2 cos(θ) sin(θ)λiA2

a†iB2
c

√
2

−

s3/2 cos(θ) sin(θ)λiA3
a†iB2

c
√

2
+ s cos2(θ)aiB2

λiAλiB2
a†iB2

c− s cos2(θ)aiB2
λiA1

λiB2
a†iB2

c−

s cos2(θ)aiB2
λiA2

λiB2
a†iB2

c+ s cos2(θ)aiB2
λiA3

λiB2
a†iB2

c+
s3/2 cos(θ) sin(θ)λiAa

†
iB3
c

√
2

−

s3/2 cos(θ) sin(θ)λiA1
a†iB3

c
√

2
−
s3/2 cos(θ) sin(θ)λiA2

a†iB3
c

√
2

+
s3/2 cos(θ) sin(θ)λiA3

a†iB3
c

√
2

−
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s cos2(θ)aiB3
λiAλiB3

a†iB3
c+ s cos2(θ)aiB3

λiA1
λiB3

a†iB3
c+ s cos2(θ)aiB3

λiA2
λiB3

a†iB3
c−

s cos2(θ)aiB3
λiA3

λiB3
a†iB3

c+ s2 cos2(θ)λiAλiB − s2 cos2(θ)λiBλiA1
− s2 cos2(θ)λiBλiA2

+

s2 cos2(θ)λiBλiA3
− s2 cos2(θ)λiAλiB1

+ s2 cos2(θ)λiA1
λiB1

+ s2 cos2(θ)λiA2
λiB1
−

s2 cos2(θ)λiA3
λiB1
− s2 cos2(θ)λiAλiB2

+ s2 cos2(θ)λiA1
λiB2

+ s2 cos2(θ)λiA2
λiB2
−

s2 cos2(θ)λiA3
λiB2

+ s2 cos2(θ)λiAλiB3
− s2 cos2(θ)λiA1

λiB3
− s2 cos2(θ)λiA2

λiB3
+

s2 cos2(θ)λiA3
λiB3

)
.

Clearly, looking at the equation one can see that the Hamiltonian has terms that go upto an order of 8

in the terms of interaction of bosons, that is to say, it contains terms such as, aa†a†aaa†a†a. However,

here, we approximate the Hamiltonian by only considering the terms upto bilinear order (aa or a†a).

After this approximation, the Hamiltonian reduces to,

Hferro
lf =

∑
i

−J0

4

(
1

2
s3 cos2(θ)((ai3 sin2(θ)λi1λi2a

†
i + ai3 sin2(θ)λiλi2a

†
i1

+ai sin
2(θ)λi2λi3a

†
i1

+ sin2(θ)λi2λi3a
†
ia
†
i1

+ai3 sin2(θ)λiλi1a
†
i2

+ ai sin
2(θ)λi1λi3a

†
i2

+ sin2(θ)λi1λi3a
†
ia
†
i2

+ sin2(θ)λiλi3a
†
i1
a†i2 + ai sin

2(θ)λi1λi2a
†
i3

+ sin2(θ)λi1λi2a
†
ia
†
i3

+ sin2(θ)λiλi2a
†
i1
a†i3

+ sin2(θ)λiλi1a
†
i2
a†i3

−2ai cos2(θ)λiλi1λi2λi3a
†
i − 2ai3 cos2(θ)λiλi1λi2λi3a

†
i3

+ai2((sin
2(θ)λi1λi3a

†
i + sin2(θ)λiλi3a

†
i1

+ sin2(θ)λiλi1a
†
i3

−2 cos2(θ)λiλi1λi2λi3a
†
i2

+ ai3 sin2(θ)λiλi1 + ai1 sin2(θ)λiλi3

+ai sin
2(θ)λi1λi3) + ai1((sin

2(θ)λi2λi3a
†
i + sin2(θ)λiλi3a

†
i2

+ sin2(θ)λiλi2a
†
i3
− 2 cos2(θ)λiλi1λi2λi3a

†
i1

+ ai3 sin2(θ)λiλi2

+ai sin
2(θ)λi2λi3) + aiai3 sin2(θ)λi1λi2)

)
+
∑
i

J1

2

(
1

2
s(−2ai2 cos2(θ)λiλi2a

†
i2
− 2ai3 cos2(θ)λi1λi3a

†
i3

+ ai(−2 cos2(θ)λiλi2a
†
i

+ sin2(θ)a†i2 + ai2 sin2(θ)) + ai1(−2 cos2(θ)λi1λi3a
†
i1

+ sin2(θ)a†i3

+ai3 sin2(θ)) + ai2 sin2(θ)a†i + ai3 sin2(θ)a†i1 + sin2(θ)a†ia
†
i2

+ sin2(θ)a†i1a
†
i3

)

)
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+
J2

16

(
1

2
s(2aiB1

λiAλiB1
a†iB1

cos2(θ)− 2aiB1
λiA1

λiB1
a†iB1

cos2(θ)

−2aiB1
λiA2

λiB1
a†iB1

cos2(θ) + 2aiB1
λiA3

λiB1
a†iB1

cos2(θ)

+2aiB2
λiAλiB2

a†iB2
cos2(θ)− 2aiB2

λiA1
λiB2

a†iB2
cos2(θ)

−2aiB2
λiA2

λiB2
a†iB2

cos2(θ) + 2aiB2
λiA3

λiB2
a†iB2

cos2(θ)

−2aiB3
λiAλiB3

a†iB3
cos2(θ) + 2aiB3

λiA1
λiB3

a†iB3
cos2(θ)

+2aiB3
λiA2

λiB3
a†iB3

cos2(θ)− 2aiB3
λiA3

λiB3
a†iB3

cos2(θ) + sin(θ)aiA1
aiB1

+ sin(θ)aiA2
aiB1
− sin(θ)aiA3

aiB1
+ sin2(θ)aiA1

aiB2
+ sin2(θ)aiA2

aiB2
− sin2(θ)aiA3

aiB2

− sin2(θ)aiA1
aiB3
− sin2(θ)aiA2

aiB3
+ sin2(θ)aiA3

aiB3
− sin(θ)aiB1

a†iA

− sin2(θ)aiB2
a†iA + sin2(θ)aiB3

a†iA − sin2(θ)aiA1
a†iB − sin2(θ)aiA2

a†iB

+ sin2(θ)aiA3
a†iB + sin2(θ)a†iAa

†
iB

+ sin(θ)aiB1
a†iA1

+ sin2(θ)aiB2
a†iA1

− sin2(θ)aiB3
a†iA1
− sin2(θ)a†iBa

†
iA1

+ sin(θ)aiB1
a†iA2

+ sin2(θ)aiB2
a†iA2
− sin2(θ)aiB3

a†iA2
− sin2(θ)a†iBa

†
iA2
− sin(θ)aiB1

a†iA3

− sin2(θ)aiB2
a†iA3

+ sin2(θ)aiB3
a†iA3

+ sin2(θ)a†iBa
†
iA3

−aiB(2λiAλiBa
†
iB

cos2(θ)− 2λiBλiA1
a†iB cos2(θ)− 2λiBλiA2

a†iB cos2(θ)

+2λiBλiA3
a†iB cos2(θ) + sin2(θ)aiA1

+ sin2(θ)aiA2

− sin2(θ)aiA3
− sin2(θ)a†iA + sin2(θ)a†iA1

+ sin2(θ)a†iA2
− sin2(θ)a†iA3

)

+ sin(θ)aiA1
a†iB1

+ sin(θ)aiA2
a†iB1
− sin(θ)aiA3

a†iB1
− sin(θ)a†iAa

†
iB1

+ sin(θ)a†iA1
a†iB1

+ sin(θ)a†iA2
a†iB1
− sin(θ)a†iA3

a†iB1

+ sin2(θ)aiA1
a†iB2

+ sin2(θ)aiA2
a†iB2
− sin2(θ)aiA3

a†iB2

− sin2(θ)a†iAa
†
iB2

+ sin2(θ)a†iA1
a†iB2

+ sin2(θ)a†iA2
a†iB2

− sin2(θ)a†iA3
a†iB2
− sin2(θ)aiA1

a†iB3
− sin2(θ)aiA2

a†iB3

+ sin2(θ)aiA3
a†iB3

+ sin2(θ)a†iAa
†
iB3
− sin2(θ)a†iA1

a†iB3

− sin2(θ)a†iA2
a†iB3

+ sin2(θ)a†iA3
a†iB3

+ aiA(−2λiAλiBa
†
iA

cos2(θ)
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+2λiBλiA1
a†iA cos2(θ) + 2λiBλiA2

a†iA cos2(θ)− 2λiBλiA3
a†iA cos2(θ)

+2λiAλiB1
a†iA cos2(θ)− 2λiA1

λiB1
a†iA cos2(θ)

−2λiA2
λiB1

a†iA cos2(θ) + 2λiA3
λiB1

a†iA cos2(θ) + 2λiAλiB2
a†iA cos2(θ)

−2λiA1
λiB2

a†iA cos2(θ)− 2λiA2
λiB2

a†iA cos2(θ)

+2λiA3
λiB2

a†iA cos2(θ)− 2λiAλiB3
a†iA cos2(θ) + 2λiA1

λiB3
a†iA cos2(θ)

+2λiA2
λiB3

a†iA cos2(θ)− 2λiA3
λiB3

a†iA cos2(θ) + sin2(θ)aiB − sin(θ)aiB1

− sin2(θ)aiB2
+ sin2(θ)aiB3

+ sin2(θ)a†iB − sin(θ)a†iB1
− sin2(θ)a†iB2

+ sin2(θ)a†iB3
))

)
,

(A.10)

upto a constant given by,

C =
∑
i

(
− J0s

4 cos4(θ)λiλi1λi2λi3 + J2s
2 cos2(θ)λiλi2 + s2 cos2(θ)λi1λi3

−J2

16
(s2 cos2(θ)λiAλiB − s2 cos2(θ)λiA1

λiB − s2 cos2(θ)λiA2
λiB + s2 cos2(θ)λiA3

λiB

−s2 cos2(θ)λiAλiB1
+ s2 cos2(θ)λiA1

λiB1
+ s2 cos2(θ)λiA2

λiB1

−s2 cos2(θ)λiA3
λiB1
− s2 cos2(θ)λiAλiB2

+ s2 cos2(θ)λiA1
λiB2

+ s2 cos2(θ)λiA2
λiB2

−s2 cos2(θ)λiA3
λiB2

+ s2 cos2(θ)λiAλiB3
− s2 cos2(θ)λiA1

λiB3

−s2 cos2(θ)λiA2
λiB3

+ s2 cos2(θ)λiA3
λiB3

)

)
,

(A.11)

substituting λi’s obtained from the mean-field ansatz from Eq. (2.15) in chapter 2, we get,

C = −1

2
J0s

4NC4
θ − (J1 + 2J2)s2NC2

θ . (A.12)
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APPENDIX B

Appendix

B.1 The toric code model limit

Here, we aim to obtain the equivalence of our current model that is already discussed in the

chapter 1 2. It was presented that the current Hamiltonian 3.13 can be mapped Kitaev’s Toric Code

Model [111] in the absence of any other couplings such as the intramolecular coupling term (J1) and

the dipole-dipole coupling (J2). Here we show that even in the presence of intramolecular interaction,

the system can still be mapped to TCM [111]. However, the mapping or equivalence can only be

established at specific points that we find below using a simple preliminary analysis of pCUT. Indeed,

we show that the physics of the current model can be exactly described by the TCM under Kx 6= 0,

Ky,z = 0. First, in the low field limit J0,1 ≫ K, for quasi-2D intraplane structure and in the

absence of dipole-dipole interaction, we calculate the one-particle dispersion within the perturbative

Continuous Unitary Transformation (pCUT) formalism. Here we shall outline the implementation

details of pCUT and give the ground state energy and the corresponding one-quasiparticle gap up

to order 6. From the earlier studies we know that the low-field case hosts a deconfined phase with
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gauge charge excitations coming from the gauge term J0 similar to the excitations in the Toric-code

model (TCM). However with an exception that in TCM there are two kinds of excitations, one is the

magnetic charge and the other being the gauge charge corresponding to the gauge term (J0 term).

It should be noted that the true one-particle excitation on a lattice can be achieved only in the open

boundary conditions where one can separate the excitation pairs ideally without any additional energy

cost to infinite distance, effectively becoming a one-particle sector. Our above analysis relies on the

fact that the spectrum when J1 is turned is no more equidistant as we shall see, and it is to be noted

that in order to make pCUT applicable we, therefore, choose the parameters so that within the set of

parameters (J0, J1) chosen we see the current problem reduces to TCM.

e1 = 1 +K(−2 cos(qx − qy)− 2 cos(qx + qy))+

K2(2− 2 cos(2qx)− cos(qx − qy)− 2 cos(2qy)−

cos(qx + qy))+

K3(−3 cos(qx − 3qy)− 3 cos(3qx − qy)− 3 cos(3qx + qy)

− 3 cos(qx + 3qy))

K4(
35

2
− 2 cos(2qx)−

15

2
cos(4qx)− 5 cos(qx − 3qy)

− 25

4
cos(2qx − 2qy)− cos(qx − qy)− 5 cos(3qx − qy)−

2 cos(2qy)−
15

2
cos(4qy)− cos(qx + qy)

− 5 cos(3qx + qy)−
25

4
cos(2qx + 2qy)− 5 cos(qx + 3qy)). (B.1)

The configurational energy sets for a single given plaquette (four spins) in the absence of magnetic

field K are −J0 + 2J1, −J0 + 2J1, J0, Clearly, only for two cases the spectrum is equidistant per

plaquette, i.e, for J1 = 0 and J1 = J0 with corresponding −3J0, J0 energy sets. One may shift the

energy or renormalize it to give the energies that are −J0 and J0 respectively. Thus, we finally get
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an equidistant unperturbed spectrum. Inorder to validate that the current model maps to TCM, we

evaluate the pCUT calculation using a single periodic cluster (L ≥ n + 2, where L is the 1D lattice

dimension and n is the expansion order) method and arrive at the following results of groundstate

energy and gap per particle: In other words,

The ground state energy per spin eGS up to order 6 is given by,

eGS = −J0 − 2J1 −
1

2
K2 − 15

8
K4 − 147

8
K6, (B.2)

and similarly we give the one particle dispersion e1 up to order 4, order 5 and 6 are too lengthy to be

given here but will be effectively given when the one particle gap is obtained at the minimum K-point,

i.e, Γ. The important point to note, however, is that the groundstate energy matches exactly with the

TCM groundstate energy at the value of J1 = J0 thus establishing the TCM limit point.

B.1.1 Real-space linear spin-wave theory

The parameter space of J2=0 has groundstates that does not conserve translational symmetry and it

is therefore the only choice to work in the real-space version. Here, we derive the result of Sxx(k, ω)

within the linear spin-wave theory regime and give the brief details used in our simulation to arrive

at the result for sxx(k, ω). From the earlier works [174] we have the classical ground states in the

respective parameter regime. However, we start our analysis generally and consider the classical spins

si located at each site in it’s equilibrium state. The discussion in this section parallels the discussion

taken from Ref. [187]. It is very useful to define unit vectors ui, vi,wi such that ui = si/S with si in

it’s equilibrium state. Fluctuations in the equilibrium state can be parametrized by the variables say

xi, yi as,

si =
√
S2 − S(x2

i + y2
i )ui +

√
S(xivi + yiwi), (B.3)
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which can be approximated as,

≈ (S − x2
i + y2

i

2
)ui +

√
S(xivi + yiwi). (B.4)

The variables satisfy the Lagrangian equations of motion as

L =
∑
i

1

2
(yi
dxi
dt
− xi

dyi
dt

)− U, (B.5)

here U is the Hamiltonian consisting of only spin-spin interactions. Taylor expanding the above

equation around the equilibrium position in terms of the variables xi, yi, one gets the Eq.,

L =
1

2
zTΓ

d

dt
z − 1

2
zTHz. (B.6)

Here,H is a symmetric matrix while Γ is skew-symmetric, and z is a column vector given as:

z ≡





x1

y1

x2

y2

...

,

z ≡





0 −1 · · · 0 0

1 0 · · · 0 0

...
... · · · ...

...

0 0 · · · 0 −1

0 0 · · · 1 0
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.

B.1.2 Classical Version

Here, we derive the expression for dynamic structure factor (DSF) considering that the spins are

classical orthogonal vectors based on the above formalism. The DSF is defined as,

Sµν(q, ω)classical =
1

2πN

N∑
i,j=1

∫ ∞
−∞

dte−iq·(ri−rj)+iωt × 〈sµi (t)sνj (0)〉, (B.7)

with N being the total no. of lattice sites with i, j denoting the indices of the spins on located on

the lattice sites/edges. µ, ν correspond to the spin projections along the cartesian coordinates. From

Eq. (B.5), one finds the classical equation describing the precession of spins as,

Γ
d

dt
z = Hz. (B.8)

The general solution to the above Eq. (B.8) can be given as,

z(t) =
∑
α

cαψαe
−iωt, (B.9)

where Cα represent the amplitudes for the normal modes ψα with the solution to the equation given

below:

(iωαΓ +H)ψα = 0. (B.10)

It can be clearly seen that ωα = −ω−α with eigenvectors satisfying the equation,

ψ†−α(−iΓ)ψ−α = sgn(ω)αδαβ, (B.11)
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resulting in,

ψ†βHψα = sgn(ωα)ωαδαβ = |ωαδαβ|, (B.12)

where the spin-spin interaction energy should be diagonalized as,

U =
1

2

∑
α

ωαc
?
αcα, (B.13)

where 〈c?βcα〉 = δαβ/β|ωα| is nothing but the boltmann distribution average. Further using this the

above equation can be simplified to,

〈zk(t)zl(0)〉 =
∑
α

[ψα]k[ψα]l
β|ωα|

e−iωαt, (B.14)

here k, l = 1, 2, ...., 2N . While ψiα ≡ ([ψα]2i, [ψα]2i+1)T and ηµi ≡ (vµi , w
µ
i ). Using the above

equations, one obtains the expression for DSF as,

Sµνclassical(q, ω) =
S

N

N∑
i,j=1

e−iq·(ri−rj) ×
∑
α

(ηµi · ψiα)(ηµj · ψjα)?

β|ωα|
δ(ω − ωα). (B.15)

This result is however only valid for small fluctuations from the equilibrium state of si. But the above

analysis is very helpful in deriving a similar expression for DSF within the semi-classical or quantum

approach. Interested reader can refer to Ref. [187] for further analysis on quantum statistics. Here

in the next subsection we provide the brief details of the practical implementation of the DSF in our

code.
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[117] Götz S Uhrig and B Normand. “Magnetic properties of V O2P2O7 from frustrated interchain

coupling”. In: Physical Review B 58.22 (1998), R14705.

206
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[130] Tim Fischer, Sébastian Duffe, and Götz S Uhrig. “Adapted continuous unitary transformation

to treat systems with quasi-particles of finite lifetime”. In: New Journal of Physics 12.3 (2010),

p. 033048.
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