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Synopsis

Title : The Impact of Antisite Disorder on Magnetism and Transport in the Double Perovskites

Name : Viveka Nand Singh

Supervisor : Prof. Pinaki Majumdar

Affiliation : Harish-Chandra Research Institute, Allahabad

Perovskites are materials of the form ABO3, while ‘double perovskites’ are

of the form ABO3.AB′O3 ≡ A2BB′O6. The B and B′ are the electronically

active ions, typically 3d, 4d or 5d elements, while A is either a rare earth or

alkaline earth and controls the valence. There has been enormous activity in the

perovskite oxides over the last two decades, starting with the discovery of high

Tc superconductivity, and this has inspired the study of these more complex, and

potentially richer, double perovskites.

The large number of possible B, B′ combinations indeed leads to a variety of

electronic and magnetic phases. For example, Sr2FeMoO6 has a high ferromag-

netic Tc (420K), half-metallic behavior, and large low field magnetoresistance

(MR). La2NiMnO6 has a dielectric anomaly arising from the structural modes,

while Sr2CrOsO6 and Sr2CrReO6 show magneto-optical properties.

The B ions are usually magnetic, Fe, Co, Ni, Cr, or Mn, while B′ is typically

non-magnetic, e.g., Mo or W. Both B and B′ sit at the center of oxygen octahedra,

i.e., are coordinated by six oxygen. In the structurally ordered double perovskite

(DP) the B and B′ should alternate along each cubic axis. However, unless the

B and B′ are very dissimilar ions, there is a significant possibility of mislocation.

The B ion can occupy a B′ site and vice versa. In fact the B-B′ ordering tendency

has to compete with the entropy gain from mislocation. This aspect is completely

absent in the simple perovskites where there is only one kind of ‘B site’. The

inevitable ‘antisite disorder’ (ASD) has to be understood in any modeling of the

double perovskites. The promise of rich functionality in the double perovskites

remains unfulfilled due to this B, B′ mislocation.

In the structurally ordered materials the magnetic ordering arises from a com-
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bination of strong electron-spin coupling on the B ion and electron delocalisation

on the B-O-B′ network. The magnetic order, however, is also strongly affected by

the local ordering of B and B′ ions. Two neighboring B ions, arising from mislo-

cation, usually have an antiferromagnetic (AFM) superexchange between them.

This new coupling can drastically affect physical properties, including magnetic

order and transport.

The presence of disorder brings up the following broad issues:

1. Modeling the disorder: how does one generate structural motifs that involve

‘correlated’ rather than random mislocations?

2. Effect on magnetic order: the effect on ferromagnetic order is relatively

easy to analyse; what is the effect on non ferromagnetic states?

3. Impact on transport: how are the resistivity and magnetoresistance affected

by the antisite disorder and thermal fluctuations?

4. Inferring the domain pattern: what can we infer about the domain structure

and disorder from spectroscopic tools like neutron scattering?

The first issue is now reasonably well understood, based on recent work at HRI.

This thesis involves the study of four problems motivated by issues 2-4 above.

They throw some light on existing experimental data, make predictions where

experiments do not yet exist, and try to provide a general conceptual advance

for disordered metallic magnets. The problems are:

� The impact of correlated antisite disorder on the ferromagnetic state, clar-

ifying the effect on magnetisation, transport, and half-metallicity.

� The effect of antisites on the metallic antiferromagnetic states that are

predicted in the electron doped double perovskites.

� The huge positive magnetoresistance that emerges in the antiferromagnetic

metal, and its survival in presence of disorder.

� The magnon spectrum in the domain ferromagnetic state, and the inference

about domain structure from the magnon lineshapes.
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Chapter 1 of the thesis summarises key experimental observations on the dou-

ble perovskites, emphasising the effects of antisite disorder, and also describes

past efforts at modeling these materials. This includes discussions of the fol-

lowing aspects: (i) the spatially correlated nature of ASD as inferred from elec-

tron microscopy and x-ray absorption fine structure (XAFS), (ii) the effect of

the AFM superexchange, across domain boundaries, on the bulk magnetisation,

(iii) the temperature dependence of resistivity including the effect of ASD and

grain boundaries, (iv) the magnetoresistance observed in single crystals and poly-

crystals, (v) the impact of ASD on the electron spin-polarisation, and (vi) the

status of the search for non ferromagnetic metallic phases.

Chapter 2 discusses the construction of our model Hamiltonian incorporating

the structural, electronic and magnetic degrees of freedom. We describe the

use of a simple “lattice-gas” model for the structural variables which, on poor

annealing, generates a domain structure mimicking the antisite pattern. The

electronic-magnetic model is defined on this structural motif and solved via a

real space Monte Carlo technique involving the “travelling cluster” algorithm

(TCA). We also describe the method for transport calculation and the extraction

of the spin resolved density of states.

Chapter 3 is concerned with the impact of ASD on the ferromagnetic phase.

We discover that, for antisite disorder with a high degree of short-range cor-

relations, the antiphase boundaries act also as magnetic domain walls in the

ferromagnet. Increasing ASD reduces the low-field magnetization, destroys the

half-metallicity, and makes the ground state insulating. While these are dis-

advantages, we also note that the ferromagnetic Tc is only weakly affected by

moderate ASD and the low-field magnetoresistance is dramatically enhanced by

disorder. Our real space approach allows an interpretation of these results in

terms of the domain pattern, the effective exchange, and the short-range mag-

netic correlations. They are also consistent with explicit spatial imagery from

recent experiments. The “intra-grain” effects highlighted here would be directly

relevant to single crystals, and define the starting point for a transport theory of

the polycrystalline double perovskites.

Chapter 4 focuses on the metallic antiferromagnetic phase, and the phase
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coexistence window. For spatially correlated antisite disorder the AFM order is

affected much less strongly than in the FM case. This intriguing result arises

from the finite Q nature of AFM order which leads to a weaker ‘cancellation’

of the order between domains. For a given structural order parameter S (which

measures the fraction of correctly located sites) the A type AFM structure factor

follows DA ∼ (1 + S2)/2, in contrast to DF ∼ S2 in the ferromagnet, while the

G type phase follows DG ∼ (1 + S)2/4. So, despite the possibility of large anti-

site disorder in the electron doped double perovskites, there is certainly hope of

observing AFM phases. The AFM states are metallic, and the electronic wave-

functions in these phases continue to be spatially extended even at large disorder.

Antisite disorder increases the residual resistivity, but, unlike the ferromagnet,

we do not observe any insulating regime.

Chapter 5 discusses the field response in the antiferromagnetic DP metals.

While the zero field resistivity is unremarkable in these systems, they have huge

positive MR. In contrast to elaborate structure factor measurements etc., this is

a direct indicator of the metallic AFM system. Beyond a modest field needed

for suppression of long range AFM order, the system shows more than ten-fold

increase in resistivity near Tc in a structurally ordered system. The ratio con-

tinues to be almost two-fold even in systems with ∼ 25% ASD. An applied field

suppresses long range AFM order leading to a state with short range AFM cor-

relations in the field induced FM background. These AFM fluctuations generate

strong electronic scattering and a resistivity that can be much larger than the

ordered AFM metal. Although our explicit demonstration is in the context of a

two dimensional spin-fermion model of the DPs, the mechanism we uncover is far

more general and complementary to the colossal negative MR process. It should

operate in other local moment metals that show a field driven suppression of non

ferromagnetic order.

Chapter 6 describes our results on magnons in the antisite disordered ferro-

magnets. We use an effective Heisenberg model with parameters that match the

magnetisation from the parent electronic problem. We obtain the magnon excita-

tions using the spin rotation technique coupled with the Holstein-Primakoff trans-

formation in the large spin limit. To leading order this results in a non-interacting
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disordered boson (magnon) problem that can be solved via Bogolyubov transfor-

mation. We provide a detailed description of the spin wave excitations of this

complex magnetic state with large spin (S), obtained within a 1/S expansion,

for progressively higher degree of mislocation, i.e., antisite disorder. The results

on magnon energy and broadening reveal that even at very large disorder, the

existence of domain like structure ensures that the response has a strong similar-

ity to the clean case. We tried out a scheme for inferring the domain size from

the spin wave damping so that experimenters can make an estimate of domains

without having spatial data, and we find it to be reasonably successful. We also

highlight how the common assumption about random antisites, that is widely

used in modeling these materials, would lead to a gross overestimate of magnon

damping. In summary, dynamical neutron scattering can be a direct probe of

the unusual ferromagnetic state in these materials and confirm the presence of

correlated antisites.

To summarise, this thesis considers some problems in the antisite disordered

double perovskite magnets. We clarify the impact of correlated antisite disorder

on both ferromagnetic and antiferromagnetic phases, discover that the antifer-

romagnet is robust to large disorder, and find that the antiferromagnetic metal

has a surprisingly large positive magnetoresistance. Finally, we have provided

results on the magnon spectrum in the non trivial domain ferromagnetic phase

and provide an interpretation of the spectrum in terms of magnon confinement.
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Chapter 1

Experimental Summary

Chapter summary: This chapter summarises the key experimental

observations on the double perovskites, emphasising the effects of antisite disor-

der. We highlight the spatially correlated nature of antisite disorder as inferred

from electron microscopy and x-ray absorption fine structure (XAFS) studies.

We move on to describe the impact of antiferromagnetic superexchange, present

across the antiphase boundary, on the bulk magnetisation. We then discuss the

temperature dependence of resistivity, including the effect of antisite disorder

and grain boundaries, and magnetoresistance in single crystals and polycrystals.

Finally, we comment on the impact of antisite disorder on half-metallicity, and

the status of the search for non-ferromagnetic metallic phases.

1.1 Introduction

Perovskites are materials of the form ABO3, where A is an alkaline earth or

rare earth cation (Ca, Sr, La etc.), and B is an electronically active transition

metal cation (Mn, Fe, Co, Ni, V, Cu etc.). The B ion sits in an octahedral

environment (BO6) while the A cations occupy the vacant space between the

corner shared BO6 octahedra. Perovskite oxides have been intensely studied over

the last few decades since they show a rich variety of magnetic, electrical and

optical properties. The manganites [1], cuprates [2], vanadates [3], etc., are a few

prominent examples. Since our study is mostly concerned with the magnetism in

double perovskites, let us start with a quick description of an important ‘simple’

perovskite, the manganites, to set the stage.
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Activity on the manganites started with studies of the impact of doping on the

properties of LaMnO3 [4]. LaMnO3 is an antiferromagnetic insulator. With Sr

doping it goes to a ferromagnetic phase, with transition temperature Tc ∼ 250K

for La0.825Sr0.175MnO3 [5]. On a wider range of doping and cation combination

the magnetic order in manganites vary from ferromagnetic to antiferromagnetic

to spin-glass, while the transport character changes from metallic to insulating.

The doping induced ferromagnetic phase shows a spectacularly large decrease

in resistivity on application of a magnetic field [6]; this property is also known as

colossal magnetoresistance (CMR). The strong coupling of electronic, magnetic,

and structural degrees of freedom gives rise to a wide spectrum of properties in-

volving charge, orbital, and magnetic ordering [7]. Doped manganites show CMR

effect at relatively low temperature and high magnetic field, which undermine its

application in mass storage memory devices. This encouraged further studies on

oxide materials with magnetic ordering temperatures substantially higher than

the manganites.

1.2 Double perovskites

The double perovskite, Sr2FeMoO6 [8] (SFMO), was found to have several desir-

able properties. Ordered Sr2FeMoO6 exhibits pronounced negative magnetore-

sistance [9] at lower magnetic fields and higher temperatures compared to the

doped manganites. It has a ferrimagnetic ground state with transition temper-

ature Tc ∼ 420K. It shows half-metallic character, i.e., only one spin channel

conducts, which makes it applicable in spintronic devices. Although it does not

(yet) have the rich doping induced phase diagram of the manganites, SFMO does

show several unusual magnetic and transport properties [8].

This in turn inspired the study of more complex and potentially richer double

perovskites: materials of the form ABO3.AB′O3 ≡ A2BB′O6 (Figure 1.1). They

have two kinds of octahedra, BO6 and B′O6, repeating in all three directions,

instead of only the BO6 octahedra as in perovskite. B and B′ are electronically

active transition metal cations.
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Figure 1.1: Schematic structure of A2BB′O6: for clarity only a few of the oxygen

atoms are shown, while the A atoms at the body-center positions

(centers of small cubes) are not shown at all.

1.3 Magnetic order

The large number of possible B, B′ combinations in double perovskites lead to a

variety of magnetic phases. As an illustrative list:

� Ferromagnets - listed in Table: 1.1

� Antiferromagnets - listed in Table: 1.2

� Spin glass - Sr2FeCoO6 [10], Ba2YMoO6 [11]

Apart from the magnetic phases, double perovskites can be superconducting.

Partially melted ceramic material Sr2YRu0.85Cu0.15O6, shows superconductivity

with an onset temperature of Tc ≈ 45K [12,13] at ambient pressure.

Let us start our discussion with a brief overview of the ferromagnets. We will

consider insulators, since the metallic phase will be discussed in detail later.

1.3.1 Ferromagnetic insulating phase

In double perovskites A2BB′O6, each B and B′ sits in an octahedral environment

(BO6 and B′O6), due to which there is a crystal-field splitting of d-states of B and

3



Table 1.1: Ferromagnetic double perovskites

Material Crystal structure Magnetic order Tc Transport property

Sr2FeMoO6 Tetragonal 420K Half-metallic [14]

Ba2FeMoO6 Cubic 345K Half-metallic [15]

Sr2FeReO6 Cubic 400K Half-metallic [16,17]

Sr2CrReO6 Cubic 635K Half-metallic [18]

Ca2CrReO6 Monoclinic 360K Insulating [18]

Ca2FeReO6 Monoclinic 520K Insulating [17,19]

La2NiMnO6 Monoclinic 280K Insulating [20]

B′ into t2g and eg manifolds [21]. In Ca2FeReO6 the small size of Ca induces mon-

oclinic distortion in the structure, which further lifts the degeneracy of t2g levels

on the Re sites (with two t2g electrons per Re). Due to this monoclinic distortion

there is deviation of bond angle (Fe-O-Re) from 180° to ∼156°. This reduces

the Re-Re overlap, by misaligning the t2g orbitals. This bond-angle distortion

reduces the effective d-electron hopping energy via the reduced hybridization be-

tween transition-metal d and oxygen p states, leading to the insulating character

in Ca2FeReO6 [17, 22].

La2NiMnO6 is an important member of this family, as it is a promising candi-

date for technological application. It has a ferromagnetic transition temperature

Tc ∼ 280K [20]. Here Mn-O-Ni superexchange interaction gives rise to ferromag-

netism [23]. It shows magnetoresistance and magnetocapacitance effects [24],

indicating a coupling between the magnetic, electronic, and dielectric properties,

which can be controlled by the application of magnetic fields. The observation

of such effects close to the room temperature makes it a strong candidate for

practical spintronic applications.

1.3.2 Antiferromagnetic insulating phase

Double perovskites show antiferromagnetic insulating character for some com-

bination of B and B′. Sr2FeWO6 is one typical member of this family. It has

antiferromagnetic transition temperature TN ∼ 40K, with Fe2+ ion in the high-
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Table 1.2: Antiferromagnetic insulating double perovskites

Material Crystal structure Magnetic order TN

Sr2FeWO6 Monoclinic 40K [25,26]

Sr2MnMoO6 Tetragonal 13K [27,28]

Sr2NiMoO6 Tetragonal 71.5K [29,30]

Ca2NiWO6 Monoclinic 52.5K [31,32]

Sr2CoWO6 Tetragonal 24K [33]

Sr2YRuO6 Monoclinic 26K [34]

spin state (S = 2), and W6+ ion (5d0) in a non magnetic state. There is a large

exchange splitting of the localised electrons at the Fe-site. Strong hybridisation

between the W-5d and the O-2p states drives the hybridised states above the

t2g ↓ level of Fe. The electron is transferred from the W-5d O-2p hybridised state

to the Fe 3d level, leading to an insulating compound with formally W6+ and

Fe2+ states. In absence of any delocalized electrons, the Fe2+ sites couple via

superexchange to give rise to an antiferromagnetic insulator [26, 35]. The mag-

netic structure with a wave vector (0 1 1) can be described as a set of alternating

ferromagnetic planes that are coupled antiferromagnetically [25] with each other.

1.3.3 Spin glass phase

The spin glass phase arises broadly either due to large B-site disorder (as in

Sr2FeCoO6) or due to geometric frustration (as in Ba2YMoO6).

In Sr2FeCoO6, using neutron diffraction and subsequent bond valence sum anal-

ysis [10], it has been observed that the B site is randomly occupied by Fe and Co

in the mixed valence states of Fe3+/Fe4+ and Co3+/Co4+. Comparable ionic radii

of the B-site cations (Fe and Co) lead to large B-site disorder in the sample. Due

to randomly distributed B-site cations, there is a competition between nearest

neighbor and next nearest neighbor superexchange interactions giving rise to the

local magnetic frustration in the lattice. This magnetic frustration leads to spin

glass behavior in Sr2FeCoO6.

In contrast, Ba2YMoO6 crystallizes in face-centered cubic (FCC) lattice struc-

5



ture. In this compound Mo is in 5+ oxidation state (Mo5+, S = 1
2
) with a singly

occupied degenerate t2g orbital in a cubic crystal field, while Y3+ ion does not

carry a magnetic moment. The S = 1
2

Mo5+ moments are located on an FCC

lattice and coupled antiferromagnetically. This arrangement is geometrically frus-

trated, which in conjunction with quantum fluctuations gives rise to spin glass

behavior in Ba2YMoO6. No magnetic order is observed down to 2K in ac and dc

magnetic susceptibility, heat capacity, and muon spin rotation [11] experiments.

1.3.4 Ferromagnetic metallic phase

One way to classify the ferromagnetic double perovskites could be in terms of

the nature of B and B′. One category would be those where only one of the

ions is intrinsically magnetic, the other in which both are magnetic (both 3d

elements, say). In the first category would be Sr2FeMoO6, while in the second

would be Sr2FeReO6, Ca2FeReO6, and Sr2CrReO6. Since our theoretical work is

concerned with double perovskites in which only the B-site is magnetic, we will

mainly concentrate on the properties of Sr2FeMoO6.

Sr2FeMoO6

Among the ferromagnetic double perovskites Sr2FeMoO6 is the most studied due

to the following electronic and magnetic properties [8].

� Large saturation moment.

� High ferromagnetic Tc ∼ 420K.

� Large low field magnetoresistance.

� Half-metallic behavior.

� Non FM metallic phases on La doping.

This compound has surprisingly high ferromagnetic transition temperature Tc ∼
420K, indicating a large interatomic (Fe-Fe) exchange coupling. Using site-

specific x-ray absorption spectroscopy with linearly polarized light, S. Ray et al.

[36] have established that the formal valence of Fe in Sr2FeMoO6 is 3+ (3d5).
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Figure 1.2: Density of states of Sr2FeMoO6 using the density functional method.

It shows the total density of states with majority up and minority

down spins as well as the local density of states for the elements [9].

Detailed investigation of x-ray magnetic circular dichroism data confirms a large

moment at the Fe site (S = 5
2
). Mo has the oxidation state of 5+ (4d1). In this

compound, each of the Fe3+ (S = 5
2
) and Mo5+ (S = 1

2
) sublattices are arranged

ferromagnetically, while the two sublattices are coupled to each other antiferro-

magnetically. Sr2FeMoO6 shows ferrimagnetic spin arrangement with 4µB (5
2
− 1

2
)

magnetic moment per Fe-Mo unit, in the ideal ordered double perovskite struc-

ture.

Density of states: Sr2FeMoO6

Kobayashi et al. [9] have calculated the electronic structure of this ordered per-

ovskite by the density functional method, as shown in Figure 1.2 . The ground

state of this compound shows half-metallic nature; the density of states for the

down-spin band is present at the Fermi level, whereas the up-spin band has a

7



gap at the Fermi level. The occupied up-spin band is mainly composed of Fe

3d electrons hybridized with oxygen 2p states (corresponding to the 3d5 up-spin

configuration) and much less of the Mo 4d electrons. The nominal Mo t2g and

eg up-spin bands are above the Fermi level. By contrast, the down-spin band

is mainly occupied by oxygen 2p states and the states around the Fermi level

are shared by the Mo 4d t2g and Fe 3d t2g electrons, which are strongly hy-

bridized with oxygen 2p states. Such a half-metallic nature gives rise to 100%

spin-polarized charge carriers in the ground state. In view of the fairly high Tc

and high spin polarization, ordered SFMO is suitable for spintronic applications.

Magnetoresistance: Sr2FeMoO6

Kobayashi et al. [9] have shown that the ordered double perovskite Sr2FeMoO6

exhibits pronounced negative magnetoresistance (Figure 1.3 ) at lower magnetic

fields and higher temperatures compared to the doped manganites. The satura-

tion magnetization at 4.2K is 3µB per formula unit. This small deviation from

ideal value of 4µB is due to the mis-site-type imperfection of the B-site order,

which was partly confirmed by the Rietveld analysis (giving 87% order on the

B-site). The magnetization at 300K nearly saturates around 2.2µB per formula

unit, indicating a high spin polarization (above 60%). The magnetoresistance

magnitude at 7 T is as large as 42% and 10%, at 4.2K and 300K, respectively.

Resistivity: Sr2FeMoO6

Sr2FeMoO6 is very sensitive to oxidation and its resistivity is strongly dominated

by electron scattering at the grain boundaries. At high temperature (between

300K and 900K), when the oxygen atoms placed at the grain boundaries are

removed, it undergoes two metal-insulator transitions. Below 405K, it is metallic

and magnetically ordered, and above 590K it again shows metallic behavior [37].

However in the intermediate temperature range, the system presents a possible

Anderson localization of the carriers with semiconducting behavior.

Upon application of high pressure, intrinsic negative magnetoresistance is un-

affected in single crystals and gets suppressed in polycrystalline samples, partic-

ularly at low field [38]. Large pressure effects on the tunneling magnetoresistance
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Figure 1.3: Isothermal magnetoresistance (upper panels) and magnetization M

curves (lower panels) for polycrystalline ceramics of Sr2FeMoO6. (a)

at 4.2K; (b) at 300K [9] . The insets show a magnification of the

field- hysteretic magnetoresistance (upper panels) corresponding to

the magnetic hysteresis (lower panels) in a low-field region.

originate from the spin-polarized tunneling at grain boundaries in the polycrys-

talline sample, in sharp contrast to the behavior for a single crystal. The con-

nectivity between grains is enhanced by pressure to give rise to a suppression of

the magnitude of the tunneling magnetoresistance.

Sr2FeReO6: double moment ferrimagnet

Contrary to a single magnetic moment present in Sr2FeMoO6, both B-sites posess

a magnetic moment in Sr2FeReO6. Here, significant orbital moment of Re plays

a crucial role in determining the magnetic properties. Sr2FeReO6 bears a close re-

semblance to Sr2FeMoO6 in terms of magnetic and transport properties. Sr2FeReO6

has half-metallic ferrimagnetic magnetic ground state with a transition temper-

ature ∼ 400K [39]. Polycrystalline ceramics of Sr2FeReO6 exhibits significant

intergrain tunneling magnetoresistance even at room temperature (Figure 1.4).

The magnitude of intergrain tunneling magnetoresistance with a magnetic field

of 7 T at 4.2K and 300K is as large as 21% and 7%, respectively, reflecting high

spin polarization of carriers.
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Figure 1.4: Isothermal magnetoresistance ρ(H) (upper panels) and magnetisation

M curves (lower panels) for polycrystalline ceramics of Sr2FeReO6 at

4.2K (a) and 300K (b) [39].

Ca2FeReO6 and Sr2CrReO6

In the A2FeReO6 series, Ca2FeReO6 shows insulating behavior with the maximum

Tc of 520K. Optical and x-ray absorption spectroscopy combined with density

functional theory studies [40] have established the presence of subtle interplay of

spin-orbit coupling, electron correlation, and lattice distortion in this compound.

In the Sr2(Fe1−xCrx)ReO6 series, Sr2CrReO6 is nearly half-metallic with the

maximum Tc of 625K, which is the highest Tc in an oxide compound without Fe.

Re, being a 5d transition metal with substantially large spin moment, is expected

to bear substantial spin-orbit coupling. Full-potential band-structure calculations

including spin-orbit coupling [41] found that the magneto-optic spectra show

substantially large Kerr rotations, suggesting potential application as read heads

or optical data storage devices.

1.4 Impact of doping

The properties of the parent double perovskites change significantly upon hole

and electron doping. We will discuss this impact using the example of Sr2FeMoO6.
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Figure 1.5: Left panel: reduced magnetization M(T, 5kOe)/M(350K, 5kOe) vs.

temperature for Sr2−xLaxFeMoO6 (x = 0, 0.4, 0.8, and 1) samples.

Inset: Temperature-dependent magnetization. Right Panels: Field

dependence of resistance ρ(H)/ρ(H=0) at 10K and 300K for x = 0,

0.4, and 0.8 samples [44].

1.4.1 Impact of hole doping

Upon partially substituting W for Mo in SFMO (Sr2FeMoxW1−xO6), which is

equivalent to hole doping, it shows a metal-insulator transition [42]. Compounds

with 1.0 ≥ x ≥ 0.3 show metallic behavior, while for 0.2 ≥ x ≥ 0 they are

insulating. All compounds with 1.0 ≥ x ≥ 0.2 are ferrimagnetic, while Sr2FeWO6

(x = 0) is antiferromagnetic with a Néel temperature TN ≈ 37K [43]. All samples

with x ≥ 0.3 show a significant negative magnetoresistance.

1.4.2 Impact of electron doping

The properties of the ferromagnetic and metallic double perovskites Sr2FeMoO6

change significantly upon electron doping, i.e., substituting divalent Sr with triva-

lent La. Upon doping, Tc can rise upto 70K above that of SFMO [44]. This is

accompanied by a substantial reduction of the saturation magnetization, mainly

due to increase in antisite disorder [45]. There is also a decrease in the mag-

netoresistance (Figure 1.5), which affects the functionality of the material. By

analysing the magnetotransport data for different electron-doped double per-

ovskites, D. Rubi et al. [46] argue that a gradual loss of spin polarization of the

conduction electrons is responsible for the decrease in the magnetoresistance.
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Figure 1.6: Two dimensional model of double perovskite. Left panel: ideal struc-

ture; right panel: random antisite disorder

1.4.3 Isoelectronic doping

If we dope Sr2FeMoO6 with a small amount of Ba or Ca on the Sr sites, it in-

creases the magnitude of magnetoresistance significantly [47]. There is drastic

enhancement of low-field magnetoresistance in the Ba doping region with the

optimization of low-field magnetoresistance at Sr0.4Ba1.6FeMoO6. And Ca doped

sample is optimized at Sr1.9Ca0.1FeMoO6, which also has an enhanced ferrimag-

netic transition temperature.

1.5 Antisite disorder

The promise of rich functionality in the double perovskites remains unfulfilled due

to inevitable B, B′ mislocation. The similar location of B and B′ ions promotes

tendency towards defect formation. In order to understand this disorder properly,

let us consider a 2D version of Sr2FeMoO6, for ease of visualization. Ordered

structure will refer to alternation of B and B′ octahedra in each direction. By

antisite disorder we mean replacing some B ion by B′. Thus, two similar octahedra

(B-B or B′-B′) will now be nearest neighbor, as shown in Figure 1.6 .

This interchange of B-B′ ions in principle can happen in a random manner.

However, as we will see in the next section, this antisite disorder is spatially

correlated instead of being random. There will be locally ordered regions, phase

slipped with respect to one another.
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Figure 1.7: Magnetic and antiphase domain structures in Ba2FeMoO6. (a) Fresnel

image: bright and dark lines represent magnetic domain walls. (b)

Magnetisation distribution map derived by the transport-of-intensity

equation method. (c) Dark lines and areas indicate the antiphase

boundaries. The small red arrows represent local magnetisation [48].

1.5.1 Spatial nature of mislocation

In this section we will describe some of the experimental observation of the spa-

tially correlated antisite disorder. Using transmission electron microscopy [48] of

a single crystal of an ordered double perovskite Ba2FeMoO6, Asaka et al. (Fig-

ure 1.7 ) have established the presence of crystallographic domains, i.e., regions

having high degree of short range order. They have also investigated the re-

lation between magnetic and crystallographic domains. Magnetic domain walls

perfectly coincide with the crystallographic antiphase domain boundaries. Spins

across a domain wall are antiferromagnetically aligned.

Similarly, using high-resolution electron microscopy (HREM) Navarro et al. [49]

have studied Sr2FeMoO6 ceramics samples (Figure 1.8 : left panel) and they

have found the existence of antiphase domains. Using Fourier reconstruction,

they have clearly established the presence of antiphase boundary in the sample.

In the schematic illustration of the atomic structure at the antiphase boundary

they have shown that two similar entities (either Fe-Fe or Mo-Mo) sit next to

each other at the antiphase boundary.

In a separate study, using x-ray absorption fine structure in conjunction with

synchrotron radiation x-ray diffraction, Meneghini et al. [50] have studied the

nature of disorder in the polycrystalline double perovskite Sr2FeMoO6. Figure
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Figure 1.8: Left panel: (a) HREM image [49]: atomic structure, (b) Fourier

reconstruction, clearly revealing an antiphase boundary (APB),

(c) Schematic illustration of the atomic structure at the APB. Right

panel : Slices of 3D models of Fe/Mo cubic lattices [50].

1.8 (right panel) shows a slice of 3D models of Fe/Mo cubic lattices, where light

and dark grey sites represent Fe and Mo ordered positions, red (blue) sites being

Fe (Mo) on the Mo (Fe) sublattice, with degree of long range order S = 0.51 and

large antiphase regions with degree of short range order ξ=0.99. Samples with

varying degree of disorder reveal that a very high degree of short range order is

preserved even in samples with highly reduced long range chemical order.

Overall, the experiments clearly establish the presence of antisite disorder and

indicate that it is spatially correlated rather than being random. Hence, even

though antisite disorder suppresses long range structural order, there is still a

high degree of short range order that survives.

1.5.2 Impact on magnetisation

In double perovskites, we get correlated domains of locally ordered patches. At

the antiphase boundary, we have two similar atoms (B-B or B′-B′) sitting next to

each other and inside a domain we have dissimilar neighboring atoms in all three

directions. At antiphase boundary two spins have antiferromagnetic superex-

change coupling which makes two neighboring domains antiparallel [49] (Figure.

1.9). Magnetic domain walls seems to perfectly coincide with the crystallographic
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Figure 1.9: Schematic of magnetic coupling in disordered Sr2FeMoO6 [49]. F/AF

stands for ferromagnetic/antiferromagnetic interactions.

domain boundaries [48] (Figure 1.7).

In antisite disordered samples, bulk saturation magnetization reduces from 4

µB per formula unit, expected in the ordered case. Suppression in the saturation

moment is large for the sample with large antisite disorder. The magnetic effects

of antisite disorder are similar in both single crystals [14] and polycrystals [9,51],

shown in Figure 1.10 .

1.5.3 Impact on spin-polarisation

Ordered Sr2FeMoO6 has a ferrimagnetic spin arrangement with large Hund’s

coupling on the magnetic (Fe) sites. Thus, only electrons oppositely oriented to

the core magnetic ions will be able to conduct leading to a half-metallic state.

In the correlated antisite disordered systems (Figure 1.7 ), magnetic domains

coincide with the crystallographic antiphase domains [48]. Spins in the adjacent

domains are oppositely oriented. Within each domain the conduction electron has

only one spin polarisation at low temperature, but averaged over the system both

up and down electrons have finite density of states at the Fermi level. A local

probe with area smaller than typical domain size will allow only spin polarised

tunneling, while a probe averaging over domains will see both spin polarisation.

Thus, antisite disorder destroys the half-metallicity.
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Figure 1.10: Left panel: Magnetisation of single crystals of Sr2FeMoO6 [14] with

8% ASD taken at 0.5 T. Inset : Hysteresis curve at 5K. Right panel:

Hysteresis loops at 5K of polycrystalline Sr2FeMoO6 series [51]. In-

set: Saturation magnetisation Ms at 5K with varying disorder. Line

represents Ms/ξ = 4 µB/fu.

1.5.4 Impact on transport properties

Temperature dependence

Behavior of resistivity is widely different between single crystals and polycrystals

as shown in Figure 1.11 . Let us start by discussing the impact of antisite disorder

on transport of a single crystal. Single crystals [14] show residual resistivity ρ ∼
0.1 mΩcm, and metallic behavior, dρ/dT > 0. Unfortunately to best of our

knowledge, systematic study of resistivity with varying degree of antisite disorder

is not available.

On the contrary, polycrystalline samples have been studied for a wide range

of antisite disorder [49, 51–55]. The transport in these materials is also affected

by the grain boundary resistance. The residual resistivity in these samples [51]

range from ∼ 0.5 mΩcm for low antisite disorder (M/Mmax ∼ 1.0) to ∼ 10 mΩcm

at high antisite disorder (M/Mmax ∼ 0.5). Ordered polycrystals show dρ/dT >

0, while less ordered ones show dρ/dT < 0 [51,52].

Even in a single crystal, for a given fraction of mislocated sites, there can be

widely varying degree of short range order. For example, the mislocated sites
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Figure 1.11: Temperature profiles of resistivity for Sr2FeMoO6 samples. Left

panel: Single crystals in several magnetic fields with 8% ASD [14].

Right panel: Polycrystals at zero-field with varying degree of disor-

der [51].

can arrange themselves in a few large domains or in many smaller domains. The

degree of short range correlation would also affect the transport properties. There

is no experiment yet which clarifies this issue. Grain boundary effects add to the

complexity of the problem in polycrystalline samples. The effects of antisite

disorder and grain boundaries on the resistance have not been deconvolved yet

in polycrystalline samples.

Magnetic field dependence

In a single crystal measurement Y. Tomioka et al. [14] (Figure 1.7 ) have measured

the temperature profiles of resistivity in several magnetic field for single crystals

of Sr2FeMoO6 with 8% ASD. The magnetoresistance is weak (< 10%) at low

temperature at a field of 5T. Unfortunately, magnetoresistance of single crystal

with systematic variation of antisite disorder is not available.

For polycrystalline samples the grain boundary effect is also present, as we

have seen above. The magnetoresistance can be large (∼ 40%, Figure 1.12 ) at

low temperature and at a field of 5T [52], and seems to be dominated by grain
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Figure 1.12: MR ratio as a function of applied field at 5K and 300K for the

polycrystalline Sr2FeMoO6 samples with with decreasing disorder

(A-F) [52].

boundary effects [54, 55]. Some results indicate a decrease [52] in magnetoresis-

tance with increasing antisite disorder, while others show an increase [49]. Here

again, effects of antisite disorder and grain boundaries on magnetoresistance have

not been deconvolved yet.

1.6 Non-ferromagnetic metallic phases

In addition to the well known ferromagnetism, double perovskites are also ex-

pected to exhibit non-ferromagnetic order on sufficient electron doping, driven

by electron delocalisation. Even simple perovskite transition metal oxides - the

cuprates, manganites, or cobaltates, have a rich phase diagram [56], with a strong

dependence on the doping level. The manganites, for instance, exhibit not just

ferromagnetism, but also the CE-type magnetic order and A, C, and G type anti-

ferromagnetic phases [57], depending on the hole doping level. Non-ferromagnetic

phases have been predicted also for double perovskites using ab initio calculations

with simple collinear arrangement of the core spins [58, 59].

Clear experimental indication of such antiferromagnetic order is limited, pos-

sibly because of increase in the antisite disorder with doping [44]. Samples have
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indeed been synthesised with large La doping on Sr2FeMoO6 [60, 61]. Low field

magnetisation gets suppressed with increasing doping, which is an indication of

increase in the disorder with doping (Figure 1.5). Using different magnetic and

spectroscopic tools Jana et al. [61], have studied in detail the electronic and mag-

netic structures of LaxSr2−xFeMoO6 double perovskites with (1.0 ≤ x ≤ 1.5).

This reveals that the compound settles in an unusual antiferromagnetic metallic

ground state for x ≥ 1.4. The cross-over from ferromagnetic to antiferromagnetic

behavior is largely dominated by the electronic changes, which establishes the

role of kinetic energy driven mechansim [62].

There is unfortunately no detailed understanding of the role of antisite disorder

in these samples yet, or data on resistivity and magnetoresistance.
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Chapter 2

Model and Method

Chapter summary: We start with a review of the past theoretical

attempts to model the clean and antisite disordered double perovskites. We then

describe the use of a lattice gas model for generating the structural motifs that

mimic the correlated antisites in the experiments. The electronic-magnetic model

is defined on this background and solved via a real space Monte Carlo technique.

We end with a discussion of the method for transport calculation and extraction

of the spin resolved density of states.

2.1 Past theoretical studies

Studies of the double perovskite family gathered momentum after the discovery

by Kobayashi et al. [1] of large negative magnetoresistance in Sr2FeMoO6 (SFMO)

at high temperature and low magnetic field. This system has been studied using

both density functional theory and the model Hamiltonian approach. Let us start

with the discussion of the past work on ordered SFMO before moving on to the

modeling of antisites.

2.1.1 Ordered double perovskites

Ab initio studies

Using the density functional method, Kobayashi et al. [1] have calculated the

electronic structure of SFMO, as shown in Figure 2.1. The ground state of SFMO

is half-metallic; the down spin density of states is finite at the Fermi level, while
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Figure 2.1: Density of states of Sr2FeMoO6 using the density functional method.

It shows the total density of states with majority up and minority

down spins as well as the local density of states for the elements [1].

the up-spin band has a gap. The occupied up-spin band is mainly composed of Fe

3d electrons hybridized with oxygen 2p states (corresponding to the 3d5 up-spin

configuration) and much less of the Mo 4d electrons. The nominal Mo t2g and

eg up-spin bands are above the Fermi level. By contrast, the down-spin band is

mainly occupied by oxygen 2p states strongly mixed, around the Fermi level, with

both the Mo 4d t2g and Fe 3d t2g states. In this compound Fe3+ (3d5, S = 5
2
) and

Mo5+ (4d1, S = 1
2
) ions alternate along all three cubic axes. Ions within the Fe

sublattice and the Mo sublattice are ferromagnetically coupled, while Fe and Mo

have an effective antiferromagnetic coupling. This gives rise to the magnetization

of 4µB (= 5
2
− 1

2
) per Fe-Mo unit.

This ferrimagnetic spin ordering between the localised Fe electrons and the

delocalised electrons presupposes a large spin splitting of the delocalised band,

derived from the Mo d and oxygen p-states. Sarma et al. [2] have used a linear

muffin-tin method with a generalized gradient approximation to propose a novel

26



Figure 2.2: Energy level diagram expected at the Fe (left) and Mo (center) sites

from an ionic picture. Energy levels at Mo are modified in the pres-

ence of Fe-Mo hopping interactions (right) [2].

mechanism for this order. The mechanism can be understood with the help of

the schematics shown in the Figure 2.2, where only the relevant energy levels

have been shown.

The Fe3+ (3d5) configuration is known to have a large exchange splitting of

the d level in spin-up 3d ↑ and spin-down 3d ↓ states. In addition to this, there

is crystal-field splitting of the 3d levels into t2g and eg states in the octahedral

symmetry of the Fe ions [3]; the crystal-field splitting in the case of Fe3+ is con-

siderably smaller than the exchange splitting (left panel in Figure 2.2), while

the situation is reversed for the Mo site (central panel in Figure 2.2). In pres-

ence of hopping interactions between the Fe states and the delocalised states

derived from the Mo 4d-O 2p states, there is a finite coupling between the states

of the same symmetry at the Fe and the Mo sites, leading to shifts in the bare

energy levels. The delocalised t2g ↑ states gets pushed up and the t2g ↓ states

gets pushed further down by hybridisation with the corresponding Fe states, as

shown in the Figure 2.2 . The opposite shifts of the up and down-spin conduction

states, therefore, induce a spin-polarisation of the mobile electrons due to purely
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hopping interactions between the localised electrons and the conduction states.

This kinetic energy driven mechanism obviously leads to an antiferromagnetic

coupling between the localised and the conduction electrons, since the energy is

lowered by populating the down-spin conduction band with respect to the ma-

jority spin orientation of the localised electrons. There is a strong enhancement

of the intra-atomic exchange strength at the Mo site, and an antiferromagnetic

coupling between Fe and Mo sites [2].

Model Hamiltonian studies

Theoretical attempts using the model Hamiltonian approach are based on the

kinetically driven double exchange mechanism.

Using the model Hamiltonian approach, Phillips et al. [4] have analyzed the

magnetic transition temperature and optical conductivity of double perovskites

such as Sr2FeMoO6. The Hamiltonian describing the low-lying electronically ac-

tive degrees of freedom consists of a tight-binding part arising from the band

structure, an interaction part (Hund’s coupling on the Fe site) and the Fe-Mo

site energy difference. This Hamiltonian has been studied using the dynamical

mean-field approximation. However, using parameters consistent with band cal-

culations based local spin-density approximation the computed transition tem-

peratures are lower than observed, and in particular decrease dramatically as

band filling is increased, in contradiction to the experimental observation. There

are no results on the non-ferromagnetic states that can emerge at high electron

filling.

Brey et al. [5] have developed a mean-field theory for double perovskites e.g.,

Sr2−xLaxFeMoO6, within a minimal effective model (similar model as above) in-

cluding the strong Hund’s coupling on the Fe sites and the kinetic energy of

electron hopping between t2g orbitals through the Mo sites. It gives a reasonable

semiquantitative description of the observed Curie temperature in the double

perovskites for the undoped (x = 0) system. However, for the doped double

perovskites (x 6= 0), this mean-field theory predicts a decrease in the critical

temperature with increase in the electron doping. They found that this dou-

ble exchange-like model (i) stabilizes the ferromagnetic state, (ii) shows half-

metallicity, and (iii) shows large saturation magnetization. However, it fails to
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correctly describe the dependence of transition temperature on the band filling.

This discrepancy can be corrected if we include the Hubbard interaction on the

Mo sites. This widens the ferromagnetic window and brings the resuslt in closer

correspondence with experiments.

In a spin-wave analysis of an effective Kondo-like Hamiltonian, treated within

the large-S expansion, Jackeli [6] has found that depending on the value of the

carrier density, the ground state of double perovskite compounds is either a half-

metallic ferrimagnet or a layered antiferromagnet. The transition to antiferro-

magnetic phase is first order, accompanied with a regime of phase separation.

2.1.2 Disordered double perovskites

The theoretical effort till now [7–11] has focused on uncorrelated antisite disorder,

and quantified its impact on magnetic properties.

In a study Alonso et al. [7] have analyzed the magnetic phase diagram of the

doped double perovskites of the type Sr2−xLaxFeMoO6, with uncorrelated antisite

disorder. Their microscopic model has the usual couplings of the ordered double

perovskite, with following modifications: (i) a strong antiferromagnetic coupling

among the core Fe spins located next to each other and (ii) the kinetic energy

corresponding to Fe-Fe hopping through oxygen orbitals, for nearest-neighbor Fe

ions. The following phases emerge, Figure 2.3.

� The ferrimagnetic (FI) phase, where all Fe spins are parallel, and the spins

of the electrons in the conduction band are antiparallel to the Fe spins,

� An AFM phase, where the Fe spins in neighboring (1,1,1) planes are an-

tiparallel,

� A different ferrimagnetic (FIP) phase where the Fe spins are aligned ferro-

magnetically if the Fe ions are in the correct positions, and antiferromag-

netically if the Fe ions occupy Mo sites.

Phase-separation regions are found between the FI and AFM phases as in upper

panel, and between the FIP and AFM phases (middle and lower panel). Antisite

disorder induces significant changes in the phase diagram. Antiferromagnetism

at finite dopings is suppressed. The saturation magnetization in the FIP phase
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Figure 2.3: Phase diagram of Sr2−xLaxFeMoO6 as function of x and tempera-

ture for different concentrations of antisite defects. Negative x means

Sr2−|x|K|x|FeMoO6 [7].

is reduced, although the Curie temperature tends to increase with the number

of Fe in Mo positions, due to the direct antiferromagnetic exchange between Fe

ions which are nearest neighbors.

Frontera et al. [8] have used a classical spin model that takes into account the

origin of the ferromagnetic interactions between Fe ions in Sr2FeMoO6 double per-

ovskites, and studied the critical properties. Using Monte Carlo simulation they

have studied it for different amounts of antisite disorder. The model reproduces

some of the experimental results found in these compounds (listed below).

� Reduction of the saturation magnetization and decrease in the susceptibility

maximum with increase in antisite disorder.

� Systematic decrease of Tc with disorder.

� Critical properties have been studied and the critical exponents are consis-

tent with experimental observations.
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Although the model reproduces the experimental trend of Tc with disorder, it

underestimates the broadening of the ferromagnetic transition with large antisite

disorder. This could be a consequence of considering the random distribution

of antisite disorder. In real systems there is a certain distribution (correlated)

of antisite disorder concentration which leads to a distribution of Tc. This dis-

tribution of antisite concentration can also contribute to the loss of criticality,

experimentally found at a large amount of disorder.

Apart from above studies, there are few other model Hamiltonian approaches

[9–11], that have investigated the impact of antisite disorder in double perovskites.

Allub et al. [9] have used renormalized perturbation expansion and studied how it

affects density of states and determined the variation of the critical temperature

in the low disorder regime. Aguilar et al. [10] have treated disorder within the

dynamical mean-field approach, and studied how disorder affect density of states

and spin polarization. Erten et al. [11] have a novel proposal whereby excess Fe

can compensate for the loss of mobile carriers by La substitution on the Sr site.

This should enhance Tc without sacrificing spin polarization.

All these calculations set the reference for magnetic properties, but have the

limitation that:

1. they treat the antisites as randomly located,

2. they do not clarify the electronic properties,

3. localisation effects and MR remains unexplored.

2.2 Structural motif generation

Electronic properties (specially transport) are sensitive to the nature of disorder,

particularly the presence of spatial correlations. To capture the correct electronic

properties of double perovskite one has to first model this correlated antisite

disorder. A model for double perovskites should incorporate the interplay of

structural, electronic and magnetic variables.

We will first construct the correlated structural motif for double perovskite

(A2BB′O6) and define it via a variable ηi. Let us consider B as the magnetic ion
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and B′ as the non-magnetic one. We define the binary variable ηi such that ηi =

1 when a site has a B ion, and ηi = 0 when a site has a B′ ion. Thus, ηi encode

the atomic positions. On this structural motif, we set up the electronic-magnetic

problem. The total Hamiltonian, including all degrees of freedom, would be:

Htot = Vat{η}+H{η} (2.1)

Here, Vat{η} represents the direct interaction between the ions (Lennard-Jones,

say). There is also an indirect interaction via the electronic-magnetic degrees of

freedom in H{η}. We do not enter into the detailed nature of H right now: we

will do so later in this chapter. It basically involves electrons coupled to classical

magnetic moments and moving in a background defined by {η}. If the atomic

ordering problem is to be isolated from this, one should trace out the electronic

and magnetic variables. The effective potential Veff{η} controlling atomic order

is

Veff{η} = − 1

β
log

∫
DSiTr{f,m}e

−βHtot

Computing Veff and updating atomic positions accordingly is a computationally

demanding task, the Monte Carlo (MC) equivalent of a Car-Parinello simulation.

There is limited information about Vat, and the trace is technically difficult, so

we construct a simple Veff{η} that is consistent with the phenomenology, rather

than attempt an elaborate first principles calculation.

Double perovskite have an inherent ordering tendency for B and B′ atoms. The

ideal structure is simply an alternation of B and B′ ions along all three directions.

However, in imperfectly annealed systems, there will be antisite defect regions

where this ordering is reversed, and two B atoms or two B′ atoms sit adjacent to

each other. The ordering of the B-B′ is in general neither perfect nor random, it is

the result of an annealing process. While samples with high degree of order have

been grown [12], indicating that the atomic order in the structural ground state

should be perfect, recent experiments reveal an interesting trend in the degree of

order as a function of annealing temperature.

In an experiment on Sr2FeMoO6, Sarma et al. [13] observed that there is a

non-monotonic dependence of the degree of Fe-Mo ordering on the annealing

temperature, Tann, as shown in Figure 2.4. Different samples were taken from

the same parent material (synthesised at high temperature and quenched to a low
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Figure 2.4: Experimental data for ordering vs annealing temperature (in Kelvin),

obtained by Sarma et al. [13]. Y-axis shows the ratio of the XRD

intensity of the supercell (101) reflection at 19.6°, to that of the normal

reflection at 32.1°. This is a measure of the degree of ordering.

temperature), heated to a temperature Tann, and annealed there for a duration

τann, say.

If there is indeed a B-B′ ordering tendency in the DPs, the extent of order at

equilibrium would be highest at low Tann, progressively falling off at higher Tann

where the order is expected to be small. The downturn at low annealing temper-

ature is a consequence of insufficient equilibration. Our model below and results

are based on the assumption that: (i) there is an intrinsic B-B′ ordering tendency

in the DPs, (ii) given long equilibration time, the DPs would indeed show a high

degree of order at low T, but (iii) under typical synthesis conditions/annealing

protocol the system only manages to generate correlated configurations with short

range order. The annealing temperature and annealing time are therefore key to

quantifying the structural order.

Since the structural (dis)order seems to be frozen at temperature, T ∼ 1000K,

much above the temperature for magnetic order (∼ 400K), the qualitative is-

sues in atomic ordering can be understood by ignoring the electronic-magnetic

variables in an effective model, discussed below.

In the absence of detailed microscopic knowledge about Veff{η}, we used a

binary lattice gas model [14] that has the same ordering tendency as the real

materials, viz, B-B′ alternation, or equivalently a checkerboard pattern. In terms
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of the variables ηi, the simplest such model is :

Veff{η} = V
∑
〈ij〉

ηi(1− ηj) (2.2)

with V > 0 being a measure of the ordering tendency. The ground state in this

model would correspond to η = 1, 0, 1, 0, ... (B, B′, B, B′...) along each axis.

Notice that this approach tries to incorporate the effect of complex interactions

between the A, B, B′ and O ions (as also the electrons) into a single parameter.

Since one is interested in exploring the non-equilibrium effects due to poor

annealing one has to use a Monte Carlo technique to anneal the {η} variables.

Most of our studies involve a protocol where we start with a completely random

B-B′ configuration (as if quenched from very high T), and then anneal it at a

temperature Tann, for a MC run of duration τann Monte Carlo steps (MCS).

Since the number of B and B′ atoms is fixed we update our configurations by

(i) moving to some site Ri, (ii) attempting an exchange of the atom at Ri, with

another randomly picked within a box of size L2
C centred on Ri, and (iii) accepting

or rejecting the move based on the Metropolis algorithm.

Even within this simple framework of lattice-gas type models, Sanyal et al.

[14] were able to address several experimentally observed issues including non-

monotonic dependence of the degree of order on annealing temperature [13], and

the rapid decrease of order upon overdoping with either B or B′ species.

In order to quantify the ordering tendency we have calculated the structure

factor, Slatt(q). We can imagine the B and B′ system in terms of Ising spins.

B is represented by an up-spin and B′ by a down-spin. So, an ordered system

is equivalent to an antiferromagnetic spin arrangement. The structure factor

Slatt(q) of given spin configuration is calculated by

Slatt(q) =
1

N2

∑
i,j

SiSje
iq·(ri−rj) (2.3)

where N is the total number of atoms in the system. Here Si represents the

Ising spin at the i’th site with position vector ri. For the antiferromagnetic spin

arrangement Slatt(q)|q=(π,π) = 1.

In systems with equal number of B and B′ ions, where perfect order is in prin-

ciple possible, one starts with a random initial configuration at some temperature
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Figure 2.5: π−π structure factor vs annealing temperature for different annealing

time for a 20× 20 lattice [14].

Tann and anneal for some time τann. The structure factor Slatt(q) at the ordering

wavevector, {π, π}, is averaged over 40 such initial configurations. The extent of

order, quantified by the peak in Slatt(q), is shown in Figure 2.5 for a lattice size

20× 20.

The non-monotonic behavior of Slatt(π, π) with Tann that was observed in ex-

periments shows up in the lattice gas simulation. The downturn in Slatt(π, π)

at low Tann is due to the inability of the system to achieve equilibrium at short

annealing time, when one starts with a random initial configuration. With in-

creasing annealing time there is an increase in the extent of order (for given Tann

and L). There is a strong size dependence of the peak in Slatt(π, π), varying

almost by a factor of 4 between L = 20 and L = 40. The origin of this strong size

dependence becomes apparent when we examine a typical configuration (Figure

2.6) at low Tann, generated by a short annealing run, τann = 500 MCS.

This system has imperfect ordering as suggested by Slatt(π, π). Actually this

system consists of a few large ordered clusters with phase slip between them.

Locally these domains are well ordered. The total Slatt(π, π) arises from the

interfering contributions of large domains. This cancellation depends strongly

on the system size L. In smaller systems, Slatt(π, π) is decided by the larger

domain, and as domains proliferate with increasing L, there is an increasingly

better cancellation between the out of phase domains, and hence Slatt(π, π) falls.

Using the method of Sanyal et al., we have generated our antisite disordered
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Figure 2.6: Left panel: Non-equilibrium B-B′ configuration for Tann/V=1.2 and

τann = 500, on a 40×40 lattice; Right panel: We have plotted g(ri) =

(ηi − 1
2
)eiπ(xi+yi). For a perfectly ordered structure g(Ri) is constant

(= 1
2
), shown by red dots. Those regions which are displaced with

respect to the ordered structure has value -1
2
, shown by blue dots.

configurations. Although we have studied both 2D and 3D situations we will

mostly concentrate on 2D, since it allows access to large sizes and is easier to

visualise. Since the actual defects are at the interface of two ordered (but phase

slipped) clusters, we will show the domains and domain walls, rather than the

detailed atomic configuration.

Below an ordering temperature Tord ∼ 0.7V (in 2D) the model exhibits long

range B-B′ order provided one anneals long enough. We quench the system from

high temperature (random B, B′) to Tann < Tord (so that the net order is non

zero), but deliberately annealed it for a short time, preventing equilibration.

We have chosen four families (Figure 2.7) with increasing disorder generated via

successively poorer annealing of the lattice-gas model, to study the electronic

properties.

2.3 Quantifying antisite disorder

One can variously characterise the B-B′ structures that emerge. To keep a cor-

respondence with recent experimental work [15]. we use the following indicators:

1. The fraction, x, of B (or B′) atoms that are on the wrong sublattice. The
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Figure 2.7: Four families of antisite disordered configurations (top to bottom)

generated via successively poorer annealing of the lattice gas model.

We plot g(ri) = (ηi − 1
2
)eiπ(xi+yi). The patterns along a row are dif-

ferent realisations of ASD within each family. The average structural

order parameter (see next section) has values S = 0.98, 0.76, 0.50

and 0.08 as we move from top to bottom. Lattice size 40× 40.

structural order parameter S = (1− 2x).

2. The degree of short range order, characterised by the probability p, of

having nearest neighbor pairs that are B-B′. In a perfectly ordered sample

this would be 1 (the B and B′ alternate), while in a completely disordered

sample this is 0.5. For an uncorrelated B, B′ distribution this would be

p = puncorr = x2 + (1 − x)2 = 1
2
(1 + S2). The two terms, x2 and (1 − x)2,

arise from having both atoms on the wrong sublattice or right sublattice

respectively. For us p > puncorr.

3. The correlation length ξ associated with the domain structures is inferred

from a Lorentzian fit to the B-B′ structure factor of the form

Slatt(q) ∼ ξ−1

(qx − π)2 + (qy − π)2 + ξ−2
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For our study we have chosen four families with increasing disorder, as shown in

Figure 2.7. These families have a fraction of mislocated sites: x = 0.01, 0.12, 0.25,

0.46. The patterns, however, are strongly correlated. Even in the most disordered

samples (lowest row in Figure 2.7) where the likelihood of any site being B or B′

is ∼ 0.5, if a site is B, say, there is a high likelihood that its neighbors will be

B′ (and vice versa). While p = puncorr = 0.98, 0.79, 0.63, 0.50, the values that

actually emerge from our correlated patterns, are pcorr ∼ 0.98, 0.97, 0.95, 0.86.

Even the most disordered samples have a high degree of short range order. A

Lorenztian fit to the B-B′ structure factor yields, ξ ∼ 6.6, 5.9, 4.8, 3.6.

The disorder in these systems should be characterised in terms of two variables:

S, which is a gross measure of order, and p (or ξ) which quantify short range

correlation. In general, physical properties would depend on both S and p and

not simply on S.

2.4 Electronic Hamiltonian

For any specified {η} background the electronic-magnetic model has the form

H = Hloc{η}+Hkin{η}+Hmag{η} − h
∑
i

Siz − µN̂ (2.4)

Where

Hloc{η} = εB
∑
i,σ

ηif
†
iσfiσ + εB′

∑
i,σ

(1− ηi)m†iσmiσ

Hkin{η} = −t1
∑
<ij>,σ

ηiηjf
†
iσfjσ − t2

∑
<ij>,σ

(1− ηi)(1− ηj)m†iσmjσ

−t3
∑
<ij>,σ

(ηi + ηj − 2ηiηj)(f
†
iσmjσ + h.c.)

Hmag{η} = J
∑
i,αβ

ηiSi · f †iα~σαβfiβ + JAF
∑
〈ij〉

ηiηjSi.Sj

Here, Hloc is the onsite term with εB and εB′ as the level energies, respectively,

at the B and B′ sites, ∆ = εB − εB′ is the charge transfer energy. For the present

study we have set [16] the effective charge transfer energy εB − J/2 − εB′ = 0.

f is the electron operator referring to B site and m is that of B′ site. Hkin

is the nearest neighbor (NN) hopping term. For simplicity, we set all the NN
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Figure 2.8: Schematic diagram showing the parameters of the model for the an-

tisite disordered double perovskite in the paramagnetic state. B site

has a large localized core spin, treated as classical spins within our

model.

hopping amplitudes to be same t1=t2= t3=t. Hmag is magnetic interaction term

which consists of the Hund’s coupling J on B sites, and the AFM superexchange

coupling JAF between two NN magnetic B sites. Thus, our microscopic model

has usual couplings of ordered double perovskite and antiferromagnetic coupling,

when two B ions are nearest neighbor. Here, Si is the classical core spin on the

B site at ri with |Si| = 1. We have taken J/t � 1 with J > 0. When the up

spin core levels are fully filled, as for Fe in Sr2FeMoO6, the conduction electron

is forced to be antiparallel to the core spin. We have used J > 0 to model this

situation.

Much of the physics of these materials arises from the competition between

delocalisation driven ferromagnetic exchange and B-B antiferromagnetic superex-

change. We set JAFS
2/t = 0.08, based on the TN scale in SrFeO3. h is an applied

magnetic field in the ẑ direction. The chemical potential µ is used to control the

electron density, and N̂ is the total electron density operator. We have ignored

the next nearest neighbor hopping and orbital degeneracy.
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Figure 2.9: Travelling Cluster Approximation schematic

2.5 Monte Carlo method

For a given {ηi} configuration we need to solve for the magnetic and electronic

properties. Since the background involves strong disorder, and the electron-

spin coupling, J , is large, we use an exact diagonalization based Monte Carlo

technique. This uses the Metropolis algorithm where a spin update, Si → S′i is

accepted or rejected depending on ∆E/kBT , where ∆E = E(S′i)−E(Si). In prin-

ciple, we should diagonalise the full system every time an update is attempted.

The cost, for a large system, is prohibitive. In order to access large system sizes,

we have augmented it by a travelling cluster (TCA) [17] Monte Carlo technique,

where we diagonalize the cluster Hamiltonian built around the update site. We

update a spin using Monte Carlo scheme employing Metropolis algorithm.

Normally one iteratively diagonalises the full Hamiltonian for a system of N

sites with computation time τN ∼ N4. This limits achievable sizes to N ∼ 100.

In TCA, the energy cost of a MC update is computed from the Hamiltonian of

a cluster, of size Nc, constructed around the reference site, and embedded in the

larger system. In TCA, τN ∼ NN3
c . Cost of simulation decreases significantly,

hence we can access larger system size. Our results are obviously exact when
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Nc = N , and converge quickly to this asymptote with increasing Nc. Accuracy

improves in systems where the effective disorder seen by the fermions is large,

i.e., where the fermion wave-functions are more localized. Electronic properties

are calculated after equilibration by diagonalizing the full system.

2.6 Transport and spin-resolved density of states

2.6.1 Transport

In the linear response regime, the Kubo formula can be used to calculate the

conductivity of a system. The general expression [18], involving matrix elements

between many body states, simplifies significantly for non-interacting systems.

This Kubo-Greenwood result can be computed purely in terms of single particle

eigenfunctions and energies. For disordered non-interacting systems, the Kubo

formula [19], at T=0 is:

σ (ω) =
A

N

∑
α,β

(nα − nβ)
|fαβ|2

εβ − εα
δ (ω − (εβ − εα)) (2.5)

where the constant A = πe2/~a0, a0 is the lattice spacing, and the occupation fac-

tor nα = θ (µ− εα). Here fαβ = 〈ψα|ĵx|ψβ〉 are matrix element of current operator

ĵx between exact single particle eigenstates |ψα〉,|ψβ〉 etc., for a given realisation

of disorder and εα, εβ etc., are corresponding eigenvalues. The current operator

for the tight-binding model is given by ĵx = it
∑

i,σ(c†i+xa0,σci,σ − c
†
i,σci+xa0,σ).

The conductivity defined above is prior to the disorder averaging. Notice that

the δ-function constraint cannot be satisfied for arbitrary frequency in a finite

system. So we can neither calculate the dc conductivity, σdc directly, nor esti-

mate σ(ω) at some arbitrary externally specified frequency. However, we can still

calculate the average conductivity over a frequency interval ∆ω and calculate

σdc using following strategy. The average of σ(ω) over the interval [0,∆ω] (dc

conductivity) is defined as

σav(∆ω, µ,N) =
1

∆ω

∫ ∆ω

0

σ(ω, µ,N)dω (2.6)

∆ω can be set independent of N , but we will relate them by fixing ∆ω = B/N ,

where B is a constant fixed by setting ∆ω=0.04 for N = 1000. The mean finite size
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gap is 12/1000 ∼ 0.01, in 3D, much smaller than ∆ω. The chemical potential µ is

set to target the required electron density n. σav is averaged over Nr realisations

of disorder, to generate σav(∆ω, µ,N). The noise in σav(∆ω, µ,N) falls slowly,

as 1/
√
Nr.

2.6.2 Spin resolved density of states

Dσ
dos is calculated using following expression

Dσ
dos(ω) = − 1

π
Im (Gσσ

ii (ω)) (2.7)

where Gσσ
ii (ω) is the Fourier transform of retarded Green’s function (written be-

low) with respect to time.

Gσσ
ii (t) = −iθ(t)〈Ω|[ciσ(t), c†iσ(t)]+|Ω〉 (2.8)

On simplification, the above expression for spin resolved density of states reduces

to

Dσ
dos(ω) =

∑
m

|N〈Ω|ciσ|m〉N+1|2 δ(ω + E0 − Em
N+1)

+
∑
n

|N〈Ω|c†iσ|n〉N−1|2 δ(ω − E0 + En
N−1)

where |Ω〉N is N -particle ground state of the system with eigenvalue E0, whereas

|m〉N+1 and |n〉N−1 represents all (N + 1) and (N − 1)-particle states of the

system with energy Em
N+1 and En

N−1 respectively. Instead of calculating Dσ
dos(ω)

in real space basis, we go to the eigenbasis of the system and write c†iσ and

ciσ operators in terms of operators that corresponds to the eigenbasis of single

particle Hamiltonian.
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Chapter 3

Impact of Antisite Disorder on

the Ferromagnetic Phase

Chapter summary: This chapter presents our results on the impact

of antisite disorder on the ferromagnetic phase. For antisite disorder with a high

degree of short-range correlation, the antiphase boundaries also act as magnetic

domain walls. Increasing antisite disorder reduces the low-field magnetisation,

destroys half-metallicity, and finally makes the ground state insulating. While

these are disadvantages, we also notice that the ferromagnetic Tc is only weakly

affected by moderate antisite disorder and the low-field magnetoresistance is dra-

matically enhanced by disorder. Our real space approach allows an interpretation

of these results in terms of the antisite domains and the intra and inter domain

magnetic correlations and are consistent with the spatial imagery from recent

experiments. The intra-grain effects highlighted here would be directly relevant

to the single crystals. They also define the starting point for incorporating grain

boundary effects in a theory of polycrystalline materials.

3.1 Introduction

Several double perovskite materials [1] of the form A2BB′O6 exhibit high ferro-

magnetic Tc and significant low-field magnetoresistance. They are also a candi-

date source of spin-polarized electrons. The potential usefulness of these materi-

als is, however, frustrated by inevitable mislocation of the B and B′ ions, which

do not organise themselves in the ideal alternating structure. This results in a
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strong dependence of physical properties on the preparative conditions, reducing

the magnetisation and destroying the half-metallicity. In this chapter we provide

results on the impact of spatially correlated antisite disorder (ASD), as observed

experimentally [2–4], on the ferromagnetic double perovskites. The antisite do-

mains not only suppress magnetism and half-metallicity, as already known from

studies of uncorrelated disorder, but also lead to an enhancement of the low-field

magnetoresistance (MR). The properties depend not only on the gross degree

of disorder (fraction of mislocated sites), but also on the degree of short range

correlation.

3.2 Magnetic domain formation

In order to study the impact of correlated antisite disorder on the ferromagnetic

phase, we have chosen four sets of disordered configurations, with increasing

degree of mislocation, generated using a simple lattice-gas model [5], discussed

in detail in the last chapter. On this correlated background, we have used a

real space spin-fermion Monte Carlo method to solve the magnetic problem and

study [6] the magnetic order, half-metallicity, transport, etc.

To get the ground state spin configuration, we anneal the electron-spin system

down to very low temperature on a given structural motif, top row in Figure

3.1. Bottom row of Figure 3.1 shows the ground state magnetic snapshot. We

have plotted the spin overlap factor gi = S0.Si, where S0 is a reference spin (left-

lower-corner) in the lattice. For all disorder families, we find that structural and

magnetic domains coincide with each other. This is consistent with the experi-

mental observation by Asaka, et al. (Figure 1.7 ). Using transmission electron

microscopy [7] of a single crystal of Ba2FeMoO6 they have established that mag-

netic domain walls coincide with the crystallographic antiphase boundaries and

the spins across the domain wall are antiferromagnetically aligned.

3.3 Temperature dependence of magnetisation

Let us examine the effect of the antisite disorder on the magnetic properties. Since

rotation invariance, in the absence of an applied field, can lead to precession of the
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Figure 3.1: Structural and magnetic domains: Top row shows ASD configura-

tions, one from each disorder family with S = 0.98, 0.76, 0.50, 0.08.

Bottom row shows the corresponding ground state spin overlap fac-

tor gi, in a Monte Carlo snapshot. gi = S0.Si, where S0 is the left

lower corner spin in the lattice. Lattice size 40× 40.

direction of the total magnetisation, ~M , we prefer to calculate 〈M2〉, where ~M =

(1/Ns)
∑

i Si. 〈〉 represents thermal average over equilibrium spin configurations

and Ns is the number of B sites. This is related to the structure factor D(Q):

the Fourier transform of the correlation function of the spins at the B sites.

D(Q) =
1

N2
s

∑
i,j

〈Si · Sj〉eiQ.(Ri−Rj)

At Q = (0, 0), D(Q) breaks up into two decoupled sums and is simply 〈M2〉.
Suppose the fraction of mislocated B, B′ sites is x, and the structure is organised

into domains such that the ratio of “perimeter” to “bulk” sites of the domains is

small, i.e., there is a high degree of short range correlation present in the system.

The antiferromagnetic coupling between adjoining domains would polarise them

antiparallel, and the net moment at T = 0, h = 0 would be proportional to the

volume difference of up and down domains. We should have M(T = 0, h = 0) ∼
(1 − x) − x = 1 − 2x = S, so M2=S2. Given our structural order parameter,

S2 = 0.96, 0.58, 0.25, 0.01 in almost perfect correspondence with the T → 0

values in Figure 3.2 . The elaborate calculation arrives at an obvious answer.
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Figure 3.2: Left panel- The ferromagnetic peak in the structure factor, M2, for

different degrees of antisite disorder. Results are on a 40× 40 lattice,

averaged thermally and over 10 copies of disorder. Right panel- Com-

parison of our saturation magnetisation (at T = 0) with experimental

measurement by Navarro et al. [8].

This behavior of M(T) can also be described by an effective Heisenberg model

Heff =
∑
{ij}

Jij Si.Sj

where {} represents the set of nearest neighbor and next nearest neighbor sites.

Jij is the effective coupling (FM/AFM) between the local moments at ri and

rj sites. In our two dimensional ASD configurations JF/t = −0.04 operates

between two local moments when they are at the next nearest neighbor position

and JAF/t = 0.065 is active when the moments are at the nearest neighbor

position (a B-O-B arrangement). The Heisenberg result for the ferromagnetic

structure factor S(0,0) as a function of temperature matches very well, shown

in Figure 6.2 , with the electronic Hamiltonian result for all antisite disordered

configurations. This is discussed in Chapter-6 in detail.

The onset temperature for magnetic order seems to be insensitive to the ASD,

i.e., the intra-domain order sets in at T ∼ the bulk Tc. Note that for an O(3)

model in 2D, the Tc vanishes in the infinite volume limit. We should ideally speak

of a size dependent ‘correlation temperature’ but will not make this distinction.
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Figure 3.3: The d.c. resistivity, ρ(T ), for varying antisite disorder. Results are on

a 40× 40 lattice, averaged thermally and over 10 copies of disorder.

Experimental measurement also shows a small variation in Tc with increasing

antisite disorder upto S = 0.3 [8]. While our answer for the suppression of

magnetisation is M ∼ (1−2x), a 3D calculation, with uncorrelated disorder, had

found [9] M ∼ (1− 1.9x).

3.4 Temperature dependence of resistivity

We have studied the transport behavior on this correlated ASD background as

shown in the Figure 3.3 . The temperature dependence of resistivity ρ(T ) remains

similar from weak to intermediate disorder, with a sharp drop near Tc. The only

effect of increasing disorder is an increase in the residual resistivity. It is as if

there is a temperature independent structural scattering that gets added to the

temperature dependent magnetic scattering. However, at large antisite disorder

this correspondence breaks down: the low temperature resistivity is very large

(and grows with growing system size) and dρ/dT < 0. There seems to be a metal-

insulator transition (between S = 0.50 and S = 0.08), in this two dimensional

model, driven by antisite disorder.

To create an understanding of this let us focus on T = 0, where the magnetic
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configuration is simple (collinear). The down spin electrons inhabit the up core

spin domains and vice versa. The conductance arises from the inter-penetrating

parallel channels for up and down spin electrons. One could call it complementary

percolation. Let us identify up spin electrons with the majority phase and down

spin with the minority phase. The net conductivity is σtot(S) = σmaj(S) +

σmin(S), which reduces monotonically with reducing S, as shown in Figure 3.3 .

At fixed S one could increase σtot systematically by increasing pcorr, i.e., reducing

the fragmentation of the conduction paths. Thus, this insulating state at low

temperature is different from the usual disorder induced insulating state like

Anderson localization etc., rather it arises due to the fragmentation of conduction

path with increase in antisite disorder. Weak localisation effects, etc., in two

dimensions could show up at much longer lengthscales.

Since the antisite disorder configuration is temperature independent, the pri-

mary sources of temperature dependence in transport are:

1. weakening of the antiferro locking across the domain boundaries, and

2. fluctuations about the ferromagnetic state within a domain.

The first effect enhances the conductivity, while the second serves as a source

of scattering. Their relative importance depends on zero temperature conduc-

tivity. For weak disorder (large S) the fragmentation is weak and the increase

in resistivity due to intra-domain magnetic scattering is larger than the decrease

from inter-domain tunneling. However, by the time S=0.50, there is already a

weak upturn in ρ as T → 0, the intra-domain effect is visible, and this becomes

the dominant effect as S→ 0. An analysis of the spin-spin correlations illustrates

the antiferro locking of domains at low temperature and how this weakens with

increasing temperature.

The first column in Figure 3.4 reproduces one set of antisite disorder config-

urations from Figure 2.7 (first column). The next three columns show the the

magnetic overlap gi = S0 · Si, where S0 is the lower left corner spin in each

configuration, for a Monte Carlo snapshot at T/t=0.03, 0.05, 0.07. These pic-

tures would correspond to magnetic domains, if the patterns survive even after

thermal averaging. The antiphase boundary (APB) and the magnetic domain

wall (MDW) pattern coincide at T/t = 0.03. However at T/t=0.05 (close to the
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Figure 3.4: Temperature dependence of short range magnetic correlations. The

left column shows ASD configurations, one from each disorder family.

S=0.98, 0.76, 0.50 and 0.08, top to bottom. The 2nd, 3rd and 4th

panel along each row is a map of a spin overlap factor, gi, in a Monte

Carlo snapshot. gi = S0 · Si, where S0 is the left lower corner spin in

the lattice. The temperatures are T/t =0.03, 0.05, 0.07.

bulk Tc), there is no correlation between the APB and the gi pattern. There is

significant core spin overlap across the boundary, and large fluctuation, overall,

in spin orientation. This bears out the transport mechanism we suggested in the

preceding section.

Our results above are relevant to the effect of ASD on single crystals. Sin-

gle crystalline Sr2FeMoO6 [10] shows a residual resistivity ρ ∼ 0.1 mΩcm, and

metallic behavior dρ/dT > 0 but we have not been able to locate single crystal

data for varying degree of ASD. Polycrystalline samples [11] (Figure 1.11 ) show

a trend similar to ours but transport in these materials is also affected by the

grain boundary resistance apart from antisite disorder. The residual resistivity in
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these samples ranges from ∼ 0.5 mΩcm for low antisite disorder (M/Mmax ∼ 1.0)

to ∼ 10 mΩcm at high antisite disorder (M/Mmax ∼ 0.5). Ordered polycrystals

show dρ/dT > 0, while less ordered ones show dρ/dT < 0 [11,12].

3.5 Field dependence of resistivity

The field dependence of magnetisation and resistivity is shown in Figure 3.5 ,

at relatively low temperature (T/t=0.03) in (a)-(b) and at high temperature

(T/t=0.07) in (c)-(d). Three energies play out when h 6= 0 :

1. the bulk Zeeman cost of the minority domains ∼ hVmin, where Vmin is the

volume of the minority phase,

2. the interfacial antiferromagnetic energy ∼ JAFV (1−pcorr), where (1−pcorr)
is the fraction of antiferro bonds on the lattice,

3. the gain in electronic kinetic energy on removal (or rotation) of MDW’s.

Here, the first and third prefer domain alignment while the second prefers to

retain domain walls. In a ‘spin only’ model the third would be absent. This

delocalisation energy gain serves to reduce the field at which domain rotation

can occur. At low temperature, Figure 3.5 (a)-(b), the ordered samples have a

high degree of magnetic order, so the field induced increase in M and the decrease

∆ρ/ρ(0), is quite small, where ρ(0)=ρ(h)|h=0 and ∆ρ = ρ(0) − ρ(h). However,

the low temperature low field response is dramatic for low S samples. These

samples have M(h=0) ∼ 0 and a large ρ(0) due to the fragmented (spin selective)

conduction path. A field as small as h/t ∼ 0.001 leads to M2 ∼ 0.1, so M ∼ 0.3.

The corresponding impact on spin correlations is shown in the lowest row in

Figure 3.6 , where the MDW pattern is strongly affected by h. While the domain

rotation effect is visible for both S = 0.50 and S = 0.08, the less disordered

sample had a larger conductivity at h = 0, so the fractional change is much

larger for S = 0.08. At high temperature, Figure 3.5 (c)-(d), the domains cease

to exist and conductance gain from domain rotation is irrelevant. In the large

S samples there are few antiferro links so the applied field just suppresses the

magnetic fluctuations leading to large ∆ρ/ρ(0). In the most disordered samples
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Figure 3.5: (a),(c) Field dependence of magnetisation, M2; (b),(d) field depen-

dence of the resistivity, normalised to h = 0. Left panel is at low tem-

perature (T/t=0.03), and right is at high temperature (T/t=0.07).

there are (1− pcorr)/2 ∼ 7% of antiferro bonds. Although there are no domains,

these act as a source of scattering. The gain in conductivity is slower in the

disordered samples compared to the more ordered ones.

This dramatic enhancement of the low-field magnetoresistance for low S sam-

ples is different from the large magnetoresistance observed in polycrystalline sam-

ples, where the magnetoresistance is derived from the magnetic polarization of

grain-boundary regions acting like spin valves, and dominant mechanism is inter-

grain tunneling across physical grain boundaries [13].

In a single crystal measurement Tomioka et al. [10] (Figure 1.11 ) have mea-

sured the temperature profiles of resistivity in several magnetic fields for a an-

tisite disordered Sr2FeMoO6 crystal with S = 0.84. The MR is weak (< 10%)

at low temperature at a field of 5T. Unfortunately, the MR of single crystals

with systematic variation of ASD is not available. For polycrystalline samples
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Figure 3.6: Field dependence of magnetic spatial correlations. We show the usual

gi = S0.Si, defined earlier. The left column shows the ASD domains,

the central column shows gi at h/t = 0, and the right column is for

h/t=0.001. The temperature is T/t=0.03.

the grain boundary effect is also present, as we have seen above. The MR can

be large, ∼ 40% (Figure 1.12 ), at low temperature and at a field of 5T [12], and

seems to be dominated by grain boundary effects [13, 14]. Some results indicate

a decrease [12] in MR with increasing antisite disorder, while others show an

increment [15]. Similar to the temperature dependence of resistivity, the effects

of antisite disorder and grain boundaries on MR have not been deconvolved yet.

3.6 Half-metallicity

Ordered Sr2FeMoO6 has ferrimagnetic spin arrangement with large positive Hund’s

coupling on the magnetic (Fe) sites. Thus, only those electrons which are oppo-

sitely oriented to the core magnetic ions are able to conduct. Since it allows
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Figure 3.7: Spin resolved density of states at low temperature with increasing

antisite disorder. For the top row : S = 1.0 and 0.76; for the bottom

row : S = 0.50 and 0.08, as we move from left to right.

only one spin channel to conduct, it is half-metallic. Antisite disorder destroys

the half-metallicity. We have studied the impact of antisite disorder on the spin

resolved density of states and its thermal evolution.

3.6.1 Impact of disorder at low temperature

Figure 3.7 shows the spin resolved density of states at low temperature with

increasing antisite disorder. Left column of the top row is for the ordered double

perovskite. Here up-spin electrons are localized and only down-spin electrons

conduct. Hence, at low temperature it shows half-metallic behavior. But this

potentially useful property gets destroyed by the antisite disorder. As we can

see in the right column of the top row that antisite disorder ∼ 12% has already

created density of states for the minority electrons.

3.6.2 Temperature dependence

Figure 3.8 shows the thermal evolution of spin resolved density of states at weak

and moderate antisite disorder (S = 0.98 and 0.50) at temperatures ranging be-
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Figure 3.8: Top: thermal evolution of spin resolved density of states at weak

antisite disorder S = 0.98. Bottom: same at strong disorder S = 0.50.

Temperatures T/t = 0.01, 0.03, 0.05, 0.07 from left to right.

tween 0.01 and 0.07. Upon increasing the temperature, the up-spin density of

states gets broader due to the thermal fluctuation of spins around the ferromag-

netic state. At high temperature (T/t = 0.07) up and down-spin density of states

become similar. Here we observe a dip in the density of states around ω = 0 due

to the band narrowing (hopping suppression) effect of spin disorder. This dip is

weaker in the moderately disordered case due to the competing band broadening

effect of structural disorder.

3.6.3 Polarisation and itinerant moment

These systems are unusual because at T = 0 within each domain the conduction

electron has only one spin polarisation, but averaged over the system both up and

down electrons have density of states present at εF . A local probe, with probe area

� ξ2, where ξ is the typical domain size, will allow only spin polarised tunneling,

while a probe averaging over domains will see both D↑(εF ) and D↓(εF ). Figure

3.9 shows polarisation P =
(D↑(εF )−D↓(εF ))

(D↑(εF )+D↓(εF ))
and itinerant moment µ =

(n↑−n↓)
(n↑+n↓)

, as

a measure of half-metallicity. These are unity only in the absence of ASD at T =

0, and in general have a behavior that broadly mimics the behavior of the core

spin magnetisation, (Figure 3.2), in its disorder and temperature dependence.

56



0 0.02 0.04 0.06 0.08 0.1

T/t

0

0.2

0.4

0.6

0.8

1

∆
  
/ 

 +

S=0.98
S=0.76
S=0.50
S=0.08

D
D

0 0.02 0.04 0.06 0.08 0.1

T/t

0

0.2

0.4

0.6

0.8

1

∆
  
 /

  
+

S=0.98
S=0.76
S=0.50
S=0.08

n
n

Figure 3.9: Half-metallicity, estimated as
(D↑(εF )−D↓(εF ))

(D↑(εF )+D↓(εF ))
and

(n↑−n↓)
(n↑+n↓)

, for varying

temperature and different degrees of antisite disorder.

3.7 Discussion

Unlike the simple perovskite oxides, the double perovskite oxides posses inevitable

B-site antisite disorder, due to similar sizes of B-site cations. The disorder has a

high degree of short-ranged correlation. In order to completely characterise the

sample one has to specify the gross degree of disorder (i.e., fraction of mislocated

sites x) and the degree of short-ranged correlation p in it. The magnetisation,

and the half-metallicity are not strongly affected by this correlated disorder. The

domain structure of antisites makes the most difference in the transport: there is

rise in the resistivity at low temperature due to transmission blocking at antiferro

domain boundaries, and large low field magnetoresistance due to domain rotation.

There are three issues we want to touch upon, to relate our work to the real double

perovskites.

3.7.1 Role of dimensionality

We have concentrated on two dimensions since we wanted to study large system

sizes. This helps in capturing the impact of antisite disorder correctly and also

aids visualisation. It is well known that localisation effects are stronger in 2D

compared to 3D, so we performed the entire calculation on a 163 system to check

out the trends in transport. We solved the same model as discussed earlier in 3D
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Figure 3.10: Left panel - The ferromagnetic peak in the structure factor M2, where

M is the magnetisation, for different degrees of antisite disorder.

Right panel - The dc resistivity, ρ(T) for varying antisite disorder.

Results are on a 163 lattice, averaged thermally and over 10 copies

of disorder.

antisite disordered backgrounds on lattice sizes upto 163 [16]. In that case both

the kinetic energy and magnetic ordering have a 3D character. The results on

magnetisation and resistivity are shown in Figure 3.10 . The trends in both M2

and ρ(T) are similar to what we have obtained in 2D case as shown in the Figure

3.2 and 3.3 respectively. There is a sharp increase in the T = 0 resistivity

(although possibly no insulating phase) with increasing antisite disorder. The

low-temperature upturn in ρ(T) is also present, but weaker, in 3D. The trends in

magnetoresistance are also similar between 2D and 3D.

3.7.2 Hubbard interactions

The primary mechanism behind magnetism in the double perovskites is a variant

of double exchange, driven by the large Hund’s coupling on the B site. This

is adequate in a one band context. When band degeneracy is considered, as is

true of the real material, the inter-orbital Hubbard effect on the B (magnetic)

site, and weaker correlation effects on the B′ (nonmagnetic) site would be needed

for a quantitative theory of the itinerant moment. However, comparison of our

data [16] with existing results [17] shows that the qualitative trends in disorder
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dependence remain the same. Although we are mainly interested in the disorder

dependence, the correlations effects also need to be included to understand results

like photoemission in Sr2FeMoO6 [18].

3.7.3 Effect of grain boundaries

In the absence of a chemical characterisation of the grain boundary material,

and an electronic model for the grain boundary, it is hard to construct a com-

prehensive theory. However, since grain size, lG � ξ (where ξ is the structural

correlation length), it should be possible to study the role of antiphase boundaries

and magnetic domain walls via probes that focus on a single grain.

The intra-grain effects highlighted here would be directly relevant to single

crystals, and define the starting point for a transport theory of the polycrystalline

double perovskites.

3.8 Conclusion

We have studied a double perovskite model on antisite disordered backgrounds

with a high degree of short-range correlation. In this situation, the antiphase

boundaries coincide with the T=0 magnetic domain walls. Growing ASD reduces

the low-field magnetisation, destroys the half-metallicity, and leads to a low-

temperature metal-insulator transition. While these are disadvantages, we also

note that the ferromagnetic Tc is only weakly affected by moderate ASD and

the low-field magnetoresistance is dramatically enhanced by disorder. Our real

space results allow an interpretation of these in terms of the domain pattern,

the effective exchange, and the short-range magnetic correlations. They are also

consistent with explicit spatial imagery from recent experiments. The “intra-

grain” effects highlighted here would be directly relevant to single crystals, and

define the starting point for a transport theory of the polycrystalline double

perovskites.
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Chapter 4

Impact of Antisites on

Antiferromagnetic Order

Chapter summary: This chapter focuses on the metallic antiferro-

magnetic phase, and the phase coexistence window. For spatially correlated

antisite disorder antiferromagnetic order is affected much less strongly than fer-

romagnetism. This intriguing result arises from the finite Q nature of antifer-

romagnetic order which leads to a weaker cancellation of the order between do-

mains. For a given structural order parameter S (which measures the fraction

of correctly located sites) the A type antiferromagnetic structure factor follows

DA ∼ (1 + S2)/2, in contrast to DF ∼ S2 in the ferromagnet, while the G

type phase follows DG ∼ (1 + S)2/4. So, despite the possibility of large anti-

site disorder there is certainly hope of observing antiferromagnetic phases. The

antiferromagnetic states are metallic, and the electronic wavefunctions in these

phases continue to be spatially extended even at large disorder. Antisite disorder

increases the residual resistivity but we did not observe any insulating regime.

4.1 Introduction

The “simple perovskite” transition metal oxides - the cuprates, manganites, or

cobaltates, have a rich phase diagram [1], with a strong dependence on the doping

level. The manganites, for instance, exhibit not just ferromagnetism (FM), but

also CE-type magnetic order and A, C, and G type antiferromagnetic (AFM)

phases [2], depending on the hole doping level.
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Figure 4.1: Top panel : Three magnetic phases in the structurally ordered 2D

double perovskite model. Left- ferromagnet, center- A type antifer-

romagnet, right- G type antiferromagnet. Bottom panel : Electronic

density of states for the ferromagnetic, A and G type ordered phases

in the structurally ordered background.

Similarly one may also expect the double perovskites to exhibit non ferro-

magnetic order upon significant electron doping. This has been seen in model

Hamiltonian studies [3–6] and confirmed via ab initio calculations [7,8]. The an-

tiferromagnetic phases should occur, for example, on sufficient electron doping of

materials like Sr2FeMoO6 (SFMO) via La substitution for Sr. Clear experimental

indication of such antiferromagnetic order is limited [9, 10], possibly because of

increase in antisite disorder with La doping on Sr2FeMoO6, although intriguing

signatures of non-ferromagnetic behavior are seen.

The phase diagram mapping out the occurrence of antiferromagnetic phases

in the clean limit in two dimensions has been established earlier [3]. The top

panel of Figure 4.1 shows the three magnetic phases in a structurally ordered
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Figure 4.2: Magnetic ground state for varying electron density, n, and effective B-

B′ level separation, ∆. (a): Phase diagram with only BB′, i.e., nearest

neighbor, hopping. (b): Phase diagram when an additional B′-B′

hopping, t′/t = −0.3, is included. The labels are: F (ferromagnet),

A (planar phase), C (line like), FL (flux) and SP (spiral). This figure

does not show the narrow windows of phase separation in the model.

The phase diagrams are generated via a combination of Monte Carlo

and variational calculations on lattices of size upto 20×20×20 [4].

background in a two dimensional double perovskite model. These occur with

increasing electron density. The moments are on the B sites. We have not shown

the induced moments on the B′ sites.

At low electron density a ferromagnetic alignment of the core spins is favored

since it leads to the maximum bandwidth. However, at sufficiently large band fill-

ing, antiferromagnetic states with A or G type order successively become favored,

as shown in the bottom panel of Figure 4.1. While these spin configurations lead

to smaller electronic bandwidth they have a higher density of band edge states

compared to the ferromagnet.

In contrast to the two dimensional case, where the effective magnetic lattice is

bipartite, the three dimensional lattice has a geometrically frustrated face cen-

tered cubic structure. This promotes various non-collinear spiral states and “flux”

like phases in addition to collinear antiferromagnetic ordered phases, studied in
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Figure 4.3: Spin configuration for A type order. The spins are parallel within the

111 planes (shown) and are antiparallel between neighboring planes.

The delocalisation is effectively two dimensional [4].

detail elsewhere [4]. Figure 4.2 shows, at large Hund’s coupling, the possible

magnetic phases for varying electron density, level separation εB − εB′ , and the

crucial B′-B′ (next neighbor) hopping t′. In addition to FM, and collinear A and

C type order, the phase diagram includes large regions of non-collinear flux and

spiral phases and windows of phase separation. Modest B′-B′ hopping leads to

significant shift in the phase boundaries, and particle-hole asymmetry.

Figure 4.3 shows the spin configuration for A type order in three dimension.

The spins are parallel within the 111 planes (shown) and are antiparallel between

neighboring planes. The conduction path gets divided into two sub-lattices, such

that each spin channel gets to delocalise in one sub-lattice. In one such sub-

lattice, only one of the up or down spin electrons can delocalise, the other remains

localised. The roles of up and down are reversed in going from one sub-lattice

to other, as a result one gets spin-degenerate localised and dispersive bands for

antiferromagnetic phases. The delocalisation is effectively two dimensional. This

A type order in three dimension is analogous to the A type antiferromagnet phase

in two dimension (top panel of Figure 4.1 ), with the ferromagnetic planes being

equivalent to the ferromagnetic stripes.
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In order to get to these phases we have to electron dope the system. In real

material this leads to an increase in the amount of antisite disorder. To un-

derstand this situation we have studied [11] the survival of electronically driven

antiferromagnetism in the presence of spatially correlated antisite disorder in a

two dimensional model. We have worked in two dimensions for ease of visualisa-

tion and to access large system size, and will comment on the three dimensional

situation at the end. We have focussed on a couple of electron densities, one each

in the A type and G type window, respectively.

4.2 Earlier studies on AFM order

Early studies using model Hamiltonians for double perovskites had observed the

instability [5] of the ferromagnetic state, without exploring the competing phase

that emerges. A subsequent variational study [6] did identify non-ferromagnetic

phases. More recent studies using both simple models [3] and realistic DFT

calculations [7, 8] indicate that the ferromagnet becomes unstable to an A type

phase on increasing electron density. In Sr2−xLaxFeMoO6, for example, this is

expected to happen for x & 1. The DFT studies have employed supercells for

a few commensurate doping levels. Using a three band model Hamiltonian with

parameters inferred from the DFT, the same authors have explored [7] a more

continuous variation of La doping level and confirmed the DFT trends. The

crossover to a non-ferromagnetic ordered state is, therefore, not an artifact of a

single band model or two dimensionality that earlier studies employed.

Regarding the effect of antisite disorder on the non-ferromagnetic phases, we

are aware of only one study involving uncorrelated antisite defects [6]. It is more

focused on the doping dependence, and explores mainly the magnetism, but the

trends are consistent with what we observe here.

Samples have indeed been synthesised with large La doping on Sr2FeMoO6

[9, 10]. The main observations are (i) a suppression [9] of the low field mag-

netisation with increasing x (may be related to increase in antisite defects), and

(ii) signature of an antiferromagnetic metallic ground state in heavily electron

doped Sr2FeMoO6 [10]. There is unfortunately no detailed understanding of the

impact of antisite disorder in these samples yet, or any data on resistivity and
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Figure 4.4: Phase diagram for the non disordered double perovskite. We only

show the region n = [0, 1]. From n = 1 to n = 2 one populates

the non-dispersive B′ level, and the magnetic state is G type. The

n = [2, 3] window is a symmetric version of the n = [1, 2] region. The

regions between the phases indicate phase separation. The results are

obtained via Monte Carlo on a 40× 40 lattice [3].

magnetoresistance.

Let us describe the phase diagram of the two dimensional model in the clean

limit before considering disorder. In the absence of antisite disorder, there are no

AFM superexchange interactions in the system, and the magnetic order is decided

by minimisation of the electronic energy. For Hund’s coupling much much greater

than hopping amplitude the model supports three collinear phases. The FM state

gives way to A type (line like) order with increasing electron density, and finally to

a G type state. These have been discussed earlier [3]; we reproduce the magnetic

configurations in the top panel, and the electronic density of states in the bottom

panel of Figure 4.1 . The ferromagnetic state is preferred at low density, n,

since it has the largest bandwidth. The A type state has lower bandwidth, but

with large density of states near the band edge. The FM becomes unstable at

n ∼ 0.45. The A type state is stable for n ≥ 0.58, and between these we have

a phase separation window. Similarly the A to G transition involves a phase
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separation window. The phase separation windows narrow with increasing T and

vanish as T → Tc. The thermal transitions and the phase separation windows

are shown in Figure 4.4.

Broadly, the task would be to extend this phase diagram to finite antisite disor-

der. Instead of attempting to map out the disorder dependence at all densities we

choose two representative densities, n ∼ 0.65 in the A type window, and n ∼ 0.95

in the G type region, to clarify the impact of disorder. We also explore the effect

of antisite disorder on the phase separation window, between the ferromagnet

and the A type phase, since it would be encountered in any attempt to electron

dope the ferromagnet.

4.3 Disorder configurations

We study four families, with progressively increasing antisite disorder as dis-

cussed earlier (Figure 2.7 ). A representative configuration from each family

is shown in the top row in Figure 4.5 . They have structural order parameter

S = 0.98, 0.76, 0.50, 0.08 as we move from left to right. The red and blue

colours indicate internally ordered domains but with a phase slippage between

them. We plot (ηi − 1/2)eiπ(xi+yi).

The middle row shows the A type antiferromagnetic phase on this structural

motif, while the bottom row shows the G type phase. The magnetic correlations

are characterised via the overlap factor gi = S0.Si, where S0 is the left lower corner

spin in the lattice. As mentioned earlier, our disorder average for magnetic and

electronic properties is performed typically over 10 configurations within each

family.

4.4 AFM order with antisite disorder

In the ferromagnetic case it is simple to see that the presence of antiferromagnetic

superexchange at the antiphase boundary would tend to align spins in opposite

directions across an antiphase boundary. The system breaks up into up and down

spin domains. Suppose the up spin domains correspond to the correctly located

sites and are the majority. The net magnetisation is proportional to the volume
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Figure 4.5: Antiphase domains and corresponding antiferromagnetic phases. The

top row shows the domain pattern in the ASD background, with in-

creasing disorder. The middle row shows the A type antiferromag-

netic phase on this structural motif, while the bottom row shows the

G type phase.

difference between the correctly located and mislocated regions. If the degree of

mislocation is x, then the normalised magnetisation M = (1−x)−x = 1−2x = S.

In the magnetic structure factor D(q), the ferromagnetic peak is at a pair of

wave-vectors, QF1 = {0, 0} and QF2 = {π, π}. We have set the lattice spacing

a0 = 1 on the DP lattice. A pair of wave-vectors is required to characterise an

ordered state since half the sites (the B′) are non magnetic and hence zeroes of

the spin field. Since D(QF1) is simply M2, the domain argument, above, yields

D(QF1) ∼ S2. This dependence is well established experimentally [12], and also

observed by us [13].

For the A type phase, studied on the same antisite structures as the fer-

romagnet, the nature of local magnetic order is more subtle. For the clean
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Figure 4.6: Magnetic order in the A type and G type phases with ASD. The

results are based on Monte Carlo on 40 × 40 systems, and averaged

typically over 10 configurations for each value of S.

A type antiferromagnetism the order is at two possible pairs of wavevectors,

QA1 = {π/2, π/2} and QA2 = {3π/2, 3π/2}, or QA3 = {π/2, 3π/2} and QA4 =

{3π/2, π/2}. The two sets arise due to the two possible diagonals along which

the ferromagnetic stripes can order. Within each set there are two Q values be-

cause half the sites in the double perovskite lattice are non-magnetic, and the

spin field has to have nodes there. In the clean system either {QA1,QA2} or

{QA3,QA4} are picked. In a disordered system all four can show up, as in the

middle row, last column, in Fig.3. For the G type phase the order is at the single

pair: QG1 = {π, 0} and QG2 = {0, π}, there is no degeneracy.

The middle and bottom rows in Figure 4.5 show A type and G type order,

respectively, for progressively increasing antisite disorder. Figure 4.6 quantifies

the suppression of the ordering peak in D(q), after disorder averaging over copies

with roughly fixed degree of mislocation.

We will analyse the structure factor, D(q), in terms of the domain pattern.

D(q) is related to the Fourier transform of the spin configuration:

D(q) =
1

V 2
|~f(q)|2

~f(q) =
∑
ri

Sie
iq.ri
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where V is the total volume of the system.

For collinear order, where the spin projection is only on the z axis, the spin

vector can be replaced by Si. If we imagine the spin configuration to be broken up

into domains, indexed by a label α, say, then, for collinear phases, ~f(q) = ẑf(q)

and :

f(q) =
∑
α

∑
rαi ∈α

Sie
iq.rαi =

∑
α

fα(q) (4.1)

where the sum runs over the domains, and the rαi are coordinates within a domain

α. This shows that f(q) gets additive contributions from various domains, with

phase factors that we will soon clarify. The formulation above holds as long as

(a) there is no significant non collinearity and (b) ξ � 1, i.e., we can ignore

interfacial spins which may be hard to assign to any particular domain.

4.4.1 A type order

For weak to moderate antisite disorder we observe that the system prefers fer-

romagnetic stripes along any single diagonal, albeit with phase slippage between

the stripes to accommodate the effect of JAF . This is true for S = 0.98, 0.76 and

0.50, the first three columns in the middle row in Figure 4.5 . Domains which

are translated with respect to the reference domain have relative displacement

δrα = x̂a0 or ŷa0. The order within all domains is similar. So, the contribution of

each domain at the ordering wavevector, Q, will be proportional to the domain

volume Vα, and involve a phase factor, i.e.,

fα(Q) = Vαe
iQ.δrαf0(Q)

where f0(Q) is the normalised reflection in the perfectly ordered system. For the

Q = QA1 = {π/2, π/2} peak, the phase factor is eiπ/2 irrespective of whether the

domain is x displaced or y displaced. So, all the mislocated sites, grouped into

domains, contribute Vmise
iπ/2f0(Q), where Vmis is the total volume of mislocated

regions.

Adding the contribution from the majority domains, which are undisplaced,

we obtain:

f(QA1) = ((V − Vmis) + Vmise
iπ/2)f0(QA1)
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Remembering that Vmis/V = x, the volume normalised structure factor peak is

D(QA1) = |(1− x) + eiπ/2x|2 =
1

2
(1 + S2)

This is roughly consistent with the S dependence of the T → 0 structure factor

in Figure 4.6 (a). It is distinctly slower than the suppression of order in the

ferromagnet, where D(QF ) ∼ S2.

At larger ASD however, the system has short stripes oriented along both diag-

onals, see middle row last column in Figure 4.5. These domains have magnetic

peaks at QA3,QA4 and not at QA1,QA2. Even assuming that the majority do-

mains all contribute (1−x)f0(QA1), we notice that the mislocated regions require

classification into two groups: those contributing at QA1,QA2 with volume frac-

tion y, say, and those at QA3,QA4 with volume fraction x − y. In that case the

peak at QA1 would be

D(QA1) = |(1− x) + eiπ/2y|2

The (x− y) fraction makes no contribution to the peak, and that weight is lost.

Notice that x ≥ y ≥ 0, and it is not possible to write D(QA1) purely in terms of

S. We could write the expressions for the structure factor at the other three Q

as well, and they will all depend on both x and y. This is a general feature of

magnetic states where the order can locally pick out different orientations.

We can make some headway in the strong disorder limit, x = 1/2, S = 0, by

assuming that there are four kinds of domains, with roughly equal area. There

would be two families of {QA1,QA2} domains, each with 1/4 the system vol-

ume, and a relative phase shift ±π/2. Similarly there would be two families of

{QA3,QA4} domains, each with volume 1/4, and relative phase shift ±π/2. In

this case the QA1 peak, for example, in D(Q) will be:

D(QA1) = |1/4 + eiπ/2/4|2 = 1/8

This is not very far from D(QA1) ∼ 0.1 that we obtain from the Monte Carlo.

Other peaks, at QA2,QA3, etc, would have similar magnitude.

4.4.2 G type order

G type order occurs at the combination {QG1,QG2} : {{0, π}, {π, 0}}. As before

the relative displacement of the domains can be only x̂a0 or ŷa0. Suppose we are
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computing the structure factor at QG1 then all domains will contribute, but with

following phase factors: zero if the domain is not mislocated (δr = 0), zero again

if the domain is x̂ displaced, and eiπ = −1 if the domain is ŷ displaced.

In two domain systems, as in the second column in Figure 4.5 , the mislocated

domain is either x displaced or y displaced. For copies with x displacement the

contribution at QG1 will be |(1 − x) + x|2 = 1, while for y displacement it will

be |(1− x) + eiπx|2 = (1− 2x)2 = S2. Averaging the structure factor over copies

would lead to D(QG1) = (1/2)(1 + S2). This is roughly what we observe in our

Figure 4.6 (b) at T = 0.

In large systems, where there will be many domains, we can assume that half

the mislocated domains are x displaced and half y displaced. In that case the

structure factor would be

D(QG1) = |(1− x) + x/2 + eiπx/2|2.

Using 1− 2x = S this leads to

D(QG1) = (1/4)(1 + S)2.

For S → 0 this gives 0.25, not far from ∼ 0.20 that we obtain from our configu-

rations.

This reveals that for both A and G type order even when half the sites are

mislocated, i.e., one has maximal antisite disorder, there is a surviving peak in

the structure factor. All these of course assumed that the structural pattern had

a high degree of spatial correlation so that one can meaningfully talk of domains.

We should have 1 − p � 1, or structural correlation length ξ � a0. If the

structures were fragmented to a random alloy then the results above would not

hold. We have checked this explicitly.

4.5 Transport with antisite disorder

All the three phases, ferromagnetic, A type, and G type, in the 2D double per-

ovskite model are metallic in the clean limit. The electronic states are extended,

and there is a finite density of states at the Fermi level. In the absence of antisite

disorder the resistivity, ρ(T ), in all three have similar temperature dependence.
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Figure 4.7: Resistivity in the A type and G type phases with antisite disorder.

The results for each S are averaged over 10 realisations of disorder.

The resistivity increases rapidly as temperature increases towards Tc, Figure 4.7

and our earlier work [13] on the ferromagnet, and saturates at high tempera-

ture. A Fisher-Langer type [14] phenomenology can qualitatively describe the

transport.

Weak disorder leads to an increase in the residual resistivity of the A and G

type phases, see Figure 4.7 , as observed earlier for the ferromagnetic case. The

sharp resistive transition observed in the clean limit (S = 0.98) is also gradually

broadened. There is however a key difference with respect to the ferromagnetic

phase when we move to strong disorder.

In the 2D case our results [13] on the ferromagnet suggest an insulating T =

0 state beyond a critical disorder, with dρ/dT < 0. At the highest disorder,

S = 0.08, ρ(T) in the A type antiferromagnet remains essentially flat down to

T = 0, while in the G type phase there is still a low temperature downturn. While

these are finite size results, we argue below why there is an intrinsic reason for

transport in the antiferromagnetic phases to be less sensitive to antisite disorder

and domain formation. This is related to the nature of electronic wavefunctions

in these phases. We consider the two phases in succession below.

In the A type phase the core spin order involves diagonal stripes. Up-spin elec-

trons delocalise on down-spin stripes which involve one B diagonal and the two

adjacent B′ lines. Down-spin electrons delocalise on up-spin stripes. The down
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and up stripes share a common B′ line. The essential feature is that the electronic

wavefunctions are quasi-one dimensional. The introduction of antisite disorder

leads to two effects: (i) it hinders propagation along the stripe, and (ii) allows

scattering between the stripes leading to an expansion of the wavefunction in the

transverse direction. On its own, the first effect would have suppressed conduc-

tion, but the new matrix element between stripes allows a transverse pathway

for delocalisation. In contrast to the FM case there is no confinement of the

wavefunctions to specific domains, and the two competing effects above lead to

a finite resistivity (at least a much weaker upturn) even at strong disorder.

In the clean G type phase the system can be viewed as two interpenetrating

square lattices, one with up spin B sites, the other with down spin B sites. The

electrons delocalise via the B′ sites, and each B′ site hosts both up and down

electron states. Electrons in both spin channels are delocalised over the whole

system in the absence of antisite disorder. The presence of antisite domains

leads to scattering but no confinement of electrons to the domains. Due to the

inherently 2D character of the G type electronic states, in contrast to quasi-1D

for A type, the system has a lower resistivity.

We contrast the resistivity of the three phases in Figure 4.8 for the case of maxi-

mum disorder that we have studied. These are configurations with S ∼ 0.08, but,

as we have noted, with a fairly high degree of local correlation. The ferromag-

net has a clear low temperature upturn due to the confinement of electrons into

domains or pathways created by the antisite disorder. The A and G type elec-

tronic states, in either spin channel, are not confined to the magnetic/structural

domains, and the resistivity remains comparatively lower. The high temperature

resistivity is determined by spin disorder scattering, depends weakly on carrier

density (the FM, A and G phases have different n), and is almost temperature

independent. In the analysis above we have ignored the possibility of additional

weak localisation effects that may arise (at very large lengthscales) due to the 2D

nature of the problem. In 3D of course such effects would be absent. We also

studied the strong disorder (small S) situation in the presence of uncorrelated

antisites. On the resistivity we do not find a significant difference between corre-

lated and uncorrelated antisite disorder. At small disorder (large S) however we

expect that correlated disorder, which involves a few minority domains, will lead
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Figure 4.8: Comparison of the resistivity in the FM, A and G type correlated

phases in samples with the lowest degree of order S = 0.08.

to weaker scattering and resistivity compared to randomly distributed antisites.

4.6 Phase coexistence

In the clean limit, the increase of electron density by doping the ferromagnet

would encounter a window of phase separation. A homogeneous state is not

allowed for 0.45 ≤ n ≤ 0.58 and this (idealised) system would break up into

macroscopic regions having densities n ∼ 0.45 and n ∼ 0.58. This pathology is

avoided by long range Coulomb interactions or quenched disorder. For the anti-

site disordered configurations that we are considering the antisite disorder itself

generates an effective disorder that controls the pattern of spatial coexistence.

Figure 4.9 shows the magnetic correlations in a fixed antisite background for

changing electron density. The leftmost panel is the structural pattern, showing

the antisite domains. The next five snapshots correspond to increasing chemical

potential, µ, and consequently the electron density. The first panel in this set is

a (domain) ferromagnet at n < 0.45, the second shows emergence of stripes along

with the ferromagnetic regions. The ferromagnetic regions shrink and the linelike

patterns become more prominent in the third panel. The fourth and fifth panel

complete the evolution, with ferromagnetic correlations completely replaced by

stripes (of both orientation) as in the middle row fourth column in Figure 4.5 .

77



Figure 4.9: Magnetic correlations with increasing electron density as one tra-

verses the coexistence regime in an antisite disordered background.

The first panel shows the structural pattern arising from the ASD.

Panel 2 shows the spin correlations at µ = µFM = −1.8, where the

ground state is a (domain) ferromagnet. The extreme right is for

µ = µAF = −1.4, where the system has only A type AF correlations.

As µ increases from µFM to µAF the pattern exhibits coexistence of

short range ferromagnetic and antiferromagnetic correlations.

The evolution of the particle density with µ, and the rapid change near the phase

separation window, are shown in Figure 4.10 .

Had the antisite disorder been uncorrelated there would be no structural do-

mains in Figure 4.9 . Since the coexisting phases basically inhabit the small do-

mains, which are ordered in the intra-domain lengthscale, the absence of domains

would wipe out the coexistent pattern. In its place we would have a nanoscale

magnetic glass. The correlated disorder therefore enables the coexistent pattern

to emerge and survive.

4.7 Discussion

While our study has some value in clarifying the interplay of antisite domains

with delocalisation driven antiferromagnetism, our model differs from the real

double perovskites in the following aspects.

(i) Dimensionality: The double perovskites are three dimensional and, in an

ordered structure, the B and B′ alternate along each axis. The effective B lattice

is FCC, and therefore geometrically frustrated. This leads to a complex variety

of phases [4], collinear at low filling and non collinear near half-filling. Capturing

these phases via a Monte Carlo calculation is non trivial even in the absence of
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Figure 4.10: The variation of electron density with chemical potential as the FM

to A type AF crossover is traversed in a high ASD sample (S = 0.08).

antisite disorder. So, while the antisite domain pattern can be readily generated

in 3D as well, solving for the magnetic structure accurately remains a difficult

task. This has prevented us from studying the 3D disordered model directly.

However, using the insight gained from the 2D system, and knowing the order-

ing wavevector (and the degeneracy of the ordering pattern) allows us to make

some prediction for 3D as well. For instance, the A type phase in 3D involves

{1, 1, 1} planes, ferromagnetic within the plane and AF between neighboring

planes. There are four families of such planes in 3D, in contrast to two families

of lines in 2D, each indexed by a couple of wavevectors. One such pair, for ex-

ample, is {{π/2, π/2, π/2}, {3π/2, 3π/2, 3π/2}} = {Q1, Q2}, say. The effect of

a small degree of mislocation on a state primarily ordered at these wavevectors

would be the suppression D(Q) ∼ 1
2
(1 + S2). At large disorder, small S, the

3D residual value would be smaller than the 1
8

predicted in 2D due to the larger

number of ordering possibilities in 3D.

(ii) Effect of electron-electron interactions: Some authors have invoked Hub-

bard interactions on the B and B′ sites when studying the double perovskites [15].

In our analysis of the impact of antisite disorder in the ferromagnetic regime,

the results of such an approach closely matches our own. In the present, an-

tiferromagnetic, context we do not know of any calculations invoking Hubbard

interactions. The Hund’s coupling suffices to generate the non trivial magnetic
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phases and, we feel, additional interactions should be brought in when we have

adequate understanding of the vital role of disorder.

(iii) Nature of antisite disorder on electron doping: In a material like SFMO

electron doping can be accomplished by substituting La for Sr, i.e., compositions

like Sr2−xLaxFeMoO6. In stoichiometric SFMO, it seems established that the

primary source of disorder is Fe-Mo mislocation. However, substituting La for Sr

also generates A site disorder in the perovskite network and in principle the doped

La might sit preferentially near Fe or Mo. If that happens it would lead to an

additional potential on the Fe and Mo sites. We need guidance from experiments

or ab initio theory to model this A site disorder.

4.8 Conclusions

We have studied the survival of the antiferromagnetic double perovskite phases

in the presence of spatially correlated antisite disorder. We observe that anti-

site disorder affects the antiferromagnetic order much less strongly than it affects

ferromagnetism. For a given structural order parameter S, the A type antiferro-

magnetic structure factor follows DA ∼ (1 + S2)/2, in contrast to DF ∼ S2 in

the ferromagnet, while the G type phase follows DG ∼ (1 + S)2/4. So, despite

the possibility of large antisite disorder at the high electron doping needed to

observe the antiferromagnetic phases, there is certainly hope of observing these

magnetic structures. The antiferromagnetic states are metallic, and the elec-

tronic wavefunctions in these phases continue to be spatially extended even at

large disorder. Antisite disorder increases the residual resistivity, but, unlike the

ferromagnet, we did not observe any insulating regime. The field response of

these antiferromagnetic metals is also fascinating, and is discussed in the next

chapter.
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Chapter 5

Field Response in

Antiferromagnetic Metals

Chapter summary: In this chapter we discusses the field response

expected in an antiferromagnetic double perovskite metal. While the zero field

resistivity is unremarkable in such a metal, we find that the magnetoresistance

can be very large and positive. This can be a direct indicator of the metallic

antiferromagnetic state. Beyond a modest field, needed for suppression of long

range antiferromagnetic order, the system shows more than tenfold increase in

resistivity near Tc in a structurally ordered system. The ratio continues to be

almost twofold even in systems with ∼ 25% antisite disorder. The effect occurs

because an applied field suppresses long range antiferromagnetic order leading

to a state with short range antiferromagnetic correlations in the field induced

ferromagnetic background. These antiferromagnetic fluctuations generate strong

electronic scattering and a resistivity that can be much larger than the ordered

antiferromagnetic metal. This mechanism is quite general, complementary to the

colossal negative magnetoresistance process, and should operate in other local

moment antiferromagnetic metals as well.

5.1 Introduction

There has been intense focus over the last two decades on magnetic materials

which display large negative magnetoresistance (MR) [1–3]. In these systems,

typically, an applied magnetic field reduces the spin disorder leading to a suppres-
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sion of the resistivity. The field may even drive an insulator-metal transition lead-

ing to ‘colossal’ magnetoresistance [1]. Large positive magnetoresistance is rarer,

and seems counterintuitive since an applied field should reduce magnetic disor-

der and enhance conductivity. We illustrate a situation in double perovskite [4]

metals, where an applied field can lead to enormous positive magnetoresistance.

The underlying principle suggests that local moment antiferromagnetic (AFM)

metals [5–12], at strong coupling, should in general be good candidates for such

unusual field response.

Like in other correlated oxides [13], the magnetic order in the double perovskites

is expected to be sensitive to electron doping as we have discussed in detail earlier.

It has been suggested [14–16] that the ferromagnetic metal can give way to an

AFM metal on increasing electron density. The AFM order is driven by electron

delocalisation and has lower spatial symmetry than the parent structure. The

conduction path in the AFM background is low dimensional and easily disrupted.

There is ongoing effort [17,18] to obtain an AFM metal by electron doping the

ferromagnetic metal. Although there is no clear evidence yet of the occurrence

of an AFM metal, there is some signature of a non ferromagnetic metal in the

heavily electron doped Sr2FeMoO6 [18]. The problems are twofold:

1. Antisite defects: in a material like Sr2FeMoO6, substituting La for Sr to

achieve a higher electron density in the Fe-Mo subsystem tends to make

the Fe and Mo ionic sizes more similar (due to resultant valence change),

increases the likelihood of antisite disorder, and suppresses magnetic order.

2. Detection: even if an AFM state is achieved, confirming the magnetic order

is not possible without neutron scattering. The zero field resistivity is

unfortunately quite similar [19] to that of the ferromagnetic metal.

5.2 Field response in ordered AFM metal

Let us first discuss the thermal and field effects in the structurally ordered double

perovskite before examining the effect of antisite disorder [20]. As we have seen in

the last chapter, upon increasing electron density the ground state changes from a

ferromagnetic metal to a phase with stripe-like order. The ‘stripe’ phase involves
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ferromagnetic B lines coupled antiferromagnetically in the transverse direction.

We call this the A type phase. At even higher electron density there is a more

traditional antiferromagnetic phase, where an up spin B ion, say, is surrounded

by four down spin B ions, and vice versa: the G type phase. We focus here on

the A type phase since it has a simple 3D counterpart and occurs at physically

accessible electron density.

We have used field cooling (FC) as well as zero field cooling (ZFC) protocols.

For zero field cooling the system is cooled to the target temperature at field

h/t = 0 and then a field is applied. We calculate the resistivity and the magnetic

structure factor peaks and also keep track of spatial configurations of spins.

The A type pattern has two possible orientations of the stripes, either from

bottom left to top right, or from bottom right to top left. These are the two

diagonals in 2D. The first corresponds to peaks in the structure factor D(q)

at {QA1,QA2}, and the second to peaks at {QA3,QA4}. For reference, QA1 =

{π/2, π/2}, QA2 = {3π/2, 3π/2}, QA3 = {π/2, 3π/2}, QA4 = {3π/2, π/2}. The

ferromagnetic peak in D(q) are at QF1 = {0, 0} and QF2 = {π, π}. The ordered

configurations lead to peaks at two wavevectors since the model has both magnetic

and non-magnetic sites and our wavevectors are defined on the overall B-B′ lattice.

5.2.1 Field cooling

Let us first examine the field cooling results in resistivity, Figure 5.1 . Cooling

at h/t = 0 leads to a sharp drop in resistivity at T = T 0
c ∼ 0.032, where T0

c

is the zero field transition temperature, and ρ(T ) → 0 as T → 0. Cooling at

h/t = 0.01 leads to a small suppression in Tc but the trend in ρ(T ) remains

similar to h/t = 0. Between h/t = 0.01 and h/t = 0.02, however, there is a

drastic change in ρ(T ), and, as we will see later, in the magnetic state. The

primary effect is a sharp increase in the T < T 0
c resistivity, with the T → 0

resistivity now being almost 40% of the paramagnetic value. Even at this stage

it is clear that ρ(T, h)/ρ(T, 0) can be very large as T → 0 and is ∼ 4 for T ∼ T 0
c

and h/t = 0.02. Increasing the field even further leads to a reduction in ρ(T )

over most of the temperature window since the field promotes a ferromagnetic

state suppressing the antiferromagnetic fluctuations.
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Figure 5.1: The resistivity ρ(T) in the absence of antisite disorder for cooling in

different applied fields. For temperatures below the zero field tran-

sition, T0
c , ρ(T) increases on applying a field, and for T>T0

c ρ(T )

decreases on applying a field. The ratio ρ(T,h)/ρ(T,0) can be very

large as T→ 0 in this field cooling situation.

5.2.2 Zero field cooling

Now, we will study the impact of the magnetic field within the ZFC scheme.

Figure 5.2 shows the result of applying a field after the cooling the system to four

different temperatures, (i) slightly above T0
c , (ii) slightly below T0

c , (iii) to T0
c/2

and (iv) to T0
c/4.

For T> T0
c , the zero field resistivity is already large and the applied field mainly

suppresses the antiferromagnetic thermal fluctuations, leading to a gradual fall

in the resistivity. This is weak negative magnetoresistance.

Below T0
c (where there is already noticeable antiferromagnetic order) and at

T0
c/2, the resistivity remains almost unchanged till some value hc(T ) ∼ 0.01, then

there is a sharp increase in resistivity, with a peak in the ratio ρ(T, h)/ρ(T, 0)

around h/t ∼ (0.02 − 0.03) and a fall thereafter. This is consistent with the

trends seen in Figure 5.1 . At T0
c/2 the ratio reaches a maximum ∼ 12.

At lower temperature T0
c/4 the field appears to have a much weaker effect,

mainly because the update mechanism that we adopt does not allow a cooperative
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Figure 5.2: Field dependence of resistivity at different temperatures following a

zero field cooling protocol. For T = T+
c (just above Tc) the zero

field resistivity is already large and ρ decreases slightly with h due

to suppression of spin disorder. For T = T−c (just below Tc) and at

Tc/2 there is a sharp increase in resistivity at h/t ∼ 0.01, with a peak

around h/t ∼ 0.02−0.03 and a fall thereafter. This is consistent with

the trends seen in Figure 5.1 . At T = Tc/4 this ZFC scheme does

not manage to create competing magnetic structures for h/t ∼ 0.05,

possibly due to metastability of the parent AFM pattern. The field

induced switching is therefore easiest achieved between Tc/2 and Tc.

switching of the antiferromagnetic state at low T till very large fields. The field

induced switching is therefore easiest achieved between T0
c/2 and T0

c . Overall,

there is a window of T over which a moderate magnetic field can lead to a several

fold rise in resistivity.

A first understanding of the rise in resistivity can be obtained from the magnetic

snapshots of the system at T = T0
c/2 in Figure 5.3. We plot the correlation

fi = S0.Si in an equilibrium magnetic snapshot, where S0 is a reference spin

(bottom left corner) and Si is the spin at site Ri. The left panel is at h/t = 0

and shows a high level of A type correlation (stripe like pattern). This is a

low dimensional electron system since the electron propagation is along the one
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Figure 5.3: Evolution of spin correlations in the clean system in response to a

magnetic field. The plot shows fi = S0.Si in a magnetic snapshot,

where S0 is a reference spin (bottom left corner). T = T 0
c /2 and the

fields are, from left to right, h/t = 0, 0.008, 0.02, 0.05.

dimensional stripes in this 2D system. The stripe pattern has a high degree of

order so the scattering effects and resistivity are low. The second panel is at

h/t = 0.008, just below field induced destruction of antiferromagnetic order, and

the pattern is virtually indistinguishable from that in the first panel.

The third panel in Figure 5.3 is at h/t = 0.02 where the applied field has

suppressed long range A type order. However, there are strong A type fluctuations

that persist in the system and they lead to a pattern of short range ordered A

type patches with competing orientations, {QA1,QA2} and {QA3,QA4}, in a spin

polarised background. This patchwork leads to a high resistivity, higher than that

in leftmost panel, since the ferromagnetic paths are fragmented by intervening A

type regions, while the A type regions are poorly conducting due to their opposite

handedness. In the last panel the field, h/t = 0.05, is large enough so that even

the antiferromagnetic fluctuations are wiped out and the spin background is a

2D ferromagnet with extremely short range inhomogeneities. The resistance here

is significantly below the peak value.

Let us summarise the physical picture that emerges in the non disordered

system before analysing the effect of antisite disorder. The ingredients of the

large magnetoresistance are the following:

1. An antiferromagnetic metallic phase, without too much quenched disorder

so that the resistivity in the magnetically ordered state is small.

2. Field induced suppression of the antiferromagnetic order at h = hc(T ),
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Figure 5.4: Field response in the presence of antisite disorder. The temperature is

T = T 0
c /2, where T0

c is the Tc at h/t = 0 in the non disordered system.

The results are obtained via ZFC. (a) Field dependence of resistivity,

normalised to h/t = 0. (b) Magnetic structure factor at the major an-

tiferromagnetic peak QA1. The value is same at QA2 also. (c) Growth

in the ferromagnetic structure factor with h. (d) Growth in the com-

plementary antiferromagnetic peak QA3, result same for QA4.

say, replacing the ordered state with antiferromagnetic correlated spins in

a ferromagnetic background, leading to a high resistivity state.

Let us highlight the contrast to the standard negative magnetoresistance scenario,

where an applied field pushes the system from a spin disordered state to a spin

ordered state. Here the applied field pushes the ordered (antiferromagnetic) state

towards spin disorder, before the high field polarised state occurs. Our concrete

results are in the case of a 2D double perovskite model and a stripe-like ground

state, but the principle above is far more general and should apply to other

non-ferromagnetic ordered states in two or three dimensions, and to microscopic

models that are very different from the double perovskites. We will discuss this

issue at the end.
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5.3 Response in antisite disordered AFM metals

Defects are inevitable in any system and in particular one expects antisite disorder

in the double perovskites. The concentration of such defects may actually increase

on electron doping a material like Sr2FeMoO6, due to the valence change, and

we need to check if the large magnetoresistance is wiped out by weak disorder.

The presence of antisite disorder affects the zero field magnetic state itself, as we

have discussed elsewhere [19], and the field response has to be understood with

reference to this h = 0 state.

Figure 5.4 shows the resistivity ratio ρ(h)/ρ(0) at T = T0
c/2, in panel (a), and

the field dependence of structure factor peaks in panels (b)-(d). Figure 5.5 first

column shows the structural motifs on which the magnetism is studied.

Down to S = 0.50 the ratio ρ(h)/ρ(0) has a pattern similar to the clean case,

Figure 5.2, but the peak ratio reduces to ∼ 3 for S = 0.50. There is a correspond-

ing suppression in the principal antiferromagnetic peak QA1 and an enhancement

of the ferromagnetic peak QF . The complementary antiferromagnetic peak QA3

slowly increases with h, has a maximum around h/t = 0.02 (where the dis-

connected antiferromagnetic domains exist) and falls at large h as the system

becomes ferromagnetic overall. The trend that we had observed in the clean

limit is seen to survive to significant disorder. At S = 0.08, where the B-B′ order

is virtually destroyed, the h/t = 0 state, Figure 5.5 last row, has no long range

antiferromagnetic order. It is already a high resistivity state and an applied field

actually leads to weak negative magnetoresistance.

Since a real double perovskite has a three dimensional structure, we have also

studied a one band three dimensional model. In contrast to the two dimensional

case, where the effective magnetic lattice is bipartite, the three dimensional lattice

has a geometrically frustrated face centered cubic structure. This promotes vari-

ous non-collinear phases, studied in detail elsewhere [16]. We had tried to study

the impact of a magnetic field on these phases. These results, unfortunately, are

still preliminary and more work is needed to improve their quality.
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Figure 5.5: Field response in the antisite disordered systems at T = T 0
c /2, for

the S values in Figure 5.4 . The left panels indicate the structural

domains. The middle column shows the spin correlations at h/t = 0,

note that rows 1-3 show significant A type order, while the pattern

in the 4th row has AFM domains of both orientations. The right

column shows the spin correlations at h/t = 0.02. In rows 1-3 the

AFM pattern gets fragmented and FM regions show up. In row 4

the finite field pattern is not significantly different from the h/t = 0

case. Overall, the field enhancement of spin disorder is large in the

first three cases but modest at strong antisite disorder.

5.4 Discussion

Let us place our results in the general context of antiferromagnetic metals.

5.4.1 Earlier theory

We are aware of one earlier effort [21] in calculating the magnetoresistance of

antiferromagnetic metals (and semiconductors), assuming electrons weakly cou-

pled to an independently ordering local moment system. Indeed, the authors

suggested that antiferromagnetic semiconductors could show positive magnetore-
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sistance. Our framework focuses on field induced suppression of long range an-

tiferromagnetic order, rather than perturbative modification, and the positive

magnetoresistance shows up even in a high density electron system. The electron-

spin coupling is also (very) large, J/t � 1, and cannot be handled within Born

scattering.

5.4.2 Experimental results

The intense activity on oxides has led to the discovery of a few antiferromag-

netic metals, e.g., in the manganite (La0.46Sr0.54MnO3) [5], in CaCrO3 [6], in

the ruthenates (Ca3Ru2O7) [7–10], and in the heavy-fermions (CeRhIn5) [11,12].

Of these for the manganites and CaCrO3 (where the resistivity is too large),

we are not aware of magnetoresistance results across the field driven transition.

Ca3Ru2O7 and CeRhIn5 show large increase in the resistivity with the field in-

duced growth of ferromagnetic order, as shown in the Figure 5.6 . These are

local moment antiferromagnetic metals. On application of a magnetic field there

is suppression of long range antiferromagnetic order, leading possibly to a state

with antiferromagnetically correlated spins in a ferromagnetic background. This

may be responsible for the high resistivity that is observed. Neutron diffraction

in the presence of a magnetic field should be able to conform this scenario.

5.4.3 Qualitative analysis

The information about the spin configurations at any (T, h) is encoded in the

structure factor, D(q). Let us put down a form for D(q) and suggest how it

affects the resistivity. To simplify notation we will assume that the antiferromag-

netic peak is at one wavevector Q, while the ferromagnetic peak is at {0, 0}. The

antiferromagnetic phase has an order parameter mAF , say, while, for h > hc(T ),

there is induced ferromagnetic order of magnitude mF . Assuming that the dom-

inant fluctuations in the relevant part of the (T, h) phase diagram are at q ∼ Q,

we can write: D(q) ∼ m2
AF δ(q−Q) +A/(1 + (q−Q)2ξ2) when h < hc(T ), and

D(q) ∼ m2
F δ(q) +A′/(1 + (q−Q)2ξ2) when h > hc(T ). mAF ,mF and ξ depend

on (h, T ), A depends on mAF and ξ and A′ on mF and ξ. The amplitudes A and

A′ vanish as the corresponding m tend to saturate (since the spins get perfectly
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Figure 5.6: Left column : Top row shows ρc as a function of magnetic field for

Ca3Ru2O7 [7]. It has antiferromagnetic metallic phase between 48K

to 55K, while the bottom row shows the low temperature in-plane

field-induced change in resistivity ∆ρ=ρ(H)−ρ(0) (H ‖ c) for anti-

ferromagnetic metal CeRhIn5 with TN=3.8K [11]. Right column :

Plots magnetoresistance in the antiferromagnetic metallic phase for

ruthenate (top panel) and heavy-fermions (bottom panel). Respective

antiferromagnetic transition curve is also shown.

ordered). The delta functions in D(q) dictate the bandstructure while electron

scattering is controlled by the Lorentzian part.

Consider three cases (a) T = T+
c , h = 0, (b) T = T−c , h = 0, and (c) T =

T−c , h > hc(T ). In (a) there is no order, so A is large, and ρ = ρa, say. For

(b) even if ξ were the same as in (a), the presence of a large order parameter

would suppress A and hence the scattering. We call this ρ = ρb << ρa (assuming

there is indeed a large order parameter and no significant background resistivity

due to impurities). If we apply a field such that mAF → 0 but mF is still

small, then the structure factor crudely mimics the paramagnetic case, and we

should have ρc ≈ ρa. If all this is true, then just beyond field suppression of
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antiferromagnetic order (and for T just below Tc) we should get ρc/ρb � 1.

Broadly, if the appearance of antiferromagnetic order with reducing T leads to

a sharp drop in ρ then the field induced resistivity ratio can be large. This is

independent of dimensionality and microscopic detail. A caution: as T → 0, the

applied field would drive a first order transition from a large mAF state to one

with large mF and weak scattering. The scenario above will not work, as our

Figure 5.2 illustrated.

5.5 Conclusion

We have studied the magnetoresistance in an antiferromagnetic metal motivated

by the prediction of such a phase in the double perovskites. Beyond the modest

field needed for suppression of long range antiferromagnetic order, the system

shows almost tenfold increase in resistivity near Tc. The effect originates from

strong antiferromagnetic fluctuations in the field induced ferromagnetic back-

ground. The large positive magnetoresistance, though suppressed gradually, sur-

vives the presence of significant antisite disorder. The principle that we uncover

behind this “colossal positive magnetoresistance” should be applicable to other

local moment based antiferromagnetic metals as well.
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and Y. Ōnuki, J. Phys. Soc. Jpn. 70, 877 (2001).

[13] E. Dagotto, Science 309, 257 (2005).

[14] P. Sanyal and P. Majumdar, Phys. Rev. B 80, 054411 (2009).

[15] P. Sanyal, H. Das, and T. Saha-Dasgupta, Phys. Rev. B 80, 224412 (2009).

[16] R. Tiwari and P. Majumdar, arXiv:1105.0148 (2011).

[17] D. Sánchez, J. A. Alonso, M. Garćıa-Hernandez, M. J. Mart́ınez-Lopez, M.
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Chapter 6

Magnon Spectrum in the Domain

Ferromagnetic State

Chapter summary: This chapter describes our results on magnons

in the antisite disordered ferromagnets. We have used an effective Heisenberg

model with parameters that match the magnetisation in the parent electronic

problem. Using a spin rotation technique and the Holstein-Primakoff transfor-

mation we compute the magnon lineshape within a 1/S expansion. For the mixed

ferro-antiferro system this involves a boson problem that can be solved via a Bo-

golyubov transformation. We provide a description of the spin wave excitations

for progressively higher degree of antisite disorder. Results on the magnon en-

ergy and broadening reveal that even at large disorder, existence of domain like

structure ensures that the response has a strong similarity to the clean case. We

suggest a rough scheme for inferring the domain size from the spin wave damping.

We also highlight how the common assumption about random antisites leads to

a gross overestimate of magnon damping.

6.1 Introduction

Double perovskite (DP) materials with general formula A2BB′O6 have generated

a great deal of interest [1] both in terms of their basic physics as well as the

possibility of technological applications. In particular, Sr2FeMoO6 (SFMO) shows

high ferromagnetic Tc ∼ 420K, large electron spin polarisation (half-metallicity),

and significant low field magnetoresistance [2, 3].
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The ferromagnetic coupling between the S = 5
2

localized magnetic moments

in Sr2FeMoO6 (Fe3+ ion, 3d5 state) is driven by a double exchange mechanism,

where electrons from Mo delocalise over the Mo-O-Fe network. The B (Fe) ions

order ferromagnetically while the conduction electrons that mediate the exchange

are aligned opposite to the Fe moments, leading to a saturation magnetisation of

4µB per formula unit in ordered SFMO. The large entropy gain from disordering

promote antisite disorder (ASD) whereby some B ions occupy the positions of B′

ions and vice versa.

There is clear evidence now that B-B′ mislocations are not random but spatially

correlated [4, 5]. While antisite disorder (ASD) suppresses long range structural

order, electron microscopy [4] and x-ray absorption fine structure (XAFS) [5]

reveal that a high degree of short range order survives. The structural disorder

has a direct magnetic impact. If two Fe ions adjoin each other the filled shell

d5 configuration leads to antiferromagnetic (AFM) superexchange between them.

The result is a pattern of structural domains, with each domain internally fer-

romagnetic (FM) while adjoining domains are antiferromagnetic with respect to

each other.

Domain structure has been inferred in the low doping manganites as well, due

to competing ferromagnetic and antiferromagnetic interactions. Inelastic neutron

scattering in those materials suggest the presence of ferromagnetic domains in an

antiferromagnetic matrix, and allows an estimate of the domain size [6,7]. In this

chapter we provide a similar framework for interpreting the magnetic state and

domain structure in the double perovskite from spin wave data.

Our main results are the following [8].

1. We compute the dynamical magnetic structure factor within a 1
S

expansion

of an effective Heisenberg model chosen to fit the electronic model results.

2. The magnon data is reminiscent of the clean limit even at maximum ASD

(50%), where the bulk magnetisation vanishes due to interdomain cancel-

lation.

3. We suggest a rough method for inferring the domain size from the magnon

data and check its consistency with the ASD configurations used.
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4. We demonstrate that uncorrelated ASD leads to a much greater scattering

of magnons, i.e., a much broader lineshape. This suggests that in addition

to XAFS and microscopy, neutron scattering would be a sensitive probe of

the nature of disorder in these materials.

6.2 Effective magnetic model

6.2.1 Structural motif

We quickly recapitulate the structural aspect of the problem, discussed in detail

earlier, before moving to the magnetism.

Given the similar location of the B and B′ ions (at the center of the octahedra)

the tendency towards defect formation is more pronounced in the double per-

ovskites. This tendency of mislocation interplays with the inherent B-B′ ordering

tendency and creates a spatially correlated pattern of antisites [4, 5] rather than

random mislocation. To model this situation we have used a simple lattice-gas

model [9]. On proper annealing it will go to a long range ordered B, B′, B, B′...

pattern. We frustrate this by using a short annealing time to mimic the situa-

tion in the real materials. We encode the atomic positions by defining a binary

variable ηi, such that ηi = 1 when a site has a B ion, and 0 when it has a B′ ion.

Thus for an ordered case we will get η’s as 1, 0, 1, 0, 1, 0... along each cubic axes.

The B-B′ patterns that emerge on short annealing are characterised by the

structural order parameter S = 1−2x, where x is the fraction of B (or B′) atoms

that are on the wrong sublattice. We have chosen four disordered families with

increasing disorder for our study. Each member of the disorder family is being

generated at a given annealing temperature for a fixed annealing time, starting

with different initial random B-B′ configurations. The amount of disorder in

different member of the disorder family generated this way does not remains

exactly same, it has some deviation from the average value for that family. This is

the reason for the difference in the value of the structural order parameter S shown

in the chapter (mentioned below), from other chapters. One structural motif each

for these families is shown in the first column of Figure 6.1 , with progressively

increasing disorder (from top to bottom) on a 40 × 40 lattice. We have plotted
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Figure 6.1: First column contains the structural motif for four disordered families

with progressively increasing disorder (from top to bottom). Second

column shows the ground state spin overlap. In the third column, we

have shown the corresponding nearest neighbor (NN) bond configu-

rations. Here red, blue, and green represents B-B, B′-B′, and B-B′

bonds respectively. Lattice size is 40× 40 [10].

g(ri) = (ηi− 1
2
)eiπ(xi+yi) as an indicator of structural order. For a perfectly ordered

structure g(ri) is constant. We have denoted these different realisations of antisite

disorder configurations as C1, C2, C3, C4 and the corresponding structural order

parameter has values S = 0.98, 0.88, 0.59, 0.17 from top to bottom. We solve

the electronic-magnetic problem on these structural motifs.
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6.2.2 Electronic Hamiltonian

To study the magnetic order we have used the Hamiltonian that has the usual

couplings of the ordered double perovskites, and an additional antiferromagnetic

coupling when two magnetic B ions are nearest neighbor. The Hamiltonian for

the microscopic model is:

H = Hloc{η}+Hkin{η}+Hmag{η} (6.1)

Where

Hloc{η} = εB
∑
i,σ

ηif
†
iσfiσ + εB′

∑
i,σ

(1− ηi)m†iσmiσ

Hkin{η} = −t1
∑
〈ij〉,σ

ηiηjf
†
iσfjσ − t2

∑
〈ij〉,σ

(1− ηi)(1− ηj)m†iσmjσ

−t3
∑
〈ij〉,σ

(ηi + ηj − 2ηiηj)(f
†
iσmjσ + h.c.)

Hmag{η} = J
∑
i,αβ

ηiSi · f †iα~σαβfiβ + J̃AF
∑
〈ij〉

ηiηjSi · Sj

Here, Hloc{η} is the onsite term with εB and εB′ as level energies, respectively,

at the B and B′ sites. f is the electron operator referring to the magnetic B

site and m is that of the non-magnetic B′ site. Whereas Hkin represents the NN

hopping term. For simplicity we set all the NN hopping amplitudes to be same

t1=t2=t3 = t. The magnetic interaction term Hmag{η} consists of the Hund’s

coupling J on the B sites, and the antiferromagnetic superexchange coupling J̃AF

between two NN magnetic B sites. Here Si is the classical core spin on the B site

at ri with |Si| = 1. We take J/t� 1 with J > 0, and J̃AF |S|2/t = 0.08, based on

the TN scale in SrFeO3. We have ignored orbital degeneracy, Coulomb effects,

etc., to focus on the essential magnetic model on the disordered structure. We

have used a two dimensional model because it already captures the qualitative

physics while allowing ease of visualisation and access large system sizes. The

formulation readily carries over to three dimensions as well.

We have used a real space exact diagonalisation based Monte Carlo method

involving a travelling cluster approximation [11] to anneal the spin-fermion system

towards its ground state in the disordered background [10].

Annealing the electron-spin system down to low temperature on a given struc-

tural motif leads to the magnetic ground states shown in the middle column of
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Figure 6.1 . We plot the spin overlap factor, hi = S0 · Si, where S0 is the left-

lower-corner spin in the lattice. The comparison of the first and second columns

in Figure 6.1 indicate that the structural and magnetic domains coincide with

each other. The third column of Figure 6.1 shows the NN structural partners.

We have three possibilities: B-B, B′-B′ and B-B′, represented by colours red, blue

and green respectively in the plot.

6.2.3 Effective Heisenberg Hamiltonian

Given the difficulty in doing a spin-wave analysis on the full Hamiltonian (Eq.

6.1), we use an effective Heisenberg model

Heff =
∑
{ij}

Jij Si · Sj (6.2)

where {} represents the set of NN and next nearest neighbor (NNN) sites. Jij is

the effective coupling (FM/AFM) between the local moments at ri and rj sites.

In our two dimensional antisite disordered configurations JF operates between

two local moments when they are at the NNN position, and JAF is active when

the moments are at the NN position (a B-O-B arrangement). We have estimated

the effective coupling JF and JAF as follows.

For getting the ferromagnetic coupling (JF ) we have considered the ordered

double perovskite structure. We calculated the order parameter, i.e., the mag-

netic structure factor S(k) at k = (0, 0), as a function of temperature for the

full electronic Hamiltonian (Eq. 6.1) using Monte Carlo simulation. We then re-

peated the same procedure for the NNN ferromagnetic Heisenberg Hamiltonian,

defined on only the magnetic sites of the double perovskite. We found that for

JF/t = −0.04, the two results match very well.

In order to get the antiferromagnetic coupling we considered the ordered per-

ovskite where both the B and B′ site carry a magnetic moment (mimicking

SrFeO3), and computed its antiferromagnetic structure factor peak k=(π, π).

This model involves both electronic kinetic energy and Fe-Fe superexchange. We

find that the result can be modeled via a Heisenberg model with JAF/t = 0.065.

Using the couplings inferred from these limiting cases, JF/t = −0.04 and

JAF/t = 0.065, we studied the bond disordered Heisenberg model for the antisite
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Figure 6.2: Comparison between the evolution of the spin structure factor S(k)

at k = (0, 0) with temperature for the spin configurations of various

disorder families (from top to bottom) C1, C2, C3 and C4 obtained

from the full electronic Hamiltonian with J̃AFS
2/t = 0.08 and the

effective Heisenberg model with JF/t = −0.04 and JAF/t = 0.065.

Lattice size is 40× 40.

disordered double perovskite magnet. We compared the ferromagnetic structure

factor peak S(k) at k=(0,0) obtained from the disordered Heisenberg model with

that from the full electronic Hamiltonian (Eq. 6.1 ). The Heisenberg result for

the ferromagnetic structure factor S(0,0) as a function of temperature matches

very well, Figure 6.2, with the electronic Hamiltonian result for all antisite disor-

dered configurations. This gives us confidence in the usefulness of the Heisenberg

model for spin dynamics.

6.3 Spin dynamics

6.3.1 Spin-wave excitation

We have used the spin rotation technique [12] to evaluate the spin-wave modes and

dynamic structure factor at zero temperature. The effective Heisenberg model

(Eq. 6.2 ) can be cast in a form useful for spin wave analysis by defining a local

frame at each site so that the spins point along the +z direction in the ground
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state. We can use S̄i = UiSi, where S̄i points along its local z−axis in the classical

limit. The unitary rotation matrix Ui for site ri is given by

Ui =

∣∣∣∣∣∣∣∣
cos(θi) cos(ψi) cos(θi) sin(ψi) − sin(θi)

− sin(ψi) cos(ψi) 0

sin(θi) cos(ψi) sin(θi) sin(ψi) cos(θi)

∣∣∣∣∣∣∣∣ (6.3)

where θs and ψs are the Euler rotation angles. Now one can write the generalized

Hamiltonian

Heff =
∑
{ij}

JijS̄i · FijS̄j (6.4)

where Fij = UiU
−1
j is the overall rotation from one reference frame to another

and its elements Fαβ
ij can be obtained from Eq. (6.3).

Applying the approximate Holstein-Primakoff (HP) transformation in the large

S limit the spin operators in the local reference frame become: S̄+
i =
√

2Sbi, S̄
−
i =

√
2S b†i and S̄zi = S − b†ibi, where bi and b†i are the boson (magnon) annihilation

and creation operators respectively. Retaining only the quadratic terms in b and

b†, which describe the dynamics of the non-interacting magnons and neglecting

magnon interaction terms of order ( 1
S

), the generalized Hamiltonian (Eq. 6.4)

reduces to

H =
∑
{ij}

[Jij(G1
ijb
†
ibj +G2

ijbibj + h.c.) + fij(b
†
ibi + b†jbj)] (6.5)

where Jij = SJij/2, fij = −SJijF zz
ij and the rotation coefficients G

1
2 = (F xx

ij ±
F yy
ij ) − i(F xy

ij ∓ F
yx
ij ). The Hamiltonian (6.5) is diagonalized by the Bogolyubov

transformation

bi =
∑
n

(uincn + vi
∗

n c
†
n) (6.6)

where c† and c are the quasiparticle operators. u and v, which satisfy
∑

n(uinu
j∗
n −

vi
∗
n v

j
n) = δij ensuring the bosonic character of the quasiparticles are obtained from(

Aij B∗ij

Bij A∗ij

)(
ujn

vjn

)
= ωn

(
δij 0

0 −δij

)(
ujn

vjn

)
(6.7)

where Aij = 2Jij(G1
ij+G

1∗
ji )+εiδij, Bij = 2Jij(G2

ij+G
2
ji), and εi = 2

∑
j(fij+fji).

Now the spin-spin correlation function can be evaluated using the magnon ener-

gies and wavefunctions obtained from Eq. (6.7), where the excitation eigenvalues

ωn ≥ 0.
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6.3.2 Dynamical structure factor

A neutron scattering experiment measures the spin-spin correlation function in

momentum and frequency space S(k, ω) to describe the spin dynamics of the

magnetic systems on an atomic scale. From Si = U−1
i S̄i one can express Sαi =∑

µ U
µα∗

i S̄µi where α and µ represents the x, y, and z components. Now applying

the approximate HP transformation to the rotated spins one can write

Sβi = pβi bi + qβi b
†
i + rβi (S − b†ibi) (6.8)

where β = +, −, and z. And p, q, and r are the rotation coefficients.

p±i =

√
S

2
(Uxx

i ± U
yy
i )− i(Uyx

i ∓ U
xy
i )

q±i =

√
S

2
(Uxx

i ∓ U
yy
i ) + i(Uyx

i ± U
xy
i )

r±i = U zx
i ± iU

zy
i

pzi = Uxz
i − iU

yz
i

qzi = Uxz
i + iUyz

i

rzi = U zz
i

Putting Eq. (6.6) in (6.8) the space time spin-spin correlation function can be

written as

Sαi (t)Sβj (0) =
∑
mn

[Aαβmn
ij
c†m(t)cn(0) +Bαβ

mn
ij
cm(t)c†n(0)] (6.9)

where A and B are structure factor coefficients.

Aαβmn
ij

= qαi p
β
j u

m∗

i unj + pαi q
β
j v

m∗

i vnj + pαi p
β
j v

m∗

i unj

+qαi q
β
j u

m∗

i vnj − S × rαi r
β
j (um

∗

i uni + um
∗

j unj )

Bαβ
mn
ij

= qαi p
β
j v

m
i v

n∗

j + pαi q
β
j u

m
i u

n∗

j + pαi p
β
j u

m
i v

n∗

j

+qαi q
β
j v

m
i u

n∗

j − S × rαi r
β
j (vmi v

n∗

i + vmj v
n∗

j )

In the Fourier and frequency space

Sα,β(k, ω) =
1

N

∫
dt eiωt

∑
ij

eik.(ri−rj)〈Sαi (t)Sβj (0)〉 (6.10)

and the total spin-spin correlation function

S(k, ω) =
1

2
[S+,−(k, ω) + S−,+(k, ω)] + Sz,z(k, ω)

=
∑
l

W l
kδ(ω − ωl)
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Figure 6.3: Spin-wave spectrum along main symmetry directions of the Brillouin

zone for spin configurations C1, C2, C3, and C4 (x = 0.01, 0.11, 0.21

and 0.41 respectively, shown in Figure 6.1 ). With increasing antisite

disorder from C1 to C4 the spectrum becomes broader for a fixed

value of momentum k. Here JF = −0.04, JAF = 0.065, and lattice

size is 40× 40.

where the coefficient of the delta function

W l
k =

1

N

∑
ij

Blijeik.(ri−rj) (6.11)

is the spin-wave weight with Blij = 1
2
(B+−

ll
ij

+ B−+
ll
ij

) + Bzz
ll
ij

. Here W l
k is observed

as the intensity of magnon spectrum in the neutron scattering experiment.

6.4 Results and discussion

We start by presenting the results for magnons in the configurations C1-C4 (Fig-

ure 6.1), and then move to an analysis of the linewidth, the estimation of domain

size, and the contrast with the uncorrelated disorder.
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Figure 6.4: Mean spin wave energy ω̄k (dots) and spin-wave width ∆ωk (bars),

defined in the text, for the correlated antisite configurations C2-C4.

The curves are vertically shifted for clarity.

6.4.1 Antiferromagnetically coupled domains

Figure 6.3 shows the magnon spectra of C1-C4 obtained from the Heisenberg

model with the FM and AFM couplings discussed earlier. In a model with only

ferromagnetic couplings, i.e., no disorder, we would have obtained only the red

curve, ω0
k, for propagating magnons. The striking feature in all these panels is

how closely the mean energy of the magnons follow ω0
k despite the large degree

of mislocation in C2 and C3, and maximal disorder (x ∼ 0.5) in C4 (refer to the

spatial plots in Figure 6.1). The broadening, although noticeable in C4, does not

obscure the basic dispersion.

Figure 6.4 quantifies the mean energy and broadening by computing :

ω̄k =

∫
S(k, ω)ωdω

[∆ωk]2 = [

∫
S(k, ω)ω2dω]− ω̄2

k

We have shown these two quantities for the C2-C4 structures in Figure 6.4 . The

ω̄k have been vertically shifted for clarity and the ∆ωk are superposed as error

bars on these. It is clear that even in the most disordered sample (C4), where

the mislocation x ∼ 0.4, the broadening is only a small fraction of the magnon

energy. This will be an indicator when we discuss spin waves in an uncorrelated

disorder background.
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6.4.2 Broadening: impact of domain size

There are two ingredients responsible for the spectrum that one observes in the

Figure 6.3 :

1. the domain structure,

2. the antiferromagnetic coupling across the domains.

To deconvolve these effects and have a strategy for inferring domain size from

neutron data, we studied a situation where we set JAF = 0 in the Heisenberg

model defined on the structures C1-C4. In that case we will have decoupled

ferromagnetic domains without any requirement of antiparallel spin orientation

between them. We think this is an interesting scheme to explore since the anti-

ferro bonds are limited to the domain boundaries and are not equal to the number

of mislocated sites.

Figure 6.5 shows the overall magnon spectrum for this case, using the same

convention as in Figure 6.3 , while Figure 6.6 quantifies the mean energy and

broadening in this decoupled domain case. The absence of JAF does not seem to

make a significant difference to the spectrum as a comparison of Figure 6.4 and

6.6 reveal. This correspondence, valid even in C4, suggests the following :

� most of the spectral features arise from the domain structure, and the

associated confinement of spin waves, rather than the antiferro coupling,

� we can proceed with a much simpler modeling of the spectrum without

invoking the complicated Bogolyubov-de Gennes formulation that antifer-

romagnetic coupling requires.

Essentially, much can be learnt from tight binding models defined on appropri-

ate structures, as happens for ferromagnetic states, without having to invoke the

pairing terms that arise from antiferro coupling. A modeling of the full disper-

sion will require the antiferro terms as well, but the inference about presence of

domains, and an estimate of their size, need not. We proceed with this next.

To proceed with estimating the typical domain size we need a few assumptions:

1. The total degree of mislocation, x, should be known, based on the bulk

magnetisation measurement.

108



(0, 0) (π, −π) (π, 0)
k

0.1

0.2

0.3

0.4

ω
k

C1

(0, 0) (π, −π) (π, 0)
k

0.1

0.2

0.3

0.4

ω
k

C2

(0, 0) (π, −π) (π, 0)
k

0.1

0.2

0.3

0.4

ω
k

C3

(0, 0) (π, −π) (π, 0)
k

0.1

0.2

0.3

0.4

ω
k

C4

Figure 6.5: Spin-wave spectra along main symmetry directions of the Brillouin

zone for spin configurations C1-C4 (Figure 6.1 ) with x = 0.01, 0.11,

0.21 and 0.41 respectively. Increasing fractional weakly coupled do-

main boundary spins from C1 to C4 enhances the spin-wave softening

near the zone boundary along [π, 0] and the spectrum also becomes

broader for a given k. Here JF = −0.04, JAF = 0, and lattice size is

40× 40.

2. If the overall system size is L×L (or equivalent in a 3D model), the number

of mislocated sites would be xL2.

3. If the domain size is Ld then the number of domains within the L×L area

is Nd ∼ xL2/L2
d. In reality domains need not have one single size, as C2-C4

indicate, but we need the assumption to make some headway.

4. We need to locate theseNd domains randomly, in a non overlapping manner,

within the L×L system, and average the spectrum obtained over different

realisations of domain location.

This scheme, carried out for various Ld, can be compared to the full S(k, ω)

data to get a feel for the appropriate Ld. We show the result below for such a

tight binding exploration for the C2 configuration, modeled in terms of different
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Figure 6.6: Mean spin wave energy ω̄k (dots) and spin-wave width ∆ωk (bars) for

C2-C4 now with JAF = 0, i.e., decoupled domains. The curves are

vertically shifted for clarity.

domain distributions that respect the same overall mislocation.

When we compare the ratio of mean broadening to bandwidth obtained at

different values of Ld (and so Nd) with that for the real data, Figure 6.4 , it

turns out that Ld = 10 provides a best estimate. It also reasonably describes

the broadening at stronger disorder, C3 and C4, where of course Nd is larger.

An analytic feel for these results can be obtained by considering the modes of a

square size Ld × Ld under open boundary conditions.

6.4.3 Contrast with uncorrelated antisites

In modeling the antisite disorder much of the earlier work in the field assume

the defect locations to be random. We have followed the experimentally moti-

vated path which suggests that the mislocated sites themselves form an ordered

structure separated from the parent (or majority) by an antiphase boundary.

The sources of scattering are the boundary between these domains rather than

random point defects. Since much of double perovskites modeling has assumed

the random antisite situation, it is worth exploring the differences in the magnon

spectra between correlated and uncorrelated antisites.

We have already seen the results for correlated disorder for different degrees of

mislocation, x. We generated uncorrelated antisite configurations with the same

x by starting with ordered configurations and randomly exchanging B and B′
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Figure 6.7: Modeling C2 in terms of a domain of size 10× 10 (left) and of seven

domains of size 4 × 4 (right). The corresponding mean energy and

broadening are shown below.

till the desired degree of disorder is reached. These configurations naturally do

not have any structural domains. Annealing the full electronic Hamiltonian on

these configurations, call them C1(random), C2(random), ..., etc., down to low

T , leads to the magnetic ground states. The ground states are disordered ferro-

magnets but without any domain pattern. We computed the magnon lineshape

in these configurations, and, for illustration, show the results for C2(random) and

C3(random) side by side with their correlated counterparts C2 and C3 as shown

in the Figure 6.8.

There is a striking increase in the magnon line width (or ∆ωk) in the uncorre-

lated case. There is almost nine fold increase in the magnon line width in C2 and

six fold in C3 of the uncorrelated disorder with respect to the correlated disorder

case.
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Figure 6.8: The left set of panels correspond to mislocation for x = 0.11 where we

compare the magnon spectrum for uncorrelated disorder (left) with

correlated disorder (C2) right. The top panels refer to the structural

pattern, the middle to the magnetic ground state, and the bottom

to the magnon response. The right set of panels refer to x = 0.21,

and the same indicators as for the left panels. Notice the remark-

ably broader lineshape for the uncorrelated disorder case where it is

difficult to make much of a correspondence with the clean dispersion.

6.5 Conclusion

We have studied the dynamical magnetic structure factor of a double perovskite

system taking into account the basic ferromagnetic ordering tendency and the

defect induced local antiferromagnetic correlations. We used structural motifs

that correspond to correlated disorder, obtained from an annealing process. The

results on magnon energy and broadening reveal that even at very large disorder,

the existence of domain like structure ensures that the response has a strong

similarity to the clean case. We tried out a scheme for inferring the domain size
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from the spin wave damping, so that experimenters can make an estimate of

domains without having spatial data, and find it to be reasonably successful. We

also highlight how the common assumption about random antisites, that is widely

used in modeling these materials, would lead to a gross overestimate of magnon

damping. In summary, dynamical neutron scattering can be a direct probe of

the unusual ferromagnetic state in these materials and confirm the presence of

correlated antisites.
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Chapter 7

Thesis Summary

In this thesis we have studied the impact of the inevitable ‘antisite disorder’

(ASD) in the double perovskites (DPs) of the form A2BB′O6. This antisite dis-

order arises due to the similar ionic sizes of the B and B′. The B ion can occupy

a B′ site and vice versa. In fact, the B-B′ ordering tendency has to compete with

the entropy gain from mislocation. Experiments have established that this ASD

is spatially correlated rather than randomly distributed. The inevitable ASD has

to be understood in any modeling of the double perovskites. The promise of rich

functionality in the DPs remains unfulfilled due to this B, B′ mislocation.

We have modeled the spatially correlated ASD using a simple lattice gas model.

Then we defined the electronic-magnetic model on this background and solve it

via a real space Monte Carlo technique. On the equilibrium configurations of

this problem we have calculated various properties like magnetisation, transport,

and the spin resolved density of states. For our study we have considered double

perovskites with only the B site having a magnetic moment. The magnetic order

in this system is strongly affected by the local ordering of the B and B′ ions. Two

neighboring B ions, arising from mislocation, have an antiferromagnetic (AFM)

superexchange between them. This new coupling can drastically affect physical

properties, including magnetic order and transport. Our main observations are

the following:

In chapter 3 we have discussed the impact of ASD on the ferromagnetic phase.

We discover that, for antisite disorder with a high degree of short-range cor-

relations, the antiphase boundaries act also as magnetic domain walls in the
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ferromagnet. Increasing ASD reduces the low-field magnetization, destroys the

half-metallicity, and makes the ground state insulating. While these are dis-

advantages, we also note that the ferromagnetic Tc is only weakly affected by

moderate ASD and the low-field magnetoresistance is dramatically enhanced by

disorder. Our real space approach allows an interpretation of these results in

terms of the domain pattern, the effective exchange, and the short-range mag-

netic correlations. They are also consistent with explicit spatial imagery from

recent experiments. The “intra-grain” effects highlighted here would be directly

relevant to single crystals, and define the starting point for a transport theory of

the polycrystalline double perovskites.

Chapter 4 focuses on the metallic antiferromagnetic phase, and the phase co-

existence window. For spatially correlated antisite disorder the AFM order is

affected much less strongly than in the FM case. This intriguing result arises

from the finite Q nature of AFM order which leads to a weaker ‘cancellation’

of the order between domains. For a given structural order parameter S (which

measures the fraction of correctly located sites) the A type AFM structure factor

follows DA ∼ (1 +S2)/2, in contrast to DF ∼ S2 in the ferromagnet, while the G

type phase follows DG ∼ (1 + S)2/4. So, despite the possibility of large antisite

disorder in the electron doped DPs, there is certainly hope of observing AFM

phases. The AFM states are metallic, and the electronic wavefunctions in these

phases continue to be spatially extended even at large disorder. Antisite disorder

increases the residual resistivity, but, unlike the ferromagnet, we do not observe

any insulating regime.

Chapter 5 discusses the field response in the antiferromagnetic DP metals.

While the zero field resistivity is unremarkable in these systems, they have huge

positive MR. In contrast to elaborate structure factor measurement, etc., this is

a direct indicator of the metallic AFM system. Beyond a modest field needed

for suppression of long range AFM order, the system shows more than ten-fold

increase in resistivity near Tc in a structurally ordered system. The ratio con-

tinues to be almost two-fold even in systems with ∼ 25% ASD. An applied field

suppresses long range AFM order leading to a state with short range AFM cor-

relations in the field induced FM background. These AFM fluctuations generate
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strong electronic scattering and a resistivity that can be much larger than the

ordered AFM metal. Although our explicit demonstration is in the context of a

two dimensional spin-fermion model of the DPs, the mechanism we uncover is far

more general and complementary to the colossal negative MR process. It should

operate in other local moment metals that show a field driven suppression of non

ferromagnetic order.

Chapter 6 describes our results on magnons in the antisite disordered ferromag-

nets. We use an effective Heisenberg model with parameters that match the mag-

netisation from the parent electronic problem. We obtain the magnon excitations

using the spin rotation technique coupled with the Holstein-Primakoff transfor-

mation in the large spin limit. To leading order this results in a non-interacting

disordered boson (magnon) problem that can be solved via Bogolyubov transfor-

mation. We provide a detailed description of the spin wave excitations of this

complex magnetic state with large spin (S), obtained within a 1/S expansion,

for progressively higher degree of mislocation, i.e., antisite disorder. The results

on magnon energy and broadening reveal that even at very large disorder, the

existence of domain like structure ensures that the response has a strong similar-

ity to the clean case. We tried out a scheme for inferring the domain size from

the spin wave damping, so that experimenters can make an estimate of domains

without having spatial data, and we find it to be reasonably successful. We also

highlight how the common assumption about random antisites, that is widely

used in modeling these materials, would lead to a gross overestimate of magnon

damping. In summary, dynamical neutron scattering can be a direct probe of

the unusual ferromagnetic state in these materials and confirm the presence of

correlated antisites.

To summarise, this thesis considers some problems in the antisite disordered

double perovskite magnets. We clarify the impact of correlated antisite disorder

on both ferromagnetic and antiferromagnetic phases, discover that the antifer-

romagnet is robust to large disorder, and find that the antiferromagnetic metal

has a surprisingly large positive magnetoresistance. Finally, we have provided

results on the magnon spectrum in the non trivial domain ferromagnetic phase

and provide an interpretation of the spectrum in terms of magnon confinement.
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