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Synopsis

• Name: Joydeep Chakrabortty

• Thesis Title: Some aspects of Grand Unified Theory: gauge coupling uni-

fication with dimension-5 operators and neutrino masses in an SO(10)

model

• Supervisor: Prof. Amitava Raychaudhuri

• Submitted to Homi Bhaba National Institute (HBNI)

The Standard Model (SM) based on the gauge group SU(3)C ⊗ SU(2)L ⊗
U(1)Y has three independent gauge couplings g3, g2, and g1. Grand Unified The-

ory (GUT) aims for the unification of these couplings and also ensures the pres-

ence of quarks and leptons in a common multiplet of a single gauge group. The

SM gauge couplings evolve logarithmically with energy leading to an unified

coupling, gGUT, if unification is achieved at some high scale (MX). The exper-

imental constraints on proton decay life-time set the lower bound of the GUT

scale, MX ≥ 1016 GeV.

A full theory at the Planck scale (MPl) is not yet known. In its absence it

has been found useful to introduce higher dimensional effective operators at the

GUT scale itself which will capture some of the higher scale physics implications.

These operators might have significant impact on the predictions of the grand

unified theory.

We focus on the corrections to the gauge kinetic term, - 1
4c Tr(FµνFµν), through

the operator, -
η

MPl
[ 14c Tr(FµνΦDFµν)], where Fµν = Σiλi.F

µν
i is the gauge field strength

tensor with λi being the matrix representations of the generators normalised to

Tr(λiλj) = c δij. Conventionally, for SU(n) groups the λi are chosen in the fun-

damental representation with c = 1/2. η is a dimensionless parameter that de-

termines the strength of the operator. Obviously the representations of ΦD must

appear among the representations in the symmetric product of two adjoint repre-

sentations of the group.

When ΦD develops a vacuum expectation value (vev) vD, which sets the

scale of grand unification MX, an effective gauge kinetic term is generated and

the modified gauge coupling unification condition reads as: g21(MX)(1+ ǫδ1) =

g22(MX)(1 + ǫδ2) = g23(MX)(1 + ǫδ3), wherein the δi, i = 1, 2, 3 are the group

v



factors, and ǫ = ηvD/2MPl ∼ O(MX/MPl).

We work out the consequences of these dimension-5 operators for the uni-

fied theories based on SU(5), SO(10), and E(6). We consider all the possible

choices for ΦD, namely, the representations 24, 75, 200 for SU(5), 54, 210, 770 for

SO(10) and 650, 2430 for E(6). We propose a prescription to calculate the orien-

tations of the vevs of these Higgs fields. The orientations depend on the pattern

of symmetry breaking. SU(5) directly breaks to the SM. But SO(10) and E(6) can

be broken to the SM through different intermediate gauge groups. We calculate

the corrections (δi’s) which arise due to the dimension-5 operator for all possible

breakings with all possible choices of ΦD’s.

We then calculate the β-coefficients and construct the renormalisation group

equations (RGEs) to study the evolutions of the gauge couplings upto two-loop

level to check whether unification is achieved or not.

We find these dimension-5 operators cannot help to achieve unification be-

yond 1016 GeV for SU(5) in non-supersymmetric (non-SUSY) scenario. But in

SUSY SU(5)models unification is achieved with a high enoughGUT scale. These

dimension-5 operators also have impact on the prediction of sin2 θW at low scale

(∼ MZ). This constrains the strength of these effective operators.

We also consider SO(10) and E(6) GUT gauge groups. We discuss no-,

one-, and two-step breakings of these gauge groups to the SM. For each case we

construct the RGEs and include the proper matching of the gauge couplings at

the intermediate scales as well as at the GUT scale. In presence of one interme-

diate symmetry group, SU(4)C ⊗ SU(2)L ⊗ SU(2)R for SO(10) and SU(3)C ⊗
SU(3)L ⊗ SU(3)R for E(6), we explore D-parity (symmetry between left-right

sector) conserving and broken cases. We extend our study through the inclu-

sion of the second intermediate group, SU(3)C ⊗U(1)B−L ⊗ SU(2)L ⊗U(1)R and

SU(3)C ⊗ SU(2)L ⊗ U(1)L ⊗ SU(2)R ⊗ U(1)R for SO(10) and E(6) respectively.

In all the above cases we determine the ranges of the intermediate scales consis-

tent with the viable unified scenario.

It has been noted that the operator that generates the gaugino masses in a

supergravity (SUGRA) model is the same as the dimension-5 operator we con-

sider. The gaugino mass non-universality is achieved through the vevs of the

non-singlet ΦD’s and the ratios of the gaugino masses are same as the ratio of the

δi’s. We exhaustively explore all possibilities.

vi



We also study neutrino mass generation in the context of a grand unified

theory. We consider an SO(10) based model with (10+120) Higgs fields. It has

been noted that in such a model neutrino masses cannot be generated in tree

level. One can generate neutrino masses at two-loop level. We aim for an alter-

nate mechanism where all the couplings are at the tree level. To do so we ex-

tend this model by adding adjoint fermions (which transform as 45 of SO(10))

and 16 Higgs. Thus the neutrino mass matrix is extended and a double see-

saw is achieved. Imposing µ − τ symmetry we consider explicit form of the

Dirac-Yukawa matrices that help to generate correct light neutrino masses and

tri-bimaximal (TBM) mixing angles. We also check the gauge coupling unifica-

tion in this model.
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Chapter 1

Introduction

Our understanding of the fundamental particles and the interactions between

them has evolved into a clear picture today. The basic constituents are the quarks

and leptons, which appear to have no further structure. They interact among

each other through four types of interactions: the strong, weak, and electromag-

netic interactions besides the gravitational force. The first three of these can be

elegantly expressed in a mathematical formulation known as gauge field theory

which relies on group symmetries. Furthermore, it is possible to formulate the

entire theory, i.e., the basic constituents and the three forces above, into an eco-

nomical structure which is termed the standard model.

The standard model gauge group SU(3)C ⊗ SU(2)L ⊗U(1)Y contains three

independent gauge couplings g3, g2, and g1. Grand Unified Theory (GUT) aims

for the unification of these couplings and also ensures the presence of quarks and

leptons in a common multiplet of a single gauge group. The SM gauge couplings

evolve logarithmically with energy leading to an unified coupling, gGUT, if unifi-

cation is achieved at some high scale.

In this thesis we have discussed the impact of dimension-5 operators, which

may arise from quantum gravity, on gauge coupling unification and on non-

universal gaugino masses. We also examine neutrino masses in an SO(10) grand

unified theory. In the second chapter we introduce the basic structure of the

standard model and note its failures to explain some experimentally observed

issues. Then in the next chapter we discuss the motivations for a grand unified

theory and the possible GUT groups. In the fourth chapter we propose the pre-

scription to calculate the vacuum orientations of the different symmetry breaking
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Higgs fields. For SU(5), SO(10), and E(6) GUTwe calculate the β-coefficients for

gauge coupling running and check the unification in chapter 5. In the subsequent

chapters the group theoretic structures of the non-universal gaugino masses are

calculated and the neutrino mass generation in an SO(10) model is discussed

respectively.
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Chapter 2

The Standard Model and beyond

2.1 The standard model of particle physics

In 1960 Sheldon Glashow proposed a theory combining electromagnetism and

weak interactions – known now as electroweak theory [1]. Later Weinberg and

Salam in 1967 incorporated the Higgs mechanism in this electroweak theory [2,3]

– that completes the basic structure of one part of the standard model (SM). Fur-

ther to this, when strong interaction was incorporated the present form of the

SM was achieved. The standard model was proposed on the basis of quan-

tum field theory as a basic and fundamental theory of particle physics. In the

SM all the participating entities are considered to be elementary. They can be

categorised in three sectors – scalars, fermions, and gauge bosons – depending

on their spins. As we commented before, SM encapsulates the features of the

electromagnetic, weak, and strong forces. In the language of gauge theory the

symmetry group SU(3)c ⊗ SU(2)L ⊗ U(1)Y is introduced that describes the SM.

The SU(3)c, SU(2)L, and U(1)Y depict the colour, weak isospin, and weak hy-

percharge symmetry groups respectively [1–6], named according to the quantum

numbers. The only scalar particle in the SM is the Higgsmultiplet which is colour

singlet but doublet under SU(2)L and also has non-zero hypercharge. All the

fermions are charged under U(1)Y. Left-handed fermions transform as doublet

while the right-handed fields are singlet under SU(2)L. The fermions that do not

have any colour quantum number are known as leptons and rest of them which

form colour triplets are quarks. The details of these field contents are organised

below as:

3



• Scalars:

An SU(2) doublet, with Y = 1 (Higgs field (H))

• Fermions:

The left-handed fermionic fields are:

SU(3)c triplet, SU(2)L doublet, with Y = 1/3 (left-handed quarks (QL))

SU(3)c triplet, SU(2)L singlet, with Y = 2/3 (left-handed down-type anti-

quark (dR))

SU(3)c triplet, SU(2)L singlet, with Y = -4/3 (left-handed up-type antiquark

(uR))

SU(3)c singlet, SU(2)L doublet, with Y = -1 (left-handed lepton (lL))

SU(3)c singlet, SU(2)L singlet, with Y = 2 (left-handed antilepton (lR))

• Gauge fields:

SU(3)c gauge field Gµ, with coupling constant g3

SU(2)L gauge field Wµ, with coupling constant g2

U(1)Y gauge field Bµ, with coupling constant g1

In the SM, fermions carry the quantum numbers in such a way that anomaly gets

canceled. When the SM gauge symmetry is unbroken all the particles are mass-

less. The chiral symmetry and the gauge symmetry protect the masses of the

fermions and the gauge bosons respectively. But the mass of the scalar particle,

i.e., Higgs is not protected by any symmetry. Still the Higgs mass is expected to

be of order 100 GeV to be consistent with experimental data. This fine tuning

is still very uncanny. The fermion and gauge boson masses are generated in the

SM through the Higgs mechanism [7] via spontaneous symmetry breaking (SSB).

In the SM the scalar potential is constructed by writing all renormalisable Higgs

self couplings. The minimum of this potential has a O(2) symmetry and pos-

sesses an infinite set of vacua. When one of the directions is chosen among the

infinite possibilities, the symmetry is spontaneously broken and the expectation

value of this Higgs field for which the potential attains the minimum is called the

vacuum expectation value (vev). As the vacuum must respect U(1)em symmetry

only the neutral component of the Higgs field can acquire a vev. Thus after SSB

the SU(2)L ⊗ U(1)Y symmetry group is broken to U(1)em. But the colour sym-

metry remains as it is, and thus the gluons are massless. But among the four

4



electroweak gauge bosons three eat Goldstone modes and become massive, and

one remains massless – the photon. It has been noted that this vev, v, should be ∼
246 GeV to agree with the experimentally measured masses and couplings of the

gauge bosons. The fermion masses are generated once the Higgs gets vev, and

these masses are proportional to the Yukawa couplings. In the SM all the Yukawa

couplings are free parameters. In general the Yukawa couplings are non-diagonal

and lead to mixings between different quark flavours and similarly for leptons.

In the lepton and quark sectors mixing matrices are known as PMNS-, and CKM-

matrix respectively. These are in general 3×3 unitary matrices. The down-type

fermions get masses from H, but that for up-type fermions are achieved from H

(≡ iσ2H∗), and we know that 2 and 2 transform in a same way under SU(2). In

the SM the neutrinos are massless due to the absence of the right-handed neutrino

(νR).

The radiative corrections to the scalar masses are unprotected and that im-

pact can be large in the presence of a very high scale. To address this problem one

of the most attractive solutions is supersymmetry.

Supersymmetry (SUSY) is a symmetry between fermions and bosons [8],

and is a unique extension of the Poincare group. SUSY is implemented by intro-

ducing the superpartners of the standard model – such as for fermions, sfermions

which transform as scalars, and for gauge bosons and Higgs, gauginos and hig-

gsinos which are fermions are introduced respectively. The scalar sector includes

the sfermions and two Higgs doublets. The SM particles and their superpartners

transform identically under the standard model gauge group. The requirement

of two Higgs doublets can be argued as follows:

(a) From the construction of the SUSY theory it is well known that the super-

potential must be holomorphic. It tells that in the superpotential a field and its

conjugate cannot coexist. Thus we need to introduce two Higgs doublets, Hu and

Hd, of opposite hypercharges to give masses to the up- and down-type fermions.

(b) Anomaly cancellation demands that there must be a pair of Higgsinos for the

minimal model.

In supersymmetry the radiative correction to the Higgs mass gets contribution

from new diagrams – the superpartner loops, and this helps to cancel the diver-

gence in the Higgs mass [9].

Though the SM was thought to be a complete theory of particle physics,

some experimental observations compel us to think beyond it. One of them is
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neutrino oscillation that tells that neutrinos are notmassless but have tinymasses.

In the next section we give a brief review on neutrino masses.

2.2 Neutrino mass

A number of experiments with solar, atmospheric, reactor and accelerator neutri-

nos have nowunambiguously established that these elusive particles are massive.

In addition, the data imply one small and two large mixing angles in complete

contrast with the quark sector where all three mixing angles are small. In Table

2.1 we present the best-fit values and 3σ ranges of neutrino oscillation parame-

ters as obtained from the global oscillation analysis [10]. These values are close

to the so called tri-bimaximal mixing pattern [11] which implies sin2 θ12 = 1/3,

sin2 θ23 = 1/2 and sin2 θ13 = 0.

There are several proposals to explain the origin of neutrino masses. See-

saw is the most promising one among them. In the seesaw mechanism a very

heavy particle that couples to the lepton and Higgs doublet is exchanged. Now,

at the low energy when this heavy particle is decoupled, i.e., integrated out, an

effective tiny Majorana neutrino mass is generated. In this mechanism lepton

number is violated by two units. The usual seesaw mass matrix where light neu-

trino masses are generated by integrating out heavy right handed neutrinos of

mass (MR) takes the form:

Mν =

(

0 mD

mT
D MR

)

; (2.1)

where mD is the Dirac coupling between νL and νR. MR is a 3×3 matrix for three

generations of right handed neutrinos. In general, seesaw scales are determined

by the mass of an exchanged heavy particle. It has been noted that these scales

need to be very high – 1012 GeV – to generate neutrinomass ofO(eV)without fine

tuning the neutrino Yukawa couplings. There are different types of seesaw mod-

els depending on the nature of the heavy particle. In type-I, -II, -III seesaw mod-

els a singlet fermion, a triplet scalar, and a triplet fermion are exchanged [12–14]

respectively. But as the seesaw scales for these models are very high it is diffi-

cult to test these theories in current experiments. Besides these standard mecha-

nisms some other variants of seesaw models are recently being studied – among

them inverse and double seesaw are very popular. In general if the model con-
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best fit 3σ range

∆m2
21 [10

−5 eV2] 7.59 7.03 - 8.27

|∆m2
31| [10−3 eV2] 2.40 2.07 - 2.75

sin2 θ12 0.318 0.27 - 0.38

sin2 θ23 0.50 0.36 - 0.67

sin2 θ13 0.013 ≤ 0.053

Table 2.1: The best-fit values and the 3σ ranges of neutrino mass and mixing

parameters as obtained from a global analysis of oscillation data [10].

∆m2
ij = m2

i − m2
j .

tains large fermion representations there is always scope to have more couplings

among the SM neutrino and the extra neutral fermions. Thus the neutrino mass

matrix in these cases are extended than the usual ones. The double seesaw, and

the inverse seesawmechanisms are gaining popularity because of the presence of

TeV scale particles, i.e., these newmodels are testable at the colliders. The generic

structure of the neutrino mass matrix for double seesaw is:

Mν =










0 mD1 mD2 .

mT
D1 0 MR1 .

mD2 MT
R1 MN1 .

. . . .










. (2.2)

When the usual seesaw model is extended by a singlet (consider only the dis-

played 3×3 block in eq. 2.2) then the double- and inverse seesaw mass matrix

looks same. It is noted that if we set MN1=0, then light neutrino masses cannot be

generated.

Since in the standard model neutrinos are massless one is compelled to transcend

beyond the realms of the SM. There are also several theoretical motivations for

going beyond the SM, one of which is that the SM is a product of three gauge

groups and so involves three independent couplings. A Grand Unified Theory

(GUT), which is a theory of strong and electroweak interactions based on a single

gauge group [15,16], aims to unify the three forces with a single coupling constant

[17]. It also unifies thematter fields by placing the quarks and leptons in the same

irreducible representation of the underlying gauge group [15]. Since GUTs aim

7



to unify quarks and leptons it is a challenge to reconcile the large mixings in the

lepton sector with the small mixings in the quark sector. The issue of fermion

masses and mixing in the context of GUTs has received much attention from this

perspective.

2.3 Evolution of gauge couplings

In a large class of quantum field theories higher order corrections in perturbation

theory lead to divergent quantities. This is addressed by the theory of renor-

malisation that discriminates the bare parameters from the renormalised ones. It

is well known that there should not be any ultraviolet divergence in a theory if

it has to yield reasonable physical predictions. Because of higher order effects

arising in an interacting quantum field theory parameters like coupling constants

develop a dependence on the energy scale. Their values can change with dis-

tance, i.e., scale. For an example, in quantum electrodynamics the charge of an

electron depends on at which energy we are measuring it, i.e., how deeply we

are probing that electron. Similarly the gauge couplings, Yukawa couplings etc.

also depend on the energy scale. Using the knowledge of quantum field theory

a prescription is suggested that tracks this variation of the couplings with scales

which are known as renormalisation group equations (RGEs). In quantum field

theory the Lagrangian does not carry any signature of any scale parameter. Thus

the Green functions are expected to be invariant under any scaling behaviour in

the theory. But this is not true in reality. When we do the perturbative analysis,

a hidden scale parameter enters in the theory. It is true that we do not have this

parameter to start with and one must expect that physical observables should be

independent of this. In principle if we include all orders of the perturbation there

will not be any scale dependency in the theory. But most analyses consider only

finite orders of the perturbation series thus scale dependency remains there. The

renormalisation group equations describe the dependence of theory on this scale

parameter.

Renormalisation group evolutions involve a parameter, µ, that carries the

signature of the scale of the theory. The RGE is expressed as:

µ
∂g

∂µ
= β(g), (2.3)

where g is the coupling and the exact form of the function β depends on the

8



nature of the coupling. In chapter 5 we discuss the exact form of β(g) for one-,

and two-loop cases for the running of the gauge couplings.
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Chapter 3

Grand Unified Theory

3.1 Motivations

Grand Unified Theory [1–3] is argued to be a complete and unique theory of all

fundamental forces except gravity. First the unified picture of electric and mag-

netic forces, i.e., electromagnetism, and then electro-weak unification enlighten

the hope of grand unification. GUT is described by a simple group (G) or a direct

product of identical simple groups – related by some discrete symmetry. Thus

theory can only have a single gauge coupling – so called unified coupling.

The failure of the SM to explain some experimental issues and the large

number of free parameters present in it forces one to think of a theory beyond it.

For example:

• Neutrinos are massless in the SM. But now it is well established through

different experiments that neutrinos do have very tiny masses.

• There is no reason why there are such differences in the strengths of the

strong, weak, and electromagnetic couplings – α3, α2, α respectively. The

strong coupling is completely unrelated to the electro-weak couplings.

• In the SM electric charge is given as: Q = T3 +Y/2, where the hypercharge,

Y, can be assigned independently for each representation. We know that in

a doublet the electric charge of the two fields differ by one unit – this is a

group theoretic constraint. But there is no underlying symmetry which tells

that these charges of leptons, quarks and Higgs fields should be related.

• The Yukawa couplings and the couplings in the scalar potential are all free

parameters, thus the fermion masses, mixings, phases and gauge boson

masses are quite arbitrary.
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• In the SM the colour gauge group is decoupled by its nature from other

sectors of the Lagrangian.

A number of these unanswered questions can be addressedwithin the framework

of grand unified theory.

The standard model being a successful theory at low scale (∼ Mz), G must

contains Gs ≡ SU(3)C ⊗ SU(2)L ⊗ U(1)Y as a subgroup. Grand Unified Theory

dictates that at some high scale, say MX, these SM gauge couplings unify. GUT

does not mean only unification of couplings but also implies the family unifica-

tion. Like the unified coupling, all the fermions are contained in the multiplets of

the GUT gauge group, G. Thus all the quarks, anti-quarks, leptons, anti-leptons

are accommodated in a single (or two) representation(s) of G and their charges

are no more arbitrary but now related.

The GUT gauge group has a larger symmetry than the SM thus there must

be other extra gauge bosons. These gauge bosons achieve masses once the GUT

symmetry is broken at very high energy which sets the unification scale. The

presence of these extra particles cause proton decay. The main decay modes of

the proton in the simplest form of the grand unified theory are: p → e+(µ+)π0,

p → ν̄π+.

In non-supersymmetric theory proton decay occurs via mass dimension-6

operators suppressed by M−2
GUT. But in supersymmetric models with conserved

matter parity, (−1)3(B−L), through sfermion exchange, dimension-5 operators can

cause proton decay. Through the dimension-4 operators, the matter parity violat-

ing couplings, e.g., λ
′′
ijkUc

i Dc
j Dc

k and λ
′
ijkLiQjD

c
k in terms of the superfields, accel-

erate proton decay. These couplings need to be very small to satisfy the present

limit on proton decay life-time, τp ≥ 1033 yrs. The approximated proton decay

life-time, via dimension-6 operators, is given as:

τp ∼ 1

α2
X

M4
X

m5
p

; (3.1)

where αX = g2X/4π is the unified gauge coupling. This unification scale (MX) is

also restricted and MX must be greater than 1015.5 GeV. As these gauge bosons

are very heavy, beyond the reach of recent colliders, it is very hard to find their

footprints to justify the theory.

As we discuss in the earlier section the idea of GUT is to have a single gauge

coupling and put quarks, and leptons in one multiplet. There are several candi-
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dates that can serve as grand unified gauge group. Among them SU(5), SO(10),

and E(6) are very popular.

3.2 SU(5)

In 1974 Georgi and Glashow proposed an SU(5) grand unified theory [2]. The

rank of this group is 4, and the dimensionality of the adjoint representation is 24.

Thus it has 24 generators, i.e., 24 gauge bosons. These generators can be written

as 5× 5 complex unitary matrices with determinant unity. The complex unitary

matrices can be expressed as:

U = exp(−i
24

∑
j=1

θiTi), (3.2)

where these Ti are the hermitian and traceless generators, and θi are real param-

eters. The generators are normalised as: Tr(TiTj) = 2δij when they are in funda-

mental representation. These generators can be written explicitly as:

Ta =












0 0

λa 0 0

0 0

0 0 0 0 0

0 0 0 0 0












; (3.3)

where λa (a=1,...,8) are the SU(3)c generators, i.e., the Gell-Mann Zweig matrices;

T9,10 =












0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 σ1,2

0 0 0












; (3.4)

where σ1,2 are the SU(2) generators (non-diagonal Pauli spin matrices);

T11 = diagonal(0, 0, 0, 1,−1); (3.5)

T12 =
1√
15

diagonal(−2,−2,−2, 3, 3); (3.6)

are proportional to the third component of weak isospin and weak hypercharge

generators respectively.
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The other 12 generators (T13,...,18 and T19,...,24) of SU(5) that do not belong to the

SM are written as:

T13 =












0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0












; (3.7)

T14 =












0 0 0 i 0

0 0 0 0 0

0 0 0 0 0

−i 0 0 0 0

0 0 0 0 0












; (3.8)

T19 =












0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0












; (3.9)

T20 =












0 0 0 0 −i

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

i 0 0 0 0












. (3.10)

The other generators can be obtained by putting 1, i, and -i in the same pattern in

the entries of the off-diagonal blocks. There are 24 gauge bosons, one associated

with each generator.

Among the 24 , 12 are SM ones (under SU(3)c ⊗ SU(2)L ⊗ U(1)Y ):

24 = (8, 1, 0) + (1, 3, 0) + (1, 1, 0) + (3, 2,−5

3
) + (3, 2,

5

3
). (3.11)

The 12 gauge bosons associated with T13,...,24 are known as X and Y bosons.

These lepto-quark type gauge bosons can cause proton decay. To satisfy the

present bound on proton decay life-time, mass of these gauge bosons (Mx,y) must

be ≥ 1015.5 GeV. The proton decay, mediated by the X and Y bosons, life-time is

given as: τp ∼ 1030(
Mx,y

1014GeV
)4 yrs.
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The weak mixing angle sin2 θW = g′2/(g2 + g′2) is expressed in terms of

the SM gauge couplings g′ and g ≡ g2. Of these, the U(1)Y coupling g′ is related

to the coupling g1 arising in a unified theory through g21 = c2g′2 where c2 = 5
3 .

In the limit of unification of all couplings at a GUT-scale, MX, this leads to the

prediction sin2 θW(MX) = 3/8. After considering the RG evolution of the gauge

couplings, one can find that at the low scale (MZ ∼ 90 GeV) sin2 θW(MZ) is given

as:

sin2 θW(MZ) =
1

6
+

5

9

α(M2
Z)

αs(M2
Z)

; (3.12)

where αi = g2i /4π, which is not inconsistent with the measured low scale value

of θW .

SM contains 15 fermions for each generation. In SU(5), these fermions be-

long to 5- and 10- dimensional representations:

5 ≡












dc
1

dc
2

dc
3

e−

−νe












L

; (3.13)

10 ≡












0 uc
3 −uc

2 −u1 −d1

−uc
3 0 uc

1 −u2 −d2

uc
2 −uc

1 0 −u3 −d3

u1 u2 u3 0 −e+

d1 d2 d3 e+ 0












. (3.14)

In the above the 10-dimensional fermions are written as a 5× 5 antisymmetric

matrix. Minimal SU(5) contains 24- and 5-dimensional Higgs fields. The 24-

dimensional Higgs breaks SU(5) to the SM directly once it acquires vacuum ex-

pectation value along the direction singlet under SU(3)c ⊗ SU(2)L ⊗ U(1)Y. This

vev sets the scale of the unification and because of this spontaneous symmetry

breaking X and Y gauge bosons are massive. Subsequently the vev of 5 breaks the

SU(2)L ⊗ U(1)Y symmetry and generates the masses for the fermions and W±, Z

gauge bosons. Actually this 5 contains the SM Higgs doublet.

Though SU(5) was found to be the simplest GUT group but the detailed

studies of this model failed to address a few basic issues. As we have discussed

in the earlier chapter, seesaw mechanism is a popular and viable candidate to
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generate the light neutrino masses. And for that a very high scale (mass of the

heavy particle) is associated with the theory. But in minimal SU(5) there is no

room for the right-handed neutrino, thus neutrino masses cannot be generated

through seesaw mechanisms. In this grand unified model left-right symmetry

is not realised thus the origin of parity violation at electroweak scale remains

unexplained. The prime aim of a viable grand unified theory, i.e., the unification

of gauge couplings is achieved at a scale that is too low in comparison with the

one suggested by the experimental bounds on proton decay.

These problems provide encouragement to look for other viable gauge groups

like SO(10), E(6) etc.

3.3 SO(10)

SO(10) is a simple group of rank 5 whose generators are orthogonal matrices

with determinant unity [4]. The fermions are in a 16-dimensional representation

and dimensionality of the adjoint representation is 45. 16 can be decomposed in

terms of the SU(5) representations as:

16 ≡ 1+ 10+ 5. (3.15)

Thus along with the 15 SM fermions the right-handed neutrino (νR) is accommo-

dated. Because of this νR, the type-I seesaw is very much there to generate light

neutrino masses.

As the rank of SO(10) is one unit more than that of the SM, there can be sev-

eral intermediate scales on the way to descend down to the SM. The Pati-Salam

SU(4)c ⊗ SU(2)L ⊗ SU(2)R is one of them. Through this intermediate scale left-

right symmetry is realised and the parity violation at low energy is understood

as an artifact of the breaking of the left-right symmetry [5]. Inclusion of the inter-

mediate scales in the theory helps to achieve the gauge coupling unification at an

appropriate high scale.

In minimal SO(10) only 10-dimensional Higgs along with either 54-, 770-

or 210-dimensional Higgs fields are there. When SO(10) is broken via the vevs of

either 54 or 770 then D-parity [6] 1 is kept intact, while the vev of 210 Higgs breaks

this discrete symmetry. In the next chapter we discuss the impact of these Higgs

fields on the unification boundary condition.

1This is a discrete symmetry that connects SU(2)L and SU(2)R multiplets.
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The 10-dimensional Higgs contain a Higgs bi-doublet. The vev of 10 Higgs

breaks the SM gauge symmetry spontaneously and generates the masses for the

fermions. As all the leptons and quarks belong to a single multiplet there is a

single Yukawa coupling and thus it is not sufficient to satisfy the mass relations

for all. It has been noted that instead of using one Higgs field, it is useful to

consider 10-, 120-, and 126-dimensional Higgs fields to generate correct fermion

masses andmixings. In the last chapter we present a possible scenario to generate

neutrino masses in a specific SO(10) model.

3.4 E(6)

E(6) is the exceptional group of rank 6 [7]. The fermions are in 27-dimensional

representation, and the dimensionality of the adjoint representation is 78. E(6)

contains SO(10) as a subgroup thus all the features in SO(10) can be captured. 27

can be decomposed in terms of the SO(10) representations as:

27 ≡ 1+ 10+ 16. (3.16)

Thus it contains other exotic fermions that transform as 1 and 10 of SO(10). These

are very heavy and usually do not couple to the SM fermions. There can be sev-

eral intermediate breaking patterns depending on the choices of the orientations

of the symmetry breaking Higgs fields. The possible choices for these symmetry

breaking Higgs fields are 650-, 2430-dimensional. The left-right symmetry can be

realised through the intermediate gauge group SU(3)c ⊗ SU(3)L ⊗ SU(3)R. 650-

dimensional Higgs contains two directions – one is D-parity even and other one is

odd, but 2430-dimensional Higgs has a single direction that respects D-parity. We

calculate the effects of these different choices of Higgs fields in the next chapter.

3.5 SUSY GUTs

In the earlier chapter we have discussed SUSY as one of the most promising the-

ories beyond the standard model. It has been noted that in SUSY theories uni-

fication improves as now the superparticles are contributing in the RGEs of the

gauge couplings. The unification condition also constrains the SUSY breaking

scale ∼ TeV. In the next chapter we discuss the ranges of the intermediate scales
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for SO(10) and E(6), and we find that SUSY always pushes the intermediate

scales towards the unification point. Thus in SUSY GUT [8] theories interme-

diate scales are in general not widely separated from the unification scale.

The supersymmetric SU(5) is constructed by extending SU(5) multiplets with

SUSYmultiplets. The chiral supermultiplets transform as (5+ 10) for each gener-

ation, and vectormultiplets are 24-dimensional. But unlike the non-supersymmetric

case, one needs to consider both 5 and 5 that serve the job of Hu and Hd respec-

tively.

In non-supersymmetric GUT the stability of the electroweak scale (MW)

is questioned because of the hierarchy between MW and MX. This problem is

resolved by introducing supersymmetry.

In SUSY a discrete symmetry, R-parity ≡ (−1)3(B−L)+2S, is introduced to

protect proton decay, where B, L, S are the baryon, lepton, and spin quantum

numbers respectively. This symmetry forbids dimension-4 proton decay opera-

tors. As either the baryon number or the lepton number conserving operator is

sufficient to protect the proton to decay through the renormalisable operators,

R-parity is an overconstraint. Thus R-parity violating terms are allowed in the

SUSY Lagrangian, though these new couplings are highly constrained frommany

physics results.
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Chapter 4

Gauge coupling unification boundary

conditions

4.1 Dimension-5 operators in gauge kinetic sector

A full quantum-theoretic treatment of gravity is not available currently. Nonethe-

less, it has been found useful to attempt to mimic some of its implications on

grand unification through higher dimension effective contributions, suppressed

by powers of the Planck mass, MPl. In a string theory setting, similar effective op-

erators may also originate from string compactification, MPl being then replaced

by the compactification scale Mc.

In this chapter we focus on the corrections to the gauge kinetic term:

Lkin = − 1

4c
Tr(FµνFµν). (4.1)

where Fµν = Σiλi.F
µν
i is the gauge field strength tensor with λi being the matrix

representations of the generators normalised to Tr(λiλj) = c δij. Convention-

ally, for SU(n) groups the λi are chosen in the fundamental representation with

c = 1/2. In the following, we will often find it convenient to utilise other repre-

sentations.

The lowest order contribution from quantum gravitational (or string com-

pactification) effects, which is what we wish to consider here, is of dimension five

and has the form:

Ldimension−5 = − η

MPl

[
1

4c
Tr(FµνΦD Fµν)

]

, (4.2)
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where ΦD denotes the D-component Higgsmultiplet which breaks the GUT sym-

metry and η parametrises the strength of this interaction. In order for it to be

possible to form a gauge invariant of the form in eq. 4.2, ΦD can be in any rep-

resentation included in the symmetric product of two adjoint representations of

the group.

When ΦD develops a vacuum expectation value vD, which sets the scale

of grand unification MX and drives the symmetry breaking1 GGUT → G1 ⊗ G2 ⊗
. . . Gn, an effective gauge kinetic term is generated from eq. (4.2). Depending on

the structure of the vev, this additional contribution, in general, will be different

for the kinetic terms for the subgroups G1, . . . Gn. After an appropriate scaling of

the gauge fields this results in a modification of the gauge coupling unification

condition to:

g21(MX)(1+ ǫδ1) = g22(MX)(1+ ǫδ2) = . . . = g2n(MX)(1+ ǫδn), (4.3)

wherein the δi, i = 1, 2, . . . n, are group theoretic factors which arise from eq. 4.2

and ǫ = ηvD/2MPl ∼ O(MX/MPl). Thus, the presence of the dimension-5 terms

in the Lagrangian modify the usual boundary conditions on gauge couplings,

namely, that they are expected to unify at MX .

4.2 Prescription to calculate orientations of VEVs

4.2.1 SU(5)

For SU(5) the dimensionality of adjoint representation is 24. Thus ΦD can be in

the 24, 75, and 200 representations as (24⊗ 24)symm = 1⊕ 24⊕ 75⊕ 200.

The prototype example of the vacuum expectation values found useful in

the calculations is the case of SU(5) with a Φ24 scalar. The vev of this field can be

represented as a traceless 5×5 diagonal matrix (Tr(λiλj) = 1/2 δij):

< Φ24 >= v24
1√
60

diag(3, 3,−2,−2,−2) ≡ v24 < 24 >5 . (4.4)

Obviously, < Φ24 > can be expressed in matrix form using the representations

of the generators of any other dimensionality. The group theoretic factors, δi,

1Since ΦD arises from the symmetric product of two adjoint representations the symmetry break-

ing is rank preserving.
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obtained therefrom, should be the same in all cases. In particular 10- and 15-

dimensional forms of the vev, identified through the property that the resulting δi

are the same as from (4.4), are also found useful. Under GSM the SU(5) 10 = (1,1)2

+ (3,1)− 4
3
+ (3,2) 1

3
. Noting that for the 10-dimensional representation Tr(λiλj) =

3/2 δij, one finds:

< Φ24 >= v′24
1√
60

diag(6,−4,−4,−4, 1, . . . , 1
︸ ︷︷ ︸

6 entries

) ≡ v′24 < 24 >10 . (4.5)

Under GSM the 15 of SU(5) is (6,1)− 4
3
+ (3,2) 1

3
+ (1,3)2 and one has (Tr(λiλj) =

7/2 δij):

< Φ24 >= v′′24
1√
60

diag(−4, . . . ,−4
︸ ︷︷ ︸

6 entries

, 1, . . . , 1
︸ ︷︷ ︸

6 entries

, 6, 6, 6) ≡ v′′24 < 24 >15 . (4.6)

(4.4), (4.5), and (4.6) yield the same δi if v24 = v′24 = 9v′′24.

It comes of use for the discussions of SO(10) to also list the 24×24 forms of

the different SU(5) vevs. In this case Tr(λiλj) = 5 δij.

The 24 of SU(5) is (1,1)0 + (1,3)0 + (8,1)0 + (3,2)− 5
3
+ (3,2) 5

3
. Thus

< Φ24 >= v′′′24

√

5

252
diag(2, 6, 6, 6,−4, . . . ,−4

︸ ︷︷ ︸

8 entries

, 1, . . . , 1
︸ ︷︷ ︸

6 entries

, 1, . . . , 1
︸ ︷︷ ︸

6 entries

)

≡ v′′′24 < 24 >24 . (4.7)

For the vev of the 75-dimensional representation one uses the SU(5) rela-

tion: 10 ⊗ 10 = 1 ⊕ 24 ⊕ 75. This allows the vev to be expressed as a 10 × 10

traceless diagonal matrix. Taking into consideration that < Φ75 > must be or-

thogonal to < Φ24 >, i.e., (4.5), it can be expressed as:

< Φ75 >= v75
1√
12

diag(3, 1, 1, 1,−1, . . . ,−1
︸ ︷︷ ︸

6 entries

) ≡ v75 < 75 >10 . (4.8)

The 24×24 form of < Φ75 > which yields the same δi as (4.8) is:

< Φ75 >= v′75

√

5

72
diag(5,−3,−3,−3,−1, . . . ,−1

︸ ︷︷ ︸

8 entries

, 1, . . . , 1
︸ ︷︷ ︸

6 entries

, 1, . . . , 1
︸ ︷︷ ︸

6 entries

)

≡ v′75 < 75 >24 . (4.9)

Similarly, the relation 15⊗ 15 = 1 ⊕ 24⊕ 200 permits the vev for Φ200 to

be written as a 15×15 traceless diagonal matrix. Ensuring orthogonality with
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< Φ24 >, i.e., (4.6), one has:

< Φ200 >= v200
1√
12

diag(1, . . . , 1
︸ ︷︷ ︸

6 entries

,−2, . . . ,−2
︸ ︷︷ ︸

6 entries

, 2, 2, 2) ≡ v200 < 200 >15 . (4.10)

< Φ200 > can be also cast in a 24×24 form. Keeping (4.7), (4.9), and (4.10) in

mind, it is found to be:

< Φ200 >= v′200

√

5

168
diag(10, 2, 2, 2, 1, . . . , 1

︸ ︷︷ ︸

8 entries

,−2, . . . ,−2
︸ ︷︷ ︸

6 entries

,−2, . . . ,−2
︸ ︷︷ ︸

6 entries

)

≡ v′200 < 200 >24 . (4.11)

4.2.2 SO(10)

The dimensionality of the adjoint representation is 45 for SO(10). The possible

choices for ΦD are 54, 210, and 770 as (45⊗ 45)symm = 1⊕ 54⊕ 210⊕ 770,

The SO(10) relation 10⊗ 10 = 1⊕ 45 ⊕ 54 ensures that < Φ54 > can be

expressed as a 10×10 traceless diagonal matrix. It is readily checked that the

normalisation condition is Tr(λiλj) = δij.

Similarly, 16⊗ 16 = 1⊕ 45⊕ 210 permits < Φ210 > to be represented in a

16×16 traceless diagonal form. For the 16×16 matrices Tr(λiλj) = 2 δij.

Finally, < Φ770 > can be written as a 45× 45 matrix which is traceless and

diagonal since (45⊗ 45)symm = 1⊕ 54⊕ 210⊕ 770. Note that < Φ54 > and also

< Φ210 > can be written in a similar form and orthogonality with them has to be

ensured when obtaining < Φ770 >. For these matrices Tr(λiλj) = 8 δij.

The above observations for SO(10) are valid no matter which chain of sym-

metry breaking is under consideration.

SO(10) → SU(5)⊗U(1)

For Φ54 there is no SU(5)⊗ U(1)X invariant direction.

Under SU(5) ⊗ U(1)X, 16 = (1,-5) + (5,3) + (10,1). Further, the diagonal

matrix < Φ210 > must be orthogonal to the one corresponding to U(1)X, i.e.,
1

2
√
10

diag(-5,3,3,3,3,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1). Satisfying these, we find:

< Φ210 >= v210
1√
20

diag(5, 1, 1, 1, 1, 1,−1, . . . ,−1
︸ ︷︷ ︸

10 entries

, ) ≡ v210 < 210 >16 . (4.12)
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Under SU(5) ⊗ U(1)X 45 = (1, 0) + (10, 4) + (10, -4) + (24, 0). Asking the results

from (4.12) be reproduced one arrives at:

< Φ210 >= v′210

√

2

15
diag(−4,−1, . . . ,−1

︸ ︷︷ ︸

10 entries

,−1, . . . ,−1
︸ ︷︷ ︸

10 entries

, 1, . . . , 1
︸ ︷︷ ︸

24 entries

)

≡ v210 < 210 >45 . (4.13)

< Φ770 > is chosen to be singlet under SU(5) ⊗ U(1)X and orthogonal to

< Φ210 > in (4.13). It is:

< Φ770 >= v770
1

3
√
5

diag(16,−2, . . . ,−2
︸ ︷︷ ︸

10 entries

,−2, . . . ,−2
︸ ︷︷ ︸

10 entries

, 1, . . . , 1
︸ ︷︷ ︸

24 entries

)

≡ v210 < 770 >45 . (4.14)

SO(10) → SU(3)c⊗ SU(2)L⊗ U(1)Y⊗ U(1)X

The case we consider in this subsection is a typical example of several symmetry

breaking chains (see the E(6) cases below) where the vacuum expectation val-

ues can be easily written down using the vevs for GUT groups which are them-

selves subgroups of the one under consideration. Here we exploit the findings

of sec. 4.2.1 on SU(5) symmetry breaking to obtain the required results provid-

ing enough details. In subsequent subsections we simple write down the results

since the method is the same.

To accomplish the desired symmetry breaking the vev has to be assigned to

a component of ΦD which is not only a non-singlet under SO(10) but also under

its subgroup SU(5). In fact, from the discussions in sec. 4.2.1 it must transform

as a 24, 75, or 200 of SU(5).

The 54-dimensional SO(10) representation contains an SU(5)⊗U(1)X (24,0)

which is appropriate for the symmetry breaking under consideration. Under

SU(5)⊗ U(1)X 10 = (5,2) + (5,-2). Using (4.4) one finds

< Φ54,24 > = v′54
1√
60

diag(3, 3,−2,−2,−2, 3, 3,−2,−2,−2)

= v′54 diag(< 24 >5,< 24 >5) ≡ v′54 < 54, 24 >10 . (4.15)

Under SU(5)⊗ U(1)X 210 ⊃ (24,0) + (75,0).

Bearing in mind 16 = (1,-5) + (5,3) + (10,-1) and employing (4.4) and (4.5)

< Φ210,24 > = v′210
1√
60

diag(0, 3, 3,−2,−2,−2, 6,−4,−4,−4, 1, . . . , 1
︸ ︷︷ ︸

6 entries

)

= v′210(0,< 24 >5,< 24 >10) ≡ v′210 < 210, 24 >16 . (4.16)
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Ensuring orthogonality and using (4.8) one has:

< Φ210,75 > = v′′210
1

3
diag(0, 0, . . . , 0

︸ ︷︷ ︸

5 entries

, 3, 1, 1, 1,−1, . . . ,−1
︸ ︷︷ ︸

6 entries

)

= v′210
2√
3
(0, 0, . . . , 0
︸ ︷︷ ︸

5 entries

,< 75 >10) ≡ v′210 < 210, 75 >16 . (4.17)

The 770 representation of SO(10) contains within it (24,0), (75,0), and (200,0)

submultiplets under SU(5) ⊗ U(1)X. As already discussed, < Φ770 > can be

expressed as a traceless, diagonal 45×45 matrix.

Further 45 = (1,0) + (10,4) + (10, -4) + (24,0). Using (4.11) one gets:

< Φ770,200 >= v′′′770

√

8

5
(0, 0, . . . , 0
︸ ︷︷ ︸

10 entries

, 0, . . . , 0
︸ ︷︷ ︸

10 entries

,< 200 >24)

≡ v′′′770 < 770, 200 >45 . (4.18)

SO(10) → SU(4)c⊗SU(2)L⊗SU(2)R

Under SU(4)c ⊗ SU(2)L ⊗ SU(2)R ≡ G422, 10 ≡ (1,2,2) + (6,1,1). From the trace-

lessness condition one can immediately obtain

< Φ54 >= v54
1√
60

diag(3, 3, 3, 3,−2, . . . ,−2
︸ ︷︷ ︸

6 entries

). (4.19)

As noted earlier, < Φ210 > can be represented as a traceless and diagonal

16×16 matrix. Since 16 ≡ (4,2,1) + (4,1,2) one can readily identify

< Φ210 >= v210
1√
8

diag(1, . . . , 1
︸ ︷︷ ︸

8 entries

,−1, . . . ,−1
︸ ︷︷ ︸

8 entries

), (4.20)

Similarly, noting 45 ≡ (15,1,1) + (1,3,1) + (1,1,3)+ (6,2,2) under G422, one can

write < Φ770 > as:

< Φ770 >= v770
1√
180

diag(−4, . . . ,−4
︸ ︷︷ ︸

15 entries

,−10, . . . ,−10
︸ ︷︷ ︸

3+3 entries

, 5, . . . , 5
︸ ︷︷ ︸

24 entries

). (4.21)

The < Φ54 > and < Φ210 > can also be written in a similar 45×45 form and care

must be taken to ensure that < Φ770 > is orthogonal to them.
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4.2.3 E(6)

In E(6), (78⊗ 78)symm = 1⊕ 650 ⊕ 2430, where 78 is the dimensionality of the

adjoint representation and ΦD are 650- and 2430 -dimensional.

In E(6) 27 ⊗ 27 = 1 ⊕ 78 ⊕ 650. So, Φ650 can be expressed as a 27×27

traceless diagonal matrix. For this case Tr(λiλj) = 3 δij.

Also, as already noted (78 ⊗ 78)symm = 1 ⊕ 650 ⊕ 2430. Hence both <

Φ650 > and < Φ2430 > can be represented as 78×78 diagonal traceless matrices.

For them Tr(λiλj) = 12 δij.

E(6) → SU(2)⊗SU(6)

Both 650 and 2430 have directions which are singlets under SU(2)⊗ SU(6). Un-

der SU(2)⊗ SU(6) 27 = (2,6) + (1,15). Therefore one can readily write < Φ650 >

for this channel of symmetry breaking as the 27×27 diagonal traceless matrix:

< Φ650 >= v650
1√
180

diag(5, . . . , 5
︸ ︷︷ ︸

12 entries

,−4, . . . ,−4
︸ ︷︷ ︸

15 entries

). (4.22)

The 2430 vev can be written down using 78 = (3,1) + (1, 35) + (2, 20) and

maintaining orthogonality with < Φ650 > one can write

< Φ2430 >= v2430
1√
3640

diag(70, 70, 70, 18, . . . , 18
︸ ︷︷ ︸

35 entries

,−21, . . . ,−21
︸ ︷︷ ︸

40 entries

). (4.23)

E(6) → SO(10)⊗U(1)η

The 650 representation has a singlet under SO(10) ⊗ U(1)which as before can be

expressed as a 27×27 matrix. Under SO(10)⊗ U(1) 27 = (1, 4) + (16, 1) + (10, -2).

Using this one finds

< Φ650 >= v650
1

12
√
5

diag(40,−5, . . . ,−5
︸ ︷︷ ︸

16 entries

, 4, . . . , 4
︸ ︷︷ ︸

10 entries

). (4.24)

To write down Φ2430 we note that the decomposition under SO(10)⊗ U(1)

is 78 = (1, 0) + (45, 0) + (16, -3) + (16, 3). Ensuring the requirements of orthogonal-

ity to < Φ650 > and tracelessness we have

< Φ2430 >= v2430
1

4
√
78

diag(−108,−4, . . . ,−4
︸ ︷︷ ︸

45 entries

, 9, . . . , 9
︸ ︷︷ ︸

16 entries

, 9, . . . , 9
︸ ︷︷ ︸

16 entries

). (4.25)
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E(6) → SU(5)⊗U(1)ξ⊗U(1)η

The results for this option of symmetry breaking can be obtained by referring

to those in sec. 4.2.2 for SO(10) → SU(5) ⊗ U(1)X. Here the vev must be as-

signed to a direction which is a singlet under SU(5) ⊗ U(1)ξ ⊗ U(1)η but not

under SO(10)⊗ U(1)η. Such possibilities are the following: 650 of E(6) contains

the submultiplets (54,0) and (210,0) under the latter group and the 2430 of E(6) in-

cludes (210,0) and (770,0). As already noted the SO(10) 54 does not have a singlet

direction of SU(5)⊗ U(1)X. So, we need to consider only the other possibilities.

It is useful to recall the decomposition 27 = (1,4) + (10,-2) + (16,1) under

SO(10)⊗ U(1)η. Then from (4.12) we have

< Φ650,210 >= v650

√

3

2
diag(0, 0, . . . , 0

︸ ︷︷ ︸

10 entries

,< 210 >16). (4.26)

< Φ650 > can also be expressed as a 78×78 traceless diagonal matrix. Here one

uses 78 = (1,0) + (45,0) + (16, -3) + (16,3) under SO(10)⊗ U(1)η. Then using (4.12)

and (4.13):

< Φ2430,210 >= v′650 diag(0,< 210 >45,< 210 >16,< 210 >16). (4.27)

The remaining vev is < Φ2430 > which can be written down using (4.14)

< Φ2430,770 >= v2430

√

3

2
diag(0,< 770 >45, 0, . . . , 0

︸ ︷︷ ︸

16 entries

, 0, . . . , 0
︸ ︷︷ ︸

16 entries

). (4.28)

E(6) → SU(3)c⊗SU(2)L⊗U(1)Y⊗ U(1)ξ⊗U(1)η

For this symmetry breaking we can utilise the results in sec. 4.2.2 for SO(10) →
SU(3)⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)X. The relevant submultiplets are the following:

650 of E(6) contains (54,0) and (210,0) under SO(10)⊗U(1)η and the 2430 of E(6)

includes (54,0), (210,0) and (770,0). The desired symmetry breaking can occur

through the further SU(5) 24, 75, or 200 content of the SO(10) multiplets, viz.,

54 ⊃ 24; 210 ⊃ 24 and 75; and 770 ⊃ 24, 75 and 200.

The explicit forms of the vevs are not of much use since ultimately it is the

SU(5) representation which will fix the δi.
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E(6) → SU(3)c⊗SU(3)L⊗SU(3)R

As before, < Φ650 > can be written as a 27×27 matrix. It turns out that the 650

representation has two directions which are singlet under SU(3)c ⊗ SU(3)L ⊗
SU(3)R ≡ G333. One of them is even under D-parity while the orthogonal direc-

tion is odd. These are of interest from the physics standpoint. Of course, a vev in

any one of these directions or linear combinations thereof may be chosen to break

the symmetry.

In this option of E(6) symmetry breaking to SU(3)c ⊗ SU(3)L ⊗ SU(3)R one

has 27 = (1,3,3) + (3,1,3) + (3,3,1). The D-even case is:

< Φ650 >= v650
1√
18

diag(−2, . . . ,−2
︸ ︷︷ ︸

9 entries

, 1, . . . , 1
︸ ︷︷ ︸

9 entries

, 1, . . . , 1
︸ ︷︷ ︸

9 entries

). (4.29)

while the D-odd vev is

< Φ′
650 >= v′650

1√
6

diag(0, . . . , 0
︸ ︷︷ ︸

9 entries

, 1, . . . , 1
︸ ︷︷ ︸

9 entries

,−1, . . . ,−1
︸ ︷︷ ︸

9 entries

). (4.30)

As in the other cases, < Φ2430 > can be written as a 78×78 traceless di-

agonal matrix. Noting that 78 = (8,1,1) + (1,8,1) + (1,1,8) + (3,3,3) + (3,3,3) and

maintaining orthogonality with < Φ650 > and < Φ′
650 > one can write

< Φ2430 >= v2430
1√
234

diag(9, . . . , 9
︸ ︷︷ ︸

8 entries

, 9, . . . , 9
︸ ︷︷ ︸

8 entries

, 9, . . . , 9
︸ ︷︷ ︸

8 entries

,−4, . . . ,−4
︸ ︷︷ ︸

27 entries

,−4, . . . ,−4
︸ ︷︷ ︸

27 entries

).

(4.31)

4.3 Corrections from dimension-5 operators to the

unification conditions

In this section we calculate the corrections, δi, which arise due to the dimension-

5 operators for different orientations of the Higgs fields discussed in the earlier

section.

4.3.1 SU(5) GUT

Here, we summarise the results for SU(5) [1, 2]. ΦD can be in the 24-, 75- or 200-

dimensional representation of SU(5) and the symmetry is broken to SU(3)c ⊗
SU(2)L ⊗ U(1)Y.
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SU(5) Representations δ1 δ2 δ3 N

24 1 3 -2 2/
√
15

75 5 -3 -1 8/15
√
3

200 10 2 1 1/35
√
21

Table 4.1: Effective contributions (see eq. 4.3) to gauge kinetic terms from differ-

ent Higgs representations in eq. 4.2 for SU(5) → SU(3)c ⊗ SU(2)L ⊗
U(1)Y. N is an overall normalisation which has been factored out from

the δi.

The procedure to obtain these results [2] is to express< ΦD > as a diagonal

matrix of dimensionality of some SU(5) irreducible representation as has been

done in the earlier section. From the GSM structure of this representation, the δi

can be read off.

The δi arising in the different cases are listed in Table 4.1.

4.3.2 SO(10) GUT

SO(10) [3] offers the option of descending to GSM through a left-right symmetric

route [4] – the intermediate Pati-Salam GPS ≡ SU(4)c ⊗ SU(2)L ⊗ SU(2)R – or via

SU(5)⊗U(1)X or in one step to SU(3)c ⊗ SU(2)L ⊗U(1)Y ⊗U(1)X. The effects of

dimension-5 interactions for different breaking patterns of SO(10) are discussed

in the next sections .

SO(10) → SU(5)⊗U(1)

Under SU(5) ⊗ U(1)X the SO(10) spinorial representation decomposes2 as fol-

lows: 16 ≡ (1,-5) + (5,3) + (10,-1). The SM families belong to this representation.

The particle assignments within the 16-plet can be chosen in two distinct ways

with different physics consequences: (a) conventional SU(5): U(1)X commutes

with the SM, so the low scale hypercharge (U(1)Y) is the same as the U(1)Y′ in

2The correctly normalised (Tr(λiλj) = 2 δij) U(1)X charges are obtained by multiplying the dis-

played quantum numbers by a factor of 1
2
√
10

.

32



SU(5); e.g., for the (5,3) multiplet TY′ ≡
√

3
5 diag( 13 ,

1
3 ,

1
3 ,− 1

2 ,− 1
2). The SM gen-

erators are entirely within the SU(5) and a singlet under it is uncharged. There-

fore, the (1,-5) submultiplet has to be identified with the neutral member in the

16-plet, the νc
i (i = 1,2,3). The other option is (b) flipped SU(5): Here U(1)Y′

and U(1)X combine to give U(1)Y: TY = −(2
√
6 TX + TY′)/5 [6]. The differ-

ence can be illustrated using the (5,3) multiplet. For it the U(1)Y′ assignment is,

as before, TY′ ≡
√

3
5 diag( 13 ,

1
3 ,

1
3 ,− 1

2 ,− 1
2) while the normalised U(1)X is 3

2
√
10

so

that TY ≡
√

3
5 diag(− 2

3 ,− 2
3 ,− 2

3 ,− 1
2 ,− 1

2). Thus, this submultiplet now contains

(uc
i , Li) rather than the usual (dc

i , Li). The (1,-5) state is SU(3)c ⊗ SU(2)L singlet

but carries a non-zero hypercharge, Y = 1. The only particle that satisfies this

requirement is lc
i .

The complete particle assignments for the first generation in the two op-

tions are:

(a) For conventional SU(5):

(1,−5) = νc
1 , (5, 3) = (dc

1, l1) , (10,−1) = (q1, uc
1, ec

1) , (4.32)

and (b) for flipped SU(5):

(1,−5) = ec
1, (5, 3) = (uc

1, l1) , (10,−1) = (q1, dc
1, νc

1) , (4.33)

where q and l are respectively the left-handed quark and lepton doublets, uc, dc,

ec, and νc are the CP conjugated states corresponding to the right-handed up-type

quark, down-type quark, lepton, and neutrino, respectively.

In SO(10) GUT, at the unification scale one has g5 = g1. The presence

of any dim-5 effective interactions of the form of eq. 4.2 will affect this relation

generating corrections as shown in eq. 4.3 which in this case will involve two

parameters δ5 and δ1.

As noted earlier, ΦD can be chosen only in the 54, 210, and 770-dimensional

representations. Of these, the 54 does not have an SU(5)⊗ U(1) singlet. So, only

the 210- and 770-dimensional cases need examination.

Using (16 ⊗ 16) = 1 ⊕ 45 ⊕ 210, < Φ210 > can be expressed as a 16-

dimensional traceless diagonal matrix. The form of this vev for this symmetry

breaking is given in (4.12). It yields δ5 = − 1
4
√
5
and δ1 =

1√
5
.

In a similar fashion the vev of Φ770 can be written as the 45×45 diagonal

traceless matrix in (4.14). This results in δ5 = − 1
24
√
5
, δ1 = − 2

3
√
5
.
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SO(10) Representations δ5 δ1 N

210 -1 4 1/4
√
5

770 1 16 -1/24
√
5

Table 4.2: Effective contributions (see eq. 4.3) to gauge kinetic terms from differ-

ent Higgs representations in eq. 4.2 for SO(10) → SU(5)⊗ U(1). N is

an overall normalisation which has been factored out from the δi.

SO(10) Representations δ1 δ2 δ3 δ1X N

54 (24) 1 3 -2 0 1/2
√
15

210 (24) 1 3 -2 0 1/4
√
15

210 (75) 5 -3 -1 0 1/12

770 (24) 1 3 -2 0 2/
√
15

770 (75) 5 -3 -1 0 8/15
√
3

770 (200) 10 2 1 0 -1/8
√
21

Table 4.3: Effective contributions (see eq. 4.3) to gauge kinetic terms from differ-

ent Higgs representations in eq. 4.2 for SO(10) → SU(3)c ⊗ SU(2)L ⊗
U(1)Y ⊗ U(1)X. SU(5) subrepresentations are indicated within paren-

theses. N is an overall normalisation which has been factored out from

the δi.

The results for this chain of symmetry breaking are summarised in Table

4.2. The δi are completely group theoretic in nature and obviously do not depend

on whether the particle assignments follow the conventional or flipped SU(5).

SO(10) → SU(3)c⊗ SU(2)L⊗ U(1)Y⊗ U(1)X

The unification condition in the presence of dimension-5 effective interactions of

the form of eq. 4.2 will now involve the parameters δi (i = 1,2,3) as for SU(5) and

an additional one δ1X .

In order to break SO(10) directly to G3211 ≡ SU(3)c ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)X
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the vev must be a non-singlet not just under SO(10) but also under SU(5). The de-

compositions of SO(10) representations under SU(5)⊗ U(1) are useful for iden-

tifying these vevs. The calculation can be considerably simplified by using the

SU(5) symmetry breaking patterns at our disposal from sec. 4.3.1. One simply

has to look for 24, 75, and 200 submultiplets within the 54, 210, and 770 SO(10)

multiplets.

The 54 representation of SO(10) has a singlet under G3211 which is con-

tained in a 24 of SU(5). The vev for this case is shown in (4.15) and the contri-

butions to the δi can be immediately read off from the SU(5) result in Table 4.1.

These δi are listed in Table 4.3.

Notice, that in this case the effect of dimension-5 terms cannot distinguish

between an SU(5) theory with < Φ24 > driving the symmetry breaking and an

SO(10) one with < Φ54 >. For Φ210 or Φ770 the situation is different as they have

multiple G3211 singlet directions.

Φ210 has three directions which are all singlets under G3211. Of these one is

also an SU(5) singlet. In the subspace defined by them, three convenient orthog-

onal directions can be identified, all singlets under U(1)X, and corresponding to

1-, 24- and 75-directions of the SU(5) subgroup. If the vev is along one of these

directions3 it can be simply read off from the results of sec. 4.3.1. The vevs corre-

sponding to the 24 and 75 directions are given in (4.16) and (4.17). The δi derived

therefrom are shown in Table 4.3. In the most generic situation one can write

< Φ210 >= α1 < Φ210,1 > +α24 < Φ210,24 > +α75 < Φ210,75 >, where the

αi are complex numbers and the concomitant δi will be appropriately weighted

combinations of the above results.

< Φ770 > has four G3211 invariant directions which can be classified under

the SU(5) representations 1, 24, 75, and 200. The results for these are also shown

in Table 4.3. Here again, in general, the vev may lie in an arbitrary direction in

the space spanned by the four SU(5)-identified ones and the resultant δi can be

readily obtained from the above.

Unlike the case of < Φ54 > where the singlet direction is unique, the other

possible vevs, < Φ210 > and < Φ770 >, provide a more general option and there-

fore the predictions for the δi are not unique but cover a range. In this sense the

3For the SU(5) singlet direction the δi are all equal. A vev in this direction alone will not break

SO(10) to G3211.
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SO(10) Representations δ1 δ2 δ3 N

54 (24) 1 3 -2 1/2
√
15

210 (1) -19/5 1 1 -1/4
√
5

210 (24) -7/5 3 -2 1/4
√
15

210 (75) 1/5 -3 -1 1/12

770 (1) 77/5 1 1 -1/24
√
5

770 (24) 29/5 3 -2 2/
√
15

770 (75) 1/5 -3 -1 8/15
√
3

770 (200) 2/5 2 1 -1/8
√
21

Table 4.4: Effective contributions (see eq. 4.3) to gauge kinetic terms from differ-

ent Higgs representations in eq. 4.2 for SO(10) → SU(3)c ⊗ SU(2)L ⊗
U(1)Y (flipped SU(5)). SU(5) subrepresentations are indicated within

parentheses. N is an overall normalisation which has been factored out

from the δi.

model becomes less predictive4.

This route of symmetry breaking of SO(10) does not admit the flipped

SU(5) option by itself since in that case the U(1)X combines with a U(1) sub-

group of SU(5) to produce U(1)Y and thus SO(10) is broken to GSM, which is

of rank 4, not 5. So this symmetry breaking will have to be through some other

SO(10) scalar multiplet. Nonetheless, assuming that such a symmetry breaking

is operational, we may ask what would be the impact of the vevs of Φ54, Φ210, and

Φ770 of this subsection on the unification parameters δi, i = 1, 2, 3. Using the vevs

used before and noting that U(1)Y: TY = −(2
√
6 TX + TY′)/5 one finds the results

presented in Table 4.4.

SO(10) → SU(4)c⊗SU(2)L⊗SU(2)R

Left-right symmetry is realised through this intermediate breaking pattern of

SO(10). ΦD can be chosen only in the 54-, 210-, and 770-dimensional representa-

4This also applies to the non-universality options for gaugino masses in supersymmetric theories.
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SO(10) Representations δ4c δ2L δ2R N

54 -2 3 3 1/2
√
15

210 0 1 -1 1/2
√
2

770 2 5 5 1/24
√
5

Table 4.5: Effective contributions (see eq. 4.3) to gauge kinetic terms from differ-

ent Higgs representations in eq. 4.2 for SO(10) → SU(4)c ⊗ SU(2)L ⊗
SU(2)R. N is an overall normalisationwhich has been factored out from

the δi.

tions, as in the earlier section, ensuring that < ΦD > leaves G422 unbroken.

For Φ54 the appropriate vev is given in (4.19) and this results in δ4c = − 1√
15

and δ2L = δ2R = 3
2
√
15
. Notice that this correction to unification ensures that

g2L(MX) = g2R(MX), i.e., D-parity [11] is preserved.

A 16×16 form of < Φ210 > is given in (4.20) from which one can calculate

δ4c =0 and δ2L = −δ2R = 1
2
√
2
. D-parity is broken through < Φ210 > and thus

g2L(MX) 6= g2R(MX) though SU(2)L ⊗ SU(2)R remains unbroken at MX .

The final option is Φ770. One can write the vev in terms of a 45-dimensional

diagonal tracelessmatrix and this is given in (4.21). From this one finds δ4c =
1

12
√
5

and the D-parity conserving δ2L = δ2R = 5
24
√
5
. The results for this chain of SO(10)

breaking are collected together in Table 4.5.

4.3.3 E(6) GUT

E(6) can have different subgroups of same rank: SU(3)c ⊗ SU(3)L ⊗ SU(3)R,

SU(3)c ⊗ SU(2)L ⊗ U(1)L ⊗ SU(2)R ⊗ U(1)R, SU(2) ⊗ SU(6), SO(10) ⊗ U(1)η,

SU(5)⊗ U(1)ξ ⊗ U(1)η, and SU(3)c ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)ξ ⊗ U(1)η. All of

these intermediate gauge groups accommodate GSM as a subgroup and lead to

different low scale phenomenology. For E(6) the adjoint representation is 78-

dimensional. We note that ΦD can be either 650- or 2430-dimensional as (78⊗
78)symm = 1⊕ 650⊕ 2430. Both of them contain singlets under the above men-

tioned intermediate gauge groups we are interested in.
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E(6) Representations δ2 δ6 N

650 5 -1 1/6
√
5

2430 -35 -9 1/12
√
910

Table 4.6: Effective contributions (see eq. 4.3) to gauge kinetic terms from differ-

ent Higgs representations in eq. 4.2 for E(6) → SU(2)⊗ SU(6). N is an

overall normalisation which has been factored out from the δi.

E(6) → SU(2)⊗SU(6)

The inconsistency of the Georgi-Glashow SU(5) model with the proton decay

and gauge unification requirements has been a motivation to seek alternative

GUT models. SU(6) is one of them. It can naturally guarantee strong-CP invari-

ance and a supersymmetrised version implements doublet-triplet splitting by the

missing vev mechanism [9].

The subgroups from the breaking E(6) → SU(2)⊗ SU(6) have been iden-

tified in several physically distinct manners: SU(2)R ⊗ SU(6)′, SU(2)L ⊗ SU(6)′′,

and SU(2)X ⊗ SU(6). The results that we discuss are valid irrespective of these

alternative interpretations.

The contributions from the 650-dimensional representation for this sym-

metry breaking chain can be obtained from eq. 4.22. One finds δ2 = 5
6
√
5
and

δ6 = − 1
6
√
5
,

For the 2430-dimensional E(6) representation the vev is given in (4.23). From

it we get δ2 = − 35
12
√
910

, δ6 = − 9
6
√
910

. The results for this symmetry breaking chain

can be found in Table 4.6.

E(6) → SO(10)⊗U(1)η

E(6) contains SO(10)⊗U(1) as a maximal subgroup. Breaking patterns based on

this chain are well discussed in the literature [8]. Here, we consider the effect of

dimension-5 operators on the gauge unification condition.

< Φ650 > is given in (4.24). From it one obtains δ10 = − 1
6
√
5
, δ1 = 5

6
√
5
.

Using (4.25) for < Φ2430 > one can similarly get δ10 = 1
72
√
26
, δ1 = 3

8
√
26
. These

results are listed in Table 4.7.
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E(6) Representations δ10 δ1 N

650 -1 5 1/6
√
5

2430 1 27 1/72
√
26

Table 4.7: Effective contributions (see eq. (4.3)) to gauge kinetic terms from differ-

ent Higgs representations in eq. (4.2) for E(6) → SO(10)⊗ U(1). N is

an overall normalisation which has been factored out from the δi.

E(6) → SU(5)⊗U(1)ξ⊗U(1)η

The results in this case are very similar to that for sec. 4.3.2. There it was noted

that the SO(10) 210 and 770 representations contain singlets under SU(5)⊗U(1)X

and the δ5 and δ1 in the two cases were presented in Table 4.2. These results can

be immediately taken over for the current case with the change that the U(1)X is

here termed U(1)ξ and that δη = 0 in all cases.

The two relevant representations of E(6) are 650 and 2430. Of these, 650

contains a (210,0) submultiplet under SO(10) ⊗ U(1)η. So for the 650 the δi will

be exactly as for the 210 in Table 4.2.

The E(6) 2430 representation contains both the (210,0) as well as the (770,0)

within it. If the vev is assigned to any one of these directions the resultant δi will

be as in the respective case in Table 4.2. In general, the vev will be a superposition

of these two and so the δi will be the appropriately weighted value.

E(6) → SU(3)c⊗SU(2)L⊗U(1)Y⊗ U(1)ξ⊗U(1)η

As for the previous subsection, this alternative can be disposed off straightfor-

wardly using the results of sec. 4.3.2. This time there is one extra step. In sec.

4.3.2 results are presented for the SO(10) representations 54, 210, and 770. They

can be immediately taken over by noting that the E(6) 650 contains (54,0) and

(210,0) submultiplets while the 2430 contains (54,0), (210,0), and (770,0).

The main changes compared to sec. 4.3.2 are that the U(1)X there is called

U(1)ξ here and for all cases δξ = δη = 0. For the 650 representation if the vev

is chosen along either the (54,0) or the (210,0) directions then the results of Table

4.3 apply directly. In general, of course, the δi will be a weighted combination of
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E(6) Representations δ3c δ3L δ3R N

650 -2 1 1 -1/6
√
2

650′ 0 1 -1 1/2
√
6

2430 1 1 1 -1/4
√
26

Table 4.8: Effective contributions (see eq. (4.3)) to gauge kinetic terms from differ-

ent Higgs representations in eq. (4.2) for E(6) → SU(3)c ⊗ SU(3)L ⊗
SU(3)R. Note that there are two SU(3)c ⊗ SU(3)L ⊗ SU(3)R singlet di-

rections in 650. N is an overall normalisation which has been factored

out from the δi.

these. Similar conclusions can be drawn about the < Φ2430 > except that here, in

general, the δi will be a linear combination of the ones in Table 4.3.

E(6) → SU(3)c⊗SU(3)L⊗SU(3)R

This breaking chain possesses the left-right symmetry [4]. A Z2 symmetry – D-

Parity – is assumed to be active between SU(3)L and SU(3)R. The vev < Φ > can

be classified by its D-Parity behaviour. < Φ650 > has two directions which are

singlets under G333 and are even, and odd under D-Parity.

The form of < Φ650 > is given in (4.29) for the D-Parity even case while

(4.30) is for the D-parity odd vev. This results in δ3c = − 1
3
√
2
and δ3L = δ3R = 1

6
√
2

for the former and δ3c =0, δ3L = −δ3R = 1
2
√
6
for the latter. < Φ2430 > is listed

in (4.31). From it one can readily read off δ3c = δ3L = δ3R = − 1
4
√
26
. In Table

4.8 we collect the findings for the different representations of E(6). It is worth

remarking that the three SU(3) subgroups in this chain are on an equal footing.

It is possible to relate any two of them through a Z2-type discrete symmetry. For

the purpose of illustration and for phenomenological interest we have identified

it with D-Parity. Obviously, one could just as well choose the Z2-type symmetry

to be between SU(3)c and SU(3)L (or SU(3)R). The symmetry breaking vevs of

Φ650, either even or odd under this changed parity-like symmetry, are simply

linear combinations between the vevs which are odd and even under D-Parity

discussed above.

40



References

[1] Q. Shafi and C. Wetterich, Phys. Rev. Lett. 52 (1984) 875; C. T. Hill, Phys. Lett.

B 135 (1984) 47; L. J. Hall and U. Sarid, Phys. Rev. Lett. 70 (1993) 2673.

[2] J. Chakrabortty and A. Raychaudhuri, Phys. Lett. B 673 (2009) 57.

[3] H. Georgi, in Particles and Fields – 1974, ed. C. A. Carlson (AIP, New York,

1975); H. Fritzsch and P. Minkowski, Ann. Phys. (N.Y.) 93 (1975) 193; T.

Clark, T. Kuo and N. Nakagawa, Phys. Lett. B 115 (1982) 26; C. S. Aulakh

and R. N. Mohapatra, Phys. Rev. D 28 (1983) 217.

[4] J. C. Pati and A. Salam, Phys. Rev. D 10 (1974) 275; R. N. Mohapatra and J.

C. Pati, Phys. Rev. D 11 (1975) 566; R. N. Mohapatra and J. C. Pati, Phys. Rev.
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Chapter 5

Impact of dimension-5 operators on

gauge coupling unification

5.1 Renormalisation group equations

The generic RG equations governing gauge coupling evolution are:

µ
dgi

dµ
= βi(gi, gj), (i, j = 1, . . . , n), (5.1)

where n is the number of couplings in the theory. At one-loop order βi depends

on gi only and for a gauge theory involving fermions and scalars is given by:

βi(gi) =
g3i

16π2
[
2

3
T(Ri)d(Rj) +

1

3
T(Si)d(Sj)−

11

3
C2(Gi)]. (5.2)

The fermions and scalars transform according to the representations Ri and Si

with respect to Gi respectively. T(R) is expressed as: C2(R)d(R) = T(R)r, where

C2(R) is the quadratic Casimir operator for the representation R, d(R) is the di-

mension of the representation and r is the number of generators of the group.

C2(G) is the quadratic Casimir for the adjoint representation. For the SM particle

content βi were used for the first time to estimate MX in [1].

In general the RGEs of the gauge couplings also include contributions from

the Yukawa couplings. The Yukawa couplings being mostly small result in neg-

ligible contributions. Among them only the top quark Yukawa coupling is sig-

nificant and its contribution is comparable to the two-loop contributions coming

from the gauge couplings. But in our study we have checked and noticed that

for all the gauge coupling running equations the numerical contributions for the
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two-loop case do not change significantly the one-loop results. Thus in the nu-

merical analysis we ignore the Yukawa coupling contributions.

βi(gi, gj) = (16π2)−1big
3
i + (16π2)−2

n

∑
j=1

bijg
2
j g3i . (5.3)

The two-loop coefficients bij for non-SUSY and SUSY theories can be found in

[2]. When using this two-loop formula, the matching of the coupling constant

αk = g2k/4π below an intermediate scale MI which goes over to αl thereafter

follows the relation [3, 4]:

1

αk(MI)
− Ck

12π
=

1

αl(MI)
− Cl

12π
, (5.4)

where Ck is the quadratic Casimir for the k-th subgroup. At the unification scale,

MX, the above condition has to be supplementedwith the contributions from the

dimension-5 operators in eq. 4.3. We consider both non-supersymmetric (non-

SUSY) as well as supersymmetric (SUSY) versions of the theory. In the latter

case the contributions of the superpartners to the beta functions are included (We

assume that the SUSY scale is at MSUSY = 1 TeV.). As is well-known [5], unification

of coupling constants is compatible with TeV-scale supersymmetry. We find that

addition of the dimension-5 contributions does not spoil this. It is also observed

that the requirement of unification pushes any intermediate scale towards high

values forbidding observable n − n oscillations1.

5.2 Intermediate scales

In this chapter we explore the possibilities of different unification scenarios with

and without intermediate scales. We consider the cases for SU(5), SO(10), and

E(6).

5.2.1 No intermediate scale

This is the case when the GUT gauge group is directly broken to the SM.

1For exceptional cases see the discussion on one and two intermediate scales for SO(10) in the

non-SUSY scenarios in the later sections.
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Results for SU(5)

As the ranks of SU(5) and the SM gauge group are the same, there cannot be any

intermediate gauge group. We incorporate the impact of the dimension-5 opera-

tor to findwhether unification is achieved or not. The shift in the gauge couplings

as dictated by eq. 4.3 leaves its mark at low energies through the Renormalisation

Group equations. Moreover, besides the low energy value of the weakmixing an-

gle sin2 θW , even its GUT-level prediction is affected. In chapter 2 we discuss the

GUT prediction of sin2 θW(MX) = 3/8. Now, due to the modified GUT relation-

ship of eq. 4.3 one has for the weak mixing angle θ̂W :

sin2 θ̂W(MX) =
3

8
+

15

64
ǫ(δ2 − δ1). (5.5)

The experimentally determined value of sin2 θW at low energies receives further

RG-dependent corrections to which we now turn.

In this case the β-coefficients bi and bij are:

b1 =
1

10
nH +

4

3
nG; b2 =

1

6
nH +

4

3
nG − 22/3; b3 =

4

3
nG − 11, (5.6)

and

bij = nH







9/50 9/10 0

3/10 13/6 0

0 0 0







+ nG







19/15 3/5 44/15

1/5 49/3 4

11/30 3/2 76/3







+







0 0 0

0 −136/3 0

0 0 −102







. (5.7)

and nH and nG are respectively the number of Higgs doublets and the number of

fermion generations in the theory. The RG equations must satisfy the boundary

conditions set by eq. 4.3 on the g2i (MX).

In our numerical analyses below we show the full two-loop RG equation

results. For ease of discussion if only the lowest order contributions are retained,

then in the absence of dimension-5 operators (αi = g2i /4π):

1

αi(µ)
=

1

αi(MX)
+

2bi

2π
ln

[
MX

µ

]

, (i = 1, 2, 3). (5.8)

These equations can be combined to yield:

α

2π
ln

MX

MZ
=

[
3

5b1 + 3b2 − 8b3

] {

1− 8

3

α

α3

}

, (5.9)
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SU(5) ǫ ǫ MX (GeV)

Representations (from eq. 5.13) (using eq. 5.1)

24 0.087 0.088 5.01×1013

75 -0.048 -0.045 4.79 ×1015

200 -1.92 -1.40 1.05 ×1018

Table 5.1: SU(5) dimension-5 interaction strength ǫ and the gauge unification

scale, MX, for different Φ representations for non-SUSY one-loop case.

and therefrom

sin2 θW(MZ) =
3

8
− 15

8

[
b1 − b2

5b1 + 3b2 − 8b3

]{

1− 8

3

α

α3

}

, (5.10)

where α – the fine structure constant – and α3 are the couplings at the scale MZ.

Inclusion of the boundary condition, eq. 4.3, dictated by the dimension-5

interactions, alters eqs. 5.9 and 5.10 to:

α

2π
ln

M̂X

MZ
=

[
3

5b1 + 3b2 − 8b3

]{

1− 8

3

α

α3

}

(5.11)

+

(
ǫ

5b1 + 3b2 − 8b3

)[−3(8δ3 − 3δ2 − 5δ1)b3
5b1 + 3b2 − 8b3

− (5δ1 + 3δ2)
α

α3

]

+O(ǫ2),

and

sin2 θ̂W(MZ) =
3(1+ ǫδ2)

8+ ǫ(3δ2 + 5δ1)
(5.12)

−
(
5(1+ ǫδ1)(1+ ǫδ2)

8+ ǫ(3δ2 + 5δ1)

)[
b1

1+ ǫδ1
− b2

1+ ǫδ2

]

3(1+ ǫδ3)− [8+ ǫ(3δ2 + 5δ1)][α/α3]

(5b1 + 3b2)(1+ ǫδ3)− [8+ ǫ(3δ2 + 5δ1)]b3
,

which reduces to eq. 5.10 in the appropriate limit. In fact,

sin2 θ̂W(MZ) = sin2 θW(MZ)

− ǫ

[
5[δ1(b3 − b2) + δ2(b1 − b3) + δ3(b2 − b1)]

(5b1 + 3b2 − 8b3)2

]

{

3b3 − (5b1 + 3b2)
α

α3

}

+O(ǫ2). (5.13)
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The first term on the r.h.s. of eq. 5.13 is fixed from eq. 5.10. From the measured

value of sin2 θW [8] one can extract the value of ǫ. These are presented for the

different Φ representations in Table 5.1.

These O(ǫ) one-loop analytic results can be cross-checked using the full

RG equations with nG = 3 and nH = 1. Using the low energy (∼ MZ) measured

values [8], sin2 θW = 0.231 19(14) and α3 = 0.11 76(20), the RG equations can be

numerically integrated. The scale MX is fixed through the requirement that the

modified unification condition, eq. 4.3, is satisfied there. From this analysis one

can determine ǫ and MX. The conclusions from one-loop RG running are shown

in Table 5.1 and Fig. 5.1.

The two-loop results, shown as insets in Fig. 5.1, incorporate the proper

matching conditions eq. 5.4 as well as eq. 4.3 at MX, namely,

1

αi(MX)(1+ ǫδi)
− Ci

12π
= constant, independent of i, for i = 1, 2, 3. (5.14)

It is noteworthy that the results are not significantly affected and the coupling

constants still unify. The unification scales (obtained using two-loop evolutions),

MX, 5.01 ×1013, 2.09 ×1015, and 3.02 ×1017 GeV respectively for Φ24, Φ75, and

Φ200, are consistent with one-loop results given in Table 5.1. Though unification

is achieved within the Planck scale for all three choices, for Φ24 and Φ75 the re-

sults are not consistent with the existing limits from proton decay. Thus only a

5-dimensional operator with Φ200 yields a viable solution.

In [9], noting that the dimension-5 operator in eq. 4.2 with Φ24 cannot by

itself provide satisfactory gauge unification, it has been proposed that including

gravitational contributions in the beta functions can help ameliorate this problem.

Alternatively, within SUSY SU(5) it has been argued in [10] that one-loop (as well

as two-loop) RG evolution with Φ24-driven boundary conditions in eq. 4.3 can

yield satisfactory unification solutions provided the possible modification of the

Planck scale itself due to the large number of GUT fields is given consideration.

It is well known that gauge coupling unification is possible if SUSY is man-

ifested at the TeV scale [5]. If dimension-5 interactions are also present then that

will further affect this unification. In fact, it was shown within SUSY SU(5) that

if the δi (i = 1, 2, 3) in eq. 4.3 are fixed as determined (see Table 4.1) by the
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Figure 5.1: The evolution of the coupling constants for different choices of Φ for non-SUSY

SU(5) GUTs: Φ24 (left), Φ75 (center), Φ200 (right). In the inset the results for

two-loop evolution are shown.

24-dimensional representation [6] or permitted to vary arbitrarily [7] then unifi-

cation, at the one-loop level, is always possible.

Here we perform a one-loop as well as a two-loop analysis. Above the

SUSY scale (chosen as 1 TeV) this entails the replacement of eqs. 5.6 and 5.7 (with

nG = 3, nH = 2) by

b1 =
33

5
; b2 = 1; b3 = −3, (5.15)

and

bij =







199/25 27/5 88/5

9/5 25 24

11/5 9 14







. (5.16)

We find that unification is allowed for all three choices of Φ – namely, 24, 75,

and 200 – when the δi (i = 1, 2, 3) are appropriately identified. The results are

presented in Table 5.2. Unlike the non-SUSY alternative in Table 5.1, now for

every case one gets MX ∼ 1016 GeV which is consistent with the proton decay

limit. In line with expectation, the size of ǫ is reduced in this SUSY case as the

couplings tend to unify even without these interactions. The trend of agreement

between the one-loop and two-loop results is gratifying.

Results for SO(10)

No intermediate scale is themost straight-forward symmetry breaking for SO(10)

and is much like the SU(5) case discussed in the previous section.

SO(10)
MX−→ SU(3)c ⊗ SU(2)L ⊗ U(1)Y. (5.17)
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SU(5) 1-loop 2-loop

Representations ǫ MX (GeV) ǫ MX (GeV)

24 0.017 1.10×1016 -0.003 1.38×1016

75 -0.007 1.92 ×1016 0.001 1.24×1016

200 -0.204 3.16 ×1016 0.071 1.10×1016

Table 5.2: SU(5) dimension-5 interaction strength ǫ and the gauge unification

scale, MX, for different Φ representations in a supersymmetric theory.

When there are no intermediate scales the gauge coupling evolutions are gov-

erned by eqs. 5.6 and 5.7 for the non-supersymmetric case and eqs. 5.15 and 5.16

for the SUSY version.

SO(10) non-SUSY SUSY

representations ǫ MX (GeV) ǫ MX (GeV)

54 0.170 3.99×1013 -0.013 1.54×1016

210 0.088 4.39 ×1014 -0.008 1.35 ×1016

770 0.274 4.10 ×1013 -0.018 1.54 ×1016

Table 5.3: Dimension-5 interaction strength, ǫ, and the gauge unification scale,

MX, for different ΦD representations using two-loop RG equations

when SO(10) descends directly to the SM.

The results are shown in Table 5.3. As for SU(5), we find that the non-

supersymmetric solutions are untenable. For all three choices of ΦD the unifica-

tion scale is O(1013 − 1014) GeV, which is excluded by the current observational

bounds on the proton decay lifetime.

Results for E(6)

This corresponds to the situation when E(6) is directly broken to the SM and the

symmetry breaking chain is simply:

E(6)
MX−→ SU(3)c ⊗ SU(2)L ⊗ U(1)Y, (5.18)
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The gauge coupling evolution is determined by the eqs. 5.6, 5.7 (non-SUSY) and

eqs. 5.15, 5.16 (SUSY) in the entire range. The results obtained including the

dimension-5 operators in eq. 4.2 are shown in Table 5.4.

E(6) non-SUSY SUSY

representations ǫ MX (GeV) ǫ MX (GeV)

650 0.126 8.04×1012 -0.012 1.72×1016

650′ 0.101 4.15 ×1014 -0.011 1.30 ×1016

2430 0.000 3.76 ×1012 0.000 1.25 ×1015

Table 5.4: Dimension-5 interaction strength, ǫ, and the gauge unification scale,

MX, for different ΦD representations using two-loop RG equations

when E(6) descends directly to the SM.

As for the other GUT groups, though gauge unification is possible in the

non-SUSY case, the scale of unification is too low and is ruled out by the proton

decay limits. The SUSY solutions are acceptable for Φ650. For Φ2430 the scale MX

is too low (Note that all the δi are equal! see Table 3.8.) but this can be addressed

easily by changing the SUSY scale, MSUSY.

5.2.2 One intermediate scale

Only SO(10) and E(6) can accommodate this feature.

Results for SO(10)

Here we consider the following breaking chain of SO(10)

SO(10)
MX−→ SU(4)c ⊗ SU(2)L ⊗ SU(2)R

MC−→ SM. (5.19)

The SU(4)c ⊗ SU(2)L ⊗ SU(2)R ≡ G422 intermediate group offers a new dis-

crete symmetry – D-parity [4, 11]. This symmetry relates the gauged SU(2)L and

SU(2)R subgroups of SO(10) much the same way that ordinary Parity relates the

SU(2)L and SU(2)R subgroups of the Lorentz group SO(3, 1). Alternative routes

of SO(10) symmetry breaking are admissible which either preserve or violate D-

parity at the intermediate stages. We will consider both in the following. The
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first step of symmetry breaking from SO(10) to G422 is accomplished by assign-

ing an appropriate vev to a 54, 210, or 770-dimensional Higgs. 〈Φ54〉 or 〈Φ770〉
ensure that D-parity is conserved (i.e., δ2L = δ2R) but 〈Φ210〉 breaks D-parity (i.e.,

δ2L = −δ2R, see Table 4.5).

The next step breaking of G422 to the SM is achieved through the vev of a

126-dimensional Higgs. The submultiplet of 126H that develops a vev at the scale

MC for this purpose transforms as (10,1,3) under G422. Here we use the Extended

Survival Hypothesis (ESH) [12] which posits that at any energy scale only those

scalars which are required for symmetry breaking at that or lower energies re-

main light. Since scalar fields have no mass protection mechanism they would

normally tend to have masses at the highest energies involved. Maintaining a

light scalar involves a fine tuning. The Extended Survival Hypothesis limits the

fine tuning to that which is essential for the symmetry breaking. Reflecting this

sense it is also termed the principle of minimum fine tuning in the scalar po-

tential. In supersymmetric theories the symmetry protects a tree-level choice of

masses from higher order corrections due to what is known as the set and forget

theorem. According to the ESH the entire submultiplet, (10,1,3), acquires a mass

O(MC) while the other members of 126H are at MX. This is true if D-parity is not

conserved. When D-parity remains unbroken then it relates the (10,1,3) submul-

tiplet to the (10,3,1) ⊂ 126H and it too has a mass of O(MC).

One must also consider the Higgs scalars φSM responsible for the break-

ing of SM at ∼ MZ. They transform under GSM, G422, and SO(10) as {(1,2,1) +
(1,2,-1)}, (1,2,2) and 10 respectively. Notice that the Extended Survival Hypothe-

sis mandates that the (6,1,1) under G422 contained in the SO(10) 10-dimensional

representation has a mass at MX while the (1,2,2) is at MZ.

The scalars contributing to the RG evolution in different stages are sum-

marised in Table 5.5.

When the couplings are evolved from their low energy inputs the keymatch-

ing formula at MC is2:

1

α1Y(MC)
=

3

5

[
1

α2R(MC)
− 1

6π

]

+
2

5

[
1

α4c(MC)
− 1

3π

]

. (5.20)

This is a consequence of the relation Y/2 = T3R + (B − L)/2. On the r.h.s. T3

resides within the SU(2)R while (B − L) is included in SU(4)c and eq. 5.4 has

2α1Y is the GUT-normalised U(1)Y coupling.
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SO(10) Symmetry Scalars contributing to RG

representation breaking MZ → MC MC → MX

Under GSM Under G422

10 GSM → EM (1,2,±1) (1,2,2)

126 G422 → GSM - (10,1,3)

{(10,3,1)}

Table 5.5: Higgs scalars for the symmetry breaking of SO(10) with one interme-

diate stage and the submultiplets contributing to the RG evolution ac-

cording to the ESH. The submultiplet in the braces also contributes if

D-parity is conserved.

been used. Similarly, α4c(MC) = α3c(MC) + 1/12π and is fixed from the RG

evolution of α3c from MZ. The two cases that we discuss here are:

(a) If D-parity is conserved at MC then in eq. 5.20 we must further impose

α2R(MC) = α2L(MC), with the latter fixed by the RG evolution of α2L from its low

energy value. This identifies a unique MC. MX can then be determined in terms

of ǫ.

(b) If D-parity is not conserved then for every choice of MC, eq. 5.20 deter-

mines α2R(MC). The three couplings have to be further evolved to determine MX

and ǫ.

We discuss these options in detail below.

From MZ to MC: For the RG running of the coupling constants in this range

eqs. 5.6, 5.7 (for non-SUSY) and 5.15, 5.16 (for SUSY) are applicable irrespective

of whether D-parity is conserved or not.

D-parity not conserved

This is the case when Φ210 is responsible for the SO(10) GUT symmetry breaking.

From MC to MX (D-parity not conserved):

The β-function coefficients receive contributions from (10, 1, 3) ⊂ 126H along
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with the (1,2,2)⊂ 10H scalars and the three generations of fermions: (4, 2, 1) +

(4, 1, 2) = 16F. These are:

non-SUSY: b2L = −3; b2R = 11/3; b4c = −23/3;

bij =







8 3 45/2

3 584/3 765/2

9/2 153/2 643/6







. (5.21)

SUSY: b2L = 1; b2R = 21; b4c = 3; bij =







25 3 45

3 265 405

9 81 231







. (5.22)

The one- and two-loop β-function coefficients we have calculated are in agree-

ment3 with those obtained in [4].

For this chain, the low energy measured gauge couplings allow a range of

values for MC. The results for this case are shown in the left (non-SUSY) andmid-

dle (SUSY) panels of Fig. 5.2. As shown in the Figure, for every allowed MC one

can determine MX (red dark solid curve) and ǫ (green pale broken curve) from

the unification of coupling constants satisfying eq. 4.3. As a general observation,

lower values of MC correspond to increased MX and larger ǫ. Notice that in the

non-SUSY case, MC can be as low as 103 GeV and thereforewithin the range of de-

tectability for the Large Hadron Collider. Further, the (10,1,3) scalars which have

mass ∼ MC can mediate n − n oscillations4 and it is known that current experi-

mental limits place a lower bound on MC around 10 TeV depending on hadronic

factors not precisely known [14]. The mass of the νR is also O(MC). While a low

MC is desirable for detectability of n − n oscillations it is not the preferred choice

for a seesaw mechanism for generating light neutrino masses. In the SUSY case

MX and MC are restricted to a very limited range, a reflection of the large beta

functions beyond MC. Here MC (1014 − 1016 GeV) is too high for observable n− n

oscillations but quite appropriate for light neutrino seesaw masses.

3There are minor differences in b2L2R and b2L4c between our results and that in [4].
4The oscillation period τn−n ∼ (M(10,1,3))

5.
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Figure 5.2: SO(10) one intermediate scale results: The unification scale, MX, (red dark solid

lines) and the strength of the dim-5 interaction, ǫ, (green pale broken lines) as a

function of the intermediate scale MC for the D-parity nonconserving (Φ210) case

for (left) non-SUSY and (centre) SUSY. MX as a function of ǫ for the D-parity

conserving case (right). Thick (thin) lines correspond to non-SUSY (SUSY). The

results for both Φ54 (red dark solid) and Φ770 (green pale broken) are shown.

D-parity conserved

This is the situation which arises when either Φ54 or Φ770 is responsible for

the SO(10) breaking.

From MC to MX (D-parity conserved):

According to the Extended Survival Hypothesis the only change from the

previous subsection is that one must include contributions from both (10,1,3) and

(10,3,1) within the 126H . This gives:

non-SUSY: b2L = b2R = 11/3; b4c = −14/3;

bij =







584/3 3 765/2

3 584/3 765/2

153/2 153/2 1759/6







. (5.23)

SUSY: b2L = b2R = 21; b4c = 12; bij =







265 3 405

3 265 405

81 81 465







. (5.24)

The β-function coefficients for the non-SUSY case agree with those in [13]. In this

case, the relationship between the SU(2)L and SU(2)R couplings uniquely fixes

the intermediate scale MC.

We find that for the non-SUSY case MC = 5.37 ×1013 GeV while in the SUSY case
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it is higher and is around 1.9 ×1016 GeV. This fixed intermediate scale, MC, is

the same for Φ54 and Φ770. The (10,1,3) and (10,3,1) scalars at ∼ MC are thus too

heavy for observable n − n oscillations. Depending on whether the non-SUSY or

the SUSY theory is under consideration, a range of allowed MX can be obtained

as a function of ǫ for either choice of ΦD. The results for the non-SUSY (thick

lines) and SUSY (thin lines) cases are shown in the right panel of Fig. 5.2. The

dark solid (red) lines correspond to Φ54 while the pale broken (green) lines are

for Φ770.

Results for E(6)

Here we consider only the breaking pattern:

E(6)
MX−→ SU(3)c ⊗ SU(3)L ⊗ SU(3)R

MR−→ SM. (5.25)

For this case, the symmetry breaking at MR and subsequently the one at MZ are

through the vevs to components within the (3,3,1) submultiplet under SU(3)c ⊗
SU(3)L ⊗ SU(3)R ≡ G333 which is present in a 27 of E(6). According to the Ex-

tended Survival Hypothesis this entire (1,3,3) submultiplet, but for the φSM fields

which are at MZ, has a mass MR. Since it is symmetric under SU(3)L ↔ SU(3)R,

the evolution of the couplings from MR to MX are controlled by the same RG-

equations for both the D-parity violating and D-parity conserving cases. The β-

function coefficients in this case are:

From MR to MX:

non-SUSY: b3L = b3R = −9/2; b3c = −5; bij =







23 20 12

20 23 12

12 12 12







. (5.26)

SUSY: b3L = b3R = 3/2; b3c = 0; bij =







65 32 24

32 65 24

24 24 48







. (5.27)

From MZ to MR: For the RG running of the coupling constants below MR eqs. 5.6,

5.7 (non-SUSY) and eqs. 5.15, 5.16 (SUSY) are applicable irrespective of whether

D-parity is conserved or not.
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The chain of E(6) breaking considered in this subsection is rather constrained.

The matching formula at MR is now:

1

α1Y(MR)
=

4

5

[
1

α3R(MR)
− 1

4π

]

+
1

5

[
1

α3L(MR)
− 1

4π

]

. (5.28)

This is a consequence of the relation Y/2 = T3R + (Y′
L + Y′

R)/2. On the r.h.s. T3R

and Y′
R reside within the SU(3)R while Y′

L is included in SU(3)L. The two cases

are:

(a) If D-parity is conserved at MR then in eq. 5.28 α3R(MR) = α3L(MR),

with the latter fixed by the RG evolution of α2L from its low energy value. This

identifies a unique MR, effectively the scale at which α1Y(MR) = α2L(MR). MX

can then be determined in terms of ǫ.

(b) If D-parity is not conserved then for any chosen MR, through eq. 5.28

α3L(MR) is fixed since α2L(MR) is determined from its low energy value through

RG evolution. The three couplings have to be further evolved to determine MX

and ǫ.

 16

 17

 18

 19

-0.08 -0.04  0  0.04  0.08

lo
g
(M

X
/G

e
V

)

ε

E(6)

SUSY (650)

non-SUSY (650)

Figure 5.3: E(6) Results: MX as a function of E(6) for one-step breaking of E(6) in the

D-parity conserving case for 650. The green pale broken (red dark solid) line

corresponds to non-SUSY (SUSY).

We discuss these options in detail below.

When D-parity is violated, i.e., for Φ650′ , we find that the intermediate scale

at MR is rather tightly restricted from the twin requirements that MX satisfies the
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E(6) Symmetry Scalars contributing to RG

representation breaking MZ → MR MR → MX

Under GSM Under G333

27 GSM → EM (1,2,±1) (1,3,3)

27 G333 → GSM - (1,3,3)

Table 5.6: Higgs scalars for the symmetry breaking of E(6) with one intermediate

stage and the submultiplets contributing to the RG evolution according

to the ESH.

proton decay bound and is within the upper limit set by the Planck mass as well

as all couplings remain perturbative. It is in the ballpark of 1014 (1016) GeV for

the non-SUSY (SUSY) case. The unification scale is 7.0× 1018 (3.5× 1016) GeV for

the respective cases with ǫ almost fixed at = -0.04 (0.02).

When D-parity is conserved, which corresponds to Φ650 and Φ2430, the

intermediate scale MR is uniquely fixed in both cases at the value 1.5 × 1013

(1.7× 1016) GeV for non-SUSY (SUSY). A plot of the unification scale MX vs. ǫ

is shown in the Fig. 5.3 for Φ650. For Φ2430 we have δ3L = δ3R = δ3c and so the

dim-5 operator does not affect the unification. We find that for non-SUSY as well

as SUSY with MSUSY = 1 TeV the couplings unify at an energy beyond the Planck

scale. For both Φ650 and Φ650′ the scale MR is in the right range for the mass of

the right-handed neutrinos to drive a type-I seesaw.

5.2.3 Two intermediate scales

The ranks of the GUT groups SO(10) and E(6) are larger than that of the SM.

This ensures the possibility to have more than one intermediate scale. A subtle

feature [15, 16], considered most recently within the context of SO(10) in [17],

has to do with the dynamical mixing of two U(1) subgroups of an intermedi-

ate gauge symmetry even at the one-loop level. The U(1) gauge currents and

the U(1) gauge boson fields are by themselves gauge invariant and so cross cou-

plings between them are not forbidden by gauge symmetry. Even if the mixing
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is set to zero at some scale it emerges again through the RG flow. The origin of

this mixing in the RG equations lies in the following fact: while the trace of the

product of two different U(1) generators vanishes over an entire gauge multiplet,

when only a submultiplet is light (e.g., some scalars of a multiplet remaining light

due to the Extended Survival Hypothesis in SO(10) or E(6), or incomplete light

fermionmultiplets in E(6)) this is no longer so. This requires amore sophisticated

analysis leading to a coupling of g1m and g1n in the one and two-loop RG equa-

tions where m and n identify two U(1) groups. These terms arise in the two-step

breaking options for both SO(10) and E(6) and are detailed in the discussions in

the respective sections.

Results for SO(10)

Here we consider the breaking of SO(10) to SM via two intermediate steps:

SO(10)
MX−→ SU(4)c ⊗ SU(2)L ⊗ SU(2)R

MC−→ SU(2)L ⊗ U(1)R ⊗ SU(3)c ⊗ U(1)(B−L)

MR−→ SM. (5.29)

The symmetry breaking at different stages is arranged as follows. The breaking of

the Pati-Salam G422 to G2131 is through the vev of a (15,1,3) component of 210H . The

subsequent descent to the SM is through the vev to a (1,3,1,-2) ⊂ (10, 1, 3) ⊂ 126H .

The Higgs scalars responsible for the SM symmetry breaking, φSM, transform

as (1,2,±1) under the SM group and as (1,0,2,± 1
2 ) ⊂ (1, 2, 2) ⊂ 10 under G2131,

G422, and SO(10) respectively. The contributing scalars at different stages of RG

evolution, as determined by the ESH, are summarised in Table 5.7.

If D-parity is conserved, and it can be conserved only till MC in this chain,

then one must include the contribution from a (10,3,1) and a (15,3,1) in the final

stage of evolution (see Table 5.7).

In the energy range MR to MC there are two U(1) gauge groups. As ob-

served in [15, 16] and stressed most recently in [17], due to incomplete scalar

multiplets remaining light due to the Extended Survival Hypothesis there is a

dynamical mixing between these two U(1) subgroups which is manifested in the

RG evolution equations. In particular, below the MR threshold there is one U(1)

coupling corresponding to hypercharge, Y, while above one must consider the
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SO(10) Symmetry Scalars contributing to RG

representation breaking MZ → MR MR → MC MC → MX

Under GSM Under G2131 Under G422

10 GSM → EM (1,2,±1) (2,± 1
2 ,1,0) (1,2,2)

126 G2131 → GSM - (1,3,1,-2) (10,1,3)

{(10,3,1)}

210 G422 → G2131 - - (15,1,3)

{(15,3,1)}

Table 5.7: Higgs scalars for the symmetry breaking of SO(10) with two interme-

diate stages and the submultiplets contributing to the RG evolution ac-

cording to the ESH. The submultiplets in the braces also contribute if

D-parity is conserved.

possibility of a 2× 2 matrix of U(1) couplings, G:

G =

(

gRR gRX

gXR gXX

)

, (5.30)

where X ≡ (B − L). This is the most general form permitted for the coupling of

the gauge currents to gauge bosons which for the U(1) groups are both by them-

selves gauge invariant. Here, gij is the strength of the coupling of the ith current

to the jth gauge boson. In the range MR to MC the evolution of all elements of G

will occur5. The RG equations for gRX and gXR at the one-loop level involve one

additional β-function coefficient, b̃XR = b̃RX ∝ ∑i Qi
RQi

X. At the two-loop level,

besides the usual ones, one requires the following independent coefficients:

1. b̃RX,RR, b̃XR,XX

2. b̃RX,p , b̃XR,p

3. b̃p,RX .

5Because of themixing of the two U(1) groups, the RG equations will be somewhat more involved

[16, 17]. Here we list all the β-function coefficients which are non-vanishing.
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The first β-coefficient appears in, among others, the evolution equation of gRX as

the coefficient of g4RRgXX while the second is readily obtainable from the above

through R ↔ X. For 2 and 3 above, p represents a non-abelian subgroup of

the gauge symmetry. The coefficient of g3RX g2p (g3XRg2p) in the RG equation of gRX

(gXR) is listed under 2 above. Similarly, in 3, b̃p,RX is the coefficient of g3p(gRRgXR +

gXX gRX). For the SO(10) model we are considering, the entries in 2 and 3 turn

out to be zero.

At the boundary MR there is freedom to choose G to be upper triangular.

On RG evolution all elements will, however, become non-zero. The matching

of the elements of G with the coupling below MR and those above MC is made

through projection operators which relate the basis of evolution with the U(1)

gauge basis defining the groups at the boundary.

Taking all this into account, the gauge couplings evolve as follows:

i-a) From MC to MX (D-parity not conserved):

non-SUSY: b2L = −3; b2R = 41/3; b4c = −11/3;

bij =







8 3 45/2

3 1424/3 1725/2

9/2 345/2 1987/6







. (5.31)

SUSY: b2L = 1; b2R = 51; b4c = 15; bij =







25 3 45

3 625 885

9 177 519







. (5.32)

i-b) From MC to MX (D-parity conserved):

non-SUSY: b2L = b2R = 41/3; b4c = 10/3;

bij =







1424/3 3 1725/2

3 1424/3 1725/2

345/2 345/2 4447/6







. (5.33)

SUSY: b2L = b2R = 51; b4c = 36; bij =







625 3 885

3 625 885

177 177 1041







. (5.34)

ii) From MR to MC:
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Below MC, where the gauge group is SU(2)L ⊗U(1)R ⊗ SU(3)c ⊗U(1)(B−L),

there is no L ↔ R symmetry and hence there can be no D-parity. Thus for the

two cases just discussed the evolution will be identical. Here we are giving the

decompositions of the contributing fields under the gauge symmetry at this level:

16F = [2, 0, 3,−1/3] + [2, 0, 1, 1] + [1, 1/2, 3, 1/3] + (5.35)

+[1, 1/2, 1,−1] + [1,−1/2, 3, 1/3] + [1,−1/2, 1,−1],

10H ⊃ [2, 1/2, 1, 0] + [2,−1/2, 1, 0], 126H ⊃ [1,−1, 1, 2] .

whence6

non-SUSY: b2L = −3; bRR = 14/3; b3c = −7;

b(B−L)(B−L) = 9/2; b̃R(B−L) = b̃(B−L)R = −1/
√
6, (5.36)

bij =










8 1 12 3/2

3 8 12 15/2

9/2 3/2 −26 1/2

9/2 15/2 4 25/2










;

b̃(B−L)R,RR = −2
√
6; b̃R(B−L),(B−L)(B−L) = −3

√
6. (5.37)

SUSY: b2L = 1; bRR = 8; b3c = −3;

b(B−L)(B−L) = 15/2; b̃R(B−L) = b̃(B−L)R = −
√
6/2, (5.38)

bij =










25 1 24 3

3 11 24 9

9 3 14 1

9 9 8 16










;

b̃(B−L)R,RR = −2
√
6; b̃R(B−L),(B−L)(B−L) = −3

√
6. (5.39)

iii) From MZ to MR:

In this range eqs. 5.6, 5.7 (for non-SUSY) and 5.15, 5.16 (for SUSY) are ap-

plicable.

The one- and two-loop β-function coefficients in the D-parity conserving

case agree with those obtained in [13] and [17] with the proviso that in [13] only

one Higgs doublet is assumed to contribute in the range MZ to MR. In addition,

the U(1)mixing contribution at the one-loop level has been included only in [17].
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Figure 5.4: Results for SO(10) with two intermediate scales when D-parity is not conserved.

The allowed ranges of MX and MC vs. MR for the non-SUSY (SUSY) case is

in the left (right) panel. Note that the upper limits for MX and MC are almost

identical here.

At MR one must now use the matching relation:

1

α1Y(MR)
= 4π P (G GT)−1PT . (5.40)

where P = (
√

3
5

√
2
5). At the MC boundary, the U(1)R and U(1)B−L couplings

are obtained from the RG evolved G using a similar formula while choosing P =

(1 0) and (0 1), respectively.

When D-parity is conserved, MR must be such that the α1R and α1(B−L)

matches with α2L and α3c (as per eq. 5.4) at precisely the same energy scale MC.

This is severely constraining. We find that in the non-SUSY case, for both Φ54

and Φ770 the solution is pushed to MR ≃ MC = MX = 1.02 × 1016 GeV with

ǫ ≃ 0.005. For the SUSY case one has MR = 1013 - 1016 GeV while MC = MX ∼
1.51× 1016 GeV. The high values of MC preclude the possibility of detectable n− n

oscillations. On the other hand, such a high MνR
will be able to accommodate the

light neutrino masses through a type-I seesaw.

When D-parity is not conserved, eq. 5.40 fixes the couplings at MR. The

meeting of the U(1)(B−L) and SU(3)c couplings determines MC and at that scale

α1R goes over to α2R. At MR, the ratios gRR/g(B−L)(B−L) and gR(B−L)/g(B−L)(B−L)

can be varied to first determine MC via eq. 5.40 and subsequently MX. The range

6The coefficients superscribed with a tilde arise due to U(1) mixing.
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of values for these ratios and MR are tightly constrained by the requirements of

perturbativity and consistency with proton decay limits. In the left and right

panels of Fig. 5.4 are shown the ranges of MC and MX consistent with the above

choice for the non-SUSY and SUSY cases. For the non-SUSY case, MC is at 108.5

GeV or above which is probably a bit high for the detectability of n − n oscilla-

tions. For SUSY MC is above 1015 GeV which is much too high. Here, the non-

SUSY range of MC is not high enough for the light neutrino seesaw mechanism

but the SUSY solutions are quite suitable from this angle.

Results for E(6)

The symmetry breaking steps are:

E(6)
MX−→ SU(3)c ⊗ SU(3)L ⊗ SU(3)R

MI−→ SU(2)L ⊗ U(1)Y′
L
⊗ SU(2)R ⊗ U(1)Y′

R
⊗ SU(3)c

MR−→ SM. (5.41)

Here, 〈Φ650〉 or 〈Φ2430〉 breaks E(6) to G333 which reduces to SU(2)L ⊗
U(1)Y′

L
⊗ SU(2)R ⊗ U(1)Y′

R
⊗ SU(3)c ≡ G21213 when the (1,8,8) submultiplet of

a 650H acquires a vev. The SM is reached by assigning a vev to the (1,3,3) compo-

nent of 27H . The final step of SM symmetry breaking is accomplished through a

different component of (1,3,3) (see Table 5.8). It is seen that there is room for D-

parity to be conserved or broken during the running in the MR to MI range. But

the Higgs submultiplets which acquire masses at MI according to the Extended

Survival Hypothesis, namely, (1,3,3) and (1,8,8), are SU(3)L ↔ SU(3)R symmetric

and so the running from MI to MX will be identical in both cases.

Below we list the one- and two-loop β-function coefficients for gauge cou-

pling evolution in the different stages. Notice that in the range MR to MI there are

two U(1) components and the RG evolution here has to take into account mixing

and follows the same procedure as discussed in detail for SO(10) in the previous

section.

i) From MI to MX:

The fermion and scalar fields which contribute in the RG equations are:

27F = [1, 3, 3] + [3, 3, 1] + [3, 1, 3], 650H ⊃ [1, 8, 8], 27H ⊃ [1, 3, 3]. (5.42)
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E(6) Symmetry Scalars contributing to RG

representation breaking MZ → MR MR → MI MI → MX

Under GSM Under G21213 Under G333

27 GSM → EM (1,2,±1) (2, - 1
2
√
3
, 2, 1

2
√
3
,1) (1,3,3)

27 G21213 → GSM - (1, 1√
3
, 2, 1

2
√
3
,1) (1,3,3)

- {(2, 1
2
√
3
, 1, 1√

3
,1)}

650 G333 → G21213 - - (1,8,8)

Table 5.8: Higgs scalars for the symmetry breaking of E(6) with two intermedi-

ate stages and the submultiplets contributing to the RG evolution ac-

cording to the ESH. The submultiplet in the braces also contributes if

D-parity is conserved.

Thus:

non-SUSY: b3L = 7/2; b3R = 7/2; b3c = −5;

bij =







359 308 12

308 359 12

12 12 12







. (5.43)

SUSY: b3L = 51/2; b3R = 51/2; b3c = 0; bij =







497 320 24

320 497 24

24 24 48







. (5.44)

iia) From MR to MI (D-parity not conserved):

At this stage the non-SM fermions have acquired mass and decoupled.

Taking the Extended Survival Hypothesis into consideration, the fields that con-

tribute in the RG equations are:

27F ⊃ [2,−1/2
√
3, 1,−1/

√
3, 1] + [2, 1/2

√
3, 1, 0, 3] + (5.45)

[1, 1/
√
3, 2, 1/2

√
3, 1] + [1, 0, 2,−1/2

√
3, 3],

27H ⊃ [1, 1/
√
3, 2, 1/2

√
3, 1] + [2,−1/2

√
3, 2, 1/2

√
3, 1].
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This gives7:

non-SUSY: b2L = −3; bLL = 3; b2R = −17/6; bRR = 17/6;

b3c = −7; b̃LR = b̃RL = 4/3, (5.46)

bij =












8 4/3 3 4/3 12

4 8/3 6 1 4

3 2 61/6 3/2 12

4 1 9/2 11/6 4

9/2 1/2 9/2 1/2 −26












;

b̃LR,RR = 5/6; b̃RL,LL = 7/6; b̃2R,RL = 1/2; b̃2L,LR = 1/6;

b̃RL,2R = b̃LR,2R = 3/2; b̃RL,2L = b̃LR,2L = 1/2. (5.47)

SUSY: b2L = 1; bLL = 5; b2R = 3/2; bRR = 9/2;

b3c = −3; b̃LR = b̃RL = 2, (5.48)

bij =












25 7/3 3 7/3 24

7 13/3 9 5/3 8

3 3 57/2 5/2 24

7 5/3 15/2 7/2 8

9 1 9 1 14












;

b̃LR,RR = 5/3; b̃RL,LL = 2; b̃2R,RL = 1; b̃2L,LR = 2/3;

b̃RL,2R = b̃LR,2R = 3; b̃RL,2L = b̃LR,2L = 2. (5.49)

iib) From MR to MI (D-parity conserved):

Due to D-Parity conservation the scalar sector is slightly enlarged and the

fields contributing to the RG equations are:

27F ⊃ [2,−1/2
√
3, 1,−1/

√
3, 1] + [2, 1/2

√
3, 1, 0, 3] + (5.50)

[1, 1/
√
3, 2, 1/2

√
3, 1] + [1, 0, 2,−1/2

√
3, 3],

27H ⊃ [1, 1/
√
3, 2, 1/2

√
3, 1] + [2, 1/2

√
3, 1, 1/

√
3, 1] + [2,−1/2

√
3, 2, 1/2

√
3, 1].

We find:

non-SUSY: b2L = −17/6; bLL = 55/18; b2R = −17/6; bRR = 55/18;

b3c = −7; b̃LR = b̃RL = 13/9, (5.51)

7The coefficients superscribed with a tilde arise due to U(1) mixing.
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bij =












61/6 3/2 3 2 12

9/2 49/18 6 11/9 4

3 2 61/6 3/2 12

6 11/9 9/2 49/18 4

9/2 1/2 9/2 1/2 −26












;

b̃LR,RR = 23/18; b̃RL,LL = 23/18; b̃2R,RL = 1/2; b̃2L,LR = 1/2;

b̃RL,2R = b̃LR,2R = 3/2; b̃RL,2L = b̃LR,2L = 3/2. (5.52)

SUSY: b2L = 3/2; bLL = 31/6; b2R = 3/2; bRR = 31/6;

b3c = −3; b̃LR = b̃RL = 7/3, (5.53)

bij =












57/2 5/2 3 3 24

15/2 79/18 9 17/9 8

3 3 57/2 5/2 24

9 17/9 15/2 79/18 8

9 1 9 1 14












;

b̃LR,RR = 19/9; b̃RL,LL = 19/9; b̃2R,RL = 1; b̃2L,LR = 1;

b̃RL,2R = b̃LR,2R = 3; b̃RL,2L = b̃LR,2L = 3. (5.54)

From MZ to MR: For the RG running of the coupling constants below MR

eqs. 5.6, 5.7 (non-SUSY) and eqs. 5.15, 5.16 (SUSY) are applicable irrespective of

whether D-parity is conserved or not.

When E(6) breaks to the SM through two intermediate steps, at MR one

must set:

1

α1Y(MR)
=

3

5

[
1

α2R(MR)
− 1

6π

]

+ 4π P (G GT)−1PT . (5.55)

where P = (
√

1
5

√
1
5), which follows from Y/2 = T3R + (Y′

L + Y′
R)/2.

When the first stage of symmetry breaking is driven through the Φ650, D-

parity is preserved. This implies that α2R(MR) = α2L(MR) and is fixed by the

RG evolution of g2L from MZ. Also at MR, gY′
LY′

L
= gY′

RY′
R
and one can choose
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Figure 5.5: E(6) Results: The allowed ranges of MX and MI vs. MR for the non-SUSY (left)

and SUSY (right) cases for E(6) breaking through two intermediate steps when

D-parity is not conserved. Note that the upper limits for MX and MI are almost

identical.

gY′
LY′

R
= gY′

RY′
L
= 0, so all couplings are determined once MR is chosen. Requiring

that the constraints on MX be satisfied along with perturbativity, we find that MR

is in the range 3.9× 108 - 2.5× 1010 (2.5× 1015 - 6.3× 1015) GeV for the non-SUSY

(SUSY) case. MI is above 1013 GeV in all cases with MX between 1016 and 1019

GeV.

The case of Φ2430 is not distinguishable from the situation of no dimension-

5 operators at all since here δ1 = δ2 = δ3.

When the initial symmetry breaking of E(6) is through the Φ650′ , D-parity is not

conserved. It might seem that there is more flexibility here and at MR one can

choose gY′
RY′

R
, gY′

RY′
L
, and g2R independently, determining gY′

LY′
L
from eq. 5.55. In

fact, there is a rather severe constraint that αY′
R
and α2R must meet at MI and at

precisely the same scale αY′
L
must equal α2L. In the left and right panels of Fig. 5.5

we show the allowed range of the intermediate scale MI and the unification scale

MX as a function of MR. Note that for both cases these scales are on the high side.

The scale of the second stage of symmetry breaking, MR, is permitted to be as low

as 104 GeV for the non-SUSY as well as the SUSY case which may offer room for

experimental probing.
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Chapter 6

Non-universal gaugino masses

Minimal supergravity (mSUGRA) is the most popular framework of supersym-

metry breaking, where SUSY is broken in the ‘hidden sector’ and is connected

to the visible sector via gravity mediation and, as a result, one can parametrise

all the SUSY breaking terms by a universal gaugino mass (M1/2), a universal

scalar mass (m0), a universal trilinear coupling parameter A0, the ratio of the

vacuum expectation values of the two Higgs fields (tan β) and the sign of the

SUSY-conserving Higgs mass parameter, (sgn(µ)) [1, 2].

However, within the ambit of a SUGRA-inspired GUT scenario itself, one

might find some deviations from the simplified and idealised situations men-

tioned above. For instance, the gaugino mass parameter (M1/2) or the common

scalar mass parameter (m0) can become non-universal at the GUT scale. In this

chapter, we explore a situation with non-universal gaugino masses in a super-

symmetric scenario embedded in the SO(10) GUT group.

Gaugino masses, arising after GUT-breaking and SUSY-breaking at a high

scale, crucially depend on the gauge kinetic function, as discussed in the next

section. One achieves universal gaugino masses if the hidden sector fields (Higgs

scalars, in particular), involved in GUT-breaking, are singlets under the underly-

ing GUT group. However if we include the higher dimensional terms (dimension

five, in particular) in the non-trivial expansion of the gauge-kinetic function, the

Higgs fields belonging to the symmetric products of the adjoint representation of

the underlying GUT group can be non-singlets. If these non-singlet Higgs scalars

are responsible for GUT breaking, the gaugino masses M1, M2 and M3 become

non-universal at the high scale itself. It is also possible to have more than one

non-singlet representations involved in GUT breaking, in which case the non-
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universality arises from a linear combination of the effects mentioned above.

Although this issue has been explored in earlier papers, particularly in the

context of SU(5) [3–6], there had been one known effort [7] to study SO(10).

In this chapter, we calculate the non-universal gaugino mass ratios for the non-

singlet representations 54 and 770, based on the results obtained in [8], for the

intermediate gauge group, namely, Pati-Salam SU(4)c ⊗ SU(2)L ⊗ SU(2)R (G422)

with conserved D-parity [9].

We adhere to a situation where all soft SUSY breaking effects arise via

hidden sector interactions in an underlying supergravity (SUGRA) framework,

specifically, in SO(10) gauge theories with an arbitrary chiral matter superfield

content coupled to N=1 supergravity.

All gauge and matter terms including gaugino masses in the N=1 super-

gravity Lagrangian depend crucially on two fundamental functions of chiral su-

perfields [10]: (i) gauge kinetic function fαβ(Φ), which is an analytic function of

the left-chiral superfields Φi and transforms as a symmetric product of the adjoint

representation of the underlying gauge group (α, β being the gauge indices, run

from 1 to 45 for SO(10)); and (ii) G(Φi,Φ
∗
i ), a real function of Φi and gauge sin-

glet, with G = K + ln|W| (K is the Kähler potential and W is the superpotential).

The part of the N=1 supergravity Lagrangian containing kinetic energy and

mass terms for gauginos and gauge bosons (including only terms containing the

real part of f (Φ)) reads (using the natural units in which MPl/
√
8π=1)

e−1L = −1

4
Re fαβ(φ)(−1/2λ

α
D/λβ)− 1

4
Re fαβ(φ)Fα

µνFβµν

+
1

4
e−G/2Gi((G−1)

j
i)[∂ f ∗αβ(φ

∗)/∂φ∗j]λαλβ + h.c, (6.1)

where Gi = ∂G/∂φi and (G−1)i
j is the inverse matrix of Gj

i ≡ ∂G/∂φ∗i∂φj, λα is

the gaugino field, and φ is the scalar component of the chiral superfield Φ, and Fα
µν

is defined in unbroken SO(10), and MPl = 1019 GeV is the Planck scale. The F-

component of Φ enters the last term to generate gaugino masses with a consistent

SUSY breaking with non-zero vev of the chosen F̃, where

F̃j =
1

2
e−G/2[Gi((G−1)

j
i)]. (6.2)

The Φj can be a set of GUT singlet supermultiplets ΦS, which are part of the

hidden sector, or a set of non-singlet ones ΦN , fields associated with the spon-
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taneous breakdown of the GUT group to SU(3)C ⊗ SU(2)L ⊗ U(1)Y . The non-

trivial gauge kinetic function fαβ(Φ
j) can be expanded in terms of the non-singlet

components of the chiral superfields in the following way

fαβ(Φ
j) = f0(Φ

S)δαβ +∑
N

ηN(Φ
s)

ΦN
αβ

MPl
+O(

ΦN

MPl
)2, (6.3)

where f0 and ηN are functions of chiral singlet superfields, essentially determin-

ing the strength of the interaction.

In eq. 6.3, the contribution to the gauge kinetic function from ΦN has to

come through symmetric products of the adjoint representation of the associated

GUT group, since fαβ on the left side of eq. 6.3 has such transformation property.

For SO(10), one can have contributions to fαβ from all possible non-singlet irre-

ducible representations to which ΦN can belong :

(45⊗ 45)symm = 1⊕ 54⊕ 210⊕ 770. (6.4)

As an artifact of the expansion of the gauge kinetic function fαβ mentioned in eq.

6.3, corrections from ΦN to the gauge kinetic term (2nd term) in the Lagrangian

(eq. 6.1) can be recast in the following form

Re fαβ(φ)Fα
µνFβµν ⊃ ηN(Φ

s)

MPl
Tr(FµνΦN Fµν), (6.5)

where Fµν, under unbroken SO(10), contains U(1)Y, SU(2)L and SU(3)C gauge

fields. It has been noted that the operator structure of the above eq. 6.5 is same as

the dimension-5 operators we considered in the chapter 4 (eq. 4.2).

Next, the kinetic energy terms are restored to the canonical form by rescal-

ing the gauge superfields, by defining

Fα
µν → F̂α

µν = 〈Re fαβ〉
1
2 Fβ

µν, (6.6)

and

λα → λ̂α = 〈Re fαβ〉
1
2 λβ. (6.7)

Simultaneously, the gauge couplings are also rescaled (as a result of eq. 6.3):

gα(MX)〈Re fαβ〉
1
2 δαβ = gc(MX), (6.8)
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where gc is the universal coupling constant at the GUT scale (MX). This shows

clearly that the first consequence of a non-trivial gauge kinetic function is non-

universality of the gauge couplings gα at the GUT scale [3–5, 11, 12].

Once SUSY is broken by non-zero vev’s of the F̃ components of hidden sec-

tor chiral superfields, the coefficient of the last term in eq. 6.1 is replaced by [3–5]

〈F̃i
αβ〉 = O(m 3

2
M), (6.9)

where m 3
2
= exp(− 〈G〉

2 ) is the gravitino mass. Taking into account the rescaling

of the gaugino fields (as stated earlier in eqs. 6.7) in eq. 6.1, the gaugino mass

matrix can be written down as [3, 4, 6]

Mα(MX)δαβ = ∑
j

〈F
j

άβ́
〉

2

〈∂ fαβ(φ
∗)/∂φ∗j

άβ́〉
〈Re fαβ〉

, (6.10)

which demonstrates that the gaugino masses are non-universal at the GUT scale.

In [4] the gauginomass matrix was written as a sum of two contributions, coming

from the singlet and the adjoint scalars. When the contribution from the latter

one dominates the gaugino masses are proportional to the group theoretic factors

same as δi’s calculated in chapter 4. In this chapter we consider the dominance

of the last term and calculate the non-universal gaugino mass ratios for the Pati-

Salam breaking pattern of SO(10).

The underlying reason for this is the fact that 〈 fαβ〉 can be shown to acquire the

form fαδαβ, where the fα ’s are purely group theoretic factors, as we will see. On

the contrary, if symmetry breaking occurs via gauge singlet fields only, one has

fαβ = f0δαβ from eq. 6.3 and as a result, 〈 fαβ〉 = f0. Thus both gaugino masses

and the gauge couplings are unified at the GUT scale (as can be seen from eqs.

6.8 and 6.10).

As mentioned earlier, we would like to calculate here, the fα ’s for Higgs

(ΦN) belonging to the representations 54 and 770 which break SO(10) to the

intermediate gauge group SU(4)C ⊗ SU(2)L ⊗ SU(2)R with unbroken D-parity

(usually denoted as G422P)
1. We associate the non-universal contributions to the

gaugino mass ratios with the group theoretic coefficients fα ’s that arise here. It

in turn, indicates that we consider the non-universality in the gaugino masses

of O(1). This, however, is not a generic situation in such models. This can

be rather achieved under some special conditions like dynamical generation of

1Higgs fields that break G422P to SM, do not contribute to gaugino masses.

74



SUSY-breaking scale from the electroweak scale, no soft-breaking terms for the

GUT or Planck scale particles and with the simplified assumption MGUT = MPl

which is also reflected in the RGE specifications.

In this chapter we derive non-universal gaugino mass ratios for the repre-

sentations 54 and 770 for the breaking chain G422 in an SO(10) SUSY GUT sce-

nario. We have assumed that the breaking of SO(10) to the intermediate gauge

group and the latter in turn to the SM gauge group takes place at the GUT scale

itself.

The representations of SO(10) [13], decomposed into that of the Pati-Salam

gauge group are

SO(10) → G422 = SU(4)C ⊗ SU(2)L ⊗ SU(2)R

45 = (15, 1, 1) + (1, 3, 1) + (1, 1, 3) + (6, 2, 2)

10 = (6, 1, 1) + (1, 2, 2) (6.11)

16 = (4, 2, 1) + (4, 1, 2).

Using the SO(10) relation, (10⊗ 10) = 1⊕ 45⊕ 54, one can see that vev of 54-

dimensional Higgs (〈54〉) can be expressed as a 10× 10 diagonal traceless matrix.

Thus the non-zero vev of 54-dimensional Higgs can be written as [12]

< 54 >=
v54

2
√
15

diag(3, 3, 3, 3,−2,−2,−2,−2,−2,−2). (6.12)

Since (45⊗ 45)symm = 1⊕ 54⊕ 210⊕ 770, one can write the non-zero vev [8]

of 770-dimensional Higgs as 45× 45 diagonal matrix:

〈770〉 = v770√
180

diag(−4, ......,−4
︸ ︷︷ ︸

15

,−10, ...,−10
︸ ︷︷ ︸

3+3

, 5, ......, 5
︸ ︷︷ ︸

24

). (6.13)

In the intermediate scale (MC), G422 is broken to the SMgroup. Here SU(4)C

is broken down to SU(3)C ⊗ U(1)B−L and at the same time, SU(2)R is broken to

U(1)T3R
. It is noted that SU(2)R ⊗ SU(4)C is broken to SU(3)C ⊗U(1)Y and hence

the hypercharge is given as Y
2 = T3R + 1

2(B − L). Below we note the branchings

of SU(4)C representations:

SU(4)C = SU(3)C ⊗ U(1)B−L

4 = (3, 1/3) + (1,−1)

15 = (8, 0) + (3, 4/3) + (3,−4/3) + (1, 0) (6.14)

10 = (6, 2/3) + (3,−2/3) + (1,−2)

6 = (3,−2/3) + (3, 2/3).
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Combining these together, we achieve the branchings of SO(10) represen-

tations in terms of the SM gauge group.

SO(10) : SU(3)C ⊗ SU(2)L ⊗ U(1)Y

45 :

(15, 1, 1) = (8, 1, 0) + (3, 1, 4/3) + (3, 1,−4/3) + (1, 1, 0)

(1, 3, 1) = (1, 3, 0)

(1, 1, 3) = (1, 1, 2) + (1, 1, 0) + (1, 1,−2)

(6, 2, 2) = (3, 2, 1/3) + (3, 2,−5/3) + (3, 2, 5/3) + (3, 2, 1/3). (6.15)

10 :

(6, 1, 1) = (3, 1,−2/3) + (3, 1, 2/3)

(1, 2, 2) = (1, 2, 1) + (1, 2,−1). (6.16)

16 :

(4, 2, 1) = (3, 2, 1/3) + (1, 2,−1)

(4, 1, 2) = (3, 1, 2/3) + (3, 1,−4/3) + (1, 1, 2) + (1, 1, 0). (6.17)

We have U(1)T3R
and U(1)B−L from SU(2)R and SU(4)C respectively. Thus

the weak hypercharge generator (TY) can be expressed as a linear combination

of the generators of SU(2)R (T3R) and SU(4)C (TB−L) sharing the same quantum

numbers. In 10-dimensional representation T3R, TB−L and TY are written as:

T3R = diag(0, 0, 0, 0, 0, 0,
1

2
,−1

2
,
1

2
,−1

2
); (6.18)

TB−L =

√

3

2
diag(−1

3
,−1

3
,−1

3
,
1

3
,
1

3
,
1

3
, 0, 0, 0, 0); (6.19)

TY =

√

3

5
diag(−1

3
,−1

3
,−1

3
,
1

3
,
1

3
,
1

3
,
1

2
,−1

2
,
1

2
,−1

2
); (6.20)

Using these explicit forms of the generators we find the following relation

TY =

√

3

5
T3R +

√

2

5
TB−L; (6.21)

and this leads to the following mass relation,

M1 =
3

5
M2R +

2

5
M4C; (6.22)

which is same for all representations.
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• For 54-dimensional Higgs:

Using 54-dimensional Higgs we have [12], for D-parity even scenario, M4C = 1

and M2R = M2L = − 3
2 . We have identified M3 = M4C and M2 = M2R. Hence,

using the above mass relation we obtain M1 = − 1
2 . Therefore the gaugino mass

ratio is given as:

M1 : M2 : M3 = (−1

2
) : (−3

2
) : 1. (6.23)

We have alreadymentioned that the vev [8] of 770-dimensional Higgs can be

expressed as a 45× 45 diagonal matrix. So to calculate the gaugino masses, using

770-dimensional Higgs, we repeat our previous task in 45-dimensional represen-

tation.

• 770-dimensional Higgs:

Using 770-dimensional Higgs we find [8] for D-parity even case M4C = 2 and

M2R = M2L = 5. Hence, using the above mass relation we obtain M1 = 3.8.

Therefore the gaugino mass ratio is given as:

M1 : M2 : M3 = 1.9 : 2.5 : 1. (6.24)

We tabulate the gaugino mass ratios, obtained above, in Table 1.

Representation M3 : M2 : M1 at MGUT

1 1:1:1

54: H → SU(4)⊗ SU(2)⊗ SU(2) 1:(-3/2):(-1/2)

770: H → SU(4)⊗ SU(2)⊗ SU(2) 1:(2.5):(1.9)

Table 1: High scale gaugino mass ratios for the representations 54 and 770.
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Chapter 7

Neutrino mass in SO(10) GUT

In a number of papers it has been shown that renormalisable SO(10) – with and

without supersymmetry (SUSY) – is quite predictive and powerful in constrain-

ing fermion mass patterns because of the underlying SU(4)c symmetry which

relates the quark and lepton Yukawa couplings. In SO(10), 16⊗ 16 = 10⊕ 120⊕
126 and so Higgs fields giving mass to the 16F can reside in the 10H, 120H and

126H representations. Obtaining correct masses for the quarks and the charged

leptons requires at least two Higgs multiplets. It has been noted, for example

in [1], that any one of the combinations (10H , 120H), (10H , 126H), or (120H , 126H)

can, in principle, be utilised. Among these themodel with 10H and 126H has been

extensively considered as the most successful candidate for the minimal SO(10)

GUT [2]. 126H contains colour singlet submultiplets which transform as a triplet

under SU(2)L and a singlet under SU(2)R or vice versa; these are the cornerstones

of the seesaw mechanism [3]. Both type-I (mediated through singlets [3]) and

type-II (mediated through scalar triplets [4]) seesaw have been examined for both

supersymmetric [5] and non-supersymmetric [6] cases. The 126H relates the Ma-

jorana mass of the neutrinos to the Dirac mass as well as other charged fermion

masses making the model predictive. It is also possible and in some cases ad-

vantageous to include all the three Higgs representations [7, 8]. The model with

10H + 120H [9, 10], on the other hand, does not have the requisite scalars to lead

to neutrino masses through the seesaw mechanism. Here, neutrino mass can be

obtained at two-loop through the radiative seesawmechanism due to Witten [11]

by adding 16H + 16H multiplets. This model has been studied in [12] and it was

shown that under plausible assumptions it predicts b − τ unification, natural oc-

currence of large leptonic and small quark mixing and large value for the atmo-

spheric mixing angle. However, the radiative seesaw runs into difficulty with
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low-energy SUSY although it works well in the context of split SUSY [13]. More-

over, as has been shown in [10] the SUSY SO(10) model containing 10H and 120H

cannot reproduce the charged fermion masses correctly. On the other hand in

non-SUSY SO(10) the two-loop neutrino mass is very small.

In this chapter we consider the generation of neutrino masses in the 10H +

120H model embellished with a 16H by adding fermions belonging to the adjoint

representation (45F) of SO(10). Such fermions couple to the usual sixteen-plet

of quarks and leptons via the 16H and can give rise to neutrino masses through

the ‘double seesaw’ mechanism. In models with 10H + 120H this can serve as an

alternative option for generating small neutrino masses1. Fermions in the triplet

adjoint representation of SU(2)L are also considered in the so called type-III [15]

seesaw mechanism. Such models have become quite popular in the context of

SU(5) GUTs [16]. SU(2)L triplet fermions fit naturally into the 24-dimensional

representation of SU(5) and can cure two main problems of these theories, viz.

generation of neutrino masses and unification of gauge couplings. The latter re-

quires the mass of the fermionic triplets to be ∼ O(1 TeV) making the model

testable at the LHC [17]. Presence of adjoint fermions in the context of left-right

symmetric models has been considered in [18], and generation of neutrinomasses

and possible collider signatures were discussed. From this point of view our

model can also be considered as a generalization of type-III seesaw for SO(10).

However as in LR symmetric models the mechanism of mass generation here is

actually the ‘double seesaw’ mechanism.

We discuss the conditions which the Yukawa coupling matrices should sat-

isfy for the model to have predictive power. This requires ascribing some ad-

ditional flavour symmetry to the model which we choose to be the generalized

µ− τ symmetry that has been consideredwidely for explaining the neutrino mix-

ing angles [19]. It predicts θ23 to be π/4 which is the best-fit value of this angle

from global fits. In addition it implies θ13 = 0 which is also consistent with the

data. Small deviation from these exact values may be generated by breaking the

µ − τ symmetry by a small amount. Combining µ − τ flavour symmetry with

GUTs has been considered in the case of SU(5) in [20] and also for SO(10) [8].

Here we impose µ − τ symmetry on the Yukawa matrix for the 10H and 16H

whereas the one for 120H is taken to be antisymmetric. We also impose a parity

symmetry leading to Hermitian Yukawa matrices. Thus we consider the model

1It is also possible to get a double seesaw type mass matrix using singlet fields [14].
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SO(10)⊗ Z
(µ−τ)
2 ⊗ ZP

2 [8]. Imposition of these two symmetries help in reducing

the number of unknown parameters in the Yukawa sector. In addition, we make

an ansatz relating the effective νR mass matrix arising due to the inclusion of ad-

joint fermions with the Yukawa matrix for 10H . As a result the light neutrino

mass matrix after seesaw mechanism obtains a simple form and can be written

as a sum of two contributions. It turns out that with the above choice the neu-

trino mass matrix is µ − τ symmetric so that one immediately gets θ13 = 0 and

θ23 = π/4. It is straight-forward to get the consequence for the neutrino masses

and θ12 and obtain the conditions on the parameters such that tri-bimaximal mix-

ing is obtained.

7.1 The Model

Weexplore an SO(10)modelwhere the three fermion families acquire mass through

the 10H and/or 120H. The model also includes additional fermion multiplets in

the SO(10) adjoint representation, 45F, and a 16H.

In this model the Yukawa terms for the fermions can be expressed as:

L = Y1016F16F10H + Y12016F16F120H. (7.1)

In general, Y10 is a complex symmetric matrix while Y120 is complex antisymmet-

ric. When the 10H and 120H scalars obtain their vacuum expectation values (vevs)

quarks and leptons obtain masses which can be represented as:

md = M0 + iM2, mu = c0M0 + ic2M2,

ml = M0 + ic3M2, mD = c0M0 + ic4M2. (7.2)

Above, md (mu) denotes the mass matrix for the down-type (up-type) quarks, ml

is the charged lepton mass matrix, whereas mD is the Dirac mass matrix of the

neutrinos. The matrices M0 and M2 are proportional to Y10 and Y120 respectively.

M0 = MT
0 , M2 = −MT

2 . (7.3)

c0, c2, c3, and c4 are constants fixed by Clebsch-Gordan (CG) coefficients and vev

ratios which are taken to be real. We impose a generalized parity symmetry and

make appropriate choices of the vevs [21] which make M0 and M2 real thereby

reducing the number of free parameters and ensuring the hermiticity of the mass

matrices in eq. 7.2.
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For neutrinos the above implies the presence of only the Dirac mass term

which cannot reproduce the correct neutrino mass pattern [12]. Since the 126H

field is not present the type-I and type-II seesaw mass terms are absent in this

model. One can of course generate the neutrino mass through the Witten mech-

anism of radiative seesaw [11] but then for non-SUSY SO(10) such contributions

are too small [12].

In this chapter we propose a new mechanism to generate a neutrino mass

in a non-SUSY SO(10) with 10H and 120H . We introduce additional matter mul-

tiplets (45F) which belong to the adjoint representation of SO(10). Note that this

is similar to the so called type-III seesaw mechanism where one adds additional

matter fields in the adjoint representation. However, as we will see, the neutrino

mass is generated here through the ‘double seesaw’ mechanism. SO(10) breaks

to the SM through two intermediate steps:

SO(10)
MX−→ SU(4)c ⊗ SU(2)L ⊗ SU(2)R

MC−→ SU(3)c ⊗ SU(2)L ⊗ U(1)R ⊗ U(1)(B−L)

MR−→ GSM. (7.4)

The Pati-Salam (G422 ≡ SU(4)c ⊗ SU(2)L ⊗ SU(2)R) decomposition gives:

45 = (Σ3L,Σ3R,Σ4C,ΣLRC) = (1, 3, 1)⊕ (1, 1, 3)⊕ (15, 1, 1)⊕ (6, 2, 2). (7.5)

It is useful to note the SU(3)c ⊗ SU(2)L ⊗ U(1)R ⊗ U(1)B−L decompositions

(15, 1, 1) ≡ (1, 1, 0, 0) + (3, 1, 0,−4/3) + (3, 1, 0, 4/3) + (8, 1, 0, 0) , (7.6)

(4, 1, 2) ≡ (1, 1,±1

2
, 1) + (3, 1,±1

2
,−1/3) .

The colour, U(1)R, and U(1)(B−L) singlet members of Σ3R and Σ4c couple to

νR when 16H gets a vev along (1, 1,− 1
2 , 1) ⊂(4,1,2) that breaks U(1)R ⊗ U(1)B−L.

The relevant Yukawa coupling is:

Y1616F45F16H ⊃ Y16

[

a1(1, 1,
1

2
,−1)F(1, 1, 0, 0)

Σ3R
F + a2(1, 1,

1

2
,−1)F(1, 1, 0, 0)

Σ4c
F

]

(1, 1,−1

2
, 1)H . (7.7)

a1,2 are CG coefficients. The vev vR ≡< (1, 1,− 1
2 , 1)H > sets the scale MR.

The masses of the adjoint matter fields are generated from

M Tr(452F) + λ Tr(452F210H) . (7.8)
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Once 210H acquires a vev along the (1,1,1) direction, SO(10) is broken to SU(4)c ⊗
SU(2)L ⊗ SU(2)R. In the mass term MN of (1, 1, 0, 0)F ⊂ (15, 1, 1)F and MΣ3R

of

(1, 1, 0, 0)F ⊂ (1, 1, 3)F, an extra contribution (from the second term of eq. 7.8) is

added, i.e., MΣ3R
= MN = M + λ < (1, 1, 0, 0)H >. There is no symmetry that

protects the masses of these adjoint fermions. So naturally these are very heavy

(∼ MX).

7.2 Constraints from gauge coupling unification

In this section, we discuss the RenormalisationGroup (RG) evolution of the gauge

couplings at the one-loop level, check for the scale of unification and determine

the possible intermediate scales. The symmetry breaks in two stages following

the steps given in (7.4). The contributions in the RG running from scalars at

the different scales are included according to the ‘extended survival hypothesis’

(ESH) [22] which amounts to minimal fine tuning of the parameters of the po-

tential. Our model contains extra adjoint fermions. But these fermions are very

heavy ∼ O (MX), so they do not contribute in the renormalisation group evolu-

tion of the gauge couplings.

When the SO(10) symmetry is broken to the Pati-Salam group [23] G422 by

a 210H multiplet through the vev in the < (1, 1, 1) > direction, D-parity [24] is

spontaneously broken at this scale (MC).

The gauge coupling evolution is usually stated as [25]:

µ
dgi

dµ
= βi(gi, gj), (i, j = 1, . . . , n), (7.9)

where n is the number of couplings in the theory and at one-loop order

βi(gi, gj) = (16π2)−1big
3
i . (7.10)

There is, however, a subtlety which must be taken into account since the gauge

symmetry in the energy range MR to MC includes two U(1) factors. According to

the ESH the SO(10) multiplets are split in mass with some submultiplets having

mass above and some below this range. The incomplete scalar and fermion mul-

tiplets that contribute to the RG evolution at this stage lead to a mixing between

these two U(1) gauge groups. Thus even at the one-loop level one cannot treat

the evolution of these U(1) couplings in separation and in a generic scenario one
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SO(10) Symmetry Scalars contributing to RG evolution

representation breaking MZ → MR MR → MC MC → MX

Under GSM Under G3211 Under G422

10 (1,2,2)

GSM → EM (1,2,±1) (1,2,± 1
2 ,0)

120 ... ... (1,2,2), (15,2,2)

16 G3211 → GSM ... (1,1,− 1
2 ,1) (4,1,2)

210 G422 → G3211 ... ... (15,1,3)

Table 7.1: Higgs submultiplets contributing to the RG evolution as per the ex-

tended survival hypothesis when symmetry breaking of SO(10) takes

place with two intermediate stages – see (7.4).

must include a 2 × 2 matrix of U(1) couplings. The details of this U(1) mixing

has been discussed in the sec. 4.2.3 of chapter 4. We have computed the RG-

coefficients following the proposals given in [26] at the one-loop level including

the U(1) mixings. The bi are the ordinary β-coefficients and the b̃j are the addi-

tional ones which arise due to the mixings stated above.

Taking all this into account, the gauge couplings evolve as follows:

i) From MC to MX :

b2L = 7/3; b2R = 13; b4c = −1. (7.11)

ii) From MR to MC:

b2L = −3; bRR = 53/12; b3c = −7; b(B−L)(B−L) = 33/8;

b̃R(B−L) = b̃(B−L)R = −1/4
√
6. (7.12)

iii) From MZ to MR:

b1Y = 21/5; b2L = −3; b3c = −7. (7.13)

86



 4

 6

 8

 10

 12

 14

 16

 18

 20

 4  6  8  10  12  14  16  18  20

lo
g
(M

/G
e
V

)

log(MR/GeV)

MX

MC

 14

 16

 18

 20

 13  14  15

Figure 7.1: The allowed ranges of the unification (MX, pale, green) and intermediate Pati-

Salam (MC, dark, red) scales as a function of the U(1)(B−L) breaking scale (MR)

for SO(10) with two intermediate scales. The inset is a zoom of the region of

interest for generating neutrino masses of the right magnitude.

The mixing of the two U(1) groups adds flexibility to the model. With this, we

find for every MR a range of consistent solutions for MC and MX (see Fig. 7.1).

In the plot we have exhibited the maximum and minimum values of both MC

and MX consistent with unification. In a Grand Unified Theory low intermediate

scales are always perceived with extra interest. These low intermediate scale sce-

narios keep alive the hope that signals of the GUT may be identified at accessible

energies. In Fig. 7.1, we have shown that MR and MC can be quite low –∼ 10 TeV

– which is within the reach of recent colliders, such as the LHC; this is an artifact

of the inclusion of the U(1) mixings. The vev vR of the scalar (1, 1,− 1
2 , 1) ⊂ 16,

sets the scale MR. In the next section we have shown that vR needs to be very

high (∼ 1014 GeV) to yield the correct neutrino mass with the Yukawa couplings

∼ O(1). In the inset of Fig. 7.1 we magnify this range of MR. It is to be noted that

this establishes that the proposed model of ‘double-seesaw’ mechanism is com-

patible with gauge coupling unification at a scale which is not in conflict with the

present bound on the proton lifetime.
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7.3 Neutrino Mass

The neutrino mass matrix in the basis ((νL)
c, νR,Σ

0
R, N) is:

Mν =










0 mD 0 0

mT
D 0 a1Y16vR a2Y16vR

0 a1YT
16vR MN 0

0 a2YT
16vR 0 MN










. (7.14)

The left-handed fermionic triplets, Σ3L, having a mass matrix identical to

MN , do not mix with other fermions since the left-handed analogue of vR is

chosen to be zero. From the mass matrix (7.14) it is seen that the masses of

the light neutrinos are obtained by integrating out the heavy triplet and singlet

fermions. Thus we can have type-III and type-I seesawmechanism in succession.

The right-handed neutrino mass term is generated once the heavy triplet fermion

Σ0
3R and N are integrated out – an effective type-I + type-III seesaw. Assuming

MN ≫ vRY16 ≫ mD, the right-handed neutrino mass matrix is:

MR = v2RY16M−1
M YT

16, (7.15)

where,

M−1
M = (a21 + a22)M−1

N , (7.16)

and the light neutrino mass matrix after an effective type-I seesaw becomes:

mν = mD M−1
R mT

D . (7.17)

Substituting for mD from eq. 7.2 one arrives at the general expression of mν as

mν = c20M0M−1
R M0 − c0c4M0M−1

R M2 + c4c0M2M−1
R M0 + c24M2M−1

R M2 . (7.18)

Typical values for the various parameters are vR ∼ 1014 GeV, MN ∼ 1015 GeV,

and ci ∼ O(1), Yi ∼ O(1) which gives MR ∼ 1012 GeV. Then with mD ∼ 100 GeV

one gets mν ∼ 1 eV.

With three neutrino generations, the model has 6 real parameters in M0

and 3 in M2. In addition there are 5 vevs (c0, c2, c3, c4, vR). Besides, there are addi-

tional parameters in Y16 and MN . However the low energy neutrino mass matrix

is characterized by 9 parameters. Neutrino oscillation experiments have so far

determined and/or bounded 5 of these. The general case is obviously not suf-

ficiently constrained. One way to address this lacuna requires invoking some

flavour symmetry. We consider this to be the µ − τ symmetry.
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7.4 µ − τ symmetry and allowed textures

µ− τ symmetry has been consideredwidely for explaining the large atmospheric

mixing angle in the neutrino sector [19]. In addition it gives θ13 = 0 which is also

consistent with the current global fits2. We impose the condition of a general-

ized µ − τ symmetry on the Yukawa matrices stemming from 10H and 16H. This

implies that these matrices are invariant under the exchange of the second and

third rows and columns. This reduces the number of unknown parameters in the

Yukawa sector. However, this symmetry cannot be exact in the quark and lepton

sector. This is accomplished by the term M2 in the fermion mass matrices which

originates from the 120H which is taken to be antisymmetric under the exchange

of 2 ↔ 3 and breaks µ − τ symmetry spontaneously.

In addition we had imposed a generalized parity symmetry [21] which

makes the complex matrices M0 and M2 real thereby reducing the number of

free parameters. Thus the model that we consider is SO(10) ⊗ Z2
µ−τ ⊗ ZP

2 [8].

However it is to be mentioned that if we assume exact µ − τ (anti)symmetry in

(M2) M0 then a generalized CP-invariance holds [8] and the CKM matrix comes

out as real. This can be rectified either by assuming some of the vevs to be com-

plex or by allowing a small explicit breaking of µ − τ symmetry in M0. This

induces CP-violation phases in both UCKM and UPMNS [8]. We work in the basis

where the charged lepton mass matrix is diagonal and the PMNS matrix is solely

determined by the mixing in the neutrino sector.

The structures for M0 and M2 under the above symmetries are given by

M0 =







a′ b′ b′

b′ c′ d′

b′ d′ c′







, M2 =







0 x′ −x′

−x′ 0 y′

x′ −y′ 0







. (7.19)

We consider a model with three adjoint fermion multiplets, i.e., the model

consists of (3νL + 3νR + 3N + 3ΣR). Thus, Y16 and MN are also 3 × 3 matrices

which we take to be µ − τ symmetric. It follows from eq. 7.15 that MR also

respects this symmetry. Thus we have both M0 and MR to be µ − τ symmetric.

In order to make the model predictive we make the further assumption that MR

and M0 are proportional, i.e.,

KMR = M0. (7.20)

2Recent global fits have found indication for non-zero θ13 although this is only a 1σ effect. A small

non-zero value of θ13 can be induced by breaking the µ − τ symmetry.

89



where K is a constant. mν in eq. 7.18 then takes the form

mν = Kc20M0 + Kc24M2M−1
0 M2 = M1 + M′

1 . (7.21)

The number of free real parameters in the theory are now 4 from M0, 2 in M2, and

4 real vevs. Because of eq. 7.20 MR adds just one further parameter. Thus in total

we have 11 real parameters. The vev ratios c2 and c3 do not affect eq. 7.21 and

thus we have 9 parameters involved in the neutrino sector. Some of these appear

only as overall scale factors.

We note that although M2 is µ − τ antisymmetric the product M2M−1
0 M2

possesses µ− τ symmetry. Thus mν is µ− τ symmetric. This immediately implies

θ13 = 0 and θ23 = π/4. Therefore the mixing matrix in the basis where the

charged lepton mass matrix is diagonal is given as,

UPMNS =







c12 s12 0

−s12/
√
2 c12/

√
2 1/

√
2

−s12/
√
2 c12/

√
2 −1/

√
2







, (7.22)

which can be brought to the standard UPMNS form by a suitable redefinition of

fermion phases. We have

mν = UPMNSMdiaUT
PMNS, (7.23)

where Mdia = Diag(m1,m2,m3). m1,m2,m3, the mass eigenvalues are real 3, and

are given as

m1 =
X −

√

X2 − 4(d − c)Y

2(d − c)
,

m2 =
X +

√

X2 − 4(d − c)Y

2(d − c)
,

m3 =
Y

2b2 − ac − ad
. (7.24)

Here

X = −ac − c2 + ad + d2 + 2x2 + y2;

Y = 2b2c − ac2 − 2b2d + ad2 + 2cx2 + 2dx2 + 4bxy + ay2, (7.25)

3Since the mass matrices have real entries, complex roots can appear only in conjugate pairs lead-

ing to unacceptable degenerate neutrinos. We take the eigenvalues to be all non-negative.
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and

a = Kc20a′, b = Kc20b′, c = Kc20c′, d = Kc20d′, x = Kc24x′, y = Kc24y′ . (7.26)

Note that the eigenstate m3 is determined to be the one associated with

the eigenvector (0, 1/
√
2,−1/

√
2). Whether this is the highest mass state or the

lowest mass state, i.e., whether the hierarchy is normal or inverted will depend

on the values of the parameters. We further require ∆m2
21 > 0 from the solar data.

This implies that for our choice of m2 and m1

X

(d − c)2

√

X2 − 4(d − c)Y > 0 (7.27)

Using eqs. 7.22 and 7.23 we obtain,

tan θ12 =
1√
2

(a − m1)(c − d)− 2x2

b(c − d) + xy
. (7.28)

The condition for tri-bimaximal mixing implies

(a − m1 − b)(c − d) = 2x2 + xy . (7.29)

7.4.1 10H dominance

In this case, a, b, c, d ≫ x, y. The light neutrino mass matrix mν is approximated

as Kc20M0 with M0 defined in eq. 7.19. In this limit the mass eigenvalues are given

as,

m1 =
1

2
( f1 − R), m2 =

1

2
( f1 + R), m3 = c − d , (7.30)

with

R = +
√

8b2 + f 22 , (7.31)

where,

f1 = a + c + d, f2 = −a + c + d . (7.32)

Again, m3 is identified as the eigenvalue for the state

eigenvector (0, 1/
√
2,−1/

√
2). Since the solar data has determined the ordering

of the 1 and 2 mass states to Then the mass squared differences can be expressed

as,

∆m2
21 = f1R ∆m2

31 = ( f1R − a2 − 4b2 + c2 + d2 − 6cd)/2 . (7.33)
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Again, the mass ordering will depend on the values of the parameters. In general

both normal and inverted hierarchy are possible. In addition, the solar neutrino

data require ∆m2
21 > 0 which implies f1R > 0 for the above selection of states.

The mixing angles are given as,

θ13 = 0 , θ23 = π/4 , tan θ12 =
(R − f2)

2
√
2b

. (7.34)

Tri-bimaximal mixing implies θ13 = 0, θ23 = π/4 and tan2 θ12 = 1/2. We

see that the requirements for θ13 and θ23 are already satisfied. If in addition we

impose

f2 = b =⇒ R = 3b, f1 = (2a + b), (7.35)

tri-bimaximal mixing is obtained. In this limit

∆m2
21 = 3 b (2a + b) ∆m2

31 = (c − d)2 − (a − b)2 . (7.36)

7.4.2 120H dominance

In this limit a, b, c, d ≪ x, y and the low energy neutrino mass matrix is given as

mν = M4 = Kc24M2 M−1
0 M2 . (7.37)

The UPMNS continues to be given by eq. 7.22. The eigenvalues, in terms of

the parameters defined in eq. 7.26, are given as,

m1 = 0, m2 =
2x2 + y2

d − c
, m3 =

2cx2 + 2dx2 + 4bxy + ay2

2b2 − ac − ad
. (7.38)

Since the eigenvector (0, 1/
√
2,−1/

√
2) belongs to the eigenvalue m3 so that the

zero eigenvalue has to be associated with the eigenstate m1. Therefore this case

corresponds to the normal hierarchy. Since m1 = 0, ∆m2
21 = m2

2 and ∆m2
31 = m2

3.

Then, using eqs. 7.22 and 7.23 one obtains the 1-2 mixing angle as,

tan θ12 = −
√
2x

y
(7.39)

Thus, the mixing matrix in this case is completely determined by the parameters

of M2. The condition for obtaining exact tri-bimaximal mixing is y = −2x.

In summary in this chapter we have considered a non-SUSY SO(10) model

in which the fermion masses originate from Yukawa couplings to 10H and 120H .
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In such a model the usual type-I and type-II seesaw mass terms which arise from

126H are not present. It is possible to generate the neutrino mass at two-loops by

the radiative seesaw mechanism [11]. But for non-SUSY SO(10) the contribution

is very small.

Here we suggest a new possibility to generate neutrino masses in a non-

SUSY SO(10) model with 10H + 120H using fermions in the 45F representation

and an additional 16H scalar multiplet. Constraints from gauge coupling unifi-

cation requires the vev < 16H > to be in the range ∼ 104 − 1016 GeV. However

from the standpoint of generation of naturally small neutrinos masses the range

∼ 1013 − 1015 GeV is preferred. We show that in this case one can generate small

neutrino masses through the ‘double seesaw’ mechanism. Predictions for mix-

ing angles require further imposition of a flavour symmetry which we chose to

be the µ − τ symmetry for the Yukawa matrices due to 10H and 16H whereas

for the one originating from 120H we take the matrix to be µ − τ antisymmetric.

We further assume the right-handed matrix (MR) due to the heavy fields to be

proportional to the one (M0) originating from 10H . With this the light neutrino

mass matrix is given by the sum of two terms which are both µ − τ symmetric.

This automatically satisfies θ13 = 0 and θ23 = π/4. We present the neutrino

masses and θ12 obtained from this model and determine the condition for satis-

fying tri-bimaximality. We also discuss the limiting values when one of the terms

dominate. For the 10H-dominance case both hierarchies are possible whereas if

the 120H dominates the hierarchy can only be normal.
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Rev. Lett. 44 (1980) 912.

[4] M. Magg and C. Wetterich, Phys. Lett. B 94, (1980) 61; G. Lazarides, Q. Shafi

and C. Wetterich, Nucl. Phys. B 181, (1981) 287.

[5] K. y. Oda, E. Takasugi, M. Tanaka and M. Yoshimura, Phys. Rev. D 59

(1999) 055001 [arXiv:hep-ph/9808241]; H. S. Goh, R. N. Mohapatra and

S. P. Ng, Phys. Rev. D 68 (2003) 115008 [arXiv:hep-ph/0308197]; H. S. Goh,

R. N. Mohapatra, S. Nasri and S. P. Ng, Phys. Lett. B 587 (2004) 105

[arXiv:hep-ph/0311330]; S. Bertolini, M. Frigerio and M. Malinsky, Phys.

Rev. D 70 (2004) 095002 [arXiv:hep-ph/0406117]; T. Fukuyama, A. Ilako-

vac, T. Kikuchi, S. Meljanac and N. Okada, Eur. Phys. J. C 42 (2005) 191

[arXiv:hep-ph/0401213]; B. Bajc, A. Melfo, G. Senjanović and F. Vissani,

Phys. Rev. D 70 (2004) 035007 [arXiv:hep-ph/0402122]; C. S. Aulakh and

A. Girdhar, Nucl. Phys. B 711 (2005) 275 [arXiv:hep-ph/0405074].
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[7] W. Grimus and H. Kühböck, Phys. Lett. B 643 (2006) 182 [arXiv:hep-

ph/0607197]; B. Dutta, Y. Mimura and R. N. Mohapatra, Phys. Lett. B 603

(2004) 35 [arXiv:hep-ph/0406262].

[8] A. S. Joshipura, B. P. Kodrani and K. M. Patel, Phys. Rev. D 79 (2009) 115017

[arXiv:0903.2161 [hep-ph]].

[9] K. Matsuda, Y. Koide and T. Fukuyama, Phys. Rev. D 64 (2001) 053015

[arXiv:hep-ph/0010026].
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