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SYNOPSIS

Research presented in this thesis follows mainly two aré&oemology: (1) semi-analytical

modelling of cosmological reionization and comparisonhwitcent observations and (2) for-
mation and evolution of large-scale structures in the Usige A brief summary of the thesis
work is discussed in the following sections. Publicationduded in this thesis are listed in the
final section.

Cosmological Reionization

Reionization is a process whereby hydrogen (and heliunt)erniverse is ionized by the ra-
diation from first luminous sources. In the framework of tlee big bang model, the baryonic
matter in the Universe is expected to become almost neutealtae recombination epoch at
z ~ 1100. Given the fact (known from observations of quasar absongpectra) that the Uni-
verse is highly ionized at < 6, itis crucial to understand as to when and how did the lunsnou
sources reionize the Universe. In the past few years, therstahding of reionization process
has become increasingly sophisticated in both the obsenatand theoretical communities,
thanks to the availability of good quality data related tmmnezation. However, recent studies
suggest that reionization process is too complex to be itbegstas a sudden process, in fact ob-
servations suggest that the reionization occurred somevweween: ~ 6 — 15 (for reviews,
see Barkana & Loeb 2001; Loeb & Barkana 2001; Wyithe & Loeb®@houdhury & Ferrara
2006b; Choudhury 2009 and the references therein). Fuontirer, the physical processes rel-
evant to reionization are so complex that neither the aigalybor the numerical simulations
alone can capture the overall picture. Consequently, iftencstudied using semi-analytical
models of reionization where a large region of parametecespan be explored even with lim-
ited computational resources.
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Model-independent Constraints on Reionization

Using a semi-analytical model developed by Choudhury & &ear(2005) and Choudhury &
Ferrara (2006b), we study the observational constrainteiomization via a principal compo-
nent analysis (PCA). The advantage of this approach is th@abvides constraints on reion-
ization in a model-independent manner (Mortonson & Hu 2008bsuming that reionization
atz > 6 is primarily driven by stellar sources, we decompose thenank functionN;.,(z),
representing the number of photons in the IGM per baryon ilagsed objects, into its prin-
cipal components and constrain the latter using threerdiftedata sets - the photoionization
ratesI'p; obtained using Ly forest Gunn-Peterson optical depth observations and a kg
of hydrodynamical simulations (Bolton & Haehnelt 2007) tiedshift distribution of Lyman
Limit SystemsdNy;,/dz in 0.36 < z < 6 (Songaila & Cowie 2010) and the angular power
spectraC; for TT, TE and EE modes using WMAP7 (Larson et al. 2011) dateckveeems to
contain somewhat more information than taking the electwattering optical depth, as a
single data point (Mitra et al. 2011). Using Markov Chain N&arlo methods, we find that
all the quantities related to reionization can be severehstrained at < 6 whereas a broad
range of reionization histories at> 6 are still permitted by the current data sets. With the
WMAP7 data, we constrain.080 < 7., < 0.112 (95% CL) and also conclude that reionization
is 50% complete between0 < z(Quir = 0.5) < 11.8 (95% CL) and is 99% complete between
5.8 < 2(Qun = 0.99) < 10.4 (95% CL). With the forthcoming PLANCK data (The Planck
Collaboration 2006) on large-scale polarization (igngmfifect of foregrounds), the > 6 con-
straints will be improved considerably, e.g., the ¢ error onr, will be reduced to 0.009 and
the uncertainties on(Qu = 0.5) andz(Qun = 0.99) would be~ 1 and 3 (95% CL), respec-
tively (Mitra et al. 2012). For more stringent constraintsreionization at > 6, one has to
rely on data sets other than CMB. Our method will be usefulichscase since it can be used
for non-parametric reconstruction of reionization higtaith arbitrary data sets.

Constraining the escape fraction of ionizing photons

One of the most crucial issues regarding the evolution efrgatlactic medium (IGM) and cos-
mic reionization is the escape fractiofi,., of ionizing photons from high-redshift galaxies.
This parameter remains poorly constrained in spite of mhegretical and observational at-
tempts made in past few years (Wood & Loeb 2000; Gnedin 2088)dhdez & Shull 2011;
Haardt & Madau 2011). We propose a novel, semi-empiricat@pgh based on a simultaneous
match of the most recently determined Luminosity Functii® of galaxies in the redshift
range6 < z < 10 (Bouwens & lllingworth 2006; Bouwens et al. 2011b; Oesch.2@12) with
reionization models constrained by a large variety of expental data. From this procedure
we obtain the evolution of the best-fit values fof. along with their 2¢ limits. We find that,
averaged over the galaxy population, (i) the escape fradticreases fronf.,. = 0.0687)037 at

2 =610 foe = 0.17970332 atz = 8; (ii) at = = 10 we can only put a lower limit of .. > 0.146
(Mitra et al. 2013). Thus, although errors are large, thesmiindication of a 2.6 times increase
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of the average escape fraction fram- 6 to z = 8.

Effects of Reionization on Cosmological Parameters

Reionization process could affect the determination ofdb@mological parameters. So, we
perform an analysis of the WMAP7 data considering physyaalbtivated and viable reion-
ization scenarios with the aim of assessing their effectsasmological parameter determi-
nations. The main novelties are: (i) the combination of CM#adwith astrophysical results
from quasar absorption line experiments; (ii) the jointiagon of both the cosmological and
astrophysical (governing the evolution of the free eletfiractionz.(z)) parameters. Includ-
ing a realistic, data-constrained reionization historthimanalysis induces appreciable changes
in the cosmological parameter values deduced through datwWMAP7 analysis (Pandolfi
et al. 2011). Particularly noteworthy are the variation§ip? = 0.02258"5-000¢ (WMAP7)

vs. k% = 0.02183 4 0.00054 (WMAP7 + ASTRO), and the new constraints for the scalar
spectral index, for which WMAP7 + ASTRO excludes the Hamigtel'dovich valuen, = 1

at > 30. Finally, the e.s. optical depth value is considerably éased with respect to the
standard WMAP7, i.e.r,; = 0.080 + 0.012. So we find that the inclusion of astrophysical
datasets, allowing to robustly constrain the reionizahi@tory, in the extraction procedure of
cosmological parameters leads to relatively importariecghces in the final determination of
their values.

CMB bounds on neutrino mass from reionization

Neutrinos with non-zero mass can have an intense impressitime evolution of our Universe.
Rigorous cosmological observations on cosmic microwackdpraund (CMB) anisotropies and
the large-scale structures of galaxies thus can be used éospronger constraint on the neutrino
masses than that achieved from current laboratory expetgfidu et al. 1998; Hannestad 2003;
Gratton et al. 2008; Jose et al. 2011). Seven years of Wokimdicrowave Anisotropy Probe
(WMAP) data presents the upper bound on the sum of neutrirss@saas - m, < 1.3 eV at
95% confidence limits (CL) (Komatsu et al. 2011), assumirggiddenreionization scenario
depicted by a single parameter. Another feasible effedtabald put an impact on the CMB
bounds for neutrino masses is the detailing of reionizatmenario (Archidiacono et al. 2010).
So, we also try to investigate the possible effects on nemtmass bound by considering our
data-constrained reionization model based on ChoudhurggaFa (2005, 2006b) and Mitra
et al. (2011, 2012) and we find that, a more strict constrainth@ neutrino masses can be
achieved using this model.
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Large Scale Structure Formation of the Universe

Formation of large-scale structures like galaxies is aiatiregredient of the models of reioniza-
tion. In the standard, hierarchical, cold dark matter (COddjadigm of cosmological structure
formation, galaxy formation begins with the gravitatioallapse of overdense regions into
bound, virialized halos of dark matter (DM). Bound in theguttal wells of dark matter halos,
baryons proceed to cool, condense, and form galaxies. Stasheling the fundamental proper-
ties and abundances of these dark matter halos is the ficgssary step in understanding the
properties of galaxies. The subject area of formation adgak is quite involved in itself deal-
ing with formation of non-linear structures and variousg@sses. In our reionization model
described above, galaxy formation is implemented by catmg the mass function of dark
matter haloes (number of haloes per unit volume as a funofibalo mass) and their formation
rates (number of haloes created per unit volume per unif)tamé accounting for the baryonic
processes like cooling and feedback to populate haloesgaltxies.

Mass function and formation rates of dark matter haloes

We derive an estimate of the rate of formation of dark matéoés per unit volume as a func-
tion of the halo mass and redshift of formation. Analyticatimates of the number density
of dark matter haloes are useful in modeling several cosgmmabphenomena. We develop a
new prescription to calculate halo formation rate, usinguesion set formalism (Bond et al.
1991; Lacey & Cole 1993) but avoiding the assumption of scalariance of halo destruction
rate efficiency made by Sasaki (Sasaki 1994). Our approémhisalis to differentiate between
major and minor mergers, as this is a pertinent issue for-s@@lytic models of galaxy forma-
tion. We compute the formation rate for the Press-Sche¢Rtess & Schechter 1974) and the
Sheth-Tormen (Sheth et al. 2001) mass function and showtttedormation rate computed in
this manner is positive at all scales (Mitra et al. 2011) kenthe Sasaki prescription where one
can get the unphysical results for the Sheth-Tormen massiéum We compare the destruction
rate and the halo formation rates computed using the exxusst approach with N-Body sim-
ulations (Bagla & Padmanabhan 1997; Bagla et al. 2009). Viketfiat our approach matches
well with simulations for all models at all redshifts.

Post-reionization Neutral Hydrogen distribution

Perhaps the most promising prospect of detecting the fltiohgin the neutral hydrogen (HI)
density during the reionization era is through the 21-cmssion experiments like GMRT,
MWA and LOFAR. Measurement of the spatial distribution otitral hydrogen via the red-
shifted 21-cm line promises to revolutionize our knowled@ithe epoch of reionization and the
first galaxies, and may provide a powerful new tool for obagonal cosmology from redshifts
1 < z < 4 (Mo & White 1996; Wyithe & Loeb 2007b; Datta et al. 2007). Pafthis thesis
contains a particular topic of this area - constrainingdasgale HI bias using 21-cm signal from
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the post-reionization epoch.

Assuming a background cosmology, the 21-cm emission froatraehydrogen (HI) in the
post-reionization epoch is modelled through (i) a bias fiamch(%, z), which relates HI to the
dark matter distribution and (ii) a mean neutral fractiaq;§ which sets its amplitude. In this
work, we investigate the nature of large scHIEbias. The post-reionization HI is modelled
using gravity only N-Body simulations and a suitable prggimn for assigning gas to the dark
matter halos. Using the simulated bias as the fiducial mamefif distribution atz < 4, we
have generated a hypothetical data set for the 21-cm angalaer spectrum using a noise
model based on parameters of an extended version of the GM&Wa explore the possibil-
ity of constrainingb(k) using the Principal Component Analysis (PCA) on this sirtedalata
(Guha Sarkar et al. 2012). We show that our method can be ssfatlg implemented on future
observational data sets to constrafk, =) andzy; and thereby enhance our understanding of
the low redshift Universe.






LIST OF PUBLICATIONS

This thesis is mainly based on the following publications:

1.

Mitra, Sourav ; Choudhury, T. Roy; Ferrara, Andre&eionization constraints using prin-
cipal component analysiMNRAS 413 1569, (2011), ar Xi v: 1011. 2213

. Mitra, Sourav; Kulkarni, Girish; Bagla, J. S.; Yadav, Jaswant Ikgrmation rates of

Dark Matter HaloesBASI 39, 563, (2011), ar Xi v: 1103. 5828

. Mitra, Sourav; Choudhury, T. Roy; Ferrara, Andredgint quasar-cosmic microwave

background constraints on reionization histpR§NRAS 419, 1480, (2012),
ar Xi v: 1106. 4034

Pandolfi, S.; Ferrara, A.; Choudhury, T. Roy; Melchioii, Mitra, Sourav, Data-constrained
reionization and its effects on cosmological parametPisRvD 84, 123522, (2011),
ar Xiv:1111. 3570

Guha Sarkar, TapomoMiitra, Sourav ; Majumdar, Suman; Choudhury, Tirthankar Roy,
Constraining large scale Hl bias using redshifted 21-crmaigrom the post-reionization
epoch MNRAS 421, 3570, (2012), ar Xi v: 1109. 5552

. Mitra, Sourav; Ferrara, Andrea; Choudhury, T. RoVhe escape fraction of ionizing

photons from high redshift galaxies from data-constrairednization modelsVINRAS
Letter, 428 L1, (2013), ar Xi v: 1207. 3803






CHAPTER 1

INTRODUCTION

Our universe, after all, is richly textured, with with sttuges on a vast range of scales; planets
orbit stars, stars are collected into galaxies, galaxiesgaavitationally bound into clusters,
and even clusters of galaxies are found within larger supsters. Cosmology is basically the
study of the universe, or cosmos, regarded as a whole. It ddgtth distances that are very
large, objects that are very big and time-scales that aselorg. Although, the rigorous study
of cosmos is extremely complicated dealing with the objemtging from carbonaceous dust
grains to quasars, cosmologists often like to think of theense as a simple place characterized
by some basic physical principles. It can be studied by mamb approaches: observational
aspect of cosmology and the theoretical outlook. In facs, $hbject is based on the interplay
of theory and observations. One could imagine starting faonoverview of the observational
results and then moving on to their theoretical interpretat

The primary aim of observational cosmology is to charaegette thermal, chemical, and
structural state of the present universe. For the most edrdyisastronomers have had to rely
on light in the visible part of the spectrum in order to studg tiniverse. One of the greatest
astronomical achievements of th@" century was the exploitation of the full electromagnetic
spectrum for astrophysical measurements. We now havesaated instruments capable of
making observations of radio waves, microwaves, infraigiat,| visible light, ultraviolet light,
X-rays and gamma rays. We are even entering and epoch wheargo beyond the electro-
magnetic spectrum and receive information of other typegr@he past few years remarkable
discoveries in physics and astronomy have been achievédewdrmous implications for cos-
mology. In particular, the recent experiments measuringodiropies on the cosmic microwave
background (CMB) and the distance-redshift relation iretigosupernovae (SNla) have opened
a new era in cosmology, sometimes called the golden yeatsednigh-precision era of cos-
mology. Perhaps the experiment that started this new eraheasne performed by the COBE



2 Introduction

satellite team in the early 1990’s. This experiment, whicswa modern version of that per-
formed by Penzias and Wilson, for the first time revealed thatuniverse was almost, but
not completely homogeneous and isotropic. The other maentecosmological probes (CP),
like BOOMERANG (Balloon Observations Of Millimetric Extragalactic Ratita ANd Geo-
physics), MAXIMA? (Millimeter Anisotropy eXperiment IMaging Array), WMAP(Wilkin-
son Microwave Anisotropy Probe) and PLANEGKnhot only confirmed with a great accuracy
some of the theoretical predictions of the standard Big Bandel (SBB), but also opened the
possibility of testing theories and scenarios of the vemyyeaaniverse. The existence of the
components of the universe were originally inferred fromaaiety of measurements ranging
from the observed fluxes from distant supernovae to theadgatirelations between galaxy po-
sitions. However, the last few years has seen the emergéitice study of the CMB photons
as the dominant tool for measuring precisely the densitiesaoh component. Such discov-
eries have not only corroborated several theoretical ptiedis and put stringent bounds on
many cosmological models, but also be able to answer mamgafriknown puzzles of modern
cosmology.

The aim of theoretical cosmology is to explain the preseatesbf the universe in terms
of the conditions in the “early universe”. The high precrsimeasurements of most of the
cosmological parameters help the theoretical cosmomgastievelop the so called “standard
model” of cosmology which is consistent with all the obséios@s. Almost a century has passed
since the beginning of this era, and in the intervening yeaanseasingly accurate predictions
of this model of the cosmos, supplemented only by the preseha dark matter component,
have been confronted with, and spectacularly passed, aohalgtailed tests - the existence
of the CMB; the abundances of the light elements through BigdBNucleosynthesis (BBN);
the formation of structure under gravitational instapjlihe small temperature anisotropies in
the CMB; the structure of gravitational lensing maps; aneghymaore. Many of these tests are
highly nontrivial and provide remarkable support for thell big bang model.

In this chapter, we shall introduce the standard Lambda Oaltk Matter \CDM) cos-
mological model in order to study the nature and componédrtsauniverse, evolution of den-
sity perturbation and the structure formation. We shath &sefly review the key observations
related to this subject towards the end of this chapter.

1.1 Cosmological framework

In this picture, the universe was originated from a poiké-Bingularity, the “Big Bang”, of infi-
nite density and temperature about 13.7 billion years afpes Was immediately followed by a
period of accelerated expansion called inflation that th&tejust aboutl0—3* s. At the end of

Ihttp://www.astro.caltech.edu/ lgg/boomerang/
2http://cosmology.berkeley.edu/group/cmb/
Shttp://wmap.gsfc.nasa.gov/
*hittp://Iwww.esa.int/SPECIALS/Planck/index.html
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inflation, the universe was highly homogeneous on largeescdlhis large scale homogeneity
and isotropy are the most important feature of our univerégs feature ensures that observa-
tions made from our single vantage point are representatitiee universe as a whole and can
therefore be legitimately used to test cosmological modets most of the twentieth century,
the homogeneity and isotropy of the universe had to be tak@massumption, known as the
“Cosmological Principle.” However, redshift surveys saggthat the universe is homogeneous
and isotropic on scales above 100 Mpc (1 Mp.26 x 10° light years~ 3.08 x 10%* cm);

on smaller scales there exist large inhomogeneities, sughlaxies, clusters and superclusters.
The standard big bang model accommodates most these knotgrrégarding our universe.
In particular, the success of this big bang model rests aethrajor observational pillars: the
Hubble diagram exhibiting expansion; light element aburcga from BBN and the blackbody
radiation left over from the first few hundred thousand ydarswn as the CMB. As a matter
of fact, big bang is the most successful model of cosmoldbgdiv. In this section, we intro-
duce the basic elements of this standard hot big bang modehwiill help us to deal with the
evolution of inhomogeneities in density field and with othstablished facts.

1.1.1 The expanding universe

We have solid evidence that the universe is expanding whieans that at early epoch the
distance between us and distant galaxies was smaller tignaiv. It allows us to introduce
the scale factoti, whose present value is set to one and at earlier times it wabes than it is
today. We can picture this expansion as following. The cangdistance between two points
in the universe remains constant as the universe expantfjdphysical distance, which is
proportional to the comoving distance times the scale fagets larger as time evolves. In
addition to the scale factor and its evolution, the smootkiarse is also characterized by its
geometry; it can be flat, open or closed universe.

In General Relativity, kinematics in the most general ispit and homogeneous space is
described by the Friedman-Robertson-Walker line element -

dR?
1 —kR?

wherea(t) is the cosmic scale factarRz, 6, ¢) are spherical comoving coordinates @ndeter-
mines the geometry or curvature of the space; it is positive ¢losed Universe, zero in a flat
Universe, and negative in an open Universe. Observerstateregin at rest, at fixe@R, 6, ¢),

with their physical separation increasing with time in pydjon toa(t). Thus, to understand
the history of the universe, we must determine the evolubioihe scale factoe with cosmic
time t, that is, how the scale factor increases as the universe agesdlependence afont is
determined by the energy density in the universe. At eamg$, one form of energy, radiation,
dominates resulting o« ¢'/2, while at later epoch, non-relativistic matter accountsniost of

the energy density resultingex t%/3. In case for the cosmological constant dominated universe,
the energy density is constant and the scale factor gronanexpiallya o« exp(1/A/3t).

ds* = dt* — a*(t) + R? (d82 + sin® 0d¢>2) (1.2)
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To quantify the change in the scale factor and its relatiadheécenergy, it is very useful to
define the Hubble rate or the Hubble parameter

da/dt

H() =L

(1.2)

which measures how rapidly the scale factor changes. Thasvarful test of the cosmology
is to measure the Hubble rate toda&y,, and the age of the universe today. In a flat, matter-
dominated universe, the produllt, equals ta2/3. The expansion rate is a measure of how
fast the universe is expanding, determined by measuringeloeities of distant galaxies and
dividing by their distance from us. So the expansion is ofteitten in units of velocity per
distance. Present measure of the Hubble parameter is parézed byh defined via

Hy = 100h km sec!'Mpc! (1.3)

Current measurements by Nine years of Wilkinson Microwavisétropy Probe (WMAP9)
seth = 0.70 £+ 0.02 (Hinshaw et al. 2012) and new PLANCK data release sets thaé \ta
h =0.67 £ 0.01 (Ade et al. 2013b).

More generally, the evolution of the scale factor is detesdiby the Friedmann equation
(Weinberg 1972, 2008; Kolb & Turner 1990)

81G k
H(t) = —p—— 1.4
which relates the expansion of the universe to its matterggncontent. For each component of
the energy density, with an equation of state = p(p), the density varies with(¢) according

to the equation of energy conservation
d(pa®) = —pd(a?) (L.5)

So the basic idea is that givenas a function ofp, we can solve equation (1.5) to findas a
function ofa. We then use this in equation (1.4) to determireg H as a function of, and thus
the Friedmann metric. But before that, let us now introduse af the most useful quantities in
cosmology which we will encounter later very frequently e ttosmological redshift.

As the universe is expanding, the galaxies are moving away fach other and we
therefore see them receding from us. The wavelength of ighbund emitted from a receding
object is stretched out so that the observed wavelength)(is larger than the emitted one,
Aemit- We define this stretching factor as the cosmological rédshi

1
| poz 2o L (1.6)

)\emit a

Hubble (1920) interpreted the redshifts he observed asnost of the Doppler effect; for
recession velocities < ¢, we getz = v/c & d. The measured constant of proportionality in
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the this relation betweemandd is basically the Hubble’s constaf,, that is,uo = Hyd, or z =
Hyd/c. This linear relationship between redshift and distaneaks down for larger distances
and higher velocities (see Weinberg 1972). Since the rédshimore easily measured quantity
than distance itself, it is commonly used by cosmologistpdmameterize the distance to a
galaxy or other sources.

1.1.2 Cosmic inventory: Components of the universe

To solve equation (1.4), one needs to know about the diffezenstituents of matter which
can contribute to the densipy and how they evolve in time. We can now tackle this question
guantitatively by considering the different componentghefuniverse.

e One of the components contributing to this density is Hott®fabr the radiation. for
relativistic matter like radiation, we know = p,./3. Using equation (1.5), we get
—4
a “.

e The density is also contributed by visible, non-relatigisbaryonic matter with density
pp- But unfortunately, models with just radiation and bargomiatters are in strong dis-
agreement with observations, which leads to postulate xlste@ce of a pressure-less
(» = 0) non-baryonic “dark matter” which does not couple with edtin and has a den-
sity ppm. So the total density for the non-relativistic mattepis = ppum + p». Similarly,
equation (1.5) gives the evolution of the fopm oc a 3.

e Along with the dark matter, it is also necessary to proposexatic form of matter having
densityp, with p ~ —p,. This is known as “dark energy’. The simplest form of it is
the well-known cosmological constant £ —p,, hencep, = constant).

Using these, our Friedmann equation [equation (1.4)] novolmes

H(t Q,, Q. .17
0 _ +QA+a—+—k (1.7)

Hy | a®
Where(2,,, 2, and(2, denotes the present contributionstpdefined as the ration of the total
density to the critical density i.eQ = p/p. with the critical density,.(t) = 3H?(t)/(87G);
from matter (including cold dark matter as well as a contidou(2, from baryons), vacuum
density (cosmological constant), and radiation, respelgti The quantityf2, is defined as
O = 1= (2, +24+,.). One particular cosmological model with, = 1,0, =2, =Q;, =0
is very simple and is known d&instein-de Sitter model

According to the current WMAP nine-year observations, tlesinfiavored cosmological
model (flatACDM model) hag2, = 0.0463 4+ 0.0024, Qpy = 0.233 4+ 0.023, Q4 = 0.721 £+

SAlthough the dark matter and dark energy are the two most damicomponents of the energy density in the
universe, it is very unfortunate that we still do not haveolatory evidence for their existence
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0.025 andh” = 0.700 + 0.022 (Hinshaw et al. 2012) and a more precise measurement from
the recent PLANCK CMB data for temperature power spectruth wiWMAP polarization
low-multipole likelihood (Bennett et al. 2012) at< 23 suggests those values to Ogh? =
0.02205 + 0.00028, §2,,,h? = 0.1426 £ 0.0025, Q, = 0.6851)015 andh = 0.673 + 0.012 (Ade

et al. 2013b).

1.1.3 The cosmic microwave background

Before making further progress, let us spend some time &flypriliscuss about one of the
greatest discoveries in cosmology of the last century. énstandard hot Big Bang model, the
universe initially was very hot and the energy density wasitated by radiation. At redshift
z ~ 3500 the transition to matter domination occurs. The universeaias hot enough that
the gas is ionized and electron-photon scattering effelgtivouples the matter and radiation.
At z ~ 1100 or when the universe was 300,000 years old, the temperataps dufficiently
low (below 3000 K) that protons and electrons recombine tmfoeutral hydrogen. Since then
the photons decouple and travel freely through space. Tplesens are observed today as
cosmic microwave background (hereafter CMB). When we olesérem today, they literally
come from the earliest moments of time. They are therefazentbst powerful probes of the
early universe.

The discovery of the cosmic microwave background radiati@MBR) established that
the early universe was hot as well as dense. The key to thisreengt is the observed blackbody
or thermal spectrum of this radiation. Let us ask what happea blackbody radiation field if
we extrapolate backwards in time to an epoch when the soatlerfawas smaller i.ez > 0.
The wavelength of all photons is decreased proportionatyar (1+2)~!. The Planck function,
however, depends only on the product of the wavelength anpeeature\7y. It follows that
the spectrum of the radiation was also blackbody in the pasthe temperature was higher by
a factorl + z (see Weinberg 1972; Partridge 1995; Durrer 2008)

TCMB(Z) = T()(l + Z) (18)

whereTy is the present temperature of the CMBR, approximately 2.78riowing the present
value of the temperature, we can calculate the temperatuneyaearlier epoch. For instance,
atz > 1100, the temperature was 3000 K, sufficient to ionize the atomic hydrogen. At more
larger redshifts, corresponding to the earlier times inftiséory of the expanding universe, the
temperature was even greater. However, the strict lingagrtence of + z and7c\g breaks
down at higher temperatures, where the number of light@arsipecies goes up (see Kolb &
Turner 1990).
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1.2 Dynamics of structure formation

So far, we have discussed about the underlying cosmologyobfBty Bang model and its
successes in describing the universe as whole. The basitegbhas been the cosmological
principle, requiring that the universe be homogeneous sotdapic, and we have seen how this
persuades to an explanation for the cosmic microwave baakgrt However, although this cos-
mological principle is valid for studying the universe aslaole, we know that it does not hold
perfectly. The nearby universe is highly inhomogeneousigomade up of stars, planets and
galaxies. Attempting to explain these observed structpessaps is the most active research
area in modern cosmology. The existence of these cosmalagitictures tells us something
important about the initial conditions of the big bang, abdu the physical processes that have
operated subsequently. In this section, we will deal withghavitational and other processes
that are relevant to structure formation and apply thesaside large-scale structure, galaxy
formation etc.

1.2.1 Density perturbation

The basic aim of studying cosmological inhomogeneitie®isnderstand the processes that
caused the universe to depart from uniform density. Two mpashising existing ideas for how
this could have happened are either through the amplifitafiquantum zero-point fluctuations
during an inflationary era, or through the effect of topobtagdefects formed in a cosmological
phase transition (for details, see Peacock 1999). Unfatély) neither of these ideas can yet
be regarded as established, but it is quite impressive tthe¢&vith help of these ideas we are
able to contemplate the observational consequences oicphpsocesses that occurred at such
remote energies.

However, gravitational instability is a powerful idea, g&s understand, and most likely
responsible for the structures in our universe. As timewaglmatter accumulates in initially
overdense regions. It doesn’t matter how small the init@rdensity was (typically, the over-
density was of the order 1 part i°); eventually enough matter will be attracted to the region
to form galaxies, clusters etc. The first task is to devel@pntiathematical machinery capable
of describing the growth of these structures.

In a universe made of non-baryonic dark matter, baryonsadhdtion, we need to discuss
each component separately. The simplest of the three caanpois the dark matter, which is
collisionless and affected only by gravity. The scales, iHermation of structures occurs, are
much smaller than the Hubble length (z), defined asly(z) = ¢/H(z). For such scales, one
can neglect the relativistic effects and hence a simple bie\ah treatment can be applied to
study the physics of the density perturbation and relateshtiiies. We can treat the dark matter
and baryons as fluids and their properties can be governdaehyan-relativistic equations of
fluid dynamics. In the fluid limit, we can ignore the velocitisplersion of the dark matter
particles, and there will be no effective pressure terméxdtuations. If the velocity dispersion
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is important, there will arise an effect calléde streamingsee Padmanabhan 1993).

A linear solution for how the matter in the expanding uniecbghaves to its own self-
gravity can be found by expressing the equations of motid@rims of a dimension-less density
perturbation field:

sx) = LX) =P (1.9)

where,p(x) is the density of the ideal pressureless fluid of particlet ed which is atk, andp

is the mean fluid density. We will see that, when this densityti@ast) is small, it is possible to
linearize the equations thand obtain the solutions describing the growth of lineatypbation.

In fact, this is a valid approximation for a considerabla@apf time as the density contrasts are
expected to be small in the early universe. In the non-linegime, wherej > 1, it turns out
that solving the equations in such a case becomes extremelirimial for both dark matter and
baryons, and they have to be integrated numerically. Horeyeantroducing some simplified
ansatz one can tackle this difficulty and can gain some palsisights regarding the dynamics
by comparing with the exact numerical results. In the follogvsections, we will study the
perturbations of non-baryonic dark matter, baryons anchtiath independently and as well as
taking the mixture of them within a linear approximation.efh with help of some simplified
assumptions (e.g. spherical symmetry), we will briefly n@mabout the non-linear scenarios,
when density contrast is comparable with unity.

1.2.2 Linear gravitational growth

We start by writing down the fundamental equations desagittie fluid motion (non-relativistic
case):

Euler: (9/0t+v-V)v=-Vp/p—Vo
Energy: (0/0t+v-V)p=—pV-v (1.10)
Poisson : V2P = 47Gp

whereV is the spatial gradient operator with respect to the properdinatesx, p(¢,x) and
p(t,x) are the fluid density and pressure respectively, x) = dx/dt is the proper velocity,
and the quantityp(¢, x) is the gravitational potential. We now produce the lineagtizquation
of motion by taking terms of first order in perturbations abainomogeneous background of
[p0; Vo; po; Pol: p = po+ dp, v=vo+v,p=pg+ dpand® = ¢, + §P. Here note thaty,

is nothing but the Hubble expansidghx. When dealing with the time derivatives of perturbed
quantities, we can always repla@e/ot + v - V) by d/dt, which is the simple time derivative
for an observer comoving with the unperturbed expansiohetmiverse. After linearizing the
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equations, we then can write

d B Vép
%5V = —? —Vod — (5V . V)VQ
d
S0 = =V-dv (1.11)

V%D = 47Gpod

where we define the fractional density perturbatioa dp/po.

However, the above equations of motion are written in Eafedoordinates, where the
proper length units are used and the Hubble expansion igékppresent through the velocity
vo. An alternative approach is to use tbemoving coordinatesthese label observers who
follow the Hubble expansion in an unperturbed universe. @ong spatial coordinates(t)
can be formed by simply dividing the Eulerian coordinatesh®yscale factod():

x(t) = a(t)r(t)
wv(t) = a(t)u(t) (1.12)

whereu is the comoving equivalent of peculiar velocify. Also the spatial derivatives can
be now translated in terms of comoving coordinates in a ainmianner:V, = V,/a. For
simplicity, we will write V.. as onlyV, keeping in mind that the spatial derivatives are now with
respect to comoving coordinates. Then the linearized engtor conservation of momentum
and matter, experienced by observers moving with the HuliMe can be written in comoving
coordinates as

d Vop Vb

Su+2Hu =

dtu+ u po 2
d
bs _ g, 1.13
=0 V-u (1.13)

V260 = 4nGpya’s

The termV®/a is basically the peculiar gravitational acceleration. Bt still have three
equations and four unknown variablgs1, & andép. So we need an equation of state in order
to solve this system, and this may be specified in terms of thed speed? = 9dp/dp. To
make further progress, think of a plane-wave disturbance e~*¢*, wherek is a comoving
wavevector. Then we can simplify the equation for the amgétofé by eliminatingu:

d%5 dé

k2

This is the equation that governs the gravitational amjliita of density perturbations.

There is a critical proper wavelength at which we switch fribim possibility of exponen-
tial growth for long-wavelength modes to standing soundesascillatory solution) at short
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wavelengths. This length is known dsans lengtland defined as

s
Aj = Csy | = 1.15
J==c Gp ( )
This essentially denotes the scale at which sound wavesroas an object in about the time
needed for gravitational free-fall collapse.

Let us now see what happens to these equations at early etimagwhen the universe
was radiation dominateh (= p/3; ¢, = 1/+/3). To treat this problem accurately, one has
to apply the full general relativity perturbation theoryowkever, as the fields are still weak,
it is possible to generate the results using special réhatiluid mechanics and Newtonian
gravity with a relativistic source term (see Peacock 1998 keep this analysis simple, assume
that the accelerations due to pressure gradients are imglig comparison with gravitational
accelerations (i.e\ > ) ;). Then the basic set of equations will be

Euler : (Q/ot+v -V)v=-Vo
Energy :  (0/0t+v-V)(p+p) =0p/ot—(p+p)V v (1.16)
Poisson : V2® = 47G(p + 3p)

It is then easy to linearize these equations as before, aadthat, the evolution equation for
will be

2

j_ti + QHj—f = ?’%WGpoé (1.17)
so the net result of all the relativistic corrections is avitigy term on the right-hand side of this
equation, and it is a facta¥/3 higher than in the matter-dominated case. In both matter and
radiation-dominated universes with= 1, we can easily get the solutions f&(t). The equa-
tions forJ, in general, has two independent solutions, only one of wgrows with time. For
the “growing mode”, the solutions for matter and radiatidominated cases can be combined
rather conveniently using thenformal time) = [ d¢/a and we can then gétoc 7.

It is also interesting to consider the growth of matter pddtions in universe with non-
zero vacuum energy. For this general scenario, we can gdlirtearly independent solutions
for ¢ as:

“  da
i de : H —
growing mode 0 o (a)/o T (a)a?
decaying mode :  § & H(a) (1.18)

whereH (a) is nothing but the Hubble parameter. For structure fornmegtodies, the decaying
solution is of no use as it will be dominated by the growing eadlution at the epochs of
interest. The right hand side of the above solutionsg &r growing mode is also known as
growth factorD(a). The growth factor in the matter-dominated era is given l®efifes 1980)

(Qna® 4+ Qa4+ Q)12 /“ a*?da
a3/? o (Qna® + Qra + Q,,)3/2

D(a) (1.19)
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where we have neglectéd. in the matter-dominated regime. In the Einstein-de Sittedeh,
the growth factor is simply proportional tdt).

We are often concerned about the evolution of perturbaiio@suniverse that contains
several distinct components - dark matter, radiation amgldpes. It is easy to treat such compos-
ite system if only gravity is important (i.e. for large wagrbth). Let us first take the mixture
of pressureless matter and radiation. They respond totgravdifferent ways. The coupled
perturbation equations will be

e( )= (L o) () (1.20)

where the operatadt = 92 /0t* +2H9/0t. Solutions to these equations are simple if the matrix
has time-independent eigenvectors. In fact, one of thegnmiodes is time independent and
known asadiabatic moden which 6, = 44,,/3 at all times. The other perturbation made is
calledisocurvature modas it corresponds tép/p — 0 att — 0.

Now take the case for dark matter and baryons together. Asdfaihese components
have the same equation of state, we can write

Op dnGp [ Q Qpu )

L ( dpM ) o Q ( Q Qpum ) ( dpm ) (1.21)
wheredpy (t) andd, are the perturbations in the dark matter and baryons ragplctBoth of
the eigenvectors are time independent and can be solvdy eefie large scale limit, where
pressure effects are negligible. In this case, if we set ugrtugbation withs, = 0, this
mixture of the eigenstates will quickly evolve to be domethby the fastest-growing mode
with ¢, = dpym and the baryonic matter falls into the dark matter potemtells. However, this
is the solution on large scales, with negligible effectsrafsgure. On the small scales, the effect
of pressure will prevent the baryons from continuing todallthe dark matter. One has to add
the pressure term to the coupled equations and the solwrerslightly more complicated for
this case. We get an oscillatory behavior in this soluticshtiims holds as long as pressure forces
continue to be important. We shall study this case later cti&21.3.1.

1.2.3 Non-linear evolution

The equations of motion we dealing with are non-linear, anthe previous section we have
only solved them in the limit of linear perturbations. Theaeixevolution of the density field is
usually performed by a rigorou¢-body simulationin which the density fields are represented
by the sum of a set of fictitious discrete particles. The baiga for this simulation is as
follows. With some initial conditions, the equations of motfor each particles are solved for
the present gravitational field due to all other particles. fid the change in particle positions
and velocities over some small time gap, then we let the ghastimove and accelerate and
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finally re-calculate the gravitational field to start a negvdttion. Although the full development
of the gravitational instability cannot be solved witholu tV-body techniques, there are few
useful ideas and approximations that help us to understensicenario.

One of them is theZeldovich approximatian In this method, we work out the initial
displacement of the particles under the assumption thgtdbetinue to move in this initial
direction. The proper coordinates of a particle under a@rsition is

x(t) = a(t)q + b(t)f(q) (1.22)

This is like the Hubble expansion with some perturbationicWwhvill become insignificant as

t — 0. Therefore the coordinategs nothing but the usual comoving coordinates at0. f(q)

is the time-independent displacement filed &ft¢lis some the scaling function. The coordinate
x is known as thétulerian position andq the Lagrangian position

Now, if the initial unperturbed density js (which is independent af), then the conser-
vation of mass implies that the perturbed density in Eufeci@ordinate will be (Padmanabhan
1993)

p(x, t)d*x = pod’q (1.23)

Therefore using the Jacobian of the transformation betwesmdq, we get (Peacock 1999)

s (1) (129 (1 %) 020

where(—a«, —3, —v) are the eigenvalues strain tensoror deformation tensof f; /dq;. Col-
lapse therefore takes place first along the axis correspgrdithe largest negative eigenvalue,
leading to a flattened structure knownpsicakesHere we have assumed that the strain tensor
is symmetric, so that it is easy to calculate the Jacobiamievacoordinate system where this
tensor is diagonal. The displacement field is then irroteti¢in other word, the rotational part
of this field decays down in an expanding universe), so to rtfakebvious, one can write it in
terms of a potential as

of; 0%
an 3%3%’

f(q) = Vi(q) = (1.25)

After linearizing equation (1.24), we can get the exprassior the density and velocity per-
turbations:

b b
6 = —(a+pB+7)=-—-V-f
a a

.- 1(x_ex):(é_a_g)f (1.26)
a a a a
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Using the Friedmann equation, this gives

b ~2a _ 8mGpo (1.27)

b a 3

which yields the growing mode solutidn < %3 for Q@ = 1. From the linearized density
relation, one can also relateasb(t) = a(t)D(t), whereD(t) is the usual growth function.

However, this approximation fails after the shells of ma#iiart crossing each other. In that
case, one must take a full non-linear gravitational treatmenich we shall briefly mention

later in Section 1.2.5.

1.2.4 Fourier analysis of density perturbations

So far, we have seen how gravitational instability is expeédb produce patterns of inhomo-
geneity in the universe, with a characteristic dependendd® precise matter content. In this
section we will see how these ideas can be used to study tisistafor spatial distribution of
the perturbations at different scales.

In cosmology, it is often convenient to assume the initiaér perturbation field to be a
Gaussian random field, and can be described in Fourier sipaeems of Fourier components

ik, z) = /d?’:cé(x, z)e kX (1.28)

Now, the most important quantity regarding the Fourier tegbe is thecorrelation func-
tion and is defined as

E(r,z) = (0(x,2)0(x +1,2)) (1.29)

The angle brackets denotes averaging over normalizatianmeol”. Now, let us introduce
another important quantity known as thewer spectrun®(k, z), which is basically the Fourier
transform of the correlation function irspace, and is defined as

(6(k,2)0(K, 2)) = (27)*P(k, 2)0p(k — k') (1.30)

where, §p is the usualDirac delta function Note that, due to the isotropy of background
universe, the power spectrum is only a function of the magieitofk. So the correlation
function now becomes

E(r,z) = /%P(lﬁ,z)e_ik'r

B /m%k?’P(k,z)sinkr
)y kK 2n? kr

(1.31)
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where the last step follows because of the isotropic nattitbeopower spectrum, so that we
can introduce the spherical polar coordinates with therpotes alongk, and the angular part
of that integral can therefore be performed independektiny cosmologists often express the
power spectrum in dimensionless form, as the variancénper

Ak, z) = = —P(k,2) (1.32)

In the standard cold dark matter mode?(k, z) increases with wavenumber, but we
observe the density field smoothed over some scale. Theraferare particularly interested in
the density field smoothed on a particular scale,Bay

Or(x,2) = /d3x'W(|X’ —x|; R)§(x/, 2) (1.33)
The functionW (z; R) is called thewindow functioror the filter function that weights the den-

sity field in a manner that is relevant for the particular cmadPerhaps, the most natural choice
of a window function is a simple sphere in real space:

W(z;R) = 473%3 fore <R

= 0 forz > R (1.34)

However, due to the sharp transition in configuration spidie choice of window function has
certain disadvantages. Therefore, itis often convencemsé the Fourier transformed real-space
tophatwindow of equation (1.34)

3(sin kR — kR cos kR)
k3 R3

W (k; R) = (1.35)

We can now also define a few more useful quantities, namedydlume-averaged cor-
relation function

4 R3

~ dk K3 P(k, 2)
= ————W(k; 1.36
| W R (1.36)

(R, 2) = 3 /0 d*r&(r, 2)

and the root mean square fluctuations in melsat some comoving radius (M = 4xp,, R3/3)

o*(M, z) = 0c*(R, 2z) = (0r(x, 2)) = /OO d_:%

0

W (ks R)|* (1.37)

whereWW (k; R) is defined as equation (1.35). We will see later that, thetfane (1, 2) plays
a very crucial role in estimates of the abundance of colldpdgects. We should mention here



1.2. Dynamics of structure formation 15

that, whenever we want to use these quantities at the prepexch, we shall omit in our
notations; likeP(k, z = 0) = P(k).

So, the above shows that the power spectrum is a very cruggltiy in cosmology,
but how can we predict its functional form? For simplicitye wssume that the spectrum does
not contain any preferred length scale. In standard modelfresume that inflation produces
a featureless primordial power-law spectrumik) o« k™ with spectral index: ~ 1. Most
important case is the scale-invariant spectrum which spords to the value = 1. This is
often known a#darrison-Zeldovich (HZ) spectrufidarrison 1970; Zeldovich 1972). However,
the current WMAP or PLANCK data strongly disfavors a pure p&ctrum;n = 0.972+0.013
from WMAP9 (Hinshaw et al. 2012) and = 0.9603 + 0.0073 from PLANCK with WMAP
low-multipole likelihood (Ade et al. 2013b). Growth of perbation in the radiation-dominated
and then matter-dominated era results in a modified final pewectrum, characterized by a
turnover at a scale of oder the horizehd at matter-radiation equality. On large scales the
spectrum evolves in proportion to the square of the growttofa On the other hand, at small
scales, the power spectrum changes shape due to the adbitammnlinear gravitational growth
of perturbations, resulting a full non-linear power spegtr However, the overall amplitude
of the power spectrum is yet not specified by the recent atfomvedels of inflation, and it is
normally set by the observations from CMB and galaxy cluster

For a variety class of cold dark matter models, the powertspacor dark matter fluctu-
ations, calculated at present epoch, can be well approgahiat a fitting function of the form

Poui(k) = Aowk i (1.38)

(1+ [ak + (bk)'> + (ck)?]")”

where the fitting parameters = 1.13, a = (6.4/T)h~* Mpc, b = (3/T)h~! Mpc, ¢ =
(1.7/T)h~! Mpc andT’ = Q,,h for Q, < ,,. The normalization parametelr,, is fixed
through the observed value of the root mean square fluchsitiospheres of radius: ! Mpc.
This quantity is denoted as. The current best-fit value of; is 0.821 + 0.023 from WMAP9
(Hinshaw et al. 2012) an@l829 + 0.012 from PLANCK using WMAP polarization data (Ade
et al. 2013b). For large scales (Iayvwhere the growth is linear, we can get the power spectrum
for any other epochPpy (%, z) simply by multiplying Py (k) with D?(z), whereD(z) is the
growth function [equation (1.19)].

The power spectrum for linear baryonic density fluctuaticarsbe obtained fronftpy (k, 2)
as (Fang et al. 1993)

PDM(ka Z)
1+ 2} (2)k?]”

where the quantity;, is defined as (Choudhury et al. 2001; Choudhury et al. 200@uGihury
& Ferrara 2005)

w(2) 1\/ 2y kpTo (1.40)

Py(k, z) = (1.39)

" H, 3umpQm (1 + 2)
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1 is the mean molecular weight in atomic unitsis the specific heat ratioy,, is the proton
mass and: g is the Boltzmann'’s constant.

1.2.5 Non-linear object formation and evolution

In the previous sections, we have introduced the mathealdtaanework needed to study the
structure formation. The formation of bound virialized etis was studied for pressure-less
dark matter component using linear theory until the pegtidn § is very small. In Section
1.2.3, we mentioned that the full non-linear treatment nbestaken into account for a realistic
situation. In this section, we will study the formation arlmhadance of the non-linear objects
using such full non-linear theory - trgpherical model

Due to the spherical symmetry, an overdense sphere turns dngt a very useful non-
linear model. It behaves exactly the same way as a closedrsubrse.Any spherically sym-
metric perturbation will evolve at a given radius in the samag as a uniform sphere containing
the same amount of mass. Now consider the force on a partiele inertial non-comoving co-
ordinate system, resulting from a point mass at the origjngiing the presence of a vacuum
energy density). Then the equation of motion for that pkrtan the shell in a background
universe with dark matter only will be

d*r GM

a2z~ 2
wherer is the distance of the particle from the center of the spheperturbation, and/ is
the total mass within that radius. The mass remains constéinie as long as the shells do not
cross each other. We can then write down the cycloid solBeacock 1999; Barkana & Loeb
2001):

(1.41)

r = A(l—cos®)
= B(f —sinb) (0 <6 <2nm) (1.42)

where,A® = GM B2. Expanding these relations up to ordérfor smallt gives

LAY L ey
"9 \B 20 \ B
and the density perturbation within the sphere will be

3 (6t)°
= (E) (1.44)

This agrees with what we knew already, that is, at early tithesphere expands witho ¢2/3,
the Hubble flow, and density perturbations growas a.

(1.43)
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We can now see that, the sph&wens aroundrom the general expansion when it reaches
a maximum radius & = 7, t = wB. By comparison with the linear theory for &nh = 1
background, one can say that, this occurs at a critical @vesity of5' ~ 1.06. If only gravity
operates, then the sphere vdbllapseto zero radius af = 2, and this gives'™ ~ 1.69. But
even a slight violation of the exact symmetry of the initiatfurbation can prevent the sphere
from collapsing to a point. Instead the sphere reaches a statirial equilibrium. At this
point, its kinetic energyx is related to its potential enerdy by U = —2K and this is known
asvirial theorem Some people prefer to assume that this virialized size hgeaed only at
collapse, in that case the density contrast becomé&8. Of course, in real case, objects are
not exactly symmetric and the complex anisotropic sequehegents eventually leads to the
N-body version of structure formation. Nevertheless, thexpdure is quite accurate as far as
determining the time of collapse is concerned.

In the standard hierarchical CDM paradigm of cosmology stinecture formation starts
with the gravitational collapse of overdense regions irdgarid virialized haloes of dark mat-
ter. Bound in the potential wells of dark matter haloes, basyproceed to cool, condense, and
eventually form galaxies and other structures. Thus, wtdeding the fundamental properties
and abundances of these dark matter haloes is the first aaslsagy step in studying the physics
of structure formation. The dynamics of dark matter colapsn be solved analytically only in
cases of particular symmetry. If we consider a region muchllemthan the horizon/ H, then
the halo formation can be treated a problem in NewtonianityraVhe simplest but effective
approximation scheme is based on spherical symmetry withigal top-hat uniform overden-
sity §; inside a sphere of radiug. Although this model is limited in its direct applicabiljty
the results of spherical collapse have turned out to be isimgly useful in understanding the
underlying physics of cold dark matter haloes.

As mentioned earlier, the equation of motion for collapsa spherical top-hat perturba-
tion in a background universe with dark matter haloes canesertbed by the equation (1.41).
This equation can be solved for a given background cosmeppgyided the initial conditions
are known (Barkana & Loeb 2001). The initial value foshould be chosen such that the initial
density contrast; is much less than unity. The enclosgéthitially grows according to the lin-
ear theory, but eventually it grows above the linear crititensityd, = 1.69, where the linear
approximation breaks down. If the mass shell of radius bound then it reaches a radius of
maximum growth and consequently collapses. The criticatity for a tophat collapse at any
redshiftz can be obtained by extrapolating its linear density cohtoathat redshift

1.69

(1.45)

whereD(z) is the usual growth function ans is set tolbat present day = 0.
Another important quantity in structure formation studethe virial density of the col-

lapsed halo of mass/ with respect to the critical density, defined as
A = Pmo_ 817G pm _ 2GM

“ pe 3H? rd H?

vir

(1.46)
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wherer;, is the radius of a spherical volume within which the mean dgmns A. times the
critical density at that redshift, so thaf = 4mr?, p.A./3. This is known as theirial radius.
The value ofA. is taken from the solution of spherical tophat collapse utiteassumption that
the halo has just virialized (Peebles 1980). Its valugis® for the Einstein-de Sitter universe
but has a dependence on cosmology through the parafgtetefined as

Qo (1 + 2)3

Q7 = 1.47
" Q1+ 2+ Qa + (14 2)2 (1.47)

This dependence can be approximated quite well by the fibimgula (Bryan & Norman 1998)

A, = 1872 4 60z — 3222 if Qq =0
= 1872 + 82x — 3922 if Qy=1-0Q, (1.48)

wherex = 7, — 1. This results are accurate 18 in the range?’, = 0.1 — 1.

In practice, we are often interested in the quantity callegicircular velocity v, of the
collapsed halo. In a universe with non-zéypit is given by
GM  QzH? 72
2 _ A lg Ty, (1.49)

c
Tvir 3

v,

where we have assumed that the virialized halo has a sinigotliermal density profilg(r) o
1/r%. We can get the mass of the halo in terms of the circular vigldgi eliminatingr,;. from
the above equation

3 2 2 -3
M _ ( Ve ) 2H; 1 2Q0H§ (1.50)
10M A1 M, 35.0 km s~1 H2%(2)A.(2) 3H?(2)A(2)

We may also then definewérial temperatureas

Uiy o
Toir = 151
L (1.51)

wherey is the mean molecular weight and, is the mass of a proton. The Jeans scajewill
then be determined by the minimum circular velocity for gtaming haloes

v ¥
Ay=2mee T
T T O 39,1+ 2)

(1.52)
However, for baryons, we do not have such a well-establiihearetical tools and there-
fore the non-linear evolution of baryons are very compédadnd challenging to study.

In addition to identifying the properties of individual loals, a critical prediction of any

theory of structure formation is the abundance of haloes, ihe number density of haloes
as a function of mass, at any redshift. This is a very crudeg soward understanding the
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abundances of galaxies and galaxy clusters. Although, dhea way to that is to use the
numerical simulations, one can gain the physical undedstgrand explore the dependence of
abundances on the cosmological parameters with the helpariaytical model. One can then
match the analytical results with that from numerical siatioins.

A simple analytic model with particular attention towargégpations to dark matter halo
formation and growth, halo abundance and clustering, winakches quite successfully most
of the numerical simulation was proposed by Press & Sche¢h®4). This model is based
on the ideas of a Gaussian random field of density pertunstinear gravitational growth,
and spherical collapse. They essentially assumed thatbjleets will collapse on some small
scale, sayR, once the smoothed density contr@sfequation (1.33)] on this scale exceeds some
threshold value, but that the non-linearities introducgthiese virialized objects will not affect
the collapse of overdense regions on much larger scaldsoddh this assumption is not strictly
correct, but it is approximately true to some extent (sedidkfis et al. 1991). Moreover, this
assumption leads us to some important ingredients of thdinear structure formation, like
the characterization of the statistical properties of pridial density fluctuations, the evolution
of overdensities according to linear perturbation thedecy e

Using a model for the collapse of a spherical tophat ovelteiaress & Schechter pre-
scribed that collapse on some smoothing s@alshould occur roughly when the smoothed
density on that scale exceeds the critical valye), given in equation (1.45), independent of
R. The mass of the virialized objedt/(R) is related to the smoothing scale by the volume
of the window function. For a tophat window [equation (1]34) = 4np,,R3/3. Now, the
probability of attaining a value ofz(z) betweeny, anddg + dir is

P(5p; M)do = Oh(2) } o (1.53)

2mo2(M) P [_ 20°(M)

where the standard deviatiar{ /) is calculated using the present power spectrum [equation
(1.37)]. By integrating the above equation, one can get timeutative probability for a region

to have a smoothed densiiy(z) greater than the threshold densityz). This will give the
fractional volume occupied by the virialized objects lartfean the smoothing scale or having
mass greater thah/

(e o]

F(> M;=z) :/

P(6p: M)dbp — ~erfc <L> (1.54)
5e(2) 2

V2

whereerfc(z) is the complementary error function and= o.(z)/o(M) is the height of the
threshold in units of the standard deviation. Note that,nathé hierarchical power spectra
o(M) — oo for M — 0, the functionF'(> 0; z) in the above equation should give the fraction
of all mass in virialized objects. Butrfc(0) = 1, so this equation states that only half of the
mass density of the universe is contained in virialized cisjePress & Schechter noted this as
a problem associated with not counting underdense regimthsraultiplied F'(> M; z) by an
ad-hoc factor of 2 to account for all masses. However Bond. ¢1891) found an alternative



20 Introduction

derivation of this correction factor, using a different atzs Also one can get the corrected
results using aexcursion set formalisifsee Chapter 5 for details). However, taking this extra
factor of two, we get

F(> M;z) = erfc (ﬁ) (1.55)

Thus the number of virialized objects with masses betwdeand M + dM is

dn Pm
AM =
de M

dF (> M;2)
dmM

dM (1.56)

and in terms of the mass variance,

dn 2 Pm dlno

™M = \/;MQ Y ’dlnM
So, without regard to the details of the shape of the powertsp® and other quantities, we
can see that, the mass function is close to a power-law avifhiM oc M2 for very small
masses and is exponentially cut-off for larger masses. Mapesof this mass function agrees
with numerical results to some reasonable accuracy. Ingonewts to the Press-Schechter mass
function have been made to overcome this limitation. Inipaldr, the Sheth-Tormen mass
function which is based on the more realistic ellipsoidal collapseleh (Sheth & Tormen
1999; Sheth et al. 2001) fits the numerical results better.

2

exp <—V—2) dM (1.57)

1.3 Galaxy formation and cosmic reionization

In the previous sections we have outlined the basic matheah&étamework needed to study
structure formation. The formation of bound virialized etis was discussed for pressure-
less dark matter component first using a linear theory anudsbene non-linear approximation
where the density contrast becomes order of unity. Howekrerphysics for the baryons are
too complicated to be studied under this simple approxmnachemes. In this chapter, we are
concerned in describing the basic physics which guidesdahgins, which leads us to introduce
models of galaxy formation.

Now start with a very brief thermal history of the baryonshe universe. The two most
abundant elements among the baryons are hydrogen and hdéliiedshiftz ~ 1100 (age of
the universe was- 3 x 10° years), the electrons and protons combined for the first tiinfierm
neutral hydrogen and some amount of helium. This processially called theecombination
Right after this recombination epoch, the universe entarptiase calledark agewhere no
sources of light existed and hydrogen stayed largly neatrghis stage. This is believed to
be the most unknown period of the universe spanning feom 1100 to the formation of first
stars at: ~ 20 — 30. However, the small inhomogeneities which were formed lepntstart to
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grow via gravitational instability and form highly non-&ar structures like massive dark matter
haloes. We have already discussed how to obtain the abumdésach haloes in the previous
section. The collapsed haloes then form potential wellssghtepths depend on their mass.
The neutral baryonic gas falls into these potential weflshé virial temperature of the halo is
high enough, the gas will be able to dissipate its energy,\da@tomic or molecular transitions
and fragment within the halo. In the absence of moleculedatiiver limit of the halo virial tem-
perature isv 10 K. This produces conditions appropriate for condensatfayas and forming
the first population of stars and galaxies, which can geeedataviolet (UV) radiation through
the nuclear reactions. In addition to the galaxies, peraapsarly population of accreting black
holes, known agjuasarqQSO0), also generated considerable amount of UV radialibe.UV
radiation contains photons with energiesl 3.6 eV which are then able to reheat and reionize
most of the hydrogen atoms in the intergalactic space @#teintergalactic medium or IGM).
This process is known asionization Thus after the recombination, reionization is the second
major change in the ionization history of the universe. Alsbhas an immense theoretical and
observational impact in studying the physics of structorenation. This reheating of the IGM
can expel the gas and suppress cooling in the low mass hdlasldition, the nuclear reac-
tions within the stellar sources can alter the chemical amsitjpn of the medium via energetic
explosion éupernova These processes can change the nature and amount ofretatitm at
later stages. They are commonly knowrfesdback mechanisnf@escribed in Section 1.3.2).

The details of galaxy formation and reionization of the IGepdnds on complicated
physics of density fluctuations, various feedback mechasand non-linearities at small scales
- none of which are not well understood as yet in contrastditigation with that for the dark
matter. However, in order to model the evolution of baryairactures, one needs to incorpo-
rate all the hydrodynamical processes, heating, cooliagfermation etc., in the N-body sim-
ulations. Because of such complications, our understgrafithe physics of baryonic structure
formation has been limited. In this chapter we will attengaaddress some of these complicated
issues, starting with the physics of baryonic structurentttron.

1.3.1 Baryonic structure formation

We begin by exploring the gravitational instability scanam which primordial density pertur-
bations grow through gravitationaans instabilityo form the complex structures we observe
today.

In the Newtonian gravity limit, the Jeans length is defined as the critical wavelength
that separates oscillatory and exponentially growing dgpsrturbations in an infinite, uniform
and stationary distribution of gas, defined in equationg)L.For the scales < ), the sound
crossing timé//c, is smaller than the gravitational free-fall tim&p) /2. This allows to build
up a pressure force that counteracts gravity. On largeesctile pressure gradient force is too
slow to react to a build up of the attractive gravitationaicka The mass within a sphere of
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radius) /2 is known asleans mass

47 )\J 3
My=—p|—= 1.58
=50 (%) (159

In a perturbation with a mask¥/ > M, the self-gravity cannot be supported by the pressure
gradient, so the gas is unstable to gravitational collapimvever, this Newtonian derivation
of the Jeans instability suffers from a conceptual incdesrsy, as the unperturbed gravitational
force of the uniform background must induce the bulk moti(Bisney & Tremaine 2008).
This inconsistency must be treated when the analysis is ithaar@ expanding universe.

The perturbative derivation of the Jeans instability cigte can be carried out by taking
a sinusoidal perturbation superposed on a uniformly expgnidackground. Now, consider
spherical fluctuations in the baryonic gas and dark mattesites in the form of a single
spherical Fourier mode on a scale much smaller than thedroriz

pom(rt) —pom(t) sin kr
Pou(t) - ool kr
po(r,t) —pp(t) sin kr
o M0 (1:59)

where) are the corresponding overdensity amplitudesraistthe comoving radial coordinate.
Initially, at some time = ¢; the perturbation amplitudes are smalby; ;, d,; < 1) and the gas
temperature is uniforrid, (r, t;) = T;. We can define a region inside the first zersiafkr /kr,
namely0 < kr < m, as the collapsing object. The temperature of baryons erahted by
the coupling of its free electrons to the CMB througbmpton scatteringnd by the adiabatic
expansion. Thug; is generally between the CMB temperatligs o (1+2)~! [see equation
(1.8)] and the adiabatically scaled temperatiife < (1 + z)~2. In the limit of tight coupling
to the CMB, the gas temperature remains uniform, wherealeratiabatic limit, it goes as

T, « pi' ", wherey is the specific heat ratio.

The evolution of the perturbation in dark matter is desatilmethe linear regime by [see
equation (1.21)]

; . 3
dpm + 2Hdpm = §H2(Qb5b + Qpmopm) (1.60)

and with the inclusion of pressure term, the baryon ovelitieegolves as (Kolb & Turner 1990;
Loeb 2006)

. .3 kgTi (k\? /a;\ 145 2
5b+2H5b:§H2(Qb5b+QDM5DM)—7MZ <5) (Z) <5b+§ﬁ[5b—5b7i]) (1.61)
P

Here the parametet$ discriminates between the two limits of evolution of gas penature:
B = 1in the adiabatic limit, angg = 0 in the strong coupling limit. The Jeans wavelength
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A; = 27 /kis then obtained by setting the right hand side of equatiddi{to zero and solving
for the critical wavenumbek ;. One can see that; (and thusM ;) will be time dependent in
general and also that perturbations with increasingly Emilitial wavelengths stop oscillating
and start to grow.

Following the recombination at~ 1100, the residual ionization of the cosmic gas keeps
its temperature locked to the CMB temperature via Comptatteigng down to a redshift;,
which is (Peebles 1993)

(1.62)

Qbh2 2/5
0.022)

1+Zt%137(

In the redshift range between recombination and.e. z; < z < z.., the parametef = 0.
So, we get

2m 3ump§2,
k;="— = Hy, | ———2"™ 1.63
! Ag 0 2vkpTevs(0) ( )
and the Jeans mass is
4 (2\° Q,,h2\ /?
M; = g (7") p(0) = 1.35 x 10° ( 0’”15 ) M, (1.64)

Forz < z, the gas temperature drops adiabatically #.e= 1, and the total Jeans mass will be
(Padmanabhan 1993)

Q B2\~ 1/2 O’ =35 /1 L\ /2
Mj; =5. 10% | == M, 1.65
7 =573 x 10 <0.15) (0.022) ( 10 ) ® (1.65)

However, above expressions for the Jeans mass are jusia tive®ry estimate and can
only describe the initial phase of collapse. Also, it is neac how the value of the Jeans mass
is related to the mass of collapsed, bound objects. As thgitggrerturbations grow with time
and become larger than unity, the amount of mass enclosédtvaitgiven baryonic shell may
increase with time, until eventually the dark matter putis baryons with it and causes their
collapse even for objects below the Jeans mass. In thigliregane, the Jeans mass is related
only to the evolution of perturbation at a given time. Whea feans mass itself varies with
time, the overall suppression in the growth of perturbatiaml depend on a time-weighted
Jeans mass, known &ikering masqGnedin & Hui 1998; Choudhury & Ferrara 2005). Thus
the Jeans condition may only be a necessary but not sufficoetition.

In order to estimate the minimum mass of baryonic objectaywst go beyond the linear
theory, and we have to consider the non-linear effects oe\bkition of the accreted baryons.
Assume that a dark matter halo with a potential wglt), with ¢ — 0 at large distances and
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¢ < 0inside the object, is formed at redshift,. After the gas, with some pressyreand mass
densityp, settles into this potential well, it satisfies the hydrdstaguilibrium equation,

Vp, = —ppVo (1.66)
At z < 100, the gas temperature is decoupled from the CMB, and its pregvolves adiabati-
cally, so we havey,  p,”* (asy = 5/3), which immediately gives
9 3/2
£ = (1 - —“mﬂ¢) (1.67)
Py 5 kgT

T = p,um,/(kgp,) is the background gas temperature (a bar denotes the backboondi-
tions). Then the baryonic overdensity can be written as

/2
Po 6 Toir \°

h=——-1=[(14+-=-—= —1 1.68
’ Po ( 5 T ) ( )
whereT,;, = —um,¢/(3kg) is the virial temperature corresponding to the potentidl oe
depth—¢.

According to the spherical top-hat collapse model, we maytisat collapse of baryons
happens when their mean overdensijtgxceeds a value df00. This implies a minimum halo
mass for these collapsed baryonic objects, knowpratogalaxiesof

Q 2 71/2 Q 2 73/5 1 3/2
Mmin:5.0><103( mh) ( "h) ( +z) M, (1.69)

0.15 0.022 10

This happens to be very close to our earlier linear estinfaleans mass, however it takes non-
linear effects into account. Note that, unlike the Jeanssptass minimum mass depends on
the choice for an overdensity threshold. Of course, whetiitsiestars and galaxies form, this

value of M,,;, will be changed due to various feedback effects.

Besides the gravitational instability, another proceas #iffects the structure formation is
cooling. As we have discussed above, gravity dominatesjectdbwith baryonic masses greater
than3 x 10*M, and for lower masses pressure delays the collapse - regtitia bottom-
up hierarchy of structure formation. Thus the first objeotsadllapse have a mass scale that
separates these two regimes. Such objects can fragmerthomiygh cooling. The efficiency of
gas cooling is very crucial in determining the minimum mafsgrotogalaxies. Thus, there are
two independent minimum mass thresholds for star formatioe Jeans mass and the cooling
mass. The higher of these two decides the actual threshb&piimary molecule that acquires
sufficient abundance to affect the thermal state of the gamlscular Hydroger,, produced
by various processes in the early universe. Primofdiaforms with a very small fractional
abundance of 10-7 atz > 400. But, atz < 110, when the CMB radiation intensity becomes
weak enough to allow for a significant formationtdf ions, mored, molecules can be formed.
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Cooling viaH, forms objects with mass 10*M,,, which are usually calledhinihaloes This
cooling process is known asolecular cooling However, molecular Hydrogens are very fragile
and can easily be dissociated by photons with energiés.26 — 13.6 eV, to which the IGM is
transparent even before reionization. Haiman et al. (18B@)ved that the UV flux necessary
for dissociatingt, throughout the collapsed environments is two orders of nbtages lower
than the amount required for IGM reionization. Hengk,is completely destroyed by trace
amount of first generation stars. Further star formationniy possible viaatomic cooling
which happens &f,;, > 10* K. Such objects correspond to massoi0%M..

The final state in the evolution of stars is uncertain, bubh&it mass loss is not too ex-
cessive, they are most likely to end up as black holes (BHnh(Bet al. 1984). Apart from star
formation, some massive black hole formations are alsoa®&ddo happen in the early stages
of galaxy formation, they are known as quasars. The quasamnare effective than stars in
ionizing the intergalactic hydrogen (Larson 2000). Thus kistory of reionization may be
greatly affected if quasars form early. Some of the massars snay end their lives by produc-
ing gamma ray bursts (GRBs). Then the broad-band aftergbdwsese bursts could provide
a powerful tool for probing the epoch of reionization (LamiR&ichart 2000; Ciardi & Loeb
2000).

1.3.2 Reionization of the IGM

As mentioned earlier, reionization begins when the firsreesi of ionizing photos form and
start building ionized medium around themselves. In thidige, we will discuss the basic
stages of reionization: th@e-overlap overlapandpost-overlagphases.

In the initial “pre-overlap” stage, a fraction of the UV ration emitted by the stars can
escape the host galaxy and ionize hydrogen in the surrogmagaium. The value of the escape
fraction of radiation depends on the mass of the galaxy aadlimping of matter within it,
and is quite uncertain. Along with that, the ionizing UV raiitbn can also be generated by an
early population of QSOs. Although the number of QSOs at Inggishifts ¢ > 6) is quite
small, but the radiation from the QSOs can escape much dastiguse of the fact that their
spectrum is much harder compared to that of galaxies. Siecérst galaxies form in the most
massive haloes at high redshifts, they are preferentiatigted in the high density regions. The
ionizing photons have to pass through this high densityoregihich is characterized by large
recombination rates. At this stage, the IGM acts like a tlwage medium, with highly ionized
Hydrogen (HIl) regions separated from neutral Hydroger) (elgjions by the ionization fronts.

The “overlap” stage begins when the ionizing volume incesagadually and the neigh-
boring HIl regions start overlapping. The propagation efthionization front can be studied by
taking into account the photoionization and the recomimnadf the atoms (Shapiro & Giroux
1987). At this stage, the intensity in the HIl regions risesmapidly, allowing them to expand

6This terminology was first introduced by Gnedin (2000)
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into the high density gas that had been able to recombineiprisence of a lower ionizing in-
tensity. By end of this stage, the ionizing radiation regamest of the IGM regions, except for
the gas trapped inside self-shielding, high-density cdodhis process of overlapping seems to
be completed around~ 6 — 8 at which point the neutral hydrogen fraction; becomes lower
than10—4.

Following the overlap phase, a never-ending “post-ovéfap‘post-reionization”) phase
started which implies that the universe is largely ionizegr@sent epoch. Even at the end
of the overlap stage, there remains some neutral regionsrinhigh density structures (with
column densitiesVy; > 107em™2), such as Lyman Limit Systems (LLS) and DampedLy
systems (DLA), which can be seen in absorption at lowésee Section 1.3.3). These too,
get gradually ionized in this stage as galaxies form and tba@monization intensity increases.
This post-overlap phase then continues indefinitely, siheecollapsed objects retain HI even
at the present time.

Although the basic physics behind the reionization is modess understood, the details
are still to be filled in. The numerical resolution in the hydynamical simulations is also
limited for this purpose and, at present, one has to rely omi-a@alytical models for this
purpose. Still the nature of the reionization sources aaddlonization history remain unclear
and highly debated in the literature. This is mainly due toartainties in modelling several
physical issues, like the properties of the first stars ara$ars, the ionizing photon production
and radiative transfer, the IGM clumping etc. One of the noostial parameters needed for
modelling reionization is the escape fraction of ionizirgliation; whatever the nature of a
source, only a fractionf.., of the ionizing photons emitted escape the production agiie
reach the IGM. However, the value ¢f,. is largely unconstrained (see Fernandez & Shull
2011; Mitra et al. 2013 and the references therein). We withe back to this point later in
Chapter 3.

We have already mentioned about some of the possible soafgesonization, which
include the first stars, galaxies, and QSOs. We will now hyrigiscuss about them one by one.

The first stars represent the first sources of light and dusiimniverse. They can affect
the subsequent formation of all later generations of stadgyalaxies via several feedback pro-
cesses. Although feedback effects are quite importany, dne also difficult to model. They
can be broadly classified into three categories:R@diative feedback it is associated with
the radiation from first stars which can heat up the surrcugndiedium and can increase the
mass scale (known as filtering mass) above which baryonsati@apse into haloes within those
regions. Thus the minimum mass of haloes which are able tbisaouch higher in ionized
regions than in neutral ones. It can change the cooling radesappress the star formation
in low mass haloes. (iiMechanical feedbackthe ejection of energy by a supernova driven
wind (Dekel & Silk 1986). This can expel the cold gas from géa and suppress star for-
mation in low mass haloes. One can parametrize both of tleesdback processes through the
minimum mass parametér,,;,(t), defined in equation (1.69). (iithemical feedbackstars
can expel the gas and associated metals intontfeestellar medium(ISM) via stellar winds
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and supernovae and hence change its chemical compositimns the subsequent formation
of stars could be in a completely different environment also she nature of stars could be
highly different. The hierarchical models of structuren@tion predict the first collapsed ob-
jects to have a primordial, metal-free composition; thernfation and cooling is governed by
molecular hydrogen and they have huge masses. They are ka®Raoplll stars. They domi-
nate the photoionization rate at high redshifts. Howevwairitial mass functior(IMF), which
specifies the distribution of masses in a newly formed stpt@ulation, is largely unknown for
these Poplll objects due to a poor understanding of thegnfientation processes. Although it
is quite hard to model the primordial star formation proessadvances have been made along
this direction using numerical simulations. By means ofous simulations, people have found
the first star to be massive withf > 1000, (Bromm et al. 1999; Abel et al. 2000; Nakamura
& Umemura 2001). However, it is important to note that Poptér formation is suppressed as
soon as the ISM is enriched by metals produced by previousrggans of Poplll stars. Then
the later generation stars will have sub-solar metalésitiThey are known as Popll stars. Since
the metal-free composition restricts the stellar energys®to be proton-proton burning rather
than the usual CNO cycle, Poplll stars are hotter and havedehapectra than Popll stars.
However, both of their contributions to reionization arghiy important. Recent studies sug-
gest that reionization is initially driven by metal-free b stars in low mass{/ < 108M)
haloes, then the conditions for the formation of these dbjare soon erased by the combined
action of chemical and radiative feedbacks at 10 (Choudhury & Ferrara 2007).

According to the bottom-up, hierarchical model of struetéwrmation, it is now well
understood that small haloes form first, which later merderm larger systems like galaxies.
However, calculating the contribution of galaxies to reézamion is extremely complicated due
to the lack of knowledge of their intrinsic ionizing photoate, which depends on the star
formation rate (SFR), as well as the value faf. for each galaxy. Using suitable parameter
choices of the SFR angl..., a number of authors have shown that star forming galaxies ar
capable of reionizing the universe by~ 6 — 15. This includes the work done using semi-
analytic models (Fukugita & Kawasaki 1994; Haiman & Loeb 71.9€hiu & Ostriker 2000;
Choudhury & Ferrara 2005, 2006b; Mitra et al. 2011) and satoihs (Gnedin & Ostriker
1997; Gnedin 2000).

QSOs are powered by accretion of gas onto a black hole (BE)exhess rotation of the
gas spiraling in towards the BH yields viscous dissipatibheat that makes the gas glow. The
seed BH is generally seemed to be the remnant of a massivé Brplosion. They are the
significant sources of hard photons:ats 6 but they have negligible effects on the IGM at
higher redshifts (Dietrich & Hamann 2004). QSOs are moreiefiit than stars for reionization
as the emission spectrum is harder and the valyg,ofs larger for QSOs than for stars.
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1.3.3 Observational probes for reionization

We end this chapter with a brief survey of certain observatiavailable at present and in near
future, which shape our understanding of reionization.rélae both cosmological and astro-
physical constraints on reionization, while the former faoen the CMB experiments, and the

latter are inferred using spectral data from QSOs, GRBs #\itkL

() CMBR (Primary Anisotropies) constraints :  According to the standard big bang model,
at redshiftz ~ 1100, electrons and protons combine for the first time to form l8hat. Then
the photons decouple from matter, travel freely and arerebdetoday as the CMBR. They
carry information about the state of the universe at the aigloog epoch; small fluctuations in
density, velocity and gravitational potential lead to ahispies in the CMB (Sachs & Wolfe
1967; Bennett et al. 1996). The angular power spectrum @®pthmary anisotropies are able
to probe length scales as large as the horizon siz8((00 ~~* Mpc). Small-scale{ 1 h!
Mpc, corresponding to multipoles of ordér~ 1000) fluctuations in CMB are damped by
Thomson scattering from free electrons produced at reabioiz. This scattering suppresses
the amplitude of the acoustic peaksdy™ on the scales corresponding to perturbation modes
with wavelength smaller than the Hubble radius at reiororatThe low! CMBR polarization
spectrum depends not just or, but also on the detailed redshift evolution of the number
density of free electrons in the IGM, (z). Thus, the CMBR polarization data with an improved
constraint on,, can be used to probe tepoch of reionizatiofEoR). With a simple assumption
that the universe was reionized instantaneously at a iédshirecent WMAP team found that
Te = 0.089 +0.014 andz,. = 10.6 + 1.1 (Hinshaw et al. 2012). This value is consistent with
more precise measurements done by PLANCK (Ade et al. 2013b).

(i) Astrophysical constraints on reionization: The IGM manifests itself in numerous ab-
sorption lines along the line of sight (LOS) of observed QSGRBs and galaxies. These
absorption lines arise when a LOS intersects with a patchl ¢fi&t absorbs the continuum ra-
diation. This radiation is then redshifted into thenL§1216 f%) range. According to the amount
of absorption, different kinds of absorbers can be disistged in the observed spectra. Ly
forest arises from absorbers with a column densityaf < 10'° cm~2. These absorbers lie
in shallow dark matter potential wells containing gas inimas stages of infall and collapse.
The Lyman Limit systems (LLS) have a column density; > 1.6 x 10'7 cm~2 and absorption
is caused by relatively cool gas associated with star fogngaaxies in high density regions.
Whereas, the Damped bysystems (DLAS) are believed to be the highest density systaw
ing a column density ofVy; > 2 x 10%° cm~2 (see Fig. 1.1). However, most of the spectral
methods of constraining reionization rely on therdlyne to constrain the amount of Hl in the
IGM. This is because the kyemission line at 216 A, corresponding to a energy 0.6 eV

is the strongest emission signal. Furthermore, due to a laghn-Peterson (GP) optical depth
(Gunn & Peterson 1965a), in the presence of HI, the obsempedrs shows a sharp cut-off
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blueward of the Ly line. The effective optical depth to the &yabsorption by a uniform inter-
galactic medium can be expressed as (Gunn & Peterson 1968aria & Loeb 2007)

Qh \ () V(1422
eff 5 b m
~ 6.45 x 10 —m 1.70
Tap 8 xHI(o.o315) (0.3) ( 10 ) (1.70)

So, even a trace amount of Hix; ~ 10~*) can lead to a significant attenuation of theline.
Therefore, it is important to note that the detection of a f@Bdh only translates into a lower
limit of THI-
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Figure 1.1: Typical spectrum of a QSO:at 1.34. Ly« forest with numerous narrow absorp-
tion lines is seen at wavelengths below (blueward) the Eynission line. There are regions
which have very high absorption - the DLAs. LLS absorbs &l pinotons which are capable
of ionizing hydrogen and is observed as a sharp break in t83 §yectrum. [Figure courtesy:
Charlton & Churchill (2000)]

Also the QSO spectra are often used for constraining theiaton. Fan et al. (2006)
and Fan (2012) have obtained the spectra for several QS®s>at6 (shown in Fig. 1.2).
One can see that, as the redshift increases, larger podidhe spectra, blueward of the &y
line, are completely attenuated; increastngakes this break shift to longer wavelengths. The
detection of Gunn-Peterson troughs indicates a rapid eéran et al. 2002; Pentericci et al.
2002; White et al. 2003) in the neutral content of the IGMzat- 6 and this rapid change
implies that overlap, and hence the reionization epoch ptet®d near ~ 6 (Fan et al. 2006).
This result is also in agreement with the findings of Becketl ef2001), who detected the first
evidence of a complete GP trough in a QSO at 6.28. Using these spectra, many groups
(Gallerani et al. 2006; Becker et al. 2007) have tried to khieeionization was over by ~ 6.
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Using the distribution of the dark gaps (regions showing or)fand peaks (regions showing
transmission) in the QSO spectra, Gallerani et al. (20083 faund that the data favors a model
where reionization completes at~ 7 and robustly constraimy; < 0.36 atz = 6.3. Similar
conclusions have been made by Dayal et al. (2008) usingemitter (LAE) data.
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Figure 1.2: Dispersion spectra of all published quasars:at6 as of 2012 June (Fan 2012).
Some of the QSO spectra show no transmitted flux shortwarbeof.yo. wavelength at that

redshift. These are the so-called Gunn-Peterson trougbhwhdicates a non-negligible Hl

fraction in the IGM. [Figure courtesy: Fan (2012)]

Spectrum of GRB can also be used to constrain reionizatiorgube same principles
mentioned above. Using the spectrum of GRB 050904 at 6.3, Totani et al. (2006) have
found the upper limits ofy; < 0.17 and0.60 at 68% and 95% confidence levels.

An alternative and perhaps the most promising prospect séming the epoch of reion-
ization is through the detection of tRé cm signature from neutral hydrogen in the IGM before
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and during the reionization era (Carilli et al. 2002; Fudta et al. 2006; Pritchard & Loeb
2012; Mack & Wyithe 2012). The ground state of hydrogen eithid hyperfine transition in-
volving the spins of the proton and the electron. The triptate (with parallel spins) has a
slightly higher energy than the singlet state (with antigtial) spins. This spin-flip transition
from the triplet to singlet state corresponds to a rest frémguency ofl420 MHz or a rest
wavelength oR1 cm. This line, when redshifted, can be observed in radioueegies and is
often used to detect neutral hydrogen in the local univéffgewill use this method for studying
the post-reionization neutral hydrogen distributiondatehis thesis (see Chapter 6 for details).
However, obtaining the cosmological signal from this expent is very difficult and hence
challenging, because of the fact that it is expected to beadl sontribution buried deep in the
emission from other astrophysical sources (foregrounus)rathe system noise. But once such
difficulties are overcome, this probe will be the strongesbp of not only reionization, but also
the matter distribution at very small scales during the @dayés (Pritchard & Loeb 2010).

So, from the above discussion, it is clear that, one of the@ndjallenges for modelling
reionization is to match the model prediction with most @& #vailable data sets which are ac-
cumulated by the measurements of QSO absorption line sp@&n et al. 2006), GRB spectra
(Totani et al. 2006) and the CMB data (Hinshaw et al. 2012; étced. 2013b). A major portion
of this thesis is involved in modelling reionization by tagiinto account all these data sets.

1.3.4 Modelling the IGM and reionization

After reviewing our current understanding of reionizatemd the observations that have re-
vealed it, we can now proceed to develop a basic theoretmaldwork required for modelling
reionization of the IGM. In this section we will try to avoitlé¢ details of the mathematics and
keep the description in a quite simple level. For more detitithformation, one can look into
some of beautiful reviews by Barkana & Loeb (2001); Loeb & l&ara (2001); Choudhury &
Ferrara (2006a); Choudhury (2009) and references thdfeirsimplicity, we shall assume that
the IGM consists only of hydrogen (neglect the presence laiime.

In the standard picture, each sources of reionizationg€taQSOs) generates the UV
photons (with energies 13.6 eV) and ionizes its surrounding region. These regions aewgr
ally expand and overlap. The basic aim for modelling reiatian is to follow the evolution of
these regions. One can compute the evolution of such expgunahized region for individual
ionizing sources until the reionization process is congléiowever, evolution of these indi-
vidual ionized bubbles will depend on the nature of theimrses. So, another way of studying
reionization is to take into account the global distribotaf the sources and ionized volumes
and statistically compute the globally averaged propedia fluctuations. We shall study this
statistical approach below.

Let us start with the most useful statistical quantity whiglstudied in reionization, the
volume filling factor of ionized region®y;. This is the fraction of volume that is ionized and
reionization is said to be complete wh@&ay; = 1. The evolution of this quantity is governed
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by the equation (Shapiro & Giroux 1987; Madau et al. 1999; inry & Ferrara 2006a;
Choudhury 2009)

dQwn _ Npn  Qun
dt nur trec

(1.71)

wheren,, is average number of ionizing photons produced per unitnaelper unit time and
nyr IS the mean comoving density of neutral hydrogen. The qtyahti is the recombination
timescale of neutral hydrogen and is given by

tt = Car(T)nm(1l + 2)? (1.72)

rec

In the above relatiomv(7) is the recombination rate coefficient, which can depend en th
temperature, however that dependence is often ignoree wstitlying the volume filling factor.

C is called theclumping factowhich takes into account the fact that the recombinatios irat
an inhomogeneous (clumpy) IGM is higher than a medium ofarmifdensity and it is defined
as

(numne)  (nfy)

(num)(ne) — (ny)?

where the angle brackets denote space averageepresents the mean electron density. The
last equality in the above relation holds when the IGM hagbgen alone and is highly ionized,
i.€.Me = N1 ~ N.

Note that, equation (1.71) implicitly assumes that the sesirof ionizing photons are
uniformly distributed over the volume we concern. This d@racan be solved once we have a
model for calculating the evolution of the photon produetiaten,,, andC. In this description,
reionization is said to be complete whéw;; reaches unity.

However, in this simple description, we did not take take edcount the inhomogeneities
in the IGM appropriately (except faf). One should have to account for the density distribution
of the IGM. The recombination rate (which ds n%) is higher in high-density regions where
the gas becomes neutral very quickly. Thus, the high-dersiions will remain neutral for a
longer time, whereas the regions of lower densities willdrgzed first. This is also in agree-
ment with the observations where we know that there existis gions of high density which
remain neutral even at the post-reionization phase; treggerns are being gradually ionized
(Miralda-Escudé et al. 2000). Of course, there should bepexdence on how far the high
density region is from an ionizing source, but such compileican only be dealt in a full
numerical simulation. So, in this picture: (i) during thespoverlap stage all the low-density
regions (with overdensities, say < Agpr) will be ionized, while there will be some high
density peaks which will still remain neutral. (ii) At theggoverlap stage, a volume fraction
1 — Qun of the universe is completely neutral (irrespective of teagity), while the remaining
Qun fraction of the volume is occupied by the ionized regionswieer, within this ionized
volume, the high density regions (with > Apgyp) will still be neutral. Once reionization is

C=

(1.73)
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complete and)y; becomes unity, all regions with < Ayyp are ionized and the rest are neu-
tral. The high-density neutral regions manifest themsshsethe LLS (which we have discussed
already in the previous section) in the QSO absorption spect

To write the equations incorporating the above picture,raeds to know the probability
distribution functionP(A)dA for the overdensities. Then only a mass fraction

Anmn
Fy(Agn) = /0 dA AP(A) (1.74)

needs to be ionized, while the remaining high density regwill be completely neutral as their
recombination rates are high. Then the generalization o&&on (1.71), appropriate for this
description will be (Miralda-Escudé et al. 2000; Wyithe &éb 2003)

d[QuiFa(Aun)]  npu(t)
dt N Nyl

— Quuar(T)nu R(Amn) (1 + 2)° (1.75)

where the facto?( Ay ) is the analogous of the clumping factor, and is given by
Ann
R(Amn) = / dA A*P(A) (1.76)
0

In order to solve the equation (1.75), we assume that does not evolve significantly with
time in the pre-overlap stage, it is equal to a critical valye This critical density is usually
determined from the the mean separation of the ionizingcesur Some people (Chiu et al.
2003; Choudhury & Ferrara 2005) suggest thashould be similar to the typical overdensities
near the boundaries of the collapsed haloes, which is typiea50 — 60.

Once A. is fixed and we have some functional form for the IGM densitstribbution
P(A), one can follow the evolution afy; taking into account all the three stages of reion-
ization and calculate the clumping factor and the effea@@mbination rate self-consistently
without introducing any extra parameter. As we have outlioer basic formalism here, we can
now go forward and discuss other details regarding the nindedf reionization.

The number of ionizing photons,;, (t) depends on the assumptions made regarding the
sources. If we assume that hydrogen reionization is prigndiriven by stellar sources, then this
quantity should be determined by the star formation rat&kjSfensity (i.e. SFR per comoving
volume),(t), which is given by (Choudhury 2009)

. I /°° , L OPn(M',t)
«() = — dM' e, M' ———= 1.77
p-(1) a3(t) p,, Myin (6) € OM'Ot ( )

where, M, () is the lower mass cut-off at a given epoch and is decided bgdbkng criteria

and different feedback processes (as discussed earliexctno8 1.3.1). For neutral regions,
we assume that this quantity is determined by the atomidragolf gas within haloes (neglect
cooling via molecular hydrogen). Within ionized regionfpfo-heating of the gas can result
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in a further suppression of star formation in low-mass halo#/e compute such (radiative)
feedback self-consistently from the evolution of the tha&rproperties of the IGMe, is the
fraction of baryonic massp,/p,,) M, which has been converted into stars. One should keep in
mind that, many details of the star formation process coalelbeen encoded within this single
parametet,. This should, in principle, be a function of both halo magand timet. However,
the dependencies are not well understood, that's why itugliystaken to be a constant. The
quantityon(M,t)/OM is basically the number density of collapsed objects pdragmoving
volume within a mass rangé{, M + dM) at an epocht and it is already given in equation
(1.57).

One can then write the SFR in terms of the fraction of colldp®ass in haloes more
massive thai/,,;,(¢) [see equation (1.55)]

1 [~ on(M',t)
fotl(t) = — dv’ v e
H( ) Pm J Mpin (t) oM
)
= f c 1.78
e”{ﬂ D(t) 0(Min) (1.78)
as

pb dfcoll(t> (179)

pelt) = € () dt

Given the SFR, we can then calculate the rate of ionizing@i®in the IGM per unit
volume:

dfcoll (t)
dt

'flph(t) = Nion Ny (180)
ny IS the total baryonic number density in the IGM. If we considely hydrogen and neglect
the presence of helium, thep = ny. The quantityV;,, is the number of photons entering the
IGM per baryon included into stars (Wyithe & Loeb 2007a), adefined as

Nion = € fese N, (1.81)

where f. is the escape fraction of photons from the halo andis the specific number of
photons emitted per baryon in stars, which depends on tHardtdF and the corresponding
stellar spectrum.

So, using the physics described above, we can now constsgchaanalytical model for
studying the thermal and ionization history of the IGM, andable choices of corresponding
model parameters, we can compare our model predictionsvartbus observations related to
reionization. Fig. 1.3 shows an example of one such modadldped by Choudhury & Ferrara
(2005, 2006b).
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Although semi-analytical modelling of IGM can help us to akg a good understanding
of the underlying physics of cosmic reionization, they caketinto account the physical pro-
cesses only in some approximate sense. A detailed and cang@scription of reionization
would require locating the ionizing sources, resolvingittteemogeneities in the IGM, follow-
ing the scattering processes through a detailed desaripticadiative transfer. In that case one
has to rely on numerical simulations (Abel et al. 1999; Gnedial. 2000; Gnedin 2000; Ciardi
et al. 2001; Razoumov et al. 2002; Maselli et al. 2003; Bo#tbal. 2004; lliev et al. 2006).
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Figure 1.3: Comparison of analytical model (Choudhury &reex 2005, 2006b) predictions
with observations for the best-fit model. The different pan&licate: (a) The volume-averaged
neutral hydrogen fractiomy;, with observational lower limit from quasar absorptionesnat
z = 6 and upper limit from Ly emitters atz: = 6.5 (shown with arrows). In addition, the
ionized fractionz, is shown by the dashed line. (b) SER for different stellar populations.
(c) The number of source counts above a given redshift, viméhabservational upper limit
from NICMOS HUDF shown by the arrow. The contribution to tleeice count is zero at low
redshifts because of the J-dropout selection criterionElgctron scattering optical depth, with
observational constraint from WMAP 3-year data releasgLye effective optical depth. (f)
Ly effective optical depth. (g) Evolution of Lyman-limit sgshs. (h) Photoionization rates
for hydrogen, with estimates from numerical simulatiofe{gn by points with error-bars). (i)
Temperature of the mean density IGM. [Figure courtesy: @houy (2009)]



CHAPTER 2

MODEL-INDEPENDENT CONSTRAINTS
ON REIONIZATION

In the previous chapter, we have developed the theoretiol to understand the basic physics
of structure formation and cosmological reionization. Nowthis chapter, we will apply those
tools to study the modelling of reionization in detail. Inrfpeular, we shall be concerned about
finding the constraints on reionization in a model-indeggmnidnanner and comparing those
with the various observations mentioned in Section 1.3.3.

In recent years, studies in reionization have been boostatidbavailability of a wide
range of data sets and the expectation that the volume ofvdatiéd increase rapidly over
the next few years (for reviews, see Furlanetto et al. 20@&; € al. 2006). Theoretically,
reionization is modelled either semi-analytically or bymmerical simulations. Unfortunately,
the physical processes relevant to reionization are so lextipat neither of the two approaches
can capture the overall picture entirely. The simulatioresiadispensable for understanding
detailed spatial distribution of ionized regions and tagyl of reionization. However, if one is
interested in the evolution of globally-averaged quaggitithen semi-analytical models prove
to be very useful in providing insights. The main reason g ts that these models can probe
a wide range of parameter space which can be quite large dieygeon our ignorance of the
different processes.

The major uncertainty in modelling reionization is to mothe star-formation history and
transfer of radiation from the galaxies to the intergatantedium (IGM) which is usually pa-
rameterized through,,,,, the number of photons entering the IGM per baryon in coddpsb-
jects [see equation (1.81)]. This parameter, in principées a dependence erwhich can arise
from evolution of star-forming efficiency, fraction of pluois escaping from the host halo and
chemical and radiative feedback processes. Note thatan@syeter remains uncertain even in
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numerical simulations, hence the semi-analytical modmtsbecome handy in studying a wide
range of parameter values and the corresponding agreeribmiata sets. In analytical studies,
Nion(2) is either taken to be a piecewise constant function (Wyithen&b 2003; Choudhury &
Ferrara 2005) or parameterized using some known functi@hai(et al. 2003; Pritchard et al.
2010) or modelled using a physically-motivated presasip{iChoudhury & Ferrara 2006b). In
particular, a model involving metal-free and normal staith\wome prescription for radiative
and chemical feedback can match a wide range of observdthmidhury & Ferrara 2006b;
Gallerani et al. 2006) and possibly make prediction regaydearch for reionization sources by
future experiments (Choudhury & Ferrara 2007).

However, the fact remains that many of the physical prosasselved in modellingVi,,
are still uncertain. Given this, it is worthwhile doing a aiétd probe of the parameter space
and determine the range of reionization histories that boeved by the data. In other words,
rather than working out the uncertain physics, one can asgulestion as to what are the forms
of Nion(z) implied by the data itself. It is expected that in near futwéh more data sets
becoming available, the allowed range in the formsVef,(z) would be severely constrained,
thus telling us exactly how reionization occurred. Now,sitobvious that the constraints on
Nion(z) Will not be same for all redshifts, points where there areerand better data available,
the constraint would be more tight. Similarly, since we degh a heterogeneous set of data,
it is expected that the constraints would depend on the @atidata used. It is thus important
to know which aspects of reionization history can be conmsthby what kind of data sets. A
method which is ideally suited to tackle this problem is te tiee principal component analysis
(PCA); this is a technique to compute the most meaningfuisbiasre-express the unknown
parameter set and the hope is that this new basis will reveédéh detailed statistical structure.

Here, we make a preliminary attempt to constrjg, (z) using PCA and hence estimate
the uncertainties in the reionization history. The mainecbye of the work would be to find
out the widest possible range in reionization historiesvedid by the different data sets.

2.1 Semi-analytical modelling of reionization

2.1.1 Features of the model

The semi-analytical model used in this work is based on Chond& Ferrara (2005) and
Choudhury & Ferrara (2006b). Let us first summarize the meatures of the model along
with the modifications made in this work:

e The model accounts for IGM inhomogeneities by adopting adomal distribution ac-
cording to the method outlined in Miralda-Escudé et alO@0reionization is said to be
complete once all the low-density regions (say, with ovesiteesA < A ~ 60) are
ionized. The mean free path of photons is thus determinezhgally by the distribution



2.1. Semi-analytical modelling of reionization 39

of high density regions:

Ao
- F (2P
where Fy, is the volume fraction of ionized regions ang is a normalization parame-
ter. In our earlier works, the value of this parameter wasdfigg comparing with low
redshift observations while in this work, we treat it as aefparameter. We follow the

ionization and thermal histories of neutral, HIl and Helklgions simultaneously and
self-consistently, treating the IGM as a multi-phase mediu

)\mfp<2) = (21)

e The model assumes that reionization is driven by stellarcgsu The stellar sources can
further be divided into two classes, namely, (i) metal-f(ee. Poplll) stars having a
Salpeter IMF in the mass rande— 1000/ they dominate the photoionization rate at
high redshifts; (ii) Popll stars with sub-solar metallieg also having a Salpeter IMF in
the mass rangé — 1000,

e Reionization by UV sources is accompanied by photo-heatirige gas, which can re-
sult in a suppression of star formation in low-mass haloes.cémpute such (radiative)
feedback self-consistently from the evolution of the th&rproperties of the IGM.

e Furthermore thehemical feedbackcluding PopllPopll transition is implemented
using merger-tree based genetic approach (Schneider289G8). Under this approach,
it is assumed that if a given star-forming halo has a progenithich formed Poplll
stars, then the halo under consideration is enriched antbtéorm Poplll stars. In this
work, we introduce an analytical formula for the transitioom Poplll to Popll phase
using the conditional probability of Press-Schechter niasstion (Lacey & Cole 1993).
The probability that a halo of mas® at z never had a progenitor in the mass range
[Miin(2), M + M) is given by
o(M + M,es) — o(M)

U(Mmin(z)) - U(M + Mres) ’

where M,,;;, is the minimum mass of haloes which are able to form starsidndrep-

resents the minimum increase in mass (either by accretiby arerger) of an object so

that it may be identified as a new halo. The fraction of cokalisaloes which are able to
form Popll and Poplll stars at redshiftare given by the following relations:

fHI(Ma Z) = %tan_l |: (22)

feonui(2) = —i /OO dM [1 — fur (M, z)]Mﬁn(M, ?)

m ]Mmin(z) aM ’
1 [ on(M, z

fcou,IH(Z) =—_ / dM fHI(Ma Z)Mg (2-3)
m Mmin(z) 8M

with feon1(2) + feonm(2) = feon(2). The quantityp,, is the comoving density of dark
matter anddn/0M is number density of collapsed objects per unit comovingwa per
unit mass range (Press & Schechter 1974).
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e Giventhe collapsed fraction, this model calculates thépection rate of ionizing photons

in the IGM as

(2.4)

) d feo, it d feon,mmt
Npn(2) = np [Nion,n = =

Nion
a T enIl g,

wheren,, is the total baryonic number density in the IGM aNgd,, 11 (Nion 1) is the num-
ber of photons from Popll (Poplll) stars entering the IGM paryon in collapsed objects.
The parametel;,, can actually be written as a combination of various otheaipters:

& dN, o dN,
Nion = €, fose / dv [ V} =em / dv [ "] , (2.5)
P VHI dM* P VHI dM*

wheree, denotes the star-forming efficiency (fraction of baryonthwi collapsed haloes
going into stars)/... is the fraction of photons escaping into the IGNIN, /d M. ] gives
the number of photons emitted per frequency range per urgs wisstars (which depends
on the stellar IMF and the corresponding stellar spectrumi)ca= e, f.... For Popll
stars with sub-solar metallicities having a Salpeter IMEha mass rangé — 100M,
we getNi, i1 =~ 3200¢r;, while for Poplll stars having a Salpeter IMF in the mass sng
1-— 100M@, we getNionm =~ 35000¢qq;.

In this Section, we takey, e;y; (or, equivalentlyNo, 11, Nion, 1) 10 be independent of
and M, which implies that the star-forming efficiencies and theape fractions do not
depend on the mass of the star-forming halo and also do nbteesvidowever, note that
the effectiveN,,,, (which is the appropriately weighted average/af,, ;1 and Niop 111)
evolves withz

dfeoln,r dfeoln, 111
Nion1=5 + Nion, =3,

dt
dfeolr 11 + dfeoll 111 (2'6)
dt dt

Nion(Z) =

At high redshifts, we expeetf.on/dt — 0, henceN,o,(z) — Nionr, @and similarly at
low redshifts where chemical enrichment is widespread, &we W, (2) — Nion11-

We also include the contribution of quasars based on theemed luminosity function
atz < 6 (Hopkins et al. 2007); we assume that they have negligifécesf on IGM at
higher redshifts. They are significant sources of photons gt4 and are particularly
relevant for studying helium reionization.

2.1.2 Data sets and free parameters

Usually, the model is constrained by comparing with a vgradtobservational data, namely,
(i) redshift evolution of Lyman-limit absorption systemd.g), (ii) IGM Ly « and Ly optical
depths, (iii) electron scattering optical depth, (iv) tesrgdure of the mean intergalactic gas, and
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(v) cosmic star formation history (see Fig. 1.3). Howevearsiof the constraints on the model
come from a subset of the above data sets. In this work, wedniké to carry out a detailed

likelihood analysis of the parameters. Hence to keep thlysisaimple, the likelihood analysis
is done using only three particular data sets which are dssmlias follows (Mitra et al. 2011,
2012):

(i) We use estimates for the photoionization ralfges obtained using Ly forest Gunn-
Peterson optical depth observations and a large set of tydamical simulations (Bolton &
Haehnelt 2007). The error-bars in these data points takeaictount the uncertainties in the
thermal state of the IGM in addition to the observationabesiin the Lyy optical depth. The
data points have a mild dependence on the cosmological pteesiwhich has been taken into
account in this work. We also find that although the errostmarT'p; are highly asymmetric,
those onlog(I'pr) are relatively symmetric; hence we use valuedog{I'p;) and the corre-
sponding errors in our likelihood analysis. The photoiatian rate can be obtained in our
model fromn,(2) using the relation

Cpi(z) = (1 + 2)3/ dv At (23 V) 1pn (23 V) o (V) (2.7)
wherev the frequency of radiation; is the threshold frequency for photoionization of hydro-
gen andry (v) is the photoionization cross section of hydrogen.

(i) The second set of observations we have used is the CMB&rsdds. We should men-
tion here that, instead of CMB data, one can use the single \RRdata of electron scattering
optical depthr,; (Mitra et al. 2011). The reported value of this quantity degseon the back-
ground cosmological model used. The quantitycan be obtained from our model given the
global reionization history, in particular the comovingdity of free electrons.(z):

z[t]
Ta(z) = O'TC/ dt n. (1+ 2)* (2.8)
0

whereo is the Thomson scattering cross section.

However, ther, constraint is treated as a single data point which shouldthdéweght as a
simplification because CMB polarization observations iarprinciple, sensitive to the shape of
the reionization history (Burigana et al. 2008). We knowt ttiae amplitude of fluctuations in
the large-scale (lovl} E-mode component of CMB polarization provides the best camgton
7. Using the data from seven year WMAP and the assumption tdnteneous reionization,
Larson et al. (2011) find,; = 0.088 £0.015. However, recent theoretical and numerical studies
suggest that reionization is a fairly complex process. &t tase, the low-E-mode spectrum
depends not just om, but also on the detailed redshift evolution of the numbersdgrof
free electrons in the IGMg..(z). For fixed values of; and all other relevant cosmological
parameters, differences in(z) can affect the shape of the large-scatenode angular power
spectrum up to multipolds~ 40 — 50. Because of this dependence, measurements of thé low-
CFF should place at least weak constraints on the overall redbioin history in addition to the
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constraint on the total optical depth. Now, in our model, ¢thange in the parameté¢,,,(z)
directly corresponds to the changezif(z) i.e. in other words, changes ik, can affect the
shape of lowt CFE. So, incorporating the data sets for large-scale EE paltoiz signal in
our model can provide important information about the etrotuof V,,,, at = > 6 beyond the
information aboutr,;. Our hope is this may be most useful for distinguishing thelet® of
reionization with different ionization histories but samjgtical depth. Keeping this in mind,
it would be more prudent to work with the actual data relatethe angular power specta
and obtain constraints on reionization parameters; thetcaint onr, will be determined a
posteriori.

The moment we include thg,'s (TT+TE+EE) in our analysis, we realize that parameters
related to reionization may have strong degeneracies waimé of) the cosmological parame-
ters and hence constraints on reionization without vargimgmological parameters would be
misleading. On the other hand, including all the cosmolaigiarameters in the analysis would
increase the number of free parameters to a large numbeallystis found thatr, is strongly
degenerate with the normalization of the matter power spetts and also with the slope,
(Spergel et al. 2003). Hence, we carry out our analysis byingronly these two parameters
(in addition to the parameters related to reionization rjoaled keeping all the other cosmo-
logical parameters fixed to their mean value (for detaile, Méra et al. 2012). However, we
should keep in mind that the uncertainties in reionizatiestdny would possibly be slightly
underestimated as the parameters related to reionizatoslightly degenerate with the other
cosmological parameters.

(iii) Finally, we use the redshift distribution of LL8Ny,/dz over a wide redshift range
0.36 < z < 6 (Songaila & Cowie 2010). The data points are obtained usitagge sample
of QSO spectra which results in extremely small statisgécedrs. However, there are various
systematic effects arising from effects like the incideatproximate LLS and uncertainties in
the continuum. Usually, these effects contribute to ab0u2D% uncertainty in the data points.
The quantityd Vi1, /dz can be calculated in our model from the mean free path:

dNLL . C
&z VT Aap(DHE(1 T 2)

(2.9)

Note that inclusion of the Lyman-limit systems in the anays crucial for constraining the
parameten,, the normalization which determines the mean free path ofquis.

The free parameters for this model woulddpeery; (or, equivalentlyNiq, i1, Nion,111), Ao,
ns andog. We shall refer this model as the model with chemical feekbac

We then perform the likelihood calculations using thesedldata sets. The likelihood
function used in our calculations is given by

L x exp(—L) (2.10)
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where/L is the negative of the log-likelihood and estimated usirggréation
N,
1 obs obs __ «th
L= Z |jZ)¢ ja

5 } + L (2.11)

a=1 Ta
where.7, represents the set of,,,, observational data points related to photoionizationaate
distribution of Lyman-limit systems, i.ef,, = {log(T'p;), dNy/dz}, o, are the corresponding
observational error-bars antl is negative of WMAP7 (or PLANCK) log-likelihood function
for C'T, C'F andCFF up tol = 2000. We constrain the free parameters by maximizing the
likelihood function with a prior that reionization shoulé bompleted by = 5.8, otherwise it
will not match Ly and Ly forest transmitted flux data.

In this work, we calculate likelihoods using the code basedhe publicly available
COSMOMC (Lewis & Bridle 2002) code. Besides this, throughout we worka flat cold
dark matter model with a cosmological constahCOM) cosmology with the cosmological
parameters given by the WMAP7 (based on RECFAST 1.5 (Seager #3999, 2000; Wong
et al. 2008) and version 4.1 of the WMAP likelihood) best-&itues:2,, = Qpy + 2, = 0.27,
Qp =1—Q,,, Bh% = 0.02249, h = 0.704 anddn,/dIn k = 0 (Larson et al. 2011). Note that,
here in all casesy, is a derived parameter and the error on obtaining this giyastslightly
underestimated because of neglecting the degeneracwesdret, and other cosmological pa-
rameters.

2.1.3 Reionization constraints

The results of our likelihood analysis using the reion@atmodel described above are sum-
marized in Table 2.1. The evolution of various quantitiasnmdels which are allowed within
95% confidence limitis shown in Fig. 2.1.

The top-left panel of the figure shows the evolution of theeeffre V;,, as given by
equation (2.6). One can see that the quantity attains aamungtluex~ 10 at z < 6 which
is a consequence of the fact that the photon emissivity atetlepochs are purely determined
by Popll stars. However at higher redshifts, the valuévgf, increases with: because of the
presence of Poplll stars. It is clear that the data cannottee fivith Popll stars with constant
Nion11 @lone, one requires a rise M., at higher redshifts. For the kind of chemical feedback
employed in the model, the rise is rather smooth and gradual.

The mean values of parameters quoted in Table 2.1 are sitoitae best-fit model de-
scribed in Choudhury & Ferrara (2006b) and hence the cavrelipg reionization history is
similar to those described in the same paper. This can bdyeadfied from Fig. 2.1 where
we see that reionization starts arounet 15 driven by Poplll stars, and it is 90 per cent com-
plete byz ~ 7.3. After a rapid initial phase, the growth of the volume filleglibnized regions
slows down at < 10 due to the combined action of chemical and radiative feddbaaking

http://cosmologist.info/cosmomc/
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Figure 2.1: The marginalized posteriori distribution ofieas quantities related to reionization
history for a model with chemical feedback (Choudhury & Bear2006). The solid lines cor-
respond to the model described by mean values of the pareawétde the shaded regions cor-
respond to 2 limits. The points with error-bars denote the observatidasa pointsTop-left:
the evolution of the effectivéV,,,(z); Top-middle:the hydrogen photoionization raig(z)
along with the constraints from Bolton & Haehnelt (200Tap-right: the LLS distribution
d Vi1 /dz with data points from Songaila & Cowie (201@pttom-left:the volume filling fac-
tor of Hll regionsQur(2); Bottom-middle:the global neutral hydrogen fractiany; (z) with
observational limits from QSO absorption lines (Fan et A0&, filled square), Ly emitter
luminosity function (Kashikawa et al. 2006; open trianglafl GRB spectrum analysis (Totani
et al 2006; open square). Also shown the constraints usirgg#p statistics on QSO spectra
(Gallerani et al 2008a; open circles) and GRB spectra (@allest al. 2008Db; filled circle);
Bottom-right: (a) TT, (b) TE and (c) EE power spectra with the data pointenfM¢MAP7
(Larson et al. 2010).
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Parameters Mean value 95% confidence limits
e 0.003 [0.002, 0.006]
€ 0.012 (0.001, 0.031]
Ao 3.278 [1.512, 5.443]
ng 0.969 (0.956, 0.983]
s 0.812 (0.795, 0.834]
Tl 0.084 [0.066, 0.107]
2(Qumr = 0.5)  9.467 [8.050, 11.120]
2(Qun = 0.99)  6.820 [5.800, 8.017]

Table 2.1: The marginalized posterior probabilities wi#®C.L. errors of all free parameters
(top five parameters) and derived parameters (from the pexthmeter down) for the reioniza-
tion model with Popll and Poplll stars.

reionization a considerably extended process completihgad z =~ 6. Our likelihood analysis
shows that reionization is 50 (99) % complete between rédshi=8.1 — 11.1 (5.8 — 8.0) at
95% confidence level. Hence, under the assumptions made maklel, we find that comple-
tion of reionization cannot occur earlier thamx 8, essentially ruling out models of very early
reionization. The reason for this is that the number of pheto the IGM at: = 6 is very
low as implied by the Ly forest data. In order to take the data point into accountpntbdels
typically cannot have too high a emissivityat- 6. On the other hand, the constraintsgn
(or equivalently the CMB data) imply that reionization mubst initiated early enough. Thus
the IGM has to go through a gradual reionization phase. Asiseudsed above, the gradual
reionization is maintained by a combined action of radeatimd chemical feedback effects.

2.2 Principal component analysis

Principal component analysis (PCA) has been known as orfeeahbst valuable results from
applied linear algebra. PCA is used abundantly in all forfrenalysis, because it is a simple,
non-parametric method of extracting relevant informafrom confusing data sets. With mini-
mal additional effort PCA provides a road map for how to redacomplex data set to a lower
dimension to reveal the sometimes hidden, simplified atredhat often underlies it. The main
aim of principal component analysis is to compute the mostmmgful basis to re-express a
noisy data set. The hope is that this new basis will filter batrioise and reveal hidden struc-
ture. So, PCA is basically a variable reduction procedures useful when we have obtained
data on a number of variables (possibly a large humber olbkas), and believe that there is
some redundancy in those variables. Because of this redapdae believe that it should be
possible to reduce the observed variables into a smallebauof principal components (arti-
ficial variables) that will account for most of the variancethe observed variables. The main
advantage of this method is that the resulting componeitdisplay varying degrees of corre-



46 Model-independent constraints on reionization

lation with the observed variables, but are completely amtated with one another. Because it
is a variable reduction procedure, principal componenlyaigis very similar in many respects
to exploratoryfactor analysis However, there are significant conceptual differences/éen
these two procedures (Hatcher 1994). In this section, wik @hidine the principal component
method and introduce the notation that we will use througtias chapter.

2.2.1 Motivation

It is most likely that the star-forming efficiencies and geeéractions and hencd¥,,,, are func-
tions of halo mass and redshift; however since the depengieare not well understood, they
were taken to be constant for each considered stellar pigulia the previous Section. The
guestion one can ask is that how would the constraints onigtion histories of the previous
Section change when the evolution/g{,, is taken into account. Ideally one would like to do
a rigorous likelihood analysis withv;,,, varying with z and see the possible ranges of reioniza-
tion histories consistent with available data. One possdplproach could be to parameterize
Nion(z) using some (known) function and constrain the parametetiseofunction (Pritchard
et al. 2010). However, it is possible that the reionizationstraints thus obtained could depend
on the nature of the function chosen. In addition, it is netaclas to how many parameters
should be used to parameterize the function.

An alternative approach is to assumg,, (=) to be completely arbitrary and decompose it
into principal components. These principal componentsragsly filters out components of the
model which are most sensitive to the data. Obviously, tbesgonents are the ones which can
be constrained most accurately, while the others cannobbe go. This principal component
analysis (PCA), thus, should give an idea as to which aspécts,, can be constrained with
available data. This implies that one should get a clear asaut the optimum number of
parameters required to modgl,, to fit the data most accurately.

In order to carry out such analysis, we modify the model deedrin the previous Section
in following respects:

e We takeN,,, to be a function ot. Unlike in the previous Section, we do not explicitly
assume the presence of two population of stars but rathenahadie only one stellar
population; any change in the characteristics of these staer time would be accounted
for in the evolution ofN,,,,.

e Clearly, the chemical feedback prescription has to abasdiamthis model, as there are
no two different populations of stars anymore. The chenfemdback is rather taken into
account indirectly by the evolution d¥;,,. However, we retain radiative feedback in the
model given its weak dependence on the specific stellar popualproperties.

In recent years there has been a wide use of this method inobogital data analysis.
The first set of works were mostly related to CMB data wherg, &fstathiou & Bond (1999)
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and Efstathiou (2002) used principal component analysiSMB anisotropy measurements to
investigate degeneracies among cosmological paramé&tadeta et al. (2005) applied PCA to
study how accurately CMB observables can constrain infigt@iential in a model-independent
manner. Leach (2006) used PCA techniques for measuringtdegsfrom scale-invariance in
the primordial power spectrum of density perturbationsggiosmic microwave background
(CMB) C; data. Mortonson & Hu (2008a) developed a model-independetiiod to study the
effects of reionization on the large-scale E-mode poléiondor any reionization history with
the help of principal component analysis followed by thdieawork by Hu & Holder (2003).
In the context of weak lensing surveys, Munshi & Kilbinged(®) studied the degeneracies be-
tween cosmological parameters and measurement errorctemic shear surveys using PCA.
The PCA has also been employed as an effective tool in thexooft type la supernova obser-
vations to constrain the equation of state of dark energydidu & Starkman 2003; Huterer &
Cooray 2005; Crittenden et al. 2009; Clarkson & Zunckel 2010

2.2.2 Brieftheory of PCA

Consider a set of,;,; observational data points labeled®@y, o = 1,2, ..., ny. Recall thay,
can represent combinations of different data sets, e.guimcase photoionization raig;, the
redshift distribution of Lyman-limit system&Vy,;,/dz and the large-scale E-mode polarization
angular power spectrud™® (I < 23).

Now, let us assume that our model contains an unknown fuméfjg, (=), which we wish

to constrain through observations. We can divide our enéidshift interval|z,i,, Zmax] INtO
(equal) bins of widthA =z and represen¥,,, (z) by a set ofn,;,, discrete free parameters

Nion(zi) = Ny; i =1,2, ..., i (2.12)
where
2i = Zmin + (1 — 1)Az (2.13)
and the bin width is given by
Ay = Zmax T Zmin, (2.14)
Nbin — 1

In other words, we have modelled reionization using theevaliuV;,,, in each redshift bin. We
can also include other free parameters apart fAgg( z;) in the analysis, like the normalization
of the mean free path,, cosmological parameters etc. We will address the inctusfamther
parameters later in this Section.

The next step is to assume a fiducial model g, (z;), which we denote byvid (z)).

The fiducial model should be chosen such that it is close tdtthe” model. The departure
from the fiducial model is denoted by

INion(2i) = Nion(2:) — Nﬁd(zz‘) =0N;. (2.15)

ion
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We can then construct the;, x n;, Fisher matrix

Nobs 1 agg{h 6ggh

E' = DY 9
J - O'C% 6NZ aNj

(2.16)

whereG'! is theoretical value of,, modelled using théV; ando,, is the observational error on
G.. The derivatives in the above relation are evaluated at doeifil modelV; = Nfd.2

Once the Fisher matrix is constructed, we can determinegenealues and correspond-
ing eigenvectors. The principal value decomposition isitipgen by the eigenvalue equation

Mbin
> FySie = S (2.17)

7j=1
where )\, are the eigenvalues and the eigenfunctions corresponadihg are thek-th column
of the matrixsS;;., these are the principal components\gf They can be thought of a function
of z i.e.,SZ'k = Sk(zl)

The eigenvalues; are usually ordered such that > A, > ... > ), , i.e., \; corre-
sponds to the largest eigenvalue whilg;, the smallest. The eigenfunctions are both orthonor-
mal and complete and hence we can expand any functierasflinear combinations of them.
In particular we can expand the departure from the fiduciadehas

Mbin Mbin

N; = kask(zz‘)§ my = Z5Nion(zi)5k(zi) (2.18)
=1 i—1

wherem,, are the expansion coefficients with, = 0 for the fiducial model. We can now
describe our model by the coefficienis, rather than the original parametets;. The advan-
tage is that, unlikéV;, the coefficientsn, are uncorrelated with variances given by the inverse
eigenvalue:

(m; mj) =

The accuracy with which we can determin®,,, at a particulat; is determined by the Cramer-
Rao bound

Nbin 2
lm>>zs% (2.20)
k=1

So, the largest eigenvalues correspond to minimum varidrteeeigenvalues which are smaller
would essentially increase the uncertainty in determiniNg,(z;). Hence, most of the infor-
mation relevant for the observed data poidtsis contained in the first few modes with the

2It is worthwhile to mention that any analysis based on thédfisnatrix F;;, in principle, depends on the
fiducial model chosen. The principal component analysischviessentially involves diagonalizing;, is thus
dependent on the choice 84 too. In this sense, the PCA is not completely model-indepand
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largest eigenvalues. One may then attempt to reconstreidtitittiond V., (z;) using only the
first M < ny;, modes:

M
SN =" myuSi(z:). (2.21)
k=1

However, in neglecting the last;, — M terms, one introduces a bias in determindag, (z;).
One has to then use a carefully chogdno perform the analysis; the choice usually depends
on the particular problem in hand.

In realistic situations, there will be other free paramef@part fromm, or JV;) in the
model. Let there be.,. number of extra parameters other thap this means that we are now
dealing with a total of,; = npin + nexe Parameters. In this case, we can still form the Fisher
matrix of n.,; X nior dimensions which can be written as

F B
F= ( ar b ) (2.22)

whereF is theny;, X nyi,-dimensional Fisher matrix for theV;, F’ is then. X ne.-dimensional
Fisher matrix for the other parameters adds an,;, X n.-dimensional matrix containing
the cross-terms. One can then invert the ahfvi® obtain the corresponding Hessian matrix
T = F~L. Following that, one simply retains the sub-bldckorresponding té N; whose prin-
cipal components will be “orthogonalized” to the effect bétother parameters. The resulting
“degraded” sub-block will be (Press et al. 1992)

F=T'=F-BF 'B” (2.23)

In this work we need to use the above formalism to marginalzz the normalization of
the mean free pathy, cosmological parameters andog. So, in this casej. = 3.

2.3 Constraining reionization scenario using PCA

So far, we have outlined the basic formalism of PCA and sttiteédvantages of applying this
non-parametric approach to the datasets related to reitwre In this section, we shall see how
this PCA helps us finding the useful constraints on reiofonagcenario.

2.3.1 Fiducial model and the Fisher matrix

The first task is to make an assumption for the fiducial moggl(»). The model should match
the 'p; andd Ny, /dz data points at < 6 and also produce,; or the CMBR angular power
spectra in the acceptable range. Unfortunately, the sshpt@del with/NV;,, being constant
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Figure 2.2: The Fisher matrik;; in thez — z plane.

does not have these requirements (recall models with orpyl Btars were disfavored in the
previous Section). We have found earlier that the effectiyg should be higher at early epochs
dominated by Poplll stars and should approach a lower value~a 6 determined by Popll
stars. In this work we tak&/fid to be the model given by mean values of the free parameters in
Section 2.1.3.

The choice of thisVid may seem somewhat arbitrary as there could be many othes form
of N,,n Which may match the data equally well. We have chosen thig tous fiducial model
because of the following reasons: (i) it is obtained from ggutelly-motivated model of star
formation which includes both metal-free and normal st@iksit is characterized by a higher
N, at higher redshifts and hence produces a good match wittrélift observations considered
in this work, and (iii) the transition from higher to lowerluas is smooth (i.e., there is no abrupt
transition or sharp features). The final conclusions of wusk (to be presented later in the
Section) would hold true for any fiducial model having thége¢ properties (though the actual
functional form might be different). The match with the d&aaour fiducial model is similar
to Fig. 2 of Choudhury (2009).

We have run the reionization models over a redshift rdagg : zmax] = [0 : 30], with
a bin width of Az = 0.2. This givesny;, = 151. We have checked and found that our main
conclusions are unchanged if we vary the bin width betwe&r@5.

The Fisher matrix;; defined in equation (2.16) is evaluated at the fiducial modélia
shown as a shaded plot in the- z plane in Fig. 2.2. Firstly, the components of the the matrix
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Figure 2.3:Left panel The inverse of eigenvalues of the Fisher matrjx which essentially
measures the variance on the corresponding coefficientnédes larger than 8, the eigenvalues
are extremely smalRight panel The first 8 eigenmodes of the Fisher matrix, i$.(z); k =
1,...,8.

vanish forz < 2 because there are no data points considered at these tedsh# plot shows
different characteristics faf;; at redshift interval@ < z < 6 andz > 6. Forz < 6, the values
of F;; are considerably higher because it is determined by thetséysof I'p; andd Ny, /dz

on N,,, and it turns out thal'p; is extremely sensitive to changesiq,,. One can see a band-
like structure in the information matrix which essentiatigrresponds to the presence of data
points. The regions where data points are sparse (or nsteex), the value of’; is relatively
smaller, implying that one cannot constraif,, from the data in those redshift bins. On the
other hand, the information at> 6 is determined by the sensitivity ef, or equivalentlyC*

on Ni,n,. Once can see that; — 0 at the highest redshifts considered; this is expected Isecau
the collapsed fraction of haloes is negligible at those hi#gtdsand hence there exist no free
electrons to contribute ta,. We find thatF;; is negligible forz > 14; thus it is not possible
to constrain any parameters related to star formation shiftd > > 14 using the data sets we
have considered in this work.

After diagonalizingF;;, we obtain its eigenvalues and the corresponding eigensnode
In the left panel of Fig. 2.3, we show the inverse of the first farger eigenvalues i.e., the
variances of the corresponding modes. Since the eigers/ale sorted in ascending order,
the variances are larger for higher modes. For madesS, the eigenvalues are almost zero
and the variances are extremely large. This implies thaethars onN;,, would increase
dramatically if we include modes > 8. The corresponding first 8 eigenmodes (i.e., those
which have the lowest variances) are plotted in the righepahFig. 2.3. We find that all
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the eigenmodes tend to vanishzat> 14, which is obvious because df;; being negligible
at these redshifts. We can see a number of spikes and tromghs first four modes whose
positions correspond to the presence of data pointsfpandd /Ny, /dz at2 < z < 6. The last
four modes contain the information about the sensitivitg’$f. This sensitivity is maximum
aroundz ~ 7— 8 and decreases at> 8 due to unavailability of free electrons; it also decreases
at z < 7 because of the fact that reionization is mostly completetiege redshiftsay, — 1)
and hence changing,., does not affect the value ¢f** significantly at this redshift range.
The modes¥$ 8) with smaller eigenvalues i.e. large variances introduggehuncertainties in
the determination oiV;,,. These modes are characterized by sharp features at dtffetshifts
and they do not contain any significant information aboutawerall reionization hence do not
contain any meaningful information about the reionizatistory.

2.3.2  Optimum number of modes

The next step in our analysis is to decide on how many mddes use. In the case where
M = ny;,, all the eigenmodes are included in the analysis and nonrdtion is thrown away.
However, this would mean that modes with very small eigaresl(and hence large uncer-
tainties) are included and thus the errors in recoveredtdigsnwould be large. Reducingy/

is accompanied by a reduction in the error, but an increabadoe of getting the recovered
guantities wrong (which is known as bias).

It is thus natural to ask what could be the optimum valué\bffor calculations. The
most straightforward way, which is used often, is to detesnit by trial and error, i.e., more
and more terms are added till one gets some kind of conveegenihe recovered quantities
(Mortonson & Hu 2008a).

One possible approach is to use the trial-and-error methbxl 8/, i.e. assume an under-
lying model which is different from the fiducial model but rohés the current data sets quite
accurately and study its recovery using only first few modlEsng this method we found that,
one can recover the input model quite reasonably by consgléne firstA/ = 8 modes (see
Mitra et al. 2011 for a detailed discussion about this apgmhaA slightly more formal ap-
proach is to estimaté/ by minimizing the quantity Risk which is defined as Wasseriaal.
(2001)

Mbin Nbin

R=Y" (5N§M>)2 +y <<5N§M>>2> (2.24)

The 1st term in the RHS is the bias contribution which arisesifneglecting the higher order
terms, and the 2nd term is the uncertainty given by Cramer{itand which rises as higher
order terms (i.e., those corresponding to smaller eigeegilare included:

<(5NZ_(M>>2> > iw: %:) (2.25)

k=1
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Figure 2.4: Dependence of Risk, error and bias as defineduateq (2.24) on the number of
modes)M/. The blow-up of a region arount = 8 is shown in the inset which shows that there

is a clear minimum in the Risk at/ = 8.

The dependence of the Risk on the number of mddds shown in Figure 2.4. In addition, we
also show the plots of bias [first term of the rhs in equatioB4} and the error [second term of
the rhs in equation (2.24)] are also shown. It is clear thavtiue of error is small for lower/
which is a direct consequence of small eigenvalues. The shaots up drastically for larger
M. On the other hand, the bias is higher for smélland decreases gradually as more and
more terms in the summation are included. The Risk, whichastum of these two quantities,
has a clear minimum a/ = 8 (which is more clear from the inset in Figure 2.4). Hence we
conclude that\/ = 8 is the optimum value to be used.

However, both methods described above, involve the assomgdtan “underlying model”,
hence the determination éf using this method would be model-dependent. An alternate pr
scription is to use Akaike information criterion (Liddle @D)

AIC = \2,, +2M (2.26)
where smaller values are assumed to imply a more favored Im@imilarly, one can also
use the Bayesian information criterion defined BYC = 2., + M Inng,. The utility of
these criteria over the Risk is that they are computed witknawing the underlying solution
(Clarkson & Zunckel 2010). The results using BIC typicalegsmooth reconstructions by
underestimating the errors. The AIC, on the other hand,aenchore featured reconstructions
at the expense of large errors. Howeverpgs is fixed for our current analysis, the minimum
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value of AIC corresponds to the minimum of BIC, hence we singalrry out our analysis with
only AIC. Note that there is no reason to select one partiaeonstruction, the minimum
of AIC can be accompanied by an increased chance of gettegettonstructed parameters
wrong. According to Clarkson & Zunckel (2010), one succalsstrategy is to select different
M which are near the minimum value of AIC and amalgamate thamalbgat the Monte Carlo
stage when we compute the errors. In this way, we can redecmlierent bias which exists
in any particular choice of/. We have examined that, in our case, the family of different
reconstructions, starting frod¥ = 2, which satisfy

AIC < AICuin + K (2.27)

wherex = 10 (which corresponds td/ = 8), produces very solid results. For alternative
data sets, the value af can be adjusted. The choice of this parameter must be treated
prior. The importance of using the AIC is that the analysi& fi@comes non-parametric. The
method has been successfully used in reconstructing theet@rgy equation of state using
SN-la observations (Clarkson & Zunckel 2010).

2.3.3 Monte-Carlo Markov Chain analysis on PCA modes

The constraints on reionization are obtained by perforrainpnte-Carlo Markov Chain (MCMC)
analysis over the parameter space of the optimum number Afdmaplitudes,\y, n, andos.
Other cosmological parameters are kept fixed to the WMAP#fitaslues (see Section 2.1.2).
To avoid the confusion about the correct choice of number ades, we perform the MCMC
analysis for PCA amplitudes taking frofd = 2 to M = 8, all of which obey the AIC criterion
(equation 2.27). We then weight each choicelbfequally and fold the corresponding errors
together to reproduch®’;,,, and other related quantities along with their effectiveesrIn order

to carry out the analysis, we have developed a code basee@ puliticly available COSMOMC
(Lewis & Bridle 2002). We run a number of separate chainsyjnar between 5 to 10) until
the Gelman and Rubin convergence statistit.;scorresponding to the ratio of the variance of
parameters between chains to the variance within each,catisfies? — 1 < 0.01. Also we
have used the convergence diagnostic of Raftery & Lewis terdene how much each chain
must be thinned to obtain independent samples. Both of #xeseomputed automatically by
COSMOMC.

We have shown the evolution of various quantities relate@itnization using the AIC
criterion for M = 2to M = 8 in figure 2.5. The solid lines represent the mean model while
the shaded region correspond to 95% confidence limits. Fopadson, we have also plotted
the fiducial model (short-dashed) as described in Secti®i 2We find that the fiducial model
is within the 95% confidence limits for the whole redshift gan Note that all the quantities
are highly constrained at < 6, which is expected as most of the observational information
related to reionization exists only at those redshifts. @€hers also decrease at> 14 as
there is practically no information in the PCA modes and kealt models converge towards
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Figure 2.5: The marginalized posteriori distribution ofigas quantities (same as Fig. 2.1)
related to reionization history obtained from the PCA ushgAIC criterion with first 8 eigen-
modes. The solid lines correspond to the model describeddanmaalues of the parameters
while the shaded regions correspond te Bmits. The points with error-bars denote the ob-
servational data points. In addition, we show the propguiahe fiducial model (short-dashed
lines) as described in Section 2.3.1.
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Parameters Mean value 95% confidence limits

Tel 0.093 [0.080,0.112]
2(Qun = 0.5) 10.206 [8.952,11.814]
2(Qur = 0.99) 7.791 [5.800, 10.427]

Table 2.2: The marginalized posterior probabilities wi?® C.L. errors of all the derived
parameters for the reionization model obtained from theeturanalysis using AIC criterion
for WMAP7 data.

the fiducial one. The most interesting information regagd&ionization is concentrated within
a redshift rangé < z < 14.

It can be seen from the plot df,..(z) (top-left panel of figure 2.5) that such quantity
must necessarily increase from its constant value-<at6 which confirms our finding from the
earlier analysis using a model with chemical feedback (84c3). This rules out the possibility
of reionization with a single stellar population having rerolving IMF and/or star-forming
efficiency.

From the plot of'p;(2) (top-middlepanel), we find that the mean model is consistent with
the observational data at< 6, as expected. The errors corresponding to 95% confidends lim
are also smaller at this epoch. The photoionization ratéh@fiducial model shows a smooth
rise atz > 6 reaching a peak around~ 11; however, the model described by the mean values
of the parameters shows a much sharper rise and much pranpeak around ~ 6.5. The
prominent peak-like structure is also present in the plet/¥f;, /d= (top-right panel).

From the plot of@Qu(z) (bottom-leftpanel), we see that the growth @fy;(z) for the
mean model is much faster than that of fiducial model at instiages, though the completion
of reionization takes place only at~ 6. One can also find that reionization can be completed
as early as ~ 10.4 (95% confidence level). Similarly,;;(z) (bottom-middiganel) decreases
much faster than the fiducial onetak =z < 12 and then smoothly matches thed_forest data.

Finally, we have shown the values of @), (b) C;"* and (c)C[** for the mean model
in the bottom-rightpanel of this figure, which is almost the same as the fiducialehdSo the
WMAP7 EE polarization data alone cannot distinguish betwtee various models of reioniza-
tion. One can see that, our mean model includes most of the WiM#est-fit CMB data within
the error bars, except for a fe@"" data points. Note that these discrepant points &t 15
cannot be reconciled by aphysicalreionization model, implying that the spectra contribatio
might come from some other cosmological process, as e.gitafianal lensing.

The mean values and the 95% confidence limits on the paraswditined from our anal-
ysis are shown in the Table 2.2. We have checked that, ouididuodel which is characterized
by m; = my = mg = my = ms = mg = my; = mg = 0 and the best-fit values of, n, andos,
is included within the 95% confidence limits of those pararsetorresponding to our current
analysis using AIC criterion. We find that reionization i¥§b@omplete between redshifts 9.0
—11.8 (95% confidence level), while it is almost (99%) cortgleetween redshifts 5.8 — 10.4
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Parameters 2-errors
WMAP7 PLANCK (forecast)
Tel 0.032 0.009
2(Qum = 0.5) 2.862 1.117

Table 2.3: The 95% C.L. errors of derived parameters foréimization model obtained from
the current analyses using AIC criterion for WMAP7 and siatedl PLANCK data.

(95% confidence level). Note that the lower limit on the reftit reionization (5.8) is imposed
as a prior on the parameters. Here the mean model fehows a higher value than the best-fit
WMAP7 value which is arising from relatively complex reiaation histories giving non-zero
ionized fractions at high redshifts.

We have checked that, if we take any particular choicé/ofsay M = 7 or 8, our main
findings are almost the same as the above results, excephwitielp of AIC criterion, we have
reduced the inherent bias which is present for that spedificce of M/ and got a mean model
which matches the current data sets quite reasonably.

To summarize, we find that using WMARZFE data set we get a higher; than the
WMAP7 best-fit value. So a wide range of reionization higsris still allowed by the data
we have used. Reionization can be quite early or can be dradddate, depending on the
behavior of N,,,,(z). Hence, using these data, it is somewhat difficult to putngtreonstraints
on chemical feedback and/or the evolution of star-formiffigiencies and/or escape fractions.

Given that the WMAP data allow a large range of reionizatiardets, it is worthwhile
computing the level of constraints from the large-scalapoation measurements by PLANCK.
To forecast the errors for parameters related to the reatioiz history, we first generate the
simulated PLANCK data of CMB power spectra for our fiducialdabup tol < 2000 using the
exact full-sky likelihood function at PLANCK-like sensitty (Perotto et al. 2006; Galli et al.
2010). We assume that beam uncertainties are small andrbattainties due to foreground
removal are smaller than statistical errors. More seresttbservations will also require an exact
analysis of non-Gaussian likelihood function, here forginity we assume isotropic Gaussian
noise and neglect non-Gaussianity of the full sky (Lewis®G@hd try to see what we can learn
about the global reionization history from PLANCK-like s#ivity. We then repeat the MCMC
analysis over the same parameter space using this simulatadLike the previous case, here
we have also varied the number of modes included in the asdhpsn two to eight using the
AIC criterion in order to study the effect of truncating th€EA expansion for the recovery of
various quantities related to reionization.

In the Table 2.3, we have shown the comparison of thee2rors on the derived parame-
ters obtained for WMAP7 data and the same for forecasts fiomlated PLANCK data. It is
clear that the uncertainties on all the parameters relategionization would be reduced con-
siderably. In particular, we find that we should be able tost@in the redshift range at which
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Figure 2.6: Same as Figure 2.5 but for PLANCK likelihood.

reionization was 99% (50%) completed to about 3 (1). Thigdarty a significant improvement
over what can be achieved through current data sets.

In Figure 2.6, we have illustrated the recovery the same tgiemas mentioned in the
earlier section using the AIC criterion taking up to 8 eigea®s for the simulated PLANCK
data. For comparison, here also we have plotted the resultisd fiducial model (short-dashed
lines) along with the mean results (solid lines) from MCMQlysis with shaded 2- limits.
We find that our main results are in quite reasonable agreewidnthose obtained from the
WMAP data, except that all the 2{95 %) limits are reduced remarkably for all redshift range.

We thus find that we can constrain the global reionizatiotohysquite better using the
PLANCK forecast data sets, especially the o limits for Qg reduces significantly for this
case. However there is no room to substantially improve dmstraints using large-scale
modes for WMAP7 data sets and one still has to rely on othexstyyp data for understanding
reionization.
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2.4 Discussion and summary

We have studied constraints on reionization history usimgparametric methods. To model
the unknown functionV,,,(z), we have applied the principal component method using three
different sets of data points - the photoionization rEte(z), the LLS distributiond Ny, /dz

and WMAP7 data f0|ClEE for [ < 23. Following that, we have obtained constraints on the
reionization history using MCMC techniques. We have alsxube Akaike information crite-

ria (AIC) to extract the underlying information about the #@0del and reduce the intrinsic
bias present in any particular choice of fiducial model. Weehapplied our method to the
WMAP7 data as well as the simulated PLANCK data to forecastrgion reionization.

Our main findings can be summarized as follows -

1. We have found that the information abab,,(z) or equivalently the star formation
and/or chemical feedback lies in the first eight eigenmode$i® Fisher information
matrix distributed over the range < z < 14. Using the higher modes costs higher
errors.

2. The angular power spectfa of CMB observations contain more information than treat-
ing 7, as a single data point.

3. The constraints at < 6 are relatively tight because of the QSO absorption line.data
the other hand, a wide range of historieg at 6 is allowed by the data. Interestingly, it
is not possible to match the available data related to redion with a constanv,, (z)
over the whole redshift range, it must increase at 6 from its constant value at lower
redshifts.

4. With the data from WMAP7, we constrain080 < 7, < 0.112 (95% CL) and also
conclude that reionization is 50% complete betw@®n< z(Qun = 0.5) < 11.8 (95%
CL) and is 99% complete betweér8 < z(Qu = 0.99) < 10.4 (95% CL).

5. With the forthcoming PLANCK data on large-scale polatia (ignoring effect of fore-
grounds), the: > 6 constraints will be improved considerably, e.g., the o error on
7.1 Will be reduced to 0.009 and the uncertaintiesz0Qu;; = 0.5) andz(Qunr = 0.99)
would be~ 1 and 3 (95% CL), respectively. The errors could be somewhgetaf the
effect of foregrounds are incorporated into the analysis.nfore stringent constraints on
reionization at: > 6, one has to rely on data sets other than CMB.

Finally, we try to indicate the data sets (other than CMB)cahkhtan possibly be used to
better the constraints on reionization. Since most of th@rmation on reionization at < 6
come from QSO absorption lines, it is natural to expect morstraints from such observations
atz > 6. In addition, spectra of GRBs, which are being observed athnfugher redshifts
(Salvaterra et al. 2009; Tanvir et al. 2009; Cucchiara e2@l.1) could also provide additional
constraints. The difficulty is that the transmission regiwmhich are the sources for most of the
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information) are almost non-existent at higlspectra, thus making the analysis more difficult.
Additional constraints oy at high redshifts are expected fromd.gmitters (Taniguchi et al.
2005; Kashikawa et al. 2006; lye et al. 2006; Vanzella et@l12 Lehnert et al. 2010), however
they too are affected highly by systematics. On the posdigle, we feel that even a relatively
weak constraint omry; at z ~ 7 — 10 could be crucial in ruling out a subset of reionization
models as the value df,.,(z) is most uncertain at these redshifts.

We also now have observations of Lyman-break galaxies #ll10 (Bouwens et al. 2007,
2011b,a). The luminosity function of such galaxies wouldbpful in constraining properties
of the galaxies like the IMF and/or the star-forming effi@gnUnfortunately, that would still
leave out the escape fraction of ionizing photons, whichaiaran uncertain parameter till date.

Other indirect observations that could help in constrajnmgionization are the tempera-
ture measurements at< 6 (Schaye et al. 2000; Ricotti et al. 2000; McDonald et al. 2001
Zaldarriaga et al. 2001; Cen et al. 2009). The temperatwkigon can retain memory of how
and when the IGM was reionized and thus could provide aduitioonstraints on reionization.
Whatever be the case, the principal component method Beschiere, could be a promising
tool for extracting the information from the future datasseta model-independent manner.



CHAPTER 3

ESCAPE OF IONIZING RADIATION
FROM GALAXIES

In this chapter, we will extend our knowledge to find some & tiucial but still unknown
parameters related to reionization scenario with help @sémi-analytical model described in
the previous chapter. As we mentioned earlier in Sectior2 1The escape fractiotf,s., of ion-
izing photons from high-redshift galaxies is a key paramgteinderstand cosmic reionization
and star formation history. Yet, in spite of many effortgginains largely uncertain. Here we
shall propose a novel, semi-empirical approach based anuataneous match of the most re-
cently determined Luminosity Functions (LF) of galaxiesha redshift rangé < z < 10 with
reionization models constrained by a large variety of expental data and obtain the evolution
of some of these critical parameters.

3.1 Introduction: Challenges for determining escape frac-
tion

One of the most crucial issues regarding the evolution efrgalactic medium (IGM) and cos-
mic reionization is the escape fractiofi,., of ionizing photons from high-redshift galaxies.
This parameter remains poorly constrained in spite of theyntlaeoretical and observational
attempts made in past few years. The difficulties largelgeafiom the lack of a full under-
standing of the physics of star formation, radiative transind feedback processes, and from
uncertainties on the properties of the higlgalaxy interstellar medium (ISM); as a result, de-
rived values off... span the large rande01 — 1 (Fernandez & Shull 2011). Observationally,
fesc Can be reliably estimated only at redshiitss 3 (Leitherer et al. 1995; Dove et al. 2000;
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Heckman et al. 2001; Ciardi et al. 2002; Giallongo et al. 208&nandez-Soto et al. 2003;
Inoue et al. 2005; Bergvall et al. 2006; Shapley et al. 20@812¢lla et al. 2010). On the other
hand, theoretical studies (Wood & Loeb 2000; Razoumov & Sembarsen 2006; Gnedin

2008; Gnedin et al. 2008; Srbinovsky & Wyithe 2010; Razou&@®ommer-Larsen 2010; Ya-

jima et al. 2011; Haardt & Madau 2011; Fernandez & Shull 2&hlen & Faucher-Giguére

2012) have been rather inconclusive so far, as illustrayethéir often conflicting results in

terms of f.. values and trend with redshift and galaxy mass.

One key aspect of reionization lies in its close couplinghwite properties and evolu-
tion of first luminous sources (for reviews, see Loeb & Ba&k&001; Barkana & Loeb 2001;
Choudhury & Ferrara 2006a; Choudhury 2009). Observatidnsosmic microwave back-
ground (CMB) and highest redshift QSOs put very tight caists on the reionization history;
these allow to construct self-consistent models of strectarmation (Choudhury & Ferrara
2005; Wyithe & Loeb 2005; Gallerani et al. 2006; Choudhury &fara 2006b; Dijkstra et al.
2007; Samui et al. 2007; lliev et al. 2008; Kulkarni & Choudh@011). The most favorable
model, which is consistent with the Thomson scatteringoaptiepthr,; = 0.088 + 0.015 from
WMAP7 data (Larson et al. 2011) and the Gunn-Peterson ¢mtegah evolution from QSO
absorption line experiments at> 6 (Fan et al. 2006), suggests that reionization is an extended
process over the redshift range< z < 15 (Choudhury & Ferrara 2006b; Mitra et al. 2011,
2012). This model also indicates that reionization feedk o star formation by suppressing
itin the low-mass haloes at early times (Thoul & Weinberg@;93%houdhury & Ferrara 2006b).

In parallel, direct observations of galaxies at epochsectoghe end of reionization have
made astonishing progresses over the past few years (Bsusvélingworth 2006; lye et al.
2006; Bouwens et al. 2007, 2008; Ota et al. 2008; Bouwens. &089; Henry et al. 2009;
Bouwens et al. 2010a; Oesch et al. 2010; Bouwens et al. 20d6byre et al. 2010; Oesch
et al. 2012; Bradley et al. 2012). allowing to derive the gglelVV Luminosity Function (LF)
up toz ~ 10 (Bouwens & lllingworth 2006; Bouwens et al. 2010b; Oeschlef@12), and to
better constrain light production by reionization sources

Here we aim at combining data-constrained reionizatiotohes and the evolution of
the LF of early galaxies to get an empirical determinationhef escape fraction. The study
also provides relatively tight constraints also on the ettoh of the star-forming efficiency
¢, (Faucher-Giguere et al. 2008; Kuhlen & Faucher-Gigu&£2). Throughout this chapter,
we assume a flat Universe with cosmological parameters dpyehe WMAP7 best-fit values:
Q= 0.27, Q) = 1 — Q,, Qh? = 0.023, andh = 0.71. The parameters defining the linear
dark matter power spectrum avg = 0.81, n, = 0.97, dn,/dInk = 0 (Larson et al. 2011).
Unless mentioned, quoted errors ate 2
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3.2 Luminosity function of ionizing sources

In this work, we have used the semi-analytical model deedrin Section 2.1, which is ba-
sically based on Choudhury & Ferrara (2005) and Choudhurye&dfa (2006b). Given the
collapsed fractionf.,; of dark matter haloes, the production rate of ionizing phsetm the
IGM is calculated in this model as [see equation (1.80) am)]2

ign(2) = 1 Nigy L1 G.1)
We have already mentioned that the paramétgr, the number of photons entering the IGM
per baryon included into stars, can actually be written amabenation of three parameters: the
star-forming efficiency,, the escape fractiofi..., and the specific number of photons emitted
per baryon in starsy.,, which depends on the stellar IMF and the correspondintassgectrum
[see equation (1.81)]:

Nion = E>f<fesc]\ffy (32)

In the last chapter, we assumag,, to be an unknown function of and decompose it
into its principal components. In the following we assumergle stellar population (Popll)
when computing the ionizing radiation properties; any ¢eim the characteristics of these
stars over time would be accounted for indirectly by the ettoh of N,,,. We also include
the contribution of quasars at < 6 assuming that they have negligible effects on IGM at
higher redshifts; however, they are significant sourcesmizing photons at < 4. From our
reionization-PCA model (Mitra et al. 2011, 2012), we obttia redshift evolution ofV;,, by
doing a detailed likelihood analysis using three differéata sets - the photoionization rates
['pr, the redshift distribution of Lyman Limit SystemEV;;,/dz in 0.36 < z < 6 and the
angular power spectig, for TT, TE and EE modes using WMAP7 data (see Section 2.3.8). W
show the redshift evolution a¥;,,(z) obtained from our Principal Component Analysis using
WMAP7 data in Fig. 3.1. The solid line corresponds to the nhdéscribed by mean values
of the parameters which we obtained by performing a MontdeQdarkov Chain (MCMC)
analysis over the parameter space of our model, while thdeshaegion corresponds to itso2-
limits. This is the same figure as the top-left panel of Figs. 2We concluded that it is not
possible to match available reionization data with a cans¥a,, over the whole redshift range.
Rather, it must increase at> 6 from its constant value at lower redshifts.This is a sigreatu
of either a varying IMF and/or evolution in the star-formiafficiency and/or photon escape
fraction of galaxies, as equation (3.2) clearly shows.

The effect of reionization on the high redshift galaxy LF vetgdied using the semi-
analytical models by Samui et al. (2007) and Kulkarni & Chioury (2011). In this work, we
follow their method to study the evolution of LF for our model

The LF is derived as follows. We compute the luminosity at@50of a galaxy having
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150 ——————————————————————

100 .

N ion

Figure 3.1: Redshift evolution a¥;,, obtained from the Principal Component Analysis using
WMAP7 data. The solid line corresponds to the model desdiilyemean values of the param-

eters while the shaded region corresponds toliaits. This figure is the same as the top-left
panel of Fig. 2.5

the halo masd/ and ageAt using

Q
L1500<M, At) = €4 (Q—b) Ml1500(At) (33)

m

Here the age of the galaxy formed dtand observed at is At = t, — t./, l1500(At) iS a
template specific luminosity at 1500for the stellar population of ag&t. As we restrict to a
single stellar population, i.e. Popll stats,indicates the star forming efficiency of Popll stars
throughout this chapter.

To computd 509, We use stellar population models of Bruzual & Charlot (2008 Popll
stars. The UV luminosity depends on galaxy properties tfiolyi the IMF, star formation rate
(SFR), stellar metallicity ) and age. Dayal et al. (2009) and Dayal et al. (2010) have show
that the metallicity correlates with stellar mass, and test liit mass-metallicity relation they
find is

7/ Zz = (0.25 — 0.05A2) log,o(M,) — (2.0 — 0.3A%) (3.4)

whereAz = (z — 5.7) and M, is the total stellar mass of the galaxy. We take all the alskgla
stellar population models in the metallicity range= 0.0001 — 0.05 for Popll stars and inter-
polate them to computes, following the mass-metallicity relation given by the abog&ation
for our model galaxies.

The luminosity can be converted to a standard absolute ABninate (Oke & Gunn
1983; Samui et al. 2007; Kulkarni & Choudhury 2011) using

L,
MAB =-25 lOglO (m) + 51.60 (35)
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The luminosity functiond(M 45, z) at any redshift is then given by

dn dn dL1500

d(M = = 3.6
a2 = 0~ ALia s’ &0
where
dn o dM d*n
= dz’ L Aty ——— (M, 2/ 3.7
dL1m00 /Z zdL15oo( 15005 )dez’( ,2') (3.7)

is the comoving number of objects at redshiftith observed luminosity withifil1500, L1500 +
dLi500]. The quantityd®n/dMdz’ gives the formation rate of haloes of magg which we
obtain as in Choudhury & Ferrara (2007). Note that, we can tha star-forming efficiency,

in equation (3.3), as a free parameter and obtain its baestHie by comparing the high-redshift
LFs computed using the above equations with observations.

3.3 Constraining escape fraction and other crucial parame-
ters

Our strategy to constrailfi,. exploits the combination between the previously deriveec(S
2.3.3) evolution ofN,,,, and the constraints on that can be derived from matching LFs at
different redshifts. Once the (Salpeter) IMF of the (Poptirs is fixed,V, is also fixed and
equal tor 3200; from equation (3.2) we then get the valuefaf as follows:

N ion

fesc = E*ny

(3.8)

As the uncertainties ofiVi,,/N,] ande, are independent, the fractional uncertaintyfin can
be obtained from the quadrature method (Taylor 1997), i.e.

5fesc (5[Nion/N'y])2 (56*)2
hCh - PO ) (3.9)
fesc \/ [Nion/ny] €x
In this work, we are interested in the> 6 evolution of the escape fraction. In principle, our
approach can also be used for the lower redshift rahge = < 5, provided that a detailed

treatment of dust extinction is added to our model. The Ugihgr assumption in the present
work is that dust effects on the escape fraction can be saégiected at early times.

The observationally determined LFs are taken from Bouwenbiggworth (2006) for
z = 6, Bouwens et al. (2011b) for = 7,8 and Oesch et al. (2012) far = 10. Figure 3.2
shows the globally averaged LFs calculated using our madel £ 6, 7, 8, 10 compared to the
observational data points. The= 10 data are obtained from the detection of a single galaxy
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Figure 3.2: Luminosity function from our model for bestdjt(black curve) and its 2~ limits
(shaded region) at = 6, 7, 8 and 10. Data points with 25 errors are from Bouwens &
lllingworth (2006) ¢ = 6), Bouwens et al. (2010%(= 7,8) and Oesch et al. (2012) & 10).
For z = 10, we show the luminosity function from our model for the maxmmvalue ofe, for
which the LF curve does not exceed the experimental uppéslim
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Figure 3.3: Redshift evolution of the escape fractign with 2-0 errors. The: = 10 data point
shows the lower limit off,.. The solid line corresponds to its best-fit value while thadsd
region corresponds to 24imits.

Redshift Best-fik, 2-0 limits Best-fit fe. 2-0 limits
=6 00365 [0.0253,0.0481]  0.0684  [0.0210,0.1221]
z=17 0.0385 [0.0193,0.0576] 0.1607 [0.0319, 0.4451]
z=28 0.0523 [0.0129, 0.0822] 0.1794 [0.0466, 0.5098]
z=10 < 0.0841 > (0.1456

Table 3.1: Best-fit values and®}limits of ¢, and the derived parametgr, for the reionization
model obtained from the LF calculation at different redshifAt - = 10, we get only an upper
limit of ¢, and a corresponding lower limit ¢f..

candidate by Oesch et al. (2012); hence, we only show resultse maximum value of, for
which the LF curve does not exceed the experimental uppéslim

Our model reproduces the observed LFs reasonably wellciediyeat lower redshifts.
From such a match we find that the best-fit value of the standtion efficiency, nominally
increases from 3.6% at= 6 to 5.2% at: = 8. Such a small variation is statistically consistent
with a constant value af,, i.e. no evolution (Mitra et al. 2013).

The corresponding values ¢f,. calculated using equation (3.8) and (3.9) are plotted in
Fig. 3.3 along with the 2 confidence limits (shaded region). The numerical values,fand
fesc @re also reported in Table 3.1 for different redshifts{ 6, 7, 8). The escape fraction shows
a moderately increasing trend frofn. = 0.06810 037 atz = 610 fo.. = 0.1797593) at> = 8; at
z = 10 we can only put a lower limit of.,. > 0.146, corresponding to the maximum allowed
value ofe, = 0.0841.

The reported 2 errors are however relatively large and we cannot excluaaaewvolving
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galaxy-averaged trend fgt,. . The uncertainties become larger with redshift as a coresexu
of the fact that the larger LF errors at higher redshifts.

3.4 Conclusion

We have used our semi-analytical reionization model to amehe UV luminosity functions
at different epochs predicted from our model with the obseém to constrain the parameters
related to star formation history in the redshift rarige = < 10. In particular, by varying the
star formation efficiency as a free parameter, we have ainstt one of the most unknown pa-
rameters of reionization models, the escape fracfigrof ionizing photons from high-redshift
galaxies. The main findings of our work (Mitra et al. 2013) drat, averaged over the galaxy
population, (i) the escape fraction shows a moderate iserélam f.,. = 0.0687002 atz = 6

t0 fose = 0.17910331 at » = §; (ii) at z = 10 we can only put a lower limit off.,. > 0.146.
Thus, although errors are large, there is an indication ofatithes increase of the average
escape fraction from = 6 to z = 8 which might partially release the “starving reionization”
problem. At the same time, the best-fit value of the star folonaefficiencye, nominally in-
creases from 3.6% at= 6 to 5.2% atz = 8. Such a small variation is statistically consistent
with a constant value af,, i.e. no evolution.

Parallel to our more phenomenological approach, in thefeasyears many numerical
and analytical studies have attempted to constfainmeaching often contradictory conclusions,
likely due to uncertainties on star formation history, fieack, radiation transfer and the geome-
try of the ISM distribution (Fernandez & Shull 2011). Incseay (Razoumov & Sommer-Larsen
2006, 2010; Haardt & Madau 2011), decreasing (Wood & LoelD200 un-evolving (Gnedin
2008; Yajima et al. 2011) trends have been suggested as @oiu€ redshift.

A strong redshift evolution of the escape fraction was rédgéound by Kuhlen & Faucher-
Giguere (2012). They show that, models in which star foromais strongly suppressed in
low-mass haloes, can simultaneously satisfy reionizagiot lower redshift Lymarx forest
constraints only if the escape fraction of ionizing radiatincreases from- 4% atz = 4 to
~ 1 at higher redshifts. Although broadly in agreement withrtbenclusions, our results show
instead that reionization and LF data can be satisfied samedtusly iff... grows from~ 7% at
z =6to~ 18% atz = 8, but without requiring an escape fraction of order of unitthese red-
shifts. We believe that this discrepancy can be understsahlia to the fact that unlike Kuhlen
& Faucher-Giguere (2012), we are fitting thél CMB spectrunrather than the single value
of 7.;; the latter choice can be thought as a simplification of CMBappation observations.
In addition, we have used a PCA analysis to optimize modedrpaters to reionization data,
yielding a more robust statistical analysis (Mitra et all2))

Although here we have only considered the evolution &f 6 luminosity functions, our
approach can also be applied to model the LEs €tz < 5. As hydrogen reionization mostly
occurs atz 2> 6, the LFs in this lower redshift range are very unlike to besgere to the
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details of reionization history. Also, dust extinctionzat 6 can decreasé... by absorbing
the ionizing photons at these epochs (Yajima et al. 2011).a Aaveat we mention that the
present results can be responsive to changes in some cagoablparameters, mainkys and

n, (Pandolfi et al. 2011). A largers or n, may lead to an increase in the number of collapsed
haloes at all redshifts. In principle then, one should idelthese two quantities in the analysis
as additional free parameters. Also, it could be intergdtirevaluate the effects of Poplll stars
and other feedback processes in our LF calculation. We hopeyvisit some of these topics in
more detail in future work.

Finally we should mention that, for constraining,,, which is linked to the rate of ioniz-
ing photon production via the collapse fraction, we perfedthe MCMC run using — 8 PCA
modes (Mitra et al. 2012). Truncating a PCA expansion canaedhe variance in the estima-
tion of the reionization history, but also introduces a h@sards the fiducial history. Being
aware of this fact, we used the Akaike information crite®dQ) to reduce the intrinsic bias
present in any particular choice of fiducial model. We foumat &tz < 6, the strong Lymanzx
forest constraints essentially fiX;.,,, so that the efforts to reconstruct the reionization histor
are very promising at this region. While it does not seem velyable to recovetV,,, or the
other various quantities related to reionization histdry a 6 in a truly model-independent
manner as there exists a considerable amount of bias aighisddshift end (Mitra et al. 2011,
2012). In other word, statistical uncertainty may have bieielden here as systematic uncer-
tainty (Huterer & Starkman 2003). So, including bias at #eel of variance might eliminate
the ability to make the claim of increasing,. from z = 6 to z = 8. However, with more
data it would be possible to apply this technique in a regirhere the variance i, is small
enough to produce a useful constraint on the reionizatistohy without the need to truncate
the PCA modes so severely and so without introducing any dibs technique will become
more applicable as more data becomes available foi6 region.
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CHAPTER 4

REIONIZATION AND OTHER
COSMOLOGICAL PARAMETERS

So far, we have discussed about the semi-analytical magefireionization and how we can
use that model to constrain the reionization scenario anduscrucial but unknown param-
eters related to it. In order to do so, for simplicity we haskein most of the cosmological
parameters to be fixed at their best-fit WMAP values keepingiimd that the uncertainties in
reionization history would possibly be slightly underesied. In this chapter, we shall concen-
trate on finding the impacts of realistic reionization pre@si on the cosmological parameters
by varying all the relevant cosmological parameters aloith e parameters related to our
reionization model. In the first half of this chapter, we \gile how the inclusion of a physically
motivated reionization history induces changes in the absgical parameter values and in the
later half we will use this data-constrained reionizatioodel to achieve the constraints on the
neutrino masses as allowed by the current datasets retatembhization.

4.1 Effects of reionization on cosmological parameter dete
minations

In this section, we shall focus on assessing the effectsysipally motivated and viable reion-
ization scenarios on cosmological parameter determimgti@he main novelties are: (i) the
combination of CMB data with astrophysical results from spraabsorption line experiments;
(i) the joint variation of both the cosmological and astigpical [governing the evolution of the
free electron fractiom.(z) ] parameters. Our aim is to see whether the inclusion of dsteal
data-constrained reionization history, as describedemtievious chapters, in the analysis can
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induce appreciable changes in the cosmological paramakees deduced through a standard
WMAP7 analysis.

4.1.1 Cosmological parameters and different reionizatiorscenarios

It is well known from a large set of astrophysical observaltkat after primordial recombina-
tion (which occurred at a redshift af ~ 1100) the universe “reionized” at a redshift > 6.

It is common practice in Cosmic Microwave Background (CMB)dses to parametrize the
reionization as an instantaneous process occurring at smshiftz,., with 4 < z,, < 32, and
to marginalize ovet,. when deriving constraints on the other cosmological patarseln the
absence of any precise astrophysical model of the reioorzptocess, the electron ionization
fraction z.(z) is parametrized by, in the following way: z.(z) = 1 for z < 2z, (possibly
ze(z) = 1.08 or z.(z) = 1.16 for z < 3 in order to take into account the first and second He-
lium ionization) andr.(z) < 2 x 10~* for z > z, in order to join the ionization fraction value
after the recombination. In the following we will refer toiglparametrization as “sudden” or
“‘instantaneous” reionization. With this choice of paranzeation there exist a one-to-one rela-
tion between the redshift of sudden reionizatignand the electron scattering optical depth
The most recent constraints on the optical depth that coom fhe analysis of the Wilkinson
Microwave Anisotropy Probe team on their seven-year datslAR7), in which it is assumed
a sudden reionization scenarioyis= 0.088 + 0.015.

However, as already noticed, e.g. in Mortonson & Hu (2008hy further emphasized
by Pandolfi et al. (2010) and Pandolfi et al. (2010), the assiompf a general reionization
scenario could affect the extraction of the constraintsogheological parameters. In particular,
they studied the effects of non-instantaneous reioniaaiiothe two principal inflationary pa-
rameters (the scalar spectral index of primordial pertimban, and the tensor-to-scalar ratio
parameter), and on the optical depth,. The method used in the above cited works to describe
a general reionization scenario, developed in Mortonsonu&2008Db), is based on a principal
components (PC) analysis of the reionization histotyz) . PCs provide a complete basis for
describing the effects of reionization on large-scalenode polarization spectrum. Following
Mortonson & Hu (2008b), one can treat(z) as a free function of redshift by decomposing it
into its principal components:

Te(2) = 2 (2) + Zmusu(z), 4.1)

where the principal componenis(z) are the eigenfunctions of the Fisher matrix describing the
dependence of the polarization spectrawpfx); them,, are the PC amplitudes for a particular
reionization history, and/(z) is the WMAP fiducial model for which the Fisher matrix is
computed and from which the PCs are obtained. Thereforenipditade of eigenmodg for a
perturbation around the fiducial reionization histony (2) = x.(z) — z/(z) is

my, = _ /Zmaz dz S,(2)6x(2). 4.2)

Zmaz — “min Zmin
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In what follows we refer to this parametrization of reionina as the “Principal Compo-
nents”(PC) reionization. Since the ionization fractiotréginded i) < z.(z) < 1 (neglecting
helium reionization and the small residual ionized fractidter recombination) in the range of
redshifts in which PCs are defined, it is necessary to imposedimits on the amplitudes of
the eigenmodes of equation (4.2) to let the reionizatioctiva be within these limits, if only for
the definition of reionization fraction. In Mortonson & HuQ@8b) the authors find the ranges
of values for the amplitudes:, compatible withz.(z) € [0,1] for all the redshifts in range
of interest. Pandolfi et al. (2010) and Pandolfi et al. (20&)duthe publicly availablé),(z)
functions and varied the amplitudes, for the first five eigenfunctions (i.e. for = 1,...,5).
The principal components were computed only in the rangedshiftsz € [6 — 30]. They
performed a Monte Carlo Markov Chains analysis assuming afflar on (only) the ranges of
values of the amplitudes,, whose linear combination with the functisfy give az.(z) in the
allowed range. These values are reported in left part ofeTéldl and are labeled “PC Bounds”.

However, these limits for the values of the PC amplitudesaamecessary but not suffi-
cient condition for the reionization fraction to lie in< z.(z) < 1. In fact, as noticed also by
Mortonson & Hu (2008b), if anyn,, violates those bounds (z) is guaranteed to be unphysical
in some redshift range, but the opposite is not true, bedtedell reionization history depends
on the linear combinations of the product of the amplitudeg$ their corresponding PC prin-
cipal component. Indeed, even if all the amplitudessatisfy the bounds reported in Table 4.4,
z.(z) could assume an unphysical value for some redshifts. Tacowse this potential prob-
lem, we have added in the version of thesnont package used in Pandolfi et al. (2010) and
Pandolfi et al. (2010), the condition that the valuergfz) computed at each step of a Markov
Chain must be in the range< z.(z) < 1 for everyz. In these studies, this was the only “phys-
icality” condition imposed on the possible reionizatiorstory. However, experimental data
gathered in the last few years can be used to discard at rastaf the possible, (z) histories
on well understood (astro)physical grounds. It is now gaedb use reionization histories that
are physically motivated and tested with known probes ofré@nization epoch, such as the
Gunn-Peterson optical depth, or the distribution in refisiithe Lya emitters.

In this work we adopt the results of a well-tested semi-aiayreionization model pro-
posed in Choudhury & Ferrara (2005) and Choudhury & Ferr2@@§b) (in what follows we
will refer to this model as the CF model). This model takes iatcount a large number of
parameters and physical processes that are involved inlmgdeionization, including (e.g.)
the radiative and chemical feedbacks of the first sourcesroting light on the evolution of
the intergalactic medium (IGM), and constrain the model bynparing it with a variety of
observational data, such as the redshift evolution of Lymant Systems (LLS), the IGM tem-
perature and the cosmic star formation density. Thus webeilible to build up an ensemble of
reionization histories that is more robust from both thetk&cal and the observational point of
view, rather then rely on purely phenomenological, albatlel-independent, parameterization
schemes as the PCs.

We will combine the CF model with a standak€DM cosmological model and we per-
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form a Monte Carlo Markov Chains analysis of the joint CMB artbnization data. We will
thus be able to test the impact of considering a detailediphlyfiodel for reionization on the
constraints of the cosmological parameters, and conyetsdkst the dependence of the CF
model on the underlying cosmological model.

At the end of such analysis we will moreover derive the subsatgconstraints on the
amplitudes of the reionization principal componemig [applying directly the equation (4.2)].
By construction then, these limits on the values of ampégidf the principal components
will be compatible and constrained both by the CMB and by tteophysical probes of the
reionization process. The main objectives of the presenk ae then:

¢ \erify the impact of considering a data-constrained andisg@reionization model on
the determination cosmological parameters.

¢ \erify the impact on the constraints of the reionizationgmaeters produced by variations
of the cosmological parameters, i.e. refraining from fixthgm a priori from the most
updated best fit values of the WMAP experiment.

e Obtain the PC amplitudes,, from the allowed reionization histories.

As such an analysis with combined cosmological parametessacterizing the back-
ground evolution of the universe and astrophysical parara@hodeling the reionization history
has not yet been made, it is worthwhile to explore their mutaglications on the extraction of
the constraints of the two ensemble of parameters.

Parametet Mean | 95% C.L. limits

O, 0.2733 | [0.2260, 0.3305]
Qyh? 0.2184 | [0.0208, 0.0229]
h 0.6984 | [0.6553, 0.7422]
N, 0.9579 | [0.9330, 0.9838]
o 0.7941 | [0.7434, 0.8491]
er 0.0037 | [0.0016, 0.0067]
e 0.0165 | [0.0000, 0.0398]
Ao 3.0152 | [1.0000, 5.1739]
T 0.0803 | [0.0625, 0.1042]
ro 6.7469 | [5.8563, 8.2000]

Table 4.1: Mean and 95% C.L. constraints on the cosmolggasalophysical and derived pa-
rameters obtained with the reionization parametrized téhCF model of reionization.
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4.1.2 Analysis method and datasets

The details of the CF model are already summarized in Ch2ped 3; in the present work we
assume the following settings:

e We consider here a fl&tCDM cosmology described by a set of cosmological parameters

{Qmagbh27h70_87ns}7 (43)

where(),, is the total matter density relative to the critical dengityh? is the baryonic
matter density/ is the reduced Hubble parametéy = 100h, og is the r.m.s. density
fluctuation in spheres of radigs —* Mpc andn, is the scalar spectral index of primordial
perturbations. We want to stress that these cosmologicahpaers are considered here
as free parameters, so that they are not assumed a priamipas previous works (Mitra
etal. 2011, 2012).

e The CF reionization model contains additional three fremp&ters. These arg ;1 =
€. fese|im, the product of the star-forming efficiency (fraction of ywams within col-
lapsed haloes going into staks)and the fraction of photons escaping into the IGM
for Popll and Poplll stars; the normalizatiog of the ionizing photons mean free path
(see the previous chapters for details). In what follows eferrto these three parameters
as the “astrophysical” parameters, to distinguish themmftioe five “cosmological” ones
described described in the previous point.

e The ranges of variation adopted for the three free astrophlyparameters are; €
[0; 002], € € [07 01], /\0 € [1, 10]

e The observational data used to compute the likelihood arsadye (i) the photo-ionization
ratesl'p; obtained using Ly forest Gunn-Peterson optical depth observations and e larg
set of hydrodynamical simulations (Bolton & Haehnelt 208@Jl (ii) the redshift distri-
bution of LLSd Ny, /dz in the redshift range di.36 < z < 6 (Songaila & Cowie 2010).
The data points are obtained using a large sample of QSOrapect

¢ In order to make the analysis self-consistent, the WMAP&tramt on the total electron
scattering optical depth,, is not considered in this analysis. This prevents a possible
loophole in our analysis: WMAP7 constraints an have been obtained using the as-
sumption of instantaneous reionizatiorzat z,.. Once this idealized evolution af.(z)
is dropped, the value of. must be a byproduct of the new analysis rather than being
inserted artificially as an external constraint into it. Mover, as already pointed out in
Mitra et al. (2011, 2012), the CMB polarization spectra aes#tive to the shape of the
reionization history and considering a more general re@ion scenario could lead to a
tighter optical depth constraint than derived by WMAP7 (@Ralfi et al. 2010).



76 Reionization and other cosmological parameters

e Finally, we impose the prior that reionization should be pteted byz = 5.8 to match
the flux data of Ly and Ly5 forest.

With these hypotheses we have then modified the Boltzmann EaMle (Lewis et al.
2000) to incorporate the CF model and performed a MCMC aismhased on an adapted ver-
sion of the public available MCMC packag®smomc Lewis & Bridle (2002). Our basic data
set is the seven—-yr WMAP data (Larson et al. 2011) (tempexand polarization), on top of
which we add two “astrophysical” datasets, i.e. the LLS néftievolution,d N, /dz (Songaila
& Cowie 2010), and the Gunn-Peterson optical depth measnmenpresented in Bolton &
Haehnelt (2007). To extract the constraints on free par@mmé&om such combined data set we
consider a total likelihood functioh « exp(—L) made up by two parts:

1 X {j;bs ~ s

>

5 ] + L (4.4)

a=1 Ta
where,L’ refers to the WMAP7 likelihood function and is computed gsiine routine supplied
by the WMAP team;J, represents the set df,,; observational points referring to Gunn-
Peterson optical depth LLS distribution data; finalyy, are the corresponding observational
error-bars. We constrain the free parameters by maximiZimgth flat priors on the allowed

parameter ranges and the aforementioned prior on the ertboization at: = 5.8.

The Monte Carlo-Markov Chain convergence diagnostics areen 4 chains applying
the Gelman and Rubin “variance of chain mean”/“mean of chamances’R statistic for each
parameter. We considered the chains to be convergBd-at < 0.03.

Parametet WMAP7 | WMAP7+PC | WMAP7 + ASTRO
O 0.266 +0.029 |  0.243 £ 0.032 0.273 + 0.027
Oyh? 0.02258T5-000%% | 0.02321 4 0.00076 | 0.02183 4 0.00054
h 0.710 £ 0.025 |  0.735+0.033 0.698 + 0.023

ng 0.963 +£0.014 |  0.994 + 0.023 0.958 + 0.013

o3 0.801 + 0.030 — 0.794 4 0.027

Tel 0.088 £0.015 |  0.093 £ 0.010 0.080 & 0.012
e 10.54 1.2 — 6.7+ 0.6

Table 4.2: Comparison of the 68% C.L. posterior probabdiystraints obtained for different
parametrization of reionization. Theg, parameter has a different definition in the different
reionization scenarios (see text for details).

4.1.3 Constraints for different parametrization of reionization

The results of the MCMC analysis described above are sumathim Table 4.1, where we list
the marginalized posterior probabilities at 95% confiddacel (C.L.) errors on the free cosmo-
logical and astrophysical parameters. We also report thstints for two derived parameters:
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Parametel WMAP7 + ASTRO CF

Mean | 95% CL | Mean | 95% CL
€11 0.0037| [0.0016, 0.0067] 0.003| [0.001, 0.005]
€111 0.0165| [0.0000, 0.0398] 0.020| [0.0000, 0.043]
Ao 3.0152] [1.0000, 5.1739] 5.310| [2.317,9.474]
Tel 0.0803| [0.0625, 0.1042] 0.089| [0.0635, 0.1104]
Zre 6.7469| [5.8563, 8.2000] 6.762| [5.800, 7.819]

Table 4.3: Comparison between the mean value and the 95%G@sterior constraints between
the present work (WMAP7 + ASTRO) and the CF model (Mitra e2@ll1) (MCF).

Xe(2)

0.8

0.6

0.4

0.2

Figure 4.1: lonization histories for the best-fit model foe two cases WMAP7+ASTRO (red
dotted solid curve) and CF (green solid curve) Mitra et &1(P).
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the electron scattering optical depthand reionization redshift,, to be intended as the red-
shift at which the reionization is 99% complete. In Tableweshow the 68% C.L. constraints
obtained by the WMAP team for the standard 6-param&@DdM model (“WMAP7”) and the
constraints obtained on the cosmological parameters frenptesent analysis (‘“WMAP7 +
ASTRO").

As we can see from the Table 4.2 the results of our work mildfedfrom the WMAP7
results for the parameters of the standa@DM model. The most sensitive parameter for the
presence of the “astrophysical” datasets (LLS and Gunar&an data) i$2,h?> whose mean
values in the two cases differ by more than a standard dewidtom each other. It is im-
portant to note that even when considering a complex reaioiz history implying three new
parameters the errors remain practically the same as inahdard case.

Table 4.2 reports the results obtained in Pandolfi et al. @2@dr the WMAP7 dataset
with the PC reionization (“WMAP7 + PC”). This method prodadeso main differences with
respect to the WMAP7 + ASTRO case: the first is related to timstraints obtained fat,. In
Pandolfi et al. (2010) the constraints for the scalar spleatiax were compatible with, = 1,

i.e. the Harrison-Zel'dovich (HZ) primordial power spagatr, when instead WMAP7+ASTRO
excludes the value, = 1 at > 30. The second difference concerngin the two cases: for
WMAP7 + PC this quantity is in the rangg, = 0.093 £+ 0.010, while the WMAP+ASTRO
case gives a mean value lowerbyl — o, i.e. 7, = 0.080 + 0.012. Note that in the WMAP7 +
PC case we did not consider constraints onsdthparameter, so in Table 4.2 the corresponding
value is missing.

There is a caveat in comparing the constraints obtainegdorindeed, in the WMAP7
casez,. is the redshift at which the universe undergoes an instantesiand complete reioniza-
tion process. In the more realistic, extended reionizagmanarios considered here instead,
is defined as the redshift at which the IGM is 99% re-ionizeddiyme. With this clarification
in mind, WMAP7+ASTRO results prediét8 < z,, < 8.2 at 95% C.L. (see Table 4.1).

In Table 4.3 we report the 95% C.L. posterior probability stoaints for the reionization
parameters;;, ¢;;; and )y obtained in the present work (WMAP7 + ASTRO case, cosmo-
logical parameters free to vary) compared to those obtameéditra et al. (2011) in which
the cosmological parameters were fixed to the WMAP7 best litega(CF case). Figure 4.1
shows the comparison between the best-fit model for:tlie) evolution for the two cases of
WMAP7 + ASTRO and CF. For the WMAP7 + ASTRO case, full hydrogeionization is not
only achieved earlier than in the CF model, but the evoluisoiaster, resulting in an initially
lower z.(z) abovez = 8. These differences are entirely induced by the fact that ave mow
allowed the cosmological parameters to vary together vaghaistrophysical ones, but they are
relatively small (Pandolfi et al. 2011). The fact that the@shysical parameters do not show
much dependence on cosmology is understandable becausesthelogical parameters affect
the reionization process mostly through structure foramatimhe next obvious step is to include
large scale structure information in the analysis. In caosidn, including astrophysical datasets
in the analysis seems to lead to relatively important edfeatthe extraction of the cosmological
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parameters.

Parameter PC Bounds Astrophysical Bounds
[—0.1236,0.7003]  [—0.1229, —0.0866]
[—0.6165, 0.2689] [—0.2594, 0.0002]

ms [—0.3713,0.5179] [0.0763, 0.2941]
- ]
- ]

0.4729,0.3817]  [—0.2107, —0.1080]
0.3854,0.4257]  [0.0418, 0.1319)]

Table 4.4: Ranges of variation for the amplitudes of thegypial component, in the case of the
Principal Components and in the case of the 99% C.L. reaacteti amplitudes of the present
analysis (see text for details).

For each reionization history allowed by the MCMC likeliltbanalysis, we use equation
(4.2) to reconstruct the amplitudes of the first five PC amges,m,, with i = 1...5. By
construction now, the amplitudes,, not only fulfill the necessary physicality conditions (see
Sec. 1) but also they are compatible with the additionabastysical data sets considered in
this analysis, i.e. the Ly Gunn-Peterson test and the LLS redshift distribution.

In Fig. 4.2 we show the two dimensional 68% and 99% c.| comgdor the amplitudes
m,, obtained here compared with those obtained in Pandolfi ¢2@1.0) for which we show
the two dimensional 68% and 95% C.L. distributions for eatlthe cases considered. We
choose to report the 99% C.L. instead of the usual 95% C.Le taslconservative as possible in
showing the reionization histories allowed by the MCMC likeod analysis. The color (layer)
code is the following: in pink (top layer) there is the case YWRY + ASTRO considered in
the present work. In the background there are the casesdewadiin Pandolfi et al. (2010): in
blue is the WMAP7 case (bottom layer) , in red (next layer gghe case called “CMB All” (
i.e. WMAP7 + ACBAR + BICEP+ QUAD + BOOMERanNG), green (nextéayis CMB All +
LRG-7 and yellow (next layer) is simulated PLANCK data. Palficet al. (2010) considered an
ensemble of CMB dataset along with WMAP7, and also we fotedafsiture constraints from
the PLANCK experiment, simulating a set of mock data with adidl model given by the best
fit WMAPS5 model with the following experimental noise:

w2 N? T+ 1) (Opwim /rad)?
N, = 4.5
¢ (uK-rad) =P [ 8ln2 ’ (45)

wherew~'/? is the temperature noise level (a factg® larger for polarization noise) artlis
the beam size. For the PLANCK mission we us€? = 58K andfpwuv = 7.1 equivalent
to expected sensitivity of thet3 GHz channel.
The region spanned by PC amplitude values is much smallerttiz allowed by when
the PC bounds only are imposed. The 99% C.L. constraintesalte reported in the right part
of the Table (4.4) (“Astrophysical Bounds”). As seen fronblEa(4.4) the amplitudes of all the
principal components (except for,) obtained with the above procedure are constrained at 99%
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Figure 4.2: 68% and 99% reconstructed C.L. constraintshervalues of the PC amplitudes
computed from CF model and equation (4.2) (top layer, piBdckground contours refer to
68% and 95% C.L. constraints obtained in Pandolfi et al. (R@dth the PC reionization for
WMAP7 (bottom layer, blue), WMAP7 + QUAD + ACBAR + BICEP (CMBKnext layer up,
red), CMB All + LRG-7 (next layer, green) and simulated PLAKI@ata (next layer, yellow),
respectively.
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C.L. to take a definite sign, negative far, andm, and positive form; andms. Moreover, even

if the 99% C.L. upper bound of., is positive, this second amplitude is mostly constrained to
be always negative. These results are in qualitative agreewith Pandolfi et al. (2010), who
also found that the same amplitude signature, albeit wittrgtarge enough that the 95% C.L.
bounds encompass values of both possible signs (Panddlf2étia).

4.1.4 Summary

With the aim of constraining the evolution of cosmic reiatian, we have extended previous
work based on the use of Principal Components analysis. Hie movelty of the present work
is represented on one hand by complementing available CN&Bveth additional astrophysical
results from quasar absorption line experiments, as then®aterson test and the redshift
evolution of Lyman Limit Systems. In addition, we have foe thirst time explored the effects
of a joint variation of both the cosmologicaRf,, 2,72, h, 03, n,) and astrophysicak(, e, Ao,
see Sec 4.1.2 for their physical meaning) parameters. Neate differently from the vastly
used approach in the literature, we do not impose a priori@uwnd on the electron scattering
optical depthr,;, which instead we calculate a posteriori. This is to preegpbssible loophole
in the calculation, as the WMAP determination of such qugrsibased on the assumption of
an instantaneous reionization which we do not make here.

Including a realistic (i.e physically motivated) reionima history in the analysis in-
duces mild changes in the cosmological parameter valuagdddhrough a standard WMAP7
analysis. Particularly noteworthy are the variation§ih? = 0.02258 00002 (WMAP7) vs.
k2 = 0.02183 & 0.00054 (WMAP7 + ASTRO), and the new constraints for the scalar spec-
tral index, for which WMAP7+ASTRO excludes the Harrisonfdevich valuen, = 1 at> 30
(Pandolfi et al. 2011). Finally, the electron scatteringagbtdepth values is considerably de-
creased with respect to the standard WMAP7, izg. = 0.080 + 0.012. We conclude that
inclusion of astrophysical datasets, allowing to robustipistrain the reionization history, in
the extraction procedure of cosmological parameters leacdatively important differences in
the final determination of their values.

4.2 CMB bounds on neutrino mass from reionization

Now, we want to further exploit our data-constrained rezatipn model to achieve the plausible
constraint on the neutrino masses as allowed by the curedasels related to reionization.
Neutrinos with non-zero mass can have an intense impressitme evolution of our Universe.

Rigorous cosmological observations on cosmic microwackdpraund (CMB) anisotropies and

the large-scale structures of galaxies thus can be used é&osionger constraint on the neutrino
masses than that achieved from current laboratory expeten€urrent release of Nine years
Wilkinson Microwave Anisotropy Probe (WMAP) data presetiits upper bound on the sum
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of neutrino masses assumingadderreionization scenario depicted by a single parameter. In
this section, we shall focus on constraining the CMB neotrirass bounds for a more general
and realistic reionization model. Our aim is to investighie possible effects of considering a
data-constrained reionization scenario on neutrino masts|

4.2.1 Cosmological constraints on neutrino masses

The availability of good quantity observational data fronilkiison Microwave Anisotropy
Probe (WMAP) satellite significantly contributes to a sgent constraint on cosmological pa-
rameters and models of structure formation. According ewidely accepted flat cold dark
matter model with a cosmological constantQDM) cosmology, the universe is mostly made
of Dark energy (73%) and Dark matter (23%) dominating overlibryonic contribution. But
despite of many efforts, the nature of the dark componentsires one of the biggest myster-
ies in cosmology over past few decades. Nonetheless, reosntological data have indeed
allowed much progress in constraining dark matter propednd neutrino masses (Mapelli &
Ferrara 2005; Slatyer et al. 2009; Natarajan 2012; Zhaa 04PR; Carbone et al. 2012; Evoli
etal. 2012). In particular, neutrino mass bound now became®f the most intriguing goals in
cosmology as well as experimental particle physics (forenes, see Dolgov 2002; Hannestad
2004; Tegmark 2005; Lesgourgues & Pastor 2006; Hannesta6, 2010 and the references
therein).

Atmospheric and solar neutrino oscillation experimentsaspromising impression for
particle physics models by strongly indicating that neutsihave mass and that the sum of their
masses i$ _m, = 0.05 eV (Maltoni et al. 2004; Ashie et al. 2005; Fogli et al. 2008pwever,
recent cosmological data, in particular, observatiorasteel to cosmic microwave background
radiation (CMBR) and the growth of structures in the unieezan also make a room to deliver
a potentially stronger constraint on neutrino masses (Eig& Lahav 2005; Fukugita et al.
2006; Lesgourgues & Pastor 2006; Komatsu et al. 2011; Joa@4!8; Riemer-Sgrensen et al.
2013). Although, CMB data alone can constrain neutrino esdsut there is a large degen-
eracy between neutrino masses and the Hubble conBtatithikawa et al. 2005). An useful
combination of different data sets along with the CMB datd aratter power spectrum mea-
surements can significantly tighten the limits (Hu et al.&3isenstein et al. 1999; Hannestad
2003; Seljak et al. 2005; Seljak et al. 2006; Gratton et d@d82®annestad 2010). In particular,
current release of Wilkinson Microwave Anisotropy ProbeM¥P) nine-year data (Hinshaw
et al. 2012) can alone give a bound on the total neutrino rsaase m, < 1.3 eV at 95%
confidence limits (CL) (which is the same as WMAP7 data by Kismet al. (2011)). Combin-
ing CMB data with the measurements of baryon acoustic esicait (BAO) scale, constituted
by luminosity distance measurements from type-la sup@maan put more tighter constraint
(Jarosik et al. 2011). BAO data and the priorsiinmeasurements obtained from both Hubble
Space Telescope (HST) Key Project (KP) (Freedman et al.;Zyidage et al. 2006; Freedman
et al. 2012) and Supernovae af{g for the Equation of state (SHOES) program (Riess et al.
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2009, 2011) along with CMB can make this constraint eventéigfSekiguchi et al. 2010).
Moreover, WMAP team foun®_m, < 0.44 eV at 95% CL (Hinshaw et al. 2012; Bennett
et al. 2012) combining CMB data with the BAO data using thedtiloan Digital Sky Survey
(SDSS) data from the Baryon Oscillation Spectroscopic 8utB0OSS) (Schlegel et al. 2009;
Dawson et al. 2012; Ahn et al. 2012; Anderson et al. 2013) atidtive recentH, prior (Riess
et al. 2011), which i1, = 73.8 4+ 2.4. Note that, this bound foy_ m,, is 25% lower than the
bound 0f0.58 eV set by WMAP7 data (Komatsu et al. 2011).

Another feasible effect that could put an impact on the CMBriumts for neutrino masses is
the detailing of reionization scenario. Although, the WMAPBservation of cosmological data
analysis is based on the assumption that reionization igldesuand instantaneous incident,
but recent studies (Barkana & Loeb 2001; Wyithe & Loeb 2008o@ihury & Ferrara 2006b;
Choudhury 2009; Pritchard et al. 2010; Mitra et al. 2011)gasy that reionization process is
too complex to be described as a sudden event. Archidiadalo(2010) indicates that the sum
of the neutrino masses from CMB data alone can be relax@d to, < 1.66 eV (95% CL) if
one considers a generalized reionization model (named aeMHization) based on a Principal
Component Analysis (PCA) suggested by Mortonson & Hu (200Rbcently, Jose et al. (2011)
suggests that a more strict constraint on the neutrino mgsse, < 0.52 eV at 95% CL) can
be achieved using a well-measured galaxy luminosity fonc{LF) of high-redshift Lyman
break galaxies (LBGs) at ~ 4 from a semi-analytical structure formation model combgnin
with WMAP7 data. An additional constraint using the prior obble constant can stiffen
their limit to > m, < 0.29 eV at 95% CL. Also, the low-frequency radio observations of
the redshifted 21 cm signal from the epoch of reionization bba used to further constrain
neutrino mass limits (Pritchard & Pierpaoli 2008, 2009; ®geet al. 2012). Furthermore, the
recent PLANCK CMB data for temperature power spectrum with a WMAP polditralow-
multipole likelihood (Bennett et al. 2012) aK 23, set a limit ofY > m,, < 0.93 eV (95% CL).
Along with the BAO data, this value becomes much lower).25 eV (Ade et al. 2013b).

4.2.2 Models of reionization and free parameters

In this work, we try to investigate the possible effects ontriao mass bound by considering our
data-constrained reionization model based on ChoudhurgaFa (2005, 2006b) and Mitra
et al. (2011, 2012). This model constrains the reionizahistory using a set of reionization
parameterser, err, Ao }, Whereey; (or eprp) is the product of the star-forming efficiency (fraction
of baryons within collapsed haloes going into staysgnd the fraction of photons escaping into
the IGM f. for Popll (or Poplll) stars and, is the normalization of the ionizing photons mean
free path. The analysis is done using only three particudéa dets: the photoionization rates
['p1, the redshift distribution of Lyman Limit SystemsVy;,/dz and the angular power spectra
C; of the CMB temperature (T) and polarization (E) modes usingA®7. In principal, our

http://www.sdss3.org/surveys/boss.php
2http://lwww.esa.int/SPECIALS/Planck/index.html
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Model \ Cosmological parameter$ Reionization parameters
Reion-Sudden {Qyh% Q.h% Q,, h, 05,15} Tol
Reion-CF same as above {eém, e, Ao}

Table 4.5: Two different models of reionization consideirethis work and their free param-
eters. For both models, cosmological parameter space is,darhthe number and nature of
reionization parameters differ.

reionization model parameters can have some degeneraitiethe/cosmological parameters,
as we include the CMB data in our analysis (Mitra et al. 20129, we should vary all the

relevant cosmological parameters along with the parametdaited to our reionization model.
Thus, our main goal is to see how the data-constrained @itan scenario can affect the
bounds on neutrino masses and also how the inclusion of détaisets can improve that result.

We start with assuming the universe to be described by a fldtdark matter model
with a cosmological constanA CDM) which is parametrized by a set of cosmological param-
eters{h?, Q.h% Q,, h, 08, ns}, WhereQ),, Q. and, are the energy density for baryon, cold
dark matter and massive neutrinos, respectively, relébitbe critical energy density: is the
reduced Hubble parametéf, = 100h, oy is the r.m.s. density fluctuation in spheres of ra-
dius8h~! Mpc andn, is the scalar spectral index of primordial perturbationsm@mber that
these cosmological parameters are considered here asafi@agters. We assume 3 degener-
ate, massive neutrinos with the same mass:9f so the sum of the neutrino masses will be
> m, = 3m, and itis related t@), by (Lesgourgues & Pastor 2006; Archidiacono et al. 2013):

> m, =93.14eV x Q,h? (4.6)

Now, we will consider two different models of reionizatioaded on the extra parame-
ter(s) needed to describe the reionization process. Tleegsaiollows:

e The extra parameter needed to describestitglerreionization is basically one single pa-
rameter the Thomson scattering optical depthWe refer to this model as “Reionization-
Sudden” or in short “Reion-sudden” model.

e As we mentioned earlier that for a more complex and realigficnization model, one
needs more than one parameter to describe it. For exampleawenodel the reion-
ization scenario with additional three free parametefs; e, Ao} (Mitra et al. 2011;
Pandolfi et al. 2011). This well-tested semi-analyticabn&zation model was first pro-
posed by Choudhury & Ferrara (2005, 2006b) and hereafter Mieall this model as
“Reionization-CF” or in short “Reion-CF” model.

To summarize the differences between these two model paeesneve listed them in
Table 4.5. For both of the models described above, cosnuabgarameter space is same, but
the number and nature of reionization parameters differ.
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Furthermore we checked that, for our CF reionization maal&drge value ofn,, is com-
pensated by a very high value gf;. So we investigate whether this high; is allowed by
the observations on high redshift galaxies. We have alreadiied the constraints on the star-
forming efficiency €.) and escape fractiofi,. of population Il stars using observed luminosity
function (LF) data earlier in Chapter 3 (Mitra et al. 2013plIBwing the same approach men-
tioned there, we compute the LF using our reionization maddl match the observed galaxy
LF datafor6 < z < 10 (Bouwens et al. 2007, 2011b; Oesch et al. 2012). This timenalade
both Popll and Poplll stars and vary ondy! to find the upper limit orey;; as allowed by the
observed data. Herg,. has been set to its maximum value and the upper limi'bias been
obtained by matching the LF data, hence the result is an dippieon ¢;;;. In addition, we also
find that, this upper limit depends on the cosmological patans as well. So, while varying
all the parameters, we compute this upper bound within thél@&hains and put that value
as a prior tae.

We then perform a Monte-Carlo Markov Chain (MCMC) analysisroall the parameter
space of each model. In order to carry out the analysis, we Haveloped a code based on
the publicly available COSMOMGC (Lewis & Bridle 2002) code. Using the usual Gelman
and Rubin convergence statistics, we run a number of sepehains untilR, corresponding
to the ratio of the variance of parameters between chainsewariance within each chain,
achievesR — 1 < 0.03. First we have done the analysis using WMAP7 CMB data only to
see how the CMB data alone can constrain the neutrino massllfou different models of
reionization. We then carry out the same analysis by talkieg3AO data (Percival et al. 2010)
along with the WMAP7 data set (we denote this case as WMAPT)BANd finally, to see
how the prior onH affects the constraint om,,, we have also included the prior obtained from
the SHOES program i.eH, = 74.2 4+ 3.6 (Riess et al. 2009) into our analysis (denoted as
WMAP7+BAO+H,).

4.2.3 Effects of reionization on neutrino mass bounds

The constraints on several cosmological and other parametieng with their 95% (25) con-
fidence limits, obtained from our MCMC analysis for diffeteeionization scenarios are sum-
marized in Table 4.6. First we investigate the usual WMAPSecdze. the case with sudden
reionization (second column of Table 4.6). For this casegetean upper limid_~m, < 1.25

eV at the 2¢ CL. The other cosmological parameters are in well agreemghthose obtained
by Archidiacono et al. (2010), Jose et al. (2011) and Feehay €013). We present our re-
sults using additional BAO data and BAO data wiily prior along with the WMAP7 data in
column 4 and 6 of Table 4.6 respectively for this sudden tiezaiion case. We find a relatively
lower value fory  m,, (< 0.63 eV) using the WMAP7+BAQ data and even a more tighter value
(< 0.56 eV) using WMAP7+BAO+, data. Note that, the last value is almost identical with
that obtained by WMAP team (Komatsu et al. 2011).

3http://cosmologist.info/cosmomc/
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Parameters WMAP7 WMAP7+BAO WMAP7+BAO+H,
Reion-Sudden  Reion-CF  Reion-Sudden  Reion-CF  Reion-Suddé&eion-CF
0, 0.0218%5007  0.0213*0:0015  0.021275¢0,0  0.0211* 55018 0.0213*56015  0.021145:5015
Q.h? 0.1168%391%0  0.115173917%  0.118473931%  0.1168799338  0.117373:9357  0.1153F3:939
h 0.670139%  0.65713%7  0.67270%%  0.668T008  0.68970%¢  0.68670:033
o 0.71575438  0.714701H0  0.6947017  0.657100%  0.7191012  0.677 048
N 0.95770:030  0.944759:920  0.96270921  0.955709%  0.969700%  0.96170:022
> - m,(eV) < 1.25 < 1.04 < 0.63 < 0.52 < 0.56 < 0.46
Ta 0.086*003  0.081700%  0.08470351  0.08070015  0.0867g051  0.081740:8
en - 0.00479:00° - 0.00679:004 —~ 0.00570003
e — 0.008000 — 0.0100:553 — 0.0101995
Ao _ 2378260 - 1783755 - L978%7 0%

Table 4.6: Best-fit values and 95% confidence limits on thencbsgical parameters (top six) and reionization paransete
(last four) in the case of sudden reionization and CF reaion model for WMAP7 CMB data only, WMAP7+BAO and
WMAP7+BAO+SHOES prior offf, = 74.2 + 3.6. Note that,r, is a derived parameter in case of CF reionization model.
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Now, to see how the detailing of reionization history afetitis bound, we show the
constraints on all the parameters for our reionization rhosiag WMAP7, WMAP7+BAO and
WMAP7+BAO+H, datasets in column 3, 4 and 5 respectively. One can see yhatnisidering
a more physical reionization picture, the upper bound dm,, is improved considerably for all
the cases. In particular, the constraint on the neutrinsnsasmproved by~ 17% for WMAP7
alone and about8% for WMAP7+BAO+H, when a data-constrained reionization scenario is
considered. We should refer here that, Archidiacono e281Q) found an increase in neutrino
masses considering the MH reionization model based on PGAdiscrepancy between these
results is due to the fact that, their reionization modeleanore general with larger number of
parameters and greater degeneracies between the thoseepansathan ours. Also, on contrary
to their results, we found the spectral indexis always< 1 at95% CL for all cases even
we consider the complex reionization premises, thus rubmgthe Harrison-Zeldovich (HZ)
spectrum, = 1). We have shown the values for our reionization model patarsend the
electron scattering optical deptly, which is a derived parameter for this case, in last four rows
in Table 4.6. Although, we get slightly lower valuesfthan the WMAP7 best-fit value, but
they are still well inside within the 2-limit obtained from WMAP7 data.

Furthermore, we also examine what would be the effects ohazeoo neutrino mass on
reionization histories in Figure 4.3. We know that, massietrinos can affect the amplitude of
cosmological perturbations at high redshifisx 1000, probed by CMB) and as well as at very
low redshifts ¢ ~ 1, probed by galaxy surveys). But, recent studies show tlegt ¢n also
affect the power spectrum of perturbation at an intermedidshift ¢ < » < 20) through the
expansion of the universe and thigee-streamingffects (Eisenstein & Hu 1999; Lesgourgues
& Pastor 2006; Pritchard & Pierpaoli 2008). Thus the growthhe fluctuations and hence
the shape of the power spectrum in this regime are influengéldeopresence of these massive
neutrinos. This essentially puts an imprint on the reiciizescenarios.

In Figure 4.3, we show the evolution of various quantitidatesl to reionization for zero
and non-zero neutrino masses for our semi-analytical @hization model with WMAP7 data
only. The solid (green) lines correspond to the best-fit hivden our current MCMC analysis
having(2, = 0.01, while the long-dashed (black) lines correspond to the-fiestodel from
the previous chapter (see Chapter 2) with zero neutrino 1f§gss= 0). For comparison, we
have also plotted a model havifly = 0.022 or > " m, ~ 1.04 eV (still allowed within the 25
limits of our current analysis with WMAP7 data) by the shdashed (blue) lines. The points
with error-bars denote the recent observational data poatated to reionization. We should
mention here that, as we want to understand the effeet odlone on the reionization models,
we keep the same efficiency parameters(;) for these three models.

One can see that, the evolution of the quantities relateditmization are very similar
for the model with zero neutrino mass and the best-fit model @) = 0.01 at lower redshifts
(z < 6), then they depart at higher redshifts. For the model withtikely higher neutrino
mass (2, = 0.022), this deviation becomes very large, even at smaller rédshit can be
seen from the plots of redshift distribution of Lyman Limigs$emsd Ny, /dz (Top-left panél
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Figure 4.3: Evolution of various quantities related to nezation for zero and non-zero neutrino
masses for our semi-analytical CF reionization model withIA¥P7 data. The solid (green)
lines correspond to the best-fit model from our MCMC analysiging(2,, = 0.01, while the
short-dashed (blue) lines corresponds to the model h&ying 0.022 or > m,, ~ 1.04 eV and
still allowed within the 2¢ limits. The long-dashed (black) lines are for the model With= 0
(i.e. the best-fit model from our previous chapters). Thessetmodels have the same efficiency
parameterse(; ). To illustrate the degeneracy betweéandm,,, a fourth model with same
Q, = 0.01 but having different’s are plotted by the thick shaded (gray) curves. This model
mimics the model with zero neutrino mass. The points witbrelars denote the observational
data points.Top-left: the LLS distributiondVy;,/dz with data points from Songaila & Cowie
(2010); Top-middle:the hydrogen photoionization ralg;(z) along with the constraints from
Bolton & Haehnelt (2007)Top-right: the electron scattering optical depth with WMAP7
data point.Bottom-left: the global neutral hydrogen fractiony; (z) with observational limits
from QSO absorption lines (Fan et al. 2006; filled square)y kyitter luminosity function
(Kashikawa et al. 2006; open triangle) and GRB spectrumyaiga(Totani et al 2006; open
square). Also shown the constraints using dark gap statisti QSO spectra (Gallerani et al
2008a; open circles) and GRB spectra (Gallerani et al. 200i&d circle); Bottom-middle:
the volume filling factor of HIl region§)u11(2); Bottom-right:(a) TT, (b) TE and (c) EE power
spectra with the data points from WMAP7 (Larson et al. 2010).
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Model ‘ €11 €111
Q, = 0.010 (best-fit)

Q, =0.022 0.0044 | 0.0077
Q,=0.0

Q, = 0.010 (mimic) | 0.0038 | 0.0157

Table 4.7: Values of the parameters for different models with zero and non-zerorireut
masses. The top three models have the same efficiency paranveihereas the last model has
a non-zero neutrino mass same as the best-fit model of ougrgrasalysis but with different
€’s so that it can mimic the zero neutrino mass model.

and the hydrogen photoionization rdie;(z) (Top-middle pang| where the higher neutrino
mass models clearly shows larger departures, even<a. However this model is still within
the corresponding current observational error-bars. Bpsgghting of LLS at higher redshifts
would be helpful in putting more constraints on reionizatand shrinking the allowed limits
on neutrino masses. Similar behavior of non-zero neutrinaes@as can also be obtained from
the evolution of the global neutral hydrogen fractign (=) (Bottom-left pangland the volume
filling factor of HIl regionsQun(z) (Bottom-middle pangl For the model with very high
neutrino mass we see that, reionization is completed aasively lower redshift compared to
the models having zero or low neutrino masses. This coulgdrapecause of the fact that the
presence of very massive neutrinos could suppress the mudehsity of galaxies and hence
the formation rate of halos at lower redshifts allowing remation to be completed lately (Jose
et al. 2011).

Moreover, we know that, during reionization the re-scatgeof photons can suppress the
anisotropies on smaller angular scales by a damping facter where the electron scattering
optical depthr,; can be obtained from reionizatiofiqp-right pane). From the plot forC**
power spectra (top row of tigottom-right panél one can see that, this quantity remains almost
the same for zero or non-zero neutrino masses fot, @&en forl < 30 where the effect of
renionization is seemed to be important. This is expecteti@sneasurements at such léw
are limited by thecosmic variancegand thus we cannot see the effects of different reionimatio
histories in the temperature spectrum. However, we cargreze the reionization effects in the
polarization spectr&*" (last row of theBottom-right panelat/ < 30. The plot shows a clear
departures of low-polarization spectra for non-zero neutrino masses fronmbeel with zero
neutrino mass. These differences are larger for the modtidwgher neutrino masses.

Remember that, these three models have the same efficierayg@ars {;/i11). Now, we
include a fourth model with differents but having a same non-zeng, (i.e. 2, = 0.01) as our
best-fit model for the current analysis. We vary the efficyggparameters of this fourth model so
that it can mimic the zere»,, model. The values of theparameters for all these four neutrino
mass models are tabulated in Table 4.7. We have shown thecrmiodel by the thick shaded
(gray) curves in Figure 4.3. We see that, the evolution ofredlquantities for this model are
almost identical to those for the model with zero neutrinesd his essentially guarantees that
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there exists a degeneracy betwesmnandm,,. The constraints om, can be further improved
if we can constrain theparameters independently. Thus, it is the degeneracy wfitb@Ehysics
which is not giving good constraints here. Nevertheleds,important to include reionization
data sets in the analysis to improve the constraints onineutrasses.

4.2.4 Summary

One key aspect of studying reionization lies in the fact ihatstrongly related to the properties
of first luminous sources and subsequent galaxy formatione © the lack of knowledge
about an accurate evolution of ionization fraction duriegnization period, it is sometimes
parametrized by by a single parameter, the Thomson scajteptical depthr,, assuming
the universe was reionized instantaneously at some redidibted as,.. However, recent
studies favor for a fairly complex and extended reionizawocess over the redshift range
6 < z < 15 (Choudhury & Ferrara 2006a,b; Mitra et al. 2011), and thegsitnot be described
by a single parameter. In this work, we explore the condisain the cosmological parameters,
particularly the sum of the neutrino massesm,, using such data-constrained reionization
model. With a relatively complex and realistic reionizatimodel (Choudhury & Ferrara 2005,
2006b) described by three parametets, €11, Ag), We try to determine the upper bounds on
neutrino masses and compare our results with those obtasiegla simple sudden reionization
scenario.

We find that, using WMAP7 data alone, a more physically reablentreatment of reion-
ization can tighten the upper limit on neutrino masses-by7% than that for standard sudden
reionization scheme. The BAO dataset and a priorfgrobtained from the SHOES program
along with the WMAP7 data have been used in this work in ordéutther reduce the uncer-
tainty on the neutrino masses. We get-anl8% improvement for this case using our data-
constrained reionization model. Although, the resultsented here shows that the constraints
improve with reionization data sets, but still we do not geichnbetter constrains. So, we need
to identify the reason why the high masses are allowed by #it@ we considered here. For
that, we then examine the possible effects of non-zero ineutnasses on reionization histo-
ries. We find that, one of the possible reasons for not gebetter constrains lies in the fact
that there could exist a large degeneracy between the efficigarameters's andm,. Thus,
an independent bound ancould be crucial in ruling out the models having higher nieatr
masses. Even so, we establish that the constraints onmeeaiasses can be improved up to a
reasonable amount by considering the realistic data-@nsteionization scenario and also the
future observations associated with reionization caniplystrther reduce the present bounds
on neutrino masses.

Finally, we should mention that, although the new WMAP (Bethret al. 2012), BAO
(Anderson et al. 2013) and PLANCK (Ade et al. 2013b) datalsate already become public,
we have not included them in this analysis. However, as lengeaare concern in finding the
bounds onn,,, the old WMAP7 data are fully in agreement with the recentheased WMAP9
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data (Hinshaw et al. 2012). So, the disparity between usiM®\R7 and WMAP9 data is very
insignificant for this analysis. Also, remember that, ouim@am in this work is to compare the
limits on neutrino masses for different reionization sc@sa The current release of BAO data
with WMAP9 and thef, prior or the recent PLANCK will of course lower the bound)fm,,

for both cases but by the same amount. Furthermore, the n@&NEK data release does not
include the polarization data in their likelihood, insteldy rely on the WMAP polarization
likelihood (Page et al. 2007; Bennett et al. 2012) at low ipales to constrain the optical
depth from reionization (Ade et al. 2013a,b). As most of thiestraints related to reionization
models come from the polarization data, we postpone thgsisakith the next data release of
PLANCK to a later project. So, in this case, the impact of éhesw datasets, especially when
considered as a combination with other datasets, is verginand thus will not significantly
change our main conclusions.
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CHAPTER 5

FORMATION RATE OF DARK MATTER
HALOES

We have seen that, one of the most crucial ingredient of aalyacal models discussed in the
previous chapters is the global star formation ratg) and the formation rate of dark matter
halos is directly involved in calculating this quantity. Asmatter of fact, the hierarchical
formation of dark matter halos is the extremely significarttcess which leads to formation
and evolution of galaxies and clusters of galaxies. Thuswarthy of spending some time in
discussing about the formation rate of dark matter halos.her

Gravitational amplification of density perturbations istight to be responsible for for-
mation of large scale structures in the Universe (Peebl86;18handarin & Zeldovich 1989;
Peacock 1999; Padmanabhan 2002). Much of the matter is ttedled dark matter that is be-
lieved to be weakly interacting and non-relativistic (Tola 1987; Komatsu et al. 2009). Dark
matter responds mainly to gravitational forces, and byueirf a larger density than baryonic
matter, assembly of matter into haloes and large scaletstaucs primarily driven by gravi-
tational instability of initial perturbations in dark mett Galaxies are believed to form when
gas in highly over-dense haloes cools and collapses to ftars im significant numbers (Hoyle
1953; Rees & Ostriker 1977; Silk 1977; Binney 1977). Thushieearchical formation of dark
matter haloes is the key driver that leads to formation amdieion of galaxies and clusters of
galaxies.

The halo mass function describes the comoving number geofsitark matter haloes as
a function of mass and redshift in a given cosmology. It issgae to develop the theory of
mass functions in a manner that makes no reference to thisdatéhe cosmological model
or the power spectrum of fluctuations. That is, we expect thssnfunction to take a universal
form, when scaled appropriately. Simple theoretical arguis have been used to obtain this
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universal functional form of the mass function (Press & $Stier 1974; Bond et al. 1991,
Sheth et al. 2001). Bond et al. (1991) and Sheth et al. (2084J the excursion set theory
to derive the mass function. Much work has also been donettrdae the extent to which
this form is consistent with results from N-body simulagdqdenkins et al. 2001; White 2002;
Reed et al. 2003; Warren et al. 2006; Reed et al. 2007; Luka& 007; Cohn & White 2008;
Tinker et al. 2008) with the conclusion that the agreemefdirty good. It is remarkable that
a purely local approach provides a fairly accurate desonpif the manifestly non-linear and
strongly coupled process of gravitational clustering. $hecess of the local description has
been exploited in developing the semi-analytic theoriegadéxy formation (White & Frenk
1991; Kauffmann et al. 1993; Chiu & Ostriker 2000; Madau e2@D1; Samui et al. 2007).

The Press-Schechter mass function (Press & Schechter #8t4% commonly used in
these semi-analytic models assumes spherical collapsaleésh (Gunn & Gott 1972). The
shape of this mass function agrees with numerical resulibtgtively, but there are deviations
at a quantitative level (Efstathiou et al. 1988; Jenkind.2@01). Improvements to the Press-
Schechter mass function have been made to overcome thiatiioni. In particular, the Sheth-
Tormen mass function, which is based on the more realidipseldal collapse model (Sheth &
Tormen 1999; Sheth et al. 2001) fits numerical results bd#tany fitting functions with three
or four fitting parameters have been proposed, these ard basesults of simulations of the
Lambda-Cold Dark MatterA\CDM) model (Jenkins et al. 2001; Reed et al. 2003; Warren. et al
2006; Fakhouri et al. 2010).

In the application of the theory of mass functions to the sanalytic models for galaxy
formation, we often need to know comoving number densityalbés of a certain age. Nat-
urally, this quantity is related to the halo formation raéesl the survival probability. While
these details are known and well understood for the PrelsseBter mass function (Press &
Schechter 1974), the situation is not as clear for other msaafethe mass function. Further-
more, analytic estimates for the halo formation rate angigalrprobability are important in
spite of the availability of accurate fitting functions fdretse quantities in th&CDM model.
This is because analytic estimates can be used to studytivaria these quantities with re-
spect to, for instance, the underlying cosmology or the p@pectrum of matter perturbations.
Studying such variation with the help of simulations is oftepractical. In this work, we focus
on the computation of halo formation rates.

Several approaches to calculating halo formation rates bagn suggested (Blain & Lon-
gair 1993; Sasaki 1994; Kitayama & Suto 1996). In partiguasaki (1994) suggested a very
simple approximation for the formation rate as well as staMprobability for haloes. The ap-
proximation was suggested for the Press-Schechter massdinnthough it does not use any
specific aspect of the form of mass function. The series afragpts is as follows:

e Merger and accretion lead to an increase in mass of individal@es. Formation of
haloes of a given mass from lower mass haloes leads to ams®nethe number density,
whereas destruction refers to haloes moving to a higher naage. The net change in
number density of haloes in a given interval in mass is giwethe difference between
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the formation and destruction rate.

e Given the net rate of change, we can find the formation rateeikmow the destruction
rate.

e A simple but viable expression for the destruction rate i®imled by assuming that the
probability of destruction per unit mass (also known as e destruction efficiency) is
independent of mass.

e This approximate expression for the destruction rate is tieed to derive the formation
rate as well as the survival probability.

The resulting formulae have been applied freely to varimswlogies and power spec-
tra, including the CDM class of power spectra. The Sasakragmh has been used in many
semi-analytic models of galaxy formation (Chiu & Ostrik€@0®; Choudhury & Ferrara 2005;
Samui et al. 2007) mainly due to its simplicity. Attempts @aso been made to generalize the
approximation to models of mass function other than theP8shechter mass function (Samui
et al. 2009), though it has been found that a simple extertditime approximation sometimes
leads to unphysical results. In particular, when applietthéoSheth-Tormen mass function, the
Sasaki approach yields negative halo formation rates.

In this chapter, we investigate the application of the Siesyaroach to the Sheth-Tormen
mass function. We test the Sasaki approach by explicitlyprgmg the halo formation and
destruction rates for the Press-Schechter mass functing tiee excursion set formalism. We
then generalize this same method to compute the halo faymaaites for the Sheth-Tormen
mass function. We find that halo formation rates computedisirhanner are always positive.
Finally, we compare our analytical results with N-body slations.

A reason for choosing the approach presented here, as cedhganther competing ap-
proaches based on the excursion set formalism, is that wetwibe able to differentiate be-
tween major and minor mergers. This is an essential reqemém semi-analytical models of
galaxy formation and is not addressed by other approachésfo formation rate (Percival &
Miller 1999; Percival et al. 2000; Percival 2001; Giocole&t2007; Moreno et al. 2008, 2009).

Many previous studies of merger rates using analytical orerical techniques are present
in the literature. Benson et al. (2005) recognized that dmals approach of calculating halo
formation rate was fundamentally inconsistent. They shibthkat a mathematically consistent
halo merger rate should yield current halo abundances wisamted in the Smoluchowski co-
agulation equation. They applied this technique to obtadénger rates for the Press-Schechter
mass function. The original formulation of halo merger satethe excursion set picture (Lacey
& Cole 1994) was also improved by Neistein & Dekel (2008) areddtein et al. (2010) to in-
clude the effect of finite merger time interval. They foundttthe resultant merger rates are
about 20% more accurate than the estimate of Lacey & Coled)f®Pminor mergers and about
three times more accurate for minor mergers. However, nfdabese studies have focused on
the overall merger rates (Cohn & White 2008) rather than faimation rates.
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In this chapter we discuss the Sasaki and the excursionreealisms in Section 5.1. We
describe our simulations in Section 5.2, discuss our regusection 5.3 and finally summarize
our conclusions at the end of this chapter.

5.1 Rate of halo formation

The total change in number density of collapsed haloes & timith mass betweed/ and

M + dM per unit time is denoted b)j)if(M, t)dM and is due to haloes gaining mass through
accretion or mergers. Lower-mass haloes gain mass so #iatthass is now betweel and

M + dM, and some of the haloes with mass originally betwgeand M + dM gain mass so
that their mass now becomes higher than this range. We edfibtmer process halo formation
and the latter as halo destruction, even though the underlyysical process is the same in
both cases; the different labels of formation or destructiose due to our perspective from a
particular range of mass. We denote the rate of halo formehljdvform(M ,t)dM and the rate

of halo destruction deest(M, t)dM. We immediately have

N(M, t) = Nform(M7 t) - Ndest(M7 t) (51)

Following Sasaki (1994), in general we can formulate eac i@ the above expression as
follows. The rate of halo destruction can be written as

Vo M1) = [ NOLOQUM M )M 5.2)
M

= (M, t)N(M, 1), (5.3)

where,Q(M, M’; t) represents the probability of a halo of magsmerging with another halo
to form a new halo of mas&!’ per unit time. The fraction of haloes that are destroyed pér u
time is denoted by(M, t). This quantity is also referred to as the efficiency of halstdetion.
The rate of halo formation can be written as

M
Niorm (M, 1) = / N(M' . )Q(M', M;t)dM’ (5.4)
0

whereQ(M’, M;t) represents the probability of a halo of mdgs evolving into another halo
of massM per unit time. We can now write, from equation (5.1) and froan definitions in
equations (5.3) and (5.4),

Niorm(M. t) = N(M, t) + 6(M, )N (M, ¢). (5.5)
This reduces the calculation of rate of halo formation tomgotation ofp(M, t).

Sasaki (1994) proposed a simple ansatz to compUié, ¢): if we assume that the effi-
ciency of halo destruction has no characteristic mass scaleve require that the destruction
rate remains finite at all masses then it can be shownstdaes not depend on mass.
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5.1.1 Sasaki prescription: Press-Schechter mass function

Let us first describe the Sasaki prescription for Presstbemass function. To understand
the Press-Schechter formalism (Press & Schechter 1974j Bbal. 1991), which gives the
co-moving number density of collapsed haloes at a tir@th mass betweed/ and M +
dM, consider a dark matter inhomogeneity centered around gané in the Universe. The
smoothed density contrast within a smoothing scale of efiaround this point is defined as
d(R) = [p(R) — p]/p, wherep(R) is the density of dark matter withiR andp is the mean
background density of the Universe. If this density contf@®) is greater than the threshold
density contrast for collapsg obtained from spherical collapse model (Gunn & Gott 1972),
the matter enclosed within the volume collapses to form atdalpject. In hierarchical models,
density fluctuations are larger at small scales so with dsang R, 6(R) will eventually reach
d.. The problem then is to compute the probability that the €ipstrossing of the barrier &t
occurs on a scal&. This problem can be addressed by excursion set approach.

The excursion set approach consists of the following ppiles: consider a trajectory
d(R) as a function of the filtering radiug at any given point and then determine the largest
atwhichd(R) up crosses the threshald¢) corresponding to the formation timeThe solution
of the problem can be enormously simplified for Browniandc#pries (Chandrasekhar 1943),
that is for sharp:-space filtered density fields, as in this case contributicgach wave mode
is independent of all others. In such a case we have to sotvEdkker-Planck equation for
the probability densityI(§, S)dd, whereS = ¢*(R) ando(R) is the standard deviation of
fluctuations in the initial density field, smoothed at a sdale

OI(6,5)  10°I1(6,5)
oS 2 052

The solution (Porciani et al. 1998; Zentner 2007) can beionbtiusing the absorbing boundary
conditionII(é.(¢),S) = 0 and the initial conditiorI(9, S = 0) = dp(d), wheredp(0) is the

Dirac delta function
1 52 (6 — 26.(1))?
— ) = _ 7 T
V218 - [exp( 25) eXp( 25 )} @ (5.7)

Now defineF'(S, d.(t)) = ffo(j) doTl(4, S;d.(t)) as the survival probability of trajectories and
obtain the differential probability for a first barrier csisg:

(5.6)

11(5, S; 6.)d6 =

From this, one can obtain the co-moving number density dapeed haloes at timtevith mass
betweenM andM + dM

_ P d5
Nps(M,t)dM = i (S)'dM dM
2pnr 1|dlno 14
= RO e g) v (5-9)
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herep,, is the average comoving density of non-relativistic madited = [0.(t)/o(M))]? =
[6./(D(t)o(M))])?, whered. is the threshold density contrast for collapBxt) is the linear rate
of growth for density perturbations and M )(= S'/?) is the standard deviation of fluctuations
in the initial density field, which is smoothed over a scakl #ncloses masy.

In the following discussion, we will denote the mass funety N (M, ) if the statement
is independent of the specific form of the mass function. Weuse a subscripPS when the
statements apply only to the Press-Schechter form of the fuastion.

With Sasaki’'s ansatz, the destruction rate efficieti@an be written in this case as

1 dD(1)

o(t) = D) dt (5.10)

With this, we can write down the rate of halo formation for fress-Schechter mass function
from equation (5.5) as:
. . 1 dD(t)
Nigrm (M, 1) = Npg(M,t ————> Npg(M, t
form (M, 1) ps( )+D(t) o ps(M,t)
1 dD(t) 52

b ar MO by G40

Note that for haloes with large mass, that is in the lifit> o(M)D(t), Niomm approaches
Nps. In other words, the total change in the number of haloes tieragned by formation
of new haloes. For haloes with low mass, wheres much larger than unity, althougli’ifo]rm
remains positive, the total change is dominated by desdbruend Nps becomes negative.

We can also define two related, useful quantities now. Igjrste probabilityp(¢;, t2) that
a halo which exists at; continues to exist at without merging is given by

p(ty,t2) = exp |:—/¢(t’)dt} = gx;; (wheret, > ;) (5.12)

This is usually known as the survival probability of haloasd is independent of halo mass in
the Sasaki prescription. In this picture, the distributbbepochg; of formation of haloes with
massM at timet is given by

F(M:;te, t)dMdte = Neoem (M, te)p(ts, t)dMdty. (5.13)

5.1.2 Sasaki prescription: Sheth-Tormen mass function

The Press-Schechter mass function does not provide a veryfgdo halo mass function ob-
tained in N-body simulations. In particular, it under-prtsl the number density of large mass
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haloes, and over-predicts that of small mass haloes. Herrriportant to generalize the cal-
culation of formation rates to other models for mass fumctiwat are known to fit simulations
better. The Sheth-Tormen form of mass function (Sheth & Brh999) is known to fit simu-
lations much better than the Press-Schechter fo(for a comparison of both of these forms
of halo mass function with simulations, see Fig. 3 of Jenkihal. 2001.) The Sheth-Tormen
mass function is given by

_ 2 por 12 |dIno

Ngr(M,t)dM = A i (av) i
where the parameters p, and A have best fit values af = 0.707, p = 0.3 and A = 0.322
(Sheth & Tormen 1999), and the quantityis as defined before. This form of mass function
has the added advantage of being similar to the mass fundgiovwed using a variable barrier
motivated by ellipsoidal collapse of overdense regione(stet al. 2001; Sheth & Tormen
2002). Note that if we choosé = 0.5, p = 0 anda = 1 then we recover the Press-Schechter
mass function derived using spherical collapse. Recemthas been shown that the best fit
values of these parameters depend on the slope of the poaatriap (Bagla et al. 2009).

We can now apply the Sasaki prescription to this form of masstion and calculate
the rates of halo formation and destruction (Ripamonti 200Ve get for the destruction rate
efficiency

x [1+ (av) "] exp [—a—;] dM, (5.14)

1dD

o(t) = Dar [1—2p]. (5.15)

Note that the destruction rate efficiency is independentagsn The rate of halo formation is
then given by

. 1dD
NET (M, t) = _1dD

form

2p
T {1 ) al/} Ngr(M,t). (5.16)
Note that in this case, because of the extra term, the hatoafiion rate can be negative for
some values of halo mass. Since negative values of rate ofdrahation are unphysical, this
indicates that the generalization of Sasaki approximatdhe Sheth-Tormen mass function is
incorrect. The same problem is encountered if we use otheelm®f the halo mass function
(Samui et al. 2009).

However, since the basic framework outlined in the begigrahthis section is clearly
correct, there should not be any problems in generalizitgaother mass functions. It is there-
fore likely that the simplifying assumptions of the Sasakithod that led to the estimate of the
halo destruction rate efficiency of equation (5.15) are oasible for negative halo formation
rate.

1Even this form of halo mass function has poor accuracy in stases, namely, for conditional mass functions
with large mass ratios and for mass function in overdengemegSheth & Tormen 2002). In applications involving
these regimes it is perhaps advisable to use more accutiaig fitnctions to simulation data. However, the Sheth-
Tormen form still has the property of being considerablytdrethan the Press-Schechter form while having a
physical interpretation. It is thus preferable in many samalytic models where the Press-Schechter form is used.
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5.1.3 Excursion set approach to halo formation rate: Presschechter
mass function

To check this assertion we perform an explicit calculatibthe rate of halo formation using
the excursion set formalism. Recall that from equation8)(&nd (5.3), we can write for the
halo destruction rate efficiency as

60,1 = [ QM My D, (5.17)

My

whereQ (M, M,; t) represents the probability that an object of magsgrows into an object
of mass)M, per unit time through merger or accretion at tim& his quantity is also known as
the transition rate.

In the excursion set formalism, the conditional probapilir a halo of masd/; present
at timet; to merge with another halo to form a larger halo of mass batwégand M; + dM,
at timet, > t; (Lacey & Cole 1993, 1994) can be written for the extended 28xhechter
mass function as

2 65(0) — & 7
f(M2,52|M1,51)dM2:\/; 2(%1 2)03[ 2 201 2)}

N

01 oi(0% — o3
((520'% — 510%)2 dO’Q
— dMs. 5.18
e exp [ 20203(0% — 03) | |dM; ? (5-18)

Here,o; ando, are values of the standard deviation of the density pertiofmwhen smoothed
over scales that contain massefs and M, respectively, and; andd, are the values of the
threshold density contrast for spherical collapse at tirend¢, respectively. Taking the limit
t, tends tofy, i. e. d, tends to);, we can determine the mean transition rate at timet;:

3
~ 2 o3 2 1dd
My, Mo t)dMy =\ =03 | 55— | |
e
62(02 — 03)] | doy
— dMs,. 5.19
XeXp[ 20202 ] aM, | (5.19)

This represents the probability that a halo of m&gswill accrete or merge to form another halo
of massM; at timet. We can use this with equation (5.17) to explicitly comphiedestruction
rate, and hence the halo formation rate.

However, in the excursion set method, an arbitrarily smiadinge in the halo mass is
treated as creation of a new halo. As a result, the integredjiration (5.17) diverges unless we
specify a “tolerance” parameter. We assume that a halo isres$to havesurvivedunless its
mass increases such they — A, > M, (1 + €) due to either accretion or merging, where
e is a small number. This assumption allows us to introducenedautoff in the integral in
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equation (5.17) and the lower limit changesif (1 + ¢), leading to a convergent integral.
This is also physically pertinent for our application asnitésimal changes do not lead to
variations in dynamical structure of haloes, and hence weotlexpect any changes in galaxies
hosted in haloes that do not undergo a major merger. Thimigasiin spirit to the assumption
made elsewhere in the literature that a halo is assumedowsumtil its mass increases by a
factor two (Lacey & Cole 1994, Kitayama & Suto 1996). NotettNabody simulations have a
natural cutoff due to the discrete nature of N-body parsicith the introduction of this new
parameter, the modified formula for the halo destructioa edficiency is given by

(M, 1) = / Q(My, Mo;t)dM, (5.20)

M1(1+6)

This can then be used to calculate the rate of halo formasorglequation (5.5).

Fig. 5.1 shows the destruction rate efficiengy\/, t) computed in this manner for the
Press-Schechter mass function for an Einstein-de Sitsenotomgy with power law spectrum of
density perturbations with index1.5. Curves have been plotted for= 0.1 ande = 0.5. We
have also shown the Sasaki approximation in the same panelexicursion set result has three
features:

1. At small M, the excursion set value approaches the destruction raiputed using the
Sasaki approximation.

2. The destruction rate has a peak, more pronounced foresmaahear the scale of non-
linearity.

3. Atlarger scales the destruction rate falls rapidly; thighe region where deviations from
the Sasaki result are the largest. Thus the halo destruetierfficiency vanishes at large
masses.

A similar trend is seen for other power spectra. We postpodetailed discussion of these
issues to the end of this section.

5.1.4 Excursion set approach to halo formation rate: ShethiFormen mass
function

As discussed in Subsection 5.1.2, the Sheth-Tormen masdnms known to be a much better
fit to N-body simulations than the Press-Schechter masgiumcSeveral other forms of halo
mass function have also been fitted to results of high rasoliN-body simulations (Jenkins
et al. 2001; Reed et al. 2003; Warren et al. 2006). But herenyefocus on the Sheth-Tormen
mass function. Recall that the Sasaki prescription gavéysipal results when applied to this
form of the mass function. Therefore, we now derive the hastrdiction rate efficiency, and
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Figure 5.1: Destruction rate(M,t) at = = 10 for the Press-Schechter mass function for a
power law model with index-1.5. Curves have been plotted for= 0.1 ande = 0.5.

the halo formation rates for the Sheth-Tormen mass funcfltms requires obtaining analogs
of equations (5.18) and (5.19).

Sheth et al. (2001) showed that once the barrier shape isrkrailithe predictions of the
excursion set approach, like the conditional mass functssociated with that barrier can be
computed easify Further, they showed that the barrier shape for ellipda@iddapse is

B(0,t) = bec(0, 1) = Vade(t) [1 + Blav) 7], (5.21)

wherea = 0.75, 5 = 0.485, v = 0.615, and,é..(t) is the threshold value of overdensity required
for spherical collapse (also see Sheth & Tormen 2002). Tlseyfaund that, for various barrier
shapes3(.5), the first-crossing distribution of the excursion set tlggsmwell approximated by

|T(S)| B(S)?
_ _ 22
f(S)ds — ex 5% ds, (5.22)
whereT'(S) denotes the sum of the first few terms in the Taylor seriesresipa of B(S)
— (=9)"0"B(9)
T = E . 2
(%) e~ nl 05" (6-23)

(Here, for conformity with the literature, we use the symbat o2.) This expression gives the
exact answer in the case of constant and linear barriersthEaellipsoidal barrier, we can get
convergence of the numerical result if we retain terms inféndor expansion up to = 5.

For Press-Schechter mass function, the conditional massidum f (.S, 4,|S2, J2) can be
obtained from the first crossing(.S) by just changing the variables — §; — 6, andS —

°These can be calculated for non-Gaussian initial conditisee, e.g., de Simone et al. (2011)
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S; — S,. This can be done because, despite the shift in the origgrseébond barrier is still one
of constant height. This is no longer true for Ellipsoidallapse and hence we cannot simply
rescale the function of equation to get the conditional niasstion. Instead, this can be done
by making the replacement$(S) — B(S;) — B(S2) andS — S; — Sy in equation (5.22).

| T(S1]52)]
\/277'(51 — 52)3/2

(B(S1) — B(S2))*
2(51 — 9)

f(51]S2)dS, =

X exp

where we now have

5

(—=(S1 — 852))" 0" (B(S1) — 3(52)).

T = 2
Using Bayes’ theorem, we now have
[ T(S15)[T(S2)] 1 [ S }

S5|S1) dSy =

e Y I Ny
[B(S) = B(Sy)]  B*(Sy) | B*(S)
— — ) 2
exXp 2(S1 — Ss) 25, 25, | 4o (5.26)

A change of variables from§ to M now gives us an analog of equation (5.18) for the Sheth-
Tormen mass function. In other words, we get the conditipnabability fsr (M| M;)d In Mo

that a halo of masd/;, present at time&; will merge to form a halo of mass betwe@i,

and M, + dM, at timet, > t¢;. Further, taking the limit as, tends tot,(= t¢), we obtain
@(Ml, M,;t). As before, we can then use it to calculate the halo destructte efficiency
¢(M, t) and the rate of halo formatioN3T (M,, z) using equations (5.5) and (5.20). We per-
form this part of the calculation numerically. However gtalso possible to use this formalism
to calculate formation rates for the square-root barrieor@o et al. 2009, 2008; Giocoli et al.

2007), which is a good approximation for the ellipsoidalapse model.

Fig. 5.2 is the analog of Fig. 5.1 for the Sheth-Tormen masstifan. It shows the
destruction rate per hale(), t) computed using the excursion set method for an Einstein-de
Sitter cosmology with power law spectrum of density peratidns with index-1.5 atz = 10.0.
Curves have been plotted for= 0.1 ande = 0.5. We have also shown the Sasaki approximation
for ST mass function in the same panel for comparison. Tlsisltéor the Sheth-Tormen mass
function has the same features as the result for the Préexzi®er mass function. We also
see that the destruction rate efficiency is far from consaasmall M /M,,,. Thus the central
assumption of the Sasaki prescription is invalid in the cdsgheth-Tormen mass function as
well.



104 Formation rate of dark matter haloes

0.1 frrmmmp ey

001 b e s

1073 - N \

e
-

1074 -\ “A\

P ST(e=01) ____ "\ W
r ST (e = 0.5) '\ :

E PS (e = 0.1) ;
E PS (e = 0.5) —
_s| ST (Sasaki) - \ \
E PS (Sasaki) - \ !

$ (megayr™")

Wil ".‘ll.u\ . Hw.t \ wmﬁ
10 100 1000 10* 10°
M

PR - n
nl

3

cond vl
0.01 0.1 1
M

107* 10”

Figure 5.2: Same as Fig. 5.1 but for the Sheth-Tormen (asasd¥ress-Schechter) mass func-
tion.

1 f max
n Noox  Npart Ty Ty T 2

nl

—1.5 400 400® 2.5 12.0 10.0 103.38
—0.5 2563 256 2.5 12.0 182 291.53

Table 5.1: For power law: here is the index of the power spectrumVyy is the size of the
simulation box ,Npar represents the number of particleg, is the scale of non-linearity at
the earliest epocr’r,ff1 is the actual scale of non-linearity for the last epag}f represents the
maximum scale of non-linearity anglis the starting redshift of the simulations for every model.

L box N, part Mpart € 2zt Zout

23.04 5122 6.7x10° 1.35 5.0 5.04
51.20 5123 7x107 3.00 3.0 3.34
76.80 5123 23 x10® 450 1.0 1.33

Table 5.2: For LCDM: columns 1 and 2 list the size of the box\ipc/%) and the number of
particles used in the simulations. Columns 3 and 4 give ttssria M, /1) and force resolution
(in kpc/h; not to be confused with theused in the text) of the simulations, while columns 5
and 6 tell us the redshift at which the simulations were taatad and the redshift for which
the analyses were done.
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5.2 N-body simulations

From the excursion set calculation described in the prevsagction, we thus find that the halo
destruction rate efficiency is not independent of mass assisraed in the Sasaki prescription.
Clearly, this is the reason why Sasaki prescription yielgshysical values for the rate of halo
formation. In this section and the next, we now compare thelte of our excursion set calcu-
lation with results of N-body simulations.

We used the TreePM code (Khandai & Bagla 2009) for these sitionls. The TreePM
(Bagla 2002; Bagla & Ray 2003) is a hybrid N-body method whinproves the accuracy and
performance of the Barnes-Hut (BH) Tree method (Barnes &X986) by combining it with
the PM method (Miller 1983; Klypin & Shandarin 1983; Bouclkg¢tl. 1985; Bouchet & Kan-
drup 1985; Hockney & Eastwood 1988; Bagla & Padmanabhan;1987z et al. 2005). The
TreePM method explicitly breaks the potential into a shartge and a long-range component
at a scale;: the PM method is used to calculate the long-range forcelandtort-range force
is computed using the BH Tree method. Use of the BH Tree fortshage force calculation
enhances the force resolution as compared to the PM method.

The mean inter-particle separation between particlesisitnulations used herelis..,. =
1.0 in units of the grid-size used for the PM part of the force gktion. In our notation this is
also cube root of the ratio of simulation volumg . to the total number of particle¥,,..

Power law models do not have any intrinsic scale apart froensttale of non-linearity
introduced by gravity. We can therefore identify an epoctemms of the scale of non-linearity
rn. This is defined as the scale for which the linearly extrajgolaalue of the mass variance
at a given epoch,(a, ry) is unity. All power law simulations are normalized such théta =
1.0,y = 8.0) = 1.0. The softening length in grid units (503 in all runs.

The ACDM simulations were run with the set of cosmological parearsefavored by
Wilkinson Microwave Anisotropy Prolieyr data (WMAP; Komatsu et al. 2009) as the best fit
for the ACDM class of models(2,,, = 0.2565,Q, = 0.7435,n, = 0.963,05 = 0.796,h =
0.719 andQ,h? = 0.02273. The simulations were done wifti23 particles in a comoving cube
of three different values of the physical volume as givenabl& 5.2.

Simulations introduce an inner and an outer scale in thel@noland in most cases we
work with simulation results wheréy,, > ry > Lgiq, Where Lg,q, the size of a grid cell
is the inner scale in the problen.,,, is the size of the simulation and represents the outer
scale. In Table (5.1) we list the power law models simulatedtie present study. We list the
index of the power spectrum (column 1), size of the simulation bad¥,x (column 2), number
of particlesNpar (column 3), the scale of non-linearity at the earliest epaoséd in this study
(column 4), and, the maximum scale of non-lineartf{#* (column 6) given our tolerance level
of 3% error in the mass variance at this scale. For some modelsweithnegative indices
we have run the simulations beyond this epoch. This can beisesolumn 5 where we list
the actual scale of non-linearity for the last epoch. Thent®of haloes in low mass bins are
relatively unaffected by finite box considerations. We éfiere limit errors in the mass function
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by running the simulation up tg;** . Column 7 lists the starting redshift of the simulations for
every model. Similarly, in Table (5.2), we mention the detaf the LCDM simulations used in
this work. We list the size of the simulation béx,, in Mpc/h (column 1), number of particles
used in the simulation¥,,,,; (column 2), mass of the particles,.,. in M /A (column 3), force
resolutione (not to be confused with theused in the text) of the simulations in kfic(column

4), the redshift; at which the simulations were terminated (column 5) and d¢dshiftz,,; for
which the analyses were done (column 6).

In order to follow the merger history of dark matter haloesach of these simulations, we
store the particle position and velocities at differentstatts. A friend-of-friend group finding
algorithm is used to locate the virialized haloes in eaclhese slices. We adopt a linking length
that is0.2 times the mean inter-particle separation, correspondirthe density of virialized
haloes. Only groups containing at le@8tparticles are included in our halo catalogs. A merger
tree is then constructed out of the halo catalogs by tradkiegvolution of each particle through
various slices. This lets us identify a halo as it evolve$idiine through mergers with other
haloes. We then describe the formation and destructionloélan terms of change in number
of particles between consecutive snapshots of the sirulaiVhen a halo of mas¥ at redshift
z turns into a halo of mass!/’ at2'(< z), then we say that a halo of mass was destroyed at
redshiftz and a halo of mas&/’ has formed at’ if M’ > M (1 + ¢). We identify the resolution
parametet with that used in our excursion set calculation and expartmth different values
as described in the next section.

We find that a tolerance parametesimilar to the one defined before, also occurs while
analyzing the results of N-body simulations. We identifgdl two quantities. As we will see
in the next section, the formation rate in our model has a miggace ore, which reproduces
the dependence of the results of N-body simulations on thasitity. Thus, the presence ©in
our analytical model is crucial in comparing our resultswiiie N-body results.

5.3 Results and discussion

In this section we present the results of a comparison of alautations presented in Section
5.1 with N-body simulations. We present comparison of tr&rdetion rate efficiency and the
rate of halo formation and then discuss our results at theoétius section. We also consider
two related quantities, the halo survival probability aine distribution of halo formation times,
that were defined in Section 5.1.

5.3.1 Halo destruction rate efficiency

Figs. 5.3 and 5.4 show the halo destruction rate efficieriady, ¢) for Sheth-Tormen and Press-
Schechter mass functions in an Einstein-de Sitter uniweidea power law power spectrum
of density fluctuations with indices = —0.5 andn = —1.5 respectively. The top row of
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Figure 5.3: Comparison of the destruction rate efficiencesputed using our method and
Sasaki formalism for both ST and PS mass functiom,at= 5 grid lengths (top row) and
rw = 8 grid lengths (second row). All curves are plotted for povesy-model with index
n = —0.5. Curves fore = 0.5 are shown in the left panel ard= 0.1 in the right panel. Points
with error bars represent the corresponding results oddafiom N-body simulations.
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both figures shows the halo destruction rate efficiency at 0.8 and the second row shows
the same at = 0.0. In each case, we compute the halo destruction rate efficiesiag the
Sasaki method as well as our excursion set method. We tharedgn/, ¢) from our N-body
simulations for a comparison: see Bagla et al. (2009) foaitdedf the simulations and best
fit parameters for the ST mass function. These results arerisyposed on the plots. For
the excursion set calculation and for the comparison withuations, we use = 0.5 (left
column) ande = 0.1 (right column). For the two power spectra, the two redstitfist we
consider correspond tq, = 5 andr, = 8 grid lengths, and,; = 4 andr,; = 8 grid lengths
respectively.

As we saw in Figs. 5.1 and 5.2, we find that Sasaki’'s assumstioot valid for ST or PS
mass functions, that i®(/, t) depends on the halo mass. We also see that the valb@bft)
derived from simulations matches well with that calculdbgdur method. On the other hand,
the predictions of Sasaki’s approximation do not match imeigtions. This difference is more
pronounced for the smaller value ©fNote that the points from N-body simulations have large
error-bars at higher mass as the number of haloes decrdabesea scales. The most notable
feature of the destruction rate efficiency in the excurseimpgture is that it cuts off very sharply
for large masses. Another aspect is that for smydhere is a pronounced peakgdrand it drops
off towards smaller masses.

We have also calculated the destruction rate efficiencynACDM cosmological model
for both Press-Schechter and Sheth-Tormen mass functioisoanpared it with derived values
from simulations. The results are shown in Fig. 5.5 for twdstefts .0 and10.2) and two
values ofe (0.5 and0.1). We can see that results calculated by our technique fit noate
results better.

5.3.2 Halo formation rate

Having calculated the destruction rate efficiency, we cam calculate the halo formation rate
using the formalism described in Section 5.1 and comparétlit the derived halo formation
rates from our simulations. The results are shown in Figsabd 5.7 for an Einstein-de Sitter
Universe with a power law power spectrum of density fluctuagiwith indices: = —0.5 and

n = —1.5 respectively. The first row of both figures shows the fornratate at redshift = 0.8
and the second row shows the same at redshift 0.0. Note the quantity plotted here is the
ratio Nio (M, ) /N (M, t). We have shown the results from the Sasaki prescription ked t
excursion set calculations and have superimposed formedies derived from N-body simu-
lations. As before, for the excursion set calculation andlie comparison with simulations,
we usee = 0.5 (left column) ande = 0.1 (right column). For the two power spectra, the two
redshifts that we consider correspondrtp = 5 andr,; = 8 grid lengths, and-,, = 4 and
rn = 8 grid lengths respectively. The corresponding resultsHfeAtCDM cosmological model
are shown in Fig. 5.8 for two redshifts (2.0 and 10.2) and teloes ofe (0.5 and 0.1).

Again, we see that the excursion set results fit simulatioa ohuch better as compared to
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the results from Sasaki prescription. The Sasaki methodnaistimates the formation rates by
a large factor for low mass haloes. Results from the two nu=sthend to converge in the large
mass limit, although a systematic difference remains betwle Sheth-Tormen and Press-
Schechter estimates, with the former always being largarttie later. The difference in the
Sasaki estimate and the excursion set estimate for theaud@estr rate efficiency and the forma-
tion rate is as high as an order of magnitude at some scalég stolse proximity of simulation
points to the excursion set calculations is a clear vinthoatf our approach. It is worth noting
that there is a clear deviation of simulation points from theoretical curves at small mass
scales and this deviation is more pronounced at small massssiore = 0.5. It may be that
some of the deviations arise due to a series representdttba barrier shape, and the number
of terms taken into account may not suffice for the estimate.h@/e found that truncation of
the series can affect results at small masses, though inaasss results converge with the five
terms that we have taken into account for the range of massssdered here.

5.3.3 Halo survival probability

An important auxiliary quantity in the ongoing discussisrthe halo survival probability, de-
fined in Section 5.1. From our calculation of the halo destoncate efficiency, we calculated
the survival probability of dark matter haloes using boté éxcursion set formalism and the
Sasaki prescription and compared results. These resalshawn in Fig. 5.9, which shows the
survival probabilities in thd CDM cosmological model for the Press-Schechter (left peared
Sheth-Tormen (right panel) mass functions using the twoagmhes at three different redshifts
(z = 1,3 and10). In this case, we have used- 0.5 for the excursion set calculation.

In Sasaki approximation, the destruction rate is indepenoemass and hence the sur-
vival probability is also independent of mass. Our caldala show that this approximation is
not true, and hence the survival probability of haloes misst depend on mass. We note that
the survival probability is high for large mass haloes: ifesylarge mass halo forms at a high
redshift then it is likely to survive without a significantaiton to its mass. Smaller haloes
are highly likely to merge or accrete enough mass and hencwdsurvive for long periods.
Survival probability drops very rapidly as we go to smalleasses. While this is expected on
physical grounds, it is an aspect not captured by the Sappkogimation where equal survival
probability is assigned to haloes of all masses. The massndiemce of survival probability
is qualitatively similar to that obtained by Kitayama & Syt®96). There is no significant
gualitative difference between the curves for the Prese@&uer and the Sheth-Tormen mass
functions.

5.3.4 Formation time distribution

Finally, another interesting quantity is the distributi6ii)/; ¢;,¢) of formation epochs of
haloes with masd/ at ¢, defined in Section 5.1. This distribution can be obtaineceaie
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survival probability and formation rate of haloes is knowhe calculated the formation time
distribution using the excursion set formalism and the Bgmascription. The results are shown
in Fig. 5.10. We plotF'(M; zf, z = 0)/N (M, z = 0) versus the formation redshif} for three
different massesi()!3, 10'° and107 M) in the standard CDM model for both Press-Schechter
(left column) and Sheth-Tormen (right column) mass funaiaithe = 0.5 (first row) and

e = 0.1 (second row). A common feature is thiatas a function ot increases up to a certain
redshift and then starts to decline. The epochs at whidnops by an order of magnitude from
its peak can be interpreted as typical range of redshiftghi@formation of bound systems of
respective masses which existat 0.

The differences between the formation redshift distridnufior e = 0.5 ande = 0.1 are
along expected lines: the formation redshifts are smatletie lower value ot as a smaller
change in mass is required for us to declare that a new hall@maed and hence typical haloes
do not survive for a very long time. We see that the excursaincalculation suggests that
haloes formed more recently as compared to the Sasaki dptan based estimate. This can
be understood in terms of the equal survival probabilitygeesd by the Sasaki approximation
to haloes of all masses. For a clearer comparison, the ratioecestimate based on Sasaki
approximation and the excursion set calculation is showign 5.11. We note that for very
low mass haloes these two estimates differ by more than aer ofdnagnitude. The main
gualitative difference between the plots for the Press8ater and the Sheth-Tormen mass
functions is caused by the negative formation rates in tisal8approximation.

5.3.5 Discussion

The results described above show conclusively that thersxouset approach predicts halo
formation and destruction rates that match with simulaiomuch better than the Sasaki ap-
proximation.

Another noteworthy aspect is that the destruction and foonaates depend on the value
of € in simulations as well as the excursion set calculationeinellowing us to differentiate
between major and minor mergers. In comparison, there isahwal way to bring in this de-
pendence in the Sasaki approximation. While the match letwenulations and the excursion
set approach for the two valuesois satisfying, it raises the question of the appropriateeal
of this parameter. In our view the appropriate value of thepeter should depend on the
application in hand. In semi-analytic galaxy formation ralsgwe should use a value othat
corresponds to the smallest ratio of masses of the infadialgxy and the host galaxy where we
expect a significant dynamical influence on star formatide. r&or instance, Kauffmann et al.
(1999) use: = 0.3 in their semi-analytic galaxy formation model while coresicdg formation
of bulges in merger remnants. In case of galaxy clusters welrase this on the smallest ratio
of masses where the intra-cluster medium is likely to beudistd in a manner accessible to
observations in X-ray emission or the Sunyaev-Zel'doviifaat (Sunyaev & Zeldovich 1972;
Navarro et al. 1995; Kay 2004).
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While the close match between simulations and the excubralculation is useful,
it also implies that we should not use the simpler Sasakiamation. The excursion set
calculation of the halo destruction rate is fairly simpletfte Press-Schechter mass function, but
the corresponding calculation for the Sheth-Tormen masstion is much more complicated.
Plots of the destruction rate efficiengyM) for all the models suggest that its variation with
mass and is very similar for the PS and ST mass function. This sugg@stapproximation
where we uses(M, z; ) computed using the Press-Schechter mass function and atseth
compute the halo formation rate in the Sheth-Tormen masgifim Figs. 5.12 and 5.14 show
the halo formation rate for thaCDM model at different redshifts and compare the excursion
set calculation, the Sasaki approximation and the intermedpproximation suggested above.
We have also shown the ratios of formation rates estimat#tese two approaches mentioned
above in Figs. 5.13 and 5.15. We find that the intermediatecppation is not plagued by
negative halo formation rates and that it is an excellent@pmation at all mass scales at
higher redshifts. At lower redshifts, the approximatiostii good at high masses but not so at
smaller masses (Mitra et al. 2011).

While comparing our analytical results with those of N-b@iyulations, we find a sys-
tematic deviation between the two at the high mass end. $lpessibly related to the problem
of ‘halo fragmentation’ while deriving halo merger treesrfr the simulations. In about 5% of
all haloes, particles in a given progenitor halo can becoare gf two independent haloes at
a future epoch. This is usually attributed to the fact that BOF algorithm groups particles
based on the inter-particle distance. This can result indeetification of two haloes separated
by a thin 'bridge’ of particles to be treated as a single h&8och halo fragmentation has been
treated using different techniques in various halo fororatate studies. Fakhouri & Ma (2008)
compare these techniques and find that the effect of halonatation is maximum of high
mass haloes.

5.4 Conclusions
Key points presented in this chapter can be summarized lasviol

e We revisit the Sasaki approximation for computing the halonation rate and compute
the destruction rate explicitly using the excursion setraagh.

e We introduce a parametey the smallest fractional change in mass of a halo before we
consider it as destruction of the old halo and formation oéwa halo.

e We show that the halo destruction rate is not independentasisneven for power law
models and hence the basis for the Sasaki ansatz does noffa@grominent features
of the halo destruction rate are the rapid fall at large mass®l a pronounced peak close
to the scale of non-linearity. The peak is more pronouncedrfwaller values of.
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e Using the excursion set approach for the Sheth-Tormen nuassidn leads to positive
halo formation rates, unlike the generalization of the Bemasatz where formation rates
at some mass scales are negative.

e We compare the destruction rate and the halo formation cat@puted using the excur-
sion set approach with N-body simulations. We find that opreach matches well with
simulations for all models, at all redshifts and also fofatént values o¢.

e In some cases there are deviations between the simulamontha theoretical estimate.
However, these deviations are much smaller for the exauisd based method as com-
pared to the Sasaki estimate.

¢ It may be that some of the deviations arise due to a seriesseptation of the barrier
shape, and the number of terms taken into account may natesiii the estimate. We
have found that truncation of the series can affect resuimall masses, though in most
cases results converge with the five terms that we have takeaccount for the range of
masses considered here.

e We show that we can use the halo destruction rate computéaediress-Schechter mass
function to make an approximate estimate of the halo foronatate in Sheth-Tormen
mass function using equation (5.5). This approximate edgns fairly accurate at all
mass scales in theCDM model at high redshifts.

e The halo survival probability is a strong function of masshaloes, unlike the mass
independent survival probability obtained in the Sasakragimation.

e The halo formation redshift distribution for haloes of difént masses is also very dif-
ferent from that obtained using the Sasaki approximatidns & especially true for the
Sheth-Tormen mass function where the Sasaki approximgives negative halo forma-
tion rates in some range of mass scales and redshifts.

The formalism used here for calculation of halo formatide end other related quantities
can be generalized to any description of the mass functitreifelevant probabilities can be
calculated. Within the framework of the universal approaximass functions, it can also be
used to study formation rates of haloes in different cosgiold models (Linder & Jenkins
2003; Maccio et al. 2004). This allows for an easy comparisictheory with observations for
guantities like the major merger rate for galaxy clustershiCet al. 2001).

In case of semi-analytic models of galaxy formation, ourrapph allows for a nuanced
treatment where every merger need not be treated as a majgemaad we may only consider
instances where mass ratios are larger than a critical vatueny affect on star formation in
the central galaxy.
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CHAPTER 6

POST-REIONIZATION NEUTRAL
HYDROGEN DISTRIBUTION

In the previous chapters, we studied the evolution of netliydrogen @I) fraction in the
IGM at high redshifts. We saw how the current observatiomsazastrain this evolution from
unity at redshiftz ~ 15 to less thanl0~* at z ~ 6 due to the presence of luminous sources
which reionize the universe. In this chapter, we shall cargiour study of neutral hydrogen
distribution in the universe in the post-reionization dpae. atz < 6.

6.1 Introduction

Following the epoch of reionizatiorz (~ 6), the low density gas gets completely ionized
(Becker et al. 2001; Fan et al. 2006). However, a small foactif neutral hydrogen (HI) sur-
vives, and is confined to the over-dense regions of the IGMht redshifts the bulk of the
neutral gas is contained in clouds with column density gretitan2 x 10?°atomsém?. Ob-
servations indicate that these regions can be identifiechagg@d Lyer (DLA) systems (Wolfe
et al. 2005), which are self-shielded from further ioniaatand house- 80% of the HI at

1 < z < 4. In this redshift range the neutral fraction remains camstéth Qy; ~ 0.001
(Lanzetta et al. 1995; Storrie-Lombardi et al. 1996; Rao &ishek 2000; Péroux et al. 2003).

The distribution and clustering properties of DLAs sugdhbat they are associated with
galaxies, which represent highly non-linear matter oveisdees (Haehnelt et al. 2000). These
clumped HI regions saturate the Gunn-Peterson opticahdgptnn & Peterson 1965b) and
hence cannot be probed using kyabsorption. They are, however the dominant source for
the 21-cm radiation. In the post reionization epoch dLgeattering and the Wouthuysen-Field
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coupling (Wouthuysen 1952; Purcell & Field 1956; Furlaaedt al. 2006) increases the pop-
ulation of the hyperfine triplet state of HI. This makes thendpmperaturel;, much greater
than the CMB temperaturg,, whereby the 21-cm radiation is seen in emission (Madau. et al
1997; Bharadwaj & Ali 2004; Loeb & Zaldarriaga 2004). The @h-flux from individual HI
clouds is too weak< 10uJy) for detection in radio observations with existing fad#g, unless
the effect of gravitational lensing by intervening mattehances the image of the clouds sig-
nificantly (Saini et al. 2001). The redshifted 21-cm signalvBver forms a diffuse background
in all radio observations at < 6 (frequencies> 203 MHz). Several radio telescopes, like
the presently functioning GMRT and future instruments MWand SKA® aim to detect this
weak cosmological signal submerged in large astrophysicagrounds (Santos et al. 2005;
McQuinn et al. 2006; Ali et al. 2008).

The study of large scale structures in redshift surveys amdemical simulations reveal
that the galaxies (for that matter any non linear structtnaje the underlying dark matter
distribution with a possible bias (Mo & White 1996; Dekel & hhav 1999). Associating the
post-reionization HI with dark matter halos implies thag gas traces the underlying dark matter
distribution with a possible bias functidrik) = [Pui(k)/P(k)]"*, where Py (k) and P (k)
denote the power spectra of HI and dark matter density flticlusrespectively. This function is
believed to quantify the clustering property of the neufjad. It is believed that on small scales
(below the Jean’s length), the bias is a scale dependertidanélowever, it is reasonably scale-
independent on large scales (Fang et al. 1993). Furthesjabelepends on the redshift. The use
of the post-reionization 21-cm signal (Bharadwaj & Setth20Bharadwaj et al. 2001; Wyithe
& Loeb 2007b; Loeb & Wyithe 2008; Wyithe & Loeb 2008; Visbalat 2009) as a tracer of
dark matter opens up new avenues towards various cosmalagvestigations (Wyithe et al.
2007; Chang et al. 2008; Bharadwaj et al. 2009; Mao et al. @08 cross-correlation studies
(Guha Sarkar et al. 2009; Guha Sarkar 2010; Guha Sarkar 20Hl). The underlying bias
model is crucial while forecasting or interpreting somehade results.

In this chapter, we have investigated the nature of HI biakempost-reionization epoch.
The HI fluctuations are simulated at redshifts< 6 and HI bias is obtained at various red-
shifts from the simulated dark matter and HI power specttas & similar to the earlier work
by Bagla et al. (2010) and Marin et al. (2010). The simuldtied function is assumed to be
our fiducial model for HI distribution at low redshifts. Weueastudied the feasibility of con-
straining this fiducial model with observed data. Here weelhfacused on the multi frequency
angular power spectrum (MAPS) (Datta et al. 2007)— measuditectly from observed radio
data and dependent on the bias model. Assuming a standamdlogscal model and a known
dark matter power spectrum we have used the Principal Coemp@malysis (PCA) on simu-
lated MAPS data for a hypothetical radio-interferometsip@&iment to put constraints on the
bias model. The method is similar to the one used for powettapa estimation using the

Ihttp://www.gmrt.ncra.tifr.res.in/
2http://www.mwatelescope.org/
Shttp://www.skatelescope.org/
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CMB data (Efstathiou & Bond 1999; Hu & Holder 2003; Leach 2Ppa6d constraining reion-
ization (Mitra et al. 2011, 2012). Stringent constraintgtombias function with future data sets
would be crucial in modelling the distribution of neutralgat low redshifts and justify the use
of HI as a tracer of the underlying dark matter field. This vablé useful for both analytical
and numerical work involving the post-reionization Hl dilstition.

In the next section, we discuss the simulation of HI distittuand the general features
of the bias function. Following that, we discuss the HI médéiquency angular power spectrum
(MAPS), a statistical quantifier directly measurable fromadio-interferometric experiments.
Finally we use the principal component analysis to invegséghe possibility of constraining
the bias model with simulated MAPS Datta et al. (2007) data.

6.2 Simulation and the bias model

We have obtained the dark matter distribution using the Pbly code developed by Bharad-
waj & Srikant (2004), assuming a fiducial cosmological madeled throughout this chapter)
Qn = 0.2726, Q) = 0.726, 0, = 0.0456, h = 0.705, T, = 2.728K 03 = 0.809, ny, = 0.96
(all parameters from WMAP 7 year data (Komatsu et al. 201sikaet al. 2011)). We sim-
ulate608? particles in1216° grids with grid spacingd).1 Mpc in a 121.6 Mpc® box. The mass
assigned to each dark matter particleris,; = 2.12 x 108Myh~'. The initial particle dis-
tribution and velocity field generated using Zel'dovich epppmation (atz ~ 25) are evolved
only under gravity. The particle position and velocities #ren obtained as output at different
redshifts1.5 < z < 4 at intervals oféz = 0.5. We have used the Friends-of-Friends algo-
rithm (Davis et al. 1985) to identify dark matter over-deies as halos, taking linking length
b = 0.2 (in units of mean inter-particle distance). This gives asoeably good match with the
theoretical halo mass function (Jenkins et al. 2001; Shetflo@nen 2002) for masses as small
as= 10mp.¢. The halo mass function obtained from simulation is foundbéoin excellent
agreement with the Sheth-Tormen mass function in the mageta® < M < 103 A~ M.

We follow the prescription of Bagla et al. (2010), to popeal#te halos with neutral hy-
drogen and thereby identify them as DLAs. Equation (3) oflBagal. (2010) relates the virial
mass of halos)/ with its circular velocityv.,... The neutral gas in halos can self shield itself
from ionizing radiation only if the circular velocity is abe a threshold of.;,. = 30km/sec
atz ~ 3. This sets a lower cutoff for the halo ma&§,;,. Further, halos are populated with
gas in a way, such that the very massive halos do not contgirla\n upper cut-off scale to
halo mass\/,..x is chosen using.;;. = 200km/sec, above which we do not assign any HI to
halos. This is consistent with the observation that verysmasalos do not contain any gas in
neutral form (Pontzen et al. 2008). The total neutral gakes distributed such that the mass
of the gas assigned is proportional to the mass of the halodest these two cut-off limits. We
note that there is nothing canonical about this scheme. Mexveith the basic physical picture
in the background this is the simplest model. Results obthusing alternative HI assignment
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Figure 6.1: The simulated power spectra for dark matteridigion (solid line) and theil
density field (dashed line) at redshift= 2.5.

schemes are not expected to be drastically different (Betgdh 2010).

Figure 6.1 shows the simulated power spectra of dark matteHhdistribution at a fidu-
cial redshiftz = 2.5. The dark matter power spectrum is seen to be consistenthéttransfer
function given by Eisenstein & Hu (1998) and the scale irardriprimordial power spectrum
(Harrison 1970; Zeldovich 1972). The HI power spectrum hgeeater amplitude than its dark
matter counterpart in the entikerange allowed by the simulation parameters. Figure 6.&sho
the behavior of the bias functidiik, =) . We have obtained the scale dependence of the HI bias
for various redshifts in the rangeb < z < 4. At these redshifts, the bias is seen to be greater

z C3 Co C1 Co

1.5| 0.0029| 0.0365 | -0.1561| 1.1402
2.0] 0.0052| 0.0177| 0.0176| 1.5837
2.5/ 0.0101| -0.0245| 0.3951| 2.1672
3.0| 0.0160| -0.0884| 1.0835 | 2.9287
3.5] 0.0234| -0.1537| 2.1854 | 3.8050
4.0| 0.0248| -0.1655| 3.6684 | 4.9061

Table 6.1: The fit parameters for bias function of the faftk) = csk® + cok? + c1k + ¢ for
various redshiftg.5 < z < 4.0.
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Figure 6.2: The simulated bias function for=1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 (bottom to top)
showing the scale dependence. The inset shows the varddttbe large-scale linear bias as a
function of redshift.

than unity, a feature that is observed in the clustering ghhedshift galaxies (Mo & White
1996; Wyithe & Brown 2009). On large cosmological scales ltfes remains constant and
grows monotonically at small scales, where non-linearcésfare at play. This is a generic fea-
ture seen at all redshifts. Therange over which the bias function remains scale indepgnde
is larger at the lower redshifts. The linear bias model isckeseen to hold reasonably well on
large scales. The scale dependence of bias for a given feidghied using a cubic polynomial
with parameters summarized in Table 6.1. The inset in Figu2eshows the redshift depen-
dence of the linear bias which indicates a monotonic in&ed@his is also consistent with the
expected:-dependence of high redshift galaxy bias. The behavior@fitiear bias for small
k-values as a function of redshift is non-linear and can bedfitty an approximate power law
of the form~ 22. This scaling relationship of bias with is found to be sdwmsito the mass
resolution of the simulation. The similar dependence of idslwvithk andz has been observed
earlier by Bagla et al. (2010) with a computationally roblite N-body code. Here we show
that, the same generic features and similar scaling resfior bias can be obtained by using
a simpler and computationally less expensive PM N-body cd@der aim is to use this scale
and redshift dependence of bias, obtained from our sinwunats the fiducial model for the post
reionization HI distribution. We shall subsequently invgste the feasibility of constraining
this model using Principal Component Analysis (PCA) on dated MAPS data.
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6.3 HI 21-cm angular power-spectrum

Redshifted 21-cm observations have an unique advantagether cosmological probes since
it maps the 3D density field and gives a tomographic imageeotthiverse. Here, the statistical
properties of the fluctuations in the redshifted 21-cm knighs temperaturE(i, z) on the sky
is quantified through the multi frequency angular power spet MAPS, defined a€§',(Az) =
(agm(2)a;, (z + Az)), whereay, (z) = [ dQaY;: (R)T'(1, z). This measures the correlation of
the spherical harmonic components of the temperature figldcaredshift slices separated by
Az. In the flat-sky approximation and incorporating the reflsgiace distortion effect we have
(Datta et al. 2007)

™ .
Cg = m dkH COS(/{Z”AT)PHI(k) (6.1)
0

for correlation between HI at comoving distancemdr+Ar, T = 4mK(1+z)? (%%h;) ey ¥

(&), k= /(4)° + ki and P, denotes the redshift space HI power spectrum given by

272
()

where the mean neutral fractiahy; is assumed to have a fiducial valget5 x 1072, § =
f/b(k,2), f =dIn D, /dInawhere,D, represents the growing mode of density perturbations,
a is the cosmological scale factor amdk) denotes the present day matter power spectrum.

We use MAPS as an alternative to the more commonly used 3D rpgpeetrum since
it has a few features that makes its measurement more cemterftirstly we note that as a
function of ¢/ (angular scales) andz (radial separations) the MAPS encapsulate the entire
three dimensional information regarding the HI distribati In this approach, the fluctuations
in the transverse direction are Fourier transformed, whieradial direction is kept unchanged
in the real frequency space. No cosmological informationasever lost. Secondly, 21-cm
signal is deeply submerged in astrophysical foregrountes& foregrounds are known to have
a smooth and slow variation with frequency, whereas theasignmore localized along the
frequency axis. The distinct spectral¢ ) behavior has been proposed to be an useful method
to separate the cosmological signal from foreground comants. In fact it has been shown
that foregrounds can be completely removed by subtractingasuitable polynomial il\v
from C,(Av) (Ghosh et al. 2011). It is hence advantageous to use MAPSwihdintains the
difference between the frequency and angular informatioan observation. The 3D power
spectrum on the contrary mixes up frequency and transvefgamation through the full 3D
Fourier transform. Further, for a large band width radioevstation, covering large radial
separations light cone effect is expected to affect theagidrhis can also be easily incorporated

Pi(k) = i (k, 2) D3 P(k) (6.2)
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into MAPS unlike the 3D power spectrum which mixes up thetimfation from different time
slices. The key advantage, however, in using the angulaepspectrum is that it can be
obtained directly from radio data. The quantity of inteiestadio-interferometric experiments
is the complex Visibility) (U, ) measured for a pair of antennas separated by a disthasa
function of baselindJ = d/\ and frequency. The method of Visibility correlation to estimate
the angular power spectrum has been well established (Blvaj& Sethi 2001; Bharadwaj &
Ali 2005). This follows from the fact thatV(U, v)V*(U,v + Av)) « Cy(Av). Here the
angular multipole is identified with the baselin€ as/ = 27U and one has assumed that the
antenna primary beam is either de-convolved or is suffiigg@aked so that it maybe treated
as a Dirac delta function. Further the constant of propodiity takes care of the units and
depends on the various telescope parameters.

The angular power spectrum at a multipdlés obtained by projecting the 3D power
spectrum. The integral in Equation 6.1, sums over the modese&v projection on the plane
of the sky is//r. Hence,C, has contributions from matter power spectrum only for-
¢/r. The shape of’, is dictated by the matter power spectrunik) and the bias(k). The
amplitude depends on quantities dependent on the backdjmsmological model as well as
the astrophysical properties of the IGM. We emphasize lete the mean neutral fraction and
the HI bias are the only two non-cosmological parametersimmaodel for the HI distribution
at low redshifts. Predicting the nature@f in a given cosmological paradigm is then crucially
dependent on the underlying bias model and the value of thieaidraction.

The Av dependence of the MAPS,(Av) measures the correlation between the various
2D modes as a function of radial separatiin (Av). The signal is seen to decorrelate for
large radial separations, the decorrelation being fastdafger/ values. For a given, one gets
independent estimates ©f for radial separations greater than the correlation lerigtbjection
of the 3D power spectrum leads the availability of fewer kerumodes. However, for a given
band widthB, one may combine the signals emanating from epochs segdmathe correlation
length Ave in the radial direction. Noting that the amplitude of thergijdoes not change
significantly over the radial separation correspondingh hand width, one has B/Av.
independent measurements(of Az = 0). We have adopted the simplified picture where the
noise inCy(Az = 0) gets reduced owing to the combination of théseAv. realizations. A
more complete analysis would incorporate the correlationNiy < Av,.. We plan to take this
up in a future work.

Figure 6.3 shows the 3D HI power spectrum at the fiducial nédsh= 2.5 obtained
using the dark matter power spectrum of Eisenstein & Hu (L99% have used the WMAP
7 year cosmological model throughout. Figure 6.4 shows t¢ineesponding HI angular power
spectrum. The shape @f, is dictated by the shape of the matter power spectrum, the bia
function, and the background cosmological model. The aoqiis set by various quantities
that depend on the cosmological model and the growth ofdipedurbations. The global mean
neutral fraction also appears in the amplitude and playsi@adrrole in determining the mean
level for 21-cm emission. Hence, for a fixed cosmological elpthe bias and the neutral
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fraction, solely determine the fluctuations of the postmeation HI density field. We have
used the bias model obtained from numerical simulationBeridst section to evaluate th&.
We assume that the binned angular power spectrum is measisederf bins— the data being
generated using Equation 6.1 using the fiducial bias model.

The noise estimates are presented using the formalism ysétab et al. (2008) for
the 3D power spectrum and Bharadwaj & Ali (2005) and Baglal.e2®10) for the angular
power spectrum. We have used hypothetical telescope pteesrfer these estimates. We
consider radio telescope with 60 GMRT like antennae (diaméb m) distributed randomly
over a regiontkm x 1km. We assumd’,, ~ 100K. We consider a a radio-observation at
frequencyr = 405MHz with a bandwidthB = 32MHz for an observation time af000 hrs.

In order to attain desired sensitivities we have assumedhtieadata is binned whereby
several nearby— modes are combined to increase the SNR. Further, in thd chdkation, the
signal is assumed to decorrelate for > 0.5MHz, so that we havé4 independent measure-
ments ofC, for the given band width o082MHz. The 7-¢ bins chosen here allows the binned
power spectrum to be measured at a SKIR in the entire range00 < ¢ < 8000. One would
ideally expect to measure the power spectrum at a large nuofildevalues which would nec-
essarily compromise the obtained sensitivities. With thrergset of observational parameters,
one may, in principle choose a finer binning. It shall howelegrade the SNR below the level
of detectability. Choosing arbitrarily finé— bins and simultaneously maintaining the same
SNR would require improved observational parameters winialy be unreasonable if not im-
possible. The same reasoning applies to noise estimatiahd@D power spectrum where for
a given set of observational parameters, the choide-obins is dictated by the requirement of
sensitivity. In the figure 6.3, showing the 3D power specteum- o detection ofPy; (k) in the
central bin requires the full— range to be divided intd8 equal logarithmic bins for the same
observational parameters.

The noise inC, and Py (k) is dominated by cosmic variance at sm&lk (large scales),
whereas, instrumental noise dominates at largevalues (small scales). We point out that
the error estimates predicted for a hypothetical obsemaire based on reasonable telescope
parameters and future observations are expected to raflatdrssensitivities.

We note here that several crucial observational difficsilimderC, to be measured at a
high SNR. Separating the astrophysical foregrounds, whiehseveral order larger in magni-
tude than the signal is a major challenge (Santos et al. 2088uinn et al. 2006; Ali et al.
2008; Ghosh et al. 2010, 2011). Several methods have begestag for the removal of fore-
grounds most of which uses the distinct spectral properth@®1 cm signal as against that of
the foreground contaminants. The multi frequency anguargy spectrum (MAPSY,(Av) is
itself useful for this purpose (Ghosh et al. 2010, 2011). Whs this signal’,(Av) decorre-
lates over large\r, the foregrounds remain correlateda feature that maybe used to separate
the two. In our subsequent discussions we assume that tbgréomds have been removed.
As mentioned earlier, the angular power spectrum can dreetmeasured from raw visibility
data. One requires to incorporate the primary beam of thenaatin establishing this con-
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Figure 6.5: The degraded Fisher matﬁg&g inthek — k plane.

nection (Bharadwaj & Ali 2005). Here we assume that suchatliffies are overcome and the
angular power spectrum is measured with sufficiently higiRSN

In the next section we use tli¢y data generated with these assumptions to perform the
PCA. If the 3D HI power spectrum is measured at sgme:) it would be possible to deter-
mine the bias directly from a knowledge of the dark matter gogpectrum. The bias would
be measured at thle— values where the data is available. The results for the 30ysisas
summarized in section 6.5.

6.4 PCA constraints for the simulated data

We have already discussed the principal component methdeétails in Section 2.2. Here,
we will follow that same approach towards constraining thees bunction using”, data. We
consider a set of,,; observational data points labeled@y, wherel,,, runs over the different
¢ values for whichCy, is obtained (Fig. 6.4).

In our attempt to reconstrugtk) in the rangdk.,iy, kmax), We assume that the bias which

is an unknown function of, can be represented by a setf, discrete free parametebs =
b(k;) where the entire k-range is binned such thatorresponds to thé" bin of width given
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by

1 Ik
Alnf; — Fmax = I Kinin (6.3)
Nbin — 1

We have chosen,;,, = 61 and ak—range0.13 < k < 5.3 Mpc~!. Our choice is dictated by
the fact that fork < 0.13 Mpc~!, the C, corresponding to the smalleéts insensitive td (k)
and fork > 5 Mpc~! there is no data probing those scales. This truncation ésjadsified as
the Fisher information matrix, we shall see, tends to zeyobe thisk—range.

The Fisher matrix is constructed as

th th
é)(:%obs é)(:%obs

1

E‘: )

g Zag bR (k) DR (k)
Lobs obs

(6.4)

Whernghs is the theoretical [equation (6.1J], evaluated at = /,,, using the fiducial bias

modelbﬁ(f(k) ando,,,_ is the corresponding observational error. The data is asdtobe such
that the covariance matrix is diagonal whereby only theavareo, , suffices.

The fiducial model for bias is, in principle, expected to basel to the underlying “true”
model. In this work we have takeri!(k) to be the fitted polynomial obtained in the earlier
section which matches the simulated bias up to an acceabigacy.

In the model for HI distribution at low redshifts, the mearutral fraction crucially sets
the amplitude for the power spectrum. However, a lack ofipesknowledge about this quantity
makes the overall amplitude @f, largely uncertain. To incorporate this we have treated the
guantityzy; as an additional free parameter over which the Fisher miatxarginalized. The
corresponding degraded Fisher matrix is given by

Fis — F — BF''B” (6.5)

whereF is the originalny;, x n,;, Fisher matrix corresponding to the parameters’ is a
1 x 1 Fisher matrix for the additional parametag;, andB is any,;, x 1-dimensional matrix
containing the cross-terms. We shall henceforth reféftdas the Fisher matrix and implicitly
assume that the marginalization has been performed.

The Fisher matrix obtained using equation (6.4) and eqund€®) is illustrated in Figure
2.2 as a shaded plot in thke— £ plane. The matrix shows a band diagonal structure with most
of the information accumulated in discrete regions esfigaarresponding to thé&—modes
for which the data is available. In the regién> 2 andk < 0.2 Mpc™*, the value ofFj; is
relatively small, implying that one cannot constraii) in thosek—bins from the data set we
have considered in this work.

A suitable choice of basis ensures that the parameters aoemelated. This amounts to
writing the Fisher matrix in its eigen basis. Once the Fighatrix is constructed, we determine
its eigenvalues and corresponding eigenvectors. The mothwality and completeness of the
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eigenfunctions, allows us to expand the deviatiot(&f) from its fiducial model§b; = b(k;) —
bid(k,), as

Mbin

0by =y mySy(k:) (6.6)

where S, (k;) are the principal components bfk;) andm,, are the suitable expansion coeffi-
cients. The advantage is that, unlik&;), the coefficientsn, are uncorrelated.

Figure 6.6 shows the inverse of the largest eigenvaluesorigethe first six, all the eigen-
values are seen to be negligibly small. It is known that tingdst eigenvalue corresponds to
minimum variance set by the Cramer-Rao bound and vice varse implies that the errors
in b(k) would increase drastically if modes> 6 are included. Hence, most of the relevant
information is essentially contained in the first six modethwarger eigenvalues. These nor-
malized eigenmodes are shown in the Figure 6.7. One canagaliithese modes almost tend
to vanish fork > 2 andk < 0.2 Mpc~!, as the Fisher matrix is vanishingly small in these re-
gions. The positions of the spikes and troughs in these merge®lated to the presence of data
points and their amplitudes depend on the correspondiogkars (smaller the error, larger the
amplitude).

The fiducial model adopted in our analysis may be differemtnfthe true model which
dictates the data. Clearly, the reconstruction would be fayovide discrepancies between the
two. In our analysis, the simulated bias serves as the inpuhe absence of many alternative
models for large scale HI bias, this serves as a reasonabt@dianodel.

We assume that one can then reconstruct the funétipnsing only the firstM < ny;,
modes [see equation ( 6.6)]. Considering all thg, modes ensures that no information is
thrown away. However this is achieved at the cost that ermoifse recovered quantities would
be very large owing to the presence of the negligibly smagkevalues. On the contrary, low-
ering the number of modes can reduce the error but may inteolduge biases in the recovered
guantities. An important step in this analysis is thereftyalecide on the number of modés
to be used. In order to test this we consider a constant biaeihto represent the true model
as against the fiducial model. For a given data, figure 6.8 stimw the true model is recon-
structed through the inclusion of more and more PCA mode® réhonstruction is directly
related to the quality of the data. In therange where data is not available, the reconstruction
is poor and the fiducial model is followed. The reconstrutigalso poor for large departures
of the true model from the fiducial model. We see that a reddemaconstruction is obtained
using the firsb modes fork < 1 where the data is available.

In order to fix the value of\/, we have used the Akaike information criterion (Liddle
2007)AIC = 2. + 2M, whose smaller values are assumed to imply a more favore@imod
(see Section 2.3.2). Following the strategy used by Clarks@unckel (2010) and Mitra et al.
(2012), we have used different valuesidf (2 to 6) for which the AIC is close to its minimum
and amalgamated them equally at the Monte Carlo stage whexmvpute the errors. In this
way, we ensure that the inherent bias which exists in anyopédait choice of)M is reduced.
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Figure 6.6: The inverse of eigenvalues of the degraded Fislagrix Fi‘j.eg which essentially
measures the variance on the corresponding coefficient.
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Figure 6.7: The first 6 eigenmodes of the degraded Fishepmatr
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Figure 6.8: The fiducial and constant (true) bias models laog/s. The reconstruction of the
true model is shown for cases where number of PCA modes ayesidrel = 3,5,7

We next perform the Monte-Carlo Markov Chain (MCMC) anadysver the parameter
space of the optimum number of PCA amplitudes,} andzy;. Other cosmological parame-
ters are held fixed to the WMAP7 best-fit values (see Subse6tR). We carry out the analysis
by takingM = 2to M = 6 for which the AIC criterion is satisfied. By equal choice ofiglgs
for M and folding the corresponding errors together we recoaisifi) and thereby, along
with their effective errors. We have developed a code baseth® publicly available COS-
MOMC Lewis & Bridle (2002) for this purpose. A number of distt chains are run until the
Gelman and Rubin convergence statistics satigties1 < 0.001. We have also used the con-
vergence diagnostic of Raftery & Lewis to choose suitabienimg conditions for each chain
to obtain statistically independent samples.

6.5 Results and discussion

The reconstructed bias function obtained using the arsdigsicribed in the last section is shown
in Figure 6.9. The solid line represents the mean model whéeshaded region corresponds to
95% confidence limits (27). We have also shown the fiducial model (short-dashed) dsawel

the popularly used constant bias;- 1.5 model (long-dashed) for comparison. We find that the
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Figure 6.9: The marginalized posteriori distribution oé thinned bias function obtained from
the MCMC analysis using the AIC criterion up to first 6 PCA eigeodes. The solid lines shows
the mean values of bias parameters while the shaded regipresent the 2-confidence limits.
In addition, we show the fiducial and constant bias models.

fiducial model is within the 95% confidence limits for the eati—range considered, while the
constant bias is within the same confidence limits only up te 2 Mpc~—!. We note that the
errors decrease drastically for> 2 andk < 0.2 Mpc~!. This is expected from the nature of
the Fisher matrix which shows that there is practically rforimation in the PCA modes from
thesek—regions. Therefore, all models show a tendency to convexgartls the fiducial one.
This is a direct manifestation of lack of data points probihgse scales. Thus, most of the
information is concentrated in the rang€ < k < 2 Mpc~! within which reconstruction of
the bias function is relevant with the given data set.

The mean reconstructed bias simply follows the fiducial nhémte).2 < £ < 2 Mpc™L.
This is expected as the simulatéddata is generated using the fiducial bias model itself (Sec-
tion 6.2). In the case of analysis using real observed d&artatching would have statistical
significance, whereas here this just serves as an internalstency check. The shaded region
depicting the errors around the mean is however meaningflitells us how well the given
data can constrain the bias. The outline of the @enfidence limits shows a jagged feature
which is directly related to the presence of the data poiNt& observe that apart from the
fiducial model, a constant bias model is also consistent thighdata within the 2+ limits. In
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Figure 6.10: The reconstructéd with its 2-0 confidence limits. The points with error-bars
denote the observational data. The solid, short-dashetbagedashed lines represefii for
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denote the observational data. We have tgken0.5 andz = 2.5
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Parameters 2-o errors

THI 1.06 x 1073
biin 0.453

Table 6.2: The 2r errors forzy; andby, (k = 0.3 Mpc~!) obtained from the current analysis
using AIC criterion.

fact, other than imposing rough boundss b(k) < 2, the present data can hardly constrain the
scale-dependence of bias. Itis also not possible fo€ttaata with its error-bars to statistically
distinguish between the fiducial and the constant bias model < k£ < 2 Mpc~*. Figure 6.10
illustrates the recovered angular power spectrum with3& @onfidence limits. Superposed
on it are the original data points with error-bars. We alsovslthe angular power spectrum
calculated for the fiducial and the constant bias models. ZFhecontour follows the pattern

of the error-bars on the data points. It is evident that tha dalargely insensitive (within its
error-bars) to the different bias models. Hencelth@lependence of bias on these scales does
not affect the observable quantity within the bounds of statistical precision.

While constructing the Fisher matrix, we had marginalizedrahe largely unknown
parametefy;. Treating it as an independent free parameter, we havetigagsd the possibility
of constraining the neutral fraction using the simulatgdlata. The 2= error in this parameter
obtained from our analysis is shown in Table 6.2. We had uUsefiducial valuery; = 2.45 x
10~2 in calculatingC,. It is not surprising that our analysis gives a meaain = 2.44 x 1072
which is in excellent agreement with the fiducial value. Ih@vever more important to note
that the given data actually constraifig reasonable well at 4% (Guha Sarkar et al. 2012).

Noting that, on large scales < 0.3 Mpc™!), one cannot distinguish between the mean,
fiducial and the constant bias models, we tigg= 1.496) to denote the bias value on these
scales. The 2= error onby;, is evaluated at = 0.3 Mpc~! (shown in Table 6.2).

In the k—range of our interest, the fiducial model does not reflectiogmt departure
from the constant bias. Further, the confidence intervadiobtl from the data also reflects
that the observed, is insensitive to the form of bias functidiik) in this range - provided
that it is bound between approximate cut-offs € b(k) < 2). Moreover, the bias largely
affects the amplitude of the angular power spectrum and higsaoweak contribution towards
determining its shape. A scale independent large-scatesei@ams to be sufficient in modelling
the data. The mean neutral fraction which globally sets thelidude of the power spectrum is
hence weakly degenerate with the bias. This is manifestéukeifact that thoughy; is rather
well constrained, the bias reconstruction which uses tlggadieed Fisher information (after
marginalizing overry;) is only weakly constrained from the same data. A prior ireshefent
knowledge about the post reionization neutral fraction a@learly ensure a more statistically
significant bias reconstruction with smaller errors.
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Figure 6.11 shows the reconstructed 3D HI power spectrune diftect algebraic re-
lationship between the observatifg; (k) and the bia$(k) makes the 3D analysis relatively
straightforward. This is specifically evident since theheismatrix elements in this case are
non-zero only along the diagonal at specifiec values corresponding to the data points. The
entire routine repeated here yields similar generic festuHowever, the key difference is that
we have a larger number of bins with high sensitivity leadimgn improved constraining of
bias1.3 < b(k) < 1.7inthe range).2 < k < 0.7 Mpc™1.

In the absence of real observed data, our proposed methdw (&arkar et al. 2012) ap-
plied on a simulated data set, reflects the possibility ostraming large-scaléll bias. The
method is expected to yield better results if one has précise/ledge about the neutral content
of the IGM and the underlying cosmological paradigm. We nibé& the problem of constrain-
ing an unknown function given a known data dealt in this warlairly general and several
alternative methods maybe used. The chief advantage of ¢fieoch adopted here, apart from
its effective data reduction, is its model independence fdn-parametric nature of the analy-
sis is specially useful in the absence of any specific primrimation. A straightforward fitting
of a polynomial and estimating the coefficients may turn oute effective but there is no a pri-
ori reason to believe that it would work. It is logically maeasonable not to impose a model
(with its parameters) upon the data, and instead, let tteerdabnstruct the model.

With the anticipation of upcoming radio observations taygameasurement @il power
spectrum, our method holds the promise for pinning down #tiare ofHI bias thereby throw-
ing valuable light on our understanding of tHé distribution in the diffuse IGM.



CHAPTER 7

SUMMARY AND CONCLUSIONS

A major constituent of this thesis is involved in dealinglwitne of the most intriguing and de-
veloping field of modern cosmology: reionization of the wse. In the first part of the thesis,
we develop step by step the building blocks of cosmologmahization processes starting from
very basic picture of cosmology. In order to understand thesizal processes during reioniza-
tion, one need to know the physics of structure formation.Hake studied here the dynamics
of non-linear structure formation in certain details. \Wguer that, due to the poor understand-
ing of various complex processes like cooling and fragntemteof dark haloes, primordial
star formation and different feedback processes, one tamapletely solve the problem as-
sociated with structure formation analytically withouéthelp of approximation schemes. Off
course, the correct way to tackle the problem is to use theenigal simulations. Over the last
few years, there has been an enormous increase in the cdiapatgower to address vari-
ous issues of structure formation through simulations. él@x, due to the limited resources
of computational power, in this thesis, we mostly restrigtselves in using analytical or semi-
analytical tools along with some reasonable assumptioasiore the physical understandings
of structure formation. Following the same argument, weelgaveloped our basic knowledge
regarding the reionization process through the semi-éinalymodelling which helped us to
acquire a good insight of the physics behind cosmic reidioiza This, off course, introduces
a few free parameters in the model which needed to be regutgteomparing with relevant
observations. So, a successful reionization model shaulabbe to match simultaneously the
model predictions with most of the available data sets. @itiiroductory part of this thesis,
we have also mentioned several observational probes ofization. The most crucial data sets
among them come from the measurements of QSO absorptiospietra (Fan et al. 2006),
GRB spectra (Totani et al. 2006) and the CMB data (Hinshaw. &04.2; Ade et al. 2013b).
In this thesis, we have used one of the successful semitaraiseionization models, based on
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the model proposed by Choudhury & Ferrara (2005, 2006b)trgrtd compare our model pre-
dictions with such observations related to reionizatiore Walve addressed some of the crucial
but critical issues of star-formation history and reioti@a of the IGM using that model.

First, we have looked into one of the major uncertaintiesgméin modelling reionization
scenario, the parameték,,,, the number of photons entering the IGM per baryon in codidps
objects. In spite of the fact that, this parameter can havepmtlence on redshift (which
can arise from evolution of star-forming efficieney, fraction of photons escaping from the
host halof.,. and chemical and radiative feedback processes), it is lyda#en to be a con-
stant as most of the physical processes involved in modeNip, are still uncertain. We make
a preliminary attempt to constraiNi,, (z) using an emerging technique of cosmological data
analysis namely the principal component analysis (PCA)estunate the uncertainties in the
reionization history in Chapter 2. In past few years, PCA lbesn successfully used in many
areas of cosmology due to the fact that, it is a simple, noamatric method of extracting
relevant information from noisy data sets. We assuwqig(z) to be completely arbitrary and
decompose it into principal components. We have applieghtimeipal component method us-
ing three different data sets - the photoionization datg =), the LLS distributiond Ny, /dz
and WMAP7 (as well as simulated PLANCK) CMB data and obtaic@uktraints on the reion-
ization history by means of Monte-Carlo Markov Chain (MCM&ghniques. We found that
the constraints at < 6 are relatively tight because of the QSO data, where as a \aiuiger
of histories atz > 6 is still allowed by the present data. We have also indicated] to get a
more strict constraints on reionizationat> 6, one has to rely on data sets other than CMB
and the PCA method will be a very promising tool for extragtihe useful information from
any future data sets in a model-independent manner. In €h3pive extend our discussion
about the crucial but still unknown parameters related imnigation -¢, and f.... With help
of our semi-analytical PCA-reionization model, we try tmstrain these parameters using the
observed Luminosity Functions (LF) of galaxies in the reiishnge6 < z < 10. We found
that, there is a clear indication of a 2.6 times increase®étlerage escape fraction fram= 6
to z = 8 and the best-fit value of the star formation efficieacypominally increases from 3.6%
atz = 6 to 5.2% atz = 8. Although we have only considered only the evolutionzof 6
luminosity functions, our approach can be applied to magelliFs at3 < z < 5 and also it
will become more applicable as more data becomes available 6 region.

In Chapter 2 and 3, we have taken most of the cosmologicatpeeas to be fixed at their
best-fit WMAP values to keep the analysis simple. Becaudsaadf the uncertainties in reioniza-
tion history remained slightly underestimated. So, we tingto find the effects of reionization
on cosmological parameter determinations in Chapter 4s Titne, we vary all the relevant
cosmological parameters along with our model parametesngthe combination of CMB
data with astrophysical results from QSO absorption lingeexnents and the joint variation of
both the cosmological and astrophysical parameters, wedfthat, a realistic, data-constrained
reionization history indeed can induce appreciable chewngthe cosmological parameter val-
ues. Particularly significant variations among them areStjie’, the scalar spectral index,
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and the electron scattering optical depth= 0.080 + 0.012 which is notably decreased with
respect to the standard WMAP7 valué88+ 0.015. In the later half of that chapter, we further
exploit our model to achieve the better constraint on thérimeumassesn,, as allowed by the
current datasets related to reionization. We obtained thatmodel with a more physically
reasonable treatment of reionization can tighten the ulopéron neutrino masses by 17%
than the usual WMAP7 value where they assume the standagéisueionization scheme. We
also established that, there could exist a large degenbeteyeen the efficiency parameters
€’'s andm, and one can get a further stringent constrainixgn once this degeneracy will be
removed by the future observations associated with reibioiz.

The next chapter of the thesis is devoted to understandiagbthe crucial ingredients
of formation of large-scale structures - the mass functiot formation rates of dark matter
haloes. Understanding the fundamental properties anddaloges of the dark matter halos is
almost inevitable for understanding the properties ofriziation sources like galaxies. In this
chapter, we mentioned about several approaches to catgutetio formation rate. One of them
is the Sasaki approximation which does not use any specpiecasf the form of mass func-
tion. We investigate the application of this approximatssheme to different mass function by
explicitly computing the halo formation and destructiotegusing the excursion set formal-
ism. We have found that, extension of this approximation esomes leads to an unphysical
negative formation rate, particularly when applied to thet8-Tormen mass function. We then
generalize this same method for the Sheth-Tormen massdarenid find that halo formation
rates computed in our manner are always positive. Our apbnoatches well with simulations
for all models at all redshifts. In case of any semi-analyticdels of galaxy formation, our
approach can be applied successfully.

Finally, in Chapter 6, we have extended our study of neutydrdgen distribution in
the universe to post-reionization redshifts € 6). Measurement of the spatial distribution
of neutral hydrogen (HI) via the redshifted 21-cm line ist@gys the most auspicious tool in
developing our knowledge of the epoch of reionization aredfitst galaxies. Here, we have
investigated the nature of large sc&lé biasb(k) which is one of the crucial ingredients for
modelling the 21-cm emission from neutral hydrogen in thetgeionization epoch. Using
the simulated bias as the fiducial model 1 distribution atz < 4, we have generated a
hypothetical data set for the 21-cm angular power spectmuanvwee explore the possibility of
constrainingb(k) using the Principal Component Analysis (PCA) on this sirredadata. We
have demonstrated that our approach can be successfullgnmapted on future observational
data sets.

In this thesis, we have addressed several issues regaldirgirticture formation of the
universe, semi-analytical modelling of cosmological nezation and the neutral hydrogen dis-
tribution at the post-reionization epoch. Based on somelgirapproximation schemes and
data analysis techniques, we have dealt with those probl&deshave rigorously tested our
approaches and models with all available relevant obsenadtor numerical data sets. In some
cases, we have also successfully examined our methodsifalased or future data sets. How-
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ever, there are still many unsolved and challenging questielated to this subject which can
be resolved by future observations and/or some meticuloogpatational techniques. Never-
theless, all the ideas and techniques used in this thesibawlery useful for future science in
this area.
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