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Abstract

Currently, inflation is the most promising paradigm to describe the origin of the pertur-

bations in the early universe. Most models of inflation permit a sufficiently long epoch of

slow roll inflation, which, in turn, leads to a featureless, nearly scale invariant, power law,

primordial scalar spectrum. Such a spectrum, along with the assumption of a spatially

flat, concordant ΛCDM [i.e. involving the cosmological constant Λ and Cold Dark Matter

CDM)] background cosmological model, provides a good fit to the recent observations

of the anisotropies in the Cosmic Microwave Background (CMB) by missions such as the

Wilkinson Microwave Anisotropy Probe (WMAP).

Even though, as a broad paradigm, inflation can be termed as a success, it would be

fair to say that we are still some distance away from converging upon a specific model or

even a class of models. There exist a wide variety of inflationary models that remain con-

sistent with the data. While a nearly scale invariant, power law, scalar spectrum fits the

observations of the anisotropies in the CMB quite well, there exist a few data points at the

lower multipoles, which lie outside the cosmic variance associated with the conventional

power law primordial spectrum. Statistically, a few outliers in a thousand or so data

points are always expected. However, these outliers can be handy from the phenomeno-

logical perspective of attempting to constrain the models from the data, since only a more

restricted class of inflationary models can be expected to provide an improved fit to these

outliers. Therefore, it is a worthwhile exercise to explore models that lead to certain devi-

ations from the standard power law, inflationary perturbation spectrum, and also provide

a better fit to the data.

Over the last few years, it has been recognized that primordial non-Gaussianity can

act as a powerful probe to help us discriminate further between the various inflationary

models. For instance, it is known that slow roll inflation driven by the canonical scalar

fields leads only to a small amount of non-Gaussianity. But, recent analyses of the WMAP

data seem to suggest that primordial non-Gaussianity may possibly be large. Ongoing

missions such as Planck are expected to determine the extent of non-Gaussianity in the
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ABSTRACT

CMB more accurately. It is known that models which lead to features also generate a

reasonably large amount of non-Gaussianity. One of the aims of this thesis work has

been to systematically explore inflationary models that give rise to specific features in

the perturbation spectrum which result in an improved fit to the data, and also lead to

observed (or, observable) levels of non-Gaussianity.

Broadly, this thesis can be divided into two parts. While the first part can be said to be

devoted to the signatures of features and non-Gaussianities on the CMB, the second fo-

cuses on their possible observational imprints in the matter dominated epoch. In the first

part, we shall begin with a discussion on the generation of localized as well as non-local

features (i.e. characteristic and repeated patterns that extend over a wide range of scales)

in the inflationary scalar power spectrum that lead to a better fit to the CMB data than the

more standard power law spectrum. We shall also investigate the bi-spectra that result in

such scenarios, and study as to how they compare with the current observational limits

on the non-Gaussianity parameter f
NL

. In this context, we shall also discuss the effects

of preheating in single field inflationary models on the evolution of the bi-spectrum. In

the second part of the thesis, after considering the effects of primordial features on the

formation of halos, we shall discuss the possibility of utilizing the observations of the

Ly-α forest towards constraining primordial non-Gaussianity. In what follows, we shall

provide a brief outline of these different issues. (The reference numbers that appear here

correspond to the publications and preprints listed below.)

Generation of localized features due to a step in the inflaton potential: A short burst

of oscillations over suitable scales in the primordial scalar power spectrum have been

known to result in an improved fit to the outliers in the CMB data near the multipole

moments of ℓ = 22 and 40. Typically, such features have been generated with the intro-

duction of a step in the conventional, quadratic potential involving the canonical scalar

field. Such a quadratic potential will cease to be consistent with the data, if the tensors re-

main undetected at a level corresponding to a tensor-to-scalar ratio of, say, r ≃ 0.1. Apart

from the popular quadratic potential, we investigate the effects of the introduction of the

step in a small field model as well as a tachyon model [1]. Further, motivated by possible

applications to future datasets (such as, say, Planck), we evaluate the tensor power spec-

trum exactly, and include its contribution in our analysis. We compare the inflationary

models with the WMAP (five as well as seven-year), the QUEST at DASI (QUaD) and the

Arcminute Cosmology Bolometer Array Receiver (ACBAR) data. As expected, a step at a

particular location and of a suitable magnitude and width is found to fit the outliers (near

ℓ = 22 and 40) better, in all the models that we consider. We highlight the fact that, if the
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tensors prove to be small (say, r . 0.01), the quadratic potential and the tachyon model

will not remain viable, and one would have to pay more attention to examples such as

the small field models.

Non-local features in the primordial spectrum: Apart from localized features, such

as those arising due to a step in the inflationary potentials, it is interesting to examine

if non-local features—i.e. certain characteristic and repeated patterns that extend over a

wide range of scales—in the scalar power spectrum can also provide a better fit to the

CMB data than the conventional, nearly scale invariant, primordial spectrum. With such

a motivation in mind, we consider the model described by a quadratic potential which

is superposed by a sinusoidal modulation and the recently popular axion monodromy

model. The oscillatory terms in these inflaton potentials lead to modulations in the corre-

sponding scalar power spectra that extend over a wide range of scales [2]. Evaluating the

scalar power spectra numerically, we compare the models with the WMAP data. More-

over, as the oscillations continue even onto smaller scales, we also include the small scale

data from the Atacama Cosmology Telescope (ACT) in our analysis. Though, both the

models, broadly, result in oscillations in the spectrum, interestingly, we find that, while

the monodromy model leads to a considerably better fit to the data in comparison to

the standard power law spectrum, the quadratic potential superposed with a sinusoidal

modulation does not improve the fit to a similar extent.

Bi-spectra associated with local and non-local features: Presently, the primordial

scalar bi-spectrum is often characterized by the parameter f
NL

, which is a suitable di-

mensionless ratio of the scalar bi-spectrum to the corresponding power spectrum. We

present the first complete calculation of the parameter f
NL

for a variety of single field in-

flationary models that lead to features in the scalar power spectrum [3]. The calculation

is based on the formalism due to Maldacena to evaluate the bi-spectrum in a given in-

flationary model. It is performed numerically by means of a new, efficient and accurate

Fortran code that can evaluate all the contributions to the bi-spectrum for any config-

uration of the wavenumbers. We consider different sets of models that lead to similar

features in the scalar power spectrum, and investigate if f eq
NL

(viz. f
NL

evaluated in the

equilateral configuration) can help us discriminate between the models. We find that cer-

tain differences in the background dynamics—reflected in the behavior of the slow roll

parameters—can lead to a reasonably large difference in the f eq
NL

generated by the models.

The scalar bi-spectrum during preheating: In single field inflationary models, pre-

heating refers to the phase that immediately follows inflation, but precedes the epoch of

reheating. During this phase, the inflaton typically oscillates at the bottom of its potential
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and gradually transfers its energy to radiation. At the same time, the amplitude of the

fields coupled to the inflaton may undergo parametric resonance and, as a consequence,

explosive particle production can take place. A priori, these phenomena could lead to an

amplification of the super-Hubble scale curvature perturbations which, in turn, would

modify the standard inflationary predictions. However, remarkably, it has been shown

that, although the Mukhanov-Sasaki variable does undergo narrow parametric instability

during preheating, the amplitude of the corresponding super-Hubble curvature perturba-

tions remain constant. Therefore, in single field models, metric preheating does not affect

the power spectrum of the large scale perturbations. We investigate the corresponding

effect on the scalar bi-spectrum [4]. Using the above-mentioned Maldacena’s formalism,

we analytically show that, for modes of cosmological interest, the contributions to the

scalar bi-spectrum as the curvature perturbations evolve on super-Hubble scales during

preheating is completely negligible. Specifically, we illustrate that, certain terms in the

third order action governing the curvature perturbations which may naively be expected

to contribute significantly are exactly canceled by other contributions to the bi-spectrum.

We corroborate selected analytical results by numerical investigations. We also discuss

the possible wider implications of the results.

Effects of primordial features on the formation of halos: As we have repeatedly

mentioned, features in the primordial scalar power spectrum provide a possible roadway

to describe the outliers at the low multipoles in the WMAP data. Apart from the CMB

angular power spectrum, these features can also alter the matter power spectrum and,

thereby, the formation of the large scale structure. Carrying out a complete numerical

analysis, we investigate the effects of primordial features on the formation rates of the

halos. We consider a few different inflationary models that lead to features in the scalar

power spectrum and an improved fit to the CMB data, and analyze the corresponding

imprints on the formation of halos [5]. Performing a Markov Chain Monte Carlo analysis

with the WMAP and the Sloan Digital Sky Survey (SDSS) data for the models of our inter-

est, we arrive at the parameter space of the models allowed by the data. We illustrate that,

inflationary potentials, such as the quadratic potential with sinusoidal modulations and

the axion monodromy model, which generate certain repeated, oscillatory, features in the

inflationary perturbation spectrum, do not induce substantial difference in the number

density of halos at their best fit values, when compared with, say, a nearly scale invariant

spectrum as is generated by the standard quadratic potential. However, we find that the

number density and the formation rates of halos change by about 20% for halo masses

ranging over 104–1014M⊙, corresponding to potential parameters that lie within 2-σ from
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the best fit values arrived at from the aforesaid joint constraints.

Imprints of primordial non-Gaussianity in the Ly-alpha forest: We investigate the

possibility of constraining primordial non-Gaussianity using the three dimensional bi-

spectrum of the Ly-α forest [6]. The strength of the quadratic non-Gaussian correction

to an otherwise Gaussian primordial gravitational field is assumed to be dictated by the

parameter f
NL

. We present the first prediction for bounds on f
NL

using Ly-α flux spectra

along multiple lines of sight. The three dimensional Ly-α transmitted flux field is mod-

eled as a biased tracer of the underlying matter distribution sampled along one dimen-

sional skewers corresponding to quasars sight lines. The precision to which f
NL

can be

constrained depends on the survey volume, pixel noise and aliasing noise (arising from

the discrete sampling of the density field). We consider various combinations of these

factors to predict bounds on f
NL

. We find that, in an idealized situation of full sky survey

and negligible Poisson noise, one may constrain f
NL

∼ 23 in the equilateral limit. As-

suming a Ly-α survey covering large parts of the sky (kmin = 8 × 10−4Mpc−1) and with a

quasar density of n̄ = 5×10−3Mpc−2, we show that it is possible to constrain f
NL

∼ 23 for

the equilateral configurations. The possibility of measuring f
NL

at a precision comparable

to the large scale structure may be useful for joint constraining of inflationary scenarios

using different data sets.
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Chapter 1

Introduction

At a first glance, the universe around us appears to be highly clumpy, with matter seem-

ingly distributed in a rather non-uniform fashion. However, observations of millions of

galaxies by different galaxy surveys such as the Two-degree-Field (2dF) galaxy redshift

survey [1, 2] and the Sloan Digital Sky Survey (SDSS) [3, 4] indicate the universe to be

homogeneous and isotropic on suitably large scales. These surveys suggest that the tran-

sition to homogeneity of the galaxy distribution occurs at length scales of around 100 Mpc

or so (in this context, see, for instance, Ref. [5]). On such large scales, it is General Rela-

tivity (GR) which is the theory that is expected to describe the universe. In GR, the fun-

damental quantity is the metric describing the spacetime, whose dynamics is determined

by the matter through the Einstein field equations. The metric that describes the homoge-

neous and isotropic universe is referred to as the Friedmann-Lemaitre-Robertson-Walker

(or, for convenience, simply Friedmann) line-element, which is essentially characterized

by two quantities (see, for example, any of the following texts [6]). The first being the

curvature of the spatial geometry of the universe, while the second is the scale factor a(t),

which allows one to account for the observed expansion of the universe. The quantity t

denotes the cosmic time, i.e. the time as measured by clocks that are comoving with the

expansion.

The behavior of the scale factor a(t) is governed by the constituents of the universe

through the Friedmann equations, which are the Einstein equations applied to the case of

the Friedmann metric. A variety of observations point to the density of the universe to-

day being rather close to the so-called critical density (with the dimensionless ratio of the

actual density to the critical density deviating from unity by about one part in 102), which

corresponds to a geometry that is spatially rather flat. Till date, through different observa-

tions, we are aware of the fact that baryons (i.e. visible matter) and photons (viz. radiation)
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CHAPTER 1. INTRODUCTION

together constitute less than 5% of the matter density of the universe today. The predic-

tions of the theory of the formation of structures, when compared with the observations,

point to the presence of another type of non-relativistic matter—commonly known as the

cold or, nowadays, simply as the dark matter—in the universe, which interacts only with

gravity. The dark matter, whose true nature remains to be understood, contributes to

about 25% of the total matter density of the universe today. The rest of the universe is

filled with dark energy, about which we only know that it possesses negative pressure

and that it is responsible for the current accelerated expansion of the universe [6].

The evolution of the energy densities of the different components of the universe is

determined by the corresponding equations of state. The energy densities of matter (both

baryonic as well as dark matter) and radiation fall cubically and quartically, respectively,

as the inverse power of scale factor a(t). The energy density associated with the dark

energy, though, remains largely constant in time. We mentioned above that it is the energy

density of the dark energy that dominates the universe today. When one goes back in

time, as the scale factor decreases, there arises an epoch when matter begins to dominate.

Going further back in time leads to the era of radiation domination and, on proceeding

beyond, one eventually encounters a singularity, which is popularly referred to as the big

bang. Such a model of the universe wherein the universe emerges from a singularity, to

evolve into epochs of radiation and matter domination is often called as the hot big bang

model. It should be added here that the occurrence of the big bang singularity should

not be a cause for concern, as it simply reflects a failure of GR. At these high energy

scales, one expects quantum gravitational effects to play an important role leading to the

possible avoidance of such singularities.

During the early phases of the radiation dominated era, the photons and the baryons,

being strongly coupled to each other, remain in thermal equilibrium. We had pointed

out above that, as the universe expands, the radiation density decreases faster than all

the other components. As the radiation cools due to the expansion, there arises an epoch

at which the interaction rate of the photons with the baryons falls below the expansion

rate of the universe. At this stage, the radiation decouples from matter, starts stream-

ing freely, and reaches us today, largely unhindered, except for possible interactions with

the electrons that have been reionized at late times in the Inter Galactic Medium (IGM).

The constant time hypersurface at the epoch of decoupling, when the radiation last scat-

tered off the baryons, is known as the last scattering surface. It is the photons that travel

freely off the last scattering surface that we observe today as the Cosmic Microwave Back-

ground (CMB). The CMB is almost perfectly thermal, corresponding to a temperature of
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2.725K. It is also found to be highly isotropic, to roughly one part in 105, which reflects

the fact that the inhomogeneities were rather small during the early stages of evolution of

the universe. This observation further supports our description of the universe in terms

of the homogeneous and isotropic Friedmann metric [6].

The anisotropies in the CMB are the imprints of the inhomogeneities in the early uni-

verse. Therefore, the pattern of the anisotropies in the CMB provide us with clues to the

origin and evolution of the primordial perturbations. As we shall soon discuss, a major

drawback of the hot big bang model is the fact that it is unable to provide a causal mech-

anism for the generation of the perturbations. Typically, it is the inflationary scenario,

which corresponds to a brief period of accelerated expansion during the early stages of

the radiation dominated epoch, that is invoked to explain the origin of the primordial

inhomogeneities (see any of the following texts [6] or one of the following reviews [7]).

Ever since the first observation of the CMB anisotropies by COBE [8, 9], various ground

based observations such as QUEST at DASI (QUaD) [10, 11], the Arcminute Cosmol-

ogy Bolometer Array Receiver (ACBAR) [12, 13] and the Atacama Cosmology Telescope

(ACT) [14, 15] as well as satellite missions such as the Wilkinson Microwave Anisotropy

Probe (WMAP) [16, 17, 18, 19] and Planck [20] have been mapping the anisotropies to

greater and greater precision. The ever increasing quality of the CMB data allows us to

constantly improve upon our understanding of the characteristics as well as the origin

and the evolution of the primordial perturbations.

Post decoupling, the inhomogeneities present are amplified due to gravitational insta-

bility into the Large Scale Structure (LSS) that we see around us today. However, informa-

tion regarding the epoch immediately after decoupling is hard to come by due to the lack

of interaction of photons with the dominant dark matter and the absence of luminous ob-

jects, a period that is hence named as the dark ages. Once the structures begin to form, we

again enter a regime offering a rich variety of sources for observations, such as quasars

(viz. extremely luminous active galactic nuclei), galaxies and supernovae, just to name a

few. Observations of events at these late times enable us to reconstruct the more recent

history of the universe, involving the formation of structures, reionization and cosmic ac-

celeration. This understanding, in turn, allows us to decode the nature of the primordial

perturbations. Therefore, late time observables, such as the distribution of matter on the

large scales today, supplement the CMB observations and aid us in constraining models

of the early universe. In Figure 1.1, we have reproduced a popular and visually striking

artist’s impression of the timeline of the universe—beginning with the big bang through

the origin of perturbations during inflation and their imprints on the CMB as anisotropies
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CHAPTER 1. INTRODUCTION

Figure 1.1: An artist’s rendering of the timeline of the universe, from the big bang through
the epochs of inflation, decoupling, dark ages and the formation of structure, till the cur-
rent accelerated expansion driven by dark energy. (Image courtesy: NASA/WMAP Sci-
ence Team.)

to the formation of the LSS and the present epoch of accelerated expansion driven by dark

energy—that we have outlined above.

The aims of this thesis, as we have outlined in the abstract, can be largely said to

be twofold. Often in the literature, while considering models of inflation, attention is

restricted to models which permit only slow roll. We shall instead focus on models that

lead to deviations from slow roll, which result in specific features in the inflationary scalar

perturbation spectrum. These features, not only lead to an improved fit to the observed

CMB angular power spectrum, but, interestingly, as we shall illustrate, they also produce

larger levels of non-Gaussianities, as is possibly suggested by the recent analysis of the

WMAP data. As a related issue, we shall also discuss the extent of the contribution to the

bi-spectrum due to the epoch of preheating that immediately succeeds the inflationary
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1.1. THE CONCORDANT, BACKGROUND COSMOLOGICAL MODEL

era. In the latter part of the thesis, apart from considering the effects of the primordial

features on the formation of halos, we shall outline a method that utilizes the observations

of the Lyman (Ly)-α forest to arrive at constraints on the primordial non-Gaussianity.

The remainder of this introductory chapter is organized as follows. In the next section,

we shall sketch the concordant, background cosmological model that has been arrived

at from a variety of observations. After highlighting the drawbacks of the hot big bang

model, in Section 1.2, we shall outline as to how the inflationary scenario, even as it helps

in overcoming these difficulties, offers a mechanism for the creation of the perturbations.

We shall also present a few essential details concerning linear perturbation theory, and

discuss how the conventional power law perturbation spectra compare with the obser-

vations of the CMB anisotropies. In Section 1.3, we shall briefly discuss the generation

of non-Gaussianities during inflation, which is one of the key issues studied in this the-

sis. We shall outline preheating, viz. the epoch that immediately follows inflation, in

Section 1.4, while Section 1.5 contains some relevant details pertaining to the formation

of structure during late times. In Section 1.6, we shall provide a chapter wise outline

of the thesis. We shall conclude this chapter with a few remarks concerning the various

conventions and notations that we shall adopt throughout this thesis.

1.1 The concordant, background cosmological model

We had mentioned that the homogeneous and isotropic universe is described by the

Friedmann metric. We had also pointed out that various observations indicate the den-

sity of the universe to be close to the critical value, which corresponds to a spatially flat

universe. It is worth noting here that the most direct constraint on the total density of the

universe arises from the location of the first acoustic peak in the CMB (in this context, see,

for instance, Refs. [6, 18, 19]). A spatially flat, (3 + 1)-dimensional Friedmann universe

that is characterized by the scale factor a(t) is described by the line-element

ds2 = dt2 − a2(t) dx2 = a2(η)
(
dη2 − dx2

)
, (1.1)

where, recall that, t represents the cosmic time, while η =
∫

dt/a denotes the conformal

time coordinate.

The dynamics of the scale factor a(t) is governed by the Einstein equations, which, in
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the spatially flat case of our interest, reduce to the following two Friedmann equations:

H2 =
8 πG

3
ρ, (1.2a)

ä

a
= −4 π G

3
(ρ+ 3 p) , (1.2b)

where H = ȧ/a is the Hubble parameter and the overdots represent differentiation with

respect to the cosmic time coordinate t. The quantities ρ and p denote the total energy

density and the pressure of the constituents of the universe that are responsible for its

expansion. We can write the first of the above two Friedmann equations as

H2

H2
0

= Ωr

(a0
a

)4
+ Ωm

(a0
a3

)3
+ ΩΛ, (1.3)

where a0 denotes the scale factor today and H0 is the Hubble constant, i.e. the present

value of the Hubble parameter which is usually expressed as h 100 km s−1Mpc−1. The

quantities Ωr and Ωm represent the dimensionless density parameters (which we shall

soon define) corresponding to radiation and matter (i.e. baryons plus the dark matter),

respectively. The quantity ΩΛ is the density parameter associated with the cosmologi-

cal constant, which is a specific type of dark energy, whose energy density is strictly a

constant, while its pressure is exactly the negative of its energy density. The density pa-

rameter Ω
S

for the species S is defined in terms of its density today, say, ρ 0

S
, as Ω

S
= ρ 0

S
/ρc,

where ρc is the critical density that is given by ρc = 8 πG/(3H2
0). The radiation energy

density in the universe is dominated by the CMB, whose current temperature determines

the value of Ωr. It is straightforward to show that Ωr h
2 ≃ 2.56 × 10−5 [6]. Observations

towards determining distances to a variety of galaxies by the Hubble Key Project point

to h = 0.73 ± 0.05 [21, 22]. Note that Ωm = Ωb + Ωc, where Ωb and Ωc are the density pa-

rameters corresponding to the baryons and the Cold Dark Matter (CDM). The measure-

ments of the primordial abundances of the light elements such as helium or deuterium

and their comparison with detailed models of nucleosynthesis during the radiation dom-

inated epoch lead to the constraint that Ωb h
2 ≃ 0.02 (see, for example, Refs. [23, 24]).

The determination of the luminosity distances to galaxies at high redshifts using type Ia

supernovae as standard candles by the Supernova Cosmology Project [25, 26] and the

Supernova Legacy Survey [27, 28, 29] suggest that Ωm ≃ 0.3 and ΩΛ ≃ 0.7. It should be

added that each of these constraints have been corroborated independently by other sets

of observations. These allow us to arrive at the concordant, background, ΛCDM model

of the universe, with about 70% of its energy density today being contributed by the cos-

mological constant, roughly 25% by cold dark matter, and the rest by the baryons.
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1.2. THE INFLATIONARY PARADIGM

1.2 The inflationary paradigm and the origin of the

perturbations

Though, the conventional hot big bang model, with the inclusion of the cosmological

constant, fits a variety of observations quite well, the model, within itself, proves to be

incomplete. As we had pointed out earlier, the model lacks certain predictability because

of its inability to provide a causal mechanism for the generation of perturbations in early

universe, an issue that is commonly referred to as the horizon problem. The inflationary

scenario, which corresponds to a brief period of accelerated expansion during the early

stages of the radiation dominated epoch, helps in overcoming the horizon problem [30].

Inflation is often achieved with scalar fields as sources and, importantly, the quantum

fluctuations associated with these scalar fields provide the seeds for the inhomogeneities

in the early universe [31]. In this section, after an outline of the horizon problem and a

description of how inflation aids in surmounting the issue, we shall sketch essential as-

pects of linear, cosmological perturbation theory, and discuss how power law primordial

spectra, which are generated in certain models of inflation, compare with the recent CMB

observations.

1.2.1 The resolution of the horizon problem through inflation

The horizon problem arises due to the large mismatch between the linear dimensions of

the backward light cone from today to the epoch of decoupling and the forward light

cone at the same epoch that had initially emerged from the big bang. If one assumes that

the universe was radiation dominated until decoupling and matter dominated thereafter,

then one finds that the ratio of the backward to the forward light cones at the epoch of

last scattering turns out to be about 70. The ratio being greater than unity indicates the

fact that the CMB photons originating from sufficiently widely separated directions on

the last scattering surface could not have interacted before decoupling. Yet, one finds

that the CMB photons arriving at us from even opposite directions in the sky possess the

same temperature, suggesting that radiation over the entire last scattering surface was in

thermal equilibrium. This is the essence of the horizon problem.

The horizon problem can also be stated in a different fashion, which is visually help-

ful in understanding the evolution of the Fourier modes associated with the inhomo-

geneities. Consider power law expansion of the form a(t) ∝ tq with q < 1, which can

describe both the radiation and the matter dominated epochs. The physical length scale,
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say, λ
P
= λ a, associated with any mode of a given wavelength λ, always grows propor-

tional to the scale factor. In contrast, the Hubble radius, say, d
H
= H−1, which reflects

the size of the horizon in such cases, behaves as a1/q . Therefore, λ
P
/d

H
∝ a(q−1)/q , which,

for q < 1, turns larger than unity at a sufficiently early time. In other words, the modes

associated with the perturbations leave the Hubble radius as we go back in time. The

fact that, at early times, the modes of cosmological interest (say, wavelengths larger than

the scale of homogeneity today) are outside the Hubble radius in the hot big bang model

implies that the model cannot provide a causal mechanism for seeding the perturbations.

Inflation, a period of rapid expansion during the stages of the radiation dominated

epoch, solves the horizon problem (and, in fact, other issues too, such as, for example,

the flatness problem) of the standard big bang cosmology in an elegant fashion [6, 7].

Evidently, the horizon problem can be resolved if we can have a phase during the early

stages of radiation domination wherein the modes of cosmological interest are inside the

Hubble radius. It is clear from the above discussion that this can be achieved, provided,

during this period, the physical wavelengths of the modes decrease faster than the Hub-

ble radius as we go back in time, i.e. if −d (λ
P
/d

H
)/dt < 0. This condition corresponds to

ä > 0, and it is such an era of accelerated expansion that is referred to as inflation. In most

models of inflation, such as the slow roll scenarios that have drawn constant attention, the

Hubble radius remains approximately constant. As illustrated in Figure 1.2, this property

allows us to bring the modes of cosmological interest inside the Hubble radius at early

times. It can be shown that, in order to ensure that the forward light cone at decoupling

is at least as large as the backward light cone, one requires the universe to expand by

a factor of about 1028 during inflation1. For convenience, the extent of inflation is often

measured in terms of the number of e-folds N , which is defined as the logarithmic ratio

of the scale factor at any given instant to its value at another fixed time. It can, in fact, be

expressed as

N =

∫ t

t∗

dtH =

∫ t

t∗

da

a
= ln

[
a(t)

a(t∗)

]
, (1.4)

where t∗ denotes some fixed time. Typically, one requires about 60–70 e-folds of inflation

to overcome the horizon problem [6, 7]. As we shall soon discuss, the fact that the modes

are inside the Hubble radius during the early phase of inflation allows us to impose well

motivated initial conditions on the perturbations.

1It should be clarified that the factor of 1028 that we have quoted is an approximate upper limit, and the
actual number depends on the energy scale at which inflation takes place (in this context, see, for instance,
Refs. [32]).
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Figure 1.2: Evolution of the physical wavelength λ
P

(in green) and the Hubble radius
d

H
(in blue) has been plotted as a function of the scale factor a on a logarithmic plot

during the inflationary and the radiation dominated epochs. It is clear from the figure
that a nearly constant Hubble radius (as is encountered in slow roll inflation) ensures that
the modes emerge from inside the Hubble radius at a sufficiently early epoch, thereby
resolving the horizon problem.

1.2.2 Driving inflation with scalar fields

It is evident from the second of the Friedmann equations, viz. Eq. (1.2b), that one requires

(ρ + 3 p) < 0 for inflation, i.e. a period of accelerated expansion, to occur. Since neither

matter corresponding to pm = 0 and radiation with pr = ρr/3 (and, needless to add, a

positive energy density) do not satisfy the condition, they cannot drive inflation. As we

have alluded to before, it is scalar fields that are often invoked to achieve inflation [30].

Consider a single, canonical scalar field, say, φ, which is the dominant source for the ex-

pansion of the universe at a particular epoch. The energy density and pressure associated
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with the scalar field are given by [6, 7]

ρφ =
φ̇2

2
+ V (φ), (1.5a)

pφ =
φ̇2

2
− V (φ), (1.5b)

where the overdots again represent differentiation with respect to the cosmic time, while

V (φ) denotes the potential that describes the inflaton2. For the above energy density

and pressure, the condition that leads to an accelerated expansion reduces to φ̇2 < V (φ),

i.e. when the kinetic energy of the scalar field is less than the potential energy associated

with the field.

The equation of motion satisfied by the scalar field in the homogeneous and isotropic

Friedmann background is given by [6, 7]

φ̈+ 3H φ̇+ Vφ = 0, (1.6)

where Vφ = dV/dφ. It is clear from this equation that, while the term Vφ drives the field in

the potential, the frictional term 3H φ̇, which arises due to the expansion of the universe,

slows the field down. We saw above that the condition for inflation to occur corresponds

to φ̇2 < V (φ). Though this condition ensures accelerated expansion, it is often demanded

that the field rolls slowly in the potential so that one has φ̇2 ≪ V (φ), which guarantees

that inflation does indeed take place. Moreover, the field also needs to be slowly rolling

for a sufficient duration in order to achieve the necessary amount of inflation. A suitably

long duration of inflation is accomplished provided the frictional term is strong enough

to overcome the acceleration of the field, i.e. when φ̈ ≪ 3H φ̇. The above two inequali-

ties, in fact, constitute the conditions for the so-called slow roll inflationary scenario [33].

Actually, nowadays, it is more common to characterize the evolution of the scalar field in

terms of a hierarchy of slow roll parameters. The first slow roll parameter is defined as

ǫ1 = − Ḣ

H2
, (1.7)

and it is useful to note here that the condition for inflation, viz. ä > 0, corresponds to

ǫ1 < 1. The second and the higher order slow roll parameters are defined in terms of the

first as follows:

ǫi+1 =
d ln ǫi
dN

, (1.8)

2It is common to refer to the scalar field that drives inflation as the inflaton.
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where i ≥ 1 and N denotes the number of e-folds. Most models permit slow roll inflation

for a range of values of the parameters describing the potential. During inflation, typi-

cally, the scalar field begins its journey far away from a minima of the potential. It rolls

down the potential, joins the inflationary attractor (had it not been originally present on

one such trajectory), and inflation is terminated (when ǫ1 crosses unity) as it approaches

the minimum.

1.2.3 The generation of perturbations during inflation

Inflation, besides resolving the horizon problem, also provides an attractive mechanism

for the origin of perturbations in the early universe [31]. While the classical component

of the scalar field drives inflation as we have described above, the quantum fluctuations

associated with the field induce perturbations in the Friedmann metric. The accelerated

expansion then converts the tiny quantum fluctuations into classical inhomogeneities that

leave their signatures as anisotropies in the CMB. After decoupling, gravitational insta-

bility takes over, evolving the perturbations into the structures that we see today. In what

follows, after a rapid outline of essential, linear, cosmological perturbation theory, we

shall discuss the comparison of certain inflationary perturbation spectra with the recent

observations of the CMB anisotropies.

Essential, linear, cosmological perturbation theory

The fluctuations in the scalar field can be related to the perturbations in the Friedmann

metric through the Einstein field equations. These perturbations can be classified as

scalars, vectors and tensors, depending on their transformation properties on the three

dimensional spatial hypersurface [34]. While the vectors are divergence free, the ten-

sors are traceless and transverse. In the (3 + 1)-dimensional Friedmann universe of our

interest, it can be easily shown that these conditions lead to two independent degrees of

freedom associated with each type of perturbation. At the linear order in the perturbation

theory, the scalars, the vectors and the tensors evolve independently. The two degrees of

freedom associated with the tensors correspond to the two polarizations of the gravita-

tional waves, and it should be mentioned these perturbations can be generated even in

the absence of tensor sources [35]. The vector perturbations, for example, can describe

vorticity, and these are driven by vector sources. Due to the absence of such sources, no

vector perturbations are generated during inflation [6, 7].

As we mentioned, the scalar perturbations associated with the Friedmann metric are
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sourced by the perturbations in the inflaton. In the absence of any anisotropic stress,

as it occurs in the context of scalar fields, the number of independent scalar degrees of

freedom describing the perturbations in the Friedmann metric reduces to one. Therefore,

upon taking into account the scalar and the tensor perturbations, the Friedmann line-

element can be written as follows:

ds2 = (1 + 2Φ) dt2 − a2(t) [(1− 2Φ) δij + hij ] dx
i dxj, (1.9)

where the quantities Φ and hij depend on both time and space, while i and j are spatial

indices that run from one through three. The quantity Φ describes the scalar perturbation

and is known as the Bardeen potential, while hij , which is considered to be transverse

and traceless, represents the tensor perturbations.

We had pointed pointed out above that, at the linear order in perturbation theory, the

scalars and the tensors evolve independently. If, say, δρ and δp denote the perturbations

in the energy density and pressure, one can show that, when no anisotropic stresses are

present, the first order Einstein equations lead to the following equation of motion for the

Bardeen potential Φ:

Φ′′ + 3H
(
1 + c2

A

)
Φ′ − c2

A
∇2Φ+

[
2H′ +

(
1 + 3 c2

A

)
H2
]
Φ =

(
4 πGa2

)
δpNA, (1.10)

where the overprimes refers to differentiation with respect to the conformal time η, and

H denotes the conformal Hubble parameter that is defined as H = aH = a′/a. Moreover,

the quantity δpNA represents the non-adiabatic pressure perturbation which is defined by

the relation (see, for example, Refs. [36, 37])

δpNA = δp− c2
A
δρ, (1.11)

where c2
A
≡ p′/ρ′ is referred to as the adiabatic speed of the perturbations. It proves to be

convenient to introduce a quantity R, which is commonly known as the curvature per-

turbation (since it is proportional to the local three curvature on the spatial hypersurface),

that is given in terms of the Bardeen potential Φ by the expression

R = Φ +
2 ρ

3H

(
Φ′ +HΦ

ρ+ p

)
. (1.12)

In Fourier space, the equation of motion (1.10) for the Bardeen potential then leads to the

following differential equation governing the curvature perturbation:

R′
k =

H
H2 −H′

[(
4 πGa2

)
δpNA

k − c2
A
k2Φk

]
, (1.13)
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1.2. THE INFLATIONARY PARADIGM

where the sub-script k refers to the wavevector of the Fourier modes of the perturbations.

The above equation has an important implication for modes which are well outside the

Hubble radius either during the late phase of the inflationary epoch or the early stages

of the radiation dominated epoch (in this context, see Figure 1.2). Such modes satisfy the

condition λ
P
= λ a ≫ d

H
= H−1 or, equivalently, k/(aH) ≪ 1, where k is the wavenum-

ber associated with the wavelength λ. Consider a situation when the non-adiabatic pres-

sure perturbation is absent, i.e. δpNA = 0 [38]. In such a case, on super-Hubble scales,

viz. when k/(aH) ≪ 1, the first term within the square brackets on the right hand side of

Eq. (1.13) above vanishes, while the second term can be neglected, so that one has R′
k ≃ 0.

This implies that, for adiabatic perturbations, the curvature perturbation is conserved on

super-Hubble scales [39]. As we shall see later, this property comes in very handy while

evaluating the inflationary perturbation spectra.

The above discussion and conclusions for the scalar perturbations actually apply to

any scalar source that does not possess anisotropic stress. Let us now our attention to the

original case of our interest, viz. perturbations induced by the inflaton. From the stress

energy tensor for the scalar field, one can arrive at the expressions for the perturbations

in the energy density and the pressure, which can then be utilized to show that the corre-

sponding non-adiabatic pressure perturbation δpNA can be written as

δpNA =
1− c2

A

4 πGa2
∇2Φ. (1.14)

Upon substituting this expression in Eq. (1.10) and making use of Eq. (1.13), one arrives

at the following differential equation that governs the Fourier modes of the curvature

perturbation during inflation:

R′′
k + 2

z′

z
R′

k + k2Rk = 0, (1.15)

where z =
√
2 ǫ1MPl

a. At this stage, one often introduces the so-called Mukhanov-Sasaki

variable vk = zRk which satisfies the equation [40]

v′′k +

(
k2 − z′′

z

)
vk = 0. (1.16)

The first order Einstein equations lead to a similar equation of motion for the tensor

perturbations as well. In fact, one finds that the Fourier modes of all the components of

the tensor hij are governed by the same differential equation, which is given by

h′′
k + 2

a′

a
h′
k + k2 hk = 0, (1.17)
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CHAPTER 1. INTRODUCTION

where the quantity hk represents the amplitude of the tensor modes. Following the case

of scalars, if we set uk = a hk, then one obtains the equation satisfied by uk to be

u′′
k +

(
k2 − a′′

a

)
uk = 0. (1.18)

The inflationary scalar and tensor perturbation spectra

It is essentially the spectrum of the Bardeen potential when the modes enter the Hubble

radius during the radiation and the matter dominated epochs that determines the pat-

tern of the anisotropies in the CMB and the formation of the LSS [6]. The correlations in

the Bardeen potential or, equivalently, in the curvature perturbation, originate due to the

quantum fluctuations associated the scalar field. As it directly involves the perturbation

in the scalar field, it is the curvature perturbation R that is elevated to a quantum opera-

tor. On quantization, the operator corresponding to the curvature perturbation R can be

expressed as

R̂(η,x) =

∫
d3k

(2 π)3/2
R̂k(η) e

ik·x

=

∫
d3k

(2π)3/2

[
âk fk(η) e

ik·x + â†k f
∗
k(η) e

−ik·x
]
, (1.19)

where âk and â†k are the usual creation and annihilation operators that satisfy the stan-

dard commutation relations, while the modes fk are governed by the differential equa-

tion (1.15). The dimensionless scalar power spectrum P
S
(k) is given in terms of the cor-

relation function of the Fourier modes of the curvature perturbation R̂k by the following

relation:

〈0|R̂k R̂p|0〉 =
(2 π)2

2 k3
P

S
(k) δ(3) (k + p) , (1.20)

where |0〉 denotes the vacuum state that is defined as âk|0〉 = 0 ∀ k. In terms of the modes

fk and the Mukhanov-Sasaki variable vk, the scalar power spectrum is given by

P
S
(k) =

k3

2 π2
|fk|2 =

k3

2 π2

( |vk|
z

)2

, (1.21)

with the expression on the right hand side to be evaluated on super-Hubble scales

[i.e. when k/(aH) ≪ 1], as the curvature perturbation approaches a constant value3.

3Earlier, we had illustrated that, if the non-adiabatic pressure perturbation δpNA can be neglected, then
the curvature perturbation is conserved on super-Hubble scales. It can be shown that the non-adiabatic
pressure perturbation associated with the inflaton [cf. Eq. (1.14)] decays exponentially on super-Hubble
scales and, hence, can be ignored. In fact, it is because of this reason that the scalar perturbations produced
by single scalar fields are termed as adiabatic.
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1.2. THE INFLATIONARY PARADIGM

The tensor perturbations can be quantized in a similar fashion, and the tensor spec-

trum can then be expressed in terms of the modes hk and uk as follows:

P
T
(k) =

8

M2
Pl

k3

2π2
|hk|2 =

8

M2
Pl

k3

2π2

( |uk|
a

)2

, (1.22)

where M
Pl

= (8 πG)−1/2 denotes the Planck mass. The Planck mass appears since it is

part of the gravitational action, while the additional factor of 8 arises when all the com-

ponents of the tensor perturbation hij are taken into account. As in case of the curvature

perturbation, the tensor amplitude h is also known to quickly attain a constant value once

the modes leave the Hubble radius during inflation. Therefore, the quantities on the right

hand side of the above expression are to be evaluated on super-Hubble scales, as in the

case of the scalar spectrum.

During inflation, the initial conditions on the perturbations are imposed when the

modes are well inside the Hubble radius, i.e. when k/(aH) ≫ 1. It is clear from Eqs. (1.16)

and (1.18) that, on sub-Hubble scales, it is the k2 term that will dominate, as result of

which neither vk nor uk feel the effects due to the curvature of the spacetime, reflected in

the terms z′′/z and the a′′/a. Therefore, in the sub-Hubble limit, they have the following,

Minkowskian form: e±i k η. Demanding that the perturbations are in the vacuum state

upon quantization corresponds to choosing the solutions to be the positive frequency

modes, i.e.

lim
k/(aH)→∞

[vk(η), uk(η)] =
1√
2 k

e−i k η. (1.23)

The vacuum state that is associated with such an initial condition is popularly known

as the Bunch-Davies vacuum [41]. Beginning with this initial condition, the scalar and

tensor modes are evolved to super-Hubble scales, and the corresponding perturbation

spectra are evaluated as their amplitudes approach a constant value.

Comparison with the CMB observations

Let us now turn to discussing as to how inflationary models compare with the recent ob-

servations of the anisotropies in the CMB. As we have alluded to before, many models

permit the so-called slow roll inflationary scenario. It can be shown in a model inde-

pendent manner that slow rolling canonical scalar fields lead to nearly scale invariant

inflationary perturbation spectra [42]. The scalar and the tensor perturbation spectra that
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arise in such cases are often written in the following power law form:

P
S
(k) = A

S

(
k

k∗

)n
S
−1

, (1.24a)

P
T
(k) = A

T

(
k

k∗

)n
T

. (1.24b)

The quantities A
S

and A
T

denote the amplitude of the scalar and tensor spectra, while n
S

and n
T

denote the corresponding spectral indices. The quantity k∗ is the pivot scale at

which the amplitudes of the power spectra are quoted. Given the scalar and the tensor

spectra, i.e. P
S
(k) and P

T
(k), the tensor-to-scalar ratio is defined as

r(k) =
P

T
(k)

P
S
(k)

. (1.25)

It is the scalar amplitude A
S
, the tensor-to-scalar ratio r, and the scalar and the tensor

indices n
S

and n
T

that are typically treated as the observables associated with slow roll

inflationary models. Upon comparing with the observations, one arrives at constraints

on these four quantities which, in turn, indicate how these models perform against the

data.

The physics involved in the propagation of the perturbations from their primordial ori-

gins (say, during inflation) to their corresponding signatures as anisotropies in the CMB is

well understood, at least at the linear order in the perturbation theory [6]. In fact, there ex-

ist highly developed and accurate numerical codes such as the Cosmological Boltzmann

Code CAMB [43, 44] to arrive at the CMB angular power spectra from the primordial

scalar and tensor spectra. These codes, when coupled to Cosmological Monte Carlo codes

like COSMOMC [45, 46], greatly facilitate the comparison of inflationary models with the

observations of the CMB anisotropies as well as other cosmological data sets such as those

involving the LSS. The observed anisotropies in the CMB are usually expressed in terms

of the CMB angular power spectra and cross-correlations involving the temperature and

the E and the B types of polarizations, viz. CTT
ℓ , CTE

ℓ , CEE
ℓ and CBB

ℓ . It is often found that

perturbation spectra generated by slow roll inflationary models fit the CMB data from the

various missions such as WMAP [17, 18, 19], QUaD [10, 11], ACBAR [13] and ACT [15]

rather well (for a more detailed discussion on this topic, see, for example, Ref. [47] and

references therein). For instance, one finds that the best fit power law scalar spectra cor-

responds to the scalar amplitude A
S
≃ 2.193 × 10−9 at the pivot scale of 0.05Mpc−1 (a

constraint that is often referred to as COBE normalization [48]), and a spectral index of

n
S
≃ 0.97 (in this context, see Chapter 2). However, it should be emphasized that we are
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1.2. THE INFLATIONARY PARADIGM

yet to detect any tensor perturbations. The tensor spectral index in the theoretical models

often proves to be small enough that it is usually set to be zero when comparing with

the observations, while the seven-year WMAP data [19] and the ACT data [15] suggest

the upper bound on the tensor-to-scalar ratio r to be 0.24 at 95% Confidence Level (CL).

Figure 1.3 below contains a plot of the observed TT angular power spectrum arrived at

from seven years of WMAP data and the best fit theoretical angular power spectrum cor-

responding to power law primordial spectra [19]. It is evident from the figure that the

theoretical predictions seem to agree well with the observations.

Figure 1.3: The theoretical and the observed CMB (TT) angular power spectra have been
plotted as a function of the multipoles ℓ. The black dots with the error bars are the
binned data points from seven years of WMAP data [19]. The solid red curve is the an-
alytical best fit angular power spectrum corresponding to power law primordial spectra
[cf. Eqs. (1.24)] with values of parameters as quoted in the discussion above. The blue
band represents cosmic variance [6]. Clearly, the theoretically predicted curve seem to
agree with the observations rather well. (Image courtesy: NASA/LAMBDA data prod-
ucts.)
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1.3 The generation and imprints of non-Gaussianities

So far, we have discussed the generation of correlations during inflation and the com-

parison of the theoretical predictions with the observational evidence at the level of the

two point function, viz. the primordial and the CMB angular power spectra. Over the last

decade, there has been frenetic activity towards gaining a theoretical understanding of the

amplitude and the form of the three and the four point functions that are produced dur-

ing inflation. In particular, a large fraction of these investigations have been dedicated to

analyzing inflationary and post-inflationary dynamics that lead to deviations from Gaus-

sianity (see Refs. [49, 50, 51, 52, 53, 54, 55]; for earlier efforts in this direction, see Refs. [56]).

At the same time, there has also been a constant effort to arrive at increasingly tighter con-

straints on the actual extent of primordial non-Gaussianities observed in the CMB and the

LSS data [57, 58]. It is now commonly recognized that non-Gaussianities, if detected, can

play a significant role in helping us discriminate between the various inflationary as well

as the post-inflationary scenarios.

In a linear theory described by a quadratic action, when one works with vacuum ini-

tial states, the correlations prove to be Gaussian in nature. It is the non-linearities in the

action governing the variable of interest that leads to deviations from Gaussianities in the

correlation functions. The simplest signature of non-Gaussianity is a non-zero three point

function, which, in a given theory, will be determined by the cubic terms in the action.

Then, evidently, the first step towards evaluating the three point correlation functions

generated in an inflationary model would be to arrive at the action describing the scalar

and tensor perturbations at the next higher, i.e. the cubic, order [49, 51]. Having obtained

such an action, one can make use of the standard procedures of quantum field theory

to arrive at the corresponding scalar and tensor bi-spectra, viz. the three point functions

in Fourier space, as well as cross-correlations between the scalars and the tensors, corre-

sponding to the cubic order action. Based on these arguments, there now exists a stan-

dard formalism, originally due to Maldacena [49], to evaluate the bi-spectrum generated

during inflation (for more details, see Chapter 4).

The scalar bi-spectrum, say, B
S
(k1,k2,k3), associated with the modes R̂k of the curva-

ture perturbation is defined as

〈R̂k1 R̂k2 R̂k3〉 = (2 π)3 B
S
(k1,k2,k3) δ

(3) (k1 + k2 + k3) . (1.26)

Ideally, one would have liked to compute the CMB angular bi-spectrum corresponding

to the primordial bi-spectrum generated during inflation and compare with the observa-
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1.3. THE GENERATION AND IMPRINTS OF NON-GAUSSIANITIES

tions, as is done in the case of the power spectra. However, some of the issues towards

carrying out such comparison still remain to be resolved (in this context, see, for instance,

Ref. [59]). Further, efficient computational tools that will be required for such an analysis

are yet to be thoroughly developed. As a result, for convenience in characterizing the

observations on the one hand and the theoretical models on the other, a dimensionless

parameter f
NL

is often introduced to reflect the amplitude of the deviations from Gaus-

sianity in the curvature perturbation through the relation [57]

R = R
G
− 3 f

NL

5

(
R2

G
−
〈
R2

G

〉)
, (1.27)

where R
G

denotes the Gaussian quantity, and the factor of 3/5 arises due to the relation

between the Bardeen potential and the curvature perturbation during the matter dom-

inated epoch. Upon making use of the corresponding relation between R and R
G

in

Fourier space and the Wick’s theorem, which applies to Gaussian distributions, one ob-

tains that [49, 51, 52]

〈R̂k1R̂k2R̂k3〉 = −3 f
NL

10
(2 π)4 (2 π)−3/2 1

k3
1 k

3
2 k

3
3

δ(3)(k1 + k2 + k3)

×
[
k3
1 PS

(k2) PS
(k3) + two permutations

]
. (1.28)

This expression can then be utilized to arrive at the following relation between the non-

Gaussianity parameter f
NL
(k1,k2,k3) and the scalar bi-spectrum B

S
(k1,k2,k3) [53, 54]:

f
NL
(k1,k2,k3) = −10

3
(2 π)−4 (2 π)9/2 k3

1 k
3
2 k

3
3 BS

(k1,k2,k3)

×
[
k3
1 PS

(k2) PS
(k3) + two permutations

]−1
, (1.29)

which suggests that the non-Gaussianity parameter is, in fact, a suitable ratio of the scalar

bi-spectrum to the corresponding power spectrum.

Note that the presence of the delta-function in the definition (1.26) of the bi-spectrum

B
S
(k1,k2,k3) implies that the wavevectors k1, k2 and k3 have to constitute a triangle.

The present observational constraints on the non-Gaussianity parameter f
NL
(k1,k2,k3)

are often quoted in the equilateral (i.e. when k1 = k2 = k3) and the squeezed (or the

local) limits (i.e. when, say, k1 = k2 ≫ k3). In the equilateral limit, analysis of the WMAP

seven-year data indicates that f
NL

= 26 ± 140, whereas in the squeezed limit one has

f
NL

= 32 ± 21, with the errors denoting the 1-σ deviations from the mean values [19,

57, 58]. It is worth mentioning that, while a Gaussian distribution lies within 2-σ, the

mean values seem to suggest relatively large levels of non-Gaussiantiy. For instance, slow
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roll inflationary models involving the canonical scalar fields, which produce nearly scale

invariant perturbation spectra that are remarkably consistent with the observations at the

level of the power spectra generate rather insignificant amount of non-Gaussianities. The

f
NL

typically created in such models turn out to be far less than unity [49].

1.4 Post-inflationary dynamics

We had discussed earlier that, during inflation, the scalar field rolls down the potential

towards a minima, and inflation ends as the field approaches the minimum [6, 7]. Typi-

cally, in models involving the canonical scalar field, immediately after inflation, the field

oscillates about the minimum of the potential [60]. Thereafter, due to its coupling to other

fields, the inflaton is expected to decay into various particles. The resultant products then

thermalize and reheat the universe, thereby commencing the radiation dominated epoch

associated with the conventional hot big bang model [61].

In single field inflationary models, preheating refers to the phase that is sandwiched

between the epochs of inflation and reheating [60]. As the field oscillates at the bottom

of its potential during this phase, the amplitude of the fields coupled to the inflaton

may undergo parametric resonance resulting in an extremely rapid production of par-

ticles. Such a resonant phenomenon can, in principle, lead to an amplification of the

super-Hubble scale curvature perturbations which, in turn, would affect the spectrum

generated during inflation. Interestingly, in single fields models, it has been shown that,

despite the parametric instability, the amplitude of the curvature perturbations remain

unaltered [62, 63, 64]. Needless to add, the effects of such post-inflationary dynamics

needs to be understood satisfactorily if we are to arrive at constraints on the inflationary

models from the observations of the CMB and the LSS.

1.5 The formation of the large scale structure

Till now, we have focussed on the comparison of models of the early universe with the

observations of the anisotropies in the CMB. We have discussed the imprints of power

spectra and non-Gaussianities on the CMB. Apart from influencing the CMB anisotropies,

the primordial perturbations also affect the formation of the LSS. For instance, given a

primordial scalar power spectrum, say, P
S
(k), the matter power spectrum P

M
(k, z) at the
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redshift z is usually written as (see Refs. [6], in this context, also see, for example, Ref. [65])

P
M
(k, z) =

(
2

5Ωm

)2 (
k

a0H0

)4 (
2 π2

k3

)
P

S
(k) T 2(k)D2

+(z), (1.30)

a quantity that is usually expressed in units of Mpc3. In the above expression, T (k) de-

notes the CDM transfer function, while D+(z) represent the linear growth factor associ-

ated with the total matter perturbation. The quantities Ωm, a0, and H0 are ones that we

have encountered earlier. They represent the non-relativistic dimensionless density pa-

rameter, the scale factor and the Hubble parameter today, respectively. The matter power

spectrum, which reflects the level of the deviations in the matter density from the smooth,

background value, in turn, determines the extent of dark matter halos, viz. stable virial-

ized structures, that have formed at late times. The strongest constraints on the matter

power spectrum is arrived at from the SDSS data, upon making use of galaxies as ob-

servable objects [4]. The observed matter power spectrum complements the CMB obser-

vations and provides additional constraints on the character and form of the primordial

perturbations.

Quasi-stellar radio sources, commonly known as quasars, are extremely luminous ac-

tive galactic nuclei that are located at large distances. As the light from the far away

quasars travels towards us, they are absorbed by the neutral hydrogen present in the

IGM, which leads to a forest of Ly-α spectral lines [6]. The Ly-α forest proves to be a pow-

erful probe to aid us understand the history of formation of structures and, in particular,

determine the epoch of reionization. The forest spectra provide an estimate of the neutral

hydrogen density and its distribution along the line of sight. The pixel flux distribution

function in a given Ly-α forest is assumed to be produced by the probability distribu-

tion associated with the overdensity, say, δ, on large scales. This assumption helps one to

map the distribution function of the flux onto the distribution of δ, which, in turn, allows

the reconstruction of the primordial power spectrum (see, for instance, the review [66]).

Mostly, Ly-α studies have concentrated on correlations of the one dimensional transmit-

ted flux field related to single quasar line of sight. As ongoing surveys such as the Baryon

Oscillation Spectroscopic Survey (BOSS) [67] and BigBOSS [68] begin to gather increasing

amount of quasar data covering a large fraction of the sky, it should be possible to mea-

sure the three-dimensional (3D) power spectrum of the Ly-α forest along multiple lines

of sight. It then becomes interesting to investigate the extent to which such data can help

in constraining the primordial bi-spectrum or the non-Gaussianity parameter f
NL

.
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1.6 Theme and outline of the thesis

Earlier, we had discussed as to how nearly scale independent perturbation spectra pro-

duced by slow roll inflationary scenarios are in good agreement with the observations

of the anisotropies in the CMB. But, a closer look at Figure 1.3 reveals the fact that there

exist a few data points at the lower multipoles that lie beyond the cosmic variance asso-

ciated with the best fit theoretical CMB angular power spectrum. Though some outliers

are always to be expected, it is interesting to examine if these outliers point to non-trivial

inflationary dynamics. As we shall see, certain features in the primordial spectrum, gen-

erated due to deviations from slow roll, lead a better fit to the data. Further, in the context

of non-Gaussianities, we had also mentioned as to how, while slow roll scenarios lead to

relatively small values for the non-Gaussianity parameter f
NL

, the observed mean values

seem to be large. Importantly, it is found that the deviations from slow roll that help in

fitting the above-mentioned outliers in the CMB angular power spectrum also result in

increased levels of non-Gaussianities as is possibly suggested by the data. These points

provide the essential motivations for the issues studied in this thesis. The two themes

that have been investigated are the possibility of features in the primordial scalar spec-

trum and non-Gaussianities. The initial part of the thesis focuses on analyzing localized

as well non-local features in the inflationary scalar power spectrum that result in an im-

proved fit to the observed CMB angular power spectrum. We shall also consider in detail

the scalar bi-spectrum generated in models that lead to such features in the power spec-

trum. Moreover, we shall analyze the contributions to the bi-spectrum during preheating

in single field models. The latter part of the thesis is dedicated to the imprint of features

and non-Gaussianities on the LSS. In this context, we shall study the effects of primordial

features on the halo formation rates. We shall also discuss a proposal to arrive at stronger

bounds on the non-Gaussianity parameter f
NL

from the observations of the Ly-α forest.

In what follows, we shall provide a brief, chapter wise outline of the thesis.

In Chapter 2, we shall discuss the effects of introducing a step in otherwise smooth

inflaton potentials. As we shall see, the presence of the step leads to a small period of

departure from slow roll. The deviation from slow roll, in turn, leads a localized burst of

oscillations which provides an improved fit to some of the outliers at the low multipoles

in the CMB data.

Chapter 3 considers inflationary potentials that contain oscillatory terms. The oscil-

lations in the potentials lead to persistent modulations in the slow parameters and the

scalar power spectrum. Interestingly, as we shall discuss, such non-local features too
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result in a better fit to the data than the conventional power law primordial spectrum.

In Chapter 4, we shall discuss the scalar bi-spectrum that arise in inflationary mod-

els that lead to local and non-local features in the power spectrum and an improved fit

to the data. After a rapid outline of the Maldacena formalism, we utilize the formalism

to construct an efficient numerical code to evaluate the bi-spectrum in a given inflation-

ary model. Apart from considering the models discussed in Chapters 2 and 3, we shall

also consider another model that results in sharp features in the power spectrum (and,

not to mention, an improved fit to the data), and evaluate the scalar bi-spectrum in the

equilateral limit in these models.

Chapter 5 considers the effects of preheating on the inflationary bi-spectrum in single

field models. Since they prove to be analytically tractable, we shall focus on inflationary

models wherein the potentials behave quadratically near the minimum. We shall show

that, as in the case of the power spectrum, the bi-spectrum too remains largely unaffected

by the epoch of preheating in any single field inflationary model. We shall also estimate

the actual extent of the contribution due to preheating to the non-Gaussianity parame-

ter f
NL

.

In Chapter 6, we shall discuss the effects of primordial features on the matter power

spectrum and the formation of halos. We shall show that certain features in the infla-

tionary perturbation spectrum, which are consistent with the CMB data, can affect the

number of halos formed to a good extent.

Chapter 7 considers the possibility of utilizing the three dimensional Ly-α flux spectra

along multiple lines of sight to constrain the primordial bi-spectrum.

Finally, we shall close with a summary and outlook in Chapter 8.

1.7 Notations and conventions

Before we proceed, for convenience, let us summarize certain notations and conventions

that we shall follow throughout this thesis. As we have done until now, we shall adopt

units such that c = ~ = 1, and we shall set M2
Pl
= (8 πG)−1. However, we should mention

that, in Chapter 7, we shall retain c for convenience in making certain estimates. We shall

always work with the (3 + 1)-dimensional, spatially flat, Friedmann universe. Moreover,

as we have mentioned, an overdot and an overprime shall denote differentiation with

respect to the cosmic time t and the conformal time η, respectively. Further, N shall rep-

resent the number of e-folds. Lastly, in Chapter 5, double angular brackets shall denote

averaging over the oscillations during preheating.
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Chapter 2

Generation of localized features due to a
step in the inflaton potential

As we have discussed in the previous chapter, the inflationary paradigm has been per-

forming remarkably well against the observational data. There exist many inflationary

models that permit a suitably long epoch of slow roll, thereby leading to a nearly scale in-

dependent primordial scalar power spectrum. Such a spectrum, along with the assump-

tion of the spatially flat, concordant ΛCDM background cosmological model, provides a

good fit to the recent observations of the anisotropies in the CMB [11, 13, 15, 18, 19]. The

challenge before the other competing scenarios is to match the simplicity and efficiency

of inflation.

However, the efficacy of the inflationary scenario also seems to be responsible for an

important drawback. Though, as a paradigm, inflation can be considered to be a suc-

cess, it would be fair to say that we are rather far from converging on a specific model

or even a class of models of inflation. A multitude of inflationary models still remain

consistent with the data. We mentioned above that a nearly scale invariant, power law,

scalar spectrum fits the observations of the anisotropies in the CMB quite well. But, as

we had pointed out, there exist a few data points at the lower multipoles—notably, at the

quadrapole (ℓ = 2) and near the multipole moments of ℓ = 22 and 40—which lie out-

side the cosmic variance associated with the power law primordial spectrum. Needless

to add, statistically, a few outliers in a thousand or so data points can always be expected.

These outliers were noticed in the WMAP first-year data [17], and they continue to be

present even in the most recent, seven-year data [19], making them unlikely to be arti-

facts of data analysis. It seems possible that they actually point to non-trivial inflationary

dynamics. In that case, these outliers are important from the phenomenological perspec-

25



CHAPTER 2. GENERATION OF LOCALIZED FEATURES

tive of attempting to constrain the models from the data, because only a more restricted

class of inflationary models can be expected to provide an improved fit to these outliers.

Therefore, it is a worthwhile exercise to systematically explore models that lead to spe-

cific deviations from the standard power law, inflationary perturbation spectrum, and

also provide an improved fit to the data.

Various efforts towards a model independent reconstruction of the primordial spec-

trum from the observed pattern of the CMB anisotropies seem to indicate the presence of

certain features in the spectrum [69]. (However, we should add that there also exist other

views on the possibility of features in the primordial spectrum; in this context, see, for ex-

ample, Refs. [70].) In particular, a burst of oscillations in the primordial spectrum seems

to provide a better fit to the CMB angular power spectrum near the multipole moments

of ℓ = 22 and 40. Generating these oscillations requires a short period of deviation from

slow roll inflation [71, 72], and such a departure has often been achieved by introducing

a small step in the popular, quadratic potential describing the canonical scalar field (see

Refs. [73, 74, 75]; for a discussion on other models, see, for instance, Refs. [76, 77]). At the

cost of three additional parameters which characterize the location, the height and the

width of the step, it has been found that this model provides a considerably better fit to

the CMB data with the least squares parameter χ2
eff typically improving by about 7, when

compared to the nearly scale invariant spectrum that would have resulted in the absence

of the step [74, 75]. But, such a chaotic inflation model leads to a reasonable amount of

tensors, and these models will be ruled out if tensors are not detected corresponding to a

tensor-to-scalar ratio of, say, r ≃ 0.1.

Our aims in this chapter are twofold. Firstly, we wish to examine whether, with the

introduction of a step, other inflationary models too perform equally well against the

CMB data, as the quadratic potential does. Secondly, we would also like to consider a

model that leads to a tensor-to-scalar ratio of r < 0.1, so that suitable alternative mod-

els exist if the tensor contribution turns out to be smaller. Motivated by these consid-

erations, apart from revisiting the popular quadratic potential, we shall investigate the

effects of the step in a small field model (in this context, see, for example, Ref. [78]) and a

tachyon model [79]. Also, with possible applications to future datasets in mind (such as

the ongoing Planck mission [20]), we shall evaluate the tensor power spectrum exactly,

and include its contribution in our analysis. We shall compare the models with the CMB

data from the WMAP, QUaD and ACBAR missions. We shall consider the five as well as

the seven-year WMAP data [18, 19], the QUaD June 2009 data [11] and the ACBAR 2008

data [13] to arrive at the observational constraints on the inflationary parameters. We find
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that, as one may expect, a step at a suitable location and of a certain magnitude and width

improves the fit to the outliers (near ℓ = 22 and 40) in all the cases. We point out that, if

the amplitude of the tensors prove to be small, the quadratic potential and the tachyon

model will become inviable, and we will have to turn our attention to examples such as

the small field models.

This chapter is organized as follows. In the following section, we shall outline the

different inflationary models that we shall be focusing on. In Section 2.2, we shall discuss

the methodology that we adopt for comparing the inflationary models with the data, the

datasets that we use for our analysis, and the priors on the various parameters that we

work with. In Section 2.3, we shall present the results of our comparison of the theoretical

CMB angular power spectra that arise from the various models with the WMAP five-year

as well as seven-year data, the QUaD and the ACBAR data. We shall tabulate the best fit

values that we obtain on the background cosmological parameters and the parameters

describing the inflationary models. We shall also illustrate the constraints that we arrive

at on the parameters describing the step in the case of the small field model. Further,

we shall explicitly show that the models with the step perform better against the data

because of the fact that they lead to an improvement in the fit to the outliers around

ℓ = 22 and 40. In Section 2.4, we shall illustrate the scalar power spectra and the CMB

angular power spectra corresponding to the best fit values of the parameters of some of

the models that we consider. Finally, in Section 2.5, we shall close with a brief summary,

and a few comments on certain implications of our results.

2.1 The inflationary models of interest

In this section, we shall list the different inflationary models that we shall consider, and

briefly outline the parameters involved in each of these cases.

2.1.1 The power law case

Recall that, the conventional power law, scalar and tensor spectra are given by Eqs. (1.24).

We shall treat this power law case as our reference model with respect to which we shall

compare the performance of the other models against the data. Often, when comparing

the power law case with the observations, the following slow roll consistency condition

is further assumed: r = −8n
T

[11, 13, 18, 19]. But, we shall not impose this condition so

that, while comparing the power law case with the data, we shall work with all the four
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parameters, viz. the scalar amplitude A
S
, the scalar spectral index n

S
, the tensor-to-scalar

ratio r and the tensor spectral index n
T

.

2.1.2 Canonical scalar field models

We shall work with two types of canonical scalar field models. We shall firstly revisit the

large field, quadratic model described by the potential

V (φ) =
1

2
m2 φ2, (2.1)

where m represents the mass of the inflaton. The parameter m is essentially determined

by the amplitude of the scalar power spectrum. To achieve the required number, say, 60

e-folds of inflation, in such a model, the field has to start at a suitably large value (in units

of the Planck mass). The field rolls down the potential, and inflation ends as the field

nears the minimum of the potential [6, 7].

The small field inflationary models offer an important alternative to the large field

models. In fact, in certain cases, the small field models are possibly better motivated from

the high energy physics perspective than the simple large field models (see, for example,

Refs. [80]). Therefore, in addition to the quadratic potential mentioned above, we shall

consider the small field model governed by the potential

V (φ) = V0

[
1−

(
φ

µ

)p0]
. (2.2)

The field starts at small values in such models, and inflation is terminated naturally as

the field approaches the value µ. As is well known (and, as we shall also discuss), the

quadratic potential (2.1) leads to a tensor-to-scalar ratio of r ≃ 0.1 [75]. The small field

model (2.2) can lead to a smaller tensor-to-scalar ratio for suitable values of p0 and µ (in

this context, see Ref. [78]). Also, when p0 < 4, the model is known to result in a substantial

red tilt. We find that, if we choose p0 = 4 and µ = 15M
Pl

, the model leads to a tilt that is

consistent with observations, and a tensor-to-scalar ratio of r ≃ 0.01. So while comparing

with the data, we shall work with these specific values of p0 and µ, but vary V0.

2.1.3 Tachyon model

Tachyonic inflationary potentials are usually written in terms of two parameters, say, λ

and φ∗, in the following form [79]:

V (φ) = λ V(φ/φ∗), (2.3)
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where V(φ/φ∗) is a function which has a maximum at the origin and vanishes as φ → ∞.

The tachyon model that we shall consider is described by the potential

V (φ) =
λ

cosh (φ/φ∗)
. (2.4)

In such a potential, inflation typically occurs around φ ≃ φ∗. The field rolls down the po-

tential, and inflation ends at suitably large values of the field. It is found that the quantity

λφ2
∗ has to be much larger than unity to ensure that inflation lasts for a sufficiently long

time [79]. We find that the amplitude of the scalar perturbations is more sensitive to φ∗

than λ. Hence, while comparing with the data, we shall fix the value of λ, and vary φ∗.

We shall set λ = 8.9 × 10−4M4
Pl

. We shall then choose the priors on φ∗ such that λφ2
∗ is

relatively large in order to achieve the required duration of slow roll inflation.

2.1.4 Introduction of the step

Given a potential, say, V (φ), we shall introduce the step by multiplying the potential by

the following function:

gstep(φ) =

[
1 + d tanh

(
φ− φ0

∆φ

)]
, (2.5)

as is often done in the literature [17, 73, 74, 75]. It should be pointed out that the quantity

d is positive in the case of the quadratic potential Eq. (2.1), whereas it is negative in the

cases of the small field model (2.2) and the tachyon model (2.4). Evidently, d denotes the

height of the step, φ0 its location, and ∆φ its width. When comparing with the data, in

addition to the potential parameters, we shall vary these three parameters, along with the

background cosmological parameters, to arrive at the observational constraints.

2.2 Methodology, datasets, and priors

We shall evaluate the inflationary power spectra numerically. In addition to the scalar

power spectrum, we shall evaluate the tensor spectrum exactly, and include it in our

analysis. We shall describe the details regarding the numerical evaluation of the infla-

tionary perturbation spectra in Chapter 4 (see Subsection 4.3.3), wherein we shall discuss

the computation of the scalar bi-spectrum in the equilateral limit, viz. B
S
(k) [cf. Eq. (1.26)],

and the corresponding non-Gaussianity parameter f
NL
(k) [cf. Eq. (1.29)] that arise in in-

flationary models leading to features (such as the ones that we consider here). At this

stage, it should suffice to say that we evolve the equations governing the background
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and the perturbations using a fast and accurate Fortran 90 code that treats the e-folds N

as the independent variable. The perturbations are evolved using the governing equa-

tions (1.16) and (1.18) from the Bunch-Davies initial conditions (1.23) imposed when the

modes are well inside the Hubble radius. The power spectra [cf. Eqs. (1.21) and (1.22)] are

evaluated when the modes are sufficiently outside the Hubble radius, when the ampli-

tude of the perturbations have reached their asymptotic values [81, 82]. We should add

here that, while the speed of propagation of the curvature perturbations induced by the

canonical scalar field is a constant (and, equal to unity), it changes with time in the case

of the tachyon models [79, 83]. This point needs to be carefully taken into account, while

imposing the initial conditions on the modes as well as when evolving them from the

sub-Hubble to the super-Hubble scales.

In order to arrive at the constraints on the various background cosmological param-

eters and the parameters describing the inflaton potential, we perform a Markov Chain

Monte Carlo (MCMC) sampling of the parameter space. To do so, we make use of the

publicly available COSMOMC package [45, 46], which in turn uses the CMB anisotropy

code CAMB [44, 43] to generate the CMB angular power spectra from the primordial

scalar and tensor spectra. We evaluate the scalar and the tensor spectra for all the modes

that are required by CAMB to arrive at the CMB angular power spectra. For our anal-

ysis, we consider the following CMB datasets: the WMAP five-year [18] and seven-year

data [19], the QUaD June 2009 data [11], and the the ACBAR 2008 data [13]. We have sep-

arately compared the models with the WMAP five-year and seven-year data. We have

also compared the models with the WMAP five-year data along with the QUaD data, and

with the QUaD as well as the ACBAR data. We have used the October 2009 version of

COSMOMC (and CAMB) while comparing with the WMAP five-year and the QUaD and

the ACBAR datasets. When comparing with the WMAP seven-year data, we have made

use of a more recent version (i.e. the January 2010 version) of COSMOMC and CAMB.

In our analysis, we take gravitational lensing into account. Note that, to generate

highly accurate lensed CMB spectra, CAMB requires ℓmax scalar ≃ (ℓmax + 500), where ℓmax

is, say, the largest multipole moment for which the data is available. The WMAP data

is available up to ℓ ≃ 1200, the QUaD data goes up to ℓ ≃ 2000, while the ACBAR data

is available up to ℓ ≃ 2700. So, we set ℓmax scalar = 2500 when dealing with the WMAP

and the QUaD datasets and, when we include the ACBAR data, we set ℓmax scalar = 3300.

Since the datasets involve rather large multipole moments (say, ℓ & 1000), we also take

into account the Sunyaev-Zeldovich effect, and marginalize over the A
SZ

parameter. For

the power law case, we set the pivot scale to be k∗ = 0.05Mpc−1 [cf. Eq. (1.24)]. We
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have made use of the publicly available WMAP likelihood code from the LAMBDA web-

site [84] to determine the performance of the models against the data. We have have set

the Gelman and Rubin parameter |R − 1| to be 0.03 for convergence. Lastly, we should

add that we have used the Gibbs option (for the CMB TT spectrum at the low multipoles)

in the WMAP likelihood code to evaluate the least square parameter χ2
eff .

As we had mentioned earlier, we incorporate the tensor perturbations in our analysis.

Recall that, in the power law case, when the consistency condition between the tensor-

to-scalar ratio r and the tensor spectral index n
T

is not imposed, both these quantities are

required to describe the tensor power spectrum. They need to be specified along with

the scalar amplitude A
S

and the corresponding spectral index n
S
, in order to completely

determine the primordial spectra. We should emphasize that, in the other inflationary

models, once the parameters that govern the potential have been specified, no further

parameters are required to describe the tensor power spectrum. The potential parameters

determine the amplitude and shape of both the scalar and the tensor spectra.

We shall assume the background to be a spatially flat, ΛCDM model described by the

four standard parameters, viz. Ωb h
2 and Ωc h

2, which represent the baryon and CDM den-

sities (with h being related to the Hubble parameter), respectively, the ratio of the sound

horizon to the angular diameter distance at decoupling θ, and τ which denotes the opti-

cal depth to reionization. We shall work with the following priors on these parameters:

0.005 ≤ Ωb h
2 ≤ 0.1, 0.01 ≤ Ωc h

2 ≤ 0.99, 0.5 ≤ θ ≤ 10.0 and 0.01 ≤ τ ≤ 0.8. We should

add that we keep the same priors on the background parameters for all the models and

datasets that we shall consider in our analysis. In Table 2.1, we have listed the priors that

we choose on the different parameters which describe the various inflationary models

that we consider.
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Models Parameter Lower limit Upper limit

ln (1010A
S
) 2.7 4.0

Power law n
S

0.5 1.5

case r 0.0 1.0

n
T

−0.5 0.5

ln
(
1010m2/M2

Pl

)
−0.77 −0.58

Quadratic model d 1.3× 10−3 1.7× 10−3

with a step φ0/MPl
13.0 15.0

∆φ/M
Pl

0.015 0.03

ln
(
1010 V0/M

4
Pl

)
1.50 1.86

Small field model −d 1.0× 10−4 2.0× 10−4

with a step φ0/MPl
7.8 8.1

∆φ/M
Pl

5.0× 10−3 1.0× 10−2

ln (1010 φ∗/MPl
) 34.506 34.518

Tachyon model −d 1.3× 10−3 1.9× 10−3

with a step φ0/MPl
7.81× 105 7.83× 105

∆φ/M
Pl

340 410

Table 2.1: The priors on the various parameters that describe the primordial spectrum in
the power law case, and the inflationary potential in all the other cases. We work with
these priors when comparing the models with all the datasets.
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2.3 Bounds on the background and the inflationary

parameters

In this section, we shall present the results of our analysis. As we mentioned above, we

have separately compared the models with the WMAP five-year and seven-year data.

We have also compared the models with the WMAP five-year data along with the QUaD

data, and with the QUaD as well as the ACBAR data. We shall tabulate below the best

fit values that we arrive at on the various background and inflationary parameters for

the power law case and for the inflationary models with the step. We shall also provide

the least squares parameter χ2
eff in all the cases, viz. the power law case and the three

inflationary models, with and without the step.

2.3.1 The best fit values and the effective least squares parameter χ2
eff

In Tables 2.2 and 2.3, we have listed the best fit values for the various parameters in the

power law case and in the three inflationary models with the step. These tables contain

the results that we arrive at upon comparing the models with the WMAP five-year (de-

noted as WMAP-5) and seven-year (denoted as WMAP-7) data, the QUaD as well as the

ACBAR data sets. Note that we have only presented the results for the power law case,

and when the step (2.5) has been introduced in the quadratic potential (2.1), the small

field model (2.2) and the tachyon model (2.4). We find that the values we have obtained

upon comparing the power law case with the WMAP five and seven-year data and the

QUaD and the ACBAR data match well with the results quoted by the WMAP [18, 19]

and the QUaD teams [11]. Also, the results for the quadratic potential with the step agree

well with the results quoted in the recent work [75].

In Table 2.4, we have listed the least squares parameter χ2
eff for all the different mod-

els and datasets of our interest. It is clear from the table that the presence of the step

leads to a reduction in χ2
eff by about 7-9 in all the three inflationary models that we have

considered. Also, note that such an improvement is achieved in all the datasets that we

have compared the models with. When we compare the contribution to the χ2
eff at the low

multipoles (i.e. up to ℓ = 32, see Refs. [18, 19]) from the output of the WMAP likelihood

code for, say, the WMAP seven-year data, we find that the introduction of the step in the

inflaton potential reduces the χ2
eff for the TT data over this range by about 5-6 in all the

cases. In Figure 2.1, we have plotted the difference in χ2
eff with and without the step, as a

function of the multipoles when ℓ > 32, for the WMAP seven-year data. We have plotted
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Datasets WMAP-5 WMAP-5+QUaD WMAP-5+QUaD WMAP-7

Parameters +ACBAR

Ωb h
2 0.0232 0.0235 0.0229 0.0226

Ωc h
2 0.1051 0.1011 0.1071 0.1108

θ 1.041 1.043 1.042 1.040

τ 0.0833 0.0957 0.0884 0.0895

ln (1010A
S
) 3.040 3.047 3.053 3.088

n
S

0.9764 0.9835 0.9677 0.9726

r 0.3841 0.4150 0.0667 0.1128

n
T

0.4112 0.4088 0.4109 0.3581

Table 2.2: The best fit values that we arrive at for the input parameters upon comparing
the power law primordial spectra (1.24) with the WMAP five and seven-year, the QUaD
and the ACBAR data sets. We should point out that the best fit values that we have ar-
rived at on using the WMAP five and seven-year data match well with the values quoted
by the WMAP teams [18, 19]. Similarly, we find that the values we have obtained upon
comparing with the WMAP five-year and the QUaD and the ACBAR data are in good
agreement with the results arrived at by, say, the QUaD team [11]. Note that, while the
WMAP teams [18, 19] had worked with the pivot point of k∗ = 0.002 Mpc−1, the QUaD
team had set the pivot scale to be k∗ = 0.05 Mpc−1, as we do. However, we should clarify
that, whereas the WMAP and the QUaD teams had imposed the consistency condition
between the tensor-to-scalar ratio r and the tensor spectral index n

T
, we have not done so

in our analysis.

the difference in χ2
eff for the cases of the quadratic potential and the small field model. It

is clear from the figure that the additional improvement by about 2 arises due to a better

fit near ℓ = 40. (There also seems to be a ‘loss’ of about unity in χ2
eff at ℓ . 40.) In other

words, the step essentially improves the fit to the data at the lower multipoles. This point

will be further evident in the following section, wherein we discuss the resulting CMB

angular power spectrum.

We should add here that the one-dimensional likelihood curves for the various poten-

tial parameters indicates that the data constrain the location of the step quite well in all

the models. However, we find that the bounds on the height and the width of the step

do not prove to be equally tight. Interestingly, we find that the data constrain the ratio

of the height to the width of the step fairly tightly (see Ref. [85]; in this context, also see

Ref. [86]).
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Models Datasets WMAP-5 WMAP-5 WMAP-5+QUaD WMAP-7

Parameters +QUaD +ACBAR

Ωb h
2 0.0228 0.0227 0.0228 0.0224

Ωc h
2 0.1109 0.1091 0.1094 0.1108

θ 1.041 1.041 1.042 1.0397

Quadratic potential τ 0.0814 0.0869 0.0902 0.0848

with step ln
(
1010m2/M2

Pl

)
−0.6893 −0.6849 −0.6774 −0.6717

d× 104 13.96 15.02 13.95 16.06

φ0/MPl
14.67 14.67 14.67 14.67

∆φ/M
Pl

0.0257 0.0259 0.0290 0.0311

Ωb h
2 0.0228 0.0228 0.0229 0.0222

Ωc h
2 0.1082 0.1084 0.1096 0.1114

θ 1.041 1.041 1.042 1.038

Small field model τ 0.0857 0.0868 0.0847 0.0813

with step ln
(
1010 V0/M

4

Pl

)
1.684 1.690 1.689 1.705

−d× 103 0.1153 0.1371 0.1701 0.1569

φ0/MPl
7.888 7.887 7.887 7.888

∆φ/M
Pl

0.0070 0.0076 0.0089 0.0090

Ωb h
2 0.0226 0.0228 0.0227 0.0222

Ωc h
2 0.1113 0.1103 0.1104 0.1129

θ 1.040 1.041 1.042 1.039

Tachyon model τ 0.0908 0.0937 0.0926 0.0829

with step ln
(
1010 φ∗/MPl

)
34.51 34.51 34.51 34.51

-d 0.0014 0.0016 0.0014 0.0015

φ0 × 10−6/M
Pl

0.7818 0.7828 0.7826 0.7813

∆φ/M
Pl

378.8 371.9 341.1 352.4

Table 2.3: The best fit values for the various input parameters corresponding to the three
inflationary models with the step. We should point out that the best fit values for the pa-
rameters that we have arrived at for the quadratic potential with the step and the WMAP
five-year data are in good agreement with the results quoted in the recent work [75].
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Datasets WMAP-5 WMAP-5 WMAP-5+QUaD WMAP-7

Models +QUaD +ACBAR

Power law case (4, 4) 2658.40 2757.34 2779.12 7474.48

Quadratic potential (1, 1) 2658.22 (−0.18) 2757.54 (+0.20) 2779.02 (−0.10) 7474.78 (+0.30)

Quadratic potential+ step (4, 4) 2651.00 (−7.40) 2750.38 (−6.96) 2771.72 (−7.40) 7466.28 (−8.20)

Small field model (3, 1) 2658.26 (−0.14) 2757.46 (+0.12) 2779.06 (−0.06) 7474.78 (+0.30)

Small field model+ step (6, 4) 2650.96 (−7.44) 2750.26 (−7.08) 2771.92 (−7.20) 7466.00 (−8.48)

Tachyonic model (2, 1) 2658.26 (−0.14) 2757.60 (+0.26) 2779.10 (−0.02) 7474.56 (+0.08)

Tachyonic model+ step (5, 4) 2651.14 (−7.26) 2750.50 (−6.84) 2772.06 (−7.06) 7465.92 (−8.56)

Table 2.4: The χ2
eff for the different models and datasets that we have considered. The two

quantities that appear within the brackets in the leftmost column indicate the number of
inflationary parameters available in the different models and the number of parameters
that we have varied when comparing the models against the data, in that order. The
quantities within the brackets in the remaining columns indicate the difference in the χ2

eff

between the model and the power law case for that dataset, with a negative value indicat-
ing an improvement in the fit. Note that, as we had mentioned earlier, the Gibbs approach
in the WMAP likelihood code has been used to calculate the χ2

eff for the CMB TT spec-
trum at the low multipoles (i.e. for ℓ < 32) [18, 19]. Without the step, all the inflationary
models perform just as well as the power law case. And, evidently, the introduction of
the step reduces the χ2

eff by about 7-9 in all the cases.
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Figure 2.1: The difference in χ2
eff for the WMAP seven-year data with and without the

step has been plotted as a function of the multipole moment for ℓ > 32. The plot on the
left corresponds to the quadratic potential, while the one on the right is for the small field
model. The two figures are strikingly similar, and it is clear that the improvement in χ2

eff

occurs near ℓ ≃ 40 in both the cases. We find that the corresponding result for the tachyon
model behaves in essentially the same fashion.
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2.4 The scalar and the CMB angular power spectra

As we had mentioned in the opening section, the introduction of the step leads to a small

deviation from slow roll inflation [74, 75]. We have illustrated this behavior in Figure 2.2,

wherein we have plotted the evolution of the first slow roll parameter ǫ1 and the quantity

η = ǫ1 − ǫ2/2 around the time when the field crosses the step in the small field model.

We find that essentially the same behavior arises in all the three inflationary models that

we have considered. The small deviation from slow roll inflation leads to a burst of oscil-
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Figure 2.2: Typical evolution of the first slow roll parameter ǫ1 and the quantity η =
ǫ1 − ǫ2/2, with the introduction of the step for the three inflationary models that we have
considered. We have plotted the quantities as a function of the e-folds N for the small
field model around the time when the field crosses the step in the potential.

lations superimposed on the otherwise nearly scale invariant scalar power spectrum, as

we have illustrated in Figure 2.3. We should add that, since the deviation from slow roll

is relatively small, the introduction of the step hardly affects the tensor spectrum. It re-

mains nearly scale invariant in all the cases. At the pivot point k∗ = 0.05 Mpc−1, we find

the tensor-to-scalar ratio r to be about 0.16, 0.016 and 0.16 in the cases of the quadratic

potential, the small field and the tachyon models, respectively.

The burst of oscillations in the scalar power spectrum in turn results in a feature in the

CMB TT angular power spectrum, which leads to the improvement in the fit to the data

at the lower multipoles. This behavior is evident in Figure 2.4 wherein we have plotted

the CMB TT angular power spectra for the quadratic potential without and with the step,

and for the small field model with the step.
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Figure 2.3: The scalar power spectra corresponding to the best fit values of the WMAP
seven-year data for the inflationary models with the step. The solid blue, the solid
red, and the dashed green curves describe the scalar power spectra in the cases of the
quadratic potential, the small field model, and the tachyon model, respectively. Evidently,
the three spectra are hardly distinguishable. And, obviously, the oscillations will not arise
in the absence of the step.
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Figure 2.4: The CMB TT angular power spectra corresponding to the best fit values of the
inflationary models for the WMAP seven-year data without and with the step. The solid
blue and the solid red curves correspond to the quadratic potential without and with the
step, respectively. The dashed green curve corresponds to the best fit small field model
with the step. We find that the results for the tachyon model behave in exactly the same
fashion. The black dots with error bars denote the WMAP seven-year data. It is visually
evident that, with the introduction of the step, the models lead to a better fit to the data
near the multipole moments of ℓ = 22 and 40.
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2.5 Discussion

In this chapter, we have investigated the effects of introducing a step in certain inflation-

ary models. In addition to revisiting the case of the quadratic potential that has been

considered earlier, we have studied the effects of the step in a small field model and a

tachyon model. The introduction of the step leads to a small deviation from slow roll

inflation, which results in a burst of oscillations in the scalar power spectrum. These

oscillations, in turn, leave their imprints as specific features in the CMB angular power

spectrum. Actually, we have also evaluated the tensor power spectrum exactly, and have

included it in our analysis. We believe that this is a timely effort considering the fact

that results from, say, the ongoing Planck mission might necessitate such an analysis [87].

Upon comparing the inflationary models with the WMAP, the QUaD and the ACBAR

data, we find that, with the step, all the models lead to an improvement in χ2
eff by about

7-9 over the smooth, nearly scale invariant, slow roll spectrum, at the expense of three

additional parameters describing the location, the height and the width of the step in the

inflaton potential. The output of the WMAP likelihood code and a plot of the difference in

χ2
eff with and without the step clearly illustrate that the improvement occurs because of a

better fit to the data at the lower multipoles due to the presence of the step [85]. Evidently,

if future observations indicate that the amplitude of the tensors are rather small, then the

quadratic potential and the tachyon model will be ruled out, while a suitable small field

model with a step can be expected to perform well against the data.

The introduction of the step in an inflationary model can possibly be viewed as an

abrupt change in a potential parameter [73]. But, it has to be admitted that it is rather

ad-hoc, and one needs to explore the generation of features and a resulting improve-

ment in the fit in better motivated inflationary models. Two field models offer such a

possibility. For instance, with suitably chosen parameters, the two field models can eas-

ily lead to a brief departure from slow roll inflation (in this context, see, for example,

Refs. [76, 88, 89]). However, iso-curvature perturbations arise whenever more than one

field is involved [36, 90], and they need to be carefully taken into account when compar-

ing these models with the data. It will be a worthwhile effort to systematically explore

the two field models, including the effects due to the iso-curvature perturbations, in an

attempt to fit the outliers near the multipole moments of ℓ = 22 and 40.

Over the last few years, it has been recognized that primordial non-Gaussianity can act

as a powerful observational tool that can help us discriminate further between the vari-

ous inflationary models. For example, it has been shown that slow roll inflation driven
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by the canonical scalar fields leads only to a small amount of non-Gaussianity [49, 52].

However, recent analysis of the CMB data seem to suggest that the extent of primordial

non-Gaussianity may possibly be large [19, 57, 58]. It is known that models which lead

to features, such as the ones we have considered here, also generate a reasonably large

non-Gaussianity [53]. While the different models that we have considered in this chapter

lead to virtually the same scalar power spectrum and almost the same extent of improve-

ment in the fit (i.e. with the introduction of the step) to the CMB data, it is important to

examine whether they lead to the same extent of non-Gaussianity as well. We shall touch

upon this issue in Chapter 4.
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Chapter 3

Non-local features in the primordial
spectrum

In the previous chapter, we had discussed as to how certain features in the scalar power

spectrum, generated due to a step introduced in otherwise smooth inflationary potentials,

results in a better fit to the CMB data than the more conventional power law primordial

spectrum. In fact, there exist a wide variety of inflationary models that lead to localized

features in the primordial spectrum and an improved fit to the data (for an inherently

incomplete list of such models, see, for instance, Refs. [76, 77, 88, 91, 92] and references

therein). It should be noted here that generating such localized features require either one

or more periods of deviation from slow roll inflation [71, 72] or modifications to the initial

conditions on the perturbations [93].

Apart from localized features, it is interesting to examine whether the CMB data also

point to non-local features—i.e. certain characteristic and repeated behavior that extend

over a wide range of scales—in the primordial spectrum. A quick glance at the unbinned

CMB data seems to suggest that, after all, such an eventuality need not altogether be

surprising. In fact, earlier investigations on possible Planck scale modifications to the

primordial spectrum have indicated that continuing oscillations in the power spectrum

can lead to a substantial improvement in the fit at the cost of two or three additional pa-

rameters (see Refs. [94, 95]; in this context, also see Ref. [96]). In this chapter, we shall

investigate two inflationary models involving the canonical scalar field that lead to simi-

lar oscillations over all scales in the curvature perturbation spectrum. We shall consider

a model described by the conventional quadratic potential, but superposed by a sinu-

soidal modulation [53, 97] and the presently popular axion monodromy model (see, for

example, Refs. [53, 98]). It should be mentioned here that these models have been com-

43



CHAPTER 3. NON-LOCAL FEATURES IN THE PRIMORDIAL SPECTRUM

pared with the WMAP data recently [97, 98, 99, 100]. However, all the earlier analyses

had resorted to evaluating the scalar power spectrum in the slow roll approximation. In

contrast, we shall compute the scalar power spectrum exactly using a highly accurate nu-

merical code. And, we shall evaluate the tensor spectrum too accurately and include it in

our analysis. Moreover, as the oscillations in the inflationary scalar power spectrum con-

tinue even over smaller scales, in addition to the WMAP seven-year data [19], we shall

compare the models with the small scale data from ACT [15]. While both the models

that we consider lead to oscillations in the spectrum, we find that the monodromy model

results in a superior fit to the data.

This chapter is organized as follows. In the following section, we shall briefly describe

the models that we shall consider and the methodology that we shall adopt to compare

the models with the data. In the subsequent section, we shall present the results of our

analysis. We shall conclude with a brief summary and discussion in the final section.

3.1 Models and methodology

In this section, we shall briefly describe the models that we shall work with and the

methodology we shall adopt to compare the models with the data.

3.1.1 The models

As we mentioned, we shall consider two models, both of which involve the canonical

scalar field, say, φ. The first of the two is the chaotic inflationary model that is modulated

by sinusoidal oscillations and described by the potential [97]

V (φ) =
1

2
m2 φ2

[
1 + α sin

(
φ

β
+ δ

)]
, (3.1)

where m is the parameter that characterizes the original quadratic potential, while the

parameters α and β describe the amplitude and the frequency of the superimposed oscil-

lations. We have also included the parameter δ, which shifts the oscillations within one

period, in our analysis. The second model that we shall consider is the axion monodromy

model which is motivated by string theory [53, 98, 99]. The inflaton potential in such a

case is given by

V (φ) = λ

[
φ+ α cos

(
φ

β
+ δ

)]
. (3.2)

Note that, while the amplitude of the oscillation is fixed in the axion monodromy model,

in the chaotic model described by the potential (3.1), the amplitude depends quadratically
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on the field. The inflaton oscillates as it rolls down these potentials, and these oscillations

continue all the way until the end of inflation (in this context, see Figure 6.1). This be-

havior leads to small oscillations in the slow roll parameters, which in turn results in

continuing oscillations in the primordial scalar power spectrum. Our goal is to examine

the extent to which such oscillations are admitted by the CMB data.

As we had done in the last chapter, we shall compare the performance of the above two

inflationary models with the conventional, power law, primordial spectra [cf. Eqs. (1.24)].

However, in the power law case, unlike the previous chapter, for the sake of simplicity,

we shall now impose the slow roll consistency condition, viz. that r = −8n
T

. Therefore,

the power law spectra are completely described by the scalar amplitude A
S
, the scalar

spectral index n
S

and the tensor-to-scalar ratio r.

3.1.2 Priors

We shall assume the background cosmological model to be the standard, spatially flat,

ΛCDM model. Also, we shall work with the same set of priors on the four background

parameters, viz. Ωb h
2, Ωc h

2, θ and τ , that we had worked with in the previous chapter.

Further, we shall also include the tensor perturbations in our analysis. As we had pointed

out earlier, in inflationary models, the potentials completely determine the scalar as well

as the tensor spectra.

It is clear that, in the absence of oscillations in the potential, the two inflationary mod-

els of our interest will lead to nearly scale invariant spectra. Therefore, the main parame-

ter that describes the two models, viz. m in the chaotic inflationary model and λ in the case

of the axion monodromy model, are essentially determined by COBE normalization [48].

In the absence of oscillations in the potential, we find that the best fit chaotic model leads

to a power law spectrum with a scalar spectral index of about 0.96, while the monodromy

model corresponds to n
S
≃ 0.97. Also, as one would have anticipated, both of them

perform almost equally well against the data. However, when the oscillations in the po-

tential are taken into account, they induce modulations in the slow roll parameters, which

in turn lead to oscillations in the scalar power spectrum. (These small oscillations hardly

modify the tensor spectrum, and hence it remains nearly scale invariant.) As we shall

see, when the oscillations are included, the monodromy model performs better against

the data than the chaotic inflation model.

We have chosen the priors on the two inflationary models such that the amplitude of

the resulting scalar spectra remain close to the COBE value, lead to the desired spectral
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Model Parameter Lower limit Upper limit

ln (1010A
S
) 2.7 4.0

Power law case n
S

0.5 1.5

r 0.0 1.0

ln
(
1010m2/M2

Pl

)
−0.77 −0.58

Chaotic model α 0 2× 10−3

with sinusoidal β/M
Pl

2× 10−2 1

modulation δ −π π

ln
(
1010 λ/M3

Pl

)
0.7 1.25

Axion monodromy α 0 2× 10−4

model β/M
Pl

3× 10−4 1× 10−3

δ −π π

Table 3.1: The priors on the three parameters that describe the primordial spectra in the
power law case, and the parameters that describe the two inflationary potentials of our
interest. We work with the same priors when comparing the models with the WMAP as
well as the ACT data.

index, and result in a certain minimum duration of inflation. We have listed the priors

that we have worked with on the inflationary models in Table 2.1.

3.1.3 Comparison with the recent CMB observations

To compare our models with the recent CMB observations, we perform the MCMC sam-

pling of the parameter space using the publicly available COSMOMC package [45, 46], as

we had discussed while considering localized features in the previous chapter. As we had

mentioned, the COSMOMC code in turn utilizes the Boltzmann code CAMB [43, 44] to

arrive at the CMB angular power spectrum from given primordial scalar and tensor spec-

tra. We evaluate the inflationary scalar as well as tensor spectra using an accurate and

efficient numerical code, feed these spectra into CAMB to obtain the corresponding CMB

angular power spectra. We shall discuss the essential details pertaining to the numeri-

cal computation of the inflationary spectra in Chapter 4 (see Subsection 4.3.3). However,

two points concerning the evaluation of the inflationary power spectra in potentials with

oscillatory terms needs to be stressed at this stage of our discussion. Firstly, in contrast

to smooth inflationary potentials, oscillatory potentials such as those of our interest here

can exhibit certain resonant behavior. In order to capture this behavior, depending on the
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values of the potential parameters, it can become necessary to integrate from deeper in-

side the Hubble radius than is usually done (in this context, see, for instance, Refs. [98]).

We impose the initial conditions on the modes when k/(aH) ≃ 250 [rather than when

k/(aH) ≃ 100, as is usually done] which we find to be suitable for the range of parame-

ters of the potentials that we work with. Secondly, we should emphasize that we actually

evolve all the modes that are required by CAMB from the sub to the super-Hubble scales to

obtain the perturbation spectra, rather than evolve for a smaller set of modes and inter-

polate to arrive at the complete spectrum. This becomes imperative in the models of our

interest which (as one would expect, and as we shall illustrate below) contain fine fea-

tures in the scalar power spectrum. It should be pointed out here that, while the chaotic

model leads to a tensor-to-scalar ratio of 0.16, the monodromy model results in r ≃ 0.06.

Though these tensor amplitudes are rather small to make any significant changes to the

results, we have developed the code to evaluate the inflationary power spectra with fu-

ture datasets (such as, say, Planck) in mind, and hence we nevertheless take the tensors

into account exactly.

For our analysis, we consider the WMAP seven-year data and the small scale data from

ACT [15]. We have worked with the May 2010 versions of the COSMOMC and CAMB

codes [45, 46, 43, 44], and we have made use of the WMAP (version v4p1) and the ACT

likelihoods while comparing with the corresponding data [84]. While ACT has observed

CMB at the frequencies of 148 GHz as well as 218 GHz, we shall only consider the 148 GHz

data. Moreover, though the ACT data spans over a wide range of multipoles (500 . ℓ .

10000), for the sake of numerical efficiency (as has been implemented in Ref. [15]), we have

set the CMB spectrum to zero for ℓ > 4000, since the contribution at larger multipoles is

negligible. When considering the ACT data, following the earlier work [15], in the power

law case, we have marginalized over the three secondary parameters A
SZ

, A
P

and A
C

,

where A
SZ

denotes the Sunyaev- Zeldovich amplitude, A
P

the amplitude for the Poisson

power from radio and infrared point sources, while A
C

is the amplitude corresponding to

the cluster power. However, when comparing the oscillatory inflationary potentials with

the ACT data, we have only marginalized over A
SZ

and have fixed the values of the other

two parameters A
P

and A
C

.

We take gravitational lensing into account. As we had pointed out in the last chapter,

to generate highly accurate lensed CMB spectra, CAMB requires ℓmax scalar ≃ (ℓmax + 500),

where ℓmax is the largest multipole moment for which the data is available. The WMAP

seven-year data is available up to ℓ ≃ 1200, while the ACT data is available up to ℓ ≃
10000. For the WMAP seven-year data, we set ℓmax scalar ≃ 1800, and for ACT we choose
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ℓmax scalar ≃ 4500 since we are ignoring the data for ℓ > 4000. We set ℓmax tensor ≃ 400 for all

the datasets, as they decay down quickly thereafter. ACT has measured only CTT
ℓ , so the

constraints from polarization, if any, will arise only from the WMAP data.

Lastly, since the scalar perturbation spectra that we expect to arise in the inflationary

models of our interest contain repeated patterns extending over a wide range of scales,

one can anticipate that equivalent patterns would be present in the CMB angular power

spectrum running over all angular scales. It is well known that the Boltzmann code

CAMB uses an effective sampling and a highly accurate spline interpolation to determine

the CMB angular power spectrum over the multipoles of interest [44, 43]. However, when

the underlying potential power spectra contain oscillations, this default technique might

not be accurate [94, 98, 100]. Following a method adopted earlier in a similar context [94],

we incorporate certain changes in the standard CAMB and COSMOMC packages to avoid

limited sampling, and evaluate the angular power spectrum at all the multipoles.

3.2 Results

In this section, we shall discuss the results of our analysis. We shall present the best

fit values of the various parameters and also discuss the resulting primordial and CMB

angular power spectra.

3.2.1 The best fit background and inflationary parameters

We shall tabulate the best fit parameters in this subsection. We find that our results for

the power law case are in good agreement with the WMAP seven-year [19] and the ACT

results [15]. In fact, we have cross checked our results with and without the tensor con-

tribution. As stated earlier, we have made use of the three secondary parameters A
SZ

,

A
P

and A
C

when comparing the power law case with the combined WMAP seven-year

and ACT data. In this case, we obtain the mean value of A
P

to be 16.0, whereas A
C

is de-

scribed by a single tailed distribution which suggests that A
C
< 8.4 at 95% CL (when the

tensors are not taken into account). We find that, for the power law spectra, if we fix A
P

at

the above-mentioned mean value and set A
C

to be zero, the least squared parameter χ2
eff

changes by a negligible amount (in fact, ∆χ2
eff ≃ 0.2–0.3), and the best fit, the mean values

and the deviations too do not change appreciably. So, in the case of the two inflationary

models of our interest, we have set A
P
= 16.0, A

C
= 0, and have marginalized over A

SZ
.

In Table 3.2 below, we have listed the best fit values that we arrive at for the background
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Datasets WMAP-7 WMAP-7+ACT

Model Parameter Best fit Best fit

Ωb h
2 0.0220 0.0218

Ωc h
2 0.1164 0.1215

Chaotic θ 1.038 1.040

model τ 0.0850 0.0876

with ln
(
1010m2/M2

Pl

)
-0.667 -0.687

sinusoidal α 0.256× 10−3 0.998× 10−3

modulation β/M
Pl

0.1624 0.2106

δ 2.256 -2.2

Ωb h
2 0.0227 0.0223

Ωc h
2 0.1079 0.1119

θ 1.040 1.041

Axion τ 0.0921 0.0884

monodromy ln
(
1010 λ/M3

Pl

)
0.9213 0.9332

model α 1.84× 10−4 1.75× 10−4

β/M
Pl

4.50× 10−4 5.42× 10−4

δ 0.336 -0.6342

Table 3.2: The best fit values for the two inflationary models on comparing with the
WMAP seven-year data (denoted as WMAP-7 here, and in the following table) alone,
and along with the ACT data.

cosmological parameters and the parameters that describe the chaotic inflationary model

with superposed oscillations and the axion monodromy model.

3.2.2 The spectra and the improvement in the fit

In Table 3.3, we have listed the least squares parameter χ2
eff for the different models and

datasets that we have considered. From the table it is clear that the monodromy model

leads to a much better fit with χ2
eff improving by about 13 in the case of the WMAP seven-

year data and by about 5 when the ACT data has also been included. (We will discuss the

reason for this difference in the concluding section.) The table also seems to indicate two

further points. Firstly, even though the chaotic model with the sinusoidal modulation

does not perform as well as the monodromy model, the fact that the model performs
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Datasets WMAP-7 WMAP-7+ACT

Model

Power law case 7468.4 7500.4

Chaotic model with 7468.0 7498.2

sinusoidal modulation

Axion monodromy model 7455.3 7495.2

Table 3.3: The χ2
eff for the different models and datasets that we have considered. Note

that we have used the Gibbs approach in the WMAP likelihood code to calculate the χ2
eff

for the CMB TT spectrum at the low multipoles (i.e. for ℓ < 32) [18, 19].

better when the small scale data from ACT is included suggests that oscillations can be

favored by the data. Secondly, oscillations of fixed amplitude in the potential as in the

monodromy model seem to be more favored by the data than the oscillations of varying

amplitude as in the case of the chaotic model with sinusoidal modulations. In fact, this

strengthens similar conclusions that has been arrived at earlier [94, 95], wherein Planck

scale oscillations of a certain amplitude in the primordial spectrum was found to lead to

a considerably better fit to the data.

It is now interesting to enquire as to whether there exist localized windows of multi-

poles over which the improvement in the fit occurs. We find that, in the case of the chaotic

model with sinusoidal modulations, as far as the WMAP seven-year data is concerned,

there is an improvement of at most unity in all the multipoles combined. In Figure 3.1, af-

ter binning suitably, we have plotted the difference ∆χ2
eff = χ2

eff(model)−χ2
eff(power law) as

a function of the multipoles for the WMAP seven-year TT and TE data in the case of the

axion monodromy model. It is clear from the figure that the source of the improvement

in the fit is not confined to any specific set of multipoles, and it arises due to small incre-

ments that accrue over the entire range of available data. In Figures 3.2 and 3.3, we have

plotted the scalar power spectra and the corresponding CMB TT angular power spectra

for the best fit values of the WMAP seven-year data in the two inflationary models that

we have considered.
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Figure 3.1: The difference in χ2
eff with respect to the reference model, i.e. ∆χ2

eff =
χ2
eff(model)−χ2

eff(power law)], in the case of the axion monodromy model has been plotted
as a function of the multipole moment for the WMAP seven-year data, after binning in
the multipole space with ℓbin = 10. While the figure on top corresponds to the WMAP
seven-year TT data (for ℓ > 32), the lower one is for the TE data (for ℓ > 24).
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Figure 3.2: The scalar power spectra corresponding to the best fit values of the WMAP
seven-year data for the two inflationary models that we have considered. The solid red
and blue lines describe the scalar power spectra in the cases of the chaotic model with
a sinusoidal modulation and the axion monodromy model, respectively. The spectrum
corresponding to the best fit power law model would essentially be the same as in the
chaotic model with sinusoidal modulations, but without any oscillations. The extraordi-
nary extent of persistent oscillations in the case of the monodromy model is highlighted
in the inset.
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Figure 3.3: The CMB TT angular power spectra corresponding to the best fit values of
the different models of our interest for the WMAP seven-year data. The solid red, green
and black curves correspond to the power law model, the chaotic model with sinusoidal
modulation and the axion monodromy model, respectively. The gray circles with error
bars denote the WMAP seven-year unbinned data. The inset highlights the difference in
the angular power spectrum between the monodromy model and the power law case. In
the case of the axion monodromy model, the tiny and continued oscillations in the scalar
power spectrum results in persistent modulations in CMB TT angular power spectrum.
It is these oscillations that lead to small improvements in the fit to the data over a wide
range of multipoles, which eventually add up to a good extent.
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3.3 Discussion

In this chapter, our main aim has been to investigate if the CMB data support certain

non-local features—i.e. a certain repeated and characteristic pattern that extends over a

wide range of scales—in the primordial scalar power spectrum. With this goal in mind,

we have studied two models of inflation, both of which contain oscillatory terms in the

inflaton potential. The oscillations in the potential produces oscillations in the slow roll

parameters, which in turn generate oscillations in the primordial as well as the CMB

power spectra. Earlier work in this context had utilized the analytical expressions for the

primordial power spectra, obtained in the slow roll approximation, to compare such mod-

els with the data [97, 98, 99]. Instead, we have used an accurate and efficient numerical

code to arrive at the inflationary scalar and tensor power spectra. In fact, in order to en-

sure a good level of accuracy, rather than evolve a finite set of modes and interpolate, we

have evolved and computed the inflationary perturbation spectra for all the modes that

is required by CAMB to arrive at the corresponding CMB angular power spectra. While

this reflects the extent of the numerical accuracy of our computations, the efficiency of the

code can be gauged by the fact that we have able to been able to complete the required

runs within a reasonable amount of time despite such additional demands.

Prior experience, gained in a different context, had already suggested the possibility

that small and continued oscillations in the scalar power spectra can lead to a better fit

to the data [94]. This experience has been corroborated by the earlier [97, 98, 99] and our

current analysis (in this context, see, however, Ref. [100]; we shall comment further on

this point below). We find that, oscillations, such as those occur in the axion monodromy

model lead to a superior fit to the data. In fact, as far as the WMAP seven-year data is

concerned, on evaluating the CMB angular power spectrum at all the required multipoles

without any interpolation, we obtain an improvement of about 13 in the least squares pa-

rameter χ2
eff for the axion monodromy model, just as the earlier analytical efforts had [98].

The time taken to compute the uninterpolated inflationary power spectra depends not

only on the number of points required, but also on the frequency of the oscillations in the

inflaton potentials that we have considered. In the case of the axion monodromy model,

over the range of parameters that we have worked with, our code takes about 3–12 sec-

onds to calculate the inflationary power spectra (both scalar and tensor) for the nearly

2000 k-points which are required by CAMB. While such a level efficiency seems adequate

for comparing the models of our interest with the WMAP seven-year data, we found

that evaluating the uninterpolated CMB angular power spectra for comparing with the
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WMAP as well as the ACT data sets did not prove to be feasible in reasonable amount

of time. As a result, we were forced to use the default, interpolated CMB angular power

spectra obtained by CAMB in this situation. It is for this reason that we have not been

able to achieve an equivalent improvement in the χ2
eff for the monodromy model when

the ACT data has been included [101].

Nevertheless, we believe that the limited level of comparison with the ACT data has its

own role to play. The ACT data we have used in our analysis is the binned data provided

in the ACT likelihood software. For a small sky coverage experiment such as ACT, a lot

of systematics are involved in reconstructing the unbinned data. The difference in χ2
eff

values using only WMAP dataset and both the WMAP and ACT datasets approximately

corresponds to the number of binned data points in the ACT dataset. The reason we

have incorporated the ACT dataset is to cover the large multipole regime in the angular

power spectrum. For the monodromy model, we see that the tiny oscillations do continue

till small scales which does not overlap with the WMAP seven-year dataset, but can be

probed using the ACT dataset. Combining the two datasets, one can form an informed

estimate of the model parameters over a wide range of angular scales.

It is worth adding here that, upon carrying out forecasting of the parameters using

simulated Planck data for both the models suggests that the Planck mock data performs

considerably better in constraining the model parameters as compared to the presently

available CMB datasets [86, 101].

Finally, before closing, it is important that we comment on a recent work wherein it has

been argued that fine features in the primordial spectrum as generated in models such as

the axion monodromy model have been not conclusively detected by the data [100]. It

should be emphasized that, in this work, we have evaluated an uninterpolated CMB an-

gular power spectrum while comparing the models with the data. Moreover, the resulting

best fit CMB angular power spectrum does indeed contain the tiny and persistent features

encountered in the recent [100] as well as the earlier work [94, 95, 98]. Also, as we have

highlighted before, the results from our numerical evaluation of the inflationary power

spectra largely match the earlier results arrived at from the corresponding analytical spec-

tra. While it may be true that the evidence for the oscillations may still not be conclusive,

repeated analyses have unambiguously pointed to the fact that they are more favored by

the data than a simpler and smooth primordial spectrum. As we have mentioned, we

believe that Planck may be able to provide a definitive proof in this regard.
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Chapter 4

Bi-spectra associated with local and
non-local features in the primordial
scalar power spectrum

In the last two chapters, we have discussed as to how, though nearly scale invariant pri-

mordial spectra as is generated in slow roll inflationary scenarios are rather consistent

with the CMB observations, certain features in the inflationary scalar power spectra lead

to an improved fit to the data. Though the statistical significance of such features re-

main to be understood completely satisfactorily [69, 70], they gain importance from the

phenomenological perspective of comparing the models with the data, because only a

smaller class of single field inflationary models, which allow for departures from slow

roll, can generate them.

Over the last half-a-dozen years, it has been increasingly realized that the detection

of non-Gaussianities in the primordial perturbations can considerably help in constrain-

ing the inflationary models (see Refs. [49, 51, 52]; for early efforts in this direction, see

Refs. [56]). In particular, the detection of a high value for the f
NL

parameter that is used

to describe the extent of non-Gaussianity [cf. Eq. (1.29)] can rule out a wide class of mod-

els. If, indeed, the extent of non-Gaussianity proves to be as large as the mean values of

f
NL

arrived at from the recent WMAP data [19, 57, 58], then canonical scalar field models

that lead to slow roll inflation and nearly scale invariant primordial spectra will cease

to be consistent with the data. But, interestingly, demanding the presence of features in

the scalar power spectrum seems to generically lead to larger non-Gaussianities (see, for

example, Refs. [53]). Therefore, features may offer the only route (unless one works with

non-vacuum initial states [102]) for the canonical scalar fields to remain viable if f
NL

turns

out to be significant.
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The above discussion raises two important issues. Firstly, if indeed the presence of fea-

tures turns out to be the correct reason behind possibly large non-Gaussianities, can we

observationally identify the correct underlying inflationary scenario, in particular, given

the fact that different models can lead to similar features in the scalar power spectrum? In

other words, to what extent can the non-Gaussianity parameter f
NL

help us discriminate

between the inflationary models that permit features? To address this question, we shall

consider a few typical inflationary models leading to features (including those consid-

ered in the previous two chapters), assuming that they can be viewed as representatives

of such a class of scenarios. Concretely, we shall consider the Starobinsky model [71] and

the punctuated inflationary scenario [77], both of which result in a sharp drop in power at

large scales that is followed by oscillations. We shall also study large and small field mod-

els with an additional step introduced in the inflaton potential that we had considered in

Chapter 2 [53, 74, 75, 85]. As we had seen, the step leads to a burst of oscillations in the

scalar power spectrum which improve the fit to the outliers near the multipole moments

of ℓ = 22 and 40 in the CMB angular power spectrum. We shall also consider oscillating

inflaton potentials such as the one that arises in the axion monodromy model discussed

in the last chapter. As we had illustrated, such oscillatory potentials lead to modulations

in the power spectrum over a wide range of scales and result in a considerable betterment

in the fit to the data [53, 97, 98, 99, 101].

The second issue pertains to the calculation of non-Gaussianities in models where the

slow roll approximation is not satisfied. Usually, the slow roll approximation is utilized

to arrive at analytical expressions for the non-Gaussianity parameter f
NL

. Clearly, this is

no longer possible when departures from slow roll occur. We shall use a new Fortran

numerical code to evaluate the non-Gaussianities in such situations. Although, some

partial numerical results have already been published in the literature, we believe that it

is for the first time that a general (we shall restrict ourselves to the equilateral case here,

but the code can compute for any configuration), and efficient (that can arrive at results

within a few minutes) code has been put together. Moreover, as we shall demonstrate,

the code can also compute all the different contributions to the bi-spectrum.

The plan of this chapter is as follows. In the following section, we shall briefly de-

scribe the inflationary models of interest and discuss the scalar power spectra that arise

in these models. In the succeeding section, we shall quickly describe the essential details

pertaining to the evaluation of the bi-spectrum and the non-Gaussianity parameter f
NL

in

inflationary models involving a single, canonical, scalar field. In Section 4.3, after demon-

strating that the super-Hubble contributions to the complete bi-spectrum during inflation
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prove to be negligible, we shall describe the method that we adopt to numerically com-

pute the bi-spectrum and the non-Gaussianity parameter f
NL

in the equilateral limit. We

shall also illustrate the extent of accuracy of the computations by comparing our numer-

ical results in the equilateral limit with the bi-spectra expected in power law inflation

and the analytical results that have recently been obtained in the case of the Starobinsky

model (see Ref. [54]; however, in this context, also see Refs. [55]). In Section 4.4, we shall

present the main results, and compare the f
NL

that arise in the various models of our in-

terest. We shall finally conclude this chapter with a brief discussion on the implications

of our results.

4.1 The inflationary models of interest and the resulting

power spectra

Broadly, the models that we shall consider can be categorized into three classes. The first

class shall involve potentials which admit a relatively mild and brief departure from slow

roll. The second class shall contain small but repeated deviations from slow roll, while

the third and the last class shall involve a short but rather sharp departure from slow

roll. In this section, we shall briefly outline the different inflationary models that we shall

consider under these classes and discuss the scalar power spectra that are generated in

these models.

4.1.1 Inflationary potentials with a step

Under the first class, we shall consider models with a step that we had discussed in Chap-

ter 2. We shall consider the effects of the introduction of the step (2.5) in the archetypical

quadratic large field model (2.1) and the small field model governed by the potential (2.2).

In the case of the small field model, we shall specifically focus on the situation wherein

p0 = 4 and µ = 15M
Pl

, as we had done earlier. Moreover, in both these cases, we shall

work with values of the parameters that correspond to the best fit values arrived at upon

comparing the models with the WMAP seven-year data, as quoted in Table 2.3. Further,

we shall assume that the field starts on the inflationary attractor at an initial value, say,

φi, such that at least 60 e-folds of inflation takes place. We choose φi to be 16.5M
Pl

and

7.3M
Pl

in the cases of the quadratic and the small field models with the step, respectively.
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4.1.2 Oscillations in the inflaton potential

The second class of models that we shall consider are those which lead to small but re-

peated deviations from slow roll as in the case of potentials containing oscillatory terms

that we had discussed in the previous chapter. In this context, we shall consider both the

potentials, viz. the quadratic potential modulated by sinusoidal oscillations (3.1) as well

as the axion monodromy model (3.2), that we had discussed. Again, we shall work with

the best fit values corresponding to the WMAP seven-year data, as listed in Table 3.2.

Moreover, we shall assume that the field starts on the inflationary attractor at the ini-

tial value φi of 16M
Pl

and 12M
Pl

in the cases of the quadratic potential with sinusoidal

oscillations and the axion monodromy model, respectively.

4.1.3 Punctuated inflaton and the Starobinsky model

We shall consider two models under the last class, both of which are known to lead to

brief but sharp departures from slow roll. The first of the inflationary models that we shall

consider in this class is described by the following potential containing two parameters

m and λ:

V (φ) =
m2

2
φ2 −

√
2 λ (n− 1)m

n
φn +

λ

4
φ2 (n−1). (4.1)

The third quantity n that appears in the potential is an integer which takes values greater

than two. Such potentials are known to arise in certain minimal supersymmetric exten-

sions of the standard model [103]. It is worthwhile noting here that the case of n = 3 has

been considered much earlier for reasons similar to what we shall consider here, viz. to-

wards producing certain features in the scalar power spectrum [104]. In the above po-

tential, the coefficient of the φn term is chosen such that the potential contains a point of

inflection at, say, φ = φ0 (i.e. the location where both dV/dφ and d2V/dφ2 vanish), so that

φ0 given by

φ0 =

[
2m2

(n− 1) λ

] 1
2 (n−2)

. (4.2)

If one starts at a suitable value of the field beyond the point the inflection in the above

potential, it is found that one can achieve two epochs of slow roll inflation sandwiching

a brief period of departure from inflation (lasting for a little less than a e-fold), a scenario

which has been dubbed as punctuated inflation [77]. In fact, it is the point of inflection,

around which the potential exhibits a plateau with an extremely small curvature, which

permits such an evolution to be possible. It is found that the following values for the

potential parameters results in a power spectrum that leads to an improved fit to the
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CMB data in the n = 3 case: m = 1.5012 × 10−7M
Pl

and φ0 = 1.95964M
Pl

. It should be

added that the field is assumed to start from rest at an initial value of φi = 11.5M
Pl

to

arrive at the required behavior.

The second model that we shall consider is the Starobinsky model [71], which, as we

shall see, leads to a scalar power spectrum that has a certain resemblance to the spectrum

generated by punctuated inflation. The model consists of a linear potential with a sharp

change in its slope at a given point, and can be described as follows:

V (φ) =

{
V0 + A+ (φ− φ0) for φ > φ0,

V0 + A− (φ− φ0) for φ < φ0.
(4.3)

Evidently, while the value of the scalar field where the slope changes abruptly is φ0, the

slope of the potential above and below φ0 are given by A+ and A−, respectively. Moreover,

the quantity V0 denotes the value of the potential at φ = φ0. A crucial assumption of the

Starobinsky model is that the value of V0 is sufficiently large so that the behavior of the

scale factor always remains close to that of de Sitter. The change in the slope causes a

short period of deviation from slow roll as the field crosses φ0. However, in contrast to

the case of the punctuated inflationary scenario, where one encounters a brief departure

from inflation, inflation continues uninterrupted in the Starobinsky model. We have not

compared the Starobinsky model with the data, and we shall work with two different sets

of values for the parameters of the model. We shall choose one set to allow for comparison

of the analytical results that have been obtained in this case (see Refs. [54, 55]) with the

corresponding numerical ones. The other set shall be chosen to lead to a spectrum that

closely mimics the power spectrum encountered in punctuated inflation. In the case of

the former, we shall choose the following values of the parameters: V0 = 2.36× 10−12M4
Pl

,

A+ = 3.35× 10−14M3
Pl

, A− = 7.26× 10−15M3
Pl

and φ0 = 0.707M
Pl

, while in the case of the

latter, we shall work with the same values of A+ and φ0, but shall set V0 = 2.94×10−13M4
Pl

,

and A− = 3.35 × 10−16M3
Pl

. Also, we shall work with an initial value of φi = 0.849M
Pl

in

the first instance and with φi = 1.8M
Pl

in the second. Further, we shall start with field

velocities that are determined by the slow roll conditions in both the cases.

4.1.4 The power spectra

We shall now discuss the scalar power spectra that arise in the inflationary models that

we have listed above. As we have mentioned, we shall provide the details concerning the

numerical evolution of the governing equations and the evaluation of the scalar power

spectrum a little later in Section 4.3. In Figure 4.1, we have illustrated the scalar power

61



CHAPTER 4. BI-SPECTRA ASSOCIATED WITH LOCAL AND NON-LOCAL FEATURES

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-05  0.0001  0.001  0.01  0.1  1

 1e-09

 1e-08

 0.001  0.01

 

 

Starobinsky model

Punctuated inflation

Quadratic potential with a step

Axion monodromy model

P S
(k
)

k

Figure 4.1: The scalar power spectrum in the different types of inflationary models that
we consider. The parameters of the Starobinsky model [71] has been chosen such that the
resulting power spectrum closely resembles the spectrum that arises in the punctuated
inflationary scenario which is known to lead to an improved fit to the CMB data [77]. As
we have seen in the previous two chapters, while the models with a step [74, 75, 85] lead
to a burst of oscillations over a specific range of scales, inflaton potentials with oscillating
terms produce modulations over a wide range of scales in the power spectrum [101]. The
inset highlights the differences in the various power spectra over a smaller range of scales.
We have emphasized certain aspects of these different power spectra in some detail in the
text.

spectra that arise in the different classes of models of our interest. At this stage, we shall

emphasize a few points concerning the various power spectra that we have assembled in

the figure.

Since we have already discussed the scalar power spectra that are produced by poten-

tials that contain a step and oscillatory terms, let us focus on the spectra that arise in the

examples of our interest that lead to sharp departures from slow roll, viz. the Starobinsky

model [71] and the punctuated inflationary scenario [77]. Note that, both these models

lead to a step like feature as well as a spike in the power spectrum. The spikes arise due

to the sharp departure from slow roll that occurs in these models. While the first slow roll
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parameter ǫ1 remains small in the Starobinsky model as the field crosses the transition,

the second slow parameter ǫ2 turns very large briefly [54, 55]. In the case of punctuated

inflation, ǫ1 itself grows to a large value thereby actually interrupting inflation for about a

e-fold. It is this property that results in a sharper spike in the case of punctuated inflation

than the Starobinsky model. The overall step in these models is easier to understand, and

it simply arises due to the difference in the Hubble scales associated with the slow roll

epoch before and after the period of fast roll. Both these models also lead to oscillations

before the spectra turn nearly scale invariant on small scales. The spectra that arises in

punctuated inflation, in addition to leading to a better fit to the outliers at very small mul-

tipoles (because of the drop in power on these scales), also provides an improvement in

the fit to the outlier at ℓ ≃ 22 [77]. It is interesting to notice that the spectra of punctuated

inflation and the model with a step in the potential match briefly as they oscillate near

scales corresponding to ℓ ≃ 22.

4.2 The scalar bi-spectrum in the Maldacena formalism

As we had mentioned in the introductory chapter, there now exists a standard formalism,

initially proposed by Maldacena, that allows one to evaluate the bi-spectrum in a given

inflationary model. In the Maldacena formalism [49], the bi-spectrum is evaluated using

the standard rules of perturbative quantum field theory, based on the interaction Hamil-

tonian that depends cubically on the curvature perturbation. For the case of the canonical

scalar field of our interest, the action at the cubic order in the curvature perturbation is

found to be [49, 51, 52]

S3[R] = M2
Pl

∫
dη

∫
d3
x

[
a2 ǫ21 RR′2 + a2 ǫ21 R (∂R)2 − 2 a ǫ1R′ (∂iR) (∂iχ)

+
a2

2
ǫ1 ǫ

′
2 R2R′ +

ǫ1
2
(∂iR) (∂iχ) (∂

2χ) +
ǫ1
4
(∂2R) (∂χ)2 + aF

(
δL2

δR

)]
, (4.4)

where the Latin indices denote the spatial coordinates, while the function χ is defined

through the relation

∂2χ ≡ a ǫ1R′. (4.5)

The quantity δL2/δR denotes the variation of the Lagrangian density corresponding to

the following quadratic action:

S2[R] =
1

2

∫
dη

∫
d3x z2

[
R′2 − (∂R)2

]
, (4.6)
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which, for instance, leads to the equation of motion (1.15) for the curvature perturba-

tion R, and can be written as

δL2

δR = Λ̇ +H Λ− ǫ1 (∂
2R). (4.7)

The term F(δL2/δR) that has been introduced in the above cubic order action refers to

the following expression [51, 54]:

F
(
δL2

δR

)
=

1

2aH

{[
a2Hǫ2R2 + 4 aRR′ + (∂iR)(∂iχ)−

1

H
(∂R)2

]
δL2

δR

+
[
Λ (∂iR) + (∂2R) (∂iχ)

]
δij ∂j

[
∂−2

(
δL2

δR

)]

+
1

H
δimδjn (∂iR) (∂jR) ∂m ∂n

[
∂−2

(
δL2

δR

)]}
. (4.8)

where, again, the Latin indices represent the spatial coordinates.

For convenience, we shall introduce a new quantity G(k1,k2,k3) that is related to the

bi-spectrum B
S
(k1,k2,k3) by a constant factor as follows:

G(k1,k2,k3) = (2 π)9/2 B
S
(k1,k2,k3). (4.9)

It can be shown that the quantity G(k1,k2,k3), which results from the interaction Hamil-

tonian corresponding to the cubic action (4.4), evaluated towards the end of inflation, say,

at the conformal time ηe, can be expressed as [49, 51, 52, 53, 54]

G(k1,k2,k3) ≡
7∑

C=1

G
C
(k1,k2,k3)

≡ M2
Pl

6∑

C=1

{
[fk1(ηe) fk2(ηe) fk3(ηe)] GC

(k1,k2,k3)

+
[
f ∗
k1
(ηe) f

∗
k2
(ηe) f

∗
k3
(ηe)

]
G∗

C
(k1,k2,k3)

}
+G7(k1,k2,k3), (4.10)

where fk are the Fourier modes associated with the curvature perturbation [cf. Eq. (1.19)]

that satisfy the differential equation (1.15). The quantities G
C
(k1,k2,k3) with C = (1, 6)

correspond to the six terms in the interaction Hamiltonian, and are described by the inte-
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grals

G1(k1,k2,k3) = 2 i

∫ ηe

ηi

dη a2 ǫ21
(
f ∗
k1
f ′∗
k2
f ′∗
k3

+ two permutations
)
, (4.11a)

G2(k1,k2,k3) = −2 i (k1 · k2 + two permutations)

∫ ηe

ηi

dη a2 ǫ21 f
∗
k1
f ∗
k2
f ∗
k3
, (4.11b)

G3(k1,k2,k3) = −2 i

∫ ηe

ηi

dη a2 ǫ21

[(
k1 · k2

k2
2

)
f ∗
k1
f ′∗
k2
f ′∗
k3

+ five permutations

]
, (4.11c)

G4(k1,k2,k3) = i

∫ ηe

ηi

dη a2 ǫ1 ǫ
′
2

(
f ∗
k1
f ∗
k2
f ′∗
k3

+ two permutations
)
, (4.11d)

G5(k1,k2,k3) =
i

2

∫ ηe

ηi

dη a2 ǫ31

[(
k1 · k2

k2
2

)
f ∗
k1
f ′∗
k2
f ′∗
k3

+ five permutations

]
, (4.11e)

G6(k1,k2,k3) =
i

2

∫ ηe

ηi

dη a2 ǫ31

{[
k2
1 (k2 · k3)

k2
2 k

2
3

]
f ∗
k1
f ′∗
k2
f ′∗
k3

+ two permutations

}
, (4.11f)

where ǫ2 is the second slow roll parameter that is defined with respect to the first through

the expression (1.8). The lower limit of the above integrals, viz. ηi, denotes a sufficiently

early time when the initial conditions [say, the Bunch-Davies conditions (1.23)] are im-

posed on the modes fk. The additional, seventh term G7(k1,k2,k3) arises due to a field

redefinition (in this context, see, Refs. [49, 51, 53]), and its contribution to G(k1,k2,k3) is

given by

G7(k1,k2,k3) =
ǫ2(ηe)

2

(
|fk2(ηe)|2 |fk3(ηe)|2 + two permutations

)
. (4.12)

4.3 The numerical computation of the scalar bi-spectrum

In this section, after illustrating that the super-Hubble contributions to the complete bi-

spectrum during inflation proves to be negligible, we shall outline the methods that we

adopt to numerically evolve the equations governing the background and the perturba-

tions, and eventually evaluate the inflationary scalar power and bi-spectra. Also, we shall

illustrate the extent of accuracy of the numerical methods by comparing them with the

expected form of the bi-spectrum in the equilateral limit in power law inflation and the

analytical results that are available in the case of the Starobinsky model [54, 55].

4.3.1 The contributions to the bi-spectrum on super-Hubble scales

It is clear from the above expressions that the evaluation of the bi-spectrum involves

integrals over the mode fk and its derivative f ′
k as well as the slow roll parameters ǫ1,
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ǫ2 and the derivative ǫ′2. While evaluating the power spectra, it is well known that it

suffices to evolve the curvature perturbation from an initial time when the modes are

sufficiently inside the Hubble radius to a suitably late time when the amplitude of the

curvature perturbation settles down to a constant value [81, 82]. We shall illustrate that

many of the contributions to the bi-spectrum prove to be negligible when the modes

evolve on super-Hubble scales. Interestingly, we shall also show that, those contributions

to the bi-spectrum which turn out to be significant at late times when the modes are well

outside the Hubble radius are canceled by certain other contributions that arise. As a

consequence, we shall argue that, numerically, it suffices to evaluate the integrals over

the period of time during which the curvature perturbations have been conventionally

evolved to arrive at the power spectra, viz. from the sub-Hubble to the super-Hubble

scales.

Evolution of fk on super-Hubble scales

During inflation, when the modes are on super-Hubble scales, it is well known that the

solution to fk can be written as [6, 7]

fk(η) ≃ Ak +Bk

∫ η dη̃

z2(η̃)
, (4.13)

where Ak and Bk are k-dependent constants which are determined by the initial condi-

tions imposed on the modes in the sub Hubble-limit. The first term involving Ak is the

growing mode, which is actually a constant, while the term containing Bk represents the

decaying mode. Therefore, on super-Hubble scales, the mode fk simplifies to

fk(η) ≃ Ak. (4.14)

Moreover, the leading non-zero contribution to its derivative is determined by the decay-

ing mode, and is given by

f ′
k(η) ≃

Bk

z2
=

B̄k

a2 ǫ1
, (4.15)

where we have set B̄k = Bk/(2M
2
Pl
).

It is now a matter of making use of the above solutions for fk and f ′
k to determine the

super-Hubble contributions to the bi-spectrum during inflation.
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The various contributions

To begin with, note that, each of the integrals G
C
(k1,k2,k3), where C = (1, 6), can be

divided into two parts as follows:

G
C
(k1,k2,k3) = Gis

C
(k1,k2,k3) + Gse

C
(k1,k2,k3). (4.16)

The integrals in the first term Gis
C
(k1,k2,k3) run from the earliest time (i.e. ηi) when the

smallest of the three wavenumbers k1, k2 and k3 is sufficiently inside the Hubble radius

[typically corresponding to k/(aH) ≃ 100] to the time (say, ηs) when the largest of the

three wavenumbers is well outside the Hubble radius [say, when k/(aH) ≃ 10−5]. Then,

evidently, the second term Gse
C
(k1,k2,k3) will involve integrals which run from the lat-

ter time ηs to the end of inflation at ηe. In what follows, we shall discuss the various

contributions to the bi-spectrum due to the terms Gse
C
(k1,k2,k3). We shall show that the

corresponding contribution either remains small or, when it proves to be large, it is ex-

actly canceled by another contribution to the bi-spectrum.

The contributions due to the fourth and the seventh terms Let us first focus on the

fourth term G4(k1,k2,k3) since it has often been found to lead to the largest contribution

to the bi-spectrum when deviations from slow roll occur [53, 54, 55]. As the slow roll

parameters turn large towards the end of inflation, we can expect this term to contribute

significantly at late times. However, as we shall quickly illustrate, such a late time contri-

bution is exactly canceled by the contribution from G7(k1,k2,k3) which arises due to the

field redefinition.

Upon using the form (4.14) of the mode fk and its derivative (4.15) on super-Hubble

scales in the expression (4.11d), one obtains that

Gse
4 (k1,k2,k3) ≃ i

(
A∗

k1
A∗

k2
B̄∗

k3
+ two permutations

) ∫ ηe

ηs

dη ǫ′2. (4.17)

This expression can be trivially integrated to yield

Gse
4 (k1,k2,k3) ≃ i

(
A∗

k1
A∗

k2
B̄∗

k3
+ two permutations

)
[ǫ2(ηe)− ǫ2(ηs)] , (4.18)

so that the corresponding contribution to the bi-spectrum can be expressed as

Gse
4 (k1,k2,k3) ≃ iM2

Pl
[ǫ2(ηe)− ǫ2(ηs)]

[
|Ak1|2 |Ak2|2

(
Ak3 B̄

∗
k3

− A∗
k3
B̄k3

)

+ two permutations

]
. (4.19)
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Since this expression depends on the value of ǫ2 at the end of inflation, it suggests that the

contributions to the bi-spectrum at late times during inflation could be considerable. But,

as we shall soon show, this large contribution is canceled by a similar contribution from

the seventh term that arises due to the field redefinition [cf. Eq. (4.12)].

Now, consider the Wronskian

W = fk f
′∗
k − f ∗

k f
′
k. (4.20)

Upon using the equation of motion (1.15) for fk, one can show that, W = W/z2, where W

is a constant. It is important to note that this result is valid on all scales, even in the sub-

Hubble limit during inflation. In this limit, as we had mentioned, the modes vk satisfy

the Bunch-Davies initial condition (1.23). On making use of this sub-Hubble behavior in

the above definition of the Wronskian W , one obtains that W = i. In the super-Hubble

limit, we have, on using the corresponding solution (4.14) and its derivative (4.15),

W =
2M2

Pl

z2
(
Ak B̄

∗
k − A∗

k B̄k

)
=

i

z2
. (4.21)

Therefore, we obtain that

Ak B̄
∗
k −A∗

k B̄k =
i

2M2
Pl

, (4.22)

and, hence, the expression (4.19) for Gse
4 (k1,k2,k3) simplifies to

Gse
4 (k1,k2,k3) ≃ −1

2
[ǫ2(ηe)− ǫ2(ηs)]

(
|Ak1|2 |Ak2|2 + two permutations

)
. (4.23)

The first of these terms involving the value of ǫ2 at the end of inflation exactly cancels

the contribution G7(k1,k2,k3) [with fk set to Ak in Eq. (4.12)] that arises due to the field

redefinition. But, the remaining contribution cannot be ignored and needs to be taken into

account. It is useful to note that this term is essentially the same as the one due to the field

redefinition, but which is now evaluated on super-Hubble scales (i.e. at ηs) rather than at

the end of inflation. In other words, if we consider the fourth and the seventh terms

together, it is equivalent to evaluating the contribution to the bi-spectrum corresponding

to Gis
4 (k1,k2,k3), and adding to it the contribution due to the seventh term G7(k1,k2,k3)

evaluated at ηs, instead of at the end of inflation.

The contribution due to the second term Let us now turn to the contribution due to the

second term, which can occasionally prove to be comparable to the contribution due to
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the fourth term [54]. Upon making use of the behavior of the mode fk on super-Hubble

scales in the integral (4.11b), we have

Gse
2 (k1,k2,k3) = −2 i (k1 · k2 + two permutations) A∗

k1
A∗

k2
A∗

k3
I2(ηe, ηs), (4.24)

where I2(ηe, ηs) denotes the integral

I2(ηe, ηs) =

∫ ηe

ηs

dη a2 ǫ21, (4.25)

so that the corresponding contribution to the bi-spectrum is given by

Gse
2 (k1,k2,k3) = −2 iM2

Pl
(k1 · k2 + two permutations)

× |Ak1|2 |Ak2|2 |Ak3|2 [I2(ηe, ηs)− I∗2 (ηe, ηs)] . (4.26)

Note that, due to quadratic dependence on the scale factor, actually, I2(ηe, ηs) is a rapidly

growing quantity at late times. However, the complete super-Hubble contribution to

the bi-spectrum vanishes identically since the integral I2(ηe, ηs) is a purely real quantity.

Hence, in the case of the second term, it is sufficient to evaluate the contribution to the

bi-spectrum due to Gis
2 (k1,k2,k3).

The remaining terms Let us now compute the contributions due to the remaining

terms, viz. the first, the third, the fifth and the sixth. Notice that, the first term

G1(k1,k2,k3) and the third term G3(k1,k2,k3) involve the same integrals. Therefore, these

two contributions to the bi-spectrum can be clubbed together. Similarly, the fifth and the

sixth terms, viz. G5(k1,k2,k3) and G6(k1,k2,k3), also contain integrals of the same type,

and hence their contributions too can be combined. On making use of the super-Hubble

behavior (4.14) and (4.15) of the mode fk and its derivative, we obtain that

Gse
1 (k1,k2,k3) ≃ 2 i

(
A∗

k1
B̄∗

k2
B̄∗

k3
+ two permutations

)
I13(ηe, ηs) (4.27)

and

Gse
3 (k1,k2,k3) ≃ − 2 i

[(
k1 · k2

k2
2

)
A∗

k1
B̄∗

k2
B̄∗

k3
+ five permutations

]
I13(ηe, ηs), (4.28)

where the quantity I13(ηe, ηs) represents the integral

I13(ηe, ηs) =

∫ ηe

ηs

dη

a2
. (4.29)
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From these results, one can easily show that the super-Hubble contributions due to the

first and the third terms to the bi-spectrum can be written as

Gse
1 (k1,k2,k3) +Gse

3 (k1,k2,k3) = 2 iM2
Pl

[(
1− k1 · k2

k2
2

− k1 · k3

k2
3

)
|Ak1|2

×
(
Ak2 B̄

∗
k2
Ak3B̄

∗
k3

−A∗
k2
B̄k2 A

∗
k3
B̄k3

)

+ two permutations

]
I13(ηe, ηs). (4.30)

The corresponding contributions due to the fifth and the sixth terms can be arrived at in

a similar fashion. We find that

Gse
5 (k1,k2,k3) +Gse

6 (k1,k2,k3) =
iM2

Pl

2

{[
k1 · k2

k2
2

+
k1 · k3

k2
3

+
k2
1 (k2 · k3)

k2
2 k

2
3

]

× |Ak1|2
(
Ak2B̄

∗
k2 Ak3B̄

∗
k3 − A∗

k2B̄k2 A
∗
k3 B̄k3

)

+ two permutations

}
I56(ηe, ηs), (4.31)

where the quantity I56(ηe, ηs) is described by the integral

I56(ηe, ηs) =

∫ ηe

ηs

dη

a2
ǫ1. (4.32)

Hence, the non-zero, super-Hubble contribution to the bi-spectrum is determined by the

sum of the contribution due to the first, the third, the fifth and the sixth terms arrived

at above. In order to illustrate that this contribution is insignificant, we shall now turn

to estimating the amplitude of the corresponding contribution to the non-Gaussianity

parameter f
NL

.

4.3.2 An estimate of the super-Hubble contribution to the

non-Gaussianity parameter

Let us restrict ourselves to the equilateral limit, i.e. when k1 = k2 = k3 = k, for simplicity.

In such a case, the super-Hubble contributions to the bi-spectrum, say, Ges
eq(k), due to the

first, the third, the fifth and the sixth terms, as given by the expressions (4.30) and (4.31),

add up to be

Ges
eq(k) = iM2

Pl
|Ak|2

(
A2

k B̄
∗
k
2 −A∗

k
2 B̄2

k

) [
12 I13(ηe, ηs)−

9

4
I56(ηe, ηs)

]
. (4.33)
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In the equilateral limit, the expression (1.29) for the non-Gaussianity parameter

f
NL
(k1,k2,k3) simplifies to

f eq
NL
(k) = −10

9

1

(2 π)4
k6Geq(k)

P2
S
(k)

, (4.34)

where P
S
(k) is the scalar power spectrum defined in Eq. (1.21). It is straightforward to

show that the f
NL

corresponding to the super-Hubble contribution to the bi-spectrum

Ges
eq(k) above is given by

f eq (se)
NL

(k) ≃ −5 iM2
Pl

18

(
A2

k B̄
∗
k
2 − A∗

k
2 B̄2

k

|Ak|2
) [

12 I13(ηe, ηs)−
9

4
I56(ηe, ηs)

]
, (4.35)

where we have made use of the fact that fk ≃ Ak at late times in order to arrive at the

power spectrum.

To estimate the above super-Hubble contribution to the non-Gaussianity parameter

f eq(se)
NL

, let us choose to work with power law inflation because it permits exact calcula-

tions, and it can also mimic slow roll inflation. During power law expansion, the scale

factor can be written as

a(η) = a1

(
η

η1

)γ+1

, (4.36)

where a1 and η1 are constants, while γ is a free index. It is useful to note that, in such a

case, the first slow roll parameter is a constant and is given by ǫ1 = (γ + 2)/(γ + 1). The

current observational constraints on the scalar spectral index suggest that γ . −2, which

implies that the corresponding scale factor is close to that of de Sitter.

In power law inflation, the exact solution to Eq. (1.16) can be expressed in terms of the

Bessel function Jν(x) as follows (see, for instance, Refs. [105]):

vk(η) =
√
−k η [Ck Jν(−k η) +Dk J−ν(−k η)] , (4.37)

where ν = (γ + 1/2), and the quantities Ck and Dk are constants that are determined by

the initial conditions. Upon demanding that the above solution satisfies the Bunch-Davies

initial condition (1.23), one obtains that

Ck = −Dk e−i π (γ+1/2), (4.38a)

Dk =

√
π

k

ei π γ/2

2 cos (π γ)
. (4.38b)

Since fk = vk/z, with z =
√
2 ǫ1MPl

a, and as ǫ1 is a constant in power law inflation, we can

arrive at the constants Ak and Bk [cf. Eqs. (4.14) and Eqs. (4.15)] from the super-Hubble
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limit of the solution (4.37), which are found to be

Ak =
2−(γ+1/2)

Γ(γ + 3/2)

(−k η1)
γ+1

√
2 ǫ1 a1MPl

Ck, (4.39a)

Bk = −(2 γ + 1) 2γ+1/2

Γ(−γ + 1/2)

√
2 ǫ1 a1MPl

η1
, (−k η1)

−γ Dk. (4.39b)

Then, upon inserting the above expressions for the quantities Ak and Bk in Eq. (4.35), we

obtain that

f eq (se)
NL

(k) =
5

72 π

[
12− 9 (γ + 2)

4 (γ + 1)

]
Γ2

(
γ +

1

2

)
22 γ+1 (2 γ + 1) (γ + 2)

× (γ + 1)−2 (γ+1) sin (2 π γ)

[
1− Hs

He

e−3 (Ne−Ns)

] (
k

asHs

)−(2 γ+1)

. (4.40)

It should be mentioned that, in arriving at this expression, for convenience, we have

set η1 to be ηs, which corresponds to a1 being as, viz. the scale factor at ηs. Moreover,

while Ns and Ne denote the e-folds corresponding to ηs and ηe, Hs and He represent the

Hubble scales at these times, respectively. Recall that, ηs denotes the conformal time when

the largest wavenumber of interest, say, ks, is well outside the Hubble radius, i.e. when

ks/(aH) ≃ 10−5. Since (Ne−Ns) is expected to be at least 40 for the smallest cosmological

scale, it is clear that the factor involving exp−[3 (Ne − Ns)] can be completely neglected.

As we mentioned above, observations point to the fact that γ . −2. Therefore, if we

further assume that γ = −(2 + ε), where ε ≃ 10−2, we find that the above estimate for the

non-Gaussianity parameter reduces to

f eq (se)
NL

(k) . −5 ε2

9

(
ks

as Hs

)3

≃ −10−19, (4.41)

where, in obtaining the final value, we have set ks/(as Hs) = 10−5. The inequality above

arises due to the fact that, for larger scales, i.e. when k < ks, k/(aH) < 10−5 at ηs. In

models involving the canonical scalar field, the smallest values of f
NL

are typically gener-

ated in slow roll inflationary scenarios, wherein the non-Gaussianity parameter has been

calculated to be of the order of the first slow roll parameter [49, 52]. The above estimate

clearly points to fact that the super-Hubble contributions to the complete bi-spectrum and

the non-Gaussianity parameter f
NL

can be entirely ignored.

In summary, to determine the scalar bi-spectrum, it suffices to evaluate the contri-

butions to the bi-spectrum due to the quantities Gis
C
(k1,k2,k3), with C = (1, 6), which

involve integrals running from the initial time ηi to the time ηs when the smallest of the
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three modes reaches super-Hubble scales. Further, the addition of the contribution due

to the field redefinition evaluated at ηs ensures that no non-trivial super-Hubble contri-

butions are ignored. In the following sub-section, with the help of a specific example, we

shall also corroborate these conclusions numerically.

4.3.3 Details of the numerical methods

The scalar bi-spectrum and the parameter f
NL

can be easily evaluated analytically in the

slow roll inflationary scenario [49]. However, barring some exceptional cases [54, 55, 72],

it often proves to be difficult to evaluate the bi-spectrum analytically when departures

from slow roll occur. Hence, one has to resort to numerical computations in such cases.

We solve the background as well as the perturbation equations using a Bulirsch-Stoer

algorithm with an adaptive step size control routine [106]. As we had mentioned earlier

in Section 2.2, we shall treat the number of e-folds as the independent variable, which

allows for efficient and accurate computation. To obtain the power spectrum, we impose

the standard Bunch-Davies initial conditions [cf. Eq. (1.23)] on the perturbations when

the modes are well inside the Hubble radius, and evolve them until suitably late times.

Typically, in the case of smooth inflaton potentials, it suffices to evolve the modes fk from

an initial time when k/(aH) = 100. However, as we had pointed out in Subsection 3.1.3,

in the case of the axion monodromy model, for the best fit values of the parameters of our

interest, the modes have to be evolved from an earlier initial time, when k/(aH) ≃ 250,

so that the resonance that occurs in these models due to the oscillations in the potential is

captured [53, 101]. The scalar power spectra displayed in Figure 4.1 have been evaluated

at super-Hubble scales, say, when k/(aH) ≃ 10−5, which is typically when the amplitude

of the curvature perturbations freeze in1.

Having obtained the behavior of the background and the modes, we carry out the

integrals involved in arriving at the bi-spectrum using the method of adaptive quadra-

ture [107]. Since we shall be focusing on the equilateral limit of the bi-spectrum, we can

evolve each of the modes of interest independently and calculate the integrals for each of

1Recall that, in the last two chapters, wherein we had compared certain inflationary models with the
CMB data, apart from the scalar power spectrum, we had also evaluated the tensor power spectrum and
had incorporated it in our analysis. We should add here that the tensor modes are evolved and the corre-
sponding power spectrum is evaluated in the same fashion as the scalar spectrum. Moreover, since it is only
the scalar modes that exhibit resonance in oscillatory inflationary potentials, no special considerations need
to be paid to the tensors even in cases such as the axion monodromy model. Actually, barring cases wherein
extreme departures from slow roll occur (such as, for example, in the punctuated inflationary scenario, see
Refs. [77]), the tensor spectra largely prove to be nearly scale independent.
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the modes separately. The integrals Gn actually contain a cut-off in the sub-Hubble limit,

which is essential for singling out the perturbative vacuum [49, 51, 52]. Numerically, the

presence of the cut-off is fortunate since it controls the contributions due to the continuing

oscillations that would otherwise occur. Generalizing the cut off that is often introduced

analytically in the slow roll case, we impose a cut off of the form exp−[κ k/(aH)], where

κ is a small parameter. In the previous subsection, we had discussed as to how the in-

tegrals need to be carried out from the early time ηi when the largest scale is well inside

the Hubble radius to the late time ηs when the smallest scale is sufficiently outside. In

the equilateral configuration of our interest, rather than integrate from ηi to ηs, it suf-

fices to compute the integrals for the modes from the time when each of them satisfy the

sub-Hubble condition, say, k/(aH) = 100, to the time when they are well outside the

Hubble radius, say, when k/(aH) = 10−5. In other words, one carries out the integrals

exactly over the period the modes are evolved to obtain the power spectrum. The pres-

ence of the cut-off ensures that the contributions at early times, i.e. near ηi, are negligible.

Furthermore, it should be noted that, in such a case, the corresponding super-Hubble

contribution to f eq
NL

will saturate the bound (4.41) in power law inflation for all modes.

With the help of specific example, let us now illustrate that, for a judicious choice of κ,

the results that we obtain are largely independent of the upper and the lower limits of

the integrals. In fact, we shall demonstrate these points in two steps for the case of the

standard quadratic potential (2.1). Firstly, focusing on a specific mode (recall that we are

working in the equilateral limit), we shall fix the upper limit of the integral to be the time

when k/(aH) = 10−5. Evolving the mode from different initial times, we shall evaluate

the integrals involved from these initial times to the fixed final time for different values

of κ. This exercise helps us to identify at an optimal value for κ when we shall eventually

carry out the integrals from k/(aH) = 100. Secondly, upon choosing the optimal value

for κ and integrating from k/(aH) = 100, we shall calculate the integrals for different

upper limits. For reasons outlined in the previous subsection, it proves to be necessary

to consider the contributions to the bi-spectrum due to the fourth and the seventh terms

together. Moreover, since the first and the third, and the fifth and the sixth, have similar

structure, it turns out to be convenient to club these terms as have discussed before. In

Figure 4.2, we have plotted the value of k6 times the different contributions to the bi-

spectrum, viz. G1 + G3, G2, G4 + G7 and G5 + G6, as a function of κ when the integrals

have been carried out from k/(aH) of 102, 103 and 104 for a mode which leaves the Hubble

radius around 53 e-folds before the end of inflation. The figure clearly indicates κ = 0.1

to be a highly suitable value. A larger κ leads to a sharper cut-off reducing the value of
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Figure 4.2: The quantities k6 times the absolute values of G1 + G3 (in green), G2 (in red),
G4 + G7 (in blue) and G5 + G6 (in purple) have been plotted as a function of the cut
off parameter κ for a given mode in the case of the conventional, quadratic inflationary
potential. Note that these values have been arrived at with a fixed upper limit [viz. corre-
sponding to k/(aH) = 10−5] for the integrals involved. The solid, dashed and the dotted
lines correspond to integrating from k/(aH) of 102, 103 and 104, respectively. It is clear
that the results converge for κ = 0.1, which suggests it to be an optimal value. While
evaluating the bi-spectrum for the other models, we shall choose to work a κ of 0.1 and
impose the initial conditions as well as carry out the integrals from k/(aH) of 102 (barring
the case of the axion monodromy model, as we have discussed in the text). An additional
point that is worth noticing is the fact the term G4 + G7 seems to be hardly dependent
of the cut-off parameter κ. This can possibly be attributed to the dependence of G4 on ǫ′2
which can be rather small during slow roll, thereby effectively acting as a cut off.

the integrals. One could work with a smaller κ, in which case, the figure suggests that,

one would also need to necessarily integrate from deeper inside the Hubble radius. In

Figure 4.3, after fixing κ to be 0.1 and, with the initial conditions imposed at k/(aH) = 102,

we have plotted the four contributions to the bi-spectrum for a mode that leaves the

Hubble radius at 50 e-folds before the end of inflation as a function of the upper limit

of the integrals. It is evident from the figure that the values of the integrals converge

quickly once the mode leave the Hubble radius. For efficient numerical integration, as
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Figure 4.3: The quantities k6 times the absolute values of G1+G3, G2, G4+G7 and G5+G6

have been plotted (with the same choice of colors as in the previous figure) as a function of
the upper limit of the integrals involved for a given mode in the case of the quadratic po-
tential. Evidently, the integrals converge fairly rapidly to their final values once the mode
leaves the Hubble radius. The independence of the results on the upper limit support the
conclusions that we had earlier arrived at analytically in the last subsection, viz. that the
super-Hubble contributions to the bi-spectrum are entirely negligible.

in the case of the power spectrum, we have chosen the super-Hubble limit to correspond

to k/(aH) = 10−5. We have repeated similar tests for the other models of our interest

too. These tests confirm the conclusions that we have arrived at above, indicating the

robustness of the numerical methods and procedures that we have adopted.

4.3.4 Comparison with the analytical results in the cases of power law

inflation and the Starobinsky model

Before we go on to consider the bi-spectra generated in the inflationary models of our

interest, we shall compare the numerical results we obtain with the analytical results that

can be arrived at in two cases in the equilateral limit. The first case that we shall consider

is power law inflation wherein, as we shall soon outline, the spectral shape of the non-
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zero contributions to the bi-spectrum can be easily calculated. The second example that

we shall discuss is the Starobinsky model described by the potential (4.3) wherein, under

certain conditions, the complete scalar bi-spectrum can be evaluated in the equilateral

limit (see Ref. [54]; in this context, also see Refs. [55]).

Let us first consider the case of power law inflation described by the scale factor (4.36)

with γ ≤ −2. In such a case, as we have seen, ǫ1 is a constant and, hence, ǫ2 and ǫ′2, which

involve derivatives of ǫ1, reduce to zero. Since the contributions due to the fourth and

the seventh terms, viz. G4(k) and G7(k), depend on ǫ′2 and ǫ2, respectively [cf. Eqs. (4.11d)

and (4.12)], these terms vanish identically in power law inflation. Note that the modes vk

given by Eq. (4.37) depend only on the combination k η. Moreover, as ǫ1 is a constant in

power law inflation, we have fk ∝ vk/a . Under these conditions, with a simple rescaling

of the variable of integration in the expressions (4.11a), (4.11b), (4.11c), (4.11e) and (4.11f),

it is straightforward to show that, in the equilateral limit we are focusing on, the quanti-

ties G1, G2, G3, G5 and G6, all depend on the wavenumber as kγ+1/2. Then, upon making

use of the asymptotic form of the modes fk, it is easy to illustrate that the corresponding

contributions to the bi-spectrum, viz. G1 + G3, G2 and G5 + G6, all behave as k2 (2 γ+1).

Since the power spectrum in power law inflation is known to have the form k2 (γ+2) (see,

for example, Refs. [105]), the expression (4.34) for f eq
NL

then immediately suggests that

the quantity will be strictly scale invariant for all γ. In fact, apart from these results,

it is also simple to establish the following relation between the different contributions:

G5+G6 = −(3 ǫ1/16) (G1+G3), a result, which, in fact, also holds in slow roll inflation [54].

In other words, in power law inflation, it is possible to arrive at the spectral dependence

of the non-zero contributions to the bi-spectrum without having to explicitly calculate

the integrals involved. Further, one can establish that the non-Gaussianity parameter f eq
NL

is exactly scale independent for any value of γ. While these arguments does not help

us in determining the amplitude of the various contributions to the bi-spectrum or the

non-Gaussianity parameter, their spectral shape and the relative magnitude of the above-

mentioned terms provide crucial analytical results to crosscheck our numerical code. In

Figure 4.4, we have plotted the different non-zero contributions to the bi-spectrum com-

puted using our numerical code and the spectral dependence we have arrived at above

analytically for two different values of γ in the case of power law inflation. We have also

indicated the relative magnitude of the first and the third and the fifth and the sixth terms

arrived at numerically. Lastly, we have also illustrated the scale independent behaviour

of the non-Gaussianity parameter f eq
NL

for both the values of γ. It is clear from the figure

that the numerical results agree well with the results and conclusions that we arrived at
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Figure 4.4: The quantities k6 times the absolute values of the non-zero contributions in
the power law case, viz. G1+G3, G2 and G5+G6, obtained numerically, have been plotted
on the left for two different values of γ (γ = −2.02 on top and γ = −2.25 below), as
solid curves with the same choice of colors to represent the different quantities as in the
previous two figures. Note that we have followed the same color scheme to represent
the differential quantities as in the previous two figures. The dots on these curves are
the spectral shape arrived at from the analytical arguments, with amplitudes chosen to
match the numerical results at a specific wavenumber. The dots of a different color on the
solid purple curves represents G5 + G6 obtained from its relation to G1 + G3 discussed
in the text. The plots on the right are the non-Gaussianity parameter f eq

NL
associated with

the different contributions, arrived at using the numerical code. Note that, as indicated
by the analytical arguments, the quantity f eq

NL
corresponding to all the contributions turns

out to be strictly scale invariant for both values of γ.

above analytically.

Let us now turn to the Starobinsky model. As we have discussed earlier, in this case,

the change in the slope causes a brief period of fast roll which leads to sharp features in

the scalar power spectrum (as we had illustrated in Figure 4.1). It was known that, for

certain range of parameters, one could evaluate the scalar power spectrum analytically
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in the Starobinsky model, which matches the actual, numerically computed spectrum ex-

ceptionally well [71, 54]. Interestingly, it has been recently shown that, in the equilateral

limit, the model allows the analytic evaluation of the scalar bi-spectrum too (see Ref. [54];

in this context, also see Refs. [55]) In Figure 4.5, we have plotted the numerical as well as

the analytical results for the functions G1+G3, G2, G4+G7, and G5+G6 for the Starobinsky

model. We have plotted for parameters of the model for which the analytical results are

considered to be a good approximation [54]. It is evident from the figure that the numer-

ical results match the analytical ones very well. Importantly, the agreement proves to be

excellent in the case of the dominant contribution G4+G7. A couple of points concerning

concerning the numerical results in the case of the Starobinsky model (both in Figure 4.1

wherein we have plotted the power spectrum as well as in Figure 4.5 above containing

the bi-spectrum) require some clarification. The derivatives of the potential (4.3) evi-

dently contain discontinuity. These discontinuities needs to be smoothened in order for

the problem to be numerically tractable. The spectra and the bi-spectra in the Starobinsky

model we have illustrated have been computed with a suitable smoothing of the discon-

tinuity, while at the same time retaining a sufficient level of sharpness so that they closely

correspond to the analytical results that have been arrived at [54, 55].
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Figure 4.5: The quantities k6 times the absolute values of G1 + G3 (in green), G2 (in red),
G4 + G7 (in blue) and G5 + G6 (in purple) have been plotted as a function of k/k0 for
the Starobinsky model. These plots correspond to the following values of the model
parameters: V0 = 2.36 × 10−12M4

Pl
, A+ = 3.35 × 10−14M3

Pl
, A− = 7.26 × 10−15M3

Pl
and

φ0 = 0.707M
Pl

. Note that k0 is the wavenumber which leaves the Hubble radius when
the scalar field crosses the break in the potential at φ0. The solid curves represent the
analytical expressions that have been obtained recently [54, 55], while the dashed curves
denote the numerical results computed using our Fortran code. We should mention that
we have also arrived at these results independently using a Mathematica [108] code. We
find that the numerical results match the analytical results exceptionally well in the case
of the crucial, dominant contribution to the f

NL
, viz. due to G4 +G7.
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4.4 Results in the equilateral limit

We shall now discuss the bi-spectra arrived at numerically in the various models of our

interest. In Figure 4.6, we have plotted the various contributions, viz. G1+G3, G2, G4+G7

and G5+G6 (in the equilateral limit) for the punctuated inflationary scenario driven by the

potential (4.1), the quadratic potential (2.1) with the step (2.5), and the axion monodromy

model (3.2) which contains oscillations in the inflaton potential. These plots and the one in

previous figure clearly point to the fact that it is the combination G4+G7 that contributes

the most to the scalar bi-spectrum in these cases [53].

In Figure 4.7, we have plotted the quantity f eq
NL

due to the dominant contribution that

arises in the various models that we have considered. It is clear from this figure that,

while in certain cases f eq
NL

can prove to be a good discriminator, it cannot help in others,

and its ability to discriminate depends strongly on the differences in the background dy-

namics. For instance, the evolution of the first two slow roll parameters are very similar

when a step is introduced in either the quadratic potential or a small field model [85].

Hence, it is not surprising that the f eq
NL

behaves in a similar fashion in both these mod-

els. Whereas, f eq
NL

proves to be substantially different in punctuated inflation and the

Starobinsky model. Recall that, in the Starobinsky model, the first slow roll parameter

remains small throughout the evolution. In contrast, it grows above unity for a very short

period (leading to a brief interruption of the accelerated expansion) in the punctuated

inflationary scenario. It is this departure from inflation that leads to a sharp drop in the

power spectrum and a correspondingly sharp rise in the parameter f eq
NL

in punctuated

inflation. In fact, this occurs for modes that leave the Hubble radius just before inflation

is interrupted [83]. However, note that, f eq
NL

grows with k at large wavenumbers in the

Starobinsky model. This can be attributed to the fact that ǫ′2, which determines the contri-

bution due to the fourth term, diverges due to the discontinuity in the second derivative

of the potential [55]. Similarly, we find that f eq
NL

is rather large in the axion monodromy

model in contrast to the case wherein the conventional quadratic potential is modulated

by an oscillatory term. The large value of f eq
NL

that arises in the monodromy model can

be attributed to the resonant behavior encountered in the model [98, 53, 101]. In fact, we

have also evaluated the f eq
NL

for the case of quadratic potential modulated by sinusoidal

oscillations, which too leads to continuing, periodic features in the scalar power spectrum

as we had seen in the last chapter. However, we find that the f eq
NL

in such a case proves to

be rather small (of the order 10−2 or so).
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Figure 4.6: The set of quantities k6 |Gn(k)| plotted as in the previous figure with the same
choice of colors to represent the different Gn(k). The figures on top, in the middle and
at the bottom correspond to punctuated inflation, the quadratic potential with a step and
the axion monodromy model, respectively, and they have been plotted for values of the
parameters that lead to the best fit to the WMAP data [77, 85, 101]. In the middle figure,
the dashed lines correspond to the quadratic potential when the step is not present.
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Figure 4.7: A plot of f eq
NL

corresponding to the various models that we have considered.
The figure at the top contains the absolute value of f eq

NL
, plotted on a logarithmic scale (for

convenience in illustrating the extremely large values that arise), in the Starobinsky model
and the punctuated inflationary scenario. The inset highlights the growth in f eq

NL
at large

wavenumbers in the case of the Starobinsky model, in conformity with the conclusions
that have also been arrived at analytically [55]. The figure in the middle contains f eq

NL
for

the cases wherein a step has been introduced in a quadratic potential and a small field
model. The figure at the bottom corresponds to that of the axion monodromy model. As
we had mentioned before, these sets of models lead to scalar power spectra with certain
common characteristics. Needless to say, while f eq

NL
is considerably different in the first

and the last sets of models, it is almost the same in the case of models with a step. These
similarities and differences can be attributed completely to the background dynamics.
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4.5 Discussion

In this chapter, we have been interested in examining the power of the non-Gaussianity

parameter f
NL

to discriminate between various single field inflationary models involving

the canonical scalar field. With this goal in mind, using a new numerical code which

can efficiently calculate the bi-spectrum for any triangular configuration, we have evalu-

ated the quantity f eq
NL

in a slew of models that generate features in the scalar perturbation

spectrum [109]. We find that the amplitude of f eq
NL

proves to be rather different when the

dynamics of the background turns out reasonably different, which, in retrospect, need not

be surprising at all. For instance, models such as the punctuated inflationary scenario and

the Starobinsky model which lead to very sharp features in the power spectrum also lead

to substantially large f
NL

. Such possibilities can aid us discriminate between the models

to some extent. We had focused on evaluating the quantity f
NL

in the equilateral limit. It

will be worthwhile to compute the corresponding values in the other limits, such as the

squeezed and the orthogonal limits as well. In particular, it will be interesting to examine

if the so-called consistency relation between the non-Gaussianity parameter f
NL

between

the equilateral and the squeezed limits is valid even in situations wherein extreme devia-

tions from slow roll occur (in this context, see Refs. [53, 110, 111]).

We would like to conclude by highlighting one important point. Having computed

the primordial bi-spectrum, the next logical step would be to compute the corresponding

CMB bi-spectrum, an issue which we have not touched upon as it is beyond the scope of

the current work. While tools seem to be available to evaluate the CMB bi-spectrum based

on the first order brightness function, the contribution due to the brightness function at

the second order remains to be understood satisfactorily (in this context, see Ref. [59]

and the last reference in Ref. [58]). This seems to be an important aspect that is worth

investigating closer.
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Chapter 5

The scalar bi-spectrum during preheating
in single field inflationary models

In the standard picture, at the end of the inflationary epoch, the inflaton, which is coupled

to the other fields of the standard model, decays into relativistic particles thereby transfer-

ring its energy to radiation (see, for instance, Refs. [7] and also Refs. [60, 61, 112]). These

decay products are then expected to thermalize [113] in order for the radiation dominated

epoch corresponding to the conventional hot big bang model to start.

In many models, inflation is terminated when the scalar field has rolled down close to

a minimum of the potential. Thereafter, the scalar field usually oscillates at the bottom of

the potential with an ever decreasing amplitude. There exists a period during this regime,

immediately after inflation but prior to the epoch of reheating, a phase that is often re-

ferred to as preheating [60]. During this brief phase, as in the inflationary era, the scalar

field continues to remain the dominant source that drives the expansion of the universe.

Though the modes of cosmological interest (corresponding to comoving wavenumbers k

such that, say, 10−4 < k < 1Mpc−1) are well outside the Hubble radius during this phase,

the conventional super-Hubble solutions to the curvature perturbations that are applica-

ble during inflation do not a priori hold at this stage. In fact, careful analysis is required to

evolve these modes during the phase of preheating. However, despite the subtle effects

that need to be accounted for, it can be shown that, in single field inflationary models, the

amplitude of the curvature perturbations and, hence, the amplitude as well as the shape

of the scalar power spectrum associated with the scales of cosmological interest remain

unaffected by the process of preheating (for the original effort, see Ref. [62]; for more

recent discussions, see Refs. [63, 64]).

Over the last decade, there has been a tremendous theoretical interest in understand-
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ing the extent of the non-Gaussianities that are generated during inflation [49, 51, 52,

53, 54, 55, 56, 102, 109]. Simultaneously, there has been a constant effort to arrive at in-

creasingly tighter constraints on the dimensionless non-Gaussianity parameter f
NL

that

is often used to characterize the amplitude of the reduced scalar bi-spectrum from the

available CMB data [57, 58]. For instance, as we have already mentioned, it has been the-

oretically established that slow roll inflation driven by the canonical scalar field typically

leads to rather small values of f
NL

(of the order of the first slow roll parameter) [56, 49].

In contrast, though a Gaussian primordial perturbation lies well within 2-σ, the mean

values of f
NL

from the CMB observations seem to indicate a significant amount of non-

Gaussianity [57, 58]. Such large levels for the parameter f
NL

can be generated when one

considers non-canonical scalar fields [51] or when there exist deviations from slow roll

inflation as we had discussed in the last chapter [53, 109].

We mentioned above that, in single field models, the epoch of preheating does not

affect the curvature perturbations and the scalar power spectrum generated during infla-

tion on cosmologically relevant scales. Note that, the scalar power spectrum is essentially

determined by the amplitude of the curvature perturbation. Whereas, as we had seen in

the last chapter, the scalar bi-spectrum generated during inflation involves integrals over

the curvature perturbations as well as the slow roll parameters [49, 51, 52, 53, 109]. If in-

deed deviations from slow roll inflation can result in high levels of non-Gaussianity, then,

naively, one may imagine that the termination of inflation and the regime of preheating—

both of which involve large values for the slow roll parameters—can also lead to large

non-Gaussianities. In other words, it may seem that the epoch of preheating can con-

tribute significantly to the scalar bi-spectrum. In this chapter, we shall investigate the

contributions to the scalar bi-spectrum during preheating in single field inflationary mod-

els. Remarkably, though the epoch of preheating actually amplifies specific contributions

to the bi-spectrum, as we shall illustrate, certain cancellations arise (as in the case of the

super-Hubble contributions during inflation) that leave the total bi-spectrum generated

during inflation virtually unaltered.

This chapter is organized as follows. In the following section, we shall highlight the

essential aspects of preheating in single field inflationary models. In particular, we shall

discuss the behavior of the scalar field as well as the scale factor, when a canonical scalar

field is oscillating at the bottom of an inflationary potential which behaves quadratically

near its minimum. We shall also discuss a few important points concerning the evolution

of the curvature perturbation on super-Hubble scales during preheating. In Section 5.2,

using the Maldacena formalism that we had described in last chapter, we shall evaluate

86



5.1. BEHAVIOR OF BACKGROUND AND PERTURBATIONS DURING PREHEATING

the contributions to the bi-spectrum for super-Hubble modes as the scalar field oscillates

in the quadratic potential, and show that the total contribution during this epoch proves

to be insignificant for these modes. We shall also support certain analytical results with

the corresponding numerical computations. Finally, in Section 5.3, we shall conclude with

a brief summary and outlook.

5.1 Behavior of the background and the large scale

perturbations during preheating

In this section, we shall discuss the behavior of the background and the evolution of

the curvature perturbation on super-Hubble scales during preheating. We shall consider

a model involving the canonical scalar field and assume that the inflationary potential

behaves quadratically around its minimum.

5.1.1 Background evolution about a quadratic minimum

Consider a canonical scalar field φ that is governed by the quadratic potential V (φ) =

m2 φ2/2 near its minimum. It is well known that, in such cases, slow roll inflation can

be realized if the field starts sufficiently far away from the minimum, with suitably small

values for its velocity [6, 7]. Provided the initial conditions fall in the basin of the infla-

tionary attractor, the number of e-folds of inflation achieved largely depends only on the

initial value of the field, and inflation ends as the field nears the bottom of the potential.

In fact, according to the slow roll approximation, in an inflationary potential that con-

sists of no terms other than the above-mentioned quadratic one, inflation gets terminated

as the field crosses φe ≃
√
2 M

Pl
. Thereafter, the scalar field oscillates about the mini-

mum with a constantly decreasing amplitude because of the friction caused due to the

expansion. These behavior are clearly evident from Figure 5.1, where we have plotted

the evolution of the scalar field and the first slow roll parameter ǫ1, arrived at numeri-

cally, both during and immediately after inflation for the quadratic potential. We should

emphasize here that focusing on single field models can be considered to be essentially

equivalent to assuming that the coupling of the inflaton to other fields is suitably weak

during preheating. The weak coupling will allow the condensate to live sufficiently long

for a few oscillations to take place about the minimum of the inflaton potential.

87



CHAPTER 5. THE SCALAR BI-SPECTRUM DURING PREHEATING

Figure 5.1: The behavior of the scalar field (top panel) and the evolution of the first slow
roll parameter ǫ1 (bottom panel) during the epochs of inflation and preheating have been
plotted as a function of the number of e-folds for the case of the archetypical chaotic infla-
tionary model described by the quadratic potential. The blue curves denote the numerical
results, while the dotted red curves in the insets represent the analytical results given by
Eqs. (5.4) and (5.6) that are applicable during preheating. The analytical results evidently
match the numerical ones quite well. Note that, for the choice parameters and initial con-
ditions that we have worked with, ǫ1 turns unity at the e-fold of Ne ≃ 28.3, indicating the
termination of inflation at the point. The fact that the field oscillates with a smaller and
smaller amplitude once inflation has ended is clear from the inset (in the top panel). We
should mention that we have worked with a smaller range of e-folds just for convenience.
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Recall that, the first slow roll parameter ǫ1 is given by [cf. Eq. (1.7)]

ǫ1 = − Ḣ

H2
=

φ̇2

2H2M2
Pl

, (5.1)

while the second slow roll parameter ǫ2 can be expressed in terms of the first as follows

[cf. Eq. (1.8)]:

ǫ2 ≡
1

ǫ1

dǫ1
dN

=
ǫ̇1
Hǫ1

. (5.2)

Since the field is oscillating at the bottom of the potential post inflation, φ̇ = 0 at the ‘turn-

ing points’ and, hence, ǫ1 = 0 at such instances. Also, when the field is at the bottom of the

potential, V (φ = 0) = 0 so that 6H2M2
Pl
= φ̇2, corresponding to ǫ1 = 3. Hence, we can ex-

pect ǫ1 to oscillate between these two extreme values. Moreover, the above expression for

the second slow roll parameter in terms of the first suggests that ǫ2 will vanish whenever

ǫ1 reaches the maximum value (i.e. at the bottom of the potential wherein ǫ̇1 = 0), and that

it will diverge at the ‘turning points’ wherein ǫ1 vanishes. These behavior too are indeed

reflected in the plot of ǫ1 in Figure 5.1 and, in Figure 5.2, where we have plotted ǫ2.

Let us now try to arrive at the complete behavior of the background scalar field an-

alytically. During the phase of preheating, one finds that the period of the oscillations

(characterized by the inverse mass in the case of the quadratic potential of our interest)

is much smaller than the time scales associated with the expansion, i.e. the inverse of the

Hubble parameter H−1. In such a situation, to understand the effects of the scalar field

on the scale factor, one can average over the oscillations and make use of the averaged

energy density of the scalar field to solve the first Friedmann equation. One finds that, in

the quadratic potential of our interest, the expansion behaves as in a matter dominated

epoch, with the scale factor growing as a(t) ∝ t2/3, so that the Hubble parameter behaves

as H = 2/(3 t) [6, 7, 60].

Therefore, at the time of preheating, the oscillating scalar field satisfies the differential

equation [cf. Eq. (1.6)]

φ̈+
2

t
φ̇+m2 φ = 0. (5.3)

The solution to this differential equation can be immediately written down to be

φ(t)

M
Pl

=
α

m t
sin (mt+∆), (5.4)

where α is a dimensionless constant that we shall soon determine, while ∆ is an arbitrary

phase chosen suitably to match the transition from inflation to the matter dominated era.
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Figure 5.2: The behavior of the second slow roll parameter ǫ2 immediately after the ter-
mination of inflation has been plotted as a function of e-folds. As in the previous figure,
the blue curve represents the numerical result, while the dashed red curve denotes the
analytical result during preheating [viz. Eq. (5.7)]. Upon comparing this plot with the
earlier plot of ǫ1, it is clear that ǫ2 diverges exactly at the turning points where ǫ1 vanishes,
while ǫ2 itself vanishes whenever the field is at the bottom of the potential at which point
ǫ1 attains its maximum value.
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The ‘velocity’ of the field is then given by

φ̇(t)

M
Pl

=
α

t

[
cos (mt+∆)− 1

mt
sin (mt+∆)

]

≃ α

t
cos (mt+∆), (5.5)

where, in arriving at the second expression, for the sake of consistency (i.e. in having

made use of the averaged energy density in the first Friedmann equation to arrive at

the scale factor), we have ignored the second term involving t−2. Upon using the above

expressions for φ and φ̇ and the fact that H = 2/(3 t) in the first Friedmann equation, we

obtain that α =
√
8/3. Under these conditions, we find that the first slow roll parameter

simplifies to

ǫ1 ≃ 3 cos2(mt+∆) (5.6)

which, upon averaging, reduces to 3/2, as is expected in a matter dominated epoch. It is

represented in Figure 5.1 (bottom panel). On using the above result for ǫ1 in the defini-

tion (5.2), the second slow roll parameter can be obtained to be

ǫ2(t) ≃ −3mt tan (mt+∆) , (5.7)

which is illustrated in Figure 5.2.

During preheating, we can write a(t) = ae (t/te)
2/3, where te and ae denote the cosmic

time and the scale factor at the end of inflation. We should mention here that, in addition

to the phase ∆, one requires the value of te in order to match the above analytical results

for the scalar field and the slow roll parameters with the numerical results. After setting

te = γ [2/(3He)], where He is the value of the Hubble parameter at the end of inflation,

we have chosen the quantity γ and the phase ∆ suitably so as to match the analytical

expressions with the numerical results. It is clear from Figures 5.1 and 5.2 that the agree-

ment between the numerical and the analytical results is indeed very good. We should

mention here that, for the results to match, we seem to require a γ that is slightly larger

than unity. Actually, for the values of the parameters that we have worked with, we find

that we need to choose γ to be about 1.18 for the analytical results to match the numerical

ones. The fact that γ is not strictly unity need not come as a surprise. After all, some time

is bound to elapse as the universe makes the transition from an inflationary epoch to the

behavior as in a matter dominated era.
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5.1.2 Evolution of the perturbations

As we had described in the last chapter, the scalar bi-spectrum generated during infla-

tion involves integrals over the modes fk and its derivative f ′
k as well as the slow roll

parameters ǫ1, ǫ2 and the derivative ǫ′2. Since the scalar field continues to dominate the

background evolution during preheating, the Maldacena formalism that we had outlined

in Section 4.2 applies to the epoch of preheating as well. So, in order to analyze the ef-

fects on the bi-spectrum due to preheating, it becomes imperative that, in addition to the

behavior of the slow roll parameters, we also understand the evolution of the mode fk

and its derivative during this epoch. We have already studied the behavior of the first

two slow roll parameters in the previous subsection. Therefore, our immediate aim will

be to understand the evolution of the curvature perturbations for scales of cosmological

interest during the preheating phase.

Since the modes of cosmological interest are well outside the Hubble radius

[i.e. k/(aH) ≪ 1] at late times, we need to arrive at the super-Hubble solution for the

mode fk or, equivalently, the Mukhanov-Sasaki variable vk. In a slow roll inflationary

regime, i.e. when (ǫ1, ǫ2, ǫ3) ≪ 1, the effective potential z′′/z that governs the evolution of

vk [cf. Eq. (1.16)] can be written as

z′′

z
= a2H2 [2 +O (ǫ1, ǫ2, ǫ3)] ≃ 2 a2H2. (5.8)

Due to this reason, during slow roll inflation, the super-Hubble condition k/(aH) ≪
1 amounts to neglecting the k2 term with respect to the effective potential z′′/z in the

differential equation (1.16). In such a case, it is straightforward to show that the super-

Hubble solution to vk up to the order k2 can be expressed as follows [6, 7]:

vk(η) ≃ Ak z(η)

[
1− k2

∫ η dη̄

z2(η̄)

∫ η̄

dη̃ z2(η̃)

]

+Bk z(η)

∫ η dη̄

z2(η̄)

[
1− k2

∫ η̄

dη̃ z2(η̃)

∫ η̃ dη̆

z2(η̆)

]
, (5.9)

where Ak and Bk are k-dependent constants that are determined by the Bunch-Davies

initial condition (1.23) imposed in the sub-Hubble limit. As is well known, the first term

involving Ak represents the growing mode, while the second containing Bk corresponds

to the decaying mode. In fact, it is the fk and f ′
k corresponding to the dominant terms

in the above expression for vk that we had made use of in the last chapter when calcu-

lating the super-Hubble contributions to the bi-spectrum during inflation [cf. Eqs. (4.14)

and (4.15)]. However, it is important to realize that, at the time of preheating, the effective
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potential z′′/z is no longer given by the slow roll expression (5.8). It is clear that the effec-

tive potential will contain oscillatory functions and, hence, it can even possibly vanish.

So, it is not a priori obvious that one can use the same approach as in the inflationary

epoch and simply ignore the k2 term in the differential equation (1.16) for arriving at the

behavior of the super-Hubble modes. Moreover, it is known that, during the preheating

phase, one has to deal with the resonant behavior exhibited by the equation of motion

under certain conditions [62, 63]. As a consequence, at this stage, it becomes necessary

that we remain cautious and analyze equation (1.16) more carefully.

In order to study the perturbations during the preheating phase, it proves to be more

convenient to work in terms of cosmic time and use a new rescaled variable Vk that is

related to the Mukhanov-Sasaki variable as follows: Vk ≡ a1/2 vk. Then, one finds that

Eq. (1.16) takes the form [62, 63]

V̈k +

[
k2

a2
+

d2V

dφ2
+

3 φ̇2

M2
Pl

− φ̇4

2H2M4
Pl

+
3

4M2
Pl

(
φ̇2

2
− V

)
+

2 φ̇

HM2
Pl

dV

dφ

]
Vk = 0. (5.10)

Recall that, in the quadratic potential of our interest, soon after inflation, the evolution

of the scalar field φ(t) is given by Eq. (5.4). Using this solution and its derivative (5.5),

it is then easy to show that, while the third, fourth and the fifth terms within the square

brackets in the above differential equation decay as a−3, the last term decays more slowly

as it scales as a−3/2. Upon retaining only the first, second and the last terms and neglecting

the others, one arrives at an equation of the form

d2Vk

dσ2
+

[
1 +

k2

m2 a2
− 4

mte

(ae
a

)3/2
cos (2 σ + 2∆)

]
Vk = 0, (5.11)

where the new independent variable σ is a dimensionless quantity which we have defined

to be σ ≡ mt + π/4. We can rewrite the above equation as

d2Vk

dσ2
+ [Ak − 2 q cos (2 σ + 2∆)] Vk = 0, (5.12)

with Ak and q being given by

Ak = 1 +
k2

m2a2
, (5.13)

q =
2

mte

(ae
a

)3/2
, (5.14)

where, as we mentioned, te and ae denote the cosmic time and the scale factor when

inflation ends. The above equation is similar in form to the Mathieu equation (see, for
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instance, Ref. [114]). The Mathieu equation possesses unstable solutions that are known

to grow rapidly when the values of the parameters fall in certain domains known as the

resonant bands. As discussed in detail in Refs. [60, 63], since q ≪ 1 in the situation of our

interest, one falls in the narrow resonance regime. In such a case, the first instability band

is delineated by the condition 1− q < Ak < 1 + q, which turns out to be equivalent to the

condition

0 <
k

a
<

√
3Hm. (5.15)

It should be emphasized here that the time evolution of the quantities Ak and q are such

that, once a mode has entered the resonance band, it remains inside it during the entire

oscillatory phase.

Note that, in Eq. (5.11), we can neglect the term involving k2 provided k2/(m2 a2) ≪ 1.

This condition can be rewritten as

(
k

aH

)2
H2

m2
≪ 1. (5.16)

On the other hand, the condition to fall in the first instability band, viz. Eq. (5.15), can be

expressed as [63] (
k

aH

)2
H

3m
≪ 1. (5.17)

Given that, H < m immediately after inflation, it is evident that the first of the above two

conditions will be satisfied if the second is. In other words, being in the first instability

band implies that one can indeed neglect the k2 term in Eq. (5.11). But, clearly, this is

completely equivalent to ignoring the k2 term in the original equation (1.16). Therefore,

we can conclude that, provided we fall in the first instability band (which is the case for

the range of modes and parameters of our interest), it is perfectly valid to work with the

super-Hubble solution (5.9) even during the preheating phase.

The above conclusion can also supported by the following arguments. As discussed

in Ref. [63], in the first instability band, the Floquet index is given by µ = q/2. In such a

case, the mode Vk behaves as Vk ∝ eµ σ. However, in the situation of our interest, since

we have a time dependent Floquet index, the corresponding solution can be written as

Vk(η) ∝ exp

(∫
µ dσ

)
∝ a3/2 (5.18)

which, in turn, implies that vk = Vk/a
1/2 ∝ a. Further, since, fk = vk/z and z ∝ a during

preheating (i.e. if one makes use of the fact that ǫ1 = 3/2 on the average), we arrive at
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the result that fk remains a constant during this phase. This property is indeed the well

known behavior one obtains if one simply retains the very first term of the growing mode

in the super-Hubble solution (5.9). But, it should be realized that the above arguments

also demonstrate another important point. Note that fk is a constant not only for modes

on super-Hubble scales but, for all the modes (even those that remain in the sub-Hubble

domain), provided they fall in the resonance band. This behavior can possibly be at-

tributed to the background. After all, it is common knowledge that the amplitude of the

curvature perturbations remain constant on all scales in a matter dominated era [6, 7].

We have proven that, in the first instability band and on super-Hubble scales, the so-

lution (5.9) is valid during preheating. Let us now analyze this solution in further detail.

In particular, in order to check the extent of its validity, let us compare the analytical

estimate for the curvature perturbation with the numerical solution. It is clear that the

solution (5.9) leads to the following expression for the growing mode:

fk(η) ≃ Ak

[
1− k2

∫ η dη̄

z2(η̄)

∫ η̄

dη̃ z2(η̃)

]
, (5.19)

where we have retained the scale dependent correction for comparison with the numeri-

cal result. Since it is the contribution due to the growing mode that will prove to be dom-

inant, we shall compare the behavior of the above solution during preheating with the

corresponding numerical result. We shall carry out the comparison for a suitably small

scale mode so that the second term in the above expression is not completely insignificant.

We now need to evaluate the double integral in the above expression for fk during

preheating. Let us write

K(t) =

∫ η dη̄

z2(η̄)
J(η̄) =

∫ t dt̄

a(t̄) z2(t̄)
J(t̄), (5.20)

where

J(t̄) =

∫ η̄

dη̃ z2(η̃) =

∫ t̄ dt̃

a(t̃)
z2(t̃). (5.21)

Upon making use of the matter dominated behavior of the scale factor and the expres-

sion (5.6) for ǫ1, we find that the integral J(t̄) can be performed exactly. We obtain that

J(t̄) =
3

2
M2

Pl
ae te

[
6

5

(
t̄

te

)5/3

+ e2 i∆ (−2 im te)
−5/3 γ

(
5

3
,−2 im t̄

)

+e−2 i∆ (2 im te)
−5/3 γ

(
5

3
, 2 im t̄

)
+ C
]
, (5.22)
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where γ(b, x) is the incomplete Gamma function (see, for example, Refs. [115, 116]), while

the quantity C is a dimensionless constant of integration. Then, the relation between the

incomplete Gamma and the Gamma functions allows us to express the function K(t) as

follows:

K(t) ≃ te
4 a2e

∫ t dt̄

cos2(m t̄ +∆)

[
6

5

(
te
t̄

)1/3

+ e2 i∆ (−2 im te)
−5/3 Γ

(
5

3

) (
te
t̄

)2

− e2 i (m t̄+∆) (−2 im te)
−1

(
te
t̄

)4/3

+ e−2 i∆ (2 im te)
−5/3 Γ

(
5

3

) (
te
t̄

)2

− e−2 i (m t̄+∆) (2 im te)
−1

(
te
t̄

)4/3

+ C
(
te
t̄

)2
]

≃ 3 t
4/3
e

10 a2e

∫ t dt̄ t̄−1/3

cos2(m t̄+∆)
+ · · · . (5.23)

In arriving at the final equality, we have used the asymptotic property of the incomplete

Gamma function [115, 116] and have retained only the dominant term in inverse power

of mt. The final expression above can be integrated by parts to arrive at

K(t) ≃ 3 t
4/3
e

10ma2e
t−1/3 tan (mt +∆) +

t
4/3
e

10ma2e

∫ t

dt̄ t̄−4/3 tan (m t̄+∆). (5.24)

The second term containing the integral in this expression is of the order of the other

terms that we have already neglected and, hence, it too can be ignored. As a result, the

growing mode of the curvature perturbation can be written as

fk ≃ Ak

[
1− 3

10

k2 t
4/3
e

a2e mt1/3
tan (mt +∆)

]

= Ak

[
1− 1

5

(
k

aH

)2
H

m
tan (mt+∆)

]
, (5.25)

in perfect agreement with the result that has been obtained recently in the literature [64].

It is evident from the above expression that the evolution of the curvature perturbation

will contain sharp spikes during preheating, a feature that is clearly visible in Figure 5.3

wherein we have plotted the above analytical expression as well as the corresponding

numerical result (in this context, also see Figure 4 in the first reference in Refs. [63], where

the spikes are also clearly visible).

It is important that we make a couple of remarks concerning the appearance of the

spikes in the evolution of the curvature perturbation. Firstly, as the spikes are encoun-

tered both analytically and numerically, evidently, they are not artifacts of the adopted

96



5.1. BEHAVIOR OF BACKGROUND AND PERTURBATIONS DURING PREHEATING

Figure 5.3: The behavior of the curvature perturbation during preheating. The blue curve
denotes the numerical result, while the dashed red curve represents the analytical so-
lution (5.25). We have chosen to work with a very small scale mode k that leaves the
Hubble radius at about two e-folds before the end of inflation. We have made use of
the same value of ∆ as in the previous two figures and we have fixed Ak [cf. Eq. (5.25)]
by choosing it to be the numerical value of the curvature perturbation at a suitable time
close to the end of inflation. It is clear that the agreement between the analytical and the
numerical results is quite good.
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approach. Secondly, one may fear that the perturbation theory would break down as

soon as one encounters a spike, which indicates a rather large value for the perturbation

variable of interest. We believe that such issues could possibly be avoided when one

couples the inflaton to radiation, as is needed to reheat the universe.

5.2 The contributions to the scalar bi-spectrum during

preheating

As we mentioned, because of the fact that the scalar field continues to be the dominant

source driving the expansion during preheating, the Maldacena formalism that we had

outlined in the last chapter can be utilized to evaluate the contributions to the scalar bi-

spectrum due to the epoch. Our goal now is to use the formalism and determine the

different contributions to the bi-spectrum due to preheating for modes of cosmological

interest.

Let ηe denote the conformal time at the end of inflation (as in the previous chapter),

while ηf represent a suitably late time during preheating at which we are interested in

computing the scalar bi-spectrum. Then, evidently, during preheating, the various in-

tegrals describing the quantities G1–G6 [cf. Eqs. (4.11a)–(4.11f)] that determine the scalar

bi-spectrum [cf. Eq. (4.10)] will run from ηe to ηf . Further, the contribution due to the

field redefinition, viz. G7, needs to evaluated at ηf . It is clear from the discussion in the

last section that, despite the non-trivial background evolution, during preheating, the

leading behaviour of the mode fk and its derivative f ′
k continue to be described by the

conventional, inflationary, super-Hubble solutions [cf. Eqs. (4.14) and (4.15)]. Therefore,

barring the differences that arise due to the behavior of the background and the slow

roll parameters, we can expect that the arguments we had presented in the last chapter,

while calculating the super-Hubble contributions to the bi-spectrum, to apply for the case

of preheating as well. In what follows, we shall rapidly extend these arguments to the

epoch of preheating and estimate the corresponding contribution to the non-Gaussianity

parameter in the equilateral limit, viz. f eq
NL

.

5.2.1 The fourth and the seventh terms

Recall that, the conclusions we had arrived at in the last chapter regarding the super-

Hubble contributions due to the fourth and the seventh terms, viz. G4 and G7, was only

based on the behavior of the large scale modes (cf. Section 4.3.1). Since these behavior
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continue even after inflation, provided the background continues to be dominated by the

scalar field, these arguments will hold even during preheating. Therefore, it is evident

that the corresponding contribution due to the fourth term can be obtained to be

G4(k1,k2,k3) ≃ −1

2
[ǫ2(ηf)− ǫ2(ηe)]

[
|Ak1|2 |Ak2|2 + two permutations

]
. (5.26)

Though the second slow roll parameter ǫ2 grows extremely large during preheating [see

Eq. (5.7) as well as Figure 5.2], as in the case of super-Hubble modes during inflation,

the first of these terms [involving ǫ2(ηf)] exactly cancels the contribution G7(k1,k2,k3)

[cf. Eq. (4.12)] that arises due to the field redefinition (with fk set to Ak). In other words,

though individual contributions turn out to be large, the sum of the contributions due to

the fourth and the seventh terms prove to be insignificant during preheating.

Before we go on to discuss the behavior of the other contributions, we should empha-

size here that the above result for the fourth and the seventh terms applies to all single

field models. It is important to appreciate the fact that we have made no assumptions

whatsoever about the inflationary potential in arriving at the above conclusion. However,

one should keep in mind that, regarding its behavior near the minima, we have made use

of the fact that the potential can be approximated by a parabola. Indeed, it is with this ex-

plicit form that we have been able to identify a solution to the Mukhanov-Sasaki equation

that leads to a constant curvature perturbation.

5.2.2 The second term

Upon using the behavior (4.14) of the large scale modes, it is straightforward to show that,

during preheating, the contribution to the bi-spectrum due to the second term is given by

G2(k1,k2,k3) = −2 iM2
Pl

(k1 · k2 + two permutations) |Ak1 |2 |Ak2 |2 |Ak3 |2

× [I2(ηf , ηe)− I∗2 (ηf , ηe)] , (5.27)

where the quantity I2(ηf , ηe) is described by the integral

I2(ηf , ηe) =

∫ ηf

ηe

dη a2 ǫ21. (5.28)

Clearly, as in the case of the super-Hubble contributions during inflation, G2(k1,k2,k3)

identically vanishes since I2(ηf , ηe) is real. Needless to add, this implies that the second

term does not contribute to the bi-spectrum during preheating. Again we should empha-

size the fact that, as in the case of the fourth and the seventh terms, this result holds good
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for any inflationary model provided it can be approximated by a parabola in the vicinity

of its minimum.

In order to check that our assumptions and approximations are indeed valid, let us

now estimate the quantity G2(k1,k2,k3) analytically during preheating for the case of the

quadratic potential and compare with the corresponding numerical result. In such a case,

the integral I2(ηf , ηe) can be carried out along similar lines to the integral J(t̄) that we

had evaluated earlier [cf. Eq. (5.22)]. We find that it can be expressed in terms of the

incomplete Gamma function γ(b, x) as follows:

I2(ηf , ηe) =
9 ae te
16

(mte)
−5/3

(
18

5
(mte)

5/3
[
e5 (Nf−Ne)/2 − 1

]

+4 (−2 i)−5/3 e2 i∆
{
γ

[
5

3
,−2 im te e

3 (Nf−Ne)/2

]
− γ

(
5

3
,−2 im te

)}

+4 (2 i)−5/3 e−2 i∆

{
γ

[
5

3
, 2 im te e

3 (Nf−Ne)/2

]
− γ

(
5

3
, 2 im te

)}

+ (−4 i)−5/3 e4 i∆
{
γ

[
5

3
,−4 im te e

3 (Nf−Ne)/2

]
− γ

(
5

3
,−4 im te

)}

+ (4 i)−5/3 e−4 i∆

{
γ

[
5

3
, 4 im te e

3 (Nf−Ne)/2

]
− γ

(
5

3
, 4 im te

)})
, (5.29)

where Ne and Nf denote the e-folds corresponding to the conformal times ηe and ηf , re-

spectively. On the other hand, had we ignored the oscillations during preheating, and

assumed that the background behavior is exactly the same as in a matter dominated era,

then, since, 〈〈ǫ1〉〉 = 3/2, the quantity 〈〈I2(ηf , ηe)〉〉 can be trivially evaluated to yield

〈〈I2(ηf , ηe)〉〉 =
27 ae te
20

[
e5 (Nf−Ne)/2 − 1

]
. (5.30)

We have plotted the quantity G2(k1,k2,k3) in the equilateral limit, i.e. when k1 = k2 = k3 =

k, corresponding to the analytical expressions (5.29) and (5.30) as well as the numerical

result as a function of upper limit Nf during preheating in Figure 5.4. The agreement

between the analytical and the numerical results is indeed striking.

5.2.3 The remaining terms

The contributions due to the remaining terms, viz. the first, the third, the fifth and the

sixth, can be easily evaluated as in the case of the super-Hubble contributions during

inflation. We find that the contribution to the bi-spectrum due to the first and the third
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Figure 5.4: The behavior of the quantity G2(k1,k2,k3) in the equilateral limit, i.e. when
k1 = k2 = k3 = k, for a mode that leaves the Hubble radius at about 20 e-folds before the
end of inflation. The blue curve represents the numerical result. The dashed red curve
denotes the analytical result arrived at using the integral (5.29) and with the same choice
of ∆ as in the last three figures. The dotted green curve corresponds to the integral (5.30)
obtained when the oscillations have been ignored. As in the previous figure, the value
of Ak has been fixed by choosing it to be the numerical value of the curvature perturba-
tion on super-Hubble scales. Needless to add, the match between the analytical and the
numerical results is excellent.
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terms during preheating can be written as

G1(k1,k2,k3) +G3(k1,k2,k3) = 2 iM2
Pl

[(
1− k1 · k2

k2
2

− k1 · k3

k2
3

)
|Ak1 |2

×
(
Ak2B̄

∗
k2
Ak3B̄

∗
k3

−A∗
k2
B̄k2A

∗
k3
B̄k3

)

+ two permutations

]
I13(ηf , ηe), (5.31)

where the quantity I13(ηf , ηe) represents the integral

I13(ηf , ηe) =

∫ ηf

ηe

dη

a2
. (5.32)

This integral can be trivially carried out during preheating to yield

I13(ηf , ηe) =
te
a3e

[
1− e−3 (Nf−Ne)/2

]
. (5.33)

Since the second term in this expression for I13(ηf , ηe) dies quickly with growing Nf , the

corresponding contribution to the bi-spectrum proves to be negligible.

The contributions due to the fifth and the sixth terms during preheating can be arrived

at in a similar fashion. We obtain that

G5(k1,k2,k3) +G6(k1,k2,k3) =
iM2

Pl

2

{[
k1 · k2

k2
2

+
k1 · k3

k2
3

+
k2
1 (k2 · k3)

k2
2 k

2
3

]
|Ak1|2

(
Ak2 B̄

∗
k2
Ak3 B̄

∗
k3

− A∗
k2
B̄k2 A

∗
k3
B̄k3

)

+ two permutations

}
I56(ηf , ηe), (5.34)

with I56(ηf , ηe) denoting the integral

I56(ηf , ηe) =

∫ ηf

ηe

dη

a2
ǫ1. (5.35)

This integral too can be evaluated rather easily to arrive at the following expression:

I56(ηf , ηe) =
3 te
a3e

(
cos2 (mte +∆)− e−3 (Nf−Ne)/2 cos2

[
mte e

3 (Nf−Ne)/2 +∆
]

+mte cos (2∆)
{
Si (2mte)− Si

[
2mte e

3 (Nf−Ne)/2
]}

+mte sin (2∆)
{
Ci (2mte)− Ci

[
2mte e

3(Nf−Ne)/2
]}
)
, (5.36)
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where Si(x) and Ci(x) are the sine and the cosine integral functions [115, 116]. And, had

we ignored the oscillations, we would have arrived at

〈〈I56(ηf , ηe)〉〉 =
3 te
2 a3e

[
1− e−3 (Nf−Ne)/2

]
, (5.37)

which is of the same order as I13(ηf , ηe), and hence completely negligible as we had dis-

cussed.

5.2.4 The contribution to f
NL

during preheating

Let us now actually estimate the extent of the contribution to the non-Gaussianity param-

eter f
NL

during preheating. Since the contributions due to the combination of the fourth

plus the seventh and the second term completely vanish at late times, the non-zero contri-

bution to the bi-spectrum during preheating is determined by the first, the third, the fifth

and the sixth terms. Note that, if one ignores the oscillations post inflation, then one has

I56(ηf , ηe) = 3 I13(ηf , ηe)/2. In such a situation, we find that the non-trivial contributions

lead to the following bi-spectrum in the simpler case of the equilateral limit:

Geq(k) =
69 iM2

Pl

8
|Ak|2

(
A2

k B̄
∗
k
2 − A∗

k
2 B̄2

k

)
I13(ηf , ηe). (5.38)

Upon making use of the fact that fk ≃ Ak at late times, we then obtain the contribution

to the non-Gaussianity parameter in the equilateral limit, viz. f eq
NL

[cf. Eq. (4.34)], during

preheating to be

f eq
NL
(k) ≃ −115 iM2

Pl

48

(
A2

k B̄
∗
k
2 − A∗

k
2 B̄2

k

|Ak|2
)

I13(ηf , ηe). (5.39)

In order to explicitly calculate the parameter f
NL

, we need to first specify the inflation-

ary scenario. We shall choose to work with power law inflation, as we had done in the last

chapter while estimating the super-Hubble contributions to the non-Gaussianity param-

eter f
NL

during inflation. In such a case, upon inserting the corresponding expressions for

the quantities Ak and Bk [cf. Eqs. (4.39)] in Eq. (5.39) above, we arrive at

f eq
NL
(k) =

115 ǫ1
288 π

Γ2

(
γ +

1

2

)
22 γ+1 (2 γ + 1)2 sin (2 π γ) |γ + 1|−2 (γ+1)

×
[
1− e−3 (Nf−Ne)/2

] ( k

aeHe

)−(2 γ+1)

. (5.40)
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This expression can also be rewritten in terms of the parameters describing the post-

inflationary evolution. We obtain that [117]

f eq
NL
(k) =

115 ǫ1
288 π

Γ2

(
γ +

1

2

)
22 γ+1 (2 γ + 1)2 sin (2 π γ) |γ + 1|−2 (γ+1) [1− e−3 (Nf−Ne)/2

]

×
[(

π2 g∗
30

)−1/4

(1 + zeq)
1/4 ρ

1/4
c

Trh

]−(2 γ+1) (
k

a0H0

)−(2β+1)

, (5.41)

where g∗ denotes the effective number of relativistic degrees of freedom at reheating, Trh

the reheating temperature and zeq the redshift at the epoch of equality. Also, recall that, ρc,

a0 and H0 represent the critical energy density, the scale factor and the Hubble parameter

today, respectively. The above expression is mainly determined by the ratio ρ
1/4
c /Trh. For

a model with γ ≃ −2 and a reheating temperature of Trh ≃ 1010GeV, one obtains that

f
NL

∼ 10−60 for the modes of cosmological interest (i.e. for k such that k/a0 ≃ H0), a value

which is completely unobservable. This confirms and quantifies our result that, in the

case of single field inflation, the epoch of preheating does not alter the amplitude of the

scalar bi-spectrum generated during inflation [118]. However, it is worthwhile to add

that, while the amplitude of the above non-Gaussianity parameter f
NL

is small, it seems

to be strongly scale dependent.

We believe that a couple of points require further emphasis at this stage of our dis-

cussion. Recall that, to fall within the first instability band during preheating, the modes

need to satisfy the condition (5.15). But, in order to neglect the term involving k2 in the

differential equation (5.11), the modes of interest are actually required to satisfy the con-

dition (5.16). As we have emphasized earlier, evidently, the condition (5.16) will be easily

satisfied by the large scale modes that already lie within the instability band and thereby

satisfying the condition (5.17). Therefore, it is important to appreciate the fact that the

conclusions we have arrived at above apply to all cosmologically relevant scales.

5.3 Discussion

In this chapter, we have analyzed the effects of preheating on the primordial bi-spectrum

in inflationary models involving a single canonical scalar field. We have illustrated that,

certain contributions to the bi-spectrum, such as those due to the combination of the

fourth and the seventh terms and that due to the second term, vanish identically at late

times. Further, assuming the inflationary potential to be quadratic around its minimum,

we have shown that the remaining contributions to the bi-spectrum are completely in-
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significant during the epoch of preheating when the scalar field is oscillating at the bot-

tom of the potential immediately after inflation. It is important to appreciate the fact that

the results we have arrived at apply to any single field inflationary potential that has a

parabolic shape near the minimum.

A couple of other points also need to be stressed regarding the conclusions we have

arrived at. The results we have obtained supplement the earlier results wherein it has

been shown that the power spectrum generated during inflation remains unaffected dur-

ing the epoch of preheating (see, Ref. [62]; in this context, also see Ref. [119]). Moreover,

our results are in support of earlier discussions which had pointed to the fact that the con-

tributions to the correlation functions at late times will be insignificant if the interaction

terms in the actions at the cubic and the higher orders depend on either a time or a spatial

derivative of the curvature perturbation [120].

Broadly, our effort needs to be extended in two different directions. Firstly, it is im-

portant to confirm that the conclusions we have arrived at hold true for potentials which

behave differently, say, quartically, near the minima. Further, the exercise needs to be

repeated for models involving non-canonical scalar fields [121, 122]. In this context, it is

worth mentioning that the generalization of the conserved quantity Rk in the Dirac-Born-

Infeld case has been shown to stay constant in amplitude on scales larger than the sonic

horizon, a property which allows us to propagate the spectrum from horizon exit till the

beginning of the radiation dominated era [121]. Secondly, as we had mentioned, preheat-

ing is followed by an epoch of reheating when the energy from the inflaton is expected

to be transferred to radiation. It will be interesting to examine the evolution of the bi-

spectrum during reheating. However, in order to achieve reheating, the scalar field needs

to be coupled to radiation. It is clear that the formalism for evaluating the bi-spectrum

involving just the inflaton is required to be extended to a situation wherein radiation too

is present and is also coupled to the scalar field.

However, possibly, the most interesting direction opened up by our work concerns

multi-field inflation and associated non-Gaussianities [123]. Unlike single field models

wherein the curvature perturbation associated with the large scale modes is conserved

at late times, such a behavior is not necessarily true in multi-field inflation. When many

fields are present, the entropy (i.e. the iso-curvature) fluctuations can cause the evolution

of curvature perturbations even on super-Hubble scales. Further, in the case of multi-field

inflation, it is known that the two-point correlation function can be affected by metric

preheating [124]. In other words, the power spectrum calculated at the end of multi-field

inflation is not necessarily the power spectrum observed in, say, the CMB data because
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the post-inflationary dynamics (that is to say preheating instabilities) can modify it. In

the same manner, it is tempting to conjecture that the scalar bi-spectrum calculated at

the end of multi-field inflation will not necessarily be the same as the one observed in

the data [125]. In particular, the so-called consistency relations [52], which relate the

three-point and the four-point correlation functions (or, equivalently, the corresponding

dimensionless non-Gaussianity parameters f
NL

and τ
NL

) might receive corrections in a

multi-field context due to metric preheating.
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Chapter 6

Effects of primordial features on the
formation of halos

As we had described in the introductory chapter, apart from the CMB, the LSS data too

are expected to provide constraints on the pattern as well as the characteristics of the

primordial perturbations. Any significant change in the primordial scalar power spec-

trum will correspondingly modify the matter power spectrum [cf. Eq. (1.30)] evaluated

today. Hence, the features in the inflationary scalar perturbation spectrum that we had

discussed extensively in Chapters 2 and 3, in addition to their imprints on the CMB, will

affect the matter power spectrum which, in turn, will leave its signatures on the forma-

tion rates of the dark matter halos. In fact, the effects of steps or oscillations in the inflaton

potential on the predicted number of halos was investigated recently [126]. The analysis

was carried out with the inflationary perturbation spectrum evaluated using the slow

roll approximation. But, the slow roll parameters can turn large in the presence of steps

or oscillatory terms in the inflationary potentials and, as a result, the power spectrum

evaluated in the slow roll approximation can differ considerably from the actual power

spectrum. Moreover, with the ever increasing quality of the LSS observations, in particu-

lar, the halo power spectrum constructed using the Luminous Red Galaxies (LRG) from

the seventh data release (DR7) of SDSS [3, 4], it may be a worthwhile exercise to actu-

ally compare the models with the available data to arrive at additional constraints on the

primordial features that we had considered in the preceding chapters.

With the above points in mind, in this chapter, we shall utilize the code that we

have developed to compute the inflationary perturbation spectrum (cf. Section 4.3.3) and,

thereby, evaluate the corresponding matter power spectrum and the number of halos

formed. We shall compute the number densities and the formation rates of halos in the
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inflationary models with the step and oscillations that we had considered in Chapters 2

and 3. Our goal will be to estimate the maximum possible change in the number den-

sity and the formation rate of halos in these models, when compared with, say, inflation

driven by the simplest quadratic potential. In order to arrive at the parameter space of

interest, we shall compare the models with the CMB as well as the LSS data. Towards this

end, we shall make use of the WMAP seven-year (WMAP-7) data [19] and the LRG halo

power spectrum data from SDSS DR7 [4]. We find that the power spectra with features

that correspond to the best fit values of the inflationary parameters do not typically lead

to substantial deviations in the formation rates of halos. However, we find that, in certain

models that we consider, the potential parameters that lie within 2-σ of the best fit values

obtained from the joint constraints of WMAP and SDSS can lead to a 20% change in the

number of halos formed for halo masses ranging over 104–1014M⊙.

This chapter is organized as follows. In the following section, we shall quickly list

the inflationary models of our interest, which lead to specific features in the primordial

scalar power spectrum. We shall also outline the method that we adopt to compare the

models with the data. In Section 6.2, we shall describe the formalism to arrive at the halo

formation rate from the inflationary power spectra. In Section 6.3, we shall provide a few

essential details concerning the numerical procedures that we follow. We shall discuss

the results in Section 6.4, and we shall close with a few concluding remarks regarding the

implications of our results in Section 6.5.

6.1 Models and comparison with the data

In this section, we shall quickly discuss the inflationary models of our interest and the

scalar power spectra produced by them.

We shall work with the simplest case of inflation driven by the canonical scalar field.

We shall treat the conventional quadratic potential (2.1) to be our reference model. We

shall consider features generated due to the step (2.5) introduced in the quadratic po-

tential, and the potentials (3.1) and (3.2) which contain oscillatory terms. As we have

discussed earlier, these models result in features that lead to an improved fit to the CMB

data. In Figure 6.1, we have plotted the behavior of the first two slow roll parameters in

these models. As we have emphasized before, it is the deviations from slow roll seen in

the figure that lead to features in the scalar power spectra.
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Figure 6.1: Evolution of first two slow roll parameters ǫ1 and ǫ2 have been plotted as
a function of the number of e-folds N for the quadratic potential without and with the
step (the black and the red curves, respectively), the quadratic potential superimposed
by sinusoidal modulations (the green curve) and the axion monodromy model (the blue
curve). The curves have been plotted for potential parameters that lead to the best fit
to the recent CMB and LSS data. In the quadratic potential without the step, as is well
known, the field continues to roll slowly until the end of inflation, whereas, when the step
is introduced, it briefly deviates from slow roll around the time the field crosses the step.
In the case of the potentials with oscillations, for the best fit values, the axion monodromy
model leads to strong departures from slow roll, with ǫ2 turning ‘large’ repeatedly, right
till the termination of inflation. The insets provide a closer view of the behavior of the
slow roll parameters over a smaller range of e-folds.
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6.1.1 Comparison with the CMB and the LSS data

We compare the models with the CMB as well as the LSS data. We have worked with

the WMAP-7 data [18] and the halo power spectrum data arrived at from the LRG in

SDSS DR7 [4]. We have made use of the LSS data to ensure that the parameter values

we eventually work with to obtain the formation rate of the halos are consistent with the

observed matter power spectrum. As discussed in Chapters 2 and 3, we couple the code

we have developed for computing the inflationary perturbation spectrum to CAMB [44,

43] and COSMOMC [45, 46] to arrive at, not only the CMB angular power spectrum, but

also the corresponding matter power spectrum, in order to compare them with the data.

We have assumed the background to be the spatially flat ΛCDM model and have

worked with the same priors as we have done in our earlier analysis [cf. Chapters 2

and 3]. As far as the priors on the inflationary parameters are concerned, for the case

of the quadratic potential with the step, we have worked with the same priors that we

had mentioned in Chapter 2. In the case of the two potentials with oscillatory terms,

viz. the quadratic potential superimposed with sinusoidal oscillations (3.1) and the axion

monodromy model (3.2), we have worked with the same priors on the primary parame-

ters m and λ as we had done in Chapter 3. However, as should be evident from Table 6.1,

we have widened the priors of the parameters α and β for these potentials, when com-

pared to the values listed in Table 3.1. We should add that we have allowed the phase

parameter δ to vary from −π to π as before. The motivations for choosing these priors are

two fold. Firstly, the parameters m and λ determine the amplitude of the scalar power

spectrum. We find that choosing them to be close to their COBE normalized values allows

Model Potential Lower Upper

parameter limit limit

Quadratic potential α 0 2× 10−3

with sine modulation ln (β/M
Pl
) −3.9 0

Axion monodromy α 0 2× 10−4

model ln (β/M
Pl
) −8 0

Table 6.1: The priors that we work with on the parameters α and β which characterize the
potentials that contain oscillatory terms [cf. Eqs. (3.1) and (3.2)]. Note that the priors are
wider than the priors we had chosen in Chapter 3 (cf. Table 3.1). Also, to help us cover a
larger range, we have worked with the logarithmic value of β.
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for a faster convergence of the Markov Chains. Secondly, we have chosen the priors on α

and β such that the scalar field does not get trapped by the oscillations in the potential.

We should also note that unlike in Chapters 2 and 3, we have not included the tensor

perturbations, as the corresponding effects are negligible. Moreover, as we have dis-

cussed in Chapter 3, in the case of potentials with oscillations, which lead to fine features

in the scalar power spectrum, we will have to modify CAMB in order to ensure that the

CMB angular power spectrum is evaluated for every multipole, and compare them with

the data [98, 101]. But, we have not implemented this point here since we are only in-

terested in the marginalized probabilities of the potential parameters. These probabilities

shall indicate the extent to which deviations from a nearly scale invariant spectrum is al-

lowed by the data, which we shall then make use of to study the corresponding effects on

the formation of dark matter halos. We should also mention that we not taken the non-

linear [127] effects on the matter power spectrum, but have included the SZ effect and

the effects due to gravitational lensing in our analysis. Finally, as in our earlier analysis,

we shall set the Gelman and Rubin parameter |R− 1| to be 0.03 for convergence in all the

cases.

6.2 From the primordial spectrum to the formation rate of

halos

In this section, we shall quickly outline the standard formalism to arrive at the formation

rate of halos from the primordial power spectrum.

6.2.1 The matter power spectrum

Recall that the matter power spectrum at a given redshift P
M
(k, z) is related to the primor-

dial power spectrum P
S
(k) through the expression (1.30). Evidently, given the primordial

spectrum, we require the CDM transfer function T (k) and the growth factor D+(z) to

arrive at the matter power spectrum.

If we define D+(a) = g(a)/a, then, one finds that, in the spatially flat ΛCDM model,

the quantity g satisfies the differential equation [18, 128]

d2g

d ln a2
+

1

2
[5 + 3ΩΛ(a)]

dg

d ln a
+ 3Ωeff(a) g = 0, (6.1)

where Ωeff(a) = ΩΛ H
2
0/H

2, with ΩΛ denoting the dimensionless density parameter as-

sociated with the cosmological constant today. We shall solve this differential equa-
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tion with suitable initial conditions to obtain the growth factor D+(a). We shall utilize

CAMB [44, 43] to determine the transfer function T (k). Using these quantities, we shall

eventually arrive at the matter power spectrum from the primordial spectrum obtained in

the inflationary model of interest (see the next section on numerical methods for further

details).

6.2.2 Mass functions and the halo formation rates

To arrive at the formation rate of dark matter halos, we shall first require the number

density of collapsed halos with mass in the range of M and M + δM in a comoving

volume element. This number density, say, n(M), is defined in terms of the root mean

square fluctuation in mass σ through the so-called mass function f(σ) as follows [129]:

dn

d lnM
= −2 ρm

M

(
d ln σ(R)

d lnM

)
f(σ), (6.2)

where ρm is the mean density of non-relativistic matter in the universe. Following the

convention (see, for example, Refs. [6]), we shall define the root mean square fluctuation

in mass at the scale R to be

σ2(R) =

∫ ∞

0

d ln k P
M
(k) W̃ 2(k, R), (6.3)

where

P
M
(k) ≡ k3

2 π2
P

M
(k) (6.4)

denotes the dimensionless matter power spectrum, while W̃ (k, R) is the Fourier transform

of the window function W (x,R) that is introduced to smooth out the density perturba-

tion. We shall work with the commonly used spherical top hat window function, whose

Fourier transform is given by

W̃ (k, R) = W̃ (k R) = 3
sin (k R)− k R cos (k R)

(k R)3
, (6.5)

corresponding to the volume V (R) = 4 π R3/3. Note that the halo mass M within the

window of radius R is given by M(R) = ρm V (R).

We shall make use of the Sheth-Tormen mass function to evaluate the number den-

sity of the halos [130]. In contrast to the more conventional Press-Schechter mass func-

tion [131], it has been found that the Sheth-Tormen mass function fits the data from the

N-body simulations better. Actually, the Sheth-Tormen mass function is a generalization
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of the original Press-Schechter formalism for spherical collapse to the case of ellipsoidal

collapse. The Sheth-Tormen mass function is defined in terms of two additional parame-

ters b and p (when compared to the Press-Schechter case) as follows:

f(σ) = A
√

b ν

2 π

[
1 + (b ν)−p

]
exp− (b ν/2) , (6.6)

where ν = (δc/σ)
2, with δc = 1.686 being the threshold linear overdensity for collapse.

The Press-Schechter mass function corresponds to A = 1/2, b = 1 and p = 0. However,

upon comparing with the N-body simulation data, the best fit values for b and p are

found out to be 0.707 and 0.3, respectively. The value of A can then be arrived at from the

normalization condition on f(ν), viz. that the integral of f(ν)/ν over all ν is unity, which

leads to A = 0.3222.

The number density of halos associated with the above Sheth-Tormen mass function

is then given by

dn

d lnM
= −A ρm

M

√
2 b ν

π

[
1 + (b ν)−p

] ( d ln σ

d lnM

)
exp− (b ν/2) . (6.7)

The corresponding formation rates of the halos can be easily obtained to be [132]

R(M, z) = −dD+(z)

dz

dz

dt

1

D+(z)

[
2 p

1 + (b ν)−p
− b ν

]
dn

dM
. (6.8)

Note that the quantity dD+/dz proves to be negative, since the growth factor decreases

as the redshift increases. As a result, it is known that the above formation rate of halos

can become negative for some mass scales (when 2 p/[1+ (b ν)−p] > b ν), which in practice

can not occur. Therefore, to avoid this issue and simultaneously illustrate the effects of

features, we shall only plot the ratio of the formation rates in the inflationary models

leading to features and the conventional, smooth, quadratic potential.

6.3 The numerical methods: Essentials

Having computed the inflationary scalar perturbation spectrum (in the fashion described

in Subsection 4.3.3), we arrive at the matter power spectrum using the transfer function

and the growth factor. As we had remarked earlier, while we obtain the transfer function

from CAMB, we evaluate the growth factor by solving the differential equation (6.1). It

should be mentioned here that the initial conditions are chosen such that g is a constant
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and equal to unity in the early matter dominated epoch, i.e. at a sufficiently high redshift

of, say, z ≃ 30 [18, 133].

After having obtained the matter power spectrum, we calculate the variance σ(R) us-

ing Eq. (6.3). The integral can be evaluated numerically with the simplest of algorithms,

provided the power spectrum proves to be smooth and devoid of any features. In con-

trast, when these exist features such as repeated oscillations, certain care is required,

and we have made use of an adaptive integration routine to compute the integral in-

volved [107]. We have carried out the integral from a suitably small mode (such as

k = 10−5Mpc−1) up to a mode where the window function cuts off the integrand. Fi-

nally, we obtain at the quantity d ln σ/d lnM by numerical differentiation. We should

stress here that, keeping in mind the presence of oscillations in the power spectra, we

have computed σ and d ln σ/d lnM with care and high accuracy. We should also add that

we have cross checked our result by fitting the numerical values of σ(R) to the Cheby-

shev polynomials and calculating the corresponding derivative from the polynomial (in

this context, see Ref. [133]).

6.4 Results

In this section, we shall present the results of our comparison of the models of our interest

with the CMB and the LSS data. We shall also discuss the effects of primordial spectra

with features on the formation of halos.

6.4.1 Joint constraints from the WMAP and the SDSS data

In Table 6.2 below, we have tabulated the best fit values of the background and the po-

tential parameters obtained from the MCMC analysis using the WMAP-7 and the SDSS

LRG DR7 data. We have also listed the effective least squared parameter χ2
eff in each of

the cases. For the case of the quadratic potential with and without the step, we have ar-

rived at results similar to what we have obtained earlier in Chapter 2. Also, as one would

expect, we find that the background parameters are better constrained with the inclusion

of the additional SDSS data [134]. Moreover, it is obvious from Table 6.2 that the axion

monodromy model does not lead to the same extent of improvement in the fit as we had

obtained in Chapter 3. This occurs due to the fact that, unlike in the earlier analysis, we

have not evaluated the CMB angular power at each multipole, but have worked with

the inbuilt effective sampling and interpolation routine in CAMB. However, we should
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Model Quadratic Quadratic + step Quadratic + sine Axion monodromy

Ωb h
2 0.0222 0.0221 0.0216 0.0225

Ωc h
2 0.1162 0.1159 0.1168 0.1154

θ 1.038 1.039 1.036 1.039

τ 0.0824 0.0875 0.0836 0.0856

ln (1010A) -0.6545 -0.6406 -0.6448 0.9649

α - 1.61× 10−3 6.35× 10−5 4.4× 10−5

φ0/MPl
- 14.664 - -

∆φ/M
Pl

- 3.22× 10−3 - -

ln (β/M
Pl
) - - -2.576 -7.61

δ - - 2.208 -1.178

χ2
eff 7515.57 7507.3 7515.12 7509.56

Table 6.2: The best fit values for the background and the potential parameters for the
different models of interest obtained from the MCMC analysis using the WMAP-7 and
the SDSS LRG DR7 data. We should mention here that the parameter A denotes λ/M3

Pl

in the case of axion monodromy model and m2/M2
Pl

in the rest of the cases. As we have
discussed before, the quadratic potential with the step improves the fit to the outliers in
the CMB data around the multipoles of ℓ = 22 and 40. Moreover, as we have seen, while
the superimposed sinusoidal modulation to the quadratic potential does not provide a
better fit to the data when compared to the quadratic potential, the axion monodromy
model improves the fit to a good extent. However, note that, the monodromy model does
not improve the fit to the data to the same extent that we had discussed in Chapter 3. As
we have pointed out in the text, this arises due to the limited sampling and interpolation
by CAMB over the multipoles of interest which we have chosen to work with.

stress that this does not affect our conclusions since our focus here lies on the maximum

change in the formation of halos. Therefore, we are more interested in the allowed regions

of the parameter space rather in arriving at the precise best fit point. Also, importantly,

as we shall discuss in the following subsection, for violent oscillations in the primordial

power spectrum (when one requires computing the CMB angular power spectrum at each

multipole explicitly), the percentage change in the number density of halos proves to be

negligible in the observable mass bins.

In Figure 6.2, we have illustrated the one dimensional likelihood on the parameter φ0

in the case of the quadratic potential with a step, and it is clear that the location of the

step is highly constrained by data. The step affects the number density of halos only over
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Figure 6.2: The one dimensional likelihood on the parameter φ0 in the case of the
quadratic potential with a step (on the left) and the two dimensional constraints on the
parameters α and β in the cases of the quadratic potential with sinusoidal modulations
(in the middle) and the axion monodromy model (on the right). Note that the location of
the step φ0 is well constrained. The inner and the outer curves (in the figure in the middle
and the one on the right) correspond to the 1-σ and the 2-σ confidence contours.

highly localized mass scales. We have also plotted the marginalized two dimensional

constraints on the parameters α and β for the cases of the two oscillatory potentials. It

is noteworthy that the constraints are strikingly similar. In fact, the roughly triangular

shape of the contours can also be understood. As the parameter β decreases, the resulting

oscillations in the potential and, therefore, in the inflationary perturbation spectrum turn

more frequent, and the data constrains the amplitude α to a smaller region.

In Figure 6.3, we have plotted the best fit scalar power spectrum for the quadratic

potential with and without the step and the two oscillatory potentials. Further below,

in Figure 6.4, we have plotted the matter power spectrum P
M
(k) evaluated today corre-

sponding to the different inflationary power spectra in the previous figure. In the inset of

the figure, we have highlighted the baryon acoustic oscillations and the halo power spec-

trum data from SDSS LRG DR7. We should add here that the theoretical best fit curves

are unable to fit the data well after k ∼ 0.1 hMpc−1 due to the fact that we have not taken

the non-linear effects into account in arriving at the matter power spectrum.

6.4.2 Effects of features in the number density and the formation rate

of halos

In this section, we shall discuss the effects of the features on the number density and

the formation rates of halos in the different inflationary models of our interest. In order
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Figure 6.3: The scalar power spectra that arise in the four inflationary models of our
interest. These spectra correspond to the best fit values for which we had plotted the
evolution of the first two slow roll parameters earlier. Note that, we have worked with the
same choice of colors to represent the results from the different models as in the Figure 6.1.
We should emphasize that, while the step model leads to features that are localized, the
potentials with oscillatory terms lead to modulations in the scalar power spectrum that
extend over a wide range of scales.

to highlight the effects purely due to the primordial features, we have frozen the values

of the background cosmological parameters, viz. Ωb, Ωm, ΩΛ and H0, at the values ar-

rived at upon comparing the smooth quadratic potential with the WMAP and SDSS data

(cf. Table 6.2). But, we have made use of the best fit values for the potential parameters

to compute the inflationary scalar power spectrum and from thereon the matter power

spectrum and the number density of halos. In Figure 6.5, we have plotted the percentage

of change in the formation rate of halos in the Press-Schechter formalism and the number

density of halos in the Sheth-Tormen formalism for different models with respect to the

quadratic potential. In the case of the model with the step, the change in the number

density due to the step (corresponding to, say, its best fit value) occurs at very high mass

halos (∼ 1017M⊙) and hence lies outside our region of interest. Due to this reason, we

have only presented the results in the case of the models with oscillatory terms in the
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Figure 6.4: The best fit matter power spectrum P
M
(k) corresponding to the different infla-

tionary scalar power spectra we had plotted in the earlier figure. The inset highlights the
imprints of the primordial features on the matter power spectrum in the domain where
the baryon acoustic oscillations also play a role. The black dots with bars corresponds
to the power spectrum data from SDSS obtained upon combining main galaxies and the
LRGs with error bars arrived at from the diagonal elements of the corresponding covari-
ance matrix. It should be noted that, since we have plotted the linear power spectrum,
without taking into account the non-linear effects, the theoretical best fit curves are unable
to fit the data for k > 0.1 hMpc−1.

potential.

In order to arrive at the maximum possible change in the number density of halos

when compared to the conventional nearly scale invariant primordial spectrum, for the

models with oscillations in the potential, we have chosen values for the parameters α and

β that lie within 2-σ from the best fit values. We have chosen the parameters in such a way

that they create the largest deviation from the nearly scale invariant power spectra that

are allowed by the CMB and the LSS data. In Figure 6.5, apart from the results for the best

fit values, we have plotted the number density and the formation rates of halos for the

cases wherein [α, ln (β/M
Pl
)] is set to (2×10−3,−1.7) and (2×10−4,−3.5) for the quadratic

potential with the sinusoidal modulations and the axion monodromy model, respectively.
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Figure 6.5: The percentage change in the formation rate of halos (in the Press-Schechter
formalism, on top) and in their number density (in the Sheth-Tormen formalism, at the
bottom) for the two inflationary models containing oscillatory terms with respect to the
more conventional quadratic potential. The figures on the left correspond to the best fit
values, while those on the right correspond to values chosen within the 2-σ confidence
contours of the parameters α and β, determined from the joint constraints of the WMAP
and SDSS data, as shown in Figure 6.2. In order to highlight the effects due to the primor-
dial features, we have frozen the background parameters at the best fit values arrived at
when the primordial spectrum is determined by the quadratic potential. We have then
worked with the best fit values for the potential parameters to arrive at the figures on the
left. We have plotted the percentage change in logarithmic mass bins, i.e. ∆ log10 (M/M⊙),
of 0.2. It is clear that the features corresponding to the best fit values do not lead any
substantial difference in either the number or the formation rates of the halos. However,
note that the quadratic potential with superimposed sinusoidal oscillations leads to a 20%
change in the number of halos formed when we choose to work with values of α and β
that lie within the 2-σ contours.

In arriving at the plots, we have fixed the values of the parameter m and λ at their best fit

values as shown in the Table 6.2, since these parameters do not play a role in altering the

features in the spectrum. We have also chosen the value of δ to be the best fit value for

both the models. It is evident from the figure that, for the best fit values of the parameters,

the change in the number density is completely negligible (∼ 2%). However, we find
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that, for the case of the quadratic potential with sinusoidal modulation, the numbers can

change by as much as 20% for values of the potential parameters α and β that lie within

2-σ. It should also be highlighted that the monodromy model does not seem to lead to the

same extent of change in the number density and the rate of formation of halos, despite

the fact that it produces fine oscillations in the primordial as well as the linear matter

power spectra (cf. Figures 6.3 and 6.4). Actually, while the unbinned number density does

indicate a 5-15% change, we find that, the change proves to be smaller when we bin the

numbers in logarithmic mass bins, i.e. ∆ log10 (M/M⊙), of 0.2. Evidently, binning seems to

average out the rapid oscillations, resulting in a smaller extent of change in the numbers.

6.5 Discussion

In this chapter, we have investigated the effects of primordial features on the matter

power spectrum as well as the number of halos formed and their rate of formation.

Similar work in this context [126] had suggested that a small change in the parameters

describing the inflaton potential would lead to a drastic change in the number of halos

formed. The earlier results and conclusions had been arrived at based on the inflationary

perturbation spectrum evaluated using the slow roll approximation. In contrast, we have

carried a complete and accurate numerical analysis. Further, we have made use of the

Sheth-Tormen mass function (instead of the older Press-Schechter one) which is known

to fit the data from the N-body simulations better. We have included the baryon acous-

tic oscillations in our analysis to have a more realistic comparison. Moreover, we have

explicitly compared the potentials we have considered with the WMAP-7 and SDSS LRG

DR7 datasets to arrive at the parameter space of interest. We find that, the best fit values

for the potential parameters (with the background parameters kept fixed) lead to hardly

any change in the number of halos formed when compared to the conventional quadratic

potential that generates a nearly scale invariant primordial spectrum. However, partly

consistent with the earlier result, we find that values for the potential parameters that lie

within 2-σ of the best fit values indeed lead to a reasonable change in the number of halos

formed and in the formation rate. For instance, we find that, with superimposed sinu-

soidal modulations, the quadratic potential leads to as much as a 20% change in the halo

number density and the rate of formation [135]. Needless to mention, the step of com-

paring the models against the data is crucial as this imposes real bounds on the extent of

changes in the numbers involved. It is worthwhile to note that the inclusion of SDSS data

reduces the maximum change in number density by about 10%, when compared to case
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wherein one works with the parameters constrained by the WMAP data alone.

We would like to close this chapter with the following remarks. As we had pointed

out before, while comparing with the SDSS data, we have not taken into account the non-

linear effects on the matter power spectrum. It is for this reason that the theoretical curve

had not fit the observational data well on small scales (cf. Figure 6.4). Clearly, a more

complete analysis would involve modeling of the non-linear effects and their inclusion

in evaluating the matter power spectrum [127]. For instance, it will be interesting to

compare the results on the number of haloes formed in numerical simulations, evolved

from primordial spectra with features, with the small scale data.
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Chapter 7

Imprints of primordial non-Gaussianity
in the Ly-alpha forest

In this chapter, we shall investigate the possibility of constraining primordial non-

Gaussianity using the three dimensional (3D) bi-spectrum of the Ly-α forest. We should

mention at the outset that, in this chapter, for convenience, we shall adopt a slightly dif-

ferent notation for a couple of quantities that we have already introduced. We will make

clarifying remarks relating them to the earlier quantities, as we encounter them.

As we have discussed, the widely popular paradigm of slow roll inflation driven by a

single canonical scalar field generates adiabatic perturbations which are largely Gaussian

in nature and leads to a nearly scale invariant power spectrum [6, 7, 49]. Several theo-

retical predictions, including models leading to deviations from slow roll, however point

towards mild to severe departure from Gaussianity [50, 51, 53]. Measuring the degree

of non-Gaussianity is hence crucial towards discriminating between various inflationary

scenarios thereby enhancing our understanding of the very early universe. It is assumed

that on sub-Hubble scales the primordial gravitational potential, say, ΦP , is related to a

Gaussian random field, say, Φ
G

, through a non-linear relation of the following form:

ΦP = Φ
G
+

f
NL

c2
(
Φ2

G
− 〈Φ2

G
〉
)
, (7.1)

with the departures from Gaussianity being quantified by the parameter f
NL

. Two points

need to emphasized at this stage regarding this expression. Firstly, it should be noted

that it is essentially the same as the relation (1.27) through which we had introduced the

non-Gaussianity parameter f
NL

earlier. The earlier relation was, in fact, arrived at by the

extending the above expression to the curvature perturbation, which, as is well known,

can be related to the Bardeen potential through a suitable, constant factor [6, 7]. Secondly,
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as we had pointed out in Section 1.7, we shall explicitly display the velocity of light c in

this chapter for certain convenience.

In our analysis below, we shall assume that the parameter f
NL

is scale independent,

which, as should be evident from our discussion in Chapter 4, is a reasonable prediction

for most inflationary models where non-Gaussianity is generated on super-Hubble scales.

The value of f
NL

obtained from slow roll inflation turns out to be very small O(10−2) [49].

This implies that any detection of large f
NL

shall rule out all canonical, single field, slow

roll, inflationary models. However, as we have mentioned, the mean value of f
NL

(26±140

in the equilateral and 32± 21 in the local limit, at 1-σ confidence level) obtained from the

WMAP data [19] seems to indicate large non-Gaussianity. Although the low Signal to

Noise Ratio (SNR) in these results indicate that we are yet to detect the primordial non-

Gaussianity, it is expected that data from Planck [20] shall lead to much tighter constraints

on f
NL

and the error is expected to come down to ∆f
NL

≃ ±5 in the local limit. Other than

the CMB observations, a measurement of the bi-spectrum or the three point correlation

function of the galaxy distribution is a standard alternative method to constrain primor-

dial non-Gaussianity [136]. These probes however only provide weak bounds on the

non-Gaussianity parameter as compared to the CMB observations, with SDSS, for exam-

ple, being able to measure |f
NL
| of the order of 103 or 104.

In the post reionization epoch, small fluctuations of the neutral hydrogen (HI) density

field in a predominantly ionized IGM leads to a series of distinct absorption features, the

so-called Ly-α forest in the spectra of background quasars [66]. The Ly-α forest is a well

established and powerful probe of cosmology [137, 138]. Traditional Ly-α studies have

considered the power spectrum or bi-spectrum of the one dimensional transmitted flux

field corresponding to the quasar line of sight [138]. This approach is reasonable when the

angular density of quasars on the sky is low. The new generation of quasar surveys (the

ongoing BOSS [67] and the future BigBOSS [68]) however promise to achieve a very high

quasar density and cover large fractions of the sky. This has led to the possibility of mea-

suring the 3D Ly-α power spectrum along multiple lines of sight [139]. It is worth noting

here that the first hydro simulation of the Ly-α forest involving non-Gaussian scenarios

has been carried out recently [140].

In this chapter, we shall investigate the possibility of constraining the non-Gaussianity

parameter f
NL

using the 3D Ly-α forest bi-spectrum. Similar to the power spectrum stud-

ies, the Ly-α flux distribution is assumed to be a biased tracer of the underlying matter

field sampled along discrete sight lines. We shall explore the range of observational pa-

rameters for the constraints on f
NL

from the 3D analysis to be competitive with the CMB
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and the LSS studies.

7.1 Formalism

The post reionization matter overdensity field ∆(x) in Fourier space (∆k) can be related

to the primordial gravitational potential (ΦP) on sub-Hubble scales as follows:

∆k(z) = M(k, z) ΦP
k. (7.2)

The function M(k, z) is given by [cf. Eq. (1.30)]

M(k, z) = −3

5

k2 T (k)

ΩmH2
0

D+(z), (7.3)

where, as we had discussed, T (k) denotes the matter transfer function, while D+(z) rep-

resents the growth factor associated with the density fluctuations. In our analysis be-

low, we shall make use of the conventional Bardeen-Bond-Kaiser-Szalay (BBKS) transfer

function [141] and the cosmological parameters obtained from an MCMC analysis of the

WMAP-7 data [85]. Actually, to obtain a more accurate result, a transfer function includ-

ing the baryonic acoustic oscillations should be made use of. But, since our main moti-

vation here is to arrive at bounds on the bi-spectrum and not to calculate exact numbers,

the approximate BBKS transfer function proves to be sufficient. The power spectrum of

the density field is defined as

〈∆k ∆k′〉 = P (k) δ(3)(k + k′). (7.4)

Clearly, the linear power spectrum of the density field is given by P (k) = M2(k, z)PP
Φ (k),

where PP
Φ denotes the primordial power spectrum of the gravitational potential such that

PP
Φ = PΦ

G
+ O(f 2

NL
). [Note that the matter power spectrum P (k) above is the same as

the quantity P
M
(k) defined in Eq. (1.30). We shall drop the subscript in this chapter for

convenience.] The power spectrum PΦ
G

of the Gaussian field Φ
G

shall be assumed to be

featureless and scale invariant.

Following the power spectrum which is the two point correlator of the density field,

the n point correlators can be defined as

〈∆k1 ∆k1 . . .∆kn
〉 =

n∏

i=1

M(ki) 〈ΦP
k1
ΦP

k2
. . .ΦP

kn
〉 (7.5)

and, using the definition above, we define the bi-spectrum as

〈∆k1∆k2∆k3〉 = B(k1,k2,k3) δ
(3)(k1 + k2 + k3). (7.6)
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We note that a wide class of inflationary models, including the simplest one comprising

of a single inflaton field in a quadratic potential, introduces perturbations that are almost

Gaussian and exhibit a power spectrum that is nearly scale invariant. It follows that in

the realm of linear perturbation theory the bi-spectrum of the matter field arising from

primordial non-Gaussianity is given by

BL
123 = M(k1)M(k2)M(k3)BΦ

G 123
, (7.7)

where we use the notation 123 ≡ (k1,k2,k3) and BΦ
G

is given by

BΦ
G 123

=
2 f

NL

c2
[
PΦ

G
(k1)PΦ

G
(k2) + permutations

]
+O(f 3

NL
). (7.8)

We should point out that the bi-spectrum BΦ
G 123

differs from the scalar bi-spectrum

B
S
(k1,k2,k3) that we had defined earlier through Eq. (1.26) by the constant factor of

(2 π)9/2 (5/3) (2/3)4 . While the quantity (2 π)9/2 arises simply due to different conven-

tions, the remaining factors occur as a result of the relation between the curvature pertur-

bation and the Bardeen potential.

Apart from the contribution to the bi-spectrum from primordial fluctuations, non-

linear structure formation caused by gravitational instability leads to mode coupling and

thereby induces additional non-Gaussianity. This is especially relevant when we use low

redshift tracers to implicitly measure n-point functions of the matter density field. Upon

using the second order perturbation theory, one finds that the additional contribution to

the matter bi-spectrum is given by

BNL
123 = 2F2(k1,k2)P (k1)P (k2) + permutations, (7.9)

and we shall adopt the form of F2(k1,k2) to be [136]

F2(k1,k2) =
5

7
+

k̂1 · k̂2
2

(
k1
k2

+
k2
k1

)
+

2

7
(k̂1 · k̂2)2. (7.10)

Finally, the total matter bi-spectrum is a sum of the contributions to non-Gaussianity

arising from the intrinsic primordial fluctuations and that generated by the non-linear

evolution of an otherwise Gaussian field. Thus, we have B123 = BL
123 + BNL

123, where we

have ignored the possible contribution from the primordial tri-spectrum. We shall use

B123 to obtain the 3D bi-spectrum of the Ly-α forest.

The Ly-α forest spectra are associated with gas distribution in voids or slightly over-

dense regions. Noting that the astrophysical structures associated with the spectra are
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only mildly non-linear, the transmitted flux F through the Ly-α forest may be mod-

eled by assuming that the gas traces the underlying dark matter distribution except on

small scales where pressure plays an important role [138]. Further, it is believed that

photo-ionization equilibrium that maintains the neutral fraction also leads to a power law

temperature-density relation [142]. The fluctuating Gunn-Peterson approximation [143]

incorporates these assumptions to relate the transmitted flux F to the dark matter over-

density δ as

F = F̄ exp−
[
A (1 + δ)2−0.7 (γ−1)

]
, (7.11)

where F̄ is the mean transmitted flux. In arriving at the above equation, we have made

use of the relation between the observed flux (F ) and the optical depth (τ ) which states,

F = F̄ exp (−τ). The optical depth is defined as τ = A (1 + δ)α, where α = 2− 0.7 (γ − 1).

The quantity (γ − 1) is the slope of the temperature-density relation [142] and is defined

through the logarithmic derivative of IGM density (ρ) with respect to the IGM tempera-

ture (T ) as

γ − 1 =
d ln ρ

d lnT
. (7.12)

We note that γ imprints the reionization history of the universe. The redshift depen-

dent quantity A [144] depends on a number of parameters, such as the IGM temperature,

photo-ionization rate and the cosmological parameters [138].

The fluctuations in the Ly-α transmitted flux is defined as,

δF =
F
F̄ − 1. (7.13)

On large scales it is reasonable to believe that the fluctuations in the transmitted flux δF

may be expanded as

δF = b1 δ +
1

2
b2 δ

2, (7.14)

where, it is assumed that the Ly-α forest spectrum has been smoothed over some suitably

large length scale. This relation allows analytic computation of the statistical properties

of δF . We note that corrections to this on small scales come from peculiar velocities, an

effect we have not incorporated in our analysis for simplicity. At our fiducial redshift z =

2.5, we adopt an approximate (F̄ , γ, A) ≡ (0.8, 1.5, 0.16) from the numerical simulations

of Ly-α forest [145] and theoretical predictions [146]. We note however that these numbers

are largely uncertain owing to inadequate modeling of the IGM. The bias b1, for example,

has a sensitive redshift dependence and may depend on the smoothing scale of the Ly-α

spectra. Using the local bias model, the power spectrum PF(k) and bi-spectrum BF of the
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Ly-α forest flux fluctuations δF are given by

PF(k) = b21 P (k),

BF123 = b31B123 + b21 b2 [P (k1)P (k2) + permutations] . (7.15)

The bi-spectrum of Ly-α flux is hence completely modeled using the three parameters

(f
NL
, b1, b2).

We shall now set up the Fisher matrix for constraining f
NL

using the Ly-α bi-spectrum.

Following the formulation described in Ref. [136], we shall define the bi-spectrum esti-

mator as

B̂F123 =
Vf

V123

,

∫

k1

d3q1

∫

k2

d3q2

∫

k3

d3q3 δD(q123) ∆
o
F(k1)∆

o
F(k2)∆

o
F(k3). (7.16)

Here q123 = q1 + q2 + q3, and the integrals are performed over the qi-intervals

(ki − δk/2, ki + δk/2). Also, Vf = (2 π)3/V , where V is the survey volume. The survey

volume is given by

V123 =

∫

k1

d3q1

∫

k2

d3q2

∫

k3

d3q3 δD(q123) = 8 π2 k1 k2 k3 δk
3. (7.17)

The quantities ∆o
F(ki) appearing in the Eq. (7.16) denotes the ‘observed’ Ly-α flux fluctua-

tions in Fourier space. The observed quantity δoF(r) is given by the continuous field δF (r)

sampled along skewers corresponding to line of sight to bright quasars. We therefore

have

δoF (r) = δF(r) ρ(r), (7.18)

where the sampling window function ρ(r) is defined as

ρ(r) = N
∑

a wa δ
2
D
(r⊥ − r⊥a)∑
awa

, (7.19)

and N is a normalization factor such that
∫
dV ρ(r) = 1. The summation extends up to

NQ, the total number of quasar skewers in the field which are assumed to be distributed

with sky locations r⊥a . The weights wa introduced in ρ(r) are in general related to the

pixel noise and can be chosen with a posteriori criterion of minimizing the variance. The

assumption is, the line of sight direction is continuous and the survey measures the Ly-α

forest in ρ(r) spatial window. In Fourier space, we then have

∆o
F (k) = ρ̃(k)⊗∆F(k) + ∆Fnoise(k), (7.20)

where ρ̃ is the Fourier transform of ρ, and ∆Fnoise(k) denotes a possible noise term.
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If the bi-spectrum covariance matrix is diagonal which implies that no correlation ex-

ists between different triangle shapes, the simple variance of the estimator B̂F can be

calculated as

∆B̂F
2
= 〈B̂F

2〉 − 〈B̂F 〉2. (7.21)

This is given at the lowest order by

∆B̂F
2
=

Vf

V123
s PTot

F (k1)P
Tot
F (k2)P

Tot
F (k3), (7.22)

where s = 6, 1 for equilateral and scalene triangles respectively and PTot
F (k) is the total

power spectrum of Ly-α flux given by

PTot
F (k) = PF(k) + P 1D

F (k‖)PW +NF . (7.23)

The quantity P 1D
F (k‖) is the usual one-dimensional (1D) flux power spectrum [138] or the

line of sight power spectrum corresponding to individual spectra given by

P 1D
F (k‖) = (2π)−2

∫
d2k⊥PF(k), (7.24)

and P
W

denotes the power spectrum of the window function. The quantity NF denotes

the effective noise power spectra for the Ly-α observations. The term P 1D
F (k‖)PW referred

to as the ‘aliasing’ term, is similar to the shot noise in galaxy surveys and quantifies the

discreteness of the 1D Ly-α skewers. It has been shown that an uniform weighing scheme

suffices when most of the spectra are measured with a sufficiently high SNR [139]. This

gives P
W

= 1/n̄, where n̄ is the two dimensional (2D) density of quasars (n̄ = NQ/A,

where A is the area of the observed field of view or the survey area). We assume that the

variance σ2
FN of the pixel noise contribution to δF is the same across all the quasar spectra,

whereby we have NF = σ2
FN/n̄ for its noise power spectrum. In arriving at Eq. (7.23), we

have ignored the effect of quasar clustering. In reality, the distribution of quasars is ex-

pected to exhibit clustering [147]. However, for the quasar surveys under consideration,

the Poisson noise dominates over the clustering and the latter may be ignored.

The Fisher matrix for a set of parameters pi is constructed as

Fij =

kmax∑

k1=kmin

k1∑

k2=kmin

k2∑

k3=k̃min

1

∆B̂F
2

∂BF123

∂pi

∂BF123

∂pj
, (7.25)

where k̃min = max (kmin, |k1 − k2|) and the summations are performed using δk = kmin.

Assuming the likelihood function for pi to be a Gaussian, the errors in pi is given by the

Cramer-Rao bound σ2
i = F−1

ii . We have used this to investigate the power of a Ly-α survey

to constrain f
NL

.

129



CHAPTER 7. IMPRINTS OF PRIMORDIAL NON-GAUSSIANITY IN THE LY-ALPHA FOREST

7.2 Results

We consider quasars in the red-shift range z = 2 to 3 since the peak in redshift distribution

of quasars occur in this range [148]. We note that for a given quasar at redshift z = zQ, the

proximity effect will not allow the spectrum to be measured in the region 10, 000 km s−1

blue-wards of the Ly-α emission and only the region which is at least 1, 000 km s−1 red-

ward of the quasar’s Ly-β and O-VI lines are considered to avoid the possible confusion

with these lines. We have chosen z = 2.5 as our fiducial redshift for the subsequent

analysis. We note here that all the parameters involved in the modeling the Ly-α forest,

have direct or indirect redshift dependence.

A Ly-α forest survey towards measurement of power spectrum or bi-spectrum is char-

acterized by the survey volume, pixel noise in the spectra and the number density of

the quasar skewers. The constraining power of the survey shall depend directly on the

choice of these parameters. In the cosmic variance limit, the minimum f
NL

that can be

measured depends on the number of Fourier modes in the survey volume V given by

Nk = 4 π/3 k2
max V/(2 π)3. Clearly the minimum detectable f

NL
is a function of kmax and

kmin. The noise power spectrum NF is given by

NF = F̄ −2 [S/N ]−2
∆x (∆x/1Mpc), (7.26)

where [S/N ]∆x is the SNR for a spectrum smoothed to a resolution ∆x. We quote [S/N ]

here for 1 Å pixels. The main source of noise to the 3D power spectrum comes from the

aliasing noise term and one requires a very high density of quasars in the field of view

for this term to be sub-dominant.

The bi-spectrum SNR depends on the triangle configurations considered to evaluate

it. In this analysis, we have used the simplest equilateral configurations characterized by

just a single Fourier mode. This over estimates the noise by at least a factor of ∼ 2.45

as compared to the case with arbitrary triangles. In the equilateral limit the 3D Ly-α bi-

spectrum can be written as

BF(k) = P (k)2
[

a1
M(k)

+ a2

]
, (7.27)

where a1 = 6 b31 fNL
/c2 and a2 = 6 b31 F2 + 3 b21 b2. Only two parameters are sufficient to

model the bi-spectrum instead of three parameters (f
NL
, b1, b2) for the general case. We

use the fiducial values (f
NL
, b1, b2) ≡ (0,−0.15,−0.075) and choose f

NL
and b1 to be the

free parameters for the Fisher analysis. We recall that in our modeling of the Ly-α forest
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Figure 7.1: The 68.3%, 95.4% and 99.8% likelihood confidence contours for the parameters
(f

NL
, b1). Shown in the figure are the values (kmin, n̄, S/N) used to compute the Fisher

matrix.

we used the parameters (F̄ , A, γ). The parameter F̄ does not appear in δF and there

is degeneracy between the parameters A and γ which only appears as a product in b1.

Changing b1 hence amounts to changing either or both A and γ.

We assume that the likelihood function is a bivariate Gaussian which yields the con-

fidence ellipses shown in Figure 7.1. The tilt of the error ellipses indicate correlation

between the parameters. We quantify this using the correlation coefficient r, defined as

r = F−1
12 /

√
F−1
11 F−1

22 . (7.28)

For the range of parameters chosen we find that this is roughly constant r ∼ −0.7.

In the ideal situation of full sky coverage and negligible Poisson noise we find that

131



CHAPTER 7. IMPRINTS OF PRIMORDIAL NON-GAUSSIANITY IN THE LY-ALPHA FOREST

kmin (Mpc−1) n̄ (Mpc−2) S/N ∆f
NL

∆b1

2× 10−3 2.2× 10−3 5 228.84 1.1× 10−2

1× 10−3 2.2× 10−3 5 161.81 7.7× 10−3

5× 10−4 2.2× 10−3 5 114.42 5.5× 10−3

8× 10−4 1.0× 10−3 5 272.95 1.5× 10−2

8× 10−4 2.2× 10−3 5 144.73 6.9× 10−3

8× 10−4 5.0× 10−3 5 91.65 3.5× 10−3

8× 10−4 2.2× 10−3 2 263.52 1.5× 10−2

8× 10−4 2.2× 10−3 3 182.83 9.5× 10−3

8× 10−4 2.2× 10−3 4 156.56 7.7× 10−3

Ideal case

5× 10−4 1 5 23.72 2.1× 10−4

Table 7.1: The bounds on (f
NL
, b1) obtained from a Fisher analysis for various combina-

tions of (kmin, n̄, S/N).

∆f
NL

∼ 23 in the equilateral limit. We tabulate our results for varying sky coverage

[k−3
min = V/(2 π)3], Poisson noise (∼ 1/n̄) and pixel noise (S/N) in Table 7.1. As expected

we have tighter constraints on (f
NL
, b1) with increasing survey volume, n̄ and S/N . The

values of the survey parameters chosen are reasonable and achievable by future Ly-α

surveys. Exploiting the entire sky coverage of SDSS we find that one can obtain a bound

on f
NL

∼ 100 (in the equilateral configuration) for a survey with n̄ = 5×10−3Mpc−2 when

the spectra are measured at 5-σ level [149].

Our analysis has largely focussed on the equilateral configuration. However we find

that the Cramer-Rao bound for f
NL

in the squeezed limit (k3 << min(k1, k2)) turns out

to be about 40–100 for the cases we have considered. The case of arbitrary triangular

configuration is to be addressed in our future work [150]. However, our preliminary

estimates show us that we may constrain f
NL

∼ 1 in an ideal environment. For example

using S/N ∼ 5, n̄ ∼ 10−3Mpc−3 and kmin ∼ 10−3Mpc−1, we have ∆f
NL

∼ 5 in the case of

arbitrary triangles, which is competitive with the CMB and the LSS studies. We should

mention that we have used the non-linear bias parameter b2 as a variable of the Fisher

matrix analysis in this case.
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7.3 Conclusions

To conclude, we emphasize that it is possible to put stringent bounds on primordial non-

Gaussianity from the measured 3D bi-spectrum of the Ly-α forest along multiple lines

of sight and thereby constrain various inflationary scenarios. Our analytic predictions

indicate that such studies with future Ly-α surveys may be useful while performing a

joint analysis using other data sets involving the CMB or LSS.
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Chapter 8

Summary and outlook

In this final chapter, after a rapid summary of the main conclusions of this thesis, we shall

outline a few of the issues that arise as a logical consequence of the problems investigated

here and require to be followed up.

8.1 Summary

In this thesis work, we were primarily interested on two aspects, viz. features in the pri-

mordial spectrum and non-Gaussianities.

In the context of primordial features, we had focussed on investigating the extent to

which the recent CMB data permitted the presence of local as well as non-local features

in the inflationary perturbation spectrum. We had found that localized features such a

burst of oscillations generated due to a step in inflationary potentials leads to a better fit

to the data than the more conventional featureless and nearly scale invariant primordial

spectrum [85]. Interestingly, we had also found that certain repeated patterns, such as

persistent modulations, which are produced due to a resonant phenomenon occurring in

potentials with oscillatory terms, also result in an improved fit to the data [101]. Prelim-

inary analysis suggest that ongoing missions such as Planck [20] will be able to help us

arrive at stronger constraints on such features [87, 101].

It has been increasingly recognized that the detection of non-Gaussianities, in partic-

ular, a non-zero bi-spectrum (i.e. the three point correlator of the curvature perturbation)

can act as a powerful discriminator amongst the plethora of inflationary models that are

consistent with the data at the level of the power spectrum. With the aim of studying

non-Gaussianities generated in inflationary models that lead to features in the power

spectrum, using the Maldacena formalism, we had developed a numerical code to effi-
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ciently evaluate the scalar bi-spectrum. After crosschecking the code for its correctness

against certain analytical results that are available, we had utilized the code to evaluate

the bi-spectrum in the equilateral limit in inflationary models resulting in features in the

primordial spectrum. With the specific aim of examining the discriminatory power of the

non-Gaussianity parameter f
NL

, we had evaluated the quantity in classes of models that

lead to similar features in the scalar power spectrum. We found that, as one would have

expected, the power of the parameter f
NL

to discriminate between the inflationary models

is largely determined by the background dynamics. We showed that, while f
NL

can act as

a powerful discriminator in certain classes of models, its ability to discriminate between

models proves to be rather limited in other classes.

We had also studied the effects of preheating on the scalar bi-spectrum. Assuming

that the inflationary potentials behave quadratically around their minima and, utilizing

the Maldacena formalism, we had shown that the bi-spectra generated during inflation

largely remains unaffected due to preheating in single field models. In fact, we had shown

that the contribution to the non-Gaussianity parameter f
NL

during preheating turns out to

be extraordinarily small. This conclusion complements similar results that were available

in the case of the power spectrum.

The latter part of the thesis had concentrated on studying the imprints of primordial

features and non-Gaussianities on the LSS. In this context, we had investigated the effects

of primordial features on the formation of halos. Interestingly, we had found that features

such as those generated in certain inflationary potentials containing oscillatory terms can

lead to a reasonable extent (of about 20%) of change in the number of halos formed. We

had also considered the possibility of being able to constrain the non-Gaussianity param-

eter f
NL

using the 3D bi-spectrum of the Ly-α forest along multiple lines of sight. We had

argued that, with a high density of quasars set to observed by surveys such as BOSS [67]

and BigBOSS [68], the constraints on f
NL

from the 3D bi-spectrum of the Ly-α forest can

become comparable with the constraints arrived at from the CMB and LSS data.

8.2 Outlook

We shall now list what we believe are a few issues that are a natural outcome of the

methods adopted and the problems analyzed in this thesis.

As far as features in the primordial spectrum are concerned, we had earlier mentioned

the point that, despite the fact that specific features lead to an improved fit to the data,

the complete statistical significance of such features still remain to be understood satis-
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factorily [69, 70]. Rather than the frequentists approach adopted here, it would be worth-

while to carry out a complete Bayesian analysis of the inflationary models leading to

features [47]. Moreover, most of the efforts while considering features in the inflationary

spectrum have focussed on models involving the canonical scalar field, and it is imper-

ative that such efforts are also extended to non-canonical fields [77, 72, 85]. It will also

be worthwhile to explore models that admit departures from slow roll in a more natural

fashion, such as those involving more than one scalar field [76, 88, 89].

The numerical analysis of the scalar bi-spectrum in inflationary models leading to fea-

tures requires to be extended to non-equilateral configurations. Also, the scope of the

code itself needs to be enlarged to take into account non-canonical models of the scalar

field. Using the code, it will be interesting to investigate if the various consistency rela-

tions hold true even in the most general scenarios [53, 110, 111]. Moreover, while we have

established that, based on the Maldacena formalism, the scalar bi-spectrum remains unaf-

fected due to preheating, it is important that the formalism and the results be extended to

the epoch of reheating as the transfer of energy from the inflaton to radiation takes place

because of their mutual coupling. Needless to add, these issues need to be understood

satisfactorily if we are to be able to make use of the observations of non-Gaussianities in

the CMB to arrive at constraints on the inflationary models.

Lastly, we believe that it will be a worthwhile exercise to extend our effort of utilizing

the 3D bi-spectrum of the Ly-α forest along multiple lines of sight to constrain the non-

Gaussianity parameter f
NL

for arbitrary triangular configurations of the primordial bi-

spectrum. More specifically, it may be also be possible to forecast the constraints that one

can expect to arrive at from surveys such as BOSS [67] and BigBOSS [68].

We are presently investigating some of these issues.
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