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Synopsis

The quest of a decent quantum �eld theoretic framework to describe the fundamental

behavior of the newly discovered particles and their strange interactions, during the

�rst half of the 20th century, was accomplished with the introduction of Standard

Model (SM) of particle physics. The SM is based on the locale gauge symmetry of the

Lie algebra SU(2)L ⊗ U(1)Y ⊗ SU(3)C . This has been an extremely successful the-

ory describing three of the four fundamental interactions known so far, namely, weak,

electromagnetic and strong interaction. The theory has been experimentally veri�ed

to the large accuracy in various collider experiments such as Large Electron Positron

Collider (LEP) at CERN in Europe, SLC at Stanford University in USA, Tevatron at

Fermilab in USA, HERA at DESY in Germany, PEP-II B-factory at Stanford Uni-

versity, KEKB at Tsukuba in Japan, and Large Hadron Collider (LHC) at CERN.

All the particles predicted by the SM, since its birth in 1967−68, namely: τ (1975),

c (1974), b (1977), t (1995), gluons (1979), W and Z bosons (1983), ντ (2000) and

Higgs (2012) scalar, have not only been con�rmed but also �t perfectly in the model

framework. On top of it, SM is a renormalizable theory. The anomalies generated

by the quark sector are cancelled with the anomalies in lepton sector. Hence, though

accidentally, SM happens to be an anomaly free theory.

Despite the fact that SM has unravelled the gauge origin of fundamental forces

and the structure of universe while successfully confronting numerous experimental

tests, it has various limitations. The experimental evidence of tiny neutrino masses

compared to charged leptons and quarks, and their peculiar mixing relating �avor to

mass basis raises the fundamental issue on the origin of these masses as well as the

nature of the neutrinos: Dirac or Majorana. It does not contain any particle which

can describe dark matter observed in the universe. The baryonic asymmetry of the

universe remains unexplained. The mass of a scalar �eld receives large radiative

corrections due to quadratic divergences. Therefore, the tree-level mass of the Higgs
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�eld and the loop contributions of the cut-o� (Planck or GUT) order must cancel to

a very high precision in order of the weak scale, known as `hierarchy or naturalness'

problem. This problem is often considered as a guideline for BSM physics and has

been tried to evade in certain theories like supersymmetry (SUSY). It also does not

impose any constraint on the masses or mixing of fermions and they exhibit strong

hierarchical pattern, called �avor problem. The peculiar selection of nature to this

particular gauge structure and the strange but simple charge quantization still remain

unexplained. Also, it does not incorporate the quantum description of gravity. All

the above mentioned problems are the open questions to the SM and they lead to

a trivial conclusion that the SM is a low energy remnant of a bigger framework

at higher energies. Many neutrino, �avor, decay and collider experiments have-

been/are-being performed to address these issues, and/or to see any other signature

of physics beyond SM.

The smallness of neutrino masses is usually accounted by seesaw mechanism.

There are many way to incorporate it in a BSM theory. The three conventional

seesaw mechanism namely, type-I, type-II and type-III seesaw are achieved by adding

new SM fermionic singlets, a scalar SU(2)L triplet and fermionic SU(2)L triplets,

respectively. The underlying quark-lepton symmetry in SO(10) forces canonical

(type-I) and type-II seesaw scales close to GUT scale, making them inaccessible to

any direct test. A number of other interesting neutrino mass generation mechanisms

including inverse seesaw, radiative seesaw, double seesaw, linear seesaw, scalar-triplet

seesaw, have been suggested and some of them are also experimentally veri�able.

The SUSY extensions of SM, with SUSY restoration at TeV energy scale, solves

the gauge hierarchy problem and uni�es the gauge couplings around 1016.25 GeV.

The Minimal Supersymmetric Standard Model (MSSM) can be further extended to

incorporate the tiny masses of neutrinos and their mixing through seesaw paradigm.

In models with R-parity conservation, the lightest SUSY particle (LSP) is stable and

weakly interacting massive particle (WIMP) which can be a possible candidate of cold

dark matter of universe. Hence, the SUSY grand uni�cation theories (SUSY GUTs)

as an extension of these models provide a very attractive framework for representing

particles and forces. An evidence of SUSY at the Large Hadron Collider (LHC)

would be a land-mark discovery which would certainly change the future course of

physics. But, in the absence of any evidence of SUSY so far, it is worth while

to explore new physics prospects of non-SUSY GUTs and, particularly, those based

upon SO(10) which has grown in popularity as it uni�es all fermions of one generation

including the right-handed (RH) neutrino into a single spinorial representation. It
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provides spontaneous origins of P (= Parity) and CP -violations. Most interestingly,

in addition to predicting the right order of tiny neutrino masses, it can explain

all fermion masses including large mixing angles in the neutrino sector. In fact

neither seesaw mechanism, nor grand uni�cation require SUSY per se. Although

gauge couplings automatically unify in the MSSM, and they fail to unify in the

minimal standard model in one-step breaking of non-SUSY SU(5) or SO(10), they

do unify once intermediate symmetries are included to populate the grand desert in

non-SUSY SO(10). In addition, with intermediate gauge symmetries SO(10) also

predicts signals of new physics which can be probed at low or accelerator energies.

In the context of non-SUSY SO(10) framework in the work [1] we explored the

prospects of inverse seesaw mechanism. This has the potential to be experimentally

veri�ed because of the low scale at which it can operate. Its implementation requires

additional fermionic SO(10) singlets which introduces a new mass scale µS in the

theory. The TeV-scale seesaw requires µS to be small. Under the consideration of

exact lepton number conservation, a global U(1), symmetry µS → 0. This guarantees

left-handed neutrinos to remain massless. The non-SUSY SO(10) breaks to left-

right, SU(2)L × SU(2)R × U(1)(BL) × SU(3)C (≡ G2213), symmetry at intermediate

scale which further breaks to SU(2)L × U(1)R × U(1)(BL) × SU(3)C (≡ G2113) gauge

symmetry at TeV scale. The actual parity restoration scale is high, W±
R are at

intermediate scale. The low Z ′ boson masses and the associated non-unitarity e�ects

of the TeV-scale inverse seesaw are the remnant of high scale left-right symmetry.

The model achieves precision gauge coupling uni�cation, and predicts a low mass

Z ′ making them suitable for implementation of TeV-scale inverse seesaw mechanism.

The model can be testi�ed through its predictions on observable non-unitarity e�ects

and additional contributions to lepton �avor violations. Another testing ground for

the model could be through the SO(10) prediction on gauge boson mediated proton

decay on which dedicated search experiments are ongoing at Super-K. The model

predicts substantial non-unitarity e�ects and lepton �avor violating (LFV) decays

accessible to ongoing experimental searches for τ → eγ, τ → µγ, and µ → eγ. The

quark-lepton symmetric origin of the Dirac neutrino mass matrix is found to play a

crucial role in enhancing non-unitarity e�ects leading to enhanced LFV and leptonic

CP -violation. The LFV is predicted to be only few order less than the present

experimental bound and accessible to ongoing searches.

Regarding other possibilities of inverse seesaw motivated non-SUSY SO(10), we

�nd that the minimal single-step breaking scenario to the TeV scale gauge symme-

try , SO(10) → G2113, is ruled out by renormalization group and coupling uni-
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�cation constraints. The two-step breaking chains, SO(10) → G224D → G2113,

SO(10) → G214 → G2113 and SO(10) → G224 → G2113 are ruled out by the ex-

isting lower bound on proton lifetime τp = 1.01 × 1034 years. Here we have used

SU(2)L × U(1)R × SU(4)C ≡ G214 and SU(2)L × SU(2)R × SU(4)C ≡ G224. The

G224D is the Pati-Salam group (G224) with D-parity.

In the work [2] we have studied a di�erent class of left-right (LR) models having

the property of high scale parity restoration but with minimal extension to accommo-

date experimentally testable extended inverse seesaw mechanism. The light neutrino

masses are governed by inverse seesaw formula. The masses of W±
R and Z ′ gauge

bosons, and RH neutrinos could be of O(TeV) which are also directly accessible to

accelerator tests. The model predicts quite dominant contributions to neutrinoless

double beta (0ν2β) decay rate in W−
L -W

−
L channel through relatively light sterile

neutrino exchanges. Observation of 0ν2β is expected to determine whether neutri-

nos are Majorana fermions. The non-unitarity e�ects and LFV decay predictions

are almost same as in the previous study. Finally we show how such a TeV scale LR

gauge theory emerges from a non-SUSY SO(10) grand uni�cation framework. Parity

is restored at high scales where the D-parity in Pati-Salam symmetry breaks. The

grand uni�ed theory also predicts experimentally observable neutron-antineutron

(n-n̄) oscillation and rare kaon decay branching ratio, Br(KL → µe), mediated by

lepto-quark gauge boson of SU(4)C , although proton lifetime is found to be beyond

the accessible limit of ongoing experiments. In addition to non-unitarity and LFV,

the Dirac neutrino mass matrix is also found to play a crucial role in enhancing 0ν2β

decay rate.

The symmetry breaking chain of the model is found to require SU(2)L×SU(2)R×
SU(4)C ×D (g2L = g2R) ≡ G224D gauge symmetry at the highest intermediate scale

which eliminates the possible presence of triangular geometry of gauge couplings

around the GUT scale. This in turn determines the uni�cation mass precisely, mod-

ulo threshold e�ects, at the meeting point of two gauge coupling constant lines.

The other advantage of this symmetry is that it pushes most of the larger sized

sub-multiplets down to the parity restoring intermediate scale reducing the size of

GUT-threshold e�ects on the uni�cation scale and proton lifetime while the GUT-

threshold e�ects on sin2 θW or MP have exactly vanishing contribution.

In the work [3] we show that even though only a TeV scale Z ′ is detected at

LHC, most of the observable predictions of [2] are still applicable except that W±
R

boson masses are beyond the currently accessible LHC limit. So e�ectively follow

the strategy which we had adopted in our previous work [1,2]. Low energy signature
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of lepto-quark gauge bosons is also predicted through rare kaon decay KL → µē .

The model predictions include (i) dominant contribution to 0ν2β rate in the WL-

WL channel leading to lower bound on the lightest sterile fermion mass mS1 ≥
14±4 GeV, (ii) unitarity-violating contributions to branching ratios for lepton �avor

violating (LFV) decays, (iii) leptonic CP -violation due to non-unitarity e�ects, (iv)

experimentally veri�able |∆(B−L)| = 0 proton decay modes such as τp(p→ e+π0) '
1.05× 1035±1.0±0.35 yrs, (v) lepto-quark gauge-boson mediated rare kaon decay with

Br(KL → µē) ' 10−11 − 10−12, and (vi) observable n-n̄-oscillation mixing time

108 − 1010 seconds. In sharp contrast to the earlier model [2], in the present model

we predict proton lifetime to be accessible to ongoing search experiments.

Even though all the grand uni�cations SO(10) models we studied are non su-

persymmetric, their LFV branching ratio predictions are of same order as of SUSY

SO(10) model with TeV scale LR symmetry. These predictions are not very far from

experimental probe. Even for the Dirac phase δ = 0, π, 2π of the PMNS matrix, the

models predict the CP -violation parameter J ' 10−5 due to non-unitarity e�ects.

We have explicitly displayed the large e�ective mass parameter for 0ν2β decay in

[2] and [3] due to sterile neutrino exchange in W−
L -WL− channel. The prediction of

the lightest sterile neutrino mass in [3] can be explained in model [2] as well. The

lower bound mS1 ∼ 14± 4 GeV is imposed by the current experimental limits on the

half life. In these models Heidelberg Moscow results can be explained even if light

neutrinos are not necessarily quasi-degenerate. The proton-lifetime predictions in

the models [1] and [3] are found within the reach of ongoing and future experiments,

like Super-K and Hyper-K. While the model studied in [1] claims the recognition

of minimal SO(10) GUT; the large 0ν2β decay, n-n̄ oscillation and rare kaon decay

predictions are additional future prospects of study in [2] and [3] which are di�erent

from the popular collider search.
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CHAPTER1
Introduction

In the last hundred years of scienti�c development our understanding about the be-

havior of nature has evolved from classical to a very neat and clear quantum picture.

In the course of this evolution, starting from the discovery of electron, the funda-

mental constituents of matter (fermions) and the messengers (gauge bosons) of their

interaction have been discovered. Like the uni�cation of electricity and magnetism

in to electromagnetic theory, the construction of a single mathematical form to ex-

plain various distinct phenomena is one of the virtuous paths followed by theoretical

scientists. Following the similar guideline it is found that every action of nature can

be explained in terms of four fundamental interactions namely gravitational, elec-

tromagnetic, weak and strong. The last three of these are nicely expressed in the

mathematical formulation of quantum �eld theory (QFT) under the Poincare sym-

metry. The gravitational interaction is much weaker compared to other interactions

at any reachable energy scale. Therefore, in all micro-scale studies the gravitational

interaction is usually ignored. Also, a successful QFT of gravitation is not yet well

established. On the other hand, an elegant cocktail of abelian and non-abelian local

gauge symmetries (Weyl [1], Yang-Mills [2]) is found to explain the nature at the

fundamental scales. A single, coherent theoretical framework which could explain all

physical aspects of the universe, known till date, is yet to incarnate.

The attempts to cure the high energy behavior of Fermi theory of beta decay laid

the foundation of today's theory of fundamental interactions. Glashow [3] added a

U(1) piece to Schwinger's [4] SU(2) local gauge theory of weak and electromagnetic

interaction. This addition was necessary to explain the experimental data for non-

leptonic decay modes of strange particles, which indicates the existence of neutral,

weakly interacting current. In summary, a theory with massive vector bosons is

required to explain the short ranged weak interaction. With the implementation of
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Higgs mechanism [5,6] in the SU(2)L⊗U(1)Y structure, Salam [7] and Weinberg [8]

could successfully explain electro-weak behavior of the fundamental particles. This

mathematical construct was further extended by Gross, Wilczek [9] and Politzer [10]

to incorporate the explanation of interaction holding the quarks together, called

strong interaction. This completes our cocktail of gauge structure of internal sym-

metries SU(2)L⊗U(1)Y ⊗SU(3)C , known as the Standard Model (SM). A delightful

description of `The Rise of the Standard Model' [11] by its pioneers is a science his-

tory worth reading. The anomalies generated, due to charge quantization through

U(1) symmetry, by quarks fortunately cancel with anomalies generated by leptons.

Hence, though accidentally, it is an anomaly free theory. The renormalizability of

the SM was shown by G. 'tHooft [12�14]. For a review on renormalization of SM

and precision calculations see lectures [15,16].

The SM is a remarkably successful theory of interactions of fundamental parti-

cles in low energy regime. The recent discovery of Higgs boson by A Toroidal LHC

Apparatus (ATLAS) [17] and Compact Muon Solenoid (CMS) [18] detectors at Large

Hadron Collider (LHC) completes the search of basic ingredients of SM. Despite the

fact that the SM has unraveled the gauge origin of fundamental forces and the struc-

ture of universe while successfully confronting numerous experimental tests, it has

various limitations. In the next chapter we will discuss about its success and failures

in more detail. The reliable extensions of the SM to a simple group are considered

to be the good candidates for Grand Uni�cation. The aims of Grand Uni�cation

Theories (GUTs) include: (i) uni�cation of SM gauge couplings g1Y , g2L, & g3C at

some high enough energy, (ii) quarks and leptons are treated under same Lie struc-

ture, i.e., the theory must also ensure the coalescence of quarks and leptons in one

or at most two irreducible representations of the unifying group. This uni�cation of

quarks and leptons would explain the electric charge quantization. The energy scale

of gauge coupling uni�cation should be consistent with the current bounds on proton

decay lifetime. In addition to the above requirements, the structure should also be

anomaly free and able to explain quark, charged lepton, and neutrino masses. The

beyond standard model (BSM) predictions such as large �avor violation, baryonic

asymmetry of universe, Dirac or Majorana nature of neutrinos, Dark Matter etc.

are the premier goals of GUTs. If possible, they should also explain long standing

problems like �ne-tuning problem, Dirac monopoles, which have disappointed us till

date. Models based on SU(5) and SO(10) gauge groups with their minimal and ex-

tended structure, in supersymmetric (SUSY) as well as non-SUSY framework have

been the most popular, and have partially accomplished the goal.
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The SUSY GUTs provide an attractive framework for representing particles and

forces of nature as they solve the gauge hierarchy problem, unify three forces of

nature, and also explain the tiny neutrino masses through seesaw paradigm. For

recent reviews on di�erent neutrino mass generation mechanisms see [19�29]. The

type-I and type-II seesaw have natural origin in minimal SUSY SO(10) GUTs [30�35].

This is because minimal left-right (LR) supersymmetric models [36�38] are embedded

in it, which have high B − L symmetry breaking scale (∼ 1015 GeV) [39, 40], but

these GUT models fails to �t the neutrino masses [41, 42] and their extensions were

proposed [43, 44]. The minimal LR symmetric models preserve R-parity as gauge

discrete symmetry which makes lightest supersymmetric particle (LSP) as a possible

cold dark matter candidates of the universe. A particularly �ne tuned, simple model

of TeV scale LR symmetry breaking was discussed in [45]. An evidence of SUSY at

the LHC would be a land-mark discovery, which would certainly change the future

course of physics. But, in the absence of any evidence of SUSY so far, it is worth

while to explore new physics prospects of non-SUSY GUTs [46�54]. The GUTs

based on SO(10) gauge group have particularly grown in popularity compared to

SU(5). This is because SO(10) is the smallest, anomaly free group which uni�es all

fermions of one generation, including the right-handed (RH) neutrino, into a single

spinorial representation. It provides spontaneous origins of P (= Parity) and CP

(C= Charge conjugation) violations [48, 49, 55�58]. Most interestingly, it predicts

the right order of tiny neutrino masses through the canonical (≡ type-I) [59�64] and

type-II [64�67] seesaw mechanism. In addition, it has high potentiality to explain

all the fermion masses [32, 68�70] including large neutrino mixings [71] with type-II

seesaw dominance [72�76]. Though it was shown in [41, 42, 77] that type-II seesaw

dominating scenarios are disfavored.

In fact, neither seesaw mechanism nor grand uni�cation require SUSY per se.

The gauge couplings g1Y , g2L, & g3C automatically unify in the Minimal Supersym-

metric Standard Model (MSSM) [78�80]. But, they fail to unify through the minimal

particle content of the SM. Therefore, in one-step breaking of non-SUSY SU(5) or

SO(10) gauge coupling can not predict the right Weinberg angle. However, once in-

termediate symmetries are included to populate the grand desert in case of non-SUSY

SO(10) [58, 81�83], gauge couplings may unify. The intermediate gauge symmetries

may also occur near the accelerator reachable energies, availing various predictions

for BSM signatures at the current or future accelerator based experiments.

In this dissertation we explore the prospects of inverse seesaw mechanism in order

to explain neutrino masses and mixings, in the non-SUSY SO(10) framework. The
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inverse seesaw mechanism has plausibility to be experimentally veri�ed because of

the low scale at which it can operate. The TeV-scale inverse seesaw mechanism can be

successfully implemented with a low-mass Z ′ gauge boson, which can be accessible at

LHC and planned accelerators. We call such models `LUUC' for their gauge structure

SU(2)L×U(1)B−L×U(1)R×SU(3)C . We �nd that a minimal, single step breaking

of SO(10) to TeV scale LUUC is ruled out by gauge coupling uni�cation constraints

imposed by existing lower bound on proton lifetime τp = 1.4×1034 years [84�87]. We

�nd that there are not many model with two step breaking of SO(10) to TeV scale

LUUC, which could ful�ll even the minimal requirement of uni�cation. We study

two classes of non-SUSY SO(10) GUT models in which the TeV-scale inverse seesaw

mechanism can be implemented.

In one class of study we construct a minimal SO(10) model with 10H , 16H and

45H scalar multiplets. A SO(10) singlet fermion per �avor generation is required,

in addition to 16F , to construct the inverse seesaw structure. The SO(10) symme-

try �rst breaks to left-right (SU(2)L ⊗ SU(2)R ⊗ U(1)B−L ⊗ SU(3)C) symmetry at

uni�cation scale. This left-right (LR) symmetry then breaks to LUUC symmetry at

intermediate scale. This LUUC symmetry �nally breaks to SM at TeV scale. The

details of symmetry breaking chain, breaking mechanism and particle mass spectrum

are presented in chapter 4.

The precision gauge coupling uni�cation with the predictions of low mass Z ′

gauge boson makes this GUT model suitable for the implementation of TeV-scale

inverse seesaw mechanism. The model can also be veri�ed or falsi�ed through its

predictions on observable non-unitarity e�ects and experimentally reachable contri-

butions to lepton �avor violation (LFV). Another testing ground for the model may

come through the SO(10) prediction on gauge boson mediated proton decay, for

which dedicated search experiments are ongoing at Super-K [84].

If larger representations like 126H are absent in such models, the GUT-threshold

e�ects are small. Therefore, the minimal multiplet models can not be easily compati-

ble with the lower limit on proton lifetime unless the splitting among the super-heavy

particles is too large. In view of these, the minimal model we studied turns out to

be the best among all the possible single and two-step breaking minimal models of

SO(10) to TeV scale LUUC gauge symmetry.

In the other class of study, The SO(10) symmetry breaks to SM in multiple

stages. The SO(10) symmetry breaks to D-parity preserving Pati-Salam symmetry

(SU(2)L⊗SU(2)R⊗SU(4)C) at the uni�cation scale. The D-preserving Pati-Salam

(PSD) symmetry breaks to D-parity violating PS (PS6D) symmetry at intermediate
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scale (∼ 1013 GeV). This PS 6D symmetry further breaks either to LR or to LUUC

at lower intermediate scale (∼ 106 GeV). Now, if PS 6D symmetry breaks to LR sym-

metry, LR itself break to LUUC and this breaking scale can be as low as few TeV.

Thus, in the low left-right parity breaking scale W±
R gauge bosons may be revealed

at accelerator energies. This LUUC eventually break to SM at slightly lower energy

scale giving Z ′ gauge boson at the accelerator reachable scales. On the other hand,

if PS6D symmetry breaks directly to LUUC, W±
R gauge bosons are unreachable. The

high scale of parity breaking in this case manifests only Z ′ [88�94] gauge boson at

low and accelerator energies.

The multi-step breaking schemes and the corresponding particle mass spectrum

are discussed in detail in the chapters 5 and 6. The scalar particle content is very rich

in these cases due to the presence of various intermediate symmetries. The scalar

particle spectrum follows the extended survival hypothesis, unless stated explicitly.

The D-parity restoration in PS symmetry at high scale allows the LR gauge sym-

metry to exist at experimentally reachable scale. It also allows the PS 6D symmetry

as low as constrained by gauge mediated rare kaon decay experiments. These mod-

els therefore also give predictions for observable neutron-antineutron oscillation and

lepto-quark gauge boson mediated rare kaon decays.

We investigate in detail the prospects of TeV scale left-right gauge theory with

parity restoration scale suitably modi�ed to implement extended inverse seesaw

mechanism. This extension predicts large contributions to neutrinoless double beta

(0ν2β) decay. The light neutrino masses are still governed by gauged inverse seesaw

formula. The dominant contributions to 0ν2β-decay come from theWL-WL channel,

and are mediated by relatively light sterile neutrinos. Sub-dominating contributions

to 0ν2β-decay are also estimated and compared with dominant one. Implemen-

tation of TeV scale physics in non-SUSY SO(10) GUT is successfully established.

Non-unitarity and LFV e�ects are also estimated and found to be within the reach

of future experiments. In this model proton decay lifetime is very-very large, un-

reachable to any future experiment.

We extend this study and show that even if only a TeV scale Z ′ boson is detected

at the LHC, a number of these observable predictions will still be applicable. The

D-parity violating PS symmetry directly breaks to LUUC symmetry. TheW±
R boson

masses are part of PS symmetry and far beyond the currently accessible LHC limit.

Due to change in the gauge symmetry breaking scheme and the required scalar

multiplets, we �nd that the present model predicts proton lifetime to be accessible

at ongoing search experiments. Which is in sharp contrast to the previous model.
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New bounds on PS symmetry breaking scale, di-quark scalar and sterile neutrino

masses are realized. Extensive study of 0ν2β-decay e�ective mass and life-time in the

model is studied. The possible cancellations among the standard and non-standard

contributions to 0ν2β-decay are also elaborated.

In chapter 2, we retrospect the SM and discuss its features and compulsions. In

chapter 3, we extend this retrospection to SU(5) and SO(10) GUTs. In chapter 4, we

elaborate a two step breaking of SO(10) GUT to SM with minimal representations.

The cardinal virtues of this study are (i) LHC reachable Z ′ gauge boson, (ii) proton

lifetime prediction close to Super-K bound, (iii) LHC reachable seesaw, (iv) large

LFV and CP-asymmetry etc. In chapter 5, we study a multi step breaking of SO(10)

to SM, which preserves D-parity violating PS symmetry until ∼ 106 GeV. The salient

features of this study are the predictions for: (i) LHC reachable Z ′,W±
R gauge bosons,

(ii) large CP-asymmetry and LFV, (iii) LHC reachable seesaw, (iv) large 0ν2β decay

in WL-WL channel, (v) experimentally reachable n-n̄ oscillation time, (vi) mass of

sterile neutrino, and (vii) rare kaon decays mediated by PS gauge bosons. In this

chapter we describe the 0ν2β decay part in detail. In chapter 6, we extend the study

of previous chapter and elaborate the details of other predictions of the model. We

also found that in case of absence of WR gauge boson at colliders up to very high

energy, the model can predict Hyper-K reachable proton decay. In the seventh

chapter we draw our conclusions. We have also appended the relevant supplementary

material in �ve sub categories.

6



CHAPTER2
Standard Model and beyond

2.1 Standard Model of particle physics

The Standard Model of particle physics is a theory of electromagnetic, weak and

strong interactions, which governs the dynamics of basic building blocks of universe.

These building blocks do not possess any sub-structure, therefore are called elemen-

tary or fundamental particles. These elementary particles can be categorized into

spin-0 scalar (Higgs) bosons, spin-1/2 fermions and spin-1 gauge bosons under the

Lorentz symmetry of space-time. The fermions constitute the matter of universe

while gauge bosons form force-carriers. Passings the tests of hundreds of scattering

experiments in various channels, carried out over a dozen of collider experiments the

SM has earned the distinction to the extreme accuracy. The SM has not failed a

single test even at very high precision scale.

The SM is a paradigm of QFT constructed on SU(2)L ⊗ U(1)Y ⊗ SU(3)C group

structure of local gauge symmetries, which exposes the underlying action of nature.

Quantum �eld theory is the application of quantum mechanics to the dynamical

system of �elds physically operating on the continuous symmetry of space-time,

namely, the Lorentz symmetry SO(1, 3). For the sake of completeness, the Lorentz

symmetry is brie�y recapitulated in Appendix A.3. The exotic extensions of SM

incorporate additional particles, extra dimensions, elaborated internal and �avor

symmetries to explain neutrino oscillations, dark matter etc.

The particle content of the SM is inscribed in Tab. 2.1. The Greek indices on

the gauge boson depict their vectorial nature under Lorentz symmetry, while roman

indices a and i represent their number which is same as dimension of adjoint repre-

sentation (rep) of the associated internal symmetry. The matter �eld is constituted

by the fermions belonging to spinorial rep of Lorentz symmetry while Higgs boson is
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Spin=1

Hyperon Bµ (1,0,1) U(1)Y g′

Weak Bosons W i
µ, i = 1, 2, 3 (3,0,1) SU(2)L g

Gluons Ga
µ, a = 1, 2 . . . 8 (1,0,8) SU(3)C gS

Spin=1/2

Quarks
(2, 1/6, 3)

(
u
d

)α
L

(
c
s

)α
L

(
t
b

)α
L

(1, 2/3, 3) uαR cαR tαR

(1,−1/3, 3) dαR sαR bαR

Leptons
(2,−1/2, 1)

(
νe
e

)
L

(
νµ
µ

)
L

(
ντ
τ

)
L

(1,−1, 1) eR µR τR

Spin=0

Higgs (2, 1/2, 1)

(
H+

H0

)

Table 2.1: The Standard Model particles.

the scalar of the symmetry. The alliance of particles under the internal symmetries

can be summarized by the set (r2, Y, r3), where r2 and r3 are the dimensions of reps

of non-abelian internal symmetries SU(2)L and SU(3)C , and Y is the hypercharge

quantum number of the abelian symmetry U(1)Y . All the left handed fermions and

the Higgs boson stay in the fundamental rep of SU(2)L, while the right handed

fermions are its singlets. Quarks stay in fundamental rep of SU(3)C , while leptons

and Higgs stay unexposed to this symmetry. All the �avor generations of fermions

under SU(2)L symmetry are explicitly scripted. The index α on quark sector runs

over three colors in the fundamental rep. Coulomb charges of all the particles can

be estimated using Gellmann-Nishijima formula

Q = T3 + Y (2.1)

where T3 is the diagonal generators of SU(2) symmetry. This formula appears auto-

matically while generating masses for gauge bosons, and is discussed in next section.

The kinetic part of Lagrangian of Gauge (LGK) and Matter (LMK) �elds can be
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written as

LGK = −1

4
BµνB

µν − 1

4
W i
µνW

µν i − 1

4
Ga
µνG

µν a (2.2)

LMK = i

3∑
i=1

(
L†Liσ

µDµLLi + e†Riσ
µDµeRi +Q†Liσ

µDµQLi

+ u†Riσ
µDµuRi + d†Riσ

µDµdRi
)

(2.3)

where the corresponding �eld strengths can be expressed as

Bµν = ∂µBν − ∂νBµ , (2.4)

W i
µν = ∂µW

i
ν − ∂νW i

µ − g εijkW j
µW

k
ν , (2.5)

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gS fabcGb
µG

c
ν . (2.6)

Here εijk and fabc are structure functions of SU(2)L and SU(3)C groups and i, j, k =

1, 2, 3; a, b, c = 1, 2, . . . 8. gS and g are SU(3)C and SU(2)L gauge �eld coupling

strengths. Though non-abelian gauge �eld do, abelian gauge �elds do not self-

interact which is clear from eq. (2.4)-eq. (2.6). Abelian �eld strength appear only in

fermion-gauge-fermion and scalar-gauge-scalar interactions, through covariant deriva-

tives present in the fermion kinetic terms and scalar kinetic term, to be introduced

later. Covariant derivative operator in general can be expressed as

Dµ = ∂µ1 + i
∑
p

gp

n2
p−1∑
lp

Alpµ T
lp
∏

δ6p. (2.7)

where p is index of internal symmetries present in a theory, lp are indices over adjoint

representation of internal symmetry p, and δ6p are the Kronecker delta for the internal

symmetries other than p. For U(1)Y symmetry, lY = 1 and T lY = Y . The explicit

structure of covariant derivatives acting on fermion and Higgs �elds are presented in

Tab. 2.2.

The collider experiments have tested and con�rmed the SU(2)L ⊗ U(1)Y gauge

structure of the theory in the fermion weak boson and triple gauge boson interaction

channels. If the gauge symmetry SU(2)L⊗U(1)Y remains unbroken neither the gauge

bosons nor the fermions acquire masses. The bare mass terms for fermions and gauge

bosons,mf ψ̄fψf andMAAµA
µ, are not SU(2)L⊗U(1)Y invariant hence are forbidden.

But, the weak gauge bosons are required to be massive to explain short range weak

interaction while quarks and leptons have to be massive to explain the micro structure
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Field Multiplet Covariant derivatives

QL (2,1/6,3) DµQL = [(∂µ1 + igW i
µ
σi

2
+ ig

′

6
Bµ1)δαβ + igSG

a
µ

λaαβ
2
1]QLβ

LL (2,−1/2, 1) DµLL = (∂µ1 + igW i
µ
σi

2
− ig′

2
Bµ1)LL

uR (1, 2/3,3) DµuR = [(∂µ + i2g′

3
Bµ)δαβ + igSG

a
µ

λaαβ
2

]uRβ

dR (1,−1/3, 3) DµdR = [(∂µ − ig
′

3
Bµ)δαβ + igSG

a
µ

λaαβ
2

]dRβ

eR (1,−1, 1) DµeR = (∂µ − ig′Bµ)eR

H (2, 1/2, 1) DµH = (∂µ1 + igW i
µ
σi

2
+ ig

′

2
Bµ1)H

Table 2.2: Covariant derivatives of fermionic and Higgs �elds under SU(2)L⊗U(1)Y⊗
SU(3)C gauge structure. 1 is 2× 2 identity matrix and α, β run over the three color
indices.

of atoms. In fact! all the particles observed till date, except photons, are massive.

Therefore the symmetry is broken badly. Thus, under SU(2)L⊗U(1)Y the current is

conserved but particle states are not symmetric. This we call spontaneous breaking

of symmetry. The novel mechanism to generate the masses for weak gauge bosons

and charged fermions won the 2013 noble prize to Prof. Peter Higgs [6] and Prof.

Francois Englert [5], and is called `Higgs mechanism'.

The masses of the gauge bosons and fermions are generated by the Higgs mecha-

nism via spontaneous symmetry breaking (SSB). To preserve the Lorentz symmetry,

the symmetry is spontaneously broken by scalar �elds only. A SU(2)L doublet scalar

�eld with non-zero U(1)Y charge is required to generate the invariant Yukawa term

of fermions and scalar interaction. Hypercharge of left handed particles indoctrinates

another symmetry through Y = (B −L)/2, while right handed ones seem arbitrary.

With the introduction of a Higgs doublet we may write the Yukawa part of the SM

Lagrangian as

LY uk = −
3∑

f1,f2=1

[
Y l
f1f2

LLf1
HeRf2

+ Y d
f1f2

QLf1
HdRf2

+ Y u
f1f2

QLf1
H̃uRf2

]
+h.c. (2.8)

where

H̃ ≡ iσ2H
† =

(
H0†

−H−

)
, (2.9)

and Y l,d,u are arbitrary 3 × 3 matrices, eventually determining the fermion masses

and �avor mixings. Sum over color and isospin indices have been ignored and f1, f2

run over the number of �avor generations.
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2.2 SSB and Higgs Mechanism

A vacuum state may or may not be invariant under the symmetry present in the

Lagrangian. These modes of symmetry realization are calledWigner-Weyl or Nambu-

Goldstone modes respectively. The symmetry realized in nature also depends on the

properties of the vacuum state. Wigner-Weyl realization causes all the particles in

a single multiplet to have degenerate masses while in Nambu-Goldstone realization

the multiplet contains zero-mass particles, known as Nambu-Goldstone boson, equal

to the number of broken generators. When the local gauge symmetries are broken

spontaneously, the Nambu-Goldstone bosons disappear providing longitudinal modes

to gauge �elds making them massive. See chapter 3 of [95] for the related details.

The SU(2)L complex Higgs scalar doublet with SM quantum numbers (2,1/2,1)

is denoted as,

H =

(
H+

H0

)
≡ 1√

2

(
H1 + iH2

H3 + iH4

)
. (2.10)

The scalar part of SM Lagrangian is augmented as

LH = (DµH)†DµH − µ2H†H − λ(H†H)2. (2.11)

The scalar potential acquires above structure due to SU(2)L⊗U(1)Y invariance and

renormalizability condition. For µ2 < 0 electroweak symmetry breaks spontaneously,

and λ > 0 is required to keep vacuum stable. Kinetic part of the Lagrangian gives

the three and four point interactions between Higgs and gauge bosons, and the λ

term describes quartic scalar self-interaction. Re-writing the scalar potential in real

basis we get

V (H) =
1

2
µ

(
4∑
i

H2
i

)
+

1

4
λ

(
4∑
i

H2
i

)2

. (2.12)

Without loss of generality we can choose the coordinates in this four dimensional

space such that 〈0|Hi|0〉 = 0 for i = 1, 2, 4 and 〈0|H3|0〉 ≥ 0. Electromagnetic charge

neutral component of the scalar �eld acquires vacuum expectation value (VEV),

preserving U(1)Q symmetry of vacuum. Minimization of potential part yields

〈
H†H

〉
0

= −µ
2

2λ
≡ v2

EW

2
→ 〈0|H|0〉 =

1√
2

(
0

vEW

)
, (2.13)
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called the Higgs �eld acquiring VEV. The complete transformation of Higgs �eld is

H → e
i
2

(αiσi+iβ)H =
1√
2

(
0

vEW + h

)
. (2.14)

Then gauge transformation with, say, α1,2 = 0 and α3 = β will be a symmetry

of VEV. Thus, the generators σ1,2 and 1
2
σ3 − Y 1 are spontaneously broken since

they give non-zero charge to vacuum. But, vacuum carries no quantum number for

Q = 1
2
σ3 + Y 1 thus U(1)Q symmetry stays unbroken. The scalar kinetic term with

H = H ′ + 〈H〉 gives the relevant mass term

(Dµ 〈H〉)†(Dµ 〈H〉) →
1

2
(0, vEW )

∣∣∣∣gW i
µ

σi

2
+
g′

2
Bµ1

∣∣∣∣2( 0
vEW

)
=

1

2

v2
EW

4

[
g2W+

µ W
µ− + (−gW 3

µ + g′Bµ)2
]

(2.15)

where

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ) with mass mW = g
vEW

2
(2.16)

Zµ =
1√

g2 + g′2
(gW 3

µ − g′Bµ) with mass mZ =
√
g2 + g′2

vEW
2

(2.17)

Thus, the �eld orthogonal to Zµ is electro-magnetic (EM) �eld Aµ = 1√
g2+g′2

(g′W 3
µ +

gBµ), which remains massless. The EM and neutral weak boson �elds are related as(
Zµ
Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W 3
µ

Bµ

)
(2.18)

where θW = cos−1

(
g√

g2+g′2

)
is calledWeinberg angle. The relationM2

W = M2
Z cos2 θW

con�rms the weak doublet nature of the Higgs particle. Fermionic mass terms are

acquired trivially as

Mψ =
1√
2
Y ψvEW , (2.19)

where ψ = l, d, u. The Yukawa couplings are not any special matrices hence can be

diagonalized only using bi-unitarity transformation.

This mechanism introduced the natures complexity through 28 fundamental pa-

rameters namely 12 masses, 6 angles and 2 Dirac phases in quark and lepton sector,

2 Majorana phases and in the Bosonic sector α,mZ , vEW ,mH , αS and θQCD. The

allowed parameter space for Higgs mass was constrained to very limited region of
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parameter space, around 100 GeV, with the help of radiative corrections to gauge

bosons due to presence of Higgs in the loop. This was further constrained by LEP,

Tevatron direct search experiments and unitarity constraint on WW -scattering, and

is eventually discovered at LHC.

The spontaneous symmetry breaking and Higgs mechanism also help in making

of a renormalizable theory with massive vector bosons. Breaking of gauge invariance

explicitly by adding mass terms for gauge bosons must have culminated the theory

into a non-renormalizable one.

2.3 Excellencies of Standard Model

Gauge and fermionic kinetic terms together with Yukawa and Higgs Lagrangian com-

plete the Lagrangian for SM, except the fact that while quantizing SM we need to

add gauge �xing and Faddeev-Popov ghost terms. Since its origin the SM has been

beautifully con�rmed by all the experiments. It has very simple structure and dif-

ferent forces of nature appear in same fashion, i.e., local gauge theories. The 58

objects (45 fermion �elds, 12 gauge boson �elds and 1 scalar boson �eld), 118 de-

grees of freedom (1 for Higgs, 2 for photons, 8 × 2 for gluons, 3 × 3 for massive

electroweak gauge bosons, 3×4 for charged leptons, 3×2 for neutrinos, 6×3×4 for

quarks) and 28 free parameters (12 for fermion masses, 3 angles and 1 CP phase of

Cabibbo-Kobayashi-Maskawa (CKM) matrix, 3 angles and 3 phases in Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix, four in electroweak sector of bosons namely

α,MZ , vEW and MH and 2 in strong sector namely αS and strong CP phase ΘQCD)

constitute the complete model. All these parameters have been experimentally mea-

sured except ΘQCD, three phases of PMNS matrix and absolute neutrino mass scale.

For a nice summary of SM and beyond see [96].

Few of the world's major collider experiments are LEP (e+e−), SLC (e+e−),

Tevatron (pp̄), HERA (e−p), PEP-II (e+e−), KEKB (e+e−) and the latest LHC (pp).

These experiments have explored the energy scale from 10 GeV to 8 TeV. Leptonic

collider experiments give clean signals at �xed energy suitable for detailed study.

Hadronic collider experiment signals are messy with unknown/variable energy but

are suitable for discovery purposes due to high energy, involved nature and capability

of producing large amount of signal. With the above structure, SM �ts precisely

the experimental �ndings of above experiments. To test a property of the theory we

measure the associated parameter various ways, compare the predicted and measured

quantities. Once con�rmed, �t the full parameter space of the model and check it's
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consistency. All the particles predicted by the SM since its origin, namely τ (1975),

ντ (2000), c (1974), b (1977), t (1995), gluons (1979), W , Z (1983) and Higgs (2012)

scalar, have not only been con�rmed but also �t perfectly in the model framework.

2.4 De�ciencies of Standard Model

With the recent discovery of Higgs particle in CMS [18] and ATLAS [17] detectors

at LHC our quest for the SM parameters completes. Even ignoring the fact that

it does not incorporate gravitational interaction, there are enough reasons for not

believing it as a complete story. Few of the most crucial reasons behind the need of

BSM physics are listed as follows

� Neutrino Masses: The most important and widely discussed experimental

evidence of BSM physics is the observed neutrino masses and their peculiar

mixings in innumerable oscillation experiments. Solar neutrino experiments

(Homestake, Kamiokande, GALLEX/GNO, SAGE, Super-Kamiokande, SNO,

BOREXINO) and reactor experiment KamLAND estimated ∆m2
sol ' 7.5 ×

10−5 eV2 and angle sin2 θsol ' 0.3. Atmospheric experiments (Kamiokande,

IMB, Super-Kamiokande, MACRO, Soudan-2, MINOS) and long baseline ex-

periments (K2K, MINOS and T2K) measured ∆m2
atm ' 2.4× 10−3 eV2 and a

mixing angle sin2 θatm ' 0.5. The reactor experiments Daya Bay, RENO and

Double Chooz recently con�rmed non-zero reactor angle sin2 θrct ' 0.02. In

the standard three generation framework ∆m2
sol = ∆m2

21, ∆m2
atm = |∆m2

31| '
|∆m2

32| and θsol = θ12, θatm = θ23, θrct = θ13 are chosen for convenience. The

latest global �t for these parameters is listed Tab. 2.3 [97]. From a totally

di�erent scenario the cosmological bounds coming from WMAP constrain the

sum of light neutrino masses to
∑
mi < 0.19 − 1.19 eV at 2σ level [98]. Un-

certainties in mass hierarchy and CP -phases are expected to be �xed in near

future. From SM point of view neutrino masses must vanish if no right handed

neutrinos existed, hence no Dirac mass term for neutrinos exist and lepton

number is conserved. Charge neutralness of neutrinos leave other doubts like

whether neutrinos are Dirac or Majorana type. If they are Dirac kind, Yukawa

couplings will have to be ∼ 10−12, and there will not be any prediction for

neutrinoless double beta decay. If they are Majorana type their masses might

come through seesaw mechanism quite naturally.
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Parameter Case Best �t 1σ range 2σ range 3σ range
δm2

10−5 eV2 NH/IH 7.54 7.32 � 7.80 7.15 � 8.00 6.99 � 8.18
sin2 θ12

0.1
NH/IH 3.08 2.91 � 3.25 2.75 � 3.42 2.59 � 3.59

∆m2

10−3 eV2

NH 2.43 2.37 � 2.49 2.30 � 2.55 2.23 � 2.61
IH 2.38 2.32 � 2.44 2.25 � 2.50 2.19 � 2.56

sin2 θ13

0.01

NH 2.34 2.15 � 2.54 1.95 � 2.74 1.76 � 2.95
IH 2.40 2.18 � 2.59 1.98 � 2.79 1.78 � 2.98

sin2 θ23

0.1

NH 4.37 4.14 � 4.70 3.93 � 5.52 3.74 � 6.26
IH 4.55 4.24 � 5.94 4.00 � 6.20 3.80 � 6.41

δ/π

NH 1.39 1.12 � 1.77 0.00 � 0.16 �
⊕ 0.86 � 2.00

IH 1.31 0.98 � 1.60 0.00 � 0.02 �
⊕ 0.70 � 2.00

Table 2.3: Latest global best-�t and allowed 1, 2 and 3σ range analysis of 3ν mass-
mixing parameters. The ∆m2 = m2

3−(m2
1 +m2

2)/2 for NH and = −m2
3+(m2

1 +m2
2)/2

for IH. The χ2 for NH and IH are not very di�erent (∆χ2
I−N = −0.3) [97].

� Dark Matter: There are cosmological and astrophysical evidences that most

of the matter in the universe is not SM like, as it does not emit electromagnetic

radiation and hence is dark. Neutrinos would also not emit electromagnetic

radiation but relic density abundance of neutrinos disfavors its possibility of

being Dark Matter. Implication for particle physics are such that there must

exist cold dark matter which in non-baryonic. Till date the existence of cold

Dark Matter, which is likely to have particle physics origin, is elevated only

because of its gravitational interaction. See review by Drees and Gerbier in [99].

� Baryon asymmetry of universe: The imbalance in baryonic and anti-

baryonic matter in the observable universe is known as baryon asymmetry

problem. A system outside the thermal equilibrium is required to violate C,

CP and B-number, to generate such asymmetry [100]. These conditions are

necessary, for theories in which B = 0 during the Big Bang, but not su�cient.

All of these conditions are satis�ed in the SM. B is violated by instantons when

kT is of the order of the weak scale (but B − L is conserved). CP is violated

by the CKM phase and out of equilibrium conditions could be veri�ed during

the electroweak phase transition. A detailed quantitative analysis [101�104]

shows that baryogenesis is not possible in the SM because there is not enough

CP -violation and the phase transition is not su�ciently strong at �rst order,

unless mH < 80 GeV. Possibility of this mass had been ruled out by LEP ex-
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periment. The electroweak Higgs particle has been recently discovered at LHC

and found to have mH ' 126 GeV.

� Flavor problem: Despite the fact that all the SM fermions acquire their

masses through a single spontaneous symmetry breaking mechanism, their

masses exhibit strong hierarchical pattern. The symmetry of SM does not

impose any constraint on the masses or mixings of fermions. Including the

tiny but non-zero masses of neutrino, the ratio of heaviest to lightest fermion

is ∼ 1012. There is no explanation of three generations. Even in theories be-

yond the SM there is no single, justi�able, minimal mechanism to correlate

di�erent Yukawa couplings at electroweak scale.

� Fine tuning: Once the dependency on the cut-o� scale is absorbed in the re-

de�nitions of masses and couplings, SM is a renormalizable theory. Higgs mass

is not protected by any symmetry and receives large radiative correction from

new-physics scale. This requires order by order �ne tuning of extreme orders

to make the Higgs mass stable. Best solution out of few is the introduction of

SUSY at TeV scale.

� Gauge symmetry problem: The gauge structure and pattern of represen-

tations once discovered looks simple, but the origin of this structure and three

di�erent gauge couplings of totally di�erent nature remains unexplained. A

satisfactory theory should be able to explain the origin of these gauge symme-

tries and couplings. Evolution of these gauge couplings appear to be converging

to a single origin, this behavior should also have some convincing explanation.

� Charge quantization: Gellmann-Nishijima equation is convincingly acquired

while generation masses for gauge bosons, but it does not answer the question

why all the particles have integer multiple of Qe/3, where Qe is charge of

electron. More generically, why charges are quantized? From within the SM

we do not get hint for Hypercharge quantum numbers.

� Ultra High energy cosmic rays: The highest energy cosmic rays observed

have macroscopic energies up to several 1011 GeV. They may provide a good

probe to physics and astrophysics at such a large energies, unattainable in

terrestrial lab experiments. The origin of such an energetic cosmic rays is

one of the unresolved problem, searching for an explanation in the variety of

theories from astrophysical acceleration to BSM physics. For a review see [105].
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The motive of our study is two folded: (1) To address some of the above mentioned

open problems from grand uni�cation point of view, and (2) to predict some new

BSM physics within the reach of ongoing or future experiments. Unfortunately, all

the precision data, extensive �avor physics programs at K and B factories, and direct

collider searches indicate that there is no new physics at the electroweak scale.

Before we move to next level of our discussion let us have a look at the evolution

of gauge couplings of SM and its minimal SUSY extension.

2.5 Evolution of gauge couplings and uni�cation

The high energy behaviors of the three gauge couplings of SM gS, g and g′ point

towards the uni�cation of the electro-weak and strong forces. This is one of the main

motivation behind studying Grand uni�cation. Aesthetically too, we will prefer all

the forces of nature to unify at certain very high energy. Fig. 2.2 and Fig. 2.3

describes the evolution of gauge couplings of SM and MSSM. The group theoretic

formulations of one and two loop beta functions coe�cients for a general G1 × G2

gauge theory are listed in ref. [106,107] for both non-SUSY and SUSY scenarios. The

renormalization group evolution (RGE) of gauge coupling with two loop correction

can be expressed as [106,107]

µ
∂gi
∂µ

= βi ≡
1

16π2
aig

3
i +

1

(16π2)2

∑
j

aijg
3
i g

2
j + Yukawa term (2.20)

where i run over the three symmetries, µ is the energy parameter, and ai (aij) are

one (two) loop beta function coe�cients.

2.5.1 SM gauge coupling running

In the non-SUSY scenario the beta functions coe�cients are [107]

ai = −11

3
C2(G1) +

2

3
θT (R1)d(R2) +

1

6
δT (S1)d(S2)

aii = −34

3
[C2(G1)]2 +

[
10

3
C2(G1) + 2C2(R1)

]
θT (R1)d(R2)

+

[
1

3
C2(G1) + 2C2(S1)

]
δT (S1)d(S2)

ai 6=j = 2θC2(R2)d(R2)T (R1) + 2δC2(S2)d(S2)T (S1) (2.21)
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· · ·+ + +

Figure 2.1: One loop correction to gauge propagator. Dots correspond to ghost and
gauge �xing terms.

where θ = 1 (2) for Weyl (Dirac) fermions and δ = 1 (2) for real (complex) scalar

�elds. The fermionic and scalar multiplets transform according to the representations

Ri and Si with respect to the symmetry Gi. For an irreducible representation X we

have

tr(Ma(X)Mb(X)) = T (X)δab,

[Ma(X)Ma(X)]ij = C2(X)δij, (2.22)

whereMa is the matrix representation of the generators of the group. The T (X) and

C2(X) are called Dynkin index invariants and quadratic Casimir invariants, respec-

tively, and are related by C2(X)d(X) = T (X)dG. Here d(X) is the dimension of the

representation X and dG is the number of generators of the group. We have availed a

brief discussion on Quadratic Casimir and Dynkin index invariants in Appendix A.2.

If the theory has product of more than two group d(X2) =
∏

i≥2 d(Xi) is assumed.

C2(G) is the quadratic Casimir for the adjoint representation. For a representation

of abelian symmetry U(1)z we have C2(G) = 0 and C2(X) = T (X) = z2, where z is

the appropriately normalized charge associated to the U(1) symmetry.

We will be frequently estimating these coe�cients for various gauge groups under

study, hence we have explicitly elaborated the way to calculate those in the following

example.

Example: Assume that the we have quark doublet (2, 1/6, 3), which is a Weyl

fermion above electroweak restoration scale hence θ = 1. This example is as general

as required. One loop coe�cient corresponding to this representation is

a(2,1/6,3) =
2

3

(
1

2
× 3,

3

5

(
1

6

)2

× 6,
1

2
× 2

)
× ng (2.23)

In the eq. (2.23) the common factor 2/3 is the impression of representation being

fermionic. There are three terms inside the bracket corresponding to three groups.

The �rst term has a Dynkin index for fundamental of isospin group SU(2)L, i.e.,
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Figure 2.2: Standard Model Gauge coupling running.

T (RSU(2)L) = 1/2 and this isospin fundamental occurs thrice as the dimension of the

rest part of the theory, U(1)Y ⊗ SU(3)C , dR2 = 3. In the second term the factor

3/5 is the renormalization factor in rede�ning the U(1)Y gauge coupling g′ to the

new gauge couplings g1 as g′Y = g1T1, such that the generator T1 is normalized to

1/2 for a fundamental representation of the unifying group. This condition gives

g′ =
√

3/5 g1. Eventually, the comparison of the RGE of the two gauge couplings

g′ and g1 gives b1 = (3/5)bY . The term (1/6)2 is the Dynkin index (T = Y 2)

for U(1)Y symmetry. This is further multiplied by the dimension (=6) coming from

remaining symmetry SU(2)L⊗SU(3)C . Similarly in the third term we have a SU(3)C

fundamental and the dimension of rest of the theory, SU(3)C ⊗ U(1)Y , dR = 3. At

last ng is the number of �avor generations in the theory for this representation (for

SM ng = 3). Similarly we calculate two loop color-color beta coe�cient for the above

representation, which would be

b3C3C =

[(
10

3
C2(G1) + 2C2(R1)

)
T (R1)d(R2)

]
× ng

=

[(
10

3
× 3× 1

2
× 2

)
+ 2×

(
1

2

)2

× 8

3
× 2

]
× 3, (2.24)

where dR1C2(R1) = T (R1)dG1 have been used in the second term. C2(G) = 3, dG = 8

for SU(3)C and particles are in it's fundamental representation hence dR1 = 3 and

trivially dR2 = 2. Similar calculations will be required for all other representations
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present in the theory over all generation of scalars and fermions.

The non-zero contributions of all particles to the gauge couplings at one loop

level are depicted in Fig. 2.1. We have listed one and two loop RGE beta coe�cient

in the �rst row of the Tab. B.1 in the Sec. A.3.1.

The Fig. 2.2 shows the nature of evolution of gauge couplings assuming the bare

SM throughout the range of energy beyond electroweak scale. The meeting of SU(2)L

gauge coupling with U(1)Y around 1013 GeV in Fig. 2.2 is not a viable uni�cation of

SU(2)L and U(1)Y and is disallowed by proton lifetime constraint.

2.5.2 MSSM gauge coupling running

The SUSY is a symmetry which transforms boson (fermion) in to fermion (boson).

SUSY is required in certain kind of theories which integrate gravitation with internal

symmetries of Standard Model. Usually, it is introduced at very high energy scales.

The emancipation of SM from the �ne tuning problem require the SUSY scale at

TeV. SUSY pairs fermions and bosons hence every SM fermion is paired with their,
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Figure 2.3: Minimal Supersymmetric Standard Model Gauge coupling running.

yet to be discovered, super-partner. Gauge couplings acquire corrections due to

super-partners of SM particles present at TeV scale. The gauge coupling meet at a

point, around 2 × 1016 GeV. Evolution of gauge couplings is shown in Fig. 2.3 and

corresponding one and two loop beta coe�cients are listed in Tab. 2.4. Meeting

on gauge coupling at a point is a leading motivation for believing the existence of

SUSY. To keep the gauge couplings uni�ed beyond the meeting point we need to
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MSSM beta coe�cients
bi bij33/5
1
−3

 199/50 27/10 44/5
9/10 35/6 12
11/10 9/2 −26


Table 2.4: One and two loop gauge coupling beta coe�cients.

embed the MSSM in a higher theory like SUSY SU(5) or SO(10). The ongoing

experiments at LHC have constrained the parameter space of MSSM to very limited

region [108]. Further extensions in minimal SUSY GUTs will be required to explain

neutrino masses.
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CHAPTER3
Grand Uni�ed Theory

3.1 Motivations and Constraints

The plausible convergence of the gauge couplings of SM, Fig. 2.2, is one of the major

aesthetic reason to believe in grand uni�cation. Other motivations behind studying

the grand uni�cation are: (a) To reduce the number of arbitrary parameters of SM.

(b) To address, if not all, some of the de�ciencies of SM in a higher symmetry,

possibly present at very high energy scale. (c) To �nd other beyond SM signature

of which there have been no experimental evidence, and only bounds are available.

The proton decay, LFV, non-unitarity, rare decays, etc. are just few examples from

the list.

The basic mathematical requirement for GUT model construction is a simple Lie

algebra (G) as the gauge group, similar to SM. This simple group should be large

enough to have SM as its subgroup. The total number of commuting generators

(≡ rank of the group) in SM is four. Hence, the G must be a rank ≥ 4 group.

All the gauge couplings of theories below GUT symmetry restoration scale become

equal to GUT gauge coupling, αG, and above this scale we have only one gauge

coupling αG. The next requirement is that the reps of GUT model must correctly

reproduce the particle content of the observed fermion spectrum of SM. Thus G

must posses complex reps, as well as it (or the combination) must be free from

anomaly in order not to spoil the renormalizability of GUT by an incompatibility

of regularization and gauge invariance. The requirement of complex representation

is based on the fact that embedding the known fermions in real representations

would require mirror fermions, which must be very heavy making all SM fermions

masses close to their scale. The above requirements constrain the possible algebras

to SU(5), SU(6), SO(10) and E6. The smallest possible uni�cation structure with
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rank four is SU(5). The other most popular structure is SO(10) with rank=5. While

SU(5) enjoys being smallest and most predictive structure which can give SM after

spontaneously breaking it, the SO(10) is the smallest Lie group for which all the SM

fermions of one generation can be accommodated in a single anomaly free irreducible

representation (16 dimensional spinor), with the natural prediction of right handed

neutrino. Having a larger structure SO(10) o�ers enormous freedom in choosing the

symmetry breaking pattern.

The model independent achievements of grand uni�cation theories include: (a)

A unique gauge coupling describing nature above the uni�cation scale. (b) Because,

quarks and leptons come together in rep(s) of G, the charge quantization is automat-

ically achieved. (c) For the same reason quark-lepton Yukawa couplings get related

as a consequence of GUT symmetry constraints. (d) The baryon and lepton number

violating super-heavy gauge bosons open the channels for nucleon decay, speci�cally

proton decay. The resolutions of other problems in SM like (i) Fine tuning problem,

(ii) Dark matter content of the universe, (iii) Baryonic asymmetry of universe, and

(iv) Highly �avored structure of the SM fermions etc. are usually tackled model

dependently.

In this report we have focused on SO(10) based models at their variant forms.

The subgroups of SO(10) have the simple, SU(5), or direct products of SU(n), n ≥ 2

and U(1) groups. A short discussions on the properties of SU(n) group is presented

in Appendix A.2. The �avor structure of SM fermions is addressed either using the

algebra of higher rank symmetry or by introducing additional discrete or continuous

symmetries together with above mentioned simple GUT groups.

3.2 SU(5) GUTs

The grand uni�cation theory based on SU(5) was �rst proposed by Georgi and

Glashow in 1974 [50]. The SU(5) group has only four generator in Cartan sub-

algebra hence the rank of this group is 4 and the rank of SM is also 4. The adjoint

representation is 52 − 1 = 24 dimensional, hence the number of generators and

therefore number of gauge bosons is also 24. Because an adjoint representation is

a bi-product of fundamental representation and its conjugate representation, 5 ×
5̄ = 1 + 24, hence it is an e�ectively two rank tensor and can be represented in

5 × 5 matrix form. Only 12 out of 24 gauge bosons belong to SM hence below

SU(5) scale only 12, belonging to SM, gauge bosons remain massless while rest

acquire GUT scale masses. The fundamental representation, 5, of SU(5) can be
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Reps Origin Anomaly SM Decomposition
5 Fund. 1 (1,−1/3, 3) + (2, 1/2, 1)
10 (5× 5)a 1 (2, 1/6, 3) + (1,−2/3, 3̄) + (1, 1, 1)
15 (5× 5)s 9 (2, 1/6, 3) + (1,−2/3, 6) + (3, 1, 1)

24 (5× 5)tr=0 0
(1, 0, 8) + (3, 0, 1) + (2,−5/6, 3)
+(2, 5/6, 3) + (1, 0, 1)

Table 3.1: Simple representations of SU(5) and their decomposition in Standard
Model.

decomposed in to SU(2)L and SU(3)C like 5 = (2, 1)1/2 + (1, 3)−1/3, where the

structures within bracket are fundamental representations of the respective groups

and numbers at subscripts are associated hypercharges, such that
∑
Y = 0 [109],

i.e., no hypercharge quantum number in SU(5). Any multiplicative number to the

hypercharges is subject to normalization. The 15 Weyl �eld of each generation of SM

can not be put in symmetric representation of SU(5) because Adlar anomaly is non-

zero for this representation (see AppendixA.1) and this symmetric representation

also contains a color sixtet of SU(3)C but, quarks come in color triplet only. The

Higgs doublet of SM is put in 5 of SU(5) as 5 = (hT , H)T ≡ Φ. This whole multiplet

has to be charge less hence each colored scaler acquires Y = QEM = −1/3. Weyl

�eld are put in the form

5̄F =

(
dC

ε2L

)
L

, 10F =

(
ε3u

C Q
−QT ε2e

C

)
L

(3.1)

Here the superscript C means the charge conjugation, ε2A = εijAj and ε3A = εijkAk.

The ε2 and ε3 are the two and three index Levi-Civita antisymmetric tensors in

SU(2)L and SU(3)C basis, respectively. Expanding the eq. (3.1) we get

ε2e
C =

(
0 eC

−eC 0

)
, ε2L =

(
e

−νe

)
& ε3u

C =

 0 uCb −uCg
−uCb 0 uCr

uCg −uCr 0

 (3.2)

SU(5)���

(
SU(3)

SU(2)

)
, SU(5)���

(
SU(3)C SU(3)C ⊗ SU(2)L

SU(3)C ⊗ SU(2)L SU(2)L

)
(3.3)

The distribution of SU(5) in to SU(3) and SU(2) substructures for one and two in-

dex tensors is symbolically depicted in eq. (3.3), where the U(1)Y quantum numbers
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are ignored. From the Tab. 3.1 we see that decomposition of any of the SU(5) repre-

sentation smaller than adjoint (24) do not have SM singlet. Therefore, the smallest

scalar multiplet which can break SU(5) in to SM has to be the adjoint (24H ≡ Σ)

representation. Others will simply break the SM as well, or more critically the color

symmetry SU(3). A detail analysis of spontaneous symmetry breaking of SU(n)

can be found in [110, 111]. The minimal SU(5) is considered as a prototype GUT

model to depict the strength and limitations of grand uni�cation and is a text book

material today and has been addressed in [112�115] in good detail. Assigning VEV

along the o� diagonal �elds of adjoint representation will again break both SU(3)C

and SU(2)L. Hence, we have the only choice of assigning VEV, which commutes

with the generators of SU(3) and SU(2), is

〈Σ〉 ∝

(
2× 13 0

0 −3× 12

)
vΣ. (3.4)

Hence leaving the symmetry SU(3)C⊗SU(2)L preserved. Given the correct normal-

ization factor, this VEV mimics exactly the hypercharge quantum numbers, hence

also leaving the U(1)Y symmetry intact.

The most general potential, with additional simplifying Z2 symmetry Σ = −Σ,

which plays the role in the breaking of SU(5) is

V (Σ) = −µ
2

2
TrΣ2 +

λ

4
TrΣ4 +

λ′

4
(TrΣ2)2. (3.5)

where Σ can be also expanded as

Σ =

(
ΣO(1, 0, 8) ΣX(2,−5/6, 3)

ΣX(2, 5/6, 3) ΣT (3, 0, 1)

)
+ ΣS 〈Σ〉 . (3.6)

Putting the VEV 〈Σ〉 in the eq. (3.5) and estimating the mass term, we get scalar

masses

m2
O =

λ

6
v2

Σ, m
2
T =

2λ

3
v2

Σ, m
2
S = 2µ2, mX,X̄ = 0. (3.7)

Therefore, λ > 0 is required to get an stable and viable solution. These twelve

massless scalar bosons ΣX,X are the Goldstone modes of the theory, which must be

swallowed by twelve gauge bosons. The kinetic part of the Higgs under investigation

will contribute to the masses of gauge bosons. The covariant derivative for Σ particles

is

DµΣ = ∂µΣ + ig5[Aµ,Σ] (3.8)
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where

Aµ =

(
G(1, 0, 8) (X, Y )(2,−5/6, 3)

(X,Y )(2, 5/6, 3) W (3, 0, 1)

)
µ

+Bµ, (3.9)

and Aµ =
∑24

a=1A
a
µT

a is assumed. As per design, 〈Σ〉 commutes with the generators

belonging to SM. Hence, the gluons Gµ, weak bosons Wµ, and Hyper gauge boson

Bµ stay massless at the SU(5) breaking scale. However, the generators associated

with twelve heavy gauge bosons, (X, Y )µ ≡ (2,−5/6, 3) and their conjugates, do not

commute with the VEV 〈Σ〉 and therefore acquire the GUT scale, O(vΣ), masses.

These gauge bosons were required to be very heavy because they couple quarks with

leptons through fermion−gauge boson−fermion interactions, violating baryon (B)

and lepton (L) numbers (though accidentally preserving B − L) at the vertices.

Therefore they mediate the nucleon decay processes. To satisfy the present bound

on proton decay life time, masses of these gauge bosons must be ≥ 1015.5 GeV.

The possible scalar multiplets which can generate the fermion masses can be

found from the decompositions of matter bilinears

5× 5 = 10 + 15, 5× 10 = 5 + 45, 10× 10 = 5 + 45 + 50. (3.10)

Not all the multiplets in the right hand side are allowed because 5F contains only

one chiral component of the matter �eld hence Dirac mass term are not permitted.

Hence, only 5H , 45H and 50H are the possible candidates for generating masses of

SM fermions. On the other hand 10H and 15H may give Majorana term, helpful

for seesaw mechanism. In the minimal model, with only 5 as the Higgs boson, the

Yukawa Lagrangian is

LY = Y55
i
FC10F ij5

j
H + εijklm10F ijCY1010F kl5Hm. (3.11)

Here we have ignored the generation index over the fermions. With three genera-

tions known in nature the Yukawa matrices Y5,10 are 3× 3 complex matrices. With

〈Φ〉 = (0, 0, 0, 0, vEW )T , we get the masses of fermions. But, 〈Φ〉 preserves the SU(4)

symmetry so down quark and lepton masses are related at GUT scale. Also using

the properties of antisymmetry of Levi-Civita tensor we get

Yd = Y T
e and Yu = Y T

u . (3.12)

The above relations do not �t with the experimental �ndings. The model also fails

in predicting the Weinberg angle, i.e. gauge couplings do not unify at any energy.
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On the other hand, the quantization of electric charge �nds trivial explanation from

the group algebra.

The minimal SU(5) is an extremely predictive model with failed promises. Var-

ious extensions of minimal SU(5) model have been popular to explain both experi-

mental as well as philosophical questions. The gauge coupling uni�cation is achieved

in its SUSY extensions [116,117], together with the solution to hierarchy problem and

the possibility of dark matter candidate. But this extension solicits the incorporation

of neutrino mass generating extensions. On the other hand, the adjoint fermionic

extension to the minimal SU(5) model gives few-hundred GeV scale type-I+III see-

saw, called Adjoint SU(5) model [118, 119]. Major problem with such extensions of

SU(5) models is that very often we need to make additional �ne tuning to generate

di�erent mass scales for the particle with di�erent SM quantum numbers but sitting

in the same SU(5) multiplet (For example: the triplet color Higgs, hT , can mediate

the proton decay hence has to be very heavy closer to GUT scale). This is either

done by adding extra multiplets [120] in the theory or by introducing higher dimen-

sional operators [118, 119]. The discussion on minimal SU(5) teaches us about the

implementation of some crucial checks on GUT models to con�rm its viability.

Any uni�cation model based on SU(5) does not satisfactorily predict the family

structure of fermions. There is no chiral symmetry in SU(5) at any scale. There

is no prediction for RH neutrinos. Also, SU(5) does not explain nature favoring

(V − A) current over (V + A).

3.3 SO(10) GUTs

The next, most popular, candidate gauge group for grand uni�cation is SO(10),

�rst proposed by Fritzsch and Minkowski [54] and Georgi [52]. With one unit larger

rank (=5), the theory is phenomenologically more attractive due to larger degrees of

freedom. All the SM fermions, together with an additional SM singlet, of one gen-

eration are beautifully accommodated in a single 16 dimensional, irreducible, spinor

representation. The additional SM singlet is identi�ed as the right handed neutrino.

This is where SO(10) �ts perfectly, for it uni�es matter besides the interaction. The

theory also suggest the LR symmetry of universe prior to any symmetry breakdown,

which may give platform to explain the favor of (V −A) current over (V +A) at low

energies.

The special orthogonal group SO(10) is a group of 10×10 real orthogonal matri-

ces, O obeying OOT = OTO = 1, with Det(O) = 1. The algebra of SO(N) has been
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extensive discussed in text books [112�114]. For the sake of completeness, a small re-

capitulation of the properties of special orthogonal groups is given in Appendix A.4.

Since the low energy theory is based on unitary gauge groups, the SO(10) invariants

must be re-casted in to the unitary maximal subgroups. The two maximal subgroups

of SO(10) are SU(5) × U(1) and SU(2)L × SU(2)R × SU(4)C ∼= SO(4) × SO(6).

The decomposition of SO(10) algebra in the basis of SU(5) × U(1) and SU(2)L ×
SU(2)R×SU(4)C have been extensively discussed in [121,122] and [123], respectively.

For the sake of completeness we have listed the table of decompositions of SO(10)

irreducible representations up to 210 in to various subgroups, from [124], in the Ap-

pendix B.2. The decomposition of SO(10) invariants in to Pati-Salam symmetry has

been extensively studied in [124,125].

SO(10)PS

G2213

G2113

SM

G214

G51

54/210

4
5
/
2
1
0(1

, 1
, 1
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/
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Figure 3.1: The most popular and physically viable breaking chains of SO(10) down
to the SM [52,58,126�129].

Forty �ve dimensional adjoint representation are orthogonal matrices with unity

determinant. Because SO(10) is a large symmetry, there can be many subgroups

which are larger than SM and accommodate the structure of SM. The symmetries of
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these subgroups may appear at intermediate energy scales, unlike the SU(5) GUT

where we had one and only one way to reach SM. The most popular breaking schemes

of SO(10) to SM are depicted in Fig. 3.1, where

G13 = U(1)Q ⊗ SU(3)C

G5/51 = SU(5)/SU(5)⊗ U(1)X

G213 = SU(2)L ⊗ U(1)Y ⊗ SU(3)C (SM)

G214 = SU(2)L ⊗ U(1)X ⊗ SU(4)C

G224 = SU(2)L ⊗ SU(2)R ⊗ SU(4)C (PS)

G2113 = SU(2)L ⊗ U(1)B−L ⊗ U(1)R ⊗ SU(3)C

G2213 = SU(2)L ⊗ SU(2)R ⊗ U(1)B−L ⊗ SU(3)C (LR)

G2213D = G2213 ⊗D (LRD), G224D = G224 ⊗D(PSD), (3.13)

and the scalar multiplets sitting near the arrows if given VEV will break the symme-

tries at the tail in to symmetries at the head. The SO(10) origin of these multiplets

can be found from the decomposition tables and are re-listed in Tab. 3.2 The SSB of

SO(10) to G224D can be achieved by D-even PS singlet residing in 54 [58, 130, 131],

while breaking to G224 is achieved by D-odd PS singlet residing in 210 [56,57]. Also,

the SSB of SO(10)/PS D-even symmetry to G2213D is achieved by D-even LR singlet

residing in 210/(1, 1, 15) [132], while breaking of SO(10) or PS symmetry (D-odd or

even) to G2213 is achieved by D-odd LR singlet residing in 45/(1, 1, 15) [130,131,133].

Rest of the sub-algebras areD-parity broken, and the scalar multiplets breaking these

sub-algebras are depicted in Fig. 3.1 and their SO(10) origin can be read from the

Tab. 3.2. Under the assumption of extended survival hypothesis, particles residing

only in these representation acquire the masses of the order of symmetry breaking

scale. For example 54 scalar breaks SO(10) in to G224D at GUT scale and does

not participate in any breaking further hence all the scalars in 54 get the masses

of O(MGUT ). Similarly when (1,3,1) of 45 breaks PS symmetry to G214 or (1,3,15)

of 210 breaks PS symmetry to G2113 the scalar particles residing in these multiplets

(1,3,1) and (1,3,15) acquire the masses of PS (whetherD-odd or even) breaking scale.

Once the additional symmetries are included to populate the grand desert, SUSY

is not necessarily required for uni�cation of gauge couplings. In addition, with in-

termediate gauge symmetries SO(10) also predicts signals of new physics which can

be probed at low or accelerator energies. The left-right (LR) [48, 55] symmetry is

a �nite gauge transformation under charge conjugation. Through Pati-Salam [46]
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(1,−5)G51 ⊂ 16

(1, 10)G51 ⊂ 126

(24, 0)G51 ⊂ 45,210

(1,1,−2, 2)G2113 ⊂ (50, 2)G51 ⊂ 126

(1,1, 1,−1)G2113 ⊂ (10,−1)G51 ⊂ 16

(1,1,15)G224 ⊂ 45,210

(1,3, 0,1)G2213 ⊂ (1,3,1)G224 ⊂ 45

(1, 0,15)G214 ⊂ (1,3,15)G224 ⊂ 210

(1,3, 0,1)G2213 ⊂ (1,3,15)G224 ⊂ 210

(1, 1,−1,1)G2113 ⊂ (1, 1,10)G214 ⊂ (1,3,10)G224 ⊂ 126

(1, 1,−1,1)G2113 ⊂ (1,3,−1,1)G2213 ⊂ (1,3,10)G224 ⊂ 126

(1, 1/2,−1/2,1)G2113 ⊂ (1, 1/2,4)G214 ⊂ (1,2,4)G224 ⊂ 16

(1, 1/2,−1/2,1)G2113 ⊂ (1,2,−1/2,1)G2213 ⊂ (1,2,4)G224 ⊂ 16

Table 3.2: The multiplets participating in SSB by acquiring VEVs in the invariant
direction of the residual symmetry. The bold numbers correspond to dimension of
representation of associated non-abelian symmetry and normals are quantum num-
bers of abelian symmetry. Upper block depicts the SU(5) way of breaking and lower
block depicts the Pati-Salam line of breaking.

intermediate symmetry left-right symmetry is realized and the parity violation at

low energy is understood as an artifact of the breaking of the left-right symmetry.

We note from the Tab. B.4 to Tab. B.10 that all representations except 10 and

120 contain SM singlets, but not all of them break SO(10)→SM in a single step. The

SM singlets of representations 45, 54 and 210 are also singlets of higher symmetry,

so assigning VEV to the scalar �elds in these representations will break SO(10) to

the corresponding higher symmetry. On the other hand, if SM singlets of 16 and

126 are assigned a VEV the symmetry of SO(10) will spontaneously break to SM.

If an intermediate symmetry is at work then sub-multiplets of 16 and 126 under

the intermediate symmetry having SM singlets will do the job. The gauge coupling
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uni�cation in non-SUSY SO(10) grand uni�cation desperately demands the presence

of intermediate symmetries. Hence we require a combination of the appropriately

chosen multiplets to generate the breaking mechanism under study.

In the SUSY version of SO(10), if R [= (−1)3(B−L)+2S] parity remains an exact

symmetry at all scales the lightest SUSY partner will be stable, which may be an

ideal candidate for the dark matter of the universe. Under R-parity p → p and

p̃ → p̃, where p stands for particle and p̃ for its super-partner. The matter parity

M = (−1)3(B−L) is obviously equivalent to the R-parity, because (−1)2S = 1 for the

physical Hamiltonians and only scalars with S = 0 are allowed to have non vanishing

VEVs. Under matter parity 16 → −16 and 10 → 10. All other relations build out

of 10, such as 45, 54, 120, 126, 210 etc., are even. Only representations with spinor

content like 16, 144 etc. will be odd.

The decomposition of SO(10) spinor multiplet 16F in to SM fermions plus addi-

tional RH neutrino is expressed as as

16F = (2,
1

6
, 3) + (2,−1

2
, 1) + (1,−2

3
, 3̄) + (1,

1

3
, 3̄) + (1, 1, 1) + (1, 0, 1)

QL LL uCL dCL eCL νCL . (3.14)

In the SU(5) and PS basis this can be equivalently written as

16F ≡ 5F ⊕ 10F ⊕ 1; SU(5)

≡ (2, 1, 4)⊕ (1, 2, 4); PS. (3.15)

The interesting features of SO(10) GUTs is that the Majorana masses are dictated by

Yukawa couplings and the SSB pattern implemented for gauge coupling uni�cation.

Since, the SO(10) symmetry does not distinguish among the components of the

decomposition, see eq. (3.15), the Yukawa couplings for neutrinos are closely related

to charged fermions. The Yukawa Lagrangian which generates masses to the 16F

fermions of the model must have scalars in 10, 120 and 126 representations, in

general, because

16⊗ 16 = 10s ⊕ 120as ⊕ 126s . (3.16)

We can see that SM Higgs doublets are also present in these representations which

further break SM in to U(1)Q× SU(3)C . A realistic SO(10) GUT framework allows

proper SSB of SO(10) down to SM, and gauge and Yukawa interactions must be

compatible with the current experimental results on quark and lepton masses and

mixings. In (non-)SUSY case, at least (two)three Higgs representations are required
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to break SO(10) down to U(1)Q×SU(3)C , the low energy theory. The two multiplets

which can break SO(10) down to SM directly are 16H and 126H , but SM singlets

of these representations are incapable of breaking the SU(5) symmetry. It is easy

to see in the decomposition of 16H in SU(5) basis that the only singlet of SM is

also singlet of SU(5). Therefore, we need additional representations. If we demand

the SU(2)L × SU(2)R as an intermediate symmetry we need a real representations,

45H , 54H or 210H etc. which have invariants of the handedness. If the BSM models

are SUSY preserving the 45H together with only 16H or 126H is not a good choice

because vacuum aligns in SU(5) × U(1) direction [134�136]. Even in non-SUSY

SO(10) scenario this is true at tree level [130,131,133,137,138], but has been recti�ed

in radiative corrections [139].

The scalar multiplets which couple to fermionic bilinears 10H , 120H and 126H

contain the SM like Higgs doublets. There can be SU(2)L Higgs doublets coming

from the representations which do not directly couple to fermionic bilinears. Their

superposition gives e�ective SM light Higgs doublet which can acquire electroweak

VEV. A nice and detail description can be found in [124].

Advantages of using SO(10) over SU(5) are: a) A single family of fermions are

accommodated in a single 16-dimensional spinorial representation of SO(10), with

a prediction of right-handed neutrino. b) Both left and right handed fermions re-

side in a single representation, hence, left-right symmetry can be achieved through

a �nite gauge transformation in the form of charge conjugation. Thus the parity

symmetry is a part of continuous symmetry. c) Besides SU(5) × U(1), its other

maximal subgroup is Pati-Salam symmetry, which explains the mysterious relation

md = me/3, up to certain extent. d) The gauge coupling uni�cation can be achieved

through intermediate symmetry even if the SUSY is absent. e) In the SUSY ver-

sion, matter parity M = (−1)B−L is equivalent to the R-parity, R = M(−1)2S is a

gauge transformation. It is possible to keep R intact if SO(10) symmetry is broken

appropriately.

3.4 Majorana neutrinos and seesaw mechanism

Since, the neutrinos are electrically neutral they can be Dirac or Majorana fermions.

If they are complex four component Dirac �elds, as charge fermions, then neutri-

nos (ν) and antineutrinos (ν) would have same mass but opposite lepton number

therefore ν-mass Lagrangian would be lepton number conserving. There is no lep-

ton number preserving symmetry in the SM. Violation of this accidental symmetry
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will allow the Majorana mass term in the Lagrangian, and neutrinos would be two

component Majorana �elds.

Extending the SM with three right handed singlet �eld νR we write Dirac mass

Lagrangian

LD = −νLMDνR + h.c. (3.17)

where MD = YνvEW , and vEW is electroweak VEV. For neutrinos to be as light as

1 eV, Yν ∼ O(10−12), which is extremely tiny and leads to �ne tuning problem in the

theory. On the other hand Majorana mass term can be written as

LM = −1

2
νLM

M
L ν

C
L + h.c. (3.18)

The smallness ofML has also to be explained. With two lepton doublets, we need to

make this term gauge and Lorentz invariant. The most elegant way to explain this

is the seesaw mechanism [59]. From within the SM, Yukawa interactions augmented

by higher dimensional terms are written like dimension-5 Weinberg operator [140]

LY (d = 5) = λij
(lL

T
i iσ2H)C(HT iσ2lLj)

MΛ

(3.19)

whereMΛ is the cut-o� scale of the theory, λ is couplings strength and i, j are �avour

indices. When H acquires VEV we get

MM
L = λ

v2
EW

MΛ

. (3.20)

The other non-vanishing contributions, ignoring Lorentz index, can be

(lTLσ2
−→σ lL)(HTσ2

−→σ H) (3.21)

(lTLσ2
−→σ H)(HTσ2

−→σ lL) (3.22)

Closer look at the eq. (3.19), eq. (3.21) and eq. (3.22) suggests that the renormalizable

Yukawa term with extended particle structure can reproduce the dim=5 invariants

if heavy modes are integrated out of

(lL
Tσ2H)νR, (lTLσ2

−→σ lL)
−→
∆ , & (lTLσ2

−→σ H)−→ρ , (3.23)

where νR, ∆ and ρ are SM singlet fermion, SU(2)L triplet (3,1,1) scalar and SU(2)L

triplet (3,0,1) fermion, respectively, under SU(2)L×U(1)Y ×SU(3)C . The masses of

these BSM particles are the cut-o� scale. Integrating out the heavy modes generates
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the non-zero masses for light neutrinos and this mechanism to generate the masses for

neutrinos is known as seesaw mechanism. These three types of generating masses of

neutrinos are called type-I [59�63], type-II [118,119,141] and type-III [64�67] seesaw,

respectively.

With a gauge singlet chiral fermion per generation, the renormalizable Yukawa

coupling follows

∆L = YνlLσ2H
∗νR +

MR

2
νTRCνR + h.c. (3.24)

with ν ≡ νL + CνTL and N ≡ νR + CνTR we get the total mass matrix of neutral

Lagrangian

Mν =

(
0 MT

D

MD MR

)
≡ Uν

(
mν 0

0 Mh

)
UT
ν , (3.25)

where Mν , Uν are 6× 6 matrices and rest of the matrices in eq. (3.25) are 3× 3. For

MD << MR we have predominantly Majorana case such that the block diagonalized

matrices are

mν ' −MD
1

MR

MT
D & MN 'MR. (3.26)

This is the canonical or type-I seesaw.

Now, if instead of fermionic singlet we have a scalar triplet, the relevant Yukawa

part of Lagrangian is

∆L = Y ij
∆ l

T
LiCσ2∆LlLj + h.c. (3.27)

and the associated scalar potential term is

∆V = µ∆H
Tσ2∆∗LH +M2

∆Tr∆†L∆L + .. (3.28)

where µ∆ ∼ O(M∆) and ∆ = −→σ ·
−→
∆ . The VEV 〈∆〉 results from cubic scalar part

of the Lagrangian. Neutrinos get the mass

mν = Y∆ 〈∆〉 (3.29)

with 〈∆〉 ' µ∆v
2
EW

M2
∆

. This is known as type-II seesaw mechanism.

Similarly, addition of a triplet fermion gives the Lagrangian

∆L = Yρl
T
LCσ2ρH +Mρ

−→ρ TC−→ρ (3.30)

where ρ = −→σ · −→ρ and the mass Mρ is the scale of new physics. Similar to type-I
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seesaw for Mρ >> vEW

mν = −Yρ
1

Mρ

Y T
ρ v

2
EW . (3.31)

This mechanism to generate light neutrino masses is called type-III seesaw. While

in type-II seesaw only one ∆ is enough to get the general neutrino mass matrix,

in type-I (III) seesaw the number of required singlet (triplet) is same as required

number of non-zero light masses, i.e. at least two.

In the GUT framework, the multiplets giving type-II and type-III seesaw are part

of larger representations. For example in SU(5) GUTs the triplet scalar of SM giving

type-II seesaw is a part of the symmetric representation of SU(5), the triplet SM

fermion giving type-III seesaw is a part of adjoint of SU(5), as we can see in Tab. 3.1.

The singlet fermion giving type-I may be part of some GUT multiplet or it may stay

singlet of GUT as well. In SO(10) we already have the additional fermion singlet as

part of the fermionic family. The triplet scalars (vectors) giving type-II (III) seesaw

come from 126H and 45F multiplets. The advantage of SO(10) over SU(5) is that

since extra fermion is part of the same multiplet as other SM fermions, the neutrino

Dirac mass matrix is strongly correlated with the mass matrices of other fermions.
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CHAPTER4
LHC testable inverse seesaw in non-SUSY

SO(10)

An evidence of SUSY at the LHC would be a land-mark discovery which would

certainly change the future course of physics. In this context, recently realization of

TeV scale inverse seesaw mechanism in SUSY SO(10) framework has led to a number

of experimentally veri�able predictions including low-mass W±
R and Z ′ gauge bosons

and non-unitarity e�ects. But, in the absence of any evidence of SUSY so far, it is

worth while to explore new physics prospects of non-SUSY GUTs, specially based

upon SO(10) for the reasons discussed in the previous chapter. In fact neither seesaw

mechanism, nor grand uni�cation require SUSY per se.

In this chapter our purpose is to explore how a TeV scale inverse seesaw mech-

anism for neutrino masses which is di�erent from conventional seesaw mechanisms

in implemented in SO(10) based model. This inverse seesaw also has the poten-

tial to be experimentally veri�ed because of the low scale at which it can operate.

The residual of symmetry SO(10) is a low-mass Z ′ boson accessible to LHC. We

estimate leptonic non-unitarity e�ects measurable at neutrino factories and lepton

�avor violating decays expected to be probed in near future. Other predictions on

branching ratios and CP -violating parameters are discussed. The best identi�ed

minimal model is accessible to ongoing search experiments for the decay p→ e+π0.

This chapter is organized in the following manner. In Sec. 4.1 we brie�y discuss

the model and carry out gauge coupling uni�cation and proton lifetime predictions in

Sec. 4.2. A brief explanation of inverse seesaw mechanism in Sec. 4.3. In Sec. 4.4 we

discuss RGE of fermion masses and mixings to the GUT scale in the presence of non-

SUSY gauge theories G2113 and G2213 at intermediate scales. In this section we also

show how fermion masses are �tted at the GUT scale and information on the Dirac

neutrino mass matrix is obtained. Non-unitarity e�ects are discussed in Sec. 4.5 with
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predictions on the moduli of relevant matrix elements. In Sec. 4.6 we give predictions

on CP -violating parameters and LFV where we also discuss possible limitations of

the present models. In Sec. 4.7 we provide a brief summary and discussion. In the

Tab. B.1 of Appendix B we have also provided beta function coe�cients for gauge

coupling uni�cation while in Appendix C we summarize derivations of RGEs for

fermion masses and mixings.

4.1 The Model

There has been extensive investigation on physically appealing intermediate scale

models [56�58,81,83,127] in non-SUSY SO(10). Although in the minimal two step-

breaking of non-SUSY SO(10) models [83] we found no suitable chain with a suf-

�ciently low scale to implement the inverse seesaw, the following chain with two

intermediate gauge symmetries appears to be quite suitable,

SO(10)
MGUT−−−−−−→

45H/210H
G2213/G2213D

M+
R−−→

45H
G2113

M0
R−−→

16H
SM

MZ−−→
10H

U(1)Q × SU(3)C (G13). (4.1)

Model-I: G2213 (g2L 6= g2R) is realized by breaking the GUT-symmetry and by

assigning VEV to the D-Parity odd singlet in 45H [56, 139].

(1, 1, 0, 1) ⊂ (1, 1, 15) ⊂ 45

where convention is taken as G2213 ⊂ G224 ⊂ SO(10) and �rst two are named

as left-right and Pati-Salam symmetries. As the left-right discrete symmetry is

spontaneously broken at the GUT scale, the Higgs sector becomes asymmetric be-

low µ = MGUT causing inequality between the gauge couplings g2L and g2R. The

second step of symmetry breaking takes place by the right-handed Higgs triplet

σ0
R(1, 0, 0, 1) ⊂ σR(1, 3, 0, 1) ⊂ (1, 3, 1) ⊂ 45H . The third step of breaking to SM

takes place by χ0(1, 0, 1) ⊂ χ(1,−1/2, 1/2, 1) ⊂ (1, 2, 1/2, 1) ⊂ (1, 2, 4̄). The well

known SM breaking to low energy symmetry by the SM Higgs doublet contained

in the bi-doublet (2,2,0,1) under G2213 originates from 10H of SO(10). We assume

these doublets to originate from two separate bi-doublets contained in 10aH (a =

1,2) [45, 142]. Implementation of inverse seesaw also requires the minimal exten-

sion by adding three SO(10)-singlet fermions Si (i = 1, 2, 3), one for each genera-

tion [143,144].

Model-I′: G2213D (g2L = g2R) is realized by breaking the GUT symmetry by the
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VEV of the G2213-singlet (1, 1, 0, 1) ⊂ 210H which is even under D-parity [56]. For

the sake of simplicity we treat the rest of the symmetry breaking patterns of Model-I′

similar to Model-I.

4.2 Gauge coupling uni�cation and proton decay

In this section we examine gauge coupling uni�cation in the minimal Model-I and

the minimal Model-I′ and make predictions on proton lifetimes while we also predict

the corresponding quantities in their simple extensions.

4.2.1 Uni�cation in minimal models

It was shown in [57] that with G2113 gauge symmetry at the lowest intermediate scale

in SO(10) there is substantial impact of two-loop e�ects on mass scale predictions

in a number of cases. The one-loop and the two-loop beta-function coe�cients for

the evolution of gauge couplings [51, 107] for Model-I and Model-I′ with two Higgs

doublets for each case are given in Tab. B.1 of Appendix B. We have also included

small mixing e�ects [127,145�148] due to two abelian gauge factors U(1)R×U(1)(B−L)

in both the models below the M+
R scale. Using [149,150]

sin2 θW (MZ) = 0.23116± 0.00013,

α−1(MZ) = 127.9 and αS(MZ) = 0.1184± 0.0007, (4.2)

we �nd that withMZ′ ∼MR0 ∼ 1 TeV precision uni�cation of gauge couplings occurs

for the following values of masses at one-loop and two-loop levels for the Model-I,

1− loop : M ol
GUT = 1015.98 GeV, M ol

R+ = 1010.79 GeV, αolG = 0.02253

2− loop : MGUT = 1015.53 GeV, M+
R = 1011.15 GeV, αG = 0.02290 (4.3)

The RG evolution of gauge couplings at two-loop level is shown in Fig. 4.2.1 exhibit-

ing precision uni�cation at MGUT = 1015.53 GeV. In Model-I′ coupling uni�cation

occurs with similar precision but at MGUT = 1015.17 GeV.

The decay width of the proton for p→ e+π0 is [109,151]

Γ(p→ e+π0) =
mp

64πf 2
π

(
gG

4

MGUT
4

)
|AL|2|ᾱH |2(1 +D + F )2 ×R. (4.4)

where R = [(A2
SR + A2

SL)(1 + |Vud|2)2] for SO(10), Vud = 0.974 = the (1, 1) element
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Figure 4.1: Gauge coupling uni�cation in Model-I with two loop values MGUT =
1015.53 GeV and M+

R = 1011.15 GeV with low mass Z ′ gauge boson at M0
R ∼ 1 TeV.

of VCKM for quark mixings, ASL(ASR) is the short-distance renormalization factor

in the left (right) sectors and AL = 1.25 = long distance renormalization factor.

MGUT = degenerate mass of 24 super-heavy gauge bosons in SO(10), ᾱH = hadronic

matrix element, mp = proton mass = 938.3 MeV, fπ = pion decay constant = 139

MeV, and the chiral Lagrangian parameters are D = 0.81 and F = 0.47. With

αH = ᾱH(1+D+F ) = 0.012 GeV3 estimated from lattice gauge theory computations,

we obtain AR ' ALASL ' ALASR ' 2.726 for Model-I. The expression for the inverse

decay rates for both the minimal models is expressed as,

Γ−1(p→ e+π0) = (1.01× 1034Yrs)

(
0.012GeV 3

αH

)2(
2.726

AR

)2(
1/43.6

αG

)2

×
(

7.6

Fq

)(
MGUT

2.98× 1015GeV

)4

, (4.5)

where the factor Fq = 2(1+|Vud|2)2 ' 7.6 for SO(10). Now using the estimated values

of the model parameters in each case the predictions on proton lifetimes for both

models are given in Tab. 4.1 where the uncertainties in uni�cation scale and proton

lifetime have been estimated by enhancing the error in αS to 3σ level. The reduction
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of lifetime by nearly two-orders compared to one-loop lifetime (τ olp ) predictions in

both cases is due to the corresponding reduction in the uni�cation scale by a factor

of ' 1/3. It is clear that with maximal value (τp)max. = 5 × 1034 Yrs., Model-

I predicts the proton lifetime closer to the SuperKamiokande limit (τp)expt.(p →
e+π0) ≥ 1.4 × 1034 years [84, 87, 152] which is accessible to ongoing proton decay

searches in near future [153]. On the other hand Model-I′ is ruled out at two-loop

level as it predicts lifetime nearly two orders smaller.

Parameter Model-I Model-I′

M ol
GUT (GeV) 1015.978 1015.56±0.08

M ol
R+ (GeV) 1010.787 1011.475

MGUT (GeV) 1015.530 1015.17±0.08

MR+ (GeV) 1011.150 1011.750

α−1
G 43.67 42.738
AR 2.726 2.670
τ olp (Years) 1.08× 1036±0.32 2.44× 1034±0.32

τp (years) 2× 1034±0.32 6.3× 1032±0.32

Table 4.1: GUT scale, intermediate scale and proton lifetime predictions for non-
SUSY SO(10) models with TeV scale Z ′ boson and two Higgs doublets as described
in the text. The uncertainty in the proton lifetime has been estimated using 3σ
uncertainty in αS(MZ).

The fact that the Model-I admits a low B − L breaking scale corresponding to

a light Z ′ accessible to accelerator searches makes this non-SUSY model suitable to

accommodate inverse seesaw mechanism. Unlike the SUSY SO(10) model [45] here

the W±
R bosons are far beyond the LHC accessible range.

4.2.2 Uni�cation in simple model extensions

Although the minimal Model-I clearly satis�es the proton decay constraint to ac-

commodate TeV scale seesaw, we study simple extensions of both models to show

that they can evade proton lifetime constraint in case future experiments show τp to

be substantially longer than 1035 Yrs. We use an additional real color octet scalar

C8(1, 0, 8) ⊂ 45H where the quantum numbers are under the SM gauge group and

allow its mass to vary between 1 TeV and the GUT scale. Making it light would re-

quire additional �ne tuning of parameters. Recently such a light scalar has been used

in models with interesting phenomenological consequences and if the particle mass

is in the accessible range, it may be produced at LHC with new physics signatures

beyond the SM [73,154�157].
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Figure 4.2: Variation of proton lifetime as a function of color octet mass in simple
extensions of Model-I (double dot-dashed line) and Model-I′ (dashed line). The
horizontal solid line with error band is the prediction of the minimal Model-I while
the horizontal dot-dashed line is the experimental lower bound for p→ e+π0.

The presence of this scalar octet with lower mass makes the evolution of α−1
3c (µ)

�atter thereby pushing the GUT scale to higher values. In Fig. 4.2 we plot predicted

proton lifetimes in the extended G2213 and G2213D models as a function of the octet

mass m8. It is clear that such a simple extension of the two models can easily satisfy

proton lifetime requirements in future experimental measurements even if they are

found to be much longer than the current limit.

Then while the minimal Model-I can be easily chosen for inverse seesaw, both

the models with such simple extension and possessing TeV scale U(1)(B−L) breaking

scale qualify for the same purpose. For the phenomenological study of non-unitarity

e�ects we con�ne to the Model-I and all our analyses are similar for Model-I′.

4.3 Inverse seesaw mechanism

A hallmark of SO(10) grand uni�cation is its underlying quark-lepton symmetry [46]

because of which the canonical seesaw scale is pushed closer to the GUT scale mak-

ing it naturally inaccessible to direct tests by low-energy experiments or collider

searches. The energy scale of type-II seesaw mechanism in SO(10) is also too high

for direct experimental tests. In contrast to these high scale seesaw mechanisms, an

experimentally veri�able and attractive mechanism is the radiative seesaw [22, 157]

where the quark-lepton uni�cation has no role to play and additional suppression

42



to light neutrino mass prediction occurs by loop mediation proportional to a small

Higgs quartic coupling that naturally emerges from a Plank-scale induced term in

the GUT Lagrangian. The model predicts a rich structure of prospective dark mat-

ter candidates also veri�able by ongoing search experiments. It has been further

noted that this embedding of the radiative seesaw in SO(10) may have a promising

prospect for representing all fermion masses. A number of other interesting neutrino

mass generation mechanisms including type-III seesaw, double seesaw, linear seesaw,

scalar-triplet seesaw have been suggested and some of them are also experimentally

veri�able. For reviews on di�erent neutrino mass generation mechanisms with or

without GUTs, SUSY, or �avor symmetry see [19�29].

Here we explore the prospects of inverse seesaw [143, 144] mechanism, which is

experimentally veri�able because of the low scale it operate although higher scale

inverse seesaw models have been suggested [158�163]. In a large class of models

[164�181], the implementation of inverse seesaw requires the introduction of fermionic

singlets (S) under the gauge group of the model. Likewise, its implementation in

SO(10) introduces a new mass scale µS into the Lagrangian corresponding to the

mass matrix of the additional singlet fermions of three generations and the TeV-

scale seesaw requires this parameter to be small. There is an interesting naturalness

argument in favor of its smallness based upon exact lepton number conservation

symmetry [45,164�175].

The Yukawa Lagrangian at the GUT scale gives rise to the e�ective Lagrangian

near the second intermediate scale µ = M0
R ∼ 1 TeV,

LYuk = Y a16 · 16 · 10H
a + yχ16 · 1 · 16H

† + µS1 · 1

⊃
(
Y aψLψRΦa + yχψRSχ

0
R +H.c.

)
+ STµSS, (4.6)

where the �rst (second) equation is invariant under SO(10) (G2113) gauge symmetry.

The left-handed (LH) and the RH fermion �elds ψL(2, 0,−1/2, 1), ψR(1, 1/2,−1/2, 1)

with their respective quantum numbers under G2113 are contained in 16F ⊂ SO(10)

and the two Higgs doublets in 10H ⊂ SO(10). Denoting the heavy Dirac mass matrix

relating NR and SL asM = yχvχ where vχ = 〈χ0
R〉 and the Dirac mass matrix for the

neutrinos as MD = Yνvu, where vu is the VEV of up-type Higgs doublet, eq. (4.6)

gives mass matrix of the neutrino sector in �avor basis after symmetry breaking

G2113 → SM

Lmass =
(
ν̄MDN + N̄MS +H.c.

)
+ STµSS, (4.7)
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which in |ν〉f = (ν,NC
R , S)T basis gives the mass matrix

Mν =

 0 MD 0

MT
D 0 MT

0 M µS

 . (4.8)

The neutrino mass matrices MD and M are in general 3 × 3 complex matrices in

�avor space whereas the µS is 3×3 complex symmetric matrix. Transformation from

�avor to mass basis through

|ν〉f = V∗|ν〉m (4.9)

leads the diagonalization of the above matrix as

V†MνV∗ = M̂ν = Diag{mνi ;Mζj} (4.10)

where |ν〉m = (ν̃i, ζj)
T represents the three light and six heavy mass states, and i and

j run over the light and heavy mass eigenstates respectively. With µS,MD � M ,

the matrixMν can be block diagonalized in to light and heavy sectors as

mν '
(
MD

M

)
µS

(
MD

M

)T
,

MH '

(
0 MT

M µS

)
(4.11)

With the convention that A
B

= AB−1.

mν ≡ XµSX
T . (4.12)

where mν is the well known inverse seesaw formula refer for light neutrinos and the

other one is the mass matrix for heavy pseudo-Dirac pairs of comparable masses

with splitting of the order of µS . The µS term in the Lagrangian breaks the leptonic

global symmetry, U(1)Lepton , which is otherwise preserved in the SM, rendering all

the LH neutrinos to be massless. Hence the small µS should be the natural possibility

in the 'tHooft sense [182] even though there is no dynamical understanding for such a

small parameter, and can be viewed as slight breaking of the global U(1) symmetry.

The above block diagonalized matrices are further diagonalized through the PMNS
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matrix, Uν , and a 6× 6 unitary matrix UH respectively so that

V '

(
1− 1

2
B∗BT B∗

−BT 1− 1
2
BTB∗

)(
Uν 0

0 UH

)
(4.13)

where

BT '

(
−M∗−1µ∗S(MDM

−1)†

(MDM
−1)†

)
'

(
0

X†

)
(4.14)

hence, V in the leading order approximation can be written as

V '

1− 1
2
XX† 0 X

0 1 0

−X† 0 1− 1
2
X†X

((Uν)3×3 03×6

06×3 (UH)6×6

)
, (4.15)

where X = (MDM
−1), and all the elements in the �rst block are 3× 3 dimensional

matrices. The procedure to obtain this result has been discussed in the Appendix D

in great detail.

It is clear that the TeV-scale inverse seesaw formula is tenable and appropriate

to �t the light neutrino masses provided µS is the smallest of the three mass scales

occurring in eq. (4.8). The view for the naturally small parameter µS being followed

in the present work has been adopted in [45, 142] and by a number authors earlier

pursuing inverse seesaw mechanism [164�175] although its interpretation through

Higgs mechanism has been discussed in a model with extended gauge, fermion and

Higgs sectors [183,184] and possibility of its radiative origin has been explored [185].

The major obstacle in predictions in this mechanism at low energy is that it has

too many parameters. Neither of the three matrices MD, M and µS are known.

The MD matrix is determined from SO(10) constraints, and a choice of eigen basis

may give diagonal mass matrix M . Elements of M are constrained by non-unitarity

bounds. The remaining matrix, µS, is determined in the optimistic way from the

observed neutrino oscillation data such that

µS =
M

MD

mν

(
M

MD

)T
. (4.16)
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4.4 Fermion masses and Determination of MD

The determination of the Dirac neutrino mass matrix MD (M0
R) at the TeV seesaw

scale is done in �ve steps [45,142]:

1. Derivation of RGEs in the presence of G2113 and G2213 symmetry.

2. Extrapolation of masses to the GUT-scale using low energy data.

3. Fitting the masses at the GUT scale and determination of MD at MGUT .

4. Determination of MD by top-down approach.

5. Repeat 2− 4 with the updated MD at low energy, till the required accuracy in

the SM fermion masses is achieved at M0
R scale.

The RGEs for gauge and Yukawa couplings have been derived in non-SUSY scenario

and are given in the Appendix C.

Denoting Φ1,2 as the corresponding bi-doublets under G2213 they acquire VEVs

〈Φ1〉 =

(
vu 0

0 0

)
, 〈Φ1〉 =

(
0 0

0 vu

)
, (4.17)

De�ning the mass matrices

Mu = Yuvu, MD = Yνvu, Md = Ydvd

Me = Yevd, M = yχvχ (4.18)

We use the input values of running masses and quark mixings at the electroweak

scale as in refs. [149,150,186]

me = 0.48684727± 0.00000014MeV,

mµ = 102.75138± 0.00033MeV,

mτ = 1.74669+0.00030
−0.00027 GeV, md = 4.69+0.60

−0.0.66 MeV,

ms = 93.4+11.8
−13.0 MeV, mb = 3.00± 0.11GeV,

mu = 2.33+0.42
−0.45 MeV, mc = 677+56

−51 MeV,

mt = 181± 1.3GeV,

θq12 = 13.04◦ ± 0.05◦, θq13 = 0.201◦ ± 0.201◦,

θq23 = 2.38◦ ± 0.06◦, (4.19)
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and the resulting CKM matrix with the CKM Dirac phase δq = 1.20± 0.08.

VCKM =

 0.9742 0.2256 0.0013− 0.0033i

−0.2255 + 0.0001i 0.9734 0.04155

0.0081− 0.0032i −0.0407− 0.0007i 0.9991

 . (4.20)

We use RGEs of the SM for µ = MZ to M0
R = 1 TeV. With two Higgs doublets at

µ ≥M0
R we use the starting value of tan β = vu/vd = 10 at µ = 1 TeV which evolves

to reach the value tan β ' 6.9 at the GUT scale. Using the bottom-up approach

discussed earlier [186] and the RGEs of Appendix C, the resulting quantities at

µ = MGUT

me = 0.48 MeV, mµ = 97.47 MeV, mτ = 1.8814 GeV,

md = 1.9 MeV, ms = 38.9 MeV, mb = 1.4398 GeV,

mu = 1.2 MeV, mc = 0.264 GeV, mt = 83.04 GeV, (4.21)

VCKM =

 0.9748 0.2229 −0.0003− 0.0034i

−0.2227− 0.0001i 0.9742 0.0364

0.0084− 0.0033i −0.0354 + 0.0008i 0.9993

 . (4.22)

We have ignored the running of neutrino masses as the corrections are expected to

be insigni�cant.

4.4.1 Determination of MD

With Higgs representations 45H , 16H , 10H , the dim.6 operator [45,142]

fij
M2

16i16j10H45H45H , (4.23)

with M ' MPl or M ' Mstring , is suppressed by (MGUT/M)2 ' 10−3 − 10−5 for

GUT-scale VEV of 45H and acts as an e�ective 126H operator to �t the fermion

masses at the GUT scale where the formulas for mass matrices are

Mu = Gu + F, Md = Gd + F,

Me = Gd − 3F, MD = Gu − 3F. (4.24)
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Mu(MGUT ) =

 0.0153 0.0615− 0.0112i 0.1028− 0.2706i

0.0615 + 0.0112i 0.3933 3.4270 + 0.0002i

0.1028 + 0.2706i 3.4270− 0.0002 82.90

 GeV, (4.25)

Now using eq. (4.22) and eq. (4.25) in eq. (4.24) gives the Dirac neutrino mass
matrix MD at the GUT scale

MD(MGUT ) =

 0.0139 0.0615− 0.0112i 0.1029− 0.2707i

0.0615 + 0.0112i 0.4519 3.4280 + 0.0002i

0.1029 + 0.2707i 3.4280− 0.0002i 83.340

 GeV. (4.26)

We then use the RGE for MD given in Appendix C to evolve MD(MGUT ) to
MD(MR+) and then from MD(MR+) to MD(MR0) in two steps and obtain,

MD(MR0) =

 0.0151 0.0674− 0.0113i 0.1030− 0.2718i

0.0674 + 0.0113i 0.4758 3.4410 + 0.0002i

0.1030 + 0.2718i 3.4410− 0.0002i 83.450

 GeV. (4.27)

4.5 Non-unitarity deviations and constraining M

The physics underlying non-unitarity e�ects in lepton sector have been discussed at

length in several recent papers [187�198] where relevant formulas have been utilized.

Although the PMNS matrix Uν diagonalizes the light neutrino mass matrix of three

generations where

U †νmνU
∗
ν = diag(m1,m2,m3) ≡ m̂ν , (4.28)

the appropriate diagonalizing mixing matrix for the inverse seesaw matrix of eq. (4.12)

is a 9× 9 matrix V ,

V†MνV∗ = M̂ = diag(mi,Mζj) (4.29)

where i and j run over light and heavy mass eigenstates and this can be expressed

in block partitions, Light neutrino �avor eigenstates as linear combination of light

and heavy mass eigenstates is

να = Nαiν̂i +Kαjζj (4.30)
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where K ' (0, X)UH and

N ' (1− 1

2
XX†)Uν ' (1− η)Uν . (4.31)

The charged current in the mass eigenstates, assuming charged leptons in mass

basis, is written as

LCC = −g2L√
2
l̄Lγ

µνW−
µ + h.c.

' −g2L√
2
l̄Lγ

µ(N ν̂ +Kζ)W−
µ + h.c. (4.32)

Any non-vanishing value of η is a measure of deviation from the unitarity of the

PMNS matrix. Using the TeV scale mass matrix forMD from eq. (4.27) and assuming

M = diag(M1,M2,M3) (4.33)

results in

ηαβ =
1

2

∑
k=1,2,3

MDαkM
∗
Dβk

M2
k

(4.34)

For the sake of simplicity assuming degeneracy of RH neutrinos masses MR =

Mi (i = 1, 2, 3) gives,

η =
1GeV2

M2
R

 0.0447 0.1937− 0.4704i 4.4140− 11.360i

0.1937 + 0.4704i 6.036 144.40− 0.0002i

4.4140 + 11.360i 144.40 + 0.0002i 3488.0

 . (4.35)

The deviations from unitarity in the leptonic mixing is constrained, for example,

by deviations from universality tests in weak interactions, rare leptonic decays, in-

visible width of Z boson and neutrino oscillation data. The bounds derived at 90%

con�dence level from the current data on the elements of the symmetric matrix are

summarized in [187�190],

|ηee| ≤ 2.0× 10−3, |ηeµ| ≤ 3.5× 10−5,

|ηeτ | ≤ 8.0× 10−3, |ηµµ| ≤ 8.0× 10−4,

|ηµτ | ≤ 5.1× 10−3, |ηττ | ≤ 2.7× 10−3. (4.36)

In the degenerate case the largest element in eq. (4.35) when compared with |ηττ | of
eq. (4.36) gives the lower bound on the RH neutrino mass, MR ≥ 1.1366 TeV, which
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is only 7% higher than the SUSY SO(10) bound (MR)SUSY ≥ 1.06 TeV [45]. Using

this lower bound for other elements in eq. (4.36) yields

|ηµµ| ≤ 4.672× 10−6,

|ηee| ≤ 3.460× 10−8, |ηeµ| ≤ 3.938× 10−7,

|ηeτ | ≤ 9.436× 10−6, |ηµτ | ≤ 1.1178× 10−4. (4.37)

These predicted bounds are several orders lower than the current experimental

bounds and they might be reached provided corresponding lepton �avor violating

decays are probed with much higher precision. But compared to SUSY SO(10),

in this model the upper bound is nearly 2 times larger for |ηττ |, 3 times larger for

|ηµµ|, and nearly 40% smaller in the case of |ηeτ |. It is interesting to note that in

the the present non-SUSY SO(10) model while some of the non-unitarity e�ects are

comparable to the results of [45], others are distinctly di�erent as shown in the next

section.

We note in this model that when RH neutrino masses are non-degenerate, they

are also constrained by the experimental lower bound on ηττ and the corresponding

relation obtained by saturating the bound is

1

2

[
0.0845

M2
1

+
11.8405

M2
2

+
6963.9

M2
3

]
= 2.7× 10−3, (4.38)

where the numerators inside the square bracket are in GeV2. Using partial degen-

eracy, M1 = M2 = M3 leads to the relation between the RH neutrino masses as

given in Tab. 4.2. A plot of M3 vs. Mi (i = 1, 2) is shown in Fig. 4.4 exhibiting

increase of M3 with decrease of Mi. The two asymptotes in the hyperbolic curve are

at M1 = M2 ' 47 GeV and M3 ' 1136.6 GeV.

4.6 Estimating CP -violation and Lepton �avor vio-

lation

Two important physical applications of inverse seesaw are leptonic CP and �avor vio-

lation e�ects re�ected through the elements. The inverse seesaw formula of eq. (4.12)

has three matrices out of which MD has been determined by �tting the charged

fermion masses and mixings, but since the other two matrices,M and µS, can not be

completely determined using the neutrino oscillation data alone, we make plausible
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Figure 4.4: Variation of the third generation RH neutrino mass M3 as a function of
�rst or second generation neutrino mass M1 or M2 in the partially degenerate case
for which M1 = M2.

assumptions. In addition to the fully degenerate case we also examine consequences

of partial degeneracy with M1 = M2. From eq. (4.12) and using PMNS matrix to

diagonalize mν we get

µS = X−1Uνm̂νU
T
ν (XT )−1 (4.39)
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M1,2 M3 M1,2 M3

(GeV) (GeV) (GeV) (GeV)
48.0 5572.83 500.0 1140.66
50.0 3324.69 600.0 1139.11
100.0 1286.51 700.0 1138.18
150.0 1195.81 800.0 1137.57
200.0 1168.32 900.0 1137.16
300.0 1149.80 1000.0 1136.87
400.0 1143.53 1136.58 1136.58

Table 4.2: Variation of third generation RH neutrino mass M3 as a function of �rst
or second generation RH neutrino mass in the partially degenerate case M1 = M2

predicted by non-unitarity through non-SUSY SO(10).

M1 = M2 M3 |ηeµ| δeµ |ηeτ | δeτ |ηµτ | δµτ
(GeV) (GeV) (10−6) (10−5) (10−4)
1136 1136 0.394 1.180 0.944 1.200 1.118 1.3× 10−6

500 1141 0.422 1.071 0.958 1.166 1.136 2.0× 10−4

100 1286 1.848 0.308 1.687 0.563 1.691 5.0× 10−3

50 3325 6.733 0.172 4.806 0.202 3.424 1.0× 10−2

Table 4.3: Predictions of moduli and phases of non-unitarity parameters as a function
of RH neutrino masses.

We construct the unitary matrix Uν using standard parametrization

Uν =

 c13c12 c13s12 s13e
−iδ

−c23s12 − c12s13s23e
iδ c23c12 − s12s13s23e

iδ c13s23

s23s12 − c12s13c23e
iδ −c12s23 − c23s13s12e

iδ c13c23

 (4.40)

and neutrino oscillation data at 3σ level [97, 199�205] as listed in Tab. 2.3, and

assume hierarchical neutrino masses. We take the leptonic Dirac phase δ in the

Uν matrix to be zero for which the predicted CP -violation from unitarity vanishes

irrespective of the values of θ13. We have also checked that inclusion of larger values

of θ13 ' 8o − 9o [199�202] do not alter our results signi�cantly. Similar results are

obtained with δ = π.

The parameter η = XX†/2 characterizing non-unitarity of the neutrino mixing

matrix can have dramatic impact on leptonic CP -violation and branching ratios for
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processes with LFV,

J ij
αβ = Im(NαiNβjN ∗αjN ∗βi),

' J + ∆J ij
αβ, (4.41)

where J is the well known CP -violating parameter due to unitary PMNS matrix U

J ≡ Im
(
Uα iUβ jU

∗
α jU

∗
β i

)
= cos θ12cos2 θ13 cos θ23 sin θ12 sin θ13 sin θ23 sin δ, (4.42)

and the non-unitarity contributions are,

∆J ij
αβ ' −

∑
γ=e,µ,τ

Im(ηαγUγiUβjU
∗
αjU

∗
βi + ηβγUαiUγjU

∗
αjU

∗
βi

+η∗αγUαiUβjU
∗
γjU

∗
βi + η∗βγUαiUβjU

∗
αjU

∗
γi). (4.43)

Very recently sin θ13 has been measured [199�202] to be small and non-vanishing

although no experimental information is available on the leptonic CP -phase δ. Even

in the limiting case of vanishing unitarity CP -violation corresponding to sin θ13 → 0,

or δ → 0, π for non-vanishing θ13 non-unitarity e�ects caused due to η may not

vanish. In the modi�ed charged current interaction in eq. (4.32), the heavy neutrinos

contribute to lepton �avor violating decays with branching ratios [206]

Br(lα → lβγ) =
α3
ws

2
wm

5
lα

256π2M4
wΓα
×

∣∣∣∣∣
6∑
i=1

KαiK∗βiI
(
M2

i

M2
w

)∣∣∣∣∣
2

,

I(x) = −2x3 + 5x2 − x
4(1− x)3

− 3x3 lnx

2(1− x)4
. (4.44)

Also the contribution of loop factor for various range of masses allowed in this ex-
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Figure 4.5: Loop factor vs masses of heavy RH or sterile neutrino.
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tended seesaw mechanism is shown in Fig. 4.5. Taking into account the contribution

of the non-unitarity matrix, it is clear that out of diagonal elements of MN and M ,

mostly the latter contributes to the branching ratios. In eq. (4.44) the total decay

width Γα for lepton species lα with lifetime τα is evaluated using Γα = ~
τα

where

τµ = (2.197019± 0.000021)× 10−6 sec and ττ = (290.6± 1.0)× 10−15 sec.

The matrix element (KK†)αβ ∝ ηαβ may lead to signi�cant lepton �avor violating

decays in the TeV scale seesaw whereas lepton �avor violating decays are drastically

suppressed in Type-I seesaw in SO(10). The procedure for estimating these e�ects

has been outlined in [45, 142] which we follow. The Dirac neutrino mass matrix at

the TeV scale which we derive in the next section is central to the determination of

non-unitarity e�ects.

Taking the light neutrino mass eigenvalues m1 = 0.001 eV, m2 = 0.0088 eV,

m3 = 0.049 eV, and the constructed U matrix, we utilize the η matrix of eq. (4.35)

for the degenerate case and eq. (4.31) to obtain the non-unitary matrix N . Using

eq. (4.39) we also get the µS matrix. Once the matrices η and Uν are determined

as discussed above and in Sec. 4.5, the CP -violating parameters are computed using

eq. (4.43). Even though Uν has no imaginary part because of assumed vanishing value

of θ13 or its vanishing phase, CP -violation would arise from the imaginary parts of

the corresponding components of η matrix. We also estimate branching ratios for

di�erent lepton �avor violating decay modes using eq. (4.44). For the degenerate

case with MR = 1.1366 TeV we get

M1,2 M3 Mass eigenvalues µSi
(GeV) (GeV) (MeV)
50 3324.7 (2.4583, 3.23× 10−3, 1.18× 10−6)
100 1286.5 (8.0423, 2.60× 10−3, 1.07× 10−6)
500 1140.7 (199.37, 5.29× 10−2, 1.05× 10−6)
1136.6 1136.6 (1030.0, 2.72× 10−1, 1.04× 10−6)

Table 4.4: Mass eigenvalues of µS signifying masses of singlet fermions predicted by
the inverse seesaw in SO(10).

µS =

 0.9932− 0.0124i −0.1908 + 0.0022i 0.0066− 0.0033i

−0.1908 + 0.0022i 0.0370− 0.0004i −0.0013 + 0.0006i

0.0066− 0.0033i −0.0013 + 0.0006i 0.00003− 0.00004i

GeV,
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and

J 12
eµ = −1.31× 10−6, J 23

eµ = −1.56× 10−6,

J 23
µτ = 1.56× 10−6, J 31

µτ = 1.56× 10−6, J 12
τe = 4.01× 10−6, (4.45)

and the branching ratios

Br(µ→ eγ) = 4.4× 10−16,

Br(τ → eγ) = 4.7× 10−14,

Br(τ → µγ) = 6.6× 10−12. (4.46)

For θ13 = 6o − 9o, no substantial change is noted in any of the predicted values as

long as the Dirac phase in the unitary matrix is assumed to be δ ∼ 0 or π.

M1,2 M3 ∆J 12
eµ ∆J 23

eµ ∆J 23
µτ ∆J 31

µτ ∆J 12
τe

(GeV) (GeV) (×10−6) (×10−6) (×10−6) (×10−6) (×10−6)
1136 1136 −1.3 −1.6 1.6 1.6 4.0
500 1140 −1.3 −1.6 1.6 1.6 4.0
100 1286 −1.2 −1.6 2.2 1.3 4.1
50 3325 −1.0 −1.8 4.1 0.7 4.3

Table 4.5: Non-unitarity predictions of leptonic CP -violating parameters for lepton
�avor violating decays µ → eγ, τ → eγ, and τ → µγ as a function RH neutrino
masses

M1,2 (GeV) M3 (GeV) Br(µ→ eγ) Br(τ → eγ) Br(τ → µγ)
1136 1136 4.4× 10−16 4.7× 10−14 6.6× 10−12

500 1140 4.9× 10−16 4.8× 10−14 6.8× 10−12

100 1286 1.7× 10−15 5.4× 10−14 7.0× 10−12

50 3325 2.6× 10−15 2.8× 10−14 1.9× 10−12

Table 4.6: Branching ratios for lepton �avor violating decays µ → eγ, τ → eγ, and
τ → µγ as a function RH neutrino masses

Thus we �nd that in this non-SUSY SO(10) model for the degenerate case and

with θ13 = 0.0, like the SUSY SO(10) prediction [45,142], although all the �ve CP -

violating parameters are just one order smaller than the corresponding parameter in

the quark sector with ∆J CKM = (3.05+0.19
−0.20) × 10−5, there are certain quantitative

di�erences. The magnitudes of predicted CP -violations for all the �ve parameters
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in the non-SUSY SO(10) model are reduced by nearly 50% compared to their cor-

responding SUSY SO(10) values.

When compared with the predicted values in SUSY SO(10) [45,142] the present

results on branching ratios satisfy,

Br(µ→ eγ)non−susy

Br(µ→ eγ)susy

' 1.3,

Br(τ → eγ)non−susy

Br(τ → eγ)susy

' 0.4,

Br(τ → µγ)non−susy

Br(τ → µγ)susy

' 3.3. (4.47)

which can be tested by next generation experiments on lepton �avor violating decays.

Our predictions for the partially degenerate cases for θ13 = 0 on di�erent elements

ηαβ and their phases are given in Tab. 4.3 and those for CP -violating parameters

J ij
αβ and branching ratios are summarized in Tab. 4.5 and Tab. 4.6.

4.7 Discussion

Compared to the predictions in the degenerate case, |ηµτ | ' 10−4, δµτ ' 10−6, for

the partially degenerate case we �nd that while |ηµτ | is of the same order, δµτ '
10−2, 10−3 and 10−4 for M1,2 = 50 GeV, 100 GeV, and 500 GeV respectively. These

parameters enter into the neutrino oscillation probability in the �golden channel�

[191],

Pµτ ' 4|ηµτ |2 + 4s2
23c

2
23 sin2

(
∆m2

31L

4E

)
− 4|ηµτ | sin δµτ sin 2θ23 sin

(
∆m2

31L

4E

)
. (4.48)

leading to the CP -asymmetry,

ACPµτ =
Pµτ − Pµ̄τ̄
Pµτ + Pµ̄τ̄

' −4|ηµτ | sin δµτ
sin 2θ23 sin

(
∆m2

31L

4E

) . (4.49)

when the �rst term in eq. (4.48) is much smaller compared to the other two terms.

Our results in the partial degenerate case satis�es the condition that gives eq. (4.49)
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from eq. (4.48). The non-unitarity CP -violating e�ects are predicted to be much

more pronounced by noting that the strength of the third term in eq. (4.48) is en-

hanced by 100 − 10, 000 times compared to the prediction in the degenerate case.

Crucial to this prediction is our constraint eq. (4.38) between RH neutrino masses

which plays an important role in estimating the phase of ηµτ in the partially degen-

erate case that takes into account the increasing behavior ofM3 for decreasing values

of M1 = M2.

Among other signi�cant di�erences in the model predictions are Br(µ → eγ)

values higher by almost one orders for M1 = M2 = 50 GeV while Br(τ → eγ) hardly

changes. On the other hand Br(τ → µγ) reduces by a factor of 3.5 forM1 = M2 = 50

GeV compared to degenerate case. Presently the experimental limits on branching

ratios are Br(µ → eγ)≤ 5.7 × 10−13 [207], Br(τ → eγ)≤ 3.3 × 10−8 [208], and

Br(τ → µγ)≤ 4.4× 10−8 [208]. The projected reach of future sensitivities are up to

Br(τ → eγ) ∼ 10−9, Br(τ → µγ)∼ 10−9, but Br(µ→ eγ)∼ 10−14 [209,210].

In Tab. 4.4 we show predictions of mass eigenvalues of the µS matrix that signi�es

masses of three fermion singlets Si (i = 1, 2, 3) for degenerate and partially degenerate

cases of RH neutrino masses. These mass eigenvalues are noted to vary starting

from the lightest ∼ 1 eV to the heaviest ∼ 1 GeV which may have interesting

phenomenological consequences that needs further investigation. It is to be noted

that the smallest mass eigenvalue is also predicted directly by the inverse seesaw

formula from the TeV scale value of (MD)33 ∼ 100 GeV in a manner similar to the

Type-I seesaw case.

We have also examined the consequences of quasi-degenerate light neutrino masses

expected to manifest through tritium beta decay or neutrinoless double beta decay

searches. For example with m1 = 0.09923 eV, m2 = 0.1 eV, and m3 = 0.1239

eV, which are consistent with neutrino oscillation data, the three eigenvalues of

the resulting µS matrix are µ(i)
S = (30.110 GeV, 1.2 MeV, 20.6 eV) with three pairs

of heavy pseudo Dirac neutrinos having almost degenerate masses (1151.7, 1121.6)

GeV, (1139.5, 1139.5) GeV, and (1136.5, 1136.5) GeV. The predictions for lepton

�avor violating decays, CP -violating parameters and the non-unitarity e�ects are

similar to the case of the degenerate pseudo Dirac neutrinos with hierarchical light

neutrino masses as discussed above. However, the heaviest eigenvalue of the fermion

singlet mass matrix increases to µ(1)
S ' 30 GeV compared to the corresponding value

of µ(1)
S ' 1 GeV in the hierarchical case of light neutrinos as shown in Tab. 4.4.

The introduction of three additional fermion singlets under SO(10) needed for

the implementation of inverse seesaw mechanism may be argued to point towards
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a de�ciency of the related GUT models. For that matter, the SO(10) models of

refs. [45, 142, 158�163, 211�215] have utilized these singlets. More recently, the su-

perpartners of two out of these three fermion singlets have been demonstrated to be

acting as components of inelastic dark matter [200]. There is another SO(10) based

radiative inverse seesaw model [185] which has been designed to explain the smallness

of the µS parameter with the symmetry breaking chain SO(10)→ SU(5)×U(1)χ →
SM × U(1)χ where more nonstandard fermions and singlets have been found to be

necessary. Also noting that a large number of other models have also utilized them as

the necessary ingredients of the inverse seesaw mechanism, the merits of results ob-

tained overshadow the presence of fermion singlets which, ultimately, can be justi�ed

or falsi�ed by experiments.

In this respect the E6 GUT [216, 217] or SU(3)3 [218�222] type GUT models

contain necessary fermion singlets within their non-trivial representations but they

also contain a number of additional nonstandard fermions and extra assumptions on

their masses are necessary to implement the present mechanism. The E6 fermion

representation 27 = 16 + 10 + 1 under SO(10) which is a subgroup of E6 along

with all other intermediate gauge groups including the SM. Also all the SO(10)

Higgs representations used so far in Model-I and Model-I′ are also contained in the

corresponding higher representations of E6 [56,57]. Thus, the spontaneous symmetry

breaking chains of eq. (4.1) can be implemented starting directly from E6 GUT

instead of SO(10). The fermion mass �t at the GUT scale adopted here can also

be repeated by imposing the condition that the additional 10-plet of fermions have

masses at the GUT scale. Then all other results obtained would be identical to those

achieved here.

It has been also argued that because of large size of Higgs representations such as

210H and 126H needed in SO(10) models employing type-I and type-II seesaw mech-

anisms, GUT-threshold corrections may give rise to larger uncertainties in sin2 θW

predictions and associated mass scale(s) [223]. Counter examples of this result in

SO(10) having Pati-Salam intermediate symmetry (G224D) with unbroken D-Parity

have been derived with exactly vanishing GUT-threshold corrections on sin2 θW as

well as on the intermediate scale [224�226]. Also, in other SO(10) models [82, 158],

with D-parity broken at GUT scale, threshold corrections were shown to be smaller

if the complete super-heavy SO(10) multiplet acquires mass of the same order. Note

that the Higgs representation 126H is needed for the implementation of the type-I

and type-II seesaw mechanisms, and the inverse seesaw needs comparatively much

smaller Higgs representation like 16H . Thus, the possibilities of threshold uncer-
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tainties are expected to be correspondingly reduced in our models. In particular

our minimal Model-I contains neither of the larger Higgs representations 210H and

126H ; it requires only the smaller representations 45H , 16H and 10H1 , 10H2 . Also, in

case of the Model-I′ and its extension, the GUT-threshold e�ects due to super-heavy

components of Higgs representations 210H , 16H and 10H1 , 10H2 are expected to be

substantially reduced compared to the SO(10) model of ref. [158] with G2213D in-

termediate symmetry because of the absence of the large representation 126H . The

maximal value of proton lifetime is found to increase by a factor 2(4) due to GUT

threshold e�ects in our Model-I (Model-I′) over the two-loop predictions.

Regarding other possibilities of inverse seesaw motivated non-SUSY SO(10), we

�nd that the minimal single-step breaking scenario to the TeV scale gauge symmetry,

SO(10) → G2113, is ruled out by renormalization group and coupling uni�cation

constraints. One of the two-step breaking chains, SO(10)→ G224D → G2113 gives a

low value of the uni�cation scale MGUT = 1014.7 GeV, whereas SO(10) → G214 →
G2113 also yields almost similar value, MGUT = 1014.8 GeV. The third remaining

chain, SO(10) → G224 → G2113, where D-parity is broken at the GUT scale, gives

MGUT = 1015.15 GeV. Thus all the three minimal chains at two-loop level are ruled out

by the existing lower bound on proton lifetime [84,152]. As the large representation

126H is absent in these models, the GUT-threshold e�ects [158] are smaller in the

corresponding minimal models than the required values to make them compatible

with the lower limit on proton lifetime unless the splitting among the super-heavy

components is too large. In view of these, the minimal Model-I turns out to be the

best among all possible single and two-step breaking minimal models of SO(10) with

the TeV scale G2113 gauge symmetry.

One of the appealing features which have been noted [56,57] in SO(10) breaking

chains under the category of Model-I is that they do not have the cosmological do-

main wall problem [227] because of spontaneous breaking of D-parity along with the

gauge symmetry at the GUT scale. When this criteria is included while searching

for equally good models, there are only two possible chains with three step breaking

and only one chain with four step breaking to the TeV-scale symmetry G2113. How-

ever, if utilization of large Higgs representations is excluded, the minimal Model-I

emerges to be unique from among all possible SO(10) breaking chains. Investigation

of prospects for these longer symmetry breaking chains along with others will be

addressed in the forthcoming chapters.
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CHAPTER5
Neutrinoless double beta decay in SO(10)

model

The left-right symmetric gauge theories based on G224D [46,47] and G2213D [48,49,55]

with g2L = g2R may suggest the origin of parity restoration [228]. The detection

of WR boson at LHC is likely to resolve the mystery of parity violation in weak

interaction. With this possibility we work on a class of LR model with TeV scale

WR, Z
′ but having parity restoration at high scale where they originate from well

known Pati-Salam symmetry or SO(10) GUT [52, 54]. The canonical and type-

II seesaw [59�67] emerge naturally from SO(10), G224D and G2213D gauge theories

provided both LH and RH neutrinos are Majorana fermions. Usually the scale of

operation of conventional seesaw is far beyond the experimental reach. Therefore,

we minimally extended the model under study to accommodate TeV scale inverse

seesaw frame work for neutrino masses.

Currently a number of dedicated experiments on 0ν2β-decay are in progress [229�

239] while a part of the Heidelberg-Moscow experiment [229, 236�239] has already

claimed to have measured the e�ective mass parameter |meff
ee | ' (0.23 − 0.56) eV.

This observation might be hinting towards the Majorana nature of the light neutrinos

[240]. Its worthwhile to study such prospects under GUT framework. The Dirac

mass matrixMD predicted using underlying quark-lepton symmetry G224D of SO(10)

would play crucial role in determining above and other results on non-unitarity and

LFV.

The chapter is organized as follows: in Sec. 5.1 we brie�y discuss the TeV scale

left-right gauge theory with low-mass WR, Z ′ bosons, light neutrino masses and

associated non-unitarity e�ects. In Sec. 5.2, we present various Feynman amplitudes

for neutrinoless double beta decay; in Sec. 5.3, we give a detailed discussion for
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standard and non-standard contributions to the e�ective mass parameter for 0ν2β

decay rate and in Sec. 5.4, we have discussed the branching ratios for lepton �avor

violating decays. In Sec. 5.5, we implement the idea in a SO(10) grand uni�ed theory

and derive Dirac neutrino mass matrix at the TeV scale.

5.1 Low scale left-right gauge theory and extended

seesaw

5.1.1 The Model

Besides the standard 16-fermions per generation including the RH neutrino, we add

one additional sterile fermion singlet for each generation, as in inverse seesaw. We

start with parity conserving left-right symmetric gauge theory, G224D [46, 47] or

G2213D [48, 49, 55], with equal gauge couplings (g2L = g2R) at high scales. In the

Higgs sector we need both LH and RH triplets (∆L,∆R) as well as the LH and RH

doublets (χL, χR) in addition to bi-doublet (Φ) and D-parity odd singlet (σ) [56,57].

Their transformation properties, can be checked in tables given in the Tab. B.10,

under G224D ⊃ G2213D are

σ(1, 1, 1) ⊃ σ(1, 1, 0, 1), Φ(2, 2, 1) ⊃ Φ(2, 2, 0, 1),

∆L(3, 1, 10) ⊃ ∆L(3, 1,−1, 1), ∆R(1, 3, 10) ⊃ ∆R(1, 3,−1, 1),

χL(2, 1, 4) ⊃ χL(2, 1,−1/2, 1), χR(1, 2, 4) ⊃ χR(1, 2,−1/2, 1). (5.1)

When D-parity odd singlet σ acquires a VEV 〈σ〉 ∼MP , the LR discrete symmetry

is spontaneously broken but the gauge symmetry G2213 remains unbroken leading

to M2
∆R

= (M2
∆ − λ∆ 〈σ〉M ′), M2

χR
= (M2

χ − λχ 〈σ〉M ′), where λ∆, λχ are trilinear

couplings and 〈σ〉, M ′, M∆, Mχ are all ∼ O(MP ), the RH Higgs scalar masses are

made lighter depending upon the degree of �ne tuning in λ∆ and λχ. The asymmetry

in the Higgs sector causes asymmetry in the SU(2)L and SU(2)R gauge couplings

with g2L(µ) > g2R(µ) for µ < MP . If one wishes to have WR, Z ′ mass predictions at

nearly the same scales and generate Majorana neutrino masses, it is customary to

break G2213 → SM by the VEV of the right handed triplet 〈∆0
R〉 ∼ vR. We rather

suggest a more appealing phenomenological scenario withMWR
> MZ′ for which two

step breaking of the asymmetric gauge theory to the SM is preferable : G2213

M+
R−−→
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G2113

M0
R−−→ SM, where the �rst step of breaking that generates massive WR bosons is

implemented through the VEV of the heavier triplet σ(1, 3, 0, 1) carrying B−L = 0

and the second step of breaking is carried out by 〈∆0
R〉 ∼ vR. At this stage the RH

neutral gauge boson gets mass which is kept closer to the current experimental lower

bound MZ′ ≥ 1.162 TeV for its visibility by high energy accelerators. We further

gauge the extended seesaw mechanism at the TeV scale for which the VEV of the

RH-doublet 〈χ0
R〉 = vχ provides the N -S mixing. The G2113 symmetric low-scale

Yukawa Lagrangian is

LYuk = Y lψ̄LψRΦ + fψCRψR∆R + Fψ̄RSχR + STµS + h.c. (5.2)

which gives rise to the 9×9 neutral fermion mass matrix after electroweak symmetry

breaking, discussed in the next subsection.

5.1.2 Extended inverse seesaw

The e�ective neutrino mass matrix in |ν〉 = (ν, S,NC
R )T basis is expressed as

Mν =

 0 0 MD

0 µS M

MT
D MT MN

 (5.3)

whereMD = Y l 〈Φ〉,MN = f 〈∆0
R〉 andM = F 〈χ0

R〉. The neutrino mass matrixMD

and the S-N mass matrix M are in general 3 × 3 complex matrices in �avor space

while µS andMN are 3×3 complex symmetric. In the limit µS,MD << M << MN ,

the heaviest right handed neutrinos can be integrated out from the Lagrangian so

that the e�ective Lagrangian becomes [159,160]

−Leff =
(
MDM

−1
N MT

D

)
αβ
νTα νβ +

(
MDM

−1
N M

)
αm

(
ναSm + Smνα

)
+
(
MTM−1

N M
)
mn

STmSn − µSSTmSn . (5.4)

The e�ective mass term of the above Lagrangian

Meff = −

(
MDM

−1
N MT

D MDM
−1
N M

MTM−1
N MT

D MTM−1
N M − µS

)
, (5.5)
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can be block diagonalized giving the light and sterile neutrino masses

mν ∼MDM
−1µS(MDM

−1)T , (5.6)

mS ∼ µS −MM−1
N MT , (5.7)

to the leading approximation. Note that type-I seesaw like terms MDM
−1
N MT

D can-

celled out and the inverse seesaw formula [143, 144, 241] emerges. This was pos-

sible only under assumption muS << MM−1
N MT . On the other hand if µS >>

MM−1
N MT , type-I seesaw dominates. The complete block diagonalization procedure

of the matrixMν is given in Appendix D.

In the third step, mν , mS and mN ∼MN are further diagonalized by the respec-

tive unitary matrices to give their corresponding eigenvalues

U †νmνU
∗
ν = m̂ν = diag(mν1 ,mν2 ,mν3),

U †SmSU
∗
S = m̂S = diag(mS1 ,mS2 ,mS3),

U †NmNU
∗
N = m̂N = diag(mN1 ,mN2 ,mN3). (5.8)

The complete mixing matrix [242�244] diagonalizing the matrix (Mν)9×9, given in

eq. (5.3), can be expressed as

V ≡

V
νν̂
αi VνŜαj VνN̂αk
VSν̂βi VSŜβj VSN̂βk
VNν̂γi VNŜγj VNN̂γk

 (5.9)

=


(
1− 1

2
XX†

)
Uν

(
X − 1

2
ZY †

)
US Z UN

−X† Uν
(
1− 1

2
(X†X + Y Y †)

)
US

(
Y − 1

2
X†Z

)
UN

y∗X† Uν −Y † US
(
1− 1

2
Y †Y

)
UN

(5.10)

where X = MDM
−1, Y = MM−1

N , Z = MDM
−1
N and y = M−1µS.

5.1.3 Neutrino parameters and non-unitarity constraints on

M

Using the constrained diagonal form of M as mentioned above, the mass matrix µS
is determined using the gauged inverse seesaw formula and neutrino oscillation data

provided that the Dirac neutrino mass matrixMD is also known. The determination

ofMD at the TeV scale, basically originating from high- scale quark-lepton symmetry

G224D or SO(10) GUT, is carried out by predicting its value at the high scale from
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measure of Expt. bound [187�190]
non-unitarity C0 C1 C2 C3

|ηee| 2.0× 10−3 3.5× 10−8 2.7× 10−7 3.1× 10−6

|ηeµ| 3.5× 10−5 3.9× 10−7 3.4× 10−6 1.5× 10−5

|ηeτ | 8.0× 10−3 9.4× 10−6 2.8× 10−5 6.4× 10−5

|ηµµ| 8.0× 10−4 4.7× 10−6 2.3× 10−5 6.9× 10−5

|ηµτ | 5.1× 10−3 1.1× 10−4 2.2× 10−4 3.2× 10−4

|ηττ | 2.7× 10−3 2.7× 10−3 2.7× 10−3 2.7× 10−3

Table 5.1: Experimental bounds of the non-unitarity matrix elements |ηαβ| (column
C0) and their predicted values for degenerate (column C1), partially-degenerate
(column C2), and non-degenerate (column C3) values of M = diag (M1,M2,M3) as
described in cases (a), (b) and (c), respectively, in the text.

�ts to the charged fermion masses of three generations and then running down to

the lower scales using the corresponding RGEs in the top-down approach. It is to be

noted that for �ts to the fermion masses at the GUT scale, their experimental values

at low energies are transported to the GUT scale using RGEs and the bottom-

up approach. This procedure has been carried out in Sec. 5.5.5 by successfully

embedding the LR gauge theory in a suitable non-SUSY G224 and SO(10) framework

and the result is

MD =

 0.0227 0.0989− 0.0160i 0.1462− 0.3859i

0.0989 + 0.0160i 0.6319 4.884 + 0.0003i

0.1462 + 0.3859i 4.884− 0.0003i 117.8

GeV. (5.11)

This value of MD will be utilized for all applications discussed subsequently in this

work including the �t to the neutrino oscillation data through the inverse seesaw for-

mula, predictions of e�ective mass parameters in 0ν2β, computation of non-unitarity

and CP -violating e�ects, and lepton �avor violating decay branching ratios.

The light active Majorana neutrino mass matrix is diagonalized by the PMNS

mixing matrix Uν such that U †νmνU
∗
ν = m̂ν = diag (mν1 ,mν2 ,mν3). The non-unitarity

matrix at the leading order is still N ' (1− η)Uν , see Appendix D for details.

Thus η is a measure of deviation from unitarity in the lepton sector on which

there has been extensive investigations in di�erent models [45, 187�197, 245, 246].

Assuming M to be diagonal for the sake of simplicity, M ≡ diag(M1,M2,M3), gives

ηαβ = 1
2

∑
k MDαkM

−2
k M∗

Dβk, but it can be written explicitly for the degenerate case
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(M1 = M2 = M3 = MR)

η =
1 GeV2

M2
R(GeV2)

 0.0904 0.3894− 0.9476i 8.8544− 22.7730i

0.3894 + 0.9476i 12.1314 289.22 + 0.00005i

8.8544 + 22.7730i 289.22− 0.00005i 6950.43

 .(5.12)
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Figure 5.1: The contours of M1 in the plane of M2 and M3. The solid curves in the
diagram represent M3 dependence of M2 for �xed values of M1 using eq. (5.13). The
brightest top-right corner suggests that lightest M1 may exist for largest values of
M2 and M3.

For the non-degenerate diagonal matrix M , saturating the experimental bound for

|ηττ | < 2.7× 10−3 [245,246] gives

1

2

[
0.170293

M2
1

+
23.8535

M2
2

+
13876

M2
3

]
= 2.7× 10−3 , (5.13)

where the three numbers inside the square bracket are in GeV2. The correlation

between M2 and M3 is shown in Fig. 5.1 where the allowed region in the brightest

top right corner suggests the possibility of lightest M1 for large values of M2 and

M3. It is clear from eq. (5.13) thatMi can not be arbitrary. Rather they are ordered

with M3 > M2 > M1 and also they are bounded from below with M1 > 5.6 GeV,

M2 > 66.4 GeV, M3 > 1.6 TeV. In the degenerate case M1 = M2 = M3 = 1604.4

GeV. If we assume equal contribution to non-unitarity from all three terms in the

left hand side of eq. (5.13), we get M = diag(9.7, 115.1, 2776.6) GeV. Besides these

constraints, we have used the primary criteria MN > M >> MD, µS where MN ≤
O(vR), the G2113 breaking scale in choosing the elements of M .

The elements of η have been listed in the Tab. 5.1 for (a) degenerateM=diag(1604.4,
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mν M µS

(a)

 9.457 + 4.114i −2.073− 0.904i 0.087− 0.001i
. 0.455 + 0.198i −0.019− 0.0003i
. . 0.00069− 0.000027i

GeV

NH (b)

 0.037 + 0.016i −0.008− 0.003i 0.007− 0.0001i
. 0.001 + 0.0007i −0.001 + 0.00002i
. . 0.001− 0.0004i

GeV

(c)

 3.476 + 1.512i −9.018− 3.933i 9.180 + 0.141i
. 23.410 + 10.230i −23.840− 0.385i
. . 20.670− 8.246i

× 10−4GeV

Table 5.2: Structure of µS from neutrino oscillation data for NH of light neutrino
masses, mν = (0.00127, 0.008838, 0.04978) eV and di�erent mass pattern of M : (a)
M=(1604.44, 1604.44, 1604.44) GeV, (b) M=(100.0, 100.0, 2151.5) GeV, and (c)
M=(9.72, 115.12, 2776.57) GeV.

1604.4, 1604.4) GeV, (b) partially degenerate M=diag(100, 100, 2151.58) GeV, and

(c) non degenerate M=diag(9.73, 115.12, 2776.6) GeV in columns C1, C2 and C3,

respectively, where in column C0, experimental bounds are presented [187�190].

5.1.4 Determination of µS from �ts to neutrino oscillation

data

We utilize the central values of parameters obtained from recent global �t to the

neutrino oscillation data [204, 205, 247] and ignore Majorana phases (α1 = α2 = 0).

Then using the mν = Uνm̂νU
T
ν and inverting eq. (5.6) we get

mν M µS

(a)

 82.04 + 2.261i −17.75− 0.508i 0.642− 0.251i
. 3.842 + 0.114i −0.138 + 0.054i
. . 0.0042− 0.0040i

GeV

IH (b)

 0.318 + 0.0088i −0.0689− 0.0019i +0.0536− 0.0209i
. +0.0149 + 0.00044i −0.0116− 0.0045i
. . 0.0075− 0.0073i

GeV

(c)

 3.015 + 0.083i −7.72− 0.221i 6.73− 2.62i
. 19.78 + 0.58i −17.25 + 6.714i
. . 12.41− 12.08i

× 10−3GeV

Table 5.3: Same as Tab. 5.2 but for IH of light neutrino masses m̂ν=(0.04901,
0.04978, 0.00127) eV.
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µS = X−1 Uνm̂νU
T
ν (XT )−1

=

 3.48 + 1.51i −9.02− 3.93i 9.18 + 0.14i

. 23.41 + 10.23i −23.84− 0.38i

. . 20.67− 8.25i

× 10−4 GeV, (5.14)

where we have used normal hierarchy (NH) for light neutrino masses, m̂ν=(0.00127,

0.00885, 0.0495) eV in the non-degenerate case ofM = diag(9.72, 115.12, 2776.6) GeV.

For the sake of completeness, we have presented few solutions of µS matrix for degen-

erate, partially-degenerate and non-degenerate values of M as shown in the Tab. 5.2

and Tab. 5.3 corresponding to NH and inverted hierarchy (IH) light neutrino masses,

respectively. For the quasi-degenerate (QD) pattern of light neutrino masses the ma-

trix µS can be easily derived and all our analyses carried out in Sec. 5.2 to Sec. 5.4

can be repeated.

5.2 Amplitudes for 0ν2β decay and e�ective mass

parameters

In this section we discuss analytically the contributions of various Feynman dia-

grams in W−
L -W

−
L channel (with two LH currents), W−

R -W
−
R channel (with two RH

currents), and W−
L -W

−
R channel (with one LH and one RH current) and estimate

the corresponding amplitudes in the TeV scale asymmetric LR gauge theory with

extended seesaw mechanism.

The charged current interaction Lagrangian for leptons in this model in the �avor

basis is

LCC =
g√
2

∑
α=e,µ,τ

[
`αL γµναLW

µ
L + `αR γµN

C
αRW

µ
R

]
+ h.c. (5.15)

Following the masses and mixing for neutrinos in the extended seesaw scheme dis-

cussed in Sec. 5.1.2, LH and RH neutrino �avor states are expressed in terms of mass

eigenstates (ν̂i, Ŝi, N̂C
Ri
)

ναL ∼ Vνν̂α i ν̂i + Vν Ŝα i Ŝi + Vν N̂α i N̂C
R i, (5.16)

NC
Rα ∼ VN ν̂

α i ν̂i + VN Ŝ
α i Ŝi + VNN̂α i N̂C

R i. (5.17)

In addition, there is a possibility where left-handed and right-handed gauge bosons

mix with each other and, hence, the physical gauge bosons are linear combinations
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of WL and WR as {
W1 = cos ζLR WL + sin ζLR WR

W2 = − sin ζLR WL + cos ζLR WR

(5.18)

with

| tan 2ζLR| ∼
vu vd
v2
R

∼ vd
vu

g2
2R

g2
2L

(
M2

WL

M2
WR

)
≤ 10−4. (5.19)

As it is evident from the charged-current interaction given in eq. (5.15) and taking

left- and right-handed gauge boson mixings into account given in eq. (5.18), there

can be several Feynman diagrams which contribute to neutrinoless double beta decay

transition in the TeV scale left-right gauge theory. They can be broadly classi�ed as

due toW−
L -W

−
L mediation purely due to two left-handed currents,W−

R -W
−
R mediation

purely due to two right-handed currents, and W−
L -W

−
R mediations due to one left-

handed current and one right-handed current which are denoted by LL, RR, and LR

in the superscripts of the corresponding amplitudes. These diagrams are shown in

Fig. 5.2 - Fig. 5.5.

p

ν̂i

e−L

e−L

p

(a)

n

n

WL

Vνν̂
ei

Vνν̂
ei

WL

(b)

pn

VνŜ
ei

Ŝi

e−L

pn WL

VνŜ
ei

e−L

WL

n

n

VνN̂
ei

VνN̂
ei

e−L

N̂i

e−L

WL p

p
WL

(c)

Figure 5.2: Feynman diagrams for neutrinoless double beta decay (0 ν 2β) contribu-
tion with virtual Majorana neutrinos ν̂i, Ŝi, and N̂C

R i along with the mediation of
two WL-bosons.

5.2.1 W−
L -W

−
L mediation

The most popular standard contribution is due to W−
L -W

−
L mediation by light neu-

trino exchanges. But one of our major contribution in this work is that even with

W−
L -W

−
L mediation, the sterile neutrino exchange allowed within the extended see-

saw mechanism of the model can yield much more dominant contribution to 0ν2β

decay rate than the standard one. With the exchange of left-handed light neutrinos

(ν̂i), sterile neutrinos (Ŝj), and RH heavy Majorana neutrinos (N̂C
Rk), the diagrams
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shown in Fig. 5.2.(a), Fig. 5.2.(b), and Fig. 5.2.(c) contribute

ALLν ∝
1

M4
WL

∑
i=1,2,3

(
Vνν̂e i
)2
mνi

p2
, (5.20)

ALLS ∝
1

M4
WL

∑
j=1,2,3

(
VνŜe j

)2

mSj

, (5.21)

ALLN ∝
1

M4
WL

∑
k=1,2,3

(
VνN̂e k

)2

mNk

, (5.22)

where |p2| ' (190 MeV)2 represents neutrino virtuality momentum [248�253].

νL

νL

mν

N ei

N ei

n p

WL

WL

n p

e−L

e−L

n p

WL

WL

n p

e−L

e−L

VνŜ
ei

MS = µ−M 1
MN

MT

SL

SL

VνŜ
ei

Figure 5.3: Feynman diagram for neutrinoless double beta decay contribution by
W−
L -W

−
L mediation and by the exchange of virtual sterile neutrinos (S). The Majo-

rana mass insertion has been shown explicitly by a cross.

To understand the origin and the role of the relevant Majorana mass insertion

terms as source of |∆L| = 2 lepton number violation in the new contribution to 0ν2β

process, we brie�y discuss the example of sterile fermion (S) exchange corresponding

to Fig. 5.2.(b) and Fig. 5.3. At �rst we note that, in contrast to the inverse seesaw

framework with pseudo-Dirac type RH neutrinos [45, 246] where the only source of

|∆L| = 2 lepton number violation is µS, in the present case of extended seesaw the

Majorana mass for S gets an additional dominant contribution MM−1
N MT as shown

explicitly in eq. (5.4) and eq. (5.7). The expanded form of the Feynman diagram

with both the mass insertion terms is shown in Fig. 5.3 which gives

ALLS ∝
1

M4
WL

PL

[
VνŜ 1

p/− m̂S

m̂S
1

p/− m̂S

VνŜT
]

ee

PL, (5.23)
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where we have used mS = µS −MM−1
N MT . Within the model approximation and

allowed values of parameters, |mS| ' |MM−1
N MT | � |p| � |µS| resulting in

ALLS ∝
1

M4
WL

[
VνŜ

(
µS
m̂2
S

+
1

m̂S

)
VνŜT

]
ee

, (5.24)

where the �rst term is negligible compared to the second term, and we get eq. (5.21).

On the other hand, in the case of pseudo-Dirac RH neutrinos corresponding toMN =

0 in eq. (5.3), the only Majorana mass insertion term in Fig. 5.3 is through mS = µS

with |µS| � |p|. Then eq. (5.24) gives ALLS ∝ 1
M4
WL

(VνŜ)
2
µS

p2 ' 1
M4
WL

mν
p2 which is

similar to the standard contribution. This latter situation is never encountered in

the parameter space of the present models.

p

ν̂i

e−R

e−R

p

(a)

n

n

WR

V∗Nν̂
ei

V∗Nν̂
ei

WR

(b)

pn

V∗NŜ
ei

Ŝi

e−R

pn WR

V∗NŜ
ei

e−R

WR

n

n

V∗NN̂
ei

V∗NN̂
ei

e−R

N̂i

e−R

WR p

p
WR

(c)

Figure 5.4: Same as Fig. 5.2 but with WR-WR mediation.

5.2.2 W−
R -W

−
R mediation

This contribution arising purely out of right-handed weak currents can also occur

by the exchanges of ν̂i, Ŝi, and N̂C
R i and the corresponding diagrams are shown in

Fig. 5.4.(a), Fig. 5.4.(b), and Fig. 5.4.(c) leading to the amplitudes

ARRν ∝ 1

M4
WR

(
VNν̂e i

)2
mνi

p2
, (5.25)

ARRS ∝ 1

M4
WR

(
VNŜe j

)2

mSj

, (5.26)

ARRN ∝ 1

M4
WR

(
VNN̂e j

)2

mNk

. (5.27)
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dL
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(a)λ− diagram (b)η − diagram

dL uL

WL

e−L

e−R

dL uL

MD

MN

νL

NR

NR

WL

WR

tan ζLR

WL

Figure 5.5: Mixed Feynman diagram with WL-WR mediation; left-panel is for λ-
mechanism and right-panel is for η-mechanism as de�ned in ref. [254�256] and dis-
cussed in the text.

5.2.3 W−
L -W

−
R mediation

According to our observation, although these contributions arising out of mixed

e�ects by the exchanges of light LH and heavy RH neutrinos and also by the exchange

of sterile neutrinos are not so dominant compared to those due toW−
L -W

−
L mediation

with sterile neutrino exchanges, as discussed in Sec. 5.2.1, the amplitudes are stronger

than the standard one. The two types of mixed helicity Feynman diagrams are

(i) λ-mechanism: coming from one left-handed and one right-handed current (WL-

WR mediation) shown in Fig. 5.5.(a), (ii) η-mechanism: arising because of additional

possibility of WL-WR mixing even though two hadronic currents are left-handed, as

shown in Fig. 5.5.(b), leading to a suppression factor tan ζLR. The corresponding

Feynman amplitudes for these mixed helicity diagrams are given below

ALRλ ∝
1

M2
WL

M2
WR

(Uν)ei

(
MD

MN

)
ei

1

|p|
, (5.28)

ALRη ∝
tan ζLR
M4

WL

(Uν)ei

(
MD

MN

)
ei

1

|p|
(5.29)

5.2.4 Doubly Charged Higgs contribution

Although we have ignored contributions due to exchanges of LH (RH) doubly charged

Higgs bosons ∆−−L (∆−−R ) in this work, we present the corresponding amplitudes for

the sake of completeness,

(i) ALL∆L
∝ 1

M4
WL

1
M2

∆L

fLvL ,

(ii) ARR∆R
∝ 1

M4
WR

1
M2

∆R

fRvR .
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As stated in Sec. 5.1, the masses of ∆−−L and ∆++
L are of the order of the large

parity restoration scale which damps out the induced VEV vL and the corresponding

amplitude. The amplitude due to ∆−−R exchange is damped out compared to the

standard amplitude as it is ∝ 1
M5
WR

.

5.2.5 Nuclear matrix elements and normalized e�ective mass

parameters

By now it is well known that di�erent particle exchange contributions for 0ν2β de-

cay discussed above are also modi�ed by the corresponding nuclear matrix elements

which depend upon the chirality of the hadronic currents involved [254�261]. Includ-

ing all relevant contributions except those due to doubly charged Higgs exchanges,

and using eq. (5.20) - eq. (5.29), we express the inverse half-life in terms of e�ective

mass parameters with proper normalization factors taking into account the nuclear

matrix elements [254�261] leading to the half-life prediction

[
T 0ν

1/2

]−1
= G0ν

01

{
|M0ν

ν |2|ην |2 + |M0ν
N |2|ηLNR |

2 + |M0ν
N |2|ηRNR |

2

+ |M0ν
λ |2|ηλ|2 + |M0ν

η |2|ηη|2
}

+ interference terms. (5.30)

where the dimensionless particle physics parameters are

|ην | =

∣∣∣∣∣
∑

i Vνν̂
2

ei mν i

me

∣∣∣∣∣
|ηRN | = mp

(
MWL

MWR

)4
∣∣∣∣∣VNN̂

2

ei

mNi

∣∣∣∣∣
|ηLN | = mp

∣∣∣∣V Nν̂
ei

mNi

+
V Sν̂
ei

mSi

∣∣∣∣
|ηλ| =

(
MWL

MWR

)2 ∣∣∣∣Uei(MD

MN

)
ei

∣∣∣∣
|ηη| = tan ζLR

∣∣∣∣Uei(MD

MN

)
ei

∣∣∣∣ (5.31)

In eq. (5.31), me (mi)= mass of electron (light neutrino), and mp = proton mass. In

eq. (5.30), G0ν
01 is the the phase space factor and besides di�erent particle parameters,

it contains the nuclear matrix elements due di�erent chiralities of the hadronic weak

currents such as (M0ν
ν ) involving left-left chirality in the standard contribution, and

due to heavy neutrino exchanges (M0ν
ν ) involving right-right chirality arising out of
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heavy neutrino exchange, (M0ν
λ ) for the λ-diagram, and

(
M0ν

η

)
for the η-diagram.

Explicit numerical values of these nuclear matrix elements discussed in ref. [254�261]

are given in Tab. 5.4.

Isotope
G0ν

01 [10−14 yrs−1] M0ν
ν M0ν

N M0ν
λ M0ν

η
refs. [254�260]

76Ge 0.686 2.58�6.64 233�412 1.75�3.76 235�637
82Se 2.95 2.42�5.92 226�408 2.54�3.69 209�234
130Te 4.13 2.43�5.04 234�384 2.85�3.67 414�540
136Xe 4.24 1.57�3.85 160�172 1.96�2.49 370�419

Table 5.4: Phase space factors and nuclear matrix elements with their allowed ranges
as derived in refs. [254�261].

In order to arrive at a common normalization factor for all types of contributions,

at �rst we use the expression for inverse half-life for 0ν2β decay process due to only

light active Majorana neutrinos,
[
T 0ν

1/2

]−1

= G0ν
01 |M0ν

ν |
2 |ην |2. Using the numerical

values given in Tab. 5.4, we rewrite the inverse half-life in terms of e�ective mass

parameter

[
T 0ν

1/2

]−1
= G0ν

01

∣∣∣∣M0ν
ν

me

∣∣∣∣2 |mee
ν |2 = 1.57× 10−25 yrs−1 eV−2|mee

ν |2 = K0ν |mee
ν |2

where mee
ν =

∑
i

(
Vνν̂e i
)2
mνi . Then the analytic expression for all relevant contribu-

tions to e�ective mass parameters taking into account the respective nuclear matrix

elements turns out to be

[
T 0ν

1/2

]−1
= K0ν

[
|mee

ν |2 + |mee,R
N |2 + |mee,L

S |
2 + |mee

λ |2 + |mee
η |2
]

+ · · · (5.32)

where the ellipses denote interference terms and all other sub-dominant contribu-

tions. In eq. (5.32), the new e�ective mass parameters are

mee,R
N =

∑
i

(
MWL

MWR

)4 (
VNN̂e i

)2 |p|2

mNi

(5.33)

mee,L
S =

∑
i

(
VνŜe i

)2 |p|2

mSi

(5.34)
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mee
λ = 10−2

(
MWL

MWR

)2 ∣∣∣∣Uei(MD

MN

· · ·
)
ei

∣∣∣∣ |p| (5.35)

mee
η = tan ζLR

∣∣∣∣Uei(MD

MN

· · ·
)
ei

∣∣∣∣ |p| (5.36)

where |p|2 = mempM0ν
N /M0ν

ν ' (200 MeV)2. It is to be noted that the suppression

factor 10−2 arises in the λ−diagram as pointed out in refs. [254�261].

5.3 Numerical estimation of e�ective mass parame-

ters

Using analytic expression for relevant e�ective mass parameters given in eq. (5.30)-

eq. (5.36) and our model parameters discussed in Sec. 5.1.1, we now estimate the

relevant individual contributions numerically.

5.3.1 Nearly standard contribution

In our model the new mixing matrix Nei ≡ Vνν̂e i = (1− η)Uν contains additional

non-unitarity e�ect due to non-vanishing η where

Ne1 = (1− ηe1)U11 − ηe2 U21 − ηe3 U31

Ne2 = (1− ηe1)U12 − ηe2 U22 − ηe3 U32

Ne3 = (1− ηe1)U13 − ηe2 U23 − ηe3 U33 (5.37)

We estimate numerical values of Nei using all allowed values of η discussed in Sec. 5.1
and also by using Uν ≡ UPMNS. Then the e�ective mass parameter for the WL-WL

mediation with light neutrino exchanges is found to be almost similar to the standard

prediction

|mee
ν | '


0.004 eV NH,

0.048 eV IH,

0.23 eV QD.

(5.38)

This nearly standard contribution on e�ective mass parameter is presented by the

dashed-green colored lines of Fig. 5.6 and Fig. 5.7 for NH neutrino masses, but it

is presented by the dashed-pink colored lines of the same �gures for IH neutrino

masses. In our numerical estimations presented in Fig. 5.6 we have used MD values
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Figure 5.6: Variation of e�ective mass parameters with lightest neutrino mass. The
standard contributions are shown by dashed-green (pink) colored lines for NH (IH)
case. The non-standard contribution with W−

L -W
−
L mediation and sterile neutrino

exchanges is shown by the upper blue solid line whereas the one with W−
L -W

−
R

mediation and sterile neutrino exchanges is shown by the lower black solid line.

including RG corrections as given in eq. (5.11) but with M = (50, 200, 1712) GeV,

MN = (1250, 3000, 5000) GeV, and m̂S = (2, 13, 532) GeV. Similarly, in Fig. 5.7 we

have utilized MD values including RG corrections from eq. (5.11) but with M =

(100, 100, 2151.6) GeV, MN = (5000, 5000, 5000) GeV, and m̂S = (2, 2, 800) GeV.

5.3.2 Dominant non-standard contributions

Before estimating the non-standard e�ective mass parameters, we present the mixing

matrices numerically. As discussed in eq. (5.10) of Sec. 5.1.2, the mixing matrices

X = MDM
−1, Y = MM−1

N , Z = MDM
−1
N , and y = µSM

−1 all contribute to

non-standard predictions of 0ν2β amplitude in the extended seesaw scheme.

Using eq. (5.10) and the diagonal structures of the RH Majorana neutrino mass

matrix MN = diag(MN1 ,MN2 ,MN3) as well as N -S mixing matrix M=diag(M1, M2,

M3), and the Dirac neutrino mass matrixMD with RG corrections given in eq. (5.11),

we derive the relevant elements of the mixing matrices N , VνN̂ , VνŜ, VSν̂ , VSŜ, VSN̂ ,
VNν̂ , VNŜ and VNN̂ for which one example is

Nei = {0.8135, 0.5597, 0.1278}

VνŜei = {4.5398× 10−4, 4.93× 10−4, 2.148× 10−4} ,

VνN̂ei = {1.8× 10−5, 3.3× 10−5, 6.7× 10−5} ,
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Figure 5.7: Variation of e�ective mass parameters with lightest neutrino mass. The
standard contributions are shown by dashed-green (pink) colored lines for NH (IH)
case. The non-standard contribution with W−

L -W
−
L mediation and sterile neutrino

exchanges is shown by the upper blue solid line whereas the one with W−
L -W

−
R

mediation and sterile neutrino exchanges is shown by the lower black solid line.

VSν̂ei = {3.6× 10−3, 3.3× 10−3, 6.0× 10−3},

VSŜei = {0.999, 0.0002, 5.0× 10−6} ,

VSN̂ei = {0.04, 0.0, 0.0} ,

VNN̂ei = {1.0, 0.0, 0.0} ,

VNν̂ei = {9.33× 10−10, 2.97× 10−9, 1.0× 10−8} ,

VNŜei = {0.04, 0.0, 0.0} . (5.39)

For evaluating these mixing matrix elements we have taken the input values, M ,

C1: (GeV) C2: (GeV)

M = diag (50.0, 200.0, 1711) M = diag (100.0, 100.0, 2151.6)
MN = diag (1250.0, 3000.0, 5000.0) MN = diag (5000.0, 5000.0, 5000.0)

m̂S = diag (2.0, 13.0, 532) m̂S = diag (2.0, 2.0, 800)

Table 5.5: Input values of M , MN , and m̂S used for estimating e�ective mass pa-
rameters given in Tab. 5.6.

MN , and m̂S presented under column C1 of Tab. 5.5. These lead to the numerical

results for e�ective mass parameter contributing to 0ν2β decay rate presented under

column C1 of Tab. 5.6. Similarly when we use the M , MN , and m̂S values from

column C2 of Tab. 5.5 we obtain e�ective mass parameters given in column C2 of

77



Tab. 5.6.

E�ective mass parameter C1 (eV) C2 (eV)
mee
ν 0.004 0.004

mee,R
N 0.0085 0.0085

mee,L
S 20.75 188.48

mee
λ,η 0.0093 0.0274

Table 5.6: Rough estimation of e�ective mass parameters with the allowed model
parameters. The results are for the Dirac neutrino mass matrix including RG cor-
rections. The input values of mass matrices allowed by the current data for di�erent
columns are presented in Tab. 5.5.

The most dominant and new contribution to the e�ective mass parameters is

found to emerge from the amplitude ALLS of eq. (5.20) due toW−
L -W

−
L mediation and

sterile neutrino exchanges. This has been shown in Fig. 5.8 for various combinations

of sterile neutrino mass eigenvalues and for MD values including RG corrections

given in eq. (5.11). In Fig. 5.8 our estimated values range from 0.2− 1.0 eV. Looking

to the results given in Tab. 5.6 and Fig. 5.6, Fig. 5.7, and Fig. 5.8, it is clear that

the actual enhanced rate of 0νββ decay in this model depends primarily upon the

sterile neutrino mass eigenvalues mS1 and mS2 . If the decay rate corresponds to

|meff | ' 0.21 − 0.53 eV as claimed by the Heidelberg-Moscow experiment using
76Ge [229, 236�239], our new �nding is that the light neutrino masses could be still

of NH or IH pattern, instead of necessarily being of QD pattern, but with mS1 ∼
10GeV and mS2 ∼ 30GeV. Of course the the Dirac neutrino mass matrix having

its high scale quark-lepton symmetric origin also contributes to the magni�cation

of the e�ective mass parameter. The next dominant contributions coming from the

Feynman amplitude ALRS of eq. (5.29) due toW−
L -W

−
R mediation and sterile neutrino

exchanges with mee,LR
λ,η = 0.04 eV (0.01 eV) have been shown in Fig. 5.6 ( Fig. 5.7).

5.4 Estimations on lepton �avor violating decays

and JCP

Besides the neutrinoless double beta decay process, the sterile and heavy neutrinos

in this model can predominantly mediate di�erent lepton �avor violating decays,

µ → e + γ, τ → e + γ, and τ → µ + γ. Since `α → `β + γ (α 6= β) is lepton �avor

changing process, it is strictly forbidden in the SM when mν = 0 and lepton number

is conserved. In our model the underlying lepton �avor violating interactions and
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Figure 5.8: Predictions of non-standard contributions to e�ective mass pa-
rameter with W−

L -W
−
L mediation and sterile neutrino exchange for M =

(120, 250, 1664.9) GeV (top solid line), M = (250, 250, 1663.3) GeV (middle
solid line), and M = (250, 400, 1626.1) GeV (bottom solid line) keeping MN =
(5, 5, 10) TeV �xed and for MD as in eq. (5.11).

non-unitarity e�ects contribute to lepton �avor violating decays by the mediation of

heavy RH Majorana and sterile Majorana fermions.

M(GeV) MN (TeV) Heavy Mass Eigen Values(GeV)

(9.7, 115.2, 2776.5) (5, 5, 5) (0.018, 2.65, 1238, 5000, 5002, 6238)

(100, 100,2151.57) (5, 5, 5) (1.99, 2.00, 800.5, 5001, 5002, 5800)

(100, 200, 1702.67) (5, 5, 5) (1.99, 8.00, 527.5, 5001, 5007, 5527)

(50, 200,1711) (1.5, 2, 5) (1.67, 19.8, 532.2, 1501, 2019, 5532)

(1604.4,1604.4,1604.4) (5,5,10) (252.4,461.5,470.6,5471.6,5471.4,10252.4)

Table 5.7: The Heavy mass eigenvalues for the matrices of M and MN which have
been used to evaluate branching ratios.

5.4.1 Branching ratio

Keeping in mind the charged-current interaction in the neutrino mass basis for ex-

tended seesaw scheme given in eq. (5.15) - eq. (5.17), the dominant contributions are

mainly through the exchange of the sterile and heavy RH neutrinos. The decompo-

sition of eq. (4.44) in to heavy and sterile parts gives [45, 165,167,170,171,206,262]

Br (`α → `β + γ) =
α3

w s
2
w m

5
`α

256 π2M4
W Γα

∣∣GNαβ + GSαβ
∣∣2 , (5.40)
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where GNαβ =
∑
k

(
Vν N̂

)
αk

(
Vν N̂

)∗
β k
I
(
m2
Nk

M2
WL

)
,

GSαβ =
∑
j

(
Vν Ŝ

)
α j

(
Vν Ŝ

)∗
β j
I

(
m2
Sj

M2
WL

)
, (5.41)

and I(x) has already been de�ned in eq. (4.44). It is clear from the above equation

and within the model parameter range, MN � M � MD, that the �rst term in

eq. (5.40) is negligible while second term involving the the heavy sterile neutrinos

gives dominant contribution which is proportional to
∑

j

(
Vν Ŝα j

) (
Vν Ŝβ j

)∗
' 2ηαβ.

M(GeV) MN (TeV) Br(µ→ eγ) Br(τ → eγ) Br(τ → µγ)
(10−16) (10−14) (10−12)

(50, 200, 1711.8) (1.5, 2, 5) 3.05 3.11 4.36

(100, 100,2151.57) (5, 5, 5) 1.28 1.39 1.95

(100, 200, 1702.67) (5, 5, 5) 2.85 3.1 4.3

(1604.4,1604.4,1604.4) (5,5,10) 2.18 2.32 3.25

Table 5.8: The three branching ratios in extended inverse seesaw for di�erent values
of M and MN while MD is same as in eq. (5.11).

Using the numerically computed mixing matrix, and using allowed mass scales

presented in Tab. 5.7, our model estimations on branching ratios are given in Tab. 5.8.

Recent experimental data gives the best limit on these branching ratios for lepton

�avor violating decays coming from the MEG collaboration [208�210, 263]. Out of

these Br (µ→ e+ γ) ≤ 1.2×10−11 [208�210,263]. is almost three orders of magnitude

stronger than the limit Br (τ → e+ γ) ≤ 3.3× 10−8 or Br (τ → µ+ γ) ≤ 4.4× 10−8

at 90% C.L. However, projected reach of future sensitivities of ongoing searches

are Br (τ → e+ γ) ≤ 10−9, Br (τ → µ+ γ) ≤ 10−9, and Br (µ→ e+ γ) ≤ 10−18

[208�210, 263] which might play crucial role in verifying or falsifying the discussed

scenario.

5.4.2 CP -violation due to non-unitarity

There are attempts taken in long baseline experiments [199�202] with accelerator

neutrinos νµ and anti-neutrons ν̄µ to search for CP -violating e�ects in neutrino

oscillations. In the usual notation, the standard contribution to these e�ects is

determined by the re-phasing invariant JCP associated with the Dirac phase δCP
and matrix elements of the PMNS matrix is given in eq. (4.42). In this extended

seesaw mechanism, the leptonic CP -violation can be written as in eq. (4.41), where
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[45, 187�197, 246] ∆J ijαβ is expanded in eq. (4.43). The extra contribution arises

because of the non-unitarity mixing matrix which depends on both MD and M .

Thus the new contribution to CP -violation is larger for largerMD which is generated

with quark-lepton symmetry and for smaller M while safeguarding the constraint

MN � M > MD, µS. It is noteworthy that in our model even if the leptonic Dirac

phase δCP ' 0, π, 2π, and/or sin θ13 → 0, there is substantial contribution to CP -

violation which might arise out of the imaginary parts of the non-unitarity matrix

elements ηαβ.
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Figure 5.9: CP -violation for the full allowed range of leptonic Dirac phase δCP . The
left-panel corresponds to degenerate values of M with M1 = M2 = M3 ' 1604.442
GeV, and the right panel is due to non-degenerateM withM1 = 9.7 GeV,M2 = 115.2
GeV, and M3 = 2776.5 GeV.

M ∆J 12
eµ ∆J 23

eµ ∆J 23
µτ ∆J 31

µτ ∆J 12
τe

(a) −2.0× 10−6 −2.3× 10−6 −1.2× 10−4 −1.2× 10−4 −1.1× 10−4

(b) −2.7× 10−6 −3.2× 10−6 −1.2× 10−4 −1.2× 10−4 −1.1× 10−4

(c) −2.1× 10−5 −2.4× 10−5 1.1× 10−7 −1.8× 10−4 −7.9× 10−5

Table 5.9: The CP -violating e�ects for (a) degenerate masses M=(1604.4, 1604.4,
1604.4)GeV, (b) partially degenerate massesM=(100, 100, 2151.6)GeV and (c) non
degenerate masses M=(9.7, 115.2, 2776.5)GeV, while MD is same as in eq. (5.11).

Our estimations using RGE corrected Dirac neutrino mass matrix and both de-

generate and non-degenerate matrix M are shown in the left-panel and right-panel

of Fig. 5.9. If the leptonic Dirac phase δCP 6= 0, π, 2π, signi�cant CP -violation

up to |∆J |max ' 1.5 × 10−4 is found to occur for degenerate M , but when M is

non-degenerate we obtain |∆J |max ' (2−4)×10−4. Also even if δCP ' 0, π, 2π, non-

vanishing CP -violation to the extent of |∆J | ' (1−2)×10−4 is noted to emerge for

non-degenerate M . These results may be compared with CP -violation in the quark
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sector where JCKM ' 3.05+0.19
−0.20× 10−5 [149,150] which is nearly one order lower than

the leptonic case. The horizontal lines in Fig. 5.9 represent absence of non-unitarity

e�ects on CP -violation. In Fig. 5.9 we have plotted the δCP dependence of ∆J ij
αβ

and found that estimation of ∆J ij
αβ in di�erent channel would give the amount of

non-degeneracy together with non-unitarity.

5.5 Implementation in SO(10)

Our main goal in this section is to examine whether the TeV scale LR gauge model

that has been shown to give rise to dominant contribution to 0ν2β decay and LFV

in Sec. 5.1 - Sec. 5.4 can emerge from a non-SUSY SO(10) grand uni�ed theory.

Although the search for low mass W±
R bosons in non-SUSY GUTs has been at-

tempted initially without [90�92, 264, 265] precision CERN-LEP data on αS(MZ)

and sin2 θW (MZ) [149,150], there are more recent results on physically appealing in-

termediate scales [58,81,83,127,145]. But the analyses in non-SUSY cases where the

B−L breaking scale synonymous toWR gauge boson mass much lower than 1010 GeV

are ruled out because of the associated large contributions to light neutrino masses

via type-I seesaw mechanism. In view of the rich phenomenological consequences

of the extended seesaw mechanism that evades the discordance between dominant

0ν2β decay and small neutrino mass predictions as discussed in Sec. 5.1 - Sec. 5.4, we

explore the possibility of such low scale LR gauge theory in the minimally extended

SO(10) grand uni�cation model.

5.5.1 Symmetry breaking chain

We consider the symmetry breaking chain discussed in ref. [58]. Although this model,

as such, is ruled out because of the TeV scale canonical seesaw that operates to give

large neutrino masses in contravention of the oscillation data, here we modify this

model by including the additional doublets (χL, χR) ⊂ 16H of SO(10) and extending

the minimal fermion content in 16F with the addition of one SO(10) singlet neutral

fermion per generation in order to implement the extended seesaw mechanism

SO(10)
MGUT−−−−→

54H
G224D

MP−−−→
210H

G224
MC−−−→

210H
G2213

M+
R−−−→

210H
G2113

M0
R−−−−−−→

126H+16H
G213

MZ−−→
10H

G13 (5.42)
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Above the energy scaleMP , theD-parity is restored therefore above this energy g2L =

g2R. It was found in refs. [56�58] that theG224-singlets in 54H and 210H of SO(10) are

D-parity even and odd, respectively. Also it was noted that the neutral components

of the G224 multiplet (1, 1, 15) contained in 210H and 45H of SO(10) have D-parity

even and odd, respectively. In the �rst step, VEV is assigned along the 〈(1, 1, 1)〉 ⊂
54H which has even D-Parity to guarantee the LR symmetric Pati-Salam group to

survive while at the second step D-parity is broken by assigning 〈(1, 1, 1)〉 ⊂ 210H to

obtain asymmetric G224 with g2L 6= g2R. The spontaneous breaking G224 → G2213 is

achieved by the VEV 〈(1, 1, 15)0
H〉 ⊂ 210H . The symmetry breaking G2213 → G2113

is implemented by assigning O(M+
R ) VEV to the neutral component of the sub-

multiplet 〈(1, 3, 15)0
H〉 ⊂ 210H , and the breaking U(1)R × U(1)B−L → U(1)Y is

achieved by 〈∆0
R(3, 1, 1̄0)〉 ⊂ 126H while the VEV 〈χ0

R(1, 2, 4)〉 ⊂ 16H provides the

N -S mixing. As usual, the breaking of SM to low energy symmetry U(1)Q×SU(3)C

is carried out by the SM doublet contained in the bi-doublet Φ(2, 2, 1) ⊂ 10H .

5.5.2 Gauge coupling uni�cation

While SM is the symmetry of fundamental interactions near the MZ scale, in the

conventional approach to investigation of gauge coupling uni�cation, usually the semi

simple gauge symmetry to which the GUT gauge theory breaks is a product of three

or more groups. As a result the symmetry below the GUT-breaking scale involves

three or more gauge couplings. The renormalization group (RG) evolution of gauge

couplings thus may creates a triangular region around the projected uni�cation scale

(Similar to SM) making the determination of the scale more or less uncertain. Even

though the region of uncertainty is reduced in the presence of intermediate scales, it

exists in principle. Only in the case when GI = SU(2)L × SU(2)R × SU(4)C × D,

the Pati-Salam symmetry with LR discrete symmetry [47] (≡ D-Parity) [56, 266],

there are two gauge couplings g2L = g2R and g4C , and the meeting point of the two

M0
R (TeV) M+

R (TeV) MC (TeV) MP (GeV) MG (GeV) αG
5 10 103 1014.2 1017.64 0.03884
5 10 103.5 1014.42 1017.61 0.03675
5 20 103 1014.08 1017.54 0.03915
5 10 100 1013.72 1017.67 0.0443
5 20 500 1013.93 1017.55 0.0406

Table 5.10: Predictions of allowed mass scales and the GUT couplings in the SO(10)
symmetry breaking chain with low-mass W±

R , Z
′ bosons.
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RG-evolved coupling lines determines the uni�cation point exactly. Several inter-

esting consequences of this intermediate symmetry have been derived earlier includ-

ing vanishing corrections to GUT-threshold e�ects on sin2 θW and the intermediate

scale [82, 224�226]. We �nd this symmetry to be essentially required at the highest

intermediate scale in the present model to guarantee several observable phenomena

as SO(10) model predictions while safeguarding precision uni�cation. We have eval-

uated the one-loop and two-loop coe�cients of β-functions of renormalization group

equations for the gauge couplings [51, 107], as given in eq. (2.20). The one and two

loop β-coe�cients are given in Tab. B.2 of Appendix B.

The Higgs spectrum used in di�erent ranges of mass scales under respective gauge

symmetries (G) are

(i)µ = MZ −M0
R : G = SM = G213, Φ(2, 1/2, 1) ;

(ii)µ = M0
R −M+

R : G = G2113, Φ1(2, 1/2, 0, 1)⊕ Φ2(2,−1/2, 0, 1)⊕

χR(1, 1/2,−1, 1)⊕∆R(1, 1,−2, 1) ;

(iii)µ = M+
R −MC : G = G2213, Φ1(2, 2, 0, 1)⊕ Φ2(2, 2, 0, 1)⊕

χR(1, 2,−1, 1)⊕∆R(1, 3,−2, 1)

⊕ΣR(1, 3, 0, 1) ;

(iv)µ = MC −MP : G = G224, Φ1(2, 2, 1)⊕ Φ2(2, 2, 1)⊕

χR(1, 2, 4̄)⊕∆R(1, 3, 1̄0)

⊕ΣR(1, 3, 15) ;

(v)µ = MP −MU : G = G224D, Φ1(2, 2, 1)⊕ Φ2(2, 2, 1)⊕

χL(2, 1, 4)⊕ χR(1, 2, 4̄)⊕

∆L(3, 1, 10)⊕∆R(1, 3, 1̄0)⊕

ΣL(3, 1, 15)⊕ ΣR(1, 3, 15) . (5.43)

Recently bounds on the masses of the charged and neutral components of the

second Higgs doublet in the left-right symmetric model has been estimated to be
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O(20) TeV [267]. While searching for possible mass scales we have used the second

Higgs doublet Φ2 only for µ ≥ 10 TeV.

We have used extended survival hypothesis in implementing spontaneous sym-

metry breaking of SO(10) and intermediate gauge symmetries leading to the SM

gauge theory [268,269]. In addition to D-Parity breaking models [56�58], the impor-

tance of the Higgs representation 210H has been emphasized in the construction of

a minimal SUSY SO(10) GUT model [30�35]. But the present non-SUSY SO(10)

symmetry breaking chain shows a departure in that the G224D symmetry essentially

required at the highest intermediate scale has unbrokenD-Parity which is possible by

breaking the GUT symmetry through the Higgs representation 54H ⊂ SO(10) that

acquires GUT-scale VEV in the direction of its D-parity even G224D-singlet. The

importance of this G224D symmetry in stabilizing the values of MP and sin2 θW (MZ)

against GUT-Planck scale threshold e�ects has been discussed in refs. [224�226] and

Sec. 5.5.4 below.

Using precision CERN-LEP data [149, 150] αS(MZ) = 0.1184, sin2 θW (MZ) =

0.2311 and α−1(MZ) = 127.9, di�erent allowed solutions presented in Tab. 5.10.

One set of solutions corresponding to low mass W±
R and Z ′ gauge bosons is
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Figure 5.10: Two loop gauge coupling uni�cation in the SO(10) symmetry breaking
chain described in the text. These results are also valid with G224D symmetry near
GUT-Planck scale.
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M0
R = 3− 5 TeV, M+

R = 10 TeV, MC = 102 TeV− 103 TeV ,

MP ' 1014.17 GeV and MGUT ' 1017.8 GeV. (5.44)

For these mass scales the emerging pattern of gauge coupling uni�cation is shown in

Fig. 5.10 with GUT �ne structure constant αG = 0.0388.

5.5.3 Physical signi�cance of mass scales

The presence of G224D symmetry above the highest intermediate scale plays a crucial

role in lowering down the values of M+
R while achieving high scale gauge coupling

uni�cation. With the gauge couplings allowed in the region µ ' 3 TeV - 10 TeV

in the grand uni�ed scenario with gB−L ' 0.725, g2R ' 0.4, we have estimated

the predicted WR and Z ′ masses to be MWR
' 4 TeV, MZ′ ' (2.3 − 3.6) TeV

for the allowed mass scales M0
R ' (3 − 5) TeV, and M+

R ' 10 TeV of Tab. 5.10.

These low mass WR and Z ′ bosons have interesting RH current e�ects at low en-

ergies including KL-KS mass di�erence and dominant 0ν2β rates as discussed in

Sec. 5.2 - Sec. 5.4. The predicted low mass W±
R and Z ′ bosons are also expected

to be testi�ed at the LHC and future accelerators for which the current bounds

are MWR
≥ 2.5 TeV [270�275] and MZ′ ≥ 1.162 TeV [276, 277]. The predicted

mass scale MC ∼ (105 − 106) GeV leads to experimentally veri�able branching ra-

tios for rare kaon decay with Br(K0
L → µe) ' (10−9 − 10−11) [278] via leptoquark

gauge boson mediation [279�281]. Because of the presence of G224 symmetry for

µ ≥MC (105 − 106) GeV, all the components of di-quark Higgs scalars in ∆R (3, 1, 1̄0)

mediating n-n̄ and H-H̄ oscillations also acquire masses at that scale whereas the

di-lepton Higgs scalar carrying B − L = −2 is at the ' 1 TeV scale. This gives

rise to observable n-n̄ oscillation with mixing time τnn̄ ' (108 − 1011) secs [282�284].

However because of the large value of the GUT scale MGUT ' 1018 GeV, which is

close to the Planck scale, the predicted proton life time for p → e+ π0 is large, i.e.

τp ≥ 1040 yrs which is beyond the accessible range of ongoing search experiments

that have set the lower limit (τp)
∣∣
expt.
≥ 1.1× 1034 yrs. [152].

5.5.4 Importance of G224D intermediate symmetry

Near Planck scale uni�cation of this model exposes an interesting possibility that

grand uni�cation can be also achieved by the Pati-Salam symmetry G224D even

without the help of the GUT-gauge group SO(10) since, above this scale, gravity

e�ects are expected to take over [285].
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The most interesting role of G224D gauge symmetry at the highest intermediate

scale has been pointed out in ref. [224�226]. Normally super-heavy Higgs scalars

contained in larger representations like 210H and 126H introduce uncertainties into

GUT predictions of sin2 θW (MZ) on which CERN-LEP data and others have precise

experimental results. But the presence of G224D at the highest scale achieves the

most desired objective that the GUT scale corrections to sin2 θW (MZ) vanish due to

such sources as super-heavy particles or higher dimensional operators signifying the

e�ect of gravity.

5.5.5 Determination of Dirac neutrino mass matrix

It is well known that within Pati-Salam gauge symmetry G224D, the presence of

SU(4)C uni�es quarks and leptons treating the latter as fourth color and this re-

lates the up-quark mass matrix (M0
u) to the Dirac neutrino mass matrix M0

D at

the uni�cation scale. Such relations are also valid in SO(10) at the GUT scale

since G224D is its maximal subgroup. Over the recent years it has been shown

that in a large class of SO(10) model the fermion mass �ts at the GUT scale gives

M0
D ∼ O(M0

u) [45, 72, 246, 286, 287]. Since the predictions of lepton number and

LFVs carried out in this work are sensitive to the Dirac neutrino mass matrix, it

is important to derive MD at the TeV scale given in eq. (5.11). This question has

been answered in non-SUSY SO(10) [246] and SUSY SO(10) [45] while utilizing

renormalization group running of fermion masses analogous to ref. [186] and using

their low energy data but in the presence of intermediate symmetries G2113, G2213,

and G2213D. In this analysis we will also use additional RGEs for Yukawa coupling

and fermion masses in the presence of G224 and G224D symmetries operating between

MC ' 105 GeV to MGUT ' 1017.5 GeV [288�290].

The determination of the Dirac neutrino mass matrixMD(MR0) at the TeV seesaw

scale is done in three steps [246]: ( A.) Extrapolation of masses to the GUT-scale

using low-energy data on fermion masses and CKM mixings through corresponding

RGEs in the bottom-up approach, (B.) Fitting the fermion masses at the GUT scale

and determination of MD(MGUT ), ( C.) Determination of MD(MR0) by top-down

approach.

5.5.5.1 Extrapolation of fermion masses to the GUT scale

At �rst RGEs for Yukawa coupling matrices and fermion mass matrices are set up

from which RGEs for mass eigenvalues and CKM mixings are derived in the presence
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of G2113, G2213, G224, and G224D symmetries.

Denoting Φ1,2 as the corresponding bidoublets under G2213 their VEVs are taken

as

〈Φ1〉 =

(
vu 0

0 0

)
,

〈Φ2〉 =

(
0 0

0 vd

)
. (5.45)

For mass scales µ�MG, ignoring the contribution of the super-heavy bi-doublet

in 126H , the bi-doublet Φ1 ⊂ 10H1 is assumed to give dominant contribution to up

quark and Dirac neutrino massesMu andMD whereas Φ2 ⊂ 10H2 is used to generate

masses for down quarks and charged leptons, Md and M`

Mu = Yu vu, MD = Yν vu, Md = Yd vd,

Me = Ye vd, MR = yχ vχ, (5.46)

At µ = MZ we use the input values of running masses and quark mixings as in

eq. (4.19) [186] with the CKM Dirac phase δq = 1.20 ± 0.08. This results in the

CKM matrix at µ = MZ as given in eq. (4.20). We use RGEs of the SM [186] to

evolve all charged fermion mases and CKM mixings from µ = MZ to M0
R ' 10

TeV. With two Higgs doublets at µ > 10 TeV consistent with the current experi-

mental lower bound on the second Higgs doublet [267], we use the starting value of

tan β = vu/vd = 10 and evolve the masses up to µ = MC using RGEs derived in the

presence of non-SUSY SO(10) and intermediate symmetries G2113 and G2213 [246]

with two Higgs bi-doublets. For µ ≥ MC , we use the fermion mass RGEs in the

presence of G224 and G224D [288�290] modi�ed including the corresponding RGEs of

vu and vd. The fermion mass eigen values mi and the VCKM at the GUT scale turn

out to be

At µ = MGUT scale:

m0
e = 0.2168 MeV,m0

µ = 38.846 MeV,m0
τ = 0.9620 GeV,

m0
d = 1.163 MeV,m0

s = 23.352 MeV,m0
b = 1.0256 GeV,

m0
u = 1.301 MeV,m0

c = 0.1686 GeV,m0
t = 51.504 GeV , (5.47)
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V 0
CKM =

 0.9764 0.216 −0.0017− 0.0036i

−0.2159− 0.0001i 0.9759− 0.00002i 0.0310

0.0084− 0.0035i −0.0299− 0.0008i 0.9995

 , (5.48)

where, in deriving eq. (5.47), we have used �run and diagonalize� procedure. Then

using eq. (5.47) and eq. (5.48), the RG extrapolated value of the up-quark mass

matrix at the GUT scale is determined

M0
u(MGUT ) =

 0.0097 0.0379− 0.0069i 0.0635− 0.167i

0.0379 + 0.0069i 0.2482 2.117 + 0.0001i

0.0635 + 0.167i 2.117− 0.0001i 51.38

GeV. (5.49)

5.5.5.2 Determination of MD at GUT scale

In order to �t the fermion masses at the GUT scale, in addition to the two bi-doublets

originating from two di�erent Higgs representations 10H1 and 10H2 , we utilize the

super-heavy bi-doublet in ξ(2, 2, 15) ⊂ 126H . We will show that even if ξ has to be

at the intermediate scale (1013 − 1014) GeV to generate the desired value of induced

VEV needed for quark-lepton mass splitting, the precision gauge coupling uni�cation

is una�ected. This fermion mass requires the predicted Majorana coupling f to be

diagonal and the model predicts experimentally testable RH neutrino masses. In the

presence of inverse seesaw formula taking into account the small masses and large

mixings in the LH neutrino sector in the way of �tting the neutrino oscillation data,

this diagonal structure of f causes no problem. However we show that when we

treat the intermediate scale for sub-multiplet to be ξ′(2, 2, 15) replacing ξ(2, 2, 15)

but originating from a second Higgs representation 126′H which has coupling f ′ to

the fermions and all other scalar components at the GUT scale, the coupling f and

hence MN can have a general texture, not necessarily diagonal, although fermion

mass �t needs only f ′ to be diagonal.

The VEV of ξ(2, 2, 15) is well known for its role in to splitting the quark and

lepton masses through the Yukawa interaction f16.16.126†H [32]. It is sometimes

apprehended, as happens in the presence of only one 10H , that this new contribution

may also upset the near equality ofM0
u 'M0

D at the GUT scale. But in the presence

of the two di�erent 10H1 and 10H2 producing the up and down type doublets, the

e�ective theory from the µ ≥ 10 TeV acts like a non-SUSY two-Higgs doublet model

with available large value of tan β = vu/vd that causes the most desired splitting

between the up and down quark mass matrices but ensures M0
u ∼M0

D. After having

achieved this splitting a smaller value of of the VEV vξ is needed to implement �tting
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of charged fermion mass matrices without substantially upsetting the near equality

of M0
u 'M0

D at the GUT scale a.

The formulas for mass matrices at the GUT scale are [45, 246]

Mu = Gu + F, Md = Gd + F,

Me = Gd − 3F, MD = Gu − 3F. (5.50)

where Gk = Yk〈10kH〉, k = u, d and F = fvξ leading to

f =
(Md −Me)

4vξ
. (5.51)

Using a charged-lepton diagonal mass basis and eq. (5.47) and eq. (5.50) we have

Me(MGUT ) = diag(0.000216, 0.0388, 0.9620) GeV,

Gd,ij = 3Fij, (i 6= j). (5.52)

(i) Diagonal structure of RH neutrino mass matrix:

In refs. [45, 246] dealing with TeV scale pseudo-Dirac RH neutrinos, a diagonal

structure of F was assumed with the help of higher dimensional non-renormalizable

operators in order to �t the charged fermion masses and mixings at the GUT scale.

In the present model renormalizable interaction of 126H is available the diagonal

structure of F is a result of utilization of diagonal basis of down quarks as well.

This diagonal structure of f would have caused serious problem in �tting the

neutrino oscillation data if we had a dominant type-II seesaw formula [65,66], but it

causes no problem in our present model where type-II seesaw contribution to light

neutrino mass matrix is severely damped out compared to inverse seesaw contribution

which �ts the neutrino oscillation data. Further, the resulting diagonal structure of

RH neutrino mass matrix that emerges in this model has been widely used in SUSY

and non-SUSY SO(10) by a large number of authors, and this model creates no

anomaly as there are no experimental data or constraints which are violated by this

diagonal structure.

The quark mixings re�ected through the CKM mixing matrix VCKM = U †LDL =

UL has been parametrized at µ = MZ in the down-quark diagonal basis and this

aIt is to be noted that the validity of our estimations of 0ν2β decay and non-unitarity and lepton
�avor violating e�ects do not require exact equality of Mu and MD and a relation between them
within less than an order of magnitude deviation would su�ce to make dominant contributions at
the TeV scale. But the present models, either with G224D or SO(10) symmetry at the high GUT
scale, give the high scale prediction M0

u ∼M0
D up to a good approximation.
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mixing matrix has been extrapolated to the GUT scale resulting in V 0
CKM ≡ U0

L in

eq. (5.48) provided D0
L = I which can hold even at the GUT scale if we use down

quark diagonal basis. In that case Md(MGUT ) = M0
d = diag(m0

d,m
0
s,m

0
b) which

is completely determined by the respective mass eigen values determined by the

bottom-up approach. Then the second mass relation of eq. (5.50) gives,

Gdij = −Fij, (i 6= j). (5.53)

Now eq. (5.52) and eq. (5.53) are satis�ed only if Fij = 0, (i 6= j) i.e, if F is diagonal.

This is also re�ected directly through the eq. (5.51). In other words the diagonality

of F used in earlier applications of inverse seesaw mechanism in SO(10) [45, 246] is

a consequence of utilization of down quark and charged lepton diagonal bases and

vice-versa, although through non-renormalizable Yukawa interaction. In the present

model it shows that even by restricting F to its diagonal structure which eliminates

at least six additional parameters which would have otherwise existed via its non-

diagonal elements, the model successfully �ts all the charged fermion masses and

mixings including the Dirac phase of the CKM matrix at the GUT scale. Besides, as

shown below, the model predicts the RH neutrino masses accessible to high energy

accelerators including LHC. We have relations between the diagonal elements which,

in turn, determine the diagonal matrices F and Gd completely.

Gd, ii + Fii = m0
i , (i = d, s, b),

Gd, jj − 3Fjj = m0
j , (j = e, µ, τ). (5.54)

F = diag
1

4
(m0

d −m0
e,m

0
s −m0

µ,m
0
b −m0

τ ),

= diag(2.365× 10−4,−0.0038,+0.015) GeV,

Gd = diag
1

4
(3m0

d +m0
e, 3m

0
s +m0

µ, 3m
0
b +m0

τ ),

= diag(9.2645× 10−4, 0.027224, 1.00975) GeV, (5.55)

where we have used the RG extrapolated values of eq. (5.47). It is clear from the

value of the mass matrix F in eq. (5.55) that we need as small a VEV as vξ ∼ 10 MeV

to carry out the fermion mass �ts at the GUT scale. In the Sec. 5.5.5.4 below we

show how the SO(10) structure and the Higgs representations given for the symmetry

breaking chain of eq. (5.42) clearly predicts a VEV vξ ∼ (10− 100) MeV consistent

with precision gauge coupling uni�cation and the fermion mass values discussed in
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this subsection.
The model ansatz for CKM mixings at the GUT scale matches successfully with

those given by V 0
CKM of eq. (5.48) and, similarly, the model predictions for up quark

masses can match with those given in eq. (5.47) provided we can identify Mu of
eq. (5.50) with M0

u of eq. (5.49). This is done by �xing Gu=M0
u − F leading to

Gu(MGUT ) =

 0.00950 0.0379− 0.00693i 0.0635− 0.1671i

0.0379 + 0.00693i 0.2637 2.117 + 0.000116i

0.0635 + 0.1672i 2.117− 0.000116i 51.4436

 GeV. (5.56)

Now using eq. (5.55) and eq. (5.56) in eq. (5.50) gives the Dirac neutrino mass
matrix MD at the GUT scale

M0
D(MGUT ) =

 0.00876 0.0380− 0.00693i 0.0635− 0.1672i

0.0380 + 0.00693i 0.3102 2.118 + 0.000116i

0.0635 + 0.1672i 2.118− 0.000116i 51.6344

GeV. (5.57)

The relation F = fvξ = diag(f1, f2, f3)vξ in eq. (5.53) with vξ = 10 MeV gives

(f1, f2, f3) = (0.0236,−0.38, 1.5) b. Then the allowed solution to RGEs for gauge

coupling uni�cation with M0
R = vR = 5 TeV determines the RH neutrino masses.

MN1 = 115 GeV, MN2 = 1.785 TeV, MN3 = 7.5 TeV. (5.58)

Here we note that MN in general is not a diagonal matrix. But, complete RGE

analysis gives that the o�-diagonal elements of MN are very small compared to the

diagonal elements. Therefore, for simplicity we will use the eigenvalues of MN given

in eq. (5.58) with the right phase (i.e. MN2 = −1.785TeV) instead of complete MN

matrix, for simplicity and intuitive predictions.

While the �rst RH neutrino is lighter than the current experimental limit on Z ′

boson mass, the second one is in-between the Z ′ and WR boson mass limits, but

the heaviest one is larger than the WR mass limit. These are expected to provide

interesting collider signatures at LHC and future accelerators. This hierarchy of the

RH neutrino masses has been found to be consistent with lepton-number and LFVs

discussed in Sec. 5.1, Sec. 5.3, and Sec. 5.4.

We estimate e�ective mass parameters for 0ν2β decay using this predicted di-

bIn the context of observable n− n̄ oscillation, the value of f1 ∼ 0.01 and quartic coupling λ ∼ 1
need the degenerate mass of di-quark Higgs scalars M∆ = 5 × 104 GeV. We have checked that
precision gauge coupling uni�cation in the symmetry breaking chain remains unaltered with such
mildly tuned value of di-quark Higgs scalars contained in ∆R(1, 3, 10) ⊂ 126H .
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Figure 5.11: Estimations of e�ective mass parameter for 0ν2β decay in the W−
L -

W−
L channel with sterile neutrino exchanges shown by top, middle, and bottom

horizontal lines. The RH neutrino masses and the Dirac neutrino masses are derived
from fermion mass �ts and the sterile neutrino masses have been obtained through
M values consistent with non-unitarity constraints as described in the text.

agonal structure of MN and three sets of constrained N -S mixing matrix Mi =

(40, 150, 1810) GeV, Mi = (40, 200, 1720) GeV, and Mi = (40, 300, 1660) GeV corre-

sponding to the three sets of sterile neutrino mass eigenvalues m̂S = (12.4, 12.5, 416)

GeV, m̂S = (12.5, 22.1, 377) GeV, and m̂S = (12.4, 49, 350) GeV, respectively. The

estimated values of the e�ective mass parameters in the WL-WL channel due to ster-

ile neutrino exchanges have been shown in Fig. 5.11 where the top, middle and the

bottom horizontal lines represent mee,L
S = 2.1 eV, 1.3 eV, and 1.0 eV corresponding to

the �rst, second and the third set, respectively. Thus the new values are found to be

much more dominant compared to the standard predictions in this channel. Clearly

the Heidelberg-Moscow results can be easily accommodated even for normally hier-

archical or inverted hierarchical light neutrino masses.

(ii) General form of RH neutrino mass matrix:-

Although we have shown the emergence of diagonal structure of MN from the suc-

cessful fermion mass �ts at the GUT scale, it is worthwhile to explore as to how this

approach may also allow a general structure for the Yukawa coupling f of 126H and

hence the RH neutrino mass matrix while giving a successful �t to charged fermion

masses at the GUT scale. It is clear from the above discussions that this is not possi-

ble via renormalizable interaction if the model has only a single 126H . We introduce

a second 126′H with its coupling f ′ and all its scalar sub-multiplets at the GUT-Plank

scale except for the component ξ′(2, 2, 15) which is tuned to have its mass at the in-
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termediate scale Mξ′ ∼ 1013 GeV-1014 GeV. Also, as before, the VEV of the neutral

component of ∆R(1, 3, 1̄0) ⊂ 126H is used to contribute to the spontaneous breaking

of G2113 → SM, but the component ξ(2, 2, 15) assumes its natural GUT scale mass

without the necessity of being at the intermediate scale. All our results go through

by rede�ning F = f ′vξ′ and vξ′ = (10 − 100) MeV is realized in the same way as

discussed below in Sec. 5.5.5.4. In this case the diagonal structure of f ′ gives the

same successful �t to charged fermion masses and mixings at the GUT scale without

a�ecting the allowed general structure of f and MN . Unlike the case (i) with single

126H discussed above, as f1 is not constrained to be small, observable n-n̄ oscillation

is possible in this case for all di-quark Higgs scalar masses M∆ ∼ MC ∼ 105 − 106

GeV already permitted by RGE solutions to precision gauge coupling uni�cation.
So far we have discussed emergence of dominant 0ν2β decay rates subject to non-

unitarity constraints with either a purely diagonal or nearly diagonalMN matrix with
small mixing. To test whether such results exist for a general structure, we consider
a mass matrix,

MN =

 1853.6 + 320.5i −2165.2− 47.98i 2064.69 + 364.44i

−2165.24− 47.98i 2818.92− 210.57i −2030.45 + 245.8i

2064.69 + 364.436i −2030.45 + 245.82i 4610.57− 2.68i

GeV (5.59)

which has the eigenvalues MNi = (115, 1750, 7500) GeV with the same mixings

as the LH neutrinos. Using eq. (5.59), the non-unitarity constrained N -S mixing

matrix M = diag(40, 150, 1810) GeV, and the derived value of the Dirac neutrino

mass matrix from eq. (5.61) leads to the sterile neutrino mass eigenvalues mSi '
(0.77, 51, 878) GeV and the resulting e�ective mass parameters in the notations of

Sec. 5.3- Sec. 5.5 are found to be

mee,L
S = 6.3 eV, mee,L

N = 0.02 eV, mee,LR
S = 0.08eV. (5.60)

and all other contributions are relatively insigni�cant. Thus, we see that the domi-

nant contribution in theWL-WL channel due to sterile neutrino exchanges dominates

over all other contributions. The di�erence of O(102) in the leading and next to lead-

ing contributions to e�ective mass resemble the results of diagonal structure of MN ,

if mSi are of same order, as presented in Sec. 5.3, Fig. 5.6 - Fig. 5.8 and Tab. 5.5 -

Tab. 5.6. A generalMN , such as in eq. (5.59), is not restricted by GUT-scale fermion

mass �ts. Henceforth, we will use the diagonal form ofMN , eq. (5.58), as in Fig. 5.11.
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5.5.5.3 Determination of MD(MR0) by top-down approach

. We use the RGEs in the top-down approach [186, 246, 288�290] for MD in the
presence of G224D, G224, G2213, and G2113 to evolveMD(MGUT ) toMD(MR0) through
MD(MMP

), MD(MMC
) and MD(MM+

R
) and obtain the ansatz given in eq. (5.11) as

MD =

 0.02274 0.09891− 0.01603i 0.1462− 0.3859i

0.09891 + 0.01603i 0.6319 4.884 + 0.0003034i

0.1462 + 0.3859i 4.884− 0.0003034i 117.8

GeV . (5.61)

As can be noted from the determination of running mass eigenvalues at the

high GUT scale of the model shown in eq. (5.47), b-τ uni�cation is almost perfect,

although m0
µ ' 2m0

s
c. In view of the fact that G224 symmetry with unbroken

SU(4)C gauge symmetry is present in this model right from MC ' 106 GeV up to

the high GUT scale MGUT ∼ 1017.5 GeV, the dominance of quark lepton symmetry

has manifested in the fermion mass relations like m0
b ' m0

τ ' 1.06 and M0
u ' M0

D

at the GUT scale while making the SU(4)C-breaking e�ects sub-dominant. The bi-

doublet ξ(2, 2, 15) ⊂ 126H has been found to make a small contribution resulting in

the mass matrix F in eq. (5.55) which plays an important role in our present model.

The impressive manner in which the underlying quark-lepton symmetry manifests

in exhibiting Mu(MGUT ) ' MD(MGUT ) can be noted from the explicit forms of the

two mass matrices derived at the GUT scale and shown in eq. (5.49) and eq. (5.57).

Thus, the present non-SUSY SO(10) model, having predicted MD value given in

eq. (5.11), all our discussions using TeV scale inverse see-saw mechanism including

neutrinoless double beta decay, non-unitarity e�ects leading to LFVs, and new CP -

violating e�ects discussed in Sec. 5.1 - Sec. 5.4, where this mass matrix has been

used, are also applicable in this GUT model.

5.5.5.4 Determination of induced vacuum expectation value of ξ(2, 2, 15)

Now we show how a small induced VEV vξ ∼ 10 MeV of the sub-multiplet ξ(2, 2, 15) ⊂
126H , which has been found to be necessary for �tting the charged fermion masses

at the GUT scale, originates from the the present SO(10) model. The Higgs rep-

resentations needed for the symmetry breaking chain permits the following term in

cWhile running mass eigenvalues are extrapolated up to the non-SUSY SO(10) uni�cation scale
in the presence of G2113 and G2213 intermediate scales [246], it has been noted that at the GUT
scale m0

b/m
0
τ ' 1.3, m0

µ/m
0
s ' 2.5, and m0

d/m
0
e ' 4. Compared to refs. [45, 246] where a non-

renormalizable dim. 6 operator has also been used for fermion mass �ts at the GUT scale, all the
interactions used in this work are renormalizable.
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Figure 5.12: Same as Fig. 5.10 but with the scalar sub-multiplet ξ(2, 2, 15) under
Pati-Salam group at Mξ = 1013.2 GeV.

the Higgs potential

λξM
′ 210H 126†H 10H ⊃ λξM

′ (2, 2, 15)126 (1, 1, 15)210 (2, 2, 1)10 (5.62)

where M ′ is a mass parameter appropriate for trilinear scalar coupling which is

naturally of the order of the GUT scale ∼ O(1018) GeV. For allowed solutions of

the mass scales in our model, we have found 〈(1, 1, 15)〉 = MC ' 106 GeV, a criteria

necessary for observable n-n̄ oscillation and rare kaon decay. The induced vξ then

turns out to be

vξ = λξM
′MC vew/M

2
ξ (5.63)

Using MC ' 106 GeV which is required as model predictions for observable n-n̄

oscillation and rare kaon decay, and vew ∼ 100 GeV, we �nd that for λξ = 0.1− 1.0,

the eq. (5.63) gives the induced VEV vξ ' (10 − 100) MeV provided Mξ ∼ 1013

GeV-1014 GeV. When ξ(2, 2, 15) is made lighter than the GUT scale having such an
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Mξ (GeV) MP (GeV) MGUT (GeV) αG vξ (MeV)

1013.2 1014.19 1017.83 0.083 25-250
1013.4 1014.19 1017.83 0.076 10-100
1013.5 1014.19 1017.83 0.073 7-70
1013.8 1014.20 1017.82 0.068 2-16
1014.0 1014.20 1017.81 0.065 1-7

Table 5.11: Allowed solutions in the SO(10) symmetry breaking chain shown in
eq. (5.42) but with the scalar component ξ(2, 2, 15) ⊂ 126H lighter than the GUT
scale and consistent with the determination of the induced VEV vξ ∼ (10 − 100)
MeV needed to �t charged fermion masses at the GUT scale. For all solutions we
have �xed M0

R = 5 TeV, M+
R = 10 TeV, and MC = 106 GeV.

intermediate mass, Mξ = 1013.4 GeV, the precision gauge coupling is found to occur

as shown in Fig. 5.12 but now with nearly two times larger GUT scale and larger

GUT �ne-structure constant than the minimal case. Our numerical solutions are

shown in Tab. 5.11 where the Parity violating scale is close to the minimal case.

It is interesting to note that the precision uni�cation with ξ(2, 2, 15) ⊂ 126H at the

intermediate scale is possible without upsetting low massWR, Z ′,MC and other mass

scale predictions of the model. The fermion mass evolutions and the emerging value

of MD remain close to the value derived in Sec. 5.5.5. The uni�cation pattern and

model predictions including GUT-scale fermion mass �t are essentially unchanged

when the second 126′H is introduced with its Yukawa coupling f ′ and the component

ξ′(2, 2, 15) ⊂ 126′H at the intermediate scale replacing ξ(2, 2, 15) ⊂ 126H and the

latter is assigned its natural GUT scale mass. In this case the mass scales of the

model give vξ′ = (10−100) MeV. As the additional threshold contributions to sin2 θW

and MP due to the super-heavy components of second 126′H vanish [279�281], the

only change that can occur is the GUT-scale threshold e�ects on MGUT . However as

the uni�cation scale is close to the Plank scale with large proton lifetime prediction,

this will not have any additional observable e�ects.

Thus, we have shown that the small induced VEV vξ or vξ′ needed for GUT

scale �t to the charged fermion masses and prediction of MD which is crucial for

low-energy estimation of 0ν2β decay rate can be easily derived from the present

SO(10) structure. It is possible to have a diagonal structure or a general structure

for the RH neutrino mass matrix MN for which dominant contributions to 0ν2β

decay, experimentally accessible lepton �avor violating decays, and non-unitarity

and CP -violating e�ects have been discussed in Sec. 5.3 and Sec. 5.4.

97



5.5.6 Suppressed induced contribution to ν-S mixing

In our model the ν-S mixing term has been chosen to be vanishingly small in eq. (5.3).

However, because of the presence of non-minimal Higgs �elds including LH and RH

doublets carrying B − L = −1, triplets carrying B − L = −2, two bi-doublets each

with B − L = 0, and Parity odd singlet, it is necessary to evaluate if such a term

can arise through the induced VEV of 〈χL〉. We �nd that without taking recourse

to any severe �ne tuning of parameters, minimization of the scalar potential gives

〈χL〉 ' K
〈χR〉 v
MP

, (5.64)

where the ratio of parametersK = O(0.1−.01) andMP ' 1014 GeV. When eq. (5.64)

is used in the corresponding correction to the light neutrino mass predictions [291,

292], mν ' MD
〈χL〉
〈χR〉

, this gives mν33 << 0.001 eV and negligible contributions to all

the three light neutrino masses. With �ne-tuning of parameters this contribution

can be reduced further. Thus the predictions of the model carried out using eq. (5.3)

are found to hold up to a very good approximation as the small induced contribution

〈χL〉 does not a�ect the results substantially. Fine tuning of model parameters would

result in further reduction of this contribution.
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CHAPTER6
Proton, rare kaon and 0ν2β-decays, light Z ′,

n-n̄ oscillation, LFV

The conventional approach [56,58,269,283,284,293,294], to observable n− n̄ oscilla-

tion through lepto-quark gauge boson in SO(10) GUTs requires Pati-Salam interme-

diate gauge symmetry breaking at MC ∼ 106 GeV. The canonical seesaw mechanism

is also constrained by this symmetry breaking scale. For the Dirac mass matrix MD

estimated from RG evolution and GUT scale constraint the canonical seesaw gives

the light neutrino masses several orders larger than the neutrino oscillation data.

In the previous chapter we evaded this di�culty through TeV scale gauged inverse

seesaw mechanism while predicting experimentally veri�able W±
R , Z

′ bosons. The

proton lifetime predictions in the model were far beyond the accessible limit [295]

in the foreseeable future. In the present work, adopting the view that we may have

only a nonstandard TeV scale Z ′ gauge boson [88,90,91,93,94,296] accessible to the

LHC [274,275] while W±
R may be heavy and currently inaccessible. We show a class

of non-SUSY SO(10) models allow experimentally veri�able proton lifetime together

with the predictions for the new contributions to neutrinoless double beta decay in

the WL-WL channel, lepton �avor violating branching ratios, observable n-n̄ oscilla-

tion, and lepto-quark gauge boson mediated rare kaon decays close to experimental

limits [297] as discussed in the previous chapter. Although the proton lifetime pre-

diction is brought closer to the ongoing search limits with GUT threshold e�ects in

the minimal model, no such threshold e�ects are needed once we lower down the

masses of bi-triplet (3,3,1) and/or di-quark Higgs scalars by one to two order from

the symmetry breaking scales for lifetimes close to the Super-Kamiokande limit. The

non-minimal extension of the model in previous chapter also shows similar behav-

ior where bi-triplet scalar is made several orders smaller than Pati-Salam D-parity

breaking scale. In this chapter we elaborate (i) Lepto-quark gauge boson mediated
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rare kaon decay, (ii) Observable n-n̄ oscillation mediated by di-quark Higgs scalar at

TeV. We also show how the existing experimental limits on 0ν2β life-time [298�301]

impose the lower bound on the lightest of the three heavy sterile neutrino masses,

irrespective of the nature of hierarchy of light neutrino masses.

In Sec. 6.1 we discuss the speci�c SO(10) symmetry breaking chain and study

predictions of di�erent physically relevant mass scales emerging as solutions to renor-

malization group equations. In Sec. 6.2 we discuss predictions of proton lifetime ac-

cessible to ongoing search experiments. Lower bound on the lepto-quark gauge boson

mediating rare-kaon decay is derived in Sec. 6.3 where mixing times for n-n̄ oscilla-

tion are also predicted. In Sec. 6.4 we recapitulate the estimation of Dirac neutrino

mass matrix from GUT-scale �t to the charged fermion masses, �ts to the neutrino

oscillation data, the model estimations of lepton �avor violating decay branching ra-

tios and CP -violating parameter due to non-unitarity e�ects. In Sec. 6.5 we brie�y

discuss the model predictions of the dominant contributions to 0ν2β process and

study variation of half-life as a function of sterile neutrino masses. The cancellations

among the light neutrino and sterile contribution to e�ective mass, leading to ultra

large 0ν2β-decay lifetime, are also discussed in in this Section. In Sec. 6.6 we extend

the model presented in chapter 5 to rectify the large proton lifetime prediction of the

model. In the Appendix E we derive analytic formulas for GUT threshold e�ects on

ln(MP/MZ) and ln(MGUT/MZ).

6.1 Precision gauge coupling uni�cation and mass

scales

With a right structure of new physics beyond the SM, the non-SUSY SO(10) GUT

breaks through Pati-Salam symmetries occurring in two intermediate regimes: once

between the high parity breaking scale MP and the GUT scale MGUT and, for the

second time, without parity between the SU(4)C breaking scale MC and MP as

SO(10)
MGUT−−−−→

54H
G224D

MP−−−→
210H

G224

M+
R−−−→

210H
G2113

M0
R−−−−−−→

126H+16H
G213

MZ−−→
10H

G13 (6.1)

This symmetry breaking closely follows the symmetry breaking discussed in Sec. 5.5.1.

The only di�erence in the scheme is that the intermediate LR symmetry is absent

from the scenario and the W±
R gauge bosons reside at Pati-Salam breaking scale.
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Thus the scalar multiplet (1, 1, 15)0
H ⊂ 210H do not survive until the Pati-Salam

breaking scale and gets integrated out at GUT scale only.

The breaking of G224 gauge symmetry to G2113 is implemented by assigning VEV

of order MC ∼ 105 − 106 GeV to the neutral component of the G224 sub-multiplet

(1, 3, 15) ⊂ 210H . This technique of symmetry breaking to examine the feasibility of

observable n-n̄ through the type of intermediate breaking G224 → G2113 was proposed

at a time when neither the neutrino oscillation data, nor the precision CERN-LEP

data were available [266,293,294]. The gauge symmetry G2113 that is found to survive

down to the TeV scale leading to the low-mass extra Z ′ boson accessible to LHC.

At this stage RH Majorana mass matrix MN = f 〈∆0
R〉 is generated through the

Higgs Yukawa interaction. The VEV of the neutral component of RH Higgs doublet

ξR(1, 2, 4) under G224 symmetry contained in 16H of SO(10) is used to generate the

N -S mixing mass term needed for extended seesaw mechanism. For the sake of

fermion mass �t at the GUT, scale we utilize two Higgs doublets for µ ≥ 5 TeV.

Out of these two, the up type doublet φu ⊂ 10H1 contributes to Dirac masses for up

quarks and neutrinos, and the down type doublet φd ⊂ 10H2 contributes to masses

of down type quarks and charged leptons. We will see later in this work how the

induced VEV of the sub-multiplet ξ(2, 2, 15) ⊂ 126H [32, 295] naturally available in

this model plays a crucial role in splitting quark and lepton masses at the GUT scale

and determining the value of MD. In one interesting scenario, the GUT scale �t to

fermion masses and mixings results in the diagonal structure of RH neutrino mass

matrix near the TeV scale which is accessible for veri�cation at LHC energies.

Using extended survival hypothesis [268, 269] the Higgs scalars responsible for

spontaneous symmetry breaking and their contributions to β-function coe�cients

up to two-loop order are given in Tab. B.3. One set of allowed solutions for mass

scales and GUT-scale �ne-structure constant is

M0
R = 5 TeV, M∆ = MC = 105.5 − 106.5 GeV,

MP = 1013.45 GeV, MGUT = 1016.07 GeV, αG = 0.0429. (6.2)

where M∆ represents the degenerate mass of diquark Higgs scalars contained in

∆R(1, 3, 1̄0) ⊂ 126H .

The renormalization group evolution of gauge couplings is shown in Fig. 6.1

exhibiting precision uni�cation.

We have noted that when M∆ < MC , there is a small decrease in the uni�cation

scale that is capable of reducing the proton lifetime predictions by a factor 3 − 5.
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Figure 6.1: The gauge coupling uni�cation for the breaking scheme given in eq. (6.1)
and the scalar particle spectrum as given in Tab. B.3.

One example of this solution is,

M0
R = 5 TeV, M∆ = 104 GeV, MC = 106 GeV,

MP = 1012.75 GeV, MGUT = 1015.92 GeV, αG = 0.0429. (6.3)

It is interesting to note that the present LHC bound on the diquark Higgs scalar

mass [302] is

(M∆)expt. ≥ 3.75TeV. (6.4)

As discussed in the context of n-n̄ oscillation in Sec. 6.3, our model accommodates

a TeV scale di-quark with observable mixing time. But substantial decrease in the

uni�cation scale and the corresponding decrease in proton lifetime is possible when

the bi-triplet Higgs scalar ΘH(3, 3, 1) ⊂ 54H is lighter than the GUT scale by a factor

ranging from 1
15
− 1

25
. These solutions are discussed in the following section.

6.2 Low mass Z ′ boson and proton decay

6.2.1 Low-mass Z ′ boson

In the solutions of RGEs with precision uni�cation, we have found that g(B−L) =

0.72− 0.75 and g1R = 0.40− 0.42 in the range of values M0
R = vB−L = 3− 10 TeV.
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This predicts the mass of the Z ′ boson in the range

MZ′ = 1.75− 6.1 TeV, (6.5)

whereas the current experimental bound from LHC is (MZ′)expt. ≥ 2.5 TeV. Thus, if

such a Z ′ boson in the predicted mass range of the present model exists, it is likely

to be discovered by the ongoing searches at the LHC.

6.2.2 Proton lifetime for p→ e+π0 decay

The formula for the proton-decay width [151,157,303] is discussed in Sec. 4.2.1. From

eq. (4.4) we see that

Γ−1(p→ e+π0) ∝
(
MGUT

4

gG4

)
1

|AL|2R
. (6.6)

where R, AL are de�ned there. In this model, the product of the short distance with

the long distance renormalization factor AL = 1.25 turns out to be AR ' ALASL '
ALASR ' 3.20. Then using the the two-loop value of the uni�cation scale and the

GUT coupling from eq. (6.2) gives

τp(p→ e+π0) ' 5.05× 1035yrs (6.7)

whereas the solution of RGEs corresponding to eq. (6.3) gives

τp(p→ e+π0) ' 1.05× 1035yrs. (6.8)

For comparison we note the current experimental search limit from Super-Kamiokande

is [84�87]

(τp)Super−K ≥ 1.4× 1034yrs. (6.9)

A second generation underground water Cherenkov detector being planned at Hyper-

Kamiokande in Japan is expected to probe higher limits through its 5.6 Megaton year

exposure leading to the partial lifetime [87]

(τp)Hyper−K ≥ 1.3× 1035yrs. (6.10)

if actual decay event is not observed within this limit. Thus our model prediction

in eq. (6.8) barely within the planned Hyper-K limit although this the prediction in

103



eq. (6.7) nearly 4 times larger than this limit.

If the proton decay is observed closer to the current or planned experimental

limits, it would vindicate the long standing fundamental hypothesis of grand uni�-

cation. On the other hand proton may be much more stable and its lifetime may not

be accessible even to Hyper K. experimental search program. These possibilities are

addressed below.

6.2.3 GUT scale and proton life-time reduction through bi-

triplet scalar

We note that the present estimation of the GUT scale can be signi�cantly lowered

so as to bring the proton-lifetime prediction closer to the current Super-K. limit

if the the Higgs scalar bi-triplet ΘH(3, 3, 1) ⊂ 54H of SO(10) is near the Parity

violating intermediate scale. For example in Fig. 6.2, we have shown how in this

model only the uni�cation scale is lowered while keeping the other physical mass

scales unchanged as in eq. (6.2) for a value of M331 = 9× 1013 GeV.
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Figure 6.2: Same as Fig. 6.1 but with the Higgs scalar bi-triplet acquiring mass
M(3,3,1) = 9× 1013 GeV.

In Tab. 6.1 we have presented various allowed values of the GUT scale and the

proton life-time for di�erent combinations of the di-quark Higgs scalar masses M∆

contained in ∆R(1, 3, 1̄0) ⊂ 126H which mediate n-n̄ oscillation process. Even for
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M∆ (GeV) MP (GeV) M(3,3,1) (GeV) MG (GeV) α−1
G τp(years)

104.0 1012.73 1014.00 1015.57 22.37 4.65× 1033

104.0 1012.73 1014.50 1015.66 22.08 1.03× 1034

104.0 1012.73 1015.00 1015.75 21.79 2.32× 1034

104.0 1012.73 1015.92 1015.92 21.22 1.05× 1035

104.5 1012.89 1014.00 1015.60 23.16 6.58× 1033

104.5 1012.89 1014.50 1015.69 22.88 1.47× 1034

104.5 1012.89 1015.50 1015.87 22.19 7.26× 1034

104.5 1012.89 1015.95 1015.95 22.01 1.49× 1035

105.0 1013.05 1014.00 1015.62 23.94 8.45× 1033

105.0 1013.05 1014.50 1015.71 23.66 1.89× 1034

105.0 1013.05 1015.50 1015.89 23.08 9.44× 1034

105.0 1013.05 1015.98 1015.98 22.79 2.11× 1035

Table 6.1: Proton decay lifetime predictions for di�erent combination of bi-triplet
scalar mass M(3,3,1) and the average di-quark scalar mass M∆.

a the bi-triplet mass MGUT/15 we note a reduced value of the uni�cation scale at

MGUT = 1015.63 GeV and the corresponding proton lifetime at τp = 4.6 × 1033 yrs

when M∆ ∼ 104 GeV. The estimated lifetimes without including the GUT-threshold

e�ects is found to be in the range τp = 4.6× 1033 yrs to 2.1× 1035 yrs, most of which

are between the Super-K and the Hyper-K limits.

An important source of uncertainty on τp in GUTs is known to be due to GUT-

threshold e�ects as illustrated in the following sub-section.

6.2.4 Estimation of GUT-threshold e�ects

That there could be signi�cant threshold e�ects on the uni�cation scale arising out

of heavy and super-heavy particle masses was pointed out especially in the context

grand desert models [304�306] and in intermediate scale SO(10) models [82, 83, 92,

163,224�226,307�310].

In order to examine how closer to or farther from the current experimental bound

our model predictions could be, we have estimated the major source of uncertainty

on proton lifetime due to GUT threshold e�ects in SO(10) with intermediate scales

[82, 83] taking into account the contributions of the super-heavy (SH) components
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in 54H , 126H , 210H , 10H1 and 10H2 in the case of the minimal model

210H ⊃ Σ1(2, 2, 10) + Σ2(2, 2, 10) + Σ3(2, 2, 6) + Σ4(1, 1, 15),

54H ⊃ S1(1, 1, 20) + S2(3, 3, 1) + S3(2, 2, 6),

126H ⊃ ∆1(1, 1, 6), 10Hi ⊃ Hi(1, 1, 6), i = 1, 2, (6.11)

where the quantum numbers on the right-hand side (RHS) are under the gauge group

G224 and the components have super-heavy masses around the GUT scale. It was

shown in refs. [224�226] that when G224D occurs as intermediate symmetry, all loop

corrections due to super-heavy massesmSH ≥MP cancels out from the predictions of

sin2 θW and also fromMP obtained as solutions of RGEs for gauge couplings while the

GUT threshold e�ect on the uni�cation scale due to the super-heavy scalar masses

assumes an analytically simple form. As outlined in the Appendix E, even in the

presence of two more intermediate symmetries belowMP , analogous formulas on the

GUT-threshold e�ects are also valid

∆ln

(
MGUT

MZ

)
=

λU2L − λU4C
6(a′′′2L − a′′′4C)

(6.12)

where a′′′i is one-loop beta function coe�cients in the range µ = MP −MGUT for the

gauge group G224D. In eq.(6.12)

λUi = bVi + ΣSHb
SH
i ln

(
MSH

MGUT

)
, i = 2L, 2R, 4C (6.13)

bVi = tr(θVi )2 and bSHi = tr(θSHi )2 where θVi (θSHi ) are generators of the gauge group

G224D in the representations of super-heavy gauge bosons (Higgs scalars). The one-

loop coe�cients for various SH components in eq. (6.11) contributing to threshold

e�ects are [82]

bV2L = bV2R = 6, bV4C = 4, bΣ4
i = (0, 0, 4)

bΣ1
i = bΣ2

i = (10, 10, 12), bΣ3
i = bS3

i = (6, 6, 4),

bS1
i = (0, 0, 16), bS2

i = (12, 12, 0), b
H1,2

i = b∆1
i = (0, 0, 2), (6.14)

where we have projected out the would-be Goldstone components from S3 leading

to

λU2L − λU4C = 2− 6η210 − 2η54 − 2η126 − 4η10, (6.15)

with ηX = ln(MX/MGUT ), and we have made the assumption that all super-heavy
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scalars belonging to a particular SO(10) representation have mass of same order, say

MΣi ∈ (10M210,M210/10) : (i = 1− 4), for 210H and so on for other representations

[83]. Utilizing the model coe�cients a′′′2L = 44/3 and a′′′4C = 16/3, and using eq. (6.15)

in eq. (6.12) gives

MGUT/M
0
GUT = 10(0.25 ln η)/2.3025 (6.16)

where η = 10 (1/10) depending upon our assumption that SH components are

10 (1/10) times heavier (lighter) than the GUT scale. By applying these GUT-

threshold e�ects to the solutions of RGE in eq. (6.3), we obtain

MGUT = 1015.92±0.25GeV,

τp(p→ e+π0) ' 5.05× 1035±1.0±0.34yrs (6.17)

where the �rst uncertainty is due to GUT threshold e�ects, and the second uncer-

tainty derived in Appendix E.2, is due to the 1σ level uncertainties in the experimen-

tal values of sin2 θW (MZ) and αS(MZ). It is clear from eq. (6.17) that our prediction

covers wider range of values in proton lifetime prediction including value few times

larger than the current Super-K limit.

Similarly each of the numerical values in the last column of Tab. 6.1 is modi�ed

by this additional uncertainty factor of 10±1±0.32 in the estimated lifetimes.

6.3 Rare kaon decay and n-n̄ oscillation

In this section we discuss the model predictions on rare kaon decays mediated by

lepto-quark gauge bosons of SU(4)C that occurs as a part of Pati-Salam intermediate

gauge symmetry SU(2)L×SU(2)R×SU(4)C which breaks spontaneously at the mass

scale µ = M+
R = MC . The lepto-quark Higgs scalar contribution to the rare decay

process is suppressed in this model due to the natural values of their masses at

MC = 106 GeV and smaller Yukawa couplings.

6.3.1 Rare kaon decay KL → µē

Earlier several attempts have been made to derive lower bound on the lepto-quark

gauge boson mass [47, 279, 280]. In this subsection we update the existing latest

lower bound on the SU(4)C lepto-quark gauge boson mass [279] using the improved

measurement on the branching ratio and improved renormalization group running of

gauge couplings due to the running VEVs and the additional presence of G2113 gauge
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symmetry in between G224 and the SM gauge symmetries. Experimental searches on

rare kaon decays in the channel KL → µ±e∓ have limited its branching ratio with

the upper bound [297]

Br (KL → µē)expt. ≡
Γ (KL → µ±e∓)

Γ (KL → all)
< 4.7× 10−12 (6.18)

s

d̄

µ∓

e±

V
µ
(15)

Figure 6.3: Feynman diagram for rare kaon decays K0
L → µ±e∓ mediated by a heavy

lepto-quark gauge boson of SU(4)C gauge symmetry.

The lepto-quark gauge bosons of SU(4)C in the adjoint representation (1, 1, 15)

under G224 mediate rare kaon decay KL → µ±e∓ whose Feynman diagram is shown

in the Fig. 6.3. Analytic formulas for the corresponding branching ratio is [279,280],

Br (KL → µē) =
4π2α2

s(MC)m4
K R

G2
F sin2 θCm2

µ(ms +md)
2M4

C

, (6.19)

where the factor R includes renormalization e�ects on the quark masses md or ms

from µ = MC down to µ = µ0 = 1 GeV through the G2113, the SM and the SU(3)C

gauge symmetries.

Noting that the down quark or the strange quark mass satis�es the following

renormalization group equations,

md,s(MC) =
md,s(µ0)

ηem

R2113R
(6)
213R

(5)
213R

(5)
QCDR

(4)
QCDR

(3)
QCD (6.20)

where

R2113 = Πi

(
αi(MC)

αi(M0
R)

)−Ci1/2a(1)
i

, i = 2L, 1R,B − L, 3C ,

R
(6)
213 = Πi[

αi(MR0)

αi(mt)
]−C

i
2/2a

(2)
i , R

(5)
213 = Πi[

αi(mt)

αi(MZ)
]−C

i
2/2a

(3)
i , i = 2L, Y, 3C ,
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R(5)
QCD = [

αS(MZ)

αS(mb)
]−4/a(4)

, R(4)
QCD = [

αS(mb)

αi(mc)
]−4/a(5)

R(3)
QCD = [

αS(mc)

αS(µ0)
]−4/a(6)

, (6.21)

where the input parameters used in above eq. (6.21) are: Ci
1 = (0, 0, 1/4, 8), Ci

2 =

(0,−1/5, 8) and the one-loop beta-coe�cients relevant for our present work are a(1)
i =

(−3, 57/12, 37/8,−7), a(2)
i = (−19/6, 41/10,−7), a(3)

i = (−23/6, 103/30,−23/3),

a(4) = −23/3, a(5) = −25/3, a(6) = −9. Now we can obtain the renormalization

factor in eq. (6.19)

R =
[
R2113R

(6)
213R

(5)
213R

(5)
QCDR

(4)
QCDR

(3)
QCD

]−2

. (6.22)

Using eq.(6.21) and eq.(6.22) and eq.(6.18), we derive the following inequality,

FL(MC ,M
0
R) >

[
4π2m4

KRp

G2
F sin2 θCm2

µ(ms +md)
2 × 1011.318

]1/4

, (6.23)

where

FL(MC ,M
0
R) = MCα

− 3
14

S (MC)α
− 1

82
Y (MR0)

[
αB−L(MC)

αB−L(MR0)

]− 1
74

α
1
82
Y (mt)α

− 2
7

C (mt),

Rp =
[
R

(5)
213R

(5)
QCDR

(4)
QCDR

(3)
QCD

]−2

. (6.24)

In Fig. 6.4 the function FL(MC ,M
0
R) in the LHS of eq. (6.23) is plotted against MC

for a �xed value of M0
R = 5 TeV, where the Horizontal lines represent the RHS of

the same equation including uncertainties in the parameters. Thus, for the purpose

of this numerical estimation, keeping M0
R �xed at any value between 5− 10 TeV, we

vary MC until the LHS of eq. (6.23) equals its RHS.

For our computation at µ0 = 1 GeV, we use the inputs mK = 0.4976 GeV,

md = 4.8+0.7
−0.3 MeV, ms = 95±5 MeV, mµ = 105.658 MeV, GF = 1.166×10−5 GeV−2,

and sin θC = 0.2254 ± 0.0007, mb = 4.18 ± 0.03 GeV, mc = 1.275 ± 0.025 GeV,

mt = 172 GeV. At µ = MZ we have used sin2 θW = 0.23166 ± 0.00012, αS =

0.1184± 0.0007, α−1 = 127.9 and utilized eq. (6.18)−eq. (6.24). With MR0 = 5 TeV

and MZ′ ' 1.2 TeV, the existing experimental upper bound on Br(KL → µ∓e±)

gives the lower bound on the G224 symmetry breaking scale

MC > (1.932+0.082
−0.074)× 106GeV. (6.25)
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Figure 6.4: Graphical representation of the method for numerical solution of the
lower bound on MC . The horizontal lines are the RHS of the inequality (6.23)
whereas the curve represents the LHS. The colored horizontal bands are due to
uncertainties in the input parameters.

Noting from Fig. 6.1 that in our model αS(MC) = 0.0505, we get from eq. (6.25) as

rare-kaon decay constraint on the SU(4)C lepto-quark gauge boson mass

Mlepto > (1.539+0.065
−0.059)× 106GeV. (6.26)

where the uncertainty is due to the the existing uncertainties in the input parameters.

From the derived solutions to RGEs for gauge couplings this lower bound on the

lepto-quark gauge boson mass is easily accommodated in our model.

6.3.2 Neutron-antineutron oscillation

Here we discuss the prospect of this model predictions for experimentally observable

n-n̄ oscillation while satisfying the rare kaon decay constraint by �xing the G224

symmetry breaking scale atMC ∼ 2×106 GeV as derived in eq. (6.25). The Feynman

diagrams for the n-n̄ oscillation processes are shown in left- and right-panel of Fig. 6.5

where ∆ucuc , ∆dcdc , and ∆ucdc denote di�erent di-quark Higgs scalars contained in
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uc

dc

∆ucdc

∆ucdc

uc

dc

〈∆νν〉 = vB−L

∆dcdc

dc dc

〈∆νν〉 = vB−L

∆dcdc

ucuc

∆ucuc

dc

dc dc

∆dcdc

dc

Figure 6.5: Feynman diagrams for neutron-antineutron oscillation mediated by two
∆ucdc and one ∆dcdc di-quark Higgs scalars (left-panel), and two ∆dcdc , one ∆ucuc

di-quark Higgs scalars (right-panel).

∆R(1, 3, 10) ⊂ 126H . The amplitude for these two diagrams can be written as [311]

Amp
(a)
nn̄ =

f 3
11λvB−L

M4
∆ucdc

M2
∆dcdc

, Amp
(b)
nn̄ =

f 3
11λvB−L

M4
∆dcdc

M2
∆ucuc

, (6.27)

where f11 = f∆ucdc
= f∆dcdc

= f∆ucuc
from the SO(10) invariance and the quartic

coupling between di�erent di-quark Higgs scalar has its natural value i.e, O(0.1) −
O(1).

The n-n̄ mixing mass element δmnn̄ and the di-baryon number violating ampli-

tudeW(B=2) = Amp(a) +Amp(b) are related up to a factor depending upon combined

e�ects of hadronic and nuclear matrix element e�ects

δmnn̄ =
(
10−4 GeV6

)
·WB=2. (6.28)

The experimentally measurable mixing time τnn̄ is just the inverse of δmnn̄

τnn̄ =
1

δmnn̄

. (6.29)

With vB−L = 5 TeV in the degenerate case, when all di-quark Higgs scalars have

identical masses M∆ = 105 GeV, the choice of the parameters f11 ' λ ∼ O(0.1)

gives τnn̄ = 6.58× 109 sec. As described below our SO(10) model can �t all charged

fermion masses and CKM mixings at the GUT scale with two kinds of structures: (i)

only one 126H , and (ii) two Higgs representations 126H and 126′H . In the minimal

case the Yukawa coupling f of 126H to fermions has a diagonal structure,

f = diag(0.0236,−0.38, 1.5), (6.30)
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f11 λ M∆ucdc
(GeV) M∆dcdc

(GeV) τnn̄ (secs)
0.1 0.1 105 105 6.6× 109

0.0236 0.1 105 105 2.5× 1013

0.0236 1.0 105 105 2.5× 1014

0.1 0.1 104 105 6.6× 109

0.0236 1.0 104 105 2.5× 1013

0.0236 1.0 105 104 2.5× 1013

Table 6.2: Predictions for n-n̄ oscillation mixing time as a function of allowed cou-
plings and masses of di-quark Higgs scalars in the model described in the text.

which gives through eq. (6.27), eq. (6.28), and eq. (6.29)

τnn̄ = 108 − 1010secs. (6.31)

This model prediction is accessible to ongoing search experiments [312]. However,

the GUT scale �t to the fermion masses can be successfully implemented without

constraining the f values when a second 126′H is present at the GUT scale with all

its component at MU except ξ′(2, 2, 15) being around the MP scale. Then using

f11 = 0.1− 0.01, the estimated value turns out to be

τnn̄ ∼ 109 − 1013sec. (6.32)

Out of this the mixing time in the renge 109 − 1010 sec can be probed by ongoing

experiment [312].

6.4 Dirac neutrino mass matrix, neutrino parameter

�tting and lepton �avor violation

The Dirac neutrino mass near the TeV scale forms an essential ingredient in the

estimations of inverse seesaw contribution to light neutrino masses and mixings as

well as the LFV and LNV processes in this model in addition to predicting leptonic

CP -violation through non-unitarity e�ects. Since the procedure for determination

of MD has been discussed in Sec. 5.5.5 [295], we recap it here in the context of

the present model. In order to obtain the Dirac neutrino mass matrix MD and the

RH Majorana mass matrix MN near TeV scale, at �rst the PDG values [313] of

fermion masses at the electroweak scale are extrapolated to the GUT scale using the
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RGEs for fermion masses in the presence of the SM for µ = MZ − 5 TeV, and from

µ = 5−1000 TeV using the RGEs in the presence of G2113 symmetry [186,246]. From

µ = 5− 1000 TeV, RGEs have two Higgs doublets Φ1 ⊂ 10H1 and Φ2 ⊂ 10H2 in the

presence of G2113 symmetry [246]. For mass scale µ ≥ 106 GeV till the GUT scale the

fermion mass RGEs in the presence of the G224 and G224D symmetries [288] should

be exploited. The new estimations of the parameters are not very di�erent from the

estimations in Sec. 5.5.5, therefore we continue our study with the predictions in

eq. (4.19) - eq. (5.49), eq. (5.55) - eq. (5.58) and eq. (5.61).

In the presence of three singlet fermions Si, (i = 1, 2, 3), the inverse seesaw

mechanism [143, 144, 246, 295, 314] is implemented through the SO(10) invariant

Yukawa Lagrangian

LYuk = Y a16.16.10aH + f16.16.126†H + yχ16.1.16†H + µS1.1 (6.33)

which gives rise to the G2113 invariant interaction near the TeV scale [246,295] where

χR(1, 1/2,−1, 1) ⊂ 16H generates the N -S mixing term giving

LYuk = Y ``LNR Φ1 + f N c
RNR∆R + F NR S χR + STµSS + h.c.. (6.34)

This Lagrangian gives rise to the 9×9 neutral fermion mass matrix after electroweak

symmetry breaking. This mass matrix is given in eq. (5.3). The diagonalization of

this matrix can be followed from Sec. 5.1.2 and Appendix D.

Although the N -S mixing matrix M in general can be non diagonal, we have

assumed it to be diagonal partly to reduce the unknown parameters. The LFV

bounds, as listed in and column C0 of Tab. 5.1, constrain the diagonal elements.

Noting that for diagonal M , ηαβ = 1
2

∑3
k=1 (MDαkM

∗
Dβk

)/M2
k . The possible CP -

phases of the elements of ηαβ (= φαβ) are not yet constrained. The knowledge ofMD

matrix given in eq. (5.11) and saturation of the lower bound on |ηττ | = 2.7×10−3 leads

to the relation, eq. (5.13), between diagonal elements of M . The above relation can

give the lower bounds on the diagonal elements of matrixM . The partial degenerate

and degenerate cases have also been discussed in the text below eq. (5.13) of the

Sec. 5.1.3. Diagonalizing the light neutrino mass matrix using the PMNS matrix

mν = Uνm̂νU
T
ν and from the light neutrino mass formula (5.6) we can �nd the µS

matrix as in eq. (5.14) and estimated in Tab. 5.2 and Tab. 5.3 for normal and inverted

hierarchies of light neutrinos. Both of the above mentioned tables comprise various

possible choices of elements of M .

The dominant lepton �avor violating contributions coming through the exchange
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of heavy sterile neutrinos (S) and heavy RH neutrinos (NR) are discussed in Sec. 5.4

and the branching ratios for LFV and CP -violation contributions are listed in Tab. 5.8

and Tab. 5.9 respectively.

6.5 Contributions to neutrinoless double beta decay

in WL −WL channel

In the generic inverse seesaw, there is only one small lepton number violating scale

µS and the lepton number is conserved in the µS = 0 limit leading to vanishing

non-standard contribution to the 0ν2β transition amplitude. On the contrary, in the

extended seesaw under consideration, there can be a dominant contributions from

the exchanges of heavy sterile neutrinos [295]. The main thrust of our discussion

will be the new contribution arising from exchange of heavy sterile neutrinos Si with

Majorana mass MS = µS −M(1/MN)MT as explained in Sec. 5.1.2. Although, the

dominance of sterile neutrino exchange was estimated very approximately in Sec. 5.3,

its interference with quasi-degenerate light neutrino contribution was ignored. Also

no bound on the lightest sterile neutrino mass was discussed. So, this section is a

detailed extension of Sec. 5.3 in view of diagonal MN as estimated in eq. (5.58). The

high-light of the present analysis include scattered plot of e�ective mass parameter

against the lightest active neutrino mass in the theory, plot of combined e�ective

mass parameter against lightest sterile neutrino mass, scattered plots of half life

against lightest sterile neutrino mass and functional plot of half life against lightest

sterile neutrino mass in di�erent cases. Because of heavy mass of WR boson in

this theory, the RH current contributions are insigni�cant. The standard and new

contributions in the W−
L −W

−
L channel are shown in Fig. 5.2 and Fig. 5.3.

As we know now, RH neutrinos are necessarily heavier than the sterile fermion

masses because of the underlying constraint imposed by the extended see-saw mech-

anism, contributions from RH neutrino mediation, in all W−
L − W−

L , W
−
L − W−

R

and W−
R −W

−
R channels are orders less then due to sterile mediation. Since right

handed gauge bosons,WR, do not appear below Pati-Salam scale, contributions from

W−
L −W

−
R and W−

R −W
−
R channel are redundant. Therefore, we ignore RH neutrino

contribution and consider only the combined e�ective mass due to the light neutrino

and the sterile fermion exchanges in the WL −WL channel, which is expressed as

meff
ee =

∑
N 2
e imνi + p2

∑
i

(
VνSe i

)2

M̂Si

. (6.35)
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The two Majorana phases, α1, α2, of the light neutrino sector are inside N ≡ Vνν , see
eq. (5.9). From eq.(5.10) we note that (VνSe j ) ' (MD/M)e j. The sterile contribution

in eq.(6.35) depends on Dirac neutrino mass matrix, Dirac N − S mixing matrix M

and Majorana N −N matrix MN . In Sec. 5.3 and in the second item of Sec. 5.5.5.2

we observed that mass of sterile (MS) is a good parameter to see the variance of

BSM 0νββ contribution. A sample of mixing matrix elements for prediction of 0νββ

amplitude are given below

Ne 1 = 0.8143− 0.0008i, Ne 2 = 0.5588 + 0.0002i, Ne 3 = 0.1270 + 0.0924i ,

VνSe 1 = 0.00054i, VνSe 2 = 0.00005 + 0.00032i, VνSe 3 = 0.00023 + 0.00009i .(6.36)

for MN = diag(115, 1785, 7500)GeV, M = diag(40, 300, 1661)GeV and MD matrix

as given in eq. (5.61). For this combination of matrices MD, M and MN , we get

sterile masses MS = (12.5, 49, 346)GeV.

In Fig.6.6 we have presented the e�ective mass parameter for 0νββ decay as

a function of lightest neutrino mass. The yellow band in the left-panel repre-

sents the Heidelberg-Moscow (HM) evidence corresponding to measured half-life

T 0ν
1/2(76Ge) = 2.23+0.44

−0.31 × 1025 yrs at 68% C.L. In the right-panel it represents the

combined bound from KamLAND-Zen and EXO-200 experiments corresponding to

T 0ν
1/2(136Xe) = 3.4× 1025 yrs at 90% C.L. This band, instead of single line, is due to

uncertainty in nuclear matrix elements as listed in Tab. 5.4. The e�ective mass pre-

dictions for normal and inverted hierarchy of light neutrinos which are known to be

far below the current experimental bounds are also shown in the left- and the right-

panels. The vertical lines to the right of each �gure represent experimental bound

on sum of active neutrino masses. The slanted hammer shaped region corresponds

mainly to QD region of neutrino masses.

The scattered dots in this �gure are e�ective mass due to sterile neutrino exchange

in the W−
L −W

−
L channel. The nuclear matrix elements and phase space factors are

taken from the Tab. 5.4. Nuclear matrix elements for the respective isotopes are

allowed to vary in the range as given in the table. The diagonal elements of M have

been obtained from non-unitarity constraint as discussed in Sec. 4.5 and Sec. 5.1.3.

For a �xed values ofM1 = 55GeV, we get almost a �xed value ofMS1 ' 22GeV. The

spread of scatted points is due to uncertainty in nuclear matrix elements and allowed

variance of elements M2 ∈ [250, 550], and M3 ∈ [1600, 2500]GeV. For values of MS1

smaller (larger) than 22 GeV the central region of the scattered points shifts upwards

(downwards). Thus, we �nd that even without the quasi-degeneracy assumption on
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Figure 6.6: E�ective mass as a function of the lightest active neutrino mass. The
blue and the red bands correspond to normal and inverted hierarchy, respectively.
The vertical bands are from the bounds on the sum of light neutrino masses given
by Planck1, Planck2, and KATRIN experiments. The horizontal yellow band in the
left panel corresponds to HM claim with T 0ν

1/2(76Ge) = 2.23+0.44
−0.31 × 1025 yrs at 68%

C.L. and that in the right-panel corresponds to the KamLAND-Zen and EXO-200
combined bound T 0ν

1/2(136Xe) = 3.4 × 1025 yrs at 90% C.L. The scattered points are
sterile neutrino contributions to the e�ective mass.

the light neutrino masses, it is possible to explain current experimental bounds or any

future data, close to experimental limits, by the sterile neutrino dominance. As the

standard and sterile contributions to e�ective mass parameter have opposite signs,

as well as there are various phases, there is the possibility of cancellation between

the two terms. This behavior of the combined contribution will also be discussed

here.

Saturation of the Plank1 bound on the sum of the three light neutrino masses at

0.23 eV [315] combined with neutrino oscillation data gives (m1,m2,m3) = (0.0712,

0.0717, 0.0870) eV, or (m1,m2,m3) = (0.0820, 0.0824, 0.0655) eV. The maximum pos-

sible contribution of such light neutrinos alone to the e�ective mass which is shown

by the solid-blue horizontal line is way below the HM data or far from the combined

bound from KamLAND-Zen and EXO-200 experiments. The light neutrino contri-

butions of IH and NH type are even smaller as shown by the dot-dashed and the

dashed horizontal lines in this �gure whereas the combined e�ective mass parameters

including sterile neutrino contributions are represented by the corresponding slant-

ing curves. A dip in the solid-blue curve that includes contribution of light neutrino

masses of Planck1 type hierarchy occurs at MS1 ' 26GeV for 〈p2〉 = −(130MeV)2,

but the corresponding dip in the dot-dashed curve that includes contribution of IH

type neutrinos is found to occur at MS1 ' 30GeV. Please note that here neutrino
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Figure 6.7: E�ective mass as a function of lightest sterile neutrino mass. The green
band corresponds to the e�ective mass corresponding to HM experiment. Horizontal
lines are the standard e�ective masses in the NH, IH, and saturation of Planck1
pattern of light neutrino masses in the absence of any Majorana phase. The solid,
dashed, and the dotted curves are for ligt-neutrino masses corresponding to satura-
tion of Planck1 bound, IH, and NH patterns. We have used 〈p2〉 = −(130 MeV)2.

oscillation parameters are such that active light neutrinos produce maximum contri-

bution to e�ective mass. We have also noted that the cancellation between the light

neutrino and sterile neutrino contributions occurs at still larger value of MS1 ≥ 40

GeV. This cancellation phenomenon with increasing values of dip positions for de-

creasing values of light neutrino masses as evidenced in Planck1, IH, and NH cases is

clearly understood by our formulas given in eq.(6.35). Being inversely proportional

to MSi , the sterile neutrino contribution decreases for increasing mass eigenvalues

and the dip region appears when the sterile neutrino contribution is comparable to

the contribution due to the light neutrinos of a given type of hierarchy.

We also note the occurrence of a stringent bound on the mass of the lightest sterile

neutrinoMS1 & 15GeV from the crossing region of the HM experimental band. This

bound onMS1 is for Planck1 bound on sum of neutrino masses and occurs for smallest

allowed value of |p| = 130MeV and large values of (MS2 ,MS3) = (160, 758)GeV so

that the contributions of the latter two masses are negligible. For larger values of

|p|, the bound on MS1 will be larger. We will discuss this issue later in this section

in the context of half-life predictions for 0νββ-decay where peaks are expected to

appear.

The cancellation among the light neutrino and sterile neutrino contributions is

more prominent in the quasi-degenerate case as shown in Fig.6.8 where the horizontal

overlapping dark region shows that, in the absence of both the Majorana phases, the

contribution of light quasi-degenerate neutrinos alone with common mass mν =
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Figure 6.8: Predicted variation of combined e�ective mass parameter for 0νββ decay
as a function of lightest sterile neutrino mass MS1 . The horizontal blue, red and
green bands of e�ective masses are generated for the NH, IH, and the QD type
of light neutrinos, respectively when all the Majorana phases are scanned. The
horizontal dark-green band, with double-dot line in the middle, represents the HM
data. The orange band is quasi-degenerate light + sterile neutrino contribution for
�xedMν

0ν = 6.64 and |p| = 130MeV.

0.23 eV can explain the HM data with nuclear matrix element Mν
0ν = 6.64. On the

other hand, in the presence of sterile neutrinos, the two contributions cancel out

for certain allowed values of parameters giving much smaller value of the resultant

e�ective mass for certain values of MS1 . In the Fig.6.8, the �rst dip in the e�ective

mass occurs at MS1 ' 15.8GeV for zero Majorana phases of light-neutrinos. This

behavior is shown by the solid-blue curve. The dip in the region MS1 ' 25GeV

occurs when each of the two Majorana phases in the light neutrino sector is π/2.

The orange band shown in the Fig.6.8 spans over all the possible values of the two

Majorana phases between 0− 2π. We have shown one case by the dot-dashed green

curve which corresponds to Majorana phase α1 = π/4. We have noted that for larger

values of |p|, the cancellation and the dip regions shift towards higher values of MS1 .

From the Fig.6.7 and the Fig.6.8 it is clear that for agreement with the current

experimental data on the e�ective mass parameter, the lightest sterile neutrino mass

should be constrained with the following lower bonds

MS1 ≥ 11.7 GeV, QD (mν = 0.23eV),

≥ 14.5 GeV, Plank1,

≥ 14.5 GeV, IH,

≥ 16.3 GeV, NH. (6.37)
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6.5.1 Half-life and bound on sterile neutrino mass

We present the expression for half-life of 0νββ decay as a function of sterile neutrino

masses and other parameters in the theory. We then show by means of scattered

plots or otherwise, how the current experimental bounds limit the lightest sterile

neutrino mass.

Using results discussed in previous sections, the inverse half-life is presented in

terms of η− parameters and others including the nuclear matrix elements [254,261,

295,316]

[
T 0ν

1/2

]−1
= G0ν

01|M0ν
ν |2|ην +

M0ν
N

M0ν
ν

ηS|2. (6.38)

where the dimensionless particle physics parameters are

ην =
∑
i

(Vννei )2mi

me

, ηS =
∑
i

(VνSei )2mp

MSi

(6.39)

In eq.(6.39), me (mi)= mass of electron (light neutrino), and mp = proton mass. In

eq.(6.38), G0ν
01 is the the phase space factor and, besides di�erent particle parameters,

it contains the nuclear matrix elements due to di�erent chiralities of the hadronic

weak currents such asM0ν
ν involving left-left chirality in the standard contribution.

Explicit numerical values of these nuclear matrix elements discussed in ref. [254,261,

295,316] are given in Table. 5.4.

In terms of e�ective mass parameter, the inverse half-life for 0νββ decay is

[
T 0ν

1/2

]−1
=

Γ0νββ

ln 2
= G0ν

∣∣∣∣M0ν
ν

me

∣∣∣∣2 × |meff
ee |2 , (6.40)

meff
ee = mν

ee +mS
ee ,

where G0ν contains the phase space factors, me is the electron mass, andMν is the

nuclear matrix element and the e�ective mass parameters are

mν
ee = N 2

e imνi , mS
ee = p2

(
VνSe i

)2

M̂Si

, (6.41)

where

∣∣〈p2〉
∣∣ =

∣∣mempM0ν
N /M0ν

ν

∣∣ = [(130− 277) MeV]2 ; 76Ge,

= [(140− 230) MeV]2 ; 136Xe . (6.42)
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For direct prediction of half-life as a function of heavy sterile neutrino masses

and its comparison with experimental data of ongoing search experiments, we write

the total half life, including light neutrino contribution, as

T 0ν
1/2 = K−1

0ν ×
M2

N1
M4

S1

|〈p2〉|2 (MDe1)4

[∣∣∣∣1 + a
M2

S1

M2
S2

+ b
M2

S1

M2
S3

− δ

∣∣∣∣]−2

, (6.43)

where K0ν = G0ν

∣∣∣M0ν
ν

me

∣∣∣2 and
a =

M2
De2

M2
De1

MN1

MN2

, b =
M2

De3

M2
De1

MN1

MN3

, δ =
mν
eeMN1

M2
De1

M2
S1

|p2|
. (6.44)

The light-neutrino contribution has entered through the quantity δ in the eq.(6.43).

Using the predicted value of MD from eq. (5.61) and derived values of heavy RH

Majorana neutrino mass matrix, MN = diag(115,−1785, 7500) GeV from the GUT-

scale �t to the fermion masses we obtain from eq.(6.44)

a = −1.187 + i 0.395 , b = −3.782− i 3.346. (6.45)

For di�erent values of the diagonal matrixM = diag(M1,M2,M3) consistent with

the non-unitarity constraint eq.(4.36), and the MN = diag(115,−1785, 7500) GeV

we can getMS. The di�erence in leading order values of M̂Si = −M2
i /MNi and exact

numerical calculation by diagonalizing 9× 9 Mν matrix is given in Tab. 6.3. where

the values obtained by direct diagonalization ofMν matrix are denoted as MS. It is

clear from eq.(6.43) that the half-life is a function of three mass eigenvaluesMS1 ,MS2

andMS3 while all other parameters are known. This calls for a scattered plot for half

life as discussed below. It is evident from eq.(6.43) that for MS3 >> MS2 >> MS1 ,

a log(T1/2) vs log(MS1) would exhibit a linear behavior.

Including the contribution of light neutrinos with NH patterns of masses, we

have shown the scattered plot of half-life as a function of lightest sterile neutrino

mass MS1 and compared it with experimental data from 76Ge (left-panel) and 136Xe

(right panel) as shown in Fig.6.9. Including the the contribution of light neutrinos

with IH patterns of masses, the scattered plots are shown in the left-panel and the

right panel of Fig.6.10. Including contributions of light neutrinos with QD pattern

(mν = 0.23 eV) of masses, the scattered plots for half life are shown in Fig.6.11.

The spread of points show the uncertainty in nuclear matrix elements, light neu-

trino Majorana phases and MS2 ,MS3 . Since NH and IH predictions for half-life are

120



M (GeV) |M̂S| (GeV) MS (GeV) [NH]
(20, 550, 2500) (3.48, 169, 833) (3.38, 156, 758)
(25, 550, 2500) (5.43, 169, 833) (5.20, 156, 758)
(30, 550, 2500) (7.82, 169, 833) (7.35, 156, 758)
(35, 550, 2500) (10.6, 169, 833) (9.81, 156, 758)
(40, 550, 2500) (13.9, 169, 833) (12.5, 156, 758)
(45, 550, 2500) (17.6, 169, 833) (15.5, 156, 758)
(50, 550, 2500) (21.7, 169, 833) (18.7, 156, 758)
(55, 550, 2500) (26.3, 169, 833) (22.1, 156, 758)
(60, 550, 2500) (31.3, 169, 833) (25.6, 156, 758)
(65, 550, 2500) (36.7, 169, 833) (29.3, 156, 758)
(70, 550, 2500) (42.6, 169, 833) (33.1, 156, 758)
(75, 550, 2500) (48.9, 169, 833) (37.0, 156, 758)

Table 6.3: Eigenvalues of sterile neutrino mass matrix for di�erent allowed N − S
mixing matrix elements.
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Figure 6.9: Scattered plot of half-life due to NH type light neutrino and heavy sterile
neutrino exchange contributions in the WL −WL channel as a function of lightest
sterile mass. Left (right) panel corresponds to the nuclear matrix elements and phase
space factor of 76Ge (136Xe). Details of various parameters is given in the text. The
solid horizontal lines indicate the HM evidence.

very large compare to current experimental bound, the spread near the horizontal

lines are mainly due to uncertainty in nuclear matrix element. While the spread in

the dots is over a much wider region for MS1 > 15GeV in the QD case. This is

because QD contribution themselves are of the order of experimental bound. This

Majorana phases play major role in deciding the half-life of 0ν2β-decay. For certain

phase there can be cancellation between the light neutrino and the sterile neutrino

contributions, while for the same MS1 but for di�erent Majorana phase contribution

can be constrictive. To analyse this aspect more vividly we have plotted the half-life

as a function of MS1 as shown in Fig. 6.12, which can be understood easily using
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Figure 6.10: Same as Fig.6.9 but for inverted hierarchy of light neutrino masses.
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Figure 6.11: Same as Fig.6.9 and Fig.6.10 but for quasi-degenerate light neutrino
masses with mν = 0.23 eV.

eq. (6.43).

In Fig. 6.12 we note that forMS1 ∼ 15.8GeV and zero Majorana masses the half-

life diverges, while if the two Majorana phases are π/2 each the life time is close to

experimental reach. On the other hand, if MS1 ' 25 then for zero Majorana phases

the half-life is close to experiment while for Majorana phases π/2 each the light and

sterile contributions cancel, giving in�nitely large half-life.

From the Fig.6.9, Fig.6.10, and Fig.6.11, it is clear that the 76Ge data gives the

following bounds on the lightest sterile neutrino mass,

MS1 ≥ 15.5± 3.5 GeV, QD,

≥ 18.0± 3.0 GeV, IH,

≥ 18.5± 3.0 GeV, NH. (6.46)

whereas from the 136Xe data, the bounds are
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Figure 6.13: Mass bounds for the lightest sterile neutrino mass MS1 obtained from
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parison with experimental data for 76Ge and 136Xe isotopes cited in the text. The
horizontal dashed-green line represents the average valueMS1 ≥ 18.0±2.9 GeV. The
vertical dashed-red line passing through the average is to guide the eye.

MS1 ≥ 17.0± 3.0 GeV, QD,

≥ 19.0± 2.0 GeV, IH,

≥ 20.0± 2.3 GeV, NH. (6.47)
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For all QD cases used to obtain mass bounds, we have used the common mass of

light neutrinos mν = 0.23 eV. We �nd that the bounds obtained from e�ective mass

plots and the hal�ife plots are in agreement as expected. These bounds are also

depicted in Fig. 6.13.

6.6 Rectifying the large τp problem of low energy

LR model using light bi-triplet mass

bi bij bi bij2
2
0

 56 48 0
48 58 0
0 0 0

  5
5

16/3

 65 45 240
45 65 240
48 48 896/3


Table 6.4: The one and two loop beta coe�cients for (3, 3, 1) and (2, 2, 15) scalar
representation under the PS symmetry.

The large proton lifetime prediction of the model presented in Chapter 5 can be

recti�ed by a simple extension of the model. We use bi-triplet scalar (3, 3, 1) ⊂ 54H

and allow its mass from GUT scale to Pati-Salam symmetry breaking scale (∼ 106),

similar to the procedure we followed in Sec. 4.2.2. Super-heavy bi-doublet ζ(2, 2, 15)

is allowed to stay at D-preserving Pati-Salam symmetry breaking scale. One and

two loop beta coe�cients for the (3, 3, 1) and (2, 2, 15) scalars are listed in Tab. 6.4.

The rest of the beta coe�cients are same as give in Tab. B.2 [295].

The minimal content of the model discussed in Chapter 5 failed to give proton

decay predictions. This de�ciency of the model can be eradicated by introduction of a

bi-triplet (3, 3, 1) scalar at some lower energies. Introduction of such a scalar requires

additional �ne tuning since it doesn't follow the extended survival hypothesis. The bi-

triplet at the energy scale 107.1−108.5 GeV brings down the uni�cation scale close to

the experimentally reachable region. The uni�cation scale dependence on bi-triplet

scalar mass. ForM(3,3,1) = 107.3 GeV gauge coupling uni�cation is depicted in the left

panel of Fig. 6.14. In the right panel of the same �gure dependence of uni�cation

scale and proton lifetime on bi-triplet is exhibited. The light-blue and the green

bands in the right �gure correspond to the current limit and future reach of Hyper-

K experiment, respectively. Exact numerical values of lifetime and uni�cation scales

vs bi-triplet masses are also given in Tab. 6.5. Recent excess observed in searches

of WR gauge boson at CMS [317] at 1.9 TeV to 2.4 TeV has prospects of being
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Figure 6.14: Left panel: Two loop gauge coupling uni�cation forM(3,3,1) = 107.3 GeV.
The multiplet ξ(2,2,15) appears at Pati-Salam D-parity breaking scale. The Pati-
Salam, left-right and G2113 symmetry breaking scales are atMC ∼ 106.28 GeV,M+

R ∼
10 TeV and M0

R ∼ 5 TeV, respectively. Right panel:The bi-triplet mass dependence
of proton life-time. Parameters are same as used for generating the Tab. 6.5.

log10
M(3,3,1)

GeV
log10

MG

GeV
αG ASR log10

τP
Yrs

7.0 15.6408 0.0391987 2.77194 33.996
7.2 15.6804 0.039409 2.78914 34.1444
7.5 15.7399 0.0397315 2.81533 34.3672
8.0 15.8389 0.0402809 2.85983 34.7377
8.5 15.9377 0.040849 2.90553 35.1069
9.0 16.0365 0.0414368 2.95254 35.4758
10 16.2338 0.0426775 3.05085 36.2109

Table 6.5: Bi-triplet mass dependence of the uni�cation scale and proton life-
time. The Pati-Salam, left-right and G2113 symmetry breaking scales are at MC ∼
106.28 GeV, M+

R ∼ 10 TeV and M0
R ∼ 5 TeV, respectively. The Pati-Salam D-parity

breaking scale remains at MP ∼ 1014.3 GeV. The parameter AL ∼ 1.25 is used.

explained within the low energy LR model discussed in Chapter 5 [318]. Thus, in

case of con�rmation of WR gauge boson at LHC, the model presented in Chapter 5,

with an intermediate mass scale bi-triplet scalar, may emerge as most promising

non-SUSY SO(10) GUT model.
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CHAPTER7
Conclusion

In this thesis we have investigated the prospects of experimentally reachable beyond

standard model physics in TeV-scale inverse seesaw motivated non-SUSY SO(10)

grand uni�cation framework. The TeV-scale inverse seesaw mechanism can be suc-

cessfully implemented with a low-mass Z ′ gauge boson, which can be accessible at

LHC and planned accelerators. The inverse seesaw scenario for explaining light neu-

trino masses and mixings may emerge from particular textures of 9 × 9 neutrino

mass matrix. In the minimal scenario (Chapter 4) the light neutrinos are accom-

panied by three Majorana pairs of quasi-Dirac type heavy neutrinos. These pairs

of BSM neutrinos have mass di�erence of keV scale. In the extended inverse see-

saw texture (Chapters 5 and 6) three of the six BSM neutrinos acquire masses in

type-I seesaw fashion and are called sterile neutrinos. The remaining three get the

masses close to the largest mass scale present in the the seesaw structure. The scalar

rep 16H ⊂ SO(10) is the essential part of model giving inverse seesaw. The scalar

126H ⊂ SO(10) is required to generate the extended inverse seesaw and to explain the

fermion masses at GUT scale using only renormalizable term in Yukawa Lagrangian.

The uni�cation theories based on SO(10) gauge group are particularly interesting be-

cause SO(10) is smallest simple, anomaly free Lie group which uni�es matter besides

interactions. All the SM fermions of one generation plus a right handed neutrino

can be accommodated in the irreducible 16-dim representation. Since SO(10) is a

larger group, its spontaneous symmetry breaking to SM may pass through various

intermediate symmetries. Once intermediate symmetries are present in the theory,

gauge couplings unify nicely without any requirement of supersymmetry.

In the Chapter 1 we motivated the need to study non-SUSY uni�cation models

with experimentally reachable BSM predictions. We also presented the schema of

investigation, brie�y. In Chapter 2 we recapitulated the SM and its ineptitude in
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explaining various BSM phenomena. In Chapter 3 we motivated and brie�y discussed

the SU(5) and SO(10) GUT prototypes. We also brie�y described the conventional

seesaw mechanisms (type-I, II and III) which can explain small neutrino masses

very naturally. In Chapter 4 we have investigated the prospects of inducting TeV-

scale inverse seesaw mechanism for neutrino masses in a non-SUSY SO(10) GUT

model which passes through two intermediate symmetries (G2213 at ∼ 1011 GeV and

G2113 at ∼TeV) to reach to SM. A SO(10) singlet fermion (S) per generation is

introduced to get TeV scale inverse seesaw. A TeV scale Z ′ boson acquires mass

through spontaneous breaking of U(1)R × U(1)B−L gauge symmetries in to U(1)Y

generated through the Higgs representation 16H . The right-handed neutrino (N)

and sterile (S) mixing matrix M is also generated through the VEV of RH doublet

Higgs [(1,−1/2, 1/2, 1) ⊂ (1, 2, 1/2, 1)] of LR model contained in 16H . The left-right

symmetry is restored at the intermediate energy scale.

The Dirac neutrino mass matrix MD at seesaw scale (M0
R) is the necessary input

to estimate lepton number and lepton �avor violating contributions, non-unitarity

e�ects as well as leptonic CP -violation. This matrix has been explicitly computed us-

ing the associated renormalization group equations in the presence of G2213 and G2113

intermediate gauge symmetries via bottom-up and top-down iterative approach, and

by implementing the uni�cation model constraint on the fermion masses at GUT

scale. The matrix M is estimated using the current non-unitarity experimental con-

straint (ηττ ). The predominant Dirac mass matrix together with TeV scale heavy

neutrino masses give the branching ratio predictions only few orders less than the

current bounds. The branching ratio Br(µ→ eγ) prediction for the non-degenerate

right-handed neutrino masses (�rst and second generation acquiring ∼ 50GeV mass)

are one order closer to experimental bounds, compared to predictions in degenerate

scenario. In degenerate Mi scenario, branching ratios show at most a factor of three

variations from the corresponding SUSY SO(10) predictions. For the non-unitarity

matrix element ηµτ an important model prediction is its enhanced phase δµτ larger

by two to four orders in non-degenerate case. This may play a dominant role in the

experimental detection of the non-unitary CP -violation e�ects at neutrino factories.

Interestingly, the two-loop prediction on proton lifetime in the minimal model

turns out to be [τp(p→ e+π0)]=2× 1034 yrs. which increases by a factor of 2 when

GUT threshold e�ects are included. While providing a possibility of veri�cation

of the underlying GUT hypothesis, this o�ers another opportunity for testing the

minimal model by ongoing search experiments. We have also identi�ed this model

to be the best among all involving single or two-step breaking of SO(10) to the TeV
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scale gauge symmetry G2113, which is essential for low mass Z ′, TeV scale seesaw and

prominent non-unitarity e�ects.

We have presented one such model whereG2213 intermediate symmetry is replaced

by G2213D. We also show that fast proton decay problem of such models can be

evaded by simple extensions in the particle content. A color octet scalar, below the

GUT scale, can be an easy choice. The proton lifetime bounds put the constraints

on the masses of these multiplets. If the actual proton lifetime is very-very large,

accelerator reachable color octet scalar is also permissible.

In the Chapter 5 we have investigated in detail the prospects of TeV scale left-

right gauge theory originated from SO(10) grand uni�ed theory. Extended inverse

seesaw mechanism for neutrino masses and mixings was implemented for predicting

dominant contributions to 0ν2β decay. The model also predicts experimentally ac-

cessible lepton �avor violating decays, non-unitarity and CP -violating e�ects, which

is of the same order as predicted in the Chapter 4. The n-n̄ oscillation and rare kaon

decays are the other beyond standard model predictions due to Pati-Salam symmetry

(G224) restoration around 106 GeV. We have embedded the LR model successfully in

non-SUSY Pati-Salam symmetry and SO(10) GUT, predicting low mass W±
R and Z ′

bosons near 1− 10TeV scale accessible to LHC and future accelerators. The uni�ca-

tion of gauge couplings requires parity restoration under Pati-Salam symmetry near

1014 GeV.

The Dirac neutrino mass matrixMD and heavy-sterile mass matrixM estimations

follow the procedure discussed in Chapter 4. The induced VEV of the Pati-Salam

sub-multiplet ξ(2, 2, 15) of 126H ⊂ SO(10) needed to �t the fermion masses at the

GUT scale. It is found to emerge naturally within the speci�ed SO(10) structure

while safeguarding the precision gauge coupling uni�cation, and values of other mass

scales. The W±
R gauge bosons acquire masses at the SU(2)R to U(1)R breaking scale

via a RH triplet (1, 3, 0, 1) ⊂ 210H . The Z ′ gauge boson and RH Majorana neutrinos

acquire masses due to spontaneous breaking of U(1)R×U(1)B−L symmetry to U(1)Y

via the RH Higgs triplet [(1, 1,−1, 1) ⊂ (1, 3,−1, 1)] of LR model contained in 126H .

The fermion mass �t in the model gives almost a diagonal structure of RH Majorana

neutrino mass matrixMN with speci�c eigenvalues accessible to accelerator searches.

Even though MN is of TeV scale and MD is naturally dominant, the would-be large

contribution to neutrino masses due to type-I seesaw cancels out. The type-II seesaw

contribution is damped out because of large parity violating scale and the TeV scale

B−L breaking. Thus, the light left-handed neutrino masses and mixings adequately

acquire the gauged inverse seesaw formula.
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The low mass W±
R and Z ′ bosons, MD ∼ O(mup−quark), and dominant contri-

butions to 0ν2β decay are in concordance with the neutrino oscillation data for ex-

plaining tiny masses of light neutrinos. Due to presence of MN in the neutrino mass

matrix, the pseudo-Dirac nature of heavy neutrinos disappears. The type-I seesaw

structure emerges for sterile neutrinos MS ∼ µS −MM−1
N MT , and the heavy neu-

trinos get mass ∼ MN . The most dominant contributions to the 0ν2β decay comes

from theW−
L -W

−
L mediated channel through the light sterile neutrino exchange. The

e�ective mass parameter contribution from this channel is mee
sterile ∝MN/M

4. Thus,

this contribution is extremely sensitive to N -S mixing term and hence to sterile neu-

trino masses. The sub-leading contributions, as in the W−
L -W

−
R mediated channel

due to the exchanges of light and heavy RH neutrinos, are found to be much smaller

compared to the leading contributions. In addition to the large contribution to the

0ν2β rate, the predictions for LFV, non-unitarity and CP -violating e�ects are of

the same order as predicted in the minimal model, and are accessible to ongoing

searches. The details can be followed from Chapter 4. The prediction of W±
R and

Z ′ bosons in this model is further accompanied by observable n-n̄ oscillation with

mixing time τnn̄ ' (108 − 1011) sec as well as lepto-quark gauge boson mediated rare

kaon decay with Br (KL → µē) ' (10−9 − 10−11), accessible to ongoing experiments.

In the Chapter 6 we have shown that even if only the Z ′ boson is detected at

LHC, a number of the predictions from the study in Chapter 5 are still applicable.

We have a non-SUSY SO(10) grand uni�cation model which resembles the model in

Chapter 5. But, the W±
R gauge boson now reside at the Pati-Salam breaking scale,

i.e., very far from the LHC reachable scale. Due to change in breaking scheme,

scalars content of the model at various breaking scales also gets changed. This leads

to change in the scale of uni�cation.

Implementing the renormalization group analysis, we have derived the new lower

bound on the lepto-quark gauge boson mass mediating rare kaon decays to be

Mlepto ≥ (1.53 ± 0.06) × 106 GeV which is easily accommodated in the GUT sce-

nario. The uni�cation constraint on gauge couplings of the SO(10) model is found

to permit di-quark Higgs scalar masses in the range 10 − 100TeV. This leads to

observable n-n̄ oscillation while satisfying �avor physics constraints [319] saturating

the lepto-quark gauge boson mass bound. This suggests that the model is also simul-

taneously consistent with observable rare kaon decay by ongoing search experiments.

The dependence of 0ν2β life-time on lightest sterile neutrino mass is explored

in various scatter plots. In the NH and IH scenarios of light neutrino masses, for

the allowed range of unknown parameters in the model, predictions to 0ν2β life-
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time close to current experimental bound give the lightest sterile neutrino mass

mS1 ≥ 14 ± 4GeV. In the QD case light neutrino contributions to 0ν2β e�ective

mass are in competition with sterile contributions. Since the two contribution have

opposite phases, sterile contributions may cancel with light neutrino contribution of

some parameter space leading to in�nitely large 0ν2β life-time. These observations

are also present in the model discussed in Chapter 5.

The predicted proton-lifetime in the minimal structure of the model is found

to be τp(p → e+π0) ' 5.05 × 1035±1.0±0.34yrs where the �rst (second) uncertainty

is due to GUT-threshold e�ects (experimental errors). This lifetime is accessible

to ongoing and planned experiments. We have noted signi�cant reduction of the

predicted lifetime, bringing the central value much closer to the current Super-K

limit with τp(p→ e+π0) = 1.1× 1034yrs− 5.05× 1035 yrs when the e�ect of a lighter

bi-triplet Higgs contained in the representation 54H ⊂ SO(10) is included. Thus,

even though the model does not have low-mass RH W±
R bosons in the accessible

range of LHC, it is associated with interesting signatures on lepton �avor, lepton

number and baryon number violations and rare kaon decays. The predicted values

of these phenomena are in concordance with the predictions in the previous chapters.

Compared to the recent interesting proposal of refs. [320�322], although successful

generation of baryon asymmetry of the universe has not been implemented so far

in this model, we have one extra gauge boson accessible to LHC. Likewise, in our

model the lepto-quark gauge boson mediated KL → µē is also accessible to ongoing

search experiments. However, the new B − L violating proton decay is predicted to

be accessible in refs. [320�322], which in our case is B − L conserving proton decay

p→ e+π0. The type-I seesaw mechanism associated with high B−L breaking scale is

generally inaccessible to direct experimental tests, in our case the TeV-scale gauged

inverse seesaw is directly veri�able. The predicted values of the RH neutrino masses

are also accessible for veri�cation at LHC.
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APPENDIXA
Few remarks on SU(n), and SO(10) Algebra

A.1 Anomalies

It happens sometimes that a symmetry of Lagrangian gets broken by quantum e�ects,

ie the symmetry of Lagrangian is not a symmetry of quantized theory. Anomalies

appear in those symmetries involving both axial and vector currents, and re�ect

the impossibility of regularizing the quantum theory (the divergent loop) in a way

which preserves symmetry. The grand uni�cations gauge groups, being non-abelian

lie groups, are likely to meet triangular anomalies. We either choose a gauge group

which is either anomaly free or we �x it by cancelling the anomaly as suggested

by [323�325] where we �nd that all SO(n) groups with n 6= 6 are anomaly free and

all the SU(n) groups with n ≥ 3 are anomalous. For an example in SU(5) GUTs the

representation space chosen for cancelling anomaly are 5 and 10. While considering

extension of such SU(n) theories the cancellation of anomaly has to be taken care

of. Here we list strength of anomaly for few representations of general SU(n) and

SU(4) being isomorphic to SO(6) it applies there as well.

A.1.1 Adler Anomalies for a SU(n) representation

As described above all the SU(n) groups with n ≥ 3 are anomalous groups, we need

to study the order of anomaly of the representations in general. Adler anomalies for

left handed fermion representations of SU(n) are as follows

� For totally antisymmetric left handed fermionic representation with m anti-

symmetric indices, the anomaly is

Aa =
(n− 3)!(n− 2m)

(n−m− 1)!(m− 1)!
(A.1)
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Young Tableaux Dimension Anomaly

n 1

n(n+ 1)/2 n+ 4

n(n+ 1)(n+ 2)/3! (n+ 3)(n+ 6)/2

n(n− 1)/2 n− 4

n(n− 1)(n− 2)/3! (n− 3)(n− 6)/2

(n+ 1)n(n− 1)/3 (n− 3)(n+ 3)

n− 1

{
... (n2 − 1) Adj. rep. 0

Table A.1: Adler anomalies for few simple representations in SU(n) gauge theories.
All SO(n), n 6= 6, theories are anomaly free. Anomalies for right-handed fermion
representations and corresponding complex conjugate representation will change the
sign.

� For totally symmetric left handed fermionic representation with m symmetric

indices, the anomaly is

As =
(n+m)!(n+ 2m)

(n+ 2)!(m− 1)!
(A.2)

For the two representations R1 and R2, A(R1 + R2) = A(R1) + A(R2) and A(R1 ⊗
R2) = D(R1)A(R2) +D(R2)A(R1) following the additive rule. Using these relations

we can calculate anomaly due to a mixed representation. To complete this sub-

section we list few representations in Young tableaux form write their dimension

and list anomaly in SU(n) Lie group.
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A.2 Quadratic Casimir and Dynkin index invariants

in SU(n)

In a group G = SU(n) group no of generators is n2−1. We denote generators of this

group in a speci�c representation R by Ma(R). The quadratic Casimir invariance is

de�ned as

δijC2(R) =
∑
a

∑
k

(Ma(R))ik(Ma(R))kj (A.3)

where a = 1, 2...dG; i, j, k = 1, 2, ...dR and dG (= n2 − 1), dR are the dimensions

of group G and representation R in the group, respectively. The Dynkin index

invariance is de�ned as

δabT (R) = Tr[Ma(R)Mb(R)] (A.4)

Obviously dRC2(R) = dGT (R). The properties of Dynkin index invariance are

T (R∗) = T (R) (A.5)

T (R1 +R2) = T (R1) + T (R2) (A.6)

T (R1 ⊗R2) = dR1T (R2) + dR2T (R1) (A.7)

T ( ) = 1/2 (A.8)

T

(
...

}
m− boxes

)
=

1

2

(n− 2)!

(m− 1)!(n−m− 1)!
(A.9)

T

 . . .︸ ︷︷ ︸
m− boxes

 =
1

2

(n+m)!

(n+ 1)!(m− 1)!
(A.10)

Using the above properties we can calculate C2(R), T (R) for any representation R.

C2(G) = n is the quadratic Casimir for the adjoint representation. For a represen-

tation of U(1)X we have C2(G) = 0, and C2(R) = T (R) = X2, where X is the

appropriately normalized charge of the symmetry.

The best way to get the Dynkin indexes of a group SU(n) is to �rst evaluate

them for SU(2) and then achieve rest iteratively. Like, the adjoint representation of

SU(2) can be easily estimated, T (Adj)SU(2) = 2. Now, since adjoint of SU(n + 1)

can be decomposed into SU(n) representations as as

Adj(n+ 1) =

(
Adj(n) n

n̄ 1.

)
(A.11)
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Therefore the Dynkin indexes are related as

T [Adj(n+ 1)] = T [Adj(n)] + T [n] + T [n̄] + T [1]

= T [Adj(n)] + 1 ≡ n+ 1. (A.12)

Similarly for two index (anti)-symmetric representations we have

T [(n+ 1)× (n+ 1)](A)S = T [n× n](A)S + T [n]. (A.13)

We remember that two index antisymmetric and symmetric representations in SU(2)

are singlet and adjoint representations also and their Dynkin index T (AS) = 0 and

T (S) = 2, respectively. Therefore

T [n× n](A)S = (0)2 + (n− 2)/2. (A.14)

A.3 Lorentz group

A point in four dimensional space-time manifold of Minkowaski space is denoted by

xµ = (t, ~x), where the laws of physics are invariant under Lorentz group. Vectorial

transformation in this group are denoted as x′µ = Λµ
νx

ν , leading to the quadratic

form x2 = xµxµ = ηµνx
µxν invariant. Hence Lorentz group is a non-trivial real

orthogonal group of 4× 4 real orthogonal matrices obeying

ηµνΛ
µ
ρΛ

ν
σ = ηρσ ≡ ΛTηΛ = η (A.15)

with det(Λ) = +1. The invariance of Lorentz symmetry can also be written as

xαx
α = (γµx

µ)(γνx
ν) (A.16)

This requires that {γµ, γν} = 2ηµν . This γµ de�nes a rank four cli�ord algebra.

It's obvious that γ0
2 = 14 and γi

2 = −14. And γµ = Λµ
νγ

ν and γµ = ηµνγ
ν ,

tr(γµ) = 0. First and second condition on γ2
µ requires the hermiticity condition as

γ0 = γ†0 and γi = −γ†i . Hence eigen values are either ±1 or ±i and they occur in

pair. We require the dimension of these matrices to be at least 22 × 22 as there are

only three such γ matrices in 2 × 2 dimension i.e. Pauli matrices themselves, and

higher dimensional matrices will be reducible. Hence we �nd that the dimension of

fundamental representation is same as spinor representation, but their generators are
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quite di�erent. Out of di�erent possible representation we write them in the form

γ0 = σ1 ⊗ 12, γk = iσ2 ⊗ σk (A.17)

known as Weyl representation. The Weyl basis has simple chiral projections. One

more γ matrix we can de�ne is the product of all four gamma matrices.

γ5 = iγ0γ1γ2γ3 (A.18)

and the chiral projections are read as

ψR
L

=
1

2

(
1± γ5

)
ψ (A.19)

γ0 =

(
0 12

12 0

)
, γk =

(
0 σk

σk 0

)
, γ5 =

(
12 0
0 −12

)
, ψ =

(
ψL
ψR

)
(A.20)

where ψL and ψR are the left-handed and right-handed two-component Weyl spinors.

γ′µ = Λµ
νγ

ν (A.21)

generating the Cli�ord algebra for γ ′ matrices. Transformation of a 22 dimensional

spinor under the above transformation of γ matrices is

ψ′(x′) = S(Λ)ψ(x) (A.22)

γµ's are 22 × 22 matrix forms of spinor representation hence transform like

γ′µ = S(Λ)γµS
−1(Λ) (A.23)

we construct the explicit form of the transformation matrix, S(Λ) = e−
i
4
aαβΣαβ .

Simpli�cation of in�nitesimal rotation gives

Σµν =
i

2
[γµ, γν ] (A.24)

The generators Σ0,2 and Σ1,3 can be simultaneously diagonalised therefore we de�ne

chirality operator as

γ5 = iΣ02Σ13 = iγ0γ1γ2γ3. (A.25)
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One can easily verify the following properties of chirality operator

γ†5 = γ5, tr(γ5) = 0, {γ5, γµ} = 0, γ2
5 = 0, [γ5,Σµν ] = 0. (A.26)

Thus a 4-dimensional spinor representation is reducible in to two 2-dimensional rep-

resentations. The generators of the reduced representations are 1
2
(1±γ5)Σµν . Charge

conjugation operators can be found to be product γ0γ2 or γ1γ3.

A.3.1 Lorentz scalar and vector constructs

If ψ is a Dirac spinor

Lorentz Scalars

ψ̄ψ = ψCψC = ψ̄LψR + ψ̄RψL

ψCψ = ψTLCψL + ψTRCψR

ψ̄ψC = ψLCψL
T

+ ψRCψR
T

(A.27)

Lorentz Vectors

ψ̄γµψ = ψ̄LγµψL + ψ̄RγµψR

ψCγµψ = ψTLCγµCψ̄
T
L + ψTRCγµCψ̄

T
R

ψCγµψ = ψTLCγµψR + ψTRCγµψL

ψ̄γµψ
C = ψ̄LγµCψ̄

T
R + ψ̄RγµCψ̄

T
L (A.28)

where

ψ̄ = ψ†γ0, ψ
C = Cψ̄T , ψ = ψL + ψR (A.29)

A.4 SO(2n) Algebra

The special orthognal group, SO(2n) is a group of 2n× 2n real orthogonal matrices,

O obeying

OTO = OOT = 1, det(O) = +1 (A.30)

A real 2n-dimensional column vector x transforms as

x′i = Oijxj ; i, j = 1, 2, . . . 2n. (A.31)

138



such that

x′Tx′ = (Ox)TOx = xTOTOx = xTx. (A.32)

The transformation matrix, O can be parametrized as

O(a) = exp

(
i

2
aijLij

)
, such that aij = −aji (A.33)

The real numbers aij are the rotation parameters and under the local symmetry

transformation depend on space-time coordinate, and Lij are 2n × 2n linearly in-

dependent matrices and the generators of the group. Putting eq. (A.33) in the

eq. (A.30) and eq. (A.31) we get

LTij = −Lji. and (Lij)kl = −i(δikδjl − δilδjk); 1 ≤ k < l ≤ 2n. (A.34)

which gives tr(Lij) = 0 and the matrix is antisymmetric therefore it's easy to write

the explicit form of generators. The generators Lij have zeros everywhere except at

the positions (i, j) and (j, i), which are occupied by −i and +i respectively, and addi-

tionally we have Lij = −Lji = L†ij. Therefore, the algebra of the real representation

can be calculated using the de�nition of generators, eq. (A.34) as

[Lij, Lkl] = −i (δjkLil + δilLjk − δikLjl − δjlLik) (A.35)

The higher rank tensors can be de�ned which transform as

A′i1i2...ip = Oi1j1Oi2j2 . . . OipjpAj1j2...jp (A.36)

The invariants of the group are second rank δij and 2nth rank Levi-Civita tensor.

The later can be proved using the de�nition of determinant, ie.

det(O) =
1

2n!
εi1i2...i2nεj1j2...j2nOi1i2...i2n,j1j2...j2n (A.37)

A higher rank tensor is reducible if it's contraction with Kroncker delta or Levi-Civita

tensor gives a tensor of lower rank. The dimensionality of second rank anti-symmetric

tensor and second rank symmetric traceless tensor are n(2n− 1) and [n(2n+ 1)− 1].

Their transfornation follow the de�nition of eq. (A.36) for two indices. The dimension

of second rank antisymmetric tensor, which is also the adjoint representation of

the group, is same as the number of generators. Therefore, the transformation of

Lorentz-vectors under SO(2n) adjoint representation follow the similar properties
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with additional Lorentz index on gauge boson.

A.4.1 SO(2n) spinor representation

Similar to the Lorentz algebra in Minkowaski space, the invariant quadratic form of

SO(2n) symmetry is given by eq. (A.32). The quadratic form as square of linear

form can be written as

x2
1 + x2

2 + · · ·+ x2
2n = (x1Γ1 + x2Γ2 · · ·+ x2nΓ2n)2 (A.38)

if

{Γi,Γj} = 2δij1; i, j = 1, 2, . . . , 2n (A.39)

This 2n rank Cli�ord algebra gives

Γ2
i = 1 (no sum), and tr(Γi) = 0 (A.40)

We can prove by explicit iterative construction that �there exist 2n Hermitian ma-

trices Γi, i = 1, 2, . . . , 2n, which are 2n × 2n and satisfy the 2n rank Cli�ord alge-

bra� [326]. Thus from eq. (A.40) we see that their eigenvalues are +1 and −1 which

come in pair.

The invariance of linear term,
∑

i xiΓi demands the transformation of Γ as

Γi → Γ′i = OijΓj. (A.41)

The transformation of SO(2n) spinor is written as

Ψ(x)→ Ψ′(x′) = S(O)Ψ(x) and Γ′i = S(O) Γi S
−1(O) = OijΓj. (A.42)

where Ψ is a 2n dimensional spinor. The Γ′s follow the same Cli�ord algebra. The

explicit form of the transformation matrix

S(O) = exp

(
i

2
aijΣij

)
. (A.43)

Here Σij are the generators in the spinorial basis. Putting S(O) in eq. (A.42) and

using Oij = δij + aij we get

Σij =
i

4
[Γi,Γj] (A.44)

These antisymmetric (Σij = −Σji) and Hermitian (Σij = Σ†ij) generators satisfy the
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SO(2n) Lie algebra

[Σij,Σkl] = −i (δikΣjl − δilΣjk − δjkΣil + δjlΣik) , (A.45)

which is the usual commutation relation of SO(2n) generators in real representation,

eq. (A.35). The cartan subalgebra consist of n generators, say

Cartan subalgebra = [Σ1 2,Σ3 4, . . . ,Σ2n−1 2n] (A.46)

We can write, analogous to γ5 in Dirac theory, the group chirality operator using the

Cartan subalgebra

ΓP ≡
n∏
i=1

Σ2i−1 2i = (−1)nΓ1Γ2 . . .Γ2n (A.47)

with the properties

Γ2
P = 1, ΓP = Γ†P, tr(ΓP) = 0, [ΓP,Σij] = 0, {ΓP,Γi} = 0. (A.48)

Thus since ΓP 6= const.1 and [ΓP, S(O)] = 0, Schurs lemma suggests that 2n repre-

sentation is reducible, and Γ2
P = 1 and tr(ΓP) = 0 suggest that this representation

can reduce as 2n = 2n−1 ⊕ 2n−1 with opposite eigenvalues. Using the projection

operator

Γ± ≡
1± ΓP

2
(A.49)

we get

Ψ± = Γ±Ψ. (A.50)

Demanding the condition

ΨTBΨ = invariance⇔ ΨC = BΨ∗ (A.51)

we get ΣTB +BΣ = 0 leading to two possible solutions

B =
n∏
i

Γ2i and B =
n∏
i

Γ2i−1. (A.52)
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A.4.2 Bilinears and invariant constructs

From Ψ′(x′) = S(O)Ψ(x) and unitarity of S(O), S−1(O) = S†(O) we immediately

get bilinear structure

Ψ†Ψ Scalar (A.53)

Ψ†ΓiΨ Vector (A.54)

Ψ†ΓiΓjΨ 2nd rank tensor (A.55)

Ψ†Γi1Γi2 . . .ΓirΨ rth rank tensor (A.56)

Where r ≤ n. An antisymmetric combinations of these bilinears can be extracted

out by choosing the antisymmetric combinations of Γ matrices, Γ[i1Γi2 . . .Γir]. These

bilinears can be decomposed in terms of irreducible representations using the pro-

jection operator Γ± such that Ψ = Ψ+ + Ψ−. The surviving odd and even rank

antisymmetric tensors would be

Ψ†±Γ[i1Γi2 . . .Γir]Ψ∓ ; r − odd (A.57)

Ψ†±Γ[i1Γi2 . . .Γir]Ψ± ; r − even. (A.58)

For r = n they will form complex and real self dual and antiself dual. We assign

left-handed and right-handed CP -conjugate chirality to Ψ+ and Ψ− respectively. To

incorporate the Lorentz symmetry we insert γ0 and γ0γµ to make them Lorentz scalar

and vectors respectively. Thus the scalar and vector couplings of these bispinors look

like

Kab Ψ± aΓ[i1Γi2 . . .Γir]Ψ∓ bΦ
(asym)
i1i2...ir

; r − odd

K′ab Ψ± aγ
µΓ[i1Γi2 . . .Γir]Ψ± bV

(asym)
µi1i2...ir

; r − even, (A.59)

respectively. Here a, b are generation indices, µ is Lorentz index, K,K′ are coupling
constants, and Φ, V are Lorentz scalar and vectors of SO(2n) antisymmetric (asym)

tensors of rank r. The symmetries of K,K′ are decided by the properties of γ and Γ

matrices.

The demand for invariance of term constructed by ΨT and Ψ in eq. (A.51) can be

trivially implemented for writing bilinears using ΨT and Ψ. Now vector and scalar
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couplings are

Kab ΨT
± aCB

TΓ[i1Γi2 . . .Γir]Ψ± bΦ
(asym)
i1i2...ir

; r − even

K′ab ΨT
± aCγ

µBTΓ[i1Γi2 . . .Γir]Ψ∓ bV
(asym)
µi1i2...ir

; r − odd, (A.60)

for n-even, and for n-odd (r − even) ↔ (r − odd) in the eq. (A.60). A detailed

discussion on SO(2n) group with GUT orientation can be found in [123,327].
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APPENDIXB
Decomposition of representations and beta

coe�cients

B.1 One and two loop beta function coe�cients for

RG evolution of gauge couplings

Model Symmetry ai bij

I, I ′ G213

−19/6
41/10
−7

 199/50 27/10 44/5
9/10 35/6 12
11/10 9/2 −26



I, I ′ G2113


−3

53/12
33/8
−7




8 1 3/2 12
3 17/4 15/8 12

9/2 15/8 65/16 4
9/2 3/2 1/2 −26



I G2213


−8/3
−13/6
17/4
−7




37/3 6 3/2 12
6 143/6 9/4 12

9/2 27/4 37/8 4
9/2 9/2 1/2 −26



I ′ G2213D


−13/6
−13/6
17/4
−7




143/6 6 9/4 12
6 143/6 9/4 12

27/4 27/4 23/4 4
9/2 9/2 1/2 −26


Table B.1: One-loop and two-loop beta function coe�cients for gauge coupling evo-
lutions in Model-I and Model-I′ described in Sec. 4.1. The second Higgs doublet mass
assumed at 1 TeV.
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Group GI Higgs content ai bij

G1Y 2L3C Φ(1
2
, 2, 1)10

41/10
−19/6
−7

 199/50 27/10 44/5
9/10 35/6 12
11/10 9/2 −26



G1B−L1R2L3C

Φ1(0, 1
2
, 2, 1)10

⊕ Φ2(0,−1
2
, 2, 1)10′

⊕ ∆R(−1, 1, 1, 1)126

⊕ χR(−1
2
, 1

2
, 1, 1)16


37/8
57/12
−3
−7




209/16 63/8 9/4 4
63/8 33/4 3 12
3/2 1 8 12
1/2 3/2 9/2 −26



G1B−L2L2R3C

Φ1(0, 2, 2, 1)10

⊕ Φ2(0, 2, 2, 1)10′

⊕ ∆R(−2, 1, 3, 1)126

⊕ χR(−1, 1, 2, 1)16

⊕ ΣR(0, 1, 3, 1)210


23/4
−8/3
−3/2
−7




253/8 9/2 171/4 4
3/2 37/3 6 12
57/4 6 263/6 12
1/2 9/2 9/2 −26



G2L2R4C

Φ1(2, 2, 1)10

⊕ Φ2(2, 2, 1)10′

⊕ ∆R(1, 3, 10)126

⊕ χR(1, 2, 4)16

⊕ ΣR(1, 3, 15)210

⊕ σ′(1, 1, 15)210

 −8/3
29/2
−14/3

 37/3 6 45/2
6 1103/3 1275/2

9/2 255/2 288



G2L2R4CD

Φ1 ⊕ Φ2 ⊕∆R

⊕ ∆L(3, 1, 10)126

⊕ χL(2, 1, 4)16

⊕ ΣL(3, 1, 15)210

⊕ χR ⊕ ΣR ⊕ σ′

29/3
29/3
2/3

 1103/3 6 1275/2
6 1103/3 1275/2

255/2 255/2 3673/6



Table B.2: One and two loop beta coe�cients for di�erent gauge coupling evolutions
for the model described in Sec. 5.5. The second Higgs doublet is assumed at µ ≥
10TeV.
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Group GI Higgs content ai bij

G1Y 2L3C

Φ(1
2
, 2, 1)10

41/10
−19/6
−7

 199/50 27/10 44/5
9/10 35/6 12
11/10 9/2 −26



G1B−L1R2L3C

Φ1(0, 1
2
, 2, 1)10

⊕ Φ2(0,−1
2
, 2, 1)10′

⊕ ∆R(−1, 1, 1, 1)126

⊕ χR(−1
2
, 1

2
, 1, 1)16


37/8
57/12
−3
−7




209/16 63/8 9/4 4
63/8 33/4 3 12
3/2 1 8 12
1/2 3/2 9/2 −26



G2L2R4C

Φ1(2, 2, 1)10

⊕ Φ2(2, 2, 1)10′

⊕ ∆R(1, 3, 10)126

⊕ χR(1, 2, 4)16

⊕ σR(1, 3, 15)210

 −8/3
29/3
−16/3

 37/3 6 45/2
6 1103/3 1275/2

9/2 255/2 736/3



G2L2R4CD

Φ1 ⊕ Φ2 ⊕∆R

⊕ ∆L(3, 1, 10)126

⊕ χR ⊕ σR
⊕ χL(2, 1, 4)16

⊕ σL(3, 1, 15)210

⊕ ξ(2, 2, 15)126/126′

44/3
44/3
16/3

 1298/3 51 1755/2
51 1298/3 1755/2

351/2 351/2 1403/2



Table B.3: One and two loop beta coe�cients for di�erent gauge coupling evolutions
for the model described Sec. 6.1. The second Higgs doublet is taken at µ ≥ 5TeV.

B.2 Decomposition of SO(10) irreducible represen-

tations

Since we have been extensively using the decomposition of various SO(10) represen-

tations in to it subgroups, and very often we required various scalar sub-multiplets at

various scalars following extended survival hypothesis and residing in the symmetry

at the corresponding scale, we would often require the decomposition table. We have

borrowed the tables for various representations from a very good review on SO(10)

group theory by Fukuyama et al [124].
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(4C , 2L, 2R) (3C , 2L, 2R, 1B−L) (3C , 2L, 1R, 1B−L) (3C , 2L, 1Y ) (5, 1X)
(6,1,1)

(
3,1,1;−1

3

) (
3,1; 0,−1

3

) (
3,1;−1

3

)
(5, 2)(

3,1,1; 1
3

) (
3,1; 0, 1

3

) (
3,1; 1

3

) (
5,−2

)
(1,2,2) (1,2,2; 0)

(
1,2; 1

2
, 0
) (

1,2; 1
2

)
(5, 2)(

1,2;−1
2
, 0
) (

1,2;−1
2

) (
5,−2

)
Table B.4: Decomposition of the representation 10

(4C , 2L, 2R) (3C , 2L, 2R, 1B−L) (3C , 2L, 1R, 1B−L) (3C , 2L, 1Y ) (5, 1X)
(4,2,1)

(
3,2,1; 1

6

) (
3,2; 0, 1

6

) (
3,2; 1

6

)
(10,−1)(

1,2,1;−1
2

) (
1,2; 0,−1

2

) (
1,2;−1

2

) (
5, 3
)(

4,1,2
) (

3,1,2;−1
6

) (
3,1; 1

2
,−1

6

) (
3,1; 1

3

) (
5, 3
)(

3,1;−1
2
,−1

6

) (
3,1;−2

3

)
(10,−1)(

1,1,2; 1
2

) (
1,1; 1

2
, 1

2

)
(1,1; 1) (10,−1)(

1,1;−1
2
, 1

2

)
(1,1; 0) (1,−5)

Table B.5: Decomposition of the representation 16

(4C , 2L, 2R) (3C , 2L, 2R, 1B−L) (3C , 2L, 1R, 1B−L) (3C , 2L, 1Y ) (5, 1X)
(1,1,3) (1,1,3; 0) (1,1; 1, 0) (1,1; 1) (10, 4)

(1,1; 0, 0) (1,1; 0) (1, 0)
(1,1;−1, 0) (1,1;−1)

(
10,−4

)
(1,3,1) (1,3,1; 0) (1,3; 0, 0) (1,3; 0) (24, 0)
(6,2,2)

(
3,2,2;−1

3

) (
3,2; 1

2
,−1

3

) (
3,2; 1

6

)
(10, 4)(

3,2;−1
2
,−1

3

) (
3,2;−5

6

)
(24, 0)(

3,2,2; 1
3

) (
3,2; 1

2
, 1

3

) (
3,2; 5

6

)
(24, 0)(

3,2;−1
2
, 1

3

) (
3,2;−1

6

) (
10,−4

)
(15,1,1) (1,1,1; 0) (1,1; 0, 0) (1,1; 0) (24, 0)(

3,1,1; 2
3

) (
3,1; 0, 2

3

) (
3,1; 2

3

) (
10,−4

)(
3,1,1;−2

3

) (
3,1; 0,−2

3

) (
3,1;−2

3

)
(10, 4)

(8,1,1; 0) (8,1; 0, 0) (8,1; 0) (24, 0)

Table B.6: Decomposition of the representation 45
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(4C , 2L, 2R) (3C , 2L, 2R, 1B−L) (3C , 2L, 1R, 1B−L) (3C , 2L, 1Y ) (5, 1X)
(1,1,1) (1,1,1; 0) (1,1; 0, 0) (1,1; 0) (24, 0)
(1,3,3) (1,3,3; 0) (1,3; 1, 0) (1,3; 1) (15, 4)

(1,3; 0, 0) (1,3; 0) (24, 0)
(1,3;−1, 0) (1,3;−1)

(
15,−4

)
(20′,1,1)

(
6,1,1; 2

3

) (
6,1; 0, 2

3

) (
6,1; 2

3

) (
15,−4

)(
6,1,1;−2

3

) (
6,1; 0,−2

3

) (
6,1;−2

3

)
(15, 4)

(8,1,1; 0) (8,1; 0, 0) (8,1; 0) (24, 0)
(6,2,2)

(
3,2,2;−1

3

) (
3,2; 1

2
,−1

3

) (
3,2; 1

6

)
(15, 4)(

3,2;−1
2
,−1

3

) (
3,2;−5

6

)
(24, 0)(

3,2,2; 1
3

) (
3,2; 1

2
, 1

3

) (
3,2; 5

6

)
(24, 0)(

3,2;−1
2
, 1

3

) (
3,2;−1

6

) (
15,−4

)
Table B.7: Decomposition of the representation 54

(4C , 2L, 2R) (3C , 2L, 2R, 1B−L) (3C , 2L, 1R, 1B−L) (3C , 2L, 1Y ) (5, 1X)
(1,2,2) (1,2,2; 0)

(
1,2; 1

2
, 0
) (

1,2; 1
2

)
(5, 2)(

1,2;−1
2
, 0
) (

1,2;−1
2

) (
5,−2

)
(10,1,1) (1,1,1;−1) (1,1; 0,−1) (1,1;−1)

(
10, 6

)(
3,1,1;−1

3

) (
3,1; 0,−1

3

) (
3,1;−1

3

)
(5, 2)(

6,1,1; 1
3

) (
6,1; 0, 1

3

) (
6,1; 1

3

) (
45,−2

)(
10,1,1

)
(1,1,1; 1) (1,1; 0, 1) (1,1; 1) (10,−6)(
3,1,1; 1

3

) (
3,1; 0, 1

3

) (
3,1; 1

3

) (
5,−2

)(
6,1,1;−1

3

) (
6,1; 0,−1

3

) (
6,1;−1

3

)
(45, 2)

(6,3,1)
(
3,3,1;−1

3

) (
3,3; 0,−1

3

) (
3,3;−1

3

)
(45, 2)(

3,3,1; 1
3

) (
3,3; 0, 1

3

) (
3,3; 1

3

) (
45,−2

)
(6,1,3)

(
3,1,3;−1

3

) (
3,1; 1,−1

3

) (
3,1; 2

3

) (
10, 6

)(
3,1; 0,−1

3

) (
3,1;−1

3

)
(45, 2)(

3,1;−1,−1
3

) (
3,1;−4

3

) (
45,−2

)(
3,1,3; 1

3

) (
3,1; 1, 1

3

) (
3,1; 4

3

)
(45, 2)(

3,1; 0, 1
3

) (
3,1; 1

3

) (
45,−2

)(
3,1;−1, 1

3

) (
3,1;−2

3

)
(10,−6)

(15,2,2) (1,2,2; 0)
(
1,2; 1

2
, 0
) (

1,2; 1
2

)
(45, 2)(

1,2;−1
2
, 0
) (

1,2;−1
2

) (
45,−2

)(
3,2,2; 2

3

) (
3,2; 1

2
, 2

3

) (
3,2; 7

6

) (
45,−2

)(
3,2;−1

2
, 2

3

) (
3,2; 1

6

)
(10,−6)(

3,2,2;−2
3

) (
3,2;−1

2
,−2

3

) (
3,2;−7

6

)
(45, 2)(

3,2; 1
2
,−2

3

) (
3,2;−1

6

) (
10, 6

)
(8,2,2; 0)

(
8,2; 1

2
, 0
) (

8,2; 1
2

)
(45, 2)(

8,2;−1
2
, 0
) (

8,2;−1
2

) (
45,−2

)
Table B.8: Decomposition of the representation 120
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(4C , 2L, 2R) (3C , 2L, 2R, 1B−L) (3C , 2L, 1R, 1B−L) (3C , 2L, 1Y ) (5, 1X)
(6,1,1)

(
3,1,1;−1

3

) (
3,1; 0,−1

3

) (
3,1;−1

3

)
(5, 2)(

3,1,1; 1
3

) (
3,1; 0, 1

3

) (
3,1; 1

3

) (
45,−2

)(
10,3,1

)
(1,3,1; 1) (1,3; 0, 1) (1,3; 1) (15,−6)(
3,1,3; 1

3

) (
3,3; 0, 1

3

) (
3,3; 1

3

) (
45,−2

)(
6,1,3;−1

3

) (
6,3; 0,−1

3

) (
6,3;−1

3

)
(50, 2)

(10,1,3) (1,1,3;−1) (1,1; 1,−1) (1,1; 0) (1, 10)
(1,1; 0,−1) (1,1;−1)

(
10, 6

)
(1,1;−1,−1) (1,1;−2) (50, 2)(

3,1,3;−1
3

) (
3,1; 1,−1

3

) (
3,1; 2

3

) (
10, 6

)(
3,1; 0,−1

3

) (
3,1;−1

3

)
(50, 2)(

3,1;−1,−1
3

) (
3,1;−4

3

) (
45,−2

)(
6,1,3; 1

3

) (
6,1; 1, 1

3

) (
6,1; 4

3

)
(50, 2)(

6,1; 0, 1
3

) (
6,1; 1

3

) (
45,−2

)(
6,1;−1, 1

3

) (
6,1;−2

3

)
(15,−6)

(15,2,2) (1,2,2; 0)
(
1,2; 1

2
, 0
) (

1,2; 1
2

)
(5, 2)(

1,2;−1
2
, 0
) (

1,2;−1
2

) (
45,−2

)(
3,2,2; 2

3

) (
3,2; 1

2
, 2

3

) (
3,2; 7

6

) (
45,−2

)(
3,2;−1

2
, 2

3

) (
3,2; 1

6

)
(15,−6)(

3,2,2;−2
3

) (
3,2;−1

2
,−2

3

) (
3,2;−7

6

)
(50, 2)(

3,2; 1
2
,−2

3

) (
3,2;−1

6

) (
10, 6

)
(8,2,2; 0)

(
8,2; 1

2
, 0
) (

8,2; 1
2

)
(50, 2)(

8,2;−1
2
, 0
) (

8,2;−1
2

) (
45,−2

)
Table B.9: Decomposition of the representation 126
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(4C , 2L, 2R) (3C , 2L, 2R, 1B−L) (3C , 2L, 1R, 1B−L) (3C , 2L, 1Y ) (5, 1X)
(1,1,1) (1,1,1; 0) (1,1; 0, 0) (1,1; 0) (1, 0)

(15,1,1) (1,1,1; 0) (1,1; 0, 0) (1,1; 0) (24, 0)(
3,1,1; 2

3

) (
3,1; 0, 2

3

) (
3,1; 2

3

) (
10,−4

)(
3,1,1;−2

3

) (
3,1; 0,−2

3

) (
3,1;−2

3

)
(10, 4)

(8,1,1; 0) (8,1; 0, 0) (8,1; 0) (24, 0)
(6,2,2)

(
3,2,2;−1

3

) (
3,2; 1

2
,−1

3

) (
3,2; 1

6

)
(10, 4)(

3,2;−1
2
,−1

3

) (
3,2;−5

6

)
(24, 0)(

3,2,2; 1
3

) (
3,2; 1

2
, 1

3

) (
3,2; 5

6

)
(24, 0)(

3,2;−1
2
, 1

3

) (
3,2;−1

6

) (
10,−4

)
(10,2,2) (1,2,2;−1)

(
1,2; 1

2
,−1

) (
1,2;−1

2

) (
5, 8
)(

1,2;−1
2
,−1

) (
1,2;−3

2

) (
40, 4

)(
3,2,2;−1

3

) (
3,2; 1

2
, 1

3

) (
3,2; 1

6

) (
40, 4

)(
3,2;−1

2
,−1

3

) (
3,2;−5

6

)
(75, 0)(

6,2,2; 1
3

) (
6,2; 1

2
, 1

3

) (
6,2; 5

6

)
(75, 0)(

6,2;−1
2
, 1

3

) (
6,2;−1

6

)
(40,−4)(

10,2,2
)

(1,2,2; 1)
(
1,2; 1

2
, 1
) (

1,2; 3
2

)
(40,−4)(

1,2;−1
2
, 1
) (

1,2; 1
2

)
(5,−8)(

3,2,2; 1
3

) (
3,2; 1

2
, 1

3

) (
3,2; 5

6

)
(75, 0)(

3,2;−1
2
, 1

3

) (
3,2;−1

6

)
(40,−4)(

6,2,2;−1
3

) (
6,2; 1

2
,−1

3

) (
6,2; 1

6

) (
40, 4

)(
6,2;−1

2
,−1

3

) (
6,2;−5

6

)
(75, 0)

(15,3,1) (1,3,1; 0) (1,3; 0, 0) (1,3; 0) (24, 0)(
3,3,1; 2

3

) (
3,3; 0, 2

3

) (
3,3; 2

3

)
(40,−4)(

3,3,1;−2
3

) (
3,3; 0,−2

3

) (
3,3;−2

3

) (
40, 4

)
(8,3,1; 0) (8,3; 0, 0) (8,3; 0) (75, 0)

(15,1,3) (1,1,3; 0) (1,1; 1, 0) (1,1; 1) (10, 4)
(1,1; 0, 0) (1,1; 0) (75, 0)

(1,1;−1, 0) (1,1;−1)
(
10,−4

)(
3,1,3; 2

3

) (
3,1; 1, 2

3

) (
3,1; 5

3

)
(75, 0)(

3,1; 0, 2
3

) (
3,1; 2

3

)
(40,−4)(

3,1;−1, 2
3

) (
3,1;−1

3

)
(5,−8)(

3,1,3;−2
3

) (
3,1; 1,−2

3

) (
3,1; 1

3

) (
5, 8
)(

3,1; 0,−2
3

) (
3,1;−2

3

) (
40, 4

)(
3,1;−1,−2

3

) (
3,1;−5

3

)
(75, 0)

(8,1,3; 0) (8,1; 1, 0) (8,1; 1)
(
40, 4

)
(8,1; 0, 0) (8,1; 0) (75, 0)

(8,1;−1, 0) (8,1;−1) (40,−4)

Table B.10: Decomposition of the representation 210
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APPENDIXC
Renormalization group evolution for

Model-I

Each of the two SO(10) models we have considered for inverse seesaw has two types

of nonstandard gauge symmetries, G2213 or G2213D and G2113. Here we derive RGEs

for running Yukawa and fermion mass matrices from which, following the earlier

approach [186], we derive RGEs for the mass eigenvalues and mixing angles. We

de�ne the rescaled β-functions

16π2µ
∂Fi
∂µ

= βFi . (C.1)

With G2113 symmetry the scalar �eld Φd(2, 1/2, 0, 1) through its VEV vd gives masses

to down quarks and charged leptons while Φu(2,−1/2, 0, 1) through its VEV vu gives

Dirac masses to up quarks and neutrinos. These �elds are embedded into separate

bi-doublets in the presence of G2213 and their vacuum structure has been speci�ed in

Sec. 4.3. We have derived the beta functions for RG evolution of Yukawa matrices

(Yi), fermion mass matrices (Mi), and the vacuum expectation values (vu,d). The

rescaled beta functions are given below in both cases,

G2113 Symmetry:

βYu =

[
3

2
YuY

†
u +

1

2
YdY

†
d + Tu −

∑
i

Cq
i g

2
i

]
Yu,

βYd =

[
3

2
YdY

†
d +

1

2
YuY

†
u + Td −

∑
i

Cq
i g

2
i

]
Yd,
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βYν =

[
3

2
YνY

†
ν +

1

2
YeY

†
e + Tu −

∑
i

C l
ig

2
i

]
Yν ,

βYe =

[
3

2
YeY

†
e +

1

2
YνY

†
ν + Td −

∑
i

C l
ig

2
i

]
Ye,

βMu =

[
3

2
YuY

†
u +

1

2
YdY

†
d −

∑
i

C̃q
i g

2
i

]
Mu,

βMd
=

[
3

2
YdY

†
d +

1

2
YuY

†
u −

∑
i

C̃q
i g

2
i

]
Md,

βMD
=

[
3

2
YνuY

†
ν +

1

2
YeY

†
e −

∑
i

C̃ l
ig

2
i

]
MD,

βMe =

[
3

2
YeuY

†
e +

1

2
YνY

†
ν −

∑
i

C̃ l
ig

2
i

]
Me,

(C.2)

where the beta-functions for VEVs are

βvu =

[∑
i

Cv
i g

2
i − Tu

]
vu,

βvd =

[∑
i

Cv
i g

2
i − Td

]
vd, (C.3)

with

Tu = Tr(3Y †uYu + Y †ν Yν), Td = Tr(3Y †d Yd + Y †e Ye). (C.4)

The parameters occurring in these equations, and also in eq. (C.9) and eq. (C.10)

given below are

a =
3

2
, b =

1

2
, a′ = b′ = 0,

Cq
i = (9/4, 3/4, 1/4, 8), C l

i = (9/4, 3/4, 9/4, 0),

C̃q
i = (0, 0, 1/4, 8), C̃ l

i = (0, 0, 9/4, 0), Cv
i = (9/4, 3/4, 0, 0),

i = 2L, 1R,BL, 3C. (C.5)

G2213 Symmetry:

154



Following de�nitions of Sec. 4.3 in the presence of left-right symmetry. the rescaled

beta functions for RGEs of the Yukawa and fermion mass matrices are

βYu = (YuY
†
u + YdY

†
d )Yu + Yu(Y

†
uYu + Y †d Yd) + TuYu + T̂1Yd −

∑
i

Cq
i g

2
i Yu,

βYd = (YdY
†
d + YuY

†
u )Yd + Yd(Y

†
d Yd + Y †uYu) + TdYd + T̂2Yu −

∑
i

Cq
i g

2
i Yd,

βYν = (YνY
†
ν + YeY

†
e )Yν + Yν(Y

†
ν Yν + Y †e Ye) + TuYν + T̂1Ye −

∑
i

C l
ig

2
i Yν ,

βYe = (YeY
†
e + YνY

†
ν )Ye + Ye(Y

†
e Ye + Y †ν Yν) + TdYe + T̂2Yν −

∑
i

C l
ig

2
i Ye,

βMu = (YuY
†
u + YdY

†
d )Mu +Mu(Y

†
uYu + Y †d Yd)−

∑
i

C̃q
i g

2
iMu + T̂1 tan βMd,

βMd
= (YdY

†
d + YuY

†
u )Md +Md(Y

†
d Yd + Y †uYu)−

∑
i

C̃q
i g

2
i ]Md +

T̂2

tan β
Mu,

βMD
= (YνuY

†
ν + YeY

†
e )MD +MD(Y †ν Yν + Y †e Ye)−

∑
i

C̃ l
ig

2
iMD + T̂1 tan βMe,

βMe = (YeY
†
e + YνY

†
ν )Me +Me(Y

†
e Ye + Y †ν Yν)−

∑
i

C̃ l
ig

2
iMe +

T̂2

tan β
MD, (C.6)

where the rescaled beta functions for VEVs βvu , βvd are the same as in eq. (C.3) with

di�erent coe�cients Cv
i de�ned below and functions Tu and Td are the same as in

eq. (C.4). Other two traces entering in this case are

T̂1 = Tr(3Y †d Yu + Y †e Yν),

T̂2 = Tr(3Y †uYd + Y †ν Ye). (C.7)

The parameters occurring in these equations and also in eq. (C.9) and eq. (C.10)

given below are

a = b = 2, a′ = b′ = 1,

Cq
i = (9/4, 9/4, 1/4, 8), C l

i = (9/4, 9/4, 9/4, 0), C̃q
i = (0, 0, 1/4, 8),

C̃ l
i = (0, 0, 9/4, 0), Cv

i = (9/4, 9/4, 0, 0), (i = 2L, 2R,BL, 3C). (C.8)

Then following the procedure described in [186], and using the de�nition of pa-

rameters in the two di�erent mass ranges, given above we obtain RGEs for mass

eigenvalues and elements of CKM mixing matrix Vαβ which can be expressed in the
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generalized form for both cases,

Mass Eigenvalues:

βmi =

[
−
∑
k

C̃
(q)
k g2

k + ay2
i + 2b

∑
j=d,s,b

|Vuj|2y2
j + a′

T̂1 tan β

mi

∑
j=d,s,b

|Vuj|2mj

]
mi,

where i = u, c, t

βmi =

[
−
∑
k

C̃
(q)
k g2

k + ay2
i + 2b

∑
j=u,c,t

|Vdj|2y2
j + b′

T̂2

tan βmi

∑
j=u,c,t

|Vdj|2mj

]
mi,

where i = d, s, b

βmi =

[
−
∑
k

C̃
(l)
k g

2
k + ay2

i + 2b
∑

j=N1,N2,N3

y2
j + b′

T̂2

tan βmi

∑
j=N1,N2,N3

mj

]
mi,

where i = e, µ, τ

βmi =

[
−
∑
k

C̃
(l)
k g

2
k + ay2

i + a′
T̂1 tan β

mi

∑
j=e,µ,τ

mj

]
mi,

where i = N1, N2, N3 . (C.9)

CKM Matrix Elements:

βVαβ =
∑

γ=u,c,t;γ 6=α

[
a′
T̂1 tan β

mα −mγ

(V M̂dV
†)αγ +

b

v2
d

m2
α +m2

γ

m2
α −m2

γ

(V M̂2
dV
†)αγ

]
Vγβ

−
∑

γ=d,s,b;γ 6=β

Vαγ

[
b′

T̂2

tan β(mγ −mα)
(V †M̂uV )γβ

+
b

v2
u

m2
γ +m2

β

m2
γ −m2

β

(V †M̂2
uV )γβ

]
. (C.10)

Then using third generation dominance, the beta functions for all the 9 elements

are easily obtained for respective mass ranges where in addition to the parameters

in the respective cases in eq. (C.5) and eq. (C.8), a′ = b′ = 0 in the mass range

MR0 →MR+ with G2113 symmetry, but a′ = b′ = 1 in the mass range MR+ →MGUT

with G2213 or G2213D symmetry and, in the latter case, the nonvanishing traces T̂1,2

are easily evaluated in the mass basis.
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APPENDIXD
Neutrino mass and mixings in inverse

seesaw

D.1 Diagonalization of inverse and extended inverse

seesaw

We present the recipe to decouple the large scale from the small scales in the mass

matrix of inverse and extended inverse seesaw. The complete mass matrix for neutral

particle is written in �avor basis {νL, SL, NC
R } as

Mν =

 0 0 MD

0 µS M

MT
D MT MN

 (D.1)

where all the elements of the matrix are themselves 3× 3 matrices. To generate the

tiny masses for light neutrinos, the elements of the matrix follow the hierarchy

µS << MD < M << MN . (D.2)

When the 126H scalar is absent from the theory the matrix MN is absent and the

structure is minimal inverse seesaw matrix giving pseudo-Dirac nature to heavy

states.

The �avor basis to mass basis transformation and the diagonalization of the above
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mass matrix is achieved through a unitary matrix (V) such that

|ψ〉f = V∗ |ψ〉m (D.3)

or,

 να

Sβ

NC
γ

 =

V
νν̂
αi VνŜαj VνN̂αk
VSν̂βi VSŜβj VSN̂βk
VNν̂γi VNŜγj VNN̂γk


∗ ν̂i

Ŝj

N̂C
k

 (D.4)

and V†MνV∗ = M̂ν = diag
(
m̂νi , m̂Sj , m̂Nk

)
(D.5)

where subscripts f,m denote the �avor and mass basis, respectively. Also, Mν is

the complex symmetric mass matrix in �avor basis with α, β, γ running over three

generations of three species ν, S,NC
R in �avor state whereas M̂ν is the diagonal mass

matrix with (i, j, k = 1, 2, 3) running over corresponding mass states.

By mapping our problem to the type-I seesaw analysis of [242] we make the

close correspondence with the recipe followed there for our inverse seesaw case. Due

to larger structure, we require to implement the mechanism more than once. The

neutrino mass matrix in the type-I form [242] is

Mν =

(
ML MT

D

MD MR

)
. (D.6)

For the two case:

(i) MN = 0

ML = 03×3, MD =

(
0

MT
D

)
6×3

, MR =

(
µS M

MT 0

)
6×6

, (D.7)

(ii) MN 6= 0

ML =

(
0 0

0 µs

)
6×6

, MD =
(
MT

D MT
)

3×6
, MR = MN . (D.8)

The complete block diagonalization is achieved in two steps by recursively inte-

grating out the heavier modes as

W†1MνW∗1 = M̂′
ν & W†2M̂′

νW∗2 = M̂ν (D.9)

where M̂′
ν is the block diagonalised 9 × 9 matrix after integrating out the heaviest

mode and M̂′
ν is the block diagonalised 9× 9 matrix after integrating out the next
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heaviest mode. The transformation matricesW1 can be written as a general unitary

matrix in the form

W∗1 =

(√
1− BB† B
−B†

√
1− B†B

)
(D.10)

where for the case (i) B is a 3×6 matrix and for the case (ii) B is a 6×3 dimensional.

√
1− BB† = 1− 1

2
BB† − 1

8
(BB†)2 − 1

16
(BB†)3 − .... (D.11)

B =
∑
i

Bi, O
(
MR

−i) (D.12)

At the leading order it looks like√
1− BB† = 1− 1

2
B1B†1 −

1

2

(
B1B†2 + B2B†1

)
− .... (D.13)

B†1 = MR
−1MD

B†2 = M−1
RM

∗
R
−1M∗

DML

= 0, if ML = 0 (D.14)

The inverse of matrixMR in eq. D.7 is

MR
−1 =

(
0 (MT )−1

M−1 −M−1µS(M−1)T

)
(D.15)

Hence for case (i):

B†1 '

(
(M−1)TMT

D

−M−1µS(M−1)TMT
D

)
(D.16)

and for case (ii):

B†1 =

(
MDM

−1
N

MM−1
N

)T

(D.17)

√
1− BB† ∼ 1− 1

2
B1B†1 (D.18)

159



Leaving the O(µ2
S) terms we get

(i) B1B†1 ∼ [MDM
−1(MDM

−1)†]T (D.19)

(ii) B1B†1 ∼

(
(MDM

−1
N )∗(MDM

−1
N )T (MDM

−1
N )∗(MM−1

N )T

(MM−1
N )∗(MDM

−1
N )T (MM−1

N )∗(MM−1
N )T

)
(D.20)

=

(
(MDM

−1
N )(MDM

−1
N )† (MDM

−1
N )(MM−1

N )†

(MM−1
N )(MDM

−1
N )† (MM−1

N )(MM−1
N )†

)T

(D.21)

Therefore, if M is a real matrix for case (i) we get

(i)
√

1− BB† ∼ 1− 1

2

(
MDM

−2M †
D

)T
(D.22)

(ii)
√

1− BB† ∼ 1− 1

2

(
(MDM

−1
N )(MDM

−1
N )† (MDM

−1
N )(MM−1

N )†

(MM−1
N )(MDM

−1
N )† (MM−1

N )(MM−1
N )†

)T

(D.23)

Light and heavy neutrino mass matrices as listed in [242]

ml = ML −MD
TMR

−1MD

− 1

2
(MD

TMR
−1M∗

R
−1MD

∗ML +MLMD
†M∗R−1MR

−1MD)− ...

mH = MR +
1

2
(MDMD

†M∗
R
−1 +M∗

R
−1M∗

DMD
T ) + .. (D.24)

PuttingMR andMD from eq. D.7 and eq. D.8 in this expression gives

(i) ml 'MDMR
−1µS

[
MDMR

−1
]T

(D.25)

mH '

(
µS M

MT 0

)
+ · · · (D.26)

(ii) ml '

(
0 0

0 µS

)
−

(
MDM

−1
N MT

D MDM
−1
N MT

MM−1
N MT

D MM−1
N MT

)
(D.27)

mH 'MN + · · · (D.28)

whereml is light mass matrix and themH is the heavy element which is the remainder

of whatever is getting integrated out. We also note that after this diagonalization

the 9×9 matrix gets block diagonalised in to a 3×3 and a 6×6. These 6×6 matrices

can be further diagonalised using the similar technique. The above transformation

matrix in dimensionless parameters X = MDM
−1, Y = MMN

−1, and Z = MDM
−1
N
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so that Z = X · Y 6= Y ·X and y = M−1µS, z = M−1
N µS, as

(i) W1 =

1− 1
2
XX† X XyT

−X† 1− 1
2
X†X −X†XyT

−y∗X† −y∗X†X 1− 1
2
y∗X†XyT

 (D.29)

(ii) W1 =

1− 1
2
ZZ† −1

2
ZY † Z

−1
2
Y Z† 1− 1

2
Y Y † Y

−Z† −Y † 1− 1
2
(Z†Z + Y †Y )

 (D.30)

Thus

Mν =W1

(
ml 0

0 mH

)
WT

1 (D.31)

In this block diagonalization process we see that in the case (i) the light neutrino

acquire 3 × 3 structure and thus now can mimic the Majorana light neutrino mass

matrix. The heavy mass matrix mH is further diagonalized using the similar mecha-

nism. The block diagonalization of the matrix in case (ii) integrates out the heaviest

mass and the light state is 6× 6 dimensional and further diagonalization.

From the above discussion, it is quite clear now that eventually the light neutrino

eigenstates are decoupled from other in case (i), and eigenstates Ni are decoupled

from others in case (ii). The remaining mass matrices mH in case (i) and ml in case

(ii) can be block diagonalized using another transformation matrix

W†2

(
ml 0

0 mH

)
W∗2 =

mν 0 0

0 m′H 0

0 0 m′′H

 (D.32)

such that

(i) W2 =

(
1 0

0 S

)
(ii) W2 =

(
S 0

0 1

)
(D.33)

where S are 6× 6 matrices and W2 have the same dimension asMν . In a simpli�ed

structure

−Meff =

(
MDZ

T MDY
T

YMT
D (MY T − µS)

)
(D.34)

Under the assumption at the beginning Z << Y , we immediately get the light
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neutrino masses as

(i) mν ' MDM
−1µS(MDM

−1)T (D.35)

m′H ' −M + µS/2 (D.36)

m′′H ' M + µS/2 (D.37)

(ii) mν ' −MDZ
T +MDY

T (MY T − µS)−1YMT
D

' −MDZ
T +MDZ

T +MDMµS(ZY −1)T

' MDM
−1µS(MDM

−1)T (D.38)

m′H ' µS −MM−1
N MT (D.39)

m′′H ' MN . (D.40)

Here we have made another assumption to get inverse seesaw, canceling the type-I

seesaw, i.e MY T >> µS. We see that in addition to m′H the m′′H is also almost

diagonal if M and MN are taken to be diagonal.

The transformation matrix S is

S∗ =

(√
1−AA† A
−A†

√
1−A†A

)
(D.41)

such that

(i) A ' 1√
2
1; for diagonal M. (D.42)

(ii) A† ' (MY T − µS)−1YMT
D

' (1 + (MT )−1Y −1µS)XT ' XT . (D.43)

The 3× 3 block diagonal mixing matrix W2 has the following form

W2 =

(
S 0

0 1

)
=

1− 1
2
XX† X 0

−X† 1− 1
2
X†X 0

0 0 1

 (D.44)
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D.2 Complete diagonalization and physical neutrino

masses

The block diagonal matrices mν , mS and mN can further be diagonalized to give

physical masses for all neutral leptons by a unitary matrix U as

U =

Uν 0 0

0 UH1 0

0 0 UH2

 . (D.45)

where the unitary matrices Uν , US and UN satisfy

U †ν mν U
∗
ν = m̂ν = diag (mν1 ,mν2 ,mν3) ,

U †H1
m′H U

∗
H1

= m̂′H = diag
(
m′H1

,m′H2
,m′H3

)
,

U †H2
m′′H U

∗
H2

= m̂′′H = diag
(
m′′H1

,m′′H2
,m′′H3

)
(D.46)

For the sake of simplicity, in case (ii) we assume m′H = mS and m′′H = mN ans

similarly UH1 = US and UH2 = UN .

Thus, the complete mixing matrix is

(i) V = W · U =W1 · W2 · U

'

1− 1
2
XX† −1

2
X XyT

−X† 1− 1
2
X†X −X†XyT

−y∗X† −y∗X†X 1− 1
2
y∗X†XyT


1 0 0

0 1√
2
1 1√

2
1

0 − 1√
2
1 1√

2
1



×

Uν 0 0

0 UH1 0

0 0 UH2



'


1− 1

2
XX† 1√

2
X 1√

2
X

−X† 1√
2
(1− 1

2
X†X) 1√

2
(1− 1

2
X†X)

−y∗X† − 1√
2
(1 + y∗X†X) 1√

2
(1− y∗X†X)


×

Uν 0 0

0 UH1 0

0 0 UH2

 (D.47)
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and

(ii) V = W · U =W1 · W2 · U

'

1− 1
2
ZZ† −1

2
ZY † Z

−1
2
Y Z† 1− 1

2
Y Y † Y

−Z† −Y † 1− 1
2
(Z†Z + Y †Y )



×

1− 1
2
XX† X 0

−X† 1− 1
2
X†X 0

0 0 1

×
Uν 0 0

0 US 0

0 0 UN



'

 1− 1
2
XX† X − 1

2
ZY † Z

−X† 1− 1
2
(X†X + Y Y †) Y − 1

2
X†Z

1
2
Z†XX† + y∗X† −Y † 1− 1

2
Y †Y



×

Uν 0 0

0 US 0

0 0 UN

 (D.48)

Here the VNν̂ element is negligibly smaller than other elements in the matrix. Also

Z†XX† term, which is usually ignored with respect to y∗X†, can be larger of the two.

The US,N matrices are very close to unity while Uν is the popular PMNS matrix.
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APPENDIXE
Estimation of experimental and

GUT-threshold uncertainties on the

uni�cation scale

E.1 Analytic formulas

In contrast to other intermediate gauge symmetries, SO(10) model with G224D inter-

mediate symmetry was noted to have the remarkable property that GUT threshold

corrections arising out of super-heavy masses or higher dimensional operators identi-

cally vanish on sin2 θW or the G224D breaking scale [83,224�226]. We show how this

property can be ensured in this model with precision gauge coupling uni�cation while

predicting vanishing GUT-threshold corrections on MP , analytically, but with non-

vanishing �nite corrections on MGUT . We derive the corresponding GUT threshold

e�ects in SO(10) model with three intermediate symmetry breaking steps, G224D,

G224, and G2113 between the GUT and the standard model whereas the uncertain-

ties in the mass scales has been discussed in ref. [82] only with single intermediate

breaking. The symmetry breaking chain under consideration is

SO(10)
a′′′i−−−−→

MGUT

G224D

a′′i−−→
MP

G224

a′i−−→
MC

G2113
ai−−→
M0
R

GSM −−→
MZ

G13, (E.1)

where a′′′i , a
′′
i , a

′
i, and ai are, respectively, the one-loop beta coe�cients for the gauge

group G2L2R4CD, G2L2R4C , G2L1R1B−L3C , and GSM ≡ G2L1Y 3C .

Following the formalism used in ref. [82, 83], one can write the expressions for

two di�erent contributions of sin2 θW (MZ), and αs(MZ):
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16π

(
α−1
s −

3

8
α−1

em

)
= AP ln

(
MP

MZ

)
+AU ln

(
MGUT

MZ

)
+ AC ln

(
MC

MZ

)
+A0ln

(
M0

R

MZ

)
+ fUM , (E.2)

where,

A0 = (8a3C − 3a2L − 5aY )−
(
8a′3C − 3a′2L − 3a′1R − 2a′B−L

)
,

AC =
(
8a′3C − 3a′2L − 3a′1R − 2a′B−L

)
− (6a′′4C − 3a′′2L − 3a′′2R) ,

AP = (6a′′4C − 3a′′2L − 3a′′2R)− (6a′′′4C − 6a′′′2L) ,

AU = (6a′′′4C − 6a′′′2L) ,

fUM = λU2L − λU4C .

Similarly,

16π α−1
em

(
sin2 θW −

3

8

)
= BP ln

(
MP

MZ

)
+ BU ln

(
MGUT

MZ

)
+ BC ln

(
MC

MZ

)
+ B0ln

(
M0

R

MZ

)
+ fUθ , (E.3)

with

B0 = (5a2L − 5aY )−
(
5a′2L − 3a′1R − 2a′B−L

)
,

BC =
(
5a′2L − 3a′1R − 2a′B−L

)
− (5a′′2L − 3a′′2R − 2a′′4C) ,

BP = (5a′′2L − 3a′′2R − 2a′′4C)− (2a′′′2L − 2a′′′4C) ,

BU = (2a′′′2L − 2a′′′4C) ,

fUθ =
1

3

(
λU4C − λU2L

)
.

It is well known that threshold e�ects at intermediate scales are likely to introduce

discontinuities in the gauge couplings thereby destroying possibilities of precision uni-

�cation. This fact has led us to restrict the model with vanishing intermediate scale

threshold corrections by assuming relevant sub-multiplets to have masses exactly

equal to their respective intermediate scales which is applicable to the intermediate

scales M0
R, M

+
R , and MC in the present work.

Denoting C0 = 16π
(
α−1
s − 3

8
α−1

em

)
, and C1 = 16π α−1

em

(
sin2 θW − 3

8

)
, one can
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rewrite the eq. (E.2), and eq. (E.3) for MP and MGUT as

D0 = AP ln

(
MP

MZ

)
+AU ln

(
MGUT

MZ

)
= C0 −AC ln

(
MC

MZ

)
−A0ln

(
M0

R

MZ

)
− fUM , (E.4)

D1 = BP ln

(
MP

MZ

)
+ BU ln

(
MGUT

MZ

)
= C1 − BC ln

(
MC

MZ

)
− B0ln

(
M0

R

MZ

)
− fUθ .

(E.5)

A formal solution for these two sets of eqns. (E.4), and (E.5),

ln

(
MGUT

MZ

)
=
D1AP −D0BP
BUAP −AUBP

, (E.6)

ln

(
MP

MZ

)
=
D0BU −D1AU
BUAP −AUBP

. (E.7)

In the present work, we derive two types of uncertainties in the mass scales of SO(10)

model i.e., the �rst one comes from low energy parameters taken from their experi-

mental errors and another one arising from the threshold corrections accounting the

theoretical uncertainties in the mass scales due to heavy Higgs �elds present at GUT

scale. These two categories are presented below:

E.2 Uncertainties due to experimental errors in sin2 θW

and αs

In eqns. (E.4) and (E.5) the low energy parameters are contained in C0 and C1. As a

result, we have got further simpli�ed relations relevant for experimental uncertainties,

i.e, ∆ (D0) = ∆ (C0) and ∆ (D1) = ∆ (C1), and hence,

∆ ln

(
MGUT

MZ

) ∣∣∣∣
expt.

=
∆ (C1)AP −∆ (C0)BP
BUAP −AUBP

=

[
(16π)α−1

em(δ sin2 θW )
]
AP −

[
− (16π)

α2
s

(δαs)
]
BP

BUAP −AUBP
, (E.8)
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∆ ln

(
MP

MZ

) ∣∣∣∣
expt.

=
∆ (C0)BU −∆ (C1)AU
BUAP −AUBP

=

[
− (16π)

α2
s

(δαs)
]
BU −

[
(16π)α−1

em(δ sin2 θW )
]
AU

BUAP −AUBP
, (E.9)

where, the errors in the experimental values on electroweak mixing angle sin2 θW and

strong coupling constant αs as sin2 θW = 0.23102 ∓ 0.00005, αs = 0.118 ± 0.003

giving δαs = ±0.003 and δ sin2 θW = ∓0.00005.

E.3 Uncertainties in MU with vanishing correction

on MP

In the present work, we have considered minimal set of Higgs �elds belonging to a

larger SO(10) Higgs representation implying other Higgs �elds which do not take

part in symmetry breaking will automatically present at GUT scale. Since we can

not determine the masses of these heavy Higgs bosons and, hence, they introduce

uncertainty in other mass scales MP and MGUT via renormalization group equations

resulting source of GUT threshold uncertainty in our predictions for proton life time.

For this particular model, the GUT threshold corrections to D-parity breaking scale

and uni�cation mass scale is presented below

∆ln

(
MU

MZ

)∣∣∣∣
GUT Th.

=
∆ (D1)AP −∆ (D0)BP
BUAP −AUBP

=
−fUM

6 (a′′′2L − a′′′4C)
, (E.10)

∆ln

(
MP

MZ

)∣∣∣∣
GUT Th.

=
∆ (D0)BU −∆ (D1)AU
BUAP −AUBP

=
BU fUM −AU fUθ

24 (a′′′2L − a′′′4C) (a′′2L − a′′4C)
= 0 . (E.11)

The last step resulting in vanishing GUT-threshold correction analytically follows

by using expressions for fUM , f
U
θ ,BU and AU derived in Sec E.1. This was proved in

ref. [226]
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