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SYNOPSIS

Research presented in this thesis follows mainly two areas of Cosmology: (1) semi-analytical
modelling of cosmological reionization and comparison with recent observations and (2) for-
mation and evolution of large-scale structures in the Universe. A brief summary of the thesis
work is discussed in the following sections. Publications included in this thesis are listed in the
final section.

Cosmological Reionization

Reionization is a process whereby hydrogen (and helium) in the Universe is ionized by the ra-
diation from first luminous sources. In the framework of the hot big bang model, the baryonic
matter in the Universe is expected to become almost neutral after the recombination epoch at
z ∼ 1100. Given the fact (known from observations of quasar absorption spectra) that the Uni-
verse is highly ionized atz < 6, it is crucial to understand as to when and how did the luminous
sources reionize the Universe. In the past few years, the understanding of reionization process
has become increasingly sophisticated in both the observational and theoretical communities,
thanks to the availability of good quality data related to reionization. However, recent studies
suggest that reionization process is too complex to be described as a sudden process, in fact ob-
servations suggest that the reionization occurred somewhere betweenz ∼ 6 − 15 (for reviews,
see Barkana & Loeb 2001; Loeb & Barkana 2001; Wyithe & Loeb 2003; Choudhury & Ferrara
2006b; Choudhury 2009 and the references therein). Furthermore, the physical processes rel-
evant to reionization are so complex that neither the analytical nor the numerical simulations
alone can capture the overall picture. Consequently, it is often studied using semi-analytical
models of reionization where a large region of parameter space can be explored even with lim-
ited computational resources.
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Model-independent Constraints on Reionization

Using a semi-analytical model developed by Choudhury & Ferrara (2005) and Choudhury &
Ferrara (2006b), we study the observational constraints onreionization via a principal compo-
nent analysis (PCA). The advantage of this approach is that it provides constraints on reion-
ization in a model–independent manner (Mortonson & Hu 2008b). Assuming that reionization
at z > 6 is primarily driven by stellar sources, we decompose the unknown functionNion(z),
representing the number of photons in the IGM per baryon in collapsed objects, into its prin-
cipal components and constrain the latter using three different data sets - the photoionization
ratesΓPI obtained using Lyα forest Gunn-Peterson optical depth observations and a large set
of hydrodynamical simulations (Bolton & Haehnelt 2007), the redshift distribution of Lyman
Limit SystemsdNLL/dz in 0.36 < z < 6 (Songaila & Cowie 2010) and the angular power
spectraCl for TT, TE and EE modes using WMAP7 (Larson et al. 2011) data which seems to
contain somewhat more information than taking the electronscattering optical depthτel as a
single data point (Mitra et al. 2011). Using Markov Chain Monte Carlo methods, we find that
all the quantities related to reionization can be severely constrained atz < 6 whereas a broad
range of reionization histories atz > 6 are still permitted by the current data sets. With the
WMAP7 data, we constrain0.080 < τel < 0.112 (95% CL) and also conclude that reionization
is 50% complete between9.0 < z(QHII = 0.5) < 11.8 (95% CL) and is 99% complete between
5.8 < z(QHII = 0.99) < 10.4 (95% CL). With the forthcoming PLANCK data (The Planck
Collaboration 2006) on large-scale polarization (ignoring effect of foregrounds), thez > 6 con-
straints will be improved considerably, e.g., the2 − σ error onτel will be reduced to 0.009 and
the uncertainties onz(QHII = 0.5) andz(QHII = 0.99) would be∼ 1 and 3 (95% CL), respec-
tively (Mitra et al. 2012). For more stringent constraints on reionization atz > 6, one has to
rely on data sets other than CMB. Our method will be useful in such case since it can be used
for non-parametric reconstruction of reionization history with arbitrary data sets.

Constraining the escape fraction of ionizing photons

One of the most crucial issues regarding the evolution of intergalactic medium (IGM) and cos-
mic reionization is the escape fraction,fesc, of ionizing photons from high-redshift galaxies.
This parameter remains poorly constrained in spite of many theoretical and observational at-
tempts made in past few years (Wood & Loeb 2000; Gnedin 2008; Fernandez & Shull 2011;
Haardt & Madau 2011). We propose a novel, semi-empirical approach based on a simultaneous
match of the most recently determined Luminosity Functions(LF) of galaxies in the redshift
range6 ≤ z ≤ 10 (Bouwens & Illingworth 2006; Bouwens et al. 2011b; Oesch et al. 2012) with
reionization models constrained by a large variety of experimental data. From this procedure
we obtain the evolution of the best-fit values offesc along with their 2-σ limits. We find that,
averaged over the galaxy population, (i) the escape fraction increases fromfesc = 0.068+0.054

−0.047 at
z = 6 to fesc = 0.179+0.331

−0.132 atz = 8; (ii) at z = 10 we can only put a lower limit offesc > 0.146
(Mitra et al. 2013). Thus, although errors are large, there is an indication of a 2.6 times increase
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of the average escape fraction fromz = 6 to z = 8.

Effects of Reionization on Cosmological Parameters

Reionization process could affect the determination of thecosmological parameters. So, we
perform an analysis of the WMAP7 data considering physically motivated and viable reion-
ization scenarios with the aim of assessing their effects oncosmological parameter determi-
nations. The main novelties are: (i) the combination of CMB data with astrophysical results
from quasar absorption line experiments; (ii) the joint variation of both the cosmological and
astrophysical (governing the evolution of the free electron fractionxe(z)) parameters. Includ-
ing a realistic, data-constrained reionization history inthe analysis induces appreciable changes
in the cosmological parameter values deduced through a standard WMAP7 analysis (Pandolfi
et al. 2011). Particularly noteworthy are the variations inΩbh

2 = 0.02258+0.00057
−0.00056 (WMAP7)

vs. Ωbh
2 = 0.02183 ± 0.00054 (WMAP7 + ASTRO), and the new constraints for the scalar

spectral index, for which WMAP7 + ASTRO excludes the Harrison-Zel’dovich valuens = 1
at > 3σ. Finally, the e.s. optical depth value is considerably decreased with respect to the
standard WMAP7, i.e.τel = 0.080 ± 0.012. So we find that the inclusion of astrophysical
datasets, allowing to robustly constrain the reionizationhistory, in the extraction procedure of
cosmological parameters leads to relatively important differences in the final determination of
their values.

CMB bounds on neutrino mass from reionization

Neutrinos with non-zero mass can have an intense impressionon the evolution of our Universe.
Rigorous cosmological observations on cosmic microwave background (CMB) anisotropies and
the large-scale structures of galaxies thus can be used to put a stronger constraint on the neutrino
masses than that achieved from current laboratory experiments (Hu et al. 1998; Hannestad 2003;
Gratton et al. 2008; Jose et al. 2011). Seven years of Wilkinson Microwave Anisotropy Probe
(WMAP) data presents the upper bound on the sum of neutrino masses as

∑

mν < 1.3 eV at
95% confidence limits (CL) (Komatsu et al. 2011), assuming asuddenreionization scenario
depicted by a single parameter. Another feasible effect that could put an impact on the CMB
bounds for neutrino masses is the detailing of reionizationscenario (Archidiacono et al. 2010).
So, we also try to investigate the possible effects on neutrino mass bound by considering our
data-constrained reionization model based on Choudhury & Ferrara (2005, 2006b) and Mitra
et al. (2011, 2012) and we find that, a more strict constraint on the neutrino masses can be
achieved using this model.
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Large Scale Structure Formation of the Universe

Formation of large-scale structures like galaxies is a crucial ingredient of the models of reioniza-
tion. In the standard, hierarchical, cold dark matter (CDM)paradigm of cosmological structure
formation, galaxy formation begins with the gravitationalcollapse of overdense regions into
bound, virialized halos of dark matter (DM). Bound in the potential wells of dark matter halos,
baryons proceed to cool, condense, and form galaxies. Understanding the fundamental proper-
ties and abundances of these dark matter halos is the first, necessary step in understanding the
properties of galaxies. The subject area of formation of galaxies is quite involved in itself deal-
ing with formation of non-linear structures and various processes. In our reionization model
described above, galaxy formation is implemented by calculating the mass function of dark
matter haloes (number of haloes per unit volume as a functionof halo mass) and their formation
rates (number of haloes created per unit volume per unit time) and accounting for the baryonic
processes like cooling and feedback to populate haloes withgalaxies.

Mass function and formation rates of dark matter haloes

We derive an estimate of the rate of formation of dark matter haloes per unit volume as a func-
tion of the halo mass and redshift of formation. Analytical estimates of the number density
of dark matter haloes are useful in modeling several cosmological phenomena. We develop a
new prescription to calculate halo formation rate, using excursion set formalism (Bond et al.
1991; Lacey & Cole 1993) but avoiding the assumption of scaleinvariance of halo destruction
rate efficiency made by Sasaki (Sasaki 1994). Our approach allows us to differentiate between
major and minor mergers, as this is a pertinent issue for semi-analytic models of galaxy forma-
tion. We compute the formation rate for the Press-Schechter(Press & Schechter 1974) and the
Sheth-Tormen (Sheth et al. 2001) mass function and show thatthe formation rate computed in
this manner is positive at all scales (Mitra et al. 2011) unlike the Sasaki prescription where one
can get the unphysical results for the Sheth-Tormen mass function. We compare the destruction
rate and the halo formation rates computed using the excursion set approach with N-Body sim-
ulations (Bagla & Padmanabhan 1997; Bagla et al. 2009). We find that our approach matches
well with simulations for all models at all redshifts.

Post-reionization Neutral Hydrogen distribution

Perhaps the most promising prospect of detecting the fluctuations in the neutral hydrogen (HI)
density during the reionization era is through the 21-cm emission experiments like GMRT,
MWA and LOFAR. Measurement of the spatial distribution of neutral hydrogen via the red-
shifted 21-cm line promises to revolutionize our knowledgeof the epoch of reionization and the
first galaxies, and may provide a powerful new tool for observational cosmology from redshifts
1 < z < 4 (Mo & White 1996; Wyithe & Loeb 2007b; Datta et al. 2007). Partof this thesis
contains a particular topic of this area - constraining large scale HI bias using 21-cm signal from



xiii

the post-reionization epoch.

Assuming a background cosmology, the 21-cm emission from neutral hydrogen (HI) in the
post-reionization epoch is modelled through (i) a bias function b(k, z), which relates HI to the
dark matter distribution and (ii) a mean neutral fraction (x̄HI) which sets its amplitude. In this
work, we investigate the nature of large scaleHI bias. The post-reionization HI is modelled
using gravity only N-Body simulations and a suitable prescription for assigning gas to the dark
matter halos. Using the simulated bias as the fiducial model for HI distribution atz ≤ 4, we
have generated a hypothetical data set for the 21-cm angularpower spectrum using a noise
model based on parameters of an extended version of the GMRT and we explore the possibil-
ity of constrainingb(k) using the Principal Component Analysis (PCA) on this simulated data
(Guha Sarkar et al. 2012). We show that our method can be successfully implemented on future
observational data sets to constrainb(k, z) andx̄HI and thereby enhance our understanding of
the low redshift Universe.
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CHAPTER 1

INTRODUCTION

Our universe, after all, is richly textured, with with structures on a vast range of scales; planets
orbit stars, stars are collected into galaxies, galaxies are gravitationally bound into clusters,
and even clusters of galaxies are found within larger superclusters. Cosmology is basically the
study of the universe, or cosmos, regarded as a whole. It deals with distances that are very
large, objects that are very big and time-scales that are very long. Although, the rigorous study
of cosmos is extremely complicated dealing with the objectsranging from carbonaceous dust
grains to quasars, cosmologists often like to think of the universe as a simple place characterized
by some basic physical principles. It can be studied by mainly two approaches: observational
aspect of cosmology and the theoretical outlook. In fact, this subject is based on the interplay
of theory and observations. One could imagine starting froman overview of the observational
results and then moving on to their theoretical interpretation.

The primary aim of observational cosmology is to characterize the thermal, chemical, and
structural state of the present universe. For the most of history, astronomers have had to rely
on light in the visible part of the spectrum in order to study the universe. One of the greatest
astronomical achievements of the20th century was the exploitation of the full electromagnetic
spectrum for astrophysical measurements. We now have sophisticated instruments capable of
making observations of radio waves, microwaves, infrared light, visible light, ultraviolet light,
X-rays and gamma rays. We are even entering and epoch where one can go beyond the electro-
magnetic spectrum and receive information of other types. Over the past few years remarkable
discoveries in physics and astronomy have been achieved with enormous implications for cos-
mology. In particular, the recent experiments measuring anisotropies on the cosmic microwave
background (CMB) and the distance-redshift relation in type Ia supernovae (SNIa) have opened
a new era in cosmology, sometimes called the golden years or the high-precision era of cos-
mology. Perhaps the experiment that started this new era wasthe one performed by the COBE
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satellite team in the early 1990’s. This experiment, which was a modern version of that per-
formed by Penzias and Wilson, for the first time revealed thatthe universe was almost, but
not completely homogeneous and isotropic. The other more recent cosmological probes (CP),
like BOOMERANG1 (Balloon Observations Of Millimetric Extragalactic Radiation ANd Geo-
physics), MAXIMA2 (Millimeter Anisotropy eXperiment IMaging Array), WMAP3 (Wilkin-
son Microwave Anisotropy Probe) and PLANCK4, not only confirmed with a great accuracy
some of the theoretical predictions of the standard Big Bangmodel (SBB), but also opened the
possibility of testing theories and scenarios of the very early universe. The existence of the
components of the universe were originally inferred from a variety of measurements ranging
from the observed fluxes from distant supernovae to the spatial correlations between galaxy po-
sitions. However, the last few years has seen the emergence of the study of the CMB photons
as the dominant tool for measuring precisely the densities of each component. Such discov-
eries have not only corroborated several theoretical predictions and put stringent bounds on
many cosmological models, but also be able to answer many of the unknown puzzles of modern
cosmology.

The aim of theoretical cosmology is to explain the present state of the universe in terms
of the conditions in the “early universe”. The high precision measurements of most of the
cosmological parameters help the theoretical cosmologists to develop the so called “standard
model” of cosmology which is consistent with all the observations. Almost a century has passed
since the beginning of this era, and in the intervening yearsincreasingly accurate predictions
of this model of the cosmos, supplemented only by the presence of a dark matter component,
have been confronted with, and spectacularly passed, a hostof detailed tests - the existence
of the CMB; the abundances of the light elements through Big Bang Nucleosynthesis (BBN);
the formation of structure under gravitational instability; the small temperature anisotropies in
the CMB; the structure of gravitational lensing maps; and many more. Many of these tests are
highly nontrivial and provide remarkable support for the overall big bang model.

In this chapter, we shall introduce the standard Lambda ColdDark Matter (ΛCDM) cos-
mological model in order to study the nature and components of the universe, evolution of den-
sity perturbation and the structure formation. We shall also briefly review the key observations
related to this subject towards the end of this chapter.

1.1 Cosmological framework

In this picture, the universe was originated from a point-like singularity, the “Big Bang”, of infi-
nite density and temperature about 13.7 billion years ago. This was immediately followed by a
period of accelerated expansion called inflation that lasted for just about10−34 s. At the end of

1http://www.astro.caltech.edu/ lgg/boomerang/
2http://cosmology.berkeley.edu/group/cmb/
3http://wmap.gsfc.nasa.gov/
4http://www.esa.int/SPECIALS/Planck/index.html
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inflation, the universe was highly homogeneous on large scales. This large scale homogeneity
and isotropy are the most important feature of our universe.This feature ensures that observa-
tions made from our single vantage point are representativeof the universe as a whole and can
therefore be legitimately used to test cosmological models. For most of the twentieth century,
the homogeneity and isotropy of the universe had to be taken as an assumption, known as the
“Cosmological Principle.” However, redshift surveys suggest that the universe is homogeneous
and isotropic on scales above 100 Mpc (1 Mpc≃ 3.26 × 106 light years≃ 3.08 × 1024 cm);
on smaller scales there exist large inhomogeneities, such as galaxies, clusters and superclusters.
The standard big bang model accommodates most these known facts regarding our universe.
In particular, the success of this big bang model rests on three major observational pillars: the
Hubble diagram exhibiting expansion; light element abundances from BBN and the blackbody
radiation left over from the first few hundred thousand yearsknown as the CMB. As a matter
of fact, big bang is the most successful model of cosmology till now. In this section, we intro-
duce the basic elements of this standard hot big bang model which will help us to deal with the
evolution of inhomogeneities in density field and with otherestablished facts.

1.1.1 The expanding universe

We have solid evidence that the universe is expanding which means that at early epoch the
distance between us and distant galaxies was smaller than itis now. It allows us to introduce
the scale factora, whose present value is set to one and at earlier times it was smaller than it is
today. We can picture this expansion as following. The comoving distance between two points
in the universe remains constant as the universe expands, but the physical distance, which is
proportional to the comoving distance times the scale factor, gets larger as time evolves. In
addition to the scale factor and its evolution, the smooth universe is also characterized by its
geometry; it can be flat, open or closed universe.

In General Relativity, kinematics in the most general isotropic and homogeneous space is
described by the Friedman-Robertson-Walker line element -

ds2 = dt2 − a2(t)

[

dR2

1− kR2
+R2

(

dθ2 + sin2 θdφ2
)

]

(1.1)

wherea(t) is the cosmic scale factor,(R, θ, φ) are spherical comoving coordinates andk deter-
mines the geometry or curvature of the space; it is positive in a closed Universe, zero in a flat
Universe, and negative in an open Universe. Observers at rest remain at rest, at fixed(R, θ, φ),
with their physical separation increasing with time in proportion toa(t). Thus, to understand
the history of the universe, we must determine the evolutionof the scale factora with cosmic
time t, that is, how the scale factor increases as the universe ages. The dependence ofa on t is
determined by the energy density in the universe. At early times, one form of energy, radiation,
dominates resultinga ∝ t1/2, while at later epoch, non-relativistic matter accounts for most of
the energy density resultinga ∝ t2/3. In case for the cosmological constant dominated universe,
the energy density is constant and the scale factor grows exponentiallya ∝ exp(

√

Λ/3t).
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To quantify the change in the scale factor and its relation tothe energy, it is very useful to
define the Hubble rate or the Hubble parameter

H(t) ≡ da/dt

a
(1.2)

which measures how rapidly the scale factor changes. Thus a powerful test of the cosmology
is to measure the Hubble rate today,H0, and the age of the universe today. In a flat, matter-
dominated universe, the productH0t0 equals to2/3. The expansion rate is a measure of how
fast the universe is expanding, determined by measuring thevelocities of distant galaxies and
dividing by their distance from us. So the expansion is oftenwritten in units of velocity per
distance. Present measure of the Hubble parameter is parameterized byh defined via

H0 = 100h km sec−1Mpc−1 (1.3)

Current measurements by Nine years of Wilkinson Microwave Anisotropy Probe (WMAP9)
seth = 0.70 ± 0.02 (Hinshaw et al. 2012) and new PLANCK data release sets that value to
h = 0.67± 0.01 (Ade et al. 2013b).

More generally, the evolution of the scale factor is determined by the Friedmann equation
(Weinberg 1972, 2008; Kolb & Turner 1990)

H2(t) =
8πG

3
ρ− k

a2
(1.4)

which relates the expansion of the universe to its matter-energy content. For each component of
the energy densityρ, with an equation of statep = p(ρ), the density varies witha(t) according
to the equation of energy conservation

d(ρa3) = −pd(a3) (1.5)

So the basic idea is that givenp as a function ofρ, we can solve equation (1.5) to findρ as a
function ofa. We then use this in equation (1.4) to determinea orH as a function oft, and thus
the Friedmann metric. But before that, let us now introduce one of the most useful quantities in
cosmology which we will encounter later very frequently - the cosmological redshift.

As the universe is expanding, the galaxies are moving away from each other and we
therefore see them receding from us. The wavelength of lightor sound emitted from a receding
object is stretched out so that the observed wavelength (λobs) is larger than the emitted one,
λemit. We define this stretching factor as the cosmological redshift z:

1 + z ≡ λobs
λemit

=
1

a
(1.6)

Hubble (1920) interpreted the redshifts he observed as instances of the Doppler effect; for
recession velocitiesv ≪ c, we getz = v/c ∝ d. The measured constant of proportionality in
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the this relation betweenv andd is basically the Hubble’s constantH0, that is,v = H0d, or z =
H0d/c. This linear relationship between redshift and distance breaks down for larger distances
and higher velocities (see Weinberg 1972). Since the redshift is a more easily measured quantity
than distance itself, it is commonly used by cosmologists toparameterize the distance to a
galaxy or other sources.

1.1.2 Cosmic inventory: Components of the universe

To solve equation (1.4), one needs to know about the different constituents of matter which
can contribute to the densityρ, and how they evolve in time. We can now tackle this question
quantitatively by considering the different components ofthe universe.

• One of the components contributing to this density is Hot Matter or the radiation. for
relativistic matter like radiation, we knowp = ρr/3. Using equation (1.5), we getρr ∝
a−4.

• The density is also contributed by visible, non-relativistic, baryonic matter with density
ρb. But unfortunately, models with just radiation and baryonic matters are in strong dis-
agreement with observations, which leads to postulate the existence of a pressure-less
(p = 0) non-baryonic “dark matter” which does not couple with radiation and has a den-
sity ρDM. So the total density for the non-relativistic matter isρm = ρDM + ρb. Similarly,
equation (1.5) gives the evolution of the formρm ∝ a−3.

• Along with the dark matter, it is also necessary to propose anexotic form of matter having
densityρΛ with p ≈ −ρΛ. This is known as “dark energy”5. The simplest form of it is
the well-known cosmological constant (p = −ρΛ, henceρΛ = constant).

Using these, our Friedmann equation [equation (1.4)] now becomes

H(t)

H0
=

[

Ωm

a3
+ ΩΛ +

Ωr

a4
+

Ωk

a2

]1/2

(1.7)

WhereΩm, ΩΛ andΩr denotes the present contributions toΩ; defined as the ration of the total
density to the critical density i.e.Ω ≡ ρ/ρc with the critical densityρc(t) ≡ 3H2(t)/(8πG);
from matter (including cold dark matter as well as a contribution Ωb from baryons), vacuum
density (cosmological constant), and radiation, respectively. The quantityΩk is defined as
Ωk ≡ 1−(Ωm+ΩΛ+Ωr). One particular cosmological model withΩm = 1,ΩΛ = Ωr = Ωk = 0
is very simple and is known asEinstein-de Sitter model.

According to the current WMAP nine-year observations, the most favored cosmological
model (flatΛCDM model) hasΩb = 0.0463 ± 0.0024, ΩDM = 0.233 ± 0.023, ΩΛ = 0.721 ±

5Although the dark matter and dark energy are the two most dominant components of the energy density in the
universe, it is very unfortunate that we still do not have laboratory evidence for their existence
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0.025 andh = 0.700 ± 0.022 (Hinshaw et al. 2012) and a more precise measurement from
the recent PLANCK CMB data for temperature power spectrum with a WMAP polarization
low-multipole likelihood (Bennett et al. 2012) atl ≤ 23 suggests those values to beΩbh

2 =
0.02205± 0.00028, Ωmh

2 = 0.1426± 0.0025, ΩΛ = 0.685+0.018
−0.016 andh = 0.673± 0.012 (Ade

et al. 2013b).

1.1.3 The cosmic microwave background

Before making further progress, let us spend some time to briefly discuss about one of the
greatest discoveries in cosmology of the last century. In the standard hot Big Bang model, the
universe initially was very hot and the energy density was dominated by radiation. At redshift
z ∼ 3500 the transition to matter domination occurs. The universe remains hot enough that
the gas is ionized and electron-photon scattering effectively couples the matter and radiation.
At z ∼ 1100 or when the universe was 300,000 years old, the temperature drops sufficiently
low (below 3000 K) that protons and electrons recombine to form neutral hydrogen. Since then
the photons decouple and travel freely through space. Thesephotons are observed today as
cosmic microwave background (hereafter CMB). When we observe them today, they literally
come from the earliest moments of time. They are therefore the most powerful probes of the
early universe.

The discovery of the cosmic microwave background radiation(CMBR) established that
the early universe was hot as well as dense. The key to this argument is the observed blackbody
or thermal spectrum of this radiation. Let us ask what happens to a blackbody radiation field if
we extrapolate backwards in time to an epoch when the scale factor a was smaller i.e.z > 0.
The wavelength of all photons is decreased proportionally toa or (1+z)−1. The Planck function,
however, depends only on the product of the wavelength and temperatureλTCMB. It follows that
the spectrum of the radiation was also blackbody in the past,but the temperature was higher by
a factor1 + z (see Weinberg 1972; Partridge 1995; Durrer 2008)

TCMB(z) = T0(1 + z) (1.8)

whereT0 is the present temperature of the CMBR, approximately 2.73 K. Knowing the present
value of the temperature, we can calculate the temperature at any earlier epoch. For instance,
at z > 1100, the temperature was> 3000 K, sufficient to ionize the atomic hydrogen. At more
larger redshifts, corresponding to the earlier times in thehistory of the expanding universe, the
temperature was even greater. However, the strict linear dependence of1 + z andTCMB breaks
down at higher temperatures, where the number of light particle species goes up (see Kolb &
Turner 1990).
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1.2 Dynamics of structure formation

So far, we have discussed about the underlying cosmology of Hot Big Bang model and its
successes in describing the universe as whole. The basic concept has been the cosmological
principle, requiring that the universe be homogeneous and isotropic, and we have seen how this
persuades to an explanation for the cosmic microwave background. However, although this cos-
mological principle is valid for studying the universe as a whole, we know that it does not hold
perfectly. The nearby universe is highly inhomogeneous, being made up of stars, planets and
galaxies. Attempting to explain these observed structuresperhaps is the most active research
area in modern cosmology. The existence of these cosmological structures tells us something
important about the initial conditions of the big bang, and about the physical processes that have
operated subsequently. In this section, we will deal with the gravitational and other processes
that are relevant to structure formation and apply these ideas to large-scale structure, galaxy
formation etc.

1.2.1 Density perturbation

The basic aim of studying cosmological inhomogeneities is to understand the processes that
caused the universe to depart from uniform density. Two mostpromising existing ideas for how
this could have happened are either through the amplification of quantum zero-point fluctuations
during an inflationary era, or through the effect of topological defects formed in a cosmological
phase transition (for details, see Peacock 1999). Unfortunately, neither of these ideas can yet
be regarded as established, but it is quite impressive to seethat with help of these ideas we are
able to contemplate the observational consequences of physical processes that occurred at such
remote energies.

However, gravitational instability is a powerful idea, easy to understand, and most likely
responsible for the structures in our universe. As time evolves, matter accumulates in initially
overdense regions. It doesn’t matter how small the initial overdensity was (typically, the over-
density was of the order 1 part in105); eventually enough matter will be attracted to the region
to form galaxies, clusters etc. The first task is to develop the mathematical machinery capable
of describing the growth of these structures.

In a universe made of non-baryonic dark matter, baryons and radiation, we need to discuss
each component separately. The simplest of the three components is the dark matter, which is
collisionless and affected only by gravity. The scales, where formation of structures occurs, are
much smaller than the Hubble lengthdH(z), defined asdH(z) = c/H(z). For such scales, one
can neglect the relativistic effects and hence a simple Newtonian treatment can be applied to
study the physics of the density perturbation and related quantities. We can treat the dark matter
and baryons as fluids and their properties can be governed by the non-relativistic equations of
fluid dynamics. In the fluid limit, we can ignore the velocity dispersion of the dark matter
particles, and there will be no effective pressure term in the equations. If the velocity dispersion
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is important, there will arise an effect calledfree streaming(see Padmanabhan 1993).

A linear solution for how the matter in the expanding universe behaves to its own self-
gravity can be found by expressing the equations of motion interms of a dimension-less density
perturbation fieldδ:

δ(x) ≡ ρ(x)− ρ

ρ
(1.9)

where,ρ(x) is the density of the ideal pressureless fluid of particles each of which is atx, andρ
is the mean fluid density. We will see that, when this density contrastδ is small, it is possible to
linearize the equations inδ and obtain the solutions describing the growth of linear perturbation.
In fact, this is a valid approximation for a considerable period of time as the density contrasts are
expected to be small in the early universe. In the non-linearregime, whereδ ≫ 1, it turns out
that solving the equations in such a case becomes extremely non-trivial for both dark matter and
baryons, and they have to be integrated numerically. However, by introducing some simplified
ansatz one can tackle this difficulty and can gain some physical insights regarding the dynamics
by comparing with the exact numerical results. In the following sections, we will study the
perturbations of non-baryonic dark matter, baryons and radiation independently and as well as
taking the mixture of them within a linear approximation. Then, with help of some simplified
assumptions (e.g. spherical symmetry), we will briefly mention about the non-linear scenarios,
when density contrast is comparable with unity.

1.2.2 Linear gravitational growth

We start by writing down the fundamental equations describing the fluid motion (non-relativistic
case):

Euler : (∂/∂t + v · ∇)v = −∇p/ρ−∇Φ

Energy : (∂/∂t + v · ∇) ρ = −ρ∇ · v (1.10)

Poisson : ∇2Φ = 4πGρ

where∇ is the spatial gradient operator with respect to the proper coordinatesx, ρ(t,x) and
p(t,x) are the fluid density and pressure respectively,v(t,x) ≡ dx/dt is the proper velocity,
and the quantityΦ(t,x) is the gravitational potential. We now produce the linearized equation
of motion by taking terms of first order in perturbations about a homogeneous background of
[ρ0;v0; p0; Φ0]: ρ = ρ0 + δρ, v = v0 + δv, p = p0 + δp andΦ = Φ0 + δΦ. Here note that,v0

is nothing but the Hubble expansionHx. When dealing with the time derivatives of perturbed
quantities, we can always replace(∂/∂t + v · ∇) by d/dt, which is the simple time derivative
for an observer comoving with the unperturbed expansion of the universe. After linearizing the
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equations, we then can write

d

dt
δv = −∇δp

ρ0
−∇δΦ− (δv · ∇)v0

d

dt
δ = −∇ · δv (1.11)

∇2δΦ = 4πGρ0δ

where we define the fractional density perturbationδ ≡ δρ/ρ0.

However, the above equations of motion are written in Eulerian coordinates, where the
proper length units are used and the Hubble expansion is explicitly present through the velocity
v0. An alternative approach is to use thecomoving coordinates; these label observers who
follow the Hubble expansion in an unperturbed universe. Comoving spatial coordinatesr(t)
can be formed by simply dividing the Eulerian coordinates bythe scale factora(t):

x(t) = a(t)r(t)

δv(t) = a(t)u(t) (1.12)

whereu is the comoving equivalent of peculiar velocityδv. Also the spatial derivatives can
be now translated in terms of comoving coordinates in a similar manner:∇x = ∇r/a. For
simplicity, we will write∇r as only∇, keeping in mind that the spatial derivatives are now with
respect to comoving coordinates. Then the linearized equations for conservation of momentum
and matter, experienced by observers moving with the Hubbleflow, can be written in comoving
coordinates as

d

dt
u+ 2Hu = −∇δp

ρ0
− ∇δΦ

a2

d

dt
δ = −∇ · u (1.13)

∇2δΦ = 4πGρ0a
2δ

The term∇δΦ/a is basically the peculiar gravitational acceleration. Butwe still have three
equations and four unknown variablesδ, u, δΦ andδp. So we need an equation of state in order
to solve this system, and this may be specified in terms of the sound speedc2s ≡ ∂p/∂ρ. To
make further progress, think of a plane-wave disturbanceδ ∝ e−ik·r, wherek is a comoving
wavevector. Then we can simplify the equation for the amplitude ofδ by eliminatingu:

d2δ

dt2
+ 2H

dδ

dt
= δ

(

4πGρ0 −
c2sk

2

a2

)

(1.14)

This is the equation that governs the gravitational amplification of density perturbations.

There is a critical proper wavelength at which we switch fromthe possibility of exponen-
tial growth for long-wavelength modes to standing sound waves (oscillatory solution) at short
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wavelengths. This length is known asJeans lengthand defined as

λJ = cs

√

π

Gρ
(1.15)

This essentially denotes the scale at which sound waves can cross an object in about the time
needed for gravitational free-fall collapse.

Let us now see what happens to these equations at early enoughtimes when the universe
was radiation dominated (p = ρ/3; cs = 1/

√
3). To treat this problem accurately, one has

to apply the full general relativity perturbation theory. However, as the fields are still weak,
it is possible to generate the results using special relativity fluid mechanics and Newtonian
gravity with a relativistic source term (see Peacock 1999).To keep this analysis simple, assume
that the accelerations due to pressure gradients are negligible in comparison with gravitational
accelerations (i.e.λ≫ λJ). Then the basic set of equations will be

Euler : (∂/∂t + v · ∇)v = −∇Φ

Energy : (∂/∂t + v · ∇) (ρ+ p) = ∂p/∂t − (ρ+ p)∇ · v (1.16)

Poisson : ∇2Φ = 4πG(ρ+ 3p)

It is then easy to linearize these equations as before, and after that, the evolution equation forδ
will be

d2δ

dt2
+ 2H

dδ

dt
=

32π

3
Gρ0δ (1.17)

so the net result of all the relativistic corrections is a driving term on the right-hand side of this
equation, and it is a factor8/3 higher than in the matter-dominated case. In both matter and
radiation-dominated universes withΩ = 1, we can easily get the solutions forδ(t). The equa-
tions forδ, in general, has two independent solutions, only one of which grows with time. For
the “growing mode”, the solutions for matter and radiation-dominated cases can be combined
rather conveniently using theconformal timeη ≡

∫

dt/a and we can then getδ ∝ η2.

It is also interesting to consider the growth of matter perturbations in universe with non-
zero vacuum energy. For this general scenario, we can get twolinearly independent solutions
for δ as:

growing mode : δ ∝ H(a)

∫ a

0

da

H3(a)a3

decaying mode : δ ∝ H(a) (1.18)

whereH(a) is nothing but the Hubble parameter. For structure formation studies, the decaying
solution is of no use as it will be dominated by the growing mode solution at the epochs of
interest. The right hand side of the above solutions ofδ for growing mode is also known as
growth factorD(a). The growth factor in the matter-dominated era is given by (Peebles 1980)

D(a) ∝ (ΩΛa
3 + Ωka+ Ωm)

1/2

a3/2

∫ a

0

a3/2da

(ΩΛa3 + Ωka+ Ωm)3/2
(1.19)
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where we have neglectedΩr in the matter-dominated regime. In the Einstein-de Sitter model,
the growth factor is simply proportional toa(t).

We are often concerned about the evolution of perturbationsin a universe that contains
several distinct components - dark matter, radiation and baryons. It is easy to treat such compos-
ite system if only gravity is important (i.e. for large wavelength). Let us first take the mixture
of pressureless matter and radiation. They respond to gravity in different ways. The coupled
perturbation equations will be

L

(

δm
δr

)

= 4πG

(

ρm 2ρr
4ρm/3 8ρr/3

)(

δm
δr

)

(1.20)

where the operatorL ≡ ∂2/∂t2+2H∂/∂t. Solutions to these equations are simple if the matrix
has time-independent eigenvectors. In fact, one of these eigenmodes is time independent and
known asadiabatic modein which δr = 4δm/3 at all times. The other perturbation made is
calledisocurvature modeas it corresponds toδρ/ρ→ 0 at t→ 0.

Now take the case for dark matter and baryons together. As both of these components
have the same equation of state, we can write

L

(

δb
δDM

)

=
4πGρ

Ω

(

Ωb ΩDM

Ωb ΩDM

)(

δb
δDM

)

(1.21)

whereδDM(t) andδb are the perturbations in the dark matter and baryons respectively. Both of
the eigenvectors are time independent and can be solved easily in the large scale limit, where
pressure effects are negligible. In this case, if we set up a perturbation withδb = 0, this
mixture of the eigenstates will quickly evolve to be dominated by the fastest-growing mode
with δb = δDM and the baryonic matter falls into the dark matter potentialwells. However, this
is the solution on large scales, with negligible effects of pressure. On the small scales, the effect
of pressure will prevent the baryons from continuing to follow the dark matter. One has to add
the pressure term to the coupled equations and the solutionsare slightly more complicated for
this case. We get an oscillatory behavior in this solution and this holds as long as pressure forces
continue to be important. We shall study this case later in Section 1.3.1.

1.2.3 Non-linear evolution

The equations of motion we dealing with are non-linear, and in the previous section we have
only solved them in the limit of linear perturbations. The exact evolution of the density field is
usually performed by a rigorousN-body simulation, in which the density fields are represented
by the sum of a set of fictitious discrete particles. The basicidea for this simulation is as
follows. With some initial conditions, the equations of motion for each particles are solved for
the present gravitational field due to all other particles. We find the change in particle positions
and velocities over some small time gap, then we let the particles move and accelerate and
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finally re-calculate the gravitational field to start a new iteration. Although the full development
of the gravitational instability cannot be solved without theN-body techniques, there are few
useful ideas and approximations that help us to understand the scenario.

One of them is theZeldovich approximation. In this method, we work out the initial
displacement of the particles under the assumption that they continue to move in this initial
direction. The proper coordinates of a particle under consideration is

x(t) = a(t)q + b(t)f(q) (1.22)

This is like the Hubble expansion with some perturbation, which will become insignificant as
t→ 0. Therefore the coordinatesq is nothing but the usual comoving coordinates att = 0. f(q)
is the time-independent displacement filed andb(t) is some the scaling function. The coordinate
x is known as theEulerian position, andq theLagrangian position.

Now, if the initial unperturbed density isρ0 (which is independent ofq), then the conser-
vation of mass implies that the perturbed density in Eulerian coordinate will be (Padmanabhan
1993)

ρ(x, t)d3x = ρ0d
3q (1.23)

Therefore using the Jacobian of the transformation betweenx andq, we get (Peacock 1999)

ρ(x, t) = ρ0

[(

1− b

a
α

)(

1− b

a
β

)(

1− b

a
γ

)]−1

(1.24)

where(−α,−β,−γ) are the eigenvalues ofstrain tensoror deformation tensor∂fi/∂qj . Col-
lapse therefore takes place first along the axis corresponding to the largest negative eigenvalue,
leading to a flattened structure known aspancakes. Here we have assumed that the strain tensor
is symmetric, so that it is easy to calculate the Jacobian in anew coordinate system where this
tensor is diagonal. The displacement field is then irrotational (in other word, the rotational part
of this field decays down in an expanding universe), so to makethis obvious, one can write it in
terms of a potential as

f(q) = ∇ψ(q) ⇒ ∂fi
∂qj

=
∂2ψ

∂qi∂qj
(1.25)

After linearizing equation (1.24), we can get the expressions for the density and velocity per-
turbations:

δ = − b

a
(α + β + γ) = − b

a
∇ · f

u =
1

a

(

ẋ− ȧ

a
x

)

=

(

ḃ

a
− ȧb

a2

)

f (1.26)
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Using the Friedmann equation, this gives

b̈

b
= −2ä

a
=

8πGρ0
3

(1.27)

which yields the growing mode solutionb ∝ t4/3 for Ω = 1. From the linearized density
relation, one can also relateb asb(t) = a(t)D(t), whereD(t) is the usual growth function.
However, this approximation fails after the shells of matter start crossing each other. In that
case, one must take a full non-linear gravitational treatment which we shall briefly mention
later in Section 1.2.5.

1.2.4 Fourier analysis of density perturbations

So far, we have seen how gravitational instability is expected to produce patterns of inhomo-
geneity in the universe, with a characteristic dependence on the precise matter content. In this
section we will see how these ideas can be used to study the statistics for spatial distribution of
the perturbations at different scales.

In cosmology, it is often convenient to assume the initial linear perturbation field to be a
Gaussian random field, and can be described in Fourier space,in terms of Fourier components

δ(k, z) =

∫

d3xδ(x, z)e−ik·x (1.28)

Now, the most important quantity regarding the Fourier technique is thecorrelation func-
tion and is defined as

ξ(r, z) ≡ 〈δ(x, z)δ(x + r, z)〉 (1.29)

The angle brackets denotes averaging over normalization volume V . Now, let us introduce
another important quantity known as thepower spectrumP (k, z), which is basically the Fourier
transform of the correlation function ink-space, and is defined as

〈δ(k, z)δ(k′, z)〉 ≡ (2π)3P (k, z)δD(k− k′) (1.30)

where,δD is the usualDirac delta function. Note that, due to the isotropy of background
universe, the power spectrum is only a function of the magnitude ofk. So the correlation
function now becomes

ξ(r, z) =

∫

d3k

(2π)3
P (k, z)e−ik·r

=

∫ ∞

0

dk

k

k3P (k, z)

2π2

sin kr

kr
(1.31)
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where the last step follows because of the isotropic nature of the power spectrum, so that we
can introduce the spherical polar coordinates with the polar axis alongk, and the angular part
of that integral can therefore be performed independently.Many cosmologists often express the
power spectrum in dimensionless form, as the variance perln k

∆2(k, z) ≡ d〈δ2〉
d ln k

=
k3

2π2
P (k, z) (1.32)

In the standard cold dark matter model,∆2(k, z) increases with wavenumber, but we
observe the density field smoothed over some scale. Therefore, we are particularly interested in
the density field smoothed on a particular scale, sayR,

δR(x, z) ≡
∫

d3x′W (|x′ − x|;R)δ(x′, z) (1.33)

The functionW (x;R) is called thewindow functionor the filter function that weights the den-
sity field in a manner that is relevant for the particular reason. Perhaps, the most natural choice
of a window function is a simple sphere in real space:

W (x;R) =
3

4πR3
for x ≤ R

= 0 for x > R (1.34)

However, due to the sharp transition in configuration space,this choice of window function has
certain disadvantages. Therefore, it is often convenient to use the Fourier transformed real-space
tophatwindow of equation (1.34)

W (k;R) =
3(sin kR− kR cos kR)

k3R3
(1.35)

We can now also define a few more useful quantities, namely, the volume-averaged cor-
relation function

ξ̄(R, z) ≡ 3

4πR3

∫ R

0

d3rξ(r, z)

=

∫ ∞

0

dk

k

k3P (k, z)

2π2
W (k;R) (1.36)

and the root mean square fluctuations in massM at some comoving radiusR (M = 4πρmR
3/3)

σ2(M, z) ≡ σ2(R, z) = 〈δR(x, z)〉 =
∫ ∞

0

dk

k

k3P (k, z)

2π2
|W (k;R)|2 (1.37)

whereW (k;R) is defined as equation (1.35). We will see later that, the function σ(M, z) plays
a very crucial role in estimates of the abundance of collapsed objects. We should mention here
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that, whenever we want to use these quantities at the presentepoch, we shall omitz in our
notations; likeP (k, z = 0) ≡ P (k).

So, the above shows that the power spectrum is a very crucial quantity in cosmology,
but how can we predict its functional form? For simplicity, we assume that the spectrum does
not contain any preferred length scale. In standard models,we presume that inflation produces
a featureless primordial power-law spectrumP (k) ∝ kn with spectral indexn ∼ 1. Most
important case is the scale-invariant spectrum which corresponds to the valuen = 1. This is
often known asHarrison-Zeldovich (HZ) spectrum(Harrison 1970; Zeldovich 1972). However,
the current WMAP or PLANCK data strongly disfavors a pure HZ spectrum;n = 0.972±0.013
from WMAP9 (Hinshaw et al. 2012) andn = 0.9603 ± 0.0073 from PLANCK with WMAP
low-multipole likelihood (Ade et al. 2013b). Growth of perturbation in the radiation-dominated
and then matter-dominated era results in a modified final power spectrum, characterized by a
turnover at a scale of oder the horizonc/H at matter-radiation equality. On large scales the
spectrum evolves in proportion to the square of the growth factor. On the other hand, at small
scales, the power spectrum changes shape due to the additional non-linear gravitational growth
of perturbations, resulting a full non-linear power spectrum. However, the overall amplitude
of the power spectrum is yet not specified by the recent allowed models of inflation, and it is
normally set by the observations from CMB and galaxy clustering.

For a variety class of cold dark matter models, the power spectrum for dark matter fluctu-
ations, calculated at present epoch, can be well approximated by a fitting function of the form

PDM(k) =
ADMk

n

(1 + [ak + (bk)1.5 + (ck)2]ν)
2

ν

(1.38)

where the fitting parametersν = 1.13, a = (6.4/Γ)h−1 Mpc, b = (3/Γ)h−1 Mpc, c =
(1.7/Γ)h−1 Mpc andΓ = Ωmh for Ωb ≪ Ωm. The normalization parameterADM is fixed
through the observed value of the root mean square fluctuations in spheres of radius8h−1 Mpc.
This quantity is denoted asσ8. The current best-fit value ofσ8 is 0.821± 0.023 from WMAP9
(Hinshaw et al. 2012) and0.829± 0.012 from PLANCK using WMAP polarization data (Ade
et al. 2013b). For large scales (lowk) where the growth is linear, we can get the power spectrum
for any other epochPDM(k, z) simply by multiplyingPDM(k) with D2(z), whereD(z) is the
growth function [equation (1.19)].

The power spectrum for linear baryonic density fluctuationscan be obtained fromPDM(k, z)
as (Fang et al. 1993)

Pb(k, z) =
PDM(k, z)

[1 + x2b(z)k
2]

2 (1.39)

where the quantityxb is defined as (Choudhury et al. 2001; Choudhury et al. 2001; Choudhury
& Ferrara 2005)

xb(z) =
1

H0

√

2γ kBT0
3µmpΩm(1 + z)

(1.40)
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µ is the mean molecular weight in atomic units,γ is the specific heat ratio,mp is the proton
mass andkB is the Boltzmann’s constant.

1.2.5 Non-linear object formation and evolution

In the previous sections, we have introduced the mathematical framework needed to study the
structure formation. The formation of bound virialized objects was studied for pressure-less
dark matter component using linear theory until the perturbation δ is very small. In Section
1.2.3, we mentioned that the full non-linear treatment mustbe taken into account for a realistic
situation. In this section, we will study the formation and abundance of the non-linear objects
using such full non-linear theory - thespherical model.

Due to the spherical symmetry, an overdense sphere turns outto be a very useful non-
linear model. It behaves exactly the same way as a closed sub-universe.Any spherically sym-
metric perturbation will evolve at a given radius in the sameway as a uniform sphere containing
the same amount of mass. Now consider the force on a particle in an inertial non-comoving co-
ordinate system, resulting from a point mass at the origin (ignoring the presence of a vacuum
energy density). Then the equation of motion for that particle on the shell in a background
universe with dark matter only will be

d2r

dt2
= −GM

r2
(1.41)

wherer is the distance of the particle from the center of the spherical perturbation, andM is
the total mass within that radius. The mass remains constantin time as long as the shells do not
cross each other. We can then write down the cycloid solution(Peacock 1999; Barkana & Loeb
2001):

r = A(1− cos θ)

t = B(θ − sin θ) (0 ≤ θ ≤ 2π) (1.42)

where,A3 = GMB2. Expanding these relations up to orderθ5 for smallt gives

r ≃ A

2

(

6t

B

)
2

3

[

1− 1

20

(

6t

B

)
2

3

]

(1.43)

and the density perturbation within the sphere will be

δ ≃ 3

20

(

6t

B

)
2

3

(1.44)

This agrees with what we knew already, that is, at early timesthe sphere expands witha ∝ t2/3,
the Hubble flow, and density perturbations grow asδ ∝ a.
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We can now see that, the sphereturns aroundfrom the general expansion when it reaches
a maximum radius atθ = π, t = πB. By comparison with the linear theory for anΩ = 1
background, one can say that, this occurs at a critical overdensity ofδlinc ≃ 1.06. If only gravity
operates, then the sphere willcollapseto zero radius atθ = 2π, and this givesδlinc ≃ 1.69. But
even a slight violation of the exact symmetry of the initial perturbation can prevent the sphere
from collapsing to a point. Instead the sphere reaches a state of virial equilibrium. At this
point, its kinetic energyK is related to its potential energyU by U = −2K and this is known
asvirial theorem. Some people prefer to assume that this virialized size is achieved only at
collapse, in that case the density contrast becomes≃ 178. Of course, in real case, objects are
not exactly symmetric and the complex anisotropic sequenceof events eventually leads to the
N-body version of structure formation. Nevertheless, this procedure is quite accurate as far as
determining the time of collapse is concerned.

In the standard hierarchical CDM paradigm of cosmology, thestructure formation starts
with the gravitational collapse of overdense regions into bound virialized haloes of dark mat-
ter. Bound in the potential wells of dark matter haloes, baryons proceed to cool, condense, and
eventually form galaxies and other structures. Thus, understanding the fundamental properties
and abundances of these dark matter haloes is the first and necessary step in studying the physics
of structure formation. The dynamics of dark matter collapse can be solved analytically only in
cases of particular symmetry. If we consider a region much smaller than the horizonc/H, then
the halo formation can be treated a problem in Newtonian gravity. The simplest but effective
approximation scheme is based on spherical symmetry with aninitial top-hat uniform overden-
sity δi inside a sphere of radiusR. Although this model is limited in its direct applicability,
the results of spherical collapse have turned out to be surprisingly useful in understanding the
underlying physics of cold dark matter haloes.

As mentioned earlier, the equation of motion for collapse ofa spherical top-hat perturba-
tion in a background universe with dark matter haloes can be described by the equation (1.41).
This equation can be solved for a given background cosmology, provided the initial conditions
are known (Barkana & Loeb 2001). The initial value forr should be chosen such that the initial
density contrastδi is much less than unity. The enclosedδ initially grows according to the lin-
ear theory, but eventually it grows above the linear critical densityδc = 1.69, where the linear
approximation breaks down. If the mass shell of radiusr is bound then it reaches a radius of
maximum growth and consequently collapses. The critical density for a tophat collapse at any
redshiftz can be obtained by extrapolating its linear density contrast to that redshift

δc(z) =
1.69

D(z)
(1.45)

whereD(z) is the usual growth function ans is set to be1 at present dayz = 0.

Another important quantity in structure formation studiesis the virial density of the col-
lapsed halo of massM with respect to the critical density, defined as

∆c =
ρm
ρc

=
8πGρm
3H2

=
2GM

r3virH
2

(1.46)
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wherervir is the radius of a spherical volume within which the mean density is ∆c times the
critical density at that redshift, so thatM = 4πr3virρc∆c/3. This is known as thevirial radius.
The value of∆c is taken from the solution of spherical tophat collapse under the assumption that
the halo has just virialized (Peebles 1980). Its value is18π2 for the Einstein-de Sitter universe
but has a dependence on cosmology through the parameterΩz

m, defined as

Ωz
m =

Ωm(1 + z)3

Ωm(1 + z)3 + ΩΛ + Ωk(1 + z)2
(1.47)

This dependence can be approximated quite well by the fittingformula (Bryan & Norman 1998)

∆c = 18π2 + 60x− 32x2 if ΩΛ = 0

= 18π2 + 82x− 39x2 if ΩΛ = 1− Ωm (1.48)

wherex = Ωz
m − 1. This results are accurate to1% in the rangeΩz

m = 0.1− 1.

In practice, we are often interested in the quantity called the circular velocityvc of the
collapsed halo. In a universe with non-zeroΛ, it is given by

v2c =
GM

rvir
− ΩΛH

2
0 r

2
vir

3
(1.49)

where we have assumed that the virialized halo has a singularisothermal density profileρ(r) ∝
1/r2. We can get the mass of the halo in terms of the circular velocity by eliminatingrvir from
the above equation

M

1011h−1M⊙

=
( vc
35.0 km s−1

)3

√

2H2
0

H2(z)∆c(z)

[

1− 2ΩΛH
2
0

3H2(z)∆c(z)

]−3

(1.50)

We may also then define avirial temperatureas

Tvir =
µmp

2kB
v2c (1.51)

whereµ is the mean molecular weight andmp is the mass of a proton. The Jeans scale,λJ , will
then be determined by the minimum circular velocity for star-forming haloes

λJ = 2π
vc
H0

√

γ

3Ωm(1 + z)
(1.52)

However, for baryons, we do not have such a well-establishedtheoretical tools and there-
fore the non-linear evolution of baryons are very complicated and challenging to study.

In addition to identifying the properties of individual haloes, a critical prediction of any
theory of structure formation is the abundance of haloes, i.e. the number density of haloes
as a function of mass, at any redshift. This is a very crucial step toward understanding the
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abundances of galaxies and galaxy clusters. Although, the correct way to that is to use the
numerical simulations, one can gain the physical understanding and explore the dependence of
abundances on the cosmological parameters with the help of an analytical model. One can then
match the analytical results with that from numerical simulations.

A simple analytic model with particular attention toward applications to dark matter halo
formation and growth, halo abundance and clustering, whichmatches quite successfully most
of the numerical simulation was proposed by Press & Schechter (1974). This model is based
on the ideas of a Gaussian random field of density perturbations, linear gravitational growth,
and spherical collapse. They essentially assumed that the objects will collapse on some small
scale, sayR, once the smoothed density contrastδR [equation (1.33)] on this scale exceeds some
threshold value, but that the non-linearities introduced by these virialized objects will not affect
the collapse of overdense regions on much larger scales. Although this assumption is not strictly
correct, but it is approximately true to some extent (see Williams et al. 1991). Moreover, this
assumption leads us to some important ingredients of the non-linear structure formation, like
the characterization of the statistical properties of primordial density fluctuations, the evolution
of overdensities according to linear perturbation theory etc.

Using a model for the collapse of a spherical tophat overdensity, Press & Schechter pre-
scribed that collapse on some smoothing scaleR should occur roughly when the smoothed
density on that scale exceeds the critical valueδc(z), given in equation (1.45), independent of
R. The mass of the virialized objectM(R) is related to the smoothing scale by the volume
of the window function. For a tophat window [equation (1.34)], M = 4πρmR

3/3. Now, the
probability of attaining a value ofδR(z) betweenδR andδR + dδR is

P (δR;M)dδR =
1

√

2πσ2(M)
exp

[

− δ2R(z)

2σ2(M)

]

dδR (1.53)

where the standard deviationσ(M) is calculated using the present power spectrum [equation
(1.37)]. By integrating the above equation, one can get the cumulative probability for a region
to have a smoothed densityδR(z) greater than the threshold densityδc(z). This will give the
fractional volume occupied by the virialized objects larger than the smoothing scale or having
mass greater thanM

F (> M ; z) =

∫ ∞

δc(z)

P (δR;M)dδR =
1

2
erfc

(

ν√
2

)

(1.54)

whereerfc(x) is the complementary error function andν ≡ δc(z)/σ(M) is the height of the
threshold in units of the standard deviation. Note that, as in the hierarchical power spectra
σ(M) → ∞ for M → 0, the functionF (> 0; z) in the above equation should give the fraction
of all mass in virialized objects. But,erfc(0) = 1, so this equation states that only half of the
mass density of the universe is contained in virialized objects. Press & Schechter noted this as
a problem associated with not counting underdense regions and multipliedF (> M ; z) by an
ad-hoc factor of 2 to account for all masses. However Bond et al. (1991) found an alternative
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derivation of this correction factor, using a different ansatz. Also one can get the corrected
results using anexcursion set formalism(see Chapter 5 for details). However, taking this extra
factor of two, we get

F (> M ; z) = erfc

(

ν√
2

)

(1.55)

Thus the number of virialized objects with masses betweenM andM + dM is

dn

dM
dM =

ρm
M

∣

∣

∣

∣

dF (> M ; z)

dM

∣

∣

∣

∣

dM (1.56)

and in terms of the mass variance,

dn

dM
dM =

√

2

π

ρm
M2

ν

∣

∣

∣

∣

d lnσ

d lnM

∣

∣

∣

∣

exp

(

−ν
2

2

)

dM (1.57)

So, without regard to the details of the shape of the power spectrum and other quantities, we
can see that, the mass function is close to a power-law withdn/dM ∝ M−2 for very small
masses and is exponentially cut-off for larger masses. The shape of this mass function agrees
with numerical results to some reasonable accuracy. Improvements to the Press-Schechter mass
function have been made to overcome this limitation. In particular, theSheth-Tormen mass
function, which is based on the more realistic ellipsoidal collapse model (Sheth & Tormen
1999; Sheth et al. 2001) fits the numerical results better.

1.3 Galaxy formation and cosmic reionization

In the previous sections we have outlined the basic mathematical framework needed to study
structure formation. The formation of bound virialized objects was discussed for pressure-
less dark matter component first using a linear theory and then some non-linear approximation
where the density contrast becomes order of unity. However,the physics for the baryons are
too complicated to be studied under this simple approximation schemes. In this chapter, we are
concerned in describing the basic physics which guides the baryons, which leads us to introduce
models of galaxy formation.

Now start with a very brief thermal history of the baryons in the universe. The two most
abundant elements among the baryons are hydrogen and helium. At redshiftz ∼ 1100 (age of
the universe was∼ 3×105 years), the electrons and protons combined for the first timeto form
neutral hydrogen and some amount of helium. This process is usually called therecombination.
Right after this recombination epoch, the universe entereda phase calleddark agewhere no
sources of light existed and hydrogen stayed largly neutralat this stage. This is believed to
be the most unknown period of the universe spanning fromz ∼ 1100 to the formation of first
stars atz ∼ 20 − 30. However, the small inhomogeneities which were formed by then start to
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grow via gravitational instability and form highly non-linear structures like massive dark matter
haloes. We have already discussed how to obtain the abundance of such haloes in the previous
section. The collapsed haloes then form potential wells whose depths depend on their mass.
The neutral baryonic gas falls into these potential wells. If the virial temperature of the halo is
high enough, the gas will be able to dissipate its energy, cool via atomic or molecular transitions
and fragment within the halo. In the absence of molecules, the lower limit of the halo virial tem-
perature is∼ 104 K. This produces conditions appropriate for condensation of gas and forming
the first population of stars and galaxies, which can generate ultraviolet (UV) radiation through
the nuclear reactions. In addition to the galaxies, perhapsan early population of accreting black
holes, known asquasars(QSO), also generated considerable amount of UV radiation.The UV
radiation contains photons with energies> 13.6 eV which are then able to reheat and reionize
most of the hydrogen atoms in the intergalactic space (called the intergalactic medium or IGM).
This process is known asreionization. Thus after the recombination, reionization is the second
major change in the ionization history of the universe. Also, it has an immense theoretical and
observational impact in studying the physics of structure formation. This reheating of the IGM
can expel the gas and suppress cooling in the low mass haloes.In addition, the nuclear reac-
tions within the stellar sources can alter the chemical composition of the medium via energetic
explosion (supernova). These processes can change the nature and amount of star formation at
later stages. They are commonly known asfeedback mechanisms(described in Section 1.3.2).

The details of galaxy formation and reionization of the IGM depends on complicated
physics of density fluctuations, various feedback mechanisms and non-linearities at small scales
- none of which are not well understood as yet in contrast thissituation with that for the dark
matter. However, in order to model the evolution of baryonicstructures, one needs to incorpo-
rate all the hydrodynamical processes, heating, cooling, star formation etc., in the N-body sim-
ulations. Because of such complications, our understanding of the physics of baryonic structure
formation has been limited. In this chapter we will attempt to address some of these complicated
issues, starting with the physics of baryonic structure formation.

1.3.1 Baryonic structure formation

We begin by exploring the gravitational instability scenario, in which primordial density pertur-
bations grow through gravitationalJeans instabilityto form the complex structures we observe
today.

In the Newtonian gravity limit, the Jeans lengthλJ is defined as the critical wavelength
that separates oscillatory and exponentially growing density perturbations in an infinite, uniform
and stationary distribution of gas, defined in equation (1.15). For the scalesl < λJ , the sound
crossing timel/cs is smaller than the gravitational free-fall time,(Gρ)−1/2. This allows to build
up a pressure force that counteracts gravity. On larger scales, the pressure gradient force is too
slow to react to a build up of the attractive gravitational force. The mass within a sphere of
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radiusλJ/2 is known asJeans mass:

MJ =
4π

3
ρ

(

λJ
2

)3

(1.58)

In a perturbation with a massM > MJ , the self-gravity cannot be supported by the pressure
gradient, so the gas is unstable to gravitational collapse.However, this Newtonian derivation
of the Jeans instability suffers from a conceptual inconsistency, as the unperturbed gravitational
force of the uniform background must induce the bulk motions(Binney & Tremaine 2008).
This inconsistency must be treated when the analysis is donein an expanding universe.

The perturbative derivation of the Jeans instability criterion can be carried out by taking
a sinusoidal perturbation superposed on a uniformly expanding background. Now, consider
spherical fluctuations in the baryonic gas and dark matter densities in the form of a single
spherical Fourier mode on a scale much smaller than the horizon:

ρDM(r, t)− ρDM(t)

ρDM(t)
= δDM(t)

sin kr

kr

ρb(r, t)− ρb(t)

ρb(t)
= δb(t)

sin kr

kr
(1.59)

whereδ are the corresponding overdensity amplitudes andr is the comoving radial coordinate.
Initially, at some timet = ti the perturbation amplitudes are small (δDM,i, δb,i ≪ 1) and the gas
temperature is uniformTb(r, ti) = Ti. We can define a region inside the first zero ofsin kr/kr,
namely0 < kr < π, as the collapsing object. The temperature of baryons is determined by
the coupling of its free electrons to the CMB throughCompton scatteringand by the adiabatic
expansion. ThusTb is generally between the CMB temperatureTCMB ∝ (1+z)−1 [see equation
(1.8)] and the adiabatically scaled temperatureTad ∝ (1 + z)−2. In the limit of tight coupling
to the CMB, the gas temperature remains uniform, whereas in the adiabatic limit, it goes as
Tb ∝ ρ

(γ−1)
b , whereγ is the specific heat ratio.

The evolution of the perturbation in dark matter is described in the linear regime by [see
equation (1.21)]

δ̈DM + 2Hδ̇DM =
3

2
H2(Ωbδb + ΩDMδDM) (1.60)

and with the inclusion of pressure term, the baryon overdensity evolves as (Kolb & Turner 1990;
Loeb 2006)

δ̈b+2Hδ̇b =
3

2
H2(Ωbδb+ΩDMδDM)−

γkBTi
µmp

(

k

a

)2
(ai
a

)1+β
(

δb +
2

3
β [δb − δb,i]

)

(1.61)

Here the parameterβ discriminates between the two limits of evolution of gas temperature:
β = 1 in the adiabatic limit, andβ = 0 in the strong coupling limit. The Jeans wavelength
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λJ = 2π/kJ is then obtained by setting the right hand side of equation (1.61) to zero and solving
for the critical wavenumberkJ . One can see thatλJ (and thusMJ ) will be time dependent in
general and also that perturbations with increasingly smaller initial wavelengths stop oscillating
and start to grow.

Following the recombination atz ≈ 1100, the residual ionization of the cosmic gas keeps
its temperature locked to the CMB temperature via Compton scattering down to a redshiftzt,
which is (Peebles 1993)

1 + zt ≈ 137

(

Ωbh
2

0.022

)2/5

(1.62)

In the redshift range between recombination andzt, i.e. zt < z < zrec, the parameterβ = 0.
So, we get

kJ ≡ 2π

λJ
= H0

√

3µmpΩm

2γkBTCMB(0)
(1.63)

and the Jeans mass is

MJ =
4π

3

(

λJ
2

)3

ρ(0) = 1.35× 105
(

Ωmh
2

0.15

)−1/2

M⊙ (1.64)

For z < zt, the gas temperature drops adiabatically i.e.β = 1, and the total Jeans mass will be
(Padmanabhan 1993)

MJ = 5.73× 103
(

Ωmh
2

0.15

)−1/2(
Ωbh

2

0.022

)−3/5(
1 + z

10

)3/2

M⊙ (1.65)

However, above expressions for the Jeans mass are just a linear theory estimate and can
only describe the initial phase of collapse. Also, it is not clear how the value of the Jeans mass
is related to the mass of collapsed, bound objects. As the density perturbations grow with time
and become larger than unity, the amount of mass enclosed within a given baryonic shell may
increase with time, until eventually the dark matter pulls the baryons with it and causes their
collapse even for objects below the Jeans mass. In this linear regime, the Jeans mass is related
only to the evolution of perturbation at a given time. When the Jeans mass itself varies with
time, the overall suppression in the growth of perturbations will depend on a time-weighted
Jeans mass, known asfiltering mass(Gnedin & Hui 1998; Choudhury & Ferrara 2005). Thus
the Jeans condition may only be a necessary but not sufficientcondition.

In order to estimate the minimum mass of baryonic objects, wemust go beyond the linear
theory, and we have to consider the non-linear effects on theevolution of the accreted baryons.
Assume that a dark matter halo with a potential wellφ(r), with φ → 0 at large distances and
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φ < 0 inside the object, is formed at redshiftzvir. After the gas, with some pressurepb and mass
densityρb settles into this potential well, it satisfies the hydrostatic equilibrium equation,

∇pb = −ρb∇φ (1.66)

At z < 100, the gas temperature is decoupled from the CMB, and its pressure evolves adiabati-
cally, so we havepb ∝ ρ

5/3
b (asγ = 5/3), which immediately gives

ρb
ρb

=

(

1− 2

5

µmpφ

kBT

)3/2

(1.67)

T = pbµmp/(kBρb) is the background gas temperature (a bar denotes the background condi-
tions). Then the baryonic overdensity can be written as

δb ≡
ρb
ρb

− 1 =

(

1 +
6

5

Tvir

T

)3/2

− 1 (1.68)

whereTvir = −µmpφ/(3kB) is the virial temperature corresponding to the potential well of
depth−φ.

According to the spherical top-hat collapse model, we may say that collapse of baryons
happens when their mean overdensityδb exceeds a value of100. This implies a minimum halo
mass for these collapsed baryonic objects, known asprotogalaxies, of

Mmin = 5.0× 103
(

Ωmh
2

0.15

)−1/2(
Ωbh

2

0.022

)−3/5(
1 + z

10

)3/2

M⊙ (1.69)

This happens to be very close to our earlier linear estimate of Jeans mass, however it takes non-
linear effects into account. Note that, unlike the Jeans mass, this minimum mass depends on
the choice for an overdensity threshold. Of course, when thefirst stars and galaxies form, this
value ofMmin will be changed due to various feedback effects.

Besides the gravitational instability, another process that affects the structure formation is
cooling. As we have discussed above, gravity dominates in objects with baryonic masses greater
than3 × 104M⊙ and for lower masses pressure delays the collapse - resulting to a bottom-
up hierarchy of structure formation. Thus the first objects to collapse have a mass scale that
separates these two regimes. Such objects can fragment onlythrough cooling. The efficiency of
gas cooling is very crucial in determining the minimum mass of protogalaxies. Thus, there are
two independent minimum mass thresholds for star formation: the Jeans mass and the cooling
mass. The higher of these two decides the actual threshold. The primary molecule that acquires
sufficient abundance to affect the thermal state of the gas ismolecular HydrogenH2, produced
by various processes in the early universe. PrimordialH2 forms with a very small fractional
abundance of≈ 10−7 at z > 400. But, atz < 110, when the CMB radiation intensity becomes
weak enough to allow for a significant formation ofH− ions, moreH2 molecules can be formed.
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Cooling viaH2 forms objects with mass∼ 104M⊙, which are usually calledminihaloes. This
cooling process is known asmolecular cooling. However, molecular Hydrogens are very fragile
and can easily be dissociated by photons with energies of11.26− 13.6 eV, to which the IGM is
transparent even before reionization. Haiman et al. (1997)showed that the UV flux necessary
for dissociatingH2 throughout the collapsed environments is two orders of magnitudes lower
than the amount required for IGM reionization. Hence,H2 is completely destroyed by trace
amount of first generation stars. Further star formation is only possible viaatomic cooling,
which happens atTvir & 104 K. Such objects correspond to mass of∼ 108M⊙.

The final state in the evolution of stars is uncertain, but if their mass loss is not too ex-
cessive, they are most likely to end up as black holes (BH) (Bond et al. 1984). Apart from star
formation, some massive black hole formations are also expected to happen in the early stages
of galaxy formation, they are known as quasars. The quasars are more effective than stars in
ionizing the intergalactic hydrogen (Larson 2000). Thus the history of reionization may be
greatly affected if quasars form early. Some of the massive stars may end their lives by produc-
ing gamma ray bursts (GRBs). Then the broad-band afterglowsof these bursts could provide
a powerful tool for probing the epoch of reionization (Lamb &Reichart 2000; Ciardi & Loeb
2000).

1.3.2 Reionization of the IGM

As mentioned earlier, reionization begins when the first sources of ionizing photos form and
start building ionized medium around themselves. In this section, we will discuss the basic
stages of reionization: thepre-overlap, overlapandpost-overlapphases.6

In the initial “pre-overlap” stage, a fraction of the UV radiation emitted by the stars can
escape the host galaxy and ionize hydrogen in the surrounding medium. The value of the escape
fraction of radiation depends on the mass of the galaxy and the clumping of matter within it,
and is quite uncertain. Along with that, the ionizing UV radiation can also be generated by an
early population of QSOs. Although the number of QSOs at highredshifts (z > 6) is quite
small, but the radiation from the QSOs can escape much easilybecause of the fact that their
spectrum is much harder compared to that of galaxies. Since the first galaxies form in the most
massive haloes at high redshifts, they are preferentially located in the high density regions. The
ionizing photons have to pass through this high density region which is characterized by large
recombination rates. At this stage, the IGM acts like a two-phase medium, with highly ionized
Hydrogen (HII) regions separated from neutral Hydrogen (HI) regions by the ionization fronts.

The “overlap” stage begins when the ionizing volume increases gradually and the neigh-
boring HII regions start overlapping. The propagation of these ionization front can be studied by
taking into account the photoionization and the recombination of the atoms (Shapiro & Giroux
1987). At this stage, the intensity in the HII regions rises very rapidly, allowing them to expand

6This terminology was first introduced by Gnedin (2000)
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into the high density gas that had been able to recombine in the presence of a lower ionizing in-
tensity. By end of this stage, the ionizing radiation reaches most of the IGM regions, except for
the gas trapped inside self-shielding, high-density clouds. This process of overlapping seems to
be completed aroundz ≈ 6−8 at which point the neutral hydrogen fractionxHI becomes lower
than10−4.

Following the overlap phase, a never-ending “post-overlap” (or “post-reionization”) phase
started which implies that the universe is largely ionized at present epoch. Even at the end
of the overlap stage, there remains some neutral regions in very high density structures (with
column densitiesNHI > 1017cm−2), such as Lyman Limit Systems (LLS) and Damped Lyα
systems (DLA), which can be seen in absorption at lowerz (see Section 1.3.3). These too,
get gradually ionized in this stage as galaxies form and the mean ionization intensity increases.
This post-overlap phase then continues indefinitely, sincethe collapsed objects retain HI even
at the present time.

Although the basic physics behind the reionization is more or less understood, the details
are still to be filled in. The numerical resolution in the hydrodynamical simulations is also
limited for this purpose and, at present, one has to rely on semi-analytical models for this
purpose. Still the nature of the reionization sources and the reionization history remain unclear
and highly debated in the literature. This is mainly due to uncertainties in modelling several
physical issues, like the properties of the first stars and quasars, the ionizing photon production
and radiative transfer, the IGM clumping etc. One of the mostcrucial parameters needed for
modelling reionization is the escape fraction of ionizing radiation; whatever the nature of a
source, only a fraction,fesc, of the ionizing photons emitted escape the production siteand
reach the IGM. However, the value offesc is largely unconstrained (see Fernandez & Shull
2011; Mitra et al. 2013 and the references therein). We will come back to this point later in
Chapter 3.

We have already mentioned about some of the possible sourcesof reionization, which
include the first stars, galaxies, and QSOs. We will now briefly discuss about them one by one.

The first stars represent the first sources of light and dust inthe universe. They can affect
the subsequent formation of all later generations of stars and galaxies via several feedback pro-
cesses. Although feedback effects are quite important, they are also difficult to model. They
can be broadly classified into three categories: (i)Radiative feedback- it is associated with
the radiation from first stars which can heat up the surrounding medium and can increase the
mass scale (known as filtering mass) above which baryons can collapse into haloes within those
regions. Thus the minimum mass of haloes which are able to cool is much higher in ionized
regions than in neutral ones. It can change the cooling rate and suppress the star formation
in low mass haloes. (ii)Mechanical feedback- the ejection of energy by a supernova driven
wind (Dekel & Silk 1986). This can expel the cold gas from galaxies and suppress star for-
mation in low mass haloes. One can parametrize both of these feedback processes through the
minimum mass parameterMmin(t), defined in equation (1.69). (iii)Chemical feedback- stars
can expel the gas and associated metals into theinterstellar medium(ISM) via stellar winds
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and supernovae and hence change its chemical composition. Thus the subsequent formation
of stars could be in a completely different environment and also the nature of stars could be
highly different. The hierarchical models of structure formation predict the first collapsed ob-
jects to have a primordial, metal-free composition; their formation and cooling is governed by
molecular hydrogen and they have huge masses. They are knownas PopIII stars. They domi-
nate the photoionization rate at high redshifts. However, the initial mass function(IMF), which
specifies the distribution of masses in a newly formed stellar population, is largely unknown for
these PopIII objects due to a poor understanding of their fragmentation processes. Although it
is quite hard to model the primordial star formation processes, advances have been made along
this direction using numerical simulations. By means of various simulations, people have found
the first star to be massive withM ≥ 100M⊙ (Bromm et al. 1999; Abel et al. 2000; Nakamura
& Umemura 2001). However, it is important to note that PopIIIstar formation is suppressed as
soon as the ISM is enriched by metals produced by previous generations of PopIII stars. Then
the later generation stars will have sub-solar metallicities. They are known as PopII stars. Since
the metal-free composition restricts the stellar energy source to be proton-proton burning rather
than the usual CNO cycle, PopIII stars are hotter and have a harder spectra than PopII stars.
However, both of their contributions to reionization are highly important. Recent studies sug-
gest that reionization is initially driven by metal-free PopIII stars in low mass (M < 108M⊙)
haloes, then the conditions for the formation of these objects are soon erased by the combined
action of chemical and radiative feedbacks atz < 10 (Choudhury & Ferrara 2007).

According to the bottom-up, hierarchical model of structure formation, it is now well
understood that small haloes form first, which later merge toform larger systems like galaxies.
However, calculating the contribution of galaxies to reionization is extremely complicated due
to the lack of knowledge of their intrinsic ionizing photon rate, which depends on the star
formation rate (SFR), as well as the value offesc for each galaxy. Using suitable parameter
choices of the SFR andfesc, a number of authors have shown that star forming galaxies are
capable of reionizing the universe byz ∼ 6 − 15. This includes the work done using semi-
analytic models (Fukugita & Kawasaki 1994; Haiman & Loeb 1997; Chiu & Ostriker 2000;
Choudhury & Ferrara 2005, 2006b; Mitra et al. 2011) and simulations (Gnedin & Ostriker
1997; Gnedin 2000).

QSOs are powered by accretion of gas onto a black hole (BH), the excess rotation of the
gas spiraling in towards the BH yields viscous dissipation of heat that makes the gas glow. The
seed BH is generally seemed to be the remnant of a massive PopIII explosion. They are the
significant sources of hard photons atz . 6 but they have negligible effects on the IGM at
higher redshifts (Dietrich & Hamann 2004). QSOs are more efficient than stars for reionization
as the emission spectrum is harder and the value offesc is larger for QSOs than for stars.
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1.3.3 Observational probes for reionization

We end this chapter with a brief survey of certain observations available at present and in near
future, which shape our understanding of reionization. There are both cosmological and astro-
physical constraints on reionization, while the former arefrom the CMB experiments, and the
latter are inferred using spectral data from QSOs, GRBs and LAEs.

(i) CMBR (Primary Anisotropies) constraints : According to the standard big bang model,
at redshiftz ∼ 1100, electrons and protons combine for the first time to form HI atoms. Then
the photons decouple from matter, travel freely and are observed today as the CMBR. They
carry information about the state of the universe at the decoupling epoch; small fluctuations in
density, velocity and gravitational potential lead to anisotropies in the CMB (Sachs & Wolfe
1967; Bennett et al. 1996). The angular power spectrum for the primary anisotropies are able
to probe length scales as large as the horizon size (∼ 3000 h−1 Mpc). Small-scale (∼ 1 h−1

Mpc, corresponding to multipoles of orderl ∼ 1000) fluctuations in CMB are damped by
Thomson scattering from free electrons produced at reionization. This scattering suppresses
the amplitude of the acoustic peaks bye−2τel on the scales corresponding to perturbation modes
with wavelength smaller than the Hubble radius at reionization. The low-l CMBR polarization
spectrum depends not just onτel, but also on the detailed redshift evolution of the number
density of free electrons in the IGM,xe(z). Thus, the CMBR polarization data with an improved
constraint onτel, can be used to probe theepoch of reionization(EoR). With a simple assumption
that the universe was reionized instantaneously at a redshift zre, recent WMAP team found that
τel = 0.089 ± 0.014 andzre = 10.6 ± 1.1 (Hinshaw et al. 2012). This value is consistent with
more precise measurements done by PLANCK (Ade et al. 2013b).

(ii) Astrophysical constraints on reionization: The IGM manifests itself in numerous ab-
sorption lines along the line of sight (LOS) of observed QSOs, GRBs and galaxies. These
absorption lines arise when a LOS intersects with a patch of HI that absorbs the continuum ra-
diation. This radiation is then redshifted into the Lyα (1216 Å) range. According to the amount
of absorption, different kinds of absorbers can be distinguished in the observed spectra. Lyα
forest arises from absorbers with a column density ofNHI ≤ 1016 cm−2. These absorbers lie
in shallow dark matter potential wells containing gas in various stages of infall and collapse.
The Lyman Limit systems (LLS) have a column densityNHI ≥ 1.6×1017 cm−2 and absorption
is caused by relatively cool gas associated with star forming galaxies in high density regions.
Whereas, the Damped Lyα systems (DLAs) are believed to be the highest density systems hav-
ing a column density ofNHI ≥ 2 × 1020 cm−2 (see Fig. 1.1). However, most of the spectral
methods of constraining reionization rely on the Lyα line to constrain the amount of HI in the
IGM. This is because the Lyα emission line at1216 Å, corresponding to a energy of10.6 eV
is the strongest emission signal. Furthermore, due to a large Gunn-Peterson (GP) optical depth
(Gunn & Peterson 1965a), in the presence of HI, the observed spectra shows a sharp cut-off
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blueward of the Lyα line. The effective optical depth to the Lyα absorption by a uniform inter-
galactic medium can be expressed as (Gunn & Peterson 1965a; Barkana & Loeb 2007)

τ effGP ≈ 6.45× 105xHI

(

Ωbh

0.0315

)(

Ωm

0.3

)−1/2(
1 + z

10

)3/2

(1.70)

So, even a trace amount of HI (xHI ∼ 10−4) can lead to a significant attenuation of the Lyα line.
Therefore, it is important to note that the detection of a GP trough only translates into a lower
limit of xHI.

Figure 1.1: Typical spectrum of a QSO atz = 1.34. Lyα forest with numerous narrow absorp-
tion lines is seen at wavelengths below (blueward) the Lyα emission line. There are regions
which have very high absorption - the DLAs. LLS absorbs all the photons which are capable
of ionizing hydrogen and is observed as a sharp break in this QSO spectrum. [Figure courtesy:
Charlton & Churchill (2000)]

Also the QSO spectra are often used for constraining the reionization. Fan et al. (2006)
and Fan (2012) have obtained the spectra for several QSOs atz > 6 (shown in Fig. 1.2).
One can see that, as the redshift increases, larger portionsof the spectra, blueward of the Lyα
line, are completely attenuated; increasingz makes this break shift to longer wavelengths. The
detection of Gunn-Peterson troughs indicates a rapid change (Fan et al. 2002; Pentericci et al.
2002; White et al. 2003) in the neutral content of the IGM atz ∼ 6 and this rapid change
implies that overlap, and hence the reionization epoch, completed nearz ∼ 6 (Fan et al. 2006).
This result is also in agreement with the findings of Becker etal. (2001), who detected the first
evidence of a complete GP trough in a QSO atz = 6.28. Using these spectra, many groups
(Gallerani et al. 2006; Becker et al. 2007) have tried to check if reionization was over byz ∼ 6.
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Using the distribution of the dark gaps (regions showing no flux) and peaks (regions showing
transmission) in the QSO spectra, Gallerani et al. (2008) have found that the data favors a model
where reionization completes atz ∼ 7 and robustly constrainxHI < 0.36 at z = 6.3. Similar
conclusions have been made by Dayal et al. (2008) using Lyα emitter (LAE) data.

Figure 1.2: Dispersion spectra of all published quasars atz > 6 as of 2012 June (Fan 2012).
Some of the QSO spectra show no transmitted flux shortward of the Lyα wavelength at that
redshift. These are the so-called Gunn-Peterson trough which indicates a non-negligible HI
fraction in the IGM. [Figure courtesy: Fan (2012)]

Spectrum of GRB can also be used to constrain reionization using the same principles
mentioned above. Using the spectrum of GRB 050904 atz = 6.3, Totani et al. (2006) have
found the upper limits ofxHI < 0.17 and0.60 at 68% and 95% confidence levels.

An alternative and perhaps the most promising prospect of observing the epoch of reion-
ization is through the detection of the21 cm signature from neutral hydrogen in the IGM before
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and during the reionization era (Carilli et al. 2002; Furlanetto et al. 2006; Pritchard & Loeb
2012; Mack & Wyithe 2012). The ground state of hydrogen exhibits a hyperfine transition in-
volving the spins of the proton and the electron. The tripletstate (with parallel spins) has a
slightly higher energy than the singlet state (with anti-parallel) spins. This spin-flip transition
from the triplet to singlet state corresponds to a rest framefrequency of1420 MHz or a rest
wavelength of21 cm. This line, when redshifted, can be observed in radio frequencies and is
often used to detect neutral hydrogen in the local universe.We will use this method for studying
the post-reionization neutral hydrogen distribution later in this thesis (see Chapter 6 for details).
However, obtaining the cosmological signal from this experiment is very difficult and hence
challenging, because of the fact that it is expected to be a small contribution buried deep in the
emission from other astrophysical sources (foregrounds) and in the system noise. But once such
difficulties are overcome, this probe will be the strongest probe of not only reionization, but also
the matter distribution at very small scales during the darkages (Pritchard & Loeb 2010).

So, from the above discussion, it is clear that, one of the major challenges for modelling
reionization is to match the model prediction with most of the available data sets which are ac-
cumulated by the measurements of QSO absorption line spectra (Fan et al. 2006), GRB spectra
(Totani et al. 2006) and the CMB data (Hinshaw et al. 2012; Adeet al. 2013b). A major portion
of this thesis is involved in modelling reionization by taking into account all these data sets.

1.3.4 Modelling the IGM and reionization

After reviewing our current understanding of reionizationand the observations that have re-
vealed it, we can now proceed to develop a basic theoretical framework required for modelling
reionization of the IGM. In this section we will try to avoid the details of the mathematics and
keep the description in a quite simple level. For more detailed information, one can look into
some of beautiful reviews by Barkana & Loeb (2001); Loeb & Barkana (2001); Choudhury &
Ferrara (2006a); Choudhury (2009) and references therein.For simplicity, we shall assume that
the IGM consists only of hydrogen (neglect the presence of helium).

In the standard picture, each sources of reionization (stars or QSOs) generates the UV
photons (with energies> 13.6 eV) and ionizes its surrounding region. These regions are gradu-
ally expand and overlap. The basic aim for modelling reionization is to follow the evolution of
these regions. One can compute the evolution of such expanding ionized region for individual
ionizing sources until the reionization process is complete. However, evolution of these indi-
vidual ionized bubbles will depend on the nature of their sources. So, another way of studying
reionization is to take into account the global distribution of the sources and ionized volumes
and statistically compute the globally averaged properties and fluctuations. We shall study this
statistical approach below.

Let us start with the most useful statistical quantity whichis studied in reionization, the
volume filling factor of ionized regionsQHII. This is the fraction of volume that is ionized and
reionization is said to be complete whenQHII = 1. The evolution of this quantity is governed
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by the equation (Shapiro & Giroux 1987; Madau et al. 1999; Choudhury & Ferrara 2006a;
Choudhury 2009)

dQHII

dt
=
ṅph

nHI
− QHII

trec
(1.71)

whereṅph is average number of ionizing photons produced per unit volume per unit time and
nHI is the mean comoving density of neutral hydrogen. The quantity trec is the recombination
timescale of neutral hydrogen and is given by

t−1
rec = CαR(T )nHI(1 + z)3 (1.72)

In the above relationαR(T ) is the recombination rate coefficient, which can depend on the
temperature, however that dependence is often ignored while studying the volume filling factor.
C is called theclumping factorwhich takes into account the fact that the recombination rate in
an inhomogeneous (clumpy) IGM is higher than a medium of uniform density and it is defined
as

C ≡ 〈nHII ne〉
〈nHII〉〈ne〉

=
〈n2

H〉
〈nH〉2

(1.73)

where the angle brackets denote space average.ne represents the mean electron density. The
last equality in the above relation holds when the IGM has hydrogen alone and is highly ionized,
i.e. ne = nHII ≈ nH.

Note that, equation (1.71) implicitly assumes that the sources of ionizing photons are
uniformly distributed over the volume we concern. This equation can be solved once we have a
model for calculating the evolution of the photon production rateṅph andC. In this description,
reionization is said to be complete whenQHII reaches unity.

However, in this simple description, we did not take take into account the inhomogeneities
in the IGM appropriately (except forC). One should have to account for the density distribution
of the IGM. The recombination rate (which is∝ n2

H) is higher in high-density regions where
the gas becomes neutral very quickly. Thus, the high-density regions will remain neutral for a
longer time, whereas the regions of lower densities will be ionized first. This is also in agree-
ment with the observations where we know that there exists such regions of high density which
remain neutral even at the post-reionization phase; these regions are being gradually ionized
(Miralda-Escudé et al. 2000). Of course, there should be a dependence on how far the high
density region is from an ionizing source, but such complexities can only be dealt in a full
numerical simulation. So, in this picture: (i) during the post-overlap stage all the low-density
regions (with overdensities, say,∆ < ∆HII) will be ionized, while there will be some high
density peaks which will still remain neutral. (ii) At the pre-overlap stage, a volume fraction
1−QHII of the universe is completely neutral (irrespective of the density), while the remaining
QHII fraction of the volume is occupied by the ionized regions. However, within this ionized
volume, the high density regions (with∆ > ∆HII) will still be neutral. Once reionization is
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complete andQHII becomes unity, all regions with∆ < ∆HII are ionized and the rest are neu-
tral. The high-density neutral regions manifest themselves as the LLS (which we have discussed
already in the previous section) in the QSO absorption spectra.

To write the equations incorporating the above picture, oneneeds to know the probability
distribution functionP (∆)d∆ for the overdensities. Then only a mass fraction

FM(∆HII) =

∫ ∆HII

0

d∆ ∆P (∆) (1.74)

needs to be ionized, while the remaining high density regions will be completely neutral as their
recombination rates are high. Then the generalization of equation (1.71), appropriate for this
description will be (Miralda-Escudé et al. 2000; Wyithe & Loeb 2003)

d[QHIIFM(∆HII)]

dt
=
ṅph(t)

nHI

−QHIIαR(T )nHIR(∆HII)(1 + z)3 (1.75)

where the factorR(∆HII) is the analogous of the clumping factor, and is given by

R(∆HII) =

∫ ∆HII

0

d∆ ∆2P (∆) (1.76)

In order to solve the equation (1.75), we assume that∆HII does not evolve significantly with
time in the pre-overlap stage, it is equal to a critical value∆c. This critical density is usually
determined from the the mean separation of the ionizing sources. Some people (Chiu et al.
2003; Choudhury & Ferrara 2005) suggest that∆c should be similar to the typical overdensities
near the boundaries of the collapsed haloes, which is typically ∼ 50− 60.

Once∆c is fixed and we have some functional form for the IGM density distribution
P (∆), one can follow the evolution ofQHII taking into account all the three stages of reion-
ization and calculate the clumping factor and the effectiverecombination rate self-consistently
without introducing any extra parameter. As we have outlined our basic formalism here, we can
now go forward and discuss other details regarding the modelling of reionization.

The number of ionizing photonṡnph(t) depends on the assumptions made regarding the
sources. If we assume that hydrogen reionization is primarily driven by stellar sources, then this
quantity should be determined by the star formation rate (SFR) density (i.e. SFR per comoving
volume)ρ̇∗(t), which is given by (Choudhury 2009)

ρ̇∗(t) =
1

a3(t)

ρb
ρm

∫ ∞

Mmin(t)

dM ′ ǫ∗ M
′ ∂

2n(M ′, t)

∂M ′∂t
(1.77)

where,Mmin(t) is the lower mass cut-off at a given epoch and is decided by thecooling criteria
and different feedback processes (as discussed earlier in Section 1.3.1). For neutral regions,
we assume that this quantity is determined by the atomic cooling of gas within haloes (neglect
cooling via molecular hydrogen). Within ionized regions, photo-heating of the gas can result
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in a further suppression of star formation in low-mass haloes. We compute such (radiative)
feedback self-consistently from the evolution of the thermal properties of the IGM.ǫ∗ is the
fraction of baryonic mass,(ρb/ρm)M , which has been converted into stars. One should keep in
mind that, many details of the star formation process could have been encoded within this single
parameterǫ∗. This should, in principle, be a function of both halo massM and timet. However,
the dependencies are not well understood, that’s why it is usually taken to be a constant. The
quantity∂n(M, t)/∂M is basically the number density of collapsed objects per unit comoving
volume within a mass range (M , M + dM) at an epocht and it is already given in equation
(1.57).

One can then write the SFR in terms of the fraction of collapsed mass in haloes more
massive thanMmin(t) [see equation (1.55)]

fcoll(t) =
1

ρm

∫ ∞

Mmin(t)

dM ′ M ′ ∂n(M
′, t)

∂M ′

= erfc

[

δc√
2 D(t) σ(Mmin)

]

(1.78)

as

ρ̇∗(t) = ǫ∗
ρb
a3(t)

dfcoll(t)

dt
(1.79)

Given the SFR, we can then calculate the rate of ionizing photons in the IGM per unit
volume:

ṅph(t) = Nion nb
dfcoll(t)

dt
(1.80)

nb is the total baryonic number density in the IGM. If we consider only hydrogen and neglect
the presence of helium, thennb = nH. The quantityNion is the number of photons entering the
IGM per baryon included into stars (Wyithe & Loeb 2007a), andis defined as

Nion = ǫ∗ fesc Nγ (1.81)

wherefesc is the escape fraction of photons from the halo andNγ is the specific number of
photons emitted per baryon in stars, which depends on the stellar IMF and the corresponding
stellar spectrum.

So, using the physics described above, we can now construct asemi-analytical model for
studying the thermal and ionization history of the IGM, and suitable choices of corresponding
model parameters, we can compare our model predictions withvarious observations related to
reionization. Fig. 1.3 shows an example of one such model developed by Choudhury & Ferrara
(2005, 2006b).



1.3. Galaxy formation and cosmic reionization 35

Although semi-analytical modelling of IGM can help us to acquire a good understanding
of the underlying physics of cosmic reionization, they can take into account the physical pro-
cesses only in some approximate sense. A detailed and complete description of reionization
would require locating the ionizing sources, resolving theinhomogeneities in the IGM, follow-
ing the scattering processes through a detailed description of radiative transfer. In that case one
has to rely on numerical simulations (Abel et al. 1999; Gnedin et al. 2000; Gnedin 2000; Ciardi
et al. 2001; Razoumov et al. 2002; Maselli et al. 2003; Boltonet al. 2004; Iliev et al. 2006).
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Figure 1.3: Comparison of analytical model (Choudhury & Ferrara 2005, 2006b) predictions
with observations for the best-fit model. The different panels indicate: (a) The volume-averaged
neutral hydrogen fractionxHI, with observational lower limit from quasar absorption lines at
z = 6 and upper limit from Lyα emitters atz = 6.5 (shown with arrows). In addition, the
ionized fractionxe is shown by the dashed line. (b) SFRρ̇∗ for different stellar populations.
(c) The number of source counts above a given redshift, with the observational upper limit
from NICMOS HUDF shown by the arrow. The contribution to the source count is zero at low
redshifts because of the J-dropout selection criterion. (d) Electron scattering optical depth, with
observational constraint from WMAP 3-year data release. (e) Lyα effective optical depth. (f)
Lyβ effective optical depth. (g) Evolution of Lyman-limit systems. (h) Photoionization rates
for hydrogen, with estimates from numerical simulations (shown by points with error-bars). (i)
Temperature of the mean density IGM. [Figure courtesy: Choudhury (2009)]



CHAPTER 2

MODEL-INDEPENDENT CONSTRAINTS
ON REIONIZATION

In the previous chapter, we have developed the theoretical tools to understand the basic physics
of structure formation and cosmological reionization. Now, in this chapter, we will apply those
tools to study the modelling of reionization in detail. In particular, we shall be concerned about
finding the constraints on reionization in a model-independent manner and comparing those
with the various observations mentioned in Section 1.3.3.

In recent years, studies in reionization have been boosted by the availability of a wide
range of data sets and the expectation that the volume of datawould increase rapidly over
the next few years (for reviews, see Furlanetto et al. 2006; Fan et al. 2006). Theoretically,
reionization is modelled either semi-analytically or by numerical simulations. Unfortunately,
the physical processes relevant to reionization are so complex that neither of the two approaches
can capture the overall picture entirely. The simulations are indispensable for understanding
detailed spatial distribution of ionized regions and topology of reionization. However, if one is
interested in the evolution of globally-averaged quantities, then semi-analytical models prove
to be very useful in providing insights. The main reason for this is that these models can probe
a wide range of parameter space which can be quite large depending on our ignorance of the
different processes.

The major uncertainty in modelling reionization is to modelthe star-formation history and
transfer of radiation from the galaxies to the intergalactic medium (IGM) which is usually pa-
rameterized throughNion, the number of photons entering the IGM per baryon in collapsed ob-
jects [see equation (1.81)]. This parameter, in principle,has a dependence onz which can arise
from evolution of star-forming efficiency, fraction of photons escaping from the host halo and
chemical and radiative feedback processes. Note that this parameter remains uncertain even in
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numerical simulations, hence the semi-analytical models can become handy in studying a wide
range of parameter values and the corresponding agreement with data sets. In analytical studies,
Nion(z) is either taken to be a piecewise constant function (Wyithe &Loeb 2003; Choudhury &
Ferrara 2005) or parameterized using some known functions (Chiu et al. 2003; Pritchard et al.
2010) or modelled using a physically-motivated prescription (Choudhury & Ferrara 2006b). In
particular, a model involving metal-free and normal stars with some prescription for radiative
and chemical feedback can match a wide range of observations(Choudhury & Ferrara 2006b;
Gallerani et al. 2006) and possibly make prediction regarding search for reionization sources by
future experiments (Choudhury & Ferrara 2007).

However, the fact remains that many of the physical processes involved in modellingNion

are still uncertain. Given this, it is worthwhile doing a detailed probe of the parameter space
and determine the range of reionization histories that are allowed by the data. In other words,
rather than working out the uncertain physics, one can ask the question as to what are the forms
of Nion(z) implied by the data itself. It is expected that in near future, with more data sets
becoming available, the allowed range in the forms ofNion(z) would be severely constrained,
thus telling us exactly how reionization occurred. Now, it is obvious that the constraints on
Nion(z) will not be same for all redshifts, points where there are more and better data available,
the constraint would be more tight. Similarly, since we dealwith a heterogeneous set of data,
it is expected that the constraints would depend on the nature of data used. It is thus important
to know which aspects of reionization history can be constrained by what kind of data sets. A
method which is ideally suited to tackle this problem is to use the principal component analysis
(PCA); this is a technique to compute the most meaningful basis to re-express the unknown
parameter set and the hope is that this new basis will reveal hidden detailed statistical structure.

Here, we make a preliminary attempt to constrainNion(z) using PCA and hence estimate
the uncertainties in the reionization history. The main objective of the work would be to find
out the widest possible range in reionization histories allowed by the different data sets.

2.1 Semi-analytical modelling of reionization

2.1.1 Features of the model

The semi-analytical model used in this work is based on Choudhury & Ferrara (2005) and
Choudhury & Ferrara (2006b). Let us first summarize the main features of the model along
with the modifications made in this work:

• The model accounts for IGM inhomogeneities by adopting a lognormal distribution ac-
cording to the method outlined in Miralda-Escudé et al. (2000); reionization is said to be
complete once all the low-density regions (say, with overdensities∆ < ∆crit ∼ 60) are
ionized. The mean free path of photons is thus determined essentially by the distribution
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of high density regions:

λmfp(z) =
λ0

[1− FV (z)]2/3
(2.1)

whereFV is the volume fraction of ionized regions andλ0 is a normalization parame-
ter. In our earlier works, the value of this parameter was fixed by comparing with low
redshift observations while in this work, we treat it as a free parameter. We follow the
ionization and thermal histories of neutral, HII and HeIII regions simultaneously and
self-consistently, treating the IGM as a multi-phase medium.

• The model assumes that reionization is driven by stellar sources. The stellar sources can
further be divided into two classes, namely, (i) metal-free(i.e. PopIII) stars having a
Salpeter IMF in the mass range1 − 100M⊙: they dominate the photoionization rate at
high redshifts; (ii) PopII stars with sub-solar metallicities also having a Salpeter IMF in
the mass range1− 100M⊙.

• Reionization by UV sources is accompanied by photo-heatingof the gas, which can re-
sult in a suppression of star formation in low-mass haloes. We compute such (radiative)
feedback self-consistently from the evolution of the thermal properties of the IGM.

• Furthermore thechemical feedbackincluding PopIII→PopII transition is implemented
using merger-tree based genetic approach (Schneider et al.2006). Under this approach,
it is assumed that if a given star-forming halo has a progenitor which formed PopIII
stars, then the halo under consideration is enriched and cannot form PopIII stars. In this
work, we introduce an analytical formula for the transitionfrom PopIII to PopII phase
using the conditional probability of Press-Schechter massfunction (Lacey & Cole 1993).
The probability that a halo of massM at z never had a progenitor in the mass range
[Mmin(z),M +Mres] is given by

fIII(M, z) =
2

π
tan−1

[

σ(M +Mres)− σ(M)

σ(Mmin(z))− σ(M +Mres)

]

, (2.2)

whereMmin is the minimum mass of haloes which are able to form stars andMres rep-
resents the minimum increase in mass (either by accretion orby merger) of an object so
that it may be identified as a new halo. The fraction of collapsed haloes which are able to
form PopII and PopIII stars at redshiftz are given by the following relations:

fcoll,II(z) =
1

ρ̄m

∫ ∞

Mmin(z)

dM [1− fIII(M, z)]M
∂n(M, z)

∂M
,

fcoll,III(z) =
1

ρ̄m

∫ ∞

Mmin(z)

dM fIII(M, z)M
∂n(M, z)

∂M
. (2.3)

with fcoll,II(z) + fcoll,III(z) = fcoll(z). The quantityρ̄m is the comoving density of dark
matter and∂n/∂M is number density of collapsed objects per unit comoving volume per
unit mass range (Press & Schechter 1974).
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• Given the collapsed fraction, this model calculates the production rate of ionizing photons
in the IGM as

ṅph(z) = nb

[

Nion,II
dfcoll,II
dt

+Nion,III
dfcoll,III

dt

]

(2.4)

wherenb is the total baryonic number density in the IGM andNion,II(Nion,III) is the num-
ber of photons from PopII (PopIII) stars entering the IGM perbaryon in collapsed objects.
The parameterNion can actually be written as a combination of various other parameters:

Nion ≡ ǫ∗fescmp

∫ ∞

νHI

dν

[

dNν

dM∗

]

≡ ǫmp

∫ ∞

νHI

dν

[

dNν

dM∗

]

, (2.5)

whereǫ∗ denotes the star-forming efficiency (fraction of baryons within collapsed haloes
going into stars),fesc is the fraction of photons escaping into the IGM,[dNν/dM∗] gives
the number of photons emitted per frequency range per unit mass of stars (which depends
on the stellar IMF and the corresponding stellar spectrum) and ǫ ≡ ǫ∗fesc. For PopII
stars with sub-solar metallicities having a Salpeter IMF inthe mass range1 − 100M⊙,
we getNion,II ≈ 3200ǫII, while for PopIII stars having a Salpeter IMF in the mass range
1− 100M⊙, we getNion,III ≈ 35000ǫIII.

In this Section, we takeǫII, ǫIII (or, equivalentlyNion,II, Nion,III) to be independent ofz
andM , which implies that the star-forming efficiencies and the escape fractions do not
depend on the mass of the star-forming halo and also do not evolve. However, note that
the effectiveNion (which is the appropriately weighted average ofNion,II andNion,III)
evolves withz

Nion(z) =
Nion,II

dfcoll,II
dt

+Nion,III
dfcoll,III

dt
dfcoll,II

dt
+

dfcoll,III
dt

(2.6)

At high redshifts, we expectdfcoll,II/dt → 0, henceNion(z) → Nion,III, and similarly at
low redshifts where chemical enrichment is widespread, we haveNion(z) → Nion,II.

• We also include the contribution of quasars based on their observed luminosity function
at z < 6 (Hopkins et al. 2007); we assume that they have negligible effects on IGM at
higher redshifts. They are significant sources of photons atz . 4 and are particularly
relevant for studying helium reionization.

2.1.2 Data sets and free parameters

Usually, the model is constrained by comparing with a variety of observational data, namely,
(i) redshift evolution of Lyman-limit absorption systems (LLS), (ii) IGM Ly α and Lyβ optical
depths, (iii) electron scattering optical depth, (iv) temperature of the mean intergalactic gas, and
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(v) cosmic star formation history (see Fig. 1.3). However, most of the constraints on the model
come from a subset of the above data sets. In this work, we would like to carry out a detailed
likelihood analysis of the parameters. Hence to keep the analysis simple, the likelihood analysis
is done using only three particular data sets which are discussed as follows (Mitra et al. 2011,
2012):

(i) We use estimates for the photoionization ratesΓPI obtained using Lyα forest Gunn-
Peterson optical depth observations and a large set of hydrodynamical simulations (Bolton &
Haehnelt 2007). The error-bars in these data points take into account the uncertainties in the
thermal state of the IGM in addition to the observational errors in the Lyα optical depth. The
data points have a mild dependence on the cosmological parameters which has been taken into
account in this work. We also find that although the error-bars onΓPI are highly asymmetric,
those onlog(ΓPI) are relatively symmetric; hence we use values oflog(ΓPI) and the corre-
sponding errors in our likelihood analysis. The photoionization rate can be obtained in our
model fromṅph(z) using the relation

ΓPI(z) = (1 + z)3
∫ ∞

νHI

dν λmfp(z; ν)ṅph(z; ν)σH(ν) (2.7)

whereν the frequency of radiation,νHI is the threshold frequency for photoionization of hydro-
gen andσH(ν) is the photoionization cross section of hydrogen.

(ii) The second set of observations we have used is the CMBR data sets. We should men-
tion here that, instead of CMB data, one can use the single WMAP7 data of electron scattering
optical depthτel (Mitra et al. 2011). The reported value of this quantity depends on the back-
ground cosmological model used. The quantityτel can be obtained from our model given the
global reionization history, in particular the comoving density of free electronsne(z):

τel(z) = σT c

∫ z[t]

0

dt ne (1 + z)3 (2.8)

whereσT is the Thomson scattering cross section.

However, theτel constraint is treated as a single data point which should be thought as a
simplification because CMB polarization observations are,in principle, sensitive to the shape of
the reionization history (Burigana et al. 2008). We know that, the amplitude of fluctuations in
the large-scale (low-l) E-mode component of CMB polarization provides the best constraint on
τel. Using the data from seven year WMAP and the assumption of instantaneous reionization,
Larson et al. (2011) findτel = 0.088±0.015. However, recent theoretical and numerical studies
suggest that reionization is a fairly complex process. In that case, the low-l E-mode spectrum
depends not just onτel but also on the detailed redshift evolution of the number density of
free electrons in the IGM,xe(z). For fixed values ofτel and all other relevant cosmological
parameters, differences inxe(z) can affect the shape of the large-scaleE-mode angular power
spectrum up to multipolesl ≃ 40−50. Because of this dependence, measurements of the low-l
CEE

l should place at least weak constraints on the overall reionization history in addition to the
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constraint on the total optical depth. Now, in our model, thechange in the parameterNion(z)
directly corresponds to the change inxe(z) i.e. in other words, changes inNion can affect the
shape of low-l CEE

l . So, incorporating the data sets for large-scale EE polarization signal in
our model can provide important information about the evolution ofNion at z > 6 beyond the
information aboutτel. Our hope is this may be most useful for distinguishing the models of
reionization with different ionization histories but sameoptical depth. Keeping this in mind,
it would be more prudent to work with the actual data related to the angular power spectraCl

and obtain constraints on reionization parameters; the constraint onτel will be determined a
posteriori.

The moment we include theCl’s (TT+TE+EE) in our analysis, we realize that parameters
related to reionization may have strong degeneracies with (some of) the cosmological parame-
ters and hence constraints on reionization without varyingcosmological parameters would be
misleading. On the other hand, including all the cosmological parameters in the analysis would
increase the number of free parameters to a large number. Usually, it is found thatτel is strongly
degenerate with the normalization of the matter power spectrumσ8 and also with the slopens

(Spergel et al. 2003). Hence, we carry out our analysis by varying only these two parameters
(in addition to the parameters related to reionization model) and keeping all the other cosmo-
logical parameters fixed to their mean value (for details, see Mitra et al. 2012). However, we
should keep in mind that the uncertainties in reionization history would possibly be slightly
underestimated as the parameters related to reionization are slightly degenerate with the other
cosmological parameters.

(iii) Finally, we use the redshift distribution of LLSdNLL/dz over a wide redshift range
0.36 < z < 6 (Songaila & Cowie 2010). The data points are obtained using alarge sample
of QSO spectra which results in extremely small statisticalerrors. However, there are various
systematic effects arising from effects like the incidenceof proximate LLS and uncertainties in
the continuum. Usually, these effects contribute to about 10–20% uncertainty in the data points.
The quantitydNLL/dz can be calculated in our model from the mean free path:

dNLL

dz
=

c√
π λmfp(z)H(z)(1 + z)

(2.9)

Note that inclusion of the Lyman-limit systems in the analysis is crucial for constraining the
parameterλ0, the normalization which determines the mean free path of photons.

The free parameters for this model would beǫII, ǫIII (or, equivalentlyNion,II, Nion,III), λ0,
ns andσ8. We shall refer this model as the model with chemical feedback.

We then perform the likelihood calculations using these three data sets. The likelihood
function used in our calculations is given by

L ∝ exp(−L) (2.10)
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whereL is the negative of the log-likelihood and estimated using the relation

L =
1

2

Nobs
∑

α=1

[J obs
α − J th

α

σα

]2

+ L′ (2.11)

whereJα represents the set ofNobs observational data points related to photoionization rateand
distribution of Lyman-limit systems, i.e.,Jα = {log(ΓPI), dNLL/dz}, σα are the corresponding
observational error-bars andL′ is negative of WMAP7 (or PLANCK) log-likelihood function
for CTT

l , CTE
l andCEE

l up to l = 2000. We constrain the free parameters by maximizing the
likelihood function with a prior that reionization should be completed byz = 5.8, otherwise it
will not match Lyα and Lyβ forest transmitted flux data.

In this work, we calculate likelihoods using the code based on the publicly available
COSMOMC1 (Lewis & Bridle 2002) code. Besides this, throughout we workin a flat cold
dark matter model with a cosmological constant (ΛCDM) cosmology with the cosmological
parameters given by the WMAP7 (based on RECFAST 1.5 (Seager et al. 1999, 2000; Wong
et al. 2008) and version 4.1 of the WMAP likelihood) best-fit values:Ωm = ΩDM +Ωb = 0.27,
ΩΛ = 1− Ωm, Ωbh

2 = 0.02249, h = 0.704 anddns/d ln k = 0 (Larson et al. 2011). Note that,
here in all cases,τel is a derived parameter and the error on obtaining this quantity is slightly
underestimated because of neglecting the degeneracies betweenτel and other cosmological pa-
rameters.

2.1.3 Reionization constraints

The results of our likelihood analysis using the reionization model described above are sum-
marized in Table 2.1. The evolution of various quantities for models which are allowed within
95% confidence limit is shown in Fig. 2.1.

The top-left panel of the figure shows the evolution of the effectiveNion as given by
equation (2.6). One can see that the quantity attains a constant value≈ 10 at z < 6 which
is a consequence of the fact that the photon emissivity at those epochs are purely determined
by PopII stars. However at higher redshifts, the value ofNion increases withz because of the
presence of PopIII stars. It is clear that the data cannot be fitted with PopII stars with constant
Nion,II alone, one requires a rise inNion at higher redshifts. For the kind of chemical feedback
employed in the model, the rise is rather smooth and gradual.

The mean values of parameters quoted in Table 2.1 are similarto the best-fit model de-
scribed in Choudhury & Ferrara (2006b) and hence the corresponding reionization history is
similar to those described in the same paper. This can be readily verified from Fig. 2.1 where
we see that reionization starts aroundz ≈ 15 driven by PopIII stars, and it is 90 per cent com-
plete byz ≈ 7.3. After a rapid initial phase, the growth of the volume filled by ionized regions
slows down atz . 10 due to the combined action of chemical and radiative feedback, making

1http://cosmologist.info/cosmomc/
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Figure 2.1: The marginalized posteriori distribution of various quantities related to reionization
history for a model with chemical feedback (Choudhury & Ferrara 2006). The solid lines cor-
respond to the model described by mean values of the parameters while the shaded regions cor-
respond to 2-σ limits. The points with error-bars denote the observational data points.Top-left:
the evolution of the effectiveNion(z); Top-middle: the hydrogen photoionization rateΓPI(z)
along with the constraints from Bolton & Haehnelt (2007);Top-right: the LLS distribution
dNLL/dz with data points from Songaila & Cowie (2010);Bottom-left:the volume filling fac-
tor of HII regionsQHII(z); Bottom-middle:the global neutral hydrogen fractionxHI(z) with
observational limits from QSO absorption lines (Fan et al. 2006; filled square), Lyα emitter
luminosity function (Kashikawa et al. 2006; open triangle)and GRB spectrum analysis (Totani
et al 2006; open square). Also shown the constraints using dark gap statistics on QSO spectra
(Gallerani et al 2008a; open circles) and GRB spectra (Gallerani et al. 2008b; filled circle);
Bottom-right: (a) TT, (b) TE and (c) EE power spectra with the data points from WMAP7
(Larson et al. 2010).



2.2. Principal component analysis 45

Parameters Mean value 95% confidence limits
ǫII 0.003 [0.002, 0.006]
ǫIII 0.012 [0.001, 0.031]
λ0 3.278 [1.512, 5.443]
ns 0.969 [0.956, 0.983]
σ8 0.812 [0.795, 0.834]
τel 0.084 [0.066, 0.107]
z(QHII = 0.5) 9.467 [8.050, 11.120]
z(QHII = 0.99) 6.820 [5.800, 8.017]

Table 2.1: The marginalized posterior probabilities with 95% C.L. errors of all free parameters
(top five parameters) and derived parameters (from the sixthparameter down) for the reioniza-
tion model with PopII and PopIII stars.

reionization a considerably extended process completing only atz ≈ 6. Our likelihood analysis
shows that reionization is 50 (99) % complete between redshifts z =8.1 – 11.1 (5.8 – 8.0) at
95% confidence level. Hence, under the assumptions made in the model, we find that comple-
tion of reionization cannot occur earlier thanz ≈ 8, essentially ruling out models of very early
reionization. The reason for this is that the number of photons in the IGM atz = 6 is very
low as implied by the Lyα forest data. In order to take the data point into account, themodels
typically cannot have too high a emissivity atz ∼ 6. On the other hand, the constraints onτel
(or equivalently the CMB data) imply that reionization mustbe initiated early enough. Thus
the IGM has to go through a gradual reionization phase. As we discussed above, the gradual
reionization is maintained by a combined action of radiative and chemical feedback effects.

2.2 Principal component analysis

Principal component analysis (PCA) has been known as one of the most valuable results from
applied linear algebra. PCA is used abundantly in all forms of analysis, because it is a simple,
non-parametric method of extracting relevant informationfrom confusing data sets. With mini-
mal additional effort PCA provides a road map for how to reduce a complex data set to a lower
dimension to reveal the sometimes hidden, simplified structure that often underlies it. The main
aim of principal component analysis is to compute the most meaningful basis to re-express a
noisy data set. The hope is that this new basis will filter out the noise and reveal hidden struc-
ture. So, PCA is basically a variable reduction procedure. It is useful when we have obtained
data on a number of variables (possibly a large number of variables), and believe that there is
some redundancy in those variables. Because of this redundancy, we believe that it should be
possible to reduce the observed variables into a smaller number of principal components (arti-
ficial variables) that will account for most of the variance in the observed variables. The main
advantage of this method is that the resulting components will display varying degrees of corre-
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lation with the observed variables, but are completely uncorrelated with one another. Because it
is a variable reduction procedure, principal component analysis is very similar in many respects
to exploratoryfactor analysis. However, there are significant conceptual differences between
these two procedures (Hatcher 1994). In this section, we shall outline the principal component
method and introduce the notation that we will use throughout this chapter.

2.2.1 Motivation

It is most likely that the star-forming efficiencies and escape fractions and henceNion are func-
tions of halo mass and redshift; however since the dependencies are not well understood, they
were taken to be constant for each considered stellar population in the previous Section. The
question one can ask is that how would the constraints on reionization histories of the previous
Section change when the evolution ofNion is taken into account. Ideally one would like to do
a rigorous likelihood analysis withNion varying withz and see the possible ranges of reioniza-
tion histories consistent with available data. One possible approach could be to parameterize
Nion(z) using some (known) function and constrain the parameters ofthe function (Pritchard
et al. 2010). However, it is possible that the reionization constraints thus obtained could depend
on the nature of the function chosen. In addition, it is not clear as to how many parameters
should be used to parameterize the function.

An alternative approach is to assumeNion(z) to be completely arbitrary and decompose it
into principal components. These principal components essentially filters out components of the
model which are most sensitive to the data. Obviously, thesecomponents are the ones which can
be constrained most accurately, while the others cannot be done so. This principal component
analysis (PCA), thus, should give an idea as to which aspectsof Nion can be constrained with
available data. This implies that one should get a clear ideaabout the optimum number of
parameters required to modelNion to fit the data most accurately.

In order to carry out such analysis, we modify the model described in the previous Section
in following respects:

• We takeNion to be a function ofz. Unlike in the previous Section, we do not explicitly
assume the presence of two population of stars but rather we include only one stellar
population; any change in the characteristics of these stars over time would be accounted
for in the evolution ofNion.

• Clearly, the chemical feedback prescription has to abandoned in this model, as there are
no two different populations of stars anymore. The chemicalfeedback is rather taken into
account indirectly by the evolution ofNion. However, we retain radiative feedback in the
model given its weak dependence on the specific stellar population properties.

In recent years there has been a wide use of this method in cosmological data analysis.
The first set of works were mostly related to CMB data where, e.g., Efstathiou & Bond (1999)
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and Efstathiou (2002) used principal component analysis ofCMB anisotropy measurements to
investigate degeneracies among cosmological parameters.Kadota et al. (2005) applied PCA to
study how accurately CMB observables can constrain inflation potential in a model-independent
manner. Leach (2006) used PCA techniques for measuring departures from scale-invariance in
the primordial power spectrum of density perturbations using cosmic microwave background
(CMB) Cl data. Mortonson & Hu (2008a) developed a model-independentmethod to study the
effects of reionization on the large-scale E-mode polarization for any reionization history with
the help of principal component analysis followed by the earlier work by Hu & Holder (2003).
In the context of weak lensing surveys, Munshi & Kilbinger (2006) studied the degeneracies be-
tween cosmological parameters and measurement errors fromcosmic shear surveys using PCA.
The PCA has also been employed as an effective tool in the context of type Ia supernova obser-
vations to constrain the equation of state of dark energy (Huterer & Starkman 2003; Huterer &
Cooray 2005; Crittenden et al. 2009; Clarkson & Zunckel 2010).

2.2.2 Brief theory of PCA

Consider a set ofnobs observational data points labeled byGα, α = 1, 2, . . . , nobs. Recall thatGα

can represent combinations of different data sets, e.g., inour case photoionization rateΓPI, the
redshift distribution of Lyman-limit systemsdNLL/dz and the large-scale E-mode polarization
angular power spectrumCEE

l (l ≤ 23).

Now, let us assume that our model contains an unknown functionNion(z), which we wish
to constrain through observations. We can divide our entireredshift interval[zmin, zmax] into
(equal) bins of width∆z and representNion(z) by a set ofnbin discrete free parameters

Nion(zi) ≡ Ni; i = 1, 2, ..., nbin (2.12)

where

zi = zmin + (i− 1)∆z (2.13)

and the bin width is given by

∆z =
zmax − zmin

nbin − 1
. (2.14)

In other words, we have modelled reionization using the value ofNion in each redshift bin. We
can also include other free parameters apart fromNion(zi) in the analysis, like the normalization
of the mean free pathλ0, cosmological parameters etc. We will address the inclusion of other
parameters later in this Section.

The next step is to assume a fiducial model forNion(zi), which we denote byNfid
ion(zi).

The fiducial model should be chosen such that it is close to the“true” model. The departure
from the fiducial model is denoted by

δNion(zi) = Nion(zi)−Nfid
ion(zi) ≡ δNi. (2.15)
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We can then construct thenbin × nbin Fisher matrix

Fij =

nobs
∑

α=1

1

σ2
α

∂Gth
α

∂Ni

∂Gth
α

∂Nj

, (2.16)

whereGth
α is theoretical value ofGα modelled using theNi andσα is the observational error on

Gα. The derivatives in the above relation are evaluated at the fiducial modelNi = Nfid
i .2

Once the Fisher matrix is constructed, we can determine its eigenvalues and correspond-
ing eigenvectors. The principal value decomposition is then given by the eigenvalue equation

nbin
∑

j=1

FijSjk = λkSik (2.17)

whereλk are the eigenvalues and the eigenfunctions corresponding to λk are thek-th column
of the matrixSik, these are the principal components ofNi. They can be thought of a function
of z i.e.,Sik = Sk(zi).

The eigenvaluesλk are usually ordered such thatλ1 ≥ λ2 ≥ . . . ≥ λnbin
, i.e.,λ1 corre-

sponds to the largest eigenvalue whileλnbin the smallest. The eigenfunctions are both orthonor-
mal and complete and hence we can expand any function ofz as linear combinations of them.
In particular we can expand the departure from the fiducial model as

δNi =

nbin
∑

k=1

mkSk(zi); mk =

nbin
∑

i=1

δNion(zi)Sk(zi) (2.18)

wheremk are the expansion coefficients withmk = 0 for the fiducial model. We can now
describe our model by the coefficientsmk rather than the original parametersδNi. The advan-
tage is that, unlikeNi, the coefficientsmk are uncorrelated with variances given by the inverse
eigenvalue:

〈mi mj〉 =
1

λi
δij (2.19)

The accuracy with which we can determineδNion at a particularzi is determined by the Cramer-
Rao bound

〈

δN2
ion(zi)

〉

≥
nbin
∑

k=1

S2
k(zi)

λk
(2.20)

So, the largest eigenvalues correspond to minimum variance. The eigenvalues which are smaller
would essentially increase the uncertainty in determiningδNion(zi). Hence, most of the infor-
mation relevant for the observed data pointsGα is contained in the first few modes with the

2It is worthwhile to mention that any analysis based on the Fisher matrixFij , in principle, depends on the
fiducial model chosen. The principal component analysis, which essentially involves diagonalizingFij , is thus
dependent on the choice ofNfid

i too. In this sense, the PCA is not completely model-independent.
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largest eigenvalues. One may then attempt to reconstruct the functionδNion(zi) using only the
firstM ≤ nbin modes:

δN
(M)
i =

M
∑

k=1

mkSk(zi). (2.21)

However, in neglecting the lastnbin −M terms, one introduces a bias in determiningδNion(zi).
One has to then use a carefully chosenM to perform the analysis; the choice usually depends
on the particular problem in hand.

In realistic situations, there will be other free parameters (apart frommk or δNi) in the
model. Let there benext number of extra parameters other thanmk; this means that we are now
dealing with a total ofntot = nbin + next parameters. In this case, we can still form the Fisher
matrix ofntot × ntot dimensions which can be written as

F =

(

F B

B
T

F
′

)

(2.22)

whereF is thenbin×nbin-dimensional Fisher matrix for theδNi, F′ is thenext×next-dimensional
Fisher matrix for the other parameters andB is a nbin × next-dimensional matrix containing
the cross-terms. One can then invert the aboveF to obtain the corresponding Hessian matrix
T = F−1. Following that, one simply retains the sub-blockT corresponding toδNi whose prin-
cipal components will be “orthogonalized” to the effect of the other parameters. The resulting
“degraded” sub-block will be (Press et al. 1992)

F̃ = T
−1 = F− BF

′−1
B
T (2.23)

In this work we need to use the above formalism to marginalizeover the normalization of
the mean free pathλ0, cosmological parametersns andσ8. So, in this case,next = 3.

2.3 Constraining reionization scenario using PCA

So far, we have outlined the basic formalism of PCA and statedthe advantages of applying this
non-parametric approach to the datasets related to reionization. In this section, we shall see how
this PCA helps us finding the useful constraints on reionization scenario.

2.3.1 Fiducial model and the Fisher matrix

The first task is to make an assumption for the fiducial modelNfid
ion(z). The model should match

theΓPI anddNLL/dz data points atz < 6 and also produceτel or the CMBR angular power
spectra in the acceptable range. Unfortunately, the simplest model withNion being constant
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Figure 2.2: The Fisher matrixFij in thez − z plane.

does not have these requirements (recall models with only PopII stars were disfavored in the
previous Section). We have found earlier that the effectiveNion should be higher at early epochs
dominated by PopIII stars and should approach a lower value at z ∼ 6 determined by PopII
stars. In this work we takeNfid

ion to be the model given by mean values of the free parameters in
Section 2.1.3.

The choice of thisNfid
ion may seem somewhat arbitrary as there could be many other forms

of Nion which may match the data equally well. We have chosen this to be our fiducial model
because of the following reasons: (i) it is obtained from a physically-motivated model of star
formation which includes both metal-free and normal stars,(ii) it is characterized by a higher
Nion at higher redshifts and hence produces a good match with different observations considered
in this work, and (iii) the transition from higher to lower values is smooth (i.e., there is no abrupt
transition or sharp features). The final conclusions of thiswork (to be presented later in the
Section) would hold true for any fiducial model having these three properties (though the actual
functional form might be different). The match with the datafor our fiducial model is similar
to Fig. 2 of Choudhury (2009).

We have run the reionization models over a redshift range[zmin : zmax] = [0 : 30], with
a bin width of∆z = 0.2. This givesnbin = 151. We have checked and found that our main
conclusions are unchanged if we vary the bin width between 0.1–0.5.

The Fisher matrixFij defined in equation (2.16) is evaluated at the fiducial model and is
shown as a shaded plot in thez − z plane in Fig. 2.2. Firstly, the components of the the matrix
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Figure 2.3:Left panel: The inverse of eigenvalues of the Fisher matrixFij which essentially
measures the variance on the corresponding coefficient. Formodes larger than 8, the eigenvalues
are extremely small.Right panel: The first 8 eigenmodes of the Fisher matrix, i.e.,Sk(z); k =
1, . . . , 8.

vanish forz < 2 because there are no data points considered at these redshifts. The plot shows
different characteristics forFij at redshift intervals2 < z < 6 andz > 6. Forz < 6, the values
of Fij are considerably higher because it is determined by the sensitivity of ΓPI anddNLL/dz
onNion and it turns out thatΓPI is extremely sensitive to changes inNion. One can see a band-
like structure in the information matrix which essentiallycorresponds to the presence of data
points. The regions where data points are sparse (or non-existent), the value ofFij is relatively
smaller, implying that one cannot constrainNion from the data in those redshift bins. On the
other hand, the information atz > 6 is determined by the sensitivity ofτel or equivalentlyCEE

l

onNion. Once can see thatFij → 0 at the highest redshifts considered; this is expected because
the collapsed fraction of haloes is negligible at those redshifts and hence there exist no free
electrons to contribute toτel. We find thatFij is negligible forz > 14; thus it is not possible
to constrain any parameters related to star formation at redshiftsz > 14 using the data sets we
have considered in this work.

After diagonalizingFij, we obtain its eigenvalues and the corresponding eigenmodes.
In the left panel of Fig. 2.3, we show the inverse of the first few larger eigenvalues i.e., the
variances of the corresponding modes. Since the eigenvaluesλi are sorted in ascending order,
the variances are larger for higher modes. For modesi > 8, the eigenvalues are almost zero
and the variances are extremely large. This implies that theerrors onNion would increase
dramatically if we include modesi > 8. The corresponding first 8 eigenmodes (i.e., those
which have the lowest variances) are plotted in the right panel of Fig. 2.3. We find that all
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the eigenmodes tend to vanish atz > 14, which is obvious because ofFij being negligible
at these redshifts. We can see a number of spikes and troughs in the first four modes whose
positions correspond to the presence of data points forΓPI anddNLL/dz at2 < z < 6. The last
four modes contain the information about the sensitivity ofCEE

l . This sensitivity is maximum
aroundz ≈ 7−8 and decreases atz > 8 due to unavailability of free electrons; it also decreases
at z < 7 because of the fact that reionization is mostly completed atthese redshifts (xe → 1)
and hence changingNion does not affect the value ofCEE

l significantly at this redshift range.
The modes (> 8) with smaller eigenvalues i.e. large variances introduce huge uncertainties in
the determination ofNion. These modes are characterized by sharp features at different redshifts
and they do not contain any significant information about theoverall reionization hence do not
contain any meaningful information about the reionizationhistory.

2.3.2 Optimum number of modes

The next step in our analysis is to decide on how many modesM to use. In the case where
M = nbin, all the eigenmodes are included in the analysis and no information is thrown away.
However, this would mean that modes with very small eigenvalues (and hence large uncer-
tainties) are included and thus the errors in recovered quantities would be large. ReducingM
is accompanied by a reduction in the error, but an increased chance of getting the recovered
quantities wrong (which is known as bias).

It is thus natural to ask what could be the optimum value ofM for calculations. The
most straightforward way, which is used often, is to determine it by trial and error, i.e., more
and more terms are added till one gets some kind of convergence in the recovered quantities
(Mortonson & Hu 2008a).

One possible approach is to use the trial-and-error method to fix M , i.e. assume an under-
lying model which is different from the fiducial model but matches the current data sets quite
accurately and study its recovery using only first few modes.Using this method we found that,
one can recover the input model quite reasonably by considering the firstM = 8 modes (see
Mitra et al. 2011 for a detailed discussion about this approach). A slightly more formal ap-
proach is to estimateM by minimizing the quantity Risk which is defined as Wassermanet al.
(2001)

R =

nbin
∑

i=1

(

δN
(M)
i

)2

+

nbin
∑

i=1

〈

(

δN
(M)
i

)2
〉

(2.24)

The 1st term in the RHS is the bias contribution which arises from neglecting the higher order
terms, and the 2nd term is the uncertainty given by Cramer-Rao bound which rises as higher
order terms (i.e., those corresponding to smaller eigenvalues) are included:

〈

(

δN
(M)
i

)2
〉

≥
M
∑

k=1

S2
k(zi)

λk
(2.25)
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Figure 2.4: Dependence of Risk, error and bias as defined in equation (2.24) on the number of
modesM . The blow-up of a region aroundM = 8 is shown in the inset which shows that there
is a clear minimum in the Risk atM = 8.

The dependence of the Risk on the number of modesM is shown in Figure 2.4. In addition, we
also show the plots of bias [first term of the rhs in equation (2.24)] and the error [second term of
the rhs in equation (2.24)] are also shown. It is clear that the value of error is small for lowerM
which is a direct consequence of small eigenvalues. The error shoots up drastically for larger
M . On the other hand, the bias is higher for smallM and decreases gradually as more and
more terms in the summation are included. The Risk, which is the sum of these two quantities,
has a clear minimum atM = 8 (which is more clear from the inset in Figure 2.4). Hence we
conclude thatM = 8 is the optimum value to be used.

However, both methods described above, involve the assumption of an “underlying model”,
hence the determination ofM using this method would be model-dependent. An alternate pre-
scription is to use Akaike information criterion (Liddle 2007)

AIC = χ2
min + 2M (2.26)

where smaller values are assumed to imply a more favored model. Similarly, one can also
use the Bayesian information criterion defined byBIC = χ2

min + M lnnobs. The utility of
these criteria over the Risk is that they are computed without knowing the underlying solution
(Clarkson & Zunckel 2010). The results using BIC typical give smooth reconstructions by
underestimating the errors. The AIC, on the other hand, renders more featured reconstructions
at the expense of large errors. However, asnobs is fixed for our current analysis, the minimum
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value of AIC corresponds to the minimum of BIC, hence we simply carry out our analysis with
only AIC. Note that there is no reason to select one particular reconstruction, the minimum
of AIC can be accompanied by an increased chance of getting the reconstructed parameters
wrong. According to Clarkson & Zunckel (2010), one successful strategy is to select different
M which are near the minimum value of AIC and amalgamate them equally at the Monte Carlo
stage when we compute the errors. In this way, we can reduce the inherent bias which exists
in any particular choice ofM . We have examined that, in our case, the family of differentM
reconstructions, starting fromM = 2, which satisfy

AIC < AICmin + κ (2.27)

whereκ = 10 (which corresponds toM = 8), produces very solid results. For alternative
data sets, the value ofκ can be adjusted. The choice of this parameter must be treatedas a
prior. The importance of using the AIC is that the analysis now becomes non-parametric. The
method has been successfully used in reconstructing the dark energy equation of state using
SN-Ia observations (Clarkson & Zunckel 2010).

2.3.3 Monte-Carlo Markov Chain analysis on PCA modes

The constraints on reionization are obtained by performinga Monte-Carlo Markov Chain (MCMC)
analysis over the parameter space of the optimum number of PCA amplitudes,λ0, ns andσ8.
Other cosmological parameters are kept fixed to the WMAP7 best-fit values (see Section 2.1.2).
To avoid the confusion about the correct choice of number of modes, we perform the MCMC
analysis for PCA amplitudes taking fromM = 2 toM = 8, all of which obey the AIC criterion
(equation 2.27). We then weight each choice ofM equally and fold the corresponding errors
together to reproduceNion and other related quantities along with their effective errors. In order
to carry out the analysis, we have developed a code based on the publicly available COSMOMC
(Lewis & Bridle 2002). We run a number of separate chains (varying between 5 to 10) until
the Gelman and Rubin convergence statistics,R, corresponding to the ratio of the variance of
parameters between chains to the variance within each chain, satisfiesR − 1 < 0.01. Also we
have used the convergence diagnostic of Raftery & Lewis to determine how much each chain
must be thinned to obtain independent samples. Both of theseare computed automatically by
COSMOMC.

We have shown the evolution of various quantities related toreionization using the AIC
criterion forM = 2 to M = 8 in figure 2.5. The solid lines represent the mean model while
the shaded region correspond to 95% confidence limits. For comparison, we have also plotted
the fiducial model (short-dashed) as described in Section 2.3.1. We find that the fiducial model
is within the 95% confidence limits for the whole redshift range. Note that all the quantities
are highly constrained atz < 6, which is expected as most of the observational information
related to reionization exists only at those redshifts. Theerrors also decrease atz > 14 as
there is practically no information in the PCA modes and hence all models converge towards



2.3. Constraining reionization scenario using PCA 55

mean
fiducial

5 10 15

0

50

100

150

200

250

z

N
io

n

5 10 15

10
-1

10
0

10
1

10
2

z

Γ
P

I/1
0

-1
2
s
-1

5 10 15
0

5

10

15

z

d
N

L
L
/d
z

5 10 15

0.0

0.5

1.0

z

Q
H

II

■

∙□△

5 10 15

-6

-4

-2

0

z

lo
g

1
0
x

H
I

(a)(a)

500
1000
1500
2000
2500
3000

(b)

-20

-10

0

10

l(
l+
1
)C

l/2
π
 (
μ
k

2
)

(c)

10
1

10
210

-3

10
-2

10
-1

l

Figure 2.5: The marginalized posteriori distribution of various quantities (same as Fig. 2.1)
related to reionization history obtained from the PCA usingthe AIC criterion with first 8 eigen-
modes. The solid lines correspond to the model described by mean values of the parameters
while the shaded regions correspond to 2-σ limits. The points with error-bars denote the ob-
servational data points. In addition, we show the properties of the fiducial model (short-dashed
lines) as described in Section 2.3.1.
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Parameters Mean value 95% confidence limits
τel 0.093 [0.080, 0.112]

z(QHII = 0.5) 10.206 [8.952, 11.814]
z(QHII = 0.99) 7.791 [5.800, 10.427]

Table 2.2: The marginalized posterior probabilities with 95% C.L. errors of all the derived
parameters for the reionization model obtained from the current analysis using AIC criterion
for WMAP7 data.

the fiducial one. The most interesting information regarding reionization is concentrated within
a redshift range6 < z < 14.

It can be seen from the plot ofNion(z) (top-left panel of figure 2.5) that such quantity
must necessarily increase from its constant value atz < 6 which confirms our finding from the
earlier analysis using a model with chemical feedback (Sec.2.1.3). This rules out the possibility
of reionization with a single stellar population having non-evolving IMF and/or star-forming
efficiency.

From the plot ofΓPI(z) (top-middlepanel), we find that the mean model is consistent with
the observational data atz < 6, as expected. The errors corresponding to 95% confidence limits
are also smaller at this epoch. The photoionization rate forthe fiducial model shows a smooth
rise atz > 6 reaching a peak aroundz ≈ 11; however, the model described by the mean values
of the parameters shows a much sharper rise and much prominent peak aroundz ∼ 6.5. The
prominent peak-like structure is also present in the plot ofdNLL/dz (top-right panel).

From the plot ofQHII(z) (bottom-leftpanel), we see that the growth ofQHII(z) for the
mean model is much faster than that of fiducial model at initial stages, though the completion
of reionization takes place only atz ≈ 6. One can also find that reionization can be completed
as early asz ≈ 10.4 (95% confidence level). Similarly,xHI(z) (bottom-middlepanel) decreases
much faster than the fiducial one at6 < z < 12 and then smoothly matches the Lyα forest data.

Finally, we have shown the values of (a)CTT
l , (b)CTE

l and (c)CEE
l for the mean model

in thebottom-rightpanel of this figure, which is almost the same as the fiducial model. So the
WMAP7 EE polarization data alone cannot distinguish between the various models of reioniza-
tion. One can see that, our mean model includes most of the WMAP7 best-fit CMB data within
the error bars, except for a fewCEE

l data points. Note that these discrepant points atl & 15
cannot be reconciled by anyphysicalreionization model, implying that the spectra contribution
might come from some other cosmological process, as e.g. gravitational lensing.

The mean values and the 95% confidence limits on the parameters obtained from our anal-
ysis are shown in the Table 2.2. We have checked that, our fiducial model which is characterized
bym1 = m2 = m3 = m4 = m5 = m6 = m7 = m8 = 0 and the best-fit values ofλ0, ns andσ8,
is included within the 95% confidence limits of those parameters corresponding to our current
analysis using AIC criterion. We find that reionization is 50% complete between redshifts 9.0
– 11.8 (95% confidence level), while it is almost (99%) complete between redshifts 5.8 – 10.4
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Parameters 2-σ errors
WMAP7 PLANCK (forecast)

τel 0.032 0.009
z(QHII = 0.5) 2.862 1.117
z(QHII = 0.99) 4.627 3.013

Table 2.3: The 95% C.L. errors of derived parameters for the reionization model obtained from
the current analyses using AIC criterion for WMAP7 and simulated PLANCK data.

(95% confidence level). Note that the lower limit on the redshift of reionization (5.8) is imposed
as a prior on the parameters. Here the mean model forτel shows a higher value than the best-fit
WMAP7 value which is arising from relatively complex reionization histories giving non-zero
ionized fractions at high redshifts.

We have checked that, if we take any particular choice ofM , sayM = 7 or 8, our main
findings are almost the same as the above results, except withthe help of AIC criterion, we have
reduced the inherent bias which is present for that specific choice ofM and got a mean model
which matches the current data sets quite reasonably.

To summarize, we find that using WMAP7CEE
l data set we get a higherτel than the

WMAP7 best-fit value. So a wide range of reionization histories is still allowed by the data
we have used. Reionization can be quite early or can be gradual and late, depending on the
behavior ofNion(z). Hence, using these data, it is somewhat difficult to put strong constraints
on chemical feedback and/or the evolution of star-forming efficiencies and/or escape fractions.

Given that the WMAP data allow a large range of reionization models, it is worthwhile
computing the level of constraints from the large-scale polarization measurements by PLANCK.
To forecast the errors for parameters related to the reionization history, we first generate the
simulated PLANCK data of CMB power spectra for our fiducial model up tol ≤ 2000 using the
exact full-sky likelihood function at PLANCK-like sensitivity (Perotto et al. 2006; Galli et al.
2010). We assume that beam uncertainties are small and that uncertainties due to foreground
removal are smaller than statistical errors. More sensitive observations will also require an exact
analysis of non-Gaussian likelihood function, here for simplicity we assume isotropic Gaussian
noise and neglect non-Gaussianity of the full sky (Lewis 2005) and try to see what we can learn
about the global reionization history from PLANCK-like sensitivity. We then repeat the MCMC
analysis over the same parameter space using this simulateddata. Like the previous case, here
we have also varied the number of modes included in the analysis from two to eight using the
AIC criterion in order to study the effect of truncating the PCA expansion for the recovery of
various quantities related to reionization.

In the Table 2.3, we have shown the comparison of the 2-σ errors on the derived parame-
ters obtained for WMAP7 data and the same for forecasts from simulated PLANCK data. It is
clear that the uncertainties on all the parameters related to reionization would be reduced con-
siderably. In particular, we find that we should be able to constrain the redshift range at which
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Figure 2.6: Same as Figure 2.5 but for PLANCK likelihood.

reionization was 99% (50%) completed to about 3 (1). This is clearly a significant improvement
over what can be achieved through current data sets.

In Figure 2.6, we have illustrated the recovery the same quantities as mentioned in the
earlier section using the AIC criterion taking up to 8 eigenmodes for the simulated PLANCK
data. For comparison, here also we have plotted the results for the fiducial model (short-dashed
lines) along with the mean results (solid lines) from MCMC analysis with shaded 2-σ limits.
We find that our main results are in quite reasonable agreement with those obtained from the
WMAP data, except that all the 2-σ (95 %) limits are reduced remarkably for all redshift range.

We thus find that we can constrain the global reionization history quite better using the
PLANCK forecast data sets, especially the2 − σ limits for QHII reduces significantly for this
case. However there is no room to substantially improve the constraints using large-scaleE-
modes for WMAP7 data sets and one still has to rely on other types of data for understanding
reionization.
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2.4 Discussion and summary

We have studied constraints on reionization history using non-parametric methods. To model
the unknown functionNion(z), we have applied the principal component method using three
different sets of data points - the photoionization rateΓPI(z), the LLS distributiondNLL/dz
and WMAP7 data forCEE

l for l ≤ 23. Following that, we have obtained constraints on the
reionization history using MCMC techniques. We have also used the Akaike information crite-
ria (AIC) to extract the underlying information about the PCA model and reduce the intrinsic
bias present in any particular choice of fiducial model. We have applied our method to the
WMAP7 data as well as the simulated PLANCK data to forecast errors on reionization.

Our main findings can be summarized as follows -

1. We have found that the information aboutNion(z) or equivalently the star formation
and/or chemical feedback lies in the first eight eigenmodes of the Fisher information
matrix distributed over the range2 < z < 14. Using the higher modes costs higher
errors.

2. The angular power spectraCl of CMB observations contain more information than treat-
ing τel as a single data point.

3. The constraints atz < 6 are relatively tight because of the QSO absorption line data. On
the other hand, a wide range of histories atz > 6 is allowed by the data. Interestingly, it
is not possible to match the available data related to reionization with a constantNion(z)
over the whole redshift range, it must increase atz > 6 from its constant value at lower
redshifts.

4. With the data from WMAP7, we constrain0.080 < τel < 0.112 (95% CL) and also
conclude that reionization is 50% complete between9.0 < z(QHII = 0.5) < 11.8 (95%
CL) and is 99% complete between5.8 < z(QHII = 0.99) < 10.4 (95% CL).

5. With the forthcoming PLANCK data on large-scale polarization (ignoring effect of fore-
grounds), thez > 6 constraints will be improved considerably, e.g., the2 − σ error on
τel will be reduced to 0.009 and the uncertainties onz(QHII = 0.5) andz(QHII = 0.99)
would be∼ 1 and 3 (95% CL), respectively. The errors could be somewhat larger if the
effect of foregrounds are incorporated into the analysis. For more stringent constraints on
reionization atz > 6, one has to rely on data sets other than CMB.

Finally, we try to indicate the data sets (other than CMB) which can possibly be used to
better the constraints on reionization. Since most of the information on reionization atz < 6
come from QSO absorption lines, it is natural to expect more constraints from such observations
at z > 6. In addition, spectra of GRBs, which are being observed at much higher redshifts
(Salvaterra et al. 2009; Tanvir et al. 2009; Cucchiara et al.2011) could also provide additional
constraints. The difficulty is that the transmission regions (which are the sources for most of the
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information) are almost non-existent at high-z spectra, thus making the analysis more difficult.
Additional constraints onxHI at high redshifts are expected from Lyα emitters (Taniguchi et al.
2005; Kashikawa et al. 2006; Iye et al. 2006; Vanzella et al. 2011; Lehnert et al. 2010), however
they too are affected highly by systematics. On the positiveside, we feel that even a relatively
weak constraint onxHI at z ∼ 7 − 10 could be crucial in ruling out a subset of reionization
models as the value ofNion(z) is most uncertain at these redshifts.

We also now have observations of Lyman-break galaxies tillz ∼ 10 (Bouwens et al. 2007,
2011b,a). The luminosity function of such galaxies would behelpful in constraining properties
of the galaxies like the IMF and/or the star-forming efficiency. Unfortunately, that would still
leave out the escape fraction of ionizing photons, which remain an uncertain parameter till date.

Other indirect observations that could help in constraining reionization are the tempera-
ture measurements atz < 6 (Schaye et al. 2000; Ricotti et al. 2000; McDonald et al. 2001;
Zaldarriaga et al. 2001; Cen et al. 2009). The temperature evolution can retain memory of how
and when the IGM was reionized and thus could provide additional constraints on reionization.
Whatever be the case, the principal component method described here, could be a promising
tool for extracting the information from the future data sets in a model-independent manner.



CHAPTER 3

ESCAPE OF IONIZING RADIATION
FROM GALAXIES

In this chapter, we will extend our knowledge to find some of the crucial but still unknown
parameters related to reionization scenario with help of the semi-analytical model described in
the previous chapter. As we mentioned earlier in Section 1.3.2, The escape fraction,fesc, of ion-
izing photons from high-redshift galaxies is a key parameter to understand cosmic reionization
and star formation history. Yet, in spite of many efforts, itremains largely uncertain. Here we
shall propose a novel, semi-empirical approach based on a simultaneous match of the most re-
cently determined Luminosity Functions (LF) of galaxies inthe redshift range6 ≤ z ≤ 10 with
reionization models constrained by a large variety of experimental data and obtain the evolution
of some of these critical parameters.

3.1 Introduction: Challenges for determining escape frac-
tion

One of the most crucial issues regarding the evolution of intergalactic medium (IGM) and cos-
mic reionization is the escape fraction,fesc, of ionizing photons from high-redshift galaxies.
This parameter remains poorly constrained in spite of the many theoretical and observational
attempts made in past few years. The difficulties largely arise from the lack of a full under-
standing of the physics of star formation, radiative transfer and feedback processes, and from
uncertainties on the properties of the high-z galaxy interstellar medium (ISM); as a result, de-
rived values offesc span the large range0.01 − 1 (Fernandez & Shull 2011). Observationally,
fesc can be reliably estimated only at redshiftsz . 3 (Leitherer et al. 1995; Dove et al. 2000;
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Heckman et al. 2001; Ciardi et al. 2002; Giallongo et al. 2002; Fernández-Soto et al. 2003;
Inoue et al. 2005; Bergvall et al. 2006; Shapley et al. 2006; Vanzella et al. 2010). On the other
hand, theoretical studies (Wood & Loeb 2000; Razoumov & Sommer-Larsen 2006; Gnedin
2008; Gnedin et al. 2008; Srbinovsky & Wyithe 2010; Razoumov& Sommer-Larsen 2010; Ya-
jima et al. 2011; Haardt & Madau 2011; Fernandez & Shull 2011;Kuhlen & Faucher-Giguère
2012) have been rather inconclusive so far, as illustrated by their often conflicting results in
terms offesc values and trend with redshift and galaxy mass.

One key aspect of reionization lies in its close coupling with the properties and evolu-
tion of first luminous sources (for reviews, see Loeb & Barkana 2001; Barkana & Loeb 2001;
Choudhury & Ferrara 2006a; Choudhury 2009). Observations of cosmic microwave back-
ground (CMB) and highest redshift QSOs put very tight constraints on the reionization history;
these allow to construct self-consistent models of structure formation (Choudhury & Ferrara
2005; Wyithe & Loeb 2005; Gallerani et al. 2006; Choudhury & Ferrara 2006b; Dijkstra et al.
2007; Samui et al. 2007; Iliev et al. 2008; Kulkarni & Choudhury 2011). The most favorable
model, which is consistent with the Thomson scattering optical depthτel = 0.088± 0.015 from
WMAP7 data (Larson et al. 2011) and the Gunn-Peterson optical depth evolution from QSO
absorption line experiments atz & 6 (Fan et al. 2006), suggests that reionization is an extended
process over the redshift range6 . z . 15 (Choudhury & Ferrara 2006b; Mitra et al. 2011,
2012). This model also indicates that reionization feeds back on star formation by suppressing
it in the low-mass haloes at early times (Thoul & Weinberg 1996; Choudhury & Ferrara 2006b).

In parallel, direct observations of galaxies at epochs close to the end of reionization have
made astonishing progresses over the past few years (Bouwens & Illingworth 2006; Iye et al.
2006; Bouwens et al. 2007, 2008; Ota et al. 2008; Bouwens et al. 2009; Henry et al. 2009;
Bouwens et al. 2010a; Oesch et al. 2010; Bouwens et al. 2010b;McLure et al. 2010; Oesch
et al. 2012; Bradley et al. 2012). allowing to derive the galaxy UV Luminosity Function (LF)
up toz ≈ 10 (Bouwens & Illingworth 2006; Bouwens et al. 2010b; Oesch et al. 2012), and to
better constrain light production by reionization sources.

Here we aim at combining data-constrained reionization histories and the evolution of
the LF of early galaxies to get an empirical determination ofthe escape fraction. The study
also provides relatively tight constraints also on the evolution of the star-forming efficiency
ǫ∗ (Faucher-Giguère et al. 2008; Kuhlen & Faucher-Giguère 2012). Throughout this chapter,
we assume a flat Universe with cosmological parameters givenby the WMAP7 best-fit values:
Ωm = 0.27, ΩΛ = 1 − Ωm, Ωbh

2 = 0.023, andh = 0.71. The parameters defining the linear
dark matter power spectrum areσ8 = 0.81, ns = 0.97, dns/d ln k = 0 (Larson et al. 2011).
Unless mentioned, quoted errors are 2σ.
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3.2 Luminosity function of ionizing sources

In this work, we have used the semi-analytical model described in Section 2.1, which is ba-
sically based on Choudhury & Ferrara (2005) and Choudhury & Ferrara (2006b). Given the
collapsed fractionfcoll of dark matter haloes, the production rate of ionizing photons in the
IGM is calculated in this model as [see equation (1.80) and (2.4)]

ṅph(z) = nbNion
dfcoll
dt

(3.1)

We have already mentioned that the parameterNion, the number of photons entering the IGM
per baryon included into stars, can actually be written as a combination of three parameters: the
star-forming efficiencyǫ∗, the escape fractionfesc, and the specific number of photons emitted
per baryon in stars,Nγ , which depends on the stellar IMF and the corresponding stellar spectrum
[see equation (1.81)]:

Nion = ǫ∗fescNγ (3.2)

In the last chapter, we assumedNion to be an unknown function ofz and decompose it
into its principal components. In the following we assume a single stellar population (PopII)
when computing the ionizing radiation properties; any change in the characteristics of these
stars over time would be accounted for indirectly by the evolution ofNion. We also include
the contribution of quasars atz < 6 assuming that they have negligible effects on IGM at
higher redshifts; however, they are significant sources of ionizing photons atz . 4. From our
reionization-PCA model (Mitra et al. 2011, 2012), we obtainthe redshift evolution ofNion by
doing a detailed likelihood analysis using three differentdata sets - the photoionization rates
ΓPI, the redshift distribution of Lyman Limit SystemsdNLL/dz in 0.36 < z < 6 and the
angular power spectraCl for TT, TE and EE modes using WMAP7 data (see Section 2.3.3). We
show the redshift evolution ofNion(z) obtained from our Principal Component Analysis using
WMAP7 data in Fig. 3.1. The solid line corresponds to the model described by mean values
of the parameters which we obtained by performing a Monte-Carlo Markov Chain (MCMC)
analysis over the parameter space of our model, while the shaded region corresponds to its 2-σ
limits. This is the same figure as the top-left panel of Fig. 2.5. We concluded that it is not
possible to match available reionization data with a constantNion over the whole redshift range.
Rather, it must increase atz > 6 from its constant value at lower redshifts.This is a signature
of either a varying IMF and/or evolution in the star-formingefficiency and/or photon escape
fraction of galaxies, as equation (3.2) clearly shows.

The effect of reionization on the high redshift galaxy LF wasstudied using the semi-
analytical models by Samui et al. (2007) and Kulkarni & Choudhury (2011). In this work, we
follow their method to study the evolution of LF for our model.

The LF is derived as follows. We compute the luminosity at 1500 Å of a galaxy having
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Figure 3.1: Redshift evolution ofNion obtained from the Principal Component Analysis using
WMAP7 data. The solid line corresponds to the model described by mean values of the param-
eters while the shaded region corresponds to 2-σ limits. This figure is the same as the top-left
panel of Fig. 2.5

the halo massM and age∆t using

L1500(M,∆t) = ǫ∗

(

Ωb

Ωm

)

Ml1500(∆t) (3.3)

Here the age of the galaxy formed atz′ and observed atz is ∆t = tz − tz′, l1500(∆t) is a
template specific luminosity at 1500̊A for the stellar population of age∆t. As we restrict to a
single stellar population, i.e. PopII stars,ǫ∗ indicates the star forming efficiency of PopII stars
throughout this chapter.

To computel1500, we use stellar population models of Bruzual & Charlot (2003) for PopII
stars. The UV luminosity depends on galaxy properties including the IMF, star formation rate
(SFR), stellar metallicity (Z) and age. Dayal et al. (2009) and Dayal et al. (2010) have shown
that the metallicity correlates with stellar mass, and the best fit mass-metallicity relation they
find is

Z/Z⊙ = (0.25− 0.05∆z) log10(M∗)− (2.0− 0.3∆z) (3.4)

where∆z = (z − 5.7) andM∗ is the total stellar mass of the galaxy. We take all the available
stellar population models in the metallicity rangeZ = 0.0001− 0.05 for PopII stars and inter-
polate them to computel1500 following the mass-metallicity relation given by the aboverelation
for our model galaxies.

The luminosity can be converted to a standard absolute AB magnitude (Oke & Gunn
1983; Samui et al. 2007; Kulkarni & Choudhury 2011) using

MAB = −2.5 log10

(

Lν0

erg s−1Hz−1

)

+ 51.60 (3.5)
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The luminosity functionΦ(MAB, z) at any redshiftz is then given by

Φ(MAB, z) =
dn

dMAB
=

dn

dL1500

dL1500

dMAB
, (3.6)

where

dn

dL1500

=

∫ ∞

z

dz′
dM

dL1500

(L1500,∆t)
d2n

dMdz′
(M, z′) (3.7)

is the comoving number of objects at redshiftz with observed luminosity within[L1500, L1500+
dL1500]. The quantityd2n/dMdz′ gives the formation rate of haloes of massM , which we
obtain as in Choudhury & Ferrara (2007). Note that, we can vary the star-forming efficiencyǫ∗
in equation (3.3), as a free parameter and obtain its best-fitvalue by comparing the high-redshift
LFs computed using the above equations with observations.

3.3 Constraining escape fraction and other crucial parame-
ters

Our strategy to constrainfesc exploits the combination between the previously derived (Sec.
2.3.3) evolution ofNion, and the constraints onǫ∗ that can be derived from matching LFs at
different redshifts. Once the (Salpeter) IMF of the (PopII)stars is fixed,Nγ is also fixed and
equal to≈ 3200; from equation (3.2) we then get the value offesc as follows:

fesc =
Nion

ǫ∗Nγ
(3.8)

As the uncertainties on[Nion/Nγ] andǫ∗ are independent, the fractional uncertainty infesc can
be obtained from the quadrature method (Taylor 1997), i.e.

δfesc
fesc

=

√

(

δ [Nion/Nγ]

[Nion/Nγ]

)2

+

(

δǫ∗
ǫ∗

)2

(3.9)

In this work, we are interested in thez ≥ 6 evolution of the escape fraction. In principle, our
approach can also be used for the lower redshift range3 ≤ z ≤ 5, provided that a detailed
treatment of dust extinction is added to our model. The underlying assumption in the present
work is that dust effects on the escape fraction can be safelyneglected at early times.

The observationally determined LFs are taken from Bouwens &Illingworth (2006) for
z = 6, Bouwens et al. (2011b) forz = 7, 8 and Oesch et al. (2012) forz = 10. Figure 3.2
shows the globally averaged LFs calculated using our model for z = 6, 7, 8, 10 compared to the
observational data points. Thez = 10 data are obtained from the detection of a single galaxy



66 Escape of ionizing radiation from galaxies

∙∙

∙∙
∙∙

∙
∙

z  = 6.0

ε
*
 = 0.0365

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Φ
(M

A
B
,z

) 
[m

a
g

-1
M

p
c

-3
]

∙

∙∙
∙∙

∙∙
∙

z  = 7.0

ε
*
 = 0.0385

∙

∙
∙ ∙

∙ ∙
∙

z  = 8.0

ε
*
 = 0.0523

-22 -20 -18

10-7

10-6

10-5

10-4

10-3

10-2

10-1

MAB

Φ
(M

A
B
,z

) 
[m

a
g

-1
M

p
c

-3
]

∙∙
∙
∙∙

∙

z  = 10.0

ε
*

max = 0.0841

-22 -20 -18

MAB

Figure 3.2: Luminosity function from our model for best-fitǫ∗ (black curve) and its 2-σ limits
(shaded region) atz = 6, 7, 8 and 10. Data points with 2-σ errors are from Bouwens &
Illingworth (2006) (z = 6), Bouwens et al. (2010) (z = 7, 8) and Oesch et al. (2012) (z = 10).
For z = 10, we show the luminosity function from our model for the maximum value ofǫ∗ for
which the LF curve does not exceed the experimental upper limits.
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Figure 3.3: Redshift evolution of the escape fractionfesc with 2-σ errors. Thez = 10 data point
shows the lower limit offesc. The solid line corresponds to its best-fit value while the shaded
region corresponds to 2-σ limits.

Redshift Best-fitǫ∗ 2-σ limits Best-fitfesc 2-σ limits
z = 6 0.0365 [0.0253, 0.0481] 0.0684 [0.0210, 0.1221]
z = 7 0.0385 [0.0193, 0.0576] 0.1607 [0.0319, 0.4451]
z = 8 0.0523 [0.0129, 0.0822] 0.1794 [0.0466, 0.5098]
z = 10 < 0.0841 > 0.1456

Table 3.1: Best-fit values and 2-σ limits of ǫ∗ and the derived parameterfesc for the reionization
model obtained from the LF calculation at different redshifts. At z = 10, we get only an upper
limit of ǫ∗ and a corresponding lower limit offesc.

candidate by Oesch et al. (2012); hence, we only show resultsfor the maximum value ofǫ∗ for
which the LF curve does not exceed the experimental upper limits.

Our model reproduces the observed LFs reasonably well, especially at lower redshifts.
From such a match we find that the best-fit value of the star-formation efficiencyǫ∗ nominally
increases from 3.6% atz = 6 to 5.2% atz = 8. Such a small variation is statistically consistent
with a constant value ofǫ∗, i.e. no evolution (Mitra et al. 2013).

The corresponding values offesc calculated using equation (3.8) and (3.9) are plotted in
Fig. 3.3 along with the 2-σ confidence limits (shaded region). The numerical values forǫ∗ and
fesc are also reported in Table 3.1 for different redshifts (z = 6, 7, 8). The escape fraction shows
a moderately increasing trend fromfesc = 0.068+0.054

−0.047 atz = 6 to fesc = 0.179+0.331
−0.132 atz = 8; at

z = 10 we can only put a lower limit offesc > 0.146, corresponding to the maximum allowed
value ofǫ∗ = 0.0841.

The reported 2-σ errors are however relatively large and we cannot exclude a non-evolving
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galaxy-averaged trend forfesc . The uncertainties become larger with redshift as a consequence
of the fact that the larger LF errors at higher redshifts.

3.4 Conclusion

We have used our semi-analytical reionization model to compare the UV luminosity functions
at different epochs predicted from our model with the observed LF to constrain the parameters
related to star formation history in the redshift range6 ≤ z ≤ 10. In particular, by varying the
star formation efficiency as a free parameter, we have constrained one of the most unknown pa-
rameters of reionization models, the escape fractionfesc of ionizing photons from high-redshift
galaxies. The main findings of our work (Mitra et al. 2013) arethat, averaged over the galaxy
population, (i) the escape fraction shows a moderate increase fromfesc = 0.068+0.054

−0.047 at z = 6
to fesc = 0.179+0.331

−0.132 at z = 8; (ii) at z = 10 we can only put a lower limit offesc > 0.146.
Thus, although errors are large, there is an indication of a 2.6 times increase of the average
escape fraction fromz = 6 to z = 8 which might partially release the “starving reionization”
problem. At the same time, the best-fit value of the star formation efficiencyǫ∗ nominally in-
creases from 3.6% atz = 6 to 5.2% atz = 8. Such a small variation is statistically consistent
with a constant value ofǫ∗, i.e. no evolution.

Parallel to our more phenomenological approach, in the pastfew years many numerical
and analytical studies have attempted to constrainfesc reaching often contradictory conclusions,
likely due to uncertainties on star formation history, feedback, radiation transfer and the geome-
try of the ISM distribution (Fernandez & Shull 2011). Increasing (Razoumov & Sommer-Larsen
2006, 2010; Haardt & Madau 2011), decreasing (Wood & Loeb 2000) or un-evolving (Gnedin
2008; Yajima et al. 2011) trends have been suggested as a function of redshift.

A strong redshift evolution of the escape fraction was recently found by Kuhlen & Faucher-
Giguère (2012). They show that, models in which star formation is strongly suppressed in
low-mass haloes, can simultaneously satisfy reionizationand lower redshift Lyman-α forest
constraints only if the escape fraction of ionizing radiation increases from∼ 4% at z = 4 to
∼ 1 at higher redshifts. Although broadly in agreement with their conclusions, our results show
instead that reionization and LF data can be satisfied simultaneously iffesc grows from∼ 7% at
z = 6 to∼ 18% atz = 8, but without requiring an escape fraction of order of unity at these red-
shifts. We believe that this discrepancy can be understood as due to the fact that unlike Kuhlen
& Faucher-Giguère (2012), we are fitting thefull CMB spectrumrather than the single value
of τel; the latter choice can be thought as a simplification of CMB polarization observations.
In addition, we have used a PCA analysis to optimize model parameters to reionization data,
yielding a more robust statistical analysis (Mitra et al. 2013).

Although here we have only considered the evolution ofz ≥ 6 luminosity functions, our
approach can also be applied to model the LFs at3 ≤ z ≤ 5. As hydrogen reionization mostly
occurs atz & 6, the LFs in this lower redshift range are very unlike to be sensitive to the
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details of reionization history. Also, dust extinction atz < 6 can decreasefesc by absorbing
the ionizing photons at these epochs (Yajima et al. 2011). Asa caveat we mention that the
present results can be responsive to changes in some cosmological parameters, mainlyσ8 and
ns (Pandolfi et al. 2011). A largerσ8 or ns may lead to an increase in the number of collapsed
haloes at all redshifts. In principle then, one should include these two quantities in the analysis
as additional free parameters. Also, it could be interesting to evaluate the effects of PopIII stars
and other feedback processes in our LF calculation. We hope to revisit some of these topics in
more detail in future work.

Finally we should mention that, for constrainingNion, which is linked to the rate of ioniz-
ing photon production via the collapse fraction, we performed the MCMC run using2− 8 PCA
modes (Mitra et al. 2012). Truncating a PCA expansion can reduce the variance in the estima-
tion of the reionization history, but also introduces a biastowards the fiducial history. Being
aware of this fact, we used the Akaike information criteria (AIC) to reduce the intrinsic bias
present in any particular choice of fiducial model. We found that atz ≤ 6, the strong Lyman-α
forest constraints essentially fixNion, so that the efforts to reconstruct the reionization history
are very promising at this region. While it does not seem veryreliable to recoverNion or the
other various quantities related to reionization history at z > 6 in a truly model-independent
manner as there exists a considerable amount of bias at this high redshift end (Mitra et al. 2011,
2012). In other word, statistical uncertainty may have beenhidden here as systematic uncer-
tainty (Huterer & Starkman 2003). So, including bias at the level of variance might eliminate
the ability to make the claim of increasingfesc from z = 6 to z = 8. However, with more
data it would be possible to apply this technique in a regime where the variance inNion is small
enough to produce a useful constraint on the reionization history without the need to truncate
the PCA modes so severely and so without introducing any bias. This technique will become
more applicable as more data becomes available forz > 6 region.



70 Escape of ionizing radiation from galaxies



CHAPTER 4

REIONIZATION AND OTHER
COSMOLOGICAL PARAMETERS

So far, we have discussed about the semi-analytical modeling of reionization and how we can
use that model to constrain the reionization scenario and various crucial but unknown param-
eters related to it. In order to do so, for simplicity we have taken most of the cosmological
parameters to be fixed at their best-fit WMAP values keeping inmind that the uncertainties in
reionization history would possibly be slightly underestimated. In this chapter, we shall concen-
trate on finding the impacts of realistic reionization premises on the cosmological parameters
by varying all the relevant cosmological parameters along with the parameters related to our
reionization model. In the first half of this chapter, we willsee how the inclusion of a physically
motivated reionization history induces changes in the cosmological parameter values and in the
later half we will use this data-constrained reionization model to achieve the constraints on the
neutrino masses as allowed by the current datasets related to reionization.

4.1 Effects of reionization on cosmological parameter deter-
minations

In this section, we shall focus on assessing the effects of physically motivated and viable reion-
ization scenarios on cosmological parameter determinations. The main novelties are: (i) the
combination of CMB data with astrophysical results from quasar absorption line experiments;
(ii) the joint variation of both the cosmological and astrophysical [governing the evolution of the
free electron fractionxe(z) ] parameters. Our aim is to see whether the inclusion of a realistic,
data-constrained reionization history, as described in the previous chapters, in the analysis can
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induce appreciable changes in the cosmological parameter values deduced through a standard
WMAP7 analysis.

4.1.1 Cosmological parameters and different reionizationscenarios

It is well known from a large set of astrophysical observables that after primordial recombina-
tion (which occurred at a redshift ofz ∼ 1100) the universe “reionized” at a redshiftz > 6.
It is common practice in Cosmic Microwave Background (CMB) studies to parametrize the
reionization as an instantaneous process occurring at someredshiftzre, with 4 < zre < 32, and
to marginalize overzre when deriving constraints on the other cosmological parameters. In the
absence of any precise astrophysical model of the reionization process, the electron ionization
fractionxe(z) is parametrized byzre in the following way: xe(z) = 1 for z ≪ zre (possibly
xe(z) = 1.08 or xe(z) = 1.16 for z < 3 in order to take into account the first and second He-
lium ionization) andxe(z) < 2 × 10−4 for z > zre in order to join the ionization fraction value
after the recombination. In the following we will refer to this parametrization as “sudden” or
“instantaneous” reionization. With this choice of parametrization there exist a one-to-one rela-
tion between the redshift of sudden reionizationzre and the electron scattering optical depthτel.
The most recent constraints on the optical depth that come from the analysis of the Wilkinson
Microwave Anisotropy Probe team on their seven-year data (WMAP7), in which it is assumed
a sudden reionization scenario, isτel = 0.088± 0.015.

However, as already noticed, e.g. in Mortonson & Hu (2008b),and further emphasized
by Pandolfi et al. (2010) and Pandolfi et al. (2010), the assumption of a general reionization
scenario could affect the extraction of the constraints of cosmological parameters. In particular,
they studied the effects of non-instantaneous reionization on the two principal inflationary pa-
rameters (the scalar spectral index of primordial perturbationsns and the tensor-to-scalar ratio
parameterr), and on the optical depthτel. The method used in the above cited works to describe
a general reionization scenario, developed in Mortonson & Hu (2008b), is based on a principal
components (PC) analysis of the reionization history,xe(z) . PCs provide a complete basis for
describing the effects of reionization on large-scaleE-mode polarization spectrum. Following
Mortonson & Hu (2008b), one can treatxe(z) as a free function of redshift by decomposing it
into its principal components:

xe(z) = xfe (z) +
∑

µ

mµSµ(z), (4.1)

where the principal componentsSµ(z) are the eigenfunctions of the Fisher matrix describing the
dependence of the polarization spectra onxe(z); themµ are the PC amplitudes for a particular
reionization history, andxfe (z) is the WMAPfiducial model for which the Fisher matrix is
computed and from which the PCs are obtained. Therefore the amplitude of eigenmodeµ for a
perturbation around the fiducial reionization historyδxe(z) ≡ xe(z)− xfe (z) is

mµ =
1

zmax − zmin

∫ zmax

zmin

dz Sµ(z)δxe(z). (4.2)
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In what follows we refer to this parametrization of reionization as the “Principal Compo-
nents”(PC) reionization. Since the ionization fraction isbounded in0 < xe(z) < 1 (neglecting
helium reionization and the small residual ionized fraction after recombination) in the range of
redshifts in which PCs are defined, it is necessary to impose some limits on the amplitudes of
the eigenmodes of equation (4.2) to let the reionization fraction be within these limits, if only for
the definition of reionization fraction. In Mortonson & Hu (2008b) the authors find the ranges
of values for the amplitudesmµ compatible withxe(z) ∈ [0, 1] for all the redshifts in range
of interest. Pandolfi et al. (2010) and Pandolfi et al. (2010) used the publicly availableSµ(z)
functions and varied the amplitudesmµ for the first five eigenfunctions (i.e. forµ = 1, ..., 5).
The principal components were computed only in the range of redshiftsz ∈ [6 − 30]. They
performed a Monte Carlo Markov Chains analysis assuming a flat prior on (only) the ranges of
values of the amplitudesmµ whose linear combination with the functionSµ give axe(z) in the
allowed range. These values are reported in left part of Table 4.4 and are labeled “PC Bounds”.

However, these limits for the values of the PC amplitudes area necessary but not suffi-
cient condition for the reionization fraction to lie in0 < xe(z) < 1. In fact, as noticed also by
Mortonson & Hu (2008b), if anymµ violates those boundsxe(z) is guaranteed to be unphysical
in some redshift range, but the opposite is not true, becausethe full reionization history depends
on the linear combinations of the product of the amplitudes times their corresponding PC prin-
cipal component. Indeed, even if all the amplitudesmµ satisfy the bounds reported in Table 4.4,
xe(z) could assume an unphysical value for some redshifts. To overcome this potential prob-
lem, we have added in the version of thecosmomc package used in Pandolfi et al. (2010) and
Pandolfi et al. (2010), the condition that the value ofxe(z) computed at each step of a Markov
Chain must be in the range0 < xe(z) < 1 for everyz. In these studies, this was the only “phys-
icality” condition imposed on the possible reionization history. However, experimental data
gathered in the last few years can be used to discard at least some of the possiblexe(z) histories
on well understood (astro)physical grounds. It is now possible to use reionization histories that
are physically motivated and tested with known probes of thereionization epoch, such as the
Gunn-Peterson optical depth, or the distribution in redshift of the Lyα emitters.

In this work we adopt the results of a well-tested semi-analytical reionization model pro-
posed in Choudhury & Ferrara (2005) and Choudhury & Ferrara (2006b) (in what follows we
will refer to this model as the CF model). This model takes into account a large number of
parameters and physical processes that are involved in modeling reionization, including (e.g.)
the radiative and chemical feedbacks of the first sources of ionizing light on the evolution of
the intergalactic medium (IGM), and constrain the model by comparing it with a variety of
observational data, such as the redshift evolution of LymanLimit Systems (LLS), the IGM tem-
perature and the cosmic star formation density. Thus we willbe able to build up an ensemble of
reionization histories that is more robust from both the theoretical and the observational point of
view, rather then rely on purely phenomenological, albeit model-independent, parameterization
schemes as the PCs.

We will combine the CF model with a standardΛCDM cosmological model and we per-
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form a Monte Carlo Markov Chains analysis of the joint CMB andreionization data. We will
thus be able to test the impact of considering a detailed physical model for reionization on the
constraints of the cosmological parameters, and conversely to test the dependence of the CF
model on the underlying cosmological model.

At the end of such analysis we will moreover derive the subsequent constraints on the
amplitudes of the reionization principal componentsmµ [applying directly the equation (4.2)].
By construction then, these limits on the values of amplitudes of the principal components
will be compatible and constrained both by the CMB and by the astrophysical probes of the
reionization process. The main objectives of the present work are then:

• Verify the impact of considering a data-constrained and realistic reionization model on
the determination cosmological parameters.

• Verify the impact on the constraints of the reionization parameters produced by variations
of the cosmological parameters, i.e. refraining from fixingthem a priori from the most
updated best fit values of the WMAP experiment.

• Obtain the PC amplitudesmµ from the allowed reionization histories.

As such an analysis with combined cosmological parameters characterizing the back-
ground evolution of the universe and astrophysical parameters modeling the reionization history
has not yet been made, it is worthwhile to explore their mutual implications on the extraction of
the constraints of the two ensemble of parameters.

Parameter Mean 95% C.L. limits

Ωm 0.2733 [0.2260, 0.3305]
Ωbh

2 0.2184 [0.0208, 0.0229]
h 0.6984 [0.6553, 0.7422]
ns 0.9579 [0.9330, 0.9838]
σ8 0.7941 [0.7434, 0.8491]
ǫII 0.0037 [0.0016, 0.0067]
ǫIII 0.0165 [0.0000, 0.0398]
λ0 3.0152 [1.0000, 5.1739]
τel 0.0803 [0.0625, 0.1042]
zre 6.7469 [5.8563, 8.2000]

Table 4.1: Mean and 95% C.L. constraints on the cosmological, astrophysical and derived pa-
rameters obtained with the reionization parametrized withthe CF model of reionization.
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4.1.2 Analysis method and datasets

The details of the CF model are already summarized in Chapter2 and 3; in the present work we
assume the following settings:

• We consider here a flatΛCDM cosmology described by a set of cosmological parameters:

{Ωm,Ωbh
2, h, σ8, ns}, (4.3)

whereΩm is the total matter density relative to the critical density, Ωbh
2 is the baryonic

matter density,h is the reduced Hubble parameterH0 = 100h, σ8 is the r.m.s. density
fluctuation in spheres of radius8h−1 Mpc andns is the scalar spectral index of primordial
perturbations. We want to stress that these cosmological parameters are considered here
as free parameters, so that they are not assumed a priori, as in our previous works (Mitra
et al. 2011, 2012).

• The CF reionization model contains additional three free parameters. These areǫII,III =
[ǫ∗fesc]II,III, the product of the star-forming efficiency (fraction of baryons within col-
lapsed haloes going into stars)ǫ∗ and the fraction of photons escaping into the IGMfesc
for PopII and PopIII stars; the normalizationλ0 of the ionizing photons mean free path
(see the previous chapters for details). In what follows we refer to these three parameters
as the “astrophysical” parameters, to distinguish them from the five “cosmological” ones
described described in the previous point.

• The ranges of variation adopted for the three free astrophysical parameters areǫII ∈
[0; 0.02], ǫIII ∈ [0; 0.1], λ0 ∈ [1; 10].

• The observational data used to compute the likelihood analysis are (i) the photo-ionization
ratesΓPI obtained using Lyα forest Gunn-Peterson optical depth observations and a large
set of hydrodynamical simulations (Bolton & Haehnelt 2007)and (ii) the redshift distri-
bution of LLSdNLL/dz in the redshift range of0.36 < z < 6 (Songaila & Cowie 2010).
The data points are obtained using a large sample of QSO spectra.

• In order to make the analysis self-consistent, the WMAP7 constraint on the total electron
scattering optical depthτel is not considered in this analysis. This prevents a possible
loophole in our analysis: WMAP7 constraints onτel have been obtained using the as-
sumption of instantaneous reionization atz = zre. Once this idealized evolution ofxe(z)
is dropped, the value ofτe must be a byproduct of the new analysis rather than being
inserted artificially as an external constraint into it. Moreover, as already pointed out in
Mitra et al. (2011, 2012), the CMB polarization spectra are sensitive to the shape of the
reionization history and considering a more general reionization scenario could lead to a
tighter optical depth constraint than derived by WMAP7 (Pandolfi et al. 2010).
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• Finally, we impose the prior that reionization should be completed byz = 5.8 to match
the flux data of Lyα and Lyβ forest.

With these hypotheses we have then modified the Boltzmann CAMB code (Lewis et al.
2000) to incorporate the CF model and performed a MCMC analysis based on an adapted ver-
sion of the public available MCMC packageCOSMOMC Lewis & Bridle (2002). Our basic data
set is the seven–yr WMAP data (Larson et al. 2011) (temperature and polarization), on top of
which we add two “astrophysical” datasets, i.e. the LLS redshift evolution,dNLL/dz (Songaila
& Cowie 2010), and the Gunn-Peterson optical depth measurements presented in Bolton &
Haehnelt (2007). To extract the constraints on free parameters from such combined data set we
consider a total likelihood functionL ∝ exp(−L) made up by two parts:

L =
1

2

Nobs
∑

α=1

[J obs
α − J th

α

σα

]2

+ L′ (4.4)

whereL′ refers to the WMAP7 likelihood function and is computed using the routine supplied
by the WMAP team;Jα represents the set ofNobs observational points referring to Gunn-
Peterson optical depth LLS distribution data; finally,σα are the corresponding observational
error-bars. We constrain the free parameters by maximizingL with flat priors on the allowed
parameter ranges and the aforementioned prior on the end of reionization atz = 5.8.

The Monte Carlo-Markov Chain convergence diagnostics are done on 4 chains applying
the Gelman and Rubin “variance of chain mean”/“mean of chainvariances”R statistic for each
parameter. We considered the chains to be converged atR− 1 < 0.03.

Parameter WMAP7 WMAP7 + PC WMAP7 + ASTRO

Ωm 0.266± 0.029 0.243± 0.032 0.273± 0.027
Ωbh

2 0.02258+0.00057
−0.00056 0.02321± 0.00076 0.02183± 0.00054

h 0.710± 0.025 0.735± 0.033 0.698± 0.023
ns 0.963± 0.014 0.994± 0.023 0.958± 0.013
σ8 0.801± 0.030 —– 0.794± 0.027
τel 0.088± 0.015 0.093± 0.010 0.080± 0.012
zre* 10.5± 1.2 —– 6.7± 0.6

Table 4.2: Comparison of the 68% C.L. posterior probabilityconstraints obtained for different
parametrization of reionization. Thezre parameter has a different definition in the different
reionization scenarios (see text for details).

4.1.3 Constraints for different parametrization of reionization

The results of the MCMC analysis described above are summarized in Table 4.1, where we list
the marginalized posterior probabilities at 95% confidencelevel (C.L.) errors on the free cosmo-
logical and astrophysical parameters. We also report the constraints for two derived parameters:
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Parameter WMAP7 + ASTRO CF
Mean 95% CL Mean 95% CL

ǫII 0.0037 [0.0016, 0.0067] 0.003 [0.001, 0.005]
ǫIII 0.0165 [0.0000, 0.0398] 0.020 [0.0000, 0.043]
λ0 3.0152 [1.0000, 5.1739] 5.310 [2.317, 9.474]
τel 0.0803 [0.0625, 0.1042] 0.089 [0.0635, 0.1104]
zre 6.7469 [5.8563, 8.2000] 6.762 [5.800, 7.819]

Table 4.3: Comparison between the mean value and the 95% C.L.posterior constraints between
the present work (WMAP7 + ASTRO) and the CF model (Mitra et al.2011) (MCF).
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Figure 4.1: Ionization histories for the best-fit model for the two cases WMAP7+ASTRO (red
dotted solid curve) and CF (green solid curve) Mitra et al. (2011).
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the electron scattering optical depthτe and reionization redshiftzr, to be intended as the red-
shift at which the reionization is 99% complete. In Table 4.2we show the 68% C.L. constraints
obtained by the WMAP team for the standard 6-parameterΛCDM model (“WMAP7”) and the
constraints obtained on the cosmological parameters from the present analysis (“WMAP7 +
ASTRO”).

As we can see from the Table 4.2 the results of our work mildly differ from the WMAP7
results for the parameters of the standardΛCDM model. The most sensitive parameter for the
presence of the “astrophysical” datasets (LLS and Gunn-Peterson data) isΩbh

2 whose mean
values in the two cases differ by more than a standard deviation from each other. It is im-
portant to note that even when considering a complex reionization history implying three new
parameters the errors remain practically the same as in the standard case.

Table 4.2 reports the results obtained in Pandolfi et al. (2010) for the WMAP7 dataset
with the PC reionization (“WMAP7 + PC”). This method produces two main differences with
respect to the WMAP7 + ASTRO case: the first is related to the constraints obtained forns. In
Pandolfi et al. (2010) the constraints for the scalar spectral index were compatible withns = 1,
i.e. the Harrison-Zel’dovich (HZ) primordial power spectrum, when instead WMAP7+ASTRO
excludes the valuens = 1 at> 3σ. The second difference concernsτel in the two cases: for
WMAP7 + PC this quantity is in the rangeτel = 0.093 ± 0.010, while the WMAP+ASTRO
case gives a mean value lower by> 1− σ, i.e. τel = 0.080± 0.012. Note that in the WMAP7 +
PC case we did not consider constraints on theσ8 parameter, so in Table 4.2 the corresponding
value is missing.

There is a caveat in comparing the constraints obtained onzre. Indeed, in the WMAP7
casezre is the redshift at which the universe undergoes an instantaneous and complete reioniza-
tion process. In the more realistic, extended reionizationscenarios considered here instead,zre
is defined as the redshift at which the IGM is 99% re-ionized byvolume. With this clarification
in mind, WMAP7+ASTRO results predict5.8 < zre < 8.2 at 95% C.L. (see Table 4.1).

In Table 4.3 we report the 95% C.L. posterior probability constraints for the reionization
parametersǫII , ǫIII andλ0 obtained in the present work (WMAP7 + ASTRO case, cosmo-
logical parameters free to vary) compared to those obtainedin Mitra et al. (2011) in which
the cosmological parameters were fixed to the WMAP7 best fit values (CF case). Figure 4.1
shows the comparison between the best-fit model for thexe(z) evolution for the two cases of
WMAP7 + ASTRO and CF. For the WMAP7 + ASTRO case, full hydrogenreionization is not
only achieved earlier than in the CF model, but the evolutionis faster, resulting in an initially
lowerxe(z) abovez = 8. These differences are entirely induced by the fact that we have now
allowed the cosmological parameters to vary together with the astrophysical ones, but they are
relatively small (Pandolfi et al. 2011). The fact that the astrophysical parameters do not show
much dependence on cosmology is understandable because thecosmological parameters affect
the reionization process mostly through structure formation. The next obvious step is to include
large scale structure information in the analysis. In conclusion, including astrophysical datasets
in the analysis seems to lead to relatively important effects on the extraction of the cosmological
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parameters.

Parameter PC Bounds Astrophysical Bounds

m1 [−0.1236, 0.7003] [−0.1229,−0.0866]
m2 [−0.6165, 0.2689] [−0.2594, 0.0002]
m3 [−0.3713, 0.5179] [0.0763, 0.2941]
m4 [−0.4729, 0.3817] [−0.2107,−0.1080]
m5 [−0.3854, 0.4257] [0.0418, 0.1319]

Table 4.4: Ranges of variation for the amplitudes of the principal component, in the case of the
Principal Components and in the case of the 99% C.L. reconstructed amplitudes of the present
analysis (see text for details).

For each reionization history allowed by the MCMC likelihood analysis, we use equation
(4.2) to reconstruct the amplitudes of the first five PC amplitudes,mµ, with µ = 1...5. By
construction now, the amplitudesmµ not only fulfill the necessary physicality conditions (see
Sec. 1) but also they are compatible with the additional astrophysical data sets considered in
this analysis, i.e. the Lyα Gunn-Peterson test and the LLS redshift distribution.

In Fig. 4.2 we show the two dimensional 68% and 99% c.l constraints for the amplitudes
mµ obtained here compared with those obtained in Pandolfi et al.(2010) for which we show
the two dimensional 68% and 95% C.L. distributions for each of the cases considered. We
choose to report the 99% C.L. instead of the usual 95% C.L. to be as conservative as possible in
showing the reionization histories allowed by the MCMC likelihood analysis. The color (layer)
code is the following: in pink (top layer) there is the case WMAP7 + ASTRO considered in
the present work. In the background there are the cases considered in Pandolfi et al. (2010): in
blue is the WMAP7 case (bottom layer) , in red (next layer up) is the case called “CMB All” (
i.e. WMAP7 + ACBAR + BICEP+ QUAD + BOOMERanG), green (next layer) is CMB All +
LRG-7 and yellow (next layer) is simulated PLANCK data. Pandolfi et al. (2010) considered an
ensemble of CMB dataset along with WMAP7, and also we forecasted future constraints from
the PLANCK experiment, simulating a set of mock data with a fiducial model given by the best
fit WMAP5 model with the following experimental noise:

Nℓ =

(

w−1/2

µK-rad

)2

exp

[

ℓ(ℓ+ 1)(θFWHM/rad)
2

8 ln 2

]

, (4.5)

wherew−1/2 is the temperature noise level (a factor
√
2 larger for polarization noise) andθ is

the beam size. For the PLANCK mission we usew1/2 = 58µK andθFWHM = 7.1′ equivalent
to expected sensitivity of the143 GHz channel.

The region spanned by PC amplitude values is much smaller than that allowed by when
the PC bounds only are imposed. The 99% C.L. constraints values are reported in the right part
of the Table (4.4) (“Astrophysical Bounds”). As seen from Table (4.4) the amplitudes of all the
principal components (except form2) obtained with the above procedure are constrained at 99%
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Figure 4.2: 68% and 99% reconstructed C.L. constraints for the values of the PC amplitudes
computed from CF model and equation (4.2) (top layer, pink).Background contours refer to
68% and 95% C.L. constraints obtained in Pandolfi et al. (2010) with the PC reionization for
WMAP7 (bottom layer, blue), WMAP7 + QUAD + ACBAR + BICEP (CMBAll, next layer up,
red), CMB All + LRG-7 (next layer, green) and simulated PLANCK data (next layer, yellow),
respectively.
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C.L. to take a definite sign, negative form1 andm4 and positive form3 andm5. Moreover, even
if the 99% C.L. upper bound ofm2 is positive, this second amplitude is mostly constrained to
be always negative. These results are in qualitative agreement with Pandolfi et al. (2010), who
also found that the same amplitude signature, albeit with errors large enough that the 95% C.L.
bounds encompass values of both possible signs (Pandolfi et al. 2011).

4.1.4 Summary

With the aim of constraining the evolution of cosmic reionization, we have extended previous
work based on the use of Principal Components analysis. The main novelty of the present work
is represented on one hand by complementing available CMB data with additional astrophysical
results from quasar absorption line experiments, as the Gunn-Peterson test and the redshift
evolution of Lyman Limit Systems. In addition, we have for the first time explored the effects
of a joint variation of both the cosmological (Ωm,Ωbh

2, h, σ8, ns) and astrophysical (ǫII, ǫIII, λ0,
see Sec 4.1.2 for their physical meaning) parameters. Note that, differently from the vastly
used approach in the literature, we do not impose a priori anybound on the electron scattering
optical depthτel, which instead we calculate a posteriori. This is to preventa possible loophole
in the calculation, as the WMAP determination of such quantity is based on the assumption of
an instantaneous reionization which we do not make here.

Including a realistic (i.e physically motivated) reionization history in the analysis in-
duces mild changes in the cosmological parameter values deduced through a standard WMAP7
analysis. Particularly noteworthy are the variations inΩbh

2 = 0.02258+0.00057
−0.00056 (WMAP7) vs.

Ωbh
2 = 0.02183 ± 0.00054 (WMAP7 + ASTRO), and the new constraints for the scalar spec-

tral index, for which WMAP7+ASTRO excludes the Harrison-Zel’dovich valuens = 1 at> 3σ
(Pandolfi et al. 2011). Finally, the electron scattering optical depth values is considerably de-
creased with respect to the standard WMAP7, i.e.τel = 0.080 ± 0.012. We conclude that
inclusion of astrophysical datasets, allowing to robustlyconstrain the reionization history, in
the extraction procedure of cosmological parameters leadsto relatively important differences in
the final determination of their values.

4.2 CMB bounds on neutrino mass from reionization

Now, we want to further exploit our data-constrained reionization model to achieve the plausible
constraint on the neutrino masses as allowed by the current datasets related to reionization.
Neutrinos with non-zero mass can have an intense impressionon the evolution of our Universe.
Rigorous cosmological observations on cosmic microwave background (CMB) anisotropies and
the large-scale structures of galaxies thus can be used to put a stronger constraint on the neutrino
masses than that achieved from current laboratory experiments. Current release of Nine years
Wilkinson Microwave Anisotropy Probe (WMAP) data presentsthe upper bound on the sum
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of neutrino masses assuming asuddenreionization scenario depicted by a single parameter. In
this section, we shall focus on constraining the CMB neutrino mass bounds for a more general
and realistic reionization model. Our aim is to investigatethe possible effects of considering a
data-constrained reionization scenario on neutrino mass limits.

4.2.1 Cosmological constraints on neutrino masses

The availability of good quantity observational data from Wilkinson Microwave Anisotropy
Probe (WMAP) satellite significantly contributes to a stringent constraint on cosmological pa-
rameters and models of structure formation. According to the widely accepted flat cold dark
matter model with a cosmological constant (ΛCDM) cosmology, the universe is mostly made
of Dark energy (73%) and Dark matter (23%) dominating over the baryonic contribution. But
despite of many efforts, the nature of the dark components remains one of the biggest myster-
ies in cosmology over past few decades. Nonetheless, recentcosmological data have indeed
allowed much progress in constraining dark matter properties and neutrino masses (Mapelli &
Ferrara 2005; Slatyer et al. 2009; Natarajan 2012; Zhao et al. 2012; Carbone et al. 2012; Evoli
et al. 2012). In particular, neutrino mass bound now becomesone of the most intriguing goals in
cosmology as well as experimental particle physics (for reviews, see Dolgov 2002; Hannestad
2004; Tegmark 2005; Lesgourgues & Pastor 2006; Hannestad 2006, 2010 and the references
therein).

Atmospheric and solar neutrino oscillation experiments set a promising impression for
particle physics models by strongly indicating that neutrinos have mass and that the sum of their
masses is

∑

mν & 0.05 eV (Maltoni et al. 2004; Ashie et al. 2005; Fogli et al. 2006).However,
recent cosmological data, in particular, observations related to cosmic microwave background
radiation (CMBR) and the growth of structures in the universe can also make a room to deliver
a potentially stronger constraint on neutrino masses (Elgarøy & Lahav 2005; Fukugita et al.
2006; Lesgourgues & Pastor 2006; Komatsu et al. 2011; Joudaki 2013; Riemer-Sørensen et al.
2013). Although, CMB data alone can constrain neutrino masses, but there is a large degen-
eracy between neutrino masses and the Hubble constantH0 (Ichikawa et al. 2005). An useful
combination of different data sets along with the CMB data and matter power spectrum mea-
surements can significantly tighten the limits (Hu et al. 1998; Eisenstein et al. 1999; Hannestad
2003; Seljak et al. 2005; Seljak et al. 2006; Gratton et al. 2008; Hannestad 2010). In particular,
current release of Wilkinson Microwave Anisotropy Probe (WMAP) nine-year data (Hinshaw
et al. 2012) can alone give a bound on the total neutrino masses as

∑

mν < 1.3 eV at 95%
confidence limits (CL) (which is the same as WMAP7 data by Komatsu et al. (2011)). Combin-
ing CMB data with the measurements of baryon acoustic oscillation (BAO) scale, constituted
by luminosity distance measurements from type-Ia supernovae can put more tighter constraint
(Jarosik et al. 2011). BAO data and the priors onH0 measurements obtained from both Hubble
Space Telescope (HST) Key Project (KP) (Freedman et al. 2001; Sandage et al. 2006; Freedman
et al. 2012) and Supernovae andH0 for the Equation of state (SHOES) program (Riess et al.
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2009, 2011) along with CMB can make this constraint even tighter (Sekiguchi et al. 2010).
Moreover, WMAP team found

∑

mν < 0.44 eV at 95% CL (Hinshaw et al. 2012; Bennett
et al. 2012) combining CMB data with the BAO data using the third Sloan Digital Sky Survey
(SDSS) data from the Baryon Oscillation Spectroscopic Survey (BOSS)1 (Schlegel et al. 2009;
Dawson et al. 2012; Ahn et al. 2012; Anderson et al. 2013) and with the recentH0 prior (Riess
et al. 2011), which isH0 = 73.8 ± 2.4. Note that, this bound for

∑

mν is 25% lower than the
bound of0.58 eV set by WMAP7 data (Komatsu et al. 2011).

Another feasible effect that could put an impact on the CMB bounds for neutrino masses is
the detailing of reionization scenario. Although, the WMAPobservation of cosmological data
analysis is based on the assumption that reionization is a sudden and instantaneous incident,
but recent studies (Barkana & Loeb 2001; Wyithe & Loeb 2003; Choudhury & Ferrara 2006b;
Choudhury 2009; Pritchard et al. 2010; Mitra et al. 2011) suggest that reionization process is
too complex to be described as a sudden event. Archidiacono et al. (2010) indicates that the sum
of the neutrino masses from CMB data alone can be relaxed to

∑

mν < 1.66 eV (95% CL) if
one considers a generalized reionization model (named as MHreionization) based on a Principal
Component Analysis (PCA) suggested by Mortonson & Hu (2008b). Recently, Jose et al. (2011)
suggests that a more strict constraint on the neutrino masses (

∑

mν < 0.52 eV at 95% CL) can
be achieved using a well-measured galaxy luminosity function (LF) of high-redshift Lyman
break galaxies (LBGs) atz ∼ 4 from a semi-analytical structure formation model combining
with WMAP7 data. An additional constraint using the prior onHubble constant can stiffen
their limit to

∑

mν < 0.29 eV at 95% CL. Also, the low-frequency radio observations of
the redshifted 21 cm signal from the epoch of reionization can be used to further constrain
neutrino mass limits (Pritchard & Pierpaoli 2008, 2009; Oyama et al. 2012). Furthermore, the
recent PLANCK2 CMB data for temperature power spectrum with a WMAP polarization low-
multipole likelihood (Bennett et al. 2012) atl ≤ 23, set a limit of

∑

mν < 0.93 eV (95% CL).
Along with the BAO data, this value becomes much lower;< 0.25 eV (Ade et al. 2013b).

4.2.2 Models of reionization and free parameters

In this work, we try to investigate the possible effects on neutrino mass bound by considering our
data-constrained reionization model based on Choudhury & Ferrara (2005, 2006b) and Mitra
et al. (2011, 2012). This model constrains the reionizationhistory using a set of reionization
parameters{ǫII, ǫIII, λ0}, whereǫII (or ǫIII) is the product of the star-forming efficiency (fraction
of baryons within collapsed haloes going into stars)ǫ∗ and the fraction of photons escaping into
the IGMfesc for PopII (or PopIII) stars andλ0 is the normalization of the ionizing photons mean
free path. The analysis is done using only three particular data sets: the photoionization rates
ΓPI, the redshift distribution of Lyman Limit SystemsdNLL/dz and the angular power spectra
Cl of the CMB temperature (T) and polarization (E) modes using WMAP7. In principal, our

1http://www.sdss3.org/surveys/boss.php
2http://www.esa.int/SPECIALS/Planck/index.html
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Model Cosmological parameters Reionization parameters

Reion-Sudden {Ωbh
2,Ωch

2,Ων , h, σ8, ns} τel
Reion-CF same as above {ǫII, ǫIII, λ0}

Table 4.5: Two different models of reionization consideredin this work and their free param-
eters. For both models, cosmological parameter space is same, but the number and nature of
reionization parameters differ.

reionization model parameters can have some degeneracies with the cosmological parameters,
as we include the CMB data in our analysis (Mitra et al. 2012).So, we should vary all the
relevant cosmological parameters along with the parameters related to our reionization model.
Thus, our main goal is to see how the data-constrained reionization scenario can affect the
bounds on neutrino masses and also how the inclusion of otherdata sets can improve that result.

We start with assuming the universe to be described by a flat cold dark matter model
with a cosmological constant (ΛCDM) which is parametrized by a set of cosmological param-
eters{Ωbh

2,Ωch
2,Ων , h, σ8, ns}, whereΩb, Ωc andΩν are the energy density for baryon, cold

dark matter and massive neutrinos, respectively, relativeto the critical energy density.h is the
reduced Hubble parameterH0 = 100h, σ8 is the r.m.s. density fluctuation in spheres of ra-
dius8h−1 Mpc andns is the scalar spectral index of primordial perturbations. Remember that
these cosmological parameters are considered here as free parameters. We assume 3 degener-
ate, massive neutrinos with the same mass ofmν , so the sum of the neutrino masses will be
∑

mν = 3mν and it is related toΩν by (Lesgourgues & Pastor 2006; Archidiacono et al. 2013):
∑

mν = 93.14eV × Ωνh
2 (4.6)

Now, we will consider two different models of reionization based on the extra parame-
ter(s) needed to describe the reionization process. They are as follows:

• The extra parameter needed to describe thesuddenreionization is basically one single pa-
rameter the Thomson scattering optical depthτel. We refer to this model as “Reionization-
Sudden” or in short “Reion-sudden” model.

• As we mentioned earlier that for a more complex and realisticreionization model, one
needs more than one parameter to describe it. For example, wecan model the reion-
ization scenario with additional three free parameters -{ǫII, ǫIII, λ0} (Mitra et al. 2011;
Pandolfi et al. 2011). This well-tested semi-analytical reionization model was first pro-
posed by Choudhury & Ferrara (2005, 2006b) and hereafter we will call this model as
“Reionization-CF” or in short “Reion-CF” model.

To summarize the differences between these two model parameters, we listed them in
Table 4.5. For both of the models described above, cosmological parameter space is same, but
the number and nature of reionization parameters differ.
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Furthermore we checked that, for our CF reionization model,a large value ofmν is com-
pensated by a very high value ofǫIII. So we investigate whether this highǫIII is allowed by
the observations on high redshift galaxies. We have alreadystudied the constraints on the star-
forming efficiency (ǫ∗) and escape fractionfesc of population II stars using observed luminosity
function (LF) data earlier in Chapter 3 (Mitra et al. 2013). Following the same approach men-
tioned there, we compute the LF using our reionization modeland match the observed galaxy
LF data for6 ≤ z ≤ 10 (Bouwens et al. 2007, 2011b; Oesch et al. 2012). This time, weinclude
both PopII and PopIII stars and vary onlyǫIII∗ to find the upper limit onǫIII as allowed by the
observed data. Herefesc has been set to its maximum value and the upper limit onǫIII∗ has been
obtained by matching the LF data, hence the result is an upperlimit on ǫIII. In addition, we also
find that, this upper limit depends on the cosmological parameters as well. So, while varying
all the parameters, we compute this upper bound within the MCMC chains and put that value
as a prior toǫIII.

We then perform a Monte-Carlo Markov Chain (MCMC) analysis over all the parameter
space of each model. In order to carry out the analysis, we have developed a code based on
the publicly available COSMOMC3 (Lewis & Bridle 2002) code. Using the usual Gelman
and Rubin convergence statistics, we run a number of separate chains untilR, corresponding
to the ratio of the variance of parameters between chains to the variance within each chain,
achievesR − 1 < 0.03. First we have done the analysis using WMAP7 CMB data only to
see how the CMB data alone can constrain the neutrino mass bound for different models of
reionization. We then carry out the same analysis by taking the BAO data (Percival et al. 2010)
along with the WMAP7 data set (we denote this case as WMAP7+BAO). And finally, to see
how the prior onH0 affects the constraint onmν , we have also included the prior obtained from
the SHOES program i.e.H0 = 74.2 ± 3.6 (Riess et al. 2009) into our analysis (denoted as
WMAP7+BAO+H0).

4.2.3 Effects of reionization on neutrino mass bounds

The constraints on several cosmological and other parameters, along with their 95% (2-σ) con-
fidence limits, obtained from our MCMC analysis for different reionization scenarios are sum-
marized in Table 4.6. First we investigate the usual WMAP7 case i.e. the case with sudden
reionization (second column of Table 4.6). For this case, weget an upper limit

∑

mν < 1.25
eV at the 2-σ CL. The other cosmological parameters are in well agreementwith those obtained
by Archidiacono et al. (2010), Jose et al. (2011) and Feeney et al. (2013). We present our re-
sults using additional BAO data and BAO data withH0 prior along with the WMAP7 data in
column 4 and 6 of Table 4.6 respectively for this sudden reionization case. We find a relatively
lower value for

∑

mν (< 0.63 eV) using the WMAP7+BAO data and even a more tighter value
(< 0.56 eV) using WMAP7+BAO+H0 data. Note that, the last value is almost identical with
that obtained by WMAP team (Komatsu et al. 2011).

3http://cosmologist.info/cosmomc/
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Parameters WMAP7 WMAP7+BAO WMAP7+BAO+H0

Reion-Sudden Reion-CF Reion-Sudden Reion-CF Reion-Sudden Reion-CF

Ωbh
2 0.0218+0.0012

−0.0011 0.0213+0.0012
−0.0010 0.0212+0.0010

−0.0010 0.0211+0.0010
−0.0010 0.0213+0.0010

−0.0010 0.0211+0.0011
−0.0010

Ωch
2 0.1168+0.0480

−0.0408 0.1151+0.0471
−0.0474 0.1184+0.0345

−0.0310 0.1168+0.0338
−0.0301 0.1173+0.0307

−0.0298 0.1153+0.0303
−0.0250

h 0.670+0.075
−0.067 0.657+0.087

−0.071 0.672+0.039
−0.038 0.668+0.038

−0.037 0.689+0.036
−0.035 0.686+0.033

−0.034

σ8 0.715+0.119
−0.129 0.714+0.110

−0.119 0.694+0.117
−0.133 0.657+0.093

−0.081 0.719+0.125
−0.134 0.677+0.115

−0.091

ns 0.957+0.030
−0.029 0.944+0.029

−0.028 0.962+0.024
−0.024 0.955+0.023

−0.022 0.969+0.025
−0.025 0.961+0.022

−0.022

∑

mν(eV) < 1.25 < 1.04 < 0.63 < 0.52 < 0.56 < 0.46

τel 0.086+0.030
−0.028 0.081+0.022

−0.018 0.084+0.027
−0.024 0.080+0.018

−0.015 0.086+0.027
−0.024 0.081+0.019

−0.016

ǫII − 0.004+0.005
−0.003 − 0.006+0.004

−0.004 − 0.005+0.004
−0.003

ǫIII − 0.008+0.014
−0.007 − 0.010+0.013

−0.009 − 0.010+0.013
−0.009

λ0 − 2.378+2.690
−0.786 − 1.783+1.882

−0.891 − 1.978+2.176
−1.080

Table 4.6: Best-fit values and 95% confidence limits on the cosmological parameters (top six) and reionization parameters
(last four) in the case of sudden reionization and CF reionization model for WMAP7 CMB data only, WMAP7+BAO and
WMAP7+BAO+SHOES prior ofH0 = 74.2± 3.6. Note that,τel is a derived parameter in case of CF reionization model.
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Now, to see how the detailing of reionization history affects this bound, we show the
constraints on all the parameters for our reionization model using WMAP7, WMAP7+BAO and
WMAP7+BAO+H0 datasets in column 3, 4 and 5 respectively. One can see that, by considering
a more physical reionization picture, the upper bound on

∑

mν is improved considerably for all
the cases. In particular, the constraint on the neutrino mass is improved by∼ 17% for WMAP7
alone and about18% for WMAP7+BAO+H0 when a data-constrained reionization scenario is
considered. We should refer here that, Archidiacono et al. (2010) found an increase in neutrino
masses considering the MH reionization model based on PCA. The discrepancy between these
results is due to the fact that, their reionization model is even more general with larger number of
parameters and greater degeneracies between the those parameters than ours. Also, on contrary
to their results, we found the spectral indexns is always< 1 at 95% CL for all cases even
we consider the complex reionization premises, thus rulingout the Harrison-Zeldovich (HZ)
spectrum (ns = 1). We have shown the values for our reionization model parameters and the
electron scattering optical depthτel, which is a derived parameter for this case, in last four rows
in Table 4.6. Although, we get slightly lower values ofτel than the WMAP7 best-fit value, but
they are still well inside within the 2-σ limit obtained from WMAP7 data.

Furthermore, we also examine what would be the effects of a non-zero neutrino mass on
reionization histories in Figure 4.3. We know that, massiveneutrinos can affect the amplitude of
cosmological perturbations at high redshifts (z ≃ 1000, probed by CMB) and as well as at very
low redshifts (z ≃ 1, probed by galaxy surveys). But, recent studies show that they can also
affect the power spectrum of perturbation at an intermediate redshift (6 ≤ z ≤ 20) through the
expansion of the universe and theirfree-streamingeffects (Eisenstein & Hu 1999; Lesgourgues
& Pastor 2006; Pritchard & Pierpaoli 2008). Thus the growth of the fluctuations and hence
the shape of the power spectrum in this regime are influenced by the presence of these massive
neutrinos. This essentially puts an imprint on the reionization scenarios.

In Figure 4.3, we show the evolution of various quantities related to reionization for zero
and non-zero neutrino masses for our semi-analytical CF reionization model with WMAP7 data
only. The solid (green) lines correspond to the best-fit model from our current MCMC analysis
havingΩν = 0.01, while the long-dashed (black) lines correspond to the best-fit model from
the previous chapter (see Chapter 2) with zero neutrino mass(Ων = 0). For comparison, we
have also plotted a model havingΩν = 0.022 or

∑

mν ≈ 1.04 eV (still allowed within the 2-σ
limits of our current analysis with WMAP7 data) by the short-dashed (blue) lines. The points
with error-bars denote the recent observational data points related to reionization. We should
mention here that, as we want to understand the effect ofmν alone on the reionization models,
we keep the same efficiency parameters (ǫII/III) for these three models.

One can see that, the evolution of the quantities related to reionization are very similar
for the model with zero neutrino mass and the best-fit model with Ων = 0.01 at lower redshifts
(z < 6), then they depart at higher redshifts. For the model with relatively higher neutrino
mass (Ων = 0.022), this deviation becomes very large, even at smaller redshifts. It can be
seen from the plots of redshift distribution of Lyman Limit SystemsdNLL/dz (Top-left panel)
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Figure 4.3: Evolution of various quantities related to reionization for zero and non-zero neutrino
masses for our semi-analytical CF reionization model with WMAP7 data. The solid (green)
lines correspond to the best-fit model from our MCMC analysishavingΩν = 0.01, while the
short-dashed (blue) lines corresponds to the model havingΩν = 0.022 or

∑

mν ≈ 1.04 eV and
still allowed within the 2-σ limits. The long-dashed (black) lines are for the model withΩν = 0
(i.e. the best-fit model from our previous chapters). These three models have the same efficiency
parameters (ǫII/III). To illustrate the degeneracy betweenǫ’s andmν , a fourth model with same
Ων = 0.01 but having differentǫ’s are plotted by the thick shaded (gray) curves. This model
mimics the model with zero neutrino mass. The points with error-bars denote the observational
data points.Top-left: the LLS distributiondNLL/dz with data points from Songaila & Cowie
(2010);Top-middle:the hydrogen photoionization rateΓPI(z) along with the constraints from
Bolton & Haehnelt (2007);Top-right: the electron scattering optical depthτel with WMAP7
data point.Bottom-left: the global neutral hydrogen fractionxHI(z) with observational limits
from QSO absorption lines (Fan et al. 2006; filled square), Lyα emitter luminosity function
(Kashikawa et al. 2006; open triangle) and GRB spectrum analysis (Totani et al 2006; open
square). Also shown the constraints using dark gap statistics on QSO spectra (Gallerani et al
2008a; open circles) and GRB spectra (Gallerani et al. 2008b; filled circle); Bottom-middle:
the volume filling factor of HII regionsQHII(z); Bottom-right:(a) TT, (b) TE and (c) EE power
spectra with the data points from WMAP7 (Larson et al. 2010).
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Model ǫII ǫIII

Ων = 0.010 (best-fit)
Ων = 0.022 0.0044 0.0077
Ων = 0.0
Ων = 0.010 (mimic) 0.0038 0.0157

Table 4.7: Values of theǫ parameters for different models with zero and non-zero neutrino
masses. The top three models have the same efficiency parameters, whereas the last model has
a non-zero neutrino mass same as the best-fit model of our present analysis but with different
ǫ’s so that it can mimic the zero neutrino mass model.

and the hydrogen photoionization rateΓPI(z) (Top-middle panel), where the higher neutrino
mass models clearly shows larger departures, even atz < 6. However this model is still within
the corresponding current observational error-bars. So, any sighting of LLS at higher redshifts
would be helpful in putting more constraints on reionization and shrinking the allowed limits
on neutrino masses. Similar behavior of non-zero neutrino masses can also be obtained from
the evolution of the global neutral hydrogen fractionxHI(z) (Bottom-left panel) and the volume
filling factor of HII regionsQHII(z) (Bottom-middle panel). For the model with very high
neutrino mass we see that, reionization is completed at a relatively lower redshift compared to
the models having zero or low neutrino masses. This could happen because of the fact that the
presence of very massive neutrinos could suppress the number density of galaxies and hence
the formation rate of halos at lower redshifts allowing reionization to be completed lately (Jose
et al. 2011).

Moreover, we know that, during reionization the re-scattering of photons can suppress the
anisotropies on smaller angular scales by a damping factore−τel , where the electron scattering
optical depthτel can be obtained from reionization (Top-right panel). From the plot forCTT

l

power spectra (top row of theBottom-right panel), one can see that, this quantity remains almost
the same for zero or non-zero neutrino masses for alll, even forl < 30 where the effect of
renionization is seemed to be important. This is expected asthe measurements at such lowl
are limited by thecosmic variance, and thus we cannot see the effects of different reionization
histories in the temperature spectrum. However, we can recognize the reionization effects in the
polarization spectraCEE

l (last row of theBottom-right panel) at l < 30. The plot shows a clear
departures of low-l polarization spectra for non-zero neutrino masses from themodel with zero
neutrino mass. These differences are larger for the models with higher neutrino masses.

Remember that, these three models have the same efficiency parameters (ǫII/III). Now, we
include a fourth model with differentǫ’s but having a same non-zeromν (i.e.Ων = 0.01) as our
best-fit model for the current analysis. We vary the efficiency parameters of this fourth model so
that it can mimic the zeromν model. The values of theǫ parameters for all these four neutrino
mass models are tabulated in Table 4.7. We have shown the mimic model by the thick shaded
(gray) curves in Figure 4.3. We see that, the evolution of allthe quantities for this model are
almost identical to those for the model with zero neutrino mass. This essentially guarantees that
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there exists a degeneracy betweenǫ’s andmν . The constraints onmν can be further improved
if we can constrain theǫ parameters independently. Thus, it is the degeneracy with astrophysics
which is not giving good constraints here. Nevertheless, itis important to include reionization
data sets in the analysis to improve the constraints on neutrino masses.

4.2.4 Summary

One key aspect of studying reionization lies in the fact thatit is strongly related to the properties
of first luminous sources and subsequent galaxy formation. Due to the lack of knowledge
about an accurate evolution of ionization fraction during reionization period, it is sometimes
parametrized by by a single parameter, the Thomson scattering optical depthτel, assuming
the universe was reionized instantaneously at some redshift denoted aszre. However, recent
studies favor for a fairly complex and extended reionization process over the redshift range
6 . z . 15 (Choudhury & Ferrara 2006a,b; Mitra et al. 2011), and thus itcannot be described
by a single parameter. In this work, we explore the constraints on the cosmological parameters,
particularly the sum of the neutrino masses

∑

mν , using such data-constrained reionization
model. With a relatively complex and realistic reionization model (Choudhury & Ferrara 2005,
2006b) described by three parameters (ǫII, ǫIII, λ0), we try to determine the upper bounds on
neutrino masses and compare our results with those obtainedusing a simple sudden reionization
scenario.

We find that, using WMAP7 data alone, a more physically reasonable treatment of reion-
ization can tighten the upper limit on neutrino masses by∼ 17% than that for standard sudden
reionization scheme. The BAO dataset and a prior onH0 obtained from the SHOES program
along with the WMAP7 data have been used in this work in order to further reduce the uncer-
tainty on the neutrino masses. We get an∼ 18% improvement for this case using our data-
constrained reionization model. Although, the results presented here shows that the constraints
improve with reionization data sets, but still we do not get much better constrains. So, we need
to identify the reason why the high masses are allowed by the data we considered here. For
that, we then examine the possible effects of non-zero neutrino masses on reionization histo-
ries. We find that, one of the possible reasons for not gettingbetter constrains lies in the fact
that there could exist a large degeneracy between the efficiency parametersǫ’s andmν . Thus,
an independent bound onǫ could be crucial in ruling out the models having higher neutrino
masses. Even so, we establish that the constraints on neutrino masses can be improved up to a
reasonable amount by considering the realistic data-constraint reionization scenario and also the
future observations associated with reionization can possibly further reduce the present bounds
on neutrino masses.

Finally, we should mention that, although the new WMAP (Bennett et al. 2012), BAO
(Anderson et al. 2013) and PLANCK (Ade et al. 2013b) datasetshave already become public,
we have not included them in this analysis. However, as long as we are concern in finding the
bounds onmν , the old WMAP7 data are fully in agreement with the recently released WMAP9
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data (Hinshaw et al. 2012). So, the disparity between using WMAP7 and WMAP9 data is very
insignificant for this analysis. Also, remember that, our main aim in this work is to compare the
limits on neutrino masses for different reionization scenarios. The current release of BAO data
with WMAP9 and theH0 prior or the recent PLANCK will of course lower the bound of

∑

mν

for both cases but by the same amount. Furthermore, the new PLANCK data release does not
include the polarization data in their likelihood, insteadthey rely on the WMAP polarization
likelihood (Page et al. 2007; Bennett et al. 2012) at low multipoles to constrain the optical
depth from reionization (Ade et al. 2013a,b). As most of the constraints related to reionization
models come from the polarization data, we postpone the analysis with the next data release of
PLANCK to a later project. So, in this case, the impact of these new datasets, especially when
considered as a combination with other datasets, is very marginal and thus will not significantly
change our main conclusions.
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CHAPTER 5

FORMATION RATE OF DARK MATTER
HALOES

We have seen that, one of the most crucial ingredient of any analytical models discussed in the
previous chapters is the global star formation rateρ̇∗(t) and the formation rate of dark matter
halos is directly involved in calculating this quantity. Asa matter of fact, the hierarchical
formation of dark matter halos is the extremely significant process which leads to formation
and evolution of galaxies and clusters of galaxies. Thus it is worthy of spending some time in
discussing about the formation rate of dark matter halos here.

Gravitational amplification of density perturbations is thought to be responsible for for-
mation of large scale structures in the Universe (Peebles 1980; Shandarin & Zeldovich 1989;
Peacock 1999; Padmanabhan 2002). Much of the matter is the socalled dark matter that is be-
lieved to be weakly interacting and non-relativistic (Trimble 1987; Komatsu et al. 2009). Dark
matter responds mainly to gravitational forces, and by virtue of a larger density than baryonic
matter, assembly of matter into haloes and large scale structure is primarily driven by gravi-
tational instability of initial perturbations in dark matter. Galaxies are believed to form when
gas in highly over-dense haloes cools and collapses to form stars in significant numbers (Hoyle
1953; Rees & Ostriker 1977; Silk 1977; Binney 1977). Thus thehierarchical formation of dark
matter haloes is the key driver that leads to formation and evolution of galaxies and clusters of
galaxies.

The halo mass function describes the comoving number density of dark matter haloes as
a function of mass and redshift in a given cosmology. It is possible to develop the theory of
mass functions in a manner that makes no reference to the details of the cosmological model
or the power spectrum of fluctuations. That is, we expect the mass function to take a universal
form, when scaled appropriately. Simple theoretical arguments have been used to obtain this
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universal functional form of the mass function (Press & Schechter 1974; Bond et al. 1991;
Sheth et al. 2001). Bond et al. (1991) and Sheth et al. (2001) used the excursion set theory
to derive the mass function. Much work has also been done to determine the extent to which
this form is consistent with results from N-body simulations (Jenkins et al. 2001; White 2002;
Reed et al. 2003; Warren et al. 2006; Reed et al. 2007; Lukić et al. 2007; Cohn & White 2008;
Tinker et al. 2008) with the conclusion that the agreement isfairly good. It is remarkable that
a purely local approach provides a fairly accurate description of the manifestly non-linear and
strongly coupled process of gravitational clustering. Thesuccess of the local description has
been exploited in developing the semi-analytic theories ofgalaxy formation (White & Frenk
1991; Kauffmann et al. 1993; Chiu & Ostriker 2000; Madau et al. 2001; Samui et al. 2007).

The Press-Schechter mass function (Press & Schechter 1974)that is commonly used in
these semi-analytic models assumes spherical collapse of haloes (Gunn & Gott 1972). The
shape of this mass function agrees with numerical results qualitatively, but there are deviations
at a quantitative level (Efstathiou et al. 1988; Jenkins et al. 2001). Improvements to the Press-
Schechter mass function have been made to overcome this limitation. In particular, the Sheth-
Tormen mass function, which is based on the more realistic ellipsoidal collapse model (Sheth &
Tormen 1999; Sheth et al. 2001) fits numerical results better. Many fitting functions with three
or four fitting parameters have been proposed, these are based on results of simulations of the
Lambda-Cold Dark Matter (ΛCDM) model (Jenkins et al. 2001; Reed et al. 2003; Warren et al.
2006; Fakhouri et al. 2010).

In the application of the theory of mass functions to the semi-analytic models for galaxy
formation, we often need to know comoving number density of haloes of a certain age. Nat-
urally, this quantity is related to the halo formation ratesand the survival probability. While
these details are known and well understood for the Press-Schechter mass function (Press &
Schechter 1974), the situation is not as clear for other models of the mass function. Further-
more, analytic estimates for the halo formation rate and survival probability are important in
spite of the availability of accurate fitting functions for these quantities in theΛCDM model.
This is because analytic estimates can be used to study variation in these quantities with re-
spect to, for instance, the underlying cosmology or the power spectrum of matter perturbations.
Studying such variation with the help of simulations is often impractical. In this work, we focus
on the computation of halo formation rates.

Several approaches to calculating halo formation rates have been suggested (Blain & Lon-
gair 1993; Sasaki 1994; Kitayama & Suto 1996). In particular, Sasaki (1994) suggested a very
simple approximation for the formation rate as well as survival probability for haloes. The ap-
proximation was suggested for the Press-Schechter mass function, though it does not use any
specific aspect of the form of mass function. The series of arguments is as follows:

• Merger and accretion lead to an increase in mass of individual haloes. Formation of
haloes of a given mass from lower mass haloes leads to an increase in the number density,
whereas destruction refers to haloes moving to a higher massrange. The net change in
number density of haloes in a given interval in mass is given by the difference between
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the formation and destruction rate.

• Given the net rate of change, we can find the formation rate if we know the destruction
rate.

• A simple but viable expression for the destruction rate is obtained by assuming that the
probability of destruction per unit mass (also known as the halo destruction efficiency) is
independent of mass.

• This approximate expression for the destruction rate is then used to derive the formation
rate as well as the survival probability.

The resulting formulae have been applied freely to various cosmologies and power spec-
tra, including the CDM class of power spectra. The Sasaki approach has been used in many
semi-analytic models of galaxy formation (Chiu & Ostriker 2000; Choudhury & Ferrara 2005;
Samui et al. 2007) mainly due to its simplicity. Attempts have also been made to generalize the
approximation to models of mass function other than the Press-Schechter mass function (Samui
et al. 2009), though it has been found that a simple extensionof the approximation sometimes
leads to unphysical results. In particular, when applied tothe Sheth-Tormen mass function, the
Sasaki approach yields negative halo formation rates.

In this chapter, we investigate the application of the Sasaki approach to the Sheth-Tormen
mass function. We test the Sasaki approach by explicitly computing the halo formation and
destruction rates for the Press-Schechter mass function using the excursion set formalism. We
then generalize this same method to compute the halo formation rates for the Sheth-Tormen
mass function. We find that halo formation rates computed in this manner are always positive.
Finally, we compare our analytical results with N-body simulations.

A reason for choosing the approach presented here, as compared to other competing ap-
proaches based on the excursion set formalism, is that we wish to be able to differentiate be-
tween major and minor mergers. This is an essential requirement in semi-analytical models of
galaxy formation and is not addressed by other approaches for halo formation rate (Percival &
Miller 1999; Percival et al. 2000; Percival 2001; Giocoli etal. 2007; Moreno et al. 2008, 2009).

Many previous studies of merger rates using analytical or numerical techniques are present
in the literature. Benson et al. (2005) recognized that the Sasaki approach of calculating halo
formation rate was fundamentally inconsistent. They showed that a mathematically consistent
halo merger rate should yield current halo abundances when inserted in the Smoluchowski co-
agulation equation. They applied this technique to obtain merger rates for the Press-Schechter
mass function. The original formulation of halo merger rates in the excursion set picture (Lacey
& Cole 1994) was also improved by Neistein & Dekel (2008) and Neistein et al. (2010) to in-
clude the effect of finite merger time interval. They found that the resultant merger rates are
about 20% more accurate than the estimate of Lacey & Cole (1994) for minor mergers and about
three times more accurate for minor mergers. However, most of these studies have focused on
the overall merger rates (Cohn & White 2008) rather than haloformation rates.
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In this chapter we discuss the Sasaki and the excursion set formalisms in Section 5.1. We
describe our simulations in Section 5.2, discuss our results in Section 5.3 and finally summarize
our conclusions at the end of this chapter.

5.1 Rate of halo formation

The total change in number density of collapsed haloes at time t with mass betweenM and
M + dM per unit time is denoted bẏN(M, t)dM and is due to haloes gaining mass through
accretion or mergers. Lower-mass haloes gain mass so that their mass is now betweenM and
M + dM , and some of the haloes with mass originally betweenM andM + dM gain mass so
that their mass now becomes higher than this range. We call the former process halo formation
and the latter as halo destruction, even though the underlying physical process is the same in
both cases; the different labels of formation or destruction arise due to our perspective from a
particular range of mass. We denote the rate of halo formation by Ṅform(M, t)dM and the rate
of halo destruction byṄdest(M, t)dM . We immediately have

Ṅ(M, t) = Ṅform(M, t)− Ṅdest(M, t). (5.1)

Following Sasaki (1994), in general we can formulate each term in the above expression as
follows. The rate of halo destruction can be written as

Ṅdest(M, t) =

∞
∫

M

N(M, t)Q̃(M,M ′; t)dM ′ (5.2)

≡ φ(M, t)N(M, t), (5.3)

where,Q̃(M,M ′; t) represents the probability of a halo of massM merging with another halo
to form a new halo of massM ′ per unit time. The fraction of haloes that are destroyed per unit
time is denoted byφ(M, t). This quantity is also referred to as the efficiency of halo destruction.
The rate of halo formation can be written as

Ṅform(M, t) =

M
∫

0

N(M ′, t)Q(M ′,M ; t)dM ′ (5.4)

whereQ(M ′,M ; t) represents the probability of a halo of massM ′ evolving into another halo
of massM per unit time. We can now write, from equation (5.1) and from our definitions in
equations (5.3) and (5.4),

Ṅform(M, t) = Ṅ(M, t) + φ(M, t)N(M, t). (5.5)

This reduces the calculation of rate of halo formation to a computation ofφ(M, t).

Sasaki (1994) proposed a simple ansatz to computeφ(M, t): if we assume that the effi-
ciency of halo destruction has no characteristic mass scaleand we require that the destruction
rate remains finite at all masses then it can be shown thatφ does not depend on mass.
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5.1.1 Sasaki prescription: Press-Schechter mass function

Let us first describe the Sasaki prescription for Press-Schechter mass function. To understand
the Press-Schechter formalism (Press & Schechter 1974; Bond et al. 1991), which gives the
co-moving number density of collapsed haloes at a timet with mass betweenM andM +
dM , consider a dark matter inhomogeneity centered around somepoint in the Universe. The
smoothed density contrast within a smoothing scale of radiusR around this point is defined as
δ(R) = [ρ(R) − ρ̄]/ρ̄, whereρ(R) is the density of dark matter withinR and ρ̄ is the mean
background density of the Universe. If this density contrast δ(R) is greater than the threshold
density contrast for collapseδc obtained from spherical collapse model (Gunn & Gott 1972),
the matter enclosed within the volume collapses to form a bound object. In hierarchical models,
density fluctuations are larger at small scales so with decreasingR, δ(R) will eventually reach
δc. The problem then is to compute the probability that the firstup-crossing of the barrier atδc
occurs on a scaleR. This problem can be addressed by excursion set approach.

The excursion set approach consists of the following principles: consider a trajectory
δ(R) as a function of the filtering radiusR at any given point and then determine the largestR
at whichδ(R) up crosses the thresholdδc(t) corresponding to the formation timet. The solution
of the problem can be enormously simplified for Brownian trajectories (Chandrasekhar 1943),
that is for sharpk-space filtered density fields, as in this case contribution of each wave mode
is independent of all others. In such a case we have to solve the Fokker-Planck equation for
the probability densityΠ(δ, S)dδ, whereS ≡ σ2(R) andσ(R) is the standard deviation of
fluctuations in the initial density field, smoothed at a scaleR,

∂Π(δ, S)

∂S
=

1

2

∂2Π(δ, S)

∂δ2
(5.6)

The solution (Porciani et al. 1998; Zentner 2007) can be obtained using the absorbing boundary
conditionΠ(δc(t), S) = 0 and the initial conditionΠ(δ, S = 0) = δD(δ), whereδD(δ) is the
Dirac delta function

Π(δ, S; δc)dδ =
1√
2πS

×
[

exp

(

− δ2

2S

)

− exp

(

−(δ − 2δc(t))
2

2S

)]

dδ (5.7)

Now defineF (S, δc(t)) =
∫ δc(t)

−∞
dδΠ(δ, S; δc(t)) as the survival probability of trajectories and

obtain the differential probability for a first barrier crossing:

f(S) = −∂F (S, δc(t))
∂S

=
δc(t)√
2πS3

exp

(

−δc(t)
2

2S

)

(5.8)

From this, one can obtain the co-moving number density of collapsed haloes at timet with mass
betweenM andM + dM

NPS(M, t)dM =
ρnr
M
f(S)

∣

∣

∣

∣

dS

dM

∣

∣

∣

∣

dM

=

√

2

π

ρnr
M

(ν)
1

2

∣

∣

∣

∣

d lnσ

dM

∣

∣

∣

∣

exp
[

−ν
2

]

dM. (5.9)
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hereρnr is the average comoving density of non-relativistic matterandν ≡ [δc(t)/σ(M))]2 ≡
[δc/(D(t)σ(M))]2, whereδc is the threshold density contrast for collapse,D(t) is the linear rate
of growth for density perturbations andσ(M)(≡ S1/2) is the standard deviation of fluctuations
in the initial density field, which is smoothed over a scale that encloses massM .

In the following discussion, we will denote the mass function byN(M, t) if the statement
is independent of the specific form of the mass function. We will use a subscriptPS when the
statements apply only to the Press-Schechter form of the mass function.

With Sasaki’s ansatz, the destruction rate efficiencyφ can be written in this case as

φ(t) =
1

D(t)

dD(t)

dt
. (5.10)

With this, we can write down the rate of halo formation for thePress-Schechter mass function
from equation (5.5) as:

Ṅform(M, t) = ṄPS(M, t) +
1

D(t)

dD(t)

dt
NPS(M, t)

=
1

D(t)

dD(t)

dt
NPS(M, t)

δ2c
σ2(M)D2(t)

. (5.11)

Note that for haloes with large mass, that is in the limitδc ≫ σ(M)D(t), Ṅform approaches
ṄPS. In other words, the total change in the number of haloes is determined by formation
of new haloes. For haloes with low mass, whereσ is much larger than unity, althougḣNform

remains positive, the total change is dominated by destruction andṄPS becomes negative.

We can also define two related, useful quantities now. Firstly, the probabilityp(t1, t2) that
a halo which exists att1 continues to exist att2 without merging is given by

p(t1, t2) = exp



−
t2
∫

t1

φ(t′)dt′



 =
D(t1)

D(t2)
(wheret2 > t1) (5.12)

This is usually known as the survival probability of haloes,and is independent of halo mass in
the Sasaki prescription. In this picture, the distributionof epochstf of formation of haloes with
massM at timet is given by

F (M ; tf , t)dMdtf = Ṅform(M, tf)p(tf , t)dMdtf . (5.13)

5.1.2 Sasaki prescription: Sheth-Tormen mass function

The Press-Schechter mass function does not provide a very good fit to halo mass function ob-
tained in N-body simulations. In particular, it under-predicts the number density of large mass
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haloes, and over-predicts that of small mass haloes. Hence it is important to generalize the cal-
culation of formation rates to other models for mass function that are known to fit simulations
better. The Sheth-Tormen form of mass function (Sheth & Tormen 1999) is known to fit simu-
lations much better than the Press-Schechter form.1 (For a comparison of both of these forms
of halo mass function with simulations, see Fig. 3 of Jenkinset al. 2001.) The Sheth-Tormen
mass function is given by

NST(M, t)dM = A

√

2

π

ρnr
M

(aν)1/2
∣

∣

∣

∣

d lnσ

dM

∣

∣

∣

∣

×
[

1 + (aν)−p] exp
[

−aν
2

]

dM, (5.14)

where the parametersa, p, andA have best fit values ofa = 0.707, p = 0.3 andA = 0.322
(Sheth & Tormen 1999), and the quantityν is as defined before. This form of mass function
has the added advantage of being similar to the mass functionderived using a variable barrier
motivated by ellipsoidal collapse of overdense regions (Sheth et al. 2001; Sheth & Tormen
2002). Note that if we chooseA = 0.5, p = 0 anda = 1 then we recover the Press-Schechter
mass function derived using spherical collapse. Recently,it has been shown that the best fit
values of these parameters depend on the slope of the power spectrum (Bagla et al. 2009).

We can now apply the Sasaki prescription to this form of mass function and calculate
the rates of halo formation and destruction (Ripamonti 2007). We get for the destruction rate
efficiency

φ(t) =
1

D

dD

dt
[1− 2p] . (5.15)

Note that the destruction rate efficiency is independent of mass. The rate of halo formation is
then given by

ṄST
form(M, t) = − 1

D

dD

dt

[

2p

1 + (aν)−p − aν

]

NST(M, t). (5.16)

Note that in this case, because of the extra term, the halo formation rate can be negative for
some values of halo mass. Since negative values of rate of halo formation are unphysical, this
indicates that the generalization of Sasaki approximationto the Sheth-Tormen mass function is
incorrect. The same problem is encountered if we use other models of the halo mass function
(Samui et al. 2009).

However, since the basic framework outlined in the beginning of this section is clearly
correct, there should not be any problems in generalizing itto other mass functions. It is there-
fore likely that the simplifying assumptions of the Sasaki method that led to the estimate of the
halo destruction rate efficiency of equation (5.15) are responsible for negative halo formation
rate.

1Even this form of halo mass function has poor accuracy in somecases, namely, for conditional mass functions
with large mass ratios and for mass function in overdense regions (Sheth & Tormen 2002). In applications involving
these regimes it is perhaps advisable to use more accurate fitting functions to simulation data. However, the Sheth-
Tormen form still has the property of being considerably better than the Press-Schechter form while having a
physical interpretation. It is thus preferable in many semi-analytic models where the Press-Schechter form is used.
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5.1.3 Excursion set approach to halo formation rate: Press-Schechter
mass function

To check this assertion we perform an explicit calculation of the rate of halo formation using
the excursion set formalism. Recall that from equations (5.2) and (5.3), we can write for the
halo destruction rate efficiency as

φ(M1, t) =

∞
∫

M1

Q̃(M1,M2; t)dM2, (5.17)

whereQ̃(M1,M2; t) represents the probability that an object of massM1 grows into an object
of massM2 per unit time through merger or accretion at timet. This quantity is also known as
the transition rate.

In the excursion set formalism, the conditional probability for a halo of massM1 present
at timet1 to merge with another halo to form a larger halo of mass betweenM2 andM2 + dM2

at timet2 > t1 (Lacey & Cole 1993, 1994) can be written for the extended Press-Schechter
mass function as

f(M2, δ2|M1, δ1)dM2 =

√

2

π

δ2(δ1 − δ2)

δ1
σ2
2

[

σ2
1

σ2
2(σ

2
1 − σ2

2)

]
3

2

× exp

[

− (δ2σ
2
1 − δ1σ

2
2)

2

2σ2
1σ

2
2(σ

2
1 − σ2

2)

]
∣

∣

∣

∣

dσ2
dM2

∣

∣

∣

∣

dM2. (5.18)

Here,σ1 andσ2 are values of the standard deviation of the density perturbations when smoothed
over scales that contain massesM1 andM2 respectively, andδ1 andδ2 are the values of the
threshold density contrast for spherical collapse at timet1 andt2 respectively. Taking the limit
t2 tends tot1, i. e. δ2 tends toδ1, we can determine the mean transition rate at timet = t1:

Q̃(M1,M2; t)dM2 =

√

2

π
σ2
2

[

σ2
1

σ2
2(σ

2
1 − σ2

2)

]
3

2

∣

∣

∣

∣

dδ

dt

∣

∣

∣

∣

× exp

[

−δ
2(σ2

1 − σ2
2)

2σ2
1σ

2
2

]
∣

∣

∣

∣

dσ2
dM2

∣

∣

∣

∣

dM2. (5.19)

This represents the probability that a halo of massM1 will accrete or merge to form another halo
of massM2 at timet. We can use this with equation (5.17) to explicitly compute the destruction
rate, and hence the halo formation rate.

However, in the excursion set method, an arbitrarily small change in the halo mass is
treated as creation of a new halo. As a result, the integral inequation (5.17) diverges unless we
specify a “tolerance” parameter. We assume that a halo is assumed to havesurvivedunless its
mass increases such thatM1 → M2 ≥ M1(1 + ǫ) due to either accretion or merging, where
ǫ is a small number. This assumption allows us to introduce a lower cutoff in the integral in
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equation (5.17) and the lower limit changes toM1(1 + ǫ), leading to a convergent integral.
This is also physically pertinent for our application as infinitesimal changes do not lead to
variations in dynamical structure of haloes, and hence we donot expect any changes in galaxies
hosted in haloes that do not undergo a major merger. This is similar in spirit to the assumption
made elsewhere in the literature that a halo is assumed to survive until its mass increases by a
factor two (Lacey & Cole 1994; Kitayama & Suto 1996). Note that N-body simulations have a
natural cutoff due to the discrete nature of N-body particles. With the introduction of this new
parameter, the modified formula for the halo destruction rate efficiency is given by

φ(M1, t) =

∞
∫

M1(1+ǫ)

Q̃(M1,M2; t)dM2 (5.20)

This can then be used to calculate the rate of halo formation using equation (5.5).

Fig. 5.1 shows the destruction rate efficiencyφ(M, t) computed in this manner for the
Press-Schechter mass function for an Einstein-de Sitter cosmology with power law spectrum of
density perturbations with index−1.5. Curves have been plotted forǫ = 0.1 andǫ = 0.5. We
have also shown the Sasaki approximation in the same panel. The excursion set result has three
features:

1. At smallM , the excursion set value approaches the destruction rate computed using the
Sasaki approximation.

2. The destruction rate has a peak, more pronounced for smaller ǫ, near the scale of non-
linearity.

3. At larger scales the destruction rate falls rapidly; thisis the region where deviations from
the Sasaki result are the largest. Thus the halo destructionrate efficiency vanishes at large
masses.

A similar trend is seen for other power spectra. We postpone adetailed discussion of these
issues to the end of this section.

5.1.4 Excursion set approach to halo formation rate: Sheth-Tormen mass
function

As discussed in Subsection 5.1.2, the Sheth-Tormen mass function is known to be a much better
fit to N-body simulations than the Press-Schechter mass function. Several other forms of halo
mass function have also been fitted to results of high resolution N-body simulations (Jenkins
et al. 2001; Reed et al. 2003; Warren et al. 2006). But here we only focus on the Sheth-Tormen
mass function. Recall that the Sasaki prescription gave unphysical results when applied to this
form of the mass function. Therefore, we now derive the halo destruction rate efficiency, and



102 Formation rate of dark matter haloes

Figure 5.1: Destruction rateφ(M, t) at z = 10 for the Press-Schechter mass function for a
power law model with index−1.5. Curves have been plotted forǫ = 0.1 andǫ = 0.5.

the halo formation rates for the Sheth-Tormen mass function. This requires obtaining analogs
of equations (5.18) and (5.19).

Sheth et al. (2001) showed that once the barrier shape is known, all the predictions of the
excursion set approach, like the conditional mass function, associated with that barrier can be
computed easily2. Further, they showed that the barrier shape for ellipsoidal collapse is

B(σ, t) ≡ δec(σ, t) =
√
aδc(t)

[

1 + β(aν)−γ
]

, (5.21)

wherea = 0.75, β = 0.485, γ = 0.615, and,δc(t) is the threshold value of overdensity required
for spherical collapse (also see Sheth & Tormen 2002). They also found that, for various barrier
shapesB(S), the first-crossing distribution of the excursion set theory is well approximated by

f(S)dS =
|T (S)|√
2πS3/2

exp

[

−B(S)2

2S

]

dS, (5.22)

whereT (S) denotes the sum of the first few terms in the Taylor series expansion ofB(S)

T (S) =

∞
∑

n=0

(−S)n
n!

∂nB(S)

∂Sn
. (5.23)

(Here, for conformity with the literature, we use the symbolS ≡ σ2.) This expression gives the
exact answer in the case of constant and linear barriers. Forthe ellipsoidal barrier, we can get
convergence of the numerical result if we retain terms in theTaylor expansion up ton = 5.

For Press-Schechter mass function, the conditional mass functionf(S1, δ1|S2, δ2) can be
obtained from the first crossingf(S) by just changing the variablesδ → δ1 − δ2 andS →

2These can be calculated for non-Gaussian initial conditions, see, e.g., de Simone et al. (2011)
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S1 − S2. This can be done because, despite the shift in the origin, the second barrier is still one
of constant height. This is no longer true for Ellipsoidal collapse and hence we cannot simply
rescale the function of equation to get the conditional massfunction. Instead, this can be done
by making the replacementsB(S) → B(S1)−B(S2) andS → S1 − S2 in equation (5.22).

f(S1|S2)dS1 =
|T (S1|S2)|

√

2π(S1 − S2)3/2

× exp

[

−(B(S1)−B(S2))
2

2(S1 − S2)

]

dS1, (5.24)

where we now have

T (S1|S2) =

5
∑

n=0

(−(S1 − S2))
n

n!

∂n (B(S1)− B(S2))

∂Sn
1

. (5.25)

Using Bayes’ theorem, we now have

f (S2|S1) dS2 =
|T (S1|S2)||T (S2)|

|T (S1)|
1√
2π

[

S1

S2 (S1 − S2)

]

× exp

[

− [B(S1)−B(S2)]
2

2 (S1 − S2)
− B2(S2)

2S2
+
B2(S1)

2S1

]

dS2. (5.26)

A change of variables fromS to M now gives us an analog of equation (5.18) for the Sheth-
Tormen mass function. In other words, we get the conditionalprobabilityfST(M2|M1)d lnM2

that a halo of massM1 present at timet1 will merge to form a halo of mass betweenM2

andM2 + dM2 at time t2 > t1. Further, taking the limit ast2 tends tot1(= t), we obtain
Q̃(M1,M2; t). As before, we can then use it to calculate the halo destruction rate efficiency
φ(M, t) and the rate of halo formatioṅNST

form(M1, z) using equations (5.5) and (5.20). We per-
form this part of the calculation numerically. However, it is also possible to use this formalism
to calculate formation rates for the square-root barrier (Moreno et al. 2009, 2008; Giocoli et al.
2007), which is a good approximation for the ellipsoidal collapse model.

Fig. 5.2 is the analog of Fig. 5.1 for the Sheth-Tormen mass function. It shows the
destruction rate per haloφ(M, t) computed using the excursion set method for an Einstein-de
Sitter cosmology with power law spectrum of density perturbations with index−1.5 atz = 10.0.
Curves have been plotted forǫ = 0.1 andǫ = 0.5. We have also shown the Sasaki approximation
for ST mass function in the same panel for comparison. This result for the Sheth-Tormen mass
function has the same features as the result for the Press-Schechter mass function. We also
see that the destruction rate efficiency is far from constantat smallM/Mnl. Thus the central
assumption of the Sasaki prescription is invalid in the caseof Sheth-Tormen mass function as
well.
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Figure 5.2: Same as Fig. 5.1 but for the Sheth-Tormen (as wellas Press-Schechter) mass func-
tion.

n Nbox Npart rinl rfnl rmax
nl zi

−1.5 4003 4003 2.5 12.0 10.0 103.38
−0.5 2563 2563 2.5 12.0 18.2 291.53

Table 5.1: For power law: heren is the index of the power spectrum,Nbox is the size of the
simulation box ,Npart represents the number of particles,rinl is the scale of non-linearity at
the earliest epoch,rfnl is the actual scale of non-linearity for the last epoch,rmax

nl represents the
maximum scale of non-linearity andzi is the starting redshift of the simulations for every model.

Lbox Npart mpart ǫ zf zout
23.04 5123 6.7× 106 1.35 5.0 5.04
51.20 5123 7× 107 3.00 3.0 3.34
76.80 5123 2.3× 108 4.50 1.0 1.33

Table 5.2: For LCDM: columns 1 and 2 list the size of the box (inMpc/h) and the number of
particles used in the simulations. Columns 3 and 4 give the mass (in M⊙/h) and force resolution
(in kpc/h; not to be confused with theǫ used in the text) of the simulations, while columns 5
and 6 tell us the redshift at which the simulations were terminated and the redshift for which
the analyses were done.



5.2. N-body simulations 105

5.2 N-body simulations

From the excursion set calculation described in the previous section, we thus find that the halo
destruction rate efficiency is not independent of mass as is assumed in the Sasaki prescription.
Clearly, this is the reason why Sasaki prescription yields unphysical values for the rate of halo
formation. In this section and the next, we now compare the results of our excursion set calcu-
lation with results of N-body simulations.

We used the TreePM code (Khandai & Bagla 2009) for these simulations. The TreePM
(Bagla 2002; Bagla & Ray 2003) is a hybrid N-body method whichimproves the accuracy and
performance of the Barnes-Hut (BH) Tree method (Barnes & Hut1986) by combining it with
the PM method (Miller 1983; Klypin & Shandarin 1983; Bouchetet al. 1985; Bouchet & Kan-
drup 1985; Hockney & Eastwood 1988; Bagla & Padmanabhan 1997; Merz et al. 2005). The
TreePM method explicitly breaks the potential into a short-range and a long-range component
at a scalers: the PM method is used to calculate the long-range force and the short-range force
is computed using the BH Tree method. Use of the BH Tree for short-range force calculation
enhances the force resolution as compared to the PM method.

The mean inter-particle separation between particles in the simulations used here islmean =
1.0 in units of the grid-size used for the PM part of the force calculation. In our notation this is
also cube root of the ratio of simulation volumeN3

box to the total number of particlesNpart.

Power law models do not have any intrinsic scale apart from the scale of non-linearity
introduced by gravity. We can therefore identify an epoch interms of the scale of non-linearity
rnl. This is defined as the scale for which the linearly extrapolated value of the mass variance
at a given epochσL(a, rnl) is unity. All power law simulations are normalized such thatσ2(a =
1.0, rnl = 8.0) = 1.0. The softening length in grid units is0.03 in all runs.

The ΛCDM simulations were run with the set of cosmological parameters favored by
Wilkinson Microwave Anisotropy Probe5-yr data (WMAP; Komatsu et al. 2009) as the best fit
for theΛCDM class of models:Ωnr = 0.2565,ΩΛ = 0.7435, ns = 0.963, σ8 = 0.796, h =
0.719 andΩbh

2 = 0.02273. The simulations were done with5123 particles in a comoving cube
of three different values of the physical volume as given in Table 5.2.

Simulations introduce an inner and an outer scale in the problem and in most cases we
work with simulation results whereLbox ≫ rnl ≥ Lgrid, whereLgrid, the size of a grid cell
is the inner scale in the problem.Lbox is the size of the simulation and represents the outer
scale. In Table (5.1) we list the power law models simulated for the present study. We list the
index of the power spectrumn (column 1), size of the simulation boxNbox (column 2), number
of particlesNpart (column 3), the scale of non-linearity at the earliest epochused in this study
(column 4), and, the maximum scale of non-linearity,rmax

nl (column 6) given our tolerance level
of 3% error in the mass variance at this scale. For some models withvery negative indices
we have run the simulations beyond this epoch. This can be seen in column 5 where we list
the actual scale of non-linearity for the last epoch. The counts of haloes in low mass bins are
relatively unaffected by finite box considerations. We therefore limit errors in the mass function
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by running the simulation up tormax
nl . Column 7 lists the starting redshift of the simulations for

every model. Similarly, in Table (5.2), we mention the details of the LCDM simulations used in
this work. We list the size of the simulation boxLbox in Mpc/h (column 1), number of particles
used in the simulationsNpart (column 2), mass of the particlesmpart in M⊙/h (column 3), force
resolutionǫ (not to be confused with theǫ used in the text) of the simulations in kpc/h (column
4), the redshiftzf at which the simulations were terminated (column 5) and the redshiftzout for
which the analyses were done (column 6).

In order to follow the merger history of dark matter haloes ineach of these simulations, we
store the particle position and velocities at different redshifts. A friend-of-friend group finding
algorithm is used to locate the virialized haloes in each of these slices. We adopt a linking length
that is0.2 times the mean inter-particle separation, corresponding to the density of virialized
haloes. Only groups containing at least20 particles are included in our halo catalogs. A merger
tree is then constructed out of the halo catalogs by trackingthe evolution of each particle through
various slices. This lets us identify a halo as it evolves with time through mergers with other
haloes. We then describe the formation and destruction of haloes in terms of change in number
of particles between consecutive snapshots of the simulation. When a halo of massM at redshift
z turns into a halo of massM ′ at z′(< z), then we say that a halo of massM was destroyed at
redshiftz and a halo of massM ′ has formed atz′ if M ′ ≥ M(1+ ǫ). We identify the resolution
parameterǫ with that used in our excursion set calculation and experiment with different values
as described in the next section.

We find that a tolerance parameterǫ, similar to the one defined before, also occurs while
analyzing the results of N-body simulations. We identify these two quantities. As we will see
in the next section, the formation rate in our model has a dependence onǫ, which reproduces
the dependence of the results of N-body simulations on this quantity. Thus, the presence ofǫ in
our analytical model is crucial in comparing our results with the N-body results.

5.3 Results and discussion

In this section we present the results of a comparison of our calculations presented in Section
5.1 with N-body simulations. We present comparison of the destruction rate efficiency and the
rate of halo formation and then discuss our results at the endof this section. We also consider
two related quantities, the halo survival probability and the distribution of halo formation times,
that were defined in Section 5.1.

5.3.1 Halo destruction rate efficiency

Figs. 5.3 and 5.4 show the halo destruction rate efficiencyφ(M, t) for Sheth-Tormen and Press-
Schechter mass functions in an Einstein-de Sitter universewith a power law power spectrum
of density fluctuations with indicesn = −0.5 andn = −1.5 respectively. The top row of
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Figure 5.3: Comparison of the destruction rate efficienciescomputed using our method and
Sasaki formalism for both ST and PS mass function atrnl = 5 grid lengths (top row) and
rnl = 8 grid lengths (second row). All curves are plotted for power-law model with index
n = −0.5. Curves forǫ = 0.5 are shown in the left panel andǫ = 0.1 in the right panel. Points
with error bars represent the corresponding results obtained from N-body simulations.
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Figure 5.4: Same as Fig. 5.3 but now forn = −1.5. The two epochs correspond tornl = 4 and
rnl = 8 grid lengths respectively.
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Figure 5.5: Destruction rates forΛCDM model for both PS and ST mass functions using dif-
ferent thresholds (ǫ = 0.5 for first; ǫ = 0.1 for second) and different redshifts (z = 10.2 for
left panel,z = 2.0 for right panel). Again, points with error bars represent the corresponding
results obtained from N-body simulations.
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Figure 5.6: Comparison of the formation rates computed using our method and Sasaki formal-
ism for both ST and PS mass functions forrnl = 5 (top row) andrnl = 8 (bottom row). All
curves are plotted for power-law model with indexn = −0.5. Curves forǫ = 0.5 are shown in
the left panel andǫ = 0.1 in the right panel. Points with error bars represent the corresponding
results obtained from N-body simulations.
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Figure 5.7: Same as Fig. 5.6 but now forn = −1.5. The two epochs correspond tornl = 4 and
rnl = 8 grid lengths respectively.
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both figures shows the halo destruction rate efficiency atz = 0.8 and the second row shows
the same atz = 0.0. In each case, we compute the halo destruction rate efficiency using the
Sasaki method as well as our excursion set method. We then derive φ(M, t) from our N-body
simulations for a comparison: see Bagla et al. (2009) for details of the simulations and best
fit parameters for the ST mass function. These results are superimposed on the plots. For
the excursion set calculation and for the comparison with simulations, we useǫ = 0.5 (left
column) andǫ = 0.1 (right column). For the two power spectra, the two redshiftsthat we
consider correspond tornl = 5 andrnl = 8 grid lengths, andrnl = 4 andrnl = 8 grid lengths
respectively.

As we saw in Figs. 5.1 and 5.2, we find that Sasaki’s assumptionis not valid for ST or PS
mass functions, that isφ(M, t) depends on the halo mass. We also see that the value ofφ(M, t)
derived from simulations matches well with that calculatedby our method. On the other hand,
the predictions of Sasaki’s approximation do not match the simulations. This difference is more
pronounced for the smaller value ofǫ. Note that the points from N-body simulations have large
error-bars at higher mass as the number of haloes decreases at these scales. The most notable
feature of the destruction rate efficiency in the excursion set picture is that it cuts off very sharply
for large masses. Another aspect is that for smallǫ, there is a pronounced peak inφ and it drops
off towards smaller masses.

We have also calculated the destruction rate efficiency for theΛCDM cosmological model
for both Press-Schechter and Sheth-Tormen mass functions and compared it with derived values
from simulations. The results are shown in Fig. 5.5 for two redshifts (2.0 and10.2) and two
values ofǫ (0.5 and0.1). We can see that results calculated by our technique fit numerical
results better.

5.3.2 Halo formation rate

Having calculated the destruction rate efficiency, we can now calculate the halo formation rate
using the formalism described in Section 5.1 and compare it with the derived halo formation
rates from our simulations. The results are shown in Figs. 5.6 and 5.7 for an Einstein-de Sitter
Universe with a power law power spectrum of density fluctuations with indicesn = −0.5 and
n = −1.5 respectively. The first row of both figures shows the formation rate at redshiftz = 0.8
and the second row shows the same at redshiftz = 0.0. Note the quantity plotted here is the
ratio Ṅform(M, t)/N(M, t). We have shown the results from the Sasaki prescription and the
excursion set calculations and have superimposed formation rates derived from N-body simu-
lations. As before, for the excursion set calculation and for the comparison with simulations,
we useǫ = 0.5 (left column) andǫ = 0.1 (right column). For the two power spectra, the two
redshifts that we consider correspond tornl = 5 andrnl = 8 grid lengths, andrnl = 4 and
rnl = 8 grid lengths respectively. The corresponding results for theΛCDM cosmological model
are shown in Fig. 5.8 for two redshifts (2.0 and 10.2) and two values ofǫ (0.5 and 0.1).

Again, we see that the excursion set results fit simulation data much better as compared to
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Figure 5.8: Formation rates forΛCDM model for both PS and ST mass functions using different
thresholds (ǫ = 0.5 for first; ǫ = 0.1 for second row) and different redshifts (z = 10.2 for left
panel,z = 2.0 for right panel). As usual, points with error bars representthe corresponding
results obtained from N-body simulations.

Figure 5.9: Comparison of the survival probabilities computed using our method and Sasaki
formalism for both PS (left panel) and ST (right panel) mass functions with different redshifts
(z = 1, 3 and10) for ǫ = 0.5. Curves have been plotted for theΛCDM model. These curves
show the probability that the halo survives from that redshift up to the present epoch.
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Figure 5.10: Plots for formation epoch distribution of haloes. Left column is for the PS and
the right column is for the ST mass function. Curves have beenplotted for the LCDM model.
The formation epoch distribution as computed using the Sasaki formalism and the excursion set
approach described in this work is shown in the top panel.
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Figure 5.11: Ratio of the two different approaches used in Fig. 5.10 to highlight less obvious
differences.
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Figure 5.12: Upper panels show formation rates for ST mass function. Lower panels show the
same where we usedφ computed from excursion set approach in the PS mass functionand used
that to compute the formation rate in the ST mass function.

Figure 5.13: Ratio of formation rates estimated in the two approaches shown in Fig. 5.12.
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Figure 5.14: Same as Fig. 5.12 but forǫ = 0.1

Figure 5.15: Same as Fig. 5.13 but forǫ = 0.1
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the results from Sasaki prescription. The Sasaki method underestimates the formation rates by
a large factor for low mass haloes. Results from the two methods tend to converge in the large
mass limit, although a systematic difference remains between the Sheth-Tormen and Press-
Schechter estimates, with the former always being larger that the later. The difference in the
Sasaki estimate and the excursion set estimate for the destruction rate efficiency and the forma-
tion rate is as high as an order of magnitude at some scales so the close proximity of simulation
points to the excursion set calculations is a clear vindication of our approach. It is worth noting
that there is a clear deviation of simulation points from thetheoretical curves at small mass
scales and this deviation is more pronounced at small mass scales forǫ = 0.5. It may be that
some of the deviations arise due to a series representation of the barrier shape, and the number
of terms taken into account may not suffice for the estimate. We have found that truncation of
the series can affect results at small masses, though in mostcases results converge with the five
terms that we have taken into account for the range of masses considered here.

5.3.3 Halo survival probability

An important auxiliary quantity in the ongoing discussion is the halo survival probability, de-
fined in Section 5.1. From our calculation of the halo destruction rate efficiency, we calculated
the survival probability of dark matter haloes using both the excursion set formalism and the
Sasaki prescription and compared results. These results are shown in Fig. 5.9, which shows the
survival probabilities in theΛCDM cosmological model for the Press-Schechter (left panel) and
Sheth-Tormen (right panel) mass functions using the two approaches at three different redshifts
(z = 1, 3 and10). In this case, we have usedǫ = 0.5 for the excursion set calculation.

In Sasaki approximation, the destruction rate is independent of mass and hence the sur-
vival probability is also independent of mass. Our calculations show that this approximation is
not true, and hence the survival probability of haloes must also depend on mass. We note that
the survival probability is high for large mass haloes: if a very large mass halo forms at a high
redshift then it is likely to survive without a significant addition to its mass. Smaller haloes
are highly likely to merge or accrete enough mass and hence donot survive for long periods.
Survival probability drops very rapidly as we go to smaller masses. While this is expected on
physical grounds, it is an aspect not captured by the Sasaki approximation where equal survival
probability is assigned to haloes of all masses. The mass dependence of survival probability
is qualitatively similar to that obtained by Kitayama & Suto(1996). There is no significant
qualitative difference between the curves for the Press-Schechter and the Sheth-Tormen mass
functions.

5.3.4 Formation time distribution

Finally, another interesting quantity is the distributionF (M ; tf , t) of formation epochstf of
haloes with massM at t, defined in Section 5.1. This distribution can be obtained once the
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survival probability and formation rate of haloes is known.We calculated the formation time
distribution using the excursion set formalism and the Sasaki prescription. The results are shown
in Fig. 5.10. We plotF (M ; zf , z = 0)/N(M, z = 0) versus the formation redshiftzf for three
different masses (1013, 1010 and107M⊙) in the standardΛCDM model for both Press-Schechter
(left column) and Sheth-Tormen (right column) mass functions with ǫ = 0.5 (first row) and
ǫ = 0.1 (second row). A common feature is thatF as a function ofzf increases up to a certain
redshift and then starts to decline. The epochs at whichF drops by an order of magnitude from
its peak can be interpreted as typical range of redshifts forthe formation of bound systems of
respective masses which exist atz = 0.

The differences between the formation redshift distribution for ǫ = 0.5 andǫ = 0.1 are
along expected lines: the formation redshifts are smaller for the lower value ofǫ as a smaller
change in mass is required for us to declare that a new halo hasformed and hence typical haloes
do not survive for a very long time. We see that the excursion set calculation suggests that
haloes formed more recently as compared to the Sasaki approximation based estimate. This can
be understood in terms of the equal survival probability assigned by the Sasaki approximation
to haloes of all masses. For a clearer comparison, the ratio of the estimate based on Sasaki
approximation and the excursion set calculation is shown inFig. 5.11. We note that for very
low mass haloes these two estimates differ by more than an order of magnitude. The main
qualitative difference between the plots for the Press-Schechter and the Sheth-Tormen mass
functions is caused by the negative formation rates in the Sasaki approximation.

5.3.5 Discussion

The results described above show conclusively that the excursion set approach predicts halo
formation and destruction rates that match with simulations much better than the Sasaki ap-
proximation.

Another noteworthy aspect is that the destruction and formation rates depend on the value
of ǫ in simulations as well as the excursion set calculation thereby allowing us to differentiate
between major and minor mergers. In comparison, there is no natural way to bring in this de-
pendence in the Sasaki approximation. While the match between simulations and the excursion
set approach for the two values ofǫ is satisfying, it raises the question of the appropriate value
of this parameter. In our view the appropriate value of the parameter should depend on the
application in hand. In semi-analytic galaxy formation models, we should use a value ofǫ that
corresponds to the smallest ratio of masses of the infallinggalaxy and the host galaxy where we
expect a significant dynamical influence on star formation rate. For instance, Kauffmann et al.
(1999) useǫ = 0.3 in their semi-analytic galaxy formation model while considering formation
of bulges in merger remnants. In case of galaxy clusters we may base this on the smallest ratio
of masses where the intra-cluster medium is likely to be disturbed in a manner accessible to
observations in X-ray emission or the Sunyaev-Zel’dovich effect (Sunyaev & Zeldovich 1972;
Navarro et al. 1995; Kay 2004).
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While the close match between simulations and the excursionset calculation is useful,
it also implies that we should not use the simpler Sasaki approximation. The excursion set
calculation of the halo destruction rate is fairly simple for the Press-Schechter mass function, but
the corresponding calculation for the Sheth-Tormen mass function is much more complicated.
Plots of the destruction rate efficiencyφ(M) for all the models suggest that its variation with
mass andǫ is very similar for the PS and ST mass function. This suggestsan approximation
where we useφ(M, z; ǫ) computed using the Press-Schechter mass function and use that to
compute the halo formation rate in the Sheth-Tormen mass function. Figs. 5.12 and 5.14 show
the halo formation rate for theΛCDM model at different redshifts and compare the excursion
set calculation, the Sasaki approximation and the intermediate approximation suggested above.
We have also shown the ratios of formation rates estimated inthese two approaches mentioned
above in Figs. 5.13 and 5.15. We find that the intermediate approximation is not plagued by
negative halo formation rates and that it is an excellent approximation at all mass scales at
higher redshifts. At lower redshifts, the approximation isstill good at high masses but not so at
smaller masses (Mitra et al. 2011).

While comparing our analytical results with those of N-bodysimulations, we find a sys-
tematic deviation between the two at the high mass end. This is possibly related to the problem
of ‘halo fragmentation’ while deriving halo merger trees from the simulations. In about 5% of
all haloes, particles in a given progenitor halo can become part of two independent haloes at
a future epoch. This is usually attributed to the fact that the FOF algorithm groups particles
based on the inter-particle distance. This can result in theidentification of two haloes separated
by a thin ’bridge’ of particles to be treated as a single halo.Such halo fragmentation has been
treated using different techniques in various halo formation rate studies. Fakhouri & Ma (2008)
compare these techniques and find that the effect of halo fragmentation is maximum of high
mass haloes.

5.4 Conclusions

Key points presented in this chapter can be summarized as follows:

• We revisit the Sasaki approximation for computing the halo formation rate and compute
the destruction rate explicitly using the excursion set approach.

• We introduce a parameterǫ, the smallest fractional change in mass of a halo before we
consider it as destruction of the old halo and formation of a new halo.

• We show that the halo destruction rate is not independent of mass even for power law
models and hence the basis for the Sasaki ansatz does not hold. Two prominent features
of the halo destruction rate are the rapid fall at large masses, and a pronounced peak close
to the scale of non-linearity. The peak is more pronounced for smaller values ofǫ.
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• Using the excursion set approach for the Sheth-Tormen mass function leads to positive
halo formation rates, unlike the generalization of the Sasaki ansatz where formation rates
at some mass scales are negative.

• We compare the destruction rate and the halo formation ratescomputed using the excur-
sion set approach with N-body simulations. We find that our approach matches well with
simulations for all models, at all redshifts and also for different values ofǫ.

• In some cases there are deviations between the simulations and the theoretical estimate.
However, these deviations are much smaller for the excursion set based method as com-
pared to the Sasaki estimate.

• It may be that some of the deviations arise due to a series representation of the barrier
shape, and the number of terms taken into account may not suffice for the estimate. We
have found that truncation of the series can affect results at small masses, though in most
cases results converge with the five terms that we have taken into account for the range of
masses considered here.

• We show that we can use the halo destruction rate computed forthe Press-Schechter mass
function to make an approximate estimate of the halo formation rate in Sheth-Tormen
mass function using equation (5.5). This approximate estimate is fairly accurate at all
mass scales in theΛCDM model at high redshifts.

• The halo survival probability is a strong function of mass ofhaloes, unlike the mass
independent survival probability obtained in the Sasaki approximation.

• The halo formation redshift distribution for haloes of different masses is also very dif-
ferent from that obtained using the Sasaki approximation. This is especially true for the
Sheth-Tormen mass function where the Sasaki approximationgives negative halo forma-
tion rates in some range of mass scales and redshifts.

The formalism used here for calculation of halo formation rate and other related quantities
can be generalized to any description of the mass function ifthe relevant probabilities can be
calculated. Within the framework of the universal approachto mass functions, it can also be
used to study formation rates of haloes in different cosmological models (Linder & Jenkins
2003; Macciò et al. 2004). This allows for an easy comparison of theory with observations for
quantities like the major merger rate for galaxy clusters (Cohn et al. 2001).

In case of semi-analytic models of galaxy formation, our approach allows for a nuanced
treatment where every merger need not be treated as a major merger and we may only consider
instances where mass ratios are larger than a critical valuefor any affect on star formation in
the central galaxy.
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CHAPTER 6

POST-REIONIZATION NEUTRAL
HYDROGEN DISTRIBUTION

In the previous chapters, we studied the evolution of neutral hydrogen (HI) fraction in the
IGM at high redshifts. We saw how the current observations can constrain this evolution from
unity at redshiftz ∼ 15 to less than10−4 at z ∼ 6 due to the presence of luminous sources
which reionize the universe. In this chapter, we shall continue our study of neutral hydrogen
distribution in the universe in the post-reionization epoch i.e. atz < 6.

6.1 Introduction

Following the epoch of reionization (z ∼ 6), the low density gas gets completely ionized
(Becker et al. 2001; Fan et al. 2006). However, a small fraction of neutral hydrogen (HI) sur-
vives, and is confined to the over-dense regions of the IGM. Atthis redshifts the bulk of the
neutral gas is contained in clouds with column density greater than2 × 1020atoms/cm2. Ob-
servations indicate that these regions can be identified as Damped Ly-α (DLA) systems (Wolfe
et al. 2005), which are self-shielded from further ionization and house∼ 80% of the HI at
1 < z < 4. In this redshift range the neutral fraction remains constant with ΩHI ∼ 0.001
(Lanzetta et al. 1995; Storrie-Lombardi et al. 1996; Rao & Turnshek 2000; Péroux et al. 2003).

The distribution and clustering properties of DLAs suggestthat they are associated with
galaxies, which represent highly non-linear matter over densities (Haehnelt et al. 2000). These
clumped HI regions saturate the Gunn-Peterson optical depth (Gunn & Peterson 1965b) and
hence cannot be probed using Ly-α absorption. They are, however the dominant source for
the 21-cm radiation. In the post reionization epoch, Ly-α scattering and the Wouthuysen-Field
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coupling (Wouthuysen 1952; Purcell & Field 1956; Furlanetto et al. 2006) increases the pop-
ulation of the hyperfine triplet state of HI. This makes the spin temperatureTs much greater
than the CMB temperatureTγ , whereby the 21-cm radiation is seen in emission (Madau et al.
1997; Bharadwaj & Ali 2004; Loeb & Zaldarriaga 2004). The 21-cm flux from individual HI
clouds is too weak (< 10µJy) for detection in radio observations with existing facilities, unless
the effect of gravitational lensing by intervening matter enhances the image of the clouds sig-
nificantly (Saini et al. 2001). The redshifted 21-cm signal however forms a diffuse background
in all radio observations atz < 6 (frequencies> 203 MHz). Several radio telescopes, like
the presently functioning GMRT1, and future instruments MWA2 and SKA3 aim to detect this
weak cosmological signal submerged in large astrophysicalforegrounds (Santos et al. 2005;
McQuinn et al. 2006; Ali et al. 2008).

The study of large scale structures in redshift surveys and numerical simulations reveal
that the galaxies (for that matter any non linear structure)trace the underlying dark matter
distribution with a possible bias (Mo & White 1996; Dekel & Lahav 1999). Associating the
post-reionization HI with dark matter halos implies that the gas traces the underlying dark matter
distribution with a possible bias functionb(k) = [PHI(k)/P (k)]

1/2, wherePHI(k) andP (k)
denote the power spectra of HI and dark matter density fluctuations respectively. This function is
believed to quantify the clustering property of the neutralgas. It is believed that on small scales
(below the Jean’s length), the bias is a scale dependent function. However, it is reasonably scale-
independent on large scales (Fang et al. 1993). Further, thebias depends on the redshift. The use
of the post-reionization 21-cm signal (Bharadwaj & Sethi 2001; Bharadwaj et al. 2001; Wyithe
& Loeb 2007b; Loeb & Wyithe 2008; Wyithe & Loeb 2008; Visbal etal. 2009) as a tracer of
dark matter opens up new avenues towards various cosmological investigations (Wyithe et al.
2007; Chang et al. 2008; Bharadwaj et al. 2009; Mao et al. 2008) and cross-correlation studies
(Guha Sarkar et al. 2009; Guha Sarkar 2010; Guha Sarkar et al.2011). The underlying bias
model is crucial while forecasting or interpreting some of these results.

In this chapter, we have investigated the nature of HI bias inthe post-reionization epoch.
The HI fluctuations are simulated at redshiftsz < 6 and HI bias is obtained at various red-
shifts from the simulated dark matter and HI power spectra. This is similar to the earlier work
by Bagla et al. (2010) and Marı́n et al. (2010). The simulatedbias function is assumed to be
our fiducial model for HI distribution at low redshifts. We have studied the feasibility of con-
straining this fiducial model with observed data. Here we have focused on the multi frequency
angular power spectrum (MAPS) (Datta et al. 2007)– measurable directly from observed radio
data and dependent on the bias model. Assuming a standard cosmological model and a known
dark matter power spectrum we have used the Principal Component Analysis (PCA) on simu-
lated MAPS data for a hypothetical radio-interferometric experiment to put constraints on the
bias model. The method is similar to the one used for power spectrum estimation using the

1http://www.gmrt.ncra.tifr.res.in/
2http://www.mwatelescope.org/
3http://www.skatelescope.org/
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CMB data (Efstathiou & Bond 1999; Hu & Holder 2003; Leach 2006) and constraining reion-
ization (Mitra et al. 2011, 2012). Stringent constraints onthe bias function with future data sets
would be crucial in modelling the distribution of neutral gas at low redshifts and justify the use
of HI as a tracer of the underlying dark matter field. This would be useful for both analytical
and numerical work involving the post-reionization HI distribution.

In the next section, we discuss the simulation of HI distribution and the general features
of the bias function. Following that, we discuss the HI multi-frequency angular power spectrum
(MAPS), a statistical quantifier directly measurable from radio-interferometric experiments.
Finally we use the principal component analysis to investigate the possibility of constraining
the bias model with simulated MAPS Datta et al. (2007) data.

6.2 Simulation and the bias model

We have obtained the dark matter distribution using the PM N-body code developed by Bharad-
waj & Srikant (2004), assuming a fiducial cosmological model(used throughout this chapter)
Ωm = 0.2726, ΩΛ = 0.726, Ωb = 0.0456, h = 0.705, Tcmb = 2.728K σ8 = 0.809, ns = 0.96
(all parameters from WMAP 7 year data (Komatsu et al. 2011; Jarosik et al. 2011)). We sim-
ulate6083 particles in12163 grids with grid spacing0.1Mpc in a 121.6Mpc3 box. The mass
assigned to each dark matter particle ismpart = 2.12 × 108M⊙h

−1. The initial particle dis-
tribution and velocity field generated using Zel’dovich approximation (atz ∼ 25) are evolved
only under gravity. The particle position and velocities are then obtained as output at different
redshifts1.5 ≤ z ≤ 4 at intervals ofδz = 0.5. We have used the Friends-of-Friends algo-
rithm (Davis et al. 1985) to identify dark matter over-densities as halos, taking linking length
b = 0.2 (in units of mean inter-particle distance). This gives a reasonably good match with the
theoretical halo mass function (Jenkins et al. 2001; Sheth &Tormen 2002) for masses as small
as= 10mpart. The halo mass function obtained from simulation is found tobe in excellent
agreement with the Sheth-Tormen mass function in the mass range109 ≤M ≤ 1013 h−1M⊙.

We follow the prescription of Bagla et al. (2010), to populate the halos with neutral hy-
drogen and thereby identify them as DLAs. Equation (3) of Bagla et al. (2010) relates the virial
mass of halos,M with its circular velocityvcirc. The neutral gas in halos can self shield itself
from ionizing radiation only if the circular velocity is above a threshold ofvcirc = 30km/sec
at z ∼ 3. This sets a lower cutoff for the halo massMmin. Further, halos are populated with
gas in a way, such that the very massive halos do not contain any HI. An upper cut-off scale to
halo massMmax is chosen usingvcirc = 200km/sec, above which we do not assign any HI to
halos. This is consistent with the observation that very massive halos do not contain any gas in
neutral form (Pontzen et al. 2008). The total neutral gas is then distributed such that the mass
of the gas assigned is proportional to the mass of the halo between these two cut-off limits. We
note that there is nothing canonical about this scheme. However, with the basic physical picture
in the background this is the simplest model. Results obtained using alternative HI assignment
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Figure 6.1: The simulated power spectra for dark matter distribution (solid line) and theHI
density field (dashed line) at redshiftz = 2.5.

schemes are not expected to be drastically different (Baglaet al. 2010).

Figure 6.1 shows the simulated power spectra of dark matter and HI distribution at a fidu-
cial redshiftz = 2.5. The dark matter power spectrum is seen to be consistent withthe transfer
function given by Eisenstein & Hu (1998) and the scale invariant primordial power spectrum
(Harrison 1970; Zeldovich 1972). The HI power spectrum has agreater amplitude than its dark
matter counterpart in the entirek-range allowed by the simulation parameters. Figure 6.2 shows
the behavior of the bias functionb(k, z) . We have obtained the scale dependence of the HI bias
for various redshifts in the range1.5 ≤ z ≤ 4. At these redshifts, the bias is seen to be greater

z c3 c2 c1 c0
1.5 0.0029 0.0365 -0.1561 1.1402
2.0 0.0052 0.0177 0.0176 1.5837
2.5 0.0101 -0.0245 0.3951 2.1672
3.0 0.0160 -0.0884 1.0835 2.9287
3.5 0.0234 -0.1537 2.1854 3.8050
4.0 0.0248 -0.1655 3.6684 4.9061

Table 6.1: The fit parameters for bias function of the formb2(k) = c3k
3 + c2k

2 + c1k + c0 for
various redshifts1.5 ≤ z ≤ 4.0.



6.2. Simulation and the bias model 127

 0

 5

 10

 15

 20

 25

 0.1  1  10

 0

 2

 4

 6

 1  2  3  4

k (Mpc−1h)

b2
(k
)

b2
(z
)

z

k = 0.2Mpc−1h

Figure 6.2: The simulated bias function forz =1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 (bottom to top)
showing the scale dependence. The inset shows the variationof the large-scale linear bias as a
function of redshift.

than unity, a feature that is observed in the clustering of high redshift galaxies (Mo & White
1996; Wyithe & Brown 2009). On large cosmological scales thebias remains constant and
grows monotonically at small scales, where non-linear effects are at play. This is a generic fea-
ture seen at all redshifts. Thek-range over which the bias function remains scale independent
is larger at the lower redshifts. The linear bias model is hence seen to hold reasonably well on
large scales. The scale dependence of bias for a given redshift is fitted using a cubic polynomial
with parameters summarized in Table 6.1. The inset in Figure6.2 shows the redshift depen-
dence of the linear bias which indicates a monotonic increase. This is also consistent with the
expectedz-dependence of high redshift galaxy bias. The behavior of the linear bias for small
k-values as a function of redshift is non-linear and can be fitted by an approximate power law
of the form∼ z2. This scaling relationship of bias with is found to be sensitive to the mass
resolution of the simulation. The similar dependence of HI bias withk andz has been observed
earlier by Bagla et al. (2010) with a computationally robustTree N-body code. Here we show
that, the same generic features and similar scaling relations for bias can be obtained by using
a simpler and computationally less expensive PM N-body code. Our aim is to use this scale
and redshift dependence of bias, obtained from our simulation as the fiducial model for the post
reionization HI distribution. We shall subsequently investigate the feasibility of constraining
this model using Principal Component Analysis (PCA) on simulated MAPS data.
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6.3 HI 21-cm angular power-spectrum

Redshifted 21-cm observations have an unique advantage over other cosmological probes since
it maps the 3D density field and gives a tomographic image of the Universe. Here, the statistical
properties of the fluctuations in the redshifted 21-cm brightness temperatureT (n̂, z) on the sky
is quantified through the multi frequency angular power spectrum MAPS, defined asCℓ(∆z) =
〈aℓm(z)a∗ℓm(z +∆z)〉, whereaℓm(z) =

∫

dΩn̂Y
∗
ℓm(n̂)T (n̂, z). This measures the correlation of

the spherical harmonic components of the temperature field at two redshift slices separated by
∆z. In the flat-sky approximation and incorporating the redshift space distortion effect we have
(Datta et al. 2007)

Cℓ =
T̄ 2

πr2

∞
∫

0

dk‖ cos(k‖∆r)P
s
HI(k) (6.1)

for correlation between HI at comoving distancesr andr+∆r, T̄ = 4mK(1+z)2
(

Ωbh
2

0.02

)

H0

H(z)
×

(

0.7
h

)

, k =
√

(

ℓ
r

)2
+ k2‖ andP s

HI denotes the redshift space HI power spectrum given by

P s
HI(k) = x̄2HIb

2(k, z)D2
+

[

1 + β

(

k‖
k

)2
]2

P (k) (6.2)

where the mean neutral fraction̄xHI is assumed to have a fiducial value2.45 × 10−2, β =
f/b(k, z), f = d lnD+/d ln awhere,D+ represents the growing mode of density perturbations,
a is the cosmological scale factor andP (k) denotes the present day matter power spectrum.

We use MAPS as an alternative to the more commonly used 3D power spectrum since
it has a few features that makes its measurement more convenient. Firstly we note that as a
function of ℓ (angular scales) and∆z (radial separations) the MAPS encapsulate the entire
three dimensional information regarding the HI distribution. In this approach, the fluctuations
in the transverse direction are Fourier transformed, whilethe radial direction is kept unchanged
in the real frequency space. No cosmological information ishowever lost. Secondly, 21-cm
signal is deeply submerged in astrophysical foregrounds. These foregrounds are known to have
a smooth and slow variation with frequency, whereas the signal is more localized along the
frequency axis. The distinct spectral (∆z ) behavior has been proposed to be an useful method
to separate the cosmological signal from foreground contaminants. In fact it has been shown
that foregrounds can be completely removed by subtracting out a suitable polynomial in∆ν
from Cℓ(∆ν) (Ghosh et al. 2011). It is hence advantageous to use MAPS which maintains the
difference between the frequency and angular information in an observation. The 3D power
spectrum on the contrary mixes up frequency and transverse information through the full 3D
Fourier transform. Further, for a large band width radio observation, covering large radial
separations light cone effect is expected to affect the signal. This can also be easily incorporated



6.3. HI 21-cm angular power-spectrum 129

into MAPS unlike the 3D power spectrum which mixes up the information from different time
slices. The key advantage, however, in using the angular power spectrum is that it can be
obtained directly from radio data. The quantity of interestin radio-interferometric experiments
is the complex VisibilityV(U, ν) measured for a pair of antennas separated by a distanced as a
function of baselineU = d/λ and frequencyν. The method of Visibility correlation to estimate
the angular power spectrum has been well established (Bharadwaj & Sethi 2001; Bharadwaj &
Ali 2005). This follows from the fact that〈V(U, ν)V∗(U, ν + ∆ν)〉 ∝ Cℓ(∆ν). Here the
angular multipoleℓ is identified with the baselineU asℓ = 2πU and one has assumed that the
antenna primary beam is either de-convolved or is sufficiently peaked so that it maybe treated
as a Dirac delta function. Further the constant of proportionality takes care of the units and
depends on the various telescope parameters.

The angular power spectrum at a multipoleℓ is obtained by projecting the 3D power
spectrum. The integral in Equation 6.1, sums over the modes whose projection on the plane
of the sky isℓ/r. Hence,Cℓ has contributions from matter power spectrum only fork >
ℓ/r. The shape ofCℓ is dictated by the matter power spectrumP (k) and the biasb(k). The
amplitude depends on quantities dependent on the background cosmological model as well as
the astrophysical properties of the IGM. We emphasize here that, the mean neutral fraction and
the HI bias are the only two non-cosmological parameters in our model for the HI distribution
at low redshifts. Predicting the nature ofCℓ in a given cosmological paradigm is then crucially
dependent on the underlying bias model and the value of the neutral fraction.

The∆ν dependence of the MAPSCℓ(∆ν) measures the correlation between the various
2D modes as a function of radial separation∆r (∆ν). The signal is seen to decorrelate for
large radial separations, the decorrelation being faster for largerℓ values. For a givenℓ, one gets
independent estimates ofCℓ for radial separations greater than the correlation length. Projection
of the 3D power spectrum leads the availability of fewer Fourier modes. However, for a given
band widthB, one may combine the signals emanating from epochs separated by the correlation
length∆νC in the radial direction. Noting that the amplitude of the signal does not change
significantly over the radial separation corresponding to the band width, one has∼ B/∆νc
independent measurements ofCℓ(∆z = 0). We have adopted the simplified picture where the
noise inCℓ(∆z = 0) gets reduced owing to the combination of theseB/∆νc realizations. A
more complete analysis would incorporate the correlation for ∆ν < ∆νc. We plan to take this
up in a future work.

Figure 6.3 shows the 3D HI power spectrum at the fiducial redshift z = 2.5 obtained
using the dark matter power spectrum of Eisenstein & Hu (1998). We have used the WMAP
7 year cosmological model throughout. Figure 6.4 shows the corresponding HI angular power
spectrum. The shape ofCℓ is dictated by the shape of the matter power spectrum, the bias
function, and the background cosmological model. The amplitude is set by various quantities
that depend on the cosmological model and the growth of linear perturbations. The global mean
neutral fraction also appears in the amplitude and plays a crucial role in determining the mean
level for 21-cm emission. Hence, for a fixed cosmological model, the bias and the neutral
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fraction, solely determine the fluctuations of the post-reionization HI density field. We have
used the bias model obtained from numerical simulations in the last section to evaluate theCℓ.
We assume that the binned angular power spectrum is measuredat sevenℓ bins− the data being
generated using Equation 6.1 using the fiducial bias model.

The noise estimates are presented using the formalism used by Mao et al. (2008) for
the 3D power spectrum and Bharadwaj & Ali (2005) and Bagla et al. (2010) for the angular
power spectrum. We have used hypothetical telescope parameters for these estimates. We
consider radio telescope with 60 GMRT like antennae (diameter 45 m) distributed randomly
over a region1km × 1km. We assumeTsys ∼ 100K. We consider a a radio-observation at
frequencyν = 405MHz with a bandwidthB = 32MHz for an observation time of1000 hrs.

In order to attain desired sensitivities we have assumed that the data is binned whereby
several nearbyℓ− modes are combined to increase the SNR. Further, in the radial direction, the
signal is assumed to decorrelate for∆ν > 0.5MHz, so that we have64 independent measure-
ments ofCℓ for the given band width of32MHz. The7-ℓ bins chosen here allows the binned
power spectrum to be measured at a SNR& 4 in the entire range400 ≤ ℓ ≤ 8000. One would
ideally expect to measure the power spectrum at a large number of ℓ values which would nec-
essarily compromise the obtained sensitivities. With the given set of observational parameters,
one may, in principle choose a finer binning. It shall howeverdegrade the SNR below the level
of detectability. Choosing arbitrarily fineℓ− bins and simultaneously maintaining the same
SNR would require improved observational parameters whichmay be unreasonable if not im-
possible. The same reasoning applies to noise estimation for the 3D power spectrum where for
a given set of observational parameters, the choice ofk− bins is dictated by the requirement of
sensitivity. In the figure 6.3, showing the 3D power spectruma4− σ detection ofPHI(k) in the
central bin requires the fullk− range to be divided into18 equal logarithmic bins for the same
observational parameters.

The noise inCℓ andPHI(k) is dominated by cosmic variance at smallℓ/k (large scales),
whereas, instrumental noise dominates at largeℓ/k values (small scales). We point out that
the error estimates predicted for a hypothetical observation are based on reasonable telescope
parameters and future observations are expected to reflect similar sensitivities.

We note here that several crucial observational difficulties hinderCℓ to be measured at a
high SNR. Separating the astrophysical foregrounds, whichare several order larger in magni-
tude than the signal is a major challenge (Santos et al. 2005;McQuinn et al. 2006; Ali et al.
2008; Ghosh et al. 2010, 2011). Several methods have been suggested for the removal of fore-
grounds most of which uses the distinct spectral property ofthe 21 cm signal as against that of
the foreground contaminants. The multi frequency angular power spectrum (MAPS)Cℓ(∆ν) is
itself useful for this purpose (Ghosh et al. 2010, 2011). Whereas this signalCℓ(∆ν) decorre-
lates over large∆ν, the foregrounds remain correlated− a feature that maybe used to separate
the two. In our subsequent discussions we assume that the foregrounds have been removed.
As mentioned earlier, the angular power spectrum can directly be measured from raw visibility
data. One requires to incorporate the primary beam of the antenna in establishing this con-
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Figure 6.5: The degraded Fisher matrixF deg
ij in thek − k plane.

nection (Bharadwaj & Ali 2005). Here we assume that such difficulties are overcome and the
angular power spectrum is measured with sufficiently high SNR.

In the next section we use theCℓ data generated with these assumptions to perform the
PCA. If the 3D HI power spectrum is measured at some(k, µ) it would be possible to deter-
mine the bias directly from a knowledge of the dark matter power spectrum. The bias would
be measured at thek− values where the data is available. The results for the 3D analysis is
summarized in section 6.5.

6.4 PCA constraints for the simulated data

We have already discussed the principal component method indetails in Section 2.2. Here,
we will follow that same approach towards constraining the bias function usingCℓ data. We
consider a set ofnobs observational data points labeled byCℓobs whereℓobs runs over the different
ℓ values for whichCℓ is obtained (Fig. 6.4).

In our attempt to reconstructb(k) in the range[kmin, kmax], we assume that the bias which
is an unknown function ofk, can be represented by a set ofnbin discrete free parametersbi =
b(ki) where the entire k-range is binned such thatki corresponds to theith bin of width given
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by

∆ ln ki =
ln kmax − ln kmin

nbin − 1
(6.3)

We have chosennbin = 61 and ak−range0.13 ≤ k ≤ 5.3 Mpc−1. Our choice is dictated by
the fact that fork < 0.13 Mpc−1, theCℓ corresponding to the smallestℓ is insensitive tob(k)
and fork > 5 Mpc−1 there is no data probing those scales. This truncation is also justified as
the Fisher information matrix, we shall see, tends to zero beyond thisk−range.

The Fisher matrix is constructed as

Fij =
∑

ℓobs

1

σ2
ℓobs

∂Cth
ℓobs

∂bfid(ki)

∂Cth
ℓobs

∂bfid(kj)
, (6.4)

whereCth
ℓobs

is the theoretical [equation (6.1)]Cℓ evaluated atℓ = ℓobs using the fiducial bias
modelbfid(k) andσℓobs is the corresponding observational error. The data is assumed to be such
that the covariance matrix is diagonal whereby only the varianceσℓobs suffices.

The fiducial model for bias is, in principle, expected to be close to the underlying “true”
model. In this work we have takenbfid(k) to be the fitted polynomial obtained in the earlier
section which matches the simulated bias up to an acceptableaccuracy.

In the model for HI distribution at low redshifts, the mean neutral fraction crucially sets
the amplitude for the power spectrum. However, a lack of precise knowledge about this quantity
makes the overall amplitude ofCℓ largely uncertain. To incorporate this we have treated the
quantityx̄HI as an additional free parameter over which the Fisher matrixis marginalized. The
corresponding degraded Fisher matrix is given by

F
deg = F− BF

′−1
B
T (6.5)

whereF is the originalnbin × nbin Fisher matrix corresponding to the parametersbi, F′ is a
1 × 1 Fisher matrix for the additional parameterx̄HI, andB is anbin × 1-dimensional matrix
containing the cross-terms. We shall henceforth refer toF

deg as the Fisher matrix and implicitly
assume that the marginalization has been performed.

The Fisher matrix obtained using equation (6.4) and equation (6.5) is illustrated in Figure
2.2 as a shaded plot in thek − k plane. The matrix shows a band diagonal structure with most
of the information accumulated in discrete regions especially corresponding to thek−modes
for which the data is available. In the regionk > 2 andk < 0.2 Mpc−1, the value ofFij is
relatively small, implying that one cannot constrainb(k) in thosek−bins from the data set we
have considered in this work.

A suitable choice of basis ensures that the parameters are not correlated. This amounts to
writing the Fisher matrix in its eigen basis. Once the Fishermatrix is constructed, we determine
its eigenvalues and corresponding eigenvectors. The orthonormality and completeness of the
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eigenfunctions, allows us to expand the deviation ofb(ki) from its fiducial model,δbi = b(ki)−
bfid(ki), as

δbi =

nbin
∑

p=1

mpSp(ki) (6.6)

whereSp(ki) are the principal components ofb(ki) andmp are the suitable expansion coeffi-
cients. The advantage is that, unlikeb(ki), the coefficientsmp are uncorrelated.

Figure 6.6 shows the inverse of the largest eigenvalues. Beyond the first six, all the eigen-
values are seen to be negligibly small. It is known that the largest eigenvalue corresponds to
minimum variance set by the Cramer-Rao bound and vice versa.This implies that the errors
in b(k) would increase drastically if modesi > 6 are included. Hence, most of the relevant
information is essentially contained in the first six modes with larger eigenvalues. These nor-
malized eigenmodes are shown in the Figure 6.7. One can see that, all these modes almost tend
to vanish fork > 2 andk < 0.2 Mpc−1, as the Fisher matrix is vanishingly small in these re-
gions. The positions of the spikes and troughs in these modesare related to the presence of data
points and their amplitudes depend on the corresponding error-bars (smaller the error, larger the
amplitude).

The fiducial model adopted in our analysis may be different from the true model which
dictates the data. Clearly, the reconstruction would be poor for wide discrepancies between the
two. In our analysis, the simulated bias serves as the input.In the absence of many alternative
models for large scale HI bias, this serves as a reasonable fiducial model.

We assume that one can then reconstruct the functionδbi using only the firstM ≤ nbin

modes [see equation ( 6.6)]. Considering all thenbin modes ensures that no information is
thrown away. However this is achieved at the cost that errorsin the recovered quantities would
be very large owing to the presence of the negligibly small eigenvalues. On the contrary, low-
ering the number of modes can reduce the error but may introduce large biases in the recovered
quantities. An important step in this analysis is therefore, to decide on the number of modesM
to be used. In order to test this we consider a constant bias model to represent the true model
as against the fiducial model. For a given data, figure 6.8 shows how the true model is recon-
structed through the inclusion of more and more PCA modes. The reconstruction is directly
related to the quality of the data. In thek-range where data is not available, the reconstruction
is poor and the fiducial model is followed. The reconstruction is also poor for large departures
of the true model from the fiducial model. We see that a reasonable reconstruction is obtained
using the first5 modes fork < 1 where the data is available.

In order to fix the value ofM , we have used the Akaike information criterion (Liddle
2007)AIC = χ2

min + 2M , whose smaller values are assumed to imply a more favored model
(see Section 2.3.2). Following the strategy used by Clarkson & Zunckel (2010) and Mitra et al.
(2012), we have used different values ofM (2 to 6) for which the AIC is close to its minimum
and amalgamated them equally at the Monte Carlo stage when wecompute the errors. In this
way, we ensure that the inherent bias which exists in any particular choice ofM is reduced.
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We next perform the Monte-Carlo Markov Chain (MCMC) analysis over the parameter
space of the optimum number of PCA amplitudes{mp} andx̄HI. Other cosmological parame-
ters are held fixed to the WMAP7 best-fit values (see Subsection 6.2). We carry out the analysis
by takingM = 2 toM = 6 for which the AIC criterion is satisfied. By equal choice of weights
for M and folding the corresponding errors together we reconstruct b(k) and therebyCℓ along
with their effective errors. We have developed a code based on the publicly available COS-
MOMC Lewis & Bridle (2002) for this purpose. A number of distinct chains are run until the
Gelman and Rubin convergence statistics satisfiesR − 1 < 0.001. We have also used the con-
vergence diagnostic of Raftery & Lewis to choose suitable thinning conditions for each chain
to obtain statistically independent samples.

6.5 Results and discussion

The reconstructed bias function obtained using the analysis described in the last section is shown
in Figure 6.9. The solid line represents the mean model whilethe shaded region corresponds to
95% confidence limits (2-σ). We have also shown the fiducial model (short-dashed) as well as
the popularly used constant bias,b ∼ 1.5 model (long-dashed) for comparison. We find that the
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Figure 6.9: The marginalized posteriori distribution of the binned bias function obtained from
the MCMC analysis using the AIC criterion up to first 6 PCA eigenmodes. The solid lines shows
the mean values of bias parameters while the shaded regions represent the 2-σ confidence limits.
In addition, we show the fiducial and constant bias models.

fiducial model is within the 95% confidence limits for the entirek−range considered, while the
constant bias is within the same confidence limits only up tok ≈ 2 Mpc−1. We note that the
errors decrease drastically fork > 2 andk < 0.2 Mpc−1. This is expected from the nature of
the Fisher matrix which shows that there is practically no information in the PCA modes from
thesek−regions. Therefore, all models show a tendency to converge towards the fiducial one.
This is a direct manifestation of lack of data points probingthese scales. Thus, most of the
information is concentrated in the range0.2 < k < 2 Mpc−1 within which reconstruction of
the bias function is relevant with the given data set.

The mean reconstructed bias simply follows the fiducial model for 0.2 < k < 2 Mpc−1.
This is expected as the simulatedCℓ data is generated using the fiducial bias model itself (Sec-
tion 6.2). In the case of analysis using real observed data this matching would have statistical
significance, whereas here this just serves as an internal consistency check. The shaded region
depicting the errors around the mean is however meaningful and tells us how well the given
data can constrain the bias. The outline of the 2-σ confidence limits shows a jagged feature
which is directly related to the presence of the data points.We observe that apart from the
fiducial model, a constant bias model is also consistent withthe data within the 2-σ limits. In
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Parameters 2-σ errors

x̄HI 1.06× 10−3

blin 0.453

Table 6.2: The 2-σ errors forx̄HI andblin(k = 0.3 Mpc−1) obtained from the current analysis
using AIC criterion.

fact, other than imposing rough bounds1 . b(k) . 2, the present data can hardly constrain the
scale-dependence of bias. It is also not possible for theCℓ data with its error-bars to statistically
distinguish between the fiducial and the constant bias modelin 0.2 < k < 2Mpc−1. Figure 6.10
illustrates the recovered angular power spectrum with its 95% confidence limits. Superposed
on it are the original data points with error-bars. We also show the angular power spectrum
calculated for the fiducial and the constant bias models. The2-σ contour follows the pattern
of the error-bars on the data points. It is evident that the data is largely insensitive (within its
error-bars) to the different bias models. Hence thek−dependence of bias on these scales does
not affect the observable quantityCℓ within the bounds of statistical precision.

While constructing the Fisher matrix, we had marginalized over the largely unknown
parameter̄xHI. Treating it as an independent free parameter, we have investigated the possibility
of constraining the neutral fraction using the simulatedCℓ data. The 2-σ error in this parameter
obtained from our analysis is shown in Table 6.2. We had used the fiducial valuēxHI = 2.45×
10−2 in calculatingCℓ. It is not surprising that our analysis gives a meanx̄HI = 2.44 × 10−2

which is in excellent agreement with the fiducial value. It ishowever more important to note
that the given data actually constrainsx̄HI reasonable well at∼ 4% (Guha Sarkar et al. 2012).

Noting that, on large scales (k . 0.3 Mpc−1), one cannot distinguish between the mean,
fiducial and the constant bias models, we useblin(= 1.496) to denote the bias value on these
scales. The 2-σ error onblin is evaluated atk = 0.3 Mpc−1 (shown in Table 6.2).

In the k−range of our interest, the fiducial model does not reflect significant departure
from the constant bias. Further, the confidence interval obtained from the data also reflects
that the observedCℓ is insensitive to the form of bias functionb(k) in this range - provided
that it is bound between approximate cut-offs (1 . b(k) . 2). Moreover, the bias largely
affects the amplitude of the angular power spectrum and has only a weak contribution towards
determining its shape. A scale independent large-scale bias seems to be sufficient in modelling
the data. The mean neutral fraction which globally sets the amplitude of the power spectrum is
hence weakly degenerate with the bias. This is manifested inthe fact that though̄xHI is rather
well constrained, the bias reconstruction which uses the degraded Fisher information (after
marginalizing over̄xHI) is only weakly constrained from the same data. A prior independent
knowledge about the post reionization neutral fraction would clearly ensure a more statistically
significant bias reconstruction with smaller errors.
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Figure 6.11 shows the reconstructed 3D HI power spectrum. The direct algebraic re-
lationship between the observablePHI(k) and the biasb(k) makes the 3D analysis relatively
straightforward. This is specifically evident since the Fisher matrix elements in this case are
non-zero only along the diagonal at specifick− values corresponding to the data points. The
entire routine repeated here yields similar generic features. However, the key difference is that
we have a larger number of bins with high sensitivity leadingto an improved constraining of
bias1.3 < b(k) < 1.7 in the range0.2 < k < 0.7 Mpc−1.

In the absence of real observed data, our proposed method (Guha Sarkar et al. 2012) ap-
plied on a simulated data set, reflects the possibility of constraining large-scaleHI bias. The
method is expected to yield better results if one has preciseknowledge about the neutral content
of the IGM and the underlying cosmological paradigm. We notethat the problem of constrain-
ing an unknown function given a known data dealt in this work is fairly general and several
alternative methods maybe used. The chief advantage of the method adopted here, apart from
its effective data reduction, is its model independence. The non-parametric nature of the analy-
sis is specially useful in the absence of any specific prior information. A straightforward fitting
of a polynomial and estimating the coefficients may turn out to be effective but there is no a pri-
ori reason to believe that it would work. It is logically morereasonable not to impose a model
(with its parameters) upon the data, and instead, let the data reconstruct the model.

With the anticipation of upcoming radio observations towards measurement ofHI power
spectrum, our method holds the promise for pinning down the nature ofHI bias thereby throw-
ing valuable light on our understanding of theHI distribution in the diffuse IGM.



CHAPTER 7

SUMMARY AND CONCLUSIONS

A major constituent of this thesis is involved in dealing with one of the most intriguing and de-
veloping field of modern cosmology: reionization of the universe. In the first part of the thesis,
we develop step by step the building blocks of cosmological reionization processes starting from
very basic picture of cosmology. In order to understand the physical processes during reioniza-
tion, one need to know the physics of structure formation. Wehave studied here the dynamics
of non-linear structure formation in certain details. We argue that, due to the poor understand-
ing of various complex processes like cooling and fragmentation of dark haloes, primordial
star formation and different feedback processes, one cannot completely solve the problem as-
sociated with structure formation analytically without the help of approximation schemes. Off
course, the correct way to tackle the problem is to use the numerical simulations. Over the last
few years, there has been an enormous increase in the computational power to address vari-
ous issues of structure formation through simulations. However, due to the limited resources
of computational power, in this thesis, we mostly restrict ourselves in using analytical or semi-
analytical tools along with some reasonable assumptions toexplore the physical understandings
of structure formation. Following the same argument, we have developed our basic knowledge
regarding the reionization process through the semi-analytical modelling which helped us to
acquire a good insight of the physics behind cosmic reionization. This, off course, introduces
a few free parameters in the model which needed to be regulated by comparing with relevant
observations. So, a successful reionization model should be able to match simultaneously the
model predictions with most of the available data sets. In the introductory part of this thesis,
we have also mentioned several observational probes of reionization. The most crucial data sets
among them come from the measurements of QSO absorption linespectra (Fan et al. 2006),
GRB spectra (Totani et al. 2006) and the CMB data (Hinshaw et al. 2012; Ade et al. 2013b).
In this thesis, we have used one of the successful semi-analytical reionization models, based on
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the model proposed by Choudhury & Ferrara (2005, 2006b), andtry to compare our model pre-
dictions with such observations related to reionization. We have addressed some of the crucial
but critical issues of star-formation history and reionization of the IGM using that model.

First, we have looked into one of the major uncertainties present in modelling reionization
scenario, the parameterNion, the number of photons entering the IGM per baryon in collapsed
objects. In spite of the fact that, this parameter can have a dependence on redshiftz (which
can arise from evolution of star-forming efficiencyǫ∗, fraction of photons escaping from the
host halofesc and chemical and radiative feedback processes), it is usually taken to be a con-
stant as most of the physical processes involved in modellingNion are still uncertain. We make
a preliminary attempt to constrainNion(z) using an emerging technique of cosmological data
analysis namely the principal component analysis (PCA) andestimate the uncertainties in the
reionization history in Chapter 2. In past few years, PCA hasbeen successfully used in many
areas of cosmology due to the fact that, it is a simple, non-parametric method of extracting
relevant information from noisy data sets. We assumeNion(z) to be completely arbitrary and
decompose it into principal components. We have applied theprincipal component method us-
ing three different data sets - the photoionization rateΓPI(z), the LLS distributiondNLL/dz
and WMAP7 (as well as simulated PLANCK) CMB data and obtainedconstraints on the reion-
ization history by means of Monte-Carlo Markov Chain (MCMC)techniques. We found that
the constraints atz < 6 are relatively tight because of the QSO data, where as a wide range
of histories atz > 6 is still allowed by the present data. We have also indicated that, to get a
more strict constraints on reionization atz > 6, one has to rely on data sets other than CMB
and the PCA method will be a very promising tool for extracting the useful information from
any future data sets in a model-independent manner. In Chapter 3, we extend our discussion
about the crucial but still unknown parameters related to reionization -ǫ∗ andfesc. With help
of our semi-analytical PCA-reionization model, we try to constrain these parameters using the
observed Luminosity Functions (LF) of galaxies in the redshift range6 ≤ z ≤ 10. We found
that, there is a clear indication of a 2.6 times increase of the average escape fraction fromz = 6
to z = 8 and the best-fit value of the star formation efficiencyǫ∗ nominally increases from 3.6%
at z = 6 to 5.2% atz = 8. Although we have only considered only the evolution ofz ≥ 6
luminosity functions, our approach can be applied to model the LFs at3 ≤ z ≤ 5 and also it
will become more applicable as more data becomes available for z > 6 region.

In Chapter 2 and 3, we have taken most of the cosmological parameters to be fixed at their
best-fit WMAP values to keep the analysis simple. Because of that, the uncertainties in reioniza-
tion history remained slightly underestimated. So, we thentry to find the effects of reionization
on cosmological parameter determinations in Chapter 4. This time, we vary all the relevant
cosmological parameters along with our model parameters. Using the combination of CMB
data with astrophysical results from QSO absorption line experiments and the joint variation of
both the cosmological and astrophysical parameters, we found that, a realistic, data-constrained
reionization history indeed can induce appreciable changes in the cosmological parameter val-
ues. Particularly significant variations among them are theΩbh

2, the scalar spectral indexns
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and the electron scattering optical depthτel = 0.080 ± 0.012 which is notably decreased with
respect to the standard WMAP7 value0.088±0.015. In the later half of that chapter, we further
exploit our model to achieve the better constraint on the neutrino massesmν as allowed by the
current datasets related to reionization. We obtained that, our model with a more physically
reasonable treatment of reionization can tighten the upperlimit on neutrino masses by∼ 17%
than the usual WMAP7 value where they assume the standard sudden reionization scheme. We
also established that, there could exist a large degeneracybetween the efficiency parameters
ǫ’s andmν and one can get a further stringent constraint onmν , once this degeneracy will be
removed by the future observations associated with reionization.

The next chapter of the thesis is devoted to understanding one of the crucial ingredients
of formation of large-scale structures - the mass function and formation rates of dark matter
haloes. Understanding the fundamental properties and abundances of the dark matter halos is
almost inevitable for understanding the properties of reionization sources like galaxies. In this
chapter, we mentioned about several approaches to calculating halo formation rate. One of them
is the Sasaki approximation which does not use any specific aspect of the form of mass func-
tion. We investigate the application of this approximationscheme to different mass function by
explicitly computing the halo formation and destruction rates using the excursion set formal-
ism. We have found that, extension of this approximation sometimes leads to an unphysical
negative formation rate, particularly when applied to the Sheth-Tormen mass function. We then
generalize this same method for the Sheth-Tormen mass function and find that halo formation
rates computed in our manner are always positive. Our approach matches well with simulations
for all models at all redshifts. In case of any semi-analyticmodels of galaxy formation, our
approach can be applied successfully.

Finally, in Chapter 6, we have extended our study of neutral hydrogen distribution in
the universe to post-reionization redshifts (z < 6). Measurement of the spatial distribution
of neutral hydrogen (HI) via the redshifted 21-cm line is perhaps the most auspicious tool in
developing our knowledge of the epoch of reionization and the first galaxies. Here, we have
investigated the nature of large scaleHI biasb(k) which is one of the crucial ingredients for
modelling the 21-cm emission from neutral hydrogen in the post-reionization epoch. Using
the simulated bias as the fiducial model forHI distribution atz ≤ 4, we have generated a
hypothetical data set for the 21-cm angular power spectrum and we explore the possibility of
constrainingb(k) using the Principal Component Analysis (PCA) on this simulated data. We
have demonstrated that our approach can be successfully implemented on future observational
data sets.

In this thesis, we have addressed several issues regarding the structure formation of the
universe, semi-analytical modelling of cosmological reionization and the neutral hydrogen dis-
tribution at the post-reionization epoch. Based on some simple approximation schemes and
data analysis techniques, we have dealt with those problems. We have rigorously tested our
approaches and models with all available relevant observational or numerical data sets. In some
cases, we have also successfully examined our methods for simulated or future data sets. How-



144 Summary and conclusions

ever, there are still many unsolved and challenging questions related to this subject which can
be resolved by future observations and/or some meticulous computational techniques. Never-
theless, all the ideas and techniques used in this thesis will be very useful for future science in
this area.
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Macciò A. V., Quercellini C., Mainini R., Amendola L., Bonometto S. A., 2004, Phys. Rev. D,
69, 123516

Mack K. J., Wyithe J. S. B., 2012, MNRAS, 425, 2988

Madau P., Ferrara A., Rees M. J., 2001, ApJ, 555, 92

Madau P., Haardt F., Rees M. J., 1999, ApJ, 514, 648

Madau P., Meiksin A., Rees M. J., 1997, ApJ, 475, 429
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Neistein E., Macciò A. V., Dekel A., 2010, MNRAS, 403, 984

Oesch P. A., et al., 2010, ApJL, 709, L16

Oesch P. A., et al., 2012, ApJ, 745, 110

Oke J. B., Gunn J. E., 1983, ApJ, 266, 713

Ota K., et al., 2008, ApJ, 677, 12

Oyama Y., Shimizu A., Kohri K., 2012, ArXiv e-prints

Padmanabhan T., 1993, Structure Formation in the Universe

Padmanabhan T., 2002, Theoretical Astrophysics - Volume 3,Galaxies and Cosmology

Page L., Hinshaw G., Komatsu E., et al., 2007, ApJS, 170, 335

Pandolfi S., Cooray A., Giusarma E., Kolb E. W., Melchiorri A., Mena O., Serra P., 2010, Phys.
Rev. D, 81, 123509

Pandolfi S., Ferrara A., Choudhury T. R., Melchiorri A., Mitra S., 2011, Phys. Rev. D, 84,
123522

Pandolfi S., Giusarma E., Kolb E. W., Lattanzi M., MelchiorriA., Mena O., Peña M., Cooray
A., Serra P., 2010, Phys. Rev. D, 82, 123527

Partridge R. B., 1995, 3K: The Cosmic Microwave Background Radiation

Peacock J. A., 1999, Cosmological Physics

Peebles P. J. E., 1980, The large-scale structure of the universe

Peebles P. J. E., 1993, Principles of Physical Cosmology

Pentericci L., et al., 2002, Astron.J., 123, 2151

Percival W., Miller L., 1999, MNRAS, 309, 823

Percival W. J., 2001, MNRAS, 327, 1313

Percival W. J., et al., 2010, Mon.Not.Roy.Astron.Soc., 401, 2148

Percival W. J., Miller L., Peacock J. A., 2000, MNRAS, 318, 273

Perotto L., Lesgourgues J., Hannestad S., Tu H., Y Y Wong Y., 2006, JCAP, 10, 13

Péroux C., McMahon R. G., Storrie-Lombardi L. J., Irwin M. J., 2003, MNRAS, 346, 1103



156 BIBLIOGRAPHY

Pontzen A., Governato F., Pettini M., Booth C. M., Stinson G., Wadsley J., Brooks A., Quinn
T., Haehnelt M., 2008, MNRAS, 390, 1349

Porciani C., Matarrese S., Lucchin F., Catelan P., 1998, MNRAS, 298, 1097

Press W. H., Schechter P., 1974, ApJ, 187, 425

Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1992, Numerical recipes in
FORTRAN. The art of scientific computing

Pritchard J. R., Loeb A., 2010, Phys. Rev. D, 82, 023006

Pritchard J. R., Loeb A., 2012, Reports on Progress in Physics, 75, 086901

Pritchard J. R., Loeb A., Wyithe J. S. B., 2010, MNRAS, 408, 57

Pritchard J. R., Pierpaoli E., 2008, Phys. Rev. D, 78, 065009

Pritchard J. R., Pierpaoli E., 2009, Nuclear Physics B Proceedings Supplements, 188, 31

Purcell E. M., Field G. B., 1956, ApJ, 124, 542

Rao S. M., Turnshek D. A., 2000, The Astrophysical Journal Supplement, 130, 1

Razoumov A. O., Norman M. L., Abel T., Scott D., 2002, ApJ, 572, 695

Razoumov A. O., Sommer-Larsen J., 2006, ApJL, 651, L89

Razoumov A. O., Sommer-Larsen J., 2010, ApJ, 710, 1239

Reed D., Gardner J., Quinn T., Stadel J., Fardal M., Lake G., Governato F., 2003, MNRAS,
346, 565

Reed D. S., Bower R., Frenk C. S., Jenkins A., Theuns T., 2007,MNRAS, 374, 2

Rees M. J., Ostriker J. P., 1977, MNRAS, 179, 541

Ricotti M., Gnedin N. Y., Shull J. M., 2000, ApJ, 534, 41

Riemer-Sørensen S., Parkinson D., Davis T. M., 2013, PASA, 30, 29

Riess A. G., et al., 2009, Astrophys.J., 699, 539

Riess A. G., Macri L., Casertano S., Lampeitl H., Ferguson H.C., et al., 2011, Astrophys.J.,
730, 119

Ripamonti E., 2007, MNRAS, 376, 709



BIBLIOGRAPHY 157

Sachs R. K., Wolfe A. M., 1967, ApJ, 147, 73

Saini T. D., Bharadwaj S., Sethi S. K., 2001, ApJ, 557, 421

Salvaterra R., et al., 2009, Nature, 461, 1258

Samui S., Srianand R., Subramanian K., 2007, MNRAS, 377, 285

Samui S., Subramanian K., Srianand R., 2009

Sandage A., Tammann G. A., Saha A., Reindl B., Macchetto F. D., Panagia N., 2006, ApJ, 653,
843

Santos M. G., Cooray A., Knox L., 2005, ApJ, 625, 575

Sasaki S., 1994, Pub. Astron. Soc. Japan, 46, 427

Schaye J., Theuns T., Rauch M., Efstathiou G., Sargent W. L. W., 2000, MNRAS, 318, 817

Schlegel D., White M., Eisenstein D., 2009, in astro2010: The Astronomy and Astrophysics
Decadal Survey Vol. 2010 of Astronomy, The Baryon Oscillation Spectroscopic Survey: Pre-
cision measurement of the absolute cosmic distance scale. p. 314

Schneider R., Salvaterra R., Ferrara A., Ciardi B., 2006, MNRAS, 369, 825

Seager S., Sasselov D. D., Scott D., 1999, ApJL, 523, L1

Seager S., Sasselov D. D., Scott D., 2000, ApJS, 128, 407

Sekiguchi T., Ichikawa K., Takahashi T., Greenhill L., 2010, JCAP, 3, 15

Seljak U., et al., 2005, Phys.Rev., D71, 103515

Seljak U., Slosar A., McDonald P., 2006, JCAP, 10, 14

Shandarin S. F., Zeldovich Y. B., 1989, Reviews of Modern Physics, 61, 185

Shapiro P. R., Giroux M. L., 1987, ApJL, 321, L107

Shapley A. E., Steidel C. C., Pettini M., Adelberger K. L., Erb D. K., 2006, ApJ, 651, 688

Sheth R. K., Mo H. J., Tormen G., 2001, MNRAS, 323, 1

Sheth R. K., Tormen G., 1999, MNRAS, 308, 119

Sheth R. K., Tormen G., 2002, MNRAS, 329, 61

Silk J., 1977, ApJ, 211, 638



158 BIBLIOGRAPHY

Slatyer T. R., Padmanabhan N., Finkbeiner D. P., 2009, Phys.Rev. D, 80, 043526

Songaila A., Cowie L. L., 2010, ApJ, 721, 1448

Spergel D., et al., 2003, Astrophys.J.Suppl., 148, 175

Srbinovsky J. A., Wyithe J. S. B., 2010, PASA, 27, 110

Storrie-Lombardi L. J., McMahon R. G., Irwin M. J., 1996, MNRAS, 283, L79

Sunyaev R. A., Zeldovich Y. B., 1972, Comments on Astrophysics and Space Physics, 4, 173

Taniguchi Y., et al., 2005, Pub. Astron. Soc. Japan, 57, 165

Tanvir N. R., et al., 2009, Nature, 461, 1254

Taylor J. R., 1997, An Introduction to Error Analysis: The Study of Uncertainties in Physical
Measurements. University Science Books, 1997, 2nd ed., 327pages

Tegmark M., 2005, Physica Scripta Volume T, 121, 153

The Planck Collaboration 2006, arXiv:astro-ph/0604069

Thoul A. A., Weinberg D. H., 1996, ApJ, 465, 608

Tinker J., Kravtsov A. V., Klypin A., Abazajian K., Warren M., Yepes G., Gottlöber S., Holz
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