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Synopsis

Gauge/Gravity duality is a broad framework in theoretical physics in which strong cou-
pling phenomena in gauge theories for large rank of the gauge groups are mapped to
the dynamics of classical gravity in one higher dimensional space-times with prescribed
asymptotic boundary conditions. This thesis explores how this duality helps us to un-
derstand strongly coupled nonequilibrium physics and improves our understanding of the
phenomenology of nonequilibrium phenomena in general. Though at present we do not
know whether the gauge/gravity duality could apply to an arbitrary consistent four di-
mensional gauge theory, we can indeed hope to achieve a deep understanding of universal
phenomena in strongly coupled conformal gauge theories with gravity duals. We can also
argue that we can use this understanding to create useful phenomenological models for
general nonequilibrium phenomena like decoherence, relaxation and hydrodynamics at
sufficiently strong coupling.

The broader significance of the study comes from the fact that the gravity description
allows us to obtain the exact nonequilibrium evolution in the microscopic theory where av-
eraging is done only over the environmental degrees of freedom or the boundary conditions
but no approximation is done for the microscopic degrees of freedom and their dynamics.
Typically, we do not know how to refine the kinetic description systematically even when
it is valid, for instance we do not know how to evaluate the corrections to the relativistic
semiclassical Boltzmann equation systematically in case of gauge theories. Therefore, the
gauge/gravity duality indeed gives us an opportunity to gain novel understanding into
the origin of irreversibility in microscopic theories in terms of five-dimensional geometry.

Under the gauge/gravity duality five dimensional static black holes with appropriate
masses and charges in the classical theory of gravity map to equilibrium states of the dual
gauge theories at corresponding temperatures and chemical potentials. The temperature
of the equilibrium configuration in the gauge theory is actually identified with the Hawking
temperature of the black hole horizon and the chemical potential is precisely related to
the corresponding charge of the black hole. The thermodynamics of the black holes gives
us the phase diagrams of the dual gauge theories. The gauge/gravity duality also implies
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that any solution of the classical theory of gravity which has a regular future horizon
maps to an appropriate non-equilibrium state of the dual gauge theory with the final
equilibrium condition being given by the asymptotic static black hole geometry.

The fundamental requirement for setting up an instance of gauge/gravity duality
is a well-defined holographic renormalization prescription. In this prescription the fifth
dimension in the theory of gravity is interpreted as the scale of the dual gauge theory
and a formulation is developed through which we can extract the space-time dependent
expectation values of gauge-invariant local operators of the dual (nonequilibrium) state
from the corresponding five-dimensional geometry. This further allows us to define a
scheme for calculating how the anomalous dimensions of these operators and various
couplings run with the scale. Particularly, if the dual gauge theory is conformal, the
geometry in five dimensions is required to be asymptotically locally AdS. Under the
holographic renormalization scheme, the boundary metric becomes the four dimensional
metric in which the dual gauge theory lives while the boundary stress tensor becomes the
energy-momentum tensor of the corresponding state. The classical equation of motion
of gravity allows us to calculate the conformal (or Weyl) anomaly and also implies the
conservation of the energy-momentum tensor.

Gauge/gravity duality for conformal gauge theories defines a universal sector for
large rank of the gauge group and strong ’t Hooft coupling. This follows from the fact
that any two derivative theory of classical gravity which admits AdS5 ×X as a solution
with X being a Sasaki-Einstein manifold, has a consistent truncation to just pure Ein-
stein’s gravity in AdS5. Moreover, if the five-dimensional solution of pure gravity has a
regular future horizon, it also has a regular future horizon when lifted to the correspond-
ing solution of the untruncated theory. The universal sector in gauge gravity duality can
be defined as the dual of pure Einstein’s gravity in AdS5. Here the dynamics is universal
though the embedding of this sector in the dual gauge theory depends on the details of
matter content and couplings. It has been shown that solutions of pure gravity in AdS5

captures a huge range of strongly coupled nonequilibrium phenomena in the dual gauge
theories like decoherence, early time nonhydrodynamic behavior and also late time hydro-
dynamic behavior in the deconfined plasma phase. The underlying equations governing
these phenomena have to be universal for conformal gauge theories with gravity duals.
However, since gauge fields in the theory of gravity are turned off the dual states have
zero chemical potentials throughout their evolution.

In the first work described in this study, I have explored with Rajesh Gupta which
data in the gauge theory determines the dual five-dimensional spacetime geometry in
the universal sector. We have shown that when the boundary metric is flat, the bound-
ary stress tensor uniquely determines the regular geometry. Holographic renormalization
then implies that if the dual conformal gauge theory is living in flat space, all states in
the universal sector will be determined uniquely by the expectation value of the energy-
momentum tensor and its time evolution. This has not been completely obvious since the
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boundary stress tensor is not Cauchy data from the geometric point of view. However,
we have proved that in the Fefferman-Graham coordinates the boundary stress tensor de-
termines the dual geometry in a power series expansion in the radial coordinate. Further,
there can be two distinct type of pathological boundary stress tensors. The first type
which we call abcd (asymptotic boundary condition destroying) stress tensors are those
where in a radial tube the power series expansion can have zero radius of convergence. In
the other case, the power series expansion in the radial coordinate has a finite radius of
convergence but has a naked singularity where the Fefferman-Graham coordinate system
breaks down. When we have a regular geometry, the metric has only coordinate singular-
ity in the Fefferman-Graham coordinates such that at late times the limit of the domain
of validity of these coordinates coincides with the future horizon. This coordinate sin-
gularity can be sufficiently removed by translating to an appropriate coordinate system,
such that the full geometry now has a regular future horizon, which thus gets determined
uniquely by the energy-momentum tensor of the dual state.

In earlier works, it had been shown that one can get non-linear hydrodynamics
in the universal sector of the dual gauge theory from pure gravity in AdS5. This had
been achieved by constructing ”tubewise black brane solutions” in gravity, in which in
a given radial tube ending at a given patch in the boundary the geometry locally is a
boosted black-brane parametrized by the local hydrodynamic variables and this solution
is constructed in the derivative expansion where the expansion parameter is the ratio
between the typical spatio-temporal scale of variation of the hydrodynamic variables and
the mean free path given by the temperature of final equilibrium. The constraints in
Einstein’s equations gives us the non-linear hydrodynamic equations of the gauge theory
which contain systematic corrections to the conformal relativistic Navier-Stokes equation.
The transport coefficients appearing at all orders in the expansion can be fixed by requiring
that these solutions have regular future horizons. These solutions had been constructed
in the Eddington-Finkelstein coordinates where they are manifestly regular at the future
horizon.

In our work, we reproduce these solutions in the Fefferman-Graham coordinates.
The comparative advantage is that the constraints simplify and the construction of these
solutions is also manifestly Lorentz covariant. Moreover, one can construct these solutions
for an arbitrary conformal purely hydrodynamic energy-momentum tensor which can be
shown to be free of abcd type of pathology. One can also show by translating our solutions
to Eddington-Finkelstein coordinates in a manifestly Lorentz covariant way that for a
unique choice of transport coefficients at every order in the derivative expansion, the
solutions are free of naked singularities at the future horizon. Thus one can conclude
that we have states in the universal sector which are purely hydrodynamic such that the
energy-momentum tensor can be parametrized by the hydrodynamic variables which thus
uniquely specify the state and the dynamics even far away from equilibrium is described
by hydrodynamic equations of motion alone. Our method has been elegantly adapted by
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others in some non-conformal versions of gauge/gravity duality.

The second work described here and done in collaboration with Ramakrishnan Iyer,
has been motivated by the question how does the energy-momentum tensor alone deter-
mines the states and their dynamics in the universal sector. We first try to construct
such states in the weakly coupled regime using well-established techniques. It has been
shown earlier that perturbative nonequilibrium dynamics in gauge theories at high tem-
peratures can be reproduced exactly by a relativistic semiclassical Boltzmann equation
whose collision kernel involves fragmentation and two-body scattering phenomena. We
show that we can indeed construct special solutions of the Boltzmann equation which
are determined exactly by the energy-momentum tensor and its time evolution. We call
these conservative solutions. In fact these are generalizations of normal solutions which
are determined by hydrodynamic variables alone and had been constructed earlier in the
case of the Boltzmann equation and in more refined kinetic theories.

We then argue that these conservative solutions should exist even nonperturbatively
and also when we refine our description such that we are averaging only over the environ-
mental degrees of freedom and the boundary conditions specifying the radiation at infinity
but not doing any approximation for the microscopic degrees of freedom and their dynam-
ics. We also naturally identify the conservative solutions with the universal sector at large
’t Hooft coupling and rank of the gauge group as that explains why the states there are
determined by energy-momentum tensor alone. We also confirm that using gauge/gravity
duality one can indeed construct states which are determined by the energy-momentum
tensor alone perturbatively in 1/

√
λ and 1/N , where λ is the ’t Hooft coupling and N is

the rank of the gauge group, away from the universal sector limit.

We further reinterpret the tubewise black brane solutions as the duals of normal
solutions at large ’t Hooft coupling and rank of the gauge group. Using this, we are
then able to build a complete framework for the entire range of phenomena constitut-
ing the universal sector by systematically constructing the equation of motion for the
energy-momentum tensor which supplementing the conservation condition gives its com-
plete evolution. Any solution to this equation which is conserved can be claimed to give
geometries in the bulk which have future horizons regular up to given orders in two ex-
pansion parameters which measures generic departure from equilibrium for conservative
solutions. This framework has sufficient predictive power to determine all states in the
universal sector (even beyond hydrodynamics) given that the purely hydrodynamic states
up to second order in the derivative expansion are known. We also make preliminary
studies on how irreversibility emerges through the gravity description for long time scales
of observation.

In the third work, described here we shift our focus to a novel nonrelativistic limit
of the gauge/gravity duality. Nonrelativistic versions of the gauge/gravity duality had
been proposed earlier with the hope of being able to design or simulate simple systems
where gauge/gravity duality may actually work concretely. In the same vein, it may be
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useful to obtain some universal features of nonequilibrium nonrelativistic dynamics in
these systems. Here we focus on a particular nonrelativistic scaling limit of the relativis-
tic conformal group which retains the same number of generators, permits an infinite
dimensional extension and is called the Galilean Conformal Algebra (GCA). This algebra
had been obtained in this way earlier and some attempts had been made to construct
Newton-Cartan like gravity which may give duals of GCA invariant microscopic theories.

In this work, we show how one can construct higher derivative hydrodynamics which
is covariant under GCA. From our analysis of the dependence of the shear viscosity and
the higher hydrodynamic transport coefficients on the temperature and pressure, we are
also able to glean important insights into the structure of GCA invariant theories which
allow usual thermalization and how they may be obtained from relativistic conformal
theories or their dual classical theories of gravity. In the future, the analogue of the
universal sector in these dynamical systems obtained by taking the limit of gauge/gravity
duality correctly could be easier to solve due to the appearance of infinite dimensional
symmetry, so this work may be an important step in this direction.

After presenting these works, we would mention future directions of research which
could be immediately attempted and where we may hope to gain valuable insights into
broader aspects of the origins of irreversibility based on the novel questions and more
sharply defined older questions unraveled by our investigations.
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Chapter 1

Introduction

1.1 Motivation

String theory is a very promising candidate for quantum theory of gravity. Probably,

more correctly string theory promises us a complete, unified and simplified microscopic

foundation for the relatively macroscopic theories like the standard model and Einstein’s

theory of gravity which explain most of the phenomena observed today. Over the last

two decades we have indeed tested the mathematical framework of string theory very

stringently, for instance we have successfully counted the degrees of freedom in order to

explain the entropy of certain black holes in terms of an appropriate ensemble of states.

However, we have yet to understand what quantizing gravity really means or how string

theory solves conceptual problems like information loss through Hawking radiation which

occur when quantum mechanics confronts Einstein’s theory of gravity.

String theory, has however expanded the horizons of theoretical physics, by giving

us new frameworks to deal with a variety of many longstanding problems in quantum field

theories and has also given us new insights into nonperturbative aspects of quantum field

theories. Recently, we have found out that there are also sufficient grounds to believe that

string theory will give us new insights into a variety of new and old open problems like

understanding non-Fermi liquids, high temperature superconductivity and turbulence. In

this thesis, we will be concerned with how string theory gives us new frameworks and

tools to deal with many fundamental problems of nonequilibrium physics, for instance
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CHAPTER 1. INTRODUCTION

the origin of irreversibility. We will be mostly concerned with nonequilibrium physics of

a certain class of gauge theories, however we will argue that we would be able to obtain a

broader picture of the phenomenology of nonequilibrium phenomena through our study.

Nonequilibrium phenomena of Quantum Chromodynamics (QCD), the microscopic

theory underlying nuclear physics, has recently been accessible experimentally through

Relativistic Heavy Hadron Collider (RHIC). There are strong indications, as we will dis-

cuss later that string theory will be able to give us the underlying fundamental equations

for nonequilibrium processes that have been observed here and will be observed in future

experiments. At present, in fact, there is no other tool to even model real time phenom-

ena in gauge theories in the regime of strong coupling. The quark-gluon plasma that

has been experimentally observed at RHIC at a temperature of about 4 trillion degrees

Celsius, which is higher than the temperature needed to melt protons and neutrons into

a soup of quarks and gluons, behaves like a strongly coupled nearly conformal fluid with

surprisingly small viscosity. The tools offered by string theory are certainly relevant for

these and some other future experiments.

There is, in fact, an even more deeper reason to take the tools offered by string the-

ory to study nonequilibrium phenomena very seriously. For very few systems in nature,

we can develop successful quantum kinetic descriptions to describe nonequilibrium pro-

cesses even if the microscopic constituents of the system are weakly coupled to each other.

In particular, for gauge theories we do not know how to refine the kinetic description of

nonequilibrium dynamics beyond the relativistic semiclassical Boltzmann equation, which

can be shown to be exactly equivalent to the perturbative microscopic description. At

strong coupling, a kinetic theory becomes even harder to construct because often we do

not know the quasiparticles which are the sufficiently stable weakly interacting micro-

scopic states, in terms of which we can obtain such a description. String theory, through

gauge/gravity duality gives us exact equations underlying nonequilibrium processes of a

large class of conformal gauge theories. We will also argue that we can use this to construct

phenomenological equations underlying nonequilibrium processes such that they will be

equivalent to an exact microscopic treatment for a broader class of theories like the QCD.
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1.1. MOTIVATION

By being equivalent to exact microscopic treatment we mean that we will only average over

environmental degrees of freedom or boundary conditions specifying exchange of energy,

momentum and charge, but not over the microscopic degrees of freedom or dynamics like

in the case of kinetic approximations. It is therefore, no surprise that we get new insights

and also able to sharply define some old questions pertaining to the origin of irreversibility

in general, through our study.

Gauge/gravity duality is one of the major developments in string theory in the last

decade. Gauge/gravity duality is a concrete realization of the holographic principle which

states that the degrees of freedom of quantum gravity reside at the boundary of spacetime

and has been invoked earlier to solve many puzzles of quantum gravity conceptually.

When the ’t Hooft coupling and rank of the gauge group of the gauge theory become

large, the gauge theory becomes intractable by traditional methods of quantum field

theory. However, by gauge/gravity duality, states in the gauge theory get mapped to

smooth solutions of classical gravity in one higher dimensional spacetimes with specific

asymptotic behavior. This theory of classical gravity is given by Einstein’s equation with

usually minimally coupled matter, the content of which depends on the details of the dual

gauge theory.

We will use the framework of gauge/gravity duality to study nonequilibrium physics

of a class of strongly coupled conformal gauge theories. We will be able to obtain a geo-

metric description of nonequilibrium processes of these theories in terms of nonequilibrium

dynamics of black holes in certain class of five dimensional spacetimes.

The plan for rest of this chapter is as follows. We will first introduce the reader

to gauge/gravity duality, in particular how it enables us to obtain the dynamics of the

energy-momentum tensor exactly in nonequilibrium states. Then we will briefly discuss

how equilibrium states are described by stationary black holes and obtain first-order

transport coefficients in the gauge theory through long wavelength and low frequency

fluctuations of these black holes. We will follow this by a discussion on how we can obtain

a universal sector in this class of gauge theories and describe how the dynamics in this

universal sector of states features almost all basic nonequilibrium processes. Finally, we
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CHAPTER 1. INTRODUCTION

will outline the rest of the thesis in which we will study the universal sector in detail to

obtain the fundamental equations underlying basic nonequilibrium processes in these and

other theories.

1.2 Gauge/gravity duality : Dictionary and holographic

renormalization

Gauge/gravity duality in the regime of strong ’t Hooft coupling and for large rank of the

gauge group maps states in the field theory to classical solutions of gravity in one higher

dimension. Holographic renormalization gives us a scheme for defining the spacetime

dependent expectation values of operators in the dual states along with the sources which

couple these operators to the parent theory. This is necessary and sufficient to define the

dual gauge theory through gravity in this regime.

In the setting of holographic renormalization, one may visualize the field theory

state to be living in the boundary of space-time with the radial direction being the scale

of the field theory. Moreover, as we get closer to the boundary we go towards the UV

regime of the field theory while going inwards would be approaching the IR regime of the

field theory. In fact this simple picture often serves as a useful guide for modeling classical

geometries dual to the vacua of some confining gauge theories including QCD, when we

lack a fundamental derivation. Such a picture is also useful in the context of nonrelativistic

versions of gauge/gravity duality. In terms of the on-shell action of classical gravity which

typically diverges, putting a cutoff in the radial coordinate near the boundary includes

more volume of the spacetime, so it follows from the identification of the radial coordinate

with the scale of the field theory that UV divergences of the field theory correspond to

IR divergences of the dual theory of gravity and vice versa. So, gauge/gravity duality is

an instance of UV/IR duality between two theories.

Here we will confine our discussion mainly to conformal gauge theories with gravity

duals. For conformal gauge/gravity duality the classical solutions of gravity dual to field

theory states are required to be asymptotically AdS spacetimes. This conformal version

of the gauge/gravity duality, which historically had been developed first, is also called as
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1.2. GAUGE/GRAVITY DUALITY : DICTIONARY AND HOLOGRAPHIC
RENORMALIZATION

the AdS/CFT correspondence.

A complete prescription for holographic renormalization has now been developed

for these asymptotically AdS spacetimes which are dual to the CFT states at strong

’t Hooft coupling and large rank of the gauge group. In conformal field theories, scale

transformation along with Poincaré transformations form a larger group which is called

the conformal group. At the quantum level, the conformal symmetries could be realized

in the theory in a subtle manner which involves adding central charges to the conformal

algebra and allowing anomalous transformation of the energy-momentum tensor under the

conformal algebra. We will also see how holographic renormalization allows us to obtain

these quantum effects in the boundary conformal field theory through solutions of classical

gravity. In our discussion we will focus mostly on the dynamics of the energy-momentum

tensor operator.

1.2.1 Asymptotically anti-de Sitter spacetimes

Five dimensional anti-de Sitter (AdS5) spacetime is a maximally symmetric solution of

Einstein’s equation in presence of a negative cosmological constant,

RMN −
1

2
RGMN = ΛGMN , (1.1)

in five spacetime dimensions. It has constant negative curvature such that,

RPQRS =
1

l2
(GPRGQS −GPSGQR), (1.2)

where l is called the radius of AdS5 and is related to the cosmological constant through

the relation

Λ = − 6

l2
. (1.3)

The AdS5 metric can be written in the Fefferman-Graham coordinates as follows

ds2 =
l2

ρ2

(
dρ2 + ηµνdz

µdzν
)
. (1.4)

In these coordinates AdS5 space is conformal to the five dimensional upper half plane

(UHP) with the radial coordinate ρ satisfying ρ ≥ 0 and ρ = 0 being the boundary. It is
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conformal to the UHP, in the following sense that the metric has a second order pole at

the boundary and does not yield an induced metric at the boundary. However one can

define a conformal structure at the boundary by using a defining function r(ρ, z) which

is positive definite in the interior but has a first order zero at the boundary. Since this

defining function could be otherwise arbitrary, one can define a boundary metric g(0) up

to conformal transformations through the relation

g(0) = r2G|ρ=0. (1.5)

For instance, if one chooses r = ρ, then g(0)µν(z) = ηµν . On the other hand, ρew(z) also

satisfies the property of a defining function and yields g(0)µν(z) = e2w(z)ηµν . We can thus

see that we can define the boundary metric only up to conformal transformations.

We define asymptotically AdS5 spacetime [1, 2] as a spacetime where the metric

takes the following form in the Fefferman-Graham coordinates,

ds2 =
l2

ρ2

(
dρ2 + gµν(z, ρ)dzµdzν

)
, (1.6)

such that this metric is non-singular upto a finite radial distance from the boundary.

Here non-singular implies even absence of coordinate singularities. Further, gµν(z, ρ)

should have a smooth limit at the boundary where ρ → 0 and should take the following

form,

gµν(z, ρ) = g(0)µν(z) + g(2)µν(z)ρ2 + g(4)µν(z)ρ4 + g(4)µνρ
4log (ρ2) + ... . (1.7)

It can be shown that the form of the metric above yields a solution to Einstein’s equation

in presence of a negative cosmological constant in five dimensions.

The above definition of asymptotically AdS5 spacetime can be motivated from the

fact that in such spacetimes one can make a precise one-to-one correspondence [3, 4]

between conformal transformations at the boundary and bulk diffeomorphisms which pre-

serve the form of the metric given by Eqs. (1.6) and (1.7). Under such diffeomorphisms,

the gµν in the five dimensional Fefferman-Graham metric (1.6) transform infinitesimally

as

δgµν(z, ρ) = 2σ(z)(1− ρ∂ρ)gµν(z, ρ) +∇µaν(z, ρ) +∇νaµ(z, ρ), (1.8)

8
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where ∇ is the covariant derivative constructed from the metric g and aµ = gµνa
ν is

determined by σ(z) through the following relation

aµ(z, ρ) =
1

2

∫ ρ

0

dρ
′
gµν(z, ρ

′
)∂νσ(z, ρ

′
). (1.9)

We can check that under these bulk diffeomorphisms, the boundary metric g(0) undergoes

a Weyl transformation given by

δg(0)µν(z) = 2σ(z)g(0)µν(z). (1.10)

Therefore in asymptotically AdS5 spacetimes we can realize the SO(4, 2) conformal sym-

metries of the boundary theory kinemetically as the asymptotic symmetry group. For

instance, the uniform scale transformation z → λz, at the boundary with λ being a

constant gets lifted to ρ→ λρ, z → λz in the bulk.

Henceforth, we will also choose our units such that l = 1, for the sake of convenience.

1.2.2 Fields in asymptotically AdS5 spacetimes

We begin to study gauge/gravity duality at the dynamical level by looking at behavior

of fields in asymptotically AdS5 spacetimes. In the Fefferman-Graham coordinates in-

troduced in the previous subsections any field Φ(ρ, z) in the bulk is required to have an

asymptotic expansion of the following form

Φ(z, ρ) = ρα(Φ(0)(z) + Φ(2)(z)ρ2 + ...+ Φ(2n)(z)ρ2n (1.11)

+Φ(2n)(z)ρ2n log(ρ2) + ...).

We note that the above simply generalizes the asymptotic form of gµν(z, ρ) in the full five

dimensional metric.

Now we may impose the equations of motion on the bulk fields Φ(z, ρ) which in-

clude gµν(ρ, z) in the Fefferman-Graham metric. These equations of motion could be just

linearized perturbation about the AdS5 background or it could be the full nonlinear equa-

tions of classical gravity. In either case, the field equations of motion are second order

differential equations in ρ, so we have two independent solutions which have asymptotic

9
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behaviors as ρα and ρα+2n respectively at the leading orders. In most of the examples

we will be discussing here, n and 2α are non-negative integers, though we can readily

generalize beyond these cases.

The asymptotic form (1.11) of the bulk fields Φ(z, ρ) including gµν(z, ρ) in the

Fefferman-Graham coordinate system is consistent with the field equations of motion

whether we consider the linearized perturbations about the AdS5 background or the full

nonlinear equations of the theory of gravity. The universal features are

• All the coefficients in the asymptotic expansion (1.11), Φ(2k)(z), for 0 < k < n are

determined algebraically in terms of the coefficients Φ(0)(z) and their finitely many

derivatives up to order 2k.

• The coefficient Φ(2n)(z) of the asymptotic expansion remains undetermined by the

equations of motion. For the linearized equations of motion, this simply follows

from it being the leading term in the solution which is linearly independent of the

one whose leading behavior is ρα.

• The coefficient Φ(2n)(z) is also an algebraic function of Φ(0)(z) and its derivatives.

Henceforth, we will call

• Φ(0)(z) as the non-normalizable mode,

• Φ(2n)(z) as the normalizable mode, and

• Φ(2n)(z) as the anomaly coefficient.

We have made slight abuse of notation here because we are using the word mode for

coefficients of an expansion and not for solutions of the linearized equation of motion, but

indeed the non-normalizable and the normalizable modes give the leading terms of the

asymptotic expansion of two linearly independent solutions of linear perturbations about

AdS5 spacetime.

10
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In the case of gµν(ρ, z) in the Fefferman-Graham metric, for instance, the boundary

metric g(0)µν(z) is the non-normalizable mode, g(4)µν(z) is the normalizable mode and

g(4)µν(z) is the anomaly coefficient.

The other very important general observation is that, for linearized perturbation

around AdS5, the normalizable mode gets fixed in terms of the non-normalizable mode if

we demand regularity of the solution in the interior of AdS5. However, the normalizable

mode is not a local functional of the non-normalizable mode. This is also true if we solve

the equations of motion order by order in perturbation in some bulk coupling constant.

There is an appropriate generalization of this result when we solve the full non-linear

equations of motion by perturbing around a non-trivial background like the AdS black

brane, but we will come back to this later.

1.2.3 The dictionary of gauge/gravity duality

The fundamentals of the gauge/gravity dictionary were developed originally in [5, 6, 7].

This dictionary can be built around the following tenets :

1. For every bulk field Φ there exists a corresponding gauge invariant local operator

in the gauge theory, which we denote as OΦ. In particular, the metric in the bulk

corresponds to the energy-momentum tensor of the gauge theory and the bulk gauge

fields correspond to the boundary symmetry currents. This one-to-one correspon-

dence between the bulk field and the local gauge-invariant operator can be made

from pure kinematic considerations by studying how they belong to representations

of the SO(4, 2) group, and the specific identification of conformal transformations

at the boundary with the appropriate generators of asymptotic symmetry group of

asymptotically AdS5 spacetimes discussed earlier.

2. The value of the non-normalizable mode Φ(0)(z) of the asymptotic expansion of

the bulk field Φ(ρ, z) is identified with the source which couples the operator OΦ

with the parent gauge theory. The boundary metric, for instance being the non-

normalizable mode for gµν(ρ, z) in Fefferman-Graham metric, is identified as the

metric on R(3, 1) where the gauge theory lives.

11
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3. The partition function of the theory of gravity with the non-normalizable modes

Φ(0)(z) specified as boundary condition for all the bulk fields Φ, corresponds to the

generating functional of correlation functions of all local gauge-invariant operators

OΦ. We can put this compactly as

ZString[Φ(0)] =

∫
Φ≈Φ(0)

DΦ exp(−S[Φ]) =< exp

(
−
∫

Φ(0)OΦ

)
>QFT . (1.12)

Further at strong ’t Hooft coupling and for large rank of the gauge group, the dual

string theory can be approximated by a classical theory of gravity which is usually

a supergravity theory, so that the relation above in this limit reduces to

SSupergravity,on−shell[Φ(0)] ≈ − < exp

(
−
∫

Φ(0)OΦ

)
>QFT . (1.13)

Since this saddle point approximation becomes exact at strong ’t Hooft coupling and

large rank of the group, any smooth asymptotically AdS5 solution of the equations

of motion of gravity will be dual to an appropriate state in the gauge theory.

These tenets, however, are not sufficient for gauge/gravity duality. One important reason

for insufficiency is that the on-shell bulk action of gravity is usually divergent. To give

meaning to the gauge/gravity duality we have to now implement holographic renormal-

ization.

1.2.4 Holographic renormalization : General procedure and re-
sults

We now outline the general procedure for holographic renormalization [8, 9, 10, 11, 12]

which makes the gauge/gravity dictionary mentioned in the previous subsection concrete

(please see [13] for a review). This procedure consists of the following steps.

1. Regularization : The most convenient way to regularize the on-shell classical

action is to evaluate the Lagrangian density and the volume density of spacetime

in Fefferman-Graham coordinates and restrict the range of integration of the radial

coordinate ρ, for ρ ≥ ε, with ε/l being a small parameter. We would like to remind
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the reader that the classical action of gravity also should contain boundary terms

so that we can define a variational principle for the bulk fields Φ(z, ρ) with the

Dirichlet boundary condition at the boundary schematically denoted as Φ ≈ Φ(0)

and has been mentioned in the previous subsection as a basic requirement of the

gauge/gravity dictionary which relates the on-shell bulk action of gravity with the

generating functional of QFT correlators. For example, in case of the bulk metric

we require the Gibbons-Hawking term. These boundary terms have to be evaluated

at ρ = ε for this regularization procedure.

The full classical on-shell action with the boundary terms will now have a finite

number of pieces which will diverge as ε→ 0 and these can be organized in the form

Sreg,on−shell[Φ(0)(z), ε] =

∫
ρ=ε

d4z
√
g(0)(z)[ε−νa(0)(z) (1.14)

+ε−ν+1a(2)(z) + ...− log ε a(2ν)(z) +O(ε0)],

where ν is a positive number that only depends on the scaling dimensions of the

dual operators. Further,

(a) a(2k)(z) are algebraic functions of the non-normalizable modes Φ(0)(z) and their

finitely many derivatives,

(b) these divergences do not depend on the normalizable modes Φ(2n)(z).

The logarithmically divergent term can be shown to be related to the conformal

anomaly of the dual field theory.

2. Functional inversion : In this step we invert the asymptotic series (1.11) func-

tionally to obtain the non-normalizable mode Φ(0)(z) as a functional of Φ(z, ε). This

is clearly possible only up to certain orders of ε as Φ(z, ε) is also determined by the

normalizable mode Φ(2n)(z). Up to certain orders of ε the functional inversion will

always be possible and further all the coefficients of expansion in ε will be algebraic

functions of the non-normalizable modes Φ(0)(z) and their finitely many derivatives.

3. Getting counterterms : We can finally remove all the pieces of the on-shell action

which diverge as ε → 0 by rewriting all the divergent coefficients a(2k)[Φ(0)(z)] as
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a(2k)[Φ(z, ε), ε] and then adding the counterterm action to the regularized action

which removes all the divergent pieces. This counterterm action should simply be

Sct[Φ(z, ε), ε] = −divergent terms of Sreg,on−shell[Φ(0)(z); ε]. (1.15)

This counterterm action thus lives on the regulated surface ρ = ε where the induced

metric is γµν = gµν(z, ε)/ε. Further this action by construction is covariant and can

be expanded in powers and logarithm of the scale ε with the coefficients being local

functionals of the fields living on the regulated surface. This exactly captures the

nature of the counterterm action of the dual field theory which can also be expanded

into powers and logarithm of the scale with the coefficients being local covariant

functionals of the operators defined at the same scale. The scheme dependence also

arises in both cases through the freedom of adding local covariant terms of O(ε0)

such that they give finite contributions when the cutoff is removed by taking the

limit ε→ 0.

4. Defining the renormalized action by taking limit and removing cutoff :

The final step of the procedure is to define the renormalized on-shell bulk action

which is now identified with the generating functional of QFT correlators giving the

expectation values of local gauge-invariant operators in CFT states and correlation

functions in a well defined scheme. This renormalized action can be defined as

follows. We first denote the cutoff-dependent action subtracted of the divergent

pieces as Ssub such that

Ssub[Φ(z, ε); ε] = Sreg,on−shell[Φ(0)(z); ε] + Sct[Φ(z, ε); ε]. (1.16)

Now the renormalized action can be defined as

Sren[Φ(0)] = lim
ε→0

Ssub[Φ(z, ε); ε]. (1.17)

To obtain expectation values of operators and correlation functions we actually need both

Ssub which is a functional of the bulk fields and Sren which is a functional of the sources
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because we need to perform functional differentiations before taking ε → 0 limit. The

precise gauge/gravity dictionary is now

Sren[Φ(0)] = − < exp

(
−
∫

Φ(0)OΦ

)
>QFT . (1.18)

The general results for expectation values of operators and n-point correlation func-

tions obtained through holographic renormalization are.as follows.

1. Expectation values of local gauge-invariant operators : It follows from (1.18)

and the first basic tenet of the gauge/gravity dictionary that

< OΦ >=
1
√
g(0)

δSren
δΦ(0)

. (1.19)

Using the relation (1.17) it follows that

< OΦ >= lim
ε→0

(
1

ε4−α
1
√
γ

δSsub
δΦ(z, ε)

)
. (1.20)

Explicit evaluation yields

< OΦ >= ZΦ(2n)(z) + C(Φ(0)(z)). (1.21)

Here Z is a numerical coefficient which is scheme independent and C(Φ(0)) is a

scheme dependent local functional of the sources Φ(0) so that it yields contact terms

to multiple point correlation functions which can be obtained by further functional

differentiation with respect to the sources Φ(0). This is true whether we are studying

linearized fluctuations in response to sources about the AdS5 spacetime correspond-

ing to the vacuum of the dual theory, or an arbitrary smooth asymptotically AdS5

solution of classical gravity dual to a state in the CFT.

In particular, it turns out that by an appropriate choice of scheme [9],

< tµν >= g(4)µν +
3

2
g(4)µν −

1

8
g(0)µν [(Tr g(2))

2 − Tr g2
(2)] (1.22)

−1

2
(g2

(2))µν +
1

4
g(2)µνTr g(2),

where all traces involve appropriate raising or lowering with the boundary metric

g(0)µν or its inverse. Using equations of motion g(2)µν and g(4)µν get determined as
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a local covariant functional of g(0)µν , the explicit forms of which will be given soon.

The above also needs to be multiplied by 1/4πGN , but we will drop this prefactor.

This will contribute to the dependence of the energy-momentum tensor on the rank

of the gauge group. We observe that < tµν > indeed conforms with the general form

of < OΦ > as given in (1.21).

2. Correlation functions : The correlation functions can be obtained from the exact

one-point function by functional differentiation. Using (1.21),we obtain,

< OΦ(x1)...OΦ(xn) >= (−1)n
1

Z

δΦ(2n)(z)

δΦ0(x1)...δΦ(0)(xn)
|Φ0=0 + contact terms, (1.23)

where the contact terms are scheme dependent.

We can determine the vacuum expectation value of Φ(2n) as a functional of the

source Φ(0) using bulk perturbation theory through the solution for Φ(ρ, z) which

is determined in the bulk using an arbitrary source Φ(0)(z) and requiring it to be

regular in the interior. At each order in the perturbation expansion, the asymptotic

form of Φ(ρ, z) takes the same form as in (1.11), however the functional dependence

of Φ(2n) on Φ(0) is truncated up to a given polynomial order in Φ(0). To obtain two-

point function for example, it would be sufficient to know the linear dependence of

the expectation value of the operator on the source. In fact, the two point function

would basically be the ratio of the normalizable and the non-normalizable mode in

the solution of the equations of linearized fluctuation about AdS5.

1.2.5 Trace anomaly and the Ward identity for energy-momentum
conservation

The dynamics of the energy-momentum tensor operator in conformal field theories has

a lot of subtleties at the quantum level. At the classical level, the energy-momentum

tensor transforms homogeneously under conformal transformations but at the quantum

level it picks up inhomogeneous pieces which are just c-numbers (spacetime functions).

Also, the energy-momentum tensor in conformal field theories is classically traceless, but

at the quantum level it is not and its trace is called the trace anomaly. These have their
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origins in the fact that the conformal algebra at the quantum level itself gets modified

by central charges. The central charges fix the transformation of the energy-momentum

tensor. Conversely we can know the central charges by obtaining the trace anomaly.

The conformal algebra for four dimensional quantum field theories can have two central

charges. In four dimensions, further, the inhomogeneous pieces in the transformation of

energy-momentum tensor and the trace anomaly occur only when appropriate curvature

invariants constructed from the background metric do not vanish. It is remarkable that

all these subtleties can be reproduced by classical gravity in five dimensions holographi-

cally. The conservation of energy and momentum, however, usually does not suffer from

anomalies in quantum field theories and this is also reproduced unaltered holographically.

We will first obtain the trace anomaly and the Ward identity for energy-momentum

conservation holographically. These follow from solving the equations of motion of gµν in

the Fefferman-Graham metric asymptotically. The general result is that the Ward iden-

tities, with or without anomalies, can always be determined by solving the equations of

motion asymptotically. In the previous subsection we have mentioned that we can always

find a scheme such that

< tµν >= g(4)µν + a local covariant functional of the boundary metric.

We have also mentioned in subsection 2 that solving the equations of motion asymptoti-

cally do not determine g(4)µν completely, but they do determine the trace and divergence

of g(4)µν . Thus we obtain the trace anomaly and the Ward identity for conservation of

energy and momentum respectively.

As we will see in detail in Chapter 3, equations of motion of classical gravity for gµν in

the Fefferman-Graham metric can be decomposed into a equation for the radial evolution

in the boundary metric, which is two-derivative with respect to the radial coordinate and

a pair of constraints which are scalar and vector in structure and single-derivative with

respect to the radial coordinate. We use the power series ansatz (1.7) for gµν and expand

the constraint equations order by order in powers of the radial coordinate. If the equations

of motion are just Einstein’s equations with a negative cosmological constant, the first
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non-trivial equations in the Taylor expansion of the radial evolution equation yields [9]

g(2)µν =
1

2

(
Rµν −

1

6
Rg(0)µν

)
. (1.24)

The radial equation also determines the anomaly coefficient g(4) as [9]

g(4)µν =
1

8
RµνρσR

ρσ +
1

48
∇µ∇νR−

1

16
∇2Rµν (1.25)

− 1

24
RRµν + (

1

96
∇2R +

1

96
R2 − 1

32
RρσR

ρσ)g(0)µν .

The radial equation leaves g(4)µν undetermined. The first non-trivial equations in the

Taylor expansion of the vector and scalar constraints give the divergence and trace of

g(4)µν respectively. Using (1.22) we can convert these to obtain the divergence and trace

of tµν which are [8, 9]

∇µtµν = 0, (1.26)

Tr t =
1

4
[(Tr g(2))

2 − Tr g2
(2)], (1.27)

where Tr implies appropriate raising or lowering with the boundary metric g(0)µν or its

inverse, ∇ is also the covariant derivative constructed from g(0)µν and g(2)µν is as given

by (1.24). The first equation above implies the Ward identity for energy-momentum

conservation. We can rewrite the second equation as,

Tr t =
1

2
(E4 + I4) , (1.28)

where

E4 =
1

64

(
RµνρσRµνρσ − 4RµνRµν +R2

)
, (1.29)

is the Euler density in four dimensions and

I4 = − 1

64

(
RµνρσRµνρσ − 2RµνRµν +

1

3
R2

)
, (1.30)

is a four dimensional conformal invariant. The coefficients of each of these terms yield the

appropriate central charges which turn out to be exactly the same as in weakly coupled

N = 4 super Yang-Mills theory, indicating a non-renormalization theorem for protection

18



1.2. GAUGE/GRAVITY DUALITY : DICTIONARY AND HOLOGRAPHIC
RENORMALIZATION

of these central charges for this theory, and universality for all conformal field theories

with gravity duals at strong ’t Hooft coupling and large rank of the gauge group.

To obtain the transformation of the energy-momentum tensor under S0(4, 2) trans-

formations we first simply calculate how the coefficients of asymptotic expansion of

gµν transform under bulk diffeomorphisms which preserve the asymptotic form of the

Fefferman-Graham metric (with (1.8) and (1.9) as consequences) and then obtain the

transformation of < tµν > using (1.22). Doing these we obtain [9],

δ < tµν >= −2σ < tµν > −2σg(4)µν +
1

4
∇ρσ[∇ρRµν −

1

2
(∇µRνρ +∇νRµρ) (1.31)

−1

6
Rg(0)µν ] +

1

48
(∇µσ∇νR +∇νσ∇µR) +

1

12
R(∇µ∇νσ −∇2σg(0)µν)

+
1

8
(Rµν∇2σ − (R ρ

µ ∇ρ∇νσ +R ρ
ν ∇ρ∇µσ) + g(0)µνRρκ∇ρ∇κσ).

Finally, substituting (1.25) above in (1.31), we obtain the conformal transformation of

the energy-momentum tensor. We readily see that if the boundary metric is flat, the

energy-momentum tensor transforms homogeneously under conformal transformations.

The above transformation is just the four-dimensional generalization of the relatively well

known result for the two dimensional conformal energy-momentum tensor in conformal

field theories given by

δ < tµν >=
c

12
(∇µ∇νσ − g(0)µν∇2σ), (1.32)

where c is the central charge of the Virasoro algebra and g(0)µν is the background metric

on which the two dimensional theory lives.

Specializing to scale transformations so that σ appearing in (1.31) is a constant,

we obtain the renormalization group flow of the energy-momentum tensor. The same

procedure can be applied to all other operators. That we need to solve the equations

of motion only asymptotically should have been obvious in hindsight, because we only

need the ultraviolet behavior of the theory to obtain renormalization group flow and the

ultraviolet in the field theory corresponds to the asymptotic region in the bulk.
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1.3 Gauge/gravity duality at finite temperature : Equi-

librium, quasinormal modes and transport coef-

ficients

Gauge/gravity duality at finite temperature is, in principle, derivable from the dictionary

at zero temperature discussed in the previous section. However, it is possible to approach

this more intuitively from the gravity point of view and then verify or test the consistency

of the rules at finite temperature. We can also generalize to the case where we have finite

chemical potential however we will not have much to say about this here.

We know that stationary black holes classically behave like thermodynamic objects

such that one can define thermodynamic functions and identities on the space of stationary

black hole solutions [14, 15]. For stationary black holes which are solutions of Einstein-

Maxwell theory, the surface gravity on the black hole horizon can be identified with the

temperature, the area of the horizon can be identified with the entropy, the mass of the

black hole can be identified with the total internal energy. Moreover, these black holes

also behave very much like equilibrium states dynamically. For instance, for all dynamical

processes in which the black hole interacts with gravitational radiation or minimally

coupled well behaved matter, the event horizon can only increase in area monotonically, in

perfect agreement with the fact that it can be identified with the entropy. Similarly, for any

dynamical process at sufficiently late times the black hole hole event horizon should have

uniform surface gravity, which we can reword as coming to thermal equilibrium. These

thermodynamic properties also belong to black holes in asymptotically AdS5 spacetimes

which are solutions of Einstein’s gravity with a negative cosmological constant, minimally

coupled to well behaved matter. It would thus be natural to identify these five-dimensional

black holes with equilibrium states of the dual gauge theory.

Five dimensional black holes in asymptotically AdS5 spacetimes can have many

horizon topologies. It turns out that the horizon topology is the same as the topology

of the boundary. Gauge/gravity duality fixes the topology of the boundary to be R(3, 1)

and boundary metric to be the Minkowski metric ηµν because here we are interested in

studying the dual gauge theory in Minkowski space time. So, the appropriate black hole
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solution is

ds2 = −r2f(r)dt2 +
dr2

r2f(r)
+ r2(dx2 + dy2 + dz2), f(r) = 1− r4

0

r4
, (1.33)

where r = r0 is the location of the three dimensional planar horizon at a given moment of

time. One can consider a larger family of solutions by boosting the boundary coordinates

(t, x, y, z). We can replace dt by uµdx
µ, where uµ is a timelike unit vector in Minkowski

space such that uµuνηµν = −1, so that we achieve Lorentz covariant parametrization.

We can construct a covariant projection tensor, Pµν = uµuν + ηµν , which projects in the

spatial slice orthogonal to uµ. Using these, we can readily construct a larger family of

solutions given by

ds2 = −r2f(r)uµuνdx
µdxν +

dr2

r2f(r)
+ r2Pµνdx

µdxν , f(r) = 1− r4
0

r4
. (1.34)

This family of solutions for reasons we will not mention here, are known as boosted black

brane solutions. One can easily see why such a family of solutions parametrized by three

velocities in the boost uµ and r0 exist in the following way. For large r which is the

asymptotic region, f(r) ≈ 1 and the solution (1.33) becomes pure AdS5 space. The

full SO(4, 2) asymptotic symmetries are broken to SO(3), the group of spatial rotations

in x, y, z coordinates in the interior. Among the symmetries broken by the solution,

the boost and the scale transformation form the generators of the maximally commuting

subgroup of broken symmetries. We can thus form a family of solutions by applying

boost and scale transformations to the solution (1.33). Applying scale transformations

(r → r/λ, xµ → λxµ), we generate a solution which takes the same form as (1.33) with

the new horizon at r0/λ. On applying boost to the boundary coordinates, we arrive at

the most general form of the metric given by (1.34).

We can convert the boosted black brane metric (1.34) into Fefferman-Graham co-

ordinate system, in which the metric has no coordinate singularity till the horizon. We

will give explicit form of this metric in Chapter 3. We also note that when the boundary

metric is ηµν , the expectation value of the energy-momentum tensor as given by (1.22)

is tµν = g(4)µν . From the metric in Fefferman-Graham coordinates we can extract g(4)µν .

After doing an appropriate uniform scaling which preserves the Fefferman-Graham form
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of metric, we obtain from (1.34),

tµν = (πT )4(4uµuν + ηµν), T =
r0

π
. (1.35)

In the above form, the energy-momentum tensor is exactly the form as that of thermal

blackbody radiation and in fact, in any conformal theory, one can define the temperature

T such that it takes this form. When uµ = (1, 0, 0, 0), i.e. when we consider (1.33),

we have tµν = diag(ε, P, P, P ), with the energy density ε = 3(πT )4 and the pressure

P = (πT )4. This gives support to our contention that (1.34) is the gravity dual of the

thermal equilibrium state. We emphasize here that in this solution the normalizable

and non-normalizable modes of all fields except the non-normalizable dilaton which is

set equal to a constant equal to the Yang-Mills coupling, vanishes by the holographic

renormalization scheme discussed earlier.

We will describe the elegant prescription suggested in [16] for obtaining thermal

retarded correlators. Retarded correlators, as we know, measures the causal response

to a source in a field theory such that it vanishes outside the future light cone. The

most intuitive way for ensuring causal response in the theory of gravity is to replace

the condition for regularity of solutions in the interior of AdS5 with the incoming wave

boundary condition at the horizon. We know that black holes should indeed only let probe

waves to fall inside realistically and never come out, if we choose the direction of time 1

such that the gravitating system of the black hole and the waves reach thermal equilibrium

corresponding to a stationary black hole for large times. This boundary condition at the

horizon now determines the normalizable mode in terms of the non-normalizable mode.

The two point function then by the application of the remaining usual rules to be applied

to the asymptotic form of the solution as described before, turns out to be the ratio of the

normalizable and the non-normalizable mode. To be more concrete, the general solution

for a bulk field Φ(r, t, x, y) corresponding to a linearized perturbation around (1.33) is,

Φ(r, t, x, y) = A(ω,q) exp(−iωt+ iq.x)r−∆−(1 + ...) + (1.36)

B(ω,q) exp(−iωt+ iq.x)r−∆+(1 + ...),

1The time reverse of this situation will correspond to a white hole.
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with ∆− < ∆+ and ∆+ > 0. In Fefferman-Graham coordinates ρ = 1/r +O(1/r2), zµ =

xµ + O(1/r), this implies that A(ω,q) is the non-normalizable mode or the source and

B(ω,q) is the normalizable mode or the response. The incoming wave boundary condition

at the horizon uniquely determines B(ω,q) as a function of A(ω,q). Further the two point

retarded thermal correlator in Fourier space is

< OΦOΦ >R= Z
B(ω,q)

A(ω,q)
+ contact terms, (1.37)

where Z is a scheme independent constant. One can also prove that the retarded correlator

has a pole only when A(ω,q) vanishes [20].

From the point of solution of linearized perturbation about the black brane, the

vanishing of the non-normalizable mode A(ω,q) and the incoming wave boundary condi-

tion at the horizon give very special solutions for Φ(r, t, x, y, z). Such solutions are called

quasinormal modes. Therefore, by the prescription mentioned above, the poles of the

retarded correlators of the boundary theory occur if and only if the dispersion relations

corresponding to quasinormal modes are satisfied.

We will concentrate here on the quasinormal modes of the metric with the underlying

bulk theory of gravity being just Einstein’s equation of motion with a negative cosmo-

logical constant. The features we are going to describe will persist even when we couple

matter minimally to Einstein’s equation for pure gravity. In any physical system capable

of equilibration, the long wavelength and low frequency perturbations about equilibrium

correspond to hydrodynamic dispersion relations, leading order terms of which can be

obtained from the Navier-Stokes equation. The hydrodynamic dispersion relations are of

two types, one corresponds to the sound branch which is longitudinal to the direction of

propagation and is given by

ω = ±vsq + iΓsq
2 +O(q3), (1.38)

and the other one corresponds to the shear branch which is transverse to the direction of

propagation and is given by

ω = −iγηq2 +O(q3). (1.39)
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Here, vs is the speed of sound, Γs is called the sound diffusion constant and γη is called

the momentum diffusion constant. Γs and γη are related to the bulk viscosity ζ and shear

viscosity η through

Γs =
1

2

1

ε+ P
(ζ +

4

3
η), γη =

η

ε+ P
. (1.40)

Now the quasinormal modes of the metric, using symmetries preserved by the black

brane, tracelessness, and conservation of energy and momentum can be divided into a

scalar channel, a longitudinal sound channel and a transverse shear channel [20]. Each

channel corresponds to a linear combination of various combinations of the components of

metric perturbation such that they are invariant under diffeomorphisms at the linearized

level. The scalar channel has no branch which can have both low frequencies and long

wavelengths. The sound and shear channels remarkably have a branch each of the forms

(1.38) and (1.39) respectively [17], with

vs =
1√
3
, Γs =

1

6πT
, γη =

1

4πT
. (1.41)

We can identify these quasinormal modes with the hydrodynamic branches of the dual

conformal field theory. The speed of sound is 1/
√

3 of the speed of light in any conformal

field theory and simply follows from the Euler equation obtained by taking the divergence

of the energy-momentum tensor (1.35) at local equilibrium where T and uµ are functions

of space and time and demanding that it should vanish owing to energy-momentum con-

servation. The energy-momentum tensor should receive higher derivative corrections but

this does not alter the speed of sound. Using (1.40) further we obtain from (1.41) that

ζ = 0,
η

s
=

1

4π
, (1.42)

where s is the entropy density defined through the thermodynamic relation s = ∂P/∂T =

4π4T 3. The vanishing of the bulk viscosity again follows from conformal invariance. The

result η/s = 1/4π, conveniently for a dimensionless quantity, can in principle depend on

the gravity theory in the bulk concerned. However, one can prove that η/s = 1/4π is

true for any two-derivative theory of gravity [21]. This result for η/s is thus universal

for all strongly coupled gauge theories with gravity duals for large ranks of the gauge
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group.2 The charge diffusion constants and all other first order transport coefficients can

be similarly obtained from appropriate low frequency and long wavelength quasinormal

modes of bulk gauge fields and metric.

The quasinormal modes of the metric in all the three channels have infinite branches

of higher overtones in the lower half plane, i.e. with negative imaginary values of frequen-

cies, as well [20]. The presence of infinite tower of overtones is a generic feature of

quasinormal modes. The meaning of the higher overtones is not clear. We will argue

in chapter 3 that these higher overtones should be excised and have no interpretation

as constituting the spectrum of the boundary theory with the thermal open boundary

condition. However, we will also argue that they could be interpreted as peculiar kind of

resonances in a certain precise sense that needs explicit confirmation in the future.

In any case, the hydrodynamic branches of excitations, can be obtained from solu-

tions of the full non-linear equations of motion, just like the equilibrium energy density

and pressure. This follows from the obvious generalization of gauge/gravity duality to

the case of finite temperature. Any solution of the equations of motion of the classical

theory of gravity which has a regular future horizon and is an asymptotic AdS5 space-

time with appropriate behavior for all fields will be dual to a specific non-equilibrium

state of the gauge theory at strong ’t Hooft coupling and large rank of the gauge group,

where the saddle point approximation in gravity becomes exact. The final temperature of

the horizon is identified with the temperature of the gauge theory. We will describe the

solutions which reproduce hydrodynamic behavior in the boundary in the next section.

The transport coefficients which can be defined through linear response theory calculated

from solutions of the full non-linear equations of motion of gravity, agree with the results

obtained from dispersion relations of quasinormal modes. We will investigate the reason

for this agreement in chapter 2.

2There is also a conjecture [18], which can be motivated from the uncertainty principle, that 1/4π is
the lowest possible value for η/s. For a review, please see [19].
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1.4 Universal nonequilibrium phenomena in gauge/

gravity duality

In all instances of gauge/gravity duality which have concrete embedding in string theory,

the gauge theory is supersymmetric with at least N = 1 supersymmetry and the theory

of gravity in the bulk is a ten dimensional supergravity which needs to be reduced to

five dimensions. If the gauge theory is conformal as well, the Poincaré algebra gets

enhanced to superconformal algebra in which the R symmetry subgroup needs to be

included for closure. This superconformal algebra needs now to be the super isometries of

the ten dimensional background dual to the vacuum of the gauge theory generalizing the

realization of the conformal algebra as the asymptotic symmetry group of asymptotically

AdS5 spacetimes. Such backgrounds are of the form of AdS5×X, with X being a Sasaki-

Einstein manifold, whose isometries generate the R symmetry subgroup.

When the supergravity is reduced to AdS5, the five dimensional reduced theory is

a gauged supergravity, where the R symmetry group forming the group of isometries of

X, is gauged. The gauge transformations in the bulk get mapped to global symmetries

in the boundary in the usual way. We will be mainly interested in such ten dimensional

supergravities which contains AdS5 × X as a solution, with X being a Sasaki-Einstein

manifold. We will show that the class of superconformal gauge theories which can be

holographically defined at strong ’t Hooft coupling and large rank of the gauge group

through five dimensional gauged supergravities obtained by dimensional reduction of such

ten dimensional supergravities having AdS5×X as a solution, contains a universal sector

of dynamics 3.

The universal sector can be obtained as follows 4. One can prove that all ten

dimensional supergravities mentioned above has a consistent truncation of their equations

of motion, to pure gravity described by Einstein’s equation with a negative cosmological

3The universality can happen even when we have nonconformal versions of AdS/CFT or consider
specific 1/N and finite coupling corrections in the conformal case [22, 23].

4This should not be confused with the same term used in some other contexts in string theory, like
the universal sector in open string field theories which are studied in the context of tachyon condensation
[24].
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constant in five dimensions. However, this by itself is not enough. We know by the

gauge/gravity dictionary we need solutions of gravity to have regular future horizons in

order to map to states in the gauge theory. So, we require that all such smooth solutions

of pure gravity in five dimensions must lift to smooth solutions in ten dimensions. This

indeed turns out to be the case as the lift of the metric from five to ten dimensions

do not involve any warping. Thus we can define a universal sector for the entire class

of superconformal gauge theories mentioned at strong ’t Hooft coupling and large rank

of the gauge group as the dual of pure gravity described by Einstein’s equation with a

negative cosmological constant in five dimensions. The embedding of the universal sector

in the full theory will depend on the details of the theory but the dynamics for all states

within this sector is exactly the same in all theories within this class.

Solutions of five dimensional pure gravity described by Einstein’s equation with a

negative cosmological constant, with regular future horizons, have been shown to capture

a whole range of nonequilibrum behavior like hydrodynamics, relaxation and decoherence

(for a recent review please see [29].). The most studied class of solutions are boost-

invariant and it has recently been shown that such solutions qualitatively capture both

the non-hydrodynamic early time evolution [28] and the late time hydrodynamic evolution

[25] of the QCD quark-gluon plasma formed at RHIC. However, we still lack precise

tools to decode nonequilibrium behavior in the gauge theory from the five dimensional

geometry mainly because the phenomenology of generic nonequilibrium processes is not

well developed. One of the aims of this thesis is to make concrete progress in this direction

by postulating the most general phenomenological equations of nonequilibrium processes

in the universal sector. At the intuitive level, we know for instance, horizon formation in

the bulk should describe decoherence in the gauge theory 5, but we do not know how to

demonstrate this concretely in a very generic way. The most remarkable advance recently

made has been to understand how generic hydrodynamic behavior in the gauge theory

5An example of interest is the formation of quark-gluon plasma through collisions of gold nuclei at
RHIC, which happens spontaneously without the direct influence of environment. Strictly speaking,
such systems are never isolated since they may lose energy through low energy radiation and we need to
average out the boundary conditions determining the radiation escaping to infinity appropriately, so that
the final equilibrium state is specified.
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can be reproduced by solutions of pure gravity (for a review please see [27].). We will now

describe these solutions briefly. We will call these tubewise black brane solutions.

These solutions, first obtained in [26], are manifestly regular at the horizon in ingo-

ing Eddington-Finkelstein coordinates and can be constructed in the so-called derivative

expansion. We start from the boosted black brane solution in Eddington-Finkelstein

coordinates and then make the four-velocity uµ and the temperature T functions of the

boundary coordinates. This metric no longer is solution of Einstein’s equation however we

can correct the metric order by order in derivatives of the four-velocity and temperature

with respect to the boundary coordinates. These solutions thus approximate a boosted

black brane at every radial tube emanating from a patch in the boundary and the local

values of the velocity and temperature parametrize local equilibrium of the boundary fluid.

The dimensionless parameter controlling the derivative expansion is the ratio of typical

spatio-temporal scale of variation of the hydrodynamic variables and the temperature of

final equilibrium.

At the first order in the derivative expansion, the solution in ingoing Eddington-

Finkelstein coordinates is

ds2 = −2uµdx
µdr +Gµνdx

µdxν , (1.43)

Gµν = r2Pµν +

(
−r2 +

1

b4r2

)
uµuν + 2r2bF (br)σµν −

r

(
(u.∂)uµuν −

2

3
uµuν(∂.u)

)
,

F (x) =
1

4

(
log

(
(x+ 1)2(x2 + 1)

x4

)
− 2 arctan(x) + π

)
,

with b(x) = 1/(πT (x)) = 1/r0(x) and σµν being the relativistic hydrodynamic shear-stress

tensor whose explicit form is

σµν =
1

2
P α
µ P β

ν (∂αuβ + ∂βuα)− 1

3
Pµν∂αu

α. (1.44)

Further, the hydrodynamic variables constituted by the four-velocity and temperature

should satisfy the relativistic Navier-Stokes equation and can be written in terms of the
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expectation value of the energy-momentum tensor as

∂µtµν = 0, (1.45)

tµν =
ηµν + 4uµuν

4b4
− 1

2b3
σµν .

The relativistic Navier-Stokes equation above follow from components of Einstein equa-

tions which could be interpreted as constraints, while the dynamical equation is a two-

derivative equation describing evolution of Gµν in (1.43), purely in the radial coordinate.

The metric and the fluid dynamical equations receive systematic higher derivative cor-

rections order by order in the derivative expansion. The metric and the fluid mechanical

equations are explicitly known up to second order in the derivative expansion. At each

order in the derivative expansion, the dynamical equation of pure radial evolution remains

the same, however the source term in the right hand side of this equation changes. We will

have more to say about the structure of the metric and higher derivative Weyl covariant

hydrodynamics we thus obtain later.

We readily see from (1.45) that the bulk viscosity of the hydrodynamics in the gauge

theory vanishes and the dimensionless ratio of the shear viscosity and the entropy den-

sity, η/s is 1/4π. We thus reproduce the first order hydrodynamic transport coefficients

obtained in the previous subsection. However, this method of obtaining higher derivative

hydrodynamics from the tubewise black brane solutions is more powerful as we can gen-

erate the full non-linear equations of hydrodynamics of the gauge theory while obtaining

those higher order transport coefficients which cannot be defined through linear response

theory. Further, these hydrodynamic equations are universal for this class of gauge the-

ories at strong ’t Hooft coupling and large rank of the gauge group, as they have been

obtained from solutions of pure gravity holographically describing the universal sector.

We also find a very generic feature here which we will prove in the case of hydro-

dynamic stress tensors in the next chapter. The phenomenological transport coefficients

appearing in the expansion of the energy-momentum tensor in the most general hydrody-

namic ansatz consistent with Weyl covariance, get fixed uniquely by requiring the solution

to have a regular future horizon. We will make a more general claim for solutions dual to

nonequilibrium states which end up in thermal equilibrium in chapter 3 which will apply
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to even nonhydrodynamic states.

The dimensionless quantity η/s for the QCD quark-gluon plasma formed at RHIC

is about 0.3 which is tantalizingly close to 1/4π. It remains to be seen if the higher order

transport coefficients are close to the values of the same for QCD quark-gluon plasma

formed at RHIC.

1.5 Plan of the rest of the thesis

The plan for rest of the thesis is as follows. In Chapter 2, we will prove some general results

about states in the universal sector. Here we will mainly use methods of gravity. We will be

able to prove that the states in the universal sector and their dynamics can be completely

determined by the expectation value of the energy-momentum tensor alone. Further,

studying the structure of tubewise black brane solutions we will show that there are

purely hydrodynamic states in the universal sector which can be completely characterized

by hydrodynamic variables, and their dynamics can also be completely determined by the

equations of fluid mechanics, even far away from equilibrium.

In chapter 3, we will try to obtain effective equations of motion for all states in the

universal sector and argue that these equations are sufficient to model basic nonequilib-

rium processes even for states outside of the universal sector. We will show that we can

construct these equations systematically in two expansion parameters. Here, we will use

results from chapter 2, however we will mainly be using kinetic theory methods. We will

also obtain conjectures for the regularity condition on all asymptotically AdS5 solutions

of pure gravity such that they will have regular future horizons.

In chapter 4 we will investigate a novel non-relativistic limit of gauge/gravity duality

for conformal cases particularly to find out if hydrodynamics can be contained in this limit.

In the process, we will obtain valuable clues of how to take this limit dynamically so that

we get hydrodynamic behavior after the limit is taken. This chapter is a slight departure

from the general theme of the thesis, but has been included with the hope that it can

have some relevance for a tabletop experiment or a simulated system in the future. It may

also turn out that the universal sector in this dynamical limit can be solved sometime in
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the future by appropriately exploiting the infinite-dimensional symmetry which appears

in this limit, so the results here could be important steps taken in this direction as well.

Finally, we end with discussions on future work that needs to be done based on the

results of chapters 2 and 3. In particular, we will focus on how we can investigate some

novel questions and sharply defined older questions regarding the origin of irreversibility

unraveled by our investigations.
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Chapter 2

The energy-momentum tensor, the
universal sector and purely
hydrodynamic states

2.1 Introduction

Using gauge/gravity duality, we have defined the universal sector of conformal gauge the-

ories with strong ’t Hooft coupling and large rank of the gauge group as the set of states

dual to solutions of pure gravity which are asymptotically AdS5 spacetimes and have reg-

ular future horizons. The states constituting this sector are generically nonequilibrium

states. Moreover, all basic nonequilibrium phenomena like decoherence, relaxation and

hydrodynamics feature in the dynamics of these states. The strongly coupled nonequilib-

rium dynamics for states constituting this sector is the same for all theories in the class

of conformal gauge theories with gravity duals.

In this chapter, we will try to address what kind of data characterizes the states of

the universal sector when the gauge theory is living in Minkowski spacetime. This question

is equivalent to asking what kind of boundary data uniquely characterizes the solutions

of pure gravity in asymptotically AdS5 spacetimes with regular future horizons, when the

boundary metric is flat. We will prove that all such solutions are determined uniquely by

the boundary stress tensor, or equivalently, the expectation value of the energy-momentum

tensor of the dual field theory state. This is not so obvious as the boundary stress-tensor
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is not Cauchy data for pure gravity in asymptotically AdS5 spacetimes. In fact, we

will need to use regularity in a perturbative sense as a very crucial input to show that

the boundary stress tensor uniquely determines the solution. This result is even more

surprising from the field-theoretic point of view because the expectation value of a single

operator, namely the energy-momentum tensor determines the dual state in the universal

sector and its dynamics. We will try to attain a field-theoretic understanding of this result

in the next chapter.

A theorem due to Fefferman and Graham [1] states that for any solution of Einstein’s

equation which is an asymptotically AdS5 spacetime, we can always use the Fefferman-

Graham coordinate system previously defined within a finite radial distance from the

boundary. We will prove that the solution in these coordinates is given by a power

series with no log terms when the boundary metric is flat. We will also argue using

gauge/gravity duality that regular solutions should be given by a power series with no log

terms in Fefferman-Graham coordinates whenever the Weyl anomaly of the gauge theory

vanishes. A special case of this claim for even dimensional asymptotically AdS spacetimes

has already been obtained by Fefferman and Graham [1]. Our argument suggests that

asymptotically AdS5 spacetimes which are regular solutions of even a higher derivative

gravity theory with holographic CFT desciption, should also be given by a power series

with no log terms in the Fefferman-Graham coordinates, when the boundary metric is

flat.

The power series solution for asymptotically AdS5 spacetime, as we will also prove,

exists for any traceless boundary stress tensor where energy and momentum are conserved.

However, any arbitrary traceless and conserved stress tensor will not correspond to the

expectation value of the energy-momentum tensor of a CFT state. Gauge/gravity duality

implies this can happen if and only if the solution is regular. Mathematically speaking

the solution has to be regular in the five-dimensional UHP with possible real singularities

only at infinity, that is for infinite value of the radial coordinate.

We will show that in the gravity solutions either of two distinct pathologies can

occur. For stress tensors with pathology of the first kind the reverse question of finding
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the corresponding gravity solution will be ill posed. For such stress tensors, the formal

power series solution of the metric in Fefferman-Graham coordinates will exist but this

power series will have zero radius of convergence in the radial coordinate along radial

tubes starting from certain patches in the boundary. These pathological stress tensors

will be of the “asymptotic boundary condition destroying”, or, in short, of “abcd” type.

The other distinct set of pathological stress tensors will produce naked singularities in the

bulk. 1

We will argue that “abcd” type of stress tensors can be avoided if we construct the

solution in a perturbation expansion about the final stationary late-time configuration. In

pure gravity, it is expected that any solution at late time will settle down to a stationary

single black brane. Multi black brane static solutions will not occur if there are no p-form

gauge fields as is the case in pure gravity. Further, metastable configurations like small

black holes do not occur if the boundary metric is flat. The perturbation expansion about

the final stationary configuration can be more general than the derivative expansion used

for constructing gravity duals of purely hydrodynamic states, which we have mentioned

in the previous chapter and will soon have more to say about. In the following chapter,

we will make claims about the most general nature of this perturbative expansion.

We will show that for such perturbative solutions the solution in Fefferman-Graham

coordinates will break down for a particular value of the radial coordinate which is the

location of the late-time horizon. Here we may either have a coordinate singularity or a

real curvature singularity. Further, if it is a curvature singularity, this singularity is naked,

i.e. not covered by a horizon. The naked singularity happens for pathological boundary

stress tensors of the second type.

We will examine these issues by constructing gravity solutions with boundary stress

tensors which can be parametrized purely hydrodynamically. We will construct these

1We expect that such pathologies will occur for stress tensors which are physically not viable, for
instance, tµν = (πT1)4(4u1µu1ν + ηµν) + (πT2)4(4u2µuν + η2µν), such that the flows u1µ and u2µ are not
parallel to each other. This example represents a stress tensor of two fluids at different temperatures
flowing in different directions without reaching mutual thermal and mechanical equilibrium. This is
certainly impossible in any realistic theory. On the other hand, the second type of pathology will occur
for stress tensors which are physically viable but have wrong values of various parameters, for instance,
a hydrodynamic stress tensor for which η/s is different from 1/4π.
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solutions in the derivative expansion, about which we have mentioned in the previous

chapter. We will see that indeed all these solutions are free of abcd type of pathology. We

can systematically transform these solutions to Eddington-Finkelstein coordinate system

order by order in the derivative expansion and then the regularity or the irregularity of

these solutions will become manifest. We will see that when all the transport coefficients

of the purely hydrodynamic Weyl covariant stress tensor of the most general form are

correctly chosen order by order in the derivative expansion, the solution is free of naked

singularities and coincides with the tubewise black brane solutions originally obtained

in [26]. We will explicitly demonstrate this by constructing the solution in Fefferman-

Graham coordinates up to first order in the derivative expansion for an arbitrary η/s,

then transforming this solution to Eddington-Finkelstein coordinate system such that

the regularity at the future horizon is manifest when η/s is 1/4π and the irregularity is

manifest otherwise.

The derivative expansion in the Fefferman-Graham has some advantages over the

same expansion in Eddington-Finkelstein coordinates developed in [26]. The first advan-

tage is that the constraints simplify and just reduce to the tracelessness of the energy-

momentum tensor and conservation of energy and momentum. Tracelessness simply fol-

lows from the construction of the energy-momentum tensor, and the conservation of en-

ergy and momentum just gives us the desired equations of fluid dynamics. The dynamical

equation is, as usual an ultralocal equation and is basically just the radial evolution of

the boundary metric along a radial tube emanating from a patch on the boundary given

by a second order ordinary differential equation. The second advantage over the per-

turbation in Eddington-Finkelstein coordinates is that here the whole procedure will be

Lorentz-covariant, whereas in the Eddington-Finkelstein coordinates we had to decom-

pose all terms into tensors, vectors and scalars of SO(3). In fact, the translation to

Eddington-Finkelstein coordinates also preserves manifest Lorentz covariance. The third

advantage is that we can also manifestly preserve the asymptotic boundary conditions and

is therefore suited to generalizations like in non-conformal cases. In fact, this feature has

already been exploited in the literature [23]. Given these features, one can think of the

Fefferman-Graham coordinate system as the “Coulomb gauge” in the context of finding
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out metrics corresponding to arbitrary hydrodynamic stress tensors.

Our method will be shown to be equivalent to the procedure discussed in [26] in

Eddington-Finkelstein coordinates. However, because our method allows us to construct

gravity solutions corresponding to arbitrary hydrodynamic energy-momentum tensors and

also prove that for a unique choice of transport coefficients at every order in the derivative

expansion these solutions are regular, we can demonstrate that

(a) there are states with energy-momentum tensors which are purely hydrodynamic in

the universal sector of the dual gauge theory, such that these can be determined by

hydrodynamic variables alone even far away from equilibrium, and

(b) regularity of the future horizon determines all the hydrodynamic transport coefficients.

The organization of this chapter is as follows. In section 2, we show how the metric

is determined by the boundary stress tensor. In section 3, we translate some known

solutions like the tubewise black brane solutions in Fefferman-Graham coordinate system

in a power series expansion as an illustration of general properties of the metric near

the boundary. In section 4, we will set up and elucidate the derivative expansion in

the Fefferman-Graham coordinates and establish that all hydrodynamic stress tensors

preserve asymptotic AdS5 boundary condition. In section 5, we will do the regularity

analysis of our solutions. The proof of the existence of power series solutions and the

technical issue of the futility of using curvature invariants to determine the regularity of

solutions in perturbative expansion will be discussed in the Appendices A and B, which

will be referred appropriately in this Chapter.

2.2 How the boundary stress tensor fixes the solution

In this section we will restrict our attention mainly to a five dimensional asymptotically

AdS space with flat boundary metric, though we will indicate in the end that our results

may be sufficiently generalized. We will soon explain what is meant by the boundary

metric for asymptotically AdS spaces.

The Einstein-Hilbert action on 5-dim manifold M , with an appropriate counterterm
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to have a well defined variational principle with Dirichlet boundary condition is

S =
1

16πGN

[−
∫
M

d5x
√
G(R +

12

l2
)−

∫
∂M

d4x
√
γ2K], (2.1)

where K is the extrinsic curvature and γ is the induced metric on the boundary. We are

using the convention of [9] in which the cosmological constant Λ of AdSd+1 is normalized

to be −d(d−1)
2l2

, hence for AdS5 we have Λ = − 6
l2

.

We want to solve Einstein’s equation

RMN −
1

2
RGMN =

6

l2
GMN , (2.2)

subject to the condition that the solution is asymptotically AdS with a given conformal

structure at the boundary. Fefferman and Graham have shown that for such solutions

we can use a specific coordinate system called the Fefferman-Graham coordinate system

near the boundary. In this coordinate system, the metric takes the following form,

ds2 = GMNdx
MdxN =

l2

ρ2
[dρ2 + gµν(ρ, z)dz

µdzν ]. (2.3)

In the expression above the indices (M,N) run over all AdS coordinates and the indices

(µ, ν) run over the four field theory coordinates. The boundary metric g(0)µν is defined as

g(0)µν(z) = lim
ρ→0

gµν(z, ρ). (2.4)

Let this boundary metric have a conformal structure. Then it can be shown that any

conformal transformation of the boundary coordinates (z) can be lifted to a bulk diffeo-

morphism of the Fefferman-Graham coordinates which preserves the form of the metric

(2.3) [3, 4]. Under this bulk diffeomorphism, the boundary metric undergoes the same

conformal transformation. The simplest case for instance will be a scale transforma-

tion, z → λz, of the boundary coordinates for which the corresponding bulk diffeo-

morphism will be ρ → λρ (note that in the case of the bulk diffeomorphism, the field

theory coordinates z do not transform at all so that the boundary metric g(0)µν scales like

g(0)µν(z)→ λ−2g(0)µν(z)).

40



2.2. HOW THE BOUNDARY STRESS TENSOR FIXES THE SOLUTION

In the Fefferman-Graham coordinate system the various components of Einstein’s

equation reads as [9]: 2

1

2
g′′ − 3

2ρ
g′ − 1

2
g′g−1g′ +

1

4
Tr(g−1g′)g′ −Ric(g)− 1

2ρ
Tr(g−1g′)g = 0, (2.5)

∇µTr(g
−1g′)−∇νg′µν = 0,

T r[g−1g′′]− 1

ρ
Tr[g−1g′]− 1

2
Tr[g−1g′g−1g′] = 0.

Here “(′)” denotes a derivative with respect to ρ and ∇µ is the covariant derivative

constructed from the metric gµν . Also in the above equations we have set our units

such that l, the radius of AdS is set to unity.

When the boundary metric is flat, we will argue that we can expand gµν(z, ρ) in a

simple integer power Taylor series of ρ with coefficients which are functions of z. Since we

have chosen the boundary metric to be flat, the leading term has to be ηµν . Our power

series ansatz will be

gµν(z, ρ) = ηµν + Σ∞n=2g(2n)µν(z)ρ2n. (2.6)

We have written down only even powers of ρ in the above expansion because it follows

from a result due to Fefferman and Graham [1] that the power series (2.6) should be an

even function of ρ. 3 The only even term which is absent is g(2)µν(z) which follows as an

easy consequence of the equations of motion (2.5).

It is not obvious that this power series ansatz will indeed provide us a solution,

so we will give a simple argument why this works.This argument will hold for smooth

solutions of classical gravity which are dual to the states in the CFT at zero or finite

temperature. This argument will also apply when the theory of classical gravity receives

2The (minor) difference with the system of equations given in this reference will be that we will use
the original Fefferman-Graham radial coordinate ρ, whereas there the radial coordinate is chosen to be
the square root of ours. Also, the reference uses a definition of the Riemann tensor such that the scalar
curvature of AdS comes out to be positive.

3The existence of power series solution has been proved by Fefferman and Graham for all even di-
mensional asymptotic AdS solutions and in case of odd dimensional asymptotic AdS solutions they also
argued that if the solution is a power series it should be even. The Fefferman Graham coordinates are
however unique only up to diffeomorphisms which are the lifts of the boundary conformal transformations
into the bulk. Although, it is not obvious, it can also be shown [1] that the evenness of the series (2.6)
is independent of the choice of any particular Fefferman-Graham coordinate system.
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higher derivative corrections through which we take into account the corrections in square-

root of the inverse ’t Hooft coupling and inverse of the rank of the gauge group.

By AdS/CFT correspondence any solution of the bulk equations of motion would

give us a state in the CFT, so the coefficients of the Taylor series expansion in (2.6) should

be functions of the expectation values of the local operators in the dual CFT state. We

will explicitly see below that all these coefficients are just functions of the expectation

value of the energy-momentum tensor in the CFT state. It is possible to see the effect of

space-time independent scale transformation on the CFT operators from gµν(z, ρ). To do

this we have to lift the scale transformation to a bulk diffeomorphism so that the form of

the metric (2.3) remains the same and the boundary metric also remains flat. This lift,

as mentioned before, is achieved by ρ→ λρ. In the most general case it has been shown

[13] that the form of the ansatz (2.6) should be modified by terms like ρn(log(ρ))m with

non-negative n and m. To illustrate our argument we will consider just two such possible

terms

g(n)(z)ρn + h(n)(z)ρnlog(ρ).

Under the bulk scaling transformation ρ→ λρ,

g(n)(z)→ λn−2g(n)(z)− log(λ)λn−2h(n)(z). (2.7)

We find the above transformation by checking the new coefficient of ρn in gµν after the

scale transformation. In a CFT any local operator simply scales like a power of λ, the

power being given by the conformal dimension of the operator. A log(λ) term is present

only when the Weyl anomaly doesn’t vanish. In flat space the Weyl anomaly vanishes and

since we have chosen the boundary metric to be flat the log term in (2.7) should not be

present as g(n)µν is a function of the expectation values of local operators. The absence of

the log(λ) term in a scale transformation applies not only to primary operators but also

to their descendents. So we can argue that terms like ρn(log(ρ))m should be absent and

gµν should be given by a simple power series of ρ.

This argument for why the power series ansatz should work will also apply when the

theory of classical gravity receives higher derivative corrections through which we take

into account the corrections in square-root of the inverse ’t Hooft coupling and inverse of
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the rank of the gauge group. We have just used the fact that a conformal transformation

in the boundary should have an appropriate lift to a bulk diffeomorphism consistent

with the transformation of CFT operators. The transformation of the CFT operators

under conformal transformations, as well, is independent of the value of the coupling or

the rank of the gauge group. In fact one can readily check that exact static black hole

solutions of Gauss-Bonnet gravity which are asymptotically AdS [31] or tubewise black

brane solutions in higher dervative gravity [32] have power series expansion when written

in Fefferman-Graham coordinates.

However, our argument, of course, breaks down when we consider an arbitrary

solution of Einstein’s equation with a negative cosmological constant, i. e. if the boundary

stress tensor does not correspond to any CFT state. In Appendix A, we have given the

general proof of the existence of the power series solution for AdS5 asymptotics, so that

even for such cases we can state that the solution, is indeed, a power series. In fact we

will explicitly see, that for all hydrodynamic stress tensors, whether they do or do not

correspond to CFT states, the solutions are always power series.

Now we will substitute our ansatz (2.6) in the equations of motion (2.5) and solve

them order by order in powers of ρ. It is known from earlier work of Skenderis et.al. [9]

that the first term g(4)µν(z) is just the expectation value of the stress tensor. Briefly this

is how it comes about to be so. Upto this order the first equation (the tensor equation)

identically vanishes while the second and third equation of motion give

Tr(g(4)) = 0, (2.8)

∂µg(4)µν = 0.

Since the equations of motion by themselves cannot specify g(4) we need a data from the

CFT to specify it subject to the above constraints. Most naturally g(4) is the traceless

conserved stress tensor of the CFT. However we can also explicitly check this. An explicit

calculation shows that g(4) is indeed the Balasubramanian-Kraus stress tensor [?] which

could be defined for any asymptotically AdS space. Hence we may write

g(4)µν = tµν . (2.9)
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With our ansatz (2.6) it turns out that all the other coefficients g(2n) (n > 2) are

fixed uniquely by the equations of motion in terms of g(4) and its derivatives (or in other

words the stress tensor and its derivatives). We observe that the first and the third of the

equations of motion (2.5) (i.e. the tensor and the scalar equations) are sufficient to solve

for g(n). All the higher powers of the second of the equations of motion (2.5) (i.e the vec-

tor equation) identically vanishes on imposing the constraints (2.8) i.e. by imposing the

tracelessness and the conservation of the stress tensor. It is not difficult to argue that this

should be the case because it can be shown [9] that the second (i.e the vector) equation

of motion simply implies the conservation of the Brown-York stress tensor (which when

regulated becomes the holographic boundary stress tensor discussed in the Introduction)

for an arbitrary constant ρ hypersurface. Now the conservation of the Brown-York stress

tensor at a given hypersurface is not independent of the same requirement for another

hypersurface, because in the ADM-like formulation of the Einstein’s equations if we sat-

isfy our constraints at a given hypersurface in which our initial conditions are given the

evolution (here in the radial coordinate ρ) automatically satisfies the constraints. The

conservation of the Brown-York stress tensor at the boundary is already forced at leading

order in ρ of the vector equation of motion through (2.8). Hence we should expect that

the vector equation should not impose any new constraints on the stress tensor given that

the tensor and scalar equations specify all the coefficients uniquely and this is exactly

what is borne out. In our proof in Appendix A, we show how the tensor, vector and

scalar equations of motion turn out to be consistent with each other when we employ the

power series ansatz.

Below we give the a few of the the coefficients g(n)µν

g(6)µν = − 1

12
�tµν ,

g(8)µν =
1

2
t ρ
µ tρν −

1

24
ηµν(t

αβtαβ) +
1

384
�2tµν ,
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g(10)µν =− 1

24
(t α
µ �tαν + t α

ν �tαµ)

+
1

180
ηµνt

αβ�tαβ +
1

360
tαβ∂µ∂νtαβ

− 1

120
tαβ(∂µ∂αtβν + ∂ν∂αtβµ)

+
1

60
tαβ∂α∂βtµν −

1

180
∂µt

αβ∂νtαβ

+
1

720
ηµν∂αt

βγ∂αtβγ

+
1

120
(∂µt

αβ∂αtβν + ∂νt
αβ∂αtβµ)

− 1

60
∂αt

β
µ∂βt

α
ν −

1

23040
�3tµν ,

g(12)µν =
1

6
t α
µ t β

α tβν −
1

72
tµν(t

αβtαβ) + ........ . (2.10)

Here, as before in (2.5) the boundary indices are raised and lowered by ηµν and � is the

Laplacian in flat space. Let us observe and explain certain simple features of the results

above. The first observation is that every term in the RHS of the above equations contain

only even number of derivatives. This is so because the terms containing derivatives

originate only from Ric(g) in the first of the equations of (2.5). The second observation

is that the terms independent of the derivatives appear only for g(4n). This is so because

if we omit Ric(g) in the first of the equations of (2.5), then the solution is a power series

in ρ4n as the first non-trivial term in the series is g(4). So for a solution where the stress

tensor is uniform (like in the case of a static black brane solution), g has an expansion

containing only ρ4n terms.

With our argument that the ansatz (2.6) should give us a consistent solution, it

is obvious that the stress tensor, which appears as g(4) in g uniquely specifies the solu-

tion because all the higher coefficients are fixed uniquely in terms of g(4) with no new

constraints like (2.8) appearing for g(4). This completes the argument that when the

boundary metric is flat we should have a solution uniquely specified locally by the stress

tensor alone. This statement readily generalizes to other dimensions in the case of a flat

boundary metric and most likely also generalizes when the boundary metric is not flat.

The general validity could be argued for on the basis of the equations of motion (2.5)
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which are second order (specifically in derivatives of ρ). Intuitively the boundary metric

and the stress tensor specifies all the initial data we need for a unique solution, however

a concrete demonstration of this would probably require methods beyond what we have

employed here.

The argument we have given above, however, cannot be reversed to argue that a

solution with asymptotic AdS5 boundary conditions exists for any arbitrary stress ten-

sor. The reason that we can’t reverse the argument is that the series (2.6) for gµν exists

only formally. The coefficients g(n) may not be well behaved at large n, for an arbitrary

stress tensor. We will give a simple example to show what can go wrong. For a specific

choice of stress tensor, we may find that g(n)µν = f(n)sµν plus other terms. Here sµν is

a specific term in the stress tensor. If, for instance, the series Σnf(n)ρn has zero radius

of convergence, gµν will not be a meaningful series of ρ as it will also have zero radius of

convergence in ρ. Such boundary stress tensors, for which gµν has zero radius of conver-

gence in ρ, could be appropriately called, “asymptotic boundary condition destroying”

stress tensor or in short “abcd” stress tensor. We will have more to say about such stress

tensors in section 4.4

2.3 Mutual translation between Eddington-Finkelstein

and Fefferman-Graham coordinates

In the previous section, we have seen that, the Fefferman-Graham coordinate system is

good for finding a solution to Einstein’s equation with a negative cosmological constant

when the corresponding boundary stress tensor is specified. However the solutions are

usually found in other coordinate systems. For instance, the static black brane solution

is usually described in the Schwarzchild-like coordinate system and the hydrodynamic

metric of [26] has been found in the Eddington-Finkelstein coordinate system. It would

be useful to see how we can rewrite these solutions in the Fefferman-Graham coordinate

4Interestingly, Fefferman and Graham have shown in [1] that for even dimensional asymptotic AdS
solutions, gµν always has a finite radius of convergence in ρ. However their argument does not readily
generalize to the odd dimensional case.
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system asymptotically. We will demonstrate a novel technique towards this end for the

boosted black brane and the hydrodynamic metrics. In both cases we will see that we

can achieve a mutual translation between Eddington-Finkelstein coordinate system and

Fefferman-Graham coordinate system by using a power series ansatz similar to (2.6) and

we can solve this ansatz algebraically order by order. We expect this method to work

for all solutions in which the boundary metric is flat, or more generally when the Weyl

anomaly vanishes.

The general procedure is as follows. In the Eddington-Finkelstein coordinates (xµ, r)

the metric takes the form

ds2 = −2uµ(x)dxµdr +Gµν(x, r)dx
µdxν . (2.11)

Here we are using ingoing Eddington-Finkelstein coordinate system, so that uµ is a four-

velocity (hence uµuνη
µν = −1) such that it is directed forward in time. We will express

the general structure of coordinate transformation from the Eddington-Finkelstein coor-

dinates (xµ, r) to Fefferman-Graham coordinates (zµ, ρ) as below

dρ = pµ(r, x)dxµ + q(r, x)dr, (2.12)

dzµ = mµ
ν(r, x)dxν + nµ(r, x)dr . (2.13)

We substitute the above in the Fefferman-Graham form of the metric (2.3) to get

ds2 =
1

ρ2
[(pµpν + gηξ(ρ, z)m

η
µm

ξ
ν)dx

µdxν + 2(pµq + gξσ(ρ, z)mξ
µn

σ)dxµdr

+ (q2 + gµν(ρ, z)n
µnν)dr2].

(2.14)

Comparing the above with the Eddington-Finkelstein form of the metric (2.11), we get

the following set of equations,

(q(x, r))2 + gµν(ρ, z)n
µ(x, r)nν(x, r) = 0, (2.15)

2pµ(x, r)q(x, r) + gαβ(ρ, z)(mα
µ(x, r)nβ(x, r) +mβ

µ(x, r)nα(x, r))

= −2uµ(x)(ρ(x, r))2,

pµ(x, r)pν(x, r) + gαβ(ρ, z)mα
µ(x, r)mβ

ν(x, r)

= Gµν(x, r)(ρ(x, r))2.
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So we have a scalar, a vector and a tensor equation and three unknowns to solve for. The

unknowns are a scalar ρ(x, r), a vector zµ(x, r) and the tensor gµν(z, ρ) which appear in

the Fefferman-Graham metric (2.3). It is clear from the definitions (2.12) of q, etc. that

they are just various partial derivates of (ρ, z), for instance q = ∂rρ, etc. We will make

the following general ansatz to solve the above equations. The ansatz for ρ and zµ will

be that they will be an integer power series of the inverse of the Eddington-Finkelstein

radial coordinate r.

ρ =
1

r
+
ρ2(x)

r2
+
ρ3(x)

r3
+ ......... , (2.16)

zµ = xµ +
zµ1 (x)

r
+
zµ2 (x)

r2
+ ..... .

To solve the equations of transformation (4.53), the above should be supplemented with

the ansatz (2.6) for the gµν(z, ρ) in the Fefferman Graham metric. The expressions for

the partial derivatives like q, etc. then turn out to be as below:

q = ∂rρ = − 1

r2
− 2ρ2

r3
− 3ρ3

r4
− ..... , (2.17)

pµ = ∂µρ =
∂µρ2

r2
+
∂µρ3

r3
+ ..... ,

nµ = ∂rz
µ = −z

µ
1

r2
− 2zµ2

r3
− .... ,

mµ
ν = ∂νz

µ = δµν +
∂νz

µ
1

r
+
∂νz

µ
2

r2
+ .... .

One thing to be kept in mind is that when we substitute our ansatz (2.16) to solve the

equations of transformation (4.53), gµν(ρ, z) should be re-expressed as functions of (x,r).

Below, we just give the first three terms which appear after it is rewritten as functions of

(x,r).

gµν = ηµν +
tµν(x)

r4
+

(4ρ2tµν + (z1.∂)tµν)(x)

r5
+ .... . (2.18)

We now consider a boosted black brane metric in Eddington-Finkelstein coordinate

ds2 = −2uµdx
µdr − r2f(br)uµuνdx

µdxν + r2Pµνdx
µdxν , (2.19)
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where

f(r) = 1− 1

r4
, (2.20)

u0 =
1√

1− β2
i

, (2.21)

ui =
βi√

1− β2
i

. (2.22)

and the temperature is T = 1
πb

and the three-velocity βi are all constants, and

Pµν = uµuν + ηµν , (2.23)

is the projector onto the spatial hypersurface orthogonal to the four velocity uµ. This

metric can be obtained by applying a boost parameterized by the three-velocity βi and a

scaling by b to the usual AdS black hole with unit temperature where the time coordinate

t is itself a Killing vector. In this case actually the exact transformation from Eddington-

Finkelstein to Fefferman-Graham coordinate system can be exactly worked out easily and

it is given by:

ρ =

√
2b√

b2r2 +
√
b4r4 − 1

, (2.24)

zµ = xµ + uµbk(br),

k(y) =
1

4
(log(

y + 1

y − 1
)− 2arctan(y) + π).

The solution for gµν in the Fefferman-Graham metric (2.3) for the boosted black brane is

given by:

gµν(z, ρ) = (1 +
ρ4

4b4
)ηµν +

4ρ4

4b4 + ρ4
uµuν . (2.25)

The boundary stress tensor could be easily read off by looking at the coefficient of ρ4

after Taylor expanding the RHS of the above expression. The stress tensor turns out to

be that of an ideal conformal fluid (like that of a gas of photons)

t0µν = g(4)µν
=

1

4b4
[4uµuν + ηµν ], (2.26)

where the temperature is T = 1
πb

. The horizon in the Fefferman-Graham coordinates is at

ρ =
√

2b and at the horizon gµν given by (2.25) is not invertible as gµν(ρ =
√

2b, z) = 2Pµν .
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So clearly the Fefferman-Graham coordinate system has a coordinate singularity at the

horizon. Also it is easy to check from (2.24) that the change of coordinates also becomes

singular at the horizon.

Now we turn to the hydrodynamic metric found in [26] which is a solution to Ein-

stein’s equation upto first order in the derivative expansion and has a regular horizon.

Here the “maximally commuting Goldstone parameters” of the boosted black brane solu-

tion, the velocities βi and the temperature T are functions of the field theory coordinates

(x). The Gµν in the Eddington-Finkelstein form of the metric (2.11) is:

Gµν = r2Pµν + (−r2 +
1

b4r2
)uµuν + 2r2bF (br)σµν − r((u.∂)uµuν −

2

3
uµuν(∂.u)), (2.27)

with

F (x) =
1

4
(log(

(x+ 1)2(x2 + 1)

x4
)− 2arctan(x) + π). (2.28)

In this case we will solve the set of equation (4.53) by putting in our ansatz (2.16). We

solve order by order for each power n in r−n. At each order we have to solve algebraic

equations and remarkably the equations can be consistently solved at each order. It is

important to throw away all the terms which have two x-derivatives or more and solve

the series for ρ and zµ given in (2.16) and the series for gµν given in (2.6) only up to first

derivative order. This is justified because the hydrodynamic metric above in Eddington-

Finkelstein form is a solution to Einstein’s equation only up to first order in x-derivatives

and hence it can have a Fefferman-Graham expansion near the boundary only upto first

derivative order. The results of the non-vanishing terms in the expansion for ρ and zµ in

(2.16) upto r−9 order are given below:

ρ2 =
1

3
(∂.u), ρ5 =

1

8b4
, ρ6 =

13(∂.u)

120b4
, ρ9 =

7

128b8
, (2.29)

zµ1 = uµ, zµ2 =
1

3
uµ(∂.u), zµ5 =

uµ

5b4
,

zµ6 =
9uµ(∂.u) + 7(u.∂)uµ

60b4
, zµ9 =

uµ

9b8
.

We can easily observe some patterns in the results above. Firstly the terms without

any derivatives only appear as coefficients of r−4n−1. These are precisely the terms that

appear in the expansion for the case of the boosted black brane as given in (2.24). This
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is because the original black brane solution in Fefferman-Graham coordinates as we know

from (2.25) is a series with “gaps” of four (which means only the fourth next term is

non-zero). So the solution of (4.53) should provide a series for ρ and zµ in gaps of four

as well. Secondly, it also turns out that the terms which have first derivative pieces occur

for ρ2, ρ6, z
µ
2 , z

µ
6 , etc. again in gaps of four. We obtain the coefficients of the series for gµν

given in (2.6) which was part of our ansatz. The second non-zero term in the series gives

us the boudary stress tensor

tµν = g(4)µν =
ηµν + 4uµuν

4b4
− 1

2b3
σµν , (2.30)

where

σµν = P α
µ P β

ν ∂(αuβ) −
1

3
Pµν∂αu

α. (2.31)

This is stress tensor for a relativistic conformal fluid satisfying Navier-Stokes’ equation

and with η/s = 1/4π. The next non vanishing term in the series for gµν is:

g(8)µν = −uµuν
4b8
− σµν

8b7
. (2.32)

We can check that the expression for g(8) is given by the general results of the the previous

section when we substitute the dissipative stress tensor (2.30) in (2.10).

In this section we have worked out the case for a specific “hydrodynamic metric”

given in [26]. This metric has no naked singularities and this corresponds to the choice

of η/s = 1/4π in the dissipative stress tensor (2.31). However we will see in section 5

that our ansatz (2.16) for translation between the Eddington-Finkelstein and Fefferman-

Graham coordinates will work even when the above is not the case, i.e the metric contains

naked singularities. In what follows we will reverse the translation. That is, we will work

out the Fefferman-Graham form of the metric exactly upto first order in derivatives first

and then find out the Eddington-Finkelstein form of the metric also exactly upto first

order in derivatives. We will see that the power series ansatz (2.16) is consistent for any

metric corresponding to an arbitrary hydrodynamic stress tensor.
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2.4 The derivative expansion in Fefferman-Graham

coordinates

We have already seen that the Fefferman-Graham form of the metric is the ideal one to

use if we are asking given a boundary stress tensor what the corresponding solution of

Einstein’s equations of motion should be. The most general hydrodynamic stress tensor

for a conformal fluid (in the Landau gauge) upto first order in derivatives is as below

tµν(z) =
ηµν + 4uµ(z)uν(z)

4b(z)4
− γ

2b(z)3
σµν(z), (2.33)

with σµν(z) given by (2.31), b related to the temperature through b = 1/πT and γ an

arbitrary constant. However here, unlike in the case of the specific solution (without naked

singularities) we considered in the previous section, η/s = γ/4π and hence is arbitrary.

We now ask what would be the corresponding solution for this arbitrary case.

Before we get into this specific case, we will show that we can get some insights

into the reverse question from some generally known facts and our previous results given

in section 2. We have seen, briefly, at the end of section 2 that the reverse question

is ill posed for an abcd (asymptotic boundary condition destroying) stress tensor, for

which the formal power series (2.6) for gµν has zero radius of convergence in ρ. One

must devise a strategy in which such stress tensors do not appear at all. To this end we

may always exploit a general property of solutions of Einstein’s equation that in the long

run the solution always becomes stationary. For the moment let us further restrict to

those solutions which have no (ADM) angular momentum or any other (ADM) conserved

charges (like the R-charge). These will, in the long run, settle down to the known boosted

black brane solution (2.19). Static multi black brane like solutions do not appear if we

turn off p-form gauge fields, so if more than one black brane are present they eventually

will collapse to form a single black brane. A good strategy to recover all solutions will

be to perturb around the late-time static black brane and build up all solutions in a

systematic derivative expansion. Since any solution would eventually become static (or

equilibrate) this strategy should always work at sufficiently late times.

Since the approach to equilibrium at long time scales and length scales can be natu-
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rally described by hydrodynamics, one can intuitively expect that the late time behavior

of the solutions will correspond to a hydrodynamic description in terms of the boundary

theory if the equilibrium can be described in terms of a perfect fluid. The boundary stress

tensor of a boosted black brane indeed corresponds to that of a perfect conformal fluid

like that of photons in pure QED. Our expectation is indeed borne out by the fact that all

solutions in the derivative expansion correspond to a traceless conserved hydrodynamic

boundary stress tensor, but with arbitrary number of derivatives. We will see that in the

derivative expansion at each order the solutions always have finite radius of convergence

away from the boundary, so we can conclude that all hydrodynamic stress tensors are

asymptotic boundary condition preserving.

In fact, it is also easy to argue that whenever we construct the solutions of the full

non-linear equations of motion of gravity perturbatively such that the dynamical equation

at each order in the expansion will become ultralocal, i.e. an ordinary differential equation

in the radial coordinate, we should have the feature that these solutions at every order in

the expansion will be free of abcd type of pathology. This will remain true even beyond

the hydrodynamic regime. The dynamical equation will be the same at every order in the

expansion but the source term will differ. If the source is well behaved, the solution has

a singularity at the location of the unperturbed horizon. This singularity can be just a

coordinate singularity or a true curvature singularity. If it is not a true singularity, it has

to be naked singularity, because at late time the singularity coincides with the original

horizon, which should have coincided with the actual future event horizon in case the

solution had a smooth future event horizon. In the next chapter we will argue that all

such solutions can be constructed in two expansion parameters, one of which will be the

derivative expansion parameter of hydrodynamics.

The fact that all hydrodynamic stress tensors preserve the asymptotic AdS boundary

condition should have a certain measure of validity even for solutions with net angular

momentum. In fact in [33], it has been shown that a large class of rotating black holes

in AdS can be described by perfect fluid hydrodynamics. However, we do not know how

general the result is. For any solution if the hydrodynamic description holds for the
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stationary solution to which a given solution eventually equilibrates, it can be expected

to hold for sufficiently late times as well. Hence solutions can be constructed in the

derivative expansion. Therefore, certainly a large class of solutions even in the sector

with net angular momentum which can be constructed by perturbing around certain

stationary solutions, will have a hydrodynamic description at least at late times.

To build up a solution corresponding to an arbitrary hydrodynamic stress tensor, we

will work in the Fefferman-Graham coordinate system as we have said before and we will

construct the solution exactly order by order in the derivative expansion. To develop the

derivative expansion we follow the same method which the authors of [26] followed but

now in the Fefferman-Graham coordinate system. In fact, based on the results of section

2, we will see that their method simplifies in these coordinates. We take the boosted

black brane solution with gµν of the form of (2.25), but now the “maximally commuting

Goldstone parameters” (uµ, b) are arbitrary functions of z. We will call this the zeroth

order metric g0 which is no more a solution to Einstein’s equation, so we need to correct

this with g1 which will now depend on the first derivatives of the “maximally commuting

Goldstone parameters” (uµ, b). This correction g1 can be found substituting g = g0 + g1

in our equations of motion (2.5) and retaining only terms which have no more than one

derivative of z.

The first of the equations of motion (2.5), i.e the tensor equation gives us a source

free linear equation for g1 which is second order in the derivatives of ρ and has no z-

derivatives.

1

2
g
′′

1 −
3

2

g
′
1

ρ
− 1

2
g
′

1g
−1
0 g

′

0 −
1

2
g
′

0g
−1
0 g

′

1 +
1

2
g
′

0g
−1
0 g1g

−1
0 g

′

0

+
1

2

(
Tr(g−1

0 g
′

1)− Tr(g−1
0 g1g

−1
0 g

′

0)
)

(
g
′
0

2
− g0

ρ
) +

1

2
Tr(g−1

0 g
′

0)(
g
′
1

2
− g1

ρ
) = 0.

(2.34)

At the first order in derivative expansion, the only term which can provide a source term

is Ric(g) since it has no derivatives of ρ. However Ric(g) contains at least two derivatives

of z, so at this order the source vanishes.

At the first order the second of the equations of motion, which is a vector equation
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gives us the following:

∇0µTr(g
−1
0 g′0)−∇ν

0g
′

0µν = 0, (2.35)

where ∇0 is the covariant derivative constructed from g0.The major simplification which

occurs in the Fefferman-Graham coordinates is the general observation in section 2, that

this gives us nothing but the conservation of the stress tensor. It may be checked that if

we choose to solve this vector fluctuation equation order by order in powers of ρ, like we

did in section 2, at the leading order we would get ∂µtoµν = 0, where t0µν is the perfect

fluid stress tensor (2.26) and all the coefficients of the higher powers of ρ will vanish

identically once the leading order condition is imposed. This simplification will happen

at every order in the derivative expansion, which means that if tn−1 is the stress tensor

upto n-1 th order in the derivative expansion, at the n-th order the second equation will

simply imply the conservation of tn−1.

At the first order in the derivative expansion the third equation of motion vanishes

identically. It is easy to see why this will happen. Again we go back to the general obser-

vations of section 2. If tµν = t0µν + t1µν with t0µν given by the perfect fluid stress tensor

(2.26) and t1µν is the first order correction to the stress tensor satisfying the tracelessness

and the Landau gauge uµt1µν = 0 conditions, then the correction to the coefficients of the

power series expansion g(n)µν (some of which are listed in (2.10)) is simply proportional to

t1µν . The first order derivatives of t0µν doesn’t appear because, as we have observed the

general expressions for g(n) must contain even number of derivatives of t0µν . It follows that

the correction to the zeroth order metric, g1, is proportional to t1. It also follows from the

the tracelessness of t1 and the Landau gauge condition that the third equation vanishes

identically as all traces appearing in the equation vanish. We will soon see that, this

simplifying feature also, remarkably generalizes to all orders in the derivative expansion.

In the Fefferman-Graham coordinates the first order correction to the metric g1

is, therefore, proportional to the first order correction to the stress tensor which is pro-

portional to σµν and therefore g1 takes the form of γ
′
bσµνf(ρ), where γ

′
is an arbitrary

constant. Substituting this in the tensor equation (2.34), we find that f(ρ) satisfies the
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following differential equation

f
′′ − f ′ (12b4 − ρ4)(4b4 + 3ρ4)

ρ(16b8 − ρ8)
+ f

128ρ6b4

(4b4 + ρ4)(16b8 − ρ8)
= 0. (2.36)

We already know that the solution is a power series in ρ4, so we change our variable ρ to

x = ρ4. The equation now reads

f
′′ − f ′ 8b4

16b8 − x2
+ f

8b4

(4b4 + x)(16b8 − x2)
= 0. (2.37)

The solution of this differential equation which vanishes at the boundary (after re-substituting

x with ρ4) 5 is

(1 +
ρ4

4b4
)log

(
1− ρ4

4b4

1 + ρ4

4b4

)
. (2.38)

The metric in Fefferman-Graham coordinates up to first order then is

ds2 =
dρ2 + gµν(ρ, z)dz

µdzν

ρ2
,

gµν(ρ, z) = (1 +
ρ4

4b4
)ηµν +

4ρ4

4b4 + ρ4
uµuν + γ

′
bσµν(1 +

ρ4

4b4
)log

(
1− ρ4

4b4

1 + ρ4

4b4

)
. (2.39)

To read off the stress tensor upto first order, we simply need the ρ4 term in the Taylor

expansion of gµν . We get

tµν =
ηµν + 4uµuν

4b4
− γ

′

2b3
σµν . (2.40)

Comparing with (2.33) we get that we must set γ
′

= γ in the first order metric (2.39) to

get the desired solution corresponding to the boundary stress tensor.

One very interesting feature of our solution at the first order can be found out

by putting γ
′

= γ = 0. This implies that our zeroth order solution itself, now with

velocities and temperatures satisfying the relativistic Euler equation, is an exact solution

of Einstein’s equations up to first order. Such is never the case in Eddington-Finkelstein

coordinate system where as we will see we need to correct the zeroth order solution even

for a dissipation-less stress tensor so that the solution is exact up to first order. We do

not understand any deep reason for this feature of our solution.

5The other solution is f2 = 1 + ρ4

4b4
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Now we can proceed to examine the higher orders in the derivative expansion.

Though we will postpone explicit solutions beyond the first order for a future publi-

cation, here we will show that it is trivial to satisfy the vector and scalar constraints at

each order in perturbation theory. The tensor equation takes the following form at each

order in perturbation theory:

D1gnµν +D2(gnµρu
ρuν + gnνρu

ρuµ) +D3(gnρση
ρσ)ηµν +D4(gnρση

ρσ)uµuν

+D5(gnρσu
ρuσ)ηµν +D6(gnρσu

ρuσ)uµuν = snµν(z, ρ),
(2.41)

where D1, D2, etc. are linear differential operators involving derivatives in the radial

coordinate only and snµν(z, ρ) is the source term which is a (nonlinear) function of the

corrections to the metric up to n-1 th order in the derivative expansion. The left hand

side of the above equation is in fact the same as in (2.34) with g1 replaced by the n-th

order correction to the metric gn, but now source terms are present on the right hand side.

Also the differential operator D1 is the same as the operator which acts on f in (2.36) at

every order in the derivative expansion. We dropped the operators D2, D3, etc. at the

first order, i.e. for g1, because as we saw the general results of section 2 (equations in

(2.10) for instance) forced it to be proportional to be stress tensor and hence be traceless

and vanish when contracted with the four velocity. However, from the second order in

the derivative expansion onwards, the general results of section 2 do not imply this to be

true for the correction to the metric and in fact the source terms which appear on the

right hand side of the equation indeed do not have this property. All the other operators

except D1, however, involve no more than one derivative in the radial coordinate.

We have to choose a particular solution to the above equation. We can always

choose the particular solution to be such that it vanishes at the boundary like ρ6 so

that it doesn’t contribute to the stress tensor (as the coefficient of its ρ4 term vanishes).

One can explicitly check this, however, more efficiently we can prove it as follows. The

source term for the n-th order correction clearly is determined by various terms of the

stress tensor up to n-1 th order, so it follows from the general results of section 2 that

the particular solution can be chosen to be independent of tnµν , which is the n-th order

correction to the stress tensor. In that case the ρ4 term should be absent. For instance,

based on the results like those in (2.10), we can write down the Taylor series expansion
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in the radial coordinate for the particular solution for g2 as below.

g2µν = −ρ
6

12
�t0µν + ρ8[

1

2
t ρ
1µt1ρν −

1

24
ηµν(t

ρσ
1 t1ρσ)]

+ ρ10[− 1

24
(t α

0µ�t0αν + t α
0ν�t0αµ)

+
1

180
ηµνt

αβ
0 �t0αβ +

1

360
tαβ0 ∂µ∂νt0αβ −

1

120
tαβ0 (∂µ∂αt0βν + ∂ν∂αt0βµ)

+
1

60
tαβ0 ∂α∂βt0µν −

1

180
∂µt

αβ
0 ∂νt0αβ +

1

720
ηµν∂αt

βγ
0 ∂αt0βγ +

1

120
(∂µt

αβ
0 ∂αt0βν + ∂νt

αβ
0 ∂αt0βµ)

− 1

60
∂αt

β
0µ∂βt

α
0ν ] + ..... .

(2.42)

More generally, the particular solution for gn is uniquely determined once we specify that

it vanishes at the boundary like −(1/12)ρ6�tn−2. Then it follows that it is independent

of tn and doesn’t contribute to the stress tensor at the n th order.

Now the particular solution at every order in the derivative expansion should by itself

satisfy the scalar constraint. Let us see it explicitly for the particular solution for g2. The

particular solution chosen to vanish at the boundary like −(1/12)ρ6�t0 has an expansion

of the above form (42). So by this choice, the coefficients of the Taylor expansion (now

fixed by the source) will automatically agree with the general formula, like those in (2.10).

These general formula are automatically consistent with the scalar constraint. The scalar

constraint also will be a linear differential equation for gn with a source term. The source

term again is a (nonlinear) function of the corrections to the metric up to n-1 th order

in the derivative expansion. The particular solution by itself will satisfy this equation.

So the homogeneous solution of the tensor equation for gn must also be a homogeneous

solution of the scalar constraint.

The homogeneous solution of the tensor equation for gn which will be consistent

with the scalar constraint is simply −2b4f(ρ)tnµν , with f(ρ) being given by (2.38) and

tnµν being an arbitrarily chosen correction to the hydrodynamic stress tensor involving

n derivatives of the field theory coordinates z. However tnµν must be traceless and also

satisfy the Landau gauge condition. Let us illustrate again by explicitly doing the Taylor

series expansion of the homogeneous solution to g2 which is −2b4f(ρ)tnµν . The Taylor
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expansion is as below

g2µν = t2µν(ρ
4 +

ρ8

4b4
+

ρ12

48b8
+ ...). (2.43)

Using the tracelessness and Landau gauge condition for t2, one can check from the general

formula like those in (2.10) that this is just the part of the metric determined by t2 at the

second order. Hence this should be the only homogeneous solution that is consistent with

the scalar constraint. Similarly at each order one can see that the part of the solution

for gn which contains tn is proportional to tn and since the particular solution by choice

contains all other terms, the homogeneous solution should be always proportional to tn.

Then the tensor equation fixes the radial part of the homogeneous solution so that it

should be −2b4f(ρ)tnµν .

The vector constraint, at the n-th order in the derivative expansion, as we have

argued before simply implies the conservation of the stress tensor up to n-1 th order.

To summarize, these are the features of the derivative expansion in the Fefferman-

Graham coordinates.

• At every order in the derivative expansion, the tensor equation for gn is a linear dif-

ferential equation of the form of (2.41) involving derivatives in the radial coordinate

only. The operators D1, D2, etc are the same at every order, while the source term

sn is a nonlinear function of the various corrections to the metric up to n-1 th order.

• The particular solution to the tensor equation for gn can be chosen to vanish at the

boundary like −(1/12)ρ6�tn−2. With this choice the particular solution automati-

cally satisfies the scalar constraint.

• The homogeneous solution to the tensor equation which is consistent with the scalar

constraint is −2b4f(ρ)tnµν at very order, with f being given by (2.38) and tnµν being

an arbitrary n th order correction to the stress tensor which satisfy the tracelessness

and the Landau gauge condition conditions.

• The vector constraint at the n-th order just implies the conservation of n-1 th order

stress tensor.
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• We can keep manifest Lorentz covariance at each order in the derivative expansion.

• We can construct a solution corresponding to an arbitrary stress tensor because

the homogeneous solution of the tensor equation for gn at the n-th order is simply

proportional to an arbitrarily chosen n-th order correction to the stress tensor. At

every order in the derivative expansion for any choice of the hydrodynamic stress

tensor, the solution has finite radius of convergence away from the boundary, so all

hydrodynamic stress tensors preserve the asymptotic AdS boundary condition.

2.5 Getting rid of naked singularities

The comparative advantage of solving Einstein’s equation of pure gravity in Fefferman

Graham coordinates in the derivative expansion over doing the same in Eddington-

Finkelstein coordinate system is that the constraints simplify dramatically and also we

do not need to split the terms into tensors, vectors and scalars of SO(3), thus preserving

manifest Lorentz covariance. The comparative disadvantage of the Fefferman-Graham

coordinate system is that the regularity analysis is not straightforward. At the first order

in the derivative expansion, the metric in Fefferman-Graham coordinates (2.39) has a

singularity at ρ =
√

2b. This is the location of the horizon at the zeroth order and the

zeroth order metric itself is not invertible here.

The first order perturbation has a log piece which also blows up here. This singu-

larity could be just a coordinate singularity in which case it could be removed by going

to a different coordinate system as it happened for the boosted black brane, or it could

be a real singularity. If it is a real singularity, it is naked because it coincides with the

original horizon at late time. At late times the solution approaches a boosted black brane

but since the horizon coincides with a real singularity, no infalling observer can continue

life after reaching the horizon.

To analyse the singularity in the Fefferman-Graham coordinates we will simply

translate the metric to Eddington-Finkelstein coordinates (r, x). It will be of course

suffice to change our coordinates near ρ =
√

2b, however, for the sake of completeness
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and better general understanding we will do the change of coordinates exactly up to first

order in the derivative expansion. The Eddington-Finkelstein metric which we will get as

a result of this translation will also be an exact solution of Einstein’s equation up to first

order in x-derivatives. We now return to the equations (4.53) in section 3 which gives

the translation between the two coordinate systems. We still treat the Fefferman-Graham

coordinates (ρ(x, r), zµ(x, r)) as unknowns, but the third unknown is now the Gµν(x, r)

which appears in the Eddington-Finkelstein metric (2.11). The zeroth order solutions to

these three are known and are given in (2.19) and (2.24). To find the corrected solutions

due to change in the Fefferman-Graham metric at first order it is straightforward to

perturb these equations and solve them exactly at first order. The complete solutions to

the three unknowns exact up to first order are

ρ =

√
2b√

b2r2 +
√
b4r4 − 1

(
1 + bk(br)

∂.u

3

)
,

zµ = xµ + uµbk(br) + uµ
∂.u

3
b2kA(br) + (u.∂)uµb2kB(br), (2.44)

Gµν =r2Pµν +

(
−r2 +

1

b4r2

)
uµuν + 2r2bF (br)σµν − r

(
(u.∂)(uµuν)−

2

3
uµuν(∂.u)

)
+

(γ − 1)b

4
r2log

(
1− 1

b4r4

)
σµν ,

where,

k(x) =
1

4

(
log

(
x+ 1

x− 1

)
− 2arctan(x) + π

)
, (2.45)

F (x) =
1

4

(
log

(
(x+ 1)2(x2 + 1)

x4

)
− 2arctan(x) + π

)
,

and kA(x), kB(x) satisfy the following differential equations

dkA
dx

= − x2

x4 − 1

(
k(x) +

x√
x4 − 1

)
, (2.46)

dkB
dx

=
1

x
√
x4 − 1

− k(x)x2

x4 − 1
.

with the boundary condition that they vanish at x = ∞. One may easily check that if

we do the Taylor series expansion of ρ, zµ in 1/r, we can reproduce the results (2.29) of

section 3 in which we have solved these equations using a power series ansatz.
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The crucial point, as realized by authors of [26] is that in the Eddington-Finkelstein

coordinates if there is a blow-up in Gµν(x, r) it should be a real singularity. For a general

conformal fluid at first order with η/s = γ/4π, the corresponding solution in Eddington-

Finkelstein coordinates has Gµν(x, r) given by (2.44). Except for the log term which

appears in the last line, all other terms are well behaved for r > 0 and the log term blows

up at r = 1/b, the location of the unperturbed black brane horizon. Only when γ = 1, the

coefficient of the log term vanishes and so the naked singularity at r = 1/b is absent. For

this value of γ we have in fact reproduced the Gµν of the Eddington-Finkelstein metric

given by the authors of [26].

We learn the following general facts. The translation to Eddington-Finkelstein coor-

dinates exists for an arbitrary solution in the Fefferman-Graham coordinates irrespective

of whether there is any naked singularity or not. Also the Fefferman-Graham coordinates

have a power series expansion in terms of the inverse of the radial Eddington-Finkelstein

coordinates for all cases. For all cases, the change of coordinates also become singular

at the location of the original horizon in the Eddington-Finkelstein coordinates which is

r = 1/b.

We can continue the regularity analysis to higher orders in the derivative expansion

by solving the equations (4.53) for translating the solution from the Fefferman-Graham co-

ordinates to Eddington-Finkelstein coordinates order by order in the derivative expansion

as well. In this way at each order we will be able to determine what values the coefficients

in the terms of the hydrodynamic stress tensor should have so that a naked singularity

is avoided. It would be interesting to see if we can understand the values of these coef-

ficients of the hydrodynamic stress tensor, more directly in terms of the geometry of the

unperturbed boosted black brane horizon.

We will conclude this section by emphasizing certain points.

• We can think of translating to outgoing Eddington-Finkelstein coordinates also as

an attempt to remove the singularity and then as expected the situation will be

time-reversed. We will now need γ = −1 for regularity. In the boundary theory, all

fluid dynamical solutions will then be time-reversed and our gravity solutions will
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be perturbed white-hole solutions exact up to first order in the derivative expansion.

• We could have attempted to fix γ by studying regularity at the horizon by computing

curvature invariants (like RµνρσR
µνρσ). However, we do not know, if for these space-

times, checking that a finite number of curvature invariants do not blow up at the

horizon will suffice to demonstrate regularity. So the best strategy is to translate

to a coordinate system where the solution is explicitly regular up to first order

in the derivative expansion and this is what we have done here. For the sake of

completeness, however, we have studied a few curvature invariants and have found

that the leading singularity of RµνρσR
µνρσ at second derivative order vanishes for the

right choices of γ which are 1 and -1, the details of which are presented in Appendix

B. Here we have also pointed out the dangers of using curvature invariants for

regularity analysis at higher orders in the derivative expansion.

• The manifest regularity in the ingoing Eddington-Finkelstein coordinates can be

thought of as generalization of the incoming wave boundary condition at the hori-

zon in case of the linearized solution, at the non-linear level. This in fact is the un-

derlying reason why the transport coefficients obtained in this more robust method

agrees with the values obtained from the dispersion of long wavelength and low fre-

quency quasinormal modes. For nonhydrodynamic configurations, the regularity of

the solutions need not manifest in the ingoing Eddington-Finkelstein coordinates,

so the dispersion relations of nonhydrodynamic quasinormal modes may at best be

only approximate regular solutions at the non-linear level.

• A special case of our metrics are the solutions corresponding to the Bjorken flow

found in [25]. With our method we find the solutions for arbitrary slowly varying

velocity configurations at each order in the derivative expansion. Our method clar-

ifies the issues raised in [34] regarding finding the solutions in Fefferman-Graham

coordinates by implementing a systematic derivative expansion.

• The derivative expansion in Fefferman-Graham coordinates is equivalent to the same

in Eddington-Finkelstein coordinates to all orders in the derivative expansion even
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when the solutions do not have a regular horizon. This is so because the equations

(4.53) for translating Fefferman-Graham coordinates to Eddington-Finkelstein co-

ordinates can always be solved order by order in the derivative expansion as well.

In fact, this is natural, because any asymptotic AdS solution can be written in the

Fefferman Graham coordinates.

• Using our method we can construct solutions in the Fefferman-Graham coordinates,

corresponding to an arbitrary hydrodynamic energy-momentum tensor with arbi-

trary first order and higher order transport coefficients. It is also possible to translate

these solutions to ingoing Eddington-Finkelstein coordinates up to any given order

in the derivative expansion. At any given order the solution is linear in the highest

order transport coefficients. The solution is also manifestly regular or irregular in

Eddington-Finkelstein coordinates. If the transport coefficients at the lower orders

are fixed to values such that the solutions at all lower orders are regular, then the

solution at the highest order when singular, contains the same log singularities as in

the case of the first-order solution when η/s is different from 1/4π, because the singu-

larity comes from translating the homogeneous solution in the Fefferman-Graham

coordinates which alone can depend on the highest order transport coefficients.

These log divergences being linear in the highest order transport coefficients, can

always be fixed to values such that they disappear. Therefore, we conclude, all hy-

drodynamic transport coefficients can be determined by requiring the regularity of the

solution up to required orders in the derivative expansion. Moreover, the solutions,

when regular, corresponds to a purely hydrodynamic energy-momentum tensor. So,

we can demonstrate, that purely hydrodynamic states which can be characterized

by hydrodynamic variables alone and whose evolution can be completely determined

by a higher derivative hydrodynamic equation, exist at strong ’t Hooft coupling and

large rank of the gauge group, in the universal sector of conformal gauge theories

with gravity duals.
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Chapter 3

Phenomenological description of
basic nonequilibrium processes and
pure gravity

3.1 Introduction

In the previous chapter, we have established that the expectation value of the energy-

momentum tensor uniquely characterizes all states in the universal sector of gauge/gravity

duality and determines their dynamics. A generic conformal energy momentum-tensor

has nine independent components, therefore should require nine field variables for being

parametrized. We have also established in the previous chapter that there are purely

hydrodynamic states in the universal sector, which can be characterized by four hydrody-

namic variables, namely the local velocity and temperature even far away from equilib-

rium. The four equations of conservation of energy and momentum give us the equations

of fluid dynamics and completely determine the dynamics of the purely hydrodynamic

states. Regularity of the future horizon in the dual gravity solutions require systematic

corrections to the energy-momentum tensor in the derivative expansion giving systematic

Weyl covariant higher derivative corrections to the relativistic Navier-Stokes’ equation.

Further, all the higher order transport coefficients also get determined by requirement

of regularity of the future horizon in the dual gravity solutions order by order in the

derivative expansion. The derivative expansion is under control when the hydrodynamic
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variables are slowly varying both spatially and temporally with respect to the temperature

in the final configuration.

In this chapter, we will attempt a field-theoretic understanding of how the expecta-

tion value of the energy-momentum tensor characterizes states in the universal sector and

determines their dynamics. Moreover, we will also seek to understand the whole range

of phenomena in the universal sector. Clearly, the four equations of energy-momentum

conservation will not suffice generically to determine the evolution of the nine independent

components of the energy-momentum tensor. In this chapter, we will use field-theoretic

insights to understand how pure gravity in asymptotically AdS5 spacetime gives us the

evolution of a generic energy-momentum tensor for a state in the universal sector through

the requirement of regularity of the future horizon. This will lead us to make conjecture

about regularity condition of asymptotically AdS5 spacetimes which are solutions of Ein-

stein’s equation. This conjecture can be verified by constructing solutions in a general

perturbation expansion and doing analysis of regularity for the given orders of expansion.

The broader result of this study is that we will be able to develop a complete frame-

work for the whole range of phenomena in the universal sector including decoherence,

relaxation and hydrodynamics. We will argue that all these phenomena even beyond

the universal sector can be effectively described by just nine phenomenological equations

giving the evolution of the energy-momentum tensor which can be systematically con-

structed in two expansion parameters and reduce to fluid dynamical equations in special

cases. The description of the states in terms of these equations become exact for states in

the universal sector. We will be also be able to argue that a generic state even away from

the regime of strong ’t Hooft coupling and large rank of the gauge group can be approxi-

mated at sufficiently late time by an appropriate state where the dynamics will be exactly

given by the energy-momentum tensor alone. We will also see how we will be able to use

this framework to establish concretely which features in the five dimensional geometry

determine nonequilibrium phenomena like decoherence and attain a deeper understanding

of irreversibility.

Here we will address the question of how energy-momentum tensor characterizes
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the states; first in the regime of weak coupling, so that we can employ the quasiparticle

description and also use kinetic theories, which are coarse-grained descriptions of micro-

scopic laws. Specifically, we use the Boltzmann equation which has proven useful [35, 36]

in determining the shear viscosity, higher order hydrodynamic transport coefficients and

the relaxation time in weakly coupled gauge field theories. It has also been shown that

an effective Boltzmann equation can be used to study nonequilibrium phenomena in high

temperature QCD and is equivalent to an exact perturbative treatment [35]. Despite

being a coarse-grained description, the Boltzmann equation retains the power to describe

nonequilibrium phenomena far away from the hydrodynamic regime and at length scales

and time scales shorter than the mean-free path and the relaxation time respectively.

However it is not applicable to phenomena at microscopic length and time scales.

We prove that there exist very special solutions of the Boltzmann equation which are

functionally determined by the energy-momentum tensor alone. We call such solutions

“conservative solutions”. These solutions, although very special, constitute phenomena

far away from equilibrium and well beyond the hydrodynamic regime. The existence of

conservative solutions can be conveniently proven for nonrelativistic monoatomic gases

using some basic structural properties of the Boltzmann equation and can be easily ex-

tended to include relativistic and semiclassical corrections. We show that these solutions

can be constructed even for multicomponent systems relevant for relativistic quantum

gauge theories.

It will thus be natural to make the assumption that the conservative solutions con-

stitute the universal sector of strongly coupled gauge theories with gravity duals. This

will explain why the states in the universal sector are determinable functionally by the

energy-momentum tensor alone. This assumption, through the gauge/gravity duality, will

have powerful consequences for gravity. The same condition on the energy-momentum

tensor,required to make the state in the field theory a conservative solution, will now be

required to make the dual solution in gravity have a smooth future horizon. In other

words, the conservative condition on the energy-momentum tensor in field theory should

now transform into the regularity condition in gravity.
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The plan of this chapter is as follows. In Section 2 we outline the conservative

solutions in the Boltzmann equation. We then state and investigate our proposal for the

regularity condition on the energy-momentum tensor for pure gravity in AdS5 in Section 3.

The proof of existence of the conservative solutions in the Boltzmann equation is slightly

technical and elaborate. So, this proof will be presented in full details in the Appendix C

in a self-contained manner and will referred appropriately in this Chapter.

3.2 The conservative solutions of the Boltzmann equa-

tion

The study of equilibrium and transport properties of dilute gases through the dynamics of

one-particle phase space distribution functions was pioneered by Maxwell [38] and further

developed by Boltzmann [39] in the 19th century. The Boltzmann equation provides a

successful description of nonequilibrium phenomena in rarefied monoatomic gases. It is

an equation for the evolution of the one-particle phase space distribution function. It can

successfully describe nonequilibrium phenomena in rarefied gases, even at length scales

between the microscopic molecular length scale and the mean-free path, and time scales

between the time it takes to complete binary molecular collisions 1 and the average time

between intermolecular collisions.

The Boltzmann equation is neither microscopic nor phenomenological, but a re-

sult of averaging the dynamics over microscopic length scales and time scales. Unlike

phenomenological equations, it has no undetermined parameters and is completely fixed

once the intermolecular force law is known. The structural details of the molecules are

however ignored and effectively they are taken to be pointlike particles. The hydrody-

namic equations with all the transport coefficients can be determined from the Boltzmann

equation.

We start with a brief description of the conservative solutions of the Boltzmann

1Classically this is just the typical time it takes the trajectories of the molecules to straighten out
after collision; a good estimate of this is r/cs, where r is the range of the force and cs is the thermal
speed (the average root mean square velocity of the particles).
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equation for a system of pointlike classical nonrelativistic particles interacting via a cen-

tral force. As mentioned in the Introduction, the proof of existence and uniqueness of

such solutions is detailed in the Appendix in a self-contained manner. This is followed by

a discussion on how to generalize our construction of conservative solutions to the semi-

classical and relativistic versions of the Boltzmann equation. Finally we show how our

results apply to multicomponent systems relevant for relativistic gauge theories. These

generalizations are straightforward and the discussion on the nonrelativistic Boltzmann

equation will be convenient for a first understanding of the conservative solutions.

3.2.1 The conservative solutions in brief

A generic solution of Boltzmann equation (6.19) is characterized by infinite number of

local variables. In general, these could be chosen to be the infinite local velocity moments

(f (n)(x)’s) of the one-particle phase space distribution f(x, ξ), given by

f
(n)
i1i2....in

(x, t) =

∫
dξ ci1ci2 .....cin f(x, ξ) . (3.1)

where ci = ξi − ui(x, t) with ui(x, t) being the local average velocity.

However the first ten velocity moments suffice to parametrize the energy-momentum

tensor. The conservative solutions, which are determined by the energy-momentum tensor

alone, are thus a very special class of solutions obtained when the initial value data satisfy

certain constraints.

Another special class of solutions to the Boltzmann equation is actually well known

in the literature. These are the normal solutions, where the local hydrodynamic variables

given by the first five velocity moments of f suffice to describe the solution even when

it is far from equilibrium. Our conservative solutions are a generalization of these nor-

mal solutions. We review the normal solutions below before describing the conservative

solutions.
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The hydrodynamic equations and normal solutions

It is well-known that the first five velocity moments of the Boltzmann equation (6.19),

obtained by multiplying with (1, ξi, ξ
2) and integrating over ξ, give the hydrodynamic

equations as

∂ρ

∂t
+

∂

∂xr
(ρur) = 0 ,

∂ui
∂t

+ ur
∂ui
∂xr

+
1

ρ

∂(pδir + pir)

∂xr
= 0 , (3.2)

∂p

∂t
+

∂

∂xr
(urp) +

2

3
(pδir + pir)

∂ui
∂xr

+
1

3

∂Sr
∂xr

= 0 ,

where the hydrodynamic variables (ρ, ui, p) are respectively the local density, components

of local average molecular velocity and the local pressure of the gas defined in terms of

the average root mean square kinetic energy. In terms of the velocity moments

ρ(x, t) =

∫
fdξ ,

ui(x, t) =
1

ρ

∫
ξifdξ , (3.3)

p(x, t) =
1

3

∫
ξ2fdξ .

The local temperature is defined through the local equation of state, (RT = p/ρ) 2. The

shear-stress tensor pij and the heat flow vector Si (defined through Si = Sijkδjk) are

related to the velocity moments by

pij =

∫
(cicj −RTδij)fdξ ,

Sijk =

∫
cicjckfdξ , (3.4)

where ci = ξi − ui. It can be easily seen from the definition that pijδij = 0.

The collision term J(f, f) (as defined in (6.20)) does not contribute when deriving

the hydrodynamic equations (3.2) from the Boltzmann equation. The first five velocity

2If we refine the kinetic description beyond the Boltzmann equation, we need to refine this equation of
state which holds for ideal gases. The gaseous equation of state assumes that the potential energy density
is negligible compared to the kinetic energy density which could be true only if the number density of
particles is sufficiently small.
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moments of J(f, f) are zero owing to particle number, momentum and energy conservation

as proven in the Appendix.

It must be emphasized that, in the hydrodynamic equations (3.2), the shear-stress

tensor pij and the heat flow vector Si are functionally independent of the hydrodynamic

variables. However there exist unique algebraic solutions to these and all the higher mo-

ments f
(n)
i1...in

(x, t), which are functionals of the hydrodynamic variables. These functional

forms contain only spatial derivatives of the hydrodynamic variables and can be system-

atically expanded in the so-called derivative expansion discussed below. This leads to the

construction of the normal or purely hydrodynamic solutions of the Boltzmann equation,

which we discuss below. For a generic solution of the Boltzmann equation, the higher

moments of f will have explicit time-dependent parts which are functionally independent

of the hydrodynamic variables.

The normal solutions of the Boltzmann equation [40, 41, 42] have been extensively

discussed in [43]. These solutions can be determined in terms of the five hydrodynamic

variables (ρ, ui, p) alone. They describe situations far away from equilibrium, such that

observables which vanish at equilibrium do not vanish anymore but are functionally deter-

mined in terms of the hydrodynamic variables and their spatial derivatives. The existence

of such solutions follows from the existence of unique algebraic solutions (as functionals

of the hydrodynamic variables) to the equations of motion of the higher moments. The

functional forms of the shear-stress tensor and the heat flow vector, for instance, are given

by

pij = ησij + β1
η2

p
(∂ · u)σij + β2

η2

p

(
D

Dt
σij − 2

(
σikσkj −

1

3
δijσlmσlm

))
+β3

η2

ρT

(
∂i∂jT −

1

3
δij�T

)
+ β4

η2

pρT

(
∂ip∂jT + ∂jp∂iT −

2

3
δij∂lp∂lT

)
+β5

η2

pρT

(
∂iT∂jT −

1

3
δij∂lT∂lT

)
+ ... , (3.5)

Si = χ∂iT + ... ,
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with the convective derivative D/Dt = ∂/∂t+ ui∂i, and

σij = ∂iuj + ∂jui −
2

3
δij∂ · u ,

η =
p

B(2)
+ ... , χ =

15R

2
η + ... ,

where η and ξ, appearing as in the Navier-Stokes equation and the Fourier’s law of heat

conduction, are the shear viscosity and heat conductivity respectively. B(2) is a specific

function of the local thermodynamic variables determined by the collision kernel of the

Boltzmann equation. The β′is are pure numbers that can be determined from the Boltz-

mann equation. The time derivative in D/Dt can be converted to spatial derivatives

using the hydrodynamic equations of motion; in fact, up to the orders shown above, we

can assume that the Euler equation is valid and that the heat conduction is adiabatic.

The functional forms can be expanded systematically in the derivative expansion,

which counts the number of spatial derivatives present in the expansion. The expan-

sion parameter is the ratio of the typical length scale of variation of the hydrodynamic

variables with the mean-free path. This is true for all the higher moments of f . The func-

tional forms of pij and Si (3.5), when substituted into the hydrodynamic equations (3.2),

give us systematic corrections to the Navier-Stokes equation and Fourier heat conduction

respectively which can be expanded in the derivative expansion scheme.

The hydrodynamic equations are now the only dynamical equations. The higher

moments are given algebraically in terms of the hydrodynamic variables and their spatial

derivatives. The phase space distribution function f is completely determined by the

hydrodynamic variables through its velocity moments. The hydrodynamic equations thus

form a closed system of equations and any solution of this system can be lifted to a unique

solution of the full Boltzmann equation.

Stewart has shown [44] that such normal solutions exist even for the relativistic and

semiclassical Boltzmann equations.
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The conservative solutions

We are able to prove that a more general class of special solutions to the Boltzmann

equation - which we call conservative solutions - exist. Here we outline these solutions,

leaving the details of the proof to the Appendix. These solutions can be completely deter-

mined in terms of the energy-momentum tensor, analogous to the normal solutions being

completely determined in terms of the hydrodynamic variables. The energy-momentum

tensor (as shown later) can be parametrized by the first ten moments of f :

• i) the five hydrodynamic variables (ρ, ui, p), and

• ii) the five components of the shear-stress tensor pij in a comoving locally inertial

frame.

Importantly, for a generic conservative solution the shear-stress tensor is an independent

variable unlike the case of normal solutions, where it is a functional of the hydrodynamic

variables.

These ten independent variables satisfy the following equations of motion

∂ρ

∂t
+

∂

∂xr
(ρur) = 0 ,

∂ui
∂t

+ ur
∂ui
∂xr

+
1

ρ

∂(pδir + pir)

∂xr
= 0 ,

∂p

∂t
+

∂

∂xr
(urp) +

2

3
(pδir + pir)

∂ui
∂xr

+
1

3

∂Sr
∂xr

= 0 , (3.6)

∂pij
∂t

+
∂

∂xr
(urpij) +

∂Sijr
∂xr

− 1

3
δij
∂Sr
∂xr

+
∂uj
∂xr

pir +
∂ui
∂xr

pjr −
2

3
δijprs

∂ur
∂xs

+p(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂ur
∂xr

) =
∞∑

p,q=0;p≥q;(p,q)6=(2,0)

B
(2,p,q)
ijνρ (ρ, T )f (p)

ν f (q)
ρ

+B(2)(ρ, T )pij .

where B
(2,p,q)
ijνρ are determined by the collision kernel in the Boltzmann equation. ν and ρ

indicate abstractly all the p and q indices of the moments f (p) and f (q), respectively.
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The above equations are now a closed system of equations, just like the hydrody-

namic equations were in case of the normal solutions. All the higher moments appearing

in the above equations are given as functionals of the hydrodynamic variables and the

stress tensor. These functional forms are unique and special algebraic solutions of the

higher moments of f . For instance, the heat flow vector can be determined from

Si =
15pR

2B(2)

∂T

∂xi
+

3

2B(2)

(
2RT

∂pir
∂xr

+ 7Rpir
∂T

∂xr
− 2pir

ρ

∂p

∂xr

)
+ .... . (3.7)

The functional forms of all the higher moments, as for the heat flow vector above, can be

expanded systematically in two expansion parameters ε and δ. The parameter ε is the old

derivative expansion parameter – the ratio of the typical length scale of spatial variation to

the mean-free path. The new parameter δ is an amplitude expansion parameter, defined

as the ratio of the typical amplitude of the nonhydrodynamic shear-stress tensor with the

hydrostatic pressure in the final equilibrium.

The closed system of ten equations (3.6) are thus the only dynamical equations and

any solution of this system can be lifted to a full solution of the Boltzmann equation

through the unique functional forms of the higher moments.

The normal solutions,being independent of the stress tensor, are clearly a special

class of conservative solutions. There is another interesting class of conservative solu-

tions which are homogeneous or invariant under spatial translations. The phase space

distribution function f is a function of v only for these homogeneous solutions and the

hydrodynamic variables are constants both over space and time [this can be easily seen

from (3.6)]. The shear-stress tensor and consequently all the higher moments are func-

tions of time alone. Such solutions have dynamics in velocity space only and describe

relaxation processes.

In a generic solution of the Boltzmann equation, the dynamics at short time scales

is more like the homogeneous class, where the initial one-particle distribution relaxes to

a local equilibrium given by a local Maxwellian distribution parametrized by the local

values of the hydrodynamic variables. At long time scales the dynamics is more like the

normal solutions, where the system goes to global equilibrium hydrodynamically. Thus

conservative solutions, despite being mathematically special, capture both relaxation and
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hydrodynamics which constitute generic nonequilibrium processes in a phenomenological

manner. In other words, the dynamics of the energy-momentum tensor alone given by

(3.6) captures both relaxation and hydrodynamics in a systematic fashion.

3.2.2 Relativistic and semiclassical corrections to conservative
solutions

The proof for existence of conservative solutions in the nonrelativistic classical Boltzmann

equation can be readily generalized to its semiclassical and relativistic versions. This is

because all the properties of the collision term J required for the proof of the existence

of conservative solutions carry over to the semiclassical and relativistic versions as well.

Let us consider the semiclassical version of the collision term which takes into ac-

count quantum statistics. This was first obtained by Uehling and Uhlenbeck [45] to be

J(f, g) =

∫
J (ξ, ξ∗)B(θ, V )dξ∗dεdθ ,

J (ξ, ξ∗) =
[
f(x, ξ

′
)g(x, ξ∗

′
)F(ξ)G(ξ∗)− f(x, ξ)g(x, ξ∗)F(ξ

′
)G(ξ∗

′
)
]

,

F(ξ) =

(
1± h3f(ξ

′
)

(2s+ 1)

)
, G(ξ) =

(
1± h3g(ξ)

(2s+ 1)

)
, (3.8)

where the + sign applies for bosons, the − sign for fermions and s is the spin of the

particles comprising the system. The final velocities ξ
′

and ξ∗
′

are determined by the

velocities ξ and ξ∗ before the binary molecular collision according to the intermolecular

force law. Importantly, now J(f, f) vanishes if and only if f is the Bose-Einstein or the

Fermi-Dirac distribution in velocity space for bosons and fermions respectively, instead of

being the Maxwellian distribution 3.

The proof for the existence of conservative solutions in the nonrelativistic classical

case does not require any explicit form of the collision kernel J . Only certain key properties

suffice, as will be evident from the proof. We can pursue the same strategy with the

3The proof follows along exactly the same lines as shown in Appendix. The Boltzmann equation still
takes the same form as in (6.19). The semiclassical form of J then readily follows from (6.27), which
in turn follows from (6.25) and (6.26), all of which are true for the semiclassical form of J too. The
hydrodynamic equations will take the same form as before and the shear-stress tensor, pij and the heat
flow vector Si can be defined as before.
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semiclassical corrections as well 4.

One has to employ the Sonine polynomials, which are generalizations of Hermite

polynomials, to find solutions of the required algebraic solutions of the higher moments

as in [46]. The main objection could be that for the proof of existence of solutions, we

use a theorem due to Hilbert which is explicitly stated for the nonrelativistic classical J .

However the details are exactly the same as that for constructing the normal solutions. It

has been seen that normal solutions can indeed be constructed in the semiclassical case

[44], so there ought to be no obstruction to the construction of conservative solutions also.

Indeed, our proof shows that we can construct the conservative solutions given that the

normal solutions exist.

The generalization in the relativistic case again holds on similar grounds as above.

It is more convenient to use a covariant description now. Normal solutions of the semi-

classical relativistic Boltzmann equation have also been constructed [44]. So there should

be no obstruction in constructing conservative solutions as well.

In fact the same arguments could be used to state that any solution of the relativistic

semiclassical Boltzmann equation at sufficiently late times can be approximated by an

appropriate conservative solution, since the maximum speed of propagation of linearized

modes increases monotonically [47] as more and more higher moments are included.

3.2.3 Multicomponent systems

So far we have pretended as if our system is composed of only one component or particle.

However gauge theories have many species of particles and internal degrees of freedom,

hence we need to understand how to extend our results to multicomponent systems.

Let us consider the example of N = 4 super Yang-Mills theory. In the weakly cou-

pled description we need to deal with all the adjoint fermions and scalars along with the

gauge bosons; all these particles form a SUSY multiplet. We note that in the universal

sector all charge densities or currents corresponding to local (gauge) and global [SO(6)R]

4The explicit solutions in the recursive expansion series will be more complicated now. In the nonrel-
ativistic proof, one uses the Hermite polynomials which can no longer be conveniently employed.

76



3.3. REGULARITY CONDITION OF SOLUTIONS OF PURE GRAVITY IN
ASYMPTOTICALLY ADS SPACETIMES

charges are absent. Similarly we should not have any multipole moments of local or global

charge distributions, because in the gravity side we have pure gravity only. Therefore,

most naturally we should have that all members of the N = 4 SUSY multiplet, distin-

guished by their spin, global charge and color, should be present in equal density at all

points in phase space. So we are justified in our analysis in dealing with a single phase

space distribution f . The Boltzmann equation we have considered above is obtained after

summing over interactions in all possible spin, charge and color channels.

The situation should be similar in any other conformal gauge theory. We can still

treat the spin, color and charge as internal degrees of freedom owing to mass degeneracy

even though the particles do not form a SUSY multiplet. In the absence of any chemical

potential, there should be equipartition at all points in phase space over these internal

degrees of freedom. This should be the most natural weak coupling extrapolation of the

situation in the universal sector, dual to pure gravity, where gravity is blind to all the

internal degrees of freedom of the particles.

3.3 Regularity condition of solutions of pure gravity

in asymptotically AdS spacetimes

We will now argue that conservative solutions should exist even in the exact microscopic

theory. In the exact microscopic theory, we do not make any approximation over the

microscopic degrees of freedom and their dynamics unlike the Boltzmann equation, though

an appropriate averaging over the environmental degrees of freedom is required to get the

final equilibrium configuration.

To begin with, consider the BBGKY heirarchy of equations [48] which describes a hi-

erarchy of coupled semiclassical nonrelativistic equations for the evolution of multiparticle

phase space distributions. This hierarchy is useful for developing kinetic theory of liquids.

If the hierarchy is not truncated, then it is equivalent to the exact microscopic descrip-

tion. It has been shown that normal or purely hydrodynamic solutions to the untruncated

hierarchy exist. These solutions lead to the determination of viscosity of liquids which

behave correctly as a function of density and temperature [49]. It is therefore likely that
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the conservative solutions also exist for this system which means they are likely to exist

for the microscopic nonequilibrium theory of nonrelativistic classical systems constituted

by pointlike particles.

Experiments at the Relativistic Heavy Ion Collider (RHIC) suggest that the evolu-

tion of quark-gluon plasma (QGP) can be well approximated by hydrodynamic equations,

very soon after its formation from the fireball [50]. Given that the perturbative nonequi-

librium dynamics of hot QCD for temperatures greater than the microscopic scale Λ is

equivalent to a relativistic semiclassical Boltzmann equation [35], we know perturbatively

normal or purely hydrodynamic solutions exist for these microscopic theories. In fact any

generic solution of the relativistic semiclassical Boltzmann equation can be approximated

by an appropriate normal solution at a sufficiently late time. The quick approach to al-

most purely hydrodynamic behavior for the strongly coupled QGP in RHIC suggests that

even nonperturbatively a normal solution should exist which could approximate the late-

time behavior for any generic nonequilibrium state. It is also true that not all transport

coefficients of generic conformal higher derivative hydrodynamics can be defined through

linear response theory. The plausible route of defining these higher order transport coeffi-

cients could be through the construction of normal solutions in nonequilibrium quantum

field theories. Extremely fast relaxation dynamics in quark-gluon plasma similarly sug-

gest that conservative solutions should capture generic nonequilibrium behavior. This is

because in such systems the approach to the conservative regime, where the dynamics

is given in terms of the energy-momentum tensor alone, should be faster than in weakly

coupled systems, where even the corrections to Navier-Stokes hydrodynamics are hard to

determine experimentally.

If we accept that conservative solutions exist in the exact microscopic theory, it is

only natural to identify the conservative solutions with the universal sector at large N

and strong coupling in gauge theories with gravity duals. Such an identification explains

the dynamics in the universal sector being determined by the energy-momentum tensor

alone. We emphasize, however, that the conservative solutions become universal only at

strong coupling and large N .
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An appropriate AdS/CFT argument can also be provided for the existence of con-

servative solutions for finite N and coupling. In such cases, we need to consider higher

derivative corrections to Einstein’s equation and the full ten − dimensional equations

of motion. There is no guarantee of a consistent truncation to pure gravity anymore.

However, we can use holographic renormalization with Kaluza-Klein reduction to five di-

mensions [51] to argue that we can readily extend the solutions in the universal sector,

perturbatively in the string tension (≈ 1/
√
λ in appropriate units) and string coupling

(whose N dependence is 1/N). This can be done by turning off the normalizable mode

of the dilaton while keeping its non-normalizable mode constant, turning off the normal-

izable and non-normalizable modes of all other fields while keeping the boundary metric

flat and perturbatively correcting the energy-momentum tensor to appropriate orders of

the string tension and string coupling, so that the gravity solution still has a future hori-

zon regular up to desired orders in the perturbation expansion. These solutions, again

by construction, are determined by energy-momentum tensor alone. Our claim that the

conservative solutions exist in the exact microscopic theory at any value of coupling and

N is therefore validated.

The identification of conservative solutions with the universal sector at strong cou-

pling and large N for conformal gauge theories with gravity duals allows us to create a

framework for solutions of pure gravity in AdS with regular future horizons. We first

study the parametrization of the boundary stress tensor which will allow us to make the

connection with nonequilibrium physics. Then we will proceed to give a framework for

regular solutions, with the only assumption being the identification of conservative solu-

tions with the universal sector at strong coupling and large N . Finally we will make some

connections with known results.

3.3.1 The energy-momentum tensor and nonequilibrium physics

A general parametrization of the energy-momentum tensor allows us to connect gravity

to the nonequilibrium physics of conformal gauge theories. This parametrization has been

first applied in the AdS/CFT context in[37]. The energy-momentum tensor is first written
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as

tµν = t(0)µν + πµν , (3.9)

where t(0)µν is the part of the energy-momentum tensor in local equilibrium. It can be

parametrized in conformal theories by the hydrodynamic variables, the timelike velocity

(uµ) and the temperature (T ), as

t(0)µν = (πT )4(4uµuν + ηµν) , (3.10)

and πµν is the nonequilibrium part of the energy-momentum tensor.

If we define the four velocity uµ to be the local velocity of energy transport and

the temperature T such that 3(πT )4 = uµuνtµν is the local energy density, then in the

local frame defined through uµ, the energy-momentum tensor must receive nonequilibrium

contributions in the purely spatial block orthogonal to the four velocity. This means

uµπµν = 0 . (3.11)

The constraints in Einstein’s equations impose the tracelessness and conservation

condition on the energy-momentum tensor so that

∂µtµν = 0 ⇒ ∂µ
(
(πT )4(4uµuν + ηµν)

)
= −∂µπµν ,

T r(t) = 0⇒ Tr(π) = 0 . (3.12)

In the second equation above, the implication for the tracelessness for πµν comes from the

fact that the equilibrium energy-momentum tensor as given by (3.10) is by itself traceless.

In the dual theory these conditions are satisfied automatically owing to the full

SO(4, 2) conformal invariance. Note that the first of the equations above is just the forced

Euler equation and can be thought of as the equation of motion for the hydrodynamic

variables.

We can reinterpret a class of known solutions of pure gravity in AdS as the duals

of the normal solutions in the exact microscopic theory at strong coupling and large N .

These solutions are the ”tubewise black-brane solutions” [26] which, in any radial tube
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ending in a patch at the boundary, are approximately boosted black brane solutions cor-

responding to local equilibrium and can be parametrized by the hydrodynamic variables

corresponding to the patch at the boundary. These solutions can be constructed pertur-

batively in the derivative expansion. The expansion parameter, being the ratio of length

and time scale of variation of the local hydrodynamic parameters and the mean-free path

in final equilibrium, simply counts the number of boundary derivatives. We can iden-

tify these solutions as duals of normal solutions because the nonequilibrium part of the

energy-momentum tensor πµν can be parametrized by the hydrodynamic variables and

their derivatives alone.

The complete parametrization of the purely hydrodynamic πµν in any conformal

theory is known up to second order in the derivative expansion.In this parametrization,

aside from the shear viscosity four higher order transport coefficients appear [37, 26],

which can be fixed by requiring the regularity of the future horizon giving us the tubewise

black-brane solutions [26].

Let us define the projection tensor Pµν which projects on the spatial slice locally

orthogonal to the velocity field, so that

Pµν = uµuν + ηµν .

The hydrodynamic shear strain rate σµν is defined as

σµν =
1

2
P µαP νβ (∂αuβ + ∂βuα)− 1

3
P µν(∂ · u) . (3.13)

We also introduce the hydrodynamic vorticity tensor,

ωµν =
1

2
P µαP νβ(∂αuβ − ∂βuα) . (3.14)

The purely hydrodynamic πµν up to second order in the derivative expansion, for

the tubewise black-brane solutions, with all nonvanishing transport coefficients fixed by
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regularity is

πµν = −2(πT )3σµν

+(2− ln 2)(πT )2

[
(u · ∂)σµν +

1

3
σµν(∂ · u)− (uνσµβ + uµσνβ)(u · ∂)uβ

]
+2(πT )2

(
σαµσ ν

α −
1

3
P µνσαβσ

αβ

)
+(ln 2)(πT )2(σαµω ν

α + σαµω ν
α ) +O(∂3u) . (3.15)

Having identified the normal solutions in the universal sector with a class of solutions

which could in principle be constructed up to any order in the derivative expansion, we

will now naturally extend this observation to a framework which captures all regular

solutions in certain expansion parameters.

3.3.2 The complete framework

In the hydrodynamic case we had four hydrodynamic variables, so the conservation of the

energy-momentum tensor alone is sufficient to determine the evolution in the boundary.

However in the generic case we need an independent equation of motion for πµν .

The regularity condition must be an equation for the evolution of πµν similar to the

last equation of (3.6), This is because, as per our argument, the conservative solutions

should be identified with the universal sector at large N and strong coupling. However

Eq. (3.6) came from an underlying Boltzmann equation. At strong coupling, we have no

kinetic equation to guide us because a valid quasiparticle description at strong coupling is

not known even for N = 4 supersymmetric Yang-Mills theory. Moreover an entropy cur-

rent cannot be probably constructed beyond the class of purely hydrodynamic solutions,

hence we cannot use any formalism like the Israel-Stewart-Muller formalism [52] to guess

an equation for πµν . This is because we should not expect a monotonic approach to equi-

librium, as in the case of the Boltzmann equation, when we go to the exact microscopic

description 5.

5Even in the purely hydrodynamic context of ”tubewise black-brane solutions,” the Israel-Stewart-
Muller formalism is not valid. This has been discussed with references later in the text.
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The safest strategy therefore, will be to use only the following basic inputs without

resorting to guesswork.

• The first input is that the equation for πµν has to be conformally covariant because

the dual gauge theory is conformal.

• The second input is that the solutions in the purely hydrodynamic sector are known

exactly up to second order in the derivative expansion and, being identified with the

normal solution, should be special cases of our complete framework. The equation

for πµν must therefore have (3.15), the purely hydrodynamic energy-momentum

tensor known up to second order in the derivative expansion, as a solution up to

those orders.

With only these inputs, we will be able to propose the equation for πµν only up to

certain orders of expansion in both the hydrodynamic and nonhydrodynamic expansion

parameters about the equilibrium state. However we should consider the most general

equation for πµν which satisfies the above criteria. The expansion parameters are again

the derivative expansion parameter (as in the purely hydrodynamic sector, but with the

spatio-temporal variation of πµν taken into account additionally) and the amplitude ex-

pansion parameter, which is the ratio of a typical value of πµν divided by the pressure in

final equilibrium.

Our proposal then amounts to the following equation of motion for πµν , whose
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solutions should give all the regular solutions of pure gravity in AdS5 :

(1− λ3)

[
(u · ∂)πµν +

4

3
πµν(∂ · u)−

(
πµβuν + πνβuµ

)
(u · ∂)uβ

]
= − 2πT

(2− ln 2)

[
πµν + 2(πT )3σµν

−λ3(2− ln 2)(πT )2

(
(u · ∂)σµν +

1

3
σµν(∂ · u)−

(
uνσµβ + uµσνβ

)
(u · ∂)uβ

)
−λ4(ln 2)(πT )2(σαµω ν

α + σαµω ν
α )

−2λ1(πT )2

(
σαµσνα −

1

3
P µνσαβσαβ

)]
−(1− λ4)

ln2

(2− ln 2)
(πµαω

αν + πναω
αµ)

− 2λ2

(2− ln 2)

[
1

2
(πµασνα + πνασµα)− 1

3
P µνπαβσαβ

]
+

1− λ1 − λ2

(2− ln 2)(πT )3

(
πµαπνα −

1

3
P µνπαβπαβ

)
+O

(
π3, π∂π, ∂2π, π2∂u, π∂2u, ∂2π, ∂3u, (∂u)(∂2u), (∂u)3

)
, (3.16)

where the O(π3, π∂π, ...) term indicates the corrections which lie beyond our inputs.

The corrections can only include terms of the structures displayed or those with more

derivatives or containing more powers of πµν or both. We cannot say much about these

corrections because for purely hydrodynamic solutions, they contribute to the energy-

momentum tensor at the third derivative order only and the general structure of the

hydrodynamic energy-momentum tensor at third order in derivatives is not known. The

four λi’s (i = 1, 2, 3, 4) are pure numbers. Though we have not been able to specify their

values, they are not free parameters. Once their values are fixed by regularity of the

future horizon for certain configurations, they should give the complete framework for the

whole class of regular solutions.

As we have already mentioned, this equation of motion (3.16) for the shear-stress

tensor πµν has to be supplemented by the conservation of energy-momentum tensor in the

form given in (3.12) so that we have nine equations for the nine variables (including the

hydrodynamic variables) parameterizing the general nonequilibrium energy-momentum
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tensor. The tracelessness of the energy-momentum tensor begets the tracelessness of πµν

as in (3.12) and this, as we have mentioned before, has led to the requirement that our

equation of motion for πµν should be Weyl covariant.

This equation is thus a phenomenological framework for the universal sector as

a whole up to certain orders in perturbation about the final equilibrium state. This

framework governs both hydrodynamic and nonhydrodynamic situations and goes much

beyond linear perturbation theory. This is however, only valid within the universal sector.

Beyond this sector we need many other inputs other than the boundary energy-momentum

tensor to specify the boundary state or the solutions in gravity.

3.3.3 Checks, comparisons and comments

We will begin with a couple of comments. The first comment is that our Eq. (3.16)

does not hold well at early times in the generic case. At early times the terms with time

derivatives of various orders coming from the higher order corrections to our equation

would become important. We will soon see the effect of such time-derivative terms in a

simple example. We give an argument why such terms with time-derivatives must appear

in the higher order corrections 6. Any data at early times in the bulk, which will result in

smooth behavior in the future, should get reflected in terms of an infinite set of variables

in the boundary. The only way we can represent this in terms of the energy-momentum

tensor alone is to include its higher order time derivatives in the initial data, so the

equation for evolution of the energy-momentum tensor should contain higher order time

derivatives.

The second comment is that, in the particular case of boost-invariant flow, we have

a better structural understanding of the hydrodynamic behavior at higher orders in the

derivative expansion [53]. We can, in principle, use our procedure to give a framework for

general boost-invariant flows at late times. However we will leave this for future work.

Moreover, the basic logic of our proposal is to use the purely hydrodynamic behavior as an

input and then extend this to the complete framework. So our proposal and its extension

6We thank Shiraz Minwalla for discussion on this point.
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at higher orders, by construction, reproduce the hydrodynamic sound and shear branches

of the quasinormal modes.

We now develop a straightforward strategy to check our proposal. We could look

at simple nonhydrodynamic configurations first and construct the bulk solution pertur-

batively in the amplitude expansion parameter to determine some of the λ’s. Once these

have been determined, we can construct bulk solutions corresponding to a combination

of hydrodynamic and nonhydrodynamic behaviors perturbatively in both the amplitude

and derivative expansion parameters and then check if the regularity fixes those λ’s to

the same values.

The simplest nonhydrodynamic configurations are the analogs of homogenous con-

servative solutions of the Boltzmann equation we have mentioned before and which de-

scribe pure relaxation dynamics. Such configurations are homogeneous in space, but time

dependent and satisfy the conservation equation trivially. In such configurations the flow

is at rest, so that uµ = (1, 0, 0, 0) and the temperature T is also a spatiotemporal con-

stant. The nonequilibrium part of the energy-momentum tensor satisfies the following

conditions

(i) the time-time component π00 and the time-space components π0i for i = 1, 2, 3 vanish

and

(ii) the space-space components πij for i, j = 1, 2, 3 are dependent only on time.

The above conditions on πµν result in the conservation equation being trivially

satisfied. It follows from our proposal (3.16) that regularity in the bulk implies that

πij satisfy the following equation of motion :

(1− λ3)
dπij
dt

+
2πT

(2− ln2)
πij −

1− λ1 − λ2

(2− ln2)(πT )3

(
πikπkj −

1

3
δijπlmπlm

)
= O(

d2πij
dt2

) .

(3.17)

If we look at the linearized solution, we have

πij = Aijexp(−
t

τπ
), τπ = (1− λ3)

2− ln 2

2πT
, (3.18)

whereAij is a spatiotemporally constant matrix such thatAijδij = 0. This implies that we

have a nonhydrodynamic mode such that when the wave vector k vanishes, the frequency
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ω becomes purely imaginary and equals −iτ−1
π , i.e ω = −iτ−1

π as k→ 0. There is however,

no such mode in the quasinormal spectrum of black branes [20]. This makes us conclude

that λ3 = 1, so that at the linearized level the only solution of (3.17) is πij = 0.

However, at the nonlinear level we still have nonhydrodynamic solutions given by

2πT

(2− ln2)
πij −

1− λ1 − λ2

(2− ln2)(πT )3

(
πikπkj −

1

3
δijπlmπlm

)
= O(

d2πij
dt2

) . (3.19)

In fact, up to the orders explicitly given above, the equation is nondynamical and predicts

that we should, at least perturbatively, have tensor hair on the black-brane solution in

pure gravity in AdS. This gives us the simplest nontrivial test of our proposal and also a

means of determining λ1 + λ2.

In this connection, we also note that the possible second order in the time-derivative

correction in (3.19) implies that we need not have a monotonic approach to equilibrium

as we should have in the presence of an entropy current.

We end here with some comments on the issue of connecting our proposal with

physics of quasinormal modes of the black brane. The linearized limit of the conservation

equation, along with our proposed Eq. (3.16), supports at most three branches of lin-

earized fluctuations. We have further argued that the third branch giving pure relaxation

dynamics is not present. However, we know that the quasinormal modes have infinite

branches of higher overtones other than the hydrodynamic sound and shear branches.

This naive comparison is somewhat misplaced, 7 because, as we know, nonlinearities do

affect linearized propagation in quantum field theories. Since our equations are actually

equivalent to the nonequilibrium field theory equation of motion of the state in the gauge

theory, we must take into account nonlinearities of our equation in the propagation of the

energy-momentum tensor before making any comparison. We leave this for future work.

We would also like to mention here that it is only natural that the higher over-

tones are more like resonances and are built out of the dynamics of the nine degrees of

freedom of the conformal energy-momentum tensor, as it would have been surprising if

infinite branches in the spectrum in the universal sector would have been blind to the

7We thank A. O. Starinets for discussion on this point.
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microscopic details of the theory like the matter content and couplings. Our framework

suggests that these infinite branches could be obtained from the nonlinear dynamics of

the energy-momentum tensor. However we should exhibit caution here because although

these nonhydrodynamic higher overtones of quasinormal modes are indeed regular linear

perturbations of the black brane, it is yet to be demonstrated that these can be developed

into complete regular solutions of Einstein’s equation non-linearly.
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Chapter 4

The covariance of Navier-Stokes
equation and invariance of theories
under the infinite dimensional
Galilean Conformal Algebra

4.1 Introduction

In this chapter, we will investigate a novel non-relativistic limit of gauge/gravity duality

for conformal cases particularly to find out if hydrodynamics can be contained in this

limit. In the process, we will obtain valuable clues of how to take this limit dynamically

so that we get hydrodynamic behavior after the limit is taken. This chapter is a slight

departure from the general theme of the thesis, but has been included with the hope

that it can have some relevance for a tabletop experiment or a simulated system in the

future. It may also turn out that the universal sector in this dynamical limit can be solved

sometime in the future owing to the infinite-dimensional symmetry which appears in this

limit, so the results here could be important steps taken in this direction as well.

A new non-relativistic extension of gauge/gravity duality became possible when

it was shown [56, 57] that a non-relativistic conformal algebra could be obtained as a

parametric contraction of the relativistic conformal group. This contraction retained the

same number of generators as the relativistic conformal group. It was also found out by the
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authors of [57] that an infinite-dimensional extension of the finite non-relativistic algebra

was possible and following them, we call this algebra the Galilean Conformal Algebra,

in short GCA. In the context of developing the version of gauge/gravity duality for this

non-relativistic symmetry, important steps were also taken in [57] and later these have

been extended in [58, 59] (for some related work, please also see [60] 1). The development

is still under progress 2, however it has been realized that this is different from the case

of the non-relativistic Schrodinger group. The Schrodinger group, has the advantage

that, it can be embedded in the relativistic conformal group of two higher dimensions, so

gauge/gravity duality in this case, can be developed on lines closer to the conventional

relativistic setting, though in two higher dimensions [66]. In the case of the Galilean

Conformal Algebra, however, it seems that the dynamics in the bulk involves a degenerate

limit, which is possibly a Newton-Cartan like gravity involving an AdS2 factor [57] 3.

To get a better understanding, it will be useful to understand the pure gravity

sector first and in this sector, the gravity duals of hydrodynamic flows ubiquitously plays

a very special role, because of the conceptual clarity of their construction (for a review,

see [27]). However, even before constructing gravity duals, it is important, to understand

the role of the full Galilean Conformal Algebra as symmetries of the hydrodynamics of

the boundary theory. In the original work [57], it was shown that the Euler equation for

incompressible flows was invariant under some of the elements of the Galilean Conformal

Algebra. However, the hydrodynamics in any physical theory, should have a non-zero

viscosity and moreover there are typically higher derivative corrections to all orders. Here,

we will investigate how the Galilean Conformal Algebra can act as symmetries of the

Navier-Stokes equation and also its role in constraining higher derivative corrections.

The important point of our approach will be that we will be looking for covariance

rather than invariance, in close analogy with the case of relativistic conformal hydrody-

namics where the relativistic Navier-Stokes equation and its higher derivative corrections

can be made covariant (not invariant) under the relativistic conformal group [37]. An ele-

1Superconformal extensions have been dealt with in [72].
2For 2D CFTs, this nonrelativistic limit has recently been taken even dynamically [61]. However, in

this limit we do not obtain hydrodynamics.
3For an interesting earlier work, please look at [62] and a recent work in this direction is [63].
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ment in GCA may take a Galilean inertial frame to a non-inertial one. After covariantizing

under GCA, as expected, the equation will take its usual form in an inertial frame, but in

a non-inertial frame it will assume a non-standard form. In our case, the covariantizing

will involve novel features, like the absolute (time-dependent) acceleration and absolute

(time-dependent) angular velocity of the non-inertial frame,which are not non-relativistic

degenerations of the relativistic covariant form.. The basic reason for the appearance of

novel features is straightforward, the infinite GCA has no relativistic analogue (for a lucid

description of non-relativistic degenerations of relativistically covariant hydrodynamics,

etc, please see [67]). Also, in non-relativistic dynamics, the absolute acceleration or the

absolute angular velocity of a non-inertial frame are the more natural objects to be used

for covariantizing rather than ”connections”. Since our approach involves covariantizing

the usual Navier-Stokes equation for incompressible flows which holds in inertial frames,

it is very different from that in [70]4.

We will divide the Navier-Stokes equation into three parts, namely, the kinematic

term, the pressure term and the viscous term, and we will show that each term separately

transforms covariantly, exactly like in the case of the covariance of the relativistic Navier-

Stokes equation under the relativistic conformal group. The kinematic term, in an inertial

frame, is just the Euler derivative acting on the velocity field. This term transforms just

like the acceleration. Since, the GCA can transform an inertial frame to a non-inertial

frame, as mentioned above, the covariantizing will naturally involve the absolute angular

velocity and the absolute acceleration of the non-inertial frame. However, the covariance

under the “spatially correlated time reparametrizations” will be possible only if the flow

is incompressible5. Therefore, we would require the flow to be incompressible too.

The pressure term is just the gradient of the pressure divided by the density. We

will show that this leads to the speed of sound being GCA invariant, essentially because

the pressure transforms in the same way as the density under GCA.

4For some related work please also see [71].
5When a non-relativistic limit is taken by applying an appropriate scaling of the relativistic Navier-

Stokes equation, the incompressibility of the flow is automatically obtained (please see the first two
references of [70]. The GCA covariant form, however, cannot be obtained as a limit of the usual confor-
mally covariant relativistic Navier-Stokes equation.
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The viscous term is (1/ρ)∂iσij, where ρ is the density and σij is the hydrodynamic

shear stress tensor given by, σij = η(∇ivj +∇jvi − (2/3)δij∇ · v), with η being the shear

viscosity. Here the shear viscosity also transforms as a field only through its dependence

on the thermodynamic variables which transform under GCA.

We will see that when all chemical potentials vanish (as in a gas of phonons), cs,

which denotes the speed of sound in an inertial comoving with the flow, is invariant

under GCA. We will see that this implies that it must be a fundamental constant like

the speed of light or given in terms of the microscopic parameters. We will see how each

could be possible, in particular we will see that when the number of spatial dimensions

is two, GCA admits a central charge with dimension (1/speed)2. Then we will study the

transformation of viscosity under GCA and see that in the absence of chemical potentials

the transformation could be realized only if the microscopic theory contains a length scale,

or a time scale, or both and if this is not possible, the viscosity should vanish.

We also find that the GCA also has the potential to restrict the possible corrections

to the Navier-Stokes equation and we explicitly evaluate the possible three derivative

corrections. It is intriguing that all these four possibilities correspond to the relativistic

conformal case so that the relativistic terms reduce to our terms in the non-relativistic

limit in inertial frames, when the flow is incompressible. The general lesson is that a

phenomenological law can be covariantized under GCA only if its form in the inertial

frame is sufficiently restricted.

The plan of the paper is as follows. In section 2, we arrive at a covariant description

of the hydrodynamics for the GCA. In section 3, we use this to covariantize the Navier-

Stokes equation. In scetion 4, we discuss how we can covariantize the continuity equation

and how it influences the transformations of the density, pressure and viscosity. In section

5, we show how the GCA constrains higher derivative corrections to the Navier-Stokes

equations. Then we conclude with some discussions on the implications of our results

for the version of gauge/gravity duality with GCA as the conformal symmetry group. In

appendices D and E, we elucidate some technical points and in particular, we also give

a simple mathematical interpretation of the GCA, that could be useful for constructing
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GCA invariant microscopic theories. We will refer to these appendices appropriately in

this chapter.

4.2 Covariant kinematics for the infinite Galilean Con-

formal Algebra

The finite part of the Galilean Conformal Algebra can be obtained as a parametric con-

traction of the SO(d+1, 2) relativistic conformal group of (d, 1) dimensional Minkowskian

space-time [56, 57]. This finite part forms a Lie group with exactly the same number of

generators as the SO(d + 1, 2) relativistic conformal group. The generators of this finite

part consists of the following

H = − ∂

∂t
, (4.1)

Pi = ∇i,

Jij = −(xi∇j − xj∇i),

Bi = t∇i,

D = −(x.∇+ t
∂

∂t
),

K = −(2tx.∇+ t2
∂

∂t
),

Ki = t2∇i.

Clearly, H is the Hamiltonian, Pi are the momenta and Jij are the angular momenta

generating time translations, spatial translations and angular rotations respectively. The

Bi’s generate the Galilean boosts. The dilation operator D acts differently from the

Schrodinger group as it scales all spatial coordinates and time in the same way. The

other generators K and Ki can be thought of non-relativistic counterparts of relativistic

special conformal transformations.

This finite algebra has an infinite extension which forms the full GCA, the generators
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of which can be labelled as below

L(n) = −(n+ 1)tn(x.∇)− tn+1 ∂

∂t
, (4.2)

M
(n)
i = tn+1∇i,

J (n)
a ≡ J

(n)
ij = −tn(xi∇j − xj∇i),

where n runs over all integers. The SL(2, R) part of L(n)’s belong to the finite group (as

H = L(−1), D = L(0), L(1) = K). Also, Pi = M
(−1)
i , Bi = M

(0)
i , Ki = M1

i , while only J
(0)
ij

belong to the finite group. The full algebra is

[L(m), L(n)] = (m− n)L(m+n), (4.3)

[L(m), J (n)
a ] = −nJ (m+n)

a ,

[J (n)
a , J

(m)
b ] = fabcJ

(n+m)
c ,

[L(m),M
(n)
i ] = (m− n)M

(m+n)
i ,

[J
(n)
ij ,M

(m)
k ] = −(M

(m+n)
i δjk −M (m+n)

i δjk),

[M
(m)
i ,M

(n)
j ] = 0.

The index a above form an alternative label corresponding to the spatial rotation group

SO(d) and fabc are the structure constants of this group. Further J
(n)
(a) ’s and L(m)’s to-

gether form a Virasoro Kac-Moody algebra. The GCA admits the usual (dimensionless)

central charges for the Virasoro Kac-Moody subalgebra as the M
(n)
i ’s can be consistently

put to zero [57]. Besides, these usual dimensionless, central charges, a special kind of

central charge, is possible in the case of two spatial dimensions and it will be important

for us because only in the case of two spatial dimensions we can have a dimensionful

central charge. A dimensionful central charge, unlike a dimensionless one can appear in

the Lagrangian description of the theory. A simple example is the central charge with

dimension of mass in the Schrodinger group actually being the mass of the free particle.

This central charge Θ, appears in the commutator of M
(m)
i ’s in the GCA as below [59, 64]

[M
(m)
i ,M

(n)
j ] = ImnεijΘ, (4.4)

where Imn is the invariant tensor of the spin one representation of SL(2, R). The central

charge Θ has the dimension of (1/speed)2. For possible physical interpretations of this
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term, please look at [59, 64, 65]. Further, in the case of the Schrodinger group, as

mentioned above, there is another possible central charge (for any number of spatial

dimensions) which has the dimension of mass (in units where the Planck’s constant is

set to unity, mass is basically time divided by square of length) and in fact has the

interpretation of the mass scale in the corresponding theory. The absence of this central

term in the GCA has been argued [57, 60] to reflect the absence of any mass scale in the

microscopic theory and we will also hold to this point of view here.

The J
(n)
a ’s actually generate arbitrary time dependent rotations, the M

(n)
i ’s gen-

erate arbitrary time-dependent boosts and the L(n)’s generate spatially correlated time

reparametrization [57]. Each of these form a subalgebra by themselves. We now proceed

to consider each of these categories of space-time transformations in detail to see how one

can have a covariant description of kinematics for each of these categories. Finally, we

will sum up by arriving at a kinematic description which will be covariant under the full

set of transformations.

4.2.1 Arbitrary time dependent rotations

These transformations are

x
′

i = Rij(t)xj, (4.5)

t
′
= t,

where Rij is an arbitrary time dependent rotation matrix (so that R−1
ij = Rji). The

velocity transforms in the following manner,

vi = R−1
ij (v

′

j −
dRjk

dt′
R−1
kl x

′

l). (4.6)

Now we will show that from the above transformation one can extract a covariant time

derivative. Let us define Ωij to be the absolute angular velocity of the non-inertial frame

with respect to any inertial frame (note when the number of spatial dimensions is more

than three this is actually a tensor, but by abuse of notation we will still call it absolute

angular velocity, in three dimensions Ωij = εikjΩk). Suppose the unprimed coordinates are
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in the inertial frame and the primed ones are in the non-inertial frame. Then clearly the

absolute angular velocity Ωij = −(dRik/dt)R
−1
kj . Of course the absolute angular velocity

of a frame is very much a physical quantity as it can be determined by an observer using

that frame. The covariant time derivative in a given frame, can now be defined through

its action on vectors as below,

D

Dt
Vi =

d

dt
Vi + ΩijVj, (4.7)

where V is an arbitrary vector. Note that in an inertial frame D/Dt = d/dt, so if the

unprimed coordinates are inertial and primed coordinates non-inertial we may rewrite

(4.6) as,
D

Dt
xi = R−1

ij

D

Dt′
x
′

j. (4.8)

In fact, we may replace the position vector xi above with any arbitrary vector Vi which

transforms like V
′
i = RijVj, then it also follows that

D

Dt
Vi = R−1

ij

D

Dt′
V
′

j . (4.9)

We now claim that the above relation is valid even when both the primed and unprimed

coordinates are non-inertial. An easy way to prove this is as follows. Let us take two

non-inertial frames (x(1), t(1)) and (x(2), t(2)) which are related to the inertial frame (x, t)

through x(1)i = R(1)ijxj, t(1) = t and x(2)i = R(2)ijxj, t(2) = t respectively. Obviously the

absolute angular velocities of the non-inertial frames are Ω(1)ij = −(dR(1)ik/dt)R
−1
(1)kj and

Ω(2)ij = −(dR(2)ik/dt)R
−1
(2)kj respectively. Clearly,

D

Dt
Vi = R−1

(1)ij

D

Dt1
V(1)j = R−1

(2)ij

D

Dt2
V(2)j. (4.10)

Therefore,
D

Dt1
V(1)i = R−1

ij

D

Dt2
V(2)j, (4.11)

where

Rij = R(2)ikR
−1
(1)kj, (4.12)

as required so that indeed x(2)i = Rijx(1)j. Therefore, (4.9) is valid for any two frames,

even if both are non-inertial. In particular we will define the covariant velocity V(rot) as
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the covariant derivative of the position vector so that

V(rot)
i =

D

Dt
xi =

d

dt
xi + Ωijxj. (4.13)

By construction this transforms covariantly under (4.5), so that

V(rot)
i = R−1

ij V
(rot)′

j . (4.14)

The above tells us how to modify the acceleration so that we get a covariant vector. We

define, A(rot) the “covariant acceleration” as two covariant time derivatives acting on the

position vector as below,

A(rot)
i =

D2

Dt2
xi =

d2

dt2
xi + 2Ωijvj + ΩijΩjkxk + (

d

dt
Ωij)xj. (4.15)

In the non-inertial coordinates in the right hand side of the last expression above the

corrections to the usual acceleration are just the Corriolis, centrifugal and Euler forces re-

spectively. 6 By construction, under the transformations (4.5), the covariant acceleration

transforms as below,

A(rot)
i = R−1

ij A
(rot)′

i , (4.16)

where both the primed and unprimed coordinates can be non-inertial.

We also observe that the spatial derivative ∇i and the symmetric traceless tensor

σij = ∇ivj +∇jvi− (2/3)δij(∇.v) transforms covariantly while divergence of the velocity

∇ · v transforms invariantly (in the last two cases, of course, we are talking of a velocity

field), so that under the transformations (4.5),

∇i = R−1
ij ∇

′

j, (4.17)

σij = R−1
ik R

−1
jl σ

′

kl,

∇ · v = ∇′ · v′ .
6Usually the relation between acceleration in inertial frame and non-inertial frames in the case of three

spatial dimensions are written from the “passive” point of view as: a
′

= a − 2Ω × v + Ω × (Ω × x) −
(dΩ/dt) × x, where the primed coordinates are non-inertial and unprimed ones are inertial. However,
one can work out that it is, in fact, equivalent to a = a

′
+ 2Ω× v

′
+ Ω× (Ω× x

′
) + (dΩ/dt

′
)× x

′
. In

three spatial dimensions this is just another way of understanding (4.15).
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For the last two results above, we have used the fact that (dRik/dt)R
−1
kj is antisymmetric

in i and j.

To summarize we see that we have two basic operators which transform covariantly,

namely the covariant time derivative D/Dt (as defined in (4.7)) and the spatial derivative

∇i. Further the traceless symmetric tensor εij transforms covariantly and∇ · v transforms

invariantly.

4.2.2 Arbitrary time dependent boosts

These transformations are

x
′

i = xi + bi(t), (4.18)

t
′
= t.

We will mathematically interpret the above as the position vector not transforming covari-

antly. It is easy to see that relative distances, relative velocities and relative accelerations

will remain invariant under these transformations. So, one can easily get a invariant ac-

celeration field using the relative acceleration with respect to the absolute acceleration

of the frame. Let B be the absolute acceleration of the non-inertial frame. Then the

invariant acceleration field A(accl) may be defined as,

A(accl)
i =

d

dt
vi −A(accl) =

d

dt
vi −∇i(B.x). (4.19)

This, again, can be proved as before, consider the unprimed coordinates as inertial and

primed coordinates as non-inertial in (4.18), then from the passive point of view, the

absolute acceleration of the non-inertial frame is Bi = d2bi/dt
2. So it is clearly true that

A(accl)
i =

d

dt
vi =

d

dt′
v
′

i −∇
′

i(B · x
′
) = A(accl)′

i . (4.20)

We can repeat the same trick of comparing two non-inertial frames with one inertial

frame and then comparing the two non-inertial frames with each other, as described in

the previous subsection, to conclude that A(accl)
i = A(accl)′

i is valid even if both the primed

and unprimed frames are non-inertial. Therefore we conclude that (4.19) indeed defines

an invariant acceleration field.
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We also observe the operator ∇i is invariant and so are ∇ · v and the symmetric

traceless tensor εij under the transformation (4.18).

4.2.3 Spatially correlated time reparametrization

These transformations are

x
′

i =
df

dt
xi, (4.21)

t
′
= f(t).

The interesting thing about this transformation is that the new frame may be using a

different time from absolute time. However, one must ask how can an observer using a

frame know that the time being used is different from absolute time? To find that out,

let us first note the transformation of the velocity,

vi = v
′

i +
d2t
dt′2

dt
dt′
x
′

i. (4.22)

The divergence of the velocity field transforms as,

∇ · v =
dt
′

dt
∇′ · v′ + d

d2t
dt′2

( dt
dt′

)2
. (4.23)

Combining these one can easily see that one can make an invariant velocity field,

V(sctr)
i = vi −

∇ · v
d

xi. (4.24)

Firstly let us assume that when the frame is using absolute time the divergence of the

velocity field, ∇ · v vanishes. After a generic transformation as in (4.21), as shown in

(4.22), clearly it will no longer be zero. Therefore, if is this is not zero, one knows that

the time being used is not using absolute time. Note the divergence of the velocity field

remains zero under constant dilatation or shifts, so one can be sure of the use of absolute

time only upto a constant dilation or shift. Now, (4.24) shows that one can construct an

invariant velocity field under space correlated time reparametrization, which reduces to the

usual velocity field in an inertial frame (where absolute time is used), if and only if, the
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divergence of the velocity field vanishes (or the flow is incompressible) in the inertial frame.

This is precisely why the assumption of incompressible flow is crucial to covariantize the

Navier-Stokes’ equation under the full GCA.

One can make a covariant acceleration field

A(sctr)
i =

d

dt
V(sctr)
i , (4.25)

so that

A(sctr)
i =

dt
′

dt
A(sctr)′

i . (4.26)

Finally one notes that the operators ∇i transforms covariantly and so does the

traceless symmetric tensor σij;

∇i =
dt
′

dt
∇′i, (4.27)

σij =
dt
′

dt
σij.

4.2.4 Summing all up

We would like to sum up all our results in order to construct a covariant acceleration

field which will be covariant under the full GCA. We first observe that any element of the

GCA can be written as a succession of a time dependent rotation, a spatially correlated

time reparametrization and a time dependent boost (for proof please see appendix B). So

without loss of generality, any element of GCA can be written as below:

x
′

i =
df

dt
Rij(t)xj + bi(t), (4.28)

t
′
= f(t).

Instead of working out what happens under the full transformation we can, instead, use

the following logic. Let us first put bi(t) to zero so that the position vector transforms

covariantly. Then one can define a velocity field which is covariant under the combined

action of rotation and spatially correlated time reparametrization.

V(b=0)
i = vi + Ωijxj −

∇ · v
d

xi. (4.29)
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However, now the angular velocity of the frame Ωij is defined with the time of the frame,

which need not be the absolute time, for instance, in (4.28), if the primed coordinates

are non-inertial and the unprimed one is inertial then the angular velocity of the non-

inertial frame is Ωij = −(dRik/dt
′
)R−1

kj . One can easily see the further modification

which makes the velocity field covariant as ∇ · v transforms invariantly under arbitrary

rotations. Anyway, using methods pointed out in the previous subsections, one can readily

check that when bi(t) = 0, under the transformation (4.28), the covariant velocity field

transforms as,

V(b=0)
i = R−1

ij V
(b=0)′

j . (4.30)

If we have a vector Vi, which transforms under (4.28) when bi(t) = 0 as

Vi = R−1
ij Vj, (4.31)

then we define its covariant time derivative as

D

Dt
Vi =

d

dt
Vi + ΩijVj. (4.32)

Then when bi(t) = 0, under the transformation (4.28) we get

D

Dt
Vi =

dt
′

dt
R−1
ij

D

Dt′
V
′

j . (4.33)

The above can be easily proved by our previous trick of comparing two non-inertial frames

with an inertial one and then comparing the non-inertial frames with each other so that

the above remains valid even when both the primed and unprimed frames are non-inertial.

For the sake of convenience of the reader, we will repeat this trick explicitly for our final

covariant acceleration field, which we are now in the process of constructing. It is now

clear how we should construct a covariant acceleration field when bi(t) = 0. We must

make the covariant time derivative act on the covariant velocity field, so that,

A(b=0)
i =

D

Dt
V(b=0)
i =

d

dt
(vi + Ωijxj −

∇.v
d
xi) + Ωij(vj + Ωjkxk −

∇.v
d
xj). (4.34)

Therefore, when bi(t) = 0, under the combined transformation (4.28), the covariant ac-

celeration field constructed above transforms as V in (4.32), so that

A(b=0)
i =

dt
′

dt
R−1
ij A

(b=0)′

j . (4.35)
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Again it is clear how we can maintain the above covariance when bi(t) is not zero. We just

take the relative covariant acceleration with respect to B, the acceleration of the frame in

the time of the frame (which may not be absolute time). Our final covariant acceleration

field, which is covariant with respect to the full GCA is

A(comb)
i = A(b=0)

i − Bi = A(b=0)
i −∇i(B · x) =

D

Dt
V(b=0)
i −∇i(B · x) (4.36)

=
d

dt
(vi + Ωijxj −

∇.v
d
xi) + Ωij(vj + Ωjkxk −

∇.v
d
xj)−∇i(B · x).

The covariance, under the full GCA is simply

A(comb)
i =

dt
′

dt
R−1
ij A

(comb)′

j . (4.37)

To check the above, one can go back again to the representation (4.28) of an arbitrary

element of GCA. Now let us suppose that the unprimed coordinates are inertial (where the

time is absolute time) so that Ωij,Bi,∇.v are all zero in these coordinates. The covariant

acceleration field is just the usual acceleration dv/dt in these coordinates. Now one can

readily check the validity of (4.37) with the definition (4.36) of the covariant acceleration

field with

Ωij = −(
d

dt′
Rik)R

−1
kj , (4.38)

Bi =
D2

Dt′2
bi(t(t

′
)) =

d2

dt′2
bi − 2Ωij

d

dt′
bj + ΩijΩjkbk − (

d

dt′
Ωij)bj.

The above relations are familiar in usual Galilean kinematics, except for the use of a

general time t
′

in the non-inertial frame, which may not be the absolute time. Now as

before we consider another non-inertial frame (x
′′
, t
′′
) related to the same inertial frame

(x, t) through the same relation (4.28), but with different parameters (R
′
ij(t), f

′
(t), b

′
i(t)).

Then again (4.37) is valid with the definition (4.36) of the covariant acceleration field and

with the angular velocities and acceleration of this frame given by (4.38), but (Rij, bi)

replaced by (R
′
ij, b

′
i). As a result

A(comb)
i =

dt
′

dt
R−1
ij A

(comb)′

j =
dt
′′

dt
R
′−1
ij A

(comb)′′

j . (4.39)
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The above implies

A(comb)′

j =
dt
′′

dt′
RijR

′−1
jk A

(comb)′′

k =
dt
′′

dt′
(R
′

ijR
−1
jk )−1A(comb)′′

k . (4.40)

The last equality above is exactly what is required for the validity of (4.37) between these

two non-inertial frames and since by choice they were arbitrary, we have proved that

(4.37) is valid for any two coordinates. However, we note that the covariant acceleration

field as defined in (4.36) reduces to the usual acceleration field in an inertial frame only if

the flow is incompressible in the inertial frame. So, we prove that it is possible to define a

covariant acceleration field as defined in (4.36) which transforms covariantly as in (4.37)

under the full GCA if and only if the flow is incompressible (i.e. ∇ · v = 0) in an inertial

frame (where absolute time is used).

Finally we note that the operator ∇i transforms covariantly under the full GCA and

so does the traceless symmetric tensor σij. Under the transformation (4.28)

∇i =
dt
′

dt
R−1
ij ∇

′

j, (4.41)

σij =
dt
′

dt
R−1
ik R

−1
jl σ

′

kl.

4.3 Covariantizing the Navier-Stokes equation

The approach to equilibrium in physical systems is captured usually by three equation,

namely, the continuity equation, the Navier-Stokes equation and the equation for evolution

of the mean isotropic pressure. Of these three, the Navier-Stokes equation concerned

with the approach to mechanical equilibrium is the most fundamental. The continuity

equation is valid only if the microscopic interactions conserve particle number. When the

flow is incompressible, i.e when the divergence of the velocity field (whose take values

corresponding to the local mean particle velocity) vanishes, the pressure actually is not

an independent dynamical variable as it does not have an independent equation for its

evolution [68].

As mentioned in the Introduction, we will dissect the Navier-Stokes equation into

the kinematic term, the pressure term and the viscous term, and establish the covariance

105



CHAPTER 4. THE COVARIANCE OF NAVIER-STOKES EQUATION AND
INVARIANCE OF THEORIES UNDER THE INFINITE DIMENSIONAL GALILEAN
CONFORMAL ALGEBRA

of each of these terms under GCA.

4.3.1 The kinematic term

The kinematic term, in an inertial frame, is simply dv/dt, the acceleration field. Now the

total time derivative d/dt acting on any field is simply the Euler operator D = ∂/∂t+v.∇
acting on the field. Therefore the covariant form of the kinematic term, under the full

GCA is just the covariant acceleration field (4.36) where, we may replace d/dt with D

(Dv)
(comb)
i = D(vi+Ωij(t)xj−

∇.v
d
xi)+Ωij(t)(vj+Ωjk(t)xk−

∇.v
d
xj)−∇i(B(t)·x). (4.42)

Above we have made explicit that the angular velocity and acceleration of the frame

is time dependent only. As we have proved in the previous section, the kinematic term

transforms as (4.37) under the full GCA, so under the transformation (4.28), the covariant

acceleration field transforms as

(Dv)
(comb)
i =

dt
′

dt
R−1
ij (Dv)

(comb)′

i . (4.43)

Note the covariant kinematic term (4.42) becomes the usual kinematic term in an inertial

frame, where absolute time is also used, only when the flow is incompressible in any

inertial frame. So, it is crucial that the flow, is indeed, incompressible, in an inertial

frame. The kinematic term can be made GCA covariant only if the flow is incompressible

in an inertial frame so that it reduces to just the Euler derivative acting on the velocity

field in an inertial frame.

We also note that since the centrifugal force is a conservative force, one may also

write the centrifugal term like a derivative of the potential term as has been done in the

case of the term involving the acceleration of the frame, but it will obscure the covariance

of the kinematic term, which could be easily constructed from the logic given in the

previous section. Also, written in the form (4.42), we readily see that the acceleration

of the frame mimics the effect of an uniform gravitational field. It is reminiscent of the

relativistic case where to achieve Weyl covariance we also promote ordinary derivatives

to covariant derivatives which also conforms with the equivalence principle.
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4.3.2 The pressure term

The pressure term in a non-inertial frame is just −(∇ip)/ρ. We will see that the pressure

term and even the viscous term requires no modification and by themselves transform

covariantly under the full GCA.

The pressure term is

−∇ip

ρ
. (4.44)

We make a natural assumption that the density transforms homogeneously under GCA,

so that

ρ(x, t) = (
dt
′

dt
)aρ

′
(x
′
, t
′
), (4.45)

where a, is an undetermined constant. Therefore the pressure term should remain covari-

ant if the pressure p transforms in exactly the same manner as the density ρ, so that

p(x, t) = (
dt
′

dt
)ap

′
(x
′
, t
′
). (4.46)

Finally one gets,

−∇ip

ρ
= −dt

′

dt
R−1
ij

∇′ip
′

ρ′
, (4.47)

as claimed.

4.3.3 The viscous term

The viscous term in non-inertial frame is:

−∇i(ησij)

ρ
= −
∇i

(
η
(
∇ivj +∇jvi − 2

3
δij(∇ · v)

))
ρ

. (4.48)

We will see that this term is covariant by itself under the full GCA without any modi-

fication. We have already seen in (4.41) that ∇i and the traceless symmetric tensor σij

both transform covariantly. We have already seen how the density field should transform

in (4.45). So clearly, the viscous term transforms like the kinematic term provided

η(x, t) = (
dt
′

dt
)a−1η

′
(x
′
, t
′
). (4.49)

With the above rule for transformation of the viscosity we get as desired.

−∇i(ησij)

ρ
= −dt

′

dt
R−1
jl

∇′k(η
′
σ
′

kl)

ρ′
. (4.50)
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4.3.4 Summing all up

The full covariant form of the Navier-Stokes equation is:

(Dv)
(comb)
i = −∇ip

ρ
−
∇j

(
η
(
∇ivj +∇jvi − 2

3
δij(∇ · v)

))
ρ

, (4.51)

or,

D(vi + Ωij(t)xj −
∇.v
d
xi) + Ωij(t)(vj + Ωjk(t)xk −

∇.v
d
xj)−∇i(B(t).x) (4.52)

= −∇ip

ρ
−
∇j

(
η
(
∇ivj +∇jvi − 2

3
δij(∇.v)

))
ρ

.

Besides, the density, pressure and viscosity transforms as follows,

ρ(x, t) = (
dt
′

dt
)aρ

′
(x
′
, t
′
), (4.53)

p(x, t) = (
dt
′

dt
)ap

′
(x
′
, t
′
),

η(x, t) = (
dt
′

dt
)a−1η

′
(x
′
, t
′
).

We will now investigate some interesting consequences of the above transformations.

Let us first consider the case when all chemical potentials are zero as in a gas of phonons

in a metal. Then both the density and pressure are functions of temperature, which must

transform appropriately under GCA to reproduce (4.45) and (4.46). The speed of sound

cs in the comoving frame (i.e in the local inertial frame comoving with the local velocity

v of the flow) is given by c2
s = dp/dρ. Since the pressure and density transform identically

under GCA, we find that cs is invariant under GCA.

In a typical Galilean invariant theory this is not surprising, as for instance, for

monoatomic ideal gases, with molecular weight m, cs =
√

(5kBT/3m). The temperature

field being Galilean invariant, Galilean invariance of cs is automatic. The problem is that

a GCA invariant microscopic theory (as argued in [57]) cannot have any mass parameter.

Here, the temperature T does transform non-trivially under GCA, so cs must either be

a fundamental constant like the speed of light or be given in terms of the microscopic

parameters of the theory. The situation is the same in a relativistic conformal system
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where the speed of sound is c/
√

3, where c is the speed of light. In a typical non-

relativistic theory there is no fundamental speed. However, there is a novel possibility,

when the number of spatial dimensions is two. We have seen that, in this case, the

GCA admits a central charge, Θ, which has the dimension of (1/speed)2 and also being a

central charge, this is invariant under GCA. So, in this case, we have a natural origin for

a fundamental speed, which is 1/
√
|Θ|. In other dimensions, cs must be given in terms of

microscopic parameters, for instance it can be the ratio of a microscopic length parameter

and a microscopic time parameter. We will have more to say about this possibility later.

In any case, for a system without chemical potentials, cs must be a constant. However, if

we have chemical potentials too, cs need not be so and the analysis above is insufficient

to make any conclusion in this case.

4.4 The influence of the continuity equation

We will see here that the constant a, which governs the transformation of density and

pressure under the full GCA can be fixed uniquely by the continuity equation. The

continuity equation is

Dρ+ ρ(∇ · v) = 0. (4.54)

Let us study how this equation transforms under the full GCA (say as represented in

(4.28). We assume, as we did in the previous section that the density field transforms

homogeneously, so that

ρ(x, t) = (
dt
′

dt
)aρ

′
(x
′
, t
′
). (4.55)

With this assumption, we readily see that

Dρ+ ρ(∇.v) = (
dt
′

dt
)a+1(D′ρ′ + ρ

′
(∇′ .v′)) + ρ

′
(
dt
′

dt
)a−1(

d2t
′

dt2
)(a− d). (4.56)

So clearly we have covariance for the continuity equation only if a = d. So the continuity

equation, if valid, predicts the transformation of the density under GCA.

We will see what consequences we now have for the Navier-Stokes’ equation. If the

pressure term has to be covariant under GCA and transform exactly like the kinematic
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term, we require that the pressure transforms in the same way as the density, so

p(x, t) = (
dt
′

dt
)dp

′
(x
′
, t
′
). (4.57)

We immediately see that the pressure transforming in the same way as the density again

makes the speed of sound cs a constant, when all chemical potentials vanish.

We now turn to the viscous term. Again we easily see that to achieve GCA covariance

of the viscous term, we require that the viscosity transforms under GCA as below,

η(x, t) = (
dt
′

dt
)d−1η

′
(x
′
, t
′
). (4.58)

Finally, we note that if there is no particle number conservation the continuity

equation written in the form (4.54) should not hold. In this case the RHS must be non-

vanishing owing to say, particle absorption or emission. However, we will still have the

same conclusions as it will be natural to demand that the LHS of this modified equation,

which will be the same as before, must be covariant under GCA on its own.

4.5 GCA covariance and the viscosity

The covariance of the Navier-Stokes equation and the continuity equation under the full

GCA requires that the viscosity should transform in a certain specified manner as given

by (4.58). Now, the viscosity can transform only through its dependence on the thermo-

dynamic variables which are pressure and density. Here, as before, we will assume the

absence of chemical potentials. We note that p/ρ does not transform under GCA as both

the pressure and density transform exactly the same way. So the only way, in which we

can achieve the required transformation of the viscosity under the full GCA is that it

depends on the pressure and density in the following manner,

η = A(
p

ρ
)xp

d−1
d , (4.59)

where A is a dimensionful microscopic parameter. The dimension of A turns out to be:

[A] = M
1
d (
L

T
)−

d−2
d
−2x. (4.60)
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In the equation above, A is a (dimensionful) parameter and not a field, so it does not

transform under GCA. It is a parameter because it is independent of the thermodynamic

quantities like the pressure and density and of course it is independent of the velocity field

as well. So, A must be given by some microscopic parameters and fundamental constants

like the Planck’s constant h. However, as argued in [57], no microscopic theory which is

GCA invariant, can contain any mass parameter, so the mass dimension of A can come

only through the Planck’s constant h. Without any loss of generality, we may also assume

that we have a length scale lf in the theory, which by definition is a parameter in the

theory and unlike the thermal wavelength this has no dependence on the temperature

or any other thermodynamic variable by definition. Since generically we do not have

any fundamental speed like the speed of light in a non-relativistic theory, we need an

independent microscopic time scale tf also, which is again by definition independent of

thermodynamic variables, to soak the time dimension of A. We need an independent

time scale in the microscopic theory, because unless there is a fundamental speed or a

fundamental quantity with dimension of speed, we cannot form a time scale out of a

length scale. Finally, without loss of generality, we can say that A should take the form

below

A ≈ h
1
d l−1−2x
f t

d−1
d

+2x

f . (4.61)

It is clear from the above equation that we cannot make the dependence of A on

the microscopic length scale lf and the microscopic time scale tf vanish simultaneously.

Therefore, we conclude that we can explain the required transformation of the viscosity

under the full GCA only if we have a microscopic length scale or a microscopic time scale

or both in our theory. We also note that even when d = 2, in which case the central

Θ allows to define a ”fundamental speed,” given by
√

1/|Θ|, it is impossible to soak the

dimension of A with the Planck’s constant and Θ alone. So it is impossible to do without

introducing a microscopic length scale or microscopic time scale or both.

The conclusion, therefore, is that in a GCA invariant theory, either the viscosity is

zero or it contains a microscopic length parameter or a microscopic time parameter or

both. This is indeed contrary to the case of a relativistic conformal field theory where
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we cannot have any intrinsic length parameter or time parameter and any quantity can

have a dimension only through the Planck’s constant and the speed of light. At this

moment, we do not know any GCA invariant microscopic theory so we can be open to

the possibility that such theories can contain intrinsic length or time parameters or both.

If this is not possible, then the viscosity should vanish. Of course, as in the case with our

analysis of cs , our conclusions may change if we introduce chemical potentials.

One may however, ponder if it is possible that GCA could be a symmetry of the

theory only in the presence of non-zero chemical potentials so that the above considera-

tions for the case of vanishing chemical potentials can be avoided. In our opinion, this

point of view is rather unnatural, because the symmetry of a theory is usually a funda-

mental property of the theory and though its manifestation might be modified, it can

neither appear or disappear at specific values of thermodynamic intensive variables like

temperature or chemical potentials. An easy example which supports this point is the

usual relativistic conformal symmetry of N = 4 SYM theory, in which case in presence

of a finite temperature we still have conformal symmetry, however the thermodynamic

variables also transform under conformal transformations. In the Discussion section, we

will point out possible significances of the analysis done here in the case of vanishing

chemical potentials for gauge/gravity duality realization of GCA.

4.6 Possible GCA covariant corrections to the Navier-

Stokes equation

The Navier-Stokes equation, being a phenomenological equation, is susceptible to higher

derivative corrections, which could be, in principle, calculated from kinetic theory. We

will see that GCA is powerful in constraining these corrections, quite like in the case of hy-

drodynamics covariant under the relativistic conformal group. So, this will give us further

evidence, that GCA indeed is a credible physical symmetry, that is a symmetry which

can constrain phenomenological laws (in absence of known GCA invariant microscopic
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theories). 7

Usually, for instance, if calculated from the kinetic theory of gases, the corrections to

the Navier-Stokes involve corrections to the dissipative part of the stress tensor τij, which

at the first-order in derivatives is just ησij. The next-order corrections to the Navier-

Stokes equation are contained in the two derivative corrections, τ
(2)
ij , to the dissipative

stress tensor, so that τij = ησij + τ
(2)
ij and the corrected Navier-Stokes’ equation in the

inertial frame, now takes the form,

Dvi = −∇ip

ρ
−∇i(τij) = −∇ip

ρ
−∇i(ησij + τ

(2)
ij ). (4.62)

Now, we would demand that like σij, τ
(2)
ij contains spatial derivatives only as is indeed

that case if these corrections are calculated from kinetic theory. Also, we will assume,

that these corrections involve derivatives of the velocity only.

Let us first look at terms in τ
(2)
ij which have the structure of (∇u)2. For that, we

need to find if there is any other tensor with structure (∇u) which transforms like σij.

One can easily see that there is only one more such tensor, which we denote as ωij and is

defined as

ωij =
1

2
(∇iuj −∇jui − 2Ωij(t)). (4.63)

Once again by invoking the trick of comparing one inertial frame with two non-inertial

frames and then comparing the two non-inertial frames with each other one can readily

prove that ωij transforms under full GCA like σij. Therefore τ
(2)
ij involve the following

combinations λ1σikσkj + λ2(σikωkj + ωikσkj) + λ3ωikωkj, where the three λ’s are arbitrary

transport coefficients like the shear viscosity η. For the covariance of the corrected Navier-

Stokes we now require them to transform as below,

λi(x, t) = (
dt
′

dt
)a−2λ

′

i(x
′
, t
′
), (4.64)

where i = 1, 2, 3 and a is defined through the transformation of the density as given in

(4.45). We can proceed to find the dependence of the λ’s on the thermodynamic variables

exactly as we have done for the shear viscosity η, however we will not repeat it here.

7The author would like to thank Rajesh Gopakumar for pointing out this significance of the constraints
imposed by GCA on the correction to the Navier-Stokes’ equation.
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Now let us look for possible corrections to τ
(2)
ij which contains the structure (∇2u).

Now since v.∇ does not transform covariantly, we cannot try combinations like (v.∇)σij.

Moreover, though the Laplacian, �, transforms covariantly, we cannot use it on any

polynomial of the velocity like uiuj, as it is not covariant. It is not, thus hard to see,

that there is only one possible covariant term which contains a (∇2u) term and it is

∇k(σijV(b=0)
k ), where V(b=0)

k is as defined in (4.29). We can still get a covariant term,

though V(b=0)
k is covariant only in absence of boosts, because the full covariant velocity

field will differ from this by a purely time-dependent quantity, so it doesn’t make any

difference when we apply the spatial derivative. We note that, in an inertial frame,

however, this new term is just (v.∇)σij. We will denote the coefficient corresponding to

this term as λ0.

Therefore, the most general form of τ
(2)
ij is:

τ
(2)
ij = λ0∇k(σijV(b=0)

k ) + λ1εikεkj + λ2(εikωkj + ωikεkj) + λ3ωikωkj, (4.65)

with all λ’s having appropriate dependence on thermodynamic variables so that it trans-

forms as in (4.64).

Similarly, we can proceed to constrain higher order corrections of the Navier-Stokes’

equation containing more than three derivatives. We observe that our four possible GCA

covariant corrections, have analogues in the relativistic conformal case, as all the four

possible corrections in flat space-time [37], reduce in the non-relativistic limit to our four

terms in an inertial frame when the flow is incompressible. This is intriguing because the

covariant forms in the two cases are very different in content. It will be interesting to

see if this correspondence also exist at higher orders. There can be another term in our

case involving the curvature of the spatial metric as in the relativistic case (the relativistic

term involves contractions of the Reimann tensor), but since we have throughout restricted

ourselves to the flat spatial metric, this possibility lies outside the scope of our present

investigation.
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4.7 Discussion

We have shown that the macroscopic Navier-Stokes equation for incompressible flows has

covariance under full GCA. So we can conclude that GCA can be realized as a symmetry

of a phenomenological law like the Navier-Stokes equation only if we covariantize the usual

form of the laws which holds in inertial frames, however not any arbitrary law with mere

Galilean covariance can be covariantized. In the case of the Navier-Stokes equation we

have needed that the flow is incompressible. We have also seen that the higher derivative

corrections to the Navier-Stokes equation can be constrained by requiring GCA covariance.

Our analysis also leads us to conclude that when all chemical potentials vanish, cs,

which denotes the speed of sound in a comoving frame, is a constant. Further, we have

seen that in the absence of chemical potentials, the viscosity should either vanish or in

the microscopic theory we must have a length scale or a time scale or both.

We would now like to discuss the possible implications of the above analysis for

gauge/gravity duality realization of GCA. The presence of both length and time scales in

the GCA invariant microscopic theory firstly tallies with the fact that we need to introduce

objects like absolute angular velocity and absolute acceleration of the non-inertial frame

which brings in dimensions of both length and time into play. This is in contrast with the

case of covariantizing under relativistic conformal group where we need not bring in any

additional dimensionful parameter. This observation possibly indicates that we need to

first deform the action of the relativistic parent theory like N = 4 SYM by non-marginal

operators such that a deformed SO(d, 2) relativistic conformal group is the symmetry

of the theory and then take the contraction which takes SO(d, 2) relativistic conformal

group to GCA so that we get a sensible dynamical limit 8. The deformation parameters

of the symmetry being dimensionful, should bring in the required microscopic length

scales and time scales in the final GCA invariant theory obtained via the contraction.

Further, the deformation parameters will also transform non-trivially under GCA so that

the covariantizing will bring in new structures. In fact, if we take the contraction without

8A related example could be the omega-deformation [73] of N = 2 SYM theories under which the
deformed theory retains the BRST supersymmetry though this supersymmetry itself gets deformed by
combining with other supersymmetries.
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deformation for the classical N = 4 SYM theory, one may readily check that we get a

non-dynamical equations of motion for all the fields 9. This supports our point of view.

In the future, we would like to find out the appropriate operators which could give rise

to the deformations such that the contraction produces a sensible dynamical theory.

Finally, we mention, that it would be an interesting challenge to construct gravi-

tational duals for GCA covariant hydrodynamic flows. Aside from finding the dynamics

of gravity in the bulk, we see now, we also need to find a suitable bulk interpretation of

the absolute angular velocity and the absolute acceleration of the boundary coordinate

system, as they are surely needed in the covariant formulation of the hydrodynamics of

the boundary theory. Some earlier work in [62] could be useful in this direction.

9The author thanks Rajesh Gopakumar for valuable discussions regarding these points.
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Chapter 5

Concluding remarks

We have obtained some important structural information on nonequilibrium states and

also some new hints on the origin of irreversibility through our investigations. Firstly,

we have argued that generic quantum field theories have purely hydrodynamic states

which can be completely characterized by hydrodynamic variables alone even far away

from equilibrium and their dynamics can also be determined completely by the equations

of fluid mechanics which can be obtained in a systematic derivative expansion. The

dimensionless parameter for the derivative expansion is the ratio of typical spatio-temporal

scale of variation of hydrodynamic variables and the mean free path at final equilibrium.

We have also argued that there are also a more general class of states, the conser-

vative states, which could be completely characterized by the energy-momentum tensor

and the dynamics of these states can also be determined completely by a closed set equa-

tions of motion for the energy-momentum tensor. The purely hydrodynamic states are

special instances of the hydrodynamic states. If the equations of higher derivative fluid

mechanics governing these purely hydrodynamic states are known up to certain orders,

we can systematically construct the equations of motion of the energy-momentum tensor

determining the evolution of conservative states phenomenologically up to appropriate

orders in two expansion parameters and unknown values of nonhydrodynamic coefficients

like the relaxation time. These equations of motion include the conservation of energy

and momentum but also an independent equation of motion for the shear-stress tensor

which we need to expand in the two expansion parameters, one of which is the derivative
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expansion parameter, while the other is the amplitude expansion parameter which is the

ratio of the typical value of the nonhydrodynamic shear-stress tensor and the hydrostatic

pressure at final equilibrium.

Moreover any arbitrary state which thermalizes can be approximated by an appro-

priate conservative state at sufficiently long time, which in turn can be approximated

by an appropriate purely hydrodynamic state at a sufficiently longer time. The ap-

proach to equilibrium is sufficiently fast at strong coupling, for higher order effects like

the hydrodynamic transport coefficients at second order in the derivative expansion to

be experimentally observable. Therefore the equations of motion of energy-momentum

tensor determining the evolution of conservative states can be used for modeling generic

irreversible phenomena like hydrodynamics, relaxation and decoherence. It is in fact a

generalization of the equations of fluid mechanics to capture phenomenology of generic

irreversible phenomena particularly at strong coupling.

Earlier results also suggest that purely hydrodynamic states have an entropy current

with positive definite divergence, at least at strong coupling in conformal gauge theories

with gravity duals, just like in the case of the Boltzmann equation. The tubewise black-

brane solutions, which by our logic should constitute the normal or purely hydrodynamic

solutions at large rank of the gauge group and strong ’t Hooft coupling, indeed demon-

strate the existence of a family of entropy currents [30]. However, the structure of this

entropy current is very different. Unlike for the normal solutions of the Boltzmann equa-

tion, or in the Israel-Stewart-Muller formalism, these exact entropy currents at strong

coupling are not of the form suµ, where s could be interpreted as the nonequilibrium

entropy density.

Our analysis also suggests that such entropy currents do not exist for a generic con-

servative state. In fact for spatially homogeneous conservative states, which are purely

nonhydrodynamic, irreversibility occurs only when we follow the envelope of an appropri-

ate global function and a Lyapunov function probably does not exist.

It would be a real challenge to find a general principle for construction for purely

hydrodynamic states and the more general class of conservative states in generic quan-
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tum field theories, which would generalize Gibbs’ distribution for equilibrium states. In

fact, this is the only way one can give microscopic meaning to the hydrodynamic and

nonhydrodynamic transport coefficients which appear in the phenomenological equations

of motion of energy-momentum tensor determining evolution of conservative states and

cannot be defined by linear response theory.

We will now mention some of the developments on which we would like to focus in

the immediate future. The first could be in the realm of early-time dynamics, especially in

the understanding of decoherence. This should be convenient because we can understand

a lot by just considering the higher order corrections to the homogeneous nonhydrody-

namic configurations which solve (3.19). We have already observed the possibility of an

oscillatory approach to equilibrium here. To uncover the physics, we need to compare with

homogeneous conservative solutions in quantum kinetic theories which can capture the

physics of decoherence. We can test whether the same dynamics of the energy-momentum

tensor in conservative solutions of quantum kinetic theories which captures decoherence,

also gives rise to horizon formation in the bulk.

A second important issue would be a better understanding of whether the hydrody-

namic limit of nonequilibrium dynamics always leads to generation of an entropy current

generically. We hope to get a better understanding of the physics of this entropy current

by investigating the existence and form of the entropy currents in the normal solutions

of untruncated BBGKY heirarchy which, as mentioned before, are solutions of exact

microscopic dynamics. Construction of conservative states and investigation of entropy

currents for these states, will also confirm whether entropy currents exist strictly in the

hydrodynamic limit and is replaced by an oscillatory approach to equilibrium for states

away from this limit.

Thirdly, we have given a framework for general universal nonequilibrium behavior

in strongly coupled gauge theories with gravity duals. It would be interesting to see how

much of this framework may apply to physics of quark-gluon plasma at the RHIC. We

can expect some qualitative similarities because the QCD coupling evolves very slowly at

the scales corresponding to the temperature of the quark-gluon plasma at RHIC and so
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the evolution of the plasma within certain time window should be well described by Weyl

covariant equations. Moreover, at finite temperature supersymmetry is broken, hence it

is expected that there should be more similarities between N = 4 SYM theory at strong

coupling and the quark gluon plasma of QCD at finite temperature than the phenomena in

these two theories at zero temperature. Some investigations indeed show such similarities

indeed hold to some degree beyond the good matching of η/s, even at the quantitative

level [74].

Finally, we need to understand better the origin of universality in the dynamics at

strong ’t Hooft coupling and large rank of the gauge group in the class of conformal gauge

theories with gravity duals studied here. This should give us better insights into existence

of other universality classes where the dynamics of an entire class of states become the

same for field theories belonging to such classes at critical values of the couplings and

parameters.
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Appendices

6.1 Appendix A : Proof of the power series solution

for AdS5 asymptotics

Here we will prove that any asymptotically AdS5 solution of Einstein’s equation with

a negative cosmological constant, in the Fefferman-Graham coordinates, has a solution

for gµν which is a power series in the radial coordinate when the boundary metric is

flat. Though not explicitly mentioned in most of what follows, it should be kept in mind

that here we are specifically investigating five-dimensional solutions with a flat boundary

metric. At the end, we will mention if our proof can be generalized to other cases.

To simplify the proof we first rearrange the tensor and the scalar components of

Einstein’s equation (2.5) while keeping the vector components of Einstein’s equation un-

changed. The old scalar equation is added with an appropriate linear combination of the

trace of the old tensor equation so that now it does not contain any term which has second

derivative of gµν with respect to the radial coordinate ρ. Since the vector equation also

does not contain any term with second derivative of gµν with respect to the radial coor-

dinate we can now think of the vector and scalar components as a set of five constraint

equations. We also change the tensor components of Einstein’s equation by appropriately

replacing Tr(g−1g′) using the new scalar equation. We do this so that now the tensor

equation by itself is sufficient to determine all the ρn coefficients of gµν . The old tensor

equation had the feature that to determine g(8)µν , the coefficient of ρ8 in gµν , we had to
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use the scalar equation as well, but now this can be fully determined using the tensor

equation alone. So our equations are now

1

2
g′′ − 3

2ρ
g′ − 1

2
g′g−1g′ +

1

4
Tr(g−1g′)g′ −Ric(g)

+ g[
1

6
R(g) +

1

24
Tr(g−1g′g−1g′)− 1

24
(Tr(g−1g′))2] = 0,

(6.1)

∇µTr(g
−1g′)−∇νg′µν = 0, (6.2)

R(g) +
3

ρ
Tr(g−1g′) +

1

4
Tr(g−1g′g−1g′)− 1

4
[Tr(g−1g′)]2 = 0. (6.3)

It is not difficult to see that we can use a power series ansatz to solve the tensor equation as

at the n-th order. At the n-th order the only terms which can contain g(n)µν or Tr(g(n))ηµν

are g′′µν , g
′
µν and Tr(g−1g′)gµν . Now since the tensor equation contains no term with

Tr(g−1g′)gµν , at the n-th order,for n > 4, the tensor equation gives us n(n− 4)g(n)µν/2 =

f(tµν), where f(tµν) is a polynomial in tµν and its various derivatives with respect to the

boundary coordinates only. Hence, for n > 4, we can always solve g(n)µν using the tensor

equation alone.

We have now got to show that the power series we have so obtained as a solution to

the tensor equation is consistent with the vector and scalar constraints. We will do this by

the method of induction iterating over the various coefficients of ρn in gµν , order by order

in n. We will first establish the following fact that the ρ-derivative of the vector and scalar

constraints vanish when the tensor equation along with the vector and scalar constraints

are satisfied. This just articulates the intuition that once the initial data consisting of

gµν and g′µν satisfy the vector and scalar constraints on hypersurface with a fixed value of

the radial coordinate ρ, the dynamical evolution in ρ should be such that the constraints

should be automatically satisfied for any other hypersurface. To show this we will need

the following:

Γµνσ
′ =

1

2
gµα(∇νg

′
ασ +∇σg

′
αν −∇αg

′
νσ), (6.4)

Rµ
ναβ
′ =

1

2
gµγ[∇α∇νg

′
γβ −∇α∇γg

′
νβ −∇β∇νg

′
γα +∇β∇γg

′
να].
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One can use the tensor (6.1) and scalar (6.3) equations to write

Rµ
ν −

1

2
δµνR =

1

2
gµαg′′αν −

3

2ρ
gµαg′αν −

1

2
gµαg′αβg

βγg′γν +
1

4
Tr(g−1g′)gµαg′αν +

5

4ρ
Tr(g−1g′)δµν

− 1

4
δµν [Tr(g−1g′′)− Tr(g−1g′g−1g′) +

1

2
(Tr(g−1g′))2].

(6.5)

When all the equations (6.1), (6.2) and (6.3) are satisfied, the ρ-derivative of the vector

constraint can also be written as:

(∇µTr(g
−1g′)−∇νg′µν)

′ =∂µ[Tr(g−1g′′ − 3

4
g−1g′g−1g′) +

1

4
(Tr(g−1g′))2]

−∇ν(g
ανg′′µα − gαβg′βγgγνg′αµ +

1

2
gναg′αµTr(g

−1g′)).
(6.6)

Comparing the right hand sides of (6.5) and (6.6) using all the equations of motion again,

we see that

(∇µTr(g
−1g′)−∇νg′µν)

′ = ∇ν(R
ν
µ −

1

2
δνµR). (6.7)

So the Bianchi identity implies that the ρ-derivative of the vector equation should vanish

when all the equations of motion are satisfied. We will now get to the scalar equation.

When the vector equation of motion (6.2) is satisfied we get

Rµν
′ = −1

2
Rαµ(gαβg′βν) +

1

2
Rγ
ναµ(gαβg′βγ) +

1

2
∇µ∇νTr(g

−1g′)− 1

2
∇2g′µν . (6.8)

This implies that when the vector equation of motion is satisfied, we have

R′ = −gµνg′νσgσαRµα. (6.9)

On the other hand the vanishing of the ρ-derivative of the scalar constraint (6.3) ought

to give us

R′ =− 1

2
Tr(g−1g′g−1g′′) +

3

2ρ
Tr(g−1g′g−1g′)

+
1

2
Tr(g−1g′g−1g′g−1g′)− 1

4
Tr(g−1g′)Tr(g−1g′g−1g′) +

1

2ρ
[Tr(g−1g′)]2.

(6.10)

Now using the tensor and scalar equations of motion, we can see that the right hand sides

of (6.9) and (6.10) are the same, or in other words the ρ-derivative of the scalar constraint
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indeed vanishes when all the equations of motion are satisfied. So we have established that

the ρ-derivatives of the all the five constraints vanish when all the equations of motion

are satisfied, or to state compactly

(6.1), (6.2), (6.3)⇒ (6.2)′, (6.3)′. (6.11)

To prove that the power series solution of the tensor equation is consistent with the

constraints, we will use the above at ρ = 0. To obtain a condition for g(n)µν (the coefficient

of ρn in gµν) from the tensor equation we need to differentiate it n-2 times with respect

to ρ and then set ρ = 0. Similarly to obtain a condition for g(n)µν from the vector and

scalar constraints we need to differentiate each of them n-1 times with respect to ρ and

then set ρ = 0.

The vector and scalar constraints imply that g(2)µν should vanish while the tensor

equation identically vanishes at this order. The tensor equation for g(4)µν which we have

appropriately renamed tµν , also identically vanishes while the vector constraint gives us

the conservation equation ∂µtµν = 0 and the scalar constraint gives the tracelessness

condition Tr(t) = 0. We can start our induction from here, since the three equations are

all consistent with each other up to this order

Let us suppose, by the induction hypothesis that the solution for g(n−1)µν obtained

from the tensor equation is consistent with the vector and scalar constraints. We now

denote the m-th ρ-derivative as m
′
. So, by induction hypothesis, the three equations

(n− 3)′(6.1)(ρ = 0), (n− 2)′(6.2)(ρ = 0) and (n− 2)′(6.3)(ρ = 0) are consistent with each

other. Now we iterate by determining g(n)µν from the tensor equation, or in other words

we solve

(n− 2)′(6.1)(ρ = 0). (6.12)

But by induction hypothesis we can assume (n− 2)′(6.3)(ρ = 0) and (n− 2)′(6.2)(ρ = 0)

are consistent with the tensor equation. Now our result (6.11) for a general fixed ρ

hypersurface implies that

(n− 2)′(6.1), (n− 2)′(6.2), (n− 2)′(6.3)⇒ (n− 1)′(6.2), (n− 1)′(6.3). (6.13)
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We can apply the above at ρ = 0 1 to iterate and say that if the solution for g(n−1)µν

from the tensor equation is consistent with the constraints so would the solution for g(n)µν

from the tensor equation be. This completes the proof by induction that the power series

solution of the tensor equation is consistent with the constraints.

Let us see if our proof can be generalized to other cases, in particularly for all

dimensions if the boundary metric is flat. The only change in the equation of motion

happens to be the coefficient of g′µν in the tensor equation. Let us, for example, take the

case when the number of boundary coordinates is six. We can check by hand that all

g(n)µν vanish for all n such that 0 < n < 6 and g(6)µν cannot be determined from the

tensor equation for an exactly similar reason as for g(4)µν when the number of boundary

coordinates was four, namely the tensor equation identically vanishes. The vector and

scalar constraints imply conservation and tracelessness of g(6)µν implying that it should

be identified with the stress tensor (and indeed it has been shown in [9] that this agrees

with with the Balasubramanian-Krauss stress tensor). We can begin our induction, from

here as before and hence our proof generalizes. So, the general problem in applying the

induction is to show that the equations of motion are consistent with the power series

ansatz at g(d)µν . We have not been able to prove it generally but we have checked it up to

d = 6. The same problem appears when we try to apply induction to prove the validity

of the power series solution when the number of boundary coordinates is odd, but the

boundary metric is arbitrary. Before we apply induction, we need to prove that the power

series works at g(d)µν , (in fact this is harder to show, because when the boundary metric

is not flat g(n)µν ’s do not vanish for 0 < n < d). However, Fefferman and Graham have

proved the validity of the power series solution by a different method for an arbitrary

boundary metric when the number of boundary coordinates is odd.

1At ρ = 0 the statement (6.13) has a non-trivial content strictly for n > 2, because of the slight
technicality that what we really need to use to find a condition for g(n)µν is that we need to differentiate
(ρ(6.3)) not really (6.3) n-1 times. So at ρ = 0, this result is trivial for the scalar constraint when n = 2
and we do not need to use the result (6.13), but since the first step of induction starts from n = 4, it is
safe to use this in the iteration procedure.
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6.2 Appendix B: On fixing η/s by calculating curva-

ture invariants

We have already done the regularity analysis of our first order solution in Fefferman Gra-

ham coordinates by translating to Eddington-Finkelstein coordinates where the regularity

or irregularity becomes manifest. However, one may ask if the regularity analysis can be

done also by calculating some curvature invariants. We will see that indeed at the first

order, this analysis can also be done by calculating an appropriate curvature invariant,

but we will argue that there may not be a finite number of curvature invariants which

can be reliably used to fix all the coefficients in the hydrodynamic stress tensor at higher

orders in the derivative expansion.

Before we do that, we want to point out that though the metric in Fefferman-

Graham coordinates and in Eddington-Finkelstein coordinates could be made coordinate

equivalent up to any given order in the derivative expansion for an arbitrary hydrodynamic

stress tensor, the curvature invariants calculated from the two metrics will typically never

be the same! Let us examine why this should happen at the first order itself. Any typical

curvature invariant, like the Ricci scalar R itself, will show a divergence only when we

expand it to second order in derivatives of the boundary coordinates. In this case, this

should be so, because the metric in either coordinate system is a solution of the equations

of motion up to first order in derivatives of boundary coordinates. However, the second

order piece in R calculated from the metric in either coordinate system will not be the

same, because the two metrics are related by a coordinate transformation only up to first

order in derivatives. In fact we will explicitly demonstrate that R itself can be used to

fix the value of η/4πs in the Eddington-Finkelstein metric at first order but not in the

Fefferman-Graham metric at first order. So the procedures of using curvature invariants

to fix the coefficients in the hydrodynamic stress tensor in the two coordinate systems are

indeed very different!

Another crucial aspect should be kept in mind because this also features in compar-

ing curvature invariants calculated from the metrics in the two coordinate systems. Fun-

damentally, solving Einstein’s equations in either of the two coordinate systems involves a
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trade-off between manifest regularity and manifest asymptotic boundary condition. The

solution in Eddington-Finkelstein coordinate system at the zeroth order and also at the

the first order for the right value of η/4πs are manifestly regular so any curvature invari-

ant calculated at the horizon will be regular to all orders as well. However, the solution

preserves the asymptotic AdS boundary condition only up to first order in derivatives

as it can be translated to Fefferman-Graham coordinate system only up to that order.

The solution in Fefferman-Graham coordinate system at first order, of course preserves

boundary condition to all orders, but even for the right choices of η/4πs it is not regular

to all orders. In other words, for the right choice of η/4πs all order divergences should

vanish when we calculate curvature invariants from the metric in Eddington-Finkelstein

coordinate system, but in case of the solution in Fefferman-Graham coordinates at first

order, at most the leading divergence at the second order vanishes for the right choice

of η/4πs. In fact, for certain curvature invariants even that do not happen. Of course,

eventually if we add a right second order correction to the Fefferman-Graham metric,

all divergences in the curvature invariants at the second order should vanish, but still

divergences at higher orders will remain and so on. We will illustrate the first order case

with examples below.

To compute curvature invariants it is useful to first choose a velocity and temperature

profile. As mentioned before, the vector constraint in Einstein’s equations of motion

demand that the velocity-temperature profile should be a solution of the relativistic Euler

equation
∂µb

b
= (u.∂)uµ − uµ

∂.u

3
. (6.14)

We call our boundary coordinates (t, x, y, z) and we select the following static velocity

profile which is a relativistic version of laminar flow

uµ =
1√

1− a2y2
(1, ay, 0, 0), (6.15)

where a is a constant of dimension 1/length. The advantages of using this velocity profile

are twofold, namely,

• The relativistic Euler equation gives us that temperature, hence b, should be a
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constant.

• It is easy to employ the derivative expansion by using the following trick. We

note that the only non-trivial derivatives of the boundary coordinates are the y-

derivatives. Any y-derivative of the velocities will bring in an extra a which is

unpaired with a y so that it picks up the right dimension. Hence to do the derivative

expansion we may first set y = p/a and simply do a Taylor expansion in a about

a = 0. The correct dimensionless parameter of the derivative expansion, of course

will be ab.

We can use the above velocity-temperature profile in the first order solution in any coor-

dinate system. Though away from the boundary the boundary coordinates (or, in other

words, the field-theoretic coordinates) in a given coordinate system will mix with all the

coordinates in another coordinate system, at the boundary they will always align with

other. This is, how solutions in two different coordinate systems come to share the same

boundary stress tensor and also the same conservation equation, which in this case, is the

relativistic Euler equation.

If we use the above velocity-temperature profile to calculate R in the Eddington-

Finkelstein coordinate system we will find that

R = −20 + a2 1

8(1− a2y2)2b4r6
(6.16)

(
(γ − 1)(9 + b2r2(3γ − 2π) + 16b5r5 − 2πb6r6))

(br − 1)(1 + br + b2r2)
+

(γ − 1)(γ + 1− 8b3r3)b2r2Log(br − 1) +O(1)) +O(a3).

At the zeroth order in a, R should of course be -20 and at first order in a, R should of

course vanish because our metric is a solution of equations of motion up to first order.

At order a2, we indeed expect some divergence at the horizon, which is at r = 1/b,

because the metric is explicitly not regular there unless γ = η/4πs = 1. We see that when

η/4πs = γ = 1 all divergences go away. This feature replicates also at higher orders in a.

2 On the other hand, if we calculate R from the Fefferman-Graham metric at first order,

2We would like to thank Sayantani Bhattacharya for confirming that this indeed happens for arbitrary
velocity and temperature profiles.
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we get

R = −20 + a2[
128b10ρ8(12b4γ2 + 4b2ρ2 + 3γ2ρ4)

(1− a2y2)2(4b4 − ρ4)2(4b4 + ρ4)3
(6.17)

+
16b6γ2

(1− a2y2)2(4b4 + ρ4)2
Log(

4b4 − ρ4

4b4 + ρ4
)] +O(a3).

At order a2, we see that there is a leading inverse power two divergence for any value of

γ and a subleading log divergence except when γ = 0. So this is useless to figure out the

right value of γ. Of course this will certainly be useful to fix certain coefficients of the

hydrodynamic stress tensor at second order, because these divergences should go away

for any right second order correction to the Fefferman-Graham metric.

It turns out, however, that, RµνρσR
µνρσ can be used to fix the value of γ in the

Fefferman-Graham metric. We get

RµνρσR
µνρσ =

4(1280b16 + 1280b12ρ4 + 2784b8ρ8 + 80b4ρ12 + 5ρ16)

(4b4 + ρ4)4
(6.18)

−a2[
2(−1 + γ2)b6

(1− a2y2)2(ρ−
√

2b)4
+O(

1

(ρ−
√

2b)2
) +O(Log(

√
2b− ρ)) +O(1)].

We see that the zeroth order piece is always finite and independent of γ and at order a (for

some reason we do not understand) the scalar vanishes. However, at order a2, we find that

when γ is 1 or -1 the leading divergence at ρ =
√

2b goes away, though, the subleading

divergences remain and as before, they should disappear when we add any right second

order contribution to the Fefferman-Graham metric. We are also not sure, if by computing

RµνρσR
µνρσ itself we can fix the values of all the coefficients in the hydrodynamic stress

tensor at second order. To fix all the coefficients of the second order hydrodynamic stress

tensor, one may have to look for another appropriate curvature invariant.

It is certainly, worth exploring, if the “hydrodynamic” Fefferman-Graham solutions

are “‘special” enough so that computing a finite number of curvature invariants will suffice

to determine regularity, hence in fixing all the coefficients in the hydrodynamic stress

tensor to all orders. We will leave this for a future work. Nevertheless, our procedure

of fixing the coefficients in the hydrodynamic stress tensor by translating to Eddington-

Finkelstein coordinate system works for all orders in the derivative expansion.
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6.3 Appendix C: Proof of existence of conservative

solutions of the Boltzmann equation

We will now present the details of our proof for the existence and uniqueness of con-

servative solutions of the Boltzmann equation. In order to keep the proof reasonably

self-contained, we give further details on the Boltzmann equation and how one can obtain

the hydrodynamic equations seen earlier. We follow the notation of [55, 43] mostly for

this part of the discussion. This will be followed by the proof in full detail.

6.3.1 C.1 A short description of the Boltzmann equation

The Boltzmann equation for the one-particle phase space distribution f(x, ξ) for a gas of

nonrelativistic monoatomic molecules of unit mass interacting through a central force is

(
∂

∂t
+ ξ · ∂

∂x
)f(x, ξ) = J(f, f)(x, ξ) , (6.19)

where

J(f, g) =

∫ (
f(x, ξ

′
)g(x, ξ∗

′
)− f(x, ξ)g(x, ξ∗)

)
B(θ, V )dξ∗dεdθ , (6.20)

is the collision integral. (ξ, ξ∗) are the velocities of the molecules before a binary collision

and (ξ
′
, ξ∗

′
) are their corresponding velocities after the collision. The angular coordinates

(θ, ε) are the coordinates related to the collision, and V = ξ − ξ∗ is the relative velocity

with magnitude V . We assume that the collision takes place due to a central force acting

between the molecules.
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V’

V

r

r

εrdrd 

n

θ

Fig. 1 : The collision coordinates

Figure 1 illustrates the coordinates (θ, ε) used for describing the collision. The black

dot in the center of the figure refers to the first molecule–the target molecule. The dotted

line indicates the trajectory of the second molecule which we call the bullet molecule,

with respect to the target molecule. The target molecule is placed at the center where its

trajectory comes closest to that of the bullet molecule. We have drawn a sphere around the

target molecule and n is the unit vector in the direction of the point of closest approach of

the bullet molecule. The beginning of the trajectory asymptotes in the direction opposite

V and the end of the trajectory asymptotes in the direction opposite V
′
, which is the

relative velocity ξ
′ − ξ∗′ after the collision. The co-ordinates (r, ε) are polar co-ordinates
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in the plane orthogonal to the plane containing the trajectory of the bullet molecule and

the target molecule as shown in the figure. The radial coordinate r is just the impact

parameter as shown in the figure. The angular coordinate θ is the angle between n and

the initial relative velocity V. Thus the unit vector n is determined by the angular

coordinates θ and ε.

Solving Newton’s second law for the given central force, we can determine r as a

function of θ and V , i.e. if the force is known we know r(θ, V ). The collision kernel

B(θ, V ) is defined as

B(θ, V ) = V r
∂r(θ, V )

∂θ
. (6.21)

Finally the velocities of the target and bullet molecule are related to the initial

velocities of the target and bullet molecule kinematically through

ξ
′

i = ξi − ni(n ·V) ,

ξ∗
′

i = ξ∗i + ni(n ·V) , (6.22)

so that V
′ · n = V · n.

This completes our description of the Boltzmann equation. When the molecules

interact via an attractive or repulsive central force which is proportional to the fifth inverse

power of the distance ρ between the molecules, we say the system is a gas of Maxwellian

molecules. The simplification for Maxwellian molecules is that r is independent of θ which

can be seen from the fact that the trajectories of both the target and the bullet molecules

lie on the circumference of a circle in the center of mass frame. As a consequence, B is

also independent of θ.

To proceed further we need to develop some notation. Let φ(ξ) be a function of ξ.

We will call it a collision invariant if

Φ(ξ, ξ∗, ξ
′
, ξ∗

′
) ≡ φ(ξ) + φ(ξ∗)− φ(ξ

′
)− φ(ξ∗

′
) = 0 . (6.23)

Clearly there are five collision invariants - (1, ξi, ξ
2) - which we will collectively denote as

ψα.
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Let us also define, for convenience of notation,

J (f, g) =
J(f, g) + J(g, f)

2
. (6.24)

Notation: We will use the following notation in the rest of this section. Let A(m)

and B(n) be two tensors of rank m and n respectively, completely symmetric in all their

indices. Then,

• A(m)B(n) will denote the symmetric product of the tensors so that it is completely

symmetric in all its m+ n indices.

• A(m)B
(n)
i will denote a tensor of rank (m+n) where all indices except the i-th index

in B(n) have been completely symmetrized.

• We will use ν as in Aν to denote all the m indices in A

• If Aij and Bkl are symmetric second rank tensors, then (AijBkl + + + ++) will

denote the combination of all the six terms required to make the sum symmetric in

its indices i, j, k and l.

The above notations will hold even when A or B is a tensorial operator containing spatial

derivatives.

The hydrodynamic equations can be derived from the Boltzmann equation as follows.

Using symmetry one can easily prove that∫
φ(ξ)J (f, g)dξ =

1

4

∫
Φ(ξ, ξ∗, ξ

′
, ξ∗

′
)J (f, g)dξ . (6.25)

Using (6.23) it is clear that if φ(ξ) is a collision invariant, that is φ(ξ) = ψα(ξ), then∫
ψα(ξ)J (f, g)dξ = 0 . (6.26)

A special case of the preceding result gives∫
ψα(ξ)J(f, f)dξ = 0 . (6.27)
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The Boltzmann equation [on multiplying by ψα(ξ) and integrating] implies

∂ρα
∂t

+
∂

∂xi

(∫
ξiψαfdξ

)
= 0 , (6.28)

where ρα are the locally conserved quantities defined by

ρα =

∫
ψαfdξ . (6.29)

These equations are equivalent to the hydrodynamic equations (3.2) once we make

the identifications [ρ0 = ρ, ρi = ρui (i = 1, 2, 3), ρ4 = (3p/2)].

The next few velocity moments, needed for later reference, are

pij =

∫
(cicj −RTδij)fdξ ,

Sijk =

∫
cicjckfdξ , (6.30)

Qijkl =

∫
cicjckclfdξ ,

where ci = ξi − ui.

6.3.2 C.2 The moment equations

Multiplying both sides of the Boltzmann equation by higher polynomials of ξ and inte-

grating over ξ, we find the equations satisfied by the moments f (n)’s for n ≥ 2 to be

∂f (n)

∂t
+

∂

∂xi

(
uif

(n) + f
(n+1)
i

)
+
∂u

∂xi
f

(n)
i −

1

ρ
f (n−1)∂f

(2)
i

∂xi
= J (n) , (6.31)

where

J (n) =

∫
cnB(f

′
f
′

1 − ff1)dθdεdξdξ1 , (6.32)

is the n-th velocity moment of the collision kernel.

It can be shown that

J (n)
µ =

∞∑
p,q=0;p≥q

B(n,p,q)
µνρ (ρ, T )f (p)

ν f (q)
ρ , (6.33)
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with a particular simplification for B
(2,2,0)
ijkl , which can be written as

B
(2,2,0)
ijkl (ρ, T ) = B(2)(ρ, T )δikδjl . (6.34)

For Maxwellian molecules, there is yet another remarkable simplification thatB(n,p,q)’s

are nonzero only if p+q = n. This happens essentially because the collision kernel B(θ, V )

in (6.20) is independent of θ in this case (for more details please see [55]).

We will also denote f
(4)
ijkl as Qijkl and its explicit form will be useful.

6.3.3 C.3 Formal Proof of Existence of Conservative Solutions

We now outline the proof that demonstrates existence of conservative solutions for the

Boltzmann equation. The one-particle phase space distribution f will be functionally

determined by the hydrodynamic variables and the shear-stress tensor (and their spatial

derivatives). It must be emphasized that we proceed exactly along the same lines as used

by Enskog in proving the existence of the normal (or purely hydrodynamic solutions) of

the Boltzmann equation.

The proof for the existence of normal solutions of the Boltzmann equation [40, 41, 42,

43] (first given in Enskog’s thesis) rests on the following theorem due to Hilbert [54, 43].

Theorem: Consider the following linear integral equation for g:

J(f0, g) + J(g, f0) = K , (6.35)

where J(f0, g) is defined through (6.20) and f0 is a locally Maxwellian distribution. This

equation has a solution if and only if the source term K is orthogonal to the collision

invariants ψα so that: ∫
ψαKdξ = 0 , (6.36)

provided the potential U(ρ) satisfies the condition that |U(ρ)| ≥ O(ρ−n+1) as ρ → 0 for

n ≥ 5. [That is, when the distance (ρ) between molecules vanishes, the absolute value

of the potential should grow faster than (1/ρ)4.] Further the solution is unique up to an

additive linear combination of the ψα’s.
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This theorem will be important in proving the existence of conservative solutions

too, wherein we have to actually solve for the functional dependence on the hydrodynamic

variables and the shear-stress tensor. For any conservative solution, we will just need

to specify the initial data for the hydrodynamic variables and the shear-stress tensor.

The only requirement will be that these initial data are analytic, because the functional

dependence of f on the hydrodynamic variables and the shear-stress tensor will involve

spatial derivatives of all orders. Clearly all normal solutions are conservative solutions,

but not vice versa.

The method of proof can be briefly outlined thus. We will extract a purely nonhydro-

dynamic part from the shear-stress tensor pij, and denote it as p
(nh)
ij . This p

(nh)
ij will satisfy

a simpler equation of motion which schematically reads (∂p(nh)/∂t) =
∑∞

n=1 cn(p(nh))n,

involving just a single time derivative [although the initial data for p
(nh)
ij can have any

(analytic) spatial dependence]. The full shear-stress tensor pij can be solved as a func-

tional of the hydrodynamic variables and the p
(nh)
ij . One can functionally invert this to

reinstate pij as the independent variable in place of p
(nh)
ij and also determine the equation

for pij. In the process we will see that there is an interesting class of nontrivial homo-

geneous conservative solutions, where all the hydrodynamic variables are constants over

space and time, while the shear-stress tensor is exactly p
(nh)
ij , which is just a function of

time. This class of solutions is thus purely nonhydrodynamic, representing equilibration

in velocity space.

The proof begins by writing the Boltzmann equation abstractly as

D = J(f, f) , (6.37)

where

D =
∂f

∂t
+ ξ · ∂f

∂x
, (6.38)

and J(f, f) is as defined through (6.20).

For a conservative solution, f is a functional of the nonhydrodynamic shear-stress

tensor, p
(nh)
ij (x, t) and the five hydrodynamic variables, namely ui(x, t), ρ(x, t) and T (x, t).
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We expand f in two formal expansion parameters ε and δ such that

f =
∞∑
n=0

∞∑
m=0

εnδmf(m,n) . (6.39)

The physical meanings of the expansion parameters will soon be made precise. For

the moment, if the reader so pleases, she can think of ε as a hydrodynamic and δ as a

nonhydrodynamic expansion parameter. Following Enskog, we will also expand the time

derivative in powers of ε and δ as :

∂

∂t
=
∞∑
n=1

∞∑
m=0

εnδm
∂(n,m)

∂t
. (6.40)

The above expansion of the time derivative might seem a little strange, but it will be nec-

essary for us precisely for the same reason it was necessary for Enskog - the solutions of

the equations of motion of hydrodynamic variables and p
(nh)
ij cannot be expanded analyti-

cally in ε and δ, though their equations of motion could be through the subdivision of the

partial time derivative. The proof will actually rely on the subdivision of the equations

of motion just as in Enskog’s purely hydrodynamic normal solutions and will not require

the solutions to have analytic expansions 3.

This automatically results in a similar expansion for D, such that

• For n ≥ 1 and for all m

D(n,m) ≡
n∑
k=1

m∑
l=0

∂(k,l)f(n−k,m−l)

∂t
+ ξ ·

∂f(n−1,m)

∂x
. (n ≥ 1;m = 0, 1, 2, ...) (6.41)

• For n = m = 0,

D(0,0) = 0 . (6.42)

3There is an analog of this in the fluid/gravity correspondence too. The existence of solutions in
gravity dual to hydrodynamic configurations in the boundary which could be analytically expanded
depends on the derivative expansion of the hydrodynamic equations and is independent of the fact that
the solutions of the hydrodynamic equations themselves have no analytic expansion in the derivative
expansion parameter.
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With the assumption that f is a functional of the hydrodynamic variables and p
(nh)
ij ,

the time derivative acts on f schematically as

∂f

∂t
=

∞∑
k=0

∂f

∂(∇kρ)

∂(∇kρ)

∂t
+
∞∑
k=0

∂f

∂(∇kui)

∂(∇kui)

∂t

+
∞∑
k=0

∂f

∂(∇kT )

∂(∇kT )

∂t
+
∞∑
k=0

∂f

∂(∇kp
(nh)
ij )

∂(∇kp
(nh)
ij )

∂t
. (6.43)

Above,∇k schematically denotes k-th order spatial derivatives. Any time derivative acting

on a hydrodynamic variable can be replaced by a functional of the hydrodynamic variables

and the nonhydrodynamic shear-stress tensor by using the hydrodynamic equations of

motion. These functional forms have a systematic derivative expansion in terms of the

number of spatial derivatives present and contain only spatial derivatives and no time

derivatives. So the expansion of the time derivative in ε is actually a derivative expansion,

where the expansion parameter ε is the ratio of the typical length scale of spatial variation

of f and the mean-free path. This naturally “explains” (6.41).

On the other hand, it will be seen that the time derivative of the nonhydrodynamic

shear-stress tensor can be replaced, using its equation of motion, by an infinite series

of polynomials of the nonhydrodynamic shear-stress tensor. Thus the expansion of the

time derivative in δ as in (6.42); but we expand the solution of the equation of motion

as an amplitude expansion with the expansion parameter δ identified as the ratio of the

typical amplitude of the nonhydrodynamic shear-stress tensor with the pressure in final

equilibrium. For the moment, these are just claims, to be borne out by an appropriate

definition of the expansion of f and the time derivative.

C.3.1 Subdivisions in terms of ε and δ

We outline here the expansion of the various quantities in the Boltzmann equation and

the full Boltzmann equation itself in terms of the two expansion parameters ε and δ and

thereby arrive at various constraints that must be satisfied by these expansions. Our

proof eventually will involve recursion while expanding the full Boltzmann equation in

these expansion parameters.
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1. In close analogy with Enskog’s original subdivision of f , we impose some further

properties on the subdivision of f .

• First we require, as in the case of normal solutions of Enskog and Chapman,

that the hydrodynamic variables are unexpanded in ε and δ and therefore are

exactly the same as in the zeroth-order solution f(0,0), which will turn out

to be locally Maxwellian. This is required because solutions of the hydrody-

namic equations cannot be expanded analytically in these expansion param-

eters though the hydrodynamic equations themselves could be, as mentioned

above. Therefore we should have∫
ψαf(n,m)dξ = 0; (n+m ≥ 1;α = 0, 1, 2, 3, 4) (6.44)

where ψα are the collision invariants (1, ξi, ξ
2). It follows that

ρα =

∫
ψαf(0,0)dξ . (6.45)

ρα are the locally conserved quantities defined through (6.29). We may recall

that these are just some combinations of the hydrodynamic variables.

• We also require that the purely nonhydrodynamic part of the shear-stress ten-

sor, p
(nh)
ij has no expansion in ε and δ, analogous to the hydrodynamic variables.

Being purely nonhydrodynamic, it determines f(0,m) for all m, i.e. the part of

f which is zeroth order in ε, but contains all orders of δ in the conservative

solutions. Since it vanishes at equilibrium, it is of first order in δ and is given

exactly by f(0,1). More explicitly, for m ≥ 2 and n = 0, we should have∫
(cicj −RTδij)f(0,m)dξ = 0 (m ≥ 2) , (6.46)

so that

p
(nh)
ij =

∫
(cicj −RTδij)f(0,1)dξ . (6.47)

2. The subdivision of the time derivative is defined next. Following Enskog, we impose
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on the time-derivative the condition that

∂(0,m)ρα

∂t
= 0 ,∫

D(n,m)ψαdξ = 0; (n ≥ 1,m = 0, 1, 2, ...) . (6.48)

Using (6.44), the second equation above can be simplified to

∂(n,m)ρα

∂t
+

∂

∂xi

(∫
ξiψαf(n−1,m)dξ

)
= 0 (n ≥ 1,m = 0, 1, 2, ..) . (6.49)

Since the ρα are a redefinition of the hydrodynamic variables, this above condition

amounts to expanding the hydrodynamic equations in a particular way. From this

expansion we know how each subdivision of the time derivative acts on the (un-

expanded) hydrodynamic variables. It is clear from (6.43) that if we now specify

how the subdivisions of the time derivative act on p
(nh)
ij , we have defined the time

derivative. Indeed, we have to solve for the action of the time-derivative because

specifying this amounts to proving the existence of conservative solutions 4.

3. The next thing is to note that the full shear-stress tensor pij (just like any other

higher moment) has an expansion in both ε and δ. If we denote δpij = pij − p(nh)
ij ,

then for n ≥ 1

δp
(n,m)
ij =

∫
(cicj −RTδij)

(
f(n,m) − f(0,1)

)
dξ , (6.50)

need not vanish. The expansion of δp
(n,m)
ij as a functional of the hydrodynamic

variables and p
(nh)
ij in ε is the derivative expansion, with the power of ε essentially

counting the number of spatial derivatives (which act both on hydrodynamic vari-

ables and the nonhydrodynamic shear-stress tensor). The expansion in δ is the

“amplitude” expansion in terms of p
(nh)
ij , which we may recall is first order in δ.

4. On the basis of the above subdivisions one can now expand both sides of (6.37) and

equate the terms of the same order on both sides. This enables us to write down

the following set of equations that J(f, f) must satisfy for different values of (n,m).

4Even for the hydrodynamic variables, the action of the subdivisions of the time derivative on them
could have been treated as unknowns. But we have chosen the logically equivalent path of declaring them
beforehand from our experience with the case of normal solutions.
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• For n = m = 0, substituting (6.41), (6.42) and (6.39) in (6.37) we get

J(f(0,0), f(0,0)) = 0 , (6.51)

so that f(0,0) has to be a locally Maxwellian distribution.

• Using the above fact, for n = 0 and m ≥ 1, we get

J(f(0,0), f(0,m)) + J(f(0,m), f(0,0))−
∂(0,0)

∂t
f(0,m)

=
m∑
l=1

∂(0,l)

∂t
f(0,m−l) − S(0,m); (m ≥ 1) . (6.52)

• Finally, for n ≥ 1 and for all m

J(f(0,0), f(n,m)) + J(f(n,m), f(0,0)) =
n∑
k=1

m∑
l=0

∂(k,l)f(n−k,m−l)

∂t
+ ξ ·

∂f(n−1,m)

∂x
− S(n,m); (n ≥ 1). (6.53)

• The S(n,m) are given by, for (n+m ≥ 2)

S(n,m) =
n−1∑
k=1

m−1∑
l=1

J(f(k,l), f(n−k,m−k))

+
n−1∑
k=1

J(f(k,0), f(n−k,m)) +
m−1∑
l=1

J(f(0,l), f(n,m−k)) (6.54)

+
n−1∑
k=1

J(f(k,m), f(n−k,0)) +
m−1∑
l=1

J(f(n,l), f(0,m−k))

+J(f(n,0), f(0,m)) + J(f(0,m), f(n,0)); (n+m) ≥ 2

and

S(0,1) = S(1,0) = 0 . (6.55)

C.3.2 A recursive proof

With all of the above, we will now prove the existence and uniqueness of conservative

solutions recursively. Recall that the key idea in this proof is to understand how the time
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derivative operator ∂
∂t

acts on the hydrodynamic variables and the nonhydrodynamic

part of the shear-stress tensor, p
(nh)
ij . We already know the action of this operator on the

hydrodynamic variables from Eqs.(6.48) and (6.49). Now we will solve for the action of

this operator on p
(nh)
ij . The action of the time derivative, when expanded in ε and δ, can

be understood by analyzing the subdivisions of the Boltzmann equation given by Eqs.

(6.51), (6.52) and (6.53).

1. It is clear from (6.51) that at the zeroth-order in m and n, f(0,0) is a locally

Maxwellian distribution which is uniquely fixed by the choice of the five hydro-

dynamic variables (6.45) and hence can uniquely be specified as

f(0,0) =
ρ

(2πRT )
3
2

exp

(
− c2

2RT

)
. (6.56)

2. Next let us consider (6.52). The usual trick here is to rewrite f(0,m) as f(0,0)h(0,m).

The advantage is that since f(0,0) contains hydrodynamic variables only,

∂(0,m)

∂t
f(0,0) = 0 . (6.57)

Therefore (6.52) can be rewritten as

J(f(0,0), f(0,0)h(0,m)) + J(f(0,0)h(0,m), f(0,0))− f(0,0)
∂(0,0)

∂t
h(0,m) (6.58)

= f(0,0)

m∑
l=1

∂(0,l)

∂t
h(0,m−l) −

m−1∑
l=1

J(f(0,0)h(0,l), f(0,0)h(0,m−l)); (m ≥ 2).

Now we analyze (6.58) for m = 1 and m = 2.

• m=1:

For m = 1, (6.58) reduces to

J(f(0,0), f(0,0)h(0,1)) + J(f(0,0)h(0,1), f(0,0))

= f(0,0)
∂(0,0)

∂t
h(0,1) , (6.59)
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while it follows from (6.47) that

h(0,1) =
1

2!

p
(nh)
ij (x, t)

pRT
(cicj −RTδij) . (6.60)

These two equations imply that

∂(0,0)

∂t
p

(nh)
ij = B(2)(ρ, T )pij , (6.61)

where B(2) has been defined in (6.34) 5.

• m=2:

At the second order, (6.58) implies

J(f(0,0), f(0,0)h(0,2)) + J(f(0,0)h(0,2), f(0,0))

= f(0,0)
∂(0,0)

∂t
h(0,2) + f(0,0)

∂(0,1)

∂t
h(0,1) − J(f(0,0)h(0,1), f(0,0)h(0,1)) . (6.62)

We then need to solve for two things, h(0,2) and the operator
(
∂(0,1)/∂t

)
. To

do this we first write h(0,2) as

h(0,2) =
1

3!

S
(0,2)
ijk

p(RT )2

(
cicjck −RT (ciδjk + +)

)
(6.63)

+
1

4!(RT )2

[
Q

(0,2)
ijkl

p(RT )
−

(
p

(nh)
ij

p
δkl + + + ++

)
− (δijδkl + +)

]
×
[
cicjckcl −RT (cicjδkl + + + ++) + (RT )2(δijδkl + +)

]
.

The idea behind guessing this form is to expand h(0,2) in two higher order

Hermite polynomials of c’s and re expressing the Hermite coefficients through

the ordinary moments. This method of expansion is due to Grad [55]. For

the moment we can just take it as the most general possible form of h(0,2),

5Note that (6.61) is consistent with the amplitude expansion of the time-derivative in δ. The time-
derivative expansion in δ should consistently start at the zeroth order as both sides of the equation contain

one p
(nh)
ij .
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since if higher Hermite polynomials are included here, the coefficients would

have vanished. It also turns out that S
(0,2)
ijk vanishes. Similarly all the other

higher odd moments vanish, so far as their purely nonhydrodynamic parts (or

expansion in m for n = 0) is concerned. Obviously this does not mean that

these higher odd moments have no dependence on p
(nh)
ij . For n > 0 there is

indeed a nonvanishing expansion in m for these moments. We can now compare

the coefficients of Hermite polynomials on both sides of our Eq. (6.62). For

Maxwellian molecules (thus determining the form of J) we have

∂(0,1)

∂t
p

(nh)
ij = B

(2,2,2)
ijklmn(ρ, T )p

(nh)
kl p(nh)

mn +B
(2,4,0)
ijklmn(ρ, T )Q

(0,2)
klmn , (6.64)

∂(0,0)

∂t
Q

(0,2)
ijkl = B

(4,4,0)
ijklmnpq(ρ, T )Q(0,2)

mnpq +B
(4,2,2)
ijklmnpq(ρ, T )p(nh)

mn p
(nh)
pq .

Since we know the action of (∂(0,0)/∂t) on p
(nh)
ij and the hydrodynamic variables,

we can solve for Q
(0,2)
ijkl as a functional of p

(nh)
ij and the hydrodynamic variables;

the solution turns out to be

Q
(0,2)
klmn = Xklmnpqrsp

(nh)
pq p(nh)

rs , (6.65)

where Xklmnpqrs satisfies the equation 6

2B(2)Xklmnpqrs = B
(4,4,0)
klmnijtuXijtupqrs +B

(4,2,2)
klmnpqrs . (6.66)

This in turn provides the solution for the operator
(
∂(0,1)/∂t

)
:

∂(0,1)

∂t
p

(nh)
ij = B

(2,2,2)
ijklmnp

(nh)
kl p(nh)

mn +B
(2,4,0)
ijklmnXklmnpqrsp

(nh)
pq p(nh)

rs . (6.67)

6The solution for X(klmn)(pqrs) regarded as an 81 × 81 matrix is (2B(2)δ(klmn)(ijtu) −
B

(4,4,0)
(klmn)(ijtu))

−1B
(4,2,2)
(ijtu)(pqrs) where δ(klmn)(ijtu) is defined as a 81 × 81 matrix whose entries are 1 if k =

i, l = j, m = t, n = u and zero otherwise. It is quite evident that when (2B(2)δ(klmn)(ijtu)−B
(4,4,0)
(klmn)(ijtu))

fails to be invertible, there is a singularity in our solution and in fact this may happen when ρ and T takes
appropriate values. Such singularities also appeared in Born and Green’s normal solutions of BBGKY
heirarchy and was interpreted as describing local nucleation of the solid phase. In our case too, the
singularities of the conservative solutions may signal local condensation of the liquid phase.
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The equation above shows the action of the operator on p
(nh)
ij ; we already know

how it acts on the hydrodynamic variables. This implies that we have solved for

this operator at this order. Note that the solution for the operator corroborates

the intuitive understanding that this operator is the next order in amplitude

expansion. Another important point is that the solution of the operator is

not independent of the solution for Q
(0,2)
ijkl and is just given by the logic of our

expansion once Q
(0,2)
ijkl has been solved as a functional of p

(nh)
ij . This feature

is the same for all the higher terms in the expansion of the time derivative

operator as well.

For non-Maxwellian molecules things are a bit complicated because the equa-

tion for Qijkl in (6.64) also contains a term linear in p
(nh)
ij , so that now

∂(0,1)

∂t
p

(nh)
ij = δB(2)p

(nh)
ij +B

(2,2,2)
ijklmnp

(nh)
kl p(nh)

mn

+B
(2,4,0)
ijklmnXklmnpqrsp

(nh)
pq p(nh)

rs . (6.68)

However this feature also appears in the usual derivative expansion (the ex-

pansion in ε) of the time-derivative. Despite appearance, δB(2)p
(nh)
ij is a small

quantity as (δB(2)/B(2)) is a pure number which is smaller than unity (for a

proof of this and also for the statement of convergence of such corrections in

the context of normal solutions, please see [41, 42]). This result can be trans-

lated here, as the normal solutions are just special cases of our conservative

solutions and at a sufficiently late time our solutions will be just appropriate

normal solutions 7.

This is indeed remarkable considering that we have no parametric suppression

here. Formally however, aside from the convergence problem, there is no ob-

struction because δ is just a formal parameter and is only intuitively connected

7We note that we can simply borrow Burnett’s results here because all the hydrodynamic transport
coefficients are not independent of the nonhydrodynamic parameters like the relaxation time 1/B(2), for
instance viscosity η is at leading order (p/B(2)). Since p has no expansion, convergence of the viscosity
implies convergence of B(2) as any generic “conservative” solution will be approximated by an appropriate
normal solution at sufficiently late times.
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to the amplitude expansion.

• Higher m:

We can proceed in the same way to the next order in m when n is zero. At every

stage we have to deal with f(0,m) which we may write as f(0,0)h(0,m) and further

expand h(0,m) in a series containing up to m-th order Hermite polynomial in

c’s. We have to solve for the coefficients of these Hermite polynomials, which

depend on x only, and this leads to the definition of the m-th subdivision of

the time derivative operator in the δ expansion when the ε expansion is at

the zeroth order. The equation for evolution of p
(nh)
ij (x, t) thus finally involves

only a single time derivative which we have expanded in δ. This is highly

nonlinear, involving an infinite series of p
(nh)
ij . The presence of just a single

time derivative in the equation of motion for p
(nh)
ij (x, t) makes it essentially

an ordinary differential equation in one variable and so for any initial data

existence and uniqueness of solution is guaranteed.

We note that we can consistently truncate our solution at n = 0 so that

there is no expansion of f in ε, provided all the hydrodynamic variables are

constants over both space and time and p
(nh)
ij is constant over space but a

function of time. This gives us the simplest class of conservative solutions

which is homogeneous in space; the Boltzmann equation becomes equivalent

to an ordinary differential equation involving a single time derivative for pij.

Physically this solution corresponds to the most general conservative solution

which is homogeneous in space, but generically far away from equilibrium in the

velocity space (so that the velocity distribution is far from being Maxwellian).

3. The next task is to prove the existence of solutions for the recursive series of equa-

tions in (6.53). To see if solutions will exist we need to employ Hilbert’s theo-

rem. S(n,m) contains either pairs of the form J(f(p,q), f(r,s)) + J(f(p,q), f(r,s)) or just

J(f(l,l), f(l,l)). So when the collision invariants are integrated with S(n,m), as in∫
ψαS(n,m)dξ, the integrals vanish as a consequence of (6.26). Therefore, the exis-
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tence of the solution to f(n,m) follows from Hilbert’s theorem as a consequence of

(6.48). The solution is unique because the condition (6.44) fixes the arbitrariness of

the dependence of f(n,m) on the collision invariants ψα. The details for n ≥ 1, are

thus, exactly the same as in the case of normal solutions. The action of (∂(n,m)/∂t)

on p
(nh)
ij is also determined as soon as the functional dependence of δpij and the

relevant higher moments on p
(nh)
ij and the hydrodynamic variables are determined.

The explicit calculations become extremely complex even when, say n = 2,m = 0 or

n = 1,m = 1. We give some explicit results for the first few terms in the expansion

for δpij as

δp
(1,0)
ij =

p

B(2)
(
∂um
∂xn

+
∂un
∂xm

− 2

3
δmn

∂ur
∂xr

) , (6.69)

δp
(1,1)
ij =

1

B(2)

(
∂

∂xr
(urp

(nh)
ij ) +

∂uj
∂xr

p
(nh)
ir +

∂ui
∂xr

p
(nh)
jr −

2

3
δijp

(nh)
rs

∂ur
∂xs

)
−

2pB
(2,2,2)
ijklmn

(B(2))2
p

(nh)
kl (

∂um
∂xn

+
∂un
∂xm

− 2

3
δmn

∂ur
∂xr

) .

It is clear that the terms in the expansion involve spatial derivatives of both the

hydrodynamic variables and p
(nh)
ij . From the expression for δp

(1,0)
ij one can determine

the shear viscosity η which is of course the same as in the purely hydrodynamic

normal solutions, so that

η ≈ p

B(2)
(ρ, T ) . (6.70)

We also give some terms in the expansion for the heat flow vector

S
(1,0)
i =

15pR

2B(2)

∂T

∂xi
, (6.71)

S
(1,1)
i =

3

2B(2)

(
2RT

∂p
(nh)
ir

∂xr
+ 7Rp

(nh)
ir

∂T

∂xr
− 2p

(nh)
ir

ρ

∂p

∂xr

)
,

It is clear that the heat conductivity χ is also the same as in purely hydrodynamic

normal solutions so that

χ ≈ 15R

2

p

B(2)
(ρ, T ) ≈ 15R

2
η . (6.72)
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Corrections to the above relation appear in the higher order for non-Maxwellian

molecules but again these are the same as in the case of normal solutions.

This completes our proof for the existence of conservative solutions for the non-

relativistic Boltzmann equation. As mentioned before, we can now reinstate pij as the

independent variable. Our independent variables satisfy the following equations of motion

∂ρ

∂t
+

∂

∂xr
(ρur) = 0 ,

∂ui
∂t

+ ur
∂ui
∂xr

+
1

ρ

∂(pδir + pir)

∂xr
= 0 ,

∂p

∂t
+

∂

∂xr
(urp) +

2

3
(pδir + pir)

∂ui
∂xr

+
1

3

∂Sr
∂xr

= 0 , (6.73)

∂pij
∂t

+
∂

∂xr
(urpij) +

∂Sijr
∂xr

− 1

3
δij
∂Sr
∂xr

+
∂uj
∂xr

pir +
∂ui
∂xr

pjr −
2

3
δijprs

∂ur
∂xs

+p(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂ur
∂xr

) =
∞∑

p,q=0,p≥q;(p,q)6=(2,0))

B
(2,p,q)
ijνρ (ρ, T )f (p)

ν f (q)
ρ

+B(2)(ρ, T )pij .

The first three equations are just the hydrodynamic equations, while the equation

for pij can be obtained from (6.31).

The crucial point of this proof is that we have now solved for all higher moments

f
(n)
ν ’s for n ≥ 3 (which includes, of course, Sijk and thus Si) as functionals of our ten

variables (ρ, ui, p, pij) with T = p/(Rρ). Any solution of these ten equations of motion

can be uniquely lifted to a full solution of the Boltzmann equation as all the higher

moments are dependent on these ten variables through a unique functional form. Also,

some solutions for pij in the last of our system of equations are purely hydrodynamic and

these constitute the normal solutions 8.

8This can be readily seen as follows. If we assume that pij is functionally dependent on the hydro-
dynamic variables, from the equation for its evolution, it is clear that at the first order in the derivative
expansion pij = η( ∂ui

∂xj
+

∂uj

∂xi
− 2

3δij
∂ur

∂xr
), where η = p

B(2) . Now we can substitute this in place of pij in
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6.4 Appendix D: A Simple Mathematical Interpre-

tation of the GCA

Mathematically, the infinite dimensional GCA can be motivated as follows: Consider two

particles with velocities v1 and v2 respectively at the same point in space x and at the

same time t. Then the infinite dimensional GCA is the largest possible group of space-

time transformations under which the relative velocity (v1 − v2) transforms covariantly

(as a vector under rotation) while its norm remains invariant.. We will now prove this

statement.

Let us consider an arbitrary space-time transformation from (x, t) to (x
′
, t
′
). Let us

denote

Mij =
∂x
′
i

∂xj
, Ni =

∂x
′
i

∂t
, Pi =

∂t
′

∂xj
, Q =

∂t
′

∂t
. (6.74)

Then the following holds,

dx
′

i = Mijdxj +Nidt, (6.75)

dt
′
= Pidxi +Qdt.

So, we have

v
′

i =
Mijvj +Ni

Pkvk +Q
. (6.76)

The relative velocity of two particles at the same point in space at a given time transforms

as below,

v
′

(1)i−v
′

(2)i =
(Mijv(1)jPkv(2)k −Mijv(2)jPkv(1)k) +Q(Mijv(1)j −Mijv(2)j) +Ni(Pkv(2)k − Pkv(1)k)

(Plv(1)l +Q)(Pmv(2)m +Q)
.

(6.77)

For this transformation to be covariant, we require Pk = 0, in which case

v
′

(1)i − v
′

(2)i =
Mijv(1)j −Mijv(2)j

Q
. (6.78)

If we also require the norm to remain the same, we should have,

Mij

Q
= Rij, (6.79)

the equation of evolution for pij to get the second order correction and so on. In the substitution, the
time derivative acting on the hydrodynamic variables can be replaced by spatial derivatives by using the
hydrodynamic equations of motion.
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where, Rij is a rotation matrix. Now, Pi = (∂t
′
/∂xi) = 0 implies that

t
′
= f(t), Q =

df(t)

dt
. (6.80)

Then we have

Mij =
∂x
′
i

∂xj
= QRij(x, t) =

df(t)

dt
Rij(x, t). (6.81)

The integrability condition requires that

∂Mij

∂xk
=
∂Mik

∂xj
, (6.82)

which in turn implies that
∂Rij(x, t)

∂xk
=
∂Rik(x, t)

∂xj
. (6.83)

The above condition at a fixed value of i, the implies that the curl of a vector vanishing

so that we must have

Rij(x, t) =
∂Vi(x, t)

∂xj
. (6.84)

A rotation matrix satisfies the property that R−1
ij = Rji, so we should have

∂Vi
∂xj

∂Vk
∂xj

= δik. (6.85)

The solution to the above system of equations is

Vi = Rij(t)xj+ a function of time,

so, we have Rij = Rij(t). To sum up, (∂x
′
i/∂xj) = QMij = (df(t)/dt)Rij(t), therefore

x
′

i =
df(t)

dt
Rij(t)xj + bi(t). (6.86)

The above together with (6.80) belongs to our group of spacetime transformations denoted

by GCA.

It is also easy to check that any transformation belonging to the GCA makes the

relative velocity of two particles at a given point in space at a given time transform

covariantly while preserving its norm. So we have proved, that the largest group of

spacetime transformations under which the relative velocity of two particles at the same

point in space at a given time transforms covariantly while its norm is preserved, is

the GCA. This mathematical result can have physical applications in constructing local

interactions of particles in a GCA-invariant microscopic theory.
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6.5 Appendix E: G = MLR

Here, we will prove that any arbitrary element (G) of GCA, can be written uniquely as a

succession of a time dependent rotation (R), a spatially correlated time reparametrization

(L) and a time dependent boost (M).

Let us denote the space-time coordinates (x, t) together as X. Let G be an arbitrary

element of the GCA and let two coordinates X and X
′

be related so that X
′
= G.X, i.e.

X
′

is the result of action of G on X.

However, we now note that there is a unique time-dependent boost M such that

M.X and X
′

will will share the same origin of spatial coordinates at all times. Let us

denote M−1.X
′

as X
′′
. So, by construction X

′′
and X share the same origin of spatial

coordinates at all times.

Now, if two space-time coordinates share the same origin of spatial coordinates at all

times, it is also easy to see, that there is a unique spatially correlated time reparametriza-

tion L which relate their times. Therefore, there is a unique L such that X
′′′

= L−1.X
′′

and X share the same time.

By construction, we see that X
′′′

and X share the same time and the same origin of

spatial coordinates. Therefore, they must be related by a unique time-dependent rotation

R, so that X = R−1.X
′′′

.

Summing all up, X = R−1.X
′′′

= R−1L−1X
′′

= R−1L−1M−1X
′
. But we assumed

X = GX
′
, so G = MLR, with M , L and R being unique because they were unique in

each stage of our argument above. So, we have proved that any arbitrary element (G)

of GCA, can be written as a succession of a time dependent rotation (R), a spatially

correlated time reparametrization (L) and a time dependent boost (M).
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Mathématiques d’aujourd’hui (Astérisque, 1985)95.
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